diff --git a/CHANGELOG.md b/CHANGELOG.md
index 1e00f462..167859fe 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -2,32 +2,30 @@
-## v2025.03.14
+## v2025.03.27
### New Features
-- **Horizontal Plots**: This new feature allows users to create horizontal plots instead of the regular vertical plots, providing a more compact visualization of data. This can be utilized by setting `horizontal=True` in the `plot()` method.
+- **Horizontal Plots**: Users can now create horizontal layout plots, providing compact data visualization. This can be achieved by setting `horizontal=True` in the `plot()` method.
-- **Forest Plots**: This new feature allows users to create forest plots! Forest plots provide a simple and intuitive way to visualize many delta-delta (or Deltas' g) or mini-meta effect sizes at once from multiple different dabest objects without presenting the raw data.
+- **Forest Plots**: Forest plots provide a simple and intuitive way to visualize many delta-delta (or Deltas’ g), mini-meta, or regular delta effect sizes at once from multiple different dabest objects without presenting the raw data.
-- **Gridkey**: This new feature allows users to create a gridkey to represent the labels of the groups in the plot. This can be utilized with the `gridkey_rows` argument in the `plot()` method.
+- **Gridkey**: Users can now represent their experimental labels in a gridkey format. This can be accessed with the `gridkey` argument in the `plot()` method.
- **Aesthetic Updates**: We have made several aesthetic improvements to the plots, including:
- - **Swarm, Contrast, and Summary bars**: We have added bars to better highlight the various groups and their differences. These bars can be customized to suit the user's needs. The swarm and contrast bars are provided by default, while the summary bars can be added by the user.
+ - **Raw, Contrast, and Summary bars**: We added bars highlighting the various groups' differences. These bars can be customized to suit the user’s needs. Raw and contrast bars are provided by default, summary bars can be added by the user.
- - **Delta-Delta Plots**: We have modified the delta-delta plot format to be more compact and easier to read. The new format brings the delta-delta (or Deltas' g) effect size closer to the regular effect sizes. In addition, a gap has been added to the zeroline to separate the delta-delta and regular effect sizes.
+ - **Delta-Delta and Mini-Meta Plots**: We have adjusted the spacing of delta-delta and mini-meta plots to reduce whitespace. The new format brings the added effect size closer to the regular effect sizes. In addition, delta-delta plots now have a gap in the zeroline to separate the delta-delta and regular effect sizes.
- - **Delta-delta Effect Sizes for Proportion Plots**: Delta-delta effect sizes for proportion plots are now available.
-
- - **Mini-Meta Plots**: We have modified the mini-meta plot format to be more compact and easier to read. The new format brings the mini-meta effect size closer to the regular effect sizes.
+ - **Delta-delta Effect Sizes for Proportion Plots**: Delta-delta experimental plotting now supports binary data.
- - **Proportion Plots Sample Sizes**: We have updated the proportion plots to show sample sizes for each group. These can be toggled on or off via the `prop_sample_counts` parameter.
+ - **Proportion Plots Sample Sizes**: The sample size of each binary option for each group can now be displayed. These can be toggled on or off via the `prop_sample_counts` parameter.
- - **Effect Size Lines for Paired Plots**: Effect size lines for paired plots are now available. These can be toggled on or off via the `es_paired_lines` parameter.
+ - **Effect Size Lines for Paired Plots**: Paired plots now display lines linking the effect sizes within a group together in the contrast axes. These can be toggled on or off via the `contrast_paired_lines` parameter.
- - **Baseline Error Curves**: Plots now include a baseline error dot and curve to show the error of the baseline/control group. By default, the dot is shown, while the curve can be added by the user (via the `show_baseline_ec` parameter).
+ - **Baseline Error Curves**: Baseline error dot and curve are now available to represent the baseline/control group in the contrast axes. The dot is shown by default, while the curve can be toggled on/off by the user (via the `show_baseline_ec` parameter).
- - **Delta Text**: There is now an option to display delta text on the contrast axes. It displays the effect size of the contrast group relative to the reference group. This can be toggled on or off via the `delta_text` parameter. It is on by default.
+ - **Delta Text**: Effect size deltas are now displayed as text next to their respective effect size. This can be toggled on or off via the `delta_text` parameter.
- **Empty Circle Color Palette**: A new swarmplot color palette modification is available for unpaired plots via the `empty_circle` parameter in the `plot()` method. This option modifies the two-group swarmplots to have empty circles for the control group and filled circles for the experimental group.
@@ -38,9 +36,10 @@
- **Numba for Speed Improvements**: We have included Numba to speed up the various calculations in DABEST. This should make the calculations faster and more efficient. Importing DABEST may take a little longer than before, and a progress bar will appear during the import process to show the calculations being performed. Once imported, loading and plotting data should now be faster.
- **Terminology Updates**: We have made several updates to the documentation and terminology to improve clarity and consistency. For example:
- - The method to utilise the Deltas' g effect size is now via the `.hedges_g.plot()` method now rather than creating a whole new `Delta_g` object as before. The functionality remains the same, it plots hedges_g effect sizes and then the Deltas' g effect size alongside these (if a delta-delta experiment was loaded correctly).
+ - Plot arguments have been adjusted to bring more clarity and consistency in naming. Arguments relating to the rawdata plot axis will now be typically referred to with ‘raw’ while arguments relating to the contrast axis will be referred to with ‘contrast’. For example, ‘raw_label’ replaces ‘swarm_label’ and ‘bar_label’. The various kwargs relating to each different type of plot (e.g., swarmplot_kwargs) remain unchanged.
+ - The method to utilise the Deltas’ g effect size is now via the .hedges_g.plot() method rather than creating a whole new Delta_g object as before. The functionality remains the same, it plots hedges_g effect sizes and then the Deltas’ g effect size alongside these (if a delta-delta experiment was loaded correctly).
-- **Updated Tutorial Pages**: We have updated the tutorial pages to reflect the new features and changes. The tutorial pages are now more comprehensive and hopefully more intuitive!.
+- **Updated Tutorial Pages**: We have updated the tutorial pages to reflect the new features and changes. The tutorial pages are now more comprehensive and (hopefully!) more intuitive!
- **Results Dataframe for Delta-delta and Mini-meta Plots**: A results dataframe can now be extracted for both the delta-delta and mini-meta effect size data (similar to the results dataframe for the regular effect sizes). These can be found via the `.results` attribute of the `.delta_delta` or `.mini_meta` object.
diff --git a/README.md b/README.md
index 35615293..4c7bbb1d 100644
--- a/README.md
+++ b/README.md
@@ -14,106 +14,132 @@ citation](https://zenodo.org/badge/DOI/10.1038/s41592-019-0470-3.svg)](https://r
## Recent Version Update
-We are proud to announce **DABEST Version TBC (v2025.03.14)** This new
-version of the DABEST Python library provides several new features and
-includes performance improvements. It’s a big one!
-
-1. **Python 3.13 Support**: DABEST now supports Python 3.10-3.13.
-
-2. **Horizontal Plots**: This new feature allows users to create
- horizontal plots instead of the regular vertical plots, providing a
- more compact visualization of data. This can be utilized by setting
- `horizontal=True` in the `plot()` method. See the [Horizontal
- Plots](../tutorials/08-horizontal_plot.html) tutorial for more
- details.
-
-3. **Forest Plots**: This new feature allows users to create forest
- plots! Forest plots provide a simple and intuitive way to visualize
- many delta-delta (or Deltas’ g) or mini-meta effect sizes at once
- from multiple different dabest objects without presenting the raw
- data. See the [Forest Plots](../tutorials/07-forest_plot.html)
- tutorial for more details.
-
-4. **Gridkey**: This new feature allows users to create a gridkey to
- represent the labels of the groups in the plot. This can be utilized
- with the `gridkey_rows` argument in the `plot()` method. See the
- gridkey section in the [Plot
- Aesthetics](../tutorials/09-plot_aesthetics.html) tutorial for more
+We are proud to announce **DABEST Version Dadar (v2025.03.27)** This new
+version of the DABEST Python library includes several new features and
+performance improvements. It’s a big one!
+
+1. **Python 3.13 Support**: DABEST now supports Python 3.10—3.13.
+
+2. **Horizontal Plots**: Users can now create horizontal layout plots,
+ providing compact data visualization. This can be achieved by
+ setting `horizontal=True` in the `.plot()` method. See the
+ [Horizontal Plots tutorial](../tutorials/08-horizontal_plot.html)
+ for more details.
+
+3. **Forest Plots**: Forest plots provide a simple and intuitive way to
+ visualize many delta-delta (or delta *g*), mini-meta, or regular
+ delta effect sizes at once from multiple different dabest objects
+ without presenting the raw data. See the [Forest Plots
+ tutorial](../tutorials/07-forest_plot.html) for more details.
+
+4. **Gridkey**: Users can now represent experimental labels in a
+ ‘gridkey’ table. This can be accessed with the `gridkey` parameter
+ in the `.plot()` method. See the gridkey section in the [Plot
+ Aesthetics tutorial](../tutorials/09-plot_aesthetics.html) for more
details.
-5. **Aesthetic Updates**: We have made several aesthetic improvements
- to the plots, including:
-
- - **Swarm, Contrast, and Summary bars**: We have added bars to
- better highlight the various groups and their differences. These
- bars can be customized to suit the user’s needs. The swarm and
- contrast bars are provided by default, while the summary bars can
- be added by the user. See the relevant sections in the [Plot
- Aesthetics](../tutorials/09-plot_aesthetics.html) tutorial for
- more details.
-
- - **Delta-Delta Plots**: We have modified the delta-delta plot
- format to be more compact and easier to read. The new format
- brings the delta-delta (or Deltas’ g) effect size closer to the
- regular effect sizes. In addition, a gap has been added to the
- zeroline to separate the delta-delta and regular effect sizes.
-
- - **Delta-delta Effect Sizes for Proportion Plots**: Delta-delta
- effect sizes for proportion plots are now available.
-
- - **Mini-Meta Plots**: We have modified the mini-meta plot format to
- be more compact and easier to read. The new format brings the
- mini-meta effect size closer to the regular effect sizes.
-
- - **Proportion Plots Sample Sizes**: We have updated the proportion
- plots to show sample sizes for each group. These can be toggled on
- or off via the `prop_sample_counts` parameter.
-
- - **Effect Size Lines for Paired Plots**: Effect size lines for
- paired plots are now available. These can be toggled on or off via
- the `es_paired_lines` parameter.
-
- - **Baseline Error Curves**: Plots now include a baseline error dot
- and curve to show the error of the baseline/control group. By
- default, the dot is shown, while the curve can be added by the
- user (via the `show_baseline_ec` parameter).
-
- - **Delta Text**: There is now an option to display delta text on
- the contrast axes. It displays the effect size of the contrast
- group relative to the reference group. This can be toggled on or
- off via the `delta_text` parameter. It is on by default.
-
- - **Empty Circle Color Palette**: A new swarmplot color palette
+5. **Other Visualization Improvements**:
+
+ - **Comparing means and effect sizes**: The estimation plots now
+ include three types of customizable visual features to enhance
+ contextualization and comparison of means and effect sizes:
+
+ - **Bars for the mean of the observed values (`raw_bars`)**:
+ Colored rectangles that extend from the zero line to the mean of
+ each group’s raw data. These bars visually highlight the central
+ tendency of the raw data.
+
+ - **Bars for effect size/s (`contrast_bars`)**: Similar to raw
+ bars, these highlight the effect-size difference between two
+ groups (typically test and control) in the contrast axis. They
+ provide a visual representation of the differences between
+ groups.
+
+ - **Summary bands (`reference_band`)**: An optional band or ribbon
+ that can be added to emphasize a specific effect size’s
+ confidence interval that is used as a reference range across the
+ entire contrast axis. Unlike raw and contrast bars, these span
+ horizontally (or vertically if `horizontal=True`) and are not
+ displayed by default.
+
+ Raw and contrast bars are shown by default. Users can customize
+ these bars and add summary bands as needed. For detailed
+ customization instructions, please refer to the [Plot Aesthetics
+ tutorial](../tutorials/09-plot_aesthetics.html).
+
+ - **Tighter spacing in delta-delta and mini-meta plots**: We have
+ adjusted the spacing of delta-delta and mini-meta plots to reduce
+ whitespace. The new format brings the overall effect size closer
+ to the two-groups effect sizes. In addition, delta-delta plots now
+ have a gap in the zero line to separate the delta-delta from the ∆
+ effect sizes.
+
+ - **Delta-delta effect sizes for proportion plots**: In addition to
+ continuous data, delta-delta plots now support binary data
+ (proportions). This means that 2-way designs for binary outcomes
+ can be analyzed with DABEST.
+
+ - **Proportion plots sample sizes**: The sample size of each binary
+ option for each group can now be displayed. These can be toggled
+ on/off via the `prop_sample_counts` parameter.
+
+ - **Effect size lines for paired plots**: Along with lines
+ connecting paired observed values, the paired plots now also
+ display lines linking the effect sizes within a group in the
+ contrast axes. These lines can be toggled on/off via the
+ `contrast_paired_lines` parameter.
+
+ - **Baseline error curves**: To represent the baseline/control group
+ in the contrast axes, it is now possible to plot the baseline dot
+ and the baseline error curve. The dot is shown by default, while
+ the curve can be toggled on/off via the `show_baseline_ec`
+ parameter. This dot helps make it clear where the baseline comes
+ from i.e. the control minus itself. The baseline error curve can
+ be used to show that the baseline itself is an estimate inferred
+ from the observed values of the control data.
+
+ - **Delta text**: Effect-size deltas (e.g. mean differences) are now
+ displayed as numerals next to their respective effect size. This
+ can be toggled on/off via the `delta_text` parameter.
+
+ - **Empty circle color palette**: A new swarmplot color palette
modification is available for unpaired plots via the
- `empty_circle` parameter in the `plot()` method. This option
+ `empty_circle` parameter in the `.plot()` method. This option
modifies the two-group swarmplots to have empty circles for the
control group and filled circles for the experimental group.
6. **Miscellaneous Improvements & Adjustments**
- - **Numba for Speed Improvements**: We have included Numba to speed
- up the various calculations in DABEST. This should make the
- calculations faster and more efficient. Importing DABEST may take
- a little longer than before, and a progress bar will appear during
- the import process to show the calculations being performed. Once
- imported, loading and plotting data should now be faster.
-
- - **Terminology Updates**: We have made several updates to the
- documentation and terminology to improve clarity and consistency.
- For example:
-
- - The method to utilise the Deltas’ g effect size is now via the
- `.hedges_g.plot()` method now rather than creating a whole new
- `Delta_g` object as before. The functionality remains the same,
- it plots hedges_g effect sizes and then the Deltas’ g effect
- size alongside these (if a delta-delta experiment was loaded
+ - **Numba for speed improvements**: We have added
+ [Numba](https://numba.pydata.org/) to speed up the various
+ calculations in DABEST. Precalculations will be performed during
+ import, which will help speed up the subsequent loading and
+ plotting of data.
+
+ - **Terminology/naming updates**: During the refactoring of the
+ code, we have made several updates to the documentation and
+ terminology to improve clarity and consistency. For example:
+
+ - Plot arguments have been adjusted to bring more clarity and
+ consistency in naming. Arguments relating to the rawdata plot
+ axis will now be typically referred to with `raw` while
+ arguments relating to the contrast axis will be referred to with
+ `contrast`. For example, `raw_label` replaces `swarm_label` and
+ `bar_label`. The various kwargs relating to each different type
+ of plot (e.g., `swarmplot_kwargs`) remain unchanged.
+
+ - The method to utilise the Delta *g* effect size is now via the
+ .hedges_g.plot() method rather than creating a whole new Delta_g
+ object as before. The functionality remains the same, it plots
+ hedges_g effect sizes and then the Delta *g* effect size
+ alongside these (if a delta-delta experiment was loaded
correctly).
- - **Updated Tutorial Pages**: We have updated the tutorial pages to
+ - **Updated tutorial pages**: We have updated the tutorial pages to
reflect the new features and changes. The tutorial pages are now
- more comprehensive and hopefully more intuitive!.
+ more comprehensive and (hopefully!) more intuitive!
- - **Results Dataframe for Delta-delta and Mini-meta Plots**: A
+ - **Results dataframe for delta-delta and mini-meta plots**: A
results dataframe can now be extracted for both the delta-delta
and mini-meta effect size data (similar to the results dataframe
for the regular effect sizes). These can be found via the
@@ -165,7 +191,7 @@ allowing everyone access to high-quality estimation plots.
## Installation
-This package is tested on Python 3.10 and onwards. It is highly
+This package is tested on Python 3.11 and onwards. It is highly
recommended to download the [Anaconda
distribution](https://www.continuum.io/downloads) of Python in order to
obtain the dependencies easily.
diff --git a/dabest/__init__.py b/dabest/__init__.py
index 7316248a..d973b713 100644
--- a/dabest/__init__.py
+++ b/dabest/__init__.py
@@ -3,6 +3,7 @@
from ._stats_tools import confint_2group_diff as ci_2g
from ._effsize_objects import TwoGroupsEffectSize, PermutationTest
from ._dabest_object import Dabest
+from .forest_plot import forest_plot
import os
@@ -11,4 +12,4 @@
if not _NUMBA_COMPILED:
precompile_all()
-__version__ = "2025.03.14"
\ No newline at end of file
+__version__ = "2025.03.27"
\ No newline at end of file
diff --git a/dabest/_api.py b/dabest/_api.py
index a6399385..0f4ad140 100644
--- a/dabest/_api.py
+++ b/dabest/_api.py
@@ -22,6 +22,7 @@ def load(
experiment_label=None,
x1_level=None,
mini_meta=False,
+ ps_adjust=False,
):
"""
Loads data in preparation for estimation statistics.
@@ -82,6 +83,9 @@ def load(
is True; otherwise it can only be a string.
mini_meta : boolean, default False
Indicator of weighted delta calculation.
+ ps_adjust : boolean, default False
+ Indicator of whether to adjust calculated p-value according to Phipson & Smyth (2010)
+ # https://doi.org/10.2202/1544-6115.1585
Returns
-------
@@ -105,6 +109,7 @@ def load(
experiment_label,
x1_level,
mini_meta,
+ ps_adjust,
)
# %% ../nbs/API/load.ipynb 5
diff --git a/dabest/_dabest_object.py b/dabest/_dabest_object.py
index 7e2e2b56..a055cdd1 100644
--- a/dabest/_dabest_object.py
+++ b/dabest/_dabest_object.py
@@ -38,6 +38,7 @@ def __init__(
experiment_label,
x1_level,
mini_meta,
+ ps_adjust,
):
"""
Parses and stores pandas DataFrames in preparation for estimation
@@ -56,6 +57,7 @@ def __init__(
self.__random_seed = random_seed
self.__is_proportional = proportional
self.__is_mini_meta = mini_meta
+ self.__ps_adjust = ps_adjust
# after this call the attributes self.__experiment_label and self.__x1_level are updated
self._check_errors(x, y, idx, experiment, experiment_label, x1_level)
@@ -246,9 +248,9 @@ def cliffs_delta(self):
@property
def delta_g(self):
"""
- Returns an :py:class:`EffectSizeDataFrame` for deltas' g, its confidence interval, and relevant statistics, for all comparisons as indicated via the `idx` and `paired` argument in `dabest.load()`.
+ Returns an :py:class:`EffectSizeDataFrame` for delta g, its confidence interval, and relevant statistics, for all comparisons as indicated via the `idx` and `paired` argument in `dabest.load()`.
"""
- raise DeprecationWarning("delta_g has been depreciated - Please use hedges_g (with delta2=True) for deltas' g experiments")
+ raise DeprecationWarning("delta_g has been depreciated - Please use hedges_g (with delta2=True) for delta g experiments")
@property
@@ -486,10 +488,6 @@ def _check_errors(self, x, y, idx, experiment, experiment_label, x1_level):
if x is None:
error_msg = "If `delta2` is True. `x` parameter cannot be None. String or list expected"
raise ValueError(error_msg)
-
- if self.__is_proportional:
- mes1 = "Only mean_diff is supported for proportional data when `delta2` is True"
- warnings.warn(message=mes1, category=UserWarning)
# idx should not be specified
if idx:
@@ -699,6 +697,7 @@ def _compute_effectsize_dfs(self):
x1_level=self.__x1_level,
x2=self.__x2,
mini_meta=self.__is_mini_meta,
+ ps_adjust=self.__ps_adjust,
)
self.__mean_diff = EffectSizeDataFrame(
diff --git a/dabest/_delta_objects.py b/dabest/_delta_objects.py
index 80c31577..909aba6e 100644
--- a/dabest/_delta_objects.py
+++ b/dabest/_delta_objects.py
@@ -33,7 +33,7 @@ class DeltaDelta(object):
$$\Delta_{\Delta} = \Delta_{2} - \Delta_{1}$$
- and a deltas' g value is calculated as the mean difference between the two primary deltas divided by
+ and a delta g value is calculated as the mean difference between the two primary deltas divided by
the standard deviation of the delta-delta value, which is calculated from a pooled variance of the 4 samples:
$$\Delta_{g} = \frac{\Delta_{\Delta}}{s_{\Delta_{\Delta}}}$$
@@ -63,7 +63,7 @@ def __init__(
self.__control = self.__dabest_obj.experiment_label[0]
self.__test = self.__dabest_obj.experiment_label[1]
- # Compute the bootstrap delta-delta or deltas' g and the true dela-delta based on the raw data
+ # Compute the bootstrap delta-delta or delta g and the true dela-delta based on the raw data
if self.__effect_size == "mean_diff":
self.__bootstraps_delta_delta = bootstraps_delta_delta[2]
self.__difference = (
@@ -157,7 +157,7 @@ def __repr__(self, header=True, sigfig=3):
if self.__effect_size == "mean_diff":
out1 = "The delta-delta between {control} and {test} ".format(**first_line)
else:
- out1 = "The deltas' g between {control} and {test} ".format(**first_line)
+ out1 = "The delta g between {control} and {test} ".format(**first_line)
base_string_fmt = "{:." + str(sigfig) + "}"
if "." in str(self.__ci):
diff --git a/dabest/_effsize_objects.py b/dabest/_effsize_objects.py
index 70641220..e29e9c1a 100644
--- a/dabest/_effsize_objects.py
+++ b/dabest/_effsize_objects.py
@@ -10,6 +10,10 @@
import lqrt
from scipy.stats import norm
import numpy as np
+from scipy.special import binom as binomcoeff # devMJBL
+from scipy.stats import binom # devMJBL
+from scipy.integrate import fixed_quad # devMJBL
+from numpy import arange, mean # devMJBL
from numpy import array, isnan, isinf, repeat, random, isin, abs, var
from numpy import sort as npsort
from numpy import nan as npnan
@@ -50,6 +54,10 @@ class TwoGroupsEffectSize(object):
`random_seed` is used to seed the random number generator during
bootstrap resampling. This ensures that the confidence intervals
reported are replicable.
+ ps_adjust : boolean, default False.
+ If True, adjust calculated p-value according to Phipson & Smyth (2010)
+ # https://doi.org/10.2202/1544-6115.1585
+
Returns
-------
@@ -87,6 +95,7 @@ def __init__(
resamples=5000,
permutation_count=5000,
random_seed=12345,
+ ps_adjust=False,
):
from ._stats_tools import confint_2group_diff as ci2g
from ._stats_tools import effsize as es
@@ -99,13 +108,14 @@ def __init__(
"hedges_g": "Hedges' g",
"cliffs_delta": "Cliff's delta",
}
-
+
self.__is_paired = is_paired
self.__resamples = resamples
self.__effect_size = effect_size
self.__random_seed = random_seed
self.__ci = ci
self.__is_proportional = proportional
+ self.__ps_adjust = ps_adjust
self._check_errors(control, test)
# Convert to numpy arrays for speed.
@@ -329,6 +339,7 @@ def _perform_statistical_test(self):
self.__effect_size,
self.__is_paired,
self.__permutation_count,
+ ps_adjust = self.__ps_adjust,
)
if self.__is_paired and not self.__is_proportional:
@@ -827,6 +838,7 @@ def __init__(
delta2=False,
experiment_label=None,
mini_meta=False,
+ ps_adjust=False,
):
"""
Parses the data from a Dabest object, enabling plotting and printing
@@ -846,6 +858,7 @@ def __init__(
self.__x2 = x2
self.__delta2 = delta2
self.__is_mini_meta = mini_meta
+ self.__ps_adjust = ps_adjust
def __pre_calc(self):
from .misc_tools import print_greeting, get_varname
@@ -896,7 +909,6 @@ def __pre_calc(self):
cname = current_tuple[ix]
control = grouped_data[cname]
test = grouped_data[tname]
-
result = TwoGroupsEffectSize(
control,
test,
@@ -907,6 +919,7 @@ def __pre_calc(self):
self.__resamples,
self.__permutation_count,
self.__random_seed,
+ self.__ps_adjust
)
r_dict = result.to_dict()
r_dict["control"] = cname
@@ -1113,45 +1126,53 @@ def plot(
self,
color_col=None,
raw_marker_size=6,
- es_marker_size=9,
- swarm_label=None,
+ contrast_marker_size=9, # es_marker_size=9, OLD
+
+ raw_label=None, # swarm_label=None, OLD # bar_label=None, OLD
contrast_label=None,
delta2_label=None,
- swarm_ylim=None,
+
+ raw_ylim=None, # swarm_ylim=None, OLD # bar_ylim=None, OLD
contrast_ylim=None,
delta2_ylim=None,
- swarm_side=None,
- empty_circle=False,
+
custom_palette=None,
- swarm_desat=0.5,
- halfviolin_desat=1,
- halfviolin_alpha=0.8,
+ swarm_side=None,
+ empty_circle=False, # Not very intuitive name
+
face_color=None,
- # bar plot
- bar_label=None,
- bar_desat=0.5,
+
+ raw_desat=0.5, # swarm_desat=0.5, OLD # bar_desat=0.5, OLD
+ contrast_desat=1, # halfviolin_desat=1, OLD
+
+ raw_alpha=None, # NEW
+ contrast_alpha=0.8, # halfviolin_alpha=0.8, OLD
+
bar_width=0.5,
- bar_ylim=None,
- # error bar of proportion plot
- ci=None,
+ # ci=None, # Seems to be unused
ci_type="bca",
- err_color=None,
+
float_contrast=True,
show_pairs=True,
- show_delta2=True,
+ show_sample_size=True,
+ show_delta2=True, # Would pref switch to delta_delta instead of delta2
show_mini_meta=True,
- group_summaries=None,
+
+ group_summaries="mean_sd",
+ # err_color=None, # Not intuitive name and doesnt fit with group_summaries argument
fig_size=None,
dpi=100,
ax=None,
+
swarmplot_kwargs=None,
- barplot_kwargs=None,
- violinplot_kwargs=None,
slopegraph_kwargs=None,
+ barplot_kwargs=None,
sankey_kwargs=None,
+ contrast_kwargs=None, # violinplot_kwargs=None, OLD
reflines_kwargs=None,
group_summaries_kwargs=None,
legend_kwargs=None,
+
title=None,
fontsize_title=16,
fontsize_rawxlabel=12,
@@ -1159,13 +1180,14 @@ def plot(
fontsize_contrastxlabel=12,
fontsize_contrastylabel=12,
fontsize_delta2label=12,
- #### Contrast bars, Swarm bars, delta text, and delta dots WIP ####
+
+ # Raw bars, Contrast bars, delta text, and delta dots
+ raw_bars=True, # swarm_bars=True, OLD
+ raw_bars_kwargs=None, # swarm_bars_kwargs=None, OLD
contrast_bars=True,
- swarm_bars=True,
contrast_bars_kwargs=None,
- swarm_bars_kwargs=None,
- summary_bars=None,
- summary_bars_kwargs=None,
+ reference_band=None,
+ reference_band_kwargs=None,
delta_text=True,
delta_text_kwargs=None,
delta_dot=True,
@@ -1176,23 +1198,23 @@ def plot(
horizontal_table_kwargs=None,
# Gridkey
- gridkey_rows=None,
+ gridkey=None, # gridkey_rows=None, OLD
gridkey_merge_pairs=False,
gridkey_show_Ns=True,
gridkey_show_es=True,
gridkey_delimiters=[';', '>', '_'],
gridkey_kwargs=None,
- es_marker_kwargs=None,
- es_errorbar_kwargs=None,
+ contrast_marker_kwargs=None, # es_marker_kwargs=None, OLD
+ contrast_errorbar_kwargs=None, # es_errorbar_kwargs=None, OLD
prop_sample_counts=False,
prop_sample_counts_kwargs=None,
- es_paired_lines=True,
- es_paired_lines_kwargs=None,
-
- # Basline EffectSize Curve
+ contrast_paired_lines=True, # es_paired_lines=True, OLD
+ contrast_paired_lines_kwargs=None, # es_paired_lines_kwargs=None, OLD
+
+ # Baseline Effect Size Curve
show_baseline_ec=False,
):
"""
@@ -1206,18 +1228,18 @@ def plot(
raw_marker_size : float, default 6
The diameter (in points) of the marker dots plotted in the
swarmplot.
- es_marker_size : float, default 9
+ contrast_marker_size : float, default 9
The size (in points) of the effect size points on the difference
axes.
- swarm_label, contrast_label, delta2_label : strings, default None
- Set labels for the y-axis of the swarmplot and the contrast plot,
- respectively. If `swarm_label` is not specified, it defaults to
- "value", unless a column name was passed to `y`. If
- `contrast_label` is not specified, it defaults to the effect size
- being plotted. If `delta2_label` is not specifed, it defaults to
- "delta - delta"
- swarm_ylim, contrast_ylim, delta2_ylim : tuples, default None
- The desired y-limits of the raw data (swarmplot) axes, the
+ raw_label, contrast_label, delta2_label : strings, default None
+ Set labels for the y-axis of the raw plot and the contrast plot,
+ respectively. If `raw_label` is not specified, it defaults to
+ "Value" for non binary data (and "Proportion of Success" for binary data),
+ unless a column name was passed to `y`. If `contrast_label` is not specified,
+ it defaults to the effect size being plotted. If `delta2_label` is not specifed,
+ it defaults to "delta - delta".
+ raw_ylim, contrast_ylim, delta2_ylim : tuples, default None
+ The desired y-limits of the raw data axes, the
difference axes and the delta-delta axes respectively, as a tuple.
These will be autoscaled to sensible values if they are not
specified. The delta2 axes and contrast axes should have the same
@@ -1247,15 +1269,26 @@ def plot(
Boolean value determining if empty circles will be used for plotting of
swarmplot for control groups. Color of each individual swarm is also now
dependent on the comparison group.
- swarm_desat : float, default 1
- Decreases the saturation of the colors in the swarmplot by the
+ face_color: string, default None
+ The face color of the plot. Defaults to "white".
+ raw_desat : float, default 1
+ Decreases the saturation of the colors in the rawplot by the
desired proportion. Uses `seaborn.desaturate()` to acheive this.
- halfviolin_desat : float, default 0.5
+ contrast_desat : float, default 0.5
Decreases the saturation of the colors of the half-violin bootstrap
curves by the desired proportion. Uses `seaborn.desaturate()` to
acheive this.
- halfviolin_alpha : float, default 0.8
+ raw_alpha : float, default None
+ The alpha (transparency) level of the raw plot elements. This defaults
+ to 1.0 for all plots except sankey and slopegraphs, whereby it defaults to 0.4
+ and 0.5, respectively.
+ contrast_alpha : float, default 0.8
The alpha (transparency) level of the half-violin bootstrap curves.
+ bar_width : float, default 0.5
+ The width of the bars in the barplot (binary, non-paired data).
+ ci_type : string, default
+ The confidence interval of the contrast plot to display. Defaults
+ to "bca". Otherwise, the user can choose "pct" for percentile.
float_contrast : boolean, default True
Whether or not to display the halfviolin bootstrapped difference
distribution alongside the raw data.
@@ -1263,10 +1296,12 @@ def plot(
If the data is paired, whether or not to show the raw data as a
swarmplot, or as slopegraph, with a line joining each pair of
observations.
+ show_sample_size : boolean, default True
+ Whether or not to display the sample size of each group in the axis label.
show_delta2, show_mini_meta : boolean, default True
If delta-delta or mini-meta delta is calculated, whether or not to
show the delta-delta plot or mini-meta plot.
- group_summaries : ['mean_sd', 'median_quartiles', 'None'], default None.
+ group_summaries : ['mean_sd', 'median_quartiles', 'None'], default "mean_sd".
Plots the summary statistics for each group. If 'mean_sd', then
the mean and standard deviation of each group is plotted as a
notched line beside each group. If 'median_quantiles', then the
@@ -1283,26 +1318,26 @@ def plot(
Pass any keyword arguments accepted by the seaborn `swarmplot`
command here, as a dict. If None, the following keywords are
passed to sns.swarmplot : {'size':`raw_marker_size`}.
- barplot_kwargs : dict, default None
- By default, the keyword arguments passed are:
- {"estimator": np.mean, "errorbar": plot_kwargs["ci"]}
- violinplot_kwargs : dict, default None
- Pass any keyword arguments accepted by the matplotlib `
- pyplot.violinplot` command here, as a dict. If None, the following
- keywords are passed to violinplot : {'widths':0.5, 'vert':True,
- 'showextrema':False, 'showmedians':False}.
slopegraph_kwargs : dict, default None
This will change the appearance of the lines used to join each pair
of observations when `show_pairs=True`. Pass any keyword arguments
accepted by matplotlib `plot()` function here, as a dict.
If None, the following keywords are
passed to plot() : {'linewidth':1, 'alpha':0.5, 'jitter':0, 'jitter_seed':9876543210}.
+ barplot_kwargs : dict, default None
+ By default, the keyword arguments passed are:
+ {"estimator": np.mean, "errorbar": plot_kwargs["ci"], "err_kws" : {'color':'black'}}
sankey_kwargs: dict, default None
Whis will change the appearance of the sankey diagram used to depict
paired proportional data when `show_pairs=True` and `is_proportional=True`.
Pass any keyword arguments accepted by plot_tools.sankeydiag() function
here, as a dict. If None, the following keywords are passed to sankey diagram:
{"width": 0.5, "align": "center", "alpha": 0.4, "bar_width": 0.1, "rightColor": False}
+ contrast_kwargs : dict, default None
+ Pass any keyword arguments accepted by the matplotlib `
+ pyplot.violinplot` command here, as a dict. If None, the following
+ keywords are passed to violinplot : {'widths':0.5, 'vert':True,
+ 'showextrema':False, 'showmedians':False}.
reflines_kwargs : dict, default None
This will change the appearance of the zero reference lines. Pass
any keyword arguments accepted by the matplotlib Axes `hlines`
@@ -1324,7 +1359,7 @@ def plot(
Title for the plot. If None, no title will be displayed. Pass any
keyword arguments accepted by the matplotlib.pyplot.suptitle `t` command here,
as a string.
- fontsize_title : float or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}, default 'large'
+ fontsize_title : float or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}, default 16
Font size for the plot title. If a float, the fontsize in points. The
string values denote sizes relative to the default font size. Pass any keyword arguments accepted
by the matplotlib.pyplot.suptitle `fontsize` command here, as a string.
@@ -1339,23 +1374,22 @@ def plot(
fontsize_delta2label : float, default 12
Font size for the delta-delta axes ylabel.
+ raw_bars : boolean, default True
+ Whether or not to display the raw bars.
+ raw_bars_kwargs : dict, default None
+ Pass relevant keyword arguments to the raw bars. Pass any keyword arguments accepted by
+ matplotlib.patches.Rectangle here, as a string. If None, the following keywords are passed:
+ {"color": None, "zorder":-3}
contrast_bars : boolean, default True
Whether or not to display the contrast bars.
- swarm_bars : boolean, default True
- Whether or not to display the swarm bars.
contrast_bars_kwargs : dict, default None
Pass relevant keyword arguments to the contrast bars. Pass any keyword arguments accepted by
matplotlib.patches.Rectangle here, as a string. If None, the following keywords are passed:
{"color": None, "zorder":-3}
- swarm_bars_kwargs : dict, default None
- Pass relevant keyword arguments to the swarm bars. Pass any keyword arguments accepted by
- matplotlib.patches.Rectangle here, as a string. If None, the following keywords are passed:
- {"color": None, "zorder":-3}
-
- summary_bars : list, default None
- Pass a list of indices of the contrast objects to have summary bars displayed on the plot.
- For example, [0,1] will show summary bars for the first two contrast objects.
- summary_bars_kwargs: dict, default None
+ reference_band : list, default None
+ Pass a list of indices of the contrast objects to have reference bands displayed on the plot.
+ For example, [0,1] will show reference bands for the first two contrast objects.
+ reference_band_kwargs: dict, default None
If None, the following keywords are passed: {"span_ax": False, "color": None, "alpha": 0.15, "zorder":-3}
delta_text : boolean, default True
Whether or not to display the text deltas.
@@ -1371,13 +1405,23 @@ def plot(
delta_dot_kwargs : dict, default None
Pass relevant keyword arguments. If None, the following keywords are passed:
{"color": 'k', "marker": "^", "alpha": 0.5, "zorder": 2, "size": 3, "side": "right"}
-
+ horizontal : boolean, default False
+ Whether to display plots in the horizontal format. Default is False.
horizontal_table_kwargs : dict, default None
{'show: True, 'color' : 'yellow', 'alpha' :0.2, 'fontsize' : 12, 'text_color' : 'black',
'text_units' : None, 'control_marker' : '-', 'fontsize_label': 12, 'label': 'Δ'}
- gridkey_rows : list, default None
- cell should be populated or not.
+ gridkey : list, default None
+ Provide either a list of grid keys or 'auto' for automatic grid selection.
+ gridkey_merge_pairs : boolean, default False
+ Merges the paired grid key groups together.
+ gridkey_show_Ns : boolean, default True
+ Whether to display the sample size row.
+ gridkey_show_es : boolean, default True
+ Whether to show the effect size row.
+ gridkey_delimiters : list, default [';', '>', '_']
+ The delimiter used to split gridkey groups if required.
+ gridkey_kwargs : dict, default None
Pass relevant keyword arguments to the gridkey. If None, the following keywords are passed:
{ 'show_es' : True, # If True, the gridkey will show the effect size of each comparison.
'show_Ns' :True, # If True, the gridkey will show the number of observations in eachgroup.
@@ -1386,10 +1430,10 @@ def plot(
'marker': "\u25CF", # Marker for the gridkey dots.
}
- es_marker_kwargs: dict, default None
+ contrast_marker_kwargs: dict, default None
Pass relevant keyword arguments to the effectsize marker plotting. If none, the following keywords are passed:
- {'marker': 'o', 'size': plot_kwargs['es_marker_size'], 'color': 'black', 'alpha': 1, 'zorder': 1}
- es_errorbar_kwargs: dict, default None
+ {'marker': 'o', 'size': plot_kwargs['contrast_marker_size'], 'color': 'black', 'alpha': 1, 'zorder': 1}
+ contrast_errorbar_kwargs: dict, default None
Pass relevant keyword arguments to the effectsize errorbar plotting. If none, the following keywords are passed:
{'color': 'black', 'lw': 2, 'linestyle': '-', 'alpha': 1,'zorder': 1,}
@@ -1399,9 +1443,9 @@ def plot(
Pass relevant keyword arguments. If None, the following keywords are passed:
{'color': 'k', 'zorder': 5, 'ha': 'center', 'va': 'center'},
- es_paired_lines: bool, default True
+ contrast_paired_lines: bool, default True
Whether or not to add lines to connect the effect size curves in paired plots.
- es_paired_lines_kwargs: dict, default None
+ contrast_paired_lines_kwargs: dict, default None
Pass relevant plot keyword arguments. If None, the following keywords are passed:
{"linestyle": "-", "linewidth": 2, "zorder": -2, "color": 'dimgray', "alpha": 1}
@@ -1432,12 +1476,15 @@ def plot(
if hasattr(self, "results") is False:
self.__pre_calc()
+ if raw_alpha is None:
+ raw_alpha = (0.4 if self.is_proportional and self.is_paired
+ else 0.5 if self.is_paired
+ else 1.0
+ )
+
if self.__delta2 and not empty_circle:
color_col = self.__x2
- # Modification incurred due to update of Seaborn
- ci = ("ci", ci) if ci is not None else None
-
all_kwargs = locals()
del all_kwargs["self"]
@@ -1630,6 +1677,10 @@ class PermutationTest:
`random_seed` is used to seed the random number generator during
bootstrap resampling. This ensures that the generated permutations
are replicable.
+ ps_adjust : bool, default False
+ If True, the p-value is adjusted according to Phipson & Smyth (2010).
+ # https://doi.org/10.2202/1544-6115.1585
+
Returns
-------
@@ -1648,6 +1699,7 @@ def __init__(self, control: array,
is_paired:str=None,
permutation_count:int=5000, # The number of permutations (reshuffles) to perform.
random_seed:int=12345,#`random_seed` is used to seed the random number generator during bootstrap resampling. This ensures that the generated permutations are replicable.
+ ps_adjust:bool=False,
**kwargs):
from ._stats_tools.effsize import two_group_difference
from ._stats_tools.confint_2group_diff import calculate_group_var
@@ -1672,6 +1724,7 @@ def __init__(self, control: array,
BAG = array([*control, *test])
CONTROL_LEN = int(len(control))
+ TEST_LEN = int(len(test)) # devMJBL
EXTREME_COUNT = 0.
THRESHOLD = abs(two_group_difference(control, test,
is_paired, effect_size))
@@ -1711,13 +1764,43 @@ def __init__(self, control: array,
if abs(es) > THRESHOLD:
EXTREME_COUNT += 1.
+
+ if ps_adjust:
+ # devMJBL
+ # adjust calculated p-value according to Phipson & Smyth (2010)
+ # https://doi.org/10.2202/1544-6115.1585
+ # as per R code in statmod::permp
+ # https://rdrr.io/cran/statmod/src/R/permp.R
+ # (assumes two-sided test)
+
+ if CONTROL_LEN == TEST_LEN:
+ totalPermutations = binomcoeff(CONTROL_LEN + TEST_LEN, TEST_LEN)/2
+ else:
+ totalPermutations = binomcoeff(CONTROL_LEN + TEST_LEN, TEST_LEN)
+
+ if totalPermutations <= 10e3:
+ # use exact calculation
+ p = arange(1, totalPermutations + 1)/totalPermutations
+ x2 = repeat(EXTREME_COUNT, repeats=totalPermutations)
+ Y = binom.cdf(k=x2, n=permutation_count, p=p)
+ self.pvalue = mean(Y)
+ else:
+ # use integral approximation
+ def binomcdf(p, k, n):
+ return binom.cdf(k, n, p)
+
+ integrationVal, _ = fixed_quad(binomcdf,
+ a=0, b=0.5/totalPermutations,
+ args=(EXTREME_COUNT, permutation_count),
+ n=128)
+ self.pvalue = (EXTREME_COUNT + 1)/(permutation_count + 1) - integrationVal
+ else:
+ self.pvalue = EXTREME_COUNT / self.__permutation_count
+
self.__permutations = array(self.__permutations)
self.__permutations_var = array(self.__permutations_var)
- self.pvalue = EXTREME_COUNT / self.__permutation_count
-
-
def __repr__(self):
return("{} permutations were taken. The p-value is {}.".format(self.__permutation_count,
self.pvalue))
diff --git a/dabest/_modidx.py b/dabest/_modidx.py
index 8b95175b..d51151af 100644
--- a/dabest/_modidx.py
+++ b/dabest/_modidx.py
@@ -79,6 +79,7 @@
'dabest.forest_plot.load_plot_data': ('API/forest_plot.html#load_plot_data', 'dabest/forest_plot.py')},
'dabest.misc_tools': { 'dabest.misc_tools.add_counts_to_ticks': ( 'API/misc_tools.html#add_counts_to_ticks',
'dabest/misc_tools.py'),
+ 'dabest.misc_tools.color_picker': ('API/misc_tools.html#color_picker', 'dabest/misc_tools.py'),
'dabest.misc_tools.draw_zeroline': ('API/misc_tools.html#draw_zeroline', 'dabest/misc_tools.py'),
'dabest.misc_tools.extract_contrast_plotting_ticks': ( 'API/misc_tools.html#extract_contrast_plotting_ticks',
'dabest/misc_tools.py'),
@@ -95,6 +96,8 @@
'dabest.misc_tools.get_varname': ('API/misc_tools.html#get_varname', 'dabest/misc_tools.py'),
'dabest.misc_tools.initialize_fig': ('API/misc_tools.html#initialize_fig', 'dabest/misc_tools.py'),
'dabest.misc_tools.merge_two_dicts': ('API/misc_tools.html#merge_two_dicts', 'dabest/misc_tools.py'),
+ 'dabest.misc_tools.prepare_bars_for_plot': ( 'API/misc_tools.html#prepare_bars_for_plot',
+ 'dabest/misc_tools.py'),
'dabest.misc_tools.print_greeting': ('API/misc_tools.html#print_greeting', 'dabest/misc_tools.py'),
'dabest.misc_tools.redraw_dependent_spines': ( 'API/misc_tools.html#redraw_dependent_spines',
'dabest/misc_tools.py'),
@@ -117,12 +120,12 @@
'dabest/plot_tools.py'),
'dabest.plot_tools.SwarmPlot._swarm': ('API/plot_tools.html#swarmplot._swarm', 'dabest/plot_tools.py'),
'dabest.plot_tools.SwarmPlot.plot': ('API/plot_tools.html#swarmplot.plot', 'dabest/plot_tools.py'),
+ 'dabest.plot_tools.add_bars_to_plot': ('API/plot_tools.html#add_bars_to_plot', 'dabest/plot_tools.py'),
'dabest.plot_tools.add_counts_to_prop_plots': ( 'API/plot_tools.html#add_counts_to_prop_plots',
'dabest/plot_tools.py'),
'dabest.plot_tools.barplotter': ('API/plot_tools.html#barplotter', 'dabest/plot_tools.py'),
'dabest.plot_tools.check_data_matches_labels': ( 'API/plot_tools.html#check_data_matches_labels',
'dabest/plot_tools.py'),
- 'dabest.plot_tools.color_picker': ('API/plot_tools.html#color_picker', 'dabest/plot_tools.py'),
'dabest.plot_tools.delta_dots_plotter': ( 'API/plot_tools.html#delta_dots_plotter',
'dabest/plot_tools.py'),
'dabest.plot_tools.delta_text_plotter': ( 'API/plot_tools.html#delta_text_plotter',
@@ -140,10 +143,6 @@
'dabest.plot_tools.single_sankey': ('API/plot_tools.html#single_sankey', 'dabest/plot_tools.py'),
'dabest.plot_tools.slopegraph_plotter': ( 'API/plot_tools.html#slopegraph_plotter',
'dabest/plot_tools.py'),
- 'dabest.plot_tools.summary_bars_plotter': ( 'API/plot_tools.html#summary_bars_plotter',
- 'dabest/plot_tools.py'),
- 'dabest.plot_tools.swarm_contrast_bar_plotter': ( 'API/plot_tools.html#swarm_contrast_bar_plotter',
- 'dabest/plot_tools.py'),
'dabest.plot_tools.swarmplot': ('API/plot_tools.html#swarmplot', 'dabest/plot_tools.py'),
'dabest.plot_tools.table_for_horizontal_plots': ( 'API/plot_tools.html#table_for_horizontal_plots',
'dabest/plot_tools.py'),
diff --git a/dabest/_stats_tools/confint_2group_diff.py b/dabest/_stats_tools/confint_2group_diff.py
index 59b53894..5063b8d3 100644
--- a/dabest/_stats_tools/confint_2group_diff.py
+++ b/dabest/_stats_tools/confint_2group_diff.py
@@ -314,7 +314,10 @@ def compute_interval_limits(bias, acceleration, n_boots, ci=95):
@njit(cache=True)
def calculate_group_var(control_var, control_N, test_var, test_N):
- return control_var / control_N + test_var / test_N
+
+ pooled_var = ((control_N - 1) * control_var + (test_N - 1) * test_var) / (control_N + test_N - 2)
+
+ return pooled_var
def calculate_weighted_delta(group_var, differences):
diff --git a/dabest/_stats_tools/effsize.py b/dabest/_stats_tools/effsize.py
index 93d43364..11f28d4c 100644
--- a/dabest/_stats_tools/effsize.py
+++ b/dabest/_stats_tools/effsize.py
@@ -77,7 +77,7 @@ def two_group_difference(control:list|tuple|np.ndarray, #Accepts lists, tuples,
"result in a biased estimate and cause problems with " + \
"BCa confidence intervals. Consider using a different statistic, such as the mean.\n"
mes2 = "When plotting, please consider using percetile confidence intervals " + \
- "by specifying `ci_type='percentile'`. For detailed information, " + \
+ "by specifying `ci_type='pct'`. For detailed information, " + \
"refer to https://github.com/ACCLAB/DABEST-python/issues/129 \n"
warnings.warn(message=mes1+mes2, category=UserWarning)
return func_difference(control, test, np.median, is_paired)
diff --git a/dabest/forest_plot.py b/dabest/forest_plot.py
index 17e062fc..72d82cc2 100644
--- a/dabest/forest_plot.py
+++ b/dabest/forest_plot.py
@@ -10,13 +10,16 @@
# %matplotlib inline
import seaborn as sns
from typing import List, Optional, Union
-
+import numpy as np
+import matplotlib.axes as axes
+import matplotlib.patches as mpatches
# %% ../nbs/API/forest_plot.ipynb 6
def load_plot_data(
data: List,
effect_size: str = "mean_diff",
- contrast_type: str = 'delta2',
+ contrast_type: str = None,
+ ci_type: str = "bca",
idx: Optional[List[int]] = None
) -> List:
"""
@@ -29,7 +32,9 @@ def load_plot_data(
effect_size: str
Type of effect size ('mean_diff', 'median_diff', etc.).
contrast_type: str
- Type of dabest object to plot ('delta2' or 'mini-meta')
+ Type of dabest object to plot ('delta2' or 'mini-meta' or 'delta').
+ ci_type: str
+ Type of confidence interval to plot ('bca' or 'pct')
idx: Optional[List[int]], default=None
List of indices to select from the contrast objects if delta-delta experiment.
If None, only the delta-delta objects are plotted.
@@ -42,125 +47,171 @@ def load_plot_data(
effect_attr = "hedges_g" if effect_size == 'delta_g' else effect_size
contrast_attr = {"delta2": "delta_delta", "mini_meta": "mini_meta"}.get(contrast_type)
+ # Testing
if idx is not None:
bootstraps, differences, bcalows, bcahighs = [], [], [], []
for current_idx, index_group in enumerate(idx):
current_contrast = data[current_idx]
if len(index_group)>0:
for index in index_group:
- if index == 2:
- current_plot_data = getattr(getattr(current_contrast, effect_attr), contrast_attr)
- bootstraps.append(current_plot_data.bootstraps_delta_delta)
- differences.append(current_plot_data.difference)
- bcalows.append(current_plot_data.bca_low)
- bcahighs.append(current_plot_data.bca_high)
- elif index == 0 or index == 1:
- current_plot_data = getattr(current_contrast, effect_attr)
- bootstraps.append(current_plot_data.results.bootstraps[index])
- differences.append(current_plot_data.results.difference[index])
- bcalows.append(current_plot_data.results.bca_low[index])
- bcahighs.append(current_plot_data.results.bca_high[index])
- else:
- raise ValueError("The selected indices must be 0, 1, or 2.")
+ current_plot_data = getattr(current_contrast, effect_attr)
+ if contrast_type == 'delta2':
+ if index == 2:
+ current_plot_data = getattr(current_plot_data, contrast_attr)
+ bootstrap_name, index_val = "bootstraps_delta_delta", 0
+ elif index == 0 or index == 1:
+ bootstrap_name, index_val = "bootstraps", index
+ else:
+ raise ValueError("The selected indices must be 0, 1, or 2.")
+ elif contrast_type == "mini_meta":
+ num_of_groups = len(getattr(current_contrast, effect_attr).results)
+ if index == num_of_groups:
+ current_plot_data = getattr(getattr(current_contrast, effect_attr), contrast_attr)
+ bootstrap_name, index_val = "bootstraps_weighted_delta", 0
+ elif index < num_of_groups:
+ bootstrap_name, index_val = "bootstraps", index
+ else:
+ msg1 = "There are only {} groups (starting from zero) in this dabest object. ".format(num_of_groups)
+ msg2 = "The idx given is {}.".format(index)
+ raise ValueError(msg1+msg2)
+ else: # contrast_type == 'delta'
+ bootstrap_name, index_val = "bootstraps", index
+
+ bootstraps.append(getattr(current_plot_data.results, bootstrap_name)[index_val])
+ differences.append(current_plot_data.results.difference[index_val])
+ bcalows.append(current_plot_data.results.get(ci_type+'_low')[index_val])
+ bcahighs.append(current_plot_data.results.get(ci_type+'_high')[index_val])
else:
- contrast_plot_data = [getattr(getattr(contrast, effect_attr), contrast_attr) for contrast in data]
-
- attribute_suffix = "weighted_delta" if contrast_type == "mini_meta" else "delta_delta"
-
- bootstraps = [getattr(result, f"bootstraps_{attribute_suffix}") for result in contrast_plot_data]
- differences = [result.difference for result in contrast_plot_data]
- bcalows = [result.bca_low for result in contrast_plot_data]
- bcahighs = [result.bca_high for result in contrast_plot_data]
+ if contrast_type == 'delta':
+ contrast_plot_data = [getattr(contrast, effect_attr) for contrast in data]
+ bootstraps_nested = [result.results.bootstraps.to_list() for result in contrast_plot_data]
+ differences_nested = [result.results.difference.to_list() for result in contrast_plot_data]
+ bcalows_nested = [result.results.get(ci_type+'_low').to_list() for result in contrast_plot_data]
+ bcahighs_nested = [result.results.get(ci_type+'_high').to_list() for result in contrast_plot_data]
+
+ bootstraps = [element for innerList in bootstraps_nested for element in innerList]
+ differences = [element for innerList in differences_nested for element in innerList]
+ bcalows = [element for innerList in bcalows_nested for element in innerList]
+ bcahighs = [element for innerList in bcahighs_nested for element in innerList]
+
+ else: # contrast_type == 'delta2' or 'mini_meta'
+ contrast_plot_data = [getattr(getattr(contrast, effect_attr), contrast_attr) for contrast in data]
+ attribute_suffix = "weighted_delta" if contrast_type == "mini_meta" else "delta_delta"
+
+ bootstraps = [getattr(result, f"bootstraps_{attribute_suffix}") for result in contrast_plot_data]
+ differences = [result.difference for result in contrast_plot_data]
+ bcalows = [result.results.get(ci_type+'_low')[0] for result in contrast_plot_data]
+ bcahighs = [result.results.get(ci_type+'_high')[0] for result in contrast_plot_data]
return bootstraps, differences, bcalows, bcahighs
-def check_for_errors(
- data,
- idx,
- ax,
- fig_size,
- effect_size,
- horizontal,
- marker_size,
- custom_palette,
- halfviolin_alpha,
- halfviolin_desat,
- labels,
- labels_rotation,
- labels_fontsize,
- title,
- title_fontsize,
- ylabel,
- ylabel_fontsize,
- ylim,
- yticks,
- yticklabels,
- remove_spines,
- ) -> str:
-
+def check_for_errors(**kwargs):
+ data = kwargs.get('data')
# Contrasts
if not isinstance(data, list) or not data:
raise ValueError("The `data` argument must be a non-empty list of dabest objects.")
## Check if all contrasts are delta-delta or all are mini-meta
- contrast_type = "delta2" if data[0].delta2 else "mini_meta"
+ contrast_type = ("delta2" if data[0].delta2
+ else "mini_meta" if data[0].is_mini_meta
+ else "delta"
+ )
+
+ # contrast_type = "delta2" if data[0].delta2 else "mini_meta"
for contrast in data:
- check_contrast_type = "delta2" if contrast.delta2 else "mini_meta"
+ check_contrast_type = ("delta2" if contrast.delta2
+ else "mini_meta" if contrast.is_mini_meta
+ else "delta"
+ )
if check_contrast_type != contrast_type:
- raise ValueError("Each dabest object supplied must be the same experimental type (mini-meta or delta-delta)")
+ raise ValueError("Each dabest object supplied must be the same experimental type (mini-meta or delta-delta or neither.)")
# Idx
+ idx = kwargs.get('idx')
+ effect_size = kwargs.get('effect_size')
if idx is not None:
if not isinstance(idx, (tuple, list)):
raise TypeError("`idx` must be a tuple or list of integers.")
- if contrast_type == "mini_meta":
- raise ValueError("The `idx` argument is not applicable to mini-meta analyses.")
+
+ msg1 = "The `idx` argument must have the same length as the number of dabest objects. "
+ msg2 = "E.g., If two dabest objects are supplied, there should be two lists within `idx`. "
+ msg3 = "E.g., `idx` = [[1,2],[0,1]]."
+ _total = 0
+ for _group in idx:
+ if isinstance(_group, int | float):
+ raise ValueError(msg1+msg2+msg3)
+ else:
+ _total += 1
+ if _total != len(data):
+ raise ValueError(msg1+msg2+msg3)
+
+ if idx is not None:
+ number_of_curves_to_plot = sum([len(i) for i in idx])
+ else:
+ if contrast_type == 'delta':
+ number_of_curves_to_plot = sum(len(getattr(i, effect_size).results) for i in data)
+ else:
+ number_of_curves_to_plot = len(data)
# Axes
+ ax = kwargs.get('ax')
+ fig_size = kwargs.get('fig_size')
if ax is not None and not isinstance(ax, plt.Axes):
raise TypeError("The `ax` must be a `matplotlib.axes.Axes` instance or `None`.")
# Figure size
if fig_size is not None and not isinstance(fig_size, (tuple, list)):
- raise TypeError("`fig_size` must be a tuple or list of two integers.")
+ raise TypeError("`fig_size` must be a tuple or list of two positive integers.")
# Effect size
- effect_size_options = ['mean_diff', 'hedges_g', 'delta_g']
+ effect_size_options = ['mean_diff', 'median_diff', 'cohens_d', 'cohens_h', 'cliffs_delta', 'hedges_g', 'delta_g']
if not isinstance(effect_size, str) or effect_size not in effect_size_options:
- raise TypeError("The `effect_size` argument must be a string and please choose from the following effect sizes: `mean_diff`, `hedges_g`, or `delta_g`.")
+ raise TypeError("The `effect_size` argument must be a string and please choose from the following effect sizes: 'mean_diff', 'median_diff', 'cohens_d', 'cohens_h', 'cliffs_delta', 'hedges_g', 'delta_g'.")
if data[0].is_mini_meta and effect_size != 'mean_diff':
raise ValueError("The `effect_size` argument must be `mean_diff` for mini-meta analyses.")
if data[0].delta2 and effect_size not in ['mean_diff', 'hedges_g', 'delta_g']:
raise ValueError("The `effect_size` argument must be `mean_diff`, `hedges_g`, or `delta_g` for delta-delta analyses.")
+
+ # CI type
+ ci_type = kwargs.get('ci_type')
+ if ci_type not in ('bca', 'pct'):
+ raise TypeError("`ci_type` must be either 'bca' or 'pct'.")
# Horizontal
+ horizontal = kwargs.get('horizontal')
if not isinstance(horizontal, bool):
raise TypeError("`horizontal` must be a boolean value.")
# Marker size
+ marker_size = kwargs.get('marker_size')
if not isinstance(marker_size, (int, float)) or marker_size <= 0:
raise TypeError("`marker_size` must be a positive integer or float.")
# Custom palette
- if custom_palette is not None and not isinstance(custom_palette, (dict, list, str, type(None))):
+ custom_palette = kwargs.get('custom_palette')
+ labels = kwargs.get('labels')
+ if custom_palette is not None and not isinstance(custom_palette, (dict, list, tuple, str, type(None))):
raise TypeError("The `custom_palette` must be either a dictionary, list, string, or `None`.")
if isinstance(custom_palette, dict) and labels is None:
raise ValueError("The `labels` argument must be provided if `custom_palette` is a dictionary.")
-
-
- # Halfviolin alpha and desat
- if not isinstance(halfviolin_alpha, float) or not 0 <= halfviolin_alpha <= 1:
- raise TypeError("`halfviolin_alpha` must be a float between 0 and 1.")
+ if isinstance(custom_palette, (list, tuple)) and len(custom_palette) < number_of_curves_to_plot:
+ raise ValueError("The `custom_palette` list/tuple must have the same length as the number of `data` provided.")
+
+ # Contrast alpha and desat
+ contrast_alpha = kwargs.get('contrast_alpha')
+ contrast_desat = kwargs.get('contrast_desat')
+ if not isinstance(contrast_alpha, float) or not 0 <= contrast_alpha <= 1:
+ raise TypeError("`contrast_alpha` must be a float between 0 and 1.")
- if not isinstance(halfviolin_desat, (float, int)) or not 0 <= halfviolin_desat <= 1:
- raise TypeError("`halfviolin_desat` must be a float between 0 and 1 or an int (1).")
+ if not isinstance(contrast_desat, (float, int)) or not 0 <= contrast_desat <= 1:
+ raise TypeError("`contrast_desat` must be a float between 0 and 1 or an int (1).")
-
# Contrast labels
+ labels_fontsize = kwargs.get('labels_fontsize')
+ labels_rotation = kwargs.get('labels_rotation')
if labels is not None and not all(isinstance(label, str) for label in labels):
raise TypeError("The `labels` must be a list of strings or `None`.")
- number_of_curves_to_plot = sum([len(i) for i in idx]) if idx is not None else len(data)
if labels is not None and len(labels) != number_of_curves_to_plot:
raise ValueError("`labels` must match the number of `data` provided.")
@@ -171,6 +222,8 @@ def check_for_errors(
raise TypeError("`labels_rotation` must be an integer or float between 0 and 360.")
# Title
+ title = kwargs.get('title')
+ title_fontsize = kwargs.get('title_fontsize')
if title is not None and not isinstance(title, str):
raise TypeError("The `title` argument must be a string.")
@@ -178,6 +231,8 @@ def check_for_errors(
raise TypeError("`title_fontsize` must be an integer or float.")
# Y-label
+ ylabel = kwargs.get('ylabel')
+ ylabel_fontsize = kwargs.get('ylabel_fontsize')
if ylabel is not None and not isinstance(ylabel, str):
raise TypeError("The `ylabel` argument must be a string.")
@@ -185,16 +240,19 @@ def check_for_errors(
raise TypeError("`ylabel_fontsize` must be an integer or float.")
# Y-lim
+ ylim = kwargs.get('ylim')
if ylim is not None and not isinstance(ylim, (tuple, list)):
raise TypeError("`ylim` must be a tuple or list of two floats.")
if ylim is not None and len(ylim) != 2:
raise ValueError("`ylim` must be a tuple or list of two floats.")
# Y-ticks
+ yticks = kwargs.get('yticks')
if yticks is not None and not isinstance(yticks, (tuple, list)):
raise TypeError("`yticks` must be a tuple or list of floats.")
# Y-ticklabels
+ yticklabels = kwargs.get('yticklabels')
if yticklabels is not None and not isinstance(yticklabels, (tuple, list)):
raise TypeError("`yticklabels` must be a tuple or list of strings.")
@@ -202,18 +260,43 @@ def check_for_errors(
raise TypeError("`yticklabels` must be a list of strings.")
# Remove spines
+ remove_spines = kwargs.get('remove_spines')
if not isinstance(remove_spines, bool):
raise TypeError("`remove_spines` must be a boolean value.")
- return contrast_type
+ # Reference band
+ reference_band = kwargs.get('reference_band')
+ if reference_band is not None:
+ if not isinstance(reference_band, list | tuple):
+ raise TypeError("`reference_band` must be a list/tuple of indices (ints).")
+ if not all(isinstance(i, int) for i in reference_band):
+ raise TypeError("`reference_band` must be a list/tuple of indices (ints).")
+ if any(i >= number_of_curves_to_plot for i in reference_band):
+ raise ValueError("Index {} chosen is out of range for the contrast objects.".format([i for i in reference_band if i >= number_of_curves_to_plot]))
+ # Delta text
+ delta_text = kwargs.get('delta_text')
+ if delta_text is not None:
+ if not isinstance(delta_text, bool):
+ raise TypeError("`delta_text` must be a boolean value.")
+
+ # Contrast bars
+ contrast_bars = kwargs.get('contrast_bars')
+ if contrast_bars is not None:
+ if not isinstance(contrast_bars, bool):
+ raise TypeError("`contrast_bars` must be a boolean value.")
+
+ return contrast_type
def get_kwargs(
violin_kwargs,
zeroline_kwargs,
horizontal,
- es_marker_kwargs,
- es_errorbar_kwargs,
+ marker_kwargs,
+ errorbar_kwargs,
+ delta_text_kwargs,
+ contrast_bars_kwargs,
+ reference_band_kwargs,
marker_size
):
from .misc_tools import merge_two_dicts
@@ -223,7 +306,7 @@ def get_kwargs(
"widths": 0.5,
"showextrema": False,
"showmedians": False,
- "vert": not horizontal,
+ "orientation": 'horizontal' if horizontal else 'vertical',
}
if violin_kwargs is None:
violin_kwargs = default_violin_kwargs
@@ -241,39 +324,79 @@ def get_kwargs(
zeroline_kwargs = merge_two_dicts(default_zeroline_kwargs, zeroline_kwargs)
# Effect size marker kwargs
- default_es_marker_kwargs = {
+ default_marker_kwargs = {
'marker': 'o',
'markersize': marker_size,
'color': 'black',
'alpha': 1,
'zorder': 2,
}
- if es_marker_kwargs is None:
- es_marker_kwargs = default_es_marker_kwargs
+ if marker_kwargs is None:
+ marker_kwargs = default_marker_kwargs
else:
- es_marker_kwargs = merge_two_dicts(default_es_marker_kwargs, es_marker_kwargs)
+ marker_kwargs = merge_two_dicts(default_marker_kwargs, marker_kwargs)
# Effect size error bar kwargs
- default_es_errorbar_kwargs = {
+ default_errorbar_kwargs = {
'color': 'black',
'lw': 2.5,
'linestyle': '-',
'alpha': 1,
'zorder': 1,
}
- if es_errorbar_kwargs is None:
- es_errorbar_kwargs = default_es_errorbar_kwargs
+ if errorbar_kwargs is None:
+ errorbar_kwargs = default_errorbar_kwargs
+ else:
+ errorbar_kwargs = merge_two_dicts(default_errorbar_kwargs, errorbar_kwargs)
+
+ # Delta text kwargs
+ default_delta_text_kwargs = {
+ "color": None,
+ "alpha": 1,
+ "fontsize": 10,
+ "ha": 'center',
+ "va": 'center',
+ "rotation": 0,
+ "x_coordinates": None,
+ "y_coordinates": None,
+ "offset": 0
+ }
+ if delta_text_kwargs is None:
+ delta_text_kwargs = default_delta_text_kwargs
else:
- es_errorbar_kwargs = merge_two_dicts(default_es_errorbar_kwargs, es_errorbar_kwargs)
+ delta_text_kwargs = merge_two_dicts(default_delta_text_kwargs, delta_text_kwargs)
- return violin_kwargs, zeroline_kwargs, es_marker_kwargs, es_errorbar_kwargs
+ # Contrast bars kwargs.
+ default_contrast_bars_kwargs = {
+ "color": None,
+ "zorder":-3,
+ 'alpha': 0.15
+ }
+ if contrast_bars_kwargs is None:
+ contrast_bars_kwargs = default_contrast_bars_kwargs
+ else:
+ contrast_bars_kwargs = merge_two_dicts(default_contrast_bars_kwargs, contrast_bars_kwargs)
+
+ # reference band kwargs.
+ default_reference_band_kwargs = {
+ "span_ax": False,
+ "color": None,
+ "alpha": 0.15,
+ "zorder":-3
+ }
+ if reference_band_kwargs is None:
+ reference_band_kwargs = default_reference_band_kwargs
+ else:
+ reference_band_kwargs = merge_two_dicts(default_reference_band_kwargs, reference_band_kwargs)
+ return (violin_kwargs, zeroline_kwargs, marker_kwargs, errorbar_kwargs,
+ delta_text_kwargs, contrast_bars_kwargs, reference_band_kwargs)
def color_palette(
custom_palette,
labels,
number_of_curves_to_plot,
- halfviolin_desat
+ contrast_desat
):
if custom_palette is not None:
if isinstance(custom_palette, dict):
@@ -291,22 +414,22 @@ def color_palette(
)
else:
violin_colors = sns.color_palette(n_colors=number_of_curves_to_plot)
- violin_colors = [sns.desaturate(color, halfviolin_desat) for color in violin_colors]
+ violin_colors = [sns.desaturate(color, contrast_desat) for color in violin_colors]
return violin_colors
-
def forest_plot(
data: list,
idx: Optional[list[int]] = None,
ax: Optional[plt.Axes] = None,
fig_size: tuple[int, int] = None,
effect_size: str = "mean_diff",
+ ci_type='bca',
horizontal: bool = False,
marker_size: int = 10,
custom_palette: Optional[Union[dict, list, str]] = None,
- halfviolin_alpha: float = 0.8,
- halfviolin_desat: float = 1,
+ contrast_alpha: float = 0.8,
+ contrast_desat: float = 1,
labels: list[str] = None,
labels_rotation: int = None,
@@ -320,10 +443,18 @@ def forest_plot(
yticklabels: Optional[list[str]] = None,
remove_spines: bool = True,
+ delta_text: bool = True,
+ delta_text_kwargs: dict = None,
+
+ contrast_bars: bool = True,
+ contrast_bars_kwargs: dict = None,
+ reference_band: list|tuple = None,
+ reference_band_kwargs: dict = None,
+
violin_kwargs: Optional[dict] = None,
zeroline_kwargs: Optional[dict] = None,
- es_marker_kwargs: Optional[dict] = None,
- es_errorbar_kwargs: Optional[dict] = None,
+ marker_kwargs: Optional[dict] = None,
+ errorbar_kwargs: Optional[dict] = None,
)-> plt.Figure:
"""
Custom function that generates a forest plot from given contrast objects, suitable for a range of data analysis types, including those from packages like DABEST-python.
@@ -343,15 +474,17 @@ def forest_plot(
Figure size for the plot.
effect_size : str
Type of effect size to plot (e.g., 'mean_diff', `hedges_g` or 'delta_g').
+ ci_type : str
+ Type of confidence interval to plot (bca' or 'pct')
horizontal : bool, default=False
If True, the plot will be horizontal.
marker_size : int, default=12
Marker size for plotting effect size dots.
custom_palette : Optional[Union[dict, list, str]], default=None
Custom color palette for the plot.
- halfviolin_alpha : float, default=0.8
+ contrast_alpha : float, default=0.8
Transparency level for violin plots.
- halfviolin_desat : float, default=1
+ contrast_desat : float, default=1
Saturation level for violin plots.
labels : List[str]
Labels for each contrast. If None, defaults to 'Contrast 1', 'Contrast 2', etc.
@@ -375,13 +508,25 @@ def forest_plot(
Custom y-tick labels for the plot.
remove_spines : bool, default=True
If True, removes plot spines (except the relevant dependent variable spine).
+ delta_text : bool, default=True
+ If True, it adds text next to each curve representing the effect size value.
+ delta_text_kwargs : dict, default=None
+ Additional keyword arguments for the delta_text.
+ contrast_bars : bool, default=True
+ If True, it adds bars from the zeroline to the effect size curve.
+ contrast_bars_kwargs : dict, default=None
+ Additional keyword arguments for the contrast_bars.
+ reference_band: list | tuple, default=None,
+ It adds reference bands to the relevant effect size curves.
+ reference_band_kwargs : dict, default=None,
+ Additional keyword arguments for the reference_band.
violin_kwargs : Optional[dict], default=None
Additional arguments for violin plot customization.
zeroline_kwargs : Optional[dict], default=None
Additional arguments for the zero line customization.
- es_marker_kwargs : Optional[dict], default=None
+ marker_kwargs : Optional[dict], default=None
Additional arguments for the effect size marker customization.
- es_errorbar_kwargs : Optional[dict], default=None
+ errorbar_kwargs : Optional[dict], default=None
Additional arguments for the effect size error bar customization.
Returns
@@ -391,42 +536,20 @@ def forest_plot(
"""
from .plot_tools import halfviolin
-
# Check for errors in the input arguments
- contrast_type = check_for_errors(
- data = data,
- idx = idx,
- ax = ax,
- fig_size = fig_size,
- effect_size = effect_size,
- horizontal = horizontal,
- marker_size = marker_size,
- custom_palette = custom_palette,
- halfviolin_alpha = halfviolin_alpha,
- halfviolin_desat = halfviolin_desat,
- labels = labels,
- labels_rotation = labels_rotation,
- labels_fontsize = labels_fontsize,
- title = title,
- title_fontsize = title_fontsize,
- ylabel = ylabel,
- ylabel_fontsize = ylabel_fontsize,
- ylim = ylim,
- yticks = yticks,
- yticklabels = yticklabels,
- remove_spines = remove_spines,
- )
+ all_kwargs = locals()
+ contrast_type = check_for_errors(**all_kwargs)
# Load plot data and extract info
bootstraps, differences, bcalows, bcahighs = load_plot_data(
data = data,
effect_size = effect_size,
contrast_type = contrast_type,
+ ci_type = ci_type,
idx = idx
)
-
# Adjust figure size based on orientation
- number_of_curves_to_plot = sum([len(i) for i in idx]) if idx is not None else len(data)
+ number_of_curves_to_plot = len(bootstraps)
if ax is not None:
fig = ax.figure
else:
@@ -435,13 +558,17 @@ def forest_plot(
fig, ax = plt.subplots(figsize=fig_size)
# Get Kwargs
- violin_kwargs, zeroline_kwargs, es_marker_kwargs, es_errorbar_kwargs = get_kwargs(
- violin_kwargs = violin_kwargs,
- zeroline_kwargs = zeroline_kwargs,
- horizontal = horizontal,
- es_marker_kwargs = es_marker_kwargs,
- es_errorbar_kwargs = es_errorbar_kwargs,
- marker_size = marker_size
+ (violin_kwargs, zeroline_kwargs, marker_kwargs, errorbar_kwargs,
+ delta_text_kwargs, contrast_bars_kwargs, reference_band_kwargs) = get_kwargs(
+ violin_kwargs = violin_kwargs,
+ zeroline_kwargs = zeroline_kwargs,
+ horizontal = horizontal,
+ marker_kwargs = marker_kwargs,
+ errorbar_kwargs = errorbar_kwargs,
+ delta_text_kwargs = delta_text_kwargs,
+ contrast_bars_kwargs = contrast_bars_kwargs,
+ reference_band_kwargs = reference_band_kwargs,
+ marker_size = marker_size
)
# Plot the violins and make adjustments
@@ -451,18 +578,18 @@ def forest_plot(
)
halfviolin(
v,
- alpha = halfviolin_alpha,
+ alpha = contrast_alpha,
half = "bottom" if horizontal else "right",
)
## Plotting the effect sizes and confidence intervals
for k in range(1, number_of_curves_to_plot + 1):
if horizontal:
- ax.plot(differences[k - 1], k, **es_marker_kwargs)
- ax.plot([bcalows[k - 1], bcahighs[k - 1]], [k, k], **es_errorbar_kwargs)
+ ax.plot(differences[k - 1], k, **marker_kwargs)
+ ax.plot([bcalows[k - 1], bcahighs[k - 1]], [k, k], **errorbar_kwargs)
else:
- ax.plot(k, differences[k - 1], **es_marker_kwargs)
- ax.plot([k, k], [bcalows[k - 1], bcahighs[k - 1]], **es_errorbar_kwargs)
+ ax.plot(k, differences[k - 1], **marker_kwargs)
+ ax.plot([k, k], [bcalows[k - 1], bcahighs[k - 1]], **errorbar_kwargs)
# Aesthetic Adjustments
## Handle the custom color palette
@@ -470,7 +597,7 @@ def forest_plot(
custom_palette = custom_palette,
labels = labels,
number_of_curves_to_plot = number_of_curves_to_plot,
- halfviolin_desat = halfviolin_desat
+ contrast_desat = contrast_desat
)
for patch, color in zip(v["bodies"], violin_colors):
@@ -519,13 +646,17 @@ def forest_plot(
if ylabel is None:
effect_attr_map = {
"mean_diff": "Mean Difference",
+ "median_diff": "Median Difference",
+ "cohens_d": "Cohen's d",
+ "cohens_h": "Cohen's h",
+ "cliffs_delta": "Cliff's delta",
"hedges_g": "Hedges' g",
- "delta_g": "Deltas' g"
+ "delta_g": "Delta g"
}
if contrast_type=='delta2' and idx is None and effect_size == "hedges_g":
- ylabel = "Deltas' g"
+ ylabel = "Delta g"
elif contrast_type=='delta2' and idx is not None and (effect_size == "delta_g" or effect_size == "hedges_g"):
- ylabel = "Hedges' g with Deltas' g"
+ ylabel = "Hedges' g with Delta g"
else:
ylabel = effect_attr_map[effect_size]
lim_key = ax.set_xlabel if horizontal else ax.set_ylabel
@@ -540,6 +671,97 @@ def forest_plot(
spines = ["top", "right", "left"] if horizontal else ["top", "right", "bottom"]
ax.spines[spines].set_visible(False)
+ # Delta Text
+ if delta_text:
+ if delta_text_kwargs.get('color') is not None:
+ delta_text_colors = [delta_text_kwargs.pop('color')] * number_of_curves_to_plot
+ else:
+ delta_text_colors = violin_colors
+ delta_text_kwargs.pop('color')
+
+ # Collect the X-coordinates for the delta text
+ delta_text_x_coordinates = delta_text_kwargs.pop('x_coordinates')
+ delta_text_x_adjustment = delta_text_kwargs.pop('offset')
+
+ if delta_text_x_coordinates is not None:
+ if not isinstance(delta_text_x_coordinates, (list, tuple)) or not all(isinstance(x, (int, float)) for x in delta_text_x_coordinates):
+ raise TypeError("delta_text_kwargs['x_coordinates'] must be a list of x-coordinates.")
+ if len(delta_text_x_coordinates) != number_of_curves_to_plot:
+ raise ValueError("delta_text_kwargs['x_coordinates'] must have the same length as the number of ticks to plot.")
+ else:
+ delta_text_x_coordinates = (np.arange(1, number_of_curves_to_plot + 1)
+ + (0.5 if not horizontal else -0.4)
+ + delta_text_x_adjustment
+ )
+
+ # Collect the Y-coordinates for the delta text
+ delta_text_y_coordinates = delta_text_kwargs.pop('y_coordinates')
+
+ if delta_text_y_coordinates is not None:
+ if not isinstance(delta_text_y_coordinates, (list, tuple)) or not all(isinstance(y, (int, float)) for y in delta_text_y_coordinates):
+ raise TypeError("delta_text_kwargs['y_coordinates'] must be a list of y-coordinates.")
+ if len(delta_text_y_coordinates) != number_of_curves_to_plot:
+ raise ValueError("delta_text_kwargs['y_coordinates'] must have the same length as the number of ticks to plot.")
+ else:
+ delta_text_y_coordinates = differences
+
+ if horizontal:
+ delta_text_x_coordinates, delta_text_y_coordinates = delta_text_y_coordinates, delta_text_x_coordinates
+
+ for idx, x, y, delta in zip(np.arange(0, number_of_curves_to_plot, 1), delta_text_x_coordinates,
+ delta_text_y_coordinates, differences):
+ delta_text = np.format_float_positional(delta, precision=2, sign=True, trim="k", min_digits=2)
+ ax.text(x, y, delta_text, color=delta_text_colors[idx], zorder=5, **delta_text_kwargs)
+
+ # Contrast bars
+ if contrast_bars:
+ _bar_color = contrast_bars_kwargs.pop('color')
+ if _bar_color is not None:
+ bar_colors = [_bar_color] * number_of_curves_to_plot
+ else:
+ bar_colors = violin_colors
+ for x, y in zip(np.arange(1, number_of_curves_to_plot + 1), differences):
+ if horizontal:
+ ax.add_patch(mpatches.Rectangle((0, x-0.25), y, 0.25, color=bar_colors[x-1], **contrast_bars_kwargs))
+ else:
+ ax.add_patch(mpatches.Rectangle((x, 0), 0.25, y, color=bar_colors[x-1], **contrast_bars_kwargs))
+
+ # Reference band
+ if reference_band:
+ _bar_color = reference_band_kwargs.pop('color')
+ if _bar_color is not None:
+ bar_colors = [_bar_color] * number_of_curves_to_plot
+ else:
+ bar_colors = violin_colors
+
+ span_ax = reference_band_kwargs.pop("span_ax")
+ summary_xmin, summary_xmax = ax.get_xlim()
+ summary_ymin, summary_ymax = ax.get_ylim()
+
+ for summary_index in reference_band:
+ if span_ax == True:
+ starting_location = summary_ymin if horizontal else summary_xmin
+ else:
+ starting_location = summary_index+1
+
+ summary_color = bar_colors[summary_index]
+ summary_ci_low, summary_ci_high = bcalows[summary_index], bcahighs[summary_index]
+
+ if horizontal:
+ ax.add_patch(mpatches.Rectangle(
+ (summary_ci_low, starting_location),
+ summary_ci_high-summary_ci_low, summary_ymax+1,
+ color=summary_color,
+ **reference_band_kwargs)
+ )
+ else:
+ ax.add_patch(mpatches.Rectangle(
+ (starting_location, summary_ci_low),
+ summary_xmax+1, summary_ci_high-summary_ci_low,
+ color=summary_color,
+ **reference_band_kwargs)
+ )
+
## Invert Y-axis if horizontal
if horizontal:
ax.invert_yaxis()
diff --git a/dabest/misc_tools.py b/dabest/misc_tools.py
index 5a9cf638..1ddad39b 100644
--- a/dabest/misc_tools.py
+++ b/dabest/misc_tools.py
@@ -6,7 +6,8 @@
__all__ = ['merge_two_dicts', 'unpack_and_add', 'print_greeting', 'get_varname', 'get_unique_categories', 'get_params',
'get_kwargs', 'get_color_palette', 'initialize_fig', 'get_plot_groups', 'add_counts_to_ticks',
'extract_contrast_plotting_ticks', 'set_xaxis_ticks_and_lims', 'show_legend', 'gardner_altman_adjustments',
- 'draw_zeroline', 'redraw_independent_spines', 'redraw_dependent_spines', 'extract_group_summaries']
+ 'draw_zeroline', 'redraw_independent_spines', 'redraw_dependent_spines', 'extract_group_summaries',
+ 'color_picker', 'prepare_bars_for_plot']
# %% ../nbs/API/misc_tools.ipynb 4
import datetime as dt
@@ -98,7 +99,8 @@ def get_unique_categories(names):
def get_params(
effectsize_df: object,
plot_kwargs: dict,
- sankey_kwargs: dict
+ sankey_kwargs: dict,
+ barplot_kwargs: dict
):
"""
Extracts parameters from the `effectsize_df` and `plot_kwargs` objects for use in the plotter function.
@@ -111,6 +113,8 @@ def get_params(
Kwargs passed to the plot function.
sankey kwargs : dict
Kwargs relating to the sankey diagram plots
+ barplot_kwargs : dict
+ Kwargs relating to the barplot
"""
plot_data = effectsize_df._plot_data
xvar = effectsize_df.xvar
@@ -161,17 +165,12 @@ def get_params(
# Group summaries
group_summaries = plot_kwargs["group_summaries"]
- if group_summaries is None:
- group_summaries = "mean_sd"
-
- # Error bar color
- err_color = plot_kwargs["err_color"]
- if err_color is None:
- err_color = "black"
+ group_summaries = None if barplot_kwargs['errorbar'] is not None else group_summaries
# Contrast Axes kwargs
- halfviolin_alpha = plot_kwargs["halfviolin_alpha"]
ci_type = plot_kwargs["ci_type"]
+ if ci_type not in ["bca", "pct"]:
+ raise ValueError("Invalid `ci_type`. Must be either 'bca' or 'pct'.")
# Boolean for showing Baseline Curve
show_baseline_ec = plot_kwargs["show_baseline_ec"]
@@ -194,11 +193,13 @@ def get_params(
else "right" if not horizontal
else "left"
)
+ # Whether to show sample sizes with ticklabels
+ show_sample_size = plot_kwargs["show_sample_size"]
return (dabest_obj, plot_data, xvar, yvar, is_paired, effect_size, proportional, all_plot_groups,
- idx, show_delta2, show_mini_meta, float_contrast, show_pairs, group_summaries, err_color,
- horizontal, results, halfviolin_alpha, ci_type, x1_level, experiment_label, show_baseline_ec,
- one_sankey, two_col_sankey, asymmetric_side)
+ idx, show_delta2, show_mini_meta, float_contrast, show_pairs, group_summaries,
+ horizontal, results, ci_type, x1_level, experiment_label, show_baseline_ec,
+ one_sankey, two_col_sankey, asymmetric_side, show_sample_size)
def get_kwargs(
plot_kwargs: dict,
@@ -218,7 +219,9 @@ def get_kwargs(
# Swarmplot kwargs
default_swarmplot_kwargs = {
- "size": plot_kwargs["raw_marker_size"]
+ "size": plot_kwargs["raw_marker_size"],
+ "alpha": plot_kwargs["raw_alpha"],
+ "fontsize": plot_kwargs.get("fontsize_rawxlabel"),
}
if plot_kwargs["swarmplot_kwargs"] is None:
swarmplot_kwargs = default_swarmplot_kwargs
@@ -230,7 +233,11 @@ def get_kwargs(
# Barplot kwargs
default_barplot_kwargs = {
"estimator": np.mean,
- "errorbar": plot_kwargs["ci"],
+ "errorbar": None,
+ "width": plot_kwargs["bar_width"],
+ "alpha": plot_kwargs["raw_alpha"],
+ "err_kws": {'color': 'black'},
+ "fontsize": plot_kwargs["fontsize_rawxlabel"]
}
if plot_kwargs["barplot_kwargs"] is None:
barplot_kwargs = default_barplot_kwargs
@@ -245,9 +252,10 @@ def get_kwargs(
"align": "center",
"sankey": True,
"flow": True,
- "alpha": 0.4,
+ "alpha": plot_kwargs['raw_alpha'],
"rightColor": False,
"bar_width": 0.2,
+ "fontsize": plot_kwargs.get("fontsize_rawxlabel")
}
if plot_kwargs["sankey_kwargs"] is None:
sankey_kwargs = default_sankey_kwargs
@@ -257,26 +265,27 @@ def get_kwargs(
)
# Violinplot kwargs.
- default_violinplot_kwargs = {
+ default_contrast_kwargs = {
"widths": 0.5,
- "vert": 'vertical',
+ "orientation": 'vertical',
"showextrema": False,
"showmedians": False,
+ "alpha": plot_kwargs["contrast_alpha"],
}
- if plot_kwargs["violinplot_kwargs"] is None:
- violinplot_kwargs = default_violinplot_kwargs
+ if plot_kwargs["contrast_kwargs"] is None:
+ contrast_kwargs = default_contrast_kwargs
else:
- violinplot_kwargs = merge_two_dicts(
- default_violinplot_kwargs, plot_kwargs["violinplot_kwargs"]
+ contrast_kwargs = merge_two_dicts(
+ default_contrast_kwargs, plot_kwargs["contrast_kwargs"]
)
# Slopegraph kwargs.
default_slopegraph_kwargs = {
"linewidth": 1,
- "alpha": 0.5,
+ "alpha": plot_kwargs["raw_alpha"],
'jitter': 0,
- 'jitter_seed': 9876543210
+ 'jitter_seed': 9876543210,
}
if plot_kwargs["slopegraph_kwargs"] is None:
slopegraph_kwargs = default_slopegraph_kwargs
@@ -362,13 +371,11 @@ def get_kwargs(
# Delta text kwargs.
default_delta_text_kwargs = {
- "color": None,
"alpha": 1,
"fontsize": 10,
"ha": 'center',
"va": 'center',
"rotation": 0,
- "x_location": 'right',
"x_coordinates": None,
"y_coordinates": None,
"offset": 0
@@ -378,32 +385,31 @@ def get_kwargs(
else:
delta_text_kwargs = merge_two_dicts(default_delta_text_kwargs, plot_kwargs["delta_text_kwargs"])
- # Summary bars kwargs.
- default_summary_bars_kwargs = {
+ # Reference band kwargs.
+ default_reference_band_kwargs = {
"span_ax": False,
- "color": None,
"alpha": 0.15,
"zorder":-3
}
- if plot_kwargs["summary_bars_kwargs"] is None:
- summary_bars_kwargs = default_summary_bars_kwargs
+ if plot_kwargs["reference_band_kwargs"] is None:
+ reference_band_kwargs = default_reference_band_kwargs
else:
- summary_bars_kwargs = merge_two_dicts(default_summary_bars_kwargs, plot_kwargs["summary_bars_kwargs"])
+ reference_band_kwargs = merge_two_dicts(default_reference_band_kwargs, plot_kwargs["reference_band_kwargs"])
# Swarm bars kwargs.
- default_swarm_bars_kwargs = {
- "color": None,
- "zorder":-3
+ default_raw_bars_kwargs = {
+ "zorder":-3,
+ "alpha": 0.2
}
- if plot_kwargs["swarm_bars_kwargs"] is None:
- swarm_bars_kwargs = default_swarm_bars_kwargs
+ if plot_kwargs["raw_bars_kwargs"] is None:
+ raw_bars_kwargs = default_raw_bars_kwargs
else:
- swarm_bars_kwargs = merge_two_dicts(default_swarm_bars_kwargs, plot_kwargs["swarm_bars_kwargs"])
+ raw_bars_kwargs = merge_two_dicts(default_raw_bars_kwargs, plot_kwargs["raw_bars_kwargs"])
# Contrast bars kwargs.
default_contrast_bars_kwargs = {
- "color": None,
- "zorder":-3
+ "zorder":-3,
+ "alpha": 0.2
}
if plot_kwargs["contrast_bars_kwargs"] is None:
contrast_bars_kwargs = default_contrast_bars_kwargs
@@ -429,11 +435,11 @@ def get_kwargs(
# Gridkey kwargs.
default_gridkey_kwargs = {
- 'show_es' : True, # If True, the gridkey will show the effect size of each comparison.
- 'show_Ns' :True, # If True, the gridkey will show the number of observations in eachgroup.
- 'merge_pairs' : False, # If True, the gridkey will merge the pairs of groups into a single cell. This is useful for when the groups are paired.
- 'delimiters': [';', '>', '_'], # Delimiters to split the group names.
- 'marker': "\u25CF", # Marker for the gridkey dots.
+ 'show_es' : plot_kwargs['gridkey_show_es'], # If True, the gridkey will show the effect size of each comparison.
+ 'show_Ns' : plot_kwargs['gridkey_show_Ns'], # If True, the gridkey will show the number of observations in eachgroup.
+ 'merge_pairs' : plot_kwargs['gridkey_merge_pairs'], # If True, the gridkey will merge the pairs of groups into a single cell. This is useful for when the groups are paired.
+ 'delimiters': plot_kwargs['gridkey_delimiters'], # Delimiters to split the group names.
+ 'marker': "\u25CF", # Marker for the gridkey dots.
}
if plot_kwargs["gridkey_kwargs"] is None:
gridkey_kwargs = default_gridkey_kwargs
@@ -441,30 +447,30 @@ def get_kwargs(
gridkey_kwargs = merge_two_dicts(default_gridkey_kwargs, plot_kwargs["gridkey_kwargs"])
# Effect size marker kwargs
- default_es_marker_kwargs = {
+ default_contrast_marker_kwargs = {
'marker': 'o',
- 'markersize': plot_kwargs['es_marker_size'],
+ 'markersize': plot_kwargs['contrast_marker_size'],
'color': ytick_color,
'alpha': 1,
'zorder': 2,
}
- if plot_kwargs['es_marker_kwargs'] is None:
- es_marker_kwargs = default_es_marker_kwargs
+ if plot_kwargs['contrast_marker_kwargs'] is None:
+ contrast_marker_kwargs = default_contrast_marker_kwargs
else:
- es_marker_kwargs = merge_two_dicts(default_es_marker_kwargs, plot_kwargs['es_marker_kwargs'])
+ contrast_marker_kwargs = merge_two_dicts(default_contrast_marker_kwargs, plot_kwargs['contrast_marker_kwargs'])
# Effect size error bar kwargs
- default_es_errorbar_kwargs = {
+ default_contrast_errorbar_kwargs = {
'color': ytick_color,
'lw': 2,
'linestyle': '-',
'alpha': 1,
'zorder': 1,
}
- if plot_kwargs['es_errorbar_kwargs'] is None:
- es_errorbar_kwargs = default_es_errorbar_kwargs
+ if plot_kwargs['contrast_errorbar_kwargs'] is None:
+ contrast_errorbar_kwargs = default_contrast_errorbar_kwargs
else:
- es_errorbar_kwargs = merge_two_dicts(default_es_errorbar_kwargs, plot_kwargs['es_errorbar_kwargs'])
+ contrast_errorbar_kwargs = merge_two_dicts(default_contrast_errorbar_kwargs, plot_kwargs['contrast_errorbar_kwargs'])
# Prop sample counts kwargs
default_prop_sample_counts_kwargs = {
@@ -480,23 +486,23 @@ def get_kwargs(
# RM Lines kwargs
- default_es_paired_lines_kwargs = {
+ default_contrast_paired_lines_kwargs = {
"linestyle": "-",
"linewidth": 2,
"zorder": -2,
"color": 'dimgray',
"alpha": 1
}
- if plot_kwargs["es_paired_lines_kwargs"] is None:
- es_paired_lines_kwargs = default_es_paired_lines_kwargs
+ if plot_kwargs["contrast_paired_lines_kwargs"] is None:
+ contrast_paired_lines_kwargs = default_contrast_paired_lines_kwargs
else:
- es_paired_lines_kwargs = merge_two_dicts(default_es_paired_lines_kwargs, plot_kwargs["es_paired_lines_kwargs"])
+ contrast_paired_lines_kwargs = merge_two_dicts(default_contrast_paired_lines_kwargs, plot_kwargs["contrast_paired_lines_kwargs"])
# Return the kwargs.
- return (swarmplot_kwargs, barplot_kwargs, sankey_kwargs, violinplot_kwargs, slopegraph_kwargs,
+ return (swarmplot_kwargs, barplot_kwargs, sankey_kwargs, contrast_kwargs, slopegraph_kwargs,
reflines_kwargs, legend_kwargs, group_summaries_kwargs, redraw_axes_kwargs, delta_dot_kwargs,
- delta_text_kwargs, summary_bars_kwargs, swarm_bars_kwargs, contrast_bars_kwargs, table_kwargs, gridkey_kwargs,
- es_marker_kwargs, es_errorbar_kwargs, prop_sample_counts_kwargs, es_paired_lines_kwargs)
+ delta_text_kwargs, reference_band_kwargs, raw_bars_kwargs, contrast_bars_kwargs, table_kwargs, gridkey_kwargs,
+ contrast_marker_kwargs, contrast_errorbar_kwargs, prop_sample_counts_kwargs, contrast_paired_lines_kwargs)
def get_color_palette(
@@ -580,9 +586,8 @@ def get_color_palette(
n_groups = len(color_groups)
custom_pal = plot_kwargs["custom_palette"]
- swarm_desat = plot_kwargs["swarm_desat"]
- bar_desat = plot_kwargs["bar_desat"]
- contrast_desat = plot_kwargs["halfviolin_desat"]
+ raw_desat = plot_kwargs["raw_desat"]
+ contrast_desat = plot_kwargs["contrast_desat"]
if custom_pal is None:
unsat_colors = sns.color_palette(n_colors=n_groups)
@@ -636,39 +641,31 @@ def get_color_palette(
if custom_pal is None and color_col is None:
categories = get_unique_categories(names)
- swarm_colors = [sns.desaturate(c, swarm_desat) for c in unsat_colors]
+ raw_colors = [sns.desaturate(c, raw_desat) for c in unsat_colors]
contrast_colors = [sns.desaturate(c, contrast_desat) for c in unsat_colors]
- bar_color = [sns.desaturate(c, bar_desat) for c in unsat_colors]
if color_by_subgroups:
plot_palette_raw = dict()
plot_palette_contrast = dict()
- plot_palette_bar = dict()
for i in range(len(idx)):
for names_i in idx[i]:
- plot_palette_raw[names_i] = swarm_colors[i]
+ plot_palette_raw[names_i] = raw_colors[i]
plot_palette_contrast[names_i] = contrast_colors[i]
- plot_palette_bar[names_i] = bar_color[i]
else:
- plot_palette_raw = dict(zip(categories, swarm_colors))
+ plot_palette_raw = dict(zip(categories, raw_colors))
plot_palette_contrast = dict(zip(categories, contrast_colors))
- plot_palette_bar = dict(zip(categories, bar_color))
else:
- swarm_colors = [sns.desaturate(c, swarm_desat) for c in unsat_colors]
+ raw_colors = [sns.desaturate(c, raw_desat) for c in unsat_colors]
contrast_colors = [sns.desaturate(c, contrast_desat) for c in unsat_colors]
- bar_color = [sns.desaturate(c, bar_desat) for c in unsat_colors]
if color_by_subgroups:
plot_palette_raw = dict()
plot_palette_contrast = dict()
- plot_palette_bar = dict()
for i in range(len(idx)):
for names_i in idx[i]:
- plot_palette_raw[names_i] = swarm_colors[i]
+ plot_palette_raw[names_i] = raw_colors[i]
plot_palette_contrast[names_i] = contrast_colors[i]
- plot_palette_bar[names_i] = bar_color[i]
else:
- plot_palette_raw = dict(zip(names, swarm_colors))
+ plot_palette_raw = dict(zip(names, raw_colors))
plot_palette_contrast = dict(zip(names, contrast_colors))
- plot_palette_bar = dict(zip(names, bar_color))
plot_palette_sankey = dict(zip(names, unsat_colors))
# For Sankey Diagram plot, each bar will have the same two colors if custom_pal is None
@@ -676,8 +673,8 @@ def get_color_palette(
if custom_pal is None:
plot_palette_sankey = None
- return (color_col, bootstraps_color_by_group, n_groups, filled, plot_palette_raw, bar_color,
- plot_palette_bar, plot_palette_contrast, plot_palette_sankey)
+ return (color_col, bootstraps_color_by_group, n_groups, filled, raw_colors,
+ plot_palette_raw, plot_palette_contrast, plot_palette_sankey)
def initialize_fig(
plot_kwargs: dict,
@@ -691,7 +688,8 @@ def initialize_fig(
effect_size_type: str,
yvar: str,
horizontal: bool,
- show_table: bool
+ show_table: bool,
+ color_col: str,
):
"""
Initialize the figure and axes for the plotter function.
@@ -722,6 +720,8 @@ def initialize_fig(
A boolean flag to determine if the plot is for horizontal plotting.
show_table : dict
A boolean flag to determine if the table will be shown in horizontal plot.
+ color_col : str
+ The column name for coloring the data points.
"""
# Params
fig_size = plot_kwargs["fig_size"]
@@ -741,7 +741,10 @@ def initialize_fig(
fig_size = (7, 1 + (frac * all_groups_count))
else:
if is_paired and show_pairs and proportional is False:
- frac = 0.8
+ if color_col is not None and float_contrast:
+ frac = 0.9
+ else:
+ frac = 0.8
else:
frac = 1
if float_contrast:
@@ -757,7 +760,7 @@ def initialize_fig(
init_fig_kwargs = dict(figsize=fig_size, dpi=plot_kwargs["dpi"], tight_layout=True)
width_ratios_ga = [2.5, 1]
- h_space_cummings = (0.1 if plot_kwargs["gridkey_rows"] is not None
+ h_space_cummings = (0.1 if plot_kwargs["gridkey"] is not None
else 0.3)
if plot_kwargs["ax"] is not None:
@@ -849,31 +852,34 @@ def initialize_fig(
)
fig.patch.set_facecolor(face_color)
- # Title
- title = plot_kwargs["title"]
- fontsize_title = plot_kwargs["fontsize_title"]
- if title is not None:
- fig.suptitle(title, fontsize=fontsize_title)
-
# Set axes
rawdata_axes = axx[0]
contrast_axes = axx[1]
table_axes = axx[2] if horizontal and show_table else None
+
+ # Title
+ title, fontsize_title = plot_kwargs["title"], plot_kwargs["fontsize_title"]
+ if title is not None:
+ if plot_kwargs["ax"] is not None:
+ rawdata_axes.set_title(title, fontsize=fontsize_title)
+ else:
+ fig.suptitle(title, fontsize=fontsize_title)
+
rawdata_axes.set_frame_on(False)
contrast_axes.set_frame_on(False)
if horizontal and show_table:
table_axes.set_frame_on(False)
# Swarmplot ylim (Vertical) or xlim (Horizontal)
- swarm_ylim = plot_kwargs["swarm_ylim"]
- if swarm_ylim is not None:
- if not isinstance(swarm_ylim, list) and not isinstance(swarm_ylim, tuple) or len(swarm_ylim) != 2:
- raise ValueError("`swarm_ylim` must be a tuple/list of the lower and upper bound.")
+ raw_ylim = plot_kwargs["raw_ylim"]
+ if raw_ylim is not None:
+ if not isinstance(raw_ylim, list) and not isinstance(raw_ylim, tuple) or len(raw_ylim) != 2:
+ raise ValueError("`raw_ylim` must be a tuple/list of the lower and upper bound.")
if horizontal:
- rawdata_axes.set_xlim(swarm_ylim)
+ rawdata_axes.set_xlim(raw_ylim)
else:
- rawdata_axes.set_ylim(swarm_ylim)
+ rawdata_axes.set_ylim(raw_ylim)
# Contrastplot ylim (Vertical) or xlim (Horizontal)
if horizontal or not float_contrast:
@@ -906,19 +912,19 @@ def initialize_fig(
contrast_axes.set_ylim(contrast_ylim)
# Set raw axes y-label.
- swarm_label, bar_label = plot_kwargs["swarm_label"], plot_kwargs["bar_label"]
- if swarm_label is None:
- swarm_label = yvar
- if bar_label is None:
- bar_label = "Proportion of Success" if effect_size_type != "cohens_h" else "Value"
+ raw_label = plot_kwargs["raw_label"]
+ if raw_label is None:
+ if proportional:
+ raw_label = "Proportion of Success" if effect_size_type != "cohens_h" else "Value"
+ else:
+ raw_label = yvar
fontsize_rawylabel = plot_kwargs["fontsize_rawylabel"]
- rawdata_label = bar_label if proportional else swarm_label
if horizontal:
- rawdata_axes.set_xlabel(rawdata_label, fontsize=fontsize_rawylabel)
+ rawdata_axes.set_xlabel(raw_label, fontsize=fontsize_rawylabel)
rawdata_axes.set_ylabel("")
else:
- rawdata_axes.set_ylabel(rawdata_label, fontsize=fontsize_rawylabel)
+ rawdata_axes.set_ylabel(raw_label, fontsize=fontsize_rawylabel)
rawdata_axes.set_xlabel("")
# Set contrast axes y-label.
@@ -1065,9 +1071,12 @@ def lookup_value(text):
else:
ticks_with_counts.append(f"{t}\n(N={value})")
- fontsize_rawxlabel = plot_kwargs.get("fontsize_rawxlabel")
set_major_loc_method(plt.FixedLocator(get_ticks()))
- set_label(ticks_with_counts, fontsize=fontsize_rawxlabel)
+
+ # label = ticks_with_counts if plot_kwargs['show_sample_size'] else get_label()
+ # set_label(label, fontsize=plot_kwargs.get("fontsize_rawxlabel"))
+
+ set_label(ticks_with_counts, fontsize=plot_kwargs.get("fontsize_rawxlabel"))
# Ensure ticks are at the correct locations
set_major_loc_method(plt.FixedLocator(get_ticks()))
@@ -1109,7 +1118,6 @@ def extract_contrast_plotting_ticks(
ticks_to_start_twocol_sankey.pop()
ticks_to_start_twocol_sankey.insert(0, 0)
else:
-
ticks_to_skip = np.cumsum([len(t) for t in idx])[:-1].tolist()
ticks_to_skip.insert(0, 0)
# Then obtain the ticks where we have to plot the effect sizes.
@@ -1228,7 +1236,7 @@ def set_xaxis_ticks_and_lims(
if float_contrast:
contrast_axes.set_xlim(0.5, 1.5)
- if show_delta2:
+ elif show_delta2:
if show_pairs:
rawdata_axes.set_xlim(-0.375, 4.75)
else:
@@ -1349,7 +1357,7 @@ def gardner_altman_adjustments(
redraw_axes_kwargs: dict
):
"""
- Aesthetic adjustments for the Gardner-Altman plot.
+ Aesthetic adjustments specific to Gardner-Altman plots (float_contrast=True).
Parameters
----------
@@ -1540,6 +1548,20 @@ def draw_zeroline(
reflines_kwargs : dict,
extra_delta : bool,
):
+ """
+ Draw the independent axis spine lines.
+
+ Parameters
+ ----------
+ ax : object (Axes)
+ The contrast data axes.
+ horizontal : bool
+ A boolean flag to determine if the plot is for horizontal plotting.
+ reflines_kwargs : dict
+ Additional keyword arguments to be passed to the zeroline.
+ extra_delta : bool
+ A boolean flag to determine if the plot includes an extra delta (delta-delta or mini-meta).
+ """
# If 0 lies within the ylim of the contrast axes, draw a zero reference line.
if extra_delta and not horizontal:
contrast_xlim = [-0.5, 3.4]
@@ -1578,9 +1600,40 @@ def redraw_independent_spines(
ticks_to_skip : list,
temp_idx : list,
ticks_to_skip_contrast : list,
- extra_delta : bool,
redraw_axes_kwargs : dict
):
+ """
+ Draw the independent axis spine lines.
+
+ Parameters
+ ----------
+ rawdata_axes : object (Axes)
+ The raw data axes.
+ contrast_axes : object (Axes)
+ The contrast axes.
+ horizontal : bool
+ A boolean flag to determine if the plot is for horizontal plotting.
+ two_col_sankey : bool
+ A boolean flag to determine if the plot is for two-col sankey.
+ ticks_to_start_twocol_sankey : list
+ A list of ticks to start for sankey plot.
+ idx : list
+ A list of indices.
+ is_paired : bool
+ A boolean flag to determine if the data is paired.
+ show_pairs : bool
+ A boolean flag to determine if pairs should be shown.
+ proportional : bool
+ A boolean flag to determine if the plot is proportional/binary.
+ ticks_to_skip : list,
+ A list of ticks to be skipped in the raw data axes.
+ temp_idx : list,
+ A temporary list of indices to be used for skipping ticks in the raw data axes.
+ ticks_to_skip_contrast : list,
+ A list of ticks to be skipped in the contrast axes.
+ redraw_axes_kwargs : dict
+ Kwargs passed to the redraw axes.
+ """
# Extract the ticks
if two_col_sankey:
rightend_ticks_raw = rightend_ticks_contrast = np.array([len(i) - 2 for i in idx]) + np.array(ticks_to_start_twocol_sankey)
@@ -1649,7 +1702,7 @@ def redraw_dependent_spines(
delta2_axes: axes.Axes
):
"""
- Aesthetic general adjustments across both GA and Cumming plots.
+ Draw the dependent axis spine lines.
Parameters
----------
@@ -1659,8 +1712,6 @@ def redraw_dependent_spines(
The contrast axes.
redraw_axes_kwargs : dict
Kwargs passed to the redraw axes.
- plot_kwargs : dict
- Kwargs passed to the plot function.
float_contrast : bool
A boolean flag to determine if the plot is GA or Cum
horizontal : bool
@@ -1710,7 +1761,6 @@ def redraw_dependent_spines(
def extract_group_summaries(
proportional: bool,
- err_color,
rawdata_axes: axes.Axes,
asymmetric_side: str,
horizontal: bool,
@@ -1729,8 +1779,6 @@ def extract_group_summaries(
----------
proportional : bool
A boolean flag to determine if the plot is for proportional data.
- err_color : str
- The color of the error bars.
rawdata_axes : object (Axes)
The raw data axes.
asymmetric_side : str
@@ -1758,7 +1806,7 @@ def extract_group_summaries(
if proportional:
group_summaries_method = "proportional_error_bar"
group_summaries_offset = 0
- group_summaries_line_color = err_color
+ group_summaries_line_color = "black"
else:
# Create list to gather xspans.
xspans = []
@@ -1802,3 +1850,111 @@ def extract_group_summaries(
group_summaries_kwargs.pop("offset")
return group_summaries_method, group_summaries_offset, group_summaries_line_color
+
+def color_picker(color_type: str,
+ kwargs: dict,
+ elements: list,
+ color_col: str,
+ show_pairs: bool,
+ color_palette: dict) -> list:
+ num_of_elements = len(elements)
+ colors = (
+ [kwargs.pop('color')] * num_of_elements
+ if kwargs.get('color', None) is not None
+ else ['black'] * num_of_elements
+ if color_col is not None or show_pairs
+ else list(color_palette.values())
+ )
+ if color_type in ['contrast', 'summary', 'delta_text']:
+ if len(colors) == num_of_elements:
+ final_colors = colors
+ else:
+ final_colors = []
+ for tick in elements:
+ final_colors.append(colors[int(tick)])
+ else:
+ final_colors = colors
+ return final_colors
+
+
+def prepare_bars_for_plot(bar_type, bar_kwargs, horizontal, plot_palette_raw, color_col, show_pairs,
+ plot_data = None, xvar = None, yvar = None, # Raw data
+ results = None, ticks_to_plot = None, extra_delta = None, # Contrast data
+ reference_band = None, summary_axes = None, ci_type = None # Summary data
+ ):
+ from .misc_tools import color_picker
+ bar_dict = {}
+ if bar_type in ['raw', 'contrast']:
+ if bar_type == 'raw':
+ if isinstance(plot_data[xvar].dtype, pd.CategoricalDtype):
+ order = pd.unique(plot_data[xvar]).categories
+ else:
+ order = pd.unique(plot_data[xvar])
+ means = plot_data.groupby(xvar, observed=False)[yvar].mean().reindex(index=order).values
+ ticks = list(range(len(order)))
+ elif bar_type == 'contrast':
+ means = results.difference.to_list()
+ ticks = ticks_to_plot.copy()
+ if extra_delta is not None:
+ ticks.append(ticks[-1]+1) # Add an extra tick
+ means.append(extra_delta)
+
+ num_of_bars = len(means)
+ y_start_values, y_distances = [0]*num_of_bars, means
+ x_start_values, x_distances = [num - (0.5 if horizontal else 0.25) for num in ticks], [0.5,]*num_of_bars
+
+ elif bar_type == 'summary':
+ # Begin checks
+ if not isinstance(reference_band, list):
+ raise TypeError("reference_band must be a list of indices (ints).")
+ if not all(isinstance(i, int) for i in reference_band):
+ raise TypeError("reference_band must be a list of indices (ints).")
+ if any(i >= len(results) for i in reference_band):
+ raise ValueError("Index {} chosen is out of range for the contrast objects.".format([i for i in reference_band if i >= len(results)]))
+
+ ticks = [ticks_to_plot[tick] for tick in reference_band]
+ summary_xmin, summary_xmax = summary_axes.get_xlim()
+ summary_ymin, summary_ymax = summary_axes.get_ylim()
+ span_ax = bar_kwargs.pop("span_ax")
+
+ x_start_values, y_start_values, x_distances, y_distances = [], [], [], []
+ for summary_index in reference_band:
+ summary_ci_low = results.get(ci_type+'_low')[summary_index]
+ summary_ci_high = results.get(ci_type+'_high')[summary_index]
+
+ if span_ax == True:
+ starting_location = summary_ymax if horizontal else summary_xmin
+ else:
+ starting_location = ticks_to_plot[summary_index]
+ x_distance = summary_ymin if horizontal else summary_xmax
+
+ x_start_values.append(starting_location)
+ y_start_values.append(summary_ci_low)
+ x_distances.append(x_distance + 1)
+ y_distances.append(summary_ci_high - summary_ci_low)
+ else:
+ raise ValueError("Invalid bar_type. Must be 'raw' or 'contrast'.")
+
+ if horizontal:
+ x_start_values, y_start_values = y_start_values, x_start_values
+ x_distances, y_distances = y_distances, x_distances
+
+ for name, values in zip(['x_start_values', 'x_distances', 'y_start_values', 'y_distance'],
+ [x_start_values, x_distances, y_start_values, y_distances]
+ ):
+ bar_dict[name] = values
+
+ # Colors
+ colors = color_picker(
+ color_type = bar_type,
+ kwargs = bar_kwargs,
+ elements = ticks_to_plot if bar_type=='contrast' else ticks,
+ color_col = color_col,
+ show_pairs = show_pairs,
+ color_palette = plot_palette_raw
+ )
+ if bar_type == 'contrast' and extra_delta is not None:
+ colors.append('black')
+ bar_dict['colors'] = colors
+
+ return bar_dict, bar_kwargs
diff --git a/dabest/plot_tools.py b/dabest/plot_tools.py
index 43caca68..b6872058 100644
--- a/dabest/plot_tools.py
+++ b/dabest/plot_tools.py
@@ -7,10 +7,9 @@
# %% auto 0
__all__ = ['halfviolin', 'get_swarm_spans', 'error_bar', 'check_data_matches_labels', 'normalize_dict', 'width_determine',
- 'single_sankey', 'sankeydiag', 'summary_bars_plotter', 'color_picker', 'swarm_contrast_bar_plotter',
- 'delta_text_plotter', 'delta_dots_plotter', 'slopegraph_plotter', 'plot_minimeta_or_deltadelta_violins',
- 'effect_size_curve_plotter', 'gridkey_plotter', 'barplotter', 'table_for_horizontal_plots',
- 'add_counts_to_prop_plots', 'swarmplot', 'SwarmPlot']
+ 'single_sankey', 'sankeydiag', 'add_bars_to_plot', 'delta_text_plotter', 'delta_dots_plotter',
+ 'slopegraph_plotter', 'plot_minimeta_or_deltadelta_violins', 'effect_size_curve_plotter', 'gridkey_plotter',
+ 'barplotter', 'table_for_horizontal_plots', 'add_counts_to_prop_plots', 'swarmplot', 'SwarmPlot']
# %% ../nbs/API/plot_tools.ipynb 4
import math
@@ -203,38 +202,26 @@ def error_bar(
if low == high == central_measure:
if horizontal:
- low_to_mean = mlines.Line2D(
- [low, central_measure], [_xpos, _xpos], **kwargs
- )
- mean_to_high = mlines.Line2D(
- [central_measure, high], [_xpos, _xpos], **kwargs
- )
+ low2mean_x, low2mean_y = [low, central_measure], [_xpos, _xpos]
+ mean2high_x, mean2high_y = [central_measure, high], [_xpos, _xpos]
else:
- low_to_mean = mlines.Line2D(
- [_xpos, _xpos], [low, central_measure], **kwargs
- )
- mean_to_high = mlines.Line2D(
- [_xpos, _xpos], [central_measure, high], **kwargs
- )
+ low2mean_x, low2mean_y = [_xpos, _xpos], [low, central_measure]
+ mean2high_x, mean2high_y = [_xpos, _xpos], [central_measure, high]
else:
if horizontal:
- low_to_mean = mlines.Line2D(
- [low, central_measure - gap_width], [_xpos, _xpos], **kwargs
- )
- mean_to_high = mlines.Line2D(
- [central_measure + gap_width, high], [_xpos, _xpos], **kwargs
- )
+ low2mean_x, low2mean_y = [low, central_measure - gap_width], [_xpos, _xpos]
+ mean2high_x, mean2high_y = [central_measure + gap_width, high], [_xpos, _xpos]
else:
- low_to_mean = mlines.Line2D(
- [_xpos, _xpos], [low, central_measure - gap_width], **kwargs
- )
- mean_to_high = mlines.Line2D(
- [_xpos, _xpos], [central_measure + gap_width, high], **kwargs
- )
- ax.add_line(low_to_mean)
- ax.add_line(mean_to_high)
-
-
+ low2mean_x, low2mean_y = [_xpos, _xpos], [low, central_measure - gap_width]
+ mean2high_x, mean2high_y = [_xpos, _xpos], [central_measure + gap_width, high]
+ # Add lines
+ ax.add_line(mlines.Line2D(
+ low2mean_x, low2mean_y, **kwargs
+ ))
+ ax.add_line(mlines.Line2D(
+ mean2high_x, mean2high_y, **kwargs
+ ))
+
def check_data_matches_labels(
labels, # list of input labels
data, # Pandas Series of input data
@@ -702,7 +689,6 @@ def sankeydiag(
right_idx in the column xvar is on the right side of each sankey diagram
"""
-
if "width" in kwargs:
width = kwargs["width"]
@@ -724,6 +710,8 @@ def sankeydiag(
if "flow" in kwargs:
flow = kwargs["flow"]
+ fontsize = kwargs.pop("fontsize")
+
if ax is None:
ax = plt.gca()
@@ -740,8 +728,9 @@ def sankeydiag(
)
]
if flow
- else temp_idx
-)
+ else temp_idx
+ )
+
for i in sankey_idx:
left_idx.append(i[0])
right_idx.append(i[1])
@@ -753,7 +742,6 @@ def sankeydiag(
# two_col_sankey = True if proportional == True and one_sankey == False and sankey == True and flow == False else False
-
allLabels = pd.Series(np.sort(data[yvar].unique())[::-1]).unique()
# Check if all the elements in left_idx and right_idx are in xvar column
@@ -851,8 +839,9 @@ def sankeydiag(
)
# Now only draw vs xticks for two-column sankey diagram
+
if not one_sankey or (sankey and not flow):
- sankey_ticks = (
+ sankey_tick_vals = (
[f"{left}" for left in broadcasted_left]
if flow
else [f"{left} v.s. {right}" if horizontal
@@ -860,209 +849,61 @@ def sankeydiag(
for left, right in zip(broadcasted_left, right_idx)
]
)
- if horizontal:
- ax.get_yaxis().set_ticks(np.arange(len(right_idx)))
- ax.get_yaxis().set_ticklabels(sankey_ticks)
- else:
- ax.get_xaxis().set_ticks(np.arange(len(right_idx)))
- ax.get_xaxis().set_ticklabels(sankey_ticks)
+ sankey_tick_locs = np.arange(len(right_idx))
else:
- sankey_ticks = [broadcasted_left[0], right_idx[0]]
- if horizontal:
- ax.set_yticks([0, 1])
- ax.set_yticklabels(sankey_ticks)
- else:
- ax.set_xticks([0, 1])
- ax.set_xticklabels(sankey_ticks)
+ sankey_tick_vals, sankey_tick_locs = [broadcasted_left[0], right_idx[0]], [0, 1]
+
+ if horizontal:
+ ax.set_yticks(sankey_tick_locs)
+ ax.set_yticklabels(sankey_tick_vals, fontsize = fontsize)
+ else:
+ ax.set_xticks(sankey_tick_locs)
+ ax.set_xticklabels(sankey_tick_vals, fontsize = fontsize)
return (left_idx, right_idx)
-def summary_bars_plotter(
- summary_bars: list,
- results: pd.DataFrame,
- ax_to_plot: axes.Axes,
- float_contrast: bool,
- summary_bars_kwargs: dict,
- ci_type: str,
- ticks_to_plot: list,
- color_col: str,
- plot_palette_raw: dict,
- proportional: bool,
- show_pairs: bool,
- horizontal: bool
- ):
+def add_bars_to_plot(bar_dict: dict, ax: axes.Axes, bar_kwargs: dict):
"""
- Add summary bars to the contrast plot.
+ Add bars to the relevant axes.
Parameters
----------
- summary_bars : list
- List of indices of the contrast objects to plot summary bars for.
- results : DataFrame
- Dataframe of contrast object comparisons.
- ax_to_plot : axes.Axes
+ bar_dict : dict
+ Dictionary of bar values.
+ ax : axes.Axes
Matplotlib axis object to plot on.
- float_contrast : bool
- Whether the DABEST plot uses Gardner-Altman or Cummings.
- summary_bars_kwargs : dict
- Keyword arguments for the summary bars.
- ci_type : str
- Type of confidence interval to plot.
- ticks_to_plot : list
- List of indices of the contrast objects.
- color_col : str
- Column name of the color column.
- plot_palette_raw : dict
- Dictionary of colors used in the plot.
- proportional : bool
- Whether the data is proportional.
- show_pairs : bool
- Whether the data is paired and shown in pairs.
- horizontal : bool
- Whether the plot is horizontal.
+ bar_kwargs : dict
+ Keyword arguments for the bars.
"""
-# Begin checks
- if not isinstance(summary_bars, list):
- raise TypeError("summary_bars must be a list of indices (ints).")
- if not all(isinstance(i, int) for i in summary_bars):
- raise TypeError("summary_bars must be a list of indices (ints).")
- if any(i >= len(results) for i in summary_bars):
- raise ValueError("Index {} chosen is out of range for the contrast objects.".format([i for i in summary_bars if i >= len(results)]))
- if float_contrast:
- raise ValueError("summary_bars cannot be used with Gardner-Altman plots.")
-# End checks
- else:
- summary_xmin, summary_xmax = ax_to_plot.get_xlim()
- summary_ymin, summary_ymax = ax_to_plot.get_ylim()
-
- summary_bars_colors = color_picker(summary_bars_kwargs, ticks_to_plot, color_col, show_pairs, plot_palette_raw)
-
- span_ax = summary_bars_kwargs.pop("span_ax")
-
- for summary_index in summary_bars:
- summary_ci_low = results.get(ci_type+'_low')[summary_index]
- summary_ci_high = results.get(ci_type+'_high')[summary_index]
-
- if span_ax == True:
- starting_location = summary_ymax if horizontal else summary_xmin
- else:
- starting_location = ticks_to_plot[summary_index]
-
- summary_color = summary_bars_colors[int(ticks_to_plot[summary_index])]
-
- if horizontal:
- ax_to_plot.add_patch(mpatches.Rectangle(
- (summary_ci_low, starting_location),
- summary_ci_high-summary_ci_low, summary_ymin+1,
- color=summary_color,
- **summary_bars_kwargs)
+ og_xlim, og_ylim = ax.get_xlim(), ax.get_ylim()
+
+ x_start_values, x_distances, y_start_values, y_distances, colors = bar_dict.values()
+
+ for start_x, start_y, distance_x, distance_y, current_color in zip(
+ x_start_values,
+ y_start_values,
+ x_distances,
+ y_distances,
+ colors
+ ):
+ ax.add_patch(mpatches.Rectangle((start_x, start_y),
+ distance_x, distance_y,
+ color=current_color, **bar_kwargs
+ )
)
- else:
- ax_to_plot.add_patch(mpatches.Rectangle(
- (starting_location, summary_ci_low),
- summary_xmax+1, summary_ci_high-summary_ci_low,
- color=summary_color,
- **summary_bars_kwargs)
- )
-
-def color_picker(kwargs: dict, num_of_elements: list, color_col: str, show_pairs: bool, color_palette: dict) -> list:
-
- if any(isinstance(val, typ) for val in num_of_elements for typ in [int, float]):
- num_of_elements = int(max(num_of_elements) + 1)
- elif any(isinstance(val, typ) for val in num_of_elements for typ in [str]):
- num_of_elements = len(num_of_elements) + 1
-
- colors = (
- [kwargs.get('color')] * num_of_elements
- if kwargs.get('color') is not None
- else ['black'] * num_of_elements
- if color_col is not None or show_pairs
- else list(color_palette.values())
- )
- kwargs.pop('color')
-
- return colors
-
-def swarm_contrast_bar_plotter(
- bar_type: str,
- axes : list,
- bar_kwargs: dict,
- color_col : str,
- show_pairs : bool,
- plot_palette_raw : dict,
- idx : list,
-
- plot_data : pd.DataFrame = None, #Only Swarm
- xvar : str = None, #Only Swarm
- yvar : str = None, #Only Swarm
-
- order : list = None, #Only contrast
- results : object = None, #Only contrast
- horizontal : bool = False, #Only contrast
- diff : float = None #Only contrast
- ):
-
- ax_to_plot = axes[0] if bar_type == 'Swarm' else axes[1]
- og_xlim, og_ylim = ax_to_plot.get_xlim(), ax_to_plot.get_ylim()
-
- # Extract means
- if bar_type == 'Swarm':
- if isinstance(plot_data[xvar].dtype, pd.CategoricalDtype):
- order = pd.unique(plot_data[xvar]).categories
- else:
- order = pd.unique(plot_data[xvar])
- means = plot_data.groupby(xvar, observed=False)[yvar].mean().reindex(index=order)
- elif bar_type == 'Contrast':
- means = []
- for j, tick in enumerate(order):
- means.append(results.difference[int(j)])
-
- unpacked_idx = [element for innerList in idx for element in innerList]
-
- # Colors
- bar_colors = color_picker(bar_kwargs, order, color_col, show_pairs, plot_palette_raw)
-
- # alpha
- bar_kwargs['alpha'] = bar_kwargs.get('alpha', 0.15 if color_col is not None or show_pairs else 0.25)
-
- # Plot the bars
- y_values = order if bar_type == 'Contrast' else np.arange(0, len(order)+1, 1)
- for current_x, current_y in zip(y_values, means):
- idx_selector = (
- int(current_x)
- if type(bar_colors) == list
- else unpacked_idx[int(current_x)]
- )
- if bar_type == 'Contrast' and horizontal:
- ax_to_plot.add_patch(mpatches.Rectangle((0, current_x-0.5), current_y, 0.5, color=bar_colors[idx_selector], **bar_kwargs))
- else:
- ax_to_plot.add_patch(mpatches.Rectangle((current_x-0.25, 0), 0.5, current_y, color=bar_colors[idx_selector], **bar_kwargs))
-
- if bar_type == 'Contrast' and diff is not None:
- if horizontal:
- ax_to_plot.add_patch(mpatches.Rectangle((0, max(axes[0].get_yticks())-0.5), diff, 0.5, color='black', **bar_kwargs))
- else:
- ax_to_plot.add_patch(mpatches.Rectangle((max(axes[0].get_xticks())+1-0.25, 0), 0.5, diff, color='black', **bar_kwargs))
-
- ax_to_plot.set_xlim(og_xlim)
- ax_to_plot.set_ylim(og_ylim)
+ ax.set_xlim(og_xlim)
+ ax.set_ylim(og_ylim)
def delta_text_plotter(
results: pd.DataFrame,
ax_to_plot: object,
- swarm_plot_ax: axes.Axes,
ticks_to_plot: list,
delta_text_kwargs: dict,
color_col: str,
plot_palette_raw: dict,
- show_pairs: bool,
- proportional: bool,
+ show_pairs: bool,
float_contrast: bool,
- show_mini_meta: bool,
- mini_meta: object,
- show_delta2: bool,
- delta_delta: object,
- idx: list
+ extra_delta: float,
):
"""
Add delta text to the contrast plot.
@@ -1073,8 +914,6 @@ def delta_text_plotter(
Dataframe of contrast object comparisons.
ax_to_plot : axes.Axes
Matplotlib axis object to plot on.
- swarm_plot_ax : axes.Axes
- Matplotlib axis object of the swarm plot.
ticks_to_plot : list
List of indices of the contrast objects.
delta_text_kwargs : dict
@@ -1085,92 +924,61 @@ def delta_text_plotter(
Dictionary of colors used in the plot.
show_pairs : bool
Whether the data is paired and show pairs.
- proportional : bool
- Whether the data is proportional.
float_contrast : bool
- Whether the DABEST plot uses Gardner-Altman or Cummings
- show_mini_meta : bool
- Whether to show the mini meta-analysis.
- mini_meta : object
- Mini meta-analysis object.
- show_delta2 : bool
- Whether to show the delta-delta.
- delta_delta : object
- delta-delta object.
- idx : list
- List of indices of the raw groups.
+ Whether the DABEST plot uses Gardner-Altman or Cummings.
+ extra_delta : float or None
+ The extra mini-meta or delta-delta value if applicable.
"""
- # Begin checks
- delta_text_x_location = delta_text_kwargs.get('x_location')
- if delta_text_x_location != 'right' and delta_text_x_location != 'left':
- raise ValueError("delta_text_kwargs['x_location'] must be either 'right' or 'left'.")
- if float_contrast:
- delta_text_x_location = 'left'
- delta_text_kwargs["va"] = 'bottom' if results.difference[0] >= 0 else 'top'
- delta_text_kwargs.pop('x_location')
-
# Colors
- delta_text_colors = color_picker(delta_text_kwargs, ticks_to_plot, color_col, show_pairs, plot_palette_raw)
-
- # Idx
- unpacked_idx = [element for innerList in idx for element in innerList]
- if show_mini_meta or show_delta2:
- unpacked_idx.append('extra_delta')
- if type(delta_text_colors) == list:
- delta_text_colors.append('black')
- else:
- delta_text_colors['extra_delta'] = 'black'
-
- total_ticks = len(ticks_to_plot) + 1 if show_mini_meta or show_delta2 else len(ticks_to_plot)
-
- # Collect the Y-values for the delta text
- Delta_Values = []
+ from .misc_tools import color_picker
+ delta_text_colors = color_picker(color_type = 'delta_text',
+ kwargs = delta_text_kwargs,
+ elements = ticks_to_plot,
+ color_col = color_col,
+ show_pairs = show_pairs,
+ color_palette = plot_palette_raw
+ )
+
+ num_of_elements = len(ticks_to_plot) + 1 if extra_delta is not None else len(ticks_to_plot)
+
+ # Collect the means for the delta text
+ delta_values = []
for j, tick in enumerate(ticks_to_plot):
- Delta_Values.append(results.difference[int(j)])
- if show_delta2: Delta_Values.append(delta_delta.difference)
- if show_mini_meta: Delta_Values.append(mini_meta.difference)
+ delta_values.append(results.difference[int(j)])
+ if extra_delta is not None:
+ delta_values.append(extra_delta)
+ delta_text_colors.append('black')
# Collect the X-coordinates for the delta text
delta_text_x_coordinates = delta_text_kwargs.pop('x_coordinates')
- delta_text_x_adjustment = delta_text_kwargs.pop('offset')
+ delta_text_x_offset = delta_text_kwargs.pop('offset')
if delta_text_x_coordinates is not None:
if not isinstance(delta_text_x_coordinates, (list, tuple)) or not all(isinstance(x, (int, float)) for x in delta_text_x_coordinates):
raise TypeError("delta_text_kwargs['x_coordinates'] must be a list of x-coordinates.")
- if len(delta_text_x_coordinates) != total_ticks:
+ if len(delta_text_x_coordinates) != num_of_elements:
raise ValueError("delta_text_kwargs['x_coordinates'] must have the same length as the number of ticks to plot.")
else:
- delta_text_x_coordinates = ticks_to_plot
- X_Adjust = 0.48 if delta_text_x_location == 'right' else -0.38
- X_Adjust += delta_text_x_adjustment
- delta_text_x_coordinates = [x+X_Adjust for x in delta_text_x_coordinates]
- if show_mini_meta: delta_text_x_coordinates.append(max(swarm_plot_ax.get_xticks())+1+X_Adjust)
- if show_delta2: delta_text_x_coordinates.append(max(swarm_plot_ax.get_xticks())+1+X_Adjust)
- if show_mini_meta or show_delta2: ticks_to_plot.append(max(ticks_to_plot)+1)
+ x_adjust = (-0.4 if float_contrast else 0.48) + delta_text_x_offset
+ delta_text_x_coordinates = [x+x_adjust for x in ticks_to_plot]
+ if extra_delta is not None: delta_text_x_coordinates.append(max(ticks_to_plot)+1+x_adjust)
# Collect the Y-coordinates for the delta text
- delta_text_y_coordinates = delta_text_kwargs.get('y_coordinates')
+ delta_text_y_coordinates = delta_text_kwargs.pop('y_coordinates')
+ if float_contrast: delta_text_kwargs["va"] = 'bottom' if results.difference[0] >= 0 else 'top'
if delta_text_y_coordinates is not None:
if not isinstance(delta_text_y_coordinates, (list, tuple)) or not all(isinstance(y, (int, float)) for y in delta_text_y_coordinates):
raise TypeError("delta_text_kwargs['y_coordinates'] must be a list of y-coordinates.")
- if len(delta_text_y_coordinates) != total_ticks:
+ if len(delta_text_y_coordinates) != num_of_elements:
raise ValueError("delta_text_kwargs['y_coordinates'] must have the same length as the number of ticks to plot.")
else:
- delta_text_y_coordinates = Delta_Values
-
- delta_text_kwargs.pop('y_coordinates')
+ delta_text_y_coordinates = delta_values
# Plot the delta text
- for x,y,t,tick in zip(delta_text_x_coordinates, delta_text_y_coordinates,Delta_Values,ticks_to_plot):
- Delta_Text = np.format_float_positional(t, precision=2, sign=True, trim="k", min_digits=2)
- idx_selector = (
- int(tick)
- if type(delta_text_colors) == list
- else unpacked_idx[int(tick)]
- )
- ax_to_plot.text(x, y, Delta_Text, color=delta_text_colors[idx_selector], zorder=5, **delta_text_kwargs)
-
+ for x, y, text, color in zip(delta_text_x_coordinates, delta_text_y_coordinates, delta_values, delta_text_colors):
+ delta_text = np.format_float_positional(text, precision=2, sign=True, trim="k", min_digits=2)
+ ax_to_plot.text(x, y, delta_text, color=color, zorder=5, **delta_text_kwargs)
def delta_dots_plotter(
plot_data: pd.DataFrame,
@@ -1214,7 +1022,7 @@ def delta_dots_plotter(
horizontal : bool
If the rawplot is horizontal.
"""
-
+
# Checks and initializations
# from .plot_tools import swarmplot
delta_dot_color = delta_dot_kwargs.pop('color')
@@ -1282,7 +1090,8 @@ def slopegraph_plotter(
ytick_color: str,
temp_idx: list,
horizontal: bool,
- temp_all_plot_groups: list
+ temp_all_plot_groups: list,
+ plot_kwargs: dict
):
"""
Add slopegraph to the rawdata axes.
@@ -1312,12 +1121,15 @@ def slopegraph_plotter(
horizontal : bool
If the plotting will be in horizontal format.
temp_all_plot_groups : list
+ List of all plot groups.
+ plot_kwargs : dict
+ Keyword arguments for the plot.
"""
# Jitter Kwargs
# With help from GitHub user: devMJBL
jitter = slopegraph_kwargs.pop("jitter")
- if jitter >= 1:
+ if jitter > 1:
err0 = "Jitter value is too high. Defaulting to 1."
warnings.warn(err0)
jitter = 1
@@ -1371,65 +1183,57 @@ def slopegraph_plotter(
# Set the tick labels, because the slopegraph plotting doesn't.
if horizontal:
rawdata_axes.set_yticks(np.arange(0, len(temp_all_plot_groups)))
- rawdata_axes.set_yticklabels(temp_all_plot_groups)
+ rawdata_axes.set_yticklabels(temp_all_plot_groups, fontsize = plot_kwargs.get("fontsize_rawxlabel"))
else:
rawdata_axes.set_xticks(np.arange(0, len(temp_all_plot_groups)))
- rawdata_axes.set_xticklabels(temp_all_plot_groups)
+ rawdata_axes.set_xticklabels(temp_all_plot_groups, fontsize = plot_kwargs.get("fontsize_rawxlabel"))
def plot_minimeta_or_deltadelta_violins(
- show_mini_meta: bool,
- effectsize_df: object,
+ dabest_obj: object,
+ type: str,
ci_type: str,
rawdata_axes: axes.Axes,
contrast_axes: axes.Axes,
- violinplot_kwargs: dict,
- halfviolin_alpha: float,
+ contrast_kwargs: dict,
contrast_xtick_labels: list,
effect_size: str,
- show_delta2: bool,
plot_kwargs: dict,
horizontal: bool,
show_pairs: bool,
- es_marker_kwargs: dict,
- es_errorbar_kwargs: dict
+ contrast_marker_kwargs: dict,
+ contrast_errorbar_kwargs: dict,
):
"""
Add mini meta-analysis or delta-delta violin plots to the contrast plot.
Parameters
----------
- show_mini_meta : bool
- Whether to show the mini meta-analysis.
- effectsize_df : object
- DABEST Effectsize object
+ dabest_obj : object
+ DABEST Effectsize object delta-delta or mini_meta
+ type: str
+ mini_meta or delta_delta
ci_type : str
Type of confidence interval to plot.
rawdata_axes : axes.Axes
Matplotlib axis object to plot on.
contrast_axes : axes.Axes
Matplotlib axis object to plot on.
- violinplot_kwargs : dict
+ contrast_kwargs : dict
Keyword arguments for the violinplot.
- halfviolin_alpha : float
- Alpha value for the half violin.
- es_marker_size : int
- Size of the effect size marker.
contrast_xtick_labels : list
List of xtick labels for the contrast plot.
effect_size : str
Type of effect size to plot.
- show_delta2 : bool
- Whether to show the delta-delta.
plot_kwargs : dict
Keyword arguments for the plot.
horizontal : bool
If the plot is horizontal.
show_pairs : bool
Whether the data is paired and shown in pairs.
- es_marker_kwargs: dict
+ contrast_marker_kwargs: dict
Keyword arguments for the effectsize marker.
- es_errorbar_kwargs: dict
+ contrast_errorbar_kwargs: dict
Keyword arguments for the effectsize errorbar.
"""
@@ -1443,11 +1247,13 @@ def extract_curve_data(dabest_object):
ci_low, ci_high = dabest_object.results.get(ci_type+'_low')[0], dabest_object.results.get(ci_type+'_high')[0]
return data, dabest_object.difference, ci_low, ci_high
- dabest_object = effectsize_df.mini_meta if show_mini_meta else effectsize_df.delta_delta
- data, difference, ci_low, ci_high = extract_curve_data(dabest_object)
+ data, difference, ci_low, ci_high = extract_curve_data(dabest_obj)
+
+ if contrast_kwargs.get('alpha') is not None:
+ contrast_alpha = contrast_kwargs.pop('alpha')
if horizontal:
- violinplot_kwargs.update({'vert': False, 'widths': 1})
+ contrast_kwargs.update({'orientation': 'horizontal', 'widths': 1})
position = max(rawdata_axes.get_yticks()) + 1
half = "bottom"
effsize_x, effsize_y = difference, [position]
@@ -1459,56 +1265,55 @@ def extract_curve_data(dabest_object):
ci_x, ci_y = [position, position], [ci_low, ci_high]
v = contrast_axes.violinplot(
- data[~np.isinf(data)], positions=[position], **violinplot_kwargs
+ data[~np.isinf(data)], positions=[position], **contrast_kwargs
)
- halfviolin(v, fill_color="grey", alpha=halfviolin_alpha, half=half)
+ halfviolin(v, fill_color="grey", alpha=contrast_alpha, half=half)
# Plot the effect size.
contrast_axes.plot(
effsize_x,
effsize_y,
- **es_marker_kwargs
+ **contrast_marker_kwargs
)
# Plot the confidence interval.
contrast_axes.plot(
ci_x,
ci_y,
- **es_errorbar_kwargs
+ **contrast_errorbar_kwargs
)
# Add labels and ticks
if horizontal:
current_ylabels = rawdata_axes.get_yticklabels()
- if show_mini_meta:
+ if type == 'mini_meta':
current_ylabels.extend(["Weighted Delta"])
elif effect_size == "hedges_g":
- current_ylabels.extend(["Deltas' g"])
+ current_ylabels.extend(["Delta g"])
else:
current_ylabels.extend(["Delta-Delta"])
rawdata_axes.set_yticks(np.append(rawdata_axes.get_yticks(), position))
rawdata_axes.set_yticklabels(current_ylabels)
-
else:
- if show_mini_meta:
+ if type == 'mini_meta':
if show_pairs:
contrast_xtick_labels.extend(["Weighted\n Delta"])
else:
contrast_xtick_labels.extend(["Weighted Delta"])
elif effect_size == "hedges_g":
- contrast_xtick_labels.extend(["Deltas' g"])
+ contrast_xtick_labels.extend(["Delta g"])
else:
contrast_xtick_labels.extend(["Delta-Delta"])
# Create the delta-delta axes.
- if show_delta2 and not horizontal:
+ if type == 'delta_delta' and not horizontal:
if plot_kwargs["delta2_label"] is not None:
delta2_label = plot_kwargs["delta2_label"]
elif effect_size == "mean_diff":
delta2_label = "Delta-Delta"
else:
- delta2_label = "Deltas' g"
+ delta2_label = "Delta g"
fontsize_delta2label = plot_kwargs["fontsize_delta2label"]
delta2_axes = contrast_axes.twinx()
delta2_axes.set_frame_on(False)
@@ -1527,17 +1332,16 @@ def effect_size_curve_plotter(
results: pd.DataFrame,
ci_type: str,
contrast_axes: axes.Axes,
- violinplot_kwargs: dict,
- halfviolin_alpha: float,
+ contrast_kwargs: dict,
bootstraps_color_by_group: bool,
plot_palette_contrast: dict,
horizontal: bool,
- es_marker_kwargs: dict,
- es_errorbar_kwargs: dict,
+ contrast_marker_kwargs: dict,
+ contrast_errorbar_kwargs: dict,
idx: list,
is_paired: bool,
- es_paired_lines: bool,
- es_paired_lines_kwargs: dict,
+ contrast_paired_lines: bool,
+ contrast_paired_lines_kwargs: dict,
show_baseline_ec: bool = False
):
"""
@@ -1555,29 +1359,25 @@ def effect_size_curve_plotter(
Type of confidence interval to plot.
contrast_axes : axes.Axes
Matplotlib axis object to plot on.
- violinplot_kwargs : dict
+ contrast_kwargs : dict
Keyword arguments for the violinplot.
- halfviolin_alpha : float
- Alpha value for the half violin.
- es_marker_size : int
- Size of the effect size marker.
bootstraps_color_by_group : bool
Whether to color the bootstraps by group.
plot_palette_contrast : dict
Dictionary of colors used in the contrast plot.
horizontal : bool
If the plot is horizontal.
- es_marker_kwargs: dict
+ contrast_marker_kwargs: dict
Keyword arguments for the effectsize marker.
- es_errorbar_kwargs: dict
+ contrast_errorbar_kwargs: dict
Keyword arguments for the effectsize errorbar.
idx : list
List of indices of the raw groups.
is_paired : bool
Whether the data is paired.
- es_paired_lines : bool
+ contrast_paired_lines : bool
Whether to add lines for repeated measures data.
- es_paired_lines_kwargs : dict
+ contrast_paired_lines_kwargs : dict
Keyword arguments for the repeated measures lines.
show_baseline_ec : bool
Whether to show the baseline effect curve.
@@ -1586,18 +1386,18 @@ def effect_size_curve_plotter(
def plot_effect_size(tick, group, control, bootstrap, effsize, ci_low, ci_high):
# Create the violinplot
if horizontal:
- violinplot_kwargs.update({'vert': False, 'widths': 1})
+ contrast_kwargs.update({'orientation': 'horizontal', 'widths': 1})
v = contrast_axes.violinplot(
bootstrap[~np.isinf(bootstrap)],
positions=[tick],
- **violinplot_kwargs
+ **contrast_kwargs
)
# Color the violin plot
fc = plot_palette_contrast[group] if bootstraps_color_by_group else "grey"
half = "bottom" if horizontal else "right"
- halfviolin(v, fill_color=fc, alpha=halfviolin_alpha, half=half)
+ halfviolin(v, fill_color=fc, alpha=contrast_alpha, half=half)
# Plot the confidence interval
if horizontal:
@@ -1605,9 +1405,12 @@ def plot_effect_size(tick, group, control, bootstrap, effsize, ci_low, ci_high):
else:
ci_x, ci_y = [tick, tick], [ci_low, ci_high]
- contrast_axes.plot(ci_x, ci_y, **es_errorbar_kwargs)
+ contrast_axes.plot(ci_x, ci_y, **contrast_errorbar_kwargs)
return "{}\nminus\n{}".format(group, control)
+
+ if contrast_kwargs.get('alpha') is not None:
+ contrast_alpha = contrast_kwargs.pop('alpha')
# Plot the curves
contrast_xtick_labels = []
@@ -1628,7 +1431,7 @@ def plot_effect_size(tick, group, control, bootstrap, effsize, ci_low, ci_high):
contrast_axes.plot(
effsize_x,
effsize_y,
- **es_marker_kwargs
+ **contrast_marker_kwargs
)
label = plot_effect_size(tick, current_group, current_control, current_bootstrap,
@@ -1651,7 +1454,7 @@ def plot_effect_size(tick, group, control, bootstrap, effsize, ci_low, ci_high):
else:
effsize_x, effsize_y = [tick], bec_effsize
- contrast_axes.plot(effsize_x, effsize_y, **es_marker_kwargs)
+ contrast_axes.plot(effsize_x, effsize_y, **contrast_marker_kwargs)
if show_baseline_ec:
_ = plot_effect_size(tick, bec_group, bec_control, bec_bootstrap,
@@ -1659,7 +1462,7 @@ def plot_effect_size(tick, group, control, bootstrap, effsize, ci_low, ci_high):
# Baseline Curve doesn't need tick text
# Add lines for repeated measures data
- if is_paired and es_paired_lines:
+ if is_paired and contrast_paired_lines:
temp_num = 0
lines_to_plot_list = []
@@ -1687,16 +1490,17 @@ def plot_effect_size(tick, group, control, bootstrap, effsize, ci_low, ci_high):
contrast_axes.plot(
x_data,
y_data,
- **es_paired_lines_kwargs
+ **contrast_paired_lines_kwargs
)
+ contrast_kwargs['alpha'] = contrast_alpha
return current_group, current_control, current_effsize, contrast_xtick_labels
def gridkey_plotter(
is_paired: bool,
idx: list,
all_plot_groups: list,
- gridkey_rows: list,
+ gridkey: list,
rawdata_axes: axes.Axes,
contrast_axes: axes.Axes,
plot_data: pd.DataFrame,
@@ -1725,7 +1529,7 @@ def gridkey_plotter(
List of indices of the contrast objects.
all_plot_groups : list
List of all plot groups.
- gridkey_rows : list
+ gridkey : list
List of gridkey rows.
rawdata_axes : axes.Axes
Matplotlib axis object for the raw data.
@@ -1766,11 +1570,13 @@ def gridkey_plotter(
gridkey_merge_pairs = gridkey_kwargs["merge_pairs"]
gridkey_marker = gridkey_kwargs["marker"]
gridkey_delimiters = gridkey_kwargs["delimiters"]
+ labels_fontsize = gridkey_kwargs.get('labels_fontsize')
+ fontsize = gridkey_kwargs.get('fontsize')
# Auto parser for gridkey - implemented by SangyuXu
- if gridkey_rows == "auto":
+ if gridkey == "auto" or gridkey == True:
if experiment_label is not None:
- gridkey_rows = list(np.concatenate([experiment_label, x1_level]))
+ gridkey = list(np.concatenate([experiment_label, x1_level]))
else:
temp_groups = ";".join(all_plot_groups)
for delimiter in gridkey_delimiters:
@@ -1778,7 +1584,7 @@ def gridkey_plotter(
temp_groups = [i.strip() for i in temp_groups.split(';')]
unique_groups = list(set(temp_groups))
rank = [sum([temp_groups.index(i) for i in temp_groups if(j in i)]) for j in unique_groups]
- gridkey_rows = [x for _,x in sorted(zip(rank,unique_groups))]
+ gridkey = [x for _,x in sorted(zip(rank,unique_groups))]
# Raise error if there are more than 2 items in any idx and gridkey_merge_pairs is True and is_paired is not None
if gridkey_merge_pairs and is_paired is not None:
@@ -1803,16 +1609,16 @@ def gridkey_plotter(
else:
groups_for_gridkey = all_plot_groups
- # raise errors if gridkey_rows is not a list, or if the list is empty
- if isinstance(gridkey_rows, list) is False:
- raise TypeError("gridkey_rows must be a list (or a string 'auto').")
- if any(isinstance(i, str) is False for i in gridkey_rows):
- raise TypeError("gridkey_rows must contain only strings.")
- if len(gridkey_rows) == 0:
- warnings.warn("gridkey_rows is an empty list.")
+ # raise errors if gridkey is not a list, or if the list is empty
+ if isinstance(gridkey, list) is False:
+ raise TypeError("gridkey must be a list (or a string 'auto').")
+ if any(isinstance(i, str) is False for i in gridkey):
+ raise TypeError("gridkey must contain only strings.")
+ if len(gridkey) == 0:
+ warnings.warn("gridkey is an empty list.")
- # raise Warning if an item in gridkey_rows is not contained in any idx
- for i in gridkey_rows:
+ # raise Warning if an item in gridkey is not contained in any idx
+ for i in gridkey:
in_idx = 0
for j in groups_for_gridkey:
if i in j:
@@ -1829,7 +1635,7 @@ def gridkey_plotter(
# Populate table: checks if idx for each column contains rowlabel name
# IF so, marks that element as present w black dot (default "\u25CF"), or space if not present
table_cellcols = []
- for i in gridkey_rows:
+ for i in gridkey:
thisrow = []
for q in groups_for_gridkey:
if str(i) in q:
@@ -1840,7 +1646,7 @@ def gridkey_plotter(
# Adds a row for Ns with the Ns values
if gridkey_show_Ns:
- gridkey_rows.append("Ns")
+ gridkey.append("Ns")
list_of_Ns = []
for i in groups_for_gridkey:
list_of_Ns.append(str(plot_data.groupby(xvar, observed=False).count()[yvar].loc[i]))
@@ -1848,16 +1654,14 @@ def gridkey_plotter(
# Adds a row for effectsizes with effectsize values
if gridkey_show_es and not horizontal:
- gridkey_rows.append("\u0394")
+ gridkey.append("\u0394")
effsize_list = []
results_list = results.test.to_list()
# get the effect size, append + or -, 2 dec places
for i in enumerate(groups_for_gridkey):
if i[1] in results_list:
- curr_esval = results.loc[results["test"] == i[1]][
- "difference"
- ].iloc[0]
+ curr_esval = results.loc[results["test"] == i[1]]["difference"].iloc[0]
curr_esval_str = np.format_float_positional(
curr_esval,
precision=2,
@@ -1883,7 +1687,7 @@ def gridkey_plotter(
added_group_name = ["Deltas' g"] if effect_size == "hedges_g" else ["Delta-Delta"]
else:
added_group_name = ["Weighted Delta"]
- gridkey_rows = added_group_name + gridkey_rows
+ gridkey = added_group_name + gridkey
table_cellcols = [[""]*len(table_cellcols[0])] + table_cellcols
if not horizontal and show_delta2:
@@ -1927,6 +1731,15 @@ def gridkey_plotter(
group_vals.append(n)
# Create the table object
+ def add_table(celltext, bbox, rowlabels=None):
+ gridkey_to_plot = ax_to_plot.table(
+ cellText=celltext,
+ rowLabels=rowlabels,
+ cellLoc="center",
+ bbox=bbox,
+ )
+ return gridkey_to_plot
+
if horizontal:
# Convert the cells format for horizontal table plotting
converted_list = []
@@ -1936,93 +1749,49 @@ def gridkey_plotter(
temp_list.append(i[j])
converted_list.append(temp_list)
- # Plot the table for horizontal format
- gridkey = ax_to_plot.table(
- cellText=converted_list,
- cellLoc="center",
- bbox=[
- -len(gridkey_rows) * 0.2,
- 0,
- len(gridkey_rows) * 0.2,
- 1
- ],
- **{"alpha": 0.5, "zorder": 5}
- )
-
+ gridkey_to_plot = add_table(celltext = converted_list, bbox = [-len(gridkey) * 0.2, 0, len(gridkey) * 0.2, 1])
+
# Add the column labels as text below the table
- text_locs = np.arange((-len(gridkey_rows)*0.2) +0.1, 0, 0.2)
- for loc, txt in zip(text_locs, gridkey_rows):
+ text_locs = np.arange((-len(gridkey)*0.2) +0.1, 0, 0.2)
+ for loc, txt in zip(text_locs, gridkey):
ax_to_plot.text(
loc+0.04,
-0.01,
txt,
transform=ax_to_plot.transAxes,
- fontsize=10,
ha='right',
rotation=45,
+ fontsize=labels_fontsize if labels_fontsize is not None else 10,
va='top',
)
else:
# Plot the table for vertical format
if show_mini_meta:
- gridkey = ax_to_plot.table(
- cellText=table_cellcols,
- rowLabels=gridkey_rows,
- cellLoc="center",
- bbox=[
- 0,
- -len(gridkey_rows) * 0.1 - 0.05,
- 1,
- len(gridkey_rows) * 0.1,
- ],
- **{"alpha": 0.5}
- )
-
+ gridkey_to_plot = add_table(celltext = table_cellcols, rowlabels=gridkey, bbox = [0, -len(gridkey) * 0.1 - 0.05, 1, len(gridkey) * 0.1])
elif show_delta2:
- gridkey = ax_to_plot.table(
- cellText=table_cellcols,
- rowLabels=gridkey_rows,
- cellLoc="center",
- bbox=[
- 0,
- -len(gridkey_rows) * 0.1 - 0.05,
- 0.75,
- len(gridkey_rows) * 0.1,
- ],
- **{"alpha": 0.5}
- )
-
- extra_gridkey = ax_to_plot.table(
- cellText=extra_table_cellcols,
- cellLoc="center",
- bbox=[
- 0.78,
- -len(gridkey_rows) * 0.1 - 0.05,
- 0.15,
- len(gridkey_rows) * 0.1,
- ],
- **{"alpha": 0.5}
- )
-
+ gridkey_to_plot = add_table(celltext = table_cellcols, rowlabels=gridkey, bbox = [0, -len(gridkey) * 0.1 - 0.05, 0.75, len(gridkey) * 0.1])
+ extra_gridkey = add_table(celltext = extra_table_cellcols, bbox = [0.78, -len(gridkey) * 0.1 - 0.05, 0.15, len(gridkey) * 0.1])
else:
- gridkey = ax_to_plot.table(
- cellText=table_cellcols,
- rowLabels=gridkey_rows,
- cellLoc="center",
- bbox=[
- 0,
- -len(gridkey_rows) * 0.1 - 0.05,
- 1,
- len(gridkey_rows) * 0.1,
- ],
- **{"alpha": 0.5}
- )
+ gridkey_to_plot = add_table(celltext = table_cellcols, rowlabels=gridkey, bbox = [0, -len(gridkey) * 0.1 - 0.05, 1, len(gridkey) * 0.1])
# modifies row label cells
- for cell in gridkey._cells:
+ for cell in gridkey_to_plot._cells:
if cell[1] == -1:
- gridkey._cells[cell].visible_edges = "open"
- gridkey._cells[cell].set_text_props(**{"ha": "right"})
+ gridkey_to_plot._cells[cell].visible_edges = "open"
+ gridkey_to_plot._cells[cell].set_text_props(**{"ha": "right"})
+
+ if fontsize is not None:
+ gridkey_to_plot.auto_set_font_size(False)
+ gridkey_to_plot.set_fontsize(fontsize)
+ if show_delta2 and not horizontal:
+ extra_gridkey.auto_set_font_size(False)
+ extra_gridkey.set_fontsize(fontsize)
+
+ if labels_fontsize is not None and not horizontal:
+ gridkey_to_plot.auto_set_font_size(False)
+ for cell in gridkey_to_plot._cells:
+ if cell[1] == -1:
+ gridkey_to_plot._cells[cell].set_text_props(**{"fontsize": labels_fontsize})
# turns off both x axes
if horizontal:
@@ -2038,10 +1807,9 @@ def barplotter(
all_plot_groups: list,
rawdata_axes: axes.Axes,
plot_data: pd.DataFrame,
- bar_color: str,
- plot_palette_bar: dict,
+ raw_colors: str,
+ plot_palette_raw: dict,
color_col: str,
- plot_kwargs: dict,
barplot_kwargs: dict,
horizontal: bool
):
@@ -2060,19 +1828,19 @@ def barplotter(
Matplotlib axis object to plot on.
plot_data : object (Dataframe)
Dataframe of the plot data.
- bar_color : str
+ raw_colors : str
Color of the bar.
- plot_palette_bar : dict
+ plot_palette_raw : dict
Dictionary of colors used in the bar plot.
color_col : str
Column name of the color column.
- plot_kwargs : dict
- Keyword arguments for the plot.
barplot_kwargs : dict
Keyword arguments for the barplot.
horizontal : bool
If the plot is horizontal.
"""
+ bar_width = barplot_kwargs.get('width', 0.5)
+ fontsize = barplot_kwargs.pop('fontsize')
x_label, y_label = rawdata_axes.get_xlabel(), rawdata_axes.get_ylabel()
if horizontal:
@@ -2094,11 +1862,11 @@ def barplotter(
# Map colors, defaulting to bar_color if no match
edge_colors = [
- plot_palette_bar.get(hue_val, bar_color)
+ plot_palette_raw.get(hue_val, raw_colors)
for hue_val in bar1_df[color_col]
]
else:
- edge_colors = bar_color
+ edge_colors = raw_colors
bar1 = sns.barplot(
data=bar1_df,
@@ -2112,14 +1880,15 @@ def barplotter(
zorder=1,
orient=orient,
)
+
bar2 = sns.barplot(
data=plot_data,
x=yvar if horizontal else xvar,
y=xvar if horizontal else yvar,
+ hue=xvar if color_col is None else color_col,
ax=rawdata_axes,
order=all_plot_groups,
- palette=plot_palette_bar,
- hue=color_col,
+ palette=plot_palette_raw,
dodge=False,
zorder=1,
orient=orient,
@@ -2127,7 +1896,6 @@ def barplotter(
)
# adjust the width of bars
- bar_width = plot_kwargs["bar_width"]
if horizontal:
for bar in bar1.patches:
y = bar.get_y()
@@ -2147,6 +1915,13 @@ def barplotter(
rawdata_axes.set_xlabel(x_label)
rawdata_axes.set_ylabel(y_label)
+ if horizontal:
+ rawdata_axes.set_yticks(rawdata_axes.get_yticks())
+ rawdata_axes.set_yticklabels(rawdata_axes.get_yticklabels(), fontsize = fontsize)
+ else:
+ rawdata_axes.set_xticks(rawdata_axes.get_xticks())
+ rawdata_axes.set_xticklabels(rawdata_axes.get_xticklabels(), fontsize = fontsize)
+
def table_for_horizontal_plots(
effectsize_df: object,
ax: axes.Axes,
@@ -2808,6 +2583,8 @@ def plot(
raise ValueError("`gutter_limit` must be a scalar or float.")
if not isinstance(filled, (bool, list, tuple)):
raise ValueError("`filled` must be a boolean, list or tuple.")
+
+ fontsize = kwargs.pop('fontsize', 12)
# More thorough input validation checks
if isinstance(filled, (list, tuple)):
@@ -2913,9 +2690,9 @@ def plot(
if horizontal:
ax.get_yaxis().set_ticks(np.arange(x_position))
- ax.get_yaxis().set_ticklabels(x_tick_tabels)
+ ax.get_yaxis().set_ticklabels(x_tick_tabels, fontsize = fontsize)
else:
ax.get_xaxis().set_ticks(np.arange(x_position))
- ax.get_xaxis().set_ticklabels(x_tick_tabels)
+ ax.get_xaxis().set_ticklabels(x_tick_tabels, fontsize = fontsize)
return ax
diff --git a/dabest/plotter.py b/dabest/plotter.py
index 95b37897..02bec9ca 100644
--- a/dabest/plotter.py
+++ b/dabest/plotter.py
@@ -29,26 +29,30 @@ def effectsize_df_plotter(effectsize_df: object, **plot_kwargs) -> matplotlib.fi
A `dabest` EffectSizeDataFrame object.
plot_kwargs
color_col=None
- raw_marker_size=6, es_marker_size=9,
- swarm_label=None, contrast_label=None, delta2_label=None,
- swarm_ylim=None, contrast_ylim=None, delta2_ylim=None,
- custom_palette=None, swarm_desat=0.5, halfviolin_desat=1,
- halfviolin_alpha=0.8,
- face_color = None,
- bar_label=None, bar_desat=0.8, bar_width = 0.5,bar_ylim = None,
- ci=None, ci_type='bca', err_color=None,
+ raw_marker_size=6, contrast_marker_kwargs=9,
+ raw_label=None, contrast_label=None, delta2_label=None,
+ raw_ylim=None, contrast_ylim=None, delta2_ylim=None,
+ custom_palette=None,
+ swarm_side=None,
+ empty_circle=False,
+ face_color=None,
+ raw_desat=0.5, contrast_desat=1,
+ raw_alpha=None, contrast_alpha=0.8,
+ bar_width = 0.5,
+ ci_type='bca',
float_contrast=True,
show_pairs=True,
- show_delta2=True,
- group_summaries=None,
+ show_sample_size=True,
+ show_delta2=True, show_mini_meta=True,
+ group_summaries="mean_sd",
fig_size=None,
dpi=100,
ax=None,
- gridkey_rows=None, gridkey_kwargs=None,
swarmplot_kwargs=None,
- violinplot_kwargs=None,
slopegraph_kwargs=None,
+ barplot_kwargs=None,
sankey_kwargs=None,
+ contrast_kwargs=None,
reflines_kwargs=None,
group_summaries_kwargs=None,
legend_kwargs=None,
@@ -56,15 +60,25 @@ def effectsize_df_plotter(effectsize_df: object, **plot_kwargs) -> matplotlib.fi
fontsize_rawxlabel=12, fontsize_rawylabel=12,
fontsize_contrastxlabel=12, fontsize_contrastylabel=12,
fontsize_delta2label=12,
- swarm_bars=True, swarm_bars_kwargs=None,
+
+ raw_bars=True, raw_bars_kwargs=None,
contrast_bars=True, contrast_bars_kwargs=None,
+ reference_band=None, reference_band_kwargs=None,
delta_text=True, delta_text_kwargs=None,
delta_dot=True, delta_dot_kwargs=None,
- show_baseline_ec=False,
+
horizontal=False, horizontal_table_kwargs=None,
- es_marker_kwargs=None, es_errorbar_kwargs=None,
+ gridkey=None,
+ gridkey_merge_pairs=False,
+ gridkey_show_Ns=True,
+ gridkey_show_es=True,
+ gridkey_delimiters=[';', '>', '_'],
+ gridkey_kwargs=None,
+ contrast_marker_kwargs=None, contrast_errorbar_kwargs=None,
prop_sample_counts=False, prop_sample_counts_kwargs=None,
- es_paired_lines=True, es_paired_lines_kwargs=None,
+ contrast_paired_lines=True, contrast_paired_lines
+ show_baseline_ec=False,
+
"""
from .misc_tools import (
get_params,
@@ -80,13 +94,13 @@ def effectsize_df_plotter(effectsize_df: object, **plot_kwargs) -> matplotlib.fi
extract_group_summaries,
draw_zeroline,
redraw_dependent_spines,
- redraw_independent_spines
+ redraw_independent_spines,
+ prepare_bars_for_plot
)
from .plot_tools import (
error_bar,
sankeydiag,
swarmplot,
- summary_bars_plotter,
delta_text_plotter,
delta_dots_plotter,
slopegraph_plotter,
@@ -96,7 +110,7 @@ def effectsize_df_plotter(effectsize_df: object, **plot_kwargs) -> matplotlib.fi
barplotter,
table_for_horizontal_plots,
add_counts_to_prop_plots,
- swarm_contrast_bar_plotter
+ add_bars_to_plot
)
warnings.filterwarnings(
@@ -117,35 +131,36 @@ def effectsize_df_plotter(effectsize_df: object, **plot_kwargs) -> matplotlib.fi
ytick_color = plt.rcParams["ytick.color"]
# Extract parameters and set kwargs
- (swarmplot_kwargs, barplot_kwargs, sankey_kwargs,
- violinplot_kwargs, slopegraph_kwargs, reflines_kwargs, legend_kwargs,
- group_summaries_kwargs, redraw_axes_kwargs, delta_dot_kwargs, delta_text_kwargs,
- summary_bars_kwargs, swarm_bars_kwargs, contrast_bars_kwargs, table_kwargs,
- gridkey_kwargs, es_marker_kwargs, es_errorbar_kwargs, prop_sample_counts_kwargs, es_paired_lines_kwargs) = get_kwargs(
- plot_kwargs = plot_kwargs,
- ytick_color = ytick_color
+ (swarmplot_kwargs, barplot_kwargs, sankey_kwargs, contrast_kwargs,
+ slopegraph_kwargs, reflines_kwargs, legend_kwargs, group_summaries_kwargs,
+ redraw_axes_kwargs, delta_dot_kwargs, delta_text_kwargs, reference_band_kwargs,
+ raw_bars_kwargs, contrast_bars_kwargs, table_kwargs, gridkey_kwargs, contrast_marker_kwargs,
+ contrast_errorbar_kwargs, prop_sample_counts_kwargs, contrast_paired_lines_kwargs) = get_kwargs(
+ plot_kwargs = plot_kwargs,
+ ytick_color = ytick_color
)
(dabest_obj, plot_data, xvar, yvar, is_paired, effect_size, proportional,
all_plot_groups, idx, show_delta2, show_mini_meta, float_contrast,
- show_pairs, group_summaries, err_color, horizontal, results, halfviolin_alpha, ci_type,
- x1_level, experiment_label, show_baseline_ec, one_sankey, two_col_sankey, asymmetric_side) = get_params(
- effectsize_df = effectsize_df,
- plot_kwargs = plot_kwargs,
- sankey_kwargs = sankey_kwargs
+ show_pairs, group_summaries, horizontal, results, ci_type, x1_level, experiment_label,
+ show_baseline_ec, one_sankey, two_col_sankey, asymmetric_side, show_sample_size) = get_params(
+ effectsize_df = effectsize_df,
+ plot_kwargs = plot_kwargs,
+ sankey_kwargs = sankey_kwargs,
+ barplot_kwargs = barplot_kwargs
)
# Extract Color palette
- (color_col, bootstraps_color_by_group, n_groups, filled, plot_palette_raw,
- bar_color, plot_palette_bar, plot_palette_contrast, plot_palette_sankey) = get_color_palette(
- plot_kwargs = plot_kwargs,
- plot_data = plot_data,
- xvar = xvar,
- show_pairs = show_pairs,
- idx = idx,
- all_plot_groups = all_plot_groups,
- delta2 = effectsize_df.delta2,
- sankey = True if proportional and show_pairs else False,
+ (color_col, bootstraps_color_by_group, n_groups, filled, raw_colors,
+ plot_palette_raw, plot_palette_contrast, plot_palette_sankey) = get_color_palette(
+ plot_kwargs = plot_kwargs,
+ plot_data = plot_data,
+ xvar = xvar,
+ show_pairs = show_pairs,
+ idx = idx,
+ all_plot_groups = all_plot_groups,
+ delta2 = effectsize_df.delta2,
+ sankey = True if proportional and show_pairs else False,
)
# Initialise the figure.
@@ -161,7 +176,8 @@ def effectsize_df_plotter(effectsize_df: object, **plot_kwargs) -> matplotlib.fi
effect_size_type = effect_size,
yvar = yvar,
horizontal = horizontal,
- show_table = table_kwargs['show']
+ show_table = table_kwargs['show'],
+ color_col = color_col
)
# Plotting the rawdata.
@@ -173,6 +189,9 @@ def effectsize_df_plotter(effectsize_df: object, **plot_kwargs) -> matplotlib.fi
all_plot_groups = all_plot_groups
)
if proportional: ## Plot the raw data as a set of Sankey Diagrams aligned like barplot.
+ if sankey_kwargs["flow"] == False and len(temp_all_plot_groups) == 2:
+ sankey_kwargs["flow"], two_col_sankey = True, False
+ warnings.warn("Sankey flow must be true for singular two-group sankey plots")
sankey_control_test_groups = sankeydiag(
plot_data,
xvar = xvar,
@@ -198,7 +217,8 @@ def effectsize_df_plotter(effectsize_df: object, **plot_kwargs) -> matplotlib.fi
ytick_color = ytick_color,
temp_idx = temp_idx,
horizontal = horizontal,
- temp_all_plot_groups = temp_all_plot_groups
+ temp_all_plot_groups = temp_all_plot_groups,
+ plot_kwargs = plot_kwargs,
)
## Add delta dots to the contrast axes for paired plots.
@@ -228,10 +248,9 @@ def effectsize_df_plotter(effectsize_df: object, **plot_kwargs) -> matplotlib.fi
all_plot_groups = all_plot_groups,
rawdata_axes = rawdata_axes,
plot_data = plot_data,
- bar_color = bar_color,
- plot_palette_bar = plot_palette_bar,
+ raw_colors = raw_colors,
+ plot_palette_raw = plot_palette_raw,
color_col = color_col,
- plot_kwargs = plot_kwargs,
barplot_kwargs = barplot_kwargs,
horizontal = horizontal,
)
@@ -263,7 +282,6 @@ def effectsize_df_plotter(effectsize_df: object, **plot_kwargs) -> matplotlib.fi
(group_summaries_method,
group_summaries_offset, group_summaries_line_color) = extract_group_summaries(
proportional = proportional,
- err_color = err_color,
rawdata_axes = rawdata_axes,
asymmetric_side = asymmetric_side if not proportional else None,
horizontal = horizontal,
@@ -290,15 +308,16 @@ def effectsize_df_plotter(effectsize_df: object, **plot_kwargs) -> matplotlib.fi
)
# Add the counts to the rawdata axes xticks.
- add_counts_to_ticks(
- plot_data = plot_data,
- xvar = xvar,
- yvar = yvar,
- rawdata_axes = rawdata_axes,
- plot_kwargs = plot_kwargs,
- flow = sankey_kwargs["flow"],
- horizontal = horizontal,
- )
+ if show_sample_size:
+ add_counts_to_ticks(
+ plot_data = plot_data,
+ xvar = xvar,
+ yvar = yvar,
+ rawdata_axes = rawdata_axes,
+ plot_kwargs = plot_kwargs,
+ flow = sankey_kwargs["flow"],
+ horizontal = horizontal,
+ )
# Add counts to prop plots (embedded in the plot bars)
if proportional and plot_kwargs['prop_sample_counts'] and sankey_kwargs["flow"]:
@@ -313,21 +332,23 @@ def effectsize_df_plotter(effectsize_df: object, **plot_kwargs) -> matplotlib.fi
)
## Swarm bars
- swarm_bars = plot_kwargs["swarm_bars"]
- if swarm_bars and not proportional and not horizontal: #Currently not supporting swarm bars for horizontal plots (looks weird)
- swarm_contrast_bar_plotter(
- bar_type = 'Swarm',
- axes = [rawdata_axes, contrast_axes],
- bar_kwargs = swarm_bars_kwargs,
- color_col = color_col,
- show_pairs = show_pairs,
- plot_palette_raw = plot_palette_raw,
- idx = idx,
- plot_data = plot_data,
- xvar = xvar,
- yvar = yvar
- )
-
+ raw_bars = plot_kwargs["raw_bars"]
+ if raw_bars and not proportional and not horizontal: #Currently not supporting swarm bars for horizontal plots (looks weird)
+ raw_bars_dict, raw_bars_kwargs = prepare_bars_for_plot(
+ bar_type = 'raw',
+ bar_kwargs = raw_bars_kwargs,
+ horizontal = horizontal,
+ plot_palette_raw = plot_palette_raw,
+ color_col = color_col,
+ show_pairs = show_pairs,
+ plot_data = plot_data,
+ xvar = xvar,
+ yvar = yvar,
+ )
+ add_bars_to_plot(bar_dict = raw_bars_dict,
+ ax = rawdata_axes,
+ bar_kwargs = raw_bars_kwargs
+ )
# Plot the contrast axes - effect sizes and bootstraps!
plot_groups = (temp_all_plot_groups if (is_paired == "baseline" and show_pairs and two_col_sankey)
@@ -352,7 +373,7 @@ def effectsize_df_plotter(effectsize_df: object, **plot_kwargs) -> matplotlib.fi
ticks_to_plot = [x+0.25 for x in ticks_to_plot]
## Plot the bootstraps, then the effect sizes and CIs.
- es_paired_lines = False if float_contrast or not sankey_kwargs["flow"] else plot_kwargs["es_paired_lines"]
+ contrast_paired_lines = False if float_contrast or not sankey_kwargs["flow"] else plot_kwargs["contrast_paired_lines"]
(current_group, current_control,
current_effsize, contrast_xtick_labels) = effect_size_curve_plotter(
ticks_to_plot = ticks_to_plot,
@@ -360,17 +381,16 @@ def effectsize_df_plotter(effectsize_df: object, **plot_kwargs) -> matplotlib.fi
results = results,
ci_type = ci_type,
contrast_axes = contrast_axes,
- violinplot_kwargs = violinplot_kwargs,
- halfviolin_alpha = halfviolin_alpha,
+ contrast_kwargs = contrast_kwargs,
bootstraps_color_by_group = bootstraps_color_by_group,
plot_palette_contrast = plot_palette_contrast,
horizontal = horizontal,
- es_marker_kwargs = es_marker_kwargs,
- es_errorbar_kwargs = es_errorbar_kwargs,
+ contrast_marker_kwargs = contrast_marker_kwargs,
+ contrast_errorbar_kwargs = contrast_errorbar_kwargs,
idx = idx,
is_paired = is_paired,
- es_paired_lines = es_paired_lines,
- es_paired_lines_kwargs = es_paired_lines_kwargs,
+ contrast_paired_lines = contrast_paired_lines,
+ contrast_paired_lines_kwargs = contrast_paired_lines_kwargs,
show_baseline_ec = show_baseline_ec,
)
@@ -378,63 +398,58 @@ def effectsize_df_plotter(effectsize_df: object, **plot_kwargs) -> matplotlib.fi
delta2_axes = None
if show_mini_meta or show_delta2:
delta2_axes, contrast_xtick_labels = plot_minimeta_or_deltadelta_violins(
- show_mini_meta = show_mini_meta,
- effectsize_df = effectsize_df,
+ dabest_obj = effectsize_df.mini_meta if show_mini_meta else effectsize_df.delta_delta,
+ type = 'mini_meta' if show_mini_meta else 'delta_delta',
ci_type = ci_type,
rawdata_axes = rawdata_axes,
contrast_axes = contrast_axes,
- violinplot_kwargs = violinplot_kwargs,
- halfviolin_alpha = halfviolin_alpha,
+ contrast_kwargs = contrast_kwargs,
contrast_xtick_labels = contrast_xtick_labels,
effect_size = effect_size,
- show_delta2 = show_delta2,
plot_kwargs = plot_kwargs,
horizontal = horizontal,
show_pairs = show_pairs,
- es_marker_kwargs = es_marker_kwargs,
- es_errorbar_kwargs = es_errorbar_kwargs
+ contrast_marker_kwargs = contrast_marker_kwargs,
+ contrast_errorbar_kwargs = contrast_errorbar_kwargs,
)
## Contrast bars
contrast_bars = plot_kwargs["contrast_bars"]
if contrast_bars:
- swarm_contrast_bar_plotter(
- bar_type = 'Contrast',
- axes = [rawdata_axes, contrast_axes],
- bar_kwargs = contrast_bars_kwargs,
- color_col = color_col,
- show_pairs = show_pairs,
- plot_palette_raw = plot_palette_raw,
- idx = idx,
- order = ticks_to_plot,
- results = results,
- horizontal = horizontal,
- diff = (effectsize_df.mini_meta.difference if show_mini_meta
- else effectsize_df.delta_delta.difference if show_delta2
- else None)
- )
+ contrast_bars_dict, contrast_bars_kwargs = prepare_bars_for_plot(
+ bar_type = 'contrast',
+ bar_kwargs = contrast_bars_kwargs,
+ horizontal = horizontal,
+ plot_palette_raw = plot_palette_raw,
+ color_col = color_col,
+ show_pairs = show_pairs,
+ results = results,
+ ticks_to_plot = ticks_to_plot,
+ extra_delta = (effectsize_df.mini_meta.difference if show_mini_meta
+ else effectsize_df.delta_delta.difference if show_delta2
+ else None)
+ )
+ add_bars_to_plot(bar_dict = contrast_bars_dict,
+ ax = contrast_axes,
+ bar_kwargs = contrast_bars_kwargs
+ )
-
## Delta text
delta_text = plot_kwargs["delta_text"]
if delta_text and not horizontal:
delta_text_plotter(
results = results,
ax_to_plot = contrast_axes,
- swarm_plot_ax = rawdata_axes,
ticks_to_plot = ticks_to_plot,
delta_text_kwargs = delta_text_kwargs,
color_col = color_col,
plot_palette_raw = plot_palette_raw,
show_pairs = show_pairs,
- proportional = proportional,
float_contrast = float_contrast,
- show_mini_meta = show_mini_meta,
- mini_meta = effectsize_df.mini_meta if show_mini_meta else None,
- show_delta2 = show_delta2,
- delta_delta = effectsize_df.delta_delta if show_delta2 else None,
- idx = idx
+ extra_delta = (effectsize_df.mini_meta.difference if show_mini_meta
+ else effectsize_df.delta_delta.difference if show_delta2
+ else None),
)
-
+
## Make sure the contrast_axes x-lims match the rawdata_axes xlims,
## and add an extra violinplot tick for delta-delta plot.
## Name is xaxis but it is actually y-axis for horizontal plots
@@ -478,7 +493,7 @@ def effectsize_df_plotter(effectsize_df: object, **plot_kwargs) -> matplotlib.fi
extra_delta = True if show_delta2 else False,
)
## Axes independent spine lines
- is_gridkey = True if plot_kwargs["gridkey_rows"] is not None else False
+ is_gridkey = True if plot_kwargs["gridkey"] is not None else False
if not is_gridkey:
redraw_independent_spines(
rawdata_axes = rawdata_axes,
@@ -493,21 +508,20 @@ def effectsize_df_plotter(effectsize_df: object, **plot_kwargs) -> matplotlib.fi
ticks_to_skip = ticks_to_skip,
temp_idx = temp_idx if is_paired == "baseline" and show_pairs else None,
ticks_to_skip_contrast = ticks_to_skip_contrast,
- extra_delta = True if (show_delta2 or show_mini_meta) else False,
redraw_axes_kwargs = redraw_axes_kwargs
)
# Modify ylims of axes to flip the plot for horizontal format
if horizontal:
if not proportional or (proportional and show_pairs):
- swarm_ylim, contrast_ylim = rawdata_axes.get_ylim(), contrast_axes.get_ylim()
- rawdata_axes.set_ylim(swarm_ylim[1], swarm_ylim[0])
+ raw_ylim, contrast_ylim = rawdata_axes.get_ylim(), contrast_axes.get_ylim()
+ rawdata_axes.set_ylim(raw_ylim[1], raw_ylim[0])
contrast_axes.set_ylim(contrast_ylim[1], contrast_ylim[0])
## Modify the ylim to reduce whitespace in specific plots.
if show_delta2 or show_mini_meta or (proportional and show_pairs):
- swarm_ylim, contrast_ylim = rawdata_axes.get_ylim(), contrast_axes.get_ylim()
- rawdata_axes.set_ylim(swarm_ylim[0]-0.5, swarm_ylim[1])
+ raw_ylim, contrast_ylim = rawdata_axes.get_ylim(), contrast_axes.get_ylim()
+ rawdata_axes.set_ylim(raw_ylim[0]-0.5, raw_ylim[1])
contrast_axes.set_ylim(contrast_ylim[0]-0.5, contrast_ylim[1])
# Add the dependent axes spines back in.
@@ -535,13 +549,13 @@ def effectsize_df_plotter(effectsize_df: object, **plot_kwargs) -> matplotlib.fi
)
# Gridkey
- gridkey_rows = plot_kwargs["gridkey_rows"]
- if gridkey_rows is not None:
+ gridkey = plot_kwargs["gridkey"]
+ if gridkey is not None:
gridkey_plotter(
is_paired = is_paired,
idx = idx,
all_plot_groups = all_plot_groups,
- gridkey_rows = gridkey_rows,
+ gridkey = gridkey,
rawdata_axes = rawdata_axes,
contrast_axes = contrast_axes,
plot_data = plot_data,
@@ -560,30 +574,33 @@ def effectsize_df_plotter(effectsize_df: object, **plot_kwargs) -> matplotlib.fi
gridkey_kwargs = gridkey_kwargs,
)
- # Summary bars
- summary_bars = plot_kwargs["summary_bars"]
- if summary_bars is not None:
- summary_bars_plotter(
- summary_bars = summary_bars,
- results = results,
- ax_to_plot = contrast_axes,
- float_contrast = float_contrast,
- summary_bars_kwargs = summary_bars_kwargs,
- ci_type = ci_type,
- ticks_to_plot = ticks_to_plot,
- color_col = color_col,
- plot_palette_raw = plot_palette_raw,
- proportional = proportional,
- show_pairs = show_pairs,
- horizontal = horizontal,
- )
+ # Reference band
+ reference_band = plot_kwargs["reference_band"]
+ if reference_band is not None and not float_contrast:
+ reference_band_dict, reference_band_kwargs = prepare_bars_for_plot(bar_type = 'summary',
+ bar_kwargs = reference_band_kwargs,
+ horizontal = horizontal,
+ plot_palette_raw = plot_palette_raw,
+ color_col = color_col,
+ show_pairs = show_pairs,
+ results = results,
+ ticks_to_plot = ticks_to_plot,
+ reference_band = reference_band,
+ summary_axes = contrast_axes,
+ ci_type = ci_type,
+ )
+ add_bars_to_plot(bar_dict = reference_band_dict,
+ ax = contrast_axes,
+ bar_kwargs = reference_band_kwargs
+ )
+
# Legend
handles, labels = rawdata_axes.get_legend_handles_labels()
legend_labels = [l for l in labels]
legend_handles = [h for h in handles]
- if bootstraps_color_by_group is False:
+ if bootstraps_color_by_group is False and color_col is not None:
rawdata_axes.legend().set_visible(False)
show_legend(
legend_labels = legend_labels,
diff --git a/nbs/01-getting_started.ipynb b/nbs/01-getting_started.ipynb
index 3b9d3716..299e40f4 100644
--- a/nbs/01-getting_started.ipynb
+++ b/nbs/01-getting_started.ipynb
@@ -46,7 +46,7 @@
"id": "e4c2e459",
"metadata": {},
"source": [
- "DABEST powers [estimationstats.com](estimationstats.com), allowing everyone access to high-quality estimation plots."
+ "DABEST powers [estimationstats.com](https://www.estimationstats.com/#/), allowing everyone access to high-quality estimation plots."
]
},
{
@@ -64,7 +64,7 @@
"source": [
"\n",
"\n",
- "Python 3.11 is strongly recommended. DABEST has also been tested with Python 3.10 and onwards.\n",
+ "Python 3.11 is recommended. DABEST has also been tested with Python 3.10 and onwards.\n",
"\n",
"In addition, the following packages are also required (listed with their minimal versions):\n",
"\n",
diff --git a/nbs/02-about.ipynb b/nbs/02-about.ipynb
index f61dd6d3..1a404a9f 100644
--- a/nbs/02-about.ipynb
+++ b/nbs/02-about.ipynb
@@ -17,7 +17,7 @@
"\n",
"DABEST is written in Python by [Joses W. Ho](https://twitter.com/jacuzzijo), with design and input from [Adam Claridge-Chang](https://twitter.com/adamcchang) and other [lab members](https://www.claridgechang.net/people.html).\n",
"\n",
- "Features in v2025.03.14 were added by [Jonathan Anns](https://github.com/JAnns98), [Zinan Lu](https://github.com/Jacobluke-), [Kah Seng Lian](https://github.com/sunroofgod), and [Lucas Wang Zhuoyu](https://github.com/Lucas1213WZY).\n",
+ "Features in v2025.03.27 were added by [Jonathan Anns](https://github.com/JAnns98), [Zinan Lu](https://github.com/Jacobluke-), [Kah Seng Lian](https://github.com/sunroofgod), and [Lucas Wang Zhuoyu](https://github.com/Lucas1213WZY).\n",
"\n",
"Features in v2024.03.29 were added by [Zinan Lu](https://github.com/Jacobluke-), [Kah Seng Lian](https://github.com/sunroofgod), [Ana Rosa Castillo](https://github.com/cyberosa).\n",
"\n",
diff --git a/nbs/API/confint_2group_diff.ipynb b/nbs/API/confint_2group_diff.ipynb
index c5dc22da..29ca48ae 100644
--- a/nbs/API/confint_2group_diff.ipynb
+++ b/nbs/API/confint_2group_diff.ipynb
@@ -368,7 +368,10 @@
"\n",
"@njit(cache=True)\n",
"def calculate_group_var(control_var, control_N, test_var, test_N):\n",
- " return control_var / control_N + test_var / test_N\n",
+ " \n",
+ " pooled_var = ((control_N - 1) * control_var + (test_N - 1) * test_var) / (control_N + test_N - 2) \n",
+ " \n",
+ " return pooled_var\n",
"\n",
"\n",
"def calculate_weighted_delta(group_var, differences):\n",
diff --git a/nbs/API/dabest_object.ipynb b/nbs/API/dabest_object.ipynb
index aa9ca8ab..4054d6a6 100644
--- a/nbs/API/dabest_object.ipynb
+++ b/nbs/API/dabest_object.ipynb
@@ -89,7 +89,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "Compiling numba functions: 100%|██████████| 11/11 [00:03<00:00, 3.55it/s]"
+ "Compiling numba functions: 100%|██████████| 11/11 [00:04<00:00, 2.20it/s]"
]
},
{
@@ -143,6 +143,7 @@
" experiment_label,\n",
" x1_level,\n",
" mini_meta,\n",
+ " ps_adjust,\n",
" ):\n",
" \"\"\"\n",
" Parses and stores pandas DataFrames in preparation for estimation\n",
@@ -161,6 +162,7 @@
" self.__random_seed = random_seed\n",
" self.__is_proportional = proportional\n",
" self.__is_mini_meta = mini_meta\n",
+ " self.__ps_adjust = ps_adjust\n",
"\n",
" # after this call the attributes self.__experiment_label and self.__x1_level are updated\n",
" self._check_errors(x, y, idx, experiment, experiment_label, x1_level)\n",
@@ -351,9 +353,9 @@
" @property\n",
" def delta_g(self):\n",
" \"\"\"\n",
- " Returns an :py:class:`EffectSizeDataFrame` for deltas' g, its confidence interval, and relevant statistics, for all comparisons as indicated via the `idx` and `paired` argument in `dabest.load()`.\n",
+ " Returns an :py:class:`EffectSizeDataFrame` for delta g, its confidence interval, and relevant statistics, for all comparisons as indicated via the `idx` and `paired` argument in `dabest.load()`.\n",
" \"\"\"\n",
- " raise DeprecationWarning(\"delta_g has been depreciated - Please use hedges_g (with delta2=True) for deltas' g experiments\")\n",
+ " raise DeprecationWarning(\"delta_g has been depreciated - Please use hedges_g (with delta2=True) for delta g experiments\")\n",
"\n",
"\n",
" @property\n",
@@ -591,10 +593,6 @@
" if x is None:\n",
" error_msg = \"If `delta2` is True. `x` parameter cannot be None. String or list expected\"\n",
" raise ValueError(error_msg)\n",
- " \n",
- " if self.__is_proportional:\n",
- " mes1 = \"Only mean_diff is supported for proportional data when `delta2` is True\"\n",
- " warnings.warn(message=mes1, category=UserWarning)\n",
"\n",
" # idx should not be specified\n",
" if idx:\n",
@@ -804,6 +802,7 @@
" x1_level=self.__x1_level,\n",
" x2=self.__x2,\n",
" mini_meta=self.__is_mini_meta,\n",
+ " ps_adjust=self.__ps_adjust,\n",
" )\n",
"\n",
" self.__mean_diff = EffectSizeDataFrame(\n",
@@ -848,11 +847,11 @@
{
"data": {
"text/plain": [
- "DABEST v2024.03.30\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
- "Good afternoon!\n",
- "The current time is Wed Feb 12 17:31:00 2025.\n",
+ "Good morning!\n",
+ "The current time is Tue Mar 25 10:08:38 2025.\n",
"\n",
"The unpaired mean difference between control and test is 0.5 [95%CI 0.00172, 1.04].\n",
"The p-value of the two-sided permutation t-test is 0.0758, calculated for legacy purposes only. \n",
@@ -913,7 +912,7 @@
"output_type": "stream",
"text": [
"/Users/jonathananns/GitHub/DABEST-python/dabest/_stats_tools/effsize.py:82: UserWarning: Using median as the statistic in bootstrapping may result in a biased estimate and cause problems with BCa confidence intervals. Consider using a different statistic, such as the mean.\n",
- "When plotting, please consider using percetile confidence intervals by specifying `ci_type='percentile'`. For detailed information, refer to https://github.com/ACCLAB/DABEST-python/issues/129 \n",
+ "When plotting, please consider using percetile confidence intervals by specifying `ci_type='pct'`. For detailed information, refer to https://github.com/ACCLAB/DABEST-python/issues/129 \n",
"\n",
" warnings.warn(message=mes1+mes2, category=UserWarning)\n"
]
@@ -921,11 +920,11 @@
{
"data": {
"text/plain": [
- "DABEST v2024.03.30\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
- "Good afternoon!\n",
- "The current time is Wed Feb 12 17:31:01 2025.\n",
+ "Good morning!\n",
+ "The current time is Tue Mar 25 10:08:39 2025.\n",
"\n",
"The unpaired median difference between control and test is 0.5 [95%CI -0.0401, 1.04].\n",
"The p-value of the two-sided permutation t-test is 0.103, calculated for legacy purposes only. \n",
@@ -1000,11 +999,11 @@
{
"data": {
"text/plain": [
- "DABEST v2024.03.30\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
- "Good afternoon!\n",
- "The current time is Wed Feb 12 17:31:01 2025.\n",
+ "Good morning!\n",
+ "The current time is Tue Mar 25 10:08:39 2025.\n",
"\n",
"The unpaired Cohen's d between control and test is 0.471 [95%CI -0.0405, 0.973].\n",
"The p-value of the two-sided permutation t-test is 0.0758, calculated for legacy purposes only. \n",
@@ -1094,11 +1093,11 @@
{
"data": {
"text/plain": [
- "DABEST v2024.03.30\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
- "Good afternoon!\n",
- "The current time is Wed Feb 12 17:31:02 2025.\n",
+ "Good morning!\n",
+ "The current time is Tue Mar 25 10:08:41 2025.\n",
"\n",
"The unpaired Cohen's h between control and test is 0.0 [95%CI -0.563, 0.474].\n",
"The p-value of the two-sided permutation t-test is 0.799, calculated for legacy purposes only. \n",
@@ -1169,11 +1168,11 @@
{
"data": {
"text/plain": [
- "DABEST v2024.03.30\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
- "Good afternoon!\n",
- "The current time is Wed Feb 12 17:31:03 2025.\n",
+ "Good morning!\n",
+ "The current time is Tue Mar 25 10:08:41 2025.\n",
"\n",
"The unpaired Hedges' g between control and test is 0.465 [95%CI -0.04, 0.96].\n",
"The p-value of the two-sided permutation t-test is 0.0758, calculated for legacy purposes only. \n",
@@ -1243,11 +1242,11 @@
{
"data": {
"text/plain": [
- "DABEST v2024.03.30\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
- "Good afternoon!\n",
- "The current time is Wed Feb 12 17:31:03 2025.\n",
+ "Good morning!\n",
+ "The current time is Tue Mar 25 10:08:41 2025.\n",
"\n",
"The unpaired Cliff's delta between control and test is 0.28 [95%CI -0.0111, 0.544].\n",
"The p-value of the two-sided permutation t-test is 0.061, calculated for legacy purposes only. \n",
@@ -1314,11 +1313,11 @@
{
"data": {
"text/plain": [
- "DABEST v2024.03.30\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
- "Good afternoon!\n",
- "The current time is Wed Feb 12 17:31:03 2025.\n",
+ "Good morning!\n",
+ "The current time is Tue Mar 25 10:08:42 2025.\n",
"\n",
"The unpaired Hedges' g between W Placebo and M Placebo is 1.74 [95%CI 1.09, 2.33].\n",
"The p-value of the two-sided permutation t-test is 0.0, calculated for legacy purposes only. \n",
@@ -1326,7 +1325,7 @@
"The unpaired Hedges' g between W Drug and M Drug is 1.33 [95%CI 0.632, 1.98].\n",
"The p-value of the two-sided permutation t-test is 0.0, calculated for legacy purposes only. \n",
"\n",
- "The deltas' g between Placebo and Drug is -0.651 [95%CI -1.53, 0.21].\n",
+ "The delta g between Placebo and Drug is -0.651 [95%CI -1.53, 0.21].\n",
"The p-value of the two-sided permutation t-test is 0.0694, calculated for legacy purposes only. \n",
"\n",
"5000 bootstrap samples were taken; the confidence interval is bias-corrected and accelerated.\n",
@@ -1377,7 +1376,7 @@
"id": "8d41dad3",
"metadata": {},
"source": [
- "Deltas' g is an effect size that only applied on experiments with a 2-by-2 arrangement where two independent variables, A and B, each have two categorical values, 1 and 2, which calculates `hedges_g` for delta-delta statistics.\n",
+ "Delta g is an effect size that only applied on experiments with a 2-by-2 arrangement where two independent variables, A and B, each have two categorical values, 1 and 2, which calculates `hedges_g` for delta-delta statistics.\n",
"\n",
"\n",
" $$\\Delta_{1} = \\overline{X}_{A_{2}, B_{1}} - \\overline{X}_{A_{1}, B_{1}}$$\n",
@@ -1398,11 +1397,17 @@
"\n",
"where $s$ is the standard deviation and $n$ is the sample size.\n",
"\n",
- "A deltas' g value is then calculated as delta-delta value divided by pooled standard deviation $s_{\\Delta_{\\Delta}}$:\n",
+ "A delta g value is then calculated as delta-delta value divided by pooled standard deviation $s_{\\Delta_{\\Delta}}$:\n",
"\n",
"\n",
"$\\Delta_{g} = \\frac{\\Delta_{\\Delta}}{s_{\\Delta_{\\Delta}}}$"
]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "33b5fc3c",
+ "metadata": {},
+ "source": []
}
],
"metadata": {
diff --git a/nbs/API/delta_objects.ipynb b/nbs/API/delta_objects.ipynb
index 7552c683..bae2ffca 100644
--- a/nbs/API/delta_objects.ipynb
+++ b/nbs/API/delta_objects.ipynb
@@ -93,7 +93,7 @@
"\n",
" $$\\Delta_{\\Delta} = \\Delta_{2} - \\Delta_{1}$$\n",
"\n",
- " and a deltas' g value is calculated as the mean difference between the two primary deltas divided by\n",
+ " and a delta g value is calculated as the mean difference between the two primary deltas divided by\n",
" the standard deviation of the delta-delta value, which is calculated from a pooled variance of the 4 samples:\n",
"\n",
" $$\\Delta_{g} = \\frac{\\Delta_{\\Delta}}{s_{\\Delta_{\\Delta}}}$$\n",
@@ -123,7 +123,7 @@
" self.__control = self.__dabest_obj.experiment_label[0]\n",
" self.__test = self.__dabest_obj.experiment_label[1]\n",
"\n",
- " # Compute the bootstrap delta-delta or deltas' g and the true dela-delta based on the raw data\n",
+ " # Compute the bootstrap delta-delta or delta g and the true dela-delta based on the raw data\n",
" if self.__effect_size == \"mean_diff\":\n",
" self.__bootstraps_delta_delta = bootstraps_delta_delta[2]\n",
" self.__difference = (\n",
@@ -217,7 +217,7 @@
" if self.__effect_size == \"mean_diff\":\n",
" out1 = \"The delta-delta between {control} and {test} \".format(**first_line)\n",
" else:\n",
- " out1 = \"The deltas' g between {control} and {test} \".format(**first_line)\n",
+ " out1 = \"The delta g between {control} and {test} \".format(**first_line)\n",
"\n",
" base_string_fmt = \"{:.\" + str(sigfig) + \"}\"\n",
" if \".\" in str(self.__ci):\n",
diff --git a/nbs/API/effsize.ipynb b/nbs/API/effsize.ipynb
index 82c8e775..65259d81 100644
--- a/nbs/API/effsize.ipynb
+++ b/nbs/API/effsize.ipynb
@@ -132,7 +132,7 @@
" \"result in a biased estimate and cause problems with \" + \\\n",
" \"BCa confidence intervals. Consider using a different statistic, such as the mean.\\n\"\n",
" mes2 = \"When plotting, please consider using percetile confidence intervals \" + \\\n",
- " \"by specifying `ci_type='percentile'`. For detailed information, \" + \\\n",
+ " \"by specifying `ci_type='pct'`. For detailed information, \" + \\\n",
" \"refer to https://github.com/ACCLAB/DABEST-python/issues/129 \\n\"\n",
" warnings.warn(message=mes1+mes2, category=UserWarning)\n",
" return func_difference(control, test, np.median, is_paired)\n",
diff --git a/nbs/API/effsize_objects.ipynb b/nbs/API/effsize_objects.ipynb
index 0c977188..29827005 100644
--- a/nbs/API/effsize_objects.ipynb
+++ b/nbs/API/effsize_objects.ipynb
@@ -92,6 +92,10 @@
"import lqrt\n",
"from scipy.stats import norm\n",
"import numpy as np\n",
+ "from scipy.special import binom as binomcoeff # devMJBL\n",
+ "from scipy.stats import binom # devMJBL\n",
+ "from scipy.integrate import fixed_quad # devMJBL\n",
+ "from numpy import arange, mean # devMJBL\n",
"from numpy import array, isnan, isinf, repeat, random, isin, abs, var\n",
"from numpy import sort as npsort\n",
"from numpy import nan as npnan\n",
@@ -139,6 +143,10 @@
" `random_seed` is used to seed the random number generator during\n",
" bootstrap resampling. This ensures that the confidence intervals\n",
" reported are replicable.\n",
+ " ps_adjust : boolean, default False.\n",
+ " If True, adjust calculated p-value according to Phipson & Smyth (2010)\n",
+ " # https://doi.org/10.2202/1544-6115.1585\n",
+ " \n",
"\n",
" Returns\n",
" -------\n",
@@ -176,6 +184,7 @@
" resamples=5000,\n",
" permutation_count=5000,\n",
" random_seed=12345,\n",
+ " ps_adjust=False,\n",
" ):\n",
" from ._stats_tools import confint_2group_diff as ci2g\n",
" from ._stats_tools import effsize as es\n",
@@ -188,13 +197,14 @@
" \"hedges_g\": \"Hedges' g\",\n",
" \"cliffs_delta\": \"Cliff's delta\",\n",
" }\n",
- "\n",
+ " \n",
" self.__is_paired = is_paired\n",
" self.__resamples = resamples\n",
" self.__effect_size = effect_size\n",
" self.__random_seed = random_seed\n",
" self.__ci = ci\n",
" self.__is_proportional = proportional\n",
+ " self.__ps_adjust = ps_adjust\n",
" self._check_errors(control, test)\n",
"\n",
" # Convert to numpy arrays for speed.\n",
@@ -418,6 +428,7 @@
" self.__effect_size,\n",
" self.__is_paired,\n",
" self.__permutation_count,\n",
+ " ps_adjust = self.__ps_adjust,\n",
" )\n",
"\n",
" if self.__is_paired and not self.__is_proportional:\n",
@@ -1027,6 +1038,7 @@
" delta2=False,\n",
" experiment_label=None,\n",
" mini_meta=False,\n",
+ " ps_adjust=False,\n",
" ):\n",
" \"\"\"\n",
" Parses the data from a Dabest object, enabling plotting and printing\n",
@@ -1046,6 +1058,7 @@
" self.__x2 = x2\n",
" self.__delta2 = delta2\n",
" self.__is_mini_meta = mini_meta\n",
+ " self.__ps_adjust = ps_adjust\n",
"\n",
" def __pre_calc(self):\n",
" from .misc_tools import print_greeting, get_varname\n",
@@ -1096,7 +1109,6 @@
" cname = current_tuple[ix]\n",
" control = grouped_data[cname]\n",
" test = grouped_data[tname]\n",
- "\n",
" result = TwoGroupsEffectSize(\n",
" control,\n",
" test,\n",
@@ -1107,6 +1119,7 @@
" self.__resamples,\n",
" self.__permutation_count,\n",
" self.__random_seed,\n",
+ " self.__ps_adjust\n",
" )\n",
" r_dict = result.to_dict()\n",
" r_dict[\"control\"] = cname\n",
@@ -1313,45 +1326,53 @@
" self,\n",
" color_col=None,\n",
" raw_marker_size=6,\n",
- " es_marker_size=9,\n",
- " swarm_label=None,\n",
+ " contrast_marker_size=9, # es_marker_size=9, OLD\n",
+ "\n",
+ " raw_label=None, # swarm_label=None, OLD # bar_label=None, OLD\n",
" contrast_label=None,\n",
" delta2_label=None,\n",
- " swarm_ylim=None,\n",
+ "\n",
+ " raw_ylim=None, # swarm_ylim=None, OLD # bar_ylim=None, OLD\n",
" contrast_ylim=None,\n",
" delta2_ylim=None,\n",
- " swarm_side=None,\n",
- " empty_circle=False,\n",
+ "\n",
" custom_palette=None,\n",
- " swarm_desat=0.5,\n",
- " halfviolin_desat=1,\n",
- " halfviolin_alpha=0.8,\n",
+ " swarm_side=None,\n",
+ " empty_circle=False, # Not very intuitive name\n",
+ "\n",
" face_color=None,\n",
- " # bar plot\n",
- " bar_label=None,\n",
- " bar_desat=0.5,\n",
+ "\n",
+ " raw_desat=0.5, # swarm_desat=0.5, OLD # bar_desat=0.5, OLD\n",
+ " contrast_desat=1, # halfviolin_desat=1, OLD\n",
+ "\n",
+ " raw_alpha=None, # NEW\n",
+ " contrast_alpha=0.8, # halfviolin_alpha=0.8, OLD\n",
+ "\n",
" bar_width=0.5,\n",
- " bar_ylim=None,\n",
- " # error bar of proportion plot\n",
- " ci=None,\n",
+ " # ci=None, # Seems to be unused\n",
" ci_type=\"bca\",\n",
- " err_color=None,\n",
+ "\n",
" float_contrast=True,\n",
" show_pairs=True,\n",
- " show_delta2=True,\n",
+ " show_sample_size=True,\n",
+ " show_delta2=True, # Would pref switch to delta_delta instead of delta2\n",
" show_mini_meta=True,\n",
- " group_summaries=None,\n",
+ "\n",
+ " group_summaries=\"mean_sd\",\n",
+ " # err_color=None, # Not intuitive name and doesnt fit with group_summaries argument \n",
" fig_size=None,\n",
" dpi=100,\n",
" ax=None,\n",
+ "\n",
" swarmplot_kwargs=None,\n",
- " barplot_kwargs=None,\n",
- " violinplot_kwargs=None,\n",
" slopegraph_kwargs=None,\n",
+ " barplot_kwargs=None,\n",
" sankey_kwargs=None,\n",
+ " contrast_kwargs=None, # violinplot_kwargs=None, OLD\n",
" reflines_kwargs=None,\n",
" group_summaries_kwargs=None,\n",
" legend_kwargs=None,\n",
+ "\n",
" title=None,\n",
" fontsize_title=16,\n",
" fontsize_rawxlabel=12,\n",
@@ -1359,13 +1380,14 @@
" fontsize_contrastxlabel=12,\n",
" fontsize_contrastylabel=12,\n",
" fontsize_delta2label=12,\n",
- " #### Contrast bars, Swarm bars, delta text, and delta dots WIP ####\n",
+ "\n",
+ " # Raw bars, Contrast bars, delta text, and delta dots\n",
+ " raw_bars=True, # swarm_bars=True, OLD \n",
+ " raw_bars_kwargs=None, # swarm_bars_kwargs=None, OLD\n",
" contrast_bars=True,\n",
- " swarm_bars=True,\n",
" contrast_bars_kwargs=None,\n",
- " swarm_bars_kwargs=None,\n",
- " summary_bars=None,\n",
- " summary_bars_kwargs=None,\n",
+ " reference_band=None,\n",
+ " reference_band_kwargs=None,\n",
" delta_text=True,\n",
" delta_text_kwargs=None,\n",
" delta_dot=True,\n",
@@ -1376,23 +1398,23 @@
" horizontal_table_kwargs=None,\n",
"\n",
" # Gridkey\n",
- " gridkey_rows=None,\n",
+ " gridkey=None, # gridkey_rows=None, OLD\n",
" gridkey_merge_pairs=False,\n",
" gridkey_show_Ns=True,\n",
" gridkey_show_es=True,\n",
" gridkey_delimiters=[';', '>', '_'],\n",
" gridkey_kwargs=None,\n",
"\n",
- " es_marker_kwargs=None,\n",
- " es_errorbar_kwargs=None,\n",
+ " contrast_marker_kwargs=None, # es_marker_kwargs=None, OLD\n",
+ " contrast_errorbar_kwargs=None, # es_errorbar_kwargs=None, OLD\n",
"\n",
" prop_sample_counts=False,\n",
" prop_sample_counts_kwargs=None,\n",
"\n",
- " es_paired_lines=True,\n",
- " es_paired_lines_kwargs=None,\n",
- "\t\t\n",
- "\t\t# Basline EffectSize Curve\n",
+ " contrast_paired_lines=True, # es_paired_lines=True, OLD\n",
+ " contrast_paired_lines_kwargs=None, # es_paired_lines_kwargs=None, OLD\n",
+ " \n",
+ "\t\t# Baseline Effect Size Curve\n",
"\t\tshow_baseline_ec=False,\n",
" ):\n",
" \"\"\"\n",
@@ -1406,18 +1428,18 @@
" raw_marker_size : float, default 6\n",
" The diameter (in points) of the marker dots plotted in the\n",
" swarmplot.\n",
- " es_marker_size : float, default 9\n",
+ " contrast_marker_size : float, default 9\n",
" The size (in points) of the effect size points on the difference\n",
" axes.\n",
- " swarm_label, contrast_label, delta2_label : strings, default None\n",
- " Set labels for the y-axis of the swarmplot and the contrast plot,\n",
- " respectively. If `swarm_label` is not specified, it defaults to\n",
- " \"value\", unless a column name was passed to `y`. If\n",
- " `contrast_label` is not specified, it defaults to the effect size\n",
- " being plotted. If `delta2_label` is not specifed, it defaults to\n",
- " \"delta - delta\"\n",
- " swarm_ylim, contrast_ylim, delta2_ylim : tuples, default None\n",
- " The desired y-limits of the raw data (swarmplot) axes, the\n",
+ " raw_label, contrast_label, delta2_label : strings, default None\n",
+ " Set labels for the y-axis of the raw plot and the contrast plot,\n",
+ " respectively. If `raw_label` is not specified, it defaults to\n",
+ " \"Value\" for non binary data (and \"Proportion of Success\" for binary data), \n",
+ " unless a column name was passed to `y`. If `contrast_label` is not specified, \n",
+ " it defaults to the effect size being plotted. If `delta2_label` is not specifed, \n",
+ " it defaults to \"delta - delta\".\n",
+ " raw_ylim, contrast_ylim, delta2_ylim : tuples, default None\n",
+ " The desired y-limits of the raw data axes, the\n",
" difference axes and the delta-delta axes respectively, as a tuple.\n",
" These will be autoscaled to sensible values if they are not\n",
" specified. The delta2 axes and contrast axes should have the same\n",
@@ -1447,15 +1469,26 @@
" Boolean value determining if empty circles will be used for plotting of\n",
" swarmplot for control groups. Color of each individual swarm is also now\n",
" dependent on the comparison group.\n",
- " swarm_desat : float, default 1\n",
- " Decreases the saturation of the colors in the swarmplot by the\n",
+ " face_color: string, default None\n",
+ " The face color of the plot. Defaults to \"white\".\n",
+ " raw_desat : float, default 1\n",
+ " Decreases the saturation of the colors in the rawplot by the\n",
" desired proportion. Uses `seaborn.desaturate()` to acheive this.\n",
- " halfviolin_desat : float, default 0.5\n",
+ " contrast_desat : float, default 0.5\n",
" Decreases the saturation of the colors of the half-violin bootstrap\n",
" curves by the desired proportion. Uses `seaborn.desaturate()` to\n",
" acheive this.\n",
- " halfviolin_alpha : float, default 0.8\n",
+ " raw_alpha : float, default None\n",
+ " The alpha (transparency) level of the raw plot elements. This defaults\n",
+ " to 1.0 for all plots except sankey and slopegraphs, whereby it defaults to 0.4\n",
+ " and 0.5, respectively.\n",
+ " contrast_alpha : float, default 0.8\n",
" The alpha (transparency) level of the half-violin bootstrap curves.\n",
+ " bar_width : float, default 0.5\n",
+ " The width of the bars in the barplot (binary, non-paired data).\n",
+ " ci_type : string, default\n",
+ " The confidence interval of the contrast plot to display. Defaults\n",
+ " to \"bca\". Otherwise, the user can choose \"pct\" for percentile. \n",
" float_contrast : boolean, default True\n",
" Whether or not to display the halfviolin bootstrapped difference\n",
" distribution alongside the raw data.\n",
@@ -1463,10 +1496,12 @@
" If the data is paired, whether or not to show the raw data as a\n",
" swarmplot, or as slopegraph, with a line joining each pair of\n",
" observations.\n",
+ " show_sample_size : boolean, default True\n",
+ " Whether or not to display the sample size of each group in the axis label.\n",
" show_delta2, show_mini_meta : boolean, default True\n",
" If delta-delta or mini-meta delta is calculated, whether or not to\n",
" show the delta-delta plot or mini-meta plot.\n",
- " group_summaries : ['mean_sd', 'median_quartiles', 'None'], default None.\n",
+ " group_summaries : ['mean_sd', 'median_quartiles', 'None'], default \"mean_sd\".\n",
" Plots the summary statistics for each group. If 'mean_sd', then\n",
" the mean and standard deviation of each group is plotted as a\n",
" notched line beside each group. If 'median_quantiles', then the\n",
@@ -1483,26 +1518,26 @@
" Pass any keyword arguments accepted by the seaborn `swarmplot`\n",
" command here, as a dict. If None, the following keywords are\n",
" passed to sns.swarmplot : {'size':`raw_marker_size`}.\n",
- " barplot_kwargs : dict, default None\n",
- " By default, the keyword arguments passed are:\n",
- " {\"estimator\": np.mean, \"errorbar\": plot_kwargs[\"ci\"]}\n",
- " violinplot_kwargs : dict, default None\n",
- " Pass any keyword arguments accepted by the matplotlib `\n",
- " pyplot.violinplot` command here, as a dict. If None, the following\n",
- " keywords are passed to violinplot : {'widths':0.5, 'vert':True,\n",
- " 'showextrema':False, 'showmedians':False}.\n",
" slopegraph_kwargs : dict, default None\n",
" This will change the appearance of the lines used to join each pair\n",
" of observations when `show_pairs=True`. Pass any keyword arguments\n",
" accepted by matplotlib `plot()` function here, as a dict.\n",
" If None, the following keywords are\n",
" passed to plot() : {'linewidth':1, 'alpha':0.5, 'jitter':0, 'jitter_seed':9876543210}.\n",
+ " barplot_kwargs : dict, default None\n",
+ " By default, the keyword arguments passed are:\n",
+ " {\"estimator\": np.mean, \"errorbar\": plot_kwargs[\"ci\"], \"err_kws\" : {'color':'black'}}\n",
" sankey_kwargs: dict, default None\n",
" Whis will change the appearance of the sankey diagram used to depict\n",
" paired proportional data when `show_pairs=True` and `is_proportional=True`.\n",
" Pass any keyword arguments accepted by plot_tools.sankeydiag() function\n",
" here, as a dict. If None, the following keywords are passed to sankey diagram:\n",
" {\"width\": 0.5, \"align\": \"center\", \"alpha\": 0.4, \"bar_width\": 0.1, \"rightColor\": False}\n",
+ " contrast_kwargs : dict, default None\n",
+ " Pass any keyword arguments accepted by the matplotlib `\n",
+ " pyplot.violinplot` command here, as a dict. If None, the following\n",
+ " keywords are passed to violinplot : {'widths':0.5, 'vert':True,\n",
+ " 'showextrema':False, 'showmedians':False}.\n",
" reflines_kwargs : dict, default None\n",
" This will change the appearance of the zero reference lines. Pass\n",
" any keyword arguments accepted by the matplotlib Axes `hlines`\n",
@@ -1524,7 +1559,7 @@
" Title for the plot. If None, no title will be displayed. Pass any\n",
" keyword arguments accepted by the matplotlib.pyplot.suptitle `t` command here,\n",
" as a string.\n",
- " fontsize_title : float or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}, default 'large'\n",
+ " fontsize_title : float or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}, default 16\n",
" Font size for the plot title. If a float, the fontsize in points. The\n",
" string values denote sizes relative to the default font size. Pass any keyword arguments accepted\n",
" by the matplotlib.pyplot.suptitle `fontsize` command here, as a string.\n",
@@ -1539,23 +1574,22 @@
" fontsize_delta2label : float, default 12\n",
" Font size for the delta-delta axes ylabel.\n",
" \n",
+ " raw_bars : boolean, default True\n",
+ " Whether or not to display the raw bars.\n",
+ " raw_bars_kwargs : dict, default None\n",
+ " Pass relevant keyword arguments to the raw bars. Pass any keyword arguments accepted by \n",
+ " matplotlib.patches.Rectangle here, as a string. If None, the following keywords are passed:\n",
+ " {\"color\": None, \"zorder\":-3}\n",
" contrast_bars : boolean, default True\n",
" Whether or not to display the contrast bars.\n",
- " swarm_bars : boolean, default True\n",
- " Whether or not to display the swarm bars.\n",
" contrast_bars_kwargs : dict, default None\n",
" Pass relevant keyword arguments to the contrast bars. Pass any keyword arguments accepted by \n",
" matplotlib.patches.Rectangle here, as a string. If None, the following keywords are passed:\n",
" {\"color\": None, \"zorder\":-3}\n",
- " swarm_bars_kwargs : dict, default None\n",
- " Pass relevant keyword arguments to the swarm bars. Pass any keyword arguments accepted by \n",
- " matplotlib.patches.Rectangle here, as a string. If None, the following keywords are passed:\n",
- " {\"color\": None, \"zorder\":-3}\n",
- "\n",
- " summary_bars : list, default None\n",
- " Pass a list of indices of the contrast objects to have summary bars displayed on the plot.\n",
- " For example, [0,1] will show summary bars for the first two contrast objects.\n",
- " summary_bars_kwargs: dict, default None\n",
+ " reference_band : list, default None\n",
+ " Pass a list of indices of the contrast objects to have reference bands displayed on the plot.\n",
+ " For example, [0,1] will show reference bands for the first two contrast objects.\n",
+ " reference_band_kwargs: dict, default None\n",
" If None, the following keywords are passed: {\"span_ax\": False, \"color\": None, \"alpha\": 0.15, \"zorder\":-3}\n",
" delta_text : boolean, default True\n",
" Whether or not to display the text deltas.\n",
@@ -1571,13 +1605,23 @@
" delta_dot_kwargs : dict, default None\n",
" Pass relevant keyword arguments. If None, the following keywords are passed:\n",
" {\"color\": 'k', \"marker\": \"^\", \"alpha\": 0.5, \"zorder\": 2, \"size\": 3, \"side\": \"right\"}\n",
- "\n",
+ " horizontal : boolean, default False\n",
+ " Whether to display plots in the horizontal format. Default is False. \n",
" horizontal_table_kwargs : dict, default None\n",
" {'show: True, 'color' : 'yellow', 'alpha' :0.2, 'fontsize' : 12, 'text_color' : 'black', \n",
" 'text_units' : None, 'control_marker' : '-', 'fontsize_label': 12, 'label': 'Δ'}\n",
" \n",
- " gridkey_rows : list, default None\n",
- " cell should be populated or not. \n",
+ " gridkey : list, default None\n",
+ " Provide either a list of grid keys or 'auto' for automatic grid selection.\n",
+ " gridkey_merge_pairs : boolean, default False\n",
+ " Merges the paired grid key groups together.\n",
+ " gridkey_show_Ns : boolean, default True\n",
+ " Whether to display the sample size row.\n",
+ " gridkey_show_es : boolean, default True\n",
+ " Whether to show the effect size row. \n",
+ " gridkey_delimiters : list, default [';', '>', '_']\n",
+ " The delimiter used to split gridkey groups if required.\n",
+ " gridkey_kwargs : dict, default None\n",
" Pass relevant keyword arguments to the gridkey. If None, the following keywords are passed:\n",
" { 'show_es' : True, # If True, the gridkey will show the effect size of each comparison.\n",
" 'show_Ns' :True, # If True, the gridkey will show the number of observations in eachgroup.\n",
@@ -1586,10 +1630,10 @@
" 'marker': \"\\u25CF\", # Marker for the gridkey dots.\n",
" }\n",
"\n",
- " es_marker_kwargs: dict, default None\n",
+ " contrast_marker_kwargs: dict, default None\n",
" Pass relevant keyword arguments to the effectsize marker plotting. If none, the following keywords are passed:\n",
- " {'marker': 'o', 'size': plot_kwargs['es_marker_size'], 'color': 'black', 'alpha': 1, 'zorder': 1}\n",
- " es_errorbar_kwargs: dict, default None\n",
+ " {'marker': 'o', 'size': plot_kwargs['contrast_marker_size'], 'color': 'black', 'alpha': 1, 'zorder': 1}\n",
+ " contrast_errorbar_kwargs: dict, default None\n",
" Pass relevant keyword arguments to the effectsize errorbar plotting. If none, the following keywords are passed:\n",
" {'color': 'black', 'lw': 2, 'linestyle': '-', 'alpha': 1,'zorder': 1,}\n",
"\n",
@@ -1599,9 +1643,9 @@
" Pass relevant keyword arguments. If None, the following keywords are passed:\n",
" {'color': 'k', 'zorder': 5, 'ha': 'center', 'va': 'center'},\n",
"\n",
- " es_paired_lines: bool, default True\n",
+ " contrast_paired_lines: bool, default True\n",
" Whether or not to add lines to connect the effect size curves in paired plots.\n",
- " es_paired_lines_kwargs: dict, default None\n",
+ " contrast_paired_lines_kwargs: dict, default None\n",
" Pass relevant plot keyword arguments. If None, the following keywords are passed:\n",
" {\"linestyle\": \"-\", \"linewidth\": 2, \"zorder\": -2, \"color\": 'dimgray', \"alpha\": 1}\n",
" \n",
@@ -1632,12 +1676,15 @@
" if hasattr(self, \"results\") is False:\n",
" self.__pre_calc()\n",
"\n",
+ " if raw_alpha is None:\n",
+ " raw_alpha = (0.4 if self.is_proportional and self.is_paired \n",
+ " else 0.5 if self.is_paired\n",
+ " else 1.0\n",
+ " )\n",
+ "\n",
" if self.__delta2 and not empty_circle:\n",
" color_col = self.__x2\n",
"\n",
- " # Modification incurred due to update of Seaborn\n",
- " ci = (\"ci\", ci) if ci is not None else None\n",
- "\n",
" all_kwargs = locals()\n",
" del all_kwargs[\"self\"]\n",
"\n",
@@ -2135,6 +2182,10 @@
" `random_seed` is used to seed the random number generator during\n",
" bootstrap resampling. This ensures that the generated permutations\n",
" are replicable.\n",
+ " ps_adjust : bool, default False\n",
+ " If True, the p-value is adjusted according to Phipson & Smyth (2010).\n",
+ " # https://doi.org/10.2202/1544-6115.1585\n",
+ "\n",
" \n",
" Returns\n",
" -------\n",
@@ -2153,6 +2204,7 @@
" is_paired:str=None,\n",
" permutation_count:int=5000, # The number of permutations (reshuffles) to perform.\n",
" random_seed:int=12345,#`random_seed` is used to seed the random number generator during bootstrap resampling. This ensures that the generated permutations are replicable.\n",
+ " ps_adjust:bool=False,\n",
" **kwargs):\n",
" from ._stats_tools.effsize import two_group_difference\n",
" from ._stats_tools.confint_2group_diff import calculate_group_var\n",
@@ -2177,6 +2229,7 @@
"\n",
" BAG = array([*control, *test])\n",
" CONTROL_LEN = int(len(control))\n",
+ " TEST_LEN = int(len(test)) # devMJBL\n",
" EXTREME_COUNT = 0.\n",
" THRESHOLD = abs(two_group_difference(control, test, \n",
" is_paired, effect_size))\n",
@@ -2216,13 +2269,43 @@
"\n",
" if abs(es) > THRESHOLD:\n",
" EXTREME_COUNT += 1.\n",
+ " \n",
+ " if ps_adjust:\n",
+ " # devMJBL\n",
+ " # adjust calculated p-value according to Phipson & Smyth (2010)\n",
+ " # https://doi.org/10.2202/1544-6115.1585\n",
+ " # as per R code in statmod::permp\n",
+ " # https://rdrr.io/cran/statmod/src/R/permp.R\n",
+ " # (assumes two-sided test)\n",
+ "\n",
+ " if CONTROL_LEN == TEST_LEN:\n",
+ " totalPermutations = binomcoeff(CONTROL_LEN + TEST_LEN, TEST_LEN)/2\n",
+ " else:\n",
+ " totalPermutations = binomcoeff(CONTROL_LEN + TEST_LEN, TEST_LEN)\n",
+ "\n",
+ " if totalPermutations <= 10e3:\n",
+ " # use exact calculation\n",
+ " p = arange(1, totalPermutations + 1)/totalPermutations\n",
+ " x2 = repeat(EXTREME_COUNT, repeats=totalPermutations)\n",
+ " Y = binom.cdf(k=x2, n=permutation_count, p=p)\n",
+ " self.pvalue = mean(Y)\n",
+ " else:\n",
+ " # use integral approximation\n",
+ " def binomcdf(p, k, n):\n",
+ " return binom.cdf(k, n, p)\n",
+ "\n",
+ " integrationVal, _ = fixed_quad(binomcdf,\n",
+ " a=0, b=0.5/totalPermutations,\n",
+ " args=(EXTREME_COUNT, permutation_count),\n",
+ " n=128)\n",
"\n",
+ " self.pvalue = (EXTREME_COUNT + 1)/(permutation_count + 1) - integrationVal\n",
+ " else:\n",
+ " self.pvalue = EXTREME_COUNT / self.__permutation_count\n",
+ " \n",
" self.__permutations = array(self.__permutations)\n",
" self.__permutations_var = array(self.__permutations_var)\n",
"\n",
- " self.pvalue = EXTREME_COUNT / self.__permutation_count\n",
- "\n",
- "\n",
" def __repr__(self):\n",
" return(\"{} permutations were taken. The p-value is {}.\".format(self.__permutation_count, \n",
" self.pvalue))\n",
diff --git a/nbs/API/forest_plot.ipynb b/nbs/API/forest_plot.ipynb
index 8576374e..ece45d7c 100644
--- a/nbs/API/forest_plot.ipynb
+++ b/nbs/API/forest_plot.ipynb
@@ -62,7 +62,10 @@
"import matplotlib.pyplot as plt\n",
"# %matplotlib inline\n",
"import seaborn as sns\n",
- "from typing import List, Optional, Union\n"
+ "from typing import List, Optional, Union\n",
+ "import numpy as np\n",
+ "import matplotlib.axes as axes\n",
+ "import matplotlib.patches as mpatches"
]
},
{
@@ -75,7 +78,8 @@
"def load_plot_data(\n",
" data: List, \n",
" effect_size: str = \"mean_diff\", \n",
- " contrast_type: str = 'delta2',\n",
+ " contrast_type: str = None,\n",
+ " ci_type: str = \"bca\",\n",
" idx: Optional[List[int]] = None\n",
") -> List:\n",
" \"\"\"\n",
@@ -88,7 +92,9 @@
" effect_size: str\n",
" Type of effect size ('mean_diff', 'median_diff', etc.).\n",
" contrast_type: str\n",
- " Type of dabest object to plot ('delta2' or 'mini-meta')\n",
+ " Type of dabest object to plot ('delta2' or 'mini-meta' or 'delta').\n",
+ " ci_type: str\n",
+ " Type of confidence interval to plot ('bca' or 'pct')\n",
" idx: Optional[List[int]], default=None\n",
" List of indices to select from the contrast objects if delta-delta experiment. \n",
" If None, only the delta-delta objects are plotted.\n",
@@ -101,125 +107,171 @@
" effect_attr = \"hedges_g\" if effect_size == 'delta_g' else effect_size\n",
" contrast_attr = {\"delta2\": \"delta_delta\", \"mini_meta\": \"mini_meta\"}.get(contrast_type)\n",
"\n",
+ " # Testing\n",
" if idx is not None:\n",
" bootstraps, differences, bcalows, bcahighs = [], [], [], []\n",
" for current_idx, index_group in enumerate(idx):\n",
" current_contrast = data[current_idx]\n",
" if len(index_group)>0:\n",
" for index in index_group:\n",
- " if index == 2:\n",
- " current_plot_data = getattr(getattr(current_contrast, effect_attr), contrast_attr)\n",
- " bootstraps.append(current_plot_data.bootstraps_delta_delta)\n",
- " differences.append(current_plot_data.difference)\n",
- " bcalows.append(current_plot_data.bca_low)\n",
- " bcahighs.append(current_plot_data.bca_high)\n",
- " elif index == 0 or index == 1:\n",
- " current_plot_data = getattr(current_contrast, effect_attr)\n",
- " bootstraps.append(current_plot_data.results.bootstraps[index])\n",
- " differences.append(current_plot_data.results.difference[index])\n",
- " bcalows.append(current_plot_data.results.bca_low[index])\n",
- " bcahighs.append(current_plot_data.results.bca_high[index])\n",
- " else:\n",
- " raise ValueError(\"The selected indices must be 0, 1, or 2.\")\n",
+ " current_plot_data = getattr(current_contrast, effect_attr)\n",
+ " if contrast_type == 'delta2':\n",
+ " if index == 2:\n",
+ " current_plot_data = getattr(current_plot_data, contrast_attr)\n",
+ " bootstrap_name, index_val = \"bootstraps_delta_delta\", 0\n",
+ " elif index == 0 or index == 1:\n",
+ " bootstrap_name, index_val = \"bootstraps\", index\n",
+ " else:\n",
+ " raise ValueError(\"The selected indices must be 0, 1, or 2.\")\n",
+ " elif contrast_type == \"mini_meta\":\n",
+ " num_of_groups = len(getattr(current_contrast, effect_attr).results)\n",
+ " if index == num_of_groups:\n",
+ " current_plot_data = getattr(getattr(current_contrast, effect_attr), contrast_attr)\n",
+ " bootstrap_name, index_val = \"bootstraps_weighted_delta\", 0\n",
+ " elif index < num_of_groups:\n",
+ " bootstrap_name, index_val = \"bootstraps\", index\n",
+ " else:\n",
+ " msg1 = \"There are only {} groups (starting from zero) in this dabest object. \".format(num_of_groups)\n",
+ " msg2 = \"The idx given is {}.\".format(index)\n",
+ " raise ValueError(msg1+msg2) \n",
+ " else: # contrast_type == 'delta'\n",
+ " bootstrap_name, index_val = \"bootstraps\", index \n",
+ "\n",
+ " bootstraps.append(getattr(current_plot_data.results, bootstrap_name)[index_val])\n",
+ " differences.append(current_plot_data.results.difference[index_val])\n",
+ " bcalows.append(current_plot_data.results.get(ci_type+'_low')[index_val])\n",
+ " bcahighs.append(current_plot_data.results.get(ci_type+'_high')[index_val]) \n",
" else:\n",
- " contrast_plot_data = [getattr(getattr(contrast, effect_attr), contrast_attr) for contrast in data]\n",
- "\n",
- " attribute_suffix = \"weighted_delta\" if contrast_type == \"mini_meta\" else \"delta_delta\"\n",
- "\n",
- " bootstraps = [getattr(result, f\"bootstraps_{attribute_suffix}\") for result in contrast_plot_data]\n",
- " differences = [result.difference for result in contrast_plot_data]\n",
- " bcalows = [result.bca_low for result in contrast_plot_data]\n",
- " bcahighs = [result.bca_high for result in contrast_plot_data]\n",
+ " if contrast_type == 'delta':\n",
+ " contrast_plot_data = [getattr(contrast, effect_attr) for contrast in data]\n",
+ " bootstraps_nested = [result.results.bootstraps.to_list() for result in contrast_plot_data]\n",
+ " differences_nested = [result.results.difference.to_list() for result in contrast_plot_data]\n",
+ " bcalows_nested = [result.results.get(ci_type+'_low').to_list() for result in contrast_plot_data]\n",
+ " bcahighs_nested = [result.results.get(ci_type+'_high').to_list() for result in contrast_plot_data]\n",
+ " \n",
+ " bootstraps = [element for innerList in bootstraps_nested for element in innerList]\n",
+ " differences = [element for innerList in differences_nested for element in innerList]\n",
+ " bcalows = [element for innerList in bcalows_nested for element in innerList]\n",
+ " bcahighs = [element for innerList in bcahighs_nested for element in innerList]\n",
+ "\n",
+ " else: # contrast_type == 'delta2' or 'mini_meta'\n",
+ " contrast_plot_data = [getattr(getattr(contrast, effect_attr), contrast_attr) for contrast in data]\n",
+ " attribute_suffix = \"weighted_delta\" if contrast_type == \"mini_meta\" else \"delta_delta\"\n",
+ "\n",
+ " bootstraps = [getattr(result, f\"bootstraps_{attribute_suffix}\") for result in contrast_plot_data]\n",
+ " differences = [result.difference for result in contrast_plot_data]\n",
+ " bcalows = [result.results.get(ci_type+'_low')[0] for result in contrast_plot_data]\n",
+ " bcahighs = [result.results.get(ci_type+'_high')[0] for result in contrast_plot_data]\n",
"\n",
" return bootstraps, differences, bcalows, bcahighs\n",
"\n",
- "def check_for_errors(\n",
- " data,\n",
- " idx,\n",
- " ax,\n",
- " fig_size,\n",
- " effect_size,\n",
- " horizontal,\n",
- " marker_size,\n",
- " custom_palette,\n",
- " halfviolin_alpha,\n",
- " halfviolin_desat,\n",
- " labels,\n",
- " labels_rotation,\n",
- " labels_fontsize,\n",
- " title,\n",
- " title_fontsize,\n",
- " ylabel,\n",
- " ylabel_fontsize,\n",
- " ylim,\n",
- " yticks,\n",
- " yticklabels,\n",
- " remove_spines,\n",
- " ) -> str:\n",
- "\n",
+ "def check_for_errors(**kwargs):\n",
+ " data = kwargs.get('data')\n",
" # Contrasts\n",
" if not isinstance(data, list) or not data:\n",
" raise ValueError(\"The `data` argument must be a non-empty list of dabest objects.\")\n",
" \n",
" ## Check if all contrasts are delta-delta or all are mini-meta\n",
- " contrast_type = \"delta2\" if data[0].delta2 else \"mini_meta\"\n",
+ " contrast_type = (\"delta2\" if data[0].delta2 \n",
+ " else \"mini_meta\" if data[0].is_mini_meta\n",
+ " else \"delta\"\n",
+ " )\n",
+ "\n",
+ " # contrast_type = \"delta2\" if data[0].delta2 else \"mini_meta\"\n",
" for contrast in data:\n",
- " check_contrast_type = \"delta2\" if contrast.delta2 else \"mini_meta\"\n",
+ " check_contrast_type = (\"delta2\" if contrast.delta2 \n",
+ " else \"mini_meta\" if contrast.is_mini_meta\n",
+ " else \"delta\"\n",
+ " )\n",
" if check_contrast_type != contrast_type:\n",
- " raise ValueError(\"Each dabest object supplied must be the same experimental type (mini-meta or delta-delta)\")\n",
+ " raise ValueError(\"Each dabest object supplied must be the same experimental type (mini-meta or delta-delta or neither.)\")\n",
"\n",
" # Idx\n",
+ " idx = kwargs.get('idx')\n",
+ " effect_size = kwargs.get('effect_size')\n",
" if idx is not None:\n",
" if not isinstance(idx, (tuple, list)):\n",
" raise TypeError(\"`idx` must be a tuple or list of integers.\")\n",
- " if contrast_type == \"mini_meta\":\n",
- " raise ValueError(\"The `idx` argument is not applicable to mini-meta analyses.\")\n",
+ "\n",
+ " msg1 = \"The `idx` argument must have the same length as the number of dabest objects. \"\n",
+ " msg2 = \"E.g., If two dabest objects are supplied, there should be two lists within `idx`. \"\n",
+ " msg3 = \"E.g., `idx` = [[1,2],[0,1]].\"\n",
+ " _total = 0\n",
+ " for _group in idx:\n",
+ " if isinstance(_group, int | float):\n",
+ " raise ValueError(msg1+msg2+msg3)\n",
+ " else:\n",
+ " _total += 1\n",
+ " if _total != len(data):\n",
+ " raise ValueError(msg1+msg2+msg3)\n",
+ " \n",
+ " if idx is not None:\n",
+ " number_of_curves_to_plot = sum([len(i) for i in idx])\n",
+ " else:\n",
+ " if contrast_type == 'delta':\n",
+ " number_of_curves_to_plot = sum(len(getattr(i, effect_size).results) for i in data)\n",
+ " else:\n",
+ " number_of_curves_to_plot = len(data)\n",
"\n",
" # Axes\n",
+ " ax = kwargs.get('ax')\n",
+ " fig_size = kwargs.get('fig_size')\n",
" if ax is not None and not isinstance(ax, plt.Axes):\n",
" raise TypeError(\"The `ax` must be a `matplotlib.axes.Axes` instance or `None`.\")\n",
" \n",
" # Figure size\n",
" if fig_size is not None and not isinstance(fig_size, (tuple, list)):\n",
- " raise TypeError(\"`fig_size` must be a tuple or list of two integers.\")\n",
+ " raise TypeError(\"`fig_size` must be a tuple or list of two positive integers.\")\n",
"\n",
" # Effect size\n",
- " effect_size_options = ['mean_diff', 'hedges_g', 'delta_g']\n",
+ " effect_size_options = ['mean_diff', 'median_diff', 'cohens_d', 'cohens_h', 'cliffs_delta', 'hedges_g', 'delta_g']\n",
" if not isinstance(effect_size, str) or effect_size not in effect_size_options:\n",
- " raise TypeError(\"The `effect_size` argument must be a string and please choose from the following effect sizes: `mean_diff`, `hedges_g`, or `delta_g`.\")\n",
+ " raise TypeError(\"The `effect_size` argument must be a string and please choose from the following effect sizes: 'mean_diff', 'median_diff', 'cohens_d', 'cohens_h', 'cliffs_delta', 'hedges_g', 'delta_g'.\")\n",
" if data[0].is_mini_meta and effect_size != 'mean_diff':\n",
" raise ValueError(\"The `effect_size` argument must be `mean_diff` for mini-meta analyses.\")\n",
" if data[0].delta2 and effect_size not in ['mean_diff', 'hedges_g', 'delta_g']:\n",
" raise ValueError(\"The `effect_size` argument must be `mean_diff`, `hedges_g`, or `delta_g` for delta-delta analyses.\")\n",
+ " \n",
+ " # CI type\n",
+ " ci_type = kwargs.get('ci_type')\n",
+ " if ci_type not in ('bca', 'pct'):\n",
+ " raise TypeError(\"`ci_type` must be either 'bca' or 'pct'.\")\n",
"\n",
" # Horizontal\n",
+ " horizontal = kwargs.get('horizontal')\n",
" if not isinstance(horizontal, bool):\n",
" raise TypeError(\"`horizontal` must be a boolean value.\")\n",
"\n",
" # Marker size\n",
+ " marker_size = kwargs.get('marker_size')\n",
" if not isinstance(marker_size, (int, float)) or marker_size <= 0:\n",
" raise TypeError(\"`marker_size` must be a positive integer or float.\")\n",
"\n",
" # Custom palette\n",
- " if custom_palette is not None and not isinstance(custom_palette, (dict, list, str, type(None))):\n",
+ " custom_palette = kwargs.get('custom_palette')\n",
+ " labels = kwargs.get('labels')\n",
+ " if custom_palette is not None and not isinstance(custom_palette, (dict, list, tuple, str, type(None))):\n",
" raise TypeError(\"The `custom_palette` must be either a dictionary, list, string, or `None`.\")\n",
" if isinstance(custom_palette, dict) and labels is None:\n",
" raise ValueError(\"The `labels` argument must be provided if `custom_palette` is a dictionary.\")\n",
- "\n",
- "\n",
- " # Halfviolin alpha and desat\n",
- " if not isinstance(halfviolin_alpha, float) or not 0 <= halfviolin_alpha <= 1:\n",
- " raise TypeError(\"`halfviolin_alpha` must be a float between 0 and 1.\")\n",
+ " if isinstance(custom_palette, (list, tuple)) and len(custom_palette) < number_of_curves_to_plot:\n",
+ " raise ValueError(\"The `custom_palette` list/tuple must have the same length as the number of `data` provided.\")\n",
+ "\n",
+ " # Contrast alpha and desat\n",
+ " contrast_alpha = kwargs.get('contrast_alpha')\n",
+ " contrast_desat = kwargs.get('contrast_desat')\n",
+ " if not isinstance(contrast_alpha, float) or not 0 <= contrast_alpha <= 1:\n",
+ " raise TypeError(\"`contrast_alpha` must be a float between 0 and 1.\")\n",
" \n",
- " if not isinstance(halfviolin_desat, (float, int)) or not 0 <= halfviolin_desat <= 1:\n",
- " raise TypeError(\"`halfviolin_desat` must be a float between 0 and 1 or an int (1).\")\n",
+ " if not isinstance(contrast_desat, (float, int)) or not 0 <= contrast_desat <= 1:\n",
+ " raise TypeError(\"`contrast_desat` must be a float between 0 and 1 or an int (1).\")\n",
" \n",
- "\n",
" # Contrast labels\n",
+ " labels_fontsize = kwargs.get('labels_fontsize')\n",
+ " labels_rotation = kwargs.get('labels_rotation')\n",
" if labels is not None and not all(isinstance(label, str) for label in labels):\n",
" raise TypeError(\"The `labels` must be a list of strings or `None`.\")\n",
" \n",
- " number_of_curves_to_plot = sum([len(i) for i in idx]) if idx is not None else len(data)\n",
" if labels is not None and len(labels) != number_of_curves_to_plot:\n",
" raise ValueError(\"`labels` must match the number of `data` provided.\")\n",
" \n",
@@ -230,6 +282,8 @@
" raise TypeError(\"`labels_rotation` must be an integer or float between 0 and 360.\") \n",
"\n",
" # Title\n",
+ " title = kwargs.get('title')\n",
+ " title_fontsize = kwargs.get('title_fontsize')\n",
" if title is not None and not isinstance(title, str):\n",
" raise TypeError(\"The `title` argument must be a string.\")\n",
" \n",
@@ -237,6 +291,8 @@
" raise TypeError(\"`title_fontsize` must be an integer or float.\")\n",
" \n",
" # Y-label\n",
+ " ylabel = kwargs.get('ylabel')\n",
+ " ylabel_fontsize = kwargs.get('ylabel_fontsize')\n",
" if ylabel is not None and not isinstance(ylabel, str):\n",
" raise TypeError(\"The `ylabel` argument must be a string.\")\n",
"\n",
@@ -244,16 +300,19 @@
" raise TypeError(\"`ylabel_fontsize` must be an integer or float.\")\n",
" \n",
" # Y-lim\n",
+ " ylim = kwargs.get('ylim')\n",
" if ylim is not None and not isinstance(ylim, (tuple, list)):\n",
" raise TypeError(\"`ylim` must be a tuple or list of two floats.\")\n",
" if ylim is not None and len(ylim) != 2:\n",
" raise ValueError(\"`ylim` must be a tuple or list of two floats.\")\n",
"\n",
" # Y-ticks\n",
+ " yticks = kwargs.get('yticks')\n",
" if yticks is not None and not isinstance(yticks, (tuple, list)):\n",
" raise TypeError(\"`yticks` must be a tuple or list of floats.\")\n",
" \n",
" # Y-ticklabels\n",
+ " yticklabels = kwargs.get('yticklabels')\n",
" if yticklabels is not None and not isinstance(yticklabels, (tuple, list)):\n",
" raise TypeError(\"`yticklabels` must be a tuple or list of strings.\")\n",
" \n",
@@ -261,18 +320,43 @@
" raise TypeError(\"`yticklabels` must be a list of strings.\")\n",
" \n",
" # Remove spines\n",
+ " remove_spines = kwargs.get('remove_spines')\n",
" if not isinstance(remove_spines, bool):\n",
" raise TypeError(\"`remove_spines` must be a boolean value.\")\n",
" \n",
- " return contrast_type\n",
+ " # Reference band\n",
+ " reference_band = kwargs.get('reference_band')\n",
+ " if reference_band is not None:\n",
+ " if not isinstance(reference_band, list | tuple):\n",
+ " raise TypeError(\"`reference_band` must be a list/tuple of indices (ints).\")\n",
+ " if not all(isinstance(i, int) for i in reference_band):\n",
+ " raise TypeError(\"`reference_band` must be a list/tuple of indices (ints).\")\n",
+ " if any(i >= number_of_curves_to_plot for i in reference_band):\n",
+ " raise ValueError(\"Index {} chosen is out of range for the contrast objects.\".format([i for i in reference_band if i >= number_of_curves_to_plot]))\n",
" \n",
+ " # Delta text\n",
+ " delta_text = kwargs.get('delta_text')\n",
+ " if delta_text is not None:\n",
+ " if not isinstance(delta_text, bool):\n",
+ " raise TypeError(\"`delta_text` must be a boolean value.\")\n",
+ "\n",
+ " # Contrast bars\n",
+ " contrast_bars = kwargs.get('contrast_bars')\n",
+ " if contrast_bars is not None:\n",
+ " if not isinstance(contrast_bars, bool):\n",
+ " raise TypeError(\"`contrast_bars` must be a boolean value.\")\n",
+ "\n",
+ " return contrast_type \n",
"\n",
"def get_kwargs(\n",
" violin_kwargs,\n",
" zeroline_kwargs,\n",
" horizontal,\n",
- " es_marker_kwargs,\n",
- " es_errorbar_kwargs,\n",
+ " marker_kwargs,\n",
+ " errorbar_kwargs,\n",
+ " delta_text_kwargs,\n",
+ " contrast_bars_kwargs,\n",
+ " reference_band_kwargs,\n",
" marker_size\n",
" ):\n",
" from .misc_tools import merge_two_dicts\n",
@@ -282,7 +366,7 @@
" \"widths\": 0.5,\n",
" \"showextrema\": False,\n",
" \"showmedians\": False,\n",
- " \"vert\": not horizontal,\n",
+ " \"orientation\": 'horizontal' if horizontal else 'vertical',\n",
" }\n",
" if violin_kwargs is None:\n",
" violin_kwargs = default_violin_kwargs\n",
@@ -300,39 +384,79 @@
" zeroline_kwargs = merge_two_dicts(default_zeroline_kwargs, zeroline_kwargs)\n",
"\n",
" # Effect size marker kwargs\n",
- " default_es_marker_kwargs = {\n",
+ " default_marker_kwargs = {\n",
" 'marker': 'o',\n",
" 'markersize': marker_size,\n",
" 'color': 'black',\n",
" 'alpha': 1,\n",
" 'zorder': 2,\n",
" }\n",
- " if es_marker_kwargs is None:\n",
- " es_marker_kwargs = default_es_marker_kwargs\n",
+ " if marker_kwargs is None:\n",
+ " marker_kwargs = default_marker_kwargs\n",
" else:\n",
- " es_marker_kwargs = merge_two_dicts(default_es_marker_kwargs, es_marker_kwargs)\n",
+ " marker_kwargs = merge_two_dicts(default_marker_kwargs, marker_kwargs)\n",
"\n",
" # Effect size error bar kwargs\n",
- " default_es_errorbar_kwargs = {\n",
+ " default_errorbar_kwargs = {\n",
" 'color': 'black',\n",
" 'lw': 2.5,\n",
" 'linestyle': '-',\n",
" 'alpha': 1,\n",
" 'zorder': 1,\n",
" }\n",
- " if es_errorbar_kwargs is None:\n",
- " es_errorbar_kwargs = default_es_errorbar_kwargs\n",
+ " if errorbar_kwargs is None:\n",
+ " errorbar_kwargs = default_errorbar_kwargs\n",
+ " else:\n",
+ " errorbar_kwargs = merge_two_dicts(default_errorbar_kwargs, errorbar_kwargs)\n",
+ "\n",
+ " # Delta text kwargs\n",
+ " default_delta_text_kwargs = {\n",
+ " \"color\": None, \n",
+ " \"alpha\": 1,\n",
+ " \"fontsize\": 10, \n",
+ " \"ha\": 'center', \n",
+ " \"va\": 'center', \n",
+ " \"rotation\": 0, \n",
+ " \"x_coordinates\": None, \n",
+ " \"y_coordinates\": None,\n",
+ " \"offset\": 0\n",
+ " }\n",
+ " if delta_text_kwargs is None:\n",
+ " delta_text_kwargs = default_delta_text_kwargs\n",
" else:\n",
- " es_errorbar_kwargs = merge_two_dicts(default_es_errorbar_kwargs, es_errorbar_kwargs)\n",
+ " delta_text_kwargs = merge_two_dicts(default_delta_text_kwargs, delta_text_kwargs)\n",
"\n",
- " return violin_kwargs, zeroline_kwargs, es_marker_kwargs, es_errorbar_kwargs\n",
+ " # Contrast bars kwargs.\n",
+ " default_contrast_bars_kwargs = {\n",
+ " \"color\": None, \n",
+ " \"zorder\":-3,\n",
+ " 'alpha': 0.15\n",
+ " }\n",
+ " if contrast_bars_kwargs is None:\n",
+ " contrast_bars_kwargs = default_contrast_bars_kwargs\n",
+ " else:\n",
+ " contrast_bars_kwargs = merge_two_dicts(default_contrast_bars_kwargs, contrast_bars_kwargs)\n",
+ "\n",
+ " # reference band kwargs.\n",
+ " default_reference_band_kwargs = {\n",
+ " \"span_ax\": False,\n",
+ " \"color\": None, \n",
+ " \"alpha\": 0.15,\n",
+ " \"zorder\":-3\n",
+ " }\n",
+ " if reference_band_kwargs is None:\n",
+ " reference_band_kwargs = default_reference_band_kwargs\n",
+ " else:\n",
+ " reference_band_kwargs = merge_two_dicts(default_reference_band_kwargs, reference_band_kwargs)\n",
"\n",
+ " return (violin_kwargs, zeroline_kwargs, marker_kwargs, errorbar_kwargs, \n",
+ " delta_text_kwargs, contrast_bars_kwargs, reference_band_kwargs)\n",
"\n",
"def color_palette(\n",
" custom_palette, \n",
" labels, \n",
" number_of_curves_to_plot,\n",
- " halfviolin_desat\n",
+ " contrast_desat\n",
" ):\n",
" if custom_palette is not None:\n",
" if isinstance(custom_palette, dict):\n",
@@ -350,22 +474,22 @@
" )\n",
" else:\n",
" violin_colors = sns.color_palette(n_colors=number_of_curves_to_plot)\n",
- " violin_colors = [sns.desaturate(color, halfviolin_desat) for color in violin_colors]\n",
+ " violin_colors = [sns.desaturate(color, contrast_desat) for color in violin_colors]\n",
" return violin_colors\n",
"\n",
- "\n",
"def forest_plot(\n",
" data: list,\n",
" idx: Optional[list[int]] = None,\n",
" ax: Optional[plt.Axes] = None,\n",
" fig_size: tuple[int, int] = None,\n",
" effect_size: str = \"mean_diff\",\n",
+ " ci_type='bca',\n",
" horizontal: bool = False, \n",
"\n",
" marker_size: int = 10,\n",
" custom_palette: Optional[Union[dict, list, str]] = None,\n",
- " halfviolin_alpha: float = 0.8,\n",
- " halfviolin_desat: float = 1,\n",
+ " contrast_alpha: float = 0.8,\n",
+ " contrast_desat: float = 1,\n",
"\n",
" labels: list[str] = None,\n",
" labels_rotation: int = None,\n",
@@ -379,10 +503,18 @@
" yticklabels: Optional[list[str]] = None,\n",
" remove_spines: bool = True,\n",
"\n",
+ " delta_text: bool = True,\n",
+ " delta_text_kwargs: dict = None,\n",
+ "\n",
+ " contrast_bars: bool = True,\n",
+ " contrast_bars_kwargs: dict = None,\n",
+ " reference_band: list|tuple = None,\n",
+ " reference_band_kwargs: dict = None,\n",
+ "\n",
" violin_kwargs: Optional[dict] = None,\n",
" zeroline_kwargs: Optional[dict] = None,\n",
- " es_marker_kwargs: Optional[dict] = None,\n",
- " es_errorbar_kwargs: Optional[dict] = None,\n",
+ " marker_kwargs: Optional[dict] = None,\n",
+ " errorbar_kwargs: Optional[dict] = None,\n",
")-> plt.Figure:\n",
" \"\"\" \n",
" Custom function that generates a forest plot from given contrast objects, suitable for a range of data analysis types, including those from packages like DABEST-python.\n",
@@ -402,15 +534,17 @@
" Figure size for the plot.\n",
" effect_size : str\n",
" Type of effect size to plot (e.g., 'mean_diff', `hedges_g` or 'delta_g').\n",
+ " ci_type : str\n",
+ " Type of confidence interval to plot (bca' or 'pct')\n",
" horizontal : bool, default=False\n",
" If True, the plot will be horizontal.\n",
" marker_size : int, default=12\n",
" Marker size for plotting effect size dots.\n",
" custom_palette : Optional[Union[dict, list, str]], default=None\n",
" Custom color palette for the plot.\n",
- " halfviolin_alpha : float, default=0.8\n",
+ " contrast_alpha : float, default=0.8\n",
" Transparency level for violin plots.\n",
- " halfviolin_desat : float, default=1\n",
+ " contrast_desat : float, default=1\n",
" Saturation level for violin plots.\n",
" labels : List[str]\n",
" Labels for each contrast. If None, defaults to 'Contrast 1', 'Contrast 2', etc.\n",
@@ -434,13 +568,25 @@
" Custom y-tick labels for the plot.\n",
" remove_spines : bool, default=True\n",
" If True, removes plot spines (except the relevant dependent variable spine).\n",
+ " delta_text : bool, default=True\n",
+ " If True, it adds text next to each curve representing the effect size value.\n",
+ " delta_text_kwargs : dict, default=None\n",
+ " Additional keyword arguments for the delta_text.\n",
+ " contrast_bars : bool, default=True\n",
+ " If True, it adds bars from the zeroline to the effect size curve.\n",
+ " contrast_bars_kwargs : dict, default=None\n",
+ " Additional keyword arguments for the contrast_bars.\n",
+ " reference_band: list | tuple, default=None,\n",
+ " It adds reference bands to the relevant effect size curves.\n",
+ " reference_band_kwargs : dict, default=None,\n",
+ " Additional keyword arguments for the reference_band.\n",
" violin_kwargs : Optional[dict], default=None\n",
" Additional arguments for violin plot customization.\n",
" zeroline_kwargs : Optional[dict], default=None\n",
" Additional arguments for the zero line customization.\n",
- " es_marker_kwargs : Optional[dict], default=None\n",
+ " marker_kwargs : Optional[dict], default=None\n",
" Additional arguments for the effect size marker customization.\n",
- " es_errorbar_kwargs : Optional[dict], default=None\n",
+ " errorbar_kwargs : Optional[dict], default=None\n",
" Additional arguments for the effect size error bar customization.\n",
"\n",
" Returns\n",
@@ -450,42 +596,20 @@
" \"\"\"\n",
" from .plot_tools import halfviolin\n",
"\n",
- " \n",
" # Check for errors in the input arguments\n",
- " contrast_type = check_for_errors(\n",
- " data = data,\n",
- " idx = idx,\n",
- " ax = ax,\n",
- " fig_size = fig_size,\n",
- " effect_size = effect_size,\n",
- " horizontal = horizontal,\n",
- " marker_size = marker_size,\n",
- " custom_palette = custom_palette,\n",
- " halfviolin_alpha = halfviolin_alpha,\n",
- " halfviolin_desat = halfviolin_desat,\n",
- " labels = labels,\n",
- " labels_rotation = labels_rotation,\n",
- " labels_fontsize = labels_fontsize,\n",
- " title = title,\n",
- " title_fontsize = title_fontsize,\n",
- " ylabel = ylabel,\n",
- " ylabel_fontsize = ylabel_fontsize,\n",
- " ylim = ylim,\n",
- " yticks = yticks,\n",
- " yticklabels = yticklabels,\n",
- " remove_spines = remove_spines,\n",
- " )\n",
+ " all_kwargs = locals()\n",
+ " contrast_type = check_for_errors(**all_kwargs)\n",
"\n",
" # Load plot data and extract info\n",
" bootstraps, differences, bcalows, bcahighs = load_plot_data(\n",
" data = data, \n",
" effect_size = effect_size, \n",
" contrast_type = contrast_type,\n",
+ " ci_type = ci_type,\n",
" idx = idx\n",
" )\n",
- "\n",
" # Adjust figure size based on orientation\n",
- " number_of_curves_to_plot = sum([len(i) for i in idx]) if idx is not None else len(data)\n",
+ " number_of_curves_to_plot = len(bootstraps)\n",
" if ax is not None:\n",
" fig = ax.figure\n",
" else:\n",
@@ -494,13 +618,17 @@
" fig, ax = plt.subplots(figsize=fig_size)\n",
"\n",
" # Get Kwargs\n",
- " violin_kwargs, zeroline_kwargs, es_marker_kwargs, es_errorbar_kwargs = get_kwargs(\n",
- " violin_kwargs = violin_kwargs,\n",
- " zeroline_kwargs = zeroline_kwargs,\n",
- " horizontal = horizontal,\n",
- " es_marker_kwargs = es_marker_kwargs,\n",
- " es_errorbar_kwargs = es_errorbar_kwargs,\n",
- " marker_size = marker_size\n",
+ " (violin_kwargs, zeroline_kwargs, marker_kwargs, errorbar_kwargs, \n",
+ " delta_text_kwargs, contrast_bars_kwargs, reference_band_kwargs) = get_kwargs(\n",
+ " violin_kwargs = violin_kwargs,\n",
+ " zeroline_kwargs = zeroline_kwargs,\n",
+ " horizontal = horizontal,\n",
+ " marker_kwargs = marker_kwargs,\n",
+ " errorbar_kwargs = errorbar_kwargs,\n",
+ " delta_text_kwargs = delta_text_kwargs,\n",
+ " contrast_bars_kwargs = contrast_bars_kwargs,\n",
+ " reference_band_kwargs = reference_band_kwargs,\n",
+ " marker_size = marker_size\n",
" )\n",
" \n",
" # Plot the violins and make adjustments\n",
@@ -510,18 +638,18 @@
" )\n",
" halfviolin(\n",
" v, \n",
- " alpha = halfviolin_alpha, \n",
+ " alpha = contrast_alpha, \n",
" half = \"bottom\" if horizontal else \"right\",\n",
" )\n",
" \n",
" ## Plotting the effect sizes and confidence intervals\n",
" for k in range(1, number_of_curves_to_plot + 1):\n",
" if horizontal:\n",
- " ax.plot(differences[k - 1], k, **es_marker_kwargs) \n",
- " ax.plot([bcalows[k - 1], bcahighs[k - 1]], [k, k], **es_errorbar_kwargs) \n",
+ " ax.plot(differences[k - 1], k, **marker_kwargs) \n",
+ " ax.plot([bcalows[k - 1], bcahighs[k - 1]], [k, k], **errorbar_kwargs) \n",
" else:\n",
- " ax.plot(k, differences[k - 1], **es_marker_kwargs)\n",
- " ax.plot([k, k], [bcalows[k - 1], bcahighs[k - 1]], **es_errorbar_kwargs)\n",
+ " ax.plot(k, differences[k - 1], **marker_kwargs)\n",
+ " ax.plot([k, k], [bcalows[k - 1], bcahighs[k - 1]], **errorbar_kwargs)\n",
" \n",
" # Aesthetic Adjustments\n",
" ## Handle the custom color palette\n",
@@ -529,7 +657,7 @@
" custom_palette = custom_palette, \n",
" labels = labels, \n",
" number_of_curves_to_plot = number_of_curves_to_plot,\n",
- " halfviolin_desat = halfviolin_desat\n",
+ " contrast_desat = contrast_desat\n",
" )\n",
" \n",
" for patch, color in zip(v[\"bodies\"], violin_colors):\n",
@@ -578,13 +706,17 @@
" if ylabel is None:\n",
" effect_attr_map = {\n",
" \"mean_diff\": \"Mean Difference\",\n",
+ " \"median_diff\": \"Median Difference\", \n",
+ " \"cohens_d\": \"Cohen's d\",\n",
+ " \"cohens_h\": \"Cohen's h\",\n",
+ " \"cliffs_delta\": \"Cliff's delta\",\n",
" \"hedges_g\": \"Hedges' g\",\n",
- " \"delta_g\": \"Deltas' g\"\n",
+ " \"delta_g\": \"Delta g\"\n",
" }\n",
" if contrast_type=='delta2' and idx is None and effect_size == \"hedges_g\":\n",
- " ylabel = \"Deltas' g\"\n",
+ " ylabel = \"Delta g\"\n",
" elif contrast_type=='delta2' and idx is not None and (effect_size == \"delta_g\" or effect_size == \"hedges_g\"):\n",
- " ylabel = \"Hedges' g with Deltas' g\"\n",
+ " ylabel = \"Hedges' g with Delta g\"\n",
" else:\n",
" ylabel = effect_attr_map[effect_size]\n",
" lim_key = ax.set_xlabel if horizontal else ax.set_ylabel\n",
@@ -599,6 +731,97 @@
" spines = [\"top\", \"right\", \"left\"] if horizontal else [\"top\", \"right\", \"bottom\"]\n",
" ax.spines[spines].set_visible(False)\n",
"\n",
+ " # Delta Text\n",
+ " if delta_text:\n",
+ " if delta_text_kwargs.get('color') is not None:\n",
+ " delta_text_colors = [delta_text_kwargs.pop('color')] * number_of_curves_to_plot\n",
+ " else:\n",
+ " delta_text_colors = violin_colors\n",
+ " delta_text_kwargs.pop('color')\n",
+ "\n",
+ " # Collect the X-coordinates for the delta text\n",
+ " delta_text_x_coordinates = delta_text_kwargs.pop('x_coordinates')\n",
+ " delta_text_x_adjustment = delta_text_kwargs.pop('offset')\n",
+ "\n",
+ " if delta_text_x_coordinates is not None:\n",
+ " if not isinstance(delta_text_x_coordinates, (list, tuple)) or not all(isinstance(x, (int, float)) for x in delta_text_x_coordinates):\n",
+ " raise TypeError(\"delta_text_kwargs['x_coordinates'] must be a list of x-coordinates.\")\n",
+ " if len(delta_text_x_coordinates) != number_of_curves_to_plot:\n",
+ " raise ValueError(\"delta_text_kwargs['x_coordinates'] must have the same length as the number of ticks to plot.\")\n",
+ " else:\n",
+ " delta_text_x_coordinates = (np.arange(1, number_of_curves_to_plot + 1) \n",
+ " + (0.5 if not horizontal else -0.4)\n",
+ " + delta_text_x_adjustment\n",
+ " )\n",
+ "\n",
+ " # Collect the Y-coordinates for the delta text\n",
+ " delta_text_y_coordinates = delta_text_kwargs.pop('y_coordinates')\n",
+ "\n",
+ " if delta_text_y_coordinates is not None:\n",
+ " if not isinstance(delta_text_y_coordinates, (list, tuple)) or not all(isinstance(y, (int, float)) for y in delta_text_y_coordinates):\n",
+ " raise TypeError(\"delta_text_kwargs['y_coordinates'] must be a list of y-coordinates.\")\n",
+ " if len(delta_text_y_coordinates) != number_of_curves_to_plot:\n",
+ " raise ValueError(\"delta_text_kwargs['y_coordinates'] must have the same length as the number of ticks to plot.\")\n",
+ " else:\n",
+ " delta_text_y_coordinates = differences\n",
+ "\n",
+ " if horizontal:\n",
+ " delta_text_x_coordinates, delta_text_y_coordinates = delta_text_y_coordinates, delta_text_x_coordinates\n",
+ "\n",
+ " for idx, x, y, delta in zip(np.arange(0, number_of_curves_to_plot, 1), delta_text_x_coordinates, \n",
+ " delta_text_y_coordinates, differences):\n",
+ " delta_text = np.format_float_positional(delta, precision=2, sign=True, trim=\"k\", min_digits=2)\n",
+ " ax.text(x, y, delta_text, color=delta_text_colors[idx], zorder=5, **delta_text_kwargs)\n",
+ "\n",
+ " # Contrast bars\n",
+ " if contrast_bars:\n",
+ " _bar_color = contrast_bars_kwargs.pop('color')\n",
+ " if _bar_color is not None:\n",
+ " bar_colors = [_bar_color] * number_of_curves_to_plot\n",
+ " else:\n",
+ " bar_colors = violin_colors\n",
+ " for x, y in zip(np.arange(1, number_of_curves_to_plot + 1), differences):\n",
+ " if horizontal:\n",
+ " ax.add_patch(mpatches.Rectangle((0, x-0.25), y, 0.25, color=bar_colors[x-1], **contrast_bars_kwargs))\n",
+ " else:\n",
+ " ax.add_patch(mpatches.Rectangle((x, 0), 0.25, y, color=bar_colors[x-1], **contrast_bars_kwargs))\n",
+ "\n",
+ " # Reference band\n",
+ " if reference_band:\n",
+ " _bar_color = reference_band_kwargs.pop('color')\n",
+ " if _bar_color is not None:\n",
+ " bar_colors = [_bar_color] * number_of_curves_to_plot\n",
+ " else:\n",
+ " bar_colors = violin_colors\n",
+ "\n",
+ " span_ax = reference_band_kwargs.pop(\"span_ax\")\n",
+ " summary_xmin, summary_xmax = ax.get_xlim()\n",
+ " summary_ymin, summary_ymax = ax.get_ylim()\n",
+ "\n",
+ " for summary_index in reference_band:\n",
+ " if span_ax == True:\n",
+ " starting_location = summary_ymin if horizontal else summary_xmin\n",
+ " else:\n",
+ " starting_location = summary_index+1 \n",
+ "\n",
+ " summary_color = bar_colors[summary_index]\n",
+ " summary_ci_low, summary_ci_high = bcalows[summary_index], bcahighs[summary_index]\n",
+ "\n",
+ " if horizontal:\n",
+ " ax.add_patch(mpatches.Rectangle(\n",
+ " (summary_ci_low, starting_location),\n",
+ " summary_ci_high-summary_ci_low, summary_ymax+1, \n",
+ " color=summary_color, \n",
+ " **reference_band_kwargs)\n",
+ " )\n",
+ " else:\n",
+ " ax.add_patch(mpatches.Rectangle(\n",
+ " (starting_location, summary_ci_low),\n",
+ " summary_xmax+1, summary_ci_high-summary_ci_low, \n",
+ " color=summary_color, \n",
+ " **reference_band_kwargs)\n",
+ " )\n",
+ "\n",
" ## Invert Y-axis if horizontal \n",
" if horizontal:\n",
" ax.invert_yaxis()\n",
diff --git a/nbs/API/load.ipynb b/nbs/API/load.ipynb
index c628b30a..c71302db 100644
--- a/nbs/API/load.ipynb
+++ b/nbs/API/load.ipynb
@@ -66,6 +66,7 @@
" experiment_label=None,\n",
" x1_level=None,\n",
" mini_meta=False,\n",
+ " ps_adjust=False,\n",
"):\n",
" \"\"\"\n",
" Loads data in preparation for estimation statistics.\n",
@@ -126,6 +127,9 @@
" is True; otherwise it can only be a string.\n",
" mini_meta : boolean, default False\n",
" Indicator of weighted delta calculation.\n",
+ " ps_adjust : boolean, default False\n",
+ " Indicator of whether to adjust calculated p-value according to Phipson & Smyth (2010)\n",
+ " # https://doi.org/10.2202/1544-6115.1585\n",
"\n",
" Returns\n",
" -------\n",
@@ -149,6 +153,7 @@
" experiment_label,\n",
" x1_level,\n",
" mini_meta,\n",
+ " ps_adjust,\n",
" )"
]
},
diff --git a/nbs/API/misc_tools.ipynb b/nbs/API/misc_tools.ipynb
index 2a6014b9..a1075102 100644
--- a/nbs/API/misc_tools.ipynb
+++ b/nbs/API/misc_tools.ipynb
@@ -152,7 +152,8 @@
"def get_params(\n",
" effectsize_df: object, \n",
" plot_kwargs: dict,\n",
- " sankey_kwargs: dict\n",
+ " sankey_kwargs: dict,\n",
+ " barplot_kwargs: dict\n",
" ):\n",
" \"\"\"\n",
" Extracts parameters from the `effectsize_df` and `plot_kwargs` objects for use in the plotter function.\n",
@@ -165,6 +166,8 @@
" Kwargs passed to the plot function.\n",
" sankey kwargs : dict\n",
" Kwargs relating to the sankey diagram plots\n",
+ " barplot_kwargs : dict\n",
+ " Kwargs relating to the barplot\n",
" \"\"\"\n",
" plot_data = effectsize_df._plot_data\n",
" xvar = effectsize_df.xvar\n",
@@ -215,17 +218,12 @@
"\n",
" # Group summaries\n",
" group_summaries = plot_kwargs[\"group_summaries\"]\n",
- " if group_summaries is None:\n",
- " group_summaries = \"mean_sd\"\n",
- "\n",
- " # Error bar color\n",
- " err_color = plot_kwargs[\"err_color\"]\n",
- " if err_color is None: \n",
- " err_color = \"black\"\n",
+ " group_summaries = None if barplot_kwargs['errorbar'] is not None else group_summaries\n",
"\n",
" # Contrast Axes kwargs\n",
- " halfviolin_alpha = plot_kwargs[\"halfviolin_alpha\"]\n",
" ci_type = plot_kwargs[\"ci_type\"]\n",
+ " if ci_type not in [\"bca\", \"pct\"]:\n",
+ " raise ValueError(\"Invalid `ci_type`. Must be either 'bca' or 'pct'.\")\n",
" \n",
" # Boolean for showing Baseline Curve\n",
" show_baseline_ec = plot_kwargs[\"show_baseline_ec\"]\n",
@@ -248,11 +246,13 @@
" else \"right\" if not horizontal\n",
" else \"left\"\n",
" ) \n",
+ " # Whether to show sample sizes with ticklabels\n",
+ " show_sample_size = plot_kwargs[\"show_sample_size\"]\n",
" \n",
" return (dabest_obj, plot_data, xvar, yvar, is_paired, effect_size, proportional, all_plot_groups, \n",
- " idx, show_delta2, show_mini_meta, float_contrast, show_pairs, group_summaries, err_color, \n",
- " horizontal, results, halfviolin_alpha, ci_type, x1_level, experiment_label, show_baseline_ec, \n",
- " one_sankey, two_col_sankey, asymmetric_side)\n",
+ " idx, show_delta2, show_mini_meta, float_contrast, show_pairs, group_summaries, \n",
+ " horizontal, results, ci_type, x1_level, experiment_label, show_baseline_ec, \n",
+ " one_sankey, two_col_sankey, asymmetric_side, show_sample_size)\n",
"\n",
"def get_kwargs(\n",
" plot_kwargs: dict, \n",
@@ -272,7 +272,9 @@
"\n",
" # Swarmplot kwargs\n",
" default_swarmplot_kwargs = {\n",
- " \"size\": plot_kwargs[\"raw_marker_size\"]\n",
+ " \"size\": plot_kwargs[\"raw_marker_size\"],\n",
+ " \"alpha\": plot_kwargs[\"raw_alpha\"],\n",
+ " \"fontsize\": plot_kwargs.get(\"fontsize_rawxlabel\"),\n",
" }\n",
" if plot_kwargs[\"swarmplot_kwargs\"] is None:\n",
" swarmplot_kwargs = default_swarmplot_kwargs\n",
@@ -284,7 +286,11 @@
" # Barplot kwargs\n",
" default_barplot_kwargs = {\n",
" \"estimator\": np.mean, \n",
- " \"errorbar\": plot_kwargs[\"ci\"],\n",
+ " \"errorbar\": None,\n",
+ " \"width\": plot_kwargs[\"bar_width\"],\n",
+ " \"alpha\": plot_kwargs[\"raw_alpha\"],\n",
+ " \"err_kws\": {'color': 'black'},\n",
+ " \"fontsize\": plot_kwargs[\"fontsize_rawxlabel\"]\n",
" }\n",
" if plot_kwargs[\"barplot_kwargs\"] is None:\n",
" barplot_kwargs = default_barplot_kwargs\n",
@@ -299,9 +305,10 @@
" \"align\": \"center\",\n",
" \"sankey\": True,\n",
" \"flow\": True,\n",
- " \"alpha\": 0.4,\n",
+ " \"alpha\": plot_kwargs['raw_alpha'],\n",
" \"rightColor\": False,\n",
" \"bar_width\": 0.2,\n",
+ " \"fontsize\": plot_kwargs.get(\"fontsize_rawxlabel\")\n",
" }\n",
" if plot_kwargs[\"sankey_kwargs\"] is None:\n",
" sankey_kwargs = default_sankey_kwargs\n",
@@ -311,26 +318,27 @@
" )\n",
"\n",
" # Violinplot kwargs.\n",
- " default_violinplot_kwargs = {\n",
+ " default_contrast_kwargs = {\n",
" \"widths\": 0.5,\n",
- " \"vert\": 'vertical',\n",
+ " \"orientation\": 'vertical',\n",
" \"showextrema\": False,\n",
" \"showmedians\": False,\n",
+ " \"alpha\": plot_kwargs[\"contrast_alpha\"],\n",
" \n",
" }\n",
- " if plot_kwargs[\"violinplot_kwargs\"] is None:\n",
- " violinplot_kwargs = default_violinplot_kwargs\n",
+ " if plot_kwargs[\"contrast_kwargs\"] is None:\n",
+ " contrast_kwargs = default_contrast_kwargs\n",
" else:\n",
- " violinplot_kwargs = merge_two_dicts(\n",
- " default_violinplot_kwargs, plot_kwargs[\"violinplot_kwargs\"]\n",
+ " contrast_kwargs = merge_two_dicts(\n",
+ " default_contrast_kwargs, plot_kwargs[\"contrast_kwargs\"]\n",
" )\n",
"\n",
" # Slopegraph kwargs.\n",
" default_slopegraph_kwargs = {\n",
" \"linewidth\": 1, \n",
- " \"alpha\": 0.5,\n",
+ " \"alpha\": plot_kwargs[\"raw_alpha\"],\n",
" 'jitter': 0, \n",
- " 'jitter_seed': 9876543210\n",
+ " 'jitter_seed': 9876543210,\n",
" }\n",
" if plot_kwargs[\"slopegraph_kwargs\"] is None:\n",
" slopegraph_kwargs = default_slopegraph_kwargs\n",
@@ -416,13 +424,11 @@
"\n",
" # Delta text kwargs.\n",
" default_delta_text_kwargs = {\n",
- " \"color\": None, \n",
" \"alpha\": 1,\n",
" \"fontsize\": 10, \n",
" \"ha\": 'center', \n",
" \"va\": 'center', \n",
" \"rotation\": 0, \n",
- " \"x_location\": 'right', \n",
" \"x_coordinates\": None, \n",
" \"y_coordinates\": None,\n",
" \"offset\": 0\n",
@@ -432,32 +438,31 @@
" else:\n",
" delta_text_kwargs = merge_two_dicts(default_delta_text_kwargs, plot_kwargs[\"delta_text_kwargs\"])\n",
"\n",
- " # Summary bars kwargs.\n",
- " default_summary_bars_kwargs = {\n",
+ " # Reference band kwargs.\n",
+ " default_reference_band_kwargs = {\n",
" \"span_ax\": False,\n",
- " \"color\": None, \n",
" \"alpha\": 0.15,\n",
" \"zorder\":-3\n",
" }\n",
- " if plot_kwargs[\"summary_bars_kwargs\"] is None:\n",
- " summary_bars_kwargs = default_summary_bars_kwargs\n",
+ " if plot_kwargs[\"reference_band_kwargs\"] is None:\n",
+ " reference_band_kwargs = default_reference_band_kwargs\n",
" else:\n",
- " summary_bars_kwargs = merge_two_dicts(default_summary_bars_kwargs, plot_kwargs[\"summary_bars_kwargs\"])\n",
+ " reference_band_kwargs = merge_two_dicts(default_reference_band_kwargs, plot_kwargs[\"reference_band_kwargs\"])\n",
"\n",
" # Swarm bars kwargs.\n",
- " default_swarm_bars_kwargs = {\n",
- " \"color\": None, \n",
- " \"zorder\":-3\n",
+ " default_raw_bars_kwargs = {\n",
+ " \"zorder\":-3,\n",
+ " \"alpha\": 0.2\n",
" }\n",
- " if plot_kwargs[\"swarm_bars_kwargs\"] is None:\n",
- " swarm_bars_kwargs = default_swarm_bars_kwargs\n",
+ " if plot_kwargs[\"raw_bars_kwargs\"] is None:\n",
+ " raw_bars_kwargs = default_raw_bars_kwargs\n",
" else:\n",
- " swarm_bars_kwargs = merge_two_dicts(default_swarm_bars_kwargs, plot_kwargs[\"swarm_bars_kwargs\"])\n",
+ " raw_bars_kwargs = merge_two_dicts(default_raw_bars_kwargs, plot_kwargs[\"raw_bars_kwargs\"])\n",
"\n",
" # Contrast bars kwargs.\n",
" default_contrast_bars_kwargs = {\n",
- " \"color\": None, \n",
- " \"zorder\":-3\n",
+ " \"zorder\":-3,\n",
+ " \"alpha\": 0.2\n",
" }\n",
" if plot_kwargs[\"contrast_bars_kwargs\"] is None:\n",
" contrast_bars_kwargs = default_contrast_bars_kwargs\n",
@@ -483,11 +488,11 @@
"\n",
" # Gridkey kwargs.\n",
" default_gridkey_kwargs = {\n",
- " 'show_es' : True, # If True, the gridkey will show the effect size of each comparison.\n",
- " 'show_Ns' :True, # If True, the gridkey will show the number of observations in eachgroup.\n",
- " 'merge_pairs' : False, # If True, the gridkey will merge the pairs of groups into a single cell. This is useful for when the groups are paired.\n",
- " 'delimiters': [';', '>', '_'], # Delimiters to split the group names.\n",
- " 'marker': \"\\u25CF\", # Marker for the gridkey dots.\n",
+ " 'show_es' : plot_kwargs['gridkey_show_es'], # If True, the gridkey will show the effect size of each comparison.\n",
+ " 'show_Ns' : plot_kwargs['gridkey_show_Ns'], # If True, the gridkey will show the number of observations in eachgroup.\n",
+ " 'merge_pairs' : plot_kwargs['gridkey_merge_pairs'], # If True, the gridkey will merge the pairs of groups into a single cell. This is useful for when the groups are paired.\n",
+ " 'delimiters': plot_kwargs['gridkey_delimiters'], # Delimiters to split the group names.\n",
+ " 'marker': \"\\u25CF\", # Marker for the gridkey dots.\n",
" }\n",
" if plot_kwargs[\"gridkey_kwargs\"] is None:\n",
" gridkey_kwargs = default_gridkey_kwargs\n",
@@ -495,30 +500,30 @@
" gridkey_kwargs = merge_two_dicts(default_gridkey_kwargs, plot_kwargs[\"gridkey_kwargs\"])\n",
"\n",
" # Effect size marker kwargs\n",
- " default_es_marker_kwargs = {\n",
+ " default_contrast_marker_kwargs = {\n",
" 'marker': 'o',\n",
- " 'markersize': plot_kwargs['es_marker_size'],\n",
+ " 'markersize': plot_kwargs['contrast_marker_size'],\n",
" 'color': ytick_color,\n",
" 'alpha': 1,\n",
" 'zorder': 2,\n",
" }\n",
- " if plot_kwargs['es_marker_kwargs'] is None:\n",
- " es_marker_kwargs = default_es_marker_kwargs\n",
+ " if plot_kwargs['contrast_marker_kwargs'] is None:\n",
+ " contrast_marker_kwargs = default_contrast_marker_kwargs\n",
" else:\n",
- " es_marker_kwargs = merge_two_dicts(default_es_marker_kwargs, plot_kwargs['es_marker_kwargs'])\n",
+ " contrast_marker_kwargs = merge_two_dicts(default_contrast_marker_kwargs, plot_kwargs['contrast_marker_kwargs'])\n",
"\n",
" # Effect size error bar kwargs\n",
- " default_es_errorbar_kwargs = {\n",
+ " default_contrast_errorbar_kwargs = {\n",
" 'color': ytick_color,\n",
" 'lw': 2,\n",
" 'linestyle': '-',\n",
" 'alpha': 1,\n",
" 'zorder': 1,\n",
" }\n",
- " if plot_kwargs['es_errorbar_kwargs'] is None:\n",
- " es_errorbar_kwargs = default_es_errorbar_kwargs\n",
+ " if plot_kwargs['contrast_errorbar_kwargs'] is None:\n",
+ " contrast_errorbar_kwargs = default_contrast_errorbar_kwargs\n",
" else:\n",
- " es_errorbar_kwargs = merge_two_dicts(default_es_errorbar_kwargs, plot_kwargs['es_errorbar_kwargs'])\n",
+ " contrast_errorbar_kwargs = merge_two_dicts(default_contrast_errorbar_kwargs, plot_kwargs['contrast_errorbar_kwargs'])\n",
"\n",
" # Prop sample counts kwargs\n",
" default_prop_sample_counts_kwargs = {\n",
@@ -534,23 +539,23 @@
"\n",
"\n",
" # RM Lines kwargs\n",
- " default_es_paired_lines_kwargs = {\n",
+ " default_contrast_paired_lines_kwargs = {\n",
" \"linestyle\": \"-\",\n",
" \"linewidth\": 2,\n",
" \"zorder\": -2,\n",
" \"color\": 'dimgray',\n",
" \"alpha\": 1\n",
" }\n",
- " if plot_kwargs[\"es_paired_lines_kwargs\"] is None:\n",
- " es_paired_lines_kwargs = default_es_paired_lines_kwargs\n",
+ " if plot_kwargs[\"contrast_paired_lines_kwargs\"] is None:\n",
+ " contrast_paired_lines_kwargs = default_contrast_paired_lines_kwargs\n",
" else:\n",
- " es_paired_lines_kwargs = merge_two_dicts(default_es_paired_lines_kwargs, plot_kwargs[\"es_paired_lines_kwargs\"])\n",
+ " contrast_paired_lines_kwargs = merge_two_dicts(default_contrast_paired_lines_kwargs, plot_kwargs[\"contrast_paired_lines_kwargs\"])\n",
"\n",
" # Return the kwargs.\n",
- " return (swarmplot_kwargs, barplot_kwargs, sankey_kwargs, violinplot_kwargs, slopegraph_kwargs, \n",
+ " return (swarmplot_kwargs, barplot_kwargs, sankey_kwargs, contrast_kwargs, slopegraph_kwargs, \n",
" reflines_kwargs, legend_kwargs, group_summaries_kwargs, redraw_axes_kwargs, delta_dot_kwargs,\n",
- " delta_text_kwargs, summary_bars_kwargs, swarm_bars_kwargs, contrast_bars_kwargs, table_kwargs, gridkey_kwargs,\n",
- " es_marker_kwargs, es_errorbar_kwargs, prop_sample_counts_kwargs, es_paired_lines_kwargs)\n",
+ " delta_text_kwargs, reference_band_kwargs, raw_bars_kwargs, contrast_bars_kwargs, table_kwargs, gridkey_kwargs,\n",
+ " contrast_marker_kwargs, contrast_errorbar_kwargs, prop_sample_counts_kwargs, contrast_paired_lines_kwargs)\n",
"\n",
"\n",
"def get_color_palette(\n",
@@ -634,9 +639,8 @@
"\n",
" n_groups = len(color_groups)\n",
" custom_pal = plot_kwargs[\"custom_palette\"]\n",
- " swarm_desat = plot_kwargs[\"swarm_desat\"]\n",
- " bar_desat = plot_kwargs[\"bar_desat\"]\n",
- " contrast_desat = plot_kwargs[\"halfviolin_desat\"]\n",
+ " raw_desat = plot_kwargs[\"raw_desat\"]\n",
+ " contrast_desat = plot_kwargs[\"contrast_desat\"]\n",
"\n",
" if custom_pal is None:\n",
" unsat_colors = sns.color_palette(n_colors=n_groups)\n",
@@ -690,39 +694,31 @@
"\n",
" if custom_pal is None and color_col is None:\n",
" categories = get_unique_categories(names)\n",
- " swarm_colors = [sns.desaturate(c, swarm_desat) for c in unsat_colors]\n",
+ " raw_colors = [sns.desaturate(c, raw_desat) for c in unsat_colors]\n",
" contrast_colors = [sns.desaturate(c, contrast_desat) for c in unsat_colors]\n",
- " bar_color = [sns.desaturate(c, bar_desat) for c in unsat_colors]\n",
" if color_by_subgroups:\n",
" plot_palette_raw = dict()\n",
" plot_palette_contrast = dict()\n",
- " plot_palette_bar = dict()\n",
" for i in range(len(idx)):\n",
" for names_i in idx[i]:\n",
- " plot_palette_raw[names_i] = swarm_colors[i]\n",
+ " plot_palette_raw[names_i] = raw_colors[i]\n",
" plot_palette_contrast[names_i] = contrast_colors[i]\n",
- " plot_palette_bar[names_i] = bar_color[i]\n",
" else:\n",
- " plot_palette_raw = dict(zip(categories, swarm_colors))\n",
+ " plot_palette_raw = dict(zip(categories, raw_colors))\n",
" plot_palette_contrast = dict(zip(categories, contrast_colors))\n",
- " plot_palette_bar = dict(zip(categories, bar_color))\n",
" else:\n",
- " swarm_colors = [sns.desaturate(c, swarm_desat) for c in unsat_colors]\n",
+ " raw_colors = [sns.desaturate(c, raw_desat) for c in unsat_colors]\n",
" contrast_colors = [sns.desaturate(c, contrast_desat) for c in unsat_colors]\n",
- " bar_color = [sns.desaturate(c, bar_desat) for c in unsat_colors]\n",
" if color_by_subgroups:\n",
" plot_palette_raw = dict()\n",
" plot_palette_contrast = dict()\n",
- " plot_palette_bar = dict()\n",
" for i in range(len(idx)):\n",
" for names_i in idx[i]:\n",
- " plot_palette_raw[names_i] = swarm_colors[i]\n",
+ " plot_palette_raw[names_i] = raw_colors[i]\n",
" plot_palette_contrast[names_i] = contrast_colors[i]\n",
- " plot_palette_bar[names_i] = bar_color[i]\n",
" else:\n",
- " plot_palette_raw = dict(zip(names, swarm_colors))\n",
+ " plot_palette_raw = dict(zip(names, raw_colors))\n",
" plot_palette_contrast = dict(zip(names, contrast_colors))\n",
- " plot_palette_bar = dict(zip(names, bar_color))\n",
" plot_palette_sankey = dict(zip(names, unsat_colors))\n",
"\n",
" # For Sankey Diagram plot, each bar will have the same two colors if custom_pal is None\n",
@@ -730,8 +726,8 @@
" if custom_pal is None:\n",
" plot_palette_sankey = None\n",
"\n",
- " return (color_col, bootstraps_color_by_group, n_groups, filled, plot_palette_raw, bar_color, \n",
- " plot_palette_bar, plot_palette_contrast, plot_palette_sankey)\n",
+ " return (color_col, bootstraps_color_by_group, n_groups, filled, raw_colors,\n",
+ " plot_palette_raw, plot_palette_contrast, plot_palette_sankey)\n",
"\n",
"def initialize_fig(\n",
" plot_kwargs: dict, \n",
@@ -745,7 +741,8 @@
" effect_size_type: str, \n",
" yvar: str, \n",
" horizontal: bool, \n",
- " show_table: bool\n",
+ " show_table: bool,\n",
+ " color_col: str,\n",
" ):\n",
" \"\"\"\n",
" Initialize the figure and axes for the plotter function.\n",
@@ -776,6 +773,8 @@
" A boolean flag to determine if the plot is for horizontal plotting.\n",
" show_table : dict\n",
" A boolean flag to determine if the table will be shown in horizontal plot.\n",
+ " color_col : str\n",
+ " The column name for coloring the data points.\n",
" \"\"\"\n",
" # Params\n",
" fig_size = plot_kwargs[\"fig_size\"]\n",
@@ -795,7 +794,10 @@
" fig_size = (7, 1 + (frac * all_groups_count))\n",
" else:\n",
" if is_paired and show_pairs and proportional is False:\n",
- " frac = 0.8\n",
+ " if color_col is not None and float_contrast:\n",
+ " frac = 0.9\n",
+ " else:\n",
+ " frac = 0.8\n",
" else:\n",
" frac = 1\n",
" if float_contrast:\n",
@@ -811,7 +813,7 @@
" init_fig_kwargs = dict(figsize=fig_size, dpi=plot_kwargs[\"dpi\"], tight_layout=True)\n",
"\n",
" width_ratios_ga = [2.5, 1]\n",
- " h_space_cummings = (0.1 if plot_kwargs[\"gridkey_rows\"] is not None\n",
+ " h_space_cummings = (0.1 if plot_kwargs[\"gridkey\"] is not None\n",
" else 0.3)\n",
"\n",
" if plot_kwargs[\"ax\"] is not None:\n",
@@ -903,31 +905,34 @@
" )\n",
" fig.patch.set_facecolor(face_color)\n",
"\n",
- " # Title\n",
- " title = plot_kwargs[\"title\"]\n",
- " fontsize_title = plot_kwargs[\"fontsize_title\"]\n",
- " if title is not None:\n",
- " fig.suptitle(title, fontsize=fontsize_title)\n",
- "\n",
" # Set axes \n",
" rawdata_axes = axx[0]\n",
" contrast_axes = axx[1]\n",
" table_axes = axx[2] if horizontal and show_table else None\n",
"\n",
+ "\n",
+ " # Title\n",
+ " title, fontsize_title = plot_kwargs[\"title\"], plot_kwargs[\"fontsize_title\"]\n",
+ " if title is not None:\n",
+ " if plot_kwargs[\"ax\"] is not None:\n",
+ " rawdata_axes.set_title(title, fontsize=fontsize_title)\n",
+ " else:\n",
+ " fig.suptitle(title, fontsize=fontsize_title)\n",
+ "\n",
" rawdata_axes.set_frame_on(False)\n",
" contrast_axes.set_frame_on(False)\n",
" if horizontal and show_table:\n",
" table_axes.set_frame_on(False)\n",
" \n",
" # Swarmplot ylim (Vertical) or xlim (Horizontal)\n",
- " swarm_ylim = plot_kwargs[\"swarm_ylim\"]\n",
- " if swarm_ylim is not None:\n",
- " if not isinstance(swarm_ylim, list) and not isinstance(swarm_ylim, tuple) or len(swarm_ylim) != 2:\n",
- " raise ValueError(\"`swarm_ylim` must be a tuple/list of the lower and upper bound.\")\n",
+ " raw_ylim = plot_kwargs[\"raw_ylim\"]\n",
+ " if raw_ylim is not None:\n",
+ " if not isinstance(raw_ylim, list) and not isinstance(raw_ylim, tuple) or len(raw_ylim) != 2:\n",
+ " raise ValueError(\"`raw_ylim` must be a tuple/list of the lower and upper bound.\")\n",
" if horizontal:\n",
- " rawdata_axes.set_xlim(swarm_ylim)\n",
+ " rawdata_axes.set_xlim(raw_ylim)\n",
" else:\n",
- " rawdata_axes.set_ylim(swarm_ylim)\n",
+ " rawdata_axes.set_ylim(raw_ylim)\n",
"\n",
" # Contrastplot ylim (Vertical) or xlim (Horizontal)\n",
" if horizontal or not float_contrast:\n",
@@ -960,19 +965,19 @@
" contrast_axes.set_ylim(contrast_ylim)\n",
"\n",
" # Set raw axes y-label.\n",
- " swarm_label, bar_label = plot_kwargs[\"swarm_label\"], plot_kwargs[\"bar_label\"]\n",
- " if swarm_label is None:\n",
- " swarm_label = yvar\n",
- " if bar_label is None:\n",
- " bar_label = \"Proportion of Success\" if effect_size_type != \"cohens_h\" else \"Value\"\n",
+ " raw_label = plot_kwargs[\"raw_label\"]\n",
+ " if raw_label is None:\n",
+ " if proportional:\n",
+ " raw_label = \"Proportion of Success\" if effect_size_type != \"cohens_h\" else \"Value\"\n",
+ " else:\n",
+ " raw_label = yvar \n",
"\n",
" fontsize_rawylabel = plot_kwargs[\"fontsize_rawylabel\"]\n",
- " rawdata_label = bar_label if proportional else swarm_label\n",
" if horizontal:\n",
- " rawdata_axes.set_xlabel(rawdata_label, fontsize=fontsize_rawylabel)\n",
+ " rawdata_axes.set_xlabel(raw_label, fontsize=fontsize_rawylabel)\n",
" rawdata_axes.set_ylabel(\"\")\n",
" else:\n",
- " rawdata_axes.set_ylabel(rawdata_label, fontsize=fontsize_rawylabel)\n",
+ " rawdata_axes.set_ylabel(raw_label, fontsize=fontsize_rawylabel)\n",
" rawdata_axes.set_xlabel(\"\")\n",
"\n",
" # Set contrast axes y-label.\n",
@@ -1119,9 +1124,12 @@
" else:\n",
" ticks_with_counts.append(f\"{t}\\n(N={value})\")\n",
"\n",
- " fontsize_rawxlabel = plot_kwargs.get(\"fontsize_rawxlabel\")\n",
" set_major_loc_method(plt.FixedLocator(get_ticks()))\n",
- " set_label(ticks_with_counts, fontsize=fontsize_rawxlabel)\n",
+ "\n",
+ " # label = ticks_with_counts if plot_kwargs['show_sample_size'] else get_label()\n",
+ " # set_label(label, fontsize=plot_kwargs.get(\"fontsize_rawxlabel\"))\n",
+ "\n",
+ " set_label(ticks_with_counts, fontsize=plot_kwargs.get(\"fontsize_rawxlabel\"))\n",
"\n",
" # Ensure ticks are at the correct locations\n",
" set_major_loc_method(plt.FixedLocator(get_ticks()))\n",
@@ -1163,7 +1171,6 @@
" ticks_to_start_twocol_sankey.pop()\n",
" ticks_to_start_twocol_sankey.insert(0, 0)\n",
" else:\n",
- "\n",
" ticks_to_skip = np.cumsum([len(t) for t in idx])[:-1].tolist()\n",
" ticks_to_skip.insert(0, 0)\n",
" # Then obtain the ticks where we have to plot the effect sizes.\n",
@@ -1282,7 +1289,7 @@
" if float_contrast:\n",
" contrast_axes.set_xlim(0.5, 1.5)\n",
"\n",
- " if show_delta2:\n",
+ " elif show_delta2:\n",
" if show_pairs:\n",
" rawdata_axes.set_xlim(-0.375, 4.75)\n",
" else:\n",
@@ -1403,7 +1410,7 @@
" redraw_axes_kwargs: dict\n",
" ):\n",
" \"\"\"\n",
- " Aesthetic adjustments for the Gardner-Altman plot.\n",
+ " Aesthetic adjustments specific to Gardner-Altman plots (float_contrast=True).\n",
" \n",
" Parameters\n",
" ----------\n",
@@ -1594,6 +1601,20 @@
" reflines_kwargs : dict,\n",
" extra_delta : bool,\n",
" ):\n",
+ " \"\"\"\n",
+ " Draw the independent axis spine lines.\n",
+ "\n",
+ " Parameters\n",
+ " ----------\n",
+ " ax : object (Axes)\n",
+ " The contrast data axes.\n",
+ " horizontal : bool\n",
+ " A boolean flag to determine if the plot is for horizontal plotting.\n",
+ " reflines_kwargs : dict\n",
+ " Additional keyword arguments to be passed to the zeroline.\n",
+ " extra_delta : bool\n",
+ " A boolean flag to determine if the plot includes an extra delta (delta-delta or mini-meta).\n",
+ " \"\"\"\n",
" # If 0 lies within the ylim of the contrast axes, draw a zero reference line.\n",
" if extra_delta and not horizontal:\n",
" contrast_xlim = [-0.5, 3.4]\n",
@@ -1632,9 +1653,40 @@
" ticks_to_skip : list,\n",
" temp_idx : list,\n",
" ticks_to_skip_contrast : list,\n",
- " extra_delta : bool,\n",
" redraw_axes_kwargs : dict\n",
" ):\n",
+ " \"\"\"\n",
+ " Draw the independent axis spine lines.\n",
+ "\n",
+ " Parameters\n",
+ " ----------\n",
+ " rawdata_axes : object (Axes)\n",
+ " The raw data axes.\n",
+ " contrast_axes : object (Axes)\n",
+ " The contrast axes.\n",
+ " horizontal : bool\n",
+ " A boolean flag to determine if the plot is for horizontal plotting.\n",
+ " two_col_sankey : bool\n",
+ " A boolean flag to determine if the plot is for two-col sankey.\n",
+ " ticks_to_start_twocol_sankey : list\n",
+ " A list of ticks to start for sankey plot.\n",
+ " idx : list\n",
+ " A list of indices.\n",
+ " is_paired : bool\n",
+ " A boolean flag to determine if the data is paired.\n",
+ " show_pairs : bool\n",
+ " A boolean flag to determine if pairs should be shown.\n",
+ " proportional : bool\n",
+ " A boolean flag to determine if the plot is proportional/binary.\n",
+ " ticks_to_skip : list,\n",
+ " A list of ticks to be skipped in the raw data axes.\n",
+ " temp_idx : list,\n",
+ " A temporary list of indices to be used for skipping ticks in the raw data axes.\n",
+ " ticks_to_skip_contrast : list,\n",
+ " A list of ticks to be skipped in the contrast axes.\n",
+ " redraw_axes_kwargs : dict\n",
+ " Kwargs passed to the redraw axes.\n",
+ " \"\"\"\n",
" # Extract the ticks\n",
" if two_col_sankey:\n",
" rightend_ticks_raw = rightend_ticks_contrast = np.array([len(i) - 2 for i in idx]) + np.array(ticks_to_start_twocol_sankey)\n",
@@ -1703,7 +1755,7 @@
" delta2_axes: axes.Axes\n",
" ):\n",
" \"\"\"\n",
- " Aesthetic general adjustments across both GA and Cumming plots.\n",
+ " Draw the dependent axis spine lines.\n",
"\n",
" Parameters\n",
" ----------\n",
@@ -1713,8 +1765,6 @@
" The contrast axes.\n",
" redraw_axes_kwargs : dict\n",
" Kwargs passed to the redraw axes.\n",
- " plot_kwargs : dict\n",
- " Kwargs passed to the plot function.\n",
" float_contrast : bool\n",
" A boolean flag to determine if the plot is GA or Cum\n",
" horizontal : bool\n",
@@ -1764,7 +1814,6 @@
"\n",
"def extract_group_summaries(\n",
" proportional: bool, \n",
- " err_color, \n",
" rawdata_axes: axes.Axes, \n",
" asymmetric_side: str, \n",
" horizontal: bool, \n",
@@ -1783,8 +1832,6 @@
" ----------\n",
" proportional : bool\n",
" A boolean flag to determine if the plot is for proportional data.\n",
- " err_color : str\n",
- " The color of the error bars.\n",
" rawdata_axes : object (Axes)\n",
" The raw data axes.\n",
" asymmetric_side : str\n",
@@ -1812,7 +1859,7 @@
" if proportional:\n",
" group_summaries_method = \"proportional_error_bar\"\n",
" group_summaries_offset = 0\n",
- " group_summaries_line_color = err_color\n",
+ " group_summaries_line_color = \"black\"\n",
" else:\n",
" # Create list to gather xspans.\n",
" xspans = []\n",
@@ -1855,7 +1902,115 @@
" group_summaries_line_color = group_summaries_kwargs.pop(\"color\")\n",
" group_summaries_kwargs.pop(\"offset\")\n",
"\n",
- " return group_summaries_method, group_summaries_offset, group_summaries_line_color"
+ " return group_summaries_method, group_summaries_offset, group_summaries_line_color\n",
+ "\n",
+ "def color_picker(color_type: str,\n",
+ " kwargs: dict, \n",
+ " elements: list, \n",
+ " color_col: str, \n",
+ " show_pairs: bool, \n",
+ " color_palette: dict) -> list:\n",
+ " num_of_elements = len(elements)\n",
+ " colors = (\n",
+ " [kwargs.pop('color')] * num_of_elements\n",
+ " if kwargs.get('color', None) is not None\n",
+ " else ['black'] * num_of_elements\n",
+ " if color_col is not None or show_pairs \n",
+ " else list(color_palette.values())\n",
+ " )\n",
+ " if color_type in ['contrast', 'summary', 'delta_text']:\n",
+ " if len(colors) == num_of_elements:\n",
+ " final_colors = colors\n",
+ " else:\n",
+ " final_colors = []\n",
+ " for tick in elements:\n",
+ " final_colors.append(colors[int(tick)])\n",
+ " else:\n",
+ " final_colors = colors\n",
+ " return final_colors\n",
+ "\n",
+ "\n",
+ "def prepare_bars_for_plot(bar_type, bar_kwargs, horizontal, plot_palette_raw, color_col, show_pairs,\n",
+ " plot_data = None, xvar = None, yvar = None, # Raw data\n",
+ " results = None, ticks_to_plot = None, extra_delta = None, # Contrast data\n",
+ " reference_band = None, summary_axes = None, ci_type = None # Summary data\n",
+ " ):\n",
+ " from .misc_tools import color_picker\n",
+ " bar_dict = {}\n",
+ " if bar_type in ['raw', 'contrast']:\n",
+ " if bar_type == 'raw':\n",
+ " if isinstance(plot_data[xvar].dtype, pd.CategoricalDtype):\n",
+ " order = pd.unique(plot_data[xvar]).categories\n",
+ " else:\n",
+ " order = pd.unique(plot_data[xvar])\n",
+ " means = plot_data.groupby(xvar, observed=False)[yvar].mean().reindex(index=order).values\n",
+ " ticks = list(range(len(order)))\n",
+ " elif bar_type == 'contrast':\n",
+ " means = results.difference.to_list()\n",
+ " ticks = ticks_to_plot.copy()\n",
+ " if extra_delta is not None:\n",
+ " ticks.append(ticks[-1]+1) # Add an extra tick\n",
+ " means.append(extra_delta)\n",
+ "\n",
+ " num_of_bars = len(means)\n",
+ " y_start_values, y_distances = [0]*num_of_bars, means\n",
+ " x_start_values, x_distances = [num - (0.5 if horizontal else 0.25) for num in ticks], [0.5,]*num_of_bars\n",
+ "\n",
+ " elif bar_type == 'summary':\n",
+ " # Begin checks \n",
+ " if not isinstance(reference_band, list):\n",
+ " raise TypeError(\"reference_band must be a list of indices (ints).\")\n",
+ " if not all(isinstance(i, int) for i in reference_band):\n",
+ " raise TypeError(\"reference_band must be a list of indices (ints).\")\n",
+ " if any(i >= len(results) for i in reference_band):\n",
+ " raise ValueError(\"Index {} chosen is out of range for the contrast objects.\".format([i for i in reference_band if i >= len(results)]))\n",
+ "\n",
+ " ticks = [ticks_to_plot[tick] for tick in reference_band]\n",
+ " summary_xmin, summary_xmax = summary_axes.get_xlim()\n",
+ " summary_ymin, summary_ymax = summary_axes.get_ylim()\n",
+ " span_ax = bar_kwargs.pop(\"span_ax\")\n",
+ "\n",
+ " x_start_values, y_start_values, x_distances, y_distances = [], [], [], []\n",
+ " for summary_index in reference_band:\n",
+ " summary_ci_low = results.get(ci_type+'_low')[summary_index]\n",
+ " summary_ci_high = results.get(ci_type+'_high')[summary_index] \n",
+ "\n",
+ " if span_ax == True:\n",
+ " starting_location = summary_ymax if horizontal else summary_xmin\n",
+ " else:\n",
+ " starting_location = ticks_to_plot[summary_index] \n",
+ " x_distance = summary_ymin if horizontal else summary_xmax \n",
+ "\n",
+ " x_start_values.append(starting_location)\n",
+ " y_start_values.append(summary_ci_low)\n",
+ " x_distances.append(x_distance + 1)\n",
+ " y_distances.append(summary_ci_high - summary_ci_low)\n",
+ " else:\n",
+ " raise ValueError(\"Invalid bar_type. Must be 'raw' or 'contrast'.\")\n",
+ " \n",
+ " if horizontal:\n",
+ " x_start_values, y_start_values = y_start_values, x_start_values\n",
+ " x_distances, y_distances = y_distances, x_distances\n",
+ "\n",
+ " for name, values in zip(['x_start_values', 'x_distances', 'y_start_values', 'y_distance'],\n",
+ " [x_start_values, x_distances, y_start_values, y_distances]\n",
+ " ):\n",
+ " bar_dict[name] = values\n",
+ "\n",
+ " # Colors\n",
+ " colors = color_picker(\n",
+ " color_type = bar_type,\n",
+ " kwargs = bar_kwargs, \n",
+ " elements = ticks_to_plot if bar_type=='contrast' else ticks, \n",
+ " color_col = color_col, \n",
+ " show_pairs = show_pairs, \n",
+ " color_palette = plot_palette_raw\n",
+ " )\n",
+ " if bar_type == 'contrast' and extra_delta is not None:\n",
+ " colors.append('black')\n",
+ " bar_dict['colors'] = colors\n",
+ "\n",
+ " return bar_dict, bar_kwargs"
]
},
{
diff --git a/nbs/API/plot_tools.ipynb b/nbs/API/plot_tools.ipynb
index 40304e6e..5d7d83a2 100644
--- a/nbs/API/plot_tools.ipynb
+++ b/nbs/API/plot_tools.ipynb
@@ -253,38 +253,26 @@
"\n",
" if low == high == central_measure:\n",
" if horizontal:\n",
- " low_to_mean = mlines.Line2D(\n",
- " [low, central_measure], [_xpos, _xpos], **kwargs\n",
- " )\n",
- " mean_to_high = mlines.Line2D(\n",
- " [central_measure, high], [_xpos, _xpos], **kwargs\n",
- " )\n",
+ " low2mean_x, low2mean_y = [low, central_measure], [_xpos, _xpos]\n",
+ " mean2high_x, mean2high_y = [central_measure, high], [_xpos, _xpos]\n",
" else:\n",
- " low_to_mean = mlines.Line2D(\n",
- " [_xpos, _xpos], [low, central_measure], **kwargs\n",
- " )\n",
- " mean_to_high = mlines.Line2D(\n",
- " [_xpos, _xpos], [central_measure, high], **kwargs\n",
- " )\n",
+ " low2mean_x, low2mean_y = [_xpos, _xpos], [low, central_measure]\n",
+ " mean2high_x, mean2high_y = [_xpos, _xpos], [central_measure, high]\n",
" else:\n",
" if horizontal:\n",
- " low_to_mean = mlines.Line2D(\n",
- " [low, central_measure - gap_width], [_xpos, _xpos], **kwargs\n",
- " )\n",
- " mean_to_high = mlines.Line2D(\n",
- " [central_measure + gap_width, high], [_xpos, _xpos], **kwargs\n",
- " )\n",
+ " low2mean_x, low2mean_y = [low, central_measure - gap_width], [_xpos, _xpos]\n",
+ " mean2high_x, mean2high_y = [central_measure + gap_width, high], [_xpos, _xpos]\n",
" else:\n",
- " low_to_mean = mlines.Line2D(\n",
- " [_xpos, _xpos], [low, central_measure - gap_width], **kwargs\n",
- " )\n",
- " mean_to_high = mlines.Line2D(\n",
- " [_xpos, _xpos], [central_measure + gap_width, high], **kwargs\n",
- " )\n",
- " ax.add_line(low_to_mean)\n",
- " ax.add_line(mean_to_high)\n",
- "\n",
- "\n",
+ " low2mean_x, low2mean_y = [_xpos, _xpos], [low, central_measure - gap_width]\n",
+ " mean2high_x, mean2high_y = [_xpos, _xpos], [central_measure + gap_width, high]\n",
+ " # Add lines\n",
+ " ax.add_line(mlines.Line2D(\n",
+ " low2mean_x, low2mean_y, **kwargs\n",
+ " ))\n",
+ " ax.add_line(mlines.Line2D(\n",
+ " mean2high_x, mean2high_y, **kwargs\n",
+ " ))\n",
+ " \n",
"def check_data_matches_labels(\n",
" labels, # list of input labels\n",
" data, # Pandas Series of input data\n",
@@ -752,7 +740,6 @@
" right_idx in the column xvar is on the right side of each sankey diagram\n",
"\n",
" \"\"\"\n",
- "\n",
" if \"width\" in kwargs:\n",
" width = kwargs[\"width\"]\n",
"\n",
@@ -774,6 +761,8 @@
" if \"flow\" in kwargs:\n",
" flow = kwargs[\"flow\"]\n",
"\n",
+ " fontsize = kwargs.pop(\"fontsize\")\n",
+ "\n",
" if ax is None:\n",
" ax = plt.gca()\n",
"\n",
@@ -790,8 +779,9 @@
" )\n",
" ]\n",
" if flow\n",
- " else temp_idx\n",
- ")\n",
+ " else temp_idx \n",
+ " )\n",
+ "\n",
" for i in sankey_idx:\n",
" left_idx.append(i[0])\n",
" right_idx.append(i[1])\n",
@@ -803,7 +793,6 @@
"\n",
" # two_col_sankey = True if proportional == True and one_sankey == False and sankey == True and flow == False else False\n",
"\n",
- "\n",
" allLabels = pd.Series(np.sort(data[yvar].unique())[::-1]).unique()\n",
"\n",
" # Check if all the elements in left_idx and right_idx are in xvar column\n",
@@ -901,8 +890,9 @@
" )\n",
"\n",
" # Now only draw vs xticks for two-column sankey diagram\n",
+ "\n",
" if not one_sankey or (sankey and not flow):\n",
- " sankey_ticks = (\n",
+ " sankey_tick_vals = (\n",
" [f\"{left}\" for left in broadcasted_left]\n",
" if flow\n",
" else [f\"{left} v.s. {right}\" if horizontal\n",
@@ -910,209 +900,61 @@
" for left, right in zip(broadcasted_left, right_idx)\n",
" ]\n",
" )\n",
- " if horizontal:\n",
- " ax.get_yaxis().set_ticks(np.arange(len(right_idx)))\n",
- " ax.get_yaxis().set_ticklabels(sankey_ticks)\n",
- " else:\n",
- " ax.get_xaxis().set_ticks(np.arange(len(right_idx)))\n",
- " ax.get_xaxis().set_ticklabels(sankey_ticks)\n",
+ " sankey_tick_locs = np.arange(len(right_idx))\n",
" else:\n",
- " sankey_ticks = [broadcasted_left[0], right_idx[0]]\n",
- " if horizontal:\n",
- " ax.set_yticks([0, 1])\n",
- " ax.set_yticklabels(sankey_ticks) \n",
- " else:\n",
- " ax.set_xticks([0, 1])\n",
- " ax.set_xticklabels(sankey_ticks)\n",
+ " sankey_tick_vals, sankey_tick_locs = [broadcasted_left[0], right_idx[0]], [0, 1]\n",
+ "\n",
+ " if horizontal:\n",
+ " ax.set_yticks(sankey_tick_locs)\n",
+ " ax.set_yticklabels(sankey_tick_vals, fontsize = fontsize)\n",
+ " else:\n",
+ " ax.set_xticks(sankey_tick_locs)\n",
+ " ax.set_xticklabels(sankey_tick_vals, fontsize = fontsize)\n",
"\n",
" return (left_idx, right_idx)\n",
"\n",
- "def summary_bars_plotter(\n",
- " summary_bars: list, \n",
- " results: pd.DataFrame,\n",
- " ax_to_plot: axes.Axes,\n",
- " float_contrast: bool,\n",
- " summary_bars_kwargs: dict, \n",
- " ci_type: str,\n",
- " ticks_to_plot: list, \n",
- " color_col: str, \n",
- " plot_palette_raw: dict, \n",
- " proportional: bool, \n",
- " show_pairs: bool, \n",
- " horizontal: bool\n",
- " ):\n",
+ "def add_bars_to_plot(bar_dict: dict, ax: axes.Axes, bar_kwargs: dict):\n",
" \"\"\"\n",
- " Add summary bars to the contrast plot.\n",
+ " Add bars to the relevant axes.\n",
"\n",
" Parameters\n",
" ----------\n",
- " summary_bars : list\n",
- " List of indices of the contrast objects to plot summary bars for.\n",
- " results : DataFrame\n",
- " Dataframe of contrast object comparisons.\n",
- " ax_to_plot : axes.Axes\n",
+ " bar_dict : dict\n",
+ " Dictionary of bar values.\n",
+ " ax : axes.Axes\n",
" Matplotlib axis object to plot on.\n",
- " float_contrast : bool\n",
- " Whether the DABEST plot uses Gardner-Altman or Cummings.\n",
- " summary_bars_kwargs : dict\n",
- " Keyword arguments for the summary bars.\n",
- " ci_type : str \n",
- " Type of confidence interval to plot.\n",
- " ticks_to_plot : list\n",
- " List of indices of the contrast objects.\n",
- " color_col : str\n",
- " Column name of the color column.\n",
- " plot_palette_raw : dict\n",
- " Dictionary of colors used in the plot.\n",
- " proportional : bool\n",
- " Whether the data is proportional.\n",
- " show_pairs : bool\n",
- " Whether the data is paired and shown in pairs.\n",
- " horizontal : bool\n",
- " Whether the plot is horizontal.\n",
+ " bar_kwargs : dict\n",
+ " Keyword arguments for the bars.\n",
" \"\"\"\n",
- "# Begin checks \n",
- " if not isinstance(summary_bars, list):\n",
- " raise TypeError(\"summary_bars must be a list of indices (ints).\")\n",
- " if not all(isinstance(i, int) for i in summary_bars):\n",
- " raise TypeError(\"summary_bars must be a list of indices (ints).\")\n",
- " if any(i >= len(results) for i in summary_bars):\n",
- " raise ValueError(\"Index {} chosen is out of range for the contrast objects.\".format([i for i in summary_bars if i >= len(results)]))\n",
- " if float_contrast:\n",
- " raise ValueError(\"summary_bars cannot be used with Gardner-Altman plots.\")\n",
- "# End checks\n",
- " else:\n",
- " summary_xmin, summary_xmax = ax_to_plot.get_xlim()\n",
- " summary_ymin, summary_ymax = ax_to_plot.get_ylim()\n",
- "\n",
- " summary_bars_colors = color_picker(summary_bars_kwargs, ticks_to_plot, color_col, show_pairs, plot_palette_raw)\n",
- "\n",
- " span_ax = summary_bars_kwargs.pop(\"span_ax\")\n",
- "\n",
- " for summary_index in summary_bars:\n",
- " summary_ci_low = results.get(ci_type+'_low')[summary_index]\n",
- " summary_ci_high = results.get(ci_type+'_high')[summary_index] \n",
- "\n",
- " if span_ax == True:\n",
- " starting_location = summary_ymax if horizontal else summary_xmin\n",
- " else:\n",
- " starting_location = ticks_to_plot[summary_index] \n",
- "\n",
- " summary_color = summary_bars_colors[int(ticks_to_plot[summary_index])]\n",
- "\n",
- " if horizontal:\n",
- " ax_to_plot.add_patch(mpatches.Rectangle(\n",
- " (summary_ci_low, starting_location),\n",
- " summary_ci_high-summary_ci_low, summary_ymin+1, \n",
- " color=summary_color, \n",
- " **summary_bars_kwargs)\n",
+ " og_xlim, og_ylim = ax.get_xlim(), ax.get_ylim()\n",
+ "\n",
+ " x_start_values, x_distances, y_start_values, y_distances, colors = bar_dict.values()\n",
+ "\n",
+ " for start_x, start_y, distance_x, distance_y, current_color in zip(\n",
+ " x_start_values, \n",
+ " y_start_values, \n",
+ " x_distances, \n",
+ " y_distances, \n",
+ " colors\n",
+ " ):\n",
+ " ax.add_patch(mpatches.Rectangle((start_x, start_y), \n",
+ " distance_x, distance_y, \n",
+ " color=current_color, **bar_kwargs\n",
+ " )\n",
" )\n",
- " else:\n",
- " ax_to_plot.add_patch(mpatches.Rectangle(\n",
- " (starting_location, summary_ci_low),\n",
- " summary_xmax+1, summary_ci_high-summary_ci_low, \n",
- " color=summary_color, \n",
- " **summary_bars_kwargs)\n",
- " )\n",
- "\n",
- "def color_picker(kwargs: dict, num_of_elements: list, color_col: str, show_pairs: bool, color_palette: dict) -> list:\n",
- "\n",
- " if any(isinstance(val, typ) for val in num_of_elements for typ in [int, float]):\n",
- " num_of_elements = int(max(num_of_elements) + 1)\n",
- " elif any(isinstance(val, typ) for val in num_of_elements for typ in [str]):\n",
- " num_of_elements = len(num_of_elements) + 1\n",
- "\n",
- " colors = (\n",
- " [kwargs.get('color')] * num_of_elements\n",
- " if kwargs.get('color') is not None\n",
- " else ['black'] * num_of_elements\n",
- " if color_col is not None or show_pairs \n",
- " else list(color_palette.values())\n",
- " )\n",
- " kwargs.pop('color')\n",
- "\n",
- " return colors\n",
- "\n",
- "def swarm_contrast_bar_plotter(\n",
- " bar_type: str,\n",
- " axes : list,\n",
- " bar_kwargs: dict,\n",
- " color_col : str,\n",
- " show_pairs : bool,\n",
- " plot_palette_raw : dict,\n",
- " idx : list,\n",
- "\n",
- " plot_data : pd.DataFrame = None, #Only Swarm\n",
- " xvar : str = None, #Only Swarm\n",
- " yvar : str = None, #Only Swarm\n",
- "\n",
- " order : list = None, #Only contrast\n",
- " results : object = None, #Only contrast\n",
- " horizontal : bool = False, #Only contrast\n",
- " diff : float = None #Only contrast\n",
- " ):\n",
- "\n",
- " ax_to_plot = axes[0] if bar_type == 'Swarm' else axes[1]\n",
- " og_xlim, og_ylim = ax_to_plot.get_xlim(), ax_to_plot.get_ylim()\n",
- "\n",
- " # Extract means\n",
- " if bar_type == 'Swarm':\n",
- " if isinstance(plot_data[xvar].dtype, pd.CategoricalDtype):\n",
- " order = pd.unique(plot_data[xvar]).categories\n",
- " else:\n",
- " order = pd.unique(plot_data[xvar])\n",
- " means = plot_data.groupby(xvar, observed=False)[yvar].mean().reindex(index=order)\n",
- " elif bar_type == 'Contrast':\n",
- " means = []\n",
- " for j, tick in enumerate(order):\n",
- " means.append(results.difference[int(j)])\n",
- "\n",
- " unpacked_idx = [element for innerList in idx for element in innerList] \n",
- "\n",
- " # Colors\n",
- " bar_colors = color_picker(bar_kwargs, order, color_col, show_pairs, plot_palette_raw)\n",
- "\n",
- " # alpha\n",
- " bar_kwargs['alpha'] = bar_kwargs.get('alpha', 0.15 if color_col is not None or show_pairs else 0.25)\n",
- "\n",
- " # Plot the bars\n",
- " y_values = order if bar_type == 'Contrast' else np.arange(0, len(order)+1, 1)\n",
- " for current_x, current_y in zip(y_values, means):\n",
- " idx_selector = (\n",
- " int(current_x) \n",
- " if type(bar_colors) == list \n",
- " else unpacked_idx[int(current_x)]\n",
- " )\n",
- " if bar_type == 'Contrast' and horizontal:\n",
- " ax_to_plot.add_patch(mpatches.Rectangle((0, current_x-0.5), current_y, 0.5, color=bar_colors[idx_selector], **bar_kwargs))\n",
- " else:\n",
- " ax_to_plot.add_patch(mpatches.Rectangle((current_x-0.25, 0), 0.5, current_y, color=bar_colors[idx_selector], **bar_kwargs))\n",
- "\n",
- " if bar_type == 'Contrast' and diff is not None:\n",
- " if horizontal:\n",
- " ax_to_plot.add_patch(mpatches.Rectangle((0, max(axes[0].get_yticks())-0.5), diff, 0.5, color='black', **bar_kwargs))\n",
- " else:\n",
- " ax_to_plot.add_patch(mpatches.Rectangle((max(axes[0].get_xticks())+1-0.25, 0), 0.5, diff, color='black', **bar_kwargs))\n",
- "\n",
- " ax_to_plot.set_xlim(og_xlim)\n",
- " ax_to_plot.set_ylim(og_ylim) \n",
+ " ax.set_xlim(og_xlim)\n",
+ " ax.set_ylim(og_ylim) \n",
"\n",
"def delta_text_plotter(\n",
" results: pd.DataFrame, \n",
" ax_to_plot: object, \n",
- " swarm_plot_ax: axes.Axes, \n",
" ticks_to_plot: list, \n",
" delta_text_kwargs: dict, \n",
" color_col: str, \n",
" plot_palette_raw: dict, \n",
- " show_pairs: bool, \n",
- " proportional: bool, \n",
+ " show_pairs: bool,\n",
" float_contrast: bool,\n",
- " show_mini_meta: bool, \n",
- " mini_meta: object, \n",
- " show_delta2: bool, \n",
- " delta_delta: object, \n",
- " idx: list\n",
+ " extra_delta: float,\n",
" ):\n",
" \"\"\"\n",
" Add delta text to the contrast plot.\n",
@@ -1123,8 +965,6 @@
" Dataframe of contrast object comparisons.\n",
" ax_to_plot : axes.Axes\n",
" Matplotlib axis object to plot on.\n",
- " swarm_plot_ax : axes.Axes\n",
- " Matplotlib axis object of the swarm plot.\n",
" ticks_to_plot : list\n",
" List of indices of the contrast objects.\n",
" delta_text_kwargs : dict\n",
@@ -1135,92 +975,61 @@
" Dictionary of colors used in the plot.\n",
" show_pairs : bool\n",
" Whether the data is paired and show pairs.\n",
- " proportional : bool\n",
- " Whether the data is proportional.\n",
" float_contrast : bool\n",
- " Whether the DABEST plot uses Gardner-Altman or Cummings\n",
- " show_mini_meta : bool\n",
- " Whether to show the mini meta-analysis.\n",
- " mini_meta : object\n",
- " Mini meta-analysis object.\n",
- " show_delta2 : bool\n",
- " Whether to show the delta-delta.\n",
- " delta_delta : object\n",
- " delta-delta object.\n",
- " idx : list\n",
- " List of indices of the raw groups.\n",
+ " Whether the DABEST plot uses Gardner-Altman or Cummings.\n",
+ " extra_delta : float or None\n",
+ " The extra mini-meta or delta-delta value if applicable.\n",
" \"\"\"\n",
- " # Begin checks\n",
- " delta_text_x_location = delta_text_kwargs.get('x_location')\n",
- " if delta_text_x_location != 'right' and delta_text_x_location != 'left':\n",
- " raise ValueError(\"delta_text_kwargs['x_location'] must be either 'right' or 'left'.\")\n",
- " if float_contrast:\n",
- " delta_text_x_location = 'left'\n",
- " delta_text_kwargs[\"va\"] = 'bottom' if results.difference[0] >= 0 else 'top'\n",
- " delta_text_kwargs.pop('x_location')\n",
- "\n",
" # Colors\n",
- " delta_text_colors = color_picker(delta_text_kwargs, ticks_to_plot, color_col, show_pairs, plot_palette_raw)\n",
- "\n",
- " # Idx\n",
- " unpacked_idx = [element for innerList in idx for element in innerList] \n",
- " if show_mini_meta or show_delta2: \n",
- " unpacked_idx.append('extra_delta')\n",
- " if type(delta_text_colors) == list:\n",
- " delta_text_colors.append('black')\n",
- " else:\n",
- " delta_text_colors['extra_delta'] = 'black'\n",
- "\n",
- " total_ticks = len(ticks_to_plot) + 1 if show_mini_meta or show_delta2 else len(ticks_to_plot)\n",
- "\n",
- " # Collect the Y-values for the delta text\n",
- " Delta_Values = []\n",
+ " from .misc_tools import color_picker\n",
+ " delta_text_colors = color_picker(color_type = 'delta_text',\n",
+ " kwargs = delta_text_kwargs, \n",
+ " elements = ticks_to_plot, \n",
+ " color_col = color_col, \n",
+ " show_pairs = show_pairs, \n",
+ " color_palette = plot_palette_raw\n",
+ " )\n",
+ "\n",
+ " num_of_elements = len(ticks_to_plot) + 1 if extra_delta is not None else len(ticks_to_plot)\n",
+ "\n",
+ " # Collect the means for the delta text\n",
+ " delta_values = []\n",
" for j, tick in enumerate(ticks_to_plot):\n",
- " Delta_Values.append(results.difference[int(j)])\n",
- " if show_delta2: Delta_Values.append(delta_delta.difference)\n",
- " if show_mini_meta: Delta_Values.append(mini_meta.difference)\n",
+ " delta_values.append(results.difference[int(j)])\n",
+ " if extra_delta is not None: \n",
+ " delta_values.append(extra_delta)\n",
+ " delta_text_colors.append('black')\n",
"\n",
" # Collect the X-coordinates for the delta text\n",
" delta_text_x_coordinates = delta_text_kwargs.pop('x_coordinates')\n",
- " delta_text_x_adjustment = delta_text_kwargs.pop('offset')\n",
+ " delta_text_x_offset = delta_text_kwargs.pop('offset')\n",
"\n",
" if delta_text_x_coordinates is not None:\n",
" if not isinstance(delta_text_x_coordinates, (list, tuple)) or not all(isinstance(x, (int, float)) for x in delta_text_x_coordinates):\n",
" raise TypeError(\"delta_text_kwargs['x_coordinates'] must be a list of x-coordinates.\")\n",
- " if len(delta_text_x_coordinates) != total_ticks:\n",
+ " if len(delta_text_x_coordinates) != num_of_elements:\n",
" raise ValueError(\"delta_text_kwargs['x_coordinates'] must have the same length as the number of ticks to plot.\")\n",
" else:\n",
- " delta_text_x_coordinates = ticks_to_plot\n",
- " X_Adjust = 0.48 if delta_text_x_location == 'right' else -0.38\n",
- " X_Adjust += delta_text_x_adjustment\n",
- " delta_text_x_coordinates = [x+X_Adjust for x in delta_text_x_coordinates]\n",
- " if show_mini_meta: delta_text_x_coordinates.append(max(swarm_plot_ax.get_xticks())+1+X_Adjust)\n",
- " if show_delta2: delta_text_x_coordinates.append(max(swarm_plot_ax.get_xticks())+1+X_Adjust)\n",
- " if show_mini_meta or show_delta2: ticks_to_plot.append(max(ticks_to_plot)+1)\n",
+ " x_adjust = (-0.4 if float_contrast else 0.48) + delta_text_x_offset\n",
+ " delta_text_x_coordinates = [x+x_adjust for x in ticks_to_plot]\n",
+ " if extra_delta is not None: delta_text_x_coordinates.append(max(ticks_to_plot)+1+x_adjust)\n",
"\n",
" # Collect the Y-coordinates for the delta text\n",
- " delta_text_y_coordinates = delta_text_kwargs.get('y_coordinates')\n",
+ " delta_text_y_coordinates = delta_text_kwargs.pop('y_coordinates')\n",
+ " if float_contrast: delta_text_kwargs[\"va\"] = 'bottom' if results.difference[0] >= 0 else 'top'\n",
"\n",
" if delta_text_y_coordinates is not None:\n",
" if not isinstance(delta_text_y_coordinates, (list, tuple)) or not all(isinstance(y, (int, float)) for y in delta_text_y_coordinates):\n",
" raise TypeError(\"delta_text_kwargs['y_coordinates'] must be a list of y-coordinates.\")\n",
- " if len(delta_text_y_coordinates) != total_ticks:\n",
+ " if len(delta_text_y_coordinates) != num_of_elements:\n",
" raise ValueError(\"delta_text_kwargs['y_coordinates'] must have the same length as the number of ticks to plot.\")\n",
" else:\n",
- " delta_text_y_coordinates = Delta_Values\n",
- "\n",
- " delta_text_kwargs.pop('y_coordinates')\n",
+ " delta_text_y_coordinates = delta_values\n",
"\n",
" # Plot the delta text\n",
- " for x,y,t,tick in zip(delta_text_x_coordinates, delta_text_y_coordinates,Delta_Values,ticks_to_plot):\n",
- " Delta_Text = np.format_float_positional(t, precision=2, sign=True, trim=\"k\", min_digits=2)\n",
- " idx_selector = (\n",
- " int(tick)\n",
- " if type(delta_text_colors) == list \n",
- " else unpacked_idx[int(tick)]\n",
- " )\n",
- " ax_to_plot.text(x, y, Delta_Text, color=delta_text_colors[idx_selector], zorder=5, **delta_text_kwargs)\n",
- "\n",
+ " for x, y, text, color in zip(delta_text_x_coordinates, delta_text_y_coordinates, delta_values, delta_text_colors):\n",
+ " delta_text = np.format_float_positional(text, precision=2, sign=True, trim=\"k\", min_digits=2)\n",
+ " ax_to_plot.text(x, y, delta_text, color=color, zorder=5, **delta_text_kwargs)\n",
"\n",
"def delta_dots_plotter(\n",
" plot_data: pd.DataFrame, \n",
@@ -1264,7 +1073,7 @@
" horizontal : bool\n",
" If the rawplot is horizontal.\n",
" \"\"\"\n",
- " \n",
+ "\n",
" # Checks and initializations\n",
" # from .plot_tools import swarmplot\n",
" delta_dot_color = delta_dot_kwargs.pop('color')\n",
@@ -1332,7 +1141,8 @@
" ytick_color: str, \n",
" temp_idx: list, \n",
" horizontal: bool,\n",
- " temp_all_plot_groups: list\n",
+ " temp_all_plot_groups: list,\n",
+ " plot_kwargs: dict\n",
" ):\n",
" \"\"\"\n",
" Add slopegraph to the rawdata axes.\n",
@@ -1362,12 +1172,15 @@
" horizontal : bool\n",
" If the plotting will be in horizontal format.\n",
" temp_all_plot_groups : list\n",
+ " List of all plot groups.\n",
+ " plot_kwargs : dict\n",
+ " Keyword arguments for the plot.\n",
"\n",
" \"\"\"\n",
" # Jitter Kwargs \n",
" # With help from GitHub user: devMJBL\n",
" jitter = slopegraph_kwargs.pop(\"jitter\")\n",
- " if jitter >= 1:\n",
+ " if jitter > 1:\n",
" err0 = \"Jitter value is too high. Defaulting to 1.\"\n",
" warnings.warn(err0)\n",
" jitter = 1\n",
@@ -1421,65 +1234,57 @@
" # Set the tick labels, because the slopegraph plotting doesn't.\n",
" if horizontal:\n",
" rawdata_axes.set_yticks(np.arange(0, len(temp_all_plot_groups)))\n",
- " rawdata_axes.set_yticklabels(temp_all_plot_groups)\n",
+ " rawdata_axes.set_yticklabels(temp_all_plot_groups, fontsize = plot_kwargs.get(\"fontsize_rawxlabel\"))\n",
" else:\n",
" rawdata_axes.set_xticks(np.arange(0, len(temp_all_plot_groups)))\n",
- " rawdata_axes.set_xticklabels(temp_all_plot_groups)\n",
+ " rawdata_axes.set_xticklabels(temp_all_plot_groups, fontsize = plot_kwargs.get(\"fontsize_rawxlabel\"))\n",
" \n",
"\n",
"def plot_minimeta_or_deltadelta_violins(\n",
- " show_mini_meta: bool, \n",
- " effectsize_df: object, \n",
+ " dabest_obj: object,\n",
+ " type: str,\n",
" ci_type: str, \n",
" rawdata_axes: axes.Axes,\n",
" contrast_axes: axes.Axes, \n",
- " violinplot_kwargs: dict, \n",
- " halfviolin_alpha: float, \n",
+ " contrast_kwargs: dict, \n",
" contrast_xtick_labels: list, \n",
" effect_size: str, \n",
- " show_delta2: bool, \n",
" plot_kwargs: dict, \n",
" horizontal: bool, \n",
" show_pairs: bool,\n",
- " es_marker_kwargs: dict, \n",
- " es_errorbar_kwargs: dict\n",
+ " contrast_marker_kwargs: dict, \n",
+ " contrast_errorbar_kwargs: dict,\n",
" ):\n",
" \"\"\"\n",
" Add mini meta-analysis or delta-delta violin plots to the contrast plot.\n",
"\n",
" Parameters\n",
" ----------\n",
- " show_mini_meta : bool\n",
- " Whether to show the mini meta-analysis.\n",
- " effectsize_df : object\n",
- " DABEST Effectsize object\n",
+ " dabest_obj : object\n",
+ " DABEST Effectsize object delta-delta or mini_meta\n",
+ " type: str\n",
+ " mini_meta or delta_delta\n",
" ci_type : str\n",
" Type of confidence interval to plot.\n",
" rawdata_axes : axes.Axes\n",
" Matplotlib axis object to plot on.\n",
" contrast_axes : axes.Axes\n",
" Matplotlib axis object to plot on.\n",
- " violinplot_kwargs : dict\n",
+ " contrast_kwargs : dict\n",
" Keyword arguments for the violinplot.\n",
- " halfviolin_alpha : float\n",
- " Alpha value for the half violin.\n",
- " es_marker_size : int\n",
- " Size of the effect size marker.\n",
" contrast_xtick_labels : list\n",
" List of xtick labels for the contrast plot.\n",
" effect_size : str\n",
" Type of effect size to plot.\n",
- " show_delta2 : bool\n",
- " Whether to show the delta-delta.\n",
" plot_kwargs : dict\n",
" Keyword arguments for the plot.\n",
" horizontal : bool\n",
" If the plot is horizontal.\n",
" show_pairs : bool\n",
" Whether the data is paired and shown in pairs.\n",
- " es_marker_kwargs: dict\n",
+ " contrast_marker_kwargs: dict\n",
" Keyword arguments for the effectsize marker.\n",
- " es_errorbar_kwargs: dict\n",
+ " contrast_errorbar_kwargs: dict\n",
" Keyword arguments for the effectsize errorbar.\n",
" \"\"\"\n",
"\n",
@@ -1493,11 +1298,13 @@
" ci_low, ci_high = dabest_object.results.get(ci_type+'_low')[0], dabest_object.results.get(ci_type+'_high')[0]\n",
" return data, dabest_object.difference, ci_low, ci_high\n",
"\n",
- " dabest_object = effectsize_df.mini_meta if show_mini_meta else effectsize_df.delta_delta\n",
- " data, difference, ci_low, ci_high = extract_curve_data(dabest_object)\n",
+ " data, difference, ci_low, ci_high = extract_curve_data(dabest_obj)\n",
+ "\n",
+ " if contrast_kwargs.get('alpha') is not None:\n",
+ " contrast_alpha = contrast_kwargs.pop('alpha')\n",
"\n",
" if horizontal: \n",
- " violinplot_kwargs.update({'vert': False, 'widths': 1})\n",
+ " contrast_kwargs.update({'orientation': 'horizontal', 'widths': 1})\n",
" position = max(rawdata_axes.get_yticks()) + 1\n",
" half = \"bottom\"\n",
" effsize_x, effsize_y = difference, [position]\n",
@@ -1509,56 +1316,55 @@
" ci_x, ci_y = [position, position], [ci_low, ci_high]\n",
"\n",
" v = contrast_axes.violinplot(\n",
- " data[~np.isinf(data)], positions=[position], **violinplot_kwargs\n",
+ " data[~np.isinf(data)], positions=[position], **contrast_kwargs\n",
" )\n",
"\n",
- " halfviolin(v, fill_color=\"grey\", alpha=halfviolin_alpha, half=half)\n",
+ " halfviolin(v, fill_color=\"grey\", alpha=contrast_alpha, half=half)\n",
"\n",
" # Plot the effect size.\n",
" contrast_axes.plot(\n",
" effsize_x,\n",
" effsize_y,\n",
- " **es_marker_kwargs\n",
+ " **contrast_marker_kwargs\n",
" )\n",
" # Plot the confidence interval.\n",
" contrast_axes.plot(\n",
" ci_x,\n",
" ci_y,\n",
- " **es_errorbar_kwargs\n",
+ " **contrast_errorbar_kwargs\n",
" )\n",
"\n",
" # Add labels and ticks\n",
" if horizontal:\n",
" current_ylabels = rawdata_axes.get_yticklabels()\n",
- " if show_mini_meta:\n",
+ " if type == 'mini_meta':\n",
" current_ylabels.extend([\"Weighted Delta\"])\n",
" elif effect_size == \"hedges_g\":\n",
- " current_ylabels.extend([\"Deltas' g\"])\n",
+ " current_ylabels.extend([\"Delta g\"])\n",
" else:\n",
" current_ylabels.extend([\"Delta-Delta\"])\n",
"\n",
" rawdata_axes.set_yticks(np.append(rawdata_axes.get_yticks(), position))\n",
" rawdata_axes.set_yticklabels(current_ylabels)\n",
- "\n",
" else:\n",
- " if show_mini_meta:\n",
+ " if type == 'mini_meta':\n",
" if show_pairs:\n",
" contrast_xtick_labels.extend([\"Weighted\\n Delta\"])\n",
" else:\n",
" contrast_xtick_labels.extend([\"Weighted Delta\"])\n",
" elif effect_size == \"hedges_g\":\n",
- " contrast_xtick_labels.extend([\"Deltas' g\"])\n",
+ " contrast_xtick_labels.extend([\"Delta g\"])\n",
" else:\n",
" contrast_xtick_labels.extend([\"Delta-Delta\"])\n",
"\n",
" # Create the delta-delta axes.\n",
- " if show_delta2 and not horizontal:\n",
+ " if type == 'delta_delta' and not horizontal:\n",
" if plot_kwargs[\"delta2_label\"] is not None:\n",
" delta2_label = plot_kwargs[\"delta2_label\"]\n",
" elif effect_size == \"mean_diff\":\n",
" delta2_label = \"Delta-Delta\"\n",
" else:\n",
- " delta2_label = \"Deltas' g\"\n",
+ " delta2_label = \"Delta g\"\n",
" fontsize_delta2label = plot_kwargs[\"fontsize_delta2label\"]\n",
" delta2_axes = contrast_axes.twinx()\n",
" delta2_axes.set_frame_on(False)\n",
@@ -1577,17 +1383,16 @@
" results: pd.DataFrame, \n",
" ci_type: str, \n",
" contrast_axes: axes.Axes, \n",
- " violinplot_kwargs: dict, \n",
- " halfviolin_alpha: float, \n",
+ " contrast_kwargs: dict, \n",
" bootstraps_color_by_group: bool, \n",
" plot_palette_contrast: dict,\n",
" horizontal: bool, \n",
- " es_marker_kwargs: dict, \n",
- " es_errorbar_kwargs: dict,\n",
+ " contrast_marker_kwargs: dict, \n",
+ " contrast_errorbar_kwargs: dict,\n",
" idx: list, \n",
" is_paired: bool, \n",
- " es_paired_lines: bool, \n",
- " es_paired_lines_kwargs: dict,\n",
+ " contrast_paired_lines: bool, \n",
+ " contrast_paired_lines_kwargs: dict,\n",
" show_baseline_ec: bool = False\n",
" ):\n",
" \"\"\"\n",
@@ -1605,29 +1410,25 @@
" Type of confidence interval to plot.\n",
" contrast_axes : axes.Axes\n",
" Matplotlib axis object to plot on.\n",
- " violinplot_kwargs : dict\n",
+ " contrast_kwargs : dict\n",
" Keyword arguments for the violinplot.\n",
- " halfviolin_alpha : float\n",
- " Alpha value for the half violin.\n",
- " es_marker_size : int\n",
- " Size of the effect size marker.\n",
" bootstraps_color_by_group : bool\n",
" Whether to color the bootstraps by group.\n",
" plot_palette_contrast : dict\n",
" Dictionary of colors used in the contrast plot.\n",
" horizontal : bool\n",
" If the plot is horizontal.\n",
- " es_marker_kwargs: dict\n",
+ " contrast_marker_kwargs: dict\n",
" Keyword arguments for the effectsize marker.\n",
- " es_errorbar_kwargs: dict\n",
+ " contrast_errorbar_kwargs: dict\n",
" Keyword arguments for the effectsize errorbar.\n",
" idx : list\n",
" List of indices of the raw groups.\n",
" is_paired : bool\n",
" Whether the data is paired.\n",
- " es_paired_lines : bool\n",
+ " contrast_paired_lines : bool\n",
" Whether to add lines for repeated measures data.\n",
- " es_paired_lines_kwargs : dict\n",
+ " contrast_paired_lines_kwargs : dict\n",
" Keyword arguments for the repeated measures lines.\n",
" show_baseline_ec : bool\n",
" Whether to show the baseline effect curve.\n",
@@ -1636,18 +1437,18 @@
" def plot_effect_size(tick, group, control, bootstrap, effsize, ci_low, ci_high):\n",
" # Create the violinplot\n",
" if horizontal: \n",
- " violinplot_kwargs.update({'vert': False, 'widths': 1})\n",
+ " contrast_kwargs.update({'orientation': 'horizontal', 'widths': 1})\n",
" \n",
" v = contrast_axes.violinplot(\n",
" bootstrap[~np.isinf(bootstrap)],\n",
" positions=[tick],\n",
- " **violinplot_kwargs\n",
+ " **contrast_kwargs\n",
" )\n",
" \n",
" # Color the violin plot\n",
" fc = plot_palette_contrast[group] if bootstraps_color_by_group else \"grey\"\n",
" half = \"bottom\" if horizontal else \"right\"\n",
- " halfviolin(v, fill_color=fc, alpha=halfviolin_alpha, half=half)\n",
+ " halfviolin(v, fill_color=fc, alpha=contrast_alpha, half=half)\n",
"\n",
" # Plot the confidence interval\n",
" if horizontal:\n",
@@ -1655,9 +1456,12 @@
" else:\n",
" ci_x, ci_y = [tick, tick], [ci_low, ci_high]\n",
" \n",
- " contrast_axes.plot(ci_x, ci_y, **es_errorbar_kwargs)\n",
+ " contrast_axes.plot(ci_x, ci_y, **contrast_errorbar_kwargs)\n",
" \n",
" return \"{}\\nminus\\n{}\".format(group, control)\n",
+ " \n",
+ " if contrast_kwargs.get('alpha') is not None:\n",
+ " contrast_alpha = contrast_kwargs.pop('alpha')\n",
"\n",
" # Plot the curves\n",
" contrast_xtick_labels = []\n",
@@ -1678,7 +1482,7 @@
" contrast_axes.plot(\n",
" effsize_x,\n",
" effsize_y,\n",
- " **es_marker_kwargs\n",
+ " **contrast_marker_kwargs\n",
" )\n",
"\n",
" label = plot_effect_size(tick, current_group, current_control, current_bootstrap,\n",
@@ -1701,7 +1505,7 @@
" else:\n",
" effsize_x, effsize_y = [tick], bec_effsize\n",
" \n",
- " contrast_axes.plot(effsize_x, effsize_y, **es_marker_kwargs)\n",
+ " contrast_axes.plot(effsize_x, effsize_y, **contrast_marker_kwargs)\n",
" \n",
" if show_baseline_ec:\n",
" _ = plot_effect_size(tick, bec_group, bec_control, bec_bootstrap, \n",
@@ -1709,7 +1513,7 @@
" # Baseline Curve doesn't need tick text\n",
"\n",
" # Add lines for repeated measures data\n",
- " if is_paired and es_paired_lines:\n",
+ " if is_paired and contrast_paired_lines:\n",
" temp_num = 0\n",
" lines_to_plot_list = []\n",
"\n",
@@ -1737,16 +1541,17 @@
" contrast_axes.plot(\n",
" x_data, \n",
" y_data,\n",
- " **es_paired_lines_kwargs\n",
+ " **contrast_paired_lines_kwargs\n",
" )\n",
"\n",
+ " contrast_kwargs['alpha'] = contrast_alpha\n",
" return current_group, current_control, current_effsize, contrast_xtick_labels\n",
"\n",
"def gridkey_plotter(\n",
" is_paired: bool, \n",
" idx: list,\n",
" all_plot_groups: list, \n",
- " gridkey_rows: list, \n",
+ " gridkey: list, \n",
" rawdata_axes: axes.Axes, \n",
" contrast_axes: axes.Axes, \n",
" plot_data: pd.DataFrame, \n",
@@ -1775,7 +1580,7 @@
" List of indices of the contrast objects.\n",
" all_plot_groups : list\n",
" List of all plot groups.\n",
- " gridkey_rows : list\n",
+ " gridkey : list\n",
" List of gridkey rows.\n",
" rawdata_axes : axes.Axes\n",
" Matplotlib axis object for the raw data.\n",
@@ -1816,11 +1621,13 @@
" gridkey_merge_pairs = gridkey_kwargs[\"merge_pairs\"]\n",
" gridkey_marker = gridkey_kwargs[\"marker\"]\n",
" gridkey_delimiters = gridkey_kwargs[\"delimiters\"] \n",
+ " labels_fontsize = gridkey_kwargs.get('labels_fontsize')\n",
+ " fontsize = gridkey_kwargs.get('fontsize')\n",
"\n",
" # Auto parser for gridkey - implemented by SangyuXu\n",
- " if gridkey_rows == \"auto\":\n",
+ " if gridkey == \"auto\" or gridkey == True:\n",
" if experiment_label is not None:\n",
- " gridkey_rows = list(np.concatenate([experiment_label, x1_level]))\n",
+ " gridkey = list(np.concatenate([experiment_label, x1_level]))\n",
" else:\n",
" temp_groups = \";\".join(all_plot_groups)\n",
" for delimiter in gridkey_delimiters:\n",
@@ -1828,7 +1635,7 @@
" temp_groups = [i.strip() for i in temp_groups.split(';')]\n",
" unique_groups = list(set(temp_groups))\n",
" rank = [sum([temp_groups.index(i) for i in temp_groups if(j in i)]) for j in unique_groups]\n",
- " gridkey_rows = [x for _,x in sorted(zip(rank,unique_groups))]\n",
+ " gridkey = [x for _,x in sorted(zip(rank,unique_groups))]\n",
" \n",
" # Raise error if there are more than 2 items in any idx and gridkey_merge_pairs is True and is_paired is not None\n",
" if gridkey_merge_pairs and is_paired is not None:\n",
@@ -1853,16 +1660,16 @@
" else:\n",
" groups_for_gridkey = all_plot_groups\n",
"\n",
- " # raise errors if gridkey_rows is not a list, or if the list is empty\n",
- " if isinstance(gridkey_rows, list) is False:\n",
- " raise TypeError(\"gridkey_rows must be a list (or a string 'auto').\")\n",
- " if any(isinstance(i, str) is False for i in gridkey_rows):\n",
- " raise TypeError(\"gridkey_rows must contain only strings.\")\n",
- " if len(gridkey_rows) == 0:\n",
- " warnings.warn(\"gridkey_rows is an empty list.\")\n",
+ " # raise errors if gridkey is not a list, or if the list is empty\n",
+ " if isinstance(gridkey, list) is False:\n",
+ " raise TypeError(\"gridkey must be a list (or a string 'auto').\")\n",
+ " if any(isinstance(i, str) is False for i in gridkey):\n",
+ " raise TypeError(\"gridkey must contain only strings.\")\n",
+ " if len(gridkey) == 0:\n",
+ " warnings.warn(\"gridkey is an empty list.\")\n",
"\n",
- " # raise Warning if an item in gridkey_rows is not contained in any idx\n",
- " for i in gridkey_rows:\n",
+ " # raise Warning if an item in gridkey is not contained in any idx\n",
+ " for i in gridkey:\n",
" in_idx = 0\n",
" for j in groups_for_gridkey:\n",
" if i in j:\n",
@@ -1879,7 +1686,7 @@
" # Populate table: checks if idx for each column contains rowlabel name\n",
" # IF so, marks that element as present w black dot (default \"\\u25CF\"), or space if not present\n",
" table_cellcols = []\n",
- " for i in gridkey_rows:\n",
+ " for i in gridkey:\n",
" thisrow = []\n",
" for q in groups_for_gridkey:\n",
" if str(i) in q:\n",
@@ -1890,7 +1697,7 @@
"\n",
" # Adds a row for Ns with the Ns values\n",
" if gridkey_show_Ns:\n",
- " gridkey_rows.append(\"Ns\")\n",
+ " gridkey.append(\"Ns\")\n",
" list_of_Ns = []\n",
" for i in groups_for_gridkey:\n",
" list_of_Ns.append(str(plot_data.groupby(xvar, observed=False).count()[yvar].loc[i]))\n",
@@ -1898,16 +1705,14 @@
"\n",
" # Adds a row for effectsizes with effectsize values\n",
" if gridkey_show_es and not horizontal:\n",
- " gridkey_rows.append(\"\\u0394\")\n",
+ " gridkey.append(\"\\u0394\")\n",
" effsize_list = []\n",
" results_list = results.test.to_list()\n",
"\n",
" # get the effect size, append + or -, 2 dec places\n",
" for i in enumerate(groups_for_gridkey):\n",
" if i[1] in results_list:\n",
- " curr_esval = results.loc[results[\"test\"] == i[1]][\n",
- " \"difference\"\n",
- " ].iloc[0]\n",
+ " curr_esval = results.loc[results[\"test\"] == i[1]][\"difference\"].iloc[0]\n",
" curr_esval_str = np.format_float_positional(\n",
" curr_esval,\n",
" precision=2,\n",
@@ -1933,7 +1738,7 @@
" added_group_name = [\"Deltas' g\"] if effect_size == \"hedges_g\" else [\"Delta-Delta\"]\n",
" else:\n",
" added_group_name = [\"Weighted Delta\"]\n",
- " gridkey_rows = added_group_name + gridkey_rows\n",
+ " gridkey = added_group_name + gridkey\n",
" table_cellcols = [[\"\"]*len(table_cellcols[0])] + table_cellcols\n",
"\n",
" if not horizontal and show_delta2:\n",
@@ -1977,6 +1782,15 @@
" group_vals.append(n)\n",
"\n",
" # Create the table object\n",
+ " def add_table(celltext, bbox, rowlabels=None):\n",
+ " gridkey_to_plot = ax_to_plot.table(\n",
+ " cellText=celltext,\n",
+ " rowLabels=rowlabels,\n",
+ " cellLoc=\"center\",\n",
+ " bbox=bbox,\n",
+ " )\n",
+ " return gridkey_to_plot\n",
+ "\n",
" if horizontal:\n",
" # Convert the cells format for horizontal table plotting\n",
" converted_list = []\n",
@@ -1986,93 +1800,49 @@
" temp_list.append(i[j])\n",
" converted_list.append(temp_list)\n",
"\n",
- " # Plot the table for horizontal format\n",
- " gridkey = ax_to_plot.table(\n",
- " cellText=converted_list,\n",
- " cellLoc=\"center\",\n",
- " bbox=[\n",
- " -len(gridkey_rows) * 0.2, \n",
- " 0, \n",
- " len(gridkey_rows) * 0.2, \n",
- " 1\n",
- " ],\n",
- " **{\"alpha\": 0.5, \"zorder\": 5}\n",
- " )\n",
- " \n",
+ " gridkey_to_plot = add_table(celltext = converted_list, bbox = [-len(gridkey) * 0.2, 0, len(gridkey) * 0.2, 1])\n",
+ "\n",
" # Add the column labels as text below the table\n",
- " text_locs = np.arange((-len(gridkey_rows)*0.2) +0.1, 0, 0.2)\n",
- " for loc, txt in zip(text_locs, gridkey_rows):\n",
+ " text_locs = np.arange((-len(gridkey)*0.2) +0.1, 0, 0.2)\n",
+ " for loc, txt in zip(text_locs, gridkey):\n",
" ax_to_plot.text(\n",
" loc+0.04, \n",
" -0.01, \n",
" txt, \n",
" transform=ax_to_plot.transAxes, \n",
- " fontsize=10,\n",
" ha='right',\n",
" rotation=45,\n",
+ " fontsize=labels_fontsize if labels_fontsize is not None else 10,\n",
" va='top',\n",
" )\n",
" else:\n",
" # Plot the table for vertical format\n",
" if show_mini_meta:\n",
- " gridkey = ax_to_plot.table(\n",
- " cellText=table_cellcols,\n",
- " rowLabels=gridkey_rows,\n",
- " cellLoc=\"center\",\n",
- " bbox=[\n",
- " 0,\n",
- " -len(gridkey_rows) * 0.1 - 0.05,\n",
- " 1,\n",
- " len(gridkey_rows) * 0.1,\n",
- " ],\n",
- " **{\"alpha\": 0.5}\n",
- " )\n",
- " \n",
+ " gridkey_to_plot = add_table(celltext = table_cellcols, rowlabels=gridkey, bbox = [0, -len(gridkey) * 0.1 - 0.05, 1, len(gridkey) * 0.1])\n",
" elif show_delta2:\n",
- " gridkey = ax_to_plot.table(\n",
- " cellText=table_cellcols,\n",
- " rowLabels=gridkey_rows,\n",
- " cellLoc=\"center\",\n",
- " bbox=[\n",
- " 0,\n",
- " -len(gridkey_rows) * 0.1 - 0.05,\n",
- " 0.75,\n",
- " len(gridkey_rows) * 0.1,\n",
- " ],\n",
- " **{\"alpha\": 0.5}\n",
- " )\n",
- "\n",
- " extra_gridkey = ax_to_plot.table(\n",
- " cellText=extra_table_cellcols,\n",
- " cellLoc=\"center\",\n",
- " bbox=[\n",
- " 0.78,\n",
- " -len(gridkey_rows) * 0.1 - 0.05,\n",
- " 0.15,\n",
- " len(gridkey_rows) * 0.1,\n",
- " ],\n",
- " **{\"alpha\": 0.5}\n",
- " )\n",
- " \n",
+ " gridkey_to_plot = add_table(celltext = table_cellcols, rowlabels=gridkey, bbox = [0, -len(gridkey) * 0.1 - 0.05, 0.75, len(gridkey) * 0.1])\n",
+ " extra_gridkey = add_table(celltext = extra_table_cellcols, bbox = [0.78, -len(gridkey) * 0.1 - 0.05, 0.15, len(gridkey) * 0.1])\n",
" else:\n",
- " gridkey = ax_to_plot.table(\n",
- " cellText=table_cellcols,\n",
- " rowLabels=gridkey_rows,\n",
- " cellLoc=\"center\",\n",
- " bbox=[\n",
- " 0,\n",
- " -len(gridkey_rows) * 0.1 - 0.05,\n",
- " 1,\n",
- " len(gridkey_rows) * 0.1,\n",
- " ],\n",
- " **{\"alpha\": 0.5}\n",
- " )\n",
+ " gridkey_to_plot = add_table(celltext = table_cellcols, rowlabels=gridkey, bbox = [0, -len(gridkey) * 0.1 - 0.05, 1, len(gridkey) * 0.1]) \n",
"\n",
" # modifies row label cells\n",
- " for cell in gridkey._cells:\n",
+ " for cell in gridkey_to_plot._cells:\n",
" if cell[1] == -1:\n",
- " gridkey._cells[cell].visible_edges = \"open\"\n",
- " gridkey._cells[cell].set_text_props(**{\"ha\": \"right\"})\n",
+ " gridkey_to_plot._cells[cell].visible_edges = \"open\"\n",
+ " gridkey_to_plot._cells[cell].set_text_props(**{\"ha\": \"right\"})\n",
+ "\n",
+ " if fontsize is not None:\n",
+ " gridkey_to_plot.auto_set_font_size(False)\n",
+ " gridkey_to_plot.set_fontsize(fontsize)\n",
+ " if show_delta2 and not horizontal:\n",
+ " extra_gridkey.auto_set_font_size(False)\n",
+ " extra_gridkey.set_fontsize(fontsize)\n",
+ "\n",
+ " if labels_fontsize is not None and not horizontal:\n",
+ " gridkey_to_plot.auto_set_font_size(False)\n",
+ " for cell in gridkey_to_plot._cells:\n",
+ " if cell[1] == -1:\n",
+ " gridkey_to_plot._cells[cell].set_text_props(**{\"fontsize\": labels_fontsize})\n",
"\n",
" # turns off both x axes\n",
" if horizontal:\n",
@@ -2088,10 +1858,9 @@
" all_plot_groups: list, \n",
" rawdata_axes: axes.Axes, \n",
" plot_data: pd.DataFrame, \n",
- " bar_color: str, \n",
- " plot_palette_bar: dict, \n",
+ " raw_colors: str, \n",
+ " plot_palette_raw: dict, \n",
" color_col: str,\n",
- " plot_kwargs: dict, \n",
" barplot_kwargs: dict, \n",
" horizontal: bool\n",
" ):\n",
@@ -2110,19 +1879,19 @@
" Matplotlib axis object to plot on.\n",
" plot_data : object (Dataframe)\n",
" Dataframe of the plot data.\n",
- " bar_color : str\n",
+ " raw_colors : str\n",
" Color of the bar.\n",
- " plot_palette_bar : dict\n",
+ " plot_palette_raw : dict\n",
" Dictionary of colors used in the bar plot.\n",
" color_col : str\n",
" Column name of the color column.\n",
- " plot_kwargs : dict\n",
- " Keyword arguments for the plot.\n",
" barplot_kwargs : dict\n",
" Keyword arguments for the barplot.\n",
" horizontal : bool\n",
" If the plot is horizontal.\n",
" \"\"\"\n",
+ " bar_width = barplot_kwargs.get('width', 0.5)\n",
+ " fontsize = barplot_kwargs.pop('fontsize')\n",
"\n",
" x_label, y_label = rawdata_axes.get_xlabel(), rawdata_axes.get_ylabel()\n",
" if horizontal:\n",
@@ -2144,11 +1913,11 @@
" \n",
" # Map colors, defaulting to bar_color if no match\n",
" edge_colors = [\n",
- " plot_palette_bar.get(hue_val, bar_color) \n",
+ " plot_palette_raw.get(hue_val, raw_colors) \n",
" for hue_val in bar1_df[color_col]\n",
" ]\n",
" else:\n",
- " edge_colors = bar_color\n",
+ " edge_colors = raw_colors\n",
"\n",
" bar1 = sns.barplot(\n",
" data=bar1_df,\n",
@@ -2162,14 +1931,15 @@
" zorder=1,\n",
" orient=orient,\n",
" )\n",
+ "\n",
" bar2 = sns.barplot(\n",
" data=plot_data,\n",
" x=yvar if horizontal else xvar,\n",
" y=xvar if horizontal else yvar,\n",
+ " hue=xvar if color_col is None else color_col,\n",
" ax=rawdata_axes,\n",
" order=all_plot_groups,\n",
- " palette=plot_palette_bar,\n",
- " hue=color_col,\n",
+ " palette=plot_palette_raw,\n",
" dodge=False,\n",
" zorder=1,\n",
" orient=orient,\n",
@@ -2177,7 +1947,6 @@
" )\n",
"\n",
" # adjust the width of bars\n",
- " bar_width = plot_kwargs[\"bar_width\"]\n",
" if horizontal:\n",
" for bar in bar1.patches:\n",
" y = bar.get_y()\n",
@@ -2197,6 +1966,13 @@
" rawdata_axes.set_xlabel(x_label)\n",
" rawdata_axes.set_ylabel(y_label)\n",
"\n",
+ " if horizontal:\n",
+ " rawdata_axes.set_yticks(rawdata_axes.get_yticks())\n",
+ " rawdata_axes.set_yticklabels(rawdata_axes.get_yticklabels(), fontsize = fontsize)\n",
+ " else:\n",
+ " rawdata_axes.set_xticks(rawdata_axes.get_xticks())\n",
+ " rawdata_axes.set_xticklabels(rawdata_axes.get_xticklabels(), fontsize = fontsize)\n",
+ "\n",
"def table_for_horizontal_plots(\n",
" effectsize_df: object, \n",
" ax: axes.Axes, \n",
@@ -2866,6 +2642,8 @@
" raise ValueError(\"`gutter_limit` must be a scalar or float.\")\n",
" if not isinstance(filled, (bool, list, tuple)):\n",
" raise ValueError(\"`filled` must be a boolean, list or tuple.\")\n",
+ " \n",
+ " fontsize = kwargs.pop('fontsize', 12)\n",
"\n",
" # More thorough input validation checks\n",
" if isinstance(filled, (list, tuple)):\n",
@@ -2971,10 +2749,10 @@
"\n",
" if horizontal:\n",
" ax.get_yaxis().set_ticks(np.arange(x_position))\n",
- " ax.get_yaxis().set_ticklabels(x_tick_tabels)\n",
+ " ax.get_yaxis().set_ticklabels(x_tick_tabels, fontsize = fontsize)\n",
" else:\n",
" ax.get_xaxis().set_ticks(np.arange(x_position))\n",
- " ax.get_xaxis().set_ticklabels(x_tick_tabels)\n",
+ " ax.get_xaxis().set_ticklabels(x_tick_tabels, fontsize = fontsize)\n",
" \n",
" return ax"
]
diff --git a/nbs/API/plotter.ipynb b/nbs/API/plotter.ipynb
index 98a53880..faefacd2 100644
--- a/nbs/API/plotter.ipynb
+++ b/nbs/API/plotter.ipynb
@@ -86,26 +86,30 @@
" A `dabest` EffectSizeDataFrame object.\n",
" plot_kwargs\n",
" color_col=None\n",
- " raw_marker_size=6, es_marker_size=9,\n",
- " swarm_label=None, contrast_label=None, delta2_label=None,\n",
- " swarm_ylim=None, contrast_ylim=None, delta2_ylim=None,\n",
- " custom_palette=None, swarm_desat=0.5, halfviolin_desat=1,\n",
- " halfviolin_alpha=0.8,\n",
- " face_color = None,\n",
- " bar_label=None, bar_desat=0.8, bar_width = 0.5,bar_ylim = None,\n",
- " ci=None, ci_type='bca', err_color=None,\n",
+ " raw_marker_size=6, contrast_marker_kwargs=9,\n",
+ " raw_label=None, contrast_label=None, delta2_label=None,\n",
+ " raw_ylim=None, contrast_ylim=None, delta2_ylim=None,\n",
+ " custom_palette=None, \n",
+ " swarm_side=None, \n",
+ " empty_circle=False,\n",
+ " face_color=None,\n",
+ " raw_desat=0.5, contrast_desat=1,\n",
+ " raw_alpha=None, contrast_alpha=0.8,\n",
+ " bar_width = 0.5,\n",
+ " ci_type='bca',\n",
" float_contrast=True,\n",
" show_pairs=True,\n",
- " show_delta2=True,\n",
- " group_summaries=None,\n",
+ " show_sample_size=True,\n",
+ " show_delta2=True, show_mini_meta=True,\n",
+ " group_summaries=\"mean_sd\",\n",
" fig_size=None,\n",
" dpi=100,\n",
" ax=None,\n",
- " gridkey_rows=None, gridkey_kwargs=None,\n",
" swarmplot_kwargs=None,\n",
- " violinplot_kwargs=None,\n",
" slopegraph_kwargs=None,\n",
+ " barplot_kwargs=None,\n",
" sankey_kwargs=None,\n",
+ " contrast_kwargs=None,\n",
" reflines_kwargs=None,\n",
" group_summaries_kwargs=None,\n",
" legend_kwargs=None,\n",
@@ -113,15 +117,25 @@
" fontsize_rawxlabel=12, fontsize_rawylabel=12,\n",
" fontsize_contrastxlabel=12, fontsize_contrastylabel=12,\n",
" fontsize_delta2label=12,\n",
- " swarm_bars=True, swarm_bars_kwargs=None,\n",
+ "\n",
+ " raw_bars=True, raw_bars_kwargs=None,\n",
" contrast_bars=True, contrast_bars_kwargs=None,\n",
+ " reference_band=None, reference_band_kwargs=None,\n",
" delta_text=True, delta_text_kwargs=None,\n",
" delta_dot=True, delta_dot_kwargs=None,\n",
- "\t\tshow_baseline_ec=False,\n",
+ "\n",
" horizontal=False, horizontal_table_kwargs=None,\n",
- " es_marker_kwargs=None, es_errorbar_kwargs=None,\n",
+ " gridkey=None, \n",
+ " gridkey_merge_pairs=False,\n",
+ " gridkey_show_Ns=True,\n",
+ " gridkey_show_es=True,\n",
+ " gridkey_delimiters=[';', '>', '_'],\n",
+ " gridkey_kwargs=None,\n",
+ " contrast_marker_kwargs=None, contrast_errorbar_kwargs=None,\n",
" prop_sample_counts=False, prop_sample_counts_kwargs=None, \n",
- " es_paired_lines=True, es_paired_lines_kwargs=None,\n",
+ " contrast_paired_lines=True, contrast_paired_lines\n",
+ "\t\tshow_baseline_ec=False,\n",
+ "\n",
" \"\"\"\n",
" from .misc_tools import (\n",
" get_params,\n",
@@ -137,13 +151,13 @@
" extract_group_summaries,\n",
" draw_zeroline,\n",
" redraw_dependent_spines,\n",
- " redraw_independent_spines\n",
+ " redraw_independent_spines,\n",
+ " prepare_bars_for_plot\n",
" )\n",
" from .plot_tools import (\n",
" error_bar,\n",
" sankeydiag,\n",
" swarmplot,\n",
- " summary_bars_plotter,\n",
" delta_text_plotter,\n",
" delta_dots_plotter,\n",
" slopegraph_plotter,\n",
@@ -153,7 +167,7 @@
" barplotter,\n",
" table_for_horizontal_plots,\n",
" add_counts_to_prop_plots,\n",
- " swarm_contrast_bar_plotter\n",
+ " add_bars_to_plot\n",
" )\n",
"\n",
" warnings.filterwarnings(\n",
@@ -174,35 +188,36 @@
" ytick_color = plt.rcParams[\"ytick.color\"]\n",
"\n",
" # Extract parameters and set kwargs\n",
- " (swarmplot_kwargs, barplot_kwargs, sankey_kwargs, \n",
- " violinplot_kwargs, slopegraph_kwargs, reflines_kwargs, legend_kwargs,\n",
- " group_summaries_kwargs, redraw_axes_kwargs, delta_dot_kwargs, delta_text_kwargs,\n",
- " summary_bars_kwargs, swarm_bars_kwargs, contrast_bars_kwargs, table_kwargs,\n",
- " gridkey_kwargs, es_marker_kwargs, es_errorbar_kwargs, prop_sample_counts_kwargs, es_paired_lines_kwargs) = get_kwargs(\n",
- " plot_kwargs = plot_kwargs, \n",
- " ytick_color = ytick_color\n",
+ " (swarmplot_kwargs, barplot_kwargs, sankey_kwargs, contrast_kwargs, \n",
+ " slopegraph_kwargs, reflines_kwargs, legend_kwargs, group_summaries_kwargs, \n",
+ " redraw_axes_kwargs, delta_dot_kwargs, delta_text_kwargs, reference_band_kwargs, \n",
+ " raw_bars_kwargs, contrast_bars_kwargs, table_kwargs, gridkey_kwargs, contrast_marker_kwargs, \n",
+ " contrast_errorbar_kwargs, prop_sample_counts_kwargs, contrast_paired_lines_kwargs) = get_kwargs(\n",
+ " plot_kwargs = plot_kwargs, \n",
+ " ytick_color = ytick_color\n",
" )\n",
"\n",
" (dabest_obj, plot_data, xvar, yvar, is_paired, effect_size, proportional, \n",
" all_plot_groups, idx, show_delta2, show_mini_meta, float_contrast, \n",
- " show_pairs, group_summaries, err_color, horizontal, results, halfviolin_alpha, ci_type,\n",
- " x1_level, experiment_label, show_baseline_ec, one_sankey, two_col_sankey, asymmetric_side) = get_params(\n",
- " \t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\teffectsize_df = effectsize_df, \n",
- " plot_kwargs = plot_kwargs,\n",
- " sankey_kwargs = sankey_kwargs\n",
+ " show_pairs, group_summaries, horizontal, results, ci_type, x1_level, experiment_label, \n",
+ " show_baseline_ec, one_sankey, two_col_sankey, asymmetric_side, show_sample_size) = get_params(\n",
+ " effectsize_df = effectsize_df, \n",
+ " plot_kwargs = plot_kwargs,\n",
+ " sankey_kwargs = sankey_kwargs,\n",
+ " barplot_kwargs = barplot_kwargs\n",
" )\n",
"\n",
" # Extract Color palette\n",
- " (color_col, bootstraps_color_by_group, n_groups, filled, plot_palette_raw, \n",
- " bar_color, plot_palette_bar, plot_palette_contrast, plot_palette_sankey) = get_color_palette(\n",
- " plot_kwargs = plot_kwargs, \n",
- " plot_data = plot_data, \n",
- " xvar = xvar, \n",
- " show_pairs = show_pairs,\n",
- " idx = idx,\n",
- " all_plot_groups = all_plot_groups,\n",
- " delta2 = effectsize_df.delta2,\n",
- " sankey = True if proportional and show_pairs else False,\n",
+ " (color_col, bootstraps_color_by_group, n_groups, filled, raw_colors,\n",
+ " plot_palette_raw, plot_palette_contrast, plot_palette_sankey) = get_color_palette(\n",
+ " plot_kwargs = plot_kwargs, \n",
+ " plot_data = plot_data, \n",
+ " xvar = xvar, \n",
+ " show_pairs = show_pairs,\n",
+ " idx = idx,\n",
+ " all_plot_groups = all_plot_groups,\n",
+ " delta2 = effectsize_df.delta2,\n",
+ " sankey = True if proportional and show_pairs else False,\n",
" )\n",
"\n",
" # Initialise the figure.\n",
@@ -218,7 +233,8 @@
" effect_size_type = effect_size,\n",
" yvar = yvar,\n",
" horizontal = horizontal,\n",
- " show_table = table_kwargs['show']\n",
+ " show_table = table_kwargs['show'],\n",
+ " color_col = color_col\n",
" )\n",
" \n",
" # Plotting the rawdata.\n",
@@ -230,6 +246,9 @@
" all_plot_groups = all_plot_groups\n",
" )\n",
" if proportional: ## Plot the raw data as a set of Sankey Diagrams aligned like barplot.\n",
+ " if sankey_kwargs[\"flow\"] == False and len(temp_all_plot_groups) == 2: \n",
+ " sankey_kwargs[\"flow\"], two_col_sankey = True, False\n",
+ " warnings.warn(\"Sankey flow must be true for singular two-group sankey plots\")\n",
" sankey_control_test_groups = sankeydiag(\n",
" plot_data,\n",
" xvar = xvar,\n",
@@ -255,7 +274,8 @@
" ytick_color = ytick_color, \n",
" temp_idx = temp_idx,\n",
" horizontal = horizontal,\n",
- " temp_all_plot_groups = temp_all_plot_groups\n",
+ " temp_all_plot_groups = temp_all_plot_groups, \n",
+ " plot_kwargs = plot_kwargs,\n",
" )\n",
" \n",
" ## Add delta dots to the contrast axes for paired plots.\n",
@@ -285,10 +305,9 @@
" all_plot_groups = all_plot_groups, \n",
" rawdata_axes = rawdata_axes, \n",
" plot_data = plot_data, \n",
- " bar_color = bar_color, \n",
- " plot_palette_bar = plot_palette_bar, \n",
+ " raw_colors = raw_colors, \n",
+ " plot_palette_raw = plot_palette_raw, \n",
" color_col = color_col,\n",
- " plot_kwargs = plot_kwargs, \n",
" barplot_kwargs = barplot_kwargs,\n",
" horizontal = horizontal,\n",
" )\n",
@@ -320,7 +339,6 @@
" (group_summaries_method, \n",
" group_summaries_offset, group_summaries_line_color) = extract_group_summaries(\n",
" proportional = proportional, \n",
- " err_color = err_color, \n",
" rawdata_axes = rawdata_axes, \n",
" asymmetric_side = asymmetric_side if not proportional else None, \n",
" horizontal = horizontal, \n",
@@ -347,15 +365,16 @@
" )\n",
"\n",
" # Add the counts to the rawdata axes xticks.\n",
- " add_counts_to_ticks(\n",
- " plot_data = plot_data, \n",
- " xvar = xvar, \n",
- " yvar = yvar, \n",
- " rawdata_axes = rawdata_axes, \n",
- " plot_kwargs = plot_kwargs,\n",
- " flow = sankey_kwargs[\"flow\"],\n",
- " horizontal = horizontal,\n",
- " )\n",
+ " if show_sample_size:\n",
+ " add_counts_to_ticks(\n",
+ " plot_data = plot_data, \n",
+ " xvar = xvar, \n",
+ " yvar = yvar, \n",
+ " rawdata_axes = rawdata_axes, \n",
+ " plot_kwargs = plot_kwargs,\n",
+ " flow = sankey_kwargs[\"flow\"],\n",
+ " horizontal = horizontal,\n",
+ " )\n",
"\n",
" # Add counts to prop plots (embedded in the plot bars)\n",
" if proportional and plot_kwargs['prop_sample_counts'] and sankey_kwargs[\"flow\"]:\n",
@@ -370,21 +389,23 @@
" )\n",
"\n",
" ## Swarm bars\n",
- " swarm_bars = plot_kwargs[\"swarm_bars\"]\n",
- " if swarm_bars and not proportional and not horizontal: #Currently not supporting swarm bars for horizontal plots (looks weird)\n",
- " swarm_contrast_bar_plotter(\n",
- " bar_type = 'Swarm',\n",
- " axes = [rawdata_axes, contrast_axes],\n",
- " bar_kwargs = swarm_bars_kwargs,\n",
- " color_col = color_col,\n",
- " show_pairs = show_pairs,\n",
- " plot_palette_raw = plot_palette_raw,\n",
- " idx = idx,\n",
- " plot_data = plot_data,\n",
- " xvar = xvar,\n",
- " yvar = yvar\n",
- " )\n",
- "\n",
+ " raw_bars = plot_kwargs[\"raw_bars\"]\n",
+ " if raw_bars and not proportional and not horizontal: #Currently not supporting swarm bars for horizontal plots (looks weird)\n",
+ " raw_bars_dict, raw_bars_kwargs = prepare_bars_for_plot(\n",
+ " bar_type = 'raw', \n",
+ " bar_kwargs = raw_bars_kwargs, \n",
+ " horizontal = horizontal,\n",
+ " plot_palette_raw = plot_palette_raw,\n",
+ " color_col = color_col, \n",
+ " show_pairs = show_pairs, \n",
+ " plot_data = plot_data,\n",
+ " xvar = xvar, \n",
+ " yvar = yvar, \n",
+ " )\n",
+ " add_bars_to_plot(bar_dict = raw_bars_dict, \n",
+ " ax = rawdata_axes, \n",
+ " bar_kwargs = raw_bars_kwargs\n",
+ " )\n",
"\n",
" # Plot the contrast axes - effect sizes and bootstraps!\n",
" plot_groups = (temp_all_plot_groups if (is_paired == \"baseline\" and show_pairs and two_col_sankey) \n",
@@ -409,7 +430,7 @@
" ticks_to_plot = [x+0.25 for x in ticks_to_plot]\n",
"\n",
" ## Plot the bootstraps, then the effect sizes and CIs.\n",
- " es_paired_lines = False if float_contrast or not sankey_kwargs[\"flow\"] else plot_kwargs[\"es_paired_lines\"]\n",
+ " contrast_paired_lines = False if float_contrast or not sankey_kwargs[\"flow\"] else plot_kwargs[\"contrast_paired_lines\"]\n",
" (current_group, current_control,\n",
" current_effsize, contrast_xtick_labels) = effect_size_curve_plotter(\n",
" ticks_to_plot = ticks_to_plot, \n",
@@ -417,17 +438,16 @@
" results = results, \n",
" ci_type = ci_type, \n",
" contrast_axes = contrast_axes, \n",
- " violinplot_kwargs = violinplot_kwargs, \n",
- " halfviolin_alpha = halfviolin_alpha, \n",
+ " contrast_kwargs = contrast_kwargs, \n",
" bootstraps_color_by_group = bootstraps_color_by_group,\n",
" plot_palette_contrast = plot_palette_contrast,\n",
" horizontal = horizontal,\n",
- " es_marker_kwargs = es_marker_kwargs,\n",
- " es_errorbar_kwargs = es_errorbar_kwargs,\n",
+ " contrast_marker_kwargs = contrast_marker_kwargs,\n",
+ " contrast_errorbar_kwargs = contrast_errorbar_kwargs,\n",
" idx = idx,\n",
" is_paired = is_paired,\n",
- " es_paired_lines = es_paired_lines,\n",
- "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tes_paired_lines_kwargs = es_paired_lines_kwargs,\n",
+ " contrast_paired_lines = contrast_paired_lines,\n",
+ "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tcontrast_paired_lines_kwargs = contrast_paired_lines_kwargs,\n",
"\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tshow_baseline_ec = show_baseline_ec,\n",
" )\n",
"\n",
@@ -435,63 +455,58 @@
" delta2_axes = None\n",
" if show_mini_meta or show_delta2:\n",
" delta2_axes, contrast_xtick_labels = plot_minimeta_or_deltadelta_violins(\n",
- " show_mini_meta = show_mini_meta, \n",
- " effectsize_df = effectsize_df, \n",
+ " dabest_obj = effectsize_df.mini_meta if show_mini_meta else effectsize_df.delta_delta,\n",
+ " type = 'mini_meta' if show_mini_meta else 'delta_delta',\n",
" ci_type = ci_type, \n",
" rawdata_axes = rawdata_axes,\n",
" contrast_axes = contrast_axes, \n",
- " violinplot_kwargs = violinplot_kwargs, \n",
- " halfviolin_alpha = halfviolin_alpha, \n",
+ " contrast_kwargs = contrast_kwargs, \n",
" contrast_xtick_labels = contrast_xtick_labels, \n",
" effect_size = effect_size,\n",
- " show_delta2 = show_delta2, \n",
" plot_kwargs = plot_kwargs, \n",
" horizontal = horizontal,\n",
" show_pairs = show_pairs,\n",
- " es_marker_kwargs = es_marker_kwargs,\n",
- " es_errorbar_kwargs = es_errorbar_kwargs\n",
+ " contrast_marker_kwargs = contrast_marker_kwargs,\n",
+ " contrast_errorbar_kwargs = contrast_errorbar_kwargs,\n",
" )\n",
" ## Contrast bars\n",
" contrast_bars = plot_kwargs[\"contrast_bars\"]\n",
" if contrast_bars:\n",
- " swarm_contrast_bar_plotter(\n",
- " bar_type = 'Contrast',\n",
- " axes = [rawdata_axes, contrast_axes],\n",
- " bar_kwargs = contrast_bars_kwargs,\n",
- " color_col = color_col,\n",
- " show_pairs = show_pairs,\n",
- " plot_palette_raw = plot_palette_raw,\n",
- " idx = idx,\n",
- " order = ticks_to_plot,\n",
- " results = results,\n",
- " horizontal = horizontal,\n",
- " diff = (effectsize_df.mini_meta.difference if show_mini_meta \n",
- " else effectsize_df.delta_delta.difference if show_delta2\n",
- " else None)\n",
- " )\n",
+ " contrast_bars_dict, contrast_bars_kwargs = prepare_bars_for_plot(\n",
+ " bar_type = 'contrast', \n",
+ " bar_kwargs = contrast_bars_kwargs, \n",
+ " horizontal = horizontal,\n",
+ " plot_palette_raw = plot_palette_raw,\n",
+ " color_col = color_col, \n",
+ " show_pairs = show_pairs, \n",
+ " results = results, \n",
+ " ticks_to_plot = ticks_to_plot, \n",
+ " extra_delta = (effectsize_df.mini_meta.difference if show_mini_meta \n",
+ " else effectsize_df.delta_delta.difference if show_delta2\n",
+ " else None)\n",
+ " )\n",
+ " add_bars_to_plot(bar_dict = contrast_bars_dict, \n",
+ " ax = contrast_axes, \n",
+ " bar_kwargs = contrast_bars_kwargs\n",
+ " )\n",
" \n",
- "\n",
" ## Delta text\n",
" delta_text = plot_kwargs[\"delta_text\"]\n",
" if delta_text and not horizontal: \n",
" delta_text_plotter(\n",
" results = results, \n",
" ax_to_plot = contrast_axes, \n",
- " swarm_plot_ax = rawdata_axes, \n",
" ticks_to_plot = ticks_to_plot, \n",
" delta_text_kwargs = delta_text_kwargs, \n",
" color_col = color_col, \n",
" plot_palette_raw = plot_palette_raw, \n",
" show_pairs = show_pairs,\n",
- " proportional = proportional, \n",
" float_contrast = float_contrast, \n",
- " show_mini_meta = show_mini_meta, \n",
- " mini_meta = effectsize_df.mini_meta if show_mini_meta else None, \n",
- " show_delta2 = show_delta2, \n",
- " delta_delta = effectsize_df.delta_delta if show_delta2 else None,\n",
- " idx = idx\n",
+ " extra_delta = (effectsize_df.mini_meta.difference if show_mini_meta \n",
+ " else effectsize_df.delta_delta.difference if show_delta2\n",
+ " else None),\n",
" )\n",
- " \n",
+ "\n",
" ## Make sure the contrast_axes x-lims match the rawdata_axes xlims,\n",
" ## and add an extra violinplot tick for delta-delta plot.\n",
" ## Name is xaxis but it is actually y-axis for horizontal plots\n",
@@ -535,7 +550,7 @@
" extra_delta = True if show_delta2 else False,\n",
" )\n",
" ## Axes independent spine lines\n",
- " is_gridkey = True if plot_kwargs[\"gridkey_rows\"] is not None else False\n",
+ " is_gridkey = True if plot_kwargs[\"gridkey\"] is not None else False\n",
" if not is_gridkey:\n",
" redraw_independent_spines(\n",
" rawdata_axes = rawdata_axes,\n",
@@ -550,21 +565,20 @@
" ticks_to_skip = ticks_to_skip,\n",
" temp_idx = temp_idx if is_paired == \"baseline\" and show_pairs else None,\n",
" ticks_to_skip_contrast = ticks_to_skip_contrast,\n",
- " extra_delta = True if (show_delta2 or show_mini_meta) else False,\n",
" redraw_axes_kwargs = redraw_axes_kwargs\n",
" )\n",
"\n",
" # Modify ylims of axes to flip the plot for horizontal format\n",
" if horizontal:\n",
" if not proportional or (proportional and show_pairs):\n",
- " swarm_ylim, contrast_ylim = rawdata_axes.get_ylim(), contrast_axes.get_ylim()\n",
- " rawdata_axes.set_ylim(swarm_ylim[1], swarm_ylim[0])\n",
+ " raw_ylim, contrast_ylim = rawdata_axes.get_ylim(), contrast_axes.get_ylim()\n",
+ " rawdata_axes.set_ylim(raw_ylim[1], raw_ylim[0])\n",
" contrast_axes.set_ylim(contrast_ylim[1], contrast_ylim[0])\n",
"\n",
" ## Modify the ylim to reduce whitespace in specific plots.\n",
" if show_delta2 or show_mini_meta or (proportional and show_pairs):\n",
- " swarm_ylim, contrast_ylim = rawdata_axes.get_ylim(), contrast_axes.get_ylim()\n",
- " rawdata_axes.set_ylim(swarm_ylim[0]-0.5, swarm_ylim[1])\n",
+ " raw_ylim, contrast_ylim = rawdata_axes.get_ylim(), contrast_axes.get_ylim()\n",
+ " rawdata_axes.set_ylim(raw_ylim[0]-0.5, raw_ylim[1])\n",
" contrast_axes.set_ylim(contrast_ylim[0]-0.5, contrast_ylim[1])\n",
"\n",
" # Add the dependent axes spines back in.\n",
@@ -592,13 +606,13 @@
" )\n",
"\n",
" # Gridkey\n",
- " gridkey_rows = plot_kwargs[\"gridkey_rows\"]\n",
- " if gridkey_rows is not None:\n",
+ " gridkey = plot_kwargs[\"gridkey\"]\n",
+ " if gridkey is not None:\n",
" gridkey_plotter(\n",
" is_paired = is_paired, \n",
" idx = idx, \n",
" all_plot_groups = all_plot_groups, \n",
- " gridkey_rows = gridkey_rows, \n",
+ " gridkey = gridkey, \n",
" rawdata_axes = rawdata_axes,\n",
" contrast_axes = contrast_axes,\n",
" plot_data = plot_data, \n",
@@ -617,30 +631,33 @@
" gridkey_kwargs = gridkey_kwargs,\n",
" )\n",
" \n",
- " # Summary bars\n",
- " summary_bars = plot_kwargs[\"summary_bars\"]\n",
- " if summary_bars is not None:\n",
- " summary_bars_plotter(\n",
- " summary_bars = summary_bars, \n",
- " results = results, \n",
- " ax_to_plot = contrast_axes, \n",
- " float_contrast = float_contrast,\n",
- " summary_bars_kwargs = summary_bars_kwargs, \n",
- " ci_type = ci_type, \n",
- " ticks_to_plot = ticks_to_plot, \n",
- " color_col = color_col,\n",
- " plot_palette_raw = plot_palette_raw, \n",
- " proportional = proportional, \n",
- " show_pairs = show_pairs,\n",
- " horizontal = horizontal,\n",
- " )\n",
+ " # Reference band\n",
+ " reference_band = plot_kwargs[\"reference_band\"]\n",
+ " if reference_band is not None and not float_contrast:\n",
+ " reference_band_dict, reference_band_kwargs = prepare_bars_for_plot(bar_type = 'summary', \n",
+ " bar_kwargs = reference_band_kwargs, \n",
+ " horizontal = horizontal, \n",
+ " plot_palette_raw = plot_palette_raw, \n",
+ " color_col = color_col, \n",
+ " show_pairs = show_pairs,\n",
+ " results = results, \n",
+ " ticks_to_plot = ticks_to_plot, \n",
+ " reference_band = reference_band, \n",
+ " summary_axes = contrast_axes, \n",
+ " ci_type = ci_type,\n",
+ " )\n",
" \n",
+ " add_bars_to_plot(bar_dict = reference_band_dict,\n",
+ " ax = contrast_axes,\n",
+ " bar_kwargs = reference_band_kwargs\n",
+ " )\n",
+ "\n",
" # Legend\n",
" handles, labels = rawdata_axes.get_legend_handles_labels()\n",
" legend_labels = [l for l in labels]\n",
" legend_handles = [h for h in handles]\n",
"\n",
- " if bootstraps_color_by_group is False:\n",
+ " if bootstraps_color_by_group is False and color_col is not None:\n",
" rawdata_axes.legend().set_visible(False)\n",
" show_legend(\n",
" legend_labels = legend_labels, \n",
@@ -680,41 +697,50 @@
"- **effectsize_df**: A `dabest` `EffectSizeDataFrame` object.\n",
"- **plot_kwargs**:\n",
" - color_col=None\n",
- " - raw_marker_size=6, es_marker_size=9,\n",
- " - swarm_label=None, contrast_label=None, delta2_label=None,\n",
- " - swarm_ylim=None, contrast_ylim=None, delta2_ylim=None,\n",
- " - custom_palette=None, swarm_desat=0.5, halfviolin_desat=1,\n",
- " - halfviolin_alpha=0.8,\n",
+ " - raw_marker_size=6, contrast_marker_size=9,\n",
+ " - raw_label=None, contrast_label=None, delta2_label=None,\n",
+ " - raw_ylim=None, contrast_ylim=None, delta2_ylim=None,\n",
+ " - custom_palette=None, swarm_side=None, empty_circle=False,\n",
" - face_color = None,\n",
- " - bar_label=None, bar_desat=0.8, bar_width = 0.5,bar_ylim = None,\n",
- " - ci=None, ci_type='bca', err_color=None,\n",
+ " - raw_desat=0.5, contrast_desat=1,\n",
+ " - raw_alpha=None, contrast_alpha=0.8,\n",
+ " - bar_width=0.5, \n",
+ " - ci_type='bca',\n",
" - float_contrast=True,\n",
" - show_pairs=True,\n",
- " - show_delta2=True,\n",
- " - group_summaries=None,\n",
- " - fig_size=None,\n",
- " - dpi=100,\n",
+ " - show_sample_size=True\n",
+ " - show_delta2=True, show_mini_meta=True,\n",
+ " - group_summaries=\"mean_sd\",\n",
+ " - fig_size=None, dpi=100,\n",
" - ax=None,\n",
- " - gridkey_rows=None, gridkey_kwargs=None,\n",
" - swarmplot_kwargs=None,\n",
- " - violinplot_kwargs=None,\n",
" - slopegraph_kwargs=None,\n",
+ " - barplot_kwargs=None,\n",
" - sankey_kwargs=None,\n",
+ " - contrast_kwargs=None,\n",
" - reflines_kwargs=None,\n",
" - group_summaries_kwargs=None,\n",
" - legend_kwargs=None,\n",
+ " \n",
" - title=None, fontsize_title=16,\n",
" - fontsize_rawxlabel=12, fontsize_rawylabel=12,\n",
" - fontsize_contrastxlabel=12, fontsize_contrastylabel=12,\n",
" - fontsize_delta2label=12,\n",
- " - swarm_bars=True, swarm_bars_kwargs=None,\n",
+ " - raw_bars=True, raw_bars_kwargs=None,\n",
" - contrast_bars=True, contrast_bars_kwargs=None,\n",
+ " - reference_band=None, reference_band_kwargs=None,\n",
" - delta_text=True, delta_text_kwargs=None,\n",
" - delta_dot=True, delta_dot_kwargs=None,\n",
+ " \n",
" - horizontal=False, horizontal_table_kwargs=None,\n",
- " - es_marker_kwargs=None, es_errorbar_kwargs=None\n",
+ " - gridkey=None, gridkey_merge_pairs=False,\n",
+ " - gridkey_show_Ns=True, gridkey_show_es=True,\n",
+ " - gridkey_delimiters=[';', '>', '_'],\n",
+ " - gridkey_kwargs=None,\n",
+ " - contrast_marker_kwargs=None, contrast_errorbar_kwargs=None\n",
" - prop_sample_counts=False, prop_sample_counts_kwargs=None\n",
- " - es_paired_lines=True, es_paired_lines_kwargs=None"
+ " - contrast_paired_lines=True, contrast_paired_lines_kwargs=None,\n",
+ " - show_baseline_ec=False"
]
},
{
diff --git a/nbs/read_me.ipynb b/nbs/read_me.ipynb
index 3a971973..f900170d 100644
--- a/nbs/read_me.ipynb
+++ b/nbs/read_me.ipynb
@@ -29,47 +29,49 @@
"source": [
"## Recent Version Update\n",
"\n",
- "We are proud to announce **DABEST Version TBC (v2025.03.14)** This new version of the DABEST Python library provides several new features and includes performance improvements. It's a big one!\n",
+ "We are proud to announce **DABEST Version Dadar (v2025.03.27)** This new version of the DABEST Python library includes several new features and performance improvements. It’s a big one!\n",
"\n",
- "1. **Python 3.13 Support**: DABEST now supports Python 3.10-3.13.\n",
+ "1. **Python 3.13 Support**: DABEST now supports Python 3.10—3.13.\n",
"\n",
- "2. **Horizontal Plots**: This new feature allows users to create horizontal plots instead of the regular vertical plots, providing a more compact visualization of data. This can be utilized by setting `horizontal=True` in the `plot()` method. See the [Horizontal Plots](../tutorials/08-horizontal_plot.html) tutorial for more details.\n",
+ "2. **Horizontal Plots**: Users can now create horizontal layout plots, providing compact data visualization. This can be achieved by setting `horizontal=True` in the `.plot()` method. See the [Horizontal Plots tutorial](../tutorials/08-horizontal_plot.html) for more details.\n",
"\n",
- "3. **Forest Plots**: This new feature allows users to create forest plots! Forest plots provide a simple and intuitive way to visualize many delta-delta (or Deltas' g) or mini-meta effect sizes at once from multiple different dabest objects without presenting the raw data. See the [Forest Plots](../tutorials/07-forest_plot.html) tutorial for more details.\n",
+ "3. **Forest Plots**: Forest plots provide a simple and intuitive way to visualize many delta-delta (or delta *g*), mini-meta, or regular delta effect sizes at once from multiple different dabest objects without presenting the raw data. See the [Forest Plots tutorial](../tutorials/07-forest_plot.html) for more details.\n",
"\n",
- "4. **Gridkey**: This new feature allows users to create a gridkey to represent the labels of the groups in the plot. This can be utilized with the `gridkey_rows` argument in the `plot()` method. See the gridkey section in the [Plot Aesthetics](../tutorials/09-plot_aesthetics.html) tutorial for more details.\n",
+ "4. **Gridkey**: Users can now represent experimental labels in a ‘gridkey’ table. This can be accessed with the `gridkey` parameter in the `.plot()` method. See the gridkey section in the [Plot Aesthetics tutorial](../tutorials/09-plot_aesthetics.html) for more details.\n",
"\n",
- "5. **Aesthetic Updates**: We have made several aesthetic improvements to the plots, including:\n",
- " - **Swarm, Contrast, and Summary bars**: We have added bars to better highlight the various groups and their differences. These bars can be customized to suit the user's needs. The swarm and contrast bars are provided by default, while the summary bars can be added by the user. See the relevant sections in the [Plot Aesthetics](../tutorials/09-plot_aesthetics.html) tutorial for more details.\n",
- " \n",
- " - **Delta-Delta Plots**: We have modified the delta-delta plot format to be more compact and easier to read. The new format brings the delta-delta (or Deltas' g) effect size closer to the regular effect sizes. In addition, a gap has been added to the zeroline to separate the delta-delta and regular effect sizes.\n",
+ "5. **Other Visualization Improvements**:\n",
+ " - **Comparing means and effect sizes**: The estimation plots now include three types of customizable visual features to enhance contextualization and comparison of means and effect sizes:\n",
+ " - **Bars for the mean of the observed values (`raw_bars`)**: Colored rectangles that extend from the zero line to the mean of each group's raw data. These bars visually highlight the central tendency of the raw data.\n",
+ " - **Bars for effect size/s (`contrast_bars`)**: Similar to raw bars, these highlight the effect-size difference between two groups (typically test and control) in the contrast axis. They provide a visual representation of the differences between groups.\n",
+ " - **Summary bands (`reference_band`)**: An optional band or ribbon that can be added to emphasize a specific effect size’s confidence interval that is used as a reference range across the entire contrast axis. Unlike raw and contrast bars, these span horizontally (or vertically if `horizontal=True`) and are not displayed by default.\n",
"\n",
- " - **Delta-delta Effect Sizes for Proportion Plots**: Delta-delta effect sizes for proportion plots are now available.\n",
- " \n",
- " - **Mini-Meta Plots**: We have modified the mini-meta plot format to be more compact and easier to read. The new format brings the mini-meta effect size closer to the regular effect sizes.\n",
+ " Raw and contrast bars are shown by default. Users can customize these bars and add summary bands as needed. For detailed customization instructions, please refer to the [Plot Aesthetics tutorial](../tutorials/09-plot_aesthetics.html).\n",
"\n",
- " - **Proportion Plots Sample Sizes**: We have updated the proportion plots to show sample sizes for each group. These can be toggled on or off via the `prop_sample_counts` parameter.\n",
+ " - **Tighter spacing in delta-delta and mini-meta plots**: We have adjusted the spacing of delta-delta and mini-meta plots to reduce whitespace. The new format brings the overall effect size closer to the two-groups effect sizes. In addition, delta-delta plots now have a gap in the zero line to separate the delta-delta from the ∆ effect sizes.\n",
"\n",
- " - **Effect Size Lines for Paired Plots**: Effect size lines for paired plots are now available. These can be toggled on or off via the `es_paired_lines` parameter.\n",
+ " - **Delta-delta effect sizes for proportion plots**: In addition to continuous data, delta-delta plots now support binary data (proportions). This means that 2-way designs for binary outcomes can be analyzed with DABEST.\n",
"\n",
- " - **Baseline Error Curves**: Plots now include a baseline error dot and curve to show the error of the baseline/control group. By default, the dot is shown, while the curve can be added by the user (via the `show_baseline_ec` parameter).\n",
+ " - **Proportion plots sample sizes**: The sample size of each binary option for each group can now be displayed. These can be toggled on/off via the `prop_sample_counts` parameter.\n",
"\n",
- " - **Delta Text**: There is now an option to display delta text on the contrast axes. It displays the effect size of the contrast group relative to the reference group. This can be toggled on or off via the `delta_text` parameter. It is on by default.\n",
+ " - **Effect size lines for paired plots**: Along with lines connecting paired observed values, the paired plots now also display lines linking the effect sizes within a group in the contrast axes. These lines can be toggled on/off via the `contrast_paired_lines` parameter.\n",
"\n",
- " - **Empty Circle Color Palette**: A new swarmplot color palette modification is available for unpaired plots via the `empty_circle` parameter in the `plot()` method. This option modifies the two-group swarmplots to have empty circles for the control group and filled circles for the experimental group.\n",
+ " - **Baseline error curves**: To represent the baseline/control group in the contrast axes, it is now possible to plot the baseline dot and the baseline error curve. The dot is shown by default, while the curve can be toggled on/off via the `show_baseline_ec` parameter. This dot helps make it clear where the baseline comes from i.e. the control minus itself. The baseline error curve can be used to show that the baseline itself is an estimate inferred from the observed values of the control data. \n",
"\n",
+ " - **Delta text**: Effect-size deltas (e.g. mean differences) are now displayed as numerals next to their respective effect size. This can be toggled on/off via the `delta_text` parameter.\n",
+ "\n",
+ " - **Empty circle color palette**: A new swarmplot color palette modification is available for unpaired plots via the `empty_circle` parameter in the `.plot()` method. This option modifies the two-group swarmplots to have empty circles for the control group and filled circles for the experimental group.\n",
"\n",
"6. **Miscellaneous Improvements & Adjustments**\n",
- " - **Numba for Speed Improvements**: We have included Numba to speed up the various calculations in DABEST. This should make the calculations faster and more efficient. Importing DABEST may take a little longer than before, and a progress bar will appear during the import process to show the calculations being performed. Once imported, loading and plotting data should now be faster.\n",
+ " - **Numba for speed improvements**: We have added [Numba](https://numba.pydata.org/) to speed up the various calculations in DABEST. Precalculations will be performed during import, which will help speed up the subsequent loading and plotting of data.\n",
" \n",
- " - **Terminology Updates**: We have made several updates to the documentation and terminology to improve clarity and consistency. For example:\n",
+ " - **Terminology/naming updates**: During the refactoring of the code, we have made several updates to the documentation and terminology to improve clarity and consistency. For example:\n",
+ " - Plot arguments have been adjusted to bring more clarity and consistency in naming. Arguments relating to the rawdata plot axis will now be typically referred to with `raw` while arguments relating to the contrast axis will be referred to with `contrast`. For example, `raw_label` replaces `swarm_label` and `bar_label`. The various kwargs relating to each different type of plot (e.g., `swarmplot_kwargs`) remain unchanged.\n",
" \n",
- " - The method to utilise the Deltas' g effect size is now via the `.hedges_g.plot()` method now rather than creating a whole new `Delta_g` object as before. The functionality remains the same, it plots hedges_g effect sizes and then the Deltas' g effect size alongside these (if a delta-delta experiment was loaded correctly).\n",
+ " - The method to utilise the Delta *g* effect size is now via the .hedges_g.plot() method rather than creating a whole new Delta_g object as before. The functionality remains the same, it plots hedges_g effect sizes and then the Delta *g* effect size alongside these (if a delta-delta experiment was loaded correctly).\n",
"\n",
- " - **Updated Tutorial Pages**: We have updated the tutorial pages to reflect the new features and changes. The tutorial pages are now more comprehensive and hopefully more intuitive!.\n",
+ " - **Updated tutorial pages**: We have updated the tutorial pages to reflect the new features and changes. The tutorial pages are now more comprehensive and (hopefully!) more intuitive!\n",
"\n",
- " - **Results Dataframe for Delta-delta and Mini-meta Plots**: A results dataframe can now be extracted for both the delta-delta and mini-meta effect size data (similar to the results dataframe for the regular effect sizes). These can be found via the `.results` attribute of the `.delta_delta` or `.mini_meta` object.\n",
- "\n"
+ " - **Results dataframe for delta-delta and mini-meta plots**: A results dataframe can now be extracted for both the delta-delta and mini-meta effect size data (similar to the results dataframe for the regular effect sizes). These can be found via the `.results` attribute of the `.delta_delta` or `.mini_meta` object."
]
},
{
@@ -121,7 +123,7 @@
"source": [
"## Installation\n",
"\n",
- "This package is tested on Python 3.10 and onwards.\n",
+ "This package is tested on Python 3.11 and onwards.\n",
"It is highly recommended to download the [Anaconda distribution](https://www.continuum.io/downloads) of Python in order to obtain the dependencies easily.\n",
"\n",
"You can install this package via `pip`.\n",
@@ -235,12 +237,6 @@
"\n",
"DABEST is also available in R ([dabestr](https://github.com/ACCLAB/dabestr)) and Matlab ([DABEST-Matlab](https://github.com/ACCLAB/DABEST-Matlab)).\n"
]
- },
- {
- "cell_type": "markdown",
- "id": "7106313a",
- "metadata": {},
- "source": []
}
],
"metadata": {
diff --git a/nbs/tests/data/mocked_data_test_01.py b/nbs/tests/data/mocked_data_test_01.py
index 196d66a3..c6bd49ab 100644
--- a/nbs/tests/data/mocked_data_test_01.py
+++ b/nbs/tests/data/mocked_data_test_01.py
@@ -67,4 +67,5 @@
experiment_label=None,
x1_level=None,
mini_meta=False,
+ ps_adjust=False,
)
diff --git a/nbs/tests/data/mocked_data_test_06.py b/nbs/tests/data/mocked_data_test_06.py
index 5a43b75e..fec52abb 100644
--- a/nbs/tests/data/mocked_data_test_06.py
+++ b/nbs/tests/data/mocked_data_test_06.py
@@ -62,4 +62,5 @@
idx=None,
proportional=False,
mini_meta=False,
+ ps_adjust=False,
)
diff --git a/nbs/tests/data/mocked_data_test_08.py b/nbs/tests/data/mocked_data_test_08.py
index 450b1665..b87724d0 100644
--- a/nbs/tests/data/mocked_data_test_08.py
+++ b/nbs/tests/data/mocked_data_test_08.py
@@ -28,4 +28,5 @@
x1_level=None,
paired=None,
id_col=None,
+ ps_adjust=False,
)
diff --git a/nbs/tests/data/mocked_data_test_forestplot.py b/nbs/tests/data/mocked_data_test_forestplot.py
index f80227ed..9c766d87 100644
--- a/nbs/tests/data/mocked_data_test_forestplot.py
+++ b/nbs/tests/data/mocked_data_test_forestplot.py
@@ -48,7 +48,7 @@
"marker_size": 20, # Ensure it's a positive integer or float.
"remove_spines": True, # Ensure it's a boolean.
"labels_rotation": 45, # Ensure it's an integer or float between 0 and 360.
- "halfviolin_alpha": 0.8, # Ensure it's a float between 0 and 1.
+ "contrast_alpha": 0.8, # Ensure it's a float between 0 and 1.
"horizontal": False, # Ensure it's a boolean.
}
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_01_gardner_altman_unpaired_meandiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_01_gardner_altman_unpaired_meandiff.png
index 7995fa4c..ee988425 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_01_gardner_altman_unpaired_meandiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_01_gardner_altman_unpaired_meandiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_02_gardner_altman_unpaired_mediandiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_02_gardner_altman_unpaired_mediandiff.png
index 7d161d09..878a3d82 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_02_gardner_altman_unpaired_mediandiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_02_gardner_altman_unpaired_mediandiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_03_gardner_altman_unpaired_hedges_g.png b/nbs/tests/mpl_image_tests/baseline_images/test_03_gardner_altman_unpaired_hedges_g.png
index c4681d8c..99326d74 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_03_gardner_altman_unpaired_hedges_g.png and b/nbs/tests/mpl_image_tests/baseline_images/test_03_gardner_altman_unpaired_hedges_g.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_04_gardner_altman_paired_hedges_g.png b/nbs/tests/mpl_image_tests/baseline_images/test_04_gardner_altman_paired_hedges_g.png
index 61e4c845..369ede74 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_04_gardner_altman_paired_hedges_g.png and b/nbs/tests/mpl_image_tests/baseline_images/test_04_gardner_altman_paired_hedges_g.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_04_gardner_altman_paired_meandiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_04_gardner_altman_paired_meandiff.png
index 94a3b481..f967bc57 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_04_gardner_altman_paired_meandiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_04_gardner_altman_paired_meandiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_05_cummings_two_group_unpaired_meandiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_05_cummings_two_group_unpaired_meandiff.png
index 3c616fda..ccfd6a95 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_05_cummings_two_group_unpaired_meandiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_05_cummings_two_group_unpaired_meandiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_06_cummings_two_group_paired_meandiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_06_cummings_two_group_paired_meandiff.png
index b2e3342c..ddad7209 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_06_cummings_two_group_paired_meandiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_06_cummings_two_group_paired_meandiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_07_cummings_multi_group_unpaired.png b/nbs/tests/mpl_image_tests/baseline_images/test_07_cummings_multi_group_unpaired.png
index 15321fa1..71946309 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_07_cummings_multi_group_unpaired.png and b/nbs/tests/mpl_image_tests/baseline_images/test_07_cummings_multi_group_unpaired.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_08_cummings_multi_group_paired.png b/nbs/tests/mpl_image_tests/baseline_images/test_08_cummings_multi_group_paired.png
index 30c889ae..e5c46a1a 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_08_cummings_multi_group_paired.png and b/nbs/tests/mpl_image_tests/baseline_images/test_08_cummings_multi_group_paired.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_09_cummings_shared_control.png b/nbs/tests/mpl_image_tests/baseline_images/test_09_cummings_shared_control.png
index 8174a813..c3f20e0f 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_09_cummings_shared_control.png and b/nbs/tests/mpl_image_tests/baseline_images/test_09_cummings_shared_control.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_101_gardner_altman_unpaired_propdiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_101_gardner_altman_unpaired_propdiff.png
index 7e99a058..d6c32254 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_101_gardner_altman_unpaired_propdiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_101_gardner_altman_unpaired_propdiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_103_cummings_two_group_unpaired_propdiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_103_cummings_two_group_unpaired_propdiff.png
index 192e4e63..56a7544b 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_103_cummings_two_group_unpaired_propdiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_103_cummings_two_group_unpaired_propdiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_105_cummings_multi_group_unpaired_propdiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_105_cummings_multi_group_unpaired_propdiff.png
index bcd24731..d1d07403 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_105_cummings_multi_group_unpaired_propdiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_105_cummings_multi_group_unpaired_propdiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_106_cummings_shared_control_propdiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_106_cummings_shared_control_propdiff.png
index 79ca7069..9b92f4da 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_106_cummings_shared_control_propdiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_106_cummings_shared_control_propdiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_107_cummings_multi_groups_propdiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_107_cummings_multi_groups_propdiff.png
index 5855590a..828e2954 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_107_cummings_multi_groups_propdiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_107_cummings_multi_groups_propdiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_109_gardner_altman_ylabel.png b/nbs/tests/mpl_image_tests/baseline_images/test_109_gardner_altman_ylabel.png
index dd96c978..8a2e6a0b 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_109_gardner_altman_ylabel.png and b/nbs/tests/mpl_image_tests/baseline_images/test_109_gardner_altman_ylabel.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_10_cummings_multi_groups.png b/nbs/tests/mpl_image_tests/baseline_images/test_10_cummings_multi_groups.png
index bbbaa54b..428c36fd 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_10_cummings_multi_groups.png and b/nbs/tests/mpl_image_tests/baseline_images/test_10_cummings_multi_groups.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_110_change_fig_size.png b/nbs/tests/mpl_image_tests/baseline_images/test_110_change_fig_size.png
index ec88e2da..97b88cd0 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_110_change_fig_size.png and b/nbs/tests/mpl_image_tests/baseline_images/test_110_change_fig_size.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_111_change_palette_b.png b/nbs/tests/mpl_image_tests/baseline_images/test_111_change_palette_b.png
index d3112c9a..10224519 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_111_change_palette_b.png and b/nbs/tests/mpl_image_tests/baseline_images/test_111_change_palette_b.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_112_change_palette_c.png b/nbs/tests/mpl_image_tests/baseline_images/test_112_change_palette_c.png
index 90780026..ea8011f4 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_112_change_palette_c.png and b/nbs/tests/mpl_image_tests/baseline_images/test_112_change_palette_c.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_113_desat.png b/nbs/tests/mpl_image_tests/baseline_images/test_113_desat.png
index 620266f7..bc8a075e 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_113_desat.png and b/nbs/tests/mpl_image_tests/baseline_images/test_113_desat.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_114_change_ylims.png b/nbs/tests/mpl_image_tests/baseline_images/test_114_change_ylims.png
index 8003121e..45e46205 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_114_change_ylims.png and b/nbs/tests/mpl_image_tests/baseline_images/test_114_change_ylims.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_115_invert_ylim.png b/nbs/tests/mpl_image_tests/baseline_images/test_115_invert_ylim.png
index 89b4e713..3551a5b2 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_115_invert_ylim.png and b/nbs/tests/mpl_image_tests/baseline_images/test_115_invert_ylim.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_116_ticker_gardner_altman.png b/nbs/tests/mpl_image_tests/baseline_images/test_116_ticker_gardner_altman.png
index d9164ab0..8c86472b 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_116_ticker_gardner_altman.png and b/nbs/tests/mpl_image_tests/baseline_images/test_116_ticker_gardner_altman.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_117_err_color.png b/nbs/tests/mpl_image_tests/baseline_images/test_117_err_color.png
index 202e28ab..d6c32254 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_117_err_color.png and b/nbs/tests/mpl_image_tests/baseline_images/test_117_err_color.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_118_cummings_two_group_unpaired_meandiff_bar_width.png b/nbs/tests/mpl_image_tests/baseline_images/test_118_cummings_two_group_unpaired_meandiff_bar_width.png
index 4cfa1a7b..b0a98346 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_118_cummings_two_group_unpaired_meandiff_bar_width.png and b/nbs/tests/mpl_image_tests/baseline_images/test_118_cummings_two_group_unpaired_meandiff_bar_width.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_119_wide_df_nan.png b/nbs/tests/mpl_image_tests/baseline_images/test_119_wide_df_nan.png
index 142fb9a5..b1073569 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_119_wide_df_nan.png and b/nbs/tests/mpl_image_tests/baseline_images/test_119_wide_df_nan.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_11_inset_plots.png b/nbs/tests/mpl_image_tests/baseline_images/test_11_inset_plots.png
index 2bbb966a..3a448ca0 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_11_inset_plots.png and b/nbs/tests/mpl_image_tests/baseline_images/test_11_inset_plots.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_120_long_df_nan.png b/nbs/tests/mpl_image_tests/baseline_images/test_120_long_df_nan.png
index 142fb9a5..b1073569 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_120_long_df_nan.png and b/nbs/tests/mpl_image_tests/baseline_images/test_120_long_df_nan.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_121_cohens_h_gardner_altman.png b/nbs/tests/mpl_image_tests/baseline_images/test_121_cohens_h_gardner_altman.png
index 960554e8..4f70e584 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_121_cohens_h_gardner_altman.png and b/nbs/tests/mpl_image_tests/baseline_images/test_121_cohens_h_gardner_altman.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_122_cohens_h_cummings.png b/nbs/tests/mpl_image_tests/baseline_images/test_122_cohens_h_cummings.png
index 4d20242a..cc5e372a 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_122_cohens_h_cummings.png and b/nbs/tests/mpl_image_tests/baseline_images/test_122_cohens_h_cummings.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_123_sankey_gardner_altman.png b/nbs/tests/mpl_image_tests/baseline_images/test_123_sankey_gardner_altman.png
index d15202a0..fd447640 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_123_sankey_gardner_altman.png and b/nbs/tests/mpl_image_tests/baseline_images/test_123_sankey_gardner_altman.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_124_sankey_cummings.png b/nbs/tests/mpl_image_tests/baseline_images/test_124_sankey_cummings.png
index 4586371d..c3e27888 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_124_sankey_cummings.png and b/nbs/tests/mpl_image_tests/baseline_images/test_124_sankey_cummings.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_125_sankey_2paired_groups.png b/nbs/tests/mpl_image_tests/baseline_images/test_125_sankey_2paired_groups.png
index 0d57c01a..e481c7b6 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_125_sankey_2paired_groups.png and b/nbs/tests/mpl_image_tests/baseline_images/test_125_sankey_2paired_groups.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_126_sankey_2sequential_groups.png b/nbs/tests/mpl_image_tests/baseline_images/test_126_sankey_2sequential_groups.png
index 0d57c01a..e481c7b6 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_126_sankey_2sequential_groups.png and b/nbs/tests/mpl_image_tests/baseline_images/test_126_sankey_2sequential_groups.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_127_sankey_multi_group_paired.png b/nbs/tests/mpl_image_tests/baseline_images/test_127_sankey_multi_group_paired.png
index 8bcbe7c9..09fae30c 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_127_sankey_multi_group_paired.png and b/nbs/tests/mpl_image_tests/baseline_images/test_127_sankey_multi_group_paired.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_128_sankey_transparency.png b/nbs/tests/mpl_image_tests/baseline_images/test_128_sankey_transparency.png
index 7a0fef10..ce5e000c 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_128_sankey_transparency.png and b/nbs/tests/mpl_image_tests/baseline_images/test_128_sankey_transparency.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_129_zero_to_zero.png b/nbs/tests/mpl_image_tests/baseline_images/test_129_zero_to_zero.png
index 58bbdf0d..51d29e41 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_129_zero_to_zero.png and b/nbs/tests/mpl_image_tests/baseline_images/test_129_zero_to_zero.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_12_gardner_altman_ylabel.png b/nbs/tests/mpl_image_tests/baseline_images/test_12_gardner_altman_ylabel.png
index dbaad480..38036252 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_12_gardner_altman_ylabel.png and b/nbs/tests/mpl_image_tests/baseline_images/test_12_gardner_altman_ylabel.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_130_zero_to_one.png b/nbs/tests/mpl_image_tests/baseline_images/test_130_zero_to_one.png
index b65aaf2c..7285e3e0 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_130_zero_to_one.png and b/nbs/tests/mpl_image_tests/baseline_images/test_130_zero_to_one.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_131_one_to_zero.png b/nbs/tests/mpl_image_tests/baseline_images/test_131_one_to_zero.png
index fdc7a1a8..60a38688 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_131_one_to_zero.png and b/nbs/tests/mpl_image_tests/baseline_images/test_131_one_to_zero.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_132_shared_control_sankey_off.png b/nbs/tests/mpl_image_tests/baseline_images/test_132_shared_control_sankey_off.png
index c7c1775b..01002342 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_132_shared_control_sankey_off.png and b/nbs/tests/mpl_image_tests/baseline_images/test_132_shared_control_sankey_off.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_133_shared_control_flow_off.png b/nbs/tests/mpl_image_tests/baseline_images/test_133_shared_control_flow_off.png
index bb37da2e..47d19857 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_133_shared_control_flow_off.png and b/nbs/tests/mpl_image_tests/baseline_images/test_133_shared_control_flow_off.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_134_separate_control_sankey_off.png b/nbs/tests/mpl_image_tests/baseline_images/test_134_separate_control_sankey_off.png
index 8f8597c6..f2f65b14 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_134_separate_control_sankey_off.png and b/nbs/tests/mpl_image_tests/baseline_images/test_134_separate_control_sankey_off.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_135_separate_control_flow_off.png b/nbs/tests/mpl_image_tests/baseline_images/test_135_separate_control_flow_off.png
index 658a8eb7..0ecfcfba 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_135_separate_control_flow_off.png and b/nbs/tests/mpl_image_tests/baseline_images/test_135_separate_control_flow_off.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_136_style_sheets.png b/nbs/tests/mpl_image_tests/baseline_images/test_136_style_sheets.png
index 7bd66342..034e1278 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_136_style_sheets.png and b/nbs/tests/mpl_image_tests/baseline_images/test_136_style_sheets.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_137_multi_2group_show_sample_counts.png b/nbs/tests/mpl_image_tests/baseline_images/test_137_multi_2group_show_sample_counts.png
index 794ef268..529e5ecc 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_137_multi_2group_show_sample_counts.png and b/nbs/tests/mpl_image_tests/baseline_images/test_137_multi_2group_show_sample_counts.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_138_multi_groups_paired_show_sample_counts.png b/nbs/tests/mpl_image_tests/baseline_images/test_138_multi_groups_paired_show_sample_counts.png
index fce165a8..fb3bd7c9 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_138_multi_groups_paired_show_sample_counts.png and b/nbs/tests/mpl_image_tests/baseline_images/test_138_multi_groups_paired_show_sample_counts.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_139_multi_2group_show_sample_counts_and_kwargs.png b/nbs/tests/mpl_image_tests/baseline_images/test_139_multi_2group_show_sample_counts_and_kwargs.png
index 394e1c26..432713d5 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_139_multi_2group_show_sample_counts_and_kwargs.png and b/nbs/tests/mpl_image_tests/baseline_images/test_139_multi_2group_show_sample_counts_and_kwargs.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_13_multi_2group_color.png b/nbs/tests/mpl_image_tests/baseline_images/test_13_multi_2group_color.png
index e6c2fb4e..bba17294 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_13_multi_2group_color.png and b/nbs/tests/mpl_image_tests/baseline_images/test_13_multi_2group_color.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_140_multi_groups_paired_show_sample_counts_with_sankey_off.png b/nbs/tests/mpl_image_tests/baseline_images/test_140_multi_groups_paired_show_sample_counts_with_sankey_off.png
index fbbdba82..b2998a34 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_140_multi_groups_paired_show_sample_counts_with_sankey_off.png and b/nbs/tests/mpl_image_tests/baseline_images/test_140_multi_groups_paired_show_sample_counts_with_sankey_off.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_141_sankey_change_palette_a.png b/nbs/tests/mpl_image_tests/baseline_images/test_141_sankey_change_palette_a.png
index a8ef3e24..03ef8830 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_141_sankey_change_palette_a.png and b/nbs/tests/mpl_image_tests/baseline_images/test_141_sankey_change_palette_a.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_142_sankey_change_palette_b.png b/nbs/tests/mpl_image_tests/baseline_images/test_142_sankey_change_palette_b.png
index 7e95499f..f3ae0b7b 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_142_sankey_change_palette_b.png and b/nbs/tests/mpl_image_tests/baseline_images/test_142_sankey_change_palette_b.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_143_sankey_change_palette_c.png b/nbs/tests/mpl_image_tests/baseline_images/test_143_sankey_change_palette_c.png
index 5b565c02..54be12b2 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_143_sankey_change_palette_c.png and b/nbs/tests/mpl_image_tests/baseline_images/test_143_sankey_change_palette_c.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_14_gardner_altman_paired_color.png b/nbs/tests/mpl_image_tests/baseline_images/test_14_gardner_altman_paired_color.png
index 88cbd6a7..9fd3b292 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_14_gardner_altman_paired_color.png and b/nbs/tests/mpl_image_tests/baseline_images/test_14_gardner_altman_paired_color.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_15_change_palette_a.png b/nbs/tests/mpl_image_tests/baseline_images/test_15_change_palette_a.png
index b34efc45..d3445df1 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_15_change_palette_a.png and b/nbs/tests/mpl_image_tests/baseline_images/test_15_change_palette_a.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_16_change_palette_b.png b/nbs/tests/mpl_image_tests/baseline_images/test_16_change_palette_b.png
index 2dfded81..466a8588 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_16_change_palette_b.png and b/nbs/tests/mpl_image_tests/baseline_images/test_16_change_palette_b.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_17_change_palette_c.png b/nbs/tests/mpl_image_tests/baseline_images/test_17_change_palette_c.png
index 3318a7bb..c35aa991 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_17_change_palette_c.png and b/nbs/tests/mpl_image_tests/baseline_images/test_17_change_palette_c.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_18_desat.png b/nbs/tests/mpl_image_tests/baseline_images/test_18_desat.png
index 09c9e6db..ae309b58 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_18_desat.png and b/nbs/tests/mpl_image_tests/baseline_images/test_18_desat.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_19_dot_sizes.png b/nbs/tests/mpl_image_tests/baseline_images/test_19_dot_sizes.png
index 6f6e1a17..eed17264 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_19_dot_sizes.png and b/nbs/tests/mpl_image_tests/baseline_images/test_19_dot_sizes.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_207_gardner_altman_meandiff_empty_circle.png b/nbs/tests/mpl_image_tests/baseline_images/test_207_gardner_altman_meandiff_empty_circle.png
index 1380efe6..44002542 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_207_gardner_altman_meandiff_empty_circle.png and b/nbs/tests/mpl_image_tests/baseline_images/test_207_gardner_altman_meandiff_empty_circle.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_208_cummings_two_group_unpaired_meandiff_empty_circle.png b/nbs/tests/mpl_image_tests/baseline_images/test_208_cummings_two_group_unpaired_meandiff_empty_circle.png
index 2f62a5d5..a0d9cce2 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_208_cummings_two_group_unpaired_meandiff_empty_circle.png and b/nbs/tests/mpl_image_tests/baseline_images/test_208_cummings_two_group_unpaired_meandiff_empty_circle.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_209_cummings_shared_control_meandiff_empty_circle.png b/nbs/tests/mpl_image_tests/baseline_images/test_209_cummings_shared_control_meandiff_empty_circle.png
index 0ba453cd..bf7dd81b 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_209_cummings_shared_control_meandiff_empty_circle.png and b/nbs/tests/mpl_image_tests/baseline_images/test_209_cummings_shared_control_meandiff_empty_circle.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_20_change_ylims.png b/nbs/tests/mpl_image_tests/baseline_images/test_20_change_ylims.png
index e20b42a2..46ebf221 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_20_change_ylims.png and b/nbs/tests/mpl_image_tests/baseline_images/test_20_change_ylims.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_210_cummings_multi_groups_meandiff_empty_circle.png b/nbs/tests/mpl_image_tests/baseline_images/test_210_cummings_multi_groups_meandiff_empty_circle.png
index 76bf7bef..f1368b95 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_210_cummings_multi_groups_meandiff_empty_circle.png and b/nbs/tests/mpl_image_tests/baseline_images/test_210_cummings_multi_groups_meandiff_empty_circle.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_211_cummings_multi_2_group_meandiff_empty_circle.png b/nbs/tests/mpl_image_tests/baseline_images/test_211_cummings_multi_2_group_meandiff_empty_circle.png
index af2d4fc8..95aa73c8 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_211_cummings_multi_2_group_meandiff_empty_circle.png and b/nbs/tests/mpl_image_tests/baseline_images/test_211_cummings_multi_2_group_meandiff_empty_circle.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_212_cummings_unpaired_delta_delta_meandiff_empty_circle.png b/nbs/tests/mpl_image_tests/baseline_images/test_212_cummings_unpaired_delta_delta_meandiff_empty_circle.png
index d449782a..f1c9f011 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_212_cummings_unpaired_delta_delta_meandiff_empty_circle.png and b/nbs/tests/mpl_image_tests/baseline_images/test_212_cummings_unpaired_delta_delta_meandiff_empty_circle.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_213_cummings_unpaired_mini_meta_meandiff_empty_circle.png b/nbs/tests/mpl_image_tests/baseline_images/test_213_cummings_unpaired_mini_meta_meandiff_empty_circle.png
index c3930502..e43d43be 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_213_cummings_unpaired_mini_meta_meandiff_empty_circle.png and b/nbs/tests/mpl_image_tests/baseline_images/test_213_cummings_unpaired_mini_meta_meandiff_empty_circle.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_214_change_idx_order_custom_palette_original.png b/nbs/tests/mpl_image_tests/baseline_images/test_214_change_idx_order_custom_palette_original.png
index 66da1e6e..22be4b60 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_214_change_idx_order_custom_palette_original.png and b/nbs/tests/mpl_image_tests/baseline_images/test_214_change_idx_order_custom_palette_original.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_215_change_idx_order_custom_palette_new.png b/nbs/tests/mpl_image_tests/baseline_images/test_215_change_idx_order_custom_palette_new.png
index df0f1a23..a359eaf0 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_215_change_idx_order_custom_palette_new.png and b/nbs/tests/mpl_image_tests/baseline_images/test_215_change_idx_order_custom_palette_new.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_216_cummings_shared_control_meandiff_showswarmbars.png b/nbs/tests/mpl_image_tests/baseline_images/test_216_cummings_shared_control_meandiff_showswarmbars.png
index d8114926..c040ae48 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_216_cummings_shared_control_meandiff_showswarmbars.png and b/nbs/tests/mpl_image_tests/baseline_images/test_216_cummings_shared_control_meandiff_showswarmbars.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_219_cummings_shared_control_meandiff_showcontrastbars.png b/nbs/tests/mpl_image_tests/baseline_images/test_219_cummings_shared_control_meandiff_showcontrastbars.png
index e2948290..911d91fb 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_219_cummings_shared_control_meandiff_showcontrastbars.png and b/nbs/tests/mpl_image_tests/baseline_images/test_219_cummings_shared_control_meandiff_showcontrastbars.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_21_invert_ylim.png b/nbs/tests/mpl_image_tests/baseline_images/test_21_invert_ylim.png
index 47328a51..ec3abc9c 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_21_invert_ylim.png and b/nbs/tests/mpl_image_tests/baseline_images/test_21_invert_ylim.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_224_multi_2group_meandiff_showdeltatext.png b/nbs/tests/mpl_image_tests/baseline_images/test_224_multi_2group_meandiff_showdeltatext.png
index 15321fa1..71946309 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_224_multi_2group_meandiff_showdeltatext.png and b/nbs/tests/mpl_image_tests/baseline_images/test_224_multi_2group_meandiff_showdeltatext.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_225_multi_2group_meandiff_hidedeltatext.png b/nbs/tests/mpl_image_tests/baseline_images/test_225_multi_2group_meandiff_hidedeltatext.png
index b1b18ad7..5fbc5cb9 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_225_multi_2group_meandiff_hidedeltatext.png and b/nbs/tests/mpl_image_tests/baseline_images/test_225_multi_2group_meandiff_hidedeltatext.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_226_multi_2group_meandiff_deltatext_kwargs.png b/nbs/tests/mpl_image_tests/baseline_images/test_226_multi_2group_meandiff_deltatext_kwargs.png
index 36800af7..587a8428 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_226_multi_2group_meandiff_deltatext_kwargs.png and b/nbs/tests/mpl_image_tests/baseline_images/test_226_multi_2group_meandiff_deltatext_kwargs.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_227_multi_2group_meandiff_deltatext_kwargs_specificy_coordinates.png b/nbs/tests/mpl_image_tests/baseline_images/test_227_multi_2group_meandiff_deltatext_kwargs_specificy_coordinates.png
index efe0b74f..92e3c2a4 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_227_multi_2group_meandiff_deltatext_kwargs_specificy_coordinates.png and b/nbs/tests/mpl_image_tests/baseline_images/test_227_multi_2group_meandiff_deltatext_kwargs_specificy_coordinates.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_228_multi_2group_meandiff_deltatext_kwargs_x_adjust.png b/nbs/tests/mpl_image_tests/baseline_images/test_228_multi_2group_meandiff_deltatext_kwargs_x_adjust.png
index e799ccd1..69c44dc7 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_228_multi_2group_meandiff_deltatext_kwargs_x_adjust.png and b/nbs/tests/mpl_image_tests/baseline_images/test_228_multi_2group_meandiff_deltatext_kwargs_x_adjust.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_229_samevalues_jitter.png b/nbs/tests/mpl_image_tests/baseline_images/test_229_samevalues_jitter.png
index fe38352e..1865041c 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_229_samevalues_jitter.png and b/nbs/tests/mpl_image_tests/baseline_images/test_229_samevalues_jitter.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_22_ticker_gardner_altman.png b/nbs/tests/mpl_image_tests/baseline_images/test_22_ticker_gardner_altman.png
index 8ed2ead7..810fbb44 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_22_ticker_gardner_altman.png and b/nbs/tests/mpl_image_tests/baseline_images/test_22_ticker_gardner_altman.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_230_delta_dot_hide.png b/nbs/tests/mpl_image_tests/baseline_images/test_230_delta_dot_hide.png
index 4cb77090..12656a68 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_230_delta_dot_hide.png and b/nbs/tests/mpl_image_tests/baseline_images/test_230_delta_dot_hide.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_231_delta_dot_kwargs.png b/nbs/tests/mpl_image_tests/baseline_images/test_231_delta_dot_kwargs.png
index 6ac16516..6924514d 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_231_delta_dot_kwargs.png and b/nbs/tests/mpl_image_tests/baseline_images/test_231_delta_dot_kwargs.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_232_repeatedmeasures_meandiff_show_es_paired_lines.png b/nbs/tests/mpl_image_tests/baseline_images/test_232_repeatedmeasures_meandiff_show_es_paired_lines.png
index abfcbdf8..0f76626d 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_232_repeatedmeasures_meandiff_show_es_paired_lines.png and b/nbs/tests/mpl_image_tests/baseline_images/test_232_repeatedmeasures_meandiff_show_es_paired_lines.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_233_repeatedmeasures_meandiff_hide_es_paired_lines.png b/nbs/tests/mpl_image_tests/baseline_images/test_233_repeatedmeasures_meandiff_hide_es_paired_lines.png
index eb703104..4e94171c 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_233_repeatedmeasures_meandiff_hide_es_paired_lines.png and b/nbs/tests/mpl_image_tests/baseline_images/test_233_repeatedmeasures_meandiff_hide_es_paired_lines.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_234_multigroups_paired_meandiff_es_paired_lines_kwargs.png b/nbs/tests/mpl_image_tests/baseline_images/test_234_multigroups_paired_meandiff_es_paired_lines_kwargs.png
index 75c09393..abbb03dc 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_234_multigroups_paired_meandiff_es_paired_lines_kwargs.png and b/nbs/tests/mpl_image_tests/baseline_images/test_234_multigroups_paired_meandiff_es_paired_lines_kwargs.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_235_cummings_multi_groups_meandiff_show_baseline_ec.png b/nbs/tests/mpl_image_tests/baseline_images/test_235_cummings_multi_groups_meandiff_show_baseline_ec.png
index d56d466b..4b0d8378 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_235_cummings_multi_groups_meandiff_show_baseline_ec.png and b/nbs/tests/mpl_image_tests/baseline_images/test_235_cummings_multi_groups_meandiff_show_baseline_ec.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_236_cummings_multi_2_group_meandiff_show_baseline_ec.png b/nbs/tests/mpl_image_tests/baseline_images/test_236_cummings_multi_2_group_meandiff_show_baseline_ec.png
index 9aff6162..e94d47df 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_236_cummings_multi_2_group_meandiff_show_baseline_ec.png and b/nbs/tests/mpl_image_tests/baseline_images/test_236_cummings_multi_2_group_meandiff_show_baseline_ec.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_23_ticker_cumming.png b/nbs/tests/mpl_image_tests/baseline_images/test_23_ticker_cumming.png
index 866902a1..84e0bb4e 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_23_ticker_cumming.png and b/nbs/tests/mpl_image_tests/baseline_images/test_23_ticker_cumming.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_24_wide_df_nan.png b/nbs/tests/mpl_image_tests/baseline_images/test_24_wide_df_nan.png
index 851b2ff3..dd571712 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_24_wide_df_nan.png and b/nbs/tests/mpl_image_tests/baseline_images/test_24_wide_df_nan.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_250_2group_unpaired_meandiff_gridkey_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_250_2group_unpaired_meandiff_gridkey_autoparser.png
index f73273d0..25a4f462 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_250_2group_unpaired_meandiff_gridkey_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_250_2group_unpaired_meandiff_gridkey_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_251_2group_unpaired_meandiff_gridkey_userdefinedrows.png b/nbs/tests/mpl_image_tests/baseline_images/test_251_2group_unpaired_meandiff_gridkey_userdefinedrows.png
index e649b56c..372e01fc 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_251_2group_unpaired_meandiff_gridkey_userdefinedrows.png and b/nbs/tests/mpl_image_tests/baseline_images/test_251_2group_unpaired_meandiff_gridkey_userdefinedrows.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_252_2group_paired_meandiff_gridkey_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_252_2group_paired_meandiff_gridkey_autoparser.png
index 0c457865..d02c1586 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_252_2group_paired_meandiff_gridkey_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_252_2group_paired_meandiff_gridkey_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_253_2group_paired_meandiff_gridkey_userdefinedrows.png b/nbs/tests/mpl_image_tests/baseline_images/test_253_2group_paired_meandiff_gridkey_userdefinedrows.png
index 226f7617..511ccbf8 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_253_2group_paired_meandiff_gridkey_userdefinedrows.png and b/nbs/tests/mpl_image_tests/baseline_images/test_253_2group_paired_meandiff_gridkey_userdefinedrows.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_254_multi_2group_unpaired_meandiff_gridkey_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_254_multi_2group_unpaired_meandiff_gridkey_autoparser.png
index 616a722c..12e24358 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_254_multi_2group_unpaired_meandiff_gridkey_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_254_multi_2group_unpaired_meandiff_gridkey_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_255_multi_2group_unpaired_meandiff_gridkey_userdefinedrows.png b/nbs/tests/mpl_image_tests/baseline_images/test_255_multi_2group_unpaired_meandiff_gridkey_userdefinedrows.png
index 4dab3aa8..99851fb6 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_255_multi_2group_unpaired_meandiff_gridkey_userdefinedrows.png and b/nbs/tests/mpl_image_tests/baseline_images/test_255_multi_2group_unpaired_meandiff_gridkey_userdefinedrows.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_256_shared_control_meandiff_gridkey_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_256_shared_control_meandiff_gridkey_autoparser.png
index ecee3448..92063c6a 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_256_shared_control_meandiff_gridkey_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_256_shared_control_meandiff_gridkey_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_257_shared_control_meandiff_gridkey_userdefinedrows.png b/nbs/tests/mpl_image_tests/baseline_images/test_257_shared_control_meandiff_gridkey_userdefinedrows.png
index e6889864..5034dcab 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_257_shared_control_meandiff_gridkey_userdefinedrows.png and b/nbs/tests/mpl_image_tests/baseline_images/test_257_shared_control_meandiff_gridkey_userdefinedrows.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_258_repeated_measures_meandiff_gridkey_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_258_repeated_measures_meandiff_gridkey_autoparser.png
index 9ea8551e..777392ea 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_258_repeated_measures_meandiff_gridkey_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_258_repeated_measures_meandiff_gridkey_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_259_repeated_measures_meandiff_gridkey_userdefinedrows.png b/nbs/tests/mpl_image_tests/baseline_images/test_259_repeated_measures_meandiff_gridkey_userdefinedrows.png
index 15304164..44deeb1f 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_259_repeated_measures_meandiff_gridkey_userdefinedrows.png and b/nbs/tests/mpl_image_tests/baseline_images/test_259_repeated_measures_meandiff_gridkey_userdefinedrows.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_25_long_df_nan.png b/nbs/tests/mpl_image_tests/baseline_images/test_25_long_df_nan.png
index 6968bcc1..411fb7a0 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_25_long_df_nan.png and b/nbs/tests/mpl_image_tests/baseline_images/test_25_long_df_nan.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_260_multigroups_unpaired_meandiff_gridkey_userdefinedrows.png b/nbs/tests/mpl_image_tests/baseline_images/test_260_multigroups_unpaired_meandiff_gridkey_userdefinedrows.png
index 4dab3aa8..99851fb6 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_260_multigroups_unpaired_meandiff_gridkey_userdefinedrows.png and b/nbs/tests/mpl_image_tests/baseline_images/test_260_multigroups_unpaired_meandiff_gridkey_userdefinedrows.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_261_multigroups_unpaired_meandiff_gridkey_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_261_multigroups_unpaired_meandiff_gridkey_autoparser.png
index 616a722c..12e24358 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_261_multigroups_unpaired_meandiff_gridkey_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_261_multigroups_unpaired_meandiff_gridkey_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_262_multigroups_paired_meandiff_gridkey_userdefinedrows.png b/nbs/tests/mpl_image_tests/baseline_images/test_262_multigroups_paired_meandiff_gridkey_userdefinedrows.png
index b615f932..4983d2ed 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_262_multigroups_paired_meandiff_gridkey_userdefinedrows.png and b/nbs/tests/mpl_image_tests/baseline_images/test_262_multigroups_paired_meandiff_gridkey_userdefinedrows.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_263_multigroups_paired_meandiff_gridkey_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_263_multigroups_paired_meandiff_gridkey_autoparser.png
index f366405e..d74ec60b 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_263_multigroups_paired_meandiff_gridkey_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_263_multigroups_paired_meandiff_gridkey_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_264_multigroups_prop_unpaired_meandiff_gridkey_userdefinedrows.png b/nbs/tests/mpl_image_tests/baseline_images/test_264_multigroups_prop_unpaired_meandiff_gridkey_userdefinedrows.png
index 4aef0e97..74d628c7 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_264_multigroups_prop_unpaired_meandiff_gridkey_userdefinedrows.png and b/nbs/tests/mpl_image_tests/baseline_images/test_264_multigroups_prop_unpaired_meandiff_gridkey_userdefinedrows.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_265_multigroups_prop_unpaired_meandiff_gridkey_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_265_multigroups_prop_unpaired_meandiff_gridkey_autoparser.png
index 0d1461fe..35126e1d 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_265_multigroups_prop_unpaired_meandiff_gridkey_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_265_multigroups_prop_unpaired_meandiff_gridkey_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_266_multigroups_prop_paired_meandiff_gridkey_userdefinedrows.png b/nbs/tests/mpl_image_tests/baseline_images/test_266_multigroups_prop_paired_meandiff_gridkey_userdefinedrows.png
index 1bab97a4..3a21b1ab 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_266_multigroups_prop_paired_meandiff_gridkey_userdefinedrows.png and b/nbs/tests/mpl_image_tests/baseline_images/test_266_multigroups_prop_paired_meandiff_gridkey_userdefinedrows.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_267_multigroups_prop_paired_meandiff_gridkey_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_267_multigroups_prop_paired_meandiff_gridkey_autoparser.png
index 2e43b069..6253c828 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_267_multigroups_prop_paired_meandiff_gridkey_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_267_multigroups_prop_paired_meandiff_gridkey_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_268_delta_delta_unpaired_meandiff_gridkey_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_268_delta_delta_unpaired_meandiff_gridkey_autoparser.png
index 898e3f7f..1f8a90a7 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_268_delta_delta_unpaired_meandiff_gridkey_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_268_delta_delta_unpaired_meandiff_gridkey_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_269_delta_delta_paired_meandiff_gridkey_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_269_delta_delta_paired_meandiff_gridkey_autoparser.png
index d605e20f..69ee6415 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_269_delta_delta_paired_meandiff_gridkey_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_269_delta_delta_paired_meandiff_gridkey_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_26_slopegraph_kwargs.png b/nbs/tests/mpl_image_tests/baseline_images/test_26_slopegraph_kwargs.png
index 30b3ca7f..e20356d9 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_26_slopegraph_kwargs.png and b/nbs/tests/mpl_image_tests/baseline_images/test_26_slopegraph_kwargs.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_270_mini_meta_unpaired_meandiff_gridkey_userdefinedrows.png b/nbs/tests/mpl_image_tests/baseline_images/test_270_mini_meta_unpaired_meandiff_gridkey_userdefinedrows.png
index 1555457d..7e489205 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_270_mini_meta_unpaired_meandiff_gridkey_userdefinedrows.png and b/nbs/tests/mpl_image_tests/baseline_images/test_270_mini_meta_unpaired_meandiff_gridkey_userdefinedrows.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_271_mini_meta_unpaired_meandiff_gridkey_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_271_mini_meta_unpaired_meandiff_gridkey_autoparser.png
index 62899d87..0c2ae8f0 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_271_mini_meta_unpaired_meandiff_gridkey_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_271_mini_meta_unpaired_meandiff_gridkey_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_272_mini_meta_paired_meandiff_gridkey_userdefinedrows.png b/nbs/tests/mpl_image_tests/baseline_images/test_272_mini_meta_paired_meandiff_gridkey_userdefinedrows.png
index 20193f06..171e5142 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_272_mini_meta_paired_meandiff_gridkey_userdefinedrows.png and b/nbs/tests/mpl_image_tests/baseline_images/test_272_mini_meta_paired_meandiff_gridkey_userdefinedrows.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_273_mini_meta_paired_meandiff_gridkey_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_273_mini_meta_paired_meandiff_gridkey_autoparser.png
index 70433b5f..d7a71c8a 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_273_mini_meta_paired_meandiff_gridkey_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_273_mini_meta_paired_meandiff_gridkey_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_274_gridkey_merge_pairs_and_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_274_gridkey_merge_pairs_and_autoparser.png
index c34ffa2b..e31e4d9d 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_274_gridkey_merge_pairs_and_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_274_gridkey_merge_pairs_and_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_275_gridkey_kwargs_and_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_275_gridkey_kwargs_and_autoparser.png
index 111caec4..2a7f9d13 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_275_gridkey_kwargs_and_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_275_gridkey_kwargs_and_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_276_gridkey_fontsize_and_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_276_gridkey_fontsize_and_autoparser.png
new file mode 100644
index 00000000..095fd30b
Binary files /dev/null and b/nbs/tests/mpl_image_tests/baseline_images/test_276_gridkey_fontsize_and_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_277_gridkey_labels_fontsize_and_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_277_gridkey_labels_fontsize_and_autoparser.png
new file mode 100644
index 00000000..10258b59
Binary files /dev/null and b/nbs/tests/mpl_image_tests/baseline_images/test_277_gridkey_labels_fontsize_and_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_278_gridkey_labels_fontsize_and_fontsize_and_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_278_gridkey_labels_fontsize_and_fontsize_and_autoparser.png
new file mode 100644
index 00000000..562042d8
Binary files /dev/null and b/nbs/tests/mpl_image_tests/baseline_images/test_278_gridkey_labels_fontsize_and_fontsize_and_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_27_gardner_altman_reflines_kwargs.png b/nbs/tests/mpl_image_tests/baseline_images/test_27_gardner_altman_reflines_kwargs.png
index 9a0d6117..ed0d6603 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_27_gardner_altman_reflines_kwargs.png and b/nbs/tests/mpl_image_tests/baseline_images/test_27_gardner_altman_reflines_kwargs.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_28_unpaired_cumming_reflines_kwargs.png b/nbs/tests/mpl_image_tests/baseline_images/test_28_unpaired_cumming_reflines_kwargs.png
index ff66f039..887912cd 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_28_unpaired_cumming_reflines_kwargs.png and b/nbs/tests/mpl_image_tests/baseline_images/test_28_unpaired_cumming_reflines_kwargs.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_29_paired_cumming_slopegraph_reflines_kwargs.png b/nbs/tests/mpl_image_tests/baseline_images/test_29_paired_cumming_slopegraph_reflines_kwargs.png
index 0b8a53a0..74a864db 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_29_paired_cumming_slopegraph_reflines_kwargs.png and b/nbs/tests/mpl_image_tests/baseline_images/test_29_paired_cumming_slopegraph_reflines_kwargs.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_300_2group_unpaired_meandiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_300_2group_unpaired_meandiff.png
index 6196195a..fa5bcfdc 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_300_2group_unpaired_meandiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_300_2group_unpaired_meandiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_301_2group_unpaired_mediandiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_301_2group_unpaired_mediandiff.png
index 621845c0..53289b3c 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_301_2group_unpaired_mediandiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_301_2group_unpaired_mediandiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_302_2group_unpaired_hedges_g.png b/nbs/tests/mpl_image_tests/baseline_images/test_302_2group_unpaired_hedges_g.png
index e846e2de..f0c86578 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_302_2group_unpaired_hedges_g.png and b/nbs/tests/mpl_image_tests/baseline_images/test_302_2group_unpaired_hedges_g.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_303_2group_paired_meandiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_303_2group_paired_meandiff.png
index c26f2d2a..b10da9c0 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_303_2group_paired_meandiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_303_2group_paired_meandiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_304_2group_paired_hedges_g.png b/nbs/tests/mpl_image_tests/baseline_images/test_304_2group_paired_hedges_g.png
index 17e81d92..334085f3 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_304_2group_paired_hedges_g.png and b/nbs/tests/mpl_image_tests/baseline_images/test_304_2group_paired_hedges_g.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_305_2group_cummings_unpaired_meandiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_305_2group_cummings_unpaired_meandiff.png
index 233cb6c9..e853857a 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_305_2group_cummings_unpaired_meandiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_305_2group_cummings_unpaired_meandiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_306_2group_cummings_paired_meandiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_306_2group_cummings_paired_meandiff.png
index c26f2d2a..b10da9c0 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_306_2group_cummings_paired_meandiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_306_2group_cummings_paired_meandiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_307_multi2group_unpaired.png b/nbs/tests/mpl_image_tests/baseline_images/test_307_multi2group_unpaired.png
index 45f17721..4d8b6c36 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_307_multi2group_unpaired.png and b/nbs/tests/mpl_image_tests/baseline_images/test_307_multi2group_unpaired.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_308_multi2group_paired.png b/nbs/tests/mpl_image_tests/baseline_images/test_308_multi2group_paired.png
index acea5cf2..a2262391 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_308_multi2group_paired.png and b/nbs/tests/mpl_image_tests/baseline_images/test_308_multi2group_paired.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_309_sharedcontrol.png b/nbs/tests/mpl_image_tests/baseline_images/test_309_sharedcontrol.png
index 6116a6a1..a8b3790b 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_309_sharedcontrol.png and b/nbs/tests/mpl_image_tests/baseline_images/test_309_sharedcontrol.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_30_sequential_cumming_slopegraph.png b/nbs/tests/mpl_image_tests/baseline_images/test_30_sequential_cumming_slopegraph.png
index 6fef666a..3b577110 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_30_sequential_cumming_slopegraph.png and b/nbs/tests/mpl_image_tests/baseline_images/test_30_sequential_cumming_slopegraph.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_310_repeatedmeasure.png b/nbs/tests/mpl_image_tests/baseline_images/test_310_repeatedmeasure.png
index b4283522..c98b8352 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_310_repeatedmeasure.png and b/nbs/tests/mpl_image_tests/baseline_images/test_310_repeatedmeasure.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_311_multigroups_unpaired.png b/nbs/tests/mpl_image_tests/baseline_images/test_311_multigroups_unpaired.png
index d82a3cb3..2d5998c9 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_311_multigroups_unpaired.png and b/nbs/tests/mpl_image_tests/baseline_images/test_311_multigroups_unpaired.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_312_multigroups_paired_baseline.png b/nbs/tests/mpl_image_tests/baseline_images/test_312_multigroups_paired_baseline.png
index 210a92b4..65c147f5 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_312_multigroups_paired_baseline.png and b/nbs/tests/mpl_image_tests/baseline_images/test_312_multigroups_paired_baseline.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_313_multigroups_paired_sequential.png b/nbs/tests/mpl_image_tests/baseline_images/test_313_multigroups_paired_sequential.png
index 2d8871c9..9ebe2b6f 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_313_multigroups_paired_sequential.png and b/nbs/tests/mpl_image_tests/baseline_images/test_313_multigroups_paired_sequential.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_314_2group_unpaired_ylabel.png b/nbs/tests/mpl_image_tests/baseline_images/test_314_2group_unpaired_ylabel.png
index 6196195a..fa5bcfdc 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_314_2group_unpaired_ylabel.png and b/nbs/tests/mpl_image_tests/baseline_images/test_314_2group_unpaired_ylabel.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_315_multi2group_color.png b/nbs/tests/mpl_image_tests/baseline_images/test_315_multi2group_color.png
index bcb324c0..3ba73017 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_315_multi2group_color.png and b/nbs/tests/mpl_image_tests/baseline_images/test_315_multi2group_color.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_316_2group_paired_color.png b/nbs/tests/mpl_image_tests/baseline_images/test_316_2group_paired_color.png
index df5050dd..006abca1 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_316_2group_paired_color.png and b/nbs/tests/mpl_image_tests/baseline_images/test_316_2group_paired_color.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_317_multi2group_unpaired_change_palette_a.png b/nbs/tests/mpl_image_tests/baseline_images/test_317_multi2group_unpaired_change_palette_a.png
index 21e76bf2..5ad74692 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_317_multi2group_unpaired_change_palette_a.png and b/nbs/tests/mpl_image_tests/baseline_images/test_317_multi2group_unpaired_change_palette_a.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_318_multi2group_unpaired_change_palette_b.png b/nbs/tests/mpl_image_tests/baseline_images/test_318_multi2group_unpaired_change_palette_b.png
index a0284185..83fccaa5 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_318_multi2group_unpaired_change_palette_b.png and b/nbs/tests/mpl_image_tests/baseline_images/test_318_multi2group_unpaired_change_palette_b.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_319_multi2group_unpaired_change_palette_c.png b/nbs/tests/mpl_image_tests/baseline_images/test_319_multi2group_unpaired_change_palette_c.png
index f7e7e9c3..1920e4df 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_319_multi2group_unpaired_change_palette_c.png and b/nbs/tests/mpl_image_tests/baseline_images/test_319_multi2group_unpaired_change_palette_c.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_31_baseline_cumming_slopegraph.png b/nbs/tests/mpl_image_tests/baseline_images/test_31_baseline_cumming_slopegraph.png
index 2371fd8b..edc4d4c9 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_31_baseline_cumming_slopegraph.png and b/nbs/tests/mpl_image_tests/baseline_images/test_31_baseline_cumming_slopegraph.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_320_multi2group_unpaired_desat.png b/nbs/tests/mpl_image_tests/baseline_images/test_320_multi2group_unpaired_desat.png
index 284c6198..330f131d 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_320_multi2group_unpaired_desat.png and b/nbs/tests/mpl_image_tests/baseline_images/test_320_multi2group_unpaired_desat.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_321_multi2group_unpaired_dot_sizes.png b/nbs/tests/mpl_image_tests/baseline_images/test_321_multi2group_unpaired_dot_sizes.png
index 4b397a7c..3520f854 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_321_multi2group_unpaired_dot_sizes.png and b/nbs/tests/mpl_image_tests/baseline_images/test_321_multi2group_unpaired_dot_sizes.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_322_multi2group_unpaired_change_ylims.png b/nbs/tests/mpl_image_tests/baseline_images/test_322_multi2group_unpaired_change_ylims.png
index 341ba21c..c35b2e5f 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_322_multi2group_unpaired_change_ylims.png and b/nbs/tests/mpl_image_tests/baseline_images/test_322_multi2group_unpaired_change_ylims.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_323_2group_unpaired_ticker.png b/nbs/tests/mpl_image_tests/baseline_images/test_323_2group_unpaired_ticker.png
index 1b831019..e5a56b1d 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_323_2group_unpaired_ticker.png and b/nbs/tests/mpl_image_tests/baseline_images/test_323_2group_unpaired_ticker.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_324_multi2group_unpaired_ticker.png b/nbs/tests/mpl_image_tests/baseline_images/test_324_multi2group_unpaired_ticker.png
index ff2c8958..ec4cd2b8 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_324_multi2group_unpaired_ticker.png and b/nbs/tests/mpl_image_tests/baseline_images/test_324_multi2group_unpaired_ticker.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_325_wide_df_nan.png b/nbs/tests/mpl_image_tests/baseline_images/test_325_wide_df_nan.png
index 769ba707..23d47a8f 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_325_wide_df_nan.png and b/nbs/tests/mpl_image_tests/baseline_images/test_325_wide_df_nan.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_326_long_df_nan.png b/nbs/tests/mpl_image_tests/baseline_images/test_326_long_df_nan.png
index 791a41ad..1095d23f 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_326_long_df_nan.png and b/nbs/tests/mpl_image_tests/baseline_images/test_326_long_df_nan.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_327_2group_paired_slopegraph_kwargs.png b/nbs/tests/mpl_image_tests/baseline_images/test_327_2group_paired_slopegraph_kwargs.png
index 7588a814..efeaac21 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_327_2group_paired_slopegraph_kwargs.png and b/nbs/tests/mpl_image_tests/baseline_images/test_327_2group_paired_slopegraph_kwargs.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_328_2group_unpaired_reflines_kwargs.png b/nbs/tests/mpl_image_tests/baseline_images/test_328_2group_unpaired_reflines_kwargs.png
index 54fe641c..12d77833 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_328_2group_unpaired_reflines_kwargs.png and b/nbs/tests/mpl_image_tests/baseline_images/test_328_2group_unpaired_reflines_kwargs.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_329_2group_unpaired_cumming_reflines_kwargs.png b/nbs/tests/mpl_image_tests/baseline_images/test_329_2group_unpaired_cumming_reflines_kwargs.png
index f7bccb8e..3b508bdf 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_329_2group_unpaired_cumming_reflines_kwargs.png and b/nbs/tests/mpl_image_tests/baseline_images/test_329_2group_unpaired_cumming_reflines_kwargs.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_330_2group_paired_cumming_slopegraph_reflines_kwargs.png b/nbs/tests/mpl_image_tests/baseline_images/test_330_2group_paired_cumming_slopegraph_reflines_kwargs.png
index cba18e85..da73aacf 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_330_2group_paired_cumming_slopegraph_reflines_kwargs.png and b/nbs/tests/mpl_image_tests/baseline_images/test_330_2group_paired_cumming_slopegraph_reflines_kwargs.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_331_2group_unpaired_propdiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_331_2group_unpaired_propdiff.png
index 3b65d9be..e78ba242 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_331_2group_unpaired_propdiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_331_2group_unpaired_propdiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_332_2group_unpaired_cummings_propdiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_332_2group_unpaired_cummings_propdiff.png
index f08de9a1..69b2b813 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_332_2group_unpaired_cummings_propdiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_332_2group_unpaired_cummings_propdiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_333_multi2group_unpaired_propdiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_333_multi2group_unpaired_propdiff.png
index ccd940a1..b5692ef2 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_333_multi2group_unpaired_propdiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_333_multi2group_unpaired_propdiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_334_shared_control_propdiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_334_shared_control_propdiff.png
index ead57cad..4e3a40c8 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_334_shared_control_propdiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_334_shared_control_propdiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_335_repeated_measures_baseline_propdiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_335_repeated_measures_baseline_propdiff.png
index d2420226..a696a43e 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_335_repeated_measures_baseline_propdiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_335_repeated_measures_baseline_propdiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_336_repeated_measures_sequential_propdiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_336_repeated_measures_sequential_propdiff.png
index bf128b22..fe563731 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_336_repeated_measures_sequential_propdiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_336_repeated_measures_sequential_propdiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_337_multi_groups_unpaired_propdiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_337_multi_groups_unpaired_propdiff.png
index e1ee9e93..1a70cb9c 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_337_multi_groups_unpaired_propdiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_337_multi_groups_unpaired_propdiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_338_multi_groups_paired_baseline_propdiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_338_multi_groups_paired_baseline_propdiff.png
index afbebfc6..d51cbeca 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_338_multi_groups_paired_baseline_propdiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_338_multi_groups_paired_baseline_propdiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_339_multi_groups_paired_sequential_propdiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_339_multi_groups_paired_sequential_propdiff.png
index b309c44d..c5d89d31 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_339_multi_groups_paired_sequential_propdiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_339_multi_groups_paired_sequential_propdiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_340_2group_unpaired_prop_change_fig_size_and_palette_a.png b/nbs/tests/mpl_image_tests/baseline_images/test_340_2group_unpaired_prop_change_fig_size_and_palette_a.png
index d2fd91ec..aa67b287 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_340_2group_unpaired_prop_change_fig_size_and_palette_a.png and b/nbs/tests/mpl_image_tests/baseline_images/test_340_2group_unpaired_prop_change_fig_size_and_palette_a.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_341_multi2group_unpaired_prop_change_palette_b.png b/nbs/tests/mpl_image_tests/baseline_images/test_341_multi2group_unpaired_prop_change_palette_b.png
index 03de692e..d6c0e891 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_341_multi2group_unpaired_prop_change_palette_b.png and b/nbs/tests/mpl_image_tests/baseline_images/test_341_multi2group_unpaired_prop_change_palette_b.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_342_multi2group_unpaired_prop_change_palette_c.png b/nbs/tests/mpl_image_tests/baseline_images/test_342_multi2group_unpaired_prop_change_palette_c.png
index 06b029e9..f99c4bcb 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_342_multi2group_unpaired_prop_change_palette_c.png and b/nbs/tests/mpl_image_tests/baseline_images/test_342_multi2group_unpaired_prop_change_palette_c.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_343_multi2group_unpaired_prop_desat.png b/nbs/tests/mpl_image_tests/baseline_images/test_343_multi2group_unpaired_prop_desat.png
index 498f3500..24027836 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_343_multi2group_unpaired_prop_desat.png and b/nbs/tests/mpl_image_tests/baseline_images/test_343_multi2group_unpaired_prop_desat.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_344_2group_unpaired_prop_err_color.png b/nbs/tests/mpl_image_tests/baseline_images/test_344_2group_unpaired_prop_err_color.png
index ce58f695..e78ba242 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_344_2group_unpaired_prop_err_color.png and b/nbs/tests/mpl_image_tests/baseline_images/test_344_2group_unpaired_prop_err_color.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_345_2group_unpaired_cummings_meandiff_bar_width.png b/nbs/tests/mpl_image_tests/baseline_images/test_345_2group_unpaired_cummings_meandiff_bar_width.png
index df7406aa..6c645920 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_345_2group_unpaired_cummings_meandiff_bar_width.png and b/nbs/tests/mpl_image_tests/baseline_images/test_345_2group_unpaired_cummings_meandiff_bar_width.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_346_2group_unpaired_prop_cohens_h.png b/nbs/tests/mpl_image_tests/baseline_images/test_346_2group_unpaired_prop_cohens_h.png
index 097f5080..1f6087d3 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_346_2group_unpaired_prop_cohens_h.png and b/nbs/tests/mpl_image_tests/baseline_images/test_346_2group_unpaired_prop_cohens_h.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_347_2group_unpaired_prop_cummings_cohens_h.png b/nbs/tests/mpl_image_tests/baseline_images/test_347_2group_unpaired_prop_cummings_cohens_h.png
index 097f5080..1f6087d3 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_347_2group_unpaired_prop_cummings_cohens_h.png and b/nbs/tests/mpl_image_tests/baseline_images/test_347_2group_unpaired_prop_cummings_cohens_h.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_348_2group_sankey.png b/nbs/tests/mpl_image_tests/baseline_images/test_348_2group_sankey.png
index a0ad973b..6096dcf0 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_348_2group_sankey.png and b/nbs/tests/mpl_image_tests/baseline_images/test_348_2group_sankey.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_349_2group_sankey_cummings.png b/nbs/tests/mpl_image_tests/baseline_images/test_349_2group_sankey_cummings.png
index a0ad973b..6096dcf0 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_349_2group_sankey_cummings.png and b/nbs/tests/mpl_image_tests/baseline_images/test_349_2group_sankey_cummings.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_350_multi2group_sankey_baseline.png b/nbs/tests/mpl_image_tests/baseline_images/test_350_multi2group_sankey_baseline.png
index b81bde24..5e2ed70e 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_350_multi2group_sankey_baseline.png and b/nbs/tests/mpl_image_tests/baseline_images/test_350_multi2group_sankey_baseline.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_351_multi2group_sankey_sequential.png b/nbs/tests/mpl_image_tests/baseline_images/test_351_multi2group_sankey_sequential.png
index b81bde24..5e2ed70e 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_351_multi2group_sankey_sequential.png and b/nbs/tests/mpl_image_tests/baseline_images/test_351_multi2group_sankey_sequential.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_352_multigroups_sankey_baseline.png b/nbs/tests/mpl_image_tests/baseline_images/test_352_multigroups_sankey_baseline.png
index afbebfc6..d51cbeca 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_352_multigroups_sankey_baseline.png and b/nbs/tests/mpl_image_tests/baseline_images/test_352_multigroups_sankey_baseline.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_353_multigroups_sankey_sequential.png b/nbs/tests/mpl_image_tests/baseline_images/test_353_multigroups_sankey_sequential.png
index b309c44d..c5d89d31 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_353_multigroups_sankey_sequential.png and b/nbs/tests/mpl_image_tests/baseline_images/test_353_multigroups_sankey_sequential.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_354_2group_sankey_transparency.png b/nbs/tests/mpl_image_tests/baseline_images/test_354_2group_sankey_transparency.png
index dff4e65d..55a69c48 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_354_2group_sankey_transparency.png and b/nbs/tests/mpl_image_tests/baseline_images/test_354_2group_sankey_transparency.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_356_zero_to_one_prop.png b/nbs/tests/mpl_image_tests/baseline_images/test_356_zero_to_one_prop.png
index cfdf8ac9..fde6f517 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_356_zero_to_one_prop.png and b/nbs/tests/mpl_image_tests/baseline_images/test_356_zero_to_one_prop.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_357_one_to_zero.png b/nbs/tests/mpl_image_tests/baseline_images/test_357_one_to_zero.png
index a9b71239..e21b6f09 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_357_one_to_zero.png and b/nbs/tests/mpl_image_tests/baseline_images/test_357_one_to_zero.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_358_repeated_measures_baseline_sankey_off.png b/nbs/tests/mpl_image_tests/baseline_images/test_358_repeated_measures_baseline_sankey_off.png
index 22e3a30e..7e44bfd0 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_358_repeated_measures_baseline_sankey_off.png and b/nbs/tests/mpl_image_tests/baseline_images/test_358_repeated_measures_baseline_sankey_off.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_359_repeated_measures_baseline_flow_off.png b/nbs/tests/mpl_image_tests/baseline_images/test_359_repeated_measures_baseline_flow_off.png
index 536428f1..b6c6caff 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_359_repeated_measures_baseline_flow_off.png and b/nbs/tests/mpl_image_tests/baseline_images/test_359_repeated_measures_baseline_flow_off.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_360_multigroups_paired_sequential_sankey_off.png b/nbs/tests/mpl_image_tests/baseline_images/test_360_multigroups_paired_sequential_sankey_off.png
index eeb97eb7..953ec49d 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_360_multigroups_paired_sequential_sankey_off.png and b/nbs/tests/mpl_image_tests/baseline_images/test_360_multigroups_paired_sequential_sankey_off.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_361_multigroups_paired_sequential_flow_off.png b/nbs/tests/mpl_image_tests/baseline_images/test_361_multigroups_paired_sequential_flow_off.png
index ef650ca0..b8afa607 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_361_multigroups_paired_sequential_flow_off.png and b/nbs/tests/mpl_image_tests/baseline_images/test_361_multigroups_paired_sequential_flow_off.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_362_cummings_unpaired_delta_delta_meandiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_362_cummings_unpaired_delta_delta_meandiff.png
index 05907d32..0c3810d8 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_362_cummings_unpaired_delta_delta_meandiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_362_cummings_unpaired_delta_delta_meandiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_363_cummings_sequential_delta_delta_meandiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_363_cummings_sequential_delta_delta_meandiff.png
index 223b2c03..9e0b606b 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_363_cummings_sequential_delta_delta_meandiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_363_cummings_sequential_delta_delta_meandiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_364_cummings_baseline_delta_delta_meandiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_364_cummings_baseline_delta_delta_meandiff.png
index 223b2c03..9e0b606b 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_364_cummings_baseline_delta_delta_meandiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_364_cummings_baseline_delta_delta_meandiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_365_delta_plot_ylabel.png b/nbs/tests/mpl_image_tests/baseline_images/test_365_delta_plot_ylabel.png
index 223b2c03..9e0b606b 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_365_delta_plot_ylabel.png and b/nbs/tests/mpl_image_tests/baseline_images/test_365_delta_plot_ylabel.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_366_delta_plot_change_palette_a.png b/nbs/tests/mpl_image_tests/baseline_images/test_366_delta_plot_change_palette_a.png
index ce8d3c8b..d110d97c 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_366_delta_plot_change_palette_a.png and b/nbs/tests/mpl_image_tests/baseline_images/test_366_delta_plot_change_palette_a.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_367_delta_specified.png b/nbs/tests/mpl_image_tests/baseline_images/test_367_delta_specified.png
index 7e5166a7..cd85ebff 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_367_delta_specified.png and b/nbs/tests/mpl_image_tests/baseline_images/test_367_delta_specified.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_368_delta_change_ylims.png b/nbs/tests/mpl_image_tests/baseline_images/test_368_delta_change_ylims.png
index d41bc14a..764bd49c 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_368_delta_change_ylims.png and b/nbs/tests/mpl_image_tests/baseline_images/test_368_delta_change_ylims.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_369_delta_invert_ylim.png b/nbs/tests/mpl_image_tests/baseline_images/test_369_delta_invert_ylim.png
index 9f953b48..07bfd1ea 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_369_delta_invert_ylim.png and b/nbs/tests/mpl_image_tests/baseline_images/test_369_delta_invert_ylim.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_370_delta_median_diff.png b/nbs/tests/mpl_image_tests/baseline_images/test_370_delta_median_diff.png
index f79d57ac..6b6a3477 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_370_delta_median_diff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_370_delta_median_diff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_371_delta_cohens_d.png b/nbs/tests/mpl_image_tests/baseline_images/test_371_delta_cohens_d.png
index 275b7503..b3cd2b6c 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_371_delta_cohens_d.png and b/nbs/tests/mpl_image_tests/baseline_images/test_371_delta_cohens_d.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_372_delta_show_delta2.png b/nbs/tests/mpl_image_tests/baseline_images/test_372_delta_show_delta2.png
index 14d8d8d1..43b27f8c 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_372_delta_show_delta2.png and b/nbs/tests/mpl_image_tests/baseline_images/test_372_delta_show_delta2.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_373_delta_axes_invert_ylim.png b/nbs/tests/mpl_image_tests/baseline_images/test_373_delta_axes_invert_ylim.png
index 13bbcad1..905904f4 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_373_delta_axes_invert_ylim.png and b/nbs/tests/mpl_image_tests/baseline_images/test_373_delta_axes_invert_ylim.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_374_delta_axes_invert_ylim_not_showing_delta2.png b/nbs/tests/mpl_image_tests/baseline_images/test_374_delta_axes_invert_ylim_not_showing_delta2.png
index 14d8d8d1..43b27f8c 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_374_delta_axes_invert_ylim_not_showing_delta2.png and b/nbs/tests/mpl_image_tests/baseline_images/test_374_delta_axes_invert_ylim_not_showing_delta2.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_375_unpaired_delta_g.png b/nbs/tests/mpl_image_tests/baseline_images/test_375_unpaired_delta_g.png
index 36400615..8752eac5 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_375_unpaired_delta_g.png and b/nbs/tests/mpl_image_tests/baseline_images/test_375_unpaired_delta_g.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_376_sequential_delta_g.png b/nbs/tests/mpl_image_tests/baseline_images/test_376_sequential_delta_g.png
index b652390d..19d4d361 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_376_sequential_delta_g.png and b/nbs/tests/mpl_image_tests/baseline_images/test_376_sequential_delta_g.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_377_baseline_delta_g.png b/nbs/tests/mpl_image_tests/baseline_images/test_377_baseline_delta_g.png
index b652390d..19d4d361 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_377_baseline_delta_g.png and b/nbs/tests/mpl_image_tests/baseline_images/test_377_baseline_delta_g.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_378_cummings_unpaired_mini_meta_meandiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_378_cummings_unpaired_mini_meta_meandiff.png
index 36667b7e..049c61f6 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_378_cummings_unpaired_mini_meta_meandiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_378_cummings_unpaired_mini_meta_meandiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_379_cummings_sequential_mini_meta_meandiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_379_cummings_sequential_mini_meta_meandiff.png
index d29d84cf..3bf5d98f 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_379_cummings_sequential_mini_meta_meandiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_379_cummings_sequential_mini_meta_meandiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_380_cummings_baseline_mini_meta_meandiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_380_cummings_baseline_mini_meta_meandiff.png
index d29d84cf..3bf5d98f 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_380_cummings_baseline_mini_meta_meandiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_380_cummings_baseline_mini_meta_meandiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_381_mini_meta_plot_ylabel.png b/nbs/tests/mpl_image_tests/baseline_images/test_381_mini_meta_plot_ylabel.png
index 59081bcd..f2def5bf 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_381_mini_meta_plot_ylabel.png and b/nbs/tests/mpl_image_tests/baseline_images/test_381_mini_meta_plot_ylabel.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_382_mini_meta_plot_change_palette_a.png b/nbs/tests/mpl_image_tests/baseline_images/test_382_mini_meta_plot_change_palette_a.png
index c5df8aa5..84c38c4f 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_382_mini_meta_plot_change_palette_a.png and b/nbs/tests/mpl_image_tests/baseline_images/test_382_mini_meta_plot_change_palette_a.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_383_mini_meta_dot_sizes.png b/nbs/tests/mpl_image_tests/baseline_images/test_383_mini_meta_dot_sizes.png
index eb93131f..5fbc1d94 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_383_mini_meta_dot_sizes.png and b/nbs/tests/mpl_image_tests/baseline_images/test_383_mini_meta_dot_sizes.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_384_mini_meta_change_ylims.png b/nbs/tests/mpl_image_tests/baseline_images/test_384_mini_meta_change_ylims.png
index 543f71bf..c2d6779d 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_384_mini_meta_change_ylims.png and b/nbs/tests/mpl_image_tests/baseline_images/test_384_mini_meta_change_ylims.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_385_mini_meta_invert_ylim.png b/nbs/tests/mpl_image_tests/baseline_images/test_385_mini_meta_invert_ylim.png
index 8bf6a02d..0e0372c7 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_385_mini_meta_invert_ylim.png and b/nbs/tests/mpl_image_tests/baseline_images/test_385_mini_meta_invert_ylim.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_386_mini_meta_median_diff.png b/nbs/tests/mpl_image_tests/baseline_images/test_386_mini_meta_median_diff.png
index ae15683f..425f01ca 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_386_mini_meta_median_diff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_386_mini_meta_median_diff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_387_mini_meta_cohens_d.png b/nbs/tests/mpl_image_tests/baseline_images/test_387_mini_meta_cohens_d.png
index 1ac99c4e..e3246efd 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_387_mini_meta_cohens_d.png and b/nbs/tests/mpl_image_tests/baseline_images/test_387_mini_meta_cohens_d.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_388_mini_meta_not_show.png b/nbs/tests/mpl_image_tests/baseline_images/test_388_mini_meta_not_show.png
index ee3013ed..42403330 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_388_mini_meta_not_show.png and b/nbs/tests/mpl_image_tests/baseline_images/test_388_mini_meta_not_show.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_389_Swarm_Side_Center.png b/nbs/tests/mpl_image_tests/baseline_images/test_389_Swarm_Side_Center.png
index 433cccb1..71eab94d 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_389_Swarm_Side_Center.png and b/nbs/tests/mpl_image_tests/baseline_images/test_389_Swarm_Side_Center.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_390_Swarm_Side_Right.png b/nbs/tests/mpl_image_tests/baseline_images/test_390_Swarm_Side_Right.png
index 2dd6cc29..71649d71 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_390_Swarm_Side_Right.png and b/nbs/tests/mpl_image_tests/baseline_images/test_390_Swarm_Side_Right.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_391_Swarm_Side_Left.png b/nbs/tests/mpl_image_tests/baseline_images/test_391_Swarm_Side_Left.png
index 6196195a..fa5bcfdc 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_391_Swarm_Side_Left.png and b/nbs/tests/mpl_image_tests/baseline_images/test_391_Swarm_Side_Left.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_392_Empty_Circle.png b/nbs/tests/mpl_image_tests/baseline_images/test_392_Empty_Circle.png
index 7cd9d893..5bda2c31 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_392_Empty_Circle.png and b/nbs/tests/mpl_image_tests/baseline_images/test_392_Empty_Circle.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_393_Horizontal_Table_Kwargs.png b/nbs/tests/mpl_image_tests/baseline_images/test_393_Horizontal_Table_Kwargs.png
index d6b1c4f0..c364bcb0 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_393_Horizontal_Table_Kwargs.png and b/nbs/tests/mpl_image_tests/baseline_images/test_393_Horizontal_Table_Kwargs.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_394_2group_unpaired_meandiff_gridkey_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_394_2group_unpaired_meandiff_gridkey_autoparser.png
index 420dd95a..8fe83dc1 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_394_2group_unpaired_meandiff_gridkey_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_394_2group_unpaired_meandiff_gridkey_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_395_2group_paired_meandiff_gridkey_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_395_2group_paired_meandiff_gridkey_autoparser.png
index 5ba6a3ff..8f5558da 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_395_2group_paired_meandiff_gridkey_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_395_2group_paired_meandiff_gridkey_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_396_multi_2group_unpaired_meandiff_gridkey_userdefinedrows.png b/nbs/tests/mpl_image_tests/baseline_images/test_396_multi_2group_unpaired_meandiff_gridkey_userdefinedrows.png
index bbc7f05f..72a69325 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_396_multi_2group_unpaired_meandiff_gridkey_userdefinedrows.png and b/nbs/tests/mpl_image_tests/baseline_images/test_396_multi_2group_unpaired_meandiff_gridkey_userdefinedrows.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_397_shared_control_meandiff_gridkey_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_397_shared_control_meandiff_gridkey_autoparser.png
index 25a8ac1a..375a0ee5 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_397_shared_control_meandiff_gridkey_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_397_shared_control_meandiff_gridkey_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_398_repeated_measures_meandiff_gridkey_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_398_repeated_measures_meandiff_gridkey_autoparser.png
index 7740926e..efb408ae 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_398_repeated_measures_meandiff_gridkey_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_398_repeated_measures_meandiff_gridkey_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_399_multigroups_unpaired_meandiff_gridkey_userdefinedrows.png b/nbs/tests/mpl_image_tests/baseline_images/test_399_multigroups_unpaired_meandiff_gridkey_userdefinedrows.png
index bbc7f05f..72a69325 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_399_multigroups_unpaired_meandiff_gridkey_userdefinedrows.png and b/nbs/tests/mpl_image_tests/baseline_images/test_399_multigroups_unpaired_meandiff_gridkey_userdefinedrows.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_400_multigroups_unpaired_meandiff_gridkey_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_400_multigroups_unpaired_meandiff_gridkey_autoparser.png
index 20d6ce9d..3697ba66 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_400_multigroups_unpaired_meandiff_gridkey_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_400_multigroups_unpaired_meandiff_gridkey_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_401_multigroups_paired_meandiff_gridkey_userdefinedrows.png b/nbs/tests/mpl_image_tests/baseline_images/test_401_multigroups_paired_meandiff_gridkey_userdefinedrows.png
index 8ad9a63a..c2803f64 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_401_multigroups_paired_meandiff_gridkey_userdefinedrows.png and b/nbs/tests/mpl_image_tests/baseline_images/test_401_multigroups_paired_meandiff_gridkey_userdefinedrows.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_402_multigroups_paired_meandiff_gridkey_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_402_multigroups_paired_meandiff_gridkey_autoparser.png
index 77673fe3..649287c7 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_402_multigroups_paired_meandiff_gridkey_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_402_multigroups_paired_meandiff_gridkey_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_403_multigroups_prop_unpaired_meandiff_gridkey_userdefinedrows.png b/nbs/tests/mpl_image_tests/baseline_images/test_403_multigroups_prop_unpaired_meandiff_gridkey_userdefinedrows.png
index 7e9dd8c4..ab027a10 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_403_multigroups_prop_unpaired_meandiff_gridkey_userdefinedrows.png and b/nbs/tests/mpl_image_tests/baseline_images/test_403_multigroups_prop_unpaired_meandiff_gridkey_userdefinedrows.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_404_multigroups_prop_unpaired_meandiff_gridkey_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_404_multigroups_prop_unpaired_meandiff_gridkey_autoparser.png
index 5150bc0d..544d4e12 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_404_multigroups_prop_unpaired_meandiff_gridkey_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_404_multigroups_prop_unpaired_meandiff_gridkey_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_405_multigroups_prop_paired_meandiff_gridkey_userdefinedrows.png b/nbs/tests/mpl_image_tests/baseline_images/test_405_multigroups_prop_paired_meandiff_gridkey_userdefinedrows.png
index 0cbc83df..10469aea 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_405_multigroups_prop_paired_meandiff_gridkey_userdefinedrows.png and b/nbs/tests/mpl_image_tests/baseline_images/test_405_multigroups_prop_paired_meandiff_gridkey_userdefinedrows.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_406_multigroups_prop_paired_meandiff_gridkey_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_406_multigroups_prop_paired_meandiff_gridkey_autoparser.png
index e6089083..468cd718 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_406_multigroups_prop_paired_meandiff_gridkey_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_406_multigroups_prop_paired_meandiff_gridkey_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_407_delta_delta_unpaired_meandiff_gridkey_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_407_delta_delta_unpaired_meandiff_gridkey_autoparser.png
index eb406c92..5b54333a 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_407_delta_delta_unpaired_meandiff_gridkey_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_407_delta_delta_unpaired_meandiff_gridkey_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_408_delta_delta_paired_meandiff_gridkey_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_408_delta_delta_paired_meandiff_gridkey_autoparser.png
index b2c0040c..47c1c310 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_408_delta_delta_paired_meandiff_gridkey_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_408_delta_delta_paired_meandiff_gridkey_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_409_mini_meta_unpaired_meandiff_gridkey_userdefinedrows.png b/nbs/tests/mpl_image_tests/baseline_images/test_409_mini_meta_unpaired_meandiff_gridkey_userdefinedrows.png
index c973cfcd..2128ced6 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_409_mini_meta_unpaired_meandiff_gridkey_userdefinedrows.png and b/nbs/tests/mpl_image_tests/baseline_images/test_409_mini_meta_unpaired_meandiff_gridkey_userdefinedrows.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_410_mini_meta_unpaired_meandiff_gridkey_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_410_mini_meta_unpaired_meandiff_gridkey_autoparser.png
index 891652ff..85fcf699 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_410_mini_meta_unpaired_meandiff_gridkey_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_410_mini_meta_unpaired_meandiff_gridkey_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_411_mini_meta_paired_meandiff_gridkey_userdefinedrows.png b/nbs/tests/mpl_image_tests/baseline_images/test_411_mini_meta_paired_meandiff_gridkey_userdefinedrows.png
index b8d5c879..b555b728 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_411_mini_meta_paired_meandiff_gridkey_userdefinedrows.png and b/nbs/tests/mpl_image_tests/baseline_images/test_411_mini_meta_paired_meandiff_gridkey_userdefinedrows.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_412_mini_meta_paired_meandiff_gridkey_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_412_mini_meta_paired_meandiff_gridkey_autoparser.png
index 966c51da..5780c6c5 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_412_mini_meta_paired_meandiff_gridkey_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_412_mini_meta_paired_meandiff_gridkey_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_413_gridkey_merge_pairs_and_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_413_gridkey_merge_pairs_and_autoparser.png
index d5ec3ee6..a89404f4 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_413_gridkey_merge_pairs_and_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_413_gridkey_merge_pairs_and_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_414_gridkey_kwargs_and_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_414_gridkey_kwargs_and_autoparser.png
index 0b545502..31fdde1a 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_414_gridkey_kwargs_and_autoparser.png and b/nbs/tests/mpl_image_tests/baseline_images/test_414_gridkey_kwargs_and_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_415_Horizontal_Table_hide.png b/nbs/tests/mpl_image_tests/baseline_images/test_415_Horizontal_Table_hide.png
index 4aa4861b..d2058ac3 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_415_Horizontal_Table_hide.png and b/nbs/tests/mpl_image_tests/baseline_images/test_415_Horizontal_Table_hide.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_416_delta_dot_hide.png b/nbs/tests/mpl_image_tests/baseline_images/test_416_delta_dot_hide.png
index 52c7cab2..9566e693 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_416_delta_dot_hide.png and b/nbs/tests/mpl_image_tests/baseline_images/test_416_delta_dot_hide.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_417_delta_dot_kwargs.png b/nbs/tests/mpl_image_tests/baseline_images/test_417_delta_dot_kwargs.png
index 92b52f06..7d3a376c 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_417_delta_dot_kwargs.png and b/nbs/tests/mpl_image_tests/baseline_images/test_417_delta_dot_kwargs.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_418_shared_control_meandiff_showcontrastbars.png b/nbs/tests/mpl_image_tests/baseline_images/test_418_shared_control_meandiff_showcontrastbars.png
index 6116a6a1..a8b3790b 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_418_shared_control_meandiff_showcontrastbars.png and b/nbs/tests/mpl_image_tests/baseline_images/test_418_shared_control_meandiff_showcontrastbars.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_423_shared_control_propdiff_show_counts.png b/nbs/tests/mpl_image_tests/baseline_images/test_423_shared_control_propdiff_show_counts.png
index 58f2b770..8c38135a 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_423_shared_control_propdiff_show_counts.png and b/nbs/tests/mpl_image_tests/baseline_images/test_423_shared_control_propdiff_show_counts.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_424_repeated_measures_baseline_propdiff_show_counts.png b/nbs/tests/mpl_image_tests/baseline_images/test_424_repeated_measures_baseline_propdiff_show_counts.png
index df8b5913..84bb1916 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_424_repeated_measures_baseline_propdiff_show_counts.png and b/nbs/tests/mpl_image_tests/baseline_images/test_424_repeated_measures_baseline_propdiff_show_counts.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_425_repeated_measures_baseline_propdiff_show_counts_and_kwargs.png b/nbs/tests/mpl_image_tests/baseline_images/test_425_repeated_measures_baseline_propdiff_show_counts_and_kwargs.png
index 3ae8eaad..1399cd7d 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_425_repeated_measures_baseline_propdiff_show_counts_and_kwargs.png and b/nbs/tests/mpl_image_tests/baseline_images/test_425_repeated_measures_baseline_propdiff_show_counts_and_kwargs.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_426_repeatedmeasures_meandiff_show_es_paired_lines.png b/nbs/tests/mpl_image_tests/baseline_images/test_426_repeatedmeasures_meandiff_show_es_paired_lines.png
index b4283522..c98b8352 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_426_repeatedmeasures_meandiff_show_es_paired_lines.png and b/nbs/tests/mpl_image_tests/baseline_images/test_426_repeatedmeasures_meandiff_show_es_paired_lines.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_427_repeatedmeasures_meandiff_hide_es_paired_lines.png b/nbs/tests/mpl_image_tests/baseline_images/test_427_repeatedmeasures_meandiff_hide_es_paired_lines.png
index 91eb74ab..6f4dd250 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_427_repeatedmeasures_meandiff_hide_es_paired_lines.png and b/nbs/tests/mpl_image_tests/baseline_images/test_427_repeatedmeasures_meandiff_hide_es_paired_lines.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_428_multigroups_paired_meandiff_es_paired_lines_kwargs.png b/nbs/tests/mpl_image_tests/baseline_images/test_428_multigroups_paired_meandiff_es_paired_lines_kwargs.png
index a7ea03b9..b8fa1d72 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_428_multigroups_paired_meandiff_es_paired_lines_kwargs.png and b/nbs/tests/mpl_image_tests/baseline_images/test_428_multigroups_paired_meandiff_es_paired_lines_kwargs.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_429_gridkey_fontsize_and_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_429_gridkey_fontsize_and_autoparser.png
new file mode 100644
index 00000000..db72f026
Binary files /dev/null and b/nbs/tests/mpl_image_tests/baseline_images/test_429_gridkey_fontsize_and_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_430_gridkey_labels_fontsize_and_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_430_gridkey_labels_fontsize_and_autoparser.png
new file mode 100644
index 00000000..4a6f98ec
Binary files /dev/null and b/nbs/tests/mpl_image_tests/baseline_images/test_430_gridkey_labels_fontsize_and_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_431_gridkey_labels_fontsize_and_fontsize_and_autoparser.png b/nbs/tests/mpl_image_tests/baseline_images/test_431_gridkey_labels_fontsize_and_fontsize_and_autoparser.png
new file mode 100644
index 00000000..c78d8a16
Binary files /dev/null and b/nbs/tests/mpl_image_tests/baseline_images/test_431_gridkey_labels_fontsize_and_fontsize_and_autoparser.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_47_cummings_unpaired_delta_delta_meandiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_47_cummings_unpaired_delta_delta_meandiff.png
index 3f5c83f0..cdc6d6fc 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_47_cummings_unpaired_delta_delta_meandiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_47_cummings_unpaired_delta_delta_meandiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_48_cummings_sequential_delta_delta_meandiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_48_cummings_sequential_delta_delta_meandiff.png
index 467d1921..5fa48ef9 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_48_cummings_sequential_delta_delta_meandiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_48_cummings_sequential_delta_delta_meandiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_49_cummings_baseline_delta_delta_meandiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_49_cummings_baseline_delta_delta_meandiff.png
index 467d1921..5fa48ef9 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_49_cummings_baseline_delta_delta_meandiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_49_cummings_baseline_delta_delta_meandiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_500_deltadelta_forest.png b/nbs/tests/mpl_image_tests/baseline_images/test_500_deltadelta_forest.png
index 70ed78d7..934d5653 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_500_deltadelta_forest.png and b/nbs/tests/mpl_image_tests/baseline_images/test_500_deltadelta_forest.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_501_deltadelta_with_deltas_idx_forest.png b/nbs/tests/mpl_image_tests/baseline_images/test_501_deltadelta_with_deltas_idx_forest.png
index 7887615f..9ab7dd83 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_501_deltadelta_with_deltas_idx_forest.png and b/nbs/tests/mpl_image_tests/baseline_images/test_501_deltadelta_with_deltas_idx_forest.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_502_minimeta_forest.png b/nbs/tests/mpl_image_tests/baseline_images/test_502_minimeta_forest.png
index 12ff76fe..93407885 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_502_minimeta_forest.png and b/nbs/tests/mpl_image_tests/baseline_images/test_502_minimeta_forest.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_503_deltadelta_custompalette_forest.png b/nbs/tests/mpl_image_tests/baseline_images/test_503_deltadelta_custompalette_forest.png
index c7cf4489..c43b2c6f 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_503_deltadelta_custompalette_forest.png and b/nbs/tests/mpl_image_tests/baseline_images/test_503_deltadelta_custompalette_forest.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_504_deltadelta_horizontal_forest.png b/nbs/tests/mpl_image_tests/baseline_images/test_504_deltadelta_horizontal_forest.png
index 72b0fd81..4db73eef 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_504_deltadelta_horizontal_forest.png and b/nbs/tests/mpl_image_tests/baseline_images/test_504_deltadelta_horizontal_forest.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_505_deltadelta_insert_ax_forest.png b/nbs/tests/mpl_image_tests/baseline_images/test_505_deltadelta_insert_ax_forest.png
index d5516a86..becdbf64 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_505_deltadelta_insert_ax_forest.png and b/nbs/tests/mpl_image_tests/baseline_images/test_505_deltadelta_insert_ax_forest.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_506a_deltadelta_delta_g_using_hedges_g_forest.png b/nbs/tests/mpl_image_tests/baseline_images/test_506a_deltadelta_delta_g_using_hedges_g_forest.png
index 93ccdc02..bb61ebd6 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_506a_deltadelta_delta_g_using_hedges_g_forest.png and b/nbs/tests/mpl_image_tests/baseline_images/test_506a_deltadelta_delta_g_using_hedges_g_forest.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_506b_deltadelta_delta_g_using_delta_g_forest.png b/nbs/tests/mpl_image_tests/baseline_images/test_506b_deltadelta_delta_g_using_delta_g_forest.png
index 93ccdc02..bb61ebd6 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_506b_deltadelta_delta_g_using_delta_g_forest.png and b/nbs/tests/mpl_image_tests/baseline_images/test_506b_deltadelta_delta_g_using_delta_g_forest.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_507_deltadelta_fig_size_forest.png b/nbs/tests/mpl_image_tests/baseline_images/test_507_deltadelta_fig_size_forest.png
index a237e355..801afcb3 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_507_deltadelta_fig_size_forest.png and b/nbs/tests/mpl_image_tests/baseline_images/test_507_deltadelta_fig_size_forest.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_508_deltadelta_fig_size_forest.png b/nbs/tests/mpl_image_tests/baseline_images/test_508_deltadelta_fig_size_forest.png
index a237e355..801afcb3 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_508_deltadelta_fig_size_forest.png and b/nbs/tests/mpl_image_tests/baseline_images/test_508_deltadelta_fig_size_forest.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_509_deltadelta_halfviolin_aesthetics_forest.png b/nbs/tests/mpl_image_tests/baseline_images/test_509_deltadelta_halfviolin_aesthetics_forest.png
index 1acc92e3..936f6579 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_509_deltadelta_halfviolin_aesthetics_forest.png and b/nbs/tests/mpl_image_tests/baseline_images/test_509_deltadelta_halfviolin_aesthetics_forest.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_50_delta_plot_ylabel.png b/nbs/tests/mpl_image_tests/baseline_images/test_50_delta_plot_ylabel.png
index 8cca5a88..ee8fc7b1 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_50_delta_plot_ylabel.png and b/nbs/tests/mpl_image_tests/baseline_images/test_50_delta_plot_ylabel.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_510_deltadelta_labels_and_title_aesthetics_forest.png b/nbs/tests/mpl_image_tests/baseline_images/test_510_deltadelta_labels_and_title_aesthetics_forest.png
index f9f77536..abf8b82e 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_510_deltadelta_labels_and_title_aesthetics_forest.png and b/nbs/tests/mpl_image_tests/baseline_images/test_510_deltadelta_labels_and_title_aesthetics_forest.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_511_deltadelta_lims_and_ticks_forest.png b/nbs/tests/mpl_image_tests/baseline_images/test_511_deltadelta_lims_and_ticks_forest.png
index 6788b5c0..fba2ffb5 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_511_deltadelta_lims_and_ticks_forest.png and b/nbs/tests/mpl_image_tests/baseline_images/test_511_deltadelta_lims_and_ticks_forest.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_512_deltadelta_spines_forest.png b/nbs/tests/mpl_image_tests/baseline_images/test_512_deltadelta_spines_forest.png
index 92431dfa..2050bc0b 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_512_deltadelta_spines_forest.png and b/nbs/tests/mpl_image_tests/baseline_images/test_512_deltadelta_spines_forest.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_513_deltadelta_violinkwargs_forest.png b/nbs/tests/mpl_image_tests/baseline_images/test_513_deltadelta_violinkwargs_forest.png
index 61f587dd..4ba5d11b 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_513_deltadelta_violinkwargs_forest.png and b/nbs/tests/mpl_image_tests/baseline_images/test_513_deltadelta_violinkwargs_forest.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_514_deltadelta_zerolinekwargs_forest.png b/nbs/tests/mpl_image_tests/baseline_images/test_514_deltadelta_zerolinekwargs_forest.png
index b9b113fa..45402f00 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_514_deltadelta_zerolinekwargs_forest.png and b/nbs/tests/mpl_image_tests/baseline_images/test_514_deltadelta_zerolinekwargs_forest.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_515_deltadelta_esmarkerkwargs_forest.png b/nbs/tests/mpl_image_tests/baseline_images/test_515_deltadelta_esmarkerkwargs_forest.png
index 0b7dda21..236e9712 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_515_deltadelta_esmarkerkwargs_forest.png and b/nbs/tests/mpl_image_tests/baseline_images/test_515_deltadelta_esmarkerkwargs_forest.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_516_deltadelta_eserrorbarkwargs_forest.png b/nbs/tests/mpl_image_tests/baseline_images/test_516_deltadelta_eserrorbarkwargs_forest.png
index 52a6d752..5274bce7 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_516_deltadelta_eserrorbarkwargs_forest.png and b/nbs/tests/mpl_image_tests/baseline_images/test_516_deltadelta_eserrorbarkwargs_forest.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_517_regular_delta_no_idx.png b/nbs/tests/mpl_image_tests/baseline_images/test_517_regular_delta_no_idx.png
new file mode 100644
index 00000000..f16efac5
Binary files /dev/null and b/nbs/tests/mpl_image_tests/baseline_images/test_517_regular_delta_no_idx.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_518_regular_delta_idx.png b/nbs/tests/mpl_image_tests/baseline_images/test_518_regular_delta_idx.png
new file mode 100644
index 00000000..8d0d5762
Binary files /dev/null and b/nbs/tests/mpl_image_tests/baseline_images/test_518_regular_delta_idx.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_519_minimeta_with_deltas_forest.png b/nbs/tests/mpl_image_tests/baseline_images/test_519_minimeta_with_deltas_forest.png
new file mode 100644
index 00000000..3144432e
Binary files /dev/null and b/nbs/tests/mpl_image_tests/baseline_images/test_519_minimeta_with_deltas_forest.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_51_delta_plot_change_palette_a.png b/nbs/tests/mpl_image_tests/baseline_images/test_51_delta_plot_change_palette_a.png
index a37bb349..32a71450 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_51_delta_plot_change_palette_a.png and b/nbs/tests/mpl_image_tests/baseline_images/test_51_delta_plot_change_palette_a.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_520_minimeta_with_deltas_and_delta_text_kwargs_forest.png b/nbs/tests/mpl_image_tests/baseline_images/test_520_minimeta_with_deltas_and_delta_text_kwargs_forest.png
new file mode 100644
index 00000000..814c553f
Binary files /dev/null and b/nbs/tests/mpl_image_tests/baseline_images/test_520_minimeta_with_deltas_and_delta_text_kwargs_forest.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_521_minimeta_with_deltas_with_contrast_bars_kwargs_forest.png b/nbs/tests/mpl_image_tests/baseline_images/test_521_minimeta_with_deltas_with_contrast_bars_kwargs_forest.png
new file mode 100644
index 00000000..728ed5bb
Binary files /dev/null and b/nbs/tests/mpl_image_tests/baseline_images/test_521_minimeta_with_deltas_with_contrast_bars_kwargs_forest.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_522a_minimeta_with_deltas_with_summary_bars.png b/nbs/tests/mpl_image_tests/baseline_images/test_522a_minimeta_with_deltas_with_summary_bars.png
new file mode 100644
index 00000000..2fb29e73
Binary files /dev/null and b/nbs/tests/mpl_image_tests/baseline_images/test_522a_minimeta_with_deltas_with_summary_bars.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_522b_minimeta_with_deltas_with_summary_bars_horizontal.png b/nbs/tests/mpl_image_tests/baseline_images/test_522b_minimeta_with_deltas_with_summary_bars_horizontal.png
new file mode 100644
index 00000000..ce77117f
Binary files /dev/null and b/nbs/tests/mpl_image_tests/baseline_images/test_522b_minimeta_with_deltas_with_summary_bars_horizontal.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_522c_minimeta_with_deltas_with_summary_bars_kwargs.png b/nbs/tests/mpl_image_tests/baseline_images/test_522c_minimeta_with_deltas_with_summary_bars_kwargs.png
new file mode 100644
index 00000000..e041aa6f
Binary files /dev/null and b/nbs/tests/mpl_image_tests/baseline_images/test_522c_minimeta_with_deltas_with_summary_bars_kwargs.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_522d_minimeta_with_deltas_with_summary_bars_kwargs_horizontal.png b/nbs/tests/mpl_image_tests/baseline_images/test_522d_minimeta_with_deltas_with_summary_bars_kwargs_horizontal.png
new file mode 100644
index 00000000..8a7a1e21
Binary files /dev/null and b/nbs/tests/mpl_image_tests/baseline_images/test_522d_minimeta_with_deltas_with_summary_bars_kwargs_horizontal.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_52_delta_specified.png b/nbs/tests/mpl_image_tests/baseline_images/test_52_delta_specified.png
index 01032218..e958cf91 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_52_delta_specified.png and b/nbs/tests/mpl_image_tests/baseline_images/test_52_delta_specified.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_53_delta_change_ylims.png b/nbs/tests/mpl_image_tests/baseline_images/test_53_delta_change_ylims.png
index 7692bb7c..f209c980 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_53_delta_change_ylims.png and b/nbs/tests/mpl_image_tests/baseline_images/test_53_delta_change_ylims.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_54_delta_invert_ylim.png b/nbs/tests/mpl_image_tests/baseline_images/test_54_delta_invert_ylim.png
index 7b2e68ae..b0da5ae6 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_54_delta_invert_ylim.png and b/nbs/tests/mpl_image_tests/baseline_images/test_54_delta_invert_ylim.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_55_delta_median_diff.png b/nbs/tests/mpl_image_tests/baseline_images/test_55_delta_median_diff.png
index 11ed86bf..949550d6 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_55_delta_median_diff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_55_delta_median_diff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_56_delta_cohens_d.png b/nbs/tests/mpl_image_tests/baseline_images/test_56_delta_cohens_d.png
index bac72276..a9434fc9 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_56_delta_cohens_d.png and b/nbs/tests/mpl_image_tests/baseline_images/test_56_delta_cohens_d.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_57_delta_show_delta2.png b/nbs/tests/mpl_image_tests/baseline_images/test_57_delta_show_delta2.png
index 203e5cf8..188aa1e6 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_57_delta_show_delta2.png and b/nbs/tests/mpl_image_tests/baseline_images/test_57_delta_show_delta2.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_58_delta_axes_invert_ylim.png b/nbs/tests/mpl_image_tests/baseline_images/test_58_delta_axes_invert_ylim.png
index c0d65499..8b614f8d 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_58_delta_axes_invert_ylim.png and b/nbs/tests/mpl_image_tests/baseline_images/test_58_delta_axes_invert_ylim.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_59_delta_axes_invert_ylim_not_showing_delta2.png b/nbs/tests/mpl_image_tests/baseline_images/test_59_delta_axes_invert_ylim_not_showing_delta2.png
index 203e5cf8..188aa1e6 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_59_delta_axes_invert_ylim_not_showing_delta2.png and b/nbs/tests/mpl_image_tests/baseline_images/test_59_delta_axes_invert_ylim_not_showing_delta2.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_60_cummings_unpaired_mini_meta_meandiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_60_cummings_unpaired_mini_meta_meandiff.png
index 5d24d593..7803110e 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_60_cummings_unpaired_mini_meta_meandiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_60_cummings_unpaired_mini_meta_meandiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_61_cummings_sequential_mini_meta_meandiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_61_cummings_sequential_mini_meta_meandiff.png
index 4f5104ae..18fdd21c 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_61_cummings_sequential_mini_meta_meandiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_61_cummings_sequential_mini_meta_meandiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_62_cummings_baseline_mini_meta_meandiff.png b/nbs/tests/mpl_image_tests/baseline_images/test_62_cummings_baseline_mini_meta_meandiff.png
index 4f5104ae..18fdd21c 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_62_cummings_baseline_mini_meta_meandiff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_62_cummings_baseline_mini_meta_meandiff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_63_mini_meta_plot_ylabel.png b/nbs/tests/mpl_image_tests/baseline_images/test_63_mini_meta_plot_ylabel.png
index 2a6fbf15..683e401a 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_63_mini_meta_plot_ylabel.png and b/nbs/tests/mpl_image_tests/baseline_images/test_63_mini_meta_plot_ylabel.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_64_mini_meta_plot_change_palette_a.png b/nbs/tests/mpl_image_tests/baseline_images/test_64_mini_meta_plot_change_palette_a.png
index be5f42c6..41f55ad9 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_64_mini_meta_plot_change_palette_a.png and b/nbs/tests/mpl_image_tests/baseline_images/test_64_mini_meta_plot_change_palette_a.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_65_mini_meta_dot_sizes.png b/nbs/tests/mpl_image_tests/baseline_images/test_65_mini_meta_dot_sizes.png
index 3f20f03d..c52a5c09 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_65_mini_meta_dot_sizes.png and b/nbs/tests/mpl_image_tests/baseline_images/test_65_mini_meta_dot_sizes.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_66_mini_meta_change_ylims.png b/nbs/tests/mpl_image_tests/baseline_images/test_66_mini_meta_change_ylims.png
index 66123c95..ff084a78 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_66_mini_meta_change_ylims.png and b/nbs/tests/mpl_image_tests/baseline_images/test_66_mini_meta_change_ylims.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_67_mini_meta_invert_ylim.png b/nbs/tests/mpl_image_tests/baseline_images/test_67_mini_meta_invert_ylim.png
index c5ec8d9a..1b3f0cfb 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_67_mini_meta_invert_ylim.png and b/nbs/tests/mpl_image_tests/baseline_images/test_67_mini_meta_invert_ylim.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_68_mini_meta_median_diff.png b/nbs/tests/mpl_image_tests/baseline_images/test_68_mini_meta_median_diff.png
index a9b5772b..a7de5521 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_68_mini_meta_median_diff.png and b/nbs/tests/mpl_image_tests/baseline_images/test_68_mini_meta_median_diff.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_69_mini_meta_cohens_d.png b/nbs/tests/mpl_image_tests/baseline_images/test_69_mini_meta_cohens_d.png
index 844b9e26..c1c99d60 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_69_mini_meta_cohens_d.png and b/nbs/tests/mpl_image_tests/baseline_images/test_69_mini_meta_cohens_d.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_70_mini_meta_not_show.png b/nbs/tests/mpl_image_tests/baseline_images/test_70_mini_meta_not_show.png
index 1ca6d4a2..58cda407 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_70_mini_meta_not_show.png and b/nbs/tests/mpl_image_tests/baseline_images/test_70_mini_meta_not_show.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_71_unpaired_delta_g.png b/nbs/tests/mpl_image_tests/baseline_images/test_71_unpaired_delta_g.png
index c450cb1f..887d518c 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_71_unpaired_delta_g.png and b/nbs/tests/mpl_image_tests/baseline_images/test_71_unpaired_delta_g.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_72_sequential_delta_g.png b/nbs/tests/mpl_image_tests/baseline_images/test_72_sequential_delta_g.png
index 6eb7e544..3a285f06 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_72_sequential_delta_g.png and b/nbs/tests/mpl_image_tests/baseline_images/test_72_sequential_delta_g.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_73_baseline_delta_g.png b/nbs/tests/mpl_image_tests/baseline_images/test_73_baseline_delta_g.png
index 6eb7e544..3a285f06 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_73_baseline_delta_g.png and b/nbs/tests/mpl_image_tests/baseline_images/test_73_baseline_delta_g.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_74_unpaired_prop_delta2.png b/nbs/tests/mpl_image_tests/baseline_images/test_74_unpaired_prop_delta2.png
index 7efa04f5..c1b4ee01 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_74_unpaired_prop_delta2.png and b/nbs/tests/mpl_image_tests/baseline_images/test_74_unpaired_prop_delta2.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_75_unpaired_specified_prop_delta2.png b/nbs/tests/mpl_image_tests/baseline_images/test_75_unpaired_specified_prop_delta2.png
index ec773695..76dc6b46 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_75_unpaired_specified_prop_delta2.png and b/nbs/tests/mpl_image_tests/baseline_images/test_75_unpaired_specified_prop_delta2.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_76_paired_prop_delta2.png b/nbs/tests/mpl_image_tests/baseline_images/test_76_paired_prop_delta2.png
index 1197c70a..d6b9fd3e 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_76_paired_prop_delta2.png and b/nbs/tests/mpl_image_tests/baseline_images/test_76_paired_prop_delta2.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_77_paired_specified_prop_delta2.png b/nbs/tests/mpl_image_tests/baseline_images/test_77_paired_specified_prop_delta2.png
index d89acbaa..c8f15f22 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_77_paired_specified_prop_delta2.png and b/nbs/tests/mpl_image_tests/baseline_images/test_77_paired_specified_prop_delta2.png differ
diff --git a/nbs/tests/mpl_image_tests/baseline_images/test_99_style_sheets.png b/nbs/tests/mpl_image_tests/baseline_images/test_99_style_sheets.png
index 4ae33e32..75dca995 100644
Binary files a/nbs/tests/mpl_image_tests/baseline_images/test_99_style_sheets.png and b/nbs/tests/mpl_image_tests/baseline_images/test_99_style_sheets.png differ
diff --git a/nbs/tests/mpl_image_tests/test_03_plotting.py b/nbs/tests/mpl_image_tests/test_03_plotting.py
index b47c1b35..3bb6c446 100644
--- a/nbs/tests/mpl_image_tests/test_03_plotting.py
+++ b/nbs/tests/mpl_image_tests/test_03_plotting.py
@@ -257,7 +257,7 @@ def test_11_inset_plots():
def test_12_gardner_altman_ylabel():
plt.rcdefaults()
return two_groups_unpaired.mean_diff.plot(
- swarm_label="This is my\nrawdata", contrast_label="The bootstrap\ndistribtions!"
+ raw_label="This is my\nrawdata", contrast_label="The bootstrap\ndistribtions!"
)
@@ -305,20 +305,20 @@ def test_17_change_palette_c():
def test_18_desat():
plt.rcdefaults()
return multi_2group.mean_diff.plot(
- custom_palette=my_color_palette, swarm_desat=0.75, halfviolin_desat=0.25
+ custom_palette=my_color_palette, raw_desat=0.75, contrast_desat=0.25
)
@pytest.mark.mpl_image_compare(tolerance=8)
def test_19_dot_sizes():
plt.rcdefaults()
- return multi_2group.mean_diff.plot(raw_marker_size=3, es_marker_size=12)
+ return multi_2group.mean_diff.plot(raw_marker_size=3, contrast_marker_size=12)
@pytest.mark.mpl_image_compare(tolerance=8)
def test_20_change_ylims():
plt.rcdefaults()
- return multi_2group.mean_diff.plot(swarm_ylim=(0, 5), contrast_ylim=(-2, 2))
+ return multi_2group.mean_diff.plot(raw_ylim=(0, 5), contrast_ylim=(-2, 2))
@pytest.mark.mpl_image_compare(tolerance=8)
@@ -349,7 +349,7 @@ def test_22_ticker_gardner_altman():
@pytest.mark.mpl_image_compare(tolerance=8)
def test_23_ticker_cumming():
plt.rcdefaults()
- f = multi_2group.mean_diff.plot(swarm_ylim=(0, 6), contrast_ylim=(-3, 1))
+ f = multi_2group.mean_diff.plot(raw_ylim=(0, 6), contrast_ylim=(-3, 1))
rawswarm_axes = f.axes[0]
contrast_axes = f.axes[1]
diff --git a/nbs/tests/mpl_image_tests/test_05_forest_plot.py b/nbs/tests/mpl_image_tests/test_05_forest_plot.py
index 1cdf4612..578258bf 100644
--- a/nbs/tests/mpl_image_tests/test_05_forest_plot.py
+++ b/nbs/tests/mpl_image_tests/test_05_forest_plot.py
@@ -153,6 +153,14 @@ def create_mini_meta_dataset(N=20, seed=9999, control_locs=[3, 3.5, 3.25], contr
contrasts_mini_meta = [contrast_mini_meta01, contrast_mini_meta02, contrast_mini_meta03]
+delta1 = load(data = df_mini_meta01,
+ idx=(("Control 1", "Test 1"), ("Control 2", "Test 2"), ("Control 3", "Test 3")))
+delta2 = load(data = df_mini_meta02,
+ idx=(("Control 1", "Test 1"), ("Control 2", "Test 2"), ("Control 3", "Test 3")))
+delta3 = load(data = df_mini_meta03,
+ idx=(("Control 1", "Test 1"), ("Control 2", "Test 2"), ("Control 3", "Test 3")))
+contrasts_deltas = [delta1, delta2, delta3]
+
# Import your forest_plot function here
from dabest.forest_plot import forest_plot
@@ -184,8 +192,6 @@ def test_502_minimeta_forest():
labels=['mini_meta1', 'mini_meta2', 'mini_meta3']
)
-
-
@pytest.mark.mpl_image_compare(tolerance=8)
def test_503_deltadelta_custompalette_forest():
plt.rcdefaults()
@@ -214,7 +220,7 @@ def test_505_deltadelta_insert_ax_forest():
contrast.mean_diff.plot(
contrast_label='Mean Diff',
raw_marker_size = 1,
- es_marker_size = 5,
+ contrast_marker_size = 5,
color_col='Genotype',
ax = ax
)
@@ -272,8 +278,8 @@ def test_509_deltadelta_halfviolin_aesthetics_forest():
return forest_plot(
contrasts,
labels=['Drug1', 'Drug2', 'Drug3'],
- halfviolin_alpha=0.2,
- halfviolin_desat=0.2
+ contrast_alpha=0.2,
+ contrast_desat=0.2
)
@@ -319,7 +325,7 @@ def test_513_deltadelta_violinkwargs_forest():
labels=['Drug1', 'Drug2', 'Drug3'],
violin_kwargs={
"widths": 0.8, "showextrema": True,
- "showmedians": True, "vert": True
+ "showmedians": True, "orientation": 'vertical'
}
)
@@ -338,7 +344,7 @@ def test_515_deltadelta_esmarkerkwargs_forest():
return forest_plot(
contrasts,
labels=['Drug1', 'Drug2', 'Drug3'],
- es_marker_kwargs={
+ marker_kwargs={
'marker': '^', 'markersize': 15,'color': 'blue',
'alpha': 0.5,
}
@@ -350,7 +356,101 @@ def test_516_deltadelta_eserrorbarkwargs_forest():
return forest_plot(
contrasts,
labels=['Drug1', 'Drug2', 'Drug3'],
- es_errorbar_kwargs={
+ errorbar_kwargs={
'color': 'red', 'lw': 4, 'linestyle': '--', 'alpha': 0.6,
}
+ )
+
+
+@pytest.mark.mpl_image_compare(tolerance=8)
+def test_517_regular_delta_no_idx():
+ plt.rcdefaults()
+ return forest_plot(
+ contrasts_deltas,
+ )
+
+@pytest.mark.mpl_image_compare(tolerance=8)
+def test_518_regular_delta_idx():
+ plt.rcdefaults()
+ return forest_plot(
+ contrasts_deltas,
+ idx = [(0,), (0,), (0,)],
+ labels=['Drug1 \nTest 1 - Control 1', 'Drug2 \nTest 2 - Control 2', 'Drug3 \nTest 3 - Control 3']
+ )
+
+
+
+@pytest.mark.mpl_image_compare(tolerance=8)
+def test_519_minimeta_with_deltas_forest():
+ plt.rcdefaults()
+ return forest_plot(
+ contrasts_mini_meta,
+ idx=[(0, 3),(0, 3),(0, 3)],
+ labels=['Contrast A1', 'Mini_Meta A', 'Contrast B1', 'Mini_Meta B', 'Contrast C1', 'Mini_Meta C']
+ )
+
+@pytest.mark.mpl_image_compare(tolerance=8)
+def test_520_minimeta_with_deltas_and_delta_text_kwargs_forest():
+ plt.rcdefaults()
+ return forest_plot(
+ contrasts_mini_meta,
+ idx=[(0, 3),(0, 3),(0, 3)],
+ labels=['Contrast A1', 'Mini_Meta A', 'Contrast B1', 'Mini_Meta B', 'Contrast C1', 'Mini_Meta C'],
+ delta_text_kwargs={'color': 'black','fontsize': 8, 'rotation': 45, 'va': 'bottom',
+ 'x_coordinates': [1.4, 2.4, 3.4, 4.4, 5.4, 6.4],
+ 'y_coordinates': [0.6, 0.1, -2, -1.5, -1.5, -1.5]}
+ )
+
+@pytest.mark.mpl_image_compare(tolerance=8)
+def test_521_minimeta_with_deltas_with_contrast_bars_kwargs_forest():
+ plt.rcdefaults()
+ return forest_plot(
+ contrasts_mini_meta,
+ idx=[(0, 3),(0, 3),(0, 3)],
+ labels=['Contrast A1', 'Mini_Meta A', 'Contrast B1', 'Mini_Meta B', 'Contrast C1', 'Mini_Meta C'],
+ contrast_bars_kwargs={'color': 'red', 'alpha': 0.4}
+ )
+
+@pytest.mark.mpl_image_compare(tolerance=8)
+def test_522a_minimeta_with_deltas_with_summary_bars():
+ plt.rcdefaults()
+ return forest_plot(
+ contrasts_mini_meta,
+ idx=[(0, 3),(0, 3),(0, 3)],
+ labels=['Contrast A1', 'Mini_Meta A', 'Contrast B1', 'Mini_Meta B', 'Contrast C1', 'Mini_Meta C'],
+ reference_band=[0, 2],
+ )
+
+@pytest.mark.mpl_image_compare(tolerance=8)
+def test_522b_minimeta_with_deltas_with_summary_bars_horizontal():
+ plt.rcdefaults()
+ return forest_plot(
+ contrasts_mini_meta,
+ idx=[(0, 3),(0, 3),(0, 3)],
+ labels=['Contrast A1', 'Mini_Meta A', 'Contrast B1', 'Mini_Meta B', 'Contrast C1', 'Mini_Meta C'],
+ reference_band=[0, 2],
+ horizontal=True
+ )
+
+@pytest.mark.mpl_image_compare(tolerance=8)
+def test_522c_minimeta_with_deltas_with_summary_bars_kwargs():
+ plt.rcdefaults()
+ return forest_plot(
+ contrasts_mini_meta,
+ idx=[(0, 3),(0, 3),(0, 3)],
+ labels=['Contrast A1', 'Mini_Meta A', 'Contrast B1', 'Mini_Meta B', 'Contrast C1', 'Mini_Meta C'],
+ reference_band=[0, 2],
+ reference_band_kwargs={'span_ax': True, 'color': 'grey', 'alpha': 0.1}
+ )
+
+@pytest.mark.mpl_image_compare(tolerance=8)
+def test_522d_minimeta_with_deltas_with_summary_bars_kwargs_horizontal():
+ plt.rcdefaults()
+ return forest_plot(
+ contrasts_mini_meta,
+ idx=[(0, 3),(0, 3),(0, 3)],
+ labels=['Contrast A1', 'Mini_Meta A', 'Contrast B1', 'Mini_Meta B', 'Contrast C1', 'Mini_Meta C'],
+ reference_band=[0, 2],
+ horizontal=True,
+ reference_band_kwargs={'span_ax': True, 'color': 'grey', 'alpha': 0.1}
)
\ No newline at end of file
diff --git a/nbs/tests/mpl_image_tests/test_07_delta-delta_plots.py b/nbs/tests/mpl_image_tests/test_07_delta-delta_plots.py
index 874404ac..e3d3eac1 100644
--- a/nbs/tests/mpl_image_tests/test_07_delta-delta_plots.py
+++ b/nbs/tests/mpl_image_tests/test_07_delta-delta_plots.py
@@ -135,7 +135,7 @@ def test_49_cummings_baseline_delta_delta_meandiff():
@pytest.mark.mpl_image_compare(tolerance=8)
def test_50_delta_plot_ylabel():
plt.rcdefaults()
- return baseline.mean_diff.plot(swarm_label="This is my\nrawdata",
+ return baseline.mean_diff.plot(raw_label="This is my\nrawdata",
contrast_label="The bootstrap\ndistribtions!",
delta2_label="This is delta!");
@@ -155,7 +155,7 @@ def test_52_delta_specified():
@pytest.mark.mpl_image_compare(tolerance=8)
def test_53_delta_change_ylims():
plt.rcdefaults()
- return sequential.mean_diff.plot(swarm_ylim=(0, 9),
+ return sequential.mean_diff.plot(raw_ylim=(0, 9),
contrast_ylim=(-2, 2),
fig_size=(15,6));
diff --git a/nbs/tests/mpl_image_tests/test_09_mini_meta_plots.py b/nbs/tests/mpl_image_tests/test_09_mini_meta_plots.py
index 964c6830..4e510ac2 100644
--- a/nbs/tests/mpl_image_tests/test_09_mini_meta_plots.py
+++ b/nbs/tests/mpl_image_tests/test_09_mini_meta_plots.py
@@ -92,7 +92,7 @@ def test_62_cummings_baseline_mini_meta_meandiff():
@pytest.mark.mpl_image_compare(tolerance=8)
def test_63_mini_meta_plot_ylabel():
plt.rcdefaults()
- return baseline.mean_diff.plot(swarm_label="This is my\nrawdata",
+ return baseline.mean_diff.plot(raw_label="This is my\nrawdata",
contrast_label="The bootstrap\ndistribtions!");
@@ -106,13 +106,13 @@ def test_64_mini_meta_plot_change_palette_a():
def test_65_mini_meta_dot_sizes():
plt.rcdefaults()
return sequential.mean_diff.plot(show_pairs=False,raw_marker_size=3,
- es_marker_size=12);
+ contrast_marker_size=12);
@pytest.mark.mpl_image_compare(tolerance=8)
def test_66_mini_meta_change_ylims():
plt.rcdefaults()
- return sequential.mean_diff.plot(swarm_ylim=(0, 5),
+ return sequential.mean_diff.plot(raw_ylim=(0, 5),
contrast_ylim=(-2, 2),
fig_size=(15,6));
diff --git a/nbs/tests/mpl_image_tests/test_10_proportion_plot.py b/nbs/tests/mpl_image_tests/test_10_proportion_plot.py
index 63ed8a0d..68ba23eb 100644
--- a/nbs/tests/mpl_image_tests/test_10_proportion_plot.py
+++ b/nbs/tests/mpl_image_tests/test_10_proportion_plot.py
@@ -209,7 +209,7 @@ def test_107_cummings_multi_groups_propdiff():
def test_109_gardner_altman_ylabel():
plt.rcdefaults()
return two_groups_unpaired.mean_diff.plot(
- bar_label="This is my\nrawdata", contrast_label="The bootstrap\ndistribtions!"
+ raw_label="This is my\nrawdata", contrast_label="The bootstrap\ndistribtions!"
)
@@ -243,7 +243,7 @@ def test_112_change_palette_c():
def test_113_desat():
plt.rcdefaults()
return multi_2group.mean_diff.plot(
- custom_palette=my_color_palette, bar_desat=0.1, halfviolin_desat=0.25
+ custom_palette=my_color_palette, raw_desat=0.1, contrast_desat=0.25
)
@@ -280,7 +280,7 @@ def test_116_ticker_gardner_altman():
@pytest.mark.mpl_image_compare(tolerance=8)
def test_117_err_color():
plt.rcdefaults()
- return two_groups_unpaired.mean_diff.plot(err_color="purple")
+ return two_groups_unpaired.mean_diff.plot(barplot_kwargs={"err_kws": {"color" : "purple"}})
@pytest.mark.mpl_image_compare(tolerance=8)
diff --git a/nbs/tests/mpl_image_tests/test_Gridkey.py b/nbs/tests/mpl_image_tests/test_Gridkey.py
index 78f38ef6..3a36374e 100644
--- a/nbs/tests/mpl_image_tests/test_Gridkey.py
+++ b/nbs/tests/mpl_image_tests/test_Gridkey.py
@@ -196,132 +196,131 @@ def create_demo_prop_dataset(seed=9999, N=40):
@pytest.mark.mpl_image_compare(tolerance=8)
def test_250_2group_unpaired_meandiff_gridkey_autoparser():
plt.rcdefaults()
- return two_groups_unpaired.mean_diff.plot(gridkey_rows='auto');
+ return two_groups_unpaired.mean_diff.plot(gridkey='auto');
@pytest.mark.mpl_image_compare(tolerance=8)
def test_251_2group_unpaired_meandiff_gridkey_userdefinedrows():
plt.rcdefaults()
- return two_groups_unpaired.mean_diff.plot(gridkey_rows=['Control', 'Test']);
+ return two_groups_unpaired.mean_diff.plot(gridkey=['Control', 'Test']);
@pytest.mark.mpl_image_compare(tolerance=8)
def test_252_2group_paired_meandiff_gridkey_autoparser():
plt.rcdefaults()
- return two_groups_paired.mean_diff.plot(gridkey_rows='auto');
+ return two_groups_paired.mean_diff.plot(gridkey='auto');
@pytest.mark.mpl_image_compare(tolerance=8)
def test_253_2group_paired_meandiff_gridkey_userdefinedrows():
plt.rcdefaults()
- return two_groups_paired.mean_diff.plot(gridkey_rows=['Control', 'Test']);
+ return two_groups_paired.mean_diff.plot(gridkey=['Control', 'Test']);
# Multi 2 Group
@pytest.mark.mpl_image_compare(tolerance=8)
def test_254_multi_2group_unpaired_meandiff_gridkey_autoparser():
plt.rcdefaults()
- return multi_groups_unpaired.mean_diff.plot(gridkey_rows='auto');
+ return multi_groups_unpaired.mean_diff.plot(gridkey='auto');
@pytest.mark.mpl_image_compare(tolerance=8)
def test_255_multi_2group_unpaired_meandiff_gridkey_userdefinedrows():
plt.rcdefaults()
- return multi_groups_unpaired.mean_diff.plot(gridkey_rows=['Control', 'Test']);
+ return multi_groups_unpaired.mean_diff.plot(gridkey=['Control', 'Test']);
# Shared Control and Repeated Measures
@pytest.mark.mpl_image_compare(tolerance=8)
def test_256_shared_control_meandiff_gridkey_autoparser():
plt.rcdefaults()
- return shared_control.mean_diff.plot(gridkey_rows='auto');
+ return shared_control.mean_diff.plot(gridkey='auto');
@pytest.mark.mpl_image_compare(tolerance=8)
def test_257_shared_control_meandiff_gridkey_userdefinedrows():
plt.rcdefaults()
- return shared_control.mean_diff.plot(gridkey_rows=['Control', 'Test']);
+ return shared_control.mean_diff.plot(gridkey=['Control', 'Test']);
@pytest.mark.mpl_image_compare(tolerance=8)
def test_258_repeated_measures_meandiff_gridkey_autoparser():
plt.rcdefaults()
- return repeated_measures.mean_diff.plot(gridkey_rows='auto');
+ return repeated_measures.mean_diff.plot(gridkey='auto');
@pytest.mark.mpl_image_compare(tolerance=8)
def test_259_repeated_measures_meandiff_gridkey_userdefinedrows():
plt.rcdefaults()
- return repeated_measures.mean_diff.plot(gridkey_rows=['Control', 'Test']);
+ return repeated_measures.mean_diff.plot(gridkey=['Control', 'Test']);
# Multi groups
@pytest.mark.mpl_image_compare(tolerance=8)
def test_260_multigroups_unpaired_meandiff_gridkey_userdefinedrows():
plt.rcdefaults()
- return multi_groups_unpaired.mean_diff.plot(gridkey_rows=['Control', 'Test']);
+ return multi_groups_unpaired.mean_diff.plot(gridkey=['Control', 'Test']);
@pytest.mark.mpl_image_compare(tolerance=8)
def test_261_multigroups_unpaired_meandiff_gridkey_autoparser():
plt.rcdefaults()
- return multi_groups_unpaired.mean_diff.plot(gridkey_rows='auto');
+ return multi_groups_unpaired.mean_diff.plot(gridkey='auto');
@pytest.mark.mpl_image_compare(tolerance=8)
def test_262_multigroups_paired_meandiff_gridkey_userdefinedrows():
plt.rcdefaults()
- return multi_groups_paired.mean_diff.plot(gridkey_rows=['Control', 'Test']);
+ return multi_groups_paired.mean_diff.plot(gridkey=['Control', 'Test']);
@pytest.mark.mpl_image_compare(tolerance=8)
def test_263_multigroups_paired_meandiff_gridkey_autoparser():
plt.rcdefaults()
- return multi_groups_paired.mean_diff.plot(gridkey_rows='auto');
+ return multi_groups_paired.mean_diff.plot(gridkey='auto');
# Proportions
@pytest.mark.mpl_image_compare(tolerance=8)
def test_264_multigroups_prop_unpaired_meandiff_gridkey_userdefinedrows():
plt.rcdefaults()
- return multi_groups_unpaired_prop.mean_diff.plot(gridkey_rows=['Control', 'Test']);
+ return multi_groups_unpaired_prop.mean_diff.plot(gridkey=['Control', 'Test']);
@pytest.mark.mpl_image_compare(tolerance=8)
def test_265_multigroups_prop_unpaired_meandiff_gridkey_autoparser():
plt.rcdefaults()
- return multi_groups_unpaired_prop.mean_diff.plot(gridkey_rows='auto');
+ return multi_groups_unpaired_prop.mean_diff.plot(gridkey='auto');
@pytest.mark.mpl_image_compare(tolerance=8)
def test_266_multigroups_prop_paired_meandiff_gridkey_userdefinedrows():
plt.rcdefaults()
- return multi_groups_paired_baseline_prop.mean_diff.plot(gridkey_rows=['Control', 'Test']);
+ return multi_groups_paired_baseline_prop.mean_diff.plot(gridkey=['Control', 'Test']);
@pytest.mark.mpl_image_compare(tolerance=8)
def test_267_multigroups_prop_paired_meandiff_gridkey_autoparser():
plt.rcdefaults()
- return multi_groups_paired_baseline_prop.mean_diff.plot(gridkey_rows='auto');
-
+ return multi_groups_paired_baseline_prop.mean_diff.plot(gridkey='auto');
# delta-delta
@pytest.mark.mpl_image_compare(tolerance=8)
def test_268_delta_delta_unpaired_meandiff_gridkey_autoparser():
plt.rcdefaults()
- return delta_delta_unpaired.mean_diff.plot(gridkey_rows='auto');
+ return delta_delta_unpaired.mean_diff.plot(gridkey='auto');
@pytest.mark.mpl_image_compare(tolerance=8)
def test_269_delta_delta_paired_meandiff_gridkey_autoparser():
plt.rcdefaults()
- return delta_delta_paired.mean_diff.plot(gridkey_rows='auto');
+ return delta_delta_paired.mean_diff.plot(gridkey='auto');
# mini-meta
@pytest.mark.mpl_image_compare(tolerance=8)
def test_270_mini_meta_unpaired_meandiff_gridkey_userdefinedrows():
plt.rcdefaults()
- return mini_meta_unpaired.mean_diff.plot(gridkey_rows=['Control', 'Test']);
+ return mini_meta_unpaired.mean_diff.plot(gridkey=['Control', 'Test']);
@pytest.mark.mpl_image_compare(tolerance=8)
def test_271_mini_meta_unpaired_meandiff_gridkey_autoparser():
plt.rcdefaults()
- return mini_meta_unpaired.mean_diff.plot(gridkey_rows='auto');
+ return mini_meta_unpaired.mean_diff.plot(gridkey='auto');
@pytest.mark.mpl_image_compare(tolerance=8)
def test_272_mini_meta_paired_meandiff_gridkey_userdefinedrows():
plt.rcdefaults()
- return mini_meta_paired.mean_diff.plot(gridkey_rows=['Control', 'Test']);
+ return mini_meta_paired.mean_diff.plot(gridkey=['Control', 'Test']);
@pytest.mark.mpl_image_compare(tolerance=8)
def test_273_mini_meta_paired_meandiff_gridkey_autoparser():
plt.rcdefaults()
- return mini_meta_paired.mean_diff.plot(gridkey_rows='auto');
+ return mini_meta_paired.mean_diff.plot(gridkey='auto');
# Gridkey kwargs
@@ -329,11 +328,26 @@ def test_273_mini_meta_paired_meandiff_gridkey_autoparser():
@pytest.mark.mpl_image_compare(tolerance=8)
def test_274_gridkey_merge_pairs_and_autoparser():
plt.rcdefaults()
- return multi_2group_paired_test.mean_diff.plot(gridkey_rows=['Control', 'Test'], gridkey_kwargs={'merge_pairs': True});
+ return multi_2group_paired_test.mean_diff.plot(gridkey=['Control', 'Test'], gridkey_kwargs={'merge_pairs': True});
gridkey_kwargs = {'show_es': False, 'show_Ns': False, 'marker': '√'}
@pytest.mark.mpl_image_compare(tolerance=8)
def test_275_gridkey_kwargs_and_autoparser():
plt.rcdefaults()
- return two_groups_unpaired.mean_diff.plot(gridkey_rows='auto', gridkey_kwargs=gridkey_kwargs);
+ return two_groups_unpaired.mean_diff.plot(gridkey='auto', gridkey_kwargs=gridkey_kwargs);
+@pytest.mark.mpl_image_compare(tolerance=8)
+def test_276_gridkey_fontsize_and_autoparser():
+ plt.rcdefaults()
+ return two_groups_unpaired.mean_diff.plot(gridkey='auto', gridkey_kwargs={'fontsize': 15});
+
+@pytest.mark.mpl_image_compare(tolerance=8)
+def test_277_gridkey_labels_fontsize_and_autoparser():
+ plt.rcdefaults()
+ return two_groups_unpaired.mean_diff.plot(gridkey='auto', gridkey_kwargs={'labels_fontsize': 15});
+
+@pytest.mark.mpl_image_compare(tolerance=8)
+def test_278_gridkey_labels_fontsize_and_fontsize_and_autoparser():
+ plt.rcdefaults()
+ return two_groups_unpaired.mean_diff.plot(gridkey='auto',
+ gridkey_kwargs={'fontsize': 8, 'labels_fontsize': 15});
\ No newline at end of file
diff --git a/nbs/tests/mpl_image_tests/test_Horizontal_Plots.py b/nbs/tests/mpl_image_tests/test_Horizontal_Plots.py
index a548c369..b260be08 100644
--- a/nbs/tests/mpl_image_tests/test_Horizontal_Plots.py
+++ b/nbs/tests/mpl_image_tests/test_Horizontal_Plots.py
@@ -312,7 +312,7 @@ def test_313_multigroups_paired_sequential():
def test_314_2group_unpaired_ylabel():
plt.rcdefaults()
return two_groups_unpaired.mean_diff.plot(horizontal=True,
- swarm_label="This is my\nrawdata", contrast_label="The bootstrap\ndistribtions!"
+ raw_label="This is my\nrawdata", contrast_label="The bootstrap\ndistribtions!"
)
@pytest.mark.mpl_image_compare(tolerance=8)
@@ -351,18 +351,18 @@ def test_319_multi2group_unpaired_change_palette_c():
def test_320_multi2group_unpaired_desat():
plt.rcdefaults()
return multi_2group_unpaired.mean_diff.plot(horizontal=True,
- custom_palette=my_color_palette, swarm_desat=0.75, halfviolin_desat=0.25
+ custom_palette=my_color_palette, raw_desat=0.75, contrast_desat=0.25
)
@pytest.mark.mpl_image_compare(tolerance=8)
def test_321_multi2group_unpaired_dot_sizes():
plt.rcdefaults()
- return multi_2group_unpaired.mean_diff.plot(horizontal=True, raw_marker_size=3, es_marker_size=12)
+ return multi_2group_unpaired.mean_diff.plot(horizontal=True, raw_marker_size=3, contrast_marker_size=12)
@pytest.mark.mpl_image_compare(tolerance=8)
def test_322_multi2group_unpaired_change_ylims():
plt.rcdefaults()
- return multi_2group_unpaired.mean_diff.plot(horizontal=True, swarm_ylim=(0, 5), contrast_ylim=(-2, 2))
+ return multi_2group_unpaired.mean_diff.plot(horizontal=True, raw_ylim=(0, 5), contrast_ylim=(-2, 2))
@pytest.mark.mpl_image_compare(tolerance=8)
def test_323_2group_unpaired_ticker():
@@ -383,7 +383,7 @@ def test_323_2group_unpaired_ticker():
@pytest.mark.mpl_image_compare(tolerance=8)
def test_324_multi2group_unpaired_ticker():
plt.rcdefaults()
- f = multi_2group_unpaired.mean_diff.plot(horizontal=True, swarm_ylim=(0, 6), contrast_ylim=(-3, 1))
+ f = multi_2group_unpaired.mean_diff.plot(horizontal=True, raw_ylim=(0, 6), contrast_ylim=(-3, 1))
rawswarm_axes = f.axes[0]
contrast_axes = f.axes[1]
@@ -460,9 +460,7 @@ def test_330_2group_paired_cumming_slopegraph_reflines_kwargs():
)
-
# Proportion plots
-
@pytest.mark.mpl_image_compare(tolerance=8)
def test_331_2group_unpaired_propdiff():
plt.rcdefaults()
@@ -539,13 +537,13 @@ def test_342_multi2group_unpaired_prop_change_palette_c():
def test_343_multi2group_unpaired_prop_desat():
plt.rcdefaults()
return multi_2group_unpaired_prop.mean_diff.plot(horizontal=True,
- custom_palette=my_color_palette, bar_desat=0.1, halfviolin_desat=0.25
+ custom_palette=my_color_palette, raw_desat=0.1, contrast_desat=0.25
)
@pytest.mark.mpl_image_compare(tolerance=8)
def test_344_2group_unpaired_prop_err_color():
plt.rcdefaults()
- return two_groups_unpaired_prop.mean_diff.plot(horizontal=True, err_color="purple")
+ return two_groups_unpaired_prop.mean_diff.plot(horizontal=True, barplot_kwargs={"err_kws": {"color": "purple"}})
@pytest.mark.mpl_image_compare(tolerance=8)
def test_345_2group_unpaired_cummings_meandiff_bar_width():
@@ -658,7 +656,7 @@ def test_364_cummings_baseline_delta_delta_meandiff():
def test_365_delta_plot_ylabel():
plt.rcdefaults()
return delta_delta_paired_baseline.mean_diff.plot(horizontal=True,
- swarm_label="This is my\nrawdata",
+ raw_label="This is my\nrawdata",
contrast_label="The bootstrap\ndistribtions!",
delta2_label="This is delta!");
@@ -675,7 +673,7 @@ def test_367_delta_specified():
@pytest.mark.mpl_image_compare(tolerance=8)
def test_368_delta_change_ylims():
plt.rcdefaults()
- return delta_delta_paired_sequential.mean_diff.plot(horizontal=True, swarm_ylim=(0, 9),
+ return delta_delta_paired_sequential.mean_diff.plot(horizontal=True, raw_ylim=(0, 9),
contrast_ylim=(-2, 2),
fig_size=(15,6));
@@ -749,7 +747,7 @@ def test_380_cummings_baseline_mini_meta_meandiff():
@pytest.mark.mpl_image_compare(tolerance=8)
def test_381_mini_meta_plot_ylabel():
plt.rcdefaults()
- return mini_meta_paired_baseline.mean_diff.plot(horizontal=True, swarm_label="This is my\nrawdata",
+ return mini_meta_paired_baseline.mean_diff.plot(horizontal=True, raw_label="This is my\nrawdata",
contrast_label="The bootstrap\ndistribtions!");
@pytest.mark.mpl_image_compare(tolerance=8)
@@ -761,12 +759,12 @@ def test_382_mini_meta_plot_change_palette_a():
def test_383_mini_meta_dot_sizes():
plt.rcdefaults()
return mini_meta_paired_sequential.mean_diff.plot(horizontal=True, show_pairs=False,raw_marker_size=3,
- es_marker_size=12);
+ contrast_marker_size=12);
@pytest.mark.mpl_image_compare(tolerance=8)
def test_384_mini_meta_change_ylims():
plt.rcdefaults()
- return mini_meta_paired_sequential.mean_diff.plot(horizontal=True, swarm_ylim=(0, 5),
+ return mini_meta_paired_sequential.mean_diff.plot(horizontal=True, raw_ylim=(0, 5),
contrast_ylim=(-2, 2),
fig_size=(15,6));
@@ -827,119 +825,136 @@ def test_393_Horizontal_Table_Kwargs():
@pytest.mark.mpl_image_compare(tolerance=8)
def test_394_2group_unpaired_meandiff_gridkey_autoparser():
plt.rcdefaults()
- return two_groups_unpaired.mean_diff.plot(horizontal=True, gridkey_rows='auto');
+ return two_groups_unpaired.mean_diff.plot(horizontal=True, gridkey='auto');
@pytest.mark.mpl_image_compare(tolerance=8)
def test_395_2group_paired_meandiff_gridkey_autoparser():
plt.rcdefaults()
- return two_groups_paired.mean_diff.plot(horizontal=True, gridkey_rows='auto');
+ return two_groups_paired.mean_diff.plot(horizontal=True, gridkey='auto');
# Multi 2 Group
@pytest.mark.mpl_image_compare(tolerance=8)
def test_396_multi_2group_unpaired_meandiff_gridkey_userdefinedrows():
plt.rcdefaults()
- return multi_groups_unpaired.mean_diff.plot(horizontal=True, gridkey_rows=['Control', 'Test']);
+ return multi_groups_unpaired.mean_diff.plot(horizontal=True, gridkey=['Control', 'Test']);
# Shared Control and Repeated Measures
@pytest.mark.mpl_image_compare(tolerance=8)
def test_397_shared_control_meandiff_gridkey_autoparser():
plt.rcdefaults()
- return shared_control.mean_diff.plot(horizontal=True, gridkey_rows='auto');
+ return shared_control.mean_diff.plot(horizontal=True, gridkey='auto');
@pytest.mark.mpl_image_compare(tolerance=8)
def test_398_repeated_measures_meandiff_gridkey_autoparser():
plt.rcdefaults()
- return repeated_measures.mean_diff.plot(horizontal=True, gridkey_rows='auto');
+ return repeated_measures.mean_diff.plot(horizontal=True, gridkey='auto');
# Multi groups
@pytest.mark.mpl_image_compare(tolerance=8)
def test_399_multigroups_unpaired_meandiff_gridkey_userdefinedrows():
plt.rcdefaults()
- return multi_groups_unpaired.mean_diff.plot(horizontal=True, gridkey_rows=['Control', 'Test']);
+ return multi_groups_unpaired.mean_diff.plot(horizontal=True, gridkey=['Control', 'Test']);
@pytest.mark.mpl_image_compare(tolerance=8)
def test_400_multigroups_unpaired_meandiff_gridkey_autoparser():
plt.rcdefaults()
- return multi_groups_unpaired.mean_diff.plot(horizontal=True, gridkey_rows='auto');
+ return multi_groups_unpaired.mean_diff.plot(horizontal=True, gridkey='auto');
@pytest.mark.mpl_image_compare(tolerance=8)
def test_401_multigroups_paired_meandiff_gridkey_userdefinedrows():
plt.rcdefaults()
- return multi_groups_paired_baseline.mean_diff.plot(horizontal=True, gridkey_rows=['Control', 'Test']);
+ return multi_groups_paired_baseline.mean_diff.plot(horizontal=True, gridkey=['Control', 'Test']);
@pytest.mark.mpl_image_compare(tolerance=8)
def test_402_multigroups_paired_meandiff_gridkey_autoparser():
plt.rcdefaults()
- return multi_groups_paired_baseline.mean_diff.plot(horizontal=True, gridkey_rows='auto');
+ return multi_groups_paired_baseline.mean_diff.plot(horizontal=True, gridkey='auto');
# Proportions
@pytest.mark.mpl_image_compare(tolerance=8)
def test_403_multigroups_prop_unpaired_meandiff_gridkey_userdefinedrows():
plt.rcdefaults()
- return multi_groups_unpaired_prop.mean_diff.plot(horizontal=True, gridkey_rows=['Control', 'Test']);
+ return multi_groups_unpaired_prop.mean_diff.plot(horizontal=True, gridkey=['Control', 'Test']);
@pytest.mark.mpl_image_compare(tolerance=8)
def test_404_multigroups_prop_unpaired_meandiff_gridkey_autoparser():
plt.rcdefaults()
- return multi_groups_unpaired_prop.mean_diff.plot(horizontal=True, gridkey_rows='auto');
+ return multi_groups_unpaired_prop.mean_diff.plot(horizontal=True, gridkey='auto');
@pytest.mark.mpl_image_compare(tolerance=8)
def test_405_multigroups_prop_paired_meandiff_gridkey_userdefinedrows():
plt.rcdefaults()
- return multi_groups_paired_baseline_prop.mean_diff.plot(horizontal=True, gridkey_rows=['Control', 'Test']);
+ return multi_groups_paired_baseline_prop.mean_diff.plot(horizontal=True, gridkey=['Control', 'Test']);
@pytest.mark.mpl_image_compare(tolerance=8)
def test_406_multigroups_prop_paired_meandiff_gridkey_autoparser():
plt.rcdefaults()
- return multi_groups_paired_baseline_prop.mean_diff.plot(horizontal=True, gridkey_rows='auto');
+ return multi_groups_paired_baseline_prop.mean_diff.plot(horizontal=True, gridkey='auto');
# delta-delta
@pytest.mark.mpl_image_compare(tolerance=8)
def test_407_delta_delta_unpaired_meandiff_gridkey_autoparser():
plt.rcdefaults()
- return delta_delta_unpaired.mean_diff.plot(horizontal=True, gridkey_rows='auto');
+ return delta_delta_unpaired.mean_diff.plot(horizontal=True, gridkey='auto');
@pytest.mark.mpl_image_compare(tolerance=8)
def test_408_delta_delta_paired_meandiff_gridkey_autoparser():
plt.rcdefaults()
- return delta_delta_paired_baseline.mean_diff.plot(horizontal=True, gridkey_rows='auto');
+ return delta_delta_paired_baseline.mean_diff.plot(horizontal=True, gridkey='auto');
# mini-meta
@pytest.mark.mpl_image_compare(tolerance=8)
def test_409_mini_meta_unpaired_meandiff_gridkey_userdefinedrows():
plt.rcdefaults()
- return mini_meta_unpaired.mean_diff.plot(horizontal=True, gridkey_rows=['Control', 'Test']);
+ return mini_meta_unpaired.mean_diff.plot(horizontal=True, gridkey=['Control', 'Test']);
@pytest.mark.mpl_image_compare(tolerance=8)
def test_410_mini_meta_unpaired_meandiff_gridkey_autoparser():
plt.rcdefaults()
- return mini_meta_unpaired.mean_diff.plot(horizontal=True, gridkey_rows='auto');
+ return mini_meta_unpaired.mean_diff.plot(horizontal=True, gridkey='auto');
@pytest.mark.mpl_image_compare(tolerance=8)
def test_411_mini_meta_paired_meandiff_gridkey_userdefinedrows():
plt.rcdefaults()
- return mini_meta_paired_baseline.mean_diff.plot(horizontal=True, gridkey_rows=['Control', 'Test']);
+ return mini_meta_paired_baseline.mean_diff.plot(horizontal=True, gridkey=['Control', 'Test']);
@pytest.mark.mpl_image_compare(tolerance=8)
def test_412_mini_meta_paired_meandiff_gridkey_autoparser():
plt.rcdefaults()
- return mini_meta_paired_baseline.mean_diff.plot(horizontal=True, gridkey_rows='auto');
+ return mini_meta_paired_baseline.mean_diff.plot(horizontal=True, gridkey='auto');
# Gridkey kwargs
multi_2group_paired_test = load(df, idx=(("Control 1","Control 2",),("Test 1", "Test 2"),), paired='baseline', id_col='ID')
@pytest.mark.mpl_image_compare(tolerance=8)
def test_413_gridkey_merge_pairs_and_autoparser():
plt.rcdefaults()
- return multi_2group_paired_test.mean_diff.plot(horizontal=True, gridkey_rows=['Control', 'Test'], gridkey_kwargs={'merge_pairs': True});
+ return multi_2group_paired_test.mean_diff.plot(horizontal=True, gridkey=['Control', 'Test'], gridkey_kwargs={'merge_pairs': True});
gridkey_kwargs = {'show_es': False, 'show_Ns': False, 'marker': '√'}
@pytest.mark.mpl_image_compare(tolerance=8)
def test_414_gridkey_kwargs_and_autoparser():
plt.rcdefaults()
- return two_groups_unpaired.mean_diff.plot(horizontal=True, gridkey_rows='auto', gridkey_kwargs=gridkey_kwargs);
+ return two_groups_unpaired.mean_diff.plot(horizontal=True, gridkey='auto', gridkey_kwargs=gridkey_kwargs);
+
+@pytest.mark.mpl_image_compare(tolerance=8)
+def test_429_gridkey_fontsize_and_autoparser():
+ plt.rcdefaults()
+ return two_groups_unpaired.mean_diff.plot(horizontal=True, gridkey='auto', gridkey_kwargs={'fontsize': 15});
+
+@pytest.mark.mpl_image_compare(tolerance=8)
+def test_430_gridkey_labels_fontsize_and_autoparser():
+ plt.rcdefaults()
+ return two_groups_unpaired.mean_diff.plot(horizontal=True, gridkey='auto',
+ gridkey_kwargs={'labels_fontsize': 15});
+
+@pytest.mark.mpl_image_compare(tolerance=8)
+def test_431_gridkey_labels_fontsize_and_fontsize_and_autoparser():
+ plt.rcdefaults()
+ return two_groups_unpaired.mean_diff.plot(horizontal=True, gridkey='auto',
+ gridkey_kwargs={'fontsize': 8, 'labels_fontsize': 15});
# Table hide
@pytest.mark.mpl_image_compare(tolerance=8)
@@ -962,32 +977,32 @@ def test_417_delta_dot_kwargs():
@pytest.mark.mpl_image_compare(tolerance=8)
def test_418_shared_control_meandiff_showcontrastbars():
plt.rcdefaults()
- return shared_control.mean_diff.plot(horizontal=True, contrast_bars=True, swarm_bars=False);
+ return shared_control.mean_diff.plot(horizontal=True, contrast_bars=True, raw_bars=False);
@pytest.mark.mpl_image_compare(tolerance=8)
def test_419_shared_control_meandiff_hidecontrastbars():
plt.rcdefaults()
- return shared_control.mean_diff.plot(horizontal=True, contrast_bars=False, swarm_bars=False);
+ return shared_control.mean_diff.plot(horizontal=True, contrast_bars=False, raw_bars=False);
contrast_kwargs = {'color': "red", 'alpha': 0.2}
@pytest.mark.mpl_image_compare(tolerance=8)
def test_420_shared_control_meandiff_contrastbars_kwargs():
plt.rcdefaults()
- return shared_control.mean_diff.plot(horizontal=True, contrast_bars=True, contrast_bars_kwargs = contrast_kwargs, swarm_bars=False);
+ return shared_control.mean_diff.plot(horizontal=True, contrast_bars=True, contrast_bars_kwargs = contrast_kwargs, raw_bars=False);
-# Summary bars
-summary_bars=[0, 1]
+# reference_band
+reference_band=[0, 1]
@pytest.mark.mpl_image_compare(tolerance=8)
def test_421_shared_control_meandiff_summarybars():
plt.rcdefaults()
- return shared_control.mean_diff.plot(horizontal=True, summary_bars=[0, 1], swarm_bars=False, contrast_bars=False,);
+ return shared_control.mean_diff.plot(horizontal=True, reference_band=[0, 1], raw_bars=False, contrast_bars=False,);
-summary_bars_kwargs = {'color': "black", 'alpha': 0.2, 'span_ax': True}
+reference_band_kwargs = {'color': "black", 'alpha': 0.2, 'span_ax': True}
@pytest.mark.mpl_image_compare(tolerance=8)
def test_422_shared_control_meandiff_summarybars_kwargs():
plt.rcdefaults()
- return shared_control.mean_diff.plot(horizontal=True, summary_bars=[0, 1], summary_bars_kwargs = summary_bars_kwargs,
- contrast_bars=False, swarm_bars=False);
+ return shared_control.mean_diff.plot(horizontal=True, reference_band=[0, 1], reference_band_kwargs = reference_band_kwargs,
+ contrast_bars=False, raw_bars=False);
# Add counts to prop plots
@pytest.mark.mpl_image_compare(tolerance=8)
@@ -1010,14 +1025,14 @@ def test_425_repeated_measures_baseline_propdiff_show_counts_and_kwargs():
@pytest.mark.mpl_image_compare(tolerance=8)
def test_426_repeatedmeasures_meandiff_show_es_paired_lines():
plt.rcdefaults()
- return repeated_measures.mean_diff.plot(horizontal=True, es_paired_lines=True);
+ return repeated_measures.mean_diff.plot(horizontal=True, contrast_paired_lines=True);
@pytest.mark.mpl_image_compare(tolerance=8)
def test_427_repeatedmeasures_meandiff_hide_es_paired_lines():
plt.rcdefaults()
- return repeated_measures.mean_diff.plot(horizontal=True, es_paired_lines=False);
+ return repeated_measures.mean_diff.plot(horizontal=True, contrast_paired_lines=False);
@pytest.mark.mpl_image_compare(tolerance=8)
def test_428_multigroups_paired_meandiff_es_paired_lines_kwargs():
plt.rcdefaults()
- return multi_groups_paired_baseline.mean_diff.plot(horizontal=True, es_paired_lines=True, es_paired_lines_kwargs={'color':'red', 'linestyle': '--', 'linewidth': 2, 'alpha': 0.5});
+ return multi_groups_paired_baseline.mean_diff.plot(horizontal=True, contrast_paired_lines=True, contrast_paired_lines_kwargs={'color':'red', 'linestyle': '--', 'linewidth': 2, 'alpha': 0.5});
diff --git a/nbs/tests/mpl_image_tests/test_plot_aesthetics.py b/nbs/tests/mpl_image_tests/test_plot_aesthetics.py
index 7c77eff7..b85d85e7 100644
--- a/nbs/tests/mpl_image_tests/test_plot_aesthetics.py
+++ b/nbs/tests/mpl_image_tests/test_plot_aesthetics.py
@@ -229,51 +229,51 @@ def test_215_change_idx_order_custom_palette_new():
@pytest.mark.mpl_image_compare(tolerance=8)
def test_216_cummings_shared_control_meandiff_showswarmbars():
plt.rcdefaults()
- return shared_control.mean_diff.plot(swarm_bars=True, contrast_bars=False);
+ return shared_control.mean_diff.plot(raw_bars=True, contrast_bars=False);
@pytest.mark.mpl_image_compare(tolerance=8)
def test_217_cummings_shared_control_meandiff_hideswarmbars():
plt.rcdefaults()
- return shared_control.mean_diff.plot(swarm_bars=False, contrast_bars=False);
+ return shared_control.mean_diff.plot(raw_bars=False, contrast_bars=False);
-swarm_kwargs = {'color': "red", 'alpha': 0.2}
+raw_kwargs = {'color': "red", 'alpha': 0.2}
@pytest.mark.mpl_image_compare(tolerance=8)
def test_218_cummings_shared_control_meandiff_swarmbars_kwargs():
plt.rcdefaults()
- return shared_control.mean_diff.plot(swarm_bars=True, swarm_bars_kwargs = swarm_kwargs, contrast_bars=False);
+ return shared_control.mean_diff.plot(raw_bars=True, raw_bars_kwargs = raw_kwargs, contrast_bars=False);
# Contrast bars
@pytest.mark.mpl_image_compare(tolerance=8)
def test_219_cummings_shared_control_meandiff_showcontrastbars():
plt.rcdefaults()
- return shared_control.mean_diff.plot(contrast_bars=True, swarm_bars=False);
+ return shared_control.mean_diff.plot(contrast_bars=True,raw_bars=False);
@pytest.mark.mpl_image_compare(tolerance=8)
def test_220_cummings_shared_control_meandiff_hidecontrastbars():
plt.rcdefaults()
- return shared_control.mean_diff.plot(contrast_bars=False, swarm_bars=False);
+ return shared_control.mean_diff.plot(contrast_bars=False, raw_bars=False);
contrast_kwargs = {'color': "red", 'alpha': 0.2}
@pytest.mark.mpl_image_compare(tolerance=8)
def test_221_cummings_shared_control_meandiff_contrastbars_kwargs():
plt.rcdefaults()
- return shared_control.mean_diff.plot(contrast_bars=True, contrast_bars_kwargs = contrast_kwargs, swarm_bars=False);
+ return shared_control.mean_diff.plot(contrast_bars=True, contrast_bars_kwargs = contrast_kwargs, raw_bars=False);
-# Summary bars
-summary_bars=[0, 1]
+# reference_band
+reference_band=[0, 1]
@pytest.mark.mpl_image_compare(tolerance=8)
def test_222_cummings_shared_control_meandiff_summarybars():
plt.rcdefaults()
- return shared_control.mean_diff.plot(summary_bars=[0, 1], swarm_bars=False, contrast_bars=False,);
+ return shared_control.mean_diff.plot(reference_band=[0, 1], raw_bars=False, contrast_bars=False,);
-summary_bars_kwargs = {'color': "black", 'alpha': 0.2, 'span_ax': True}
+reference_band_kwargs = {'color': "black", 'alpha': 0.2, 'span_ax': True}
@pytest.mark.mpl_image_compare(tolerance=8)
def test_223_cummings_shared_control_meandiff_summarybars_kwargs():
plt.rcdefaults()
- return shared_control.mean_diff.plot(summary_bars=[0, 1], summary_bars_kwargs = summary_bars_kwargs,
- contrast_bars=False, swarm_bars=False);
+ return shared_control.mean_diff.plot(reference_band=[0, 1], reference_band_kwargs = reference_band_kwargs,
+ contrast_bars=False, raw_bars=False);
# Delta text
@@ -323,17 +323,17 @@ def test_231_delta_dot_kwargs():
@pytest.mark.mpl_image_compare(tolerance=8)
def test_232_repeatedmeasures_meandiff_show_es_paired_lines():
plt.rcdefaults()
- return repeated_measures.mean_diff.plot(es_paired_lines=True);
+ return repeated_measures.mean_diff.plot(contrast_paired_lines=True);
@pytest.mark.mpl_image_compare(tolerance=8)
def test_233_repeatedmeasures_meandiff_hide_es_paired_lines():
plt.rcdefaults()
- return repeated_measures.mean_diff.plot(es_paired_lines=False);
+ return repeated_measures.mean_diff.plot(contrast_paired_lines=False);
@pytest.mark.mpl_image_compare(tolerance=8)
def test_234_multigroups_paired_meandiff_es_paired_lines_kwargs():
plt.rcdefaults()
- return multi_groups_paired_baseline.mean_diff.plot(es_paired_lines=True, es_paired_lines_kwargs={'color':'red', 'linestyle': '--', 'linewidth': 2, 'alpha': 0.5});
+ return multi_groups_paired_baseline.mean_diff.plot(contrast_paired_lines=True, contrast_paired_lines_kwargs={'color':'red', 'linestyle': '--', 'linewidth': 2, 'alpha': 0.5});
# Baseline Error Curve
@pytest.mark.mpl_image_compare(tolerance=8)
diff --git a/nbs/tests/test_forest_plot.py b/nbs/tests/test_forest_plot.py
index 9e0065de..d8d28642 100644
--- a/nbs/tests/test_forest_plot.py
+++ b/nbs/tests/test_forest_plot.py
@@ -12,16 +12,24 @@ def test_forest_plot_no_input_parameters():
assert error_msg in str(excinfo.value)
+idx_msg1 = "The `idx` argument must have the same length as the number of dabest objects. "
+idx_msg2 = "E.g., If two dabest objects are supplied, there should be two lists within `idx`. "
+idx_msg3 = "E.g., `idx` = [[1,2],[0,1]]."
+
@pytest.mark.parametrize("param_name, param_value, error_msg, error_type", [
("data", [], "The `data` argument must be a non-empty list of dabest objects.", ValueError),
("idx", 123, "`idx` must be a tuple or list of integers.", TypeError),
+ ("idx", ((0,1),(0,1),(0,1),(0,1),(0,1)), idx_msg1+idx_msg2+idx_msg3, ValueError),
("ax", "axes", "The `ax` must be a `matplotlib.axes.Axes` instance or `None`.", TypeError),
- ("effect_size", 456, "The `effect_size` argument must be a string and please choose from the following effect sizes: `mean_diff`, `hedges_g`, or `delta_g`.", TypeError),
+ ("fig_size", "huge", "`fig_size` must be a tuple or list of two positive integers.", TypeError),
+ ("effect_size", 456, "The `effect_size` argument must be a string and please choose from the following effect sizes: 'mean_diff', 'median_diff', 'cohens_d', 'cohens_h', 'cliffs_delta', 'hedges_g', 'delta_g'.", TypeError),
+ ("ci_type", 'linear', "`ci_type` must be either 'bca' or 'pct'.", TypeError),
("horizontal", "sideways", "`horizontal` must be a boolean value.", TypeError),
("marker_size", "large", "`marker_size` must be a positive integer or float.", TypeError),
("custom_palette", 123, "The `custom_palette` must be either a dictionary, list, string, or `None`.", TypeError),
- ("halfviolin_alpha", "opaque", "`halfviolin_alpha` must be a float between 0 and 1.", TypeError),
- ("halfviolin_desat", "yes", "`halfviolin_desat` must be a float between 0 and 1 or an int (1).", TypeError),
+ ("custom_palette", "test_palette", "The specified `custom_palette` test_palette is not a recognized Matplotlib palette.", ValueError),
+ ("contrast_alpha", "opaque", "`contrast_alpha` must be a float between 0 and 1.", TypeError),
+ ("contrast_desat", "yes", "`contrast_desat` must be a float between 0 and 1 or an int (1).", TypeError),
("labels", ["valid", 123], "The `labels` must be a list of strings or `None`.", TypeError),
("labels", ['valid', 'valid'], "`labels` must match the number of `data` provided.", ValueError),
("labels_fontsize", "big", "`labels_fontsize` must be an integer or float.", TypeError),
@@ -36,6 +44,11 @@ def test_forest_plot_no_input_parameters():
("yticklabels", "auto", "`yticklabels` must be a tuple or list of strings.", TypeError),
("yticklabels", [532, 123], "`yticklabels` must be a list of strings.", TypeError),
("remove_spines", "yes", "`remove_spines` must be a boolean value.", TypeError),
+ ("reference_band", "yes", "`reference_band` must be a list/tuple of indices (ints).", TypeError),
+ ("reference_band", [0.1, 0.5], "`reference_band` must be a list/tuple of indices (ints).", TypeError),
+ ("reference_band", [10,], "Index [10] chosen is out of range for the contrast objects.", ValueError),
+ ("delta_text", "auto", "`delta_text` must be a boolean value.", TypeError),
+ ("contrast_bars", "auto", "`contrast_bars` must be a boolean value.", TypeError),
])
def test_forest_plot_input_error_handling(param_name, param_value, error_msg, error_type):
diff --git a/nbs/tutorials/01-basics.ipynb b/nbs/tutorials/01-basics.ipynb
index 136193ce..21c63817 100644
--- a/nbs/tutorials/01-basics.ipynb
+++ b/nbs/tutorials/01-basics.ipynb
@@ -34,7 +34,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "Compiling numba functions: 100%|██████████| 11/11 [00:00<00:00, 45.35it/s]"
+ "Compiling numba functions: 100%|██████████| 11/11 [00:00<00:00, 44.16it/s]"
]
},
{
@@ -42,7 +42,7 @@
"output_type": "stream",
"text": [
"Numba compilation complete!\n",
- "We're using DABEST v2025.03.14\n"
+ "We're using DABEST v2025.03.27\n"
]
},
{
@@ -318,11 +318,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:54:30 2025.\n",
+ "The current time is Tue Mar 25 16:02:11 2025.\n",
"\n",
"Effect size(s) with 95% confidence intervals will be computed for:\n",
"1. Test 1 minus Control 1\n",
@@ -361,11 +361,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:54:30 2025.\n",
+ "The current time is Tue Mar 25 16:02:11 2025.\n",
"\n",
"Effect size(s) with 90% confidence intervals will be computed for:\n",
"1. Test 1 minus Control 1\n",
@@ -396,8 +396,8 @@
"source": [
"The **dabest** library now features a range of effect sizes:\n",
"\n",
- " - the mean difference (`mean_diff`)\n",
- " - the median difference (`median_diff`)\n",
+ " - Mean difference (`mean_diff`)\n",
+ " - Median difference (`median_diff`)\n",
" - [Cohen's d](https://en.wikipedia.org/wiki/Effect_size#Cohen's_d) (`cohens_d`)\n",
" - [Hedges' g](https://en.wikipedia.org/wiki/Effect_size#Hedges'_g) (`hedges_g`)\n",
" - [Cohen's h](https://en.wikipedia.org/wiki/Cohen's_h) (`cohens_h`)\n",
@@ -416,11 +416,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:54:31 2025.\n",
+ "The current time is Tue Mar 25 16:02:11 2025.\n",
"\n",
"The unpaired mean difference between Control 1 and Test 1 is 0.48 [95%CI 0.205, 0.774].\n",
"The p-value of the two-sided permutation t-test is 0.001, calculated for legacy purposes only. \n",
@@ -454,7 +454,7 @@
"\n",
"Since v0.3.0, DABEST will report the p-value of the [non-parametric two-sided approximate permutation t-test](https://en.wikipedia.org/wiki/Resampling_(statistics)#Permutation_tests). This is also known as *the Monte Carlo permutation test*.\n",
"\n",
- "For unpaired comparisons, the p-values and test statistics of [Welch's t test](https://en.wikipedia.org/wiki/Welch%27s_t-test>), \n",
+ "For unpaired comparisons, the p-values and test statistics of [Welch's t test](https://en.wikipedia.org/wiki/Welch%27s_t-test), \n",
"[Student's t test](https://en.wikipedia.org/wiki/Student%27s_t-test), \n",
"and [Mann-Whitney U test](https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test) can be found. For paired comparisons, the p-values and test statistics of the \n",
"[paired Student's t](https://en.wikipedia.org/wiki/Student%27s_t-test#Paired_samples)\n",
@@ -547,7 +547,7 @@
"
[-0.17259843762502491, 0.03802293852634886, -0...
\n",
"
0.001
\n",
"
5000
\n",
- "
[0.026356588154404337, 0.027102495439046997, 0...
\n",
+ "
[0.26356588154404337, 0.2710249543904699, 0.26...
\n",
"
0.002094
\n",
"
-3.308806
\n",
"
0.002057
\n",
@@ -584,7 +584,7 @@
"0 0.001 5000 \n",
"\n",
" permutations_var pvalue_welch \\\n",
- "0 [0.026356588154404337, 0.027102495439046997, 0... 0.002094 \n",
+ "0 [0.26356588154404337, 0.2710249543904699, 0.26... 0.002094 \n",
"\n",
" statistic_welch pvalue_students_t statistic_students_t \\\n",
"0 -3.308806 0.002057 -3.308806 \n",
@@ -702,6 +702,110 @@
"two_groups_unpaired.mean_diff.statistical_tests"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Note:**\n",
+ "A research paper [Phipson & Smyth (2010)](https://doi.org/10.2202/1544-6115.1585) suggested that permutation p-values should never be zero, and provided a slightly adjusted formula to compute permutation p-values. \n",
+ "\n",
+ "Since **v2025.03.27**, DABEST provides a `ps_adjust` parameter in the `.load()` function. This parameter allows you to adjust the permutation p-values using the formula suggested by Phipson & Smyth (2010). By default, DABEST uses the unadjusted p-values."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
control
\n",
+ "
test
\n",
+ "
control_N
\n",
+ "
test_N
\n",
+ "
effect_size
\n",
+ "
is_paired
\n",
+ "
difference
\n",
+ "
ci
\n",
+ "
bca_low
\n",
+ "
bca_high
\n",
+ "
pvalue_permutation
\n",
+ "
pvalue_welch
\n",
+ "
statistic_welch
\n",
+ "
pvalue_students_t
\n",
+ "
statistic_students_t
\n",
+ "
pvalue_mann_whitney
\n",
+ "
statistic_mann_whitney
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
Control 1
\n",
+ "
Test 1
\n",
+ "
20
\n",
+ "
20
\n",
+ "
mean difference
\n",
+ "
None
\n",
+ "
0.48029
\n",
+ "
95
\n",
+ "
0.205161
\n",
+ "
0.773647
\n",
+ "
0.0012
\n",
+ "
0.002094
\n",
+ "
-3.308806
\n",
+ "
0.002057
\n",
+ "
-3.308806
\n",
+ "
0.001625
\n",
+ "
83.0
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " control test control_N test_N effect_size is_paired \\\n",
+ "0 Control 1 Test 1 20 20 mean difference None \n",
+ "\n",
+ " difference ci bca_low bca_high pvalue_permutation pvalue_welch \\\n",
+ "0 0.48029 95 0.205161 0.773647 0.0012 0.002094 \n",
+ "\n",
+ " statistic_welch pvalue_students_t statistic_students_t \\\n",
+ "0 -3.308806 0.002057 -3.308806 \n",
+ "\n",
+ " pvalue_mann_whitney statistic_mann_whitney \n",
+ "0 0.001625 83.0 "
+ ]
+ },
+ "execution_count": null,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "two_groups_unpaired_adjusted = dabest.load(df, idx=(\"Control 1\", \"Test 1\"), resamples=5000, ps_adjust=True)\n",
+ "two_groups_unpaired_adjusted.mean_diff.statistical_tests"
+ ]
+ },
{
"cell_type": "markdown",
"metadata": {},
@@ -717,11 +821,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:54:31 2025.\n",
+ "The current time is Tue Mar 25 16:02:11 2025.\n",
"\n",
"The unpaired Hedges' g between Control 1 and Test 1 is 1.03 [95%CI 0.317, 1.62].\n",
"The p-value of the two-sided permutation t-test is 0.001, calculated for legacy purposes only. \n",
@@ -829,7 +933,7 @@
"
[-0.329508986559053, 0.07158401210924781, -0.2...
\n",
"
0.001
\n",
"
5000
\n",
- "
[0.026356588154404337, 0.027102495439046997, 0...
\n",
+ "
[0.26356588154404337, 0.2710249543904699, 0.26...
\n",
"
0.002094
\n",
"
-3.308806
\n",
"
0.002057
\n",
@@ -863,7 +967,7 @@
"0 [-0.329508986559053, 0.07158401210924781, -0.2... 0.001 \n",
"\n",
" permutation_count permutations_var \\\n",
- "0 5000 [0.026356588154404337, 0.027102495439046997, 0... \n",
+ "0 5000 [0.26356588154404337, 0.2710249543904699, 0.26... \n",
"\n",
" pvalue_welch statistic_welch pvalue_students_t statistic_students_t \\\n",
"0 0.002094 -3.308806 0.002057 -3.308806 \n",
@@ -912,7 +1016,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXndJREFUeJzt3XlYVNX/B/D3nQGGZVhVFkVl0RDcWAzFTFxzq9TSzCXcpb6WmrZolmtpZou0q6mYP5fS1BbNPTDTcjdXVEBRE3BhR5aZub8/jMmRGbZhmAvzfj0Pj829597zwZt8OOeeRRBFUQQRERFJkszcARAREZFhTNREREQSxkRNREQkYUzUREREEsZETUREJGFM1ERERBLGRE1ERCRhTNREREQSxkRNREQkYRafqG/evIk5c+bg5s2b5g6FiKhO48/bqmGivnkTc+fO5f84REQmxp+3VWPxiZqIiEjKmKiJiIgkjImaiIhIwpioiYiIJIyJmoiISMKYqImIiCSMiZqIiEjCmKiJiIgkzMrcARCR6RXlZiD99D4UZqZB4eIB99bdYKN0NXdYRFQBTNREddydi3/hwg8LIWpUEAQZRFGDq3FrEDjoLbg1Dzd3eERUDnZ9E9VhRbkZ95O0uhgQRYga9f0/1cU4v2kBinIzzB0iEZWDiZqoDks/vQ+iRqX3nKhRIf30vhqOiIgqi4maqA4rzEyDIOj/Zy4IMhRmptVwRERUWUzURHWYwsUDoqjRe04UNVC4eNRwRERUWUzURHWYe+tuEGT6x4wKMiu4t+lewxERUWVJNlG///77EAQBU6ZMMVgmNjYWgiDofNna2tZckEQSZ6N0ReCgtyDIrQFBgCCT3/9Tbo3AQW/BxsHF3CESUTkkOT3ryJEjWLp0Kdq0aVNuWScnJyQkJGg/C4JgytCIah235uF49JVVuvOo23RnkiaqJSSXqHNzczF8+HAsX74c7777brnlBUGAp6dnDURGVHvZKF3hHfGsucMgoiqQXNf3xIkT0a9fP/To0aNC5XNzc9G0aVM0btwY/fv3x9mzZ00cIRERUc2RVIt6w4YNOH78OI4cOVKh8gEBAVi5ciXatGmDrKwsfPjhh+jYsSPOnj0Lb29vvdcUFhaisLBQ+zk3N7daYiciIjIFySTqa9euYfLkydi9e3eFB4RFREQgIiJC+7ljx44IDAzE0qVLMX/+fL3XLFy4EHPnzq2WmImIiExNMl3fx44dQ3p6OkJDQ2FlZQUrKyvEx8fj008/hZWVFdRqdbn3sLa2RkhICC5fvmywzIwZM5CVlaX9io+Pr85vg4iIqFpJpkXdvXt3nD59WufY6NGj0aJFC7z55puQy+Xl3kOtVuP06dPo27evwTIKhQIKhUL7WalUVj1oIiIiE5NMonZ0dESrVq10jjk4OKBevXra41FRUWjUqBEWLlwIAJg3bx46dOiAZs2aITMzE4sXL8bVq1cxbty4Go+fiIjIFCSTqCsiJSUFMtl/vfUZGRkYP348UlNT4erqirCwMBw8eBBBQUFmjJKIiKj6SDpRx8XFlfn5k08+wSeffFJzAREREdUwyQwmIyIiotKYqImISLL279+Pp556Cg0bNoQgCNi6dWuZ5ePi4krtASEIAlJTU2smYBNgoiYiIsnKy8tD27Zt8cUXX1TquoSEBNy8eVP75e7ubqIITU/S76iJiMiy9enTB3369Kn0de7u7nBxcan+gMyALWoiC1CUm4Hrh35A4q9f4vqhH1CUm2HukIhMKjg4GF5eXujZsyf++OMPc4djFLaoieq4Oxf/woUfFkLUqCAIMoiiBlfj1iBw0Ftwax5u7vDIAuXm5iI7O1v7+eGFqIzh5eWFr7/+Gu3atUNhYSG++eYbdOnSBX/99RdCQ0OrpY6axhY1UR1WlJtxP0mriwFRhKhR3/9TXYzzmxawZU1mERkZCWdnZ+1XySJW1SEgIADR0dEICwtDx44dsXLlSnTs2LFWT+Vli5qoDks/vQ+iRqX3nKhRIf30Pu5TTTUuPj4ewcHB2s/V1Zo2JDw8HAcOHDBpHabERE1UhxVmpv3b3V16UxtBkKEwM80MUZGlUyqVcHJyqrH6Tp48CS8vrxqrr7oxURPVYQoXD4iiRu85UdRA4eJRwxERVU5ubq7OjojJyck4efIk3Nzc0KRJE8yYMQM3btzAt99+CwBYsmQJfH190bJlSxQUFOCbb77Bvn37sGvXLnN9C0Zjoiaqw9xbd8PVuDX331E/RJBZwb1NdzNERVRxR48eRdeuXbWfp06dCgAYOXIkYmNjcfPmTaSkpGjPFxUVYdq0abhx4wbs7e3Rpk0b7NmzR+cetY0giqJo7iDM6fjx4wgLC8OxY8dq7YhAorLcvXQY5zct0Bn1LcisOOqbahx/3lYNW9REdZxb83A8+soqpJ/eh8LMNChcPODepjtsHFzMHRoRVQATNZEFsFG6cnQ3US3FedREREQSxkRNREQkYUzUREREEsZETUREJGFM1ERERBLGRE1ERCRhTNREREQSxkRNREQkYUzUREREEsZETUREJGFM1ERERBLGRE1ERCRhTNREREQSxkRNREQkYUzUREREEsZETUREJGFM1ERERBLGRE1ERCRhTNREREQSxkRNREQkYUzUREREEsZETUREJGFM1ERERBLGRE1ERCRhTNREREQSxkRNREQkYVbmDoCITK8oNwPpp/ehMDMNChcPuLfuBhulq7nDIqIKYKImquPuXPwLF35YCFGjgiDIIIoaXI1bg8BBb8Gtebi5wyOicrDrm6gOK8rNuJ+k1cWAKELUqO//qS7G+U0LUJSbYe4QiagcTNREdVj66X0QNSq950SNCumn99VwRERUWUzURHVYYWYaBEH/P3NBkKEwM62GIyKiymKiJqrDFC4eEEWN3nOiqIHCxaOGIyKiymKiJqrD3Ft3gyDTP2ZUkFnBvU33Go6IiCqLiZqoDrNRuiJw0FsQ5NaAIECQye//KbdG4KC3YOPgYu4QiagcnJ5FVMe5NQ/Ho6+s0p1H3aY7kzRRLSHZFvX7778PQRAwZcqUMstt3LgRLVq0gK2tLVq3bo3t27fXTIBEtYiN0hXeEc/Cv8//4B3xLJM0US0iyUR95MgRLF26FG3atCmz3MGDBzF06FCMHTsWJ06cwIABAzBgwACcOXOmhiIlIiIyLckl6tzcXAwfPhzLly+Hq2vZSxzGxMSgd+/eeP311xEYGIj58+cjNDQUn3/+eQ1FS0REZFqSS9QTJ05Ev3790KNHj3LLHjp0qFS5Xr164dChQ6YKj4iIqEZJajDZhg0bcPz4cRw5cqRC5VNTU+HhoTsP1MPDA6mpqQavKSwsRGFhofZzbm5u1YIlIiKqAZJJ1NeuXcPkyZOxe/du2NramqyehQsXYu7cuSa7PxERUXWSTNf3sWPHkJ6ejtDQUFhZWcHKygrx8fH49NNPYWVlBbVaXeoaT09PpKXpLoGYlpYGT09Pg/XMmDEDWVlZ2q/4+Phq/16IiIiqi2QSdffu3XH69GmcPHlS+9WuXTsMHz4cJ0+ehFwuL3VNREQE9u7dq3Ns9+7diIiIMFiPQqGAk5OT9kupVFb790JERJZDrVZjw4YNiI6OxsCBA3H69GkAQFZWFjZv3lyqQVlZkun6dnR0RKtWrXSOOTg4oF69etrjUVFRaNSoERYuXAgAmDx5MiIjI/HRRx+hX79+2LBhA44ePYply5bVePxERGR5MjMz0bt3bxw+fBhKpRJ5eXl45ZVXAABKpRKTJk1CVFQUFixYUOU6JNOiroiUlBTcvHlT+7ljx45Yt24dli1bhrZt22LTpk3YunVrqYRPRERkCtOnT8fZs2exc+dOJCUlQRRF7Tm5XI5BgwYZvRCXZFrU+sTFxZX5GQAGDx6MwYMH10xARERED9i6dSteeeUV9OzZE3fu3Cl1/pFHHkFsbKxRddSqFjUREZGUZGVlwdfX1+D54uJiqFQqo+pgoiYiIqoif39/HD9+3OD5Xbt2ISgoyKg6mKiJiEiy9u/fj6eeegoNGzaEIAjYunVrudfExcUhNDQUCoUCzZo1M7rruSzjxo3DypUr8d1332nfTwuCgMLCQsycORM7duxAdHS0UXVI+h01mUZGTh52HzmP1LvZ8HRzQs9HA+Hq6GDusIiISsnLy0Pbtm0xZswYPPPMM+WWT05ORr9+/fDiiy9i7dq12Lt3L8aNGwcvLy/06tWr2uObPHkyzp49i6FDh8LFxQUAMGzYMNy5cwcqlQrR0dEYO3asUXUwUVuYQ2eSMH/1NqjUGsgEARpRROyvhzBrVD90aOln7vCIiHT06dMHffr0qXD5r7/+Gr6+vvjoo48AAIGBgThw4AA++eQTkyRqQRCwfPlyjBw5Eps2bcKlS5eg0Wjg7++P5557Dp07dza6DiZqC5KRk4f5q7ehWHV/lTf1v900xSo15sVuw9pZY9iyJiKTy83NRXZ2tvazQqGAQqGolnsb2qxpypQp1XJ/Qzp16oROnTqZ5N58R21Bdh85D5Vao/ecSq3BnqMXajgiIrJEkZGRcHZ21n6VLGJVHQxt1pSdnY179+5VWz0lkpOT8fPPPxs8//PPP+PKlStG1cEWtQVJvZsNmSBoW9IPkgkCbt7JMkNURGRp4uPjERwcrP1cXa1pc3jttdeQnZ2Np556Su/5L774Ai4uLtiwYUOV62CitiCebk7Q6EnSAKARRXjVc67hiKiqTq6YjKLcDNgoXRE8Nsbc4RBVilKphJOTk0nubWizJicnJ9jZ2VV7fYcOHSqzW7179+5YsmSJUXWw69uC9Hw0EFZy/Y/cSi5Dj3aBNRwRVVVRbgaKcu6gKDfD3KEQSUpVNmsyRkZGBhwdHQ2eVyqVelcsqwwmagvi6uiAWaP6wdpKDkEQIJfJIAgCrK3kmDWqH1wd7c0dIhGRjtzcXO2OisD9d8InT55ESkoKgPtbF0dFRWnLv/jii0hKSsIbb7yBCxcu4Msvv8T333+PV1991STxNWnSBH/88YfB87///ju8vb2NqoNd3xamQ0s/rJ01BnuOXsDNO1nwqueMHu0CmaSJaoOifMDGsv6tHj16FF27dtV+njp1KgBg5MiRiI2Nxc2bN7VJGwB8fX2xbds2vPrqq4iJiYG3tze++eYbk0zNAoChQ4di/vz5CA8Px8svvwyZ7H77V61W4/PPP8d3332HmTNnGlWHIIoGXlpaiOPHjyMsLAzHjh1DaGioucMhqpDDMVEoyrkDG8d6CJ/8rbnDoZpy+zJQv5m5o6iyuvjztrCwEP369cO+ffvQoEEDBAQEAAASEhJw69YtdOnSBb/++qtRA+bY9U1EVFtois0dAT1EoVBg165dWLFiBcLDw3H79m3cvn0b4eHhWLlyJfbs2WP0qHZ2fRMR1RbqInNHQHrIZDKMHj0ao0ePNs39TXJXIiKqfmrjtkuk2oktaiKi2oJd35K0c+dOrFixAklJScjIyMDDQ78EQUBiYmKV789ETURUW6gKzR0BPWTx4sWYPn06PDw8EB4ejtatW1d7HUzURES1BRO15MTExKBbt27Yvn07rK2tTVIH31ETEdUWxfnmjoAekpGRgUGDBpksSQNM1EREtUdhjrkjoIeEh4cjISHBpHWw69sCZeTkYfeR80i9mw1PNyf0fDSQ+1AT1QYF3OFOar788kv06dMH7dq1w7Bhw0xSBxO1hTl0JgnzV2+DSq2BTBCgEUXE/noIs0b1Q4eWfuYOj4jKknfL3BHQQ4YMGQKVSoUXXngBL730Ery9vSGXy3XKCIKAU6dOVbkOJmoLkpGTh/mrt6FYpQYA7b7UxSo15sVuw9pZY9iyJpKy3HRzR0APcXNzQ7169dC8eXOT1cFEbUF2HzkPlVqj95xKrcGeoxcwuGtYDUdFRBWWfd3cEdBD4uLiTF4HB5NZkNS72ZAJgt5zMkHAzTt8/0UkaQXZfE9tgZioLYinmxM0BjZL04givOo513BERFRpmSnll6EalZ2djffffx+9evVCSEgIDh8+DAC4e/cuPv74Y1y+fNmo+zNRW5CejwbCSq7/kVvJZejRLrCGIyKiSsu4Yu4I6AHXr19HSEgIZs2ahevXr+Pvv/9Gbm4ugPvvr5cuXYrPPvvMqDqYqC2Iq6MDZo3qB2srOQRBgFwmgyAIsLaSY9aofnB1tKwN6YlqpTtVXzOaqt/rr7+OnJwcnDx5EvHx8aXW+R4wYAD27NljVB0cTGZhOrT0w9pZY7Dn6AXcvJMFr3rO6NEukEmaqLa4c8ncEdADdu3ahVdffRVBQUG4c+dOqfN+fn64du2aUXUwUVsgV0cHju4mqq1uX7q/3aWcP76l4N69e2jQoIHB8zk5xq8mx65vIqLaRFXIVrWEBAUFYf/+/QbPb926FSEhIUbVwURNRFTb/HPS3BHQv6ZMmYINGzZg0aJFyMq6P3VOo9Hg8uXLeOGFF3Do0CG8+uqrRtXBvhMiIolr164dUlNT4SnPwtG3QoFrfwHBQ80dFgEYMWIErl69irfffhszZ84EAPTu3RuiKEImk2HBggUYMGCAUXUwURMRSVxqaipu3LgBuNj8e+Bv4F4mYOdizrDoXzNnzsQLL7yAH374AZcvX4ZGo4G/vz+eeeYZ+PkZv4cCEzURUW2jUQNJvwEtB5o7EouWn5+Pxx9/HOPHj8eLL75odBe3IXxHTURUG53/BTCw0iDVDHt7eyQnJ0MwsDRzdWGiJiKqje5cBv45bu4oLF7v3r2xc+dOk9bBRE1EVFsdW81WtZm98847uHjxIl544QUcOHAAN27cwN27d0t9GYPvqImIaqubp4Brh4Em7c0dicVq2bIlAODcuXNYt26dwXJqtbrKdTBRExHVZgc/BRquAqxszB2JRZo1a5bJ31EzURMR1WZZ14Fjq4D20eaOxCLNmTPH5HVU+R21Wq3Ghg0bEB0djYEDB+L06dMAgKysLGzevBlpaWnVFiQREZXh1Hrg+jFzR0G4nwON6ebWp0qJOjMzE4899hiGDRuG9evX46effsKtW7cAAEqlEpMmTUJMTEy1BkpERAaIIrBvHpDDBpI5HD16FL1794a9vT3q1auH+Ph4AMDt27fRv39/xMXFGXX/KiXq6dOn4+zZs9i5cyeSkpJ09t+Uy+UYNGgQtm/fblRgRERUCfcygV1v39+0g2rMwYMH0alTJ1y6dAkjRoyARqPRnqtfvz6ysrKwdOlSo+qoUqLeunUrXnnlFfTs2VPvS/RHHnkEV65cMSowIiKqpNsXgf0fcspWDXrrrbcQGBiIc+fOYcGCBaXOd+3aFX/99ZdRdVQpUWdlZcHX19fg+eLiYqhUqioHRUREVXRpF5DAHs2acuTIEYwePRoKhUJvw7VRo0ZITU01qo4qJWp/f38cP254RZxdu3YhKCioykEREZERDn4OZN80dxQWwdraWqe7+2E3btyAUqk0qo4qJepx48Zh5cqV+O6777TvpwVBQGFhIWbOnIkdO3YgOppTBYiIzKI4Hzj4mbmjsAgdOnTApk2b9J7Ly8vDqlWrEBkZaVQdVZpHPXnyZJw9exZDhw6Fi4sLAGDYsGG4c+cOVCoVoqOjMXbsWKMCI6K6ryg3A+mn96EwMw0KFw+4t+4GG6WrucOqG67+cX/Vssbh5o6kTps7dy4iIyPRr18/DB16f4/wU6dOISkpCR9++CFu3bqFd955x6g6qtSiFgQBy5cvx/79+xEVFYU+ffogODgYEyZMQFxcHL766qsqBfPVV1+hTZs2cHJygpOTEyIiIvDrr78aLB8bGwtBEHS+bG1tq1Q3EdWsOxf/wpHPRuPKvlVIPbEDV/atwpHPRuPupcPmDq3uOPQ5oC42dxR1Wvv27bF9+3ZcvnwZUVFRAIBp06ZhwoQJUKvV2L59O9q0aWNUHUatTNapUyd06tTJqAAe5O3tjffffx/NmzeHKIpYvXo1+vfvjxMnTmjXU32Yk5MTEhIStJ9NvZQbEVWcoRZzUW4GLvywEOK/SUQU7y8QIaqLcX7TAjz6yiq2rKtDxlXg1AYg9AVzR1JnZGdnw8HBAXK5XHusW7duSEhIwMmTJ3Hp0iVoNBr4+/sjLCysWnKSpJYQfeqpp3Q+v/fee/jqq6/w559/GkzUgiDA09OzJsIjqhNqqrv5zsW/7idjjQqCIIMoanA1bg0CB72F/NvXIGr0zwwRNSqkn94H74hnqz0mi3QsFmjcHmjwiLkjqRNcXV2xZs0aDBs2DAAwZswYREdHo3379ggODkZwcHC111mlRO3r61vubwmCICAxMbFKQQH3lyjduHEj8vLyEBERYbBcbm4umjZtCo1Gg9DQUCxYsMBgUgeAwsJCFBYW6lxPZCnKSp5uzavvXWZ5LeYGLSP/rb/0UouCIENhJlfYqjYaFbB7FvDMUsDW2dzR1Ho2NjY6OSQ2NhY9evRA+/am28GsSok6MjKyVKJWq9W4evUq/vjjD7Rq1QohISFVCuj06dOIiIhAQUEBlEoltmzZYnCqV0BAAFauXIk2bdogKysLH374ITp27IizZ8/C29tb7zULFy7E3LlzqxQbUW1mqu5mfS309NP7ymwxF+dnQRT1T2kRRQ0ULh6VjoPKkHMT2PUO0PdD7rJlpBYtWuCbb76Bj48PnJ3v/+Jz5cqVMqcsA0BoaGiV6xREsXqXsDl16hR69eqF//u//0OPHj0qfX1RURFSUlKQlZWFTZs24ZtvvkF8fHyF5mUXFxcjMDAQQ4cOxfz58/WWebhFffLkSURGRuLYsWNG/UUS1aTDMVEoyrkDG8d6CJ/8bYWuuX7oB1zZt0r/qlWCAJ9uo/V2N5fVVa6vhS7IrODi2xaZSScgavS0mGVyNGjVFbfOxmt/adA5L7fGo5NiYePgUqHvyxJ4e3vjxo0baORig+vvd6j6jXw7Az3mADJ5uUVN4fjx4wgLC6vVP2937NiBIUOGVLg3VhRFCIIgrf2o27Zti+joaLz55ps4dqzyu7nY2NigWbNmAICwsDAcOXIEMTExFVor1draGiEhIbh8+bLBMgqFAgqFQvvZ2InoRLVFYWZapbuby+oqV3o1N9hCz0g8DkB/G0AUNbBv0ASBg97C+U0LSiX5wEFvmTRJF9/LQdKOr3H30l+AIEP9Fh3h1ysachu7cq8VRRHnNsxGRuIxBA5+G/UC/nstl/PPRVzZF4vcm5cBAXBsGACf7qOh9PAz2fdSacn7gf2Lgc5vALIqb55o0Xr37o3k5GQcOXIEaWlpGDVqFCZMmFDmK1pjmWQwmYeHB86dO1ct99JoNDot4LKo1WqcPn0affv2rZa6ieoShYtHpbqby+sq94541mD3NkQNIMigL1kLMiu4t+kOGwcXPPrKKt3W+r/HjfX3t9Ph0bY7PNr2LHXu4tbFKMq9i1bD34VGrcaln5fg8rbPEDDwjXLv+8/hrQBKj89RF93D2fWz4Na8Pfz7/A+iRo2U+LU4u+4dPDppNWRyCY3bTfgVsFIAj00BOEum0v7++280bdoUvXr1AgCsWrUKgwcPRvfu3U1WZ7X/SnXnzh2sWLHC4DvissyYMQP79+/HlStXcPr0acyYMQNxcXEYPnw4ACAqKgozZszQlp83bx527dqFpKQkHD9+HCNGjMDVq1cxbty4avt+iOoK99bdIMj0J4yS5Pmg8t4zZyafhCDo/xEiyORw9QuFILcGBAGCTH7/T7m1TovZRukK74hn4d/nf/COeNbk3d35t1OQkXgMzfpNhmOjFnBu0hL+vaNx6+x+FObcKfPa3NRE3PhzC5o/NVnPfa9DdS8HTSNHwL6eNxwaNEWTzsNQnJeJwqx0U307VXd2K/DXUm7eUQUhISHYtm1bjdZZpV/zunXrpvd4ZmYmLly4gKKiIqxZs6bS901PT0dUVBRu3rwJZ2dntGnTBjt37kTPnvd/K05JSYHsge6ajIwMjB8/HqmpqXB1dUVYWBgOHjzIdcaJ9LBRulaqu7m8rnIAZbbQnX3aoPlTU0zSYq6q7OsXILd1gGPD5tpjLr4hgCAg50YCFC066r1OXVyAhK2L4d/7Jdgo3Uqdt6vXCFZ2Tkg9uQuNOz0HUaNB2sldsKvfGLZSHRh3aj2gcARChps7klrFzs4O+fn52s/x8fEYP368SeusUqLWaDSlRn0LggBfX1/06NEDY8aMQYsWLSp93xUrVpR5/uHNtz/55BN88sknla6HyNI8OCDMO2IQIACq/Gxt8oQo4vqhH3QGjJXXVe7iG4Lc1ET9A8Ie6N6W0nzo4twM2Ni76BwTZHJY2zmiOC/D4HXJu5bDyTtQ5530g6wU9mj9wkKc3/gurh3YAACwc2uIlkPn3+9NkKrDywCHBsAjT5g7klqjbdu2+PjjjyGXy7Wjvo8cOVLuqpjPPPNMleusUqJ+OGESkXQZGpldMnfa0ICx5k9OgiCzMpiIvR59Eo6NHjHLgLCHXTvwHa798b32s0ZVhJwbF5C442vtsdAXq7a08Z2LfyLzyt8IGf+pwTLq4kJc+iUGTt5BCBj4BkSNBjf+3Ixz381B2zGfQG6tMHit2e1fDLg0Adwr37iyRDExMRg0aJB2PwtBEBATE4OYmBiD10hu1DcRSUd5A8KCxywxeP7SL5+iWb9JuLztU4OJ2K15uMkGhFWGZ1hf1A96XPs5Yeti1G/xGOo90JWtcKwHa6UrivIzda4VNWoU38uBtYP+OeRZV/5GQcZNHFr8nM7x85sWwKlxS7SJeh+3zsShMCsdbUd/pH0toBz4Ov78cAjuXvwTDVpWffeklJQU5OXlAQDyCtVIuVuAJm7VuKeBugjYNx949hvAuvyR7+bwxRdfYPHixUhNTUXbtm3x2WefITxc/wI9sbGxGD16tM4xhUKBgoKCaomlXbt2uHz5MhITE5GWloYuXbpg5syZVZqOXFEVStTffluxeZoPK1mgnIjMo7wBYVd+iy17YZK8jHITccmAMHOytnOEtZ2j9rPMSgFrB2fYuTXUKefk3QLqgjzk3rwEpdf999SZyacAUYRjowC99/buOAgewbpdwyeWTYRfz/Ha1dw0qsJ/R1D/90rwfsIWUNWlKg4fPoz58+dj27Zt2ntk3lPDZ+ZhPNnaDe/0bYpHfRzLuUsFZV0H/v4OCBtVPferRt999x2mTp2Kr7/+Gu3bt8eSJUvQq1cvJCQkwN3dXe81pt4DwsrKCgEBAQgICMDIkSPx5JNPmn9lslGjRlX6xoIgMFETmVm5c6ez0sudWy2FRFxd7Os3gat/GC5t+wzN+kyEqFEjcedXaNCyMxSO9QAAhdm3cWbtTDzy9FQ4NgqAjdJN7wAyhXMD2Lre32fAxTcEyXtWInHHl2j46FMQRRHX/9gIQSaHS9PK75y0efNmDBkyBKIolkr0oghsP3MXv57JwHfjA/FMSP0q/E3o8fdGoM3zgLW0diD8+OOPMX78eG0r+euvv8a2bduwcuVKTJ8+Xe81NbkHxKpVq0xeR4USdXJysqnjICITKHfutLM78m+nGD4v1RHLRnhkwOtI2vEVzqydCQgC6rV4DP69orXnRY0a9+5ch7q4Yus3AIB9/cYIGjIb1/avw6lVr0EQBDh4+qPl0HmwcSyd5Mty+PBhDBkyBGq12mBrXK0BBIgYsvw8Dr4RXD0t66JcIOUQ4N/V+HtVk6KiIhw7dkxnWq5MJkOPHj1w6NAhg9dVdg+Iypg3bx4EQcDMmTMhk8kwb968cq8RBMGoPakrlKibNm1a5QqIqPqVLOFZ3trc7q274WrcGoMDwny6jUZm8skyR27XRm2i3jd4ztrOsczFTWxdPNDp7bLnyeo77+oXAle/qu1x8KB3331Xb0v6YSIAESLe3X4VP/6vldH1AgBunqyRRJ2bm4vs7Gzt54dXjCxx+/ZtqNVqeHjo/sLo4eGBCxcu6L13VfaAqIw5c+ZAEAS8+eabsLGxwZw5c8q9xthEzTXkiGqh4LExCJ/8LYLHGh5pCvw3d9rQwiMO7k3LPM/1tmtWSkoKfvnllwqPEFZrgJ9P30XK3eoZKIWMq9Vzn3JERkbC2dlZ+7Vw4cJqu3dERASioqIQHByMyMhIbN68GQ0aNKjQMtQVodFooFarYWNjo/1c3pcxI74BI0Z9p6amYsWKFTh+/DiysrKg0eh2rwmCgL179xoVHFFdpFEVQaM2sPSmCTg1aYWQ6C9x++x+5N9NhbVTfTQI6gxrB2fcy82CnVcAWo2Jwe1zv6Mw6xYUzg10zlcXmdwKsjq8c1N1PNft236u9OAzUQR2nruLkR30D6yqlJzbEIpL965UF5Xq/t9PfHy8zr7N+lrTAFC/fn3I5XKkpemuQ5+Wllbhd9AV2QNC6qqUqP/++2906dIF9+7dQ0BAAE6fPo2goCBkZmbixo0b8Pf3R+PGjas7VqJaT6MqQuaVU1AV5JdfuJrZunrhs/U78OFXq2u8bjKtCf93GRP+rzoS0UFg+NpquE/ZlEolnJycyi1nY2ODsLAw7N27FwMGDABwvwW7d+9evPzyyxWqqyb2gDh//jwSExORk5MDR0dHNGvWrEqLfhlSpUQ9ffp0KJVKnDx5Evb29nB3d0dMTAy6deuGjRs34qWXXsLataZ/2ES1jUatgqogHzK5FQQztC5fn/Qipr0cXX7Baib+29p0a94OVgr7Gq/f1FSF+bh76ajRz3XDll/w6tsLKn3d1883RVR4vSrXC9zfGUzt4Amr4etN9oxOnDhR6WlMU6dOxciRI9GuXTuEh4djyZIlyMvL044Cj4qKQqNGjbTd5/PmzUOHDh3QrFkzZGZmYvHixSbbA2Lp0qV47733cOPGjVLnmjRpgpkzZ1ZLvVVK1H/88QfeeOMNNGnSBHfv3gUAbdf34MGDceDAAbz++uuIj483OkCiukiwsjHLalVy6xqvEgCgLraCujAf1tbWsLI2UxAmJGisYW1tBbnC3qjn2r1LZwjCwkp1fwsC0LOFM6ytjFyqVBRRpKxv0mdkZVX5lDNkyBDcunULs2bNQmpqKoKDg7Fjxw7tADNz7QHx2muv4eOPP4abmxvGjBmDVq1aQalUIjc3F6dPn8bWrVsRHR2NS5cuYdGiRUbVVeW1vkv+klxcXCCXy7UJGwBat25d7rrdRCRNqns5yEg6geK8DFg7uMLVLwRWdtW0sAaVqXEjL/Tq1hm74w5UaACSXAb0DXJBE7fq+aVP5dQEUhxF8PLLLxvs6jbHHhCHDx/Gxx9/jIEDB+Lbb7+Fg4NDqTIxMTEYMWIEPvzwQwwePBjt2rWrcn1VGvXt6+urnVstk8ng6+uLPXv2aM8fPHgQLi4uVQ6KiMp2efvnuLB5IS5v/7xa75t9/TwStixC2okduHvpMNJO7EDClkXIvn6+Wushw15/ZQIEofzVtO6vgyZgRi+vaqu7yL3yi7NYohUrVsDLywvr1q3Tm6QBwMHBAevXr4eHh4fRDdcKJ+qMjP92lnniiSewceNG7eeXXnoJ33zzDXr06IHu3btj9erVGDZsmFGBEZFhqoIcqPKzoSrIqb573svBtf1rIWrUAERA1AAQIWrUuLZ/LVT3qq8uMiy0bSus/OwDyOUyyOX6u7PlMkAuE7B+tD8ebaqslnpVbo9A41D3FrgxhUOHDmHw4MEGR6uXsLW1xeDBg/HHH38YVV+FE7WnpycGDhyITZs2Ydq0aVi/fj2K/x3GP2XKFMybNw937txBVlYW3nnnHbz77rtGBUY1KyMnD9/vO4pPN+3D9/uOIiMnz9whUQ3LSDoBUWNgFTONBpnJJ2o4Isv1VO8e2LnpW/Ts0knPlsL3u7v3v9oCA9qWveBNZRQ0611t96rrrl27hsDAwAqVDQoKwrVr14yqr8LvqAcNGoSffvoJP/30ExwdHfHMM89g+PDh6NatGwRBwNtvv423337bqGCo6v730Tpk5OTD1dEeX06rXG/GoTNJmL96G1RqDWSCAI0oIvbXQ5g1qh86tPQzUcQkNcV5GfezgL6BTIKAolzD+zVT9Qtt2wrrv/kU127cROe+g5GZnQMXOzmOvdmy2t5Jl1DXD4S6XgugsOanDdZG2dnZcHSs2LgNpVKJnBzjeqMq3KJeu3Yt0tPT8X//9394/PHHsXbtWjzxxBNo1KgRpk2bhuPHjxsVCBknIycft7NykZFTuX9oGTl5mL96G4pV99cVVms0EEURxSo15sVuY8u6DlPdy8Gts/vxz+Efcevsfsht7PUnaQAQxXKXKyXTaNzIC/b297efdLCRVXuSBoDCFs9U+z3rMlEUK7UjV1V3UCtRqVHfdnZ2GDp0KIYOHYqMjAx8//33WLduHZYsWYIlS5agefPmGDFiBIYNGwY/P7bEaoPdR85Dpdbf3alSa7Dn6AUM7hpWw1GRqWVfP//v+2jNf63o+yOY9CZrQSaDi1+oGSIlU1N5BkPj6gtUYhMSAj788EOsX7++3HL65lhXVpWXEHV1dUV0dDSio6Nx48YNrFu3DuvXr8esWbMwe/ZstG/fHgcPHjQ6QDKt1LvZkAkC1Hp+OMsEATfvVN8SkiQNuoPG8F9iFkVAkEGQyXUSuCCToXHn4bCyrZ5BSyQlAooC+ps7iFqnZA2RB6cll1feGFVO1A9q1KgRXn/9dfTu3RuzZs3Cjz/+iL/++qs6bk0m5unmBI2BbhmNKMKrnnMNR0SmVtagMYgi6rfqArm1AkW5GbBRusLFL5RJuo5SebeHxonLPVfWlStXarQ+oxN1SkqKtjV95swZiKKIjh07Yvjw4dURH5lYz0cDEfvrIRSrSi+uYCWXoUe7io1spNqjvEFj6sJ8eLTtWfOBUc2SK/huupaoUqK+ffu29v30oUOHIIoiWrRogXnz5mH48OHw8fGp5jCpOmXk5GH3kfNIvZsNTzcnTB3SHR9/t1dn1LeVXIZZo/rB1bHurcts6awdXDlojFDYYgBEOzdzh0EVUOFEnZeXhy1btmDdunXYu3cviouL4eXlhSlTpmD48OEIDeVAk9pA31QsK7kMU5/rjozce7h5Jwte9ZzRo10gk3Qd5eoXgvRTu/57R/0ADhqzDOp6ASj27W7uMKiCKpyo3d3dUVBQAKVSiWHDhmnnUD+4GDpJ24NTsQBoB5AVq9T4+Pu9WDtrDFwd9S+HR7Xbw+t3N+rwDG78uZmDxiyQaOOIgpBxgMCf3bVFhRN1jx49MHz4cDz99NOwtbU1ZUxkIpyKZZn0TcUSZDI07PAM1AW5HDRmSQQZCsKiIdrx9UZtUuFE/eOPP5oyDqoBnIpleQxNxRI1avzz52YEDHyTO2NZkMJWw6Cu38LcYVAlse/DgnAqluXh+t1UotivJ4p9upg7DKqCaplHTbUDp2JZHq7fTQCg8mqHwqDB5g6jztq5cydWrFiBpKQkZGRklFoyVBAEJCYmVvn+TNQWxNXRAbNG9cO82NKjvjkVq27iVCxS1w9EQchYDh4zkcWLF2P69Onw8PBAeHg4WrduXe11MFFbmA4t/bB21hjsOXqBU7EsAKdiWTaNiy/uPToRkFubO5Q6KyYmBt26dcP27dthbW2av2cmagvk6ujA0d0WwsrOEY07D9c76ptTseo2jVNj5LefAlhxlo4pZWRkYNCgQSZL0gATNVGd5+QdiICBbyIz+QSnYlkIjdIL9zpMBWy4LoKphYeHIyEhwaR1MFETWQArO0fUD+ps7jCoBoj29XGvw1SICk67qwlffvkl+vTpg3bt2mHYsGEmqYOJmoiojhBtHJDf/lUuaFKDhgwZApVKhRdeeAEvvfQSvL29IZfLdcoIgoBTp05VuQ4maiKiukCQoaDd/yAqPcwdiUVxc3NDvXr10Lx5c5PVwURNRFQHFAUMgLpegLnDsDhxcXEmr4MT64iIajmNiy+KmvU2dxhkImxRExHVagIKWg/ngiZmVlxcjAsXLiArKwsaPcv2du5c9cGcTNRERLWYqmEYNC4+5g7DYmk0GsyYMQNffvkl8vPzDZZTq0svOlRRTNREVK6H97N29QvhrlsSUdSsr7lDsGgLFizA4sWLER0djU6dOuGFF17AokWL4OLigi+//BKCIOCDDz4wqg4maiIqMxHr2886/dQuNO48HE7e3MjFnNSuftA4NzF3GBYtNjYWzz33HL766ivcuXMHABAWFoZu3bph5MiRiIiIwL59+9CjR48q18GXGmSUjJw8fL/vKD7dtA/f7zuKjJw8c4dElZR9/TwStixC2okduHvpMNJO7EDClkXIvn7+of2sRUDUABAhatS4tn8tVPdyzB2+RVN5R5g7BIt3/fp1dOvWDQCgUCgAAAUFBQAAGxsbjBgxAmvWrDGqDraoqcoOnUnC/NW6O3HF/noIs0b1Q4eWfuYOjx5gqMWsm4ih3WmrJBHXD4osdz9rrnhmJoIMKi+u2W9u9erVQ25uLgBAqVTCyckJSUlJOmUyMozbTpaJmqokIycP81dv0+5trf73B3yxSo15sduwdtYYuDpynWEpKKvrujDrVpmJOC/1MvezlgD3BvUBAB7WudpjarfmEBVO5gqJ/hUSEoIjR45oP3ft2hVLlixBSEgINBoNPv30U7Rt29aoOpioqUwZOXnYfeQ8Uu9mw9PNCT0fDYSrowN2HzkPlVr/D3iVWoM9Ry9why4JKK/F7OzTtsxELD5wTSncz7rG/PbTegCA8udx2mNsTUvDhAkTEBsbi8LCQigUCrz33nvo3LkzOnfuDFEU4erqivXr1xtVBxM1GVRW13bq3WzIBEHbkn6QTBBw806WGSKmh2UknSizxawuzCszESu9mqHg7g3uZy01ggyqhu3MHQUBePrpp/H0009rPwcFBSExMRFxcXGQy+Xo2LEj3NzcjKqDiZr0Kq9re0i3MGgM/IDXiCK86jnXWKxkWHFeRpktZrnCAYJMZjAR1wuIgF09b+5nLTHqBkHs9pYwZ2dn9O/fv9rux0RNepXXtQ0IsJLLtIn8QVZyGXq047QdKbB2cC2zxWzr4gGnzsPLTMTcz1p6ihu1N3cI9AC1Wo2NGzfit99+Q3p6OubNm4fWrVsjKysLe/fuxWOPPQYPj6pvlsJETXrfQ5fXtZ2Vdw+zRvXDvFjdrnEruQyzRvWDq6O9Gb4TepirXwjST+0qs+vaylZZbiLmftYSIrOCyiPY3FHQvzIzM9G7d28cPnwYSqUSeXl5eOWVVwDcHwU+adIkREVFYcGCBVWuQ1LzqL/66iu0adMGTk5OcHJyQkREBH799dcyr9m4cSNatGgBW1tbtG7dGtu3b6+haOuGQ2eSMHzeSnzzyx/YfugMvvnlDwyftxJFxapyu7Y7tPTD2lljMP6pTugb0Qrjn+qEtbPGcmqWhFjZOaJx5+EQZHIAwr/rQQsQZHKdruuSRNwwvD/qB3Vma1nC1PUCAGs7c4dB/5o+fTrOnj2LnTt3IikpCeIDPzflcjkGDRpkdF6SVIva29sb77//Ppo3bw5RFLF69Wr0798fJ06cQMuWLUuVP3jwIIYOHYqFCxfiySefxLp16zBgwAAcP34crVq1MsN3ULuU9R5677ELsJIJKFaXTtYPdm27OjpwdLfEseu6blHV52slKdm6dSteeeUV9OzZU7sy2YMeeeQRxMbGGlWHpFrUTz31FPr27YvmzZvjkUcewXvvvQelUok///xTb/mYmBj07t0br7/+OgIDAzF//nyEhobi888/r+HIa6ey3kOrNSK6hbWAtZUcgiBALpNBEARYW8nZtV0LscVcd2hc2WMlJVlZWfD19TV4vri4GCqVyqg6JNWiflDJy/m8vDxEROhfJu/QoUOYOnWqzrFevXph69atNRBh7Vfee2gbayusnTUGe45ewM07WfCq54we7QKZpInMSO3U2Nwh0AP8/f1x/Phxg+d37dqFoKAgo+qQXKI+ffo0IiIiUFBQAKVSiS1bthj8JlNTU0uNpPPw8EBqaqrB+xcWFqKwsFD7uWTpN0vk6eZU7ntodm0TSYdo68r30xIzbtw4vPnmm+jSpQu6d+8OABAEAYWFhZg3bx527NiBZcuWGVWH5BJ1QEAATp48iaysLGzatAkjR45EfHy80b+RlFi4cCHmzp1bLfeq7Xo+GojYXw9xipUF4DaVdYPGoYG5Q6CHTJ48GWfPnsXQoUPh4uICABg2bBju3LkDlUqF6OhojB071qg6JJeobWxs0KxZMwD3two7cuQIYmJisHTp0lJlPT09kZaWpnMsLS0Nnp6eBu8/Y8YMne7ykydPIjIyspqir11cHR04xcoCcJvKukO0M26FK6p+giBg+fLlGDlyJDZt2oRLly5Bo9HA398fzz33HDp3Nn5ao+QS9cM0Go1OV/WDIiIisHfvXkyZMkV7bPfu3QbfaQP3tyEr2YoMuD/PzdI8PG/6i6nP4+iFFL6HroPKW+s7YOCbbFnXIhoFV/yTqk6dOqFTp04mubekEvWMGTPQp08fNGnSBDk5OVi3bh3i4uKwc+dOAEBUVBQaNWqEhQsXArjf5RAZGYmPPvoI/fr1w4YNG3D06FGj3wfUZWWt38130XVPeWt9c5vKWsaaO9JZIkkl6vT0dERFReHmzZtwdnZGmzZtsHPnTvTs2RMAkJKSApnsvxllHTt2xLp16/D222/jrbfeQvPmzbF161bOoTaAW1NanvLW+uY2lbWLaM2eLil4cBOOihAEAT/++GOV65NUol6xYkWZ5+Pi4kodGzx4MAYPHmyiiOoWbk1pecpb65vbVNYuopWi/EJkcr/88gtsbW3h6empsxKZIYIgGFWfpBI1mRa3prQ8FVnrm2oRua25IyAAjRo1wo0bN1C/fn0MGzYMzz//fJmDmI0lqZXJyLQqMm+a6paKrvVNtYNoZWPuEAjAtWvX8NtvvyEkJATz589H48aN0aNHD6xatQo5OTnVXh8TtQXp+WggrOT6HznnTdddJWt9e4b2hlvzcHiG9kbAM9M5NasWEuWW2fX9xRdfwMfHB7a2tmjfvj0OHz5cZvma2KwpMjISS5cuRWpqKjZt2oR69erh5Zdfhru7O5555hls2rTJ4IylymKiriNcHe1R31lZ5rSqknnTXL/b8nCt7zrCAt9Rf/fdd5g6dSpmz56N48ePo23btujVqxfS09P1li/ZrGns2LE4ceIEBgwYgAEDBuDMmTMmic/a2hr9+/fHd999h7S0NG3yHjJkCD744INqqYPvqOuIL6cNq1C5kq0puX43Ue0jyiyv6/vjjz/G+PHjMXr0aADA119/jW3btmHlypWYPn16qfIPbtYEAPPnz8fu3bvx+eef4+uvvzZZnIWFhdi5cyd+/PFHnDhxAra2tvDx8amWezNRm1lRscrgSGxTUVhbo19Ea6jVamg0GgAisnLyajQGK7kMNtaW97+fqrgYxcUqaGQqaIzp0BL/+7O4uLhaYjMldbEK6mIViouLIcqkH29llTxXtSYfQrFxOyWVRSgqhphvmn+roqoIGrVpn1HJLlK5ubnIzs7WHn94IaoSRUVFOHbsGGbMmKE9JpPJ0KNHDxw6dEhvHTW5WZNGo8Hu3buxfv16bN26Ffn5+ejRoweWL1+OgQMHwsGheqa7Wt5PSgkpKlbh5KVryCuonvcYlRW79HN8u+wLs9RNxvnhta5wd7bDP6lpiHiknbnDIaqUh5dtnj17NubMmVOq3O3bt6FWq/VuvnThwgW9967KZk2VdfDgQaxbtw4bN27EnTt30KFDByxYsADPPfcc6tevX231lGCiNiOVWoO8gkJYW8lhbSWv8fqjX56MCf97Bbn3CnDy0g1k5ubDRWmP4OaNoLSr+jSQCylp+G7vMWg0GggyAaJGhEwmw5DuYWjRxAPFKjWKVWqEB/nB3tayuvJUhfm4e+ko5Ap7yK2r/r0n/vQhVPey0dDTA+kXj1ZjhKahLi6CujAfbs3bwUpRN1+zaP5tkZpUYQ6gMN2SrzK5FWQmHFl+4sQJtG/fHvHx8QgODtYe19ealrJOnTrBzs4Offv2xdChQ7Vd3CkpKUhJSdF7TWho1adCMlFLgLWVHLY21uaoGWeT/8GanX9BrdFAEASIooi4U5cR1bsDgny8Kn3HnPwCbIo/CVEQIMjv//IhyO/31G6KP4mZUX1gZ2cNsaAI1tbWsLY2x/dtPoLGGtbWVpBbW0FuzPcu/Pdnbfg7lEEDmcYK1tbWsKoF8VZJTXxfNlaATe1dPdDK6n7KUSqVcHJyKrd8/fr1IZfLK7X5UlU2a6qKe/fu4YcffsDmzZvLLCeKIgRBgFpdei2DimKitmA5+QVYs/Mv7TvykhV2VGoNvt3xJ2ZG9YGjveGWdU5+AY5euIqMnHy4OtqjXYumOHrhKtQG1pZWazQ4lpCCDi19q/+bsTBWto46f5KlMG6Fq9rGxsYGYWFh2Lt3LwYMGADg/nvhvXv34uWXX9Z7TVU2a6qsVatWVdu9KoKJuo5Y8v1e5OQXwtFegSnPda/QNRVJql1CHtF7Xl9LfOfhc2jm7a79/DBBEHA3u2YHrdVVzfrq/yFFVNdMnToVI0eORLt27RAeHo4lS5YgLy9POwrcHJs1jRw5struVRFM1HVETn4hsvLuVeqajJz8KiXVslriF1PSDK59K4oi3Jxqb7cdkdkZuWZ0bTRkyBDcunULs2bNQmpqKoKDg7Fjxw7tgDFL2KyJidqCuTraVympltUS14giZAaSv1wmQ1hAk6oHTGTxLC9RA8DLL79ssKvbEjZr4spkFqxdi6aQy/T/L1BWUi1piesjkwl4pLE7rOQyCML9z4Jwf950VO8OZb7zJqJyWGCLmtiitmiO9raI6t0B3+74U+dds1z2X1LVN2CsvJZ4M293DOneDscSUnA3Ow9uTg4IC2jCJC1hqns5yEg6geK8DFg7uMLVLwRWdhyoJjlyy5rOSPcxUVugh5Pv5MHdkJCSViqpGhowNrhrKOQymd4V1Upa4o72tgYHopG0ZF8/j2v710LUaO632EQR6ad2oXHn4dy4Q2rYorZITNQWxlDyjerdQSexljVgbONvxzG4ayg2/nbcYEucpMVQi1l1L+ffJP3vHM9/n7OoUePa/rUIGPgmW9ZEZsZEbUEqM2+6vKlbOfmFmBnVh93btUBZLebCrFv3j+shajTITD6B+kGdazhiInoQE7UFqcy86YpM3WL3tvSV12J29mmrTd6lCAKKcjNqMFoi0oejvi1IWaO1H543XdWpWyQtGUknymwxqwvz9CdpABBF2ChdTRgdEVUEE7UFqUzyrerULZKW4rwMwwOQBAFyhQMEA89ZkMng4lf1jQSIqHowUVuQyiTfkqlbnA9du1k7uJbZYrZ18UDjzsMhyOQABECQARAgyORo3Hk4rGyVNRkuEenBd9QWpCLzpgHd6Vtdgh+BIAB5BUUcMFYLufqFIP3Urv/eUT+gpMVsZatEwMA3kZl8AkW5GbBRumqPE5H5MVFbmCAfrzJHa+ubvlWSyKuy7SWZl5WdIxp3Hl5q1Lcgk+m0mK3sHDm6m0iimKgtkKHR2sZue0nS5OQdyBYzUS3GRE1axmx7SdLGFjNR7cVEbYH0rd/taG9b5W0viYjIdJioLUxZS4hy7jQRkfRwepYFefAdtCgCGo0IUfzvHXSLpp6cO01EJDFM1BakvHfQCSlpnDtNRCQx7Pq2IBV5B90l5BFutkFEJCFM1Bakou+gudkGEZF0sOvbgnD9biKi2oeJ2oJw/W7LpbqXg1tn9+Ofwz/i1tn9UN3LMXdIRFRB7Pq2MOUtIUp1T/b186WWEE0/tQuNOw+Hk3egucMjonIwUVsgvoO2HKp7Of8m6X835fh3jIKoUePa/rUIGPgmrOwczRghEZWHXd9EdVhG0on7LWk9RI0GmcknajgiIqosJmqiOqw4L+N+d7c+goCi3IyaDYiIKo2JmqgOs3Zw1XZ3lyKKsFG61mxARFRpTNREdZirXwgEA1PyBJkMLn6hNRwREVUWEzVRHWZl54jGnYdDkMkBCIAgAyBAkMnRuPNw7klNVAtw1DdRHefkHYiAgW8iM/kEinIzYKN0hYtfKJM0US3BRE1kAazsHFE/qLO5wyCiKmDXNxERkYQxURMREUkYu74tUE5+AY5euIqMnHy4OtqjXYumXEKUiEiimKgtzNnkf7Bm519QazTaval3Hj6HqN4dEOTjZe7wiIjoIez6tiA5+QVYs/MvqNQaiCKg0YgQRUCl1uDbHX8iJ7/A3CESEdFDmKgtyNELV6E2sO6zWqPBsYSUGo6IiIjKw0RtQTJy8iEYWPdZEATczc6r4YiIiKg8kkrUCxcuxKOPPgpHR0e4u7tjwIABSEhIKPOa2NhYCIKg82Vry4FR+rg62kM0sO6zKIpwc3Ko4YiIiKg8kkrU8fHxmDhxIv7880/s3r0bxcXFeOKJJ5CXV3ZLz8nJCTdv3tR+Xb16tYYirl3atWgKuYF1n+UyGcICmtRwREREVB5JjfresWOHzufY2Fi4u7vj2LFj6NzZ8KpKgiDA09PT1OHVeo72tojq3QHf7vhTZ9S3XCZDVO8OnKJFRCRBkkrUD8vKygIAuLm5lVkuNzcXTZs2hUajQWhoKBYsWICWLVvqLVtYWIjCwkKday1JkI8XZkb1wbGEFNzNzoObkwPCApowSRMRSZRkE7VGo8GUKVPw2GOPoVWrVgbLBQQEYOXKlWjTpg2ysrLw4YcfomPHjjh79iy8vb1LlV+4cCHmzp1rytAlz9HeFl1CHjF3GEREVAGSekf9oIkTJ+LMmTPYsGFDmeUiIiIQFRWF4OBgREZGYvPmzWjQoAGWLl2qt/yMGTOQlZWl/YqPjzdF+ERERNVCki3ql19+Gb/88gv279+vt1VcFmtra4SEhODy5ct6zysUCigUCu1npZJb/T2MS4wSEUmHpBK1KIp45ZVXsGXLFsTFxcHX17fS91Cr1Th9+jT69u1rggjrPi4xSkQkLZLq+p44cSL+7//+D+vWrYOjoyNSU1ORmpqKe/fuactERUVhxowZ2s/z5s3Drl27kJSUhOPHj2PEiBG4evUqxo0bZ45vwWwc7RVwdrCDo72i/MIGcIlRIiLpkVSL+quvvgIAdOnSRef4qlWrMGrUKABASkoKZA/MBc7IyMD48eORmpoKV1dXhIWF4eDBgwgKCqqpsCVhynPdK1zWUNd2RZYY5SA0IqKaJalEbWjVrAfFxcXpfP7kk0/wySefmCiiuqesru2SJUb1PQcuMUpEZB6S6vom0yqva9ve1oZLjBIRSQwTtQUpr2tbALjEKBHVSnfv3sXw4cPh5OQEFxcXjB07ttwFrbp06VJqr4gXX3yxhiKuOCZqC1Le7ll5BUWI6t0BVnIZBAGQyQQIAmAl5xKjRCRtw4cPx9mzZ7F7927t9N4JEyaUe9348eN19or44IMPaiDaypHUO2oyrYrsnsUlRomotjl//jx27NiBI0eOoF27dgCAzz77DH379sWHH36Ihg0bGrzW3t5e8ntFsEVtQSq6e1bJEqPPRIagS8gjTNJEJGmHDh2Ci4uLNkkDQI8ePSCTyfDXX3+Vee3atWtRv359tGrVCjNmzEB+fr6pw600tqgtCHfPIiIpyM3NRXZ2tvbzwytGVlZqairc3d11jllZWcHNzQ2pqakGrxs2bBiaNm2Khg0b4u+//8abb76JhIQEbN68ucqxmAITtYVh1zYRmVtkZKTO59mzZ2POnDmlyk2fPh2LFi0q817nz5+vchwPvsNu3bo1vLy80L17dyQmJsLf37/K961uTNQWiLtnEZE5xcfHIzg4WPvZUGt62rRp2sWuDPHz84OnpyfS09N1jqtUKty9e7dS75/bt28PALh8+TITNRERWS6lUgknJ6dyyzVo0AANGjQot1xERAQyMzNx7NgxhIWFAQD27dsHjUajTb4VcfLkSQCAl5e09jXgYDLSkZNfgN+OJ2Bz/An8djyB63sTkeQFBgaid+/eGD9+PA4fPow//vgDL7/8Mp5//nntiO8bN26gRYsWOHz4MAAgMTER8+fPx7Fjx3DlyhX89NNPiIqKQufOndGmTRtzfjulsEVNWtw5i4hqq7Vr1+Lll19G9+7dIZPJ8Oyzz+LTTz/Vni8uLkZCQoJ2VLeNjQ327NmDJUuWIC8vD40bN8azzz6Lt99+21zfgkFM1ARAd3lR4L9110uWF50Z1YcDzohIstzc3LBu3TqD5318fHTWkWjcuDHi4+NrIjSjseubAJS/vOixhJQajoiIiAC2qC2Svm0uuXMWEZE0MVFbGEPvoUOaN+bOWUREEsSubwtS1jaXxy+mQCZw5ywiIqlhorYgZb2H1ogiQh9pzJ2ziIgkhl3fFqS899DWVnIuL0pEJDFM1BakIttccnlRIiJpYde3BanoNpdERCQdTNQWpGSbS76HJiKqPdj1bWG4zSURUe3CRG2B+B6aiKj2YNc3ERGRhDFRExERSRgTNRERkYQxURMREUkYEzUREZGEMVETERFJGBM1ERGRhHEe9b/Onz9f43XeKyzGxaTrsFVYQ2FtOY+isFiFgsJi2BRmwU5hbe5wapSq6B6yUy5CZmMLuZWNucOpMWpVETRFBXDKtYKVjZ3OOS8vL3h5eZkpsqq5efMmbt68ae4wah1z/JytCywnOxjg5eWFyMhIjBgxwtyhEFmk2bNnY86cOeYOo1KWLl2KuXPnmjuMWikyMrLW/WJmboJoaDslC2KJvx3n5uYiMjIS8fHxUCqV5g6HaoBUnzlb1OWT6rOritr4vM2NidpCZWdnw9nZGVlZWXBycjJ3OFQD+MxrLz47y8bBZERERBLGRE1ERCRhTNQWSqFQYPbs2VAoFOYOhWoIn3ntxWdn2fiOmoiISMLYoiYiIpIwJmoiIiIJY6Imo125cgWCICA2NtbcoRAR1TlM1DUsMTER0dHR8PPzg62tLZycnPDYY48hJiYG9+7dM1m9586dw5w5c3DlyhWT1VER7733Hp5++ml4eHhAEIRatyKVKQmCUKGvuLg4o+vKz8/HnDlzKnUvPruy8fmRqVj8EqI1adu2bRg8eDAUCgWioqLQqlUrFBUV4cCBA3j99ddx9uxZLFu2zCR1nzt3DnPnzkWXLl3g4+Njkjoq4u2334anpydCQkKwc+dOs8UhRWvWrNH5/O2332L37t2ljgcGBhpdV35+vnYJzC5dulToGj67svH5kakwUdeQ5ORkPP/882jatCn27duns4TexIkTcfnyZWzbts2MEf5HFEUUFBTAzs6u/MKVlJycDB8fH9y+fRsNGjSo9vvXZg+vN//nn39i9+7dklmHns+ubHx+ZCrs+q4hH3zwAXJzc7FixQq969w2a9YMkydP1n5WqVSYP38+/P39oVAo4OPjg7feeguFhYU61/n4+ODJJ5/EgQMHEB4eDltbW/j5+eHbb7/VlomNjcXgwYMBAF27di3VBVdyj507d6Jdu3aws7PD0qVLAQBJSUkYPHgw3NzcYG9vjw4dOhj1C4U5W/N1gUajwZIlS9CyZUvY2trCw8MD0dHRyMjI0Cl39OhR9OrVC/Xr14ednR18fX0xZswYAPfHFJT8oJ47d672/4fyukL57IzH50dVwRZ1Dfn555/h5+eHjh07Vqj8uHHjsHr1agwaNAjTpk3DX3/9hYULF+L8+fPYsmWLTtnLly9j0KBBGDt2LEaOHImVK1di1KhRCAsLQ8uWLdG5c2dMmjQJn376Kd566y1t19uDXXAJCQkYOnQooqOjMX78eAQEBCAtLQ0dO3ZEfn4+Jk2ahHr16mH16tV4+umnsWnTJgwcOLD6/oKoQqKjoxEbG4vRo0dj0qRJSE5Oxueff44TJ07gjz/+gLW1NdLT0/HEE0+gQYMGmD59OlxcXHDlyhVs3rwZANCgQQN89dVXeOmllzBw4EA888wzAIA2bdqY81uzCHx+VCUimVxWVpYIQOzfv3+Fyp88eVIEII4bN07n+GuvvSYCEPft26c91rRpUxGAuH//fu2x9PR0UaFQiNOmTdMe27hxowhA/O2330rVV3KPHTt26ByfMmWKCED8/ffftcdycnJEX19f0cfHR1Sr1aIoimJycrIIQFy1alWFvj9RFMVbt26JAMTZs2dX+BpLM3HiRPHBf6K///67CEBcu3atTrkdO3boHN+yZYsIQDxy5IjBexvz989nVzF8flRd2PVdA7KzswEAjo6OFSq/fft2AMDUqVN1jk+bNg0ASnU9BwUF4fHHH9d+btCgAQICApCUlFThGH19fdGrV69ScYSHh6NTp07aY0qlEhMmTMCVK1dw7ty5Ct+fjLdx40Y4OzujZ8+euH37tvYrLCwMSqUSv/32GwDAxcUFAPDLL7+guLjYjBHTg/j8qKqYqGtAybZ0OTk5FSp/9epVyGQyNGvWTOe4p6cnXFxccPXqVZ3jTZo0KXUPV1fXUu+9yuLr66s3joCAgFLHS7rMH46DTOvSpUvIysqCu7s7GjRooPOVm5uL9PR0AEBkZCSeffZZzJ07F/Xr10f//v2xatWqUuMbqGbx+VFV8R11DXByckLDhg1x5syZSl0nCEKFysnlcr3HxUos426KEd5UvTQaDdzd3bF27Vq950sGGAmCgE2bNuHPP//Ezz//jJ07d2LMmDH46KOP8Oeff0KpVNZk2PQvPj+qKibqGvLkk09i2bJlOHToECIiIsos27RpU2g0Gly6dElnwFdaWhoyMzPRtGnTStdf0aT/cBwJCQmljl+4cEF7nmqOv78/9uzZg8cee6xCv1h16NABHTp0wHvvvYd169Zh+PDh2LBhA8aNG1el/x/IOHx+VFXs+q4hb7zxBhwcHDBu3DikpaWVOp+YmIiYmBgAQN++fQEAS5Ys0Snz8ccfAwD69etX6fodHBwAAJmZmRW+pm/fvjh8+DAOHTqkPZaXl4dly5bBx8cHQUFBlY6Dqu65556DWq3G/PnzS51TqVTaZ5uRkVGqNyU4OBgAtN2n9vb2ACr3/wMZh8+Pqoot6hri7++PdevWYciQIQgMDNRZmezgwYPYuHEjRo0aBQBo27YtRo4ciWXLliEzMxORkZE4fPgwVq9ejQEDBqBr166Vrj84OBhyuRyLFi1CVlYWFAoFunXrBnd3d4PXTJ8+HevXr0efPn0wadIkuLm5YfXq1UhOTsYPP/wAmazyv+etWbMGV69eRX5+PgBg//79ePfddwEAL7zwAlvpZYiMjER0dDQWLlyIkydP4oknnoC1tTUuXbqEjRs3IiYmBoMGDcLq1avx5ZdfYuDAgfD390dOTg6WL18OJycn7S+BdnZ2CAoKwnfffYdHHnkEbm5uaNWqFVq1amWwfj474/D5UZWZedS5xbl48aI4fvx40cfHR7SxsREdHR3Fxx57TPzss8/EgoICbbni4mJx7ty5oq+vr2htbS02btxYnDFjhk4ZUbw/tapfv36l6omMjBQjIyN1ji1fvlz08/MT5XK5zlQtQ/cQRVFMTEwUBw0aJLq4uIi2trZieHi4+Msvv+iUqcz0rMjISBGA3i99U8cs2cPTe0osW7ZMDAsLE+3s7ERHR0exdevW4htvvCH+888/oiiK4vHjx8WhQ4eKTZo0ERUKheju7i4++eST4tGjR3Xuc/DgQTEsLEy0sbGp0HQdPrvK4fOj6iKIYiVGHBEREVGN4jtqIiIiCWOiJiIikjAmaiIiIgljoiYiIpIwJmoiIiIJY6ImIiKSMCZqifnggw/QokULaDQac4ditOnTp6N9+/bmDkPy+MwJAK5cuQJBEBAbG2vuUEhimKglJDs7G4sWLcKbb76pXfVLEAQIgoCPPvqoVPnY2FgIgoCjR48aXffmzZsxZMgQ+Pn5wd7eHgEBAZg2bZrBJQp/+uknhIaGwtbWFk2aNMHs2bOhUql0ykyZMgWnTp3CTz/9ZHR8dRWfORGVy9wrrtB/PvnkE9HJyUm8d++e9hj+XTnIw8NDzMvL0ym/atWqcjeYr6h69eqJrVu3Ft955x1x+fLl4qRJk0QbGxuxRYsWYn5+vk7Z7du3i4IgiF27dhWXLVsmvvLKK6JMJhNffPHFUvd97rnnxMcff9zo+OoqPnMqodFoxHv37okqlcrcoZDEMFFLSJs2bcQRI0boHAMgBgcHiwDEjz76SOdcdf7Q1reE4OrVq0UA4vLly3WOBwUFiW3bthWLi4u1x2bOnCkKgiCeP39ep+ymTZtEQRDExMREo2Osi/jMiag87PqWiOTkZPz999/o0aNHqXOPPfYYunXrhg8++AD37t0zSf1dunQpdWzgwIEAgPPnz2uPnTt3DufOncOECRNgZfXfni7/+9//IIoiNm3apHOPku/nxx9/NEHUtRufed0zZ84cCIKAixcvYsSIEXB2dkaDBg3wzjvvQBRFXLt2Df3794eTkxM8PT11Xm/oe0c9atQoKJVK3LhxAwMGDIBSqUSDBg3w2muvQa1Wa8vFxcVBEATExcXpxKPvnqmpqRg9ejS8vb2hUCjg5eWF/v3748qVKyb6WyFjMVFLxMGDBwEAoaGhes/PmTMHaWlp+Oqrr8q8T2FhIW7fvl2hr/KkpqYCAOrXr689duLECQBAu3btdMo2bNgQ3t7e2vMlnJ2d4e/vjz/++KPc+iwNn3ndNWTIEGg0Grz//vto37493n33XSxZsgQ9e/ZEo0aNsGjRIjRr1gyvvfYa9u/fX+a91Go1evXqhXr16uHDDz9EZGQkPvroIyxbtqxKsT377LPYsmULRo8ejS+//BKTJk1CTk4OUlJSqnQ/Mj1ucykRFy5cAAD4+vrqPf/444+ja9euWLx4MV566SWDG8+vX78eo0ePrlCdYjn7sSxatAhyuRyDBg3SHrt58yYAwMvLq1R5Ly8v/PPPP6WO+/n54dy5cxWKyZLwmddd4eHhWLp0KQBgwoQJ8PHxwbRp07Bw4UK8+eabAIChQ4eiYcOGWLlyJTp37mzwXgUFBRgyZAjeeecdAMCLL76I0NBQrFixAi+99FKl4srMzMTBgwexePFivPbaa9rjM2bMqOy3SDWIiVoi7ty5AysrKyiVSoNl5syZg8jISHz99dd49dVX9Zbp1asXdu/ebXQ869atw4oVK/DGG2+gefPm2uMl3bAKhaLUNba2tsjOzi513NXVtVSri/jM67Jx48Zp/1sul6Ndu3a4fv06xo4dqz3u4uKCgIAAJCUllXu/F198Uefz448/jjVr1lQ6Ljs7O9jY2CAuLg5jx46Fq6trpe9BNY+Juhbp3Lkzunbtig8++KDUP9wSXl5eels+lfH7779j7Nix6NWrF9577z2dcyWtusLCwlLXFRQU6G31iaIIQRCMislS8ZnXTk2aNNH57OzsDFtbW51XCiXH79y5U+a9bG1t0aBBA51jrq6uyMjIqHRcCoUCixYtwrRp0+Dh4YEOHTrgySefRFRUFDw9PSt9P6oZfEctEfXq1YNKpUJOTk6Z5WbPno3U1FRtt9rD7t27h9TU1Ap96XPq1Ck8/fTTaNWqFTZt2qQzeAj4r/uzpDv0QTdv3kTDhg1LHc/IyCj1A4r4zOsyuVxeoWNA+a8jDF33IEO/FD044KzElClTcPHiRSxcuBC2trZ45513EBgYaNE9IFLHRC0RLVq0AHB/JHBZIiMj0aVLFyxatEjvaODvvvtO28Iq7+thiYmJ6N27N9zd3bF9+3a9XbLBwcEAUGrBjX/++QfXr1/Xnn9QcnIyAgMDy/y+LBGfOVWXki7shxeruXr1qt7y/v7+mDZtGnbt2oUzZ86gqKhI7wI7JA3s+paIiIgIAPd/GLZp06bMsnPmzEGXLl30jvqs6vvK1NRUPPHEE5DJZNi5c2eprrYSLVu2RIsWLbBs2TJER0drf9v/6quvIAiCziAkAMjKykJiYmKlB71YAj5zqi5NmzaFXC7H/v37MWDAAO3xL7/8Uqdcfn4+ZDIZbG1ttcf8/f3h6Oio99UGSQMTtUT4+fmhVatW2LNnD8aMGVNm2cjISERGRiI+Pr7Uuaq+r+zduzeSkpLwxhtv4MCBAzhw4ID2nIeHB3r27Kn9vHjxYjz99NN44okn8Pzzz+PMmTP4/PPPMW7cuFKtqD179kAURfTv37/SMdV1fOZUXZydnTF48GB89tlnEAQB/v7++OWXX5Cenq5T7uLFi+jevTuee+45BAUFwcrKClu2bEFaWhqef/55M0VP5TLXSitU2scffywqlUqd5RsBiBMnTixV9rffftMuNVkdq1SV3EvfV2RkZKnyW7ZsEYODg0WFQiF6e3uLb7/9tlhUVFSq3JAhQ8ROnToZHV9dxWdet8yePVsEIN66dUvn+MiRI0UHB4dS5SMjI8WWLVuKoiiKycnJIgBx1apV5V5XUs+Dbt26JT777LOivb296OrqKkZHR4tnzpzRueft27fFiRMnii1atBAdHBxEZ2dnsX379uL3339v5HdOpiSIYjkjGajGZGVlwc/PDx988IHONI7aKjU1Fb6+vtiwYQNbVwbwmRNReTiYTEKcnZ3xxhtvYPHixXViy8MlS5agdevW/IFdBj5zIioPW9REREQSxhY1ERGRhDFRExERSRgTNRERkYQxURMREUkYEzURkYW5cuUKBEFAbGysuUOhCmCiJiIqQ2JiIqKjo+Hn5wdbW1s4OTnhscceQ0xMjN6116vLuXPnMGfOHFy5csVkdVTEe++9h6effhoeHh4QBAFz5swxazyWiEuIEhEZsG3bNgwePBgKhQJRUVFo1aoVioqKcODAAbz++us4e/as3vXXq8O5c+cwd+5cdOnSBT4+PiapoyLefvtteHp6IiQkBDt37jRbHJaMiZqISI/k5GQ8//zzaNq0Kfbt26eznvrEiRNx+fJlbNu2zYwR/kcURYN7gxsrOTkZPj4+uH37tsGNW8i02PVNRKTHBx98gNzcXKxYsULvpifNmjXD5MmTtZ9VKhXmz58Pf39/KBQK+Pj44K233iq1K5WPjw+efPJJHDhwAOHh4bC1tYWfnx++/fZbbZnY2FgMHjwYANC1a1cIggBBEBAXF6dzj507d6Jdu3aws7PT7leelJSEwYMHw83NDfb29ujQoYNRv1CYszVP9zFRExHp8fPPP8PPzw8dO3asUPlx48Zh1qxZCA0NxSeffILIyEgsXLhQ765Uly9fxqBBg9CzZ0989NFHcHV1xahRo3D27FkAQOfOnTFp0iQAwFtvvYU1a9ZgzZo1OjuVJSQkYOjQoejZsydiYmIQHByMtLQ0dOzYETt37sT//vc/vPfeeygoKMDTTz+NLVu2VMPfCpmFWbcEISKSoKysLBGA2L9//wqVP3nypAhAHDdunM7x1157TQQg7tu3T3usadOmIgBx//792mPp6emiQqEQp02bpj22ceNGEYD422+/laqv5B47duzQOT5lyhQRgPj7779rj+Xk5Ii+vr6ij4+PqFarRVHUv1NXeW7duiUCEGfPnl3ha6h6sEVNRPSQ7OxsAICjo2OFym/fvh0AMHXqVJ3j06ZNA4BSXc9BQUF4/PHHtZ8bNGiAgIAAJCUlVThGX19f9OrVq1Qc4eHh6NSpk/aYUqnEhAkTcOXKFZw7d67C9yfpYKImInqIk5MTACAnJ6dC5a9evQqZTIZmzZrpHPf09ISLiwuuXr2qc7xJkyal7uHq6oqMjIwKx+jr66s3joCAgFLHS7rMH46DagcmaiKihzg5OaFhw4Y4c+ZMpa4TBKFC5eRyud7jYiU2MzTFCG+SJiZqIiI9nnzySSQmJuLQoUPllm3atCk0Gg0uXbqkczwtLQ2ZmZlo2rRppeuvaNJ/OI6EhIRSxy9cuKA9T7UPEzURkR5vvPEGHBwcMG7cOKSlpZU6n5iYiJiYGABA3759AQBLlizRKfPxxx8DAPr161fp+h0cHAAAmZmZFb6mb9++OHz4sM4vF3l5eVi2bBl8fHwQFBRU6TjI/LjgCRGRHv7+/li3bh2GDBmCwMBAnZXJDh48iI0bN2LUqFEAgLZt22LkyJFYtmwZMjMzERkZicOHD2P16tUYMGAAunbtWun6g4ODIZfLsWjRImRlZUGhUKBbt25wd3c3eM306dOxfv169OnTB5MmTYKbmxtWr16N5ORk/PDDD5DJKt82W7NmDa5evYr8/HwAwP79+/Huu+8CAF544QW20muCuYedExFJ2cWLF8Xx48eLPj4+oo2Njejo6Cg+9thj4meffSYWFBRoyxUXF4tz584VfX19RWtra7Fx48bijBkzdMqI4v2pVf369StVT2RkpBgZGalzbPny5aKfn58ol8t1pmoZuocoimJiYqI4aNAg0cXFRbS1tRXDw8PFX375RadMZaZnRUZGigD0fumbOkbVTxDFSoxeICIiohrFd9REREQSxkRNREQkYUzUREREEsZETUREJGFM1ERERBLGRE1ERCRhTNREREQSxkRNREQkYUzUREREEsZETUREJGFM1ERERBLGRE1ERCRhTNREREQS9v9ybSoTnJOhAwAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXoNJREFUeJzt3XlYVNX/B/D3nQEGZFiVxZ1FU1ARRVHUxDW33Eozl3DDqDQ1LXMp19LMLKm+lTvmzy0trdTcA3MpcSv3FMUtFhd2EZiZ+/uDmByZYRuGuTDv1/Pw2Nx77j0fvMaHc+5ZBFEURRAREZEkycwdABERERnGRE1ERCRhTNREREQSxkRNREQkYUzUREREEsZETUREJGFM1ERERBLGRE1ERCRhTNREREQSZvGJOiEhAXPnzkVCQoK5QyEiqtL487ZsmKgTEjBv3jz+wyEiMjH+vC0bi0/UREREUsZETUREJGFM1ERERBLGRE1ERCRhTNREREQSxkRNREQkYUzUREREEsZETUREJGFW5g6AiEwvNzMFyecOISc1CQpnD7g36wIbpYu5wyKiEmCiJqriHvz9By5/vwiiRgVBkEEUNbgZvR5+g2bCtWGwucMjomKw65uoCsvNTMlP0uo8QBQhatT5f6rzcGnbQuRmppg7RCIqBhM1URWWfO4QRI1K7zlRo0LyuUMVHBERlRYTNVEVlpOaBEHQ/7+5IMiQk5pUwRERUWkxURNVYQpnD4iiRu85UdRA4exRwRERUWkxURNVYe7NukCQ6R8zKsis4B7QtYIjIqLSkmyi/uijjyAIAiZPnmywTFRUFARB0PmytbWtuCCJJM5G6QK/QTMhyK0BQYAgk+f/KbeG36CZsLF3NneIRFQMSU7Pio2NxfLlyxEQEFBsWUdHR1y5ckX7WRAEU4ZGVOm4NgxG6zfX6s6jDujKJE1USUguUWdmZmL48OFYuXIlPvjgg2LLC4IAT0/PCoiMqPKyUbqgTsiL5g6DiMpAcl3f48ePR58+fdCtW7cSlc/MzET9+vVRt25d9O/fHxcuXDBxhERERBVHUi3qzZs34/Tp04iNjS1R+UaNGmHNmjUICAhAWloaPvnkE7Rr1w4XLlxAnTp19F6Tk5ODnJwc7efMzMxyiZ2IiMgUJJOob9++jUmTJmH//v0lHhAWEhKCkJAQ7ed27drBz88Py5cvx4IFC/Res2jRIsybN69cYiYiIjI1yXR9nzp1CsnJyWjZsiWsrKxgZWWFmJgYfP7557CysoJarS72HtbW1mjRogWuXbtmsMyMGTOQlpam/YqJiSnPb4OIiKhcSaZF3bVrV5w7d07n2OjRo9G4cWO8++67kMvlxd5DrVbj3Llz6N27t8EyCoUCCoVC+1mpVJY9aCIiIhOTTKJ2cHBA06ZNdY7Z29ujevXq2uNhYWGoXbs2Fi1aBACYP38+2rZtiwYNGiA1NRVLlizBzZs3ER4eXuHxExERmYJkEnVJ3Lp1CzLZf731KSkpGDduHBITE+Hi4oKgoCAcO3YM/v7+ZoySiIio/Eg6UUdHRxf5+bPPPsNnn31WcQERERFVMMkMJiMiIqLCmKiJiEiyDh8+jL59+6JWrVoQBAE7duwosnx0dHShPSAEQUBiYmLFBGwCTNRERCRZWVlZaN68Of73v/+V6rorV64gISFB++Xu7m6iCE1P0u+oiYjIsvXq1Qu9evUq9XXu7u5wdnYu/4DMgC1qIguQm5mCO8e/R9wvX+HO8e+Rm5li7pCITCowMBA1a9ZE9+7dcfToUXOHYxS2qImquAd//4HL3y+CqFFBEGQQRQ1uRq+H36CZcG0YbO7wyAJlZmYiPT1d+/nphaiMUbNmTXzzzTdo1aoVcnJysGrVKnTq1Al//PEHWrZsWS51VDS2qImqsNzMlPwkrc4DRBGiRp3/pzoPl7YtZMuazCI0NBROTk7ar4JFrMpDo0aNEBERgaCgILRr1w5r1qxBu3btKvVUXraoiaqw5HOHIGpUes+JGhWSzx3iPtVU4WJiYhAYGKj9XF6taUOCg4Nx5MgRk9ZhSkzURFVYTmrSv93dhTe1EQQZclKTzBAVWTqlUglHR8cKq+/s2bOoWbNmhdVX3pioiaowhbMHRFGj95woaqBw9qjgiIhKJzMzU2dHxBs3buDs2bNwdXVFvXr1MGPGDNy9exfffvstAGDZsmXw9vZGkyZN8PjxY6xatQqHDh3Cvn37zPUtGI2JmqgKc2/WBTej1+e/o36KILOCe0BXM0RFVHInT55E586dtZ+nTJkCABg5ciSioqKQkJCAW7duac/n5uZi6tSpuHv3LqpVq4aAgAAcOHBA5x6VjSCKomjuIMzp9OnTCAoKwqlTpyrtiECiojy8egKXti3UGfUtyKw46psqHH/elg1b1ERVnGvDYLR+cy2Szx1CTmoSFM4ecA/oCht7Z3OHRkQlwERNZAFslC4c3U1USXEeNRERkYQxURMREUkYEzUREZGEMVETERFJGBM1ERGRhDFRExERSRgTNRERkYQxURMREUkYEzUREZGEMVETERFJGBM1ERGRhDFRExERSRgTNRERkYQxURMREUkYEzUREZGEMVETERFJGBM1ERGRhDFRExERSRgTNRERkYQxURMREUkYEzUREZGEMVETERFJGBM1ERGRhDFRExERSRgTNRERkYQxURMREUmYlbkDICLTy81MQfK5Q8hJTYLC2QPuzbrARuli7rCIqASYqImquAd//4HL3y+CqFFBEGQQRQ1uRq+H36CZcG0YbO7wiKgY7PomqsJyM1Pyk7Q6DxBFiBp1/p/qPFzathC5mSnmDpGIisFETVSFJZ87BFGj0ntO1KiQfO5QBUdERKXFRE1UheWkJkEQ9P9vLggy5KQmVXBERFRaTNREVZjC2QOiqNF7ThQ1UDh7VHBERFRaTNREVZh7sy4QZPrHjAoyK7gHdK3giIiotJioiaowG6UL/AbNhCC3BgQBgkye/6fcGn6DZsLG3tncIRJRMTg9i6iKc20YjNZvrtWdRx3QlUmaqJKQbIv6o48+giAImDx5cpHltm7disaNG8PW1hbNmjXD7t27KyZAokrERumCOiEvwrfXG6gT8iKTNFElIslEHRsbi+XLlyMgIKDIcseOHcPQoUMxduxYnDlzBgMGDMCAAQNw/vz5CoqUiIjItCSXqDMzMzF8+HCsXLkSLi5FL3EYGRmJnj174p133oGfnx8WLFiAli1b4ssvv6ygaImIiExLcol6/Pjx6NOnD7p161Zs2ePHjxcq16NHDxw/ftxU4REREVUoSQ0m27x5M06fPo3Y2NgSlU9MTISHh+48UA8PDyQmJhq8JicnBzk5OdrPmZmZZQuWiIioAkgmUd++fRuTJk3C/v37YWtra7J6Fi1ahHnz5pns/kREROVJMl3fp06dQnJyMlq2bAkrKytYWVkhJiYGn3/+OaysrKBWqwtd4+npiaQk3SUQk5KS4OnpabCeGTNmIC0tTfsVExNT7t8LERFReZFMou7atSvOnTuHs2fPar9atWqF4cOH4+zZs5DL5YWuCQkJwcGDB3WO7d+/HyEhIQbrUSgUcHR01H4plcpy/16IiMhyqNVqbN68GRERERg4cCDOnTsHAEhLS8MPP/xQqEFZWpLp+nZwcEDTpk11jtnb26N69era42FhYahduzYWLVoEAJg0aRJCQ0OxdOlS9OnTB5s3b8bJkyexYsWKCo+fiIgsT2pqKnr27IkTJ05AqVQiKysLb775JgBAqVRi4sSJCAsLw8KFC8tch2Ra1CVx69YtJCQkaD+3a9cOGzduxIoVK9C8eXNs27YNO3bsKJTwiYiITGH69Om4cOEC9u7di+vXr0MURe05uVyOQYMGGb0Ql2Ra1PpER0cX+RkABg8ejMGDB1dMQERERE/YsWMH3nzzTXTv3h0PHjwodP6ZZ55BVFSUUXVUqhY1ERGRlKSlpcHb29vg+by8PKhUKqPqYKImIiIqI19fX5w+fdrg+X379sHf39+oOpioiYhIsg4fPoy+ffuiVq1aEAQBO3bsKPaa6OhotGzZEgqFAg0aNDC667ko4eHhWLNmDbZs2aJ9Py0IAnJycjBr1izs2bMHERERRtUh6XfUZBopGVnYH3sJiQ/T4enqiO6t/eDiYG/usIiICsnKykLz5s0xZswYvPDCC8WWv3HjBvr06YPXXnsNGzZswMGDBxEeHo6aNWuiR48e5R7fpEmTcOHCBQwdOhTOzs4AgGHDhuHBgwdQqVSIiIjA2LFjjaqDidrCHD9/HQvW7YJKrYFMEKARRUT9chyzR/VB2yY+5g6PiEhHr1690KtXrxKX/+abb+Dt7Y2lS5cCAPz8/HDkyBF89tlnJknUgiBg5cqVGDlyJLZt24arV69Co9HA19cXL730Ejp27Gh0HUzUFiQlIwsL1u1Cnip/lTf1v900eSo15kftwobZY9iyJiKTy8zMRHp6uvazQqGAQqEol3sb2qxp8uTJ5XJ/Qzp06IAOHTqY5N58R21B9sdegkqt0XtOpdbgwMnLFRwREVmi0NBQODk5ab8KFrEqD4Y2a0pPT0d2dna51VPgxo0b+Pnnnw2e//nnnxEfH29UHWxRW5DEh+mQCYK2Jf0kmSAg4UGaGaIiIksTExODwMBA7efyak2bw9tvv4309HT07dtX7/n//e9/cHZ2xubNm8tcBxO1BfF0dYRGT5IGAI0oomZ1pwqOiMrq7OpJyM1MgY3SBYFjI80dDlGpKJVKODo6muTehjZrcnR0hJ2dXbnXd/z48SK71bt27Yply5YZVQe7vi1I99Z+sJLrf+RWchm6tfKr4IiorHIzU5Cb8QC5mSnmDoVIUsqyWZMxUlJS4ODgYPC8UqnUu2JZaTBRWxAXB3vMHtUH1lZyCIIAuUwGQRBgbSXH7FF94OJQzdwhEhHpyMzM1O6oCOS/Ez579ixu3boFIH/r4rCwMG351157DdevX8e0adNw+fJlfPXVV/juu+/w1ltvmSS+evXq4ejRowbP//bbb6hTp45RdbDr28K0beKDDbPH4MDJy0h4kIaa1Z3QrZUfkzRRZZD7CLCxrP9XT548ic6dO2s/T5kyBQAwcuRIREVFISEhQZu0AcDb2xu7du3CW2+9hcjISNSpUwerVq0yydQsABg6dCgWLFiA4OBgTJgwATJZfvtXrVbjyy+/xJYtWzBr1iyj6hBE0cBLSwtx+vRpBAUF4dSpU2jZsqW5wyEqkRORYcjNeAAbh+oInvStucOhinL/GlCjgbmjKLOq+PM2JycHffr0waFDh+Dm5oZGjRoBAK5cuYJ79+6hU6dO+OWXX4waMMeubyKiykKTZ+4I6CkKhQL79u3D6tWrERwcjPv37+P+/fsIDg7GmjVrcODAAaNHtbPrm4ioslDnmjsC0kMmk2H06NEYPXq0ae5vkrsSEVH5Uxu3XSJVTmxRExFVFuz6lqS9e/di9erVuH79OlJSUvD00C9BEBAXF1fm+zNRExFVFqocc0dAT1myZAmmT58ODw8PBAcHo1mzZuVeBxM1EVFlwUQtOZGRkejSpQt2794Na2trk9TBd9RERJVF3iNzR0BPSUlJwaBBg0yWpAEmaiKiyiMnw9wR0FOCg4Nx5coVk9bBrm8LlJKRhf2xl5D4MB2ero7o3tqP+1ATVQaPucOd1Hz11Vfo1asXWrVqhWHDhpmkDiZqC3P8/HUsWLcLKrUGMkGARhQR9ctxzB7VB22b+Jg7PCIqStY9c0dATxkyZAhUKhVeeeUVvP7666hTpw7kcrlOGUEQ8Oeff5a5DiZqC5KSkYUF63YhT6UGAO2+1HkqNeZH7cKG2WPYsiaSssxkc0dAT3F1dUX16tXRsGFDk9XBRG1B9sdegkqt0XtOpdbgwMnLGNw5qIKjIqISS79j7gjoKdHR0Savg4PJLEjiw3TIBEHvOZkgIOEB338RSdrjdL6ntkBM1BbE09URGgObpWlEETWrO1VwRERUaqm3ii9DFSo9PR0fffQRevTogRYtWuDEiRMAgIcPH+LTTz/FtWvXjLo/E7UF6d7aD1Zy/Y/cSi5Dt1Z+FRwREZVaSry5I6An3LlzBy1atMDs2bNx584d/PXXX8jMzASQ//56+fLl+OKLL4yqg4nagrg42GP2qD6wtpJDEATIZTIIggBrKzlmj+oDFwfL2pCeqFJ6UPY1o6n8vfPOO8jIyMDZs2cRExNTaJ3vAQMG4MCBA0bVwcFkFqZtEx9smD0GB05eRsKDNNSs7oRurfyYpIkqiwdXzR0BPWHfvn1466234O/vjwcPHhQ67+Pjg9u3bxtVBxO1BXJxsOfobqLK6v7V/O0u5fzxLQXZ2dlwc3MzeD4jw/jV5Nj1TURUmahy2KqWEH9/fxw+fNjg+R07dqBFixZG1cFETURU2fxz1twR0L8mT56MzZs3Y/HixUhLy586p9FocO3aNbzyyis4fvw43nrrLaPqYN8JEZHEtWrVComJifCUp+HkzJbA7T+AwKHmDosAjBgxAjdv3sR7772HWbNmAQB69uwJURQhk8mwcOFCDBgwwKg6mKiJiCQuMTERd+/eBZxt/j3wF5CdCtg5mzMs+tesWbPwyiuv4Pvvv8e1a9eg0Wjg6+uLF154AT4+xu+hwERNRFTZaNTA9V+BJgPNHYlFe/ToEZ599lmMGzcOr732mtFd3IbwHTURUWV0aSdgYKVBqhjVqlXDjRs3IBhYmrm8MFETEVVGD64B/5w2dxQWr2fPnti7d69J62CiJiKqrE6tY6vazN5//338/fffeOWVV3DkyBHcvXsXDx8+LPRlDL6jJiKqrBL+BG6fAOq1MXckFqtJkyYAgIsXL2Ljxo0Gy6nV6jLXwURNRFSZHfscqLUWsLIxdyQWafbs2SZ/R81ETURUmaXdAU6tBdpEmDsSizR37lyT11Hmd9RqtRqbN29GREQEBg4ciHPnzgEA0tLS8MMPPyApKancgiQioiL8uQm4c8rcURDyc6Ax3dz6lClRp6amon379hg2bBg2bdqEn376Cffu3QMAKJVKTJw4EZGRkeUaKBERGSCKwKH5QAYbSOZw8uRJ9OzZE9WqVUP16tURExMDALh//z769++P6Ohoo+5fpkQ9ffp0XLhwAXv37sX169d19t+Uy+UYNGgQdu/ebVRgRERUCtmpwL738jftoApz7NgxdOjQAVevXsWIESOg0Wi052rUqIG0tDQsX77cqDrKlKh37NiBN998E927d9f7Ev2ZZ55BfHy8UYEREVEp3f8bOPwJp2xVoJkzZ8LPzw8XL17EwoULC53v3Lkz/vjjD6PqKFOiTktLg7e3t8HzeXl5UKlUZQ6KiIjK6Oo+4Ap7NCtKbGwsRo8eDYVCobfhWrt2bSQmJhpVR5kSta+vL06fNrwizr59++Dv71/moIiIyAjHvgTSE8wdhUWwtrbW6e5+2t27d6FUKo2qo0yJOjw8HGvWrMGWLVu076cFQUBOTg5mzZqFPXv2ICKCUwWIiMwi7xFw7AtzR2ER2rZti23btuk9l5WVhbVr1yI0NNSoOso0j3rSpEm4cOEChg4dCmdnZwDAsGHD8ODBA6hUKkRERGDs2LFGBUZEVV9uZgqSzx1CTmoSFM4ecG/WBTZKF3OHVTXcPJq/alndYHNHUqXNmzcPoaGh6NOnD4YOzd8j/M8//8T169fxySef4N69e3j//feNqqNMLWpBELBy5UocPnwYYWFh6NWrFwIDA/Hqq68iOjoaX3/9dZmC+frrrxEQEABHR0c4OjoiJCQEv/zyi8HyUVFREARB58vW1rZMdRNRxXrw9x+I/WI04g+tReKZPYg/tBaxX4zGw6snzB1a1XH8S0CdZ+4oqrQ2bdpg9+7duHbtGsLCwgAAU6dOxauvvgq1Wo3du3cjICDAqDqMWpmsQ4cO6NChg1EBPKlOnTr46KOP0LBhQ4iiiHXr1qF///44c+aMdj3Vpzk6OuLKlSvaz6Zeyo2ISs5Qizk3MwWXv18E8d8kIor5C0SI6jxc2rYQrd9cy5Z1eUi5Cfy5GWj5irkjqTLS09Nhb28PuVyuPdalSxdcuXIFZ8+exdWrV6HRaODr64ugoKByyUmSWkK0b9++Op8//PBDfP311/j9998NJmpBEODp6VkR4RFVCRXV3fzg7z/yk7FGBUGQQRQ1uBm9Hn6DZuLR/dsQNfpnhogaFZLPHUKdkBfLPSaLdCoKqNsGcHvG3JFUCS4uLli/fj2GDRsGABgzZgwiIiLQpk0bBAYGIjAwsNzrLFOi9vb2Lva3BEEQEBcXV6aggPwlSrdu3YqsrCyEhIQYLJeZmYn69etDo9GgZcuWWLhwocGkDgA5OTnIycnRuZ7IUhSVPF0blt+7zOJazG5NQv+tv/BSi4IgQ04qV9gqNxoVsH828MJywNbJ3NFUejY2Njo5JCoqCt26dUObNqbbwaxMiTo0NLRQolar1bh58yaOHj2Kpk2bokWLFmUK6Ny5cwgJCcHjx4+hVCqxfft2g1O9GjVqhDVr1iAgIABpaWn45JNP0K5dO1y4cAF16tTRe82iRYswb968MsVGVJmZqrtZXws9+dyhIlvMeY/SIIr6p7SIogYKZ49Sx0FFyEgA9r0P9P6Eu2wZqXHjxli1ahW8vLzg5JT/i098fHyRU5YBoGXLlmWuUxDF8l3C5s8//0SPHj3wf//3f+jWrVupr8/NzcWtW7eQlpaGbdu2YdWqVYiJiSnRvOy8vDz4+flh6NChWLBggd4yT7eoz549i9DQUJw6dcqov0iiinQiMgy5GQ9g41AdwZO+LdE1d45/j/hDa/WvWiUI8OoyWm93c1Fd5fpa6ILMCs7ezZF6/QxEjZ4Ws0wOt6adce9CjPaXBp3zcmu0nhgFG3vnEn1flqBOnTq4e/cuajvb4M5Hbct+I++OQLe5gExebFFTOH36NIKCgir1z9s9e/ZgyJAhJe6NFUURgiBIaz/q5s2bIyIiAu+++y5OnSr9bi42NjZo0KABACAoKAixsbGIjIws0Vqp1tbWaNGiBa5du2awjEKhgEKh0H42diI6UWWRk5pU6u7morrKlTUbGmyhp8SdBqC/DSCKGlRzqwe/QTNxadvCQkneb9BMkyTpvOwMXN/zDR5e/QMQZKjRuB18ekRAbmNX7LWiKOLi5jlIiTsFv8HvoXqj/17HZfzzN+IPRSEz4RogAA61GsGr62goPXzK/Xsw2o3DwOElQMdpgKzMmydatJ49e+LGjRuIjY1FUlISRo0ahVdffbXIV7TGMslgMg8PD1y8eLFc7qXRaHRawEVRq9U4d+4cevfuXS51E1UlCmePUnU3F9dVXifkRYPd2xA1gCCDvmQtyKzgHtAVNvbOaP3mWt3W+r/Hy+qvb6fDo3lXeDTvXujc3zuWIDfzIZoO/wAatRpXf16Ga7u+QKOB04q97z8ndgAoPC5HnZuNC5tmw7VhG/j2egOiRo1bMRtwYeP7aD1xHWRySY3XzXflF8BKAbSfDHCWTKn99ddfqF+/Pnr06AEAWLt2LQYPHoyuXbuarM5y/5XqwYMHWL16tcF3xEWZMWMGDh8+jPj4eJw7dw4zZsxAdHQ0hg8fDgAICwvDjBkztOXnz5+Pffv24fr16zh9+jRGjBiBmzdvIjw8vNy+H6Kqwr1ZFwgy/YmjIHk+qbj3zKk3zkIQ9P8IEWRyuPi0hCC3BgQBgkye/6fcWqfFbKN0QZ2QF+Hb6w3UCXnRZN3dj+7fQkrcKTToMwkOtRvDqV4T+PaMwL0Lh5GT8aDIazMT43D39+1o2HeSnvvegSo7A/VDR6Ba9Tqwd6uPeh2HIS8rFTlpySb5XsrFhR3AH8u5eUcZtGjRArt27arQOsv0616XLl30Hk9NTcXly5eRm5uL9evXl/q+ycnJCAsLQ0JCApycnBAQEIC9e/eie/f8345v3boF2RPdNSkpKRg3bhwSExPh4uKCoKAgHDt2jOuME+lho3QpVXdzcV3lAIpsoTt5BaBh38nl2mIuq/Q7lyG3tYdDrYbaY87eLQBBQMbdK1A0bqf3OnXeY1zZsQS+PV+HjdK10Hm76rVhZeeIxLP7ULfDSxA1GiSd3Qe7GnVhK/UBcX9uAhQOQIvh5o6kUrGzs8OjR4+0n2NiYjBu3DiT1lmmRK3RaAqN+hYEAd7e3ujWrRvGjBmDxo0bl/q+q1evLvL805tvf/bZZ/jss89KXQ+RpXlyQFidkEGAAKgepWuTJ0QRd45/rzNgrLiucmfvFshMjNM/IOyJ7m0pzIfOy0yBTTVnnWOCTA5rOwfkZaUYvO7GvpVwrOOn8076SVaKamj2yiJc2voBbh/ZDACwc62FJkMX5PciSN2JFYC9G/DMc+aOpNJo3rw5Pv30U8jlcu2o79jY2GJXxXzhhRfKXGeZEvXTCZOIpMvQyOyCudOGBow1fH4iBJmVwURcs/XzcKj9TIUOCHva7SNbcPvod9rPGlUuMu5eRtyeb7THWr5WtiWNH/z9O1Lj/0KLcZ8bLKPOy8HVnZFwrOOPRgOnQdRocPf3H3Bxy1w0H/MZ5NYKg9dKxuElgHM9wL30jStLFBkZiUGDBmn3sxAEAZGRkYiMjDR4jeRGfRORdBQ3ICxwzDKD56/u/BwN+kzEtV2fG0zErg2Dy31AWGl4BvVGDf9ntZ+v7FiCGo3bo/oTXdkKh+qwVrog91GqzrWiRo287AxY2+ufO54W/xcepyTg+JKXdI5f2rYQjnWbICDsI9w7H42ctGQ0H71U+zpAOfAd/P7JEDz8+3e4NTFu1yQg/5VfVlYWACArR41bDx+jnms57mmgzgUOLQBeXAVYFz8C3hz+97//YcmSJUhMTETz5s3xxRdfIDhY/wI9UVFRGD16tM4xhUKBx48fl0ssrVq1wrVr1xAXF4ekpCR06tQJs2bNKtN05JIqUaL+9tuSzdN8WsEC5URkHsUNCIv/NarohUmyUopNxAUDwszB2s4B1nYO2s8yKwWs7Z1g51pLp5xjncZQP85CZsJVKGvmv6dOvfEnIIpwqN1I773rtBsEj0DdLuEzK8bDp/s47SpuGlXOvyOn/3sVmJ+wBRi7RMWJEyewYMEC7Nq1S3uv1Gw1vGadwPPNXPF+7/po7eVQzF1KKO0O8NcWIGhU+dyvHG3ZsgVTpkzBN998gzZt2mDZsmXo0aMHrly5And3d73XmHoPCCsrKzRq1AiNGjXCyJEj8fzzz5t/ZbJRo0aV+saCIDBRE5lZsXOn05KLnVttzkRcXqrVqAcX3yBc3fUFGvQaD1GjRtzer+HWpCMUDtUBADnp93F+wyw8028KHGo3go3SVe8AMoWTG2xd8vcXcPZugRsH1iBuz1eo1bovRFHEnaNbIcjkcK5f9h2TfvjhBwwZMgSiKBZK+KII7D7/EL+cT8GWcX54oUWNMtej46+tQMDLgLW0diD89NNPMW7cOG0r+ZtvvsGuXbuwZs0aTJ8+Xe81FbkHxNq1a01eR4kS9Y0bN0wdBxGZQLFzp53c8ej+LcPnpT5yuRSeGfAOru/5Guc3zAIEAdUbt4dvjwjteVGjRvaDO1DnlWzdBgCoVqMu/IfMwe3DG/Hn2rchCALsPX3RZOh82DgUTvIlceLECQwZMgRqtdpgq1ytAQSIGLLyEo5NCyyflnVuJnDrOODb2fh7lZPc3FycOnVKZ1quTCZDt27dcPz4cYPXlXYPiNKYP38+BEHArFmzIJPJMH/+/GKvEQTBqD2pS5So69evX+YKiKj8FSzhWdza3O7NuuBm9HqDA8K8uoxG6o2zRY7crkwCwj4yeM7azqHIxU1snT3Q4b2i58fqO+/i0wIuPmXb20CfDz74QG9L+mkiABEiPth9Ez++0bR8Kk84WyGJOjMzE+np6drPT68YWeD+/ftQq9Xw8ND9hdHDwwOXL1/We++y7AFRGnPnzoUgCHj33XdhY2ODuXPnFnuNsYmaa8gRVUKBYyMRPOlbBI41PNIU+G/utKGFR+zd6xd5nuttV6xbt25h586dJR4hrNYAP597iFsPy2egFFJuls99ihEaGgonJyft16JFi8rt3iEhIQgLC0NgYCBCQ0Pxww8/wM3NrUTLUJeERqOBWq2GjY2N9nNxX8aM+AaMGPWdmJiI1atX4/Tp00hLS4NGo9u9JggCDh48aFRwRFWRRp2nd7MKU3HyCkDL17/B/fMxyHqYCBvHGnBrEgpreyc8fpSBarX90Cz8C9y/cBiP0+7B1slN53x5EWRyyOTW5XY/qSmP5/rL7l2lHoQmisDeiykY2Vb/wKpSybgPIa9w70p5UanyBy7GxMTo7NusrzUNADVq1IBcLkdSku469ElJSSV+B12SPSCkrkyJ+q+//kKnTp2QnZ2NRo0a4dy5c/D390dqairu3r0LX19f1K1bt7xjJar0NOo8ZNz9G+rc7Aqv297TF19+dxAff7Gywusm03r1/67i1f+7Wg53OgoM31AO9ymaUqmEo6NjseVsbGwQFBSEgwcPYsCAAQDyW7AHDx7EhAkTSlRXRewBcenSJcTFxSEjIwMODg5o0KBBmRb9MqRMiXr69OlQKpU4e/YsqlWrBnd3d0RGRqJLly7YunUrXn/9dWzYYPqHTVTZiBo11LnZkFlZmaV1OX3KBEyb/EaF16tR50GjUsOpfhPIJTaquDyo8x4j7eYFyKyM6zXYuO1HTHx3bqmvWz7UC2FtjBv9LYoi1Pa1YDV8g8me0ZkzZ0o9jWnKlCkYOXIkWrVqheDgYCxbtgxZWVnaUeBhYWGoXbu2tvt8/vz5aNu2LRo0aIDU1FQsWbLEZHtALF++HB9++CHu3r1b6Fy9evUwa9ascqm3TIn66NGjmDZtGurVq4eHDx8CgLbre/DgwThy5AjeeecdxMTEGB0gUVUkk1tDZmVT8fWaaYkjjSoXqpxsWFtbQ25d9bq/ZVDD2toKVgo7o55rt86dIAilm4MtCED3xs6wlhu7ZKmIPIcaJn1GVlal/wc4ZMgQ3Lt3D7Nnz0ZiYiICAwOxZ88e7QAzc+0B8fbbb+PTTz+Fq6srxowZg6ZNm0KpVCIzMxPnzp3Djh07EBERgatXr2Lx4sVG1VXmtb4L/pKcnZ0hl8u1CRsAmjVrVuy63UQkTXnZGUi5GovczIewUbrCpWFrnUVFyHTq1qmFnt06Y9+hmBINQJLLgN5NnFHPtXyWKlU5e0OKv0ZNmDDBYFe3OfaAOHHiBD799FMMHDgQ3377Lezt7QuViYyMxIgRI/DJJ59g8ODBaNWqVZnrK9Oob29vb+3caplMBm9vbxw4cEB7/tixY3B2di5zUERUtCs/LsWFTXNw5cel5XrftFvncXHzPPwT+zPuXzmGf2J/xsXN85B260K51kOGvfvWGxAEodjVtPLXQxMws0ftcqtb5Vl+08yqstWrV6NmzZrYuHGj3iQNAPb29ti0aRM8PDyMbriWOFGnpPy3w8xzzz2HrVu3aj+//vrrWLVqFbp164auXbti3bp1GDZsmFGBEZFhqkfpyHuUBtWj9OILl1BedgbiDxYsKSoCGg0AMX+p0YNrkZddfiPAybCgwABEffMZ5HI55Aa6s+UyQC4TsHlMA7SuryyXetU1GkOjrJjVvCq748ePY/DgwQZHqxewtbXF4MGDcfToUaPqK3Gi9vT0xMCBA7Ft2zZMnToVmzZtQt6/w/gnT56M+fPn48GDB0hLS8P777+PDz74wKjAqGKlZGThu0Mn8fm2Q/ju0EmkZGSZOySqYClXYw1OLxI1aqRci63giCxX/949cOCnzXiuS6ieLYXzu7t/m+KPAc3LtvqZPrnPPF9u96rqbt++DT8/vxKV9ff3x+3bt42qr8TvqAcNGoSffvoJP/30ExwcHPDCCy9g+PDh6NKlCwRBwHvvvYf33nvPqGCo7N5YuhEpGY/g4lANX00tXW/G8fPXsWDdLqjUGsgEARpRRNQvxzF7VB+0beJjoohJanIzHwIyAdDoGcgkE5Cb8bDwcTKZoMAAfLfuG9y+8w/ade+H1LR0ONvJcXp6s3J7J11A494EGjd/IKfipw1WRunp6XBwKNm4DaVSiYwM43qjStyi3rBhA5KTk/F///d/ePbZZ7FhwwY899xzqF27NqZOnYrTp08bFQgZJyXjEe6nZSIl41Epr8vCgnW7kKfKX1dYrdFAFEXkqdSYH7WLLesqLC87A8l/HcKdY9uQ/NchyBX2+pM0AGjEMq9dTcapW6cWqlXL337SXiEr9yQNAHlNBpf7PasyURRLtSOXsTuplWrUt52dHYYOHYqhQ4ciJSUF3333HTZu3Ihly5Zh2bJlaNiwIUaMGIFhw4bBx4ctscpgf+wlqNT6N21QqTU4cPIyBncOquCoyNTSbp3/9320+r9WtCAz2KIWZHK4NGhthkjJ1NS1WkLj6guocs0dSqXyySefYNOmTcWW0zfHurTKPKvSxcUFERERiIiIwN27d7Fx40Zs2rQJs2fPxpw5c9CmTRscO3bM6ADJtBIfpkMmCFDr+Y1PJghIeJBmhqjIlHQHjeG/xCyqAcggyOQQNRpt0hZkcnh1Hc0pWlWRICDPv3JvYWoOBWuIPDktubjyxiiX5Q9q166Nd955Bz179sTs2bPx448/4o8//iiPW5OJebo6QmOgW0YjiqhZ3amCIyJTK2rQGEQR7oHdILe2RW7GQ9g4uMKlAedRV1Xquu0gOhmXRCxRfHx8hdZndKK+deuWtjV9/vx5iKKIdu3aYfjw4eURH5lY99Z+iPrlOPJUhX9wW8ll6NaqZCMbqfIobtCY+vEj1GxpunWRSSKsFHw3XUmUKVHfv39f+376+PHjEEURjRs3xvz58zF8+HB4eXmVc5hUnlIysrA/9hISH6bD09URU4Z0xadbDuqM+raSyzB7VB+4OFQzd7hUzmyUrhw0RsjzHwSxWnVzh0ElUOJEnZWVhe3bt2Pjxo04ePAg8vLyULNmTUyePBnDhw9Hy5YtTRknlRN9U7Gs5DJMeakrUjKzkfAgDTWrO6FbKz8m6SrKpWFrJJza/d876idw0Jhl0Lg1hqrBc+YOg0qoxIna3d0djx8/hlKpxLBhw7RzqJ9cDJ2k7cmpWAC0A8jyVGp8+t1BbJg9Bi4O+pfDo8rt6fW76z77Mm7/tlln1DcHjVkGUeGA3Nav54/yp0qhxIm6W7duGD58OPr16wdb26q3TZ0l4FQsy6RvKpYgk6NuhyFQPc7goDFLIpMht80EiHZ8vVGZlDhR//jjj6aMgyoAp2JZHkNTsUSNCrePbIH/y3OYnC1IbvOw/BXIqFJh34cF4VQsy8P1u6mAqmFPqH26mjsMKgMzbSNP5sCpWJaH63cTAKjrBCOv2VBzh1Fl7d27F6tXr8b169eRkpJSaMlQQRAQFxdX5vszUVsQFwd7zB7VB/OjCo/65lSsqolTsUjj3gS5rV7j4DETWbJkCaZPnw4PDw8EBwejWbNm5V4HE7WFadvEBxtmj8GBk5c5FcsCcCqWZdO4+iCn7WRAbm3uUKqsyMhIdOnSBbt374a1tWn+npmoLZCLgz1Hd1sIazsHeHUdjfiDazkVy8JonOshp/07gDVn6ZhSSkoKBg0aZLIkDTBRE1V5TvWawP/lOUi5FsupWBZCdKyFnA7vAjZKc4dS5QUHB+PKlSsmrYOJmsgCWNs5wL1ZF3OHQRVAtK+Rn6QVjuYOxSJ89dVX6NWrF1q1aoVhw4aZpA4maiKiKkK0USKn/btc0KQCDRkyBCqVCq+88gpef/111KlTB3K5XKeMIAj4888/y1wHEzURUVUgCMhtOwmig6e5I7Eorq6uqF69Oho2bGiyOpioiYiqgLwmg6Fxa2zuMCxOdHS0yevgxDoiokpO4+oL1TN9zB0GmQhb1ERElZkgIDdwJBc0MbO8vDxcvnwZaWlp0GgKb37UsWPHMt+biZqIqBJT1w6G6OJt7jAslkajwYwZM/DVV1/h0aNHBsup1frX3C8JJmoiKtbT+1m7NOQ8bKnIa/S8uUOwaAsXLsSSJUsQERGBDh064JVXXsHixYvh7OyMr776CoIg4OOPPzaqDiZqIioyEevbzzrh1G54dR0Np3pNzBy5ZdO4NoDo7GXuMCxaVFQUXnrpJXz99dd48OABACAoKAhdunTByJEjERISgkOHDqFbt25lroMvNcgoKRlZ+O7QSXy+7RC+O3QSKRlZ5g6JSint1nlc3DwP/8T+jPtXjuGf2J9xcfM8pN268NR+1iKg0QAQIWpUiD+4FnnZGeYO36Kp6rU3dwgW786dO+jSJX8xIYVCAQB4/PgxAMDGxgYjRozA+vXrjaqDLWoqs+Pnr2PBOt2duKJ+OY7Zo/qgbRMfc4dHTzDUYtZNxNDutFWQiN0Duha7nzVXPDMTQYC6NjdVMbfq1asjMzMTAKBUKuHo6Ijr16/rlElJSTGqDiZqKpOUjCwsWLdLu7e1+t/9V/NUasyP2oUNs8fAxcHenCHSv4rqus5JTSoyEWf8c4X7WUuAh5sbAMDTKlN7TFOjEWDrZK6Q6F8tWrRAbGys9nPnzp2xbNkytGjRAhqNBp9//jmaN29uVB3s+qYiGera3h97CSp14SkIAKBSa3Dg5OWKDJMMKK7rOjs1MT8R61NwnPtZm93hPT/gyqnf8Me0ptpj6trBZoyICrz66qvIyclBTk4OAODDDz9EamoqOnbsiNDQUKSnp2Pp0qVG1cEWNRlUVNd24sN0yARB25J+kkwQkPAgzQwR09NSrsYW2WJWP84sMhE71H4G2ffvcD9rqREEqJioJaFfv37o16+f9rO/vz/i4uIQHR0NuVyOdu3awdXVuF9omahJr+K6tod0CYJGT5IGAI0oomZ1dslJQW7mwyK7rq1slRBkcoOJuIbfs6hWoz73s5YYtUczdntLmJOTE/r3719u92OiJr2K69oGBFjJZdpE/iQruQzdWvmZOEIqCRula5EtZlsXT3h1HV1kIuZ+1tKjrhti7hDoCWq1Glu3bsWvv/6K5ORkzJ8/H82aNUNaWhoOHjyI9u3bw8PDo8z3Z6ImpGRkYX/sJSQ+TIenqyO6t/Yrtms7LSsbs0f1wfwo3a5xK7kMs0f1gYtDNTN8J/Q0l4atkXBqd5Fd19Z2DsUmYu5nLSEyK6hrBpk7CvpXamoqevbsiRMnTkCpVCIrKwtvvvkmgPxR4BMnTkRYWBgWLlxY5jokNZjs66+/RkBAABwdHeHo6IiQkBD88ssvRV6zdetWNG7cGLa2tmjWrBl2795dQdFWDcfPX8fw+WuwaudR7D5+Hqt2HsXw+WuQm6cqtmu7bRMfbJg9BuP6dkDvkKYY17cDNswey6lZEmJt5wCvrqMhyKwACIBMBkCAILPS6bouSMR12g2Ce7MubC1LmNqtMWBtZ+4w6F/Tp0/HhQsXsHfvXly/fh3iEz835XI5Bg0aZHReklSLuk6dOvjoo4/QsGFDiKKIdevWoX///jhz5gyaNCm8AtKxY8cwdOhQLFq0CM8//zw2btyIAQMG4PTp02jatKmeGuhJRb2HPnjqMqxkAvLUhZP1k13bLg72GNyZv91LGbuuqxaNO1eDk5IdO3bgzTffRPfu3bUrkz3pmWeeQVRUlFF1SKpF3bdvX/Tu3RsNGzbEM888gw8//BBKpRK///673vKRkZHo2bMn3nnnHfj5+WHBggVo2bIlvvzyywqOvHIq6j20WiOiS1BjWFvJIQgC5DIZBEGAtZWcXduVEFvMVYfGtYG5Q6AnpKWlwdvb8KYoeXl5UKkKv3oqDUm1qJ9U8HI+KysLISH6B04cP34cU6ZM0TnWo0cP7NixowIirPyKew9tY22FDbPH4MDJy0h4kIaa1Z3QrZUfkzSRGWmc6ps7BHqCr68vTp8+bfD8vn374O/vb1QdkkvU586dQ0hICB4/fgylUont27cb/CYTExMLjaTz8PBAYmKiwfs/OTEdgHbpN0vk6epY7Htodm0TSYdo58L30xITHh6Od999F506dULXrl0BAIIgICcnB/Pnz8eePXuwYsUKo+qQXKJu1KgRzp49i7S0NGzbtg0jR45ETEyM0b+RFFi0aBHmzZtXLveq7Lq39kPUL8c5xcoCcJvKqkG0L/sUHzKNSZMm4cKFCxg6dCicnZ0BAMOGDcODBw+gUqkQERGBsWPHGlWH5BK1jY0NGjTIfwcTFBSE2NhYREZGYvny5YXKenp6IikpSedYUlISPD09Dd5/xowZOt3lZ8+eRWhoaDlFX7m4ONhzipUF4DaVVYdYrbq5Q6CnCIKAlStXYuTIkdi2bRuuXr0KjUYDX19fvPTSS+jYsaPRdUguUT9No9HodFU/KSQkBAcPHsTkyZO1x/bv32/wnTaQvw1ZwVZkQP48N0vz9Lzp/015GScv3+J76CqouN2x/F+ew5Z1JSJyNTLJ6tChAzp06GCSe0sqUc+YMQO9evVCvXr1kJGRgY0bNyI6Ohp79+4FAISFhaF27dpYtGgRgPwuh9DQUCxduhR9+vTB5s2bcfLkSaPfB1RlRa3fzXfRVU9xa31zm8rKRbSxvIYFSSxRJycnIywsDAkJCXByckJAQAD27t2L7t27AwBu3boFmey/GWXt2rXDxo0b8d5772HmzJlo2LAhduzYwTnUBnBrSstT3Frf3KaychGt2dMlBU9uwlESgiDgxx9/LHN9kkrUq1evLvJ8dHR0oWODBw/G4MGDTRRR1VKSrSnZqq5ailvrm9tUVjJWiuLLkMnt3LkTtra28PT01FmJzBBBMLCVbAlJKlGTaXFrSstTkrW+qRKxsjV3BASgdu3auHv3LmrUqIFhw4bh5ZdfLnIQs7EktTIZmVZJ5k1T1VLStb6pchDlTNRScPv2bfz6669o0aIFFixYgLp166Jbt25Yu3YtMjIyyr0+JmoL0r21H6zk+h85501XXQVrfdcK7osajdqhVnBf+L88h1OzKiML7fr+3//+By8vL9ja2qJNmzY4ceJEkeUrYrOm0NBQLF++HImJidi2bRuqV6+OCRMmwN3dHS+88AK2bdtmcMZSaTFRVxEuDtVQw0lZ5LSqgnnTXL/b8nCt76pBtMBEvWXLFkyZMgVz5szB6dOn0bx5c/To0QPJycl6yxds1jR27FicOXMGAwYMwIABA3D+/HmTxGdtbY3+/ftjy5YtSEpK0ibvIUOG4OOPPy6XOviOuor4auqwEpUr2JqS63cTVUIyG3NHUOE+/fRTjBs3DqNHjwYAfPPNN9i1axfWrFmD6dOnFyr/5GZNALBgwQLs378fX375Jb755huTxZmTk4O9e/fixx9/xJkzZ2BrawsvL69yuTcTtZnlqdRQa/SPxDYVO4UN+rYPgFqthubfujOyHlVoDHKZDNZW8gqtUwrUeXnIy1NBlOVBJpZ9JKj4xJ95eXnlEpspaVR5UOWpkJeXBw2q3nMveK5q8RFkctM9DyFPBTE7yyT31qjzoFGpTfqMCnaRyszMRHp6uvb40wtRFcjNzcWpU6cwY8YM7TGZTIZu3brh+PHjeuuoyM2aNBoN9u/fj02bNmHHjh149OgRunXrhpUrV2LgwIGwty+f6a5M1GaUp1Ljyq1EPMoxzw/alV8uw6qvIs1SNxnn+7c7w93JDv8kJCKkPt81U+Xy9LLNc+bMwdy5cwuVu3//PtRqtd7Nly5fvqz33mXZrKm0jh07ho0bN2Lr1q148OAB2rZti4ULF+Kll15CjRo1yq2eAkzUZqTWaPAoJw/WcvO0LidMnoI3Jk5G5qPHOHnlFh6mZ8HV0R6tGtWDslrZR5deiE/A+j2/Q63RQBAEiKIIuUyGsJ5t4e9VE3kqNVRqDZr51oatjXU5fkfSp857jLSbF2ClsIXMquzdmFe2fQDVozTUqumJhzcvlGOEpqFR5UKV8xhO9ZtAbl01Ry5r1HkGV4ErNzkZgMJ04wsEmRwyuen+nzxz5gzatGmDmJgYBAYGao/ra01LWYcOHWBnZ4fevXtj6NCh2i7uW7du4datW3qvadmyZZnrY6KWAGsrOWyszfAorK1wLu4uVu08opNU9528jPC+HdDMp3apb5melY0N+2OhgQBBlv/LhyAAGgD/tz8WC8L7oZqdbf4vKNbWsLa2rEQtgxrW1lawsraGzKrs37vwxJ+V4e9QI4gQNCpYW1tDXgniLZOK+L6sZIBN5V090Moq/+ecUqmEo6NjseVr1KgBuVxeqs2XyrJZU1lkZ2fj+++/xw8//FBkOVEUIQgC1Oqy/xLHRG3B0rOysWrnEe1qZQUr7KjUGqz6+QgWhPeDo73hvW/Ts7Lxx8V4bUu8jb8X/rgYb/Cdu1qjwYlL8ejYvGH5fzMWxqqao86fZCmMW+GqsrGxsUFQUBAOHjyIAQMGAMh/L3zw4EFMmDBB7zVl2ayptNauXVtu9yoJJuoqYvGGvUjPyoajvR3eHd6jRNeUJKkamlutryW+89hfaFTPQ/v5aTJBwIM00wyEsTSN+k81dwhEFWLKlCkYOXIkWrVqheDgYCxbtgxZWVnaUeDm2Kxp5MiR5XavkmCiriLSs7KRmpldqmsepmeVKakW1RK/FJ8IEYZXP6vuVHm77YjMzsg1oyujIUOG4N69e5g9ezYSExMRGBiIPXv2aAeMWcJmTUzUFszV0d7ggvJFJdWiWuIaUYRMEPQma7lMhjb+3mUPmMjiWV6iBoAJEyYY7Oq2hM2auDKZBWvj7wW5TP8/gaKSakFLXP91Avy8PGEll0EQ8j8LQv4SpeF9O8DBiNHkRBbPAlvUxBa1RXO0t0N43w5Y9XP+u2aZIEDz71SqgqSqb8BYcS3xZ+p6YMRzbXDiUjwepGWhupM92vh7M0lLWF52BlKuxiI38yFslK5wadiay4xKkdzyViYjJmqL9HTynTbsOVy6mVgoqRoaMDasezDkMpneva0LWuIO1Wy5yUclkXbrPOIPRuXPAZYJgEZEwqnd8Oo6mht3SA1b1BaJidrC6E+++S3oJxNrUQPGNu4/gWHdg7Fx/wmDLXGSFkMt5rzsjH+T9L/7VWvyn7OoUSH+4Fr4vzyHLWsiM2OitiClmTdd3NStjEePsSC8H7u3K4GiWsw5qUkGV9MSNWqkXIuFe7MuFRwxET2JidqClGbedEmmbjna27F7W+KKazE7+7bUJu9CZAJyMx5WYLREpA9HfVuQokZrPz1vuqxTt0haUq7GFtliVj/O1J+kAUAjwsbB1YTREVFJMFFbkNIk37JO3SJpyc18mN9i1kcmwMpWqV2T/WmCTA6XBq1NGB0RlQQTtQUpTfItmLrF+dCVm43StcgWs62LJ7y6joYgswIgADIZAAGCzApeXUdzIBmRBPAdtQUpybxpQHf6VrdWfhAEICs7lwPGKiGXhq2RcGr3f++on1DQYra2c4D/y3OQci0WuRkPYePgqj1ORObHRG1hmvnULnK0tr7pWwWJvCzbXpJ5Wds5wKvraMQfXKsz6luQyXVazNZ2DhzdTSRRTNQWyNBobWO3vSRpcqrXhC1mokqMiZq0jNn2kqSNLWaiyouJ2gLpW7/b0d6uzNteEhGR6TBRWxhD63eH9+3AudNERBLE6VkW5Ml30KIIaDQiRPG/d9D+Xp6cO01EJDFM1BakuHfQl24mcu40EZHEsOvbgpTkHXS3Vn7cbIOISEKYqC1ISd9Bc7MNIiLpYNe3BeH63URElQ8TtQXh+t2WKy87A8l/HcKdY9uQ/Nch5GVnmDskIiohdn1bmOKWEKWqJ+3W+X/3pP5vCdGEU7vh1XU0nOo1MXd4RFQMJmoLxHfQliMvO+PfJP3vphz/7qQlalSIP7gW/i/P4VKiRBLHrm+iKizlamx+S1oPUaNGyrXYCo6IiEqLiZqoCsvNfJjf3a2PTEBuxsOKDYiISo2JmqgKs1G6aru7C9GIsHFwrdiAiKjUmKiJqjCXhq0hyOR6zwkyOVwatK7giIiotJioiaowazsHeHUdDUFmBUAAZDIAAgSZFby6juZAMqJKgKO+iao4p3pN4P/yHKRci0VuxkPYOLjCpUFrJmmiSoKJmsgCWNs5wL1ZF3OHQURlwK5vIiIiCWOiJiIikjB2fVug9Kxs/HExHg/Ts+DqaI82/l5wtLczd1hERKQHE7WFORd3F6t2HoFao9HuTb3z2F8I79sBzXxqmzs8IiJ6Cru+LUh6VjZW7TwClVoDUQQ0GhGiCKjUGqz6+QjSs7LNHSIRET2FidqC/HExHmqNRu85tUaDE5fiKzYgIiIqFhO1BXmYngVB0L/us0wQ8CAtq4IjIiKi4kgqUS9atAitW7eGg4MD3N3dMWDAAFy5cqXIa6KioiAIgs6XrS33VtbH1dEeoqh/3WeNKKK6k30FR0RERMWRVKKOiYnB+PHj8fvvv2P//v3Iy8vDc889h6ysolt6jo6OSEhI0H7dvHmzgiKuXNr4e0Eu0//I5TIZ2vh7V3BERERUHEmN+t6zZ4/O56ioKLi7u+PUqVPo2LGjwesEQYCnp6epw6v0HO3tEN63A1b9nD/qWyYI0Igi5DIZwvt2gEM19kQQEUmNpBL109LS0gAArq5Fb8WXmZmJ+vXrQ6PRoGXLlli4cCGaNGmit2xOTg5ycnJ0rrUkzXxqY0F4P5y4FI8HaVmo7mSPNv7eTNJERBIl2USt0WgwefJktG/fHk2bNjVYrlGjRlizZg0CAgKQlpaGTz75BO3atcOFCxdQp06dQuUXLVqEefPmmTJ0yXO0t0O3Vn7mDoOIiEpAUu+onzR+/HicP38emzdvLrJcSEgIwsLCEBgYiNDQUPzwww9wc3PD8uXL9ZafMWMG0tLStF8xMTGmCJ+IiKhcSLJFPWHCBOzcuROHDx/W2youirW1NVq0aIFr167pPa9QKKBQKLSflUqlUbFWRVxilIhIOiSVqEVRxJtvvont27cjOjoa3t6lH4WsVqtx7tw59O7d2wQRVn1cYpSISFok1fU9fvx4/N///R82btwIBwcHJCYmIjExEdnZ/y1tGRYWhhkzZmg/z58/H/v27cP169dx+vRpjBgxAjdv3kR4eLg5vgWzcbS3g7PSzqiWL5cYJSKSHkm1qL/++msAQKdOnXSOr127FqNGjQIA3Lp1C7In5gKnpKRg3LhxSExMhIuLC4KCgnDs2DH4+/tXVNiS8O7wHiUua6hruyRLjHIQGhFRxZJUoja0ataToqOjdT5/9tln+Oyzz0wUUdVTVNd2wRKj+p4DlxglIjIPSXV9k2kV17Vtb2vDJUaJiCSGidqCFNe1DQFcYpSIKqWHDx9i+PDhcHR0hLOzM8aOHVvsgladOnUqtFfEa6+9VkERlxwTtQUpbvesrOxchPftACu5DIIAyGUCBAGwknOJUSKStuHDh+PChQvYv3+/dnrvq6++Wux148aN09kr4uOPP66AaEtHUu+oybRKsnsWlxglosrm0qVL2LNnD2JjY9GqVSsAwBdffIHevXvjk08+Qa1atQxeW61aNcnvFcEWtQUp6e5ZBUuMDunaCt1a+TFJE5GkHT9+HM7OztokDQDdunWDTCbDH3/8UeS1GzZsQI0aNdC0aVPMmDEDjx49MnW4pcYWtQXh7llEJAWZmZlIT0/Xfn56xcjSSkxMhLu7u84xKysruLq6IjEx0eB1w4YNQ/369VGrVi389ddfePfdd3HlyhX88MMPZY7FFJioLQy7tonI3EJDQ3U+z5kzB3Pnzi1Ubvr06Vi8eHGR97p06VKZ43jyHXazZs1Qs2ZNdO3aFXFxcfD19S3zfcsbE7UF4u5ZRGROMTExCAwM1H421JqeOnWqdrErQ3x8fODp6Ynk5GSd4yqVCg8fPizV++c2bdoAAK5du8ZETURElkupVMLR0bHYcm5ubnBzcyu2XEhICFJTU3Hq1CkEBQUBAA4dOgSNRqNNviVx9uxZAEDNmjVLfE1F4GAy0pGelY39sZew5eBJ7I+9xPW9iUjy/Pz80LNnT4wbNw4nTpzA0aNHMWHCBLz88svaEd93795F48aNceLECQBAXFwcFixYgFOnTiE+Ph4//fQTwsLC0LFjRwQEBJjz2ymELWrS4s5ZRFRZbdiwARMmTEDXrl0hk8nw4osv4vPPP9eez8vLw5UrV7Sjum1sbHDgwAEsW7YMWVlZqFu3Ll588UW899575voWDGKiJgC6y4sC/627XrC86ILwftyTmogky9XVFRs3bjR43svLS2cdibp16yImJqYiQjMau74JQPHLi564FF+xAREREQC2qC2Svm0uuXMWEZE0MVFbGEPvoVs1rs+ds4iIJIhd3xakqG0uYy/FQ8ads4iIJIeJ2oIU9R5aI4po3bg+d84iIpIYdn1bkOLeQ9tYWXF5USIiiWGitiAl2eaSy4sSEUkLu74tSEm3uSQiIulgorYgBdtc8j00EVHlwa5vC8NtLomIKhcmagvE99BERJUHu76JiIgkjImaiIhIwpioiYiIJIyJmoiISMKYqImIiCSMiZqIiEjCmKiJiIgkjPOo/3Xp0qUKrzMnT4Wrd5Jha20Fayt5hddvLnkqNR7nqaBOT4bC2rL+CapVOchMiIPcWgGZ3Nrc4VQYjToP6rwcKB/mQW6l0DlXs2ZN1KxZ00yRlU1CQgISEhLMHUalY46fs1WBZf2U1KNmzZoIDQ3FiBEjzB0KkUWaM2cO5s6da+4wSmX58uWYN2+eucOolEJDQyvdL2bmJoiGtlOyIJb423FmZiZCQ0MRExMDpVJp7nCoAkj1mbNFXTypPruyqIzP29yYqC1Ueno6nJyckJaWBkdHR3OHQxWAz7zy4rOzbBxMRkREJGFM1ERERBLGRG2hFAoF5syZA4VCUXxhqhL4zCsvPjvLxnfUREREEsYWNRERkYQxURMREUkYEzUZLT4+HoIgICoqytyhEBFVOUzUFSwuLg4RERHw8fGBra0tHB0d0b59e0RGRiI7O9tk9V68eBFz585FfHy8yeooiQ8//BD9+vWDh4cHBEGodCtSmZIgCCX6io6ONrquR48eYe7cuaW6F59d0fj8yFQsfgnRirRr1y4MHjwYCoUCYWFhaNq0KXJzc3HkyBG88847uHDhAlasWGGSui9evIh58+ahU6dO8PLyMkkdJfHee+/B09MTLVq0wN69e80WhxStX79e5/O3336L/fv3Fzru5+dndF2PHj3SLoHZqVOnEl3DZ1c0Pj8yFSbqCnLjxg28/PLLqF+/Pg4dOqSzhN748eNx7do17Nq1y4wR/kcURTx+/Bh2dnblfu8bN27Ay8sL9+/fh5ubW7nfvzJ7er3533//Hfv375fMOvR8dkXj8yNTYdd3Bfn444+RmZmJ1atX613ntkGDBpg0aZL2s0qlwoIFC+Dr6wuFQgEvLy/MnDkTOTk5Otd5eXnh+eefx5EjRxAcHAxbW1v4+Pjg22+/1ZaJiorC4MGDAQCdO3cu1AVXcI+9e/eiVatWsLOzw/LlywEA169fx+DBg+Hq6opq1aqhbdu2Rv1CYc7WfFWg0WiwbNkyNGnSBLa2tvDw8EBERARSUlJ0yp08eRI9evRAjRo1YGdnB29vb4wZMwZA/piCgh/U8+bN0/57KK4rlM/OeHx+VBZsUVeQn3/+GT4+PmjXrl2JyoeHh2PdunUYNGgQpk6dij/++AOLFi3CpUuXsH37dp2y165dw6BBgzB27FiMHDkSa9aswahRoxAUFIQmTZqgY8eOmDhxIj7//HPMnDlT2/X2ZBfclStXMHToUERERGDcuHFo1KgRkpKS0K5dOzx69AgTJ05E9erVsW7dOvTr1w/btm3DwIEDy+8viEokIiICUVFRGD16NCZOnIgbN27gyy+/xJkzZ3D06FFYW1sjOTkZzz33HNzc3DB9+nQ4OzsjPj4eP/zwAwDAzc0NX3/9NV5//XUMHDgQL7zwAgAgICDAnN+aReDzozIRyeTS0tJEAGL//v1LVP7s2bMiADE8PFzn+Ntvvy0CEA8dOqQ9Vr9+fRGAePjwYe2x5ORkUaFQiFOnTtUe27p1qwhA/PXXXwvVV3CPPXv26ByfPHmyCED87bfftMcyMjJEb29v0cvLS1Sr1aIoiuKNGzdEAOLatWtL9P2Joijeu3dPBCDOmTOnxNdYmvHjx4tP/i/622+/iQDEDRs26JTbs2ePzvHt27eLAMTY2FiD9zbm75/PrmT4/Ki8sOu7AqSnpwMAHBwcSlR+9+7dAIApU6boHJ86dSoAFOp69vf3x7PPPqv97ObmhkaNGuH69esljtHb2xs9evQoFEdwcDA6dOigPaZUKvHqq68iPj4eFy9eLPH9yXhbt26Fk5MTunfvjvv372u/goKCoFQq8euvvwIAnJ2dAQA7d+5EXl6eGSOmJ/H5UVkxUVeAgm3pMjIySlT+5s2bkMlkaNCggc5xT09PODs74+bNmzrH69WrV+geLi4uhd57FcXb21tvHI0aNSp0vKDL/Ok4yLSuXr2KtLQ0uLu7w83NTecrMzMTycnJAIDQ0FC8+OKLmDdvHmrUqIH+/ftj7dq1hcY3UMXi86Oy4jvqCuDo6IhatWrh/PnzpbpOEIQSlZPL5XqPi6VYxt0UI7ypfGk0Gri7u2PDhg16zxcMMBIEAdu2bcPvv/+On3/+GXv37sWYMWOwdOlS/P7771AqlRUZNv2Lz4/Kiom6gjz//PNYsWIFjh8/jpCQkCLL1q9fHxqNBlevXtUZ8JWUlITU1FTUr1+/1PWXNOk/HceVK1cKHb98+bL2PFUcX19fHDhwAO3bty/RL1Zt27ZF27Zt8eGHH2Ljxo0YPnw4Nm/ejPDw8DL9eyDj8PlRWbHru4JMmzYN9vb2CA8PR1JSUqHzcXFxiIyMBAD07t0bALBs2TKdMp9++ikAoE+fPqWu397eHgCQmppa4mt69+6NEydO4Pjx49pjWVlZWLFiBby8vODv71/qOKjsXnrpJajVaixYsKDQOZVKpX22KSkphXpTAgMDAUDbfVqtWjUApfv3QMbh86OyYou6gvj6+mLjxo0YMmQI/Pz8dFYmO3bsGLZu3YpRo0YBAJo3b46RI0dixYoVSE1NRWhoKE6cOIF169ZhwIAB6Ny5c6nrDwwMhFwux+LFi5GWlgaFQoEuXbrA3d3d4DXTp0/Hpk2b0KtXL0ycOBGurq5Yt24dbty4ge+//x4yWel/z1u/fj1u3ryJR48eAQAOHz6MDz74AADwyiuvsJVehNDQUERERGDRokU4e/YsnnvuOVhbW+Pq1avYunUrIiMjMWjQIKxbtw5fffUVBg4cCF9fX2RkZGDlypVwdHTU/hJoZ2cHf39/bNmyBc888wxcXV3RtGlTNG3a1GD9fHbG4fOjMjPzqHOL8/fff4vjxo0Tvby8RBsbG9HBwUFs3769+MUXX4iPHz/WlsvLyxPnzZsnent7i9bW1mLdunXFGTNm6JQRxfypVX369ClUT2hoqBgaGqpzbOXKlaKPj48ol8t1pmoZuocoimJcXJw4aNAg0dnZWbS1tRWDg4PFnTt36pQpzfSs0NBQEYDeL31TxyzZ09N7CqxYsUIMCgoS7ezsRAcHB7FZs2bitGnTxH/++UcURVE8ffq0OHToULFevXqiQqEQ3d3dxeeff148efKkzn2OHTsmBgUFiTY2NiWarsNnVzp8flReBFEsxYgjIiIiqlB8R01ERCRhTNREREQSxkRNREQkYUzUREREEsZETUREJGFM1ERERBLGRC0xH3/8MRo3bgyNRmPuUIw2ffp0tGnTxtxhSB6fOQFAfHw8BEFAVFSUuUMhiWGilpD09HQsXrwY7777rnbVL0EQIAgCli5dWqh8VFQUBEHAyZMnja77hx9+wJAhQ+Dj44Nq1aqhUaNGmDp1qsElCn/66Se0bNkStra2qFevHubMmQOVSqVTZvLkyfjzzz/x008/GR1fVcVnTkTFMveKK/Sfzz77THR0dBSzs7O1x/DvykEeHh5iVlaWTvm1a9cWu8F8SVWvXl1s1qyZ+P7774srV64UJ06cKNrY2IiNGzcWHz16pFN29+7doiAIYufOncUVK1aIb775piiTycTXXnut0H1feukl8dlnnzU6vqqKz5wKaDQaMTs7W1SpVOYOhSSGiVpCAgICxBEjRugcAyAGBgaKAMSlS5fqnCvPH9r6lhBct26dCEBcuXKlznF/f3+xefPmYl5envbYrFmzREEQxEuXLumU3bZtmygIghgXF2d0jFURnzkRFYdd3xJx48YN/PXXX+jWrVuhc+3bt0eXLl3w8ccfIzs72yT1d+rUqdCxgQMHAgAuXbqkPXbx4kVcvHgRr776Kqys/tvT5Y033oAoiti2bZvOPQq+nx9//NEEUVdufOZVz9y5cyEIAv7++2+MGDECTk5OcHNzw/vvvw9RFHH79m30798fjo6O8PT01Hm9oe8d9ahRo6BUKnH37l0MGDAASqUSbm5uePvtt6FWq7XloqOjIQgCoqOjdeLRd8/ExESMHj0aderUgUKhQM2aNdG/f3/Ex8eb6G+FjMVELRHHjh0DALRs2VLv+blz5yIpKQlff/11kffJycnB/fv3S/RVnMTERABAjRo1tMfOnDkDAGjVqpVO2Vq1aqFOnTra8wWcnJzg6+uLo0ePFlufpeEzr7qGDBkCjUaDjz76CG3atMEHH3yAZcuWoXv37qhduzYWL16MBg0a4O2338bhw4eLvJdarUaPHj1QvXp1fPLJJwgNDcXSpUuxYsWKMsX24osvYvv27Rg9ejS++uorTJw4ERkZGbh161aZ7kemx20uJeLy5csAAG9vb73nn332WXTu3BlLlizB66+/bnDj+U2bNmH06NElqlMsZj+WxYsXQy6XY9CgQdpjCQkJAICaNWsWKl+zZk38888/hY77+Pjg4sWLJYrJkvCZV13BwcFYvnw5AODVV1+Fl5cXpk6dikWLFuHdd98FAAwdOhS1atXCmjVr0LFjR4P3evz4MYYMGYL3338fAPDaa6+hZcuWWL16NV5//fVSxZWamopjx45hyZIlePvtt7XHZ8yYUdpvkSoQE7VEPHjwAFZWVlAqlQbLzJ07F6Ghofjmm2/w1ltv6S3To0cP7N+/3+h4Nm7ciNWrV2PatGlo2LCh9nhBN6xCoSh0ja2tLdLT0wsdd3FxKdTqIj7zqiw8PFz733K5HK1atcKdO3cwduxY7XFnZ2c0atQI169fL/Z+r732ms7nZ599FuvXry91XHZ2drCxsUF0dDTGjh0LFxeXUt+DKh4TdSXSsWNHdO7cGR9//HGh/3EL1KxZU2/LpzR+++03jB07Fj169MCHH36oc66gVZeTk1PousePH+tt9YmiCEEQjIrJUvGZV0716tXT+ezk5ARbW1udVwoFxx88eFDkvWxtbeHm5qZzzMXFBSkpKaWOS6FQYPHixZg6dSo8PDzQtm1bPP/88wgLC4Onp2ep70cVg++oJaJ69epQqVTIyMgostycOXOQmJio7VZ7WnZ2NhITE0v0pc+ff/6Jfv36oWnTpti2bZvO4CHgv+7Pgu7QJyUkJKBWrVqFjqekpBT6AUV85lWZXC4v0TGg+NcRhq57kqFfip4ccFZg8uTJ+Pvvv7Fo0SLY2tri/fffh5+fn0X3gEgdE7VENG7cGED+SOCihIaGolOnTli8eLHe0cBbtmzRtrCK+3paXFwcevbsCXd3d+zevVtvl2xgYCAAFFpw459//sGdO3e0559048YN+Pn5Ffl9WSI+cyovBV3YTy9Wc/PmTb3lfX19MXXqVOzbtw/nz59Hbm6u3gV2SBrY9S0RISEhAPJ/GAYEBBRZdu7cuejUqZPeUZ9lfV+ZmJiI5557DjKZDHv37i3U1VagSZMmaNy4MVasWIGIiAjtb/tff/01BEHQGYQEAGlpaYiLiyv1oBdLwGdO5aV+/fqQy+U4fPgwBgwYoD3+1Vdf6ZR79OgRZDIZbG1ttcd8fX3h4OCg99UGSQMTtUT4+PigadOmOHDgAMaMGVNk2dDQUISGhiImJqbQubK+r+zZsyeuX7+OadOm4ciRIzhy5Ij2nIeHB7p37679vGTJEvTr1w/PPfccXn75ZZw/fx5ffvklwsPDC7WiDhw4AFEU0b9//1LHVNXxmVN5cXJywuDBg/HFF19AEAT4+vpi586dSE5O1in3999/o2vXrnjppZfg7+8PKysrbN++HUlJSXj55ZfNFD0Vy1wrrVBhn376qahUKnWWbwQgjh8/vlDZX3/9VbvUZHmsUlVwL31foaGhhcpv375dDAwMFBUKhVinTh3xvffeE3NzcwuVGzJkiNihQwej46uq+Myrljlz5ogAxHv37ukcHzlypGhvb1+ofGhoqNikSRNRFEXxxo0bIgBx7dq1xV5XUM+T7t27J7744otitWrVRBcXFzEiIkI8f/68zj3v378vjh8/XmzcuLFob28vOjk5iW3atBG/++47I79zMiVBFIsZyUAVJi0tDT4+Pvj44491pnFUVomJifD29sbmzZvZujKAz5yIisPBZBLi5OSEadOmYcmSJVViy8Nly5ahWbNm/IFdBD5zIioOW9REREQSxhY1ERGRhDFRExERSRgTNRERkYQxURMREUkYEzURkYWJj4+HIAiIiooydyhUAkzURERFiIuLQ0REBHx8fGBrawtHR0e0b98ekZGRetdeLy8XL17E3LlzER8fb7I6SuLDDz9Ev3794OHhAUEQMHfuXLPGY4m4hCgRkQG7du3C4MGDoVAoEBYWhqZNmyI3NxdHjhzBO++8gwsXLuhdf708XLx4EfPmzUOnTp3g5eVlkjpK4r333oOnpydatGiBvXv3mi0OS8ZETUSkx40bN/Dyyy+jfv36OHTokM566uPHj8e1a9ewa9cuM0b4H1EUDe4NbqwbN27Ay8sL9+/fN7hxC5kWu76JiPT4+OOPkZmZidWrV+vd9KRBgwaYNGmS9rNKpcKCBQvg6+sLhUIBLy8vzJw5s9CuVF5eXnj++edx5MgRBAcHw9bWFj4+Pvj222+1ZaKiojB48GAAQOfOnSEIAgRBQHR0tM499u7di1atWsHOzk67X/n169cxePBguLq6olq1amjbtq1Rv1CYszVP+ZioiYj0+Pnnn+Hj44N27dqVqHx4eDhmz56Nli1b4rPPPkNoaCgWLVqkd1eqa9euYdCgQejevTuWLl0KFxcXjBo1ChcuXAAAdOzYERMnTgQAzJw5E+vXr8f69et1diq7cuUKhg4diu7duyMyMhKBgYFISkpCu3btsHfvXrzxxhv48MMP8fjxY/Tr1w/bt28vh78VMguzbglCRCRBaWlpIgCxf//+JSp/9uxZEYAYHh6uc/ztt98WAYiHDh3SHqtfv74IQDx8+LD2WHJysqhQKMSpU6dqj23dulUEIP7666+F6iu4x549e3SOT548WQQg/vbbb9pjGRkZore3t+jl5SWq1WpRFPXv1FWce/fuiQDEOXPmlPgaKh9sURMRPSU9PR0A4ODgUKLyu3fvBgBMmTJF5/jUqVMBoFDXs7+/P5599lntZzc3NzRq1AjXr18vcYze3t7o0aNHoTiCg4PRoUMH7TGlUolXX30V8fHxuHjxYonvT9LBRE1E9BRHR0cAQEZGRonK37x5EzKZDA0aNNA57unpCWdnZ9y8eVPneL169Qrdw8XFBSkpKSWO0dvbW28cjRo1KnS8oMv86TiocmCiJiJ6iqOjI2rVqoXz58+X6jpBEEpUTi6X6z0ulmIzQ1OM8CZpYqImItLj+eefR1xcHI4fP15s2fr160Oj0eDq1as6x5OSkpCamor69euXuv6SJv2n47hy5Uqh45cvX9aep8qHiZqISI9p06bB3t4e4eHhSEpKKnQ+Li4OkZGRAIDevXsDAJYtW6ZT5tNPPwUA9OnTp9T129vbAwBSU1NLfE3v3r1x4sQJnV8usrKysGLFCnh5ecHf37/UcZD5ccETIiI9fH19sXHjRgwZMgR+fn46K5MdO3YMW7duxahRowAAzZs3x8iRI7FixQqkpqYiNDQUJ06cwLp16zBgwAB07ty51PUHBgZCLpdj8eLFSEtLg0KhQJcuXeDu7m7wmunTp2PTpk3o1asXJk6cCFdXV6xbtw43btzA999/D5ms9G2z9evX4+bNm3j06BEA4PDhw/jggw8AAK+88gpb6RXB3MPOiYik7O+//xbHjRsnenl5iTY2NqKDg4PYvn178YsvvhAfP36sLZeXlyfOmzdP9Pb2Fq2trcW6deuKM2bM0CkjivlTq/r06VOontDQUDE0NFTn2MqVK0UfHx9RLpfrTNUydA9RFMW4uDhx0KBBorOzs2hraysGBweLO3fu1ClTmulZoaGhIgC9X/qmjlH5E0SxFKMXiIiIqELxHTUREZGEMVETERFJGBM1ERGRhDFRExERSRgTNRERkYQxURMREUkYEzUREZGEMVETERFJGBM1ERGRhDFRExERSRgTNRERkYQxURMREUkYEzUREZGE/T+HuC/dJaQeawAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -932,7 +1036,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAV35JREFUeJzt3Xd8U+X+B/DPSdImbdMJlBYKHYClZZVNQSl7X4aCiChDQFQUuaAgKEvEipurPxEQKXJBvKA4AKkotlxkj3LZs7SoHYxuupI8vz9qI6HpTpvT5PN+vfKq55wn53zLifn2ec4zJCGEABEREcmSwtoBEBERUemYqImIiGSMiZqIiEjGmKiJiIhkjImaiIhIxpioiYiIZIyJmoiISMaYqImIiGSMiZqIiEjG7D5RJyUlYcmSJUhKSrJ2KEREdB9+RzNRIykpCUuXLrXrDwERkVzxO5qJmoiISNaYqImIiGSMiZqIiEjGmKiJiIhkjImaiIhIxpioiYiIZIyJmoiISMaYqImIiGRMZe0AiMi6CrLTkHp6L/LTU6D2aAjvNn3gqPW0dlhE9BcmaiI7dvvSYVz4OhLCoIMkKSCEAQkxGxEyegG8WnSxdnhEBDZ9E9mtguy0oiStLwSEgDDoi37qC3F+25soyE6zdohEBCZqIruVenovhEFn9pgw6JB6em8tR0RE5jBRE9mp/PQUSJL5rwBJUiA/PaWWIyIic5ioieyU2qMhhDCYPSaEAWqPhrUcERGZw0RNZKe82/SBpDDfn1RSqODdtm8tR0RE5sg2Ub/11luQJAmzZs0qtUxUVBQkSTJ5aTSa2guSqA5z1HoiZPQCSEoHQJIgKZRFP5UOCBm9AI4uHtYOkYgg0+FZR48exerVq9G2bdtyy7q5ueHixYvGbUmSajI0Ipvi1aILOr+w3nQcddu+TNJEMiK7RJ2dnY3x48dj7dq1eOONN8otL0kSfHx8aiEyItvkqPWEX/gj1g6DiEohu6bvGTNmYOjQoejXr1+FymdnZ8Pf3x9NmjTBiBEjcPbs2RqOkIiIqPbIqka9ZcsWnDhxAkePHq1Q+eDgYHz++edo27YtMjIy8O6776J79+44e/Ys/Pz8zL4nPz8f+fn5xu3s7GyLxE5ERFQTZJOob9y4gRdffBF79uypcIew8PBwhIeHG7e7d++OkJAQrF69GsuWLTP7nsjISCxdutQiMRMREdU02TR9Hz9+HKmpqejQoQNUKhVUKhViY2Pxr3/9CyqVCnq9vtxzODg4oH379rhy5UqpZebPn4+MjAzjKzY21pK/BhERkUXJpkbdt29fnD592mTf5MmT0bJlS8ybNw9KpbLcc+j1epw+fRpDhgwptYxarYZarTZua7XaqgdNRERUw2STqF1dXdG6dWuTfS4uLqhXr55x/4QJE9C4cWNERkYCAF5//XV069YNzZs3R3p6Ot555x0kJCRg6tSptR4/ERFRTZBNoq6IxMREKBR/t9anpaVh2rRpSE5OhqenJzp27IgDBw4gNDTUilESERFZjqwTdUxMTJnbH3zwAT744IPaC4iIiKiWyaYzGREREZXERE1ERCRjTNREREQyxkRNREQkY7LuTEZENa8gO8109aw2feCo9bR2WET0FyZqIjt2+9JhXPg6EsKggyQpIIQBCTEbETJ6AbxadLF2eEQENn0T2a2C7LSiJK0vBISAMOiLfuoLcX7bmyjITrN2iEQEJmoiu5V6ei+EQWf2mDDokHp6by1HRETmMFET2an89BRIkvmvAElSID89pZYjIiJzmKiJ7JTaoyGEMJg9JoQBao+GtRwREZnDRE1kp7zb9IGkMN+fVFKo4N22by1HRETmMFET2SlHrSdCRi+ApHQAJAmSQln0U+mAkNEL4OjiYe0QiQgcnkVk17xadEHnF9abjqNu25dJmkhGWKMmsnOOWk/4hT+CZoOfg1/4I0zSVKetWrUKbdu2hZubG9zc3BAeHo4ff/zR2mFVCxM1ERHZDD8/P7z11ls4fvw4jh07hj59+mDEiBE4e/astUOrMjZ9ExGRzfjHP/5hsr18+XKsWrUKhw4dQqtWrawUVfUwURMRkexlZ2cjMzPTuK1Wq6FWq8t8j16vx9atW5GTk4Pw8PCaDrHGsOmbiIhkLyIiAu7u7sZXZGRkqWVPnz4NrVYLtVqNZ555Btu3b0doaGgtRmtZrFETEZHsxcbGIiwszLhdVm06ODgYcXFxyMjIwLZt2zBx4kTExsbW2WTNRE1ERLKn1Wrh5uZWobKOjo5o3rw5AKBjx444evQoVq5cidWrV9dkiDWGTd9ERGTTDAYD8vPzrR1GlbFGTURENmP+/PkYPHgwmjZtiqysLGzevBkxMTGIjo62dmhVxkRNREQ2IzU1FRMmTEBSUhLc3d3Rtm1bREdHo3///tYOrcqYqImIyGasW7fO2iFYHJ9RExERyRgTNRERkYwxURMREckYEzUREZGMMVETERHJGBM1ERGRjDFRExERyRgTNRERkYwxURMREckYEzUREZGMMVETERHJGBM1ERGRjDFRExERyRgTNRERkYwxURMREckYEzUREZGMqawdABFZV0F2GlJP70V+egrUHg3h3aYPHLWe1g6LiP7CRE1kx25fOowLX0dCGHSQJAWEMCAhZiNCRi+AV4su1g6PiMCmbyK7VZCdVpSk9YWAEBAGfdFPfSHOb3sTBdlp1g6RiMBETWS3Uk/vhTDozB4TBh1ST++t5YiIyBwmaiI7lZ+eAkky/xUgSQrkp6fUckREZA4TNZGdUns0hBAGs8eEMEDt0bCWIyIic5ioieyUd5s+kBTm+5NKChW82/at5YiIyBwmaiI75aj1RMjoBZCUDoAkQVIoi34qHRAyegEcXTysHSIRgcOziOyaV4su6PzCetNx1G37MkkTyYhsa9RvvfUWJEnCrFmzyiy3detWtGzZEhqNBm3atMGuXbtqJ0AiG+Go9YRf+CNoNvg5+IU/wiRtKwx6a0dAFiLLRH306FGsXr0abdu2LbPcgQMHMG7cOEyZMgUnT57EyJEjMXLkSJw5c6aWIiUikqmCHGtHQBYiu0SdnZ2N8ePHY+3atfD0LHsaw5UrV2LQoEF4+eWXERISgmXLlqFDhw74+OOPaylaIiK5EtYOgCxEdol6xowZGDp0KPr161du2YMHD5YoN3DgQBw8eLCmwiMiqiMkawdAFiKrzmRbtmzBiRMncPTo0QqVT05ORsOGpmM9GzZsiOTk5FLfk5+fj/z8fON2dnZ21YIlIiKqBbJJ1Ddu3MCLL76IPXv2QKPR1Nh1IiMjsXTp0ho7PxGRLEisUdsK2TR9Hz9+HKmpqejQoQNUKhVUKhViY2Pxr3/9CyqVCnp9yR6MPj4+SEkxneYwJSUFPj4+pV5n/vz5yMjIML5iY2Mt/rsQEVldKdPDUt0jmxp13759cfr0aZN9kydPRsuWLTFv3jwolcoS7wkPD8cvv/xiMoRrz549CA8PL/U6arUaarXauK3VaqsfPBGR7LBGbStkk6hdXV3RunVrk30uLi6oV6+ecf+ECRPQuHFjREZGAgBefPFFRERE4L333sPQoUOxZcsWHDt2DGvWrKn1+ImIiGpCnWobSUxMRFJSknG7e/fu2Lx5M9asWYN27dph27Zt+Pbbb0skfCIi+8PhWbZCNjVqc2JiYsrcBoAxY8ZgzJgxtRMQEVFdwZnJbEadqlETEVEF6QutHQFZCBM1EZEt0hdYOwKyECZqIiJbpMuzdgRkIbJ+Rk01Ly0rB3uOnkfynUz4eLmhf+cQeLq6WDssIqouXX75ZahOYKK2YwfPXMOyDTuh0xugkCQYhEDUjwexaNJQdGsVZO3wiKg69EzUtoJN33YqLSsHyzbsRKFODyEE9AYDhBAo1OnxetROpGVxiTyiOk2vs3YEZCFM1HZqz9Hz0OkNZo/p9Ab8fOxCLUdERBZlYK9vW8FEbaeS72RCUcqk/QpJQtLtjFqOiIgsisOzbAafUdspHy83GIT5mYsMQsC3nnstR0SWErfuRRRkp8FR64mwKSutHQ5Zi4FN37aCNWo71b9zCFRK87dfpVSgX6eQWo6ILKUgOw0FWbdRkJ1m7VDImlijthlM1HbK09UFiyYNhYNKCUmSoFQoIEkSHFRKLJo0FJ6uztYOkYiqw07HUUdGRqJz585wdXWFt7c3Ro4ciYsXL1o7rGph07cd69YqCJsWPYWfj11A0u0M+NZzR79OIUzSRLbAThN1bGwsZsyYgc6dO0On02HBggUYMGAAzp07BxeXujlHBBO1nfN0dcGY3h2tHQYRWVp+lrUjsIrdu3ebbEdFRcHb2xvHjx9Hz549rRRV9TBRExHZIhtL1NnZ2cjMzDRuq9VqqNXqct+XkVE0gsXLy6vGYqtpfEZNRGSL8mxriGVERATc3d2Nr8jIyHLfYzAYMGvWLPTo0QOtW7euhShrBmvURES2yMYSdWxsLMLCwozbFalNz5gxA2fOnMH+/ftrMLKax0RNRGSLbCxRa7VauLm5Vbj8888/jx07dmDfvn3w8/OrwchqHpu+iYhsUWEuUGh/Pb+FEHj++eexfft27N27F4GBgdYOqdpYoyYislV3bwPuja0dRa2aMWMGNm/ejO+++w6urq5ITk4GALi7u8PJycnK0VUNa9RERLYqO8XaEdS6VatWISMjA7169YKvr6/x9dVXX1k7tCpjjZqIyFZl/A407mDtKGqVKGUNg7qMidrOpWXlYM/R80i+kwkfLzf07xwCT9e6OXsPEd3n1iVrR0AWwERtxw6euYZlG3ZCpzdAIUkwCIGoHw9i0aSh6NYqyNrhEVF1pZyxdgRkAUzUdiotKwfLNuxEoU4PAND/1VxUqNPj9aid2LToKdasieq6O/FA9k1A28Dakdisp556qszjkiRBo9HAz88PvXr1Qnh4eKWvwURtp/YcPQ+d3mD2mE5vwM/HLnAOcCJbkHgACB1h7Shs1t69e5Gbm4ubN28CADw9PQEAaWlFy8w2aNAABoMBt2/fhiRJGDhwILZt2wZn54ovfsRe33Yq+U4mFJJk9phCkpB027YmSyCyW9dirR2BTfvxxx+hVquxZMkS3L592/i6desWFi9eDCcnJ/z2229IS0vDwoULsXv3bixcuLBS12CitlM+Xm4wlNI70iAEfOu513JERFQj/jwJ5KZZOwqb9fzzz2PIkCFYtGiRsTYNFC0CsnjxYgwaNAjPP/883N3dsWTJEjz22GPYtm1bpa7BRG2n+ncOgUpp/varlAr06xRSyxERUY0QBiDhoLWjsFmHDh1Cu3btSj3erl07HDhwwLj90EMPISWlcuPbmajtlKerCxZNGgoHlRKSJEGpUECSJDiolFg0aSg8XSv+/ISIZO563V6UQs48PDzw008/lXp89+7dcHf/u4UyOzu7UnOWA+xMZte6tQrCpkVP4edjF5B0OwO+9dzRr1MIkzSRrfnjGKDLB1TlrzhFlTNt2jS8/vrrGD16NJ599lk0b94cAHDlyhWsWrUKO3bsMHkmvWvXLpNVwCqCidrOebq6sHc3ka3T5QN/nAD8Kz80iMq2ePFi5Obm4oMPPsD27dtNjimVSsyePRuLFy8GAOTl5WHSpElo27Ztpa7BRE1EZA/i9zFR1wBJkrBixQrMmTMHv/zyCxISEgAA/v7+6Nu3L7y9vY1lNRoNJk6cWOlrMFETEdmD+FjgwVls/q4h3t7eGDduXI2cm53JiIjsQUEOcC3G2lFQFTBRExHZizNfAza4upStY6ImIrIxnTp1gt/z36LTmydMD9y8CPx5wvybSLaYqImIbExycjL+uJOL5MyCkgdP/rv2A6JqYaImIrInf5wAkk5ZOwqqBCZqIiJ7c3Qdn1XXIRyeRURkb5JOAYkHAf/u1o6kTurTp0+JfXv37q2x6zFRExHZo4P/BzTuBKgcrR1JnePv71+r12OiJiKyRxm/A6c2Ax0nWTuSOmf9+vW1er0qP6PW6/XYsmULpk+fjlGjRuH06dMAgIyMDHzzzTeVXsaLiIhq2YmNwO2r1o6CylGlRJ2eno4ePXrg8ccfx5dffonvv/8eN2/eBABotVrMnDkTK1eutGigRERkYQYd8OtyQGdmGBdVSFxcHL788kuTfdHR0ejZsye6du1qkVxYpUT9yiuv4OzZs4iOjsa1a9cg7uk9qFQqMXr0aOzatavawRERUQ27fRU4utbaUdRZc+fOxVdffWXcjo+Px6hRoxAfHw8AmD17NtasWVOta1QpUX/77bd44YUX0L9/f0iSVOL4Aw88gOvXr1crMCIiqiX/+w+QeNjaUdRJp06dwoMPPmjc/uKLL6BUKnHy5EkcPnwYo0ePxqefflqta1QpUWdkZCAwMLDU44WFhdDpdFUOioiIatmvy4Hsm9aOos7JyMhAvXr1jNu7du1C//79Ub9+fQBA//79ceXKlWpdo0qJulmzZjhxovT5Yn/66SeEhoZWOSgiIqpleRnA3mWAQW/tSOoUX19fnD9/HgCQlJSE48ePY8CAAcbj2dnZUCiqN7dYlYZnTZ06FfPmzUOvXr3Qt29fAEWLZ+fn5+P111/H7t27q90mT0REtSzpFHDiC6DTZGtHUmeMGDECH330EfLy8nD48GGo1WqMGjXKePzUqVMICgqq1jWqlKhffPFFnD17FuPGjYOHhwcA4PHHH8ft27eh0+kwffp0TJkypVqBEREBQEF2GlJP70V+egrUHg3h3aYPHLWe1g7Ldp34AvDrBPi0sXYkdcIbb7yBmzdvYuPGjfDw8EBUVBQaNmwIAMjMzMS2bdswY8aMal2jSolakiSsXbsWEydOxLZt23D58mUYDAY0a9YMjz76KHr27FmlYFatWoVVq1YZO6K1atUKixYtwuDBg82Wj4qKwuTJpn/5qdVq5OXlVen6RCQvty8dxoWvIyEMOkiSAkIYkBCzESGjF8CrRRdrh2ebhAHYuxwY/Tng6GztaGRPq9Vi06ZNpR77/fff4excvX/Has1M9uCDD5r0dqsuPz8/vPXWW2jRogWEENiwYQNGjBiBkydPolWrVmbf4+bmhosXLxq3zfVCJyJ5Kqu2XJCdVpSk9YUAACGKnp0KfSHOb3sTnV9Yz5p1TclKAg59AvR8ydqR1DkZGRnQarVQKpVQKBRwd3ev9jlltXrWP/7xDwwZMgQtWrTAAw88gOXLl0Or1eLQoUOlvkeSJPj4+BhfxU0ORFR5Bdlp+P3g17j64yf4/eDXKMhOq7Fr3b50GEc/mozre9cj+eRuXN+7Hkc/mow7l48AAFJP74UwmB89Igw6pJ6uuUUQCMD5Hzhkq4KOHTuGQYMGwdnZGfXq1UNsbCwA4NatWxgxYgRiYmKqdf4q1agDAwPLrblKkoSrV6s+NZ1er8fWrVuRk5OD8PDwUstlZ2fD398fBoMBHTp0wJtvvllq7RsA8vPzkZ+fb/J+IqrdZuaK1Jbz01P+iqNkL2RJUiA/ndMU17jYFcDodYATWy5Kc+DAAfTp0weNGzfGE088gc8++8x4rH79+sjIyMDq1avRq1evKl+jSok6IiKiRKLW6/VISEjAb7/9htatW6N9+/ZVCuj06dMIDw9HXl4etFottm/fXupQr+DgYHz++edo27YtMjIy8O6776J79+44e/Ys/Pz8zL4nMjISS5curVJsRLaqppqZS2varkhtWe3REEIYzJcRBqg92HpW4+7eBmLeAgZGAtUcYmSrFixYgJCQEBw6dAhZWVkmiRoAevfujQ0bNlTrGlVK1FFRUaUeO3XqFAYOHIjx48dXKaDg4GDExcUhIyMD27Ztw8SJExEbG2s2WYeHh5vUtrt3746QkBCsXr0ay5YtM3v++fPnY/bs2cbtuLg4REREVClWIltRkcTpF/5IiWNlPWMuq4Zekdpyk4fGISFmo/GPB5MyChW82/at5m9NFZJ4CIjbBHR40tqRyNLRo0cRGRkJtVpttoW2cePGSE5OrtY1LL7MZbt27TB9+nTMmzcPx48fr/T7HR0d0bx5cwBAx44dcfToUaxcuRKrV68u970ODg5o3759mbPAqNVqqNVq47ZWq610jES2pirNzGUlYq1vizJr6H7hj5RbW3bUeiJk9AKc3/amyTUkhQohoxfA0cXDcv8AZtzYvwV3rhxFTnI8JKUK4S//p9z3CCGQGPtvJMdFQ5+XA1e/EDQfMgNOXo2NZc59tRQ5KfEoyEmHykkLj4AwBPSdDLVrvTLObGXH1gH1HwCadrV2JLLj4OAAg8H8ZxkA/vjjj2rnmRppy2jYsCHOnTtnkXMZDAaTZ8pl0ev1OH36NHx9fS1ybSJ7UdlmZpOmciEgDPqin38l4qRjO8qsoQMSJIX5esK9tWWvFl3Q+YX1COgzGT7tByGgz2R0nhllsWfm//viFaSc2mP2mEGvQ/2QB+HTcUiFz/fHwW348+gPaD54BtpNfh9KRw3ObF4Iwz2rU7kHtEXww6+g47NrEPLIAuSlJ+HC129W+3epUUIUzVqW8Ye1I5Gdbt26Ydu2bWaP5eTkYP369dVutbV4or59+zbWrVtX6jPissyfPx/79u3D9evXcfr0acyfPx8xMTHGZvQJEyZg/vz5xvKvv/46fvrpJ1y7dg0nTpzAE088gYSEBEydOtVivw+RPfBu06dCibNYeU3l6fFxkCTzXy+SpIAuNxMhoxdAUjoAkgRJoSz6qXQoUVt21HrCL/wRNBv8HPzCH6nxmnQx/4gn0LjrKLh4+1eovBACfxz5Dk0eHIt6weFwaRiIB4bPQUHWHdy+eNBYrnHXUXDzawmNhzfcmoTCr/sYZP1+EQa9zNdHyM8C9izikpj3Wbp0KY4dO4ahQ4fixx9/BFD0CPizzz5Dx44dcfPmTSxcuLBa16hS03efPn3M7k9PT8eFCxdQUFCAjRs3Vvq8qampmDBhApKSkuDu7o62bdsiOjoa/fv3BwAkJiaazJmalpaGadOmITk5GZ6enujYsSMOHDjAecaJKqmyzczlNZUDKLeGXlxbNnnG3bZvrSViS8tPT0Zhdho8AsOM+1QaF7g2Dkbm7xfQoFXJWlVhbhZunomBm18IFEqLP4m0vNtXgCOrge4vWDsS2ejatSt27dqFZ599FhMmTAAAzJkzB0DRuhi7du1C27Ztq3WNKn0yDAZDiV7fkiQhMDAQ/fr1w1NPPYWWLVtW+rzr1q0r8/j9Y9E++OADfPDBB5W+DhH97d4OYX7howEJ0N3NNCZOCIHfD35t0mGsvKZyj8D2yE6+Wm5HsOLasi0oHnPu6GLaO97RxQOFOabj0eN/+RxJx3bAUJgP18YtETp2ca3FWW1nvgaCenGK0Xv06dMHFy9eRFxcnMlMnR07drTIJFxVStTVHbxNRPJgrkNYcS3aq0WXUjuMtRg2E5JCVWoi9u08DK6NH7BaR7DS3Nj/FW789nenMIOuAFl/XMDV3X+vF9zhmVXQuHvXaBx+4Y/AJ2wg8jJScWPfZlz6/j2Ejl1SN2ZWFAI48BEw8lMO2bpPWFgYwsLCLH7eOtDWQkQ1obyx02FPfVjq8cs7/oXmQ2fiys5/lZqI5di07dNxCOqHPmTcvvjtO6jfsgfqtexu3FfV3tfGqU9z0uDo6mXcX5CTDpeGpqsnOTi7w8HZHU71GsO5fhMc/ddEZP1xAW5+IVW69r0SExORk5MDAMjJ1yPxTh6aemmqfV4TNy8CCfuBwKqt62BL9u3bV+ZxSZKg0Wjg5+dX5Y7OFUrUX3zxRZVOXtxeT0TyU16HsOu/RpV5vDAnrdxELLembQcnVzg4uRq3FSo1HFzc4eTVqNrnVnv4wEHrifTrp6D1aQYA0OXfRdYfF+FbRs/x4kcIBl3J1onKOHLkCJYtW4adO3dCCAEASM/VI+DVIxjWxgsLh/ijc4BrOWephDNfM1ED6NWrV4VbQlq0aIGlS5di7NixlbpGhRL1pEmTKnVSoOivCCZqIvkqd+x0Rmq5Y6vllogtKS8jFbrcLORn3ASEAdnJRVMiO3k1gtLRCQBwfNV0+PeeiPotu0OSJDTuMgI39m+Bk1cjaDx8kBCzEY6uXqgXXDQxU9YfF5D152W4NQmFSuOKvLQkJMRuhMbTt1q16W+++QZjx46FEMKYpIsJAew6cwc/nknDV9NC8HD7+lW+jok/44CsFMDVvmeI2717N+bNm4f8/HxMmzbNOA/I5cuX8dlnn8HJyQmvvfYaEhISsHr1ajz++ONQKpUYPXp0ha9RoUQdHx9ftd+AiGSr3LHT7t64eyux9OM2PoVnYuy/kfq/X4zbcZ/NBAC0fiISHgFFvXhzb/8OfX6OsUzj8NHQF+Thys6PoMvLgVuTULQetwwKlSMAQOGgwe0LB5C4bxP0BXlw1HrBs1lHNHlwLBQqhyrFeeTIEYwdOxZ6vb5Eki6mNwASBMauPY8Dc8MsV7NO+A1o/bBlzlVH7d69GxqNBocPH4ajo6PJseeeew69evXCoUOHsGLFCjzzzDPo1KkTVqxYYflE7e9fsXGERGR9xc9Ky5ub27tNnzKn6AzoMxnp8XE2PYVn2wlvlXrsgeGz8cDw2aUeB4AHX9tpsi1JEvx7PQn/Xuan23TxDkCbJyMrH2gZ3njjDbM16fsJAAICb+xKwHfPtbbMxZPiZJmo9+3bh3feeQfHjx9HUlIStm/fjpEjR9bItTZt2oTXXnutRJIGAI1Gg/Hjx2P58uVYsWIFNBoNnnjiiVKnuC4Nu+wR2ZiwKSvR5cUvEDZlZZnlisdOlzbpiIu3f4UnJSHrSExMxI4dO6DXl3w8YY7eAPxw+g4S7+RZJoC0BMucx8JycnLQrl07/N///V+tXCslpfSV3JKSkkzmAPfw8IBSqazUNarc6zs5ORnr1q3DiRMnkJGRUWKuU0mS8Msvv5TybiK6l0FXYJWZqdyatkb76Z/g1tl9uHsnGQ5u9dEgtCccXNyRm50BJ99gtH5qJW6d+y/yM25C7d7A5LglKZQqYxOxLbPkvd6184dya9L3EwKIPncHE7tZYAha5k1IhdXrBFcena7y/1aDBw/G4MGDayCakvr06YMPP/wQ3bp1w7Bhw0yO/fDDD1i5ciX69v279SkuLg4BAQGVukaVEvX//vc/9OrVC7m5uQgODsbp06cRGhqK9PR0/PHHH2jWrBmaNGlSlVMT2R2DrgDp109Bl3fXajFoPH3x0Ze78e6q6i3HR3XD0/++gqf/XfriRZUyzfb/uCrLxx9/jN69e2PEiBFo3LgxmjUr6vF/9epV/PHHH/D398dHH30EAMjLy0NiYmKlp7muUqJ+5ZVXoNVqERcXB2dnZ3h7e2PlypXo06cPtm7dimeffRabNm2qyqmJ7I5Br4Mu7y4UShUkK9YoX575DOY8P90q1xZ/1TK9WnSCSu1slRhqgy7/Lu5cPmaxe71l+w7887XKL+jx6WP+mNCleqt1CSGg82gGh0c/q9F7dvLkSXTt2hXZ2dnIzMw07r9/JURradq0KU6fPo1PP/0U0dHRSEgoehwQEhKCWbNmYfr06XBxcQFQ9Mx6165dlb5GlRL1b7/9hrlz56Jp06a4c+cOABibvseMGYP9+/fj5ZdfRmxsbFVOT2SXJJUjlA7W++JRVq3TsUXoC1XQ59+Fg4MDVA5WDKSGSQYHODiooFQ7W+Re9+3VE5IUWanmb0kC+rd0h4Oqcs9JSxACuvrNa/yeqVRFaer+FagWL16MJUuW1Nh1K8PZ2RmzZ8/G7Nlldz6sqirP9d2wYdHQjOIH48UJGwDatGlT7rzdRFT36HKzkHbtJApz0uDg4gnPoPZQOVlwEg2qlCaNfTGwT0/sidlfoQ5lSgUwJNQDTb0s8wdhQcMOqK32j9jYWJPpOeVQm64tVUrUgYGBxrHVCoUCgYGB+Pnnn/Hoo48CAA4cOAAPDw+LBUlEFXdl18fQ5WVBpXFF8yHPW+y8mb+fx419myAMhqJqmRBIPfUTmvQcb5GpL6lqXn7hafwcux+SJJVZs5YASJAwf2DVprG8n65eSxhcanZO9HtptVq4ubnV2vVKU9rqkWWpbufqCg/PSkv7e/WXAQMGYOvWrcbtZ599Fp999hn69euHvn37YsOGDXj88cerHBQRVZ0uLwu6u5nQ5WVZ7py5WX8laT0AAQgDAAFh0OPGvk3Q5VruWlQ5Hdq1xucfvQ2lUlHqsB+lAlAqJHw5uRk6+2stct38oAEWOU9NyM7ORlxcHOLi4gAUTdoVFxeHxETzE/hUhsFgMI5bL34lJiYiJiYGJ0+eREZGBjIyMhAXF4eYmBjcuHGj0j3z71fhGrWPjw+GDBmC8ePHY86cORg3bhwKCwvh4OCAWbNmIScnB19//TWUSiUWLlyIBQsWVCswso60rBzsOXoeyXcy4ePlhv6dQ+Dp6mLtsMjK0q6dLKpJmyEMBqTHn0T9UM77bC3/GNQP0du+wDsfrUH03n0miUGSipq75w/0tViS1td7ALp6wUBBrkXOZ2nHjh1D7969jdvFz44nTpyIqKioap37/tUj9+/fj+HDh2Pt2rWYOHGi8Zm6TqfD+vXrMW/evGpfs8KJevTo0fj+++/x/fffw9XVFQ8//DDGjx+PPn36QJIkvPbaa3jttdeqFQxV33PvbUZa1l14ujrjkzmVa9U4eOYalm3YCZ3eAIUkwSAEon48iEWThqJbq6DyT0A2qzAnzdjcXYIkGddiJuvp0K41vvzsX7jxRxJ6DhmD9MwseDgpcXxeK4s9ky4iIT/00aLPg0z16tWr2rXYinrppZcwefJkTJkyxWS/SqXCtGnTcOHCBcyePRuHDx+u8jUq3PS9adMmpKam4t///jceeughbNq0CQMGDEDjxo0xZ84cnDhxospBkOWkZd3FrYxspGVVbkxuWlYOlm3YiUJd0XzB+r+adwp1erwetRNpWTnln4Rshi43CzfP7sOfR77DzbP7oHR0Np+kAUCIcqcrpdrTpLEvnJ2LFg1xcVRYOEkDhQG9YPAIsOg567L//e9/CAoqvSITGBiI06dPV+salZpC1MnJCePGjcMPP/yA5ORkfPLJJ2jRogU+/PBDdO7cGS1btsQbb7yBa9euVSsoqn17jp6HTm++aVOnN+DnYxdqOSKylszfz+Pi9hVIObkbdy4fQcrJ3bh5NqbUGpSkUMAjqEPtBklWIZzrIz/ENldLq6pGjRrhq6++MjuDmk6nw1dffYVGjaq3jGqV5/r29PTE9OnTERsbi8TERLz11ltwdnbGokWL0KJFC3Tv3r38k5BsJN/JhKKUL2KFJCHptmWniyR5Kq3TGP5aZUtSKAFIgKQAUDT/d5Oe46HSWObZJ8mYpEBuh+mASmPtSGRl7ty52L9/P7p164bPPvsMMTExiImJwdq1a9G1a1ccOHAAL7/8crWuUeW5vu/VuHFjvPzyyxg0aBAWLVqE7777rlrt8VT7fLzcYCiladMgBHzruddyRGQNZXUagxCo37oXlA5qFGSnwVHrCY+gDkzSdiK/1VgYPAOtHYbsPP3001AqlXj11Vfx9NNPQ/qrwiOEQIMGDfDpp59i2rRp1bpGtRN1YmIiNm/ejC+//BJnzpyBEALdu3fH+PHjq3tqqkX9O4cg6seDKNSVnDRBpVSgXyeOk7UH5XUa0+ffRcN2/Ws/MLKqwiY9UBhQ+fHD9mLKlCmYOHEijh49ahwC5u/vj06dOhl7gVdHlc5w69Yt/Oc//8HmzZtx8OBBCCHQsmVLvP766xg/fnylVwYh67l3OFbvDsH49fgF6AzC2OtbpVRg0aSh8HS13fmX6W8OLp7sNEYm9PUeQH7bJ2Xdy1sOVCoVwsPDER4ebvlzV7RgTk4Otm/fjs2bN+OXX35BYWEhfH19MWvWLIwfPx4dOrAzSV1jbjiWUiFhQOcQODqo4FvPHf06hTBJ2xHPoPZIPfXTX8+oTbHTmP0xaH2Q2+k5QGGRp6Q2KzMzE5988gl+/fVXpKamYvXq1ejSpQvu3LmDqKgoDB8+HM2bN6/y+Sv8r+/t7Y28vDxotVo8/vjjxjHUCkWV+6ORFd07HAsA9H/VonR6gb0nLmLToqc40YmduH/+7sbdHsYfh74xmSpUUijYaczOCLUbcrvOAhx5z8vy+++/IyIiAjdu3ECLFi1w4cIFZGdnAwC8vLywevVqJCQkYOXKlVW+RoUTdb9+/TB+/HgMHz4cGg17/dV1FRmONaZ3x1qOimqbufm7JYUCjbo9DH1eNjuN2SuVBrldZ0E417d2JLL38ssvIysrC3FxcfD29oa3t+n85yNHjsSOHTuqdY0KJ+rvvvuuWhcieSkejqU38zySw7Hsg+lQLBifTQuDHn8e+gbBo+ZxZSx7JCmR2+k5GNybWjuSOuGnn37CP//5T4SGhuL27dsljgcFBeHGjRvVugbbre0Uh2NRRebvJvuTFzYJ+gah1g6jzsjNzUWDBg1KPZ6VVf0Fa5io7VT/ziFQKc3ffg7Hsg/GoVjmcP5uu1TQYih0fpbvtWzLQkNDsW/fvlKPf/vtt2jfvn21rsFEbac8XV2waNJQOKiUkCQJSoUCkiTBQaXkcCw7waFYdC+9dxsUBI+wdhh1zqxZs7BlyxasWLECGRlFjwwNBgOuXLmCJ598EgcPHsQ///nPal2Dfe7tWLdWQdi06Cn8fOwCkm5ncDiWneFQLComNB7IC3vqr6lhqTKeeOIJJCQk4LXXXsOrr74KABg0aBCEEFAoFHjzzTcxcuTIal2DidrOebq6sHe3nVI5uaJJz/Fme31zKJZ9yWs3EULNjoNV9eqrr+LJJ5/E119/jStXrsBgMKBZs2Z4+OGHy1xZq6KYqInsmJtfCIJHzUN6/EkOxbJThU16QO/dxtph1HlNmzatdhN3aZioieycyskV9UN7WjsMsgKh8UB+q7HWDoPKwURNRGSn8tpNBBzYJ6Wy2rZtW6nykiTh1KlTVb4eEzURkR0q9O/FJu8q8vLyMi5nCQCFhYU4cOAA2rZtC09Py4+WYKImIrIzBq0P8kPHWDuMOismJsZk+9atW/D29sb777+PPn0svxwo++ITEdkTSYG89lMAldrakdgMqYaXAGWiJiKyIwXNB8PgEWjtMKgSmKiJiOyEcK6PghbDrB0GVRKfURNRtdy/nrVnUHuuuiVT+S0fBpQO1g6DKomJmojKVFYiNreedeqpn9Ck53i4+XFhFzkxuDaCrlEna4dhE06cOGGyXTzH9+XLl+Hh4WH2PR06VH1KXiZqspi0rBzsOXoeyXcy4ePlhv6dQ+Dp6mLtsKgaykrEzvX8Sl3P+sa+TVzPWmYKggZwLm8L6dSpk9kOZM8991yJfUIISJIEvb7knPoVxURNFnHwzDUs27ATOr0BCkmCQQhE/XgQiyYNRbdW1Z/rlmpOaTVmXW5WmYm4fmhEuetZc8YzmVBpoGvU2dpR2Iz169fX6vWYqKna0rJysGzDThTqir7Q9X99oRfq9Hg9aic2LXqKNWuZKqvGnJ9xs8xEnJN8xfieErietawU+nbkcCwLmjhxYq1ej+0gVGFpWTn4z95j+Ne2vfjP3mNIy8oBAOw5eh46vfkvdJ3egJ+PXajNMKmCTGvMAhAGAMJYY87PSClKxOZIEgTA9azrCNam6zbWqKlCymraTr6TCYUkGWvS91JIEpJuZ1ghYipP2rWTZdaY9fk5ZSZirW9z5N35g+tZy51KA339ltaOgqqBNWoq171N20II6A0GCCGMTdvuLhoYSvlCNwgB33rutRwxVURhTlqZNWal2gWSwvxXhKRQoF5wOJr0HA9JoQQg/dVRSYKkUHI9axnRNQgFFKyT1WW8e1Su8pq2AQkqpcL4jPpeKqUC/TpxmI4cObh4lllj1ng0hFvP8SWeYUsKhTERcz1r+dM3aG3tEKiamKjJqLThVeU1bWfk5GLRpKF4Pcq0aVylVGDRpKHwdOUyenLkGdQeqad+KrPpWqXRlpuIuZ61vOkahFo7BKomWSXqVatWYdWqVbh+/ToAoFWrVli0aBEGDx5c6nu2bt2KhQsX4vr162jRogVWrFiBIUOG1FLEtqOsZ9A+Xm7lNm13axWETYuews/HLiDpdgZ867mjX6cQJmkZUzm5okk5NebickzEdYt3g/qQ8jPR0M0Rwrm+tcOhapJVovbz88Nbb72FFi1aQAiBDRs2YMSIETh58iRatWpVovyBAwcwbtw4REZGYtiwYdi8eTNGjhyJEydOoHVrNvdUVHnDq/5v9mOI+vFguU3bnq4uGNO7Y+0FTtXGpmvb9Ov3X8Lll/nQe7VAnrWDoWqTVWeyf/zjHxgyZAhatGiBBx54AMuXL4dWq8WhQ4fMll+5ciUGDRqEl19+GSEhIVi2bBk6dOiAjz/+uJYjr9vKewZ97EIiFk0aCgeVEpIkQalQQJIkOKiUbNq2AcU15kZdRqB+aE8maRui92pm7RDIAmRVo76XXq/H1q1bkZOTg/DwcLNlDh48iNmzZ5vsGzhwIL799ttaiNB2VGR41ZjeHdm0TVTH6N2bWjsEsgDZJerTp08jPDwceXl50Gq12L59O0JDzXeGSE5ORsOGDU32NWzYEMnJyaWePz8/H/n5+cbt7OxsywReh1XkGTTApm2iukRIEgzaRtYOgyxAVk3fABAcHIy4uDgcPnwYzz77LCZOnIhz585Z7PyRkZFwd3c3viIiIix27rqqf+cQqJTmPwocXmX7dLlZuHl2H/488h1unt0HXW6WtUMiCxAaD04baiNkl6gdHR3RvHlzdOzYEZGRkWjXrh1WrlxptqyPjw9SUlJM9qWkpMDHx6fU88+fPx8ZGRnGV2xsrEXjr4s8XV34DNpOZf5+Hhe3r0DKyd24c/kIUk7uxsXtK5D5+3lrh0bVJJy8rB0CWYjsmr7vZzAYTJqq7xUeHo5ffvkFs2bNMu7bs2dPqc+0AUCtVkOt/vuvTK3WvjvO3Dt2+tE+HSGhaFw0n0HbvvJWx+IylXWbQc0ZAW2FrBL1/PnzMXjwYDRt2hRZWVnYvHkzYmJiEB0dDQCYMGECGjdujMjISADAiy++iIiICLz33nsYOnQotmzZgmPHjmHNmjXW/DXqDHNjp4snKeHSlLavvLm+uUxl3SYc7bsSYktk1fSdmpqKCRMmIDg4GH379sXRo0cRHR2N/v37AwASExORlJRkLN+9e3ds3rwZa9asQbt27bBt2zZ8++23HENdAeXN3128MhbZrvLm+uYylXWcA1vDbIWsatTr1q0r83hMTEyJfWPGjMGYMWNqKCLbVZGlKdnD27aVN9c3l6ms24RSY+0QyEJkVaOm2lM8dtocLk1pHzyD2pe5OhaXqazjlI7WjoAshInaTlV07DTZruK5vrlMpW0STNQ2g4naTnHsNAF/z/Xt02EQvFp0gU+HQQh++BW4+fH+13l2nqj/7//+DwEBAdBoNOjatSuOHDli7ZCqjInaxni6OqO+u7bcYVUcO03FONe3bRJKB2uHYDVfffUVZs+ejcWLF+PEiRNo164dBg4ciNTUVGuHViWy6kxG1ffJnMcrXJZLUxLZMDuuUb///vuYNm0aJk+eDAD49NNPsXPnTnz++ed45ZVXrBxd5TFRy0BBoa7UHtg1Te3ggKHhbaDX62EwGAAIZFhhaJZKqYCjg31+HHWFhSgs1MGg0MFgiUYu8ffPwsLC6p+vFugLddAX6lBYWAihqBsxV0XxvdYb7kIq1NXotRT5hTAoa+7/ZaErgEFf8/dMpyv6d8rOzkZmZqZx//2TVxUrKCjA8ePHMX/+fOM+hUKBfv364eDBgzUWZ02yz29GGSko1CHu8g3k5Jmffa22RK3+GF+s+T+rxkCW8fVLveHt7oQ/k1MQ/kAna4dDZBH3r8uwePFiLFmypES5W7duQa/Xm12w6cKFCzUZYo1horYynd6AnLx8OKiUcFAprRbH9OdfxNPPvYDs3DzEXf4D6dl34aF1RliLxtA6VX085oXEFHz1y3EYDAZICgnCIKBQKDC2b0e0bFr0P1KhTo9CnR5dQoPgrLG/5jpd/l3cuXwMSrUzlA7V//2vfv8udLmZaOTTEKmXjlkgwpqnLyyAPv8uvFp0gkpt249eDH/VRGtcbhrgVLNj4RVKFRSqmv1/9uTJk+jatStiY2MRFhZm3G+uNm2rmKhlwkGlhMbRmp0/HHA2/k9sjD4MvcEASZIghEDMqSuYMKgbQgN8K33GrLt52BYbByFJkJRFf4RIyqKW2W2xcXh1wmC4OmuQV1AIkVcABwcHODjYXwcYyeAABwcVlA4qKC3x+0t//6wr/54KGKAwqODg4ABVHYm5ymrr91NJgMatdq5Vg1SqojSl1Wrh5lb+71O/fn0olcpKL9gkZ+z1TQCKkurG6MPQ6Q0QAjAYBIQoqvF/sfsQsu7mlfv+X09cxDexJ/HriYvIupuHYxcSoC9lLmm9wYDjFxNr4lexeyqNK1TOblBpuKCGXZPs8+vd0dERHTt2xC+//GLcZzAY8Msvv5S5YJOcsUZtYz78zy/IupsPV2c1Zj3at8Lvq0hS7dX+AbPHzdXEo4+cQ3M/b+P2/SRJwp1MzideE5oPed7aIZAclDaPux2YPXs2Jk6ciE6dOqFLly748MMPkZOTY+wFXtcwUduYrLv5yMjJrfT70rLuVimp3lsTB2B8v05vwKXEFLPnKy7n5eZS6TiJqKLsN1GPHTsWN2/exKJFi5CcnIywsDDs3r27RAezuoKJmgAUTZRSlaRaVk3cIAQUpSR/pUKBjsFNqx4wEZXNjmvUAPD888/j+edto3XJPh9iUAmdWvpDWcoCDWUl1eKauDkKhYQHmnhDpVRAkoq2JalozPSEQd3g6szVfYhqjn0nalvCGjUBAFydNZgwqBu+2H3I5FmzUlGUVAHg1xMXkZZ1F56uzujU0h+uzppya+LN/bwxtm8nHL+YiDuZOfByc0HH4KZM0nWILjcLaddOojAnDQ4unvAMag+VEzuqyZ6d16htCRO1nSvunV2cgF8c0wcXE1NMkmpiyh0s/+LHEp3FJgzqhk4t/RF95JzZmdWKa+KuzppSO6KRvGX+fh439m2CMBiKvviFQOqpn9Ck53gu3CF3Chsf5mZHmKjtWGm9tScM6mZMrGV1Fvti9yG8OmFwmTVx1pzlr7Qasy43668krS8q+Ne9FwY9buzbhOBR81izlrNSHmVR3cNEbacqkoBdnTUVHrb16oTBbN6ug8qqMedn3Czab4YwGJAefxL1Q3vWcsRE9oeJ2k5VNAFXdNgWm7frnvJqzO4B7YzJuwRJQkF2Wi1GS2S/2DZip8rqrX1vAq7qsC2Sv7RrJ8usMevzc8wnaQAQAo7amp1HmoiKMFHbqYom4KoO2yL5K8xJK71nsCRBqXaBVMq9lxQKeAR1qMHoiKgYE7WdqmgCLh62xbHQtsfBxbPMGrPGoyGa9BwPSaEEIP01d7QESaFEk57jodJoazNcIrvFZ9R2qrxx067OGpOhW73CHoAkATl5BewsZiM8g9oj9dRPfz+jvkdxjVml0SJ41Dykx59EQXYaHLWexv1EVDuYqO1YaIBvqb21zQ3dKk7iVVnykuRH5eSKJj3Hl+j1LSkUJjVmlZMre3cTWRETtZ0z11u7okO3qO5z8wthjZlI5pioqYTqLHlJdQ9rzETyxkRt5+6fQrRTS/8qL3lJRESWx0Rtx0qbQrR9iyYcO01EJBMcnmWn7n0OLQRgMAgIUfQc+sSlRCgkjp0mIpIDJmo7VdZzaIMQ6PBAE46dJiKSATZ926nynkM7qJRcaIOISAaYqO1URaYQ5UIbRETWx6ZvO8U5vImI6gYmajvFObypmC43CzfP7sOfR77DzbP7oMvNsnZIRHQPNn3bsbKmECX7kPn7+RJTiKae+glNeo6Hm1+ItcMjIjBR2z0+h7Zfutysv5L0X4ty/NVnQRj0uLFvE4JHzYPKydWKERIRwKZvIruVdu1kUU3aDGEwID3+ZC1HRETmMFET2anCnLSi5m5zJAkF2Wm1GxARmcVETWSnHFw8jc3dJQgBR61n7QZERGYxURPZKc+g9pBKGaInKRTwCOpQyxERkTlM1ER2SuXkiiY9x0NSKAFIgKQAIEFSKNGk53iuSU0kE+z1TWTH3PxCEDxqHtLjT6IgOw2OWk94BHVgkiaSESZqIjuncnJF/dCe1g6DiErBpm8iIiIZY6ImIiKSMTZ927msu3k4diEBaVl34enqjE4t/TmFKBGRjDBR27Gz8X9iY/Rh6A0G49rU0UfOYcKgbggN8LV2eEREBDZ9262su3nYGH0YOr0BQgAGg4AQgE5vwBe7DyHrbp61QyQiIjBR261jFxKgL2WeZ73BgOMXE2s5IiIiMoeJ2k6lZd2FVMo8z5Ik4U5mTi1HRERE5sgqUUdGRqJz585wdXWFt7c3Ro4ciYsXL5b5nqioKEiSZPLSaNgZqjyers4QpczzLISAl5tLLUdERETmyCpRx8bGYsaMGTh06BD27NmDwsJCDBgwADk5Zdfu3NzckJSUZHwlJCTUUsR1V6eW/lCWMs+zUqFAx+CmtRwRERGZI6te37t37zbZjoqKgre3N44fP46ePUufOUmSJPj4+NR0eDbF1VmDCYO64Yvdh0x6fSsVCkwY1I1DtIiIZEJWifp+GRkZAAAvL68yy2VnZ8Pf3x8GgwEdOnTAm2++iVatWpktm5+fj/z8fJP32qvQAF+8OmEwjl9MxJ3MHHi5uaBjcFMmaSIiGZFtojYYDJg1axZ69OiB1q1bl1ouODgYn3/+Odq2bYuMjAy8++676N69O86ePQs/P78S5SMjI7F06dKaDL1OcXXWoFf7B6wdBhERlUJWz6jvNWPGDJw5cwZbtmwps1x4eDgmTJiAsLAwRERE4JtvvkGDBg2wevVqs+Xnz5+PjIwM4ys2NrYmwiciIrIIWdaon3/+eezYsQP79u0zWysui4ODA9q3b48rV66YPa5Wq6FWq43bWi2X8ysNpxclIrI+WSVqIQReeOEFbN++HTExMQgMDKz0OfR6PU6fPo0hQ4bUQIT2g9OLEhHJg6yavmfMmIF///vf2Lx5M1xdXZGcnIzk5GTk5uYay0yYMAHz5883br/++uv46aefcO3aNZw4cQJPPPEEEhISMHXqVGv8Clbn6qyGu4sTXJ3V5RcuBacXJSJ7sHz5cnTv3h3Ozs7w8PCwdjilklWNetWqVQCAXr16mexfv349Jk2aBABITEyE4p7xv2lpaZg2bRqSk5Ph6emJjh074sCBAwgNDa2tsGVl1qN9K1XeXPN2RaYXZQc0IqrrCgoKMGbMGISHh2PdunXWDqdUskrUpc2Uda+YmBiT7Q8++AAffPBBDUVk20pr3m7u523cvh+nFyUiW1E8AigqKsq6gZRDVomaas+9zdvA338k6fQGXEpM4fSiREQywURtp8pq3jYIAUUpNWpOL0pE1pCdnY3MzEzj9v0jeGyZrDqTUe0pa/UshULCA028oVIqIElF25IEqJScXpSIrCMiIgLu7u7GV2RkpNlyr7zySomFmu5/XbhwoZajrx7WqO1UeatnNffzxti+nTi9KBHJQmxsLMLCwozbpdWm58yZY+x8XJqgoCALRlbzmKjtVKeW/og+cs74jPpexc3bnF6UiORCq9XCzc2t3HINGjRAgwYNaiGi2sOmbztVvHoWm7eJyF4lJiYiLi4OiYmJ0Ov1iIuLQ1xcnOwWa2KN2o5x9SwismeLFi3Chg0bjNvt27cHAPz6668l5vOwJiZqO8fmbSKyV1FRUbIfQw2w6ZuIiEjWWKOmUnH1LCIi62OiJrO4ehYRkTyw6ZtK4OpZRETywURNJVRk9SwiIqodbPq2c+aeQxdPL8rVs4iIrI+J2o6V9hy6fYsmXD2LiEgm2PRtp8p6Dn3iUiIUkvmPBlfPIiKqXUzUdqq8ZS47PNCE04sSEckAm77tVHnPoR1USk4vSkQkA0zUdqq8ZS693Fw4vSgRkQyw6dtOdWrpD6WCz6GJiOSOidpOcZlLIqK6gU3fdozLXBIRyR8TtZ3jc2giInlj0zcREZGMMVETERHJGBM1ERGRjDFRExERyRgTNRERkYwxURMREckYEzUREZGMcRz1X86fP2+V6+bmF+LStd+hUTtA7WCftyO/UIe8/EI45mfASe1g7XBqna4gF5mJl6Bw1ECpcrR2OFah1xXAUJAHt2wVVI5OJsd8fX3h6+trpciqJykpCUlJSdYOo06z1neznNhnZriHr68vIiIi8MQTT1g7FCIyY/HixViyZIm1w6iS1atXY+nSpdYOo86LiIios3+sWYIkSltCyY7Y+1+92dnZiIiIQGxsLLRarbXDISuQ82eANerKk/P9rIq6/BmwBCZqQmZmJtzd3ZGRkQE3Nzdrh0NWwM+AbeH9tC3sTEZERCRjTNREREQyxkRNUKvVWLx4MdRqtbVDISvhZ8C28H7aFj6jJiIikjHWqImIiGSMiZqIiEjGmKjJoq5fvw5JkhAVFWXtUIiIbAITtRVdvXoV06dPR1BQEDQaDdzc3NCjRw+sXLkSubm5NXbdc+fOYcmSJbh+/XqNXaMili9fjuHDh6Nhw4aQJKnOzj5VGyRJqtArJiam2te6e/culixZUqlz8V5WDu8nVYbdTyFqLTt37sSYMWOgVqsxYcIEtG7dGgUFBdi/fz9efvllnD17FmvWrKmRa587dw5Lly5Fr169EBAQUCPXqIjXXnsNPj4+aN++PaKjo60WR12wceNGk+0vvvgCe/bsKbE/JCSk2te6e/eucdrLXr16Veg9vJeVw/tJlcFEbQXx8fF47LHH4O/vj71795pMjTdjxgxcuXIFO3futGKEfxNCIC8vD05OTuUXrqT4+HgEBATg1q1baNCggcXPb0vun4v+0KFD2LNnj2zmqOe9rBzeT6oMNn1bwdtvv43s7GysW7fO7Py1zZs3x4svvmjc1ul0WLZsGZo1awa1Wo2AgAAsWLAA+fn5Ju8LCAjAsGHDsH//fnTp0gUajQZBQUH44osvjGWioqIwZswYAEDv3r1LNLEVnyM6OhqdOnWCk5MTVq9eDQC4du0axowZAy8vLzg7O6Nbt27V+oPCmrV5W2QwGPDhhx+iVatW0Gg0aNiwIaZPn460tDSTcseOHcPAgQNRv359ODk5ITAwEE899RSAoj4GxV/MS5cuNX4+ymv65L20PN5PKsYatRX88MMPCAoKQvfu3StUfurUqdiwYQNGjx6NOXPm4PDhw4iMjMT58+exfft2k7JXrlzB6NGjMWXKFEycOBGff/45Jk2ahI4dO6JVq1bo2bMnZs6ciX/9619YsGCBsWnt3ia2ixcvYty4cZg+fTqmTZuG4OBgpKSkoHv37rh79y5mzpyJevXqYcOGDRg+fDi2bduGUaNGWe4fiKpk+vTpiIqKwuTJkzFz5kzEx8fj448/xsmTJ/Hbb7/BwcEBqampGDBgABo0aIBXXnkFHh4euH79Or755hsAQIMGDbBq1So8++yzGDVqFB5++GEAQNu2ba35q9kl3k8yElSrMjIyBAAxYsSICpWPi4sTAMTUqVNN9r/00ksCgNi7d69xn7+/vwAg9u3bZ9yXmpoq1Gq1mDNnjnHf1q1bBQDx66+/lrhe8Tl2795tsn/WrFkCgPjvf/9r3JeVlSUCAwNFQECA0Ov1Qggh4uPjBQCxfv36Cv1+Qghx8+ZNAUAsXry4wu+xdzNmzBD3/u/73//+VwAQmzZtMim3e/duk/3bt28XAMTRo0dLPXd17gfvZdXwflJZ2PRdyzIzMwEArq6uFSq/a9cuAMDs2bNN9s+ZMwcASjQ9h4aG4qGHHjJuN2jQAMHBwbh27VqFYwwMDMTAgQNLxNGlSxc8+OCDxn1arRZPP/00rl+/jnPnzlX4/GR5W7duhbu7O/r3749bt24ZXx07doRWq8Wvv/4KAPDw8AAA7NixA4WFhVaMmMrC+0n3YqKuZcVLzmVlZVWofEJCAhQKBZo3b26y38fHBx4eHkhISDDZ37Rp0xLn8PT0LPFcqyyBgYFm4wgODi6xv7jJ/P44qHZdvnwZGRkZ8Pb2RoMGDUxe2dnZSE1NBQBERETgkUcewdKlS1G/fn2MGDEC69evL9HfgayL95PuxWfUtczNzQ2NGjXCmTNnKvU+SZIqVE6pVJrdLyoxpXtN9PCmmmUwGODt7Y1NmzaZPV7coUiSJGzbtg2HDh3CDz/8gOjoaDz11FN47733cOjQIWi12toMm0rB+0n3YqK2gmHDhmHNmjU4ePAgwsPDyyzr7+8Pg8GAy5cvm3T4SklJQXp6Ovz9/St9/Yom/fvjuHjxYon9Fy5cMB4n62nWrBl+/vln9OjRo0J/aHXr1g3dunXD8uXLsXnzZowfPx5btmzB1KlTq/T5IMvi/aR7senbCubOnQsXFxdMnToVKSkpJY5fvXoVK1euBAAMGTIEAPDhhx+alHn//fcBAEOHDq309V1cXAAA6enpFX7PkCFDcOTIERw8eNC4LycnB2vWrEFAQABCQ0MrHQdZzqOPPgq9Xo9ly5aVOKbT6Yz3Oi0trUTrSlhYGAAYm0udnZ0BVO7zQZbF+0n3Yo3aCpo1a4bNmzdj7NixCAkJMZmZ7MCBA9i6dSsmTZoEAGjXrh0mTpyINWvWID09HREREThy5Ag2bNiAkSNHonfv3pW+flhYGJRKJVasWIGMjAyo1Wr06dMH3t7epb7nlVdewZdffonBgwdj5syZ8PLywoYNGxAfH4+vv/4aCkXl/+bbuHEjEhIScPfuXQDAvn378MYbbwAAnnzySdbSKyEiIgLTp09HZGQk4uLiMGDAADg4OODy5cvYunUrVq5cidGjR2PDhg345JNPMGrUKDRr1gxZWVlYu3Yt3NzcjH8UOjk5ITQ0FF999RUeeOABeHl5oXXr1mjdunWp1+e9tCzeTzJh5V7ndu3SpUti2rRpIiAgQDg6OgpXV1fRo0cP8dFHH4m8vDxjucLCQrF06VIRGBgoHBwcRJMmTcT8+fNNyghRNLRq6NChJa4TEREhIiIiTPatXbtWBAUFCaVSaTJUq7RzCCHE1atXxejRo4WHh4fQaDSiS5cuYseOHSZlKjM8KyIiQgAw+zI3dIz+dv9wnmJr1qwRHTt2FE5OTsLV1VW0adNGzJ07V/z5559CCCFOnDghxo0bJ5o2bSrUarXw9vYWw4YNE8eOHTM5z4EDB0THjh2Fo6NjhYbn8F5WD+8nlUUSohK9jIiIiKhW8Rk1ERGRjDFRExERyRgTNRERkYwxURMREckYEzUREZGMMVETERHJGBO1jL399tto2bIlDAaDtUOptldeeQVdu3a1dhh1Dj8DZM7169chSRKioqKsHQrVAiZqmcrMzMSKFSswb94846xfkiRBkiS89957JcpHRUVBkiQcO3as2tf+5ptvMHbsWAQFBcHZ2RnBwcGYM2dOqVMQfv/99+jQoQM0Gg2aNm2KxYsXQ6fTmZSZNWsWTp06he+//77a8dkLfgaICABnJpOrDz74QLi5uYnc3FzjPvw1M1DDhg1FTk6OSfn169eXu4B8RdWrV0+0adNGLFy4UKxdu1bMnDlTODo6ipYtW4q7d++alN21a5eQJEn07t1brFmzRrzwwgtCoVCIZ555psR5H330UfHQQw9VOz57wc8AlcZgMIjc3Fyh0+msHQrVAiZqmWrbtq144oknTPYBEGFhYQKAeO+990yOWfJL2twUgRs2bBAAxNq1a032h4aGinbt2onCwkLjvldffVVIkiTOnz9vUnbbtm1CkiRx9erVasdoD/gZICIhhGDTtwzFx8fjf//7H/r161fiWI8ePdCnTx+8/fbbyM3NrZHr9+rVq8S+UaNGAQDOnz9v3Hfu3DmcO3cOTz/9NFSqv9d3ee655yCEwLZt20zOUfz7fPfddzUQtW3hZ8D2LVmyBJIk4dKlS3jiiSfg7u6OBg0aYOHChRBC4MaNGxgxYgTc3Nzg4+Nj8rjD3DPqSZMmQavV4o8//sDIkSOh1WrRoEEDvPTSS9Dr9cZyMTExkCQJMTExJvGYO2dycjImT54MPz8/qNVq+Pr6YsSIEbh+/XoN/auQOUzUMnTgwAEAQIcOHcweX7JkCVJSUrBq1aoyz5Ofn49bt25V6FWe5ORkAED9+vWN+06ePAkA6NSpk0nZRo0awc/Pz3i8mLu7O5o1a4bffvut3OvZO34G7MfYsWNhMBjw1ltvoWvXrnjjjTfw4Ycfon///mjcuDFWrFiB5s2b46WXXsK+ffvKPJder8fAgQNRr149vPvuu4iIiMB7772HNWvWVCm2Rx55BNu3b8fkyZPxySefYObMmcjKykJiYmKVzkdVw2UuZejChQsAgMDAQLPHH3roIfTu3RvvvPMOnn322VIXlv/yyy8xefLkCl1TlLM2y4oVK6BUKjF69GjjvqSkJACAr69vifK+vr74888/S+wPCgrCuXPnKhSTPeNnwH506dIFq1evBgA8/fTTCAgIwJw5cxAZGYl58+YBAMaNG4dGjRrh888/R8+ePUs9V15eHsaOHYuFCxcCAJ555hl06NAB69atw7PPPlupuNLT03HgwAG88847eOmll4z758+fX9lfkaqJiVqGbt++DZVKBa1WW2qZJUuWICIiAp9++in++c9/mi0zcOBA7Nmzp9rxbN68GevWrcPcuXPRokUL4/7iZle1Wl3iPRqNBpmZmSX2e3p6lqhlUUn8DNiPqVOnGv9bqVSiU6dO+P333zFlyhTjfg8PDwQHB+PatWvlnu+ZZ54x2X7ooYewcePGSsfl5OQER0dHxMTEYMqUKfD09Kz0OcgymKjrqJ49e6J37954++23S/yPWczX19dsTacy/vvf/2LKlCkYOHAgli9fbnKsuBaXn59f4n15eXlma3lCCEiSVK2YqAg/A7ahadOmJtvu7u7QaDQmjxiK99++fbvMc2k0GjRo0MBkn6enJ9LS0iodl1qtxooVKzBnzhw0bNgQ3bp1w7BhwzBhwgT4+PhU+nxUdXxGLUP16tWDTqdDVlZWmeUWL16M5ORkY7PZ/XJzc5GcnFyhlzmnTp3C8OHD0bp1a2zbts2ksxDwd3NncfPnvZKSktCoUaMS+9PS0kp8AVFJ/AzYD6VSWaF9QPmPJ0p7371K+yPp3g5nxWbNmoVLly4hMjISGo0GCxcuREhICFtEahkTtQy1bNkSQFHP37JERESgV69eWLFihdnev1999ZWxRlXe635Xr17FoEGD4O3tjV27dpltgg0LCwOAEhNs/Pnnn/j999+Nx+8VHx+PkJCQMn8v4meAak5xE/b9k9ckJCSYLd+sWTPMmTMHP/30E86cOYOCggKzE+5QzWHTtwyFh4cDKPrya9u2bZlllyxZgl69epnt1VnV55PJyckYMGAAFAoFoqOjSzSlFWvVqhVatmyJNWvWYPr06ca/5letWgVJkkw6HQFARkYGrl69WulOLfaInwGqKf7+/lAqldi3bx9Gjhxp3P/JJ5+YlLt79y4UCgU0Go1xX7NmzeDq6mr2UQfVHCZqGQoKCkLr1q3x888/46mnniqzbEREBCIiIhAbG1viWFWfTw4aNAjXrl3D3LlzsX//fuzfv994rGHDhujfv79x+5133sHw4cMxYMAAPPbYYzhz5gw+/vhjTJ06tUSt6eeff4YQAiNGjKh0TPaGnwGqKe7u7hgzZgw++ugjSJKEZs2aYceOHUhNTTUpd+nSJfTt2xePPvooQkNDoVKpsH37dqSkpOCxxx6zUvR2ylozrVDZ3n//faHVak2mawQgZsyYUaLsr7/+apxa0hKzUhWfy9wrIiKiRPnt27eLsLAwoVarhZ+fn3jttddEQUFBiXJjx44VDz74YLXjsxf8DNi2xYsXCwDi5s2bJvsnTpwoXFxcSpSPiIgQrVq1EkIIER8fLwCI9evXl/u+4uvc6+bNm+KRRx4Rzs7OwtPTU0yfPl2cOXPG5Jy3bt0SM2bMEC1bthQuLi7C3d1ddO3aVfznP/+p5m9OlSUJUU7vBLKKjIwMBAUF4e233zYZplFXJScnIzAwEFu2bGFtqoL4GSAigJ3JZMvd3R1z587FO++8YxNLHH744Ydo06YNv6ArgZ8BIgIA1qiJiIhkjDVqIiIiGWOiJiIikjEmaiIiIhljoiYiIpIxJmoiIirV9evXIUkSoqKirB2K3WKiJiKykKtXr2L69OkICgqCRqOBm5sbevTogZUrV5qdi91Szp07hyVLluD69es1do2KWL58OYYPH46GDRtCkiQsWbLEqvHYCk4hSkRkATt37sSYMWOgVqsxYcIEtG7dGgUFBdi/fz9efvllnD171ux87JZw7tw5LF26FL169UJAQECNXKMiXnvtNfj4+KB9+/aIjo62Why2homaiKia4uPj8dhjj8Hf3x979+41mV99xowZuHLlCnbu3GnFCP8mhCh1rfDqio+PR0BAAG7dulXqQi5UeWz6JiKqprfffhvZ2dlYt26d2UVQmjdvjhdffNG4rdPpsGzZMjRr1gxqtRoBAQFYsGBBiVWpAgICMGzYMOzfvx9dunSBRqNBUFAQvvjiC2OZqKgojBkzBgDQu3dvSJIESZIQExNjco7o6Gh06tQJTk5OxvXLr127hjFjxsDLywvOzs7o1q1btf6gsGZt3pYxURMRVdMPP/yAoKAgdO/evULlp06dikWLFqFDhw744IMPEBERgcjISLOrUl25cgWjR49G//798d5778HT0xOTJk3C2bNnAQA9e/bEzJkzAQALFizAxo0bsXHjRpOVyy5evIhx48ahf//+WLlyJcLCwpCSkoLu3bsjOjoazz33HJYvX468vDwMHz4c27dvt8C/ClmMVZcEISKq4zIyMgQAMWLEiAqVj4uLEwDE1KlTTfa/9NJLAoDYu3evcZ+/v78AIPbt22fcl5qaKtRqtZgzZ45x39atWwUA8euvv5a4XvE5du/ebbJ/1qxZAoD473//a9yXlZUlAgMDRUBAgNDr9UII8yt1lefmzZsCgFi8eHGF30OlY42aiKgaMjMzAQCurq4VKr9r1y4AwOzZs032z5kzBwBKND2HhobioYceMm43aNAAwcHBuHbtWoVjDAwMxMCBA0vE0aVLFzz44IPGfVqtFk8//TSuX7+Oc+fOVfj8VLOYqImIqsHNzQ0AkJWVVaHyCQkJUCgUaN68ucl+Hx8feHh4ICEhwWR/06ZNS5zD09MTaWlpFY4xMDDQbBzBwcEl9hc3md8fB1kPEzURUTW4ubmhUaNGOHPmTKXeJ0lShcoplUqz+0UlFj6siR7eVHuYqImIqmnYsGG4evUqDh48WG5Zf39/GAwGXL582WR/SkoK0tPT4e/vX+nrVzTp3x/HxYsXS+y/cOGC8TjJAxM1EVE1zZ07Fy4uLpg6dSpSUlJKHL969SpWrlwJABgyZAgA4MMPPzQp8/777wMAhg4dWunru7i4AADS09Mr/J4hQ4bgyJEjJn9c5OTkYM2aNQgICEBoaGil46CawQlPiIiqqVmzZti8eTPGjh2LkJAQk5nJDhw4gK1bt2LSpEkAgHbt2mHixIlYs2YN0tPTERERgSNHjmDDhg0YOXIkevfuXenrh4WFQalUYsWKFcjIyIBarUafPn3g7e1d6nteeeUVfPnllxg8eDBmzpwJLy8vbNiwAfHx8fj666+hUFS+Hrdx40YkJCTg7t27AIB9+/bhjTfeAAA8+eSTrKVXlbW7nRMR2YpLly6JadOmiYCAAOHo6ChcXV1Fjx49xEcffSTy8vKM5QoLC8XSpUtFYGCgcHBwEE2aNBHz5883KSNE0dCqoUOHlrhORESEiIiIMNm3du1aERQUJJRKpclQrdLOIYQQV69eFaNHjxYeHh5Co9GILl26iB07dpiUqczwrIiICAHA7Mvc0DGqGEmISvRIICIiolrFZ9REREQyxkRNREQkY0zUREREMsZETUREJGNM1ERERDLGRE1ERCRjTNREREQyxkRNREQkY0zUREREMsZETUREJGNM1ERERDLGRE1ERCRjTNREREQy9v+5hopS32Tk3gAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAV5tJREFUeJzt3XlcVOX+B/DPmQGGZVhVQCVZ1BBUJHfUwt1cUrtpZppLalaWebXcbm6ZkXXLrH6Zmol5NbtatqhppoHX0MSFcs8NaGFxgWGRbWae3x/E5MiwDzOHmc/79ZqX95zzzHm+NHP58jznWSQhhAARERHJksLaARAREVHFmKiJiIhkjImaiIhIxpioiYiIZIyJmoiISMaYqImIiGSMiZqIiEjGmKiJiIhkjImaiIhIxuw+UaelpWHp0qVIS0uzdihERHQX/o5mokZaWhqWLVtm118CIiK54u9oJmoiIiJZY6ImIiKSMSZqIiIiGWOiJiIikjEmaiIiIhljoiYiIpIxJmoiIiIZY6ImIiKSMQdrB0BE1lWcl4XM0wdRlJ0BlZcffNv3hZPa29phEdFfmKiJ7NjNX3/Chc9jIPRaSJICQuiRErcZYaMWwqd1V2uHR0Rg1zeR3SrOyypN0roSQAgIva70X10Jzu94DcV5WdYOkYjARE1ktzJPH4TQa01eE3otMk8ftHBERGQKEzWRnSrKzoAkmf4VIEkKFGVnWDgiIjKFiZrITqm8/CCE3uQ1IfRQeflZOCIiMoWJmshO+bbvC0lhejyppHCAb0Q/C0dERKbINlG//vrrkCQJs2bNqrBMbGwsJEkyejk7O1suSKIGzEntjbBRCyEpHQFJgqRQlv6rdETYqIVwcvOydohEBJlOz0pMTMTatWsRERFRZVkPDw9cvHjRcCxJUn2GRmRTfFp3RZfnNxrPo47oxyRNJCOyS9R5eXkYN24c1q9fj1dffbXK8pIkwd/f3wKREdkmJ7U3AqIesXYYRFQB2XV9z5gxA0OHDkX//v2rVT4vLw+BgYG45557MGLECJw9e7aeIyQiIrIcWbWot23bhpMnTyIxMbFa5UNDQ/Hxxx8jIiICGo0G//73v9GjRw+cPXsWAQEBJt9TVFSEoqIiw3FeXp5ZYiciIqoPsknUv/32G1544QXs37+/2gPCoqKiEBUVZTju0aMHwsLCsHbtWixfvtzke2JiYrBs2TKzxExERFTfZNP1feLECWRmZqJjx45wcHCAg4MD4uPj8e6778LBwQE6na7Kezg6OuK+++7D5cuXKyyzYMECaDQawys+Pt6cPwYREZFZyaZF3a9fP5w+fdro3OTJk9GmTRvMmzcPSqWyynvodDqcPn0aQ4YMqbCMSqWCSqUyHKvV6toHTUREVM9kk6jd3d3Rrl07o3Nubm5o1KiR4fyECRPQvHlzxMTEAABeeeUVdO/eHa1atUJ2djbefPNNpKSkYOrUqRaPn4iIqD7IJlFXR2pqKhSKv3vrs7KyMG3aNKSnp8Pb2xudOnVCQkICwsPDrRglERGR+cg6UcfFxVV6vGrVKqxatcpyAREREVmYbAaTERERUXlM1ERERDLGRE1ERCRjTNREREQyJuvBZERU/4rzsox3z2rfF05qb2uHRUR/YaImsmM3f/0JFz6PgdBrIUkKCKFHStxmhI1aCJ/WXa0dHhGBXd9Edqs4L6s0SetKACEg9LrSf3UlOL/jNRTnZVk7RCICEzWR3co8fRBCrzV5Tei1yDx90MIREZEpTNREdqooOwOSZPpXgCQpUJSdYeGIiMgUJmoiO6Xy8oMQepPXhNBD5eVn4YiIyBQmaiI75du+LySF6fGkksIBvhH9LBwREZnCRE1kp5zU3ggbtRCS0hGQJEgKZem/SkeEjVoIJzcva4dIROD0LCK75tO6K7o8v9F4HnVEPyZpIhlhi5rIzjmpvREQ9QhaDn4WAVGPMElTg7ZmzRpERETAw8MDHh4eiIqKwrfffmvtsOqEiZqIiGxGQEAAXn/9dZw4cQLHjx9H3759MWLECJw9e9baodUau76JiMhmPPTQQ0bHK1aswJo1a3D06FG0bdvWSlHVDRM1ERHJXl5eHnJycgzHKpUKKpWq0vfodDps374d+fn5iIqKqu8Q6w27vomISPaio6Ph6elpeMXExFRY9vTp01Cr1VCpVHj66aexc+dOhIeHWzBa82KLmoiIZC8+Ph6RkZGG48pa06GhoUhKSoJGo8GOHTswceJExMfHN9hkzURNRESyp1ar4eHhUa2yTk5OaNWqFQCgU6dOSExMxOrVq7F27dr6DLHesOubiIhsml6vR1FRkbXDqDW2qImIyGYsWLAAgwcPRosWLZCbm4utW7ciLi4O+/bts3ZotcZETURENiMzMxMTJkxAWloaPD09ERERgX379mHAgAHWDq3WmKiJiMhmbNiwwdohmB2fURMREckYEzUREZGMMVETERHJGBM1ERGRjDFRExERyRgTNRERkYwxURMREckYEzUREZGMMVETERHJGBM1ERGRjDFRExERyRgTNRERkYwxURMREckYEzUREZGMMVETERHJGBM1ERGRjDlYOwAisq7ivCxknj6IouwMqLz84Nu+L5zU3tYOi4j+wkRNZMdu/voTLnweA6HXQpIUEEKPlLjNCBu1ED6tu1o7PCICu76J7FZxXlZpktaVAEJA6HWl/+pKcH7HayjOy7J2iEQEJmoiu5V5+iCEXmvymtBrkXn6oIUjIiJTmKiJ7FRRdgYkyfSvAElSoCg7w8IREZEpTNREdkrl5Qch9CavCaGHysvPwhERkSlM1ER2yrd9X0gK0+NJJYUDfCP6WTgiIjKFiZrITjmpvRE2aiEkpSMgSZAUytJ/lY4IG7UQTm5e1g6RiMDpWUR2zad1V3R5fqPxPOqIfkzSRDIi2xb166+/DkmSMGvWrErLbd++HW3atIGzszPat2+PPXv2WCZAIhvhpPZGQNQjaDn4WQREPcIkbSv0OmtHQGYiy0SdmJiItWvXIiIiotJyCQkJGDt2LKZMmYJTp05h5MiRGDlyJM6cOWOhSImIZKo439oRkJnILlHn5eVh3LhxWL9+Pby9K1/GcPXq1XjwwQfx0ksvISwsDMuXL0fHjh3x/vvvWyhaIiK5EtYOgMxEdol6xowZGDp0KPr3719l2SNHjpQrN2jQIBw5cqS+wiMiaiAkawdAZiKrwWTbtm3DyZMnkZiYWK3y6enp8PMznuvp5+eH9PT0Ct9TVFSEoqIiw3FeXl7tgiUiIrIA2STq3377DS+88AL2798PZ2fneqsnJiYGy5Ytq7f7ExHJgsQWta2QTdf3iRMnkJmZiY4dO8LBwQEODg6Ij4/Hu+++CwcHB+h05Ucw+vv7IyPDeJnDjIwM+Pv7V1jPggULoNFoDK/4+Hiz/yxERFZXwfKw1PDIpkXdr18/nD592ujc5MmT0aZNG8ybNw9KpbLce6KionDgwAGjKVz79+9HVFRUhfWoVCqoVCrDsVqtrnvwRESywxa1rZBNonZ3d0e7du2Mzrm5uaFRo0aG8xMmTEDz5s0RExMDAHjhhRcQHR2Nt956C0OHDsW2bdtw/PhxrFu3zuLxExER1YcG1TeSmpqKtLQ0w3GPHj2wdetWrFu3Dh06dMCOHTvw5Zdflkv4RET2h9OzbIVsWtSmxMXFVXoMAKNHj8bo0aMtExARUUPBlclsRoNqURMRUTXpSqwdAZkJEzURkS3SFVs7AjITJmoiIlukLbR2BGQmsn5GTfUvKzcf+xPPI/1WDvx9PDCgSxi83d2sHRYR1ZW2qOoy1CAwUduxI2euYvmm3dDq9FBIEvRCIPbbI1g8aSi6tw2xdnhEVBc6Jmpbwa5vO5WVm4/lm3ajRKuDEAI6vR5CCJRodXgldjeycrlFHlGDptNaOwIyEyZqO7U/8Ty0Or3Ja1qdHt8fv2DhiIjIrPQc9W0rmKjtVPqtHCgqWLRfIUlIu6mxcEREZFacnmUz+IzaTvn7eEAvTK9cpBcCTRt5WjgiMpekDS+gOC8LTmpvRE5Zbe1wyFr07Pq2FWxR26kBXcLgoDT98TsoFejfOczCEZG5FOdloTj3JorzsqwdClkTW9Q2g4naTnm7u2HxpKFwdFBCkiQoFQpIkgRHByUWTxoKb3dXa4dIRHVhp/OoY2Ji0KVLF7i7u8PX1xcjR47ExYsXrR1WnbDr2451bxuCLYufxPfHLyDtpgZNG3mif+cwJmkiW2CniTo+Ph4zZsxAly5doNVqsXDhQgwcOBDnzp2Dm1vDXCOCidrOebu7YXSfTtYOg4jMrSjX2hFYxd69e42OY2Nj4evrixMnTuCBBx6wUlR1w0RNRGSLbCxR5+XlIScnx3CsUqmgUqmqfJ9GUzqDxcfHp95iq298Rk1EZIsKbWuKZXR0NDw9PQ2vmJiYKt+j1+sxa9Ys9OzZE+3atbNAlPWDLWoiIltkY4k6Pj4ekZGRhuPqtKZnzJiBM2fO4PDhw/UYWf1joiYiskU2lqjVajU8PDyqXf65557Drl27cOjQIQQEBNRjZPWPXd9ERLaopAAosb+R30IIPPfcc9i5cycOHjyI4OBga4dUZ2xRExHZqts3Ac/m1o7CombMmIGtW7fiq6++gru7O9LT0wEAnp6ecHFxsXJ0tcMWNRGRrcrLsHYEFrdmzRpoNBr07t0bTZs2Nbw+++wza4dWa2xRExHZKs3vQPOO1o7CokQFexg0ZEzUdi4rNx/7E88j/VYO/H08MKBLGLzdG+bqPUR0lxu/WjsCMgMmajt25MxVLN+0G1qdHgpJgl4IxH57BIsnDUX3tiHWDo+I6irjjLUjIDNgorZTWbn5WL5pN0q0OgCA7q/uohKtDq/E7saWxU+yZU3U0N26BuRdB9RNrB2JzXryyScrvS5JEpydnREQEIDevXsjKiqqxnUwUdup/YnnodXpTV7T6vT4/vgFrgFOZAtSE4DwEdaOwmYdPHgQBQUFuH79OgDA29sbAJCVVbrNbJMmTaDX63Hz5k1IkoRBgwZhx44dcHWt/uZHHPVtp9Jv5UAhSSavKSQJaTdta7EEIrt1Nd7aEdi0b7/9FiqVCkuXLsXNmzcNrxs3bmDJkiVwcXHBjz/+iKysLCxatAh79+7FokWLalQHE7Wd8vfxgL6C0ZF6IdC0kaeFIyKievHnKaAgy9pR2KznnnsOQ4YMweLFiw2taaB0E5AlS5bgwQcfxHPPPQdPT08sXboUjz32GHbs2FGjOpio7dSALmFwUJr++B2UCvTvHGbhiIioXgg9kHLE2lHYrKNHj6JDhw4VXu/QoQMSEhIMx/fffz8yMmo2v52J2k55u7th8aShcHRQQpIkKBUKSJIERwclFk8aCm/36j8/ISKZS27Ym1LImZeXF7777rsKr+/duxeenn/3UObl5dVozXKAg8nsWve2Idiy+El8f/wC0m5q0LSRJ/p3DmOSJrI1fxwHtEWAQ9U7TlHNTJs2Da+88gpGjRqFZ555Bq1atQIAXL58GWvWrMGuXbuMnknv2bPHaBew6mCitnPe7m4c3U1k67RFwB8ngcCaTw2iyi1ZsgQFBQVYtWoVdu7caXRNqVRi9uzZWLJkCQCgsLAQkyZNQkRERI3qYKImIrIH1w4xUdcDSZKwcuVKzJkzBwcOHEBKSgoAIDAwEP369YOvr6+hrLOzMyZOnFjjOpioiYjswbV4oNcsdn/XE19fX4wdO7Ze7s3BZERE9qA4H7gaZ+0oqBaYqImI7MWZzwEb3F3K1jFRExHZmM6dOyPguS/R+bWTxheuXwT+PGn6TSRbTNRERDYmPT0df9wqQHpOcfmLp/5j+YCoTpioiYjsyR8ngbSfrR0F1QATNRGRvUncwGfVDQinZxER2Zu0n4HUI0BgD2tH0iD17du33LmDBw/WW31M1ERE9ujI/wHNOwMOTtaOpMEJDAy0aH1M1ERE9kjzO/DzVqDTJGtH0uBs3LjRovXV+hm1TqfDtm3bMH36dDz88MM4ffo0AECj0eCLL76o8TZeRERkYSc3AzevWDsKqkKtEnV2djZ69uyJxx9/HJ9++im+/vprXL9+HQCgVqsxc+ZMrF692qyBEhGRmem1wA8rAK2JaVxULUlJSfj000+Nzu3btw8PPPAAunXrZpZcWKtEPX/+fJw9exb79u3D1atXIe4YPahUKjFq1Cjs2bOnzsEREVE9u3kFSFxv7SgarLlz5+Kzzz4zHF+7dg0PP/wwrl27BgCYPXs21q1bV6c6apWov/zySzz//PMYMGAAJEkqd/3ee+9FcnJynQIjIiIL+eW/QOpP1o6iQfr555/Rq1cvw/Enn3wCpVKJU6dO4aeffsKoUaPw4Ycf1qmOWiVqjUaD4ODgCq+XlJRAq9XWOigiIrKwH1YAedetHUWDo9Fo0KhRI8Pxnj17MGDAADRu3BgAMGDAAFy+fLlOddQqUbds2RInT1a8Xux3332H8PDwWgdFREQWVqgBDi4H9DprR9KgNG3aFOfPnwcApKWl4cSJExg4cKDhel5eHhSKuq0tVqvpWVOnTsW8efPQu3dv9OvXD0Dp5tlFRUV45ZVXsHfv3jr3yRMRkYWl/Qyc/AToPNnakTQYI0aMwHvvvYfCwkL89NNPUKlUePjhhw3Xf/75Z4SEhNSpjlol6hdeeAFnz57F2LFj4eXlBQB4/PHHcfPmTWi1WkyfPh1TpkypU2BERABQnJeFzNMHUZSdAZWXH3zb94WT2tvaYdmuk58AAZ0B//bWjqRBePXVV3H9+nVs3rwZXl5eiI2NhZ+fHwAgJycHO3bswIwZM+pUR60StSRJWL9+PSZOnIgdO3bg0qVL0Ov1aNmyJR599FE88MADtQpmzZo1WLNmjWEgWtu2bbF48WIMHjzYZPnY2FhMnmz8l59KpUJhYWGt6iciebn560+48HkMhF4LSVJACD1S4jYjbNRC+LTuau3wbJPQAwdXAKM+BpxcrR2N7KnVamzZsqXCa7///jtcXev237FOK5P16tXLaLRbXQUEBOD1119H69atIYTApk2bMGLECJw6dQpt27Y1+R4PDw9cvHjRcGxqFDoRyVNlreXivKzSJK0rAQAIUfrsVOhKcH7Ha+jy/Ea2rOtLbhpw9APggRetHUmDo9FooFaroVQqoVAo4OnpWed7ymr3rIceeghDhgxB69atce+992LFihVQq9U4evRohe+RJAn+/v6GV1mXAxHVXHFeFn4/8jmufPsBfj/yOYrzsuqtrpu//oTE9yYj+eBGpJ/ai+SDG5H43mTcunQMAJB5+iCE3vTsEaHXIvN0/W2CQADOf8MpW9V0/PhxPPjgg3B1dUWjRo0QHx8PALhx4wZGjBiBuLi4Ot2/Vi3q4ODgKluukiThypXaL02n0+mwfft25OfnIyoqqsJyeXl5CAwMhF6vR8eOHfHaa69V2PoGgKKiIhQVFRm9n4gs281cndZyUXbGX3GUH4UsSQoUZXOZ4noXvxIYtQFwYc9FRRISEtC3b180b94c48ePx0cffWS41rhxY2g0Gqxduxa9e/eudR21StTR0dHlErVOp0NKSgp+/PFHtGvXDvfdd1+tAjp9+jSioqJQWFgItVqNnTt3VjjVKzQ0FB9//DEiIiKg0Wjw73//Gz169MDZs2cREBBg8j0xMTFYtmxZrWIjslX11c1cUdd2dVrLKi8/CKE3XUboofJi71m9u30TiHsdGBQD1HGKka1auHAhwsLCcPToUeTm5holagDo06cPNm3aVKc6apWoY2NjK7z2888/Y9CgQRg3blytAgoNDUVSUhI0Gg127NiBiRMnIj4+3mSyjoqKMmpt9+jRA2FhYVi7di2WL19u8v4LFizA7NmzDcdJSUmIjo6uVaxEtqI6iTMg6pFy1yp7xlxZC706reV77h+LlLjNhj8ejMooHOAb0a+OPzVVS+pRIGkL0PEJa0ciS4mJiYiJiYFKpTLZQ9u8eXOkp6fXqQ6zb3PZoUMHTJ8+HfPmzcOJEydq/H4nJye0atUKANCpUyckJiZi9erVWLt2bZXvdXR0xH333VfpKjAqlQoqlcpwrFaraxwjka2pTTdzZYlY3bR1pS30gKhHqmwtO6m9ETZqIc7veM2oDknhgLBRC+Hk5mW+/wB3+O3wNty6nIj89GuQlA6Ieum/Vb5HCIHU+P8gPWkfdIX5cA8IQ6shM+Di09xQ5txny5CfcQ3F+dlwcFHDKygSQf0mQ+XeqJI7y8TxDUDje4EW3awdiew4OjpCrzf9XQaAP/74o855pl76Mvz8/HDu3Dmz3Euv1xs9U66MTqfD6dOn0bRpU7PUTWQvatrNbNRVLgSEXlf671+JOO34rkpb6IAESWG6nXBna9mndVd0eX4jgvpOhv99DyKo72R0mRlb52fmv3wyHxk/7zd5Ta/TonFYL/h3GlLt+/1xZAf+TPwGrQbPQIfJb0Pp5IwzWxdBf8euVJ5BEQj9x3x0emYdwh5ZiMLsNFz4/LU6/RwWI0TpqmWaP6wdiex0794dO3bsMHktPz8fGzdurHOvrdkT9c2bN7Fhw4YKnxFXZsGCBTh06BCSk5Nx+vRpLFiwAHFxcYZu9AkTJmDBggWG8q+88gq+++47XL16FSdPnsT48eORkpKCqVOnmu3nIbIHvu37Vitxlqmqqzz7WhIkyfSvF0lSQFuQg7BRCyEpHQFJgqRQlv6rdCzXWnZSeyMg6hG0HPwsAqIeqbeWdJnA6PFo3u1huPkGVqu8EAJ/HPsK9/Qag0ahUXDzC8a9w+egOPcWbl48YijXvNvD8AhoA2cvX3jcE46AHqOR+/tF6HUNZF+Eolxg/2JuiXmXZcuW4fjx4xg6dCi+/fZbAKWPgD/66CN06tQJ169fx6JFi+pUR626vvv27WvyfHZ2Ni5cuIDi4mJs3ry5xvfNzMzEhAkTkJaWBk9PT0RERGDfvn0YMGAAACA1NdVozdSsrCxMmzYN6enp8Pb2RqdOnZCQkMB1xolqqKbdzFV1lQOosoVe1lo2esYd0a/eE7G5FWWnoyQvC17BkYZzDs5ucG8eipzfL6BJ2/KtqZKCXFw/EwePgDAolGZ/All/bl4Gjq0Fejxv7Uhko1u3btizZw+eeeYZTJgwAQAwZ84cAKX7YuzZswcRERF1qqNW3xC9Xl9u1LckSQgODkb//v3x5JNPok2bNjW+74YNGyq9fvdctFWrVmHVqlU1roeI/nbngLCAqFGABGhv5xgSJ4TA70c+NxowVlVXuVfwfchLv1LlQLCy1nJDVjbX3MnNeFS8k5sXSvKN56FfO/Ax0o7vgr6kCO7N2yB8zBKLxWk2Zz4HQnpzidE79O3bFxcvXkRSUpLRSp2dOnUyyyJctUrUdZ28TUTyYGpAWFkr2qd11woHjLUeNhOSwqHCRNy0yzC4N7/X4gPBKvLb4c/w249/DwrTa4uR+8cFXNn79z7BHZ9eA2dP33qNIyDqEfhHDkKhJhO/HdqKX79+C+FjljasFRWFABLeA0Z+yClbd4mMjERkZKTZ79uA+lyIyJyqmjsd+eQ7FV6/tOtdtBo6E5d3v1thIpZT17Z/pyFoHH6/4fjil2+icZueaNSmh+FcbUdfG5Y8zc+Ck7uP4Xxxfjbc/Ix3TXJ09YSjqydcGjWHa+N7kPjuROT+cQEeAWG1qtuU1NRU5OfnAwDyi3RIvVWIFj7OZrs/AOD6RSDlMBBcu30dbMmhQ4cqvS5JEpydnREQEFDrgc7VStSffPJJrW5e1l9PRPJT1YCw5B9iK71ekp9VZSKWS9e2o4s7HF3cDccKBxUc3Tzh4tOszvdWefnDUe2N7OSfofZvCQDQFt1G7h8X0bSSkeNljw702vK9ErVx7NgxLF++HLt374YQAgCQXaBD0L+OYVh7HywaEoguQe5V3KUGznzORA2gd+/e1e4Rad26NZYtW4YxY8bUqI5qJepJkybV6KZA6V8RTNRE8lXl3GlNZpVzq+WSiM2pUJMJbUEuijTXAaFHXnrpUsguPs2gdHIBAJxYMx2BfSaicZsekCQJzbuOwG+Ht8HFpxmcvfyRErcZTu4+aBRauiBT7h8XkPvnJXjcEw4HZ3cUZqUhJX4znL2bmqU1/cUXX2DMmDEQQhiSdBkhgD1nbuHbM1n4bFoY/nFf4zrXBwD4MwnIzQDc7XuFuL1792LevHkoKirCtGnTDOuAXLp0CR999BFcXFzw8ssvIyUlBWvXrsXjjz8OpVKJUaNGVbuOaiXqa9eu1e4nICLZqnLutKcvbt9Irfi6jS7hmRr/H2T+csBwnPTRTABAu/Ex8AoqHb1bcPN36IryDWWaR42CrrgQl3e/B21hPjzuCUe7scuhcHACACgcnXHzQgJSD22BrrgQTmofeLfshHt6jYHCwbFO8R47dgxjxoyBTqcrl6TL6PSABIEx688jYW6k+VrWKT8C7f5hnns1UHv37oWzszN++uknODk5GV179tln0bt3bxw9ehQrV67E008/jc6dO2PlypXmT9SBgdWbT0hE1lf2zLSqtbl92/etdInOoL6TkX0tySaX8IyY8HqF1+4dPhv3Dp9d4XUA6PXybqNjSZIQ2PsJBPY2vcymm28Q2j8RU/NAq+HVV1812ZK+mwAgIPDqnhR89Ww781SeliTLRH3o0CG8+eabOHHiBNLS0rBz506MHDmyXurasmULXn755XJJGgCcnZ0xbtw4rFixAitXroSzszPGjx9f4RLXFeGQPSIbEzllNbq+8Akip6yutFzZ3OmKFh1x8w2s9qIkZB2pqanYtWsXdLryjydM0emBb07fQuqtQvMEkJVinvuYWX5+Pjp06ID/+7//s0hdGRkV7+SWlpZmtAa4l5cXlEpljeqo9ajv9PR0bNiwASdPnoRGoym31qkkSThw4EAF7yaiO+l1JaXLcFqYZ1AEOj7zIW6ciUf+rXQ4eTRGk7bRcHTzROHtXLg2D0P7qe/hxtlDKNRch7NnE6Pr5iQplFAo69YN3BCY87P+ds/uKlvSdxMC2HcuCxO7m2EqWs51SCXmGQxXEa225iu3DR48GIMHD66HaMrr27cv3nnnHXTv3h3Dhg0zuvbNN99g9erV6Nfv796npKQkBAUF1aiOWiXqX375Bb1790ZBQQFCQ0Nx+vRphIeHIzs7G3/88QdatmyJe+65pza3JrI7el0Jcv/4FbriAqvF4ObfEu//9wDeeG+91WIgy3nqP5fw1H8umedm08p3+dqT999/H3369MGIESPQvHlztGxZOvL/ypUr+OOPPxAYGIj33nsPAFBYWIjU1NQaL3Ndq0Q9f/58qNVqJCUlwdXVFb6+vli9ejX69u2L7du345lnnsGWLVtqc2siuyP0OuiKC6BwcLBqi3L+7Ocwd9azVqlbryuBXquDZ2BbKB3NPOdXRnQlhdCknIXCwTy9B1t3fIWZ85bW+H1rxwZhQre6jf4WQkDr3RqOo9fV62d26tQpdOvWDXl5ecjJyTGcv3snRGtp0aIFTp8+jQ8//BD79u1DSkrp44CwsDDMmjUL06dPh5ubG4DSZ9Z79uypcR21StQ//vgj5s6dixYtWuDWrVsAYOj6Hj16NA4fPoyXXnoJ8fHxtbk9kV1SKB0No4StUr8Vlz/Sa4uhLSqAo6MjlI622/2tgA6Ojg5wULmY5bPu36d0Dm9Nur8lCRjQxguONXxOWp6A3je03j8zB4fSL+bdO1AtWbIES5curbd6a8LV1RWzZ8/G7NmVD0KsrVqv9e3nVzo1o+zBeFnCBoD27dtXuW43ETU8JQW5yLqUiOK8W6VTjFp3MVpIhCzrnoBmeLB/H3x3ML5aA8qUCmBIWy+08DFPS7SkaRdYqv8jPj7eaHlOObSmLaVWiTo4ONgwt1qhUCA4OBjff/89Hn30UQBAQkICvLy8zBYkEVXfxa/egvZ2DhxcPRA6Yo7Z7qtJPYPkA7GlA6EUEqAXSDuxB0H9JsOzRVuz1UM1M++fz2L/D4eqbFlLACRIWDiouVnq1TUJh15tubn0arUaHh4eFquvIhXtHlmZug6urvb0rKysv3eBGThwILZv3244fuaZZ/DRRx+hf//+6NevHzZt2oTHH3+81kERUe1pb+eg5LYG2ts5VReuppKC3L+StBaAAPR6AKJ0qdEDG1FSYN4R4FR9nSIjEPvhKiiVygqn/SgVgFIhYduTrdAlUG2WeotbV7w8qrXl5eUhKSkJSUlJAEoX7UpKSkJqqukFfGpCr9cb5q2XvVJTUxEXF4dTp05Bo9FAo9EgKSkJcXFx+O2332o8Mv9u1W5R+/v7Y8iQIRg3bhzmzJmDsWPHoqSkBI6Ojpg1axby8/Px+eefQ6lUYtGiRVi4cGGdAiPryMrNx/7E80i/lQN/Hw8M6BIGb3c3a4dFVpZ1KbHCKUVCr0PW5UT4tq95S4PMY8SQQfj+621YueoD7P3+B6PEIEml3d0LBzU3W5LWN24DfeMwoNhM87HN7Pjx4+jTp4/huOzZ8cSJExEbG1une9+9e+Thw4cxfPhwrF+/HhMnTjQ8U9dqtdi4cSPmzZtX5zqrnahHjRqFr7/+Gl9//TXc3d3xj3/8A+PGjUPfvn0hSRJefvllvPzyy3UKhuru2be2Iiv3NrzdXfHBnJr1ahw5cxXLN+2GVqeHQpKgFwKx3x7B4klD0b1tSNU3IJtVnHfL0N1djkJCce6t8ufJojpFRuC/mz7Eb7//iR4DhiNbkwMvFyVOzm9vtmfSAABJQnHE46V/AchU796969yKra4XX3wRkydPxpQpU4zOOzg4YNq0abhw4QJmz56Nn376qdZ1VLvre8uWLcjMzMR//vMf3H///diyZQsGDhyI5s2bY86cOTh58mStgyDzycq9jRuaPGTl3q7h+/KxfNNulGhL1wvW/dW9U6LV4ZXY3cjKza/6JmQzSgpykfnLQfyesAOZvxyEUuVmOkkDgF4Ybe9I1nVPQDO4upZuHuKmUpg3SQPQhvSF8A426z0bsl9++QUhIRU3ZIKDg3H69Ok61VGjJURdXFwwduxYfPPNN0hPT8cHH3yA1q1b45133kGXLl3Qpk0bvPrqq7h69WqdgiLL2594Hlqd6Q0atDo9vj9+wcIRkbVoUs/g3LZl+DPxG9y4mIA/E79Bxs/fl7aoTZAUSni36mLhKMkahFtjlLR9zNphyEqzZs3w2WefmVxBTavV4rPPPkOzZnXbTrXWa317e3tj+vTpiI+PR2pqKl5//XW4urpi8eLFaN26NXr06FH1TUg20m/lQFFBV5ZCkpB2U2PhiMgaKho0BqEDRGlSBiRAoQAglW7e0W8yp2jZA4UCxV2fA2x4QZramDt3Lg4fPozu3bvjo48+QlxcHOLi4rB+/Xp069YNCQkJeOmll+pUh1mWOGjevDleeuklPPjgg1i8eDG++uqrOvXHk+X5+3hAX8EzHb0QaNrI08IRkTVUNmgMQsA3sj+Ujs4ozr0FJ3cfeLfiPGp7UdJ+HPQ+La0dhuw89dRTUCqV+Ne//oWnnnoK0l8NHiEEmjRpgg8//BDTpk2rUx11TtSpqanYunUrPv30U5w5cwZCCPTo0QPjxo2r663JggZ0CUPst0dQoi3/S9pBqUD/znXf3J7kr6pBY7rC22jaUb7Tcqh+aIMegLblAGuHIVtTpkzBxIkTkZiYaJgCFhgYiM6dOxtGgddFre5w48YN/Pe//8XWrVtx5MgRCCHQpk0bvPLKKxg3blyNdwYh67lzOlafjqH44cQFaPXCMOrbQanA4klD4e3uau1QyQKc1D4cNEZG9I3boCRysqxHecuBg4MDoqKiEBUVZf57V7dgfn4+du7cia1bt+LAgQMoKSlB06ZNMWvWLIwbNw4dO3Y0e3BUv0xNx1IqJAzsEgYnRwc0beSJ/p3DmKTtiHfrLkg7seevZ9TGOGjM/gh3fxR1fwFQWnEh+AYgJycHH3zwAX744QdkZmZi7dq16Nq1K27duoXY2FgMHz4crVq1qvX9q/1f39fXF4WFhVCr1Xj88ccNc6gVilqPRyMrunM6FgDo/no+rdUJHDx5EVsWP8mFTuzE3et333P/Y/jtf9uMlgqVFEoOGrMzwtkDRT3nAirzLJJiq37//XdER0fjt99+Q+vWrXHhwgXk5eUBAHx8fLB27VqkpKRg9erVta6j2om6f//+GDduHIYPHw5nZ476a+iqMx1rdJ9OFo6KLM3U+t2SQol7eo2BtjCXg8bslYMzinq+BOHWxNqRyN5LL72E3NxcJCUlwdfXF76+vkbXR44ciV27dtWpjmon6q+++qpOFZG8lE3H0pkY6c3pWPbBeCoWDM+mhV6L3w5/hvDHljA52yOFEkVRL0B4BVk7kgbhu+++wz//+U+Eh4fj5s2b5a6HhITgt99+q1Md7Le2U5yORdVZv5vsT3GnqdD7trN2GA1GQUEBmjSpuOchN7fuG9YwUdupAV3C4KA0/fFzOpZ9MEzFMoXrd9ulkjYjoGvRy9phNCjh4eE4dOhQhde//PJL3HfffXWqg4naTnm7u2HxpKFwdFBCkiQoFQpIkgRHByWnY9kJTsWiO+n8O0Ab/g9rh9HgzJo1C9u2bcPKlSuh0ZQ+MtTr9bh8+TKeeOIJHDlyBP/85z/rVAfH3Nux7m1DsGXxk/j++AWk3dRwOpad4VQsKiNcvFHceTogse1WU+PHj0dKSgpefvll/Otf/wIAPPjggxBCQKFQ4LXXXsPIkSPrVAcTtZ3zdnfj6G475ejijqB+k5F8YCOnYtm54o5TABU/79r617/+hSeeeAKff/45Ll++DL1ej5YtW+If//hHpTtrVRcTNZEd82zRFuGPLUHW5UROxbJT2qAHoPfvYO0wGrwWLVrUuYu7IkzURHbO0cUdvu37WjsMsgLh4o2S9o9bOwyqAhM1EZGdKu44BXDiCoQ1FRERUaPykiTh559/rnV9TNRERHZIG9KPXd615OPjY9jOEgBKSkqQkJCAiIgIeHt7m70+JmoiIjsj3P1R0n6stcNosOLi4oyOb9y4AV9fX7z99tvo29f8j5E4Fp+IyJ4oFCjq8gzgoLJ2JDZDquctQJmoiYjsSMm9wyC86z5liCyHiZqIyE4It8bQthlp7TCohviMmojq5O79rL1bcx62XJW0HQMoHa0dBtUQEzURVaqyRGxqP+u0E3sQ1G8yPFu0tXLkdCe9R3PoArpaOwybcPLkSaPjsjW+L126BC8vL5Pv6dixY63rY6Ims8nKzcf+xPNIv5UDfx8PDOgSBm93ztFsyCpLxK5NWlS4n3XygY3cz1pmtK0Hcy1vM+ncubPJAWTPPvtsuXNCCEiSBJ3O9Jay1cFETWZx5MxVLN+0G1qdHgpJgl4IxH57BIsnDUX3thy4ImcVtZhLCnIrTcS+Ef2q3M+aK57JhKMLdAHdrR2Fzdi4caNF62OipjrLys3H8k27UaIt/aWtE6W/0Eu0OrwSuxtbFj/JlrVMVdZiLsrOqDQR5/550fCecriftaxom3fhdCwzmjhxokXrYz8IVVtWbj7+e/A43t1xEP89eBxZufkAgP2J56HV6U2+R6vT4/vjFywZJlWTcYtZAHo9AGFoMRdkp5cmYlPKznM/6wZB17ybtUOgOmCLmqqlsq7t9Fs5UEiSoSV9J4UkIe2mxgoRU1WyLiVW2mLWFeZVmojdm9+Lghu/cz9ruXN0gb5JuLWjoDpgi5qqdGfXthACOr0eQghD17anmzP0JpI0AOiFQNNGnhaOmKqjOO9WpS1mB2c1JIXS5GVJoUTjsPsR1G8yJIUDAAlQKABIkBQO3M9aRnS+bQEl22QNGT89qlJVXduABAelwvCM+k4OSgX6dw6r5wipNpzUPpW2mJ29/RHUbzKSD2w0eoYtKZSGRMz9rOVP51eznZ5IfpioyaCi6VVVdW1r8guweNJQvBJr3DXuoFRg8aSh8HZ3tcJPQ1Xxbt0FaSf2VNp17ejiXmUi5n7W8qb3bW/tEKiOZJWo16xZgzVr1iA5ORkA0LZtWyxevBiDBw+u8D3bt2/HokWLkJycjNatW2PlypUYMmSIhSK2HZU9g/b38aiya7t72xBsWfwkvj9+AWk3NWjayBP9O4cxScuYo4t7lS3msnJMxA2LX5MmkAo18PNQQbg1tnY4VEeyStQBAQF4/fXX0bp1awghsGnTJowYMQKnTp1C27blVzlKSEjA2LFjERMTg2HDhmHr1q0YOXIkTp48iXbt2lnhJ2iYqppe9X+zH0Pst0eq7Nr2dnfD6D6dLBc41Rm7rm3Tob1fwHnfHOgb3YtiawdDdSarwWQPPfQQhgwZgtatW+Pee+/FihUroFarcfToUZPlV69ejQcffBAvvfQSwsLCsHz5cnTs2BHvv/++hSNv2Kp6Bn38QioWTxoKRwclJEmCUqGAJElwdFCya9sGlLWYA3qMgm/7vkzSNkTn09raIZAZyKpFfSedToft27cjPz8fUVFRJsscOXIEs2fPNjo3aNAgfPnllxaI0HZUZ3rV6D6d2LVN1MDovYOsHQKZgewS9enTpxEVFYXCwkKo1Wrs3LkT4eGm5wCmp6fDz8/P6Jyfnx/S09MrvH9RURGKiooMx3l5eeYJvAGrzjNogF3bRA2LBOHezNpBkBnIqusbAEJDQ5GUlISffvoJzzzzDCZOnIhz586Z7f4xMTHw9PQ0vKKjo81274ZqQJcwOChNfxU4vcr2lRTkIvOXg/g9YQcyfzmIkoJca4dEZiCcvQEHZ2uHQWYgu0Tt5OSEVq1aoVOnToiJiUGHDh2wevVqk2X9/f2RkZFhdC4jIwP+/v4V3n/BggXQaDSGV3x8vFnjb4i83d34DNpOaVLP4Ny2Zfgz8RvcuJiAPxO/wblty6BJPWvt0KiOhGsja4dAZiK7ru+76fV6o67qO0VFReHAgQOYNWuW4dz+/fsrfKYNACqVCirV34vTq9Vqs8XaEN05d/rRvp0goXReNJ9B276qdsfiNpUNm3DmioC2QlaJesGCBRg8eDBatGiB3NxcbN26FXFxcdi3bx8AYMKECWjevDliYmIAAC+88AKio6Px1ltvYejQodi2bRuOHz+OdevWWfPHaDBMzZ0uW6SEW1PavqrW+uY2lQ2bcOIfWbZCVl3fmZmZmDBhAkJDQ9GvXz8kJiZi3759GDBgAAAgNTUVaWlphvI9evTA1q1bsW7dOnTo0AE7duzAl19+yTnU1VDV+t1lO2OR7apqrW9uU9mwCUf2htkKWbWoN2zYUOn1uLi4cudGjx6N0aNH11NEtqs6W1NyhLdtq2qtb25T2cBxIJnNkFWLmiynbO60Kdya0j54t+5S6e5Y3KaygXNwsnYEZCZM1HaqunOnyXaVrfXNbSptk1Cqqi5EDQITtZ3i3GkC/l7ru1nXh9A4tAeadX0I4Y8tgWeL8mvrUwOjtO8W9f/93/8hKCgIzs7O6NatG44dO2btkGqNidrGeLu7orGnusppVZw7TWW41rdtEnacqD/77DPMnj0bS5YswcmTJ9GhQwcMGjQImZmZ1g6tVmQ1mIzq7oM5j1e7LLemJLJhSkdrR2A1b7/9NqZNm4bJkycDAD788EPs3r0bH3/8MebPn2/l6GqOiVoGSrQ66PSmR2DXNxeVEx7qGQGdTgf9XzHk5t+2eBxKhQKODqYHNtk6XUkJSkq0EIoSKEQF06VqQNzxb0lJSZ3vZwl6bQm0JVqUlJRAD9v9HpR91jpxGwpl/X42UrEOoqD+plnqdSXQa3X1/plptaUL8uTl5SEnJ8dw/u7Fq8oUFxfjxIkTWLBggeGcQqFA//79ceTIkXqLsz4xUVtZiVaHi6npuF1k3V+o699/Bx99YHqpVmpYPn+xD3w9XfBnWjqiAvmsmWzD3fsyLFmyBEuXLi1X7saNG9DpdCY3bLpw4UJ9hlhvmKitTKfX43ZRCRyV1m1RPjdrNp6dOQt5twtx/GIqbuXkw8fDDZ1DW0DtWvv5mGeT07B571Ho9HpIkgQhBJQKBSY82B3hQU0BlP6xotXp0b5lczg72V93na6kEJqUs3BQOUNhhik1F3e8Cu1tDZo19cetlIaxZrdeWwxtUSE8A9tC6Wjb83/1upIKV4Qzq4IswMW7XquQFEoo6rmL/dSpU+jWrRvi4+MRGRlpOG+qNW2rmKhlwtFBCSdHK34cjg44feUPfLTrsFFS/e74BUx9qBfahzSv8S1z8guwZX8i9JAM83UlCdAD+M/+RCyfOhwebi4oLtGW/rHi6AhHR/tL1Aro4OjoAAdHRygc6v7zS3f821D+e+olAUmvhaOjI5QNJOZas9TPpxCAc8MfGOjgUPp7Ua1Ww8PDo8ryjRs3hlKprPGGTXLGUd8EoDSpfrTrMLQ6PYQA9HoBIUpXKfvom8PIyS+o8v37E8/jswPHsT/xPHLyC/DTueQKn73r9HocO59cDz8JObh6wNHVEw6uVf9SIxsm2eevdycnJ3Tq1AkHDhwwnNPr9Thw4EClGzbJGVvUNmblln3IyS+Ah5sL5o0bVO33VSepVjS32lRLfFfCLwht4Wc4vptCknBTw/XE60PoiDnWDoHkoIKVB+3B7NmzMXHiRHTu3Bldu3bFO++8g/z8fMMo8IaGidrG5OQXIDuv8tavKbdy8muVVO9siQMwvF+r0+N8cjoEKl79rJGnW43jJKLqst9EPWbMGFy/fh2LFy9Geno6IiMjsXfv3nIDzBoKJmoCAPh4uJlM0kDlSbWylrheCCgkyWSyVioU6BYeXPuAiahydtyiBoDnnnsOzz33nLXDMAv7fIhB5XQLD4JSYfrrUFlSLWuJm36fhLAgfzgoFZCk0mNJKl2idOpDveBeh9HkRFQV+07UtoQtagIAeLi5YOpDvfDRN6XPmhWSBP1fU6mmPtQLQgjsTzxvmLbVLTwIHm4uVbbE773HD+MHdsOx88m4qclHI083dAsPZpJuQEoKcpF1KRHFebfgpPaBd+suXGa0IbDzFrUtYaK2c2Wjs8sS8NzHB+J8SrpRUk1Ou4lFH31dbrDY1Id6oVt4EHYl/GJyb+uylri7qzM3+WigNKlnkHwgtnTer0IC9AJpJ/YgqN9kbtwhdwobn+ZmR5io7Zjp0dqlLeiyxFrZYLGPvjmM5VOHV9oSZ8tZ/ipqMZcU5P6VpEuXcIS+9LMXei2SD2xE+GNL2LKWswoeZVHDw0Rtp6qTgD3cXKo9bWv51OHs3m6AKmsxF2VnVLiCltDrkHU5Eb7t+1o4YiL7w0Rtp6qbgKs7bcvDzYXd2w1MVS1mr5YdDcm7HIWE4txbFoyWyH6xb8ROVTZa+84EXNtpWyR/WZcSK20x6wrzTCdpANALOLn71GN0RFSGidpOVTcB13baFslfcd6t0hazKQoJDs5qwxrtd5MUSni36lKP0RFRGSZqO1XdBFw2bYtzoW2Pk9qn0hazs7c/gvpNhqRwACD9NThJgqRwQFC/yRxIRmQhfEZtp6qaN+3u6mw0dat/5zBIEpBfUMzBYjbCu3UXpJ3Y8/cz6juUtZgdXdwR/tgSZF1ORHHuLTi5+xjOE5FlMFHbsfYhzSscrW1q6lZZEq/NlpckP44u7gjqNxnJBzYajfqWFEqjFrOjiztHdxNZERO1nTM1Wru6U7eo4fNs0ZYtZiKZY6Kmcuqy5SU1PGwxE8kbE7Wdu3sJ0W7hQbXe8pKIiMyPidqOmV5C9Bd0bhPIudNERDLB6Vl26s7n0EIAer2AEKXPoRPPJ0PBudNERLLARG2nKnsOrRcCXdoEcu40EZEMsOvbTlX1HNrJwYEbbRARyQATtZ2qzhKi3GiDiMj62PVtp7iGNxFRw8BEbae4hjeVKSnIReYvB/F7wg5k/nIQJQW51g6JiO7Arm87VtkSomQfNKln/tqT+u8lRNNO7EFQv8nwbNHW2uEREZio7R6fQ9uvkoLcv5L0X5ty/LWTltBrkXxgI8IfW8KlRIlkgF3fRHYq61JiaUvaBKHXIetyooUjIiJTmKiJ7FRx3q3S7m5TFBKKc29ZNiAiMomJmshOOal9DN3d5egFnNx9LBsQEZnERE1kp7xbd4GkUJq8JimU8G7VxcIREZEpTNREdsrRxR1B/SZDUjgAkACFAoAESeGAoH6TOZCMSCY46pvIjnm2aIvwx5Yg63IiinNvwcndB96tujBJE8kIEzWRnXN0cYdv+77WDoOIKsCubyIiIhljoiYiIpIxdn3buZz8Avx0Lhm3cvLh4+GGbuFB8HBzsXZYRET0FyZqO3b6yh/4aNdh6PR6w97UuxJ+wdSHeqF9SHNrh0dERGDXt93KyS/AR7sOQ6vTQwhArxcQAtDq9Pjom8PIyS+wdohERAQmarv107lk6PR6k9d0ej2OnU+2bEBERGQSE7WdupWTD0kyvc6zQpJwU5Nv4YiIiMgUWSXqmJgYdOnSBe7u7vD19cXIkSNx8eLFSt8TGxsLSZKMXs7O3E+5Kj4ebhDC9DrPeiHQyNPNwhEREZEpskrU8fHxmDFjBo4ePYr9+/ejpKQEAwcORH5+5a07Dw8PpKWlGV4pKSkWirjh6hYeBKXC9MevVCjQLTzYwhEREZEpshr1vXfvXqPj2NhY+Pr64sSJE3jggQcqfJ8kSfD396/v8GyKh5sLpj7UCx99UzrqWyFJ0AsBpUKBqQ/1grsreyWIiORAVon6bhqNBgDg41P5dnt5eXkIDAyEXq9Hx44d8dprr6Ft27YmyxYVFaGoqMjovfaqfUhzLJ86HMfOJ+OmJh+NPN3QLTyYSZqISEZkm6j1ej1mzZqFnj17ol27dhWWCw0Nxccff4yIiAhoNBr8+9//Ro8ePXD27FkEBASUKx8TE4Nly5bVZ+gNioebC/p3DrN2GEREVAFZPaO+04wZM3DmzBls27at0nJRUVGYMGECIiMjER0djS+++AJNmjTB2rVrTZZfsGABNBqN4RUfH18f4RMREZmFLFvUzz33HHbt2oVDhw6ZbBVXxtHREffddx8uX75s8rpKpYJKpTIcq9XqOsVqy7i8KBGR9ckqUQsh8Pzzz2Pnzp2Ii4tDcHDNRx7rdDqcPn0aQ4YMqYcI7QeXFyUikgdZdX3PmDED//nPf7B161a4u7sjPT0d6enpKCj4eznLCRMmYMGCBYbjV155Bd999x2uXr2KkydPYvz48UhJScHUqVOt8SNYnYebC7zULnVq+XJ5USKyBytWrECPHj3g6uoKLy8va4dTIVm1qNesWQMA6N27t9H5jRs3YtKkSQCA1NRUKO6Y/5uVlYVp06YhPT0d3t7e6NSpExISEhAeHm6psGVl3rhBNSpvqnu7OsuLcgAaETV0xcXFGD16NKKiorBhwwZrh1MhWSXqilbKulNcXJzR8apVq7Bq1ap6isi2VdS9HdrCz3B8Ny4vSkS2omwGUGxsrHUDqYKsEjVZzp3d28DffyRpdXqcT06HAJcXJSKSAyZqO1VZ97ZeCCgkyWSy5vKiRGQNeXl5yMnJMRzfPYPHlslqMBlZTmW7ZykVEsKC/OGgVECSSo8lCXBQcnlRIrKO6OhoeHp6Gl4xMTEmy82fP7/cRk13vy5cuGDh6OuGLWo7VdXuWffe44fxA7txeVEikoX4+HhERkYajitqTc+ZM8cw+LgiISEhZoys/jFR26lu4UHYlfCL4Rn1ncq6t91dnTm6m4hkQa1Ww8PDo8pyTZo0QZMmTSwQkeWw69tOle2exe5tIrJXqampSEpKQmpqKnQ6HZKSkpCUlCS7zZrYorZj3D2LiOzZ4sWLsWnTJsPxfffdBwD44Ycfyq3nYU1M1HaOu2cRkb2KjY2V/RxqgF3fREREssYWNVWIu2cREVkfEzWZxN2ziIjkgV3fVA53zyIikg8maiqnOrtnERGRZbDr286Zeg5dtrwod88iIrI+Jmo7VtFz6M5tAitdXpS7ZxERWQ67vu1UZc+hE88nQ6Ew/dXg7llERJbFRG2nqtrmskubQC4vSkQkA+z6tlNVPYd2cnDg8qJERDLARG2nqtrmspGnG5cXJSKSAXZ926lu4UFQ8jk0EZHsMVHbKW5zSUTUMLDr245xm0siIvljorZzfA5NRCRv7PomIiKSMSZqIiIiGWOiJiIikjEmaiIiIhljoiYiIpIxJmoiIiIZY6ImIiKSMc6j/sv58+etUm9RiRaXfs+Es6MDHB2UVonB2kq0OhSWaKHLyYTK0f6+kjptEfLSrkDpqIJC6WjtcKxCryuBrqQI6lslUDqojK41bdoUTZs2tVJkdZOWloa0tDRrh9GgWet3s5zY32/FuzRt2hTR0dEYP368tUMhIhOWLFmCpUuXWjuMWlm7di2WLVtm7TAavOjo6Ab7x5o5SKKiLZTsiL3/1ZuXl4fo6GjEx8dDrVZbOxyyAjl/B9iirjk5f5610ZC/A+bARE3IycmBp6cnNBoNPDw8rB0OWQG/A7aFn6dt4WAyIiIiGWOiJiIikjEmaoJKpcKSJUugUqmqLkw2id8B28LP07bwGTUREZGMsUVNREQkY0zUREREMsZETWaVnJwMSZIQGxtr7VCIiGwCE7UVXblyBdOnT0dISAicnZ3h4eGBnj17YvXq1SgoKKi3es+dO4elS5ciOTm53uqojhUrVmD48OHw8/ODJEkNdvUpS5AkqVqvuLi4Otd1+/ZtLF26tEb34mdZM/w8qSbsfglRa9m9ezdGjx4NlUqFCRMmoF27diguLsbhw4fx0ksv4ezZs1i3bl291H3u3DksW7YMvXv3RlBQUL3UUR0vv/wy/P39cd9992Hfvn1Wi6Mh2Lx5s9HxJ598gv3795c7HxYWVue6bt++bVj2snfv3tV6Dz/LmuHnSTXBRG0F165dw2OPPYbAwEAcPHjQaGm8GTNm4PLly9i9e7cVI/ybEAKFhYVwcXEx+72vXbuGoKAg3LhxA02aNDH7/W3J3WvRHz16FPv375fNGvX8LGuGnyfVBLu+reCNN95AXl4eNmzYYHL92latWuGFF14wHGu1WixfvhwtW7aESqVCUFAQFi5ciKKiIqP3BQUFYdiwYTh8+DC6du0KZ2dnhISE4JNPPjGUiY2NxejRowEAffr0KdfFVnaPffv2oXPnznBxccHatWsBAFevXsXo0aPh4+MDV1dXdO/evU5/UFizNW+L9Ho93nnnHbRt2xbOzs7w8/PD9OnTkZWVZVTu+PHjGDRoEBo3bgwXFxcEBwfjySefBFA6xqDsF/OyZcsM34+quj75WZofP08qwxa1FXzzzTcICQlBjx49qlV+6tSp2LRpE0aNGoU5c+bgp59+QkxMDM6fP4+dO3calb18+TJGjRqFKVOmYOLEifj4448xadIkdOrUCW3btsUDDzyAmTNn4t1338XChQsNXWt3drFdvHgRY8eOxfTp0zFt2jSEhoYiIyMDPXr0wO3btzFz5kw0atQImzZtwvDhw7Fjxw48/PDD5vsPRLUyffp0xMbGYvLkyZg5cyauXbuG999/H6dOncKPP/4IR0dHZGZmYuDAgWjSpAnmz58PLy8vJCcn44svvgAANGnSBGvWrMEzzzyDhx9+GP/4xz8AABEREdb80ewSP08yEGRRGo1GABAjRoyoVvmkpCQBQEydOtXo/IsvvigAiIMHDxrOBQYGCgDi0KFDhnOZmZlCpVKJOXPmGM5t375dABA//PBDufrK7rF3716j87NmzRIAxP/+9z/DudzcXBEcHCyCgoKETqcTQghx7do1AUBs3LixWj+fEEJcv35dABBLliyp9nvs3YwZM8Sd//f93//+JwCILVu2GJXbu3ev0fmdO3cKACIxMbHCe9fl8+BnWTv8PKky7Pq2sJycHACAu7t7tcrv2bMHADB79myj83PmzAGAcl3P4eHhuP/++w3HTZo0QWhoKK5evVrtGIODgzFo0KBycXTt2hW9evUynFOr1XjqqaeQnJyMc+fOVfv+ZH7bt2+Hp6cnBgwYgBs3bhhenTp1glqtxg8//AAA8PLyAgDs2rULJSUlVoyYKsPPk+7ERG1hZVvO5ebmVqt8SkoKFAoFWrVqZXTe398fXl5eSElJMTrfokWLcvfw9vYu91yrMsHBwSbjCA0NLXe+rMv87jjIsi5dugSNRgNfX180adLE6JWXl4fMzEwAQHR0NB555BEsW7YMjRs3xogRI7Bx48Zy4x3Iuvh50p34jNrCPDw80KxZM5w5c6ZG75MkqVrllEqlyfOiBku618cIb6pfer0evr6+2LJli8nrZQOKJEnCjh07cPToUXzzzTfYt28fnnzySbz11ls4evQo1Gq1JcOmCvDzpDsxUVvBsGHDsG7dOhw5cgRRUVGVlg0MDIRer8elS5eMBnxlZGQgOzsbgYGBNa6/ukn/7jguXrxY7vyFCxcM18l6WrZsie+//x49e/as1h9a3bt3R/fu3bFixQps3boV48aNw7Zt2zB16tRafT/IvPh50p3Y9W0Fc+fOhZubG6ZOnYqMjIxy169cuYLVq1cDAIYMGQIAeOedd4zKvP322wCAoUOH1rh+Nzc3AEB2dna13zNkyBAcO3YMR44cMZzLz8/HunXrEBQUhPDw8BrHQebz6KOPQqfTYfny5eWuabVaw2edlZVVrnclMjISAAzdpa6urgBq9v0g8+LnSXdii9oKWrZsia1bt2LMmDEICwszWpksISEB27dvx6RJkwAAHTp0wMSJE7Fu3TpkZ2cjOjoax44dw6ZNmzBy5Ej06dOnxvVHRkZCqVRi5cqV0Gg0UKlU6Nu3L3x9fSt8z/z58/Hpp59i8ODBmDlzJnx8fLBp0yZcu3YNn3/+ORSKmv/Nt3nzZqSkpOD27dsAgEOHDuHVV18FADzxxBNspddAdHQ0pk+fjpiYGCQlJWHgwIFwdHTEpUuXsH37dqxevRqjRo3Cpk2b8MEHH+Dhhx9Gy5YtkZubi/Xr18PDw8PwR6GLiwvCw8Px2Wef4d5774WPjw/atWuHdu3aVVg/P0vz4udJRqw86tyu/frrr2LatGkiKChIODk5CXd3d9GzZ0/x3nvvicLCQkO5kpISsWzZMhEcHCwcHR3FPffcIxYsWGBURojSqVVDhw4tV090dLSIjo42Ord+/XoREhIilEql0VStiu4hhBBXrlwRo0aNEl5eXsLZ2Vl07dpV7Nq1y6hMTaZnRUdHCwAmX6amjtHf7p7OU2bdunWiU6dOwsXFRbi7u4v27duLuXPnij///FMIIcTJkyfF2LFjRYsWLYRKpRK+vr5i2LBh4vjx40b3SUhIEJ06dRJOTk7Vmp7Dz7Ju+HlSZSQhajDKiIiIiCyKz6iJiIhkjImaiIhIxpioiYiIZIyJmoiISMaYqImIiGSMiZqIiEjGmKhl7I033kCbNm2g1+utHUqdzZ8/H926dbN2GA0OvwNkSnJyMiRJQmxsrLVDIQtgopapnJwcrFy5EvPmzTOs+iVJEiRJwltvvVWufGxsLCRJwvHjx+tc9xdffIExY8YgJCQErq6uCA0NxZw5cypcgvDrr79Gx44d4ezsjBYtWmDJkiXQarVGZWbNmoWff/4ZX3/9dZ3jsxf8DhARAK5MJlerVq0SHh4eoqCgwHAOf60M5OfnJ/Lz843Kb9y4scoN5KurUaNGon379mLRokVi/fr1YubMmcLJyUm0adNG3L5926jsnj17hCRJok+fPmLdunXi+eefFwqFQjz99NPl7vvoo4+K+++/v87x2Qt+B6gier1eFBQUCK1Wa+1QyAKYqGUqIiJCjB8/3ugcABEZGSkAiLfeesvomjl/SZtaInDTpk0CgFi/fr3R+fDwcNGhQwdRUlJiOPevf/1LSJIkzp8/b1R2x44dQpIkceXKlTrHaA/4HSAiIYRg17cMXbt2Db/88gv69+9f7lrPnj3Rt29fvPHGGygoKKiX+nv37l3u3MMPPwwAOH/+vOHcuXPncO7cOTz11FNwcPh7f5dnn30WQgjs2LHD6B5lP89XX31VD1HbFn4HbN/SpUshSRJ+/fVXjB8/Hp6enmjSpAkWLVoEIQR+++03jBgxAh4eHvD39zd63GHqGfWkSZOgVqvxxx9/YOTIkVCr1WjSpAlefPFF6HQ6Q7m4uDhIkoS4uDijeEzdMz09HZMnT0ZAQABUKhWaNm2KESNGIDk5uZ7+q5ApTNQylJCQAADo2LGjyetLly5FRkYG1qxZU+l9ioqKcOPGjWq9qpKeng4AaNy4seHcqVOnAACdO3c2KtusWTMEBAQYrpfx9PREy5Yt8eOPP1ZZn73jd8B+jBkzBnq9Hq+//jq6deuGV199Fe+88w4GDBiA5s2bY+XKlWjVqhVefPFFHDp0qNJ76XQ6DBo0CI0aNcK///1vREdH46233sK6detqFdsjjzyCnTt3YvLkyfjggw8wc+ZM5ObmIjU1tVb3o9rhNpcydOHCBQBAcHCwyev3338/+vTpgzfffBPPPPNMhRvLf/rpp5g8eXK16hRV7M2ycuVKKJVKjBo1ynAuLS0NANC0adNy5Zs2bYo///yz3PmQkBCcO3euWjHZM34H7EfXrl2xdu1aAMBTTz2FoKAgzJkzBzExMZg3bx4AYOzYsWjWrBk+/vhjPPDAAxXeq7CwEGPGjMGiRYsAAE8//TQ6duyIDRs24JlnnqlRXNnZ2UhISMCbb76JF1980XB+wYIFNf0RqY6YqGXo5s2bcHBwgFqtrrDM0qVLER0djQ8//BD//Oc/TZYZNGgQ9u/fX+d4tm7dig0bNmDu3Llo3bq14XxZt6tKpSr3HmdnZ+Tk5JQ77+3tXa6VReXxO2A/pk6davjfSqUSnTt3xu+//44pU6YYznt5eSE0NBRXr16t8n5PP/200fH999+PzZs31zguFxcXODk5IS4uDlOmTIG3t3eN70HmwUTdQD3wwAPo06cP3njjjXL/xyzTtGlTky2dmvjf//6HKVOmYNCgQVixYoXRtbJWXFFRUbn3FRYWmmzlCSEgSVKdYqJS/A7YhhYtWhgde3p6wtnZ2egRQ9n5mzdvVnovZ2dnNGnSxOict7c3srKyahyXSqXCypUrMWfOHPj5+aF79+4YNmwYJkyYAH9//xrfj2qPz6hlqFGjRtBqtcjNza203JIlS5Cenm7oNrtbQUEB0tPTq/Uy5eeff8bw4cPRrl077Nixw2iwEPB3d2dZ9+ed0tLS0KxZs3Lns7Kyyv0CovL4HbAfSqWyWueAqh9PVPS+O1X0R9KdA87KzJo1C7/++itiYmLg7OyMRYsWISwsjD0iFsZELUNt2rQBUDrytzLR0dHo3bs3Vq5caXL072effWZoUVX1utuVK1fw4IMPwtfXF3v27DHZBRsZGQkA5RbY+PPPP/H7778brt/p2rVrCAsLq/TnIn4HqP6UdWHfvXhNSkqKyfItW7bEnDlz8N133+HMmTMoLi42ueAO1R92fctQVFQUgNJffhEREZWWXbp0KXr37m1yVGdtn0+mp6dj4MCBUCgU2LdvX7mutDJt27ZFmzZtsG7dOkyfPt3w1/yaNWsgSZLRoCMA0Gg0uHLlSo0HtdgjfgeovgQGBkKpVOLQoUMYOXKk4fwHH3xgVO727dtQKBRwdnY2nGvZsiXc3d1NPuqg+sNELUMhISFo164dvv/+ezz55JOVlo2OjkZ0dDTi4+PLXavt88kHH3wQV69exdy5c3H48GEcPnzYcM3Pzw8DBgwwHL/55psYPnw4Bg4ciMceewxnzpzB+++/j6lTp5ZrNX3//fcQQmDEiBE1jsne8DtA9cXT0xOjR4/Ge++9B0mS0LJlS+zatQuZmZlG5X799Vf069cPjz76KMLDw+Hg4ICdO3ciIyMDjz32mJWit1PWWmmFKvf2228LtVpttFwjADFjxoxyZX/44QfD0pLmWJWq7F6mXtHR0eXK79y5U0RGRgqVSiUCAgLEyy+/LIqLi8uVGzNmjOjVq1ed47MX/A7YtiVLlggA4vr160bnJ06cKNzc3MqVj46OFm3bthVCCHHt2jUBQGzcuLHK95XVc6fr16+LRx55RLi6ugpvb28xffp0cebMGaN73rhxQ8yYMUO0adNGuLm5CU9PT9GtWzfx3//+t44/OdWUJEQVoxPIKjQaDUJCQvDGG28YTdNoqNLT0xEcHIxt27axNVVN/A4QEcDBZLLl6emJuXPn4s0337SJLQ7feecdtG/fnr+ga4DfASICALaoiYiIZIwtaiIiIhljoiYiIpIxJmoiIiIZY6ImIiKSMSZqIiKqUHJyMiRJQmxsrLVDsVtM1EREZnLlyhVMnz4dISEhcHZ2hoeHB3r27InVq1ebXIvdXM6dO4elS5ciOTm53uqojhUrVmD48OHw8/ODJElYunSpVeOxFVxClIjIDHbv3o3Ro0dDpVJhwoQJaNeuHYqLi3H48GG89NJLOHv2rMn12M3h3LlzWLZsGXr37o2goKB6qaM6Xn75Zfj7++O+++7Dvn37rBaHrWGiJiKqo2vXruGxxx5DYGAgDh48aLS++owZM3D58mXs3r3bihH+TQhR4V7hdXXt2jUEBQXhxo0bFW7kQjXHrm8iojp64403kJeXhw0bNpjcBKVVq1Z44YUXDMdarRbLly9Hy5YtoVKpEBQUhIULF5bblSooKAjDhg3D4cOH0bVrVzg7OyMkJASffPKJoUxsbCxGjx4NAOjTpw8kSYIkSYiLizO6x759+9C5c2e4uLgY9i+/evUqRo8eDR8fH7i6uqJ79+51+oPCmq15W8ZETURUR9988w1CQkLQo0ePapWfOnUqFi9ejI4dO2LVqlWIjo5GTEyMyV2pLl++jFGjRmHAgAF466234O3tjUmTJuHs2bMAgAceeAAzZ84EACxcuBCbN2/G5s2bjXYuu3jxIsaOHYsBAwZg9erViIyMREZGBnr06IF9+/bh2WefxYoVK1BYWIjhw4dj586dZvivQmZj1S1BiIgaOI1GIwCIESNGVKt8UlKSACCmTp1qdP7FF18UAMTBgwcN5wIDAwUAcejQIcO5zMxMoVKpxJw5cwzntm/fLgCIH374oVx9ZffYu3ev0flZs2YJAOJ///uf4Vxubq4IDg4WQUFBQqfTCSFM79RVlevXrwsAYsmSJdV+D1WMLWoiojrIyckBALi7u1er/J49ewAAs2fPNjo/Z84cACjX9RweHo7777/fcNykSROEhobi6tWr1Y4xODgYgwYNKhdH165d0atXL8M5tVqNp556CsnJyTh37ly170/1i4maiKgOPDw8AAC5ubnVKp+SkgKFQoFWrVoZnff394eXlxdSUlKMzrdo0aLcPby9vZGVlVXtGIODg03GERoaWu58WZf53XGQ9TBRExHVgYeHB5o1a4YzZ87U6H2SJFWrnFKpNHle1GDjw/oY4U2Ww0RNRFRHw4YNw5UrV3DkyJEqywYGBkKv1+PSpUtG5zMyMpCdnY3AwMAa11/dpH93HBcvXix3/sKFC4brJA9M1EREdTR37ly4ublh6tSpyMjIKHf9ypUrWL16NQBgyJAhAIB33nnHqMzbb78NABg6dGiN63dzcwMAZGdnV/s9Q4YMwbFjx4z+uMjPz8e6desQFBSE8PDwGsdB9YMLnhAR1VHLli2xdetWjBkzBmFhYUYrkyUkJGD79u2YNGkSAKBDhw6YOHEi1q1bh+zsbERHR+PYsWPYtGkTRo4ciT59+tS4/sjISCiVSqxcuRIajQYqlQp9+/aFr69vhe+ZP38+Pv30UwwePBgzZ86Ej48PNm3ahGvXruHzzz+HQlHzdtzmzZuRkpKC27dvAwAOHTqEV199FQDwxBNPsJVeW9Yedk5EZCt+/fVXMW3aNBEUFCScnJyEu7u76Nmzp3jvvfdEYWGhoVxJSYlYtmyZCA4OFo6OjuKee+4RCxYsMCojROnUqqFDh5arJzo6WkRHRxudW79+vQgJCRFKpdJoqlZF9xBCiCtXrohRo0YJLy8v4ezsLLp27Sp27dplVKYm07Oio6MFAJMvU1PHqHokIWowIoGIiIgsis+oiYiIZIyJmoiISMaYqImIiGSMiZqIiEjGmKiJiIhkjImaiIhIxpioiYiIZIyJmoiISMaYqImIiGSMiZqIiEjGmKiJiIhkjImaiIhIxpioiYiIZOz/AdILi0M0uBynAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -950,7 +1054,7 @@
"metadata": {},
"source": [
"Instead of a Gardner-Altman plot, you can generate a **Cumming estimation\n",
- "plot** by setting ``float_contrast=False`` in the ``plot()`` method.\n",
+ "plot** by setting ``float_contrast=False`` in the ``.plot()`` method.\n",
"This will plot the bootstrap effect sizes below the raw data, and also\n",
"displays the the mean (gap) and ± standard deviation of each group\n",
"(vertical ends) as gapped lines. This design was inspired by Edward\n",
@@ -964,7 +1068,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUYAAAInCAYAAADkl/CSAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXZpJREFUeJzt3XlcE9f6P/DPJEAA2ZVNUUC0CKKAqAW1BleqtkpbrZfa4obaXnutX22tWqvictFaq/701q1VrFerdW/VSqkLVsEFlV73uiCoZVHLvgRIzu8PSjQhQAhJJgnP+/XKy2bmzMwTUh7OmXPmHI4xxkAIIUROwHcAhBBiaCgxEkKIEkqMhBCihBIjIYQoocRICCFKKDESQogSSoyEEKKEEiMhhCihxEgIIUqafWLMysrCwoULkZWVxXcohBADQYkxKwuxsbGUGAkhcs0+MRJCiDJKjIQQooQSIyGEKDHjOwBCSONVFOch9+oJSPJzIHJwhUuX/rCwceQ7LJNBiZEQI/Psj/O4tS8OTFYFjhOAMRkyTm2H38i5cOrYk+/wTAI1pQkxIhXFedVJUVoJMAYmk1b/K63Ezb3/RkVxHt8hmgRKjIQYkdyrJ8BkVSr3MVkVcq+e0HNEpokSIyFGRJKfA45T/WvLcQJI8nP0HJFpMtjEuGzZMnAch+nTp9dZJj4+HhzHKbwsLS31FyQheiZycAVjMpX7GJNB5OCq54hMk0F2vly8eBEbN25E165dGyxrZ2eH27dvy99zHKfL0AjhlUuX/sg4tb36HqMSTmAGl64DeIjK9BhcjbG4uBhjxozB5s2b4ejY8PADjuPg5uYmf7m60l9MYrosbBzhN3IuOKE5wHHgBMLqf4Xm8Bs5FxYtHPgO0SQYXI1x6tSpGDZsGAYOHIglS5Y0WL64uBienp6QyWTo1q0b/v3vf6Nz5851lpdIJJBIJArHE2JMnDr2RI9/bVUcx9h1ACVFLTKoxLhr1y5cvnwZFy9eVKu8r68vtmzZgq5du6KgoABffvklevXqhevXr8PDw0PlMXFxcYiNjdVm2ITonYWNIzzC3uI7DJPFMcYY30EAwMOHD9G9e3ckJibK7y2Gh4cjKCgIq1evVusclZWV8PPzQ1RUFBYvXqyyjHKNMS0tDWKxGJcuXUK3bt2a/DkIIcbPYGqMly5dQm5urkJykkqlOH36NNatWweJRAKhUFjvOczNzREcHIy7d+/WWUYkEkEkEsnf29jYND14QohJMZjEOGDAAFy9elVh2/jx49GpUyd8+umnDSZFoDqRXr16FUOHDtVVmISQZsBgEqOtrS0CAgIUtrVo0QItW7aUb4+OjkabNm0QFxcHAFi0aBFCQ0PRoUMH5OfnY8WKFcjIyEBMTIze4yeEmA6DSYzqyMzMhEDwfIRRXl4eJk2ahOzsbDg6OiIkJATJycnw9/fnMUpCiLEzmM4Xvly+fBkhISHU+UKMCk07pltGVWMkhNC0Y/pgcE++EELqRtOO6QclRkKMCE07ph+UGAkxIjTtmH5QYiTEiNC0Y/pBiZEQI+LSpT84geo+U5p2THsoMRJiRGjaMf2g4TqEGBmadkz3KDESYoRo2jHdoqY0IYQoocRICCFKKDESQogSSoyEEKKEEiMhhCihxEgIIUooMRJCiBJKjIQQooQSIyGEKKHESAghSigxEkKIEkqMhBCihBIjIYQoocRICCFKaNoxQowQrSutW5QYCTEytK607lFTmhAjQutK6wclRkKMCK0rrR+UGAkxIrSutH5QYiTEiNC60vphsIlx2bJl4DgO06dPr7fcnj170KlTJ1haWqJLly44evSofgIkhAe0rrR+GGRivHjxIjZu3IiuXbvWWy45ORlRUVGYOHEirly5gsjISERGRuLatWt6ipQQ/aJ1pfWDY4wxvoN4UXFxMbp164avv/4aS5YsQVBQEFavXq2y7OjRo1FSUoLDhw/Lt4WGhiIoKAgbNmxQ63qXL19GSEgILl26hG7dumnjIxCic7XGMdK60lplcDXGqVOnYtiwYRg4cGCDZVNSUmqVi4iIQEpKSp3HSCQSFBYWyl/FxcVNjpkQfatZV9pnyD/hEfYWJUUtM6gB3rt27cLly5dx8eJFtcpnZ2fD1VXxZrOrqyuys7PrPCYuLg6xsbFNipMQYtoMpsb48OFDfPTRR9ixYwcsLS11dp05c+agoKBA/kpKStLZtQghxslgaoyXLl1Cbm6uwn0+qVSK06dPY926dZBIJBAKhQrHuLm5ISdHcdxWTk4O3Nzc6ryOSCSCSCSSv7exsdHSJyCEmAqDqTEOGDAAV69eRVpamvzVvXt3jBkzBmlpabWSIgCEhYXh+PHjCtsSExMRFhamr7AJISbIYGqMtra2CAgIUNjWokULtGzZUr49Ojoabdq0QVxcHADgo48+glgsxsqVKzFs2DDs2rULqamp2LRpk97jJ4SYDoNJjOrIzMyEQPC8kturVy/s3LkT8+bNw9y5c9GxY0ccPHiwVoJt7vKKSpB48Say/yqEm5MdBvXwg6NtC77DIsRgGdw4Rn0z9XGMKdfuY/G2I6iSyiDgOMgYg5lQgPnjhiG0c3u+wyPEIBnMPUaifXlFJVi87Qgqq6RgjEEqk4ExhsoqKRbFH0FeUQnfIRJikCgxmrDEizdRJVU94UCVVIZfU2/pOSJCjAMlRhOW/VchBByncp+A45D1rEDPERFiHIyq84U0jpuTHWR13EKWMQb3lvZ6jojUJ+3bj1BRnAcLG0cETVzDdzjNGtUYTdigHn4wE6r+is2EAgzs7qfniEh9KorzUFH0jJYnMACUGE2Yo20LzB83DOZmQnAcB6FAAI7jYG4mxPxxw+Boa813iIQYJGpKm7jQzu2xY/4E/Jp6C1nPCuDe0h4Du/tRUiSkHpQYmwFH2xYY1S+E7zAIMRrUlCaEECWUGAkhRAk1pZsBelaakMahxGjiVD0rHf9zCj0rTUg9qCltwuhZaUI0Q4nRhNGz0oRohhKjCaNnpQnRDCVGE0bPShOiGUqMJoyelSZEM5QYTRg9K02IZmi4jomjZ6UJaTyNE6NUKsWePXtw8uRJ5ObmYtGiRejSpQsKCgpw/Phx9O7dG66urtqMlWiInpUmpHE0akrn5+ejd+/eeOedd/D999/jxx9/xJMnTwBUL2A/bdo0rFlDE20SQoyTRolx9uzZuH79OhISEnD//n28uNCgUCjEyJEjcfToUa0FSQgh+qRRYjx48CD+9a9/YdCgQeBUjJN76aWX8ODBg6bGRgghvNAoMRYUFMDb27vO/ZWVlaiqqtI4KEII4ZNGidHHxweXL1+uc/8vv/wCf39/jYMihBA+aZQYY2JisGXLFuzevVt+f5HjOEgkEnz22Wc4duwYpkyZotVACSFEXzQarvPRRx/h+vXriIqKgoODAwDgnXfewbNnz1BVVYUpU6Zg4sSJ2oyTEEL0RqPEyHEcNm/ejLFjx2Lv3r24c+cOZDIZfHx88Pbbb6Nv377ajpMQQvSmSU++9OnTB3369NFWLIQQYhDoWWlCCFGiUY3R29tb5fjFF3Ech3v37jXqvOvXr8f69evlYyA7d+6M+fPnY8iQISrLx8fHY/z48QrbRCIRysvLG3VdQohuVRTnIffqCUjycyBycIVLl/6wsHHkO6w6aZQYxWJxrcQolUqRkZGBs2fPIiAgAMHBwY0+r4eHB5YtW4aOHTuCMYZt27ZhxIgRuHLlCjp37qzyGDs7O9y+fVv+vqGETQjRroaS3rM/zuPWvjgwWRU4TgDGZMg4tR1+I+fCqWNPHiOvm0aJMT4+vs59v//+OyIiIjBmzJhGn/f1119XeL906VKsX78e586dqzMxchwHNze3Rl+LENKwpia9iuK86v3SSgAAY9Lqf6WVuLn33+jxr60GWXPU+j3GwMBATJkyBZ9++mmTziOVSrFr1y6UlJQgLCysznLFxcXw9PRE27ZtMWLECFy/fr3e80okEhQWFspfxcXFTYqTEGNVUZyHRyn7cO/nr/EoZR8qivMU9j/74zwurh2PBye2IvvKMTw4sRUX147HX3cuyI+XJz3GwGTS6n//Tno1SZXJVD8Fx2RVyL16QuefUxM6mY/R1dUVN27c0OjYq1evIiwsDOXl5bCxscGBAwfqfIrG19cXW7ZsQdeuXVFQUIAvv/wSvXr1wvXr1+Hh4aHymLi4OMTGxmoUGyGmQhs1PXWSniQ/5+/zS2uV4TgBJPk5uvuQTaD1GuOzZ8/w7bff1pmYGuLr64u0tDScP38eH3zwAcaOHVtnkg0LC0N0dDSCgoIgFouxf/9+ODs7Y+PGjXWef86cOSgoKJC/kpKSNIqTEGOlrZpeTdJTpSbpiRxcwZjqlSoZk0HkYJhztmpUY+zfv7/K7fn5+bh16xYqKiqwfft2jQKysLBAhw4dAAAhISG4ePEi1qxZU2+yq2Fubo7g4GDcvXu3zjIikQgikUj+3sbGRqM4CeGTOr28dZXRVk1PnaTn0qU/Mk5tl9c8Fc4jMINL1wEafHrd0ygxymSyWr2/HMfB29sbAwcOxIQJE9CpUyetBCiTySCRSNQqK5VKcfXqVQwdOlQr1ybEEKnTy1tfGX0mPYsWDvAbORc39/5bIRZOYAa/kXNh0cJBqz8bbdEoMZ46dUrLYVSbM2cOhgwZgnbt2qGoqAg7d+7EqVOnkJCQAACIjo5GmzZtEBcXBwBYtGgRQkND0aFDB+Tn52PFihXIyMhATEyMTuIjhG/q3PsDUG8Zj7C39Jr0nDr2lN+TlNde/z7eUBnUYli5ubmIjo5GVlYW7O3t0bVrVyQkJGDQoEEAgMzMTAgEz+9p5OXlYdKkScjOzoajoyNCQkKQnJxMU54Rk6VuL299ZQAOnMBMr0nPwsYRHmFvafy59U2txPjdd99pdPLo6OhGlf/222/r3a9cU121ahVWrVrV2LAIMVrq9vLWV6aqrLBZJz11qJUYx40b1+gTcxzX6MRICKmfur28DZVpzklPHWolxvT0dF3HQUizV9OrXN+TIGr18jKmVk9wc0166lArMXp6euo6DkKMnqyqAjKp5msdBbwbJ//vKkmpyjICcxFeGjETfxxaWasZ/NKImRCYWQBAg2XqOr86BEIz+XVMlUF1vhBirGRVFch/8DuqyjVPOI3hPWgyCh9eR2VpAcyt7WHXrjOYTIa/7lxUq0xVeQkKH15DZWkhzK3tYNc2AGaWLdS6tpmlNRy8Ak06OWqcGLOzs/Htt9/i8uXLKCgogEymeE+D4zgcP368yQESYgxk0ipUlZdCIDQDp4eEIRRZw9k+XKMyRY9v43HyD2AyGcBxAGN4dvMM2vR+G7atfes9J6uqQFV5KWTSKkqMyv73v/8hPDwcZWVl8PX1xdWrV+Hv74/8/Hw8fvwYPj4+aNu2rbZjJTqSV1SCxIs3kf1XIdyc7DCohx8cbdWrPRBFnJkFhOaihguqcPfoOlSVF8HM0hYdhn6o5ciqVZUV/Z0U/+6x/nsxOyaT4vHZH+D7xqcws7Kt83gpADThdoGx0Cgxzp49GzY2NkhLS4O1tTVcXFywZs0a9O/fH3v27MEHH3yAHTt2aDtWogMp1+5j8bYjqJLKIOA4yBhD/M8pmD9uGEI7t+c7vGalqrwIVaWFOr1G3v0r1TVFFZhMhvz0K2jlT2s2aTSJxNmzZzFlyhS0a9dOPuC6pik9atQojBkzBp988on2oiQq/XPlTkQt/Ab/XLlTo+PzikqweNsRVFZJwRiDVCYDYwyVVVIsij+CvKISLUdM9KGqrAhPrp/GnxcO4cn106gqK5LvqyzJq24+q8JxtaYea640flba1bV6vJSDgwOEQiH++usv+f4uXbo0OFibNF1eUSmeFmg+n2TixZuokqquPVRJZfg19RZG9QvR+PxE/wof3cTD0zsU7h/m/v4L2vYdAzsPP5i3cJQ3n2thzCAnjeWDRjVGb29v+dhGgUAAb29v/Prrr/L9ycnJ8vWmieHK/qsQgjpqDwKOQ9azAj1HRJqiqqzo76QoBcAAJgNQPa3Yw9M7UFVWBMf2weAEdUwVJhDAoX03vcZsqNROjHl5z6vYgwcPxp49e+TvP/jgA3zzzTcYOHAgBgwYgG3btuGdd97RbqREY3lFJfjhRCr+394T+OFEqryJ7OZkB1kdtQcZY3Bvaa/PMEkTqXP/0MzKFm37jgEnEALgAE6A6menhWjbdwzMLGkaPqARTWk3NzcMHToUY8aMwcyZMxEVFYXKykqYm5tj+vTpKCkpwb59+yAUCvH5559j7ty5uoybqKm+zpVBPfwQ/3MKKqtqP1NrJhRgYHc/HiIm6qgqK0Le/SuoLMmDeQtHOLYPfn7/UNUfuxfuH9p5+MH3jU+Rn34FFcV5sLBxhEP7bpQUX6B2Yhw5ciR+/PFH/Pjjj7C1tcWbb76JMWPGoH///uA4DvPmzcO8efN0GStppBc7VwBA+vcvTE3nyo75EzB/3DAsildMnGZCAeaPGwZHW2s+wyd1qOs+or1XoNr3D82sbKn3uR5qJ8YdO3agrKwMBw8exM6dO7Fjxw5s27YNrq6uiIqKwpgxY9CtG92fMCTqdq7smD8Bv6beQtazAri3tMfA7n6UFA2U4n1EKIxDzE9PAycQPN/3Arp/2DiN6nyxsrJCVFQUfvrpJ2RnZ+Prr79Gx44dsXr1avTo0QOdOnXCkiVLcP/+fV3FSxpB3c4VR9sWGNUvBNNG9seofiGUFA1YffcRwRjsvYPo/qEWaLwYlqOjI6ZMmYKkpCRkZmZi2bJlsLa2xvz589GxY0f06tVLm3ESDVDniulpaByiQGgO3zc+hVu3V+HUsSfcur0K3zdnw86D7hc3hlZWCWzTpg0++eQTbNu2DSNGjABjDOfPn9fGqUkTDOrhBzOh6q+YOleMkzrjEGvuH7buOQKt/PtSTVEDTU6MNbXFwMBABAUF4dChQ+jVqxfWrVunjfhIEzjatsD8ccNgbiYEx3EQCgTgOA7mZkLqXDFSNA5RPzR68uXp06f44YcfsHPnTqSkpIAxhk6dOmHRokUYM2YMvLy8tBwm0VRo5/bUuWJCasYhKvdKcwIB3UfUIrUTY0lJCQ4cOICdO3fi+PHjqKyshLu7O6ZPn0490gaupnOFmAYah6h7aidGFxcXlJeXw8bGBu+88458DKOgjmo9IUR3aByibqmdGAcOHIgxY8Zg+PDhsLS01GVMhBDCK7UT46FDh3QZByHEAKh61LC+iWtNFa350gzQDN0EaDjpNTRlWXNCidHE0QzdzUNTk159jxo+PL2jwSUPTA31nJgwbc/QXdf0ZYRfhY9u4vaB5ci5cgx/3bmAnCvHcPvAchQ+uglAvXka1ZmyrDmhGqMJ0+YM3VTzNEzq1PTUSXrqTlnWXFCN0YRpa4ZuWhvGcDUq6anyd9KjJQ8UUWI0YY2dRKKuprI6NU/CD20lPXrUUJFBJcb169eja9eusLOzg52dHcLCwvDzzz/Xe8yePXvQqVMnWFpaokuXLjh69KieojV8jZlEIuXafYxZtAXfHD6LoynX8M3hsxizaAvOXb9Pa8MYMG0lPVryQJFBJUYPDw8sW7YMly5dQmpqKvr3748RI0bg+vXrKssnJycjKioKEydOxJUrVxAZGYnIyEhcu3ZNz5EbJnUnkWioqWzfwpKmLzNQ2kx6NY8a0pRlBtb58vrrryu8X7p0KdavX49z586hc+fOtcqvWbMGr776qnwN68WLFyMxMRHr1q3Dhg0b9BKzoVNnEomGmsoABzOhgNaGMUDqTiqh7vPV9KhhNYNKjC+SSqXYs2cPSkpKEBYWprJMSkoKZsyYobAtIiICBw8erPO8EokEEolE/r64WPN1mY1FQ5NI1DSVpSpqhQKOQ0FJGa0NY2CUxy36DJmK4qw7lPS0xOAS49WrVxEWFiafsOLAgQPw9/dXWTY7Oxuurq4K21xdXZGdnV3n+ePi4hAbG6vVmI1FXU/AqNNJQ9OXGY76BmtT4tMOg0uMvr6+SEtLQ0FBAfbu3YuxY8ciKSmpzuTYWHPmzFGoZaalpUEsFmvl3IZMG8uo0vRl/KMnVPTDoDpfAMDCwgIdOnRASEgI4uLiEBgYiDVr1qgs6+bmhpycHIVtOTk5cHNzq/P8IpFI3uttZ2cHGxvT721rqHMFAM30bSToCRX9MLgaozKZTKZwT/BFYWFhOH78OKZPny7flpiYWOc9yeaKllE1HfSEin4YVGKcM2cOhgwZgnbt2qGoqAg7d+7EqVOnkJCQAACIjo5GmzZtEBcXBwD46KOPIBaLsXLlSgwbNgy7du1CamoqNm3axOfHMDgNda4oL6NKDBc9oaIfBtWUzs3NRXR0NHx9fTFgwABcvHgRCQkJGDRoEIDqhbeysrLk5Xv16oWdO3di06ZNCAwMxN69e3Hw4EEEBATw9REMEi2jajroCRX9MKga47ffflvv/lOnTtXaNmrUKIwaNUpHEZkGdTtXiOGjxbD0w6ASI2mcmvt/Dd0HrHkChs9xiDRZrvbQYli6R4mRJxWVVXV2iKjry6kj5f9dWl5Rb9muPh74ZtZ7OHnlNnLyiuDqaIt+3XzhYGON0vIK5BeV4sSV28jNK4KLoy36B/vCQQsJ00wowKXbmTRlmZbRYG3dosTIg4rKKqTdeYiSctW97dpWXCbBtft/Ir+4DA42Vgho3xo2ViLczqweCH/nYS72n06DTCYDx3FgjOG/CefxpjgIHT1cmnRtJmP4cvev8mZ8TQdQzVChHfMnUM2RGBxKjDyokspQUi6BuZkQ5mZCnV7rVkY2vv81tTrpCTgwGUNS2h1EDeyOTp5uKC4tx/7TaZD+PTaO/Z24pDIZ9iel4ZOogbCx1mxVyMoqKX77/a7WJsslRF8oMfLI3EwISwtzjY9f/cNxFJVKYGstwvS3B9TaX1Rajl3HU58nPdnzpLfreCo+ix6Cq/f/hIypTlwyJsO19CyEB7+kcYz5xWVqDRUigJmlrcK/hD+UGI1YUakEBSVlde5PvZUhT4rKpDIZLt3ORF5Rqbz5rIzjOPxVqP7s3EWl5Ui9lYG8olI42lqjS/vWcLCxoqFCauow9EOtno+WQtUcJUYTpk7Sc7S1VrkfqG5WO9lV3/9TTnrdO3nC9oUm9vX0P7E94TykL9ynPHb+BoaGdYaZQIBKKQ0V0iZaClW3KDGaMHWSXohvOyRcuKHyPqBQIECIbzuVSS/hwg1EvxoKfy93FJWWY3vCefk55PcpmQxHU65j2lv9sO7AKZqyTEtoKVTdM6gnX4h2de/kCWEdT0nUJD1ba0tEvxoKM6EAHAcIBBw4rro2F/1qKADIkx5jgEzGwFh1x8l3x87Ja5J1NdllMhnyikuxY/4ETHq9D4aGBWDS632wY/5EGqqjAVoKVT+oxmjCapLed8fOKdT2hILqpFfTFPb3csdn0UNw6XYm/ioskdckba0tcfLy7Sbfp8zJK6LnsLWElkLVD0qMJq6+pKesJrG9mOC0cZ/S1ZGabdqiTtKjiSaajhJjM2BrbVnvkJv67iE29T6lQCBAv26+WvsszZ06Sc/BOxi5v//y/B7jC2iiCfXQPcZm7sWOE1X3EDt5uml8n1IoEOBNcRAcbKiDRVtoKVT9oBpjM1DfUJuGxjrezszR+D5lQPvWda5HTTSj7VUBiWqUGE1cQ0Nt1LmHGB78klr3KZWb7OUVlQ1ObkEaj5ZC1T1KjCasrvGFNc3kz6KHqD3Au6H7lES/KOnpFt1jNGHqPBKozlhHQpobSowmrKaZrEpNM7mhAd6qhvUQYuqoKW3C1G0mN2asIzEMNEGEblFiNGHdO3k2+Bx0DbqHaDxoggjdo6a0CaNmsulR51lp0nRUYzRx1Ew2Leo8K0291U1HibEZoGay6aAJIvSDmtKEGBGaIEI/KDESYkTUeVaaNB0lRkKMCE0QoR90j7EZaGi9FmJcaIII3aPEaOIamkSCGCd6Vlq3qCltwhqaa7GotJzvEAkxSAaVGOPi4tCjRw/Y2trCxcUFkZGRuH37dr3HxMfHg+M4hZelJTUTAfUmkSCE1GZQiTEpKQlTp07FuXPnkJiYiMrKSgwePBglJfUv+m5nZ4esrCz5KyMjQ08RGzZ1JpEghNRmUPcYjx07pvA+Pj4eLi4uuHTpEvr2rft+CsdxcHNz03V4RkfdSSQIIYoMqsaorKCgAADg5ORUb7ni4mJ4enqibdu2GDFiBK5fv66P8AwezbVIiGYMNjHKZDJMnz4dvXv3RkBAQJ3lfH19sWXLFhw6dAj//e9/IZPJ0KtXLzx69EhleYlEgsLCQvmruLhYVx+BdzSJBCGaMaim9IumTp2Ka9eu4cyZM/WWCwsLQ1hYmPx9r1694Ofnh40bN2Lx4sW1ysfFxSE2Nlbr8Rqqxk4iQWMeCTHQxPjhhx/i8OHDOH36NDw8PBp1rLm5OYKDg3H37l2V++fMmYMZM2bI36elpUEsFjcpXkOn7iQSNOaRkGoG1ZRmjOHDDz/EgQMHcOLECXh7ezf6HFKpFFevXoW7u+pfZJFIBDs7O/nLxsZ4nxawtRbBvoUVbK1F9ZYrKi3Hycu3sT/pCk5evq1y/CKNeSTkOYOqMU6dOhU7d+7EoUOHYGtri+zsbACAvb09rKysAADR0dFo06YN4uLiAACLFi1CaGgoOnTogPz8fKxYsQIZGRmIiYnh7XPoy/S3BzRYRt1aoDpjHmnqMtJcGFSNcf369SgoKEB4eDjc3d3lr927d8vLZGZmIisrS/4+Ly8PkyZNgp+fH4YOHYrCwkIkJyfD39+fj49gUBpTC6Qxj4Q8Z1A1xrrG3L3o1KlTCu9XrVqFVatW6Sgi49aYWiCNeSTkOYOqMRLtakwtkMY8EvIcJUYT1phaII15JOQ5g2pKE+1qzPKpRaXlyPmrEEEdPVBcVgEbKxHcnOxo4SzSLFFiNGE1tcDvjp1T6JUWChRrgap6rpXLENKcUGI0cQ09+fJizzXwvAOspuf6s+ghlBxJs0P3GJuJmoSnfM+R5mwkpDaqMZq4hgZ41/Rcq+qkofGLpLmiGqMJU2eAN41fJKQ2SowmTJ1mMo1fJKQ2SowmTJ0B3jR+kZDa6B6jCVO3mdzYORsJMXWUGE1YYwZ4qztnIyHNATWlTRg1kwnRDNUYTRw1kwlpPEqMzQA1kwlpHGpKE0KIEkqMhBCihBIjIYQooXuMzciT3Bw8fZKrt+tJKqtQLqmEhaQAViJzvV2XD1UVZSjM/AMCC0sIzSz0dl1Xl1Zwc3HW2/WaC46ps9CKCcvKysLGjRsxZcqUOpdcNQUSiQQRERFISkriOxSiRWKxGAkJCRCJ6l9ClzROs0+MzUVhYSHs7e2RlJRk1Gtpk+eKi4shFotRUFAAOzs7vsMxKdSUbmaCgoLol8hEFBYW8h2CyaLOF0IIUUKJkRBClFBibCZEIhEWLFhAN+lNCH2nukOdL4QQooRqjIQQooQSIyGEKKHESAghSigxEo08ePAAHMchPj6e71AI0TpKjHpw7949TJkyBe3bt4elpSXs7OzQu3dvrFmzBmVlZTq77o0bN7Bw4UI8ePBAZ9dQx9KlSzF8+HC4urqC4zgsXLiQ13j0heM4tV6nTp1q8rVKS0uxcOHCRp2ruX4v6qAnX3TsyJEjGDVqFEQiEaKjoxEQEICKigqcOXMGn3zyCa5fv45Nmzbp5No3btxAbGwswsPD4eXlpZNrqGPevHlwc3NDcHAwEhISeItD37Zv367w/rvvvkNiYmKt7X5+fk2+VmlpKWJjYwEA4eHhah3TXL8XdVBi1KH09HT84x//gKenJ06cOKEwScXUqVNx9+5dHDlyhMcIn2OMoby8HFZWVlo/d3p6Ory8vPD06VM4OzefmWDeffddhffnzp1DYmJire18aa7fizqoKa1DX3zxBYqLi/Htt9+qnLmnQ4cO+Oijj+Tvq6qqsHjxYvj4+EAkEsHLywtz586FRCJROM7LywuvvfYazpw5g549e8LS0hLt27fHd999Jy8THx+PUaNGAQD69etXq9lWc46EhAR0794dVlZW2LhxIwDg/v37GDVqFJycnGBtbY3Q0NAmJXA+a6uGTiaTYfXq1ejcuTMsLS3h6uqKKVOmIC8vT6FcamoqIiIi0KpVK1hZWcHb2xsTJkwAUH2/tyaxxcbGyr/rhprG9L3UjWqMOvTTTz+hffv26NWrl1rlY2JisG3bNowcORIzZ87E+fPnERcXh5s3b+LAgQMKZe/evYuRI0di4sSJGDt2LLZs2YJx48YhJCQEnTt3Rt++fTFt2jT8v//3/zB37lx5c+3FZtvt27cRFRWFKVOmYNKkSfD19UVOTg569eqF0tJSTJs2DS1btsS2bdswfPhw7N27F2+88Yb2fkAEU6ZMQXx8PMaPH49p06YhPT0d69atw5UrV3D27FmYm5sjNzcXgwcPhrOzM2bPng0HBwc8ePAA+/fvBwA4Oztj/fr1+OCDD/DGG2/gzTffBAB07dqVz49m3BjRiYKCAgaAjRgxQq3yaWlpDACLiYlR2P7xxx8zAOzEiRPybZ6engwAO336tHxbbm4uE4lEbObMmfJte/bsYQDYyZMna12v5hzHjh1T2D59+nQGgP3222/ybUVFRczb25t5eXkxqVTKGGMsPT2dAWBbt25V6/MxxtiTJ08YALZgwQK1jzElU6dOZS/+yv32228MANuxY4dCuWPHjilsP3DgAAPALl68WOe5m/Kzbe7fiyrUlNaRmimhbG1t1Sp/9OhRAMCMGTMUts+cORMAajVl/f398corr8jfOzs7w9fXF/fv31c7Rm9vb0RERNSKo2fPnujTp498m42NDSZPnowHDx7gxo0bap+f1G/Pnj2wt7fHoEGD8PTpU/krJCQENjY2OHnyJADAwcEBAHD48GFUVlbyGHHzQYlRR2rmPCwqKlKrfEZGBgQCATp06KCw3c3NDQ4ODsjIyFDY3q5du1rncHR0rHVvqj7e3t4q4/D19a21vaYJrhwH0dydO3dQUFAAFxcXODs7K7yKi4uRm1u9DIVYLMZbb72F2NhYtGrVCiNGjMDWrVtr3Xsm2kP3GHXEzs4OrVu3xrVr1xp1HMdxapUTCoUqt7NGzAmiix5ooj6ZTAYXFxfs2LFD5f6aDhWO47B3716cO3cOP/30ExISEjBhwgSsXLkS586doxnZdYASow699tpr2LRpE1JSUhAWFlZvWU9PT8hkMty5c0ehgyQnJwf5+fnw9PRs9PXVTbLKcdy+fbvW9lu3bsn3E+3w8fHBr7/+it69e6v1Ryo0NBShoaFYunQpdu7ciTFjxmDXrl2IiYnR6LsmdaOmtA7NmjULLVq0QExMDHJycmrtv3fvHtasWQMAGDp0KABg9erVCmW++uorAMCwYcMaff0WLVoAAPLz89U+ZujQobhw4QJSUlLk20pKSrBp0yZ4eXnB39+/0XEQ1d5++21IpVIsXry41r6qqir595aXl1erJRAUFAQA8ua0tbU1gMZ916RuVGPUIR8fH+zcuROjR4+Gn5+fwpMvycnJ2LNnD8aNGwcACAwMxNixY7Fp0ybk5+dDLBbjwoUL2LZtGyIjI9GvX79GXz8oKAhCoRDLly9HQUEBRCIR+vfvDxcXlzqPmT17Nr7//nsMGTIE06ZNg5OTE7Zt24b09HTs27cPAkHj/5Zu374dGRkZKC0tBQCcPn0aS5YsAQC89957zbYWKhaLMWXKFMTFxSEtLQ2DBw+Gubk57ty5gz179mDNmjUYOXIktm3bhq+//hpvvPEGfHx8UFRUhM2bN8POzk7+B9XKygr+/v7YvXs3XnrpJTg5OSEgIAABAQF1Xp++l3rw3S3eHPzxxx9s0qRJzMvLi1lYWDBbW1vWu3dvtnbtWlZeXi4vV1lZyWJjY5m3tzczNzdnbdu2ZXPmzFEow1j1UJthw4bVuo5YLGZisVhh2+bNm1n79u2ZUChUGLpT1zkYY+zevXts5MiRzMHBgVlaWrKePXuyw4cPK5RpzHAdsVjMAKh8qRpKZKqUh+vU2LRpEwsJCWFWVlbM1taWdenShc2aNYv9+eefjDHGLl++zKKioli7du2YSCRiLi4u7LXXXmOpqakK50lOTmYhISHMwsJCreE39L3UjWbwJoQQJXSPkRBClFBiJIQQJZQYCSFECSVGQghRQomREEKUUGI0AF988QU6deoEmUzGdyhNNnv2bLz88st8h8Er+j5NAN/jhZq7goIC5uTkxLZs2SLfhr/Hkn355Ze1ym/durXBKajUtW/fPvb2228zb29vZmVlxV566SU2Y8YMlpeXp7L8oUOHWHBwMBOJRKxt27Zs/vz5rLKyUqFMVlYWE4lE7NChQ02OzxjR92kaKDHybNWqVczOzo6VlZXJt9X8Irm6urKSkhKF8tr8RWrZsiXr0qUL+/zzz9nmzZvZtGnTmIWFBevUqRMrLS1VKHv06FHGcRzr168f27RpE/vXv/7FBAIBe//992ud9+2332avvPJKk+MzRvR9mgZKjDzr2rUre/fddxW2AWBBQUEMAFu5cqXCPm3+Iql6umHbtm0MANu8ebPCdn9/fxYYGKhQo/jss88Yx3Hs5s2bCmX37t3LOI5j9+7da3KMxoa+T9NA9xh5lJ6ejv/9738YOHBgrX29e/dG//798cUXX+hsiVVVq8nVLF1w8+ZN+bYbN27gxo0bmDx5MszMnj9e/89//hOMMezdu1fhHDWf59ChQzqI2nDR92k6KDHyKDk5GQDQrVs3lfsXLlyInJwcrF+/vt7zSCQShRmg63s1JDs7GwDQqlUr+bYrV64AALp3765QtnXr1vDw8JDvr2Fvbw8fHx+cPXu2weuZEvo+TQfNrsOjmjkOVc2kDQCvvPIK+vXrhxUrVuCDDz6oc86+77//HuPHj1frmqyBR+OXL18OoVCIkSNHyrdlZWUBgMqVDt3d3fHnn3/W2t6+fftmtwwCfZ+mgxIjj549ewYzM7N6Z2BeuHAhxGIxNmzYgP/7v/9TWSYiIgKJiYlNjmfnzp349ttvMWvWLHTs2FG+vabpJxKJah1jaWkpX9/mRY6OjrVqHqaOvk/TQYnRwPXt2xf9+vXDF198gffff19lGXd3d5V//Rvjt99+w8SJExEREYGlS5cq7Kup2ahaY6S8vFxlzYcxRrNKq0Dfp3GgxMijli1boqqqCkVFRfWuJrhgwQKEh4dj48aN8hXjXlRWVoaCggK1runm5lZr2++//47hw4cjICAAe/fuVbghDzxvcmVlZaFt27YK+7KystCzZ89a58zLy1O4r9Uc0PdpOqjzhUedOnUCUN2bWR+xWIzw8HAsX75cZY/m7t275bWMhl7K7t27h1dffRUuLi44evSoymZgzTT6qampCtv//PNPPHr0SL7/Renp6Qpr1zQH9H2aDqox8qhmgazU1FR07dq13rILFy5EeHg4Nm3aVGufpveksrOzMXjwYAgEAiQkJMhXpVPWuXNndOrUCZs2bcKUKVPkKxSuX78eHMcp3NgHgIKCAty7dw8ffPBBo2MyZvR9mg5KjDxq3749AgIC8Ouvv2LChAn1lhWLxRCLxUhKSqq1T9N7Uq+++iru37+PWbNm4cyZMzhz5ox8n6urKwYNGiR/v2LFCgwfPhyDBw/GP/7xD1y7dg3r1q1DTExMrZrEr7/+CsYYRowY0eiYjBl9nyaEv7HlhDHGvvrqK2ZjY6PwyBYANnXq1FplT548KX+8TBtPSgCq1/sAUGvtGMYYO3DgAAsKCmIikYh5eHiwefPmsYqKilrlRo8ezfr06dPk+IwRfZ+mgRIjz/Lz85mTkxP75ptv+A5FK7KyspilpSU7ePAg36Hwgr5P00CdLzyzt7fHrFmzsGLFCpOYpmr16tXo0qVL82p2vYC+T9NAqwQSQogSqjESQogSSoyEEKKEEiMhhCihxEgIIUooMRJCiBJKjIQQooQSIyGEKKHESAghSigxEkKIEkqMhBCihBIjIYQoocRICCFKKDESQogSg0qMcXFx6NGjB2xtbeHi4oLIyEjcvn273mPi4+PBcZzCy9LSUu1rZmVlYeHChfK1dgkhxKASY1JSEqZOnYpz584hMTERlZWVGDx4MEpKSuo9zs7ODllZWfJXRkaG2tfMyspCbGwsJUZCiJxBrfly7Ngxhffx8fFwcXHBpUuX0Ldv3zqP4zhO5TKShBCiCYOqMSqrWVvXycmp3nLFxcXw9PRE27ZtMWLECFy/fl0f4RFCTJTBJkaZTIbp06ejd+/eCAgIqLOcr68vtmzZgkOHDuG///0vZDIZevXqhUePHqksL5FIUFhYKH8VFxfr6iMQQoyUwS5t8MEHH+Dnn3/GmTNn4OHhofZxlZWV8PPzQ1RUFBYvXlxr/8KFCxEbG1tr+6VLl9CtW7cmxUwIMQ0GWWP88MMPcfjwYZw8ebJRSREAzM3NERwcjLt376rcP2fOHBQUFMhfqtb1JYQ0bwaVGBlj+PDDD3HgwAGcOHEC3t7ejT6HVCrF1atX61ywXCQSwc7OTv6ysbFpatiEEBNjUL3SU6dOxc6dO3Ho0CHY2toiOzsbQPWSlFZWVgCA6OhotGnTBnFxcQCARYsWITQ0FB06dEB+fj5WrFiBjIwMxMTE8PY5CCHGzaAS4/r16wEA4eHhCtu3bt2KcePGAQAyMzMhEDyv6Obl5WHSpEnIzs6Go6MjQkJCkJycDH9/f32FTQh/KssAcyu+ozA5Btv5oi+XL19GSEgIdb4Q41SWD1g58B2FyTGoe4yEkMZq1vUanaHESAghSigxEkKIEkqMhBgzjn6FdYF+qoQYNY7vAEwSJUZCjBlHiVEXKDESYsyoKa0T9FMlxKhRjVEXKDESYtRoHKMuUGIkxJjJpHxHYJIoMRJizBglRl2gxEiIMaMao05QYiTEmEkr+Y7AJFFiJMSYVZXzHYFJosRIiDGjGqNOUGIkxJhJJXxHYJIoMRJizKoq+I7AJFFiJMSYyagprQuUGAkxZlKqMeoCJUZCjBmNY9QJSoyEGDNKjDpBiZEQY0aPBOoEJUZCjBmNY9QJSoyEGDPqfNEJSoyEGLMqGuCtCwaVGOPi4tCjRw/Y2trCxcUFkZGRuH37doPH7dmzB506dYKlpSW6dOmCo0eP6iFaQgwAPSutEwaVGJOSkjB16lScO3cOiYmJqKysxODBg1FSUlLnMcnJyYiKisLEiRNx5coVREZGIjIyEteuXdNj5ITwpKLu3w2iOY4xZrBzoz958gQuLi5ISkpC3759VZYZPXo0SkpKcPjwYfm20NBQBAUFYcOGDQ1e4/LlywgJCcGlS5fQrVs3rcVOiF6cWgaEz+Y7CpNjUDVGZQUFBQAAJyenOsukpKRg4MCBCtsiIiKQkpKisrxEIkFhYaH8VVxcrL2ACdE3SRHfEZgkg02MMpkM06dPR+/evREQEFBnuezsbLi6uipsc3V1RXZ2tsrycXFxsLe3l7/EYrFW4yZErySFfEdgkgw2MU6dOhXXrl3Drl27tHreOXPmoKCgQP5KSkrS6vkJ0avyQsBw74YZLTO+A1Dlww8/xOHDh3H69Gl4eHjUW9bNzQ05OTkK23JycuDm5qayvEgkgkgkkr+3sbFpesCE8EVWBVSWAhYt+I7EpBhUjZExhg8//BAHDhzAiRMn4O3t3eAxYWFhOH78uMK2xMREhIWF6SpMQgxLOTWntc2gaoxTp07Fzp07cejQIdja2srvE9rb28PKygoAEB0djTZt2iAuLg4A8NFHH0EsFmPlypUYNmwYdu3ahdTUVGzatIm3z0GIXpUXAHbufEdhUgyqxrh+/XoUFBQgPDwc7u7u8tfu3bvlZTIzM5GVlSV/36tXL+zcuRObNm1CYGAg9u7di4MHD9bbYUOISSl9xncEJsegaozqDKk8depUrW2jRo3CqFGjdBARIUag5AnfEZgcg6oxEkI0UPgn3xGYHEqMhBi7/Ay+IzA5lBgJMXZP7/AdgcmhxEiIsSt9BhSpftKLaIYSIyGm4PFlviMwKZQYCTEFjy7yHYFJocRIiCl4dJFWDNQiSoyEmAJJEZB9le8oTAYlRkJMRabqOUhJ41FiJMRUZJ7jOwKTQYmREFOR9wAozuU7CpNAiZEQU/Iole8ITAIlRkJMCQ3b0QpKjISYksepgEzGdxRGT6NpxyZMmFDvfo7jYGlpCQ8PD4SHh9Ns2oToS3khkHsDcKP5SJtCo8R44sQJlJWV4cmT6nngHB0dAQB5eXkAAGdnZ8hkMjx79gwcxyEiIgJ79+6FtbW1lsImhNTpwW+UGJtIo6b0zz//DJFIhIULF+LZs2fy19OnT7FgwQJYWVnh7NmzyMvLw+eff45jx47h888/13bshBBV7h6n5nQTcUydabOVDBgwAB07dsSGDRtU7n///fdx//59/PLLLwCAd955B2fPnkVGhuHNG3f58mWEhITg0qVL6NatG9/hENI4u8YABY9qbx+2EvDorv94TIRGNcZz584hMDCwzv2BgYFITk6Wv3/llVdqLXFKCNGhmz/yHYFR0ygxOjg4yGuDqhw7dgz29vby98XFxbCzs9PkUoSQOnTv3h0eUw+g+79VTDmW/htQTGvBaEqjxDhp0iQcOnQII0eOxPHjx5GRkYGMjAwcP34cI0eOxOHDhzFp0iR5+aNHjyIoKEhbMRNCAGRnZ+PxX2XILqyovZPJgBsH9R6TqdCoV3rBggUoKyvDqlWrcODAAYV9QqEQM2bMwIIFCwAA5eXlGDduHLp27dr0aAkh6rtxCAgaA1jQaJDG0igxchyH5cuXY+bMmfIaIwB4enpiwIABcHFxkZe1tLTE2LFjtRMtIUR9kiLg9lGgy0i+IzE6TVpX2sXFBVFRUdqKhRCibf/bDfgNB8ws+I7EqBjUI4GnT5/G66+/jtatW4PjOBw8eLDe8qdOnQLHcbVe2dm0MBAhAKpn2/njZ76jMDoGlRhLSkoQGBiI//znP4067vbt28jKypK/XmzKE9LsXd4OVJbzHYVRaVJTWtuGDBmCIUOGNPo4FxcXODg4aD8gQkxByRPg6g9At2i+IzEaBlVj1FRQUBDc3d0xaNAgnD17tt6yEokEhYWF8ldxcbGeoiSER2k7aVxjIxh1YnR3d8eGDRuwb98+7Nu3D23btkV4eDguX657jd24uDjY29vLX2KxWI8RE8KTyjIgZR3fURgNjZ6V1geO43DgwAFERkY26jixWIx27dph+/btKvdLJBJIJBL5+7S0NIjFYnpWmhgdDw8PPH78GG0cLPBoWah6B726DPCkaQAbovY9xv79+9faduLECa0Gow09e/bEmTNn6twvEokgEonk721sbPQRFiGG4beVgPs2wKIF35EYNLUTo6enpy7j0Jq0tDS4u7vzHQYhhqnkCXBuPdD3Y74jMWhqJ8atW7fqMg4A1ZNN3L17V/4+PT0daWlpcHJyQrt27TBnzhw8fvwY3333HQBg9erV8Pb2RufOnVFeXo5vvvkGJ06cqHeCC0KavZs/Ae37AR4hfEdisAxquE5qair69esnfz9jxgwAwNixYxEfH4+srCxkZmbK91dUVGDmzJl4/PgxrK2t0bVrV/z6668K5yCEqJC0HBi1lZrUddCo8yUtLQ03b95UeBwwISEBS5cuhUQiwTvvvIOPPvpIq4HqCk1US4yVRp0vL+r0GiD+RPuBmQCNhuvMmjULu3fvlr9PT0/HG2+8gfT0dADVNb1NmzZpJ0JCiG7cOgw8pOVWVdEoMf7+++/o06eP/P13330HoVCIK1eu4Pz58xg5cmSdyx4QQgzI6RVARSnfURgcjRJjQUEBWrZsKX9/9OhRDBo0CK1atQIADBo0SKEThRBioIpzgNQtfEdhcDRKjO7u7rh58yYAICsrC5cuXcLgwYPl+4uLiyEQGPVDNYQ0H9f2AU9u8x2FQdGoV3rEiBFYu3YtysvLcf78eYhEIrzxxhvy/b///jvat2+vtSAJITrEZMBvXwGR6wGq0ADQsMa4ZMkSvPnmm9i+fTtyc3MRHx8PV1dXAEBhYSH27t2rUIMkhBi4J7eAm4f4jsJgaFRjtLGxwY4dO+rc9+jRI1hb0zoThBiVC5sBr1eAFq34joR3Wqk3FxQUQCqVVp9QIIC9vT3Mzc21cWpCiL5UlFQ/S22Y88rolcaJMTU1Fa+++iqsra3RsmVLJCUlAQCePn2KESNG4NSpU9qKkRCiLxnJwB16pFajxJicnIw+ffrgzp07ePfddyGTyeT7WrVqhYKCAmzcuFFrQRJC9OjMaqAwi+8oeKVRYpw7dy78/Pxw48YN/Pvf/661v1+/fjh//nyTgyOE8KCyFDixBJBJ+Y6ENxolxosXL2L8+PEQiUTgOK7W/jZt2tBKfYQYs5xrwOVtfEfBG40So7m5uULzWdnjx49pAlhCjN3l7UD2Vb6j4IVGiTE0NBR79+5Vua+kpARbt26ltVQIMXZMBpxaVr1eTDOjUWKMjY1Famoqhg0bhp9/rl7M+/fff8c333yDkJAQPHnyBJ9//rlWAyWE8KDgEXApnu8o9E6jxPjyyy/j6NGjuHv3LqKjq9eqnTlzJiZPngypVIqjR4+ia9euWg2UEMKTq3uAvAy+o9ArjWfw7t+/P27fvo20tDTcuXMHMpkMPj4+CAkJUdkhQwgxUjIpkPotMGgR35HoTZOXNggKCkJQUJAWQiGEGKz000DeA8DRi+9I9EKjxHj69Ol693McB0tLS3h4eNCKfYSYAsaAG4eA3saxZElTaZQYw8PD1W4ud+zYEbGxsRg9erQmlyKEGIo7icDLHwBmFnxHonMaJcZjx47h008/hUQiwaRJk9ChQwcAwJ07d/DNN9/AysoK8+bNQ0ZGBjZu3Ih33nkHQqEQI0eO1GrwhDRXmZmZKCkpAQCUSKTI/Ksc7ZwsdXtRSRGQlQa07anb6xgAjVYJnDFjBlJSUpCUlAQLC8W/HuXl5QgPD4dYLMby5ctRXl6O7t27w8rKChcvGt7CO7RKIDEmFy5cwOLFi3HkyBG8+KvLccBrXZzw+VBP9PCy1V0AAW9qrTn98Mwu/HX3Ikqy08EJzRD2yQ8NHsMYQ2bSf5GdlgBpeQlsPfzQYehUWDm1kZe5sTsWJTnpqCjJh5mVDRy8guA1YDxEti3rObMijYbr7NixA++8806tpAgAlpaWGDNmDLZt2yZ//+677+LGjRuaXIoQ8rf9+/ejd+/e+Pnnn6Fcn2EMOHrtL/T6Ig37rzzVXRCNfBLmf9/NRs7viSr3yaRVaOXXB24hQ9U+3+OUvfjz4k/oMGQqAsd/BaGFJa7t/Byyqgp5GXuvrvB9czZCPtgEv7fmojw/C7f21Z7ToT4aJcaSkhLk5OTUuT8rKwvFxcXy9w4ODhAKhZpcihCC6pri6NGjIZVK5XOfKpPKAKmMYfTmm7j4oEg3gTy7B0grtXIqT/G7aPPyG2jh4qlWecYYHl84hLZ9RqOlbxhauHrjpeEzUVH0F57dTpGXa/PyG7Dz6ARLBxfYtfWHR69RKHp0GzJpldqxaZQY+/fvj9WrV+Pw4cO19v30009Ys2YN+vfvL9+WlpYGLy+vBs97+vRpvP7662jdujU4jsPBgwcbPObUqVPo1q0bRCIROnTogPj4+EZ8EkKMw5IlS8AYq1VTVMYAMDAsOaqjAdlMBpTosEZaD0l+NiqL8+DgHSTfZmbZArZtfFH46JbKYyrLivDk2inYefhBIFS/S0Wjzpd169ahX79+GDFiBNq0aQMfHx8AwL179/D48WN4enpi7dq1AKrvOWZmZiImJqbB85aUlCAwMBATJkzAm2++2WD59PR0DBs2DO+//z527NiB48ePIyYmBu7u7oiIiNDkoxFicDIzM3H48OEGk2INqQz46epfuuuQKS8A7PQ/DK+iOA8AYNHCUWG7RQsHVJbkKWxLP74FWamHIauUwLZNJ/iPXtCoa2mUGNu1a4erV69iw4YNSEhIQEZG9V8nPz8/TJ8+HVOmTEGLFi0AVN9jPHr0qFrnHTJkCIYMGaJ2HBs2bIC3tzdWrlwpv/6ZM2ewatUqSoxE72RVFY1qrqnrl2NH1U6KNRgDjt/Kw7gwV63Hwxirs6n58MxuPDz7vBNFVlWBose3cO/YBvm2bu+vh6W9i9bjepFH2FtwC4pAeUEuHp7eiT9+XAn/0QvVHmao8ZMv1tbWmDFjBmbMmKHpKZosJSUFAwcOVNgWERGB6dOn13mMRCKBRCKRv3/xXighmpJVVSD/we+oKi/V+rlz0m9AIOAgk6mfHAUckF9UhiqJ9uMpfvoY9i19IFAxntEtZCha+b8if3/74Aq06tQbLTv1km9rTO/wiyxsqmuKFSV5sLB1km+vKMlHC1fF5ZrNre1hbm0Pq5ZtYN2qLS7+v7EoenwLdh5+al2ryY8E8ik7O1u+bGsNV1dXFBYWoqysDFZWVrWOiYuLQ2xsrL5CJM2ETFqFqvJSCIRm4LQ8ANrO3qFRSREAZAywszIDx2l3nWiZuTUqZWaQSatUJkZzK1uYWz0fLiQwE8G8hT2snFo3+doiBzeY2zgi/8HvsHGrvn1XJSlF0ePbcK+nZ5ux6rljZVXqdxqplRhf7EhRF8dxOH78eKOP07U5c+Yo1HLT0tJo7kiiNZyZBYTmIq2eM/yV3uA4rlHNaY4D+r1kV/0fWlTVyk9r5ywvyEVVWREkBU8AJkNx9j0AgJVTawgtqis1l9ZPgWe/sWjVqRc4jkObniPw8MwuWDm1hqWDGzJObYeFrRNa+oYBAIoe30LRn3dg19YfZpa2KM/LQkbSdlg6uqtdWwTUTIwymaxW2/zhw4e4f/8+7O3t0b59dTU2PT0d+fn58PHxQdu2bdUOQlNubm61hg3l5OTAzs5OZW0RAEQiEUSi5//j0kzjxNC1beOOiP59kXjqTJ1DdV4kFABD/R3Qzkm7CRoAqlwDtXauzKT/Ivd/zytPad9MAwAEvBsHB6/qaQvLnj2CVFIiL9MmbCSkFeW4e2QtqspLYNfWHwFRi+W1V4G5JZ7dSkbm6R2QVpTDwsYJjj4haNtnNARm6i/prFZiVF4K9cyZMxg+fDg2b96MsWPHwsys+jRVVVXYunUrPv30U70MmwkLC6vVsZOYmIiwsDCdX5sQffrkX5Pxa9KZBmuOHAAOHOZEaL/XmJm3QKVLV6BK/Q6mrtHL6tz30vAZeGl4/X0UfeYdUXjPcRw8w9+DZ/h7Ksu3cPFCl/fi1I6vLhrdgPj4448xfvx4TJw4UZ4UAcDMzAyTJk3C+PHjNeqUKS4uRlpaGtLS0gBU10DT0tKQmZkJoLoZXDMxLgC8//77uH//PmbNmoVbt27h66+/xg8//ID/+7//0+RjEWKwugUGYMvaLyAUCup8WEIoAIQCDt+P90EPT+23hKrahgFC059AAtAwMf7vf/+TN59V8fb2xtWrjV9EJzU1FcHBwQgODgZQ/Ux2cHAw5s+fD6D6iZqaJFlznSNHjiAxMRGBgYFYuXIlvvnmGxqqQ0zS668ORMLe7zAovE+tW1scV918Pv1/nRAZ6FjHGZqAE6DCe2DD5UyERpNIdOjQAa1bt8aJEycUaoxAdXO6X79+yMrKwt27d7UWqK7QJBJEG6okpfjrzkUIRdZa73xR5eHjLPQdOgr5hUVwsBLi0qeddXJPsUaVRyjKg2MgrZRAKimFU8ceMBNZ6+x6fNNouM6sWbPw/vvvIzQ0FO+//77CtGMbNmxAWloavv76a60GSgh5rm0bd1hbWyG/sAgtLAQ6TYrgBJC89Lruzm+ANEqMkydPhlAoxGeffYbJkyfLq/WMMTg7O2PDhg2YNGmSVgMlhPCj0lMM1kL7T9AYMo0HeE+cOBFjx47FxYsX5ff9PD090b1791rNa0KIcWIWLSDxjeQ7DL1rUgYzMzNDWFgYDY8hxERJ/EcDFi34DkPvNH5eqLCwEMuWLUNERASCg4Nx4cIFAMBff/2Fr776yig6Xgghdaty7Yoqj+ZZ6dGoxvjo0SOIxWI8fPgQHTt2xK1bt+STMTg5OWHjxo3IyMjAmjVrtBosIUQ/mMgOkq5jtf5IobHQKDF+8sknKCoqQlpaGlxcXODiojiFUGRkpMpJbAkhxqE8aDyYpT3fYfBGo6b0L7/8gmnTpsHf31/l/Gbt27fHw4cPmxwcIUT/KjoOg9SlC99h8EqjxFhWVgZnZ+c69xcV6Wi9CUKITklbdkLFS8P5DoN3GiVGf39/nD59us79Bw8elD/WRwgxDszKEeUhUwABLVynUWKcPn06du3aheXLl6OgoABA9dRkd+/exXvvvYeUlBSayIEQYyIwR1n3qWAiHa5JbUQ06nx59913kZGRgXnz5uGzzz4DALz66qvVa0EIBPj3v/+NyMhIbcZJCNGh8sCxkDl48R2GwdB4gPdnn32G9957D/v27cPdu3chk8ng4+ODN998s96ZdwghhqXCJwJVHqF8h2FQmvTkS7t27ajJTIgRkzp3RoXfW3yHYXC0u1IOIcRoMCsnlHWbBGh5wSxToHaNsWvXro06Mcdx+P333xsdECFEDzghykI+ACxozSNV1E6MTk5OCoO5KysrkZycjK5du8LRUQczBhNCdEbSKRIyR2++wzBYaidG5QWxnj59ChcXF3z11VcaLa9KCOGH1NEHlT60/Ed9NL65oOpRQEKIgeOEkASOpfuKDaCfDiHNSIVPBGS2rfkOw+BRYiSkmWBWjqjoOIzvMIwCJUZCmgmJ/2jATPcrGJoCtTtfLl++rPC+5hnpO3fuwMHBQeUxtBwpIYZB6twZVe4hfIdhNNROjN27d1fZ4fLPf/6z1jbGGDiOg1QqbVp0hJCmE5ijPOCdZjsbtybUToxbt27VZRyEEB2peOl1MJvmtfxpU6mdGMeOHavLOBT85z//wYoVK5CdnY3AwECsXbsWPXv2VFk2Pj4e48ePV9gmEolQXl6uj1AJMWgyOw9U+AzmOwyjY3CdL7t378aMGTOwYMECXL58GYGBgYiIiEBubm6dx9jZ2SErK0v+ysjI0GPEhBgqDuWBYwEBrfPeWAaXGL/66itMmjQJ48ePh7+/PzZs2ABra2ts2bKlzmM4joObm5v85epKzQZCKj3FkDnQY3+aMKjEWFFRgUuXLmHgwIHybQKBAAMHDkRKSkqdxxUXF8PT0xNt27bFiBEjcP369TrLSiQSFBYWyl81y74SYkqYeQtIOkXyHYbRMqjE+PTpU0il0lo1PldXV2RnZ6s8xtfXF1u2bMGhQ4fw3//+FzKZDL169cKjR49Ulo+Li4O9vb38JRaLtf45COFbpU8EzZzTBAaVGDURFhaG6OhoBAUFQSwWY//+/XB2dsbGjRtVlp8zZw4KCgrkr6SkJD1HTIhuMYsWqPCmiV2awqDuyrZq1QpCoRA5OTkK23NycuDm5qbWOczNzREcHIy7d++q3C8SiSASPR/9b2NDf1WJaan0DAfMLPkOw6gZVI3RwsICISEhOH78uHybTCbD8ePHERYWptY5pFIprl69Cnd3d12FSYjh4gTViZE0iUHVGAFgxowZGDt2LLp3746ePXti9erVKCkpkY9VjI6ORps2bRAXFwcAWLRoEUJDQ9GhQwfk5+djxYoVyMjIQExMDJ8fgxBeSJ39waxo4uimMrjEOHr0aDx58gTz589HdnY2goKCcOzYMXmHTGZmJgSC5xXdvLw8TJo0CdnZ2XB0dERISAiSk5Ph7+/P10cghDeVbWi1P20wuMQIAB9++CE+/PBDlfuUZxJftWoVVq1apYeoCDFwnBBVro1bm4moZlD3GAkhmpO28gXMrfkOwyRQYiTERFQ5B/AdgsmgxEiIiZA60311baHESIgJYBa2kNm24TsMk0GJkRATIG3pSxPRahElRkJMgLTlS3yHYFIoMRJiAqROHfgOwaQY5DhGQkjDXJxbgZMUwtXWDDI7D77DMSmUGAkxUid//B7WJz4Ds3RAGUeNP22inyYhRk5m347vEEwOJUZCjJyUmtFaR4mRECMns6Ep9rSNEiMhRk7WwoXvEEwOJUZCjJmZCDBvwXcUJocSIyFGjIkc6IkXHaDESIgRk4ls+Q7BJFFiJMSYUTNaJygxEmLEGE1MqxOUGAkxYoyWSdUJSoyEGDFmJmq4EGk0SoyEGDOBBd8RmCSaRKIZyMzMxPHjx1FUVARbW1sMGDAA7drR87UmQWjOdwQmiRKjCbtw4QIWL16MI0eOgDEGgUAAmUwGjuPw2muv4fPPP0ePHj34DpM0AaPEqBPUlDZR+/fvR+/evfHzzz+DMQYAkMlkAADGGI4ePYpevXph//79fIZJmoqa0jphkInxP//5D7y8vGBpaYmXX34ZFy5cqLf8nj170KlTJ1haWqJLly44evSoniI1TBcuXMDo0aMhlUohlUpVlqnZN3r0aFy8eFHPERJtYQIh3yGYJINLjLt378aMGTOwYMECXL58GYGBgYiIiEBubq7K8snJyYiKisLEiRNx5coVREZGIjIyEteuXdNz5IZjyZIlYIzJa4p1qSmzZMkSPUVGtE5INUZd4FhDvz169vLLL6NHjx5Yt24dgOrmX9u2bfGvf/0Ls2fPrlV+9OjRKCkpweHDh+XbQkNDERQUhA0bNjR4vcuXLyMkJASXLl1Ct27dtPdBeJKZmQkvL68Gk+KLOI7DgwcPqEOmCaokpfjrzkUIRdYQmutvCI2g6E/IbFvr7XrSSgmkklI4dewBM5HpDi43qM6XiooKXLp0CXPmzJFvEwgEGDhwIFJSUlQek5KSghkzZihsi4iIwMGDB1WWl0gkkEgk8vfFxcUAgKqqKlRWVjbxE/AvISGhUUkRqK45/vLLLxg7dqyOojJ9VZWVqKysglRWCq6ySm/XFUgqIROW6O16rKoCMmn17woT6O/3xdxcv51MBpUYnz59CqlUCldXV4Xtrq6uuHXrlspjsrOzVZbPzs5WWT4uLg6xsbG1tr/88ssaRm0aJk2ahEmTJvEdBiEq6btha1CJUR/mzJmjUMNMS0uDWCzG+fPnERwczGNk2hEfH4/Jkyc3+rjNmzdTjbGJZH/XpvSq9C/A2kmvlxQIzSAwM+17mwaVGFu1agWhUIicnByF7Tk5OXBzc1N5jJubW6PKi0QiiETP7wHZ2NgAAMzMzPReXdeFiIgIcBzX6HuMgwcPNonPzys+fn5CBljZ6/+6Js6geqUtLCwQEhKC48ePy7fJZDIcP34cYWFhKo8JCwtTKA8AiYmJdZY3de3atcNrr70GoVC9YRxCoRCvv/46dbwYK1o2VTeYgdm1axcTiUQsPj6e3bhxg02ePJk5ODiw7Oxsxhhj7733Hps9e7a8/NmzZ5mZmRn78ssv2c2bN9mCBQuYubk5u3r1qlrXu3TpEgPALl26pJPPw4cLFy4wMzMzxnEcA1Dni+M4ZmZmxi5cuMB3yERT5UV8R2CSDC4xMsbY2rVrWbt27ZiFhQXr2bMnO3funHyfWCxmY8eOVSj/ww8/sJdeeolZWFiwzp07syNHjqh9LVNMjIwxtm/fPmZmZsaEQqHKpCgUCpmZmRnbv38/36GSppAU8x2BSTK4cYz6ZmrjGF908eJFLF68GIcPH671rPTrr7+OefPm0bPSxq6iFLAw3fGEfDGozheiXT169MCPP/6IzMxMnDhxAoWFhbCzs0P//v3pniIh9aDE2Ay0a9cO48aN4zsMQowGdWkRQogSSoyEGDNaU1onKDESYsxoMSydoMRIiDGjGqNOUGIkhBAllBgJIUQJJUZCCFFCiZEQQpRQYiSEECWUGAkhRAk9EtiMZGVlISsri+8wiBa5u7vD3d2d7zBMTrNPjO7u7liwYIHJ/88lkUgQFRWFpKQkvkMhWiQWi5GQkKAwKz1pumY/7VhzUVhYCHt7eyQlJcmXcyDGrbi4GGKxGAUFBbCzs+M7HJPS7GuMzU1QUBD9EpmIwsJCvkMwWdT5QgghSigxEkKIEkqMzYRIJMKCBQvoJr0Joe9Ud6jzhRBClFCNkRBClFBiJIQQJZQYCSFECSVGQghRQomREB3hOE6t16lTp5p8rdLSUixcuLBR51q6dCmGDx8OV1dXcByHhQsXNjkOU0FPvhCiI9u3b1d4/9133yExMbHWdj8/vyZfq7S0FLGxsQCA8PBwtY6ZN28e3NzcEBwcjISEhCbHYEooMRKiI++++67C+3PnziExMbHWdr6kp6fDy8sLT58+hbOzM9/hGBRqShPCI5lMhtWrV6Nz586wtLSEq6srpkyZgry8PIVyqampiIiIQKtWrWBlZQVvb29MmDABAPDgwQN5YouNjZU30RtqGnt5eeniI5kEqjESwqMpU6YgPj4e48ePx7Rp05Ceno5169bhypUrOHv2LMzNzZGbm4vBgwfD2dkZs2fPhoODAx48eID9+/cDAJydnbF+/Xp88MEHeOONN/Dmm28CALp27crnRzNujBCiF1OnTmUv/sr99ttvDADbsWOHQrljx44pbD9w4AADwC5evFjnuZ88ecIAsAULFjQ6rqYca6qoKU0IT/bs2QN7e3sMGjQIT58+lb9CQkJgY2ODkydPAgAcHBwAAIcPH0ZlZSWPETcflBgJ4cmdO3dQUFAAFxcXODs7K7yKi4uRm5sLoHqW7rfeeguxsbFo1aoVRowYga1bt0IikfD8CUwX3WMkhCcymQwuLi7YsWOHyv01HSocx2Hv3r04d+4cfvrpJyQkJGDChAlYuXIlzp07RzOy6wAlRkJ44uPjg19//RW9e/eGlZVVg+VDQ0MRGhqKpUuXYufOnRgzZgx27dqFmJgYcBynh4ibD2pKE8KTt99+G1KpFIsXL661r6qqCvn5+QCAvLw8MKXZAYOCggBA3py2trYGAPkxpGmoxkgIT8RiMaZMmYK4uDikpaVh8ODBMDc3x507d7Bnzx6sWbMGI0eOxLZt2/D111/jjTfegI+PD4qKirB582bY2dlh6NChAAArKyv4+/tj9+7deOmll+Dk5ISAgAAEBATUef3t27cjIyMDpaWlAIDTp09jyZIlAID33nsPnp6euv8hGCq+u8UJaS6Uh+vU2LRpEwsJCWFWVlbM1taWdenShc2aNYv9+eefjDHGLl++zKKioli7du2YSCRiLi4u7LXXXmOpqakK50lOTmYhISHMwsJCreE3YrGYAVD5OnnypLY+tlGiGbwJIUQJ3WMkhBAllBgJIUQJJUZCCFFCiZEQQpRQYiSEECWUGAkhRAklRkIM1IMHD8BxHOLj4/kOpdmhxEgIIUpogDchBooxBolEAnNzcwiFQr7DaVYoMRJCiBJqShOiQwsXLgTHcfjjjz/w7rvvwt7eHs7Ozvj888/BGMPDhw8xYsQI2NnZwc3NDStXrpQfq+oe47hx42BjY4PHjx8jMjISNjY2cHZ2xscffwypVCovd+rUKZVrVqs6Z3Z2NsaPHw8PDw+IRCK4u7tjxIgRePDggY5+KoaPEiMhejB69GjIZDIsW7YML7/8MpYsWYLVq1dj0KBBaNOmDZYvX44OHTrg448/xunTp+s9l1QqRUREBFq2bIkvv/wSYrEYK1euxKZNmzSK7a233sKBAwcwfvx4fP3115g2bRqKioqQmZmp0flMAn/zVxBi+hYsWMAAsMmTJ8u3VVVVMQ8PD8ZxHFu2bJl8e15eHrOysmJjx45ljDGWnp7OALCtW7fKy4wdO5YBYIsWLVK4TnBwMAsJCZG/P3nypMpZcpTPmZeXxwCwFStWaOcDmwiqMRKiBzExMfL/FgqF6N69OxhjmDhxony7g4MDfH19cf/+/QbP9/777yu8f+WVV9Q6TpmVlRUsLCxw6tSpWmtZN2eUGAnRg3bt2im8t7e3h6WlJVq1alVre0MJytLSUr4eTA1HR0eNEptIJMLy5cvx888/w9XVFX379sUXX3yB7OzsRp/LlFBiJEQPVA23qWsIDmtgoIg6Q3fqWgPmxQ6aGtOnT8cff/yBuLg4WFpa4vPPP4efnx+uXLnS4HVMFSVGQkyQo6MjgNprwGRkZKgs7+Pjg5kzZ+KXX37BtWvXUFFRodBD3txQYiTEBHl6ekIoFNbq4f76668V3peWlqK8vFxhm4+PD2xtbZv1utW0GBYhJsje3h6jRo3C2rVrwXEcfHx8cPjwYeTm5iqU++OPPzBgwAC8/fbb8Pf3h5mZGQ4cOICcnBz84x//4Cl6/lFiJMRErV27FpWVldiwYQNEIhHefvttrFixQmHlwLZt2yIqKgrHjx/H9u3bYWZmhk6dOuGHH37AW2+9xWP0/KJHAgkhRAndYySEECWUGAkhRAklRkIIUUKJkRBClFBiJIQQJZQYCSG0vowSSoyENNK9e/cwZcoUtG/fHpaWlrCzs0Pv3r2xZs0alJWV6ey6N27cwMKFC3mfQHbp0qUYPnw4XF1dwXEcFi5cyGs8ukADvAlphCNHjmDUqFEQiUSIjo5GQEAAKioqcObMGXzyySe4fv26xhPGNuTGjRuIjY1FeHg4vLy8dHINdcybNw9ubm4IDg5GQkICb3HoEiVGQtSUnp6Of/zjH/D09MSJEyfg7u4u3zd16lTcvXsXR44c4THC5xhjKC8vh5WVldbPnZ6eDi8vLzx9+rTW9GemgprShKjpiy++QHFxMb799luFpFijQ4cO+Oijj+Tvq6qqsHjxYvj4+EAkEsHLywtz586tNTmDl5cXXnvtNZw5cwY9e/aEpaUl2rdvj++++05eJj4+HqNGjQIA9OvXDxzHKazpUnOOhIQEdO/eHVZWVti4cSMA4P79+xg1ahScnJxgbW2N0NDQJiVwPmur+kKJkRA1/fTTT2jfvj169eqlVvmYmBjMnz8f3bp1w6pVqyAWixEXF6dycoa7d+9i5MiRGDRoEFauXAlHR0eMGzcO169fBwD07dsX06ZNAwDMnTsX27dvx/bt2+Hn5yc/x+3btxEVFYVBgwZhzZo1CAoKQk5ODnr16oWEhAT885//xNKlS1FeXo7hw4fjwIEDWvipmCheF1YgxEgUFBQwAGzEiBFqlU9LS2MAWExMjML2jz/+mAFgJ06ckG/z9PRkANjp06fl23Jzc5lIJGIzZ86Ub9uzZ4/KdVxePMexY8cUtk+fPp0BYL/99pt8W1FREfP29mZeXl5MKpUyxlSvL9OQJ0+eMABswYIFah9jLKjGSIgaCgsLAQC2trZqlT969CgAYMaMGQrbZ86cCQC1mrL+/v545ZVX5O+dnZ3VXv+lhre3NyIiImrF0bNnT/Tp00e+zcbGBpMnT8aDBw9w48YNtc/fnFBiJEQNdnZ2AICioiK1ymdkZEAgEKBDhw4K293c3ODg4FBrJm3lNWGAxq/j4u3trTIOX1/fWttrmuB1zejd3FFiJEQNdnZ2aN26Na5du9ao4+pae0WZpuu/vEgXPdDNFSVGQtT02muv4d69e0hJSWmwrKenJ2QyGe7cuaOwPScnB/n5+fD09Gz09dVNsspx3L59u9b2W7duyfeT2igxEqKmWbNmoUWLFoiJiUFOTk6t/ffu3cOaNWsAAEOHDgUArF69WqHMV199BQAYNmxYo6/fokULALUXuKrP0KFDceHCBYVkXlJSgk2bNsHLywv+/v6NjqM5oAHehKjJx8cHO3fuxOjRo+Hn56fw5EtycjL27NmDcePGAQACAwMxduxYbNq0Cfn5+RCLxbhw4QK2bduGyMhI9OvXr9HXDwoKglAoxPLly1FQUACRSIT+/fvDxcWlzmNmz56N77//HkOGDMG0adPg5OSEbdu2IT09Hfv27YNA0Pi60fbt25GRkYHS0lIAwOnTp7FkyRIAwHvvvWcatVC+u8UJMTZ//PEHmzRpEvPy8mIWFhbM1taW9e7dm61du5aVl5fLy1VWVrLY2Fjm7e3NzM3NWdu2bdmcOXMUyjBWPdRm2LBhta4jFouZWCxW2LZ582bWvn17JhQKFYbu1HUOxhi7d+8eGzlyJHNwcGCWlpasZ8+e7PDhwwplGjNcRywWMwAqX6qGEhkjWvOFEEKU0D1GQghRQomREEKUUGIkhBAllBgJIUQJJUZCCFFCiZEQQpRQYiSEECWUGAkhRAklRkIIUUKJkRBClFBiJIQQJZQYCSFECSVGQghR8v8ByO2DSwqmlv4AAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUYAAAInCAYAAADkl/CSAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXd9JREFUeJzt3XlcVPX+P/DXmQEGZEfZEgVEUxAVxQ20xp3UEirNzHJFrWvX/GqZmqm4XDSz9Jc31xTz6tXU1HIjQsUUTBYp91wQ1FjUYFiEYZj5/P7gMjnDAMMwM2dmeD8fj3l0zzmfc857nOvbz+d8Pufz4RhjDIQQQpQEfAdACCGmhhIjIYSoocRICCFqKDESQogaSoyEEKKGEiMhhKihxEgIIWooMRJCiBpKjIQQoqbZJ8bc3FwsXboUubm5fIdCCDERlBhzcxETE0OJkRCi1OwTIyGEqKPESAghaigxEkKIGiu+AyCENF5laSEKLp+CtCgfIhdPeHQZBBsHV77DshiUGAkxM0/++BU3DsaCKarAcQIwpkD2mV0IHL0Qbh168x2eRaCmNCFmpLK0sDopymUAY2AKefV/5TJcP/AvVJYW8h2iRaDESIgZKbh8CkxRpfEYU1Sh4PIpI0dkmSgxEmJGpEX54DjNf205TgBpUb6RI7JMJpsYV61aBY7jMHv27DrLxMXFgeM4lY+tra3xgiTEyEQunmBMofEYYwqIXDyNHJFlMsnOl9TUVGzevBldu3ZtsKyTkxNu3ryp3OY4zpChEcIrjy6DkH1mV/UzRjWcwAoeXQfzEJXlMbkaY2lpKcaPH4+tW7fC1bXh4Qccx8HLy0v58fSkfzGJ5bJxcEXg6IXghNYAx4ETCKv/K7RG4OiFsLF34TtEi2ByNcaZM2di5MiRGDJkCFasWNFg+dLSUvj6+kKhUKBHjx7417/+hc6dO9dZXiqVQiqVqpxPiDlx69Abvf65Q3UcY9fBlBT1yKQS4969e5GRkYHU1FStynfs2BHbt29H165dIZFI8PnnnyM8PBxXr16Fj4+PxnNiY2MRExOjz7AJMTobB1f4hL3OdxgWi2OMMb6DAID79++jZ8+eSEhIUD5bHDBgAEJCQrBu3TqtriGTyRAYGIhx48Zh+fLlGsuo1xgzMzMhFouRnp6OHj16NPl7EELMn8nUGNPT01FQUKCSnORyOc6ePYsNGzZAKpVCKBTWew1ra2t0794dt2/frrOMSCSCSCRSbjs4ODQ9eEKIRTGZxDh48GBcvnxZZd/kyZPRqVMnfPzxxw0mRaA6kV6+fBkjRowwVJiEkGbAZBKjo6MjgoODVfbZ29ujZcuWyv0TJkxA69atERsbCwBYtmwZ+vbti/bt26OoqAhr1qxBdnY2oqOjjR4/IcRymExi1EZOTg4Egr9HGBUWFmLatGnIy8uDq6srQkNDkZycjKCgIB6jJISYO5PpfOFLRkYGQkNDqfOFmBWadsywzKrGSAihaceMweTefCGE1I2mHTMOSoyEmBGadsw4KDESYkZo2jHjoMRIiBmhaceMgxIjIWbEo8sgcALNfaY07Zj+UGIkxIzQtGPGQcN1CDEzNO2Y4VFiJMQM0bRjhkVNaUIIUUOJkRBC1FBiJIQQNZQYCSFEDSVGQghRQ4mREELUUGIkhBA1lBgJIUQNJUZCCFFDiZEQQtRQYiSEEDWUGAkhRA0lRkIIUUOJkRBC1NC0Y4SYIVpX2rAoMRJiZmhdacOjpjQhZoTWlTYOSoyEmBFaV9o4KDESYkZoXWnjoMRIiBmhdaWNw2QT46pVq8BxHGbPnl1vuf3796NTp06wtbVFly5dcPz4ceMESAgPaF1p4zDJxJiamorNmzeja9eu9ZZLTk7GuHHjMHXqVFy6dAlRUVGIiorClStXjBQpIcZF60obB8cYY3wH8azS0lL06NEDX3/9NVasWIGQkBCsW7dOY9mxY8eirKwMR48eVe7r27cvQkJCsGnTJq3ul5GRgdDQUKSnp6NHjx76+AqEGFytcYy0rrRemVyNcebMmRg5ciSGDBnSYNmUlJRa5SIiIpCSklLnOVKpFMXFxcpPaWlpk2MmxNhq1pUOGP4P+IS9TklRz0xqgPfevXuRkZGB1NRUrcrn5eXB01P1YbOnpyfy8vLqPCc2NhYxMTFNipMQYtlMpsZ4//59fPDBB9i9ezdsbW0Ndp8FCxZAIpEoP0lJSQa7FyHEPJlMjTE9PR0FBQUqz/nkcjnOnj2LDRs2QCqVQigUqpzj5eWF/HzVcVv5+fnw8vKq8z4ikQgikUi57eDgoKdvQAixFCZTYxw8eDAuX76MzMxM5adnz54YP348MjMzayVFAAgLC0NiYqLKvoSEBISFhRkrbEKIBTKZGqOjoyOCg4NV9tnb26Nly5bK/RMmTEDr1q0RGxsLAPjggw8gFouxdu1ajBw5Env37kVaWhq2bNli9PgJIZbDZBKjNnJyciAQ/F3JDQ8Px549e7Bo0SIsXLgQHTp0wOHDh2sl2OausKQMCanXkfdXMbzcnDC0VyBcHe35DosQk2Vy4xiNzdLHMaZcuYvlO4+hSq6AgOOgYAxWQgEWTxqJvp3b8R0eISbJZJ4xEv0rLCnD8p3HIKuSgzEGuUIBxhhkVXIsizuGwpIyvkMkxCRRYrRgCanXUSXXPOFAlVyBn9NuGDkiQswDJUYLlvdXMQQcp/GYgOOQ+0Ri5IgIMQ9m1flCGsfLzQmKOh4hKxiDd0tnI0dE6pP5zQeoLC2EjYMrQqau5zucZo1qjBZsaK9AWAk1/8RWQgGG9Aw0ckSkPpWlhagseULLE5gASowWzNXRHosnjYS1lRAcx0EoEIDjOFhbCbF40ki4OrbgO0RCTBI1pS1c387tsHvxFPycdgO5TyTwbumMIT0DKSkSUg9KjM2Aq6M9xgwM5TsMQswGNaUJIUQNJUZCCFFDTelmgN6VJqRxKDFaOE3vSsedSKF3pQmpBzWlLRi9K02IbigxWjB6V5oQ3VBitGD0rjQhuqHEaMHoXWlCdEOJ0YLRu9KE6IYSowWjd6UJ0Q0N17Fw9K40IY2nc2KUy+XYv38/Tp8+jYKCAixbtgxdunSBRCJBYmIi+vXrB09PT33GSnRE70oT0jg6NaWLiorQr18/vPXWW/jvf/+LH374AY8ePQJQvYD9rFmzsH49TbRJCDFPOiXG+fPn4+rVq4iPj8fdu3fx7EKDQqEQo0ePxvHjx/UWJCGEGJNOifHw4cP45z//iaFDh4LTME7u+eefx71795oaGyGE8EKnxCiRSODv71/ncZlMhqqqKp2DIoQQPumUGAMCApCRkVHn8Z9++glBQUE6B0UIIXzSKTFGR0dj+/bt2Ldvn/L5IsdxkEql+OSTT3Dy5EnMmDFDr4ESQoix6DRc54MPPsDVq1cxbtw4uLi4AADeeustPHnyBFVVVZgxYwamTp2qzzgJIcRodEqMHMdh69atmDhxIg4cOIBbt25BoVAgICAAb7zxBl588UV9x0kIIUbTpDdf+vfvj/79++srFkIIMQn0rjQhhKjRqcbo7++vcfzisziOw507dxp13Y0bN2Ljxo3KMZCdO3fG4sWLMXz4cI3l4+LiMHnyZJV9IpEIFRUVjbovIcSwKksLUXD5FKRF+RC5eMKjyyDYOLjyHVaddEqMYrG4VmKUy+XIzs7G+fPnERwcjO7duzf6uj4+Pli1ahU6dOgAxhh27tyJyMhIXLp0CZ07d9Z4jpOTE27evKncbihhE0L0q6Gk9+SPX3HjYCyYogocJwBjCmSf2YXA0Qvh1qE3j5HXTafEGBcXV+ex3377DRERERg/fnyjr/vKK6+obK9cuRIbN27EhQsX6kyMHMfBy8ur0fcihDSsqUmvsrSw+rhcBgBgTF79X7kM1w/8C73+ucMka456f8bYrVs3zJgxAx9//HGTriOXy7F3716UlZUhLCysznKlpaXw9fVFmzZtEBkZiatXr9Z7XalUiuLiYuWntLS0SXESYq4qSwvxIOUg7pz4Gg9SDqKytFDl+JM/fkXqV5Nx79QO5F06iXundiD1q8n469ZF5fnKpMcYmEJe/d//Jb2apMoUmt+CY4oqFFw+ZfDvqQuDzMfo6emJa9eu6XTu5cuXERYWhoqKCjg4OODQoUN1vkXTsWNHbN++HV27doVEIsHnn3+O8PBwXL16FT4+PhrPiY2NRUxMjE6xEWIp9FHT0ybpSYvy/3d9ea0yHCeAtCjfcF+yCfReY3zy5Am++eabOhNTQzp27IjMzEz8+uuveO+99zBx4sQ6k2xYWBgmTJiAkJAQiMVifP/993B3d8fmzZvrvP6CBQsgkUiUn6SkJJ3iJMRc6aumV5P0NKlJeiIXTzCmeaVKxhQQuZjmnK061RgHDRqkcX9RURFu3LiByspK7Nq1S6eAbGxs0L59ewBAaGgoUlNTsX79+nqTXQ1ra2t0794dt2/frrOMSCSCSCRSbjs4OOgUJyF80qaXt64y+qrpaZP0PLoMQvaZXcqap8p1BFbw6DpYh29veDolRoVCUav3l+M4+Pv7Y8iQIZgyZQo6deqklwAVCgWkUqlWZeVyOS5fvowRI0bo5d6EmCJtennrK2PMpGdj74LA0Qtx/cC/VGLhBFYIHL0QNvYuev2z0RedEuOZM2f0HEa1BQsWYPjw4Wjbti1KSkqwZ88enDlzBvHx8QCACRMmoHXr1oiNjQUALFu2DH379kX79u1RVFSENWvWIDs7G9HR0QaJjxC+afPsD0C9ZXzCXjdq0nPr0Fv5TFJZe/3f+abKpBbDKigowIQJE5CbmwtnZ2d07doV8fHxGDp0KAAgJycHAsHfzzQKCwsxbdo05OXlwdXVFaGhoUhOTqYpz4jF0raXt74yAAdOYGXUpGfj4AqfsNd1/t7GplVi/Pbbb3W6+IQJExpV/ptvvqn3uHpN9csvv8SXX37Z2LAIMVva9vLWV6aqvLhZJz1taJUYJ02a1OgLcxzX6MRICKmftr28DZVpzklPG1olxqysLEPHQUizV9OrXN+bIFr18jKmVU9wc0162tAqMfr6+ho6DkLMnkIuqx4TqKMuE1Yr/7dcpnkiFKHIDh2jPsTNw5/XagZ3jPoQQhtbAGiwTF3X1wYnEEIgtNb5fHNgUp0vhJgrhVyGkod/QF5ZbvB7Caxt0eGV2Si69xtkpYWwdnCFi183CKxtIcm+olWZqopSFGVlQlZWBGt7F7j4h8DKVrsxvUIbOzi2ft6ik6POiTEvLw/ffPMNMjIyIJFIoFCoPtPgOA6JiYlNDpAQc8AUcsgryyGwsjJKwrAS2cGr2xCdyhTfv4bsM/+prt1yHMAYHl0+Dd8Bb8OpTf0jOhRyGeSV5dXnUmJU9fvvv2PAgAEoLy9Hx44dcfnyZQQFBaGoqAgPHz5EQEAA2rRpo+9YiYEUlpQhIfU68v4qhpebE4b2CoSroz3fYZklgdAaAisbnc69eWQtqp4Ww6qFEzpGztVzZNVk5SX/S4r/G87zv8XsmKIK2Wf+g6A3l8DazrHeayiawdLIOiXG+fPnw8HBAZmZmWjRogU8PDywfv16DBo0CPv378d7772H3bt36ztWYgApV+5i+c5jqJIrIOA4KBhD3IkULJ40En07t+M7vGal6mkxZE8lBr1H4a3UOp+DMoUchbdT4dFF8yu/zYlOk0icP38eM2bMQNu2bZUDrmua0mPGjMH48ePx0Ucf6S9KotE/1u7BuKXb8I+1e3Q6v7CkDMt3HoOsSg7GGOQKBRhjkFXJsSzuGApLyvQcMTEGWXkJCn4/hQfJB1Dw+ynIykuUxypL/wIEdUzmLOBQWfKXkaI0bTq/K+3pWT1eysXFBUKhEH/99fcfaJcuXRocrE2arrDkKR5LdJ9PMiH1Oqrkmse7VckV+DntBsYMDNX5+sT4JDlXcC8xrrpWKOAABUNu+nH4DZ4M57adYePgBiiY5pMVDDaObsYN2ETpVGP09/dXjm0UCATw9/fHzz//rDyenJysXG+amK68v4ohqGMpCAHHIfeJYZt1RL9k5SX/S4pVABigUABgYIoq3EvcAVl5CVw79AInEGo8nxMI4dq+l1FjNlVaJ8bCwr9n9x02bBj279+v3H7vvfewbds2DBkyBIMHD8bOnTvx1ltv6TdSorPCkjJ8dyoN/+/AKXx3Kk3ZRPZyc4KCaa49KBiDd0tnY4ZJmkib54fWdo7wGzwZnMAKAAcIBKh5d9pv8OQGO16aC62b0l5eXhgxYgTGjx+PuXPnYty4cZDJZLC2tsbs2bNRVlaGgwcPQigU4tNPP8XChQsNGTfRUn2dK0N7BSLuRApkVbX/MlkJBRjSM5CHiIk2ZOUlKLyVisrSv2Dj4AbXDr3+fn6oqan8zPND57adEfTmEhTeTkVlyV+wcXSDa/telBSfoXViHD16NH744Qf88MMPcHR0xGuvvYbx48dj0KBB4DgOixYtwqJFiwwZK2mkZztXAED+v9phTefK7sVTsHjSSCyLU02cVkIBFk8aCVfHFnyGT+pQ13NEl4AeWj8/tLZzpN7nemidGHfv3o3y8nIcPnwYe/bswe7du7Fz5054enpi3LhxGD9+PHr06GHIWEkjadu5snvxFPycdgO5TyTwbumMIT0DKSmaKNXniFAmQqaoQuHtdHACgcbmND0/bJxGdb7Y2dlh3Lhx+PHHH5GXl4evv/4aHTp0wLp169CrVy906tQJK1aswN27dw0VL2kEbTtXXB3tMWZgKGaNHoQxA0MpKZqw+p4jgingGhBKzw/1QOfFsFxdXTFjxgwkJSUhJycHq1atQosWLbB48WJ06NAB4eHh+oyT6IA6VyxPQ+MQBVY2CHpzCZ7r/QpadQzHc71fQdCbS+DcVvO67EQzvawS2Lp1a3z00UfYuXMnIiMjwRjDr7/+qo9LkyYY2isQVkLNPzF1rpgnbcYh1jw/9AkfDY8ug6imqIMmJ8aa2mK3bt0QEhKCI0eOIDw8HBs2bNBHfKQJXB3tsXjSSFhbCcFxHIQCATiOg7WVkDpXzBSNQzQOnd58efz4Mb777jvs2bMHKSkpYIyhU6dOWLZsGcaPHw8/Pz89h0l01bdzO+pcsSA14xDvJe5Q6ZXmBEJ6jqhHWifGsrIyHDp0CHv27EFiYiJkMhm8vb0xe/Zs6pE2cTWdK8Qy0DhEw9M6MXp4eKCiogIODg546623lGMYn121jxBiHDQO0bC0ToxDhgzB+PHjMWrUKNja2hoyJkII4ZXWifHIkSOGjIMQYgI0vWrYHJvotOZLM0AzdBOg4aTX0JRlzQklRgtHM3Q3D01NevW9angvcYdWSx5YEuo5sWD6nqG7runLCL8kOVdwbW8M/kz9EY9vJuPP1B9xbW8MJDlXAWg3T6M2U5Y1J1RjtGD6nKGbap6mSZuanjZJT9spy5oLqjFaMH3N0E1rw5iuRiU9Tf6X9GjJA1WUGC1YYyeRqKuprE3Nk/BDX0mPXjVUZVKJcePGjejatSucnJzg5OSEsLAwnDhxot5z9u/fj06dOsHW1hZdunTB8ePHjRSt6WvMJBIpV+5i/LLt2Hb0PI6nXMG2o+cxftl2XLh6l9aGMWH6Snq05IEqk0qMPj4+WLVqFdLT05GWloZBgwYhMjISV69e1Vg+OTkZ48aNw9SpU3Hp0iVERUUhKioKV65cMXLkpknbSSQaaio729vS9GUmSp9Jr+ZVQ5qyzMQ6X1555RWV7ZUrV2Ljxo24cOECOneu/eOsX78eL730knIN6+XLlyMhIQEbNmzApk2bjBKzqdNmEomGmsoAByuhgNaGMUHaTiqh7fvV9KphNZNKjM+Sy+XYv38/ysrKEBYWprFMSkoK5syZo7IvIiIChw8frvO6UqkUUqlUuV1aqvu6zOaioUkkaprKcg21QgHHQVJWTmvDmBj1cYvPR85FycPrlPT0xOQS4+XLlxEWFqacsOLQoUMICgrSWDYvLw+enp4q+zw9PZGXl1fn9WNjYxETE6PXmM1FXW/AaNNJQ9OXmQ5Ng7W5/w3WpsSnHyaXGDt27IjMzExIJBIcOHAAEydORFJSUp3JsbEWLFigUsvMzMyEWCzWy7VNmT6WUaXpy/hHb6gYh0l1vgCAjY0N2rdvj9DQUMTGxqJbt25Yv369xrJeXl7Iz89X2Zefnw8vL686ry8SiZS93k5OTnBwcNBr/Kaooc4VADTTt5mgN1SMw+RqjOoUCoXKM8FnhYWFITExEbNnz1buS0hIqPOZZHNFy6haDnpDxThMKjEuWLAAw4cPR9u2bVFSUoI9e/bgzJkziI+PBwBMmDABrVu3RmxsLADggw8+gFgsxtq1azFy5Ejs3bsXaWlp2LJlC59fw+Q01LmivowqMV30hopxmFRTuqCgABMmTEDHjh0xePBgpKamIj4+HkOHDgVQvfBWbm6usnx4eDj27NmDLVu2oFu3bjhw4AAOHz6M4OBgvr6CSaJlVC0HvaFiHCZVY/zmm2/qPX7mzJla+8aMGYMxY8YYKCLLoG3nCjF9tBiWcZhUYiSNU/P8r6HngDVvwPA5DpEmy9UfWgzL8Cgx8kRWJYdcoblDRFtf/PPvmnJFpazesiEd2uCb+RNwOuMm8guL4enqhEGhHeHi0AIVlTIUljzF6YwbyC8sgaerIwb26KSXhCkUCJB2I5umLNMzGqxtWJQYeSCrkuNmTh6eSutPZvpS+rQCl27dR2HJU7g6tkD3Dm3g0MIWOfmFyMkvxPXsXPw3IRUKpgDHcWCM4duTv+Ktob3RybfuoU/akMvlWL7zuLIZX9MBVDNUaPfiKVRzJCaHEiMP5AoFnkplsBYKYG2l+UG6vlzJ+hM7T6RArvg76f2cdh2Thoehs/9zKHlagb0/pyprr+x/iUvOFPjvzxexeNJIOLbQbVVIWZUcv/x2S2+T5RJiLJQYeWRtJYSNte4/werd8SguK4eTvR0+Hh9R63hxWTl2nkhRJqaapFclVyDuRAqWR49Cxh/362zSyxUKXLp1v0mdM4UlT7UaKkQAqxZOKv8l/KHEaMaKy8pRVFpe5/Ffr92rN+ldvH4PfxWXKWuS6gQchycS7WfnLi4rx6/Xqq/p5mSPHs+3gatjCxoqpKWOkXP1ej1aClV3lBgtmDZJz83JXuNxoDpxtXSufv6nnvT6BPnByd5OWfbynYfYdvScSpP9aPLviHohhKYsMwBaCtWwKDFaMG2SXu9APxxN/l3jc0ChQIA+Qf51Jr3oV/qjS7vWKC4rx7aj5zQ22Q+dzcSsMYOw4eBpmrJMT2gpVMMzqTdfiH71CfKDUKD5J65Jek72doh+pT+shAJwHCAUcOC46tpc9Cv9wRhTJj3GAIWCgbHqpLftx3PKmmRdTXYFU6Co5Cl2L56Caa/0x4iwYEx7pT92L55KQ3V0QEuhGgfVGC1YTdLb9mN1ba+mtiYUVCe9mt7mLu1aY3n0KFy8fg9PJGVo6WyPPkH+cGxhi4TU6016TslxHPILi+k9bD2hpVCNgxKjhasv6amryWuM/d0cbupzSsYYPF2pl1VftEl6NNFE01FibAac7O3q7eSo7xliU59TCjgBBoV21Nt3ae60WhWwfS/kph//+xnjM2iiCe3QM8Zm7tmOE03PEIP8vJr0nPKtob3h4kAdLPpCS6EaB9UYm4H6hto0NNbxenaezs8pu3doA6HQsG/2NDf6XhWQaEaJ0cI1NNRGm2eIQ3oGavWcUr3JXimrMtr74M0JLYVqeJQYLVh94wu3/XgOy6NHaT3Au6HnlMS4KOkZFj1jtGDavBKozVhHQpobSowWrKaZrElNM7mhAd66zqxDiDmjprQF07aZ3JixjsQ00AQRhkWJ0YL1CWr4Pega9AzRfNAEEYZHTWkLRs1ky6PNu9Kk6ajGaOGomWxZtHlXmnqrm44SYzNAzWTLQRNEGAc1pQkxIzRBhHFQYiTEjGjzrjRpOkqMhJgRmiDCOOgZYzPQ0HotxLzQBBGGR4nRwjU0iQQxT/SutGFRU9qCNTTXYnFZ3UuvEtKcmVRijI2NRa9eveDo6AgPDw9ERUXh5s2b9Z4TFxcHjuNUPra2NEYP0G4SCUJIbSaVGJOSkjBz5kxcuHABCQkJkMlkGDZsGMrK6l/03cnJCbm5ucpPdna2kSI2bdpMIkEIqc2knjGePHlSZTsuLg4eHh5IT0/Hiy++WOd5HMfBy8vL0OGZHW0nkSCEqDKpGqM6iUQCAHBzq3/QamlpKXx9fdGmTRtERkbi6tWrxgjP5NFci4ToxmQTo0KhwOzZs9GvXz8EBwfXWa5jx47Yvn07jhw5gv/85z9QKBQIDw/HgwcPNJaXSqUoLi5WfkpLSw31FXhHk0gQohuTako/a+bMmbhy5QrOnTtXb7mwsDCEhYUpt8PDwxEYGIjNmzdj+fLltcrHxsYiJiZG7/GaqsZOIkFjHgkx0cT4/vvv4+jRozh79ix8fHwada61tTW6d++O27dvazy+YMECzJkzR7mdmZkJsVjcpHhNnbaTSNCYR0KqmVRTmjGG999/H4cOHcKpU6fg79/4Z2ByuRyXL1+Gt7e3xuMikQhOTk7Kj4ODQ1PD5o2TvR1cHOwarNEVl5UjIfU69iWmISH1usbxizTmkZC/mVSNcebMmdizZw+OHDkCR0dH5OXlAQCcnZ1hZ1f9l3/ChAlo3bo1YmNjAQDLli1D37590b59exQVFWHNmjXIzs5GdHQ0b9/DWD4eH9FgGW1rgdqMeaSpy0hzYVI1xo0bN0IikWDAgAHw9vZWfvbt26csk5OTg9zcXOV2YWEhpk2bhsDAQIwYMQLFxcVITk5GUFAQH1/BpDSmFkhjHgn5m0nVGOsac/esM2fOqGx/+eWX+PLLLw0UkXlrTC2QxjwS8jeTqjES/WpMLZDGPBLyN0qMFqwxtUAa80jI30yqKU30qzHLpxaXlSPvSTF6dvRFSbkUjnYieLdypoWzSLNEidGC1dQCt/1Y3Sst4DgoGINQoFoL1NRzLRQIEP081RRJ80SJ0cI19ObLsz3XwN8dYDU918ujR9GbL6TZoWeMzUTNo0bGVHv/ac5GQmqjGqOFa2iAd03PtaZOGhq/SJorqjFaMG0GeNP4RUJqo8RowbRpJtP4RUJqo8RowbQZ4E3jFwmpjZ4xWjBtm8mNnbOREEtHidGCNWaAt7ZzNhLSHFBT2oJRM5kQ3VCN0cJRM5mQxqPE2AxQM5mQxqGmNCGEqKHESAghaigxEkKIGnrG2IwU5OfjUUG+0e4nq5KjQlYFeXEBRNaW/X81eZUUpbl3ILQWQSC0Ntp9vTzd4eXpYbT7NReW/f9WLXh7e2PJkiV1LrdqCLY21ugd6Ge0+wGAVCrF9HfGIikpyaj3JYYlFosRHx8PkUjEdygWhWParEBFzF5xcTGcnZ2RlJRk1mtpk7+VlpZCLBZDIpHAycmJ73AsSrOvMTY3ISEh9JfIQhQXF/MdgsWizhdCCFFDiZEQQtRQYmwmRCIRlixZQg/pLQj9poZDnS+EEKKGaoyEEKKGEiMhhKihxEgIIWooMRKd3Lt3DxzHIS4uju9QCNE7SoxGcOfOHcyYMQPt2rWDra0tnJyc0K9fP6xfvx7l5eUGu++1a9ewdOlS3Lt3z2D30MbKlSsxatQoeHp6guM4LF26lNd4jIXjOK0+Z86cafK9nj59iqVLlzbqWs31d9EGvfliYMeOHcOYMWMgEokwYcIEBAcHo7KyEufOncNHH32Eq1evYsuWLQa597Vr1xATE4MBAwbAz8/PIPfQxqJFi+Dl5YXu3bsjPj6etziMbdeuXSrb3377LRISEmrtDwxs+iTCT58+RUxMDABgwIABWp3TXH8XbVBiNKCsrCy8+eab8PX1xalTp1Qmqpg5cyZu376NY8eO8Rjh3xhjqKiogJ2dnd6vnZWVBT8/Pzx+/Bju7u56v76pevvtt1W2L1y4gISEhFr7+dJcfxdtUFPagD777DOUlpbim2++0Th7T/v27fHBBx8ot6uqqrB8+XIEBARAJBLBz88PCxcuhFQqVTnPz88PL7/8Ms6dO4fevXvD1tYW7dq1w7fffqssExcXhzFjxgAABg4cWKvZVnON+Ph49OzZE3Z2dti8eTMA4O7duxgzZgzc3NzQokUL9O3bt0kJnM/aqqlTKBRYt24dOnfuDFtbW3h6emLGjBkoLCxUKZeWloaIiAi0atUKdnZ28Pf3x5QpUwBUP++tSWwxMTHK37qhpjH9LnWjGqMB/fjjj2jXrh3Cw8O1Kh8dHY2dO3di9OjRmDt3Ln799VfExsbi+vXrOHTokErZ27dvY/To0Zg6dSomTpyI7du3Y9KkSQgNDUXnzp3x4osvYtasWfh//+//YeHChcrm2rPNtps3b2LcuHGYMWMGpk2bho4dOyI/Px/h4eF4+vQpZs2ahZYtW2Lnzp0YNWoUDhw4gFdffVV/f0AEM2bMQFxcHCZPnoxZs2YhKysLGzZswKVLl3D+/HlYW1ujoKAAw4YNg7u7O+bPnw8XFxfcu3cP33//PQDA3d0dGzduxHvvvYdXX30Vr732GgCga9eufH4188aIQUgkEgaARUZGalU+MzOTAWDR0dEq+z/88EMGgJ06dUq5z9fXlwFgZ8+eVe4rKChgIpGIzZ07V7lv//79DAA7ffp0rfvVXOPkyZMq+2fPns0AsF9++UW5r6SkhPn7+zM/Pz8ml8sZY4xlZWUxAGzHjh1afT/GGHv06BEDwJYsWaL1OZZk5syZ7Nm/cr/88gsDwHbv3q1S7uTJkyr7Dx06xACw1NTUOq/dlD/b5v67aEJNaQOpmRLK0dFRq/LHjx8HAMyZM0dl/9y5cwGgVlM2KCgIL7zwgnLb3d0dHTt2xN27d7WO0d/fHxEREbXi6N27N/r376/c5+DggOnTp+PevXu4du2a1tcn9du/fz+cnZ0xdOhQPH78WPkJDQ2Fg4MDTp8+DQBwcXEBABw9ehQymYzHiJsPSowGUjPnYUlJiVbls7OzIRAI0L59e5X9Xl5ecHFxQXZ2tsr+tm3b1rqGq6trrWdT9fH399cYR8eOHWvtr2mCq8dBdHfr1i1IJBJ4eHjA3d1d5VNaWoqCggIA1bN0v/7664iJiUGrVq0QGRmJHTt21Hr2TPSHnjEaiJOTE5577jlcuXKlUedxHKdVOaFQqHE/a8ScIIbogSbaUygU8PDwwO7duzUer+lQ4TgOBw4cwIULF/Djjz8iPj4eU6ZMwdq1a3HhwgWakd0AKDEa0Msvv4wtW7YgJSUFYWFh9Zb19fWFQqHArVu3VDpI8vPzUVRUBF9f30bfX9skqx7HzZs3a+2/ceOG8jjRj4CAAPz888/o16+fVv9I9e3bF3379sXKlSuxZ88ejB8/Hnv37kV0dLROvzWpGzWlDWjevHmwt7dHdHQ08vNrr853584drF+/HgAwYsQIAMC6detUynzxxRcAgJEjRzb6/vb29gCAoqIirc8ZMWIELl68iJSUFOW+srIybNmyBX5+fggKCmp0HESzN954A3K5HMuXL691rKqqSvm7FRYW1moJhISEAICyOd2iRQsAjfutSd2oxmhAAQEB2LNnD8aOHYvAwECVN1+Sk5Oxf/9+TJo0CQDQrVs3TJw4EVu2bEFRURHEYjEuXryInTt3IioqCgMHDmz0/UNCQiAUCrF69WpIJBKIRCIMGjQIHh51L7c5f/58/Pe//8Xw4cMxa9YsuLm5YefOncjKysLBgwchEDT+39Jdu3YhOzsbT58+BQCcPXsWK1asAAC88847zbYWKhaLMWPGDMTGxiIzMxPDhg2DtbU1bt26hf3792P9+vUYPXo0du7cia+//hqvvvoqAgICUFJSgq1bt8LJyUn5D6qdnR2CgoKwb98+PP/883Bzc0NwcDCCg4PrvD/9LvXgu1u8Ofjjjz/YtGnTmJ+fH7OxsWGOjo6sX79+7KuvvmIVFRXKcjKZjMXExDB/f39mbW3N2rRpwxYsWKBShrHqoTYjR46sdR+xWMzEYrHKvq1bt7J27doxoVCoMnSnrmswxtidO3fY6NGjmYuLC7O1tWW9e/dmR48eVSnTmOE6YrGYAdD40TSUyFKpD9epsWXLFhYaGsrs7OyYo6Mj69KlC5s3bx77888/GWOMZWRksHHjxrG2bdsykUjEPDw82Msvv8zS0tJUrpOcnMxCQ0OZjY2NVsNv6HepG83gTQghaugZIyGEqKHESAghaigxEkKIGkqMhBCihhIjIYSoocRoAj777DN06tQJCoWC71CabP78+ejTpw/fYfCKfk8LwPd4oeZOIpEwNzc3tn37duU+/G8s2eeff16r/I4dOxqcgkpbBw8eZG+88Qbz9/dndnZ27Pnnn2dz5sxhhYWFGssfOXKEde/enYlEItamTRu2ePFiJpPJVMrk5uYykUjEjhw50uT4zBH9npaBEiPPvvzyS+bk5MTKy8uV+2r+Inl6erKysjKV8vr8i9SyZUvWpUsX9umnn7KtW7eyWbNmMRsbG9apUyf29OlTlbLHjx9nHMexgQMHsi1btrB//vOfTCAQsHfffbfWdd944w32wgsvNDk+c0S/p2WgxMizrl27srfffltlHwAWEhLCALC1a9eqHNPnXyRNbzfs3LmTAWBbt25V2R8UFMS6deumUqP45JNPGMdx7Pr16yplDxw4wDiOY3fu3GlyjOaGfk/LQM8YeZSVlYXff/8dQ4YMqXWsX79+GDRoED777DODLbGqaTW5mqULrl+/rtx37do1XLt2DdOnT4eV1d+v1//jH/8AYwwHDhxQuUbN9zly5IgBojZd9HtaDkqMPEpOTgYA9OjRQ+PxpUuXIj8/Hxs3bqz3OlKpVGUG6Po+DcnLywMAtGrVSrnv0qVLAICePXuqlH3uuefg4+OjPF7D2dkZAQEBOH/+fIP3syT0e1oOml2HRzVzHGqaSRsAXnjhBQwcOBBr1qzBe++9V+ecff/9738xefJkre7JGng1fvXq1RAKhRg9erRyX25uLgBoXOnQ29sbf/75Z6397dq1a3bLINDvaTkoMfLoyZMnsLKyqncG5qVLl0IsFmPTpk34v//7P41lIiIikJCQ0OR49uzZg2+++Qbz5s1Dhw4dlPtrmn4ikajWOba2tsr1bZ7l6upaq+Zh6ej3tByUGE3ciy++iIEDB+Kzzz7Du+++q7GMt7e3xn/9G+OXX37B1KlTERERgZUrV6ocq6nZaFpjpKKiQmPNhzFGs0prQL+neaDEyKOWLVuiqqoKJSUl9a4muGTJEgwYMACbN29Wrhj3rPLyckgkEq3u6eXlVWvfb7/9hlGjRiE4OBgHDhxQeSAP/N3kys3NRZs2bVSO5ebmonfv3rWuWVhYqPJcqzmg39NyUOcLjzp16gSgujezPmKxGAMGDMDq1as19mju27dPWcto6KPuzp07eOmll+Dh4YHjx49rbAbWTKOflpamsv/PP//EgwcPlMeflZWVpbJ2TXNAv6floBojj2oWyEpLS0PXrl3rLbt06VIMGDAAW7ZsqXVM12dSeXl5GDZsGAQCAeLj45Wr0qnr3LkzOnXqhC1btmDGjBnKFQo3btwIjuNUHuwDgEQiwZ07d/Dee+81OiZzRr+n5aDEyKN27dohODgYP//8M6ZMmVJvWbFYDLFYjKSkpFrHdH0m9dJLL+Hu3buYN28ezp07h3PnzimPeXp6YujQocrtNWvWYNSoURg2bBjefPNNXLlyBRs2bEB0dHStmsTPP/8MxhgiIyMbHZM5o9/TgvA3tpwwxtgXX3zBHBwcVF7ZAsBmzpxZq+zp06eVr5fp400JQPN6HwBqrR3DGGOHDh1iISEhTCQSMR8fH7Zo0SJWWVlZq9zYsWNZ//79mxyfOaLf0zJQYuRZUVERc3NzY9u2beM7FL3Izc1ltra27PDhw3yHwgv6PS0Ddb7wzNnZGfPmzcOaNWssYpqqdevWoUuXLs2r2fUM+j0tA60SSAghaqjGSAghaigxEkKIGkqMhBCihhIjIYSoocRICCFqKDESQogaSoyEEKKGEiMhhKihxEgIIWooMRJCiBpKjIQQooYSIyGEqKHESAghakwqMcbGxqJXr15wdHSEh4cHoqKicPPmzXrPiYuLA8dxKh9bW1ut75mbm4ulS5cq19olhBCTSoxJSUmYOXMmLly4gISEBMhkMgwbNgxlZWX1nufk5ITc3FzlJzs7W+t75ubmIiYmhhIjIUTJpNZ8OXnypMp2XFwcPDw8kJ6ejhdffLHO8ziO07iMJCGE6MKkaozqatbWdXNzq7dcaWkpfH190aZNG0RGRuLq1avGCI8QYqFMNjEqFArMnj0b/fr1Q3BwcJ3lOnbsiO3bt+PIkSP4z3/+A4VCgfDwcDx48EBjealUiuLiYuWntLTUUF+BEGKmTHZpg/feew8nTpzAuXPn4OPjo/V5MpkMgYGBGDduHJYvX17r+NKlSxETE1Nrf3p6Onr06NGkmAkhlsEka4zvv/8+jh49itOnTzcqKQKAtbU1unfvjtu3b2s8vmDBAkgkEuVH07q+hJDmzaQSI2MM77//Pg4dOoRTp07B39+/0deQy+W4fPlynQuWi0QiODk5KT8ODg5NDZsQYmFMqld65syZ2LNnD44cOQJHR0fk5eUBqF6S0s7ODgAwYcIEtG7dGrGxsQCAZcuWoW/fvmjfvj2KioqwZs0aZGdnIzo6mrfvQQgxbyaVGDdu3AgAGDBggMr+HTt2YNKkSQCAnJwcCAR/V3QLCwsxbdo05OXlwdXVFaGhoUhOTkZQUJCxwiaEP7JywNqO7ygsjsl2vhhLRkYGQkNDqfOFmKfyIsDOhe8oLI5JPWMkhDRWs67XGAwlRkIIUUOJkRBC1FBiJMSccfRX2BDoT5UQs8bxHYBFosRIiDnjKDEaAiVGQswZNaUNgv5UCTFrVGM0BEqMhJg1GsdoCJQYCTFnCjnfEVgkSoyEmDNGidEQKDESYs6oxmgQlBgJMWdyGd8RWCRKjISYs6oKviOwSJQYCTFnVGM0CEqMhJgzuZTvCCwSJUZCzFlVJd8RWCRKjISYMwU1pQ2BEiMh5kxONUZDoMRIiDmjcYwGQYmREHNGidEgKDESYs7olUCDoMRIiDmjcYwGQYmREHNGnS8GQYmREHNWRQO8DcGkEmNsbCx69eoFR0dHeHh4ICoqCjdv3mzwvP3796NTp06wtbVFly5dcPz4cSNES4gJoHelDcKkEmNSUhJmzpyJCxcuICEhATKZDMOGDUNZWVmd5yQnJ2PcuHGYOnUqLl26hKioKERFReHKlStGjJwQnlTW/XeD6I5jjJns3OiPHj2Ch4cHkpKS8OKLL2osM3bsWJSVleHo0aPKfX379kVISAg2bdrU4D0yMjIQGhqK9PR09OjRQ2+xE2IUZ1YBA+bzHYXFMakaozqJRAIAcHNzq7NMSkoKhgwZorIvIiICKSkpGstLpVIUFxcrP6WlpfoLmBBjk5bwHYFFMtnEqFAoMHv2bPTr1w/BwcF1lsvLy4Onp6fKPk9PT+Tl5WksHxsbC2dnZ+VHLBbrNW5CjEpazHcEFslkE+PMmTNx5coV7N27V6/XXbBgASQSifKTlJSk1+sTYlQVxYDpPg0zW1Z8B6DJ+++/j6NHj+Ls2bPw8fGpt6yXlxfy8/NV9uXn58PLy0tjeZFIBJFIpNx2cHBoesCE8EVRBcieAjb2fEdiUUyqxsgYw/vvv49Dhw7h1KlT8Pf3b/CcsLAwJCYmquxLSEhAWFiYocIkxLRUUHNa30yqxjhz5kzs2bMHR44cgaOjo/I5obOzM+zs7AAAEyZMQOvWrREbGwsA+OCDDyAWi7F27VqMHDkSe/fuRVpaGrZs2cLb9yDEqCokgJM331FYFJOqMW7cuBESiQQDBgyAt7e38rNv3z5lmZycHOTm5iq3w8PDsWfPHmzZsgXdunXDgQMHcPjw4Xo7bAixKE+f8B2BxTGpGqM2QyrPnDlTa9+YMWMwZswYA0REiBkoe8R3BBbHpGqMhBAdFP/JdwQWhxIjIeauKJvvCCwOJUZCzN3jW3xHYHEoMRJi7p4+AUo0v+lFdEOJkRBL8DCD7wgsCiVGQizBg1S+I7AolBgJsQQPUmnFQD2ixEiIJZCWAHmX+Y7CYlBiJMRS5Gieg5Q0HiVGQixFzgW+I7AYlBgJsRSF94DSAr6jsAiUGAmxJA/S+I7AIlBiJMSS0LAdvaDESIgleZgGKBR8R2H2dJp2bMqUKfUe5zgOtra28PHxwYABA2g2bUKMpaIYKLgGeNF8pE2hU2I8deoUysvL8ehR9Txwrq6uAIDCwkIAgLu7OxQKBZ48eQKO4xAREYEDBw6gRYsWegqbEFKne79QYmwinZrSJ06cgEgkwtKlS/HkyRPl5/Hjx1iyZAns7Oxw/vx5FBYW4tNPP8XJkyfx6aef6jt2QogmtxOpOd1EHNNm2mw1gwcPRocOHbBp0yaNx999913cvXsXP/30EwDgrbfewvnz55GdbXrzxmVkZCA0NBTp6eno0aMH3+EQ0jh7xwOSB7X3j1wL+PQ0fjwWQqca44ULF9CtW7c6j3fr1g3JycnK7RdeeKHWEqeEEAO6/gPfEZg1nRKji4uLsjaoycmTJ+Hs7KzcLi0thZOTky63IoTUoWfPnvCZeQg9/6VhyrGsX4BSWgtGVzolxmnTpuHIkSMYPXo0EhMTkZ2djezsbCQmJmL06NE4evQopk2bpix//PhxhISE6CtmQgiAvLw8PPyrHHnFlbUPMgVw7bDRY7IUOvVKL1myBOXl5fjyyy9x6NAhlWNCoRBz5szBkiVLAAAVFRWYNGkSunbt2vRoCSHau3YECBkP2NBokMbSKTFyHIfVq1dj7ty5yhojAPj6+mLw4MHw8PBQlrW1tcXEiRP1Ey0hRHvSEuDmcaDLaL4jMTtNWlfaw8MD48aN01cshBB9+30fEDgKsLLhOxKzYlKvBJ49exavvPIKnnvuOXAch8OHD9db/syZM+A4rtYnL48WBiIEQPVsO3+c4DsKs2NSibGsrAzdunXDv//970add/PmTeTm5io/zzblCWn2MnYBsgq+ozArTWpK69vw4cMxfPjwRp/n4eEBFxcX/QdEiCUoewRc/g7oMYHvSMyGSdUYdRUSEgJvb28MHToU58+fr7esVCpFcXGx8lNaWmqkKAnhUeYeGtfYCGadGL29vbFp0yYcPHgQBw8eRJs2bTBgwABkZNS9xm5sbCycnZ2VH7FYbMSICeGJrBxI2cB3FGZDp3eljYHjOBw6dAhRUVGNOk8sFqNt27bYtWuXxuNSqRRSqVS5nZmZCbFYTO9KE7Pj4+ODhw8forWLDR6s6qvdSS+tAnxpGsCGaP2McdCgQbX2nTp1Sq/B6EPv3r1x7ty5Oo+LRCKIRCLltoODgzHCIsQ0/LIW8N4J2NjzHYlJ0zox+vr6GjIOvcnMzIS3tzffYRBimsoeARc2Ai9+yHckJk3rxLhjxw5DxgGgerKJ27dvK7ezsrKQmZkJNzc3tG3bFgsWLMDDhw/x7bffAgDWrVsHf39/dO7cGRUVFdi2bRtOnTpV7wQXhDR7138E2g0EfEL5jsRkmdRwnbS0NAwcOFC5PWfOHADAxIkTERcXh9zcXOTk5CiPV1ZWYu7cuXj48CFatGiBrl274ueff1a5BiFEg6TVwJgd1KSug06dL5mZmbh+/brK64Dx8fFYuXIlpFIp3nrrLXzwwQd6DdRQaKJaYq506nx5VqeXAfFH+g/MAug0XGfevHnYt2+fcjsrKwuvvvoqsrKyAFTX9LZs2aKfCAkhhnHjKHCfllvVRKfE+Ntvv6F///7K7W+//RZCoRCXLl3Cr7/+itGjR9e57AEhxIScXQNUPuU7CpOjU2KUSCRo2bKlcvv48eMYOnQoWrVqBQAYOnSoSicKIcREleYDadv5jsLk6JQYvb29cf36dQBAbm4u0tPTMWzYMOXx0tJSCARm/VINIc3HlYPAo5t8R2FSdOqVjoyMxFdffYWKigr8+uuvEIlEePXVV5XHf/vtN7Rr105vQRJCDIgpgF++AKI2AlShAaBjjXHFihV47bXXsGvXLhQUFCAuLg6enp4AgOLiYhw4cEClBkkIMXGPbgDXj/AdhcnQqcbo4OCA3bt313nswYMHaNGC1pkgxKxc3Ar4vQDYt+I7Et7ppd4skUggl8urLygQwNnZGdbW1vq4NCHEWCrLqt+lNs15ZYxK58SYlpaGl156CS1atEDLli2RlJQEAHj8+DEiIyNx5swZfcVICDGW7GTgFr1Sq1NiTE5ORv/+/XHr1i28/fbbUCgUymOtWrWCRCLB5s2b9RYkIcSIzq0DinP5joJXOiXGhQsXIjAwENeuXcO//vWvWscHDhyIX3/9tcnBEUJ4IHsKnFoBKOR8R8IbnRJjamoqJk+eDJFIBI7jah1v3bo1rdRHiDnLvwJk7OQ7Ct7olBitra1Vms/qHj58SBPAEmLuMnYBeZf5joIXOiXGvn374sCBAxqPlZWVYceOHbSWCiHmjimAM6uq14tpZnRKjDExMUhLS8PIkSNx4kT1Yt6//fYbtm3bhtDQUDx69AiffvqpXgMlhPBA8gBIj+M7CqPTKTH26dMHx48fx+3btzFhQvVatXPnzsX06dMhl8tx/PhxdO3aVa+BEkJ4cnk/UJjNdxRGpfMM3oMGDcLNmzeRmZmJW7duQaFQICAgAKGhoRo7ZAghZkohB9K+AYYu4zsSo2ny0gYhISEICQnRQyiEEJOVdRYovAe4+vEdiVHolBjPnj1b73GO42BrawsfHx9asY8QS8AYcO0I0M88lixpKp0S44ABA7RuLnfo0AExMTEYO3asLrcihJiKWwlAn/cAKxu+IzE4nRLjyZMn8fHHH0MqlWLatGlo3749AODWrVvYtm0b7OzssGjRImRnZ2Pz5s146623IBQKMXr0aL0GT0hzlZOTg7KyMgBAmVSOnL8q0NbN1rA3lZYAuZlAm96GvY8J0GmVwDlz5iAlJQVJSUmwsVH916OiogIDBgyAWCzG6tWrUVFRgZ49e8LOzg6pqaa38A6tEkjMycWLF7F8+XIcO3YMz/7V5Tjg5S5u+HSEL3r5ORougODX9Nacvn9uL/66nYqyvCxwQiuEffRdg+cwxpCT9B/kZcZDXlEGR59AtB8xE3ZurZVlru2LQVl+FirLimBl5wAXvxD4DZ4MkWPLeq6sSqfhOrt378Zbb71VKykCgK2tLcaPH4+dO3cqt99++21cu3ZNl1sRQv7n+++/R79+/XDixAmo12cYA45f+Qvhn2Xi+0uPDRdEI9+E+f3b+cj/LUHjMYW8Cq0C+8MrdITW13uYcgB/pv6I9sNnotvkLyC0scWVPZ9CUVWpLOPs1xUdX5uP0Pe2IPD1hagoysWNg7XndKiPTomxrKwM+fn5dR7Pzc1FaWmpctvFxQVCoVCXWxFCUF1THDt2LORyuXLuU3VyBSBXMIzdeh2p90oME8iTO4BcppdL+YrfRus+r8Lew1er8owxPLx4BG36j0XLjmGw9/TH86PmorLkLzy5maIs17rPq3Dy6QRbFw84tQmCT/gYlDy4CYW8SuvYdEqMgwYNwrp163D06NFax3788UesX78egwYNUu7LzMyEn59fg9c9e/YsXnnlFTz33HPgOA6HDx9u8JwzZ86gR48eEIlEaN++PeLi4hrxTQgxDytWrABjrFZNUR0DwMCw4riBBmQzBVBmwBppPaRFeZCVFsLFP0S5z8rWHo6tO6L4wQ2N58jKS/Doyhk4+QRCINS+S0WnzpcNGzZg4MCBiIyMROvWrREQEAAAuHPnDh4+fAhfX1989dVXAKqfOebk5CA6OrrB65aVlaFbt26YMmUKXnvttQbLZ2VlYeTIkXj33Xexe/duJCYmIjo6Gt7e3oiIiNDlqxFicnJycnD06NEGk2INuQL48fJfhuuQqZAATsYfhldZWggAsLF3VdlvY+8CWVmhyr6sxO3ITTsKhUwKx9adEDR2SaPupVNibNu2LS5fvoxNmzYhPj4e2dnV/zoFBgZi9uzZmDFjBuzt7QFUP2M8fvy4VtcdPnw4hg8frnUcmzZtgr+/P9auXau8/7lz5/Dll19SYiRGp5DLwAwwh2HCTye1Too1GAMSbxRhUpin3uNhYHU2Ne+f24f75//uRFFUVaLk4Q3cOblJua/Huxth6+yh97ie5RP2OrxCIlAhKcD9s3vwxw9rETR2qdbDDHV+86VFixaYM2cO5syZo+slmiwlJQVDhgxR2RcREYHZs2fXeY5UKoVUKlVuP/sslBBdKeQylDz8A/JK/c9EU5D9BwQCQb1T/akTcEBRablB4nlaVAiHljIIhLXXdfIKHYFWQS8ot28eXoNWnfqhZadw5b7G9A4/y8ahuqZYWVYIG0c35f7KsiLYe6ou12zdwhnWLZxh17I1WrRqg9T/NxElD2/AySdQq3s1+ZVAPuXl5SmXba3h6emJ4uJilJeXw87OrtY5sbGxiImJMVaIpJlgCjnkleUQWFlpTBhN4ezi0qikCAAKBjjbWYHT8zrRCmt7VHHW1TVjDd/T2s4R1nZ/DxcSWIlgbe8MO7fnmnxvkYsXrB1cUXTvNzh4VT++q5I+RcnDm/Cup2ebseo/O0WV9p1GWiXGZztStMVxHBITExt9nqEtWLBApZabmZlJc0cSvREIrSHQ85shA198ARzHNao5zXHAwOedAeh3QheFR+fqi+tBhaQAVeUlkEoeAUyB0rw7AAA7t+cgtKmu1KRvnAHfgRPRqlM4OI5D696RuH9uL+zcnoOtixeyz+yCjaMbWnYMAwCUPLyBkj9vwalNEKxsHVFRmIvspF2wdfXWurYIaJkYFQpFrbb5/fv3cffuXTg7O6Ndu+pqbFZWFoqKihAQEIA2bdpoHYSuvLy8ag0bys/Ph5OTk8baIgCIRCKIRCLlNs00TkxdG5/n8NKQgfjpVFKdQ3WeJRQAIzq7oK2bqMGyjVXl1V1v18pJ+g8Kfv+78pS5bRYAIPjtWLj4VU9bWP7kAeTSMmWZ1mGjIa+swO1jX6GqogxObYIQPG658h8jgbUtntxIRs7Z3ZBXVsDGwQ2uAaFo038sBFba1+S1SozqS6GeO3cOo0aNwtatWzFx4kRYWVVfpqqqCjt27MDHH39slGEzYWFhtTp2EhISEBYWZvB7E2JMH//fP5Bw+myDNUcOAAcOCyNa11lGV8zGHnLv7kCV9h1MXSesqvPY86Pm4PlR9fdR9F90TGWb4zj4DngHvgPe0Vje3sMPXd6J1Tq+uuj0AOLDDz/E5MmTMXXqVGVSBAArKytMmzYNkydP1qlTprS0FJmZmcjMzARQXQPNzMxETk4OgOpmcM3EuADw7rvv4u7du5g3bx5u3LiBr7/+Gt999x3+7//+T5evRYjJCg3pirhNX0IoFNb5soRQAAgFHPZOaY9evvpvCcl9+wNCy59AAtAxMf7+++/K5rMm/v7+uHy58YvopKWloXv37ujevbq6PmfOHHTv3h2LFy8GUP1GTU2SrLnPsWPHkJCQgG7dumHt2rXYtm0bDdUhFilyRAR+/mEvhg0S13q0xXHVzedf5gQhqptbHVdoAo5DVUDz+Xul0yQS7du3x3PPPYdTp06p1BiB6ub0wIEDkZubi9u3b+stUEOhSSSIPshlFZBkX4GVyE7vnS+a3H/wJ8KHjkKRpBgudkJkzO9ikGeKNeRt+6Gy17tQVFWiSloOZ99gCK0NPJsPj3QarjNv3jy8++676Nu3L959912Vacc2bdqEzMxMfP3113oNlBDytzY+z6FFCzsUSYphLxIYNCmC4yALjDLc9U2QTolx+vTpEAqF+OSTTzB9+nRltZ4xBnd3d2zatAnTpk3Ta6CEEH5UtRsE5uDFdxhGpfMA76lTp2LixIlITU1VPvfz9fVFz549azWvCSHmidk4QBbU/CaYblIGs7KyQlhYGA2PIcRCybqOB2ya31hfnd8XKi4uxqpVqxAREYHu3bvj4sWLAIC//voLX3zxhVl0vBBC6ib3DoG8bT++w+CFTjXGBw8eQCwW4/79++jQoQNu3LihnIzBzc0NmzdvRnZ2NtavX6/XYAkhxsFsnVDZY6reXv8zNzolxo8++gglJSXIzMyEh4cHPDxUpxCKiorSOIktIcQ8VIZOB2xd+A6DNzo1pX/66SfMmjULQUFBGuc3a9euHe7fv9/k4AghxifrNAoKr258h8ErnRJjeXk53N3d6zxeUmKg9SYIIQalcA9EVWDDs+dbOp0SY1BQEM6ePVvn8cOHDytf6yOEmAfWwg3SPu8DAlq4TqfEOHv2bOzduxerV6+GRCIBUD012e3bt/HOO+8gJSWFJnIgxJwIrSHtOxsQOfEdiUnQqfPl7bffRnZ2NhYtWoRPPvkEAPDSSy+BMQaBQIB//etfiIqK0mechBADquwxFczVn+8wTIbOA7w/+eQTvPPOOzh48CBu374NhUKBgIAAvPbaa/XOvEMIMS1Vz49otuMV69KkN1/atm1LTWZCzJjcMxiy4LF8h2Fy9LtSDiHEbLAWLVHZaybAURpQp3WNsWvXro26MMdx+O233xodECHECARCVPb5JyBqfu9Ba0PrxOjm5qYymFsmkyE5ORldu3aFq6urQYIjhBiGLGg0FG4BfIdhsrROjOoLYj1+/BgeHh744osvdFpelRDCD0XL9qh6vu51mEkTnjFqehWQEGLiBEJU9oim54oNoD8dQpqRqg4jwJz0v7SqpaHESEgzwVq4QdZpFN9hmAVKjIQ0E7IubwFWlruynz5p3fmSkZGhsl3zjvStW7fg4uKi8RxajpQQ0yD3DIa8dW++wzAbWifGnj17auxw+cc//lFrH2MMHMdBLpc3LTpCSNMJrSHrNrHZzsatC60T444dOwwZByHEQGSBr4I5Nq/lT5tK68Q4ceJEQ8ah4t///jfWrFmDvLw8dOvWDV999RV699bcDIiLi8PkyZNV9olEIlRUVBgjVEJMmsK5Dao6DOc7DLNjcp0v+/btw5w5c7BkyRJkZGSgW7duiIiIQEFBQZ3nODk5ITc3V/nJzs42YsSEmCiOQ2VoNCCgdd4by+QS4xdffIFp06Zh8uTJCAoKwqZNm9CiRQts3769znM4joOXl5fy4+npacSICTFNVf6DwFxpCkBdmFRirKysRHp6OoYMGaLcJxAIMGTIEKSkpNR5XmlpKXx9fdGmTRtERkbi6tWrdZaVSqUoLi5WfmqWfSXEkjAbe8iCRvMdhtkyqcT4+PFjyOXyWjU+T09P5OXlaTynY8eO2L59O44cOYL//Oc/UCgUCA8Px4MHDzSWj42NhbOzs/IjFov1/j0I4VvV8yNp5pwmMKnEqIuwsDBMmDABISEhEIvF+P777+Hu7o7NmzdrLL9gwQJIJBLlJykpycgRE2JYzMYBVe2G8h2GWTOpp7KtWrWCUChEfn6+yv78/Hx4eWk33MDa2hrdu3fH7du3NR4XiUQQiUTKbQcH+leVWJaqdoMAa3rDpSlMqsZoY2OD0NBQJCYmKvcpFAokJiYiLCxMq2vI5XJcvnwZ3t7ehgqTENPFcZC3G8x3FGbPpGqMADBnzhxMnDgRPXv2RO/evbFu3TqUlZUpxypOmDABrVu3RmxsLABg2bJl6Nu3L9q3b4+ioiKsWbMG2dnZiI6O5vNrEMILuWcXMDs3vsMweyaXGMeOHYtHjx5h8eLFyMvLQ0hICE6ePKnskMnJyYFA8HdFt7CwENOmTUNeXh5cXV0RGhqK5ORkBAUF8fUVCOGNvE043yFYBI4xxvgOgk8ZGRkIDQ1Feno6TXpBdCaXVUCSfQVWIjsIrGyMcs+OoS/gz9x8tHaxRvbyHoBAiPKXvwasWxjsnoqqSlRJy+HsGwyhBT/HNKlnjIQQ3clbBRo0KTYnlBgJsRAKr8at5EnqRomREAsh9wjmOwSLQYmREAvARI5gTj58h2ExKDESYgEU7oE0Ea0eUWIkxAIoWnXiOwSLQomREAsgb/k83yFYFJMb4E0I0Y6nuzu4Cgm8HK3AnNvwHY5FocRIiJk6e/J72MZ/BGbnAilHjT99oj9NQsycwsWP7xAsDiVGQsycwoma0fpGiZEQM8ecnuM7BItDiZEQM6ewpzWj9Y0SIyFmjFnZAjb2fIdhcSgxEmLGmK0LvfFiAJQYCTFjzNaJ7xAsEiVGQsyZNTWjDYESIyFmjNnQxLSGQImREHNmZbnLC/CJEiMhZoxRYjQISoyEmDOBcRbeam5oEolmICcnB4mJiSgpKYGjoyMGDx6Mtm3b8h0W0QchJUZDoMRowS5evIjly5fj2LFjYIxBIBBAoVCA4zi8/PLL+PTTT9GrVy++wyRNwITWfIdgkagpbaG+//579OvXDydOnEDN0uEKhQIAwBjD8ePHER4eju+//57PMElTUY3RIEwyMf773/+Gn58fbG1t0adPH1y8eLHe8vv370enTp1ga2uLLl264Pjx40aK1DRdvHgRY8eOhVwuh1wu11im5tjYsWORmppq5AiJ3gio0WcIJpcY9+3bhzlz5mDJkiXIyMhAt27dEBERgYKCAo3lk5OTMW7cOEydOhWXLl1CVFQUoqKicOXKFSNHbjpWrFgBxpiypliXmjIrVqwwUmRE3xjVGA2CYw397TGyPn36oFevXtiwYQOA6uZfmzZt8M9//hPz58+vVX7s2LEoKyvD0aNHlfv69u2LkJAQbNq0qcH7ZWRkIDQ0FOnp6ejRo4f+vghPcnJy4Ofn12BSfBbHcbh37x51yDSBXFYBSfYVWInsILAyXrLiih+CObU22v0UVZWokpbD2TcYQmvLHSpkUvXwyspKpKenY8GCBcp9AoEAQ4YMQUpKisZzUlJSMGfOHJV9EREROHz4sMbyUqkUUqlUuV1aWgoAqKqqgkwma+I34F98fHyjkiJQXXP86aefMHHiRANFZfnkMhlksirI2VMIhMb7/xFXWQVWXma0+ynkMiiq5JDJZFBAaLT7Wlsbt5PJpBLj48ePIZfL4enpqbLf09MTN27c0HhOXl6exvJ5eXkay8fGxiImJqbW/j59+ugYtWWYNm0apk2bxncYhGhk7IatSSVGY1iwYIFKDTMzMxNisRi//vorunfvzmNk+hEXF4fp06c3+rytW7dSjbGJFHIZmEJzZ5fBPP0LaOFm1FtyAiEEFj5MyKQSY6tWrSAUCpGfn6+yPz8/H15emmcp9vLyalR5kUgEkUik3HZwcAAAWFlZGb26bggRERHgOK7RzxiHDRtmEd+fV3z8+XFywM7R+Pe1cCbVK21jY4PQ0FAkJiYq9ykUCiQmJiIsLEzjOWFhYSrlASAhIaHO8paubdu2ePnllyEUavf8RygU4pVXXqGOF3NFy6YaBjMxe/fuZSKRiMXFxbFr166x6dOnMxcXF5aXl8cYY+ydd95h8+fPV5Y/f/48s7KyYp9//jm7fv06W7JkCbO2tmaXL1/W6n7p6ekMAEtPTzfI9+HDxYsXmZWVFeM4jgGo88NxHLOysmIXL17kO2Siq4oSviOwSCaXGBlj7KuvvmJt27ZlNjY2rHfv3uzChQvKY2KxmE2cOFGl/Hfffceef/55ZmNjwzp37syOHTum9b0sMTEyxtjBgweZlZUVEwqFGpOiUChkVlZW7Pvvv+c7VNIU0lK+I7BIJjeO0dgsbRzjs1JTU7F8+XIcPXq01rvSr7zyChYtWkTvSpu7yqcATVardybV+UL0q1evXvjhhx+Qk5ODU6dOobi4GE5OThg0aBA9UySkHpQYm4G2bdti0qRJfIdBiNmgLi1CCFFDiZEQc0ZrShsEJUZCzBmt+WIQlBgJMWdUYzQISoyEEKKGEiMhhKihxEgIIWooMRJCiBpKjIQQooYSIyGEqKFXApuR3Nxc5Obm8h0G0SNvb294e3vzHYbFafaJ0dvbG0uWLLH4/3NJpVKMGzcOSUlJfIdC9EgsFiM+Pl5lVnrSdM1+2rHmori4GM7OzkhKSlIu50DMW2lpKcRiMSQSCZycnPgOx6I0+xpjcxMSEkJ/iSxEcXEx3yFYLOp8IYQQNZQYCSFEDSXGZkIkEmHJkiX0kN6C0G9qONT5QgghaqjGSAghaigxEkKIGkqMhBCihhIjIYSoocRIiIFwHKfV58yZM02+19OnT7F06dJGXWvlypUYNWoUPD09wXEcli5d2uQ4LAW9+UKIgezatUtl+9tvv0VCQkKt/YGBgU2+19OnTxETEwMAGDBggFbnLFq0CF5eXujevTvi4+ObHIMlocRIiIG8/fbbKtsXLlxAQkJCrf18ycrKgp+fHx4/fgx3d3e+wzEp1JQmhEcKhQLr1q1D586dYWtrC09PT8yYMQOFhYUq5dLS0hAREYFWrVrBzs4O/v7+mDJlCgDg3r17ysQWExOjbKI31DT28/MzxFeyCFRjJIRHM2bMQFxcHCZPnoxZs2YhKysLGzZswKVLl3D+/HlYW1ujoKAAw4YNg7u7O+bPnw8XFxfcu3cP33//PQDA3d0dGzduxHvvvYdXX30Vr732GgCga9eufH4188YIIUYxc+ZM9uxfuV9++YUBYLt371Ypd/LkSZX9hw4dYgBYampqndd+9OgRA8CWLFnS6Liacq6loqY0ITzZv38/nJ2dMXToUDx+/Fj5CQ0NhYODA06fPg0AcHFxAQAcPXoUMpmMx4ibD0qMhPDk1q1bkEgk8PDwgLu7u8qntLQUBQUFAKpn6X799dcRExODVq1aITIyEjt27IBUKuX5G1guesZICE8UCgU8PDywe/dujcdrOlQ4jsOBAwdw4cIF/Pjjj4iPj8eUKVOwdu1aXLhwgWZkNwBKjITwJCAgAD///DP69esHOzu7Bsv37dsXffv2xcqVK7Fnzx6MHz8ee/fuRXR0NDiOM0LEzQc1pQnhyRtvvAG5XI7ly5fXOlZVVYWioiIAQGFhIZja7IAhISEAoGxOt2jRAgCU55CmoRojITwRi8WYMWMGYmNjkZmZiWHDhsHa2hq3bt3C/v37sX79eowePRo7d+7E119/jVdffRUBAQEoKSnB1q1b4eTkhBEjRgAA7OzsEBQUhH379uH555+Hm5sbgoODERwcXOf9d+3ahezsbDx9+hQAcPbsWaxYsQIA8M4778DX19fwfwimiu9ucUKaC/XhOjW2bNnCQkNDmZ2dHXN0dGRdunRh8+bNY3/++SdjjLGMjAw2btw41rZtWyYSiZiHhwd7+eWXWVpamsp1kpOTWWhoKLOxsdFq+I1YLGYANH5Onz6tr69tlmgGb0IIUUPPGAkhRA0lRkIIUUOJkRBC1FBiJIQQNZQYCSFEDSVGQghRQ4mREBN17949cByHuLg4vkNpdigxEkKIGhrgTYiJYoxBKpXC2toaQqGQ73CaFUqMhBCihprShBjQ0qVLwXEc/vjjD7z99ttwdnaGu7s7Pv30UzDGcP/+fURGRsLJyQleXl5Yu3at8lxNzxgnTZoEBwcHPHz4EFFRUXBwcIC7uzs+/PBDyOVyZbkzZ85oXLNa0zXz8vIwefJk+Pj4QCQSwdvbG5GRkbh3756B/lRMHyVGQoxg7NixUCgUWLVqFfr06YMVK1Zg3bp1GDp0KFq3bo3Vq1ejffv2+PDDD3H27Nl6ryWXyxEREYGWLVvi888/h1gsxtq1a7FlyxadYnv99ddx6NAhTJ48GV9//TVmzZqFkpIS5OTk6HQ9i8Df/BWEWL4lS5YwAGz69OnKfVVVVczHx4dxHMdWrVql3F9YWMjs7OzYxIkTGWOMZWVlMQBsx44dyjITJ05kANiyZctU7tO9e3cWGhqq3D59+rTGWXLUr1lYWMgAsDVr1ujnC1sIqjESYgTR0dHK/y0UCtGzZ08wxjB16lTlfhcXF3Ts2BF3795t8HrvvvuuyvYLL7yg1Xnq7OzsYGNjgzNnztRay7o5o8RIiBG0bdtWZdvZ2Rm2trZo1apVrf0NJShbW1vlejA1XF1ddUpsIpEIq1evxokTJ+Dp6YkXX3wRn332GfLy8hp9LUtCiZEQI9A03KauITisgYEi2gzdqWsNmGc7aGrMnj0bf/zxB2JjY2Fra4tPP/0UgYGBuHTpUoP3sVSUGAmxQK6urgBqrwGTnZ2tsXxAQADmzp2Ln376CVeuXEFlZaVKD3lzQ4mREAvk6+sLoVBYq4f766+/Vtl++vQpKioqVPYFBATA0dGxWa9bTYthEWKBnJ2dMWbMGHz11VfgOA4BAQE4evQoCgoKVMr98ccfGDx4MN544w0EBQXBysoKhw4dQn5+Pt58802eoucfJUZCLNRXX30FmUyGTZs2QSQS4Y033sCaNWtUVg5s06YNxo0bh8TEROzatQtWVlbo1KkTvvvuO7z++us8Rs8veiWQEELU0DNGQghRQ4mREELUUGIkhBA1lBgJIUQNJUZCCFFDiZEQQuvLqKHESEgj3blzBzNmzEC7du1ga2sLJycn9OvXD+vXr0d5ebnB7nvt2jUsXbqU9wlkV65ciVGjRsHT0xMcx2Hp0qW8xmMINMCbkEY4duwYxowZA5FIhAkTJiA4OBiVlZU4d+4cPvroI1y9elXnCWMbcu3aNcTExGDAgAHw8/MzyD20sWjRInh5eaF79+6Ij4/nLQ5DosRIiJaysrLw5ptvwtfXF6dOnYK3t7fy2MyZM3H79m0cO3aMxwj/xhhDRUUF7Ozs9H7trKws+Pn54fHjx7WmP7MU1JQmREufffYZSktL8c0336gkxRrt27fHBx98oNyuqqrC8uXLERAQAJFIBD8/PyxcuLDW5Ax+fn54+eWXce7cOfTu3Ru2trZo164dvv32W2WZuLg4jBkzBgAwcOBAcBynsqZLzTXi4+PRs2dP2NnZYfPmzQCAu3fvYsyYMXBzc0OLFi3Qt2/fJiVwPmurxkKJkRAt/fjjj2jXrh3Cw8O1Kh8dHY3FixejR48e+PLLLyEWixEbG6txcobbt29j9OjRGDp0KNauXQtXV1dMmjQJV69eBQC8+OKLmDVrFgBg4cKF2LVrF3bt2oXAwEDlNW7evIlx48Zh6NChWL9+PUJCQpCfn4/w8HDEx8fjH//4B1auXImKigqMGjUKhw4d0sOfioXidWEFQsyERCJhAFhkZKRW5TMzMxkAFh0drbL/ww8/ZADYqVOnlPt8fX0ZAHb27FnlvoKCAiYSidjcuXOV+/bv369xHZdnr3Hy5EmV/bNnz2YA2C+//KLcV1JSwvz9/Zmfnx+Ty+WMMc3ryzTk0aNHDABbsmSJ1ueYC6oxEqKF4uJiAICjo6NW5Y8fPw4AmDNnjsr+uXPnAkCtpmxQUBBeeOEF5ba7u7vW67/U8Pf3R0RERK04evfujf79+yv3OTg4YPr06bh37x6uXbum9fWbE0qMhGjByckJAFBSUqJV+ezsbAgEArRv315lv5eXF1xcXGrNpK2+JgzQ+HVc/P39NcbRsWPHWvtrmuB1zejd3FFiJEQLTk5OeO6553DlypVGnVfX2ivqdF3/5VmG6IFurigxEqKll19+GXfu3EFKSkqDZX19faFQKHDr1i2V/fn5+SgqKoKvr2+j769tklWP4+bNm7X237hxQ3mc1EaJkRAtzZs3D/b29oiOjkZ+fn6t43fu3MH69esBACNGjAAArFu3TqXMF198AQAYOXJko+9vb28PoPYCV/UZMWIELl68qJLMy8rKsGXLFvj5+SEoKKjRcTQHNMCbEC0FBARgz549GDt2LAIDA1XefElOTsb+/fsxadIkAEC3bt0wceJEbNmyBUVFRRCLxbh48SJ27tyJqKgoDBw4sNH3DwkJgVAoxOrVqyGRSCASiTBo0CB4eHjUec78+fPx3//+F8OHD8esWbPg5uaGnTt3IisrCwcPHoRA0Pi60a5du5CdnY2nT58CAM6ePYsVK1YAAN555x3LqIXy3S1OiLn5448/2LRp05ifnx+zsbFhjo6OrF+/fuyrr75iFRUVynIymYzFxMQwf39/Zm1tzdq0acMWLFigUoax6qE2I0eOrHUfsVjMxGKxyr6tW7eydu3aMaFQqDJ0p65rMMbYnTt32OjRo5mLiwuztbVlvXv3ZkePHlUp05jhOmKxmAHQ+NE0lMgc0ZovhBCihp4xEkKIGkqMhBCihhIjIYSoocRICCFqKDESQogaSoyEEKKGEiMhhKihxEgIIWooMRJCiBpKjIQQooYSIyGEqKHESAghaigxEkKImv8PQ1KS1H9rNO4AAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -977,6 +1081,35 @@
"two_groups_unpaired.hedges_g.plot(float_contrast=False);"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The confidence interval shown on the contrast axis is a BCa confidence interval by default.\n",
+ "This can be modified using the `ci_type` parameter in the `.plot()` method, whereby you can \n",
+ "select between `bca` and `pct` (percentile)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXoVJREFUeJzt3XlYVNX/B/D3nQEGZFiVxZ1FU1ARRVHUxDW33Eozl3DDqDQ1LXMp19LMLKm+lTvmzy0trdTcA3MpcSv3FMUtFhd2EZiZ+/uDmByZYRuGuTDv1/Pw2Nx77j0fvMaHc+5ZBFEURRAREZEkycwdABERERnGRE1ERCRhTNREREQSxkRNREQkYUzUREREEsZETUREJGFM1ERERBLGRE1ERCRhTNREREQSZvGJOiEhAXPnzkVCQoK5QyEiqtL487ZsmKgTEjBv3jz+wyEiMjH+vC0bi0/UREREUsZETUREJGFM1ERERBLGRE1ERCRhTNREREQSxkRNREQkYUzUREREEsZETUREJGFW5g6AiEwvNzMFyecOISc1CQpnD7g36wIbpYu5wyKiEmCiJqriHvz9By5/vwiiRgVBkEEUNbgZvR5+g2bCtWGwucMjomKw65uoCsvNTMlP0uo8QBQhatT5f6rzcGnbQuRmppg7RCIqBhM1URWWfO4QRI1K7zlRo0LyuUMVHBERlRYTNVEVlpOaBEHQ/7+5IMiQk5pUwRERUWkxURNVYQpnD4iiRu85UdRA4exRwRERUWkxURNVYe7NukCQ6R8zKsis4B7QtYIjIqLSkmyi/uijjyAIAiZPnmywTFRUFARB0PmytbWtuCCJJM5G6QK/QTMhyK0BQYAgk+f/KbeG36CZsLF3NneIRFQMSU7Pio2NxfLlyxEQEFBsWUdHR1y5ckX7WRAEU4ZGVOm4NgxG6zfX6s6jDujKJE1USUguUWdmZmL48OFYuXIlPvjgg2LLC4IAT0/PCoiMqPKyUbqgTsiL5g6DiMpAcl3f48ePR58+fdCtW7cSlc/MzET9+vVRt25d9O/fHxcuXDBxhERERBVHUi3qzZs34/Tp04iNjS1R+UaNGmHNmjUICAhAWloaPvnkE7Rr1w4XLlxAnTp19F6Tk5ODnJwc7efMzMxyiZ2IiMgUJJOob9++jUmTJmH//v0lHhAWEhKCkJAQ7ed27drBz88Py5cvx4IFC/Res2jRIsybN69cYiYiIjI1yXR9nzp1CsnJyWjZsiWsrKxgZWWFmJgYfP7557CysoJarS72HtbW1mjRogWuXbtmsMyMGTOQlpam/YqJiSnPb4OIiKhcSaZF3bVrV5w7d07n2OjRo9G4cWO8++67kMvlxd5DrVbj3Llz6N27t8EyCoUCCoVC+1mpVJY9aCIiIhOTTKJ2cHBA06ZNdY7Z29ujevXq2uNhYWGoXbs2Fi1aBACYP38+2rZtiwYNGiA1NRVLlizBzZs3ER4eXuHxExERmYJkEnVJ3Lp1CzLZf731KSkpGDduHBITE+Hi4oKgoCAcO3YM/v7+ZoySiIio/Eg6UUdHRxf5+bPPPsNnn31WcQERERFVMMkMJiMiIqLCmKiJiEiyDh8+jL59+6JWrVoQBAE7duwosnx0dHShPSAEQUBiYmLFBGwCTNRERCRZWVlZaN68Of73v/+V6rorV64gISFB++Xu7m6iCE1P0u+oiYjIsvXq1Qu9evUq9XXu7u5wdnYu/4DMgC1qIguQm5mCO8e/R9wvX+HO8e+Rm5li7pCITCowMBA1a9ZE9+7dcfToUXOHYxS2qImquAd//4HL3y+CqFFBEGQQRQ1uRq+H36CZcG0YbO7wyAJlZmYiPT1d+/nphaiMUbNmTXzzzTdo1aoVcnJysGrVKnTq1Al//PEHWrZsWS51VDS2qImqsNzMlPwkrc4DRBGiRp3/pzoPl7YtZMuazCI0NBROTk7ar4JFrMpDo0aNEBERgaCgILRr1w5r1qxBu3btKvVUXraoiaqw5HOHIGpUes+JGhWSzx3iPtVU4WJiYhAYGKj9XF6taUOCg4Nx5MgRk9ZhSkzURFVYTmrSv93dhTe1EQQZclKTzBAVWTqlUglHR8cKq+/s2bOoWbNmhdVX3pioiaowhbMHRFGj95woaqBw9qjgiIhKJzMzU2dHxBs3buDs2bNwdXVFvXr1MGPGDNy9exfffvstAGDZsmXw9vZGkyZN8PjxY6xatQqHDh3Cvn37zPUtGI2JmqgKc2/WBTej1+e/o36KILOCe0BXM0RFVHInT55E586dtZ+nTJkCABg5ciSioqKQkJCAW7duac/n5uZi6tSpuHv3LqpVq4aAgAAcOHBA5x6VjSCKomjuIMzp9OnTCAoKwqlTpyrtiECiojy8egKXti3UGfUtyKw46psqHH/elg1b1ERVnGvDYLR+cy2Szx1CTmoSFM4ecA/oCht7Z3OHRkQlwERNZAFslC4c3U1USXEeNRERkYQxURMREUkYEzUREZGEMVETERFJGBM1ERGRhDFRExERSRgTNRERkYQxURMREUkYEzUREZGEMVETERFJGBM1ERGRhDFRExERSRgTNRERkYQxURMREUkYEzUREZGEMVETERFJGBM1ERGRhDFRExERSRgTNRERkYQxURMREUkYEzUREZGEMVETERFJGBM1ERGRhDFRExERSRgTNRERkYQxURMREUmYlbkDICLTy81MQfK5Q8hJTYLC2QPuzbrARuli7rCIqASYqImquAd//4HL3y+CqFFBEGQQRQ1uRq+H36CZcG0YbO7wiKgY7PomqsJyM1Pyk7Q6DxBFiBp1/p/qPFzathC5mSnmDpGIisFETVSFJZ87BFGj0ntO1KiQfO5QBUdERKXFRE1UheWkJkEQ9P9vLggy5KQmVXBERFRaTNREVZjC2QOiqNF7ThQ1UDh7VHBERFRaTNREVZh7sy4QZPrHjAoyK7gHdK3giIiotJioiaowG6UL/AbNhCC3BgQBgkye/6fcGn6DZsLG3tncIRJRMTg9i6iKc20YjNZvrtWdRx3QlUmaqJKQbIv6o48+giAImDx5cpHltm7disaNG8PW1hbNmjXD7t27KyZAokrERumCOiEvwrfXG6gT8iKTNFElIslEHRsbi+XLlyMgIKDIcseOHcPQoUMxduxYnDlzBgMGDMCAAQNw/vz5CoqUiIjItCSXqDMzMzF8+HCsXLkSLi5FL3EYGRmJnj174p133oGfnx8WLFiAli1b4ssvv6ygaImIiExLcol6/Pjx6NOnD7p161Zs2ePHjxcq16NHDxw/ftxU4REREVUoSQ0m27x5M06fPo3Y2NgSlU9MTISHh+48UA8PDyQmJhq8JicnBzk5OdrPmZmZZQuWiIioAkgmUd++fRuTJk3C/v37YWtra7J6Fi1ahHnz5pns/kREROVJMl3fp06dQnJyMlq2bAkrKytYWVkhJiYGn3/+OaysrKBWqwtd4+npiaQk3SUQk5KS4OnpabCeGTNmIC0tTfsVExNT7t8LERFReZFMou7atSvOnTuHs2fPar9atWqF4cOH4+zZs5DL5YWuCQkJwcGDB3WO7d+/HyEhIQbrUSgUcHR01H4plcpy/16IiMhyqNVqbN68GRERERg4cCDOnTsHAEhLS8MPP/xQqEFZWpLp+nZwcEDTpk11jtnb26N69era42FhYahduzYWLVoEAJg0aRJCQ0OxdOlS9OnTB5s3b8bJkyexYsWKCo+fiIgsT2pqKnr27IkTJ05AqVQiKysLb775JgBAqVRi4sSJCAsLw8KFC8tch2Ra1CVx69YtJCQkaD+3a9cOGzduxIoVK9C8eXNs27YNO3bsKJTwiYiITGH69Om4cOEC9u7di+vXr0MURe05uVyOQYMGGb0Ql2Ra1PpER0cX+RkABg8ejMGDB1dMQERERE/YsWMH3nzzTXTv3h0PHjwodP6ZZ55BVFSUUXVUqhY1ERGRlKSlpcHb29vg+by8PKhUKqPqYKImIiIqI19fX5w+fdrg+X379sHf39+oOpioiYhIsg4fPoy+ffuiVq1aEAQBO3bsKPaa6OhotGzZEgqFAg0aNDC667ko4eHhWLNmDbZs2aJ9Py0IAnJycjBr1izs2bMHERERRtUh6XfUZBopGVnYH3sJiQ/T4enqiO6t/eDiYG/usIiICsnKykLz5s0xZswYvPDCC8WWv3HjBvr06YPXXnsNGzZswMGDBxEeHo6aNWuiR48e5R7fpEmTcOHCBQwdOhTOzs4AgGHDhuHBgwdQqVSIiIjA2LFjjaqDidrCHD9/HQvW7YJKrYFMEKARRUT9chyzR/VB2yY+5g6PiEhHr1690KtXrxKX/+abb+Dt7Y2lS5cCAPz8/HDkyBF89tlnJknUgiBg5cqVGDlyJLZt24arV69Co9HA19cXL730Ejp27Gh0HUzUFiQlIwsL1u1Cnip/lTf1v900eSo15kftwobZY9iyJiKTy8zMRHp6uvazQqGAQqEol3sb2qxp8uTJ5XJ/Qzp06IAOHTqY5N58R21B9sdegkqt0XtOpdbgwMnLFRwREVmi0NBQODk5ab8KFrEqD4Y2a0pPT0d2dna51VPgxo0b+Pnnnw2e//nnnxEfH29UHWxRW5DEh+mQCYK2Jf0kmSAg4UGaGaIiIksTExODwMBA7efyak2bw9tvv4309HT07dtX7/n//e9/cHZ2xubNm8tcBxO1BfF0dYRGT5IGAI0oomZ1pwqOiMrq7OpJyM1MgY3SBYFjI80dDlGpKJVKODo6muTehjZrcnR0hJ2dXbnXd/z48SK71bt27Yply5YZVQe7vi1I99Z+sJLrf+RWchm6tfKr4IiorHIzU5Cb8QC5mSnmDoVIUsqyWZMxUlJS4ODgYPC8UqnUu2JZaTBRWxAXB3vMHtUH1lZyCIIAuUwGQRBgbSXH7FF94OJQzdwhEhHpyMzM1O6oCOS/Ez579ixu3boFIH/r4rCwMG351157DdevX8e0adNw+fJlfPXVV/juu+/w1ltvmSS+evXq4ejRowbP//bbb6hTp45RdbDr28K0beKDDbPH4MDJy0h4kIaa1Z3QrZUfkzRRZZD7CLCxrP9XT548ic6dO2s/T5kyBQAwcuRIREVFISEhQZu0AcDb2xu7du3CW2+9hcjISNSpUwerVq0yydQsABg6dCgWLFiA4OBgTJgwATJZfvtXrVbjyy+/xJYtWzBr1iyj6hBE0cBLSwtx+vRpBAUF4dSpU2jZsqW5wyEqkRORYcjNeAAbh+oInvStucOhinL/GlCjgbmjKLOq+PM2JycHffr0waFDh+Dm5oZGjRoBAK5cuYJ79+6hU6dO+OWXX4waMMeubyKiykKTZ+4I6CkKhQL79u3D6tWrERwcjPv37+P+/fsIDg7GmjVrcODAAaNHtbPrm4ioslDnmjsC0kMmk2H06NEYPXq0ae5vkrsSEVH5Uxu3XSJVTmxRExFVFuz6lqS9e/di9erVuH79OlJSUvD00C9BEBAXF1fm+zNRExFVFqocc0dAT1myZAmmT58ODw8PBAcHo1mzZuVeBxM1EVFlwUQtOZGRkejSpQt2794Na2trk9TBd9RERJVF3iNzR0BPSUlJwaBBg0yWpAEmaiKiyiMnw9wR0FOCg4Nx5coVk9bBrm8LlJKRhf2xl5D4MB2ero7o3tqP+1ATVQaPucOd1Hz11Vfo1asXWrVqhWHDhpmkDiZqC3P8/HUsWLcLKrUGMkGARhQR9ctxzB7VB22b+Jg7PCIqStY9c0dATxkyZAhUKhVeeeUVvP7666hTpw7kcrlOGUEQ8Oeff5a5DiZqC5KSkYUF63YhT6UGAO2+1HkqNeZH7cKG2WPYsiaSssxkc0dAT3F1dUX16tXRsGFDk9XBRG1B9sdegkqt0XtOpdbgwMnLGNw5qIKjIqISS79j7gjoKdHR0Savg4PJLEjiw3TIBEHvOZkgIOEB338RSdrjdL6ntkBM1BbE09URGgObpWlEETWrO1VwRERUaqm3ii9DFSo9PR0fffQRevTogRYtWuDEiRMAgIcPH+LTTz/FtWvXjLo/E7UF6d7aD1Zy/Y/cSi5Dt1Z+FRwREZVaSry5I6An3LlzBy1atMDs2bNx584d/PXXX8jMzASQ//56+fLl+OKLL4yqg4nagrg42GP2qD6wtpJDEATIZTIIggBrKzlmj+oDFwfL2pCeqFJ6UPY1o6n8vfPOO8jIyMDZs2cRExNTaJ3vAQMG4MCBA0bVwcFkFqZtEx9smD0GB05eRsKDNNSs7oRurfyYpIkqiwdXzR0BPWHfvn1466234O/vjwcPHhQ67+Pjg9u3bxtVBxO1BXJxsOfobqLK6v7V/O0u5fzxLQXZ2dlwc3MzeD4jw/jV5Nj1TURUmahy2KqWEH9/fxw+fNjg+R07dqBFixZG1cFETURU2fxz1twR0L8mT56MzZs3Y/HixUhLy586p9FocO3aNbzyyis4fvw43nrrLaPqYN8JEVFlc/sPIHCouaMgACNGjMDNmzfx3nvvYdasWQCAnj17QhRFyGQyLFy4EAMGDDCqDiZqIqLKJvEvIDsVsHM2dyQEYNasWXjllVfw/fff49q1a9BoNPD19cULL7wAHx/j91BgoiYikrhWrVohMTERnvI0nJzZEtCogeu/Ak0Gmjs0i/bo0SM8++yzGDduHF577TWju7gN4TtqIiKJS0xMxN27d5GYnvvfwUs7AQMrDVLFqFatGm7cuAHBwNLM5YWJmoioMnpwDfjntLmjsHg9e/bE3r17TVoHEzURUWV1ah1b1Wb2/vvv4++//8Yrr7yCI0eO4O7du3j48GGhL2PwHTURUWWV8Cdw+wRQr425I7FYTZo0AQBcvHgRGzduNFhOrVaXuQ4maiKiyuzY50CttYCVjbkjsUizZ882+TtqJmoiosos7Q5wai3QJsLckVikuXPnmryOMr+jVqvV2Lx5MyIiIjBw4ECcO3cOAJCWloYffvgBSUlJ5RYkEREV4c9NwJ1T5o6CkJ8Djenm1qdMiTo1NRXt27fHsGHDsGnTJvz000+4d+8eAECpVGLixImIjIws10CJiMgAUQQOzQcy2EAyh5MnT6Jnz56oVq0aqlevjpiYGADA/fv30b9/f0RHRxt1/zIl6unTp+PChQvYu3cvrl+/rrP/plwux6BBg7B7926jAiMiolLITgX2vZe/aQdVmGPHjqFDhw64evUqRowYAY1Goz1Xo0YNpKWlYfny5UbVUaZEvWPHDrz55pvo3r273pfozzzzDOLj440KjIiISun+38DhTzhlqwLNnDkTfn5+uHjxIhYuXFjofOfOnfHHH38YVUeZEnVaWhq8vb0Nns/Ly4NKpSpzUEREVEZX9wFX2KNZUWJjYzF69GgoFAq9DdfatWsjMTHRqDrKlKh9fX1x+rThFXH27dsHf3//MgdFRERGOPYlkJ5g7igsgrW1tU5399Pu3r0LpVJpVB1lStTh4eFYs2YNtmzZon0/LQgCcnJyMGvWLOzZswcREZwqQERkFnmPgGNfmDsKi9C2bVts27ZN77msrCysXbsWoaGhRtVRpnnUkyZNwoULFzB06FA4OzsDAIYNG4YHDx5ApVIhIiICY8eONSowIqr6cjNTkHzuEHJSk6Bw9oB7sy6wUbqYO6yq4ebR/FXL6gabO5Iqbd68eQgNDUWfPn0wdGj+HuF//vknrl+/jk8++QT37t3D+++/b1QdZWpRC4KAlStX4vDhwwgLC0OvXr0QGBiIV199FdHR0fj666/LFMzXX3+NgIAAODo6wtHRESEhIfjll18Mlo+KioIgCDpftra2ZaqbiCrWg7//QOwXoxF/aC0Sz+xB/KG1iP1iNB5ePWHu0KqO418C6jxzR1GltWnTBrt378a1a9cQFhYGAJg6dSpeffVVqNVq7N69GwEBAUbVYdTKZB06dECHDh2MCuBJderUwUcffYSGDRtCFEWsW7cO/fv3x5kzZ7TrqT7N0dERV65c0X429VJuRFRyhlrMuZkpuPz9Ioj/JhFRzF8gQlTn4dK2hWj95lq2rMtDyk3gz81Ay1fMHUmVkZ6eDnt7e8jlcu2xLl264MqVKzh79iyuXr0KjUYDX19fBAUFlUtOktQSon379tX5/OGHH+Lrr7/G77//bjBRC4IAT0/PigiPqEqoqO7mB3//kZ+MNSoIggyiqMHN6PXwGzQTj+7fhqjRPzNE1KiQfO4Q6oS8WO4xWaRTUUDdNoDbM+aOpEpwcXHB+vXrMWzYMADAmDFjEBERgTZt2iAwMBCBgYHlXmeZErW3t3exvyUIgoC4uLgyBQXkL1G6detWZGVlISQkxGC5zMxM1K9fHxqNBi1btsTChQsNJnUAyMnJQU5Ojs71RJaiqOTp2rD83mUW12J2axL6b/2Fl1oUBBlyUrnCVrnRqID9s4EXlgO2TuaOptKzsbHRySFRUVHo1q0b2rQx3Q5mZUrUoaGhhRK1Wq3GzZs3cfToUTRt2hQtWrQoU0Dnzp1DSEgIHj9+DKVSie3btxuc6tWoUSOsWbMGAQEBSEtLwyeffIJ27drhwoULqFOnjt5rFi1ahHnz5pUpNqLKzFTdzfpa6MnnDhXZYs57lAZR1D+lRRQ1UDh7lDoOKkJGArDvfaD3J9xly0iNGzfGqlWr4OXlBSen/F984uPji5yyDAAtW7Ysc52CKJbvEjZ//vknevTogf/7v/9Dt27dSn19bm4ubt26hbS0NGzbtg2rVq1CTExMieZl5+Xlwc/PD0OHDsWCBQv0lnm6RX327FmEhobi1KlTRv1FElWkE5FhyM14ABuH6gie9G2Jrrlz/HvEH1qrf9UqQYBXl9F6u5uL6irX10IXZFZw9m6O1OtnIGr0tJhlcrg17Yx7F2K0vzTonJdbo/XEKNjYO5fo+7IEderUwd27d1Hb2QZ3Pmpb9ht5dwS6zQVk8mKLmsLp06cRFBRUqX/e7tmzB0OGDClxb6woihAEQVr7UTdv3hwRERF49913cepU6XdzsbGxQYMGDQAAQUFBiI2NRWRkZInWSrW2tkaLFi1w7do1g2UUCgUUCoX2s7ET0Ykqi5zUpFJ3NxfVVa6s2dBgCz0l7jQA/W0AUdSgmls9+A2aiUvbFhZK8n6DZpokSedlZ+D6nm/w8OofgCBDjcbt4NMjAnIbu2KvFUURFzfPQUrcKfgNfg/VG/33Oi7jn78RfygKmQnXAAFwqNUIXl1HQ+nhU+7fg9FuHAYOLwE6TgNkZd480aL17NkTN27cQGxsLJKSkjBq1Ci8+uqrRb6iNZZJBpN5eHjg4sWL5XIvjUaj0wIuilqtxrlz59C7d+9yqZuoKlE4e5Squ7m4rvI6IS8a7N6GqAEEGfQla0FmBfeArrCxd0brN9fqttb/PV5Wf307HR7Nu8KjefdC5/7esQS5mQ/RdPgH0KjVuPrzMlzb9QUaDZxW7H3/ObEDQOFxOercbFzYNBuuDdvAt9cbEDVq3IrZgAsb30friesgk0tqvG6+K78AVgqg/WSAs2RK7a+//kL9+vXRo0cPAMDatWsxePBgdO3a1WR1lvuvVA8ePMDq1asNviMuyowZM3D48GHEx8fj3LlzmDFjBqKjozF8+HAAQFhYGGbMmKEtP3/+fOzbtw/Xr1/H6dOnMWLECNy8eRPh4eHl9v0QVRXuzbpAkOlPHAXJ80nFvWdOvXEWgqD/R4ggk8PFpyUEuTUgCBBk8vw/5dY6LWYbpQvqhLwI315voE7Iiybr7n50/xZS4k6hQZ9JcKjdGE71msC3ZwTuXTiMnIwHRV6bmRiHu79vR8O+k/Tc9w5U2RmoHzoC1arXgb1bfdTrOAx5WanISUs2yfdSLi7sAP5Yzs07yqBFixbYtWtXhdZZpl/3unTpovd4amoqLl++jNzcXKxfv77U901OTkZYWBgSEhLg5OSEgIAA7N27F9275/92fOvWLcie6K5JSUnBuHHjkJiYCBcXFwQFBeHYsWNcZ5xIDxulS6m6m4vrKgdQZAvdySsADftOLtcWc1ml37kMua09HGo11B5z9m4BCAIy7l6BonE7vdep8x7jyo4l8O35OmyUroXO21WvDSs7RySe3Ye6HV6CqNEg6ew+2NWoC1upD4j7cxOgcABaDDd3JJWKnZ0dHj16pP0cExODcePGmbTOMiVqjUZTaNS3IAjw9vZGt27dMGbMGDRu3LjU9129enWR55/efPuzzz7DZ599Vup6iCzNkwPC6oQMAgRA9Shdmzwhirhz/HudAWPFdZU7e7dAZmKc/gFhT3RvS2E+dF5mCmyqOescE2RyWNs5IC8rxeB1N/athGMdP5130k+yUlRDs1cW4dLWD3D7yGYAgJ1rLTQZuiC/F0HqTqwA7N2AZ54zdySVRvPmzfHpp59CLpdrR33HxsYWuyrmCy+8UOY6y5Son06YRCRdhkZmF8ydNjRgrOHzEyHIrAwm4pqtn4dD7WcqdEDY024f2YLbR7/TftaocpFx9zLi9nyjPdbytbItafzg79+RGv8XWoz73GAZdV4Oru6MhGMdfzQaOA2iRoO7v/+Ai1vmovmYzyC3Vhi8VjIOLwGc6wHupW9cWaLIyEgMGjRIu5+FIAiIjIxEZGSkwWskN+qbiKSjuAFhgWOWGTx/defnaNBnIq7t+txgInZtGFzuA8JKwzOoN2r4P6v9fGXHEtRo3B7Vn+jKVjhUh7XSBbmPUnWuFTVq5GVnwNpe/9zxtPi/8DglAceXvKRz/NK2hXCs2wQBYR/h3vlo5KQlo/nopdrXAcqB7+D3T4bg4d+/w62JcbsmAfmv/LKysgAAWTlq3Hr4GPVcy3FPA3UucGgB8OIqwLr4EfDm8L///Q9LlixBYmIimjdvji+++ALBwfoX6ImKisLo0aN1jikUCjx+/LhcYmnVqhWuXbuGuLg4JCUloVOnTpg1a1aZpiOXVIkS9bfflmye5tMKFignIvMobkBY/K9RRS9MkpVSbCIuGBBmDtZ2DrC2c9B+llkpYG3vBDvXWjrlHOs0hvpxFjITrkJZM/89deqNPwFRhEPtRnrvXafdIHgE6nYJn1kxHj7dx2lXcdOocv4dOf3fq8D8hC3A2CUqTpw4gQULFmDXrl3ae6Vmq+E16wSeb+aK93vXR2svh2LuUkJpd4C/tgBBo8rnfuVoy5YtmDJlCr755hu0adMGy5YtQ48ePXDlyhW4u7vrvcbUe0BYWVmhUaNGaNSoEUaOHInnn3/e/CuTjRo1qtQ3FgSBiZrIzIqdO52WXOzcanMm4vJSrUY9uPgG4equL9Cg13iIGjXi9n4NtyYdoXCoDgDISb+P8xtm4Zl+U+BQuxFslK56B5ApnNxg65K/v4CzdwvcOLAGcXu+Qq3WfSGKIu4c3QpBJodz/bLvmPTDDz9gyJAhEEWxUMIXRWD3+Yf45XwKtozzwwstapS5Hh1/bQUCXgaspbUD4aeffopx48ZpW8nffPMNdu3ahTVr1mD69Ol6r6nIPSDWrl1r8jpKlKhv3Lhh6jiIyASKnTvt5I5H928ZPi/1kcul8MyAd3B9z9c4v2EWIAio3rg9fHtEaM+LGjWyH9yBOq9k6zYAQLUadeE/ZA5uH96IP9e+DUEQYO/piyZD58PGoXCSL4kTJ05gyJAhUKvVBlvlag0gQMSQlZdwbFpg+bSsczOBW8cB387G36uc5Obm4tSpUzrTcmUyGbp164bjx48bvK60e0CUxvz58yEIAmbNmgWZTIb58+cXe40gCEbtSV2iRF2/fv0yV0BE5a9gCc/i1uZ2b9YFN6PXGxwQ5tVlNFJvnC1y5HZlEhD2kcFz1nYORS5uYuvsgQ7vFT0/Vt95F58WcPEp294G+nzwwQd6W9JPEwGIEPHB7pv48Y2m5VN5wtkKSdSZmZlIT0/Xfn56xcgC9+/fh1qthoeH7i+MHh4euHz5st57l2UPiNKYO3cuBEHAu+++CxsbG8ydO7fYa4xN1FxDjqgSChwbieBJ3yJwrOGRpsB/c6cNLTxi716/yPNcb7ti3bp1Czt37izxCGG1Bvj53EPcelg+A6WQcrN87lOM0NBQODk5ab8WLVpUbvcOCQlBWFgYAgMDERoaih9++AFubm4lWoa6JDQaDdRqNWxsbLSfi/syZsQ3YMSo78TERKxevRqnT59GWloaNBrd7jVBEHDw4EGjgiOqijTqPL2bVZiKk1cAWr7+De6fj0HWw0TYONaAW5NQWNs74fGjDFSr7Ydm4V/g/oXDeJx2D7ZObjrny4sgk0Mmty63+0lNeTzXX3bvKvUgNFEE9l5Mwci2+gdWlUrGfQh5hXtXyotKlT9wMSYmRmffZn2taQCoUaMG5HI5kpJ016FPSkoq8TvokuwBIXVlStR//fUXOnXqhOzsbDRq1Ajnzp2Dv78/UlNTcffuXfj6+qJu3brlHStRpadR5yHj7t9Q52ZXeN32nr748ruD+PiLlRVeN5nWq/93Fa/+39VyuNNRYPiGcrhP0ZRKJRwdHYstZ2Njg6CgIBw8eBADBgwAkN+CPXjwICZMmFCiuipiD4hLly4hLi4OGRkZcHBwQIMGDcq06JchZUrU06dPh1KpxNmzZ1GtWjW4u7sjMjISXbp0wdatW/H6669jwwbTP2yiykbUqKHOzYbMysosrcvpUyZg2uQ3KrxejToPGpUaTvWbQC6xUcXlQZ33GGk3L0BmZVyvwcZtP2Liu3NLfd3yoV4Ia2Pc6G9RFKG2rwWr4RtM9ozOnDlT6mlMU6ZMwciRI9GqVSsEBwdj2bJlyMrK0o4CDwsLQ+3atbXd5/Pnz0fbtm3RoEEDpKamYsmSJSbbA2L58uX48MMPcffu3ULn6tWrh1mzZpVLvWVK1EePHsW0adNQr149PHz4EAC0Xd+DBw/GkSNH8M477yAmJsboAImqIpncGjIrm4qv10xLHGlUuVDlZMPa2hpy66rX/S2DGtbWVrBS2Bn1XLt17gRBKN0cbEEAujd2hrXc2CVLReQ51DDpM7KyKv0/wCFDhuDevXuYPXs2EhMTERgYiD179mgHmJlrD4i3334bn376KVxdXTFmzBg0bdoUSqUSmZmZOHfuHHbs2IGIiAhcvXoVixcvNqquMq/1XfCX5OzsDLlcrk3YANCsWbNi1+0mImnKy85AytVY5GY+hI3SFS4NW+ssKkKmU7dOLfTs1hn7DsWUaACSXAb0buKMeq7ls1SpytkbUvw1asKECQa7us2xB8SJEyfw6aefYuDAgfj2229hb29fqExkZCRGjBiBTz75BIMHD0arVq3KXF+ZRn17e3tr51bLZDJ4e3vjwIED2vPHjh2Ds7NzmYMioqJd+XEpLmyagys/Li3X+6bdOo+Lm+fhn9ifcf/KMfwT+zMubp6HtFsXyrUeMuzdt96AIAjFrqaVvx6agJk9apdb3SrP8ptmVpWtXr0aNWvWxMaNG/UmaQCwt7fHpk2b4OHhYXTDtcSJOiXlvx1mnnvuOWzdulX7+fXXX8eqVavQrVs3dO3aFevWrcOwYcOMCoyIDFM9SkfeozSoHqUXX7iE8rIzEH+wYElREdBoAIj5S40eXIu87PIbAU6GBQUGIOqbzyCXyyE30J0tlwFymYDNYxqgdX1ludSrrtEYGmXFrOZV2R0/fhyDBw82OFq9gK2tLQYPHoyjR48aVV+JE7WnpycGDhyIbdu2YerUqdi0aRPy/h3GP3nyZMyfPx8PHjxAWloa3n//fXzwwQdGBUYVKyUjC98dOonPtx3Cd4dOIiUjy9whUQVLuRprcHqRqFEj5VpsBUdkufr37oEDP23Gc11C9WwpnN/d/dsUfwxoXrbVz/TJfeb5crtXVXf79m34+fmVqKy/vz9u375tVH0lfkc9aNAg/PTTT/jpp5/g4OCAF154AcOHD0eXLl0gCALee+89vPfee0YFQ2X3xtKNSMl4BBeHavhqaul6M46fv44F63ZBpdZAJgjQiCKifjmO2aP6oG0THxNFTFKTm/kQkAmARs9AJpmA3IyHhY+TyQQFBuC7dd/g9p1/0K57P6SmpcPZTo7T05uV2zvpAhr3JtC4+QM5FT9tsDJKT0+Hg0PJxm0olUpkZBjXG1XiFvWGDRuQnJyM//u//8Ozzz6LDRs24LnnnkPt2rUxdepUnD592qhAyDgpGY9wPy0TKRmPSnldFhas24U8Vf66wmqNBqIoIk+lxvyoXWxZV2F52RlI/usQ7hzbhuS/DkGusNefpAFAI5Z57WoyTt06tVCtWv72k/YKWbknaQDIazK43O9ZlYmiWKoduYzdSa1Uo77t7OwwdOhQDB06FCkpKfjuu++wceNGLFu2DMuWLUPDhg0xYsQIDBs2DD4+bIlVBvtjL0Gl1r9pg0qtwYGTlzG4c1AFR0Wmlnbr/L/vo9X/taIFmcEWtSCTw6VBazNESqamrtUSGldfQJVr7lAqlU8++QSbNm0qtpy+OdalVeZZlS4uLoiIiEBERATu3r2LjRs3YtOmTZg9ezbmzJmDNm3a4NixY0YHSKaV+DAdMkGAWs9vfDJBQMKDNDNERaakO2gM/yVmUQ1ABkEmh6jRaJO2IJPDq+toTtGqigQBef6VewtTcyhYQ+TJacnFlTdGuSx/ULt2bbzzzjvo2bMnZs+ejR9//BF//PFHedyaTMzT1REaA90yGlFEzepOFRwRmVpRg8YginAP7Aa5tS1yMx7CxsEVLg04j7qqUtdtB9HJuCRiieLj4yu0PqMT9a1bt7St6fPnz0MURbRr1w7Dhw8vj/jIxLq39kPUL8eRpyr8g9tKLkO3ViUb2UiVR3GDxtSPH6FmS9Oti0wSYaXgu+lKokyJ+v79+9r308ePH4coimjcuDHmz5+P4cOHw8vLq5zDpPKUkpGF/bGXkPgwHZ6ujpgypCs+3XJQZ9S3lVyG2aP6wMWhmrnDpXJmo3TloDFCnv8giNWqmzsMKoESJ+qsrCxs374dGzduxMGDB5GXl4eaNWti8uTJGD58OFq2bGnKOKmc6JuKZSWXYcpLXZGSmY2EB2moWd0J3Vr5MUlXUS4NWyPh1O7/3lE/gYPGLIPGrTFUDZ4zdxhUQiVO1O7u7nj8+DGUSiWGDRumnUP95GLoJG1PTsUCoB1AlqdS49PvDmLD7DFwcdC/HB5Vbk+v31332Zdx+7fNOqO+OWjMMogKB+S2fj1/lD9VCiVO1N26dcPw4cPRr18/2NpWvW3qLAGnYlkmfVOxBJkcdTsMgepxBgeNWRKZDLltJkC04+uNyqTEifrHH380ZRxUATgVy/IYmoolalS4fWQL/F+ew+RsQXKbh+WvQEaVCvs+LAinYlkert9NBVQNe0Lt09XcYVAZmGkbeTIHTsWyPFy/mwBAXScYec2GmjuMKmvv3r1YvXo1rl+/jpSUlEJLhgqCgLi4uDLfn4nagrg42GP2qD6YH1V41DenYlVNnIpFGvcmyG31GgePmciSJUswffp0eHh4IDg4GM2aNSv3OpioLUzbJj7YMHsMDpy8zKlYFoBTsSybxtUHOW0nA3Jrc4dSZUVGRqJLly7YvXs3rK1N8/fMRG2BXBzsObrbQljbOcCr62jEH1zLqVgWRuNcDznt3wGsOUvHlFJSUjBo0CCTJWmAiZqoynOq1wT+L89ByrVYTsWyEKJjLeR0eBewUZo7lCovODgYV65cMWkdTNREFsDazgHuzbqYOwyqAKJ9jfwkrXA0dygW4auvvkKvXr3QqlUrDBs2zCR1MFETEVURoo0SOe3f5YImFWjIkCFQqVR45ZVX8Prrr6NOnTqQy+U6ZQRBwJ9//lnmOpioiYiqAkFAbttJEB08zR2JRXF1dUX16tXRsGFDk9XBRE1EVAXkNRkMjVtjc4dhcaKjo01eByfWERFVchpXX6ie6WPuMMhE2KImIqrMBAG5gSO5oImZ5eXl4fLly0hLS4NGU3jzo44dO5b53kzURESVmLp2MEQXb3OHYbE0Gg1mzJiBr776Co8ePTJYTq3Wv+Z+STBRE1Gxnt7P2qUh52FLRV6j580dgkVbuHAhlixZgoiICHTo0AGvvPIKFi9eDGdnZ3z11VcQBAEff/yxUXUwURNRkYlY337WCad2w6vraDjVa2LmyC2bxrUBRGcvc4dh0aKiovDSSy/h66+/xoMHDwAAQUFB6NKlC0aOHImQkBAcOnQI3bp1K3MdfKlBRknJyMJ3h07i822H8N2hk0jJyDJ3SFRKabfO4+Lmefgn9mfcv3IM/8T+jIub5yHt1oWn9rMWAY0GgAhRo0L8wbXIy84wd/gWTVWvvblDsHh37txBly75iwkpFAoAwOPHjwEANjY2GDFiBNavX29UHWxRU5kdP38dC9bp7sQV9ctxzB7VB22b+Jg7PHqCoRazbiKGdqetgkTsHtC12P2sueKZmQgC1LW5qYq5Va9eHZmZmQAApVIJR0dHXL9+XadMSkqKUXUwUVOZpGRkYcG6Xdq9rdX/7r+ap1JjftQubJg9Bi4O9uYMkf5VVNd1TmpSkYk4458r3M9aAjzc3AAAnlaZ2mOaGo0AWydzhUT/atGiBWJjY7WfO3fujGXLlqFFixbQaDT4/PPP0bx5c6PqYNc3FclQ1/b+2EtQqQtPQQAAlVqDAycvV2SYZEBxXdfZqYn5iVifguPcz9rsDu/5AVdO/YY/pjXVHlPXDjZjRFTg1VdfRU5ODnJycgAAH374IVJTU9GxY0eEhoYiPT0dS5cuNaoOtqjJoKK6thMfpkMmCNqW9JNkgoCEB2lmiJielnI1tsgWs/pxZpGJ2KH2M8i+f4f7WUuNIEDFRC0J/fr1Q79+/bSf/f39ERcXh+joaMjlcrRr1w6ursb9QstETXoV17U9pEsQNHqSNABoRBE1q7NLTgpyMx8W2XVtZauEIJMbTMQ1/J5FtRr1uZ+1xKg9mrHbW8KcnJzQv3//crsfEzXpVVzXNiDASi7TJvInWcll6NbKz8QRUknYKF2LbDHbunjCq+voIhMx97OWHnXdEHOHQE9Qq9XYunUrfv31VyQnJ2P+/Plo1qwZ0tLScPDgQbRv3x4eHh5lvj8TNSElIwv7Yy8h8WE6PF0d0b21X7Fd22lZ2Zg9qg/mR+l2jVvJZZg9qg9cHKqZ4Tuhp7k0bI2EU7uL7Lq2tnMoNhFzP2sJkVlBXTPI3FHQv1JTU9GzZ0+cOHECSqUSWVlZePPNNwHkjwKfOHEiwsLCsHDhwjLXIanBZF9//TUCAgLg6OgIR0dHhISE4Jdffinymq1bt6Jx48awtbVFs2bNsHv37gqKtmo4fv46hs9fg1U7j2L38fNYtfMohs9fg9w8VbFd222b+GDD7DEY17cDeoc0xbi+HbBh9lhOzZIQazsHeHUdDUFmBUAAZDIAAgSZlU7XdUEirtNuENybdWFrWcLUbo0Baztzh0H/mj59Oi5cuIC9e/fi+vXrEJ/4uSmXyzFo0CCj85KkWtR16tTBRx99hIYNG0IURaxbtw79+/fHmTNn0KRJ4RWQjh07hqFDh2LRokV4/vnnsXHjRgwYMACnT59G06ZN9dRATyrqPfTBU5dhJROQpy6crJ/s2nZxsMfgzvztXsrYdV21aNy5GpyU7NixA2+++Sa6d++uXZnsSc888wyioqKMqkNSLeq+ffuid+/eaNiwIZ555hl8+OGHUCqV+P333/WWj4yMRM+ePfHOO+/Az88PCxYsQMuWLfHll19WcOSVU1HvodUaEV2CGsPaSg5BECCXySAIAqyt5OzaroTYYq46NK4NzB0CPSEtLQ3e3oY3RcnLy4NKVfjVU2lIqkX9pIKX81lZWQgJ0T9w4vjx45gyZYrOsR49emDHjh0VEGHlV9x7aBtrK2yYPQYHTl5GwoM01KzuhG6t/JikicxI41Tf3CHQE3x9fXH69GmD5/ft2wd/f3+j6pBcoj537hxCQkLw+PFjKJVKbN++3eA3mZiYWGgknYeHBxITEw3e/8mJ6QC0S79ZIk9Xx2LfQ7Nrm0g6RDsXvp+WmPDwcLz77rvo1KkTunbtCgAQBAE5OTmYP38+9uzZgxUrVhhVh+QSdaNGjXD27FmkpaVh27ZtGDlyJGJiYoz+jaTAokWLMG/evHK5V2XXvbUfon45zilWFoDbVFYNon3Zp/iQaUyaNAkXLlzA0KFD4ezsDAAYNmwYHjx4AJVKhYiICIwdO9aoOiSXqG1sbNCgQf47mKCgIMTGxiIyMhLLly8vVNbT0xNJSUk6x5KSkuDp6Wnw/jNmzNDpLj979ixCQ0PLKfrKxcXBnlOsLAC3qaw6xGrVzR0CPUUQBKxcuRIjR47Etm3bcPXqVWg0Gvj6+uKll15Cx44dja5Dcon6aRqNRqer+kkhISE4ePAgJk+erD22f/9+g++0gfxtyAq2IgPy57lZmqfnTf9vyss4efkW30NXQcXtjuX/8hy2rCsRkauRSVaHDh3QoUMHk9xbUol6xowZ6NWrF+rVq4eMjAxs3LgR0dHR2Lt3LwAgLCwMtWvXxqJFiwDkdzmEhoZi6dKl6NOnDzZv3oyTJ08a/T6gKitq/W6+i656ilvrm9tUVi6ijeU1LEhiiTo5ORlhYWFISEiAk5MTAgICsHfvXnTv3h0AcOvWLchk/80oa9euHTZu3Ij33nsPM2fORMOGDbFjxw7OoTaAW1NanuLW+uY2lZWLaM2eLil4chOOkhAEAT/++GOZ65NUol69enWR56OjowsdGzx4MAYPHmyiiKqWkmxNyVZ11VLcWt/cprKSsVIUX4ZMbufOnbC1tYWnp6fOSmSGCIKBrWRLSFKJmkyLW1NanpKs9U2ViJWtuSMgALVr18bdu3dRo0YNDBs2DC+//HKRg5iNJamVyci0SjJvmqqWkq71TZWDKGeiloLbt2/j119/RYsWLbBgwQLUrVsX3bp1w9q1a5GRkVHu9TFRW5Durf1gJdf/yDlvuuoqWOu7VnBf1GjUDrWC+8L/5TmcmlUZWWjX9//+9z94eXnB1tYWbdq0wYkTJ4osXxGbNYWGhmL58uVITEzEtm3bUL16dUyYMAHu7u544YUXsG3bNoMzlkqLibqKcHGohhpOyiKnVRXMm+b63ZaHa31XDaIFJuotW7ZgypQpmDNnDk6fPo3mzZujR48eSE5O1lu+YLOmsWPH4syZMxgwYAAGDBiA8+fPmyQ+a2tr9O/fH1u2bEFSUpI2eQ8ZMgQff/xxudTBd9RVxFdTh5WoXMHWlFy/m6gSktmYO4IK9+mnn2LcuHEYPXo0AOCbb77Brl27sGbNGkyfPr1Q+Sc3awKABQsWYP/+/fjyyy/xzTffmCzOnJwc7N27Fz/++CPOnDkDW1tbeHl5lcu9majNLE+lhlqjfyS2qdgpbNC3fQDUajU0/9adkfWoQmOQy2SwtpJXaJ1SoM7LQ16eCqIsDzKx7CNBxSf+zMvLK5fYTEmjyoMqT4W8vDxoUPWee8FzVYuPIJOb7nkIeSqI2VkmubdGnQeNSm3SZ1Swi1RmZibS09O1x59eiKpAbm4uTp06hRkzZmiPyWQydOvWDcePH9dbR0Vu1qTRaLB//35s2rQJO3bswKNHj9CtWzesXLkSAwcOhL19+Ux3ZaI2ozyVGlduJeJRjnl+0K78chlWfRVplrrJON+/3RnuTnb4JyERIfX5rpkql6eXbZ4zZw7mzp1bqNz9+/ehVqv1br50+fJlvfcuy2ZNpXXs2DFs3LgRW7duxYMHD9C2bVssXLgQL730EmrUqFFu9RRgojYjtUaDRzl5sJabp3U5YfIUvDFxMjIfPcbJK7fwMD0Lro72aNWoHpTVyj669EJ8Atbv+R1qjQaCIEAURchlMoT1bAt/r5rIU6mhUmvQzLc2bG2sy/E7kj513mOk3bwAK4UtZFZl78a8su0DqB6loVZNTzy8eaEcIzQNjSoXqpzHcKrfBHLrqjlyWaPOM7gKXLnJyQAUphtfIMjkkMlN9//kmTNn0KZNG8TExCAwMFB7XF9rWso6dOgAOzs79O7dG0OHDtV2cd+6dQu3bt3Se03Lli3LXB8TtQRYW8lhY22GR2FthXNxd7Fq5xGdpLrv5GWE9+2AZj61S33L9KxsbNgfCw0ECLL8Xz4EAdAA+L/9sVgQ3g/V7Gzzf0Gxtoa1tWUlahnUsLa2gpW1NWRWZf/ehSf+rAx/hxpBhKBRwdraGvJKEG+ZVMT3ZSUDbCrv6oFWVvk/55RKJRwdHYstX6NGDcjl8lJtvlSWzZrKIjs7G99//z1++OGHIsuJoghBEKBWl/2XOCZqC5aelY1VO49oVysrWGFHpdZg1c9HsCC8HxztDe99m56VjT8uxmtb4m38vfDHxXiD79zVGg1OXIpHx+YNy/+bsTBW1Rx1/iRLYdwKV5WNjY0NgoKCcPDgQQwYMABA/nvhgwcPYsKECXqvKctmTaW1du3acrtXSTBRVxGLN+xFelY2HO3t8O7wHiW6piRJ1dDcan0t8Z3H/kKjeh7az0+TCQIepJlmIIyladR/qrlDIKoQU6ZMwciRI9GqVSsEBwdj2bJlyMrK0o4CN8dmTSNHjiy3e5UEE3UVkZ6VjdTM7FJd8zA9q0xJtaiW+KX4RIgwvPpZdafK221HZHZGrhldGQ0ZMgT37t3D7NmzkZiYiMDAQOzZs0c7YMwSNmtiorZgro72BheULyqpFtUS14giZIKgN1nLZTK08fcue8BEFs/yEjUATJgwwWBXtyVs1sSVySxYG38vyGX6/wkUlVQLWuL6rxPg5+UJK7kMgpD/WRDylygN79sBDkaMJieyeBbYoia2qC2ao70dwvt2wKqf8981ywQBmn+nUhUkVX0DxopriT9T1wMjnmuDE5fi8SAtC9Wd7NHG35tJWsLysjOQcjUWuZkPYaN0hUvD1lxmVIrklrcyGTFRW6Snk++0Yc/h0s3EQknV0ICxYd2DIZfJ9O5tXdASd6hmy00+Kom0W+cRfzAqfw6wTAA0IhJO7YZX19HcuENq2KK2SEzUFkZ/8s1vQT+ZWIsaMLZx/wkM6x6MjftPGGyJk7QYajHnZWf8m6T/3a9ak/+cRY0K8QfXwv/lOWxZE5kZE7UFKc286eKmbmU8eowF4f3YvV0JFNVizklNMrialqhRI+VaLNybdangiInoSUzUFqQ086ZLMnXL0d6O3dsSV1yL2dm3pTZ5FyITkJvxsAKjJSJ9OOrbghQ1WvvpedNlnbpF0pJyNbbIFrP6cab+JA0AGhE2Dq4mjI6ISoKJ2oKUJvmWdeoWSUtu5sP8FrM+MgFWtkrtmuxPE2RyuDRobcLoiKgkmKgtSGmSb8HULc6HrtxslK5FtphtXTzh1XU0BJkVAAGQyQAIEGRW8Oo6mgPJiCSA76gtSEnmTQO607e6tfKDIABZ2bkcMFYJuTRsjYRTu/97R/2EghaztZ0D/F+eg5RrscjNeAgbB1ftcSIyPyZqC9PMp3aRo7X1Td8qSORl2faSzMvazgFeXUcj/uBanVHfgkyu02K2tnPg6G4iiWKitkCGRmsbu+0lSZNTvSZsMRNVYkzUpGXMtpckbWwxE1VeTNQWSN/63Y72dmXe9pKIiEyHidrCGFq/O7xvB86dJiKSIE7PsiBPvoMWRUCjESGK/72D9vfy5NxpIiKJYaK2IMW9g750M5Fzp4mIJIZd3xakJO+gu7Xy42YbREQSwkRtQUr6DpqbbRARSQe7vi0I1+8mIqp8mKgtCNfvtlx52RlI/usQ7hzbhuS/DiEvO8PcIRFRCbHr28IUt4QoVT1pt87/uyf1f0uIJpzaDa+uo+FUr4m5wyOiYjBRWyC+g7YcedkZ/ybpfzfl+HcnLVGjQvzBtfB/eQ6XEiWSOHZ9E1VhKVdj81vSeogaNVKuxVZwRERUWkzURFVYbubD/O5ufWQCcjMeVmxARFRqTNREVZiN0lXb3V2IRoSNg2vFBkREpcZETVSFuTRsDUEm13tOkMnh0qB1BUdERKXFRE1UhVnbOcCr62gIMisAAiCTARAgyKzg1XU0B5IRVQIc9U1UxTnVawL/l+cg5VoscjMewsbBFS4NWjNJE1USTNREFsDazgHuzbqYOwwiKgN2fRMREUkYEzUREZGEsevbAqVnZeOPi/F4mJ4FV0d7tPH3gqO9nbnDIiIiPZioLcy5uLtYtfMI1BqNdm/qncf+QnjfDmjmU9vc4RER0VPY9W1B0rOysWrnEajUGogioNGIEEVApdZg1c9HkJ6Vbe4QiYjoKUzUFuSPi/FQazR6z6k1Gpy4FF+xARERUbGYqC3Iw/QsCIL+dZ9lgoAHaVkVHBERERVHUol60aJFaN26NRwcHODu7o4BAwbgypUrRV4TFRUFQRB0vmxtubeyPq6O9hBF/es+a0QR1Z3sKzgiIiIqjqQSdUxMDMaPH4/ff/8d+/fvR15eHp577jlkZRXd0nN0dERCQoL26+bNmxUUceXSxt8Lcpn+Ry6XydDG37uCIyIiouJIatT3nj17dD5HRUXB3d0dp06dQseOHQ1eJwgCPD09TR1epedob4fwvh2w6uf8Ud8yQYBGFCGXyRDetwMcqrEngohIaiSVqJ+WlpYGAHB1LXorvszMTNSvXx8ajQYtW7bEwoUL0aRJE71lc3JykJOTo3OtJWnmUxsLwvvhxKV4PEjLQnUne7Tx92aSJiKSKMkmao1Gg8mTJ6N9+/Zo2rSpwXKNGjXCmjVrEBAQgLS0NHzyySdo164dLly4gDp16hQqv2jRIsybN8+UoUueo70durXyM3cYRERUApJ6R/2k8ePH4/z589i8eXOR5UJCQhAWFobAwECEhobihx9+gJubG5YvX663/IwZM5CWlqb9iomJMUX4RERE5UKSLeoJEyZg586dOHz4sN5WcVGsra3RokULXLt2Te95hUIBhUKh/axUKo2KtSriEqNERNIhqUQtiiLefPNNbN++HdHR0fD2Lv0oZLVajXPnzqF3794miLDq4xKjRETSIqmu7/Hjx+P//u//sHHjRjg4OCAxMRGJiYnIzv5vacuwsDDMmDFD+3n+/PnYt28frl+/jtOnT2PEiBG4efMmwsPDzfEtmI2jvR2clXZGtXy5xCgRkfRIqkX99ddfAwA6deqkc3zt2rUYNWoUAODWrVuQPTEXOCUlBePGjUNiYiJcXFwQFBSEY8eOwd/fv6LCloR3h/cocVlDXdslWWKUg9CIiCqWpBK1oVWznhQdHa3z+bPPPsNnn31mooiqnqK6tguWGNX3HLjEKBGReUiq65tMq7iubXtbGy4xSkQkMUzUFqS4rm0I4BKjRFQpPXz4EMOHD4ejoyOcnZ0xduzYYhe06tSpU6G9Il577bUKirjkmKgtSHG7Z2Vl5yK8bwdYyWUQBEAuEyAIgJWcS4wSkbQNHz4cFy5cwP79+7XTe1999dVirxs3bpzOXhEff/xxBURbOpJ6R02mVZLds7jEKBFVNpcuXcKePXsQGxuLVq1aAQC++OIL9O7dG5988glq1apl8Npq1apJfq8ItqgtSEl3zypYYnRI11bo1sqPSZqIJO348eNwdnbWJmkA6NatG2QyGf74448ir92wYQNq1KiBpk2bYsaMGXj06JGpwy01tqgtCHfPIiIpyMzMRHp6uvbz0ytGllZiYiLc3d11jllZWcHV1RWJiYkGrxs2bBjq16+PWrVq4a+//sK7776LK1eu4IcffihzLKbARG1h2LVNROYWGhqq83nOnDmYO3duoXLTp0/H4sWLi7zXpUuXyhzHk++wmzVrhpo1a6Jr166Ii4uDr69vme9b3pioLRB3zyIic4qJiUFgYKD2s6HW9NSpU7WLXRni4+MDT09PJCcn6xxXqVR4+PBhqd4/t2nTBgBw7do1JmoiIrJcSqUSjo6OxZZzc3ODm5tbseVCQkKQmpqKU6dOISgoCABw6NAhaDQabfItibNnzwIAatasWeJrKgIHk5GO9Kxs7I+9hC0HT2J/7CWu701Ekufn54eePXti3LhxOHHiBI4ePYoJEybg5Zdf1o74vnv3Lho3bowTJ04AAOLi4rBgwQKcOnUK8fHx+OmnnxAWFoaOHTsiICDAnN9OIWxRkxZ3ziKiymrDhg2YMGECunbtCplMhhdffBGff/659nxeXh6uXLmiHdVtY2ODAwcOYNmyZcjKykLdunXx4osv4r333jPXt2AQEzUB0F1eFPhv3fWC5UUXhPfjntREJFmurq7YuHGjwfNeXl4660jUrVsXMTExFRGa0dj1TQCKX170xKX4ig2IiIgAsEVtkfRtc8mds4iIpImJ2sIYeg/dqnF97pxFRCRB7Pq2IEVtcxl7KR4y7pxFRCQ5TNQWpKj30BpRROvG9blzFhGRxLDr24IU9x7axsqKy4sSEUkME7UFKck2l1xelIhIWtj1bUFKus0lERFJBxO1BSnY5pLvoYmIKg92fVsYbnNJRFS5MFFbIL6HJiKqPNj1TUREJGFM1ERERBLGRE1ERCRhTNREREQSxkRNREQkYUzUREREEsZETUREJGGcR/2vS5cuVXidOXkqXL2TDFtrK1hbySu8fnPJU6nxOE8FdXoyFNaW9U9QrcpBZkIc5NYKyOTW5g6nwmjUeVDn5UD5MA9yK4XOuZo1a6JmzZpmiqxsEhISkJCQYO4wKh1z/JytCizrp6QeNWvWRGhoKEaMGGHuUIgs0pw5czB37lxzh1Eqy5cvx7x588wdRqUUGhpa6X4xMzdBNLSdkgWxxN+OMzMzERoaipiYGCiVSnOHQxVAqs+cLeriSfXZlUVlfN7mxkRtodLT0+Hk5IS0tDQ4OjqaOxyqAHzmlRefnWXjYDIiIiIJY6ImIiKSMCZqC6VQKDBnzhwoFIriC1OVwGdeefHZWTa+oyYiIpIwtqiJiIgkjImaiIhIwpioyWjx8fEQBAFRUVHmDoWIqMphoq5gcXFxiIiIgI+PD2xtbeHo6Ij27dsjMjIS2dnZJqv34sWLmDt3LuLj401WR0l8+OGH6NevHzw8PCAIQqVbkcqUBEEo0Vd0dLTRdT169Ahz584t1b347IrG50emYvFLiFakXbt2YfDgwVAoFAgLC0PTpk2Rm5uLI0eO4J133sGFCxewYsUKk9R98eJFzJs3D506dYKXl5dJ6iiJ9957D56enmjRogX27t1rtjikaP369Tqfv/32W+zfv7/QcT8/P6PrevTokXYJzE6dOpXoGj67ovH5kakwUVeQGzdu4OWXX0b9+vVx6NAhnSX0xo8fj2vXrmHXrl1mjPA/oiji8ePHsLOzK/d737hxA15eXrh//z7c3NzK/f6V2dPrzf/+++/Yv3+/ZNah57MrGp8fmQq7vivIxx9/jMzMTKxevVrvOrcNGjTApEmTtJ9VKhUWLFgAX19fKBQKeHl5YebMmcjJydG5zsvLC88//zyOHDmC4OBg2NrawsfHB99++622TFRUFAYPHgwA6Ny5c6EuuIJ77N27F61atYKdnR2WL18OALh+/ToGDx4MV1dXVKtWDW3btjXqFwpztuarAo1Gg2XLlqFJkyawtbWFh4cHIiIikJKSolPu5MmT6NGjB2rUqAE7Ozt4e3tjzJgxAPLHFBT8oJ43b57230NxXaF8dsbj86OyYIu6gvz888/w8fFBu3btSlQ+PDwc69atw6BBgzB16lT88ccfWLRoES5duoTt27frlL127RoGDRqEsWPHYuTIkVizZg1GjRqFoKAgNGnSBB07dsTEiRPx+eefY+bMmdqutye74K5cuYKhQ4ciIiIC48aNQ6NGjZCUlIR27drh0aNHmDhxIqpXr45169ahX79+2LZtGwYOHFh+f0FUIhEREYiKisLo0aMxceJE3LhxA19++SXOnDmDo0ePwtraGsnJyXjuuefg5uaG6dOnw9nZGfHx8fjhhx8AAG5ubvj666/x+uuvY+DAgXjhhRcAAAEBAeb81iwCnx+ViUgml5aWJgIQ+/fvX6LyZ8+eFQGI4eHhOsfffvttEYB46NAh7bH69euLAMTDhw9rjyUnJ4sKhUKcOnWq9tjWrVtFAOKvv/5aqL6Ce+zZs0fn+OTJk0UA4m+//aY9lpGRIXp7e4teXl6iWq0WRVEUb9y4IQIQ165dW6LvTxRF8d69eyIAcc6cOSW+xtKMHz9efPJ/0d9++00EIG7YsEGn3J49e3SOb9++XQQgxsbGGry3MX//fHYlw+dH5YVd3xUgPT0dAODg4FCi8rt37wYATJkyRef41KlTAaBQ17O/vz+effZZ7Wc3Nzc0atQI169fL3GM3t7e6NGjR6E4goOD0aFDB+0xpVKJV199FfHx8bh48WKJ70/G27p1K5ycnNC9e3fcv39f+xUUFASlUolff/0VAODs7AwA2LlzJ/Ly8swYMT2Jz4/Kiom6AhRsS5eRkVGi8jdv3oRMJkODBg10jnt6esLZ2Rk3b97UOV6vXr1C93BxcSn03qso3t7eeuNo1KhRoeMFXeZPx0GmdfXqVaSlpcHd3R1ubm46X5mZmUhOTgYAhIaG4sUXX8S8efNQo0YN9O/fH2vXri00voEqFp8flRXfUVcAR0dH1KpVC+fPny/VdYIglKicXC7Xe1wsxTLuphjhTeVLo9HA3d0dGzZs0Hu+YICRIAjYtm0bfv/9d/z888/Yu3cvxowZg6VLl+L333+HUqmsyLDpX3x+VFZM1BXk+eefx4oVK3D8+HGEhIQUWbZ+/frQaDS4evWqzoCvpKQkpKamon79+qWuv6RJ/+k4rly5Uuj45cuXteep4vj6+uLAgQNo3759iX6xatu2Ldq2bYsPP/wQGzduxPDhw7F582aEh4eX6d8DGYfPj8qKXd8VZNq0abC3t0d4eDiSkpIKnY+Li0NkZCQAoHfv3gCAZcuW6ZT59NNPAQB9+vQpdf329vYAgNTU1BJf07t3b5w4cQLHjx/XHsvKysKKFSvg5eUFf3//UsdBZffSSy9BrVZjwYIFhc6pVCrts01JSSnUmxIYGAgA2u7TatWqASjdvwcyDp8flRVb1BXE19cXGzduxJAhQ+Dn56ezMtmxY8ewdetWjBo1CgDQvHlzjBw5EitWrEBqaipCQ0Nx4sQJrFu3DgMGDEDnzp1LXX9gYCDkcjkWL16MtLQ0KBQKdOnSBe7u7gavmT59OjZt2oRevXph4sSJcHV1xbp163Djxg18//33kMlK/3ve+vXrcfPmTTx69AgAcPjwYXzwwQcAgFdeeYWt9CKEhoYiIiICixYtwtmzZ/Hcc8/B2toaV69exdatWxEZGYlBgwZh3bp1+OqrrzBw4ED4+voiIyMDK1euhKOjo/aXQDs7O/j7+2PLli145pln4OrqiqZNm6Jp06YG6+ezMw6fH5WZmUedW5y///5bHDdunOjl5SXa2NiIDg4OYvv27cUvvvhCfPz4sbZcXl6eOG/ePNHb21u0trYW69atK86YMUOnjCjmT63q06dPoXpCQ0PF0NBQnWMrV64UfXx8RLlcrjNVy9A9RFEU4+LixEGDBonOzs6ira2tGBwcLO7cuVOnTGmmZ4WGhooA9H7pmzpmyZ6e3lNgxYoVYlBQkGhnZyc6ODiIzZo1E6dNmyb+888/oiiK4unTp8WhQ4eK9erVExUKheju7i4+//zz4smTJ3Xuc+zYMTEoKEi0sbEp0XQdPrvS4fOj8iKIYilGHBEREVGF4jtqIiIiCWOiJiIikjAmaiIiIgljoiYiIpIwJmoiIiIJY6ImIiKSMCZqifn444/RuHFjaDQac4ditOnTp6NNmzbmDkPy+MwJAOLj4yEIAqKioswdCkkME7WEpKenY/HixXj33Xe1q34JggBBELB06dJC5aOioiAIAk6ePGl03T/88AOGDBkCHx8fVKtWDY0aNcLUqVMNLlH4008/oWXLlrC1tUW9evUwZ84cqFQqnTKTJ0/Gn3/+iZ9++sno+KoqPnMiKpa5V1yh/3z22Weio6OjmJ2drT2Gf1cO8vDwELOysnTKr127ttgN5kuqevXqYrNmzcT3339fXLlypThx4kTRxsZGbNy4sfjo0SOdsrt37xYFQRA7d+4srlixQnzzzTdFmUwmvvbaa4Xu+9JLL4nPPvus0fFVVXzmVECj0YjZ2dmiSqUydygkMUzUEhIQECCOGDFC5xgAMTAwUAQgLl26VOdcef7Q1reE4Lp160QA4sqVK3WO+/v7i82bNxfz8vK0x2bNmiUKgiBeunRJp+y2bdtEQRDEuLg4o2OsivjMiag47PqWiBs3buCvv/5Ct27dCp1r3749unTpgo8//hjZ2dkmqb9Tp06Fjg0cOBAAcOnSJe2xixcv4uLFi3j11VdhZfXfni5vvPEGRFHEtm3bdO5R8P38+OOPJoi6cuMzr3rmzp0LQRDw999/Y8SIEXBycoKbmxvef/99iKKI27dvo3///nB0dISnp6fO6w1976hHjRoFpVKJu3fvYsCAAVAqlXBzc8Pbb78NtVqtLRcdHQ1BEBAdHa0Tj757JiYmYvTo0ahTpw4UCgVq1qyJ/v37Iz4+3kR/K2QsJmqJOHbsGACgZcuWes/PnTsXSUlJ+Prrr4u8T05ODu7fv1+ir+IkJiYCAGrUqKE9dubMGQBAq1atdMrWqlULderU0Z4v4OTkBF9fXxw9erTY+iwNn3nVNWTIEGg0Gnz00Udo06YNPvjgAyxbtgzdu3dH7dq1sXjxYjRo0ABvv/02Dh8+XOS91Go1evTogerVq+OTTz5BaGgoli5dihUrVpQpthdffBHbt2/H6NGj8dVXX2HixInIyMjArVu3ynQ/Mj1ucykRly9fBgB4e3vrPf/ss8+ic+fOWLJkCV5//XWDG89v2rQJo0ePLlGdYjH7sSxevBhyuRyDBg3SHktISAAA1KxZs1D5mjVr4p9//il03MfHBxcvXixRTJaEz7zqCg4OxvLlywEAr776Kry8vDB16lQsWrQI7777LgBg6NChqFWrFtasWYOOHTsavNfjx48xZMgQvP/++wCA1157DS1btsTq1avx+uuvlyqu1NRUHDt2DEuWLMHbb7+tPT5jxozSfotUgZioJeLBgwewsrKCUqk0WGbu3LkIDQ3FN998g7feektvmR49emD//v1Gx7Nx40asXr0a06ZNQ8OGDbXHC7phFQpFoWtsbW2Rnp5e6LiLi0uhVhfxmVdl4eHh2v+Wy+Vo1aoV7ty5g7Fjx2qPOzs7o1GjRrh+/Xqx93vttdd0Pj/77LNYv359qeOys7ODjY0NoqOjMXbsWLi4uJT6HlTxmKgrkY4dO6Jz5874+OOPC/2PW6BmzZp6Wz6l8dtvv2Hs2LHo0aMHPvzwQ51zBa26nJycQtc9fvxYb6tPFEUIgmBUTJaKz7xyqlevns5nJycn2Nra6rxSKDj+4MGDIu9la2sLNzc3nWMuLi5ISUkpdVwKhQKLFy/G1KlT4eHhgbZt2+L5559HWFgYPD09S30/qhh8Ry0R1atXh0qlQkZGRpHl5syZg8TERG232tOys7ORmJhYoi99/vzzT/Tr1w9NmzbFtm3bdAYPAf91fxZ0hz4pISEBtWrVKnQ8JSWl0A8o4jOvyuRyeYmOAcW/jjB03ZMM/VL05ICzApMnT8bff/+NRYsWwdbWFu+//z78/PwsugdE6pioJaJx48YA8kcCFyU0NBSdOnXC4sWL9Y4G3rJli7aFVdzX0+Li4tCzZ0+4u7tj9+7dertkAwMDAaDQghv//PMP7ty5oz3/pBs3bsDPz6/I78sS8ZlTeSnown56sZqbN2/qLe/r64upU6di3759OH/+PHJzc/UusEPSwK5viQgJCQGQ/8MwICCgyLJz585Fp06d9I76LOv7ysTERDz33HOQyWTYu3dvoa62Ak2aNEHjxo2xYsUKREREaH/b//rrryEIgs4gJABIS0tDXFxcqQe9WAI+cyov9evXh1wux+HDhzFgwADt8a+++kqn3KNHjyCTyWBra6s95uvrCwcHB72vNkgamKglwsfHB02bNsWBAwcwZsyYIsuGhoYiNDQUMTExhc6V9X1lz549cf36dUybNg1HjhzBkSNHtOc8PDzQvXt37eclS5agX79+eO655/Dyyy/j/Pnz+PLLLxEeHl6oFXXgwAGIooj+/fuXOqaqjs+cyouTkxMGDx6ML774AoIgwNfXFzt37kRycrJOub///htdu3bFSy+9BH9/f1hZWWH79u1ISkrCyy+/bKboqVjmWmmFCvv0009FpVKps3wjAHH8+PGFyv7666/apSbLY5Wqgnvp+woNDS1Ufvv27WJgYKCoUCjEOnXqiO+9956Ym5tbqNyQIUPEDh06GB1fVcVnXrXMmTNHBCDeu3dP5/jIkSNFe3v7QuVDQ0PFJk2aiKIoijdu3BABiGvXri32uoJ6nnTv3j3xxRdfFKtVqya6uLiIERER4vnz53Xuef/+fXH8+PFi48aNRXt7e9HJyUls06aN+N133xn5nZMpCaJYzEgGqjBpaWnw8fHBxx9/rDONo7JKTEyEt7c3Nm/ezNaVAXzmRFQcDiaTECcnJ0ybNg1LliypElseLlu2DM2aNeMP7CLwmRNRcdiiJiIikjC2qImIiCSMiZqIiEjCmKiJiIgkjImaiIhIwpioiYgsTHx8PARBQFRUlLlDoRJgoiYiKkJcXBwiIiLg4+MDW1tbODo6on379oiMjNS79np5uXjxIubOnYv4+HiT1VESH374Ifr16wcPDw8IgoC5c+eaNR5LxCVEiYgM2LVrFwYPHgyFQoGwsDA0bdoUubm5OHLkCN555x1cuHBB7/rr5eHixYuYN28eOnXqBC8vL5PUURLvvfcePD090aJFC+zdu9dscVgyJmoiIj1u3LiBl19+GfXr18ehQ4d01lMfP348rl27hl27dpkxwv+Iomhwb3Bj3bhxA15eXrh//77BjVvItNj1TUSkx8cff4zMzEysXr1a76YnDRo0wKRJk7SfVSoVFixYAF9fXygUCnh5eWHmzJmFdqXy8vLC888/jyNHjiA4OBi2trbw8fHBt99+qy0TFRWFwYMHAwA6d+4MQRAgCAKio6N17rF37160atUKdnZ22v3Kr1+/jsGDB8PV1RXVqlVD27ZtjfqFwpytecrHRE1EpMfPP/8MHx8ftGvXrkTlw8PDMXv2bLRs2RKfffYZQkNDsWjRIr27Ul27dg2DBg1C9+7dsXTpUri4uGDUqFG4cOECAKBjx46YOHEiAGDmzJlYv3491q9fr7NT2ZUrVzB06FB0794dkZGRCAwMRFJSEtq1a4e9e/fijTfewIcffojHjx+jX79+2L59ezn8rZBZmHVLECIiCUpLSxMBiP379y9R+bNnz4oAxPDwcJ3jb7/9tghAPHTokPZY/fr1RQDi4cOHtceSk5NFhUIhTp06VXts69atIgDx119/LVRfwT327Nmjc3zy5MkiAPG3337THsvIyBC9vb1FLy8vUa1Wi6Kof6eu4ty7d08EIM6ZM6fE11D5YIuaiOgp6enpAAAHB4cSld+9ezcAYMqUKTrHp06dCgCFup79/f3x7LPPaj+7ubmhUaNGuH79eolj9Pb2Ro8ePQrFERwcjA4dOmiPKZVKvPrqq4iPj8fFixdLfH+SDiZqIqKnODo6AgAyMjJKVP7mzZuQyWRo0KCBznFPT084Ozvj5s2bOsfr1atX6B4uLi5ISUkpcYze3t5642jUqFGh4wVd5k/HQZUDEzUR0VMcHR1Rq1YtnD9/vlTXCYJQonJyuVzvcbEUmxmaYoQ3SRMTNRGRHs8//zzi4uJw/PjxYsvWr18fGo0GV69e1TmelJSE1NRU1K9fv9T1lzTpPx3HlStXCh2/fPmy9jxVPkzURER6TJs2Dfb29ggPD0dSUlKh83FxcYiMjAQA9O7dGwCwbNkynTKffvopAKBPnz6lrt/e3h4AkJqaWuJrevfujRMnTuj8cpGVlYUVK1bAy8sL/v7+pY6DzI8LnhAR6eHr64uNGzdiyJAh8PPz01mZ7NixY9i6dStGjRoFAGjevDlGjhyJFStWIDU1FaGhoThx4gTWrVuHAQMGoHPnzqWuPzAwEHK5HIsXL0ZaWhoUCgW6dOkCd3d3g9dMnz4dmzZtQq9evTBx4kS4urpi3bp1uHHjBr7//nvIZKVvm61fvx43b97Eo0ePAACHDx/GBx98AAB45ZVX2EqvCOYedk5EJGV///23OG7cONHLy0u0sbERHRwcxPbt24tffPGF+PjxY225vLw8cd68eaK3t7dobW0t1q1bV5wxY4ZOGVHMn1rVp0+fQvWEhoaKoaGhOsdWrlwp+vj4iHK5XGeqlqF7iKIoxsXFiYMGDRKdnZ1FW1tbMTg4WNy5c6dOmdJMzwoNDRUB6P3SN3WMyp8giqUYvUBEREQViu+oiYiIJIyJmoiISMKYqImIiCSMiZqIiEjCmKiJiIgkjImaiIhIwpioiYiIJIyJmoiISMKYqImIiCSMiZqIiEjCmKiJiIgkjImaiIhIwpioiYiIJOz/AethMpu41BnRAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "two_groups_unpaired.mean_diff.plot(ci_type='pct');"
+ ]
+ },
{
"cell_type": "markdown",
"metadata": {},
@@ -993,7 +1126,7 @@
"\n",
"For more details on wide vs long or 'melted' data, refer to this\n",
"[Wikipedia article](https://en.wikipedia.org/wiki/Wide_and_narrow_data). The\n",
- "[pandas documentation](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.melt.html)\n",
+ "[pandas documentation](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.melt.html)\n",
"provides recipes for melting dataframes.\n"
]
},
@@ -1114,11 +1247,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:54:31 2025.\n",
+ "The current time is Tue Mar 25 16:02:12 2025.\n",
"\n",
"Effect size(s) with 95% confidence intervals will be computed for:\n",
"1. Test 1 minus Control 1\n",
@@ -1151,24 +1284,23 @@
"source": [
"The ``dabest`` package implements a range of estimation plot\n",
"designs aimed at depicting common experimental designs:\n",
- "1. Two-Group\n",
- "2. Multi Two-Group\n",
- "3. Shared Control (Unpaired) and Repeated Measures (Paired)\n",
- "4. Multi-Groups\n",
- "5. Proportion plots\n",
- "6. Mini-Meta\n",
- "7. Delta-Delta\n",
- "8. Forest Plot\n",
+ "\n",
+ "1. [Two-Group](02-two_group.html)\n",
+ " \n",
+ "2. [Shared Control (Unpaired) and Repeated Measures (Paired)](03-shared_control_and_repeated_measures.html)\n",
" \n",
- "In addition, as of Dabest **v2025.03.14**, we introduce a new plotting orientation: **horizontal plots**. \n",
+ "3. [Proportion Plots](04-proportion_plot.html)\n",
+ " \n",
+ "4. [Mini-Meta](05-mini_meta.html)\n",
+ " \n",
+ "5. [Delta-Delta](06-delta_delta.html)\n",
+ " \n",
+ "6. [Forest Plots](07-forest_plot.html)\n",
+ " \n",
+ "In addition, as of Dabest **v2025.03.27**, we introduce a new plotting orientation: **[Horizontal Plots](08-horizontal_plot.html)**. \n",
"\n",
- "Lastly, we have a whole tutorial page for making aesthetic changes to dabest plots.\n"
+ "Lastly, we have a whole tutorial page for making [aesthetic changes to dabest plots](09-plot_aesthetics.html).\n"
]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": []
}
],
"metadata": {
diff --git a/nbs/tutorials/02-two_group.ipynb b/nbs/tutorials/02-two_group.ipynb
index 65be46fc..68e7c195 100644
--- a/nbs/tutorials/02-two_group.ipynb
+++ b/nbs/tutorials/02-two_group.ipynb
@@ -34,7 +34,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "Compiling numba functions: 100%|██████████| 11/11 [00:00<00:00, 40.28it/s]"
+ "Compiling numba functions: 100%|██████████| 11/11 [00:00<00:00, 30.12it/s]"
]
},
{
@@ -42,7 +42,7 @@
"output_type": "stream",
"text": [
"Numba compilation complete!\n",
- "We're using DABEST v2025.03.14\n"
+ "We're using DABEST v2025.03.27\n"
]
},
{
@@ -275,7 +275,9 @@
"We can achieve this by supplying the dataframe to `dabest.load()`. Additionally, we must provide the groups to be compared in the `idx` argument as a tuple or list.\n",
"\n",
"For this tutorial, we will create two separate analyses: \n",
- "- A singular two-group comparison between Control 1 and Test 1\n",
+ "\n",
+ "- A singular two-group comparison between Control 1 and Test 1.\n",
+ " \n",
"- A multi two-group comparison between Control 1 and Test 1, and between Control 2 and Test 2. \n",
" \n",
"The **multi two-group estimation plot** tiles two or more Cumming plots\n",
@@ -299,9 +301,9 @@
"source": [
"In addition, we can specify the `paired` argument to indicate paired data.\n",
"\n",
- " `paired` can be set as 'baseline' or 'sequential' or left as None (unpaired). \n",
+ " `paired` can be set as `'baseline'` or `'sequential'` or left as `None` (unpaired). \n",
" \n",
- " **Note: For two-group, both 'baseline' and 'sequential' are equivalent.**"
+ " **Note: For two-group, both `'baseline'` and `'sequential'` are equivalent.**"
]
},
{
@@ -332,11 +334,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:56:07 2025.\n",
+ "The current time is Tue Mar 25 17:21:58 2025.\n",
"\n",
"The unpaired mean difference between Control 1 and Test 1 is 0.48 [95%CI 0.205, 0.774].\n",
"The p-value of the two-sided permutation t-test is 0.001, calculated for legacy purposes only. \n",
@@ -488,7 +490,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXndJREFUeJzt3XlYVNX/B/D3nQGGZVhVFkVl0RDcWAzFTFxzq9TSzCXcpb6WmrZolmtpZou0q6mYP5fS1BbNPTDTcjdXVEBRE3BhR5aZub8/jMmRGbZhmAvzfj0Pj829597zwZt8OOeeRRBFUQQRERFJkszcARAREZFhTNREREQSxkRNREQkYUzUREREEsZETUREJGFM1ERERBLGRE1ERCRhTNREREQSxkRNREQkYRafqG/evIk5c+bg5s2b5g6FiKhO48/bqmGivnkTc+fO5f84REQmxp+3VWPxiZqIiEjKmKiJiIgkjImaiIhIwpioiYiIJIyJmoiISMKYqImIiCSMiZqIiEjCmKiJiIgkzMrcARCR6RXlZiD99D4UZqZB4eIB99bdYKN0NXdYRFQBTNREddydi3/hwg8LIWpUEAQZRFGDq3FrEDjoLbg1Dzd3eERUDnZ9E9VhRbkZ95O0uhgQRYga9f0/1cU4v2kBinIzzB0iEZWDiZqoDks/vQ+iRqX3nKhRIf30vhqOiIgqi4maqA4rzEyDIOj/Zy4IMhRmptVwRERUWUzURHWYwsUDoqjRe04UNVC4eNRwRERUWUzURHWYe+tuEGT6x4wKMiu4t+lewxERUWVJNlG///77EAQBU6ZMMVgmNjYWgiDofNna2tZckEQSZ6N0ReCgtyDIrQFBgCCT3/9Tbo3AQW/BxsHF3CESUTkkOT3ryJEjWLp0Kdq0aVNuWScnJyQkJGg/C4JgytCIah235uF49JVVuvOo23RnkiaqJSSXqHNzczF8+HAsX74c7777brnlBUGAp6dnDURGVHvZKF3hHfGsucMgoiqQXNf3xIkT0a9fP/To0aNC5XNzc9G0aVM0btwY/fv3x9mzZ00cIRERUc2RVIt6w4YNOH78OI4cOVKh8gEBAVi5ciXatGmDrKwsfPjhh+jYsSPOnj0Lb29vvdcUFhaisLBQ+zk3N7daYiciIjIFySTqa9euYfLkydi9e3eFB4RFREQgIiJC+7ljx44IDAzE0qVLMX/+fL3XLFy4EHPnzq2WmImIiExNMl3fx44dQ3p6OkJDQ2FlZQUrKyvEx8fj008/hZWVFdRqdbn3sLa2RkhICC5fvmywzIwZM5CVlaX9io+Pr85vg4iIqFpJpkXdvXt3nD59WufY6NGj0aJFC7z55puQy+Xl3kOtVuP06dPo27evwTIKhQIKhUL7WalUVj1oIiIiE5NMonZ0dESrVq10jjk4OKBevXra41FRUWjUqBEWLlwIAJg3bx46dOiAZs2aITMzE4sXL8bVq1cxbty4Go+fiIjIFCSTqCsiJSUFMtl/vfUZGRkYP348UlNT4erqirCwMBw8eBBBQUFmjJKIiKj6SDpRx8XFlfn5k08+wSeffFJzAREREdUwyQwmIyIiotKYqImISLL279+Pp556Cg0bNoQgCNi6dWuZ5ePi4krtASEIAlJTU2smYBNgoiYiIsnKy8tD27Zt8cUXX1TquoSEBNy8eVP75e7ubqIITU/S76iJiMiy9enTB3369Kn0de7u7nBxcan+gMyALWoiC1CUm4Hrh35A4q9f4vqhH1CUm2HukIhMKjg4GF5eXujZsyf++OMPc4djFLaoieq4Oxf/woUfFkLUqCAIMoiiBlfj1iBw0Ftwax5u7vDIAuXm5iI7O1v7+eGFqIzh5eWFr7/+Gu3atUNhYSG++eYbdOnSBX/99RdCQ0OrpY6axhY1UR1WlJtxP0mriwFRhKhR3/9TXYzzmxawZU1mERkZCWdnZ+1XySJW1SEgIADR0dEICwtDx44dsXLlSnTs2LFWT+Vli5qoDks/vQ+iRqX3nKhRIf30Pu5TTTUuPj4ewcHB2s/V1Zo2JDw8HAcOHDBpHabERE1UhxVmpv3b3V16UxtBkKEwM80MUZGlUyqVcHJyqrH6Tp48CS8vrxqrr7oxURPVYQoXD4iiRu85UdRA4eJRwxERVU5ubq7OjojJyck4efIk3Nzc0KRJE8yYMQM3btzAt99+CwBYsmQJfH190bJlSxQUFOCbb77Bvn37sGvXLnN9C0Zjoiaqw9xbd8PVuDX331E/RJBZwb1NdzNERVRxR48eRdeuXbWfp06dCgAYOXIkYmNjcfPmTaSkpGjPFxUVYdq0abhx4wbs7e3Rpk0b7NmzR+cetY0giqJo7iDM6fjx4wgLC8OxY8dq7YhAorLcvXQY5zct0Bn1LcisOOqbahx/3lYNW9REdZxb83A8+soqpJ/eh8LMNChcPODepjtsHFzMHRoRVQATNZEFsFG6cnQ3US3FedREREQSxkRNREQkYUzUREREEsZETUREJGFM1ERERBLGRE1ERCRhTNREREQSxkRNREQkYUzUREREEsZETUREJGFM1ERERBLGRE1ERCRhTNREREQSxkRNREQkYUzUREREEsZETUREJGFM1ERERBLGRE1ERCRhTNREREQSxkRNREQkYUzUREREEsZETUREJGFM1ERERBLGRE1ERCRhTNREREQSxkRNREQkYVbmDoCITK8oNwPpp/ehMDMNChcPuLfuBhulq7nDIqIKYKImquPuXPwLF35YCFGjgiDIIIoaXI1bg8BBb8Gtebi5wyOicrDrm6gOK8rNuJ+k1cWAKELUqO//qS7G+U0LUJSbYe4QiagcTNREdVj66X0QNSq950SNCumn99VwRERUWUzURHVYYWYaBEH/P3NBkKEwM62GIyKiymKiJqrDFC4eEEWN3nOiqIHCxaOGIyKiymKiJqrD3Ft3gyDTP2ZUkFnBvU33Go6IiCqLiZqoDrNRuiJw0FsQ5NaAIECQye//KbdG4KC3YOPgYu4QiagcnJ5FVMe5NQ/Ho6+s0p1H3aY7kzRRLSHZFvX7778PQRAwZcqUMstt3LgRLVq0gK2tLVq3bo3t27fXTIBEtYiN0hXeEc/Cv8//4B3xLJM0US0iyUR95MgRLF26FG3atCmz3MGDBzF06FCMHTsWJ06cwIABAzBgwACcOXOmhiIlIiIyLckl6tzcXAwfPhzLly+Hq2vZSxzGxMSgd+/eeP311xEYGIj58+cjNDQUn3/+eQ1FS0REZFqSS9QTJ05Ev3790KNHj3LLHjp0qFS5Xr164dChQ6YKj4iIqEZJajDZhg0bcPz4cRw5cqRC5VNTU+HhoTsP1MPDA6mpqQavKSwsRGFhofZzbm5u1YIlIiKqAZJJ1NeuXcPkyZOxe/du2NramqyehQsXYu7cuSa7PxERUXWSTNf3sWPHkJ6ejtDQUFhZWcHKygrx8fH49NNPYWVlBbVaXeoaT09PpKXpLoGYlpYGT09Pg/XMmDEDWVlZ2q/4+Phq/16IiIiqi2QSdffu3XH69GmcPHlS+9WuXTsMHz4cJ0+ehFwuL3VNREQE9u7dq3Ns9+7diIiIMFiPQqGAk5OT9kupVFb790JERJZDrVZjw4YNiI6OxsCBA3H69GkAQFZWFjZv3lyqQVlZkun6dnR0RKtWrXSOOTg4oF69etrjUVFRaNSoERYuXAgAmDx5MiIjI/HRRx+hX79+2LBhA44ePYply5bVePxERGR5MjMz0bt3bxw+fBhKpRJ5eXl45ZVXAABKpRKTJk1CVFQUFixYUOU6JNOiroiUlBTcvHlT+7ljx45Yt24dli1bhrZt22LTpk3YunVrqYRPRERkCtOnT8fZs2exc+dOJCUlQRRF7Tm5XI5BgwYZvRCXZFrU+sTFxZX5GQAGDx6MwYMH10xARERED9i6dSteeeUV9OzZE3fu3Cl1/pFHHkFsbKxRddSqFjUREZGUZGVlwdfX1+D54uJiqFQqo+pgoiYiIqoif39/HD9+3OD5Xbt2ISgoyKg6mKiJiEiy9u/fj6eeegoNGzaEIAjYunVrudfExcUhNDQUCoUCzZo1M7rruSzjxo3DypUr8d1332nfTwuCgMLCQsycORM7duxAdHS0UXVI+h01mUZGTh52HzmP1LvZ8HRzQs9HA+Hq6GDusIiISsnLy0Pbtm0xZswYPPPMM+WWT05ORr9+/fDiiy9i7dq12Lt3L8aNGwcvLy/06tWr2uObPHkyzp49i6FDh8LFxQUAMGzYMNy5cwcqlQrR0dEYO3asUXUwUVuYQ2eSMH/1NqjUGsgEARpRROyvhzBrVD90aOln7vCIiHT06dMHffr0qXD5r7/+Gr6+vvjoo48AAIGBgThw4AA++eQTkyRqQRCwfPlyjBw5Eps2bcKlS5eg0Wjg7++P5557Dp07dza6DiZqC5KRk4f5q7ehWHV/lTf1v900xSo15sVuw9pZY9iyJiKTy83NRXZ2tvazQqGAQqGolnsb2qxpypQp1XJ/Qzp16oROnTqZ5N58R21Bdh85D5Vao/ecSq3BnqMXajgiIrJEkZGRcHZ21n6VLGJVHQxt1pSdnY179+5VWz0lkpOT8fPPPxs8//PPP+PKlStG1cEWtQVJvZsNmSBoW9IPkgkCbt7JMkNURGRp4uPjERwcrP1cXa1pc3jttdeQnZ2Np556Su/5L774Ai4uLtiwYUOV62CitiCebk7Q6EnSAKARRXjVc67hiKiqTq6YjKLcDNgoXRE8Nsbc4RBVilKphJOTk0nubWizJicnJ9jZ2VV7fYcOHSqzW7179+5YsmSJUXWw69uC9Hw0EFZy/Y/cSi5Dj3aBNRwRVVVRbgaKcu6gKDfD3KEQSUpVNmsyRkZGBhwdHQ2eVyqVelcsqwwmagvi6uiAWaP6wdpKDkEQIJfJIAgCrK3kmDWqH1wd7c0dIhGRjtzcXO2OisD9d8InT55ESkoKgPtbF0dFRWnLv/jii0hKSsIbb7yBCxcu4Msvv8T333+PV1991STxNWnSBH/88YfB87///ju8vb2NqoNd3xamQ0s/rJ01BnuOXsDNO1nwqueMHu0CmaSJaoOifMDGsv6tHj16FF27dtV+njp1KgBg5MiRiI2Nxc2bN7VJGwB8fX2xbds2vPrqq4iJiYG3tze++eYbk0zNAoChQ4di/vz5CA8Px8svvwyZ7H77V61W4/PPP8d3332HmTNnGlWHIIoGXlpaiOPHjyMsLAzHjh1DaGioucMhqpDDMVEoyrkDG8d6CJ/8rbnDoZpy+zJQv5m5o6iyuvjztrCwEP369cO+ffvQoEEDBAQEAAASEhJw69YtdOnSBb/++qtRA+bY9U1EVFtois0dAT1EoVBg165dWLFiBcLDw3H79m3cvn0b4eHhWLlyJfbs2WP0qHZ2fRMR1RbqInNHQHrIZDKMHj0ao0ePNs39TXJXIiKqfmrjtkuk2oktaiKi2oJd35K0c+dOrFixAklJScjIyMDDQ78EQUBiYmKV789ETURUW6gKzR0BPWTx4sWYPn06PDw8EB4ejtatW1d7HUzURES1BRO15MTExKBbt27Yvn07rK2tTVIH31ETEdUWxfnmjoAekpGRgUGDBpksSQNM1EREtUdhjrkjoIeEh4cjISHBpHWw69sCZeTkYfeR80i9mw1PNyf0fDSQ+1AT1QYF3OFOar788kv06dMH7dq1w7Bhw0xSBxO1hTl0JgnzV2+DSq2BTBCgEUXE/noIs0b1Q4eWfuYOj4jKknfL3BHQQ4YMGQKVSoUXXngBL730Ery9vSGXy3XKCIKAU6dOVbkOJmoLkpGTh/mrt6FYpQYA7b7UxSo15sVuw9pZY9iyJpKy3HRzR0APcXNzQ7169dC8eXOT1cFEbUF2HzkPlVqj95xKrcGeoxcwuGtYDUdFRBWWfd3cEdBD4uLiTF4HB5NZkNS72ZAJgt5zMkHAzTt8/0UkaQXZfE9tgZioLYinmxM0BjZL04givOo513BERFRpmSnll6EalZ2djffffx+9evVCSEgIDh8+DAC4e/cuPv74Y1y+fNmo+zNRW5CejwbCSq7/kVvJZejRLrCGIyKiSsu4Yu4I6AHXr19HSEgIZs2ahevXr+Pvv/9Gbm4ugPvvr5cuXYrPPvvMqDqYqC2Iq6MDZo3qB2srOQRBgFwmgyAIsLaSY9aofnB1tKwN6YlqpTtVXzOaqt/rr7+OnJwcnDx5EvHx8aXW+R4wYAD27NljVB0cTGZhOrT0w9pZY7Dn6AXcvJMFr3rO6NEukEmaqLa4c8ncEdADdu3ahVdffRVBQUG4c+dOqfN+fn64du2aUXUwUVsgV0cHju4mqq1uX7q/3aWcP76l4N69e2jQoIHB8zk5xq8mx65vIqLaRFXIVrWEBAUFYf/+/QbPb926FSEhIUbVwURNRFTb/HPS3BHQv6ZMmYINGzZg0aJFyMq6P3VOo9Hg8uXLeOGFF3Do0CG8+uqrRtXBvhMiIolr164dUlNT4SnPwtG3QoFrfwHBQ80dFgEYMWIErl69irfffhszZ84EAPTu3RuiKEImk2HBggUYMGCAUXUwURMRSVxqaipu3LgBuNj8e+Bv4F4mYOdizrDoXzNnzsQLL7yAH374AZcvX4ZGo4G/vz+eeeYZ+PkZv4cCEzURUW2jUQNJvwEtB5o7EouWn5+Pxx9/HOPHj8eLL75odBe3IXxHTURUG53/BTCw0iDVDHt7eyQnJ0MwsDRzdWGiJiKqje5cBv45bu4oLF7v3r2xc+dOk9bBRE1EVFsdW81WtZm98847uHjxIl544QUcOHAAN27cwN27d0t9GYPvqImIaqubp4Brh4Em7c0dicVq2bIlAODcuXNYt26dwXJqtbrKdTBRExHVZgc/BRquAqxszB2JRZo1a5bJ31EzURMR1WZZ14Fjq4D20eaOxCLNmTPH5HVU+R21Wq3Ghg0bEB0djYEDB+L06dMAgKysLGzevBlpaWnVFiQREZXh1Hrg+jFzR0G4nwON6ebWp0qJOjMzE4899hiGDRuG9evX46effsKtW7cAAEqlEpMmTUJMTEy1BkpERAaIIrBvHpDDBpI5HD16FL1794a9vT3q1auH+Ph4AMDt27fRv39/xMXFGXX/KiXq6dOn4+zZs9i5cyeSkpJ09t+Uy+UYNGgQtm/fblRgRERUCfcygV1v39+0g2rMwYMH0alTJ1y6dAkjRoyARqPRnqtfvz6ysrKwdOlSo+qoUqLeunUrXnnlFfTs2VPvS/RHHnkEV65cMSowIiKqpNsXgf0fcspWDXrrrbcQGBiIc+fOYcGCBaXOd+3aFX/99ZdRdVQpUWdlZcHX19fg+eLiYqhUqioHRUREVXRpF5DAHs2acuTIEYwePRoKhUJvw7VRo0ZITU01qo4qJWp/f38cP254RZxdu3YhKCioykEREZERDn4OZN80dxQWwdraWqe7+2E3btyAUqk0qo4qJepx48Zh5cqV+O6777TvpwVBQGFhIWbOnIkdO3YgOppTBYiIzKI4Hzj4mbmjsAgdOnTApk2b9J7Ly8vDqlWrEBkZaVQdVZpHPXnyZJw9exZDhw6Fi4sLAGDYsGG4c+cOVCoVoqOjMXbsWKMCI6K6ryg3A+mn96EwMw0KFw+4t+4GG6WrucOqG67+cX/Vssbh5o6kTps7dy4iIyPRr18/DB16f4/wU6dOISkpCR9++CFu3bqFd955x6g6qtSiFgQBy5cvx/79+xEVFYU+ffogODgYEyZMQFxcHL766qsqBfPVV1+hTZs2cHJygpOTEyIiIvDrr78aLB8bGwtBEHS+bG1tq1Q3EdWsOxf/wpHPRuPKvlVIPbEDV/atwpHPRuPupcPmDq3uOPQ5oC42dxR1Wvv27bF9+3ZcvnwZUVFRAIBp06ZhwoQJUKvV2L59O9q0aWNUHUatTNapUyd06tTJqAAe5O3tjffffx/NmzeHKIpYvXo1+vfvjxMnTmjXU32Yk5MTEhIStJ9NvZQbEVWcoRZzUW4GLvywEOK/SUQU7y8QIaqLcX7TAjz6yiq2rKtDxlXg1AYg9AVzR1JnZGdnw8HBAXK5XHusW7duSEhIwMmTJ3Hp0iVoNBr4+/sjLCysWnKSpJYQfeqpp3Q+v/fee/jqq6/w559/GkzUgiDA09OzJsIjqhNqqrv5zsW/7idjjQqCIIMoanA1bg0CB72F/NvXIGr0zwwRNSqkn94H74hnqz0mi3QsFmjcHmjwiLkjqRNcXV2xZs0aDBs2DAAwZswYREdHo3379ggODkZwcHC111mlRO3r61vubwmCICAxMbFKQQH3lyjduHEj8vLyEBERYbBcbm4umjZtCo1Gg9DQUCxYsMBgUgeAwsJCFBYW6lxPZCnKSp5uzavvXWZ5LeYGLSP/rb/0UouCIENhJlfYqjYaFbB7FvDMUsDW2dzR1Ho2NjY6OSQ2NhY9evRA+/am28GsSok6MjKyVKJWq9W4evUq/vjjD7Rq1QohISFVCuj06dOIiIhAQUEBlEoltmzZYnCqV0BAAFauXIk2bdogKysLH374ITp27IizZ8/C29tb7zULFy7E3LlzqxQbUW1mqu5mfS309NP7ymwxF+dnQRT1T2kRRQ0ULh6VjoPKkHMT2PUO0PdD7rJlpBYtWuCbb76Bj48PnJ3v/+Jz5cqVMqcsA0BoaGiV6xREsXqXsDl16hR69eqF//u//0OPHj0qfX1RURFSUlKQlZWFTZs24ZtvvkF8fHyF5mUXFxcjMDAQQ4cOxfz58/WWebhFffLkSURGRuLYsWNG/UUS1aTDMVEoyrkDG8d6CJ/8bYWuuX7oB1zZt0r/qlWCAJ9uo/V2N5fVVa6vhS7IrODi2xaZSScgavS0mGVyNGjVFbfOxmt/adA5L7fGo5NiYePgUqHvyxJ4e3vjxo0baORig+vvd6j6jXw7Az3mADJ5uUVN4fjx4wgLC6vVP2937NiBIUOGVLg3VhRFCIIgrf2o27Zti+joaLz55ps4dqzyu7nY2NigWbNmAICwsDAcOXIEMTExFVor1draGiEhIbh8+bLBMgqFAgqFQvvZ2InoRLVFYWZapbuby+oqV3o1N9hCz0g8DkB/G0AUNbBv0ASBg97C+U0LSiX5wEFvmTRJF9/LQdKOr3H30l+AIEP9Fh3h1ysachu7cq8VRRHnNsxGRuIxBA5+G/UC/nstl/PPRVzZF4vcm5cBAXBsGACf7qOh9PAz2fdSacn7gf2Lgc5vALIqb55o0Xr37o3k5GQcOXIEaWlpGDVqFCZMmFDmK1pjmWQwmYeHB86dO1ct99JoNDot4LKo1WqcPn0affv2rZa6ieoShYtHpbqby+sq94541mD3NkQNIMigL1kLMiu4t+kOGwcXPPrKKt3W+r/HjfX3t9Ph0bY7PNr2LHXu4tbFKMq9i1bD34VGrcaln5fg8rbPEDDwjXLv+8/hrQBKj89RF93D2fWz4Na8Pfz7/A+iRo2U+LU4u+4dPDppNWRyCY3bTfgVsFIAj00BOEum0v7++280bdoUvXr1AgCsWrUKgwcPRvfu3U1WZ7X/SnXnzh2sWLHC4DvissyYMQP79+/HlStXcPr0acyYMQNxcXEYPnw4ACAqKgozZszQlp83bx527dqFpKQkHD9+HCNGjMDVq1cxbty4avt+iOoK99bdIMj0J4yS5Pmg8t4zZyafhCDo/xEiyORw9QuFILcGBAGCTH7/T7m1TovZRukK74hn4d/nf/COeNbk3d35t1OQkXgMzfpNhmOjFnBu0hL+vaNx6+x+FObcKfPa3NRE3PhzC5o/NVnPfa9DdS8HTSNHwL6eNxwaNEWTzsNQnJeJwqx0U307VXd2K/DXUm7eUQUhISHYtm1bjdZZpV/zunXrpvd4ZmYmLly4gKKiIqxZs6bS901PT0dUVBRu3rwJZ2dntGnTBjt37kTPnvd/K05JSYHsge6ajIwMjB8/HqmpqXB1dUVYWBgOHjzIdcaJ9LBRulaqu7m8rnIAZbbQnX3aoPlTU0zSYq6q7OsXILd1gGPD5tpjLr4hgCAg50YCFC066r1OXVyAhK2L4d/7Jdgo3Uqdt6vXCFZ2Tkg9uQuNOz0HUaNB2sldsKvfGLZSHRh3aj2gcARChps7klrFzs4O+fn52s/x8fEYP368SeusUqLWaDSlRn0LggBfX1/06NEDY8aMQYsWLSp93xUrVpR5/uHNtz/55BN88sknla6HyNI8OCDMO2IQIACq/Gxt8oQo4vqhH3QGjJXXVe7iG4Lc1ET9A8Ie6N6W0nzo4twM2Ni76BwTZHJY2zmiOC/D4HXJu5bDyTtQ5530g6wU9mj9wkKc3/gurh3YAACwc2uIlkPn3+9NkKrDywCHBsAjT5g7klqjbdu2+PjjjyGXy7Wjvo8cOVLuqpjPPPNMleusUqJ+OGESkXQZGpldMnfa0ICx5k9OgiCzMpiIvR59Eo6NHjHLgLCHXTvwHa798b32s0ZVhJwbF5C442vtsdAXq7a08Z2LfyLzyt8IGf+pwTLq4kJc+iUGTt5BCBj4BkSNBjf+3Ixz381B2zGfQG6tMHit2e1fDLg0Adwr37iyRDExMRg0aJB2PwtBEBATE4OYmBiD10hu1DcRSUd5A8KCxywxeP7SL5+iWb9JuLztU4OJ2K15uMkGhFWGZ1hf1A96XPs5Yeti1G/xGOo90JWtcKwHa6UrivIzda4VNWoU38uBtYP+OeRZV/5GQcZNHFr8nM7x85sWwKlxS7SJeh+3zsShMCsdbUd/pH0toBz4Ov78cAjuXvwTDVpWffeklJQU5OXlAQDyCtVIuVuAJm7VuKeBugjYNx949hvAuvyR7+bwxRdfYPHixUhNTUXbtm3x2WefITxc/wI9sbGxGD16tM4xhUKBgoKCaomlXbt2uHz5MhITE5GWloYuXbpg5syZVZqOXFEVStTffluxeZoPK1mgnIjMo7wBYVd+iy17YZK8jHITccmAMHOytnOEtZ2j9rPMSgFrB2fYuTXUKefk3QLqgjzk3rwEpdf999SZyacAUYRjowC99/buOAgewbpdwyeWTYRfz/Ha1dw0qsJ/R1D/90rwfsIWUNWlKg4fPoz58+dj27Zt2ntk3lPDZ+ZhPNnaDe/0bYpHfRzLuUsFZV0H/v4OCBtVPferRt999x2mTp2Kr7/+Gu3bt8eSJUvQq1cvJCQkwN3dXe81pt4DwsrKCgEBAQgICMDIkSPx5JNPmn9lslGjRlX6xoIgMFETmVm5c6ez0sudWy2FRFxd7Os3gat/GC5t+wzN+kyEqFEjcedXaNCyMxSO9QAAhdm3cWbtTDzy9FQ4NgqAjdJN7wAyhXMD2Lre32fAxTcEyXtWInHHl2j46FMQRRHX/9gIQSaHS9PK75y0efNmDBkyBKIolkr0oghsP3MXv57JwHfjA/FMSP0q/E3o8fdGoM3zgLW0diD8+OOPMX78eG0r+euvv8a2bduwcuVKTJ8+Xe81NbkHxKpVq0xeR4USdXJysqnjICITKHfutLM78m+nGD4v1RHLRnhkwOtI2vEVzqydCQgC6rV4DP69orXnRY0a9+5ch7q4Yus3AIB9/cYIGjIb1/avw6lVr0EQBDh4+qPl0HmwcSyd5Mty+PBhDBkyBGq12mBrXK0BBIgYsvw8Dr4RXD0t66JcIOUQ4N/V+HtVk6KiIhw7dkxnWq5MJkOPHj1w6NAhg9dVdg+Iypg3bx4EQcDMmTMhk8kwb968cq8RBMGoPakrlKibNm1a5QqIqPqVLOFZ3trc7q274WrcGoMDwny6jUZm8skyR27XRm2i3jd4ztrOsczFTWxdPNDp7bLnyeo77+oXAle/qu1x8KB3331Xb0v6YSIAESLe3X4VP/6vldH1AgBunqyRRJ2bm4vs7Gzt54dXjCxx+/ZtqNVqeHjo/sLo4eGBCxcu6L13VfaAqIw5c+ZAEAS8+eabsLGxwZw5c8q9xthEzTXkiGqh4LExCJ/8LYLHGh5pCvw3d9rQwiMO7k3LPM/1tmtWSkoKfvnllwqPEFZrgJ9P30XK3eoZKIWMq9Vzn3JERkbC2dlZ+7Vw4cJqu3dERASioqIQHByMyMhIbN68GQ0aNKjQMtQVodFooFarYWNjo/1c3pcxI74BI0Z9p6amYsWKFTh+/DiysrKg0eh2rwmCgL179xoVHFFdpFEVQaM2sPSmCTg1aYWQ6C9x++x+5N9NhbVTfTQI6gxrB2fcy82CnVcAWo2Jwe1zv6Mw6xYUzg10zlcXmdwKsjq8c1N1PNft236u9OAzUQR2nruLkR30D6yqlJzbEIpL965UF5Xq/t9PfHy8zr7N+lrTAFC/fn3I5XKkpemuQ5+Wllbhd9AV2QNC6qqUqP/++2906dIF9+7dQ0BAAE6fPo2goCBkZmbixo0b8Pf3R+PGjas7VqJaT6MqQuaVU1AV5JdfuJrZunrhs/U78OFXq2u8bjKtCf93GRP+rzoS0UFg+NpquE/ZlEolnJycyi1nY2ODsLAw7N27FwMGDABwvwW7d+9evPzyyxWqqyb2gDh//jwSExORk5MDR0dHNGvWrEqLfhlSpUQ9ffp0KJVKnDx5Evb29nB3d0dMTAy6deuGjRs34qWXXsLataZ/2ES1jUatgqogHzK5FQQztC5fn/Qipr0cXX7Baib+29p0a94OVgr7Gq/f1FSF+bh76ajRz3XDll/w6tsLKn3d1883RVR4vSrXC9zfGUzt4Amr4etN9oxOnDhR6WlMU6dOxciRI9GuXTuEh4djyZIlyMvL044Cj4qKQqNGjbTd5/PmzUOHDh3QrFkzZGZmYvHixSbbA2Lp0qV47733cOPGjVLnmjRpgpkzZ1ZLvVVK1H/88QfeeOMNNGnSBHfv3gUAbdf34MGDceDAAbz++uuIj483OkCiukiwsjHLalVy6xqvEgCgLraCujAf1tbWsLI2UxAmJGisYW1tBbnC3qjn2r1LZwjCwkp1fwsC0LOFM6ytjFyqVBRRpKxv0mdkZVX5lDNkyBDcunULs2bNQmpqKoKDg7Fjxw7tADNz7QHx2muv4eOPP4abmxvGjBmDVq1aQalUIjc3F6dPn8bWrVsRHR2NS5cuYdGiRUbVVeW1vkv+klxcXCCXy7UJGwBat25d7rrdRCRNqns5yEg6geK8DFg7uMLVLwRWdtW0sAaVqXEjL/Tq1hm74w5UaACSXAb0DXJBE7fq+aVP5dQEUhxF8PLLLxvs6jbHHhCHDx/Gxx9/jIEDB+Lbb7+Fg4NDqTIxMTEYMWIEPvzwQwwePBjt2rWrcn1VGvXt6+urnVstk8ng6+uLPXv2aM8fPHgQLi4uVQ6KiMp2efvnuLB5IS5v/7xa75t9/TwStixC2okduHvpMNJO7EDClkXIvn6+Wushw15/ZQIEofzVtO6vgyZgRi+vaqu7yL3yi7NYohUrVsDLywvr1q3Tm6QBwMHBAevXr4eHh4fRDdcKJ+qMjP92lnniiSewceNG7eeXXnoJ33zzDXr06IHu3btj9erVGDZsmFGBEZFhqoIcqPKzoSrIqb573svBtf1rIWrUAERA1AAQIWrUuLZ/LVT3qq8uMiy0bSus/OwDyOUyyOX6u7PlMkAuE7B+tD8ebaqslnpVbo9A41D3FrgxhUOHDmHw4MEGR6uXsLW1xeDBg/HHH38YVV+FE7WnpycGDhyITZs2Ydq0aVi/fj2K/x3GP2XKFMybNw937txBVlYW3nnnHbz77rtGBUY1KyMnD9/vO4pPN+3D9/uOIiMnz9whUQ3LSDoBUWNgFTONBpnJJ2o4Isv1VO8e2LnpW/Ts0knPlsL3u7v3v9oCA9qWveBNZRQ0611t96rrrl27hsDAwAqVDQoKwrVr14yqr8LvqAcNGoSffvoJP/30ExwdHfHMM89g+PDh6NatGwRBwNtvv423337bqGCo6v730Tpk5OTD1dEeX06rXG/GoTNJmL96G1RqDWSCAI0oIvbXQ5g1qh86tPQzUcQkNcV5GfezgL6BTIKAolzD+zVT9Qtt2wrrv/kU127cROe+g5GZnQMXOzmOvdmy2t5Jl1DXD4S6XgugsOanDdZG2dnZcHSs2LgNpVKJnBzjeqMq3KJeu3Yt0tPT8X//9394/PHHsXbtWjzxxBNo1KgRpk2bhuPHjxsVCBknIycft7NykZFTuX9oGTl5mL96G4pV99cVVms0EEURxSo15sVuY8u6DlPdy8Gts/vxz+Efcevsfsht7PUnaQAQxXKXKyXTaNzIC/b297efdLCRVXuSBoDCFs9U+z3rMlEUK7UjV1V3UCtRqVHfdnZ2GDp0KIYOHYqMjAx8//33WLduHZYsWYIlS5agefPmGDFiBIYNGwY/P7bEaoPdR85Dpdbf3alSa7Dn6AUM7hpWw1GRqWVfP//v+2jNf63o+yOY9CZrQSaDi1+oGSIlU1N5BkPj6gtUYhMSAj788EOsX7++3HL65lhXVpWXEHV1dUV0dDSio6Nx48YNrFu3DuvXr8esWbMwe/ZstG/fHgcPHjQ6QDKt1LvZkAkC1Hp+OMsEATfvVN8SkiQNuoPG8F9iFkVAkEGQyXUSuCCToXHn4bCyrZ5BSyQlAooC+ps7iFqnZA2RB6cll1feGFVO1A9q1KgRXn/9dfTu3RuzZs3Cjz/+iL/++qs6bk0m5unmBI2BbhmNKMKrnnMNR0SmVtagMYgi6rfqArm1AkW5GbBRusLFL5RJuo5SebeHxonLPVfWlStXarQ+oxN1SkqKtjV95swZiKKIjh07Yvjw4dURH5lYz0cDEfvrIRSrSi+uYCWXoUe7io1spNqjvEFj6sJ8eLTtWfOBUc2SK/huupaoUqK+ffu29v30oUOHIIoiWrRogXnz5mH48OHw8fGp5jCpOmXk5GH3kfNIvZsNTzcnTB3SHR9/t1dn1LeVXIZZo/rB1bHurcts6awdXDlojFDYYgBEOzdzh0EVUOFEnZeXhy1btmDdunXYu3cviouL4eXlhSlTpmD48OEIDeVAk9pA31QsK7kMU5/rjozce7h5Jwte9ZzRo10gk3Qd5eoXgvRTu/57R/0ADhqzDOp6ASj27W7uMKiCKpyo3d3dUVBQAKVSiWHDhmnnUD+4GDpJ24NTsQBoB5AVq9T4+Pu9WDtrDFwd9S+HR7Xbw+t3N+rwDG78uZmDxiyQaOOIgpBxgMCf3bVFhRN1jx49MHz4cDz99NOwtbU1ZUxkIpyKZZn0TcUSZDI07PAM1AW5HDRmSQQZCsKiIdrx9UZtUuFE/eOPP5oyDqoBnIpleQxNxRI1avzz52YEDHyTO2NZkMJWw6Cu38LcYVAlse/DgnAqluXh+t1UotivJ4p9upg7DKqCaplHTbUDp2JZHq7fTQCg8mqHwqDB5g6jztq5cydWrFiBpKQkZGRklFoyVBAEJCYmVvn+TNQWxNXRAbNG9cO82NKjvjkVq27iVCxS1w9EQchYDh4zkcWLF2P69Onw8PBAeHg4WrduXe11MFFbmA4t/bB21hjsOXqBU7EsAKdiWTaNiy/uPToRkFubO5Q6KyYmBt26dcP27dthbW2av2cmagvk6ujA0d0WwsrOEY07D9c76ptTseo2jVNj5LefAlhxlo4pZWRkYNCgQSZL0gATNVGd5+QdiICBbyIz+QSnYlkIjdIL9zpMBWy4LoKphYeHIyEhwaR1MFETWQArO0fUD+ps7jCoBoj29XGvw1SICk67qwlffvkl+vTpg3bt2mHYsGEmqYOJmoiojhBtHJDf/lUuaFKDhgwZApVKhRdeeAEvvfQSvL29IZfLdcoIgoBTp05VuQ4maiKiukCQoaDd/yAqPcwdiUVxc3NDvXr10Lx5c5PVwURNRFQHFAUMgLpegLnDsDhxcXEmr4MT64iIajmNiy+KmvU2dxhkImxRExHVagIKWg/ngiZmVlxcjAsXLiArKwsaPcv2du5c9cGcTNRERLWYqmEYNC4+5g7DYmk0GsyYMQNffvkl8vPzDZZTq0svOlRRTNREVK6H97N29QvhrlsSUdSsr7lDsGgLFizA4sWLER0djU6dOuGFF17AokWL4OLigi+//BKCIOCDDz4wqg4maiIqMxHr2886/dQuNO48HE7e3MjFnNSuftA4NzF3GBYtNjYWzz33HL766ivcuXMHABAWFoZu3bph5MiRiIiIwL59+9CjR48q18GXGmSUjJw8fL/vKD7dtA/f7zuKjJw8c4dElZR9/TwStixC2okduHvpMNJO7EDClkXIvn7+of2sRUDUABAhatS4tn8tVPdyzB2+RVN5R5g7BIt3/fp1dOvWDQCgUCgAAAUFBQAAGxsbjBgxAmvWrDGqDraoqcoOnUnC/NW6O3HF/noIs0b1Q4eWfuYOjx5gqMWsm4ih3WmrJBHXD4osdz9rrnhmJoIMKi+u2W9u9erVQ25uLgBAqVTCyckJSUlJOmUyMozbTpaJmqokIycP81dv0+5trf73B3yxSo15sduwdtYYuDpynWEpKKvrujDrVpmJOC/1MvezlgD3BvUBAB7WudpjarfmEBVO5gqJ/hUSEoIjR45oP3ft2hVLlixBSEgINBoNPv30U7Rt29aoOpioqUwZOXnYfeQ8Uu9mw9PNCT0fDYSrowN2HzkPlVr/D3iVWoM9Ry9why4JKK/F7OzTtsxELD5wTSncz7rG/PbTegCA8udx2mNsTUvDhAkTEBsbi8LCQigUCrz33nvo3LkzOnfuDFEU4erqivXr1xtVBxM1GVRW13bq3WzIBEHbkn6QTBBw806WGSKmh2UknSizxawuzCszESu9mqHg7g3uZy01ggyqhu3MHQUBePrpp/H0009rPwcFBSExMRFxcXGQy+Xo2LEj3NzcjKqDiZr0Kq9re0i3MGgM/IDXiCK86jnXWKxkWHFeRpktZrnCAYJMZjAR1wuIgF09b+5nLTHqBkHs9pYwZ2dn9O/fv9rux0RNepXXtQ0IsJLLtIn8QVZyGXq047QdKbB2cC2zxWzr4gGnzsPLTMTcz1p6ihu1N3cI9AC1Wo2NGzfit99+Q3p6OubNm4fWrVsjKysLe/fuxWOPPQYPj6pvlsJETXrfQ5fXtZ2Vdw+zRvXDvFjdrnEruQyzRvWDq6O9Gb4TepirXwjST+0qs+vaylZZbiLmftYSIrOCyiPY3FHQvzIzM9G7d28cPnwYSqUSeXl5eOWVVwDcHwU+adIkREVFYcGCBVWuQ1LzqL/66iu0adMGTk5OcHJyQkREBH799dcyr9m4cSNatGgBW1tbtG7dGtu3b6+haOuGQ2eSMHzeSnzzyx/YfugMvvnlDwyftxJFxapyu7Y7tPTD2lljMP6pTugb0Qrjn+qEtbPGcmqWhFjZOaJx5+EQZHIAwr/rQQsQZHKdruuSRNwwvD/qB3Vma1nC1PUCAGs7c4dB/5o+fTrOnj2LnTt3IikpCeIDPzflcjkGDRpkdF6SVIva29sb77//Ppo3bw5RFLF69Wr0798fJ06cQMuWLUuVP3jwIIYOHYqFCxfiySefxLp16zBgwAAcP34crVq1MsN3ULuU9R5677ELsJIJKFaXTtYPdm27OjpwdLfEseu6blHV52slKdm6dSteeeUV9OzZU7sy2YMeeeQRxMbGGlWHpFrUTz31FPr27YvmzZvjkUcewXvvvQelUok///xTb/mYmBj07t0br7/+OgIDAzF//nyEhobi888/r+HIa6ey3kOrNSK6hbWAtZUcgiBALpNBEARYW8nZtV0LscVcd2hc2WMlJVlZWfD19TV4vri4GCqVyqg6JNWiflDJy/m8vDxEROhfJu/QoUOYOnWqzrFevXph69atNRBh7Vfee2gbayusnTUGe45ewM07WfCq54we7QKZpInMSO3U2Nwh0AP8/f1x/Phxg+d37dqFoKAgo+qQXKI+ffo0IiIiUFBQAKVSiS1bthj8JlNTU0uNpPPw8EBqaqrB+xcWFqKwsFD7uWTpN0vk6eZU7ntodm0TSYdo68r30xIzbtw4vPnmm+jSpQu6d+8OABAEAYWFhZg3bx527NiBZcuWGVWH5BJ1QEAATp48iaysLGzatAkjR45EfHy80b+RlFi4cCHmzp1bLfeq7Xo+GojYXw9xipUF4DaVdYPGoYG5Q6CHTJ48GWfPnsXQoUPh4uICABg2bBju3LkDlUqF6OhojB071qg6JJeobWxs0KxZMwD3two7cuQIYmJisHTp0lJlPT09kZaWpnMsLS0Nnp6eBu8/Y8YMne7ykydPIjIyspqir11cHR04xcoCcJvKukO0M26FK6p+giBg+fLlGDlyJDZt2oRLly5Bo9HA398fzz33HDp3Nn5ao+QS9cM0Go1OV/WDIiIisHfvXkyZMkV7bPfu3QbfaQP3tyEr2YoMuD/PzdI8PG/6i6nP4+iFFL6HroPKW+s7YOCbbFnXIhoFV/yTqk6dOqFTp04mubekEvWMGTPQp08fNGnSBDk5OVi3bh3i4uKwc+dOAEBUVBQaNWqEhQsXArjf5RAZGYmPPvoI/fr1w4YNG3D06FGj3wfUZWWt38130XVPeWt9c5vKWsaaO9JZIkkl6vT0dERFReHmzZtwdnZGmzZtsHPnTvTs2RMAkJKSApnsvxllHTt2xLp16/D222/jrbfeQvPmzbF161bOoTaAW1NanvLW+uY2lbWLaM2eLil4cBOOihAEAT/++GOV65NUol6xYkWZ5+Pi4kodGzx4MAYPHmyiiOoWbk1pecpb65vbVNYuopWi/EJkcr/88gtsbW3h6empsxKZIYIgGFWfpBI1mRa3prQ8FVnrm2oRua25IyAAjRo1wo0bN1C/fn0MGzYMzz//fJmDmI0lqZXJyLQqMm+a6paKrvVNtYNoZWPuEAjAtWvX8NtvvyEkJATz589H48aN0aNHD6xatQo5OTnVXh8TtQXp+WggrOT6HznnTdddJWt9e4b2hlvzcHiG9kbAM9M5NasWEuWW2fX9xRdfwMfHB7a2tmjfvj0OHz5cZvma2KwpMjISS5cuRWpqKjZt2oR69erh5Zdfhru7O5555hls2rTJ4IylymKiriNcHe1R31lZ5rSqknnTXL/b8nCt7zrCAt9Rf/fdd5g6dSpmz56N48ePo23btujVqxfS09P1li/ZrGns2LE4ceIEBgwYgAEDBuDMmTMmic/a2hr9+/fHd999h7S0NG3yHjJkCD744INqqYPvqOuIL6cNq1C5kq0puX43Ue0jyiyv6/vjjz/G+PHjMXr0aADA119/jW3btmHlypWYPn16qfIPbtYEAPPnz8fu3bvx+eef4+uvvzZZnIWFhdi5cyd+/PFHnDhxAra2tvDx8amWezNRm1lRscrgSGxTUVhbo19Ea6jVamg0GgAisnLyajQGK7kMNtaW97+fqrgYxcUqaGQqaIzp0BL/+7O4uLhaYjMldbEK6mIViouLIcqkH29llTxXtSYfQrFxOyWVRSgqhphvmn+roqoIGrVpn1HJLlK5ubnIzs7WHn94IaoSRUVFOHbsGGbMmKE9JpPJ0KNHDxw6dEhvHTW5WZNGo8Hu3buxfv16bN26Ffn5+ejRoweWL1+OgQMHwsGheqa7Wt5PSgkpKlbh5KVryCuonvcYlRW79HN8u+wLs9RNxvnhta5wd7bDP6lpiHiknbnDIaqUh5dtnj17NubMmVOq3O3bt6FWq/VuvnThwgW9967KZk2VdfDgQaxbtw4bN27EnTt30KFDByxYsADPPfcc6tevX231lGCiNiOVWoO8gkJYW8lhbSWv8fqjX56MCf97Bbn3CnDy0g1k5ubDRWmP4OaNoLSr+jSQCylp+G7vMWg0GggyAaJGhEwmw5DuYWjRxAPFKjWKVWqEB/nB3tayuvJUhfm4e+ko5Ap7yK2r/r0n/vQhVPey0dDTA+kXj1ZjhKahLi6CujAfbs3bwUpRN1+zaP5tkZpUYQ6gMN2SrzK5FWQmHFl+4sQJtG/fHvHx8QgODtYe19ealrJOnTrBzs4Offv2xdChQ7Vd3CkpKUhJSdF7TWho1adCMlFLgLWVHLY21uaoGWeT/8GanX9BrdFAEASIooi4U5cR1bsDgny8Kn3HnPwCbIo/CVEQIMjv//IhyO/31G6KP4mZUX1gZ2cNsaAI1tbWsLY2x/dtPoLGGtbWVpBbW0FuzPcu/Pdnbfg7lEEDmcYK1tbWsKoF8VZJTXxfNlaATe1dPdDK6n7KUSqVcHJyKrd8/fr1IZfLK7X5UlU2a6qKe/fu4YcffsDmzZvLLCeKIgRBgFpdei2DimKitmA5+QVYs/Mv7TvykhV2VGoNvt3xJ2ZG9YGjveGWdU5+AY5euIqMnHy4OtqjXYumOHrhKtQG1pZWazQ4lpCCDi19q/+bsTBWto46f5KlMG6Fq9rGxsYGYWFh2Lt3LwYMGADg/nvhvXv34uWXX9Z7TVU2a6qsVatWVdu9KoKJuo5Y8v1e5OQXwtFegSnPda/QNRVJql1CHtF7Xl9LfOfhc2jm7a79/DBBEHA3u2YHrdVVzfrq/yFFVNdMnToVI0eORLt27RAeHo4lS5YgLy9POwrcHJs1jRw5struVRFM1HVETn4hsvLuVeqajJz8KiXVslriF1PSDK59K4oi3Jxqb7cdkdkZuWZ0bTRkyBDcunULs2bNQmpqKoKDg7Fjxw7tgDFL2KyJidqCuTraVympltUS14giZAaSv1wmQ1hAk6oHTGTxLC9RA8DLL79ssKvbEjZr4spkFqxdi6aQy/T/L1BWUi1piesjkwl4pLE7rOQyCML9z4Jwf950VO8OZb7zJqJyWGCLmtiitmiO9raI6t0B3+74U+dds1z2X1LVN2CsvJZ4M293DOneDscSUnA3Ow9uTg4IC2jCJC1hqns5yEg6geK8DFg7uMLVLwRWdhyoJjlyy5rOSPcxUVugh5Pv5MHdkJCSViqpGhowNrhrKOQymd4V1Upa4o72tgYHopG0ZF8/j2v710LUaO632EQR6ad2oXHn4dy4Q2rYorZITNQWxlDyjerdQSexljVgbONvxzG4ayg2/nbcYEucpMVQi1l1L+ffJP3vHM9/n7OoUePa/rUIGPgmW9ZEZsZEbUEqM2+6vKlbOfmFmBnVh93btUBZLebCrFv3j+shajTITD6B+kGdazhiInoQE7UFqcy86YpM3WL3tvSV12J29mmrTd6lCAKKcjNqMFoi0oejvi1IWaO1H543XdWpWyQtGUknymwxqwvz9CdpABBF2ChdTRgdEVUEE7UFqUzyrerULZKW4rwMwwOQBAFyhQMEA89ZkMng4lf1jQSIqHowUVuQyiTfkqlbnA9du1k7uJbZYrZ18UDjzsMhyOQABECQARAgyORo3Hk4rGyVNRkuEenBd9QWpCLzpgHd6Vtdgh+BIAB5BUUcMFYLufqFIP3Urv/eUT+gpMVsZatEwMA3kZl8AkW5GbBRumqPE5H5MVFbmCAfrzJHa+ubvlWSyKuy7SWZl5WdIxp3Hl5q1Lcgk+m0mK3sHDm6m0iimKgtkKHR2sZue0nS5OQdyBYzUS3GRE1axmx7SdLGFjNR7cVEbYH0rd/taG9b5W0viYjIdJioLUxZS4hy7jQRkfRwepYFefAdtCgCGo0IUfzvHXSLpp6cO01EJDFM1BakvHfQCSlpnDtNRCQx7Pq2IBV5B90l5BFutkFEJCFM1Bakou+gudkGEZF0sOvbgnD9biKi2oeJ2oJw/W7LpbqXg1tn9+Ofwz/i1tn9UN3LMXdIRFRB7Pq2MOUtIUp1T/b186WWEE0/tQuNOw+Hk3egucMjonIwUVsgvoO2HKp7Of8m6X835fh3jIKoUePa/rUIGPgmrOwczRghEZWHXd9EdVhG0on7LWk9RI0GmcknajgiIqosJmqiOqw4L+N+d7c+goCi3IyaDYiIKo2JmqgOs3Zw1XZ3lyKKsFG61mxARFRpTNREdZirXwgEA1PyBJkMLn6hNRwREVUWEzVRHWZl54jGnYdDkMkBCIAgAyBAkMnRuPNw7klNVAtw1DdRHefkHYiAgW8iM/kEinIzYKN0hYtfKJM0US3BRE1kAazsHFE/qLO5wyCiKmDXNxERkYQxURMREUkYu74tUE5+AY5euIqMnHy4OtqjXYumXEKUiEiimKgtzNnkf7Bm519QazTaval3Hj6HqN4dEOTjZe7wiIjoIez6tiA5+QVYs/MvqNQaiCKg0YgQRUCl1uDbHX8iJ7/A3CESEdFDmKgtyNELV6E2sO6zWqPBsYSUGo6IiIjKw0RtQTJy8iEYWPdZEATczc6r4YiIiKg8kkrUCxcuxKOPPgpHR0e4u7tjwIABSEhIKPOa2NhYCIKg82Vry4FR+rg62kM0sO6zKIpwc3Ko4YiIiKg8kkrU8fHxmDhxIv7880/s3r0bxcXFeOKJJ5CXV3ZLz8nJCTdv3tR+Xb16tYYirl3atWgKuYF1n+UyGcICmtRwREREVB5JjfresWOHzufY2Fi4u7vj2LFj6NzZ8KpKgiDA09PT1OHVeo72tojq3QHf7vhTZ9S3XCZDVO8OnKJFRCRBkkrUD8vKygIAuLm5lVkuNzcXTZs2hUajQWhoKBYsWICWLVvqLVtYWIjCwkKday1JkI8XZkb1wbGEFNzNzoObkwPCApowSRMRSZRkE7VGo8GUKVPw2GOPoVWrVgbLBQQEYOXKlWjTpg2ysrLw4YcfomPHjjh79iy8vb1LlV+4cCHmzp1rytAlz9HeFl1CHjF3GEREVAGSekf9oIkTJ+LMmTPYsGFDmeUiIiIQFRWF4OBgREZGYvPmzWjQoAGWLl2qt/yMGTOQlZWl/YqPjzdF+ERERNVCki3ql19+Gb/88gv279+vt1VcFmtra4SEhODy5ct6zysUCigUCu1npZJb/T2MS4wSEUmHpBK1KIp45ZVXsGXLFsTFxcHX17fS91Cr1Th9+jT69u1rggjrPi4xSkQkLZLq+p44cSL+7//+D+vWrYOjoyNSU1ORmpqKe/fuactERUVhxowZ2s/z5s3Drl27kJSUhOPHj2PEiBG4evUqxo0bZ45vwWwc7RVwdrCDo72i/MIGcIlRIiLpkVSL+quvvgIAdOnSRef4qlWrMGrUKABASkoKZA/MBc7IyMD48eORmpoKV1dXhIWF4eDBgwgKCqqpsCVhynPdK1zWUNd2RZYY5SA0IqKaJalEbWjVrAfFxcXpfP7kk0/wySefmCiiuqesru2SJUb1PQcuMUpEZB6S6vom0yqva9ve1oZLjBIRSQwTtQUpr2tbALjEKBHVSnfv3sXw4cPh5OQEFxcXjB07ttwFrbp06VJqr4gXX3yxhiKuOCZqC1Le7ll5BUWI6t0BVnIZBAGQyQQIAmAl5xKjRCRtw4cPx9mzZ7F7927t9N4JEyaUe9348eN19or44IMPaiDaypHUO2oyrYrsnsUlRomotjl//jx27NiBI0eOoF27dgCAzz77DH379sWHH36Ihg0bGrzW3t5e8ntFsEVtQSq6e1bJEqPPRIagS8gjTNJEJGmHDh2Ci4uLNkkDQI8ePSCTyfDXX3+Vee3atWtRv359tGrVCjNmzEB+fr6pw600tqgtCHfPIiIpyM3NRXZ2tvbzwytGVlZqairc3d11jllZWcHNzQ2pqakGrxs2bBiaNm2Khg0b4u+//8abb76JhIQEbN68ucqxmAITtYVh1zYRmVtkZKTO59mzZ2POnDmlyk2fPh2LFi0q817nz5+vchwPvsNu3bo1vLy80L17dyQmJsLf37/K961uTNQWiLtnEZE5xcfHIzg4WPvZUGt62rRp2sWuDPHz84OnpyfS09N1jqtUKty9e7dS75/bt28PALh8+TITNRERWS6lUgknJ6dyyzVo0AANGjQot1xERAQyMzNx7NgxhIWFAQD27dsHjUajTb4VcfLkSQCAl5e09jXgYDLSkZNfgN+OJ2Bz/An8djyB63sTkeQFBgaid+/eGD9+PA4fPow//vgDL7/8Mp5//nntiO8bN26gRYsWOHz4MAAgMTER8+fPx7Fjx3DlyhX89NNPiIqKQufOndGmTRtzfjulsEVNWtw5i4hqq7Vr1+Lll19G9+7dIZPJ8Oyzz+LTTz/Vni8uLkZCQoJ2VLeNjQ327NmDJUuWIC8vD40bN8azzz6Lt99+21zfgkFM1ARAd3lR4L9110uWF50Z1YcDzohIstzc3LBu3TqD5318fHTWkWjcuDHi4+NrIjSjseubAJS/vOixhJQajoiIiAC2qC2Svm0uuXMWEZE0MVFbGEPvoUOaN+bOWUREEsSubwtS1jaXxy+mQCZw5ywiIqlhorYgZb2H1ogiQh9pzJ2ziIgkhl3fFqS899DWVnIuL0pEJDFM1BakIttccnlRIiJpYde3BanoNpdERCQdTNQWpGSbS76HJiKqPdj1bWG4zSURUe3CRG2B+B6aiKj2YNc3ERGRhDFRExERSRgTNRERkYQxURMREUkYEzUREZGEMVETERFJGBM1ERGRhHEe9b/Onz9f43XeKyzGxaTrsFVYQ2FtOY+isFiFgsJi2BRmwU5hbe5wapSq6B6yUy5CZmMLuZWNucOpMWpVETRFBXDKtYKVjZ3OOS8vL3h5eZkpsqq5efMmbt68ae4wah1z/JytCywnOxjg5eWFyMhIjBgxwtyhEFmk2bNnY86cOeYOo1KWLl2KuXPnmjuMWikyMrLW/WJmboJoaDslC2KJvx3n5uYiMjIS8fHxUCqV5g6HaoBUnzlb1OWT6rOritr4vM2NidpCZWdnw9nZGVlZWXBycjJ3OFQD+MxrLz47y8bBZERERBLGRE1ERCRhTNQWSqFQYPbs2VAoFOYOhWoIn3ntxWdn2fiOmoiISMLYoiYiIpIwJmoiIiIJY6Imo125cgWCICA2NtbcoRAR1TlM1DUsMTER0dHR8PPzg62tLZycnPDYY48hJiYG9+7dM1m9586dw5w5c3DlyhWT1VER7733Hp5++ml4eHhAEIRatyKVKQmCUKGvuLg4o+vKz8/HnDlzKnUvPruy8fmRqVj8EqI1adu2bRg8eDAUCgWioqLQqlUrFBUV4cCBA3j99ddx9uxZLFu2zCR1nzt3DnPnzkWXLl3g4+Njkjoq4u2334anpydCQkKwc+dOs8UhRWvWrNH5/O2332L37t2ljgcGBhpdV35+vnYJzC5dulToGj67svH5kakwUdeQ5ORkPP/882jatCn27duns4TexIkTcfnyZWzbts2MEf5HFEUUFBTAzs6u/MKVlJycDB8fH9y+fRsNGjSo9vvXZg+vN//nn39i9+7dklmHns+ubHx+ZCrs+q4hH3zwAXJzc7FixQq969w2a9YMkydP1n5WqVSYP38+/P39oVAo4OPjg7feeguFhYU61/n4+ODJJ5/EgQMHEB4eDltbW/j5+eHbb7/VlomNjcXgwYMBAF27di3VBVdyj507d6Jdu3aws7PD0qVLAQBJSUkYPHgw3NzcYG9vjw4dOhj1C4U5W/N1gUajwZIlS9CyZUvY2trCw8MD0dHRyMjI0Cl39OhR9OrVC/Xr14ednR18fX0xZswYAPfHFJT8oJ47d672/4fyukL57IzH50dVwRZ1Dfn555/h5+eHjh07Vqj8uHHjsHr1agwaNAjTpk3DX3/9hYULF+L8+fPYsmWLTtnLly9j0KBBGDt2LEaOHImVK1di1KhRCAsLQ8uWLdG5c2dMmjQJn376Kd566y1t19uDXXAJCQkYOnQooqOjMX78eAQEBCAtLQ0dO3ZEfn4+Jk2ahHr16mH16tV4+umnsWnTJgwcOLD6/oKoQqKjoxEbG4vRo0dj0qRJSE5Oxueff44TJ07gjz/+gLW1NdLT0/HEE0+gQYMGmD59OlxcXHDlyhVs3rwZANCgQQN89dVXeOmllzBw4EA888wzAIA2bdqY81uzCHx+VCUimVxWVpYIQOzfv3+Fyp88eVIEII4bN07n+GuvvSYCEPft26c91rRpUxGAuH//fu2x9PR0UaFQiNOmTdMe27hxowhA/O2330rVV3KPHTt26ByfMmWKCED8/ffftcdycnJEX19f0cfHR1Sr1aIoimJycrIIQFy1alWFvj9RFMVbt26JAMTZs2dX+BpLM3HiRPHBf6K///67CEBcu3atTrkdO3boHN+yZYsIQDxy5IjBexvz989nVzF8flRd2PVdA7KzswEAjo6OFSq/fft2AMDUqVN1jk+bNg0ASnU9BwUF4fHHH9d+btCgAQICApCUlFThGH19fdGrV69ScYSHh6NTp07aY0qlEhMmTMCVK1dw7ty5Ct+fjLdx40Y4OzujZ8+euH37tvYrLCwMSqUSv/32GwDAxcUFAPDLL7+guLjYjBHTg/j8qKqYqGtAybZ0OTk5FSp/9epVyGQyNGvWTOe4p6cnXFxccPXqVZ3jTZo0KXUPV1fXUu+9yuLr66s3joCAgFLHS7rMH46DTOvSpUvIysqCu7s7GjRooPOVm5uL9PR0AEBkZCSeffZZzJ07F/Xr10f//v2xatWqUuMbqGbx+VFV8R11DXByckLDhg1x5syZSl0nCEKFysnlcr3HxUos426KEd5UvTQaDdzd3bF27Vq950sGGAmCgE2bNuHPP//Ezz//jJ07d2LMmDH46KOP8Oeff0KpVNZk2PQvPj+qKibqGvLkk09i2bJlOHToECIiIsos27RpU2g0Gly6dElnwFdaWhoyMzPRtGnTStdf0aT/cBwJCQmljl+4cEF7nmqOv78/9uzZg8cee6xCv1h16NABHTp0wHvvvYd169Zh+PDh2LBhA8aNG1el/x/IOHx+VFXs+q4hb7zxBhwcHDBu3DikpaWVOp+YmIiYmBgAQN++fQEAS5Ys0Snz8ccfAwD69etX6fodHBwAAJmZmRW+pm/fvjh8+DAOHTqkPZaXl4dly5bBx8cHQUFBlY6Dqu65556DWq3G/PnzS51TqVTaZ5uRkVGqNyU4OBgAtN2n9vb2ACr3/wMZh8+Pqoot6hri7++PdevWYciQIQgMDNRZmezgwYPYuHEjRo0aBQBo27YtRo4ciWXLliEzMxORkZE4fPgwVq9ejQEDBqBr166Vrj84OBhyuRyLFi1CVlYWFAoFunXrBnd3d4PXTJ8+HevXr0efPn0wadIkuLm5YfXq1UhOTsYPP/wAmazyv+etWbMGV69eRX5+PgBg//79ePfddwEAL7zwAlvpZYiMjER0dDQWLlyIkydP4oknnoC1tTUuXbqEjRs3IiYmBoMGDcLq1avx5ZdfYuDAgfD390dOTg6WL18OJycn7S+BdnZ2CAoKwnfffYdHHnkEbm5uaNWqFVq1amWwfj474/D5UZWZedS5xbl48aI4fvx40cfHR7SxsREdHR3Fxx57TPzss8/EgoICbbni4mJx7ty5oq+vr2htbS02btxYnDFjhk4ZUbw/tapfv36l6omMjBQjIyN1ji1fvlz08/MT5XK5zlQtQ/cQRVFMTEwUBw0aJLq4uIi2trZieHi4+Msvv+iUqcz0rMjISBGA3i99U8cs2cPTe0osW7ZMDAsLE+3s7ERHR0exdevW4htvvCH+888/oiiK4vHjx8WhQ4eKTZo0ERUKheju7i4++eST4tGjR3Xuc/DgQTEsLEy0sbGp0HQdPrvK4fOj6iKIYiVGHBEREVGN4jtqIiIiCWOiJiIikjAmaiIiIgljoiYiIpIwJmoiIiIJY6ImIiKSMCZqifnggw/QokULaDQac4ditOnTp6N9+/bmDkPy+MwJAK5cuQJBEBAbG2vuUEhimKglJDs7G4sWLcKbb76pXfVLEAQIgoCPPvqoVPnY2FgIgoCjR48aXffmzZsxZMgQ+Pn5wd7eHgEBAZg2bZrBJQp/+uknhIaGwtbWFk2aNMHs2bOhUql0ykyZMgWnTp3CTz/9ZHR8dRWfORGVy9wrrtB/PvnkE9HJyUm8d++e9hj+XTnIw8NDzMvL0ym/atWqcjeYr6h69eqJrVu3Ft955x1x+fLl4qRJk0QbGxuxRYsWYn5+vk7Z7du3i4IgiF27dhWXLVsmvvLKK6JMJhNffPHFUvd97rnnxMcff9zo+OoqPnMqodFoxHv37okqlcrcoZDEMFFLSJs2bcQRI0boHAMgBgcHiwDEjz76SOdcdf7Q1reE4OrVq0UA4vLly3WOBwUFiW3bthWLi4u1x2bOnCkKgiCeP39ep+ymTZtEQRDExMREo2Osi/jMiag87PqWiOTkZPz999/o0aNHqXOPPfYYunXrhg8++AD37t0zSf1dunQpdWzgwIEAgPPnz2uPnTt3DufOncOECRNgZfXfni7/+9//IIoiNm3apHOPku/nxx9/NEHUtRufed0zZ84cCIKAixcvYsSIEXB2dkaDBg3wzjvvQBRFXLt2Df3794eTkxM8PT11Xm/oe0c9atQoKJVK3LhxAwMGDIBSqUSDBg3w2muvQa1Wa8vFxcVBEATExcXpxKPvnqmpqRg9ejS8vb2hUCjg5eWF/v3748qVKyb6WyFjMVFLxMGDBwEAoaGhes/PmTMHaWlp+Oqrr8q8T2FhIW7fvl2hr/KkpqYCAOrXr689duLECQBAu3btdMo2bNgQ3t7e2vMlnJ2d4e/vjz/++KPc+iwNn3ndNWTIEGg0Grz//vto37493n33XSxZsgQ9e/ZEo0aNsGjRIjRr1gyvvfYa9u/fX+a91Go1evXqhXr16uHDDz9EZGQkPvroIyxbtqxKsT377LPYsmULRo8ejS+//BKTJk1CTk4OUlJSqnQ/Mj1ucykRFy5cAAD4+vrqPf/444+ja9euWLx4MV566SWDG8+vX78eo0ePrlCdYjn7sSxatAhyuRyDBg3SHrt58yYAwMvLq1R5Ly8v/PPPP6WO+/n54dy5cxWKyZLwmddd4eHhWLp0KQBgwoQJ8PHxwbRp07Bw4UK8+eabAIChQ4eiYcOGWLlyJTp37mzwXgUFBRgyZAjeeecdAMCLL76I0NBQrFixAi+99FKl4srMzMTBgwexePFivPbaa9rjM2bMqOy3SDWIiVoi7ty5AysrKyiVSoNl5syZg8jISHz99dd49dVX9Zbp1asXdu/ebXQ869atw4oVK/DGG2+gefPm2uMl3bAKhaLUNba2tsjOzi513NXVtVSri/jM67Jx48Zp/1sul6Ndu3a4fv06xo4dqz3u4uKCgIAAJCUllXu/F198Uefz448/jjVr1lQ6Ljs7O9jY2CAuLg5jx46Fq6trpe9BNY+Juhbp3Lkzunbtig8++KDUP9wSXl5eels+lfH7779j7Nix6NWrF9577z2dcyWtusLCwlLXFRQU6G31iaIIQRCMislS8ZnXTk2aNNH57OzsDFtbW51XCiXH79y5U+a9bG1t0aBBA51jrq6uyMjIqHRcCoUCixYtwrRp0+Dh4YEOHTrgySefRFRUFDw9PSt9P6oZfEctEfXq1YNKpUJOTk6Z5WbPno3U1FRtt9rD7t27h9TU1Ap96XPq1Ck8/fTTaNWqFTZt2qQzeAj4r/uzpDv0QTdv3kTDhg1LHc/IyCj1A4r4zOsyuVxeoWNA+a8jDF33IEO/FD044KzElClTcPHiRSxcuBC2trZ45513EBgYaNE9IFLHRC0RLVq0AHB/JHBZIiMj0aVLFyxatEjvaODvvvtO28Iq7+thiYmJ6N27N9zd3bF9+3a9XbLBwcEAUGrBjX/++QfXr1/Xnn9QcnIyAgMDy/y+LBGfOVWXki7shxeruXr1qt7y/v7+mDZtGnbt2oUzZ86gqKhI7wI7JA3s+paIiIgIAPd/GLZp06bMsnPmzEGXLl30jvqs6vvK1NRUPPHEE5DJZNi5c2eprrYSLVu2RIsWLbBs2TJER0drf9v/6quvIAiCziAkAMjKykJiYmKlB71YAj5zqi5NmzaFXC7H/v37MWDAAO3xL7/8Uqdcfn4+ZDIZbG1ttcf8/f3h6Oio99UGSQMTtUT4+fmhVatW2LNnD8aMGVNm2cjISERGRiI+Pr7Uuaq+r+zduzeSkpLwxhtv4MCBAzhw4ID2nIeHB3r27Kn9vHjxYjz99NN44okn8Pzzz+PMmTP4/PPPMW7cuFKtqD179kAURfTv37/SMdV1fOZUXZydnTF48GB89tlnEAQB/v7++OWXX5Cenq5T7uLFi+jevTuee+45BAUFwcrKClu2bEFaWhqef/55M0VP5TLXSitU2scffywqlUqd5RsBiBMnTixV9rffftMuNVkdq1SV3EvfV2RkZKnyW7ZsEYODg0WFQiF6e3uLb7/9tlhUVFSq3JAhQ8ROnToZHV9dxWdet8yePVsEIN66dUvn+MiRI0UHB4dS5SMjI8WWLVuKoiiKycnJIgBx1apV5V5XUs+Dbt26JT777LOivb296OrqKkZHR4tnzpzRueft27fFiRMnii1atBAdHBxEZ2dnsX379uL3339v5HdOpiSIYjkjGajGZGVlwc/PDx988IHONI7aKjU1Fb6+vtiwYQNbVwbwmRNReTiYTEKcnZ3xxhtvYPHixXViy8MlS5agdevW/IFdBj5zIioPW9REREQSxhY1ERGRhDFRExERSRgTNRERkYQxURMREUkYEzURkYW5cuUKBEFAbGysuUOhCmCiJiIqQ2JiIqKjo+Hn5wdbW1s4OTnhscceQ0xMjN6116vLuXPnMGfOHFy5csVkdVTEe++9h6effhoeHh4QBAFz5swxazyWiEuIEhEZsG3bNgwePBgKhQJRUVFo1aoVioqKcODAAbz++us4e/as3vXXq8O5c+cwd+5cdOnSBT4+PiapoyLefvtteHp6IiQkBDt37jRbHJaMiZqISI/k5GQ8//zzaNq0Kfbt26eznvrEiRNx+fJlbNu2zYwR/kcURYN7gxsrOTkZPj4+uH37tsGNW8i02PVNRKTHBx98gNzcXKxYsULvpifNmjXD5MmTtZ9VKhXmz58Pf39/KBQK+Pj44K233iq1K5WPjw+efPJJHDhwAOHh4bC1tYWfnx++/fZbbZnY2FgMHjwYANC1a1cIggBBEBAXF6dzj507d6Jdu3aws7PT7leelJSEwYMHw83NDfb29ujQoYNRv1CYszVP9zFRExHp8fPPP8PPzw8dO3asUPlx48Zh1qxZCA0NxSeffILIyEgsXLhQ765Uly9fxqBBg9CzZ0989NFHcHV1xahRo3D27FkAQOfOnTFp0iQAwFtvvYU1a9ZgzZo1OjuVJSQkYOjQoejZsydiYmIQHByMtLQ0dOzYETt37sT//vc/vPfeeygoKMDTTz+NLVu2VMPfCpmFWbcEISKSoKysLBGA2L9//wqVP3nypAhAHDdunM7x1157TQQg7tu3T3usadOmIgBx//792mPp6emiQqEQp02bpj22ceNGEYD422+/laqv5B47duzQOT5lyhQRgPj7779rj+Xk5Ii+vr6ij4+PqFarRVHUv1NXeW7duiUCEGfPnl3ha6h6sEVNRPSQ7OxsAICjo2OFym/fvh0AMHXqVJ3j06ZNA4BSXc9BQUF4/PHHtZ8bNGiAgIAAJCUlVThGX19f9OrVq1Qc4eHh6NSpk/aYUqnEhAkTcOXKFZw7d67C9yfpYKImInqIk5MTACAnJ6dC5a9evQqZTIZmzZrpHPf09ISLiwuuXr2qc7xJkyal7uHq6oqMjIwKx+jr66s3joCAgFLHS7rMH46DagcmaiKihzg5OaFhw4Y4c+ZMpa4TBKFC5eRyud7jYiU2MzTFCG+SJiZqIiI9nnzySSQmJuLQoUPllm3atCk0Gg0uXbqkczwtLQ2ZmZlo2rRppeuvaNJ/OI6EhIRSxy9cuKA9T7UPEzURkR5vvPEGHBwcMG7cOKSlpZU6n5iYiJiYGABA3759AQBLlizRKfPxxx8DAPr161fp+h0cHAAAmZmZFb6mb9++OHz4sM4vF3l5eVi2bBl8fHwQFBRU6TjI/LjgCRGRHv7+/li3bh2GDBmCwMBAnZXJDh48iI0bN2LUqFEAgLZt22LkyJFYtmwZMjMzERkZicOHD2P16tUYMGAAunbtWun6g4ODIZfLsWjRImRlZUGhUKBbt25wd3c3eM306dOxfv169OnTB5MmTYKbmxtWr16N5ORk/PDDD5DJKt82W7NmDa5evYr8/HwAwP79+/Huu+8CAF544QW20muCuYedExFJ2cWLF8Xx48eLPj4+oo2Njejo6Cg+9thj4meffSYWFBRoyxUXF4tz584VfX19RWtra7Fx48bijBkzdMqI4v2pVf369StVT2RkpBgZGalzbPny5aKfn58ol8t1pmoZuocoimJiYqI4aNAg0cXFRbS1tRXDw8PFX375RadMZaZnRUZGigD0fumbOkbVTxDFSoxeICIiohrFd9REREQSxkRNREQkYUzUREREEsZETUREJGFM1ERERBLGRE1ERCRhTNREREQSxkRNREQkYUzUREREEsZETUREJGFM1ERERBLGRE1ERCRhTNREREQS9v9ybSoTnJOhAwAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXoNJREFUeJzt3XlYVNX/B/D3nQEGZFiVxZ1FU1ARRVHUxDW33Eozl3DDqDQ1LXMp19LMLKm+lTvmzy0trdTcA3MpcSv3FMUtFhd2EZiZ+/uDmByZYRuGuTDv1/Pw2Nx77j0fvMaHc+5ZBFEURRAREZEkycwdABERERnGRE1ERCRhTNREREQSxkRNREQkYUzUREREEsZETUREJGFM1ERERBLGRE1ERCRhTNREREQSZvGJOiEhAXPnzkVCQoK5QyEiqtL487ZsmKgTEjBv3jz+wyEiMjH+vC0bi0/UREREUsZETUREJGFM1ERERBLGRE1ERCRhTNREREQSxkRNREQkYUzUREREEsZETUREJGFW5g6AiEwvNzMFyecOISc1CQpnD7g36wIbpYu5wyKiEmCiJqriHvz9By5/vwiiRgVBkEEUNbgZvR5+g2bCtWGwucMjomKw65uoCsvNTMlP0uo8QBQhatT5f6rzcGnbQuRmppg7RCIqBhM1URWWfO4QRI1K7zlRo0LyuUMVHBERlRYTNVEVlpOaBEHQ/7+5IMiQk5pUwRERUWkxURNVYQpnD4iiRu85UdRA4exRwRERUWkxURNVYe7NukCQ6R8zKsis4B7QtYIjIqLSkmyi/uijjyAIAiZPnmywTFRUFARB0PmytbWtuCCJJM5G6QK/QTMhyK0BQYAgk+f/KbeG36CZsLF3NneIRFQMSU7Pio2NxfLlyxEQEFBsWUdHR1y5ckX7WRAEU4ZGVOm4NgxG6zfX6s6jDujKJE1USUguUWdmZmL48OFYuXIlPvjgg2LLC4IAT0/PCoiMqPKyUbqgTsiL5g6DiMpAcl3f48ePR58+fdCtW7cSlc/MzET9+vVRt25d9O/fHxcuXDBxhERERBVHUi3qzZs34/Tp04iNjS1R+UaNGmHNmjUICAhAWloaPvnkE7Rr1w4XLlxAnTp19F6Tk5ODnJwc7efMzMxyiZ2IiMgUJJOob9++jUmTJmH//v0lHhAWEhKCkJAQ7ed27drBz88Py5cvx4IFC/Res2jRIsybN69cYiYiIjI1yXR9nzp1CsnJyWjZsiWsrKxgZWWFmJgYfP7557CysoJarS72HtbW1mjRogWuXbtmsMyMGTOQlpam/YqJiSnPb4OIiKhcSaZF3bVrV5w7d07n2OjRo9G4cWO8++67kMvlxd5DrVbj3Llz6N27t8EyCoUCCoVC+1mpVJY9aCIiIhOTTKJ2cHBA06ZNdY7Z29ujevXq2uNhYWGoXbs2Fi1aBACYP38+2rZtiwYNGiA1NRVLlizBzZs3ER4eXuHxExERmYJkEnVJ3Lp1CzLZf731KSkpGDduHBITE+Hi4oKgoCAcO3YM/v7+ZoySiIio/Eg6UUdHRxf5+bPPPsNnn31WcQERERFVMMkMJiMiIqLCmKiJiEiyDh8+jL59+6JWrVoQBAE7duwosnx0dHShPSAEQUBiYmLFBGwCTNRERCRZWVlZaN68Of73v/+V6rorV64gISFB++Xu7m6iCE1P0u+oiYjIsvXq1Qu9evUq9XXu7u5wdnYu/4DMgC1qIguQm5mCO8e/R9wvX+HO8e+Rm5li7pCITCowMBA1a9ZE9+7dcfToUXOHYxS2qImquAd//4HL3y+CqFFBEGQQRQ1uRq+H36CZcG0YbO7wyAJlZmYiPT1d+/nphaiMUbNmTXzzzTdo1aoVcnJysGrVKnTq1Al//PEHWrZsWS51VDS2qImqsNzMlPwkrc4DRBGiRp3/pzoPl7YtZMuazCI0NBROTk7ar4JFrMpDo0aNEBERgaCgILRr1w5r1qxBu3btKvVUXraoiaqw5HOHIGpUes+JGhWSzx3iPtVU4WJiYhAYGKj9XF6taUOCg4Nx5MgRk9ZhSkzURFVYTmrSv93dhTe1EQQZclKTzBAVWTqlUglHR8cKq+/s2bOoWbNmhdVX3pioiaowhbMHRFGj95woaqBw9qjgiIhKJzMzU2dHxBs3buDs2bNwdXVFvXr1MGPGDNy9exfffvstAGDZsmXw9vZGkyZN8PjxY6xatQqHDh3Cvn37zPUtGI2JmqgKc2/WBTej1+e/o36KILOCe0BXM0RFVHInT55E586dtZ+nTJkCABg5ciSioqKQkJCAW7duac/n5uZi6tSpuHv3LqpVq4aAgAAcOHBA5x6VjSCKomjuIMzp9OnTCAoKwqlTpyrtiECiojy8egKXti3UGfUtyKw46psqHH/elg1b1ERVnGvDYLR+cy2Szx1CTmoSFM4ecA/oCht7Z3OHRkQlwERNZAFslC4c3U1USXEeNRERkYQxURMREUkYEzUREZGEMVETERFJGBM1ERGRhDFRExERSRgTNRERkYQxURMREUkYEzUREZGEMVETERFJGBM1ERGRhDFRExERSRgTNRERkYQxURMREUkYEzUREZGEMVETERFJGBM1ERGRhDFRExERSRgTNRERkYQxURMREUkYEzUREZGEMVETERFJGBM1ERGRhDFRExERSRgTNRERkYQxURMREUmYlbkDICLTy81MQfK5Q8hJTYLC2QPuzbrARuli7rCIqASYqImquAd//4HL3y+CqFFBEGQQRQ1uRq+H36CZcG0YbO7wiKgY7PomqsJyM1Pyk7Q6DxBFiBp1/p/qPFzathC5mSnmDpGIisFETVSFJZ87BFGj0ntO1KiQfO5QBUdERKXFRE1UheWkJkEQ9P9vLggy5KQmVXBERFRaTNREVZjC2QOiqNF7ThQ1UDh7VHBERFRaTNREVZh7sy4QZPrHjAoyK7gHdK3giIiotJioiaowG6UL/AbNhCC3BgQBgkye/6fcGn6DZsLG3tncIRJRMTg9i6iKc20YjNZvrtWdRx3QlUmaqJKQbIv6o48+giAImDx5cpHltm7disaNG8PW1hbNmjXD7t27KyZAokrERumCOiEvwrfXG6gT8iKTNFElIslEHRsbi+XLlyMgIKDIcseOHcPQoUMxduxYnDlzBgMGDMCAAQNw/vz5CoqUiIjItCSXqDMzMzF8+HCsXLkSLi5FL3EYGRmJnj174p133oGfnx8WLFiAli1b4ssvv6ygaImIiExLcol6/Pjx6NOnD7p161Zs2ePHjxcq16NHDxw/ftxU4REREVUoSQ0m27x5M06fPo3Y2NgSlU9MTISHh+48UA8PDyQmJhq8JicnBzk5OdrPmZmZZQuWiIioAkgmUd++fRuTJk3C/v37YWtra7J6Fi1ahHnz5pns/kREROVJMl3fp06dQnJyMlq2bAkrKytYWVkhJiYGn3/+OaysrKBWqwtd4+npiaQk3SUQk5KS4OnpabCeGTNmIC0tTfsVExNT7t8LERFReZFMou7atSvOnTuHs2fPar9atWqF4cOH4+zZs5DL5YWuCQkJwcGDB3WO7d+/HyEhIQbrUSgUcHR01H4plcpy/16IiMhyqNVqbN68GRERERg4cCDOnTsHAEhLS8MPP/xQqEFZWpLp+nZwcEDTpk11jtnb26N69era42FhYahduzYWLVoEAJg0aRJCQ0OxdOlS9OnTB5s3b8bJkyexYsWKCo+fiIgsT2pqKnr27IkTJ05AqVQiKysLb775JgBAqVRi4sSJCAsLw8KFC8tch2Ra1CVx69YtJCQkaD+3a9cOGzduxIoVK9C8eXNs27YNO3bsKJTwiYiITGH69Om4cOEC9u7di+vXr0MURe05uVyOQYMGGb0Ql2Ra1PpER0cX+RkABg8ejMGDB1dMQERERE/YsWMH3nzzTXTv3h0PHjwodP6ZZ55BVFSUUXVUqhY1ERGRlKSlpcHb29vg+by8PKhUKqPqYKImIiIqI19fX5w+fdrg+X379sHf39+oOpioiYhIsg4fPoy+ffuiVq1aEAQBO3bsKPaa6OhotGzZEgqFAg0aNDC667ko4eHhWLNmDbZs2aJ9Py0IAnJycjBr1izs2bMHERERRtUh6XfUZBopGVnYH3sJiQ/T4enqiO6t/eDiYG/usIiICsnKykLz5s0xZswYvPDCC8WWv3HjBvr06YPXXnsNGzZswMGDBxEeHo6aNWuiR48e5R7fpEmTcOHCBQwdOhTOzs4AgGHDhuHBgwdQqVSIiIjA2LFjjaqDidrCHD9/HQvW7YJKrYFMEKARRUT9chyzR/VB2yY+5g6PiEhHr1690KtXrxKX/+abb+Dt7Y2lS5cCAPz8/HDkyBF89tlnJknUgiBg5cqVGDlyJLZt24arV69Co9HA19cXL730Ejp27Gh0HUzUFiQlIwsL1u1Cnip/lTf1v900eSo15kftwobZY9iyJiKTy8zMRHp6uvazQqGAQqEol3sb2qxp8uTJ5XJ/Qzp06IAOHTqY5N58R21B9sdegkqt0XtOpdbgwMnLFRwREVmi0NBQODk5ab8KFrEqD4Y2a0pPT0d2dna51VPgxo0b+Pnnnw2e//nnnxEfH29UHWxRW5DEh+mQCYK2Jf0kmSAg4UGaGaIiIksTExODwMBA7efyak2bw9tvv4309HT07dtX7/n//e9/cHZ2xubNm8tcBxO1BfF0dYRGT5IGAI0oomZ1pwqOiMrq7OpJyM1MgY3SBYFjI80dDlGpKJVKODo6muTehjZrcnR0hJ2dXbnXd/z48SK71bt27Yply5YZVQe7vi1I99Z+sJLrf+RWchm6tfKr4IiorHIzU5Cb8QC5mSnmDoVIUsqyWZMxUlJS4ODgYPC8UqnUu2JZaTBRWxAXB3vMHtUH1lZyCIIAuUwGQRBgbSXH7FF94OJQzdwhEhHpyMzM1O6oCOS/Ez579ixu3boFIH/r4rCwMG351157DdevX8e0adNw+fJlfPXVV/juu+/w1ltvmSS+evXq4ejRowbP//bbb6hTp45RdbDr28K0beKDDbPH4MDJy0h4kIaa1Z3QrZUfkzRRZZD7CLCxrP9XT548ic6dO2s/T5kyBQAwcuRIREVFISEhQZu0AcDb2xu7du3CW2+9hcjISNSpUwerVq0yydQsABg6dCgWLFiA4OBgTJgwATJZfvtXrVbjyy+/xJYtWzBr1iyj6hBE0cBLSwtx+vRpBAUF4dSpU2jZsqW5wyEqkRORYcjNeAAbh+oInvStucOhinL/GlCjgbmjKLOq+PM2JycHffr0waFDh+Dm5oZGjRoBAK5cuYJ79+6hU6dO+OWXX4waMMeubyKiykKTZ+4I6CkKhQL79u3D6tWrERwcjPv37+P+/fsIDg7GmjVrcODAAaNHtbPrm4ioslDnmjsC0kMmk2H06NEYPXq0ae5vkrsSEVH5Uxu3XSJVTmxRExFVFuz6lqS9e/di9erVuH79OlJSUvD00C9BEBAXF1fm+zNRExFVFqocc0dAT1myZAmmT58ODw8PBAcHo1mzZuVeBxM1EVFlwUQtOZGRkejSpQt2794Na2trk9TBd9RERJVF3iNzR0BPSUlJwaBBg0yWpAEmaiKiyiMnw9wR0FOCg4Nx5coVk9bBrm8LlJKRhf2xl5D4MB2ero7o3tqP+1ATVQaPucOd1Hz11Vfo1asXWrVqhWHDhpmkDiZqC3P8/HUsWLcLKrUGMkGARhQR9ctxzB7VB22b+Jg7PCIqStY9c0dATxkyZAhUKhVeeeUVvP7666hTpw7kcrlOGUEQ8Oeff5a5DiZqC5KSkYUF63YhT6UGAO2+1HkqNeZH7cKG2WPYsiaSssxkc0dAT3F1dUX16tXRsGFDk9XBRG1B9sdegkqt0XtOpdbgwMnLGNw5qIKjIqISS79j7gjoKdHR0Savg4PJLEjiw3TIBEHvOZkgIOEB338RSdrjdL6ntkBM1BbE09URGgObpWlEETWrO1VwRERUaqm3ii9DFSo9PR0fffQRevTogRYtWuDEiRMAgIcPH+LTTz/FtWvXjLo/E7UF6d7aD1Zy/Y/cSi5Dt1Z+FRwREZVaSry5I6An3LlzBy1atMDs2bNx584d/PXXX8jMzASQ//56+fLl+OKLL4yqg4nagrg42GP2qD6wtpJDEATIZTIIggBrKzlmj+oDFwfL2pCeqFJ6UPY1o6n8vfPOO8jIyMDZs2cRExNTaJ3vAQMG4MCBA0bVwcFkFqZtEx9smD0GB05eRsKDNNSs7oRurfyYpIkqiwdXzR0BPWHfvn1466234O/vjwcPHhQ67+Pjg9u3bxtVBxO1BXJxsOfobqLK6v7V/O0u5fzxLQXZ2dlwc3MzeD4jw/jV5Nj1TURUmahy2KqWEH9/fxw+fNjg+R07dqBFixZG1cFETURU2fxz1twR0L8mT56MzZs3Y/HixUhLy586p9FocO3aNbzyyis4fvw43nrrLaPqYN8JEZHEtWrVComJifCUp+HkzJbA7T+AwKHmDosAjBgxAjdv3sR7772HWbNmAQB69uwJURQhk8mwcOFCDBgwwKg6mKiJiCQuMTERd+/eBZxt/j3wF5CdCtg5mzMs+tesWbPwyiuv4Pvvv8e1a9eg0Wjg6+uLF154AT4+xu+hwERNRFTZaNTA9V+BJgPNHYlFe/ToEZ599lmMGzcOr732mtFd3IbwHTURUWV0aSdgYKVBqhjVqlXDjRs3IBhYmrm8MFETEVVGD64B/5w2dxQWr2fPnti7d69J62CiJiKqrE6tY6vazN5//338/fffeOWVV3DkyBHcvXsXDx8+LPRlDL6jJiKqrBL+BG6fAOq1MXckFqtJkyYAgIsXL2Ljxo0Gy6nV6jLXwURNRFSZHfscqLUWsLIxdyQWafbs2SZ/R81ETURUmaXdAU6tBdpEmDsSizR37lyT11Hmd9RqtRqbN29GREQEBg4ciHPnzgEA0tLS8MMPPyApKancgiQioiL8uQm4c8rcURDyc6Ax3dz6lClRp6amon379hg2bBg2bdqEn376Cffu3QMAKJVKTJw4EZGRkeUaKBERGSCKwKH5QAYbSOZw8uRJ9OzZE9WqVUP16tURExMDALh//z769++P6Ohoo+5fpkQ9ffp0XLhwAXv37sX169d19t+Uy+UYNGgQdu/ebVRgRERUCtmpwL738jftoApz7NgxdOjQAVevXsWIESOg0Wi052rUqIG0tDQsX77cqDrKlKh37NiBN998E927d9f7Ev2ZZ55BfHy8UYEREVEp3f8bOPwJp2xVoJkzZ8LPzw8XL17EwoULC53v3Lkz/vjjD6PqKFOiTktLg7e3t8HzeXl5UKlUZQ6KiIjK6Oo+4Ap7NCtKbGwsRo8eDYVCobfhWrt2bSQmJhpVR5kSta+vL06fNrwizr59++Dv71/moIiIyAjHvgTSE8wdhUWwtrbW6e5+2t27d6FUKo2qo0yJOjw8HGvWrMGWLVu076cFQUBOTg5mzZqFPXv2ICKCUwWIiMwi7xFw7AtzR2ER2rZti23btuk9l5WVhbVr1yI0NNSoOso0j3rSpEm4cOEChg4dCmdnZwDAsGHD8ODBA6hUKkRERGDs2LFGBUZEVV9uZgqSzx1CTmoSFM4ecG/WBTZKF3OHVTXcPJq/alndYHNHUqXNmzcPoaGh6NOnD4YOzd8j/M8//8T169fxySef4N69e3j//feNqqNMLWpBELBy5UocPnwYYWFh6NWrFwIDA/Hqq68iOjoaX3/9dZmC+frrrxEQEABHR0c4OjoiJCQEv/zyi8HyUVFREARB58vW1rZMdRNRxXrw9x+I/WI04g+tReKZPYg/tBaxX4zGw6snzB1a1XH8S0CdZ+4oqrQ2bdpg9+7duHbtGsLCwgAAU6dOxauvvgq1Wo3du3cjICDAqDqMWpmsQ4cO6NChg1EBPKlOnTr46KOP0LBhQ4iiiHXr1qF///44c+aMdj3Vpzk6OuLKlSvaz6Zeyo2ISs5Qizk3MwWXv18E8d8kIor5C0SI6jxc2rYQrd9cy5Z1eUi5Cfy5GWj5irkjqTLS09Nhb28PuVyuPdalSxdcuXIFZ8+exdWrV6HRaODr64ugoKByyUmSWkK0b9++Op8//PBDfP311/j9998NJmpBEODp6VkR4RFVCRXV3fzg7z/yk7FGBUGQQRQ1uBm9Hn6DZuLR/dsQNfpnhogaFZLPHUKdkBfLPSaLdCoKqNsGcHvG3JFUCS4uLli/fj2GDRsGABgzZgwiIiLQpk0bBAYGIjAwsNzrLFOi9vb2Lva3BEEQEBcXV6aggPwlSrdu3YqsrCyEhIQYLJeZmYn69etDo9GgZcuWWLhwocGkDgA5OTnIycnRuZ7IUhSVPF0blt+7zOJazG5NQv+tv/BSi4IgQ04qV9gqNxoVsH828MJywNbJ3NFUejY2Njo5JCoqCt26dUObNqbbwaxMiTo0NLRQolar1bh58yaOHj2Kpk2bokWLFmUK6Ny5cwgJCcHjx4+hVCqxfft2g1O9GjVqhDVr1iAgIABpaWn45JNP0K5dO1y4cAF16tTRe82iRYswb968MsVGVJmZqrtZXws9+dyhIlvMeY/SIIr6p7SIogYKZ49Sx0FFyEgA9r0P9P6Eu2wZqXHjxli1ahW8vLzg5JT/i098fHyRU5YBoGXLlmWuUxDF8l3C5s8//0SPHj3wf//3f+jWrVupr8/NzcWtW7eQlpaGbdu2YdWqVYiJiSnRvOy8vDz4+flh6NChWLBggd4yT7eoz549i9DQUJw6dcqov0iiinQiMgy5GQ9g41AdwZO+LdE1d45/j/hDa/WvWiUI8OoyWm93c1Fd5fpa6ILMCs7ezZF6/QxEjZ4Ws0wOt6adce9CjPaXBp3zcmu0nhgFG3vnEn1flqBOnTq4e/cuajvb4M5Hbct+I++OQLe5gExebFFTOH36NIKCgir1z9s9e/ZgyJAhJe6NFUURgiBIaz/q5s2bIyIiAu+++y5OnSr9bi42NjZo0KABACAoKAixsbGIjIws0Vqp1tbWaNGiBa5du2awjEKhgEKh0H42diI6UWWRk5pU6u7morrKlTUbGmyhp8SdBqC/DSCKGlRzqwe/QTNxadvCQkneb9BMkyTpvOwMXN/zDR5e/QMQZKjRuB18ekRAbmNX7LWiKOLi5jlIiTsFv8HvoXqj/17HZfzzN+IPRSEz4RogAA61GsGr62goPXzK/Xsw2o3DwOElQMdpgKzMmydatJ49e+LGjRuIjY1FUlISRo0ahVdffbXIV7TGMslgMg8PD1y8eLFc7qXRaHRawEVRq9U4d+4cevfuXS51E1UlCmePUnU3F9dVXifkRYPd2xA1gCCDvmQtyKzgHtAVNvbOaP3mWt3W+r/Hy+qvb6fDo3lXeDTvXujc3zuWIDfzIZoO/wAatRpXf16Ga7u+QKOB04q97z8ndgAoPC5HnZuNC5tmw7VhG/j2egOiRo1bMRtwYeP7aD1xHWRySY3XzXflF8BKAbSfDHCWTKn99ddfqF+/Pnr06AEAWLt2LQYPHoyuXbuarM5y/5XqwYMHWL16tcF3xEWZMWMGDh8+jPj4eJw7dw4zZsxAdHQ0hg8fDgAICwvDjBkztOXnz5+Pffv24fr16zh9+jRGjBiBmzdvIjw8vNy+H6Kqwr1ZFwgy/YmjIHk+qbj3zKk3zkIQ9P8IEWRyuPi0hCC3BgQBgkye/6fcWqfFbKN0QZ2QF+Hb6w3UCXnRZN3dj+7fQkrcKTToMwkOtRvDqV4T+PaMwL0Lh5GT8aDIazMT43D39+1o2HeSnvvegSo7A/VDR6Ba9Tqwd6uPeh2HIS8rFTlpySb5XsrFhR3AH8u5eUcZtGjRArt27arQOsv0616XLl30Hk9NTcXly5eRm5uL9evXl/q+ycnJCAsLQ0JCApycnBAQEIC9e/eie/f8345v3boF2RPdNSkpKRg3bhwSExPh4uKCoKAgHDt2jOuME+lho3QpVXdzcV3lAIpsoTt5BaBh38nl2mIuq/Q7lyG3tYdDrYbaY87eLQBBQMbdK1A0bqf3OnXeY1zZsQS+PV+HjdK10Hm76rVhZeeIxLP7ULfDSxA1GiSd3Qe7GnVhK/UBcX9uAhQOQIvh5o6kUrGzs8OjR4+0n2NiYjBu3DiT1lmmRK3RaAqN+hYEAd7e3ujWrRvGjBmDxo0bl/q+q1evLvL805tvf/bZZ/jss89KXQ+RpXlyQFidkEGAAKgepWuTJ0QRd45/rzNgrLiucmfvFshMjNM/IOyJ7m0pzIfOy0yBTTVnnWOCTA5rOwfkZaUYvO7GvpVwrOOn8076SVaKamj2yiJc2voBbh/ZDACwc62FJkMX5PciSN2JFYC9G/DMc+aOpNJo3rw5Pv30U8jlcu2o79jY2GJXxXzhhRfKXGeZEvXTCZOIpMvQyOyCudOGBow1fH4iBJmVwURcs/XzcKj9TIUOCHva7SNbcPvod9rPGlUuMu5eRtyeb7THWr5WtiWNH/z9O1Lj/0KLcZ8bLKPOy8HVnZFwrOOPRgOnQdRocPf3H3Bxy1w0H/MZ5NYKg9dKxuElgHM9wL30jStLFBkZiUGDBmn3sxAEAZGRkYiMjDR4jeRGfRORdBQ3ICxwzDKD56/u/BwN+kzEtV2fG0zErg2Dy31AWGl4BvVGDf9ntZ+v7FiCGo3bo/oTXdkKh+qwVrog91GqzrWiRo287AxY2+ufO54W/xcepyTg+JKXdI5f2rYQjnWbICDsI9w7H42ctGQ0H71U+zpAOfAd/P7JEDz8+3e4NTFu1yQg/5VfVlYWACArR41bDx+jnms57mmgzgUOLQBeXAVYFz8C3hz+97//YcmSJUhMTETz5s3xxRdfIDhY/wI9UVFRGD16tM4xhUKBx48fl0ssrVq1wrVr1xAXF4ekpCR06tQJs2bNKtN05JIqUaL+9tuSzdN8WsEC5URkHsUNCIv/NarohUmyUopNxAUDwszB2s4B1nYO2s8yKwWs7Z1g51pLp5xjncZQP85CZsJVKGvmv6dOvfEnIIpwqN1I773rtBsEj0DdLuEzK8bDp/s47SpuGlXOvyOn/3sVmJ+wBRi7RMWJEyewYMEC7Nq1S3uv1Gw1vGadwPPNXPF+7/po7eVQzF1KKO0O8NcWIGhU+dyvHG3ZsgVTpkzBN998gzZt2mDZsmXo0aMHrly5And3d73XmHoPCCsrKzRq1AiNGjXCyJEj8fzzz5t/ZbJRo0aV+saCIDBRE5lZsXOn05KLnVttzkRcXqrVqAcX3yBc3fUFGvQaD1GjRtzer+HWpCMUDtUBADnp93F+wyw8028KHGo3go3SVe8AMoWTG2xd8vcXcPZugRsH1iBuz1eo1bovRFHEnaNbIcjkcK5f9h2TfvjhBwwZMgSiKBZK+KII7D7/EL+cT8GWcX54oUWNMtej46+tQMDLgLW0diD89NNPMW7cOG0r+ZtvvsGuXbuwZs0aTJ8+Xe81FbkHxNq1a01eR4kS9Y0bN0wdBxGZQLFzp53c8ej+LcPnpT5yuRSeGfAOru/5Guc3zAIEAdUbt4dvjwjteVGjRvaDO1DnlWzdBgCoVqMu/IfMwe3DG/Hn2rchCALsPX3RZOh82DgUTvIlceLECQwZMgRqtdpgq1ytAQSIGLLyEo5NCyyflnVuJnDrOODb2fh7lZPc3FycOnVKZ1quTCZDt27dcPz4cYPXlXYPiNKYP38+BEHArFmzIJPJMH/+/GKvEQTBqD2pS5So69evX+YKiKj8FSzhWdza3O7NuuBm9HqDA8K8uoxG6o2zRY7crkwCwj4yeM7azqHIxU1snT3Q4b2i58fqO+/i0wIuPmXb20CfDz74QG9L+mkiABEiPth9Ez++0bR8Kk84WyGJOjMzE+np6drPT68YWeD+/ftQq9Xw8ND9hdHDwwOXL1/We++y7AFRGnPnzoUgCHj33XdhY2ODuXPnFnuNsYmaa8gRVUKBYyMRPOlbBI41PNIU+G/utKGFR+zd6xd5nuttV6xbt25h586dJR4hrNYAP597iFsPy2egFFJuls99ihEaGgonJyft16JFi8rt3iEhIQgLC0NgYCBCQ0Pxww8/wM3NrUTLUJeERqOBWq2GjY2N9nNxX8aM+AaMGPWdmJiI1atX4/Tp00hLS4NGo9u9JggCDh48aFRwRFWRRp2nd7MKU3HyCkDL17/B/fMxyHqYCBvHGnBrEgpreyc8fpSBarX90Cz8C9y/cBiP0+7B1slN53x5EWRyyOTW5XY/qSmP5/rL7l2lHoQmisDeiykY2Vb/wKpSybgPIa9w70p5UanyBy7GxMTo7NusrzUNADVq1IBcLkdSku469ElJSSV+B12SPSCkrkyJ+q+//kKnTp2QnZ2NRo0a4dy5c/D390dqairu3r0LX19f1K1bt7xjJar0NOo8ZNz9G+rc7Aqv297TF19+dxAff7Gywusm03r1/67i1f+7Wg53OgoM31AO9ymaUqmEo6NjseVsbGwQFBSEgwcPYsCAAQDyW7AHDx7EhAkTSlRXRewBcenSJcTFxSEjIwMODg5o0KBBmRb9MqRMiXr69OlQKpU4e/YsqlWrBnd3d0RGRqJLly7YunUrXn/9dWzYYPqHTVTZiBo11LnZkFlZmaV1OX3KBEyb/EaF16tR50GjUsOpfhPIJTaquDyo8x4j7eYFyKyM6zXYuO1HTHx3bqmvWz7UC2FtjBv9LYoi1Pa1YDV8g8me0ZkzZ0o9jWnKlCkYOXIkWrVqheDgYCxbtgxZWVnaUeBhYWGoXbu2tvt8/vz5aNu2LRo0aIDU1FQsWbLEZHtALF++HB9++CHu3r1b6Fy9evUwa9ascqm3TIn66NGjmDZtGurVq4eHDx8CgLbre/DgwThy5AjeeecdxMTEGB0gUVUkk1tDZmVT8fWaaYkjjSoXqpxsWFtbQ25d9bq/ZVDD2toKVgo7o55rt86dIAilm4MtCED3xs6wlhu7ZKmIPIcaJn1GVlal/wc4ZMgQ3Lt3D7Nnz0ZiYiICAwOxZ88e7QAzc+0B8fbbb+PTTz+Fq6srxowZg6ZNm0KpVCIzMxPnzp3Djh07EBERgatXr2Lx4sVG1VXmtb4L/pKcnZ0hl8u1CRsAmjVrVuy63UQkTXnZGUi5GovczIewUbrCpWFrnUVFyHTq1qmFnt06Y9+hmBINQJLLgN5NnFHPtXyWKlU5e0OKv0ZNmDDBYFe3OfaAOHHiBD799FMMHDgQ3377Lezt7QuViYyMxIgRI/DJJ59g8ODBaNWqVZnrK9Oob29vb+3caplMBm9vbxw4cEB7/tixY3B2di5zUERUtCs/LsWFTXNw5cel5XrftFvncXHzPPwT+zPuXzmGf2J/xsXN85B260K51kOGvfvWGxAEodjVtPLXQxMws0ftcqtb5Vl+08yqstWrV6NmzZrYuHGj3iQNAPb29ti0aRM8PDyMbriWOFGnpPy3w8xzzz2HrVu3aj+//vrrWLVqFbp164auXbti3bp1GDZsmFGBEZFhqkfpyHuUBtWj9OILl1BedgbiDxYsKSoCGg0AMX+p0YNrkZddfiPAybCgwABEffMZ5HI55Aa6s+UyQC4TsHlMA7SuryyXetU1GkOjrJjVvCq748ePY/DgwQZHqxewtbXF4MGDcfToUaPqK3Gi9vT0xMCBA7Ft2zZMnToVmzZtQt6/w/gnT56M+fPn48GDB0hLS8P777+PDz74wKjAqGKlZGThu0Mn8fm2Q/ju0EmkZGSZOySqYClXYw1OLxI1aqRci63giCxX/949cOCnzXiuS6ieLYXzu7t/m+KPAc3LtvqZPrnPPF9u96rqbt++DT8/vxKV9ff3x+3bt42qr8TvqAcNGoSffvoJP/30ExwcHPDCCy9g+PDh6NKlCwRBwHvvvYf33nvPqGCo7N5YuhEpGY/g4lANX00tXW/G8fPXsWDdLqjUGsgEARpRRNQvxzF7VB+0beJjoohJanIzHwIyAdDoGcgkE5Cb8bDwcTKZoMAAfLfuG9y+8w/ade+H1LR0ONvJcXp6s3J7J11A494EGjd/IKfipw1WRunp6XBwKNm4DaVSiYwM43qjStyi3rBhA5KTk/F///d/ePbZZ7FhwwY899xzqF27NqZOnYrTp08bFQgZJyXjEe6nZSIl41Epr8vCgnW7kKfKX1dYrdFAFEXkqdSYH7WLLesqLC87A8l/HcKdY9uQ/NchyBX2+pM0AGjEMq9dTcapW6cWqlXL337SXiEr9yQNAHlNBpf7PasyURRLtSOXsTuplWrUt52dHYYOHYqhQ4ciJSUF3333HTZu3Ihly5Zh2bJlaNiwIUaMGIFhw4bBx4ctscpgf+wlqNT6N21QqTU4cPIyBncOquCoyNTSbp3/9320+r9WtCAz2KIWZHK4NGhthkjJ1NS1WkLj6guocs0dSqXyySefYNOmTcWW0zfHurTKPKvSxcUFERERiIiIwN27d7Fx40Zs2rQJs2fPxpw5c9CmTRscO3bM6ADJtBIfpkMmCFDr+Y1PJghIeJBmhqjIlHQHjeG/xCyqAcggyOQQNRpt0hZkcnh1Hc0pWlWRICDPv3JvYWoOBWuIPDktubjyxiiX5Q9q166Nd955Bz179sTs2bPx448/4o8//iiPW5OJebo6QmOgW0YjiqhZ3amCIyJTK2rQGEQR7oHdILe2RW7GQ9g4uMKlAedRV1Xquu0gOhmXRCxRfHx8hdZndKK+deuWtjV9/vx5iKKIdu3aYfjw4eURH5lY99Z+iPrlOPJUhX9wW8ll6NaqZCMbqfIobtCY+vEj1GxpunWRSSKsFHw3XUmUKVHfv39f+376+PHjEEURjRs3xvz58zF8+HB4eXmVc5hUnlIysrA/9hISH6bD09URU4Z0xadbDuqM+raSyzB7VB+4OFQzd7hUzmyUrhw0RsjzHwSxWnVzh0ElUOJEnZWVhe3bt2Pjxo04ePAg8vLyULNmTUyePBnDhw9Hy5YtTRknlRN9U7Gs5DJMeakrUjKzkfAgDTWrO6FbKz8m6SrKpWFrJJza/d876idw0Jhl0Lg1hqrBc+YOg0qoxIna3d0djx8/hlKpxLBhw7RzqJ9cDJ2k7cmpWAC0A8jyVGp8+t1BbJg9Bi4O+pfDo8rt6fW76z77Mm7/tlln1DcHjVkGUeGA3Nav54/yp0qhxIm6W7duGD58OPr16wdb26q3TZ0l4FQsy6RvKpYgk6NuhyFQPc7goDFLIpMht80EiHZ8vVGZlDhR//jjj6aMgyoAp2JZHkNTsUSNCrePbIH/y3OYnC1IbvOw/BXIqFJh34cF4VQsy8P1u6mAqmFPqH26mjsMKgMzbSNP5sCpWJaH63cTAKjrBCOv2VBzh1Fl7d27F6tXr8b169eRkpJSaMlQQRAQFxdX5vszUVsQFwd7zB7VB/OjCo/65lSsqolTsUjj3gS5rV7j4DETWbJkCaZPnw4PDw8EBwejWbNm5V4HE7WFadvEBxtmj8GBk5c5FcsCcCqWZdO4+iCn7WRAbm3uUKqsyMhIdOnSBbt374a1tWn+npmoLZCLgz1Hd1sIazsHeHUdjfiDazkVy8JonOshp/07gDVn6ZhSSkoKBg0aZLIkDTBRE1V5TvWawP/lOUi5FsupWBZCdKyFnA7vAjZKc4dS5QUHB+PKlSsmrYOJmsgCWNs5wL1ZF3OHQRVAtK+Rn6QVjuYOxSJ89dVX6NWrF1q1aoVhw4aZpA4maiKiKkK0USKn/btc0KQCDRkyBCqVCq+88gpef/111KlTB3K5XKeMIAj4888/y1wHEzURUVUgCMhtOwmig6e5I7Eorq6uqF69Oho2bGiyOpioiYiqgLwmg6Fxa2zuMCxOdHS0yevgxDoiokpO4+oL1TN9zB0GmQhb1ERElZkgIDdwJBc0MbO8vDxcvnwZaWlp0GgKb37UsWPHMt+biZqIqBJT1w6G6OJt7jAslkajwYwZM/DVV1/h0aNHBsup1frX3C8JJmoiKtbT+1m7NOQ8bKnIa/S8uUOwaAsXLsSSJUsQERGBDh064JVXXsHixYvh7OyMr776CoIg4OOPPzaqDiZqIioyEevbzzrh1G54dR0Np3pNzBy5ZdO4NoDo7GXuMCxaVFQUXnrpJXz99dd48OABACAoKAhdunTByJEjERISgkOHDqFbt25lroMvNcgoKRlZ+O7QSXy+7RC+O3QSKRlZ5g6JSint1nlc3DwP/8T+jPtXjuGf2J9xcfM8pN268NR+1iKg0QAQIWpUiD+4FnnZGeYO36Kp6rU3dwgW786dO+jSJX8xIYVCAQB4/PgxAMDGxgYjRozA+vXrjaqDLWoqs+Pnr2PBOt2duKJ+OY7Zo/qgbRMfc4dHTzDUYtZNxNDutFWQiN0Duha7nzVXPDMTQYC6NjdVMbfq1asjMzMTAKBUKuHo6Ijr16/rlElJSTGqDiZqKpOUjCwsWLdLu7e1+t/9V/NUasyP2oUNs8fAxcHenCHSv4rqus5JTSoyEWf8c4X7WUuAh5sbAMDTKlN7TFOjEWDrZK6Q6F8tWrRAbGys9nPnzp2xbNkytGjRAhqNBp9//jmaN29uVB3s+qYiGera3h97CSp14SkIAKBSa3Dg5OWKDJMMKK7rOjs1MT8R61NwnPtZm93hPT/gyqnf8Me0ptpj6trBZoyICrz66qvIyclBTk4OAODDDz9EamoqOnbsiNDQUKSnp2Pp0qVG1cEWNRlUVNd24sN0yARB25J+kkwQkPAgzQwR09NSrsYW2WJWP84sMhE71H4G2ffvcD9rqREEqJioJaFfv37o16+f9rO/vz/i4uIQHR0NuVyOdu3awdXVuF9omahJr+K6tod0CYJGT5IGAI0oomZ1dslJQW7mwyK7rq1slRBkcoOJuIbfs6hWoz73s5YYtUczdntLmJOTE/r3719u92OiJr2K69oGBFjJZdpE/iQruQzdWvmZOEIqCRula5EtZlsXT3h1HV1kIuZ+1tKjrhti7hDoCWq1Glu3bsWvv/6K5ORkzJ8/H82aNUNaWhoOHjyI9u3bw8PDo8z3Z6ImpGRkYX/sJSQ+TIenqyO6t/Yrtms7LSsbs0f1wfwo3a5xK7kMs0f1gYtDNTN8J/Q0l4atkXBqd5Fd19Z2DsUmYu5nLSEyK6hrBpk7CvpXamoqevbsiRMnTkCpVCIrKwtvvvkmgPxR4BMnTkRYWBgWLlxY5jokNZjs66+/RkBAABwdHeHo6IiQkBD88ssvRV6zdetWNG7cGLa2tmjWrBl2795dQdFWDcfPX8fw+WuwaudR7D5+Hqt2HsXw+WuQm6cqtmu7bRMfbJg9BuP6dkDvkKYY17cDNswey6lZEmJt5wCvrqMhyKwACIBMBkCAILPS6bouSMR12g2Ce7MubC1LmNqtMWBtZ+4w6F/Tp0/HhQsXsHfvXly/fh3iEz835XI5Bg0aZHReklSLuk6dOvjoo4/QsGFDiKKIdevWoX///jhz5gyaNCm8AtKxY8cwdOhQLFq0CM8//zw2btyIAQMG4PTp02jatKmeGuhJRb2HPnjqMqxkAvLUhZP1k13bLg72GNyZv91LGbuuqxaNO1eDk5IdO3bgzTffRPfu3bUrkz3pmWeeQVRUlFF1SKpF3bdvX/Tu3RsNGzbEM888gw8//BBKpRK///673vKRkZHo2bMn3nnnHfj5+WHBggVo2bIlvvzyywqOvHIq6j20WiOiS1BjWFvJIQgC5DIZBEGAtZWcXduVEFvMVYfGtYG5Q6AnpKWlwdvb8KYoeXl5UKkKv3oqDUm1qJ9U8HI+KysLISH6B04cP34cU6ZM0TnWo0cP7NixowIirPyKew9tY22FDbPH4MDJy0h4kIaa1Z3QrZUfkzSRGWmc6ps7BHqCr68vTp8+bfD8vn374O/vb1QdkkvU586dQ0hICB4/fgylUont27cb/CYTExMLjaTz8PBAYmKiwfs/OTEdgHbpN0vk6epY7Htodm0TSYdo58L30xITHh6Od999F506dULXrl0BAIIgICcnB/Pnz8eePXuwYsUKo+qQXKJu1KgRzp49i7S0NGzbtg0jR45ETEyM0b+RFFi0aBHmzZtXLveq7Lq39kPUL8c5xcoCcJvKqkG0L/sUHzKNSZMm4cKFCxg6dCicnZ0BAMOGDcODBw+gUqkQERGBsWPHGlWH5BK1jY0NGjTIfwcTFBSE2NhYREZGYvny5YXKenp6IikpSedYUlISPD09Dd5/xowZOt3lZ8+eRWhoaDlFX7m4ONhzipUF4DaVVYdYrbq5Q6CnCIKAlStXYuTIkdi2bRuuXr0KjUYDX19fvPTSS+jYsaPRdUguUT9No9HodFU/KSQkBAcPHsTkyZO1x/bv32/wnTaQvw1ZwVZkQP48N0vz9Lzp/015GScv3+J76CqouN2x/F+ew5Z1JSJyNTLJ6tChAzp06GCSe0sqUc+YMQO9evVCvXr1kJGRgY0bNyI6Ohp79+4FAISFhaF27dpYtGgRgPwuh9DQUCxduhR9+vTB5s2bcfLkSaPfB1RlRa3fzXfRVU9xa31zm8rKRbSxvIYFSSxRJycnIywsDAkJCXByckJAQAD27t2L7t27AwBu3boFmey/GWXt2rXDxo0b8d5772HmzJlo2LAhduzYwTnUBnBrSstT3Frf3KaychGt2dMlBU9uwlESgiDgxx9/LHN9kkrUq1evLvJ8dHR0oWODBw/G4MGDTRRR1VKSrSnZqq5ailvrm9tUVjJWiuLLkMnt3LkTtra28PT01FmJzBBBMLCVbAlJKlGTaXFrSstTkrW+qRKxsjV3BASgdu3auHv3LmrUqIFhw4bh5ZdfLnIQs7EktTIZmVZJ5k1T1VLStb6pchDlTNRScPv2bfz6669o0aIFFixYgLp166Jbt25Yu3YtMjIyyr0+JmoL0r21H6zk+h85501XXQVrfdcK7osajdqhVnBf+L88h1OzKiML7fr+3//+By8vL9ja2qJNmzY4ceJEkeUrYrOm0NBQLF++HImJidi2bRuqV6+OCRMmwN3dHS+88AK2bdtmcMZSaTFRVxEuDtVQw0lZ5LSqgnnTXL/b8nCt76pBtMBEvWXLFkyZMgVz5szB6dOn0bx5c/To0QPJycl6yxds1jR27FicOXMGAwYMwIABA3D+/HmTxGdtbY3+/ftjy5YtSEpK0ibvIUOG4OOPPy6XOviOuor4auqwEpUr2JqS63cTVUIyG3NHUOE+/fRTjBs3DqNHjwYAfPPNN9i1axfWrFmD6dOnFyr/5GZNALBgwQLs378fX375Jb755huTxZmTk4O9e/fixx9/xJkzZ2BrawsvL69yuTcTtZnlqdRQa/SPxDYVO4UN+rYPgFqthubfujOyHlVoDHKZDNZW8gqtUwrUeXnIy1NBlOVBJpZ9JKj4xJ95eXnlEpspaVR5UOWpkJeXBw2q3nMveK5q8RFkctM9DyFPBTE7yyT31qjzoFGpTfqMCnaRyszMRHp6uvb40wtRFcjNzcWpU6cwY8YM7TGZTIZu3brh+PHjeuuoyM2aNBoN9u/fj02bNmHHjh149OgRunXrhpUrV2LgwIGwty+f6a5M1GaUp1Ljyq1EPMoxzw/alV8uw6qvIs1SNxnn+7c7w93JDv8kJCKkPt81U+Xy9LLNc+bMwdy5cwuVu3//PtRqtd7Nly5fvqz33mXZrKm0jh07ho0bN2Lr1q148OAB2rZti4ULF+Kll15CjRo1yq2eAkzUZqTWaPAoJw/WcvO0LidMnoI3Jk5G5qPHOHnlFh6mZ8HV0R6tGtWDslrZR5deiE/A+j2/Q63RQBAEiKIIuUyGsJ5t4e9VE3kqNVRqDZr51oatjXU5fkfSp857jLSbF2ClsIXMquzdmFe2fQDVozTUqumJhzcvlGOEpqFR5UKV8xhO9ZtAbl01Ry5r1HkGV4ErNzkZgMJ04wsEmRwyuen+nzxz5gzatGmDmJgYBAYGao/ra01LWYcOHWBnZ4fevXtj6NCh2i7uW7du4datW3qvadmyZZnrY6KWAGsrOWyszfAorK1wLu4uVu08opNU9528jPC+HdDMp3apb5melY0N+2OhgQBBlv/LhyAAGgD/tz8WC8L7oZqdbf4vKNbWsLa2rEQtgxrW1lawsraGzKrs37vwxJ+V4e9QI4gQNCpYW1tDXgniLZOK+L6sZIBN5V090Moq/+ecUqmEo6NjseVr1KgBuVxeqs2XyrJZU1lkZ2fj+++/xw8//FBkOVEUIQgC1Oqy/xLHRG3B0rOysWrnEe1qZQUr7KjUGqz6+QgWhPeDo73hvW/Ts7Lxx8V4bUu8jb8X/rgYb/Cdu1qjwYlL8ejYvGH5fzMWxqqao86fZCmMW+GqsrGxsUFQUBAOHjyIAQMGAMh/L3zw4EFMmDBB7zVl2ayptNauXVtu9yoJJuoqYvGGvUjPyoajvR3eHd6jRNeUJKkamlutryW+89hfaFTPQ/v5aTJBwIM00wyEsTSN+k81dwhEFWLKlCkYOXIkWrVqheDgYCxbtgxZWVnaUeDm2Kxp5MiR5XavkmCiriLSs7KRmpldqmsepmeVKakW1RK/FJ8IEYZXP6vuVHm77YjMzsg1oyujIUOG4N69e5g9ezYSExMRGBiIPXv2aAeMWcJmTUzUFszV0d7ggvJFJdWiWuIaUYRMEPQma7lMhjb+3mUPmMjiWV6iBoAJEyYY7Oq2hM2auDKZBWvj7wW5TP8/gaKSakFLXP91Avy8PGEll0EQ8j8LQv4SpeF9O8DBiNHkRBbPAlvUxBa1RXO0t0N43w5Y9XP+u2aZIEDz71SqgqSqb8BYcS3xZ+p6YMRzbXDiUjwepGWhupM92vh7M0lLWF52BlKuxiI38yFslK5wadiay4xKkdzyViYjJmqL9HTynTbsOVy6mVgoqRoaMDasezDkMpneva0LWuIO1Wy5yUclkXbrPOIPRuXPAZYJgEZEwqnd8Oo6mht3SA1b1BaJidrC6E+++S3oJxNrUQPGNu4/gWHdg7Fx/wmDLXGSFkMt5rzsjH+T9L/7VWvyn7OoUSH+4Fr4vzyHLWsiM2OitiClmTdd3NStjEePsSC8H7u3K4GiWsw5qUkGV9MSNWqkXIuFe7MuFRwxET2JidqClGbedEmmbjna27F7W+KKazE7+7bUJu9CZAJyMx5WYLREpA9HfVuQokZrPz1vuqxTt0haUq7GFtliVj/O1J+kAUAjwsbB1YTREVFJMFFbkNIk37JO3SJpyc18mN9i1kcmwMpWqV2T/WmCTA6XBq1NGB0RlQQTtQUpTfItmLrF+dCVm43StcgWs62LJ7y6joYgswIgADIZAAGCzApeXUdzIBmRBPAdtQUpybxpQHf6VrdWfhAEICs7lwPGKiGXhq2RcGr3f++on1DQYra2c4D/y3OQci0WuRkPYePgqj1ORObHRG1hmvnULnK0tr7pWwWJvCzbXpJ5Wds5wKvraMQfXKsz6luQyXVazNZ2DhzdTSRRTNQWyNBobWO3vSRpcqrXhC1mokqMiZq0jNn2kqSNLWaiyouJ2gLpW7/b0d6uzNteEhGR6TBRWxhD63eH9+3AudNERBLE6VkW5Ml30KIIaDQiRPG/d9D+Xp6cO01EJDFM1BakuHfQl24mcu40EZHEsOvbgpTkHXS3Vn7cbIOISEKYqC1ISd9Bc7MNIiLpYNe3BeH63URElQ8TtQXh+t2WKy87A8l/HcKdY9uQ/Nch5GVnmDskIiohdn1bmOKWEKWqJ+3W+X/3pP5vCdGEU7vh1XU0nOo1MXd4RFQMJmoLxHfQliMvO+PfJP3vphz/7qQlalSIP7gW/i/P4VKiRBLHrm+iKizlamx+S1oPUaNGyrXYCo6IiEqLiZqoCsvNfJjf3a2PTEBuxsOKDYiISo2JmqgKs1G6aru7C9GIsHFwrdiAiKjUmKiJqjCXhq0hyOR6zwkyOVwatK7giIiotJioiaowazsHeHUdDUFmBUAAZDIAAgSZFby6juZAMqJKgKO+iao4p3pN4P/yHKRci0VuxkPYOLjCpUFrJmmiSoKJmsgCWNs5wL1ZF3OHQURlwK5vIiIiCWOiJiIikjB2fVug9Kxs/HExHg/Ts+DqaI82/l5wtLczd1hERKQHE7WFORd3F6t2HoFao9HuTb3z2F8I79sBzXxqmzs8IiJ6Cru+LUh6VjZW7TwClVoDUQQ0GhGiCKjUGqz6+QjSs7LNHSIRET2FidqC/HExHmqNRu85tUaDE5fiKzYgIiIqFhO1BXmYngVB0L/us0wQ8CAtq4IjIiKi4kgqUS9atAitW7eGg4MD3N3dMWDAAFy5cqXIa6KioiAIgs6XrS33VtbH1dEeoqh/3WeNKKK6k30FR0RERMWRVKKOiYnB+PHj8fvvv2P//v3Iy8vDc889h6ysolt6jo6OSEhI0H7dvHmzgiKuXNr4e0Eu0//I5TIZ2vh7V3BERERUHEmN+t6zZ4/O56ioKLi7u+PUqVPo2LGjwesEQYCnp6epw6v0HO3tEN63A1b9nD/qWyYI0Igi5DIZwvt2gEM19kQQEUmNpBL109LS0gAArq5Fb8WXmZmJ+vXrQ6PRoGXLlli4cCGaNGmit2xOTg5ycnJ0rrUkzXxqY0F4P5y4FI8HaVmo7mSPNv7eTNJERBIl2USt0WgwefJktG/fHk2bNjVYrlGjRlizZg0CAgKQlpaGTz75BO3atcOFCxdQp06dQuUXLVqEefPmmTJ0yXO0t0O3Vn7mDoOIiEpAUu+onzR+/HicP38emzdvLrJcSEgIwsLCEBgYiNDQUPzwww9wc3PD8uXL9ZafMWMG0tLStF8xMTGmCJ+IiKhcSLJFPWHCBOzcuROHDx/W2youirW1NVq0aIFr167pPa9QKKBQKLSflUqlUbFWRVxilIhIOiSVqEVRxJtvvont27cjOjoa3t6lH4WsVqtx7tw59O7d2wQRVn1cYpSISFok1fU9fvx4/N///R82btwIBwcHJCYmIjExEdnZ/y1tGRYWhhkzZmg/z58/H/v27cP169dx+vRpjBgxAjdv3kR4eLg5vgWzcbS3g7PSzqiWL5cYJSKSHkm1qL/++msAQKdOnXSOr127FqNGjQIA3Lp1C7In5gKnpKRg3LhxSExMhIuLC4KCgnDs2DH4+/tXVNiS8O7wHiUua6hruyRLjHIQGhFRxZJUoja0ataToqOjdT5/9tln+Oyzz0wUUdVTVNd2wRKj+p4DlxglIjIPSXV9k2kV17Vtb2vDJUaJiCSGidqCFNe1DQFcYpSIKqWHDx9i+PDhcHR0hLOzM8aOHVvsgladOnUqtFfEa6+9VkERlxwTtQUpbvesrOxchPftACu5DIIAyGUCBAGwknOJUSKStuHDh+PChQvYv3+/dnrvq6++Wux148aN09kr4uOPP66AaEtHUu+oybRKsnsWlxglosrm0qVL2LNnD2JjY9GqVSsAwBdffIHevXvjk08+Qa1atQxeW61aNcnvFcEWtQUp6e5ZBUuMDunaCt1a+TFJE5GkHT9+HM7OztokDQDdunWDTCbDH3/8UeS1GzZsQI0aNdC0aVPMmDEDjx49MnW4pcYWtQXh7llEJAWZmZlIT0/Xfn56xcjSSkxMhLu7u84xKysruLq6IjEx0eB1w4YNQ/369VGrVi389ddfePfdd3HlyhX88MMPZY7FFJioLQy7tonI3EJDQ3U+z5kzB3Pnzi1Ubvr06Vi8eHGR97p06VKZ43jyHXazZs1Qs2ZNdO3aFXFxcfD19S3zfcsbE7UF4u5ZRGROMTExCAwM1H421JqeOnWqdrErQ3x8fODp6Ynk5GSd4yqVCg8fPizV++c2bdoAAK5du8ZETURElkupVMLR0bHYcm5ubnBzcyu2XEhICFJTU3Hq1CkEBQUBAA4dOgSNRqNNviVx9uxZAEDNmjVLfE1F4GAy0pGelY39sZew5eBJ7I+9xPW9iUjy/Pz80LNnT4wbNw4nTpzA0aNHMWHCBLz88svaEd93795F48aNceLECQBAXFwcFixYgFOnTiE+Ph4//fQTwsLC0LFjRwQEBJjz2ymELWrS4s5ZRFRZbdiwARMmTEDXrl0hk8nw4osv4vPPP9eez8vLw5UrV7Sjum1sbHDgwAEsW7YMWVlZqFu3Ll588UW899575voWDGKiJgC6y4sC/627XrC86ILwftyTmogky9XVFRs3bjR43svLS2cdibp16yImJqYiQjMau74JQPHLi564FF+xAREREQC2qC2Svm0uuXMWEZE0MVFbGEPvoVs1rs+ds4iIJIhd3xakqG0uYy/FQ8ads4iIJIeJ2oIU9R5aI4po3bg+d84iIpIYdn1bkOLeQ9tYWXF5USIiiWGitiAl2eaSy4sSEUkLu74tSEm3uSQiIulgorYgBdtc8j00EVHlwa5vC8NtLomIKhcmagvE99BERJUHu76JiIgkjImaiIhIwpioiYiIJIyJmoiISMKYqImIiCSMiZqIiEjCmKiJiIgkjPOo/3Xp0qUKrzMnT4Wrd5Jha20Fayt5hddvLnkqNR7nqaBOT4bC2rL+CapVOchMiIPcWgGZ3Nrc4VQYjToP6rwcKB/mQW6l0DlXs2ZN1KxZ00yRlU1CQgISEhLMHUalY46fs1WBZf2U1KNmzZoIDQ3FiBEjzB0KkUWaM2cO5s6da+4wSmX58uWYN2+eucOolEJDQyvdL2bmJoiGtlOyIJb423FmZiZCQ0MRExMDpVJp7nCoAkj1mbNFXTypPruyqIzP29yYqC1Ueno6nJyckJaWBkdHR3OHQxWAz7zy4rOzbBxMRkREJGFM1ERERBLGRG2hFAoF5syZA4VCUXxhqhL4zCsvPjvLxnfUREREEsYWNRERkYQxURMREUkYEzUZLT4+HoIgICoqytyhEBFVOUzUFSwuLg4RERHw8fGBra0tHB0d0b59e0RGRiI7O9tk9V68eBFz585FfHy8yeooiQ8//BD9+vWDh4cHBEGodCtSmZIgCCX6io6ONrquR48eYe7cuaW6F59d0fj8yFQsfgnRirRr1y4MHjwYCoUCYWFhaNq0KXJzc3HkyBG88847uHDhAlasWGGSui9evIh58+ahU6dO8PLyMkkdJfHee+/B09MTLVq0wN69e80WhxStX79e5/O3336L/fv3Fzru5+dndF2PHj3SLoHZqVOnEl3DZ1c0Pj8yFSbqCnLjxg28/PLLqF+/Pg4dOqSzhN748eNx7do17Nq1y4wR/kcURTx+/Bh2dnblfu8bN27Ay8sL9+/fh5ubW7nfvzJ7er3533//Hfv375fMOvR8dkXj8yNTYdd3Bfn444+RmZmJ1atX613ntkGDBpg0aZL2s0qlwoIFC+Dr6wuFQgEvLy/MnDkTOTk5Otd5eXnh+eefx5EjRxAcHAxbW1v4+Pjg22+/1ZaJiorC4MGDAQCdO3cu1AVXcI+9e/eiVatWsLOzw/LlywEA169fx+DBg+Hq6opq1aqhbdu2Rv1CYc7WfFWg0WiwbNkyNGnSBLa2tvDw8EBERARSUlJ0yp08eRI9evRAjRo1YGdnB29vb4wZMwZA/piCgh/U8+bN0/57KK4rlM/OeHx+VBZsUVeQn3/+GT4+PmjXrl2JyoeHh2PdunUYNGgQpk6dij/++AOLFi3CpUuXsH37dp2y165dw6BBgzB27FiMHDkSa9aswahRoxAUFIQmTZqgY8eOmDhxIj7//HPMnDlT2/X2ZBfclStXMHToUERERGDcuHFo1KgRkpKS0K5dOzx69AgTJ05E9erVsW7dOvTr1w/btm3DwIEDy+8viEokIiICUVFRGD16NCZOnIgbN27gyy+/xJkzZ3D06FFYW1sjOTkZzz33HNzc3DB9+nQ4OzsjPj4eP/zwAwDAzc0NX3/9NV5//XUMHDgQL7zwAgAgICDAnN+aReDzozIRyeTS0tJEAGL//v1LVP7s2bMiADE8PFzn+Ntvvy0CEA8dOqQ9Vr9+fRGAePjwYe2x5ORkUaFQiFOnTtUe27p1qwhA/PXXXwvVV3CPPXv26ByfPHmyCED87bfftMcyMjJEb29v0cvLS1Sr1aIoiuKNGzdEAOLatWtL9P2Joijeu3dPBCDOmTOnxNdYmvHjx4tP/i/622+/iQDEDRs26JTbs2ePzvHt27eLAMTY2FiD9zbm75/PrmT4/Ki8sOu7AqSnpwMAHBwcSlR+9+7dAIApU6boHJ86dSoAFOp69vf3x7PPPqv97ObmhkaNGuH69esljtHb2xs9evQoFEdwcDA6dOigPaZUKvHqq68iPj4eFy9eLPH9yXhbt26Fk5MTunfvjvv372u/goKCoFQq8euvvwIAnJ2dAQA7d+5EXl6eGSOmJ/H5UVkxUVeAgm3pMjIySlT+5s2bkMlkaNCggc5xT09PODs74+bNmzrH69WrV+geLi4uhd57FcXb21tvHI0aNSp0vKDL/Ok4yLSuXr2KtLQ0uLu7w83NTecrMzMTycnJAIDQ0FC8+OKLmDdvHmrUqIH+/ftj7dq1hcY3UMXi86Oy4jvqCuDo6IhatWrh/PnzpbpOEIQSlZPL5XqPi6VYxt0UI7ypfGk0Gri7u2PDhg16zxcMMBIEAdu2bcPvv/+On3/+GXv37sWYMWOwdOlS/P7771AqlRUZNv2Lz4/Kiom6gjz//PNYsWIFjh8/jpCQkCLL1q9fHxqNBlevXtUZ8JWUlITU1FTUr1+/1PWXNOk/HceVK1cKHb98+bL2PFUcX19fHDhwAO3bty/RL1Zt27ZF27Zt8eGHH2Ljxo0YPnw4Nm/ejPDw8DL9eyDj8PlRWbHru4JMmzYN9vb2CA8PR1JSUqHzcXFxiIyMBAD07t0bALBs2TKdMp9++ikAoE+fPqWu397eHgCQmppa4mt69+6NEydO4Pjx49pjWVlZWLFiBby8vODv71/qOKjsXnrpJajVaixYsKDQOZVKpX22KSkphXpTAgMDAUDbfVqtWjUApfv3QMbh86OyYou6gvj6+mLjxo0YMmQI/Pz8dFYmO3bsGLZu3YpRo0YBAJo3b46RI0dixYoVSE1NRWhoKE6cOIF169ZhwIAB6Ny5c6nrDwwMhFwux+LFi5GWlgaFQoEuXbrA3d3d4DXTp0/Hpk2b0KtXL0ycOBGurq5Yt24dbty4ge+//x4yWel/z1u/fj1u3ryJR48eAQAOHz6MDz74AADwyiuvsJVehNDQUERERGDRokU4e/YsnnvuOVhbW+Pq1avYunUrIiMjMWjQIKxbtw5fffUVBg4cCF9fX2RkZGDlypVwdHTU/hJoZ2cHf39/bNmyBc888wxcXV3RtGlTNG3a1GD9fHbG4fOjMjPzqHOL8/fff4vjxo0Tvby8RBsbG9HBwUFs3769+MUXX4iPHz/WlsvLyxPnzZsnent7i9bW1mLdunXFGTNm6JQRxfypVX369ClUT2hoqBgaGqpzbOXKlaKPj48ol8t1pmoZuocoimJcXJw4aNAg0dnZWbS1tRWDg4PFnTt36pQpzfSs0NBQEYDeL31TxyzZ09N7CqxYsUIMCgoS7ezsRAcHB7FZs2bitGnTxH/++UcURVE8ffq0OHToULFevXqiQqEQ3d3dxeeff148efKkzn2OHTsmBgUFiTY2NiWarsNnVzp8flReBFEsxYgjIiIiqlB8R01ERCRhTNREREQSxkRNREQkYUzUREREEsZETUREJGFM1ERERBLGRC0xH3/8MRo3bgyNRmPuUIw2ffp0tGnTxtxhSB6fOQFAfHw8BEFAVFSUuUMhiWGilpD09HQsXrwY7777rnbVL0EQIAgCli5dWqh8VFQUBEHAyZMnja77hx9+wJAhQ+Dj44Nq1aqhUaNGmDp1qsElCn/66Se0bNkStra2qFevHubMmQOVSqVTZvLkyfjzzz/x008/GR1fVcVnTkTFMveKK/Sfzz77THR0dBSzs7O1x/DvykEeHh5iVlaWTvm1a9cWu8F8SVWvXl1s1qyZ+P7774srV64UJ06cKNrY2IiNGzcWHz16pFN29+7doiAIYufOncUVK1aIb775piiTycTXXnut0H1feukl8dlnnzU6vqqKz5wKaDQaMTs7W1SpVOYOhSSGiVpCAgICxBEjRugcAyAGBgaKAMSlS5fqnCvPH9r6lhBct26dCEBcuXKlznF/f3+xefPmYl5envbYrFmzREEQxEuXLumU3bZtmygIghgXF2d0jFURnzkRFYdd3xJx48YN/PXXX+jWrVuhc+3bt0eXLl3w8ccfIzs72yT1d+rUqdCxgQMHAgAuXbqkPXbx4kVcvHgRr776Kqys/tvT5Y033oAoiti2bZvOPQq+nx9//NEEUVdufOZVz9y5cyEIAv7++2+MGDECTk5OcHNzw/vvvw9RFHH79m30798fjo6O8PT01Hm9oe8d9ahRo6BUKnH37l0MGDAASqUSbm5uePvtt6FWq7XloqOjIQgCoqOjdeLRd8/ExESMHj0aderUgUKhQM2aNdG/f3/Ex8eb6G+FjMVELRHHjh0DALRs2VLv+blz5yIpKQlff/11kffJycnB/fv3S/RVnMTERABAjRo1tMfOnDkDAGjVqpVO2Vq1aqFOnTra8wWcnJzg6+uLo0ePFlufpeEzr7qGDBkCjUaDjz76CG3atMEHH3yAZcuWoXv37qhduzYWL16MBg0a4O2338bhw4eLvJdarUaPHj1QvXp1fPLJJwgNDcXSpUuxYsWKMsX24osvYvv27Rg9ejS++uorTJw4ERkZGbh161aZ7kemx20uJeLy5csAAG9vb73nn332WXTu3BlLlizB66+/bnDj+U2bNmH06NElqlMsZj+WxYsXQy6XY9CgQdpjCQkJAICaNWsWKl+zZk38888/hY77+Pjg4sWLJYrJkvCZV13BwcFYvnw5AODVV1+Fl5cXpk6dikWLFuHdd98FAAwdOhS1atXCmjVr0LFjR4P3evz4MYYMGYL3338fAPDaa6+hZcuWWL16NV5//fVSxZWamopjx45hyZIlePvtt7XHZ8yYUdpvkSoQE7VEPHjwAFZWVlAqlQbLzJ07F6Ghofjmm2/w1ltv6S3To0cP7N+/3+h4Nm7ciNWrV2PatGlo2LCh9nhBN6xCoSh0ja2tLdLT0wsdd3FxKdTqIj7zqiw8PFz733K5HK1atcKdO3cwduxY7XFnZ2c0atQI169fL/Z+r732ms7nZ599FuvXry91XHZ2drCxsUF0dDTGjh0LFxeXUt+DKh4TdSXSsWNHdO7cGR9//HGh/3EL1KxZU2/LpzR+++03jB07Fj169MCHH36oc66gVZeTk1PousePH+tt9YmiCEEQjIrJUvGZV0716tXT+ezk5ARbW1udVwoFxx88eFDkvWxtbeHm5qZzzMXFBSkpKaWOS6FQYPHixZg6dSo8PDzQtm1bPP/88wgLC4Onp2ep70cVg++oJaJ69epQqVTIyMgostycOXOQmJio7VZ7WnZ2NhITE0v0pc+ff/6Jfv36oWnTpti2bZvO4CHgv+7Pgu7QJyUkJKBWrVqFjqekpBT6AUV85lWZXC4v0TGg+NcRhq57kqFfip4ccFZg8uTJ+Pvvv7Fo0SLY2tri/fffh5+fn0X3gEgdE7VENG7cGED+SOCihIaGolOnTli8eLHe0cBbtmzRtrCK+3paXFwcevbsCXd3d+zevVtvl2xgYCAAFFpw459//sGdO3e0559048YN+Pn5Ffl9WSI+cyovBV3YTy9Wc/PmTb3lfX19MXXqVOzbtw/nz59Hbm6u3gV2SBrY9S0RISEhAPJ/GAYEBBRZdu7cuejUqZPeUZ9lfV+ZmJiI5557DjKZDHv37i3U1VagSZMmaNy4MVasWIGIiAjtb/tff/01BEHQGYQEAGlpaYiLiyv1oBdLwGdO5aV+/fqQy+U4fPgwBgwYoD3+1Vdf6ZR79OgRZDIZbG1ttcd8fX3h4OCg99UGSQMTtUT4+PigadOmOHDgAMaMGVNk2dDQUISGhiImJqbQubK+r+zZsyeuX7+OadOm4ciRIzhy5Ij2nIeHB7p37679vGTJEvTr1w/PPfccXn75ZZw/fx5ffvklwsPDC7WiDhw4AFEU0b9//1LHVNXxmVN5cXJywuDBg/HFF19AEAT4+vpi586dSE5O1in3999/o2vXrnjppZfg7+8PKysrbN++HUlJSXj55ZfNFD0Vy1wrrVBhn376qahUKnWWbwQgjh8/vlDZX3/9VbvUZHmsUlVwL31foaGhhcpv375dDAwMFBUKhVinTh3xvffeE3NzcwuVGzJkiNihQwej46uq+Myrljlz5ogAxHv37ukcHzlypGhvb1+ofGhoqNikSRNRFEXxxo0bIgBx7dq1xV5XUM+T7t27J7744otitWrVRBcXFzEiIkI8f/68zj3v378vjh8/XmzcuLFob28vOjk5iW3atBG/++47I79zMiVBFIsZyUAVJi0tDT4+Pvj44491pnFUVomJifD29sbmzZvZujKAz5yIisPBZBLi5OSEadOmYcmSJVViy8Nly5ahWbNm/IFdBD5zIioOW9REREQSxhY1ERGRhDFRExERSRgTNRERkYQxURMREUkYEzURkYWJj4+HIAiIiooydyhUAkzURERFiIuLQ0REBHx8fGBrawtHR0e0b98ekZGRetdeLy8XL17E3LlzER8fb7I6SuLDDz9Ev3794OHhAUEQMHfuXLPGY4m4hCgRkQG7du3C4MGDoVAoEBYWhqZNmyI3NxdHjhzBO++8gwsXLuhdf708XLx4EfPmzUOnTp3g5eVlkjpK4r333oOnpydatGiBvXv3mi0OS8ZETUSkx40bN/Dyyy+jfv36OHTokM566uPHj8e1a9ewa9cuM0b4H1EUDe4NbqwbN27Ay8sL9+/fN7hxC5kWu76JiPT4+OOPkZmZidWrV+vd9KRBgwaYNGmS9rNKpcKCBQvg6+sLhUIBLy8vzJw5s9CuVF5eXnj++edx5MgRBAcHw9bWFj4+Pvj222+1ZaKiojB48GAAQOfOnSEIAgRBQHR0tM499u7di1atWsHOzk67X/n169cxePBguLq6olq1amjbtq1Rv1CYszVP+ZioiYj0+Pnnn+Hj44N27dqVqHx4eDhmz56Nli1b4rPPPkNoaCgWLVqkd1eqa9euYdCgQejevTuWLl0KFxcXjBo1ChcuXAAAdOzYERMnTgQAzJw5E+vXr8f69et1diq7cuUKhg4diu7duyMyMhKBgYFISkpCu3btsHfvXrzxxhv48MMP8fjxY/Tr1w/bt28vh78VMguzbglCRCRBaWlpIgCxf//+JSp/9uxZEYAYHh6uc/ztt98WAYiHDh3SHqtfv74IQDx8+LD2WHJysqhQKMSpU6dqj23dulUEIP7666+F6iu4x549e3SOT548WQQg/vbbb9pjGRkZore3t+jl5SWq1WpRFPXv1FWce/fuiQDEOXPmlPgaKh9sURMRPSU9PR0A4ODgUKLyu3fvBgBMmTJF5/jUqVMBoFDXs7+/P5599lntZzc3NzRq1AjXr18vcYze3t7o0aNHoTiCg4PRoUMH7TGlUolXX30V8fHxuHjxYonvT9LBRE1E9BRHR0cAQEZGRonK37x5EzKZDA0aNNA57unpCWdnZ9y8eVPneL169Qrdw8XFBSkpKSWO0dvbW28cjRo1KnS8oMv86TiocmCiJiJ6iqOjI2rVqoXz58+X6jpBEEpUTi6X6z0ulmIzQ1OM8CZpYqImItLj+eefR1xcHI4fP15s2fr160Oj0eDq1as6x5OSkpCamor69euXuv6SJv2n47hy5Uqh45cvX9aep8qHiZqISI9p06bB3t4e4eHhSEpKKnQ+Li4OkZGRAIDevXsDAJYtW6ZT5tNPPwUA9OnTp9T129vbAwBSU1NLfE3v3r1x4sQJnV8usrKysGLFCnh5ecHf37/UcZD5ccETIiI9fH19sXHjRgwZMgR+fn46K5MdO3YMW7duxahRowAAzZs3x8iRI7FixQqkpqYiNDQUJ06cwLp16zBgwAB07ty51PUHBgZCLpdj8eLFSEtLg0KhQJcuXeDu7m7wmunTp2PTpk3o1asXJk6cCFdXV6xbtw43btzA999/D5ms9G2z9evX4+bNm3j06BEA4PDhw/jggw8AAK+88gpb6RXB3MPOiYik7O+//xbHjRsnenl5iTY2NqKDg4PYvn178YsvvhAfP36sLZeXlyfOmzdP9Pb2Fq2trcW6deuKM2bM0CkjivlTq/r06VOontDQUDE0NFTn2MqVK0UfHx9RLpfrTNUydA9RFMW4uDhx0KBBorOzs2hraysGBweLO3fu1ClTmulZoaGhIgC9X/qmjlH5E0SxFKMXiIiIqELxHTUREZGEMVETERFJGBM1ERGRhDFRExERSRgTNRERkYQxURMREUkYEzUREZGEMVETERFJGBM1ERGRhDFRExERSRgTNRERkYQxURMREUkYEzUREZGE/T+HuC/dJaQeawAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -518,7 +520,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUYAAAInCAYAAADkl/CSAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYtRJREFUeJzt3XdcU9f7B/DPTYAAsmVZF4gK4gDEqqgVB4rV1tGiFK24UGpt1dolbhxFa221tc6qqD9XtY5Wrai4quIC6dc9EMRaAQcbCSQ5vz8o0YQASUjI4Hm/XnnZ3HvuvU9IeTj3nHPP4RhjDIQQQqR4ug6AEEL0DSVGQgiRQ4mREELkUGIkhBA5lBgJIUQOJUZCCJFDiZEQQuRQYiSEEDmUGAkhRE6dT4xPnjzBvHnz8OTJE12HQgjRE5QYnzxBdHQ0JUZCiFSdT4yEECKPEiMhhMihxEgIIXJMdB0AIUR1JQXZyLp2AsKcTAjsXODcthfMrOx1HZbRoMRIiIF5fvcibv8WAyYRgeN4YEyCh6e2olXIDDi06Kjr8IwC3UoTYkBKCrLLkqK4FGAMTCIu+1dcilt7vkFJQbauQzQKlBgJMSBZ106ASUQK9zGJCFnXTtRyRMaJEiMhBkSYkwmOU/xry3E8CHMyazki46S3iXHx4sXgOA5Tp06ttExsbCw4jpN5mZub116QhNQygZ0LGJMo3MeYBAI7l1qOyDjpZefL5cuXsXbtWrRr167asjY2Nrhz5470Pcdx2gyNEJ1ybtsLD09tLWtjlMPxTODcrrcOojI+eldjLCgowIgRI7B+/XrY21c//IDjOLi6ukpfLi70F5MYLzMre7QKmQGObwpwHDgev+xfvilahcyAWT07XYdoFPSuxjhp0iQMGDAAQUFBWLhwYbXlCwoK0LRpU0gkErRv3x7ffPMNWrduXWl5oVAIoVAoczwhhsShRUe8+ekm2XGM7XpTUtQgvUqMO3fuRFJSEi5fvqxUeU9PT2zcuBHt2rVDbm4uvvvuO3Tp0gU3btxAo0aNFB4TExOD6OhoTYZNSK0zs7JHo4D3dR2G0eIYY0zXQQDAo0eP0KFDBxw7dkzattijRw/4+vpi+fLlSp2jtLQUrVq1QlhYGBYsWKCwjHyNMTk5GYGBgUhMTET79u1r/DkIIYZPb2qMiYmJyMrKkklOYrEYZ86cwcqVKyEUCsHn86s8h6mpKfz8/HD//v1KywgEAggEAul7KyurmgdPCDEqepMYe/fujWvXrslsGzNmDLy8vPD1119XmxSBskR67do19O/fX1thEkLqAL1JjNbW1mjTpo3Mtnr16qF+/frS7eHh4WjYsCFiYmIAAPPnz0fnzp3RvHlz5OTkYOnSpXj48CEiIiJqPX5CiPHQm8SojPT0dPB4r0YYZWdnY/z48cjIyIC9vT38/f1x/vx5eHt76zBKQoih05vOF11JSkqCv78/db4Qg0LTjmmXQdUYCSE07Vht0LsnXwghlaNpx2oHJUZCDAhNO1Y7KDESYkBo2rHaQYmREANC047VDkqMhBgQ57a9wPEU95nStGOaQ4mREANC047VDhquQ4iBoWnHtI8SIyEGiKYd0y66lSaEEDmUGAkhRA4lRkIIkUOJkRBC5FBiJIQQOZQYCSFEDiVGQgiRQ4mREELkUGIkhBA5lBgJIUQOJUZCCJFDiZEQQuRQYiSEEDmUGAkhRA5NO0aIAaJ1pbWLEiMhBobWldY+upUmxIDQutK1gxIjIQaE1pWuHZQYCTEgtK507aDESIgBoXWla4feJsbFixeD4zhMnTq1ynK7d++Gl5cXzM3N0bZtWxw+fLh2AiREB2hd6dqhl4nx8uXLWLt2Ldq1a1dlufPnzyMsLAzjxo3D1atXMXjwYAwePBjXr1+vpUgJqV20rnTt4BhjTNdBvK6goADt27fHqlWrsHDhQvj6+mL58uUKy4aGhqKwsBAHDx6UbuvcuTN8fX2xZs0apa6XlJQEf39/JCYmon379pr4CIRoXYVxjLSutEbpXY1x0qRJGDBgAIKCgqotm5CQUKFccHAwEhISKj1GKBQiLy9P+iooKKhxzITUtvJ1pT3e/hiNAt6npKhhejXAe+fOnUhKSsLly5eVKp+RkQEXF9nGZhcXF2RkZFR6TExMDKKjo2sUJyHEuOlNjfHRo0eYMmUKtm3bBnNzc61dJyoqCrm5udLX6dOntXYtQohh0psaY2JiIrKysmTa+cRiMc6cOYOVK1dCKBSCz+fLHOPq6orMTNlxW5mZmXB1da30OgKBAAKBQPreyspKQ5+AEGIs9KbG2Lt3b1y7dg3JycnSV4cOHTBixAgkJydXSIoAEBAQgPj4eJltx44dQ0BAQG2FTQgxQnpTY7S2tkabNm1kttWrVw/169eXbg8PD0fDhg0RExMDAJgyZQoCAwOxbNkyDBgwADt37sSVK1ewbt26Wo+fEGI89CYxKiM9PR083qtKbpcuXbB9+3bMmjULM2bMQIsWLbB///4KCbauy84vxLHLt5DxIg+uDjbo82Yr2FvX03VYhOgtvRvHWNuMfRxjwvUHWLD5EERiCXgcBwljMOHzMGf0AHRu3UzX4RGil/SmjZFoXnZ+IRZsPoRSkRiMMYglEjDGUCoSY37sIWTnF+o6REL0EiVGI3bs8i2IxIonHBCJJTh+5XYtR0SIYaDEaMQyXuSBx3EK9/E4Dk+e59ZyRIQYBoPqfCGqcXWwgaSSJmQJY2hQ37aWIyJVSd4wBSUF2TCzsofvuBW6DqdOoxqjEevzZiuY8BV/xSZ8HoI6tKrliEhVSgqyUZL/nJYn0AOUGI2YvXU9zBk9AKYmfHAcBz6PB47jYGrCx5zRA2BvbanrEAnRS3QrbeQ6t26GbXPG4viV23jyPBcN6tsiqEMrSoqEVIESYx1gb10PQ3v66zoMQgwG3UoTQogcSoyEECKHbqXrAHpWmhDVUGI0coqelY79M4GelSakCnQrbcToWWlC1EOJ0YjRs9KEqIcSoxGjZ6UJUQ8lRiNGz0oToh5KjEaMnpUmRD2UGI0YPStNiHpouI6Ro2elCVGd2olRLBZj9+7dOHnyJLKysjB//ny0bdsWubm5iI+PR9euXeHi4qLJWIma6FlpQlSj1q10Tk4OunbtiuHDh2PHjh34/fff8fTpUwBlC9hPnjwZK1bQRJuEEMOkVmKcPn06bty4gbi4ODx48ACvLzTI5/MREhKCw4cPayxIQgipTWolxv379+PTTz9Fnz59wCkYJ9eyZUukpaXVNDZCCNEJtRJjbm4u3N3dK91fWloKkUikdlCEEKJLaiVGDw8PJCUlVbr/6NGj8Pb2VjsoQgjRJbUSY0REBDZu3Ihdu3ZJ2xc5joNQKMTMmTNx5MgRREZGajRQQgipLWoN15kyZQpu3LiBsLAw2NnZAQCGDx+O58+fQyQSITIyEuPGjdNknIQQUmvUSowcx2H9+vUYNWoU9uzZg3v37kEikcDDwwPDhg1D9+7dNR0nIYTUmho9+dKtWzd069ZNU7EQQoheoGelCSFEjlo1Rnd3d4XjF1/HcRxSUlJUOu/q1auxevVq6RjI1q1bY86cOXj77bcVlo+NjcWYMWNktgkEAhQXF6t0XUKIdpUUZCPr2gkIczIhsHOBc9teMLOy13VYlVIrMQYGBlZIjGKxGA8fPsS5c+fQpk0b+Pn5qXzeRo0aYfHixWjRogUYY9i8eTMGDRqEq1evonXr1gqPsbGxwZ07d6Tvq0vYhBDNqi7pPb97Ebd/iwGTiMBxPDAmwcNTW9EqZAYcWnTUYeSVUysxxsbGVrrv77//RnBwMEaMGKHyed99912Z94sWLcLq1atx4cKFShMjx3FwdXVV+VqEkOrVNOmVFGSX7ReXAgAYE5f9Ky7FrT3f4M1PN+llzVHjbYw+Pj6IjIzE119/XaPziMVi7Ny5E4WFhQgICKi0XEFBAZo2bYrGjRtj0KBBuHHjRpXnFQqFyMvLk74KCgpqFCchhqqkIBv/JPyGlD9X4Z+E31BSkC2z//ndi7j80xikndiEjKtHkHZiEy7/NAYv7l2SHi9NeoyBScRl//6X9MqTKpMofgqOSUTIunZC659THVqZj9HFxQU3b95U69hr164hICAAxcXFsLKywr59+yp9isbT0xMbN25Eu3btkJubi++++w5dunTBjRs30KhRI4XHxMTEIDo6Wq3YCDEWmqjpKZP0hDmZ/51fXKEMx/EgzMnU3oesAY3XGJ8/f44NGzZUmpiq4+npieTkZFy8eBETJ07EqFGjKk2yAQEBCA8Ph6+vLwIDA7F37144OTlh7dq1lZ4/KioKubm50tfp06fVipMQQ6Wpml550lOkPOkJ7FzAmOKVKhmTQGCnn3O2qlVj7NWrl8LtOTk5uH37NkpKSrB161a1AjIzM0Pz5s0BAP7+/rh8+TJWrFhRZbIrZ2pqCj8/P9y/f7/SMgKBAAKBQPreyspKrTgJ0SVlenkrK6Opmp4ySc+5bS88PLVVWvOUOQ/PBM7teqvx6bVPrcQokUgq9P5yHAd3d3cEBQVh7Nix8PLy0kiAEokEQqFQqbJisRjXrl1D//79NXJtQvSRMr28VZWpzaRnVs8OrUJm4Naeb2Ri4XgmaBUyA2b17DT6s9EUtRLjqVOnNBxGmaioKLz99tto0qQJ8vPzsX37dpw6dQpxcXEAgPDwcDRs2BAxMTEAgPnz56Nz585o3rw5cnJysHTpUjx8+BARERFaiY8QXVOm7Q9AlWUaBbxfq0nPoUVHaZuktPb63/H6Sq8Ww8rKykJ4eDiePHkCW1tbtGvXDnFxcejTpw8AID09HTzeqzaN7OxsjB8/HhkZGbC3t4e/vz/Onz9PU54Ro6VsL29VZQAOHM+kVpOemZU9GgW8r/bnrm1KJcYtW7aodfLw8HCVym/YsKHK/fI11R9++AE//PCDqmERYrCU7eWtqozoZV6dTnrKUCoxjh49WuUTcxyncmIkhFRN2V7e6srU5aSnDKUSY2pqqrbjIKTOK+9VrupJEKV6eRlTqie4riY9ZSiVGJs2bartOAgxeBJRCSRi9dc6avNhjPS/RcIihWV4pgK0HPQ57h5YVuE2uOWgz8EzMQOAastUdn5l8Pgm0usYK73qfCHEUElEJchJ+xuiYvUTjirc+0xA3qMbKC3KhamlLWyatAaTSPDi3mWlyoiKC5H36DpKi/JgamkDm8ZtYGJeT6lrm5hbws7Nx6iTo9qJMSMjAxs2bEBSUhJyc3Mhkci2aXAch/j4+BoHSIghkIhFEBUXgcc3AVcLCYMvsISTbQ+1yuQ/voPH538Fk0gAjgMYw/NbZ9Gw6zBYv+FZ5TmZqASi4iJIxCJKjPL+97//oUePHnj58iU8PT1x7do1eHt7IycnB48fP4aHhwcaN26s6ViJlmTnF+LY5VvIeJEHVwcb9HmzFeytlas9EFmciRn4poLqCypw//BKiIrzYWJujeb9P9FwZGVEL/P/S4r/9Vj/t5gdk4jx+Nyv8BzyNUwsrCs9XgwANWguMBRqJcbp06fDysoKycnJsLS0hLOzM1asWIFevXph9+7dmDhxIrZt26bpWIkWJFx/gAWbD0EkloDHcZAwhtg/EzBn9AB0bt1M1+HVKaLifIiK8rR6jewHV8tqigowiQQ5qVfh6E1rNqk1icS5c+cQGRmJJk2aSAdcl99KDx06FCNGjMCXX36puSiJQh8v246web/g42Xb1To+O78QCzYfQqlIDMYYxBIJGGMoFYkxP/YQsvMLNRwxqQ2il/l4euMM/r10AE9vnIHoZb50X2lhdtntsyIcV2HqsbpK7WelXVzKxkvZ2dmBz+fjxYsX0v1t27atdrA2qbns/CI8y1V/Psljl29BJFZcexCJJTh+5TaG9vRX+/yk9uX9cwuPzmyTaT/M+vsoGncfAZtGrWBaz156+1wBY3o5aawuqFVjdHd3l45t5PF4cHd3x/Hjx6X7z58/L11vmuivjBd54FVSe+BxHJ48z63liEhNiF7m/5cUxQAYwCQAyqYVe3RmG0Qv82HfzA8cr5Kpwng82DVrX6sx6yulE2N29qsqdt++fbF7927p+4kTJ+KXX35BUFAQevfujc2bN2P48OGajZSoLTu/EL+euIIf95zAryeuSG+RXR1sIKmk9iBhDA3q29ZmmKSGlGk/NLGwRuPuI8Dx+AA4gOOh7NlpPhp3HwETc5qGD1DhVtrV1RX9+/fHiBEj8PnnnyMsLAylpaUwNTXF1KlTUVhYiN9++w18Ph+zZ8/GjBkztBk3UVJVnSt93myF2D8TUCqq+EytCZ+HoA6tdBAxUYboZT6yH1xFaWE2TOvZw76Z36v2Q0V/7F5rP7Rp1AqeQ75GTupVlBRkw8zKHnbN2lNSfI3SiTEkJAS///47fv/9d1hbW+O9997DiBEj0KtXL3Ach1mzZmHWrFnajJWo6PXOFQAQ//cLU965sm3OWMwZPQDzY2UTpwmfhzmjB8De2lKX4ZNKVNaOaOvmo3T7oYmFNfU+V0HpxLht2za8fPkS+/fvx/bt27Ft2zZs3rwZLi4uCAsLw4gRI9C+PbVP6BNlO1e2zRmL41du48nzXDSob4ugDq0oKeop2XZEyIxDzElNBsfjvdr3Gmo/VI1KnS8WFhYICwvDH3/8gYyMDKxatQotWrTA8uXL8eabb8LLywsLFy7EgwcPtBUvUYGynSv21vUwtKc/Jof0wtCe/pQU9VhV7YhgDLbuvtR+qAFqL4Zlb2+PyMhInD59Gunp6Vi8eDEsLS0xZ84ctGjRAl26dNFknEQN1LlifKobh8jjm8JzyNdwbd8PDi06wrV9P3i+Nx02jai9WBUaWSWwYcOG+PLLL7F582YMGjQIjDFcvHhRE6cmNdDnzVYw4Sv+iqlzxTApMw6xvP3wjY6D4OjdnWqKaqhxYiyvLfr4+MDX1xcHDhxAly5dsHLlSk3ER2rA3roe5oweAFMTPjiOA5/HA8dxMDXhU+eKgaJxiLVDrSdfnj17hl9//RXbt29HQkICGGPw8vLC/PnzMWLECLi5uWk4TKKuzq2bUeeKESkfhyjfK83xeNSOqEFKJ8bCwkLs27cP27dvR3x8PEpLS9GgQQNMnTqVeqT1XHnnCjEONA5R+5ROjM7OziguLoaVlRWGDx8uHcPIq6RaTwjRHhqHqF1KJ8agoCCMGDECAwcOhLm5uTZjIoQQnVI6MR44cECbcRBC9ICiRw2rmrjWWNGaL3UAzdBNgOqTXnVTltUllBiNHM3QXTfUNOlV9ajhozPbql3ywNhQz4kR0/QM3ZVNX0Z0K++fW7izbwkyrx7Bi3uXkHn1CO7sW4K8f24BUG6eRmWmLKtLqMZoxDQ5QzfVPPWTMjU9ZZKeslOW1RVUYzRimpqhm9aG0V8qJT1F/kt6tOSBLEqMRkzVSSQqu1VWpuZJdENTSY8eNZSlV4lx9erVaNeuHWxsbGBjY4OAgAD8+eefVR6ze/dueHl5wdzcHG3btsXhw4drKVr9p8okEgnXH2DE/I345eA5HE64jl8OnsOI+Rtx4cYDWhtGj2kq6dGSB7L0KjE2atQIixcvRmJiIq5cuYJevXph0KBBuHHjhsLy58+fR1hYGMaNG4erV69i8ODBGDx4MK5fv17LkesnZSeRqO5W2baeOU1fpqc0mfTKHzWkKcv0rPPl3XfflXm/aNEirF69GhcuXEDr1q0rlF+xYgX69esnXcN6wYIFOHbsGFauXIk1a9bUSsz6TplJJKq7VQY4mPB5tDaMHlJ2Uglln6+mRw3L6FVifJ1YLMbu3btRWFiIgIAAhWUSEhIwbdo0mW3BwcHYv39/pecVCoUQCoXS9wUF6q/LbCiqm0Si/FZZrKBWyOM45Ba+pLVh9Iz8uEWPtyeh4Mk9SnoaoneJ8dq1awgICJBOWLFv3z54e3srLJuRkQEXFxeZbS4uLsjIyKj0/DExMYiOjtZozIaisidglOmkoenL9EdVg7Up8WmG3iVGT09PJCcnIzc3F3v27MGoUaNw+vTpSpOjqqKiomRqmcnJyQgMDNTIufWZJpZRpenLdI+eUKkdetX5AgBmZmZo3rw5/P39ERMTAx8fH6xYsUJhWVdXV2RmZspsy8zMhKura6XnFwgE0l5vGxsbWFkZf29bdZ0rAGimbwNBT6jUDr2rMcqTSCQybYKvCwgIQHx8PKZOnSrdduzYsUrbJOsqWkbVeNATKrVDrxJjVFQU3n77bTRp0gT5+fnYvn07Tp06hbi4OABAeHg4GjZsiJiYGADAlClTEBgYiGXLlmHAgAHYuXMnrly5gnXr1unyY+id6jpX5JdRJfqLnlCpHXp1K52VlYXw8HB4enqid+/euHz5MuLi4tCnTx8AZQtvPXnyRFq+S5cu2L59O9atWwcfHx/s2bMH+/fvR5s2bXT1EfQSLaNqPOgJldqhVzXGDRs2VLn/1KlTFbYNHToUQ4cO1VJExkHZzhWi/2gxrNqhV4mRqKa8/a+6dsDyJ2B0OQ6RJsvVHFoMS/soMepISamo0g4RZX03KUT630XFJVWWbefRCL98NRInr95BZnY+XOyt0bO9J+ysLFFUXIKc/CKcuHoHWdn5cLa3Ri8/T9hpIGGa8HlIvJNOU5ZpGA3W1i5KjDpQUipC8r1HKCxW3NuuaQUvhbj+4F/kFLyEnZUF2jR7A1YWAtxJLxsIf+9RFvaeSYZEIgHHcWCM4f/iLuK9QF+0aORco2szCcN3u45Lb+PLO4DKhwptmzOWao5E71Bi1AGRWILCYiFMTfgwNeFr9Vq3H2Zgx/ErZUmPx4FJGE4n30NYUAd4NXVFQVEx9p5Jhvi/sXHsv8Qllkiw93QyvgwLgpWleqtClorE+Ovv+xqbLJeQ2kKJUYdMTfgwNzNV+/jlv8Yjv0gIa0sBpg7rXWF/flExdsZfeZX0JK+S3s74K5gZ/jauPfgXEqY4cUmYBNdTn6CHX0u1Y8wpeKnUUCECmJhby/xLdIcSowHLLxIit/Blpfuv3H4oTYryxBIJEu+kIzu/SHr7LI/jOLzIU3527vyiYly5/RDZ+UWwt7ZE22ZvwM7KgoYKKal5/080ej5aClV9lBiNmDJJz97aUuF+oOy22sGmrP1PPul18GoK69dusW+k/outcRchfq2d8sjFm+gf0BomPB5KxTRUSJNoKVTtosRoxJRJev6eTRB36abCdkA+jwd/zyYKk17cpZsI79cZ3m4NkF9UjK1xF6XnkLZTMgkOJ9zA5Pd7YuW+UzRlmYbQUqjap1dPvhDN6uDVFPxKnpIoT3rWluYI79cZJnweOA7g8ThwXFltLrxfZwCQJj3GAImEgbGyjpMtRy5Ia5KV3bJLJBJkFxRh25yxGP9uN/QPaIPx73bDtjnjaKiOGmgp1NpBNUYjVp70thy5IFPb4/PKkl75rbC3WwPMDH8biXfS8SKvUFqTtLY0x8mkOzVup8zMzqfnsDWElkKtHZQYjVxVSU9eeWJ7PcFpop3SxZ5u2zRFmaRHE03UHCXGOsDa0rzKITdVtSHWtJ2Sx+OhZ3tPjX2Wuk6ZpGfn7oesv4++amN8DU00oRxqY6zjXu84UdSG6NXUVe12Sj6Ph/cCfWFnRR0smkJLodYOqjHWAVUNtalurOOd9Ey12ynbNHuj0vWoiXo0vSogUYwSo5GrbqiNMm2IPfxaKtVOKX/LXlxSWu3kFkR1tBSq9lFiNGKVjS8sv02eGf620gO8q2unJLWLkp52URujEVPmkUBlxjoSUtdQYjRi5bfJipTfJlc3wFvRsB5CjB3dShsxZW+TVRnrSPQDTRChXZQYjVgHr6bVPgddjtoQDQdNEKF9dCttxOg22fgo86w0qTmqMRo5uk02Lso8K0291TVHibEOoNtk40ETRNQOupUmxIDQBBG1gxIjIQZEmWelSc1RYiTEgNAEEbWD2hjrgOrWayGGhSaI0D5KjEauukkkiGGiZ6W1i26ljVh1cy3mFxXrOkRC9JJeJcaYmBi8+eabsLa2hrOzMwYPHow7d+5UeUxsbCw4jpN5mZvTbSKg3CQShJCK9Coxnj59GpMmTcKFCxdw7NgxlJaWom/fvigsrHrRdxsbGzx58kT6evjwYS1FrN+UmUSCEFKRXrUxHjlyROZ9bGwsnJ2dkZiYiO7dK29P4TgOrq6u2g7P4Cg7iQQhRJZe1Rjl5ebmAgAcHByqLFdQUICmTZuicePGGDRoEG7cuFEb4ek9mmuREPXobWKUSCSYOnUqunbtijZt2lRaztPTExs3bsSBAwfwf//3f5BIJOjSpQv++ecfheWFQiHy8vKkr4KCAm19BJ2jSSQIUY9e3Uq/btKkSbh+/TrOnj1bZbmAgAAEBARI33fp0gWtWrXC2rVrsWDBggrlY2JiEB0drfF49ZWqk0jQmEdC9DQxfvLJJzh48CDOnDmDRo0aqXSsqakp/Pz8cP/+fYX7o6KiMG3aNOn75ORkBAYG1ihefafsJBI05pGQMnp1K80YwyeffIJ9+/bhxIkTcHd3V/kcYrEY165dQ4MGin+RBQIBbGxspC8rK8N9WsDaUgDbehawthRUWS6/qBgnk+5g7+mrOJl0R+H4RRrzSMgrelVjnDRpErZv344DBw7A2toaGRkZAABbW1tYWFgAAMLDw9GwYUPExMQAAObPn4/OnTujefPmyMnJwdKlS/Hw4UNERETo7HPUlqnDeldbRtlaoDJjHmnqMlJX6FWNcfXq1cjNzUWPHj3QoEED6WvXrl3SMunp6Xjy5In0fXZ2NsaPH49WrVqhf//+yMvLw/nz5+Ht7a2Lj6BXVKkF0phHQl7RqxpjZWPuXnfq1CmZ9z/88AN++OEHLUVk2FSpBdKYR0Je0asaI9EsVWqBNOaRkFcoMRoxVWqBNOaRkFf06laaaJYqy6fmFxUj80UefFs0QsHLElhZCODqYEMLZ5E6iRKjESuvBW45ckGmV5rPk60FKuq5li9DSF1CidHIVffky+s918CrDrDynuuZ4W9TciR1DrUx1hHlCU++zZHmbCSkIqoxGrnqBniX91wr6qSh8YukrqIaoxFTZoA3jV8kpCJKjEZMmdtkGr9ISEWUGI2YMgO8afwiIRVRG6MRU/Y2WdU5GwkxdpQYjZgqA7yVnbORkLqAbqWNGN0mE6IeqjEaObpNJkR1lBjrALpNJkQ1dCtNCCFyKDESQogcSoyEECKH2hjrkKdZmXj2NKvWricsFaFYWAozYS4sBKa1dl1dEJW8RF76XfDMzME3Mau167o4O8LV2anWrldXcEyZhVaM2JMnT7B27VpERkZWuuSqMRAKhQgODsbp06d1HQrRoMDAQMTFxUEgqHoJXaKaOp8Y64q8vDzY2tri9OnTBr2WNnmloKAAgYGByM3NhY2Nja7DMSp0K13H+Pr60i+RkcjLy9N1CEaLOl8IIUQOJUZCCJFDibGOEAgEmDt3LjXSGxH6TrWHOl8IIUQO1RgJIUQOJUZCCJFDiZEQQuRQYiRqSUtLA8dxiI2N1XUohGgcJcZakJKSgsjISDRr1gzm5uawsbFB165dsWLFCrx8+VJr17158ybmzZuHtLQ0rV1DGYsWLcLAgQPh4uICjuMwb948ncZTWziOU+p16tSpGl+rqKgI8+bNU+lcdfV7UQY9+aJlhw4dwtChQyEQCBAeHo42bdqgpKQEZ8+exZdffokbN25g3bp1Wrn2zZs3ER0djR49esDNzU0r11DGrFmz4OrqCj8/P8TFxeksjtq2detWmfdbtmzBsWPHKmxv1apVja9VVFSE6OhoAECPHj2UOqaufi/KoMSoRampqfjggw/QtGlTnDhxQmaSikmTJuH+/fs4dOiQDiN8hTGG4uJiWFhYaPzcqampcHNzw7Nnz+DkVHdmgvnwww9l3l+4cAHHjh2rsF1X6ur3ogy6ldaib7/9FgUFBdiwYYPCmXuaN2+OKVOmSN+LRCIsWLAAHh4eEAgEcHNzw4wZMyAUCmWOc3NzwzvvvIOzZ8+iY8eOMDc3R7NmzbBlyxZpmdjYWAwdOhQA0LNnzwq3beXniIuLQ4cOHWBhYYG1a9cCAB48eIChQ4fCwcEBlpaW6Ny5c40SuC5rq/pOIpFg+fLlaN26NczNzeHi4oLIyEhkZ2fLlLty5QqCg4Ph6OgICwsLuLu7Y+zYsQDK2nvLE1t0dLT0u67u1pi+l8pRjVGL/vjjDzRr1gxdunRRqnxERAQ2b96MkJAQfP7557h48SJiYmJw69Yt7Nu3T6bs/fv3ERISgnHjxmHUqFHYuHEjRo8eDX9/f7Ru3Rrdu3fH5MmT8eOPP2LGjBnS27XXb9vu3LmDsLAwREZGYvz48fD09ERmZia6dOmCoqIiTJ48GfXr18fmzZsxcOBA7NmzB0OGDNHcD4ggMjISsbGxGDNmDCZPnozU1FSsXLkSV69exblz52BqaoqsrCz07dsXTk5OmD59Ouzs7JCWloa9e/cCAJycnLB69WpMnDgRQ4YMwXvvvQcAaNeunS4/mmFjRCtyc3MZADZo0CClyicnJzMALCIiQmb7F198wQCwEydOSLc1bdqUAWBnzpyRbsvKymICgYB9/vnn0m27d+9mANjJkycrXK/8HEeOHJHZPnXqVAaA/fXXX9Jt+fn5zN3dnbm5uTGxWMwYYyw1NZUBYJs2bVLq8zHG2NOnTxkANnfuXKWPMSaTJk1ir//K/fXXXwwA27Ztm0y5I0eOyGzft28fA8AuX75c6blr8rOt69+LInQrrSXlU0JZW1srVf7w4cMAgGnTpsls//zzzwGgwq2st7c33nrrLel7JycneHp64sGDB0rH6O7ujuDg4ApxdOzYEd26dZNus7KywoQJE5CWloabN28qfX5Std27d8PW1hZ9+vTBs2fPpC9/f39YWVnh5MmTAAA7OzsAwMGDB1FaWqrDiOsOSoxaUj7nYX5+vlLlHz58CB6Ph+bNm8tsd3V1hZ2dHR4+fCizvUmTJhXOYW9vX6Ftqiru7u4K4/D09KywvfwWXD4Oor579+4hNzcXzs7OcHJyknkVFBQgK6tsGYrAwEC8//77iI6OhqOjIwYNGoRNmzZVaHsmmkNtjFpiY2ODN954A9evX1fpOI7jlCrH5/MVbmcqzAmijR5oojyJRAJnZ2ds27ZN4f7yDhWO47Bnzx5cuHABf/zxB+Li4jB27FgsW7YMFy5coBnZtYASoxa98847WLduHRISEhAQEFBl2aZNm0IikeDevXsyHSSZmZnIyclB06ZNVb6+sklWPo47d+5U2H779m3pfqIZHh4eOH78OLp27arUH6nOnTujc+fOWLRoEbZv344RI0Zg586diIiIUOu7JpWjW2kt+uqrr1CvXj1EREQgMzOzwv6UlBSsWLECANC/f38AwPLly2XKfP/99wCAAQMGqHz9evXqAQBycnKUPqZ///64dOkSEhISpNsKCwuxbt06uLm5wdvbW+U4iGLDhg2DWCzGggULKuwTiUTS7y07O7vCnYCvry8ASG+nLS0tAaj2XZPKUY1Rizw8PLB9+3aEhoaiVatWMk++nD9/Hrt378bo0aMBAD4+Phg1ahTWrVuHnJwcBAYG4tKlS9i8eTMGDx6Mnj17qnx9X19f8Pl8LFmyBLm5uRAIBOjVqxecnZ0rPWb69OnYsWMH3n77bUyePBkODg7YvHkzUlNT8dtvv4HHU/1v6datW/Hw4UMUFRUBAM6cOYOFCxcCAEaOHFlna6GBgYGIjIxETEwMkpOT0bdvX5iamuLevXvYvXs3VqxYgZCQEGzevBmrVq3CkCFD4OHhgfz8fKxfvx42NjbSP6gWFhbw9vbGrl270LJlSzg4OKBNmzZo06ZNpden76UKuu4Wrwvu3r3Lxo8fz9zc3JiZmRmztrZmXbt2ZT/99BMrLi6WlistLWXR0dHM3d2dmZqassaNG7OoqCiZMoyVDbUZMGBAhesEBgaywMBAmW3r169nzZo1Y3w+X2boTmXnYIyxlJQUFhISwuzs7Ji5uTnr2LEjO3jwoEwZVYbrBAYGMgAKX4qGEhkr+eE65datW8f8/f2ZhYUFs7a2Zm3btmVfffUV+/fffxljjCUlJbGwsDDWpEkTJhAImLOzM3vnnXfYlStXZM5z/vx55u/vz8zMzJQafkPfS+VoBm9CCJFDbYyEECKHEiMhhMihxEgIIXIoMRJCiBxKjIQQIocSox749ttv4eXlBYlEoutQamz69Ono1KmTrsPQKfo+jYCuxwvVdbm5uczBwYFt3LhRug3/jSX77rvvKpTftGlTtVNQKeu3335jw4YNY+7u7szCwoK1bNmSTZs2jWVnZyssf+DAAebn58cEAgFr3LgxmzNnDistLZUp8+TJEyYQCNiBAwdqHJ8hou/TOFBi1LEffviB2djYsJcvX0q3lf8iubi4sMLCQpnymvxFql+/Pmvbti2bPXs2W79+PZs8eTIzMzNjXl5erKioSKbs4cOHGcdxrGfPnmzdunXs008/ZTwej3300UcVzjts2DD21ltv1Tg+Q0Tfp3GgxKhj7dq1Yx9++KHMNgDM19eXAWDLli2T2afJXyRFTzds3ryZAWDr16+X2e7t7c18fHxkahQzZ85kHMexW7duyZTds2cP4ziOpaSk1DhGQ0Pfp3GgNkYdSk1Nxf/+9z8EBQVV2Ne1a1f06tUL3377rdaWWFW0mlz50gW3bt2Sbrt58yZu3ryJCRMmwMTk1eP1H3/8MRhj2LNnj8w5yj/PgQMHtBC1/qLv03hQYtSh8+fPAwDat2+vcP+8efOQmZmJ1atXV3keoVAoMwN0Va/qZGRkAAAcHR2l265evQoA6NChg0zZN954A40aNZLuL2drawsPDw+cO3eu2usZE/o+jQfNrqND5XMcKppJGwDeeust9OzZE0uXLsXEiRMrnbNvx44dGDNmjFLXZNU8Gr9kyRLw+XyEhIRItz158gQAFK502KBBA/z7778Vtjdr1qzOLYNA36fxoMSoQ8+fP4eJiUmVMzDPmzcPgYGBWLNmDT777DOFZYKDg3Hs2LEax7N9+3Zs2LABX331FVq0aCHdXn7rJxAIKhxjbm4uXd/mdfb29hVqHsaOvk/jQYlRz3Xv3h09e/bEt99+i48++khhmQYNGij866+Kv/76C+PGjUNwcDAWLVoks6+8ZqNojZHi4mKFNR/GGM0qrQB9n4aBEqMO1a9fHyKRCPn5+VWuJjh37lz06NEDa9eula4Y97qXL18iNzdXqWu6urpW2Pb3339j4MCBaNOmDfbs2SPTIA+8uuV68uQJGjduLLPvyZMn6NixY4VzZmdny7Rr1QX0fRoP6nzRIS8vLwBlvZlVCQwMRI8ePbBkyRKFPZq7du2S1jKqe8lLSUlBv3794OzsjMOHDyu8DSyfRv/KlSsy2//991/8888/0v2vS01NlVm7pi6g79N4UI1Rh8oXyLpy5QratWtXZdl58+ahR48eWLduXYV96rZJZWRkoG/fvuDxeIiLi5OuSievdevW8PLywrp16xAZGSldoXD16tXgOE6mYR8AcnNzkZKSgokTJ6ockyGj79N4UGLUoWbNmqFNmzY4fvw4xo4dW2XZwMBABAYG4vTp0xX2qdsm1a9fPzx48ABfffUVzp49i7Nnz0r3ubi4oE+fPtL3S5cuxcCBA9G3b1988MEHuH79OlauXImIiIgKNYnjx4+DMYZBgwapHJMho+/TiOhubDlhjLHvv/+eWVlZyTyyBYBNmjSpQtmTJ09KHy/TxJMSgOL1PgBUWDuGMcb27dvHfH19mUAgYI0aNWKzZs1iJSUlFcqFhoaybt261Tg+Q0Tfp3GgxKhjOTk5zMHBgf3yyy+6DkUjnjx5wszNzdn+/ft1HYpO0PdpHKjzRcdsbW3x1VdfYenSpUYxTdXy5cvRtm3bunXb9Rr6Po0DrRJICCFyqMZICCFyKDESQogcSoyEECKHEiMhhMihxEgIIXIoMRJCiBxKjIQQIocSIyGEyKHESAghcigxEkKIHEqMhBAiR68S45kzZ/Duu+/ijTfeAMdx2L9/f7XHnDp1Cu3bt4dAIEDz5s0RGxur9TgJIcZNrxJjYWEhfHx88PPPPytVPjU1FQMGDEDPnj2RnJyMqVOnIiIiAnFxcVqOlBBizPR2dh2O47Bv3z4MHjy40jJff/01Dh06hOvXr0u3ffDBB8jJycGRI0eUus6TJ0+wdu1aREZG1nhlNkKIcdCrGqOqEhISEBQUJLMtODgYCQkJlR4jFAqRl5cnfd27dw/R0dHSRcgJIcSgE2NGRgZcXFxktrm4uCAvL0/h6msAEBMTA1tbW+krMDCwNkIlhBgQg06M6oiKikJubq70pWgxIkJI3WbQqwS6uroiMzNTZltmZiZsbGxgYWGh8BiBQACBQCB9r2jdXUJI3WbQNcaAgADEx8fLbDt27Jh0fV9CCFGHXiXGgoICJCcnIzk5GUDZcJzk5GSkp6cDKLsNDg8Pl5b/6KOPpOvo3r59G6tWrcKvv/6Kzz77TBfhE0KMhF4lxitXrsDPzw9+fn4AgGnTpsHPzw9z5swBUDa0pjxJAoC7uzsOHTqEY8eOwcfHB8uWLcMvv/yC4OBgncRPCDEOejuOsbYkJSXB398fiYmJaN++va7DIYToAb2qMRJCVFSQpesIjBIlRkIMWeFTXUdglCgxEmLIxKW6jsAoUWIkxJAxsa4jMEqUGAkxZBJKjNpAiZEQQyYR6ToCo0SJkRBDRolRKygxEmLIqPNFKygxEmLIqI1RKygxEmLIxCW6jsAoUWIkxJCJhbqOwChRYiTEkIkoMWoDJUZCDFmp4iU8SM1QYiTEkJUW6ToCo0SJkRBDJizQdQRGiRIjIYZMmKfrCIwSJUZCDNnLbF1HYJQoMRJiyIT51DOtBZQYCTF0NFmtxlFiJMTQUWLUOEqMhBi6/ExdR2B0KDESYugKMnQdgdGhxEiIocunxKhplBgJMXR5/+o6AqOjd4nx559/hpubG8zNzdGpUydcunSpyvLLly+Hp6cnLCws0LhxY3z22WcoLi6upWgJ0QP5T3QdgdFROzGKxWLs3LkTkZGRGDJkCK5duwYAyM3Nxd69e5GZqXqD8K5duzBt2jTMnTsXSUlJ8PHxQXBwMLKyFC8qvn37dkyfPh1z587FrVu3sGHDBuzatQszZsxQ92MRYngKsmgso6YxNWRnZ7NOnToxjuOYtbU14/F4LD4+njHGmEgkYg0bNmRRUVEqn7djx45s0qRJ0vdisZi98cYbLCYmRmH5SZMmsV69eslsmzZtGuvatavS10xMTGQAWGJiosrxEqJzO4YztqY7Y8/u6zoSo6JWjXH69Om4ceMG4uLi8ODBAzDGpPv4fD5CQkJw+PBhlc5ZUlKCxMREBAUFSbfxeDwEBQUhISFB4TFdunRBYmKi9Hb7wYMHOHz4MPr376/GpyLEgGWn6ToCo2KizkH79+/Hp59+ij59+uD58+cV9rds2RKxsbEqnfPZs2cQi8VwcXGR2e7i4oLbt28rPGb48OF49uwZunXrBsYYRCIRPvrooypvpYVCIYTCV7cdBQU0OwkxAi8eAOit6yiMhlo1xtzcXLi7u1e6v7S0FCKR9pd1PHXqFL755husWrUKSUlJ2Lt3Lw4dOoQFCxZUekxMTAxsbW2lr8DAQK3HSYjWvUjVdQRGRa3E6OHhgaSkpEr3Hz16FN7e3iqd09HREXw+v0KnTWZmJlxdXRUeM3v2bIwcORIRERFo27YthgwZgm+++QYxMTGQSCQKj4mKikJubq70dfr0aZXiJEQvPbur6wiMilqJMSIiAhs3bsSuXbuk7Yscx0EoFGLmzJk4cuQIIiMjVTqnmZkZ/P39ER8fL90mkUgQHx+PgIAAhccUFRWBx5P9CHw+HwBk2j1fJxAIYGNjI31ZWVmpFCcheqnwKVBYsVmLqEmdHhuJRMIiIiIYx3HM3t6ecRzHXF1dmampKeM4jn300Udq9QTt3LmTCQQCFhsby27evMkmTJjA7OzsWEZGBmOMsZEjR7Lp06dLy8+dO5dZW1uzHTt2sAcPHrCjR48yDw8PNmzYMKWvSb3SxFD5+/uzhg4WzL+JVVnPdMopXYdkNNTqfOE4DuvXr8eoUaOwZ88e3Lt3DxKJBB4eHhg2bBi6d++uVpIODQ3F06dPMWfOHGRkZMDX1xdHjhyRdsikp6fL1BBnzZoFjuMwa9YsPH78GE5OTnj33XexaNEita5PiCHJyMjA4xcvAYnZfxuuAc2ozVwTOMYqueesI5KSkuDv74/ExES0b99e1+EQorRGjRrh8ePHaGhnhn8WdwYc3IGhsboOyyio1caYmpqKP/74o9L9f/zxB9LS0tSNiRCijhepQAHNzagJaiXGL774Aj/++GOl+3/++WdMnz5d7aAIIWp6eFbXERgFtRJjQkIC+vTpU+n+3r1746+//lI7KEKImh6c0nUERkGtxJidnQ1ra+tK91tZWSl8IoYQomVP/i6bVILUiFqJsUmTJjh37lyl+//66y80atRI7aAIIWpiDLgbp+soDJ5aiTEsLAw7duzAjz/+KPOEiVgsxooVK7Br1y4MHz5cY0ESQlRw+yBQyZNfRDlqjWOMiorC2bNnMXXqVCxatAienp4AgDt37uDp06fo0aMHZs6cqdFACSFKys8AHp4D3N/SdSQGS60ao0AgwNGjR7FhwwZ07NgRz549w7Nnz9CxY0ds3LgRx48fh0Ag0HSshBBl/b2z7LaaqEWtGiNQNlfimDFjMGbMGE3GQwjRhMzrwOMkoJG/riMxSHq35gshREMur6dao5rUrjHGxcVhw4YNePDgAbKzsyvMZsNxHFJSUmocICFETVm3gPvxQIug6ssSGWolxqVLl2L69OlwcXFBx44d0bZtW03HRQjRhItrgKZdADNLXUdiUNRKjCtWrECvXr1w+PBhmJqaajomQoimFD4FrmwAunyq60gMitpPvoSEhFBSJMQQXN8LZCleN4koplZi7NixI+7cuaPpWAgh2sAkwJlvAbH212EyFmolxlWrVmHv3r3Yvn27puMhhGjD8xTg2m5dR2Ew1GpjDA0NhUgkwsiRIzFx4kQ0atRIutZKOY7j8Pfff2skSEKIBiRtBpoHAVZOuo5E76mVGB0cHFC/fn20aNFC0/EQQrSl9GXZ2Maela+7TsqolRhPnTql4TAIIbXi3lHA5wPAoZmuI9Fr9OQLIXUJY0DSVl1HoffUTox5eXlYvHgxgoOD4efnh0uXLgEAXrx4ge+//x7379/XWJCEEA16cArIfazrKPSaWonxn3/+gZ+fH+bMmYN//vkH//vf/1BQUACgrP1x7dq1+OmnnzQaKCFEQ5iEeqiroVZi/PLLL5Gfn4/k5GScPn26wnPSgwcPxvHjxzUSICFEC+78CRTn6joKvaVWYjx69CgmT54Mb29vcBxXYX+zZs3w6NGjGgdHCNESUTFwbY+uo9BbaiXGly9fwsmp8rFQ+fn5agdECKkl1/cCxXm6jkIvqZUYvb29cebMmUr379+/H35+fmoF9PPPP8PNzQ3m5ubo1KmTtFOnMjk5OZg0aRIaNGgAgUCAli1b4vDhw2pdm5A6paQASNqi6yj0klqJcerUqdi5cyeWLFmC3NyydgqJRIL79+9j5MiRSEhIwGeffabyeXft2oVp06Zh7ty5SEpKgo+PD4KDg5GVpXg5yJKSEvTp0wdpaWnYs2cP7ty5g/Xr16Nhw4bqfCxC6p4b+4DsNF1HoXc4Jt9zoqRFixZh3rx5YIxBIpGAx+OBMQYej4eFCxfi66+/VvmcnTp1wptvvomVK1cCKEu2jRs3xqefforp06dXKL9mzRosXboUt2/fVnumn6SkJPj7+yMxMRHt27dX6xyE6EKjRo3w+PFjNLQzwz+LO6t/Itc2wLs/ATwa1lxO7Rm8Z86ciZEjR+K3337D/fv3IZFI4OHhgffeew/Nmqk+qr6kpASJiYmIioqSbuPxeAgKCkJCQoLCY37//XcEBARg0qRJOHDgAJycnDB8+HB8/fXXFZ7dLicUCiEUCqXvy4cZEVJnZVwHbuwF2oboOhK9oXJiLCoqwltvvYXx48fjo48+UuuWWZFnz55BLBbDxcVFZruLiwtu31Y8l9yDBw9w4sQJjBgxAocPH8b9+/fx8ccfo7S0FHPnzlV4TExMDKKjozUSMyFG4+JaoGF7elTwPyrXnS0tLZGamqpwmE5tk0gkcHZ2xrp16+Dv74/Q0FDMnDkTa9asqfSYqKgo5ObmSl+nT5+uxYgJ0VPiEiB+PiASVl+2DlCrUaFfv36Ii4vTaCCOjo7g8/nIzMyU2Z6ZmQlXV1eFxzRo0AAtW7aUuW1u1aoVMjIyUFJSovAYgUAAGxsb6cvKykpzH4IQQ/YiFTj/o66j0AtqJcbZs2fj7t27GDlyJM6ePYvHjx/jxYsXFV6qMDMzg7+/P+Lj46XbJBIJ4uPjERAQoPCYrl27Sts3y929excNGjSAmZmZOh+NkLrt1kHg3jFdR6FzanW+tG7dGgBw8+bNKmfxFovFKp132rRpGDVqFDp06ICOHTti+fLlKCwsxJgxYwAA4eHhaNiwIWJiYgAAEydOxMqVKzFlyhR8+umnuHfvHr755htMnjxZnY9FCAGAM98B9ZsDDu66jkRn1EqMc+bM0UobY2hoKJ4+fYo5c+YgIyMDvr6+OHLkiLRDJj09HbzXhhQ0btwYcXFx+Oyzz9CuXTs0bNgQU6ZMUWuoECHkP6Ji4Pg8YMgawNRC19HohNrjGI0FjWMkhkpj4xgr49kf6FE3KxkaGdGZm5ur8m0zIUTP3TkM3I+vvpwRUjsxXrlyBf369YOlpSXq168vHfby7NkzDBo0iJY/IMQY/PU9UPBU11HUOrUS4/nz59GtWzfcu3cPH374oUyvsKOjI3Jzc7F27VqNBUkI0ZGSAuDsD2VLItQhaiXGGTNmoFWrVrh58ya++eabCvt79uyJixcv1jg4QogeeHgOSDur6yhqlVqJ8fLlyxgzZgwEAoHC3umGDRsiIyOjxsERQvTExTWAWKTrKGqNWonR1NRU5vZZ3uPHj+mJEkKMSe4/QErd6YhRKzF27twZe/Yonha9sLAQmzZtQmBgYI0CI4TomWt76kxbo1qJMTo6GleuXMGAAQPw559/AgD+/vtv/PLLL/D398fTp08xe/ZsjQZKCNGxZ3frzKS2aiXGTp06Saf5Cg8PBwB8/vnnmDBhAsRiMQ4fPox27dppNFBCyCvp6ekoLCwEABQKxUh/UVw7F354vnauo2NKPRKYl5eHevXqycxi06tXL9y5cwfJycm4d++edKJaf39/vZiSjBBjdOnSJSxYsACHDh2SLluc81IMt5mX8E5bB8zu3xRvullrL4DM6xo7VenLfDw4sgYv7l0EOB4cvbqgWXAk+GbVP4bIGMPNnXORnZKIVkNnob7nq4lm8v+9i7QTsSh4ch/gAOs3POHWewysXJSfa1KpGqO9vT127dolfT927FjpcBxfX18MHToUoaGh6NChAyVFQrRk79696Nq1K/78888Ka7kzBhy+/gJdvk3G3qvPtBfEs3sqFf/flunI/FvxbD139y9F0bOHaDNiIbxD5yI3/QbuH/pJqfP+e2k/gIq5RlzyEjd2zIHAxgk+Y79Hu1FLwTezwI3tsyFRoVddqcRoZmYmsxxAbGwsUlJSlL4IIaRmLl26hNDQUIjF4kofvxVLALGEIXT9LVxO09ISxoVPAZHiuU5VUfQsHdkpiWg+YAqsG3rBtklrePSLxNMbZyDMf17lsQUZKXh8YR9avDtFwXn/gehlPpoGfgjL+o1Qz6kpmnQfjtLCHAhzFS+qp4hSt9JeXl745Zdf4ObmBltbWwBAWloakpKSqjyOJmUgRDMWLlwIxliFmqI8BoCBYeHhhzjwcRvtBPPyBWCtePJoZeX9cxt883qwfqOFdJudux/Acch/fAcCry4KjxOXFuPO/qXw6DcRZlYOFfZb1G8IEwsbZCQfReNuw8AkEmQmH4WFY2OY27koOKNiSiXGmJgYhIaGIigoCADAcRxmz55dac8zYwwcx9HEEoRoQHp6Og4ePFhtUiwnlgB/XHuB9BfFaOJgrvmASgprfIrSgmyYWdrJbON4fJhaWKO0MLvS41KProdNo1YybYqvMxFYou3IGNzavRCPzu4EAFg4vIHWYQvA8RQvkKfwPMoU6tevH1JTU3H58mVkZmZi9OjRmDBhQqUzaxNSF0lEJSq1Yynr6JHDSifFcowB8bezMTpA+VqS0ucuKay0De7R2V14dO5X6XuJqAT5j28j5cirdZjaf7Rares+v3sBOWn/g9/4ypdfEJcKce/gCtg08obnkK/AJBI8vrAXN3fNg8/YH8A3FSh1LaUS4//+9z80bdoUwcHBAIBNmzZh6NCh6N27t1IXIcTYSUQlyEn7G6LiIo2fOzP1Jng8DhKJ8smRxwE5+S8hEmo+nsJ/78LGyQs8k4rLh7j694ej91vS93f2L4WjV1fUf+3WWGBdH6ZW9igpypE5lknEKH2ZD9N69gqvm5v2PxRnP0HC0mEy22/t+QY2jVujXfhiPL1+CsLcLPiMWQaOK0vfVkO+xIXvQvHi7gU4tVbuwROlEqOfnx+2bt2K4cOHK3VSQuoaiVgEUXEReHwTcAoSRk3Y2NqplBQBQMIAGwsTaXLQFMYkEInEkIhFChOjqYU1TC1eDRfimQhgWs8WFg5vyJSzaeQFcXEhCp7cg1WDsnbGnNS/AcZg3dBT4bUbdQmBi29fmW1X101Csz7j4dCiIwBAIhICHIfXe6zLfgacSrVupX5qFhYWKCp69Zfn9OnTFVbzI4QAnIkZ+KYCjb56vNVV5WFwHAf0bGlT9h8afHEcD8ys5uMkLR2bwN7DH/cO/YT8x3eQ9+gmUuJWw6l1dwis6wMAhHnPkLg6EvmP7wAAzKwcUM/ZTeYFAAJbJ5jbl3UG2bn7QfSyAClHVqHoWToKnz7E3d9/AMfjw66p8g+dKFVj9PHxwffffw8+ny/tlb58+TLMzatu2H3vvfeUDoQQoljjhg0Q3Ks7jp06q1SHJp8H9Pe2QxMH5drTVMFMLcBMLDVyrpaDv8SDI6txfdtMgONQ36srPIIjX11LIsbL5/9AXKr8WteWjo3hHToXj85sx9+bvgDHcajn6oHWYfNhZl2xF7sySq35cuXKFYSEhCA9Pb3sIK76aqmh9ErTmi9EE0TCIry4dxl8gaXSDfyqSPr7OoJDwiEWS6r83eMA8HkcznzmhTeban6GK5G9B/J8P4JDizdhItBMgtRHStUYO3TogPv37yMlJQWZmZno0aMHZs6cKR2+QwjRrvY+bbDxp28x9tOvwJjipYn5PIADhx1jPLSSFAFAVF9x+5+xUXr5VBMTE3h6esLT0xOjRo3CO++8g06dOmkzNkLIa97tF4S4PVuw9Kd1iDtxRqbmyHFlt89RwQ20lhQBQOSkpUHjekatdaU3bdqk6TgIIUpo79MGO375EY8eP0H3/kORk5cPOws+Er9urZU2xddJ6rlAbNMEKHmp1evoA6US4/z588FxHGbOnAkej4f58+dXe0z50zGEEM1r3LABLC0tkJOXj3pmPK0nRQAQNe7y31AY46dUYpw3bx44jsPXX38NMzMzzJs3r9pjKDESYkQ4Pkobd9N1FLVGqXGMEokEYrEYZmZm0vfVvWrSI/3zzz/Dzc0N5ubm6NSpEy5duqTUcTt37gTHcRg8eLDa1yaEVCRq0B7M3FbXYdQazQ6L14Bdu3Zh2rRpmDt3LpKSkuDj44Pg4GBkZVU9ZVBaWhq++OILvPXWW1WWI4SortStp65DqFVqJ8Zbt27h4MGD2LFjBw4ePIjbt29rJKDvv/8e48ePx5gxY+Dt7Y01a9bA0tISGzdurPQYsViMESNGIDo6Gs2aKT9LLyGkehLrhhA7tKi+oBFRuVd67dq1WLRoER4/flxhX5MmTTBz5kxERESoFUxJSQkSExMRFRUl3cbj8RAUFISEhIRKj5s/fz6cnZ0xbtw4/PXXX1VeQygUyky6W1BQoFashNQVpW496kynSzmVEuMXX3yB77//Hg4ODhg7dizatGkDKysrFBQU4Nq1a9i/fz8iIyNx7949LFmyROVgnj17BrFYDBcX2amSXFxcKq2Rnj17Fhs2bEBycrJS14iJiUF0dLTKsRFSJ5mYo7RhZ11HUeuUToyXLl3C999/jyFDhmDLli2oV69ehTIrVqzAhx9+iO+++w5Dhw5Fhw4dNBqsvPz8fIwcORLr16+Ho6OjUsdERUVh2rRp0vfJycm0BjYhlSht2AkwrX5xKmOjdGLcsGEDGjRogO3bt0MgUDxmql69etixYweaNWuGDRs2qJwYHR0dwefzK8zck5mZCVfXilOpp6SkIC0tDe+++650m0QiAVD2pM6dO3fg4eEhc4xAIJCJ38pKe08JEGLoSt3r5pyrSne+JCQkYOjQoZUmxXLm5uYYOnQozp07p3IwZmZm8Pf3R3x8vHSbRCJBfHy8wtnCvby8cO3aNSQnJ0tfAwcORM+ePZGcnIzGjRurHAMhpIzYuS0k1m9UX9AIKV1jfPToEVq1aqVUWW9vb2zZskWtgKZNm4ZRo0ahQ4cO6NixI5YvX47CwkKMGTMGABAeHo6GDRsiJiYG5ubmaNNG9tlNOzs7AKiwnRCiGmGLAboOQWeUTox5eXmwtlZugkorKyvk56u3fGNoaCiePn2KOXPmICMjA76+vjhy5Ii0QyY9PR08nt4NvyTEqIidvCFxaK7rMHRG6cRYvvKfKuXV9cknn+CTTz5RuO/UqVNVHhsbG6v2dQkhAMBB2CpE10HolErDdb777jvs2LGj2nKKxjgSQgxDaeMukNg20XUYOqV0YmzSpAlevHiBFy9eKF2eEGJYmGk9lNTx2iKgQmJMS0vTYhiEEH0g9A4BE9R8sStDR70YhBAAgNixFUR1aGqxqlBiJIQAJuYo9hlV556JrgwlRkIIhN5DwSyVe6y2LqDESEgdJ3Zuh9Im3XUdhl6hxEhIHcbMrFHsO5puoeVQYiSkDiv2GwsmsNF1GHqHEiMhdVRpsyCIndvqOgy9pNa60gAQFxeHDRs24MGDB8jOzq7wCCDHcUhJSalxgIQQzZPYudf5x/6qolZiXLp0KaZPnw4XFxd07NgRbdvSXx1CDAUzrYeX/pEAT+16kdFT6yezYsUK9OrVC4cPH4apqammYyKEaFGx3zgamlMNtdoYs7OzERISQkmREANT0rwfxC7tdB2G3lMrMXbs2BF37tzRdCyEEC0S23ugxHOwrsMwCGolxlWrVmHv3r3Yvn27puMhhGiDiTmK24+ndkUlqfVTCg0NhUgkwsiRIzFx4kQ0atQIfD5fpgzHcfj77781EiQhpGaKW39A7YoqUCsxOjg4oH79+mjRooWm4yGEaFjZrDlddR2GQVErMVa3vAAhRE/wTFDc9kN65E9F9OQLIUastGkPMCsXXYdhcGrUEltaWorbt28jNzdXutD967p3pxk7CNEZvgAlLfrrOgqDpFZilEgkiIqKwqpVq1BUVFRpObFYrHZghJCaKW3yFk0QoSa1bqW/+eYbLF26FB9++CG2bNkCxhgWL16MNWvWoF27dvDx8UFcXJymYyWEKI1DSbMgXQdhsNRKjLGxsRg2bBhWr16Nfv36AQD8/f0xfvx4XLx4ERzH4cSJExoNlBCiPLFzaxqeUwNqJcZ//vkHvXr1AgAIBAIAQHFxMQDAzMwMH374IbZu3aqhEAkhqiql4Tk1olZirF+/PgoKCgAAVlZWsLGxwYMHD2TKZGdnqx3Uzz//DDc3N5ibm6NTp064dOlSpWXXr1+Pt956C/b29rC3t0dQUFCV5QkxenxTiJzpeeiaUCsx+vn54fLly9L3PXv2xPLly3Hu3Dn89ddf+PHHH+Hj46NWQLt27cK0adMwd+5cJCUlwcfHB8HBwcjKylJY/tSpUwgLC8PJkyeRkJCAxo0bo2/fvnj8+LFa1yfE0Imc2gAmAl2HYdDUSowTJkyAUCiEUCgEACxatAg5OTno3r07AgMDkZeXh2XLlqkV0Pfff4/x48djzJgx8Pb2xpo1a2BpaYmNGzcqLL9t2zZ8/PHH8PX1hZeXF3755RdIJBLEx8erdX1CDJ3YuY2uQzB4ag3XGThwIAYOHCh97+3tjZSUFJw6dQp8Ph9dunSBg4ODyuctKSlBYmIioqKipNt4PB6CgoKQkJCg1DmKiopQWlpa6fVfT+gApE0ChBgLkVNrXYdg8DQ21YatrS0GDRpUo3M8e/YMYrEYLi6yI/VdXFxw+/Ztpc7x9ddf44033kBQkOKhCjExMYiOjq5RnIToA2cnR3DCPLhYvbrxY5ZO1ButAWo/EigWi7Fz505ERkZiyJAhuHbtGgAgNzcXe/fuRWZmpsaCVNbixYuxc+dO7Nu3D+bm5grLREVFITc3V/o6ffp0LUdJiGac/H0HHnwXhItfvqohihxb6TAi46FWjTEnJwf9+vXDpUuXYGVlhcLCQnz66acAynqpJ0+ejPDwcHzzzTcqndfR0RF8Pr9CUs3MzISrq2uVx3733XdYvHgxjh8/jnbtKu+REwgE0iFG5fESYizEjp66DsEoqFVjnD59Om7cuIG4uDg8ePBAZoVAPp+PkJAQHD58WOXzmpmZwd/fX6bjpLwjJSAgoNLjvv32WyxYsABHjhxBhw4dVL4uIcZC7Oit6xCMglqJcf/+/fj000/Rp08fcAqmM2rZsiXS0tLUCmjatGlYv349Nm/ejFu3bmHixIkoLCzEmDFjAADh4eEynTNLlizB7NmzsXHjRri5uSEjIwMZGRnUqULqHIltEzCBta7DMApq3Urn5ubC3d290v2lpaUQiURqBRQaGoqnT59izpw5yMjIgK+vL44cOSLtkElPTweP9yqfr169GiUlJQgJkV0jd+7cuZg3b55aMRBiiETOtIyxpqiVGD08PJCUlFTp/qNHj8LbW/0q/SeffIJPPvlE4T75SXLVrZkSYmzETnQbrSlq3UpHRERg48aN2LVrl7R9keM4CIVCzJw5E0eOHEFkZKRGAyWEVMHEHGJ7D11HYTTUqjFOmTIFN27cQFhYGOzs7AAAw4cPx/PnzyESiRAZGYlx48ZpMk5CSBVEjl60AqAGqfWT5DgO69evx6hRo7Bnzx7cu3cPEokEHh4eGDZsGM3cTUgtE9f30nUIRqVGf2K6deuGbt26aSoWQoiaxA7NdR2CUaHFsAgxdDxTSGwa6ToKo6J0jfH1SSOUwXEcDhw4oHJAhBDVSGwaUvuihin90zx48CDMzc3h6uoq86RLZRQN/CaEaJ7YuqGuQzA6SifGhg0b4vHjx3B0dMTw4cPxwQcfVPv8MiFE+yRWDXQdgtFRuo3x0aNHOHnyJPz8/LBgwQI0btwYQUFB2LRpE/Lz87UZIyGkCqyek65DMDoqdb4EBgZi7dq1yMjIwJ49e1C/fn188skncHZ2xnvvvYc9e/bITAJLCNE+iQXNv6hpavVKm5qaYtCgQdi1axcyMzOlyTI0NBTffvutpmMkhFSBWdjrOgSjU6PhOkKhEHFxcThw4ACuXr0Kc3NzuLm5aSg0Qki1eHwwM5pTVNNUTowSiQRxcXEYPXo0XFxcEBYWhpcvX2L9+vXIysrCyJEjtREnIUQBZmYNcDQcWdOU7pU+f/48tm/fjt27d+P58+fo3LkzvvnmGwwbNgyOjtTGQYguMLN6ug7BKCmdGLt16wYLCwv0798fYWFh0lvm9PR0pKenKzymffv2GgmSEKIYM7XUdQhGSaXh8i9fvsRvv/2GvXv3VlmOMQaO4yAWi2sUHCGkGiYWuo7AKCmdGDdt2qTNOAghamCUGLVC6cQ4atQobcZBCFED45vpOgSjRN1ZhBgySoxaQYmREANGNUbtoMRIiCGjxKgVlBgJMWCMb6rrEIwSzW5ZB6SnpyM+Ph75+fmwtrZG79690aRJE12HRTSBRzVGbaDEaMQuXbqEBQsW4NChQ2CMgcfjQSKRgOM4vPPOO5g9ezbefPNNXYdJaoJPv8LaQLfSRmrv3r3o2rUr/vzzT+mM6xKJBEDZAPzDhw+jS5cu1Q7WJ/qNOl+0Qy8T488//ww3NzeYm5ujU6dOuHTpUpXld+/eDS8vL5ibm6Nt27Y4fPhwLUWqny5duoTQ0FCIxeJKnz4q3xcaGorLly/XcoREY2itF63Qu8S4a9cuTJs2DXPnzkVSUhJ8fHwQHByMrKwsheXPnz+PsLAwjBs3DlevXsXgwYMxePBgXL9+vZYj1x8LFy4EY6zatXnKyyxcuLCWIiOaxnjU+aINHFNmZata1KlTJ7z55ptYuXIlgLLbv8aNG+PTTz/F9OnTK5QPDQ1FYWEhDh48KN3WuXNn+Pr6Ys2aNdVeLykpCf7+/khMTDSKSS/S09Ph5uam1IJl5TiOQ1paGnXI1IBIWIQX9y6DL7AE31RQa9flip6BWdbe7FbiUiHEwiI4tHgTJgLjncBCr+rhJSUlSExMRFRUlHQbj8dDUFAQEhISFB6TkJCAadOmyWwLDg7G/v37FZYXCoUyyy8UFBQAAEQiEUpLS2v4CXQvLi5OpaQIlNUcjx49So991oCotBSlpSKIJUXgSkW1dl2uuBgMhbV2PSYqgURc9rvCeLX3+2JqWrs1Y71KjM+ePYNYLIaLi4vMdhcXF9y+fVvhMRkZGQrLZ2RkKCwfExOD6OjoCts7deqkZtTGYfz48Rg/fryuwyBEodq+sdWrxFgboqKiZGqYycnJCAwMxMWLF+Hn56fDyDQjNjYWEyZMUPm49evXU42xhiT/1aZq1cscwMKuVi/J45uAZ2LcveF6lRgdHR3B5/ORmZkpsz0zM7PSNaxdXV1VKi8QCCAQvGoDsrIqWy/DxMSk1qvr2hAcHAyO41RuY+zbt69RfH6d0sXPz4QDzG1q/7pGTq96pc3MzODv74/4+HjpNolEgvj4eAQEBCg8JiAgQKY8ABw7dqzS8sauSZMmeOedd8Dn85Uqz+fz8e6771LHCyGvY3pm586dTCAQsNjYWHbz5k02YcIEZmdnxzIyMhhjjI0cOZJNnz5dWv7cuXPMxMSEfffdd+zWrVts7ty5zNTUlF27dk2p6yUmJjIALDExUSufRxcuXbrETExMGMdxDEClL47jmImJCbt06ZKuQybqKs7XdQRGSe8SI2OM/fTTT6xJkybMzMyMdezYkV24cEG6LzAwkI0aNUqm/K+//spatmzJzMzMWOvWrdmhQ4eUvpYxJkbGGPvtt9+YiYkJ4/P5CpMin89nJiYmbO/evboOldSEsEDXERglvRvHWNuMbRzj6y5fvowFCxbg4MGDFZ6VfvfddzFr1ix6VtrQlRQBZsY7nlBX9KrzhWjWm2++id9//x3p6ek4ceIE8vLyYGNjg169elGbIiFVoMRYBzRp0gSjR4/WdRiEGAy96pUmhBB9QImREEPGcbqOwChRYiTEkJmY6zoCo0SJkRBDRjVGraDESAghcigxEkKIHEqMhBAihxIjIYTIocRICCFyKDESQogceiSwDnny5AmePHmi6zCIBjVo0AANGjTQdRhGp84nxgYNGmDu3LlG/z+XUChEWFgYTp8+retQiAYFBgYiLi5OZlZ6UnN1ftqxuiIvLw+2trY4ffq0dDkHYtgKCgoQGBiI3Nxc2NjQ8gaaVOdrjHWNr68v/RIZiby8PF2HYLSo84UQQuRQYiSEEDmUGOsIgUCAuXPnUiO9EaHvVHuo84UQQuRQjZEQQuRQYiSEEDmUGAkhRA4lRkIIkUOJkRAt4ThOqdepU6dqfK2ioiLMmzdPpXMtWrQIAwcOhIuLCziOw7x582och7GgJ18I0ZKtW7fKvN+yZQuOHTtWYXurVq1qfK2ioiJER0cDAHr06KHUMbNmzYKrqyv8/PwQFxdX4xiMCSVGQrTkww8/lHl/4cIFHDt2rMJ2XUlNTYWbmxuePXsGJycnXYejV+hWmhAdkkgkWL58OVq3bg1zc3O4uLggMjIS2dnZMuWuXLmC4OBgODo6wsLCAu7u7hg7diwAIC0tTZrYoqOjpbfo1d0au7m5aeMjGQWqMRKiQ5GRkYiNjcWYMWMwefJkpKamYuXKlbh69SrOnTsHU1NTZGVloW/fvnBycsL06dNhZ2eHtLQ07N27FwDg5OSE1atXY+LEiRgyZAjee+89AEC7du10+dEMGyOE1IpJkyax13/l/vrrLwaAbdu2TabckSNHZLbv27ePAWCXL1+u9NxPnz5lANjcuXNVjqsmxxorupUmREd2794NW1tb9OnTB8+ePZO+/P39YWVlhZMnTwIA7OzsAAAHDx5EaWmpDiOuOygxEqIj9+7dQ25uLpydneHk5CTzKigoQFZWFoCyWbrff/99REdHw9HREYMGDcKmTZsgFAp1/AmMF7UxEqIjEokEzs7O2LZtm8L95R0qHMdhz549uHDhAv744w/ExcVh7NixWLZsGS5cuEAzsmsBJUZCdMTDwwPHjx9H165dYWFhUW35zp07o3Pnzli0aBG2b9+OESNGYOfOnYiIiADHcbUQcd1Bt9KE6MiwYcMgFouxYMGCCvtEIhFycnIAANnZ2WByswP6+voCgPR22tLSEgCkx5CaoRojIToSGBiIyMhIxMTEIDk5GX379oWpqSnu3buH3bt3Y8WKFQgJCcHmzZuxatUqDBkyBB4eHsjPz8f69ethY2OD/v37AwAsLCzg7e2NXbt2oWXLlnBwcECbNm3Qpk2bSq+/detWPHz4EEVFRQCAM2fOYOHChQCAkSNHomnTptr/IegrXXeLE1JXyA/XKbdu3Trm7+/PLCwsmLW1NWvbti376quv2L///ssYYywpKYmFhYWxJk2aMIFAwJydndk777zDrly5InOe8+fPM39/f2ZmZqbU8JvAwEAGQOHr5MmTmvrYBolm8CaEEDnUxkgIIXIoMRJCiBxKjIQQIocSIyGEyKHESAghcigxEkKIHEqMhOiptLQ0cByH2NhYXYdS51BiJIQQOTTAmxA9xRiDUCiEqakp+Hy+rsOpUygxEkKIHLqVJkSL5s2bB47jcPfuXXz44YewtbWFk5MTZs+eDcYYHj16hEGDBsHGxgaurq5YtmyZ9FhFbYyjR4+GlZUVHj9+jMGDB8PKygpOTk744osvIBaLpeVOnTqlcM1qRefMyMjAmDFj0KhRIwgEAjRo0ACDBg1CWlqaln4q+o8SIyG1IDQ0FBKJBIsXL0anTp2wcOFCLF++HH369EHDhg2xZMkSNG/eHF988QXOnDlT5bnEYjGCg4NRv359fPfddwgMDMSyZcuwbt06tWJ7//33sW/fPowZMwarVq3C5MmTkZ+fj/T0dLXOZxR0N38FIcZv7ty5DACbMGGCdJtIJGKNGjViHMexxYsXS7dnZ2czCwsLNmrUKMYYY6mpqQwA27Rpk7TMqFGjGAA2f/58mev4+fkxf39/6fuTJ08qnCVH/pzZ2dkMAFu6dKlmPrCRoBojIbUgIiJC+t98Ph8dOnQAYwzjxo2Tbrezs4OnpycePHhQ7fk++ugjmfdvvfWWUsfJs7CwgJmZGU6dOlVhLeu6jBIjIbWgSZMmMu9tbW1hbm4OR0fHCturS1Dm5ubS9WDK2dvbq5XYBAIBlixZgj///BMuLi7o3r07vv32W2RkZKh8LmNCiZGQWqBouE1lQ3BYNQNFlBm6U9kaMK930JSbOnUq7t69i5iYGJibm2P27Nlo1aoVrl69Wu11jBUlRkKMkL29PYCKa8A8fPhQYXkPDw98/vnnOHr0KK5fv46SkhKZHvK6hhIjIUaoadOm4PP5FXq4V61aJfO+qKgIxcXFMts8PDxgbW1dp9etpsWwCDFCtra2GDp0KH766SdwHAcPDw8cPHgQWVlZMuXu3r2L3r17Y9iwYfD29oaJiQn27duHzMxMfPDBBzqKXvcoMRJipH766SeUlpZizZo1EAgEGDZsGJYuXSqzcmDjxo0RFhaG+Ph4bN26FSYmJvDy8sKvv/6K999/X4fR6xY9EkgIIXKojZEQQuRQYiSEEDmUGAkhRA4lRkIIkUOJkRBC5FBiJITQ+jJyKDESoqKUlBRERkaiWbNmMDc3h42NDbp27YoVK1bg5cuXWrvuzZs3MW/ePJ1PILto0SIMHDgQLi4u4DgO8+bN02k82kADvAlRwaFDhzB06FAIBAKEh4ejTZs2KCkpwdmzZ/Hll1/ixo0bak8YW52bN28iOjoaPXr0gJubm1auoYxZs2bB1dUVfn5+iIuL01kc2kSJkRAlpaam4oMPPkDTpk1x4sQJNGjQQLpv0qRJuH//Pg4dOqTDCF9hjKG4uBgWFhYaP3dqairc3Nzw7NmzCtOfGQu6lSZESd9++y0KCgqwYcMGmaRYrnnz5pgyZYr0vUgkwoIFC+Dh4QGBQAA3NzfMmDGjwuQMbm5ueOedd3D27Fl07NgR5ubmaNasGbZs2SItExsbi6FDhwIAevbsCY7jZNZ0KT9HXFwcOnToAAsLC6xduxYA8ODBAwwdOhQODg6wtLRE586da5TAdVlbrS2UGAlR0h9//IFmzZqhS5cuSpWPiIjAnDlz0L59e/zwww8IDAxETEyMwskZ7t+/j5CQEPTp0wfLli2Dvb09Ro8ejRs3bgAAunfvjsmTJwMAZsyYga1bt2Lr1q1o1aqV9Bx37txBWFgY+vTpgxUrVsDX1xeZmZno0qUL4uLi8PHHH2PRokUoLi7GwIEDsW/fPg38VIyUThdWIMRA5ObmMgBs0KBBSpVPTk5mAFhERITM9i+++IIBYCdOnJBua9q0KQPAzpw5I92WlZXFBAIB+/zzz6Xbdu/erXAdl9fPceTIEZntU6dOZQDYX3/9Jd2Wn5/P3N3dmZubGxOLxYwxxevLVOfp06cMAJs7d67SxxgKqjESooS8vDwAgLW1tVLlDx8+DACYNm2azPbPP/8cACrcynp7e+Ott96SvndyclJ6/Zdy7u7uCA4OrhBHx44d0a1bN+k2KysrTJgwAWlpabh586bS569LKDESogQbGxsAQH5+vlLlHz58CB6Ph+bNm8tsd3V1hZ2dXYWZtOXXhAFUX8fF3d1dYRyenp4Vtpffglc2o3ddR4mRECXY2NjgjTfewPXr11U6rrK1V+Spu/7L67TRA11XUWIkREnvvPMOUlJSkJCQUG3Zpk2bQiKR4N69ezLbMzMzkZOTg6ZNm6p8fWWTrHwcd+7cqbD99u3b0v2kIkqMhCjpq6++Qr169RAREYHMzMwK+1NSUrBixQoAQP/+/QEAy5cvlynz/fffAwAGDBig8vXr1asHoOICV1Xp378/Ll26JJPMCwsLsW7dOri5ucHb21vlOOoCGuBNiJI8PDywfft2hIaGolWrVjJPvpw/fx67d+/G6NGjAQA+Pj4YNWoU1q1bh5ycHAQGBuLSpUvYvHkzBg8ejJ49e6p8fV9fX/D5fCxZsgS5ubkQCATo1asXnJ2dKz1m+vTp2LFjB95++21MnjwZDg4O2Lx5M1JTU/Hbb7+Bx1O9brR161Y8fPgQRUVFAIAzZ85g4cKFAICRI0caRy1U193ihBiau3fvsvHjxzM3NzdmZmbGrK2tWdeuXdlPP/3EiouLpeVKS0tZdHQ0c3d3Z6ampqxx48YsKipKpgxjZUNtBgwYUOE6gYGBLDAwUGbb+vXrWbNmzRifz5cZulPZORhjLCUlhYWEhDA7Oztmbm7OOnbsyA4ePChTRpXhOoGBgQyAwpeioUSGiNZ8IYQQOdTGSAghcigxEkKIHEqMhBAihxIjIYTIocRICCFyKDESQogcSoyEECKHEiMhhMihxEgIIXIoMRJCiBxKjIQQIocSIyGEyKHESAghcv4f531KvVbaQJoAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUYAAAInCAYAAADkl/CSAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYvdJREFUeJzt3XdcU9f7B/DPTYCAbJRhHYCoKC4QRXHhQGm1rlalaN0otbZq7RIX4ihaq9VvrbMq1p+rWkerVlTcioogrXsgSGsFHBCmjOT8/qBEEwIkIZvn/Xrlpbn33HufEHk895xzz+EYYwyEEEIkeLoOgBBC9A0lRkIIkUGJkRBCZFBiJIQQGZQYCSFEBiVGQgiRQYmREEJkUGIkhBAZlBgJIURGrU+MT58+xYIFC/D06VNdh0II0ROUGJ8+RWRkJCVGQohErU+MhBAiixIjIYTIoMRICCEyTHQdACFEecV5Wci8cQpF2RkQ2DnDqU1vmFnZ6zoso0GJkRAD8+L+Fdz9NQpMXAqO44ExMR6f2Y6Ww2bDoZmfrsMzCnQrTYgBKc7LKkuKohKAMTCxqOxPUQnu7PsGxXlZug7RKFBiJMSAZN44BSYulbuPiUuReeOUliMyTpQYCTEgRdkZ4Dj5v7Ycx0NRdoaWIzJOepsYly5dCo7jMGPGjErLREdHg+M4qZe5ubn2giREywR2zmBMLHcfY2II7Jy1HJFx0svOl/j4eGzYsAFt27attqyNjQ3u3bsnec9xnCZDI0SnnNr0xuMz28vaGGVwPBM4te2jg6iMj97VGPPy8jBq1Chs2rQJ9vbVDz/gOA4uLi6Sl7Mz/Y9JjJeZlT1aDpsNjm8KcBw4Hr/sT74pWg6bDTNLO12HaBT0rsY4depUDBgwAIGBgVi8eHG15fPy8uDq6gqxWIz27dvjm2++QatWrSotX1RUhKKiIqnjCTEkDs380PHTrdLjGNv2oaSoRnqVGHfv3o3ExETEx8crVN7T0xNbtmxB27ZtIRQK8d1336FLly64desWGjZsKPeYqKgoREZGqjNsQrTOzMoeDf3f13UYRotjjDFdBwEAf//9Nzp06IATJ05I2hZ79uwJb29vrFq1SqFzlJSUoGXLlggJCcGiRYvklpGtMSYlJSEgIAAJCQlo3759jT8HIcTw6U2NMSEhAZmZmVLJSSQS4dy5c1izZg2KiorA5/OrPIepqSl8fHzw8OHDSssIBAIIBALJeysrq5oHTwgxKnqTGPv06YMbN25IbRs/fjxatGiBr7/+utqkCJQl0hs3bqB///6aCpMQUgvoTWK0trZG69atpbZZWlqibt26ku1jxoxBgwYNEBUVBQBYuHAhOnfujKZNmyI7OxvLly/H48ePERoaqvX4CSHGQ28SoyLS0tLA470eYZSVlYVJkyYhPT0d9vb28PX1xaVLl+Dl5aXDKAkhhk5vOl90JTExEb6+vtT5QgwKTTumWQZVYySE0LRj2qB3T74QQipH045pByVGQgwITTumHZQYCTEgNO2YdlBiJMSA0LRj2kGJkRAD4tSmNzie/D5TmnZMfSgxEmJAaNox7aDhOoQYGJp2TPMoMRJigGjaMc2iW2lCCJFBiZEQQmRQYiSEEBmUGAkhRAYlRkIIkUGJkRBCZFBiJIQQGZQYCSFEBiVGQgiRQYmREEJkUGIkhBAZlBgJIUQGJUZCCJFBiZEQQmTQtGOEGCBaV1qzKDESYmBoXWnNo1tpQgwIrSutHZQYCTEgtK60dlBiJMSA0LrS2kGJkRADQutKa4feJsalS5eC4zjMmDGjynJ79+5FixYtYG5ujjZt2uDo0aPaCZAQHaB1pbVDLxNjfHw8NmzYgLZt21ZZ7tKlSwgJCcHEiRNx/fp1DBkyBEOGDMHNmze1FCkh2kXrSmsHxxhjug7iTXl5eWjfvj3Wrl2LxYsXw9vbG6tWrZJbNjg4GPn5+Th8+LBkW+fOneHt7Y3169crdL3ExET4+voiISEB7du3V8dHIETjKoxjpHWl1UrvaoxTp07FgAEDEBgYWG3ZuLi4CuWCgoIQFxdX6TFFRUXIycmRvPLy8mocMyHaVr6utMc7H6Oh//uUFNVMrwZ47969G4mJiYiPj1eofHp6OpydpRubnZ2dkZ6eXukxUVFRiIyMrFGchBDjpjc1xr///hvTp0/Hjh07YG5urrHrhIeHQygUSl5nz57V2LUIIYZJb2qMCQkJyMzMlGrnE4lEOHfuHNasWYOioiLw+XypY1xcXJCRIT1uKyMjAy4uLpVeRyAQQCAQSN5bWVmp6RMQQoyF3tQY+/Tpgxs3biApKUny6tChA0aNGoWkpKQKSREA/P39ERsbK7XtxIkT8Pf311bYhBAjpDc1Rmtra7Ru3Vpqm6WlJerWrSvZPmbMGDRo0ABRUVEAgOnTpyMgIAArVqzAgAEDsHv3bly7dg0bN27UevyEEOOhN4lREWlpaeDxXldyu3Tpgp07d2Lu3LmYPXs2mjVrhoMHD1ZIsLVdVm4+TsTfQfrLHLg42KBvx5awt7bUdViE6C29G8eobcY+jjHu5iMs2nYEpSIxeBwHMWMw4fMwf9wAdG7VRNfhEaKX9KaNkahfVm4+Fm07gpJSERhjEInFYIyhpFSEhdFHkJWbr+sQCdFLlBiN2In4OygVyZ9woFQkxslrd7UcESGGgRKjEUt/mQMex8ndx+M4PH0h1HJEhBgGg+p8IcpxcbCBuJImZDFjqF/XVssRkaokbZ6O4rwsmFnZw3vial2HU6tRjdGI9e3YEiZ8+V+xCZ+HwA4ttRwRqUpxXhaKc1/Q8gR6gBKjEbO3tsT8cQNgasIHx3Hg83jgOA6mJnzMHzcA9tZ1dB0iIXqJbqWNXOdWTbBj/gScvHYXT18IUb+uLQI7tKSkSEgVKDHWAvbWlhjey1fXYRBiMOhWmhBCZFBiJIQQGXQrXQvQs9KEKIcSo5GT96x09B9x9Kw0IVWgW2kjRs9KE6IaSoxGjJ6VJkQ1lBiNGD0rTYhqKDEaMXpWmhDVUGI0YvSsNCGqocRoxOhZaUJUQ8N1jBw9K02I8lROjCKRCHv37sXp06eRmZmJhQsXok2bNhAKhYiNjUXXrl3h7OyszliJiuhZaUKUo9KtdHZ2Nrp27YqRI0di165d+O233/Ds2TMAZQvYT5s2DatX00SbhBDDpFJinDVrFm7duoWYmBg8evQIby40yOfzMWzYMBw9elRtQRJCiDaplBgPHjyITz/9FH379gUnZ5xc8+bNkZqaWtPYCCFEJ1RKjEKhEO7u7pXuLykpQWlpqcpBEUKILqmUGD08PJCYmFjp/uPHj8PLy0vloAghRJdUSoyhoaHYsmUL9uzZI2lf5DgORUVFmDNnDo4dO4awsDC1BkoIIdqi0nCd6dOn49atWwgJCYGdnR0AYOTIkXjx4gVKS0sRFhaGiRMnqjNOQgjRGpUSI8dx2LRpE8aOHYt9+/bhwYMHEIvF8PDwwIgRI9CjRw91x0kIIVpToydfunXrhm7duqkrFkII0Qv0rDQhhMhQqcbo7u4ud/zimziOQ3JyslLnXbduHdatWycZA9mqVSvMnz8f77zzjtzy0dHRGD9+vNQ2gUCAV69eKXVdQohmFedlIfPGKRRlZ0Bg5wynNr1hZmWv67AqpVJiDAgIqJAYRSIRHj9+jIsXL6J169bw8fFR+rwNGzbE0qVL0axZMzDGsG3bNgwePBjXr19Hq1at5B5jY2ODe/fuSd5Xl7AJIepVXdJ7cf8K7v4aBSYuBcfxwJgYj89sR8ths+HQzE+HkVdOpcQYHR1d6b4///wTQUFBGDVqlNLnHThwoNT7JUuWYN26dbh8+XKliZHjOLi4uCh9LUJI9Wqa9Irzssr2i0oAAIyJyv4UleDOvm/Q8dOtellzVHsbY7t27RAWFoavv/66RucRiUTYvXs38vPz4e/vX2m5vLw8uLq6olGjRhg8eDBu3bpV5XmLioqQk5MjeeXl5dUoTkIMVXFeFv6J+xXJf6zFP3G/ojgvS2r/i/tXEP/DeKSe2or068eQemor4n8Yj5cPrkqOlyQ9xsDEorI//0t65UmVieU/BcfEpci8cUrjn1MVGpmP0dnZGbdv31bp2Bs3bsDf3x+vXr2ClZUVDhw4UOlTNJ6entiyZQvatm0LoVCI7777Dl26dMGtW7fQsGFDucdERUUhMjJSpdgIMRbqqOkpkvSKsjP+O7+oQhmO46EoO0NzH7IG1F5jfPHiBTZv3lxpYqqOp6cnkpKScOXKFUyZMgVjx46tNMn6+/tjzJgx8Pb2RkBAAPbv3w9HR0ds2LCh0vOHh4dDKBRKXmfPnlUpTkIMlbpqeuVJT57ypCewcwZj8leqZEwMgZ1+ztmqUo2xd+/ecrdnZ2fj7t27KC4uxvbt21UKyMzMDE2bNgUA+Pr6Ij4+HqtXr64y2ZUzNTWFj48PHj58WGkZgUAAgUAgeW9lZaVSnITokiK9vJWVUVdNT5Gk59SmNx6f2S6peUqdh2cCp7Z9VPj0mqdSYhSLxRV6fzmOg7u7OwIDAzFhwgS0aNFCLQGKxWIUFRUpVFYkEuHGjRvo37+/Wq5NiD5SpJe3qjLaTHpmlnZoOWw27uz7RioWjmeClsNmw8zSTq0/G3VRKTGeOXNGzWGUCQ8PxzvvvIPGjRsjNzcXO3fuxJkzZxATEwMAGDNmDBo0aICoqCgAwMKFC9G5c2c0bdoU2dnZWL58OR4/fozQ0FCNxEeIrinS9gegyjIN/d/XatJzaOYnaZOU1F7/O15f6dViWJmZmRgzZgyePn0KW1tbtG3bFjExMejbty8AIC0tDTze6zaNrKwsTJo0Cenp6bC3t4evry8uXbpEU54Ro6VoL29VZQAOHM9Eq0nPzMoeDf3fV/lza5tCifHnn39W6eRjxoxRqvzmzZur3C9bU/3+++/x/fffKxsWIQZL0V7eqsqUFubU6qSnCIUS47hx45Q+McdxSidGQkjVFO3lra5MbU56ilAoMaakpGg6DkJqvfJe5aqeBFGol5cxhXqCa2vSU4RCidHV1VXTcRBi8MSikrIxgSpqM2aZ5O+iEvkTofAFFvAc8gXuHfyuwm2w55AvwDczB4Bqy1R2fkVwPD54fFOVjzcEetX5QoihEotKkPvkPkTFhRq/Fs/UHM0GzkB26p8oycuCqZU97NzagWdqDuHjmwqVKX2Vh+yUJJTkZ8PU0g527t4wMVdsTC/fzALWDZobdXJUOTGmp6dj8+bNSExMhFAohFgs3abBcRxiY2NrHCAhhoCJRRAVF4JnYqKVhGEisIBLu0CVyuT8fRuPz/xfWe2W4wDG8OzGabj2/BA2jaoe0SEWlUBUXFh2LCVGaX/99Rd69uyJwsJCeHp64saNG/Dy8kJ2djaePHkCDw8PNGrUSN2xEg3Jys3Hifg7SH+ZAxcHG/Tt2BL21pa6Dssg8fim4JmYqXTsvUMrUFqQA5M6NvAc/LmaIytTUpj7X1L8bzjPf4vZMXEpHp/5P3h9EAFTC+sqzyGuBUsjq5QYZ82aBSsrKyQlJaFOnTpwcnLC6tWr0bt3b+zduxdTpkzBjh071B0r0YC4m4+waNsRlIrE4HEcxIwh+o84zB83AJ1bNdF1eLVKaUEOSgqEGr1G1oP4SttBmViErIfxcGoj/5Hf2kSlSSQuXryIsLAwNG7cWDLguvxWevjw4Rg1ahS+/PJL9UVJ5Pp4xU6ELPgJH6/YqdLxWbn5WLTtCEpKRWCMQSQWgzGGklIRFkYfQVZuvpojJtpQUpiLzL9O4Z9L+5D51ymUFOZK9hXnvQR4lUzmzONQnPtSS1HqN5WflXZ2LhsvZWdnBz6fj5cvX/9A27RpU+1gbVJzWbkFeC5UfT7JE/F3UCqSP96tVCTGyWt3MbyXr8rnJ9onTLuJ1NjoslohjwPEDE8TjsKtz3jYNm4FMysHQMzkHyxmMLN20G7AekqlGqO7u7tkbCOPx4O7uztOnjwp2X/p0iXJetNEf6W/zAGvkqUgeByHpy80e1tH1KukMPe/pFgKgAFiMQAGJi5FauxWlBTmwr5ZR3A8vtzjOR4f9k07ajVmfaVwYszKej27b79+/bB3717J+ylTpuCnn35CYGAg+vTpg23btmHkyJHqjZSoLCs3H7+cuob/7TuFX05dk9wiuzjYQMzk1x7EjKF+XVtthklqSJH2Q1MLa7j1GQ+OZwKAA3g8lD877dZnfLUdL7WFwrfSLi4u6N+/P0aNGoXPP/8cISEhKCkpgampKWbMmIH8/Hz8+uuv4PP5mDdvHmbPnq3JuImCqupc6duxJaL/iENJacVfJhM+D4EdWuogYqKIksJcZD2IR3HeS5hZOcC+WcfX7YfybpXfaD+0bdwKXh9EIOthPIpzX8LM2gH2TTtSUnyDwolx2LBh+O233/Dbb7/B2toa7733HkaNGoXevXuD4zjMnTsXc+fO1WSsRElvdq4AgOi/2mF558qO+RMwf9wALIyWTpwmfB7mjxsAe+s6ugyfVKKydkQ7j/YKtx+aWlhT73MVFE6MO3bsQGFhIQ4ePIidO3dix44d2LZtG5ydnRESEoJRo0ahffv2moyVKEnRzpUd8yfg5LW7ePpCiPp1bRHYoSUlRT0l3Y4ISSJk4lJkPUwAx+PJvZ2m9kPlKNX5YmFhgZCQEPz+++9IT0/H2rVr0axZM6xatQodO3ZEixYtsHjxYjx69EhT8RIlKNq5Ym9tieG9fDFtWG8M7+VLSVGPVdWOCCaGvYcvtR+qgcqLYdnb2yMsLAxnz55FWloali5dijp16mD+/Plo1qwZunTpos44iQqoc8X4VDcOkWdiBq8PIvCW30DU8+yCt/wGwuuDCNg2lr8uO5FPLasENmjQAF9++SW2bduGwYMHgzGGK1euqOPUpAb6dmwJE778r5g6VwyTIuMQy9sPG3YZBqc2vammqIIaJ8by2mK7du3g7e2NQ4cOoUuXLlizZo064iM1YG9tifnjBsDUhA+O48Dn8cBxHExN+NS5YqBoHKJ2qPTky/Pnz/HLL79g586diIuLA2MMLVq0wMKFCzFq1Ci4ubmpOUyiqs6tmlDnihEpH4eYGrtVqlea4/GpHVGNFE6M+fn5OHDgAHbu3InY2FiUlJSgfv36mDFjBvVI67nyzhViHGgcouYpnBidnJzw6tUrWFlZYeTIkZIxjG+u2kcI0Q4ah6hZCifGwMBAjBo1CoMGDYK5ubkmYyKEEJ1SODEeOnRIk3EQQvSAvEcNa+MtOq35UgvQDN0EqD7pVTdlWW1CidHI0QzdtUNNk15Vjxqmxm5VaMkDY0I9J0ZM3TN0VzZ9GdEtYdpN3N4diX/jf8fze5fwb/zvuL07EsK0WwAUm6dRkSnLahOqMRoxdc7QTTVP/aRITU+RpKfolGW1BdUYjZi6ZuimtWH0l1JJT57/kh4teSCNEqMRU3YSicpulRWpeRLdUFfSo0cNpelVYly3bh3atm0LGxsb2NjYwN/fH3/88UeVx+zduxctWrSAubk52rRpg6NHj2opWv2nzCQScTcfYdTCLfjp8EUcjbuJnw5fxKiFW3D51iNaG0aPqSvp0ZIH0vQqMTZs2BBLly5FQkICrl27ht69e2Pw4MG4deuW3PKXLl1CSEgIJk6ciOvXr2PIkCEYMmQIbt68qeXI9ZOik0hUd6tsa2lO05fpKXUmvfJHDWnKMj3rfBk4cKDU+yVLlmDdunW4fPkyWrWq+OWsXr0ab7/9tmQN60WLFuHEiRNYs2YN1q9fr5WY9Z0ik0hUd6sMcDDh82htGD2k6KQSij5fTY8altGrxPgmkUiEvXv3Ij8/H/7+/nLLxMXFYebMmVLbgoKCcPDgwUrPW1RUhKKiIsn7vDzV12U2FNVNIlF+qyySUyvkcRyE+YW0NoyekR232Hzw58h9coeSnproXWK8ceMG/P39JRNWHDhwAF5eXnLLpqenw9nZWWqbs7Mz0tPTKz1/VFQUIiMj1RqzoajsCRhFOmlo+jL9IW+wNvffYG1KfOqhd4nR09MTSUlJEAqF2LdvH8aOHYuzZ89WmhyVFR4eLlXLTEpKQkBAgFrOrc/UsYwqTV+me/SEinboVecLAJiZmaFp06bw9fVFVFQU2rVrh9WrV8st6+LigoyMDKltGRkZcHFxqfT8AoFA0uttY2MDKysrtcavj6rrXAFAM30bCHpCRTv0rsYoSywWS7UJvsnf3x+xsbGYMWOGZNuJEycqbZOsrWgZVeNBT6hoh14lxvDwcLzzzjto3LgxcnNzsXPnTpw5cwYxMTEAgDFjxqBBgwaIiooCAEyfPh0BAQFYsWIFBgwYgN27d+PatWvYuHGjLj+G3qmuc0V2GVWiv+gJFe3Qq1vpzMxMjBkzBp6enujTpw/i4+MRExODvn37AihbeOvp06eS8l26dMHOnTuxceNGtGvXDvv27cPBgwfRunVrXX0EvUTLqBoPekJFO/Sqxrh58+Yq9585c6bCtuHDh2P48OEaisg4KNq5QvQfLYalHXqVGIlyytv/qmsHLH8CRpfjEGmyXPWhxbA0jxKjjpSUiiASy+8QUdTKT1/XlF8Vl1RZ1rtZI2yeNQanE+8hIysHzvY26O3rCTurOnhVXIKs3AKcTryLjKxcONtbo1f7FmpJmHweD9fuPqYpy9SMBmtrFiVGHSgpFeFeWjoKiqpOZuqSV/AK1x/8jazcAthb14FPs0awqmOOtIwspGVk4c7jp9h1Ih5iJgbHcWCM4edjVzCyrx9auFY+9EkRIpEIi7YdldzGl3cAlQ8V2jF/AtUcid6hxKgDIrEYBUUlMOXzYGoivyFdXW6m/Ittf8RBJH6d9E5eu4Nx7/ijlftbyC14hd0n4yW1V/Zf4hIxMXadvIr54wbAuo5qq0KWlIpw/s8HapsslxBtocSoQ6YmfJiZqv4VLNsRg5z8QthYWuDrUUEV9ufkF2LbH3GSxFSe9EpFYkT/EYdFoYOQeP/vSm/pRWIxrj/4u0adM1m5BQoNFSKASR0bqT+J7lBiNGA5+YXIziusdP+V26lVJr2rd1LxMidfUpOUxeM4vBAqPjt3Tn4hrtwuO6eDjSXaN28Ee+s6NFRIQZ6DP1fr+WgpVNVRYjRiiiQ9BxtLufuBssRV17as/U826XXycoONpYWk7I3kJ/jp8AWpW/bDl/7CkO7eNGWZBtBSqJpFidGIKZL0/Fq64fClv+S2A/J5PHTycq806YUO7IY2TRogJ78QPx2+IPeW/cC5JEwb3htrfj1NU5apCS2Fqnl69eQLUa9OXm7g8+R/xeVJz8bSAqEDu8GEzwPHAXweB44rq82FDuwGxpgk6TEGiMUMjJUlvZ9+vyCpSVZ2yy5mYmTnFmDH/AmYNLAb+vu3xqSB3bBj/kQaqqMCWgpVO6jGaMTKk95Pv5fV9spra3xeWdIr721u06QBFoUOwtU7qXghzEddW0t08nKHdR1znIi/U6N2So7jkJGVQ89hqwkthaodlBiNXFVJT1Z5XmPs9e1wTdspGWNwtqdeVnVRJOnRRBM1R4mxFrCxtKiyk6OqNsSatlPyOB56+3qq7bPUdgqtCti0I54mHH3dxvgGmmhCMdTGWMu92XEirw3Ry82lRu2UI/v6wc6KOljUhZZC1Q6qMdYCVQ21qW6s453H6Sq3U/o0awQ+X7NP9tQ26l4VkMhHidHIVTfURpE2xMAOLRVqp5S9ZS8uKdXa8+C1CS2FqnmUGI1YVeMLf/r9AhaFDlJ4gHd17ZREuyjpaRa1MRoxRR4JVGSsIyG1DSVGI1Z+myxP+W1ydQO8VZ1ZhxBDRrfSRkzR22RlxjoS/UATRGgWJUYj1smr+uegy1EbouGgCSI0j26ljRjdJhsfRZ6VJjVHNUYjR7fJxkWRZ6Wpt7rmKDHWAnSbbDxoggjtoFtpQgwITRChHZQYCTEgijwrTWqOEiMhBoQmiNAOamOsBapbr4UYFpogQvMoMRq56iaRIIaJnpXWLLqVNmLVzbWYk1/50quE1GZ6lRijoqLQsWNHWFtbw8nJCUOGDMG9e/eqPCY6Ohocx0m9zM1pjB6g2CQShJCK9Coxnj17FlOnTsXly5dx4sQJlJSUoF+/fsjPr3rRdxsbGzx9+lTyevz4sZYi1m+KTCJBCKlIr9oYjx07JvU+OjoaTk5OSEhIQI8ePSo9juM4uLi4aDo8g6PoJBKEEGl6VWOUJRQKAQAODlUPWs3Ly4OrqysaNWqEwYMH49atW9oIT+/RXIuEqEZvE6NYLMaMGTPQtWtXtG7dutJynp6e2LJlCw4dOoT/+7//g1gsRpcuXfDPP//ILV9UVIScnBzJKy8vT1MfQedoEglCVKNXt9Jvmjp1Km7evIkLFy5UWc7f3x/+/v6S9126dEHLli2xYcMGLFq0qEL5qKgoREZGqj1efaXsJBI05pEQPU2Mn3zyCQ4fPoxz586hYcOGSh1ramoKHx8fPHz4UO7+8PBwzJw5U/I+KSkJAQEBNYpX3yk6iQSNeSSkjF7dSjPG8Mknn+DAgQM4deoU3N2VbwMTiUS4ceMG6tevL3e/QCCAjY2N5GVlZVXTsHXGxtICdlYW1dbocvILcSL+DvbEXsOJ+Dtyxy/SmEdCXtOrGuPUqVOxc+dOHDp0CNbW1khPTwcA2NrawsKi7Jd/zJgxaNCgAaKiogAACxcuROfOndG0aVNkZ2dj+fLlePz4MUJDQ3X2ObTl61FB1ZZRtBaoyJhHmrqM1BZ6VWNct24dhEIhevbsifr160tee/bskZRJS0vD06dPJe+zsrIwadIktGzZEv3790dOTg4uXboELy8vXXwEvaJMLZDGPBLyml7VGCsbc/emM2fOSL3//vvv8f3332soIsOmTC2QxjwS8ppe1RiJeilTC6Qxj4S8RonRiClTC6Qxj4S8ple30kS9lFk+NSe/EOkvctDB0xW5hUWwthCgfj1bWjiL1EqUGI1YeS3wp9/LeqV5HAcxY+DzpGuB8nqu+TweQptTTZHUTpQYjVx1T7682XMNvO4AK++5XhQ6iJ58IbUOtTHWEuVNjYxJ9/7TnI2EVEQ1RiNX3QDv8p5reZ00NH6R1FZUYzRiigzwpvGLhFREidGIKXKbTOMXCamIEqMRU2SAN41fJKQiamM0YoreJis7ZyMhxo4SoxFTZoC3onM2ElIb0K20EaPbZEJUQzVGI0e3yYQojxJjLUC3yYQoh26lCSFEBiVGQgiRQYmREEJkUBtjLZKZkYFnmRlau15JqQivSkohysmEwNS4/6mJSouQ9zQZfFMBeHxTrV3XxdkRLs5OWrtebWHc/1oVUL9+fURERFS63KommJuZwq+lm9auBwBFRUWYPDoYZ8+e1ep1iWYFBAQgJiYGAoFA16EYFY4psgIVMXg5OTmwtbXF2bNnDXotbfJaXl4eAgICIBQKYWNjo+twjEqtrzHWNt7e3vRLZCRycnJ0HYLRos4XQgiRQYmREEJkUGKsJQQCASIiIqiR3ojQd6o51PlCCCEyqMZICCEyKDESQogMSoyEECKDEiNRSWpqKjiOQ3R0tK5DIUTtKDFqQXJyMsLCwtCkSROYm5vDxsYGXbt2xerVq1FYWKix696+fRsLFixAamqqxq6hiCVLlmDQoEFwdnYGx3FYsGCBTuPRFo7jFHqdOXOmxtcqKCjAggULlDpXbf1eFEFPvmjYkSNHMHz4cAgEAowZMwatW7dGcXExLly4gC+//BK3bt3Cxo0bNXLt27dvIzIyEj179oSbm5tGrqGIuXPnwsXFBT4+PoiJidFZHNq2fft2qfc///wzTpw4UWF7y5Y1n0S4oKAAkZGRAICePXsqdExt/V4UQYlRg1JSUvDBBx/A1dUVp06dkpqoYurUqXj48CGOHDmiwwhfY4zh1atXsLCwUPu5U1JS4ObmhufPn8PR0VHt59dXH374odT7y5cv48SJExW260pt/V4UQbfSGvTtt98iLy8Pmzdvljt7T9OmTTF9+nTJ+9LSUixatAgeHh4QCARwc3PD7NmzUVRUJHWcm5sb3n33XVy4cAF+fn4wNzdHkyZN8PPPP0vKREdHY/jw4QCAXr16VbhtKz9HTEwMOnToAAsLC2zYsAEA8OjRIwwfPhwODg6oU6cOOnfuXKMErsvaqr4Ti8VYtWoVWrVqBXNzczg7OyMsLAxZWVlS5a5du4agoCDUq1cPFhYWcHd3x4QJEwCUtfeWJ7bIyEjJd13drTF9L5WjGqMG/f7772jSpAm6dOmiUPnQ0FBs27YNw4YNw+eff44rV64gKioKd+7cwYEDB6TKPnz4EMOGDcPEiRMxduxYbNmyBePGjYOvry9atWqFHj16YNq0afjf//6H2bNnS27X3rxtu3fvHkJCQhAWFoZJkybB09MTGRkZ6NKlCwoKCjBt2jTUrVsX27Ztw6BBg7Bv3z4MHTpUfT8ggrCwMERHR2P8+PGYNm0aUlJSsGbNGly/fh0XL16EqakpMjMz0a9fPzg6OmLWrFmws7NDamoq9u/fDwBwdHTEunXrMGXKFAwdOhTvvfceAKBt27a6/GiGjRGNEAqFDAAbPHiwQuWTkpIYABYaGiq1/YsvvmAA2KlTpyTbXF1dGQB27tw5ybbMzEwmEAjY559/Ltm2d+9eBoCdPn26wvXKz3Hs2DGp7TNmzGAA2Pnz5yXbcnNzmbu7O3Nzc2MikYgxxlhKSgoDwLZu3arQ52OMsWfPnjEALCIiQuFjjMnUqVPZm79y58+fZwDYjh07pModO3ZMavuBAwcYABYfH1/puWvys63t34s8dCutIeVTQllbWytU/ujRowCAmTNnSm3//PPPAaDCrayXlxe6d+8uee/o6AhPT088evRI4Rjd3d0RFBRUIQ4/Pz9069ZNss3KygqTJ09Gamoqbt++rfD5SdX27t0LW1tb9O3bF8+fP5e8fH19YWVlhdOnTwMA7OzsAACHDx9GSUmJDiOuPSgxakj5nIe5ubkKlX/8+DF4PB6aNm0qtd3FxQV2dnZ4/Pix1PbGjRtXOIe9vX2FtqmquLu7y43D09OzwvbyW3DZOIjqHjx4AKFQCCcnJzg6Okq98vLykJmZCaBslu73338fkZGRqFevHgYPHoytW7dWaHsm6kNtjBpiY2ODt956Czdv3lTqOI7jFCrH5/PlbmdKzAmiiR5oojixWAwnJyfs2LFD7v7yDhWO47Bv3z5cvnwZv//+O2JiYjBhwgSsWLECly9fphnZNYASowa9++672LhxI+Li4uDv719lWVdXV4jFYjx48ECqgyQjIwPZ2dlwdXVV+vqKJlnZOO7du1dh+927dyX7iXp4eHjg5MmT6Nq1q0L/SXXu3BmdO3fGkiVLsHPnTowaNQq7d+9GaGioSt81qRzdSmvQV199BUtLS4SGhiIjo+LqfMnJyVi9ejUAoH///gCAVatWSZVZuXIlAGDAgAFKX9/S0hIAkJ2drfAx/fv3x9WrVxEXFyfZlp+fj40bN8LNzQ1eXl5Kx0HkGzFiBEQiERYtWlRhX2lpqeR7y8rKqnAn4O3tDQCS2+k6deoAUO67JpWjGqMGeXh4YOfOnQgODkbLli2lnny5dOkS9u7di3HjxgEA2rVrh7Fjx2Ljxo3Izs5GQEAArl69im3btmHIkCHo1auX0tf39vYGn8/HsmXLIBQKIRAI0Lt3bzg5Vb7c5qxZs7Br1y688847mDZtGhwcHLBt2zakpKTg119/BY+n/P+l27dvx+PHj1FQUAAAOHfuHBYvXgwAGD16dK2thQYEBCAsLAxRUVFISkpCv379YGpqigcPHmDv3r1YvXo1hg0bhm3btmHt2rUYOnQoPDw8kJubi02bNsHGxkbyH6qFhQW8vLywZ88eNG/eHA4ODmjdujVat25d6fXpe6mCrrvFa4P79++zSZMmMTc3N2ZmZsasra1Z165d2Q8//MBevXolKVdSUsIiIyOZu7s7MzU1ZY0aNWLh4eFSZRgrG2ozYMCACtcJCAhgAQEBUts2bdrEmjRpwvh8vtTQncrOwRhjycnJbNiwYczOzo6Zm5szPz8/dvjwYakyygzXCQgIYADkvuQNJTJWssN1ym3cuJH5+voyCwsLZm1tzdq0acO++uor9u+//zLGGEtMTGQhISGscePGTCAQMCcnJ/buu++ya9euSZ3n0qVLzNfXl5mZmSk0/Ia+l8rRDN6EECKD2hgJIUQGJUZCCJFBiZEQQmRQYiSEEBmUGAkhRAYlRj3w7bffokWLFhCLxboOpcZmzZqFTp066ToMnaLv0wjoerxQbScUCpmDgwPbsmWLZBv+G0v23XffVSi/devWaqegUtSvv/7KRowYwdzd3ZmFhQVr3rw5mzlzJsvKypJb/tChQ8zHx4cJBALWqFEjNn/+fFZSUiJV5unTp0wgELBDhw7VOD5DRN+ncaDEqGPff/89s7GxYYWFhZJt5b9Izs7OLD8/X6q8On+R6taty9q0acPmzZvHNm3axKZNm8bMzMxYixYtWEFBgVTZo0ePMo7jWK9evdjGjRvZp59+yng8Hvvoo48qnHfEiBGse/fuNY7PENH3aRwoMepY27Zt2Ycffii1DQDz9vZmANiKFSuk9qnzF0ne0w3btm1jANimTZuktnt5ebF27dpJ1SjmzJnDOI5jd+7ckSq7b98+xnEcS05OrnGMhoa+T+NAbYw6lJKSgr/++guBgYEV9nXt2hW9e/fGt99+q7ElVuWtJle+dMGdO3ck227fvo3bt29j8uTJMDF5/Xj9xx9/DMYY9u3bJ3WO8s9z6NAhDUStv+j7NB6UGHXo0qVLAID27dvL3b9gwQJkZGRg3bp1VZ6nqKhIagboql7VSU9PBwDUq1dPsu369esAgA4dOkiVfeutt9CwYUPJ/nK2trbw8PDAxYsXq72eMaHv03jQ7Do6VD7HobyZtAGge/fu6NWrF5YvX44pU6ZUOmffrl27MH78eIWuyap5NH7ZsmXg8/kYNmyYZNvTp08BQO5Kh/Xr18e///5bYXuTJk1q3TII9H0aD0qMOvTixQuYmJhUOQPzggULEBAQgPXr1+Ozzz6TWyYoKAgnTpyocTw7d+7E5s2b8dVXX6FZs2aS7eW3fgKBoMIx5ubmkvVt3mRvb1+h5mHs6Ps0HpQY9VyPHj3Qq1cvfPvtt/joo4/klqlfv77c//2Vcf78eUycOBFBQUFYsmSJ1L7ymo28NUZevXolt+bDGKNZpeWg79MwUGLUobp166K0tBS5ublVriYYERGBnj17YsOGDZIV495UWFgIoVCo0DVdXFwqbPvzzz8xaNAgtG7dGvv27ZNqkAde33I9ffoUjRo1ktr39OlT+Pn5VThnVlaWVLtWbUDfp/GgzhcdatGiBYCy3syqBAQEoGfPnli2bJncHs09e/ZIahnVvWQlJyfj7bffhpOTE44ePSr3NrB8Gv1r165Jbf/333/xzz//SPa/KSUlRWrtmtqAvk/jQTVGHSpfIOvatWto27ZtlWUXLFiAnj17YuPGjRX2qdomlZ6ejn79+oHH4yEmJkayKp2sVq1aoUWLFti4cSPCwsIkKxSuW7cOHMdJNewDgFAoRHJyMqZMmaJ0TIaMvk/jQYlRh5o0aYLWrVvj5MmTmDBhQpVlAwICEBAQgLNnz1bYp2qb1Ntvv41Hjx7hq6++woULF3DhwgXJPmdnZ/Tt21fyfvny5Rg0aBD69euHDz74ADdv3sSaNWsQGhpaoSZx8uRJMMYwePBgpWMyZPR9GhHdjS0njDG2cuVKZmVlJfXIFgA2derUCmVPnz4tebxMHU9KAPLX+wBQYe0Yxhg7cOAA8/b2ZgKBgDVs2JDNnTuXFRcXVygXHBzMunXrVuP4DBF9n8aBEqOOZWdnMwcHB/bTTz/pOhS1ePr0KTM3N2cHDx7UdSg6Qd+ncaDOFx2ztbXFV199heXLlxvFNFWrVq1CmzZtatdt1xvo+zQOtEogIYTIoBojIYTIoMRICCEyKDESQogMSoyEECKDEiMhhMigxEgIITIoMRJCiAxKjIQQIoMSIyGEyKDESAghMigxEkKIDL1KjOfOncPAgQPx1ltvgeM4HDx4sNpjzpw5g/bt20MgEKBp06aIjo7WeJyEEOOmV4kxPz8f7dq1w48//qhQ+ZSUFAwYMAC9evVCUlISZsyYgdDQUMTExGg4UkKIMdPb2XU4jsOBAwcwZMiQSst8/fXXOHLkCG7evCnZ9sEHHyA7OxvHjh1T6DpPnz7Fhg0bEBYWVuOV2QghxkGvaozKiouLQ2BgoNS2oKAgxMXFVXpMUVERcnJyJK8HDx4gMjJSsgg5IYQYdGJMT0+Hs7Oz1DZnZ2fk5OTIXX0NAKKiomBrayt5BQQEaCNUQogBMejEqIrw8HAIhULJS95iRISQ2s2gVwl0cXFBRkaG1LaMjAzY2NjAwsJC7jECgQACgUDyXt66u4SQ2s2ga4z+/v6IjY2V2nbixAnJ+r6EEKIKvUqMeXl5SEpKQlJSEoCy4ThJSUlIS0sDUHYbPGbMGEn5jz76SLKO7t27d7F27Vr88ssv+Oyzz3QRPiHESOhVYrx27Rp8fHzg4+MDAJg5cyZ8fHwwf/58AGVDa8qTJAC4u7vjyJEjOHHiBNq1a4cVK1bgp59+QlBQkE7iJ4QYB70dx6gtiYmJ8PX1RUJCAtq3b6/rcAghekCvaoyEECXlZeo6AqNEiZEQQ5b/TNcRGCVKjIQYMlGJriMwSpQYCTFkTKTrCIwSJUZCDJmYEqMmUGIkxJCJS3UdgVGixEiIIaPEqBGUGAkxZNT5ohGUGAkxZNTGqBGUGAkxZKJiXUdglCgxEmLIREW6jsAoUWIkxJCVUmLUBEqMhBiyEvlLeJCaocRIiCErKdB1BEaJEiMhhqwoT9cRGCVKjIQYsqIcXUdglCgxEmLICrN0HYFRosRIiCEryqWeaQ2gxEiIoaPJatWOEiMhho4So9pRYiTE0OVm6DoCo0OJkRBDl5eu6wiMDiVGQgxdLiVGdaPESIihy/lX1xEYHb1LjD/++CPc3Nxgbm6OTp064erVq1WWX7VqFTw9PWFhYYFGjRrhs88+w6tXr7QULSF6IPepriMwOionRpFIhN27dyMsLAxDhw7FjRs3AABCoRD79+9HRobyDcJ79uzBzJkzERERgcTERLRr1w5BQUHIzJS/qPjOnTsxa9YsRERE4M6dO9i8eTP27NmD2bNnq/qxCDE8eZk0llHdmAqysrJYp06dGMdxzNramvF4PBYbG8sYY6y0tJQ1aNCAhYeHK31ePz8/NnXqVMl7kUjE3nrrLRYVFSW3/NSpU1nv3r2lts2cOZN17dpV4WsmJCQwACwhIUHpeAnRuV0jGVvfg7HnD3UdiVFRqcY4a9Ys3Lp1CzExMXj06BEYY5J9fD4fw4YNw9GjR5U6Z3FxMRISEhAYGCjZxuPxEBgYiLi4OLnHdOnSBQkJCZLb7UePHuHo0aPo37+/Cp+KEAOWlarrCIyKiSoHHTx4EJ9++in69u2LFy9eVNjfvHlzREdHK3XO58+fQyQSwdnZWWq7s7Mz7t69K/eYkSNH4vnz5+jWrRsYYygtLcVHH31U5a10UVERiope33bk5dHsJMQIvHwEoI+uozAaKtUYhUIh3N3dK91fUlKC0lLNL+t45swZfPPNN1i7di0SExOxf/9+HDlyBIsWLar0mKioKNja2kpeAQEBGo+TEI17maLrCIyKSonRw8MDiYmJle4/fvw4vLy8lDpnvXr1wOfzK3TaZGRkwMXFRe4x8+bNw+jRoxEaGoo2bdpg6NCh+OabbxAVFQWxWCz3mPDwcAiFQsnr7NmzSsVJiF56fl/XERgVlRJjaGgotmzZgj179kjaFzmOQ1FREebMmYNjx44hLCxMqXOamZnB19cXsbGxkm1isRixsbHw9/eXe0xBQQF4POmPwOfzAUCq3fNNAoEANjY2kpeVlZVScRKil/KfAfkVm7WIilTpsRGLxSw0NJRxHMfs7e0Zx3HMxcWFmZqaMo7j2EcffaRST9Du3buZQCBg0dHR7Pbt22zy5MnMzs6OpaenM8YYGz16NJs1a5akfEREBLO2tma7du1ijx49YsePH2ceHh5sxIgRCl+TeqWJofL19WUNHCyYb2Orsp7p5DO6DsloqNT5wnEcNm3ahLFjx2Lfvn148OABxGIxPDw8MGLECPTo0UOlJB0cHIxnz55h/vz5SE9Ph7e3N44dOybpkElLS5OqIc6dOxccx2Hu3Ll48uQJHB0dMXDgQCxZskSl6xNiSNLT0/HkZSEgNvtvww2gCbWZqwPHWCX3nLVEYmIifH19kZCQgPbt2+s6HEIU1rBhQzx58gQN7Mzwz9LOgIM7MDxa12EZBZXaGFNSUvD7779Xuv/3339HamqqqjERQlTxMgXIo7kZ1UGlxPjFF1/gf//7X6X7f/zxR8yaNUvloAghKnp8QdcRGAWVEmNcXBz69u1b6f4+ffrg/PnzKgdFCFHRozO6jsAoqJQYs7KyYG1tXel+KysruU/EEEI07OmfZZNKkBpRKTE2btwYFy9erHT/+fPn0bBhQ5WDIoSoiDHgfoyuozB4KiXGkJAQ7Nq1C//73/+knjARiURYvXo19uzZg5EjR6otSEKIEu4eBip58osoRqVxjOHh4bhw4QJmzJiBJUuWwNPTEwBw7949PHv2DD179sScOXPUGighREG56cDji4B7d11HYrBUqjEKBAIcP34cmzdvhp+fH54/f47nz5/Dz88PW7ZswcmTJyEQCNQdKyFEUX/uLrutJipRqcYIlM2VOH78eIwfP16d8RBC1CHjJvAkEWjoq+tIDJLerflCCFGT+E1Ua1SRyjXGmJgYbN68GY8ePUJWVlaF2Ww4jkNycnKNAySEqCjzDvAwFmgWWH1ZIkWlxLh8+XLMmjULzs7O8PPzQ5s2bdQdFyFEHa6sB1y7AGZ1dB2JQVEpMa5evRq9e/fG0aNHYWpqqu6YCCHqkv8MuLYZ6PKpriMxKCo/+TJs2DBKioQYgpv7gUz56yYR+VRKjH5+frh37566YyGEaAITA+e+BUSaX4fJWKiUGNeuXYv9+/dj586d6o6HEKIJL5KBG3t1HYXBUKmNMTg4GKWlpRg9ejSmTJmChg0bStZaKcdxHP7880+1BEkIUYPEbUDTQMDKUdeR6D2VEqODgwPq1q2LZs2aqTseQoimlBSWjW3sVfm666SMSonxzJkzag6DEKIVD44D7T4AHJroOhK9Rk++EFKbMAYkbtd1FHpP5cSYk5ODpUuXIigoCD4+Prh69SoA4OXLl1i5ciUePnyotiAJIWr06AwgfKLrKPSaSonxn3/+gY+PD+bPn49//vkHf/31F/Ly8gCUtT9u2LABP/zwg1oDJYSoCRNTD3U1VEqMX375JXJzc5GUlISzZ89WeE56yJAhOHnypFoCJIRowL0/gFdCXUeht1RKjMePH8e0adPg5eUFjuMq7G/SpAn+/vvvGgdHCNGQ0lfAjX26jkJvqZQYCwsL4ehY+Vio3NxclQMihGjJzf3AqxxdR6GXVEqMXl5eOHfuXKX7Dx48CB8fH5UC+vHHH+Hm5gZzc3N06tRJ0qlTmezsbEydOhX169eHQCBA8+bNcfToUZWuTUitUpwHJP6s6yj0kkqJccaMGdi9ezeWLVsGobCsnUIsFuPhw4cYPXo04uLi8Nlnnyl93j179mDmzJmIiIhAYmIi2rVrh6CgIGRmyl8Osri4GH379kVqair27duHe/fuYdOmTWjQoIEqH4uQ2ufWASArVddR6B2OyfacKGjJkiVYsGABGGMQi8Xg8XhgjIHH42Hx4sX4+uuvlT5np06d0LFjR6xZswZAWbJt1KgRPv30U8yaNatC+fXr12P58uW4e/euyjP9JCYmwtfXFwkJCWjfvr1K5yBEFxo2bIgnT56ggZ0Z/lnaWfUTubQGBv4A8GhYczmVZ/CeM2cORo8ejV9//RUPHz6EWCyGh4cH3nvvPTRpovyo+uLiYiQkJCA8PFyyjcfjITAwEHFxcXKP+e233+Dv74+pU6fi0KFDcHR0xMiRI/H1119XeHa7XFFREYqKiiTvy4cZEVJrpd8Ebu0H2gzTdSR6Q+nEWFBQgO7du2PSpEn46KOPVLplluf58+cQiURwdnaW2u7s7Iy7d+XPJffo0SOcOnUKo0aNwtGjR/Hw4UN8/PHHKCkpQUREhNxjoqKiEBkZqZaYCTEaVzYADdrTo4L/UbruXKdOHaSkpMgdpqNtYrEYTk5O2LhxI3x9fREcHIw5c+Zg/fr1lR4THh4OoVAoeZ09e1aLEROip0TFQOxCoLSo+rK1gEqNCm+//TZiYmLUGki9evXA5/ORkZEhtT0jIwMuLi5yj6lfvz6aN28uddvcsmVLpKeno7i4WO4xAoEANjY2kpeVlZX6PgQhhuxlCnDpf7qOQi+olBjnzZuH+/fvY/To0bhw4QKePHmCly9fVngpw8zMDL6+voiNjZVsE4vFiI2Nhb+/v9xjunbtKmnfLHf//n3Ur18fZmZmqnw0Qmq3O4eBByd0HYXOqdT50qpVKwDA7du3q5zFWyQSKXXemTNnYuzYsejQoQP8/PywatUq5OfnY/z48QCAMWPGoEGDBoiKigIATJkyBWvWrMH06dPx6aef4sGDB/jmm28wbdo0VT4WIQQAzn0H1G0KOLjrOhKdUSkxzp8/XyNtjMHBwXj27Bnmz5+P9PR0eHt749ixY5IOmbS0NPDeGFLQqFEjxMTE4LPPPkPbtm3RoEEDTJ8+XaWhQoSQ/5S+Ak4uAIauB0wtdB2NTqg8jtFY0DhGYqjUNo6xMp79gZ61s5KhlhGdQqFQ6dtmQoieu3cUeBhbfTkjpHJivHbtGt5++23UqVMHdevWlQx7ef78OQYPHkzLHxBiDM6vBPKe6ToKrVMpMV66dAndunXDgwcP8OGHH0r1CterVw9CoRAbNmxQW5CEEB0pzgMufF+2JEItolJinD17Nlq2bInbt2/jm2++qbC/V69euHLlSo2DI4TogccXgdQLuo5Cq1RKjPHx8Rg/fjwEAoHc3ukGDRogPT29xsERQvTElfWAqFTXUWiNSonR1NRU6vZZ1pMnT+iJEkKMifAfILn2dMSolBg7d+6MffvkT4uen5+PrVu3IiAgoEaBEUL0zI19taatUaXEGBkZiWvXrmHAgAH4448/AAB//vknfvrpJ/j6+uLZs2eYN2+eWgMlhOjY8/u1ZlJblRJjp06dJNN8jRkzBgDw+eefY/LkyRCJRDh69Cjatm2r1kAJIa+lpaUhPz8fAJBfJELay1faufDjS9q5jo4p9EhgTk4OLC0tpWax6d27N+7du4ekpCQ8ePBAMlGtr6+vXkxJRogxunr1KhYtWoQjR45Ili3OLhTBbc5VvNvGAfP6u6Kjm7XmAsi4qbZTlRTm4tGx9Xj54ArA8VCvRRc0CQoD36z6xxAZY7i9OwJZyQloOXwu6nq+nmgm99/7SD0VjbynDwEOsH7LE259xsPKWfG5JhWqMdrb22PPnj2S9xMmTJAMx/H29sbw4cMRHByMDh06UFIkREP279+Prl274o8//qiwljtjwNGbL9Hl2yTsv/5cc0E8f6BU8b9+noWMP+XP1nP/4HIUPH+M1qMWwys4AsK0W3h45AeFzvvv1YMAKuYaUXEhbu2aD4GNI9pNWIm2Y5eDb2aBWzvnQaxEr7pCidHMzExqOYDo6GgkJycrfBFCSM1cvXoVwcHBEIlElT5+KxIDIjFD8KY7iE/V0BLG+c+AUvlznSqj4HkaspIT0HTAdFg3aAHbxq3g8XYYnt06h6LcF1Uem5eejCeXD6DZwOlyzvsPSgtz4RrwIerUbQhLR1c07jESJfnZKBLKX1RPHoVupVu0aIGffvoJbm5usLW1BQCkpqYiMTGxyuNoUgZC1GPx4sVgjFWoKcpiABgYFh99jEMft9ZMMIUvAWv5k0crKuefu+CbW8L6rWaSbXbuPgDHIffJPQhadJF7nKjkFe4dXA6Pt6fAzMqhwn6Lug1gYmGD9KTjaNRtBJhYjIyk47Co1wjmds5yziifQokxKioKwcHBCAwMBABwHId58+ZV2vPMGAPHcTSxBCFqkJaWhsOHD1ebFMuJxMDvN14i7eUrNHYwV39Axfk1PkVJXhbM6thJbeN4fJhaWKMkP6vS41KOb4JNw5ZSbYpvMhHUQZvRUbizdzH+vrAbAGDh8BZahSwCx5O/QJ7c8yhS6O2330ZKSgri4+ORkZGBcePGYfLkyZXOrE1IbSQWlYCJ1V8ZOHH8mMJJsRxjQOzdbIzzV7yWpPC5iwsqbYP7+8Ie/H3xF8l7cWkxcp/cRfKx1+swtf9onUrXfXH/MrJT/4LPpMqXXxCVFOHB4dWwaegFz6FfgYnFeHJ5P27vWYB2E74H31Sg0LUUSox//fUXXF1dERQUBADYunUrhg8fjj59+ih0EUKMnVhUgtwn9yEqLlT7uTMf3wePx6vyaTNZPA7IzivUSDyFz9Jg6dQCPH7FtdxdfPujnld3yft7B5ejXouuqPvGrbHAui5MrexRXJAtdSwTi1BSmAtTS3u51xWm/oVXWU8Rt3yE1PY7+76BTaNWaDtmKZ7dPIMiYSbajV8BjitL31ZDv8Tl74Lx8v5lOLZS7METhRKjj48Ptm/fjpEjRyp0UkJqGyYWQVRcCJ6JidyEURO2dnZKJUUAEDPA1sIEHE8tU65KMMYgEovLasZyPqephTVMLV4PF+KZCGBqaQsLh7ekytk0bAHRq3zkPX0Aq/pl7YzZKX8CjMG6gafcazfsMgzO3v2ktl3fOBVN+k6CQzM/AIC4tAjgOLzZY12WIDmlat0K/dQsLCxQUFAgeX/27NkKq/kRQgAe3xQ8EzO1vnr16K70MDiOA3o1t0VZglDfi+M4MLOaj5OsU68x7D188eDID8h9cg85f99Gcsw6OLbqAYF1XQBAUc5zJKwLQ+6TewAAMysHWDq5Sb0AQGDrCHP7ss4gO3cflBbmIfnYWhQ8T0P+s8e4/9v34Hh82Lkq/tCJQjXGdu3aYeXKleDz+ZJe6fj4eJibV92w+9577ykcCCFEvkYN38Lbgb1w/NRZhTo0+Tygfys7NHZQrD1NGcy0DpippVrO1XzIl3h0bB1u7pgDcBzqtugKj6Cw19cSi1D44h+IShRf67pOvUbwCo7A3+d24s+tX4DjOFi6eKBVyEKYWVfsxa6MQmu+XLt2DcOGDUNaWlrZQVz11VJD6ZWmNV+IOohKXkH4+CZMBBbgmah/6d6EpL8QOOgDiESiKn/3OAB8HofzM73Q0VX9M1yJ6jZDXsfpsHVtDb6pBnq89YRCNcYOHTrg4cOHSE5ORkZGBnr27Ik5c+ZIhu8QQjTL17stotd/j3EffVbWzien0sHnARw47J7QVCNJEQBE9Vpq5Lz6RuHlU01MTODp6QlPT0+MHTsW7777Ljp16qTJ2AghbxjcPwgnf9uNZd+vxbGTp6VqjhxXdvs8O6iBxpIiAIica8fkMCqtK71161Z1x0EIUYCvd1v8sm09/v7nX3TpOwjZwhzYWfCROKuNRtoU38SsXCC2cwOKtTSTjw4plBgXLlwIjuMwZ84c8Hg8LFy4sNpjyp+OIYSoX6OGb6FOHQtkC3NgKeBpPCkCQKlrt/+Gwhg/hRLjggULwHEcvv76a5iZmWHBggXVHkOJkRAjwuOj1K32zMqv0DhGsVgMkUgEMzMzyfvqXjXpkf7xxx/h5uYGc3NzdOrUCVevXlXouN27d4PjOAwZMkTlaxNCKhK91REwt9N1GFqj3mHxarBnzx7MnDkTERERSExMRLt27RAUFITMzKqnDEpNTcUXX3yB7t27V1mOEKK8Uo/a9fivyonxzp07OHz4MHbt2oXDhw/j7t27aglo5cqVmDRpEsaPHw8vLy+sX78ederUwZYtWyo9RiQSYdSoUYiMjESTJorP0ksIqZ7YpiHEdeU/pmeslO6V3rBhA5YsWYInT55U2Ne4cWPMmTMHoaGhKgVTXFyMhIQEhIeHS7bxeDwEBgYiLi6u0uMWLlwIJycnTJw4EefPn6/yGkVFRVKT7ubl5akUKyG1RWmTPrWm06WcUonxiy++wMqVK+Hg4IAJEyagdevWsLKyQl5eHm7cuIGDBw8iLCwMDx48wLJly5QO5vnz5xCJRHB2lp4qydnZudIa6YULF7B582YkJSUpdI2oqChERkYqHRshtZKJOUSNu+o6Cq1TODFevXoVK1euxNChQ/Hzzz/D0rLi85KrV6/Ghx9+iO+++w7Dhw9Hhw4d1BqsrNzcXIwePRqbNm1CvXr1FDomPDwcM2fOlLxPSkqiNbAJqURp4y6AafWLUxkbhRPj5s2bUb9+fezcuRMCgfwxU5aWlti1axeaNGmCzZs3K50Y69WrBz6fX2HmnoyMDLi4VJxKPTk5GampqRg4cKBkW/n0TCYmJrh37x48PDykjhEIBFLxW1lp7ikBQgxdqUe/6gsZIYU7X+Li4jB8+PBKk2I5c3NzDB8+HBcvXlQ6GDMzM/j6+iI2NlayTSwWIzY2Vu5s4S1atMCNGzeQlJQkeQ0aNAi9evVCUlISGjVqpHQMhJAyIpd2YDYNdB2GTihcY/z777/RsqViD5B7eXnh559/VimgmTNnYuzYsejQoQP8/PywatUq5OfnY/z48QCAMWPGoEGDBoiKioK5uTlat5Ze8MfOzg4AKmwnhCintMVgXYegMwonxpycHFhbKzZBpZWVFXJzVVu+MTg4GM+ePcP8+fORnp4Ob29vHDt2TNIhk5aWBp6aZyUmhEgTObWGuG6z6gsaKYUTY/nKf8qUV9Unn3yCTz75RO6+M2fOVHlsdHS0ytclhADgOJS0+UDXUeiUUsN1vvvuO+zatavacvLGOBJCDEOpa3cwO1ddh6FTCifGxo0b4+XLl3j58qXC5QkhhoWZWaKkde2uLQJKJMbU1FQNhkEI0QclbT4ABDVf7MrQUS8GIQQAIHZqBZErPewAUGIkhACAiTmK20+sdc9EV4YSIyEExW1CwCwddR2G3qDESEgtJ3Lxhsi9l67D0CuUGAmpxZjAGsW+oXQLLYMSIyG1WHGHMMDcVtdh6B1KjITUUqXNgiB2aafrMPSSSutKA0BMTAw2b96MR48eISsrq8IjgBzHITk5ucYBEkLUT+zQBCWtaCB3ZVRKjMuXL8esWbPg7OwMPz8/tGnTRt1xEUI0hJlZotjvU4Cvcr3I6Kn0k1m9ejV69+6No0ePwtTUVN0xEUI0qLjDR2CWis14X1up1MaYlZWFYcOGUVIkxMCUeg6AuL63rsPQeyolRj8/P9y7d0/dsRBCNEhctylKvIbpOgyDoFJiXLt2Lfbv34+dO3eqOx5CiCaYmKO441SAR+2KilDppxQcHIzS0lKMHj0aU6ZMQcOGDcHn86XKcByHP//8Uy1BEkJqprjdh9SuqASVEqODgwPq1q2LZs1q79TnhBiKsllzeug6DIOiUmKsbnkBQoie4Jmg2HscPfKnJHryhRAjVtqkD5h1xTXZSdVq1BJbUlKCu3fvQigUSha6f1OPHlR9J0RnTAQo8Ryo6ygMkkqJUSwWIzw8HGvXrkVBQUGl5UQikcqBEUJqptStJ00QoSKVbqW/+eYbLF++HB9++CF+/vlnMMawdOlSrF+/Hm3btkW7du0QExOj7lgJIYriOJQ2DdJ1FAZLpcQYHR2NESNGYN26dXj77bcBAL6+vpg0aRKuXLkCjuNw6tQptQZKCFGcyLkNzchdAyolxn/++Qe9e/cGAAgEAgDAq1evAABmZmb48MMPsX37djWFSAhRlsi1u65DMGgqJca6desiLy8PAGBlZQUbGxs8evRIqkxWVpbKQf34449wc3ODubk5OnXqhKtXr1ZadtOmTejevTvs7e1hb2+PwMDAKssTYvT4phC5eOs6CoOmUmL08fFBfHy85H2vXr2watUqXLx4EefPn8f//vc/tGun2gSYe/bswcyZMxEREYHExES0a9cOQUFByMzMlFv+zJkzCAkJwenTpxEXF4dGjRqhX79+ePLkiUrXJ8TQiZzbAibmug7DoKmUGCdPnoyioiIUFRUBAJYsWYLs7Gz06NEDAQEByMnJwYoVK1QKaOXKlZg0aRLGjx8PLy8vrF+/HnXq1MGWLVvklt+xYwc+/vhjeHt7o0WLFvjpp58gFosRGxur0vUJMXQi57a6DsHgqTRcZ9CgQRg0aJDkvZeXF5KTk3HmzBnw+Xx06dIFDg4OSp+3uLgYCQkJCA8Pl2zj8XgIDAxEXFycQucoKChASUlJpdd/M6EDkDQJEGIsxM40cXRNqW2qDVtbWwwePLhG53j+/DlEIhGcnZ2ltjs7O+Pu3bsKnePrr7/GW2+9hcDAQLn7o6KiEBkZWaM4CdEHzo6O4F4J4WL1egIXZulIvdFqoPIjgSKRCLt370ZYWBiGDh2KGzduAACEQiH279+PjIwMtQWpqKVLl2L37t04cOAAzM3lt7GEh4dDKBRKXmfPntVylISox7lj+5G6MghXvmot2SZyaqXDiIyHSjXG7OxsvP3227h69SqsrKyQn5+PTz/9FEBZL/W0adMwZswYfPPNN0qdt169euDz+RWSakZGBlxcqn7e87vvvsPSpUtx8uRJtG1beRuLQCCQDDEqj5cQYyF29NJ1CEZBpRrjrFmzcOvWLcTExODRo0dSKwTy+XwMGzYMR48eVfq8ZmZm8PX1leo4Ke9I8ff3r/S4b7/9FosWLcKxY8fQoUMHpa9LiLGgGqN6qJQYDx48iE8//RR9+/YFJ2c6o+bNmyM1NVWlgGbOnIlNmzZh27ZtuHPnDqZMmYL8/HyMHz8eADBmzBipzplly5Zh3rx52LJlC9zc3JCeno709HTqVCG1jtjOFRDY6DoMo6DSrbRQKIS7u3ul+0tKSlBaWqpSQMHBwXj27Bnmz5+P9PR0eHt749ixY5IOmbS0NPB4r/P5unXrUFxcjGHDpNeyiIiIwIIFC1SKgRBDJHJRbewwqUilxOjh4YHExMRK9x8/fhxeXqq3dXzyySf45JNP5O6TnSRX1ZopIcZG7ETDdNRFpVvp0NBQbNmyBXv27JG0L3Ich6KiIsyZMwfHjh1DWFiYWgMlhFTBxBziuk11HYXRUKnGOH36dNy6dQshISGws7MDAIwcORIvXrxAaWkpwsLCMHHiRHXGSQipgsjJi1YAVCOVfpIcx2HTpk0YO3Ys9u3bhwcPHkAsFsPDwwMjRoygmbsJ0TKxY0tdh2BUavRfTLdu3dCtWzd1xUIIUZGorqeuQzAqtBgWIYaObwpm20jXURgVhWuMb04aoQiO43Do0CGlAyKEKEds05DaF9VM4Z/m4cOHYW5uDhcXF6knXSojb+A3IUT9xFRbVDuFE2ODBg3w5MkT1KtXDyNHjsQHH3xQ7fPLhBDNY9b1dR2C0VG4jfHvv//G6dOn4ePjg0WLFqFRo0YIDAzE1q1bkZubq8kYCSFVYJbO1RciSlGq8yUgIAAbNmxAeno69u3bh7p16+KTTz6Bk5MT3nvvPezbt09qElhCiOaJ69D8i+qmUq+0qakpBg8ejD179iAjI0OSLIODg/Htt9+qO0ZCSBWYhb2uQzA6NRquU1RUhJiYGBw6dAjXr1+Hubk53Nzc1BQaIaQ6jMcHBNa6DsPoKJ0YxWIxYmJiMG7cODg7OyMkJASFhYXYtGkTMjMzMXr0aE3ESQiRR2ANcDQcWd0U7pW+dOkSdu7cib179+LFixfo3LkzvvnmG4wYMQL16tXTZIyEkEowM5qBXhMUTozdunWDhYUF+vfvj5CQEMktc1paGtLS0uQe0759e7UESQiRj5la6joEo6TUcPnCwkL8+uuv2L9/f5XlGGPgOA4ikahGwRFCqmFqoesIjJLCiXHr1q2ajIMQogJmQolRExROjGPHjtVkHIQQVZiY6ToCo0TdWYQYMr6g+jJEaZQYCTFgjE81Rk2gxEiIIaMao0ZQYiTEgDG+qa5DMEo0u2UtkJaWhtjYWOTm5sLa2hp9+vRB48aNdR0WUQe6ldYISoxG7OrVq1i0aBGOHDkCxhh4PB7EYjE4jsO7776LefPmoWPHjroOk9QEj2qMmkC30kZq//796Nq1K/744w/JjOtisRhA2QD8o0ePokuXLtUO1if6jdFwHY3Qy8T4448/ws3NDebm5ujUqROuXr1aZfm9e/eiRYsWMDc3R5s2bXD06FEtRaqfrl69iuDgYIhEokqfPirfFxwcjPj4eC1HSNSG1nrRCL1LjHv27MHMmTMRERGBxMREtGvXDkFBQcjMzJRb/tKlSwgJCcHEiRNx/fp1DBkyBEOGDMHNmze1HLn+WLx4MRhj1a7NU15m8eLFWoqMqB3dSmsExxRZ2UqLOnXqhI4dO2LNmjUAym7/GjVqhE8//RSzZs2qUD44OBj5+fk4fPiwZFvnzp3h7e2N9evXV3u9xMRE+Pr6IiEhwSgmvUhLS4Obm5tCC5aV4zgOqamp1CFTA6KSVxA+vgkTgQV4Wry95fKfgVlqbwZvcWkxSosKYevaGnxTc61dV9v0qh5eXFyMhIQEhIeHS7bxeDwEBgYiLi5O7jFxcXGYOXOm1LagoCAcPHhQbvmioiKp5Rfy8vIAAKWlpSgpKanhJ9C9mJgYpZIiUFZzPH78OD32WQOikhKUlJRCxArA42vv3xFXVATGy9fa9cSiEohLRSgpKYEYfK1d19RUuzVjvUqMz58/h0gkgrOz9OI+zs7OuHv3rtxj0tPT5ZZPT0+XWz4qKgqRkZEVtnfq1EnFqI3DpEmTMGnSJF2HQYhc2r6x1avEqA3h4eFSNcykpCQEBATgypUr8PHx0WFk6hEdHY3JkycrfdymTZuoxlhDYlEJmFjLU+0VZgMWdlq9JMfjg2fkA8v1KjHWq1cPfD4fGRkZUtszMjIqXcPaxcVFqfICgQACwevHqKysymZANjEx0Xp1XROCgoLAcZzSbYz9+vUzis+vU7r4+fEYYE5rvqibXvVKm5mZwdfXF7GxsZJtYrEYsbGx8Pf3l3uMv7+/VHkAOHHiRKXljV3jxo3x7rvvgs9XrP2Hz+dj4MCB1PFCyJuYntm9ezcTCAQsOjqa3b59m02ePJnZ2dmx9PR0xhhjo0ePZrNmzZKUv3jxIjMxMWHfffcdu3PnDouIiGCmpqbsxo0bCl0vISGBAWAJCQka+Ty6cPXqVWZiYsI4jmMAKn1xHMdMTEzY1atXdR0yUdWrXF1HYJT0LjEyxtgPP/zAGjduzMzMzJifnx+7fPmyZF9AQAAbO3asVPlffvmFNW/enJmZmbFWrVqxI0eOKHwtY0yMjDH266+/MhMTE8bn8+UmRT6fz0xMTNj+/ft1HSqpiaI8XUdglPRuHKO2Gds4xjfFx8dj0aJFOHz4cIVnpQcOHIi5c+fSs9KGrrgAMKuj6yiMjl51vhD16tixI3777TekpaXh1KlTyMnJgY2NDXr37k1tioRUgRJjLdC4cWOMGzdO12EQYjD0qleaEEL0ASVGQgwZx+k6AqNEiZEQQ2ZivBM56BIlRkIMGdUYNYISIyGEyKDESAghMigxEkKIDEqMhBAigxIjIYTIoMRICCEy6JHAWuTp06d4+vSprsMgalS/fn3Ur19f12EYnVqfGOvXr4+IiAij/8dVVFSEkJAQnD17VtehEDUKCAhATEyM1Kz0pOZq/bRjtUVOTg5sbW1x9uxZyXIOxLDl5eUhICAAQqEQNjY2ug7HqNT6GmNt4+3tTb9ERiInJ0fXIRgt6nwhhBAZlBgJIUQGJcZaQiAQICIighrpjQh9p5pDnS+EECKDaoyEECKDEiMhhMigxEgIITIoMRJCiAxKjIRoCMdxCr3OnDlT42sVFBRgwYIFSp1ryZIlGDRoEJydncFxHBYsWFDjOIwFPflCiIZs375d6v3PP/+MEydOVNjesmXLGl+roKAAkZGRAICePXsqdMzcuXPh4uICHx8fxMTE1DgGY0KJkRAN+fDDD6XeX758GSdOnKiwXVdSUlLg5uaG58+fw9HRUdfh6BW6lSZEh8RiMVatWoVWrVrB3Nwczs7OCAsLQ1ZWllS5a9euISgoCPXq1YOFhQXc3d0xYcIEAEBqaqoksUVGRkpu0au7NXZzc9PERzIKVGMkRIfCwsIQHR2N8ePHY9q0aUhJScGaNWtw/fp1XLx4EaampsjMzES/fv3g6OiIWbNmwc7ODqmpqdi/fz8AwNHREevWrcOUKVMwdOhQvPfeewCAtm3b6vKjGTZGCNGKqVOnsjd/5c6fP88AsB07dkiVO3bsmNT2AwcOMAAsPj6+0nM/e/aMAWARERFKx1WTY40V3UoToiN79+6Fra0t+vbti+fPn0tevr6+sLKywunTpwEAdnZ2AIDDhw+jpKREhxHXHpQYCdGRBw8eQCgUwsnJCY6OjlKvvLw8ZGZmAiibpfv9999HZGQk6tWrh8GDB2Pr1q0oKirS8ScwXtTGSIiOiMViODk5YceOHXL3l3eocByHffv24fLly/j9998RExODCRMmYMWKFbh8+TLNyK4BlBgJ0REPDw+cPHkSXbt2hYWFRbXlO3fujM6dO2PJkiXYuXMnRo0ahd27dyM0NBQcx2kh4tqDbqUJ0ZERI0ZAJBJh0aJFFfaVlpYiOzsbAJCVlQUmMzugt7c3AEhup+vUqQMAkmNIzVCNkRAdCQgIQFhYGKKiopCUlIR+/frB1NQUDx48wN69e7F69WoMGzYM27Ztw9q1azF06FB4eHggNzcXmzZtgo2NDfr37w8AsLCwgJeXF/bs2YPmzZvDwcEBrVu3RuvWrSu9/vbt2/H48WMUFBQAAM6dO4fFixcDAEaPHg1XV1fN/xD0la67xQmpLWSH65TbuHEj8/X1ZRYWFsza2pq1adOGffXVV+zff/9ljDGWmJjIQkJCWOPGjZlAIGBOTk7s3XffZdeuXZM6z6VLl5ivry8zMzNTaPhNQEAAAyD3dfr0aXV9bINEM3gTQogMamMkhBAZlBgJIUQGJUZCCJFBiZEQQmRQYiSEEBmUGAkhRAYlRkL0VGpqKjiOQ3R0tK5DqXUoMRJCiAwa4E2InmKMoaioCKampuDz+boOp1ahxEgIITLoVpoQDVqwYAE4jsP9+/fx4YcfwtbWFo6Ojpg3bx4YY/j7778xePBg2NjYwMXFBStWrJAcK6+Ncdy4cbCyssKTJ08wZMgQWFlZwdHREV988QVEIpGk3JkzZ+SuWS3vnOnp6Rg/fjwaNmwIgUCA+vXrY/DgwUhNTdXQT0X/UWIkRAuCg4MhFouxdOlSdOrUCYsXL8aqVavQt29fNGjQAMuWLUPTpk3xxRdf4Ny5c1WeSyQSISgoCHXr1sV3332HgIAArFixAhs3blQptvfffx8HDhzA+PHjsXbtWkybNg25ublIS0tT6XxGQXfzVxBi/CIiIhgANnnyZMm20tJS1rBhQ8ZxHFu6dKlke1ZWFrOwsGBjx45ljDGWkpLCALCtW7dKyowdO5YBYAsXLpS6jo+PD/P19ZW8P336tNxZcmTPmZWVxQCw5cuXq+cDGwmqMRKiBaGhoZK/8/l8dOjQAYwxTJw4UbLdzs4Onp6eePToUbXn++ijj6Ted+/eXaHjZFlYWMDMzAxnzpypsJZ1bUaJkRAtaNy4sdR7W1tbmJubo169ehW2V5egzM3NJevBlLO3t1cpsQkEAixbtgx//PEHnJ2d0aNHD3z77bdIT09X+lzGhBIjIVogb7hNZUNwWDUDRRQZulPZGjBvdtCUmzFjBu7fv4+oqCiYm5tj3rx5aNmyJa5fv17tdYwVJUZCjJC9vT2AimvAPH78WG55Dw8PfP755zh+/Dhu3ryJ4uJiqR7y2oYSIyFGyNXVFXw+v0IP99q1a6XeFxQU4NWrV1LbPDw8YG1tXavXrabFsAgxQra2thg+fDh++OEHcBwHDw8PHD58GJmZmVLl7t+/jz59+mDEiBHw8vKCiYkJDhw4gIyMDHzwwQc6il73KDESYqR++OEHlJSUYP369RAIBBgxYgSWL18utXJgo0aNEBISgtjYWGzfvh0mJiZo0aIFfvnlF7z//vs6jF636JFAQgiRQW2MhBAigxIjIYTIoMRICCEyKDESQogMSoyEECKDEiMhhNaXkUGJkRAlJScnIywsDE2aNIG5uTlsbGzQtWtXrF69GoWFhRq77u3bt7FgwQKdTyC7ZMkSDBo0CM7OzuA4DgsWLNBpPJpAA7wJUcKRI0cwfPhwCAQCjBkzBq1bt0ZxcTEuXLiAL7/8Erdu3VJ5wtjq3L59G5GRkejZsyfc3Nw0cg1FzJ07Fy4uLvDx8UFMTIzO4tAkSoyEKCglJQUffPABXF1dcerUKdSvX1+yb+rUqXj48CGOHDmiwwhfY4zh1atXsLCwUPu5U1JS4ObmhufPn1eY/sxY0K00IQr69ttvkZeXh82bN0slxXJNmzbF9OnTJe9LS0uxaNEieHh4QCAQwM3NDbNnz64wOYObmxveffddXLhwAX5+fjA3N0eTJk3w888/S8pER0dj+PDhAIBevXqB4zipNV3KzxETE4MOHTrAwsICGzZsAAA8evQIw4cPh4ODA+rUqYPOnTvXKIHrsraqLZQYCVHQ77//jiZNmqBLly4KlQ8NDcX8+fPRvn17fP/99wgICEBUVJTcyRkePnyIYcOGoW/fvlixYgXs7e0xbtw43Lp1CwDQo0cPTJs2DQAwe/ZsbN++Hdu3b0fLli0l57h37x5CQkLQt29frF69Gt7e3sjIyECXLl0QExODjz/+GEuWLMGrV68waNAgHDhwQA0/FSOl04UVCDEQQqGQAWCDBw9WqHxSUhIDwEJDQ6W2f/HFFwwAO3XqlGSbq6srA8DOnTsn2ZaZmckEAgH7/PPPJdv27t0rdx2XN89x7Ngxqe0zZsxgANj58+cl23Jzc5m7uztzc3NjIpGIMSZ/fZnqPHv2jAFgERERCh9jKKjGSIgCcnJyAADW1tYKlT969CgAYObMmVLbP//8cwCocCvr5eWF7t27S947OjoqvP5LOXd3dwQFBVWIw8/PD926dZNss7KywuTJk5Gamorbt28rfP7ahBIjIQqwsbEBAOTm5ipU/vHjx+DxeGjatKnUdhcXF9jZ2VWYSVt2TRhA+XVc3N3d5cbh6elZYXv5LXhlM3rXdpQYCVGAjY0N3nrrLdy8eVOp4ypbe0WWquu/vEkTPdC1FSVGQhT07rvvIjk5GXFxcdWWdXV1hVgsxoMHD6S2Z2RkIDs7G66urkpfX9EkKxvHvXv3Kmy/e/euZD+piBIjIQr66quvYGlpidDQUGRkZFTYn5ycjNWrVwMA+vfvDwBYtWqVVJmVK1cCAAYMGKD09S0tLQFUXOCqKv3798fVq1elknl+fj42btwINzc3eHl5KR1HbUADvAlRkIeHB3bu3Ing4GC0bNlS6smXS5cuYe/evRg3bhwAoF27dhg7diw2btyI7OxsBAQE4OrVq9i2bRuGDBmCXr16KX19b29v8Pl8LFu2DEKhEAKBAL1794aTk1Olx8yaNQu7du3CO++8g2nTpsHBwQHbtm1DSkoKfv31V/B4yteNtm/fjsePH6OgoAAAcO7cOSxevBgAMHr0aOOoheq6W5wQQ3P//n02adIk5ubmxszMzJi1tTXr2rUr++GHH9irV68k5UpKSlhkZCRzd3dnpqamrFGjRiw8PFyqDGNlQ20GDBhQ4ToBAQEsICBAatumTZtYkyZNGJ/Plxq6U9k5GGMsOTmZDRs2jNnZ2TFzc3Pm5+fHDh8+LFVGmeE6AQEBDIDcl7yhRIaI1nwhhBAZ1MZICCEyKDESQogMSoyEECKDEiMhhMigxEgIITIoMRJCiAxKjIQQIoMSIyGEyKDESAghMigxEkKIDEqMhBAigxIjIYTIoMRICCEy/h+zikKaXy0PcQAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -539,7 +541,9 @@
"\n",
"The lower axes in the Cumming plot is effectively a [forest\n",
"plot](https://en.wikipedia.org/wiki/Forest_plot), commonly used in\n",
- "meta-analyses to aggregate and to compare data from different experiments."
+ "meta-analyses to aggregate and to compare data from different experiments.\n",
+ "\n",
+ "**Note: If you're interested in just plotting the contrast ax (the violin plots), you may be interested in the new [forest plot](07-forest_plot.html) feature added in v2025.03.27!**"
]
},
{
@@ -549,7 +553,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAInCAYAAAAMBG9hAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAmqNJREFUeJzs3Xd8U2X7P/DPSdKmI+mCDlbZe5c9pCwBBUSQ8UNUEAeOBxcOQEVwwOP8is8jCMgDiCwFnCB7yZKNbNkgo2W0pelIm5zz+6M0EpqkJ2mSk/F5v155SZKTk6sc75Ir933dlyBJkgQiIiIiIiInqJQOgIiIiIiI/A8TCSIiIiIichoTCSIiIiIichoTCSIiIiIichoTCSIiIiIichoTCSIiIiIichoTCSIiIiIichoTCSIiIiIichoTCSIiIiIiclpQJxJXrlzBxIkTceXKFaVDISIiIiLyK0GfSEyaNImJBBERERGRk4I6kSAiIiIiItcwkSAiIiIiIqcxkSAiIiIiIqdplA6AiIjsyzBkYP2h9UjLTENiTCK6Ne6GWF2s0mERERExkSAi8lV//PUHJi+bDJNogkpQQZREzN80H+MHjkeb2m2UDo+IiIIclzYREfmgDEMGJi+bjEJzISRJglk0Q5IkFJoLMXnpZGQYMpQOkYiIghxnJIiIFOJo2dL6Q+thEk02X2cSTdhwaAMeaveQN8MlIiKywkSCiEgBpS1bSstMg0pQwSyZS7xWJahwNfOqAlETERH9g0ubiIi8TM6ypcSYRIiSaPP1oiQiKSbJy1ETERFZYyJBRORlcpYtdWvcDRqV7UljjUqDbk26eTJEIiKiUjGRICLysuJlS7YUL1uK1cVi/MDxCFGHQBAEqFVqCIKAEHUIxg8cj5jIGO8GTUREdBfWSBAReZncZUttarfB3NFzseHQBlzNvIqkmCR0a9KNSQQREfkEJhJERF7WrXE3zN80H4XmwhLP3b1sKVYXy92ZiIjIJ3FpExGRl3HZEhERBQLOSBARKYDLloiIyN8xkSAiUgiXLRERkT/j0iYiIiIiInIaEwkiIiIiInIaEwkiIiIiInIaEwkiIiIiInIaEwkiIiIiInIaEwkiIiIiInIaEwkiIiIiInIaEwkiIiIiInIaEwkiIiIiInIaEwkiIiIiInIaEwkiIiIiInIaEwkiIiIiInIaEwkiIiIiInIaEwkiIiIiInKa3yYSEydOhCAIVrd69eopHRYRkdtlGDKwdMdSfPnbl1i6YykyDBlKh0RERASN0gGURcOGDbFu3TrLfY3Gr38cIqIS/vjrD0xeNhkm0QSVoIIoiZi/aT7GDxyPNrXbKB0eEREFMb/+5K3RaJCUlKR0GERELskwZGD9ofVIy0xDYkwiujXuhlhdrNXzk5dNRqG5EABglswAgEJzISYvnYy5o+daHU9ERORNfp1InDx5EhUrVkRYWBjatWuHKVOmIDk52e7xRqMRRqPRct9gMHgjTCKiEuTMNKw/tB4m0WTz9SbRhA2HNuChdg95M2wiIiILv62RaNOmDebOnYtVq1Zh+vTpOHv2LO655x5kZ2fbfc2UKVMQHR1tuaWmpnoxYiKiInfONEiSBLNohiRJlpmG4hqItMw0qATbv6ZVggpXM696M2wiIiIrfptI3HfffRg0aBCaNGmCnj17YuXKlcjMzMR3331n9zXjxo1DVlaW5bZ582YvRkxEVETOTAMAJMYkQpREm8eJkoikGC7tJCIi5fhtInG3mJgY1KlTB6dOnbJ7jFarRVRUlOWm0+m8GCERURG5Mw3dGneDRmV7BapGpUG3Jt08FiMREVFpAiaRMBgMOH36NCpUqKB0KEREDsmdaYjVxWL8wPEIUYdAEASoVWoIgoAQdQjGDxyPmMgYL0ZNRERkzW+LrV999VX07dsXVatWxeXLl/HOO+9ArVZj6NChSodGRORQt8bdMH/TfMtuTHe6e6ahTe02mDt6LjYc2oCrmVeRFJOEbk26MYkgIiLF+W0i8ffff2Po0KG4ceMG4uPj0bFjR+zcuRPx8fFKh0ZE5FDxTMPkpda7NmlUGpszDbG6WO7OREREPkeQJElSOgil7Nu3Dy1atMDevXuRkpKidDhEFGQyDBmcaSAi8iOGrCwc2P47Mq5fR2z58mjW/h7ooqOVDksxfjsjQUTk7zjTQETkP44f2IfF076AaDZDUKkgiSLW/bAUQ597EXWbNVc6PEUETLE1EREREZEnGLKysHjaFzCbTJAkCaK5qP+P2WTComlTYcjKUjpERTCRICIiIiJy4MD23yGazTafE81mHNix1csR+QYubSIiIiKioOeo/iHj+vWi5Uw2kglBpULGtWveDtcnMJEgInKzF2a/gAxDBmJ1sfjiiS+UDoeIiEpRWv1DbPnykETb/X8kUURskO4ayqVNRERulmHIwI3sG8gwZCgdChERlUJO/UOz9vdApVbbfL1KrUaz9h29HLVvYCJBREREREFLTv2DLjoaQ597EWqNBoIgQKVWQxAEqDUaDH3uReiignMLWC5tIgoABYYMpB/aAGNmGrQxiUho3BWhulilwyIiIvJ5cusf6jZrjlc/nooDO7Yi49o1xMbHo1n7jkGbRABMJIj83o2//sDxZVMgiSYIggqSJOL8pvmoP3A84mq3Vjo8IiIin+ZM/YMuOhode/X2Vmg+j0ubiPxYgSGjKIkwFwKSBEk0F/3XXIhjSyejgGv0iYiIABTVQmz97Vf8Mn8utv72q6X3A+sfXMcZCSI/ln5oAyTRZPM5STQh/dAGVGbnZCIiCnKl7co09LkXsWjaVKvnVWp1UNc/yMFEgsiPGTPTbi9nsrGuU1DBmJmmQFRERES+485dmQBYaiGKd2V69eOprH9wERMJIj+mjUmEJNlZ1ymJ0MYkejkiIiIi3yJnV6aOvXqz/sEFrJEg8mMJjbtCUNn+PkBQaZDQpJuXIyIiIvItxbsy2RLMXandgYkEkR8pMGTg7x3LcPq3afh7xzIAQP2B4yGoQwBBgKBSF/1XHYL6A8cjNDJG2YCJiIgUxq7UnsOlTUR+wtE2r61Gz7HuI9GkG5MIIiIiFO3KtO6HpZYaiTtxV6ayYSJB5AestnkFLMXVxdu8tho9h7szBZgMQwbWH1qPtMw0JMYkolvjbohlk0EiIqcVd6Xmrkzux0SCyA9wm9fg8sdff2DysskwiSaoBBVEScT8TfMxfuB4tKndRunwiIj8Dndl8gwmEkR+gNu8Bo8MQwYmL5uMwtuzT+bb17zQXIjJSydj7ui5nJkgInIBd2VyPxZbE/kBbvMaPNYfWg+Tndknk2jChkMbvBwRERGRbUwkiPwAt3kNHmmZaVAJtn81qwQVrmZe9XJEREREtjGRIPIDobpYbvMaJBJjEiHamX0SJRFJMUlejoiIiMg21kgQ+Ym42q25zWuAsbUzU7fG3TB/03xLjcSdNCoNunH2iYiIfAQTCSI/EqqL5e5MAcLRzkzjB47H5KXWz2lUGowfOB4xTByJiMhHMJEgIvIyOTszzR09FxsObcDVzKtIiklCtybdmEQQEXmIISsLB7b/jozr1xFbvjyatb8HumhuDVsaJhJERF4mZ2emh9o9hIc4+0RE5HHHD+zD4mlfWDWrW/fDUgx97kXUbdZc6fB8GhMJIj9SYMiwrpFo3BWh7Cngd4p3ZjLb6AvCnZmIfEeuIR/HD5xDdkYO9LGRqNesGiJ0YUqHRW5kyMrC4mlfwGwq+nJHMhf9XjabTFg0bSpe/XgqZyYcYCJB5Cdu/PUHji+bAkk03W5OJ+L8pvmoP3A84mq3Vjo8cgJ3ZiLyfWePX8KqxdshiiIEQYAkSfhj3SH0GtoB1etWVDo8cpMD23+HaC75pQ4AiGYzDuzYyiZ2DnD7VyI/UGDIKEoizIWAJEESzUX/NRfi2NLJKDBkKB0iOaFb427Q2OkLwp2ZiJSXa8jHqsXbYTaLkCRAFCVIEmA2i1i1aBtyDflKh0huknH9OgSV7Y/DgkqFjGvXvByRfwmYROLf//43BEHASy+9pHQoRG6XfmgDJDtr6iXRhHR2O/YrsbpYjB84HiHqEAiCALVKDUEQEKIO4c5MRD7g+IFzEEU7s4aiiOMHznk3IPKY2PLlIdm51pIoIjY+3ssR+ZeAWNq0e/duzJgxA02aNFE6FCKPMGam3V7OVHL6VRBUMGamKRAVlUWb2m24MxORj8rOyLEsZ7qbIAjIzshRICqyZ/qkt2G4lQldVAyefec9p17brP09WPfDUkuNxJ1UajWate/orjADkt8nEgaDAcOGDcOsWbPw/vvvKx0OkUdoYxIh2VlTL0kitDGJXo6I3CFWF8udmYh8kD420mYSAQCSJEEfG+nliMgRw61M3MoofYmvvS1ehz73IhZNm2q1a5NKrcbQ516ELoqF1o74fSLx/PPPo3fv3ujevXupiYTRaITRaLTcNxgMng6PyC0SGnfF+U3zi2ok7iKoNEjgmnoiIrep16wa/lh3CGZzyS9wVCoV6jWr5v2gqExK2+L11Y+n4sCOrci4dg2x8fFo1r4jkwgZ/DqRWLx4Mfbt24fdu3fLOn7KlCmYNGmSh6PyLxnZOVi7+xiu3ryFpLgo3NuqPmL1/KbF14TqYlF/4HgcWzrZatcmQaVB/YHjEcrlMEREbhOhC0OvoR2watE2q12bVCoVeg3twC1g/YzcLV65O5Pz/DaRuHjxIl588UWsXbsWYWHyBvS4cePwyiuvWO4fOHAAqampngrR5+04fAbvzVsBk1mEShAgShLm/rYDE0b0RtuGNZQOj+4SV7s1Wo2eY91Hokk3JhEBKsOQgfWH1iMtMw2JMYno1rgbYtkzhMhrqtetiOGv9mUfiQDALV49x28Tib179yI9PR0pKSmWx8xmM7Zs2YL//ve/MBqNUKvVVq/RarXQarWW+zqdzmvx+pqM7By8N28FCk23s/Lba0ELTWa8O3cFFkwYyZkJHxSqi0VlrqkPeH/89QcmL5sMk2iCSlBBlETM3zQf4weOR5vabZQOjyhoROjCkNKxntJhUBkVb/Eq2UgmuMVr2fjt9q/dunXDoUOHcODAAcutZcuWGDZsGA4cOFAiiSBra3cfg8nG2k8AMJlFrNtz3MsRERFQNBMxedlkFJoLIUkSzKIZkiSh0FyIyUsnI4M9Q4jIgVxDPvZtPY7Nv+zFvq3H2fMC3OLVk7w2I2E2m/H9999j48aNSE9Px7vvvovGjRsjKysL69evR4cOHZCYKH/nGb1ej0aNGlk9FhkZiXLlypV4nEq6evMWVIJgmYm4k0oQcOVGlgJRBa8Ds19EgSEDobpYNHtiqtLhkILWH1oPk52eISbRhA2HNnCnJyKyid24beMWr57jlRmJzMxMdOjQAQ8//DAWLVqEn3/+GdduTyPpdDq88MILmDqVH568KSkuCqKdre1ESUKFctypwJsKDBkoyL7BDtWEtMw0qATbv5pVggpXM696OSIi8jQ5swilHcNu3PYVb/Gq1mggCAJU6qImoGqNhlu8lpFXZiTGjh2LI0eOYPXq1WjevDkSEhIsz6nVagwcOBArV67E5MmTy/Q+mzZtKmOkgcferkz3tqqPub/tsNRI3EmjVqF7y/oKREtEiTGJEO30DBElEUkxSV6OiCh45RryPV5sLWcWQc4xcrpxB3O9B7d49QyvJBI//vgjRo8ejXvvvRc3btwo8XydOnUwd+5cb4QSVErblWnCiN54d6718xq1ChNG9EasPkLp8ImCUrfG3TB/03wU2ugZolFp0I09Q4i8whvLhO6cRQBgaYJXPIsw/NW+AFDqMRG6MHbjloFbvLqfVxKJrKwsVK9e3e7zhYWFMNlYt0auk7MrU9uGNbBgwkis23McV25koUK5aHRvWZ9JBFEZFW/TWtp2rfa2eB0/cDwmL7XetUmj0mD8wPGIiYzh1rBEHibnA77cmQlHsxpyZhGK/+zomJSO9diNmxThlUSiZs2a2Ldvn93n16xZgwYNGngjlKAhZ1emQV1aIFYfiUFdWng5OiLfVWAqgMlcti82/v3Ivy1/zjXm2jxmz6k9+PTnT0ts8Tqm3xi0rNkS00dNx+Yjm5GelY6E6AR0btgZ0ZHR2HJki8PXyaVRaxCqCS3Tz0nkj5ZMX4NcQz4idGEY8mwPm8e4a5lQabMacmcR5BzDbtykBK8kEk8++STeeOMNdO7cGd26FU3LC4IAo9GId999F6tWrcLMmTO9EUrQ4K5MRM4rMBXg4LmDyM23/eHfXXLyczB9zXSYxeIZw6L/FpoL8fGPH+PZHs8iMiwSFWMromJs0RKKvy7/Jft1ckSERaBptaZMJijo5BrykXMrz+Ex7lgmJGdWQ+4sgpxj2I2blOCVROLFF1/EkSNHMHToUMTExAAAHn74Ydy4cQMmkwmjRo3CE0884Y1QggZ3ZSJynslsQm5+rse/rd93dp/Dbzv/uvIXOtTr4LbX3a3AVIDc/FyYzCYmEm6Wn5mJ85s3Iyc9HZEJCaiamoqw2//ukf9wxzIhObMacmcR5M40sBs3eZtXEglBEDBr1iwMHz4cS5cuxcmTJyGKImrWrInBgwejU6dO3ggjqHBXJiLXhWpCoQ3Ruvz6/6z8D7Lzs6EP02P0/aNLPJ+dl+3w285bebdsvr+rr7OlrMu3qKTLe/Zgx6efQjSZirroiiIOL16MdmPGoGJL+cvOSHnuWCYkZ1ZD7iyCMzMN7MZN3uS1hnQA0LFjR3TsyKYf3hCrj+SuTEQKyc7Pxq3cW3afj42MdfhtZ5wuzq2vI8/Lz8wsSiIKi3bbksxFX+KIhYXY8emn6D19Omcm/Igzy4TsFVPLndWQM4vAmQbyVV5NJMi7uCsTkW9KqZGCtQfX2uxgrVapkVIjxa2vI887v3kzRDu7D4omE85v3oy6/fp5OSoqCzkf3h0VUzszqyFnFoEzDeSLvJJIVK9eHYIgODxGEAScPn3aG+EEFe7KROR79OF6DOs0DAu2LIBZNFs+gKhVagzrNAy6MJ1bXpedl419Z/YhIycDsZGxSKmRAn243uoYbiXrHjnp6UXLmcwll5MKKhVy0tMViIrKytGHdznF1Cx+pkDnlUQiNTW1RCJhNptx/vx5bNu2DY0aNULz5s29EQoR+YgCQwbSD22AMTMN2phEJDTuitAg+gBbv3J9vNH/Dew/ux83DTcRp4tDSo0Um0nE3QnB8/c9j5NXTjp83dG/j2LhloVWCcfag2sxrNMw1EisAcD+FrTjB45Hm9ptvPL3ECgiExIg2SmslUQRkQkJXo6IPE3uFrFckhRYDFlZOLD9d2Rcv47Y8uXRrP090EUH7wY2XkkkHHWtPnjwIHr27Ilhw4Z5IxQiv+etD+CefJ8bf/2B48umQBJNEAQVJEnE+U3zUX/geMTVbu2W9/AH+nA9OjVwvNmEo4TA3muz87KxcMtCyxKo4m9KTaIJC7YswMt9X0aeMQ8z1s6wdNC+cyvZyUsnY+7ouZyZcELV1FQcXrzYUiNxJ5VGg6qdO3s/KCozR83k5G4RyyVJgeP4gX1YPO0LiGazZUOFdT8sxdDnXkTdZsH5hbhK6QCaNm2KUaNG4Y033lA6FCKfd+OvP7D7P4/j3IY5uLp/Fc5tmIPd/3kcN0/u8pv3KTBkFCUR5kJAkiCJ5qL/mgtxbOlkFBgy3PAT+IfsvGxsPrIZP+76EZuPbEZ2XnaJ54sTAgkSREmEBMmSENx9fLF9Z/ZZek3czSyacfDcQRy+eNhmrQVQlHBsOLShbD9ckAmLiUG7MWOgCgkBBAGCWg0IAlQhIWg3ZgzCgvgbS3919vglzPvkF+xYcxBH9pzGjjUHMe+TX3D2xGUA7tkilvyHISsLi6d9AbPJBEmSIJrNkCQJZpMJi6ZNhSErOPtzKZ5IAEBiYiKOHj2qdBhEPs2dH8ALDBn4e8cynP5tGv7esczqte54H0fnTz+0AZKdD7CSaEJ6kHyAPfr3UXz4w4dYtX8Vdp3chVX7V+HDHz7Esb+PWY4pLSHYf3a/zecycjLs1qUJgoCMnAxk5WZBJdj+J0AlqHA186qTPxFVbNkSvadPR5NHHkGN7t3R5JFH0Purr7j1qx+6s/5BkgBRlCBJ/9Q/5BryUa9ZNahUdsYQO0kHnAPbf4doowYKAESzGQd2bPVyRL5B8V2bbty4gdmzZ6Ny5cpKh0Lk0+R8AK/c7qFSz1PasqKyvk9p5zdmpt1+3EZRqqCCMTOt1J/B35W29OiN/m9AH663JAT2lk7cNNy0ef7StomNjYxFgakAomRnfbckIikmyZUfLeiFxcRwd6YAILf+gcXUwSPj+nWHGypkXLumQFTK80oi0bVrV5uPZ2Zm4vjx4ygoKMD8+fO9EQqR33LHB3Cr2QbAcq7i2YZWo+eU6X3knF8bkwjJzgdYSRKhjUks9efwd3JmGjo16ORy34jStoltWq0p8ox52HZ8m6VG4k4alQbdmnRz4iciCixy6x/Y3yF4xJYv73BDhdj4eC9H5Bu8kkgUZ+p3EgQB1atXR/fu3TFy5EjUq8dCJApexUXMjoqZ5X4Ad1QkLWe2oSwf9OWcP6FxV5zfNN+SbNxJUGmQEAQfYOXONMjpG2Fvi9fStolVCSqM6TcGn/5kvWuTRqXB+IHjERMZ4+m/BiKf5Uz9gxLF1I6KwKls7O3K1Kz9PVj3w1KYbfSLUanVaNY+OBsueyWR2LRpkzfehlyUkZ2DtbuP4erNW0iKi8K9reojVs8iMblEUwFEs+0Pz3I1emSK5c8mY67NY+LqtnP4Abxc3fa4dmQL/vr5sxLLiur0G4PYmi2Qd+OSw9mGvBuXUKn9QJc/6MuZzQjVxaL+wPE4tnSyVZyCSoP6A8cjNAg+wMqdaSgtIbhw/YLdHZ0cbS9rLDQCAFrWbIm5o+diw6ENuJp5FUkxSejWpBuTiDLIz8zE+c2bkZOejsiEBFRNTWVHaz/kTDM5b3PUBK963YqKxRUIStuVaehzL2LRtKlWz6vUagx97kXoooJzQwXFayRIWTsOn8F781bAZBahEgSIkoS5v+3AhBG90bZhDaXD83miqQCZ5w7ClG/7w7+7VWjVF1d2/VQ0vSoIgCRBUKlQoVVfZJzZj7Nrvioqjob1sqK/fvwY1Xs8A3NhvsOpWXOhEYbLJ+2+T93+ryE0MsburIfc2Yy42q3RavQc63M06RYUSQTgXIdqewmBJEn48IcPS62zKG172VhdLB6SUVtDpbu8Zw92fPopRJPJ8iHj8OLFaDdmDAuufUjxN/eOvsGP0IUpUv9Q2kyDnCZ4nJmwz1EPiDt3ZQJgqYUo3pXp1Y+nom6z5nj146k4sGMrMq5dQ2x8PJq17xi0SQTgoUTim2++cel1jz32mJsjIUcysnPw3rwVKDTdHiy3fyEVmsx4d+4KLJgwkjMTpRDNJpjyc6FSayBoQj3+ftFVmyAysQayzh1EYU4mQiJjEF2tKTRhOtw4vs1hkmC48hdia7XCjWNbLcnGnQSVCrG1WkKtjSjxPppwPfSV6yOmenOHxdTOLFsK1cXKKg4PRM52qLaVEGw+sllWnQV5R35mZlEScbuPRPGHELGwEDs+/RS9p0/nzISbmArNdguh5eg/sovlzwXGkr+rilWqFo+ho3vh5KELyM7MhT4mAnWaJCM8Mszh6+zJNeRbnat242SrD/3n/7qCtcv+gORgpkFuETiVVNpsg5xdmTr26g1ddDQ69urt5eh9l0cSiREjRjj9GkEQmEjI9NynC5GRnYtYfQSmjXnY4bGOli2t3X0MJhvTtgBgMotYt+c4BnVp4fb4A5GgCYU6ROvy60+t/C9M+dnQhOlR6/5/OTxWHaJFQuOSGxiY8rItswclAxRgysuGVl8OVToNw8UtC0rMNlTpNAxafTmb72MuNMJszEVBTmapxdTBvmxJLjmdre3VPwDy6yzIO85v3gzRxtppABBNJpzfvJm7ObmBqdCMv8+kufRB3lXRcTpExxWNy7S/S44rY34BLp+/jvwcI8IitahYtTy0YdZfLKVfzsCfO/6CKEqWcbt74xE0bVcH8RVjYcwvwO8r9kMUi8azvZkGuUXgZE3ObAN3ZXKNRxKJs2fPeuK0dFtGdi6uZxlKPa60ZUtXb96CShAsMxF3UgkCrtwIzuYqSjDlZ8OUe6v04/KykXFmPwpzMhASGYvYGs2huf3BMiQy1nYSAQCSZCm4jqpcH3X7v4HMs/tRYMhAqC4WMTVSoLnrW3Bbrh/ZLGtr2GBetuQMR0uPHHW0rl+5vss7OpFn5KSnO/wQkpOerkBUgUcURRQYC6HSqKHWeL4VljGvAH+fSUeeIR/hujBUrpEAbfg/SULaxRvYt+WYVYJw+vBFpKTWR2LlcpZzFCcRwD9JgihKOLjjL3Qd0BpplzIsz9/tzpkGNsFzjZzZBu7K5BqPJBJVq1b1xGnJCXKWLSXFRUG08wtJlCRUKBe8a/580a2/j5WYSUg/uAZVOg1DVOX6iK3RHOkH19hdthRzx7p7Tbge5V1Y9mLMuiZra9hgXrbkDnL6TDhTZ0GeF5mQ4PBDSGRCgpcjCmxqjQohIa59hNn00x7k5xUgLDwUnfvZr125cuE6dm84XJQkqARIooS/DpxD666NkJRcHvl5BZYkArBOEPZtPoYeQ9ojLDwU545fdpAkSLhy/jqMuQWW97jbnTMNvlwE7svkzDZ0eaA/d2VygU90tib3k7Ns6d5W9aFR2/5fQKNWoXvL+p4MkZxgysu+nUSYAUiAJAIo6jp9ccsCmPKyoQnXo0qnYRBUagACIKgACBBUalTpNEzWjENptNHxQd8Dwhvk9JkorrPQqDQQIEAlqCBAgEalsVlnQZ5VNTUVKo3tD7YqjQZVO3f2bkBkV35eAfJzjcjPK3B4THESAcDyAV8UJezacBj5eQW4eOqqwwTh4qmi7vC52fkQVHY6zasE5GbnI0IfZjOJAKxnGoqLwNVqFQQBUKkECAKgVrMJniNyZht00dEY+tyLUGs0EAQBKrUagiBArdEE9a5MpfHark1Xr17F7NmzsW/fPmRlZZUoFhIEAevXr/dWOAFPzrKlWH0kJozojXfnWi9/0qhVmDCiN2L1EQpETrZknNnv8Jdg5tn9KN+gU5mWLclRvmEqLm5dEtQ9ILxBbv2DnDoL8o6wmBi0GzOmxK5NKo0G7caMQVg0P4T4EzlJQnGCYHMW4XaCAMBxkiBKiNCHoUqtJBzbe8bme94908AmeM6T2wPC3bsyOdolKlB4JZH4888/0blzZ+Tl5aFu3bo4dOgQGjRogMzMTFy6dAk1a9ZElSpVvBFK0JC7bKltwxpYMGEk1u05jis3slChXDS6t6zPJMLHFOZkOCykLjBkWO66umxJjtDIGBZTu5G9Ympn6h/kbPFK3lGxZUv0nj7duo9E585MIvyQnCRBToIAoJQkQUByrSRow0PRumsj7CpeSlW83aydmQYlmuD5s+LZBjk9INy1K1Npu0QFCq8kEmPHjoVOp8OBAwcQERGBhIQETJ06FV27dsX333+PZ599FgsWLPBGKEHj3lb1Mfe3HZYaiTvdvWwpVh/p1d2Z2ADPeXILqeVyVLRt67iC7OtQayOgq1g76HtAuIujYmrWP/ivsJgY7s4UAMo+i1CUIABA2N1Jwu0ERaUS0LprI0vxdlJyefQY0h4XT12FISsX2rAQtOnWCNFxJX8328OO1/Z5sweEnF2iAmVmwiuJxLZt2/D6668jOTkZN28WTckXL20aNGgQtm7ditdeew2bN2/2RjhBQYllS3ISBDbAc40zhdSlJQmlFW07Ou7G8e2oP3A84mq3ZjF1GcgppnamzwT5D3a+9g8uzSLYSRAA6ySheDaj+Bx3CgsPRe3GySgsNKEwvxDhkfKTAHa8Lp2c2Qa5y5EcHSe3J0Ug8EoiIYoiEhOLijBjYmKgVqstCQUANG7cGLNnz/ZGKEHFncuWSksS5CQIbIDnuuJCanv9H4prIEpLEqyLtmGZ5Sgu2q7b/w1owvX2j7ujX4SzsyD0DznF1J0adGL9Q4Bh52v/4cosgqMEofictRsneyTeYO94rYuKsfqvq+QuRyrtuGDqSeGVRKJ69eqW3hIqlQrVq1fHunXrMHjwYADA9u3bEePkNzLTp0/H9OnTce7cOQBAw4YNMWHCBNx3333uDN3vuWPZUmlJgtwEgQ3wyqa0Qmo5SYLcom3Hx/3TL4JcI7eYmvUPgYOdr/2Ps7MInuZo2ZI/d7wuLCyAaGMZtjNGvj7e8mdjXp5L5zDcuuVwOdLo9z6ELipK1nH66Jig6UnhsUQiIyMDsbFF31j26NED33//PT744AMAwLPPPosxY8bgzJkzkCQJmzZtwpgxY5w6f+XKlfHvf/8btWvXhiRJmDdvHvr164f9+/ejYcOGbv95gpWcJEFugsAGeO5R/NcnSbCqm5CTJMgt2nZ03J39Isg1bCbnX9a9/jryMzMRFhOD7h995NI52PnaP3kjSSjeSrY4WalSK6lEs73Sli35a8frwsICnDl21OUP/+504sA+mO0sRzKbzdjw0zLUbdpc1nFVa9e1OyMRaD0pPJZIJCUl4f7778ewYcMwZswYDB06FIWFhQgJCcFLL72EnJwcLFu2DGq1Gm+//TbGjx9f+knv0LdvX6v7H3zwAaZPn46dO3cykXBCaUuW5CQJchMENsArm9KWLclJEuQWbTs6jv0iyo7F1P4lPzMTeXcsx3UFO18HFlsf/sNsLGcq7ThbTe+O7T2DlNT6iCsfBUDesiV/7Xgtmsww5uVBo1FDownx+Pvl5eTgzPGjMNzKgi4qGjXqNUB4ZNHfTX5ersNkLD83B2FhYbKOi4mLQ+r9fbF55S9WyZ/axi5R/s5jicTAgQPx888/4+eff4Zer8eAAQMwbNgwdO3aFYIg4K233sJbb73llvcym834/vvvkZOTg3bt2tk9zmg0wmg0Wu4bDAa3vL+/klPXICdJkJsgOLOTFFmTs2xJTpIQU11e0bbj4m72iyir4mZyLKYOPPaKqdn5OnDY+/Bf3PFa7nGOmt7t23wM9/QuWpMvZ9mSv3e81mhCEKLVuvz6n+b9D3k5OQiPjES/4SNtHnPh1Els+Gk5RPGfzzwHdmxD134DkFyrNqJjyzlMxqLjyiFEq5V9XPX6DZCUnIxTRw4j6+YNhEVEotuDDyEuIbC+iPNYZ+sFCxYgPT0d3377Le655x4sWLAAPXr0QKVKlTBmzBjs27evzO9x6NAh6HQ6aLVaPPPMM/jhhx/QoEEDu8dPmTIF0dHRlltqamqZY/BXdy5ZkiQJZlGEJEmWJUsZ2UXToHKSBLkdsot3kgrR3O4WqVJBEASEaNRsgFcKOcuWYms0h6CyfR2KkwS53a/tHqcOYb8INyluJndfyn1oXbs17ku5D2MHjEX9ykyo/dXlPXuw4tln8ee33+LMunX489tvseLZZ3F5zx52vg4Qcjpeyz2utKZ3V85fBwDLsiVbipctBXvH67ycHOQaspGXY3sJV16OoSiJMJsBSSpKzCQJotmMDT8tR16OAbUaNYLKzr+hKpUKtRo2BgDZxwFAeKQOjVu3RZsu3VG3aXNE6qPK+JP6Ho8lEgAQHh6OoUOH4pdffsHVq1cxbdo01K5dG59//jlatWqFevXq4f3338eZM2dcOn/dunVx4MAB/PHHH3j22WcxfPhwHD161O7x48aNQ1ZWluUWzNvNylmyBEBWkuBMglC8k9RTfTvi/naN8FTfjlgw4Qlu/VoKy7IlW24vW5KbJBQXbSel9EJc7dZISumFugPGWm39evdxsTVboHzDVKSMmo642q09+8MGkeJi6gdbP4hODTpxJsKPWRVTS1LREiZJshRTA0C7MWOgCgkBBAGCWg0IAlQhIex87UfkdLyWe1xx0ztbBEFAXk7RCgq5y5aKO16369EUDVvWRLseTTH81b7c+hXAqcOHHc7qnDpyGOGROnTtNwCq4rGpUhX9V61G134DLEug5B4XLLyyaxMAxMbGYtSoURg1ahQuXbqEhQsXYtGiRZgwYQLeeecdtGnTBtu3b3fqnKGhoahVqxYAoEWLFti9ezemTp2KGTNm2Dxeq9VCe8fUmU7nn/9oF38wl/MNvr0aCLl1DXL7UTiz1aycnaTYtM6a3NqG0nZ2Kia3+3XxceZCI8zGXIRE8sMOkS1yi6nZ+dq/yel4Lfc4h03vJAnhkUWfV5xZtsSO17Zl38q0fH65m0oQkJ2VCQBIrlUbQ555HqeOHEZ2Vib00TGo1bBxieRA7nHBwGuJxJ0qVaqE1157Db169cKECRPw008/4Y8//ijzeUVRtKqB8FUFhSa7swFyfPL8QMufc/ML7B6369g5fLRgNUx3rAecu3IH3hjWE3FRkQ6XLJWLirScu0nNyvj69Uexcf8JpGVkIzFWjy4pdRGji7B6f21ICHq3+2dKz95MRmnYtK4kZxrSyU0SiMh95BZTu7PzNZvbeZ+cjtdyjyut6V2FqkVbhBYvW1q1aJtV4a5KFRzLltxBHxXj8DOPPjrGcr94OZIteTkGnDp8GNm3MqGPikGtRo0QHumfX0q7i9cTiQsXLlhmIw4fPgxJktC+fXsMGzbMqfOMGzcO9913H5KTk5GdnY2FCxdi06ZNWL16tYcid4+CQhMOnLyInHzPJjyGPCO+XL4Z5ttTeZZtW81mTPl2FR6/v53DGYnoyDD8cdR6yVnF8tGoWL7om7MTF67afM/DZy4j05CHGF042tSvho5NayM0xPp/M0ezDWxaZ5vchnRylNb5moic585iajkJApvbKUNOx2u5xznqjJ2SWh/asH92MSpetmSvjwQ5VqtRI+zdutlmt+m76xrssVWsvXfrZkuxdrDySiJx/fp1fPfdd1i4cCF27NgBSZJQr149vPvuuxg2bBiqVavm9DnT09Px2GOP4cqVK4iOjkaTJk2wevVq3Hvvve7/AdzIZBaRk29EiEaNEI3aY++z98QF++sBJRF/X8vA0O4tsWjdHojSHd9wCCoM7d4S8bHOfbA8fv5q0blE0fLLcPOBk1Cr1UhtXsdyXGmzDWxaZ5+cZUulJQmlbSFL/iU7Lxv7zuxDRk4GYiNjkVIjBXomhYqompqKw4sXWxrO3cmZYmo5CQKb25VN8fartrZrlfNaOR2vy9oZW6VRoTDf+v8lLltyXXFdw92JgEqlklXXYFWsDVhmN4qLtYc883zQzkx4LJHIycnBDz/8gIULF2L9+vUoLCxEhQoV8NJLL2HYsGFISSnbPumzZ892U6TKCNGoERbq2p7Jn3+3Htm5RugjtHhpsO1tOLNzHazPFATcyslH95b1UbNSPPaeuICbt3IQFxWJFnWToY9w7huO7Nx8LF6/xzL7UfyeZlHEhwtWo0mtSojVR8qabQjWpnWaML3Vf+0e52DZUmlJgpwtZDkz4T+O/n0UC7cstNo+du3BtRjWaRh3flJAWEwM2o0ZUyIJUGk0VsXUjmYb5CYIbG5XNp37yZ+xsdUHQm7H67J0xi4stH19yXVlqWuQU6xtbzlUoPNYIpGQkID8/HzodDo8/PDDlh4S9rbMIvmyc43IynHcBTJWH+G4c25U0cDRR4Sh8x0zBvbfMx97jp9HRnYuYvURaFmvqiXh2HP8vCWJuJtJ/GcWQc5sQ7A2rat1/7/K9Ho5SYKcLWRZW+EfsvOysXDLQktDu+KxbhJNWLBlAd7o/wZnJhRQsWVLh8XUpc02yE0Q2NzOO0rrAyGn47U3OmOTfI7qHxyRW6wdjDyWSHTv3h3Dhg3DAw88gLAwruHztpb1qmL1rqM2P7irVSq0qFv0i81RglDsyNnLmL/6D5jvKPJavesoHuvVFg2qVUBGtv0uj3fOIsiZbXi0Zxs2rXOBnCRBTudr8g/7zuyD2UbhPQCYRTP2n92PTkwKFWGvmFrObIPcBIHN7TyvtD4QPYa0d2lpFPk2e8XUzhRrBxuPJRI//fSTp05NMugjwvBYr7b4ZtVOqwRArVLhsV5toY8IKzVBAIoSjfmr/7AkJJZvPs0ivlm1E28+dp/D2Y87ZxHkzDbI3W6WrMlJEuRuIUu+LyMnw27yLggCbhpuKhAVOSJntkFuguCuegyyT04fCM40BBZHxdTuKNYOVFxnFMAaVKuANx+7D73bNUbbBtXRu11jvPnYfWhQrYJVgiBJRb8YJemfBCE7t2gvbEfLlsyiiL0nLqBlvapQ21myplH9M4sgtwM2m9bZZ8rLxrUjW3B510+4dmQLTHnZAOT1mZDT+Zr8Q2xkrOOli7o4L0dEpSmebbCleLZBbvfr4noMNrfzHIfN4u7oF0GBobTO1wDYhM4ORfpIkPfYq4GQkyB0bl7H4bIlQRBw81aO3dkPlaDCG8N63tFAT/5sg5ymdcHGUTG1nD4TmjCd27aQJcf0t4vm9aUUz7sqpUYK1h5ca6mRuJNapUYKk0LF2CumljPbILdgGyi9HoPKRm6/CAoMcoup2YSuJCYSQUpOggDIL9ounv0o3gEqKjIMdaskolX9alavcaYDNv1DTjG1nCRBbudrKpvR94926/lsbfM6rNMwLNiywGrXJrVKjWGdhkHH66kIR8XUcpcjOZMguLO5HVmT2y+CAoPcYmpXi7UDGROJICU3QZBbtA1Yz37kFxTa7brN2Qbnyd1xSU6SwM7X/sXRNq9v9H8D+8/ux03DTcTp4pBSI4VJhELkFFPLnW1ggqA8uX0gyL+wmNr9mEgEAVs7M8lNEOQUbZPnyd1xiUmCfymtoZycbV65O5NvkLt1K5cj+Q+5fSDIP7CY2jOYSAQ4RzszyU0Q7l625GrjOnIdd1wKPHIaynGbV/8hd+tWJWYbHDXBI+fY+S1MPk5OZ+qydL4OZkwkApicrVvlJghyG9eRZ8gppib/IbehHLd59R9K9HaQkyCU1gSP7CutIR35DxZTew63fw1gcnZmKk4QBqQ2R+fmdTjL4KM04XpU6TQMgkoNQAAEFQABgkrNHZf8kJyZBoDbvPoTuVu3usvlPXuw4tln8ee33+LMunX489tvseLZZ3F5zx7LMVZ1G5JUNFsiSZa6jfzMTLfGFEhKa0iXn2e7BpB8U3ExtS22iqnb39sLjVu3ZRIhAxOJAFa8M5Mtd+7M5E7ZufnYuO8Eftn2J3YeOYvM7Fy3v0ewKt5xKSmlF+Jqt0ZSSi/UHTAWUZXZ7dvfFM802HLnTENKjRSoVWqbx3GbV9/izd4OchMEOXUbZJuchnTkP1hM7Tlc2hTA5O7MJIetgu27Zy9K1GOIEn4/eAoTHu/NZnJuwmLqwCB3pkEfruc2r37E3b0d7C1dklvYLbdug0oqbkhnq5cEG9L5HxZTew4TiQDmzNatjjgq2G5QrQIA+/UYhWYz3p27AgsmjESsnlOERIBzDeXqV67PbV79iJxi6rLWNshNEJSo2wgUbEgXWMIjdSym9hAubQpgxVu3atQqCEJREx1BADRq+Vu33pkgSFLRlK4k/VOwnZ1b9K2Mo3oMk1nEuj3H3fqzEfmz4pkGjUoDAQJUggoCBGhUGpszDfpwPTo16IQHWz+ITg06MYnwY+6obQjV62UlCN6u2wgkVWolQaWys6aeDen8UnKt2hjyzPNoldoFdZo2Q6vULhjyzL+QXKu20qH5Nc5I+CF9hNbqv47I2brV0bIlOQXbnZvXcdgpWyUIuHIjy5UflShgcaYhMDmabZDTtE7O0iWgKBEorUt2cd2GnCZ4ZI0N6QITO1O7HxMJP/TS4G5OHe9o69bSli05ShDuLNh2VI8hShIqlOM/WER3K55poMBQ2lar7qptKMjOlp0guLtuI5iwIR1R6ZhIBDhHsw1y+kzILdh2VI+hUavQvSV3FiIi/1Q8o+CoiZuc2QZ31jY4kyAo0QQvUISFh6J2Y3n1hOT78nIMOHX4MLJvZUIfFYNajRohPJKzwGXBRCKAlTbbIGfZktyC7eJ6DKtO2aIEjVqNCSN6I1Yf4dGflYjIHnNBgc3dWuRKnTTJ8ufCvDybx5xZt87hbMOZdesQFhvrMEEIi41FYV4eKrZpg8OLFtk8n0qtRqU2bVCYlwe1VosaPXpYPUdEtl04dbJEsfXerZvRtd8A1kmUAROJACVntkHOsiWbCYIkQa0qWbB9Zz3GtcxsRIZpMfy+dqhYPsYrPzMR0d3MBQVIP3wYhbme7Wlz7ehRh79Prx09ispt2jickdBGReHK3r0AgFr334+TK1ZAuuP3rqBSodb99+PmqVM2YwiJiEBCo0ZQh3LpDdGd8nIMRUlE8Uzh7XEqms3Y8NNyDHnmec5MuIiJRICSM9sgd9mSnILtYsX1GPkFhcjNL0CMjjMRRKQc0WxGYW4uVBpNUbM4DwkvV87h79OI8uURXr486vXvj+M//FAiQajXvz/Cy5WzvCa+YUNEV6uGa4cPIz8zE2ExMYhv1AihdrapFAsLUZibC9FsBucliKydOnwYop3PRKIo4tSRwyzCdhETiQAlZ7bh3lb1ZfeZcFSwTUTk61QhIdBoS9/pzpa9M2agwGBAqE6HFqNG2TymYosWuLBli93ZhgopKdBotUho1Agx1aoh7eBBS4KQ2LQpQnUlvw3VaLWo2kleMb4JsLu0iijYZd/KtCxnuptKEJCdlen9oAIEE4kAJWe2wZllS0Tkftl52dh3Zh8ycjIQGxmLlBop0IfrlQ6L7lJgMKAgO9vhMaE6HRoOHowj331XYrah4eDBVolCqE6HKh06eDpsIrpNHxVjM4kAipY56aNjvBtQAGEiEaDkFkk7s2yJiNzn6N9HsXDLQphFs+VD59qDazGs0zDUr8xdzvxRubp10fbll2XNNhCR99Rq1Ah7t262uemCSqVCrYaNFYgqMDCRCFDOzDZw2RKRd2XnZWPhloUwiUVLUSybIYgmLNiyAG/0f4MzE36qtNmGAoOBiQaRl4VH6tC134ASuzapVCp07TcA4XZqj6h0TCQCGGcbiHzTvjP7YBZtb0dqFs3Yf3Y/G9UFoOsnTuDoXUufzm7YgIaDB6Nc3bpKh0cU0JJr1caQZ57HqSOHkZ2VCX10DGo1bMwkooyYSAQ4zjYQ+Z6MnAzHmyEYbioQFXlSgcFQlETcXlpRfO0lsxlHvvsObV9+mTMTRB4WHqnj7kxuplI6ACKiYBMbGet4MwRdnJcjIk9LO3jQYTO6tIMHvRwREVHZ+W0iMWXKFLRq1Qp6vR4JCQl48MEHceLECaXDIiIqVUqNFKhVtnf7V6vUSKmR4uWIyF0KDAZc3LYNJ1eswMVt21BgMAAA8jMzIQiCzdcIgoD8zEwvRklE5B5+u7Rp8+bNeP7559GqVSuYTCaMHz8ePXr0wNGjRxHJ9W5E5MP04XoM6zQMC7YssNq1Sa1SY1inYdCFcYmLP3JUAxEWE+NwFiosJsa7wRIRuYHfJhKrVq2yuj937lwkJCRg79696CSzgQ8RkVLqV66PN/q/gf1n9+Om4SbidHFIqZHCJMJPlVYDkfL00xA2bLDbsC6xaVOvxksUSIoLplk47X1+m0jcLSsrCwAQF8e1xUTkH/Theu7OFCBKq4HIOHVKdsM6InJOv+EjZR2Xl2PAqcOHkX0rE/qoGNRq1AjhkRx7ZREQiYQoinjppZfQoUMHNGrUyO5xRqMRRqPRct9we+0qERFRWRTXQNjbiSs/MxNVOnRgwzoihVw4dbJEH4m9Wzeja78BSK5VW+nw/FZAJBLPP/88Dh8+jK1btzo8bsqUKZg0aZKXoiIiomAhtwaitIZ1ROR+eTmGoiTi9tJC8fZYFc1mbPhpOYY88zxnJlzkt7s2FfvXv/6FX3/9FRs3bkTlypUdHjtu3DhkZWVZbps3b/ZSlEREFMgSmzaFoLL9TyprIIiUderwYYh2lh6KoohTRw57OaLA4beJhCRJ+Ne//oUffvgBGzZsQPXq1Ut9jVarRVRUlOWm43QyERG5QahOh4aDB0NQqwFBKEoqBAGCWs0aCCKFZd/KhMrO9ssqQUB2VqZ3Awogfru06fnnn8fChQvx008/Qa/X4+rVqwCA6OhohIeHKxwdEREFm3J167IGgsgH6aNiLMuZ7iZKEvTRMd4NKID4bSIxffp0AEDnzp2tHp8zZw5GjBjh/YCIiCjosQaCyPfUatQIe7duttRI3EmlUqFWw8YAuKuTK/w2kbBX1EZEREREVCw8Uoeu/QaU2LVJpVKha78BCI+M5K5OLvLbRIKIiIiISI7kWrUx5JnncerIYWRnZUIfHYNaDRsjPDKSuzqVARMJIiIihRQYDKypIPKS8EgdGrduW+JxObs62XodMZEgIiJSxPUTJ3D0rk7XZzdsQMPBg1Gubl2lwyMKOPZqIIp3dbJVkM1dnRxjIkFERORlBQZDURJxeylFcd2fZDbjyHffoe3LL3NmgsiNHNVAcFcn1/ltHwkiIiJ/lXbwICQ7SykkUUTawYNejogocFnVQEhS0TImSbLUQFSqUQMqOw0l79zViUpiIkFEROQBBQYDLm7bhpMrVuDitm0oMBgsz+VnZkKw0yBLEATkZ2Z6KUqiwFdaDcSls2fQtd8AqG43lFTdbiipUqstuzqRbVzaRERE5Gal1T+ExcTY3cZckiSExcR4N2CiACanBqJx67Z2d3Ui+zgjQURE5EZW9Q+SVLSESZIs9Q8FBgMSmzaFYGcphaBSIbFpUy9HTRS45NZAFO/q1P7eXmjcui2TCBmYSBARETkQqtMhVK+XXfwsp/4hVKdDw8GDIdxeSiHcXkohqNVoOHgwC62J3KhWo0asgfAQLm0iIiJyoMWoUU4dX1z/YGvp0p31D+Xq1kXbl19mHwkiD5PT2Zpcw0SCiIjIjZypfwjV6VClQwcvRUYUvBx1tibXMZEgIiJyo8SmTXF2wwZLj4g7sf6BSDn2OluT61gjQURE5EasfyCiYMEZCSIiIjdj/QMRBQMmEkRERG5SYDAweSCioMFEgoiIyA1Ka0JHRMrKyzHg1OHDyL6VCX1UDGo1aoTwSCb6ZcFEgoiIqIysmtABll2bipvQtX35Zc5MECnowqmTJbZ/3bt1M7r2G4DkWrWVDs9vsdiaiIiojOQ0oSMiZeTlGIqSiNvd5sXb3eZFsxkbflqOvByD0iH6LSYSREREZVTchM6WO5vQEZH3nTp8uCh5sEEURZw6ctjLEQUOJhJERERl5EwTOiLyruxbmVDZSfRVgoDsrEzvBhRAmEgQERGVUWLTpkX9ImxgEzoiZemjYiDaSfRFSYI+Osa7AQUQJhJERERlxCZ0RL6rVqNGUNlJ9FUqFWo1bOzliAIHd20iIiJyAzahI/JN4ZE6dO03oMSuTSqVCl37DUB4ZKTSIfotJhJERERuEqrToUqHDkqHQUR3Sa5VG0OeeR6njhxGdlYm9NExqNWwMZOIMmIiQURE5EXsfk2kjPBIHRq3bqt0GAGFiQQREZGXsPs1EQUSFlsTERG5SYHBgIvbtuHkihW4uG0bCgwGq+cs3a8lqaiBnSRZul/feSwRkT/gjAQREZEblDbbIKf7NesriMifcEaCiIiojOTMNrD7NREFGr9OJLZs2YK+ffuiYsWKEAQBP/74o9IhERFREJIz28Du10QUaPw6kcjJyUHTpk3x5ZdfKh0KEREFMTmzDex+TUSBxq9rJO677z7cd999SodBRERBTs5sQ3H36yN31VEIKhW7XxORX/LrRMJZRqMRRqPRct/AHTKIiMgNEps2xdkNG4pqJO5y52wDu18TUSAJqkRiypQpmDRpktJhEBFRgHFmtoHdr4koUARVIjFu3Di88sorlvsHDhxAamqqghEREVGg4GwDEQWboEoktFottFqt5b6Ov9yJiMiNONtARMHEr3dtIiIiIiIiZfj1jITBYMCpU6cs98+ePYsDBw4gLi4OycnJCkZGRERERBTY/DqR2LNnD7p06WK5X1z/MHz4cMydO1ehqIiIiIiIAp9fJxKdO3e2u283WbuWnobr19K99n7GQhPyjYUINWYhXBvitff1NlNBHm5d+Auq0DCoNaFee9/EhPJISoj32vuRZ11Lv4br6de99n4FpgLkF+RDY9AgPDTca++rBFN+Pq6dOAFNWBjUId77XZQYH4/EeI7RQJGWnob09DSvvZ/JZIapwISM3DSEhPr1RzWHCvLzcf7kXwjVhkIT4r1/QxPi45HAf0PdQpCC+JP4lStXMGPGDIwaNQoVKlRQOhyPMRqN6NmzJzZv3qx0KOQmqampWL16tdXmAeSfOD4DE8do4OAYDTwcn+4T1IlEsLh16xaio6OxefNm7lQVAAwGA1JTU5GVlYWoqCilw6Ey4vgMPByjgYVjNLBwfLpX4M6XUQnNmjXjoAkAt27dUjoE8gCOz8DBMRqYOEYDA8ene3H7VyIiIiIichoTCSIiIiIichoTiSCg1WrxzjvvsKgoQPB6BhZez8DDaxpYeD0DC6+ne7HYmoiIiIiInMYZCSIiIiIichoTCSIiIiIichoTCSIiIiIichoTCXLKuXPnIAgC5s6dq3QoRGQDxyiR7+L4pEDDRMKDTp8+jVGjRqFGjRoICwtDVFQUOnTogKlTpyIvL89j73v06FFMnDgR586d89h7yPHBBx/ggQceQGJiIgRBwMSJExWNx5sEQZB127RpU5nfKzc3FxMnTnTqXMF8be4UzGP0+PHjeP3119GsWTPo9XpUqFABvXv3xp49exSLyVt8eXwG83W5WzCPz8uXL+ORRx5B3bp1odfrERMTg9atW2PevHkIhj1yfHmMBvu1uRs7W3vIihUrMGjQIGi1Wjz22GNo1KgRCgoKsHXrVrz22ms4cuQIZs6c6ZH3Pnr0KCZNmoTOnTujWrVqHnkPOd566y0kJSWhefPmWL16tWJxKGH+/PlW97/55husXbu2xOP169cv83vl5uZi0qRJAIDOnTvLek0wX5tiwT5Gv/76a8yePRsPPfQQnnvuOWRlZWHGjBlo27YtVq1ahe7duysSlzf48vgM5utyp2Afn9evX8fff/+NgQMHIjk5GYWFhVi7di1GjBiBEydOYPLkyYrE5S2+PEaD/dqUIJHbnTlzRtLpdFK9evWky5cvl3j+5MmT0ueff+6x9//+++8lANLGjRtLPVYURSk3N1f2uc+ePSsBkObMmSPrWEmSpGvXrkkApHfeeUf2+wSa559/XvLUcHPl7zfYrw3HqCTt2bNHys7Otnrs+vXrUnx8vNShQwfZ7xcIfGl88rpwfDrSp08fKTIyUjKZTC693l/50hi1J1ivDZc2ecBHH30Eg8GA2bNno0KFCiWer1WrFl588UXLfZPJhPfeew81a9aEVqtFtWrVMH78eBiNRqvXVatWDX369MHWrVvRunVrhIWFoUaNGvjmm28sx8ydOxeDBg0CAHTp0qXE9F/xOVavXo2WLVsiPDwcM2bMAACcOXMGgwYNQlxcHCIiItC2bVusWLHC5b8HJWdD/IEoivj888/RsGFDhIWFITExEaNGjUJGRobVcXv27EHPnj1Rvnx5hIeHo3r16hg5ciSAovW28fHxAIBJkyZZrndpS5WC/dpwjAItWrSATqezeqxcuXK45557cOzYMZfOGUiUGp+8LhyfjlSrVg25ubkoKChw63n9kZL/htoStNdG6UwmEFWqVEmqUaOG7OOHDx8uAZAGDhwoffnll9Jjjz0mAZAefPBBq+OqVq0q1a1bV0pMTJTGjx8v/fe//5VSUlIkQRCkw4cPS5IkSadPn5ZeeOEFCYA0fvx4af78+dL8+fOlq1evWs5Rq1YtKTY2Vho7dqz01VdfSRs3bpSuXr0qJSYmSnq9XnrzzTelzz77TGratKmkUqmk5cuXW2Jw5duUYP3W+062vk158sknJY1GIz311FPSV199Jb3xxhtSZGSk1KpVK6mgoECSJElKS0uTYmNjpTp16kgff/yxNGvWLOnNN9+U6tevL0mSJBkMBmn69OkSAKl///6W633w4EFZcQXrteEYta99+/ZSnTp1XHqtv/LV8XmnYLouHJ//yM3Nla5duyadPXtWmjt3rhQZGSm1b99e9t9NoPDFMcprU4SJhJtlZWVJAKR+/frJOv7AgQMSAOnJJ5+0evzVV1+VAEgbNmywPFa1alUJgLRlyxbLY+np6ZJWq5XGjBljeczRtGzxOVatWmX1+EsvvSQBkH7//XfLY9nZ2VL16tWlatWqSWazWZIkJhKuuvuX4O+//y4BkBYsWGB13KpVq6we/+GHHyQA0u7du+2euyx/v8F4bThG7duyZYskCIL09ttvO/1af+ar47NYMF0Xjk9rU6ZMkQBYbt26dZMuXLgg67WBxBfHKK9NES5tcrNbt24BAPR6vazjV65cCQB45ZVXrB4fM2YMAJSYFm3QoAHuuecey/34+HjUrVsXZ86ckR1j9erV0bNnzxJxtG7dGh07drQ8ptPp8PTTT+PcuXM4evSo7PNT6b7//ntER0fj3nvvxfXr1y234mUNGzduBADExMQAAH799VcUFhYqGHHg4Bi1LT09HQ8//DCqV6+O119/vUzn8ne+ND6D7bpwfFobOnQo1q5di4ULF+Lhhx8GAI/uWOUvfGGM8toUYSLhZlFRUQCA7OxsWcefP38eKpUKtWrVsno8KSkJMTExOH/+vNXjycnJJc4RGxtbYk2gI9WrV7cZR926dUs8Xrwjwt1xUNmcPHkSWVlZSEhIQHx8vNXNYDAgPT0dAJCamoqHHnoIkyZNQvny5dGvXz/MmTOnxNpfko9jtKScnBz06dMH2dnZ+Omnn0qs0Q82vjI+g/G6cHxaq1q1Krp3746hQ4diwYIFqFGjBrp37x6UH1jv5AtjlNemCLd/dbOoqChUrFgRhw8fdup1giDIOk6tVtt8XHJi7+Lw8HDZx5JniKKIhIQELFiwwObzxcVfgiBg6dKl2LlzJ3755ResXr0aI0eOxKeffoqdO3cGxQcLd+MYtVZQUIABAwbgzz//xOrVq9GoUSOvvbev8oXxGazXhePTsYEDB2LWrFnYsmVLiVmRYOILY/RuwXptmEh4QJ8+fTBz5kzs2LED7dq1c3hs1apVIYoiTp48abUfclpaGjIzM1G1alWn31/uL9S74zhx4kSJx48fP255ntynZs2aWLduHTp06CDrH6W2bduibdu2+OCDD7Bw4UIMGzYMixcvxpNPPunS9Q52HKNFRFHEY489hvXr1+O7775Damqq0+cIREqPz2C/Lhyf9hV/252VleWW8/krpceoLcF6bbi0yQNef/11REZG4sknn0RaWlqJ50+fPo2pU6cCAO6//34AwOeff251zGeffQYA6N27t9PvHxkZCQDIzMyU/Zr7778fu3btwo4dOyyP5eTkYObMmahWrRoaNGjgdBxk3+DBg2E2m/Hee++VeM5kMlmuXUZGRolvypo1awYAlqnZiIgIAM5d72DHMVpk9OjRWLJkCaZNm4YBAwY4/fpApfT4DPbrwvEJXLt2zebjs2fPhiAISElJcep8gUbJMcprY40zEh5Qs2ZNLFy4EEOGDEH9+vWtunJu374d33//PUaMGAEAaNq0KYYPH46ZM2ciMzMTqamp2LVrF+bNm4cHH3wQXbp0cfr9mzVrBrVajQ8//BBZWVnQarXo2rUrEhIS7L5m7NixWLRoEe677z688MILiIuLw7x583D27FksW7YMKpXzOef8+fNx/vx55ObmAgC2bNmC999/HwDw6KOPBvUsR2pqKkaNGoUpU6bgwIED6NGjB0JCQnDy5El8//33mDp1KgYOHIh58+Zh2rRp6N+/P2rWrIns7GzMmjULUVFRln9Aw8PD0aBBAyxZsgR16tRBXFwcGjVq5HApRLBfG47Rog9e06ZNQ7t27RAREYFvv/3W6vn+/ftbPlAFGyXHJ68LxycAfPDBB9i2bRt69eqF5ORk3Lx5E8uWLcPu3bsxevToEjUhwUbJMcprcxclt4wKdH/99Zf01FNPSdWqVZNCQ0MlvV4vdejQQfrPf/4j5efnW44rLCyUJk2aJFWvXl0KCQmRqlSpIo0bN87qGEkq2naud+/eJd4nNTVVSk1NtXps1qxZUo0aNSS1Wm21jZ29c0hS0f7ZAwcOlGJiYqSwsDCpdevW0q+//mp1jDNb16WmplptjXbnTU7H0EBiryvnzJkzpRYtWkjh4eGSXq+XGjduLL3++uuWbq779u2Thg4dKiUnJ0tarVZKSEiQ+vTpI+3Zs8fqPNu3b5datGghhYaGytrGjtemSDCP0eK99+3dirufBwNfGp+8Lv8I5vG5Zs0aqU+fPlLFihWlkJAQy88+Z84cSRRFh68NRL40RnltrAmS5ESFEREREREREVgjQURERERELmAiQURERERETmMiQURERERETmMiQURERERETmMiQURERERETmMioaCPPvoI9erVgyiKSodSZmPHjkWbNm2UDkNRvJ6Bh9c0sPB6BhZez8DC6+mnlN5/NlhlZWVJcXFx0v/+9z/LY7i9T/gnn3xS4vg5c+ZIAKTdu3eX+b2XLVsmDR48WKpevboUHh4u1alTR3rllVekjIwMm8f/9NNPUvPmzSWtVitVqVJFmjBhglRYWGh1zJUrVyStViv99NNPZY7PH/F6Bh5e08DC6xlYeD0DC6+n/2IioZD/+7//k6KioqS8vDzLY8WDJjExUcrJybE63p2Dply5clLjxo2lt99+W5o1a5b0wgsvSKGhoVK9evWk3Nxcq2NXrlwpCYIgdenSRZo5c6Y0evRoSaVSSc8880yJ8w4ePFi65557yhyfP+L1DDy8poGF1zOw8HoGFl5P/8VEQiFNmjSRHnnkEavHAEjNmjWTAEiffvqp1XPuHDS2OhfPmzdPAiDNmjXL6vEGDRpITZs2tcq233zzTUkQBOnYsWNWxy5dulQSBEE6ffp0mWP0N7yegYfXNLDwegYWXs/Awuvpv1gjoYCzZ8/izz//RPfu3Us816FDB3Tt2hUfffQR8vLyPPL+nTt3LvFY//79AQDHjh2zPHb06FEcPXoUTz/9NDQajeXx5557DpIkYenSpVbnKP55fvrpJw9E7bt4PQMPr2lg4fUMLLyegYXX078xkVDA9u3bAQApKSk2n584cSLS0tIwffp0h+cxGo24fv26rFtprl69CgAoX7685bH9+/cDAFq2bGl1bMWKFVG5cmXL88Wio6NRs2ZNbNu2rdT3CyS8noGH1zSw8HoGFl7PwMLr6d80pR9C7nb8+HEAQPXq1W0+f88996BLly74+OOP8eyzzyI8PNzmcYsWLcLjjz8u6z0lSXL4/Icffgi1Wo2BAwdaHrty5QoAoEKFCiWOr1ChAi5fvlzi8Ro1auDo0aOyYgoUvJ6Bh9c0sPB6BhZez8DC6+nfmEgo4MaNG9BoNNDpdHaPmThxIlJTU/HVV1/h5ZdftnlMz549sXbt2jLHs3DhQsyePRuvv/46ateubXm8eBpRq9WWeE1YWBhu3bpV4vHY2NgSWXmg4/UMPLymgYXXM7DwegYWXk//xkTCR3Xq1AldunTBRx99hGeeecbmMRUqVLCZGTvj999/xxNPPIGePXvigw8+sHquOOs3Go0lXpefn2/zWwFJkiAIQpliCkS8noGH1zSw8HoGFl7PwMLr6buYSCigXLlyMJlMyM7Ohl6vt3vcO++8g86dO2PGjBmIiYkp8XxeXh6ysrJkvWdSUlKJxw4ePIgHHngAjRo1wtKlS62Kh4B/pu+uXLmCKlWqWD135coVtG7dusQ5MzIyrNYUBgNez8DDaxpYeD0DC69nYOH19G8stlZAvXr1ABTtVOBIamoqOnfujA8//NDmbgVLliyxZOCl3e52+vRp9OrVCwkJCVi5cqXNKcVmzZoBAPbs2WP1+OXLl/H3339bnr/T2bNnUb9+fYc/V6Dh9Qw8vKaBhdczsPB6BhZeT//GGQkFtGvXDkDR/4xNmjRxeOzEiRPRuXNnzJw5s8Rzrq4HvHr1Knr06AGVSoXVq1cjPj7e5nENGzZEvXr1MHPmTIwaNQpqtRoAMH36dAiCYFWEBABZWVk4ffo0nn32Wadj8me8noGH1zSw8HoGFl7PwMLr6ee83biCijRq1EgaOnSo1WMApOeff77EsampqZYOj+5ovtK0aVMJgPT6669L8+fPt7qtWbPG6thffvlFEgRB6tq1qzRz5kzphRdekFQqlfTUU0+VOO/SpUslANKpU6fKHKO/4fUMPLymgYXXM7DwegYWXk//xURCIZ999pmk0+ms2q/bGzQbN25066ApPpetW2pqaonjf/jhB6lZs2aSVquVKleuLL311ltSQUFBieOGDBkidezYsczx+SNez8DDaxpYeD0DC69nYOH19F9MJBSSmZkpxcXFSV9//bXSobjFlStXpLCwMOnHH39UOhRF8HoGHl7TwMLrGVh4PQMLr6f/YrG1QqKjo/H666/j448/hiiKSodTZp9//jkaN26Mfv36KR2KIng9Aw+vaWDh9QwsvJ6BhdfTfwmSVEp7PyIiIiIiortwRoKIiIiIiJzGRIKIiIiIiJzGRIKIiIiIiJzGRIKIiIiIiJzGRIKIiIiIiJzGRIKIiIiIiJzGRIKIiIiIiJzGRIKIiIiIiJzGRIKIiIiIiJzGRIKIiIiIiJzGRIKIiIiIiJzGRIKIiIiIiJzGRIKIiIiIiJwW1InElStXMHHiRFy5ckXpUIiIiIiI/ErQJxKTJk1iIkFERERE5CS/TiS2bNmCvn37omLFihAEAT/++KPSIRERERERBQW/TiRycnLQtGlTfPnll0qHQkREREQUVDRKB1AW9913H+677z6lwyAiIiIiCjp+PSNBRERERETK8OsZCWcZjUYYjUbLfYPBoGA0RERERET+K6hmJKZMmYLo6GjLLTU1VemQiIiIiIj8UlAlEuPGjUNWVpbltnnzZqVDIiIiIiLyS0G1tEmr1UKr1Vru63Q6BaMhKoPsq4A+SekoiIiIKIj5dSJhMBhw6tQpy/2zZ8/iwIEDiIuLQ3JysoKREXlY1iUmEkRERKQov04k9uzZgy5duljuv/LKKwCA4cOHY+7cuQpFReQFBQZAkgBBUDoSIiIiClJ+nUh07twZkiQpHQaR94mFRcmEVq90JERERBSkgqrYmiig3LqsdAREREQUxJhIEPmrtCNKR0BERERBjIkEkb86u0XpCIiIiCiIMZEg8leX93N5ExERESmGiQSRPzu8XOkIiIiIKEgxkSDyZ8d+BgzXlI6CiIiIghATCSI/07JlS1TuOBQtJ+8DTEZg6/8V9ZQgIiIi8iImEkR+5urVq7iUdh1XbxUUPXB+G7D/W2WDIiIioqDDRIIoEOz+Gtg7lzMTRERE5DVMJIgCxZ45wNoJQP4tpSMhIiKiIMBEgiiQnN0CfD8c+GsNIIpKR0NEREQBjIkEUaDJvQls/AD44Wng3DYudyIiIiKPYCJBFKiunwRWjwd+eAa4uFvpaIiIiCjAMJEgCnTXjgMrXwVWjWfPCSIiInIbJhJEweL8NmDp48CpdVzuRERERGXGRIIomBizgfXvAavfBLIuKR0NERER+TEmEkR+5MKFC8jJyQEA5BjNuHAz37UTnd8GfPcosPkjIPOCGyMkIiKiYMFEgsgP7Nq1C3379kW1atWQmZkJAMjMM6Pam7vwwLTD2H0u2/mTimbg+Argu8eA38YWFWRzy1giIgpwEpf3uo1G6QCIyLHly5djyJAhkCSpxC8/SQJWHr6J3w5nYMlT9TGgeXnn30CSgAs7im7RlYGG/YG69wGhkW76CawV5mXjzKqvcPPkH4CgQvl67VGj5yioQ8NlhCrh6OJ3kHF6L+oPegvl6razPJd9+S+c2zAXhiunAAHQV6yLat0ehy6xhkd+DiIi8k+i2QS1JkTpMAICZySIfNiuXbswZMgQmM1mmM1mm8eYRcAsShgy65hrMxN3yvob2P4f4NuBwM7pRT0pXPDnN2ORdnCtzef++vFj5F4/j0bD3keDIe8g68IRnFrxH1nnvbzrRwBCicfNBXk4smgCtFHxaDryMzQZ/jHUoeE4svBtiGaTSz8DEREROcZEgsiHvf/++zZnIu4mAZAg4f2V593zxoW5wMHFwKKhwL75Rcug3CD3+gVknN6LWr1fhL5SPUQnN0TNXqNw7cgWGLNvOHyt4eppXNr5A2r3fdHGef+GKS8bVVMfQUS5yoiMr4rkTg+jMCcTxqx0t8RORESBgSub3MflRMJsNmPx4sUYNWoU+vfvj0OHDgEAsrKysHz5cqSlpbktSKJgdOHCBfz66692ZyLuZhaBXw7ddL0A2xZTPrD7a+C31wFTQZlPd+vv41CHRUJfsbblsZjqzQFBQPalE3ZfZy7Mx4kfP0bNXs8iVBdX4vnwcpWgCY/C1QNrIJoLYS40Iu3AGoSXr4KwmMQyx01ERIFDctOXY+RijURmZiZ69eqFXbt2QafTIScnB6NHjwYA6HQ6vPDCC3jssccwefJktwZL5ItEU4FHls+sWbXS6YIwSQLWH8/AiHZu/vB8cRekw8ugaja0TKcpNGQgNCLG6jFBpUZIuB6FORl2X3d2zSxEVa5vVRNxJ402Ao0fnYJj37+Pi1sXAwDC4yqi4dD3IKjUZYqZiIgCi7nQhBCt0lEEBpcSibFjx+LIkSNYvXo1mjdvjoSEBMtzarUaAwcOxMqVK5lIUMATTQXIPHcQpvxct5877exRqFQCRFF+MqESgMzsPJiM7o/HdGIdtI0egkoTWuK5i1uX4OK27yz3RVMBsi8dx+lVX1keS3lmukvve+Ovncg89yeaP/WF3WPMhUac/HUqoio3QN3+r0MSRVzauRxHl0xE05H/BzX/xSAiotsK8vMQptMpHUZAcCmR+PHHHzF69Gjce++9uHGj5LrmOnXqYO7cuWWNjcjniWYTTPm5UKk1EGx8wC6LqOgYp5IIABAlICpcA0Fwb/mTJIkwqyMgmk02E4mkFvejfIN7LPdP/PgxytfrgHL12lse0+rLIUQXi4LcTOtzi2YU5mUjJDLW5ntnnfsT+RlXsOPjwVaPH1s6GVFVGqLJY//GtcObYMxKR9PHP7X87Lr+r2HnJ0Nw86+diG+Y6uqPTkREAcaYmwMgXukwAoJLiURWVhaqV69u9/nCwkKYTNwphYKHoAl1+7fene/pAEEQnFreJAhAlzpRRX9wIyk0GvnVuiHMzvMh4XqEhOst91UaLUIioxEeV9HquKjK9WDOz4HhyknoKhTVSWSePQhIEvSV6to8d+X2A5HYrIfVY/tnPo8a9z6FuNqtAQCiyXj7Z/7n5y5KKJz7+yMiosCXdysLkihCUHHPobJy6W+wZs2a2Ldvn93n16xZgwYNGrgcFBEBVSpVQM+unaBWy1vjr1YBfRrGIDnOvQmNqKuAnLZjIIbZnjFwRkT5ZMTWbIGTK/6D7EsncOviUZxePR3xDTtBqy8HADDeuo6900dZiq9DdXGITKhmdQMAbXQ8wmKTABQVbJvyDDi9ahpyr19AzrXz+Ovn/4OgUiOmapMyx01ERIFDNJmQeytL6TACgkuJxJNPPon//e9/WLJkieXbPkEQYDQa8eabb2LVqlUYNWqUWwMlCkavjX4aglA0vhwp+i5ewLieFdz6/qaKrZB7z5sQIxNKP1imOg++hohylXF4wZs4svgdRFVpiFq9R1uel0Qz8m78DXOhUfY5I8pXQYMh7yA37RwOznkVh+a9jgLDTTQc+i5C9SV3eSIiouB26xq3BncHQXJh3l+SJDz99NOYPXs2YmJikJmZicTERNy4cQMmkwmjRo3C9OmuFVZ60759+9CiRQvs3bsXKSkpSodDfshkzMXNk7uh1kZ4rKD3l1XrMHL065Ak2NwKVq0qSiIWPV4TDzYt+6wBAEBQwdhgMAqrdwMEAeZCI8zGXMTVbgWNNsI970FERKSAcwf2IvdWFhp06qp0KH7PpRoJQRAwa9YsDB8+HEuXLsXJkychiiJq1qyJwYMHo1OnTu6Okyho9e3VHauXfoOP/zMTqzdssVrzLwjA/Q1iMK5nBbSq6p4dKER9ReQ3exxijP06KCIiIn9249JFpUMICC4lEsU6duyIjh07uisWIrIjpWkjLPr6C1y8dAWd7h+EzFvZiAlXY+8bDd1WEyGFRKKg9v1FsxCqMv1qICIi8mk3mUi4hUs1EmfPnsUvv/xi9/lffvkF586dczUmIrKjSqUKiIgIBwBEhqrckkRIIREoqPsAcrpNQWHNnkwiiIgo4GXfuI5CY77SYfg9lz4xvPrqq7h16xb69u1r8/kvv/wSMTExWLx4cZmCIyLPkcJiUVCjOwqrpgIaexu7EhERBabMtKuIT66mdBh+zaUZiR07duDee++1+3y3bt3w+++/uxwUEXmOGFMd+SlP/TMDwSSCiIiCUObVy0qH4PdcmpHIyMiAXq+3+7xOp7PZ8ZqIFKIKgaliKxRU78IiaiIiIgDXL5xH7dbtlQ7Dr7k0I5GcnIxt27bZff73339H5cqVXQ6KiNxDCo0sqn/o/hHym49kEkFERHTbpRNHIdrYVp3kcymRGDp0KBYtWoQvvvgCoihaHjebzZg6dSqWLFmChx9+2G1BEpGT1CG3C6g/REGdByBp7c8gEhERBaN8QzYuHD6odBh+zaWlTePGjcPWrVvx0ksv4YMPPkDdunUBACdOnMC1a9fQuXNnvPnmm24NlIjkMcfWRH7zJyFFxisdChERkU87uPY3VGnYGGpNiNKh+CWXZiS0Wi3WrFmD2bNno3Xr1rh+/TquX7+O1q1b43//+x/WrVsHrdYzXX6JyD5TpdbIa/8akwgiIiIbWrZsiXY978eEuYsAANk3ruHIpvUKR+W/XN4wXqVS4fHHH8fjjz/uzniIyEXmhEbIb/YEoFIrHQoREZFPunr1Kq6mpyNWr7M8dmjjGlSq3xDlKlVRMDL/5NKMBBEpJyG+PCrGxyAx6p9pWFGXhLyUp5lEEBEROUkSRWxbMh+mggKlQ/E7Ls9IrF69GrNnz8aZM2eQkZEBSZKsnhcEAadPny5zgERkbePPi6C59AfC9s0CAEihOuS1Hg2ERCgcGRERkX+6dS0de1f8iDb9Bysdil9xKZH4+OOPMXbsWCQmJqJ169Zo3Lixu+MiIjlUGuS1Hg0pMlHpSIiIiPzayV3bkVizNqo1aa50KH7DpURi6tSp6Nq1K1auXImQEFa5EynFWLcfxNiaSodBREQUEHYuW4y4ipUQVT5B6VD8gsudrQcOHMgkwg9cuHAB69evR3Z2NvR6Pbp164bk5GSlwyI3kLRRKKzeXekwqAw4Pol8G8do8DEVGLHl2zno+dxLCAnlDqSlcSmRaN26NU6cOOHuWMiNdu3ahffeew8rVqyAJElQqVQQRRGCIKBPnz54++230apVK6XDpDIwVWoDqJnM+yOOTyLfxjEa3DLTrmD7dwvQ6eEREFTcl8gRl/52pk2bhuXLl2PhwoXujofcYPny5ejQoQN+++03SxF8cQdySZKwcuVKtG/fHsuXL1cyTCojU/n6SodALuD4JPJtHKMEABeP/Ik9K34ssZkQWXMpkRgyZAhMJhMeffRRREdHo2HDhmjSpInVrWnTpu6O1aYvv/wS1apVQ1hYGNq0aYNdu3Z55X191a5duzBkyBCYzWaYzWabxxQ/N2TIEOzevdvLEZK7iPqKSodATuL4JPJtHKN0pxPbt2D/ql+YTDjgUiIRFxeH2rVro1OnTkhJSUFCQgLKlStndYuLi3N3rCUsWbIEr7zyCt555x3s27cPTZs2Rc+ePZGenu7x9/ZV77//PiRJKvV/+uJj3n//fS9FRm4lqCCFxSgdBTmJ45PIt3GM0t2ObtmAXT9+D1G0nVgGO0Hy4zSrTZs2aNWqFf773/8CKJp6rFKlCkaPHo2xY8eW+vp9+/ahRYsW2Lt3L1JSUjwdrsdduHAB1apVcypzFgQB586dY/GYi0zGXNw8uRtqbQTUId4rylLfOAFzubpeez9zoRFmYy7iareCRst+Fa7g+CTybRyjwaFy5cq4dOkSYvU6fPH8E7JfV7Fufdzz/4YjJCzMg9H5H5cb0imtoKAAe/fuxbhx4yyPqVQqdO/eHTt27LD5GqPRCKPRaLlvMBgAACaTCYWFhZ4N2AtWr17t9PSbJElYs2YNhg8f7qGoApupsBCFhSaYxVwIhSavva/KrIGYm+O195NMBRDNReNEUvn/WFECx6dyzAUFEO0sUwkkKrUa6tBQpcPwWxyjyigsLIBo8t74lIrrXUQRBU589jt3+E/c/PzfaD9oGKLine/dpNKoERLi3fHpld1VJRdlZWVJU6ZMkXr06CE1a9ZM+uOPPyRJkqQbN25In376qXTy5ElXTy3LpUuXJADS9u3brR5/7bXXpNatW9t8zTvvvCMB4I033njjjTfeeOONt4C+eYNLMxJ///03UlNTcfHiRdSuXRvHjx+3fLsfFxeHGTNm4Pz585g6daorp/eYcePG4ZVXXrHcP3DgAFJTU/HHH3+geXP/72I4d+5cPP30006/btasWfw2pQzE29/We5UxG9DqvfqWKrUGKg2/7XQVx6cyCvPycGXfPqg0GqgCuPeRWFgI0WRChZQUhISHKx2OX+IY9T5jXh5OHDoIjUYNjdo7i2S63t8H6deuIToiAv9+fKjL54mvURO12t4DjYxZQJPZBJPJjLqNm0IbYOPTpav22muvITs7GwcOHEBCQgISEqy7/z344IP49ddf3RKgPeXLl4darUZaWprV42lpaUhKSrL5Gq1WC632n3XsOp0OAKDRaAKiuV7Pnj0hCILT6zt79OgRED+/YpT4uwvVAKGR3n9fchnHp0JMJoRoNNCEh0OjDdzmUiajEaa8PISEhPD/FxdxjHqfeHt8hoWFIcRL41N1uy+ESiUgJETt8nkyL57DoZs30KBrD8RWrOzw2EKjEfn5+QE5Pl3atWnNmjV44YUX0KBBAwiCUOL5GjVq4OLFi2UOzpHQ0FC0aNEC69evtzwmiiLWr1+Pdu3aefS9fVVycjL69OkDtVrewFCr1ejbty+LxPyR4PovP1IGxyeRb+MYJWcZc7Kx/5flOP3HtqCow7LFpUQiLy8P8fHxdp/Pzs52OSBnvPLKK5g1axbmzZuHY8eO4dlnn0VOTg4ef/xxr7y/L3r77bchCILNBO9Oxce89dZbXoqM3CqEu0b4I45PIt/GMUrOk3D+wB7s+3kp8m5lKR2M17mUSDRo0ABbtmyx+/yPP/7olZqDIUOG4JNPPsGECRPQrFkzHDhwAKtWrUJiovPV9IGiVatWWLJkCdRqtd1vVYqf++6779CqVSsvR0gUvDg+iXwbxyi56lb6VexZvhg3Lp5XOhSvcimReOmll7B48WJ8+OGHyMoqyr5EUcSpU6fw6KOPYseOHXj55ZfdGqg9//rXv3D+/HkYjUb88ccfaNOmjVfe15cNGDAA27dvx/3332/5VqV4TaAgCOjduze2b9+O/v37KxkmUVDi+CTybRyj5KpCYz7+/O1nXDx0QOlQvMalYutHHnkE58+fx1tvvYU333wTANCrVy9IkgSVSoXJkyfjwQcfdGec5KRWrVrh559/xoULF7BhwwbcunULUVFR6Nq1K9dzEimM45PIt3GMBqZLly8jNy8PAGAsLMSNWwaUi9K59T0kScTJ7ZtRkJODGm3al7pMzt+VqbP1hQsXsGzZMpw6dQqiKKJmzZoYMGAAatSo4c4YPSbQOlsTEZG1wrw8XNm7N2h2barQogW3fyW/YczLw4k/D3h816aDf/6J/0z/Chs3b7HalUsA0KR6Mvq0SUH1pAT7J3BR1WatULNNe8uuTXWbNOP2r7m5ubjnnnvw1FNP4ZlnnvHaEiYiIiIiImesWrMWL4x5FZIkldjaVwJw6NxFHDp/EaPu744Wtaq79b3PH9iN8OhoxFevVabzSJKEDT8uw54tG5Gfm4vkWnXwwGOPo1yi7XYHALB5xc84tnc3rl25gpDQUFSpVRs9Bg5BfIWKlmNmf/g+zp04bvW6Vp274oHHRsqOzelEIiIiAmfPng34qRoiIiIi8l8H//wTL4x5FWaz2W5/EFGSAAmYsXIdxg3u5/aZib+2bkJkXHmotK7vtvj7b79i57o1GPDkKMSWj8f6H5Zi3qcfYvQHHyIkxHZDvHMnjqF113tRqXoNiGYz1i3/DvM++xAvvP8hQu+IpWWnLuja/yHL/RAZDfbu5FKxda9evbB69WpXXkpERERE5HH//WqGzZkImyTg11373R6DaDbh9M6tLr9ekiTsWLsKqX37oX7zFkiqkoyHnnwG2ZmZOLZvr93XDX/lDaR07ITESpVRIbkqBowchawbN3D53Dmr40JCQ6GPjrHcwsIjnIrPpWLrt99+G4MGDcKjjz6KUaNGoXr16gi3seYrLi7OldMTEREREbns0uXL2LBps+xO5aIk4c8z5z1SgJ1x6SIM19Nde+21azBkZaFmg0aWx8IiIlC5Rk1cPH0STdrIa8Kcn5cLAAiPjLR6/ODO7Ti4cxt00TGo27Q5Ovd9EKFO1Ku4lEg0bNgQAHD06FEsXLjQ7nHmIO3yR0RERETymEyFbj/n779vlZ1EFJMAHLtwCR0a1HFrLJIk4cb5sy691nArEwCgi4qyejwyKgqGLHkN8ERRxMpF3yK5Vh0kVq5iebxJm/aIKV8e+phYpF28gDVLF+P61St4+F8vyY7PpURiwoQJrJEgIiKyQyoshBASonQYRD5NpVFDGx4OY14eTCb3fvmcmZUFlUoFURRlv0YQgLwCI0RJ/mvkMuXnQaWx3eTwTgd3bMPP3/zPcv+Rl14t83v/+u08pF/6G0+Oe9vq8Vadu1r+nFS5CvQxMZjz8RTcTE9DXIK85s4uJRITJ0505WVERERERACAkJBQ1KjfAKKbkwgAqHngT6eSCACQJEAfqXO6TkCO8hUr2S2MvlO9ZimoXKOm5b7JZAIAGG7dgj4m1vJ4zq1bSJLR0+TXb+fhxMH9eHLsW4iOK+fw2OL3veHpROJuWVlZ0Ol0dtvJExERBRWVS3uZEAWdkJBQwAOTd73uuw+CIDi1vEkA0LBaFUsnc3eqVLe+rOO04eFWvSYkSYIuOhpnjh5BheSqAIrqHf4+cxqtunSzex5JkrBiwTc4um8PnnjjTcTGl74b1ZULFwAA+ugYWbECLu7aBAB79uxBr169EBERgXLlymHz5s0AgOvXr6Nfv37YtGmTq6cmIiLyb1z+S6So5ORk9OnTR/aX3CpBQPNaNVA+Oqr0g50UER2Dqo2bufRaQRDQ7t5e2PTrjzi2fy+u/n0Ry76eAX1MDOqntLAcN+fjydi5fo3l/q/fzsXBHdswaNRzCA0LQ3ZWJrKzMlFYUAAAuJmeho0//4BL584i4/o1HNu/F8u+/grV6tRDUhX53dtdmpHYvn07unbtikqVKuGRRx7B119/bXmufPnyyMrKwowZM9C5c2dXTk9EREREVCZvv/02fvvtN1kzE4IgoF+HVh6IQkDbAUOg1rg+7XLPfX1QaDTi53n/K2pIV7sOHnvldaulUjfT05GbnW25v2vjegDA/z78wOpc/Uc+jZSOnaDWaHDm6BHsWLsahUYjouLi0LBFK6T27efcTyc5W9IOoHPnzsjKysLOnTuRnZ2NhIQErFu3Dl27FhVtTJo0CfPmzcOZM2ecPbVX7du3Dy1atMDevXuRkpKidDhERORmhXl5uLJ3LzTh4dA4saVhWUmiCMGLy5tMRiNMeXmo0KIFQmxsx04UrJYvX44hQ4ZAkiSbu4mqBAGCIOBf/e5Dy7pl60BtS9Me96Nxlx5uP6+vcOm33O7du/H4449Dq9Xa3L2pUqVKuHr1apmDIyIiIiJy1YABA7B9+3bcf//9JT6zCgCa1ayOCY8O8kgSUSOlNRp1vtft5/UlLi1tCgkJcVgJf+nSJeh07m3mQURE5Decn+wnIg9p1aoVfv75Z1y4cAFNmzZFZmYmIsK0+ODxhz1SEwEA5ZOroU3/wQHfLsGlGYm2bdti6dKlNp/LycnBnDlzkJqaWqbAiIiI/BYTCSKfk5ycjMjbnZ21ISEeSyJCwyPQ6eERUGvcsjmqT3MpkZg0aRL27NmD3r1747fffgMAHDx4EF9//TVatGiBa9eu4e233y7lLERERAGKiQRR0Go7YAginNhC1Z+5lCq1adMGK1euxLPPPovHHnsMADBmzBgAQM2aNbFy5Uo0adLEfVESERH5EycbYRFRYKjTtiOSGzVVOgyvkZVI3Lp1C5GRkVZ78Xbt2hUnTpzAgQMHcPLkSYiiiJo1a6JFixYBvx6MiIiIiOhOVRo2Qcu+/ZUOw6tkLW2KjY3FkiVLLPdHjhyJP/74AwDQrFkzDBo0CEOGDEHLli2ZRBARUdCTbGwzSUSBq1ardrjn4eFQqeQ1wAsUshKJ0NBQGI1Gy/25c+fi9OnTHguKiIjIr7FGgigoqDQatHlwMNr0Hxx0SQQgc2lTvXr18PXXX6NatWqIjo4GAJw7dw779u1z+Do2eSMioqDEGQmigBdXsTLaD34EMYlJSoeiGFmJxJQpUzBkyBB0794dQFEb8bffftvuzkySJEEQBJsdBImIiAIei62JApZKpUajrveiUed7oVIH3yzEnWQlEr169cLZs2exe/dupKWlYcSIEXj66afRrl07T8dHRETkf5hIEAWk2AqV0H7Qw4itUEnpUHyCrETizz//RNWqVdGzZ08AwJw5czBo0CB069bNo8ERERH5IxZbEwUaAQ07d0OTbr2CotGcXLKKrZs3b44VK1Z4OhYiIqLAwBkJooARGhaOro8/jeY9+zCJuIusRCI8PBy5ubmW+5s3b0ZaWprHgiIiIvJrJpPSERCRG0TGxKLXcy+jYp36Sofik2SlVU2bNsVnn30GtVpt2bVp9+7dCAsLc/i6AQMGlD1CIiIiPyPdsWU6Efknfbl43PvU84iIjlE6FJ8lK5GYOnUqBg4ciCeeeAJA0a5NU6dOxdSpU+2+hrs2ERFRsJIMOUqHQERlEJ1YAd2feBbh+iilQ/FpshKJli1b4tSpUzh9+jTS0tLQuXNnvPnmm5btYImIiOgfYlam0iEQkYviKlZG15HPICxSp3QoPk92xYhGo0HdunVRt25dDB8+HH369EGbNm08GRsREZFfEm/cVDoEInJB+eRq6Pr4KISGhSsdil9wqfR8zpw57o6DiIgoYJivXVM6BCJyUvnkaug28hmEaB3XANM/ZCUS7777LgRBwJtvvgmVSoV333231NcUd78mIiIKNlJWJiSjEYJWq3QoRCRDdHwiuo54mkmEk2QlEhMnToQgCHjjjTcQGhqKiRMnlvoaJhJERBS0JMCcng5NlSpKR0JEpVBrQtDpkZEIDY9QOhS/IyuREO9qrHP3fSIiIrJmvnSZiQSRj0lKSoK5sBDhd3RSa9K9F6ITEpULyo+xPR8REZEHmC9cANpyUxIiX7Jnzx6cO7AXW5fMBwBEREWjXodOCkflv1xOJI4dO4bTp08jOzsber0etWrVQr169dwZGxERkd8ynT4NSZIgCILSoRCRHfXv6QK1JkTpMPyW04nEjBkz8MEHH+DSpUslnktOTsabb76JJ5980i3BERER+SsxIwNiejrUiVwyQeSLNKGhqNmSs4Zl4VQi8eqrr+Kzzz5DXFwcRo4ciUaNGkGn08FgMODQoUP48ccfMWrUKJw8eRIffvihp2ImIiLyC4V/HoL6XiYSRL4ouVEz9osoI9mJxK5du/DZZ5+hf//++OabbxAZGVnimKlTp+KRRx7BJ598gkGDBqFly5ZuDZaIiMifFOzfB223rhBUqtIPJiKvqta0udIh+D3Zv9lmz56NChUqYOHChTaTCACIjIzEokWLkJiYiNmzZ7stSCIiIn8kXr8B04kTSodBRHfRhIYisUYtpcPwe7ITiR07dmDQoEHQltJcJywsDIMGDcK2bdvKHBwREZG/y1+zFhK3TSfyKeWTq7PI2g1kJxIXL15E/fr1ZR3boEEDXLx40eWgiIiIAoX50iUU7NypdBhEdIfylZOVDiEgyE4kbt26Bb1eL+tYnU6H7Oxsl4MiIiIKJPm/roD56lWlwyCi26ITk5QOISDITiSc3QtbkiSXAiIiIvJnPYYMQYel32PAtq2WxySTCbnfzIeUl6dgZERUTBdXTukQAoJT279+8sknWLRoUanH2eoxQUREFAzSr19HWm4uoA2zetx8/TpyFy5CxOMjuIsTkcLCdfJW2ZBjshOJ5ORk3Lx5Ezdv3pR9vCd98MEHWLFiBQ4cOIDQ0FBkZmZ69P2IiIjKqvDECeSv/A3hfXorHQpRUAuNiFA6hIAgO5E4d+6cB8NwXkFBAQYNGoR27dpxq1kiIvIbxi1boE5MQGirVkqHQhS0QkId70JK8ji1tMmXTJo0CQAwd+5cZQMhIiJyUt6y5VDFxkFTq6bSoRAFHZUmhMsL3SSo/haNRiNu3bpluRkMBqVDIiKiICSJInK+mQfz5ctKh0IUdNQh7B/hLkGVSEyZMgXR0dGWW2pqqtIhERFRkJLyjTDMnAXzlStKh0IUVDRMJNzGpxKJsWPHQhAEh7fjx4+7fP5x48YhKyvLctu8ebMboyciInKOlJsLw1czYDp7VulQiIIGZyTcx6dqJMaMGYMRI0Y4PKZGjRoun1+r1UKr/ae4RqfTuXwuIiIid5Dy8pAz62uEDx6E0GbNlA6HKOBpQkKVDiFg+FQiER8fj/j4eKXDICIi8irJZELuwkUQr6ZB2+NeFoISeRBnJNzHpxIJZ1y4cAE3b97EhQsXYDabceDAAQBArVq1ONNARER+KX/DBpivXEHE0P8HISys9BcQkdPUGr/9+OtzXP6bXL16NWbPno0zZ84gIyMDkiRZPS8IAk6fPl3mAO2ZMGEC5s2bZ7nfvHlzAMDGjRvRuXNnj70vERGRJxUeOwbDl9MQ+fgIqOLilA6HKOCo1Ewk3MWlv8mPP/4YY8eORWJiIlq3bo3GjRu7O65SzZ07lz0kiIgoIJnT0oqSiSdGQl2xotLhEAWUEM72uY1LicTUqVPRtWtXrFy5EiFcZ0ZEROR2YnY2DDNnIvLJJ6GpXFnpcIgCBpc2uY9L1VwZGRkYOHAgkwgiIiIPknLzkPP11zBfvap0KEREJbiUSLRu3RonTpxwdyxERER0Fym3aHtY8/XrSodCRGTFpURi2rRpWL58ORYuXOjueIiIiOguYnY2cmbOhPnGDaVDISKycGmR2JAhQ2AymfDoo4/i2WefReXKlaFWq62OEQQBBw8edEuQREREwU7MzELOVzMQ+eQTUCcmKh0OEZFriURcXBzKlSuH2rVruzseIiIiskPMyoJh+nREjngcmmpVlQ6HiIKcS4nEpk2b3BwGERERyVFUMzELEY8MQ0j9+kqHQ0RBzKUaCSIiIlKOVFiI3HnfoOAAlxATkXLKtJFuYWEhjh8/jqysLIiiWOL5Tp06leX0REREfuXvK1eQm5cHAMgzm3A5Lw8Vw8M98l6SKCJ38SIIGjUELjUmIgW4lEiIoohx48Zh2rRpyM3NtXuc2Wx2OTAiIiJ/se/QIXw2YwbWbdkCSZIAALdMJnTdtBGdExLwXM1aaBIT4/43FiXkLl6M8FGjAL3epVP8vXMnzqxZg4wzZ1BgMODejz9GTPXqpb7m+PLlMFy9CtFshq5CBdTt2xdVU1Mtx5jy8vDnggW4vGsXjAYDIhMSUPu++1CzZ0+X4iQi3+NSIjF58mR8/PHHGDVqFDp27IhHH30UH374IWJiYjBt2jQIgoCPPvrI3bESERH5nBXr1uHp116DJEmWJKKYBGDLtWv4/do1/F+z5uiRlOT295cKCmFc+RtChgx26fVmoxHl69dH5fbtsferr2S9JlSnQ/2HHoK+UiWoNBpc2bsXu7/8EtroaCQ1awYAODBvHtIPH0brF15AZEIC0g4exL5ZsxAeF4eKrVq5FCsR+RaXaiTmzp2LwYMHY/r06ejVqxcAoEWLFnjqqafwxx9/QBAEbNiwwa2BEhER+Zp9hw7h6ddeg9lstjsLb5YkmCUJLx/Yjz8zMz0Sh/nUKUiGHJdeWzU1FQ0GDUJikyayX5PQqBEqtWmDqMqVoUtKQu3evRFdtSquHztmOebGiROolpqKhEaNEJmQgBr33ovoatVw89Qpl+IkIt/jUiLx999/o2vXrgAArVYLAMjPzwcAhIaG4pFHHsH8+fPdFCIREZFv+r+ZM23ORNxNun2bftpzH6KlHNcSiTK/ryQh7c8/kX35MuIbNLA8Xq5uXVzeswd5N25AkiSkHz4Mw+XLSGzaVJE4icj9XFraVK5cORgMBgCATqdDVFQUzpw5Y3VMRkZG2aMjIiLyUX9fuYK1mzeXmkQUM0sSNqane6YAW6WCEBPt3nOWojAnB7+MGgWxsBCCSoWUJ5+0ShKaP/EE9n71FX4dNQqCWg1BENDimWeskg0i8m8uJRLNmzfH7t27Lfe7dOmCzz//HM2bN4coivjiiy/QlN84EBGRjxALC2Fy8zk3b90qO4koJgHYef06BlSu7NZYVDVqQLi9QsCR81u2YO/MmZb794wf7/IHe014OHp8/DFM+flIO3QIB+fNQ2RiIhIaNQIAnFq5EjdOnkSHsWMRUb48rh87hv1ff43wuDinllERke9yKZF4+umnMXfuXBiNRmi1WnzwwQfo1KkTOnXqBEmSEBsbi0WLFrk7ViIiIqeo1GqERESgMDcXosm9qcStrCyoBAGiE8mECkB2YSEkG1uml4WqUUOERERApVY7PK5iq1Yod8dWseFxcS6/p6BSQVehAgAgpnp1ZF+6hOM//ICERo1gNhpxaNEidHjtNVRo0aLomGrVkHnuHE78/DMTCaIA4VIi8cADD+CBBx6w3G/QoAFOnz6NTZs2Qa1Wo3379ogrwy8nIiIid1CHhiKhUSOIHtiOvNKRI04lEQAgAoiOiEBIRITb4hDCtKj4//4fNBERUIeGOjw2JDwcIR7sayEWFgIARLMZkskECIJ1rCoV4OYkioiUU6aGdHeKjo5Gv3793HU6IiIit1CHhsLx9/Su6XHffRAEwanlTQKA9omJRR+o3SSyRQtoy9CjoiA7G7nXryPvdm1j9uXLAICwmBiExcYCAHZ98QXCy5VD42HDAADHli9HXM2aiExKglhYiCv79uH8li1IeeopAEBIRATiGzTAn/PnQx0aisj4eFw7ehTnNm9Gs+HDy/DTEpEvcTmRMJvN+P7777Fx40akp6fj3XffRePGjZGVlYX169ejQ4cOSExMdGesREREPiM5ORl9+vTBypUrZTVgVQsCuiQloZIbZyMAIKJduzK9/vKePdj95ZeW+zv/7/8AAA0GDULDIUMAALnXrwN3JD9moxH7Zs1C7s2bUIeGIqpiRbR54QVU6dDBckzbl1/GoYUL8ccXX6DAYEBk+fJoPHQoavToUaZ4ich3CJKzlWIAMjMz0atXL+zatQs6nQ45OTlYu3YtunbtCrPZjKpVq+Kxxx7D5MmTPRGz2+zbtw8tWrTA3r17kZKSonQ4RETkZ3bv3o327dvDbDY7nJkQUJRIfJ/aGU3duPRXpdejyswZUJWypImIyBNcmlsdO3Ysjhw5gtWrV+PMmTNWvzzVajUGDhyIlStXui1IIiIiX9SqVSssWbIEarUaajuFzmpBgFoQ8J/WbdyaRABAdN8+TCKISDEuJRI//vgjRo8ejXvvvRfCXYVUAFCnTh2cO3eurLERERH5vAEDBmD79u24//77S/ybKADokpSE71M7o2elSm59X01CAqL69nXrOYmInOFSjURWVhaqV69u9/nCwkKY3LzNHhERka9q1aoVfv75Z1y4cAFNmzZFZmYmojQhWNG9u9trIgAAgoDy/3qesxFEpCiXZiRq1qyJffv22X1+zZo1aMDOlUREFGSSk5MRGRkJAIjQaDyTRACIeWgAwhs29Mi5iYjkcimRePLJJ/G///0PS5YssdRHCIIAo9GIN998E6tWrcKoUaPcGigREREBYU0aI+b2bkpEREpyaWnTiy++iCNHjmDo0KGIub139cMPP4wbN27AZDJh1KhReOKJJ9wZJxERUdALqVgBCWPGuLUPBRGRq1xKJARBwKxZszB8+HAsXboUJ0+ehCiKqFmzJgYPHoxOnTq5O04iIqKgpo6ORuKbb0Kt0ykdChERgDJ2tu7YsSM6duzorliIiIjIBpVej6R3JiAkKUnpUIiILMqUSBAREZFnqaL0SJowAaFVqyodChGRFdmJxAMPPODUiQVBwE8//eR0QERERFREHRuLpHcmILRKFaVDISIqQXYi8euvvyIsLAxJSUlWnaztsdWojoiIiOTRJCRwORMR+TTZiUSlSpVw6dIllC9fHg8//DD+3//7f0jiLzciIiK3C6lcGUkT3oamXDmlQyEiskv2/nEXL17Exo0b0bx5c7z33nuoUqUKunfvjjlz5iA7O9uTMRIREQUNba1aqPD+e0wiiMjnObURdWpqKmbMmIGrV69i6dKlKFeuHP71r38hISEBAwYMwNKlS2E0Gj0VKxERUUALb9oUSRPfgVqvVzoUIqJSudTRJiQkBP369cOSJUuQlpZmSS6GDBmCjz76yN0xEhERBbzI9u2ROG4sVOHhSodCRCRLmbZ/NRqNWL16NX766Sfs378fYWFhqFatmptCIyIiCg66Ll1Q/rln2bGaiPyK07+xRFHE6tWrMWLECCQmJmLo0KHIy8vDrFmzkJ6ejkcffdQTcRIREQUkXefOTCKIyC/JnpHYvn07Fi5ciO+//x43btxA27ZtMXnyZAwePBjly5f3ZIxEREQBKaJlSyYRROS3ZCcSHTt2RHh4OO6//34MHTrUsoTpwoULuHDhgs3XpKSkuCVIIiKiQBNaswbiX34JglqtdChERC5xqkYiLy8Py5Ytw/Llyx0eJ0kSBEGA2WwuU3BERESBSB0bi8Q33oAqLEzpUIiIXCY7kZgzZ44n4yAiIgoKQkgIEt94nX0iiMjvyU4khg8f7sk4iIiIgkL5Z5+BtnZtpcMgIiozVncRERF5SfQDfaFLTVU6DCIit2AiQURE5AVhDeoj9pFHlA6DiMhtmEgQERF5mCo8HPEvvsgdmogooDCRICIi8rDYxx6Fhj2XiCjA+GUice7cOTzxxBOoXr06wsPDUbNmTbzzzjsoKChQOjQiIiIroVWToe/eXekwiIjczqk+Er7i+PHjEEURM2bMQK1atXD48GE89dRTyMnJwSeffKJ0eERERBYxAweyczURBSS/TCR69eqFXr16We7XqFEDJ06cwPTp05lIEBGRopKSkmDOzET5kBCoy8Uhok0bpUMiIvIIv0wkbMnKykJcXJzDY4xGI4xGo+W+wWDwdFhERBRk9uzZg79Hv4DCy5eh69CBBdZEFLACYq711KlT+M9//oNRo0Y5PG7KlCmIjo623FK5lzcREXlQeEoLpUMgIvIYn0okxo4dC0EQHN6OHz9u9ZpLly6hV69eGDRoEJ566imH5x83bhyysrIst82bN3vyxyEiomCmUkFbhx2siShw+dTSpjFjxmDEiBEOj6lRo4blz5cvX0aXLl3Qvn17zJw5s9Tza7VaaLVay32dTudyrERERI6EVKwI1R3/5hARBRqfSiTi4+MRHx8v69hLly6hS5cuaNGiBebMmQMVd8QgIiIfElK5ktIhEBF5lE8lEnJdunQJnTt3RtWqVfHJJ5/g2rVrlueSkpIUjIyIiKhISCUmEkQU2PwykVi7di1OnTqFU6dOoXLlylbPSZKkUFRERET/CL3r3yciokDjl+uBRowYAUmSbN6IiIh8QUjlKkqHQETkUX6ZSBAREfk0QUBIxQpKR0FE5FFMJIiIiNxMXS4OqrAwpcMgIvIoJhJERERuFpKQoHQIREQex0SCiIjIzdRx5ZQOgYjI45hIEBERuZk6NkbpEIiIPI6JBBERkZupo6KUDoGIyOOYSBAREbmZSq9XOgQiIo9jIkFERORmYfXrKx0CEZHHMZEgIiJyM0HFf16JKPDxNx0RERERETmNiQQRERERETmNiQQRERERETmNiQQRERERETmNiQQRERERETmNiQQRERERETlNo3QA5B1XrlzBlStXlA6D3KRChQqoUKGC0mGQm3B8Bh6O0cDCMRpYOD7dJ6gTiQoVKuCdd94J+P+ZjEYjhg4dis2bNysdCrlJamoqVq9eDa1Wq3QoVEYcn4GJYzRwcIwGHo5P9xEkSZKUDoI869atW4iOjsbmzZuh0+mUDofKyGAwIDU1FVlZWYiKilI6HCojjs/AwzEaWDhGAwvHp3sF9YxEsGnWrBkHTQC4deuW0iGQB3B8Bg6O0cDEMRoYOD7di8XWRERERETkNCYSRERERETkNCYSQUCr1eKdd95hUVGA4PUMLLyegYfXNLDwegYWXk/3YrE1ERERERE5jTMSRERERETkNCYSRERERETkNCYSRERERETkNCYSRERERETkNCYSRB4gCIKs26ZNm8r8Xrm5uZg4caJT5/rggw/wwAMPIDExEYIgYOLEiWWOg8hf+PL4PH78OF5//XU0a9YMer0eFSpUQO/evbFnz54yx0LkL3x5jF6+fBmPPPII6tatC71ej5iYGLRu3Rrz5s1DMO5fxM7WRB4wf/58q/vffPMN1q5dW+Lx+vXrl/m9cnNzMWnSJABA586dZb3mrbfeQlJSEpo3b47Vq1eXOQYif+LL4/Prr7/G7Nmz8dBDD+G5555DVlYWZsyYgbZt22LVqlXo3r17mWMi8nW+PEavX7+Ov//+GwMHDkRycjIKCwuxdu1ajBgxAidOnMDkyZPLHJM/YSJB5AGPPPKI1f2dO3di7dq1JR5XytmzZ1GtWjVcv34d8fHxSodD5FW+PD6HDh2KiRMnQqfTWR4bOXIk6tevj4kTJzKRoKDgy2O0SZMmJWYv/vWvf6Fv37744osv8N5770GtVisTnAK4tIlIIaIo4vPPP0fDhg0RFhaGxMREjBo1ChkZGVbH7dmzBz179kT58uURHh6O6tWrY+TIkQCAc+fOWRKBSZMmWaZ7S1uqVK1aNU/8SEQBQ6nx2aJFC6skAgDKlSuHe+65B8eOHXPvD0nkx5T8N9SWatWqITc3FwUFBWX+2fwJZySIFDJq1CjMnTsXjz/+OF544QWcPXsW//3vf7F//35s27YNISEhSE9PR48ePRAfH4+xY8ciJiYG586dw/LlywEA8fHxmD59Op599ln0798fAwYMAFD0jQkRuc7XxufVq1dRvnx5t/6MRP5M6TGal5eHnJwcGAwGbN68GXPmzEG7du0QHh7u0Z/b50hE5HHPP/+8dOdw+/333yUA0oIFC6yOW7VqldXjP/zwgwRA2r17t91zX7t2TQIgvfPOO07HVZbXEgUKXx2fxbZs2SIJgiC9/fbbLp+DyJ/54hidMmWKBMBy69atm3ThwgWnzhEIuLSJSAHff/89oqOjce+99+L69euWW/Gyho0bNwIAYmJiAAC//vorCgsLFYyYKHj40vhMT0/Hww8/jOrVq+P111/3yHsQ+RtfGKNDhw7F2rVrsXDhQjz88MMAimYpgg0TCSIFnDx5EllZWUhISEB8fLzVzWAwID09HQCQmpqKhx56CJMmTUL58uXRr18/zJkzB0ajUeGfgChw+cr4zMnJQZ8+fZCdnY2ffvqpRO0EUbDyhTFatWpVdO/eHUOHDsWCBQtQo0YNdO/ePeiSCdZIEClAFEUkJCRgwYIFNp8vLv4SBAFLly7Fzp078csvv2D16tUYOXIkPv30U+zcuZMfLIg8wBfGZ0FBAQYMGIA///wTq1evRqNGjVw+F1Gg8YUxereBAwdi1qxZ2LJlC3r27Om28/o6JhJECqhZsybWrVuHDh06yCrMatu2Ldq2bYsPPvgACxcuxLBhw7B48WI8+eSTEATBCxETBQ+lx6coinjsscewfv16fPfdd0hNTXXlxyAKWEqPUVuKZyKysrLccj5/waVNRAoYPHgwzGYz3nvvvRLPmUwmZGZmAgAyMjJKdMps1qwZAFimZiMiIgDA8hoiKhulx+fo0aOxZMkSTJs2zbKLDBH9Q8kxeu3aNZuPz549G4IgICUlRdZ5AgVnJIgUkJqailGjRmHKlCk4cOAAevTogZCQEJw8eRLff/89pk6dioEDB2LevHmYNm0a+vfvj5o1ayI7OxuzZs1CVFQU7r//fgBAeHg4GjRogCVLlqBOnTqIi4tDo0aNHC6FmD9/Ps6fP4/c3FwAwJYtW/D+++8DAB599FFUrVrV838JRD5KyfH5+eefY9q0aWjXrh0iIiLw7bffWj3fv39/REZGevzvgMiXKTlGP/jgA2zbtg29evVCcnIybt68iWXLlmH37t0YPXo0atWq5c2/CuUpvGsUUVC4e+u6YjNnzpRatGghhYeHS3q9XmrcuLH0+uuvS5cvX5YkSZL27dsnDR06VEpOTpa0Wq2UkJAg9enTR9qzZ4/VebZv3y61aNFCCg0NlbWNXWpqqtW2dXfeNm7c6K4fm8gv+NL4HD58uN2xCUA6e/asO390Ir/gS2N0zZo1Up8+faSKFStKISEhkl6vlzp06CDNmTNHEkXRrT+3PxAk6a45HyIiIiIiolKwRoKIiIiIiJzGRIKIiIiIiJzGRIKIiIiIiJzGRIKIiIiIiJzGRIKIiIiIiJzGRIKIiIiIiJzGRILIx5w7dw6CIGDu3LlKh0JENnCMEvkujk/vYiJBREREREROY0M6Ih8jSRKMRiNCQkKgVquVDoeI7sIxSuS7OD69i4kEERERERE5jUubiDxg4sSJEP5/e/cfE3X9xwH8+RH1DuH4oRHgD+74sQjG8ufINLpMmiUUJKDiDLDIWiW5IGYUE1NTNJ1GMaUYEEUrZ85Nyx9TGFlt1lZrRErBgVbjhwuIJATh9f3Ded8+8us+BnLg87Hd5r3v/Qu252e8vPu8T1FQVVWF1atXw9XVFR4eHsjMzISI4OLFi4iKioKLiwu8vLywa9cu69i+Pt+ZlJQEZ2dn/P7774iOjoazszM8PDyQlpaG7u5ua7+ysjIoioKysjLVfvqas76+HmvWrMH06dOh0+ng7e2NqKgo1NbWDtNvhch+MKNE9ov5HD1YSBANoxUrVqCnpwfbt2/Hvffeiy1btmDPnj14+OGHMW3aNGRnZyMgIABpaWkoLy8fcK7u7m4sWbIEU6ZMwVtvvQWz2Yxdu3YhLy/vpvYWExODQ4cOYc2aNcjNzUVKSgra2tpw4cKFm5qPaDRiRonsF/M5CggRDbmNGzcKAFm7dq217erVqzJ9+nRRFEW2b99ubW9ubhZHR0dJTEwUERGLxSIApKCgwNonMTFRAMgbb7yhWmf27Nkyd+5c6/PS0lIBIKWlpap+N87Z3NwsAGTnzp1D8wMTjTLMKJH9Yj5HD74jQTSMkpOTrf92cHDAvHnzICJ4+umnre1ubm4IDAxETU3NoPM999xzqudhYWE2jbuRo6MjJk6ciLKyMjQ3N2seTzRWMKNE9ov5tH8sJIiGkY+Pj+q5q6sr9Ho97rjjjl7tg12M9Ho9PDw8VG3u7u43dRHT6XTIzs7GF198AU9PTzzwwAPYsWMH6uvrNc9FNJoxo0T2i/m0fywkiIZRX0fP9XccnQxygJotx9gpitJn+79vJrtu/fr1qKqqwrZt26DX65GZmYmgoCB8//33g65DNFYwo0T2i/m0fywkiMYQd3d3AEBLS4uqva6urs/+/v7+SE1NxYkTJ1BRUYHOzk7V6RdENLSYUSL7xXxqx0KCaAwxGo1wcHDodXpFbm6u6nl7ezs6OjpUbf7+/jAYDLhy5cqw75PodsWMEtkv5lO78SO9ASIaOq6uroiLi0NOTg4URYG/vz+OHDmCxsZGVb+qqiosXrwYy5cvR3BwMMaPH49Dhw6hoaEBK1euHKHdE419zCiR/WI+tWMhQTTG5OTkoKurC/v27YNOp8Py5cuxc+dOhISEWPvMmDED8fHxOHXqFIqLizF+/Hjcfffd+PTTTxETEzOCuyca+5hRIvvFfGqjyGB3pxAREREREd2A90gQEREREZFmLCSIiIiIiEgzFhJERERERKQZCwkiIiIiItKMhQQREREREWnGQoLoNlZbWwtFUVBYWDjSWyGiPjCjRPaL+WQhQWSz6upqPPvss/Dz84Ner4eLiwsWLlyIvXv34p9//hm2dSsrK5GVlYXa2tphW8MWW7duxeOPPw5PT08oioKsrKwR3Q/RjW7njJ47dw7p6emYNWsWDAYDvL29ERERge+++27E9kT0b7dzPv/44w+sXr0agYGBMBgMcHNzQ2hoKIqKijDav4WBX0hHZIOjR48iLi4OOp0OCQkJCAkJQWdnJ86cOYNXXnkFP/30E/Ly8oZl7crKSmzatAkPPvggTCbTsKxhi9dffx1eXl6YPXs2jh8/PmL7IOrL7Z7R999/H/n5+YiJicHzzz+P1tZW7N+/H/Pnz8exY8cQHh4+IvsiApjPS5cu4bfffkNsbCx8fHzQ1dWFkydPIikpCefPn8ebb745IvsaCiwkiAZhsViwcuVKGI1GnD59Gt7e3tbXXnjhBfz66684evToCO7w/0QEHR0dcHR0HPK5LRYLTCYTLl26BA8PjyGfn+hmMaNAfHw8srKy4OzsbG176qmnEBQUhKysLBYSNGKYT+Cee+5BWVmZqu3FF1/EY489hrfffhubN2+Gg4PDkK55q/CjTUSD2LFjB/7++2/k5+erLoDXBQQE4KWXXrI+v3r1KjZv3gx/f3/odDqYTCZkZGTgypUrqnEmkwmRkZE4c+YMQkNDodfr4efnhw8++MDap7CwEHFxcQCARYsWQVEUKIpivSBdn+P48eOYN28eHB0dsX//fgBATU0N4uLiMHnyZEyaNAnz58//TxfrkXw3hGggzCgwd+5cVREBAFOmTEFYWBh+/vnnm5qTaCgwn/0zmUxob29HZ2fnkM57SwkRDWjatGni5+dnc//ExEQBILGxsfLuu+9KQkKCAJDo6GhVP6PRKIGBgeLp6SkZGRnyzjvvyJw5c0RRFKmoqBARkerqaklJSREAkpGRIcXFxVJcXCz19fXWOQICAsTd3V02bNgg+/btk9LSUqmvrxdPT08xGAzy2muvye7du2XmzJkybtw4+eyzz6x7sFgsAkAKCgps/vmampoEgGzcuNHmMUTDiRnt34IFC+Suu+66qbFEQ4H5/L/29nZpamoSi8UihYWF4uTkJAsWLLD5d2OPWEgQDaC1tVUASFRUlE39f/jhBwEgycnJqva0tDQBIKdPn7a2GY1GASDl5eXWtsbGRtHpdJKammptO3DggACQ0tLSXutdn+PYsWOq9vXr1wsA+fLLL61tbW1t4uvrKyaTSbq7u0WEhQSNfsxo/8rLy0VRFMnMzNQ8lmgoMJ9q27ZtEwDWx+LFi+XChQs2jbVX/GgT0QD++usvAIDBYLCp/+effw4AePnll1XtqampANDrbdHg4GCEhYVZn3t4eCAwMBA1NTU279HX1xdLlizptY/Q0FDcf//91jZnZ2esXbsWtbW1qKystHl+InvGjPatsbERq1atgq+vL9LT0//TXEQ3i/lUi4+Px8mTJ1FSUoJVq1YBwLCeWHUrsJAgGoCLiwsAoK2tzab+dXV1GDduHAICAlTtXl5ecHNzQ11dnardx8en1xzu7u5obm62eY++vr597iMwMLBXe1BQkPV1orGAGe3t8uXLiIyMRFtbGw4fPtzr3gmiW4X5VDMajQgPD0d8fDw++ugj+Pn5ITw8fFQXEywkiAbg4uKCqVOnoqKiQtM4RVFs6tffKQ2i4Vzp4TihiWi0YEbVOjs7sWzZMvz44484fPgwQkJCbtnaRDdiPgcWGxuLixcvory8fMT28F+xkCAaRGRkJKqrq/HNN98M2tdoNKKnpwe//PKLqr2hoQEtLS0wGo2a17f1gnrjPs6fP9+r/dy5c9bXicYKZvSanp4eJCQk4NSpUygpKYHZbNY8B9FQYz77d/2diNbW1iGZbySwkCAaRHp6OpycnJCcnIyGhoZer1dXV2Pv3r0AgKVLlwIA9uzZo+qze/duAEBERITm9Z2cnAAALS0tNo9ZunQpzp49q7pwX758GXl5eTCZTAgODta8DyJ7xYxes27dOnzyySfIzc3FsmXLNI8nGg7MJ9DU1NRne35+PhRFwZw5czTNZ0/4hXREg/D390dJSQlWrFiBoKAg1bdyfv311zhw4ACSkpIAADNnzkRiYiLy8vLQ0tICs9mMs2fPoqioCNHR0Vi0aJHm9WfNmgUHBwdkZ2ejtbUVOp0ODz30EO68885+x2zYsAEff/wxHn30UaSkpGDy5MkoKiqCxWLBwYMHMW6c9v9DKC4uRl1dHdrb2wEA5eXl2LJlCwDgySef5LscNGKY0Wt/eOXm5uK+++7DpEmT8OGHH6pef+KJJ6x/UBHdSswnsHXrVnz11Vd45JFH4OPjgz///BMHDx7Et99+i3Xr1vW6J2RUGeFTo4hGjaqqKnnmmWfEZDLJxIkTxWAwyMKFCyUnJ0c6Ojqs/bq6umTTpk3i6+srEyZMkBkzZsirr76q6iNy7di5iIiIXuuYzWYxm82qtvfee0/8/PzEwcFBdYxdf3OIXDs/OzY2Vtzc3ESv10toaKgcOXJE1UfL0XVms1l1bN2/H30dq0d0q93OGb1+9n5/D4vFMuB4ouF2O+fzxIkTEhkZKVOnTpUJEyZYf/aCggLp6ekZcKy9U0Q03JFCREREREQE3iNBREREREQ3gYUEERERERFpxkKCiIiIiIg0YyFBRERERESasZAgIiIiIiLNWEgQEREREZFmLCSIiIiIiEgzFhJERERERKQZCwkiIiIiItKMhQQREREREWnGQoKIiIiIiDRjIUFERERERJqxkCAiIiIiIs3+BwPXzMJDMISnAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAInCAYAAAAMBG9hAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAmnhJREFUeJzs3Xd8U/X6B/DPSdKdbjpYZe9VRtlYoCwVVBDkVlDAhehFvaJeQGWowM95xXuFq8gFLrIu4BbZSwWZVkD2KMhqGV3pSJOc8/ujNBKapidpkpPxeb9eeWGSk5OnHL8lT77f5/sIkiRJICIiIiIisoNK6QCIiIiIiMj7MJEgIiIiIiK7MZEgIiIiIiK7MZEgIiIiIiK7MZEgIiIiIiK7MZEgIiIiIiK7MZEgIiIiIiK7MZEgIiIiIiK7MZEgIiIiIiK7+XUiceXKFcyYMQNXrlxROhQiIiIiIq/i94nEzJkzmUgQEREREdnJrxMJIiIiIiJyDBMJIiIiIiKyGxMJIiIiIiKym0bpAIiIqHI5uhxsObwFWblZSIhKQFqbNERro5UOi4iIiIkEEZGn2nNyD2avnQ2jaIRKUEGURCzdvhRTh09FlyZdlA6PiIj8HJc2ERF5oBxdDmavnQ2DyQBJkmASTZAkCQaTAbPXzEaOLkfpEImIyM9xRoKISCG2li1tObwFRtFo9XVG0Yith7fiwW4PujNcIiIiC0wkiIgUUNWypazcLKgEFUySqcJrVYIKV3OvKhA1ERHRn7i0iYjIzeQsW0qISoAoiVZfL0oiEqMS3Rw1ERGRJSYSRERuJmfZUlqbNGhU1ieNNSoN0tqmuTJEIiKiKjGRICJys/JlS9aUL1uK1kZj6vCpCFAHQBAEqFVqCIKAAHUApg6fiqiwKPcGTUREdAfWSBARuZncZUtdmnTB4omLsfXwVlzNvYrEqESktU1jEkFERB6BiQQRkZultUnD0u1LYTAZKjx357KlaG00d2ciIiKPxKVNRERuxmVLRETkCzgjQUSkAC5bIiIib8dEgohIIVy2RERE3oxLm4iIiIiIyG5MJIiIiIiIyG5MJIiIiIiIyG5MJIiIiIiIyG5MJIiIiIiIyG5MJIiIiIiIyG5MJIiIiIiIyG5MJIiIiIiIyG5MJIiIiIiIyG5MJIiIiIiIyG5MJIiIiIiIyG5MJIiIiIiIyG5MJIiIiIiIyG5MJIiIiIiIyG5em0jMmDEDgiBY3Jo3b650WERETpejy8Ga3Wvw8Q8fY83uNcjR5SgdEhERETRKB1AdrVq1wubNm833NRqv/nGIiCrYc3IPZq+dDaNohEpQQZRELN2+FFOHT0WXJl2UDo+IiPyYV3/y1mg0SExMVDoMIiKH5OhysOXwFmTlZiEhKgFpbdIQrY22eH722tkwmAwAAJNkAgAYTAbMXjMbiycutjieiIjInbw6kTh16hRq1aqF4OBgdOvWDXPmzEFSUlKlx+v1euj1evN9nU7njjCJiCqQM9Ow5fAWGEWj1dcbRSO2Ht6KB7s96M6wiYiIzLy2RqJLly5YvHgx1q9fj/nz5+PcuXPo1asXCgoKKn3NnDlzEBkZab6lpqa6MWIiojK3zzRIkgSTaIIkSeaZhvIaiKzcLKgE67+mVYIKV3OvujNsIiIiC16bSNx9990YMWIE2rZti4EDB2LdunXIzc3F//73v0pfM2XKFOTl5ZlvO3bscGPERERl5Mw0AEBCVAJESbR6nCiJSIzi0k4iIlKO1yYSd4qKikLTpk1x+vTpSo8JCgpCRESE+abVat0YIRFRGbkzDWlt0qBRWV+BqlFpkNY2zWUxEhERVcVnEgmdToczZ86gZs2aSodCRGST3JmGaG00pg6figB1AARBgFqlhiAICFAHYOrwqYgKi3Jj1ERERJa8ttj6pZdewpAhQ1CvXj1cvnwZ06dPh1qtRnp6utKhERHZlNYmDUu3LzXvxnS7O2caujTpgsUTF2Pr4a24mnsViVGJSGubxiSCiIgU57WJxMWLF5Geno4bN24gLi4OPXv2xC+//IK4uDilQyMisql8pmH2GstdmzQqjdWZhmhtNHdnIiIijyNIkiQpHYRSDh48iI4dO+LAgQPo0KGD0uEQkZ/J0eVwpoGIyIvo8vKQsetH5Fy/jugaNZDcvRe0kZFKh6UYr52RICLydpxpICLyHsczDmLlvI8gmkwQVCpIoojNX65B+jPPo1lye6XDU4TPFFsTEREREbmCLi8PK+d9BJPRCEmSIJrK+v+YjEasmDcXurw8pUNUBBMJIiIiIiIbMnb9CNFksvqcaDIhY/dPbo7IM3BpExERERH5PVv1DznXr5ctZ7KSTAgqFXKuXXN3uB6BiQQRkZM9t/A55OhyEK2NxkePf6R0OEREVIWq6h+ia9SAJFrv/yOJIqL9dNdQLm0iInKyHF0ObhTcQI4uR+lQiIioCnLqH5K794JKrbb6epVajeTuPd0ctWdgIkFEREREfktO/YM2MhLpzzwPtUYDQRCgUqshCALUGg3Sn3ke2gj/3AKWS5uIfECpLgfZh7dCn5uFoKgExLfpi0BttNJhEREReTy59Q/NktvjpXfnImP3T8i5dg3RcXFI7t7Tb5MIgIkEkde7cXIPjq+dA0k0QhBUkCQR57cvRYvhUxHTpLPS4REREXk0e+oftJGR6DnoXneF5vG4tInIi5XqcsqSCJMBkCRIoqnsT5MBx9bMRinX6BMREQEoq4X46Yfv8O3Sxfjph+/MvR9Y/+A4zkgQebHsw1shiUarz0miEdmHt6IOOycTEZGfq2pXpvRnnseKeXMtnlep1X5d/yAHEwkiL6bPzbq1nMnKuk5BBX1ulgJREREReY7bd2UCYK6FKN+V6aV357L+wUFMJIi8WFBUAiSpknWdkoigqAQ3R0RERORZ5OzK1HPQvax/cABrJIi8WHybvhBU1r8PEFQaxLdNc3NEREREnqV8VyZr/LkrtTMwkSDyIqW6HFzcvRZnfpiHi7vXAgBaDJ8KQR0ACAIElbrsT3UAWgyfisCwKGUDJiIiUhi7UrsOlzYReQlb27ymTFxk2UeibRqTCCIiIpTtyrT5yzXmGonbcVem6mEiQeQFLLZ5BczF1eXbvKZMXMTdmXxMji4HWw5vQVZuFhKiEpDWJg3RbDJIRGS38q7U3JXJ+ZhIEHkBbvPqX/ac3IPZa2fDKBqhElQQJRFLty/F1OFT0aVJF6XDIyLyOtyVyTWYSBB5AW7z6j9ydDmYvXY2DLdmn0y3rrnBZMDsNbOxeOJizkwQETmAuzI5H4utibwAt3n1H1sOb4Gxktkno2jE1sNb3RwRERGRdUwkiLwAt3n1H1m5WVAJ1n81qwQVruZedXNERERE1jGRIPICgdpobvPqJxKiEiBWMvskSiISoxLdHBEREZF1rJEg8hIxTTpzm1cfY21nprQ2aVi6fam5RuJ2GpUGaZx9IiIiD8FEgsiLBGqjuTuTj7C1M9PU4VMxe43lcxqVBlOHT0UUE0ciIvIQTCSIiNxMzs5MiycuxtbDW3E19yoSoxKR1jaNSQQRkYvo8vKQsetH5Fy/jugaNZDcvRe0kdwatipMJIiI3EzOzkwPdnsQD3L2iYjI5Y5nHMTKeR9ZNKvb/OUapD/zPJolt1c6PI/GRILIi5TqcixrJNr0RSB7Cnid8p2ZTFb6gnBnJiLPUaQrwfGMTBTkFCI8OgzNk+sjVBusdFjkRLq8PKyc9xFMxrIvdyRT2e9lk9GIFfPm4qV353JmwgYmEkRe4sbJPTi+dg4k0XirOZ2I89uXosXwqYhp0lnp8MgO3JmJyPOdO34J61fugiiKEAQBkiRhz+bDGJTeAw2a1VI6PHKSjF0/QjRV/FIHAESTCRm7f2ITOxu4/SuRFyjV5ZQlESYDIEmQRFPZnyYDjq2ZjVJdjtIhkh3S2qRBU0lfEO7MRKS8Il0J1q/cBZNJhCQBoihBkgCTScT6FT+jSFeidIjkJDnXr0NQWf84LKhUyLl2zc0ReRefSST+7//+D4Ig4IUXXlA6FCKnyz68FVIla+ol0Yhsdjv2KtHaaEwdPhUB6gAIggC1Sg1BEBCgDuDOTEQe4HhGJkSxkllDUcTxjEz3BkQuE12jBqRKrrUkioiOi3NzRN7FJ5Y27du3D5988gnatm2rdChELqHPzbq1nKni9KsgqKDPzVIgKqqOLk26cGcmIg9VkFNoXs50J0EQUJBTqEBUVJn5M1+HLj8X2ogoTJj+pl2vTe7eC5u/XGOukbidSq1GcveezgrTJ3l9IqHT6TBq1CgsWLAAb731ltLhELlEUFQCpErW1EuSiKCoBDdHRM4QrY3mzkxEHig8OsxqEgEAkiQhPDrMzRGRLbr8XOTnVL3Et7ItXtOfeR4r5s212LVJpVYj/ZnnoY1gobUtXp9IPPvss7j33nvRr1+/KhMJvV4PvV5vvq/T6VwdHpFTxLfpi/Pbl5bVSNxBUGkQzzX1RERO0zy5PvZsPgyTqeIXOCqVCs2T67s/KKqWqrZ4fenducjY/RNyrl1DdFwckrv3ZBIhg1cnEitXrsTBgwexb98+WcfPmTMHM2fOdHFU3iWnoBCb9h3D1Zv5SIyJQP+UFogO5zctniZQG40Ww6fi2JrZFrs2CSoNWgyfikAuhyEicppQbTAGpffA+hU/W+zapFKpMCi9B7eA9TJyt3jl7kz289pE4o8//sDzzz+PTZs2IThY3oCeMmUKXnzxRfP9jIwMpKamuipEj7f7yFm8ueR7GE0iVIIAUZKw+IfdmDb2XnRt1VDp8OgOMU06I2XiIss+Em3TmET4qBxdDrYc3oKs3CwkRCUgrU0aotkzhMhtGjSrhTEvDWEfCR/ALV5dx2sTiQMHDiA7OxsdOnQwP2YymbBz507861//gl6vh1qttnhNUFAQgoKCzPe1Wq3b4vU0OQWFeHPJ9zAYb2Xlt9aCGowmvLH4eyyb9hhnJjxQoDYadbim3uftObkHs9fOhlE0QiWoIEoilm5fiqnDp6JLky5Kh0fkN0K1wejQs7nSYVA1lW/xKllJJrjFa/V47favaWlpOHz4MDIyMsy3Tp06YdSoUcjIyKiQRJClTfuOwWhl7ScAGE0iNu8/7uaIiAgom4mYvXY2DCYDJEmCSTRBkiQYTAbMXjMbOewZQkQ2FOlKcPCn49jx7QEc/Ok4e16AW7y6kttmJEwmE1avXo1t27YhOzsbb7zxBtq0aYO8vDxs2bIFPXr0QEKC/J1nwsPD0bp1a4vHwsLCEBsbW+FxqujqzXyoBME8E3E7lSDgyo08BaLyXxkLn0epLgeB2mgkPz5X6XBIQVsOb4Gxkp4hRtGIrYe3cqcnIrKK3bit4xavruOWGYnc3Fz06NEDDz/8MFasWIFvvvkG125NI2m1Wjz33HOYO5cfntwpMSYCYiVb24mShJqx3KnAnUp1OSgtuMEO1YSs3CyoBOu/mlWCCldzr7o5IiJyNTmzCFUdw27clSvf4lWt0UAQBKjUZU1A1RoNt3itJrfMSEyePBm///47NmzYgPbt2yM+Pt78nFqtxvDhw7Fu3TrMnj27Wu+zffv2akbqeyrblal/Sgss/mG3uUbidhq1Cv06tVAgWiJKiEqAWEnPEFESkRiV6OaIiPxXka7E5cXWcmYR5Bwjpxu3P9d7cItX13BLIvHVV19h4sSJ6N+/P27cuFHh+aZNm2Lx4sXuCMWvVLUr07Sx9+KNxZbPa9QqTBt7L6LDQ5UOn8gvpbVJw9LtS2Gw0jNEo9IgjT1DiNzCHcuEbp9FAGBuglc+izDmpSEAUOUxodpgduOWgVu8Op9bEom8vDw0aNCg0ucNBgOMVtatkePk7MrUtVVDLJv2GDbvP44rN/JQMzYS/Tq1YBJBVE3l27RWtV1rZVu8Th0+FbPXWO7apFFpMHX4VESFRXFrWCIXk/MBX+7MhK1ZDTmzCOX/beuYDj2bsxs3KcItiUSjRo1w8ODBSp/fuHEjWrZs6Y5Q/IacXZlG9OmI6PAwjOjT0c3REXkug8kAk2h9v3G53nn0HfN/lxisr0ved3of3vvqvQpbvL78wMvo1LgTPpnwCbYf2Y7svGzER8ajd+veiAqLwo/HfrT5OrnUKjUC1AHV+jmJvNGq+RtRpCtBqDYYIycMsHqMs5YJVTWrIXcWQc4x7MZNSnBLIvHEE0/g73//O3r37o20tLJpeUEQoNfr8cYbb2D9+vX49NNP3RGK3+CuTET2M5gMOHHpBEpKXVuUqCvR4f1v3jcnLCbJZH7/t798G5PumwRtsBaNExujcWJjAMDF6xdx/OJxWa+TIzgwGM1qN2MyQX6nSFeCwvxim8c4Y5mQnFkNubMIco5hN25SglsSieeffx6///470tPTERUVBQB4+OGHcePGDRiNRowfPx6PP/64O0LxG9yVich+JtGEktISaDQal37A3nNqj81vO3//43f0bt3baa+7k8FkQElpCUyiiYmEk5Xk5uL8jh0ozM5GWHw86qWmIvjWv3vkPZyxTEjOrIbcWQS5Mw3sxk3u5pZEQhAELFiwAGPGjMGaNWtw6tQpiKKIRo0a4aGHHsJdd93ljjD8CndlInJcgDoAgZpAh1//3tfvIb8oHxGhEXjp/pcqPJ9XlAdBJUASrXzbqRKQV5Rn9f0dfZ01rEtzvsv792P3++9DNBrLuuiKIo6sXIlukyahVif5y85Iec5YJiRnVkPuLII9Mw3sxk3u5LaGdADQs2dP9OzJph/uEB0exl2ZiBSSX5SPvKLKlw/GaGOsJgMAIIkSYsNjnfo6cr2S3NyyJMJQttuWZCr7Ekc0GLD7/fdx7/z5nJnwIvYsE6qsmFrurIacWQTONJCncmsiQe7FXZmIPFNKkxSsO7DOagdrtUqNlMYpTn0dud75HTsgVjLLIxqNOL9jB5rdf7+bo6LqkPPh3VYxtT2zGnJmETjTQJ7ILYlEgwYNIAiCzWMEQcCZM2fcEY5f4a5MRJ4nIiQC49LGYdGWRTCJJvNyJbVKjXFp4xAeEu6U1+UX52PfqX24qbuJGG0MUpqkICIkwuIYbiXrHIXZ2WXLmUwVl5MKKhUKs7MViIqqy9aHdznF1Cx+Jl/nlkQiNTW1QiJhMplw/vx5/Pzzz2jdujXat2/vjlCIyEOU6nKQfXgr9LlZCIpKQHybvgj0ow+wrZNaY/pfpmP/6f24UXADseGxSGmcYjWJuDMhmHT/JBy/dNzm645cOFIh4Vh3YB3GpY1D01pNAVS+Be3U4VPRpUkXt/w9+Iqw+HhIlRTWSqKIsPh4N0dEriZ3i1guSfIturw8ZOz6ETnXryO6Rg0kd+8FbaT/bmDjlkTCVtfq3377DQMHDsSoUaPcEQqR13PXB3BXvs+Nk3twfO0cSKIRgqCCJIk4v30pWgyfipgmnZ3yHt4gIiQCfdv0tXmMrYSgstfmF+dj0ZZF5iVQ5XUVRtGIRVsWYerwqSgpLcE/vv2HuYP27VvJzl4zG4snLubMhB3qpabiyMqV5hqJ26k0GtTr3dv9QVG12WomJ3eLWC5J8h3HMw5i5byPIJpM5g0VNn+5BunPPI9myf75hbhK6QDatWuH8ePH4+9//7vSoRB5vBsn92DfP8chc+siXP11PTK3LsK+f47DzVN7veZ9SnU5ZUmEyQBIEiTRVPanyYBja2ajVJfjhJ/AO+QX52PLoS1YvWs1thzagvzi/ArPlycEEiSIoggJkjkhuPP4cvtO7au0qZ5JNOHAmQPIOJdhtdYCKEs4th7eWr0fzs8ER0Wh26RJUAUEAIIAQa0GBAGqgAB0mzQJwX78jaW3Onf8Epa89y12b/wNv+8/g90bf8OS977FuROXAThni1jyHrq8PKyc9xFMRiMkSYJoMkGSJJiMRqyYNxe6PP/sz+URxdYJCQk4evSo0mEQeTSLD+AApFvfIJd/AE+ZuEj2jIGt2QZnvI+t82cf3gqpkg+wkmhE9uGtqNPtQVk/hzezNdPQOqk1gKoTgv2n91udlbipu2lzm9ibupswmUxQCSrzTMTtVIIKV3OvVvMn9D+1OnXCvfPnW/aR6N2bSYQXklP/wE7S/iVj148QrdRAAYBoMiFj90/oOeheN0elPMUTiRs3bmDhwoWoU6eO0qEQeTRnfQCvallRdd+nqvPrc7NuPW6lKFVQQZ+bVeXP4O2qWno0/S/TERESUWVCcKPghtXzV7VNbIw2BgajAaJUyfpuSURiVKIjP5rfC46K4u5MPkBu/QOLqf1HzvXrNjdUyLl2TYGolOeWRKJvX+vreHNzc3H8+HGUlpZi6dKl7giFyGs54wO4nNmG6ryPnPMHRSVAquQDrCSJCIpKqPLn8HZyZxoc7RtR1TaxnRp1QnFpMbYd2WaukbidRqVBWts0O34iIt8it/6B/R38R3SNGjY3VIiOi3NzRJ7BLYlEeaZ+O0EQ0KBBA/Tr1w+PPfYYmjdnIRL5r/JlP7aWDMn9AF7dZUXV+aAv5/zxbfri/Pal5mTjdoJKg3g/+AArd6ZBTt+IyrZ4tbVNrDZEC7VKjZcfeBnvfvWuxa5NGpUGU4dPRVRYlKv/Gog8lj31D0oUU9sqAqfqqWxXpuTuvbD5yzUwWekXo1KrkdzdPxsuuyWR2L59uzvehhyUU1CITfuO4erNfCTGRKB/SgtEh7NITC7RZCgrGK6GNo++bf5vk6HE6jGxLXrY/ABeo0VPXDv2I05+9X6FZUXNHngJ0Y07ofjmZZuzDcU3L6NOjxEOf9CXM5sRqI1Gi+FTcWzNbIs4BZUGLYZPRaAffICVO9NQVUJw/tp5m3UWlW0vW2osBQB0atwJiycuxtbDW3E19yoSoxKR1jaNSUQ1lOTmWtZIpKayo7UX8uT6B1tN8Bo0q6VYXL6gql2Z0p95HivmzbV4XqVWI/2Z56GN8M9aKMVrJEhZu4+cxZtLvofRJEIlCBAlCYt/2I1pY+9F11YNlQ7P44kmAwounYSptNgt71en+whc/HlV2fSqIACSBEGlQp3uI5B/8RhOffOBOam5fVnRiS/fQZP7XoQkmmxOzUqSiOLrFyt5HzWaDX0FgWFRlc56yJ3NiGnSGSkTF1meo22aXyQRgH0dqitLCCRImLlyZpV1FlVtLxutjcaDflDc7g6X9+/H7vffh2g0mj9kHFm5Et0mTUKtTp2UDo9uKf/m3tY3+KHaYEXqH6qaaZBTBM6ZicrZ6gFx+65MAMy1EOW7Mr307lw0S26Pl96di4zdPyHn2jVEx8UhuXtPv00iABclEv/9738det2jjz7q5EjIlpyCQry55HsYjLcGy61fSAajCW8s/h7Lpj3GmYkqSKIJptJiqDQaqNQBLn+/6IbJ0NZshNwzB1Gqu4lAbQyiG3WEJkSL7CPbbSYJBX8cRWyzrrh2eJvV5UeCSo0aTbtCExRS4X0CwiIRkdQG0Y062CymtmfZUqA22i92Z7LG3g7V1hKCLYe2OLSjE7lGSW5uWRJxq49E+YcQ0WDA7vffx73z53NmwklMRhPESmb05Bj2+J/jwlBqfSkmANRpEI+Hn7sbpw5fQH5uISKiwtC0bRJCwoJtvq4yRboSnDx0HgV5RQiPDEXTtvUsPvRnnryMzWv22JxpkFsEThVVNdsgd1cmbWSkX+7OVBmXJBJjx461+zWCIDCRkOmZ95cjp6AI0eGhmDfpYZvH2lq2tGnfMRitTNsCgNEkYvP+4xjRp6PT4/dFKnUAVJpAh19/4uv3YSzKhyY0As3un2Tz2KDwWCQk96/wuLEoH1AJgLV/YFUCDEV5CAqPRf20ccjcsqhs5uLW8YJKjfpp4xAYHmP1fURjKYz6YpQW5lZZTO3vy5bkktPZurL6B0B+nQW5x/kdOyBaWTsNAKLRiPM7dnA3JycwGU3IunQTpXr7P8g7qkbNaNSoWVZndvNaAXCtwOJ5fXEpLp7NQpGuBKHaYNRpmICgEMt/D7L+uIEDO49CFCVzkrBv2+/omNoSCXVioS8uxZYv9pgTpMpmGuQWgZMlObMN3JXJMS5JJM6dO+eK09ItOQVFuJ6nq/K4qpYtXb2ZD5UgmGcibqcSBFy54Z/NVZRgLMqHoajqv29DcQFyTu37czaiSQoCbn3wDNTGWE8iAECUzElCZFIrtPzLdOSc3ofSgpsIDI9BdOM/z2PLtSPbZW0N68/Lluxha+lRVX0mHN3RiVyjMDvb5oeQwuxsBaLyPaIooVRvhFqtglrt+p66JcWluHDqijlJSGpSE8G3JQlXLlzHni2HyxKEW+P0REYmuqS1Qc2kGuZzlCcRwJ9JgihKOLDjKAb9pQeunL9W6SzL7TMNbILnGDmzDdyVyTEuSSTq1avnitOSHeQsW0qMiYBYyS8kUZJQM9Z/1/x5orwLR5C5ZbHFTMKVA+tQP20cIpNaIbpJCq4cWFfpsqXo29bdB4SEI96BZS/6vGuytob152VLziCnz4Q9dRbkemHx8TY/hITFx7s5It+mVqugCVA79NpNa39BSVEpgkMD0f/BrpUedznzGnZtOmSx1OjowXPoPqAtatWLQ0mRHnu2HvkzQRD/TBD2bD2CwaN6Ijg0CBd/z7L5b+3Fs1koLtJXPsN420yDJxeBezI5sw197hvKXZkc4Pp0nhQhZ9lS/5QW0FTyjY5GrUK/Ti1cGSLZwVBccCuJMAKQAFEEIEESjcjcsgiG4gIEhISjfto4CCoNAAFQqQAIEFQa1E8bJ2vGoSpBkXF+3wPCHeT0mSivs9CoNBAgQKVSQYAAjUpjtc6CXKteaipUGuvfzak0GtTr3du9AVGlSopKUVyoR0lRqY1j9GVJhEkEpFtJggSIJhG7Nh5CSZEemSev2KxXyDx5BQBQWFBcYQv8coIgoLCgGGHhIbJmGsqLwNVqFQQBUKkECEJZYsUmeJWTM9ugjYxE+jPPQ63RQBAEqNRqCIIAtUbj17syVcVtuzZdvXoVCxcuxMGDB5GXl1dh8AmCgC1btrgrHJ8nZ9lSdHgYpo29F28stlz+pFGrMG3svYgOD1UgcrIm59S+SreYlUQTck7vQ3ybvtVatiRHXOve+OPHlX7dA8Id5NY/yKmzIPcIjopCt0mTKuzapNJo0G3SJARH8kOIN5GTJJQnCJXVKxQWlO3mV1WSEBYegvpNa+LIvjNlicsd7pxpYBM8+8ntAeHsXZls7RLlK9ySSBw6dAi9e/dGcXExmjVrhsOHD6Nly5bIzc3FpUuX0KhRI9StW9cdofgNucuWurZqiGXTHsPm/cdx5UYeasZGol+nFkwiPEyp7qbNQurSgpvmu44uW5IjMCyKxdROVFkxtT31D3K2eCX3qNWpE+6dP9+yj0Tv3kwivJCcJEFOggCgyiShfrNaCA4JRPcBbbFr421LqUSp0pkGJZrgebPy2QY5PSCctStTVbtE+Qq3JBKTJ0+GVqtFRkYGQkNDER8fj7lz56Jv375YvXo1JkyYgGXLlrkjFL/RP6UFFv+w21wjcbs7ly1Fh4e5dXcmNsCzn9xCarlsFW1bO06ffw3qYC1CatTx+x4QzmKrmJr1D94rOCqKuzP5AGfMItS/tWVrcGhQxSThVk+K7gPamou3a9WLw+BRPZF58gp0eUUICglESu+WiIjWyo6bHa8r584eEHJ2ifKVmQm3JBI///wzXnnlFSQlJeHmzbJvTsunDEeMGIGffvoJL7/8Mnbs2OGOcPyCEsuW5CQIbIDnGHsKqatKEqoq2rZ63K2mdNeObEeL4VMR06Qzi6mrQU4xtT19Jsh7sPO1d3B4FsFKggBYJgnlsxnl57hdcGgQmifXh9FgQmmpESFh8pMAdryumpzZBrnLkWwdJ7cnhS9wSyIhiiISEsqKMKOioqBWq80JBQC0adMGCxcudEcofsWZy5aqShLkJAhsgOe48kLqyvo/lCcKVSUJlkXbMM9ylBdtt/zLdASEhFc87ta1ur1fRKA22u1/D75CTjF13zZ9Wf/gY9j52ns4MotgK0EoP6erdlXy947X2ogoiz8dJXc5UlXH+VNPCrckEg0aNDD3llCpVGjQoAE2b96Mhx56CACwa9cuRNn5jcz8+fMxf/58ZGZmAgBatWqFadOm4e6773Zm6F7PGcuWqkoS5CYIbIBXPVUVUstJEuQWbds+7s9+EeQYucXUrH/wHex87X3snUVwNVvLlry547XRaKz023u5Hp/8mvm/S/V6h86hy7e9HOm5We9AGxEp67jwqGi/6UnhskQiJycH0dFl31gOGDAAq1evxqxZswAAEyZMwKRJk3D27FlIkoTt27dj0iTb3XzvVKdOHfzf//0fmjRpAkmSsGTJEtx///349ddf0apVq6pPQLLISRLkJghsgOck0h1/3iInSZBbtG3ruNv7RZBj2EzOu2x+5RWU5OYiOCoK/d55x6FzsPO1d3JHklC+law5WWlaE5oAy49nVS1b8taO10ajEZfOnoG+pETpUPD7/r0wVZLQmEwm7Pjua7Tq2FnWcQ2bt6p0RsLXelK4LJFITEzEPffcg1GjRmHSpElIT0+HwWBAQEAAXnjhBRQWFmLt2rVQq9V4/fXXMXXqVLvOP2TIEIv7s2bNwvz58/HLL78wkbBDVUuW5CQJchMENsCrnqqWLclJEuQWbds6jv0iqo/F1N6lJDcXxbctx3UEO1/7Fmsf/oNDg+w+zlrTuyP7zqBL39aITYwCIG/Zkrd2vBZNJuhLSqAO0EBdSR8WZyou1OHU4UPQ5eVBGxmJJm3aIiSsrJi9uKjQvOriTipBQHFhIQJDgmUdF1kjFmlDh2PLl2sgin+u5lBb2SXK27nsqg0fPhzffPMNvvnmG4SHh2PYsGEYNWoU+vbtC0EQ8Nprr+G1116r+kQymEwmrF69GoWFhejWrVulx+n1euhvm/LS6XROeX9vJaeuQU6SIDdBsGcnKbIkZ9mSnCQhurG8om3bxd3sF1Fd5c3kWEzteyorpmbna99R2Yf/8o7Xco+zaHqHPxME0SRiz5bDSBvWBYC8ZUve3vFardEgIKBiXYlcaxfMR5FOh1CtFg8+OcHqMZknjmPTmpUW1+Pgzu0YMCId9Zo2Q2RMrM1kLDImFgEBgbKPa9SyNWom1cfJQxnIu3kDIWFh6D34AZ9a1gS4sLP1smXLkJ2djc8//xy9evXCsmXLMGDAANSuXRuTJk3CwYMHq/0ehw8fhlarRVBQEJ5++ml8+eWXaNmyZaXHz5kzB5GRkeZbampqtWPwVrcvWZIkCSZRhCRJ5iVLOQVl06BykgS5HbLLd5IK0NzqFqlSQRAEBGjUbIBXBTnLlqKbpEBQqa0eU54kyO1+Xelx6gD2i3CS8mZy93W+D92bdcd9ne/DjL/MQOuk1kqHRg66vH8/vp8wAYc+/xxnN2/Goc8/x/cTJuDy/v3sfO0j5HS8lnuc7aZ3Ei6eLVtCWr5syZryZUv+3vG6SKdDYUE+iir5grhIp8OmNSthMpV95hFvfeYxmUzYuHoFinQ6NG2bDJXK+mcZlUqFZu2SAUD2cQAQqtUiuXtPdB94N1p17IywiIhq/ZyeyGWJBACEhIQgPT0d3377La5evYp58+ahSZMm+PDDD5GSkoLmzZvjrbfewtmzZx06f7NmzZCRkYE9e/ZgwoQJGDNmDI4ePVrp8VOmTEFeXp755s/bzcpZsgRAVpJgT4JQvpPUk0N64p5urfHkkJ5YNu1xbv1aBfOyJWtuLVuSmySUF23X6jwENZp1R63OQ9DyL9Mttn6987jYJl0Qn9wfHSd8gpgmnV37w/qR8mLqEd1HoG+bvpyJ8GIWxdSSVLaESZLMxdQA0G3SJKgCAgBBgKBWA4IAVUAAO197ETkdr+UeV970zhpBJaBIV1Y3IHfZUnnH624D2qFVp0boNqAdxrw0hFu/Ajh5KMPm9Th5KAOhWi0GjEiHWl32WUZ167OMWq3GgBHp5iVQco/zF27ZtQkAoqOjMX78eIwfPx6XLl3C8uXLsWLFCkybNg3Tp09Hly5dsGvXLrvOGRgYiMaNGwMAOnbsiH379mHu3Ln45JNPrB4fFBSEoKA/1yZqtd55scs/mMv5Br+yGgi5dQ1y+1HYs9WsnJ2k2LTOktzahqp2diont/t1+XGisRRGfTECwvhhh8gaucXU7Hzt3eR0vJZ7nM2md6JknkWwZ9kSO15bV5CbY7sYPTcHAFCvaTOMev4lnDyUgYLcHIRHRaNZu+QKyYHc4/yB2xKJ29WuXRsvv/wyBg0ahGnTpuHrr7/Gnj17qn1eURQtaiA8lcFogqmSzFiODyaOMP93Samh0uP2Hj2H/1u2oUINxOTRg1AjMszmkqUakVrzuZOb1MXCyY9i28ETyMrJR0J0BPp2bIYobajF+4cEBWJIj7bm++pKpv6qwqZ1FdnTkE5ukkBEziO3mNqZna/Z3M795HS8lnuc7aZ3Auo0LNvUonzZ0voVP1foaeEPy5acITwq2vasTtSffZHKlyNZU6TTWSQPTdsmI9RLv5R2FrcnEhcuXDDPRhw5cgSSJKF79+4YNWqUXeeZMmUK7r77biQlJaGgoADLly/H9u3bsWHDBhdF7hwGowknLlxFkb7yBMAZdEUleGf5RnPCcvu2rbP/+wOeHZpqc0YiMTYSh85csni8cZ14NK5TVhB4ISsHF7JyKrznr6f+QE5BEaLDQ9G9dUN0al4fARrLdfu2ZhvYtM46uQ3p5Kiq8zUR2c+ZxdRyEgQ2t1OGnI7Xco+z1Rm7S9/WCLqtX0X5sqXK+kiQbU3bJmPfts1Wt229s66hMtaKtfdt22wu1vZXbkkkrl+/jv/9739Yvnw5du/eDUmS0Lx5c7zxxhsYNWoU6tevb/c5s7Oz8eijj+LKlSuIjIxE27ZtsWHDBvTv39/5P4ATmUQRRXoDAtSqCh+wnemX389ClCpZDyiJyLx6A+Pu6YbFP+yG6bZBoVapMPbuboiPsi/DPnLuMpbcca5N+45h6qN34652TczHVTXbwKZ1lZOzbKmqJKGqLWTJu+QX52PfqX24qbuJGG0MUpqkICLE94r5vEG91FQcWbnS3HDudvYUU8tJENjcrnqCQwMt/rTvtfI6Xle3M7ZGo0ZpqeUMNJctOa68rmHj6hUVroecuobbi7WB27fgLSvWHvX8S347M+GyRKKwsBBffvklli9fji1btsBgMKBmzZp44YUXMGrUKHTo0KFa51+4cKGTIlVGgEaNwADH/vrfXrYB+YXFiAgLwd9HDbR6TJ6u8vWZKkFArq4YA7u0QqPacdh7LBM38goRGxmGLi0bIDzUvm848guLseSH3eYEwDzAJBH/9/l6tGlYC9HhYbJmG/y1aZ0mNMLiz8rYWrZUVZIgZwtZzkx4jyMXjlTYPnbdgXUYlzaOOz8pIDgqCt0mTaqQBKg0GotialuzDXITBDa3q57+D3aVfay1PhByO15XpzO20VC9Ts9UUXXqGuQUa/tSkzl7uCyRiI+PR0lJCbRaLR5++GFzD4nKtswi+fILi5GrK7Z5TExE5bs8iJKE2Miy5UERYSGy+jfkFxZjz9FM3MwvRExEGLq0rI+IsLK1oHuOZlZa83H7LIKc2QZ/bVrX7H77OrvfSU6SIGcLWdZWeIf84nws2rLI3NCuvEu2UTRi0ZZFmP6X6ZyZUECtTp1sFlNXNdsgN0Fgczv3qKoPhJzeDO7ojE3y2ap/sEVusbY/clki0a9fP4waNQr33XcfgoO5hs/durSsj+92HbL6wV2tUqFLywYAbCcI5Q6fuYTPvvvJYtnSd7sO4YkhPdGmYW3czC+0OftRPosgZ7bhkYFd2LTOAXKSBDmdr8k77Du1D6ZKrrdJNGH/6f3oy6RQEZUVU8uZbZCbILC5nevZaha3a+MhDB7V02ona/JulRVT21Os7W9clkh8/fXXrjo1yRARFoInhvTEZ9+WJQDm9uwqFZ4Y0hPhocFVJghAWaLx2Xc/VVi2ZDSJ+Ozbn/DmE/dVOftRPosgZ7ZB7nazZElOkiB3C1nyfDd1N83Lme4kqATcKLihQFRki5zZBrkJgrPqMahycvpAcKbBt9gqpnZGsbav4jojH9amYW28+cR9eKBXMnq0aYwHeiXjrSfvR5uGtS0SBEkq66IpSX8mCPmFZUunbC1bMoki9h7LRJeW9Svd6vX2WQS5HbDZtK5yhuICZB/aiou71iD70FYYigsAyOszIafzNXmHGG2M1SQCKFvmFBse6+aIqCrlsw3WlM82yO1+XV6PweZ2rmOzWdxt/SLIN1TV+RoAm9BVQpE+EuQ+ldVAyEkQ+nVqUeWypRt5hZXOfqgEFSaPHnRbAz35sw1ymtb5G1vF1HL6TDhzC1myLeJW0XxEFcXzjkppkoJ1B9aZayRup1apkcKkUDGVFVPLmW2QW7ANVF2PQdUjt18E+Qa5xdRsQlcREwk/JSdBAOQXbZfPfpTvABWlDUGrhrXRuUV9i9fY0wGb/iSnmFpOkiC38zVVz0v3v+TU81nb5nVc2rgKuzapVWqMSxuHcF5PRdgqppa7HMmeBMGZze3Iktx+EeQb5BZTO1qs7cuYSPgpuQmC3KJtwHL2o9RgrLTpHmcb7Cd3xyU5SQI7X3sXW9u8Tv/LdOw/vR83Cm4gNjwWKY1TmEQoRE4xtdzZBiYIypPbB4K8C4upnY+JhB+wtjOT3ARBTtE2uZ7cHZeYJHiXqhrKydnmlbszeQa5W7dyOZL3kNsHgrwDi6ldg4mEj7O1M5PcBOHOZUuONq4jx3HHJd8jp6Ect3n1HnK3blVitsFWEzyyUyXfWpNnk9OZujqdr/0ZEwkfJmfrVrkJgtzGdeQacoqpyXvIbSjHbV69hxK9HeQkCFU1waPKVdWQjrwHi6ldh9u/+jA5OzOVJwgj0zqhX6cWnGXwUOU7LgkqDQABUKkACBBUGu645IXkzDQA3ObVm8jdutVZLu/fj+8nTMChzz/H2c2bcejzz/H9hAm4vH+/+RiLug1JKpstkSRz3UZJbq5TY/IlFg3ppFvJvvRnQ7qSIr3SIZIdyouprbFWTN3rniFI7t6TSYQMTCR8WPnOTNbcvjOTM+UXFmPTvmNYs/0gfvztFHIKipz+Hv6qfMelWp2HoEaz7qjVeQha/mU6IpNaKR0a2al8psGa22caUpqkQF1J7w9u8+pZ3NnbQW6CIKdug6yT05COvAeLqV2HS5t8mNydmeSwVrAdEWa5j7a1eowtB45j2th72UzOSVhM7RvkzjREhERwm1cv4uzeDpUtXZJb2C23boMqKm9IV9l2oGxI511YTO06TCR8mD1bt9piq2C7TcPaACqvxzAYTXhj8fdYNu0xRIfLT1yIfJk9DeVaJ7XmNq9eRE4xdXVrG+QmCErUbfgKNqTzLaFaLYupXYRLm3xY+datGrUKggCoVQIEAdCo5W/denuCIEmAKEqQpD8LtvMLy76VsVWPYTSJ2Lz/uFN/NiJvVj7ToFFpIECASqWCAAEalcbqTENESAT6tumLEd1HoG+bvkwivJgzahsCw8NlJQjurtvwJfWb1oRKZf0jEhvSead6TZth1PMvoUvaALTo0Ald0gZg9AsvoV7TZkqH5tU4I+GFypcU3bm0yBo5W7faWrYkp2C7X6cWVXbKvnIjz5EflchncabBN9mabZDTtE7O0iWgLBGoqkt2ed2GnCZ4ZIkN6XwTO1M7HxMJL/T3UQPtOt7W1q1VLVuqKkEoL9iuqh6jZiz/wSK6U/lMA/mGqrZadVZtQ2lBgewEwdl1G/6EDemIqsZEwsfZmm2Q02dCbsG2rXoMjVrFHhRE5LXKZxRsNXGTM9vgzNoGexIEJZrg+Yrg0CA0T66vdBjkJEU6nUWfiKZtkxGqZX1EdTCR8GFVzTbIWbYkt2C7vB6jvFN2+ftp1GpMG3svosNDXfqzEhFVRjQYKt3KU47eb75p/m+j3nr/gLNbtticbTi3dSuCY2JsJgghsbEw6vWo3a0bjqxYYfV8KrUadbp1g1GvhyYkBI0GDfrzuUrW9BMRkHniODatWWmxVG3fts0YMCKddRLVwETCR8mZbZCzbOnOBEElCBAlCWpVxYLt2+sxsnMKEB4ajFEDOiMxhlPoRKQM0WDAjdOnYSwpcen73Dx50uZ2oTdOnEDdnj1tzkiExsfj2tGjAIDmw4bh2Nq1kG770COoVGg+bBjyL10CLl2qcA5NcDBiGzcu62VBRGZFOh02rVlp3v61fJyaTCZsXL0Co55/iTMTDmIi4aPkzDbIXbYkp2C7XHk9RqnBiCK9AVFazkQQkXJEUYSxpARqjabSHYycIbRGDZvbhYbWqIGwGjXQOj0dR1asqJAgtE5PR1jsn53KE9q0QXSDBriakYGSnBwER0cjMTkZgZV82BGNRhhLSiCKIrdjJLrDyUMZNhsMnjyUwSJsBzGR8FFyZhvu7tpKdp8JWwXbRESeTqXRQB3oWJHsno8+QmlBAQLDw9HlueesHlMrJQVnt2yBZGU5kqBWo3bnzlAHBiKhTRtE1a+PqwcPojgnByHR0ajZsaPVBCEkJgYN+sovxjdVsrSKyN8V5ObYnDEsyM1RICrfwETCR8mZbbBn2RIROV9+cT72ndqHm7qbiNHGIKVJCiJCIpQOi+5QWlAAfX6+zWOCwsPRdvRoHPr8c0gm05+zDWo12o4ebZEoBIWHo15qqqvDJqJbwqOibc4YhkdFuzki38FEwkfJLZK2Z9kSETnPkQtHsGjLIphEEwSVAEmUsO7AOoxLG4fWSa2VDo8cENeiBXpOnixrtoGI3Kdp22Ts27bZXCNxO5VKhWbtkt0flI9gIuGj7Jlt4LIlIvfKL87Hoi2LYBTLlqJI4q3NEEQjFm1ZhOl/mc6ZCS9V1WyDvqAAVw4eNNc91OzQAUHhbEJI5EqhWi0GjEjHxtUrKjQYHDAiHSFhTPYdxUTCh3G2gcgz7Tu1Dyax4jdjAGASTdh/ej8b1fmga0eP4tCyZRZLn85s3Ii2o0cjrgW/zCFypXpNm2HU8y9Z9JFo1i6ZSUQ1MZHwcZxtIPI8N3U3zcuZ7iSoBNwouKFAVORK+oKCsiTiVkF0+XptyWjEoc8/R8/JkzkzQeRioVotd2dyMu4SR0TkZjHaGKtJBFC2zCk2PNbqc+S9rhw8aLV/BFDWBfvqwYNujoiIqPq8NpGYM2cOUlJSEB4ejvj4eDzwwAM4ceKE0mEREVUppUkK1Cq11efUKjVSGqe4OSJyFn1BATJ37MDxr75C5o4d0BcUAABKcsq2n7RGEAQU53D7SSLyPl67tGnHjh149tlnkZKSAqPRiKlTp2LAgAE4evQowsLClA6PiKhSESERGJc2rsKuTWqVGuPSxiE8hEtcvJGtGojgaNvbT4ZEc/tJIvI+XptIrF+/3uL+4sWLER8fjwMHDuCuu+5SKCoiInlaJ7XG9L9Mx/7T+3Gj4AZiw2OR0jiFSYSXqqoGovNf/4ozGzdW2rCuZseObo2XyJeE3tpiOZRbLbud1yYSd8rLywMAxMTEKBwJEZE8ESER3J3JR1RVA3Hz5EnZDeuIyD4PPjlB1nFFOp3Frk1N2yYz+agmn0gkRFHECy+8gB49eqB168obOen1euj1evN9nU7njvCIiMjHlddAWFu+VF4DUS81lQ3riBSSeeI4Nq1ZadFHYt+2zRgwIh31mjZTOjyv5ROJxLPPPosjR47gp59+snncnDlzMHPmTDdFRURE/kJuDURVDeuIyPmKdDpsWrPS3Nm6fKyaTCZsXL0Co55/iTMTDvLaXZvK/fWvf8V3332Hbdu2oU6dOjaPnTJlCvLy8sy3HTt2uClKIiLyZTU7dICgtr4TF2sgiJR18lAGRFG0+pwoijh5KMO9AfkQr00kJEnCX//6V3z55ZfYunUrGjRoUOVrgoKCEBERYb5pmX0SEZETBIWHo+3o0RA0GkAQIKhUZX9qNKyBIFJYQa7t7ZcLcrn9sqO8dmnTs88+i+XLl+Prr79GeHg4rl69CgCIjIxESEiIwtEREZG/iWvRgjUQRB4oPMr20sPwKG6/7CivTSTmz58PAOjdu7fF44sWLcLYsWPdHxAREfk91kAQeZ6mbZOxb9tmc43E7VQqFZq1SwbAXZ0c4bWJRGWZJRERERFRuVCtFgNGpGPj6hUWuzapVCoMGJGOkDAtd3VykNcmEkREREREctRr2gyjnn/JYsahWbtkhIRpuatTNTCRICIiUoi+oABXDh5ESU4OgqOjUbNDBwSFs7s5kSuEarVI7t6zwuNydnWy9jpiIkFERKSIa0eP4tCyZRadrs9s3Ii2o0cjrkULpcMj8jmV1UCU7+pUWUNJ7upUOSYSREREbqYvKChLIoxGAH8upZCMRhz6/HP0nDyZMxNETmSrBoK7OjnOa/tIEBEReasrBw9CsrKDDABIJhOuHjzo5oiIfNftNRCSJEEURUiSZK6BqNuoCVQq6x+Jb9/ViSpiIkFEROQC+oICZO7YgeNffYXMHTugLygwP1eSY7tBVnEOl1IQOUtVNRB/nDmFASPSoVarIQgCVCoVBEGAWq027+pE1nFpExERkZNVVf8QHG17KUVINJdSEDmLnBqI5O49K93ViSrHGQkiIiInsqh/kCRIolj25636B31BAWp26ABBrbb6ekGtRs2OHd0cNZHvklsDUb6rU697hiC5e08mETIwkSAiIrIhMDwcQRERCJRZ/Cyn/iEoPBxtR4+GoNEAggBBpSr7U6NB29GjEcg964mcpmnbZNZAuAiXNhEREdnQ5bnn7Dq+vP6hsmUU5fUPcS1aoOfkybh68CCKc3IQEh2Nmh07MokgcjI5na3JMUwkiIiInMie+oeg8HDUS011V2hEfstWZ2tyHBMJIiIiJ6rZoQPObNxo7hFxO9Y/ECmnss7W5DjWSBARETkR6x+IyF9wRoKIiMjJWP9ARP6AiQQREZGT6AsKcOXgQZTk5CA4Oho1O3RAkMzdnoiIvA0TCSIiIieoqgkdESmrSKezKLZu2jYZoZwlrBYmEkRERNVk0YQOMO/aVN6ErufkyZyZIFJQ5onj2LRmpcX2r/u2bcaAEemo17SZ0uF5LRZbExERVZOcJnREpIwinQ6b1qyEyWSCJEkQRRGSJMFkMmHj6hUo0umUDtFrMZEgIiKqpvImdNbc3oSOiNzv5KEMiKJo9TlRFHHyUIZ7A/IhTCSIiIiqyZ4mdETkXgW5thP9glwm+o5iIkFERFRNNTt0gKBWW32OTeiIlBUeZTvRD49iou8oJhJERETVxCZ0RJ6radtkqFTWP/KqVCo0a5fs3oB8CHdtIiIicgI2oSPyTKFaLQaMSMfG1Sssdm1SqVQYMCIdIWEco45iIkFEROQkQeHhqJeaqnQYRHSHek2bYdTzL1n0kWjWLplJRDUxkSAiInIjdr8mUkaoVovk7j2VDsOnMJEgIiJyE3a/JiJfwmJrIiIiJ9EXFCBzxw4c/+orZO7YAX1BgcVz5u7XkgRJFMv+vNX9+vZjiYi8AWckiIiInKCq2QY53a9ZX0FE3oQzEkRERNUkZ7aB3a+JyNd4dSKxc+dODBkyBLVq1YIgCPjqq6+UDomIiPyQnNkGdr8mIl/j1YlEYWEh2rVrh48//ljpUIiIyI/JmW1g92si8jVeXSNx99134+6771Y6DCIi8nNyZhvKu18f+vxzizoKQa1m92si8kpenUjYS6/XQ6/Xm+/rdDoFoyEiIl9Rs0MHnNm4saxG4g63zzaw+zUR+RK/SiTmzJmDmTNnKh0GERH5GHtmG9j9moh8hV8lElOmTMGLL75ovp+RkYFU/jInIiIn4GwDEfkbv0okgoKCEBQUZL6v5S93IiJyIs42EJE/8epdm4iIiIiISBlePSOh0+lw+vRp8/1z584hIyMDMTExSEpKUjAyIiIiIiLf5tWJxP79+9GnTx/z/fL6hzFjxmDx4sUKRUVERERE5Pu8OpHo3bt3pft2k6XsrCxcy85y2/sZjCaUGIww5WcjKMCr/zezyWTUQ3flDNQBQVCpA9z2vokJcUhMiHfb+5FrZWdl41rWNbe9n8FkgN6gh+GmAUGaoKpf4MWMpaXIOXsWmqAgqDXu+12UEB+PxHiOUV+RlXUVWW78N9RkFGEwGJGdEw2ND/8baigtxeXzmQgICoRG475/Q+Pj45HA8ekUguTHn8SvXLmCTz75BOPHj0fNmjWVDsdl9Ho9Bg4ciB07digdCjlJamoqNmzYYLF5AHknjk/fxDHqOzhGfQ/Hp/P4dSLhL/Lz8xEZGYkdO3ZwpyofoNPpkJqairy8PERERCgdDlUTx6fv4Rj1LRyjvoXj07l8d76MKkhOTuag8QH5+flKh0AuwPHpOzhGfRPHqG/g+HQubv9KRERERER2YyJBRERERER2YyLhB4KCgjB9+nQWFfkIXk/fwuvpe3hNfQuvp2/h9XQuFlsTEREREZHdOCNBRERERER2YyJBRERERER2YyJBRERERER2YyJBdsnMzIQgCFi8eLHSoRCRFRyjRJ6L45N8DRMJFzpz5gzGjx+Phg0bIjg4GBEREejRowfmzp2L4uJil73v0aNHMWPGDGRmZrrsPeSYNWsW7rvvPiQkJEAQBMyYMUPReNxJEARZt+3bt1f7vYqKijBjxgy7zuXP1+Z2/jxGjx8/jldeeQXJyckIDw9HzZo1ce+992L//v2KxeQunjw+/fm63Mmfx+fly5cxevRoNGvWDOHh4YiKikLnzp2xZMkS+MMeOZ48Rv392tyJna1d5Pvvv8eIESMQFBSERx99FK1bt0ZpaSl++uknvPzyy/j999/x6aefuuS9jx49ipkzZ6J3796oX7++S95Djtdeew2JiYlo3749NmzYoFgcSli6dKnF/f/+97/YtGlThcdbtGhR7fcqKirCzJkzAQC9e/eW9Rp/vjbl/H2MfvbZZ1i4cCEefPBBPPPMM8jLy8Mnn3yCrl27Yv369ejXr58icbmDJ49Pf74ut/P38Xn9+nVcvHgRw4cPR1JSEgwGAzZt2oSxY8fixIkTmD17tiJxuYsnj1F/vzYVSOR0Z8+elbRardS8eXPp8uXLFZ4/deqU9OGHH7rs/VevXi0BkLZt21blsaIoSkVFRbLPfe7cOQmAtGjRIlnHSpIkXbt2TQIgTZ8+Xfb7+Jpnn31WctVwc+Tv19+vDceoJO3fv18qKCiweOz69etSXFyc1KNHD9nv5ws8aXzyunB82jJ48GApLCxMMhqNDr3eW3nSGK2Mv14bLm1ygXfeeQc6nQ4LFy5EzZo1KzzfuHFjPP/88+b7RqMRb775Jho1aoSgoCDUr18fU6dOhV6vt3hd/fr1MXjwYPz000/o3LkzgoOD0bBhQ/z3v/81H7N48WKMGDECANCnT58K03/l59iwYQM6deqEkJAQfPLJJwCAs2fPYsSIEYiJiUFoaCi6du2K77//3uG/ByVnQ7yBKIr48MMP0apVKwQHByMhIQHjx49HTk6OxXH79+/HwIEDUaNGDYSEhKBBgwZ47LHHAJStt42LiwMAzJw503y9q1qq5O/XhmMU6NixI7RarcVjsbGx6NWrF44dO+bQOX2JUuOT14Xj05b69eujqKgIpaWlTj2vN1Ly31Br/PbaKJ3J+KLatWtLDRs2lH38mDFjJADS8OHDpY8//lh69NFHJQDSAw88YHFcvXr1pGbNmkkJCQnS1KlTpX/9619Shw4dJEEQpCNHjkiSJElnzpyRnnvuOQmANHXqVGnp0qXS0qVLpatXr5rP0bhxYyk6OlqaPHmy9O9//1vatm2bdPXqVSkhIUEKDw+XXn31VemDDz6Q2rVrJ6lUKumLL74wx+DItyn++q337ax9m/LEE09IGo1GevLJJ6V///vf0t///ncpLCxMSklJkUpLSyVJkqSsrCwpOjpaatq0qfTuu+9KCxYskF599VWpRYsWkiRJkk6nk+bPny8BkIYOHWq+3r/99pusuPz12nCMVq579+5S06ZNHXqtt/LU8Xk7f7ouHJ9/Kioqkq5duyadO3dOWrx4sRQWFiZ1795d9t+Nr/DEMcprU4aJhJPl5eVJAKT7779f1vEZGRkSAOmJJ56wePyll16SAEhbt241P1avXj0JgLRz507zY9nZ2VJQUJA0adIk82O2pmXLz7F+/XqLx1944QUJgPTjjz+aHysoKJAaNGgg1a9fXzKZTJIkMZFw1J2/BH/88UcJgLRs2TKL49avX2/x+JdffikBkPbt21fpuavz9+uP14ZjtHI7d+6UBEGQXn/9dbtf6808dXyW86frwvFpac6cORIA8y0tLU26cOGCrNf6Ek8co7w2Zbi0ycny8/MBAOHh4bKOX7duHQDgxRdftHh80qRJAFBhWrRly5bo1auX+X5cXByaNWuGs2fPyo6xQYMGGDhwYIU4OnfujJ49e5of02q1eOqpp5CZmYmjR4/KPj9VbfXq1YiMjET//v1x/fp18618WcO2bdsAAFFRUQCA7777DgaDQcGIfQfHqHXZ2dl4+OGH0aBBA7zyyivVOpe386Tx6W/XhePTUnp6OjZt2oTly5fj4YcfBgCX7ljlLTxhjPLalGEi4WQREREAgIKCAlnHnz9/HiqVCo0bN7Z4PDExEVFRUTh//rzF40lJSRXOER0dXWFNoC0NGjSwGkezZs0qPF6+I8KdcVD1nDp1Cnl5eYiPj0dcXJzFTafTITs7GwCQmpqKBx98EDNnzkSNGjVw//33Y9GiRRXW/pJ8HKMVFRYWYvDgwSgoKMDXX39dYY2+v/GU8emP14Xj01K9evXQr18/pKenY9myZWjYsCH69evnlx9Yb+cJY5TXpgy3f3WyiIgI1KpVC0eOHLHrdYIgyDpOrVZbfVyyY+/ikJAQ2ceSa4iiiPj4eCxbtszq8+XFX4IgYM2aNfjll1/w7bffYsOGDXjsscfw/vvv45dffvGLDxbOxjFqqbS0FMOGDcOhQ4ewYcMGtG7d2m3v7ak8YXz663Xh+LRt+PDhWLBgAXbu3FlhVsSfeMIYvZO/XhsmEi4wePBgfPrpp9i9eze6detm89h69epBFEWcOnXKYj/krKws5Obmol69ena/v9xfqHfGceLEiQqPHz9+3Pw8OU+jRo2wefNm9OjRQ9Y/Sl27dkXXrl0xa9YsLF++HKNGjcLKlSvxxBNPOHS9/R3HaBlRFPHoo49iy5Yt+N///ofU1FS7z+GLlB6f/n5dOD4rV/5td15enlPO562UHqPW+Ou14dImF3jllVcQFhaGJ554AllZWRWeP3PmDObOnQsAuOeeewAAH374ocUxH3zwAQDg3nvvtfv9w8LCAAC5ubmyX3PPPfdg79692L17t/mxwsJCfPrpp6hfvz5atmxpdxxUuYceeggmkwlvvvlmheeMRqP52uXk5FT4piw5ORkAzFOzoaGhAOy73v6OY7TMxIkTsWrVKsybNw/Dhg2z+/W+Sunx6e/XheMTuHbtmtXHFy5cCEEQ0KFDB7vO52uUHKO8NpY4I+ECjRo1wvLlyzFy5Ei0aNHCoivnrl27sHr1aowdOxYA0K5dO4wZMwaffvopcnNzkZqair1792LJkiV44IEH0KdPH7vfPzk5GWq1Gm+//Tby8vIQFBSEvn37Ij4+vtLXTJ48GStWrMDdd9+N5557DjExMViyZAnOnTuHtWvXQqWyP+dcunQpzp8/j6KiIgDAzp078dZbbwEAHnnkEb+e5UhNTcX48eMxZ84cZGRkYMCAAQgICMCpU6ewevVqzJ07F8OHD8eSJUswb948DB06FI0aNUJBQQEWLFiAiIgI8z+gISEhaNmyJVatWoWmTZsiJiYGrVu3trkUwt+vDcdo2QevefPmoVu3bggNDcXnn39u8fzQoUPNH6j8jZLjk9eF4xMAZs2ahZ9//hmDBg1CUlISbt68ibVr12Lfvn2YOHFihZoQf6PkGOW1uYOSW0b5upMnT0pPPvmkVL9+fSkwMFAKDw+XevToIf3zn/+USkpKzMcZDAZp5syZUoMGDaSAgACpbt260pQpUyyOkaSybefuvffeCu+TmpoqpaamWjy2YMECqWHDhpJarbbYxq6yc0hS2f7Zw4cPl6KioqTg4GCpc+fO0nfffWdxjD1b16WmplpsjXb7TU7HUF9SWVfOTz/9VOrYsaMUEhIihYeHS23atJFeeeUVczfXgwcPSunp6VJSUpIUFBQkxcfHS4MHD5b2799vcZ5du3ZJHTt2lAIDA2VtY8drU8afx2j53vuV3cq7n/sDTxqfvC5/8ufxuXHjRmnw4MFSrVq1pICAAPPPvmjRIkkURZuv9UWeNEZ5bSwJkmRHhRERERERERFYI0FERERERA5gIkFERERERHZjIkFERERERHZjIkFERERERHZjIkFERERERHZjIqGgd955B82bN4coikqHUm2TJ09Gly5dlA5DUbyevofX1LfwevoWXk/fwuvppZTef9Zf5eXlSTExMdJ//vMf82O4tU/4e++9V+H4RYsWSQCkffv2Vfu9165dKz300ENSgwYNpJCQEKlp06bSiy++KOXk5Fg9/uuvv5bat28vBQUFSXXr1pWmTZsmGQwGi2OuXLkiBQUFSV9//XW14/NGvJ6+h9fUt/B6+hZeT9/C6+m9mEgo5B//+IcUEREhFRcXmx8rHzQJCQlSYWGhxfHOHDSxsbFSmzZtpNdff11asGCB9Nxzz0mBgYFS8+bNpaKiIotj161bJwmCIPXp00f69NNPpYkTJ0oqlUp6+umnK5z3oYceknr16lXt+LwRr6fv4TX1LbyevoXX07fwenovJhIKadu2rTR69GiLxwBIycnJEgDp/ffft3jOmYPGWufiJUuWSACkBQsWWDzesmVLqV27dhbZ9quvvioJgiAdO3bM4tg1a9ZIgiBIZ86cqXaM3obX0/fwmvoWXk/fwuvpW3g9vRdrJBRw7tw5HDp0CP369avwXI8ePdC3b1+88847KC4udsn79+7du8JjQ4cOBQAcO3bM/NjRo0dx9OhRPPXUU9BoNObHn3nmGUiShDVr1lico/zn+frrr10Qtefi9fQ9vKa+hdfTt/B6+hZeT+/GREIBu3btAgB06NDB6vMzZsxAVlYW5s+fb/M8er0e169fl3WrytWrVwEANWrUMD/266+/AgA6depkcWytWrVQp04d8/PlIiMj0ahRI/z8889Vvp8v4fX0PbymvoXX07fwevoWXk/vpqn6EHK248ePAwAaNGhg9flevXqhT58+ePfddzFhwgSEhIRYPW7FihUYN26crPeUJMnm82+//TbUajWGDx9ufuzKlSsAgJo1a1Y4vmbNmrh8+XKFxxs2bIijR4/KislX8Hr6Hl5T38Lr6Vt4PX0Lr6d3YyKhgBs3bkCj0UCr1VZ6zIwZM5Camop///vf+Nvf/mb1mIEDB2LTpk3Vjmf58uVYuHAhXnnlFTRp0sT8ePk0YlBQUIXXBAcHIz8/v8Lj0dHRFbJyX8fr6Xt4TX0Lr6dv4fX0Lbye3o2JhIe666670KdPH7zzzjt4+umnrR5Ts2ZNq5mxPX788Uc8/vjjGDhwIGbNmmXxXHnWr9frK7yupKTE6rcCkiRBEIRqxeSLeD19D6+pb+H19C28nr6F19NzMZFQQGxsLIxGIwoKChAeHl7pcdOnT0fv3r3xySefICoqqsLzxcXFyMvLk/WeiYmJFR777bffcN9996F169ZYs2aNRfEQ8Of03ZUrV1C3bl2L565cuYLOnTtXOGdOTo7FmkJ/wOvpe3hNfQuvp2/h9fQtvJ7ejcXWCmjevDmAsp0KbElNTUXv3r3x9ttvW92tYNWqVeYMvKrbnc6cOYNBgwYhPj4e69atszqlmJycDADYv3+/xeOXL1/GxYsXzc/f7ty5c2jRooXNn8vX8Hr6Hl5T38Lr6Vt4PX0Lr6d344yEArp16wag7H/Gtm3b2jx2xowZ6N27Nz799NMKzzm6HvDq1asYMGAAVCoVNmzYgLi4OKvHtWrVCs2bN8enn36K8ePHQ61WAwDmz58PQRAsipAAIC8vD2fOnMGECRPsjsmb8Xr6Hl5T38Lr6Vt4PX0Lr6eXc3fjCirTunVrKT093eIxANKzzz5b4djU1FRzh0dnNF9p166dBEB65ZVXpKVLl1rcNm7caHHst99+KwmCIPXt21f69NNPpeeee05SqVTSk08+WeG8a9askQBIp0+frnaM3obX0/fwmvoWXk/fwuvpW3g9vRcTCYV88MEHklartWi/Xtmg2bZtm1MHTfm5rN1SU1MrHP/ll19KycnJUlBQkFSnTh3ptddek0pLSyscN3LkSKlnz57Vjs8b8Xr6Hl5T38Lr6Vt4PX0Lr6f3YiKhkNzcXCkmJkb67LPPlA7FKa5cuSIFBwdLX331ldKhKILX0/fwmvoWXk/fwuvpW3g9vReLrRUSGRmJV155Be+++y5EUVQ6nGr78MMP0aZNG9x///1Kh6IIXk/fw2vqW3g9fQuvp2/h9fRegiRV0d6PiIiIiIjoDpyRICIiIiIiuzGRICIiIiIiuzGRICIiIiIiuzGRICIiIiIiuzGRICIiIiIiuzGRICIiIiIiuzGRICIiIiIiuzGRICIiIiIiuzGRICIiIiIiuzGRICIiIiIiuzGRICIiIiIiuzGRICIiIiIiuzGRICIiIiIiu/l1InHlyhXMmDEDV65cUToUIiIiIiKv4veJxMyZM5lIEBERERHZyasTiZ07d2LIkCGoVasWBEHAV199pXRIRERERER+wasTicLCQrRr1w4ff/yx0qEQEREREfkVjdIBVMfdd9+Nu+++W+kwiIiIiIj8jlfPSBARERERkTK8ekbCXnq9Hnq93nxfp9MpGA0RERERkffyqxmJOXPmIDIy0nxLTU1VOiQiIiIiIq/kV4nElClTkJeXZ77t2LFD6ZCIiIiIiLySXy1tCgoKQlBQkPm+VqtVMBqiaii4CoQnKh0FERER+TGvTiR0Oh1Onz5tvn/u3DlkZGQgJiYGSUlJCkZG5GJ5l5hIEBERkaK8OpHYv38/+vTpY77/4osvAgDGjBmDxYsXKxQVkRuU6gBJAgRB6UiIiIjIT3l1ItG7d29IkqR0GETuJxrKkomgcKUjISIiIj/lV8XWRD4l/7LSERAREZEfYyJB5K2yflc6AiIiIvJjTCSIvNW5nUpHQERERH6MiQSRt7r8K5c3ERERkWKYSBB5syNfKB0BERER+SkmEkTe7Ng3gO6a0lEQERGRH2IiQeRlOnXqhDo909Fp9kHAqAd++kdZTwkiIiIiN2IiQeRlrl69iktZ13E1v7TsgfM/A79+rmxQRERE5HeYSBD5gn2fAQcWc2aCiIiI3IaJBJGv2L8I2DQNKMlXOhIiIiLyA0wkiHzJuZ3A6jHAyY2AKCodDREREfkwJhJEvqboJrBtFvDlU0Dmz1zuRERERC7BRILIV10/BWyYCnz5NPDHPqWjISIiIh/DRILI1107Dqx7CVg/lT0niIiIyGmYSBD5i/M/A2vGAac3c7kTERERVRsTCSJ/oi8AtrwJbHgVyLukdDRERETkxZhIEHmRCxcuoLCwEABQqDfhws0Sx050/mfgf48AO94Bci84MUIiIiLyF0wkiLzA3r17MWTIENSvXx+5ubkAgNxiE+q/uhf3zTuCfZkF9p9UNAHHvwf+9yjww+SygmxuGUtERD5O4vJep9EoHQAR2fbFF19g5MiRkCSpwi8/SQLWHbmJH47kYNWTLTCsfQ3730CSgAu7y26RdYBWQ4FmdwOBYU76CSwZigtwdv2/cfPUHkBQoUbz7mg4cDzUgSEyQpVwdOV05Jw5gBYjXkNss27m5woun0Tm1sXQXTkNCEB4rWaonzYO2oSGLvk5iIjIO4kmI9SaAKXD8AmckSDyYHv37sXIkSNhMplgMpmsHmMSAZMoYeSCY47NTNwu7yKw65/A58OBX+aX9aRwwKH/TkbWb5usPnfyq3dRdP08Wo96Cy1HTkfehd9x+vt/yjrv5b1fARAqPG4qLcbvK6YhKCIO7R77AG3HvAt1YAh+X/46RJPRoZ+BiIiIbGMiQeTB3nrrLaszEXeSAEiQ8Na68855Y0MR8NtKYEU6cHBp2TIoJyi6fgE5Zw6g8b3PI7x2c0QmtUKjQeNx7fed0BfcsPla3dUzuPTLl2gy5Hkr570IY3EB6qWORmhsHYTF1UPSXQ/DUJgLfV62U2InIiLfwJVNzuNwImEymbBy5UqMHz8eQ4cOxeHDhwEAeXl5+OKLL5CVleW0IIn80YULF/Ddd99VOhNxJ5MIfHv4puMF2NYYS4B9nwE/vAIYS6t9uvyLx6EODkN4rSbmx6IatAcEAQWXTlT6OpOhBCe+eheNBk1AoDamwvMhsbWhCYnA1YyNEE0GmAx6ZGVsREiNugiOSqh23ERE5DskJ305Rg7WSOTm5mLQoEHYu3cvtFotCgsLMXHiRACAVqvFc889h0cffRSzZ892arBEnkg0GVzyS2nTxvV2F4RJErDleC7GdnPyh+c/9kE6shaq5PRqncagy0FgaJTFY4JKjYCQcBgKcyp93bmNCxBRp4VFTcTtNEGhaPPIHBxb/Rb++GklACAkphZapb8JQaWuVsxERORbTAYjAoKUjsI3OJRITJ48Gb///js2bNiA9u3bIz4+3vycWq3G8OHDsW7dOiYS5PNEkwEFl07CVFrs9HNnnz8JlUoF0Y6dlFQCkKsrdkk8plPbEdBmOFTqigVqf/y0Cn/8/D/zfdFYioJLx3Fm/b/Nj3V4er5D73vj5C/IzTyE9k9+VHlsBj1OfTcXEXVaotnQVyCJIi798gWOrpqBdo/9A2r+i0FERLeUlhQjWKtVOgyf4FAi8dVXX2HixIno378/btyouK65adOmWLx4cXVjI/J4kmiCqbQYKo3G6gfs6oiMirIriQAAUQIiQzQQVM4tf5IkCaYALTSiCbDycyZ2vAc1WvYy3z/x1buo0bwHYpt3Nz8WFB6LAG00SotyLc8tmmAoLkBAWLTV987LPISSnCvY/e5DFo8fWzMbEXVboe2j/4drR7ZDn5eNduPehyCU/ezaoS/jl/dG4ubJXxDXKtXRH52IiHyMvqgQQJzSYfgEhxKJvLw8NGjQoNLnDQYDjEbulEL+Q6UOgEoT6NRz9rmrFwRBsGt5kyAAfZpGwtrORtUSFA59o4Go7Hv9gJBwBISEm++rNEEICItESEwti+Mi6jSHqaQQuiunoK1ZVieRe+43QJIQXruZ1XPX6T4cCckDLB779dNn0bD/k4hp0hkAIBr1ZT/8bT93WUJh398fERH5vuL8PEii6PQv3fyRQ3+DjRo1wsGDByt9fuPGjWjZsqXDQRERULdOLQzq1wdqtbw1/moVMLh1FJJinLuMR4qoheJeUyGFVCxytldojSREN+qIU9//EwWXTiD/j6M4s2E+4lrdhaDwWACAPv86Dswfby6+DtTGICy+vsUNAIIi4xAcnQigrGDbWKzDmfXzUHT9AgqvncfJb/4BQaVGVL221Y6biIh8h2g0oig/T+kwfIJDicQTTzyB//znP1i1apX52z5BEKDX6/Hqq69i/fr1GD9+vFMDJfJHf//bMxAEAYJge4ah7Lt4AVMH1nbq+5vqdEVJ75mQtM4r3m76wMsIja2DI8texe8rpyOibis0vnei+XlJNKH4xkWYDHrZ5wytURctR05HUVYmflv0Eg4veQWluptolf4GAsOrnwAREZFvyb/GrcGdQZAcmPeXJAlPPfUUFi5ciKioKOTm5iIhIQE3btyA0WjE+PHjMX++Y4WV7nTw4EF07NgRBw4cQIcOHZQOh7yQyVCCvPNHoAkKcfrSpnJfr9uAsU//raxOwcpWsGpVWRKx8rHGeKCdkz40q1QwtHkYxkYDAEGAaCyFUV+MyHqtoQ4Ids57EBERKSAz4wCK8vPQ8q6+Sofi9RyqkRAEAQsWLMCYMWOwZs0anDp1CqIoolGjRnjooYdw1113OTtOIr91/z0DsfmblXj7H/OwfvM2izX/ggDc0yoKUwfWRko95+xAIUbURmmnpyBFN3TK+YiIiDzNjUt/KB2CT3AokSjXs2dP9OzZ01mxEFElOia3xf+W/Bt/XLyM7v3vQ25ePqJC1Dg4uY3TaiKkwDAYm91XNguhrtavBiIiIo92k4mEUzhUI3Hu3Dl8++23lT7/7bffIjMz09GYiKgSdevUQmhoCAAgLEjllCRCCgyFoeUwlAx8H8am9zCJICIin1dw4zoM+hKlw/B6Dn1ieOmll5Cfn48hQ4ZYff7jjz9GVFQUVq5cWa3giMh1pJBoGBsPgrFBX4B1D0RE5Gdys64iLqm+0mF4NYdmJHbv3o3+/ftX+nxaWhp+/PFHh4MiItcRYxqhtPMzKBn0QdkMBJMIIiLyQ7lXLysdgtdzaEYiJycH4eHhlT6v1WqtdrwmIoWoA2Cq0wWGRv1ZRE1ERATg+oXzaNK5u9JheDWHZiSSkpLw888/V/r8jz/+iDp16jgcFBE5hxSohaHlMBTf/SFKO41nEkFERHTLpRNHIVrZVp3kcyiRSE9Px4oVK/DRRx9BFEXz4yaTCXPnzsWqVavw8MMPOy1IIrKTOqCsgHrQP2BsMRQIilA6IiIiIo9SoivAhSO/KR2GV3NoadOUKVPw008/4YUXXsCsWbPQrFkzAMCJEydw7do19O7dG6+++qpTAyUiecTYxihNmQApLF7pUIiIiDzab5t+QN1WbaDWBCgdildyaEYiKCgIGzduxMKFC9G5c2dcv34d169fR+fOnfGf//wHmzdvRlCQc/a2JyL5THW7Qt/rVSYRREREVnTq1AndBt6DaYtXAAAKblzD79u3KByV93J4w3iVSoVx48Zh3LhxzoyHiBxkSmyL0k5PAyq10qEQERF5pKtXr+Jqdjaiw7Xmxw5v24jaLVohtnZdBSPzTg7NSBCRchLi4lArLhqJ4YHmx6TwRJSmPMMkgoiIyE6SKOLnVUthLC1VOhSv4/CMxIYNG7Bw4UKcPXsWOTk5kCTJ4nlBEHDmzJlqB0hElnau/wLqP3YjcO88AIAUFA5990lAYJjCkREREXmn/GvZOPD9V+gy9CGlQ/EqDiUS7777LiZPnoyEhAR07twZbdq0cXZcRCSHSoPSbi9C0iYqHQkREZFXO7V3FxIaNUH9tu2VDsVrOJRIzJ07F3379sW6desQEMAqdyKlGFo+CDG2sdJhEBER+YRf1q5ETK3aiKjBTUvkcLiz9fDhw5lEeIELFy5gy5YtKCgoQHh4ONLS0pCUlKR0WOQEUnAkjI0HKh0GVQPHJ5Fn4xj1P8ZSPXZ+vggDn3kBAYHcgbQqDiUSnTt3xokTJ5wdCznR3r178eabb+L777+HJElQqVQQRRGCIGDw4MF4/fXXkZKSonSYVA2mut0ANZN5b8TxSeTZOEb9W27WFez63zLc9fBYCCruS2SLQ3878+bNwxdffIHly5c7Ox5ygi+++AI9evTADz/8YC6CL+9ALkkS1q1bh+7du+OLL75QMkyqJlNcK6VDIAdwfBJ5No5RAoA/fj+E/d9/VWEzIbLkUCIxcuRIGI1GPPLII4iMjESrVq3Qtm1bi1u7du2cHatVH3/8MerXr4/g4GB06dIFe/fudcv7eqq9e/di5MiRMJlMMJlMVo8pf27kyJHYt2+fmyMkZ5EiaisdAtmJ45PIs3GM0u1O7NqJX9d/y2TCBocSiZiYGDRp0gR33XUXOnTogPj4eMTGxlrcYmJinB1rBatWrcKLL76I6dOn4+DBg2jXrh0GDhyI7Oxsl7+3p3rrrbcgSVKV/9OXH/PWW2+5KTJyKkGAFBKtdBRkJ45PIs/GMUp3OrpzK/Z+tRqiaD2x9HeC5MVpVpcuXZCSkoJ//etfAMqmHuvWrYuJEydi8uTJVb7+4MGD6NixIw4cOIAOHTq4OlyXu3DhAurXr29X5iwIAjIzM1k85iCToQR5549AExQClSaw6hc4ieracYhxzd32fqKxFEZ9MSLrtYY6INht7+tLOD6JPBvHqH+oU6cOLl26hOhwLT569nHZr6vVrAV6/WUMAoL5b+DtHG5Ip7TS0lIcOHAAU6ZMMT+mUqnQr18/7N692+pr9Ho99Hq9+b5OpwMAGI1GGAwG1wbsBhs2bLB7+k2SJGzcuBFjxoxxUVS+zWQwwGAwwiQVQaV23/9DghQAqbjQbe8nmgwQjSYYDAaIYPdsR3B8Kkc0GMxr3H2ZSqWCirspOoxjVBlGoxFiJcvIXKH8GkuiCIPBKPt1548cxs25b6P7Q6MRGZdg9/uq1GpoNO792O2W3VUlB+Xl5Ulz5syRBgwYICUnJ0t79uyRJEmSbty4Ib3//vvSqVOnHD21LJcuXZIASLt27bJ4/OWXX5Y6d+5s9TXTp0+XAPDGG2+88cYbb7zxxptP39zBodTo4sWLSE1NxR9//IEmTZrg+PHj5m/3Y2Ji8Mknn+D8+fOYO3euI6d3mSlTpuDFF18038/IyEBqair27NmD9u29v4vh4sWL8dRTT9n9ugULFvDblGoQTQZI7l47qS8AgsLd+paCSg0Vt5t1GMenMox6Pa4dPQq1RgOVm78NdCfRaITJaERcy5bQBHHve0dwjLpfqV6PzBPHoQ7QQO2m8dmrTxqysrMRFRaK/3vsYYfPk9CkGZr27I2AoKqXOpmMRpgMRtRv1hyBPjY+HbpqL7/8MgoKCpCRkYH4+HjEx1t2/3vggQfw3XffOSXAytSoUQNqtRpZWVkWj2dlZSExMdHqa4KCghB02wXUarUAAI1G4xPN9QYOHAhBEOxe3zlgwACf+PkVo8TfnUYFBIa5/33JYRyfyhBEEQEBAQgIDoY60H11TO5mKi2FoaQEAQEB0PD/F4dwjLqfdGt8BoYEIyDAPeOzvC+EIAgIqEbycvPcGWRcz0ab/vcipo7tGhmDoRSlKBufvvb/ikO7Nm3cuBHPPfccWrZsCUEQKjzfsGFD/PHHH9UOzpbAwEB07NgRW7ZsMT8miiK2bNmCbt26ufS9PVVSUhIGDx4MtVreGna1Wo0hQ4awSMwbCaxT8DYcn0SejWOU7FVSUID9X67CyV073Frn4UkcSiSKi4sRFxdX6fMFBQUOB2SPF198EQsWLMCSJUtw7NgxTJgwAYWFhRg3bpxb3t8Tvf766xAEwWqCd7vyY1577TU3RUZOxZ2TvBLHJ5Fn4xgle0mShHP792Dv2uUozs9TOhy3cyiRaNmyJXbu3Fnp81999ZVbag5GjhyJ9957D9OmTUNycjIyMjKwfv16JCTYX03vK1JSUrBq1Sqo1epKv1Upf+5///sfUlJS3Bwhkf/i+CTybByj5Ki8q1ewe+USXD9/TulQ3MqhROKFF17AypUr8fbbbyMvryz7EkURp0+fxiOPPILdu3fjb3/7m1MDrcxf//pXnD9/Hnq9Hnv27EGXLl3c8r6ebNiwYdi1axfuuece87cqqtvWBN57773YtWsXhg4dqmSYRH6J45PIs3GMkqMMJSU4+M0anM84oHQobuNQlcno0aNx/vx5vPbaa3j11VcBAIMGDYIkSVCpVJg9ezYeeOABZ8ZJdkpJScE333yDCxcuYOvWrcjPz0dERAT69u3L9ZxECuP4JPJsHKO+6dKlSygqKgIA6A0G3MgvQGyEc3dAlCQJx3dugb5Qhybd76pymZy3q1Zn6wsXLmDt2rU4ffo0RFFEo0aNMGzYMDRs2NCZMbqMr3W2JiIiS+Xbv/rLrk3c/pW8Sfn2r67etenXjN8w95//xJZt2yx25RIAtG1YD0O6dESDxPjKT+Cghp26okn3u8p2bSou4favAFBUVIRevXrhySefxNNPP+22JUxERERERPZYt349npn4HCRJqrC1rwTg8LkLOJx5AU/f0x8dmzj3i/Cz+39BaFQ04ps0q9Z5JEnC1q/WYv/ObSgpKkJS46a479FxiE2w3u4AAHZ8/w2OHdiHa1euICAwEHUbN8GA4SMRV7OW+ZiFb7+FzBPHLV6X0rsv7nv0Mdmx2Z1IhIaG4ty5cz4/VUNERERE3uvXjN/wzMTnYDKZKu0PIkoSIAH/XrcJU0cOdfrMxLHtm6CNi4cmKMThc/z4w3f4ZfNGDHtiPKJrxGHLl2uw5P23MXHW25XO5GSeOIbOffujdoOGEE0mbP7if1jywdt47q23EXhbE71Od/VB36EPmu8H2Dlz61Cx9aBBg7BhwwZHXkpERERE5HIf/etfVmcirJKA7/Y4v0jaZDTi5E/bHH69JEnYvWk9UofcjxbtOyKxbhIefOJpFOTm4tjByuMd8+Lf0aHnXUioXQc1k+ph2GPjkXfjBi5nZlocFxAYiPDIKPMtOCTUrvgcSiRef/11nDx5Eo888gh++uknXLp0CTdv3qxwIyIiIiJyt0uXLmHz1q0wyWwUJ0oSfjt7Hjfynd8L7caF88jPznLotTnXrkGXl4dGLVubHwsODUWdho3wx5lTss9TUlxWZB4SFmbx+G+/7MKc557GP1+fjI1rVqFUr7crPod2bWrVqhUA4OjRo1i+fHmlx8m9eERERETkn0xGo9PPuePHnfJmIm4jATh24RJ6tKpeTUPFE0u4du400CvV7pfq8nMBANqICIvHwyIioMuT1wBPFEWsW/E5kho3RUKduubH23bpjqgaNRAeFY2sPy5g45qVuH71Ch7+6wuy43MokZg2bRprJIiIiCohGQwQAgKUDoPIo6nUagQFB0NfUgKTwbnJRF5OHlQqFURRlP0aQQCK9XpIdrxGLkNRIVSVNDm83W+7f8Y3//2P+f7oF16q9nt/9/kSZF+6iCemvG7xeErvvub/TqxTF+FRUVj07hzczM5CTLy85s4OJRIzZsxw5GVERERERAAAjUaD2g0bQXTBCpZ6jRrZlUQAgCQB4WFhCAp2vDC6MjGJidBoqv7Y3Ty5A+o0bGS+b7w1W6PLz0d4VLT58cL8fCTK6Gny3edLcOK3X/HE5NcQGRNr89jy973h6kTiTnl5edBqtZW2kyciIvIrKodKEIn8jkajAWR8wLbXwEGDIAiCXcubBAAt69eFoHL+qptaTZvLOi4oJARBIX8mMpIkQRsZibNHf0fNpHoAyuodLp49g5Q+aZWeR5IkfL/svzh6cD8e//uriI6rejeqKxcuAADCI6NkxQo4WGwNAPv378egQYMQGhqK2NhY7NixAwBw/fp13H///di+fbujpyYiIvJuXP5LpKikpCQMHjxY9pfcKkFA+8YNUSMyouqD7RQaGYV6bZIdeq0gCOjWfxC2f/cVjv16AFcv/oG1n32C8KgotOjQ0Xzcondn45ctG833v/t8MX7b/TNGjH8GgcHBKMjLRUFeLgylpQCAm9lZ2PbNl7iUeQ4516/h2K8HsPazf6N+0+ZIrCu/e7tDKeCuXbvQt29f1K5dG6NHj8Znn31mfq5GjRrIy8vDJ598gt69eztyeiIiIiKiann99dfxww8/yJqZEAQB9/dIcUEUAroOGwm1xvGaqV53D4ZBr8c3S/5T1pCuSVM8+uIrFj0kbmZno6jgzx2n9m7bAgD4z9uzLM419LGn0KHnXVBrNDh79Hfs3rQBBr0eETExaNUxBalD7rfvp5PsLWkH0Lt3b+Tl5eGXX35BQUEB4uPjsXnzZvTtW1a0MXPmTCxZsgRnz56199RudfDgQXTs2BEHDhxAhw4dlA6HiIiczKjX49rRowgIDobazkZL1SGJIgQ3Lm8ylZbCUFKCuJYtoQkKctv7Enm6L774AiNHjoQkSVZ3E1UJAgRBwF/vvxudmjV2+vu3G3AP2vQZ4PTzegqHfsvt27cP48aNQ1BQkNXdm2rXro2rV69WOzgiIiIiIkcNGzYMu3btwj333FPhM6sAILlRA0x7ZIRLkoiGHTqjde/+Tj+vJ3FoaVNAQIDNSvhLly5Bq9U6HBQREZFXs3+yn4hcJCUlBd988w0uXLiAdu3aITc3F6HBQZg17mGX1EQAQI2k+ugy9CGfb5fg0IxE165dsWbNGqvPFRYWYtGiRUhNtb/pBhERkU9gIkHkcZKSkhB2q7NzUECAy5KIwJBQ3PXwWKhdsBuVp3EokZg5cyb279+Pe++9Fz/88AMA4LfffsNnn32Gjh074tq1a3j99derOAsREZGPYiJB5Le6DhuJUDu2UPVmDqVKXbp0wbp16zBhwgQ8+uijAIBJkyYBABo1aoR169ahbdu2zouSiIjIm7igMy4Reb6mXXsiqXU7pcNwG1mJRH5+PsLCwiz24u3bty9OnDiBjIwMnDp1CqIoolGjRujYsaPPrwcjIiKyiTMSRH6nbqu26DRkqNJhuJWspU3R0dFYtWqV+f5jjz2GPXv2AACSk5MxYsQIjBw5Ep06dWISQUREfk/ijASRX2mc0g29Hh4DlUpeAzxfISuRCAwMhF6vN99fvHgxzpw547KgiIiIvBoTCSK/oNJo0OWBh9Bl6EN+l0QAMpc2NW/eHJ999hnq16+PyMhIAEBmZiYOHjxo83Vs8kZERH7JSuMrIvItMbXqoPtDoxGVkKh0KIqRlUjMmTMHI0eORL9+/QCUtRF//fXXK92ZSZIkCIJgtYMgERGRr+PSJiLfpVKp0bpvf7Tu3R8qtf/NQtxOViIxaNAgnDt3Dvv27UNWVhbGjh2Lp556Ct26dXN1fERERN6HiQSRT4quWRvdRzyM6Jq1lQ7FI8hKJA4dOoR69eph4MCBAIBFixZhxIgRSEtLc2lwREREXokz8kQ+RkCr3mlomzbILxrNySWr2Lp9+/b4/vvvXR0LERGRT+DSJiLfERgcgr7jnkL7gYOZRNxBViIREhKCoqIi8/0dO3YgKyvLZUERERF5NaNR6QiIyAnCoqIx6Jm/oVbTFkqH4pFkpVXt2rXDBx98ALVabd61ad++fQgODrb5umHDhlU/QiIiIi8jlZQoHQIRVVN4bBz6P/ksQiOjlA7FY8lKJObOnYvhw4fj8ccfB1C2a9PcuXMxd+7cSl/DXZuIiMhfiTqd0iEQUTVEJtREv8cnICQ8QulQPJqsRKJTp044ffo0zpw5g6ysLPTu3RuvvvqqeTtYIiIi+pOYm6t0CETkoJhaddD3sacRHKZVOhSPJ7tiRKPRoFmzZmjWrBnGjBmDwYMHo0uXLq6MjYiIyCuZrl9XOgQickCNpProO248AoNDlA7FKzhUer5o0SJnx0FEROQzxOxrSodARHaqkVQfaY89jYAg2zXA9CdZicQbb7wBQRDw6quvQqVS4Y033qjyNeXdr4mIiPyNKTcHUkkJhCo2JSEizxAZl4C+Y59iEmEnWYnEjBkzIAgC/v73vyMwMBAzZsyo8jVMJIiIyG9JgDErCwH16ikdCRFVQa0JwF2jH0NgSKjSoXgdWYmEeEdjnTvvExERkSXTxUtMJIg8TGJiIkwGA0Ju66TWtt8gRMYnKBeUF2N7PiIiIhcwns8EenRXOgwius3+/fuRmXEAP61aCgAIjYhE8x53KRyV93I4kTh27BjOnDmDgoIChIeHo3HjxmjevLkzYyMiIvJahlOnIEkSBEFQOhQiqkSLXn2g1gQoHYbXsjuR+OSTTzBr1ixcunSpwnNJSUl49dVX8cQTTzglOCIiIm9lupkDU1YWNImJSodCRFZoAgPRqBNbGVSHXYnESy+9hA8++AAxMTF47LHH0Lp1a2i1Wuh0Ohw+fBhfffUVxo8fj1OnTuHtt992VcxEREReoTQjA5pBg5QOg4isSGqdzH4R1SQ7kdi7dy8++OADDB06FP/9738RFhZW4Zi5c+di9OjReO+99zBixAh06tTJqcESERF5E/3+/QgZMACCSlX1wUTkVvXbtVc6BK8n+zfbwoULUbNmTSxfvtxqEgEAYWFhWLFiBRISErBw4UKnBUlEROSNTNeuw3DsmNJhENEdNIGBSGjYWOkwvJ7sRGL37t0YMWIEgoKCbB4XHByMESNG4Oeff652cERERN6uaN0PkLhtOpFHqZHUgEXWTiA7kfjjjz/QokULWce2bNkSf/zxh8NBERER+QrjxYso4ZdrRB6lRp0kpUPwCbITifz8fISHh8s6VqvVoqCgwOGgiIiIfEnRV1/DeOWK0mEQ0S2RCdxNzRlkJxL27oUtSZJDAREREXmzvg88gB6rVmLYTz+aH5OMRhQs/A/EoiIFIyOictqYWKVD8Al2bf/63nvvYcWKFVUeZ63HBBERkT/IunYNV4uKIAUHWzxuunYNuv8uRfhTT3IXJyKFhWjlrbIh22QnEklJSbh58yZu3rwp+3hXmjVrFr7//ntkZGQgMDAQubm5Ln0/IiKi6io9dgxF33yLsAfuVzoUIr8WGBqqdAg+QXYikZmZ6cIw7FdaWooRI0agW7du3GqWiIi8RvG2bVAnJiK4KzvqEiklIND2LqQkj11LmzzJzJkzAQCLFy9WNhAiIiI7Fa5aBXVsDAKaNFE6FCK/o9IEcHmhk/jV36Jer0d+fr75ptPplA6JiIj8kCSKyP9sIYysKSRyO3UA+0c4i18lEnPmzEFkZKT5lpqaqnRIRETkp6SSEuR//DGTCSI30zCRcBqPSiQmT54MQRBs3o4fP+7w+adMmYK8vDzzbceOHU6MnoiIyD5iYRHy//kvGM6cVToUIr/BGQnn8agaiUmTJmHs2LE2j2nYsKHD5w8KCkJQ0J/FNVqt1uFzEREROYNYXIz8efOgfTgdQR07Kh0Okc/TBAQqHYLP8KhEIi4uDnFxcUqHQURE5FaS0YiC/y6F6cpVhNxzNwtBiVyIMxLO41GJhD0uXLiAmzdv4sKFCzCZTMjIyAAANG7cmDMNRETklYo2bYLx8mVoH30Eqjsa2hGRc6g1Xvvx1+M4/De5YcMGLFy4EGfPnkVOTg4kSbJ4XhAEnDlzptoBVmbatGlYsmSJ+X779u0BANu2bUPv3r1d9r5ERESuVPr778j/x4cIf+pJqGNjlQ6HyOeo1EwknMWhv8l3330XkydPRkJCAjp37ow2bdo4O64qLV68mD0kiIjIJxmvXkXehx8i4umnoaldW+lwiHxKAGf7nMahRGLu3Lno27cv1q1bhwCuMyMiInI6Mb8A+f/6GBETJkCTVFfpcIh8Bpc2OY9D1Vw5OTkYPnw4kwgiIiIXEouKkD9/PoxXrigdChFRBQ4lEp07d8aJEyecHQsRERHdQSwqQv68eTBdu6Z0KEREFhxKJObNm4cvvvgCy5cvd3Y8REREdIfyZU6m69eVDoWIyMyhRWIjR46E0WjEI488ggkTJqBOnTpQq9UWxwiCgN9++80pQRIREfk7U24u8v75T0Q8PQGamolKh0NE5FgiERMTg9jYWDRp0sTZ8RAREVElxNw85H/0EcKfehIBDRooHQ4R+TmHEont27c7OQwiIiKSQywqQv7H8xA+biwCW7VSOhwi8mMO1UgQERGRciSDAQWfLYT+4EGlQyEiP1atjXQNBgOOHz+OvLw8iKJY4fm77rqrOqcnIiLyKhcvX0ZRcTEAoNhoxOXiYtQKCXHJe0miCN3SpYBaA02L5i55DyIiWxxKJERRxJQpUzBv3jwUFRVVepzJZHI4MCIiIm9x4Lff8N6//oWN27dDkiQAQL7RiD5bt6BPfAKeadIEbaOinP6+kihB9/nnCJ/4V8DB81/85Rec3bgROWfPolSnQ/9330VUFfUXF3/5Bce/+AK6q1chmkzQ1qyJZkOGoF5qqvkYY3ExDi1bhst790Kv0yEsPh5N7r4bjQYOdChOIvI8DiUSs2fPxrvvvovx48ejZ8+eeOSRR/D2228jKioK8+bNgyAIeOedd5wdKxERkcf5dsMGPP7885AkyZxElJMA7LiWjZ3XsvGP9h0wsGZNp7+/VFqKom++RfCjjzj0epNejxotWqBO9+448O9/y3pNoFaLFg8+iPDataHSaHDlwAHs+/hjBEVGIjE5GQCQsWQJso8cQefnnkNYfDyyfvsNBxcsQEhMDGqlpDgUKxF5FodqJBYvXoyHHnoI8+fPx6BBgwAAHTt2xJNPPok9e/ZAEARs3brVqYESERF5mgO//YbHn38eJpOp0ll4kyTBJEn4268HcSg31yVxGE+ehKjTOfTaeqmpaDliBBLatpX9mvjWrVG7SxdE1KkDbWIimtx7LyLr1cP1Y8fMx9w4cQL1U1MR37o1wuLj0bB/f0TWr4+bp087FCcReR6HEomLFy+ib9++AICgoCAAQElJCQAgMDAQo0ePxtKlS50UIhERkWd6/+OPrc5E3Em6dZt3+pTLYpEcTCSq/b6ShKxDh1Bw+TLiWrY0Px7brBku79+P4hs3IEkSso8cge7yZSS0a6dInETkfA4tbYqNjYXu1i8srVaLiIgInD171uKYnJyc6kdHRETkoS5evowN27ZVmUSUM0kStmVluaYAW62CKjraueesgqGwEN+OHw/RYICgUqHDE09YJAntH38cB/79b3w3fjwEtRqCIKDj009bJBtE5N0cSiTat2+Pffv2me/36dMHH374Idq3bw9RFPHRRx+hHb9xICIiDyEajU4/57adO2UnEeUkAL9cv4Zhdeo6NRZNo8YQbq0QsOX8zp048Omn5vu9pk51+IO9JiQEA959F8aSEmQdPozflixBWEIC4lu3BgCcXrcON06dQo/JkxFaowauHzuGXz/7DCExMXYtoyIiz+VQIvHUU09h8eLF0Ov1CAoKwqxZs3DXXXfhrrvugiRJiI6OxooVK5wdKxERkV1UKhU0wcEwlpTA5ORkIi8vDyqVyur255XGA6Cg1ADJjtfIoW7XDprgYKhUtlcs10pJQWyTJub7ITExDr+noFJBe6t4PKpBAxRcuoTjX36J+NatYdLrcXjFCvR4+WXU7Nix7Jj69ZGbmYkT33zDRILIRziUSNx333247777zPdbtmyJM2fOYPv27VCr1ejevTtiqvHLiYiIyBlUAQGIbdzYrg/7ctV04LwigIjQUGicuLRJCApC4rBh0ISEQBUQYPPYgJAQBLiwr4VoMAAARJMJktEICIJlrCoV4IJrQUTKqFZDuttFRkbi/vvvd9bpiIiInEIVEODYziJVGDBoEARBsGt5kwCge3w8hDs+YFdHWMcOCIyIcPj1pQUFKLp+HcW3ahsLLl8GAARHRSH4Vt3F3o8+QkhsLNqMGgUAOPbFF4hp1AhhiYkQDQZcOXgQ53fuRIcnnwQABISGIq5lSxxauhTqwECExcXh2tGjyNyxA8ljxlTnxyUiD+JwImEymbB69Wps27YN2dnZeOONN9CmTRvk5eVhy5Yt6NGjBxISEpwZKxERkcdISkrC4MGDsW7dOlkNWNWCgD6JiagdGurUOEK7davW6y/v3499H39svv/LP/4BAGg5YgRajRwJACi6fh24bdmUSa/HwQULUHTzJtSBgYioVQtdnnsOdXv0MB/T9W9/w+Hly7Hno49QqtMhrEYNtElPR8MBA6oVLxF5DkGyt1IMQG5uLgYNGoS9e/dCq9WisLAQmzZtQt++fWEymVCvXj08+uijmD17titidpqDBw+iY8eOOHDgADp06KB0OERE5GX27duH7t27w2Qy2ZyZEFCWSKxO7Y12Tlz6qwoPR91PP4EqMNBp5yQiksuh2d7Jkyfj999/x4YNG3D27FmLX55qtRrDhw/HunXrnBYkERGRJ0pJScGqVaugVquhVqutHqMWBKgFAf/s3MWpSQQARA4ZzCSCiBTjUCLx1VdfYeLEiejfv7/VdZ5NmzZFZmZmdWMjIiLyeMOGDcOuXbtwzz33VPg3UQDQJzERq1N7Y2Dt2k59X018PCKGDHHqOYmI7OFQjUReXh4aNGhQ6fMGgwFGF+zZTURE5IlSUlLwzTff4MKFC2jXrh1yc3MRoQnA9/36Ob0mAgAgCKjx12c5G0FEinJoRqJRo0Y4ePBgpc9v3LgRLdm5koiI/ExSUhLCwsIAAKEajWuSCABRDw5DSKtWLjk3EZFcDiUSTzzxBP7zn/9g1apV5voIQRCg1+vx6quvYv369Rg/frxTAyUiIiIguG0bRN3aTYmISEkOLW16/vnn8fvvvyM9PR1RUVEAgIcffhg3btyA0WjE+PHj8fjjjzszTiIiIr8XUKsm4idNKmvsRkSkMIcSCUEQsGDBAowZMwZr1qzBqVOnIIoiGjVqhIceegh33XWXs+MkIiLya+rISCS8+irUWq3SoRARAahmZ+uePXuiZ8+ezoqFiIiIrFCFhyNx+jQEJCYqHQoRkVm1EgkiIiJyLVVEOBKnTUNgvXpKh0JEZEF2InHffffZdWJBEPD111/bHRARERGVUUdHI3H6NATWrat0KEREFchOJL777jsEBwcjMTHRopN1Zaw1qiMiIiJ5NPHxXM5ERB5NdiJRu3ZtXLp0CTVq1MDDDz+Mv/zlL0jkLzciIiKnC6hTB4nTXocmNlbpUIiIKiV7/7g//vgD27ZtQ/v27fHmm2+ibt266NevHxYtWoSCggJXxkhEROQ3gho3Rs233mQSQUQez66NqFNTU/HJJ5/g6tWrWLNmDWJjY/HXv/4V8fHxGDZsGNasWQO9Xu+qWImIiHxaSLt2SJwxHerwcKVDISKqkkMdbQICAnD//fdj1apVyMrKMicXI0eOxDvvvOPsGImIiHxeWPfuSJgyGaqQEKVDISKSpVrbv+r1emzYsAFff/01fv31VwQHB6N+/fpOCo2IiMg/aPv0QY1nJrBjNRF5Fbt/Y4miiA0bNmDs2LFISEhAeno6iouLsWDBAmRnZ+ORRx5xRZxEREQ+Sdu7N5MIIvJKsmckdu3aheXLl2P16tW4ceMGunbtitmzZ+Ohhx5CjRo1XBkjERGRTwrt1IlJBBF5LdmJRM+ePRESEoJ77rkH6enp5iVMFy5cwIULF6y+pkOHDk4JkoiIyNcENmqIuL+9AEGtVjoUIiKH2FUjUVxcjLVr1+KLL76weZwkSRAEASaTqVrBERER+SJ1dDQS/v53qIKDlQ6FiMhhshOJRYsWuTIOIiIivyAEBCDh76+wTwQReT3ZicSYMWNcGQcREZFfqDHhaQQ1aaJ0GERE1cbqLiIiIjeJvG8ItKmpSodBROQUTCSIiIjcILhlC0SPHq10GERETsNEgoiIyMVUISGIe/557tBERD6FiQQREZGLRT/6CDTsuUREPsYrE4nMzEw8/vjjaNCgAUJCQtCoUSNMnz4dpaWlSodGRERkIbBeEsL79VM6DCIip7Orj4SnOH78OERRxCeffILGjRvjyJEjePLJJ1FYWIj33ntP6fCIiIjMooYPZ+dqIvJJXplIDBo0CIMGDTLfb9iwIU6cOIH58+czkSAiIkUlJibClJuLGgEBUMfGILRLF6VDIiJyCa9MJKzJy8tDTEyMzWP0ej30er35vk6nc3VYRETkZ/bv34+LE5+D4fJlaHv0YIE1Efksn5hrPX36NP75z39i/PjxNo+bM2cOIiMjzbdU7uVNREQuFNKho9IhEBG5jEclEpMnT4YgCDZvx48ft3jNpUuXMGjQIIwYMQJPPvmkzfNPmTIFeXl55tuOHTtc+eMQEZE/U6kQ1JQdrInId3nU0qZJkyZh7NixNo9p2LCh+b8vX76MPn36oHv37vj000+rPH9QUBCCgoLM97VarcOxEhER2RJQqxZUt/2bQ0TkazwqkYiLi0NcXJysYy9duoQ+ffqgY8eOWLRoEVTcEYOIiDxIQJ3aSodARORSHpVIyHXp0iX07t0b9erVw3vvvYdr166Zn0tMTFQwMiIiojIBtZlIEJFv88pEYtOmTTh9+jROnz6NOnXqWDwnSZJCUREREf0p8I5/n4iIfI1XrgcaO3YsJEmyeiMiIvIEAXXqKh0CEZFLeWUiQURE5NEEAQG1aiodBRGRSzGRICIicjJ1bAxUwcFKh0FE5FJMJIiIiJwsID5e6RCIiFyOiQQREZGTqWNilQ6BiMjlmEgQERE5mTo6SukQiIhcjokEERGRk6kjIpQOgYjI5ZhIEBEROZkqPFzpEIiIXI6JBBERkZMFt2ihdAhERC7HRIKIiMjJBBX/eSUi38ffdEREREREZDcmEkREREREZDcmEkREREREZDcmEkREREREZDcmEkREREREZDcmEkREREREZDeN0gGQe1y5cgVXrlxROgxykpo1a6JmzZpKh0FOwvHpezhGfQvHqG/h+HQev04katasienTp/v8/0x6vR7p6enYsWOH0qGQk6SmpmLDhg0ICgpSOhSqJo5P38Qx6js4Rn0Px6fzCJIkSUoHQa6Vn5+PyMhI7NixA1qtVulwqJp0Oh1SU1ORl5eHiIgIpcOhauL49D0co76FY9S3cHw6l1/PSPib5ORkDhofkJ+fr3QI5AIcn76DY9Q3cYz6Bo5P52KxNRERERER2Y2JBBERERER2Y2JhB8ICgrC9OnTWVTkI3g9fQuvp+/hNfUtvJ6+hdfTuVhsTUREREREduOMBBERERER2Y2JBBERERER2Y2JBBERERER2Y2JBBERERER2Y2JBJELCIIg67Z9+/Zqv1dRURFmzJhh17lmzZqF++67DwkJCRAEATNmzKh2HETewpPH5/Hjx/HKK68gOTkZ4eHhqFmzJu69917s37+/2rEQeQtPHqOXL1/G6NGj0axZM4SHhyMqKgqdO3fGkiVL4I/7F7GzNZELLF261OL+f//7X2zatKnC4y1atKj2exUVFWHmzJkAgN69e8t6zWuvvYbExES0b98eGzZsqHYMRN7Ek8fnZ599hoULF+LBBx/EM888g7y8PHzyySfo2rUr1q9fj379+lU7JiJP58lj9Pr167h48SKGDx+OpKQkGAwGbNq0CWPHjsWJEycwe/bsasfkTZhIELnA6NGjLe7/8ssv2LRpU4XHlXLu3DnUr18f169fR1xcnNLhELmVJ4/P9PR0zJgxA1qt1vzYY489hhYtWmDGjBlMJMgvePIYbdu2bYXZi7/+9a8YMmQIPvroI7z55ptQq9XKBKcALm0iUogoivjwww/RqlUrBAcHIyEhAePHj0dOTo7Fcfv378fAgQNRo0YNhISEoEGDBnjssccAAJmZmeZEYObMmebp3qqWKtWvX98VPxKRz1BqfHbs2NEiiQCA2NhY9OrVC8eOHXPuD0nkxZT8N9Sa+vXro6ioCKWlpdX+2bwJZySIFDJ+/HgsXrwY48aNw3PPPYdz587hX//6F3799Vf8/PPPCAgIQHZ2NgYMGIC4uDhMnjwZUVFRyMzMxBdffAEAiIuLw/z58zFhwgQMHToUw4YNA1D2jQkROc7TxufVq1dRo0YNp/6MRN5M6TFaXFyMwsJC6HQ67NixA4sWLUK3bt0QEhLi0p/b40hE5HLPPvusdPtw+/HHHyUA0rJlyyyOW79+vcXjX375pQRA2rdvX6XnvnbtmgRAmj59ut1xVee1RL7CU8dnuZ07d0qCIEivv/66w+cg8maeOEbnzJkjATDf0tLSpAsXLth1Dl/ApU1ECli9ejUiIyPRv39/XL9+3XwrX9awbds2AEBUVBQA4LvvvoPBYFAwYiL/4UnjMzs7Gw8//DAaNGiAV155xSXvQeRtPGGMpqenY9OmTVi+fDkefvhhAGWzFP6GiQSRAk6dOoW8vDzEx8cjLi7O4qbT6ZCdnQ0ASE1NxYMPPoiZM2eiRo0auP/++7Fo0SLo9XqFfwIi3+Up47OwsBCDBw9GQUEBvv766wq1E0T+yhPGaL169dCvXz+kp6dj2bJlaNiwIfr16+d3yQRrJIgUIIoi4uPjsWzZMqvPlxd/CYKANWvW4JdffsG3336LDRs24LHHHsP777+PX375hR8siFzAE8ZnaWkphg0bhkOHDmHDhg1o3bq1w+ci8jWeMEbvNHz4cCxYsAA7d+7EwIEDnXZeT8dEgkgBjRo1wubNm9GjRw9ZhVldu3ZF165dMWvWLCxfvhyjRo3CypUr8cQTT0AQBDdETOQ/lB6foiji0UcfxZYtW/C///0PqampjvwYRD5L6TFqTflMRF5enlPO5y24tIlIAQ899BBMJhPefPPNCs8ZjUbk5uYCAHJycip0ykxOTgYA89RsaGgoAJhfQ0TVo/T4nDhxIlatWoV58+aZd5Ehoj8pOUavXbtm9fGFCxdCEAR06NBB1nl8BWckiBSQmpqK8ePHY86cOcjIyMCAAQMQEBCAU6dOYfXq1Zg7dy6GDx+OJUuWYN68eRg6dCgaNWqEgoICLFiwABEREbjnnnsAACEhIWjZsiVWrVqFpk2bIiYmBq1bt7a5FGLp0qU4f/48ioqKAAA7d+7EW2+9BQB45JFHUK9ePdf/JRB5KCXH54cffoh58+ahW7duCA0Nxeeff27x/NChQxEWFubyvwMiT6bkGJ01axZ+/vlnDBo0CElJSbh58ybWrl2Lffv2YeLEiWjcuLE7/yqUp/CuUUR+4c6t68p9+umnUseOHaWQkBApPDxcatOmjfTKK69Ily9fliRJkg4ePCilp6dLSUlJUlBQkBQfHy8NHjxY2r9/v8V5du3aJXXs2FEKDAyUtY1damqqxbZ1t9+2bdvmrB+byCt40vgcM2ZMpWMTgHTu3Dln/uhEXsGTxujGjRulwYMHS7Vq1ZICAgKk8PBwqUePHtKiRYskURSd+nN7A0GS7pjzISIiIiIiqgJrJIiIiIiIyG5MJIiIiIiIyG5MJIiIiIiIyG5MJIiIiIiIyG5MJIiIiIiIyG5MJIiIiIiIyG5MJIg8TGZmJgRBwOLFi5UOhYis4Bgl8lwcn+7FRIKIiIiIiOzGhnREHkaSJOj1egQEBECtVisdDhHdgWOUyHNxfLoXEwkiIiIiIrIblzYRucCMGTMgCAJOnjyJ0aNHIzIyEnFxcXj99dchSRL++OMP3H///YiIiEBiYiLef/9982utre8cO3Ys/r+9u4+Juo7jAP7+gXqHcAgaIT5wd8AiGMvHkWl0mTRLKElAxRVokbVKckHMKCempmg5jWJKMSCKVs6cm5YPUxhZbdZWa0RKwYE9jAcXEEkIwqc/nFc/ebofgXfg+7Xd5n3v+3Rs79/4ePy+5+Hhgd9++w0xMTHw8PCAj48P0tLS0NXVZetXWloKRVFQWlqq2k9vc9bV1WHNmjWYNm0adDod/Pz8sHTpUtTU1AzTT4XIeTCjRM6L+Rw5WEgQDaMVK1agu7sbO3bswJ133omtW7diz549uP/++zF16lRkZWUhKCgIaWlpKCsr63eurq4uLF68GJMmTcLrr78Oi8WCN954A7m5uYPaW2xsLA4dOoQ1a9YgJycHKSkpaG1txYULFwY1H9FIxIwSOS/mcwQQIhpymzZtEgCydu1aW9uVK1dk2rRpoiiK7Nixw9be1NQkbm5ukpSUJCIiVqtVAEh+fr6tT1JSkgCQV199VbXOrFmzZM6cObbnJSUlAkBKSkpU/a6fs6mpSQDIrl27huYNE40wzCiR82I+Rw5+IkE0jJKTk23/dnV1xdy5cyEieOKJJ2ztXl5eCA4ORnV19YDzPf3006rnERERdo27npubG8aNG4fS0lI0NTVpHk80WjCjRM6L+XR+LCSIhpG/v7/q+YQJE6DX63HLLbf0aB/oYqTX6+Hj46Nq8/b2HtRFTKfTISsrC5999hl8fX1xzz33YOfOnairq9M8F9FIxowSOS/m0/mxkCAaRr0dPdfXcXQywAFq9hxjpyhKr+3/vZnsmvXr16OyshLbt2+HXq/Hxo0bERISgm+//XbAdYhGC2aUyHkxn86PhQTRKOLt7Q0AaG5uVrXX1tb22j8wMBCpqak4ceIEysvL0dHRoTr9goiGFjNK5LyYT+1YSBCNIkajEa6urj1Or8jJyVE9b2trQ3t7u6otMDAQBoMBly9fHvZ9Et2smFEi58V8ajfG0RsgoqEzYcIExMfHIzs7G4qiIDAwEEeOHEFDQ4OqX2VlJRYtWoTly5cjNDQUY8aMwaFDh1BfX4+VK1c6aPdEox8zSuS8mE/tWEgQjTLZ2dno7OzEvn37oNPpsHz5cuzatQthYWG2PtOnT0dCQgJOnTqFoqIijBkzBrfffjs+/vhjxMbGOnD3RKMfM0rkvJhPbRQZ6O4UIiIiIiKi6/AeCSIiIiIi0oyFBBERERERacZCgoiIiIiINGMhQUREREREmrGQICIiIiIizVhIEN3EampqoCgKCgoKHL0VIuoFM0rkvJhPFhJEdquqqsJTTz2FgIAA6PV6eHp6YsGCBdi7dy/+/vvvYVu3oqICmZmZqKmpGbY17LFt2zY8/PDD8PX1haIoyMzMdOh+iK53M2f03LlzSE9Px8yZM2EwGODn54eoqCh88803DtsT0X/dzPn8/fff8eijjyI4OBgGgwFeXl4IDw9HYWEhRvq3MPAL6YjscPToUcTHx0On0yExMRFhYWHo6OjAmTNn8OKLL+KHH35Abm7usKxdUVGBzZs3495774XJZBqWNezxyiuvYPLkyZg1axaOHz/usH0Q9eZmz+i7776LvLw8xMbG4plnnkFLSwv279+PefPm4dixY4iMjHTIvogA5vPixYv49ddfERcXB39/f3R2duLkyZNYvXo1zp8/j9dee80h+xoKLCSIBmC1WrFy5UoYjUacPn0afn5+tteeffZZ/Pzzzzh69KgDd/gvEUF7ezvc3NyGfG6r1QqTyYSLFy/Cx8dnyOcnGixmFEhISEBmZiY8PDxsbY8//jhCQkKQmZnJQoIchvkE7rjjDpSWlqrannvuOTz00EN48803sWXLFri6ug7pmjcK/7SJaAA7d+7EX3/9hby8PNUF8JqgoCA8//zztudXrlzBli1bEBgYCJ1OB5PJhIyMDFy+fFk1zmQyITo6GmfOnEF4eDj0ej0CAgLw3nvv2foUFBQgPj4eALBw4UIoigJFUWwXpGtzHD9+HHPnzoWbmxv2798PAKiurkZ8fDwmTpyI8ePHY968ef/rYu3IT0OI+sOMAnPmzFEVEQAwadIkRERE4McffxzUnERDgfnsm8lkQltbGzo6OoZ03htKiKhfU6dOlYCAALv7JyUlCQCJi4uTt99+WxITEwWAxMTEqPoZjUYJDg4WX19fycjIkLfeektmz54tiqJIeXm5iIhUVVVJSkqKAJCMjAwpKiqSoqIiqaurs80RFBQk3t7esmHDBtm3b5+UlJRIXV2d+Pr6isFgkJdffll2794tM2bMEBcXF/nkk09se7BarQJA8vPz7X5/jY2NAkA2bdpk9xii4cSM9m3+/Ply2223DWos0VBgPv/V1tYmjY2NYrVapaCgQNzd3WX+/Pl2/2ycEQsJon60tLQIAFm6dKld/b/77jsBIMnJyar2tLQ0ASCnT5+2tRmNRgEgZWVltraGhgbR6XSSmppqaztw4IAAkJKSkh7rXZvj2LFjqvb169cLAPn8889tba2trWI2m8VkMklXV5eIsJCgkY8Z7VtZWZkoiiIbN27UPJZoKDCfatu3bxcAtseiRYvkwoULdo11VvzTJqJ+/PnnnwAAg8FgV/9PP/0UAPDCCy+o2lNTUwGgx8eioaGhiIiIsD338fFBcHAwqqur7d6j2WzG4sWLe+wjPDwcd999t63Nw8MDa9euRU1NDSoqKuyen8iZMaO9a2howKpVq2A2m5Genv6/5iIaLOZTLSEhASdPnkRxcTFWrVoFAMN6YtWNwEKCqB+enp4AgNbWVrv619bWwsXFBUFBQar2yZMnw8vLC7W1tap2f3//HnN4e3ujqanJ7j2azeZe9xEcHNyjPSQkxPY60WjAjPZ06dIlREdHo7W1FYcPH+5x7wTRjcJ8qhmNRkRGRiIhIQEffPABAgICEBkZOaKLCRYSRP3w9PTElClTUF5ermmcoih29evrlAbRcK70cJzQRDRSMKNqHR0dWLZsGb7//nscPnwYYWFhN2xtousxn/2Li4vDL7/8grKyMoft4f9iIUE0gOjoaFRVVeGrr74asK/RaER3dzd++uknVXt9fT2am5thNBo1r2/vBfX6fZw/f75H+7lz52yvE40WzOhV3d3dSExMxKlTp1BcXAyLxaJ5DqKhxnz27donES0tLUMynyOwkCAaQHp6Otzd3ZGcnIz6+voer1dVVWHv3r0AgCVLlgAA9uzZo+qze/duAEBUVJTm9d3d3QEAzc3Ndo9ZsmQJzp49q7pwX7p0Cbm5uTCZTAgNDdW8DyJnxYxetW7dOnz00UfIycnBsmXLNI8nGg7MJ9DY2Nhre15eHhRFwezZszXN50z4hXREAwgMDERxcTFWrFiBkJAQ1bdyfvnllzhw4ABWr14NAJgxYwaSkpKQm5uL5uZmWCwWnD17FoWFhYiJicHChQs1rz9z5ky4uroiKysLLS0t0Ol0uO+++3Drrbf2OWbDhg348MMP8eCDDyIlJQUTJ05EYWEhrFYrDh48CBcX7f+HUFRUhNraWrS1tQEAysrKsHXrVgDAY489xk85yGGY0au/eOXk5OCuu+7C+PHj8f7776tef+SRR2y/UBHdSMwnsG3bNnzxxRd44IEH4O/vjz/++AMHDx7E119/jXXr1vW4J2REcfCpUUQjRmVlpTz55JNiMplk3LhxYjAYZMGCBZKdnS3t7e22fp2dnbJ582Yxm80yduxYmT59urz00kuqPiJXj52LiorqsY7FYhGLxaJqe+eddyQgIEBcXV1Vx9j1NYfI1fOz4+LixMvLS/R6vYSHh8uRI0dUfbQcXWexWFTH1v330duxekQ32s2c0Wtn7/f1sFqt/Y4nGm43cz5PnDgh0dHRMmXKFBk7dqztvefn50t3d3e/Y52dIqLhjhQiIiIiIiLwHgkiIiIiIhoEFhJERERERKQZCwkiIiIiItKMhQQREREREWnGQoKIiIiIiDRjIUFERERERJqxkCAiIiIiIs1YSBARERERkWYsJIiIiIiISDMWEkREREREpBkLCSIiIiIi0oyFBBERERERacZCgoiIiIiINPsHdTr1UXXVUHsAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -579,7 +583,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAGGCAYAAAB/gCblAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAok5JREFUeJzsvXdYlGfav38OXZogikgTBQRUkKIooGIBFbvGEsUSNa7JpmySfbObbJLdbPLdZN930xPTjSYqmti7iCCgUgSkSFGqgCig0qTDzPz+8MeshCJVBr3P45gjmafd18jM83nu+2oSuVwuRyAQCASC/x+VvjZAIBAIBMqFEAaBQCAQNEMIg0AgEAiaIYRBIBAIBM0QwiAQCASCZghhEAgEAkEzhDAIBAKBoBlCGAQCgUDQDCEMAoFAIGjGEy8Mt27d4t133+XWrVt9bYpA0KfU19cTERFBfX19n4wvfovKgxCGW7f45z//Kb6MgieeqKgotm/fTnR0dJ+ML36LysMTLwwCgQDq6uoIDAwkJyeH06dPU1dX19cmCfoQIQwCgYDo6GjS09NxcnIiPT2dS5cu9bVJgj5ECINA8ITTNFvQ0NBAX18fDQ0NMWt4whHCIBA84cTHx5OVlUVVVRUpKSlUVVWRlZVFfHx8X5sm6CPU+toAgUDQt1hYWODv79/qdsGTiRAGgeAJx8zMDDMzs742Q6BEiKUkgUAgEDRDCINAIBAImiGEQSAQCATNEMIgEAgEgmYIYRA8ttTV1dHQ0NDXZggE/Q4hDILHlujoaL788kukUmlfmyIQ9CuEMAgeS2QyGXFxcdjY2KCqqtrX5ggE/QohDILHkoyMDMrLyxk/fnxfmyIQ9DuEMAgeS2JjYzE1NcXU1LSvTREI+h1KKwz//ve/kUgkvPLKK20es2PHDiQSSbOXlpbWozNSoJSUlZWRmZkpZgsCQRdRypIYMTExfPfddzg5OT30WH19fa5du6Z4L5FIetM0QT8gLi4ODQ0Nxo4d29emCAT9EqWbMVRWVuLv788PP/yAoaHhQ4+XSCSYmJgoXkOHDn0EVgqUFalUSnx8POPGjUNDQ6OvzREI+iVKJwwvvPAC8+bNw8fHp0PHV1ZWMnz4cCwsLFi0aBEpKSm9bKFAmbl69SqVlZViGUkg6AZKtZS0d+9eLl++TExMTIeOt7Oz46effsLJyYny8nI++ugjPD09SUlJwdzcvNVz6urqmjUgqays7BHbBcpBbGwslpaWGBsb97UpAkG/RWlmDPn5+fzpT39i9+7dHXYge3h4sG7dOpydnfH29ubgwYMMGTKE7777rs1zPvzwQwYOHKh4eXt799RHEPQxd+7cIScnR8wWBIJuojTCEBcXR3FxMa6urqipqaGmpkZYWBhffPEFampqHcpeVVdXx8XFhczMzDaPefPNNykvL1e8wsLCevJjCPqQuLg4tLW1GT16dF+bIhD0a5RmKWnmzJlcuXKl2bYNGzZgb2/PX//61w5lr0qlUq5cucLcuXPbPEZTUxNNTU3Fe11d3a4bLVAaGhoaSEhIwMXFBTU1pflaCwT9EqX5Benp6bUIL9TR0cHIyEixfd26dZiZmfHhhx8C8N577zFp0iRsbGwoKyvjP//5D7m5uTz77LOP3H5B35KamkpNTQ1ubm59bYpA0O9RGmHoCHl5eaio/Hf1q7S0lM2bN1NYWIihoSFubm5ERESIpYQnkNjYWKytrTEyMuprUwSCfo9SC0NoaGi77z/99FM+/fTTR2eQQCkpLCwkPz+flStX9rUpAsFjgdI4nwWCrhIXF4eenh6jRo3qa1MEgscCIQyCfk1dXR2JiYm4urqK8tpPIOHh4SxYsABTU1MkEgmHDx9u9/jQ0NAW9dUkEgmFhYWPxuB+ghAGQb/mypUrNDQ04Orq2temCPqAqqoqxo0bx9atWzt13rVr17h165biJRIim6PUPgaBoD3kcjmxsbGMGjWKgQMH9rU5gj7Az88PPz+/Tp9nbGyMgYFBzxv0mCBmDIJ+S0FBAYWFhSLTWdBpnJ2dGTZsGL6+vly8eLGvzVE6xIxB0G+JjY3FwMAAa2vrvjZF0INUVlZSUVGheP/7pNTuMGzYML799lvGjx9PXV0dP/74I9OmTSM6OlosRz6AEAZBv6Smpobk5GS8vb2b5bYI+j+/r1/2j3/8g3fffbdHrm1nZ4ednZ3ivaenJ1lZWXz66afs3LmzR8Z4HBDCIOiXJCYmIpPJcHFxafOYu3fvUlpairW1tWjg1I8ICwvD2dlZ8b6nZgtt4e7uzoULF3p1jP6GeNQS9DuanM4ODg7t1roKDg7m2LFjyGSyR2idoLvo6uqir6+vePW2MCQkJDBs2LBeHaO/IWYMgn5Hbm4ud+7cYd68eW0ec/PmTVJTU1m0aJHIb3iMqaysbFZNOScnh4SEBAYNGoSlpSVvvvkmBQUF/PLLLwB89tlnjBgxgjFjxlBbW8uPP/5ISEgIZ86c6auPoJQIYRD0O2JjYzEyMsLKyqrNY0JCQhg8eDDjxo17dIYJHjmxsbFMnz5d8f61114DYP369ezYsYNbt26Rl5en2F9fX8+f//xnCgoK0NbWxsnJibNnzza7hkAIg6CfUVlZSVpaGj4+Pm36Da5fv05mZiYrVqwQjunHnGnTpiGXy9vcv2PHjmbv//KXv/CXv/yll63q/4hfjaBfkZCQgEQiaeacfBC5XE5wcDCmpqY4ODg8WuMEgscEIQyCfkOT03ns2LEMGDCg1WPS09PJz89n5syZIhJJIOgiQhgE/YasrCzKysrazHSWy+WEhIQwYsQIRo4c+YitEwgeH4QwCPoNsbGxmJiYYGZm1ur+K1euUFRUJGYLAkE3EcIg6BeUl5dz7do1xo8f3+pNXyqVcu7cOezt7TE3N+8DCwWCxwchDIJ+weXLl1FXV8fR0bHN/WVlZcyYMeMRWyYQPH4IYRAoPVKplMuXL+Pk5NRqFmxDQwPh4eE4OTmJuvoCQQ8ghEGg9KSnp3Pv3r02nc7R0dFUV1czbdq0R2uYQPCYIoRBoPTExsZibm6OiYlJi321tbVcvHgRNzc3DA0N+8C6x4f6+noiIiKor6/va1MEfYwQBoFSU1JSQlZWVpuzhYsXL9LY2MjUqVMfsWWPH1FRUWzfvp3o6Oi+NkXQxwhhECg1cXFxaGlpMWbMmBb7KisriYqKYtKkSe1WWRU8nLq6OgIDA8nJyeH06dPU1dX1tUmCPkQIg0BpaWxsJD4+HmdnZ9TV1VvsDw8PR1VVFU9Pzz6w7vEiOjqa9PR0nJycSE9P59KlS31tkqAPEcIgUFrS0tKorq5udRmptLSUuLg4Jk+e3GZ5DEHHaJotaGhooK+vj4aGhpg1POEIYRAoLbGxsVhZWTF48OAW+0JDQxkwYAATJ07sA8seL+Lj48nKyqKqqoqUlBSqqqrIysoiPj6+r00T9BGi7LZAKSkuLiY3N5dly5a1ui8pKYm5c+e2usQk6BwWFhb4+/u3ul3wZCKEQaCUxMXFoaOj02rp7JCQEAwMDHB1de0Dyx4/zMzM2qw/JXgyEUtJAqWjvr6exMREXF1dW7TlvHHjBlevXmXatGmiZadA0EsIYRAoHSkpKdTV1bU6IwgODsbY2LjNmkkCgaD7CGEQKB2xsbHY2Ni0yGTOzs4mJyeHGTNmiJadAkEvIn5dAqXi5s2bFBQUtAhRbWrZaW5ujp2dXR9ZJxA8GQhhECgVsbGx6OvrY2tr22z71atXKSgoEE14BIJHgBAGgdJQW1vLlStXcHNza7ZUJJPJCAkJwdramhEjRvShhQLBk4EQBoHSkJSUhFQqbeF0TkpK4vbt28ycObOPLBMIniyEMAiUArlcTmxsLHZ2dujp6Sm2NzY2cu7cOUaPHo2pqWkfWigQPDkIYRAoBfn5+RQXF7dwOsfFxVFRUcH06dP7yDKB4MlDCINAKYiNjWXQoEGMHDlSsa2+vp7w8HCcnZ0ZMmRIH1onEDxZCGEQ9DnV1dWkpKTg5ubWLOIoKiqK2tpa0bJTIHjECGEQ9DkJCQkAODs7K7ZVV1dz8eJFJkyYwMCBA/vGMIHgCUUIg6BPaXI6jx49Gh0dHcX2ixcvIpfLmTJlSh9aJxA8mQhhEPQpOTk5lJSUMGHCBMW2iooKoqOj8fDwaCYWAoHg0SCEQdCnxMbGYmxs3Kz2f3h4OOrq6nh4ePShZQLBk4sQBkGfce/ePa5evcr48eMVTueSkhIuX77MlClT0NLS6tb1b9y4QWhoKDKZrCfMFQieGIQwCPqM+Ph4VFVVcXJyUmw7d+4curq6zZaWukJdXR0HDhwgMzOzu2YKBE8cQhgEfYJMJiMuLg5HR0fFzKCoqIjk5GS8vb273bLz1KlTVFVVsXTpUlGiWyDoJOIXI+gTMjIyKC8vb5bpHBwcjKGhYbOw1a6QkpJCQkICc+fOZdCgQd20VCB48hDCIOgTYmNjMTU1VdQ/ysvLIz09nRkzZnSrZWd5eTnHjh1jzJgxjBs3rqfMFQieKIQwCB45ZWVlZGZmKmYLTU14TExMGDNmTJevK5PJOHToEBoaGsyfP1/0bRAIuojSCsO///1vJBIJr7zySrvH7du3D3t7e7S0tHB0dOTkyZOPxkBBl4mLi0NDQ4OxY8cCkJWVRW5ubreb8ERGRpKbm8uSJUsYMGBAT5krEDxxKKUwxMTE8N133zWLVmmNiIgIVq1axaZNm4iPj2fx4sUsXryY5OTkR2SpoLNIpVLi4+MZN24cGhoaitmCpaUlNjY2Xb7uzZs3CQkJwdPTUzTzEQi6idIJQ2VlJf7+/vzwww8tmsH/ns8//5w5c+bw+uuv4+DgwPvvv4+rqytfffXVI7JW0FmuXr1KZWWlYhkpNTWVW7du4ePj0+XZQkNDAwcPHsTY2JgZM2b0pLkCwROJ0gnDCy+8wLx58/Dx8XnosZGRkS2Omz17NpGRkb1lnqCbxMbGYmlpibGxsaJlp62tLZaWll2+ZmBgIOXl5Tz11FPdclwLBIL7qPW1AQ+yd+9eLl++TExMTIeOLywsZOjQoc22DR06lMLCwjbPqauro66uTvG+srKya8YKOs2dO3fIyclh6dKlwP2qqnfv3mX58uVdvua1a9eIjY1l/vz5DB48uKdMFQieaJRGGPLz8/nTn/5EUFBQt0shtMeHH37IP//5z167vqBt4uLi0NbWZvTo0TQ2NhIaGsrYsWMxMTHp0vXu3bvHkSNHsLOzw83NrYetFQieXJRmKSkuLo7i4mJcXV1RU1NDTU2NsLAwvvjiC9TU1JBKpS3OMTExoaioqNm2oqKidm80b775JuXl5YpXWFhYj38WQUsaGhpISEjA2dkZNTU1YmJiqKys7HLLTrlczuHDh1FRUWHhwoUiNLUHqK+vJyIigvr6+r42RdDHKI0wzJw5kytXrpCQkKB4jR8/Hn9/fxISElpdO/bw8CA4OLjZtqCgoHarcmpqaqKvr6946erq9vhnEbQkNTWVmpoaxo8fT11dHefPn8fFxQUjI6MuXS86OpqsrCwWL14sSnP3EFFRUWzfvp3o6Oi+NkXwEKRSKXv37mXLli0sWbKEK1euAPcTPA8ePNjigbmzKM1Skp6eniKuvQkdHR2MjIwU29etW4eZmRkffvghAH/605/w9vbm448/Zt68eezdu5fY2Fi+//77R26/oH1iY2OxtrZm0KBBhIaGUl9fj7e3d5euVVRUxNmzZ5k0aVK3QlwF/6Wuro7AwEBycnI4ffo07u7uaGpq9rVZglYoKytjzpw5XLp0CV1dXaqqqnjppZcA0NXV5eWXX2bdunV88MEHXR5DaWYMHSEvL49bt24p3nt6ehIQEMD333/PuHHj2L9/P4cPH24hMIK+pbCwkPz8fMaPH09VVRURERG4u7ujr6/f6Ws1NjZy4MABBg0a1KHINUHHiI6OJj09HScnJ9LT07l06VJfmyRogzfeeIOUlBQCAwPJzs5GLpcr9qmqqrJs2bJuJ/oqzYyhNUJDQ9t9D7B8+fJuRbUIep+4uDj09PQYNWoUZ8+eRSKRMHny5C5d6+zZs5SUlLB582bU1JT669tvaJotaGhooK+vj4aGhpg1KDGHDx/mpZdewtfXl7t377bYP2rUKHbs2NGtMfrVjEHQ/6irqyMxMRFXV1cqKyuJiYnB09MTbW3tTl8rMzOTqKgofHx8WoQpC7pOfHw8WVlZVFVVkZKSQlVVFVlZWcTHx/e1aYJWKC8vbze7v6GhgcbGxm6NIR65BL3KlStXaGhowNXVlbCwMDQ1NZk0aVKnr1NVVcXhw4exsbFh4sSJvWDpk4uFhQX+/v6tbhcoH9bW1ly+fLnN/WfOnGH06NHdGkPMGAS9hlwuJzY2llGjRtHQ0EB8fDxTpkzp9PKEXC7n6NGjyGQyFi1aJEJTexgzMzMWLFjA7NmzMTIyYvbs2SxYsAAzM7O+Nu2hhIeHs2DBAkxNTZFIJBw+fPih54SGhuLq6oqmpiY2NjbdXnZ51Dz77LP89NNP/Prrrwr/gkQioa6ujrfeeovTp0+zZcuWbo0hZgyCXqOgoIDCwkJmzpzJuXPn0NfXb9aYp6PExcVx7do1Vq1ahZ6eXi9YKoD74ao7d+5EKpUyZcqUvjanQ1RVVTFu3Dg2btyoyKhvj5ycHObNm8dzzz3H7t27CQ4O5tlnn2XYsGHMnj37EVjcff70pz+RkpLCqlWrMDAwAGD16tXcvXuXxsZGtmzZwqZNm7o1hhAGQa8RGxuLgYEB2trapKSksGjRok47jO/cuUNgYCDjx4/Hzs6ulywV9NdwVT8/P/z8/Dp8/LfffsuIESP4+OOPAXBwcODChQt8+umn/UYYJBIJP/zwA+vXr2f//v1kZGQgk8mwtrZmxYoVTJ06tdtjCGEQ9Ao1NTWK/s3nzp1j8ODBne6oJpVKOXDgAAMHDuw3P9r+Smvhqn01a6isrKSiokLxXlNTs8dEqq3Cmw/r+6KMTJ48ucvRfQ9D+Bj6GLlcTkhICKWlpX1tSo+SmJiITCZj0KBBZGZmMmPGDFRUOvd1CwkJobi4mKeeegp1dfVeslTQVrjqg8UmHyXe3t4MHDhQ8WpKaO0J2iq8WVFRQU1NTY+N05vk5ORw7NixNvcfO3aM69evd2sMMWPoY8rLy4mPj+fixYt4eHh0yTmrbDQ5ne3t7YmKisLU1BQHB4dOXSMnJ4eIiAh8fHwYNmxYL1kqgP+Gq1ZXVxMWFoaenp4iXLUrEWTdJSwsDGdnZ8X7/v576Gn+53/+h4qKChYsWNDq/q1bt2JgYMDevXu7PIaYMfQxBgYGvPTSS0yZMoXo6Gi++OILYmNjkclkfW1al8nNzeXOnTsYGRmRn5/f6ZadNTU1HDp0CCsrKzw9PXvRUgH8N1zVw8MDdXV1PD098ff377NwVV1d3Wb1zHpSGNoqvKmvr99v2sFGRkbi6+vb5v6ZM2dy/vz5bo0hZgxKgIaGBtOmTcPV1ZWQkBCOHz/OpUuXmD17NtbW1n1tXqeJjY3FyMiIa9euYWVlxciRIzt8rlwu59ixYzQ0NLB48WIRmvoIMDMzY/DgwURFRSGVSrl37x6zZs16LJ/UPTw8WpSLeFjhTWWjtLS03eg8XV3dVjOiO4OYMSgR+vr6LF68mD/84Q8MGDCAnTt3snv3bm7fvt3XpnWYyspK0tLSMDQ0pLi4uNMtOxMTE0lNTWX+/PkMHDiwFy0VPEh/rZVUWVmpqMYM95cgExISyMvLA+6X2V+3bp3i+Oeee47s7Gz+8pe/cPXqVb7++mt+++03Xn311b4wv0tYWlpy8eLFNvefP38ec3Pzbo0hhEEJMTU15ZlnnmHlypXcuXOHb775hhMnTlBdXd3Xpj2UhIQE5HI5t27dws7OrlNf0JKSEk6ePImzszNjxozpRSsFD6JszufOEBsbi4uLCy4uLgC89tpruLi48Pe//x2AW7duKUQCYMSIEZw4cYKgoCDGjRvHxx9/zI8//tivot5WrVrFnj17+OKLL5otOUulUj7//HN+/fVXVq9e3a0xJPIHS/M9gVy+fBk3Nzfi4uJwdXXta3Na0NjYyKVLlwgPDwdg6tSpuLu7K2UBOblczueff05DQwPV1dU8//zzGBsbd+hcqVTK9u3bqaqq4rnnnnsslzGUlaioKD777DNqa2tRVVVFKpWipaXFK6+88kidz8r+W1QW6urqmDdvHiEhIQwZMkSR33Pt2jVu377NtGnTOHXqVLd+Q8p3dxE0Q01NDU9PT8aNG0dYWBhnz54lNjYWX19f7O3tlWoNPisrS7G26eLi0mFRgPulDW7evMnGjRuFKDxiHqyVJJVKFU2xRK0k5URTU5MzZ87w888/c/DgQbKysgBwd3fnqaeeYt26dZ0ODf89Qhj6CTo6OsydO5cJEyZw5swZfv31V4YPH87s2bMxNTXta/OA+9P6mpoa9PT0OtWyMy8vj/DwcKZNm9bttVFB5zEzM1PURWpsbFTK2aigOSoqKmzYsIENGzb0zvV75aqCXmPIkCH4+/uzdu1aampq+P777zl06FCzTNG+oKKigpSUFOrq6hg/fjyGhoYdOq+2tpaDBw9ibm7eb+rzPM705zBpQc8hHg36KdbW1jz33HNcvnyZc+fOkZqaipeXF56enmhoaDxye+Li4rh58yaWlpadqtVy8uRJampqWL9+fbenv4Lu84S7HPsNgYGBbNu2jezsbEpLS1v83SQSiWKJqSsIYejHqKioMH78eBwdHTl//jznz58nLi6OmTNnMm7cuEfmf5BKpURGRtLQ0ICXl1eHK6BeuXKFpKQkli5d2uEZhqB3ETMG5ec///kPb7zxBkOHDsXd3R1HR8ceH0MIw2OApqYmPj4+uLm5cfbsWQ4fPkx0dDRz5sxh+PDhvT5+eno6KSkpWFlZ4eXl1aFzysrKOHHiBI6Ojr3yxRZ0DTFjUH4+//xzZsyYwcmTJ3uthpiYuz9GGBoasnz5cjZu3IiKigrbt2/n119/paSkpFfHDQsLo6qqijlz5nSorIBMJuPQoUNoamoyb948pYqsetIRMwblp7S0lGXLlvVqYUkhDI8hlpaWPPvssyxdupSCggK2bt3KmTNnqK2t7fGxSkpKCA0NZcSIER1uuXnx4kXy8vJYunQpWlpaPW6ToOsIYVB+3N3duXbtWq+OIYThMUUikeDk5MRLL72Et7c3sbGxfPHFF1y6dKlHf/zBwcHcuXOH5cuXd8jpXVBQwLlz55g8efIjWeYSdI7uNpEX9D5ff/01Bw8eJCAgoNfGED6Gxxx1dXWmTp2Ki4sLISEhnDp1ipiYGGbNmoWNjU23lnEaGxs5fPgwNjY2HZot1NfXc/DgQUxMTJg2bVqXxxX0Hg0NDX1tguAhrFy5ksbGRtauXcvzzz+Pubm5IimxCYlEQmJiYpfHEMKgBNTU1PR6yV89PT0WLVqEu7s7gYGB7N69G2tra2bPnt2pDOUHCQ0NpaCggHfffbfFF7M1Tp8+TUVFBc8991yHjhc8eurr6/vaBMFDGDRoEEZGRtja2vbaGEIY+piKigq2bt3KuHHjmD59eq8LxLBhw1i/fj3Xrl0jKCiIb775Bjc3N6ZPn46Ojk6nrrV3714sLCw6lLeQlpbG5cuXWbhwIUZGRl01X9DL9IYfStCzhIaG9voYQhj6GB0dHby9vQkLCyM5OZkZM2bg6uraq8leEokEe3t7bG1tiYmJITQ0lCtXrjBlyhQmTZrUoZIIly5dIjMzkz//+c8PtbWiooKjR4/i4OCgqIIpUE6EMAhAOJ/7HFVVVTw9PXnppZcYNWoUx48f54cffiA/P/+RjD1p0iRefvllnJ2dCQkJ4auvviIlJaXdeHa5XM6uXbsYMmQIfn5+7Y4hl8s5fPgwampqLFiwQISmKjn9odS24P7D1r///W9mz56Ni4uLon9GSUkJn3zyCZmZmd26vhAGJUFXV5fFixfz7LPPIpFI2LZtGwcPHuTevXu9Pra2tjZ+fn788Y9/ZOjQoezbt4+ffvqJgoKCVo9PSkoiNTWVRYsWPXR2ERUVRXZ2NkuWLEFbW7s3zBf0II2NjSIyScm5ceOGoufEjRs3SEpKorKyErjvf/juu+/48ssvuzWGEAYlw9zcnM2bN7Nw4UKysrL48ssvuXjxIlKptNfHHjx4MKtWrWLdunXU19fzww8/cODAAcrLyxXHyGQy9uzZg76+PvPmzWv3eoWFhZw9exZPT89OtfcU9C1i1qDcvP7669y7d4+EhATCwsJazO4XL17M2bNnuzWGEAYlRCKR4OrqyksvvYSLiwvBwcF8/fXXZGRkPJLxR44cyZYtW1i4cCE5OTl8+eWXhISEUF9fT1JSEikpKcyYMaPd+kYNDQ0cOHCAIUOGMGPGjEdit6BnEH4G5ebMmTO8/PLLjB49utWl2ZEjR3Z7KVo4n5UYLS0t/Pz8cHNz49SpU+zevRs7Oztmz57NoEGDenVsFRUVXF1dGTNmDBcuXCAiIoLY2Fiys7PR1NTE19e33fODgoIoLS1ly5Ytor5/P6FJ+IcMGSIix5SYmpoahgwZ0ub+nlh+FjOGfoCxsTHr1q1j+fLlFBYWsnXrVoKDgx9JzLmmpiYzZ87kxRdfRCqVcuHCBerq6tq92Tc1k581a1a7X2CBchEVFcWJEyeIiorqa1ME7TB69GhFq9/WOHz4cLej/4Qw9BMkEgljxozhxRdfZPLkyURGRvLVV1+RnJz8SCpiamtrI5fLsbW1xcHBgZ07d7Jnzx5FK88mKisrOXLkCLa2tkyYMKHX7RL0DHV1dQQGBnLz5k2Cg4OFn0GJeeWVV9i7dy//+7//q/D/yWQyMjMzWbt2LZGRkbz66qvdGkPM8fsZ6urqTJ8+HWdnZwIDA9m/fz+xsbH4+fkxdOjQXhs3KiqK3NxcHBwceOONN8jLy+Ps2bNs3boVd3d3vL290dLS4siRIwAsWrRIhKb2I6Kjo0lPT8fGxobMzEwuXbokOuopKWvWrCE3N5e3336bt956C4A5c+Ygl8tRUVHhgw8+YPHixd0aQwhDP8XQ0JCnn36arKwsTp06xbfffsuECRN6JXu6pqaGixcvoqamxrhx49DX12fs2LHY2dkRFRXF+fPnSUxMZPDgweTm5rJ27Vp0dXV71AZB79E0W9DQ0GDAgAHI5XJOnz6Nu7s7mpqafW2eoBXeeust1q5dy4EDB8jMzEQmk2Ftbc3SpUt7JAJQCEM/x9ramueff57o6GhF9vTMmTNxcXHpsezpCxcuUFpaysCBAxk/frxiu7q6OlOmTMHFxYVDhw6xfft2Ro0ahUwmQy6XixlDPyE+Pp6srCxqa2u5desWlZWVZGZmEh8fz6RJk/raPMEDVFdXM2XKFDZv3sxzzz3X7SWjthA+hseApuzpF198kVGjRnHs2LEey56+d+8e0dHR6OjoYGJi0urTiJaWFpWVlfj6+uLu7s6ePXv45ZdfKCws7Pb4gt7HwsICf39/kpOTiYuL48aNG8yfPx8LC4u+Nk3wO7S1tcnJyen1hy4hDI8Renp6LF68mE2bNimypw8dOtSt8LWmBBq5XI6bm1urX8iQkBDu3LnDhg0b2LBhA6tXr+bevXt89913HD16VJGVKVBOzMzMWLBgAbW1tVRUVNDY2MjYsWMxMzPra9MErTBnzhwCAwN7dQwhDI8hFhYWiuzpjIyMLmdPl5SUcPnyZYYMGYKqqirOzs4tjsnOziYiIgIfHx9MTEyQSCSMGjWK559/njlz5pCWlsYXX3xBeHi4qPWv5DRFt8nlcvLy8vrYGkFbvPPOO6Snp7N27VouXLhAQUEBJSUlLV7dQfgYHlOasqcdHBwIDQ0lODiYy5cv4+fnh42NTYeuce7cObS1tampqWHMmDEtynJXV1dz6NAhRo4c2WItWlVVlYkTJ+Lk5ER4eDhhYWHExcXh4+PD2LFjhf9BCWnKi5FKpRQXF1NdXS3qWykhY8aMASA1NbXdLm7dKaMjhOExZ8CAAfj5+eHq6sqpU6fYtWtXh7Kni4qKSE5OZty4cSQkJDRzOsP9p8pjx47R2NjIkiVL2rzRDxgwgNmzZzN+/HjOnj3LgQMHiI6OZvbs2WINW4moq6tTlMJoaGigvr6enJwcxU1IoDz8/e9/7/UHKyEMTwhDhw5l/fr1pKamcubMGb7++ms8PT2ZPHlyq72ag4ODMTQ0pLa2FmNj4xY38fj4eNLS0li5ciV6enoPHd/IyIiVK1dy/fp1AgMD2bZtG2PHjsXHxwcDA4Oe+piCLhIdHa2oqiqTybh+/TqZmZlCGLrIiBEjOn3zlkgkZGVlPfS4d999t4tWdZwuC4NUKmXfvn2cO3eO4uJi3nvvPRwdHSkvLyc4OBgvL69eTbgSdJ6m7GlbW1suXrzIxYsXSUhIYNasWYwZM0bxRc7LyyM9PZ05c+Zw5swZ5syZ0+xLfvfuXU6dOqVYquoMVlZWbN68maSkJIKDg/nqq6+YNGkSU6ZMETHzfURTHkPT31gul5OSkoKVlRUVFRXo6+v3sYX9D29v7xbCEBsbS0pKCqNHj8bOzg6Aa9eukZqaytixY3Fzc+vSWOXl5ejq6vZou9wuOZ/Lysrw8vJi9erV7Nmzh6NHj3L79m3gfl+Bl19+mc8//7zHjBT0LBoaGkyfPp0XXngBU1NT9u/fz88//0xRURFyuZzg4GBMTEyoq6tDVVUVJycnxblSqZQDBw6gr6/PnDlzujS+iooKzs7OvPTSS3h5eREdHc0XX3xBXFwcMpmspz6moIM05TE8WFrl9u3b5Ofnc+3atT60rP+yY8cOtm/frngtWrSIGzduEBQURHJyMgcOHODAgQMkJycTGBhIfn5+p7KVY2NjmTNnDtra2hgZGREWFgbAnTt3WLRoUbfbf3ZJGN544w1SUlIIDAwkOzu72RdKVVWVZcuWcfLkyW4ZJuh9mrKn16xZQ2VlJd9++y3btm0jMzOTadOmcfnyZRwdHdHS0lKcExoaSmFhIUuXLm11CaozNAnUiy++iLW1NceOHeO7777r0HRa0HM05TE0OZo1NTVxd3fH0NCQq1evPpJeII87f//733nppZeYOXNmi32+vr68+OKLvP322x26VkREBJMnTyYjI4M1a9Y0e5gaPHgw5eXlfPfdd92yt0vCcPjwYV566SV8fX1bXUcbNWoU169f75ZhgkeHjY0Nzz//PD4+Phw/fpz09HRSUlIoKytr5nTOzc3lwoULTJ8+vUdj3AcOHMjSpUvZvHkzmpqa7Ny5k927dytmoYLepSmPoamUirq6OuPGjcPQ0JCamhoxa+gBMjIy2i1lbmRk1OEHor/97W84ODiQmprKBx980GL/9OnTiY6O7rKt0EVhKC8vZ8SIEW3ub2hoEO0B+xmqqqoYGBjg4OCAj48Pu3fvJisrS/G0WFtby8GDB7G0tMTLy6tXbDAzM2PDhg2sWLGCO3fu8M0333Dy5Emqq6t7ZTxBx4iPjxc5KN3E2tqa7du3t5rsee/ePX766acO1ziKiYlhw4YNaGpqtvpgbmZm1u2qA11yPltbW3P58uU29585c4bRo0d32SjBo0cmkxESEsLYsWOZN28e165dQ1tbm23btuHk5ERVVRV1dXUsWbKkx2owtYZEImH06NGMGjWK6OhowsPDSUpKwtvbG3d39x51sAk6RlVVFQkJCaKMejf4f//v/7Fs2TLs7e155plnFLlEGRkZCv/evn37OnQtdXX1dn1xBQUF3S5i2aVf+LPPPstPP/3Er7/+qvAvSCQS6urqeOuttzh9+jRbtmzplmGCR0tCQgJ3795lxowZxMXFMWTIEN5++20WLlzI+fPn2bFjB+bm5h0KTe0J1NTU8PLy4uWXX8bR0ZEzZ86wdetW0tLSHkn/CUFzkpKSKCsr62sz+i2LFy/m5MmTDBkyhA8++ICNGzeyceNGPvzwQ4yNjTl+/HiHnc+TJk1i//79re6rqqpi+/bteHt7d8veLs0Y/vSnP5GSksKqVasUMeirV6/m7t27NDY2smXLFjZt2tQtwwSPjsbGRkJDQxk7dizGxsbs3r2bcePGoaWlxYgRIzA0NMTT05Ps7Gy++eYb5syZ0+Hs6e6io6PDvHnzmDBhAmfOnOHXX3/FysqK2bNnM2zYsEdiw5NMY2Mjubm5DB8+nPPnzzN//nyRtd5FZs2axaxZsygsLCQ3NxeA4cOHY2Ji0qnr/POf/8Tb25t58+axatUqABITE8nOzuajjz7i9u3bvPPOO92ytUszBolEwg8//EB4eDjr1q3Dz88PZ2dn/vCHPxAaGso333zTJWO++eYbnJyc0NfXR19fHw8PD06dOtXm8Tt27EAikTR7PRhBI+gYMTExVFZWMn36dK5evUplZSXjx49HJpNx8OBB9PX1efvtt9myZQu6urrs2rWLPXv2UFpa+shsNDY2Zs2aNaxZs4aqqiq+//57Dh8+3CP9bQX3ebBWUhNNtbBycnK4desWmZmZfWXeY4OJiQkTJ05k4sSJnRYFgIkTJ3Ly5EkyMzNZt24dAH/+85/5wx/+gFQq5eTJk81CzLtCtzKfJ0+ezOTJk7tlwIOYm5vz73//G1tbW+RyOT///DOLFi0iPj6+zQxMfX39ZlET4mmmc9TV1XH+/HlcXFwwMjLi+PHjWFpaYmxsTFhYGDdu3FA4uh7Mng4MDGTr1q3tZk/3BjY2NowcOZK4uDjOnTtHSkoKkydPxsPD45HZ8LjyYK0kuB9Ekpqayp07dxQJb5cuXWLEiBHt9vwWtE5eXh4ffPAB586d4/bt2xw+fJipU6dy584d3nvvPTZs2NBqr+aKigp0dHSa+ddmzJjBtWvXSEhIICMjQ9Gop60KyJ1Fqf66CxYsaPb+X//6F9988w1RUVFtCoNEIumS6gruExkZSX19Pd7e3ty5c4ecnByWLl3KjRs3CAsLY+rUqVhaWiqOfzB7+sKFC0RERJCYmMisWbMYPXr0IxFmFRUVJkyYgKOjI+fPnyc8PJy4uDhmzpyJk5OTwoarV6+SkpLCokWLxI3sIfy+VlJDQwM5OTkUFRVhZmZGUVER169fx9bWlpSUFMaNG9fHFvcvUlNTmTJlCjKZjIkTJ5KZmamI3Bw8eDAXLlygqqqKbdu2tTjX0NCQnTt3snr1agA2btzIli1bmDhxIs7Ozq1WPe4uXfq1dKQOSEfrfrRFU8mNqqoqPDw82jyusrKS4cOHI5PJcHV15YMPPmi3vktdXV2zRudPcq+A6upqIiMjcXd3R19fn8DAQLS1tbG2tubHH3/E1NS0TSeWhoYGM2bMwMXFhcDAQPbt24eVlVWv955+EC0tLXx9fXFzc+Ps2bMcOnRIUaDPwMCAI0eOYGVlJSKZOsDvayVlZmZy7do1VFVVGTBgABUVFYpZQ1JSEmPGjBFi2wn+8pe/YGBgQFRUFBKJBGNj42b7582bx6+//trquRoaGs3uWTt27MDHx4eJEyf2mr1d+su2VgdEKpWSm5vLxYsXGTt2bKtToo5w5coVPDw8qK2tRVdXl0OHDrUZ+mpnZ8dPP/2Ek5MT5eXlfPTRR3h6epKSkoK5uXmr53z44Yf885//7JJtjxvnz58H7i8JNjQ0kJCQgKurK0FBQVRVVbF27dqHhqY2ZU9nZmZy6tQpvvvuOyZMmMC0adN6vPd0WwwaNIgVK1aQm5urKNBXXFzM0KFDcXFxEcuLD6G1WklRUVHU19cjlUq5efMmUqlUUSZj5MiRpKeni5D0ThAeHs7f//53hgwZwt27d1vst7S0pKCgoNVz7e3t+fHHH7GysmLgwIEAXL9+vd2UAQBXV9cu29slYdixY0eb+xITE5k9ezb+/v5dMsjOzo6EhATKy8vZv38/69evJywsrNUvoYeHR7PZhKenJw4ODnz33Xe8//77rV7/zTff5LXXXlO8T0hI6HZoV3+kvLycmJgYpkyZgra2NomJidTU1KCjo8PFixdZvHhxu2W5f4+NjQ1//OMfiY6OJjQ0lCtXrvR47+mHMXz4cDZv3swPP/xAdHQ0+fn53Lp1iy+//FIU6GuH1molVVdXY2tr22L2Z2hoCNx/gHNwcBCi20FkMlm7vS1u377d5nf0ww8/ZOXKlfj4+AD3V2PeeeedNiOPmvqtK1U/hnHjxrFlyxb++te/EhcX1+nzNTQ0FKGQbm5uxMTE8Pnnn3eo9oe6ujouLi7tRk5oamo2+wN0NxGkvxIWFoampqaiwU5sbCzDhg0jPDycMWPGdGkNuan3tKOjI2fPnuXYsWPExcXh5+f3yHovZGdnc+vWLZYvX86FCxewsbHpN07pkpISXnrpJY4dO4aKigpPPfUUn3/+eYe+o3K5nLlz53L69GkOHTrULCY+JiaGN954g7i4OCQSCe7u7vzf//2f4m/cVCspKCiI2tpaNDU1mTx5MpaWlgoh+D3l5eVcv3693QoIgv/i6urKiRMn+OMf/9hiX2NjI3v37m3R7KqJOXPmkJOTQ0xMDEVFRTzzzDP84Q9/aHeJvbv0yiLh0KFDSU1N7ZFryWSyZutr7SGVSrly5Qpz587tkbEfV+7evasot62pqUlhYSF5eXloamqipaXV7Vh1PT09lixZwvjx4zl58iTbtm1j3Lhx+Pr69qoQV1ZWcvDgQUxNTbl9+zZeXl5MmDBBqZ5qp02bxjPPPMMzzzzTYp+/vz+3bt0iKCiIhoYGNmzYwB/+8Id2u3Q18dlnn7X6OSsrK5kzZw4LFy7k66+/prGxkX/84x/Mnj2b/Px81NXVMTMzw8zMrEWtpIeRlJQkhKGDvPnmm8yfP5/nn3+ep59+GrjfDOvs2bN88MEHpKWl8dVXX7V6blJSEsOHD2f27NkAbN++neXLl7dakK+n6HFhuHv3Ltu2bWtzjb893nzzTfz8/LC0tOTevXsEBAQQGhqqaHy9bt06zMzM+PDDDwF47733mDRpEjY2NpSVlfGf//yH3Nxcnn322R79TI8bISEh6OnpKQrkxcXFcffuXYyMjFi1alWP+Qaaek/Hx8cTHBzM1atX8fb2ZuLEiT3uEJbJZOzfv5/S0lLy8/NJTU3F3NychIQEvvzyy0e2nNVV0tLSOH36NDExMYq/y5dffsncuXP56KOPMDU1bfPchIQEPv74Y8Ws70GuXr1KSUkJ7733nmLW9o9//AMnJydyc3O7lahYVFREYWGhiArsAH5+fuzYsYM//elPfP/99wCsWbMGuVyOvr4+v/zyC1OnTm31XBcXl2ZRSY+CLgnDjBkzWt1eVlbG1atXqa+vZ+fOnZ2+bnFxMevWrePWrVsMHDgQJycnAgMD8fX1Be7HAT/4Ay8tLWXz5s0UFhZiaGiIm5sbERERwinWDrdu3WoWwtmUx1BdXc3ixYt7/AlQRUUFNzc3Ro8eTWhoKEFBQYre09bW1t2+vlQqJS0tje3btxMaGoqamhp3797FwcEBIyMjHB0dlWrG0BaRkZEYGBg0q2br4+ODiooK0dHRLFmypNXzqqurWb16NVu3bm31Bm1nZ4eRkRHbtm3jb3/7G1KplG3btuHg4ICVlVW37U5MTBTC0EHWrl3L0qVLCQoKapZ7MHv27HZLzQwYMKBZIcmwsDA2b97cq7Z2SRhkMlmLH5tEImHEiBH4+PiwceNG7O3tO33d1mJ4H+T3zSc+/fRTPv30006P8yQTHBzM4MGDFUsF8fHxJCUlMWvWLKZPn95r4/6+9/TOnTuxt7dn9uzZba5jt4ZcLqewsJCoqCguXbpESkoKxcXF3Llzh5EjRzJgwACWLFnCmjVrGDZsWL8JVS0sLGwRwqimpsagQYParZT56quv4unpyaJFi1rdr6enR2hoKIsXL1YEZNja2hIYGNgj4aZ5eXmUl5cromUELamursbCwoI33niD119/vVMNeeC+3/aTTz5BVVVV8e8cExPz0CoPS5cu7arJXROG7nYHEvQNubm5ZGZmsmLFClRUVJDL5ezcuRM9PT3WrFnzSG6irWVPe3l5MXnyZNTV1Vsc39DQQEFBAVlZWcTFxZGYmEhhYSFSqRQTExNcXV0pKirCwcGBgQMHcufOHV544QWlKY3ywQcfNKuZX1NTQ1RUFC+++KJiW1f9cUePHiUkJIT4+Pg2j6mpqWHTpk14eXmxZ88epFIpH330EfPmzSMmJqbby4ZyuZzk5OReK8X+OKCtrY2amho6OjpdOv/zzz9n2bJlivpzEomEzz//vN0umUoXlSRQTuRyOWfPnsXU1FTRpzksLIyUlBRefvllBg8e/Mhs+X329IULFxTOcHNzc27cuEF+fj5ZWVmkpKRQVFRERUUFurq6jBgxggULFjB58mTMzMzYu3cv2traODs7ExISgr+/v9KIAsBzzz3HihUrFO/9/f156qmnmj3NmZqaYmJiQnFxcbNzGxsbKSkpaXOpJiQkhKysLEUhyyaeeuoppkyZQmhoKAEBAVy/fp3IyEjFMmxAQACGhoYcOXJE4QjNy8ujqqoKuJ/XUFJS0uFw5fT0dMaPH99nIcFbt27lP//5D4WFhYwbN44vv/wSd3f3Vo/dsWMHGzZsaLZNU1NTkfXdWzz11FPs37+f559/vtNLm+PHjyczM5OsrCyKioqYNm0ab731liJ8tTfokDD88ssvXbp4U4EnQd+TkZFBfn4+a9euRSKRcO/ePbZv346lpWWbyxC9jZqaGg4ODorCX6+99hrq6uoYGhoil8uRSqXo6enh5eWFu7s7Y8aMabbsFBUVxbVr15g/fz5BQUG4uLhga2ur2B8aGkp4eDhvvfVWny0pDRo0qNkNdsCAARgbG7dw+np4eFBWVkZcXJyiKXxISIiihEJrvPHGGy0CLRwdHfn0008V5WWqq6tRUVFpdjNqei+Tybh06RLvv/8+J06cUOQx1NTU8Le//Q1HR0fmzZv3UF9EQ0MD165d63bhtq7w66+/8tprr/Htt98yceJEPvvsM2bPns21a9daLM010Rf11Z5++mn++Mc/Mn36dDZv3oyVlVWrs7W2ktLU1NSws7PDzs6O9evXM3/+/L7PfG4ttO5hSCQSIQxKglwuJzg4GCsrK0aOHIlcLue3336jqKiI11577ZHdNGtra7lx4wZ5eXnk5+dTUFBAfX09DQ0NaGtrY2ZmRmZmJuXl5bi7u7No0SKcnZ3R19dvca2bN28SFBTEpEmTSE1NRVNTUxHOJ5fLOXbsGF988QW2trY0NDQova/BwcGBOXPmsHnzZr799lsaGhp48cUXefrppxURSQUFBcycOZNffvkFd3d3TExMWp1NWFpaKoIIfH19ef3113nhhRd46aWXkMlk/Pvf/0ZNTY2amhq8vLyQy+Utelw0LRElJyezefPmh2bRJicnM3bs2Ece/fXJJ5+wefNmxSzg22+/5cSJE/z000+88cYbrZ7TF/XVpk2bpvj/pooDD9KZpLTt27f3pGmt0iFhyMnJ6W07BL1IcnIyRUVFbNq0CYlEQlRUFJGRkdjZ2eHp6dkrY8rlckpKSsjPz1e8bt++jVwuR0dHB0NDQwwNDSkvL0cmk6Gurs7MmTN5/vnnqaioIDo6mqioKHR1dXF2dm52w6mrq2P//v2YmJhgaGhIVFQUa9euRUtLC5lMRkBAADt27MDJyYkPPvhAqZaW2mP37t28+OKLzJw5U5Hg9sUXXyj2Nz2Zd6bVqb29PceOHeOf//wnHh4eqKio4OLiwscff8xzzz2HVCpts/FRU5ewH374gb/+9a/tzhwqKyvJzs5+ZH064H412Li4ON58803FNhUVFXx8fIiMjGzzvM7WV+sJunMzf++995BIJLz11luoqKjw3nvvPfScpuzoriKRP+HtsC5fvoybmxtxcXHdqi2irEilUrZu3cqQIUNYtWoVRUVFfPfddxQWFjJ9+nSWL1/eI+M0NjZy8+bNZkJQVVWFRCJhyJAhmJubo6urS1VVFfn5+RQXF6Ouro6NjQ0ODg6MGjWq2Q383r17nD17lsTERExNTZk7dy7m5ubI5XIOHDhARkYGTz/9NHv27MHR0ZEFCxbQ0NDADz/8wMGDB/Hw8ODtt98WpTDaYOHChZw8ebJDT6gqKio4Ojq2mrX7IEOGDGkzrLYjNP0Ww8LCmlUM/X21giZu3ryJmZkZERERzbKA//KXvxAWFkZ0dHSLcyIjI8nIyGhWXy08PLzd+mp9TdPSX01NDRoaGh2alQnns6Bd4uPjKS0tZeXKlTQ2NnLgwAEkEgmDBw9uFjPfWSorKxUCkJeXx61bt5BKpWhoaGBmZoabmxsWFhaoqqqSk5NDamoqd+/eRVNTk1GjRjFt2rR2y1X8Pnv6xx9/xNnZGSMjI5KTk1m2bBnh4eEMGDCAWbNmUVVVxddff01QUBDTp0/nf/7nf4QotEFeXh7Hjx/vcItUmUxGUlLSQx3St2/f7pTTui1+X7vsH//4B++++263rtlEV+qr9TW/7+/cXr/nnqLLwlBYWMi2bdu4fPmyYjngQSQSCcHBwd02UNB1GhoaCAsLw9HRkaFDh3L69GlKSkoYNmwYtbW1HU5wkslk3L59W+EbyM/PV3RvGzhwIJaWljg5OWFhYYGxsTEFBQWkpaVx4sQJysrKGDBggCJnYeTIkW3Gzzc2NrZ4yjE2NmbdunUkJCRw7NgxoqOj8fHxoaSkhIyMDPz9/bl79y7ffvstly5dYsaMGYon246WUukKqqqqj7TstFQq7dANobV/w9/zoKO5o8jlclJSUh5anycjI6PLM++mst+tzRhaY/DgwaiqqlJUVNRse1FRUYd9CB2pr9YVNm7ciEQi4fvvv0dVVZWNGzc+9ByJRPLQXK5HRZe+2UlJSUybNo2amhrs7Oy4cuUKo0ePpqysjIKCAqytrR9Z0TRB21y6dImqqiqmTZtGZmYmUVFReHt7c+HCBXx9fduMxqirq1OEjObn53Pjxg3q6upQUVFh2LBh2NnZYWFhgYWFBfr6+shkMkUZ4LS0NCorK9HV1cXBwQEHBweGDx/+UOdvY2Mjqamp1NTUtLpfJpNRXV2NoaEhKSkpnDhxgilTppCRkcHBgwfJysrC3d0dLy8v0tLSuv1v9zAGDBjA6NGjH5k4vP/++31eLn7Xrl3s2rWr18fR1dVtNeDg92hoaODm5kZwcLAiaUwmkxEcHNwsT6Q9equ+WkhICCoqKshkMlRVVQkJCelQD5uOkpaWRlZWFvfu3UNPTw8bG5suJRW3RZe+1W+88Qa6urokJCSgra2NsbExn3/+OTNmzGDfvn08//zz7N69u8eMFHSe2tpaLly4gJubG5qamhw+fBgbGxvU1NSQSCSKzGe5XE5ZWVkz30BRURFyuZwBAwZgYWHB5MmTsbCwwMzMTJGE1tjYSHZ2NufOnePq1avU1NRgYGCAo6MjDg4OWFhYdOqLLpVKqampQV1dvdXlpXPnziGTyXjppZc4efIkJSUlZGZmEhERgYqKCtOmTWPJkiWPpJJqfX09NTU1SKXSRyYM77zzDm+99Va7x9TV1ZGYmIiamlq7/w5HjhzpksisXLmyzfwAuP9dMjQ0ZMWKFV1axouPj+90COZrr73G+vXrGT9+PO7u7nz22WdUVVUpopT6qr7a9evX233fVb777jv+9a9/tdq7wdLSkrfeeqtHPkuXvtUXL17kL3/5C5aWlpSUlAD/XfdqKnf8+uuvExYW1m0DBV0jIiKCxsZGpkyZwtGjR5HJZCxcuJAff/wRExMTEhISFP6Bpi52gwcPxsLCgokTJ2JhYYGRkVGzm3t9fT2pqamkpaWRnp5OXV0dRkZGjB8/HgcHB4YNG9btmHANDY0WN7Vr166Rnp6Oj48PxcXFVFdXM2fOHM6dO8edO3cwMTHBysoKTU3NVrOne4OGhoZHMk4TqqqqD511yWQyRYZte8Iwbdo03nvvvU4tJ0kkEhwcHNr9923qOaCurt6lv0NXRHblypXcvn2bv//97xQWFuLs7Mzp06cVfSQep/pq//M//8Mnn3zCoEGD2LhxI2PHjkVXV5fKykquXLnC4cOH2bJlCxkZGfzv//5vt8bqcq2kpn94AwMDVFVVFQIB95NslGWt7EmksrKSqKgoJk6cSGJiIhcvXsTV1ZWtW7cSFBSEs7MzhYWFmJmZ4eLigoWFBebm5q02EqmtrSU9PZ20tDQyMzNpaGjAxMRE4bQbMmRIryYIlZaWcu7cOezs7DAxMWHPnj1IJBLi4+NRU1NjxYoVmJmZkZSURFZWFl5eXtjY2PSLwnl9hampKdOmTSM8PLzDUUmjR4/ukFO5vWJwvcWLL77Y5tLR41Jf7dKlS3zyyScsWbKEX375pdXyGp9//jlr1qzho48+Yvny5d0KLulyz+em3AYVFRVGjBjB2bNnFan/ERERLdL0Bb2PXC7n9u3b7N27l7S0NBobGwkNDcXExITS0lKKiooYP348L7/8crsF5qqqqrh27RppaWlkZ2cjlUoxMzNj2rRpODg4dDvqpKM0NjYSGBiIjo4OU6dO5ciRI+Tm5qKvr09jYyPOzs4sWrQIDQ0NnJycuHDhAqdPn8bc3JypU6diZGT0SOzsj/zxj3/k/PnzSCSSDs0cmpIH20MikYjffTucOnWKTz75RBGw09q/e1tCvW3bNoYNG0ZAQECby3Q6Ojrs2bOHkSNHsm3btkcjDKWlpYpyBLNmzWLfvn3861//AuD555/nz3/+M9nZ2cjlckJDQ/nzn//cZaMEHaO+vp6CgoJm/oGysjIuXbqEs7MzxcXFTJo0iVdffRUNDQ0+++wz5s2b12q8dkVFBVevXiUtLU2xHmppacmsWbOwt7fvk+qZFy9epKSkhOXLlxMfH8+5c+cwNjZGRUWFMWPGsHDhQsWSiYGBAfPnzyc3N5fw8HBFfsOkSZNE2GorODk58emnn/Lqq68ik8lajXiSSCRIJBI2bNjA8OHDH3rNQYMGPdJIrf7EgQMHWLFiBWPGjOHpp5/mm2++YfXq1cjlco4cOYKtrW27VVcjIyNZvnz5Q7/LWlpaLF++nHPnznXL3g7/FU1MTJg7dy7+/v78+c9/ZtWqVTQ0NKCurs4rr7xCVVUVBw4cQFVVlXfeeYe//e1v3TJM0JLy8vJmuQNFRUXIZDK0tLQwNzfHw8ODq1evYmBggJOTE3FxcTz77LMMGTKE0NBQ1NXVcXR0VFyvtLSUtLQ00tLSyM/PR0VFhZEjRzJ//nzs7Oz6tO1pVlYWSUlJeHt7U1lZyfbt29HV1WXgwIEMHz68mSg8yPDhw1m9ejUJCQnExMSQk5PDmjVrxA2rFWbNmsWePXv49NNPiYyMbPEEO2rUKObPn98hUQDarE0kuN+32d3dnQsXLlBaWso333zDxo0bmTFjBtevX2fSpEnt9kLJz89XFL98GKNHj+5yfbsmOvxrWbZsGUePHuXo0aPo6emxdOlS/P39mTFjBhKJhLfffpu33367W8YI/otUKqWoqKhZ7kBFRQVw/8nMwsKC8ePHY2FhoVjnv337NqGhoYwbN46YmBh8fHwYNmwYUqmUuLg4nJycqKioUIjBrVu3UFNTw8bGhiVLljBq1Kge697WHe7du0dwcDDW1tYMGjSI//u//wNQhMi2JQpNqKqq4ubmhp2dHUVFRUIU2sHJyYnt27dz8+ZNFi1aREVFBQMGDOCvf/1rp5cMhwwZQn19fS9Z2r9JTU3lww8/bJb/0hTAYGVlxR//+Ef+93//t836chUVFR323+jq6nLv3r1u2dvhX8zu3bupqanh8OHDBAQEsHv3bn7++WeGDh3KqlWr8Pf3fyxLSjwqampqmi0JFRQU0NDQgJqaGqampjg6OipujG3VdQ8JCWHAgAFkZmZiZWWFp6cncrmcixcvkpSURH19PbGxsWhoaDBq1CgmT56Mra3tIwnx7ChSqZTTp0+joaHB8OHD+fbbb6msrMTW1rZDovAgurq6fTrr6U+YmpoyYMAAKioq0NDQ6LQoDBo0CHV1dSEMbaCtrd1s2VNTU5Nbt24p9g8dOrTdmnRNRfY6SncrHXXqUWrAgAGsWrWKVatWUVpaym+//UZAQACfffYZn332Gba2tqxZs4bVq1czcuTIbhn2pHDv3j1++eUXbt++Ddy/mVlYWDB9+nQsLCwYNmxYh554CwoKSE1NRUdHh8bGRiZMmEBQUBBpaWmEhoaioqKiSDiztrZW2qfomJgYReOdkydPcufOHYYMGYKtrW2nREHwaBkyZEhfm6DU2NnZNWvI5OzszM6dO1mzZg2NjY0EBARgaWnZ7jU++ugj9uzZ89CxWstx6CxdvjsYGhqyZcsWtmzZQkFBAQEBAezZs4e///3v/OMf/2DixIlERER028DHHV1dXUaOHMnkyZOxtLTEwMCgS6GWQUFB3L59m4yMDMzNzfntt9/Q0dHB3NwcCwsL1q9fr6jzr6zcuHGDuLg4Bg4cSEpKCmVlZcjlclxdXYUoKDnCv9A+S5cu5YsvvuCjjz5CU1OTt956i0WLFil+71VVVfz0009tnt+UM/ZgWkB7PExkHkaPPDaamZnx+uuvM2fOHP7+979z5MiRVisbCloikUjw8/Pr0rlSqZScnBxCQkIICAigtraW0aNHM2PGDEX2cXBwMKampn3SRKUzVFZWEhISQllZGWpqamhpaVFQUMCUKVO6nNFcVFREcXFxM4e7oOfR1dVFW1tbLCO1Qm1tLUeOHKGhoYG3335bUats/vz5hIaGcvDgQVRVVZk3b167Pdd7KnO6o3RbGPLy8hSzheTkZORyOZ6envj7+/eEfYLf0dDQQFZWFqmpqaSnp1NTU0NaWhrq6upMnz6dv/71r4ry1Y2NjcTHx+Ps7PzIMoK7gkwmY+/evVy9epVRo0Zhb2/P7t27sbe3Z+3atZ0SBblczvXr14mPj6egoABDQ0NGjx6t9I16lIGmdenOrk83NRISNKe4uBhPT09ycnIUPoIBAwZw+PBhfHx8mDJlClOmTOlrM1ulS8Jw584dhX+hKczN3t6e9957D39//w5X7RR0jLq6OjIyMkhNTSUjI4OGhgaMjY2ZNGkSampq5OTkMHbsWDZt2tSsp0FaWhrV1dXdSnR5FJw8eZKjR49ibm7OlClT2L59O4MHD+bll1/usCg0NjaSnp5OfHw8JSUlDB06FD8/P0aOHPnIu4r1V5qiZDpTx19VVVVp+xj0Ne+//z7Xr1/n1VdfZcaMGWRmZvL++++zZcsWsrKy+tq8dumwMFRVVXHo0CECAgIIDg6moaGBYcOG8corr4iIpF6gurqa9PR0UlNTycrKQiqVYmpqire3Nw4ODhgZGSGTyfjXv/7FvXv32LRpU4sfaGxsLCNGjGDw4MF99CkeTmRkJJ9//jmjRo3C09OTQ4cOIZfLeeWVV1ot0fF7amtrSU5OJjExkerqakaMGMH06dN7pG7Tk0R9fb2iTHlDQ4MiR+lhjBgxQqlno33JmTNnWLduHR999JFi29ChQ1m9ejXXrl3Dzs6uD61rnw4Lg7GxMbW1tejq6rJ69WpFDoN4Gus5KisruXr1KqmpqVy/fh25XI6FhQW+vr7Y29u3KDcQGxvLxYsX8fX1bTElLS4uJjc3t8c6tPUGly9f5r333sPCwoLnnnuOjz/+mJKSElatWvXQp9CKigri4+NJS0tDJpNhb2+Ps7PzIyvX8biRmJiomCnIZDLy8vKwtrZu9xw9Pb12k7KedPLy8vjrX//abNvkyZORy+UUFRU9HsLg4+ODv78/Cxcu7Dc9dPsDdXV1xMfHk5qaSn5+PhKJBCsrK+bOnYu9vX2bcfhSqZRvv/0WQ0NDNm7c2EKg4+Li0NHR6dEa7T1JZGQkH330EUZGRrz66qscPHiQ4uJi3N3d2+1DXVRURHx8PJmZmWhoaODs7Iyjo2ObuR2Ch1NfX9+iQX1qaiqWlpZtzgbU1NRa9OIWNKeurq7FvfJB/58y02FhOHLkSG/a8cQil8s5d+4cw4cPZ9GiRYwaNapDSyi//vor2dnZvPvuu4oaVk3U19eTmJjIhAkTlM7pKpfLCQwMZN++fWhra7Np0yaOHz/OvXv3GDZsGL6+vi1yLH7vUNbX12fq1KnY29uLENYeoOmhpKleklwu586dO9y4caPVGYFEIsHZ2blD39MnnaYGVk2Ul5cD9zvdtVZwUFmW5JUzy+kJQktLi9dff71TCWfFxcXs2rWLiRMntuiPC5CSkkJdXZ3SfMmaaGho4ODBg1y6dAk1NTWmT59OZGQkAwYMQFNTE1dX12bx8L93KJuYmHTKoVxSUkJhYWG/qLXflwwbNgw/Pz/Onj0L3L/xu7i4tHjgaGL06NGicm0Heeedd3jnnXdabG9qP9tEU9RSZxz/vYkQBiWgM6Igk8n49NNPkcvlvPrqq606WGNjY7GxsWnzh90XVFdXs2fPHvLz89HS0sLY2Jjr168zbNgwampqMDExUfT57a5DuaSkhJiYGDIyMhg4cCB2dnZKN3NSJoYOHYqhoWGzf1s9Pb1Wn2ibencIHs727dt77dqBgYFs27aN7OxsSktLW4QYSySSbkU+CWHoZ4SEhBATE8OaNWtabXh+8+ZNCgoKWLVqVR9Y1zolJSXs2rWL2tpahg0bRnZ2NpWVlYwcORIzMzOioqJYt24dmZmZJCUlkZGR0SWHcmlpKTExMaSnp6Ojo4O3t7fIYegAHfUx6OjoKLXDVNlYv359r1z3P//5D2+88QZDhw7F3d29VxI4hTD0IwoKCti5cyfDhw9vM9qoqaSEra3tI7audW7cuEFAQAADBgxgwoQJijajDg4OTJ8+nZ9//hkHBwciIyMJCQlBV1cXFxeXTjmUy8rKiI2N5erVq2hrazN16lRGjx6ttPWglI0mH8ODT52t+RjGjBkjRFYJ+Pzzz5kxYwYnT57stVBh8cvpJ9TX17N7927Ky8t54YUXWr1p1tbWkpSUxOTJk5UiWiQtLY0DBw5gamrK9OnT2bp1K3fv3mXGjBksX76c//znP+Tk5NDY2MjAgQPx8PDAxcWlw4JQXl5OTEwMV69eZcCAAUyZMoUxY8YIQegkw4YNY8GCBURERFBfX4+Ghgbjx49vthTZtNwk6HtKS0tZtmxZr+aPiF9QP+H06dMkJyfj5OTUZhp9UlISUqlUKZzO0dHRnD59mtGjRzNv3jw+/vhjMjIymDdvHqNHj+bNN9/kypUrzJ8/Hz8/P0aMGEFSUlKHvuwVFRXExsaSmpqKlpYWXl5ejB07ViRadZGhQ4cydOhQRXew3zd0Ah6a0yB4dLi7u3Pt2rVeHUMIQz8gLS2Nixcvoq2tzezZs1vNI5HL5cTGxmJnZ9cnDdkftOPMmTNERkbi6emJr68v27ZtIzQ0FEdHR0pKSvj111+5desWzz//PMuXL0cikSiybtvj3r17CkHQ1NTE09MTR0dHIQi9zODBg/v0OyVoztdff42fnx/jx49n9erVvTKGEAYlp6KigqNHj9LY2IiNjQ3u7u6tHpefn09xcXGHmrb3Fg0NDRw6dIi0tDTmzp2Lu7s7Bw4c4KuvvsLIyAgDAwPs7e2RSCSMGjWKp556qkNRRpWVlcTFxZGcnIyGhgaTJk3C0dFR5DA8In7f2rO+vp7k5GTGjh0r/gZ9wMqVK2lsbGTt2rU8//zzmJubt/D9SCQSEhMTuzyGEAYlRi6Xc/jwYWpqatDS0mLatGltPh3HxsYyaNCgPmuQ1BSOWlhYyMqVK9HX1+ejjz7im2++YejQofz1r3/Fy8uLyMhI6uvrWbx48UMdmU2CkJKSgpqaGhMnTsTJyUncjB4h2traLXIWEhMTOXLkCDKZTOkLND6ODBo0CCMjo14NMBHCoMRERkaSnZ2NgYEBKioquLi4tHpcdXU1qampTJ8+vU8Kx5WUlChav06ZMoWoqCji4+MJCQlh1KhR7N69m0GDBnHjxg0uXrzIjBkzGDp0aJvXq6qq4vLly1y5cgU1NTUmTJjAuHHjhCD0Mq2V3TY3N6ehoUExQwA4f/48N27cIDw8XAh1HxAaGtrrYwhhUFIKCwsJDg7G1taWjIwMnnrqqTafsBMSEpDL5W0KR29y48YNdu3aRUlJCYMHD1b0nc7NzcXW1pbPPvuMQYMG0djYyOHDhxk2bBheXl6tXqumpobExETS0tJQVVXFzc0NZ2dnhVNU0Lv8vuy2RCLBzMys2QyhqTyJnZ0d169fJykpScwaHkOEMCghDQ0NHDhwgMGDB1NbW8vQoUMVT2u/p8npPGbMmEdeuyYhIYGtW7dSXl6Ora0tFhYWWFlZ8euvvwLw+uuvK1oMnjt3jtLSUrZs2dIilLa6uppz585x7NgxtLS0cHV1xdnZWRRrfIS0VnbbwsIC+O8M4dy5c8D9qCVdXV3U1dXFrKEPaWho4OrVq5SXlyvqXD3I1KlTu3xtIQxKSFBQEKWlpfj6+nLq1ClWr17d5hJRTk4OJSUlLF68+JHZV1payo4dOzh+/DiDBw9m1apVTJkyhaqqKn788UcKCgpYsWIFkyZNAu47xiMiIpg5c2azWkjV1dVERkYSHR1NY2MjY8eOZdKkSejr6z+yzyK4T2JiIqqqqmhpaSGRSMjLy2PSpEkkJiYqZghXrlxBIpGgo6NDRkYGjY2N5Ofnk5qaqihnIuh9ZDIZb775Jl9//TXV1dVtHteduktCGJSM9PR0Ll26hJ+fHwkJCVhYWLTrZIqNjcXY2FjxdNeb3Lx5k4sXL3Ls2DFu3rzJ7Nmz+eMf/4iuri65ubns3LmTgoICJk2axNKlS5FIJDQ0NHD48GHMzMwU5bRramoUgiCTyZg4cSJubm6kp6eLWUIf0FQSw9vbG11dXTIyMrh27RoaGhqcP39eMUPQ1dVFTU2N+fPnN0siHDZsWB9a/+TxwQcf8J///IctW7YwefJk1q5dy//+7/9iYGDA119/jUQi4f/+7/+6NYYQBiWisrKSI0eOYGtri46ODrdu3WLDhg1tzhbu3bvH1atXmTNnTq85neVyORkZGURERJCdnU1+fj6ampq8++67TJ48GYDc3Fx2795NRUUFFhYWrFy5UnGDDwkJoby8nFWrVlFfX09UVBSRkZHIZDImTJiAl5cXOjo6HcpjEPQOTSUx6urqKCkpob6+nnv37nH69GnF9oyMDOB+K09jY2MxQ+hDduzYwYoVK/jmm2+4e/cuAG5ubsyYMYP169fj4eFBSEgIPj4+XR5DCIOSIJfLFT0vFixYwC+//IKNjU2LGPIHiY+PR1VVFScnpx63p7GxkStXrhAREcHt27cxNjZGQ0ODkSNHsnz5ckUDoCZRUFNTQ1NTk1mzZimqb+bl5REVFYW3tzcpKSlERkbS2NioEIS2mhD1JE0lHgRt01QSA+7X4yoqKsLa2hpbW9tW28KKGULfcuPGDf7yl78AKAIzamtrAdDQ0GDNmjV88sknfPDBB10eQwiDktBUJtrf35/MzEzu3LnDU0891ebxMpmMuLg4HB0de3T5paamhtjYWKKjo6mqqsLOzo4pU6YQGhqKpqZms7abTaJgZGREaWkp9vb2iuWihoYG9u/fr/AjSKVSxo8fj5eXV69n0VZVVZGVlcW1a9eora1lzZo1ov9zOzSVxAC4du0a169fZ+bMmaLmlJJiZGREZWUlALq6uujr65Odnd3smNLS0m6NIf7ySkBxcTFnzpzB3d2dESNG8MUXXzBmzJh2n8wyMzMpLy/vsVDB0tJSRf6BTCZj3LhxeHh4UFdXR0BAAFpaWmzatElRArtJFExNTZFKpairq7N48WIkEgn19fV8+eWXnDlzBldXV8aNG8fkyZN71alcV1dHVlYW6enp3LhxA7jfBElVVZXGxkZRNqMT6OnpCVFQYlxcXIiJiVG8nz59Op999hkuLi7IZDK++OILxo0b160xxF+/j2lsbOTAgQMYGhri6+tLTEwMlZWVzJgxo93zYmNjMTU1xdTUtFvj37x5k4iICFJSUtDS0sLDwwN3d3d0dHS4du0a+/fvx8TEhFWrVinCYXNzc9m1a5eiacv58+dZt24dGhoaREREcPToUaKjo5k3bx6bN29m4MCB3bKxLRoaGrh+/Trp6elcv34duVyOqakp3t7eaGtrExgYiJWVlSgV3UHq6+tJS0trd/lS0Pf84Q9/YMeOHdTV1aGpqcm//vUvpk6dytSpU5HL5RgaGrJnz55ujSGEoY+prq5GQ0ODefPmIZPJOH/+PM7Ozu22TiwrKyMjI0OxLtxZHnQoX79+HUNDQ/z8/HB2dlasx1+6dIlTp07h4ODAkiVLFE/c169fZ/fu3VhYWODp6cnu3bvx8vKisLCQ/fv3c+/ePe7evctTTz3FH//4xx4v/y2VSsnLyyMjI4Ps7GwaGhowNjbG09MTW1tbdHV1uX37NgcPHkRVVRUVFRWxjNRBEhMTCQ4OZtasWX2SLCnoGAsXLmThwoWK96NHjyYrK4vQ0FBUVVXx9PTscHOrthDC0Mfo6+uzceNGJBIJoaGh1NfXM23atHbPiYuLQ0NDo82kt7ZobGwkKSmJyMhIbt++jbm5OStWrMDe3l5xA5fL5QQFBREREYGHhwezZs1S3FgfFIVFixbx/fff09jYyOXLl6mtrcXZ2Zna2lo0NTVZvXp1j4mCXC6noKCA9PR0MjMzqaurY9CgQbi6umJra9usT0BZWRlHjhyhoqICDQ0N5HI5UqlULI08hKaQ1cLCQhISEpg9e7Zw2vcjBg4cyKJFi3rseuLX0sfIZDKOHDnC2LFjiYyMZMKECe2uxUulUuLj4ztVO6g1h/KCBQuwsLBo9jTd2NjIoUOHSE1Nxc/Pj4kTJyr2PSgKy5Yt4+OPPyY6OhonJydGjRrF1KlTKS8v5+eff8bPz6/bTyxyuZzi4mLS09PJyMigqqoKPT09xo4dq4iW+f1MoLKykkOHDpGXl4eBgQHu7u5MmjRJzBg6QFMim5WVFTdv3hSlLpQcqVTKvn37OHfuHMXFxbz33ns4OjpSXl5OcHAwXl5e7dYjexhCGPqYyspKioqKOHDgADKZ7KF9Yq9evUplZWWHfrRtOZRbC0Gsrq5m79693Lx5kxUrVuDg4KDY1yQKZmZmjBo1ijfeeIOkpCSWL1/O008/jZGREXV1dfzyyy8MHz68zdLgHaGkpEThNygvL2fAgAHY2toyatQoTExM2rzJ19bWcuDAAa5cuYKZmRlz5sxh9OjRXbbjSaJptqCuro62tjYNDQ2i1IUSU1ZWxpw5c7h06RK6urpUVVXx0ksvAfejlF5++WXWrVvXrXDVvu//+ADffPMNTk5O6Ovro6+vj4eHB6dOnWr3nH379mFvb4+WlhaOjo6cPHnyEVnbM+jr6yvKVBsYGPDTTz9x9uxZRVzy74mNjcXS0rJZaYnfc/PmTfbv388XX3xBUlISHh4evPrqqyxYsKBVUSgtLeWnn37izp07PPPMMy1EYefOnTQ2NnLnzh327dtHcXExL7zwAi+88ILCFxIUFER1dbUiMqkzlJWVcfHiRQ4ePMjevXtJSkrC1NSURYsWsXHjRry9vRk2bFib121oaGDfvn1ER0djaWnJihUrhCh0gqYEt5qaGvLy8qivr1eUuhAoH2+88QYpKSkEBgaSnZ3drBquqqoqy5Yt6/Z9UKlmDObm5vz73//G1tYWuVzOzz//zKJFi4iPj2fMmDEtjo+IiGDVqlV8+OGHzJ8/n4CAABYvXszly5c7vf7el5w/fx4rKyuef/554uLiuHjxIpcvX2b69Om4ubkp1urv3LlDTk5Oq/kNv3coDxo0iLlz5z50yamgoICAgAA0NTV59tlnmy0BZWVl8cknn1BWVoa1tTWmpqbU1dVhb2/P0qVLFcdlZ2cTGxvLvHnzOtwXuLKyktTUVK5cuUJ+fj4SiYSBAwfi5eWFjY1Nh30CUqmUvXv3EhYWxrhx4/D39+/2MtaTxoMJbkVFRYolCJHIppwcPnyYl156CV9fX0Xm84OMGjWKHTt2dGsMpRKG30fZ/Otf/+Kbb74hKiqqVWH4/PPPmTNnDq+//joA77//PkFBQXz11Vd8++23j8Tm7lJWVkZCQgK+vr7o6ekxbdo0XF1dCQkJ4eTJk1y6dIlZs2ZhY2NDXFwc2trazZ7oO+JQbou2wlFlMhmnT59m69ataGhosGLFCmbMmEF4eLjiiaQpBLSuro4jR44wYsSIhy5v1dbWkpaWRnJyMtnZ2UgkEqytrVm6dClWVlakpaWho6PTYVGQy+Xs2rWLc+fO4eHhwdq1ax95hdnHgQcT3G7cuKFIYBQoJ+Xl5YwYMaLN/Q0NDTQ2NnZrDKUShgdpcq5UVVXh4eHR6jGRkZG89tprzbbNnj2bw4cPPwILe4aBAweyevVqrKysFNv09fVZvHgxEydO5MyZM+zevZvhw4eTlZWFt7c3ampqHXYot0VMTAwnT55UPP2rq6sjk8m4cuUKBw8e5Pz58zg4OPDmm29ibm5ObGwsKSkprFixotms4MyZM9TU1LBo0aJWx21oaCA9PZ0rV66QkZGBTCZj+PDhzJ8/HwcHB8WNvLO1kmQyGdu3byc0NJQZM2awZs0akcTWA4joLeXH2tqay5cvt7n/zJkz3V5KVbpvwZUrV/Dw8KC2thZdXV0OHTrU5ocsLCxs4XkfOnQohYWFbV6/rq6u2U2oKbW8r5BIJNjY2LS6b9iwYaxbt4709HS2b99OVFQUlpaWHDx4kKtXrz7Uodwacrmcs2fPcvHiRSZNmsSsWbOA+//uoaGhZGZmUlhYyJIlS3juuedQV1enqKiI06dPM2HChGZ/i6ysLOLi4pg/fz4GBgaK7VKplKysLJKTk7l69Sr19fWYmZnh4+PDmDFjup0BLZVK+fHHHzl//jzz5s3j6aefFpFHPYRIBlR+nn32Wf76178ybdo0Zs6cCdy/j9TV1fHee+9x+vRpvv/++26NoXTCYGdnR0JCAuXl5ezfv5/169cTFhbWY87EDz/8kH/+8589cq1HgUQiwc7ODiMjI4YMGcK+fftQVVVlzpw5PPPMM81uyA+jqYtaSkoKc+bMYeLEiaSkpBAWFsbt27cxMDBAS0uL+fPn8/TTT6Ourk59fT379u3DyMiI2bNnK65VW1vLkSNHGDlyJG5ubsjlcnJzc7ly5QqpqanU1NQwZMgQvLy8cHR07LF1/7q6Or7//nsuXbrE4sWLWbZsWY9cV3AfIQzKz5/+9CdSUlJYtWqV4ve/evVq7t69S2NjI1u2bGHTpk3dGkPphEFDQ0PxBO3m5kZMTAyff/453333XYtjTUxMKCoqaratqKgIExOTNq//5ptvNlt+SkhIwNvbu4es71maHMqnTp3ixIkTeHp64ufnx71794iLi+Onn35i5syZODk5PfSJuaamhr1791JQUMDy5cuB+1FgxcXF2NraKvwaY8eOVYgCwKlTpygvL2fLli3NlhkCAwOpra1l/PjxnDlzhuTkZO7du4eBgQFubm6MHTuWoUOH9uiTfEVFBdu2bSMxMZElS5awZMmSHru24D49naku6HkkEgk//PAD69evZ//+/YolWmtra1asWNGtzm1NKJ0w/B6ZTNbm+rOHhwfBwcG88sorim1BQUFt+iTgfpnaB3sIP4rSz53l9w7lkpISJkyYwD//+U/FDXvSpEmcPXuWQ4cOER0dzaxZs5r5KR6ktLSU3bt3U1VVhaenJ2FhYYrSygsXLqShoYGAgACGDx/OypUrFWMkJSURHx/P4sWLmy1VRUdHc/DgQYyNjfntt9/Q0dFhzJgxODo6Ym5u3ivLOkVFRezcuZOrV6+ycOFClixZ0qFxpFKpeAruBEIY+g+TJ09W9ETpaZRKGN588038/PywtLTk3r17BAQEEBoaSmBgIADr1q3DzMyMDz/8ELg/pfL29ubjjz9m3rx57N27l9jY2G6vr/UVrTmUZ82axW+//Yanp2cz5+qgQYNYsWIFeXl5BAYGsmPHDhwcHPDx8WlWZ+nmzZvs2rWL8vJyBg0aRHh4OCNHjmTjxo1YWlqSk5OjEIWnn35aMSu4e/cux48fZ9y4cTg7O1NWVkZycjJxcXGcOHECQ0NDxTLRiBEjevWGkpWVxYEDB8jNzcXPz69NR3cTTWW3s7Ozqa6uZvXq1b1m2+OGEAYBKJkwFBcXs27dOm7dusXAgQNxcnIiMDAQX19f4H7jlwe/uJ6engQEBPD222/zt7/9DVtbWw4fPtyvchig/QzluLg4GhsbcXV1bfVcS0tLnn32WZKTkzl79ixbt27F3d0db29vcnNz+e6777h79y7m5uYMHjyYZcuWKapnZmdns2fPnhai0NjYyL59+9DU1MTY2Jht27aRn5+Puro6ZWVljB07lrfffrvX8wXkcjnx8fGcPXuWoqIivL29WbhwYaszgIqKCrKyssjKylIEH5ibm+Po6IhMJhM3vA4inPjKyYNF8zqCRCJRNP7qCkolDNu2bWt3f2hoaItty5cvV6yZ90fKysr48ssvW5S8hvs3xtjYWEaNGtVu6WqJRIKjoyP29vZERUURHh7Orl27yM3NxdjYGD8/P2bOnNks9rktUaitreWHH34gLCwMKysrgoODsbGxUfRwPnDgAIsWLep1UZBKpYSHhxMXF6coAbJo0aJms6aSkhKys7PJysqiuLgYVVVVLC0tFZ9V9I/uPEIYlJPjx4+jpaWFiYlJs0zntuju31GphOFJxMDAgOXLl2NjY9MiDr+goIBbt249tDdDE2pqagwbNoxbt26RmJiIrq4uo0ePxtPTs5n/4feiIJfLSUlJUbTyTEpKYurUqSxatEiRa1BTU8PXX3+Nra1tr/f7raur49SpU2RnZyOTybCxsWHhwoVoaGhw+/ZtxcygpKQEdXV1hg8fjouLC1ZWVqK2TzcRwqCcmJmZUVBQwODBg1m9ejVPP/10u0E23UUIgxLwYCbzg8TGxmJgYIC1tXW758vlcnJycggODiYoKIja2lr+8Y9/MGXKFIKCgvjtt98YPnw4s2fPpra2loCAACwtLXF1deXo0aOKXANDQ0MaGhp45plnWL9+fbObxKlTp2hoaGDBggW9evOoqKggMDBQUUBPQ0MDDw8PEhISyMrKory8HE1NTUaMGMGkSZOwtLQUiW09iFhyU07y8/MJCwsjICCA999/n9dffx1vb2/8/f1ZtmxZj7fLFd8CJaWmpobk5ORmtZJa4/r16+zYsYNt27Zx8eJFhXN+2bJlDB06lDVr1rBmzRpqamr497//zauvvsqtW7e4ceMGv/32G7du3WLy5Mm88MIL6OjoYGdn1yJh7OrVqyQlJeHn59er7TmLi4s5ePAgNTU1NDY2kpubS01NDadPnyYtLQ1zc3MWLlzIpk2b8PX1xdraWohCD9MfI7i2bt2KlZUVWlpaTJw4kUuXLrV7fH8tvOnt7c13332naIplZGTEiy++iLGxMUuXLmX//v2driDQFmLGoKQkJiYik8na7KSVm5tLaGgoOTk5DBw4EFVVVRwcHFi9ejUWFhaK4+RyOQMGDEBLS4vY2FgqKiqoq6vDysqKNWvWKEponD17lps3b7Jx48Zma/PV1dUcP34cOzs7nJyceu3zpqSkEBAQgFwup7y8nLKyMlxcXHB0dFQU8BNPs71PfyuJ8euvv/Laa6/x7bffMnHiRD777DNmz57NtWvXWq1A/DgU3lRXV2fRokUsWrSIyspKDh48yLfffsvKlSt59913eeedd7o9Rv/6FjwhNDmdHRwcWuRZ5OXlERoaSnZ2NiYmJsyYMYPo6GgGDx6Mv7+/IlT19u3bXLlyheTkZLKysrh27RqTJ09m48aN3Lhxg6ioKH777TdmzJiBrq4uFy5cwNfXt0UBtVOnTiGVSpk/f36PLyE1NDSQmZnJoUOHOHv2LHC/dpSWlhYvvfQSbm5uYs1b0C6ffPIJmzdvZsOGDQB8++23nDhxgp9++ok33nijxfGPQ+HNJurq6ggMDOTIkSPEx8ejpaXVZi5TZxHC0EkaGxuRSqW9Osb169cpLCzE19dXMTW8ceMGYWFhZGdnM3ToUJYsWYKKiooi0WzlypU0NDQQEhJCSkoKRUVFaGtrY2RkhKqqKv7+/qxatQo1NTXs7e2ZMGECwcHB7Nu3TyEanp6ezexoKou9dOnSHlvDrKurIyMjg9TUVK5du0ZaWhrl5eX4+voilUopKChg7ty52NnZ9ch4jwtSqRSZTNbuMU1VNauqqmhoaHhElv2X+vp6GhsbaWho6NLsrqkiaGVlJRUVFYrtv09KfXC8uLg43nzzTcU2FRUVfHx8iIyMbHWM/l54UyaTERQUxJ49ezh8+DDV1dX4+Pjwww8/sGTJEkVEY3cRwtAJGhsbFXWAepOQkBBqa2spLS0lPT2dy5cvk5+fj6GhIW5ublhZWREfH8/FixcxMTFBVVWVjz/+mKKiItTU1LC0tMTR0REtLS0SExNxc3Nj5cqVzZYJBg4cyOLFi8nLyyM7O5s7d+4QEBDArFmzGDJkCFVVVZw4cQJ7e3scHR279Xmqq6sVIpCVlYVUKmXIkCHU1dVhaWnJypUrKS0tJSAggBkzZghRaIX333+/X9X46g6/L1Hzj3/8g3fffbfFcXfu3EEqlbZaSPPq1autXrsrhTeVgYiICAICAti3bx93795l0qRJfPDBB6xYsaLDBTQ7gxCGTiCVSqmpqUFdXb3XwiKrq6spKCjA3t6esLAwcnNzMTAwYN68eYoaUufPn+fcuXNoa2tz9+5dSkpKFFFGI0eORF1dnaysLE6ePImHh0cLUWji/PnzlJeX8+9//5uamhqCgoL45ptvcHNzo6SkBLlc3uUlpMrKStLS0khLS+P69evI5XIsLCzw9fVl2LBhnDhxAl1dXVasWEFpaSkhISG4urr2qh+jP/POO+/w1ltvPfS4RzGjbQ9VVdUu+yni4+OZOHEiYWFhzUKiW5stPGlMnjyZAQMGMHfuXFatWqVYMsrLyyMvL6/Vc9pKiu0IQhi6gIaGRq8JQ3h4uOKpevDgwfj5+WFra4tUKlWsx1+9ehULCwscHBwYNWoU1tbWDBgwQHGNvLw8zp49i6mpKcuXL2/1h3r9+nVCQ0Px9vZWJL6NGjWKmJgYfvvtN5KSkli/fn2nksTKysoUYtDUlW3EiBHMnTsXe3t7dHV1KSgoYM+ePaipqbFp0ybu3LnD8ePHGT9+fK/GZfd3VFVVOxQx1J+jtJq+p7q6uh2Kfhs8eDCqqqqdKqTZlcKbykJNTQ0HDhzg4MGD7R4nl8uRSCTdekAQwtDHNDQ0cOTIEeRyOfn5+URFRTF06FAmTpzImDFjuHv3LmfPniU9PV3Rg3f58uVMnz691QKAeXl5HD9+HDMzM6ZMmdKqKFRXV3PgwAGGDx/erBKjmpoaTk5OBAcH4+7uTk5ODl999ZWij0JrM4c7d+4oxODmzZuoqalhbW3NokWLsLOzayZYaWlpHDx4kKFDh7Jq1SqKi4vZv38/Y8aMYc6cOSQmJvbEP6ngCUFDQwM3NzeCg4NZvHgxcH8NPjg4mBdffLHVc7pSeFMZ2L59+yMdTwhDH1NRUUFmZia5ubnU1dXR2NiInp4e+/fv5/vvv0cmk6Gjo0NdXR36+vr4+vpiaWnJnTt3qK2tRU9PDw0NDSQSiUIUzM3N8fHxaTWmWS6Xc/jwYaRSKUuXLm3mJJTL5Zw4cQINDQ1effVVamtrCQoKYv/+/URFRTF79mzMzc0pKioiLS2N1NRUbt++jYaGBra2tnh6emJra9ti6i+Xy4mMjCQoKIjRo0ezePFibt++zZ49exgxYgRLlizpditCwZPJa6+9xvr16xk/fjzu7u589tlnVFVVKaKUHpfCm+vXr3+k4wlh6GP09fUZOXIknp6eXLp0ievXrzNo0CA0NTXx9PRETU2NmJgYpFIpDg4O3L59m5ycnGb1UtTV1RUtNE1NTXF2diYjIwMVFRXMzc0ZMmSIYukrKiqK9PR0/P39W0zXU1JSSE1NZfny5ejo6KCjo8PTTz9NdnY2v/32G3/7299QU1PD2NgYQ0ND7OzsmDlzZruJZlKplFOnThEbG8uUKVOYMWMGd+/eZdeuXRgbG7NixQpUVVWFMAi6xMqVK7l9+zZ///vfKSwsxNnZmdOnTysczI9r4c3eRghDH1NXV0dtbS0xMTGkpqbi7e3NrFmzMDEx4fr165w+fRpnZ2fmzZun6I8sk8morq7m3r17VFZWkpmZyblz5zA2NsbKyoq0tDTu3btHfX098fHxqKmpoaWlhVwuJy4uDicnJ27dukV1dTX6+voMHDgQFRUVTpw4wZgxYxgzZgwymYy8vDxSU1O5evUqNTU1DB48mPLycurq6nB2dmbatGnt+iBqa2vZt28fOTk5LFq0CBcXF8rLy9m5cye6urr4+/uL2kaCbvPiiy+2uXT0OBbefBQIYehjdHR0sLKywtDQEG1tbVatWoWGhgbJycmEhoYyYsQIZs2a1eyJXEVFBV1dXXR1dcnLyyMnJ4cpU6bg5+en8CnU1NRQXFzM8OHDqa2t5fbt2/z6668YGhoyePBgoqKiqK6uBlAU0auurqaqqoro6GhKSkoAMDIyYuzYsfj4+ODg4IBcLiciIoKLFy+SlJTEtGnTcHNza+EYLSsrIyAggIqKCtasWcPIkSOprq5m586dSCQS1qxZ08z/IOh76uvriY2NZfz48UKwn3CEMPQxEomEyZMns2PHDuzt7VFXVycyMpLY2FicnJyYMmVKm8lCubm5nDhxAgsLi2aiAPejWPT19Rk+fDgaGhrs37+fkSNHsmXLFgwNDYH7ju+7d+9y+PBhIiMjMTAwICMjAzU1NQwNDdHR0UFDQ4OcnBxycnKQSCTo6uoycOBAzM3NycnJ4fvvv2fo0KHMnj0bZ2dndHV1uXXrVrPIo6achd27d1NTU8PGjRt7teaSoGtERUWxc+dOpFIpU6ZM6WtzBH2IEAYlICcnh6qqKuzt7Tlz5gzp6elMnjwZZ2fnNnMI2hOF3xMXF0dKSgorVqzA0NCQuro60tPTSUtLIzk5mYiICEaMGIG/vz8ODg4YGxsrxq2rq6O8vJyKigoqKioU/19eXs7gwYOpra0lJSWFixcvYmhoiKGhIUVFRQwZMgRfX18SEhLQ1tZW5Ew8++yzvd7LQdB5msor5OTkcPr0adzd3UX+wBOMEAYl4MqVKxgZGREZGUlhYSFz5szB1ta2zeM7IwpFRUWcPn0aJycn6urqCAgIUORJDBs2DIlEwpQpU3j99dcVPowHaeri1lpBMri/DFVTU0NcXBw//fQTiYmJ2NjYMH36dBoaGkhJSVH0rnZycmLnzp2oqamhr6+v8G/o6+szYMAACgoKGDJkiML5LuokPTqio6NJT0/HycmJ9PR0Ll26JGYNTzBCGPqYpnBViUSCnp4eixcvxtTUtM3jm0TB0tKSOXPmtCsKZWVl/Prrr9y9e5eGhgauXLmCpaUlvr6+ODg4cP36dQ4dOsTKlStbFYWOIJFI0NTUpLy8HAsLC8aPH09lZSU3btzAy8uLkpISysrK+Mtf/sKwYcOazTgqKiooKSnh+vXrlJaWcvPmTTQ0NFBVVUVdXV3hR9HV1UVPT6/Zf3V1dR+6Dl5SUsLNmzdFxMlDaJotaGhooK+vj4aGhpg1POEIYehj5HK54gl6yZIlivX/1uiIKDT1Pk5PTyc8PBypVMqyZctwd3dXZB83HXfq1CnGjRuHvb19l+1/MPJoyZIluLi4UFtbS3h4OD///DM3b95kw4YNuLq6IpFI2hS9mpoaIiMjkclk1NXVKSKuKisrKSkpIS8vj+rq6mZhupqamq0Kx4ABA8jKyiIlJQVDQ0Ps7e37XTnpR0l8fDxZWVmKZcGGhgaysrKIj49n0qRJfW2eoA8Qv5Y+Rk9Pj4kTJzJu3Lh2n9rbE4Wm3seZmZncvn1bESGkq6vLa6+91mJJQC6Xc+zYMdTV1ZkzZ06XbW8t8ghAS0sLPT09jI2Nsba25urVq3z//ffMnj27zbLAKioqityJtmYCUqmUqqoqhWjcu3dP8b6oqEjx+XNycqitrWXYsGHo6+sLUXgIFhYW+Pv7t7pd8GQifjF9jIqKykPT8R8UBT8/P1RUVNrsfezq6srAgQPZv38/kyZNwt3dvcX1EhISyMjIYPXq1V0OGf19zaMhQ4Yo9iUmJhIYGIivry8+Pj7k5eVx5swZReSVr6+vom9EZ2iKtGotoqm+vp7IyEiqq6vx8vLCxcUFDQ0NkTjXAczMzDAzM+trMwRKhBAGJef69esKUXBxcSEqKorMzEwqKioUvY89PDywsLBAXV2dxsZG9u3bh46ODl5eXi2uV15erkiaGzVqVJds+n3NowdrwF+7do0jR47g6urKzJkzAbC0tGTTpk2kpKQQFBTE1q1bmTBhAt7e3l32bTxITk4OoaGh1NbW4u3tjZOTk+j2JhB0AyEMSkx2dja//vorampqin7IAwYMYOTIkdjY2GBmZtYisezixYuUlpayePHiFmUq5HI5R48eRVNTs0tLSK3VPHpwjNzcXPbt24ednV2Lct0SiYSxY8diZ2dHdHQ058+fJzExEW9v71ZnNR2hqqqK8PBwMjMzsbS0ZPr06SI/QiDoAYQwKBlSqZQbN24QERFBUFAQOjo6uLi4YGNjg7W1NcOGDWvzaTgrK4ukpCS8vb0ZPHgwVVVVzfZfvnyZrKws/P39O1VOu8mu39c8evDGX1hYSEBAABYWFjz11FNt2qiurs7kyZNxcXHh3LlznDlzhpiYGKZOndrMsdwecrmctLQ0Lly4gEQiYdasWYwaNUqEtwoEPYQQBiWgoaGBvLw8srKyuH79OkVFReTl5TF27FiefvppRb5Be1RUVBAcHIy1tTWOjo4tWjuWlZVx5swZXF1d282RaI3Wah49SElJCbt27cLIyIinn366Q85eHR0d5s+fj7u7u6KCK8D06dPbdXqWlZVx7tw5bty4gb29vaKBiUAg6DmEMPQx9+7dY9euXTQ2NmJkZMTQoUMpLy9n0aJF+Pn5dag5i1QqVcShz5w5s4WINC0haWlpMWvWrE7Z11bk0YP2//LLL2hpaeHv79/puHdjY2P8/f1JTU1l+/btHDhwgNGjR+Ph4dGsz7RUKiU+Pp5Lly6ho6PDokWLsLS07NRYAoGgYwhh6GN0dXXx8vLCwsKC8vJyTpw4wejRo5kzZ06HRAHu17gpKipi2bJlrd6Y4+LiyM7OZu3atZ1aQmov8gju5x7s3LkTmUzG2rVru9WI3NramqVLl5KXl8fly5fJzMzExcUFNzc3RevPu3fv4uzsjLu7uyjyJhD0IkIY+hiJRIKTkxM5OTmcPHkSKyurTonC9evXuXz5Ml5eXq22JywtLeXMmTO4ublhbW3dYbvaizyC+8tfAQEBVFZWsmHDBgYOHNjha7eFioqKoux3XFwcsbGxnDhxAhUVFRwcHFi+fHmLRu4CgaDnEcKgBHRVFCorKwkKCmL48OEt1v3h/hLS8ePH0dbW7vAS0sMij+D+ss5vv/1GUVER69evbzGT6C4aGhqYmpqioaFBdXU1WlpaSKXSVjvSCQSCnkcIQx9TXl7eJVGQyWQEBQWhqqqKj49Pq87p1NRUrl+/zsaNGzu09v+wyCP4b2vQ7Oxs/P39ezwxqrq6mtDQUK5du4aFhQUrV66krq6OCxcucOTIESwtLZk8eXKXEuQEAkHHEMLQxwwcOJDZs2czYsSIDosCQGxsLAUFBSxevLjVJLHy8nIuXbrEnDlzWjiMW+NhkUdwXxROnTpFcnIyy5Yt69B1O4pcLicjI4PLly+joqKCj48P9vb2CmFaunQp2dnZXLx4kT179jBmzBjc3d275dcQCAStI4RBCbCxsenU8Tdu3ODSpUtMmDABc3PzFvvlcjkhISEMGDBAkX3cHg+LPGoiPDycS5cuMX/+fMaMGdMpm9ujtLSUQ4cOERERwZgxY5g+fXoLsZNIJFhbW2NlZUVSUhIxMTGkp6fj5ubGuHHj2uw5LRAIOo8Qhn5GdXU1Z86cwdTUlAkTJrR6TFJSErdu3cLX1/eh0TsPizxqIiYmhnPnzjFz5kzGjx/f7c8B95fDoqOjCQkJQUNDg9mzZ+Pg4NCuzaqqqri4uGBvb09MTAxRUVEkJyfj4eEhktwEgh5CCEM/Qi6Xc/bsWaRSKbNmzWo1u7i0tJSIiAjGjh3bbl8HeHjkURPJycmcPHkSDw8PJk+e3COfpbCwkKNHj3Lr1i3c3d3x8vIiLS2tw+cPGDCAqVOn4ujoSEREBGfOnCExMZHJkyc/9HMLBIL2EcLQj4iPjyc3N5cFCxYo+io8iEwmIzg4GG1tbTw8PKivr2/1Oh2JPGoiMzOTgwcP4uTkxKxZs7r9RN7Q0EBYWBgREREMHjyYTZs2YW5u3uWII0NDQ+bNm8eNGze4cOECBw4cwNraGi8vrx4JoRUInkSEMPQTCgsLiYiIwNXVtc2eBomJiRQWFrJkyRLU1dVbFQaZTMbJkyfbjTxqIj8/n19//RUbGxsWLlzYbVHIzs7m+PHjVFRUMG3aNLy8vDrlcG8Pc3NzVq5cybVr14iMjGTXrl2MGzeOCRMmiC5kAkEnEcLQD6irq+P06dMMHTq0zY5aJSUlREZG4uTkhJmZWauiUFdXx759+8jOzm4z8qiJ4uJiAgICMDU1Zfny5d26gdfU1HDmzBni4+OxsrLC39+/V8JNJRIJ9vb2WFtbEx8fz+XLl8nIyGDt2rWiWY9A0AnEr0XJkcvlBAcHU19fz9KlS1u9QTctIenp6bXZ9KejkUdNx+7cuZOBAweyatWqLkf8yOVyUlJSOHXqFFKplAULFihafPYm6urquLu7M3r0aIqKioQoCASdRPxilJzk5GSysrLw8/Nrs9dAQkICRUVFLF26tNWbeEcjj+B+NvUvv/yCuro6a9as6XR57iaa6j6lp6czevRo/Pz8mhXFexQ09YMWCASdQwiDEnP79m3Onz+Po6Njm7kOJSUlREVF4ezs3Go0ztWrVzl+/PhDI4/gfpLb7t27qa+vZ9OmTV26qcpkMmJiYggODkZTU5Onn34ae3v7Tl9HIBD0HUIYlJT6+noCAwMxNDRsM0RUJpNx9uxZ9PX1mThxYrN9crmcpKQk8vLycHJyajfyCKCxsZG9e/dSWlrKhg0bMDQ07LTNxcXFHD16lBs3bjBhwgRmzpzZ5RmHQCDoO4QwKCnh4eFUVlayYsWKNtfIL1++THFxMcuWLWt205fJZISHhxMfH89TTz3FnDlz2l3Xl8lk7N+/n4KCAtauXdvpCqaNjY2Eh4dz4cIFBg0axMaNG0WvBIGgHyOEQQm5evUqaWlp+Pr6MmjQoFaPuXv3LtHR0bi4uDQrt11fX8+pU6e4fv06U6dObTccFf7bxCc9PZ1Vq1Z1+oaem5vLsWPHKC0tZerUqUyePFk4ewWCfo74BSsZJSUlhIaG4uDg0ObavFQq5ezZsxgYGDRbQqqoqODYsWNUVVUxf/78NkWlCblcTlBQEAkJCSxdurRTLT9ra2sJCgoiLi4OCwsLVqxYgbGxcYfPFwgEyosQBiWisbGR06dPo6ury9SpU9s87vLly9y+fZvly5crns6Lioo4fvw4qqqqLFu2DF1dXaqqqtod7+LFi0RERODn54eTk1OH7UxLS+PkyZPU19czb948xo8fL2oUCQSPEUIYlIgLFy5QVlbGihUr2iwkd+fOHS5duoSbm5vCF5CVlcWZM2cYPHgw8+bNQ1tbu81yGE1cvnyZs2fP4u3t3cJx3RYVFRWcPHmSq1evYmdnx7x589oMoRUIBP0XIQxKQmZmJleuXGHatGkMHjy41WMeXEKaMGECcrmc+Ph4IiIisLa2xsfHp0PJaGlpaRw7dowJEyYwbdq0hx4vl8uJi4sjKCgIdXV1VqxYgYODg5glCASPKUIYlIDy8nJCQkKwtrZm7NixbR4XFxfHnTt3WL58OSoqKoSGhpKcnMz48eOZNGlSh27UOTk57N+/nzFjxjB37tyHnnP79m2OHTtGXl4erq6u+Pr6MmDAgE5/RoFA0H8QwtDHSKVSzpw5g4aGBjNnzmzzRn379m3FEpKhoSHHjh0jPz+fmTNnMnr06A6NdfPmTfbs2YOVlRVLlixpVxSkUikXLlwgPDwcAwMDnnnmmTaL9wkEgscLIQx9THV1NQ0NDfj5+bVZBbRpCWnQoEHY29uzb98+qqqqWLRoERYWFh0a586dO+zatQtjY2NWrlzZblG8/Px8jh07xp07d/Dy8mLq1KmiQ5pA8ATRstNLH/Lhhx8yYcIE9PT0MDY2ZvHixVy7dq3dc3bs2IFEImn26k/Ztnp6eqxatardpLKYmBju3r3LuHHjOHjwIA0NDSxbtqzDolBeXs7OnTvR1dXF39+/Tcd2XV0dJ0+e5KeffkJdXZ0tW7Ywc+ZMIQoCwROGUs0YwsLCeOGFF5gwYQKNjY387W9/Y9asWaSmprZb40dfX7+ZgPQ3p2h79hYXFxMbG4uZmRnh4eHNIo86QnV1Nbt370YikbBmzZo2/QPXrl3jxIkT1NbWMnv2bNzd3VvtECcQCB5/lEoYTp8+3ez9jh07MDY2Ji4urt24folE0iz793GhsbGRs2fPUlVVRX5+Pra2th2OPIL7WdB79uyhpqaGjRs3thpaWllZyalTp0hJScHW1pZ58+ZhYGDQw59E0F+pr68nNjaW8ePHK2aarW0TPF4olTD8nvLycoCHZvBWVlYyfPhwZDIZrq6ufPDBB4wZM6bVY+vq6pq1kaysrOw5g3uYS5cucfnyZQYPHsyECRM6HHkE/xUVNTU1nn322RaNcZpCXc+cOYOqqipPPfUUY8eO7XezLUHvEhUVxc6dO5FKpUyZMqXNbYLHC6VdK5DJZLzyyit4eXm1G8JpZ2fHTz/9xJEjR9i1axcymQxPT09u3LjR6vEffvghAwcOVLy8vb176yN0ixs3bhAQEIC6ujoLFy7Ew8OjwzftpqqrhYWFrFixgmHDhjXbf/fuXX7++WeOHj2Kvb09L7zwAo6OjkIUnnDq6+uJiIhQJEfW1dURGBhITk4Op0+fVjxU/X6b4PFDaWcML7zwAsnJyVy4cKHd4zw8PJp1LfP09MTBwYHvvvuO999/v8Xxb775Jq+99prifUJCgtKJQ0lJCR999BFyuZwtW7Z0KkxULpcTFhZGTk4OM2bMaHauVColIiKCsLAw9PT0WLt2LdbW1j3/AQT9kt/PBKKjo0lPT8fJyYn09HQuXbqEXC5vsU3MGh4/lFIYXnzxRY4fP054eDjm5uadOlddXR0XFxcyMzNb3a+pqdksLFTZOnwVFRXx1VdfUVlZyRtvvNHp3IGoqCiSk5OZNm1as0qpBQUFHD16lOLiYjw9PZk2bZqINhIo+P1MYNy4cQQGBqKhoYG+vj4aGhocP34coNm206dP4+7u3maotaB/olTCIJfLeemllzh06BChoaGMGDGi09eQSqVcuXKFuXPn9oKFvUtWVhYHDhzgzp07PPPMM212bWuL+Ph4YmNj8fLywsHBgaqqKurr6zl37hzR0dGYmJjwhz/8ocXSkkDw+9lBQEAAWVlZ1NbWkpKSQkNDA3FxcUgkEnR0dBTbsrKyiI+PZ9KkSX39EQQ9iFIJwwsvvEBAQABHjhxBT0+PwsJCAAYOHKgIs1y3bh1mZmZ8+OGHALz33ntMmjQJGxsbysrK+M9//kNubi7PPvtsn32OztLkCG4qojd16lQ8PT07dY2rV69y4cIF3NzccHV1pb6+nvz8fM6fP09dXR0+Pj54eHiIEFRBC5pmCw/OBFJTU1mxYkWzWeXdu3cBWgQydDSfRtB/UCph+OabbwBaFHbbvn07zzzzDAB5eXnNbm6lpaVs3ryZwsJCDA0NcXNzIyIiosNlIvoamUxGWFgYycnJDBgwADMzM2bPnt2pG3h2djZnz55l9OjReHh4UF1draij5OHhwZIlSx4a2SV4comPj28xO5BKpZiamoqZwBOKUgmDXC5/6DGhoaHN3n/66ad8+umnvWRR71NVVUV2djbjxo0jKSkJDw+PTt3ECwoKOH36NCNHjmTatGlcu3aN8+fP09jYiLe3N8uXL+9XmeCCR4+FhQX+/v6tbhc8mSiVMDyJ6Onp8fTTT3Pw4EGGDh2Ki4tLh8+9ffs2x48fZ9iwYUycOFFRWG/UqFFMnDgRuVwuQlAFD8XMzAwzM7O+NkOgRIgFZyXg8uXL3Lt3j5kzZ3Z4CamsrIyjR48ycOBATE1N+e233ygrK2PBggXMnj27wyUzBIInhZKSEvz9/dHX18fAwIBNmzY9NMF12rRpLWqxPffcc4/I4r5DzBj6mPLychITE/H09OzwElJlZSWHDx+mrq4OdXV1YmJicHJyYtKkSaJEgUDQBv7+/ty6dYugoCAaGhrYsGEDf/jDHwgICGj3vM2bN/Pee+8p3j8JD11CGPqYgQMHsmzZMoyNjTt0fG1tLYcOHSI7O5uBAwdiYGDA8uXL263OKhA86aSlpXH69GliYmIYP348AF9++SVz587lo48+wtTUtM1ztbW1H8tabO0hlpKUABMTkw4tITU0NPDLL79w8eJF9PX18fb2ZuXKlUIUBIKHEBkZiYGBgUIUAHx8fFBRUSE6Orrdc3fv3s3gwYMZO3Ysb775JtXV1b1tbp8jZgz9hMrKyv+vvTuPiuo8/wD+HVBmkGUAHbaoMwy2LKLiUlwQBzSKQQoYQbQ1rigaW2IzBpdqgaMeC1YjMUcbrBHkuKQQMaJWqgcVcSk1jfEoBnVYWqOAJLIJCMj7+yM/JlxnkBlZ7iDP55w5x3nve9/7zHtwnrnvvfd98cknn6CgoAC+vr4ICQmBtbU132ER0uVqa2tRXV2tfv/ybAWvo7S0VOOsvF+/frCxsVE/L6XNb37zG0ilUjg6OuLWrVtYt24dCgoKcPz48U7FY+goMRi41rlp/va3v6GiogILFy7E1KlT6W4j8sZ6ee6ymJgYxMbGaq27fv16xMfHv7K9u3fvvnYsK1asUP97xIgRcHBwwLRp06BSqd7oecYoMRiwmpoaZGdn4/Lly2hsbMSaNWswatQovsMipFtdunQJnp6e6vevOltQKpXqh1/bI5fLYW9vj/Lyck55c3MzfvzxR72uH4wfPx4A8ODBA0oMpGe1tLTg1q1buH79OsrKymBhYYF3330XI0aM4Ds0Qrqdubm51kWltJFIJJBIJB3WmzhxIiorK/H1119j7NixAIDs7Gy0tLSov+x1cfPmTQB44+cbo4vPBqaiogLp6enIzc2FSCSCWCxGQEAAJQVCOsHNzQ0zZ87E8uXLkZeXhytXruB3v/sd5s2bp74j6fvvv4erqyvy8vIA/DSp5ZYtW/D111+juLgYJ0+exMKFCzFlyhSMHDmSz4/T7SgxGIjm5mZcu3YNx44dQ1NTE0aPHo3a2lqMGTOGcycFIeT1HD58GK6urpg2bRoCAgIwefJkJCUlqbc3NTWhoKBAfdeRiYkJzp8/jxkzZsDV1RVKpRJz5sxBZmYmXx+hx9BQkgF4+PAhLly4gOrqavzqV7/CoEGD8I9//AMuLi7w8fGhC82EdAEbG5tXPswmk8k487UNGTIEly5d6onQDA4lBp5VVVXhxIkTsLOzw6xZs/D8+XOcOHECUqmU7j4ihPCCEgPPxGIxZs+eDUdHR/z444/IzMyERCLBzJkzYWxszHd4hJA+iK4xGIC33noLNTU1+Oqrr2Bubo5f//rXtOwmIYQ3lBgMwLNnz3DixAn069cPwcHBtH4uIYRXlBh49vz5c2RmZqKpqQnBwcEwMzPjOyRCSB9H1xh41tLSApFIhLfffhtisZjvcAghhBID30xNTRESEsJ3GIQQokZDSYQQQjgoMRBCCOGgxEAIIYSDEgMhhBAOSgyEEEI4KDEQQgjhoMRACCGEgxIDIYQQDkoMhBBCOCgxEEII4aDEQAghhIPmSvp/d+/e7bBOY2MjCgoKYGpqavDrJTQ1NaG+vh6MMZiYmPAdTod6e986ODjAwcGhx2N5/PgxHj9+3OPH7Q66/B8kPYT1cY8ePWIKhYIBoBe9XvsVExPDy99vTEwM75+9K18KhYI9evSIl74kPxMw1mb16z6K719dtbW1UCgUuHTpEszNzXmL403Tk/36JpwxGMLfIV/9SLgoMRiA6upqiMViVFVVwdLSku9w3hjUr/qh/iKt6OIzIYQQDkoMhBBCOCgxGAChUIiYmBgIhUK+Q3mjUL/qh/qLtKJrDIQQQjjojIEQQggHJQZCCCEclBjeMMXFxRAIBEhOTuY7FEJIL9WnE4NKpUJkZCTkcjlEIhEsLS3h7e2NxMRE1NfXd9tx8/PzERsbi+Li4m47hi62bduGoKAg2NnZQSAQIDY2tsdjEAgEOr0uXrzY6WPV1dUhNjZWr7YMoY/aov4iPaHPzpV0+vRphIWFQSgUYuHChfDw8EBjYyNyc3Px0Ucf4c6dO0hKSuqWY+fn5yMuLg6+vr6QyWTdcgxdbNq0Cfb29hg9ejSysrJ4iSE1NZXz/tChQzh37pxGuZubW6ePVVdXh7i4OACAr6+vTvsYQh+1Rf1FekKfTAxFRUWYN28epFIpsrOzOY/gr169Gg8ePMDp06d5jPBnjDE0NDTA1NS0y9suKiqCTCZDRUUFJBJJl7eviwULFnDeX79+HefOndMo54sh9FFb1F+kJ/TJoaSEhATU1tbiwIEDWudlGTZsGD744AP1++bmZmzZsgXOzs4QCoWQyWTYuHEjnj9/ztlPJpMhMDAQubm58PLygkgkglwux6FDh9R1kpOTERYWBgDw8/PTOPVvbSMrKwvjxo2DqakpPvvsMwBAYWEhwsLCYGNjgwEDBmDChAmdSmB8nq3oo6WlBbt378bw4cMhEolgZ2eHyMhIPH36lFPvxo0b8Pf3x6BBg2BqagonJycsXboUwE/XXlq/qOLi4tT93tFQR2/po7aov0hn9ckzhszMTMjlckyaNEmn+hEREUhJSUFoaCiUSiX+9a9/Yfv27bh79y4yMjI4dR88eIDQ0FAsW7YMixYtwueff47Fixdj7NixGD58OKZMmYKoqCh88skn2Lhxo/qUv+2pf0FBAebPn4/IyEgsX74cLi4uKCsrw6RJk1BXV4eoqCgMHDgQKSkpCAoKQnp6OmbPnt11HWRgIiMjkZycjCVLliAqKgpFRUX49NNP8c033+DKlSvo378/ysvLMWPGDEgkEqxfvx5WVlYoLi7G8ePHAQASiQT79u3DqlWrMHv2bLz77rsAgJEjR/L50boF9RfpNB5nduVFVVUVA8CCg4N1qn/z5k0GgEVERHDK165dywCw7OxsdZlUKmUAWE5OjrqsvLycCYVCplQq1WVpaWkMALtw4YLG8VrbOHv2LKd8zZo1DAC7fPmyuqympoY5OTkxmUzGXrx4wRhjrKioiAFgBw8e1OnzMcbYkydPeJ06uq3Vq1eztn+Wly9fZgDY4cOHOfXOnj3LKc/IyGAA2L///e922+7M5zSkPmqL+ot0hz43lFRdXQ0AsLCw0Kn+mTNnAAAffvghp1ypVAKAxlCOu7s7fHx81O8lEglcXFxQWFioc4xOTk7w9/fXiMPLywuTJ09Wl5mbm2PFihUoLi5Gfn6+zu33JmlpaRCLxZg+fToqKirUr7Fjx8Lc3BwXLlwAAFhZWQEATp06haamJh4j5hf1F+kKfS4xtE4nXFNTo1P9kpISGBkZYdiwYZxye3t7WFlZoaSkhFM+dOhQjTasra01xndfxcnJSWscLi4uGuWtQ1Avx/GmuH//PqqqqmBrawuJRMJ51dbWory8HACgUCgwZ84cxMXFYdCgQQgODsbBgwc1rgO96ai/SFfoc9cYLC0t4ejoiNu3b+u1n0Ag0KmesbGx1nKmx5RU3XEHUm/V0tICW1tbHD58WOv21gukAoEA6enpuH79OjIzM5GVlYWlS5di586duH79ep9ZAIn6i3SFPpcYACAwMBBJSUm4du0aJk6c+Mq6UqkULS0tuH//PucCcVlZGSorKyGVSvU+vq5J5uU4CgoKNMq/++479fY3kbOzM86fPw9vb2+dEuaECRMwYcIEbNu2DUeOHMFvf/tbHDt2DBEREa/V770N9RfpCn1uKAkAoqOjYWZmhoiICJSVlWlsV6lUSExMBAAEBAQAAHbv3s2ps2vXLgDArFmz9D6+mZkZAKCyslLnfQICApCXl4dr166py549e4akpCTIZDK4u7vrHUdvMHfuXLx48QJbtmzR2Nbc3Kzuw6dPn2qclXl6egKAenhkwIABAPTr996G+ot0hT55xuDs7IwjR44gPDwcbm5unCefr169irS0NCxevBgAMGrUKCxatAhJSUmorKyEQqFAXl4eUlJSEBISAj8/P72P7+npCWNjY8THx6OqqgpCoRBTp06Fra1tu/usX78eR48exTvvvIOoqCjY2NggJSUFRUVF+PLLL2FkpH+OT01NRUlJCerq6gAAOTk52Lp1KwDgvffeM4izEIVCgcjISGzfvh03b97EjBkz0L9/f9y/fx9paWlITExEaGgoUlJSsHfvXsyePRvOzs6oqanB/v37YWlpqU7upqamcHd3xxdffIFf/vKXsLGxgYeHBzw8PNo9fm/oo7aov0iX4PmuKF7du3ePLV++nMlkMmZiYsIsLCyYt7c327NnD2toaFDXa2pqYnFxcczJyYn179+fDRkyhG3YsIFTh7GfbjWdNWuWxnEUCgVTKBScsv379zO5XM6MjY05t6621wZjjKlUKhYaGsqsrKyYSCRiXl5e7NSpU5w6+tyuqlAoGACtL2230vaEl2+/bJWUlMTGjh3LTE1NmYWFBRsxYgSLjo5mjx49Yowx9p///IfNnz+fDR06lAmFQmZra8sCAwPZjRs3OO1cvXqVjR07lpmYmOh0O6Uh9lFb1F+kO9BCPYQQQjj65DUGQggh7aPEQAghhIMSAyGEEA5KDIQQQjgoMRBCCOGgxEAIIYSDEsMrJCQkwNXVFS0tLXyH0mnr16/H+PHj+Q4DAPUrX4qLiyEQCJCcnMx3KMTAUWJoR3V1NeLj47Fu3Tr1U8Wtq1jt3LlTo35ycjIEAgFu3LjR6WMfP34c4eHhkMvlGDBgAFxcXKBUKtudmuDkyZMYM2YMRCIRhg4dipiYGDQ3N3PqrFmzBt9++y1OnjzZ6fg6g/qVkF6A7yfsDNXHH3/MLC0tWX19vboM//8Ep52dHXv27Bmn/sGDBztc+ERXAwcOZCNGjGCbN29m+/fvZ1FRUczExIS5urqyuro6Tt0zZ84wgUDA/Pz8WFJSEvv973/PjIyM2MqVKzXanTt3LvPx8el0fJ1B/cqflpYWVl9fz5qbm/kOhRg4SgztGDlyJFuwYAGnDADz9PRkANjOnTs527ryC0zb1AEpKSkMANu/fz+n3N3dnY0aNYo1NTWpy/74xz8ygUDA7t69y6mbnp7OBAIBU6lUnY7xdVG/EmL4aChJi6KiIty6dQtvv/22xjZvb29MnToVCQkJqK+v75bj+/r6apS1rul89+5ddVl+fj7y8/OxYsUK9Ov383yI77//PhhjSE9P57TR+nm++uqrboi6Y9SvnRcbGwuBQIB79+5hwYIFEIvFkEgk2Lx5Mxhj+N///ofg4GBYWlrC3t6eMzyn7RrD4sWLYW5uju+//x4hISEwNzeHRCLB2rVr8eLFC3W9ixcvQiAQ4OLFi5x4tLVZWlqKJUuWYPDgwRAKhXBwcEBwcDCKi4u7qVdIV6PEoMXVq1cBAGPGjNG6PTY2FmVlZdi3b98r23n+/DlnecVXvTpSWloKABg0aJC67JtvvgEAjBs3jlPX0dERgwcPVm9vJRaL4ezsjCtXrnR4vO5A/dp1wsPD0dLSgj//+c8YP348tm7dit27d2P69Ol46623EB8fj2HDhmHt2rXIycl5ZVsvXryAv78/Bg4ciL/85S9QKBTYuXMnkpKSXiu2OXPmICMjA0uWLMHevXsRFRWFmpoa/Pe//32t9kjP65PTbnekdfEbbUtsAoCPjw/8/PywY8cOrFq1qt0FUY4ePYolS5bodEzWwVyG8fHxMDY2RmhoqLrs8ePHAAAHBweN+g4ODnj06JFGuVwu5219aOrXruPl5YXPPvsMALBixQrIZDIolUps374d69atAwDMnz8fjo6O+PzzzzFlypR222poaEB4eDg2b94MAFi5ciXGjBmDAwcOYNWqVXrFVVlZiatXr2LHjh1Yu3atunzDhg36fkTCI0oMWvzwww/o16/fK5c3jI2NhUKhwF//+lf84Q9/0FrH398f586d63Q8R44cwYEDBxAdHY1f/OIX6vLWIRehUKixj0gkQnV1tUa5tbW1xi/enkL92nUiIiLU/zY2Nsa4cePw8OFDLFu2TF1uZWUFFxcXFBYWdtjeypUrOe99fHyQmpqqd1ympqYwMTHBxYsXsWzZMlhbW+vdBuEfJYbXNGXKFPj5+SEhIUHjP1UrBwcHrb869XH58mUsW7YM/v7+2LZtG2db6y9qbQu4NzQ0aP3FzRgz6CUbqV91M3ToUM57sVgMkUjEGRJrLf/hhx9e2ZZIJFKvBd3K2toaT58+1TsuoVCI+Ph4KJVK2NnZYcKECQgMDMTChQthb2+vd3uEH3SNQYuBAweiubkZNTU1r6wXExOD0tJS9Sn9y+rr61FaWqrTS5tvv/0WQUFB8PDwQHp6OudCKPDzUEfr0Edbjx8/hqOjo0b506dPNb48egr1a9cxNjbWqQzoeDitvf3aai/ptb1A3WrNmjW4d+8etm/fDpFIhM2bN8PNzY23M1WiP0oMWri6ugL46S6aV1EoFPD19UV8fLzWO2m++OIL9a/bjl4vU6lUmDlzJmxtbXHmzBmtwy+ta/S+/PDXo0eP8PDhQ/X2toqKiuDm5vbKz9VdqF97r9YhoZcfBiwpKdFa39nZGUqlEv/85z9x+/ZtNDY2an2AkRgmGkrSYuLEiQB++mIYOXLkK+vGxsbC19dX6x0crzsWXlpaihkzZsDIyAhZWVkap/mthg8fDldXVyQlJSEyMlL9y2/fvn0QCAScC6oAUFVVBZVKpfcFxa5C/dp7SaVSGBsbIycnByEhIeryvXv3curV1dXByMgIIpFIXebs7AwLCwutQ3PEMFFi0EIul8PDwwPnz5/H0qVLX1lXoVBAoVDg0qVLGttedyx85syZKCwsRHR0NHJzc5Gbm6veZmdnh+nTp6vf79ixA0FBQZgxYwbmzZuH27dv49NPP0VERITGL9jz58+DMYbg4GC9Y+oK1K+9l1gsRlhYGPbs2QOBQABnZ2ecOnUK5eXlnHr37t3DtGnTMHfuXLi7u6Nfv37IyMhAWVkZ5s2bx1P0RG98PVln6Hbt2sXMzc05UyUAYKtXr9aoe+HCBfW0Dl3xhC7aWUwdAFMoFBr1MzIymKenJxMKhWzw4MFs06ZNrLGxUaNeeHg4mzx5cqfj6wzq186JiYlhANiTJ0845YsWLWJmZmYa9RUKBRs+fDhjjLGioiIGgB08eLDD/VqP09aTJ0/YnDlz2IABA5i1tTWLjIxkt2/f5rRZUVHBVq9ezVxdXZmZmRkTi8Vs/Pjx7O9//3snPznpSQLGOrgy1UdVVVVBLpcjISGBcwtgb1VaWgonJyccO3aM11+21K+EGD66+NwOsViM6Oho7Nix442YHnr37t0YMWIE719e1K+EGD46YyCEEMJBZwyEEEI4KDEQQgjhoMRACCGEgxIDIYQQDkoMhJAup20BH9J7UGIghGcqlQqRkZGQy+UQiUSwtLSEt7c3EhMTu201O+CnlepiY2N5X1lt27ZtCAoKgp2dHQQCAWJjY3mNh9CUGITw6vTp0wgLC4NQKMTChQvh4eGBxsZG5Obm4qOPPsKdO3deeyW1juTn5yMuLg6+vr6QyWTdcgxdbNq0Cfb29hg9ejSysrJ4i4P8jBIDITwpKirCvHnzIJVKkZ2dzZn/afXq1Xjw4AFOnz7NY4Q/Y4y1uxZFZxUVFUEmk6GioqLdiQ1Jz6KhJEJ4kpCQgNraWhw4cEDrpIDDhg3DBx98oH7f3NyMLVu2wNnZGUKhEDKZDBs3btSYtVQmkyEwMBC5ubnw8vKCSCSCXC7HoUOH1HWSk5MRFhYGAPDz84NAIIBAIMDFixc5bWRlZWHcuHEwNTVVr49RWFiIsLAw2NjYYMCAAZgwYUKnEhifZytEO0oMhPAkMzMTcrkckyZN0ql+REQE/vSnP2HMmDH4+OOPoVAosH37dq2zlj548AChoaGYPn06du7cCWtrayxevBh37twB8NNKeVFRUQCAjRs3IjU1FampqZyZYwsKCjB//nxMnz4diYmJ8PT0RFlZGSZNmoSsrCy8//772LZtGxoaGhAUFISMjIwu6BViEHidwo+QPqqqqooBYMHBwTrVv3nzJgPAIiIiOOVr165lAFh2dra6TCqVMgAsJydHXVZeXs6EQiFTKpXqsrS0NAaAXbhwQeN4rW2cPXuWU75mzRoGgF2+fFldVlNTw5ycnJhMJmMvXrxgjGmfybUjT548YQBYTEyMzvuQ7kFnDITwoLq6GgBgYWGhU/0zZ84AAD788ENOuVKpBACNoRx3d3f4+Pio30skEri4uKCwsFDnGJ2cnODv768Rh5eXFyZPnqwuMzc3x4oVK1BcXIz8/Hyd2yeGixIDITywtLQEgA7Xv25VUlICIyMjDBs2jFNub28PKysrjSU2hw4dqtGGtbU1nj59qnOMTk5OWuNwcXHRKG8dgmpvqU/Su1BiIIQHlpaWcHR0xO3bt/XaTyAQ6FSvdTnSlzE9JlPujjuQSO9AiYEQngQGBkKlUuHatWsd1pVKpWhpacH9+/c55WVlZaisrIRUKtX7+LommZfjKCgo0Cj/7rvv1NtJ70eJgRCeREdHw8zMDBERESgrK9PYrlKpkJiYCAAICAgA8NPCQG3t2rULADBr1iy9j29mZgYAqKys1HmfgIAA5OXlcZLZs2fPkJSUBJlMBnd3d73jIIaHHnAjhCfOzs44cuQIwsPD4ebmxnny+erVq0hLS8PixYsBAKNGjcKiRYuQlJSEyspKKBQK5OXlISUlBSEhIfDz89P7+J6enjA2NkZ8fDyqqqogFAoxdepU2NratrvP+vXrcfToUbzzzjuIioqCjY0NUlJSUFRUhC+//BJGRvr/1kxNTUVJSQnq6uoAADk5Odi6dSsA4L333qOzED7wfVsUIX3dvXv32PLly5lMJmMmJibMwsKCeXt7sz179rCGhgZ1vaamJhYXF8ecnJxY//792ZAhQ9iGDRs4dRj76VbTWbNmaRxHoVAwhULBKdu/fz+Ty+XM2NiYc+tqe20wxphKpWKhoaHMysqKiUQi5uXlxU6dOsWpo8/tqgqFggHQ+tJ2Ky3pfrS0JyGEEA66xkAIIYSDEgMhhBAOSgyEEEI4KDEQQgjhoMRACCGEgxIDIYQQDkoMhBBCOCgxEEII4aDEQAghhIMSAyGEEA5KDIQQQjgoMRBCCOGgxEAIIYTj/wCCUNKBjsRQnwAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAGGCAYAAAB/gCblAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAoldJREFUeJzs3XdYlGfa+P3vUKUKoghSLEhTQAREQRQLilhi1yiWRJOYbJLdJPtkN9kku9nkt0n2STbd1DWaGDXGrrEiCiodBKmCFAGRKr3DzLx/+DKPhCJVBr0+x8GxOzP33PdJZO5zrnZeErlcLkcQBEEQ/n8qAx2AIAiCoFxEYhAEQRBaEYlBEARBaEUkBkEQBKEVkRgEQRCEVkRiEARBEFoRiUEQBEFoRSQGQRAEoRWRGARBEIRWHvnEkJ+fz9tvv01+fv5AhyIIA6qxsZHQ0FAaGxsH5Pris6g8RGLIz+ef//yn+GMUHnnh4eHs3LmTiIiIAbm++Cwqj0c+MQiCAA0NDZw9e5asrCzOnDlDQ0PDQIckDCCRGARBICIigrS0NJycnEhLSyMyMnKgQxIGkEgMgvCIa2ktaGhooK+vj4aGhmg1POJEYhCER1xsbCwZGRnU1NSQlJRETU0NGRkZxMbGDnRowgBRG+gABEEYWBYWFvj7+7f7vPBoEolBEB5xZmZmmJmZDXQYghIRXUmCIAhCKyIxCIIgCK2IxCAIgiC0IhKDIAiC0IpIDMJDq6GhgaampoEOQxAGHZEYhIdWREQEX3zxBVKpdKBDEYRBRSQG4aEkk8mIiYlh/PjxqKqqDnQ4gjCoiMQgPJRu3LhBRUUFbm5uAx2KIAw6IjEID6Xo6GhGjRrFqFGjBjoUQRh0lDYxfPDBB0gkEl566aUOj9m1axcSiaTVz5AhQx5ckIJSKi8vJz09XbQWBKGHlLIkRlRUFN9++y1OTk73PVZfX5/U1FTFY4lE0p+hCYNATEwMGhoaODg4DHQogjAoKV2Lobq6Gn9/f77//nsMDQ3ve7xEIsHExETxM3LkyAcQpaCspFIpsbGxTJo0CQ0NjYEORxAGJaVLDM8//zyLFi3Cx8enS8dXV1czevRoLCwsWLp0KUlJSf0coaDMrl+/TnV1tehGEoReUKqupF9++YWrV68SFRXVpeNtbW354YcfcHJyoqKigo8++ghPT0+SkpIwNzdv9z0NDQ2tNiCprq7uk9gF5RAdHY2lpSXGxsYDHYogDFpK02LIzc3lT3/6E3v27OnyALKHhwebNm3C2dkZb29vDh8+zIgRI/j22287fM/777/P0KFDFT/e3t599SsIA6ykpISsrCzRWhCEXlKaxBATE0NRUREuLi6oqamhpqZGcHAwn3/+OWpqal1avaqurs7kyZNJT0/v8JjXX3+diooKxU9wcHBf/hrCAIqJiUFbW5sJEyYMdCiCMKgpTVfS3LlzSUhIaPXck08+iZ2dHX/961+7tHpVKpWSkJDAwoULOzxGU1MTTU1NxWNdXd2eBy0ojaamJuLi4pg8eTJqakrzZy0Ig5LSfIL09PTaTC/U0dHByMhI8fymTZswMzPj/fffB+Cdd95h2rRpjB8/nvLycj788EOys7N56qmnHnj8wsBKTk6mrq4OV1fXgQ5FEAY9pUkMXZGTk4OKyv/1fpWVlfH0009TUFCAoaEhrq6uhIaGiq6ER1B0dDRWVlYYGRkNdCiCMOgpdWIICgrq9PEnn3zCJ5988uACEpRSQUEBubm5rF27dqBDEYSHgtIMPgtCT8XExKCnp4eNjc1AhyIIDwWRGIRBraGhgWvXruHi4iLKaz+CLl26xJIlSxg1ahQSiYSjR492enxQUFCb+moSiYSCgoIHE/AgIRKDMKglJCTQ1NSEi4vLQIciDICamhomTZrE9u3bu/W+1NRU8vPzFT9iQWRrSj3GIAidkcvlREdHY2Njw9ChQwc6HGEA+Pn54efn1+33GRsbY2Bg0PcBPSREi0EYtPLy8igoKBArnYVuc3Z2xtTUlHnz5hESEjLQ4Sgd0WIQBq3o6GgMDAywsrIa6FCEPlRdXU1lZaXi8e8XpfaGqakp33zzDW5ubjQ0NPDf//6XWbNmERERIboj7yESgzAo1dXVkZiYiLe3d6u1LcLg9/v6Zf/4xz94++23++Tctra22NraKh57enqSkZHBJ598wu7du/vkGg8DkRiEQenatWvIZDImT57c4TF37tyhrKwMKysrsYHTIBIcHIyzs7PicV+1Fjri7u7OlStX+vUag434qiUMOi2Dzvb29p3WugoMDOTEiRPIZLIHGJ3QW7q6uujr6yt++jsxxMXFYWpq2q/XGGxEi0EYdLKzsykpKWHRokUdHnP79m2Sk5NZunSpWN/wEKuurm5VTTkrK4u4uDiGDRuGpaUlr7/+Onl5efz0008AfPrpp4wdO5aJEydSX1/Pf//7Xy5cuMC5c+cG6ldQSiIxCINOdHQ0RkZGjBkzpsNjLly4wPDhw5k0adKDC0x44KKjo5k9e7bi8SuvvALA5s2b2bVrF/n5+eTk5Cheb2xs5M9//jN5eXloa2vj5OTE+fPnW51DEIlBGGSqq6tJSUnBx8enw3GDmzdvkp6ezpo1a8TA9ENu1qxZyOXyDl/ftWtXq8d/+ctf+Mtf/tLPUQ1+4lMjDCpxcXFIJJJWg5P3ksvlBAYGMmrUKOzt7R9scILwkBCJQRg0WgadHRwc0NLSaveYtLQ0cnNzmTt3rpiJJAg9JBKDMGhkZGRQXl7e4UpnuVzOhQsXGDt2LOPGjXvA0QnCw0MkBmHQiI6OxsTEBDMzs3ZfT0hIoLCwULQWBKGXRGIQBoWKigpSU1Nxc3Nr96YvlUq5ePEidnZ2mJubD0CEgvDwEIlBGBSuXr2Kuro6jo6OHb5eXl7OnDlzHnBkgvDwEYlBUHpSqZSrV6/i5OTU7irYpqYmLl26hJOTk6irLwh9QCQGQemlpaVRVVXV4aBzREQEtbW1zJo168EGJggPKZEYBKUXHR2Nubk5JiYmbV6rr68nJCQEV1dXDA0NByC6h0djYyOhoaE0NjYOdCjCABOJQVBqpaWlZGRkdNhaCAkJobm5mZkzZz7gyB4+4eHh7Ny5k4iIiIEORRhgIjEISi0mJoYhQ4YwceLENq9VV1cTHh7OtGnTOq2yKtxfQ0MDZ8+eJSsrizNnztDQ0DDQIQkDSCQGQWk1NzcTGxuLs7Mz6urqbV6/dOkSqqqqeHp6DkB0D5eIiAjS0tJwcnIiLS2NyMjIgQ5JGEAiMQhKKyUlhdra2na7kcrKyoiJicHLy6vD8hhC17S0FjQ0NNDX10dDQ0O0Gh5xIjEISis6OpoxY8YwfPjwNq8FBQWhpaXF1KlTByCyh0tsbCwZGRnU1NSQlJRETU0NGRkZxMbGDnRowgARZbcFpVRUVER2djarVq1q97X4+HgWLlzYbheT0D0WFhb4+/u3+7zwaBKJQVBKMTEx6OjotFs6+8KFCxgYGODi4jIAkT18zMzMOqw/JTyaRFeSoHQaGxu5du0aLi4ubbblvHXrFtevX2fWrFliy05B6CciMQhKJykpiYaGhnZbBIGBgRgbG3dYM0kQhN4TiUFQOtHR0YwfP77NSubMzEyysrKYM2eO2LJTEPqR+HQJSuX27dvk5eW1maLasmWnubk5tra2AxSdIDwaRGIQlEp0dDT6+vpYW1u3ev769evk5eWJTXgE4QEQiUFQGvX19SQkJODq6tqqq0gmk3HhwgWsrKwYO3bsAEYoCI8GkRgEpREfH49UKm0z6BwfH09xcTFz584doMgE4dEiEoOgFORyOdHR0dja2qKnp6d4vrm5mYsXLzJhwgRGjRo1gBEKwqNDJAZBKeTm5lJUVNRm0DkmJobKykpmz549QJEJwqNHJAZBKURHRzNs2DDGjRuneK6xsZFLly7h7OzMiBEjBjA6QXi0iMQgDLja2lqSkpJwdXVtNeMoPDyc+vp6sWWnIDxgIjEIAy4uLg4AZ2dnxXO1tbWEhIQwZcoUhg4dOjCBCcIjSiQGYUC1DDpPmDABHR0dxfMhISHI5XJmzJgxgNEJwqNJJAZhQGVlZVFaWsqUKVMUz1VWVhIREYGHh0erZCEIwoMhEoMwoKKjozE2Nm5V+//SpUuoq6vj4eExgJEJwqNLJAZhwFRVVXH9+nXc3NwUg86lpaVcvXqVGTNmMGTIkF6d/9atWwQFBSGTyfoiXEF4ZIjEIAyY2NhYVFVVcXJyUjx38eJFdHV1W3Ut9URDQwOHDh0iPT29t2EKwiNHJAZhQMhkMmJiYnB0dFS0DAoLC0lMTMTb27vXW3aePn2ampoaVqxYIUp0C0I3iU+MMCBu3LhBRUVFq5XOgYGBGBoatpq22hNJSUnExcWxcOFChg0b1stIBeHRIxKDMCCio6MZNWqUov5RTk4OaWlpzJkzp1dbdlZUVHDixAkmTpzIpEmT+ipcQXikiMQgPHDl5eWkp6crWgstm/CYmJgwceLEHp9XJpNx5MgRNDQ0WLx4sdi3QRB6SGkTwwcffIBEIuGll17q9LgDBw5gZ2fHkCFDcHR05NSpUw8mQKHHYmJi0NDQwMHBAYCMjAyys7N7vQlPWFgY2dnZLF++HC0trb4KVxAeOUqZGKKiovj2229bzVZpT2hoKOvWrWPr1q3ExsaybNkyli1bRmJi4gOKVOguqVRKbGwskyZNQkNDQ9FasLS0ZPz48T0+7+3bt7lw4QKenp5iMx9B6CWlSwzV1dX4+/vz/ffft9kM/vc+++wzFixYwKuvvoq9vT3vvvsuLi4ufPnllw8oWqG7rl+/TnV1taIbKTk5mfz8fHx8fHrcWmhqauLw4cMYGxszZ86cvgxXEB5JSpcYnn/+eRYtWoSPj899jw0LC2tznK+vL2FhYf0VntBL0dHRWFpaYmxsrNiy09raGktLyx6f8+zZs1RUVLBy5cpeDVwLgnCX2kAHcK9ffvmFq1evEhUV1aXjCwoKGDlyZKvnRo4cSUFBQYfvaWhooKGhQfG4urq6Z8EK3VZSUkJWVhYrVqwA7lZVvXPnDqtXr+7xOVNTU4mOjmbx4sUMHz68r0IVhEea0iSG3Nxc/vSnPxEQENDrUgidef/99/nnP//Zb+cXOhYTE4O2tjYTJkygubmZoKAgHBwcMDEx6dH5qqqqOHbsGLa2tri6uvZxtILw6FKarqSYmBiKiopwcXFBTU0NNTU1goOD+fzzz1FTU0MqlbZ5j4mJCYWFha2eKyws7PRG8/rrr1NRUaH4CQ4O7vPfRWirqamJuLg4nJ2dUVNTIyoqiurq6h5v2SmXyzl69CgqKio89thjYmpqH2hsbCQ0NJTGxsaBDkUYYEqTGObOnUtCQgJxcXGKHzc3N/z9/YmLi2u379jDw4PAwMBWzwUEBHRalVNTUxN9fX3Fj66ubp//LkJbycnJ1NXV4ebmRkNDA5cvX2by5MkYGRn16HwRERFkZGSwbNkyUZq7j4SHh7Nz504iIiIGOhThPqRSKb/88gvbtm1j+fLlJCQkAHcXeB4+fLjNF+buUpquJD09PcW89hY6OjoYGRkpnt+0aRNmZma8//77APzpT3/C29ub//znPyxatIhffvmF6Ohovvvuuwcev9C56OhorKysGDZsGEFBQTQ2NuLt7d2jcxUWFnL+/HmmTZvWqymuwv9paGjg7NmzZGVlcebMGdzd3dHU1BzosIR2lJeXs2DBAiIjI9HV1aWmpoYXX3wRAF1dXf74xz+yadMm3nvvvR5fQ2laDF2Rk5NDfn6+4rGnpyd79+7lu+++Y9KkSRw8eJCjR4+2STDCwCooKCA3Nxc3NzdqamoIDQ3F3d0dfX39bp+rubmZQ4cOMWzYsC7NXBO6JiIigrS0NJycnEhLSyMyMnKgQxI68Nprr5GUlMTZs2fJzMxELpcrXlNVVWXVqlW9XuirNC2G9gQFBXX6GGD16tW9mtUi9L+YmBj09PSwsbHh/PnzSCQSvLy8enSu8+fPU1paytNPP42amlL/+Q4aLa0FDQ0N9PX10dDQEK0GJXb06FFefPFF5s2bx507d9q8bmNjw65du3p1jUHVYhAGn4aGBq5du4aLiwvV1dVERUXh6emJtrZ2t8+Vnp5OeHg4Pj4+baYpCz0XGxtLRkYGNTU1JCUlUVNTQ0ZGBrGxsQMdmtCOioqKTlf3NzU10dzc3KtriK9cQr9KSEigqakJFxcXgoOD0dTUZNq0ad0+T01NDUePHmX8+PFMnTq1HyJ9dFlYWODv79/u84LysbKy4urVqx2+fu7cOSZMmNCra4gWg9Bv5HI50dHR2NjY0NTURGxsLDNmzOh294RcLuf48ePIZDKWLl0qpqb2MTMzM5YsWYKvry9GRkb4+vqyZMkSzMzMBjq0+7p06RJLlixh1KhRSCQSjh49et/3BAUF4eLigqamJuPHj+91t8uD9tRTT/HDDz+wf/9+xfiCRCKhoaGBN954gzNnzrBt27ZeXUO0GIR+k5eXR0FBAXPnzuXixYvo6+u32pinq2JiYkhNTWXdunXo6en1Q6QC3J2uunv3bqRSKTNmzBjocLqkpqaGSZMmsWXLFsWK+s5kZWWxaNEinn32Wfbs2UNgYCBPPfUUpqam+Pr6PoCIe+9Pf/oTSUlJrFu3DgMDAwDWr1/PnTt3aG5uZtu2bWzdurVX1xCJQeg30dHRGBgYoK2tTVJSEkuXLu32gHFJSQlnz57Fzc0NW1vbfopUGKzTVf38/PDz8+vy8d988w1jx47lP//5DwD29vZcuXKFTz75ZNAkBolEwvfff8/mzZs5ePAgN27cQCaTYWVlxZo1a5g5c2avryESg9Av6urqFPs3X7x4keHDh3d7RzWpVMqhQ4cYOnTooPnQDlbtTVcdqFZDdXU1lZWViseampp9lqQ6Krx5v31flJGXl1ePZ/fdjxhjGGByuZwLFy5QVlY20KH0qWvXriGTyRg2bBjp6enMmTMHFZXu/blduHCBoqIiVq5cibq6ej9FKnQ0XfXeYpMPkre3N0OHDlX8tCxo7QsdFd6srKykrq6uz67Tn7Kysjhx4kSHr584cYKbN2/26hqixTDAKioqiI2NJSQkBA8Pjx4NziqblkFnOzs7wsPDGTVqFPb29t06R1ZWFqGhofj4+GBqatpPkQrwf9NVa2trCQ4ORk9PTzFdtSczyHorODgYZ2dnxePB/nnoa//zP/9DZWUlS5Ysaff17du3Y2BgwC+//NLja4gWwwAzMDDgxRdfZMaMGURERPD5558THR2NTCYb6NB6LDs7m5KSEoyMjMjNze32lp11dXUcOXKEMWPG4Onp2Y+RCvB/01U9PDxQV1fH09MTf3//AZuuqqur26qeWV8mho4Kb+rr6w+a7WDDwsKYN29eh6/PnTuXy5cv9+oaosWgBDQ0NJg1axYuLi5cuHCB3377jcjISHx9fbGyshro8LotOjoaIyMjUlNTGTNmDOPGjevye+VyOSdOnKCpqYlly5aJqakPgJmZGcOHDyc8PBypVEpVVRXz589/KL+pe3h4tCkXcb/Cm8qmrKys09l5urq67a6I7g7RYlAi+vr6LFu2jGeeeQYtLS12797Nnj17KC4uHujQuqy6upqUlBQMDQ0pKirq9pad165dIzk5mcWLFzN06NB+jFS412CtlVRdXa2oxgx3uyDj4uLIyckB7pbZ37Rpk+L4Z599lszMTP7yl79w/fp1vvrqK3799VdefvnlgQi/RywtLQkJCenw9cuXL2Nubt6ra4jEoIRGjRrFE088wdq1aykpKeHrr7/m5MmT1NbWDnRo9xUXF4dcLic/Px9bW9tu/YGWlpZy6tQpnJ2dmThxYj9GKdxL2QafuyM6OprJkyczefJkAF555RUmT57M3//+dwDy8/MVSQJg7NixnDx5koCAACZNmsR//vMf/vvf/w6qWW/r1q1j3759fP755626nKVSKZ999hn79+9n/fr1vbqGRH5vab5H0NWrV3F1dSUmJgYXF5eBDqeN5uZmIiMjuXTpEgAzZ87E3d1dKQvIyeVyPvvsM5qamqitreW5557D2Ni4S++VSqXs3LmTmpoann322YeyG0NZhYeH8+mnn1JfX4+qqipSqZQhQ4bw0ksvPdDBZ2X/LCqLhoYGFi1axIULFxgxYoRifU9qairFxcXMmjWL06dP9+ozpHx3F6EVNTU1PD09mTRpEsHBwZw/f57o6GjmzZuHnZ2dUvXBZ2RkKPo2J0+e3OWkAHdLG9y+fZstW7aIpPCA3VsrSSqVKjbFErWSlJOmpibnzp3jxx9/5PDhw2RkZADg7u7OypUr2bRpU7enhv+eSAyDhI6ODgsXLmTKlCmcO3eO/fv3M3r0aHx9fRk1atRAhwfcbdbX1dWhp6fXrS07c3JyuHTpErNmzep136jQfWZmZoq6SM3NzUrZGhVaU1FR4cknn+TJJ5/sn/P3y1mFfjNixAj8/f3ZuHEjdXV1fPfddxw5cqTVStGBUFlZSVJSEg0NDbi5uWFoaNil99XX13P48GHMzc0HTX2eh9lgniYt9B3x1WCQsrKy4tlnn+Xq1atcvHiR5ORkpk+fjqenJxoaGg88npiYGG7fvo2lpWW3arWcOnWKuro6Nm/e3Ovmr9B7j/iQ46Bx9uxZduzYQWZmJmVlZW3+3SQSiaKLqSdEYhjEVFRUcHNzw9HRkcuXL3P58mViYmKYO3cukyZNemDjD1KplLCwMJqampg+fXqXK6AmJCQQHx/PihUrutzCEPqXaDEovw8//JDXXnuNkSNH4u7ujqOjY59fQySGh4CmpiY+Pj64urpy/vx5jh49SkREBAsWLGD06NH9fv20tDSSkpIYM2YM06dP79J7ysvLOXnyJI6Ojv3yhy30jGgxKL/PPvuMOXPmcOrUqX6rISba7g8RQ0NDVq9ezZYtW1BRUWHnzp3s37+f0tLSfr1ucHAwNTU1LFiwoEtlBWQyGUeOHEFTU5NFixYp1cyqR51oMSi/srIyVq1a1a+FJUVieAhZWlry1FNPsWLFCvLy8ti+fTvnzp2jvr6+z69VWlpKUFAQY8eO7fKWmyEhIeTk5LBixQqGDBnS5zEJPScSg/Jzd3cnNTW1X68hEsNDSiKR4OTkxIsvvoi3tzfR0dF8/vnnREZG9umHPzAwkJKSElavXt2lQe+8vDwuXryIl5fXA+nmErqnt5vIC/3vq6++4vDhw+zdu7ffriHGGB5y6urqzJw5k8mTJ3PhwgVOnz5NVFQU8+fPZ/z48b3qxmlububo0aOMHz++S62FxsZGDh8+jImJCbNmzerxdYX+09TUNNAhCPexdu1ampub2bhxI8899xzm5uaKRYktJBIJ165d6/E1RGJQAnV1df1e8ldPT4+lS5fi7u7O2bNn2bNnD1ZWVvj6+nZrhfK9goKCyMvL4+23327zh9meM2fOUFlZybPPPtul44UHr7GxcaBDEO5j2LBhGBkZYW1t3W/XEIlhgFVWVrJ9+3YmTZrE7Nmz+z1BmJqasnnzZlJTUwkICODrr7/G1dWV2bNno6Oj061z/fLLL1hYWHRp3UJKSgpXr17lsccew8jIqKfhC/2sP8ahhL4VFBTU79cQiWGA6ejo4O3tTXBwMImJicyZMwcXF5d+XewlkUiws7PD2tqaqKgogoKCSEhIYMaMGUybNq1LJREiIyNJT0/nz3/+831jrays5Pjx49jb2yuqYArKSSQGAcTg84BTVVXF09OTF198ERsbG3777Te+//57cnNzH8i1p02bxh//+EecnZ25cOECX375JUlJSZ3OZ5fL5fz888+MGDECPz+/Tq8hl8s5evQoampqLFmyRExNVXKDodS2cPfL1gcffICvry+TJ09W7J9RWlrKxx9/THp6eq/OLxKDktDV1WXZsmU89dRTSCQSduzYweHDh6mqqur3a2tra+Pn58cf/vAHRo4cyYEDB/jhhx/Iy8tr9/j4+HiSk5NZunTpfVsX4eHhZGZmsnz5crS1tfsjfKEPNTc3i5lJSu7WrVuKPSdu3bpFfHw81dXVwN3xh2+//ZYvvviiV9cQiUHJmJub8/TTT/PYY4+RkZHBF198QUhICFKptN+vPXz4cNatW8emTZtobGzk+++/59ChQ1RUVCiOkclk7Nu3D319fRYtWtTp+QoKCjh//jyenp7d2t5TGFii1aDcXn31VaqqqoiLiyM4OLhN637ZsmWcP3++V9cQiUEJSSQSXFxcePHFF5k8eTKBgYF89dVX3Lhx44Fcf9y4cWzbto3HHnuMrKwsvvjiCy5cuEBjYyPx8fEkJSUxZ86cTusbNTU1cejQIUaMGMGcOXMeSNxC3xDjDMrt3Llz/PGPf2TChAntds2OGzeu113RYvBZiQ0ZMgQ/Pz9cXV05ffo0e/bswdbWFl9fX4YNG9av11ZRUcHFxYWJEydy5coVQkNDiY6OJjMzE01NTebNm9fp+wMCAigrK2Pbtm2ivv8g0ZL4R4wYIWaOKbG6ujpGjBjR4et90f0sWgyDgLGxMZs2bWL16tUUFBSwfft2AgMDH8icc01NTebOncsLL7yAVCrlypUrNDQ0dHqzb9lMfv78+Z3+AQvKJTw8nJMnTxIeHj7QoQidmDBhgmKr3/YcPXq017P/RGIYJCQSCRMnTuSFF17Ay8uLsLAwvvzySxITEx9IRUxtbW3kcjnW1tbY29uze/du9u3bp9jKs0V1dTXHjh3D2tqaKVOm9HtcQt9oaGjg7Nmz3L59m8DAQDHOoMReeuklfvnlF/79738rxv9kMhnp6els3LiRsLAwXn755V5dQ7TxBxl1dXVmz56Ns7MzZ8+e5eDBg0RHR+Pn58fIkSP77brh4eFkZ2djb2/Pa6+9Rk5ODufPn2f79u24u7vj7e3NkCFDOHbsGABLly4VU1MHkYiICNLS0hg/fjzp6elERkaKHfWU1IYNG8jOzubNN9/kjTfeAGDBggXI5XJUVFR47733WLZsWa+uIRLDIGVoaMjjjz9ORkYGp0+f5ptvvmHKlCn9snq6rq6OkJAQ1NTUmDRpEvr6+jg4OGBra0t4eDiXL1/m2rVrDB8+nOzsbDZu3Iiurm6fxiD0n5bWgoaGBlpaWsjlcs6cOYO7uzuampoDHZ7QjjfeeIONGzdy6NAh0tPTkclkWFlZsWLFij6ZASgSwyBnZWXFc889R0REhGL19Ny5c5k8eXKfrZ6+cuUKZWVlDB06FDc3N8Xz6urqzJgxg8mTJ3PkyBF27tyJjY0NMpkMuVwuWgyDRGxsLBkZGdTX15Ofn091dTXp6enExsYybdq0gQ5PuEdtbS0zZszg6aef5tlnn+11l1FHxBjDQ6Bl9fQLL7yAjY0NJ06c6LPV01VVVURERKCjo4OJiUm730aGDBlCdXU18+bNw93dnX379vHTTz9RUFDQ6+sL/c/CwgJ/f38SExOJiYnh1q1bLF68GAsLi4EOTfgdbW1tsrKy+v1Ll0gMDxE9PT2WLVvG1q1bFaunjxw50qvpay0LaORyOa6uru3+QV64cIGSkhKefPJJnnzySdavX09VVRXffvstx48fV6zKFJSTmZkZS5Ysob6+nsrKSpqbm3FwcMDMzGygQxPasWDBAs6ePduv1xCJ4SFkYWGhWD1948aNHq+eLi0t5erVq4wYMQJVVVWcnZ3bHJOZmUloaCg+Pj6YmJggkUiwsbHhueeeY8GCBaSkpPD5559z6dIlUetfybXMbpPL5eTk5AxwNEJH3nrrLdLS0ti4cSNXrlwhLy+P0tLSNj+9IcYYHlItq6ft7e0JCgoiMDCQq1ev4ufnx/jx47t0josXL6KtrU1dXR0TJ05sU5a7traWI0eOMG7cuDZ90aqqqkydOhUnJycuXbpEcHAwMTEx+Pj44ODgIMYflFDLuhipVEpRURG1tbWivpUSmjhxIgDJycmd7uLWmzI6IjE85LS0tPDz88PFxYXTp0/z888/d2n1dGFhIYmJiUyaNIm4uLhWg85w91vliRMnaG5uZvny5R3e6LW0tPD19cXNzY3z589z6NAhIiIi8PX1FX3YSqShoUFRCqOpqYnGxkaysrIUNyFBefz973/v9y9WIjE8IkaOHMnmzZtJTk7m3LlzfPXVV3h6euLl5dXuXs2BgYEYGhpSX1+PsbFxm5t4bGwsKSkprF27Fj09vfte38jIiLVr13Lz5k3Onj3Ljh07cHBwwMfHBwMDg776NYUeioiIUFRVlclk3Lx5k/T0dJEYemjs2LHdvnlLJBIyMjLue9zbb7/dw6i6rseJQSqVcuDAAS5evEhRURHvvPMOjo6OVFRUEBgYyPTp0/t1wZXQfS2rp62trQkJCSEkJIS4uDjmz5/PxIkTFX/IOTk5pKWlsWDBAs6dO8eCBQta/ZHfuXOH06dPK7qqumPMmDE8/fTTxMfHExgYyJdffsm0adOYMWOGmDM/QFrWMbT8G8vlcpKSkhgzZgyVlZXo6+sPcISDj7e3d5vEEB0dTVJSEhMmTMDW1haA1NRUkpOTcXBwwNXVtUfXqqioQFdXt0+3y+3R4HN5eTnTp09n/fr17Nu3j+PHj1NcXAzc3Vfgj3/8I5999lmfBSn0LQ0NDWbPns3zzz/PqFGjOHjwID/++COFhYXI5XICAwMxMTGhoaEBVVVVnJycFO+VSqUcOnQIfX19FixY0KPrq6io4OzszIsvvsj06dOJiIjg888/JyYmBplM1le/ptBFLesY7i2tUlxcTG5uLqmpqQMY2eC1a9cudu7cqfhZunQpt27dIiAggMTERA4dOsShQ4dITEzk7Nmz5Obmdmu1cnR0NAsWLEBbWxsjIyOCg4MBKCkpYenSpb3e/rNHieG1114jKSmJs2fPkpmZ2eoPSlVVlVWrVnHq1KleBSb0v5bV0xs2bKC6uppvvvmGHTt2kJ6ezqxZs7h69SqOjo4MGTJE8Z6goCAKCgpYsWJFu11Q3dGSoF544QWsrKw4ceIE3377bZea00LfaVnH0DLQrKmpibu7O4aGhly/fv2B7AXysPv73//Oiy++yNy5c9u8Nm/ePF544QXefPPNLp0rNDQULy8vbty4wYYNG1p9mRo+fDgVFRV8++23vYq3R4nh6NGjvPjii8ybN6/dfjQbGxtu3rzZq8CEB2f8+PE899xz+Pj48Ntvv5GWlkZSUhLl5eWtBp2zs7O5cuUKs2fP7tM57kOHDmXFihU8/fTTaGpqsnv3bvbs2aNohQr9q2UdQ0spFXV1dSZNmoShoSF1dXWi1dAHbty40WkpcyMjoy5/Ifrb3/6Gvb09ycnJvPfee21enz17NhERET2OFXqYGCoqKhg7dmyHrzc1NYntAQcZVVVVDAwMsLe3x8fHhz179pCRkaH4tlhfX8/hw4extLRk+vTp/RKDmZkZTz75JGvWrKGkpISvv/6aU6dOUVtb2y/XE7omNjZWrEHpJSsrK3bu3NnuYs+qqip++OGHLtc4ioqK4sknn0RTU7PdL+ZmZma9rjrQo8FnKysrrl692uHr586dY8KECT0OSnjwZDIZFy5cwMHBgUWLFpGamoq2tjY7duzAycmJmpoaGhoaWL58eZ/VYGqPRCJhwoQJ2NjYEBERwaVLl4iPj8fb2xt3d/c+HWATuqampoa4uDhRRr0X/t//+3+sWrUKOzs7nnjiCcVaohs3bijG9w4cONClc6mrq3c6FpeXl9frIpY9+oQ/9dRT/PDDD+zfv18xviCRSGhoaOCNN97gzJkzbNu2rVeBCQ9WXFwcd+7cYc6cOcTExDBixAjefPNNHnvsMS5fvsyuXbswNzfv0tTUvqCmpsb06dP54x//iKOjI+fOnWP79u2kpKQ8kP0nhNbi4+MpLy8f6DAGrWXLlnHq1ClGjBjBe++9x5YtW9iyZQvvv/8+xsbG/Pbbb10efJ42bRoHDx5s97Wamhp27tyJt7d3r+LtUYvhT3/6E0lJSaxbt04xB339+vXcuXOH5uZmtm3bxtatW3sVmPDgNDc3ExQUhIODA8bGxuzZs4dJkyYxZMgQxo4di6GhIZ6enmRmZvL111+zYMGCLq+e7i0dHR0WLVrElClTOHfuHPv372fMmDH4+vpiamr6QGJ4lDU3N5Odnc3o0aO5fPkyixcvFqvWe2j+/PnMnz+fgoICsrOzARg9ejQmJibdOs8///lPvL29WbRoEevWrQPg2rVrZGZm8tFHH1FcXMxbb73Vq1h71GKQSCR8//33XLp0iU2bNuHn54ezszPPPPMMQUFBfP311z0K5uuvv8bJyQl9fX309fXx8PDg9OnTHR6/a9cuJBJJq597Z9AIXRMVFUV1dTWzZ8/m+vXrVFdX4+bmhkwm4/Dhw+jr6/Pmm2+ybds2dHV1+fnnn9m3bx9lZWUPLEZjY2M2bNjAhg0bqKmp4bvvvuPo0aN9sr+tcNe9tZJatNTCysrKIj8/n/T09IEK76FhYmLC1KlTmTp1areTAsDUqVM5deoU6enpbNq0CYA///nPPPPMM0ilUk6dOtVqinlP9Grls5eXF15eXr0K4F7m5uZ88MEHWFtbI5fL+fHHH1m6dCmxsbEdrsDU19dvNWtCfJvpnoaGBi5fvszkyZMxMjLit99+w9LSEmNjY4KDg7l165ZioOve1dNnz55l+/btna6e7g/jx49n3LhxxMTEcPHiRZKSkvDy8sLDw+OBxfCwurdWEtydRJKcnExJSYliwVtkZCRjx47tdM9voX05OTm89957XLx4keLiYo4ePcrMmTMpKSnhnXfe4cknn2x3r+bKykp0dHRaja/NmTOH1NRU4uLiuHHjhmKjno4qIHeXUv3rLlmypNXjf/3rX3z99deEh4d3mBgkEkmPsq5wV1hYGI2NjXh7e1NSUkJWVhYrVqzg1q1bBAcHM3PmTCwtLRXH37t6+sqVK4SGhnLt2jXmz5/PhAkTHkhiVlFRYcqUKTg6OnL58mUuXbpETEwMc+fOxcnJSRHD9evXSUpKYunSpeJGdh+/r5XU1NREVlYWhYWFmJmZUVhYyM2bN7G2tiYpKYlJkyYNcMSDS3JyMjNmzEAmkzF16lTS09MVMzeHDx/OlStXqKmpYceOHW3ea2hoyO7du1m/fj0AW7ZsYdu2bUydOhVnZ+d2qx73Vo8+LV2pA9LVuh8daSm5UVNTg4eHR4fHVVdXM3r0aGQyGS4uLrz33nud1ndpaGhotdH5o7xXQG1tLWFhYbi7u6Ovr8/Zs2fR1tbGysqK//73v4waNarDQSwNDQ3mzJnD5MmTOXv2LAcOHGDMmDH9vvf0vYYMGcK8efNwdXXl/PnzHDlyRFGgz8DAgGPHjjFmzBgxk6kLfl8rKT09ndTUVFRVVdHS0qKyslLRaoiPj2fixIki2XbDX/7yFwwMDAgPD0cikWBsbNzq9UWLFrF///5236uhodHqnrVr1y58fHyYOnVqv8Xbo3/Z9uqASKVSsrOzCQkJwcHBod0mUVckJCTg4eFBfX09urq6HDlypMOpr7a2tvzwww84OTlRUVHBRx99hKenJ0lJSZibm7f7nvfff59//vOfPYrtYXP58mXgbpdgU1MTcXFxuLi4EBAQQE1NDRs3brzv1NSW1dPp6emcPn2ab7/9lilTpjBr1qw+33u6I8OGDWPNmjVkZ2crCvQVFRUxcuRIJk+eLLoX76O9Wknh4eE0NjYilUq5ffs2UqlUUSZj3LhxpKWliSnp3XDp0iX+/ve/M2LECO7cudPmdUtLS/Ly8tp9r52dHf/9738ZM2YMQ4cOBeDmzZudLhkAcHFx6XG8PUoMu3bt6vC1a9eu4evri7+/f48CsrW1JS4ujoqKCg4ePMjmzZsJDg5u94/Qw8OjVWvC09MTe3t7vv32W9599912z//666/zyiuvKB7HxcX1emrXYFRRUUFUVBQzZsxAW1uba9euUVdXh46ODiEhISxbtqzTsty/N378eP7whz8QERFBUFAQCQkJfb739P2MHj2ap59+mu+//56IiAhyc3PJz8/niy++EAX6OtFeraTa2lqsra3btP4MDQ2Bu1/g7O3tRdLtIplM1uneFsXFxR3+jb7//vusXbsWHx8f4G5vzFtvvdXhzKOW/daVaj+GSZMmsW3bNv76178SExPT7fdraGgopkK6uroSFRXFZ5991qXaH+rq6kyePLnTmROampqt/gF6uxBksAoODkZTU1OxwU50dDSmpqZcunSJiRMn9qgPuWXvaUdHR86fP8+JEyeIiYnBz8/vge29kJmZSX5+PqtXr+bKlSuMHz9e6QelS0tLefHFFzlx4gQqKiqsXLmSzz77rEt/m3K5nIULF3LmzBmOHDnSai58VFQUr732GjExMUgkEtzd3fnf//3fNv+2LbWSAgICqK+vR1NTEy8vLywtLRWJ4PcqKiq4efNmpxUQhP/j4uLCyZMn+cMf/tDmtebmZn755Zc2m121WLBgAVlZWURFRVFYWMgTTzzBM88802kXe2/1SyfhyJEjSU5O7pNzyWSyVv1rnZFKpSQkJLBw4cI+ufbD6s6dO4py25qamhQUFJCTk4OmpiZDhgzp9Vx1PT09li9fjpubG6dOnWLHjh1MmjSJefPm9Wsirq6u5vDhw4waNYri4mKmT5/OlClTlOJb7axZs3jiiSd44okn2rzm7+9Pfn4+AQEBNDU18eSTT/LMM890ujtXi08//bTd36+6upoFCxbw2GOP8dVXX9Hc3Mw//vEPfH19yc3NRV1dXXGsmZkZZmZmbWol3U98fLxIDF30+uuvs3jxYp577jkef/xx4O5mWOfPn+e9994jJSWFL7/8st33xsfHM3r0aHx9fQHYuXMnq1evbrcgX1/p88Rw584dduzY0WEff2def/11/Pz8sLS0pKqqir179xIUFKTY+HrTpk2YmZnx/vvvA/DOO+8wbdo0xo8fT3l5OR9++CHZ2dk89dRTffo7PWwuXLiAnp6eokBeTEwMd+7cwcjIiHXr1vXZ2EDL3tOxsbEEBgZy/fp1vL29mTp1ap8PCMtkMg4ePEhZWRm5ubkkJydjbm5OXFwcX3zxxQPrzuqulJQUzpw5Q1RUlOLf44svvmDhwoV89NFHjBo1qsP3xsXF8Z///EfR2rvX9evXKS0t5Z133lG01v7xj3/g5OREdnZ2nyxQLCwspKCgQMwK7AI/Pz927drFn/70J7777jsANmzYgFwuR19fn59++omZM2e2+97Jkye3mpX0IPQoMcyZM6fd58vLy7l+/TqNjY3s3r272+ctKipi06ZN5OfnM3ToUJycnDh79izz5s0D7s4DvvcDXlZWxtNPP01BQQGGhoa4uroSGhoqBsU6kZ+f32oKZ8s6htraWpYtW9bn3wBVVFRwdXVlwoQJBAUFERAQoNh72srKqtfnl0qlpKSksHPnToKCglBTU+POnTvY29tjZGSEo6OjUrQYOhIWFoaBgUGrKrY+Pj6oqKgQERHB8uXL231fbW0t69evZ/v27e3emG1tbTEyMmLHjh387W9/QyqVsmPHDuzt7RkzZkyfxX/t2jWRGLpo48aNrFixgoCAgFZrD3x9fTstNaOlpdWqkGRwcDBPP/10v8bao8Qgk8nafNgkEgljx47Fx8eHLVu2YGdn1+3ztjeH916/33zik08+4ZNPPun2dR5lgYGBDB8+XNFVEBsbS3x8PPPnz2f27Nn9dt3f7z29e/du7Ozs8PX17bAfuz1yuZyCggLCw8OJjIwkKSmJoqIiSkpKGDduHFpaWixfvpwNGzZgamqq9FNVCwoK2kxdVFNTY9iwYZ1WyHz55Zfx9PRk6dKl7b6up6dHUFAQy5YtU0zEsLa25uzZs306zTQnJ4eKigrFbBmhrdraWiwsLHjttdd49dVXu7UhD9wdt/34449RVVVV/HeOioq6b5WHFStW9DTkniWG3u4OJAyM7Oxs0tPTWbNmDSoqKsjlcnbv3o2enh4bNmx4IDfR9lZPT58+HS8vr1b93i2amprIy8sjIyODmJgYrl27RkFBAVKpFBMTE1xcXCgsLMTe3p6hQ4dSUlLC888/P+ClUd57771WtfLr6uoIDw/nhRdeUDzX03G448ePc+HCBWJjYzs8pq6ujq1btzJ9+nT27duHVCrlo48+YtGiRURFRfVZd6FcLicxMbHfSrE/DLS1tVFTU0NHR6dH7//ss89YtWqVov6cRCLhs88+63SXTKWblSQoJ7lczvnz5xk1apRin+bg4GCSkpL44x//yPDhwx9YLL9fPX3lyhXFYLi5uTm3bt0iNzeXjIwMkpKSKCwspLKyEl1dXcaOHcuSJUvw8vLCzMyMX375BW1tbZydnblw4QL+/v4DnhQAnn32WdasWaN47O/vz8qVK1t9ixs1ahQmJiYUFRW1em9zczOlpaUddtFcuHCBjIwMRQHLFitXrmTGjBkEBQWxd+9ebt68SVhYmKL7de/evRgaGnLs2DHFAGiLnJwcampqgLvrGkpLS7s8XTktLQ03N7cBmxK8fft2PvzwQwoKCpg0aRJffPEF7u7u7R67a9cunnzyyVbPaWpqKlZ995eVK1dy8OBBnnvuuW53bbq5uZGenk5GRgaFhYXMmjWLN954QzF9tT90KTH89NNPPTp5S4EnYeDduHGD3NxcNm7ciEQioaqqip07d2Jpadlhd0R/U1NTw97eXlH465VXXkFdXR1DQ0PkcjlSqRQ9PT2mT5+Ou7s7EydObNXtFB4eTmpqKosXLyYgIIDJkydjbW2teD0oKIhLly7xxhtvPPAupWHDhrW6sWppaWFsbNxm0NfDw4Py8nJiYmIUm8FfuHBBUTqhPa+99lqbCRaOjo588sknirIytbW1qKiotLoJtTy+t5Z/ZGQk7777LidPnlSsY6irq+Nvf/sbjo6OLFq06L5jEk1NTaSmpva6cFtP7N+/n1deeYVvvvmGqVOn8umnn+Lr60tqamqbLroWA1Ff7fHHH+cPf/gDs2fP5umnn2bMmDHttto6WpSmpqaGra0ttra2bN68mcWLFw/8yuf2ptjdj0QiEYlBScjlcgIDAxkzZgzjxo1DLpfz66+/UlhYyCuvvPLAbpr19fXcunWLnJwccnNzycvLo7GxkaamJrS1tTEzMyM9PZ2Kigrc3d1ZunQpzs7O6OvrtznX7du3CQgIYNq0aSQnJ6OpqamYzieXyzlx4gSff/451tbWNDU1Ke1Yg729PQsWLODpp5/mm2++oampiRdeeIHHH39cMSMpLy+PuXPn8tNPP+Hu7o6JiUm7rQlLS0vF5IF58+bx6quv8vzzz/Piiy8ik8n44IMPUFNTU4wlHT58mLVr1yKXy9vscdHSRZSYmMjTTz9931W0iYmJODg4PPDZXx9//DFPP/20ohXwzTffcPLkSX744Qdee+21dt8zEPXVZs2apfj/LRUH7tWdRWk7d+7sy9Da1aXEkJWV1d9xCP0oMTGRwsJCtm7dikQiITw8nLCwMGxtbfH09OyXa8rlckpLS8nNzVX8FBcXI5fL0dHRwdDQEENDQyoqKpDJZKirqzN37lyee+45KisriYiIIDw8HF1dXZydnVvdcBoaGjh48CAmJiYYGhoSHh7Oxo0bGTJkCDKZjL1797Jr1y6cnJx47733lKJrqTN79uzhhRdeYO7cuYoFbp9//rni9ZZv5N3Z4tTOzo4TJ07wz3/+Ew8PD1RUVJg8eTJnzpzB1NSUyMhI1q5di1Qq7XDjo5aWxffff89f//rXTlsO1dXVZGZmPrB9OuBuNdiYmBhef/11xXMqKir4+PgQFhbW4fu6W1+tL/TmZv7OO+8gkUh44403UFFR4Z133rnve1pWR/eURP6Ib4d19epVXF1diYmJ6VVtEWUllUrZvn07I0aMYN26dRQWFvLtt99SUFDA7NmzWb16dZ9cp7m5mdu3b7dKBDU1NUgkEkaMGIG5uTm6urrU1NSQm5tLUVER6urqjB8/Hnt7e2xsbFrdwKuqqjh//jzXrl1j1KhRLFy4EHNzc+RyOYcOHeLGjRs8/vjj7Nu3D0dHR5YsWUJTUxPff/89hw8fxsPDgzfffFOUwujAY489xqlTp7r0DVVFRQVHR8d2V+3ea8SIER1Or+2Kls9icHBwq4qhv69W0OL27duYmZkRGhraahXwX/7yF4KDg4mIiGjznrCwMG7cuNGqvtqlS5c6ra820Fq6AOvq6tDQ0OhSq0wMPgudio2NpaysjLVr19Lc3MyhQ4eQSCQMHz681dz57qqurlYkgJycHPLz85FKpWhoaGBmZoarqysWFhaoqqqSlZVFcnIyd+7cQVNTExsbG2bNmtVpuYrfr57+73//i7OzM0ZGRiQmJrJq1SouXbqElpYW8+fPp6amhq+++oqAgABmz57N//zP/4ik0IGcnBx+++23Lm+RKpPJiI+Pv++AdHFxcbcGrTvy+9pl//jHP3j77bd7dc4WPamvNtB+v79zZ/s995UeJ4aCggJ27NjB1atXFd0B95JIJAQGBvY6QKHnmpqaCA4OxtHRkZEjR3LmzBlKS0sxNTWlvr6+ywudZDIZxcXFirGB3Nxcxe5tQ4cOxdLSEicnJywsLDA2NiYvL4+UlBROnjxJeXk5WlpaijUL48aN63AefWNjo6L0cwsjIyP8/f25du0aJ06cIDIykrlz51JcXExaWhrr16+nqKiIb7/9lqioKGbPns2zzz6LVCrtVtdLd6mpqT3QGkxSqbRLN4T2/hv+3okTJ7q9b7ZcLicpKanDej4t0tLSFIPo3dUSd3sthvYMHz4cVVVVCgsLWz1fWFjY5TGErtRX64ktW7YgkUj47rvvUFVVZcuWLfd9j0Qiue9argelR4khPj6eWbNmUVdXh62tLQkJCUyYMIHy8nLy8vKwsrJ6YEXThI5FRkZSU1PDrFmzSE9PJzw8HG9vb65cucK8efM6nI3R0NCgmDKam5vLrVu3aGhoQEVFBVNTU2xtbbGwsMDCwgJ9fX1kMpmiDHBKSgrV1dXo6upib2+Pvb09o0ePvu/gb2NjI5GRkR3uj9Hc3ExZWRna2trExcVx/Phxpk2bxtWrVzl58iQ3b95k8uTJTJw4sd0uhL6mq6uLu7v7A0sO77777oCXi//555/5+eef+/06urq67U44+D0NDQ1cXV0JDAxULBqTyWQEBga2Wi/Smf6qr3bhwgVUVFSQyWSoqqpy4cKFLu1h01UpKSlkZGRQVVWFnp4e48eP79Gi4o70KDG89tpr6OrqEhcXh7a2NsbGxnz22WfMmTOHAwcO8Nxzz7Fnz54+C1Lovvr6eq5cuYKrqyuampocPXqU8ePHo6amhkQiUax8lsvllJeXtxobKCwsRC6Xo6WlhYWFBV5eXlhYWGBmZqZYhNbc3ExmZiYXL17k+vXr1NXVYWBggKOjI/b29lhYWHTrD725uZnq6mo0NDTa/YZ45coV5HI527Zt4/z585SXl3Pz5k2io6ORSCR4eXmxaNGiB3KjbmhooLq6mubm5geWGN566y3eeOONTo+pra3l8uXLHf43bHHq1Cn+93//t9sxrF69milTpnT4ulwuR09Pj/Xr13daYrojsbGx3Z6C+corr7B582bc3Nxwd3fn008/paamRjFLaaDqq928ebPTxz317bff8q9//avdvRssLS154403+uR36VFiCAkJ4S9/+QuWlpaUlpYC/9fv1VLu+NVXXyU4OLjXAQo9ExoaSnNzMzNmzOD48ePIZDIee+wx/vvf/2JiYkJcXJxifKDlW/rw4cOxsLBg6tSpWFhYYGRk1Orm3tjYSHJyMikpKaSlpdHQ0ICRkRFubm7Y29tjamra6znhLRVe79WyuGfWrFmUlpZSV1eHj48Ply9f5s6dO4wcOZIxY8YoVpg+CC37Iz8oqqqq9211qaurK1bYdjYTa+bMmXz44Yfd6k6SSCTY29u3uzq9hUwmY8iQIairq3d6XEd68m+3du1aiouL+fvf/05BQQHOzs6cOXNGsY/Ew1Rf7X/+53/4+OOPGTZsGFu2bMHBwQFdXV2qq6tJSEjg6NGjbNu2jRs3bvDvf/+7V9fqca2klv/wBgYGqKqqKhIE3F1soyx9ZY+i6upqwsPDmTp1KteuXSMkJAQXFxe2b99OQEAAzs7OFBQUYGZmxuTJk7GwsMDc3Lzdb3n19fWkpaWRkpJCeno6TU1NmJiYKAbtRowY0a8LhMrLy7l06ZJi05iDBw8ikUiIj49HTU2NFStWYGpqSlJSEpmZmUybNo1x48YpdeG8gWZiYsKMGTMICQnp8qwke3v7LtW0elC79t3rhRde6LDr6GGprxYZGcnHH3/M8uXL+emnn9otr/HZZ5+xYcMGPvroI1avXt2rySU93vO5ZW2DiooKY8eO5fz584oSAKGhoW2W6wv9Ty6XU1xczC+//EJKSgrNzc0EBQVhYmJCWVkZhYWFuLm58cc//rHTAnM1NTWkpqaSkpJCZmYmUqkUMzMzZs2ahb29fa9nnXRVc3MzgYGBaGtr4+npyenTp8nNzUVPT4/m5mYcHR1ZuHAhGhoaTJw4kbCwMM6fP4+ZmRmenp4PLM7BaOvWrYSEhCCRSLrUcpg/f/59j5FIJI/sxlddcfr0aT7++GPFhJ32/rt3lKh37NiBqakpe/fu7bCbUEdHh3379jFu3Dh27NjxYBJDWVmZ4hvD/PnzOXDgAP/6178AeO655/jzn/9MZmYmcrmcoKAg/vznP/c4KKFrGhsbycvLazU+UF5eTmRkJM7OzhQVFTFt2jRefvllNDQ0+PTTT1m0aFG787UrKyu5fv06KSkpiv5QS0tL5s+fj52d3YBUz4yIiKCsrIxly5aRkJDApUuXGDFiBKqqqlhbW+Pn56fo4x86dCgLFiwgNzeXkJAQDh06xIQJEwa0ho8ymzhxIu+//z6vv/46crm83RlPEokEiUTC5s2bsbS0vO85hw4d+sC68gabQ4cOsWbNGiZOnMjjjz/O119/zfr165HL5Rw7dgxra+tOq66GhYWxevXq+/4tDxkyhNWrV3Px4sVexdvlf0UTExMWLlyIv78/f/7zn1m3bh1NTU2oq6vz0ksvUVNTw6FDh1BVVeWtt97ib3/7W68CE9qqqKhotXagsLBQ0a9rbm6Oh4cH169fx8DAACcnJ2JiYnjqqacYMWIEQUFBqKur4+joqDhfWVkZKSkppKSkkJubi4qKCuPGjWPx4sXY2toO6Le/mzdvKqp21tTU8PPPP6OtrY2+vj4WFhatksK9LCwsWL16NQkJCVy9epWbN2+ydu1accNqx5w5c/jhhx/46quviIyMbPMN1sbGhoULF3YpKQCihdaJ999/H3d3d65cuUJZWRlff/01W7ZsYc6cOdy8eZNp06Z1uhdKbm6uovjl/UyYMKHH9e1adPnTsmrVKo4fP87x48fR09NjxYoV+Pv7M2fOHCQSCW+++SZvvvlmr4IR/o9UKqWwsLDV2oHKykrg7gfQwsICNzc3LCwsFP38xcXFBAUFMWnSJKKiovDx8cHU1BSpVEpMTAxOTk5UVlYqkkF+fj5qamqMHz+e5cuXY2NjMyB9xL9XXV1NUFAQY8eOxdDQkM8++wy5XI65uTnm5uYdJoUWqqqqODs7Y21tTVFRkUgKnZg4cSLbt2+noKCAdevWUVVVhZaWFq+++mq39skAMDQ0pK6urp8iHdySk5N5//33UVVVVfw9NjU1ATBmzBj+8Ic/8O9//7vD+nKVlZWdbuZzL11dXaqqqnoVb5c/MXv27KGuro6jR4+yd+9e9uzZw48//sjIkSNZt24d/v7+D2VJiQelrq6uVZdQXl4eTU1NqKmpMWrUKBwdHRVrBzqq637hwgW0tLRIT09nzJgxeHp6IpfLCQkJIT4+nsbGRqKjo9HQ0MDGxgYvLy+sra0f6EKt+5FKpZw/fx4NDQ0sLS3ZuXMntbW1jBs3rktJ4V46OjpiT+IuMjExQUtLi6qqKjQ0NLqdFAwMDEQC7oS2trbi79bAwABNTU3y8/MVr48cObLTmnQtRfa6qreVjrr1L6mlpcW6detYt24dZWVl/Prrr+zdu5dPP/2UTz/9FGtrazZs2MD69esZN25crwJ7VFRVVfHTTz9RXFwM3M32FhYWzJ49GwsLC0xNTbv0gcvLyyM5ORkdHR2am5uZMmUKAQEBpKSkEBQUpJhZYm9vj5WVldJ+iGNjYykuLsbGxoazZ88q9qK2srLqVlIQHizRjdQ5W1vbVhszOTs7s3v3bjZs2EBzczN79+69b5fdRx99xL59++57rfbWOHRXj+8OhoaGbNu2jW3btpGXl8fevXvZt28ff//73/nHP/7B1KlTCQ0N7XWADztdXV3GjRuHl5cXlpaWGBgY9GiqZUBAAMXFxdy4cQNzc3N+/fVXdHR0MDc3x8LCgs2bN/e4VMGDcvv2beLi4jAwMCAlJUXRdebs7CySgpITiaFzK1as4PPPP+ejjz5CU1OTN954g6VLlyo+7zU1Nfzwww8dvr9lzdi9ywI609VxoY70yddGMzMzXn31VRYsWMDf//53jh079kDKEjwMJBIJfn5+PXqvVColKyuLCxcusHfvXurr65kwYQJz5sxRrD4ODAxk1KhRA7KJSndUV1dz5coVKisrUVdXR0tLi9u3b+Ph4dHjFc3FxcUUFxcPisVLg5mOjg5aWlr9vgvaYFRfX8+xY8doamrizTffVNQqW7x4MUFBQRw+fBhVVVUWLVrU6Z7rfbVyuqt6nRhycnIUrYXExETkcjmenp74+/v3RXzC7zQ1NZGRkUFycjJpaWnU1dWRkpKCuro6s2fP5q9//ati1WtzczOxsbE4Ozv3aCXqgyKTydi/fz/p6elYWVlhY2PDgQMHsLGxYd26dd2KXS6Xk5OTQ3x8PLdv38bAwABbW1ul3ahHmbT0S3e3f7qjndIedUVFRXh6epKVlaUYI9DS0uLo0aP4+PgwY8YMZsyYMdBhtqtHiaGkpEQxvhAWFoZcLsfOzo533nkHf3//LlftFLqmoaGBGzdukJyczI0bN2hqasLY2Jhp06ahpqZGVlYWDg4ObN26tVUphJSUFGpra3u10OVBOHXqFCdOnMDU1BRPT0/27t3LsGHDePbZZ7ucFJqbm0lPTyc+Pp6ysjKMjY2ZN28eY8aMeeC7ig1WLbNkulPHX1VVVVEFQWjt3Xff5ebNm7z88svMmTOH9PR03n33XbZt20ZGRsZAh9epLieGmpoajhw5wt69ewkMDKSpqQlTU1NeeuklMSOpH9TW1pKWlkZycjIZGRlIpVJGjRqFt7c39vb2GBkZIZPJ+Ne//kVVVRVbt25ts3AtOjqasWPHMnz48AH6Le4vLCyMzz77DGtraxwdHRX7BDz33HNdmjpbX19PSkoKiYmJ1NbWMnr0aGbOnMnIkSNFWYxuaGxsVNR/ampqorm5uUsTFMzNzZW6NTqQzp07x6ZNm/joo48Uz40cOZL169eTmpqKra3tAEbXuS4nBmNjY+rr69HV1WX9+vWKNQzi21jfqa6u5vr16yQnJ3Pz5k3kcjkWFhbMmzcPOzu7NmVGoqOjCQkJYd68eW2apEVFRWRnZ/fZDm394erVq7zzzjtYWFjwzDPP8MEHH1BeXs7KlSsxMzPr9L1VVVXEx8eTmpqKTCbDxsYGJycnUYqlhxITExUtBZlMRnZ2NlZWVp2+R1dXV2l3PVMGOTk5/PWvf231nJeXF3K5nMLCwocjMfj4+ODv789jjz2m9HvoDiYNDQ3ExsaSnJxMbm4uEomEMWPGsHDhQuzs7DpcfSyVSvnmm28wNDRky5YtbRJ0TEwMOjo6fVqjvS+FhYXx0UcfYWRkxMsvv8yhQ4coKSlh8uTJnZZeLi4u5tq1a2RmZqKhoYGTkxMTJkzoUZln4a7GxsY2eyRfv36d0aNHd9hqUFNTw87OTnwx7ERDQ0Obe+W943/KrMuJ4dixY/0ZxyNLLpdz8eJFRo8ezdKlS7GxsenSTW7//v1kZmby9ttvt1mM1NjYyLVr15gyZYrSDbrK5XLOnj3LgQMH0NbWZuvWrfz2229UVVVhbGzM7Nmz29yMfj+grK+vj6enJ7a2tqIbow+kpqZy69YtRYtBLpdTUlLCrVu32h0vbCnBrQyr5JVdywZWLSoqKgC4ceNGu61bZemSV85VTo+QIUOG8Oqrr3ZrwVlRURE///wzU6dObbM/LkBSUhINDQ1K80fWoqmpicOHDxMZGYmamhqzZ88mLCwMLS0tNDU1cXJyajUe8vsB5ZEjR3ZrQLmloqyytpqURct/15b9UyQSCZMnT+6wW278+PGiy66L3nrrLd566602z//hD39o9bhl1lJ3Bv77k0gMSqA7SUEmk/HJJ58gl8t5+eWX2x1gjY6OZvz48d0ua9Cfamtr2bdvH7m5uQwZMgRjY2Nu3ryJqakpdXV1jBw5kvHjxwO9H1AuLy8nJiaGjIwM9PX1sba2VrqWkzIxNjZus7BSR0en3Zu/qalpl/dTftTt3Lmz38599uxZduzYQWZmJmVlZW2mGEskkl7NfBKJYZC5cOECUVFRbNiwod0P6O3bt8nLy2PdunUDEF37SktL+fnnn6mvr8fU1JTMzEyqq6sZN24cZmZmhIeH4+/vT2xsLCkpKWRlZfVoQLm8vJyrV6+Snp6OtrY2Xl5eYg1DF3R1jEFbW1uUuumGzZs398t5P/zwQ1577TVGjhyJu7t7q4rJfUUkhkEkLy+P3bt3M3r06A5nG8XExDB06FCsra0fcHTtu3XrFnv37kVLS4spU6Yothm1t7dn9uzZ/Pjjj9jb2xMeHs6ZM2fQ1dXF2dm5WwPKFRUVxMbGcuPGDbS0tPD09MTOzk5p60Epm5Yxhnu/dbY3xmBtbS0Gm5XAZ599xpw5czh16lS/jbGJT84g0djYyJ49e6ioqOD5559vt8JqfX098fHxeHl5KcUHOCUlhUOHDjFq1Chmz57N9u3buXPnDnPmzGH16tV8+OGHZGVl0dzcjJ6eHm5ubkyaNKnL5YUrKyu5evUqN27cYMiQIXh4eIiE0AMjR47Ez8+PyMhIGhsb0dDQwNXVtVVLbfjw4ejr6w9ckIJCWVkZq1at6teJF+ITNEicOXOGxMREnJycOlxGHx8fj1QqVYpB54iICM6cOcOECRNYtGgR//nPf7hx4waLFi1iwoQJvP766yQkJLB48WL8/PywtLTkypUrXfpjr6qqIjY2ltTUVDQ1NZk6dSoTJkwQCaGHjI2NMTY2VuwOpq6ujoODQ6tjeluUTeg77u7upKam9us1xCdpEEhJSSEkJARtbW18fX3bXUcil8uJjo7G1ta2y9+4+4NcLufcuXOEhYXh6enJvHnz2LFjB0FBQTg6OlJaWsr+/fvJz8/nueeeY/Xq1UgkEmpra+977urqakVC0NDQwN3dnYkTJ4qE0M8MDQ073ANEePC++uor/Pz8cHNzY/369f1yDfGJUnKVlZUcP36c5uZmxo8fj7u7e7vH5ebmUlRUhK+v7wOO8P80NTVx5MgRUlJSWLhwIe7u7hw6dIgvv/wSIyMjDAwMsLOzQyKRYGNjw8qVK7s0y6i6upq4uDiuX7+Ouro6bm5uTJw4UaxheEB+vwq9qamJ5ORkJkyYIP4NBsDatWtpbm5m48aNPPfcc5ibm7eZYCGRSLh27VqPryESgxKTy+UcPXqUuro6hgwZwqxZszr8IEZHRzNs2LABmzXSMh21oKCAtWvXoq+vz0cffcTXX3/NyJEj+etf/8r06dMJCwujsbGRZcuW3Xe2UE1NDXFxcaSkpKCmpoarqysTJ04U+zI8QFpaWm1mhSUkJHDq1ClkMhmTJ08emMAeYcOGDcPIyKhfJ5iIxKDEwsLCyMzMxMDAABUVlQ4/hLW1tSQnJzN79uwBKRxXWlqq2Pp1xowZhIeHExsby4ULF7CxsWHPnj0MGzaMW7duERISwpw5czqtyFlbW8u1a9dISkpCTU0NFxcXHBwcRELoZ+2V3TYxMaG5uVnRQpDL5YSFhZGXl0doaKhI1AMgKCio368hEoOSKigoIDAwEGtra27cuMHKlSs7/IYdFxeHXC4fkG9vt27d4ueff6a0tJThw4cr9p3Ozs7G2tqaTz/9lGHDhtHc3MzRo0cxNTVl+vTp7Z6rZWHbjRs3UFVVxdnZGUdHR8WgqNC/fl92WyKRMHLkyFYthJbyJNbW1uTk5JCUlCRaDQ8hkRiUUFNTE4cOHWL48OHU19czcuTINrNEWrQMOk+cOPGBF5KLi4tj+/btVFRUYG1tjYWFBWPGjGH//v0AvPrqq4rZLBcvXqSsrIxt27a1mUpbW1tLYGAgR44cQUtLi8mTJ+Pg4CCKNT5A7ZXdNjU1bdVCuHz5MnB3pb6Ojg5qamqi1TCAmpqauH79OhUVFchksjavz5w5s8fnFolBCQUEBFBWVsa8efM4ffo069ev77CLKCsri9LSUpYtW/bA4isrK2PXrl389ttvDB8+nHXr1jFjxgxqamr473//S15eHmvWrGHatGnA3YHx0NBQ5s6d22q3r9raWsLCwoiIiKCpqQk7OzumTp3K0KFDH9jvItyVmJiIqqoqmpqaqKiokJ2djbOzM4mJiYoWQnJyMhKJBG1tbTIzM2lububWrVukpqb2y+pboX0ymYzXX3+dr776qtPZfL2puyQSg5JJS0sjMjISPz8/4uLisLCw6HSQKTo6GmNjYywsLPo9ttu3bxMSEsKJEye4ffs2vr6+/OEPf0BXV5fs7Gx2795NXl4e06ZNY8WKFUgkEpqamjh69ChmZmZ4enoCUFdXp0gIMpmMqVOn4uzsTHR0tOg2GgAtJTE8PT3R09MjMzOTtLQ01NTUCAsLU7QQWloJvr6+raYIix3cHqz33nuPDz/8kG3btuHl5cXGjRv597//jYGBAV999RUSiYT//d//7dU1RGJQItXV1Rw7dgxra2t0dHTIz8/nySef7LC1UFVVxfXr11mwYEG/DTrL5XJu3LhBaGgomZmZ5Obmoqmpydtvv42XlxcA2dnZ7Nmzh8rKSiwsLFi7dq2iG+jChQtUVFSwbt06GhsbCQ8PJywsDJlMxpQpU5g+fTo6OjpdWscg9I+WkhiNjY2Ul5fT2NhIVVUVgYGBiuczMzMBUFFRYcSIEaKFMIB27drFmjVr+Prrr7lz5w4Arq6uzJkzh82bN+Ph4cGFCxfw8fHp8TVEYlAScrlcsefFkiVL+Omnnxg/fjyjR4/u8D2xsbGoqqri5OTU5/E0NzeTkJBAaGgoxcXFGBsbo6Ghwbhx41i9erWilHVLUlBTU0NTU5P58+crdvXKyckhPDwcb29vkpKSCAsLo7m5WZEQOtqEqC81NTWJufb30VISA+5Oerhz5w6WlpaMHTuWYcOGtXu8MHBu3brFX/7yFwBFC7u+vh4ADQ0NNmzYwMcff8x7773X42uIxKAkoqKiuHHjBv7+/qSnp1NSUsLKlSs7PF4mkxETE4Ojo2OfDtLW1dURHR1NREQENTU12NraMmPGDIKCgtDU1GTdunWKG39LUjAyMqKsrAw7OztFd1FTUxMHDx5UjCNIpVLc3NyYPn16v6/Mrq2tJTMzk/T0dOrr61m7dq3Y/7kTLSUxADIzM8nLy8PT01NUpVVSRkZGVFdXA3e3V9XX11e06FqUlZX16hoiMSiBoqIizp07h7u7O2PHjuXzzz9n4sSJmJqadvie9PR0KioqcHNz65MYysrKFOsPZDIZkyZNwsPDg4aGBvbu3cuQIUPYunWr4htkS1IYNWoUUqkUdXV1li1bhkQiobGxkS+++IJz587h4uLCpEmT8PLy6tcibA0NDWRlZZGRkUFeXh4SiQRNTU1UVVVpbm4WrYZu0NXVFUlBiU2ePJmoqCjF49mzZ/Ppp58yefJkZDIZn3/+OZMmTerVNURiGGDNzc0cOnQIQ0ND5s2bR1RUFNXV1cyZM6fT90VHRzNq1ChGjRrVq+vfvn2b0NBQkpKSFBVK3d3d0dHRITU1lYMHD2JiYsK6desU02Gzs7P5+eefsbCwwNzcnMuXL7Np0yY0NDQIDQ3l+PHjREREsGjRIp5++ul+m2XU3NxMdnY26enp5ObmIpPJMDU1xcvLC21tbc6fP4+lpaW4yXVRU1MTqampnXZfCgPvmWeeYdeuXTQ0NKCpqcm//vUvZs6cycyZM5HL5RgaGrJv375eXUMkhgFWW1uLhoYGixYtQiaTcfnyZZydnTEyMurwPeXl5dy4cYMlS5b06Jr3DijfvHkTQ0ND/Pz8cHZ2VsxHj4yM5PTp09jb27N8+XLFN+6bN2+yZ88eLCws8PT0ZM+ePUyfPp2CggIOHjxIVVUVd+7cYeXKlfzhD3/o8/LfUqmUW7dukZGRwc2bN2lqamLEiBG4u7szbtw4dHV1KSkp4cSJE6iqqqKioiK6kbooISGBixcvMnfuXCZMmDDQ4QgdeOyxx3jssccUjydMmEBGRgZBQUGoqqri6enZ7thQd4jEMMD09fXZsmULEomEoKAgGhsbmTVrVqfviYmJQUNDo8NFbx1pbm4mPj6esLAwiouLMTc3Z82aNdjZ2Slu4HK5nICAAEJDQ/Hw8GD+/PmKG+u9SWHp0qV89913NDc3c/XqVerr63F2dqa+vh5NTU3Wr1/fZ0lBLpeTn59Peno6mZmZNDQ0YGhoyKRJk7CysmpVy6eiooJTp05RVVWlSGZSqVRUYL2PlimrRUVFJCQkMHv2bLFobRAZOnQoS5cu7bPziU/LAJPJZBw7dgwHBwfCwsKYMmVKp33xUqmU2NhYJk2a1OUPbnsDykuWLMHCwqLVt+nm5maOHDlCcnIyfn5+TJ06VfHavUlh1apV/Oc//yEiIgInJydsbGyYOXMmFRUV/Pjjj/j5+fX6G4tcLqekpIT09HQyMjKoqalBT08Pe3t7rKysMDIyatMSqKmp4cSJE9y6dQt9fX1cXV2ZMmWKaDF0QctCttGjR3P79m1R6kLJSaVSDhw4wMWLFykqKuKdd97B0dGRiooKAgMDmT59eq9mj4nEMMCqq6spLCzk0KFDyGSy++4Te/36daqrq7s06NzRgPLw4cPbHFtbW8svv/zC7du3WbNmDfb29orXWpKCmZkZNjY2vPbaa8THx7N69Woef/xxjIyMaGho4KeffmL06NEdlgbvirKyMvLy8hSD61paWowbN47x48czcuTIDm/y9fX1HD9+nJSUFExNTfHx8VFMqRU619JaUFNTQ0tLi8bGRlHqQomVl5ezYMECIiMj0dXVpaamhhdffBG4O3Hgj3/8I5s2berVdNWB3//xHl9//TVOTk7o6+ujr6+Ph4cHp0+f7vQ9Bw4cwM7OjiFDhuDo6MipU6ceULR9Q19fX1Gm2sDAgB9++IHz588r5iX/XnR0NJaWlq1KS/ze7du3OXjwIJ9//jnx8fF4eHjw8ssvs2TJknaTQllZGT/88AMlJSU88cQTbZLC7t27aW5upqSkhAMHDlBUVMTzzz/P888/rxgLCQgIoLa2VjEzqTvKy8sJDQ3l5MmTHD58mMTERExMTFi0aBEbNmzAy8sLExOTDs/bUqAvJiYGc3Nzli1bJpJCN7QscKuvr1csaGspdSEon9dee42kpCTOnj1LZmZmq2q4qqqqrFq1qtf3QaVqMZibm/PBBx9gbW2NXC7nxx9/ZOnSpcTGxjJx4sQ2x4eGhrJu3Tref/99Fi9ezN69e1m2bBlXr17tdv/7QLp8+TJjxozhueeeIyYmhpCQEK5evcrs2bNxdXVV9NWXlJSQlZXV7vqG3w8oDxs2jIULF963yykvL4+9e/eiqanJU0891aoLKCMjg48//pjy8nKsrKwYNWoUDQ0N2NnZsWLFCsVxmZmZREdHs2jRIgwNDbv0O1dXV5OcnExCQgK5ubkAii8DVlZWXR4TkEqlHDp0iJCQEBwcHFizZk2XYxDuuneBW0lJieLLg1jIppyOHj3Kiy++yLx58xQrn+9lY2PDrl27enUNpUoMv59l869//Yuvv/6a8PDwdhPDZ599xoIFC3j11VcBePfddwkICODLL7/km2++eSAx91Z5eTlxcXHMmzcPPT09Zs2ahYuLCxcuXODUqVNERkYyf/58xo8fT0xMDNra2q2+0XdlQLkjHU1HlclknDlzhu3bt6OhocGaNWuYM2cOly5dUnwjaZkC2tDQwLFjxxg7dux9u7daymonJiaSmZmJRCLBysqKFStWYGFhQUREBHp6el1OCnK5nF9//ZVLly7h7u7O448/jpaWVpfeK/yfexe4FRQUYGJiMsARCZ2pqKhg7NixHb7eUh23N5QqMdyrZXClpqYGDw+Pdo8JCwvjlVdeafWcr68vR48efQAR9o2hQ4eyfv16xowZo3hOX1+fZcuWMXXqVM6dO8eePXsYPXo0GRkZeHt7o6am1uUB5Y5ERUVx6tQpxbd/dXV1ZDIZCQkJHD58mMuXL2Nvb8/rr7+Oubk50dHRJCUltflGfu7cOerq6li6dGm7121qaiItLY2EhARu3LiBTCZj9OjRLF68GHt7e0Uy6m6tJJlMxp49e7hy5QozZ85k7dq1YuZRHxBrPpSflZUVV69e7fD1c+fO9Xq6sdJ9khISEvDw8KC+vh5dXV2OHDnS4S9ZUFDQprk7cuRICgoKOjx/Q0MDDQ0NisctS8sHikQiYfz48e2+ZmpqyqZNm0hLS2Pnzp2Eh4djaWnJ4cOHuX79+n0HlNsjl8s5f/48ISEhTJs2jfnz5wN3/7sHBQWRnp5OQUEBy5cv59lnn0VdXZ3CwkLOnDnDlClTWv1bZGRkEBMTw+LFi1tNGZVKpWRkZJCYmMj169dpbGzEzMwMHx8fJk6c2OsV0FKplJ9++omwsDDmz5/f5b2jhfsTiUH5PfXUU/z1r39l1qxZzJ07F7h7H2loaOCdd97hzJkzfPfdd726htIlBltbW+Li4qioqODgwYNs3ryZ4ODgPltw8/777/PPf/6zT871IEgkEmxtbTEyMmLEiBEcOHAAVVVVFixYwBNPPNFmP97OtAzSJiUlsWDBAqZOnUpSUhLBwcEUFxdjYGDAkCFDWLx4MY8//jjq6uo0NjZy4MABjIyM8PX1VZyrvr6eY8eOMW7cOFxdXZHL5WRnZ5OQkEBycjJ1dXWMGDGC6dOn4+jo2Ovpqy0aGhr48ccfiYmJYeHChQ90H4pHQV8vSBT63p/+9CeSkpJYt26d4vO/fv167ty5Q3NzM9u2bWPr1q29uobSJQYNDQ3FN2hXV1eioqL47LPP+Pbbb9sca2JiQmFhYavnCgsLO+0jff3111t1P8XFxeHt7d1H0fetlgHl06dPc/LkSTw9PfHz86OqqoqYmBh++OEH5s6di5OT032/MdfV1fHLL7+Ql5fH6tWrgbuzwIqKirC2tlaMazg4OCiSAsDp06epqKhg27Ztrbpqzp49S319PW5ubpw7d47ExESqqqowMDDA1dUVBweHTqeX9kRVVRW7d+8mMTGRxYsXs3jx4j47t3CXSAzKTyKR8P3337N582YOHjyo6KK1srJizZo1vdq5rYXSJYbfk8lkrbp+7uXh4UFgYCAvvfSS4rmAgIAOxyTgbpnaezeDeRCln7vr9wPKpaWlTJkyhX/+85+KG/a0adM4f/48R44cISIigvnz57cap7hXWVkZe/bsoaamBk9PT4KDgyksLMTKyorHHnuMpqYm9u7dy+jRo1m7dq3iGvHx8cTGxrJs2bJWXVUREREcPnwYY2Njfv31V3R0dJg4cSKOjo6Ym5v3S7dOUVER+/fvJy0tDT8/PxYvXtyl60ilUtE90g0iMQweXl5eij1R+ppSJYbXX38dPz8/LC0tqaqqYu/evQQFBXH27FkANm3ahJmZGe+//z5wt0nl7e3Nf/7zHxYtWsQvv/xCdHR0r/vXBkp7A8rz58/n119/xdPTs1WF0GHDhrFmzRpycnI4e/Ysu3btwt7eHh8fn1Z1lm7fvs3PP/9MRUUFw4YN49KlS4wbN44tW7ZgaWlJVlaWIik8/vjjilbBnTt3+O2335g0aRLOzs6Ul5eTmJhITEwMJ0+exNDQUNFNNHbs2H69oWRlZXH8+HFyc3OZP38+Cxcu7DQp1NbWkpWVRVZWFvX19axatarfYnvYiLEaAZQsMRQVFbFp0yby8/MZOnQoTk5OnD17lnnz5gF3N3659wbk6enJ3r17efPNN/nb3/6GtbU1R48eHVRrGKDzFcoxMTE0Nzfj4uLS7nstLS156qmnSExM5Pz582zfvh13d3e8vb3Jzs7m22+/5c6dO5ibmzN8+HBWrVqlqJ6ZmZnJvn372iSF5uZmDhw4gKamJsbGxuzYsYPc3FzU1dUpLy/HwcGBN998s8/GDToil8uJj48nKCiI4uJivLy88PPza7cFUFVVpUgGhYWFSCQSTE1NmTBhAjKZTHwT7iLx30k53Vs0ryskEoli46+eUKrEsGPHjk5fDwoKavPc6tWrFX3mg1F5eTlffPFFm5LXcPfGGB0djY2NTaelqyUSCY6OjtjZ2REeHs6lS5f4+eefyc7OxtjYGD8/P+bOndtq7nNHSaG+vp7vv/+e4OBgxowZQ2BgIOPHj1fs4Xzo0CGWLl3a70lBKpUSGhpKbGwsNTU1ODs74+fn12qco7y8XJEMiouLUVVVxdzcHG9vb0aPHt2nGxg9KkSLQTn99ttvDBkyBBMTk1YrnTvS239HpUoMjyIDAwNWr17N+PHj22wmk5eXR35+/n33ZmihpqaGqakp+fn5XLt2DV1dXSZMmICnp2er8YffJwW5XE5SUpJiK8/4+HhmzpzJ0qVLFWsN6urq+Oqrr7C2tsbZ2bkP/wu01dDQwPnz58nOzkYulzNu3DgWLlyIhoYGJSUl3Lx5k6ysLEpLS1FXV8fS0hInJycsLS1FbZ9eEolBOZmZmZGXl8fw4cNZv349jz/+eL8uRBSJQQncu5L5XtHR0RgYGGBlZdXp++VyOVlZWQQGBhIQEEB9fT3/+Mc/mDFjBgEBAfz666+MHj0aX19f6uvr2bt3L5aWlri4uHD8+HHFWgNDQ0Oampp44okn2Lx5c6ubxOnTp2lqamLJkiX9evOoqqoiKCiIiooKNDU10dPTw83Njfj4eG7evKl4fvTo0UyZMgVzc3OxsK0PicSgnHJzcwkODmbv3r28++67vPrqq3h7e+Pv78+qVav6fLtc0aGopOrq6khMTGxVK6k9N2/eZNeuXezYsYOQkBDF4PyqVasYOXIkGzZsYMOGDdTV1fHBBx/w8ssvk5+fz61bt/j111/Jz8/Hy8uL559/Hh0dHWxtbXn88cdb3SCuX79OfHw8fn5+/bo9Z8sGO3V1dUilUnJzc6mtrSUwMJC0tDRGjRrFwoUL2bhxI7Nnz2bMmDEiKfSxwTjGsH37dsaMGcOQIUOYOnUqkZGRnR4/WAtvent78+233yo2xTIyMuKFF17A2NiYFStWcPDgwQ5ncHaX+FQpqWvXriGTyTqsiZ+dnU1QUBBZWVkMHToUVVVV7O3tWb9+PRYWForj5HI5WlpaDBkyhOjoaCorK2loaGDMmDFs2LBBUULj/Pnz3L59my1btrTqm6+treW3337D1tYWJyenfvt9k5KSOHToEBKJhKqqKsrLy3FycsLBwYGxY8diYmIyKG9ag81gS7T79+/nlVde4ZtvvmHq1Kl8+umn+Pr6kpqa2m4F4oeh8Ka6ujpLly5l6dKlVFdXc/jwYb755hvWrl3L22+/zVtvvdXrawyuv4JHRMugs729fZt1Fjk5OQQFBZGZmYmJiQlz5swhIiKC4cOH4+/vr5iqWlxcTEJCAomJiWRkZJCamoqXlxdbtmzh1q1bhIeH8+uvvzJnzhx0dXW5cuUK8+bNw9zcvNX1Tp8+jVQq7fK6ge5oamoiPT2dI0eOcP78eRobGxk6dCiampps27YNZ2dn0bUhdOrjjz/m6aef5sknnwTgm2++4eTJk/zwww+89tprbY5/GApvtmhoaODs2bMcO3aM2NhYhgwZ0uFapu4SiaGbGhsbe1258H6ys7PJz89n7ty5iuJyeXl5BAcHk5WVhbGxMY899hgqKiocPXoUY2NjVq9erRi0TUpKoqioCG1tbYYPH46qqir+/v6sW7cONTU17OzsmDJlCoGBgRw4cECRNDw9PVvF0VIWe8WKFX3Wh9nQ0MCNGzdITk4mNTWVlJQUKioq8PHxobKykqKiInx9fTusH/WokkqlyGSyTo9pqapZU1PT73+j7WloaKC5uZmmpiaampq6/f6WmKurq6msrFQ8//tFqS0aGxuJiYnh9ddfVzynoqKCj48PYWFh7V5jsBfelMlkBAQEsG/fPo4ePUptbS0+Pj58//33LF++XDGjsbdEYuiGxsZGIiMj+73w3uXLlykrK+PmzZvExMQQHx/P7du3MTAwwNHREUtLS65cuUJUVBQjRoxAT0+P9957r9WUzTFjxqCtrU16ejqurq5tqo8OHTqUZcuWkZOTQ2ZmJiUlJezdu5f58+czYsQIampqOHnyJHZ2djg6Ovbq96mtrVUkgYyMDKRSKSNGjKChoQFLS0vWrl3LnTt32LVrFzNnzhRJoR3vvvvuoKrx1Ru/L1Hzj3/8g7fffrvNcSUlJUil0nYLaV6/fr3dc/ek8KYyCA0NZe/evRw4cIA7d+4wbdo03nvvPdasWdPlAprdIRJDNzQ3N1NdXY2Ghka732D6Qm1traJ+UXh4OLm5uRgYGODr66tYhxAWFsaVK1fQ0tKivLycyspKzMzMcHZ2ZvTo0airq5OVlcW5c+fw9vbusCT15cuXqaio4IMPPqCuro6AgAC+/vprXF1dKS0tRS6X97gLqbq6mpSUFFJSUrh58yZyuRwLCwvmzZuHqakpJ0+eRFdXlzVr1lBWVsbFixdxdHRsd98NAd566y3eeOON+x73IFq0nVFTU+vxlOHY2FimTp1KcHBwqynR/fVZG0y8vLzQ0tJi4cKFrFu3TtFllJOTQ05OTrvv6WhRbFeIxNADmpqa/bZ4KiIigps3byKVShUVTceNG4dMJiMjI4PffvuNGzduYGZmhp2dHePHj2fs2LGt4rl16xbBwcGMHDmSVatWtZsUbt68SVBQEN7e3oqEY2NjQ1RUFL/++ivx8fFs3ry5W79neXm5Ihnk5uYikUgYO3YsCxcuxM7ODl1dXfLy8ti3bx9qamps3bqVkpISfvvtN1xdXcUmO51QVVXtUs2n36+FGUxa/k51dXW7NPutpZu0O4U0e1J4U1nU1dVx6NAhDh8+3OlxcrkciUSCVCrt8bVEYhhgzc3NnDx5ErlcTl5eHlFRURgbG+Pm5oa9vT2lpaWKfRJSU1ORy+UsW7YMLy+vdgsA3rp1izNnzjBq1Cjc3d3bTQq1tbUcOnSI0aNHt6rEqKamhpOTE4GBgbi7u5OVlcWXX36p2EehvZZDSUmJIhncvn0bNTU1rKysWLp0Kba2tq1u9ikpKRw+fJiRI0eybt06ioqKOHjwIBMnTsTX15fLly/30X9V4VGgoaGBq6srgYGBivLrMpmMwMBAXnjhhXbf05PCm8pg586dD/R6IjEMsJYaPzk5OTQ0NCCVStHR0eHYsWPs2rULmUyGjo4ODQ0N6OnpMXv2bCwsLCgtLaWhoQFdXV00NDSQSCSKpGBmZsaMGTOoq6trcz25XM7Ro0eRSqWsWLGi1RRQuVzOyZMn0dDQ4OWXX6a+vp6AgAAOHjxIeHg4vr6+mJubU1hYSEpKCsnJyRQXF6OhoYG1tTWenp5YW1u3afrL5XLCwsIICAhgwoQJLFu2jOLiYvbt28fYsWNZvnx5n82/Fh4tr7zyCps3b8bNzQ13d3c+/fRTampqFLOUHpbCm5s3b36g1xOJYYDp6ekxevRo3N3diY6OJicnByMjI9TV1Zk6dSpqampcvXoVqVSKra0tJSUl5OTktJqhoq6uTlNTExkZGZiYmODo6EhmZiZyuZySkhJMTEwU/b7h4eGkpaXh7+/fprmelJREcnIyq1evRkdHBx0dHR5//HEyMzP59ddf+dvf/oaamhrGxsYYGhpia2vL3LlzsbKy6rALQyqVcvr0aaKjo5kxYwZz5szhzp07/PzzzxgbG7NmzRpRFlvosbVr11JcXMzf//53CgoKcHZ25syZM4oB5oe18GZ/E4lhgNXX19PQ0EBMTIxi2ujs2bMZOXIkOTk5nD9/HkdHR3x9fRXdMjKZjNraWqqrq6mpqSEzM5MrV64wfPhwRo8eTVpaGpWVlTQ2NpKRkYG6ujpDhgxBLpcTExODk5MT+fn51NbWoq+vz9ChQ1FRUeHkyZNMnDiRiRMnIpPJyMnJITk5mevXr1NXV8fw4cOpqKigoaEBZ2dnZs2a1ekYRH19PQcOHCArK4ulS5cyefJkKioq2L17N7q6uvj7+4vaRkKvvfDCCx12HT2MhTcfBJEYBpiOjg6WlpYMHToUbW1tVq5ciYaGBikpKVy+fJnRo0czd+7cVmMFKioq6Orqoqury61bt8jOzsbDwwMfHx/FcTU1NRQWFuLo6EhjYyPFxcXs378fQ0NDhg8fTnh4uGKNREsRvdraWmpqaoiIiKC0tBQAIyMjHBwc8PHxwd7eHrlcTmhoKCEhIcTHxzNr1ixcXV3bfOsvLy9n7969VFZWsmHDBsaNG0dtbS27d+9GIpGwYcMGMdisZBobG4mOjsbNzU0k7EecSAwDTCKRMG3aNPbu3YuNjQ3q6upERkYSGxuLg4MDHh4eHZaCyM3N5ezZs5ibm7dKCnB3Fouenh6WlpZoaWlx8OBBxo0bx7Zt2zA0NATuLoi6c+cOR48eJSwsDAMDA27cuIGamhqGhobo6OigoaGhKG0tkUjQ1dVl6NChmJubk5WVxXfffcfIkSPx9fXF2dkZXV1d8vPzW808almzsGfPHurq6tiyZUu/1lwSeiY8PJzdu3cjlUqZMWPGQIcjDCCRGJRAdnY2NTU12NjYcOHCBdLT0/Hw8MDR0bHDNQSdJYXfi4mJISkpiTVr1mBoaEhDQwNpaWmkpKSQmJhIaGgoY8eOxd/fH3t7e4yNjRXXbWhooKKigsrKSiorKxX/v6KiguHDh1NfX09SUhIhISEYGhpiaGhIYWEhI0aMYN68ecTFxaGtra1YM/HUU0/1+14OQve1lFfIysrizJkzuLu7i/UDjzCRGJRAcnIyw4YNIzIyksLCQnx8fDottd2dpFBYWMiZM2dwcnKioaGBvXv3KlYfm5qaIpFImDFjBq+++ira2tpt3t+yi1t7BcngbjdUXV0dMTEx/PDDD1y7do3x48cze/ZsmpqaSEpKUuxd7eTkxO7du1FTU0NfX18xvqGvr4+mpia3bt1i5MiRDBs2DE1NTVEn6QGKiIggLS0NJycn0tLSiIyMFK2GR5hIDAOsqqqKzMxM4O4MpcWLF3e62KY7SaGiooLPPvuMsrIympqaSEhIwNLSknnz5mFvb8/Nmzc5cuQIa9eubTcpdIVEIkFTU5OKigosLCxwc3OjurqaW7duMX36dEpLSykvL+cvf/kLpqamrVoclZWVlJaWcvPmTUpLS8nKykJDQwM1NTXU1dXR0dFBV1dX8b8tPy2P77eYq7y8nPz8/A73uxDuamktaGhooK+vj4aGhmg1POJEYhhgcrkcNTU1RVIwMDDo8NiuJIWWdRFpaWmEhYUhkUhYvXo17u7uitXHAJWVlZw+fZpJkyZhZ2fX4/jvnXm0fPlyJk+eTH19PZcuXeLHH3/k9u3bPPnkk7i4uCCRSBg1alS756murubs2bNIJBJF6ZGamhpqamooKyvj1q1b1NbWttrWUFNTs1WiaPlfLS0tsrKyuH79OkOHDsXa2nrQlZN+kGJjY8nIyFB0C7ZMfY6NjWXatGkDHZ4wAMSnZYDp6uri5uaGg4NDp7N0OksKLXsftxTDU1VVRS6Xo62tzV//+tc2RcnkcjknTpxAXV2dBQsW9Dj29mYeAQwZMgQ9PT2MjY2xsrLi+vXrfPfdd/j6+nZYFlhFRQUdHR309PQ6nAIrlUpbTdOtrq5W/BQVFVFdXa1Y51FfX8/IkSPR09MTSeE+LCws8Pf3b/d54dEkPjEDTEVFhSlTpnR6zL1JYd68eaioqCj2Ps7MzKSsrEyx9/GkSZPQ19fn6NGjuLq6tnvuuLg4bty4wfr163s8ZfT3NY9GjBiheO3atWucPXuWefPm4ePjQ05ODufOnWPXrl3Y2dkxb948xb4R3dEy06q9EuAtlW/r6upwd3dn0qRJqKur96pezKPCzMwMMzOzgQ5DUCIiMSi5lpuqubk5Tk5OREVFkZWVRWVlpWLvY3d3d8Xex83NzRw9ehQdHR3c3d3bnK+iooIzZ87g7OyMjY1Nj2L6fc2je2vAp6amcuzYMVxcXJg7dy4AlpaWbN26laSkJAICAti+fTtTpkzB29u7x2Mb98rOzuby5cs0NDQwffp0Jk6cKHZ7E4ReEIlBid28eZPDhw+jqqpKUVERJ06cQEtLizFjxjBjxgxMTU3bLCwLDw+nvLwcPz+/NoOzcrmc48ePo6mp2aMupPZqHt17jezsbA4cOICtrW2bct0SiQQHBwdsbW2JiIjg8uXLXLt2DW9v73YTWFfU1tYSGhpKRkYGFhYWzJgxo883RReER5FIDEpGKpVy+/ZtIiIiuHjxItra2jg5OWFlZcXYsWMZOXJkh9+Gs7KySEpKwsvLCyMjI6qqqlq9fvXqVTIyMvD39+922fD2ah7de+MvKChg7969WFhYsHLlyg5jVFdXx8vLi8mTJ3Px4kXOnTtHVFQU06dPbzWw3Bm5XE5qairh4eFIJBJFvSYxvVUQ+oZIDEqgubmZ3NxcRZXVoqIi8vLymDBhAitWrMDExOS+N72qqiqCg4MZN24cEyZMaFOttLy8nHPnzuHi4oK1tXW34muv5tG9SktL+fnnnzEyMuLxxx/v0mCvjo4Oixcvxt3dnYCAAA4fPkxtbS3e3t6dDnpWVFRw+fJl8vLysLGxwcPDo9/2xhCER5VIDAOsurqa/fv309zcjJGRESNGjKCyspKFCxfi4+PTpcqjUqmUwMBANDQ0mDlzZpsk0tKFNGTIEObPn9+t+DqaedSiqqqKn376iSFDhuDv79/tee/Gxsb4+/uTmJjIN998w/Hjx7G3t8fd3b3VfhNSqZSEhASio6PR0dFh0aJFmJubd+tagiB0jUgMA0xHR4epU6dibm5OZWUl586dw9bWtstJASAqKori4mIee+yxdm/MMTExZGZmsnHjxm59u+5s5hHc3VFq9+7dyGQyNm7c2KuNyMeNG8fChQvJz88nISGBX375BScnJ5ydnamoqCA4OJjS0lKcnJxwdXUd1DuVCYKyE4lhgLUMymZnZxMQEICFhUW3kkJOTg7Xrl1j2rRpbTY5BygrK+PcuXO4urp2Wmbj9zqbeQR3C/Dt3buX6upqnnzySYYOHdrlc3dERUUFOzs7JkyYwLVr17h69Srnzp1DIpFga2vL8uXL2yQnQRD6nkgMSqCnSaGmpoaLFy9iaWmJk5NTm9dbdmTT1tbuchfS/WYewd1unV9//ZXCwkI2b97c5zdrDQ0NxeZCdXV1aGhoIJPJxC5vgvCAiMQwwCorK3uUFGQyGRcvXkRVVZVZs2a1OzidlpZGUVERW7du7VLf//1mHsH/bQ2amZmJv79/ny+MqqurIzQ0lBs3bmBmZsaKFStoaGggPDyckydPYmFhwbRp00SFVkHoRyIxDDB9fX3mzJnD6NGju7XFZWxsLLdv32bx4sXtrl6urKzk6tWrLF26tM2AcXvuN/MI7iaF06dPk5iYyKpVq7p03q6Sy+VkZmaSmJioSHY2NjaKxLRkyRJu3rxJREQEBw8exN7eHldX1z5ZICcIQmsiMSiB7t5gb9++TUxMDC4uLu0WpZPL5Vy+fJkhQ4YwZ86c+57vfjOPWly6dInIyEgWL17MxIkTuxVzZ8rKyjh06BChoaHY29vj7e3dJtlJJBLGjh2LpaUlSUlJXL16lfT0dJydnXF0dBT1kAShD4lP0yBTV1fHhQsXMDU1xcXFpd1jkpKSKCgowNvb+75bNN5v5lGLqKgoLl68yNy5c3Fzc+v17wF3u8MiIiK4cOECampqzJ49Gzs7u05nTqmqquLk5ISNjQ1Xr14lOjqa5ORkpk6dKha5CUIfEYlhEJHL5QQFBSGVSpkzZ067q4vLy8uJiIhgwoQJ7c5Sutf9Zh61SExM5NSpU3h4eODl5dUnv0tBQQHHjx8nPz8fd3d3pk2bRkRERJffP2TIEDw9PZkwYQIREREEBgaSkJCAh4dHp/tZCIJwfyIxDCLx8fHk5OTg5+fX7k1cJpMRHByMtrY2bm5u1NfXt3uersw8apGens7hw4dxcnJi/vz5vf5G3tTURHBwMKGhoQwfPpytW7dibm5ObW1tj85nYGCAr68vt2/fJiwsjGPHjjFu3DimTp0q9pUWhB4SiWGQKCwsJDIykkmTJmFpadnuMYmJiRQWFrJkyRLU1dXbTQwymYxTp051OvOoRW5uLvv372f8+PE89thjvU4KmZmZ/Pbbb1RWVjJr1iymT5/erQH3zowaNYoVK1Zw48YNIiMj+fXXX3FwcGDy5MliFzJB6CaRGAaBhoYGAgMDGTFiRId7N5SXlxMZGYmDgwOmpqbtJoWGhgYOHDhAZmZmhzOPWhQVFbF3715GjRrF6tWre3UDr6ur49y5c8TGxjJmzBj8/f17tB/D/UgkEmxsbBg3bhzXrl3j2rVrpKend7l+kyAId4lPi5KTy+VcunSJxsZGlixZ0u4NWiaTERQUhK6uboclrLs686jl2N27dzN06FDWrVvX4/ITcrmcpKQkTp8+jVQqZcmSJYotPvuTmpoarq6u2NnZUVxcLJKCIHST+MQouZSUFDIzM5k3b16Hew0kJCRQVFTEY4891u5NsKszj+BuUb+ffvoJdXV1NmzY0OPKpRUVFZw8eZK0tDQmTJiAn5/fA98rQUdHp1f1mwThUSUSgxIrKSkhNDSUiRMndvgNv6ysjKioKJycnNqdjXP9+nVOnz5935lHcHeR2549e2hsbGTr1q2tqpt2lUwmIyoqisDAQDQ1NXn88cexs7Pr9nkEQRg4IjEoqaamJgIDAzEwMGDatGntHtPShaSnp9dmbYFcLic5OZkrV64wadKkTmcewd09IX755RfKysp48sknMTQ07HbMRUVFHD9+nFu3bjFlyhTmzp0r9koQhEFIJAYlFRISQk1NDStWrOiwjzw+Pp7i4mKWLl3a6hiZTEZoaCjx8fGsW7eOhQsXdtqvL5PJOHjwIHl5eWzcuPG+6x9+r7m5mUuXLnHlyhWGDRvGli1bOpw5JQiC8hOJQQmlpaWRmprK7NmzMTAwaPeY0tJSoqOjcXJyanUjb2xs5Pz582RnZzNt2jRmz57daVJo2cQnLS2NdevWdfuGnp2dzYkTJygrK2PmzJl4eXmJwV5BGOTEJ1jJlJeXc+XKFWxtbbGxsWn3GKlUSlBQEPr6+q26kKqqqjhz5gw1NTXMnz//vgu85HI5AQEBxMXFsWLFim5t+VlfX09AQAAxMTFYWFiwZs0ajI2Nu/x+QRCUl0gMSqS5uZnz58+jo6PD9OnTOzzu2rVrlJSUsGzZMsW386KiIs6ePYuqqipLly5FS0uLqqqqTq8XEhJCaGgofn5+7e7n0JGUlBROnTpFY2MjixYtws3NTdQoEoSHiEgMSiQ8PJzy8nKWL1/e4UDxnTt3uHr1Ks7Ozopv6FlZWVy4cAEjIyN8fX3R0tLqsBxGi6tXr3L+/Hm8vb2ZOnVql+KrrKzk1KlTXL9+HVtbWxYtWiTKTgjCQ0gkBiWRmZlJUlISM2bM6HBVcEsX0tChQ3FxcUEulxMfH09ERATjxo1j1qxZXerfT0lJ4cSJE0yZMoVZs2bd93i5XE5MTAwBAQGoq6uzZs0a7O3tRStBEB5SIjEogcrKSi5dusS4ceOwt7fv8Li4uDhKS0tZtmwZKioqXLlyheTkZCZPnsyUKVO6dKPOysri4MGDTJw48b6zlQCKi4s5ceIEOTk5uLi4MG/evHY3BhIE4eEhEsMAk0qlXLhwAQ0NDWbOnNnhjbqkpETRhTR06FDOnDlDXl4e3t7eXV5Advv2bfbt28eYMWNYvnx5p0lBKpVy5coVLl26hIGBAU888QRjxozpya8oCMIgIxLDAKurq6O5uRkfH58Oq4C2dCEZGhpibW3NsWPHqKmpwc/PD3Nz8y5dp6SkhJ9//hljY2PWrl3baVG83NxcTpw4QUlJCdOnT2fmzJk9rpckCMLg03anlwH0/vvvM2XKFPT09DA2NmbZsmWkpqZ2+p5du3YhkUha/Qym1ba6urqsXLmy06mesbGxlJWV4eDgwIkTJ2hqamLp0qVdTgoVFRXs3r0bXV1d/P39O9zVraGhgVOnTvHDDz+grq7Otm3bmDt3rkgKgvCIUaoWQ3BwMM8//zxTpkyhubmZv/3tb8yfP5/k5OROa/zo6+u3SiCDbVC0s3hLSkqIjY3F1NSUkJCQVjOPuqK2tpZffvkFiUTChg0bOnxfamoqJ0+epL6+Hl9fX9zd3dvdIU4QhIefUiWGM2fOtHq8a9cujI2NiYmJYebMmR2+TyKRPJTbOTY3N3Px4kVqa2u5desW48eP7/LMI7i7Cnr//v3U1dWxZcuWdqeWVldXc/r0aZKSkrC2tmbRokUdrrYWHj2NjY1ER0fj5uamaGm295zwcFGqxPB7FRUVAAwbNqzT46qrqxk9ejQymQwXFxfee+89Jk6c2O6xDQ0NNDQ0tHqvsoqJiSE+Pp5hw4bh4uLS5ZlH8H/1i/T09HjmmWfaTIGVy+XExsZy7tw5VFVVWblyJQ4ODoOutSX0r/DwcHbv3o1UKmXGjBkdPic8XJS2r0Amk/HSSy8xffp0HBwcOjzO1taWH374gWPHjvHzzz8jk8nw9PTk1q1b7R7//vvvM3ToUMWPt7d3f/0KvZKXl8fBgwdRU1PDz88Pd3f3Lt+0W/Z+Li4uZs2aNZiamrZ6/c6dO/z4448cP34cOzs7nn/+eRwdHUVSeMQ1NjYSGhpKY2MjcPdL1NmzZ8nKyuLMmTOKL1W/f054+Chti+H5558nMTGRK1eudHqch4cHHh4eiseenp7Y29vz7bff8u6777Y5/vXXX+eVV15RPI6Li1O65FBeXs6XX36JXC7niSeeYPTo0V1+r1wuJyQkhOzsbLy8vFq9VyqVEhoaSnBwMHp6emzcuBErK6v++BWEQej3LYGIiAjS0tJwcnIiLS2NyMhI5HJ5m+dEq+Hho5SJ4YUXXuC3337j0qVLXZ5500JdXZ3JkyeTnp7e7uuampqtpoX2ZDOa/lRUVMT3339PTU0NL730UreSAkB0dDTJycl4eXm1aink5eVx/PhxioqK8PT0ZNasWWK2kaDw+5bApEmTOHv2LBoaGujr66OhocFvv/0G0Oq5M2fO4O7u3uFUa2FwUqrEIJfLefHFFzly5AhBQUGMHTu22+eQSqUkJCSwcOHCfoiwf2VlZXH8+HHu3LnD+vXrO92XuT3x8fFcvXqVadOmYWNjQ1VVFY2NjVy6dImIiAhMTEx45pln2nQtCcLvWwd79+4lIyOD+vp6kpKSaGpqIiYmBolEgo6OjuK5jIwMYmNjO9xMShiclCoxPP/88+zdu5djx46hp6dHQUEBAEOHDlVMs9y0aRNmZma8//77ALzzzjtMmzaN8ePHU15ezocffkh2djZPPfXUgP0e3dVS8ygsLIyKigo8PT1xd3fv1jnS0tIICwvD2dmZSZMmUV9fz+3bt/nuu+9oamrCx8cHDw8PMQVVaKOltXBvSyA5OZk1a9a0alXeuXMHoM1EBgsLiwcar9D/lCoxfP311wBtCrvt3LmTJ554AoCcnJxWN7eysjKefvppCgoKMDQ0xNXVldDQUCZMmPCgwu4VmUxGSEgIycnJaGlpYWpqyty5c7t1A7958ybBwcHY2dnh7u5OXV0dly5dIjk5GW9vb1auXHnfmV3Coys2NrZN60AqlTJq1CjREnhEKVVikMvl9z0mKCio1eNPPvmETz75pJ8i6n+1tbXcvHkTBwcHkpKScHd379Z+y/n5+Zw/f57Ro0fj5eXFjRs3CAsLo6mpCQ8PD9avX9/p4kBBsLCwwN/fv93nhUeTUiWGR5Guri6rVq3i2LFjGBsbd2vDnJKSEs6cOYOJiQlTpkzhzJkzioVwLi4uNDc3iymown2ZmZlhZmY20GEISkR0OCuBuLg4qqurmTVrVpe7kCoqKjh9+jT6+vqYmJhw+PBhysvL8fPzY+7cuaI0tiD8TmlpKf7+/ujr62NgYMDWrVvvu8B11qxZbWqxPfvssw8o4oEjWgwDrLKykoSEBKZOndrlUhQ1NTWcPHmSxsZG1NTUuHr1Kg4ODkyZMkVMQRWEDvj7+5Ofn09AQABNTU08+eSTPPPMM+zdu7fT9z399NO88847isfa2tr9HeqAE4lhgOnr67N06VJGjBjRpePr6+s5ceIEWVlZitXby5Yt67Q6qyA86lJSUjhz5gxRUVG4ubkB/H/t3XtQVNcdB/DvArLLa3koz6osiykPUfEx+EBcMCIGCWgF0db4RNHYEps1+KgWGHUsGI3UjFYcI8ioSTEyUbFSHR+IqGgak1EMyPJoEwTU8hRQkNM/LBuuu8CuPO4iv8/Mzri/e+65Z8/g/vaee+852LdvHwIDA/Hpp5/CwcGhw32NjY3fyrnYOkNDSTrA1tZWoyGklpYWnDhxArdu3YJYLIa3tzfmzp1LSYGQLty4cQMWFhbKpAAAM2bMgJ6eHm7dutXpvseOHcOQIUPg4eGBTZs2oaGhobebyzs6Y+gnnj17hoMHD6KgoAA+Pj40Cyp5a9XX16O2tlb5/vXZCt5EeXm5yg8oAwMDWFlZKZ+XUue3v/0tHB0d4eDggB9++AEbNmxAfn4+Tp061a326DpKDDqOMYbCwkKkpqbi6dOnWLhwYadLgBLS370+d1lMTAxiY2PVlt24cSPi4+M7re/Bgwdv3JZVq1Yp/z1q1Cjlc0YKheKtnmeMEoMOq6+vR1ZWFnJyctDc3Iw1a9Z0OtMsIW+Dq1evwtPTU/m+s7MFuVyufPi1I1KpFHZ2dqisrOTEW1pa8N///ler6wcTJ04EABQWFlJiIH2rtbUV9+/fx+3bt1FZWQkzMzO8//77/eZpbkK6w9TUVO2iUupYW1trdOPG5MmTUV1djW+//Rbjx48HAFy6dAmtra3KL3tN3L17FwDe+vnG6OKzjnn69Cm++eYb3LhxAyKRCGKxGP7+/pQUCOkGNzc3zJo1CytXrkRubi6uX7+O3//+91iwYIHyjqSff/4Zrq6uyM3NBQAoFAps27YN3377LUpKSnD69GksXrwY06ZN0+pB1P6IEoOOaGlpwe3bt3Hq1Ck0Nzdj9OjRqK+vh6enJ8aOHct38wjp944dOwZXV1e8++67CAwMxNSpU5GUlKTc3tzcjPz8fOVdR4aGhrh48SJmzpwJV1dXyOVyzJs3D2fOnOHrI/QZGkrSAWVlZcjKykJ9fT3Gjh2LwYMH4+LFi3jnnXcwefJkutBMSA+wsrLq9GE2iUTCma9t2LBhuHr1al80TedQYuBZbW0tzp49CxsbGwQEBOD58+fIyMjAsGHD6O4jQggvKDHwTCwW4/3334ednR2qqqpw/vx5DBkyBDNmzIC+vj7fzSOEDEB0jUEH2Nvbo76+HufOnYOpqSlmzZoFAwPK2YQQflBi0AENDQ3IyMiAgYEBAgMDaf1cQgivKDHw7Pnz5/jHP/6B5uZmBAYGDoiZGwkhuo3GK3jGGINQKISvr6/GD/UQQkhvosTAM5FIhKCgIL6bQQghSjSURAghhIMSAyGEEA5KDIQQQjgoMRBCCOGgxEAIIYSDEgMhhBAOSgyEEEI4KDEQQgjhoMRACCGEgxIDIYQQDkoMhBBCOGiupP978OBBl2UaGxtRWFgIY2NjnZ8a+/nz52hoaICZmRmMjIz4bk6X+nvf2tvbw97evs/b8ujRIzx69KjPj9sbNPk/SPoIG+DKysqYTCZjAOhFrzd+xcTE8PL3GxMTw/tn78mXTCZjZWVlvPQl+YWAsXarXw9QfP/qqq+vh0wmw9WrV2FqaspbO942fdmvb8MZgy78HfLVj4SLEoMOqK2thbm5OWpqamhNhh5E/aod6i/Shi4+E0II4aDEQAghhIMSgw4QCoWIiYnR+btx+hvqV+1Qf5E2dI2BEEIIB50xEEII4aDEQAghhIMSw1umpKQEAoEAycnJfDeFENJPDejEoFAoEBkZCalUCpFIBLFYDG9vbyQmJqKxsbHXjpuXl4fY2FiUlJT02jE0sWPHDgQHB8PW1hYCgQCxsbF93gaBQKDR68qVK90+VkNDA2JjY7WqSxf6qD3qL9IXBuxcSRkZGQgLC4NQKMTixYvh4eGBFy9eIDs7G5988gnu37+PpKSkXjl2Xl4e4uLi4OvrC4lE0ivH0MSWLVtgZ2eHsWPHIjMzk5c2pKamct4fPXoUFy5cUIm7ubl1+1gNDQ2Ii4sDAPj6+mq0jy70UXvUX6QvDMjEUFxcjAULFsDR0RGXLl3iPIK/du1aFBYWIiMjg8cW/oIxhqampl6ZCK+4uBgSiQRPnjyBtbV1j9eviUWLFnHe37x5ExcuXFCJ80UX+qg96i/SFwbkUFJCQgLq6+tx+PBhtfOyjBgxAh999JHyfUtLC7Zt2wZnZ2cIhUJIJBJs3rwZz58/5+wnkUgQFBSE7OxseHl5QSQSQSqV4ujRo8oyycnJCAsLAwD4+fmpnPq31ZGZmYkJEybAyMgIBw8eBAAUFRUhLCwMVlZWMDY2xqRJk7qVwPg8W9FGa2sr9u7di5EjR0IkEsHW1haRkZGoqqrilLtz5w4CAgIwZMgQGBkZwcnJCcuXLwfw6tpL2xdVXFycst+7GuroL33UHvUX6a4BecZw5swZSKVSTJkyRaPyERERSElJQWhoKORyOW7duoWdO3fiwYMHSE9P55QtLCxEaGgoVqxYgSVLluCLL77A0qVLMX78eIwcORLTpk1DVFQU/vrXv2Lz5s3KU/72p/75+flYuHAhIiMjsXLlSri4uKCiogJTpkxBQ0MDoqKiMHjwYKSkpCA4OBgnT57E3Llze66DdExkZCSSk5OxbNkyREVFobi4GJ9//jm+++47XL9+HYMGDUJlZSVmzpwJa2trbNy4ERYWFigpKcGpU6cAANbW1jhw4ADWrFmDuXPn4je/+Q0AYPTo0Xx+tF5B/UW6jceZXXlRU1PDALCQkBCNyt+9e5cBYBEREZz4+vXrGQB26dIlZczR0ZEBYFlZWcpYZWUlEwqFTC6XK2NpaWkMALt8+bLK8drqOH/+PCe+bt06BoBdu3ZNGaurq2NOTk5MIpGwly9fMsYYKy4uZgDYkSNHNPp8jDH2+PFjXqeObm/t2rWs/Z/ltWvXGAB27NgxTrnz589z4unp6QwAu337dod1d+dz6lIftUf9RXrDgBtKqq2tBQCYmZlpVP7cuXMAgI8//pgTl8vlAKAylOPu7g4fHx/le2tra7i4uKCoqEjjNjo5OSEgIEClHV5eXpg6daoyZmpqilWrVqGkpAR5eXka19+fpKWlwdzcHP7+/njy5InyNX78eJiamuLy5csAAAsLCwDA2bNn0dzczGOL+UX9RXrCgEsMbdMJ19XVaVS+tLQUenp6GDFiBCduZ2cHCwsLlJaWcuLDhw9XqcPS0lJlfLczTk5Oatvh4uKiEm8bgnq9HW+Lhw8foqamBjY2NrC2tua86uvrUVlZCQCQyWSYN28e4uLiMGTIEISEhODIkSMq14HedtRfpCcMuGsMYrEYDg4OuHfvnlb7CQQCjcrp6+urjTMtpqTqD0tx9pXW1lbY2Njg2LFjare3XSAVCAQ4efIkbt68iTNnziAzMxPLly/H7t27cfPmzQGzABL1F+kJAy4xAEBQUBCSkpJw48YNTJ48udOyjo6OaG1txcOHDzkXiCsqKlBdXQ1HR0etj69pknm9Hfn5+SrxH3/8Ubn9beTs7IyLFy/C29tbo4Q5adIkTJo0CTt27MDx48fxu9/9Dl9++SUiIiLeqN/7G+ov0hMG3FASAERHR8PExAQRERGoqKhQ2a5QKJCYmAgACAwMBADs3buXU2bPnj0AgNmzZ2t9fBMTEwBAdXW1xvsEBgYiNzcXN27cUMaePXuGpKQkSCQSuLu7a92O/mD+/Pl4+fIltm3bprKtpaVF2YdVVVUqZ2Wenp4AoBweMTY2BqBdv/c31F+kJwzIMwZnZ2ccP34c4eHhcHNz4zz5nJOTg7S0NCxduhQAMGbMGCxZsgRJSUmorq6GTCZDbm4uUlJSMGfOHPj5+Wl9fE9PT+jr6yM+Ph41NTUQCoWYPn06bGxsOtxn48aNOHHiBN577z1ERUXBysoKKSkpKC4uxtdffw09Pe1zfGpqKkpLS9HQ0AAAyMrKwvbt2wEAH3zwgU6chchkMkRGRmLnzp24e/cuZs6ciUGDBuHhw4dIS0tDYmIiQkNDkZKSgv3792Pu3LlwdnZGXV0dDh06BLFYrEzuRkZGcHd3x1dffYVf//rXsLKygoeHBzw8PDo8fn/oo/aov0iP4PmuKF4VFBSwlStXMolEwgwNDZmZmRnz9vZm+/btY01NTcpyzc3NLC4ujjk5ObFBgwaxYcOGsU2bNnHKMPbqVtPZs2erHEcmkzGZTMaJHTp0iEmlUqavr8+5dbWjOhhjTKFQsNDQUGZhYcFEIhHz8vJiZ8+e5ZTR5nZVmUzGAKh9qbuVti+8fvtlm6SkJDZ+/HhmZGTEzMzM2KhRo1h0dDQrKytjjDH2r3/9iy1cuJANHz6cCYVCZmNjw4KCgtidO3c49eTk5LDx48czQ0NDjW6n1MU+ao/6i/QGWqiHEEIIx4C8xkAIIaRjlBgIIYRwUGIghBDCQYmBEEIIByUGQgghHJQYCCGEcFBi6ERCQgJcXV3R2trKd1O6bePGjZg4cSLfzQBA/cqXkpISCAQCJCcn890UouMoMXSgtrYW8fHx2LBhg/Kp4rZVrHbv3q1SPjk5GQKBAHfu3On2sU+dOoXw8HBIpVIYGxvDxcUFcrm8w6kJTp8+jXHjxkEkEmH48OGIiYlBS0sLp8y6devw/fff4/Tp091uX3dQvxLSD/D9hJ2u+uyzz5hYLGaNjY3KGP7/BKetrS179uwZp/yRI0e6XPhEU4MHD2ajRo1iW7duZYcOHWJRUVHM0NCQubq6soaGBk7Zc+fOMYFAwPz8/FhSUhL7wx/+wPT09Njq1atV6p0/fz7z8fHpdvu6g/qVP62trayxsZG1tLTw3RSi4ygxdGD06NFs0aJFnBgA5unpyQCw3bt3c7b15BeYuqkDUlJSGAB26NAhTtzd3Z2NGTOGNTc3K2N/+tOfmEAgYA8ePOCUPXnyJBMIBEyhUHS7jW+K+pUQ3UdDSWoUFxfjhx9+wIwZM1S2eXt7Y/r06UhISEBjY2OvHN/X11cl1ram84MHD5SxvLw85OXlYdWqVTAw+GU+xA8//BCMMZw8eZJTR9vn+eabb3qh1V2jfu2+2NhYCAQCFBQUYNGiRTA3N4e1tTW2bt0Kxhj+85//ICQkBGKxGHZ2dpzhOXXXGJYuXQpTU1P8/PPPmDNnDkxNTWFtbY3169fj5cuXynJXrlyBQCDAlStXOO1RV2d5eTmWLVuGoUOHQigUwt7eHiEhISgpKemlXiE9jRKDGjk5OQCAcePGqd0eGxuLiooKHDhwoNN6nj9/zllesbNXV8rLywEAQ4YMUca+++47AMCECRM4ZR0cHDB06FDl9jbm5uZwdnbG9evXuzxeb6B+7Tnh4eFobW3FX/7yF0ycOBHbt2/H3r174e/vj1/96leIj4/HiBEjsH79emRlZXVa18uXLxEQEIDBgwfj008/hUwmw+7du5GUlPRGbZs3bx7S09OxbNky7N+/H1FRUairq8O///3vN6qP9L0BOe12V9oWv1G3xCYA+Pj4wM/PD7t27cKaNWs6XBDlxIkTWLZsmUbHZF3MZRgfHw99fX2EhoYqY48ePQIA2Nvbq5S3t7dHWVmZSlwqlfK2PjT1a8/x8vLCwYMHAQCrVq2CRCKBXC7Hzp07sWHDBgDAwoUL4eDggC+++ALTpk3rsK6mpiaEh4dj69atAIDVq1dj3LhxOHz4MNasWaNVu6qrq5GTk4Ndu3Zh/fr1yvimTZu0/YiER5QY1Hj69CkMDAw6Xd4wNjYWMpkMf/vb3/DHP/5RbZmAgABcuHCh2+05fvw4Dh8+jOjoaLzzzjvKeNuQi1AoVNlHJBKhtrZWJW5paanyi7evUL/2nIiICOW/9fX1MWHCBPz0009YsWKFMm5hYQEXFxcUFRV1Wd/q1as57318fJCamqp1u4yMjGBoaIgrV65gxYoVsLS01LoOwj9KDG9o2rRp8PPzQ0JCgsp/qjb29vZqf3Vq49q1a1ixYgUCAgKwY8cOzra2X9TqFnBvampS+4ubMabTSzZSv2pm+PDhnPfm5uYQiUScIbG2+NOnTzutSyQSKdeCbmNpaYmqqiqt2yUUChEfHw+5XA5bW1tMmjQJQUFBWLx4Mezs7LSuj/CDrjGoMXjwYLS0tKCurq7TcjExMSgvL1ee0r+usbER5eXlGr3U+f777xEcHAwPDw+cPHmScyEU+GWoo23oo71Hjx7BwcFBJV5VVaXy5dFXqF97jr6+vkYxoOvhtI72a6+jpNf+AnWbdevWoaCgADt37oRIJMLWrVvh5ubG25kq0R4lBjVcXV0BvLqLpjMymQy+vr6Ij49XeyfNV199pfx129XrdQqFArNmzYKNjQ3OnTundvilbY3e1x/+Kisrw08//aTc3l5xcTHc3Nw6/Vy9hfq1/2obEnr9YcDS0lK15Z2dnSGXy/HPf/4T9+7dw4sXL9Q+wEh0Ew0lqTF58mQAr74YRo8e3WnZ2NhY+Pr6qr2D403HwsvLyzFz5kzo6ekhMzNT5TS/zciRI+Hq6oqkpCRERkYqf/kdOHAAAoGAc0EVAGpqaqBQKLS+oNhTqF/7L0dHR+jr6yMrKwtz5sxRxvfv388p19DQAD09PYhEImXM2dkZZmZmaofmiG6ixKCGVCqFh4cHLl68iOXLl3daViaTQSaT4erVqyrb3nQsfNasWSgqKkJ0dDSys7ORnZ2t3GZrawt/f3/l+127diE4OBgzZ87EggULcO/ePXz++eeIiIhQ+QV78eJFMMYQEhKidZt6AvVr/2Vubo6wsDDs27cPAoEAzs7OOHv2LCorKznlCgoK8O6772L+/Plwd3eHgYEB0tPTUVFRgQULFvDUeqI1vp6s03V79uxhpqamnKkSALC1a9eqlL18+bJyWoeeeEIXHSymDoDJZDKV8unp6czT05MJhUI2dOhQtmXLFvbixQuVcuHh4Wzq1Kndbl93UL92T0xMDAPAHj9+zIkvWbKEmZiYqJSXyWRs5MiRjDHGiouLGQB25MiRLvdrO057jx8/ZvPmzWPGxsbM0tKSRUZGsnv37nHqfPLkCVu7di1zdXVlJiYmzNzcnE2cOJH9/e9/7+YnJ31JwFgXV6YGqJqaGkilUiQkJHBuAeyvysvL4eTkhC+//JLXX7bUr4ToPrr43AFzc3NER0dj165db8X00Hv37sWoUaN4//KifiVE99EZAyGEEA46YyCEEMJBiYEQQggHJQZCCCEclBgIIYRwUGIghPQ4dQv4kP6DEgMhPFMoFIiMjIRUKoVIJIJYLIa3tzcSExN7bTU74NVKdbGxsbyvrLZjxw4EBwfD1tYWAoEAsbGxvLaH0JQYhPAqIyMDYWFhEAqFWLx4MTw8PPDixQtkZ2fjk08+wf379994JbWu5OXlIS4uDr6+vpBIJL1yDE1s2bIFdnZ2GDt2LDIzM3lrB/kFJQZCeFJcXIwFCxbA0dERly5d4sz/tHbtWhQWFiIjI4PHFv6CMdbhWhTdVVxcDIlEgidPnnQ4sSHpWzSURAhPEhISUF9fj8OHD6udFHDEiBH46KOPlO9bWlqwbds2ODs7QygUQiKRYPPmzSqzlkokEgQFBSE7OxteXl4QiUSQSqU4evSoskxycjLCwsIAAH5+fhAIBBAIBLhy5QqnjszMTEyYMAFGRkbK9TGKiooQFhYGKysrGBsbY9KkSd1KYHyerRD1KDEQwpMzZ85AKpViypQpGpWPiIjAn//8Z4wbNw6fffYZZDIZdu7cqXbW0sLCQoSGhsLf3x+7d++GpaUlli5divv37wN4tVJeVFQUAGDz5s1ITU1FamoqZ+bY/Px8LFy4EP7+/khMTISnpycqKiowZcoUZGZm4sMPP8SOHTvQ1NSE4OBgpKen90CvEJ3A6xR+hAxQNTU1DAALCQnRqPzdu3cZABYREcGJr1+/ngFgly5dUsYcHR0ZAJaVlaWMVVZWMqFQyORyuTKWlpbGALDLly+rHK+tjvPnz3Pi69atYwDYtWvXlLG6ujrm5OTEJBIJe/nyJWNM/UyuXXn8+DEDwGJiYjTeh/QOOmMghAe1tbUAADMzM43Knzt3DgDw8ccfc+JyuRwAVIZy3N3d4ePjo3xvbW0NFxcXFBUVadxGJycnBAQEqLTDy8sLU6dOVcZMTU2xatUqlJSUIC8vT+P6ie6ixEAID8RiMQB0uf51m9LSUujp6WHEiBGcuJ2dHSwsLFSW2Bw+fLhKHZaWlqiqqtK4jU5OTmrb4eLiohJvG4LqaKlP0r9QYiCEB2KxGA4ODrh3755W+wkEAo3KtS1H+jqmxWTKvXEHEukfKDEQwpOgoCAoFArcuHGjy7KOjo5obW3Fw4cPOfGKigpUV1fD0dFR6+NrmmReb0d+fr5K/Mcff1RuJ/0fJQZCeBIdHQ0TExNERESgoqJCZbtCoUBiYiIAIDAwEMCrhYHa27NnDwBg9uzZWh/fxMQEAFBdXa3xPoGBgcjNzeUks2fPniEpKQkSiQTu7u5at4PoHnrAjRCeODs74/jx4wgPD4ebmxvnyeecnBykpaVh6dKlAIAxY8ZgyZIlSEpKQnV1NWQyGXJzc5GSkoI5c+bAz89P6+N7enpCX18f8fHxqKmpgVAoxPTp02FjY9PhPhs3bsSJEyfw3nvvISoqClZWVkhJSUFxcTG+/vpr6Olp/1szNTUVpaWlaGhoAABkZWVh+/btAIAPPviAzkL4wPdtUYQMdAUFBWzlypVMIpEwQ0NDZmZmxry9vdm+fftYU1OTslxzczOLi4tjTk5ObNCgQWzYsGFs06ZNnDKMvbrVdPbs2SrHkclkTCaTcWKHDh1iUqmU6evrc25d7agOxhhTKBQsNDSUWVhYMJFIxLy8vNjZs2c5ZbS5XVUmkzEAal/qbqUlvY+W9iSEEMJB1xgIIYRwUGIghBDCQYmBEEIIByUGQgghHJQYCCGEcFBiIIQQwkGJgRBCCAclBkIIIRyUGAghhHBQYiCEEMJBiYEQQggHJQZCCCEclBgIIYRw/A9P29Eivjf5RAAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -599,7 +603,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAATgAAAInCAYAAAAMF0W5AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAoLpJREFUeJzs3Xd4FWXe//H3Se+99wbpoQQDoYXeFaQ3EQFF17WsPuvquuuq+6zsrmV1164IrkoRpQiE3nsLCWkkJCQhvfd2cs6Z3x/8Mg8xhYSQyv26rlyamTlzvknIJ/fM3EUhSZKEIAhCP6TV0wUIgiB0FRFwgiD0WyLgBEHot0TACYLQb4mAEwSh3xIBJwhCvyUCThCEfksEnCAI/ZYIOEEQ+i0RcL1Abm4ub775Jrm5uT1diiD0KyLgeoHc3FzeeustEXCCcJ+JgBMEod8SAScIQr8lAk4QhH5LBJwgCP2WCDhBEPotEXCC0MupVCrEvLT3RgScIPRikiSxY8cOdu/e3dOl9Eki4AShF4uNjSU+Ph4vL6+eLqVPEgHXhr///e8oFApefPHFVo/ZuHEjCoWiyYeBgUH3FSn0W+Xl5URGRhIcHExQUFBPl9Mn6fR0Ab3VpUuX+OKLLwgJCbnrsWZmZiQlJcmfKxSKrixNeAA0Xprq6ekxc+bMni6nzxItuBZUVVWxbNkyvvrqKywtLe96vEKhwMHBQf6wt7fvhiqF/uzcuXOkp6fz6KOPiiuCThAB14Jnn32WmTNnMmnSpHYdX1VVhbu7O66ursyePZv4+Pg2j6+vr6eiokL+qKqquh9lC/1Efn4+R44cITw8HE9Pz54up08Tl6i/smXLFqKiorh06VK7jvf19eWbb74hJCSE8vJy3nvvPUaOHEl8fDwuLi4tvmbdunW89dZb97NsoZ9QqVRs374da2trJk6c2NPl9HmiBXeHzMxMXnjhBX744Yd2XxaEh4ezYsUKBg8eTEREBNu3b8fW1pYvvvii1de89tprlJeXyx8nTpy4X1+C0McdPXqUoqIi5s6di46OaH90lvgO3uHKlSsUFBQwdOhQeZtarebkyZN8/PHH1NfXo62t3eY5dHV1GTJkCCkpKa0eo6+vj76+vvy5iYlJ54sX+rz09HTOnTvHpEmTcHBw6Oly+gURcHeYOHEisbGxTbY98cQT+Pn58Yc//OGu4Qa3AzE2NpYZM2Z0VZlCP1RXV8eOHTtwc3MjPDy8p8vpN0TA3cHU1LRZfyNjY2Osra3l7StWrMDZ2Zl169YB8PbbbzNixAh8fHwoKyvj3XffJSMjgzVr1nR7/ULfFRkZSV1dHY8++ihaWuLO0f0iAq6Dbt261eQfYGlpKU8++SR5eXlYWloSGhrK2bNnCQgI6MEqhb4kPj6ea9eu8eijj2JhYdHT5fQrCkmM4u1xUVFRhIaGcuXKlSb3/4T+r6Kigs8++wxPT08WLFggOonfZ6ItLAg9RJIkdu3ahY6ODrNmzRLh1gVEwAlCD7l48SKpqanMnj0bIyOjVo8TF1n3TgScIPSAwsJCDh06RFhYGD4+Pm0ee/jwYY4fP949hfUzIuAEoZup1Wq2b9+OhYUFkydPbvPYc+fOcebMGQwNDbupuv5FBJwgdLPjx4+Tn5/P3Llz0dXVbfW4a9euceDAAcaMGcPw4cO7scL+QwScIHSjW7ducfr0acaNG4eTk1Orx6WkpLBz506GDBnChAkTurHC/kUEnCB0k/r6enbs2IGLiwujR49u9bjs7Gx+/PFHfHx8ePjhh8XT1U4QAScI3WT//v1UV1e3OVqhuLiYH374AXt7exYsWCBGNXSS+O4JQje4fv06V69eZdq0aVhZWbV4TGVlJd999x3GxsYsXbq0zftzQvuIgBOELlZVVcUvv/yCr68vQ4YMafGYuro6fvjhBzQaDcuXLxdPTe8TEXCC0IUkSeKXX35BoVDwyCOPtHg/TaVSsWXLFsrKyli+fDnm5uY9UGn/JAJOELrQlStXSE5OZvbs2RgbGzfbr9Fo2L59O1lZWSxduhQ7O7seqLL/EgEnCF2kuLiYAwcOEBoaysCBA5vtlySJffv2kZiYyIIFC3Bzc+uBKvs3EXCC0AUaW2ampqZMnTq1xWNOnjzJpUuXePjhh/H19e3mCh8MIuAEoQucPHmS3Nxc5s6di56eXrP9V65c4dixY0yYMEFMkdWFRMAJwn2WnZ3NyZMnGTNmTIsrq12/fp09e/YQFhbGmDFjeqDCB4cIOEG4j5RKJdu3b8fR0ZGxY8c223/r1i1++uknAgICmDZtmhil0MVEwAnCfXTo0CEqKip49NFHmy1SVFBQwKZNm3B1dRVrL3QT8R0WhPvkxo0bXLp0iSlTpmBjY9NkX3l5Od9//z0WFhYsWrRIrHnaTUTACcJ9UF1dza5duxgwYADDhg1rsq+mpobvvvsObW1tli9f3u5FxYXOEwEnCJ0kSRK7d+9Go9E0G62gVCrZtGkTtbW1LF++XCzy3c1EwAlCJ0VHR3P9+nUefvhhTE1N5e1qtZqffvqJgoICli1bhrW1dQ9W+WASAScInVBaWsq+ffsYPHgw/v7+8vbGVl1qaiqLFi1qc3JLoeuIgBOEe6TRaNixYwdGRkZMnz69yb4jR44QHR3NnDlz8Pb27qEKBRFwgnCPzpw5Q2ZmJo8++ij6+vry9vPnz3P69GmmTZtGcHBwD1YoiIAThHuQm5vLsWPHGDVqFO7u7vL2uLg49u/fz6hRoxgxYsR9eS9JktBoNPflXA8aEXCC0EENDQ1s374dOzs7xo8fL29PTU1lx44dDB48mEmTJt2X91KpVOzYsYP9+/ffl/M9aETACUIHHTlyhNLSUubOnSuPVsjJyWHr1q14eXndt4ViKisr2bBhAwkJCbi6unb6fA8i0Z1aEDogNTWV8+fPM23aNHlyypKSEn744Qfs7OxYsGBBsyFa9yI7O5stW7agUChYtWqVeAp7j0QLrg1///vfUSgUvPjii20et23bNvz8/DAwMCA4OJjIyMjuKVDoVrW1tezcuRMvLy95Ieaqqiq+++47DA0NWbp0aYtTI3XUtWvX2LBhA+bm5jz55JMi3DpBBFwrLl26xBdffEFISEibx509e5YlS5awevVqrl69ypw5c5gzZw5xcXHdVKnQHSRJYs+ePTQ0NDBnzhwUCgX19fV8//33qFQqli9fjpGRUafeQ6PRcOjQIbZv305QUBArV65s0nFY6DgRcC2oqqpi2bJlfPXVV1haWrZ57EcffcS0adP4/e9/j7+/P3/9618ZOnQoH3/8cTdVK3SH2NhY4uPjmTVrFmZmZs0WirGwsOjU+evr69myZQtnz55l6tSpzJ49WwzIvw9EwLXg2WefZebMme16Enbu3Llmx02dOpVz5861+pr6+noqKirkj6qqqk7XLHSd8vJyIiMjCQ4OJigoCEmS2LFjB5mZmSxZsgR7e/tOnb+kpISvv/6aW7dusWzZMsLDw8U8cfeJ+BPxK1u2bCEqKopLly616/i8vLxm/8Dt7e3Jy8tr9TXr1q3jrbfe6lSdQveQJImdO3eip6fHzJkz5YViEhISWLRoUZM+cPfi5s2bbNu2DSMjI9asWdNsmiWhc0QL7g6ZmZm88MIL/PDDD106pc1rr71GeXm5/HHixIkuey+hc86dO0daWhqPPvooBgYGnD59mosXLzJr1iz8/Pzu+bySJHHhwgW+//57nJ2dRbh1EdGCu8OVK1coKChosgiIWq3m5MmTfPzxx9TX1zfrAuDg4EB+fn6Tbfn5+Tg4OLT6Pvr6+k2G9ogpdHqn/Px8jhw5Qnh4OJ6enkRFRXHkyBHGjx9PaGjoPZ9XpVIRGRlJVFQU4eHhTJ48Wczu20VEwN1h4sSJxMbGNtn2xBNP4Ofnxx/+8IcW+zeFh4dz5MiRJl1JDh06RHh4eFeXK3QhlUrF9u3bsba2ZuLEiSQlJbF7926GDRvW4loL7VVdXc3WrVvJzs5mzpw5DB48+P4VLTQjAu4OpqamBAUFNdlmbGyMtbW1vH3FihU4Ozuzbt06AF544QUiIiJ4//33mTlzJlu2bOHy5ct8+eWX3V6/cP8cO3aMoqIinnzySXJzc+W+jjNmzLjnBwB5eXls3rwZtVrNypUrxeiEbiACroNu3brV5HJi5MiRbNq0iT/96U/88Y9/ZMCAAezcubNZUAp9R3p6OmfPnmXSpEloaWmxadMmXFxcmDdv3j1fSiYkJLBjxw5sbGxYvHgx5ubm97lqoSUKSZKkni7iQRcVFUVoaChXrlwRiwD3sLq6Oj777DMsLCyYM2cOGzZswNDQkCeeeOKeHjxJksTx48c5ceIEQUFBzJ49G11d3S6oXGiJaMEJwh327dtHXV0d06ZNY9OmTWhpad3zQjFKpZIdO3aQmJjIxIkTGT16tOjf1s1EwAktioqKws7ODmdn5wfmlzI+Pp6YmBhmzZpFZGQk1dXVrF69+p6GS5WVlbF582ZKS0tZvHhxp7qUCPdOBJzQjFqt5sSJE5SXl2Nubo6/vz8BAQG4urr227CrqKhgz549+Pn5kZSURF5eHitXrrynhWIyMjLYunUr+vr6rF69utMjHYR7JwJOaEZbW5sXXniBzMxM4uPjiY+P5/z585iamhIQECCHXX/puyVJErt27UJbWxstLS2Sk5NZunQpzs7OHT7XlStX2Lt3L25ubixcuLDTA/CFzhEBJ7RIS0sLd3d33N3dmT59OpmZmSQkJJCQkMCFCxcwMTGRW3bu7u59OuwuXbpEamoqXl5eJCQkMHfuXHx8fDp0DrVazYEDB7h48SIPPfQQ06ZNuy/zwgmdIwJOuCuFQoGbmxtubm5MnTqV7OxsOewuXbqEsbGxHHYeHh59KuwKCws5ePAg5ubm3Lx5kylTptx1iqxfq6mpYdu2bWRkZDBr1qxmK9sLPUcEnNAhCoUCFxcXXFxcmDx5Mjk5OXLYXb58GSMjI/z8/AgICMDT07NXt2LUajXbt2+ntrYWpVLJ6NGjGTlyZIfOUVBQwObNm6mvr2fFihV4eHh0TbHCPREBJ9wzhUKBs7Mzzs7OTJo0iby8PBISEoiPjycqKgpDQ0N8fX0JDAzEy8ur14XdiRMnuH79Ojo6OvKY0I5ISkri559/xtLSkhUrVtx17kCh+4mAE+4LhUKBo6Mjjo6OTJgwgfz8fLllFx0djYGBAb6+vgQEBODt7d3jkzlmZmbKXUHGjh3L7Nmz2/2EWJIkzpw5w5EjR/D19W22LqrQe4iAE+47hUKBg4MDDg4OjB8/nsLCQjnsYmJi0NfXZ+DAgQQEBODj49PtPfsbpxq/desWEydOZOHChe1uXTY0NPDLL78QGxtLREQE48aN67ddZ/oDEXBCl1IoFNjZ2WFnZ8e4ceOahF1sbCx6enpy2A0YMKBbwm7nzp2cOXOG0aNHs3z58nYvFFNRUcGWLVsoLCxkwYIFBAYGdnGlQmeJgBO6la2tLREREURERFBcXCyH3Y8//oiuri4DBgwgICCAgQMH3pcVqn7t2rVrfPfddwwYMICnn34aY2Pjdr0uKyuLLVu2oK2tzapVq3B0dLzvtQn3nxhs3wuIwfa31yVITEwkPj6enJwcdHR0moTd/bjHVV5ezlNPPYVCoeDDDz9sc1LSO8XExPDLL7/g5OTEokWLxASlfYhowQkt2rZtmzwPXuMCx13JysqKUaNGMWrUKMrKyuSW3c8//4y2tjY+Pj4EBATg6+t7TwPfNRoNb7zxBuXl5XzwwQftCjeNRsPhw4c5e/YsQ4YMYebMmT3+cEToGPHTEppRq9Xo6elx8eJFTp48iZ2dHUFBQQQGBt7T2MyOsrCwYOTIkYwcOZLy8nISExPl+dS0tbXx8vIiMDAQX19fDA0N73o+SZL45JNPiImJ4ZVXXiEgIOCur6mrq+Onn34iNTWVadOmMXz4cPEwoQ8Sl6i9QG+9RFWr1aSmphIXF8f169dRKpU4OTnJYdfdkzZWVFTIYXfr1i0UCgVeXl4EBATg5+fX6rjPvXv38v777zNr1ixeeumlu75PcXExmzdvpqqqigULFuDt7X2/vxShm4iA6wV6a8DdqaGhgRs3bhAXF0dycjIqlQpXV1c57Lr7vlRVVZUcdunp6SgUCjw8PAgICMDf319+eBAVFcWbb76Ju7s777///l0fXKSkpPDTTz9hYmLCkiVLuqXFKnQdEXC9QF8IuDvV19eTlJREXFwcqampaDQaPDw8CAoKwt/fv9tn0Kiurm4SdpIk4eHhgbGxMbt27UKj0fD3v/+9zTUQJEni/PnzHDx4EB8fH+bNm9elS0cK3UMEXC/Q1wLuTrW1tSQmJhIXF0daWhoKhQJvb2+CgoLu+YFAZ9TU1HD9+nVOnTrFtm3bKC0tZcaMGcyfPx9/f3/MzMyavUalUrF3716uXr3KqFGjmDhxYp+aMEBoXZ8OOLVazbZt2zh27BgFBQW8/fbbBAcHU15ezpEjRxg1alSfmGywLwfcnRovG+Pi4sjIyJC7egQFBTFgwIAu6dfWksLCQr788kuuXbuGj48Pfn5+pKeno1arcXNzky9jzc3NqaqqYuvWreTm5vLwww8zaNCgbqlR6B59NuDKysqYNm0aFy9exMTEhOrqag4dOsSECRNQq9W4u7uzYsUK3nnnnZ4u9a76S8Ddqby8nISEBOLi4sjOzkZXVxdfX1+CgoLw8fHpsu4WFRUVrF+/nhs3bmBnZ8dvf/tbbGxsqKurIykpiYSEBFJSUlCr1ZiYmHDr1i3s7OxYuXIlLi4uXVKT0HP6bDeRV199lfj4eA4cOMCQIUOa9NXS1tZm/vz5REZG9omA64/Mzc0JDw8nPDyckpIS4uPjiYuLY8uWLRgYGODn50dQUNB9nVKptraW77//nsLCQszNzZk5cyY2NjYAGBgYMGjQIAYNGkR9fT179+7lxx9/pLa2FmNjYyIjIwkMDMTf3x8rK6v7Uo/Q8/pswO3cuZPnnnuOyZMnU1xc3Gz/wIED2bhxY/cXJjRjZWXFmDFjGDNmDIWFhcTFxREXF0d0dDRGRkYEBAQQFBSEm5vbPd/7amhoYPPmzRQXF6Ovr4+Pj0+LE082zgRy7do1FixYwNSpU0lPTychIYHjx49z6NAhHB0d5anZxVPUvq3PBlx5eTmenp6t7m9oaEClUnVjRUJ72NraMn78eMaNG0d+fr4cdpcvX8bU1JTAwEACAwNxcXFpd8dajUbDTz/9RE5ODtbW1lRVVfHII480e319fT07duwgKSmJSZMmMWrUKBQKBUFBQQQFBaFUKklJSSEhIYFTp05x5MgR7O3tCQgIIDAwUG4NCn1Hnw04b29voqKiWt1/8ODBdvVYF3rGnVMqTZw4kezsbOLi4uQFbiwsLAgMDCQoKAgHB4dWw06SJPbs2cONGzcYNGgQV69eZdGiRc2W+istLWXz5s2Ul5ezZMkSBg4c2Oxcenp6csutoaFBDruzZ89y7Ngx7Ozs5P22trZiZEMf0GcDbs2aNfzhD39g3LhxTJw4Ebj9S1NfX8/bb7/N/v37+fLLL3u4SqE97pwGfcqUKdy6dYu4uDiuXr3KmTNn5DGxQUFB2NraNnnt8ePHiYqKYsKECZw5c4bBgwfj7+/f5Jj09HR+/PFHDAwMWLNmTbNztERXVxd/f3/8/f1RqVSkpqaSkJDA+fPnOX78ODY2NnLY2dvbi7DrpfrsU1RJknjqqadYv349FhYWlJWVYW9vT3FxMSqVirVr1/LZZ5/1dJnt0h+fot4ParWatLQ04uPjSUxMpK6uDnt7e3n0RGpqKnv37mXixIncuHGDiooKnnnmmSYzj1y6dIl9+/bh4eHBggUL2jV2tS0qlYq0tDQSEhK4fv06tbW1WFtby2HXVmtT6H59NuAanT59mp9++okbN26g0Wjw9vZm4cKFjB07tqdLazcRcHfX2IpqHBebk5NDZmYm48aNw9/fn4sXL7Jy5Urc3d2B2+G4b98+Ll++zPDhw5kyZcp9XxOiMYAbw66mpgZLS0s57JycnETY9bA+H3D9gQi4jklKSuLjjz9GV1cXHR0dLl26RGhoKAsXLiQgIAAtLS1+/PFHMjMzmTFjBqGhoV1ek1qtJiMjg4SEBBITE6mursbCwkIOO2dnZxF2PUAEXC8gAq798vLy2LBhAy4uLixYsIDPP/+coqIifH19SUtLo7KykpycHGxtbXnmmWfw9fXt9ho1Gk2TsKuqqsLMzEwOO1dXVxF23aTPPmTw9PS86z8ShUJBampqu8/52Wef8dlnn5Geng5AYGAgb7zxBtOnT2/x+I0bN/LEE0802aavr09dXV2731Nov9LSUr7//nusra1ZuHAhx44do6qqiueffx47OzuuXr3K+vXr0dHRwcDAgK1bt+Lj4yOPi+2ula+0tLTw9PTE09OT6dOnk5mZKS+neP78eUxNTfH39ycwMBBXV1cx7rUL9dmAi4iIaBZwjZcJZ86cISgoiCFDhnTonC4uLvz9739nwIABSJLEt99+y+zZs7l69WqrC4yYmZmRlJQkfy7+MneN6upqvv/+e/T09Fi2bBnZ2dmcP3+eadOmYWtry8mTJzl69Chjx45lzpw5KJVKeajY9u3b0dHRYeDAgQQGBjJw4MBuW8lLS0sLd3d33N3dmTZtmhx2CQkJ8jBDf39/AgICcHd3bzHsJElCkiQRhPegX16ixsTEMHXqVL7//nsmTZrUqXNZWVnx7rvvsnr16mb7Nm7cyIsvvkhZWVmn3kNcorZNqVSyceNGKioqWL16NQYGBnz22WfY2NiwePFidu3aRXx8POPGjWvxD195ebk8VCwnJwc9PT15XGxPrdEqSRLZ2dly2JWVlWFsbIyfnx8BAQF4eHigra2NUqlk9+7dGBoaMmPGjG6vs6/rsy24tgwaNIi1a9fyhz/8gStXrtzTORpnKqmuriY8PLzV46qqqnB3d0ej0TB06FDeeeeduy4nV19fT319fZNzCC1Tq9Vs3bqV4uJiVq5ciYWFBT///DNKpZLx48ezYcMGioqK5AcMLTE3N5enQC8pKZFHT8TGxmJgYIC/v788Lra7Wkl39v2bPHkyubm58mXslStXMDIywtnZmZSUFOrr65k5c2a31NXf9MuAA7C3tychIaHDr4uNjSU8PJy6ujpMTEzYsWNHq784vr6+fPPNN4SEhFBeXs57773HyJEjiY+Pb3NminXr1vHWW291uLYHjSRJ7Nq1i/T0dJYvX46joyOxsbHExcUxevRotmzZgo6ODqtXr273CllWVlaMHTuWsWPHUlBQQHx8PLGxsVy9ehVjY+Mm42K763aDQqHAyckJJycnJk6cSF5eHgcPHmTr1q1UVlbK3VtGjRrVLfX0J/3yErW4uJgpU6ZQUVHBjRs3OvRapVLJrVu3KC8v56effuLrr7/mxIkT7Rr21dDQgL+/P0uWLOGvf/1rq8f9ugUXHR1NRESEuET9lQMHDnD+/Hnmz59PYGAg5eXlfPbZZ2hra1NXV4ezszOLFi1q99qmrZEkiby8PLllV15eLo+LDQoK6tYuHpIkcfLkSY4fP46JiQnZ2dlUV1czefJk5s+f3y019Cd9tgU3YcKEFreXlZXJC6R89913HT6vnp4ePj4+AISGhnLp0iU++ugjvvjii7u+VldXlyFDhpCSktLmcfr6+k2e6Il1Nps7e/Ys586dY8aMGQQGBiJJEtu3b+fmzZvY2dkRFhbGzJkz70vnXYVCgaOjI46OjkyaNImsrCw57BrHxTYOFevKYVklJSVs3LiRqKgo+YGZtrY2tra2xMTEiIC7B3024DQaTbN/aAqFAk9PTyZNmsSqVavw8/O7L+9zZ2urLWq1mtjYWHEzuJNiYmI4ePAgY8eOJSwsDIATJ07wyy+/4OHhwSOPPMJDDz3UJUGjUChwdXXF1dWVqVOnkpGRQVxcHFFRUZw+fRobGxs57O5ldhFJkqiuriYtLY3U1FTS09O5desWN2/eJCkpifr6evT19dFoNDg7OzN06FBcXV1Fy/4e9dmAO378+H0/52uvvcb06dNxc3OjsrKSTZs2cfz4cQ4cOADAihUrcHZ2Zt26dQC8/fbbjBgxAh8fH8rKynj33XfJyMhgzZo19722B8WNGzfYtWsXQ4cOZfz48QAkJCTw7rvv4uDgwHPPPYeXl1e31HJnf7YZM2aQlpZGXFwc586d4/jx4zg4OMjjYi0tLeXXqVQqysrKKC0tpbCwkIyMDDIyMsjKyiI3N5eysjLUajUAxsbG6OvrU1FRwZAhQ3B2dkapVDJr1iyxNsR90GcDrisUFBSwYsUKcnNzMTc3JyQkhAMHDjB58mQAbt261eQfXGlpKU8++SR5eXlYWloSGhrK2bNnxTRN9ygrK4sff/yRAQMGMGvWLBQKBYmJibz22muYmJiwbt26JjM3dydtbW18fHzw8fFh5syZXLt2jUuXLskPAoyMjDA1NUWtVlNWVkZlZSVVVVXU1tair6+PoaEhdnZ2DB06FHd3d7y9vfHx8eHq1aucPXuWAQMGUFVVRVFREfPmzZOvPiRJ4vjx46jV6k53eXoQ9ZmHDP/973/v6XUrVqy4z5Xcf6IfHBQVFfHNN99gbW3NihUr0NHR4dy5c3z++efU1tby3nvvyQPpu0NDQ4PcCvv1R0lJCVVVVVRVVVFeXk5JSQklJSXyE09ra2v8/f0JCwvD398fJycn7Ozsmiy6U11dzbZt27h16xbDhw+X7xsvXboUZ2dnJEni6tWrfPnll1y/fp2HHnqId999t9u+/v6iz7TgVq5c2eHXKBSKPhFwD7rKykq+//57jI2NWbp0KQqFgp07d3LixAkAnn/++fsebo33wu4MrTtDrLKyErh9D7aurg4tLS00Gg0NDQ3U1dWhra2NgYEBTk5OuLq64uDggKWlJRUVFWRnZ5OWlkZGRgZaWlro6uo2mfo8OzubrVu3olarmThxImfOnMHIyIg1a9ZgYWFBUlIS33zzDZcvX8ba2pqXX35Z9IO7R30m4NLS0nq6BKEL1NXV8f3336PRaFi+fDkqlYoffviBrKwsdHV1GT9+/D33/2qrFVZaWkpDQ4N8rImJCSYmJigUCgwNDdHS0qK2tpbq6moMDQ1RKBRYWVnh4OCAo6OjPBtx42t+raamRl5C8ZdffmHPnj34+PigpaVFQkICrq6uBAcHc+jQIVxcXFi4cCF5eXl8+umnnD59Gn19fZYvX86iRYu6fSHt/qTPBFx3Xp4I3UOlUrF582YqKipYtWoVVVVVbNmyBbg9LriwsJBHH3201RvtkiRRVVXVaoA1tsIAdHR0sLS0xNLSEg8PD3x9fVEqldTX11NdXU1RURF5eXnysXZ2dnh7e8tBZm9v3+pgfZVKJT80aKStrS0/ba2srCQ2NpYff/yR+Ph4nJ2dUavVXL58mTFjxjBkyBA+//xzTp48SUNDA2PHjmXZsmXymr7tfYrfWdra2j0ybK0r9a+vRugzNBoNP//8Mzk5OaxYsYK8vDx27dqFg4MDISEhREZG8uijj2JkZERBQUGrIXbnwkKmpqZyiHl5eWFpaYm5uTkajYbKykry8/PlDr01NTUAGBoa4uDggJ+fn9wys7a2bnf/OpVKRUJCArW1ta0eU1VVxeHDh9FoNCxevFhewUtPT4+EhAQqKyvR0tIiKCiI6dOn4+HhQW5uLrm5uZ37JneQoaEhAQEB/Srk+vRXkpeXx/r164mKiqK8vByNRtNkv0Kh4MiRIz1UndAaSZKIjIwkKSmJBQsWEBUVxbFjx3Bzc8POzo7//Oc/GBsbc/DgQXbs2CG/TldXVw4wb29v+f8tLS2xsLBAkiTy8/PJzc0lLy+P5ORkCgoK5BC0tLTEwcGB4cOHyy0zMzOzTvWnU6vV1NbWoqur2+QhQqOsrCwOHTqEtrY2c+fO5erVq1RVVTF48GAyMzPJyspCR0cHZ2dnLCws5DVdnZ2du7WLiFKppLa2FrVaLQKuN7h27Rrjxo2jtrYWX19fYmNjCQgIoKysjOzsbLy9vXF1de3pMgVuX2LdeS/sxIkTXLx4ES8vL9544w0KCwvx9vamvLycLVu2oFarmTVrlnzjvvHD2NgYhUIhX5rm5eWRl5dHTEwMeXl5lJSUIEmS3Pu/sTXYGGYGBgZd9jXq6ek1CbjGp6Bnz57FxcWF0aNHs2PHDhISEjAwMKCoqAgzMzMef/xxRo8eTX19PcnJydy4cYPk5GQMDQ0ZMGAAPj4+3Tb1+Z33JPuLPhtwr776KiYmJvLiwXZ2dnz00UdMmDCBbdu28cwzz/DDDz/0dJkPhMZLwNYuI6urq+VjCwsLSU9PJzAwkOrqamxtbXnqqacYMmQIycnJKBQKli9fLg+X02g0lJSUkJ6eLrfM8vLy5HMaGBjg4ODAgAED5CCztbW97+svdIRSqeTIkSOkpKQQGhqKjY0N//znP8nLy8PGxgY9PT1CQkKIiIjAyckJuP2QIzw8nBEjRlBQUMCNGzdISUnh2rVrmJiYEBwc3OJC1kLb+mzAnTlzhldeeQU3NzdKSkoA5EvUBQsWcPr0aX7/+9/LXQ2Ezqmvr281wO7sma9QKDAzM8PS0hJbW1sGDhwot8Dy8/PZvXs3oaGhFBQU4OrqypIlS7CxsaGwsJBDhw7h5eVFWVkZe/bsIS8vj/z8fLllYW5ujoODA8OGDZPDzMLColdNMlpaWkpkZCSVlZWMGjWKxMREvvjiCzQaDe7u7ri5uTFq1Cj8/f1bvARVKBTY29tjb2/PqFGjyM3N7fCEEcL/6bMBp9Fo5KdMFhYWaGtry0EHEBwczPr163uqvD5NkiSOHTvWpG9Y4015uH05ZmVlhaWlJb6+vk0uI83NzVu8h5Oenk5kZCT6+vpkZmbi7OxMeHg4SUlJHDlyhB07dlBRUYFKpSI9PR0bGxscHR0JDAyUn2L29u4SN2/e5NChQ3JI7dy5kxs3bmBiYkJgYCChoaGEhYW1e+r0O6dREu5Nnw04T09PuW9c45jBw4cPs3DhQuD2bBQWFhY9WGHfpVAoSEtLQ1tbGzs7u2YhZmRk1O5WkyRJXL9+nc8//5ysrCw0Gg02NjZoNBqysrLQ09OjtLQUHR0dXnjhBYKDg7Gzs+tTN7olSeLixYucP38etVqNvr4+586dIycnB3t7eyIiIoiIiMDKyuqe30OtVvfoZXdf1Xf+FXG7+d84qHnKlCls27aNv/3tbwA888wzvPzyy9y8eVMev/fyyy/3ZLl9WktTtN+NSqWioKBAvk+Wm5tLeno6Z8+epaioSP5lDw8Ply8xq6qq2LBhA0899VSfWsu2UW1tLb/88gsxMTEYGhri5OREVlYWOTk5+Pn5sWTJEry8vDp8GV1XV0d2djaZmZlkZmbi4OAgj4kW2q9PBZyDgwMzZsxg2bJlvPzyyyxZsoSGhgZ0dXV58cUXqa6u5ueff0ZbW5s///nP/PGPf+zpkvutmpoaOcgaP4qKiuRprGxsbOT7btra2syePZs1a9bg5uYmn6O+vp7vvvtOfsrY16SmpvL3v/+da9eu4e/vj4eHB+fOnaOyspJ58+bx8MMPt7slqlKpyM3NJSsri8zMTAoKCpAkCQsLC1xcXLptBpX+ps8MtgdYtmwZv/zyCzU1NZiamjJ37lyWLVvGhAkTetWN5o7qzYPtJUmirKysSZDl5uZSUVEB3O6bZm9v32QIk52dHZIksW7dOs6dO8eUKVNYvXo15ubmTc79yy+/EBcXx9NPP92py7fuVlNTw/fff8+2bdswNDQkJCSE2tpaLl++jIWFBU899RQDBgxo8xwajYbCwkK5L1xOTg5qtRpDQ0N5PjoXFxfMzMy65WtSKpVUV1czePDgbltesTv0qRbcDz/8QG1tLTt37mTTpk388MMPfPvtt9jb27NkyRKWLVvW6wKiL5IkiQMHDsjdMhqHChkbG+Po6Nikb5mVlVWzp4EqlYo333yT8+fPs3DhQlatWtVsmb6kpCSioqJ45JFH+ky41dbWcurUKTZt2kRmZibDhw/Hx8eHw4cPU1RUREhICMuWLWvx65EkifLycvmSMysri/r6enR1dXFyciI8PBxXV1esra379B/r3qZPteB+rbS0lB9//JFNmzZx+vRpAAYMGMDy5ctZunRpn2nW98YW3HfffSf3MWtsnbVnavX6+npef/11rly5wtq1a1m0aFGzX9iqqio+++wzXFxcWLx4ca//ha6rq+P8+fMcP36ca9euYWxsTFhYGOXl5ZSWlpKRkUFQUBBz5sxp8qS3pqZGvuTMzMyksrJSfsLa2EpzcHC468ODxiFptra2XfY19tcWXJ8OuDtlZ2ezadMmNm/eTHR0NAqFguHDh3P27NmeLu2uemPA3YuysjL+8pe/EBcXxwsvvMAjjzzS7BhJkti8eTPZ2dn85je/6fSCMV1JqVRy4cIF+SFJWVkZRkZGWFhYoKOjg4WFBTk5ORgbGzNz5kx0dXXJycmRA624uBi4vZJXY6A5Ozu3OKTrTmq1mpycHNLT00lPT6esrAx3d/cWv5/382vtjwHXpy5R2+Ls7Mzvf/97pk2bxhtvvMGuXbu4cOFCT5f1wLh16xb//Oc/SUlJ4eWXX251XYqoqCiSk5NZunRprw23hoYGLl68yJkzZ6irq8PMzAyVSoVGo8HIyIiBAweip6dHbGwsAwcOpKamhj179sgPWUxMTOR1FFxcXNrV8q2uriYjI4P09HQyMzNRKpUYGxvj4eHBqFGj2lyGUmhdvwi4W7duya23uLg4JEli5MiRLFu2rKdLeyBERUWxfv16srOz+e1vf9tquJWUlLB//35CQ0MZOHBgN1d5dyqVisuXL3P69GlqamoICQmhtLSUw4cPo1AoGDZsGMOGDeP48eNER0djZ2eHRqOhtLQUDw8PxowZg4uLC5aWlne97JYkiYKCAjnU8vPz5cvXoUOH4uHhgY2NTa+/fO/t+mzAFRUVyfffzp07hyRJ+Pn58fbbb7Ns2TI8PDx6usR+T6PRcODAAfbt20dZWRmPPfZYqzPPajQatm/fjqmpKVOnTu3mStumUqm4evUqJ0+epLq6mkGDBhEcHMxXX33FxYsXsbOzIzg4mKqqKv75z39SU1PDpEmTGDlyJM7OzhQUFGBqanrXS0+lUklmZibp6elkZGRQXV2Nnp4ebm5uhISE4Obm1utHa/Q1fSrgqqur2bFjB5s2beLIkSM0NDTg6OjIiy++KJ6gdrPa2lq2bdvGtWvXUKlUzJw5kzlz5rTa4jh16hQ5OTmsWrXqrkHQXdRqNdHR0Zw8eZKKigqCg4MZPnw4R48eZfny5ZSWljJw4EA8PT3R19cnNTWVwMBA1q5dK/8Bra+vp6ioqNX3KCsrIyMjg7S0NLKzs9FoNFhaWjJw4EDc3d1xcnISIxS6UJ8KODs7O+rq6jAxMWHp0qVyHzixtFr3KiwsZPPmzRQXF6Ojo8PQoUNZsGBBq7+o2dnZnDhxQr6E62kajYZr165x4sQJiouLsbe3Jzg4mMzMTP7zn/+QlpaGg4MDL774IqNHj0ZbW5tdu3YRGBjIsmXL2hwCqFar5REc6enplJaWoqWlhbOzM6NHj8bd3V0MIexGfSrgJk2axLJly3jkkUe6dG4voXXJycn8/PPP6Ovro6+vj62tLUuXLm3Wz62RUqlk+/btODo69vhQLI1GI6+RcPPmTXmpv7y8PK5evUpCQgIajYYXXniB559/Hm1tbeLi4ti2bRuurq4sWrQIQ0PDZuetra0lKytL7hJSX1+PkZERHh4ecv+23tJqfdD0qYDbtWtXT5fwwJIkiTNnznDkyBE8PDzkkQyPPfZYm/eNDh06REVFBUuWLOmxS7GSkhKOHDnC/v37uXXrFmZmZgwYMIDAwEAUCgWxsbHk5ubi7+/PCy+8QEhICJIkcfr0aQ4fPkxISAiPPPKIPOyqcebg5ORk4uPjiYqKkjvsDho0CA8PD+zs7MQDgl6gTwWc0DMaGhr45ZdfiI2NZdSoUWRlZVFdXc2qVauaDb+6040bN7h06RIzZ87Exsam2+qtqakhLS2N1NRUzp8/z7Vr16iqqsLb25s1a9YwfPhwdHR0OHz4MJcuXaK4uJiIiAhWrVolz3Syd+9erly5QkREBOPGjaOhoYGkpCR51t2Kigr5AcGYMWPw8/MTl569kAg4oU0VFRVs2bKFwsJC5s6dy/Xr18nOzmbFihVtrjJfU1PDrl27GDBgQJfPRNvQ0CDfyL958yY5OTmUlJRQVFSElpYWo0aNYt68eXKftWPHjsnB1rhWwuzZs9HX16e+vp5t27Zx8+ZNJkyYgIGBAZs2bSItLQ2VSoWVlRUBAQHyQwKVSiXPKt2VJEkSLcJ7IAJOaFV2djZbtmxBoVCwcuVKoqOjSUxMZNGiRU1mBfk1SZLYvXs3Go2GRx555L7/Ymo0GnJycrh58yY3b94kMzMTtVqNiYmJvG6DiYkJQ4YMYfz48Xh6eqLRaLhw4QLHjx+nvr4eSZKwsrJiypQpjBw5EoVCQVlZGZ988gk3b97Ezc2No0ePoqWlhbu7OxMnTmTgwIFNFnAGmqzqdb8olUoKCwspKCigoKCA3NxcbGxsmDVr1n1/r/5OBJzQomvXrvHLL7/g6OjIokWLuHLlCpcuXeKRRx7Bz8+vzdfGxMTIQWhqatrpWiRJori4WA609PR06urq0NfXx8PDgylTpqCjo0NMTAy3bt3C2dmZCRMmyPOwpaWlsW/fPgoLC/Hw8CAvLw+FQsH8+fNxcHAgNjaWS5cusWPHDhoaGhg+fDiDBg1i4MCBeHl5dekDLaVSSVFRUZNAKy0tRZIkdHR0UCgUcvcSoeNEwAnNNC6aEhQUxKxZs4iJieHYsWNMmDDhrn0NS0tL2bdvH4MHD8bf3/+ea6isrJQvOW/evElFRQXa2tq4uLgQHh6Ol5cXzs7OZGdnc+zYMW7evImjoyNLly5lwIABKBQKSktLOXjwIImJifJaCOfOncPAwICgoCCOHz8ujxnNzMxkwIABrF27Fl9f3y65HFSpVBQVFclBlp+fL4dZ40pgLi4uDB06FBMTE+Lj44mLi8PIyKjNFrPQOhFwQjN6enqMHj0aDw8PUlJS2LNnD2FhYYwZM6bN12k0Gnbs2IGhoSHTp0/v0HvW19eTnp4uB1phYSFwe5LToKAgvLy8cHNzk7tbZGdns3nzZm7cuIGdnR2LFi3Cz88PhUKBUqnk9OnTnD17FiMjI2bNmkVUVBTffPMNBgYGODs7c/XqVby8vBgwYABKpZL58+czf/78+zbQXKVSUVxcLIdZQUEBxcXFSJKElpYWNjY2ODk5MXjwYOzs7LCyskJbWxtJkkhMTGTnzp1kZ2djYGCAk5NTtz6k6U9EwN3hs88+47PPPiM9PR2AwMBA3njjjTZ/Wbdt28af//xn0tPTGTBgAP/4xz9aHYvZV6jVao4fP052djapqakMHTq0XaNEzp49S2ZmJitXrrxrUKjVarKysuRAa7wMs7CwwMvLi4iICDw9PZsNyM/Ly+PYsWMkJSVhY2PDggULCAgIkNdLjY2N5dChQ5SUlMiLJ//tb3+jrKyMoUOHyvfS3N3dOXXqFCdPniQ8PJwZM2bcc4dxtVpNUVERpaWlcpjdObuxtbU1dnZ2BAUFYWdnh7W1dYsz/ZaWlrJ//34uX76MRqPBx8eH4cOHExISIvrR3SMRcHdwcXHh73//OwMGDECSJL799ltmz57N1atXCQwMbHb82bNnWbJkCevWrWPWrFls2rSJOXPmEBUVRVBQUA98BfeHtrY2S5cu5f3338fd3R09PT0+//xzbGxsCAgIICAgAHt7+yaXcbm5uRw7doxRo0bh7u7e7JyNg8sbAy0jIwOlUomhoSGenp7MmDEDLy+vVgeqFxQUcPz4cRISErCysmLu3LkEBQXJodTYort27Rq6urrY2Nhw48YNsrOzcXZ25s033yQkJASFQoFKpeKXX37h2rVrTJ48WX7I0B4ajYaioiJycnLIyckhIyOD6OhotLW10dHRwdLSEnt7e/z9/eUwa60TdCO1Ws2ZM2fYvXs3ZWVlDBw4kPHjx4tguw/6zXxwXcXKyop33323xUVYFi1aRHV1NXv27JG3jRgxgsGDB/P555+3+z1623xwSqWSjz/+GCMjI1auXImOjg43b94kISGBpKQkamtrsbS0lMPO1taWr776Cm1tbZ588km5Q29ZWRk3b96U76VVV1ejo6ODu7s7np6eeHl54eDg0GbLqaioiBMnThAXF4e5uTkREREMGjQILS0tamtriY2NZceOHVy+fBk9PT2CgoIICwujvr6exMREvLy8WLBggTxlUW1tLVu3biUrK4s5c+a0+YdIo9FQXFxMTk4Oubm58n8bGhrkdSdsbW2prKzEzc0NR0fHDgfSjRs3+OGHH7h58yaurq48/PDDDB06tNuDTcwH94BRq9Vs27aN6upqwsPDWzzm3LlzvPTSS022TZ06lZ07d7Z57vr6enkacLg9w21voqenx9SpU3Fzc5OfIA4cOJCBAweiVqtJT08nISGBq1evcubMGXJzc6mrq+Ppp5/m+vXrcqCVlJTIa3sOHToULy8vXF1d27UQS0lJCSdOnODatWuYmpoyc+ZMBg8eTGlpKefOneP69eucP3+etLQ0TExMmD17Ng8//DAODg5ERkaSnJzMqFGjmDx5shy4paWl/PDDD1RXV7NixYomN+4lSaKkpERumTWGmVKpBMDa2honJyf8/f1xcnLCwcFB7jcXHR2NsbFxh0KpuLiYTZs2cenSJczMzHjssceIiIgQLbb7TATcr8TGxhIeHi4P6t+xYwcBAQEtHpuXlycvPt3I3t6evLy8Nt9j3bp1vPXWW/et5q7Q0iU53L589fb2xtvbmylTprB9+3ZOnjyJJEm89tpr6Onp4eXlRVhYGBMnTsTLy6vF8ZutKSsr4+TJk3JoTJ48GSsrK27evMknn3xCaWkpFRUVlJSUoK+vz5NPPsnDDz+MkZERpaWlbNiwgeLiYubNm0dwcLB83sYZn/X19Vm9ejXa2trEx8c3CbO6ujoALC0tcXJyIiIiAicnJxwdHe9bV5HKykr27t3LoUOHAJg+fTqPPvqoGFvdRUTA/Yqvry/R0dGUl5fz008/8fjjj3PixIlWQ+5evPbaa01aftHR0URERNy383cVjUZDbm6u3EJrHAplZ2fH3LlzMTExoba2loyMDG7dukVxcTH+/v4EBATg4eHR5qVoRUUFp06dIioqCkBu6R07doyGhgbMzc1xdHREo9GgVqsJDg5m+vTpODg4AJCSksLPP/+MgYEBa9askf/wSJLE5cuX+f7779HR0cHf35/169dTW1sLgLm5OU5OTowaNUoOs64YlVBZWcnp06fZv38/5eXlDBkyhGXLlomno11MBNyv6Onp4ePjA0BoaCiXLl3io48+4osvvmh2rIODA/n5+U225efny790rWmciaNRe6a07gmNl22NDwbS0tKoq6tDT08PDw8P9PX1eeihh/j973/fZEyqJElkZ2eTkJBAQkICly9fxsjICF9fXwICAvDy8pIvG6uqqjh58iTHjh2jrKwMCwsLDAwMuHXrFq6urkRERODh4UFiYiLnz5/HxMSExYsXN3lyeurUKY4dO4aPjw+TJ0+mtLSUhIQEcnJyOH/+PLGxsdja2vLQQw9hbGzMgAEDcHJywsnJqcunTa+srOTy5cscO3aMnJwcXF1dWbt2Lf7+/q0+2GicY66xA3BRURF2dnZMmDChS2vtj0TA3YVGo2lyv+xO4eHhHDlyhBdffFHedujQoVbv2fUVGo2GPXv2kJqaSnl5OVpaWri4uDBixAi5g21CQgLJycksXry42YB7hUKBi4sLLi4uTJ48mby8PDnsrl69KvftSk9PJzExkfLycuzt7fHx8cHPz4+BAwfi7e2NoaEh165dY+vWrdTW1jJmzBhGjRolP5UsKiriu+++IyYmBmdnZ3Jycvj0008BMDQ0pKSkhMrKSlasWMH8+fO7bY1R+L9gu3z5MpmZmRgbG7Nw4ULGjh0rX45KkkRVVZUcYo2B1jhTi5aWFtbW1tjY2PSKefT6IhFwd3jttdeYPn06bm5uVFZWsmnTJo4fP86BAwcAWLFiBc7Ozqxbtw6AF154gYiICN5//31mzpzJli1buHz5Ml9++WVPfhmdpqWlRV1dHf7+/nh5eeHu7t6kxVleXs7evXsJDg6+a3cYhUIhLwgdEhLCqVOn+PHHH9mwYQNKpRJHR0fGjx/PhAkTGD16tPw+jffMsrKyCAwMZNSoUdTU1HDu3DlycnJITk7m3LlzKJVKhg4dKt/8d3JywtbWloMHD1JXV8dvfvMbwsLCuvT7dafGYIuLi6OgoACNRiP3vzMyMiI9Pb1JmDXe92ucW8/LywtbW1tsbGywtLQUs/12kgi4OxQUFLBixQpyc3MxNzcnJCSEAwcOMHnyZOD24jZ33kcaOXIkmzZt4k9/+hN//OMfGTBgADt37uzTfeAaLVy4sMXtkiSxc+dO9PT0Wl1/oZFKpSIjI4MbN24QHx/PtWvXyMnJwcLCgueee46IiAhKSkpITEzk1KlTnD9/HldXVwoLC0lLS0NfXx9PT0+ys7PlPxoGBgZIkkR6ejrDhg3jiSeewNPTU77cq66uZtOmTRQUFLB48WJ8fX3v7zemFZWVlVy7do2EhAQqKyupqKiQW7J6enrs3r0btVoNgJmZGba2tgwaNEjuamJiYiJmC+kCoh9cL9Db+sG15dy5cxw4cIDHH38cT0/PZvurqqq4ceMGycnJpKamUlNTQ2lpKVVVVVhYWDBlyhTGjRsn3/uqr68nNzeXuLg4eanHqqoqrKys8Pb2JigoiCFDhuDh4YGDgwNRUVGcPXuWwMBAZs+e3aRbRVFRET/88AMNDQ0sXboUJyenLv1eSJJEWloaX375JcnJydTV1VFbW0tVVRVmZmZ4eXnh4uIit8ga/9sb+5mJfnDCA6+goIAjR44QHh4uh5skSeTm5pKcnExycjI5OTny8nfm5ubU1tZib2/PrFmzCAsLo6qqimvXrskdZ4uKiiguLiY9PR0dHR0WLFjAyJEjqa+vJycnh6ysLK5evUp+fj45OTkolUqmT59OeHh4kxZPRkYGW7ZswcTEhMcff/y+Tz7Z2Ok3Ly+PvLw8bt68yYULF+QQt7KyQqFQYGVlxaxZsxg+fDjW1tbiErOHiYDro1QqlXzJ013vt3XrVszMzHjooYeIiYnhxo0bpKSkUFVVhb6+Pt7e3kydOpWKigouXbpEUVERjo6O2Nvbk5yczNmzZ+VpgBwcHLCwsKC8vBwDAwPmzp3LzJkzm02iWVFRwcmTJ/nhhx8oLi4mMDCQ1NRU9PX18fPzw9jYmNjYWHbu3ImbmxuLFi3qdJ8ypVJJfn6+HGZ5eXkUFBTQ0NBAXV0dxcXFlJeXY2lpyaJFi0hLS6OqqgpfX1/Gjh3ba5+KP4jEJWov0NFLVJVKRUJCgtyXqzscPXqUCxcu4O3tTVVVFWq1GgsLC9zc3HByckKhUBAdHc3Vq1cpKyvDyMgIBwcHDA0NsbKyki/PbGxsMDY2JiYmhvj4eMzNzVm+fDnBwcEt3oO6evUqe/fuxd7enhkzZpCTk0NCQgLp6elIkiRPDjl+/HgWLVrU4RZTVVVVkyDLzc2lpKREnvXD1tYWBwcHTExM5P59JiYmhIeHo9FoOH78OCUlJUyaNKnb7vd1BXGJKvQaarWa2tpadHV1u2xoz969eykpKaG8vJzMzExSUlJwcnKivr4ee3t7TExMUKlUZGVlcfLkSXJyclCpVPIK740LrzROAwS3L2eTkpI4evQoSqWShx56CH9//xbnX1OpVPLMGkOHDmXGjBno6Ojg7OzMQw89REVFBevXr+fUqVOYm5uTnJzMt99+S0BAAP7+/s26rmg0GkpKSpqEWV5enjxMTl9fHwcHB3x8fHBwcMDBwQFbW1uqq6vlByD6+vpMnToVZ2dnDhw4QF5eHkOGDMHS0hJLS8su+TkInSMCrg/T09PrkoDTaDRcvHiRyspKlEoleXl56OrqolAouHTpEo2Nfo1GQ01NjXzPzc/PDxsbG1QqFZmZmRQUFMidmquqqoiPj6e8vFzukGtmZoZKpeLXFxEVFRX8+OOP5Obm8vDDDxMaGtpkf319Pb/88guVlZW88cYb+Pr6kpSUREJCAocOHWLv3r2YmZlhZWWFsbExVVVV5Ofn09DQANx+iuno6EhoaKgcZhYWFk1Ctry8nP3793P16lX09fWZMGECgwYN4syZM3z77bfY2dmxZs0abGxsiI6Ovu8/A+H+EAEnNKNQKHB2dqampoacnBysrKwYM2YM7u7uWFpaUlpaSnJyMmVlZTg7O+Pn54ehoSH19fXU1dXJkwlUV1fLfdZycnIwMDDAzc2NkpIS9uzZg1qtRqlUcujQIUxMTDAwMKC6upqYmBg5VMrKyjhz5gwGBgYYGhrS0NDAvn37qKmpYcmSJbi6upKTk0N1dTX6+vqYmpqSnJxMYmIipaWlGBgY4OrqSkhICMOHD8ff37/NoVhlZWWcPn26SbA99NBDZGRk8PXXX1NVVcXEiRMJDw9HW1u71U7gQu8gAk5oRqFQEBoaSnFxMSqVitWrVxMUFERKSgoXL16kpKQET09P5s+f3+rKWo2rTV2+fBkvLy+WLVuGr68vKpWKuro6lEollZWVlJWV4e7ujlqtJioqitjYWKysrBg8eDB1dXXExsbK3S+KioqIjo6WL5PPnz+PUqlER0cHAwMD+V6fm5sbYWFhWFtbU1ZWRnZ2NtevX+f69es4OjoSFBRESEgIrq6ucr/G1oJNqVSye/duYmNj8fLyYsWKFVhZWXXnj0PoBBFwQouCg4PZtGkTgwcPxtDQkM2bN1NcXIybmxuTJk1qNotKo8a+YadPn6aiooKQkBDCwsLkJ5u6urry7CKWlpZYW1sTEBDAwYMHKSsrY+XKlYwbN46ioqIm98ri4uKIj4/H2NiY0aNH4+DggLm5OaamphgbG6Orq0tdXZ0chnV1daSlpVFbW0t9fT3m5uaUlJQQHR3N4cOHUavVGBkZYWNjg1qtpqKiAiMjIwIDA/Hy8qKqqor//ve/REdHo6ury4QJExg8eDCSJFFdXY2BgYHoAtIHiIATmpEkiSNHjlBRUUFxcTH79u3DxcWFefPmtdl5tqSkhFOnTskD5WfNmnXX1k5BQQGRkZHk5eXh7+9PSkoK58+fl6f7trGxoaamhoqKCh555BGeeOKJDt/QlyRJvnxu7Ih79epVDhw4wLVr19BoNLi4uODj44OlpSWZmZlcuXKF/Px8bGxs8PLy4sqVK1y5cqXJefX09NDR0aGoqAhTU1NMTEzke476+voYGBigp6cn//+d+9ozJ16jmpoa6urqRMvxHoiAE5qpq6vj6tWraGtrY2hoyPjx49sc7F1fX8/FixeJiYnB1NRUnn78zpv2kiRRUVFBYWGhPLg8ISGBa9euYWVlxdChQzE1NcXBwYHhw4fLTzFPnTrFqVOnmDNnzj2vm6BQKDAwMJBbkVeuXCEpKQlfX18ef/xxbGxsSElJISEhgaioKPLz83F3d+fpp59m5MiRqFQquVX46/+Wl5eTmJgoT4VeWloq34Osq6trdbk/HR2dJoF3ZyAaGBigo6NDcXExWVlZ5Ofn4+npyeLFizv8tT/oRMAJzRgaGjJt2jScnJxwdXVtdYykRqMhMTGRc+fOoVKp5OnaATnE7pwpo3F2XENDQznswsLCePnll5vNF6dSqdi1axexsbEdXjehJa3dY2t8Cm1qasqtW7ewsLDAx8cHHR0dDh8+zMWLF+U57e68Z9eovr4eS0vLFmf0lSQJlUrVJPDq6+tRKpXy/zfej2wMy8LCQrKysuTZhE1MTLCxsenQpKHC/xEBJ7RoxIgRbe7Pycnh5MmT5ObmYm9vj7u7O6Wlpfz4449yR1mFQoGFhQU2Nja4u7tja2uLqakpZ86coa6ujkcffRR/f3959atGtbW1bNmyhezsbBYsWNDq7MLtcbdgq6ur48iRI1y+fBknJyf+8Ic/4ODggEajITMzk4SEBBITE7lw4QImJib4+fm1awJPuN1y1NXVRVdXt83RDVVVVVy/fp2kpCRUKhXe3t7MnDkTHx8fjI2Nqa+vv+cVvx50IuCEdpEkicrKSjIyMjhx4gRJSUloaWlhb28vD12ysbHB0dGR4OBgbG1tsbKyajYYfs+ePdTV1TFr1iycnJyorq5u8j6N6ybU1NQ0WzehI+4WbACJiYlERkZSX1/PtGnTeOihh+Qg0dLSwt3dHXd3d6ZNm0ZWVhaJiYlNJvD08/PDx8fnnobMNTQ0cPPmTa5fv05mZiZaWlp4e3szevToZi3Frp6Usz8TASc0I0lSsxllCwoKSE9PJzc3F319fQYNGsSgQYOwtbXF1tYWCwuLNlsZycnJHDlyBHNzcxYuXIiFhYV8ydooKyuLzZs3y+smWFtbd7j29gRbRUUFkZGRXL9+HV9fX2bMmNFs5MOdFAoFrq6uuLq6MnnyZHJzc+UJPC9evEhpaSkDBw7E19cXNze3Vh8gNE5MkJiYSEpKSpP58Hx8fPrVEKneQgSc0KIdO3bI3SsaFzY2MTFh+fLljBkzpt0D2jUaDWfOnCE6Olpe77Ol0ReJiYls374dBwcHlixZ0uF1EcrKyjh16hTR0dGtBptGo+Hy5cscOXIEXV1dFi5c2ObU4S1pXCXMycmJiRMncuvWLfbu3UtWVhYpKSnydO4+Pj64ubmhq6tLRUWF3A+vvLwcU1NTBg0ahJ+f332f9URoSgSc0IxCoWDevHk0NDRw/vx5MjMzCQ4OZsyYMR3qqlBTU8P+/fvJyclhzJgxDBo0qMUwuXDhAseOHSMgIIA5c+bcdaHkO7Un2OD2Whm7d+8mKyuLYcOGMWnSpE7POqJQKHBwcCA0NJSxY8dSVVVFSkoKKSkp8lTscLvlZmtri6+vr/xEWkxu2T1EwAnNqFQq4uLiiI2NxczMjFmzZuHh4dGhX8q8vDz27duHWq1mzpw5LXYz0Wg0nD17luLiYiIiIpg0aVK736O9wdbQ0MDJkyc5c+YM1tbWrFq16p7v692NpaUljo6OVFRUkJ+fT11dHZIkoa+vL6/tUV1djVKpFJej3UQEnNCMtrY2paWlhIeHM2jQoA51SgWIi4vjxIkT2NnZMX369BafICqVSg4cOEBycjIrV65k1KhR7Tp3e4MNIC0tjd27d1NeXk5ERASjRo3q8NfSHuXl5cTFxZGamkplZSXm5uaMHj0aX19fzMzMKC8vJzU1ldTUVA4dOoSWlhZubm74+Pjg6ekp1kTtQiLghGYUCgWzZ8/u8GWUSqXixIkTJCQkEBQUxJgxY1oMlOrqavbu3UthYSFTpkxh2LBhdz13R4KtpqaGgwcPEh0djbu7O0uXLr3v64/W1dURHx/P5cuXuXTpktyFxM/PD0dHxybfO3Nzc4YOHcrQoUOprKwkNTWVlJQUjhw5AiCPovDy8uqSNVkfZCLghBZ1NNwqKyuJjIykuLiYiRMntrpQdklJCb/88gtqtZrZs2fftQtEY7A1LjfYVrBJkkRsbCz79+9Ho9HwyCOPMGTIkPt2v0uj0XDz5k1iYmJITExErVbj5ubGhAkT8Pf3b1d3DlNTUwYPHszgwYOpqqqSF9A+fvw4x48fx9nZGW9vb7y8vMTMwPeBCDih0zIzM9m/fz+6urrMmzev1YH4WVlZREZGYmxszLx589DX12/WD67RncFmaGjIpEmTGDZsWKvz35WWlspruQYFBTFt2rT7FhCFhYVER0dz7do1KisrsbW1Zfz48YSEhKCnpycPyO8oExMTQkJCCAkJoaamhps3b5KSksLJkyc5efIkjo6OeHt74+3tjamp6X35Wh40IuCEeyZJElevXuXs2bO4uLgwderUVocUXb9+nSNHjuDk5MSMGTPQ19dv1g8OOh5sGo2Gc+fOcfz4cYyMjFi6dCkDBw7s9NdWU1NDXFwcMTExZGdnY2hoSHBwMIMGDZKnaAfu23xwRkZGBAUFERQUJM+EkpKSwpkzZzh16hT+/v5MmjTpvrzXg0QEnHBPlEolR44cISUlhdDQUEaMGNFiR19Jkrh8+TLnz5/H39+f8ePHtzjNUEeDDW4PF/vll1/Iz89n+PDhTJgwoVMzHKvValJSUoiJiSEpKQlJkhgwYACLFi1iwIABXfKAoiUGBgb4+/vj7+9PfX09aWlp99RCFETACfegtLSUyMhIKisrmT59Oj4+Pi0ep1arOXbsGImJiQwfPpyHHnqo2f2wyspK9u7dS1xcXLuDTalUcuzYMc6fP4+9vT1r1qzB2dn5nr+evLw8YmJiuHbtGtXV1Tg4ODB58mSCg4N7fJhU4+phwr0RASd0yM2bNzl06BBGRkYsXLiw1Y6/SqWSyMhIsrKymDx5crNf0oqKCs6fP8+1a9fw9PRsV7AB3Lhxgz179lBTU8OkSZMYMWLEPU08WV1dTWxsLNHR0eTl5WFsbExISAiDBg3CwcGhw+cTeicRcEK7aDQaLly4IE9BPmnSpFY7q1ZWVrJ7926qqqqYPXs2rq6u8r6KigouX75MQkICurq6PPTQQyxevPiuN9GrqqrYv38/cXFxeHt7M2vWrA5PfKlSqUhOTpbXdFUoFPLoAh8fHzFDbz8kAk64q7q6Og4cOEBmZibh4eGEhoa22vWisLCQ3bt3o6Wlxbx58+QB83cGm4GBASNHjsTX1xelUtlmq63xQcbBgwfR0tJi7ty5ra6h2trrc3JyiImJITY2ltraWpydnZk+fTpBQUFinrV+TgSc0KbCwkJ5SqGHH34Yd3f3Vo9NT09n//79WFhYMGvWLExMTFoMtqCgIPT09FAqlS0+SW1UVFTE7t27ycjIYPDgwUyZMqXdHWErKyu5du0a0dHRFBYWYmpqSmhoqDwDivBgEAEntOr69escO3YMCwsL5syZ0+aUQnFxcRw/fhx3d3emTp1KXV0dR48ebTHY7katVnP69GlOnjyJubk5K1aswMvL666va2ho4Pr168TExJCamoq2tjb+/v5MnToVLy8vMWnkA0gE3B3WrVvH9u3buX79OoaGhowcOZJ//OMf+Pr6tvqajRs38sQTTzTZpq+vT11dXVeX22UaA+batWv4+fkxbty4VrspSJLEuXPnuHLlCsHBwQwePJjTp0/fU7AB3Lp1i927d1NcXMyoUaMYO3Zsm10kJEkiMzOTmJgY4uLiqK+vx83NjVmzZhEYGCjGeT7gRMDd4cSJEzz77LM89NBDqFQq/vjHPzJlyhQSEhLa7C5gZmZGUlKS/Hl/mAqnqKiIiIiINu93qVQqDh8+zI0bNxg8eDBKpZLvv//+noKtrq6Ow4cPc/nyZVxcXFi7dm2rIyLgdr+5xkvQkpISzM3NGTFiBIMGDRKrTwkyEXB32L9/f5PPN27ciJ2dHVeuXGHs2LGtvq5xXrD+Qltbm7lz57YZ1LW1tezdu5fMzEzs7OyIiYm5p2CTJInExESOHDmCUqlkxowZDBs2rMXLSaVSSUJCAjExMaSlpaGnp0dAQAAPP/xwh6dzEh4MIuDa0Dhh4d1aBFVVVbi7u6PRaBg6dCjvvPNOpxZK6Q3aCouysjJ+/PFHUlNTsbCwoLa2tsPBBrcfBBw+fJj6+noCAwOZOXMmZmZmTY6RJIn09HRiYmJISEhAqVTi6enJnDlzCAgI6NTIBaH/EwHXCo1Gw4svvsioUaMICgpq9ThfX1+++eYbQkJCKC8v57333mPkyJHEx8e3upZo4zJyjaqqqu57/V0lOTmZ9evXU1JSQkhIiPz96UjQaDQaYmNjOX36NJIksXr1akJCQpqEaklJCTExMcTExFBWVoaVlRWjRo1i0KBBYppvod1EwLXi2WefJS4ujtOnT7d5XHh4OOHh4fLnI0eOxN/fny+++IK//vWvLb5m3bp1vPXWW/e13q5WXl7O7t27OXToEBYWFqxatYrQ0NAOt6CKioo4evQo+fn5+Pv7ExQUhJ+fHwqFQp5jLSYmhlu3bqGvr09QUBCDBg1qc31WQWiNCLgW/Pa3v2XPnj2cPHmyzRXdW6Krq8uQIUNISUlp9ZjXXnuNl156Sf48OjqaiIiIe663K5WXl3Pp0iWOHTtGTk4Ow4cPZ+XKlR2emLGhoYFLly4RFRWFpaUl8+bNw8bGRp4AMjExUZ5jzdvbm3nz5uHn5ycGmQudIgLuDpIk8dxzz7Fjxw6OHz+Op6dnh8+hVquJjY1lxowZrR6jr6/fZJhTb5zYsLy8XO6gm5ubC8Djjz9OREREh1tSmZmZHDt2jMrKSoYPH87QoUMpLy/n3Llz8roPjo6OjBs3jpCQkGb34QThXomAu8Ozzz7Lpk2b2LVrF6ampuTl5QG3p5xuHNKzYsUKnJ2dWbduHQBvv/02I0aMwMfHh7KyMt59910yMjJYs2ZNj30dnaVSqdi6dSuSJAFgb2/PhAkTCA4O7tB5amtrOX36NNevX8fZ2ZnJkydTWFjIzz//TH5+Pjo6Onh6ejJ79mw8PT3FJahw34mAu8Nnn30GwLhx45ps37BhAytXrgRud0S9swtDaWkpTz75JHl5eVhaWhIaGsrZs2dbnbK7L9DR0WHixImcP3+eyspKpk2bhoeHR7tfL0kSSUlJnDp1Co1Gg6+vLw0NDWzfvh1JkvDw8GD69Ok4OTlRX1+Ps7OzCDehS4iAu0Nji6Utx48fb/L5v/71L/71r391UUU9Q6lUyuE0d+5c7Ozs2v3a8vJyjh07xvXr1zEwMEBPT4+kpCRsbGwYOXIkAwcOlDtNK5XK+zYjriC0RASc0Iyenh5hYWG4urq2ey0AtVrNhQsX2L9/P2VlZdja2mJjY4Ovry9+fn5igLvQI0TACS1q7yW2SqXi8uXL/PLLL2RmZuLo6MikSZMICgrC3d1dzLEm9CgRcEKHSZJEQUEBsbGxHDlyhKysLBwcHFi9ejXDhw8Xc6wJvYYIOKHdqqqqSEpK4vr166SmppKbm4uFhQWrV69m7NixYjoiodcRASe0qaGhgZs3b3L9+nUyMzNRqVTU1dWhUCiYOnUq48ePb3OeOEHoSSLghGYkSSI3N5fr169z48YNlEolDg4OuLq6kp2djYmJCWPGjGHgwIGie4fQq4mAE5rRaDTs3bsXXV1dBg0ahL29PVFRUdy6dQt/f39Gjx4tJpIU+gQRcEIz2traLFiwAGNjY6KiooiMjMTMzIw5c+Y0WSFLEHo7EXBCi6qrq9mzZw9lZWWEhoby0EMPddvK7oJwv4h/sUIzDQ0N7Nu3D3Nzc5YsWSIv/ScIfY0IOKEZXV1d5s2bh4WFhXiIIPRpIuCEFnV01XhB6I1Ez0xBEPotEXCCIPRbIuAEQei3RMAJgtBviYATBKHfEgEnCEK/JbqJCK0qKCigsLCwy87f0NBAbW0tkiT12RXqlUolSUlJGBoadukSh7a2th2aOl64TSG1ZyECoUvl5ubyxRdfsHbtWhwdHXu6HADq6+uZOnUqJ06c6OlSBCAiIoIDBw40WW5SuDsRcEKLKioqMDc358SJE71y3dYHSVVVFREREZSXl4s1YztIXKIKbRo8eLD4pephFRUVPV1CnyUeMgiC0G+JgBMEod8SASe0SF9fn7/85S/ipnYvIH4W9048ZBAEod8SLThBEPotEXCCIPRbIuAEQei3RMAJXS49PR2FQsHGjRt7uhThASMCrpdJTU1l7dq1eHl5YWBggJmZGaNGjeKjjz6itra2y943ISGBN998k/T09C57j/b429/+xiOPPIK9vT0KhYI333yzR+tpL4VC0a6P48ePd/q9ampqePPNNzt0rr76fe0sMZKhF9m7dy8LFixAX1+fFStWEBQUhFKp5PTp0/z+978nPj6eL7/8skveOyEhgbfeeotx48bh4eHRJe/RHn/6059wcHBgyJAhHDhwoMfq6Kjvvvuuyef//e9/OXToULPt/v7+nX6vmpoa3nrrLQDGjRvXrtf01e9rZ4mA6yXS0tJYvHgx7u7uHD16tMmg+2effZaUlBT27t3bgxX+H0mSqKurw9DQ8L6fOy0tDQ8PD4qKirC1tb3v5+8qy5cvb/L5+fPnOXToULPtPaWvfl87S1yi9hL//Oc/qaqqYv369S3OKOLj48MLL7wgf65SqfjrX/+Kt7c3+vr6eHh48Mc//pH6+vomr/Pw8GDWrFmcPn2asLAwDAwM8PLy4r///a98zMaNG1mwYAEA48ePb3Y51XiOAwcOMGzYMAwNDfniiy8AuHnzJgsWLMDKygojIyNGjBjRqSDuydZjV9NoNHz44YcEBgZiYGCAvb09a9eupbS0tMlxly9fZurUqdjY2GBoaIinpyerVq0Cbt/PbAyot956S/5Z3e2Ssz9/X9siWnC9xO7du/Hy8mLkyJHtOn7NmjV8++23zJ8/n5dffpkLFy6wbt06EhMT2bFjR5NjU1JSmD9/PqtXr+bxxx/nm2++YeXKlYSGhhIYGMjYsWN5/vnn+fe//80f//hH+TLqzsuppKQklixZwtq1a3nyySfx9fUlPz+fkSNHUlNTw/PPP4+1tTXffvstjzzyCD/99BOPPvro/fsG9QNr165l48aNPPHEEzz//POkpaXx8ccfc/XqVc6cOYOuri4FBQVMmTIFW1tbXn31VSwsLEhPT2f79u3A7XnhPvvsM5555hkeffRR5s6dC0BISEhPfmm9lyT0uPLycgmQZs+e3a7jo6OjJUBas2ZNk+3/8z//IwHS0aNH5W3u7u4SIJ08eVLeVlBQIOnr60svv/yyvG3btm0SIB07dqzZ+zWeY//+/U22v/jiixIgnTp1St5WWVkpeXp6Sh4eHpJarZYkSZLS0tIkQNqwYUO7vj5JkqTCwkIJkP7yl7+0+zW9ybPPPivd+et16tQpCZB++OGHJsft37+/yfYdO3ZIgHTp0qVWz92Z701f/752lLhE7QUap8MxNTVt1/GRkZEAvPTSS022v/zyywDNLhEDAgIYM2aM/LmtrS2+vr7cvHmz3TV6enoyderUZnWEhYUxevRoeZuJiQlPPfUU6enpJCQktPv8/d22bdswNzdn8uTJFBUVyR+hoaGYmJhw7NgxACwsLADYs2cPDQ0NPVhx/yACrhdonG+tsrKyXcdnZGSgpaWFj49Pk+0ODg5YWFiQkZHRZLubm1uzc1haWja799MWT0/PFuvw9fVttr3x0vbXdTzIbty4QXl5OXZ2dtja2jb5qKqqoqCgALg9c++8efN46623sLGxYfbs2WzYsKHZvVWhfcQ9uF7AzMwMJycn4uLiOvQ6hULRruO0tbVb3C51YJ6Frnhi+iDRaDTY2dnxww8/tLi/8cGBQqHgp59+4vz58+zevZsDBw6watUq3n//fc6fPy9mV+4gEXC9xKxZs/jyyy85d+4c4eHhbR7r7u6ORqPhxo0bTR4E5OfnU1ZWhru7e4ffv71h+es6kpKSmm2/fv26vF+4zdvbm8OHDzNq1Kh2/bEYMWIEI0aM4G9/+xubNm1i2bJlbNmyhTVr1tzTz+pBJS5Re4lXXnkFY2Nj1qxZQ35+frP9qampfPTRRwDMmDEDgA8//LDJMR988AEAM2fO7PD7GxsbA1BWVtbu18yYMYOLFy9y7tw5eVt1dTVffvklHh4eBAQEdLiO/mrhwoWo1Wr++te/NtunUqnk73tpaWmzlvXgwYMB5MtUIyMjoGM/qweVaMH1Et7e3mzatIlFixbh7+/fZCTD2bNn2bZtGytXrgRg0KBBPP7443z55ZeUlZURERHBxYsX+fbbb5kzZw7jx4/v8PsPHjwYbW1t/vGPf1BeXo6+vj4TJkxoc6m6V199lc2bNzN9+nSef/55rKys+Pbbb0lLS+Pnn39GS6vjfz+/++47MjIyqKmpAeDkyZP87//+LwCPPfZYn20VRkREsHbtWtatW0d0dDRTpkxBV1eXGzdusG3bNj766CPmz5/Pt99+y6effsqjjz6Kt7c3lZWVfPXVV5iZmcl/2AwNDQkICGDr1q0MHDgQKysrgoKCCAoKavX9++v39a56+jGu0FRycrL05JNPSh4eHpKenp5kamoqjRo1SvrPf/4j1dXVycc1NDRIb731luTp6Snp6upKrq6u0muvvdbkGEm63cVj5syZzd4nIiJCioiIaLLtq6++kry8vCRtbe0mXUZaO4ckSVJqaqo0f/58ycLCQjIwMJDCwsKkPXv2NDmmI91EIiIiJKDFj5a6sPRWv+4m0ujLL7+UQkNDJUNDQ8nU1FQKDg6WXnnlFSknJ0eSJEmKioqSlixZIrm5uUn6+vqSnZ2dNGvWLOny5ctNznP27FkpNDRU0tPTa1e3j/7yfe0oMaOvIAj9lrgHJwhCvyUCThCEfksEnCAI/ZYIOEEQ+i0RcIIg9Fsi4PqYf/7zn/j5+aHRaHq6lE579dVXGT58eE+Xcc/Ez6IP6Ol+KkL7lZeXS1ZWVtI333wjb+P/92V67733mh2/YcOGu069014///yztHDhQsnT01MyNDSUBg4cKL300ktSaWlpi8fv2rVLGjJkiKSvry+5urpKb7zxhtTQ0NDkmNzcXElfX1/atWtXp+vrbuJn0TeIgOtD/vWvf0lmZmZSbW2tvK3xl8re3l6qrq5ucvz9/KWytraWgoODpT//+c/SV199JT3//POSnp6e5OfnJ9XU1DQ5NjIyUlIoFNL48eOlL7/8UnruueckLS0t6emnn2523oULF0pjxozpdH3dTfws+gYRcH1ISEiItHz58ibbAGnw4MESIL3//vtN9t3PX6qWert/++23EiB99dVXTbYHBARIgwYNatJKeP311yWFQiElJiY2Ofann36SFAqFlJqa2ukau5P4WfQN4h5cH5GWlsa1a9eYNGlSs32jRo1iwoQJ/POf/+yypQVbWr2pcUryxMREeVtCQgIJCQk89dRT6Oj831Dn3/zmN0iSxE8//dTkHI1fz65du7qg6q4hfhZ9hwi4PuLs2bMADB06tMX9b775Jvn5+Xz22Wdtnqe+vr7JjLJtfdxNXl4eADY2NvK2q1evAjBs2LAmxzo5OeHi4iLvb2Rubo63tzdnzpy56/v1FuJn0XeI2UT6iMY51lqaWRdgzJgxjB8/nnfffZdnnnmm1TnHNm/ezBNPPNGu95TuMkz5H//4B9ra2syfP1/elpubC9DiymCOjo7k5OQ02+7l5dWnpjcXP4u+QwRcH1FcXIyOjk6bM7q++eabRERE8Pnnn/O73/2uxWOmTp3KoUOHOl3Ppk2bWL9+Pa+88goDBgyQtzdelunr6zd7jYGBgbz+xJ0sLS2btSZ6M/Gz6DtEwPUjY8eOZfz48fzzn//k6aefbvEYR0fHFv+id8SpU6dYvXo1U6dO5W9/+1uTfY2tlZbWEGhtsWhJkvrdLLXiZ9E7iIDrI6ytrVGpVFRWVra5+tZf/vIXxo0bxxdffCGv0HSn2tpaysvL2/WeDg4OzbbFxMTwyCOPEBQUxE8//dTk5jX83+VQbm4urq6uTfbl5uYSFhbW7JylpaVN7h31duJn0XeIhwx9hJ+fH3D7CV5bIiIiGDduHP/4xz9afIq3detWueVwt49fS01NZdq0adjZ2REZGdniJVrj9NqXL19usj0nJ4esrCx5/53S0tKarC3R24mfRd8hWnB9RONCNJcvX77rKuZvvvkm48aN48svv2y2717v++Tl5TFlyhS0tLQ4cOCAvArUrwUGBuLn58eXX37J2rVr5RW9PvvsMxQKRZOb4ADl5eWkpqbyzDPPdLimniJ+Fn2HCLg+wsvLi6CgIA4fPsyqVavaPDYiIoKIiAhOnDjRbN+93veZNm0aN2/e5JVXXuH06dOcPn1a3mdvb8/kyZPlz999910eeeQRpkyZwuLFi4mLi+Pjjz9mzZo1zVoHhw8fRpIkZs+e3eGaeor4WfQhPdfHWOioDz74QDIxMWkyHAeQnn322WbHHjt2TB46dD96z0PL8/kDzdZ2kCRJ2rFjhzR48GBJX19fcnFxkf70pz9JSqWy2XGLFi2SRo8e3en6upv4WfQNIuD6kLKyMsnKykr6+uuve7qU+yI3N1cyMDCQdu7c2dOldJj4WfQN4iFDH2Jubs4rr7zCu+++2y+m6Pnwww8JDg7uk5dE4mfRN4hVtQRB6LdEC04QhH5LBJwgCP2WCDhBEPotEXCCIPRbIuAEQei3RMAJgtBviYATBKHfEgEnCEK/JQJOEIR+SwScIAj9lgg4QRD6LRFwgiD0WyLgBEHot0TA9QK5ubm8+eab8jqWgiDcHyLgeoHc3FzeeustEXCCcJ+JgBMEod8SAScIQr8lAk4QhH5LBJwgCP2WCDhB6OWUSiVnz55FqVT2dCl9jgg4Qejlzp8/z4YNG7hw4UJPl9LniIAThF6svr6eAwcOkJaWxv79+6mvr+/pkvoUEXCC0ItduHCB5ORkQkJCSE5O5uLFiz1dUp8iAk4QeqnG1puenh5mZmbo6emJVlwHiYAThF7q6tWrpKamUl1dTXx8PNXV1aSmpnL16tWeLq3P0OnpAgRBaJmrqyvLli1rcbvQPiLgBKGXcnZ2xtnZuafL6NPEJaogCP2WCDhBEPotEXCCIPRbIuAEQei3RMAJgtBviYATBKHfEgEnCEK/JQJOEIR+SwScIAj9lgg4QRD6LRFwgiD0WyLgBEHot0TACYLQb4mAu8PJkyd5+OGHcXJyQqFQsHPnzjaPP378OAqFotlHXl5e9xQsCEKbRMDdobq6mkGDBvHJJ5906HVJSUnk5ubKH3Z2dl1UoSAIHSHmg7vD9OnTmT59eodfZ2dnh4WFxf0vSBCEThEtuPtg8ODBODo6MnnyZM6cOXPX4+vr66moqJA/qqqquqFKQXjwiIDrBEdHRz7//HN+/vlnfv75Z1xdXRk3bhxRUVFtvm7dunWYm5vLHxEREd1UsSA8WBSSJEk9XURvpFAo2LFjB3PmzOnQ6yIiInBzc+O7775r9Zj6+vomKyNFR0cTERHBlStXGDp06L2WLAjCr4h7cPdZWFgYp0+fbvMYfX199PX15c9NTEy6uixBeCD1qktUtVrNli1bWLt2LY8++iixsbEAlJeXs337dvLz83u4wruLjo7G0dGxp8sQBIFe1IIrKytj2rRpXLx4ERMTE6qrq3nuueeA2y2c559/nhUrVvDOO+90WQ1VVVWkpKTIn6elpREdHY2VlRVubm689tprZGdn89///heADz/8EE9PTwIDA6mrq+Prr7/m6NGjHDx4sMtqFASh/XpNC+7VV18lPj6eAwcOcPPmTe68Naitrc38+fOJjIzs0houX77MkCFDGDJkCAAvvfQSQ4YM4Y033gAgNzeXW7duyccrlUpefvllgoODiYiIICYmhsOHDzNx4sQurVMQhPbpNS24nTt38txzzzF58mSKi4ub7R84cCAbN27s0hrGjRtHW89cfv3+r7zyCq+88kqX1iQIwr3rNS248vJyPD09W93f0NCASqXqxooEQejrek3AeXt7t9l/7ODBgwQEBHRjRYIg9HW9JuDWrFnDN998w9atW+XLRIVCQX19Pa+//jr79+9n7dq1PVylIHQ/pVLJ2bNnUSqVPV1Kn9Nr7sG98MILxMfHs2TJEnlc59KlSykuLkalUrF27VpWr17ds0UKQg84f/483333HWq1mjFjxvR0OX1Krwk4hULBV199xeOPP85PP/3EjRs30Gg0eHt7s3DhQsaOHdvTJQpCt6uvr+fAgQOkpaWxf/9+wsLCmnQSF9rWawKu0ejRoxk9enRPlyEIvcKFCxdITk4mJCSE5ORkLl68KFpxHdBr7sGlpaWxe/fuVvfv3r2b9PT07itIEHpYY+tNT08PMzMz9PT02L9/f5NxzELbek3A/c///A///ve/W93/ySef8Oqrr3ZjRYLQs65evUpqairV1dXEx8dTXV1NamoqV69e7enS+oxec4l67tw5XnzxxVb3T5w4kQ8//LDb6hGEnubq6sqyZcta3C60T68JuNLSUkxNTVvdb2Ji0uIIB0Hor5ydnXF2du7pMvq0XnOJ6ubm1uZsuKdOncLFxaUbKxIEoa/rNQG3ZMkSNm/ezL///W80Go28Xa1W89FHH7F161aWLl3agxUKgtDX9JoZfevr65k5cyZHjx7F1tYWX19f4PaKVYWFhYwbN459+/b1yz5AUVFRhIaGihl9BeE+6zUtOH19fQ4ePMj69esJCwujqKiIoqIiwsLC+Oabbzh8+HC/DDdBELpOr3nIAKClpcUTTzzBE0880dOlCILQD/SaFpwgCML91qtacAcOHGD9+vXcvHmT0tLSZpNPKhQKUlNTe6g6QRD6ml4TcO+++y6vvvoq9vb2hIWFERwc3NMlCYLQx/WagPvoo4+YMGECkZGR6Orq9nQ5giD0A73mHlxpaSnz588X4SYIwn3TawIuLCyMpKSkni5DEIR+pNcE3Keffsr27dvZtGlTT5ciCEI/0WvuwS1atAiVSsVjjz3GM888g4uLC9ra2k2OUSgUxMTE9FCFgiD0Nb0m4KysrLC2tmbAgAE9XYogCP1Erwm448eP93QJgiD0M73mHpwgCML91qsCrqKigr///e9MnTqVIUOGcPHiRQBKSkr44IMPSElJ6eEKBaH7iXVR712vuUTNysoiIiKCzMxMBgwYwPXr16mqqgJu35/74osvyMjI4KOPPurhSgWhe4l1Ue9dr2nB/f73v6eyspLo6GhOnDjRbBzqnDlzOHz4cA9VJwg949froooVtTqm1wTcwYMHef755wkICEChUDTb7+XlRWZmZg9UJgg9p6V1UYX26zUBV1tbi62tbav7Kysru7yGkydP8vDDD+Pk5IRCoWDnzp13fc3x48cZOnQo+vr6+Pj4sHHjxi6vU3gwiHVRO6/XBFxAQAAnT55sdf/OnTsZMmRIl9ZQXV3NoEGD+OSTT9p1fFpaGjNnzmT8+PFER0fz4osvsmbNGg4cONCldQoPhrutiyoePtxdr3nI8OKLL/L4448TEhLCggULANBoNKSkpPDWW29x7tw5fv755y6tYfr06UyfPr3dx3/++ed4enry/vvvA+Dv78/p06f517/+xdSpU7uqTOEBcbd1UcXDh7vrNQG3fPlyMjIy+NOf/sTrr78OwLRp05AkCS0tLd555x3mzJnTs0X+yrlz55g0aVKTbVOnTm1zAWtBaK+21kX99cOHsLAwsWZJC3pNwAG8/vrrPPbYY/z888+kpKSg0Wjw9vZm7ty5eHl59XR5zeTl5WFvb99km729PRUVFdTW1mJoaNji6+rr65vcR2nsDiMILVEqlVy+fJlhw4ahp6cHtPzwQbTimusVAVdTU8OYMWN48sknefrpp/nd737X0yV1qXXr1vHWW2/1dBlCH/HrS9HWHj6IVlxzveIhg5GREWlpaS12D+nNHBwcyM/Pb7ItPz8fMzOzVltvAK+99hrl5eXyx4kTJ7q6VKGPagyzmzdvyk9Q7/bwQfg/vaIFB7fvtx04cIC1a9f2dCntFh4eTmRkZJNthw4dIjw8vM3X6evrN/lLa2Ji0iX1CX1f46VocHCwfCnq5eXV5sMH4f/0moD785//zIIFC3jsscdYu3Ytnp6eLbaCrKysuqyGqqqqJuNd09LSiI6OxsrKCjc3N1577TWys7P573//C8DTTz/Nxx9/zCuvvMKqVas4evQoP/74I3v37u2yGoUHx68vRQsLC9m/fz9vvPEGDz/8cE+X1yf0moALDAwEICEhoc1ZfdVqdZfVcPnyZcaPHy9//tJLLwHw+OOPs3HjRnJzc7l165a839PTk7179/K73/2Ojz76CBcXF77++mvRRUS4LxovRevq6oiPj0etVsuXoiNGjOjp8vqEXhNwb7zxRo/fgxs3blyzMbB3ammUwrhx48S9D6FL3NkPrqGhQV6QSVyKtl+HAs7T07PDIdTexZrffPPNDp1XEPq7O/vBVVdXY2xs3MMV9T0dCriIiIhmAXf58mXi4+MJCAjA19cXgKSkJBISEggKCiI0NPSeCisvL8fExKTZugyC8CDqylsz/ZrUCTt27JAsLCykw4cPN9t38OBBycLCQtq5c2e7z3fp0iVp6tSpkqGhoaStrS0dOXJEkiRJKiwslB555BHp2LFjnSm317py5YoESFeuXOnpUoReqqSkpKdL6JM61Q/ujTfe4LnnnmPixInN9k2ePJnf/va3/OlPf2rXuc6ePcvo0aO5ceMGy5cvR6PRyPtsbGwoLy/niy++6Ey5gtBnNTQ09HQJfVKnAu7GjRtYW1u3ut/a2rpd998A/vjHP+Lv709CQgLvvPNOs/3jx4/nwoUL91yrIPRltbW1PV1Cn9SpgPP29mbDhg0tjqWsrKzkm2++afcY0kuXLvHEE0+gr6/f4oMMZ2dn8vLyOlOuIPRZFRUVPV1Cn9SpbiL/+7//y/z58/Hz82PlypX4+PgAt1t23377Lfn5+Wzbtq1d59LV1W1yWfpr2dnZose/8MCqq6ujrq4OAwODni6lT+lUwM2ZM4fIyEj+8Ic/NLusHDx4MOvXr293p9cRI0bw008/tTjVUHV1NRs2bCAiIqIz5QpCn1ZaWoqjo2NPl9GndLqj75QpU5gyZQp5eXlkZGQA4O7ujoODQ4fO89ZbbxEREcHMmTNZsmQJADExMdy8eZP33nuPwsJC/vznP3e2XEHos8rKykTAddB9G8ng4ODQ4VC70/Dhw4mMjOSZZ55hxYoVALz88svA7Xt9kZGRhISE3JdaBaEvKisrA1qeH05oWaenS7p16xZPP/00vr6+WFlZyesqFBUV8fzzz7c6jKmioqJZ58UJEyaQlJREVFQUW7duZfPmzVy8eJHk5GRxeSo88AoLC4Hb88Nt2LBB9Cpoh04FXEJCAkOGDGHr1q14enpSXl6OSqUCbvddO336NB9//HGLr7W0tGTr1q3y56tWrZJ/YIMHD2bBggUsWrSIYcOG9fgYVUHoDQoLC6mqqhLrpHZApwLulVdewcLCguTkZL7//vtmA9VnzpzJqVOnWnytnp5ekx/Oxo0b291nThAeRGq1mr1794p1UjugU/fgTp48yRtvvIGtrS3FxcXN9ru5uZGdnd3ia/38/Pj666/x8PDA3NwcgPT0dKKiotp8z6FDh3amZEHosxoaGti5c6eYqrwDOhVwGo0GIyOjVvcXFha2+o1ft24dixYtklelUigU/PnPf271SakkSSgUCjHoWHjgDB06lPT0dHR1dXFzc8PW1pb4+HgaGhrE/HB30amAGzp0KHv37uU3v/lNs30qlYotW7a0+o2fNm0aaWlpXLp0ifz8fFauXMlTTz111+m+BeFBk5mZSWlpKUZGRoSFhWFtbd3k3rSYH651nQq41157jVmzZvHMM8+wePFi4PaiK4cPH+add94hMTGx1YcM165dw93dXe4IvGHDBhYsWNDiwH1BeFDV19dTV1cH3L4HFxAQgK6uLt7e3vIs2ELrOvWQYfr06WzcuJGtW7cyYcIE4PYCzlOmTCEqKor//ve/jB07tsXXDhkyRKxdIAh3ceHCBblngkajIT09HbjdVaSl+95CU53u6PvYY48xd+5cDh06xI0bN+TFmqdOnYqpqWmrrzM0NKSmpkb+/MSJEzz55JOdLUcQ+o3GRWcaL0UlSSI+Ph4PDw8ADh48yKOPPirGp7bhngOupqYGV1dXXn31VX7/+98zZ86cDr1+0KBBfPDBB2hra8tPUS9dunTXH9bcuXPvtWRB6FMaF525s/tVYWEhmZmZeHl5UVlZycGDB5kxYwY6Or1meZVe5Z6/K0ZGRujo6NzzPPEfffQR8+fPZ/Xq1cDtp6gfffQRH330UauvEU9RhQdJ46Izhw4doq6uDn19fcLCwrC0tJSPycvL48CBA0yZMkVelEb4P52K/Xnz5vHTTz/xzDPPdHi0wbBhw0hJSSE1NZX8/HzGjRvH66+/LncbEYQHXeOiM43rA+vq6jJo0KBmx2VnZ7Nnzx6mTJkiFqb5lU4F3OLFi/nNb37D+PHjefLJJ/Hw8GhxsebWOufq6Ojg6+uLr68vjz/+OLNmzWL48OGdKUkQHigqlYqMjAxUKhU///wz48ePF91G7tCpgBs3bpz8/y0NyepI59wNGzZ0phRB6Lca78H9eigkwM2bN7lw4QIajYYBAwawb98+goODCQsLEyvS0cmA60wovf322ygUCl5//XW0tLR4++237/qaxtEOgvAgUSqVQPOlAxsaGkhISKCoqEh+uqqrq0tsbCx5eXlMnjz5gZ8FWyG19GehG2hpaaFQKKitrUVPTw8trbt3yeuvDxmioqIIDQ3lypUrYqyt0ER9fT02NjZUVVWhr6/P+++/Lz9MSE5O5tixY1haWlJaWsqECRMYMGCA/FojIyOmTZuGjY1NT5Xf4zo9H9y90mg0qNVqecI+jUZz14/+GG6C0JbWOvo2tt60tbUxNDREW1tbHp/aqKamhj179pCfn98TpfcKHbpEXbVqFQqFgi+//BJtbW1WrVp119coFArWr19/zwUKwoOqrY6+mZmZFBYW0tDQQE5ODmq1ukkfuUZKpZLIyEimT5/eqRm3+6oOBdzRo0fR0tJCo9Ggra3N0aNH79o9pCPdRxITE0lNTaWyshJTU1N8fHzw8/PrSImC0G+01dHX0tKSsLCwZq+5s49co4aGBvbt2/dAhlyHAq6xedza5/fqiy++4G9/+1uLc8e5ubnx+uuvs2bNmvvyXoLQV7TV0bfxo70aQ27atGkP1MI1PT6+43/+53/44IMPsLKyYtWqVQQFBWFiYkJVVRWxsbHs3LmTtWvXcuPGDf7xj3/0dLmC0G2cnZ1Rq9XyesEajQZXV9cOBdud7mzJPSgh12MPGQAuXrzIBx98wKOPPkpGRgZfffUVL7zwAqtXr+aFF17g66+/JiMjg0ceeYT33nuPy5cvd0tdn3zyCR4eHhgYGDB8+PA2p4XeuHEjCoWiyYcY/Cx01sWLF3n44Yfx8PCQV9Oqra3lj3/8I5988sk9Xz2pVCr2799PXl7efau1pKSEZcuWYWZmhoWFBatXr6aqqqpdr5UkienTp6NQKNi5c2eTfZcuXWLixIlYWFhgaWnJ1KlTiYmJ6VBtnQ64ffv2MXnyZKytrdHR0UFbW7vZR2vWr1+Po6MjmzZtanWIibGxMZs3b8be3r5bHlZs3bqVl156ib/85S9ERUUxaNAgpk6dSkFBQauvMTMzIzc3V/5oXB9WEO7F9u3bGTVqFPv27WvWuVeSJOLi4vjHP/5x1+n9W9PYkmtcpas9xo0bx8aNG1vct2zZMuLj4zl06BB79uzh5MmTPPXUU+0674cfftjiffqqqiqmTZuGm5sbFy5c4PTp05iamjJ16tQmT4rvplMB9/PPPzNr1izy8/NZvHgxGo2GJUuWsHjxYgwNDQkJCeGNN95o9fXnzp1jwYIFd51P3sDAgAULFnDmzJnOlNsuH3zwAU8++SRPPPEEAQEBfP755xgZGfHNN9+0+hqFQiGvC+vg4IC9vX2X1yn0TxcvXmTRokWo1epWu0U1dpv66quv7rkl19DQQGRkJEVFRZ2o9vaDwf379/P1118zfPhwRo8ezX/+8x+2bNlCTk5Om6+Njo7m/fffb/F36/r165SUlPD222/j6+tLYGAgf/nLX8jPz+9QA6JTAbdu3TrCwsK4evUqb731FnC7K8kPP/xAXFwcubm5eHp6tvr6zMxM/P392/VeAQEBZGZmdqbcu1IqlVy5cqXJgH8tLS0mTZrEuXPnWn1dVVUV7u7uuLq6Mnv2bOLj49t8n/r6eioqKuSP9jbnhf7vf//3f5EkqcVhWS2JjIy85/eqr69n7969nQq5c+fOYWFhwbBhw+RtkyZNQktLq811W2tqali6dCmffPJJi092fX19sba2Zv369SiVSmpra1m/fj3+/v7yfHjt0el1URcvXoy2trY8H1Vj89HDw4Pf/OY3bT4YqKioaHNSzDuZmJhQWVnZmXLvqqioCLVa3awFZm9v3+o9C19fX7755ht27drF999/j0ajYeTIkWRlZbX6PuvWrcPc3Fz+EItaC3B7EfU9e/a0u0O7RqPh2rVrlJSU3PN71tfXExkZKd/n66i8vDzs7OyabNPR0cHKyqrN+3y/+93vGDlyJLNnz25xv6mpKcePH+f777/H0NAQExMT9u/fz759+zo0912nAs7IyEgeiWBhYYG+vj65ubnyfnt7e9LS0lp9feNg/PbqoVFlbQoPD2fFihUMHjyYiIgItm/fjq2tLV988UWrr3nttdcoLy+XP06cONGNFQv3m0qlor6+vtMf+/fv7/C/cUmSSExMlFt99/JRW1vLwYMHm9zbeueddzAxMZE/Tp06xdNPP91k261bt+7p+/XLL79w9OhRPvzww1aPqa2tZfXq1YwaNYrz589z5swZgoKCmDlzJrW1te1+r051E/H19SUhIUH+fPDgwXz33XcsX74clUrFpk2bcHNza/Mc7733Hps3b77re7W2vur9ZGNjg7a2drOhLfn5+e3uIKmrq8uQIUNISUlp9Rh9ff0m9x0f9AHRfZlKpSIhIaFDv3StuX79OgqFokMhp1AoqKioaDL9/72oqanhwoULjBgxAh0dHZ5++mkWLlwo71+2bBnz5s1rMqO2k5MTDg4OzR7AqVQqSkpKWv2dOXr0KKmpqVhYWDTZPm/ePMaMGcPx48fZtGkT6enpnDt3Th6nvmnTJiwtLdm1a5e8yNXddCrg5s6dy7///W/ee+899PX1ef3115k9ezYWFhYoFAqqq6vbvDnv5uZGSUlJu5vYdwvLztLT0yM0NJQjR47IU7BrNBqOHDnCb3/723adQ61WExsby4wZM7qwUqG3UKvV1NbWoqurK1/NdFRDQwM3btxoNmqhPSRJwtDQsF2TVdztPCqVCrVaLV9iWllZyfsNDQ2xs7PDx8enyevCw8MpKyvjypUrhIaGArcDTKPRtDq346uvvtqs435wcDD/+te/ePjhh4Hbgds4IUejxs8b+wW2xz0FXF1dHbt27aKhoYE//elPlJSU4OjoyKxZszh+/Djbt29HW1ubmTNnMn78+FbPc79GQtxPL730Eo8//jjDhg0jLCyMDz/8kOrqap544gkAVqxYgbOzM+vWrQNuT/s0YsQIfHx8KCsr49133yUjI0OMvHjA6OnpdTjgCgsLiY2N5fr16yiVSszMzDr8vgqFAl9f304HnKWlZYuT1d6Nv78/06ZN48knn+Tzzz+noaGB3/72tyxevBgnJyfg9tXXxIkT+e9//0tYWJjc2+DX3Nzc5IeSkydP5ve//z3PPvsszz33HBqNhr///e/o6Oi0mSm/1uGAKygoYOTIkaSlpcn30AwNDdm5cyeTJk1izJgxjBkzpqOn7TUWLVpEYWEhb7zxBnl5eQwePJj9+/fLDx5u3brV5B9TaWkpTz75JHl5eVhaWhIaGsrZs2cJCAjoqS9B6MVUKhXJycnExsY2uV8Nt2+sDxw4kJSUlHa1UrS0tAgICGjS0roXOjo6+Pn53fNsPT/88AO//e1vmThxIlpaWsybN49///vf8v6GhgaSkpI6dBnt5+fH7t27eeuttwgPD0dLS4shQ4awf//+Do3C6PB8cM899xyfffYZL774IhMmTCAlJYW//vWvmJmZkZqa2pFTCf+fmA+u76qvryc6OhpjY+M2W3AlJSXExsaSkJBAfX19k32NARMcHEx+fj5LlixBrVbf9XJVS0uL3/3ud7i7u3fqaxgyZAgWFhZUV1czePDgu/ZL7Us63II7ePAgK1as4L333pO32dvbs3TpUpKSkvD19b2vBQpCX6VWq0lJSSE2NrbFbkPW1taEhITg5+cnh4q9vT3/+te/+N3vfid36P21xiGBTzzxRKfDzcXFBTs7O3nW4P6mwwF369Yt/vCHPzTZNnr0aCRJIj8/XwSc8MArLy+XW2u/vizT1tZm4MCBBAcH4+jo2GI3qSlTprB582Y+/fRTjh8/3qQlp1AoCAwMZOrUqZ0ON0NDw37/+9rhgKuvr282mLzx88aZRwXhQaPRaOTWWktDiSwtLQkODsbf379dN/NDQkL4/PPPycnJYfbs2VRUVGBoaMgf/vAH+Z6bSqXi1q1buLm53dPCz4GBgf1+weh7+urS09ObDPQtLy8H4MaNG836tkDrywYKQl9XWlpKdHQ0KSkpVFdXN9mnpaWFt7c3ISEhuLi4dHjtYLjd18zQ0JCKigr09PSaPFBIT0/n0qVLSJKEt7d3h87r7e2NtbV1h+vpa+4p4P785z+3uLrVb37zmyafd2TZQEHoKzQaDQkJCZw+fZrY2NhmDwPMzMwIDg4mICCgyxZibmhoIDExkeLiYhISEnBzc2v3yvYeHh4dDsS+qsMB15Xrlx44cID169dz8+ZNSktLm/3DUSgU4kmt0GPKy8s5d+4cp0+fbtY5XaFQ4OXlRXBwMO7u7vfUWmtNS+uiZmRkUFhYiJOTE4WFhdy6deuuoaWrq0tAQMADNW15hwPu8ccf74o6ePfdd3n11Vext7cnLCyM4ODgLnkfQegIjUZDcnIyp0+fJjo6utlTTXNzczw8PBg0aFCn+6O1pnGMaOOVUGPrTVtbGwMDA7S1tdtsxSkUClxdXfHx8Wl3K6+/6DV3GD/66CMmTJhAZGTkA/dDEHqfqqoqzp8/z+nTp5uNtVQoFAQEBDBmzBh8fHyIjY3tsktRpVIp95traGigoaGBrKwsioqKUKlU5ObmotFoKCoqIisrq9n0ZI6Ojvj4+GBkZNQl9fV2vSbgSktLmT9/vgg3ocdIkkRqaiqnT58mKiqqWa8AU1NTRo4cyejRo+Ub9L/utHu/xcTEyC03jUbDrVu3sLa2bjL/WqM712owNzfH398fc3PzLq2vt+s1ARcWFkZSUlJPlyE8gGpqarh48SKnTp1qNnwKbs+aM2bMGEJCQrq1W4VSqeTUqVNNtiUkJDBt2rRWb+E0jk11c3O7r/cB+6peE3Cffvop06dPZ9iwYSxdurSnyxH6OUmSyMjI4NSpU1y+fLnZPP/GxsaMGDGC0aNH99gU9AkJCWRmZjZ5uNDapSjcHvA/dOjQB77VdqdeE3CLFi1CpVLx2GOP8cwzz+Di4tJswRqFQtHhVXUE4U51dXVcvnyZU6dOtTgFvre3N6NHj2bo0KE9frvE0dGRhx9+mLNnz6JUKtHT02PYsGEtLhtoYGDAQw891Oq9NqVSSVxcHEFBQfc8rVNf1GsCzsrKCmtrawYMGNDTpQj9UFZWFqdOneLSpUvU1dU12de4POSYMWPkKX56A3t7e+zt7eVxqrq6ui1emurr67cZbnD7Xt6uXbvQaDQt3r/rr3pNwB0/frynSxD6GaVSSVRUFKdOnWpx6nx3d3dGjx7NsGHD+swMGr8enqWjo8OwYcMwMjJqtZXWeC8vKyuLkydPEhIS8sC04npNwAnC/ZKXl8fp06c5f/58s8Hu+vr6DBs2jDFjxnT5DNFd4c7hWQMGDGDo0KHylPettdJiYmJIT0/H19eX9PR0rl279sC04npdwDU0NHD9+nXKy8tbnCpm7NixPVCV0Ns1NDQQExPDqVOnuHHjRrP9Tk5OjB07loceeuieZq7tDRoXmGkcnjVz5kz5flxrrbTG7bq6upiYmKCrq/tAteJ6TcBpNBpee+01Pv300zZn/hTjWoU7FRUVcfr0ac6ePdtsfVkdHR1CQ0MZM2YMnp6efbbbhI2NDSqVCi0tLXl4Vk1NDYWFhfKUSa210hqfxNbX13Pjxg1UKhWZmZkkJCQwePDgnv3CukGvCbh33nmHd999l7Vr1zJ69Ggee+wx/vGPf2BhYcGnn36KQqHgn//8Z0+XKfQCjQv7nDp1isTExGb77e3tGTNmDMOHD++yEQbdafv27SQkJPDpp59SUlKCpaUlSqVSbokBrbbSGp/E/lpHpv3uy3pNwG3cuJGFCxfy2WefUVxcDEBoaCgTJkzg8ccfJzw8nKNHjzZZdV54sJSUlHDmzBnOnj0rT9HVSFtbm8GDBzNmzBgGDBjQZ1trrUlNTZWHZ1VUVADILbHG/2+tldZT/fh6g14TcFlZWbzyyisA8hOtxsf5enp6LF++nA8++IB33nmnx2oUul/j1ESnTp0iLi6u2Qwz1tbWjBkzhvDwcExNTXuoyq6lVCopKytj6NCh2NnZNXk40tgSe5BbaW3pNQFnbW0t30MxMTHBzMyMmzdvNjmmtLS0J0oTekB5eTlnz57lzJkzzaYm0tLSIjg4mDFjxuDn59fpJfN6u5iYGC5evIi/vz/z5s1rMcgf5FZaW3pNwA0ZMoRLly7Jn48fP54PP/yQIUOGoNFo+Pe//82gQYN6sEKhqzVOTXTq1CliYmKaPUW3sLBg9OjRjBw5ssWZo/ujxqeg+fn56Ojo9Jn+er1Frwm4p556iv/X3t1HRXHdfQD/LrvsCyKg4VVEFvGYiC+FoIAKrgkqlSBoUQwxRjQIbVMxVZOi1QK+hGi01Zpaq6cB5YhREjH1JRCCL4iomyicNBhBNyg9iaAmCghhebvPHwnzsLDIiwuzO/w+5+w57t07M3cRvntn5869qamp0Gq1kMlk2LJlC6ZNm4Zp06aBMYYhQ4bg8OHDfDeT9IHHjx9zE0nev39f57W2UxONHTu2w+17Qtd6dVSpVOLevXsDagybIRhNwIWGhiI0NJR77uHhAY1Gg3PnzkEsFmPKlCl9NqEg6X+tUxNduHABhYWFHaYmsrKywuTJk3WmJhpo2o5hs7CwgEKhGFBj2AzBaAJOH2tra4SFhfHdDGJAdXV1uHLlCvLz841qaiJj1HYM28OHDyGRSAbUGDZDMKrfoObmZmRkZODs2bO4d+8eNm7ciPHjx6Oqqgq5ubmYOnUqfZlqgrozNVFrb83e3p6nVhqftmPYvv/+ezg6OsLMzIyujvaA0QTco0eP8Otf/xpqtRqWlpaora3FihUrAPx8VTUuLg6vvfYaDRMxId2ZmiggIABeXl68T01kjFpnEwHAfQ9HesZoAi4+Ph7FxcXIzs6Gl5eXzie5WCzG/Pnzcfr0aQo4E9A6NZFare4wpbdCoYCvry/8/f2NamoiY0cfAL1jNAF3/PhxrFixAjNnzuTuZGhr9OjRSE1N7f+GDUDl5eXIzc1FTU0NBg8ejMDAwC5n3mhoaMDVq1eRn5/f6dREAQEB8Pb2pqEOvUAB1ztGE3BVVVV6p2Fu1djY2OFKGzEstVqNTZs24dSpU2CMwczMDC0tLRCJRAgJCcGGDRswadIknW3u3r3LTU30008/6bzWOhGjv7+/SU5NZEwG+gWX3jKan5q7uzuuXbvW6eufffYZPDw8+rFFA8uxY8ewcOFCMMa426FaB9oyxnD69Gl8+umnOHLkCObMmYOioiJcuHABt27d6rAvZ2dnBAQEmPTURMZmoI3/MxSjucclOjoaH3zwAY4cOcL9gYlEImi1Wvz5z39GVlYWYmNj+6Ut//jHP6BUKrmprNVq9RPrZ2Rk4LnnnoNcLsf48eNx+vTpfmmnoajVaixcuBDNzc2dTkfV+lpERASWLVuGlJQUnXAzNzeHn58f3nrrLaxbtw7Tpk2jcDMgCrjeMZoe3MqVK1FcXIzIyEjuNpxXXnkFP/zwA5qamhAbG4vXX3+9z9tx5MgRrFq1Cnv37oWvry927tyJoKAglJSU6B3CUFBQgMjISCQnJyMkJATp6emYO3curl27hnHjxvV5ew1h8+bNOj23zjDG0NLSgvz8fMyePRuA8KYmMlYUcL0jYl39Vvez/Px8fPTRR7h58yZaWlrg7u6OiIiIfpvJ19fXF5MmTcL7778P4OfTNBcXF6xYsQLx8fEd6i9cuBC1tbU4efIkV+bn5wdPT0/s3bu3W8e8du0avL29cfXqVTz//POGeSPdVF5eDqVS2WW4tbdt2zaEhYUJcmqintBqtSgqKsKgQYNM+u6ChoYG1NbWwtPTU1AXgYymB9fK398f/v7+vBy79Urg2rVruTIzMzPMmDEDly5d0rvNpUuXsGrVKp2yoKAgHD9+vNPjaLVaneETrbOoNDU1dRgE29eys7N7HG7Az6uou7m5DfgLP60Xv2pra/v9/86QGhoauN+/vpydpb+vBhtdwPHpwYMHaG5u7nC3hIODA27cuKF3m4qKCr31KyoqOj1OcnIykpKSOpT7+vr2otX8WL58OZYvX853M4iJ6e8TRl4Dru3N9d0hEonwySef9FFr+s/atWt1en1FRUVQqVS4cuUKvLy8+rUtqampiImJ6fF2+/fvx5IlS/qgRaanqalJEGuFiMViwQ1H4fXdnDx5EnK5HI6Ojt1K9r7+rsfW1hZisRiVlZU65ZWVlXB0dNS7jaOjY4/qAz+PD2v7PUfrsm8SiaTfu/BBQUEQiUQ9+mQViUSYNWsWDT79Bf0cjBevw0ScnZ1RX18PW1tbrFy5EpcuXUJZWVmnj/Yz/BqaVCqFt7c3cnNzubKWlhbk5uZi8uTJereZPHmyTn0AyMnJ6bS+sRkxYgRCQkK6fZVOLBZjzpw5NHCXmAbGs3PnzrGYmBg2dOhQJpFIWGBgIPvggw9YdXU1L+358MMPmUwmY6mpqez69essJiaG2djYsIqKCsYYY4sXL2bx8fFc/YsXLzKJRMK2b9/OvvnmG5aQkMDMzc3Zf//7324f8+rVqwwAu3r1qsHfT3eo1WomkUiYSCRiADp9iEQiJpFImFqt5qWdA5VWq2UXL15kWq2W76aYHN4DrlVDQwM7fvw4i4iIYBYWFkwul7N58+axjIwMVl9f369t2b17NxsxYgSTSqXMx8eHXb58mXtNpVKxJUuW6NQ/evQoGz16NJNKpWzs2LHs1KlTPToe3wHHGGMff/wxk0gkTCwW6w03sVjMJBIJO3bsGG9tHKjOnz/PoqOjWV5eHt9NMTlGE3Bt1dTUsAMHDrDJkyczMzMztnHjRr6b1KeMIeAY+7knN2fOHK4nZ2ZmxvXcQkNDqefGg/r6erZu3ToWGBjI1q1b1+8f9qbO6C6ZaLVaZGdn45NPPkFhYSHkcjnNg9VPJk2ahP/85z8oLy/HmTNnUF1dDSsrK7z44ov0nRtPrly5gtLSUkyYMAGlpaVQq9UICAjgu1kmwygCrqWlBTk5OTh8+DCOHz+Ouro6zJgxA/v378e8efPoFqB+NmLECERFRfHdjAGv9cNeKpXCysoKUqkUWVlZ8PHxEdTdBn2J14ArKChAeno6MjIy8MMPP8DPzw/vvPMOIiIiYGtry2fTCOFdYWEhNBoN6uvrUVxcjMbGRmg0GhQWFsLPz4/v5pkEXgPO398fCoUCwcHBiIyM5E5Fy8vLUV5erneb/r5XkxC+uLi4YNGiRXrLSffwerN923veuhrEyxiDSCQSxIjx9vi82Z4QIeO1B5eSksLn4QkhAsdrwNG9jISQvmQ0M/oSQoihUcARQgSLAo4QIlgUcIQQwaKAI4QIFgUcIUSwKOAIIYJFAUcIESwKOEKIYFHAEUIEiwKOECJYFHCEEMGigCOECBYFHCFEsCjgCCGCRQFHCBEsCjhCiGBRwBFiwhoaGlBQUICGhoZulQ80FHCEmLDLly8jJSUFV65c6Vb5QEMBR4iR66w31rowdFlZGbKysqDVap9YPhBRwBFi5DrrjV25cgWlpaWYMGECSktLoVarn1g+EFHAEWLEuuqlSaVSWFlZQSqVIisrC9XV1XrLB2ovjgKOECPWWW+ssLAQGo0GtbW1KC4uRm1tLTQaDY4ePaq3vLCwkOd3wg9e10UlhHSus16aj48PXFxcsGjRog7bODk5wcHBoUO5i4tLfzTZ6FDAtfHjjz9ixYoVOHHiBMzMzBAeHo5du3bB0tKy022mT5+O8+fP65TFxsZi7969fd1cInCtvbT6+noUFxejsbGR6435+fnB2dmZ7yYaPQq4NhYtWoS7d+8iJycHjY2NWLp0KWJiYpCenv7E7ZYvX46NGzdyzy0sLPq6qWQA6KyXNlB7Y71BAfeLb775BllZWfjiiy8wceJEAMDu3bsRHByM7du3Y9iwYZ1ua2FhAUdHx/5qKhkgnJ2dqZf2lOgiwy8uXboEGxsbLtwAYMaMGTAzM+tysOShQ4dga2uLcePGYe3atairq3tifa1Wi+rqau7x+PFjg7wHQogu6sH9oqKiAvb29jplEokEQ4cORUVFRafbvfLKK3B1dcWwYcPw1Vdf4U9/+hNKSkpw7NixTrdJTk5GUlKSwdpOCNFP8D24+Ph4iESiJz5u3LjR6/3HxMQgKCgI48ePx6JFi3Dw4EFkZmZCo9F0us3atWtRVVXFPdpfpCCEGIbge3CrV69GVFTUE+uMHDkSjo6OuHfvnk55U1MTfvzxxx59v+br6wsAuHXrFtzd3fXWkclkkMlk3PMnXaXl0927d3H37l2+m0Hw8/APJycnvpthcgQfcHZ2drCzs+uy3uTJk/Ho0SNcvXoV3t7eAIAzZ86gpaWFC63uKCoqAoAe/TI6OTkhISHBqH6BtVotIiMjqXdpJFQqFbKzs3U+GEnXRIwxxncjjMXs2bNRWVmJvXv3csNEJk6cyA0T+e677xAYGIiDBw/Cx8cHGo0G6enpCA4OxjPPPIOvvvoKf/zjHzF8+HCTD4bq6mpYW1vj/PnzRtvDHCgeP34MlUqFqqoqWFlZ8d0ckyL4HlxPHDp0CH/4wx8QGBjIDfT9+9//zr3e2NiIkpIS7iqpVCrF559/jp07d6K2thYuLi4IDw/H+vXr+XoLBufp6Ul/VDyrrq7muwkmi3pwRK/WHhz1GvhH/xe9J/irqISQgYsCjuglk8mQkJBAX2obAfq/6D06RSWECBb14AghgkUBRwgRLAo4QohgUcARQgSLAo4QA+hqQofWx7lz5576WHV1dUhMTOzRvrZs2YLQ0FA4ODhAJBIhMTHxqdthCuhOBkIMIC0tTef5wYMHkZOT06F8zJgxT32suro6brqt6dOnd2ub9evXw9HREV5eXsjOzn7qNpgKCjhCDODVV1/VeX758mXk5OR0KOdLWVkZlEolHjx40K3JJ4SCTlEJ6SctLS3YuXMnxo4dC7lcDgcHB8TGxuLhw4c69b788ksEBQXB1tYWCoUCbm5uWLZsGQDg9u3bXEAlJSVxp75dnXIqlcq+eEtGj3pwhPST2NhYpKamYunSpYiLi0NZWRnef/99FBYW4uLFizA3N8e9e/cwa9Ys2NnZIT4+HjY2Nrh9+zY3Q7SdnR3++c9/4ne/+x3mzZuH3/zmNwCACRMm8PnWjBcjhBjcG2+8wdr+eV24cIEBYIcOHdKpl5WVpVOemZnJALAvvvii033fv3+fAWAJCQk9btfTbGuK6BSVkH6QkZEBa2trzJw5Ew8ePOAe3t7esLS0xNmzZwEANjY2AICTJ0+isbGRxxYLAwUcIf3g5s2bqKqqgr29PTfLdOvj8ePH3HT5KpUK4eHhSEpKgq2tLcLCwpCSkgKtVsvzOzBN9B0cIf2gpaUF9vb2OHTokN7XWy8ciEQifPTRR7h8+TJOnDiB7OxsLFu2DDt27MDly5dpduUeooAjpB+4u7vj888/x9SpU6FQKLqs7+fnBz8/P2zZsgXp6elYtGgRPvzwQ0RHR0MkEvVDi4WBTlEJ6QcRERFobm7Gpk2bOrzW1NSER48eAQAePnwI1m4GM09PTwDgTlMtLCwAgNuGdI56cIT0A5VKhdjYWCQnJ6OoqAizZs2Cubk5bt68iYyMDOzatQvz58/HgQMHsGfPHsybNw/u7u6oqanB/v37YWVlheDgYACAQqGAh4cHjhw5gtGjR2Po0KEYN24cxo0b1+nx09LScOfOHW49kby8PGzevBkAsHjxYri6uvb9D4EPfF/GJUSI2g8TabVv3z7m7e3NFAoFGzx4MBs/fjx7++232ffff88YY+zatWssMjKSjRgxgslkMmZvb89CQkLYl19+qbOfgoIC5u3tzaRSabeGfahUKgZA7+Ps2bOGettGh2b0JYQIFn0HRwgRLAo4QohgUcARQgSLAo4QIlgUcIQQwaKAI4QIFgUcITy7ffs2RCIRUlNT+W6K4FDAEUIEiwb6EsIzxhi0Wi3Mzc0hFov5bo6gUMARQgSLTlEJMYDExESIRCKUlpbi1VdfhbW1Nezs7LBhwwYwxvC///0PYWFhsLKygqOjI3bs2MFtq+87uKioKFhaWuK7777D3LlzYWlpCTs7O6xZswbNzc1cvXPnzuldb1XfPisqKrB06VIMHz4cMpkMTk5OCAsLw+3bt/vop8I/CjhCDGjhwoVoaWnBu+++C19fX2zevBk7d+7EzJkz4ezsjK1bt2LUqFFYs2YN8vLynriv5uZmBAUF4ZlnnsH27duhUqmwY8cO7Nu3r1dtCw8PR2ZmJpYuXYo9e/YgLi4ONTU1KC8v79X+TAJ/9/kTIhwJCQkMAIuJieHKmpqa2PDhw5lIJGLvvvsuV/7w4UOmUCjYkiVLGGOMlZWVMQAsJSWFq7NkyRIGgG3cuFHnOF5eXszb25t7fvbsWb0zgrTf58OHDxkA9t577xnmDZsI6sERYkDR0dHcv8ViMSZOnAjGGF5//XWu3MbGBs8++yy+/fbbLvf329/+Vud5QEBAt7ZrT6FQQCqV4ty5cx3WYRUyCjhCDGjEiBE6z62trSGXy2Fra9uhvKugkcvlHVahHzJkSK8CSiaTYevWrfj000/h4OCAadOmYdu2baioqOjxvkwJBRwhBqRvmEdnQz9YFwMYujNkpLP1GdpeiGj15ptvorS0FMnJyZDL5diwYQPGjBmDwsLCLo9jqijgCDFhQ4YMAdBxfYY7d+7ore/u7o7Vq1fjs88+w9dff42GhgadK7pCQwFHiAlzdXWFWCzucEV2z549Os/r6upQX1+vU+bu7o7BgwcLes1VWnSGEBNmbW2NBQsWYPfu3RCJRHB3d8fJkye5haRblZaWIjAwEBEREfDw8IBEIkFmZiYqKyvx8ssv89T6vkcBR4iJ2717NxobG7F3717IZDJERETgvffe01lly8XFBZGRkcjNzUVaWhokEgmee+45HD16FOHh4Ty2vm/RrVqEEMGi7+AIIYJFAUcIESwKOEKIYFHAEUIEiwKOECJYFHCEDCADbf0HCjhCOqHRaBAbG4uRI0dCLpfDysoKU6dOxa5du/DTTz/12XGvX7+OxMRE3iei3LJlC0JDQ+Hg4ACRSITExERe29MbNNCXED1OnTqFBQsWQCaT4bXXXsO4cePQ0NCA/Px8vPXWWyguLu71xJNduX79OpKSkjB9+nQolco+OUZ3rF+/Ho6OjvDy8kJ2djZv7XgaFHCEtFNWVoaXX34Zrq6uOHPmDJycnLjX3njjDdy6dQunTp3isYX/jzGG+vp6KBQKg++7rKwMSqUSDx486DBtk6mgU1RC2tm2bRseP36Mf//73zrh1mrUqFFYuXIl97ypqQmbNm2Cu7s7ZDIZlEol1q1b1+EmdqVSiZCQEOTn58PHxwdyuRwjR47EwYMHuTqpqalYsGABAOCFF16ASCTSWXOhdR/Z2dmYOHEiFAoF/vWvfwEAvv32WyxYsABDhw6FhYUF/Pz8niqI+ew9GgoFHCHtnDhxAiNHjsSUKVO6VT86Ohp/+ctf8Pzzz+Nvf/sbVCoVkpOT9d7EfuvWLcyfPx8zZ87Ejh07MGTIEERFRaG4uBgAMG3aNMTFxQEA1q1bh7S0NKSlpWHMmDHcPkpKShAZGYmZM2di165d8PT0RGVlJaZMmYLs7Gz8/ve/x5YtW1BfX4/Q0FBkZmYa4KdionidMJ0QI1NVVcUAsLCwsG7VLyoqYgBYdHS0TvmaNWsYAHbmzBmuzNXVlQFgeXl5XNm9e/eYTCZjq1ev5soyMjL0rrPQdh9ZWVk65W+++SYDwC5cuMCV1dTUMDc3N6ZUKllzczNjTP/6D125f/8+A8ASEhK6vY2xoB4cIW1UV1cDAAYPHtyt+qdPnwYArFq1Sqd89erVANDhFNHDwwMBAQHcczs7u26vz9DKzc0NQUFBHdrh4+MDf39/rszS0hIxMTG4ffs2rl+/3u39CwkFHCFtWFlZAQBqamq6Vf/OnTswMzPDqFGjdModHR1hY2PTYWbd9ms2AD1fZ8HNzU1vO5599tkO5a2ntp3N8Ct0FHCEtGFlZYVhw4bh66+/7tF2na2N0F5v12doqy+umAoVBRwh7YSEhECj0eDSpUtd1nV1dUVLSwtu3rypU15ZWYlHjx7B1dW1x8fvbli2b0dJSUmH8hs3bnCvD0QUcIS08/bbb2PQoEGIjo5GZWVlh9c1Gg127doFAAgODgYA7Ny5U6fOX//6VwDASy+91OPjDxo0CEDHhWSeJDg4GGq1WieUa2trsW/fPiiVSnh4ePS4HUJAA30Jacfd3R3p6elYuHAhxowZo3MnQ0FBATIyMhAVFQUA+NWvfoUlS5Zg3759ePToEVQqFdRqNQ4cOIC5c+fihRde6PHxPT09IRaLsXXrVlRVVUEmk+HFF1+Evb19p9vEx8fj8OHDmD17NuLi4jB06FAcOHAAZWVl+Pjjj2Fm1vO+TFpaGu7cuYO6ujoAQF5eHjZv3gwAWLx4sWn0Cvm+jEuIsSotLWXLly9nSqWSSaVSNnjwYDZ16lS2e/duVl9fz9VrbGxkSUlJzM3NjZmbmzMXFxe2du1anTqM/TzE46WXXupwHJVKxVQqlU7Z/v372ciRI5lYLNYZMtLZPhhjTKPRsPnz5zMbGxsml8uZj48PO3nypE6dngwTUalUDIDeh74hLMaI1mQghAgWfQdHCBEsCjhCiGBRwBFCBIsCjhAiWBRwhBDBooAjhAgWBRwhRLAo4AghgkUBRwgRLAo4QohgUcARQgSLAo4QIlgUcIQQwfo/9hwvydjk2u4AAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAATgAAAInCAYAAAAMF0W5AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAoGBJREFUeJzs3Xd4VGXC///3pPdKem+k0w2EFnrvUqSIiCi6ruXRr66su664z8ruWlZ3dbEh2CiCFKmhhtBbSEiBJIQ00khPJm0ymfP7g1/OQ0whIaRyv65rLp3T5k5CPrnPuZtCkiQJQRCEXkirqwsgCILQUUTACYLQa4mAEwSh1xIBJwhCryUCThCEXksEnCAIvZYIOEEQei0RcIIg9Foi4ARB6LVEwHUDOTk5vPvuu+Tk5HR1UQShVxEB1w3k5OSwdu1aEXCC8JCJgBMEodcSAScIQq8lAk4QhF5LBJwgCL2WCDhBEHotEXCC0M2p1WrEvLQPRgScIHRjkiSxa9cu9u7d29VF6ZFEwAlCNxYbG0t8fDyenp5dXZQeSQRcC/7+97+jUCh49dVXmz1m06ZNKBSKBi8DA4POK6TQa5WWlnLgwAGCg4MJCgrq6uL0SDpdXYDu6tKlS3z55Zf069fvvseamZmRmJgov1coFB1ZNOERUH9rqqenx/Tp07u6OD2WqME1QalUsnTpUr7++mssLS3ve7xCocDe3l5+2dnZdUIphd7s3LlzpKWlMXfuXHFH0A4i4Jrw4osvMn36dCZMmNCq45VKJW5ubri4uDB79mzi4+NbPL6mpoaysjL5pVQqH0axhV4iLy+PY8eOERoaioeHR1cXp0cTt6i/sXXrVqKiorh06VKrjvf19eXbb7+lX79+lJaW8uGHHzJ8+HDi4+NxdnZu8px169axdu3ah1lsoZdQq9Xs3LkTa2trxo8f39XF6fFEDe4emZmZvPLKK/z000+tvi0IDQ1l+fLlDBgwgLCwMHbu3ImNjQ1ffvlls+esWbOG0tJS+XXy5MmH9SUIPdzx48cpKChg3rx56OiI+kd7ie/gPa5cucKdO3cYNGiQvK2uro7IyEg+++wzampq0NbWbvEaurq6DBw4kJs3bzZ7jL6+Pvr6+vJ7ExOT9hde6PHS0tI4d+4cEyZMwN7evquL0yuIgLvH+PHjiY2NbbDt6aefxs/Pjz/84Q/3DTe4G4ixsbFMmzato4op9ELV1dXs2rULV1dXQkNDu7o4vYYIuHuYmpo26m9kbGyMtbW1vH358uU4OTmxbt06AN577z2GDRuGt7c3JSUlfPDBB6Snp7Nq1apOL7/Qcx04cIDq6mrmzp2LlpZ4cvSwiIBro4yMjAb/AIuLi3n22WfJzc3F0tKSwYMHc/bsWQICArqwlEJPEh8fz7Vr15g7dy4WFhZdXZxeRSGJUbxdLioqisGDB3PlypUGz/+E3q+srIz169fj4eHBggULRCfxh0zUhQWhi0iSxJ49e9DR0WHGjBki3DqACDhB6CIXL14kJSWF2bNnY2Rk1Oxx4ibrwYmAE4QukJ+fz5EjRwgJCcHb27vFY48ePUpERETnFKyXEQEnCJ2srq6OnTt3YmFhwcSJE1s89ty5c5w5cwZDQ8NOKl3vIgJOEDpZREQEeXl5zJs3D11d3WaPu3btGuHh4YwaNYqhQ4d2Ygl7DxFwgtCJMjIyOH36NGPGjMHR0bHZ427evMnu3bsZOHAg48aN68QS9i4i4AShk9TU1LBr1y6cnZ0ZOXJks8dlZWXx888/4+3tzcyZM0XrajuIgBOETnLo0CEqKipaHK1QWFjITz/9hJ2dHQsWLBCjGtpJfPcEoRPcuHGDq1evMmXKFKysrJo8pry8nB9++AFjY2OWLFnS4vM5oXVEwAlCB1Mqlfz666/4+voycODAJo+prq7mp59+QqPRsGzZMtFq+pCIgBOEDiRJEr/++isKhYJZs2Y1+TxNrVazdetWSkpKWLZsGebm5l1Q0t5JBJwgdKArV66QlJTE7NmzMTY2brRfo9Gwc+dObt++zZIlS7C1te2CUvZeIuAEoYMUFhYSHh7O4MGD6du3b6P9kiRx8OBBrl+/zoIFC3B1de2CUvZuIuAEoQPU18xMTU2ZPHlyk8dERkZy6dIlZs6cia+vbyeX8NEgAk4QOkBkZCQ5OTnMmzcPPT29RvuvXLnCiRMnGDdunJgiqwOJgBOEhywrK4vIyEhGjRrV5MpqN27cYN++fYSEhDBq1KguKOGjQwScIDxEKpWKnTt34uDgwOjRoxvtz8jIYMeOHQQEBDBlyhQxSqGDiYAThIfoyJEjlJWVMXfu3EaLFN25c4fNmzfj4uIi1l7oJOI7LAgPSXJyMpcuXWLSpEn06dOnwb7S0lJ+/PFHLCwsWLRokVjztJOIgBOEh6CiooI9e/bg4+PDkCFDGuyrrKzkhx9+QFtbm2XLlrV6UXGh/UTACUI7SZLE3r170Wg0jUYrqFQqNm/eTFVVFcuWLROLfHcyEXCC0E7R0dHcuHGDmTNnYmpqKm+vq6tjx44d3Llzh6VLl2Jtbd2FpXw0iYAThHYoLi7m4MGDDBgwAH9/f3l7fa0uJSWFRYsWtTi5pdBxRMAJwgPSaDTs2rULIyMjpk6d2mDfsWPHiI6OZs6cOXh5eXVRCQURcILwgM6cOUNmZiZz585FX19f3n7+/HlOnz7NlClTCA4O7sISCiLgBOEB5OTkcOLECUaMGIGbm5u8PS4ujkOHDjFixAiGDRv2UD5LkiQ0Gs1DudajRgScILRRbW0tO3fuxNbWlrFjx8rbU1JS2LVrFwMGDGDChAkP5bPUajW7du3i0KFDD+V6jxoRcILQRseOHaO4uJh58+bJoxWys7PZtm0bnp6eD22hmPLycjZu3EhCQgIuLi7tvt6jSHSnFoQ2SElJ4fz580yZMkWenLKoqIiffvoJW1tbFixY0GiI1oPIyspi69atKBQKVq5cKVphH5CowbXg73//OwqFgldffbXF47Zv346fnx8GBgYEBwdz4MCBzimg0KmqqqrYvXs3np6e8kLMSqWSH374AUNDQ5YsWdLk1Ehtde3aNTZu3Ii5uTnPPvusCLd2EAHXjEuXLvHll1/Sr1+/Fo87e/Ysixcv5plnnuHq1avMmTOHOXPmEBcX10klFTqDJEns27eP2tpa5syZg0KhoKamhh9//BG1Ws2yZcswMjJq12doNBqOHDnCzp07CQoKYsWKFQ06DgttJwKuCUqlkqVLl/L1119jaWnZ4rGffvopU6ZM4Y033sDf35+//vWvDBo0iM8++6yTSit0htjYWOLj45kxYwZmZmaNFoqxsLBo1/VramrYunUrZ8+eZfLkycyePVsMyH8IRMA14cUXX2T69Omtagk7d+5co+MmT57MuXPnmj2npqaGsrIy+aVUKttdZqHjlJaWcuDAAYKDgwkKCkKSJHbt2kVmZiaLFy/Gzs6uXdcvKirim2++ISMjg6VLlxIaGirmiXtIxJ+I39i6dStRUVFcunSpVcfn5uY2+gduZ2dHbm5us+esW7eOtWvXtqucQueQJIndu3ejp6fH9OnT5YViEhISWLRoUYM+cA/i1q1bbN++HSMjI1atWtVomiWhfUQN7h6ZmZm88sor/PTTTx06pc2aNWsoLS2VXydPnuywzxLa59y5c6SmpjJ37lwMDAw4ffo0Fy9eZMaMGfj5+T3wdSVJ4sKFC/z44484OTmJcOsgogZ3jytXrnDnzp0Gi4DU1dURGRnJZ599Rk1NTaMuAPb29uTl5TXYlpeXh729fbOfo6+v32Boj5hCp3vKy8vj2LFjhIaG4uHhQVRUFMeOHWPs2LEMHjz4ga+rVqs5cOAAUVFRhIaGMnHiRDG7bwcRAXeP8ePHExsb22Db008/jZ+fH3/4wx+a7N8UGhrKsWPHGnQlOXLkCKGhoR1dXKEDqdVqdu7cibW1NePHjycxMZG9e/cyZMiQJtdaaK2Kigq2bdtGVlYWc+bMYcCAAQ+v0EIjIuDuYWpqSlBQUINtxsbGWFtby9uXL1+Ok5MT69atA+CVV14hLCyMjz76iOnTp7N161YuX77MV1991enlFx6eEydOUFBQwLPPPktOTo7c13HatGkP3ACQm5vLli1bqKurY8WKFWJ0QicQAddGGRkZDW4nhg8fzubNm/nTn/7EH//4R3x8fNi9e3ejoBR6jrS0NM6ePcuECRPQ0tJi8+bNODs78/jjjz/wrWRCQgK7du2iT58+PPHEE5ibmz/kUgtNUUiSJHV1IR51UVFRDB48mCtXrohFgLtYdXU169evx8LCgjlz5rBx40YMDQ15+umnH6jhSZIkIiIiOHnyJEFBQcyePRtdXd0OKLnQFFGDE4R7HDx4kOrqaqZMmcLmzZvR0tJ64IViVCoVu3bt4vr164wfP56RI0eK/m2dTASc0KSoqChsbW1xcnJ6ZH4p4+PjiYmJYcaMGRw4cICKigqeeeaZBxouVVJSwpYtWyguLuaJJ55oV5cS4cGJgBMaqaur4+TJk5SWlmJubo6/vz8BAQG4uLj02rArKytj3759+Pn5kZiYSG5uLitWrHighWLS09PZtm0b+vr6PPPMM+0e6SA8OBFwQiPa2tq88sorZGZmEh8fT3x8POfPn8fU1JSAgAA57HpL3y1JktizZw/a2tpoaWmRlJTEkiVLcHJyavO1rly5wv79+3F1dWXhwoXtHoAvtI8IOKFJWlpauLm54ebmxtSpU8nMzCQhIYGEhAQuXLiAiYmJXLNzc3Pr0WF36dIlUlJS8PT0JCEhgXnz5uHt7d2ma9TV1REeHs7Fixd57LHHmDJlykOZF05oHxFwwn0pFApcXV1xdXVl8uTJZGVlyWF36dIljI2N5bBzd3fvUWGXn5/P4cOHMTc359atW0yaNOm+U2T9VmVlJdu3byc9PZ0ZM2Y0Wtle6Doi4IQ2USgUODs74+zszMSJE8nOzpbD7vLlyxgZGeHn50dAQAAeHh7duhZTV1fHzp07qaqqQqVSMXLkSIYPH96ma9y5c4ctW7ZQU1PD8uXLcXd375jCCg9EBJzwwBQKBU5OTjg5OTFhwgRyc3NJSEggPj6eqKgoDA0N8fX1JTAwEE9Pz24XdidPnuTGjRvo6OjIY0LbIjExkV9++QVLS0uWL19+37kDhc4nAk54KBQKBQ4ODjg4ODBu3Djy8vLkml10dDQGBgb4+voSEBCAl5dXl0/mmJmZKXcFGT16NLNnz251C7EkSZw5c4Zjx47h6+vbaF1UofsQASc8dAqFAnt7e+zt7Rk7diz5+fly2MXExKCvr0/fvn0JCAjA29u703v21081npGRwfjx41m4cGGra5e1tbX8+uuvxMbGEhYWxpgxY3pt15neQASc0KEUCgW2trbY2toyZsyYBmEXGxuLnp6eHHY+Pj6dEna7d+/mzJkzjBw5kmXLlrV6oZiysjK2bt1Kfn4+CxYsIDAwsINLKrSXCDihU9nY2BAWFkZYWBiFhYVy2P3888/o6uri4+NDQEAAffv2fSgrVP3WtWvX+OGHH/Dx8eH555/H2Ni4Vefdvn2brVu3oq2tzcqVK3FwcHjoZRMePjHYvhsQg+3vrktw/fp14uPjyc7ORkdHp0HYPYxnXKWlpTz33HMoFAo++eSTFiclvVdMTAy//vorjo6OLFq0SExQ2oOIGpzQpO3bt8vz4NUvcNyRrKysGDFiBCNGjKCkpESu2f3yyy9oa2vj7e1NQEAAvr6+DzTwXaPR8M4771BaWsrHH3/cqnDTaDQcPXqUs2fPMnDgQKZPn97ljSNC24ifltBIXV0denp6XLx4kcjISGxtbQkKCiIwMPCBxma2lYWFBcOHD2f48OGUlpZy/fp1eT41bW1tPD09CQwMxNfXF0NDw/teT5IkPv/8c2JiYnjzzTcJCAi47znV1dXs2LGDlJQUpkyZwtChQ0VjQg8kblG7ge56i1pXV0dKSgpxcXHcuHEDlUqFo6OjHHadPWljWVmZHHYZGRkoFAo8PT0JCAjAz8+v2XGf+/fv56OPPmLGjBm89tpr9/2cwsJCtmzZglKpZMGCBXh5eT3sL0XoJCLguoHuGnD3qq2tJTk5mbi4OJKSklCr1bi4uMhh19nPpZRKpRx2aWlpKBQK3N3dCQgIwN/fX248iIqK4t1338XNzY2PPvrovg0XN2/eZMeOHZiYmLB48eJOqbEKHUcEXDfQEwLuXjU1NSQmJhIXF0dKSgoajQZ3d3eCgoLw9/fv9Bk0KioqGoSdJEm4u7tjbGzMnj170Gg0/P3vf29xDQRJkjh//jyHDx/G29ubxx9/vEOXjhQ6hwi4bqCnBdy9qqqquH79OnFxcaSmpqJQKPDy8iIoKOiBGwTao7Kykhs3bnDq1Cm2b99OcXEx06ZNY/78+fj7+2NmZtboHLVazf79+7l69SojRoxg/PjxPWrCAKF5PTrg6urq2L59OydOnODOnTu89957BAcHU1payrFjxxgxYkSPmGywJwfcvepvG+Pi4khPT5e7egQFBeHj49Mh/dqakp+fz1dffcW1a9fw9vbGz8+PtLQ06urqcHV1lW9jzc3NUSqVbNu2jZycHGbOnEn//v07pYxC5+ixAVdSUsKUKVO4ePEiJiYmVFRUcOTIEcaNG0ddXR1ubm4sX76c999/v6uLel+9JeDuVVpaSkJCAnFxcWRlZaGrq4uvry9BQUF4e3t3WHeLsrIyNmzYQHJyMra2tvz+97+nT58+VFdXk5iYSEJCAjdv3qSurg4TExMyMjKwtbVlxYoVODs7d0iZhK7TY7uJvPXWW8THxxMeHs7AgQMb9NXS1tZm/vz5HDhwoEcEXG9kbm5OaGgooaGhFBUVER8fT1xcHFu3bsXAwAA/Pz+CgoIe6pRKVVVV/Pjjj+Tn52Nubs706dPp06cPAAYGBvTv35/+/ftTU1PD/v37+fnnn6mqqsLY2JgDBw4QGBiIv78/VlZWD6U8QtfrsQG3e/duXnrpJSZOnEhhYWGj/X379mXTpk2dXzChESsrK0aNGsWoUaPIz88nLi6OuLg4oqOjMTIyIiAggKCgIFxdXR/42VdtbS1btmyhsLAQfX19vL29m5x4sn4mkGvXrrFgwQImT55MWloaCQkJREREcOTIERwcHOSp2UUras/WYwOutLQUDw+PZvfX1taiVqs7sURCa9jY2DB27FjGjBlDXl6eHHaXL1/G1NSUwMBAAgMDcXZ2bnXHWo1Gw44dO8jOzsba2hqlUsmsWbManV9TU8OuXbtITExkwoQJjBgxAoVCQVBQEEFBQahUKm7evElCQgKnTp3i2LFj2NnZERAQQGBgoFwbFHqOHhtwXl5eREVFNbv/8OHDreqxLnSNe6dUGj9+PFlZWcTFxckL3FhYWBAYGEhQUBD29vbNhp0kSezbt4/k5GT69+/P1atXWbRoUaOl/oqLi9myZQulpaUsXryYvn37NrqWnp6eXHOrra2Vw+7s2bOcOHECW1tbeb+NjY0Y2dAD9NiAW7VqFX/4wx8YM2YM48ePB+7+0tTU1PDee+9x6NAhvvrqqy4updAa906DPmnSJDIyMoiLi+Pq1aucOXNGHhMbFBSEjY1Ng3MjIiKIiopi3LhxnDlzhgEDBuDv79/gmLS0NH7++WcMDAxYtWpVo2s0RVdXF39/f/z9/VGr1aSkpJCQkMD58+eJiIigT58+ctjZ2dmJsOumemwrqiRJPPfcc2zYsAELCwtKSkqws7OjsLAQtVrN6tWrWb9+fVcXs1V6Yyvqw1BXV0dqairx8fFcv36d6upq7Ozs5NETKSkp7N+/n/Hjx5OcnExZWRkvvPBCg5lHLl26xMGDB3F3d2fBggWtGrvaErVaTWpqKgkJCdy4cYOqqiqsra3lsGuptil0vh4bcPVOnz7Njh07SE5ORqPR4OXlxcKFCxk9enRXF63VRMDdX30tqn5cbHZ2NpmZmYwZMwZ/f38uXrzIihUrcHNzA+6G48GDB7l8+TJDhw5l0qRJD31NiPoArg+7yspKLC0t5bBzdHQUYdfFenzA9QYi4NomMTGRzz77DF1dXXR0dLh06RKDBw9m4cKFBAQEoKWlxc8//0xmZibTpk1j8ODBHV6muro60tPTSUhI4Pr161RUVGBhYSGHnZOTkwi7LiACrhsQAdd6ubm5bNy4EWdnZxYsWMAXX3xBQUEBvr6+pKamUl5eTnZ2NjY2Nrzwwgv4+vp2ehk1Gk2DsFMqlZiZmclh5+LiIsKuk/TYRgYPD4/7/iNRKBSkpKS0+prr169n/fr1pKWlARAYGMg777zD1KlTmzx+06ZNPP300w226evrU11d3erPFFqvuLiYH3/8EWtraxYuXMiJEydQKpW8/PLL2NracvXqVTZs2ICOjg4GBgZs27YNb29veVxsZ618paWlhYeHBx4eHkydOpXMzEx5OcXz589jamqKv78/gYGBuLi4iHGvHajHBlxYWFijgKu/TThz5gxBQUEMHDiwTdd0dnbm73//Oz4+PkiSxHfffcfs2bO5evVqswuMmJmZkZiYKL8Xf5k7RkVFBT/++CN6enosXbqUrKwszp8/z5QpU7CxsSEyMpLjx48zevRo5syZg0qlkoeK7dy5Ex0dHfr27UtgYCB9+/bttJW8tLS0cHNzw83NjSlTpshhl5CQIA8z9Pf3JyAgADc3tybDTpIkJEkSQfgAeuUtakxMDJMnT+bHH39kwoQJ7bqWlZUVH3zwAc8880yjfZs2beLVV1+lpKSkXZ8hblFbplKp2LRpE2VlZTzzzDMYGBiwfv16+vTpwxNPPMGePXuIj49nzJgxTf7hKy0tlYeKZWdno6enJ4+L7ao1WiVJIisrSw67kpISjI2N8fPzIyAgAHd3d7S1tVGpVOzduxdDQ0OmTZvW6eXs6XpsDa4l/fv3Z/Xq1fzhD3/gypUrD3SN+plKKioqCA0NbfY4pVKJm5sbGo2GQYMG8f777993ObmamhpqamoaXENoWl1dHdu2baOwsJAVK1ZgYWHBL7/8gkqlYuzYsWzcuJGCggK5gaEp5ubm8hToRUVF8uiJ2NhYDAwM8Pf3l8fFdlYt6d6+fxMnTiQnJ0e+jb1y5QpGRkY4OTlx8+ZNampqmD59eqeUq7fplQEHYGdnR0JCQpvPi42NJTQ0lOrqakxMTNi1a1ezvzi+vr58++239OvXj9LSUj788EOGDx9OfHx8izNTrFu3jrVr17a5bI8aSZLYs2cPaWlpLFu2DAcHB2JjY4mLi2PkyJFs3boVHR0dnnnmmVavkGVlZcXo0aMZPXo0d+7cIT4+ntjYWK5evYqxsXGDcbGd9bhBoVDg6OiIo6Mj48ePJzc3l8OHD7Nt2zbKy8vl7i0jRozolPL0Jr3yFrWwsJBJkyZRVlZGcnJym85VqVRkZGRQWlrKjh07+Oabbzh58mSrhn3V1tbi7+/P4sWL+etf/9rscb+twUVHRxMWFiZuUX8jPDyc8+fPM3/+fAIDAyktLWX9+vVoa2tTXV2Nk5MTixYtavXaps2RJInc3Fy5ZldaWiqPiw0KCurULh6SJBEZGUlERAQmJiZkZWVRUVHBxIkTmT9/fqeUoTfpsTW4cePGNbm9pKREXiDlhx9+aPN19fT08Pb2BmDw4MFcunSJTz/9lC+//PK+5+rq6jJw4EBu3rzZ4nH6+voNWvTEOpuNnT17lnPnzjFt2jQCAwORJImdO3dy69YtbG1tCQkJYfr06Q+l865CocDBwQEHBwcmTJjA7du35bCrHxdbP1SsI4dlFRUVsWnTJqKiouQGM21tbWxsbIiJiREB9wB6bMBpNJpG/9AUCgUeHh5MmDCBlStX4ufn91A+597aVkvq6uqIjY0VD4PbKSYmhsOHDzN69GhCQkIAOHnyJL/++ivu7u7MmjWLxx57rEOCRqFQ4OLigouLC5MnTyY9PZ24uDiioqI4ffo0ffr0kcPuQWYXkSSJiooKUlNTSUlJIS0tjYyMDG7dukViYiI1NTXo6+uj0WhwcnJi0KBBuLi4iJr9A+qxARcREfHQr7lmzRqmTp2Kq6sr5eXlbN68mYiICMLDwwFYvnw5Tk5OrFu3DoD33nuPYcOG4e3tTUlJCR988AHp6emsWrXqoZftUZGcnMyePXsYNGgQY8eOBSAhIYEPPvgAe3t7XnrpJTw9PTulLPf2Z5s2bRqpqanExcVx7tw5IiIisLe3l8fFWlpayuep1WpKSkooLi4mPz+f9PR00tPTuX37Njk5OZSUlFBXVweAsbEx+vr6lJWVMXDgQJycnFCpVMyYMUOsDfEQ9NiA6wh37txh+fLl5OTkYG5uTr9+/QgPD2fixIkAZGRkNPgHV1xczLPPPktubi6WlpYMHjyYs2fPimmaHtDt27f5+eef8fHxYcaMGSgUCq5fv86aNWswMTFh3bp1DWZu7kza2tp4e3vj7e3N9OnTuXbtGpcuXZIbAoyMjDA1NaWuro6SkhLKy8tRKpVUVVWhr6+PoaEhtra2DBo0CDc3N7y8vPD29ubq1aucPXsWHx8flEolBQUFPP744/LdhyRJREREUFdX1+4uT4+iHtPI8P333z/QecuXL3/IJXn4RD84KCgo4Ntvv8Xa2prly5ejo6PDuXPn+OKLL6iqquLDDz+UB9J3htraWrkW9ttXUVERSqUSpVJJaWkpRUVFFBUVyS2e1tbW+Pv7ExISgr+/P46Ojtja2jZYdKeiooLt27eTkZHB0KFD5efGS5YswcnJCUmSuHr1Kl999RU3btzgscce44MPPui0r7+36DE1uBUrVrT5HIVC0SMC7lFXXl7Ojz/+iLGxMUuWLEGhULB7925OnjwJwMsvv/zQw63+Wdi9oXVviJWXlwN3n8FWV1ejpaWFRqOhtraW6upqtLW1MTAwwNHRERcXF+zt7bG0tKSsrIysrCxSU1NJT09HS0sLXV3dBlOfZ2VlsW3bNurq6hg/fjxnzpzByMiIVatWYWFhQWJiIt9++y2XL1/G2tqa119/XfSDe0A9JuBSU1O7ughCB6iurubHH39Eo9GwbNky1Go1P/30E7dv30ZXV5exY8c+cP+vlmphxcXF1NbWyseamJhgYmKCQqHA0NAQLS0tqqqqqKiowNDQEIVCgZWVFfb29jg4OMizEdef81uVlZXyEoq//vor+/btw9vbGy0tLRISEnBxcSE4OJgjR47g7OzMwoULyc3N5b///S+nT59GX1+fZcuWsWjRok5fSLs36TEB15m3J0LnUKvVbNmyhbKyMlauXIlSqWTr1q3A3XHB+fn5zJ07t9kH7ZIkoVQqmw2w+loYgI6ODpaWllhaWuLu7o6vry8qlYqamhoqKiooKCggNzdXPtbW1hYvLy85yOzs7JodrK9SqZpc/6N+RuDy8nLi4uLYsWMHcXFxODk5oVaruXjxIiNHjmTQoEGsX7+eyMhIamtrGTlyJEuWLJHX9K2srGzX97m1dHR0Om3t2s7SYwJO6F00Gg2//PIL2dnZLF++nNzcXPbs2YO9vT39+vXjwIEDzJ07FyMjI+7cudNsiN0bLKampnKIeXp6Ymlpibm5ORqNhvLycvLy8uQOvfWhYWhoiL29PX5+fnLNzNrautX961QqFRcvXmxxuF1FRQWRkZFUVlYyY8YMkpKSOHr0KLq6usTFxVFeXo6WlhZ+fn5Mnz4dFxcXEhMTG0zi0BlMTEwICQnpVSHXowMuNzeXDRs2EBUVRWlpKRqNpsF+hULBsWPHuqh0QnMkSeLAgQMkJiayYMECoqKiOHHiBK6urtja2vKf//wHY2NjDh8+zK5du+TzdHV15QDz8vKS/9/S0hILCwskSSIvL4+cnBxyc3NJSkrizp07cghaWlpib2/P0KFD5ZqZmZlZu/rTqdVqlEolenp6TdbwsrOziYiIQFtbm5kzZxIbG0tVVRX9+vUjMzOTnJwcdHV1sbe3x8LCguLiYiwsLHBwcOjULiI1NTUolUrUarUIuO7g2rVrjBkzhqqqKnx9fYmNjSUgIICSkhKysrLw8vLCxcWlq4spcPeX595nYSdPnuTixYt4enryzjvvkJ+fj5eXF6WlpWzdupW6ujpmzJghP7ivfxkbG6NQKORb09zcXHJzc4mJiSE3N5eioiIkSZJ7/9fXBuvDzMDAoMO+Rn19/QbXlySJa9eucfHiRRwcHBg+fDh79+4lMTERfX19CgsLMTU1ZenSpQwdOhSVSkVKSor8MjQ0xNPTU75N7oyhYiqVqsM/o7P12IB76623MDExkRcPtrW15dNPP2XcuHFs376dF154gZ9++qmri/lIqL8FbO42sqKiQj42Pz+ftLQ0AgMDqaiowMbGhueee46BAweSlJSEQqFg2bJl8nA5jUZDUVERaWlpcs0sNzdXvqaBgQH29vb4+PjIQWZjY/PQ119oi9raWk6ePElKSgoDBgzA2tqaTz/9lLy8PKytrdHV1SUwMJCRI0c2mCTAysqKIUOGUFBQIAddfHw8xsbGBAUFMWDAgC77mnqqHhtwZ86c4c0338TV1ZWioiIA+RZ1wYIFnD59mjfeeEPuaiC0T01NTbMBdm/PfIVCgZmZGZaWltjY2NC3b1+5BpaXl8fevXsZPHgwd+7cwcXFhcWLF9OnTx/y8/M5cuQInp6elJSUsG/fPnJzc8nLy5NbO83NzbG3t2fIkCFymFlYWHSrSUZLSko4cuQI5eXlDBs2jMTERDZu3IhGo8HV1RVnZ2eGDRtG3759m7wFVSgU2NjYYGNjw9ChQ8nLy7vv2GaheT024DQajdzKZGFhgba2thx0AMHBwWzYsKGritejSZLEiRMnGvQNu7clT09PDysrKywtLfH19W1wG2lubt7kBJJpaWkcOHAAfX19MjMzcXJyIjQ0lMTERI4dO8auXbsoKytDrVaTlpZGnz59cHBwIDAwUG7F7O7dJdLS0jhx4gQKhQJbW1v27dvHrVu35IksBw4cyKBBg1o9dfq9i2MLD6bHBpyHh4fcN65+zODRo0dZuHAhcHc2CgsLiy4sYc+lUChITU1FW1sbW1vbRiFmZGTU6lqTJEncuHGDL774gtu3b6PRaOjTpw8ajYbbt2+jp6dHcXExOjo6vPLKKwQHB2Nra9sls+w+KEmSiIqK4sqVK2g0GvT09Lh06RI5OTnY2toyYsQIRowY0WC8alvV1dV16W13T9Vz/hVxd+xn/T+SSZMmsX37dv72t78B8MILL/D6669z69Ytefze66+/3pXF7dGamqL9ftRqNXfu3JGfk+Xk5JCWlsbZs2cpKCjAzs6OsLAwQkND5ZqJUqlk48aNPPfccz1qLdt6VVVVHDp0iOvXr2NkZISdnR3Z2dnk5OTQt29fHn/8cdzd3dt8G11dXU1OTg5ZWVncvn0bOzs7efIBofV6VMDZ29szbdo0li5dyuuvv87ixYupra1FV1eXV199lYqKCn755Re0tbX585//zB//+MeuLnKvVVlZKQdZ/augoECexqpPnz7yczdtbW1mz57NqlWrcHV1la9RU1PDDz/8gLOzMyNHjuzCr+bBpKSk8P777xMdHU3fvn1xd3eX+8TNmjWLKVOmtLomqlaryc3NJTs7m6ysLPLz85EkCXNzc5ycnHB3d+/YL6aX6jGD7QGWLl3Kr7/+SmVlJaampsybN4+lS5cybty4bvWgua2682B7SZIoKSlpEGQ5OTmUlZUBd/um2dnZNRjCZGtriyRJrFu3jnPnzjFp0iSeeeYZzM3NG1z7119/JS4ujueffx4rK6uu+PIeSGVlJT/++CPbt2/HwMAAb29vVCoV0dHRmJubs2LFCry8vFq8hkajobCwUK6h5ebmUldXh6GhIU5OTvLL1NS0U76m6upqysvLGT16dLd/1tkWPaoG99NPP1FVVcXu3bvZvHkzP/30E9999x12dnYsXryYpUuXdruA6IkkSSI8PFzullE/4aexsTEODg4N+pZZWVk1ag1Uq9W8++67nD9/noULF7Jy5cpGy/QlJiYSFRXFrFmzeky4VVVVcerUKTZv3kxmZiZDhw7F09OTAwcOUFxcTFBQEAsXLmzy2a8kSfJA/PpXTU0Nurq6ODg4EBISgpOTE1ZWVj36j3V306NqcL9VXFzMzz//zObNmzl9+jQAPj4+LFu2jCVLlnTaxIjt1R1rcD/88IPcx6y+dtaaqdVramp4++23uXLlCqtXr2bRokWNfmGVSiXr16/H2dmZJ554otv/QldXV3P+/HkiIiK4du0axsbGhISEyFMlJScnExAQwMyZMzE0NJTPq6qqahBo9UOybGxscHZ2xsnJCVtb2/s2HpSUlKBWqx9oBuG2fI29sQbXowPuXllZWWzevJktW7YQHR2NQqFg6NChnD17tquLdl/dMeAeRElJCX/5y1+Ii4vjlVdeYdasWY2OkSSJLVu2kJWVxe9+97t2LxjTkVQqFRcuXJAbSUpKSjAyMsLCwgIdHR0sLCzIyspCoVAwZcoU9PX15YaBrKwsCgsLgbsdeOtvOR0cHO47FKquro6cnBwyMzNJT0+ntLQUV1dXpk6d2mFfa28NuB51i9oSJycn3njjDaZMmcI777zDnj17uHDhQlcX65GRkZHBP//5T27evMnrr7/e7LoUUVFRJCUlsWTJkm4bbrW1tVy8eJEzZ85QXV2NmZkZarUajUaDkZERffv2RU9Pj9jYWHx8fMjPzyc8PJzi4mLq6uowNjbG2dmZ/v374+jo2Kqvs7KykoyMDDIzM7l9+zYqlQpjY2NcXV0ZNmwYTk5OnfCV9z69IuAyMjLk2ltcXBySJDF8+HCWLl3a1UV7JERFRbFhwwaysrL4/e9/32y4FRUVcejQIQYPHkzfvn07uZT3p1aruXz5MqdPn6ayspJ+/fpRXFzM0aNHUSgUDBkyhCFDhhAREUF0dDS2trZybcvNzY1hw4bh7OyMubn5fW+7JUmioKCAjIwMMjIyuHPnjtxBuH///ri6umJtbd3tb9+7ux4bcAUFBfLzt3PnziFJEn5+frz33nssXbpUNKt3Ao1GQ3h4OAcPHqSkpIQnn3yy2ZlnNRoNO3fuxNTUlMmTJ3dySVumVqu5evUqkZGRVFRU0L9/f4KDg/n666+5ePEitra2BAcHo1Qq+ec//0llZSUTJkxg+PDhODg4kJycjLm5+X0H89fW1pKVlUV6ejqZmZlUVFSgp6eHi4sLgYGBuLi4NHiGJ7Rfjwq4iooKdu3axebNmzl27Bi1tbU4ODjw6quvihbUTlZVVcX27du5du0aarWa6dOnM2fOnGZrHKdOnSI7O5uVK1d2m+l46urqiI6OJjIykrKyMoKDgxk6dCjHjx9n2bJlFBcX07dvXzw8PNDX1yclJYXAwEBWr14t/wGtrKwkJSWl2c8oLS2Vn6Xl5ORQV1eHhYUF3t7e8lTnYoRCx+lRAWdra0t1dTUmJiYsWbJE7gMnllbrXPn5+WzZsoXCwkJ0dHQYNGgQCxYsaPYXNSsri5MnTzJq1CicnZ07ubSNaTQarl27xsmTJyksLMTOzo7g4GAyMzP5z3/+Q2pqKvb29rz66quMHDkSbW1t9uzZQ2BgIEuXLm1xCGBdXR15eXlkZGSQnp5OSUkJ2traODg4MGzYMFxcXBr1BxQ6To8KuAkTJrB06VJmzZrVoXN7Cc1LSkril19+QV9fH319fWxsbFiyZEmjfm71VCoVO3fuxMHBocuHYmk0GnmNhFu3bslL/eXm5nL16lUSEhLQaDS88sorvPzyy2hraxMXF8f27dtxcXFh0aJFTd5CVldXyzOf3L59m5qaGoyMjHB1dZX7t3WXWuujpkcF3J49e7q6CI8sSZI4c+YMx44dw93dXR7J8OSTT7bYreDIkSOUlZWxePHiLrsVKyoq4tixYxw6dIiMjAzMzMzw8fEhMDAQhUJBbGwsOTk5+Pv788orr9CvXz8kSeL06dMcPXqUfv36MWvWLHnYVf3MwUlJSfJC0Lq6ujg6OhIUFISbmxt9+vQRDQTdQI8KOKFr1NbW8uuvvxIbG8uIESO4ffs2FRUVrFy5ssXbreTkZC5dusT06dM7tJPqb1VWVpKamkpKSgrnz5/n2rVrKJVKvLy8WLVqFUOHDkVHR4ejR49y6dIlCgsLCQsLY+XKlfJMJ/v37+fKlSuEhYUxZswYamtrSUxMJCkpieTkZMrKytDT08PZ2ZmhQ4fi6+vbY0ZkPEpEwAktKisrY+vWreTn5zNv3jxu3LhBVlYWy5cvb3GV+crKSvbs2YOPjw9Dhgzp0DLW1taSnp5Oamoqt27dIjs7m6KiIgoKCtDS0mLEiBE8/vjj9O3bl8rKSk6cOCEHm7a2NvPmzWP27Nno6+tTU1PD9u3buXXrFuPGjcPAwIDNmzeTmpqKWq3GysqKgIAA+vbti5ubGzU1NURGRnZ451hJkkSN8AGIgBOalZWVxdatW1EoFKxYsYLo6GiuX7/OokWLGswK8luSJLF37140Gg2zZs166L+YGo2G7Oxsbt26xa1bt8jMzKSurg4TExN53QYTExMGDhzI2LFj8fDwQKPRcOHCBSIiIqipqUGSJKysrJg0aRLDhw9HoVBQUlLC559/zq1bt3B1deX48eNoaWnh5ubG+PHj6du3b4MFnDuKSqWisLCQ/Px88vPzyc3NxdramilTpnT4Z/c2IuCEJl27do1ff/0VBwcHFi1axJUrV7h06RKzZs3Cz8+vxXNjYmLkIHwYs2FIkkRhYaEcaGlpaVRXV6Ovr4+7uzuTJk1CR0eHmJgYMjIycHJyYty4cXh6esqTdx48eJD8/Hzc3d3Jzc1FoVAwf/587O3tiY2N5dKlS+zatYva2lqGDh1K//796du3L56enh3aoFVbW0thYSEFBQVyoJWUlCBJEjo6OigUCnJycuglIyo7nQg4oRGVSsWxY8cICgpixowZxMTEcOLECcaNG3ffvobFxcUcPHiQAQMG4O/v/8BlKC8vl285b926RVlZGdra2jg7OxMaGoqnpydOTk5kZWVx4sQJbt26hYODA0uWLMHHxweFQkFxcTGHDx/m+vXruLq6MmLECM6dO4eBgQFBQUFERESQmZlJYWEhmZmZ+Pj4sHr1anx9fTvkdlCtVss1s/pAKy4ullcC69OnD46OjvTv3x8TExOuX7/O9evXMTQ07Bbda3oiEXBCI3p6eowcORJ3d3du3rzJvn37CAkJYdSoUS2ep9Fo2LVrF4aGhm0eGF5TU0NaWpocaPn5+cDdSU6DgoLw9PTE1dVV7m6RlZXFli1bSE5OxtbWlkWLFuHn54dCoUClUnH69GnOnj2LkZERM2bMICoqim+//RYDAwOcnJy4evUqnp6e+Pj4oFKpmD9/PvPnz2/1egn3o1arKS4ulmtl9WGm0WjQ1tbGysoKe3t7goOD5clBtbW1kSSJxMRE9u/fT3Z2tjyjS2fcGvdGIuDusX79etavX09aWhoAgYGBvPPOOy3+sm7fvp0///nPpKWl4ePjwz/+8Y9mx2L2FHV1dURERJCVlUVKSgqDBg1q1SiRs2fPkpmZyYoVK+4bFHV1ddy+fVsOtKysLDQaDRYWFnh6ehIWFoaHh0ejgeq5ubmcOHGCxMRE+vTpw4IFCwgICJDXS42NjeXIkSMUFRXh5OSElpYWf/vb3ygpKWHQoEHyszQ3NzdOnTpFZGQkoaGhTJs27YE7jNfV1VFYWEh5ebkcZkVFRdTV1aGlpSWvMBYQEICNjQ2WlpZNzvRbUlLC0aNHuXr1KpIk4enpyZAhQwgICBD96B6QCLh7ODs78/e//x0fHx8kSeK7775j9uzZXL16lcDAwEbHnz17lsWLF7Nu3TpmzJjB5s2bmTNnDlFRUQQFBXXBV/BwaGtrs2TJEj766CPc3NzQ09Pjiy++oE+fPgQEBBAQEICdnV2D27icnBxOnDjBiBEjcHNza3RNSZK4c+eOHGjp6emoVCoMDQ3x8PBg2rRpeHp6Ymlp2eTt4Z07d4iIiCAhIQErKyvmzZtHUFCQHEr1Nbpr166hq6tLnz59SE5OJisrCycnJ95991369euHQqFArVbz66+/cu3aNSZOnCg3MrSGRqOhoKCA7OxssrOzSUtL48KFC2hra6Orq9tguUQbGxusra3vO215XV0dFy5c4NChQ5SUlODt7c3o0aNFsD0EvWY+uI5iZWXFBx980OQiLIsWLaKiooJ9+/bJ24YNG8aAAQP44osvWv0Z3W0+OJVKxWeffYaRkRErVqxAR0eHW7dukZCQQGJiIlVVVVhaWsphZ2Njw9dff422tjbPPvus3KG3pKSEW7duyc/SKioq0NHRwc3NDQ8PDzw9PbG3t2+x5lRQUMDJkyeJi4vD3NycsLAw+vfvj5aWFlVVVcTGxrJr1y4uX76Mnp4eQUFBhISEUFNTw/Xr1/H09GTBggXyZJ1VVVVs27aN27dvM2fOnBb/ENVPK16/iEz9f2tra+V1J6ytrcnNzcXFxQUnJ6dmR3Q059atW/z888+kpaXh5OTE1KlT6devX6cHm5gP7hFTV1fH9u3bqaioIDQ0tMljzp07x2uvvdZg2+TJk9m9e3eL166pqZGnAYe7M9x2J3p6ekyePBlXV1e5BbFv37707duXuro60tLSSEhI4OrVq5w5c4acnByqq6t5/vnnuXHjhhxoRUVFKBQKHB0dGTRoEJ6enri4uLRqIZaioiJOnjzJtWvXMDU1Zfr06QwYMIDi4mLOnTvHjRs3OH/+PKmpqZiYmDB79mxmzpyJvb09Bw4cICkpiREjRjBx4kQ5cIuLi/npp5+oqKhg+fLlDbq6SJJEUVGRXDOrDzOVSgWAtbU1jo6O+Pv74+joiL29Pfr6+lRWVhIZGYmpqWmbwq2oqIgdO3YQFRWFqakpTzzxBMOHDxc1todMBNxvxMbGEhoaKg/q37VrFwEBAU0em5ubKy8+Xc/Ozo7c3NwWP2PdunWsXbv2oZW5IzR1Sw53b1+9vLzw8vJi0qRJ7Ny5k8jISCRJYs2aNejp6eHp6UlISAjjx4/H09OzTVMAlZSUEBkZSXR0NMbGxkycOBErKytu3brF559/TnFxMWVlZRQVFaGvr8+zzz7LzJkzMTIyori4mI0bN1JYWMjjjz9OcHCwfN36GZ/19fV55pln0NbWJj4+vkGYVVdXA2BpaYmjoyNhYWE4Ojri4ODw0LqKKJVKwsPDiYiIQJIkJk6cyIwZMx5a44bQkAi43/D19SU6OprS0lJ27NjBU089xcmTJ5sNuQexZs2aBjW/6OhowsLCHtr1O4pGoyEnJ0euodUPhbK1tWXevHmYmJhQVVVFeno6GRkZFBYW4u/vT0BAAO7u7i3eipaVlXHq1CmioqIA5JreiRMnqK2txdzcHAcHBzQaDXV1dQQHBzN16lR51febN2/yyy+/YGBgwKpVq+Q/PJIkcfnyZX788Ud0dHTw9/dnw4YNVFVVAWBubo6joyMjRoyQw6wjbtGUSiXnz5/n6NGjlJWV0b9/fxYsWCCGd3UwEXC/oaenh7e3NwCDBw/m0qVLfPrpp3z55ZeNjrW3tycvL6/Btry8PPmXrjn1M3HUa81iLl2h/ratvmEgNTWV6upq9PT0cHd3R19fn8cee4w33nijwZhUSZLIysoiISGBhIQELl++jJGREb6+vgQEBODp6SnfNiqVSiIjIzlx4gQlJSVYWFhgYGBARkYGLi4uhIWF4e7uzvXr1zl//jwmJiY88cQTDVpOT506xYkTJ/D29mbixIkUFxeTkJBAdnY258+fJzY2FhsbGx577DGMjY3x8fHB0dGx1dOJt4dSqeTq1aucOnWKnJwcnJ2defrpp+nbt2+zDRs1NTUUFRXJHYALCwuxsbHp8tlYeiIRcPeh0WgaPC+7V2hoKMeOHePVV1+Vtx05cqTZZ3Y9hUajYd++faSkpFBaWoqWlhbOzs4MGzZM7mCbkJBAUlISTzzxRKMB9wqFAmdnZ5ydnZk4cSK5ubly2F29ehUDAwMcHR1JS0vj+vXrlJaWYmdnh7e3N35+fvTt2xcvLy8MDQ25du0a27Zto6qqilGjRjFixAj5WVdBQQE//PADMTExODk5kZ2dzX//+18ADA0NKSoqory8nOXLlzN//nzMzMw67XtYH2zR0dFkZmZibGzM3LlzGT58uHy7K0kSFRUVcojVv+pnatHW1sbS0lJ+/ie0nQi4e6xZs4apU6fi6upKeXk5mzdvJiIigvDwcACWL1+Ok5MT69atA+CVV14hLCyMjz76iOnTp7N161YuX77MV1991ZVfRrtpaWlRXV2Nv78/np6euLm5NahxlpaWsn//foKDg+/bHUahUMgLQvfr149Tp07x888/s3HjRlQqFQ4ODowdO5Zx48YxcuRI+XPqn5ndvn2bwMBARowYQWVlJefOnSM7O5ukpCTOnTuHSqVi0KBB8sN/R0dHbGxsOHz4MNXV1fzud78jJCSkQ79f96oPtuvXr3Pnzh0kSWLAgAGEhYVhaGgoj5yoD7X65376+vr06dMHd3d3rK2tsba2xsLCQsz2204i4O5x584dli9fTk5ODubm5vTr14/w8HAmTpwI3F3c5t7nSMOHD2fz5s386U9/4o9//CM+Pj7s3r27R/eBq7dw4cImt0uSxO7du9HT02t2/YV6arWa9PR0kpOTiY+P59q1a2RnZ2NhYcFLL71EWFgYRUVFXL9+nVOnTnH+/HlcXFzIz88nNTUVfX19PDw8yMrKkv9oGBgYIEkSaWlpDBkyhKeffhoPDw/5dq+iooLNmzdz584dnnjiCXx9fR/uN6YZSqWSS5cukZiYiFKppKysTG5B1tPT4+DBg9TV1QFgZmaGtbU1QUFBWFtb06dPH3mSAOHhEv3guoHu1g+uJefOnSM8PJynnnoKDw+PRvuVSiXJyckkJSWRkpJCZWUlxcXFKJVKLCwsmDRpEmPGjJGffdXU1JCTk0NcXJy81KNSqcTKygovLy+CgoIYOHAg7u7u2NvbExUVxdmzZwkMDGT27NkNulUUFBTw008/UVtby5IlSzr8tk6SJG7evMl//vMfbt26hUqloqqqioqKCkxNTfHw8MDBwUHuL9enTx+srKy6ZYup6AcnPPLu3LnDsWPHCA0NlcNNkiRycnJISkoiKSmJ7OxsFAoFdnZ2mJubU1VVhZ2dHTNmzCAkJASlUsm1a9fkjrP1t2ppaWno6OiwYMEChg8fTk1NDdnZ2dy+fZurV6+Sl5dHdnY2KpWKqVOnEhoa2qDGk56eztatWzExMeGpp55qcd2EB1Hf6Tc3N5fc3Fxu3brFhQsX5OeUVlZW8rCsyZMnM2TIEKysrMQtZhcTAddDqVQq1Gp1p32eWq1my5YtmJiYMGjQIKKiorh58yY3b96Ul7/z8vJiwoQJlJeXyxNK2tvbY2dnx40bNzhz5ow8DZC9vT1mZmaUlJRgYGDAvHnzmD59eqNJNMvKyoiMjOSnn36isLCQwMBAUlJS0NfXx8/PD2NjY2JjY9m9ezeurq4sWrSo3X3WVCoVeXl5cpjl5uZy584damtrqa6uprCwkNLSUiwtLVm4cCEJCQlUVVXRt29fhg8f3m0XtH4UiVvUbqCtt6gqlYqLFy926giI06dPc+XKFdzd3amoqECj0WBmZoaTkxMODg4oFAri4uKIjY2ltLQUIyMjbGxsMDAwkFsCrayssLa2xsjIiPj4eG7cuIGFhQXPPPOMPE70t65evcr+/fuxs7Nj2rRpZGdnk5CQQFpaGpIkoVKpyM/PZ+zYsSxatKjNNSalUtkgyHJycigqKkKSJLS0tLCxscHe3h4TExO5f5+JiQmhoaFoNBpOnDhBdnY2Y8eO7ZaLWbeWuEUVug21Wo1SqURPT6/DnuccPnyYkpISSktL5dlz7e3tqa2txc7ODmNjY9RqNbm5uVy4cIHc3FzUajWurq4MHz4cFxeXBtMAwf89szp9+jS1tbUMGjQIb29vef62336Nhw4d4vLlywwaNIhp06aho6ODk5MTjz32GGVlZWzYsIFTp05hbm5OUlIS3333HQEBAfj7+zfquqLRaCgqKmoQZrm5ufIfCX19fezt7fH29sbe3h57e3tsbGyoqKiQG0D09fWZPHkyTk5OhIeHk5ubS//+/Rk0aJCYzqibEgHXg+nr63fIbLMajYarV6+iVCrl2zVdXV20tLSIjo6WZ5fVaDTyiABbW1t8fX2xtLSkrq6OnJwcCgsL5U7NSqWSGzduUFZWJg/lMjY2lqcPv1dZWRk///wzOTk5zJw5k8GDBzfYX1NTw6+//kp5eTnvvPMOvr6+JCYmkpCQwJEjR9i/fz9mZmZYWVlhbGyMUqkkLy+P2tpa4G4rpoODA4MHD5bDzMLCokHIlpaWcujQIa5evYq+vj7jxo2jf//+nDlzhu+++w5bW1tWrVqFpaUlkZGRD/1nIDwcIuCERuq7N1RVVZGdnY2lpaVcK7OwsKC0tJTk5GRKS0txcHCgb9++GBgYoFKp5IkEampqqKysJDc3l5s3b5KTk4O+vj4uLi4UFRVx6NAh1Go1KpWKS5cuYWpqioGBARUVFcTExMihUlJSwpkzZzAwMMDQ0JDa2loOHjxIZWUlixcvxsXFhezsbCoqKtDX18fU1JSkpCSuX79OcXExBgYGuLi40K9fP4YOHYq/v3+Lt2AlJSWcPn26QbA99thjpKen880336BUKhk/fjyhoaFoa2tTWVnZiT8Zoa1EwAmNKBQK+vfvT1FREbW1tSxfvhx/f39u3brFlStXKC4uxs3NjTlz5jS7HKBarSYuLo6oqCjc3d1ZuHAh3t7e1NXVUV1djUqloqysjOLiYgIDA5EkiaioKGJjY7GysmLAgAFUV1cTGxtLdXU1VVVVFBQUEB0dTU1NDXZ2dpw/fx6VSoWOjg4GBgZYWVlhY2MjL7hsbW1NSUkJWVlZ3Lhxgxs3buDg4EBQUBD9+vXDxcVF7tfYXLCpVCr27t1LbGwsnp6eLF++XIwf7UFEwAlNCgwMZPv27QQHB2NoaMgvv/xCYWEhLi4ujBkzptklAyVJIj09nfPnz1NeXk5gYCCDBg2Sb6V1dXXl/zczM8Pc3Jzg4GCOHTtGSUkJK1asYMyYMRQUFDR4VhYXF0d8fDzGxsaMHDkSe3t7zM3NMTU1xdjYGF1dXaqrq+UwrK6uJjU1laqqKmpqajA3N6eoqIjo6GiOHj1KXV0dRkZG9OnTh7q6OsrKyjAyMiIwMBBPT0+USiXff/890dHR6OrqMm7cOAYMGCAPrzIwMBBdQHoAEXBCI5IkERERQXl5ubxwi5OTE7Nnz25xIoGSkhJ52nJnZ2cmT56MpaVli5+Vn5/PRx99xJ07d/D39+fmzZucP38ejUYjTypZWVlJWVkZs2bN4umnn77vNZv6empqauTwqx9OFR4ezrVr19BoNDg7O+Pt7Y2lpSWZmZlcuXKFvLw8+vTpg6enJ1euXOHKlSsNrqunp4eWlha3b9/GzMwMExMT+ZljfQPQb/+//n1r5sSrVx/SD7tv36NABJzQSE1NDdeuXUNbWxsDAwNmzpzZ4qiAmpoaoqKiiIuLw8TEhMmTJ+Pm5tbgob0kSZSXlzcYWH79+nXi4+OxsbFh8ODBmJqaYm9vz9ChQ+VWzFOnTnHq1CnmzJnzwOsmKBQKDAwM5JrjlStXSExMxNfXl6eeeoo+ffpw8+ZNEhISiIqKIi8vDzc3N55//nmGDx+OWq2Wa4W//W9xcbF8m6zRaCgpKaGmpkZ+Hlk/POu3dHR0WgxDHR0dioqKyMrKkpc7nDdvXpu/9kedCDihEQMDAyZOnIi9vT1OTk7NjpHUaDQkJSVx8eJF1Go1Q4YMkSeZvHdAef2rfnZcQ0NDOewGDhzImjVr8PLyahBearWaPXv2EBsb2+Z1E5rS3DO2+qFepqamZGRkYGFhgbe3Nzo6Ohw9epSLFy/Kc9rd+8yuXmVlJVpaWnIjyb0kSWrwzLG+8eW3jTH178vKyuT1HvLy8lCpVBgbG2Ntbd0th3f1BCLghCYNGTKkxf25ubmcOXNGntXYxcWFkpISdu/eLS+Pp1AoMDc3x9raGldXV6ytrTExMeHChQtUV1czY8YMvLy85NWv6lVVVbF161aysrJYsGBBs7MLt8b9gq26uppjx45x+fJlHB0d+cMf/oC9vT0ajYbMzEwSEhK4fv06Fy5cwMTEBD8/v1ZN4Al3a446Ojr3ne9PqVRy8+ZNkpKSUKvVeHh4MGnSJLy8vDAyMqKmpuaBV/x61ImAE1pFkiSUSiWZmZmcOXOG5ORkFAoFtra28tAla2tr7OzsCAgIkEcu3LtOQWFhIeHh4VRXVzNlyhRsbW0pLy9v8Dn16yZUVlY2WjehLe4XbADXr1/nwIED1NTUMGXKFB577DE5SLS0tHBzc8PNzY0pU6Zw+/Ztrl+/3mACTz8/Pzw8PJq9DW2JWq0mLS2NpKQkbt++jZaWFh4eHoSGhjYK/N40sqCziYATGpEkqcGtZf1q7BkZGeTm5qKvr09wcDCBgYHy0njm5uYt1jJu3rzJyZMnMTc3Z+7cuZibm8tzodW7ffs2W7ZskddNeJDRAa0JtrKyMg4cOMCNGzfw9fVl2rRpjUY+3EuhUODi4oKLiwsTJ04kJydHnsDzwoUL5OTk4OPjQ9++fXF2dm62AUGSJPLy8khMTJRnH7G3t2f06NF4eHiI29AOIAJOaNK+ffuoqanBzMxMDrz66cKHDRvW6hEUGo2GCxcucO3aNXm9z6ZWn7p+/To7d+7E3t6exYsXt7nWUlJSwqlTp4iOjm422DQaDZcvX+bYsWPo6uqycOFC/P392/Rsr74TtKOjI+PHjyc1NZXt27eTl5dHamoqenp6uLq6NlhBrLy8nKSkJLlztKmpKcHBwfj4+LQYrEL7iYATGlEoFMyaNYva2louXbpEVlYWgYGBDB8+vE1dFaqqqjh69Ci5ubkMHz6coKCgJsPk4sWL8sI+c+bMadPye60JNri7VsbevXu5ffs2Q4YMYcKECe0e5qZQKLC3t6d///6YmppSVVUlr11x8OBB+fZbkiSsra3x8fFh1KhRODo6isktO4kIOKERtVotP28yNTVlypQpuLq6tumXMi8vjyNHjqDRaJg+fXqT3Uw0Gg2XLl2iurqaMWPGMGHChFZ/RmuDrba2lsjISM6cOYO1tTUrV6584Od692NhYYG9vT3l5eXcuXOH6upqNBoN+vr68toelZWVqFQqcTvaSUTACY1oa2tTUlLCY489RlBQUJs6pcLd280zZ87Qp08fJkyY0GQrYm1tLcePH+fmzZs899xzjBo1qlXXbm2wAaSmprJ3715KS0sJCwtjxIgRbf5aWqP+FjQ9PZ3y8nLMzc0ZNmwYPj4+mJqaUlZWRmpqKqmpqRw/fhxtbW2cnZ3x8PDAzc2tQyZMEO4SASc0olAomDZtWptvo9RqNWfOnOHGjRsEBAQQGhraZKBUVlYSHh5Ofn4+YWFhjWYLaUpbgq2yspLDhw8THR2Nm5sbS5YsaXbM7IOqrq4mPj6eixcvcubMGUxMTPD19aVv377Y2dk1+N6ZmZnRv39/+vfvj1KplNeVPXnypPxMz9PTE3d39zYtki3cnwg4oUltDTelUsnhw4cpKioiLCwMPz+/Jo8rLi6WF2CZNm3afW/V6oOtfrnBloJNkiRiY2M5dOgQGo2GWbNmMXDgwIf2vEuj0XDr1i1iYmK4fv06dXV1ODs7M3LkSPz9/Vu1vq2JiQnBwcEEBwdTUVFBWloaqamp8ogNR0dHPDw8cHd3FzMDPwQi4IR2y8rK4ujRo+jo6DB79mxsbGyaPC47O5vDhw9jbGzMrFmz5BbGptwbbIaGhkyYMIEhQ4Y0GWxwNzjr13INCgpiypQpD21B7fz8fKKjo7l27Rrl5eXY2NgwduxY+vXrh7a2NpGRkQ9062tsbExgYCCBgYFUVVWRlpbGrVu3OHv2LGfOnMHe3h4PDw88PDy67eLg3Z0IOOGBSZLEtWvXuHDhAo6Oji22TCYnJ3Py5Ens7e2ZOHEi+vr6jfrBQduDTaPRcO7cOSIiIjAyMmLJkiUPZerwyspK4uLiiImJISsrC0NDQ4KDg+nfv3+DVtCHNR+coaEh/v7++Pv7U11dTXp6OqmpqVy4cIGzZ8/i6+vLmDFjHspnPUpEwAkPpLa2lpMnT5KSksKAAQMajAK4lyRJXL16lUuXLuHr68uoUaOanGaorcEGd2uEv/76K3l5eQwdOpRx48a1ePz91NXVcfPmTWJiYkhMTESSJHx8fFi0aBE+Pj4d0kDRFAMDA3x9ffH19aWmpoaMjIxO++zeRnzXhDYrKSnh8OHDKJVKJk6ciKenZ5PH1dXVcerUKRITExkyZAiDBg1q9DxMqVRy4MABEhISWh1sKpWKEydOcP78eezs7Fi1ahVOTk4P/PXk5uYSExPDtWvXqKiokGuZwcHBXf4cTF9fHx8fny4tQ08mAk5ok7S0NE6cOIGhoSFz585tdm42lUrFkSNHml1xqry8nAsXLhAXF4efn1+rgg3u3uru27ePyspKJkyYwLBhwx5o4smKigpiY2OJjo4mNzcXY2Nj+vXrR//+/Vuc807oWUTACa2i0Wi4cuWKPAX5mDFjmm0BVSqVHDp0CKVSybRp0xrUrsrLy7l69SqJiYloa2szcOBAVq5ced8REvXXjIuLw8vLixkzZrR54ku1Wk1SUhIxMTHyZAG+vr6MHTsWb29vMUNvLyQCTriv6upqjh8/zu3btwkJCWHAgAHNdr0oKCjg0KFD8nCv+vUL7g02fX19QkJC8PT0pLq6usVaW/0zvMOHD6OlpcW8efMIDg5uddcPSZLIzs4mJiaG2NhYqqqqcHJyYurUqQQFBYl+Z72cCDihRQUFBRw5coSamhqmTp2Ki4tLs8dmZGRw9OhRzM3NmTJlCsbGxk0GW0BAQIM1FFr67L1795Kens6AAQOYNGlSqwfhl5eXc+3aNaKjo8nPz8fU1JTBgwfTv3//ZruxCL2PCDihWcnJyURGRmJubs706dMxMzNr9tjr169z+vRpXFxcGD9+PNXV1URGRjYZbPdTV1fH6dOn5c9evnx5sw0Z96qtreXGjRvExMSQkpKCtrY2/v7+TJ48GU9PTzFp5CNIBNw91q1bx86dO7lx4waGhoYMHz6cf/zjH/j6+jZ7zqZNm3j66acbbGuuj1dPUVdXx/nz54mLi6Nv376MGjWqxTnOLl68SHR0NIGBgQQHB3Pu3LkHCja4Wwvcu3cvhYWFjBgxotnple79/MzMTGJiYoiLi6OmpgZXV1dmzJhBYGCgGOf5iBMBd4+TJ0/y4osv8thjj6FWq/njH//IpEmTSEhIaLG7gJmZGYmJifL73jAVTn3ABAYGNvv1qNVqIiIiSElJoV+/fqhUKn7++ecHCrbq6mqOHj3K5cuXcXZ2ZvXq1djZ2TV7fElJiXwLWlRUJA9w79+/v1i3VJCJgLvHoUOHGrzftGkTtra2XLlyhdGjRzd7Xv28YL2FtrY2M2fObDGoq6urCQ8PJysriz59+hAXF/dAwSZJEtevXyciIgKVSsW0adMYMmRIk7eTKpWKhIQEYmJi5MklAwICmDlzJu7u7r3iD4vwcImAa0FpaSnAfWsESqUSNzc3NBoNgwYN4v3332/XQindQUthUVpayq5du0hNTcXCwoLq6uo2Bxvc/b6dPHkSbW1tgoKCmnzOJ0kSaWlpxMTEkJCQgEqlwsPDgzlz5hAQENCukQtC7ycCrhkajYZXX32VESNGEBQU1Oxxvr6+fPvtt/Tr14/S0lI+/PBDhg8fTnx8PM7Ozk2eU79cXD2lUvnQy99RUlJS+P777ykpKSEwMJChQ4e2Odg0Gg0JCQmcPXsWjUbDCy+80GjWj6KiImJiYoiJiaGkpAQrKytGjBhB//79xQLIQquJgGvGiy++SFxcHKdPn27xuNDQUEJDQ+X3w4cPx9/fny+//JK//vWvTZ6zbt061q5d+1DL29HKyso4dOgQJ06cwMzMjKVLlzJw4MA2BRvcfbYXGRnJnTt38PHxwdfXFz8/PxQKhTzHWkxMDBkZGejr6xMUFET//v1xcXERt6BCm4mAa8Lvf/979u3bR2RkZLO1sObo6uoycOBAbt682ewxa9as4bXXXpPfR0dHExYW9sDl7UhlZWVERUVx6tQpcnNzGTx4MEuXLm1zB1m1Ws2VK1e4du0a5ubmzJ49GwsLC0pLS0lJSSEpKUmeY83Ly4vHH38cPz+/NgeoINxLBNw9JEnipZdeYteuXURERODh4dHma9TV1REbG8u0adOaPUZfX7/BMKfuONdXWVmZ3EE3NzcXgCVLljzQCvO3b9/m9OnTKJVKubNtWVkZly5dIj4+HltbWxwdHRkzZgz9+vVrsb+dILSFCLh7vPjii2zevJk9e/Zgamoq/2Kbm5vLNZbly5fj5OTEunXrAHjvvfcYNmwY3t7elJSU8MEHH5Cens6qVau67OtoL7Vazc6dO5EkCQBbW1tGjx5NQEBAm65TXV3NuXPnSEpKkgOsoKCAX3/9lTt37qCtrY2LiwtLlizBy8tL3IIKD50IuHusX78eoNHEghs3bmTFihXA3Y6o93ZhKC4u5tlnnyU3NxdLS0sGDx7M2bNn2xwG3YmOjg5hYWFcvnyZ8vJyJkyY0KaVqCRJ4ubNm3Ijgo+PD2q1mn379iFJkryAsq2tLVVVVWIZPaHDiIC7R32NpSUREREN3v/rX//iX//6VweVqGvU1tZy7tw5eV2DtizYUlZWxqlTp0hKSsLAwABdXV2Sk5OxtrYmJCQEb29veTxpTx7tIfQMIuCERnR1dRk0aBDOzs6tfj5YV1cnrxpfWlqKtbW1vNixj4/PQ1/VShBaQwSc0KTmVsX6LbVaTXR0NAcOHCArKwt7e3vGjBmDv78/Li4uYo41oUuJgBPaTJIk8vPzSUhI4OTJk2RlZWFnZ8eyZct47LHHxAB3odsQASe0WkVFBcnJySQlJZGamkpeXp48ndHw4cPFdERCtyMCTmiRWq0mLS2NpKQkbt++jVqtpqamBi0tLcaPH8+oUaNEvzWh2xIBJzQiSRJ5eXkkJSWRkpKCSqXCzs4OZ2dnsrOzMTExYfjw4aLvmtDtiYATGtFoNISHh6Ojo0NwcDA2NjbExMSQmZmJr68vw4YNE8/ZhB5BBJzQiLa2NnPmzMHIyIiYmBiOHDmCiYkJM2bMaNf6o4LQ2UTACU2qrKzk0KFDlJWVMWDAAAYOHChWVxd6HPEvVmhErVZz5MgRzMzMePzxx8UU4EKPJQJOaERHR4dZs2Zhbm4uGhGEHk0EnNAkMWuu0BuInpmCIPRaIuAEQei1RMAJgtBriYATBKHXEgEnCEKvJQJOEIReS3QTEZpVUFBAQUFBh12/pqaGyspKTE1N27wMYXdRVVXFzZs3MTIyarBS2sPWp08fMSvyA1BIrVmIQOhQOTk5fPnll6xevRoHB4euLg5wN3wmT57MyZMnu7ooAhAWFkZ4eHiHhmhvJAJOaFJZWRnm5uacPHmyW67b+ihRKpWEhYVRWloq5t5rI3GLKrRowIAB4peqi5WVlXV1EXos0cggCEKvJQJOEIReSwSc0CR9fX3+8pe/iIfa3YD4WTw40cggCEKvJWpwgiD0WiLgBEHotUTACYLQa4mAEzpcWloaCoWCTZs2dXVRhEeMCLhuJiUlhdWrV+Pp6YmBgQFmZmaMGDGCTz/9lKqqqg773ISEBN59913S0tI67DNa429/+xuzZs3Czs4OhULBu+++26XlaS2FQtGqV0RERLs/q7KyknfffbdN1+qp39f2EiMZupH9+/ezYMEC9PX1Wb58OUFBQahUKk6fPs0bb7xBfHw8X331VYd8dkJCAmvXrmXMmDG4u7t3yGe0xp/+9Cfs7e0ZOHAg4eHhXVaOtvrhhx8avP/+++85cuRIo+3+/v7t/qzKykrWrl0LwJgxY1p1Tk/9vraXCLhuIjU1lSeeeAI3NzeOHz/eYND9iy++yM2bN9m/f38XlvD/SJJEdXV1h8wAkpqairu7OwUFBdjY2Dz063eUZcuWNXh//vx5jhw50mh7V+mp39f2Ereo3cQ///lPlEolGzZsaHJGEW9vb1555RX5vVqt5q9//SteXl7o6+vj7u7OH//4R2pqahqc5+7uzowZMzh9+jQhISEYGBjg6enJ999/Lx+zadMmFixYAMDYsWMb3U7VXyM8PJwhQ4ZgaGjIl19+CcCtW7dYsGABVlZWGBkZMWzYsHYFcVfWHjuaRqPhk08+ITAwEAMDA+zs7Fi9ejXFxcUNjrt8+TKTJ0+mT58+GBoa4uHhwcqVK4G7zzPrA2rt2rXyz+p+t5y9+fvaElGD6yb27t2Lp6cnw4cPb9Xxq1at4rvvvmP+/Pm8/vrrXLhwgXXr1nH9+nV27drV4NibN28yf/58nnnmGZ566im+/fZbVqxYweDBgwkMDGT06NG8/PLL/Pvf/+aPf/yjfBt17+1UYmIiixcvZvXq1Tz77LP4+vqSl5fH8OHDqays5OWXX8ba2prvvvuOWbNmsWPHDubOnfvwvkG9wOrVq9m0aRNPP/00L7/8MqmpqXz22WdcvXqVM2fOoKury507d5g0aRI2Nja89dZbWFhYkJaWxs6dOwGwsbFh/fr1vPDCC8ydO5d58+YB0K9fv6780rovSehypaWlEiDNnj27VcdHR0dLgLRq1aoG2//f//t/EiAdP35c3ubm5iYBUmRkpLztzp07kr6+vvT666/L27Zv3y4B0okTJxp9Xv01Dh061GD7q6++KgHSqVOn5G3l5eWSh4eH5O7uLtXV1UmSJEmpqakSIG3cuLFVX58kSVJ+fr4ESH/5y19afU538uKLL0r3/nqdOnVKAqSffvqpwXGHDh1qsH3Xrl0SIF26dKnZa7fne9PTv69tJW5Ru4H66XBMTU1bdfyBAwcAeO211xpsf/311wEa3SIGBAQwatQo+b2NjQ2+vr7cunWr1WX08PBg8uTJjcoREhLCyJEj5W0mJiY899xzpKWlkZCQ0Orr93bbt2/H3NyciRMnyjMlFxQUMHjwYExMTDhx4gTwfwtu79u3j9ra2i4sce8gAq4bqJ9vrby8vFXHp6eno6Wlhbe3d4Pt9vb2WFhYkJ6e3mC7q6tro2tYWlo2evbTEg8PjybL4evr22h7/a3tb8vxKEtOTqa0tBRbW1tsbGwavJRKJXfu3AHuztz7+OOPs3btWvr06cPs2bPZuHFjo2erQuuIZ3DdgJmZGY6OjsTFxbXpPIVC0arjtLW1m9wutWGehZ66ZkJ3odFosLW15aeffmpyf33DgUKhYMeOHZw/f569e/cSHh7OypUr+eijjzh//ryYXbmNRMB1EzNmzOCrr77i3LlzhIaGtnism5sbGo2G5OTkBg0BeXl5lJSU4Obm1ubPb21Y/rYciYmJjbbfuHFD3i/c5eXlxdGjRxkxYkSr/lgMGzaMYcOG8be//Y3NmzezdOlStm7dyqpVqx7oZ/WoEreo3cSbb76JsbExq1atIi8vr9H+lJQUPv30UwCmTZsGwCeffNLgmI8//hiA6dOnt/nzjY2NASgpKWn1OdOmTePixYucO3dO3lZRUcFXX32Fu7s7AQEBbS5Hb7Vw4ULq6ur461//2mifWq2Wv+/FxcWNatYDBgwAkG9TjYyMgLb9rB5VogbXTXh5ebF582YWLVqEv79/g5EMZ8+eZfv27axYsQKA/v3789RTT/HVV19RUlJCWFgYFy9e5LvvvmPOnDmMHTu2zZ8/YMAAtLW1+cc//kFpaSn6+vqMGzcOW1vbZs9566232LJlC1OnTuXll1/GysqK7777jtTUVH755Re0tNr+9/OHH34gPT2dyspKACIjI/nf//1fAJ588skeWysMCwtj9erVrFu3jujoaCZNmoSuri7Jycls376dTz/9lPnz5/Pdd9/x3//+l7lz5+Ll5UV5eTlff/01ZmZm8h82Q0NDAgIC2LZtG3379sXKyoqgoCCCgoKa/fze+n29r65uxhUaSkpKkp599lnJ3d1d0tPTk0xNTaURI0ZI//nPf6Tq6mr5uNraWmnt2rWSh4eHpKurK7m4uEhr1qxpcIwk3e3iMX369EafExYWJoWFhTXY9vXXX0uenp6StrZ2gy4jzV1DkiQpJSVFmj9/vmRhYSEZGBhIISEh0r59+xoc05ZuImFhYRLQ5KupLizd1W+7idT76quvpMGDB0uGhoaSqampFBwcLL355ptSdna2JEmSFBUVJS1evFhydXWV9PX1JVtbW2nGjBnS5cuXG1zn7Nmz0uDBgyU9Pb1WdfvoLd/XthIz+gqC0GuJZ3CCIPRaIuAEQei1RMAJgtBriYATBKHXEgEnCEKvJQKuh/nnP/+Jn58fGo2mq4vSbm+99RZDhw7t6mI8MPGz6AG6up+K0HqlpaWSlZWV9O2338rb+P/7Mn344YeNjt+4ceN9p95prV9++UVauHCh5OHhIRkaGkp9+/aVXnvtNam4uLjJ4/fs2SMNHDhQ0tfXl1xcXKR33nlHqq2tbXBMTk6OpK+vL+3Zs6fd5ets4mfRM4iA60H+9a9/SWZmZlJVVZW8rf6Xys7OTqqoqGhw/MP8pbK2tpaCg4OlP//5z9LXX38tvfzyy5Kenp7k5+cnVVZWNjj2wIEDkkKhkMaOHSt99dVX0ksvvSRpaWlJzz//fKPrLly4UBo1alS7y9fZxM+iZxAB14P069dPWrZsWYNtgDRgwAAJkD766KMG+x7mL1VTvd2/++47CZC+/vrrBtsDAgKk/v37N6glvP3225JCoZCuX7/e4NgdO3ZICoVCSklJaXcZO5P4WfQM4hlcD5Gamsq1a9eYMGFCo30jRoxg3Lhx/POf/+ywpQWbWr2pfkry69evy9sSEhJISEjgueeeQ0fn/4Y6/+53v0OSJHbs2NHgGvVfz549ezqg1B1D/Cx6DhFwPcTZs2cBGDRoUJP73333XfLy8li/fn2L16mpqWkwo2xLr/vJzc0FoE+fPvK2q1evAjBkyJAGxzo6OuLs7Czvr2dubo6Xlxdnzpy57+d1F+Jn0XOI2UR6iPo51pqaWRdg1KhRjB07lg8++IAXXnih2TnHtmzZwtNPP92qz5TuM0z5H//4B9ra2syfP1/elpOTA9DkymAODg5kZ2c32u7p6dmjpjcXP4ueQwRcD1FYWIiOjk6LM7q+++67hIWF8cUXX/A///M/TR4zefJkjhw50u7ybN68mQ0bNvDmm2/i4+Mjb6+/LdPX1290joGBgbz+xL0sLS0b1Sa6M/Gz6DlEwPUio0ePZuzYsfzzn//k+eefb/IYBweHJv+it8WpU6d45plnmDx5Mn/7298a7KuvrTS1hkBzi0VLktTrZqkVP4vuQQRcD2FtbY1araa8vLzF1bf+8pe/MGbMGL788kt5haZ7VVVVUVpa2qrPtLe3b7QtJiaGWbNmERQUxI4dOxo8vIb/ux3KycnBxcWlwb6cnBxCQkIaXbO4uLjBs6PuTvwseg7RyNBD+Pn5AXdb8FoSFhbGmDFj+Mc//tFkK962bdvkmsP9Xr+VkpLClClTsLW15cCBA03eotVPr3358uUG27Ozs7l9+7a8/16pqakN1pbo7sTPoucQNbgeon4hmsuXL993FfN3332XMWPG8NVXXzXa96DPfXJzc5k0aRJaWlqEh4fLq0D9VmBgIH5+fnz11VesXr1aXtFr/fr1KBSKBg/BAUpLS0lJSeGFF15oc5m6ivhZ9Bwi4HoIT09PgoKCOHr0KCtXrmzx2LCwMMLCwjh58mSjfQ/63GfKlCncunWLN998k9OnT3P69Gl5n52dHRMnTpTff/DBB8yaNYtJkybxxBNPEBcXx2effcaqVasa1Q6OHj2KJEnMnj27zWXqKuJn0YN0XR9joa0+/vhjycTEpMFwHEB68cUXGx174sQJeejQw+g9D03P5w80WttBkiRp165d0oABAyR9fX3J2dlZ+tOf/iSpVKpGxy1atEgaOXJku8vX2cTPomcQAdeDlJSUSFZWVtI333zT1UV5KHJyciQDAwNp9+7dXV2UNhM/i55BNDL0IObm5rz55pt88MEHvWKKnk8++YTg4OAeeUskfhY9g1hVSxCEXkvU4ARB6LVEwAmC0GuJgBMEodcSAScIQq8lAk4QhF5LBJwgCL2WCDhBEHotEXCCIPRaIuAEQei1RMAJgtBriYATBKHXEgEnCEKvJQJOEIReSwRcN5CTk8O7774rr2MpCMLDIQKuG8jJyWHt2rUi4AThIRMBJwhCryUCThCEXksEnCAIvZYIOEEQei0RcILQzalUKs6ePYtKperqovQ4IuAEoZs7f/48Gzdu5MKFC11dlB5HBJwgdGM1NTWEh4eTmprKoUOHqKmp6eoi9Sgi4AShG7tw4QJJSUn069ePpKQkLl682NVF6lFEwAlCN1Vfe9PT08PMzAw9PT1Ri2sjEXCC0E1dvXqVlJQUKioqiI+Pp6KigpSUFK5evdrVResxdLq6AIIgNM3FxYWlS5c2uV1oHRFwgtBNOTk54eTk1NXF6NHELaogCL2WCDhBEHotEXCCIPRaIuAEQei1RMAJgtBriYATBKHXEgEnCEKvJQJOEIReSwScIAi9lgg4QRB6LRFwgiD0WiLgBEHotUTACYLQa4mAu0dkZCQzZ87E0dERhULB7t27Wzw+IiIChULR6JWbm9s5BRYEoUUi4O5RUVFB//79+fzzz9t0XmJiIjk5OfLL1ta2g0ooCEJbiPng7jF16lSmTp3a5vNsbW2xsLB4+AUSBKFdRA3uIRgwYAAODg5MnDiRM2fO3Pf4mpoaysrK5JdSqeyEUgrCo0cEXDs4ODjwxRdf8Msvv/DLL7/g4uLCmDFjiIqKavG8devWYW5uLr/CwsI6qcSC8GhRSJIkdXUhuiOFQsGuXbuYM2dOm84LCwvD1dWVH374odljampqGqyMFB0dTVhYGFeuXGHQoEEPWmRBEH5DPIN7yEJCQjh9+nSLx+jr66Ovry+/NzEx6ehiCcIjqVvdotbV1bF161ZWr17N3LlziY2NBaC0tJSdO3eSl5fXxSW8v+joaBwcHLq6GIIg0I1qcCUlJUyZMoWLFy9iYmJCRUUFL730EnC3hvPyyy+zfPly3n///Q4rg1Kp5ObNm/L71NRUoqOjsbKywtXVlTVr1pCVlcX3338PwCeffIKHhweBgYFUV1fzzTffcPz4cQ4fPtxhZRQEofW6TQ3urbfeIj4+nvDwcG7dusW9jwa1tbWZP38+Bw4c6NAyXL58mYEDBzJw4EAAXnvtNQYOHMg777wDQE5ODhkZGfLxKpWK119/neDgYMLCwoiJieHo0aOMHz++Q8spCELrdJsa3O7du3nppZeYOHEihYWFjfb37duXTZs2dWgZxowZQ0ttLr/9/DfffJM333yzQ8skCMKD6zY1uNLSUjw8PJrdX1tbi1qt7sQSCYLQ03WbgPPy8mqx/9jhw4cJCAjoxBIJgtDTdZuAW7VqFd9++y3btm2TbxMVCgU1NTW8/fbbHDp0iNWrV3dxKQWh86lUKs6ePYtKperqovQ43eYZ3CuvvEJ8fDyLFy+Wx3UuWbKEwsJC1Go1q1ev5plnnunaQgpCFzh//jw//PADdXV1jBo1qquL06N0m4BTKBR8/fXXPPXUU+zYsYPk5GQ0Gg1eXl4sXLiQ0aNHd3URBaHT1dTUEB4eTmpqKocOHSIkJKRBJ3GhZd0m4OqNHDmSkSNHdnUxBKFbuHDhAklJSfTr14+kpCQuXrwoanFt0G2ewaWmprJ3795m9+/du5e0tLTOK5AgdLH62puenh5mZmbo6elx6NChBuOYhZZ1m4D7f//v//Hvf/+72f2ff/45b731VieWSBC61tWrV0lJSaGiooL4+HgqKipISUnh6tWrXV20HqPb3KKeO3eOV199tdn948eP55NPPum08ghCV3NxcWHp0qVNbhdap9sEXHFxMaamps3uNzExaXKEgyD0Vk5OTjg5OXV1MXq0bnOL6urq2uJsuKdOncLZ2bkTSyQIQk/XbQJu8eLFbNmyhX//+99oNBp5e11dHZ9++inbtm1jyZIlXVhCQRB6mm4zo29NTQ3Tp0/n+PHj2NjY4OvrC9xdsSo/P58xY8Zw8ODBXtkHKCoqisGDB4sZfQXhIes2NTh9fX0OHz7Mhg0bCAkJoaCggIKCAkJCQvj22285evRorww3QRA6TrdpZADQ0tLi6aef5umnn+7qogiC0At0mxqcIAjCw9atanDh4eFs2LCBW7duUVxc3GjySYVCQUpKSheVThCEnqbbBNwHH3zAW2+9hZ2dHSEhIQQHB3d1kQRB6OG6TcB9+umnjBs3jgMHDqCrq9vVxREEoRfoNs/giouLmT9/vgg3QRAemm4TcCEhISQmJnZ1MQRB6EW6TcD997//ZefOnWzevLmriyIIQi/RbZ7BLVq0CLVazZNPPskLL7yAs7Mz2traDY5RKBTExMR0UQkFQehpuk3AWVlZYW1tjY+PT1cXRRCEXqLbBFxERERXF0EQhF6m2zyDEwRBeNi6VcCVlZXx97//ncmTJzNw4EAuXrwIQFFRER9//DE3b97s4hIKQucT66I+uG5zi3r79m3CwsLIzMzEx8eHGzduoFQqgbvP57788kvS09P59NNPu7ikgtC5xLqoD67b1ODeeOMNysvLiY6O5uTJk43Goc6ZM4ejR492UekEoWv8dl1UsaJW23SbgDt8+DAvv/wyAQEBKBSKRvs9PT3JzMzsgpIJQtdpal1UofW6TcBVVVVhY2PT7P7y8vIOL0NkZCQzZ87E0dERhULB7t2773tOREQEgwYNQl9fH29vbzZt2tTh5RQeDWJd1PbrNgEXEBBAZGRks/t3797NwIEDO7QMFRUV9O/fn88//7xVx6empjJ9+nTGjh1LdHQ0r776KqtWrSI8PLxDyyk8Gu63LqpofLi/btPI8Oqrr/LUU0/Rr18/FixYAIBGo+HmzZusXbuWc+fO8csvv3RoGaZOncrUqVNbffwXX3yBh4cHH330EQD+/v6cPn2af/3rX0yePLmjiik8Iu63LqpofLi/bhNwy5YtIz09nT/96U+8/fbbAEyZMgVJktDS0uL9999nzpw5XVvI3zh37hwTJkxosG3y5MktLmAtCK3V0rqov218CAkJEWuWNKHbBBzA22+/zZNPPskvv/zCzZs30Wg0eHl5MW/ePDw9Pbu6eI3k5uZiZ2fXYJudnR1lZWVUVVVhaGjY5Hk1NTUNnqPUd4cRhKaoVCouX77MkCFD0NPTA5pufBC1uMa6RcBVVlYyatQonn32WZ5//nn+53/+p6uL1KHWrVvH2rVru7oYQg/x21vR5hofRC2usW7RyGBkZERqamqT3UO6M3t7e/Ly8hpsy8vLw8zMrNnaG8CaNWsoLS2VXydPnuzoogo9VH2Y3bp1S25BvV/jg/B/ukUNDu4+bwsPD2f16tVdXZRWCw0N5cCBAw22HTlyhNDQ0BbP09fXb/CX1sTEpEPKJ/R89beiwcHB8q2op6dni40Pwv/pNgH35z//mQULFvDkk0+yevVqPDw8mqwFWVlZdVgZlEplg/GuqampREdHY2VlhaurK2vWrCErK4vvv/8egOeff57PPvuMN998k5UrV3L8+HF+/vln9u/f32FlFB4dv70Vzc/P59ChQ7zzzjvMnDmzq4vXI3SbgAsMDAQgISGhxVl96+rqOqwMly9fZuzYsfL71157DYCnnnqKTZs2kZOTQ0ZGhrzfw8OD/fv38z//8z98+umnODs7880334guIsJDUX8rWl1dTXx8PHV1dfKt6LBhw7q6eD1Ctwm4d955p8ufwY0ZM6bRGNh7NTVKYcyYMeLZh9Ah7u0HV1tbKy/IJG5FW69NAefh4dHmEGrtYs3vvvtum64rCL3dvf3gKioqMDY27uIS9TxtCriwsLBGAXf58mXi4+MJCAjA19cXgMTERBISEggKCmLw4MEPVLDS0lJMTEwarcsgCI+ijnw006tJ7bBr1y7JwsJCOnr0aKN9hw8fliwsLKTdu3e3+nqXLl2SJk+eLBkaGkra2trSsWPHJEmSpPz8fGnWrFnSiRMn2lPcbuvKlSsSIF25cqWriyJ0U0VFRV1dhB6pXf3g3nnnHV566SXGjx/faN/EiRP5/e9/z5/+9KdWXevs2bOMHDmS5ORkli1bhkajkff16dOH0tJSvvzyy/YUVxB6rNra2q4uQo/UroBLTk7G2tq62f3W1tatev4G8Mc//hF/f38SEhJ4//33G+0fO3YsFy5ceOCyCkJPVlVV1dVF6JHaFXBeXl5s3LixybGU5eXlfPvtt60eQ3rp0iWefvpp9PX1m2zIcHJyIjc3tz3FFYQeq6ysrKuL0CO1q5vI//7v/zJ//nz8/PxYsWIF3t7ewN2a3XfffUdeXh7bt29v1bV0dXUb3Jb+VlZWlujxLzyyqqurqa6uxsDAoKuL0qO0K+DmzJnDgQMH+MMf/tDotnLAgAFs2LCh1Z1ehw0bxo4dO5qcaqiiooKNGzcSFhbWnuIKQo9WXFyMg4NDVxejR2l3R99JkyYxadIkcnNzSU9PB8DNzQ17e/s2XWft2rWEhYUxffp0Fi9eDEBMTAy3bt3iww8/JD8/nz//+c/tLa4g9FglJSUi4NrooY1ksLe3b3Oo3Wvo0KEcOHCAF154geXLlwPw+uuvA3ef9R04cIB+/fo9lLIKQk9UUlICND0/nNC0dk+XlJGRwfPPP4+vry9WVlbyugoFBQW8/PLLzQ5jKisra9R5cdy4cSQmJhIVFcW2bdvYsmULFy9eJCkpSdyeCo+8/Px84O78cBs3bhS9ClqhXQGXkJDAwIED2bZtGx4eHpSWlqJWq4G7fddOnz7NZ5991uS5lpaWbNu2TX6/cuVK+Qc2YMAAFixYwKJFixgyZEiXj1EVhO4gPz8fpVIp1kltg3YF3JtvvomFhQVJSUn8+OOPjQaqT58+nVOnTjV5rp6eXoMfzqZNm1rdZ04QHkV1dXXs379frJPaBu16BhcZGck777yDjY0NhYWFjfa7urqSlZXV5Ll+fn588803uLu7Y25uDkBaWhpRUVEtfuagQYPaU2RB6LFqa2vZvXu3mKq8DdoVcBqNBiMjo2b35+fnN/uNX7duHYsWLZJXpVIoFPz5z39utqVUkiQUCoUYdCw8cgYNGkRaWhq6urq4urpiY2NDfHw8tbW1Yn64+2hXwA0aNIj9+/fzu9/9rtE+tVrN1q1bm/3GT5kyhdTUVC5dukReXh4rVqzgueeeu+9034LwqMnMzKS4uBgjIyNCQkKwtrZu8GxazA/XvHYF3Jo1a5gxYwYvvPACTzzxBHB30ZWjR4/y/vvvc/369WYbGa5du4abm5vcEXjjxo0sWLCgyYH7gvCoqqmpobq6Grj7DC4gIABdXV28vLzkWbCF5rWrkWHq1Kls2rSJbdu2MW7cOODuAs6TJk0iKiqK77//ntGjRzd57sCBA8XaBYJwHxcuXJB7Jmg0GtLS0oC7XUWaeu4tNNTujr5PPvkk8+bN48iRIyQnJ8uLNU+ePBlTU9NmzzM0NKSyslJ+f/LkSZ599tn2FkcQeo36RWfqb0UlSSI+Ph53d3cADh8+zNy5c8X41BY8cMBVVlbi4uLCW2+9xRtvvMGcOXPadH7//v35+OOP0dbWlltRL126dN8f1rx58x60yILQo9QvOnNv96v8/HwyMzPx9PSkvLycw4cPM23aNHR0us3yKt3KA39XjIyM0NHReeB54j/99FPmz5/PM888A9xtRf3000/59NNPmz1HtKIKj5L6RWeOHDlCdXU1+vr6hISEYGlpKR+Tm5tLeHg4kyZNkhelEf5Pu2L/8ccfZ8eOHbzwwgttHm0wZMgQbt68SUpKCnl5eYwZM4a3335b7jYiCI+6+kVn6tcH1tXVpX///o2Oy8rKYt++fUyaNEksTPMb7Qq4J554gt/97neMHTuWZ599Fnd39yYXa26uc66Ojg6+vr74+vry1FNPMWPGDIYOHdqeIgnCI0WtVpOeno5areaXX35h7NixotvIPdoVcGPGjJH/v6khWW3pnLtx48b2FEUQeq36Z3C/HQoJcOvWLS5cuIBGo8HHx4eDBw8SHBxMSEiIWJGOdgZce0LpvffeQ6FQ8Pbbb6OlpcV7771333PqRzsIwqNEpVIBjZcOrK2tJSEhgYKCArl1VVdXl9jYWHJzc5k4ceIjPwu2Qmrqz0In0NLSQqFQUFVVhZ6eHlpa9++S11sbGaKiohg8eDBXrlwRY22FBmpqaujTpw9KpRJ9fX0++ugjuTEhKSmJEydOYGlpSXFxMePGjcPHx0c+18jIiClTptCnT5+uKn6Xa/d8cA9Ko9FQV1cnT9in0Wju++qN4SYILWmuo2997U1bWxtDQ0O0tbXl8an1Kisr2bdvH3l5eV1R9G6hTbeoK1euRKFQ8NVXX6Gtrc3KlSvve45CoWDDhg0PXEBBeFS11NE3MzOT/Px8amtryc7Opq6urkEfuXoqlYoDBw4wderUds243VO1KeCOHz+OlpYWGo0GbW1tjh8/ft/uIW3pPnL9+nVSUlIoLy/H1NQUb29v/Pz82lJEQeg1Wuroa2lpSUhISKNz7u0jV6+2tpaDBw8+kiHXpoCrrx439/5Bffnll/ztb39rcu44V1dX3n77bVatWvVQPksQeoqWOvrWv1qrPuSmTJnySC1c0+XjO/7f//t/fPzxx1hZWbFy5UqCgoIwMTFBqVQSGxvL7t27Wb16NcnJyfzjH//o6uIKQqdxcnKirq5OXi9Yo9Hg4uLSpmC71701uUcl5LqskQHg4sWLfPzxx8ydO5f09HS+/vprXnnlFZ555hleeeUVvvnmG9LT05k1axYffvghly9f7pRyff7557i7u2NgYMDQoUNbnBZ606ZNKBSKBi8x+Flor4sXLzJz5kzc3d3l1bSqqqr44x//yOeff/7Ad09qtZpDhw6Rm5v70MpaVFTE0qVLMTMzw8LCgmeeeQalUtmqcyVJYurUqSgUCnbv3t1g36VLlxg/fjwWFhZYWloyefJkYmJi2lS2dgfcwYMHmThxItbW1ujo6KCtrd3o1ZwNGzbg4ODA5s2bmx1iYmxszJYtW7Czs+uUxopt27bx2muv8Ze//IWoqCj69+/P5MmTuXPnTrPnmJmZkZOTI7/q14cVhAexc+dORowYwcGDBxt17pUkibi4OP7xj3/cd3r/5tTX5OpX6WqNMWPGsGnTpib3LV26lPj4eI4cOcK+ffuIjIzkueeea9V1P/nkkyaf0yuVSqZMmYKrqysXLlzg9OnTmJqaMnny5AYtxffTroD75ZdfmDFjBnl5eTzxxBNoNBoWL17ME088gaGhIf369eOdd95p9vxz586xYMGC+84nb2BgwIIFCzhz5kx7itsqH3/8Mc8++yxPP/00AQEBfPHFFxgZGfHtt982e45CoZDXhbW3t8fOzq7Dyyn0ThcvXmTRokXU1dU12y2qvtvU119//cA1udraWg4cOEBBQUE7Snu3YfDQoUN88803DB06lJEjR/Kf//yHrVu3kp2d3eK50dHRfPTRR03+bt24cYOioiLee+89fH19CQwM5C9/+Qt5eXltqkC0K+DWrVtHSEgIV69eZe3atcDdriQ//fQTcXFx5OTk4OHh0ez5mZmZ+Pv7t+qzAgICyMzMbE9x70ulUnHlypUGA/61tLSYMGEC586da/Y8pVKJm5sbLi4uzJ49m/j4+BY/p6amhrKyMvnV2uq80Pv97//+L5IkNTksqykHDhx44M+qqalh//797Qq5c+fOYWFhwZAhQ+RtEyZMQEtLq8V1WysrK1myZAmff/55ky27vr6+WFtbs2HDBlQqFVVVVWzYsAF/f395PrzWaPe6qE888QTa2tryfFT11Ud3d3d+97vftdgwUFZW1uKkmPcyMTGhvLy8PcW9r4KCAurq6hrVwOzs7Jp9ZuHr68u3337Lnj17+PHHH9FoNAwfPpzbt283+znr1q3D3NxcfolFrQW4u4j6vn37Wt2hXaPRcO3aNYqKih74M2tqajhw4ID8nK+tcnNzsbW1bbBNR0cHKyurFp/z/c///A/Dhw9n9uzZTe43NTUlIiKCH3/8EUNDQ0xMTDh06BAHDx5s09x37Qo4IyMjeSSChYUF+vr65OTkyPvt7OxITU1t9vz6wfit1UWjyloUGhrK8uXLGTBgAGFhYezcuRMbGxu+/PLLZs9Zs2YNpaWl8uvkyZOdWGLhYVOpVFRWVrb7deDAgTb/G5ckievXr7dqJFBzr8rKSsLDwxusU/z+++9jYmIiv06dOsXzzz/fYFtGRsYDfb9+/fVXjh8/zieffNLsMVVVVTzzzDOMGDGC8+fPc+bMGYKCgpg+fTpVVVWt/qx2dRPx9fUlISFBfj9gwAB++OEHli1bhlqtZvPmzbi6urZ4jQ8//JAtW7bc97OaW1/1YerTpw/a2tqNhrbk5eW1uoOkrq4uAwcO5ObNm80eo6+v3+C546M+ILonU6lUXLx48aE8ZoiJiUGhULQp5BQKBaWlpe3+fKVSyYkTJxg3bhx6eno8//zzLFy4UN6/dOlSHn/88QYzajs6OmJvb9+oAU6tVlNUVNTs78zx48dJSUnBwsKiwfbHH3+cUaNGERERwebNm0lLS+PcuXPyOPXNmzdjaWnJnj175EWu7qddATdv3jz+/e9/8+GHH6Kvr8/bb7/N7NmzsbCwQKFQUFFR0eLDeVdXV4qKilpdxb5fWLaXnp4egwcP5tixY/IU7BqNhmPHjvH73/++Vdeoq6sjNjaWadOmdWBJhe5CrVajVCrR09N74MWXa2trSU9P5/bt2w9UgzMwMGjVZBX3u05NTQ1qtRo9PT2srKywsrKS9xsaGmJra4u3t3eD80JDQykpKeHKlSsMHjwYuBtgGo2m2bkd33rrrUYd94ODg/nXv/7FzJkzgbvP6Oon5KhX/76+X2BrPFDAVVdXs2fPHmpra/nTn/5EUVERDg4OzJgxg4iICHbu3Im2tjbTp09n7NixzV7nYY2EeJhee+01nnrqKYYMGUJISAiffPIJFRUVPP300wAsX74cJycn1q1bB9yd9mnYsGF4e3tTUlLCBx98QHp6uhh58YjR19dvc//HoqIibty4wc2bN6mtrW1Uo2kNhUKBr69vuwPOzMzsgQLa39+fKVOm8Oyzz/LFF19QW1vL73//e5544gkcHR2Bu3df48eP5/vvvyckJETubfBbrq6ucqPkxIkTeeONN3jxxRd56aWX0Gg0/P3vf0dHR6fFTPmtNgfcnTt3GD58OKmpqfIzNENDQ3bv3s2ECRMYNWoUo0aNautlu41FixaRn5/PO++8Q25uLgMGDODQoUNyw0NGRkaDf0zFxcU8++yz5ObmYmlpyeDBgzl79iwBAQFd9SUI3ZharSY1NZUbN240urUzNTWlb9++3Lx5s1W1FC0tLfz9/R94ZEM9HR0d3N3d5Xnn2uqnn37i97//PePHj0dLS4vHH3+cf//73/L+2tpaEhMTG6yidz9+fn7s3buXtWvXEhoaipaWFgMHDuTQoUNtGoXR5vngXnrpJdavX8+rr77KuHHjuHnzJn/9618xMzMjJSWlLZcS/n9iPrieq7KyksjISExNTVuswZWUlHDjxg2Sk5MbBYmOjg6enp74+flx584dVq5ciUajue/tqpaWFq+88kq7H90EBARgbGxMeXk5o0ePxsjIqF3X607aXIM7fPgwy5cv58MPP5S32dnZsWTJEhITE/H19X2oBRSEnqquro709HRu3LjRoHdBPUtLS/z8/PD29pZ7I9jY2LBu3TrWrFmDJElN1uTqhwQ+9dRT7Q43BwcHrK2tqa6ubtd1uqs2B1xGRgZ/+MMfGmwbOXIkkiSRl5cnAk545JWVlZGYmEhSUlKj4NDW1sbDwwM/Pz9sbW2b7CY1btw4vv32WzZs2MCpU6ca1OQUCgUBAQFMmjSp3eFmYGDQYkf83qDNAVdTU9OoKl7/vn7mUUF41NTPtnvjxo0muzSZm5vLtbXWNEYEBgby8ccfk5uby+LFiykvL8fQ0JA33nhDfuamVqvJzMzExcXlgRZ+9vHx6fUL0zxQK2paWlqDgb6lpaUAJCcnN9kSJJ4rCb1V/bO1zMzMRh1QtbS0cHNzw8/PDwcHhzavHQxgb2+PoaEh5eXl6OnpNWhQSE9P5/Lly2g0Gry8vNp0XVdX1wdqte1pHijg/vznPze5utXvfve7Bu/bsmygIPQUGo2GhIQETp8+TWxsbKPGABMTE/z8/Ojbt2+T6wQ/DGq1mhs3blBYWMiNGzdwc3NrdS3O2dm5w/uUdhdtDriOXL80PDycDRs2cOvWLYqLixv9w1EoFKKlVugypaWlnDt3jtOnTzfqnK5QKHB1dcXPzw8nJ6cHqq01p6l1UdPT07lz5w6Ojo7cuXOH9PT0+9bidHV18fLywsbG5qGVrbtrc8A99dRTHVEOPvjgA9566y3s7OwICQkhODi4Qz5HENpCo9GQlJTE6dOniY6ObtSqaW5ujr29PQEBAQ16/j9M9RNY1N8J1dfedHR0MDAwQEdHp8VanEKhwMHBAVdXV3nJwUdFl09ZXu/TTz9l3LhxHDhw4JH7IQjdj1Kp5Pz585w+fbpRh9z6lsxRo0bh4eHBmTNnOqzvmEqlkvvN1dbWolaruX37NgUFBajVanJzc6mrq6OgoIDbt283mkrI1tYWV1fXDrtV7u66TcAVFxczf/58EW5Cl5EkiZSUFE6fPk1UVFSjXgGmpqYMHz6ckSNHYm1tDdCm3vkPIi4uTq65aTQa0tPTsba2lsd93uveRgMzMzM8PT1bPR1Zb9VtAi4kJITExMSuLobwCKqsrOTixYucOnWqyQ65vr6+jBo1in79+j1Qd4wHpVKpGk20euPGDSZPnkxQUFCT5ygUCjw8PHB0dHyozwF7qm4TcP/973+ZOnUqQ4YMYcmSJV1dHKGXkySJ9PR0Tp06xeXLlxvN829sbMywYcMYOXJkl01Bn5iY2GiGkeZuReHubDgBAQGPfK3tXt0m4BYtWoRarebJJ5/khRdewNnZuVEnRIVC0eZVdQThXtXV1Vy+fJlTp041OQW+l5cXI0eOZNCgQV3+uMTOzo6pU6dy8eJFVCqVPJ1XU/3X9PX1CQ4ObvZZW21tLQkJCQQEBHT519WZuk3AWVlZYW1tjY+PT1cXReiFbt++zalTp7h06VKj4VP1y0OOGjVKnuKnO7C1tcXW1laexkhXV7fJW1M9PT369evX4giJ2NhYDhw4gEajYeDAgR1W5u6m2wRcREREVxdB6GVUKhVRUVGcOnWqyanz3dzcGDlyJEOGDHngySo722+HZ+no6BAUFISBgUGztbT6Z3lZWVmcPXuWwMBAeXB/b9dtAk4QHpbc3FxOnz7N+fPnG7Vy6uvrM2TIEEaNGtUje/PfOzzLx8dHnuoImq+lxcXFkZGRgY+PDxkZGcTHxz8ytbhuF3C1tbXcuHGD0tLSJqeKGT16dBeUSujuamtriYmJ4dSpUyQnJzfa7+joyOjRo3nsscd6bJ8wSZIaDM+aOHEi5ubmQPO1tPrtOjo6GBsbo6Oj80jV4rpNwGk0GtasWcN///vfFvsWiXGtwr0KCgo4ffo0Z8+ebbTwio6ODoMHD5Y75PbUbhPW1tao1Wq0tbXl4VlKpZI7d+7g5OQENF9Lq2+JValU3Lp1S+4onJiY+EiMFuo2Aff+++/zwQcfsHr1akaOHMmTTz7JP/7xDywsLPjvf/+LQqHgn//8Z1cXU+gG6hf2OXXqFNevX2+0387OjlGjRjF06FD59q0n++GHH0hOTmbDhg0UFRVhbm5OTU2NXBMDmq2l1bfE/lZXdX3pbN0m4DZt2sTChQtZv349hYWFAAwePJhx48bx1FNPERoayvHjxxusOi88WoqKijhz5gxnz56Vp+iqp62tzYABAxg1ahQ+Pj49trbWnNTUVHl4VllZGZIkyTUxoMVa2m8XZn6UdJuAu337Nm+++SaA3KJV35yvp6fHsmXL+Pjjj3n//fe7rIxC56ufmujUqVPExcU1mmHG2tqaUaNGERoa2ms7uNbW1lJSUsLAgQPp06dPg0VX6mtij3ItrSXdJuCsra3lZygmJiaYmZlx69atBscUFxd3RdGELlBaWsrZs2c5c+ZMo6mJtLS0CA4OZtSoUfj5+bV7ybzuLjY2litXruDv78+MGTOavO1+lGtpLek2ATdw4EAuXbokvx87diyffPIJAwcORKPR8O9//5v+/ft3YQmFjlY/NdGpU6eIiYlp1IpuYWHByJEjGT58+CMxGy38X+vonTt30NXVfaRGITwM3SbgnnvuOTZt2kRNTQ36+vr87W9/Y/To0YwePRpJkrC0tGTLli1dXUyhAyiVSnkiyfz8/Ab77p2aKDAwsNevIfBb9a2jbm5u5OfnP1J92B6GbhNws2bNYtasWfL7gIAAUlJSiIiIQFtbm+HDh3fYhIJC56ufmujUqVNcvXq10dREZmZmhIaGNpia6FFzbx82Q0NDDAz+v/buPSiq644D+HfZZR+El4SXD2RhHROJWggKGME1QaQhKFoVQowRDULbVE3VpGi1gI8SjbZQUkt1GlFGEiURU9FADD4QETZBmDQYRQlKxwrGRAGhu7xO/0jYsrArD4G7e/l9ZnbGPXvuvWdX+HLu3nPPkY6oMWyDwWgCTh8bGxuEhYVx3QwyiJqbm1FSUoLCwkKjmprIGHUdw1ZfXw+hUDiixrANBqP6CWpvb0dWVhbOnj2Lu3fvYuvWrZgyZQrq6+uRn5+PmTNn0pUhE9SXqYk6e2v0Zfn/dR3DdvfuXdjb28PMzIx+B/rBaALuwYMH+PnPfw6VSgVLS0s0NTVh9erVAH68qrpmzRq89tprNEzEhPRlaqKAgAB4eXnRl+d6dM4mAgC3b9/W3rVA+s5oAi4uLg4VFRXIy8uDl5eXzl9yoVCIxYsX49SpUxRwJqBzaiKVSgWNRqPzmkwmg6+vL/z9/Y1qaiJjN9JP1wfKaD6148ePY/Xq1QgKCtLeydDVxIkTkZ6ePvwNG4FqamqQn5+PxsZGWFlZITAwsNeZN1paWlBaWorCwkKDUxMFBATA29vbZKYmMiYUcANjNJ9afX093NzcDL7euaIQGToqlQrbtm3DyZMnwRiDmZkZOjo6IBAIEBoaii1btmD69Ok629y5c0c7NVH3ld0lEgmmT58Of39/k5yayJiMtOExg8VoAk6hUODy5csGX//ss8/g4eExjC0aWY4dO4aIiAgwxrS3Q3UOtGWM4dSpU/j0009x5MgRzJs3D+Xl5bhw4QJu3LjRY19jx45FQECASU9NZGwo4AbGaO5xiY6Oxvvvv48jR45of8EEAgE0Gg1+//vfIzc3F7GxscPSlr/+9a+Qy+XaqaxVKtUj62dlZeHpp5+GVCrFlClTcOrUqWFp52BRqVSIiIhAe3u7wemoOl8LDw/HypUrceDAAZ1wMzc3h5+fH9566y1s2rQJs2bNonAbRHy/HW2oGE0Pbu3ataioqEBkZKT2NpxXXnkF33//Pdra2hAbG4vXX399yNtx5MgRrFu3DmlpafD19UVycjKCg4Nx7do1vUMYioqKEBkZiaSkJISGhiIzMxMLFizA5cuXDS7tZmy2b9+u03MzhDGGjo4OFBYWaocv8G1qImNFPbiBEbDefqqHWWFhIT766CNcv34dHR0dUCgUCA8PH7aZfH19fTF9+nS89957AH48TXNxccHq1asRFxfXo35ERASampqQk5OjLfPz84OnpyfS0tL6dMzLly/D29sbpaWlePbZZwfnjfRRTU0N5HJ5r+HW3a5duxAWFsbLqYn6o7m5GQUFBbCysnrkoi/GTq1Wo7GxEbNmzYKFhQXXzRk0RtOD6+Tv7w9/f39Ojt15JXDjxo3aMjMzM8yZM6fHArydLl26hHXr1umUBQcH4/jx4waPo9FodIZPdM6i0tbW1mMQ7FDLy8vrd7gBwKhRo+Dm5jbiL/x0Xvxqamoy6c9Co9Fof/6G8mdwuMc7Gl3AcenevXtob2/vMVLcyckJV69e1btNbW2t3vq1tbUGj5OUlITExMQe5b6+vgNoNTdWrVqFVatWcd0MYmKG+4SR04DrenN9XwgEAnzyySdD1Jrhs3HjRp1eX3l5OZRKJUpKSoZ9poj09HTExMT0e7v9+/dj+fLlQ9Ai09PS0mLSvbdOIpGIdzfxcxpwOTk5kEqlcHZ27lOyD/V3Pfb29hAKhairq9Mpr6urg7Ozs95tnJ2d+1Uf+HF8WNfBrpaWlgB+/AEb7i58cHAwBAJBv/6yCgQCzJ07l26v+gl9DsaL02vPY8eOhVqthr29PdauXYtLly6hurra4KP7DL+DTSwWw9vbG/n5+dqyjo4O5OfnY8aMGXq3mTFjhk59ADh9+rTB+sZm/PjxCA0N7fNVOqFQiHnz5tHAXWIaGMfOnTvHYmJimJ2dHROJRCwwMJC9//77rKGhgZP2fPjhh0wikbD09HR25coVFhMTw2xtbVltbS1jjLFly5axuLg4bf2LFy8ykUjEdu/ezb755hsWHx/PzM3N2b/+9a8+H7O0tJQBYKWlpYP+fvpCpVIxkUjEBAIBA2DwIRAImEgkYiqVipN2jlQajYZdvHiRaTQarpticjgPuE4tLS3s+PHjLDw8nFlYWDCpVMoWLlzIsrKymFqtHta2pKamsvHjxzOxWMx8fHxYcXGx9jWlUsmWL1+uU//o0aNs4sSJTCwWs2eeeYadPHmyX8fjOuAYY+zjjz9mIpGICYVCveEmFAqZSCRix44d46yNI9X58+dZdHQ0Kygo4LopJsdoAq6rxsZGdvDgQTZjxgxmZmbGtm7dynWThpQxBBxjP/bk5s2bp+3JmZmZaXtu8+fPp54bB9RqNdu0aRMLDAxkmzZtGvY/9qbO6IaJaDQa5OXl4ZNPPkFZWRmkUinkcjnXzRoRpk+fjn/+85+oqanBmTNn0NDQAGtra7zwwgv0nRtHSkpKUFlZialTp6KyshIqlQoBAQFcN8tkGEXAdXR04PTp0/jggw9w/PhxNDc3Y86cOdi/fz8WLlxItwANs/HjxyMqKorrZox4nX/sxWIxrK2tIRaLkZubCx8fH5pyqo84DbiioiJkZmYiKysL33//Pfz8/PDHP/4R4eHhsLe357JphHCurKwMVVVVUKvVqKioQGtrK6qqqlBWVgY/Pz+um2cSOA04f39/yGQyhISEIDIyUnsqWlNTg5qaGr3bDPe9moRwxcXFBUuXLtVbTvqG05vtu04B09sgXsYYBAKBwel8TBmXN9sTwmec9uAOHDjA5eEJITzHacDRvYyEkKFE04QSQniLAo4QwlsUcIQQ3qKAI4TwFgUcIYS3KOAIIbxFAUcI4S0KOEIIb1HAEUJ4iwKOEMJbFHCEEN6igCOE8BYFHCGEtyjgCCG8RQFHCOEtCjhCCG9RwBFCeIsCjhAT1tLSgqKiIrS0tPSpfKShgCPEhBUXF+PAgQMoKSnpU/lIQwFHiJEz1BvrXBi6uroaubm50Gg0jywfiSjgCDFyhnpjJSUlqKysxNSpU1FZWQmVSvXI8pGIAo4QI9ZbL00sFsPa2hpisRi5ubloaGjQWz5Se3EUcIQYMUO9sbKyMlRVVaGpqQkVFRVoampCVVUVjh49qre8rKyM43fCDU7XRSWEGGaol+bj4wMXFxcsXbq0xzajR4+Gk5NTj3IXF5fhaLLRoYDr4ocffsDq1atx4sQJmJmZYdGiRUhJSYGlpaXBbWbPno3z58/rlMXGxiItLW2om0t4rrOXplarUVFRgdbWVm1vzM/PD2PHjuW6iUaPAq6LpUuX4s6dOzh9+jRaW1uxYsUKxMTEIDMz85HbrVq1Clu3btU+t7CwGOqmkhHAUC9tpPbGBoIC7ifffPMNcnNz8cUXX2DatGkAgNTUVISEhGD37t0YM2aMwW0tLCzg7Ow8XE0lI8TYsWOpl/aY6CLDTy5dugRbW1ttuAHAnDlzYGZm1utgycOHD8Pe3h6TJ0/Gxo0b0dzc/Mj6Go0GDQ0N2sfDhw8H5T0QQnRRD+4ntbW1cHR01CkTiUSws7NDbW2twe1eeeUVuLq6YsyYMfjqq6/wu9/9DteuXcOxY8cMbpOUlITExMRBazshRD/e9+Di4uIgEAge+bh69eqA9x8TE4Pg4GBMmTIFS5cuxaFDh5CdnY2qqiqD22zcuBH19fXaR/eLFISQwcH7Htz69esRFRX1yDru7u5wdnbG3bt3dcrb2trwww8/9Ov7NV9fXwDAjRs3oFAo9NaRSCSQSCTa54+6SsulO3fu4M6dO1w3g+DH4R+jR4/muhkmh/cB5+DgAAcHh17rzZgxAw8ePEBpaSm8vb0BAGfOnEFHR4c2tPqivLwcAPr1wzh69GjEx8cb1Q+wRqNBZGQk9S6NhFKpRF5ens4fRtI7AWOMcd0IY/Hiiy+irq4OaWlp2mEi06ZN0w4TuX37NgIDA3Ho0CH4+PigqqoKmZmZCAkJwZNPPomvvvoKv/3tbzFu3DiTD4aGhgbY2Njg/PnzRtvDHCkePnwIpVKJ+vp6WFtbc90ck8L7Hlx/HD58GL/5zW8QGBioHej7l7/8Rft6a2srrl27pr1KKhaL8fnnnyM5ORlNTU1wcXHBokWLsHnzZq7ewqDz9PSkXyqONTQ0cN0Ek0U9OKJXZw+Oeg3co/+LgeP9VVRCyMhFAUf0kkgkiI+Ppy+1jQD9XwwcnaISQniLenCEEN6igCOE8BYFHCGEtyjgCCG8RQFHyCDobUKHzse5c+ce+1jNzc1ISEjo17527NiB+fPnw8nJCQKBAAkJCY/dDlNAdzIQMggyMjJ0nh86dAinT5/uUT5p0qTHPlZzc7N2uq3Zs2f3aZvNmzfD2dkZXl5eyMvLe+w2mAoKOEIGwauvvqrzvLi4GKdPn+5RzpXq6mrI5XLcu3evT5NP8AWdohIyTDo6OpCcnIxnnnkGUqkUTk5OiI2Nxf3793XqffnllwgODoa9vT1kMhnc3NywcuVKAMDNmze1AZWYmKg99e3tlFMulw/FWzJ61IMjZJjExsYiPT0dK1aswJo1a1BdXY333nsPZWVluHjxIszNzXH37l3MnTsXDg4OiIuLg62tLW7evKmdIdrBwQF/+9vf8Ktf/QoLFy7EL37xCwDA1KlTuXxrxosRQgbdG2+8wbr+el24cIEBYIcPH9apl5ubq1OenZ3NALAvvvjC4L6/++47BoDFx8f3u12Ps60polNUQoZBVlYWbGxsEBQUhHv37mkf3t7esLS0xNmzZwEAtra2AICcnBy0trZy2GJ+oIAjZBhcv34d9fX1cHR01M4y3fl4+PChdrp8pVKJRYsWITExEfb29ggLC8OBAweg0Wg4fgemib6DI2QYdHR0wNHREYcPH9b7eueFA4FAgI8++gjFxcU4ceIE8vLysHLlSuzZswfFxcU0u3I/UcARMgwUCgU+//xzzJw5EzKZrNf6fn5+8PPzw44dO5CZmYmlS5fiww8/RHR0NAQCwTC0mB/oFJWQYRAeHo729nZs27atx2ttbW148OABAOD+/ftg3WYw8/T0BADtaaqFhQUAaLchhlEPjpBhoFQqERsbi6SkJJSXl2Pu3LkwNzfH9evXkZWVhZSUFCxevBgHDx7E3r17sXDhQigUCjQ2NmL//v2wtrZGSEgIAEAmk8HDwwNHjhzBxIkTYWdnh8mTJ2Py5MkGj5+RkYFbt25p1xMpKCjA9u3bAQDLli2Dq6vr0H8IXOD6Mi4hfNR9mEinffv2MW9vbyaTyZiVlRWbMmUKe/vtt9l//vMfxhhjly9fZpGRkWz8+PFMIpEwR0dHFhoayr788kud/RQVFTFvb28mFov7NOxDqVQyAHofZ8+eHay3bXRoRl9CCG/Rd3CEEN6igCOE8BYFHCGEtyjgCCG8RQFHCOEtCjhCCG9RwBHCsZs3b0IgECA9PZ3rpvAOBRwhhLdooC8hHGOMQaPRwNzcHEKhkOvm8AoFHCGEt+gUlZBBkJCQAIFAgMrKSrz66quwsbGBg4MDtmzZAsYY/v3vfyMsLAzW1tZwdnbGnj17tNvq+w4uKioKlpaWuH37NhYsWABLS0s4ODhgw4YNaG9v19Y7d+6c3vVW9e2ztrYWK1aswLhx4yCRSDB69GiEhYXh5s2bQ/SpcI8CjpBBFBERgY6ODrzzzjvw9fXF9u3bkZycjKCgIIwdOxY7d+7EhAkTsGHDBhQUFDxyX+3t7QgODsaTTz6J3bt3Q6lUYs+ePdi3b9+A2rZo0SJkZ2djxYoV2Lt3L9asWYPGxkbU1NQMaH8mgbv7/Anhj/j4eAaAxcTEaMva2trYuHHjmEAgYO+88462/P79+0wmk7Hly5czxhirrq5mANiBAwe0dZYvX84AsK1bt+ocx8vLi3l7e2ufnz17Vu+MIN33ef/+fQaAvfvuu4Pzhk0E9eAIGUTR0dHafwuFQkybNg2MMbz++uvacltbWzz11FP49ttve93fL3/5S53nAQEBfdquO5lMBrFYjHPnzvVYh5XPKOAIGUTjx4/XeW5jYwOpVAp7e/se5b0FjVQq7bEK/ahRowYUUBKJBDt37sSnn34KJycnzJo1C7t27UJtbW2/92VKKOAIGUT6hnkYGvrBehnA0JchI4bWZ+h6IaLTm2++icrKSiQlJUEqlWLLli2YNGkSysrKej2OqaKAI8SEjRo1CkDP9Rlu3bqlt75CocD69evx2Wef4euvv0ZLS4vOFV2+oYAjxIS5urpCKBT2uCK7d+9enefNzc1Qq9U6ZQqFAlZWVrxec5UWnSHEhNnY2GDJkiVITU2FQCCAQqFATk6OdiHpTpWVlQgMDER4eDg8PDwgEomQnZ2Nuro6vPzyyxy1fuhRwBFi4lJTU9Ha2oq0tDRIJBKEh4fj3Xff1Vlly8XFBZGRkcjPz0dGRgZEIhGefvppHD16FIsWLeKw9UOLbtUihPAWfQdHCOEtCjhCCG9RwBFCeIsCjhDCWxRwhBDeooAjZAQZaes/UMARYkBVVRViY2Ph7u4OqVQKa2trzJw5EykpKfjvf/87ZMe9cuUKEhISOJ+IcseOHZg/fz6cnJwgEAiQkJDAaXsGggb6EqLHyZMnsWTJEkgkErz22muYPHkyWlpaUFhYiLfeegsVFRUDnniyN1euXEFiYiJmz54NuVw+JMfoi82bN8PZ2RleXl7Iy8vjrB2PgwKOkG6qq6vx8ssvw9XVFWfOnMHo0aO1r73xxhu4ceMGTp48yWEL/48xBrVaDZlMNuj7rq6uhlwux71793pM22Qq6BSVkG527dqFhw8f4h//+IdOuHWaMGEC1q5dq33e1taGbdu2QaFQQCKRQC6XY9OmTT1uYpfL5QgNDUVhYSF8fHwglUrh7u6OQ4cOaeukp6djyZIlAIDnn38eAoFAZ82Fzn3k5eVh2rRpkMlk+Pvf/w4A+Pbbb7FkyRLY2dnBwsICfn5+jxXEXPYeBwsFHCHdnDhxAu7u7njuuef6VD86Ohp/+MMf8Oyzz+LPf/4zlEolkpKS9N7EfuPGDSxevBhBQUHYs2cPRo0ahaioKFRUVAAAZs2ahTVr1gAANm3ahIyMDGRkZGDSpEnafVy7dg2RkZEICgpCSkoKPD09UVdXh+eeew55eXn49a9/jR07dkCtVmP+/PnIzs4ehE/FRHE6YTohRqa+vp4BYGFhYX2qX15ezgCw6OhonfINGzYwAOzMmTPaMldXVwaAFRQUaMvu3r3LJBIJW79+vbYsKytL7zoLXfeRm5urU/7mm28yAOzChQvassbGRubm5sbkcjlrb29njOlf/6E33333HQPA4uPj+7yNsaAeHCFdNDQ0AACsrKz6VP/UqVMAgHXr1umUr1+/HgB6nCJ6eHggICBA+9zBwaHP6zN0cnNzQ3BwcI92+Pj4wN/fX1tmaWmJmJgY3Lx5E1euXOnz/vmEAo6QLqytrQEAjY2Nfap/69YtmJmZYcKECTrlzs7OsLW17TGzbvc1G4D+r7Pg5uamtx1PPfVUj/LOU1tDM/zyHQUcIV1YW1tjzJgx+Prrr/u1naG1Ebob6PoMXQ3FFVO+ooAjpJvQ0FBUVVXh0qVLvdZ1dXVFR0cHrl+/rlNeV1eHBw8ewNXVtd/H72tYdm/HtWvXepRfvXpV+/pIRAFHSDdvv/02nnjiCURHR6Ourq7H61VVVUhJSQEAhISEAACSk5N16vzpT38CALz00kv9Pv4TTzwBoOdCMo8SEhIClUqlE8pNTU3Yt28f5HI5PDw8+t0OPqCBvoR0o1AokJmZiYiICEyaNEnnToaioiJkZWUhKioKAPCzn/0My5cvx759+/DgwQMolUqoVCocPHgQCxYswPPPP9/v43t6ekIoFGLnzp2or6+HRCLBCy+8AEdHR4PbxMXF4YMPPsCLL76INWvWwM7ODgcPHkR1dTU+/vhjmJn1vy+TkZGBW7duobm5GQBQUFCA7du3AwCWLVtmGr1Cri/jEmKsKisr2apVq5hcLmdisZhZWVmxmTNnstTUVKZWq7X1WltbWWJiInNzc2Pm5ubMxcWFbdy4UacOYz8O8XjppZd6HEepVDKlUqlTtn//fubu7s6EQqHOkBFD+2CMsaqqKrZ48WJma2vLpFIp8/HxYTk5OTp1+jNMRKlUMgB6H/qGsBgjWpOBEMJb9B0cIYS3KOAIIbxFAUcI4S0KOEIIb1HAEUJ4iwKOEMJbFHCEEN6igCOE8BYFHCGEtyjgCCG8RQFHCOEtCjhCCG9RwBFCeOt/dkkk4JoQXVwAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -619,7 +623,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAApwAAAInCAYAAAA1RokTAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvXd0VGl65/8plXLOOQuEJCQkUCKJnFM3TWhSE6Z7ZnrstWe89rG9s2f9m/GO7V3Pju21jz090z1N6G7oJocmiywECISyhHLOqlIoVUkV7+8Ptq4lJIEACRDczzn3UIVKt966uvXe733e5/k+MkEQBCQkJCQkJCQkJCTGCYvXPQAJCQkJCQkJCYm3G0lwSkhISEhISEhIjCuS4JSQkJCQkJCQkBhXJMEpISEhISEhISExrkiCU0JCQkJCQkJCYlyRBKeEhISEhISEhMS4IglOCQkJCQkJCQmJcUUSnBISEhISEhISEuOKJDglJCQkJCQkJCTGFUlwjjHNzc384he/oLm5+XUPRUJCQkJCQkLijUASnGNMc3Mzv/zlLyXBKSEhISEhISHx/5AEp4SEhISEhISExLgiCU4JCQkJCQkJCYlxRRKcEhISEhISEhIS44okOCUkJCQkJCQkJMYVSXBKSEhISEhISEiMK5LglJCQeOswGAyvewgSEhISEgOQBKeEhMRbxc2bN9m/fz8mk+l1D0VCQkJC4v8hCU4JCYm3irCwMBobG7l+/frrHoqEhISExP9DEpwSEhJvFUFBQSxcuJBbt25RXV39uocjISEhIYEkOCUkJN4ySkpK6O7uJiQkhOPHj6PRaF73kCQkJCTeeSTBKSEh8Vah1WrJzs7GxsYGg8HAyZMnEQThdQ9LQkJC4p1GEpwSEhJvFQkJCXzwwQeUl5dja2vLo0ePyMrKet3DkpCQkHinkQSnhITEW0dcXBybN2+mp6cHnU7HhQsXaG5uft3DkpCQkHhnkQSnhITEW0lUVBRbt27Fzs6OmpoavvvuO3Q63eseloSEhMQ7iSQ4JSQk3lomTZrEzp07CQgIICMjg9OnT7/uIUlISEi8k0iCU0JC4q0mLCyMH//4x/j5+XHgwAEePHjwuockISEh8c4hCU4JCYm3nqCgIP76r/8aZ2dn/u7v/o7GxsbXPSQJCQmJdwpJcEpISLwTBAQE8Pd///eYTCb+8i//ku7u7tc9JAkJCYl3BklwSkhIvDMEBwfzq1/9CoVCwc9//nNJdEpISEi8IiTBKSEh8U4RFxfHT3/6UyorK/n1r39NZ2fn6x6ShISExFuPJDglJCTeOVasWMH69espLCzks88+o6Oj43UPSUJCQuKtRhKcEhIS7xwymYzt27eTlJREaWkpX375Ja2tra97WBISEhJvLZLglJCQeCdxdHRk69atBAQE0NHRwb59+2hqanrdw5KQkJB4K5EEp4SExDtLREQECxYswM7ODrlczv79+6mvr3/dw5KQkJB465AEp4SExDvNokWLCAwMxMLCAg8PD7766iuqq6tf97AkJCQk3iokwSkhIfFOI5fL2bBhA1qtFldXV4KCgvjmm2+oqKh43UOTkJCQeGuQBKeEhMQ7j7u7O6tXr6a4uJiYmBgiIiI4dOgQjx49et1Dk5CQkHgrkASnhISEBDBt2jQSEhK4ePEiixcvJioqisOHD1NYWPi6hyYhISEx4bF83QOQkJCQeFNYtWoV9fX1nDhxgj179mBpacmxY8fQ6/VMnz79dQ9PQkJCYsIiRTglJCQk/h/W1tZs3LiRtrY2rl27xvvvv09iYiKnTp3i/v37r3t4EhISEhMWSXAO4Be/+AUymWzQFhUV9bqHJSEh8Qrx8/Nj6dKl3Llzh4qKClavXs2sWbM4e/YsmZmZr3t4EhISEhMSaUn9CaZOnUp6err43NJSOkQSEu8aqampVFVVcfLkST799FOWLVuGlZUVly5dQq/XM2/ePGQy2esepoSEhMSEQYpwPoGlpSW+vr7i5unp+bqHJCEh8RwIgoDRaHypfchkMt577z0sLCw4ceIE8Nivc9GiRVy7do0rV64gCMJYDFdCQkLinUASnE9QXl6Ov78/4eHhbN++nbq6uqe+XqvV0tPTI269vb2vaKQSEhLDkZGRwYEDB9BoNC+1HwcHB9avX091dTW3b98GYN68eaxYsYKMjAwuXLggiU4JCQmJUSIJzgGkpqayb98+Lly4wG9/+1uqq6tJS0tDpVKN+Dv/8A//gIuLi7jNnz//FY5YQkLiSUJDQ2lvb+cPf/gDSqXypfYVHh7O3LlzuXr1Kg0NDQDMnDmTNWvWcO/ePb7//ntMJtNYDFtCQkLirUYmSLfoI9LV1UVISAj/9E//xMcffzzsa7RaLVqtVnyem5vL/Pnzyc7OZsaMGa9qqBISEv+PtrY2SkpKyM/Pp6+vj61btxIUFPTC+zMajezdu5fe3l4+/fRTbG1tgcff9VOnThEXF8f777+PhYV0/y4hISExEtIM+RRcXV2JjIx8aos7GxsbnJ2dxc3R0fEVjlBCQuJJCgoKuH79OikpKXh5ebF//36KiopeeH9yuZyNGzfS19fH999/Ly6jJyQksHHjRgoLCzl69OhL541KSEhIvM1IgvMp9Pb2UllZiZ+f3+seioSExChZtGiR2DEoKSmJ6Ohojhw5wu3bt18459LV1ZV169ZRWFhIbm6u+P9Tp07lww8/pLS0lO+++w6DwTBGn0JCQkLi7UISnAP4i7/4C27cuEFNTQ2ZmZmsX78euVzO1q1bX/fQJCQkRolMJmPt2rVER0dz8uRJ4uPjmTdvHpcvX+bs2bMvnHM5depUZsyYwblz52hvbxf/f8qUKWzbto3q6moOHjyITqcbq48iISEh8dYgCc4BNDQ0sHXrVqZMmcLmzZvx8PDg7t27eHl5ve6hSUhIPAcWFhZ88MEHRERE8N133xEREcF7773Hw4cPOXjw4KC86+dh5cqVuLq6cvTo0UHRzIiICLZv305DQwNff/31C+9fQkJC4m1FKhoaYx4+fEhiYqJUNCQh8Qag1+s5ePAgTU1N7Nq1i/7+fr777jvc3NzYtm0bzs7Oz73P1tZWPv/8cxITE1m5cuWgn5kFp4eHBzt27MDOzm6sPoqEhITEhEaKcEpISLy1WFlZsWXLFry8vPj6669xdHTk448/pq+vjy+++IKWlpbn3qePjw/Lli3j3r17lJaWDvpZYGAgu3btorOzk/3796NWq8fqo0hISEhMaCTBKSEh8VZjY2PD9u3bcXZ25sCBA1haWvLJJ5/g4ODAl19+SXl5+XPvMzk5maioKE6ePElPT8+gn/n5+bF79256e3vZt2/fU318JSQkJN4VJMEpISHx1mNnZ8dHH32Era0t+/fvx2QysWfPHsLCwjh06BAPHjx4rv3JZDLWrVuHlZUVx48fH1KI5O3tzZ49e9Bqtezdu5eurq4x/DQSEhJvEhqNhqamptc9jDceSXBKSEi8Ezg4OPDRRx8hk8k4cOAAOp2ODz/8kOTkZL7//nsuX778XLZJ9vb2fPDBB9TW1nLr1q0hP/fw8OAHP/gBgiCwd+/el+56JCEh8WYhCALZ2dn827/9G6dOnZJa3T4DSXBKSEi8M7i4uLBz5050Oh1fffUVWq2WlStXsmLFCjIzMzl69Ch6vX7U+wsNDWXevHlcv36durq6IT93dXVlz549WFlZsXfv3kF2ShISEhOXpqYmvvjiC86cOUNkZKR4MysxMpLglJCQeKdwd3dn586dqFQq0cJo5syZfPjhh5SVlXHgwIHnKvaZP38+wcHBHDt2jL6+viE/d3Z2Zvfu3djb27Nv374XKlSSkJB4M+jr6+Ps2bN8/vnn6PV69uzZw/r166Uug6NAEpwSEhLvHF5eXnz00Ud0dHRw6NAh9Ho9UVFR7N69G6VSyRdffIFCoRjVvsyenzqdjtOnTw+7rObo6MiuXbtwcXFh//79NDY2jvVHkpCQGEcEQSAnJ4d/+7d/Iz8/n+XLl/PjH/+YwMBASktLB3UgkxgeSXBKSEi8k/j5+bF9+3YaGxs5fPgwRqORgIAAfvjDH2JpackXX3xBbW3tqPbl4uLCunXrKCkpITs7e9jX2Nvbs3PnTjw9PTlw4MCwS/ASEhJvHi0tLXz55ZecOnWKiIgI/viP/5igoCAuXrzIb37zGw4dOkRBQcHrHuYbj2T8PsZIxu8SEhOLyspKDh48SFRUFBs2bMDCwoK+vj4OHz5MXV0d77//PnFxcaPa19mzZ8nJyeFHP/oR3t7ew75Gp9Nx8OBBGhsb2bp1K+Hh4WP5cSQkJMaI/v5+rl27RlZWFp6enqSlpdHV1UVeXh4KhQInJyfi4uKIj4/Hx8fndQ/3jUcSnGOMJDgl4HGHG4VCga+v7+seisQoePToEYcPH2batGm89957yGQyjEYjp0+fJi8vj0WLFpGWlvbMogC9Xs/nn38OwA9/+EOsrKxGfN13331HTU0NmzdvJjIycsw/k4SExIshCAL5+flcvnwZtVpNUFAQgiBQX1+PtbU10dHRTJs2jbCwMCwspIXi0SIJzjFGEpwSbW1tHD16lP7+fn76058il8tf95AkRkFBQQHHjx8nOTmZlStXIpPJEASBmzdvcu3aNaZPn86aNWue+fdsa2vj888/Jz4+njVr1oz4OoPBwNGjRykvL2fDhg3ExMSM9UeSkJB4TlpbWzlz5gy5ublYW1vj4OCApaUl4eHhxMfHExUVhbW19ese5oTE8nUPQELibUEQBB4+fMiFCxdwc3Njx44dkticQMTFxaHT6Thz5gw2NjYsXrwYmUzG/PnzcXV15fTp03R3d7N582ZsbW1H3I+3tzcrVqzgzJkzhIeHjygkLS0t2bRpEydOnODo0aO8//77TJs2bbw+noSExFPo7+/n6NGjXLhwgd7eXkJCQoiMjGTatGnExcXh5OT01N8XBEGyRXoGkuCUkBgD+vv7OXPmDEVFRSQlJbF8+fIRl1Ml3lwSExPRarVcunQJGxsb5s6dC0B8fDwuLi58++23fPnll2zbtg1XV9cR9zNjxgwqKys5ffo0/v7+I75WLpfzwQcfYGVlxYkTJzAYDNLKiITEK6Szs5OTJ09y6tQpenp6iImJYfv27cyYMWNUeZk9PT3cuHEDrVbLxo0bX8GIJy6S4JSQeEnq6+s5duwY/f39bN68WVoaneDMnj0bnU5Heno61tbWpKSkAI9N3j/++GMOHjzIF198wbZt2/D39x92HzKZjLVr1/LZZ59x/Phxdu/ePWKul4WFBevWrcPS0pLTp0+j1+tJTU0dt88nIfGu09/fT1FRERkZGVy7dg2VSsX06dPZsWMH06ZNG1VeZl9fHxkZGdy7dw9ra2vS0tKkKOczkASnhMQLYjKZuH37NteuXSMgIIDdu3c/NeolMXGYP38+Wq2Wc+fOYW1tTUJCAvDYv/OTTz7h0KFD7N27l40bNzJlypRh92FnZ8eGDRvYt28fN27cYOHChSO+n0wmY9WqVVhZWXH+/Hn0er0YXZWQkHh5jEYjFRUV5OXlUVxcTFVVFWq1mqioKHbu3DnqQIFer+fevXtkZGRgMpmYM2cOs2bNemqajcRjJMEpIfECqFQqjh8/Tk1NDWlpaSxYsECqVnyLkMlkLFu2DJ1Ox6lTp7C2thYvSA4ODuzatYvjx4/z7bffsnLlSjEK+iTBwcEsWLCAa9euERYWRmho6FPfc+nSpVhZWZGeno5er2fBggVSxERC4gURBIGmpiby8vIoLCxErVZjMpno6uoiNDSUJUuWMHv2bCwtny2FjEYjOTk53LhxA7VaTVJSEvPmzZM6DD0HkuCUkHhOysvLOXHiBHK5nJ07dxIWFjbs66TllYmNTCZj9erV6HQ6jh07hpWVFZMnTwbAysqKTZs2cfnyZc6dO4dSqWTZsmXD3nTMnTuXqqoqjh8/zqeffoq9vf1T33PhwoWi6DQYDCxZskQ6jyQknoOuri7y8/MH+WWGhYXR0tKCQqFgzpw5rFixYlQrUoIgUFxczNWrV1EoFMTFxbFo0SLc3NzG/4O8ZUi2SGOMZIv09mIwGLhy5Qp37txh8uTJvP/++zg4OAx5nU6nIyMjg5aWFrZu3SqJhQmO0WjkyJEjVFRUsGPHjiFRyqysLM6fP8+UKVPYsGHDsMViPT09fPbZZwQFBbFly5ZRnRP37t3j/PnzpKSkiDZNEhISw2POy8zPz6e2tlb0y4yKiqK+vp579+7h7OzMypUrR+17W1VVRXp6Ok1NTUyePJnFixdL3sovgSQ4xxhJcL6dKBQKjh49SltbG0uXLiU1NXWIADCZTOTm5nL16lX6+/uZNWsWCxYskKyRXjGCINDX1/fUSOLzYjAYOHjwIA0NDezcuZPAwMBBPy8rK+Po0aN4eXmxdevWYZfZSktLOXToEKtWrRpxCf5JsrOz+f7770lISGDt2rVS2oaExADMeZn5+fmUlpZiNBpFv8wpU6ZQWVnJxYsXUavVzJ07l7lz545q+bypqYn09HSqqqoIDAxkyZIlT02HkRgdkuAcYyTB+faRl5fH2bNncXJyYuPGjfj5+Q15TVVVFRcvXqS1tZW4uDgWL14sFRC9Ji5fvkxZWRmffPIJNjY2Y7ZfnU7HV199RUdHB7t37x5imdLc3MzBgweRy+Vs374dLy+vIfs4f/482dnZfPLJJ6OOlOTn53PixAliY2N5//33pRsYiXeaJ/MyNRoNPj4+xMfHi36ZCoWC8+fPU1FRQWRkJCtXrhzVEnhHRwdXr16luLgYLy8vFi9ezJQpU6TVhTFCEpxjjCQ43x7MVcp5eXnEx8ezatWqIQKmo6ODy5cvU1paSlBQEMuXLx8S/ZJ4tbS3t/PFF18QGho66uXr0dLf38/+/fvp6enhBz/4AR4eHoN+3t3dzcGDB+nu7ubDDz8ckt9rMBj44osvMBgM/OhHPxp1x5Li4mKOHj0qLtuPJkojIfE2MVxe5pN9zPV6Pbdu3eL27ds4OTmxcuXKEV0kBmL20szJycHJyYmFCxeO2h5JYvRIgnOMkQTn20FTUxPHjh1DpVKxevVq4uPjB/1co9Fw48YN7t+/j7OzM0uWLGHq1KnSnfAbQnl5OQcPHmTu3LksXrx4TPetVqvZt28fOp2OPXv2DIlka7VaDh8+TE1NDevWrRty7nR0dPC73/2OuLg41q1bN+r3LSsr4/Dhw4SFhbF582apsYDEW8+TeZlWVlZER0cTHx8/qI+5IAiUlpZy4cIFVCqVuHz+rO/IcF6aycnJ0g3dOCEJzjFGEpwTG0EQuHv3Lunp6Xh7e7Nx48ZBUSyj0UhWVhY3btxAEATS0tKYOXOmNEG9gdy+fZvLly+zceNGYmNjx3TfKpWKL7/8EplMxp49e4a0vTMajZw9e5aHDx+yYMEC5s+fP+hmJCcnh1OnTj332Kqqqjh06BCBgYFs3bpV6uks8dYxUl7mtGnTiI6OHnLOK5VKzp8/T3l5OZMmTWLVqlW4u7s/9T2e9NKcNWuW5KX5CpAE5xgjCc6Ji1qt5uTJk5SXlzNr1iwWL14sCknzHfSlS5fo7OwkMTGRhQsXDlulLvFmIAgCJ06coKSkhD179ozYFehF6ezsZO/evdja2rJ79+4hRUqCIHD79m3S09OJj49n3bp1Yv6lIAgcO3aM8vJyPv300+eyWKmtreXgwYN4e3uzfft26SIpMeEZTV7mk+j1em7fvk1GRgYODg6sWLGCqKiop64yDfTS1Gg0JCYmSl6arxBJcI4xkuCcmFRXV3P8+HGMRiPr168X/RbhcTHIxYsXqampISIiguXLl+Pt7f0aRysxWvR6Pfv27UOlUvGjH/1ozC8sHR0d7N27FxcXF3bt2jVskVJhYSEnTpwgKCiIDz/8EDs7O+DxcuHvfvc7HBwc2LNnz3MVAzU2NvLVV1/h7u7Ojh07xrQiX0LiVTGavMzhKCsr4/z58/T09DB79mzS0tKeGu0f6KWpVCqJi4tj4cKFkpfmK0YSnGOMJDgnFiaTiWvXrpGRkUFoaCgffPCBeDfd09PD1atXycvLw9PTk+XLlzNp0qTXPGKJZ9HV1UVPTw/BwcHA47/j559/jqurK7t27Rrz9IeWlhb27duHj48PO3bsGDZvrK6ujkOHDuHg4MD27dvFC11DQwNffvkls2fPZsmSJc/9vgcOHMDJyYmPPvpIitJITAhGm5c5HJ2dnVy4cIHS0lLCw8NZtWoVnp6eT30/yUvzzUESnGOMJDgnDl1dXRw7dozGxkYWLlzInDlzsLCwQKfTkZmZye3bt7GysmLhwoUkJiZKFYsThPPnz3P//n0WL17M7NmzkclkNDQ0sG/fPrFQZ6yLuxoaGjhw4ABBQUFs3bp1WFGrUCj45ptv0Gq1bN26VXQzyMjI4MqVK3z00UeEh4c/1/u2t7dz4MABbGxs2LlzJ87OzmPyeSQkxpLnzct8EoPBwO3bt7l16xb29vYsX76cmJiYp36PGxsbuXLlClVVVQQFBbFkyRJCQkLG+qNJPAeS4BxjJME5MSguLub06dPY2tqyYcMGgoKCEASB/Px8rly5glqtZubMmaSlpUk5chMMk8nE1atXycjIYPLkyaxfvx57e3vy8vI4ceIEK1asYObMmWP+vtXV1XzzzTdMnjyZTZs2DXuDotFoOHToEM3NzWzYsIHo6GgEQeCrr76ira2Nn/zkJ8+dF6xUKtm/fz8WFhbs2rVL8n+VeCN4kbzM4aioqODcuXN0dXUxa9Ys5s+f/1SB+jq8NGtra+np6SEuLm7c3uNtQBKcY4wkON9s9Ho9Fy5cIDs7m5iYGNatW4etrS21tbVcuHCB5uZmYmJiWLp06Uvl95hMJjo7O4f4NEq8Osw97y0tLdm0aRNBQUFcunSJO3fusGPHDiIiIsb8PcvKyvj222+Ji4vj/fffH/YiZzAYOHnyJEVFRSxbtoyZM2fS29vLZ599hr+/P9u2bXvui2NXVxcHDhzAaDSyc+dO6bx7B9FqtVhYWLx2u6yR8jKnTZv2XEvZXV1dXLx4kZKSEsLCwli1atWwzRTMvGovTUEQqKqq4ubNm9TW1hIaGsquXbska7ynIAnOp/C//tf/4r/9t//GT3/6U/7lX/5lVL8jCc43l7a2No4ePYpSqWTlypXMmDGDzs5OLl++TElJCQEBASxfvlzM/XsR1Go12dnZZGdnA/DTn/5UWop/jXR3d3P06FEaGxtZvHgxM2fO5NChQzQ2NvLJJ5+MizArLCzk2LFjJCYmsnr16mEvQIIgcOXKFTIyMkhJSWHFihVUVlbyzTffsHz5cmbNmvXc76tSqdi/fz/9/f3s3LlTKmx7x/j++++prKxk9erVrzzX/GXyMp/EYDBw584dbt68ia2tLcuXL3+qx/Gr9tIUBIHy8nJu3rxJQ0MD/v7+zJ8/n8jISElsPgNJcI7A/fv32bx5M87OzixcuFASnBMYQRDIzs7mwoULuLu7s3HjRpydnblx4wZZWVk4ODiwZMkS4uLiXmjCEASBhoYGsrKyKC4uxsLCgri4OJKTk4dtgynxajEajVy9epXbt28TGRnJihUr+Oabb7CwsBjz9pdmzD6bc+bMYcmSJSOeV9nZ2Zw9e5ZJkyaxceNGrl27RlZWFh9//PEL2Tip1WoOHDiASqXio48+ks6/dwiFQsHZs2epqqoiNjaW5cuXj3rZ+kV42bzM4aisrOTcuXN0dnaSmprKggULRvx+DuelOXv27HH5PsPjeb6kpISbN2/S0tJCcHAw8+bNIyIiQhKao0QSnMPQ29vLjBkz+I//+A9+9atfkZCQIAnOCUpfXx9nzpyhuLiYpKQklixZQn5+PtevX8dgMDB37lxmzZr1QstQer2egoIC7t+/T3NzM+7u7iQlJTF9+nTR+kbizaGsrIwTJ05gbW3NokWLOH/+PMHBwWzZsmVcotB3797lwoULLFq0iHnz5o34uoqKCo4cOYK7uzsffvghhw8fpr+/nx//+McvdPHs6+vj66+/RqFQsGPHDqnV6juEIAgUFBRw8eJFjEYjS5YsITExccwE0VjlZT5JT08PFy9epKioiJCQEFavXj1ihP5Ve2maTCYKCwu5desW7e3thIeHM2/ePEJCQiSh+ZxIgnMYdu3ahbu7O//8z//MggULnio4tVotWq1WfJ6bm8v8+fMlwfkGUFdXx7Fjx9BqtaxduxYrKysuXbqEQqFg+vTpLFy48IUmSKVSyf3798nNzaW/v5/JkyeTnJzMpEmTpAnoDWfgEvuUKVMoKSlh7ty5z21JNFpu3rzJ1atXn1mo1NrayjfffINMJmPFihWcOHGC6Oho1q9f/0Lvq9Vq+eabb2hpaWH79u1Sde47Rl9fH+np6WRnZxMYGMjatWuf6mv5LMYqL/NJjEYjd+/e5caNG1hbW7Ns2bIRV5petZem0WgkPz+fW7duoVQqiYyMJC0tjaCgoHF5v3cBSXA+wbfffsvf/d3fcf/+fWxtbZ8pOH/xi1/wy1/+csj/S4Lz9WEymcjIyOD69esEBgYyd+5c7t69S1VVFWFhYSxfvvy5J0mTyURFRQVZWVlUVFRgZ2fHjBkzSEpKksyDJxgDl9hlMhk6nY4tW7aMS4WpIAikp6dz+/Zt1q1b99Q5oaenh4MHD9LZ2UlcXBwPHjzggw8+YNq0aS/03jqdjm+//Zb6+nq2bNkyLkVSEm82dXV1nDlzBoVCMaoK74H09/dTXFxMXl7eS+dlDkd1dTXnzp2jo6NDXD4fyRGksrKSK1euvBIvTYPBQE5ODhkZGXR3dxMdHc28efOk9JQxQBKcA6ivrycpKYnLly+Lk7wU4ZxYqFQqjh8/Tk1NDUlJSej1evLy8nB3d2fZsmXPndit0WjIycnhwYMHdHZ24u/vT0pKClOnTn3t1aASL0dpaSknTpygrKwMDw8P/uzP/mzM21/CY9F57tw5Hjx4wIYNG57aO12r1XL06FEqKyuxt7dHp9Px6aefPrM39EgYDAYOHz5MZWUlmzdvZsqUKS/6MSQmKEajkczMTG7cuIGjoyOrV68e1Entydc+mZcZFhZGfHz8C+dlPklPTw+XLl2isLCQ4OBgVq1aNaJ4fJVemjqdjuzsbDIzM+nt7SU2Npa0tDS8vLzQ6/VoNBrUajUajWbYxy4uLqxatWpcxva2IAnOAZw8eZL169cPajFnNBqRyWRYWFig1Wqf2X5OyuF8fZSVlXHy5EkAQkJCqKysRC6Xs2DBApKSkp6rdWBTUxNZWVkUFhYiCAKxsbEkJycTEBAgLZu/RXR1dfHdd99x7tw5QkJC+NWvfjUu5umCIHDy5EkKCgr48MMPnyr8TCYT58+f586dO3R1dREXF8cnn3zyXOfvQIxGI8eOHePRo0ds2LCBqVOnvujHkJjAKJVKzp49S2VlJVOnTmXFihU4OTmNmJc5bdo04uLixuz7YDQaycrK4tq1a1hZWbF06VLi4+OHnU/H00tTEAT6+vpEwdjV1cWDBw948OABvb29BAQEEBwcjFwuF8WkwWAYsh8bGxvs7e2xt7fHwcEBX19fFi1a9NLje5uRBOcAVCoVtbW1g/5vz549REVF8Vd/9VdPjUyYeZMEZ1lZGVVVVXh5eeHt7Y2Xl9dbaWJuMBhIT0/nzp072NnZIZPJ0Gq1pKamMm/evFEX8BgMBoqKisjKyqKxsREXFxeSk5OZPn36c5txS0wcjEYjZ86c4T/+4z8IDQ3lN7/5zbhU95pMJo4cOUJ5eTnbtm17alchQRC4c+eO2Alr165drFy58qXe2yx433//feLj4194XxITF0EQKCws5MKFC6hUKgICAtDpdGOalzkcNTU1nDt3jvb2dpKTk1m0aNGw16IX8dI0GAzPjD4OfNzX14cgCOj1ehobG2loaMBkMhESEkJMTAyenp44ODgMEpPDPR4v26W3mQktOI1GI0eOHOHatWu0tbXxt3/7t8TFxdHd3c2VK1eYM2fOSyVKw7OX1J/kTRKc5uUBpVKJ+c/s7OyMl5fXIBHq7e09blYS441CoeDo0aOUl5djZWWFtbU10dHRLF26dNQei+Y73IcPH6LRaIiIiCAlJYXJkydLHpoTkObmZlpbW0lISHiu37t58ya/+tWvCAoK4pe//OW4VHcbDAa+/fZb6urq+Oijj55ZgFBcXMy//Mu/0Nrayq9+9auXyjM1mUx8//33PHz4kDVr1pCUlPTC+5KYmJjzMu/fv8/169dpbW0lKiqKnTt3kpKSMubzXW9vL5cuXSI/P5/AwEBWr149bC6k2Uvz7t27WFhYkJSURGRkJDqdbkTxaH6u0+mG7M/S0lIUh08KRplMRmlpKaWlpVhaWpKSksLChQtxcXEZ088uMZQJKzi7urpYsWIFWVlZODo6olaruXz5MosWLcJoNBISEsLOnTv5+7//+5d6n4ksOM0YDAY6Ojpob2+nra1N/Lezs3OQEB0oQM2i9E0Wonl5eWLFsZubG5GRkSxfvpzQ0NBn/q65S0RWVhZlZWXY2NiQkJBAcnKy1KVlgnPt2jVu3LjBjBkzWLVq1XNFIjIyMvjf//t/4+fnxw9+8ANSU1PHPIVCr9fz9ddf09rayq5du55ZjFBfX89f/uVf0tfXx7/+67++VGMCQRC4cOEC9+7dG7cWnxJvFk/Ly3RwcODSpUt0dHQwc+ZMFixYMCZ5miaTiaysLK5cuSJ6ZIaHhw9aytZoNHR3d1NYWEhRURFarRZfX18CAgKGfGft7OyeGXEc+Hi4z6BSqbh9+zbZ2dnIZDJSUlKYOXPmuNkpSQxlwgrOTz/9lG+++Ybjx48zffp0vL29SU9PF3Mofvazn3H9+nVyc3Nf6bjeRME5Enq9flgh2tXVJQpRFxeXYYXoWExKL4pWq+XkyZOcPXsWg8FAfHw8y5cvH1Ubs/7+fnJzc7l//z4KhQIfHx9SUlKIi4t7rZ9JYmzJycnh7NmzeHl5sXnz5udyErhw4QLffPMNbm5uzJ49m/fee2/MfVW1Wi379++nq6uLPXv2PLVlH0BDQwN/8id/go2NDf/4j//40qLT3OVo8eLFpKWlvfC+JN4cHj58SHNzMytWrMDCwmLUeZlGo5E7d+5w/fp1HBwcWL16NZGRkUP2b16GftbSdX19PQ8ePECpVOLt7U1YWNigAku5XI6trS0KhYLa2loEQSAmJobk5GQ8PT2HCEg7O7sXzl+Gx8Gp27dv8/DhQ6ysrEhNTSU1NRV7e/sX3qfEizFhBaevry8/+MEP+Pu//3sUCgVeXl6DBOd//Md/8POf/5yurq5XOq6JJDhHQq/X097ePqwQNePq6jqsEB3vyu2Ghgb+5V/+haKiIiZNmsSGDRuYPXv2M8ViS0sL9+/fJz8/H6PRSExMDCkpKQQFBUlFQG8pLS0tHD58GI1Gw/r160ddoW0ymTh06BDZ2dk4Ojri7u7Opk2bCAgIGNPxaTQa9u3bR39/P3v27HmmKC4uLubnP/85Xl5e/OxnP3up4h9BELh58ybXrl1j3rx5LFy4UPoeTHAyMzM5deoUcrkcT09Penp6cHR0ZNq0acPmZZpMJvr6+kTB2NTUxOXLl6mursbX15eYmBiAQaLyacUzFhYWVFdX09TUhK+vLwsXLiQ4OHiIeKysrOTatWvj7qWpVCq5desWeXl52NraMmvWLJKTk9/KOoaJwoTNeu3u7iYsLGzEn+v1+mG/HBLPxsrKCn9//yEWMTqdbogQLSwspLu7GwCZTDZIiJrFqKen50sLUUEQOHr0KAcOHABg69atvP/++0+toDQajZSUlJCVlUVdXR1OTk7MnTuXxMREaRnlHcDX15cf/ehHnDp1ikOHDjFnzhwWL178zCi4hYUFGzZsoLOzE41Gg7W1NV9++SXLli0jJSVlzISZvb09O3fu5Msvv+TAgQPs2bPnqedzTEwMP/nJT9i7dy9/+MMf+OCDD5gzZ84LjUcmkzF//nwsLS25fPkyer2eZcuWSaJzAnPp0iVu3LhBX18f4eHhbNq0idDQUPr7+7l///6QSKS5eOZJ3N3defToEeXl5cyYMYPY2FicnJzEyOOTy9cWFhY8ePCAq1ev4uPjw/bt25k+ffqg75k5henIkSM0NzczefJkNm3aNC5emu3t7dy6dYuCggIcHBxYunQpiYmJ0grWG8CEFZwRERE8fPhwxJ9funRJvEN7V8nMzCQ7Oxtvb298fHzw9vbG29sbd3f3F0oOt7a2JiAgYEikR6vV0tHRMSgaWlBQMEiIurm5DSlU8vT0HFV+XU1NDf/4j/9IcXExiYmJ/OxnP3tqsUVPTw/Z2dlkZ2fT29tLaGio6EH4MkszEmOHwWDAaDSO+/vIZDLee+89fHx8uHr1KtXV1XzwwQfPrEKXyWR88MEHfPnll9ja2jJt2jTOnDlDeXk5a9euxcHBYUyqVB0dHdm5cyd79+4VRefTHBGWLFlCXV0deXl5XLhwgc7OTlatWvXC5/WcOXOwsrLi3Llz6PV6Vq9eLYnOCYqrqyseHh709PRQWFhIZWUls2fPZsqUKaJIdHFxwc/Pb8TcR7PLR39/P+np6Tx48IDW1lZSUlKGFYf19fWcO3eO5uZmEhMTWbx48ZCl6sbGRtLT06muriYoKIg9e/aMi5dmS0sLN2/epKSkBGdnZ1auXMn06dMlv+Q3iAm7pP4v//Iv/NVf/RUHDhxg8eLFeHt7c+XKFWbPns3f/u3f8r/+1//i97//PR9//PErHdebtKReU1PDo0ePaGtro7W1FbVaDTyu4DOLPrMQ9fHxwdHRcUwvNlqtdsiyfHt7Oz09PcDji7q7u/sQIerh4YGlpSVqtZpvv/2Ww4cPY2try6effsqKFStGbHtWU1PD/fv3efToEZaWlsTHx5OcnDxiT16J14PBYKC4uJi+vr5x27/ZiHkgLS0tXLlyBYCFCxeOyuS9vr6eixcvEhcXh7e3N7du3cLGxoZVq1axYMGCMbNGUSgU7N27FycnJ3bt2vXUZb/Ozk4+++wzrKysUKvVREREsGnTppcq8MvJyeH06dPEx8ezbt06yZ1hAtLc3Exvby+WlpYUFxfzzTff0NzcTFpaGlu3bmXKlCnP/Xetr6/nzJkzYjeghQsXYm1tjVqtJj09nZycHPz8/Fi9evUQV4eBXpre3t4sXrz4uRtvjIaGhgZu3rxJWVkZbm5upKWlER8fLwUX3kAmrOAUBIEf/ehH/OEPf8DV1ZWuri58fHxQKBQYDAZ+/OMf89vf/vaVj+tNEpxPolaraW1tpa2tTRShbW1t6PV64HEl4JPRUG9v7zHPeenv7x9WiKpUKvE1XV1d5OXl0d3dTXJyMn/+539ORETEkElEq9WSn59PVlYW7e3teHl5kZycTHx8/BtdYf8uo9Vqyc3NFW2sxprTp09TVFTEH/3RHw0RnRqNhsuXL9PU1ERqairTp09/5gUwNzeXzMxMsZ3e+fPnaW9v56OPPnrhJe3haG1tZd++fXh6evLRRx899dgUFhZy9OhREhMTKSoqwsXFhW3btr2UtUtBQQEnTpwgJiZmSAMMiTef27dvU1VVNWgl6/Tp06Snp+Pk5ERSUhIzZ85k+vTpzzU3mvudX79+HVtbW7GphiAILF68mMTExEFCtqenRyzYHa2X5otQW1vLzZs3qaysxNPTk3nz5hEbGyvdLL3BTFjBaSYjI0P0YTSZTERERLB582bmzZv3WsbzJgvO4RAEga6uLlF8mv9VKBSYTCbgcaX6QBHq4+ODp6fnmF+QNBoNmZmZnDhxguzsbCwsLIiLi8PX11fs9uTh4SFWyTc3N9PQ0CD2+E1JSSE0NFRaEnzDMQtOBweHcRGct27dYv/+/UyaNIk/+ZM/GbJEbTKZuHfvHg8ePCAsLIwlS5Y89abKXNVdVlbGhg0bcHJy4tq1aygUCqZNm8a6devG7KassbGR/fv3ExgYyLZt254aQT116hSFhYVs2LCBCxcuYDQa2b59+0vlxZWUlHD06FEmTZrEpk2bJHPrCUR+fj7FxcWDLO9kMhnd3d2UlZVhbW0triDNmTOH2bNn4+rqOur9FxUV8Zvf/IaqqiqSk5P5r//1vw6y9DJ7ad67dw9ra2vmzZtHUlLSmJ5D5lzQmzdvUltbi4+PD/PmzSM6OloSmhOACS843zQmmuAcCbN355PRUHNepoWFBZ6enoNEqLe3N66uri8k+BobG7l48aJopxEbG8vu3bsJDAxEo9HQ3t5Oa2srDx8+JDs7m5qaGmQyGX5+fmJe6ZNV8+7u7lKU5g1kvAWnIAicP3+eo0ePMm3aNH7yk58MG9Gprq7m8uXL2NjYsHLlyqemXhgMBk6cOIFKpWL9+vXA4+rc8+fPY29vz+bNm5/ppzlaampq+Prrr8Wb55HOYZ1Ox+9//3ssLS3ZsmULhw8fpqOjg02bNo3YK3s0lJeX89133xESEsKWLVukHLgJiE6nGzR/FxQUcPXqVfR6Pe7u7igUCqytrZkyZQqzZs0iNjYWHx8f3NzchszfGo2GK1eu8PDhQ7y9vZk8eTK5ubnodDoWL15MQkICWVlZ3L59W/TcnD179piuMAmCQHl5OTdv3qShoYGAgADmzZs3Lkv0EuOHJDjHmLdFcI5Ef3//EBHa2tpKf38/gHgX/eTS/EiFEOauUDk5OXR0dGBlZUVaWhpr164Vo0a9vb08fPiQBw8e0NPTQ3BwMMnJyYSGhqJQKIYsz2s0GuCx35uHh8ewQlS6G359jLfghMcXqBMnTnD69GlmzZrFxx9/PGykpaenh/Pnz6NQKJg3bx5Tp04d8QLW29vL4cOHsbOzY8mSJSQlJaFWqzl69Citra2sWLGCpKSkMbkAVlRUcOjQIXF5e6TztaWlhc8//1xsF3j8+HFKS0tZtWoVycnJL/z+1dXVHDp0CH9/f7Zu3SqKB0EQMBgM6HQ69Hq9uA18bmlpOayPo8Trpb29nf3796NUKklOTqa2tpYHDx7Q0tKCnZ0dgYGB+Pv74+Pjg4+PD15eXrS3t5Ofn49cLmfx4sUkJydjYWFBf38/ly5d4vvvv6ezs5OwsDAWLlxIWlramDqACIJASUkJN2/epKWlheDgYObPn094eLgkNCcgE1ZwhoWFPfOEk8lkVFZWvqIRPeZtF5zDIQgCKpVqkAg1C0CzNZWjo+MgIerq6kpZWRn3799Hp9Oh1WpxcnJi1apVTJ8+HXicsH7//n2Ki4vF5fWRqiUHolarh+SHtrW1iUUqZp+6J4Wom5ubJERfAa9CcMJ/+mmaO5Dt2LFj2L+vwWAgIyODgoICoqKimD9//ojjam1t5fDhwwQGBvLTn/4UW1tbDAYDly5dIisri6lTp7Ju3boxie4UFxdz5MgRpk+fztq1a0ec7+7du8f58+fF/uznzp3j7t27JCYmMmfOHAwGwxBR+KznOp2O1tZWMjMzsbe3F1tqmvO9n4a3tzd/9Ed/9NKfX+L56OrqQi6XP9WBQaPR8N1339HQ0MC6deuYNm0a5eXlXLt2jaKiIgD8/PwwmUw8ePCAzs5OfHx8mDp1KkFBQeJc2dXVRUFBAU1NTahUKtzd3VmwYAELFy4ck3PfZDJRWFjIrVu3aG9vJzw8nHnz5o2qi5zEm8uEFZy7d+8eMgEbjUZqa2u5ffs2sbGxTJ8+nb17977Scb2LgnMkTCYTSqVykAhtaWmhpKSEqqoqDAYDHh4eCIJAYGAgGzZsIDw8nKamJrKzs2lpacHd3Z3k5GQSEhJeqtuLIAgjClFzdNbS0nKQEDWLUVdXV0mIjiGvSnDCYzG5d+9ebt++zbp161i/fv2Iwu3Ro0dcu3ZNtFRxd3cf9nWFhYWcO3eOHTt2sGDBAvH/i4uLOXXqFA4ODmzatGnYJXaj0TgqsWd+bI7uTJ48mdjY2CHRRZ1Oh06nE1NRZsyYgY2NDQ0NDVRUVODl5UVUVNSQZXlLS0usrKzEwi3z4yefmwtAXFxcWLNmDc7OziO+duBzKZXl1XPmzBmys7NxcXEhMDBQ3Pz8/AZF941GI99//z05OTmkpaWxaNEiZDIZra2t3LhxgzNnztDU1ERkZCRbt27Fx8eH1tZWWltbKS4u5sGDB6LIjIuLIzw8HIVCQVVVFR4eHmzYsIFp06a90GcwGo3k5eWRkZGBUqkkMjKStLS0p9rgSUwcJqzgfBp5eXksX76cr7/+miVLlrzS95YE58hUV1dz8eJFGhsb8fX1pa2tjcrKSnx8fHBwcKCqqoqWlhZMJhNhYWEkJiYybdo0cYnHyclpzJdRBEGgt7d32Kp5sxC1srLC09NziH3Ti+arvuu8SsEJj/PZfve735Gdnc3WrVtZvnz5sK8TBIG2tjbOnTuHSqVi9uzZBAUFYTAYxE2v19PX18e9e/fo6OgQLdnM4q+zs5PMzEw6OzuZMmUK/v7+g0SiuRDvWQwUb01NTZSUlBATE8O0adOGFXsmk4nTp0/j4eHB+++/j62trWjp5Ovry+bNm3F1dRVf/zw3UK2trRw4cAAHBwd27twpNU14Q1GpVDQ0NIhbU1MTer0euVyOr6/vIBHq4uLC3bt3uXz5MlFRUbz//vsUFxdz+fJl+vr68PLyQqVS0dfXR2RkJGFhYZSWllJTU0NAQIB4Y2MOJLS1tdHU1ERZWRlKpZLQ0FAxImle2fLw8BjxRsRgMJCTk0NGRgbd3d1ER0czb968McuLlngzeCsFJ8D/9//9f3z//fdkZ2e/0veVBOdQOjo6uHz5MqWlpQQFBREbG0tmZiZ9fX0kJCSgVCqpqKjA0tKSkJAQ/Pz86OvrEyOjOp0OAFtb2yHeoeNh2wT/mSYwnBDVarXAY1EwMBJq/tfS0pK8vDwUCgXr1q0b87FNdMZbcN69e1e8kbGzsxNF4qlTp2hoaGDu3LmEh4eLUcKBglIQBIxGI9XV1SgUCnx9fQkKChok0EwmEyaTic7OTtRqNfPmzcPNzU0Uc3K5nMLCQqqqqsSlQAcHh2dGE83PLS0th9zIZGRkkJ6ezrJly5g9e/awn7umpob9+/ezcOFC0aWjqamJgwcPYmVlxfbt2/H09HyhY9rR0cH+/fuxtrZm586dL2W/JPFqMBqNtLW1DRKhCoUCAAcHBwIDAzGZTGRkZIi58UlJSSxbtgwnJycMBgM3b97k4MGDVFRU4Ovry5YtW1i9evWwhWTmTnR3797l4sWLdHZ24ufnJxYiDcypN2+urq5UVVVx584dent7iY2NJS0tbcJ5J+t0Orq7u/Hy8nrdQ3mjeWsF53/8x3/w53/+5+NmLj0SkuD8TzQaDTdu3OD+/fs4OzuzaNEilEolly9fxmQy4ezsjFarJSAggOTkZGJjY4cUdphtm54sVOro6BCjRc7OzsPaNo2HpYsgCPT09AwRouatubmZpqYmdDodXl5enD59WlpefILxFpz/83/+TzIzM7GyssLFxQV/f39CQ0Nxc3Pj0qVLKBQK1qxZw5QpU7CyssLS0lJcYh74b0VFhdipa/ny5bi5uWFpaYnRaESj0RAVFcVXX30FwCeffDLkxqeoqIjTp0/j6Og4Jm38rly5wq1bt1izZg1JSUnDvubq1atkZGSwZ88ecRmyq6uLgwcPolKp+PDDD184D06pVIqtZXft2jUu/a8lXpy+vj5MJtNTO1VpNBoaGxtpaGigqqqKW7duUVZWRldXF8HBwWzZsoX4+HhcXFwoKCggLy8PR0dHIiMj6erqoqKiAkdHR5KTk0lKShrxvfr7+7l69Sr379/H3d2d1NRUZDLZoGhoRUUFDQ0NmEwmoqKimDlzJpMmTRLn8bFuRDIetLe38+DBA/Ly8nBxceEnP/nJ6x7SG81bKTgVCgXLli2jp6eH8vLyV/rekuB8fGd9//59bty4gclkIi0tjZiYGPbv38+9e/ewt7cnLCyMuLg4kpOTh7TKHO17mG0/BuaIdnV1AYienU9WzA9n+/G8mFt5dnR00NTUxMOHDykoKKCqqorOzk4MBgNyuRwvLy9u374t5X8+wXgLzvr6esrLyykrK6Oqqoq2tjYMBgMODg74+/tTVlaGyWTiv/yX/0JqaupTb0xaWlq4cOECer2e5cuXExwcjE6nQ61Wk5CQQG9vL59//rnom/nk31qpVIp2RStWrCAxMfGFzz9BELhw4QJZWVmsX79+2Dw5k8nE3r176enp4Sc/+Ykogvv7+zl8+DC1tbW89957L5xj193dzf79+zEYDOzcufOFI6YSY8+pU6eoqKhgw4YNT72pEASB/Px8Ll++jFarJSEhAScnJ44cOUJVVRVyuZze3l5sbGxISUkhLS2NkJAQAgIC0Gg03Lt3j9zcXARBYNq0acycOXPEiGRjYyNnzpwR22POmjWL3Nxc7ty5g1qtJjQ0lODgYPr6+sQ5/MlGJE9uL5PLPxYYjUYePXrE/fv3qampwcHBgenTp5OYmCjdhD2DCSs4Fy1aNOz/d3V18ejRI3Q6HV999RVbt259peN6lwWnIAiUlpZy6dIlOjs7SUxMZO7cuVy/fp2vvvqK3t5eUlNTWb58OdOnTx/Sc3cs0Gq1w9o2mSPdVlZWYh93Nzc3nJycxNzQ7u5ulEolnZ2ddHZ20t3dTXd3Nz09PahUKlQqFWq1mv7+frRaLSqVit7eXnQ6HTKZTFzyDw0Nxd/fH2dnZ37xi1+M+Wec6Iy34CwuLqahoYGZM2fi5OREV1cXJSUlFBUVUVZWRltbGxUVFVhYWDB79mymTp0qnhPmzcHBQRSGfX19XLp0ifr6elJSUoiPj0ej0ZCQkICNjQ2VlZV8/fXXzJo1i2XLlg0Zj8Fg4OLFi9y/f5+4uDjWrFnzwpW8giBw+vRp8vLy2Lx5M1FRUUNe09XVxWeffUZ4eDibNm0SP4fRaOTMmTPk5uayaNEi0tLSXkj8qlQqDhw4gEajYefOnfj4+LzQZ5EYW1QqFcePH6empoYFCxaQlpY25AaotbWVs2fPUldXx9SpU1m+fDnOzs7odDoyMzP54osvaGxsZO7cucyfP5/29nYaGhrEtsgeHh4EBgbi6emJQqGgoqKC3t5eIiIixAjlk+eUyWTi2rVrfP3117S1tTFp0iRWrFjBnDlzcHZ2HvRaQRDo7OwctGo03IrWkyLUy8tr3P1iu7u7yc7O5uHDh/T29hISEkJSUhLR0dFSg4RRMmEF54IFC4ac2DKZDDc3NyIiIvjBD34w7GQ83ryrgrO5uZmLFy9SU1NDREQEqampVFVVcfjwYaqqqpg6dSo//OEPx7TFmSAIaLVa+vr66O/vp6+vb8hjjUZDZ2cnra2tNDc309raSkdHB93d3ajVagwGA0ajEXhcuWtjY4OdnR329vY4OTnh4uKCs7Mzzs7O2NnZoVKp6OjoQK1WYzQasba2FlMCIiMjqaqqIisri6KiIqytrTl27NiYfNa3ifEWnKWlpWRkZKDVaomPjycxMVGM9AmCQGtrK3fu3OHzzz9Hq9UydepU3N3dsba2xt7eHrlcjq2tLV5eXnh4eODp6YmHhweVlZVkZ2fj5+fH7NmzmTlzpigc7969y4ULF1i/fj3x8fHDjquwsJDTp0/j5OTE5s2bX1iomUwmjh07xqNHj9i2bRsRERFDXlNcXMzhw4dZu3YtiYmJ4v8LgsCtW7e4evUqCQkJrF279oVSPtRqNV999RXd3d189NFHo+pLLzH+mEwmbt68yY0bNwgNDWXDhg04Ojqi1Wq5fv069+7dw93dnVWrVhEeHo7RaCQnJ4fr16/T19dHYmIicrmcO3fuEBcXx7p167C0tKSrq2tQLmhzczMmk0k8dxQKBXq9nrCwMBYsWEB8fDxWVlaoVCpu375NdnY2/f394lwbFxfHqlWrRp0LbDQaUSgUQ4TowI5Kbm5uQ4To0wqVRoMgCFRUVPDgwQOxW1N8fDxJSUkTLs/0TWDCCs43lXdNcKpUKq5cuUJeXh4eHh5ERUXR2tpKfn4+ZWVlODk5sWPHDpYuXTpsNEUQBLGoYyTRONzj3t5euru70Wq1ojXMwE0QBLG448n8PEdHR5ydnXF0dBTvis2G1ub3MBd/uLq6IpfLUSqVKBQKDAaDKDJcXFxwd3enp6eHsrIycRL28fEhLi6O1NTUYaMMY4VcLp+Qd9avokpdp9ORk5NDTk4OFhYWJCcnExcXN+h41dTU8D//5//EaDSSlpYm3oC4uLjg5OSEtbW1GOGGxze0MpmMqqoq7Ozs+PTTT0lJScHR0VGMPBYUFIgdsoZDoVBw5MgROjo6WLlyJTNmzHihKKPRaOS7776jurqajz76iODg4CGv+f7778nLy+NHP/rRkGKG/Px8Tp06RXBwMB9++OELFd719fXxzTff0N7ezo4dOyTrmjeI6upqjh07hslkIi4ujqKiIrRaLfPnz2fWrFlYWFhQVFTE1atX6ezsJC4ujoULF4pLwsXFxZw4cQIfHx+2bNkyxJlAr9fT0tIiCtD6+npx6+3txcnJCQ8PD6ysrPD19WXOnDmkpqZia2vLo0ePOHfuHFqtloULF5KamvrCc6S5UOlJIapSqYDBzT8G5vk/y2FErVaTk5NDdnY2nZ2d+Pr6inPIq3DWeFuRBOcY864ITp1Ox507d8jIyADAy8uLzs5O0U5IqVQSEBDAggULsLe3f6qANN/1msXnQNFo/n+zgHwyImkWkTY2Nri6uuLu7o6rqytOTk44OjqK/5ofmyNYBoOB4uLiYYvKDAYDra2t5OXlib2J1Wo1Wq0WrVaLIAjiXbPJZMLJyYmwsDCmTZtGQkIC3t7eryTZ3c7OjpiYmAknOl+lLZJarRYjzo6OjsyaNWtQO7zS0lL+z//5P3h6evKnf/qnNDc3i/ZcAIGBgQQFBeHs7ExfXx8KhYLa2loyMzMRBIHJkyczZcoUfH198fT05N69ewD87Gc/G7FPtV6vF9u4Tps2jTVr1rzQcdDr9Rw8eJCmpiZ27do1JMqo1+v5/PPPAfjhD384ZMmxpqaG7777DkdHR7Zv3/5cfbXNaLVaDh48SHNzM1u3biUsLOy59yExNpjnKLN/bHV1Nf/wD/9AWVkZ8+bN48/+7M/EqvD09HSam5uJjIxk8eLFw0bbm5qaOHToEBYWFmzduvWZRW89PT0UFRVx6tQpbt68SUdHBw4ODkyePJmkpCRiY2NFWyZ7e3uuXbtGVlYWPj4+rF279oVy+UdiYE7owBSrgVZ3wy3Ld3Z28uDBA4qLi5HJZEydOlWsM3jWnG6OtEqMzIQRnObqyOdl586dYzySpzORBafJZHpmdFGj0VBaWkpubi4KhQILCwsMBgMmkwkPDw/6+/tRqVT4+fkxefJkbG1tsba2FqND5vcxb2Y7GrPIlMvlYjRSJpNhZ2c3rHA0PzY/t7Gxea4vu1n0mK1o4D+XW4uKiqioqBA/s7lAqL+/H0EQsLS0xNbWFnd3d3G53bwfDw8P3N3dcXd3x9PTc9x85My+juY8wonEeAvO7u5u+vr6Bl0glUold+7coaqqCm9vb9FjEyA3N5d//dd/JSQkhL/+67/GxsaG3t5eqqurqayspKGhAUEQ8PX1JTw8XIwm1tTUkJmZiZeXF+Hh4SiVStra2sjOzsbW1pZly5YREBAg+sj6+voOylsuKCjgzJkzODs7s2nTphdaYtdqtXz11VcolUp27949ZJmvra2N3//+90yfPp3Vq1cP+f2Ojg6++eYb9Ho927Zte6Glcb1ez7fffkttbS1btmxh0qRJz72Pd4WBN8xjzenTpykrK2Pt2rXU1dWRlZWFq6srnp6elJeX4+TkhJ2dHa2trQQGBrJo0SJCQkKeus+enh4OHz6MQqFg/fr1I+Yrtre3c+vWLQoKCnBwcGDOnDlER0dz69Ytrl27RmNjI5aWluJ4zLZMNjY2lJSUoNVqmTVrFosXLx63+czsufxkoWlzc7PoW6rVavH29mbGjBmkpqYSEhKCl5fXsIVKOp2OhoYGamtrqa2txdbWli1btozL2N8WJozgfJGQu0wmG7cv90i8SYKzu7tbFEqjWao2+0s+iVwux87ODo1GQ3l5Oc3NzVhYWODo6IiLiwvh4eE4OzuTk5ODWq0mLi4OHx8fcf/mu0oz5t99lpB0dHQct+jdQNFjLnbKz8+npqaGvr4+lEolzc3N6HQ6bGxs8PX1JSIigmnTphEdHY2/vz9yuVz061QoFIO2zs5OHB0d2bVr17iMf2CltCQ4B3Pjxg0KCgqYMWMGKSkpg86hxsZGMjMzaWlpITQ0lNmzZ+Ph4UFmZia/+93viImJ4b/+1/86KBrY399PTU0NVVVV1NbWotVqcXR0ZPHixdja2nL79m2cnZ3ZvHkzzs7O5Ofn8+WXX+Lm5kZYWBjt7e1i5a2TkxO+vr6iCLWysuLKlSt0dnaKbV2fN0rS19fH/v37UavV7NmzZ0iHpPv373P27Fk+/PBDoqOjh/y+Wq3m0KFDtLa2smHDhhfKfTcYDBw5coSKigo2bdr0WvLn33SetqoyFvT19fHdd9+Rk5NDQEAAS5cuJS4ujt7eXi5fvsytW7ewtbVlw4YNpKSkjPo8MxgMXL9+nZqaGubOncu2bdvE70dLSws3b96kpKQEZ2dn5syZw4wZMwZ950wmE48ePRL9cWUyGX5+ftjZ2YkthxsbG2lra8PT05NVq1aJXpzjGTFsaWkRLY16e3vx8vISuzK1t7cPKVRycXERV+F6e3vp7e1FJpNhb29PcHAwkyZNGtGuTOIxE0Zw1tbWvtDvPesObqx5kwTn9evXuX79OoAYLbS1tcXOzm7Ex9bW1phMJoxGo9iGr7W1lWvXrvHw4UPUajWOjo54eHjg5+eHh4cHjY2NVFVV4erqSmpqKr6+vkMikAMf29nZvfalh/7+fi5evEheXh6FhYUolUrUajW9vb2o1WqsrKzw9/dn5syZxMfHExYW9kzLC3P7THO1u0ajITU1dVzGLwnOkTGZTDx8+JB79+7h6urKkiVLBkUPzYUAd+7coaenh+joaFJTU7l79y4HDhwgOTmZP/7jPx72Jlev11NZWUlxcbEYnbe2tqa5uRlbW1t27NhBfHw8BQUFHDt2jGXLljFz5kyUSiUtLS1ii8CWlpZBuaFtbW0oFAoSEhL44IMPCAoKei77F7Vazd69ezEYDOzZs2dQMYYgCBw+fJiamho+/fTTYQs19Ho9J06coKSkhOXLlzNz5sznOeTA47zS48eP09HRwY9//GPJDuwJhltVGUvM/dDNNzdTp05FLpdTVlaGg4MD06ZNE/Msp0+fTkpKyqgLagRB4Pbt2zx48IDly5eTnJxMZmYmZWVluLm5kZaWRnx8/DP319jYyN27dykqKsLKyorp06czadIkVCqV6HBibpE5depUJk2aNKhD0ss6mxgMBoqKinjw4AH19fU4OTmRmJjIjBkzhlTMK5VK8vPzKSoqorS0lMbGRtRqNYIg4OrqiouLC6GhoYSFheHj40NAQABTpkx5qfG97UwYwTlReJMEp1qtRq/Xi8vN5rsy82a29Rn4WKPRiL+v1+spLi4W+54HBgaSkpJCQkICQUFByGQybt++TXNzM/Pnz2f58uVvtMm5IAg0NDRw+fJlbt68SUFBgRgB1+v1CIKAh4cHs2fPZs6cOYSFhQ0Rc3q9HpVKJVommYtKzP8OjKh7eXmN2xKLJDhHxpxLpVAoSE9Pp729ncTERJKTk4f0lC4sLCQrKwuDwUBCQgJNTU2cPHmSRYsWsXv37mFvjMzHPi4ujubmZtFy6eHDh3R2djJz5ky2b99ObW0td+7cYdu2bUyePHnIfjQajShAW1tbefDgAXfv3sXKyoqpU6fi7+8vLsWbI6Lu7u4jCrnu7m727t2LXC5nz549gwo9+vr6+Oyzz3B1dWXXrl3D7kMQBNLT07l9+7ZoX/a8otFkMtHf3z8ulmcTnfE+70+cOEFDQwMrVqwgKyuLS5cu4ebmxrZt28SooyAIPHz4kDt37uDj48OKFStwcnIa1f51Oh3p6emiv/L8+fNZsmQJsbGxz32e9PT0kJWVJVavR0dHM2vWLAICAigoKODw4cO0tbURGBiIra2tGBV2d3cfJEB9fHxGdc1RKpU8ePCA3NxcNBoN4eHhorOIeaXKnJ9dW1tLXV2d6Ons5eVFcHAwISEhBAcHY29vP2yhkru7O3v27Hmu4/CuIQnOMeZNEpxZWVliyzDzXa8Zc7X2cPmQcrmcK1eucOXKFTQaDfHx8WzevFnsnwtQWVnJiRMnEASB9evXv7F5W52dnVRVVfHgwQMyMzOprKykr69PTBGQyWQ4OjoyZcoU5s+fz/Tp09HpdKKIHCgozVZKZuRyuWib5OLiMshCydraGr1eP2R5c6yQBOfIZGVlUVZWRkBAAH5+frS3t5Ofn4+rqytLly4dkueo1Wp5+PAhOTk5WFtb09nZSW5uLu+99x6bN28esv/hjr3JZKK+vp7vv/+ec+fOYWFhwYwZM8Qo5l/+5V+OKp+3ra2NvXv30tDQwNSpU3FwcBhUdWsudhgoQn18fMQqc6VSyd69e7G3t2f37t2DoqS1tbXs27eP+fPns2DBghHHcP/+fc6dO8eUKVP44IMPpKrcMWK8z/ujR49y4sQJOjo6cHJyIjY2FoPBgKurK6tXryYoKAh7e3ssLCxEGzudTsfSpUufWuwlCAL19fXcuXOH2tpagoOD6enpITAwkO3bt79UO0edTkdeXh53795FoVAQEBDArFmzCA8P5+bNm9y7dw9vb2/S0tLEgEFDQwMtLS0YjUYsLS3x9/cfJELNkUqTyURZWRn379+nsrISOzs7EhISSEpKws3NjZaWFlFc1tXVoVarsbCwwNfXVxSXwcHBT+3cNBCDwTDhCjhfNRNacLa0tPCHP/yBhw8f0t3dLeZbmJHJZFy5cuWVjulNEpwVFRVUV1cPKyrNhTwDaW1t5dSpU5w5c4be3l6Sk5PZuXMnU6dOHWQefe3aNW7fvk14eDjr168fYpnxOjEXe1RXV1NWVsajR4+oqqoSl8nd3NywtbVFq9XS399PVFQUYWFhovF7T0+P2LsdHleCDycqXVxcsLa2pqenh66uLjo7O+nq6hIfa7VanJyc2L1797h8Tklwjkx9fT0VFRU0NjbS2dkJPBZqra2twGMP37lz5w6JjPT29nL37l1KSkooLi6mvb2d3bt3s2bNmkGve9axb2pq4g9/+AP19fV4e3vz8OFDLCws+PDDD4mPjycyMvKpNkR6vZ7z58/z8OFD4uPjWb16tZjaMnBZvr29XYyou7q6iiLUysqK9PR0AgIC2Llz56Ax3rhxg+vXr7N79+6nphuVl5dz5MgRPD092bZt2xv1HZ+ojPd5f+TIEfLy8rCxsaG7uxuVSoWdnR09PT2YTCYiIiJwd3cXbeFsbGwoKytDqVSSkJDAggULcHFxEb8XgiBQXV3NgwcPaG1txcPDg5iYGNatW0d/fz+HDh2iq6uLTZs2vXTAQRAEysvLuXv3LlVVVTg7O4vpWenp6bS0tJCcnMyiRYuwtbXFYDCIxT7mrbu7GwBra2t0Oh1KpRK5XM6UKVNITEzE1dWV5uZmamtrqa+vR6fTYWlpSWBgoBjBNBcySYwPE1Zw5ufns2DBAvr6+pgyZQoFBQXExMTQ1dVFY2MjERERBAUFcfXq1Vc6rjdJcI4Go9FIaWkply9f5vr166jVambMmMHHH388ZBmws7OTY8eO0dTUxOLFi5k9e/YbkYtZU1NDdXU1VVVVtLe3o1QqRXPivr4+sZuQOcfS2toaPz8/sXjJzc1tkKAcKCotLS3p7e0dIii7urro7e0VrZtsbGxwc3PD1dUVV1dX8fF4tf6TBOfo6O3tpampSfQKLC4upqmpCU9PTxYsWCAuXQ9cAu7o6OD27dt89913KJVKfvzjH7N+/Xrx56M59n19fZw8eZLS0lLCw8PJzMzEYDAQEBCAXC4nLCyM6OhooqKiRhRzeXl5fP/997i6urJp06YhkVlze9cnc0PVajUqlYrCwkICAgJYt26duPzo6enJt99+S2dnJ59++ulTl76bm5s5ePAgcrmcbdu2SUbXL8mrcGeAx/7ARqORoqIi7t27h0ajEVe5YmNj8fX1FVOouru7qaqqor6+XrQwcnNzo7+/n+bmZrRaLQEBAaSkpBAWFoZcLicpKQkbGxu0Wi3Hjh2jvLycFStWPFch0tNobW3l7t275OfnY2FhIZrIZ2dnY2Njw4oVK4iJiRn0XoIgUFBQQHp6Onl5eXR1dSEIAtbW1hgMBgRBwNHREU9PT2JiYoiJiSE0NFQsEpJ4NUxYwblq1SoKCwvJyMjA3t4eb29v0tPTWbRoEUeOHOEnP/kJ586dIyUl5ZWOa6IITpVKxcOHD7l9+zYFBQVoNBpiYmL46KOPiI6OHjJxFBYWcubMGezs7Ni4ceOIxtbjjV6vp66ujqqqKoqLi6murkaj0dDf309bWxtNTU2oVCqxl7mbm5vYEcPX15fExEQSExNxdnamoaFBXI7s6+sTBaVZVJrbW5qjSBYWFoPE5EBxaWtr+0rFtyQ4X4ze3l4KCgq4cOECTU1NYvGbp6cngYGBBAQEEBAQgJ2dHdXV1fzyl7+kvr6e999/n+3bt+Pu7j7qYy8IApmZmaSnp2Nvb09XVxeJiYkEBgby6NEjampqEASBoKAgoqKiiI6OHlKY1t7ezpEjR+js7GT16tUkJCSM6jO2tLSQl5fHsWPHsLa2HtRb297entzcXCZNmiT6K45khN3T08M333xDd3c3mzdvJjw8fNTHWmIwr+O812q1ZGdnk5OTQ3NzM/A4wr9w4UIxkmkwGKisrOTcuXPU19eLVncODg54e3uLOY5GoxGdTkdERASenp7ijXlZWRllZWWkpqbywQcfjHoJ+ln09vby4MED7t+/j0ajITAwELVajUKhIDIyktWrV2NjY0Nubi63b9+mqqoKYMgKnp2dHXK5XPR4NleWD1yGDwgImHDz6ERkwgpOFxcX/vIv/5L//t//O0qlEk9PTy5dusSSJUsA+OlPf0pubi43btx4peN6kwWnIAjU1dVx//59CgoKaGpqor+/n5CQENauXUtSUtKQZUadTseFCxd4+PAhsbGxrFmz5oW6krwIer2ejo4OHj16RElJCRUVFdTV1aHRaNDr9VhaWoom8xqNBisrK8LCwkhKSsLX15fm5maMRiNRUVHMnj2b4OBgOjs76ejooLm5WUxYV6lUg6ybnJychkQqzWbyb0rlrSQ4Xw6j0SjmOFtYWBAaGirm6sLjntEBAQF4eXnx7//+71RUVDBz5kwWLlxIQkICgiCM+tjX1NRw9OhR6urqsLCwYPfu3SQkJKDRaCgrK6OkpITKykoMBgO+vr5ER0cTHR2Nl5cXMpkMvV7PuXPnyMnJISEhgVWrVo36uFVWVnLw4EEmT55MWloa7e3ttLS0kJuby5UrVwgNDRUvtk8WKHl7e2NtbY1Wq+XIkSNUVVWxbt26UYleiaG8zvNepVJx9+5dMjIyaGlpYfr06Xz00Uc4ODhgNBp59OgR9+7dIzc3F5PJxJIlS1izZg2WlpYYjUZR6LW3t+Pj44NGo6G7u5uuri66u7tpaGigrKwMV1dXZsyYgZeXFy4uLuLcOfDx87qUGAwGCgoKuHPnDm1tbQiCQE1NDW1tbWIep6OjI/7+/oSFhRESEiJubm5ug95Lo9HQ2NgoLsM3NjbS39+PTCbDy8trkAg1f/9GwmyRNNBS8GXyWd8FJqzgdHJy4p//+Z/55JNPMJlM2NjY8M0334hJ/l988QU/+9nP6O3tfaXjehMFp06nIz8/n/v379PS0oJOp0Oj0Yi+afPnzx/WgqW1tZUjR47Q3d3NypUrX8gj8GkIgoBGo0GpVIoRRXOlYFVVFY2NjWKE0draGm9vbxwdHbGwsKC1tZXOzk5kMpnYvzclJYXS0lJxGckcrdLr9SgUCrq7u8UlcEtLS9RqtdghZmDE8smOLC/yucxdiUbbK/h5kQTnyDx48IBHjx6J+crmbWAOs3kZrbW1lfT0dLq6ukhNTWXy5MliblhjY6OY02suvouPj8ff35/Y2Fh27Ngx6gpflUrFkSNHSE9Px8HBgb/5m78Z1ApSp9NRUVFBSUkJZWVlYscYs/gMCAggPz9fXGLfvHnzqC9ujx494vDhw8THx7Nu3TrxO3z27Fnu3LnD6tWrxe5ara2tdHR0iJX+7u7u4nektLSUmpoali5dyqJFi157Os1E40240Wpra+Ps2bPcvHkTFxcXFi1ahFKpRKVSERERQWJiIq2trdy6dQtPT0+WL18udqAaac4xG6oXFBRw5MgRBEEgJSUFQRDEFaOBRatWVlZDROjAx46OjkOWy9va2igvL+fMmTNcu3aN1tZWjEYjLi4upKSksGPHDlJSUkb9fYT/dFRobGykurqauro66uvraW1txWAwIJPJcHV1xdnZWexSZ57b+/v76e/vH1Q3EhgYyCeffPISf523nwkrOKdNm8batWv5u7/7OwAiIyNZsGABv//97wH4wQ9+wKVLl2hoaBj1Pn/729/y29/+lpqaGuCxj9nf/M3fsHLlylHv400SnAqFgvv375Obm4tWq8XT01PsPx4dHc3SpUvx8PAY8nuCIPDgwQMuXryIh4cHGzdufOE7N6PRKPpSmkXlwMdarVZczjYvjcvlchwcHAgJCcHX1xdbW1vUarXYcrC/vx9HR0ciIyOZMmUKvb29ZGdnU1lZidFoxNfXF39/f+zs7HB3d8fDwwMPDw88PT3Fx3K5nLy8vOee/PV6PWq1WtzMvp3mTaVSiRdtmUzGP/7jP77QcXsWkuAcGbO1yUDLr4F2X/B4mc0sRO3s7Kirq6OmpgY/Pz9WrlxJYGAgMpmMnp4empqaKC0t5csvv6Svr49Jkyah1WqZPHkyq1evZsWKFaNaRjSZTFy+fJl///d/x9nZmX/6p38aNi/SYDBQXV1NSUkJpaWlqNVqnJycxKjn3bt36enpYc2aNcTHx4/qmOTn53PixAlSUlJYsWIFMpkMg8HA559/jslk4oc//KH4t9Dr9WIkdGBuaF9fH/X19dTV1REVFcWKFSvETkpeXl4vfaP2tjPe531RURF1dXWDurqZHw98bjAYuH//PteuXRNrIFauXCl25pLJZHR1dZGdnY1Op2PGjBkEBARgMBjQarVMmjRJtNp7ct8qlYrLly/T39/PkiVLxM5VOp1O/D6a582BtnzmQs2B+zO/n/laodFosLe3JyoqiqlTp4p5m+Xl5djY2JCSksKsWbOQyWRotVqxe51OpxOvM+ZopLlTm5mBn8FoNIqCsr+/H7VaLUZSzcV5fn5+BAQEiPnfdnZ22Nvbv1C3sNEil8snfL7phBKcnZ2dYo7TX/zFX4itvAD++Z//mT//8z9n0aJFCILA9evX+fM///PnuuCfOXMGuVzO5MmTEQSB/fv38+tf/5qcnBymTp06qn28SYLz+PHjZGRkMG3aNEwmE3V1dfj5+bF8+fJBOV0D6evr4/Tp05SUlJCSksKyZcueeZL39/cPEZLm5wOjiuYcSHOVuFqtprOzE6PRiL29vVglaGFhQU9PDxUVFWI1bm9vL319fTg4OODh4YGLiwsqlYr6+npxKTIpKYnp06fj4+ODh4cHrq6uIy6BPzn5m0wmNBrNsCJy4PMnuzFZWVnh4OCATqejra2NxsZGVCqVKHx//etfj0skSBKcz4fBYBjWe9b8XKVSiRZa/f39YucQc3TDyckJnU7HF198gdFoJC0tDYVCQV1dHQ4ODqSmpoqFFSEhIU9NO3n48CH/43/8D5ycnPj1r389KNL5JGa7pZKSEkpKSuju7sba2loc+8KFC1m3bt2oxF52djZnzpwhLS2NxYsXA49zRH//+9+LN/AjIQgCPT09tLS0cPfuXc6dO4elpSVhYWFiG1pPT098fHwICgoat4YHE5nxPu/z8vKorq4GHv+9ntwMBgMNDQ3U1dWh1+vx9PSktbWVhoYGXFxciImJISQkRMzZ1Ov1lJeX09bWhp+fH8HBwej1evz9/UVPz5HeJz8/H6VSSWRkJP7+/uI1YODrjEajKCrNy/UKhQKVSiWuEJmFoYWFBfb29oPaJMvlciwsLNDpdGJalLkg1NvbW2yRbGlpiYWFBRqNBkEQkMvlw27m15n3++TfbuA1oa+vT1wFcHBwwMHBgeDgYH7wgx+M+d/VjJ2dHTExMRNadE4owWljY8OqVavYvn07c+bMoampiWnTpmFlZYUgCPzd3/0dx44dQy6Xs2bNGn7+85+/9Bfb3d2dX//613z88cejev2bJDjPnj3LoUOHaGpqErs6xMfHi/lZXl5eeHh4iCdwbW0tx48fR6fT8d5774nt6Uwmk3hBHi5SObBVm42NDe7u7ri5ueHm5oa7uzu2trb09PTQ0dFBbW0tHR0dAPj6+hIaGoqNjQ2tra08evSIyspK1Go1BoNBFHhyuRwfHx+mTp0q9qyur68HHke6586dK1obPYkgCPT399PT0yNepM2tKAsLC8UJzzwZmbGwsBAnkoGbo6MjDg4O2NjY0NjYSF5eHsXFxeJncnd3JzIykqlTpxIcHCxGysYaSXCOLealsq6uLm7fvk1ubi729vZERkaKS4a9vb10dXVx48YNLC0t2bJlCxYWFhQXF9PW1oa1tTX+/v54enoSHBxMVFQUERERBAcHDxGgJSUl/PVf/zX29vb8xV/8BYmJiaMaY3Nzs5jTXFBQQGVlJcHBwezcuZPU1NRn5ldnZmaKue5z584FHs9Zp0+fZtOmTaO+sa6vr+fQoUNYW1uzZMkStFqtGBG1trZmx44do9rPu8TrOu/7+/vJy8sjLy8PvV7P1KlTxc465g5CZ86cQa/XExkZyaxZs4iNjRWFZ2FhIbdu3cLZ2Zm5c+cyf/58MX/evA1cZu7v70ej0ZCZmUlRURFhYWFMnjxZjDT29PTQ1tYmLreb3T4sLS2xt7fHYDDQ39+PpaUlPj4+TJo0iaCgIEwmEwaDAb1eLwpSc+Syr6+PtrY2Hj16RGdnp9jAIz4+Hjc3N/EaY166N1/zzOJ34OMnnw/3M71eT1dXl9gCU6FQ4OrqOmqd8LyYhfdEnO8HMqEE5/bt2zl9+jQajQYnJyc++OADtm/fPi75REajkSNHjrBr1y5ycnKIiYkZ9nXmk95Mbm4u8+fPfyME5+XLl7l9+zZRUVGEhobS1dVFW1sb7e3topG0hYUFbm5utLa2Ul5ejq+vL3PmzBH925RKJV1dXWKltkwmw9nZWRSUZlFpfmxnZ4der6e2tlb0w2xpaUGv12NtbS2+RqVSiT9XqVTIZDLc3NzEHE2j0YiHhwfJycmkpaVha2vLvXv3yMvLQyaTER8fT2JiIjY2NkPE5JPPDQbDoOPi4OCAnZ0dSqUSd3d3XFxcBolJ88+fPKc6OzvJzs4mNzeX8vJy1Go1dnZ2hIaGMm3aNOLi4vD3938lFxNJcI4vzc3NpKeno1KpmDlzplgoo9FouH//Pv/+7/8u5mxptVoqKirIzs6mvb0de3t7HB0dxZsYW1tb8eZq8uTJREZG4uXlRW1tLf/3//5f7O3tee+991i1atVzLUt3dHSQmZnJoUOHaGtrE4vjoqOjmTJlyojL/OaWt6tWrRJz7Y4ePUplZSWffvqpmLP3LJRKJd988w39/f1s3br1tTlXTBTG+7yvqamhp6eH0NBQnJ2d0Wg05ObmUlBQgMlkEoWmg4ODWLFtvn6VlZVx9epVurq6sLGxES2SzK4MCoWChw8folKpmD59+lMtsmxsbLC1tcXW1pbGxkYKCgpwcnISC/N6e3uxtLTEzc2NkJAQgoKCsLa2prGxkZqaGuzs7IiPjycpKWnUVlxGo5Genh46OztJT0/n6NGjtLS04OnpyZQpU3B1daW9vR1ra2vkcjk2NjaDVi+cnJwGPX8R1xG9Xj9uaSUTeb4fyIQSnPCf/nYHDx7k0qVLGAwGfHx82Lp1K9u3b39pkVdQUMCsWbPEPMGDBw+yatWqEV//i1/8gl/+8pdD/v9NEJx9fX3o9XrxTta8hN3Z2Ska4FZWVorVf+bEaLlcjr29PZ6envj5+REYGCj2jA0PDx8SRTEYDDQ2NlJeXk5RUREVFRViz1kHBwesrKzEJQ2FQiGasLu7uxMVFUVISAgmk4na2lqxaj4mJgZfX18ePXrE3bt3qaysRC6XixEk8x31QGxsbEacQMzPHR0dkcvlo5r8e3t7qampIScnR/RvNBqNeHl5ER0dzYwZM4iNjR10PMyRMnOUdrxyeibyBDQRBCc8voDcvXuXvLw8fHx8WLJkCW5ubuh0Ou7evcuhQ4eIjo7mn/7pn8S0jAcPHnDhwgU6OzsJDw/H19eX+vp6ampqqK+vFxtUmJ0QNBoNTU1NODs7ExoaysqVKwkODh7kC/usY6TT6Th8+DDXr1/HwcFBNO8ODg4WvT4HikhBELh06RJ37tzh/fffJyEhgf7+fj777DMcHR3Zs2fPqFvUajQavv32W5qamvjggw9GvDGXGP/z/syZM2LBpFqtpr+/H1tbWyIiIvD19RXnJp1Ox3CX/d7eXioqKjCZTDg6OqLT6cSe5j4+PphMJvLy8sQ2sIsWLRLFma2tLTY2NmKnroEtIs0Wdu7u7qxfv15c/bGysiInJ4cHDx7Q1dWFr68vycnJxMXFvfTx0el0nD59mlOnTtHd3U1YWBhubm5ERUXh4ODwzMCElZXVsNcR8zXEwcFBssF7ASac4BxIZ2cnhw8f5uDBg2RkZAAwefJkduzYwbZt217IM06n01FXV0d3dzdHjx7liy++4MaNGxMywllSUkJeXp4oMgd20HFwcECr1VJaWoqTkxNr1qwRxVNfXx8dHR1iv9iBEVGZTIadnR06nU6sKlcoFOh0Okwmk1hp6O3tjaurK1qtVsyTs7W1JSgoiODgYDw9PWlqaiI3N5e6ujoAvL29cXNzw2g0irlFarUaZ2dnoqKimDx5Mi4uLsOKSScnp+f6Ig43+ZstM6qrq8nPz6e2tpbu7m5sbGwICgpiypQpREVF4eTkhFqtRqPRiJv5uVqtFisXpU5DwzNRBKeZpqYm0tPTUavVzJo1i+joaPHm6Te/+Q3Jycn86le/EpfpzEI1IyMDmUzG3LlzSU1NxdLSEoVCQWlpKSUlJZSXl4vPe3t7cXBwwNLSkujo6EE3KuZuV082JTBvZruunJwczp07h4ODA3FxcbS2toqFdH5+foPslgRB4Pvvv+fhw4ds2rSJmJgY6uvr2bt3L3PmzBFzPEeDwWDg5MmTFBUVsXTpUrFwQ2Iw433eHzp0iOvXr4sdqAZG8cw5mMHBweJcaW1tjY2NzaDH/f39nD9/HoVCwdSpU2lsbKSjo4NJkyYNss1LT0/H3d2djRs3YjAYhrSIlMlk+Pn5Deo/furUKfr6+pg3bx5NTU0UFxcjk8mYOnUqycnJBAQEjPl509zczIkTJ8jKyqKzsxMfHx/CwsJISEggLCxMzNUUBIG+vr5hV8nMjwdeP+Vy+ZBghru7OxEREWM6fjMTeb4fyIQWnANpbGzk4MGDHDp0iNzcXGQyGampqWRmZr7UfpcsWUJERAS/+93vRvX6NymHMycnh8LCwiE5lY6OjmKf2ilTpvDee+8N6TjS398vismOjg7KysrIz8+nvLycjo4O+vr6xGIfNzc3PDw88PHxwdLSEoPBQHd3N/39/VhZWYkXRTs7O7RaLc3NzeIyu4+PD1OmTGHy5MnY2NjQ1NRETU0NJpOJ6Oho5s+fT1RU1Jj7X2q1Wu7cuUNHRwd1dXVUVFRQWVmJUqlEq9VibW0tWsIMZ21kFt4ODg7Y29tjb28vLscPfC7ZIg1loglOQLRGys/Px9vbm9TUVObPn8/Zs2f5t3/7NxYvXszPf/7zQeepWq3mxo0bPHjwACcnJxYtWkRcXNygi5xSqRQr4FtbW7GyskKpVBIdHc3s2bNxd3fHzs6Ovr4+uru7xW1gdN+c5mLuIZ2Tk4PRaGTlypXEx8fT1tZGdXU1FRUV6HQ6PD09iY6OJjIyknv37lFSUsKWLVuYPHkyt27d4urVq+zcufOp/bWfRBAErl69yq1bt0hKSmLVqlVvjGftm8J4n/f//M//TH5+vuilamFhgVqtFnMl1Wo1crlcDAiYgwLW1tZYWVmJ/8pkMgoLC2lsbCQ2NhZXV1eKioro7+8nNDSURYsW0dzczPfff09bWxsRERGid+VILSK1Wi1ZWVl8/vnn1NfXk5KSwnvvvUdCQsJTu12NBSaTiczMTDH9w9HREUEQcHV1JT4+nujo6FH9Pcz5pyOJUjc3NzZu3Dgun2Eiz/cDeWsEp5mCggL+5m/+hlOnTokWBy/DokWLCA4OZt++faN6/fMKToPB8NJjfB46Ojo4ceIEHR0dLFy4kIiICNEMXalUolAoUCqVdHR0iB13VCoVJpMJa2trPD09xcnKxcWF9vZ2KioqqK+vR6FQ0N/fL+atmY3TzTZE5iV+Hx8f5s6dy7x58/Dx8RnSymz69OmkpqYOa9k0Gkwm07DWG0qlkpqaGvFOvKKiAq1WK3qu2djY4O3tLeYVubm5DSsizTYYr/OCOpEnoIkoOM00NDRw6dIlurq62LFjB3PmzGH//v3s27eP999/n5/+9KdDojQKhYIrV65QXFyMr68vS5cuHRIJUSqV/P73vxeXKC9duoQgCERERGBnZ0dAQAChoaGEhoYSHByMyWSiu7tbNKsfuCkUCh48eEBzczN+fn5MmjQJW1tbHB0d0Wq14msEQcDDw0OMSP3pn/4poaGhfPXVV3R0dPDpp58+d9eYhw8f0tDQwNq1a6Uo5xOM93k/0HPaXGQycOvp6aGuro6GhgZaWlrQarViS15z/rzJZBLzO815+La2tjg7O9PU1CQWx5kbI5jdQyIiIoiPjxcryc2bWq0We5cDhISEiFZHKSkpzJ8/X4ywDtzGuhJbq9Vy+/ZtHj58SG1trZi339zcjLW1NTExMUybNk28aXsRjEbjqFNRnpeJPN8P5K0QnHV1dWJ0s7CwEEEQmD17Ntu3b+cnP/nJqPfz3/7bfxNzqFQqFQcPHuR//+//zcWLF1m6dOmo9vE8gtNgMFBcXDyoynssMSdomz3QSktLxehvUFAQRqMRrVY7aFLq6+tDrVaLywf29vbisoyjo6Noh2Huz2swGPD29iY0NJTo6GimTZtGWFgYJpOJ8vJybt26RU5ODgqFQowaenl5IZfLMRqNKBQKent78fb2Ji0tjYULF45o3mu2vzALyCcF5UDPRbPthrkbhtnjc2CloVqtxsvLi6ioKHG5fLwikmPNRJ6AJrLghMfnzfXr11EoFEyaNIl169bx9ddfc/z4cT766CN+8IMfDCu26uvruXz5MnV1dURERLB06VLR+xCgurqar776itTUVGJiYjh8+DA9PT1Mnz4dvV5PTU2NGKUaKECDgoKGFCuYozqnT5/G1taW2bNnA4gitauri4aGBjo6Omhra6O+vh5BEJg5cybR0dE8evSI0NBQNm7cKBpzP2nILfF8vEnnvTnvvqamRiw2srS0xMvLS8zjVyqVlJeXU15ejqOjIzNnzsTR0RErKyvq6uqwt7dnxowZ9Pf3c+vWLezs7Jg1axY2NjZUVlZSVlZGW1sbVlZW+Pv7i1FXrVZLfX09lZWVYrT9SaEml8uHiNCX2czV9o6OjjQ2NnLjxg00Gg2xsbHIZDJKSkrEtp0JCQn4+fm9pr/M8Ezk+X4gE1ZwdnR0iPmbd+7cQRAEoqKi2L59O9u3bx/RZ/JpfPzxx1y5coXm5mZcXFyYNm0af/VXfzVqsQnPJzjNE5B5OWOs+eKLL7hy5Qo6nY6enh7xjtZ84TAajZhMJnEzFwu5uLjg7u6Op6cnzs7OYm5Pb28vPT09YsW5t7c3Pj4+pKWlifZKMpmMuro6SkpKaGhowM7OjoSEBBITE/H19aWvr487d+5w8+ZN0a7J3PnFbHlhrnK0sbERvdHM/m4DMbc0M3ePsbOzQ6PR0NXVJVo2yeVyrKyskMvlouB0cnISbZSioqJwdHQc82M/3kzkCehNuvC+COZj7+LiwoULF9BoNCxZsoTLly9z5coVPv30U7Hj2ZMIgkBpaSmXL19GqVQybdo0Fi1aJN7oZGVlce7cOd577z0iIyM5fvw4VVVVLFy4kLlz56JQKKiurhaFgkajQS6Xi4V9oaGhBAYGigLU3C2sp6eHtWvXEhcXJ47FYDCI4rOkpIQDBw5QXV0tFuW1tbURGRlJdHQ0lpaWYt7awPzRJ/NKX1Xb24nIm3beC4JAd3c3TU1NlJWVUVxcTENDAyqVChsbG/z9/YmJiSE0NJTi4mL0ej3z589n+fLlqFQq0tPTefToEf7+/iQmJnL16lWKiopE66GIiAiSk5OJjIwcJCjNc3lRURHHjh3DycmJ1atXY2trO8is/Xk2rVY7qOvPk5g7aTk4OGBra4uFhQUNDQ1iwV5MTAw6nY76+nr6+vrEQERYWBg2NjZYWVkN2QamIIw3E3m+H8iEEpxqtZoTJ05w8OBBrly5gl6vx8/Pjy1btoxJhfpY8CKCc7wmoJMnT3L58mUUCgVyuZzQ0FDRkkij0WBhYYGjo6OY8+Pp6Ym1tbUYGTTnWnZ0dGA0GrGzsxvUfszcItPLy0vMzWxubkav1+Pk5CQKVrPpdnNzM21tbWi1WhwcHHB2dh4iKPV6vRiBNE8g5oR2Nzc3PD098fX1JSAgAG9vb0wmk9gbvb29HUEQsLe3x9XVVTRz1+v1ODg4iB0qIiIiMJlMb9Tk/7xM5AnoTbvwPi8Djz08th978OABISEhFBQUkJeXx1/8xV88tUOZ0WgkJyeHa9euodVqSU1NJS0tDRsbG77//ntyc3PZvXs3AQEB3Lhxg5s3bzJp0iTWr18v5rwJgkB7ezs1NTVUV1dTW1s7RICGhYXh5eXFhQsXKCgoICkpiRUrVgy7ZNnf38++fftoaWkhMTGRS5cukZeXJ65a+Pj4iIWA5khpT0/PoAu9ucBO8uEcyus+7wVBQKFQ0NTUJG7mdAp3d3cCAgLw8/PDw8MDhUJBTU2N6BxiYWFBW1sbBoOBP/3TPyUtLQ34z6h8Tk4OgCjCli5dytatW5/5OVtbWzl06BAGg4GtW7cSEBDwwp/PaDQOK0TNK3yFhYXiCp15RU+hUJCbm0tnZye+vr4EBgaiVCqpq6ujs7MTKysrsZPWSMv8lpaWWFlZ4evry5o1a154/E9jIs/3A5lQgtPBwUFM+h3owfkmJae/SYLz+vXrXLhwAZlMJraes7OzExO8AwMDcXFxQSaTYTKZaG5uFiMnSqUSCwsLAgICxO4pLi4uoqmvWq1GqVSK3U/q6+sxGo24u7uLHX7MhvENDQ0olUqsra0JCAggPDxcNOM13yma83bME4JZfJojlp2dnXR1dYnm0t3d3WK3BxsbGzEnRy6XYzAYEARBzDn18vISx2SeHODxZGdvb4+NjY3YacIcyXmRx3K5HJPJJCbpm0wmcSlzrJnIE9DrvvC+LMMd+8rKSk6fPo1KpaKkpISOjg7+x//4H8ybN++p+9JqtWRmZpKZmYmlpSXz589n+vTpfPPNNyiVSn70ox/h7OxMRUUFx44dw9rams2bNw97YTb3nDZ/h2tqaujr68PS0pKAgAD0ej2lpaWEh4ezZcuWYXOk1Wo1+/btQ6fT8dFHH/HVV19RX19PdHQ0TU1NAISGhhIVFSVazLS2ttLU1CTeUFpZWbFr164xONJvF6/6vDcajbS1tYnisrm5Ga1Wi4WFBd7e3vj7++Pv74+fn9+IkWmTyURrays1NTWUlZWRlZWFTqcjISGBiIgIurq6MBgMyOVyent7sbe3x9vbm/b2djw8PNi0adOgtJHhUKvVfPvttzQ3N/P+++8TGxs75sfiacfeZDJRWFjInTt3kMvlpKWlERkZSUdHBzk5OTx69AiA8PBwIiMjsbe3H5Ifq9frsbW1HbSCMJZM5Pl+IBNKcL733nts376ddevWvbFLN2+S4Dx37hwZGRmkpqaKlYMeHh7iEkB/f7/oxVlZWUlvby8WFhZ4enqKBTNm0TfQ8ker1dLe3k5rayt6vZ6IiAhiYmKIjIwUf0+hUIg5PJ6ensydO5fExMTn+ruZTCZaWlrECE5dXZ1YQe7n54eDgwM9PT1UV1fz6NEjlEolgFiN7+/vj5ub2yD7GHMRhFqtprS0VBSf5jZr5n+f9dh8lzzQHmlg60sLCwu8vLz4zW9+M5Z/UpGJPAGN93lfVVUl3kwMLPoy2w69LCMd+/7+ftHf8u7du1haWvIP//APJCUlPXOfKpWK69ev8/DhQ1xdXZk1axYZGRmiL6aVlRXd3d0cPnyYlpYWVqxYQVJS0lOX8wRBEMWCOVrV3t7Oo0ePsLW1ZfXq1SxatIiAgIBBx0WlUvGHP/wBvV7PggULOHToEAEBAcTExFBaWkp5eTkNDQ309fVha2uLp6cnnp6e2NvbY2FhQVBQEHv27Hm5g/wWMt7nvU6no7W1lcbGRpqammhtbcVgMIjRN7O49PX1fSGDcq1WS05ODhkZGWRkZCCXy4mOjiYuLo6kpCTCwsJoa2sjMzNTnBednZ1ZvXo1iYmJTz1XDQYDp0+fJj8/nwULFjB//vwxXaoere/yrVu3qKioICgoiAULFuDq6oparaagoICCggK0Wi2hoaHEx8ePWxe54ZjI8/1AJpTgnAi8SYLT3PO1r69PFEStra1i1WB7ezs6nQ4bGxtxqdzBwUHsWzuwKtvcntJcaGBvb8+UKVOYNGkSixcvxsbGBp1OR15eHnfv3kWhUBAYGCj6Fo4mCm2O0AzMUTNbKwUHB4v5aRqNhrKyMkpLS+nv78fNzY2YmBiio6Nxd3cXPUSH8xG1sLAQo7Dd3d1iMvvAdmdPYo5amvdp3q9Go8FkMokm9ubcpYHR1hfJJR4NE3kCGu/z/uHDh+Tn5w/yRDVj7qIycBsoTM3Pn3ZBftaxLy8v59tvv+X48eM4Ozvz29/+dtSG6O3t7aSnp1NaWoqjoyMtLS3MnDmTDRs2iHnXly5d4t69e8TFxbF27dpRH0NztKqwsJCjR49SWFiIs7Mz/v7+uLq6innQZr/Q7OxsLC0t8fX1pbKyksTERCIjI0UfR/N3orW1VVwNiY+PF5s2SAVGgxnv8z49PZ2SkhJsbW1FcRkQEICnp+dLVU/39/dTUlJCbm4u7e3txMXFERgYSGFhoWhf19zcTHd3t7iKpVKpxKp2S0tLFi1axHvvvffUuUoQBDIyMrhy5QqxsbG89957Y9a553mOfU1NDdevX0ej0ZCcnMyMGTOQy+Xo9XrKysrIzc1FqVTi6elJQkICkydPHvf+5hN5vh+IJDjHmDdJcN65c4esrCxUKhVdXV1ivpW51Z5ZxJkrE80XXnNSNTyOdhQVFVFcXIxarcbHx4fY2FgmTZoEPBa14eHh5OXlkZ2dTX9/PzExMcycOZOgoKCnjk8QBDo6OsQIprkIwtLSksDAQMLCwggNDcXT05Pq6mrRLFun0+Hl5SWKTB8fn2de3Pr6+gYJRnMfdPNykEwmE8Wi+bMbDAZxSd9csOTk5ISXlxdeXl7icv3rqN6dyBPQq1paFARhUArIcJv5Z09ak5mF6XBRUvOYZ82aNaKjQn9/PwcPHuSf/umfsLOz44svviA+Pn7UY6+pqeHy5cvk5OTQ2trK7t27Wbt2rfjzwsJCTp8+jYuLC5s3b8bLy0vMVXuyg8qTmzlP2my+bV5yNxgM4s1mcHAw3t7elJSUiB2Tampq+PGPf4y7u/ugser1eiorKykpKREbSfzxH//xqD/ru8J4n/cDV3hedj4y3/wXFBRQVlaGIAiEhIQQHh7OihUrsLW1paOjg4MHD9LX18fmzZuxt7envLycsrIy6uvr0Wg0dHZ20trailarJTk5mT/6oz96ZgV4cXExJ06cwNvbmy1btoz4HXsenvfY63Q67t+/T05ODm5ubixYsEBMYxEEgfr6enJzc6mtrcXe3p64uDhiY2PHzVN0Is/3A5EE5xjzJgnOjIwMMjMzxT7lkyZNIjQ0lICAgKfeOZpMJmpqaigqKqK2thZLS0umTJlCbGwsXl5e4usaGhrIyspCo9FgZ2fHjBkzSE1NHbEXsyAIdHZ2ij3Ua2pqxGX8gUUOgYGBGAwGsSNLZWUlBoMBf39/sVuKp6fnSx0brVbL3bt36ezspL6+nrq6OvGO3OwXajZ29/HxITAwkKCgIPz8/MQI6Xjf1T6NiTwBvWk5nOaWf6MRpuaUCp1Oh6+vLw4ODqJlmLnryMDHDx8+5G/+5m+Qy+X8n//zf1iyZMmoxYAgCBQXF/Pv//7vFBQUsGLFCpYtWzYoN9rc/zo8PHzI987a2vqprV6dnJzo7e3l5MmT9Pb2smbNGjw8PAYtwSsUCgoKCggICMDBwYHAwED+7M/+bMS/m7mntZub28v+Wd463rTzfjh0Oh3l5eUUFBTQ3t6Ok5MTsbGxREdHY2VlNWTO6evr48iRI9TU1IhL5/C4a1tFRQXl5eVkZ2eTk5NDTU0Nrq6u7N69m127dj01vaq5uZmDBw8ik8nYtm3bM/NAn8WLHvuOjg6uXbtGS0sLMTExzJkzZ9C4lUoleXl5PHr0CBcXF7Zu3TouwYeJPN8PRBKcY8ybJDjr6+tpbW0lNDR0UO7mSPT29orRTLM35tSpU4mMjBTHZzKZqK6uJjc3l/r6emxsbFi/fj2pqanDfhG6urpEcVldXU1PTw8ymQx/f3/CwsIICwsjKCgIa2trent7efToESUlJVRXVyMIAkFBQaLIHEnIPgtBEMSCI/NWX19PWVkZ1tbW2Nra4uHhgbe3t5iPZs4PVSqVgza1Wg0gRkTNXZw8PDxeqRCdyBPQRLjwDocgCOh0Orq6uujo6CAoKEj0hjVvZi/YgW3wmpqaOHv2LACLFy9m6dKleHt7Y29vL1qJAaIvrnkfAyOVGRkZ1NfX4+fnx+TJk5k6dSpubm7Y2dlRXFxMY2MjiYmJLFu2DDc3t+dq9arVajlz5gyFhYWkpKSwbNkyLC0txRzqu3fv8u2339LX10dPTw8REREsXLhQXIHw8/MbN8Prt4k3+bxXKpUUFBRQWlqKTqcjODiYuLg4QkJCxBWfkeYco9HIxYsXycrKIiUlhRUrVgxKoTKZTNTV1XHp0iUOHDhAQ0MDgYGBfPjhhyQlJREZGTlsAZtKpeLQoUO0t7ezYcMGoqKiXvjzvcyxN3t43rlzBwsLC+bOncuUKVMGXU/N342BLWnHkok83w9EEpxjzJskOEeDeTIoLCykpqYGS0tLIiMjmTp16qAvj06nE3uzd3d34+fnx9SpU/H29mbGjBnil6Cnp2fQEnlnZycymQxfX18xghkSEiK+vru7m5KSEoqLi6mvr0cmk4km8ua+5c+D0WgUbZIGCkxzK0AHBwcxStnV1UVwcDBeXl6jvivt7+8fIkJHEqJeXl4kJyc/1/hHy0SegN6E8/5leNaxH3iD09raSmtrK/fv3+fIkSPodDp8fHxwd3cf0gnN3C7V7Gnp7u4u+uG6uLiQkZFBR0cHgYGBuLq6snDhQmbMmIGFhQXZ2dmcP38eX19fNm3a9Nw3Z4IgkJ2dzYULF/Dy8mLTpk2Dls7N9jc9PT0oFApiY2NFyxlra2sxPScsLAw/P783yjnkTeFNO++NRiOVlZViG0s7OztiYmKYOnXqsA0wnnXeP3jwgHPnzhEaGsqmTZuws7Mb9j337dvHH/7wBzQaDVOmTCEyMhJvb28mT55MZGQkISEh4g2MXq/nxIkTlJSUsHjxYubMmfNCEcSxOPa9vb1kZGRQXl5OUFAQ8+fPf2WR/Ik83w9EEpxjzEQRnL29vRQXF1NcXIxKpcLT05PY2FimTJkyaCwqlYr8/HyKiorQ6XRMmjSJ6dOn4+Pjg06no729HRcXF5qamqiurkahUADg7e0tRjBDQkIGTT4KhUIUmU1NTcjlciIiIoiOjmbKlCmjzoPRarW0traKotJsy2K+iLu7u4tVmebNLGDH+tgPJ0QB3n///Zfe93BM5AnoTbvwjhZzhNPcCjYoKAitVjtsnuSTOaEODg40NDRw5coV7OzsxJu6JUuWiI0HDAbDoJasAyOm/f399PX18fDhQ2xsbHBycqKrqws3NzeSkpKIiooSLZZkMhkffPAB06ZNw87O7rku0M3NzRw5cgS1Ws177703qNiprKyMQ4cO0dnZSUBAAD/60Y9QqVTiEnxdXZ2YXy3lcA7lTTnve3p6xJUsjUaDv78/sbGxREREPHV1ZjRzTk1NDd999x329vZs3bp1xNSn5uZmfv3rX5OTk0NAQAAzZsxAEATRdD4iIoLJkyczefJkHBwcuH79Ojdu3CAhIYE1a9Y89yrSWB77gUVFSUlJzJgxQyoaGiWS4Bxj3mTBKQiCGM2srq5GLpcTGRlJbGws3t7egy5Mra2t5OTkUFFRgbW1NVOnTmXatGlYWlrS1NREQ0MDNTU1tLa2imLOvMQWGho6qAezOQHdLDLNXn2TJ08mOjqayMjIZ36Jent7RVFpFphKpRJBEJDL5Xh7e4vj8PPzw8fH56n7fFMm/xdlIk9A433sCwoKqK+vF6tpRyO4zBZXT9vMrVwH5nA6OjoOmxs5cHN0dBQjNsePH+ezzz4Tb8QsLS1ZtWrVM70H9Xq9mPLy7bffEhERQUBAAJmZmdTW1uLg4EBQUBAWFhY8evQIhUIhFnmY21I+OaaBj+3t7cXjpNVqOX36NEVFRYOW2OFxsdKhQ4doaWlh/vz5fPTRR4NSApqamsTIlcRgXuecY17JKigooLa2FisrK6KiooiNjR12OXs4RjvnKJVKDh06hEqlYuPGjWKB6ZMYjUZOnjzJ4cOHMRgMzJkzh9TUVAwGA+Xl5TQ2NiIIAgEBAURGRmIwGMjMzCQgIIAPP/xw0DXmWYz1sdfr9dy/f1+0MVu4cOFLmdY/i4k83w9EEpxjzJsoONVqNSUlJRQWFqJSqfDw8BCjmQNPXpPJRFVVFbm5uWJ7z+joaJydnUV/N4VCgSAIuLi4iEuDy5cvH3Ina66CNYtMpVKJra2t2Cpv0qRJwxYuCYKAUqkcFLVsaWmht7cXeFw9bBaVZoFp7s3+PEiC8/Ux3se+vLycrKwslEolzs7OTJo0SSxE6+3tHVZMmv1TzZjbpj5poTRwzLNnz37utqiCIPDVV1/x1VdfMXv2bKKioigtLSUmJobVq1eP6iJ6//59zp49y7p165gxYwaVlZVcvnyZlpYWpkyZQkpKCjk5OVy/fh0PDw+Sk5MxGAyDIqYajWbQPuVy+aA2seae07m5ufj7+7Np0yYCAwNxcHAgNzeXvXv30tnZyaeffsqcOXOe6xi8q7yOOUej0VBcXCzO/Z6ensTFxQ3Kyx8tzzPnaLVajh49SkVFBcuXLyc1NXXEG7/S0lKxraqPjw8JCQksW7ZMbHhQVlZGRUUFWq0Wo9Eo5jL/0R/90TOdUAaOZzyO/ZNFRYsWLZKKhp6CJDjHmDdJcDY3N5OTk0NVVRVyuZzJkycTGxs7xEZIp9NRXFxMXl4enZ2d2NnZ4eHhIbb+MvcfDwwMJCAggMDAQJycnIZ8CUwmE/X19RQXF/Po0SO6u7uxt7cnKiqK6OhowsPDBwlDg8FAe3v7kHxLc8GFs7PzoKilr68vrq6uY/KFlgTn62O8j31+fj6FhYU0NzeLLeoAPDw88PHxwcfHZ4iYHPjc0dHxqT2SX/bYm0wmPvvsM06cOMGqVatYtGgRFy9eRCaTsXr16md6dgqCwNmzZ8nJyWHXrl0EBwcjCAL5+flcvXoVlUpFUlISISEhnDt3DrlczsaNGwkODhb3YV6+H67gaeDjlpYWioqK0Ov1REVFiceura2N27dvY2try49//GPCwsKGRFAlBvMq7cCam5spKCigoqICmUzG5MmTiYuLG5WF3Eg873lvMplIT08nMzOTGTNmsHr16hEDA93d3Rw5coT8/HwsLS1xcnIiPj7+/2fvvsOiura/gX8PvTfpTZqCIogKqKCCitiw996ipvebmOLVVH+5yU1iejRGjbFXrAixgIo0AREQBARBlCZIGWAGmPP+4TvnMtKGMpwB1ud55kk4ZWaz3cys2W1h4sSJ0NfX5wJNyT6Y4eHhEIlECAwMxLhx4zBgwIAm23U1Js+6lywqEggEGDVqVJc+t0RPfr9vjL99XYjcFRYWoqysDGPHjoWLi0uThlpRUYH4+HhER0ejrKwMGhoa0NDQgLKyMioqKmBlZQV3d3dYW1tDT0+v2TcqycTzrKwspKWlQSAQQFdXl1tZLlnlWFtbi7y8PKley+LiYojFYjAMg379+sHCwgLOzs5ckNmeIRNCJDQ1NWFpacnN/1JSUkJ+fj7u37+PmpoaaGpqclM5+PiyoaSkhA0bNqC6uhoXLlyAtrY2XnzxRVy4cAFHjhzBkCFDMG3atBbnMjMMg6lTp6K4uBiHDx/Ghg0boK+vj6FDh8LV1RXR0dG4du0abt++DQ8PDzx8+BB79uzBpEmTMGrUKDAMAxUVFS4DV2ski/BOnjyJ5ORk6Ovrw9XVlcvZfubMGfzwww/w8/Pjggmaw8kPkUiEtLQ03LlzB6WlpdDX1+cSbzS3gEfelJSUEBgYCFNTU5w5cwZPnjzBwoULm31f19fXx5o1a3D58mVcv34dqqqqSEtLQ2pqKkaNGoUxY8Zw07UCAwOxYsUK/PHHH7h58yYyMjJgYWEBExMTDBw4EAMHDoSNjU237ZzAMIzcUlr2NtTD2cUUqYdTEsw1DhTr6+uRlJSEGzdu4O7du6ipqYGJiQk330vSi9na5sF1dXXIy8tDeno67t27B0NDQ5iYmHBBpp6enlSPZUFBAdfLpKKiAjMzM6leS1NT027/4KceTv7wVfctzWNzc3NrtXfkeV1V97W1tfjqq68QGRmJFStWYOnSpUhJSeF6JYOCglrdCkYgEGDnzp3Q1NTE2rVrpaaoVFdX49q1a4iJiYGGhga0tLRQVFQEV1fXNjO+NIdlWcTGxuLixYswNzfH/Pnzoaenh7///hu///47PD094e/vj4KCAqioqGDDhg0drpfeqjsyDaWlpcHBwQFDhgyBjY1Nlw7vdqbd5+Xl4dChQ1BVVcWSJUta3T4oIyMDJ0+eBADY2toiKysLqqqq8PPzg6enJxdIisViXLp0CeHh4bCysoKFhQUyMzNRVVUFDQ0NODo6YuDAgXBycoKKigq93ysACji7mCIFnMCzHoqioiLk5uYiISEBSUlJqKiogI6ODoYOHQpvb2/Y2dlx27S0RCQSIScnB1lZWXjw4AHq6uq4zaSHDRsGANyKccn8ME1NTam5lhYWFujXr59CbJlCASd/FKHuJSt1U1JSUFNTA0tLS7i5ucHR0bHNnpGurPuqqip8/vnnSEpKwgsvvIA5c+agqqoKZ8+eRXp6Otzd3TF16tQWe6gKCgqwa9cuODs7c+kvGysrK8Ply5dx584diMViCAQC9O/fH4sWLZJpz8D6+nqUlZWhtLQUZWVlyMjIQGhoKJ4+fcq9b8TGxuLu3bsYP348Jk6cCEtLS4wfP75T9dIbybvdl5eXc3Nx5aGz7b68vBwHDx5EaWkp5s2b1+rCsoqKChw/fhx5eXkYOXIkamtrkZiYCCMjIwQEBMDFxYVr6wkJCTh79ixsbW2xYMECPH36lMt4lJ+fD4ZhuEWxLi4usLCw6HFpV3vy+31jFHB2MUUKOBMTE3H9+nU8evQIJSUlUFNTg5OTE8aMGYNhw4a1+cFaW1uL7OxsZGVlIScnB5WVlVz2EslG7dXV1TA3N4exsXGTxTwtDcMrAkUIejqjJ78BKVLdN7cXoaurK1xdXaGnp9fsPV1d96Wlpfj000+RlZWFV155BVOmTAHLsrhz5w7Onz8PFRUVzJgxo8UP6NTUVBw5cgQTJ07E2LFjm70mPz8fYWFhuHv3LgoKCmBmZoalS5fCw8MDIpGICyif39qroqICko8IVVVVGBoaQkdHB+np6SguLsbo0aMxY8YMfP3117h16xY+//xzuc1j6+kUqd13RFe0e5FIhJMnTyItLa3NfTXFYjGuXr2Ka9euwcHBAb6+voiMjERmZiZsbW0RGBgIa2trAMCDBw9w+PBhaGpqYunSpdzK+6qqKmRkZCA1NRXXr18HwzDQ19dH//79YWdnBxsbmy7L1y5PPfn9vjEKOLuYIgWc//zzD8LDw7kJ2MOHD5dKTdkcyYr2pKQkZGVloaqqCqqqqlBXV4eBgQE0NTW5Tc319fWhra2N8ePHdzgLEF/ozZ8/ilr3T548QXJyMtLS0lBXV4f+/fvDzc0Ntra2Ur3y8qj7goICbN26FYWFhXjzzTfh5+cH4Nk+uGfOnMG9e/fg4eHB5bF+3tWrV3H16lUsWbKk2cC0pqYGpaWlSEhIQGhoKBISElBbW4sBAwZI9eqqq6tzG843fkiyF0mCA5ZlERMTg9DQUJibm2PGjBn44IMPUFpaim+++QYDBgzoknrpTRS13cuqq9o9y7Lcvpru7u6YOXNmq/tYZmVl4cSJE1BSUsK8efPQ0NCA0NBQFBYWcnvZGhoactsxVVVVYeHChbC3t+eeQygU4tatWygvL0d+fj5ycnK4HmFJWmU7O7sWv2TyrSe/3zdGAWcXU6SAMzc3F/n5+XBzc2t2mIVlWVRUVODBgwdISkrihiBEIhF0dXVhamoKJycn2NjYcCkf+/Xrx7059OQ/Anrz54+i171IJMK9e/eQnJwslU968ODB0NLSklvd5+Tk4NNPP0VlZSXee+89LksVy7K4ffs2Lly4ADU1NcycObNJQCcWi7Fv3z6kpKRg6tSpACDVU1lTU8Ndq6mpiaqqKiQmJiI/Px8uLi546623uN+vPaMS+fn5OHbsGGpqauDt7Y1ffvkFpqam+OmnnxRi6owiUfR235aubvfJyck4deoUzM3NsWjRolazylVWVuLEiRPIycmBv78/fH19kZycjMuXL0MgEMDb2xvjxo0DwzA4evQosrOzMW3aNHh6egJovu7Lysq4pAWSPT+NjIy4PXIVKWNWT36/b4wCzi6mSAFnYw0NDVyGlKKiIjx48AAZGRkoKipCVVUV1NTUYGNjAxcXF7i6usLGxgb6+vqt/sH15D8CevPnT0+pe5ZlUVhYiOTkZNy7dw8sy8LJyQnOzs7c3OWurvu7d+/iiy++gFgsxgcffCC1+rW8vBxHjhxBSkoKbG1t4eLigqqqKqmgMj4+Hg0NDfDz84O5uXmTXkojIyOuh1QkEuHcuXPYtWsX6uvrsXLlSixcuLDdWVNqa2sRHByMu3fvQldXF/r6+li7dq3CfFgrip7S7lsij/ecR48e4eDBg2AYBosXL4alpWWL14rFYkRERCA8PBx2dnaYN28e1NXVcfPmTVy/fh1KSkoYN24cPD09cenSJURHR2PUqFEIDAxEXV1dq3UvFAqRl5fHBaA1NTVQV1fnht779+/f7MhCd+nJ7/eNUcDZxRQp4JTsW1ZcXIySkhIIBAKUlpaitrYWLMtym2IPHToUgwcPbndD7sl/BPTmz5+eWPe1tbVc8oQnT55AW1sbs2bNgpeXV5fWv+RD9euvv4aSkhJmz54NLS0tbo5lXV0dCgoKkJWVBR0dHYwZMwYuLi5cQKmsrIxjx47BysoKy5cvb3aetiRbksSTJ0/w7bffIjY2FgMHDsT69evh7u7erp5OyRD7pUuXYGlpiZUrV8ot4FRWVpZ7KkF56IntvjF5vedUVlbi0KFDKCoqwuzZs+Hq6trq9dnZ2Th+/DgAYO7cuXBwcEBVVRXCw8Nx69Yt6OnpISAgANXV1QgJCYGjoyOCgoKQlpYmU91LMuNlZ2cjJycHxcXFYBgG5ubmsLOzg729fZuLbLtaT36/b4wCzi6mSAFnYmIiYmJiIBKJUFlZCZZlYWBgACcnJzg6OsLW1rZTE6Z78h8BvfnzpyfXPcuyuH//Pm7dugWRSAQNDQ24ubnBy8sL5ubmMj1HfX09nj592mSBTmlpKZ4+fQqxWIwHDx4gJiYGhoaGmD9/PpydnbkeSsmH3blz53D//n2MGDECgYGBXDvIycnBX3/9BS8vL254vfFrp6amSg2xS36vmzdv4uzZs6irq8Pw4cMxbty4dqfrKyoqQmlpaavbOXWWpqYmBg8e3OOCzp7c7gH5vufU1dXh9OnTuHPnDvz8/ODv799qQFdVVYWTJ0/i/v37GDt2LPz9/aGkpISSkhKEhYUhPT0dVlZWcHZ2RmRkJNdmLCws2l33VVVVePDgAXJycpCXl8ft0CKZ92llZSX3hUc9+f2+sZ71F0vapbq6GkKhEBoaGhg0aBAcHR1hbW3d496oCVEUDMPAxsYGRkZGcHBwQEpKCm7duoVbt27B2toaXl5ecHV1hVgsbnbVd1lZGcrLy7mV3yoqKlwQ6eLiwgWVhoaGiIyMxJ9//ons7GwsWLCgSfC3YsUK3Lp1C6GhocjMzMSsWbPg4OAAOzs7TJs2DWfPnoWZmZnUF9+GhgbU1NRAVVW1yQfvpEmTMGTIEBw7dgx3795FSUkJXF1dMXr06Capa1tib28vtVijq4lEItTU1KChoYHex3oRVVVVzJ07F6amprh06RKKi4sxe/bsFoNDHR0dLF++HNevX8fly5fx4MEDzJs3D8bGxliyZAlycnIQGhqKy5cvw8rKCo8fP0ZwcDBmzpwJOzu7dpVNR0eH27mivr6eW3SUk5ODO3fuQEVFBdbW1nB0dGwzS1hfRz2cXUyRejhLS0shEAhgZWUll+Gtnvyti3ob+NNb6t7FxQUCgQAlJSW4ffs2bt26hezsbNTX18PIyAiWlpbQ1NSUWvnduJfSyMhIauX381iWxbFjx7B//34MHDgQ7777LkxNTZtcV1ZWhtOnTyM7OxteXl6YNGkS1NTUcO7cOcTHx3PpLwHZ6l4gEODixYtITk6GsrIy9PT0MGjQIIwcObLVhR3dgdo9f7qr7tPS0nDixAkYGRlhyZIlbWbDevDgAY4dO4aGhgbMnTsXTk5OAP6XcvLSpUsoLCxEdnY29PX1MW3aNAwaNKjT5WRZFmVlZcjOzsaDBw+goqKCmTNndvp5m9OT231jFHB2MUUKOOWtJ/8RUN3zp6fUPcuyqKmpQXl5OcrLy/H06VOUl5ejtLQUxcXFMDAw4HrZtLS0YGRkBBUVFRQVFSE/Px9KSkpwdXWFj48PXFxcOvSlr6GhAX/99RdOnTqFoUOH4s0332w2KxLLsoiLi0NoaCh0dHQwa9Ys2NjYYN++fSguLubSX8pa92KxGNHR0YiJiYGKigqUlJTAsiw8PDwwYsQI3toctXv+dGfdFxYW4uDBg6ivr8eiRYtgY2PT6vUCgQCnTp1CRkYGxowZgwkTJnB/b/X19bh+/ToOHz6Mhw8fQk1NDVOnTsXYsWO7dB4my7Jym9fZk9t9YzQmQQjps1iWhUAg4ILJ5x8ikYi7VltbG3p6ejAwMICZmRm8vb1hbm4OQ0PDJpmA6urqkJKSgri4OBw5cgR6enoYMWIEhg8f3q5eQmVlZSxfvhw1NTW4ePEifvnlF7z++utN9gtkGAZeXl5wdHREcHAw9uzZg5EjR2LWrFnYu3cvDh48iLVr18r8ukpKShg9ejTMzc0RFhYGZWVlWFhY4Pbt20hJSYG3tzeGDBnSbfmqSd9iZmaG9evX4/Dhw9izZw9mzpyJoUOHtni9trY2li5disjISFy6dAm5ubmYN28e9PX1oaKigtGjR4NhGKSmpuLKlSvYu3cv0tLSsGrVqi4L4BQ1yYkioYCTENKricViVFZWcr2UFRUVUj2WkhXbDMNAR0cH+vr6MDU1xYABA2BgYAB9fX3o6elxvVKS3gZXV9cWP6xUVVXh4eEBDw8PPH78GHFxcbh+/TrCw8Ph4uICT09P2Nvby/QhpaqqijVr1qCmpgbXrl3Djh078NJLL0FbW7vJtUZGRli9ejViYmLwzz//cD0+oaGhCA4OxowZM9pVd/b29li8eDEuXLjADdlXVFTg2rVrSExMhI+PD5ycnOjDlnQ5bW1trFy5EufOncPJkydRVFSEiRMntjhSwDAMfH19YWtri2PHjuG3337DnDlzMHDgQACAhoYGxo4dixEjRiA4OBiXL19GWloa1q9f3yVD7KRtFHASQnoVyYpSSS9lRUUFxGIxgGcfSnp6etDX14e1tTVcXV2hr6/PBZXyWIhiYWGBGTNmYNKkSUhKSkJsbCz++usv9OvXD56envDw8GgxV7qEpqYm1q9fj9raWty4cQPq6upYv359s3sDMgyDkSNHwsnJCcHBwTh37hwsLCyQlJTEZQxqDz09PcybNw/Xr19HdHQ0XFxcMH/+fMTGxiIkJARmZmbw9fVt94p2QtoimRdpamqK0NBQFBcXc/tvtsTGxgYvvvgiTp06hQMHDsDHxwdjxozhzhsYGGDVqlXw8vLCzp078Z///AcTJkzAtGnTuJSYRD5oDmcXozmcPQPVPX/kXfexsbG4d+8eF0jq6+tzPZW6urqdXkDX2bpnWRa5ubmIjY3F3bt3wTAMhgwZAi8vL1haWrbaW/jkyRN8//33SE1NxZQpU7B69epWt2SRzMW8dOkSioqKAAC+vr5wdXXtUN2npaXhypUr0NPTw9SpUyEQCBAZGYmioiLY29vDx8en2TmmXYXaPX/4rvvMzEwcPXoU+vr6WLJkCQwNDVu9nmVZREVFISwsDCYmJhgwYADMzc2l6l4gEGDPnj24ffs2rKysMGbMGIwcObLZzHx84rvuuwoFnF2MAs6egeqeP1T3/1NVVYWEhATcunULT58+hYWFBby8vDBkyJAW6+bRo0fYvn07srOzERQUhGXLlrU5l7KkpAQnT55ESEgIhEIh3nzzTW7lens9efIEFy5cQFVVFSZOnAgnJydkZGQgMjISVVVVcHV1bXMfxY6ids8fRaj74uJiHDx4ELW1tVi4cKFMWxzl5+fj4MGDyM7OxuTJk5vsEVtfX49//vkH165dg5KSEiwtLTF8+HAMGzZMYf6dFKHuuwLlHmtk27Zt8PLy4vKIz549G+np6XwXixDSS+no6GDs2LF4/fXXsXTpUujo6ODMmTP49ttvceHCBRQXFze5x9LSEhs3boSVlRXOnz+P48ePc1MGWmJsbIx169Zh48aNKC8vx1dffYWcnJwOlblfv37ch31ISAgiIiLg6OiI5cuXw9fXF0pKSjSnk8iFiYkJ1q9fDzMzM/z111+4detWm/dYWVlh/fr1sLCw4NprfX09d15FRQWTJ0/GnDlzYGRkBKFQiNjYWOzbtw/Jyclt/m0R2VHA2Uh4eDheeeUVrhu+rq4OgYGBEAgEfBeNENKLKSkpYeDAgVi2bBlef/11eHp6Ijk5GT///DP27NmDlJQUqXSUDg4OeOGFF2BiYoIzZ87gzJkzaGuwSklJCX5+fnjjjTcAAF9//TWuX78u9eErKzU1NUyePBl+fn5ITk7GiRMnUFNTg2HDhsHPz6/dz0eIrDQ1NbF8+XJ4enrizJkzuHDhQptBoYaGBgICAjB27FjcuXMHx48fR3l5OXeeYRh4enpi5syZUFdXh66uLkxMTHDlyhUcPHgQOTk5bf59kbZRwNlISEgIVq9eDVdXVwwdOhR79uxBbm6uTN+iCCGkKxgaGiIgIABvvfUW5s2bB5ZlcfToUXz33Xe4fPky90Hp6uqKlStXQltbG6dOnUJoaKhMH4o2NjZ45513oK+vj+DgYBw+fBiFhYXtLifDMHB3d8e8efMgEAhw6NAh5Obmtvt5CGkvZWVlTJs2DdOnT0dsbCz279/fJF3r8xiGgZubG+bPnw+hUIhDhw4hMzNT6hpHR0fMmzcPYrEYT548wcSJE6GpqYkzZ87g1KlT3Dxo0jEUcLZC8sYuz0nwhBDSHBUVFbi5uWHNmjV4+eWXMXjwYERHR+P777/HwYMHkZGRAU9PTyxZsgQqKio4fvw4IiIiZHpua2trLF26FMbGxigqKsLRo0dx8+bNDvV2mpubY9GiRTA1NcXp06cRHR1NvUGkW3h5eWHFihV49OgR/vjjD5SUlLR5j5mZGRYtWgRbW1tcuHABV69elWr3pqamWLBgAbS0tBAeHg53d3dMnz4dAoEAR44cQVhYGCorK+X5a/VaFHC2QCwW480334Svry+GDBnS4nVCoRAVFRXco6qqqhtLSQjpC0xNTTFt2jS88847CAoKQnl5Ofbv348ffvgBSkpKmDp1Kurr63HkyBFERUXJ9JxDhgzByJEjoaKiAkdHR8THx+Pw4cMd6sXR1NTEzJkz4e3tjSdPnrT7fkI6yt7eHuvXr4eSkhL++OMPZGVltXmPuro6pkyZAn9/f6SmpuLo0aMoKyvjzuvo6GDu3Lmws7PDhQsXUFpaiiVLlsDPzw8PHjzAvn37EBkZCaFQKM9frdehgLMFr7zyCpKTk3Ho0KFWr9u2bZvU9is0f4kQIi9qamoYMWIENm7ciBdeeAG2trYIDw9HcnIyDA0NUVhYiAMHDiAhIUGm5xs7diysrKzw8OFDTJs2DUpKSlzQ2njOqCwYhoG3tzemTp1Ki4ZItzIyMsK6detgY2ODv//+W6ZedskQ+4IFC1BfX4/Dhw9LLRJWVVXFlClT4OXlhZs3b+Ly5csYNGgQVq5cieHDh+P27dv466+/kJSU1O6/lb6KAs5mvPrqqzh79iyuXLkCa2vrVq/94IMPpFLhhYeHd1MpCSF9FcMwsLa2xpw5c/D2228jICAANjY2aGhoQHR0NP773/8iMTGxzedRVlbG1KlToaamhps3b2L27Nnw8vLiUnI2t0pelrIR0t00NDSwZMkSjB49GhcuXMDZs2dlCgRNTEywaNEi2NvbIzQ0FJcvX0ZdXR2AZ2151KhRCAwMREZGBk6dOoX6+nqMGjUKK1asgL29PSIiInDgwAFkZWXRVJI2UMDZCMuyePXVV3Hy5ElcvnwZ9vb2bd6jrq4OPT097qFoG8YSQno3LS0t+Pj44I033sCXX34Jd3d3JCcn44033sCOHTtQUFDQ6v2ampqYPn06KioqcOXKFXh7e2PhwoVgWRaHDx9GTEwM9eCQHkFJSQmBgYGYNWsWEhMT8ddff6G6urrN+9TU1BAYGIgJEyYgLS0NR48eRWlpKXfe2dkZc+fORXl5OY4cOYInT55AR0cHAQEBWLx4MfT09JCUlCTPX61XoICzkVdeeQV///03Dhw4AF1dXRQUFKCgoKDN1W+EEMI3hmEwaNAgbN++HUuXLoW6ujqOHj2Kr776Crt27UJSUlKLi4KMjY0xadIkZGVlITY2Fqampli0aBFGjBiBmJgYHD16lOZmkh5j2LBhWLVqFUpKSrBjxw6Z5iUzDANXV1csWrSI+7KVlpbGnTc3N8fChQuhrq6OY8eOcfvYGhsbY9asWZg+fTr17reBAs5Gfv31V5SXl8Pf3x8WFhbc4/Dhw3wXjRBCZKKlpYWNGzdi0qRJsLCwQH19PQQCAU6cOIHt27cjOjpaag9CCUdHR4waNQrR0dHIysqCsrIyRo8ejQULFqChoQGHDh1CXFwcbYRNegRbW1usX78eGhoa2L17Nx48eCDTff369cOCBQswYMAAhIWF4Z9//oFIJAIA6OrqYt68ebCyssLZs2eRmJjIDaMrSlYiRUYBZyMsyzb7WL16Nd9FI4QQmenr62P16tVwdnZGRUUFBAIBli5dCnd3d6Snp2P//v0IDg5GVlaWVADp6ekJJycnhIWFcVvMSLaRGTZsGKKiopoMNxKiqAwMDLB27Vo4ODggLCwM8fHxMs2zVFNTQ0BAAAICApCRkSHVw6+mpoZp06Zh2LBhuHbtGq5cuUJTTmREASchhPRCJiYmWLlyJezt7XHv3j2cPn0aXl5eWLp0KSZMmAChUIjz589j7969iImJQVVVFRiGwcSJE6Gvr4+zZ89y04lUVFTg4+OD+fPno66uDgcPHsStW7eot5MoPDU1NcyfPx8eHh5cFkFZ95sdNGgQFi1aBAA4cuQIUlNTwbIslJSU4Ovri4CAANy9exenT59GbW2tPH+NXoECTkII6aVsbGywfPlyWFpaIi0tDX///TeEQiFcXFywcOFCbgPsW7duYc+ePTh//jwKCwsxffp01NfX48KFC1K9N+bm5li8eDE8PDxw8+ZNHD9+nHo7icKTpK4MCAhAZmYmTp48KXPKaiMjIyxcuBADBw7EpUuXEBYWxg2xDxo0CLNnz0ZJSQmCg4NplXobKOAkhJBezMnJCYsXL4axsTHu3r2LCxcucL0xpqammDhxItauXYuxY8eirKwMp06dwunTp2FnZ4e8vDxcu3ZN6vlUVFTg6+uLefPmoba2FocOHUJ8fDz1dhKFN3DgQMybNw+VlZU4cuSIzEkOVFVVMXHiRAQGBuL+/fs4fPgwN+XEysoKCxcuhI+PDy0aagMFnIQQ0su5ublhzpw50NPTw/3793H27FmulwZ4tr3b0KFDsXTpUsyZMwfGxsZIT0/H06dPERwcjKtXrzZ5TgsLCyxevBhubm6IjIzE8ePHpbK1EKKIzMzMsHDhQmhpaeH48ePIyMiQ+V5nZ2csWrQIKioqOHLkCJKTk8GyLPT19WFjYyPHUvcOFHASQkgfMHLkSAQGBkJdXR0ZGRk4d+5ck7lskg3lp0yZgtWrV2P69OnQ1tbGrl278NtvvyElJYXbFBt41vMzduxYzJ07FzU1NTh06JDUyl1CFJEkdaW9vT1CQkJkykwkYWhoiAULFmDw4MG4cuUKLl68KPXljbSMAk5CCOkj/P39MXz4cCgrKyM1NRUhISEtrrDV1taGp6cntmzZgrFjxyI9PR0hISHYvXs3IiIipOZuWlpaYvHixRg8eDC3PyEhikxVVRWTJ0/GqFGjEBMTgwsXLsgcOKqoqMDf3x9TpkzBgwcPcOjQIZmH5/syCjgJIaSPYBgGvr6+cHd3B8MwSE5Oxj///NNq746qqipWrFgBDw8PGBgYwNnZGffu3cP+/ftx8uRJZGRkoKGhAWpqavDz88PMmTNpLhvpERiGgZeXF6ZNm4bc3FycOHEClZWVMt8/YMAALFq0CGpqarh8+TL17LeBAk5CCOlDlJSUEBAQABcXF4jFYty+fRtXr15t9cNSU1MTQUFBqKurg0AgwKpVqxAYGIiGhgaEhIRgz549uHnzJiorK6GkRB8rpGdxdHTkFsEdOXKkzXSwjRkYGGD+/PmUaUgG9M5ACCF9jIqKCoKCguDg4ID6+nrExcXh5s2brd7Tr18/bpVufHw8nJ2dMX/+fCxZsgSOjo5ISkrC3r17ceHCBerpIT2OiYkJFi5cCH19fZw4cUIqrWVbVFRUoKurK8fS9Q4UcBJCSB+kpqaGGTNmwNraGvX19bh58ybi4uJavcfBwYGb85aZmQngWS5pf39/rFmzBn5+fjAyMqKeHtIjaWlpYfbs2Rg4cCDCwsIQGRlJ2311IQo4CSGkj9LW1sasWbNgamoKkUiE69evIykpqdV7RowYweWZLi4u5o6rqanBzc0NI0eOlHexCZEbFRUVTJw4EWPGjEF8fDzOnz9Pq9C7CAWchBDSh+nr62PWrFkwMjJCbW0trly50upwoiT9paGhIc6dO4fq6upuLC0h8scwDIYNG4agoCDk5+fj6NGjKC8v57tYPR4FnIQQ0scZGxsjKCgIenp6qK2tRVhYGLKyslq8XlVVtcX0l4T0FnZ2dliwYAEaGhpw5MgRPHz4kO8i9WgUcBJCCIGVlRWmTJkCLS0t1NTU4MKFC8jLy2vxel1dXUybNg0FBQWIiIjoxpIS0n2MjIywYMECGBsb49SpU0hOTua7SD0WBZyEEEIAPFsUFBAQAHV1dQiFQpw7dw6PHz9u8XpLS0uMHz8eycnJbc79JKSn0tTUxMyZMzFkyBBcuXIF4eHhtJioAyjgJIQQwhk0aBDGjBkDZWVlVFdX48yZMygpKWnx+sGDB8Pd3R0RERGt9ogS0pMpKyvD398ffn5+uHPnDk6fPo3a2lq+i9WjUMBJCCFEyogRI+Dp6QmGYVBdXY3g4GCUlZW1eP3YsWNhbW2NkJAQWlxBejV3d3fMmjULRUVFOHr0aKt/F0QaBZyEEEKa8PX1hZubG1iWhUAgQHBwcItp/5SUlDBlyhSoq6vj3LlzNNxIejUbGxssXLgQDMPg6NGjyM3N5btIPQIFnIQQQppgGAYTJkyAk5MTWJZFRUUFTp061eI2SBoaGggKCsKoUaMovSXp9QwMDLBgwQKYmZnh9OnTuH37NmXYagO9KxBCCGmWpOfSysoKAPD06VMEBwdDKBQ2e72RkREcHBy6s4iE8EZdXR0zZszA0KFDacskGVDASQghpEWqqqoICgqCsbExGIZBSUkJTp8+TdlXCMGzL2Vjx47F1KlTKaVrGyjgJIQQ0ioNDQ3MnDkTOjo6UFZWRkFBAc6fP4/6+nq+i0aIQqBpJG2jGiKEENImHR0dzJo1C2pqalBVVUVeXh5CQ0NpgRAhRCYUcBJCCJGJoaEhZs6cCYZhoKGhgczMTFy+fJkWSxBC2kQBJyGEEJmZmppi2rRpEIlE0NHRwd27dxEREUFBJyGkVRRwEkIIaRcbGxtMnjwZ1dXV0NPTw+3btxEdHc13sQghCowCTkIIIe3m5OQEf39/VFRUwMjICLGxsYiPj+e7WIQQBaXCdwEIIYT0TEOGDEFNTQ2ioqLQr18/3LhxA2pqahgyZAjfRSOEKBjq4SSEENJhnp6ecHd3x5MnT2BsbIzU1FRauU4IaYICzudERERgxowZsLS0BMMwOHXqFN9FIoQQhcUwDMaNG4eBAweitLQUI0aMoD0JCSFN0LvCcwQCAYYOHYqff/6Z76IQQkiPwDAMAgICYG1tjZs3b1IPJyGkCZrD+ZypU6di6tSpfBeDEEJ6FGVlZUydOhVCoZB6OAkhTVDA2UlCoRBCoZD7uaqqisfSEEIIf9TU1KCmpsZ3MQghCoi+hnbStm3boK+vzz38/Pz4LhIhhBBCiEKhgLOTPvjgA5SXl3OP8PBwvotECCGEEKJQaEi9k9TV1aGurs79rKOjw2NpCCGEEEIUD/VwEkIIIYQQuaIezudUVVUhMzOT+zk7OxuJiYkwMjKCra0tjyUjhBBCCOmZKOB8TlxcHMaPH8/9/PbbbwMAVq1ahT179vBUKkIIIYSQnosCzuf4+/uDZVm+i9FlioqKUFxcLJfnrqurQ01NDViW7XFboYhEIqSnp0NTUxOqqqpyeQ0TExOYmprK5blJ66jdN4/afe9G7b551O4VA8P2puhKATx+/Bi///47Nm7cCAsLC17LIhQKMXnyZFo5zxM/Pz9cvHhRalEZkT9q9/yids8Pavf8onbfNgo4e7GKigro6+sjPDycVs93s6qqKvj5+aG8vBx6enp8F6dPoXbPH2r3/KF2zx9q97KhIfU+wMPDg/4IullFRQXfRejzqN13P2r3/KN23/2o3cuGtkUihBBCCCFyRQEnIYQQQgiRKwo4ezF1dXVs2bKFJjHzgOqeP1T3/KG65w/VPX+o7mVDi4YIIYQQQohcUQ8nIYQQQgiRKwo4CSGEEEKIXFHASQghhBBC5IoCTiKTnJwcMAxD+eRJn0LtnvRF1O6JPFDAKQdZWVnYuHEjHBwcoKGhAT09Pfj6+mL79u2oqamR2+umpqZi69atyMnJkdtryOKLL77AzJkzYWZmBoZhsHXrVl7L0xKGYWR6XL16tdOvVV1dja1bt7bruXpKPUr05XaflpaG9957Dx4eHtDV1YWFhQWmT5+OuLg43srUEkVu9z2pHiX6crt/9OgRli9fDmdnZ+jq6sLAwADe3t7Yu3cvFG09siK3+55Uj51BmYa62Llz57BgwQKoq6tj5cqVGDJkCEQiEa5fv45//etfSElJwY4dO+Ty2qmpqfjkk0/g7+8POzs7ubyGLD7++GOYm5tj2LBhuHjxIm/laMu+ffukfv7rr78QFhbW5PigQYM6/VrV1dX45JNPAAD+/v4y3dNT6hGgdv/HH39g165dmDdvHl5++WWUl5fj999/x6hRoxASEoKAgABeytUcRW73PakeAWr3JSUlePjwIebPnw9bW1vU1dUhLCwMq1evRnp6Or788kteytUcRW73PakeO4UlXeb+/fusjo4O6+Liwj569KjJ+YyMDPb777+X2+sfPXqUBcBeuXKlzWvFYjFbXV0t83NnZ2ezANjdu3fLdC3LsmxxcTELgN2yZYvMr8OnV155hZXXn0RH6qKn1CO1e5aNi4tjKysrpY6VlJSwJiYmrK+vr8yvxwdFavc9qR6p3bcsKCiI1dbWZuvr6zt0f3dQpHbfkp5Qj+1BAWcXevHFF1kA7I0bN2S6vq6ujv30009ZBwcHVk1Nje3fvz/7wQcfsLW1tVLX9e/fn50+fTp77do11svLi1VXV2ft7e3ZvXv3ctfs3r2bBdDkIXkzkjxHSEgIO2LECFZdXZ397rvvWJZl2aysLHb+/PmsoaEhq6mpyY4cOZI9e/asVBk68gak6IHS85p7A2poaGC/++47dvDgway6ujpramrKbtiwgS0tLZW6LjY2lg0MDGT79evHamhosHZ2duyaNWtYlv1f3T3/kLVeFL0eqd23bO7cuayRkVGH7u0uitruG1PEeqR237JXX32VZRimXUFud+sJ7b4n1GN7UMDZhaysrFgHBweZr1+1ahULgJ0/fz77888/sytXrmQBsLNnz5a6rn///qyzszNrZmbGfvjhh+xPP/3EDh8+nGUYhk1OTmZZ9tmbyOuvv84CYD/88EN237597L59+9iCggLuOZycnFhDQ0N206ZN7G+//cZeuXKFLSgoYM3MzFhdXV32o48+Yr/99lt26NChrJKSEnvixAmuDH014HzhhRdYFRUVdv369exvv/3Gvv/++6y2tjbr5eXFikQilmVZtrCwkDU0NGQHDhzIfv311+zOnTvZjz76iB00aBDLsixbVVXF/vrrrywAds6cOdy/ze3bt2Uql6LXI7X7lvn4+LADBw7s0L3dRVHbfWOKWI/U7v+nurqaLS4uZrOzs9k9e/aw2trarI+Pj8x1wwdFbPc9sR7bgwLOLlJeXs4CYGfNmiXT9YmJiSwA9oUXXpA6/u6777IA2MuXL3PH+vfvzwJgIyIiuGNFRUWsuro6+84773DHWhtikTxHSEiI1PE333yTBcBeu3aNO1ZZWcna29uzdnZ2bENDA8uyfTPgvHbtGguA3b9/v9R1ISEhUsdPnjzJAmBjY2NbfO7O1IUi1yO1+5ZFRESwDMOwmzdvbve93UlR272EItYjtXtp27Ztk+rNmzhxIpubmyvTvXxRxHbfE+uxPWiVehepqKgAAOjq6sp0/fnz5wEAb7/9ttTxd955B8CzyeiNDR48GGPHjuV+NjExgbOzM+7fvy9zGe3t7TF58uQm5fD29saYMWO4Yzo6OtiwYQNycnKQmpoq8/P3NkePHoW+vj4mTZqEkpIS7jFixAjo6OjgypUrAAADAwMAwNmzZ1FXV8djibsftfvmFRUVYenSpbC3t8d7773XqefqborU7hW1HqndS1uyZAnCwsJw4MABLF26FADkukJfHhSh3feGemwNBZxdRE9PDwBQWVkp0/UPHjyAkpISnJycpI6bm5vDwMAADx48kDpua2vb5DkMDQ1RVlYmcxnt7e2bLYezs3OT45KVes+Xoy/JyMhAeXk5TE1NYWJiIvWoqqpCUVERAMDPzw/z5s3DJ598AmNjY8yaNQu7d++GUCjk+TeQP2r3TQkEAgQFBaGyshLBwcHQ0dHp8HPxQVHavSLXI7V7af3790dAQACWLFmC/fv3w8HBAQEBAT0qWFKEdt8b6rE1tC1SF9HT04OlpSWSk5PbdR/DMDJdp6ys3Oxxth17dGlqasp8LQHEYjFMTU2xf//+Zs+bmJgAePZveOzYMURFReHMmTO4ePEi1q5di//+97+IiopSqA/KrkbtXppIJMLcuXORlJSEixcvYsiQId322l1FEdq9otcjtfvWzZ8/Hzt37kRERESTXlZFpQjt/nk9sR5bQwFnFwoKCsKOHTtw8+ZNjB49utVr+/fvD7FYjIyMDKl9vwoLC/H06VP079+/3a8v65vZ8+VIT09vcjwtLY0731c5Ojrin3/+ga+vr0xv3qNGjcKoUaPwxRdf4MCBA1i2bBkOHTqEF154oUP/Nj0FtftnxGIxVq5ciUuXLuHIkSPw8/Nr93MoAr7bfU+pR2r3LZP0yJWXl3fJ83UHvtt9c3piPbaGhtS70HvvvQdtbW288MILKCwsbHI+KysL27dvBwBMmzYNAPD9999LXfPtt98CAKZPn97u19fW1gYAPH36VOZ7pk2bhpiYGNy8eZM7JhAIsGPHDtjZ2WHw4MHtLkdvsXDhQjQ0NOCzzz5rcq6+vp6r57KysiY9Dx4eHgDADbNoaWkBaN+/TU9B7f6Z1157DYcPH8Yvv/yCuXPntvt+RcF3u+8p9UjtHiguLm72+K5du8AwDIYPH96u5+MTn+2+N9Vja6iHsws5OjriwIEDWLRoEQYNGiSVeSIyMhJHjx7F6tWrAQBDhw7FqlWrsGPHDjx9+hR+fn6IiYnB3r17MXv2bIwfP77dr+/h4QFlZWV89dVXKC8vh7q6OiZMmABTU9MW79m0aRMOHjyIqVOn4vXXX4eRkRH27t2L7OxsHD9+HEpK7f9Osm/fPjx48ADV1dUAgIiICHz++ecAgBUrVvSYXlM/Pz9s3LgR27ZtQ2JiIgIDA6GqqoqMjAwcPXoU27dvx/z587F371788ssvmDNnDhwdHVFZWYmdO3dCT0+P+6DR1NTE4MGDcfjwYQwcOBBGRkYYMmRIq0OFPaUeqd0/CyR++eUXjB49GlpaWvj777+lzs+ZM4cLEBQdn+2+J9Ujtftn6Xdv3LiBKVOmwNbWFqWlpTh+/DhiY2Px2muvNZmzqsj4bPe9qR5bxecS+d7q3r177Pr161k7OztWTU2N1dXVZX19fdkff/xRapPfuro69pNPPmHt7e1ZVVVV1sbGptWNgJ/n5+fH+vn5SR3buXMn6+DgwCorKze7EXBzJBsBGxgYsBoaGqy3t3enNgL28/NrduNbtLCFh6JoKfPEjh072BEjRrCampqsrq4u6+bmxr733ntcdpH4+Hh2yZIlrK2tLbdZcFBQEBsXFyf1PJGRkeyIESNYNTU1mbbM6Gn12JfbvWSPxZYekqxRikiR2n1PrMe+3O5DQ0PZoKAg1tLSklVVVeV+9927d7NisbjVe/mmSO2+J9djezAs24sywxNCCCGEEIVDczgJIYQQQohcUcBJCCGEEELkigJOQgghhBAiVxRwEkIIIYQQuaKAkxBCCCGEyBUFnDz4z3/+AxcXF4jFYr6L0mmbNm3CyJEj+S6GzKju+UN1zx+qe/5Q3fOH6l7B8L0vU19TXl7OGhkZsX/++Sd3DP9/j7lvvvmmyfW7d+9mAbCxsbGdfu3jx4+zCxcuZO3t7VlNTU124MCB7Ntvv82WlZU1e31wcDA7bNgwVl1dnbWxsWH//e9/s3V1dVLXPH78mFVXV2eDg4M7XT55o7rnD9U9f6ju+UN1zx+qe8VDAWc3++6771g9PT22pqaGOyb5IzAzM2MFAoHU9V35R9CvXz/Wzc2N3bx5M7tz50729ddfZ9XU1FgXFxe2urpa6trz58+zDMOw48ePZ3fs2MG+9tprrJKSEvviiy82ed6FCxeyY8eO7XT55I3qnj9U9/yhuucP1T1/qO4VDwWc3czd3Z1dvny51DEArIeHBwuA/e9//yt1riv/CJrLTrN3714WALtz506p44MHD2aHDh0q9S3ro48+YhmGYe/evSt17bFjx1iGYdisrKxOl1GeqO75Q3XPH6p7/lDd84fqXvHQHM5ulJ2djaSkJAQEBDQ55+vriwkTJuA///kPampq5PL6/v7+TY7NmTMHAHD37l3uWGpqKlJTU7FhwwaoqKhwx19++WWwLItjx45JPYfk9wkODpZDqbsG1T1/qO75Q3XPH6p7/lDdKyYKOLtRZGQkAGD48OHNnt+6dSsKCwvx66+/tvo8QqEQJSUlMj3aUlBQAAAwNjbmjiUkJAAAPD09pa61tLSEtbU1d15CX18fjo6OuHHjRpuvxxeqe/5Q3fOH6p4/VPf8obpXTCptX0K6SlpaGgDA3t6+2fNjx47F+PHj8fXXX+Oll16CpqZms9cdPHgQa9askek1WZZt9fxXX30FZWVlzJ8/nzv2+PFjAICFhUWT6y0sLPDo0aMmxx0cHJCamipTmfhAdc8fqnv+UN3zh+qeP1T3iokCzm705MkTqKioQEdHp8Vrtm7dCj8/P/z222946623mr1m8uTJCAsL63R5Dhw4gF27duG9997DgAEDuOOSYQZ1dfUm92hoaKCioqLJcUNDwybfxhQJ1T1/qO75Q3XPH6p7/lDdKyYKOBXMuHHjMH78ePznP//Biy++2Ow1FhYWzX4jao9r165h3bp1mDx5Mr744gupc5Jve0KhsMl9tbW1zX4bZFkWDMN0qkx8o7rnD9U9f6ju+UN1zx+q++5HAWc36tevH+rr61FZWQldXd0Wr9uyZQv8/f3x+++/w8DAoMn5mpoalJeXy/Sa5ubmTY7dvn0bM2fOxJAhQ3Ds2DGpycrA/7r3Hz9+DBsbG6lzjx8/hre3d5PnLCsrk5qbomio7vlDdc8fqnv+UN3zh+peMdGioW7k4uIC4NkKutb4+fnB398fX331VbOr6A4fPsx982rr8bysrCxMmTIFpqamOH/+fLNDDh4eHgCAuLg4qeOPHj3Cw4cPufONZWdnY9CgQa3+XnyiuucP1T1/qO75Q3XPH6p7xUQ9nN1o9OjRAJ41Lnd391av3bp1K/z9/bFjx44m5zo6r6SgoACBgYFQUlLCxYsXYWJi0ux1rq6ucHFxwY4dO7Bx40YoKysDAH799VcwDCM16RkAysvLkZWVhZdeeqndZeouVPf8obrnD9U9f6ju+UN1r6C6e+PPvm7IkCHskiVLpI4BYF955ZUm1/r5+XGZEbpiM9qhQ4eyANj33nuP3bdvn9QjNDRU6tozZ86wDMOwEyZMYHfs2MG+/vrrrJKSErt+/fomz3vs2DEWAJuZmdnpMsoT1T1/qO75Q3XPH6p7/lDdKx4KOLvZt99+y+ro6Eilt2rpj+DKlStd+kcgea7mHn5+fk2uP3nyJOvh4cGqq6uz1tbW7Mcff8yKRKIm1y1atIgdM2ZMp8snb1T3/KG65w/VPX+o7vlDda94KODsZk+fPmWNjIzYP/74g++idInHjx+zGhoa7KlTp/guSpuo7vlDdc8fqnv+UN3zh+pe8VDAyYP/+7//Y52dndmGhga+i9Jp77//Puvl5cV3MWRGdc8fqnv+UN3zh+qeP1T3ioVh2Ta2xyeEEEIIIaQTaFskQgghhBAiVxRwEkIIIYQQuaKAkxBCCCGEyBUFnIQQQgghRK4o4CSEEEIIIXJFASchhBBCCJErCjgJIYQQQohcUcBJCCGEEELkigJOQgghhBAiVxRwNrJt2zZ4eXlBV1cXpqammD17NtLT0/kuFiGEEEJIj0YBZyPh4eF45ZVXEBUVhbCwMNTV1SEwMBACgYDvohFCCCGE9FiUS70VxcXFMDU1RXh4OMaNG8d3cQghhBBCeiQVvgugyMrLywEARkZGLV4jFAohFAqljqmrq0NdXV2uZSOEEEII6SloSL0FYrEYb775Jnx9fTFkyJAWr9u2bRv09fWlHpMnT8bjx4+7sbSEEEIIIYqLhtRb8NJLL+HChQu4fv06rK2tW7zu+R7OxMRE+Pn54datWxg+fHh3FJUQQgghRKHRkHozXn31VZw9exYRERGtBptA0+FzHR0deRePEEIIIaRHoYCzEZZl8dprr+HkyZO4evUq7O3t+S4SIYQQQkiPRwFnI6+88goOHDiA4OBg6OrqoqCgAACgr68PTU1NnktHCCGEENIz0aKhRn799VeUl5fD398fFhYW3OPw4cN8F40QQgghpMeiHs5GaP0U6SoikQhxcXHw9PSEmpoa38UhhBBCeEU9nITIQVRUFHbv3o3o6Gi+i0IIIYTwjgJOQrqYUCjExYsXkZ2djZCQkCaJAQghhJC+hgJOQrpYdHQ07t27B3d3d9y7dw8xMTF8F4kQQgjhFQWchHQhSe+mmpoa9PT0oKamRr2chBBC+jwKOAnpQgkJCcjKyoJAIEBKSgoEAgGysrKQkJDAd9EIIYQQ3tAqdUK6kI2NDZYtW9bscUIIIaSvooCTkC5kZWUFKysrvotBCCGEKBQaUieEEEIIIXJFASchhBBCCJErCjgJIYQQQohcUcBJCCGEENJBIpEIkZGREIlEfBdFoVHASQghhBDSQZTKWDYUcBJCCCGEdAClMpYdBZyEyAENsRBCSO9HqYxlRwEnIXJAQyyEENK7USrj9qGAk5AuRkMshBDS+1Eq4/ahTEOEdLHmhljGjh3Ld7EIIYR0obZSGYtEIsTFxcHT0xNqamrdXTyFQwEnIV2opSEWb29vqKur8108QgghXaStVMZRUVHYt28fGhoaqNMBNKROSJeiIRZCCCE0taop6uEkpAu1NcRCCCGk96OpVU1RwElIF2priIUQQkjv8vxcTZpa1TwaUieEEEII6aDnt8GjqVXNox5OQgghhJAOeH6upre3N02tagEFnIQQQgghHdDSXE2aWtUUDakToiAoHSYhhPQclGmofSjgfE5ERARmzJgBS0tLMAyDU6dO8V0k0kdQOkxCCOk5aK5m+9CQ+nMEAgGGDh2KtWvXYu7cuXwXh/RCzWWfaG4eUF9ezUgIIYqO5mq2j0IFnA0NDTh69CiuXLmCoqIifPrpp3Bzc0N5eTkuXboEX19fmJmZybUMU6dOxdSpU+X6GqT3ay2lWXPZJ2jPNkII6Vna2gaPUltKU5gh9adPn8LX1xdLly7FwYMHcfr0aRQXFwMAdHR08Prrr2P79u08l7IpoVCIiooK7lFVVcV3kYgCaGl4vLnsEzQPiBBCeh+aJiVNYQLOTZs2ISUlBRcvXsT9+/fBsix3TllZGfPnz8f58+d5LGHztm3bBn19fe7h5+fHd5EIz1pLadZcTybNAyKEkN6FUls2pTAB56lTp/Daa69h0qRJYBimyfmBAwciJyen+wvWhg8++ADl5eXcIzw8nO8iEZ5Jgko3NzcuqARaXtFoamqKZcuWYd26dVi5ciXWrVuHZcuW0TwgQgjpoZrrXOjrFGYOZ3l5Oezt7Vs8X1dXh/r6+m4skWzU1dWlFnfo6OjwWBrCt8ZBpa6urlRKM0lPZm1tLVJSUlBXV4esrCwUFRVhxowZfBedEEJIB1BqS9koTMDp6OiI+Pj4Fs+HhoZi8ODB3VgiQtqvcVCZnJwMsVjMDY/TikZCCOl9nl8I2lLnQkJCAkaNGsV3cXmjMAHnCy+8gPfffx/+/v6YOHEiAIBhGAiFQnz66acICQnBjh075F6OqqoqZGZmcj9nZ2cjMTERRkZGsLW1lfvrk56tcVBZVVXF9Xjb2Ni0uaKREEJIz0KpLWWnMAHnG2+8gZSUFCxZsgQGBgYAgKVLl+LJkyeor6/Hxo0bsW7dOrmXIy4uDuPHj+d+fvvttwEAq1atwp49e+T++qRnaxxUPnjwAJaWlmBZFnFxcTAxMaGtMQghpBeh1JayU5iAk2EY7Ny5E6tWrcKxY8eQkZEBsVgMR0dHLFy4EOPGjeuWcvj7+0utkCeko8RiMXJycvD48eMm+24SQgjp2WiuZvsoTMApMWbMGIwZM4bvYhDSJVJTUxETE0MZhAghpJehuZrtozABZ3Z2NpKTk1tcrXvmzBm4ubnBzs6uewtGSAd4enoiPz8fYrEYXl5e7cogRNkpCCFE8dFczfZRmIDz3XffRUVFRYsB588//wwDAwMcOnSom0tGSPsVFBSgoKAA6urqePLkCVRUVGQebmku9SUhhBDFQgtB20dhNn6/efMmJk2a1OL5iRMn4tq1a91YIkI6TywWo6amBpcvX8ajR4+QmZnZagYhyk5BCCGkN1KYHs6ysjLo6uq2eF5HRwdPnjzpxhIR0nGShWeqqqrw9fXljuvo6IBlWbAsi7q6uiZD5y2teCSEEEJ6MoUJOG1tbXHjxg289NJLzZ6/du0arK2tu7lUhLRfbm4uKioqAAANDQ2wsbGBkZERd/7OnTt4+PAhqqqqEBERwQ2d04pHQgghvZXCDKkvWbIEBw8exA8//ACxWMwdb2howPbt23H48GEsXbqUxxIS0rqYmBjMmDEDdnZ2qKqqAvBsiPzDDz/Ezz//jJycHO7aoqIiHD16FFFRUfjhhx+QkJCAmzdvIisrCwKBACkpKRAIBNyKx65SWlqKZcuWQU9PDwYGBli3bh1X1rawLIupU6eCYRicOnVK6lxsbCwmTpwIAwMDGBoaYvLkybh9+3aXlZsQQhSVSCTCjRs3IBKJ+C6KQlOYHs4PPvgA169fx5tvvokvvvgCzs7OAID09HQUFxfD398fH330Ec+lJKR5J06cwKJFi7jh8sZYlkVycjKSk5Oxfv16DB8+HNnZ2SgsLISVlRXu37+PAwcOwMTEBC4uLrCxsYGJiQkYhgHQ/hWP/v7+WL16NVavXt3k3LJly/D48WOEhYWhrq4Oa9aswYYNG3DgwIE2n/f777/nytRYVVUVpkyZgpkzZ+KXX35BfX09tmzZgsmTJyMvLw+qqqrtKj8hhPQkUVFR2Lt3L8RiMU2BaoXC9HCqq6sjNDQUu3btgre3N0pKSlBSUgJvb2/8+eef+Oeff2hYkSikmJgYLFq0CA0NDWhoaGj2GrFYDLFYjJ07dyIzMxOpqalQVlaGpqYmlJWVkZKSAm1tbVhaWqKhoQE1NTVwdHTE1KlTu2wV5N27dxESEoI//vgDI0eOxJgxY/Djjz/i0KFDePToUav3JiYm4r///S/+/PPPJufS0tJQWlqKTz/9FM7OznB1dcWWLVtQWFiIBw8edEnZCSFEEdFCT9kpTMAJAEpKSlizZg3OnDmD1NRUpKam4syZM1i9ejWUlBSqqIRwPv/882Z7Nlty8uRJFBcXQyQS4dGjRxCJRCguLkZeXh53TXl5Oa5fv44DBw4gNjYWNTU1nS7nzZs3YWBgAE9PT+5YQEAAlJSUEB0d3eJ91dXVWLp0KX7++WeYm5s3Oe/s7Ix+/fph165dEIlEqKmpwa5duzBo0CDaN5cQ0qtJFnq6urpyCz1J8xRmSJ2Qnig3Nxdnz56VOdgUi8XIzMzEsmXLoK+vL3XO0NCwyfW1tbVISEhAUlISBg4cCHd39yb3yaqgoACmpqZSx1RUVGBkZISCgoIW73vrrbfg4+ODWbNmNXteV1cXV69exezZs/HZZ58BAAYMGICLFy9CRYXeYgghvVPjhZ46Ojq00LMNCvVpcPHiRezatQv3799HWVlZkw9xhmGQlZXFU+lIb1NfX9/iELgsWJbFiRMnZA42GyspKWl2rk9Lz1VfX8/1+tva2sLd3R1mZmZQUVHBl19+iS+//JK7tqamBlFRUXj11Ve5Y6mpqe0uIwCcPn0aly9fbnXhUk1NDdatWwdfX18cPHgQDQ0N+OabbzB9+nTExsZCU1OzQ69NCCGKrHFqy9TUVC5GodSWzVOYgPPrr7/Gpk2bYGZmBm9vb7i5ufFdJNKLSQI4WYeq6+vr8fTpU5SWlqKsrIx7xMXFgWGYdged2dnZqKio6FAPYFpaGtLS0jBs2DCMGTMGL774IhYuXMidX7ZsGebNm4e5c+dyxywtLWFubo6ioqImv1dpaWmzQ+UAcPnyZWRlZcHAwEDq+Lx58zB27FhcvXoVBw4cQE5ODm7evMlNfTlw4AAMDQ0RHByMxYsXt/t3JIQQRdc4tWV5eTk3+kSpLZunMAHn9u3bMWHCBJw/f55WtRK5kyzMUVVVlcpXzrIsqqqq8OTJEzx58gQlJSV48uQJysvLmw0q1dTUOtTDWVNTg7y8PDg6Onao/P369YOqqioaGhpgZGQktc+npqYmTE1N4eTkJHXP6NGj8fTpU9y6dQsjRowA8CygFIvFGDlyZLOvs2nTJrzwwgtSx9zc3PDdd99xaWirq6uhpKQktYJd8nPjLc4IIaQ3aZza8sGDB+jfvz/PJVJsChNwlpWVYf78+RRskm5TX18PgUCA8vJyFBcXo7i4GCUlJTKvMtTR0cHIkSNx9erVdgedBgYGSEtLg52dXbvavIaGBgYPHgx9fX0IBIJ2veagQYMwZcoUrF+/Hr/99hvq6urw6quvYvHixbC0tAQA5OfnY+LEifjrr7/g7e0Nc3PzZns/bW1tYW9vDwCYNGkS/vWvf+GVV17Ba6+9BrFYjP/7v/+DiooKxo8f364ykr5BJBI1ybJFSE9WXV2N+vp6mrfeCoWpGW9vb6Snp/NdDNILsSyLp0+fIj8/Hw8fPuT+W1RUJFOgqKysDCMjI5iYmMDY2Jj7r2RuYnR0NJcxSBZ6enoAns3jfPjwIRe4tcXa2hrOzs5QUVGR2mC4PR/e+/fvx6uvvoqJEydCSUkJ8+bNww8//MCdr6urQ3p6Oqqrq2UqEwC4uLjgzJkz+OSTTzB69GgoKSlh2LBhCAkJgYWFhczPQ/qOqKgo7Nu3j8uyRUhPJ/mcMTY25rsoCkthAs5ffvkFU6dOhaenJ2UUIh1WV1eHx48fSwWX+fn5MvcGamtrSwWVJiYmMDAwgLKycov3vPzyy7h27ZpMczkZhsGECRNgYmICoPmV6Y2pqanB1NQUtra20NXVbfaa5z+8r1692uLzGRkZtbrJu52dXZu/Q3PnJ02ahEmTJrV6HyFA030LaUUv6S2ePHlCAWcrFCbgXLRoEerr67FixQq89NJLsLa2bvIhzzAMpcsjAJ4FPeXl5U0Cy8LCQpnmDSorK0NfXx8mJiYwMzODsbExjI2NoaWl1e6yuLu747vvvsNbb70FlmWb7emULKZZs2YNhg4d2uJzqaqqwtDQEIaGhjAyMoKuri4YhoFIJEJ8fDyGDBki1YtJH96kp5HsW+ju7s7tW0i9nKQ3KCgo4LIkkqYUJuA0MjJCv379MGDAAL6LQhRMXV0dCgoKpALLhw8fytxrqaenB2tra1haWsLa2hrW1tYwMDDAnTt3oK2t3SVzyAIDA3Hw4EH83//9H27dutXkvJ2dHebMmYP+/fujvr4eubm5sLW1hYqKCvT09GBubg59fX1kZ2fD1dW1SZlu376N4OBgiMViqY3bY2Ji6MObKKznp3s03rdQT0+P9i0kvcqDBw/Q0NDQ6ohYX6YwAWdrw4Ckb2BZFhUVFU0Cy/b0WlpYWEgFllZWVs0ORcsj/Zikp/PatWv4/PPPUVNTAzU1NcybNw+DBg3ithbKyclBXFwcTExMMGXKFOjo6AAAYmNjERwcDJZlpYJKkUiEa9eu4eHDh4iIiIC7uzt3PCwsjD68icJ6frpH430LU1JSUFdXR/sWkl6jtrYW6enpGDx4MHeMFsj9j8IEnKRvkfRaNg4s8/PzUVVVJdP9enp6XGAp2ZrC3Nyc9xWCZmZmmD9/Pn744QfU1NRAU1MTo0eP5s43NDTg0aNHaGhoQG5uLvcG1FxQKTl3+/Zt5OTkwNnZGTk5OUhKSuJ6NLOzsyESiejDmyic5qZ7NN63sDHat5D0ZJ6ennj48CHU1dXx6aefon///tDW1gZAC+QaU6iAs6KiAr/88guuXLmCoqIi/P777/D29kZpaSn27NmDmTNnNtlbkCg+yVzLxoFlQUGBTL2WSkpKMDc3lwosra2tuZXeikqysKbxAhsrKyuUl5ejsrISgwYN4oJHT0/PZoNKT09PLhBVVVWFjo4OVFVVERERARcXF5iammLx4sVNtlWiD2+iCFqaqynZt5CQ3uLx48coLCyEvr4+hEIh/vnnH0yfPh0NDQ00x74RhQk4Hz58CD8/P+Tl5WHAgAFIS0vjeruMjIzw+++/48GDB9i+fTvPJe0ZcnNzcenSJVRWVkJXVxcTJ06Era2tXF+zvr6e67VsPCxeWVkp0/06OjpNAktF6LXsCC0tLairq0NDQwOqqqrw8PCAjo4Ofvrpp2aDx+aCSnd3d6SmpiIvLw9CoRAZGRmor69HXl4e7t69CycnJ3h4ePTpN7Dn8dHuSVM0V7N7Ubvnl2SbOsmC0cLCQly6dAnq6uo0x74Rhfkk/9e//oXKykokJibC1NQUpqamUudnz56Ns2fP8lS6niMmJgafffYZzp07B5ZloaSkBLFYDIZhEBQUhM2bN8PLy6vTr1NZWYmHDx9KBZYFBQUy7UUp6bVsHFhaWVlBT09PKltNTyUSiTB58mTExcWhX79+cHd3h5GRERITE5sNHs+fP9/s8dTUVFhYWHAZfRprKRVlX9Vd7Z60TjJfraGhgeZqdgNq9/wTCoWora0F8GyqWF1dHVRVVZGZmYnr169zC0PpS5cCBZyhoaF46623MHjwYDx58qTJeQcHB+Tl5fFQsp7jxIkTWLRoEViW5YZyJcPWLMvi/PnzuHDhAg4fPiyVZ7s1DQ0NTVaI5+fno6KiQqb7dXR0mgSW5ubmvTqjlGR43MHBAQ8fPkROTg6MjY1bDB5NTU2b3bvNwsICZmZmMDMza3JOJBK1O9NQbyWPdk86RjJfberUqTRXU86o3SuG6Oho1NfXA3hW/zk5ORgwYADy8vKQmZkJZWVlCIVCiMXiPv+lS2ECzpqaGm4z7ObIOizbFX7++Wd8/fXXKCgowNChQ/Hjjz/C29u7216/I2JiYrBo0SI0NDS0uHF3Q0MDGIbBokWLEBkZ2eSbb2VlZZO5lo8fP5a519LMzEwqsLSysoK+vn6v6LWUVeM5l9ra2tDT0+OGx1sKHknHdUW7J12j8SKhW7du4d///nef7cmRN2r3ikHS5iWfcSzLIiUlBXZ2djA0NOTiBk1NTXh4eEBfX79Pf+lSmIBz8ODBiIiIwMaNG5s9f+rUKQwbNkzu5Th8+DDefvtt/Pbbbxg5ciS+//57TJ48Genp6U2G+RXJ559/LvVNtyWSaz7++GN8/vnnUj2X5eXlMr2WtrZ2k8DSwsKiV/dayqrxnMucnBwoKytzw+MeHh58F6/XaW+7//zzzxEcHNxNpetbaEP37kPtXjFItvlq/O9QXFyMvLw8ODg4SGWSEwqFsLOzg6WlJR9FVQgKE3C++eabWLVqFdzd3bFgwQIAz7qnMzMz8cknn+DmzZs4fvy43Mvx7bffYv369VizZg0A4LfffsO5c+fw559/YtOmTXJ//Y7Izc3F2bNnZcoLDjz75hsaGgpTU9MW0yUCzzI7mZmZNVnI09d6Lduj8bB5dXU1l7mIcop3vY60+zNnznCb7pOuQ4uEug+1e8Uh2eYrLCwMtbW1UFdXh7e3d5OUxfX19cjKyoJQKMTDhw/h7+8PTU1NnkrNH4UJOJcvX44HDx7g448/xkcffQQAmDJlCjcR+ssvv8Ts2bPlWgaRSIRbt27hgw8+4I4pKSkhICAAN2/ebPYeoVAotYm4ZGV9fX096urq5FpeiYsXL8r85tNYXl4el4ZLS0uLCyob72vZ3Ea1kvkqPVldXR3q6+shEAi69N9JR0cHI0eOBPCsPTWuv66ccykSibg2Jkmb2dd0pN2zLIvQ0FCsWrVKTqVSfPX19TJNk2mPmJgYpKeno7a2FomJiaivr0d6ejpu3LjR5dORlJWVe+TOFV2lo+1+9+7dWLFiBfT09KCrq9vn3jfk0e719fUxfvx4aGhoAABUVFTg6urKvZ5ERkYGoqOjudXsjx49wtixY9vV2ynvdt8dI5QM25FIRY5yc3Nx/PhxZGZmQiwWw9HREXPnzoWDg4PcX/vRo0ewsrJCZGSk1Gbd7733HsLDwxEdHd3knq1bt+KTTz6Re9kIIYQQQuShO0JBhfiaWF1djbFjx2L9+vV48cUX8dZbb/FdJJl98MEHePvtt7mfExMT4efnh+jo6G6ZcwoAe/bswYYNG9p9386dO6mnp4u/8Upcv34dhw4dwpIlS+Dr6yuX1+jrPT3U7ttPKBTi9u3bUFFR6ZFp9iQ9+0OHDu2zQ/Udbfd+fn7ciFZ7aGpqQl9fH3p6etxDX18f+vr60NXV5X7W1NRU2KlW8m73kydPRnFxMXR1dbFq1SrY2Nhw781ZWVm4fv069PX1UV5ejjFjxsDR0ZG7V19fH66urq22597S7hXi00pLSwvZ2dm8N1ZjY2MoKyujsLBQ6nhhYWGL+x6qq6tLNQBJXmwVFZVuW0QzefJkMAzTrm8oDMMgMDCwTy/0kdfvLhQKpdJU+vv79+g3CUXVkXYPAJaWllBRUeH9/YYPYrEYKioq0NbW7pEBp6qqKgQCAVRVVfvse1dH3+9XrlwJdXV1lJeXo6Kigst61lbGN5FIhOLiYhQXF7d6naqqapOAtLmf+RjOl3e7l/w+YrEYt27dgrKyMhwdHVFXV4eMjAxu15Lq6mpkZGTA0dGRa7/V1dVISEiAm5tbiwuTe0u7V4iAE3g2X/PixYstrlLvDmpqahgxYgQuXbrEzRcVi8W4dOkSXn31Vd7K1RZbW1sEBQXh/PnzMvXYKSsrY/r06TSBXE5otW73aG+7ZxgG/fv3x9mzZ5GUlISZM2di0KBBfTLwJD1XR9/v165d2+ScWCyGQCBAeXm5VCDa+L+S/5fMP2xJXV0dnjx50uw+2o0xDANdXd0WA9LGP/eE4OrRo0eoqakBANTW1qKgoACpqamwtbXFw4cPUVJSgvr6ejx+/BhisRglJSV4+PAh7O3tueeor69HQkICnJyc4ODg0GvfkxQm4Ny8eTMWLFiAFStWYOPGjbC3t292FZeRkZFcy/H2229j1apV8PT0hLe3N77//nsIBAJu1bqi2rx5My5cuNDmN1+GYcAwDD7++ONuLF3fQat1u1d72/2IESMAPJsr/tNPP2HAgAGYOXOm1BAXIYquq97vlZSUoKurC11dXVhbW7f4PCzLora2tklA+nxQWlFR0ebiSJZluXvaoqmp2SQgbe6/fAznJyUl4eeff0Z4eDj3b9DQ0IDs7Gw8efIERkZGcHV1haenZ5N7n1/FLpGZmQmhUNipL8Isy2LLli3YuXMnnj59Cl9fX/z6668YMGBAi/ds27YNJ06cQFpaGjQ1NeHj44OvvvpKagqGv78/wsPDpe7buHEjfvvtN5nLpjCLhhp3sbdW0fKac9fYTz/9xG387uHhgR9++IFbedyW+Ph4jBgxArdu3cLw4cPlXFJpjTNPNFdPysrKYBgGR44cwZw5c7q1bH1FVFQUvv/+e9TW1kJVVRV1dXXQ0NDAm2++2WezS8ibrO3+8OHDGDhwIE6fPo2HDx9KXTNkyBDMnDmz1Q/d3kAoFCIxMbHHDqlLMmx5eHj0+S9wivp+X1dXh8rKymYD0sY/V1RUtDmcL6vnh/ObC0hzc3PRr18/bkV5Z0gyI7ZU98D/pjFIvuS2h4mJCdzd3bl5oO1p91999RW2bduGvXv3wt7eHps3b8adO3eQmpra4u8+ZcoULF68GF5eXqivr8eHH36I5ORkpKamQltbG8CzgHPgwIH49NNPufu0tLSgp6cn8++lMAHn1q1bZYrot2zZ0g2l6Tg+A04AiI2NxWeffcbt09Y4t+6MGTPw8ccfU8YJOcrPz0d8fHyT48OHD4eVlRUPJeob2tPuxWIx4uPjcfbsWRQVFUk9j6enJ6ZPn95rM0IpSsApEomQnJyMIUOGtKscFHBK68nv9105nC8rhmGgqakJbW3tJg8tLS2pn1takJmUlIQlS5a0muVJQklJCW+99Rb69+/f7rLq6Ohg2LBh0NLSkrndsywLS0tLvPPOO3j33XcBAOXl5TAzM8OePXuwePFimV67uLgYpqamCA8Px7hx4wA8Czg9PDzw/ffft/t3kWhXwGlvb9/ubl6GYZCVldXugvVUfAecErm5ubh8+TIqKiqgp6eHCRMm0JxN0uu1p903NDQgKioK586dw9OnT7njSkpKGD16NKZOnSr3KTzdrbsDzpYCy9jYWAQHB2P27NnNDjm29nwUcDbVm9/vu3I4vz3U1dWbBKHa2tr47rvvcOvWLZl6ZxmGgaura4d2FQCeLT4ePnw4tLW1ZWr39+/fh6OjIxISEqQy2/n5+cHDwwPbt2+X6XUzMzMxYMAA3LlzB0OGDAHwLOBMSUkBy7IwNzfHjBkzsHnzZi65iUy/j8xX/v9CPx9wxsXFISUlBYMHD+bG+9PT05GamoohQ4Z0qDsZeBaV6+joQFlZuUP393W2trZYvXo138UgpFu1p90rKyvD19cX3t7euHbtGkJCQlBVVQWxWIwbN24gOjoa48aNw+TJk1vNyEVadvv2bQQHB0MsFnOBpUgkktrFwd3dvUcO7yuS3vx+L+mV1NTUbHPkoaXh/NLSUjx8+BBCoRA1NTUQCARt9k5KkrqUlZVxxyorKxEbGytz2SW51UtLSzv05bW+vh63bt2Ch4eHTLFQQUEBADSpJzMzM+5cW8RiMd588034+vpywSYALF26FP3794elpSWSkpLw/vvvIz09HSdOnJD592lXwLlnzx6pn0+dOoVTp04hLCwMEydOlDoXFhaGhQsX4rPPPpP5+ePi4vDxxx8jIiICIpEIoaGhmDBhAkpKSrBu3Tq89dZb8Pf3b0+RCSGkVaqqqpgwYQJ8fHxw5coVLk1dfX09Ll++jBs3bmDChAkICAjok+noOqqlwPL27dvIycmBs7MzcnJykJSU1K5eTkJaoqqqCiMjoybBnaRnX1VVFWpqamBZFjU1NaiuruYeAoGg2Z8bZwzKz89vd5lYlkV6errM60CeJxaLkZycDHd39ybn9u/fL7Wzz7lz5zr0Go298sorSE5OxvXr16WON+6ldXNzg4WFBSZOnIisrCyZF112apX6v//9b7z22mtNgk0AmDRpEl599VV8/PHHmDVrVpvPFRkZiQkTJsDKygrLly/HH3/8wZ0zNjZGeXk5fv/9dwo4CSFyoaGhgalTp2LcuHEIDQ3F1atXUVdXB6FQiAsXLiA8PByBgYHw9/enHjkZNBdYuru749q1a1BVVYWOjg5UVVWpl5PInbKyMjQ1NVFTUyOVyljSc9qvX79m72NZFnV1daipqeEC1I7sgVpTU9OpBVICgQAikahJL+fMmTOlAllJmu3CwkJYWFhwxwsLC6WG2Fvy6quv4uzZs4iIiGhzAaXkdTMzM7sn4MzIyGjxHwoA+vXrJ/P8zQ8//BCDBg1CVFQUKisrpQJOABg/fjz27t3bmeISQkibtLW1MWfOHIwfPx4hISG4fv06xGIxqqurcerUKVy5cgVTp06Fj49Pn8701BpJ7+bzgSXLssjLy4NQKERGRgbq6+uRl5eH1NRUmT4QCekIFRUVDB48uNO73BQWFrY7DmFZFnp6eu2a69gca2vrJu83ki2tGr+Wubk5Ll26xP09VVRUIDo6Gi+99FKrZXzttddw8uRJXL16VWqP0JYkJiYCgFRg25ZOvVs6Ojpi9+7dWLduHZdhR6KyshJ//vmnzDnQY2NjsW3bNqirq6OqqqrJeSsrK5nnIBCiyEQiEeLi4uDp6dmkV6e1c6R7GRgYYPHixQgICMC5c+cQExMDlmVRXl6OQ4cOISwsDEFBQfDy8ur2zCmKLjU1tdnAsrKyEjNmzGhyfXs+tAjpCBUVlU5/QZwyZUqHeji1tLTQ0NDQ4ddXV1eXaZcThmHw5ptv4vPPP8eAAQO4bZEsLS25ZDYAMHHiRMyZM4dLaPPKK6/gwIEDCA4Ohq6uLhdrSbaUysrKwoEDBzBt2jT069cPSUlJeOuttzBu3Lhmh/pb0qna//zzzzF//ny4uLhg9erVcHJyAvCs53Pv3r0oLCzE0aNHZXouVVXVVruc8/PzmwS1hCiq1gLHqKgo7Nu3Dw0NDU0yELV2jvDD2NgYq1atwqRJk3DmzBncvn0bAPDkyRPs3bsXoaGhmDFjBoYOHdprM4TISrIq3cTEpNnA0tXVtdduOUV6v/ZmeVJSUoK9vT2Sk5Oho6PT6ubrLVFVVUVAQIDMuzK89957EAgE2LBhA54+fYoxY8YgJCREag/OrKwslJSUcD//+uuvANBkyuLu3buxevVqqKmp4Z9//uES4djY2GDevHntTiDT6X04Q0ND8f7773NvwhIeHh7Ytm0bJk+eLNPzTJkyBVVVVbh+/TqePHkCExMT/PPPP5gwYQIEAgFcXV3h5eUlcwDLF0XZFonwKyIiAvv27cPKlSulAkehUIhPP/0U0dHRGDlyJP79739zbyStnSOKIycnB6dPn0ZaWprU8f79+2PWrFlwcXHhqWRtk/e2SB3d7khWtC0S4VtsbCx8fHxk3odz5MiRKCsrg729PaZPn96udJ2GhoaYOHFir9merdPjQIGBgUhISMCjR49w8+ZN3Lx5E48ePUJ8fLzMwSYAfPLJJ4iLi8P06dNx4cIFAM8mnf/xxx8YMWIEiouLsXnz5s4WlxC5k6S3zM7ORkhICDeRG2g+z7os54jisLOzw+uvv4433nhDaq7TgwcP8MMPP2D79u3Izs7msYT8eH5Veldt1k2IIvHy8sLhw4ehrKzc4lZFSkpKUFJSQlBQEIRCIaysrFBYWIicnByZX8fV1RVz5szpNcEm0AUBp4S5uTlGjhyJkSNHwtzcvN33jxw5EufPn0dmZiZWrlwJAHjnnXewYcMGNDQ04Pz58+2aK0AIX1oKHFvKsy7Z762lc0QxOTs7491338WLL74IS0tL7nh6ejq+/vpr/Pbbbx3aRqWnam5VOiG90dy5cxEZGYlp06Y1mUbDMAzc3NzwzjvvoK6ujlshr6ysjJSUFKlV8s1RV1dHYGAgfH19e92ixE4HnLm5uXjxxRfh7OwMIyMjREREAABKSkrw+uuvIyEhodn7KioqmsyBmDBhAtLT0xEfH4/Dhw/j4MGDiImJwb179+Dn59fZohIid60FjgkJCcjKyoJAIEBKSgoEAgGysrKQkJDQ6jmiuBiGgbu7Oz788EOsWbMGJiYm3LmkpCR8+eWX2L17d5MUmr1NS6vSqZeT9FZeXl44ffo0cnJyYGBgAODZ9kvr16/Hyy+/DCUlJRQXF0MkEuHRo0cQiUQoLi5GXl5ei89paWmJuXPnws7Ornt+iW7WqfA5NTUVY8eOhVgsxsiRI5GZmcltkmpsbIzr169DIBBg165dTe41NDTEvn37sHTpUgDA2rVrsXHjRowcORIeHh60RQbpkSSBY21tLfdtVhI42tjYYNmyZU3usbGxAYBWzxHFpqSkBC8vLwwfPhw3b97E+fPn8fTpU7Asi9jYWNy6dQs+Pj6YNm0a9+HUm7S0Kp22OyK9na2tLbS0tPD06VMwDIO8vDy4u7vD0NAQ3t7eTa43NDRsckxbWxve3t5wcnLq1QsPOxVwvvfeezAwMEBUVBQYhoGpqanU+enTp+Pw4cPN3qumpiY1XLhnzx4EBAR0eDd+QhRBa0GllZVVq1tbyLLtBVFsysrKGDNmjFS6TIFAALFYjOvXryMqKgp+fn6YPHlyr9p1w8LCgluVLhaLuW2i+vXrh/j4+Ca51AnpTSQ9+UpKStxczQEDBjQbXDamrq6OoUOHYsiQIb1u+Lw5nfoNIyIi8O9//xsmJiZ48uRJk/O2trYtzmFycXHBH3/8ATs7O+jr6wN4tvozPj6+1dekld9EkbUVVJK+QU1NDRMnToSPjw8uX76MS5cucekyL126xKXLnDhxYq9Il2lmZsZtd1RbW8ttwSJZtd44lzohvYlQKERtbS2AZ1NsJHM17ezsWlyRrqKiAjc3N7i7u/ep3RY6FXCKxeJWd88vLi5usTK3bduGRYsWISAgAMCzf6jNmze3uBKdZVkwDNPpTAGEENJdNDU1MX36dPj5+SE0NBTh4eGoq6tDbW0tzp8/j/DwcEyePBnjxo3rNT2AkmlVLeVSJ6Q3SUhI4Np8Q0OD1FzN5xPfMAwDZ2dneHp6djrzUE/UqYBz+PDhOHfuHF5++eUm5+rr63Ho0CGMGjWq2XunTJmC7OxsxMbGorCwEKtXr8aGDRswevTozhSJEEIUjo6ODubOnYsJEybgwoULuHHjBsRiMQQCAU6cOIFLly5h2rRp8PHxaXGrlZ5CKBRCR0en2VXr1MtJehsbGxtoaWmhtrYW6urq8PX1BdB0rqa5uTl8fX1bTQfe23Uq4Pzggw8QFBSEl156CYsXLwbwLNfoP//8gy+//BJ3797FTz/91Oy9SUlJ6N+/P7dX5+7du7FgwQJMnDixM0UihBCFZWBggCVLlmDixIk4d+4c4uLiuHSZBw8exD///IOgoCCMGDGix6bLFAqFqK6ubnbVOvVykt7GysqKm0KioqKCoUOHSp2XbP4+ZMiQXr0gSBadekebOnUq9uzZg8OHD2PChAkAgOXLlyMwMBDx8fH466+/MG7cuGbvHTZsGM6dO9eZlyeEkB7J1NQUa9aswYcffii1v3BxcTF2796NL7/8EklJSe3K2awoWJZFXFwc8vLyUFNTg4yMDNTU1HCr1gnpbSSLhp6f8qeqqopp06bBzc2tzwebQCd7OAFgxYoVmDt3LsLCwpCRkQGxWAxHR0dMnjwZurq6Ld6nqamJ6upq7ufw8HCsX7++s8UhhJAew8rKCi+++CKys7Nx+vRppKenAwAePXqE3377DXZ2dpg1axacnZ15LqlsJLnUdXV1m82lbmFhwUOpCJGfxouG6urqUFdXxy0WGj9+vFRSiL6uwwFndXU1bGxssGnTJvzrX//C7Nmz23X/0KFD8e2330JZWZlbpR4bGyuVYL45c+fO7WiRCSFEIdnb2+ONN95AWloat5k08Gznju3bt8PFxQUzZ85U+A2hb9++jZCQEHh6eja7PRghvU10dDS3aEgsFnNbIrm6uir832t363DAqaWlBRUVFWhra3fo/u3bt2P+/PlYt24dgGert7Zv347t27e3eA+tUieE9GYuLi5wdnZGUlISTp8+jcePHwMA0tLSkJaWhqFDh2LGjBkK2WsiWZVeUFCAqKgozJ07t1ds+URISySZ5SSpK8ViMVJSUuDh4UF7ijejU0Pq8+bNw7Fjx/DSSy+1e36Cp6cnMjMzkZWVhcLCQvj7++Ojjz7itkkihJC+iGEYDB06FG5uboiNjcW5c+dQUlIC4FkPYlJSEry8vBAUFARjY2OeS/s/klXpDg4OyMzMxI0bN+j9nPRqksxy48aNQ01NDQoLC1FcXAx9ff0+sZF7e3WqRhYvXoyXX34Z48ePx/r162FnZ9fsN9qWNmtXUVGBs7MznJ2dsWrVKgQFBdG3AkIIwf9Wt44YMQKRkZG4cOECysvLwbIsYmJiEBcXB19fX0ydOpX3dJmNc6lraWlBWVkZly9f7lX7ixLyvMaZ5XJzc5GamgoTExMMGzaM55Ippk4FnP7+/tz/X7t2rcn59mzWvnv37s4UhRBCeiUVFRWMGzcOo0aNQnh4OEJDQ7l0mdeuXePSZQYGBvKWLrNxLvWcnByIRCLk5OQgOTmZssORXqtxZrnU1FSoqqpiypQplG2uBZ0KODsTJH766adgGAYfffQRlJSU8Omnn7Z5jyQbESGE9DVqamqYNGkSxowZg0uXLuHSpUsQCoWoq6vDP//8g+vXryMgIAATJkxoc/FlV5PkUt+2bRvKysqgrq6OOXPmtJjaj5DeSENDA9bW1nwXQ2ExLE8bvSkpKYFhGNTU1EBNTU2mTY7lvWjoiy++wLlz55CYmAg1NTU8ffq03c8RHx+PESNG4NatW/TNnhAiN5WVlVy6TMkqWeBZViNJusznAz6hUIjExERoa2vLZah73LhxKCwshL6+Pj777DNoamrCx8eny+aziUQiCAQCeHh49Kkc1ETxpaamori4GH5+fnwXRWHxlspCLBajoaGBe9MTi8VtPuS9Ql0kEmHBggV46aWX5Po6hBDSWbq6upg3bx62bt0KX19f7kt7VVUVjh8/ji1btuD69evdurOHpP9C8t+amhrcuXMHYrG428pACF+od7N17frauXbtWjAMgx07dkBZWRlr165t8x6GYbBr164OF7A7ffLJJwCAPXv28FsQQgiRkZGREZYtW4ZJkybh7NmziIuLAwA8ffoUBw4c4NJldseIS11dHQDpjCtFRUVISkqCm5tbj88TT0hrjIyM+C6CQmtXwHn58mUoKSlBLBZzqxDb2g6pPdsl3b17F1lZWaisrISuri6cnJzg4uLSniJ2O6FQCKFQyP1cVVXFY2kIIX2Vqakp1q5di8DAQJw+fRrJyckAngV8f/75Jy5evIipU6fKLV2mSCTi3gufz7hSWFgIoVBIQ+GkV+Nr0V5P0a6AU5L9oqWfO+r333/HF198gfz8/CbnbG1t8dFHH+GFF17oktfqatu2beN6RgkhhG/W1tZ4+eWXkZWVhdOnTyMjIwMAkJ+fjz/++AMmJibw8fGBvb19l77u7du3uZ5NsViM3NxcODo6cuefPn2KyMhIuLu7o1+/fl362oTwSSQS4c6dO3BycuK7KAqNtzmcEu+++y5eeuklVFdXY+3atfj222+xY8cOfPvtt1izZg0qKyuxceNGvP/++x16/k2bNoFhmFYfaWlpHS7/Bx98gPLycu4RHh7e4ecihJCu4ujoiDfffBOvvfYabG1tuePFxcUIDg7GiRMnUFhY2CWvJdmHs7HU1FRuiL3xdXFxcUhLS6OscaTXiIqKwunTpxEdHc13URQar1vhx8TE4Ntvv8WcOXPw119/NZsmc/v27Vi+fDm++eYbLFiwAJ6enu16jXfeeQerV69u9RoHB4d2PWdj6urqUkNE1KVOCFEUDMNg0KBBcHFxwe3btxEcHMwFmbm5ucjNzYWTkxNGjx7dqV5HyT6cjYfrS0pK8PDhw2Z7Uh88eICSkhIMGTKE903rCekMSXrL/Px8hISEwNvbm6aNtKDTAeeFCxfw7bffIj4+nsuC8byWvsnu2rULFhYWOHDgQIv/QNra2jh48CAcHBywa9eudgecJiYmMDExadc9hBDSmzAMAw8PDzg7O+PkyZO4ffs2KisrAYBLMezi4oJRo0ZBX1+/3c8v2YczMjISIpEIampq8PT0hKGhYYv3CAQCREdHw87ODk5OTrSgiPRI0dHRuHfvHtzd3XHv3j3ExMRg7NixfBdLIXVqSP348eMICgpCYWEhFi9eDLFYjCVLlmDx4sXQ1NSEu7s7/v3vf7d4/82bN7FgwYI2vw1oaGhgwYIFuHHjRmeK26bc3FwkJiYiNzcXDQ0NSExMRGJiIi0EIoT0CkpKSnB0dMTSpUsxfvx4aGlpAXi2jdHdu3exd+9eXLlyBQKBoF3Pa2ZmhgkTJnDv5aqqqnBzc5Op9zInJwdRUVFcAExITyHp3VRTU4Oenh7U1NQQEhIitZCY/E+nAs5t27bB29sbCQkJ3MKZtWvXYv/+/UhOTsbjx49bnZiel5eHQYMGyfRagwcPRl5eXmeK26Z///vfGDZsGLZs2YKqqioMGzYMw4YN47YZIYSQ3kBZWRlDhw7FmjVr4OvrywWKYrEYt2/fxu7du3H9+nXU1tZ2S3mqqqoQFRWFhw8fdsvrEdIVEhISkJWVBYFAgNTUVAgEAmRlZSEhIYHvoimkTg2pp6amYtu2bVBWVuYySUgmidvZ2eHll1/GV199hZUrVzZ7f0VFBXR1dWV6LR0dHbl/A96zZw/twUkI6TNUVVXh5eUFNzc3xMfHIyEhAXV1daivr0dcXBySkpLg6ekJDw8PuWQmakwsFiMlJQVlZWUYNGhQl2UnIkRebGxssGzZMgBAfX0912ZtbGz4LJbC6tRftJaWFvcmZGBgAHV1dTx+/Jg7b2Zmhuzs7BbvZ1m2Xft08pSFkxBCejUNDQ34+Phg6NChiI2NxZ07d9DQ0ACRSITIyEgkJCTA29sbbm5uLQaCjx49Qk1NDYBnq9FLS0s7tBH2o0ePUFpaCldXVxgbG3fq9yJEnqysrGBlZQVAOuAkzetULnVfX18MHz4cP/74IwBg9OjR0NLSwsWLF1FfX4/JkyejsLCwxW2HlJSUMGzYMO4frDX5+flITExU+K00KJc6IURRyZpLvaKiAtHR0UhNTZX6oq+rq4tRo0Zh0KBBXCrNpKQk/PzzzwgPD5e6lmEYuLq6YvLkyejfv3+HymtpaQkXFxduA3nKpU4UlVgs5v4mSPM6VTtz587F6dOnuQmyH330Ea5evQoDAwOYmJjg2rVr2LRpU4v329raorS0FHfu3GnzUVpaKrWXHCGEEPnQ09PDpEmTsGLFCgwYMIA7XllZibCwMOzbtw/37t3DxYsXsWTJEly7dq3JCBTLskhNTcV3332H27dvd6gcjx49QmRkJCoqKtp134kTJxAYGIh+/fqBYRgkJibKdI+npycMDAygra0NDw8P7Nu3T+qaqqoqvPrqq7C2toampiYGDx6M3377rV1lI72bZFRAJBLxXRSF06H+39raWgQHB6Ourg4ff/wxSktLYWFhgaCgIFy9ehUnTpyAsrIypk+fjvHjx7f4PF2VqYgQQkjXMzIywvTp01FUVITIyEjuPbusrAy7d+/GqVOnIBaLW7xfcm737t146623OtTTWVtbi5iYGAwfPlzmfY4FAgHGjBmDhQsXYv369TLdY2RkhI8++gguLi5QU1PD2bNnsWbNGpiammLy5MkAgLfffhuXL1/G33//DTs7O4SGhuLll1+GpaUlZs6c2e7fjfQeki9cUVFR2LdvHxoaGmh7pOe0O+AsKiqCj48PsrOzuTmYmpqaOHXqFAICAjB27FiqZEII6UVMTU0xe/Zs5OfnIzIyEvn5+bh161a75tVfvHgRGzZs6NDrNzQ0ID4+HsOHD5dp3v+KFSsAtK9Tw9/fX+rnN954A3v37sX169e5gDMyMhKrVq3irt2wYQN+//13xMTEUMDZxykpKXHbJGVnZ9Mm8M1o95D6Z599hpycHLz11ls4e/YsvvvuO2hqamLjxo3yKB8hhBAFYWVlhfnz58PHxwcPHjyQOeCUrEAvLS3t8Gs3NDQgJSWlWxaPsiyLS5cuIT09HePGjeOO+/j44PTp08jPzwfLsrhy5Qru3buHwMBAuZeJKDaGYZrdBJ78T7t7OENDQ7Fy5Up888033DEzMzMsXboU6enpcHZ27tICEkII6VqdnV/W2u4jLWFZFunp6Rg5cmSHX7eyshLl5eUdvr8t5eXlsLKyglAohLKyMn755RdMmjSJO//jjz9iw4YNsLa2hoqKCpSUlLBz506poJT0TS1tAk+9nP/T7oAzNzcX77//vtSxMWPGgGVZFBYWUsBJCCEKSllZGZqamqipqeH2TO6IsrIyKCkptTp/83kMw6CmpqZd97T0PI3TYO7fv19qhO3ChQsdntalq6vLZZe7dOkS3n77bTg4OHBD6D/++COioqJw+vRp9O/fHxEREXjllVdgaWmJgICATv1epGeTbAJfW1uLlJQU1NXVcZvAjxo1iu/iKYR2B5xCoRAaGhpSxyQ/19fXd02pCCGEdDkVFRUMHjy409vL3b59u92BI8uy0NPT49JpdpSrq6vUfoczZ86U6jWVZZu9ligpKcHJyQkA4OHhgbt372Lbtm3w9/dHTU0NPvzwQ5w8eRLTp08HALi7uyMxMRHffPMNBZx9XONN4J8/Tp7p0Cr1nJwcxMfHcz9LhjgyMjKazZ1L+1ESQohiUFFR6fQG1VOmTAHDMO2aT8kwDAYNGtSuZB/NPYeZmZnUMV1dXZkz1rWXWCzmtv2rq6tDXV1dk70WlZWVO91rS3o2kUiEBw8eYPLkyXLPyNWTdehdZ/Pmzdi8eXOT4y+//LLUz5JV7Iq+WTshhBDZ2draIigoCOfPn5fp/V1JSQlubm4dyjzUmJGRkUzBcmlpKXJzc/Ho0SMAQHp6OgDA3Nwc5ubmAICVK1fCysoK27ZtAwBs27YNnp6ecHR0hFAoxPnz57Fv3z78+uuvAJ7tTern54d//etf0NTURP/+/REeHo6//voL3377bad+L9Kz0VZIsml3wLl79255lAPAs20zdu3ahfv376OsrKzJt2eGYZCVlSW31yeEECKbzZs348KFCzL3dE6bNq3Tr+no6CjTdadPn8aaNWu4nxcvXgwA2LJlC7Zu3Qrg2XqExr2VAoEAL7/8Mh4+fAhNTU24uLjg77//xqJFi7hrDh06hA8++ADLli1DaWkp+vfvjy+++AIvvvhip3830jPRVkiy61Rqy6709ddfY9OmTTAzM4O3tzcMDQ2bvU6eAW9XoNSWhJC+4sSJE1i0aBFYlm22p1MS0G3YsAHDhg3r1GuZmpoiKCiI8lUThRIREYEff/wRNjY2yMvLw+uvv069nC1QmL/c7du3Y8KECTh//jyXN5cQQojimjt3LiIjI/HZZ5/h7NmzTXKpu7m5Ydq0abCzs+vU69ja2mLChAkUbBKFQlshtY/C/PWWlZVh/vz5FGwSQkgP4uXlhdOnTyM3Nxeurq6oqqqCuro6tm7d2uk5m2pqavD29u70YiNC5IG2QmofhQk4vb29uYndhBBCepbmVo93FMMwcHFxgaenJzQ1NTtbNELkgrZCah+FCTh/+eUXTJ06FZ6enli6dCnfxSGEENIO0dHR3F7MYrEYOTk5GDBgQLueg2EYODk5Yfjw4dDX15dHMQnpMlZWVp3a97WvUZiAc9GiRaivr8eKFSvw0ksvwdraWiqbBPDszej27ds8lZAQQkhzJHPZJMPeLMsiJSUFdnZ2Mk+TcnR0xIgRI5rdy5kQ0vMpTMBpZGSEfv36tfsbMSGEEH5J5rI1XjRUXFyMvLw8ODg4tHqvhYUFfHx80K9fP3kXkxDCI4UJOK9evcp3EQghhHSAZC5bWFgYamtroa6u3ur2dsCzBUG+vr5wcnKiBUGkRxOJRIiLi4OnpydlGmqFwgSchBBCeibJXDbJAh9VVVUMHTpU6pr6+no8ePAA/fv3h4WFBQICAuSWkpKQ7kSZhmSjcAFnXV0d0tLSUF5e3mx+2nHjxvFQKkIIIW2RDKk3l0/k/v37iI6OhrW1NWbOnNlkjj4hPRFlGpKdwgScYrEYH3zwAX755RdUV1e3eB3lZSeEEMUkEokANH2frqurw927d1FXV4fHjx+jvr6eAk7SK0RHR+PevXtwd3fHvXv3EBMTQ72cLVBq+5Lu8eWXX+Lrr7/G8uXL8ddff4FlWfzf//0ffvvtN7i7u2Po0KG4ePEi38UkhBDSDKFQiNraWgDPAsy6ujru3OPHj6GkpAQfHx9kZGQgJiaGr2IS0mVayjQkFAr5LppCUpiAc8+ePVi4cCF+/fVXTJkyBQAwYsQIrF+/HtHR0dOapVAAAB5wSURBVGAYBpcvX+a5lIQQQprT3D6cAKCtrQ2hUAg9PT36UCa9imR3BoFAgJSUFAgEAi7TEGlKYQLOhw8fYsKECQDAzX+QfFtWU1PD8uXLsW/fPrm9fk5ODtatWwd7e3toamrC0dERW7Zs4YaICCGENE/S06OpqQltbW2oqKggJSUFysrKsLCwQF5eHn0ok15HsjvDunXrsHLlSqxbtw7Lli2jTEMtUJg5nP369UNVVRUAQEdHB3p6erh//77UNWVlZXJ7/bS0NIjFYvz+++9wcnJCcnIy1q9fD4FAgG+++UZur0sIIT2dpKdn3LhxqK2tRUFBAYqLi6GtrQ1nZ2dK/0d6JVkyDdGWSf+jMAHnsGHDEBsby/08fvx4fP/99xg2bBjEYjF++OGHJttsdKUpU6ZwQ/kA4ODggPT0dPz6668UcBJCSCsa55TOz8/HnTt3oKmpCV9fX0r/R3q91oJK2jLpfxQm4NywYQP27NkDoVAIdXV1fPHFFxg3bhzGjRsHlmVhaGiIgwcPdmuZysvLYWRk1K2vSQghPU3joPLevXtQUlLCqFGjqBeT9AktBZW0ZZI0hQk4Z86ciZkzZ3I/Dx48GFlZWbh69SqUlZXh4+PTrcFfZmYmfvzxxzZ7N4VCodTkd8m0AEII6avU1NQwaNAgvotBiNy1FlTSlknSFGbRUHP09fUxa9YsBAUFdTjY3LRpExiGafWRlpYmdU9+fj6mTJmCBQsWYP369a0+/7Zt26Cvr889/Pz8OlROQgjp6UQiEeLj42FnZwdVVVW+i0OI3DUXVAK0ZVJzFCrgbGhowKFDh7Bx40bMmTMHd+7cAfBsaPvEiRMoLCxs93O+8847uHv3bqsPBwcH7vpHjx5h/Pjx8PHxwY4dO9p8/g8++ADl5eXcIzw8vN1lJISQ3iAqKgonTpzAkydP+C4KIXLXWlBJWyY1pTBD6k+fPsWUKVMQExMDHR0dCAQCvPbaawCerVp//fXXsXLlSnz55Zftel4TExOYmJjIdG1+fj7Gjx+PESNGYPfu3VBSajseV1dXl5qToaOj067yEUJIbyD58H348CFiYmIQFBTUp+erkd5PElTW1tYiJSUFdXV1XFDZeCFdY315XrPCBJybNm1CSkoKLl68iGHDhsHU1JQ7p6ysjPnz5+P8+fPtDjhllZ+fD39/f/Tv3x/ffPMNiouLuXPm5uZyeU1CCOktJEOLgwcPxv379/v8fDXS+7UWVNLuDE0pTMB56tQpvPbaa5g0aVKzwzEDBw7Enj175Pb6YWFhyMzMRGZmJqytraXOsSwrt9clhJCervHQooGBAWpqamhVLun1KKhsH4WZw1leXg57e/sWz9fV1XFp0+Rh9erVYFm22QchhJCWNZ6vlpmZSfPVCCFNKEwPp6OjI+Lj41s8HxoaisGDB3djiQghhMii8dCiZC9lyXFCCAEUKOB84YUX8P7778Pf3x8TJ04EADAMA6FQiE8//RQhISEyrRonhBDSvRoPLdbW1kJDQ4PnEhFCFI3CBJxvvPEGUlJSsGTJEhgYGAAAli5diidPnqC+vh4bN27EunXr+C0kIYSQFolEIkRFRcHHx6fP540mhEhTmICTYRjs3LkTq1atwrFjx5CRkQGxWAxHR0csXLgQ48aN47uIhBBCWhEVFYW//voLysrKtEKdECJFYQJOiTFjxmDMmDF8F4MQQkg7SFaq5+Tk0Ap1QkgTCrNKnRBCSM8l2YfTzc1NKsUfIYQAPPdwzpw5s13XMwyD4OBgOZWGEEJIRzTeh9PQ0BAlJSXUy0kIkcJrwHn27FloaGjA3Nxcpv0uGYbphlIRQghpj9ZS/I0aNYrv4hFCFACvAaeVlRXy8/NhbGyMpUuXYvHixZRGkhBCehjKG00IaQvD8pxKJzw8HAcOHMCxY8dQUVEBPz8/LFu2DPPnz4euri6fReuQ+Ph4jBgxArdu3cLw4cP5Lg4hhBBCCO94XzTk5+eH33//HQUFBTh27Bj69euHV199Faamppg7dy6OHTsGoVDIdzEJIYTIgUgkQmRkJEQiEd9FIYTIEe8Bp4SqqipmzZqFw4cPo7CwkAtCFy1ahP/85z98F48QQkgHtRZURkVFYffu3YiOjuahZISQ7qIwAaeEZLVjcHAwEhISoKGhATs7O76LRQghpINaCiol7/fZ2dkICQmh0SxCejGFCDjFYjEuXryI1atXw8zMDEuWLEFNTQ127tyJoqIirFixgu8iEkIIaUNzPZmtBZWSvTvd3d1p705CejleA87IyEi8+uqrsLCwwPTp05GZmYkvv/wSjx49wvnz57F8+XJoa2vzWURCCCEyaq4ns6WgsvHenXp6elBTU6NeTkJ6MV63RRozZgw0NTUxbdo0LFmyhBs6z83NRW5ubrP30MpvQghRPM/3ZHp7ewNAs0Glt7c37d1JSB/Dey71mpoaHD9+HCdOnGj1OpZlwTAMGhoauqlkhBBCZNVcT6aqqmqLQSXt3UlI38JrwLl7924+X54QQkgXaGl4fN26dS0GlVZWVrCysuKhtIQQPvAacK5atYrPlyeEENIFWhoeLyoqwowZM/guHiFEAfA+pE4IIaRno+FxQkhbKOAkhBDSKTQ8Tghpi0Lsw0kIIYQQQnovCjgJIYQQQohcUcBJCCGEEELkigJOQgghXaK51JaEEAJQwCll5syZsLW1hYaGBiwsLLBixQo8evSI72IRQkiP0FxqS0IIASjglDJ+/HgcOXIE6enpOH78OLKysjB//ny+i0UIIQrv+dSWlBOdENIYbYvUyFtvvcX9f//+/bFp0ybMnj0bdXV1UFVV5bFkhBCi2JpLbTl27Fi+i0UIURDUw9mC0tJS7N+/Hz4+PhRsEkJIK1pKbUm9nIQQCQo4n/P+++9DW1sb/fr1Q25uLoKDg1u9XigUoqKigntUVVV1U0kJIUQxSFJbCgQCpKSkQCAQICsrCwkJCXwXjRCiIBiWZVm+CyFPmzZtwldffdXqNXfv3oWLiwsAoKSkBKWlpXjw4AE++eQT6Ovr4+zZs2AYptl7t27dik8++aTJ8Vu3bmH48OGd/wUIIUTB5efnIz4+vsnx4cOHUwYiQgiAPhBwFhcX48mTJ61e4+DgADU1tSbHHz58CBsbG0RGRmL06NHN3isUCqWGjRITE+Hn50cBJyGEEELI/9frFw2ZmJjAxMSkQ/eKxWIAaHUekrq6OtTV1bmfdXR0OvRahBBCCCG9Va8POGUVHR2N2NhYjBkzBoaGhsjKysLmzZvh6OjYYu8mIYQQQghpGy0a+v+0tLRw4sQJTJw4Ec7Ozli3bh3c3d0RHh4u1YNJCCGEEELah3o4/z83NzdcvnyZ72IQQgghhPQ61MNJCCGEEELkigJOQgghhBAiVxRwEkII6RIikQiRkZEQiUR8F4UQomAo4CSEENIloqKisHv3bkRHR/NdFEKIgqGAkxBCSKdJ8qlnZ2dTHnVCSBMUcBJCCOm06Oho3Lt3D+7u7rh37x5iYmL4LhIhRIFQwEkIIaRTJL2bampq0NPTg5qaGvVyEkKkUMBJCCGkUxISEpCVlQWBQICUlBQIBAJkZWUhISGB76IRQhQEbfxOCCGkU2xsbLBs2bJmjxNCCEABJyGEkE6ysrKClZUV38UghCgwGlInhBBCCCFyRQEnIYQQQgiRKwo4CSGEEEKIXNEczl7u8ePHePz4Md/F6JMsLCxgYWHBdzH6JGr3/KF2zx9q9/yhdt82Cji7mIWFBbZs2aIQDU8oFGLJkiUIDw/nuyh9kp+fHy5evAh1dXW+i9KnULvnF7V7flC75xe1+7YxLMuyfBeCyEdFRQX09fURHh4OHR0dvovTp1RVVcHPzw/l5eXQ09Pjuzh9CrV7/lC75w+1e/5Qu5cN9XD2AR4eHvRH0M0qKir4LkKfR+2++1G75x+1++5H7V42tGiIEEIIIYTIFQWchBBCCCFErijg7MXU1dWxZcsWmsTMA6p7/lDd84fqnj9U9/yhupcNLRoihBBCCCFyRT2chBBCCCFErijgJIQQQgghckUBJyGEEEIIkSsKOAkhhBBCiFxRwEn6LIZhZHpcvXq1069VXV2NrVu3tuu5vvjiC8ycORNmZmZgGAZbt27tdDkIUeR2n5aWhvfeew8eHh7Q1dWFhYUFpk+fjri4uE6XhfRtitzuHz16hOXLl8PZ2Rm6urowMDCAt7c39u7di960rpsyDZE+a9++fVI///XXXwgLC2tyfNCgQZ1+rerqanzyyScAAH9/f5nu+fjjj2Fubo5hw4bh4sWLnS4DIYBit/s//vgDu3btwrx58/Dyyy+jvLwcv//+O0aNGoWQkBAEBAR0ukykb1Lkdl9SUoKHDx9i/vz5sLW1RV1dHcLCwrB69Wqkp6fjyy+/7HSZFAJLCGFZlmVfeeUVVl5/EsXFxSwAdsuWLTLfk52d3eF7CZGVIrX7uLg4trKyUupYSUkJa2Jiwvr6+sqhhKSvUqR235KgoCBWW1ubra+v75qC8YyG1AlphVgsxvfffw9XV1doaGjAzMwMGzduRFlZmdR1cXFxmDx5MoyNjaGpqQl7e3usXbsWAJCTkwMTExMAwCeffMIN3bQ1RG5nZyePX4mQNvHV7keMGAEdHR2pY/369cPYsWNx9+7drv0lCXkOn+/3zbGzs0N1dTVEIlGnfzdFQEPqhLRi48aN2LNnD9asWYPXX38d2dnZ+Omnn5CQkIAbN25AVVUVRUVFCAwMhImJCTZt2gQDAwPk5OTgxIkTAAATExP8+uuveOmllzBnzhzMnTsXAODu7s7nr0ZIixSt3RcUFMDY2LhLf0dCnsd3u6+pqYFAIEBVVRXCw8Oxe/dujB49GpqamnL9vbsN312shCiK54dYrl27xgJg9+/fL3VdSEiI1PGTJ0+yANjY2NgWn7szQyw0pE7kSVHbvURERATLMAy7efPmDj8HIc9TxHa/bds2FgD3mDhxIpubm9uu51BkNKROSAuOHj0KfX19TJo0CSUlJdxDMux35coVAICBgQEA4OzZs6irq+OxxIR0niK1+6KiIixduhT29vZ477335PIahACK0e6XLFmCsLAwHDhwAEuXLgXwrNezt6CAk5AWZGRkoLy8HKampjAxMZF6VFVVoaioCADg5+eHefPm4ZNPPoGxsTFmzZqF3bt3QygU8vwbENJ+itLuBQIBgoKCUFlZieDg4CZzOwnpSorQ7vv374+AgAAsWbIE+/fvh4ODAwICAnpN0ElzOAlpgVgshqmpKfbv39/secnEcIZhcOzYMURFReHMmTO4ePEi1q5di//+97+IioqiD0rSoyhCuxeJRJg7dy6SkpJw8eJFDBkypMPPRYgsFKHdP2/+/PnYuXMnIiIiMHny5C57Xr5QwElICxwdHfHPP//A19dXpknbo0aNwqhRo/DFF1/gwIEDWLZsGQ4dOoQXXngBDMN0Q4kJ6Ty+271YLMbKlStx6dIlHDlyBH5+fh35NQhpF77bfXMkPZvl5eVd8nx8oyF1QlqwcOFCNDQ04LPPPmtyrr6+Hk+fPgUAlJWVNckG4eHhAQDcMIuWlhYAcPcQoqj4bvevvfYaDh8+jF9++YVb4UuIvPHZ7ouLi5s9vmvXLjAMg+HDh8v0PIqOejgJaYGfnx82btyIbdu2ITExEYGBgVBVVUVGRgaOHj2K7du3Y/78+di7dy9++eUXzJkzB46OjqisrMTOnTuhp6eHadOmAQA0NTUxePBgHD58GAMHDoSRkRGGDBnS6lDhvn378ODBA1RXVwMAIiIi8PnnnwMAVqxYgf79+8u/Ekifw2e7//777/HLL79g9OjR0NLSwt9//y11fs6cOdDW1pZ7HZC+h892/8UXX+DGjRuYMmUKbG1tUVpaiuPHjyM2NhavvfYanJycurMq5IfnVfKEKIyWMk/s2LGDHTFiBKupqcnq6uqybm5u7Hvvvcc+evSIZVmWjY+PZ5csWcLa2tqy6urqrKmpKRsUFMTGxcVJPU9kZCQ7YsQIVk1NTaYtM/z8/KS2yGj8uHLlSlf92qSPU6R2v2rVqhbbPAAu+xYhnaVI7T40NJQNCgpiLS0tWVVVVVZXV5f19fVld+/ezYrF4i79vfnEsGwvygxPCCGEEEIUDs3hJIQQQgghckUBJyGEEEIIkSsKOAkhhBBCiFxRwEkIIYQQQuSKAk5CCCGEECJXFHASQgghhBC5ooCTkA7IyckBwzDYs2cP30UhpNtQuyd9EbX7rkEBJyGEEEIIkSva+J2QDmBZFkKhEKqqqlBWVua7OIR0C2r3pC+idt81KOAkhBBCCCFyRUPqpM/aunUrGIbBvXv3sHz5cujr68PExASbN28Gy7LIy8vDrFmzoKenB3Nzc/z3v//l7m1uTs/q1auho6OD/Px8zJ49Gzo6OjAxMcG7776LhoYG7rqrV6+CYRhcvXr1/7V3/zFR138cwJ8fTr1DPASNEH9wv1gXjOXPkWl0mTRLKE1AxRVokbVKcmHMKCempWg5jWJKMSCKVs6cm5Y/pjiy2qyt1oiUggNrjR8uIJIQlNf3D+f5/cgPD+M4uHs+ttu8971/HXvus5f3432q/fQ0Z11dHVatWoXJkydDq9UiJCQEixYtQk1NjYv+KuTpmHvyRsy9+7HgJK+3bNkydHV1Ydu2bbj77ruxZcsW7Nq1Cw8++CAmTZqE7OxshIWFYd26dSgrK+tzritXrmDBggUYP3483nrrLdhsNrz99tvIy8u7pb3Fx8fjwIEDWLVqFXJzc5GWlobW1lacP3/+luYjuoa5J2/E3LuREHmpjRs3CgBZvXq1o+3y5csyefJkURRFtm3b5mhvamoSX19fSUlJERERu90uAKSgoMDRJyUlRQDI66+/rlpn+vTpMnPmTMf90tJSASClpaWqfjfO2dTUJABkx44dA/OEiYS5J+/E3LsfX+Ekr5eamur4t0ajwaxZsyAieOqppxztAQEBsFqtqK6uvul8zz77rOp+dHS0U+Nu5Ovri1GjRuHUqVNoamrq93iivjD35I2Ye/dhwUleLzQ0VHV/7Nix0Ol0uO2227q13+xCoNPpEBQUpGoLDAy8pQuIVqtFdnY2vvzySwQHB+O+++7D9u3bUVdX1++5iG7E3JM3Yu7dhwUneb2ejrno7egLucmhDs4cmaEoSo/t//9B82vWrl2LyspKbN26FTqdDhs2bEB4eDh++OGHm65D1BfmnrwRc+8+LDiJBllgYCAAoLm5WdVeW1vbY3+LxYL09HQcO3YM5eXl6OjoUH2Dkmg4YO7JGzH317HgJBpkBoMBGo2m2zcgc3NzVffb2trQ3t6uarNYLNDr9bh06ZLL90k0kJh78kbM/XUj3L0BIm8zduxYJCYmIicnB4qiwGKx4NChQ2hoaFD1q6ysxPz587F06VJERERgxIgROHDgAOrr67F8+XI37Z7o1jD35I2Y++tYcBK5QU5ODjo7O7Fnzx5otVosXboUO3bsQGRkpKPPlClTkJSUhBMnTqC4uBgjRozAnXfeic8++wzx8fFu3D3RrWHuyRsx91fxpy2JiIiIyKX4GU4iIiIicikWnERERETkUiw4iYiIiMilWHASERERkUux4CQiIiIil2LBSTTE1dTUQFEUFBYWunsrRIOGuSdv5Mm5Z8FJHqWqqgrPPPMMzGYzdDod/P39MXfuXOzevRv//vuvy9atqKhAVlYWampqXLaGM9544w08+uijCA4OhqIoyMrKcut+aHB4c+7Pnj2LjIwMTJs2DXq9HiEhIYiNjcX333/vtj3R4PDm3P/55594/PHHYbVaodfrERAQgKioKBQVFd30N+DdhQe/k8c4fPgwEhMTodVqkZycjMjISHR0dOD06dN4+eWX8fPPPyMvL88la1dUVGDTpk24//77YTQaXbKGM1577TVMmDAB06dPx9GjR922Dxo83p77Dz74APn5+YiPj8dzzz2HlpYW7N27F7Nnz8aRI0cQExPjln2Ra3l77i9cuIA//vgDCQkJCA0NRWdnJ44fP46VK1fi3LlzePPNN92yr76w4CSPYLfbsXz5chgMBpw8eRIhISGOx55//nn89ttvOHz4sBt3eJ2IoL29Hb6+vgM+t91uh9FoxIULFxAUFDTg89PQwtwDSUlJyMrKwpgxYxxtTz75JMLDw5GVlcWC0wMx98Bdd92FU6dOqdpeeOEFPPLII3jnnXewefNmaDSaAV3zv+Jb6uQRtm/fjn/++Qf5+fmqi881YWFhePHFFx33L1++jM2bN8NisUCr1cJoNCIzMxOXLl1SjTMajYiLi8Pp06cRFRUFnU4Hs9mMDz/80NGnsLAQiYmJAIB58+ZBURQoiuK4GFyb4+jRo5g1axZ8fX2xd+9eAEB1dTUSExMxbtw4jB49GrNnz/5PF0p3vrpKg4+5B2bOnKkqNgFg/PjxiI6Oxi+//HJLc9LQxtz3zmg0oq2tDR0dHQM674AQIg8wadIkMZvNTvdPSUkRAJKQkCDvvfeeJCcnCwBZvHixqp/BYBCr1SrBwcGSmZkp7777rsyYMUMURZHy8nIREamqqpK0tDQBIJmZmVJcXCzFxcVSV1fnmCMsLEwCAwNl/fr1smfPHiktLZW6ujoJDg4WvV4vr776quzcuVOmTp0qPj4+8vnnnzv2YLfbBYAUFBQ4/fwaGxsFgGzcuNHpMTT8MPe9mzNnjtxxxx23NJaGNub+ura2NmlsbBS73S6FhYXi5+cnc+bMcfpvM5hYcNKw19LSIgBk0aJFTvX/8ccfBYCkpqaq2tetWycA5OTJk442g8EgAKSsrMzR1tDQIFqtVtLT0x1t+/btEwBSWlrabb1rcxw5ckTVvnbtWgEgX331laOttbVVTCaTGI1GuXLlioiw4KSeMfe9KysrE0VRZMOGDf0eS0Mbc6+2detWAeC4zZ8/X86fP+/U2MHGt9Rp2Pv7778BAHq93qn+X3zxBQDgpZdeUrWnp6cDQLe3OCIiIhAdHe24HxQUBKvViurqaqf3aDKZsGDBgm77iIqKwr333utoGzNmDFavXo2amhpUVFQ4PT95H+a+Zw0NDVixYgVMJhMyMjL+01w09DD3aklJSTh+/DhKSkqwYsUKAHDpN/T/CxacNOz5+/sDAFpbW53qX1tbCx8fH4SFhanaJ0yYgICAANTW1qraQ0NDu80RGBiIpqYmp/doMpl63IfVau3WHh4e7nicqDfMfXcXL15EXFwcWltbcfDgwW6f7aThj7lXMxgMiImJQVJSEj7++GOYzWbExMQMyaKTBScNe/7+/pg4cSLKy8v7NU5RFKf69fZNP+nHWWeu+EY6eTfmXq2jowNLlizBTz/9hIMHDyIyMnLQ1qbBw9z3LSEhAb///jvKysrctofesOAkjxAXF4eqqip8++23N+1rMBjQ1dWFX3/9VdVeX1+P5uZmGAyGfq/v7MXsxn2cO3euW/vZs2cdjxP1hbm/qqurC8nJyThx4gRKSkpgs9n6PQcNH8x97669stnS0jIg8w0kFpzkETIyMuDn54fU1FTU19d3e7yqqgq7d+8GACxcuBAAsGvXLlWfnTt3AgBiY2P7vb6fnx8AoLm52ekxCxcuxJkzZ1QXzYsXLyIvLw9GoxERERH93gd5F+b+qjVr1uDTTz9Fbm4ulixZ0u/xNLww90BjY2OP7fn5+VAUBTNmzOjXfIOBB7+TR7BYLCgpKcGyZcsQHh6u+uWJb775Bvv27cPKlSsBAFOnTkVKSgry8vLQ3NwMm82GM2fOoKioCIsXL8a8efP6vf60adOg0WiQnZ2NlpYWaLVaPPDAA7j99tt7HbN+/Xp88sknePjhh5GWloZx48ahqKgIdrsd+/fvh49P//8/WFxcjNraWrS1tQEAysrKsGXLFgDAE088wVdNPQxzf7WQyM3NxT333IPRo0fjo48+Uj3+2GOPOQoE8gzM/dWfMf7666/x0EMPITQ0FH/99Rf279+P7777DmvWrOn2mdUhwc3fkicaUJWVlfL000+L0WiUUaNGiV6vl7lz50pOTo60t7c7+nV2dsqmTZvEZDLJyJEjZcqUKfLKK6+o+ohcPeIiNja22zo2m01sNpuq7f333xez2SwajUZ1ZEZvc4hcPdMtISFBAgICRKfTSVRUlBw6dEjVpz/HZNhsNtURGf9/6+kID/IM3pz7a2cs9naz2+19jqfhy5tzf+zYMYmLi5OJEyfKyJEjHc+9oKBAurq6+hzrLorIEP2VdyIiIiLyCPwMJxERERG5FAtOIiIiInIpFpxERERE5FIsOImIiIjIpVhwEhEREZFLseAkIiIiIpdiwUlERERELsWCk4iIiIhcigUnEREREbkUC04iIiIicikWnERERETkUiw4iYiIiMilWHASERERkUv9Dx6a4Fkp7WX0AAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAApwAAAInCAYAAAA1RokTAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvXd0VGee5/1RzjmjLCEhCYQAJZLIORoTDMYGY7tt98zZ7Z7tOT2zvWfn7Zntntmd3gm7c7bb03abYAM2OeeMSEJCKOecQymVKqf3D7buSkgCARJI+PmcU4cqVLr1VOnWvd/7C9+fhclkMiEQCAQCgUAgEIwSlm96AQKBQCAQCASCtxshOAUCgUAgEAgEo4oQnAKBQCAQCASCUUUIToFAIBAIBALBqCIEp0AgEAgEAoFgVBGCUyAQCAQCgUAwqgjBKRAIBAKBQCAYVYTgFAgEAoFAIBCMKkJwCgQCgUAgEAhGFSE4R5impiZ+/etf09TU9KaXIhAIBAKBQDAmEIJzhGlqauJv//ZvheAUCAQCgUAg+L8IwSkQCAQCgUAgGFWE4BQIBAKBQCAQjCpCcAoEAoFAIBAIRhUhOAUCgUAgEAgEo4oQnAKBQCAQCASCUUUIToFA8Nah1+vf9BIEAoFA0AchOAUCwVvFrVu32Lt3L0aj8U0vRSAQCAT/FyE4BQLBW0V4eDgNDQ3cuHHjTS9FIBAIBP8XITgFAsFbRXBwMAsXLuT27dtUVVW96eUIBAKBACE4BQLBW0ZRURHd3d2EhoZy7NgxlErlm16SQCAQ/OgRglMgELxVaDQasrKysLOzQ6/Xc+LECUwm05telkAgEPyoEYJTIBC8VUybNo13332XsrIy7O3tKS4uJiMj400vSyAQCH7UCMEpEAjeOuLj49myZQs9PT1otVouXLhAU1PTm16WQCAQ/GgRglMgELyVxMTEsG3bNhwcHKiuruaHH35Aq9W+6WUJBALBjxIhOAUCwVvLxIkT2bFjB4GBgaSnp3Pq1Kk3vSSBQCD4USIEp0AgeKsJDw/n888/JyAggH379pGZmfmmlyQQCAQ/OoTgFAgEbz3BwcH89V//Na6urvz2t7+loaHhTS9JIBAIflQIwSkQCH4UBAYG8vd///cYjUZ++ctf0t3d/aaXJBAIBD8ahOAUCAQ/GkJCQvjNb36DTCbjV7/6lRCdAoFA8JoQglMgEPyoiI+P52c/+xkVFRX87ne/o7Oz800vSSAQCN56hOAUCAQ/OlasWMGGDRvIz8/nyy+/pL29/U0vSSAQCN5qhOAUCAQ/OiwsLNi+fTtJSUmUlJTwzTff0NLS8qaXJRAIBG8tQnAKBIIfJc7Ozmzbto3AwEDa29vZs2cPjY2Nb3pZAoFA8FYiBKdAIPjREhkZyYIFC3BwcMDKyoq9e/dSV1f3ppclEAgEbx1CcAoEgh81ixYtIigoCEtLS7y8vPj222+pqqp608sSCASCtwohOAUCwY8aKysrNm7ciEajwd3dneDgYPbv3095efmbXppAIBC8NQjBKRAIfvR4enqyevVqCgsLiYuLIzIykoMHD1JcXPymlyYQCARvBUJwCgQCATB16lSmTZvGxYsXWbx4MTExMRw6dIj8/Pw3vTSBQCAY91i/6QUIBALBWGHVqlXU1dVx/Phxdu3ahbW1NUePHkWn0zF9+vQ3vTyBQCAYt4gIp0AgEPxfbG1t2bRpE62trVy/fp133nmHxMRETp48ycOHD9/08gQCgWDcIgRnH379619jYWHR7xYTE/OmlyUQCF4jAQEBLF26lHv37lFeXs7q1auZNWsWZ8+e5e7du296eQKBQDAuESn1p5g8eTJXrlyRHltbi49IIPixkZqaSmVlJSdOnOCLL75g2bJl2NjYcOnSJXQ6HfPmzcPCwuJNL1MgEAjGDSLC+RTW1tb4+/tLN29v7ze9JIFA8AKYTCYMBsMrbcPCwoL169djaWnJ8ePHgSd+nYsWLeL69etcvXoVk8k0EssVCASCHwVCcD5FWVkZEyZMICIigu3bt1NbW/vM52s0Gnp6eqRbb2/va1qpQCAYjPT0dPbt24dSqXyl7Tg5ObFhwwaqqqq4c+cOAPPmzWPFihWkp6dz4cIFIToFAoFgmAjB2YfU1FT27NnDhQsX+MMf/kBVVRVpaWnI5fIhf+cf/uEfcHNzk27z589/jSsWCARPExYWRltbG3/605/o6Oh4pW1FREQwd+5crl27Rn19PQAzZ85kzZo1PHjwgDNnzmA0Gkdi2QKBQPBWY2ESl+hD0tXVRWhoKP/8z//MJ598MuhzNBoNGo1Gevz48WPmz59PVlYWM2bMeF1LFQgE/5fW1laKiorIzc1FpVKxbds2goODX3p7BoOB3bt309vbyxdffIG9vT3w5Lt+8uRJ4uPjeeedd7C0FNfvAoFAMBTiCPkM3N3diY6OfuaIOzs7O1xdXaWbs7Pza1yhQCB4mry8PG7cuEFKSgo+Pj7s3buXgoKCl96elZUVmzZtQqVScebMGSmNPm3aNDZt2kR+fj5Hjhx55bpRgUAgeJsRgvMZ9Pb2UlFRQUBAwJteikAgGCaLFi2SJgYlJSURGxvL4cOHuXPnzkvXXLq7u7Nu3Try8/N5/Pix9P+TJ0/mvffeo6SkhB9++AG9Xj9C70IgEAjeLoTg7MNf/uVfcvPmTaqrq7l79y4bNmzAysqKbdu2vemlCQSCYWJhYcHatWuJjY3lxIkTJCQkMG/ePC5fvszZs2dfuuZy8uTJzJgxg3PnztHW1ib9/6RJk3j//fepqqriwIEDaLXakXorAoFA8NYgBGcf6uvr2bZtG5MmTWLLli14eXlx//59fHx83vTSBALBC2Bpacm7775LZGQkP/zwA5GRkaxfv55Hjx5x4MCBfnXXL8LKlStxd3fnyJEj/aKZkZGRbN++nfr6er777ruX3r5AIBC8rYimoRHm0aNHJCYmiqYhgWAMoNPpOHDgAI2NjezcuRO1Ws0PP/yAh4cH77//Pq6uri+8zZaWFr766isSExNZuXJlv5+ZBaeXlxcffPABDg4OI/VWBAKBYFwjIpwCgeCtxcbGhq1bt+Lj48N3332Hs7Mzn3zyCSqViq+//prm5uYX3qafnx/Lli3jwYMHlJSU9PtZUFAQO3fupLOzk71796JQKEbqrQgEAsG4RghOgUDwVmNnZ8f27dtxdXVl3759WFtb8+mnn+Lk5MQ333xDWVnZC28zOTmZmJgYTpw4QU9PT7+fBQQE8NFHH9Hb28uePXue6eMrEAgEPxaE4BQIBG89Dg4OfPjhh9jb27N3716MRiO7du0iPDycgwcPkpmZ+ULbs7CwYN26ddjY2HDs2LEBjUi+vr7s2rULjUbD7t276erqGsF3IxAIxhJKpZLGxsY3vYwxjxCcAoHgR4GTkxMffvghFhYW7Nu3D61Wy3vvvUdycjJnzpzh8uXLL2Sb5OjoyLvvvktNTQ23b98e8HMvLy8+/vhjTCYTu3fvfuWpRwKBYGxhMpnIysri3/7t3zh58qQYdfschOAUCAQ/Gtzc3NixYwdarZZvv/0WjUbDypUrWbFiBXfv3uXIkSPodLphby8sLIx58+Zx48YNamtrB/zc3d2dXbt2YWNjw+7du/vZKQkEgvFLY2MjX3/9NadPnyY6Olq6mBUMjRCcAoHgR4Wnpyc7duxALpdLFkYzZ87kvffeo7S0lH379r1Qs8/8+fMJCQnh6NGjqFSqAT93dXXlo48+wtHRkT179rxUo5JAIBgbqFQqzp49y1dffYVOp2PXrl1s2LBBTBkcBkJwCgSCHx0+Pj58+OGHtLe3c/DgQXQ6HTExMXz00Ud0dHTw9ddfI5PJhrUts+enVqvl1KlTg6bVnJ2d2blzJ25ubuzdu5eGhoaRfksCgWAUMZlMZGdn82//9m/k5uayfPlyPv/8c4KCgigpKek3gUwwOEJwCgSCHyUBAQFs376dhoYGDh06hMFgIDAwkJ/85CdYW1vz9ddfU1NTM6xtubm5sW7dOoqKisjKyhr0OY6OjuzYsQNvb2/27ds3aApeIBCMPZqbm/nmm284efIkkZGR/Pmf/znBwcFcvHiRf/qnf+LgwYPk5eW96WWOeYTx+wgjjN8FgvFFRUUFBw4cICYmho0bN2JpaYlKpeLQoUPU1tbyzjvvEB8fP6xtnT17luzsbD777DN8fX0HfY5Wq+XAgQM0NDSwbds2IiIiRvLtCASCEUKtVnP9+nUyMjLw9vYmLS2Nrq4ucnJykMlkuLi4EB8fT0JCAn5+fm96uWMeIThHGCE4BfBkwo1MJsPf3/9NL0UwDIqLizl06BBTp05l/fr1WFhYYDAYOHXqFDk5OSxatIi0tLTnNgXodDq++uorAH7yk59gY2Mz5PN++OEHqqur2bJlC9HR0SP+ngQCwcthMpnIzc3l8uXLKBQKgoODMZlM1NXVYWtrS2xsLFOnTiU8PBxLS5EoHi5CcI4wQnAKWltbOXLkCGq1mp/97GdYWVm96SUJhkFeXh7Hjh0jOTmZlStXYmFhgclk4tatW1y/fp3p06ezZs2a5/49W1tb+eqrr0hISGDNmjVDPk+v13PkyBHKysrYuHEjcXFxI/2WBALBC9LS0sLp06d5/Pgxtra2ODk5YW1tTUREBAkJCcTExGBra/umlzkusX7TCxAI3hZMJhOPHj3iwoULeHh48MEHHwixOY6Ij49Hq9Vy+vRp7OzsWLx4MRYWFsyfPx93d3dOnTpFd3c3W7Zswd7efsjt+Pr6smLFCk6fPk1ERMSQQtLa2prNmzdz/Phxjhw5wjvvvMPUqVNH6+0JBIJnoFarOXLkCBcuXKC3t5fQ0FCio6OZOnUq8fHxuLi4PPP3TSaTsEV6DkJwCgQjgFqt5vTp0xQUFJCUlMTy5cuHTKcKxi6JiYloNBouXbqEnZ0dc+fOBSAhIQE3Nze+//57vvnmG95//33c3d2H3M6MGTOoqKjg1KlTTJgwYcjnWllZ8e6772JjY8Px48fR6/UiMyIQvEY6Ozs5ceIEJ0+epKenh7i4OLZv386MGTOGVZfZ09PDzZs30Wg0bNq06TWsePwiBKdA8IrU1dVx9OhR1Go1W7ZsEanRcc7s2bPRarVcuXIFW1tbUlJSgCcm75988gkHDhzg66+/5v3332fChAmDbsPCwoK1a9fy5ZdfcuzYMT766KMha70sLS1Zt24d1tbWnDp1Cp1OR2pq6qi9P4Hgx45araagoID09HSuX7+OXC5n+vTpfPDBB0ydOnVYdZkqlYr09HQePHiAra0taWlpIsr5HITgFAheEqPRyJ07d7h+/TqBgYF89NFHz4x6CcYP8+fPR6PRcO7cOWxtbZk2bRrwxL/z008/5eDBg+zevZtNmzYxadKkQbfh4ODAxo0b2bNnDzdv3mThwoVDvp6FhQWrVq3CxsaG8+fPo9PppOiqQCB4dQwGA+Xl5eTk5FBYWEhlZSUKhYKYmBh27Ngx7ECBTqfjwYMHpKenYzQamTNnDrNmzXpmmY3gCUJwCgQvgVwu59ixY1RXV5OWlsaCBQtEt+JbhIWFBcuWLUOr1XLy5ElsbW2lE5KTkxM7d+7k2LFjfP/996xcuVKKgj5NSEgICxYs4Pr164SHhxMWFvbM11y6dCk2NjZcuXIFnU7HggULRMREIHhJTCYTjY2N5OTkkJ+fj0KhwGg00tXVRVhYGEuWLGH27NlYWz9fChkMBrKzs7l58yYKhYKkpCTmzZsnJgy9AEJwCgQvSFlZGcePH8fKyoodO3YQHh4+6PNEemV8Y2FhwerVq9FqtRw9ehQbGxuioqIAsLGxYfPmzVy+fJlz587R0dHBsmXLBr3omDt3LpWVlRw7dowvvvgCR0fHZ77mwoULJdGp1+tZsmSJ2I8Eghegq6uL3Nzcfn6Z4eHhNDc3I5PJmDNnDitWrBhWRspkMlFYWMi1a9eQyWTEx8ezaNEiPDw8Rv+NvGUIW6QRRtgivb3o9XquXr3KvXv3iIqK4p133sHJyWnA87RaLenp6TQ3N7Nt2zYhFsY5BoOBw4cPU15ezgcffDAgSpmRkcH58+eZNGkSGzduHLRZrKenhy+//JLg4GC2bt06rH3iwYMHnD9/npSUFMmmSSAQDI65LjM3N5eamhrJLzMmJoa6ujoePHiAq6srK1euHLbvbWVlJVeuXKGxsZGoqCgWL14svJVfASE4RxghON9OZDIZR44cobW1laVLl5KamjpAABiNRh4/fsy1a9dQq9XMmjWLBQsWCGuk14zJZEKlUj0zkvii6PV6Dhw4QH19PTt27CAoKKjfz0tLSzly5Ag+Pj5s27Zt0DRbSUkJBw8eZNWqVUOm4J8mKyuLM2fOMG3aNNauXSvKNgSCPpjrMnNzcykpKcFgMEh+mZMmTaKiooKLFy+iUCiYO3cuc+fOHVb6vLGxkStXrlBZWUlQUBBLlix5ZjmMYHgIwTnCCMH59pGTk8PZs2dxcXFh06ZNBAQEDHhOZWUlFy9epKWlhfj4eBYvXiwaiN4Qly9fprS0lE8//RQ7O7sR265Wq+Xbb7+lvb2djz76aIBlSlNTEwcOHMDKyort27fj4+MzYBvnz58nKyuLTz/9dNiRktzcXI4fP86UKVN45513xAWM4EfN03WZSqUSPz8/EhISJL9MmUzG+fPnKS8vJzo6mpUrVw4rBd7e3s61a9coLCzEx8eHxYsXM2nSJJFdGCGE4BxhhOB8ezB3Kefk5JCQkMCqVasGCJj29nYuX75MSUkJwcHBLF++fED0S/B6aWtr4+uvvyYsLGzY6evholar2bt3Lz09PXz88cd4eXn1+3l3dzcHDhygu7ub9957b0B9r16v5+uvv0av1/PZZ58Ne2JJYWEhR44ckdL2w4nSCARvE4PVZT49x1yn03H79m3u3LmDi4sLK1euHNJFoi9mL83s7GxcXFxYuHDhsO2RBMNHCM4RRgjOt4PGxkaOHj2KXC5n9erVJCQk9Pu5Uqnk5s2bPHz4EFdXV5YsWcLkyZPFlfAYoaysjAMHDjB37lwWL148ottWKBTs2bMHrVbLrl27BkSyNRoNhw4dorq6mnXr1g3Yd9rb2/n3f/934uPjWbdu3bBft7S0lEOHDhEeHs6WLVvEYAHBW8/TdZk2NjbExsaSkJDQb465yWSipKSECxcuIJfLpfT5874jg3lpJicniwu6UUIIzhFGCM7xjclk4v79+1y5cgVfX182bdrUL4plMBjIyMjg5s2bmEwm0tLSmDlzpjhAjUHu3LnD5cuX2bRpE1OmTBnRbcvlcr755hssLCzYtWvXgLF3BoOBs2fP8ujRIxYsWMD8+fP7XYxkZ2dz8uTJF15bZWUlBw8eJCgoiG3btomZzoK3jqHqMqdOnUpsbOyAfb6jo4Pz589TVlbGxIkTWbVqFZ6ens98jae9NGfNmiW8NF8DQnCOMEJwjl8UCgUnTpygrKyMWbNmsXjxYklImq+gL126RGdnJ4mJiSxcuHDQLnXB2MBkMnH8+HGKiorYtWvXkFOBXpbOzk52796Nvb09H3300YAmJZPJxJ07d7hy5QoJCQmsW7dOqr80mUwcPXqUsrIyvvjiixeyWKmpqeHAgQP4+vqyfft2cZIUjHuGU5f5NDqdjjt37pCeno6TkxMrVqwgJibmmVmmvl6aSqWSxMRE4aX5GhGCc4QRgnN8UlVVxbFjxzAYDGzYsEHyW4QnzSAXL16kurqayMhIli9fjq+v7xtcrWC46HQ69uzZg1wu57PPPhvxE0t7ezu7d+/Gzc2NnTt3DtqklJ+fz/HjxwkODua9997DwcEBeJIu/Pd//3ecnJzYtWvXCzUDNTQ08O233+Lp6ckHH3wwoh35AsHrYjh1mYNRWlrK+fPn6enpYfbs2aSlpT0z2t/XS7Ojo4P4+HgWLlwovDRfM0JwjjBCcI4vjEYj169fJz09nbCwMN59913parqnp4dr166Rk5ODt7c3y5cvZ+LEiW94xYLn0dXVRU9PDyEhIcCTv+NXX32Fu7s7O3fuHPHyh+bmZvbs2YOfnx8ffPDBoHVjtbW1HDx4ECcnJ7Zv3y6d6Orr6/nmm2+YPXs2S5YseeHX3bdvHy4uLnz44YciSiMYFwy3LnMwOjs7uXDhAiUlJURERLBq1Sq8vb2f+XrCS3PsIATnCCME5/ihq6uLo0eP0tDQwMKFC5kzZw6WlpZotVru3r3LnTt3sLGxYeHChSQmJoqOxXHC+fPnefjwIYsXL2b27NlYWFhQX1/Pnj17pEadkW7uqq+vZ9++fQQHB7Nt27ZBRa1MJmP//v1oNBq2bdsmuRmkp6dz9epVPvzwQyIiIl7oddva2ti3bx92dnbs2LEDV1fXEXk/AsFI8qJ1mU+j1+u5c+cOt2/fxtHRkeXLlxMXF/fM73FDQwNXr16lsrKS4OBglixZQmho6Ei/NcELIATnCCME5/igsLCQU6dOYW9vz8aNGwkODsZkMpGbm8vVq1dRKBTMnDmTtLQ0USM3zjAajVy7do309HSioqLYsGEDjo6O5OTkcPz4cVasWMHMmTNH/HWrqqrYv38/UVFRbN68edALFKVSycGDB2lqamLjxo3ExsZiMpn49ttvaW1t5ac//ekL1wV3dHSwd+9eLC0t2blzp/B/FYwJXqYuczDKy8s5d+4cXV1dzJo1i/nz5z9ToL4JL82amhp6enqIj48ftdd4GxCCc4QRgnNso9PpuHDhAllZWcTFxbFu3Trs7e2pqanhwoULNDU1ERcXx9KlS1+pvsdoNNLZ2TnAp1Hw+jDPvLe2tmbz5s0EBwdz6dIl7t27xwcffEBkZOSIv2ZpaSnff/898fHxvPPOO4Oe5PR6PSdOnKCgoIBly5Yxc+ZMent7+fLLL5kwYQLvv//+C58cu7q62LdvHwaDgR07doj97keIRqPB0tLyjdtlDVWXOXXq1BdKZXd1dXHx4kWKiooIDw9n1apVgw5TMPO6vTRNJhOVlZXcunWLmpoawsLC2Llzp7DGewZCcD6D//7f/zv/+T//Z372s5/xr//6r8P6HSE4xy6tra0cOXKEjo4OVq5cyYwZM+js7OTy5csUFRURGBjI8uXLpdq/l0GhUJCVlUVWVhYAP/vZz0Qq/g3S3d3NkSNHaGhoYPHixcycOZODBw/S0NDAp59+OirCLD8/n6NHj5KYmMjq1asHPQGZTCauXr1Keno6KSkprFixgoqKCvbv38/y5cuZNWvWC7+uXC5n7969qNVqduzYIRrbfmScOXOGiooKVq9e/dprzV+lLvNp9Ho99+7d49atW9jb27N8+fJnehy/bi9Nk8lEWVkZt27dor6+ngkTJjB//nyio6OF2HwOQnAOwcOHD9myZQuurq4sXLhQCM5xjMlkIisriwsXLuDp6cmmTZtwdXXl5s2bZGRk4OTkxJIlS4iPj3+pA4bJZKK+vp6MjAwKCwuxtLQkPj6e5OTkQcdgCl4vBoOBa9eucefOHaKjo1mxYgX79+/H0tJyxMdfmjH7bM6ZM4clS5YMuV9lZWVx9uxZJk6cyKZNm7h+/ToZGRl88sknL2XjpFAo2LdvH3K5nA8//FDsfz8iZDIZZ8+epbKykilTprB8+fJhp61fhletyxyMiooKzp07R2dnJ6mpqSxYsGDI7+dgXpqzZ88ele8zPDnOFxUVcevWLZqbmwkJCWHevHlERkYKoTlMhOAchN7eXmbMmMHvf/97fvOb3zBt2jQhOMcpKpWK06dPU1hYSFJSEkuWLCE3N5cbN26g1+uZO3cus2bNeqk0lE6nIy8vj4cPH9LU1ISnpydJSUlMnz5dsr4RjB1KS0s5fvw4tra2LFq0iPPnzxMSEsLWrVtHJQp9//59Lly4wKJFi5g3b96QzysvL+fw4cN4enry3nvvcejQIdRqNZ9//vlLnTxVKhXfffcdMpmMDz74QIxa/RFhMpnIy8vj4sWLGAwGlixZQmJi4ogJopGqy3yanp4eLl68SEFBAaGhoaxevXrICP3r9tI0Go3k5+dz+/Zt2traiIiIYN68eYSGhgqh+YIIwTkIO3fuxNPTk3/5l39hwYIFzxScGo0GjUYjPX78+DHz588XgnMMUFtby9GjR9FoNKxduxYbGxsuXbqETCZj+vTpLFy48KUOkB0dHTx8+JDHjx+jVquJiooiOTmZiRMnigPQGKdvin3SpEkUFRUxd+7cF7YkGi63bt3i2rVrz21UamlpYf/+/VhYWLBixQqOHz9ObGwsGzZseKnX1Wg07N+/n+bmZrZv3y66c39kqFQqrly5QlZWFkFBQaxdu/aZvpbPY6TqMp/GYDBw//59bt68ia2tLcuWLRsy0/S6vTQNBgO5ubncvn2bjo4OoqOjSUtLIzg4eFRe78eAEJxP8f333/Pb3/6Whw8fYm9v/1zB+etf/5q//du/HfD/QnC+OYxGI+np6dy4cYOgoCDmzp3L/fv3qaysJDw8nOXLl7/wQdJoNFJeXk5GRgbl5eU4ODgwY8YMkpKShHnwOKNvit3CwgKtVsvWrVtHpcPUZDJx5coV7ty5w7p16555TOjp6eHAgQN0dnYSHx9PZmYm7777LlOnTn2p19ZqtXz//ffU1dWxdevWUWmSEoxtamtrOX36NDKZbFgd3n1Rq9UUFhaSk5PzynWZg1FVVcW5c+dob2+X0udDOYJUVFRw9erV1+Klqdfryc7OJj09ne7ubmJjY5k3b54oTxkBhODsQ11dHUlJSVy+fFk6yIsI5/hCLpdz7NgxqqurSUpKQqfTkZOTg6enJ8uWLXvhwm6lUkl2djaZmZl0dnYyYcIEUlJSmDx58hvvBhW8GiUlJRw/fpzS0lK8vLz4i7/4ixEffwlPROe5c+fIzMxk48aNz5ydrtFoOHLkCBUVFTg6OqLVavniiy+eOxt6KPR6PYcOHaKiooItW7YwadKkl30bgnGKwWDg7t273Lx5E2dnZ1avXt1vktrTz326LjM8PJyEhISXrst8mp6eHi5dukR+fj4hISGsWrVqSPH4Or00tVotWVlZ3L17l97eXqZMmUJaWho+Pj7odDqUSiUKhQKlUjnofTc3N1atWjUqa3tbEIKzDydOnGDDhg39RswZDAYsLCywtLREo9E8d/ycqOF8c5SWlnLixAkAQkNDqaiowMrKigULFpCUlPRCowMbGxvJyMggPz8fk8nElClTSE5OJjAwUKTN3yK6urr44YcfOHfuHKGhofzmN78ZFfN0k8nEiRMnyMvL47333num8DMajZw/f5579+7R1dVFfHw8n3766Qvtv30xGAwcPXqU4uJiNm7cyOTJk1/2bQjGMR0dHZw9e5aKigomT57MihUrcHFxGbIuc+rUqcTHx4/Y98FgMJCRkcH169exsbFh6dKlJCQkDHo8HU0vTZPJhEqlkgRjV1cXmZmZZGZm0tvbS2BgICEhIVhZWUliUq/XD9iOnZ0djo6OODo64uTkhL+/P4sWLXrl9b3NCMHZB7lcTk1NTb//27VrFzExMfzVX/3VMyMTZsaS4CwtLaWyshIfHx98fX3x8fF5K03M9Xo9V65c4d69ezg4OGBhYYFGoyE1NZV58+YNu4FHr9dTUFBARkYGDQ0NuLm5kZyczPTp01/YjFswfjAYDJw+fZrf//73hIWF8U//9E+j0t1rNBo5fPgwZWVlvP/++8+cKmQymbh37540CWvnzp2sXLnylV7bLHjfeecdEhISXnpbgvGLyWQiPz+fCxcuIJfLCQwMRKvVjmhd5mBUV1dz7tw52traSE5OZtGiRYOei17GS1Ov1z83+tj3vkqlwmQyodPpaGhooL6+HqPRSGhoKHFxcXh7e+Pk5NRPTA52f7Rsl95mxrXgNBgMHD58mOvXr9Pa2srf/d3fER8fT3d3N1evXmXOnDmvVCgNz0+pP81YEpzm9EBHRwfmP7Orqys+Pj79RKivr++oWUmMNjKZjCNHjlBWVoaNjQ22trbExsaydOnSYXssmq9wHz16hFKpJDIykpSUFKKiooSH5jikqamJlpYWpk2b9kK/d+vWLX7zm98QHBzM3/7t345Kd7der+f777+ntraWDz/88LkNCIWFhfzrv/4rLS0t/OY3v3mlOlOj0ciZM2d49OgRa9asISkp6aW3JRifmOsyHz58yI0bN2hpaSEmJoYdO3aQkpIy4se73t5eLl26RG5uLkFBQaxevXrQWkizl+b9+/extLQkKSmJ6OhotFrtkOLR/Fir1Q7YnrW1tSQOnxaMFhYWlJSUUFJSgrW1NSkpKSxcuBA3N7cRfe+CgYxbwdnV1cWKFSvIyMjA2dkZhULB5cuXWbRoEQaDgdDQUHbs2MHf//3fv9LrjGfBaUav19Pe3k5bWxutra3Sv52dnf2EaF8BahalY1mI5uTkSB3HHh4eREdHs3z5csLCwp77u+YpERkZGZSWlmJnZ8e0adNITk4WU1rGOdevX+fmzZvMmDGDVatWvVAkIj09nf/xP/4HAQEBfPzxx6Smpo54CYVOp+O7776jpaWFnTt3PrcZoa6ujl/+8peoVCr+9//+3680mMBkMnHhwgUePHgwaiM+BWOLZ9VlOjk5cenSJdrb25k5cyYLFiwYkTpNo9FIRkYGV69elTwyIyIi+qWylUol3d3d5OfnU1BQgEajwd/fn8DAwAHfWQcHh+dGHPveH+w9yOVy7ty5Q1ZWFhYWFqSkpDBz5sxRs1MSDGTcCs4vvviC/fv3c+zYMaZPn46vry9XrlyRaih+/vOfc+PGDR4/fvxa1zUWBedQ6HS6QYVoV1eXJETd3NwGFaIjcVB6WTQaDSdOnODs2bPo9XoSEhJYvnz5sMaYqdVqHj9+zMOHD5HJZPj5+ZGSkkJ8fPwbfU+CkSU7O5uzZ8/i4+PDli1bXshJ4MKFC+zfvx8PDw9mz57N+vXrR9xXVaPRsHfvXrq6uti1a9czR/YB1NfX8x/+w3/Azs6Of/zHf3xl0WmecrR48WLS0tJeeluCscOjR49oampixYoVWFpaDrsu02AwcO/ePW7cuIGTkxOrV68mOjp6wPbNaejnpa7r6urIzMyko6MDX19fwsPD+zVYWllZYW9vj0wmo6amBpPJRFxcHMnJyXh7ew8QkA4ODi9dvwxPglN37tzh0aNH2NjYkJqaSmpqKo6Oji+9TcHLMW4Fp7+/Px9//DF///d/j0wmw8fHp5/g/P3vf8+vfvUrurq6Xuu6xpPgHAqdTkdbW9ugQtSMu7v7oEJ0tDu36+vr+dd//VcKCgqYOHEiGzduZPbs2c8Vi83NzTx8+JDc3FwMBgNxcXGkpKQQHBwsmoDeUpqbmzl06BBKpZINGzYMu0PbaDRy8OBBsrKycHZ2xtPTk82bNxMYGDii61MqlezZswe1Ws2uXbueK4oLCwv51a9+hY+PDz//+c9fqfnHZDJx69Ytrl+/zrx581i4cKH4Hoxz7t69y8mTJ7GyssLb25uenh6cnZ2ZOnXqoHWZRqMRlUolCcbGxkYuX75MVVUV/v7+xMXFAfQTlc9qnrG0tKSqqorGxkb8/f1ZuHAhISEhA8RjRUUF169fH3UvzY6ODm7fvk1OTg729vbMmjWL5OTkt7KPYbwwbqteu7u7CQ8PH/LnOp1u0C+H4PnY2NgwYcKEARYxWq12gBDNz8+nu7sbAAsLi35C1CxGvb29X1mImkwmjhw5wr59+wDYtm0b77zzzjM7KA0GA0VFRWRkZFBbW4uLiwtz584lMTFRpFF+BPj7+/PZZ59x8uRJDh48yJw5c1i8ePFzo+CWlpZs3LiRzs5OlEoltra2fPPNNyxbtoyUlJQRE2aOjo7s2LGDb775hn379rFr165n7s9xcXH89Kc/Zffu3fzpT3/i3XffZc6cOS+1HgsLC+bPn4+1tTWXL19Gp9OxbNkyITrHMZcuXeLmzZuoVCoiIiLYvHkzYWFhqNVqHj58OCASaW6eeRpPT0+Ki4spKytjxowZTJkyBRcXFyny+HT62tLSkszMTK5du4afnx/bt29n+vTp/b5n5hKmw4cP09TURFRUFJs3bx4VL822tjZu375NXl4eTk5OLF26lMTERJHBGgOMW8EZGRnJo0ePhvz5pUuXpCu0Hyt3794lKysLX19f/Pz88PX1xdfXF09Pz5cqDre1tSUwMHBApEej0dDe3t4vGpqXl9dPiHp4eAxoVPL29h5WfV11dTX/+I//SGFhIYmJifz85z9/ZrNFT08PWVlZZGVl0dvbS1hYmORB+CqpGcHIodVqX9sF4Zo1a/Dx8eH69etUVFSwYcOGYXWhr1+/nt27d+Pp6cmUKVM4deoUJSUlrFmzBmdn5xE5gTk7O7Njxw52794tic5nOSIsWbKE2tpacnJyuHDhAp2dnaxateql9+s5c+ZgY2PDuXPn0Ol0rF69WojOcYq7uzteXl709PSQn59PRUUFs2fPZtKkSZJIdHNzIyAgYMjaR7PLh1qt5sqVK2RmZtLS0kJKSsqg4rCuro5z587R1NREYmIiixcvHpCqbmho4MqVK1RVVREcHMyuXbtGxUuzubmZW7duUVRUhKurKytXrmT69OnCL3kMMW5T6v/6r//KX/3VX7Fv3z4WL16Mr68vV69eZfbs2fzd3/0d//2//3f++Mc/8sknn7zWdY2llHp1dTXFxcW0trbS0tKCQqEAnnTwmUWfWYj6+fnh7Ow8oicbjUYzIC3f1tZGT08P8ESIenp6DhCiXl5eWFtbo1Ao+P777zl06BD29vZ88cUXrFixYsixZ9XV1Tx8+JDi4mKsra1JSEggOTl5yJm8gjeDVqslIyOD3t7eUdm+wWBAoVAMiBa2trZy+/ZtTCYTaWlpw3KwaGxs5Pr168TGxuLt7c39+/extbVlxYoVrFq1asSiJjKZjN27d+Pi4sLOnTufmfbr7Ozkyy+/xMbGBoVCQWRkJJs3b36lBr/s7GxOnTpFQkIC69atE+4M45CmpiZ6e3uxtramsLCQ/fv309TURFpaGtu2bWPSpEkv/Hetq6vj9OnT0jSghQsXYmtri0Kh4MqVK2RnZxMQEMDq1asHuDr09dL09fVl8eLFLzx4YzjU19dz69YtSktL8fDwIC0tjYSEBBFcGIOMW8FpMpn47LPP+NOf/oS7uztdXV34+fkhk8nQ6/V8/vnn/OEPf3jt6xpLgvNpFAoFLS0ttLa2SiK0tbUVnU4HPOkEfDoa6uvrO+I1L2q1elAhKpfLped0dXWRk5NDd3c3ycnJ/OIXvyAyMnLAQUSj0ZCbm0tGRgZtbW34+PiQnJxMQkLCmO6w/zGjVCq5desWtra2o/I3unDhAkVFRXzyyScDRKdSqeTmzZtSRGbq1KnPPQHm5+fz4MED5s+fj6+vL5cvX6a9vZ1PP/2UtLS0ETuBtrS0sGfPHry9vfnwww+fKWbz8/M5cuQIiYmJFBQU4Obmxvvvv/9K1i55eXkcP36cuLi4AQMwBGOfO3fuUFlZ2S+TderUKa5cuYKLiwtJSUnMnDmT6dOnv9D3zjzv/MaNG9jb20tDNUwmE4sXLyYxMbGfkO3p6ZEadofrpfky1NTUcOvWLSoqKvD29mbevHlMmTJFXCyNYcat4DSTnp4u+TAajUYiIyPZsmUL8+bNeyPrGcuCczBMJhNdXV2S+DT/K5PJMBqNwJNO9b4i1M/PD29v7xE/ISmVSu7evcvx48fJysrC0tKS+Ph4/P39pWlPXl5eUpd8U1MT9fX10ozflJQUwsLCREpwjGMWnC4uLqNSwH/v3j0OHDhAZGQkn3322YAUn9FoJCsri0ePHhEaGvrMGc7w5Dty8+ZNysvLWbduHY6Ojty6dQu1Wi1FBEfqfTQ0NLB3716CgoJ4//33n1lycvLkSfLz89m4cSMXLlzAYDCwffv2V6qLKyoq4siRI0ycOJHNmzcLc+txRG5uLoWFhf0s7ywsLOju7qa0tBRbW1spgzRnzhxmz56Nu7v7sLdfUFDAP/3TP1FZWUlycjL/6T/9p36WXmYvzQcPHmBra8u8efNISkoa0X3IXAt669Ytampq8PPzY968ecTGxgqhOQ4Y94JzrDHeBOdQmL07n46GmusyLS0t8fb27idCfX19cXd3fynB19DQwMWLFyU7jSlTpvDRRx8RFBSEUqmkra2NlpYWHj16RFZWFtXV1VhYWBAQECDVlT7dNe/p6SmiNGOQ0RacJpOJK1eucPLkSSZPnszHH388aESnpqaG69evY2dnx9KlS/H29h5ym3q9njNnztDb28uqVaswGAz4+Phw6dIlHB0d2bJly3P9NIdLdXU13333nXTxPNQ+rNVq+eMf/4i1tTVbt27l0KFDtLe3s3nz5iFnZQ+HsrIyfvjhB0JDQ9m6dauogRuHaLXafsfvvLw8rl27hk6nw9PTE5lMhq2tLZMmTWLWrFlMmTIFPz8/PDw8Bhy/lUolV69e5dGjR/j6+hIVFcXjx4/RarUsXryYadOmkZGRwZ07dyTPzdmzZ49o9sJkMlFWVsatW7eor68nMDCQefPmjUqKXjB6CME5wrwtgnMo1Gr1ABHa0tKCWq0GkK6in07ND9UIYZ4KlZ2dTXt7OzY2NqSlpbF27VpJjPT29vLo0SMyMzPp6ekhJCSE5ORkwsLCkMlkA9LzSqUSeOL35uXlNagQFVfDb47RFpzw5AR15swZzp8/T3JyMh9++OGgkRa5XM7ly5fp6Ohgzpw5xMTEDHkCUygUHD9+HDs7O9LS0li4cCFqtZojR47Q0tLCihUrSEpKGpETYHl5OQcPHpTS20Ptr83NzXz11VfSuMBjx45RUlLCqlWrSE5OfunXr6qq4uDBg0yYMIFt27ZJ4sFkMqHX69Fqteh0OunW97G1tfWgPo6CN0tbWxt79+6lo6OD5ORkampqyMzMpLm5GQcHB4KCgpgwYQJ+fn74+fnh4+NDW1sbubm5WFlZsXjxYpKTk7G0tEStVnPp0iXOnDlDZ2cn4eHhLFy4kLS0tBF1ADGZTBQVFXHr1i2am5sJCQlh/vz5RERECKE5Dhm3gjM8PPy5O5yFhQUVFRWvaUVPeNsF52CYTCbkcnk/EWoWgOZOZGdn535C1N3dndLSUh4+fIhWq0Wj0eDi4sKqVauYPn068KRg/eHDhxQWFkrp9aG6JfuiUCgG1Ie2traiUqkAJJ+6p4Woh4eHEKKvgdchOOFJ6vzIkSNcv36d+fPns2XLlkH/vnq9nvv371NQUEB0dDRz584dMqrX2trKsWPH8Pf356//+q9xcnJCr9dz6dIlMjIymDx5MuvWrRuR6E5hYSGHDx9m+vTprF27dsjj3YMHDzh//rw0n/3cuXPcv3+fxMRE5syZg16vHyAKn/dYq9XS0tLC3bt3cXR0lEZqmuu9n4Wvry9/9md/9srvX/BidHV1YWVl9UwHBqVSyQ8//EB9fT3r1q1j6tSplJWVcf36dQoKCgAICAjAaDSSmZlJZ2cnfn5+TJ48meDgYOlY2dXVRV5eHo2Njcjlcjw9PVmwYAELFy4ckX3faDSSn5/P7du3aWtrIyIignnz5g1ripxg7DJuBedHH3004ABsMBioqanhzp07TJkyhenTp7N79+7Xuq4fo+AcCqPRSEdHRz8R2tzcTFFREZWVlej1ery8vDCZTAQFBbFx40YiIiJobGwkKyuL5uZmPD09SU5OZtq0aa807cVkMg0pRM3RWWtr635C1CxG3d3dhRAdQV6X4IQnYnL//v3cv3+fVatWsWbNmiGFmzll5+rqytKlS4esbysoKODSpUt8/PHH0qAJeCIQT548iZOTE5s3bx40xW4wGIYl9sz3zdGdqKgopkyZMiC6qNVq0Wq1UinKjBkzsLOzo76+nvLycnx8fIiJiRmQlre2tsbGxgYbGxtsbW2l+08/NjeAuLm5sWbNGlxdXYd8bt/HopTl9XP69GmysrJwc3MjKChIugUEBPSL7hsMBs6cOUN2djZpaWksWrQICwsLWlpauHnzJqdPn6axsZHo6Gi2bduGn58fLS0ttLS0UFhYSGZmpiQy4+PjiYiIQCaTUVlZiZeXFxs3bmTq1Kkv9R4MBgM5OTmkp6fT0dFBdHQ0aWlpz7TBE4wfxq3gfBY5OTksX76c7777jiVLlrzW1xaCc2iqqqq4ePEiDQ0N+Pv709raSkVFBX5+fjg5OVFZWUlzczNGo5Hw8HCpi9ic4nFxcRnxNIrJZKK3t3fQrnmzELWxscHb23uAfdPL1qv+2HmdghOeROW++eYbHj9+zKZNm1i8ePGgzzOZTLS1tXHp0iV6e3tJTU0lKCgIvV4v3XQ6HUqlkszMTHp7e1myZAm+vr6S+Ovs7OTu3bt0dnYyadIkJkyY0E8kmhvxnkdf8dbY2EhRURFxcXFMnTp1ULFnNBo5deoUXl5evPPOO9jb21NXV8fFixfx9/dny5YtuLu7S89/kQuolpYW9u3bh5OTEzt27BBDE8Yocrmc+vp66dbY2IhOp8PKygp/f/9+ItTNzY379+9z+fJlYmJieOeddygsLOTy5cuoVCp8fHyQy+WoVCqio6MJDw+npKSE6upqAgMDpQsbcyChtbWVxsZGSktL6ejoICwsTIpImjNbXl5eQ16I6PV6srOzSU9Pp7u7m9jYWObNmzdiddGCscFbKTgB/r//7//jzJkzZGVlvdbXFYJzIO3t7Vy+fJmSkhKCg4OZMmUKd+/eRaVSMW3aNDo6OigvL8fa2prQ0FACAgJQqVRSZFSr1QJgb28/wDt0NGyb4P+VCQwmRDUaDfBEFPSNhJr/tba2JicnB5lMxrp160Z8beOd0RacmZmZkj2Mvb09er0elUrFuXPnaGxsZObMmYSFhUkCsq+gNJlMUqaks7MTX19fgoKC+l1YGAwGDAaDNBZw3rx5eHh4SGLOysqK/Px8KisrpVSgk5PTc6OJ5sfW1tYDLmTS09O5cuUKy5YtY/bs2YO+7+rqavbu3cvChQsll47GxkYOHDiAjY0N27dvf2Zj1LNob29n79692NrasmPHjleyXxK8HgwGA62trf1EqEwmA8DJyYmgoCCMRiPp6elSbXxSUhLLli3DxcUFvV7PrVu3OHDgAOXl5fj7+7N161ZWr149aMmJeRLd/fv3uXjxIp2dnQQEBEiNSH1r6s03d3d3KisruXfvHr29vUyZMoW0tLRx552s1Wrp7u7Gx8fnTS9lTPPWCs7f//73/OIXv5Dq9l4XQnD+P8yehw8fPsTV1ZVFixbR0dHB5cuXMRqNuLq6otFoCAwMJDk5mSlTpgxo7DDbNj3dqNTe3i5Fi1xdXQe1bRoNSxeTyURPT88AIWq+NTU10djYiFarxcfHh1OnTon04lOMtuD83e9+x4MHD7C2tsbV1RV/f39CQkLw8PDg2rVrdHR0sGLFCqKiorC2tpZuNjY2/R5XVlby+PFjfHx8WLx4MW5ublhbW6PT6ejt7SUlJYUDBw4A8Omnnw54LwUFBZw6dQpnZ+cRGeN39epVbt++zZo1a0hKShr0OdeuXSM9PZ1du3ZJaciuri4OHDiAXC7nvffee+k6uI6ODmm07M6dO0dl/rXg5VGpVBiNxmdOqlIqlTQ0NFBfX09lZSW3b9+mtLSUrq4uQkJC2Lp1KwkJCbi5uZGXl0dOTg7Ozs5ER0fT1dVFeXk5zs7OJCcnk5SUNORrqdVqrl27xsOHD/H09CQ1NRULC4t+0dDy8nLq6+sxGo3ExMQwc+ZMJk6cKB3HR3oQyWjQ1tZGZmYmOTk5uLm58dOf/vRNL2lM81YKTplMxrJly+jp6aGsrOy1vrYQnE+urB8+fMjNmzcxGo2kpaURFxfH3r17efDgAY6OjoSHhxMfH09ycvKAUZnDfQ2z7UffGtGuri4AybPz6Y75wWw/XhTzKM/29nYaGxt59OgReXl5VFZW0tnZiV6vx8rKCh8fH+7cuSPqP59itAWn+WRaXl5OdXU1bW1tGAwGHB0d8ff3p7y8HKPRyOeff05iYuIzL0xaWlq4cuUKer2exYsXExQUhFqtRi6XM2/ePFQqFV999ZXkm/n037qjo0OyK1qxYgWJiYkvvf+ZTCYuXLhARkYGGzZsGLROzmg0snv3bnp6evjpT38qfb5qtZpDhw5RU1PD+vXrX7rGrru7m71796LX69mxY8dLR0wFI8/JkycpLy9n48aNz7yoMJlM5ObmcvnyZTQaDdOmTcPFxYXDhw9TWVmJlZUVvb292NnZkZKSQlpaGqGhoQQGBqJUKnnw4AGPHz/GZDIxdepUZs6cOWREsqGhgdOnT0vjMWfNmsXjx4+5d+8eCoWCsLAwQkJCUKlU0jH86UEkT99epZZ/JDAYDBQXF/Pw4UOqq6txcnJi+vTpJCYmiouw5zBuBWffYv2+dHV1UVxcjFar5dtvv2Xbtm2vdV0/ZsFpMpkoKSnh0qVLdHZ2kpiYyNy5c7lx4wbffvutVBe3fPlypk+fPsCQeyTQaDSD2jaZI902NjbSHHcPDw9cXFyk2tDu7m46Ojro7Oyks7OT7u5uuru76enpQS6XI5fLUSgUqNVqNBoNcrmc3t5etFotFhYWUso/LCyMCRMm4Orqyq9//esRf4/jndEWnMXFxTQ2NpKcnIyzszPd3d2UlJRQXFxMRUUFra2tVFVVYWlpSUpKijS20tvbG09PT7y8vHB0dJSEoTlaU19fT2JiInFxcfT29jJv3jwcHR2pqKjgu+++Y9asWSxbtmzAevR6PRcvXuThw4fEx8ezZs2al+7kNZlMnDp1ipycHLZs2UJMTMyA53R1dfHll18SERHB5s2bpfdhMBg4ffo0jx8/ZtGiRS89JUkul7Nv3z6USiU7duwY1ohQwegjl8s5duwY1dXVLFiwgLS0tAEXQC0tLZw9e5ba2lomT57M8uXLcXV1RavVcvfuXb7++msaGhqYO3cu8+fPp62tjfr6emksspeXF0FBQXh7eyOTySgvL6e3t5fIyEgpQvn0PmU0Grl+/Trfffcdra2tTJw4kRUrVjBnzpwBk8BMJhOdnZ39skaDZbSeFqE+Pj6j7hfb3d0tDYzo7e0lNDSUpKQkYmNjxYCEYTJuBeeCBQsG7NgWFhZ4eHgQGRnJxx9/POjBeLT5sQrOpqYmLl68SHV1NZGRkaSmplJZWcmhQ4eorKxk8uTJ/OQnPxnREWcmkwmNRoNKpUKtVqNSqQbcVyqVdHZ20tLSQlNTEy0tLbS3t9Pd3Y1CoUCv12MwGIAnnbt2dnY4ODjg6OiIi4sLbm5uuLq64urqioODA3K5nPb2dhQKBQaDAVtbW6kkIDo6msrKSjIyMigoKMDW1pajR4+OyHt9mxhtwVleXs69e/fQaDRMmTKFadOmSa9jMplobW0lIyODvXv3otVqiY2NlWowHR0dsbS0xN7eHi8vL7y8vPD09MTT05OqqioeP36Mn58fM2bMYNmyZdJF0/3797lw4QIbNmwgISFh0HXl5+dz6tQpXFxc2LJly0sLNaPRyNGjRykuLub9998nMjJywHMKCws5dOgQa9euJTExUfp/k8nE7du3uXbtGtOmTWPt2rUvVfKhUCj49ttv6e7u5sMPP2TChAkv9V4EI4vRaOTWrVvcvHmTsLAwNm7ciLOzMxqNhhs3bvDgwQM8PT1ZtWoVERERGAwGsrOzuXHjBiqVisTERKysrLh37x7x8fGsW7cOa2trurq6+tWCNjU1YTQapX1HJpOh0+kIDw9nwYIFJCQkYGNjg1wu586dO2RlZaFWq6VjbXx8PKtWrRp2LbDBYEAmkw0Qon0nKnl4eAwQos9qVBoOJpOJ8vJyMjMzpWlNCQkJJCUljbs607HAuBWcY5Ufm+CUy+VcvXqVnJwcvLy8iImJoaWlhdzcXEpLS3FxceGDDz5g6dKlg0ZTTCYTOp3umaJxsPu9vb10d3ej0Wgka5i+N5PJhNFoxGg09qvPs7GxwdnZGVdXV5ycnKQrU7OhtXn7tra2WFlZ4ebmhpWVFR0dHdK4T/OMazc3Nzw8PJDL5ZSWltLU1ITJZMLX11fyDJ07d+6opdStra2fOW97rPI6utR1Oh05OTnk5uZiaWnJjBkziIuL6xeJqK2t5R//8R8xGAzMmTOH3t5eDAYDrq6uODs7Y2trS09PDz09PQDS37G6uho7Ozv+43/8j6SmpuLs7CxFHvPy8qQJWYMhk8k4fPgw7e3trFy5khkzZrxUlNFgMPDDDz9QVVXFhx9+SEhIyIDnnDlzhpycHD777LMBzQy5ubmcPHmSkJAQ3nvvvZf6O6hUKvbv309bWxsffPCBsK4ZQ1RVVXH06FGMRiPx8fEUFBSg0WiYP38+s2bNwtLSkoKCAq5du0ZnZyfx8fEsXLhQSgkXFhZy/Phx/Pz82Lp16wBnAp1OR3NzsyRA6+rqpFtvby8uLi54eXlhY2ODv78/c+bMITU1FXt7e4qLizl37hwajYaFCxeSmpr60sdIc6PS00JULpcD/Yd/9K3zf57DiEKhIDs7m6ysLDo7O/H39yc5OZn4+PhxecwdKwjBOcL8WASnVqvl3r17pKenA+Dj40NnZ6dkJ9TR0UFgYCALFizA0dHxmQLSfNVrFp99RaP5/80C8umIpFlE2tnZ4e7ujqenJ+7u7ri4uODs7Cz9a77v6OiIlZUVWq2WjIwMent7B7w381jP/Px8SkpKaG9vR6lU9luXlZWVtC5nZ2dCQkKIi4tj8uTJ+Pj4vJZid2dnZ1JSUsbdAfB12iIplUqysrIoLi7GycmJlJQUIiMjpb9PWVkZ//Zv/4aXlxeff/45LS0tVFdX09LSIo1ODQoKwtXVFZVKRUdHBzU1NWRkZGBtbU1UVBSTJk3C398fb29vHjx4AMDPf/7zIX08dTqdNMZ16tSprFmz5qX+hjqdjgMHDtDY2MjOnTsHRBl1Oh1fffUVAD/5yU8GpByrq6v54YcfcHZ2Zvv27S80V9uMRqPhwIEDNDU1sW3bNsLDw194G4KRQaFQoNFo8PT0BJ6Izn/4h3+gtLSUefPm8Rd/8RdSV/iVK1doamoiOjqaxYsXDxptb2xs5ODBg1haWrJt27bnNr319PRQUFDAyZMnuXXrFu3t7Tg5OREVFUVSUhJTpkyRbJkcHR25fv06GRkZ+Pn5sXbt2peq5R+KvjWhfUus+lrdDZaW7+zsJDMzk8LCQiwsLJg8ebLUZ/C8Y7o50ioYmnEjOM3dkS/Kjh07Rnglz2Y8C06j0fjc6KJSqaSkpITHjx8jk8mwtLREr9djNBrx8vKSGioCAgKIiorC3t4eW1tbLCwspC+jOfJoFpBmn0KtVouVlZUUjbSwsMDBwWFQ4Wi+b35sZ2f3Ql92s+ixtbXtN7avtbWV4uJiqqqqpFpNmUyGTCZDo9FgMpmk1LtZ2Lq6ukrRRg8PD+nm6en5yp3JQ2GO7JrrCMcToy04e3p6UKlU/U6inZ2dZGRkUF1djY+PD6mpqdIJLi8vjy+//JLg4GD+03/6T9ja2qJQKKipqaGqqorGxkaMRiN+fn5Sfa7BYKCjo4MHDx7g4+NDREQEHR0dtLa2kpWVhb29PcuWLSMwMFDykfX39+/3t8rLy+P06dO4urqyefPml0qxazQavv32Wzo6Ovjoo48GpPlaW1v54x//yPTp01m9evWA329vb2f//v3odDref//9l0qN63Q6vv/+e2pqati6dSsTJ0584W38WNBqtdL0tZHm9OnTlJaWsnbtWmpra3n48CFubm54eXlRUVGBs7MzDg4OtLa2EhQUxMKFCweNjPelp6eHI0eOIJPJWL9+PXFxcYNeHLW1tXH79m3y8vJwcnJizpw5xMbGcvv2ba5fv05DQwPW1ta4u7vj7e0t2TLZ2dlRVFSERqNh1qxZLF68eERnsPfF7Ln8dKNpU1OT5Fuq0Wjw9fVlxowZpKamEhoaio+Pz6CNSlqtlvr6empqaqipqcHe3p6tW7eOytrfFsaN4HyZkLuFhYUUDXtdjCXB2d3dTXt7+7BT1WZ/yaexsrLCwcEBpVJJWVkZTU1NWFpa4uzsjJubGxEREbi6upKdnY1CoSA+Ph4/Pz9p++arSjPm332ekHR2dh61Yuy+osfCwoKysjIKCgqoq6tDpVJJhetqtRo7Ozv8/PwIDw9n8uTJUkTLHOXs7e2Vmo1kMhmdnZ10dXXh5OQ0ak1rfTulheDsT3p6OoWFhSQkJAzoQm9qauLBgwe0tLQQGhpKSkoKnp6eZGRksHv3biZNmsSf//mf94sGqtVq6urqqKqqoq6uDrVajaOjI6tXr8bR0ZE7d+7g6urKli1bcHV1JTc3l2+++QYPDw/Cw8Npa2uTOm9dXFzw9/eXRKiNjQ1Xr16ls7NTGuv6olESlUrF3r17USgU7Nq1S4pwmXn48CFnz57lvffeIzY2dsDvKxQKDh48SEtLCxs3bnyp2ne9Xs/hw4cpLy9n8+bNb6R+fqzzrKzKSKBWqzl58iR5eXn4+fmxYMECqcHt1q1b3L9/Hzs7O9asWfNC+5ler+fu3bvU1dUxa9YsPvnkE0kUNjc3c+vWLYqKinB1dWXOnDnMmDGj33fOaDRSXFzM/fv3qaiokDIHZvGrUqloaGigtbUVb29vVq1aJXlxjmbEsLm5WbI06u3txcfHR5rK1NbWNqBRyc3NTcrC9fb20tvbi4WFBY6OjoSEhDBx4sQh7coETxg3grOmpualfi80NHSEV/JsxpLgvHHjBjdu3ACQooX29vY4ODgMed/W1haj0SiZW+t0OlpaWrh+/TqPHj1CoVDg7OyMl5cXAQEBeHl50dDQQGVlJe7u7qSmpuLv7z8gAtn3voODwxtPPSgUCo4ePUpRURHFxcV0dHSgVCpRKBQolUqp9sjsDxoaGvrclKN5fKZcLqezsxOlUjlqByAhOIfGaDSSm5tLZmYmrq6uLFiwoF/kz2QyUVlZycOHD+np6WHSpEkkJiaSmZnJwYMHmTFjBj/5yU+GnLteXl5OcXGxNOHH1taWpqYm7O3t+eCDD0hISCAvL4+jR4+ybNkyZs6cSUdHB83NzdKIwObmZqk21OxPKJPJmDZtGu+++y7BwcEvZP+iUCjYvXs3er2eXbt29WvGMJlMHDp0iOrqar744otBGzV0Oh3Hjx+nqKiI5cuXM3PmzBf5yIEndaXHjh2jvb2dzz//XNiBPcVgWZWRJD09naKiIimCah5pWl5ejpOTE5MnT6a+vp6GhgamTp3KjBkzht1QYzKZePDgAdnZ2axdu5bU1FTu3r1LaWkpHh4epKWlkZCQ8NztNTQ0cP/+fQoKCrCxsWH69OlMnDgRuVwuOZyYR2ROnjyZiRMn9puQ9KrHOr1eT0FBAZmZmdTV1eHi4kJiYiIzZswY0DHf0dFBbm4uBQUFlJSU0NDQgEKhwGQy4e7ujpubG2FhYYSHh+Pn50dgYCCTJk16pfW97YwbwTleGEuCU6FQoNPppHSz+arMfDPb+vS9r1Qqpd/X6XQUFhZKc8+DgoJISUlh2rRpBAcHY2FhwZ07d2hqamL+/PksX758TJucm0wm6uvruXz5Mjdv3iQ7Oxuj0YiFhUW/soCUlBRmzpxJSEjIgBODXq9HLpdLzSRmy6Tu7m7kcnm/iLq3tzcbN24clfciBOfQmGupOjo6uHHjhiTkpk+fPmCmdFFREVlZWej1eqZOnUpTUxNnzpxh3rx5bN++fdALI/NnP2fOHFpbWykqKqKgoIBHjx7R2dnJzJkz2b59OzU1Ndy7d4/333+fqKioQT8HswBtaWkhMzOT+/fvY2Njw+TJk5kwYYKUijdHRD09PYcUct3d3ezevRsrKyt27drVr9FDpVLx5Zdf4u7uzs6dOwfdhslk4sqVK9y5c0eyL3tR0Wg0GqUIsKA/o73fnzlzhoaGBpYsWUJWVhbXrl3D3d2dzZs3k5CQgLW1NSaTiZycHB4+fIiPjw9LliwZ9qhStVrN9evXyczMxGQyMX/+fJYsWcKUKVNeeD/p6ekhIyND6l6PjY1l1qxZBAYGkpeXx6FDh6TUv729vWRr5+np2U+A+vn5Deuc09HRQWZmJo8fP0apVBIRESE5i5gzVTKZTEqP19bWSp7OPj4+hISEEBoaSkhICI6OjoM2Knl6erJr164X+hx+bAjBOcKMJcGZkZEhjQwzp/TMmLu1B6uHtLKy4urVq1y9ehWlUklCQgJbtmyR5ucCVFRUcPz4cUwmExs2bBizdVudnZ1UVlaSmZnJ3bt3qaioQKVS4eDgQE9PDxYWFri4uDBx4kTmzJnD1KlT0el0A4SkWVya/ejgSamB2TLJfDP7etra2qLT6UbNCFgIzqHJysqivLxcEmzt7e0UFhbi5ubGwoULB5iVazQaqaPd1taWzs5O8vPzWbVqFRs2bBiw/cE+e6PRSF1dHWfOnOHcuXNSZ7w5ivnLX/5yWHOhW1tb2b17N/X19UyePBknJ6d+XbfmZoe+ItTPz0/6HDs6Oti9ezeOjo589NFH/aKkNTU17Nmzh/nz57NgwYIh1/Dw4UPOnTvHpEmTePfdd8ddU9pYZbT3+5MnT3L69Gk6OjpwcXEhJiYGg8GAm5ubVE9stv1qbm7m6tWr6HQ6Fi5c+MxMoMlkoqGhgQcPHlBbW0tUVBRyuZygoCC2b9/+SuMctVotOTk53L9/H5lMRmBgILNmzSIiIoJbt27x4MEDfH19SUtLkwIG9fX1NDc3YzAYsLa2ZsKECf1EqDlSaTQaKS0t5eHDh1RUVODg4MC0adNISkrCw8OD5uZmSVzW1taiUCiwtLTE399fEpchISHPnNzUF71eL/w4n8O4FpzNzc386U9/4tGjR3R3d0v1FmYsLCy4evXqa13TWBKc5eXlVFVVDSoqzY08fWlpaZEOWr29vSQnJ7Njxw4mT57czzz6+vXr3Llzh4iICDZs2DDsK+TXQW9vL1VVVVRVVVFaWkpxcTGVlZUoFApsbGzw8PCQrph7e3uJiooiIiICQBKZ5tnt8GTahVlIurm5SU1C5kalnp4euru76erqkoziu7q60Gg0uLi48P7774/K+xSCc2jMJR6NjY1SlMLGxobW1lYsLCyYO3cuM2fOHBAZ6e3tlfz2ioqKkMlkbN++neXLl/d73vM++8bGRv70pz9RV1eHr68vjx49wtLSkvfee4+EhASio6Of+b51Oh3nz5/n0aNHJCQksHr1aqm0pW9a3jxBCcDd3V0SoTY2Nly5coXAwEB27NjRL0p/8+ZNbty4wUcfffRMkVFWVsbhw4fx9vbm/fffH1Pf8fHKaO/3J06cID8/Hzs7O7q7u+nt7ZUurI1GI+Hh4Xh6euLk5CSdAyoqKiRbpLlz5+Lq6ip9L0wmEzU1NWRnZ9Pa2oqHhwdRUVFs27YNnU7HwYMH6erqYvPmza8ccDCZTJSVlXH//n0qKytxdXWVyrOuXLlCc3MzycnJLFq0CHt7e/R6vdTsY751d3cDYGtri1arpaOjAysrK6lkxt3dnaamJmpqaqirq0Or1WJtbU1QUJAUwTQ3MglGh3ErOHNzc1mwYAEqlYpJkyaRl5dHXFwcXV1dNDQ0EBkZSXBwMNeuXXut6xpLgnM4GAwGSkpKuHz5Mjdu3EChUDBjxgw++eSTAWnAzs5Ojh49SmNjI4sXL2b27NlvvBZTrVZTXV1NVVUVlZWVtLW10dHRIZkTq1QqKeporrG0tbXF398fnU6Hi4uLNHHo6UiluftcoVBIgrLvv+Z6HkDqWndzc8PNzU267+XlNWrvWwjO56NQKKT59g0NDRQXF9Pc3Iynpydz584lNjZWamAwI5PJuH//PsePH6ezs5Ndu3axZs0a6efD+exVKhUnTpygpKSEiIgI7t69i16vJzAwECsrK8LDw4mNjSUmJmZIMZeTk8OZM2ektOjTHejm8a5P14aa64jz8/MJDAxk3bp1UvrR29ub77//ns7OTr744otn7jtNTU0cOHAAKysr3n//fWF0/Yq8DncGeNLg0rdcxFybrtfriY2NxdfXF4VCQW9vLz09PVRXV9PQ0ICjoyMRERG4u7uj0WhoaWlBo9EwYcIEZsyYIfmsLlq0CEdHRzQaDUePHqWsrIwVK1aQkpIyIueDlpYW7t+/L3nomk3ks7KysLOzY8WKFcTFxfV7LZPJRF5eHleuXCEnJ4euri5MJhO2trbo9XrJvs7b25u4uDji4uIICwuTmoQEr4dxKzhXrVpFfn4+6enpODo64uvry5UrV1i0aBGHDx/mpz/9KefOnSMlJeW1rmu8CE65XM6jR4+4c+cOeXl5KJVK4uLi+PDDD4mNjR1w4MjPz+f06dM4ODiwadOmIY2tRxudTkdtbS2VlZUUFhZSVVWFUqlErVbT2tpKY2MjcrlcmmXu4eEhTcTw9/cnMTGRxMREnJ2dKSwslKxq1Gr1gCil+b45imROoT8tLN3d3V/YlulVEYLz5ejt7aWoqEjyITRbV5mb4CZMmMCECROwt7enpqaGf/iHf6CxsZE1a9awZcsW3N3dh/3Zm0wm7t69y5UrV3B0dKSrq4vExESCgoIoLi6muroak8lEcHAwMTEx0sSjvrS1tXH48GE6OztZvXo106ZNG9Z7bG5uJicnh6NHj2Jra9tvtrajoyOPHz9m4sSJkr/iUEbYPT097N+/n+7ubrZs2SJlAwQvzpvY7zUaDY8fPyY3N5eWlhYA5s6dS1pamhTJ1Ov1VFdXc/HiRRoaGrCyskKn0+Hk5IS3t7dU42i2rzOLVvMUttLSUkpLS0lNTeXdd98ddgr6eZgzDg8fPkSpVBIUFIRCoUAmkxEdHc3q1auxs7Pj8ePH3Llzh8rKSoABGTwHBwfpPZnHEDs6OvZLwwcGBorI5mtg3ApONzc3fvnLX/Jf/st/oaOjA29vby5dusSSJUsA+NnPfsbjx4+5efPma13XWBacJpNJ8mfLy8ujsbERtVpNaGgoa9euJSkpaUCaUavVcuHCBR49esSUKVNYs2bNaztY6nQ62tvbKS4upqioiPLycmpra1Eqleh0OqytrSWTeXNneXh4OElJSfj7+9PU1ITBYCAmJobZs2cTEhJCZ2cn7e3tNDQ0cPv2bXQ6nTQf3YzZ7sksJs3i0tnZecx03grB+WoYDAYePXpERkYGlpaWhISESDW7QD8Xhq+++oqqqiqSk5NJS0sjLi4Og8Ew7M++urqaI0eOUFtbi6WlJR999BHTpk1DqVRK6fuKigr0ej3+/v7ExsYSGxsrDRDQ6XScO3eO7Oxspk2bxqpVq4ZdV1lRUcGBAweIiooiLS2NtrY2mpubefz4MVevXiUsLEw62T7doOTr64utrS0ajYbDhw9TWVnJunXrhiV6BQN50xdaDx8+5N69e7S2tjJ16lS2bt2Ko6MjBoOBsrIyMjMzyc3NxWQysWDBApYvX461tTUGgwGlUkl7ezutra1ERkaiVqv7XZjX19dTWlqKu7s7M2bMwMfHZ8Ax1Hz/RV1K9Ho9eXl50tpNJhPV1dW0trZKdZzOzs5MmDCB8PBwQkNDpZuHh0e/11IqlTQ0NEhp+IaGBtRqNRYWFvj4+PQToc8b4GG2SOprKfgq9aw/Bsat4HRxceFf/uVf+PTTTzEajdjZ2bF//362bNkCwNdff83Pf/7zUfM8G4qxKDi1Wi25ubk8fPiQ5uZmtFotSqVS8k2bP3/+oBYsLS0tHD58mO7ublauXPlSHoHPwmQyoVQqJQ9Ls49lTU0NlZWVNDQ0SBFGW1tbfH19JdHX0tJCZ2cnFhYW0vzelJQUSkpKePDgAUqlksDAQAIDA9HpdMhkMrq7u6UUuKWlJTKZDD8/P+ngaD4ovmqKxTzjXavVDrDaGCmE4Bya7OxsSktLB3i6Ojk5DfB3bWtr4/r16/T09JCYmEhkZCTNzc00NjbS1NRET08POp2Ohw8folAomDJlCr6+vkyaNInPPvts2NN55HI5hw8f5sqVKzg5OfE3f/M3/UZBarVaysvLKSoqorS0VJoYYxafgYGB5ObmSin2LVu2DPvkVlxczKFDh0hISGDdunXSd/js2bPcu3eP1atXo9frpbR8e3u71OlvjgB7e3tTUlJCdXU1S5cuZdGiRW+8nGa8MRYutNrb27l48SJ3797F1dWVefPm0dHRQW9vLxEREUybNk1KaXt6erJ48WLJRmuoY47ZizgvL4/Dhw9jMplISUnBZDLR1dVFV1dXv6ZVGxubASK0731nZ+cB6fLW1lbKyso4ffo0169fp6WlRWqISklJ4YMPPiAlJQUXF5dhfxZmR4WGhgaqqqqora2lrq6OlpYW9Ho9FhYWuLu7SyVWjo6O0rFdrVajVqv79Y0EBQXx6aefvsqf561n3ArOqVOnsnbtWn77298CEB0dzYIFC/jjH/8IwMcff8ylS5eor68f9jb/8Ic/8Ic//IHq6moAJk+ezN/8zd+wcuXKYW9jLAlOmUzGw4cPefz4MRqNBm9vb2n+eGxsLEuXLh20xtBkMpGZmcnFixfx8vJi06ZNL33lZjAY6O7u7icq+97XaDSoVCq6urqk1LiVlRVOTk6Ehobi7++Pvb09CoWCyspKmpubUavVODs7Ex0dzaRJk+jt7SUrK4uKigoMBgP+/v5MmDABBwcHPD098fLywsvLC29vb+k+wO3bt1/44K/X6yWvToVC0e++UqmUJlm0t7djaWnJ3/3d373U5/Y8hOAcmr4znc21an3tvgBpgpWzszP29vY0NDRQU1ODv78/S5cuZcKECVhYWCCXy2lqaqKsrIz9+/ejUqkIDw+XvkNr1qxhxYoVw0ojGo1GLl++zP/5P/8HV1dX/vmf/3nQuki9Xk9VVRVFRUWUlJSgUChwcXGRop7379+np6eHNWvWkJCQMKzPJDc3l+PHj5OSksKKFSskK7CvvvoKo9HIT37yEylqqtPppEho39pQlUpFXV0dtbW1xMTEsGLFCmmSko+Pz4DRmYL+jPZ+X1xcLJ3vzILNPOGt72O9Xs+jR4+4ffs2arWaiRMnsmzZMmlftLCwoLu7m8ePH6PVapk6dSqBgYFotVpUKhUJCQlSlPLpbcvlci5fvoxarWbJkiXS5CqtVitZ8Jm/k31t+cyNmn23p9fr0Wg00rlCqVTi6OhITEwMkydPluo2y8rKsLOzIyUlhVmzZmFhYSFd8JtvGo0GpVKJSqVCo9H0S6+b6TsJzxy1VKlUKBQKqSzL3Jzn7+9PYGAgAQEBODk5YW9vj5OT06jWOZun2Y1nxpXg7OzslGqc/vIv/5JTp05RWloKwL/8y7/wi1/8gkWLFmEymbhx4wa/+MUv+Md//Mdhb//06dNYWVkRFRWFyWRi7969/O53vyM7O5vJkycPaxtjSXAeO3aM9PR0pk6ditFopLa2loCAAJYvX96vpqsvKpWKU6dOUVRUREpKCsuWLXtuxE+tVg8QkubHT0cV3d3dsbe3R6PRoFAo6OzsxGAw4OjoKHUJWlpa0tPTQ3l5udSN29vbi0qlwsnJCS8vL9zc3JDL5dTV1UmpyKSkJKZPn46fnx9eXl64u7sPmQJ/+uBvNBpRKpXSbTAxaZ5V3BcbGxscHR2lk3RjYyO9vb0YDAb8/Pz4b//tv41KJEgIzhfDfKHw9Emv762rq4vq6mo0Gg1BQUFERET0c3jQarV8++236PV6UlNTUSqV1NXV4eTkRGpqKikpKVJK71nv69GjR/zX//pfcXFx4Xe/+12/SOfTmO2WioqKKCoqoru7G1tbW+RyOXK5nIULF7Ju3bphib2srCxOnz5NWloaixcvBp5EeP/4xz9KF/BDYTKZ6Onpobm5mfv373Pu3Dmsra0JDw+XxtB6e3vj5+dHcHAwqampz13Pj43R3u/z8/OpqamRjrcmk6nfTa/X09jYSH19PTqdDi8vL6nu3dXVlUmTJhEcHNyvZrOiooL29nbJ2Fyr1RIeHo6tre2A7fd9ndzcXDo6OoiOjmbChAmDrslgMEiiUiaT0dbWhkwmQy6Xo9FoJNGo0+mwtLTE0dGx35hkKysrLC0t0Wq1yOVy1Go1tra2BAQE4OvrK41INu+f5m59KyurfjdLS8sBj/ueN0wmk5QVNN/UarWUBXBwcMDR0ZHg4OBRmywHT0q9UlJSxrXoHFeC087OjlWrVrF9+3bmzJlDY2MjU6dOxcbGBpPJxG9/+1uOHj2KlZUVa9as4Ve/+tUr/3E8PT353e9+xyeffDKs548lwXn27FkOHjxIY2OjNNUhISFBqs/y8fHBy8tLEpQ1NTUcO3YMrVbL+vXrpfF0RqNRmp4zWKTSbMoLT/5Gnp6e/eaJ29vb09PTQ3t7OzU1NbS3twPg7+9PWFgYdnZ2tLS0UFxcTEVFhdRRaRZ4VlZW+Pn5MXnyZGlmdV1dHfAk0j137lzCw8MHFXYmkwm1Wi1ZHplvbW1tPHz4EKPRiE6nQ6lU0verYB7n6eTkhJOTE46Ojv3u29nZ0djYSH5+PsXFxchkMuDJ/hIZGUlMTIxUjC4EZ3/GQmrxacypsu7ubu7fv09eXh6Ojo5MnDhRcjcwuxXcuXMHa2trtm7dirW1NYWFhbS2tmJra8uECRPw9vYmJCSEmJgYIiMjCQkJGfA+i4qK+Ou//mscHR35y7/8SxITE4e1xqamJqmmOS8vj4qKCkJCQtixYwepqanP/Tzv3r0r1brPnTsXeHLMOnXqFJs3bx72hXVdXR0HDx7E1taWJUuWoNFopIiora0tH3zwwbC282PiTe33arWa/Px88vPz0ev1xMTEkJCQIDl3PHjwgPPnz6PT6Zg4cSIpKSnExsZKwrOoqIi7d+/i7OxMcnIya9aswc7OTkorm6OBfR8rlUru3r1LQUEB4eHhREVFSZHGnp4eWltbpXR7b28vJpMJa2trHB0d0ev1qNVqrK2t8fPzY+LEiQQHB2M0GtHr9eh0OkmQmqOQKpWK1tZWiouL6ezsxMvLi9mzZ5OQkICHh4dkAWUunTJrhr7H/L5iuO9j8/2+/6fX6+nq6qKjowOZTEZHRwdubm6jtt+bxfd4PN73ZVwJzu3bt3Pq1CmUSiUuLi68++67bN++fVTqiQwGA4cPH2bnzp1kZ2cTFxc36PPMO72Zx48fM3/+/DEhOC9fvsydO3eIiYkhLCyMrq4uWltbaWtrk4ykLS0t8fDwoKWlhbKyMvz9/ZkzZ47k39bR0UFXV5fUqW1hYYGrq6skKM2i0nzfwcEBnU5HTU2N5IfZ3NyMTqfD1tZWeo5cLpd+LpfLsbCwwMPDQ6rRNBgMeHl5SY0a9vb2PHjwgJycHCwsLKQ52WYvzL5i8unH5lFvZpycnLCzs6OhoQFPT0/c3d0HCEt7e/sB+1RXVxfZ2dnk5+dTXl6OSqXC3t6e0NBQ4uLimDx5MgEBAa8ltSgE5+jS3NzMjRs3JD/a+Ph44MnaHz16xNdff01ISAg/+clP0Gg0lJeXk5WVRVtbG46Ojjg7O0sXMfb29tLFVVRUFNHR0fj4+FBTU8P/+l//C0dHR9avX8+qVateaN9pb2/n7t27HDx4kNbWVqk5LjY2lkmTJg2Z5jePvF21apVUa3fkyBEqKir44osvhl2X2tHRwf79+1Gr1Wzbtu2NOVeMF0Z7v6+traWnp4fQ0FBcXFxQqVTk5uZSWFiI0WgkNjaWqVOn4uTkJEUWzSnnsrIybt++LUXQnZyciIiIwNPTE61Wi0wmIycnB7lcTnJyMn5+fkOuw87ODnt7e6lUJS8vDxcXF8LCwujp6aG3txdra2s8PDwIDQ0lODgYW1tbGhoaqK6uxsHBgYSEBJKSkoadojYYDPT09NDZ2cmVK1c4cuQIzc3NeHt7M2nSJFxdXWloaMDW1hZra2vs7Oyk7EXff833X8Z1ZDSN38fz8b4v40pwwv/ztztw4ACXLl1Cr9fj5+fHtm3b2L59+yuLvLy8PGbNmiXVCR44cIBVq1YN+fxf//rX/O3f/u2A/x8LglOlUqHT6XB1dZWiNObopNkAt6KiQur+MxdGW1lZ4ejoiLe3NwEBAQQFBUkzYyMiIgYcLPV6PQ0NDZSVlVFQUEB5ebnkUenk5ISNjQ2WlpYolUpkMplkwu7p6UlMTAyhoaEYjUZqamqkrvm4uDj8/f0pLi7m/v37VFRUYGVlJUWQzFfUfTEfRMy3vpN/zI+dnZ2xsrIa1sFfoVBQW1tLTk4OJSUlNDU1YTQa8fb2Jjo6moSEBGJjY/v9vjlSplQq0ev1o1bTM54PQONBcMKT/drs6ODr68uCBQskW6SMjAxOnz5NXFwc//zP/4ytrS1Go5HMzEwuXLhAZ2cnERER+Pv7U1dXR3V1NXV1ddKAChcXF9zd3VEqlVJKMywsjJUrVxISEoKrq6sUjXlelkar1XLo0CFu3LiBk5MTbm5uWFlZERISInl99hWRJpOJS5cuce/ePd555x2mTZuGWq3myy+/xNnZmV27dg17RK1SqeT777+nsbGRd999d8gLc8Ho7/fnz58nKysLlUol1Ss6ODgQGhoqCURz/eLTQ1LM66uoqMBoNEolJOZjtK+vLwaDgby8PKysrJg+fTqLFi2S3ou9vT12dnbSpK6+IyLNFnaenp5s2LCByZMnExISgo2NDdnZ2WRmZtLV1YW/v790cfeqmUmtVsupU6c4efIk3d3dhIWFYW9vT3R0NC4uLlIwom8tad/AhI2NzQBB2ve+o6OjsMF7Ccad4OxLZ2cnhw4d4sCBA6SnpwMQFRXFBx98wPvvv/9SnnFarZba2lq6u7s5cuQIX3/9NTdv3hyXEc6ioiJycnIkkdl3go6TkxMajYaSkhJcXFxYs2YNU6ZMkabwtLe3S/Ni+0ZEzTUrWq1W6iqXyWRotVqMRqPUaejr6ysZCJu/0Pb29gQHBxMSEoK3tzeNjY08fvyY2tpaAHx9ffHw8MBgMNDS0kJ9fT0KhQJXV1diYmKIiooaMO2n7+1FfNQGO/irVCoaGxupqakhPz+furo6enp6sLOzIzAwkIkTJxITE4OTk5NUy2M+uPd9bI4Gi0lDgzNeBKcZc7RToVCQkpLCxIkTpRPUv/zLv5CcnMxvfvMbKbqh0+m4f/8+6enp0mSj1NRUrK2tkclklJSUUFRURFlZmfS4t7cXJycnrK2tiY2N7RdBcnBwkMSn2fuw72MXFxcsLS3Jzs7m3LlzODk5ER8fT0tLi9RIFxAQ0M9uyWQycebMGR49esTmzZuJi4ujrq6O3bt3M2fOHKnGczjo9XpOnDhBQUEBS5culRo3BP0Z7f3+yJEjpKen097ejsFg6BfFMwcOAgMDJZ9K880sFM1p8suXL9PR0UFMTAxNTU3IZDIiIyOZOnUq8MRY/vr163h6erJp0yb0ev2AEZEWFhYEBAT0mz9+8uRJVCoV8+bNo7GxkcLCQiwsLJg8eTLJycmjUn7U1NTE8ePHefDgAS0tLfj6+hIeHs7UqVMJCQmRajXNpVd9RWjfpqanJ9BZWVn1E6EuLi54enoO2Rvxqozn431fxrXg7EtDQwMHDhzg4MGDPH78GAsLC1JTU7l79+4rbXfJkiVERkby7//+78N6/liq4TSnf5+uqXR2dpbm1E6aNIn169cP2InVarUkJtvb2yktLSU3N5eysjLa29slYeXo6IiHhwdeXl74+flhbW2NXq+nu7sbtVqNjY2NdFJ0cHBAo9HQ1NQkpdn9/PyYNGkSUVFRUl1kdXW1lAKaP38+MTExI+5/qVQquXTpEl1dXTQ2NlJZWUlVVZXUOW9O/5sNjp/+mvQtFnd0dJTqPfv+n6Ojo7BFGoTxJjjhiYjMyMggPz8fb29vpk+fzurVq7lw4QL/9m//xuLFi/nVr37Vbz9VKBTcvHmTzMxMXFxcWLRoEfHx8f1Och0dHZSUlPDNN9/Q0tKCjY0NHR0dxMbGMnv2bDw9PXFwcEClUkmDCMzfLTPmMhfzvpadnY3BYGDlypUkJCTQ2tpKVVUV5eXlaLVavL29iY2NJTo6mgcPHlBUVMTWrVuJiori9u3bXLt2jR07dhAeHj7sz8dkMnHt2jVu375NUlISq1atGjOetWOF0d7vf//735Ofn4+vry++vr5YWlqiUCik8btKpRIrKyvc3Nzw9vaW7OBsbW2xsbGRmmwsLS0pLCykqamJ2NhY3NzcKC4uRq1WExgYyKpVq2htbeXMmTOSL6fZu3KoEZEajYaMjAy++uor6urqSElJYf369UybNm3Uj19Go5H09HS++eYbNBoNrq6uUnBkypQpREdHDyui2jd40jcyahan7u7urF+/flTew3g+3vflrRGcZvLy8vibv/kbTp48iYWFhRRtelkWLVpESEgIe/bsGdbzX1RwarXaATWGo0l7ezsnTpxAJpOxYMECIiIipEhl3wJomUxGV1cXnZ2dyOVyaUyYl5cXPj4+UgSzra2NiooK6urqkMlkUveevb097u7ukhi1srKSUvx+fn7MnTuXefPm4efnN2CU2fTp00lNTX3psZBGo3FQ642Ojg6qq6upra2lpqZG8js0Go3Smr29vQkODiYwMBAPD49+grKvkLS3t3+jJ9TxfAAaj4LTTGNjI1euXKGrq4tPPvmEtLQ09u7dy549e3jnnXf42c9+NiBKI5PJuHr1qjTZaunSpURGRvZ7TkdHB3/84x+lz+TSpUuYTCYiIyNxcHAgMDCQsLAwwsLCCAkJwWg00t3dLYmJvjeZTEZmZiZNTU0EBAQwceJE7O3tcXZ2lhqjZDIZJpMJLy8vKSL1H//jfyQsLIxvv/2W9vZ2vvjiixeeGvPo0SPq6+tZu3atiHI+xWjv931H7Zqba/re5HK5ZHbe0tKCVqvFzs4ODw8P3NzccHJykszMtVqtVApib2+Pq6srjY2NtLe3Y2dnh7e3N4GBgZJ7SGRkJAkJCVInufmmUCik2eUAoaGhktVRSkoK8+fPlyKsfW8jXQupVCo5f/48BQUF1NfX4+rqipOTk3SRZ7ZaehEfz6cxGAzDLkV5Ucbz8b4vb4XgrK2tlaKb+fn5mEwmZs+ezfbt2/npT3867O385//8n6UaKrlczoEDB/gf/+N/cPHiRZYuXTqsbbyI4NRqtWRkZIyaOb1cLkehUEjTdMrLy8nPz5fSHeYObZ1OJ40tM3cYmo16HRwc+tWtWFtbS+kHhUKBwWCQTobmovTw8HCMRqNUiJ6dnY1MJsPW1hZPT098fHywsrLCYDAgk8no7e3F19eXtLQ0Fi5cOOSX3mx/0dfKZrDH5mYNswdoX4/Pvp2HnZ2d+Pj4EB0dLTVzjFZEcqQZzweg8Sw44cn36tatW2g0GqKioli3bh3fffcdx44d48MPP+Tjjz8eVGzV1dVx+fJlamtriYyMZOnSpfj7+0s/r6qq4ttvvyU1NZW4uDgOHTpET08P06dPR6fTUV1djUKhwMrKqp8ADQ4OHtBsZDQauXv3LqdOncLe3p7Zs2cDSCK1q6uL+vp6aXpMXV0dJpOJmTNnEhsbS3FxMWFhYWzatEky5n7akFvwYoyl/V6v19PU1CSlwXt6erC2tsbb21saBdnZ2UlFRQWVlZU4OTmRmJgoZW3q6+txdHRkxowZqNVqbt++jYODA7NmzcLOzo6KigpKS0tpbW3FxsaGCRMm4Ofnh6WlJRqNhrq6OioqKqRo+9NCzcrKaoAIfZWbXq+XzO5bWlpIT09HpVJJpXKlpaXodDrCw8OZMmVKv+/lWGA8H+/7Mm4FZ3t7u1S/ee/ePUwmEzExMWzfvp3t27e/VC3FJ598wtWrV2lqasLNzY2pU6fyV3/1V8MWm/BigtN8ADLXz4w03377Lbdu3ZKEmkajkQxq4clJqe/N7HVmnvrg5eUldeyZhah58krfaOeyZcvw8fGR/M5qa2spKiqivr4eBwcHpk2bRmJiIv7+/qhUKu7du8etW7ckuyYXFxcpFa/T6aQuRzs7OynFY7ai6It5pJm5jsbBwQGlUinZVXR2dmJlZYWNjQ1WVlaS4HRxcSE0NBSFQiF1MI43xvMBaCydeF8G82cfEhLCpUuXUCqVLFmyhMuXL3P16lW++OILaeLZ05hMJkpKSqQ6ualTp7Jo0SJpmktGRgbnzp1j/fr1REdHc+zYMSorK1m4cCFz585FJpNRVVVFdXU11dXVUprU3NgXFhZGUFCQJEDN08J6enpYu3at1G0PT0SHWXwWFRWxb98+qqqqpKa81tZWoqOjiY2NxdraGisrK1xcXPrVjz5dVzoe/56vi7G235u9VZuamqioqKC4uFjyETb7WZq9OUtLS9FqtcycOZONGzeiVCq5cuUKxcXFTJgwgcTERK5du0ZBQYF0/oiMjCQ5OZno6Oh+gtJ8LC8oKODo0aO4uLiwevVq7O3t+5m1v8jNnKkaCp1OR21trVT2ZGFhQWNjI83Nzbi4uBATE4NWq6WhoQGVSiU1hoaEhGBnZyeVHJjLDvo+fh0XYeP5eN+XcSU4FQoFx48f58CBA1y9ehWdTkdAQABbt24dkQ71keBlBOdoHYDOnj3LtWvXJOEVHByMg4MDvb29Ug2Ys7Mzvr6+klm6jY2NdCJqaWmhtbUVmUyGwWCQmhfM6QitVotCoSA4OBitVktTUxNNTU3odDpcXFzw9vbG1dUVvV5Pb28vTU1NtLa2otFocHJywtXVdYCg1Ol0UgTSfAAxC3IPDw+8vb2lKQ++vr4YjUba29tpamqira0Nk8mEo6Mj7u7ukpm7TqfDyclJSptERkai0+nG1MH/RRnPB6CxduJ9Ufp+9lZWVly+fJnMzExCQ0PJy8sjJyeHv/zLv3zmhDKDwUB2djbXr19Ho9GQmppKWloadnZ2nDlzhsePH/PRRx8RGBjIzZs3uXXrFhMnTmTDhg3S39tkMtHW1kZ1dTVVVVXU1NQMEKDh4eH4+Phw4cIF8vLySEpKYsWKFYOmLNVqNXv27KG5uZnExEQuXbpETk6OlLXw8/OTGgHNkVKzmbYZOzs7goODhQ/nILzp/d5cM2yuoW9ubpbKKcwjTP39/fH09KSjo0Ma9Wie/tba2opOp+MXv/gF8+fPB/5fVD47OxtAqgddunQp27Zte25tZEtLCwcPHkSv17Nt2zYCAwNf+v0ZDIZBhahWq6W7u5sHDx5IxvHmc01HRwd5eXl0dnZK5vadnZ3U19fT2dmJjY0NPj4+eHt7D5nmNwtQX19fVqxY8dLrfxbj+Xjfl3ElOJ2cnCS7or4enGOpOH0sCc7bt29z9epVaQqItbU1Dg4OTJgwgcDAQCZMmICrqysWFhYYjUZaWlqkbkOzSDV3GgYHB+Pq6ipZ/pgtjoqLi6UrQ4PBIPlaWlpaSobx9fX1dHR0YGtrS2BgIBEREXh4eEhXjn3rdswpe/MBwRyx7OzspKurSzKX7u7uRqVSYTKZsLOzk2qQrKys0Ov1Us2puTjevCbzwcFsw2T23LSyspKiOE//+/T/Dfb/5vvmNL7Z/ma0Jq6M5wPQmz7xviqDffYVFRWcOnUKuVxOUVER7e3t/Nf/+l+ZN2/eM7el0Wi4e/cud+/exdramvnz5zN9+nT2799PR0cHn332Ga6urpSXl3P06FFsbW3ZsmXLoCdm88xpc/SzuroalUqFtbU1gYGB6HQ6SkpKiIiIYOvWrYPWSCsUCvbs2YNWq+XDDz/k22+/pa6ujtjYWBobGwEICwsjJiZGcmxoaWmRZs+bU6g7d+4cgU/67eJ17/cGg0EaUWq+mQdpmC/cAwIC8PPzG3I9RqOR1tZWamtrKSsr49GjRxiNRqZPn05kZCRdXV3o9XqsrKzo7e3F0dERX19f2tra8PLyYvPmzc9NTysUCr7//nuampp45513mDJlyoh/Fs/67I1GI0VFRWRkZGBlZcXs2bOJjIxEJpORm5srTTMMDw9n4sSJkte0uRTNfN/e3n7UbMHG8/G+L+NKcK5fv57t27ezbt26MXuiGkuC89KlS9y/f5+kpCSCg4OZMGECnp6eUgpArVZTX19PZWUl1dXV9Pb2YmVl1c8M3Tw/t6/lj0ajkWq/9Ho9UVFRUrefh4cHTk5OyGQyqYbH29ubuXPnkpiY+ELv02g00tzcLEVwamtrpQ5y8wzbnp4eqqqqKC4upqOjA0Dqxp8wYYJUEG/ulDeXE8jlcrKzs7G1tZWM5s2j1vR6fb/Hg/0MkMad9bVG6jsT2Nvbm9/+9rcj+SeVGM8HoNHe76urq2ltbe3X5GW+jUQzwlCfvVqtlvwt79+/j7W1Nf/wD/9AUlLSc7cpl8u5ceMGjx49wt3dnVmzZpGeni75YtrY2NDd3c2hQ4dobm5mxYoVJCUlPTOdZzKZaGlpkcRnTU0NbW1tFBcXY29vz+rVq1m0aBGBgYH9Phe5XM6f/vQndDodCxYs4ODBgwQGBhIXF0dJSQllZWXU19dLgw+8vb3x9vbG0dERS0tLgoOD2bVr16t9yG8ho73f63Q6ae69Wfzr9Xop+hYQEIC/v7/kJvKiqFQqHj9+zOPHj7l79y5WVlbExsYSHx9PUlIS4eHhtLa2cvfuXWkcsKurK6tXryYxMfGZ+6per+fUqVPk5uayYMEC5s+fP6Kp6uH6Lt+7d4+KigoCAwNJS0vDzc0NpVJJYWEhBQUFaDQaQkJCiI+PZ8KECa+tpnk8H+/7Mq4E53hgLAlOsxhSq9WoVCoUCoXUINDQ0EB7e7vUqWgWZWbjdwcHh35WP/b29nR3d0u+bI6OjkRGRhIaGirZKmm1WnJycrh//z4ymYygoCBmzZpFbGzssKLQ5ghN3xo1s7VSSEiIVJ+mVCopLS2lpKQEtVqNh4cHcXFxxMbG4unpKXmIDuYjamlpiaenp9R1GRgYiJ+fH25ubkMehM0dwWaLqLa2Ntrb21EqlRiNRmxsbCT/UXPJgflzDAkJGdG/qZnxfAAa7f0+JyeHgoIClErlAJcKOzs7aZ82T5Yy3/o+ftYJ+XmffVlZGd9//z3Hjh3D1dWVP/zhD8OOfLS1tXHlyhVKSkpwdnamublZqpszu25cunSJBw8eEB8fz9q1a4dtkm3OYuTn53PkyBHy8/NxdXVlwoQJuLu7S3XQZr/QrKwsrK2t8ff3p6KigsTERMk4287Ojq6uLtra2mhpacHS0pLAwEASEhKkoQ2iwag/o73f37hxg5KSEmmylTmCaXYJeVnUarVki9fW1kZiYiIhISHk5+dL9nVNTU3SlKLAwEDkcjmNjY20trZibW3NokWLWL9+/TN7FUwmE+np6Vy9epUpU6awfv36EZva9iKffW1tLenp6SiVSmbMmEFCQoKUOSsvLycvL4+Ojg68vLyIj48nMjJy1CYMmRnPx/u+CME5wowlwfnw4UMyMzPp7e2lu7sbuVyO0WjE3t4ePz8/yTfNy8urn5eknZ2dJBB7e3spLi6muLgYhUKBr68vsbGxREZGYjAYkMvlTJs2jfz8fLKyslCr1cTFxTFz5kyCg4OfuT6TyUR7e7sUwTQ3QVhbWxMUFER4eDhhYWF4e3tTVVUlmWVrtVp8fHwkkenn5/fck5tKpZJEaFtbG3V1dWRkZGAwGKQ6UrOXoXmGsF6vl/wPzQ1LLi4ueHl54e3tLf3r5OT02k+u4/kA9LpSi32nPimVShQKhXTh9fTjwYTpYBFSsxg1Go0sXbp0yDGQarWaAwcO8M///M84ODjw9ddfk5CQMOy1V1dXc/nyZbKzs2lpaeGjjz5i7dq10s/z8/M5deoUbm5ubNmyBR8fH7RaLb29vQNGuz59M9dJm823zSl3vV4vNQ6GhITg6+tLUVGRNDGpurqazz//HE9Pz35r1el0VFRUUFRUJA2S+PM///Ph/6F+JIz2ft/V1YXJZMLd3f2Vj0fm+uDCwkLKy8sBCAwMJDg4mE2bNuHk5ER7ezsHDhxApVKxZcsWHB0dKSsro7S0lLq6OpRKJZ2dnbS0tKDRaEhOTubP/uzPCAgIeOZrFxYWcvz4cXx9fdm6desrWRWZedHPXqfTkZWVRV5eHm5ubqSlpUnrNplM0sjO2tpaHB0diYuLIy4uDgcHh1de62CM5+N9X4TgHGHGkuC8f/8+Dx48wMLCAnd3dyIiIggJCWHChAnPvCIzGo3U1tZSXFxMbW0t1tbWREVFERsbi7e3t/S8+vp6MjMzASSLjNTU1CFPwiaTic7OTmmGujmNb2lp2a/JISgoCL1eL01kqaioQK/XM2HCBGlaSt91vAxm43dzM1N9fb3kM6dSqdDr9VJHv9lzLigoCD8/PylNP9pXtc9iPB+AxloNp1mY9hWjfW99ham5rEKr1RIaGjrkLGbz/UePHvE3f/M3WFlZ8T//5/9kyZIlwxYDJpOJwsJC/s//+T/k5eWxYsUKli1b1q82+tq1a3R1dRERETHge2dra/vMUa8uLi709vZy4sQJent7WbNmDV5eXv1S8DKZjLy8PAIDA3FyciIoKIi/+Iu/GDKqap5p7eHh8ap/lreOsbbfD4b54qGgoID29nZcXFyIjY1l0qRJWFpaDjjmqFQqDh8+THV1tZQ6hyfvtby8nLKyMrKyssjOzqa6uhp3d3c++ugjdu7c+czPoKmpiQMHDmBhYcH777//yjZFL/vZy2Qybt++TUtLCzExMaSmpvb7/c7OTvLz8yktLcXNzU3KRIw04/l43xchOEeYsSQ4GxoaaG1tJSQkpF/t5lA8Hc308fEhNjaWiRMnSqkNsxjNzc2lrq4OGxsbtm3bJvmvPU1XV5ckLquqqujp6cHCwoIJEyYQHh5OeHg4wcHB2NraSq9fVFREVVUVJpOJ4OBgSWQOJWSfh8lkkhqOzDfz+EpbW1scHBzw9PSUatG8vLykbn7zWNCOjg66urpQKBQAUkTUPMHJfHtdQnQ8H4DGw4l3MEwmkzTSta2tjdjYWCnK//Rs5r5j8BobGzl79iwAixcvZunSpfj6+krRUvP30lwfbd5G30hleno6dXV1BAQEEBUVxeTJk/Hw8MDBwYHCwkIaGhpITExk2bJleHh4vNCoV41Gw+nTp8nPzyclJYVly5ZJUdzm5mbu37/P999/j0qloqenh8jISBYuXChlIAICAkbN8PptYizv952dnRQWFkoZpODgYOLi4ggODpayXUMdcwwGAxcvXiQjI4OUlBRWrFjRr4TKfM64dOkS+/bto76+nqCgIN577z2SkpKIjo4etIFNLpdz8OBB2tra2LhxIzExMS/9/l7lszeZTFJTkaWlJbNmzWLixIn9zqfmz8bHx+el1/gsxvPxvi9CcI4wY0lwDgej0Uh9fT2FhYVSNHPixInSzGUz5g7X/Px8uru78ff3Jzo6Gk9PTxYsWCB9CXp6evqlyDs7O7GwsMDf31+KYIaGhkonw+7uboqKiigsLKSurg4LCwvJRD4mJuaF0ykGg0GySeorMM02UE5OTgQEBODu7k59fb2UOhzuValarZa65p8nRL29vUfNqms8H4DGwn7/Kjzvs+97gdPS0kJLSwsPHz7k8OHDaLVa/Pz8pAvAvql887hUs6elp6endCHk5uYmzckOCgrC3d2dhQsXMmPGDCwtLcnKyuL8+fP4+/uzefPmF744M5lMZGVlceHCBXx8fNi8eXO/1LnZ/qanpweZTMaUKVMkyxlbW1upxjo8PJyAgIAx5RwyVhhr+73BYJBKlRobG3FwcGDSpEnExsYO6k38vP0+MzOTc+fOERYWxubNmwdNLxsMBvbs2cOf/vQnlEolkyZNIjo6Gl9fX2n4RmhoqHQBo9PpOH78OEVFRSxevJg5c+a8VARxJD77p5uK5s6d+9JBkBdlPB/v+yIE5wgzXgSnQqGQopm9vb14eXkRFxfHxIkT+6XLent7yc/Pp7i4WJrEMHXqVHx9fVGr1bS2thIUFERLSwtVVVXIZDIAfH19pQhmaGhov4OPTCaTRGZjYyNWVlZERkZKqZvhfqE0Go3Uldm3M9N8Evf09JQ6M803s4Ad6c9+MCFqYWHB6tWrX3nbQ73eeD0AjbUT73AxRzg7OjqkCKderx+0TvLpmlAnJyfq6+u5evUqDg4OREdHM3nyZJYsWYKzszPwpFO370jWvhFTc+Pfo0ePsLOzw8XFha6uLjw8PEhKSiImJkayWLKwsODdd99l6tSpksn1cGlqauLw4cMoFArWr1/fr9mptLSUgwcP0tnZSWBgIJ999hlyuVxKwdfW1kr11aKGcyBjZb83W3eVlJSgVCoJCAggLi6OsLCwV2qWgye1xz/88AOOjo5s27ZtyNKnpqYmfve735GdnU1gYCAzZszAZDIhl8uxs7MjMjKSqKgooqKicHJy4saNG9y8eZNp06axZs2aF84ijeRn37epaPr06SQkJIimoWEiBOcIM5YFp8lk6hfNtLS07BfN7Htiam1tJTc3l6qqKmnW7JQpU7C2tqapqYmGhgZqampobW0lNDSUgIAAKcUWFhbWbwazufvcLDLNXn3mutDo6Ojnpv96e3slUWkWmB0dHZhMJqysrPD19e3Xmenn5/fMbY6Vg//LMp4PQKP92RcWFlJfX09cXByBgYHDElxmsWeu2exbv2n+d7AazqFqI/venJ2dpYjNsWPH+PLLL6ULMWtra1atWvVc70GdTkdvby8FBQV8//33REZGEhgYyN27dyU/WXP6s7i4GJlMRmhoKBEREdJYyqfX1Pe+o6Oj9DlpNBpOnTpFQUFBvxQ7PGlWOnjwIM3NzcyfP58PP/ywX0lAY2OjFLkS9OdNHnOezmSZj79xcXEDmsCGYrjHnI6ODg4ePIhcLmfTpk1MnDhx0OcZDAZOnDjBoUOH0Ov1zJkzh9TUVPR6PWVlZTQ0NGAymQgMDCQ6OloaTxkYGMh7773X7xzzPEb6s9fr9WRlZZGbm4urqyvz5s17bjPUqzCej/d9eXNdD4LXhlKplBpw5HI5Xl5ezJ49m4kTJ/YTZUajkerqavLy8mhubsbNzY3ExERcXFxoa2vjwoULkshzc3PDz8+PqKgo3n33Xfz8/Pq9prkL1iwyOzo6sLe3Jzo6moULF/arC3369zo6OvpFLZubm6V583Z2dvj7+xMVFSUJTPNsdoEAnuwj3d3dnD17FldXVyIiIggICMBgMEjC8WlhqdFo+m3D2toaJycnySrJx8dnQJf6smXLpJGUw2XDhg309vby7bff4u/vT3h4OEeOHKGwsJDVq1cPeRK1sbHBw8ODuXPnYmdnx9mzZ5k/fz5btmyhoqKCy5cv09zczKRJk/j444/Jzs7mxo0bGI1GJk6cKEVia2pqkMvlKJXKftu3srLqNybW2dmZgIAATp8+TVZWFps3byYoKIjJkyezadMmdu/ezeXLl4mMjGTOnDnSNp7nTCF4vahUKkpKSigsLJSO/WlpaUMef0cCT09PPv30U44cOcL+/ftZvnw5qampAy78rKys2LhxI1OmTGHfvn1kZmZSV1fHtGnTWL16tTTwoLS0lLt376LRaDAYDNy6dYuysjL+7M/+7I3tb9bW1qSmpjJx4kRu377NqVOniImJYd68ecIO7BkIwfkW09zcTF5eHtXV1VhaWkpp66drFrVarVSf2dnZiYODA35+fhgMBjIzMzGZTDg7OxMYGEh8fDyBgYE4OztLV13mNLXRaKSuro7CwkKKi4vp7u7G0dGRmJgYVq5cSURERD9hqNfraWtrG1BvaW64cHV1xd/fnxkzZkip8ZGw/BC83ahUKuBJVDAnJ4cbN24AT06Efn5++Pj4SGLSPKjALCzN/z5rRrJ5v3+ZE7aFhQUffPABvb29HD9+HHd3dzZs2MDFixf5/e9/z+rVq5/r2ZmUlERLSwtnz57F29ubyMhIIiIiyM3N5dq1a+zfv5+kpCR++tOfcu7cOUpLS9m0aVM/T1hzRHewhidzB7xcLsfR0ZE7d+5w48YNYmJi8PPzkyKi2dnZ/PrXv+bzzz8nPDx8QARV8GYwG/4XFBRQVVUFQGRkJIsXL36hevVXwc7Ojm3btnHlyhUuXLhAa2srq1evHjQwMGnSJH75y19y+PBhcnNzycnJobKykoSEBBYvXkxCQgIGg4G6ujpKS0t5/PgxN2/e5OOPP2bZsmXMmzePqKioYUdqRxIvLy/Wr19PUVERSqVSnJuegxCcbzFtbW10dXUxa9YsoqKiBqSY5XI5OTk5ZGZm0tXVhb29vTTmsbe39/9n777Dorq2v4F/z1CG3nsvKgiioIgiKiiKvaGxd6MmMT33JprEG03zl5vc3JgejVFjbLE3VKygIlUsgKAgRVAQLJQBZgbmvH/4zrmMtKEMZ4D1eZ55kjllzp7tZmbNPnvvBVtbW3h7e8POzg6GhoYN/jHV1tbi3r17XLYfkUjELaXRu3dvODs7QyAQoLq6Gvfv31fotSwuLoZMJgPDMDA3N4etrS08PDy4nsuW3DIhRE5XVxe2trZwd3fnFuB/8OABcnNzuew4Hh4eKu3laYpAIMCKFStQWVmJkydPQl9fH6+88gpOnjyJv//+G3369MH48eMbvXXGMAzGjRuH4uJi7N27FytWrICxsTH69esHb29vxMXF4dKlS7hx4wZ8fX2Rn5+Pbdu2YfTo0Rg8eDAYhoGmpiaX7KEp8kl4hw4dQkpKCoyNjeHt7c3lbD927Bi+//57BAcHc8EEjeHkh0Qiwd27d7k7SsbGxhg4cCA8PDx4GTYkEAgQFhYGKysrHDt2DI8fP8bMmTMb/Fw3NjbGkiVLcP78eVy+fBlaWlpIT09HWloaBg8ejKFDh3LDtcLCwrBgwQL8/vvvuHr1Ku7evQtbW1tYWlqiV69e6NWrFxwdHTvsrhfDMCpLadnV0BjOdqZOYzjlwVzdQLGmpgapqamIjY3FnTt3UF1dDXNzczg6OsLV1RV2dnaws7ODsbFxo7/WampqkJ+fj4yMDGRmZsLW1pZbEF4+w7Fuj2VhYSGePn0K4PmtCGtra26spY2NDaysrJTOltJeaAwnf/iq+8bGscmXGFJWe9V9dXU1vvrqK8TExGDBggWYO3cuUlNTERERAQ0NDUycOLHJpWBEIhE2b94MXV1dLF26VCF4rqysxKVLlxAfHw8dHR3o6enh0aNH8Pb2bjbjS0NYlkVCQgJOnz4NGxsbzJgxA0ZGRvjrr7/w22+/wd/fHyEhISgsLISmpiZWrFjR6nrpqjoi09Ddu3fh7OzcovHLympLu79//z727NnDLaP34hCsuu7evYtDhw4BAJycnJCVlQUtLS0EBwfD39+fCyRlMhnOnTuHqKgo2Nvbw9bWFpmZmaioqICOjg7c3d3Rq1cvbgkj+rznH/VwdmHyHOHFxcXIz8/HzZs3kZqaivLycujr66NPnz5cmjJTU9MmP5wkEgny8vK42ahSqRT6+vqws7NDUFAQBAIBCgsLcf36dW58mLynqXfv3gpp1mjJFMIHgUAAJycnODk5cTN109PTkZqays3UdXV17bCeER0dHbz33nuoqqrCrl27oKenh2nTpsHFxQXHjx/Hnj170LdvX4wbN67BJWb09fUxe/ZsbNmyBUeOHFFYdFpPTw9jxoxBQEAAzp8/j1u3boFlWcTFxaGwsBCzZs1q8ktfrqamhlt1QSaTwcXFBZGRkTh69ChcXFxgZmYGExMTHDt2DBUVFQgNDYWdnV271xVpXv/+/eHv76+WwxkcHR2xYsUK7N69G1u2bMH06dMbnVjWs2dPvPLKKzhw4ADu3LmDQYMGobq6GqdOnUJ8fDxGjRoFT09PCAQCjB49GhYWFjh+/Dj09PTw2muv4dmzZ1zGo0OHDoFhGFhaWkIkEsHDw6NDc6ATRdTD2c7UqYfz1q1buHr1KgoLC/H48WNoa2vDzc0NgYGB8PHxafaLtbq6Grm5ucjOzkZeXh4qKiqgra0NAwMDaGlpoaKiApWVlXB2doalpaVCr6WNjQ2MjIzU9g+bejj5o05139BahJ6enujdu3eja8C2d90/efIEn376KbKysrBq1SqMHTsWLMvi1q1biIiIgKamJiZNmtToF3RaWhr+/vtvhIaGYtiwYQ0eU1BQgDNnzuD27dsoLCyEtbU15s6dC19fX26pJ3lgWfdRVlYG+VeEfOKSgYEBMjIyUFxcjMDAQEyaNAlff/01kpKS8Pnnn2Pw4MFtrpOuSJ3afWu0R7uXSCQ4dOgQ0tPTm11XUyaT4eLFi7h06RLc3NwQFBSEmJgYZGZmwsnJCWFhYXBwcAAA5ObmYu/evdDV1cXcuXO5heQrKipw9+5dpKSk4Ny5cxAIBDA2NuZ+eDo4OPCaMU5Znfnzvi4KONuZOgWcFy9exJUrV6Cvrw8fHx/069ev2ZSQlZWVuHPnDjfZSCQSQVNTE0KhEMbGxtDV1YWpqSnMzc25bCaTJk1qMFOEOqMPf/6oa90/efKEy7YilUrh5OQELy8vODg4KPTKq6LuCwsLsW7dOhQVFeHtt99GcHAwgOfjrI8dO4Y7d+7A19cXY8eObbDOLl68iIsXL2LOnDkNBqZVVVV48uQJkpOTERkZieTkZFRXV6Nnz55wd3fnfnwKhUJuwfm6D3n2InlwwLIs4uPjERkZCRsbG0yaNAlr1qzBkydP8M0336Bnz57tUi9dibq2e2W1V7tnWZZbV7Nv376YPHlyk0FfVlYWDh48CIFAgOnTp6O2thaRkZEoKiri1rI1NTXllmOqqKjAzJkz4erqyr1GZWUlLly4AJFIhKKiIuTl5aG0tBQaGhpcjnj5MmfqqDN/3tdFAWc7U6eAMz8/Hw8fPoSXl1eDA7XlC+3m5eVxX7QPHz6EVCqFgYEBLCws4ObmBnt7ey7lo6mpKffh0Jn/COjDnz/qXvdSqRSZmZlIS0vj8kl7eXnBw8MDurq6Kqv7nJwcfPrppygvL8f777+PgQMHAnj+d3rjxg2cPHkS2tramDx5cr2ATiaTYceOHUhNTcW4ceMAQKGnUj5zHwCXtvX69esoKCiAp6cn3nnnHXh5eSmsx6mMgoIC7N+/H1VVVQgICMDPP/8MKysr/PjjjzR05gXq3u6b097tPiUlBYcPH4aNjQ1mzZrVZLBXXl6OgwcPIicnByEhIQgKCkJKSgrOnz8PkUiEgIAAbkmiffv2ITs7G+PHj4e/vz+Ahuv+2bNnyMvLQ15eHh4+fAiZTAYzMzOu99Pa2lpt2nBn/ryviwLOdqZOAWddtbW1ePbsGR4/foySkhLcv38fWVlZKC4uhkgkgra2Nuzt7bnF2O3t7WFkZNTkH1xn/iOgD3/+dJa6r5uwIDMzEwDg6urKzX4PDg5u97q/ffs2vvjiC8hkMqxZswY+Pj7cvtLSUvz9999ITU2Fk5MTPD09UVFRoRBUXrt2DbW1tQgODoaNjU29XkozMzOuziUSCU6cOIEtW7agpqYGCxcuxMyZM1t8i7G6uhpHjhzB7du3YWhoCGNjYyxdulRtvqzVRWdp941RxWfOgwcPsHv3bjAMg9mzZzc5/lcmkyE6OhpRUVFwcXHB9OnTIRQKcfXqVVy+fBkCgQDDhw+Hv78/zp07h7i4OAwePBhhYWGorq5usu7FYjEKCgq4ALSqqgpCoZDr+XRwcOD136wzf97XRQFnO1OngDM/Px9ZWVkoKSnBkydPUFFRgWfPnkEsFoNlWRgaGsLNzQ19+vSBh4dHi2euduY/Avrw509nrPvq6mrcuXMHaWlpePz4MfT09DBz5kwMGjSoxX83TZF/qX799dcQCASYOnUq9PT0uDGWUqkUhYWFyMrKgoGBAYYOHQpPT08uoNTQ0MD+/fthb2+P+fPnNzhOWyKRoKamhnv++PFjfPfdd0hISECvXr2wbNky9O3bt0U9nfJZ7OfOnYOdnR0WLFigsoBTU1Ozw1e1aA+dsd3XparPnPLycuzZswePHj3C1KlT4e3t3eTx2dnZOHDgAAAgPDwcbm5uqKioQFRUFJKSkmBkZIRRo0ahsrISp06dgru7O8aNG4f4+Hil6p5lWRQXFyMvLw+5ubkoKSkBwzCwtraGs7OzUpNs21tn/ryviwLOdqZOAeetW7eQlJQEiUQCkUgEmUwGY2NjuLm5wdXVFY6Ojm0aMN2Z/wjow58/nbnuWZbFvXv3kJycDE1NTejq6sLHxwcDBw6EjY2NUq9RU1ODZ8+e1Zug8+TJEzx79gwymQy5ubmIj4+HqakpZsyYAQ8PD66H0szMDAzD4MSJE7h37x4GDBiAsLAwLvDNycnBn3/+iYEDB3K31+UkEgni4+O5zF1131dCQgLOnDmDmpoa9O3bF4MHD25xur6SkhI8ffpUpWM4DQwMEBAQ0OmCzs7c7gHVfuZIpVIcPXoUt27dQnBwMEJCQpoM6OSJE+7du4dhw4YhJCQEAoEAJSUlOHPmDDIyMmBvbw8PDw/ExMRAKBTCwcEBdnZ2La57kUiE+/fvIzc3FwUFBdyQM3nwaWdnR7nUlaT+07NIq8lT9skXupavs9kZZuURoo4YhuGGm/j6+iI9PR1JSUlISkqCg4MDBg4cCG9vb8hksgZnfT99+hSlpaXczG9NTU0uiPT09OSCSlNTU8TExOCPP/5AdnY2XnrpJdjb2yuUZcGCBUhKSkJkZCQyMzMxZcoUuLm5wcXFBePHj8fx48dhbW2t8MO3pqaGW23ixZ7Z0NBQeHt749ixY7h79y6ePHmC3r17w9/fX+lJgYaGhgqTNdqbWCxGRUUFampqOl3ASRqnpaWF8PBwWFlZ4dy5cyguLsbUqVMb/Tc2MDDA/PnzcfnyZZw/fx65ubmYPn06LCwsMGfOHOTk5CAyMhLnz5+Hvb09Hjx4gFOnTmH8+PFwcXFpUdn09fXh6ekJT09P1NTU4OHDh9yt99TUVGhqasLe3h4uLi5NrptLKODs0nr16gUHBwfY2trSeCpC2pm2tjZ69eoFMzMz3LhxA0lJSTh27BhqampgZmYGOzs76OrqKsz8tre3VxhX2VgGLwCYMGECqqqqsHPnTmzcuBH/+Mc/YGVlxe1nGAb+/v5wd3fH0aNHuV7N0aNH10t/WTetJfB8NnpDPT0uLi5YtmwZzp07h9u3b+Pu3btcjnZ1WeNRnvqWdC0Mw2DYsGGwtLTEwYMH8ccff2DOnDmNZsOSH+/k5IT9+/fj119/RXh4OHr06AEXFxcsX76cWw5JvkrDsWPHEBYW1ugSY83R1NSEo6MjHB0dMWTIEDx79gy5ubm4f/8+srOzKeBsBgWcXZipqWmLMqgQQv6HZVlUV1ejtLQUZWVlKCsrQ2lpKZ48eYLi4mJcunSJy+6jp6eHPn36wNfXF48ePUJBQQEkEgl69uyJIUOGcAtVtwTDMAgPD0dFRQUOHz6MH3/8EW+//Xa9nNGmpqZYuHAhEhMTFXo7x44dWy/9pTL09PQwYcIE2NjYICkpCRoaGrh37x4yMzPh4+MDX1/fdh23Skhdnp6eWLZsGXbv3o3Nmzdj1qxZcHR0bPR4Z2dnvPLKKzh8+DD++usvDB06FCNHjoRAIICPjw969+6N6OhoLuvd7t27ERYWhsDAwDaNw2QYhvuO9fX1BY1ObB4FnISQbotlWYhEIoWAsry8nAsy6/am6evrc7Owzc3NERISAnt7e5iamtbLBCSVSpGamorExET8/fffMDIywoABA9C/f/8WrfWnoaGB+fPno6qqCqdPn8bPP/+MN998E0ZGRgrHMQyDgQMHwt3dHUeOHMG2bdswaNAgTJkyBdu3b8fu3buxdOlSpa8rEAgwcOBAWFlZ4cKFC9DQ0ICNjQ1SUlKQnp6OAQMGoHfv3h2WlYl0L9bW1li+fDn27t2Lbdu2YfLkyejXr1+jx+vr62Pu3LmIiYnBuXPnkJeXh+nTp8PY2BiampoYPHgwysrKkJWVhcuXL2PXrl3IyMjAvHnz2m1ohromOVEnFHASQro0mUyGioqKBgPK0tJS1NbWAnj+haGvrw9jY2NYWlrC3d0dxsbGMDIygpGREdebKR/A7+3t3egAfi0tLfj6+sLX1xcPHz5EYmIiLl++jKioKHh6esLf3x+urq5KfUlpaWlhyZIlqKqqwqVLl7Bp0ya8+uqrDa6ta2ZmhsWLFyM+Ph5nz57F3bt3MXToUERGRuLIkSMYP358i+rO2dkZ06dPx5kzZ5Cbmws/Pz+Ul5cjJiYGt27dQkBAANzc3OjLlrQ7fX19LFy4ECdOnMChQ4fw6NEjhIaGNnqngGEYBAUFKdxinzZtGnr16gXgeSrZwYMHw8/PDxEREYiKikJmZiYWLVrEHUNUiwJOQkiXcv/+feTl5XEBZUVFBRdUCgQCGBoawsjICLa2tvD09ISRkRGMjY1hYGCgkgl1tra2mDRpEkaPHo2bN28iISEBf/75J8zNzeHv7w9fX98Gc6XXpauri+XLl6O6uhpXrlyBUCjE8uXLGxyHyTAMBg0ahB49euDIkSM4ceIEbG1tcfPmTaVvq9dlaGiIyZMnIzY2FomJiejVqxemTJmC5ORknD17FlZWVq2a0U5IczQ1NTF58mRYWVkhMjISxcXF3PqbjXF0dORuse/atQtDhgxBYGAgt9/Y2Bhz5syBn58ftm/fjo0bN2L48OEYPXp0veEqpH1RwEkI6VKKi4tRUFAAIyMjODs7cwGlkZERDAwMeJtAp6Ojg4CAAAwcOBB5eXlISEjA2bNnce7cOfTp0wcDBw6EnZ1do72FRkZGeOWVV/Ddd9/h4sWL0NHRweLFi7me1xeZm5tj8eLFiIuLw7lz51BaWopjx46hb9++8PLyalHZNTU1MXToUFhbWyM6OholJSUYPXo0fHx8EBcXh6NHj8LZ2RmDBg2iceOkXTEMg8DAQFhaWmLfvn3YsmUL5syZ02Q709XVxezZsxEbG4szZ84gMzMTVlZWCsNZPD09sXbtWuzcuRMxMTHIzs5GYGAg/P39G7x7QNqOpi4TQrqU/v37Y+bMmRg7diwCAwPh7e0NBweHZjNndRSGYeDs7IwZM2bgnXfeQXBwMHJycrB582Zs2rQJ165da3Qmtrm5OV599VX06NEDZ86cwe7du7ne24YIBAIEBgbilVdegY+PDwoKCvD333/j0aNHrSp7z549MW3aNMhkMhw8eBDV1dWYNm0aQkND8eTJE+zbtw+XLl2iCRSk3fXo0QMvv/wyampqsHnzZuTk5DR5vDxQXbZsGSoqKhAREYHc3FyFY/T09LBkyRJMmjQJUqkUly9fxp49e5CYmAipVKrCd9M98f/pq0Y2bNiAgQMHwtDQEFZWVpg6dSoyMjL4LhYhpIsyMDDAsGHD8Oabb2Lu3LkwMDDAsWPH8O233+LkyZMoLi6ud46dnR1WrlwJe3t7RERE4MCBA5DJZE1ex8LCAsuWLcOKFStQXl6OjRs31vvyVZaZmRmmTZsGJycnnD17FjExMXB1dcXMmTMxePBgMAxDYzqJSlhaWmL58uWwtrbGn3/+iaSkpGbPsbe3x8svvwxra2uuvdbNtKWpqYnQ0FBMnDgRJiYmkEgkuHbtGvbs2YPbt283+7dFlEcBZx1RUVFYtWoV1w0vlUoRFhYGkUjEd9EIIV2YQCBAr169MG/ePLz55pvw9/dHSkoKfvrpJ2zbtg2pqakKPZlubm54+eWXYWlpiWPHjuHYsWPN9irKc00vX74cAPDDDz/g6tWrCl++ytLW1kZoaCiCgoJw+/ZtHDt2DNXV1ejbty+GDh3a4tcjRFm6urqYP38+/P39cezYMZw8ebLZoFBHRwfDhw9HYGAg0tLScPToUZSVlXH7GYaBn58fxo8fD21tbRgaGsLCwgLR0dHYv38/8vLyqNe+HVDAWcepU6ewePFieHt7o1+/fti2bRvy8vKU+hVFCCHtwdTUFKNGjcI777yD6dOng2VZ7Nu3D//9739x/vx5lJaWAgC8vb2xcOFC6Ovr4/Dhw4iMjFTqS9He3h6rVq2CsbExIiIicPDgwVbdYmcYBn369MGkSZMgEolw4MAB5Ofnt/h1CGkpDQ0NjB8/HhMmTEBCQgJ27tyJqqqqJs9hGAZeXl6YMmUKJBIJDhw4gHv37ikc4+rqiilTpqC2thaPHz9GSEgIdHV1cfLkSZw4cQIlJSWqfFtdHgWcTZB/sNPMNUJIR9PU1ISPjw+WLFmC1157DV5eXoiLi8N3332H3bt34+7du/D398ecOXOgqamJAwcOIDo6WqnXtrOzw4wZM2Bubo7i4mIcOXIECQkJrerttLa2xvTp02FpaYmIiAgkJiZSbxDpEAMHDsSCBQvw4MED/P7770oFhJaWlpg2bRocHR1x5swZXL58WaHdW1hYYNq0adDT08Ply5fh7e2NMWPGQCQS4eDBg7hw4QIqKipU+ba6LAo4GyGTyfD2228jKCgIffr0afQ4sVjMLRpdVlZGDZEQ0u6srKwwfvx4vPfee5g4cSJKS0uxc+dOfP/99xAIBBg3bhxqamrw999/IzY2VqnXlOdJ19TUhIuLC27cuIFDhw61qhdHR0cH48aNw4ABA/DkyZMWn09Ia7m6umL58uUQCAT4/fffkZWV1ew5QqEQoaGhGDZsGNLT03H48GE8e/aM26+vr4/JkyfD2dkZZ86cwbNnzzBjxgwMHToU9+/fx549exAXFwexWKzCd9b10LJIjVi1ahVSUlJw+fLlJo/bsGED1q9f30GlIoR0Z9ra2lzGooKCAiQkJCAqKgoymQympqbIzc3Frl27IBQK4efn1+zrBQYG4unTp3jw4AFGjx6NhIQEHDp0CH5+fvDz82tRJiGGYTBgwACwLEuThkiHMjMzw7Jly3DgwAH89ddfGDt2LAICAppsh/Jb7FZWVjh79iwOHjyI4cOHo0ePHgD+N5nIxMQEcXFxePr0KYYNG4YePXrg5s2buHHjBmXdaiHq4WzA66+/juPHj+PChQtwcHBo8tg1a9agtLSUe0RFRXVQKQkh3RXDMHBwcMC0adPw7rvvYtSoUXB0dERtbS3i4uLwn//8B9evX2/2dTQ0NDB69Ghoa2sjISEBEydOhJ+fH5KTk1vd20nBJuGDjo4O5syZg8DAQJw8eRLHjx9vcskwOQsLC4SHh8PZ2Rnnzp1DdHQ0d4udYRj4+/sjNDQUWVlZOHHiBGpra+Hv749Zs2bB2dkZMTEx2LdvH7Kzs2koSTMo4KyDZVm8/vrrOHToEM6fPw9XV9dmzxEKhVzqO/nC0oQQ0lH09PQwZMgQvPXWW/jyyy/Rt29fpKSk4K233sKmTZtQWFjY5Pk6OjoICwtDWVkZLl26hAEDBmDatGkAgEOHDiEpKUmpL25C+CYQCBAWFoYpU6bg+vXr+PPPP1FZWdnsedra2hg5ciSCg4Nx586derfYe/TogUmTJqGsrAyHDh3CkydPYGBggJCQEEyfPh1GRkZITU1V4TvrGijgrGPVqlX466+/sGvXLhgaGqKwsBCFhYXNzn4jhBC+MQyD3r17Y+PGjZg7dy6EQiH27duHr776Clu2bMHNmzcbnRRkbm6OkSNH4t69e7h27Ro3ccLX1xfXrl3D4cOHaWwm6TT8/PywaNEilJSUYNOmTUqtwsAwDDw9PREeHg6ZTIYDBw7gzp073H5ra2tMmzYN2traOHLkCPLy8gA8/9sZP348xowZQ737zaCAs45ffvkFpaWlCAkJga2tLffYu3cv30UjhBCl6OnpYeXKlRg9ejRsbW1RU1PDzbD9/vvvce3aNYU1COVcXFwwcOBAJCYmIjs7GxoaGhg4cCCmTp2K2tpaHDx4EMnJybQQNukUnJycsHz5cujo6GD79u1KL9klT2zg7u6OCxcu4OLFi1zWIQMDA0yZMgW2trY4deoUbt26xd1GbyzFLPkfCjjrYFm2wcfixYv5LhohhCjN2NgYixcvhoeHB8rKyiASiTB37lz4+PggMzMT+/btQ0REBHJychQCSD8/P+6L9vHjxwCeLyMTHh4OHx8fJCQk4PDhw3j69Clfb40QpZmYmGDp0qVwdXVFVFQUbty4odQ4Sy0tLYSEhCAkJARZWVncbXT5vrCwMPTt2xcxMTG4dOkSDTlREgWchBDSBVlaWmLhwoVwdXXFnTt3cPToUQwcOBDh4eEYPnw4xGIxTp8+jV27diEpKQkikQgMwyA4OBhGRkY4ffo0qqurATyfsTto0CBMmTIFUqkUBw4cwPXr16m3k6g9bW1tTJ8+Hd7e3khMTMSFCxeUXm/Ww8MD4eHhYBgGhw4dQnp6OliWhUAgwODBgxESEoI7d+7g5MmT3N8KaRwFnIQQ0kU5Ojpi/vz5sLOzQ3p6Onbu3AmJRIKePXti2rRpmD59OhwdHXH9+nXs2rULZ86cwaNHjzBmzBjU1NTgzJkzCr038kXe+/Tpg/j4eBw9elRhcgUh6ohhGPj6+iIkJAT37t3D8ePHlZpMBDzP/DVt2jT06NEDUVFRuHDhAneL3cPDAxMmTMDjx48RERFBs9SbQQEnIYR0YT169MDs2bNhYWGB9PR0nD9/nluw2sLCAsHBwZg/fz63Jufx48cREREBJycnFBQU4OrVqwqvp6mpicGDB2Py5Mmorq7G/v37cePGDertJGrP3d0dkydPRkVFBQ4ePKj0sl+ampoIDg5GaGgocnJycODAAW7Iia2tLaZNm4ZBgwbRpKFmUMBJCCFdnI+PD6ZNmwZDQ0Pk5OTg9OnTkEgk3H6hUIg+ffrgpZdewqRJk2Bubo7MzEyUlpbixIkTDSbAsLGxwYwZM+Dt7Y24uDjq7SSdgpWVFaZOnQo9PT0cOXJEqcxEcj169EB4eDg0NTVx6NAh3L59GyzLwsjICPb29iosdddAASchhHQDgwYNQlhYGIRCIbKyshAZGVlvLBvDMLCzs8OoUaMwd+5chIWFQV9fHzt27MAff/yB9PR0hXM0NTURGBjI9XYeOHBAYeYuIerIwMCAS1159uxZJCYmKt1mTUxMMHXqVHh6eiI6Ohrnzp1T+PFGGkcBJyGEdBPBwcHw8fGBpqYm0tPTcfbs2UZn2Orp6cHPzw8ffPABAgMDkZmZibNnz+Kvv/5CTEyMQm+mjY0Npk+fDk9PT259QkLUmTx15cCBA5GUlISzZ89yYzOVOXfo0KEYNWoU7t+/36Lb890ZBZyEENJNMAyDgIAAeHl5QSAQ4Pbt27h48WKTvTtaWlqYPXs2fHx8YGJigp49eyIzMxN79+7F8ePHkZWVhdraWmhpaSEoKAjjxo2jsWykU2AYBv3790dYWBju37+Po0ePoqKiQunz3d3dER4eDi0tLURFRVHPfjMo4CSEkG5EIBAgODgYPXv2hEwmw61bt3D58uUmvyx1dHQwZswYSCQSiEQizJkzB6GhoaitrcXZs2exa9cuJCQkoKKiAgIBfa2QzsXV1ZUbFnLo0CEUFRUpfa6xsTGmTJlCmYaUQJ8MhBDSzWhqamLMmDFwcXFBbW0tkpOTER8f3+Q5ZmZmGDlyJHJycnDjxg306NEDU6ZMwYwZM+Dq6oqUlBTs2rULZ8+epZ4e0ulYWFggPDwcRkZGOHbsmEJay+ZoamrCwMBAhaXrGijgJISQbkhbWxvjxo2Dvb09ampqkJCQgOTk5CbPkae/TEpKwr179wA8zyU9dOhQzJs3D0OHDoWJiQn19JBOSVdXFxMmTECPHj1w4cIFxMXF0XJf7YgCTkII6ab09PQwfvx4WFpaQiKR4OrVq0hNTW3yHF9fXy79Zd2JEtra2vDy8oK/v7+qi02IysjX3AwMDMSNGzcQGRlJs9DbCQWchBDSjRkZGWH8+PEwNTWFWCxGdHQ07t692+jxDMMgJCQEJiYmiIyMRFVVVQeWlhDVYxgGffv2xdixY/Hw4UMcOXIEZWVlfBer06OAkxBCujlzc3OMHTsWhoaGEIvFuHDhAnJycho9Xj4GtKH0l4R0FU5OTpg6dSpqa2tx6NAhPHjwgO8idWoUcBJCCIGtrS1GjRoFPT09VFdX48yZM8jPz2/0eAMDA4SFheHRo0eIiYnpwJIS0nFMTU0xdepUmJub48SJE7h9+zbfReq0KOAkhBAC4PmkoODgYGhra0MsFiMyMhKFhYWNHm9jY4OhQ4ciLS2t2bGfhHRWOjo6GDduHHr37o3o6GhcuXKFJhO1AgWchBBCOB4eHhg8eDA0NDRQVVWFU6dO4fHjx40e7+npiT59+iAmJgYFBQUdWFJCOo6GhgaGDh3K/cA6efIkqqur+S5Wp0IBJyGEEAW+vr7w8/MDwzCoqqpCRESEQirLFwUGBsLW1hZnz56lyRWkS/P29sa4ceNQXFyMw4cPN/l3QRRRwEkIIaSeQYMGwcvLCyzLQiQS4cSJE42m/RMIBBg1ahSEQiEiIyPpdiPp0hwcHDBt2jQwDIPDhw83OdaZ/A8FnIQQQuphGAbDhw+Hm5sbWJZFRUUFjh8/3ugySPL0l/7+/pTeknR5xsbGmDp1KqysrHDy5EmkpKRQhq1m0KcCIYSQBsl7Lu3s7MCyLEpLS3HixAmIxeIGjzc1NYWLi0vHFpIQngiFQowdOxZ9+vSh8ctKoICTEEJIo+RrblpYWIBhGDx+/BgnT56EVCrlu2iE8E4gECAwMBCjR4+mlK7NoICTEEJIk+TLwhgYGEBTUxNFRUWIjIxETU0N30UjRC3QMJLmUQ0RQghplr6+PsaPHw8tLS1oa2sjPz8f58+fpwlChBClUMBJCCFEKSYmJhg/fjyA572e2dnZiI6OpskShJBmUcBJCCFEaRYWFggLC4NUKoW+vj4yMjIQExNDQSchpEkUcBJCCGkRe3t7jBw5EpWVlTAyMsKtW7eQlJTEd7EIIWqMAk5CCCEt5ubmhmHDhqGsrAympqZISkrCjRs3+C4WIURNafJdAEIIIZ1T7969UVVVhYSEBJiZmSE2Nhba2tro3bs330UjhKgZ6uEkhBDSan5+fujTpw+ePn0Kc3NzpKen08x1Qkg9FHC+IDo6GpMmTYKdnR2XJ5UQQkjDGIbBkCFD4O7ujqdPn8LPz4/WJCSE1EOfCi8QiUTo168ffvrpJ76LQgghnQLDMAgJCYG9vT3i4uKoh5MQUg+N4XzBuHHjMG7cOL6LQQghnYqGhgZGjx4NsVhMPZyEkHoo4GwjsVgMsVjMPa+oqOCxNIQQwh8tLS1oaWnxXQxCiBqin6FttGHDBhgbG3OP4OBgvotECCGEEKJWKOBsozVr1qC0tJR7REVF8V0kQgghhBC1QrfU20goFEIoFHLPDQwMeCwNIYQQQoj6oR5OQgghhBCiUtTD+YKKigpkZmZyz7Ozs3H9+nWYmZnBycmJx5IRQgghhHROFHC+IDExESNGjOCev/vuuwCARYsWYdu2bTyVihBCCCGk86KA8wUhISFgWZbvYrSbkpISlJSUqOS1xWIxKisrYWhoCF1dXZVcQ1WqqqqQmZkJPT09hTG47cnCwgIWFhYqeW3SNGr3DaN237VRu28YtXv1wLBdKbpSAw8fPsRvv/2GlStXwtbWlteyiMVijBkzhmbO8yQ4OBinT59W2QccaRi1e35Ru+cHtXt+UbtvHgWcXVhZWRmMjY0RFRVFs+c7WEVFBYKDg1FaWgojIyO+i9OtULvnD7V7/lC75w+1e+XQLfVuwNfXl/4IOlhZWRnfRej2qN13PGr3/KN23/Go3SuHlkUihBBCCCEqRQEnIYQQQghRKQo4uzChUIhPPvmEBjHzgOqeP1T3/KG65w/VPX+o7pVDk4YIIYQQQohKUQ8nIYQQQghRKQo4CSGEEEKISlHASQghhBBCVIoCTqKUnJwcMAxD+eRJt0LtnnRH1O6JKlDAqQJZWVlYuXIl3NzcoKOjAyMjIwQFBWHjxo2oqqpS2XXT0tKwbt065OTkqOwayvjiiy8wefJkWFtbg2EYrFu3jtfyNIZhGKUeFy9ebPO1KisrsW7duha9VmepR7nu3O7T09Px/vvvw9fXF4aGhrC1tcWECROQmJjIW5kao87tvjPVo1x3bvcPHjzA/Pnz4eHhAUNDQ5iYmCAgIADbt2+Hus1HVud235nqsS0o01A7O3HiBF566SUIhUIsXLgQffr0gUQiweXLl/HPf/4Tqamp2LRpk0qunZaWhvXr1yMkJAQuLi4quYYyPv74Y9jY2MDPzw+nT5/mrRzN2bFjh8LzP//8E2fOnKm3vXfv3m2+VmVlJdavXw8ACAkJUeqczlKPALX733//HVu2bMH06dPx2muvobS0FL/99hsGDx6MU6dOYdSoUbyUqyHq3O47Uz0C1O5LSkqQn5+PGTNmwMnJCVKpFGfOnMHixYuRkZGBL7/8kpdyNUSd231nqsc2YUm7uXfvHmtgYMB6enqyDx48qLf/7t277Hfffaey6+/bt48FwF64cKHZY2UyGVtZWan0a2dnZ7MA2K1btyp1LMuybHFxMQuA/eSTT5S+Dp9WrVrFqupPojV10Vnqkdo9yyYmJrLl5eUK20pKSlhLS0s2KChI6evxQZ3afWeqR2r3jZs4cSKrr6/P1tTUtOr8jqBO7b4xnaEeW4ICznb0yiuvsADYK1euKHW8VCplP/30U9bNzY3V1tZmnZ2d2TVr1rDV1dUKxzk7O7MTJkxgL126xA4cOJAVCoWsq6sru337du6YrVu3sgDqPeQfRvLXOHXqFDtgwABWKBSy//3vf1mWZdmsrCx2xowZrKmpKaurq8sOGjSIPX78uEIZWvMBpO6B0osa+gCqra1l//vf/7JeXl6sUChkrays2BUrVrBPnjxROC4hIYENCwtjzc3NWR0dHdbFxYVdsmQJy7L/q7sXH8rWi7rXI7X7xoWHh7NmZmatOrejqGu7r0sd65HafeNef/11lmGYFgW5Ha0ztPvOUI8tQQFnO7K3t2fd3NyUPn7RokUsAHbGjBnsTz/9xC5cuJAFwE6dOlXhOGdnZ9bDw4O1trZmP/zwQ/bHH39k+/fvzzIMw6akpLAs+/xD5M0332QBsB9++CG7Y8cOdseOHWxhYSH3Gj169GBNTU3Z1atXs7/++it74cIFtrCwkLW2tmYNDQ3Zjz76iP3222/Zfv36sQKBgD148CBXhu4acL788suspqYmu3z5cvbXX39lP/jgA1ZfX58dOHAgK5FIWJZl2aKiItbU1JTt1asX+/XXX7ObN29mP/roI7Z3794sy7JsRUUF+8svv7AA2GnTpnH/Njdu3FCqXOpej9TuGzdkyBC2V69erTq3o6hru69LHeuR2v3/VFZWssXFxWx2dja7bds2Vl9fnx0yZIjSdcMHdWz3nbEeW4ICznZSWlrKAmCnTJmi1PHXr19nAbAvv/yywvZ//OMfLAD2/Pnz3DZnZ2cWABsdHc1te/ToESsUCtn33nuP29bULRb5a5w6dUph+9tvv80CYC9dusRtKy8vZ11dXVkXFxe2traWZdnuGXBeunSJBcDu3LlT4bhTp04pbD906BALgE1ISGj0tdtSF+pcj9TuGxcdHc0yDMOuXbu2xed2JHVt93LqWI/U7hVt2LBBoTcvNDSUzcvLU+pcvqhju++M9dgSNEu9nZSVlQEADA0NlTo+IiICAPDuu+8qbH/vvfcAPB+MXpeXlxeGDRvGPbe0tISHhwfu3bundBldXV0xZsyYeuUICAjA0KFDuW0GBgZYsWIFcnJykJaWpvTrdzX79u2DsbExRo8ejZKSEu4xYMAAGBgY4MKFCwAAExMTAMDx48chlUp5LHHHo3bfsEePHmHu3LlwdXXF+++/36bX6mjq1O7VtR6p3SuaM2cOzpw5g127dmHu3LkAoNIZ+qqgDu2+K9RjUyjgbCdGRkYAgPLycqWOz83NhUAgQI8ePRS229jYwMTEBLm5uQrbnZyc6r2Gqakpnj59qnQZXV1dGyyHh4dHve3ymXovlqM7uXv3LkpLS2FlZQVLS0uFR0VFBR49egQACA4OxvTp07F+/XpYWFhgypQp2Lp1K8RiMc/vQPWo3dcnEokwceJElJeX48iRIzAwMGj1a/FBXdq9OtcjtXtFzs7OGDVqFObMmYOdO3fCzc0No0aN6lTBkjq0+65Qj02hZZHaiZGREezs7JCSktKi8xiGUeo4DQ2NBrezLVijS1dXV+ljCSCTyWBlZYWdO3c2uN/S0hLA83/D/fv3IzY2FseOHcPp06exdOlS/Oc//0FsbKxafVG2N2r3iiQSCcLDw3Hz5k2cPn0affr06bBrtxd1aPfqXo/U7ps2Y8YMbN68GdHR0fV6WdWVOrT7F3XGemwKBZztaOLEidi0aROuXr2KwMDAJo91dnaGTCbD3bt3Fdb9KioqwrNnz+Ds7Nzi6yv7YfZiOTIyMuptT09P5/Z3V+7u7jh79iyCgoKU+vAePHgwBg8ejC+++AK7du3CvHnzsGfPHrz88sut+rfpLKjdPyeTybBw4UKcO3cOf//9N4KDg1v8GuqA73bfWeqR2n3j5D1ypaWl7fJ6HYHvdt+QzliPTaFb6u3o/fffh76+Pl5++WUUFRXV25+VlYWNGzcCAMaPHw8A+O677xSO+fbbbwEAEyZMaPH19fX1AQDPnj1T+pzx48cjPj4eV69e5baJRCJs2rQJLi4u8PLyanE5uoqZM2eitrYWn332Wb19NTU1XD0/ffq0Xs+Dr68vAHC3WfT09AC07N+ms6B2/9wbb7yBvXv34ueff0Z4eHiLz1cXfLf7zlKP1O6B4uLiBrdv2bIFDMOgf//+LXo9PvHZ7rtSPTaFejjbkbu7O3bt2oVZs2ahd+/eCpknYmJisG/fPixevBgA0K9fPyxatAibNm3Cs2fPEBwcjPj4eGzfvh1Tp07FiBEjWnx9X19faGho4KuvvkJpaSmEQiFGjhwJKyurRs9ZvXo1du/ejXHjxuHNN9+EmZkZtm/fjuzsbBw4cAACQct/k+zYsQO5ubmorKwEAERHR+Pzzz8HACxYsKDT9JoGBwdj5cqV2LBhA65fv46wsDBoaWnh7t272LdvHzZu3IgZM2Zg+/bt+PnnnzFt2jS4u7ujvLwcmzdvhpGREfdFo6urCy8vL+zduxe9evWCmZkZ+vTp0+Stws5Sj9TunwcSP//8MwIDA6Gnp4e//vpLYf+0adO4AEHd8dnuO1M9Urt/nn73ypUrGDt2LJycnPDkyRMcOHAACQkJeOONN+qNWVVnfLb7rlSPTeJzinxXdefOHXb58uWsi4sLq62tzRoaGrJBQUHsDz/8oLDIr1QqZdevX8+6urqyWlparKOjY5MLAb8oODiYDQ4OVti2efNm1s3NjdXQ0GhwIeCGyBcCNjExYXV0dNiAgIA2LQQcHBzc4MK3aGQJD3XRWOaJTZs2sQMGDGB1dXVZQ0ND1sfHh33//fe57CLXrl1j58yZwzo5OXGLBU+cOJFNTExUeJ2YmBh2wIABrLa2tlJLZnS2euzO7V6+xmJjD3nWKHWkTu2+M9Zjd273kZGR7MSJE1k7OztWS0uLe+9bt25lZTJZk+fyTZ3afWeux5ZgWLYLZYYnhBBCCCFqh8ZwEkIIIYQQlaKAkxBCCCGEqBQFnIQQQgghRKUo4CSEEEIIISpFASchhBBCCFEpCjh58O9//xuenp6QyWR8F6XNVq9ejUGDBvFdDKVR3fOH6p4/VPf8obrnD9W9muF7XabuprS0lDUzM2P/+OMPbhv+/xpz33zzTb3jt27dygJgExIS2nztAwcOsDNnzmRdXV1ZXV1dtlevXuy7777LPn36tMHjjxw5wvr5+bFCoZB1dHRk//Wvf7FSqVThmIcPH7JCoZA9cuRIm8unalT3/KG65w/VPX+o7vlDda9+KODsYP/9739ZIyMjtqqqitsm/yOwtrZmRSKRwvHt+Udgbm7O+vj4sGvXrmU3b97Mvvnmm6y2tjbr6enJVlZWKhwbERHBMgzDjhgxgt20aRP7xhtvsAKBgH3llVfqve7MmTPZYcOGtbl8qkZ1zx+qe/5Q3fOH6p4/VPfqhwLODta3b192/vz5CtsAsL6+viwA9j//+Y/Cvvb8I2goO8327dtZAOzmzZsVtnt5ebH9+vVT+JX10UcfsQzDsLdv31Y4dv/+/SzDMGxWVlaby6hKVPf8obrnD9U9f6ju+UN1r35oDGcHys7Oxs2bNzFq1Kh6+4KCgjBy5Ej8+9//RlVVlUquHxISUm/btGnTAAC3b9/mtqWlpSEtLQ0rVqyApqYmt/21114Dy7LYv3+/wmvI38+RI0dUUOr2QXXPH6p7/lDd84fqnj9U9+qJAs4OFBMTAwDo379/g/vXrVuHoqIi/PLLL02+jlgsRklJiVKP5hQWFgIALCwsuG3JyckAAH9/f4Vj7ezs4ODgwO2XMzY2hru7O65cudLs9fhCdc8fqnv+UN3zh+qeP1T36kmz+UNIe0lPTwcAuLq6Nrh/2LBhGDFiBL7++mu8+uqr0NXVbfC43bt3Y8mSJUpdk2XZJvd/9dVX0NDQwIwZM7htDx8+BADY2trWO97W1hYPHjyot93NzQ1paWlKlYkPVPf8obrnD9U9f6ju+UN1r54o4OxAjx8/hqamJgwMDBo9Zt26dQgODsavv/6Kd955p8FjxowZgzNnzrS5PLt27cKWLVvw/vvvo2fPntx2+W0GoVBY7xwdHR2UlZXV225qalrv15g6obrnD9U9f6ju+UN1zx+qe/VEAaeaGT58OEaMGIF///vfeOWVVxo8xtbWtsFfRC1x6dIlLFu2DGPGjMEXX3yhsE/+a08sFtc7r7q6usFfgyzLgmGYNpWJb1T3/KG65w/VPX+o7vlDdd/xKODsQObm5qipqUF5eTkMDQ0bPe6TTz5BSEgIfvvtN5iYmNTbX1VVhdLSUqWuaWNjU2/bjRs3MHnyZPTp0wf79+9XGKwM/K97/+HDh3B0dFTY9/DhQwQEBNR7zadPnyqMTVE3VPf8obrnD9U9f6ju+UN1r55o0lAH8vT0BPB8Bl1TgoODERISgq+++qrBWXR79+7lfnk193hRVlYWxo4dCysrK0RERDR4y8HX1xcAkJiYqLD9wYMHyM/P5/bXlZ2djd69ezf5vvhEdc8fqnv+UN3zh+qeP1T36ol6ODtQYGAggOeNq2/fvk0eu27dOoSEhGDTpk319rV2XElhYSHCwsIgEAhw+vRpWFpaNnict7c3PD09sWnTJqxcuRIaGhoAgF9++QUMwygMegaA0tJSZGVl4dVXX21xmToK1T1/qO75Q3XPH6p7/lDdq6mOXvizu+vTpw87Z84chW0A2FWrVtU7Njg4mMuM0B6L0fbr148FwL7//vvsjh07FB6RkZEKxx47doxlGIYdOXIku2nTJvbNN99kBQIBu3z58nqvu3//fhYAm5mZ2eYyqhLVPX+o7vlDdc8fqnv+UN2rHwo4O9i3337LGhgYKKS3auyP4MKFC+36RyB/rYYewcHB9Y4/dOgQ6+vrywqFQtbBwYH9+OOPWYlEUu+4WbNmsUOHDm1z+VSN6p4/VPf8obrnD9U9f6ju1Q8FnB3s2bNnrJmZGfv777/zXZR28fDhQ1ZHR4c9fPgw30VpFtU9f6ju+UN1zx+qe/5Q3asfCjh58H//93+sh4cHW1tby3dR2uyDDz5gBw4cyHcxlEZ1zx+qe/5Q3fOH6p4/VPfqhWHZZpbHJ4QQQgghpA1oWSRCCCGEEKJSFHASQgghhBCVooCTEEIIIYSoFAWchBBCCCFEpSjgJIQQQgghKkUBJyGEEEIIUSkKOAkhhBBCiEpRwEkIIYQQQlSKAk5CCCGEEKJSFHDWsWHDBgwcOBCGhoawsrLC1KlTkZGRwXexCCGEEEI6NQo464iKisKqVasQGxuLM2fOQCqVIiwsDCKRiO+iEUIIIYR0WpRLvQnFxcWwsrJCVFQUhg8fzndxCCGEEEI6JU2+C6DOSktLAQBmZmaNHiMWiyEWixW2CYVCCIVClZaNEEIIIaSzoFvqjZDJZHj77bcRFBSEPn36NHrchg0bYGxsrPAYM2YMHj582IGlJYQQQghRX3RLvRGvvvoqTp48icuXL8PBwaHR417s4bx+/TqCg4ORlJSE/v37d0RRCSGEEELUGt1Sb8Drr7+O48ePIzo6uslgE6h/+9zAwEDVxSOEEEII6VQo4KyDZVm88cYbOHToEC5evAhXV1e+i0QIIYQQ0ulRwFnHqlWrsGvXLhw5cgSGhoYoLCwEABgbG0NXV5fn0hFCCCGEdE40aaiOX375BaWlpQgJCYGtrS332Lt3L99FI4QQQgjptKiHsw6aP0Xai0QiQWJiIvz9/aGtrc13cQghhBBeUQ8nISoQGxuLrVu3Ii4uju+iEEIIIbyjgJOQdiYWi3H69GlkZ2fj1KlT9RIDEEIIId0NBZyEtLO4uDjcuXMHffv2xZ07dxAfH893kQghhBBeUcBJSDuS925qa2vDyMgI2tra1MtJCCGk26OAk5B2lJycjKysLIhEIqSmpkIkEiErKwvJycl8F40QQgjhDc1SJ6QdOTo6Yt68eQ1uJ4QQQrorCjgJaUf29vawt7fnuxiEEEKIWqFb6oQQQgghRKUo4CSEEEIIISpFASchhBBCCFEpCjgJIYQQQlpJIpEgJiYGEomE76KoNQo4CSGEEEJaiVIZK4cCTkIIIYSQVqBUxsqjgJMQFaBbLIQQ0vVRKmPlUcBJiArQLRZCCOnaKJVxy1DASUg7o1sshBDS9VEq45ahTEOEtLOGbrEMGzaM72IRQghpR82lMpZIJEhMTIS/vz+0tbU7unhqhwJOQtpRY7dYAgICIBQK+S4eIYSQdtJcKuPY2Fjs2LEDtbW11OkAuqVOSLuiWyyEEEJoaFV91MNJSDtq7hYLIYSQro+GVtVHASch7ai5WyyEEEK6lhfHatLQqobRLXVCCCGEkFZ6cRk8GlrVMOrhJIQQQghphRfHagYEBNDQqkZQwEkIIYQQ0gqNjdWkoVX10S11QtQEpcMkhJDOgzINtQwFnC+Ijo7GpEmTYGdnB4ZhcPjwYb6LRLoJSodJCCGdB43VbBm6pf4CkUiEfv36YenSpQgPD+e7OKQLaij7REPjgLrzbEZCCFF3NFazZdQq4KytrcW+fftw4cIFPHr0CJ9++il8fHxQWlqKc+fOISgoCNbW1iotw7hx4zBu3DiVXoN0fU2lNGso+wSt2UYIIZ1Lc8vgUWpLRWpzS/3Zs2cICgrC3LlzsXv3bhw9ehTFxcUAAAMDA7z55pvYuHEjz6WsTywWo6ysjHtUVFTwXSSiBhq7Pd5Q9gkaB0QIIV0PDZNSpDYB5+rVq5GamorTp0/j3r17YFmW26ehoYEZM2YgIiKCxxI2bMOGDTA2NuYewcHBfBeJ8KyplGYN9WTSOCBCCOlaKLVlfWoTcB4+fBhvvPEGRo8eDYZh6u3v1asXcnJyOr5gzVizZg1KS0u5R1RUFN9FIjyTB5U+Pj5cUAk0PqPRysoK8+bNw7Jly7Bw4UIsW7YM8+bNo3FAhBDSSTXUudDdqc0YztLSUri6uja6XyqVoqampgNLpByhUKgwucPAwIDH0hC+1Q0qDQ0NFVKayXsyq6urkZqaCqlUiqysLDx69AiTJk3iu+iEEEJagVJbKkdtAk53d3dcu3at0f2RkZHw8vLqwBIR0nJ1g8qUlBTIZDLu9jjNaCSEkK7nxYmgjXUuJCcnY/DgwXwXlzdqE3C+/PLL+OCDDxASEoLQ0FAAAMMwEIvF+PTTT3Hq1Cls2rRJ5eWoqKhAZmYm9zw7OxvXr1+HmZkZnJycVH590rnVDSorKiq4Hm9HR8dmZzQSQgjpXCi1pfLUJuB86623kJqaijlz5sDExAQAMHfuXDx+/Bg1NTVYuXIlli1bpvJyJCYmYsSIEdzzd999FwCwaNEibNu2TeXXJ51b3aAyNzcXdnZ2YFkWiYmJsLS0pKUxCCGkC6HUlspTm4CTYRhs3rwZixYtwv79+3H37l3IZDK4u7tj5syZGD58eIeUIyQkRGGGPCGtJZPJkJOTg4cPH9Zbd5MQQkjnRmM1W0ZtAk65oUOHYujQoXwXg5B2kZaWhvj4eMogRAghXQyN1WwZtQk4s7OzkZKS0uhs3WPHjsHHxwcuLi4dWzBCWsHf3x8FBQWQyWQYOHBgizIIUXYKQghRfzRWs2XUJuD8xz/+gbKyskYDzp9++gkmJibYs2dPB5eMkJYrLCxEYWEhhEIhHj9+DE1NTaVvtzSU+pIQQoh6oYmgLaM2C79fvXoVo0ePbnR/aGgoLl261IElIqTtZDIZqqqqcP78eTx48ACZmZlNZhCi7BSEEEK6IrXp4Xz69CkMDQ0b3W9gYIDHjx93YIkIaT35xDMtLS0EBQVx2w0MDMCyLFiWhVQqrXfrvLEZj4QQQkhnpjYBp5OTE65cuYJXX321wf2XLl2Cg4NDB5eKkJbLy8tDWVkZAKC2thaOjo4wMzPj9t+6dQv5+fmoqKhAdHQ0d+ucZjwSQgjpqtTmlvqcOXOwe/dufP/995DJZNz22tpabNy4EXv37sXcuXN5LCEhTYuPj8ekSZPg4uKCiooKAM9vkX/44Yf46aefkJOTwx376NEj7Nu3D7Gxsfj++++RnJyMq1evIisrCyKRCKmpqRCJRNyMx/by5MkTzJs3D0ZGRjAxMcGyZcu4sjaHZVmMGzcODMPg8OHDCvsSEhIQGhoKExMTmJqaYsyYMbhx40a7lZsQQtSVRCLBlStXIJFI+C6KWlObHs41a9bg8uXLePvtt/HFF1/Aw8MDAJCRkYHi4mKEhITgo48+4rmUhDTs4MGDmDVrFne7vC6WZZGSkoKUlBQsX74c/fv3R3Z2NoqKimBvb4979+5h165dsLS0hKenJxwdHWFpaQmGYQC0fMZjSEgIFi9ejMWLF9fbN2/ePDx8+BBnzpyBVCrFkiVLsGLFCuzatavZ1/3uu++4MtVVUVGBsWPHYvLkyfj5559RU1ODTz75BGPGjMH9+/ehpaXVovITQkhnEhsbi+3bt0Mmk9EQqCaoTQ+nUChEZGQktmzZgoCAAJSUlKCkpAQBAQH4448/cPbsWbqtSNRSfHw8Zs2ahdraWtTW1jZ4jEwmg0wmw+bNm5GZmYm0tDRoaGhAV1cXGhoaSE1Nhb6+Puzs7FBbW4uqqiq4u7tj3Lhx7TYL8vbt2zh16hR+//13DBo0CEOHDsUPP/yAPXv24MGDB02ee/36dfznP//BH3/8UW9feno6njx5gk8//RQeHh7w9vbGJ598gqKiIuTm5rZL2QkhRB3RRE/lqU3ACQACgQBLlizBsWPHkJaWhrS0NBw7dgyLFy+GQKBWRSWE8/nnnzfYs9mYQ4cOobi4GBKJBA8ePIBEIkFxcTHu37/PHVNaWorLly9j165dSEhIQFVVVZvLefXqVZiYmMDf35/bNmrUKAgEAsTFxTV6XmVlJebOnYuffvoJNjY29fZ7eHjA3NwcW7ZsgUQiQVVVFbZs2YLevXvTurmEkC5NPtHT29ubm+hJGqY2t9QJ6Yzy8vJw/PhxpYNNmUyGzMxMzJs3D8bGxgr7TE1N6x1fXV2N5ORk3Lx5E7169ULfvn3rnaeswsJCWFlZKWzT1NSEmZkZCgsLGz3vnXfewZAhQzBlypQG9xsaGuLixYuYOnUqPvvsMwBAz549cfr0aWhq0kcMIaRrqjvR08DAgCZ6NkOtvg1Onz6NLVu24N69e3j69Gm9L3GGYZCVlcVT6UhXI5FIUFNT0+rzWZbF/v37lQ426yopKWkwhWvdCXMvbk9NTUVaWhocHR3h4+MDa2traGtr48svv8SXX37JHVtVVYXY2Fi8/vrr3La0tLQWlxEAjh49ivPnzzc5camqqgrLli1DUFAQdu/ejdraWnzzzTeYMGECEhISoKur26prE0KIOqub2jItLY2LUSi1ZcPUJuD8+uuvsXr1alhbWyMgIAA+Pj58F4l0YRKJBPHx8UrP0K6pqUF5eTnKysoUHklJSWAYpsVB57179/Ds2bNW9QDKh5v07t0bo0ePxiuvvIKZM2dy++fNm4fp06cjPDyc22ZnZwcbGxs8evSo3vt68uRJg7fKAeD8+fPIysqCiYmJwvbp06dj2LBhuHjxInbt2oWcnBxcvXqVG/qya9cumJqa4siRI5g9e3aL3yMhhKi7uqktS0tLubtPlNqyYWoTcG7cuBEjR45EREQEzWolKldTU4OKigpoa2sr3PpgWRaVlZV4+vQpnj17xv23vLy8waBSW1u7VT2cVVVVyM/Ph5ubW6vKL/9gq6mpgZmZmcI6n7q6urCyskKPHj0UzgkMDMSzZ8+QlJSEAQMGAHgeUMpkMgwaNKjB66xevRovv/yywjYfHx/897//5dLQVlZWQiAQKMxglz9vrMeWEEI6u7qpLXNzc+Hs7MxzidSb2gScT58+xYwZMyjYJB2mtrYWFRUVKCoqwuPHj/HkyRM8efJE6bXU9PT04O/vj4sXL7Y46DQxMUFGRgZcXFxa1MspFArRo0cP6Onpoby8vEXX7N27N8aOHYvly5fj119/hVQqxeuvv47Zs2fDzs4OAFBQUIDQ0FD8+eefCAgIgI2NTYO9n05OTnB1dQUAjB49Gv/85z+xatUqvPHGG5DJZPi///s/aGpqYsSIES0qI+keJBJJvSxbhHRmlZWVqKmpoXHrTVCbmgkICEBGRgbfxSBdEMuyePbsGQoKCpCfn4+CggLcv3+/3u3lxggEApiamnI9ifKHjo4OgOezFK9cudLokkgvMjIyAvB8HGd+fr7SM7ltbGzg6uoKTU1NVFdXc9tb8uW9c+dOvP766wgNDYVAIMD06dPx/fffc/ulUikyMjJQWVmpVJkAwNPTE8eOHcP69esRGBgIgUAAPz8/nDp1Cra2tkq/Duk+YmNjsWPHDi7LFiGdnfx7xsLCgu+iqC21CTh//vlnjBs3Dv7+/pRRiLSaVCrFw4cPFYLLgoICiEQipc7X09OrF1gaGxs3uSzXsmXLcOXKFaXGcjIMg5CQEFhaWgJAvbGRL9LS0oKFhQVsbW2hr6/f4DEvfnlfvHix0dczMzNrcpF3FxeXZt9DQ/tHjx6N0aNHN3keIUD9dQtpRi/pKh4/fkwBZxPUJuCcNWsWampqsGDBArz66qtwcHCAhoaGwjEMw1C6PALgedBTWlpaL7AsKipSatyghoYG9PX1YWFhAQsLC5ibm8PU1LRVM6q9vb2xYcMGrFmzBizLNnh9ecC6aNEi9O3bt9HX0tLSgpGREYyNjWFsbAx9fX0wDAOpVIobN27Ay8tLYdgJfXmTzka+bmHfvn25dQupl5N0BYWFhVyWRFKf2gScZmZmMDc3R8+ePfkuClEzUqkUhYWFCoFlfn6+0r2WRkZGcHBwgJ2dHRwcHODg4ABDQ0NcuXIFhoaG3K3xthg5ciT++OMP/Pe//8X169fr7XdxccGUKVPg5OSEmpoa3L9/H46OjtDU1IShoSEsLCygr6+P3Nxc9OzZs95Y5lu3biEiIgIymQx+fn7c9oSEBPryJmrrxeEeddctNDIyonULSZeSm5uL2traep1l5Dm1CTibug1IugeWZVFWVlYvsGxJr6Wtra1CYGlvbw9DQ8N6x7ZkjKKyvL298eWXX+Lq1av45ptvUFVVBW1tbUybNg2enp7c7fPc3FwkJibC1NQUI0eO5G6VX7t2DREREWBZViGolEgkuHr1KgoKChATEwNvb29u++XLl+nLm6itF4d71F23MDU1FVKplNYtJF1GdXU1MjIy4OXlxW2jCXL/ozYBJ+le5L2WdQPLgoICpdfFNDIy4gJL+dIUNjY2vM8QtLKywpQpU/Dbb7+hqqoKurq6Cl+kMpkMBQUFqKmpQV5eHteT2VBQKf9wSklJQV5eHnr27Im8vDykpqaid+/eyMrKQnZ2NqRSKX15E7XT0HCPuusW1kXrFpLOzN/fH/n5+RAKhfj000/h7OzMdSTQBLn/UauAs6ysDD///DMuXLiAR48e4bfffkNAQACePHmCbdu2YfLkyfXWFiTqTz7Wsm5gWVhYqFSvpUAggI2NjUJg6eDgwM30VlfyiTV1J9hYW1vj6dOnKCsrQ69evbjg0c/Pr8Gg0s/PjwtENTU1oa+vD01NTcTExMDd3R2WlpaYNWtWvd5M+vIm6qCxsZrydQsJ6SoePnyIoqIiGBsbQywW4+zZs5gwYQJqa2tpjH0dahNw5ufnIzg4GPfv30fPnj2Rnp7O9XaZmZnht99+Q25uLjZu3MhzSTuHvLw8nDt3DuXl5TA0NERoaCicnJxUes2amhqu17LubXFl14s0MDCoF1iqQ69la+jp6UEoFEIoFEJLSwuenp7Q09PDmTNn6gWPPXv2bDCo9Pb2RkZGBvLz8yGRSHDv3j3U1NQgPz8fd+7cgbOzM4YPHw49PT2+367a4KPdk/porGbHonbPL/nazfKl8YqKinDu3DkIhUIaY1+H2nyT//Of/0R5eTmuX78OKysrWFlZKeyfOnUqjh8/zlPpOo/4+Hh89tlnOHHiBFiWhUAggEwmA8MwmDhxItauXYuBAwe2+Trl5eXIz89XCCwLCwuVWotS3mtZN7C0t7eHkZGRQraazkoikWDkyJFITk6GhYUFevXqBRMTE9y6davB4PHs2bMNbs/IyIC1tTXGjRtX7xrW1tY8vDP11VHtnjRNPl6ttraWxmp2AGr3/BOLxdy6yFKpFFKpFFpaWsjMzMTly5ehqalJP7r+P7UJOCMjI/HOO+/Ay8sLjx8/rrffzc0N9+/f56FkncfBgwcxa9YssCzL3cqV37ZmWRYRERE4efIk9u7dq5Bnuym1tbX1ZogXFBSgrKxMqfMNDAzqBZY2NjZdOqOU/Pa4q6srHjx4gNzcXJiZmTUaPFpYWCikppSztrZu8McX8HxwekszDXVVqmj3pHXk49XGjRtHYzVVjNq9eoiLi0NNTQ2A5/Wfk5ODnj174v79+8jMzISGhgbEYjFkMlm3/9GlNgFnVVUVtxh2Qzryy/Wnn37C119/jcLCQvTr1w8//PADAgICOuz6rREfH49Zs2ahtra20YW7a2trwTAMZs2ahZiYmHq/fMvLy+uNtXz48KHSvZbW1tYKgaW9vT2MjY27RK+lsuqOudTT04OBgQF3e7yx4JG0Xnu0e9I+6k4SSkpKwr/+9a9u25OjatTu1YO8zcu/41iWRWpqKlxcXGBqasrFDbq6uvD19YWxsXG3/tGlNgGnl5cXoqOjsXLlygb3Hz58WGGpGFXZu3cv3n33Xfz6668YNGgQvvvuO4wZMwYZGRlqHSx8/vnnCr90GyM/5uOPP8bnn3+u0HNZWlqq1LX09fXrBZa2trZdutdSWXXHXObm5kJDQ4O7Pe7j48N38bqclrb7zz//HEeOHOmg0nUvtKB7x6F2rx7ky3zV/XcoLi7G/fv34ebmBlNTU267WCyGi4sL7Ozs+CiqWlCbgPPtt9/msrC89NJLAJ53T2dmZmL9+vW4evUqDhw4oPJyfPvtt1i+fDmWLFkCAPj1119x4sQJ/PHHH1i9erXKr98aeXl5OH78eLMfPnK1tbWIjIyElZVVg2tUyjEMA2tr63oTebpbr2VL1L1tLl8WSb6dtK/WtPtjx44hLy+PJlS0M5ok1HGo3asP+TJfZ86cQXV1NYRCIQICAhQCTeD5hNqsrCyIxWLk5+cjJCSkVVntOju1CTjnz5+P3NxcfPzxx/joo48AAGPHjuUGQn/55ZeYOnWqSssgkUiQlJSENWvWcNsEAgFGjRqFq1evNniOWCyGWCzmnstn1tfU1EAqlaq0vHKnT59W+sOnrvv373NpuPT09Ligsu66lg0tVCsfr9KZSaVS1NTUQCQStev70dPTQ//+/blr1O31VXaNUWWIxWKujXVUO1M3rWn3LMsiMjISixYtUlGp1J9EImn3v+GEhASkp6ejuroaycnJqKmpQXp6Oi5dutTut3I1NTW79QLarW33W7duxYIFC2BkZARDQ0Mu3W53oYp2b2BggOHDh3M/qjQ1NblF3+t+Lt+9exfx8fEQi8VgWRYFBQUICgpqUW+nqtt9R9yhZNjWRCoqlJeXhwMHDiAzMxMymQzu7u4IDw+Hm5ubyq/94MED2NvbIyYmBoGBgdz2999/H1FRUYiLi6t3zrp167B+/XqVl40QQgghRBU6IhRUix7OyspKDBs2DMuXL8crr7yCd955h+8iKW3NmjV49913uefXr19HcHAw4uLiOmTMKQBs27YNK1asaPF5mzdvpp4eFfXWXrlyBXv37sXs2bMxZMgQlVyju/f0ULtvucrKSly6dAna2tqd8la3WCyGRCLBsGHDuu36s61t98HBwdwdrZbQ1dWFsbExjIyMuIexsTGMjY1haGjIPdfV1VXboVaqbvczZsxASUkJDA0NMX/+fDg6OnLrR2dlZSEmJgbGxsYoLS1FUFCQQgeagYEB3N3dmyxXV2n3ahFw6unpITs7m/fGamFhAQ0NDRQVFSlsLyoqgo2NTYPnyBf3ljMwMADwPBjoqEk0Y8aMAcMwLfqFwjAMwsLCuvVEH1W9d7FYjCtXrqCgoACXL1/GyJEjO+WXu7prTbsHADs7O2hqavL+ecMHLS0tLsGAjo4O38VpMU1NTchkMmhpaXXbz67Wft4vXLgQQqEQpaWlKCsrQ2lpKcrLy5vN+CaRSFBcXIzi4uImj9PS0qoXkDb0nI/b+apu9/L3I5PJkJycDA0NDbi7u3NjN7W0tKCvr4/KykpkZmbC3d2dC0jFYjHu3LmDXr16wdzcvMHX7yrtXi0CTuD5eM3Tp083Oku9I2hra2PAgAE4d+4cN15UJpPh3LlzeP3113krV3OcnJwwceJEREREKLWEkYaGBiZMmEADyFWEZut2jJa2e4Zh4OzsjOPHj+PmzZuYPHkyevfu3S0DT9J5tfbzfunSpfX2yWQyiEQilJaWKgSidf8r/395Np3GSKVSPH78uMF1tOtiGAaGhoaNBqR1n3eG4KqwsBBVVVUAnq+PXFhYiPT0dDg7OyM/Px8lJSVcFr7a2lqUlJQgPz8fLi4u3GvU1NQgLS0Nzs7OcHR07LKfSWoTcK5duxYvvfQSFixYgJUrV8LV1bXBWVwNLZDdnt59910sWrQI/v7+CAgIwHfffQeRSMTNWldXa9euxcmTJ5v95cswDBiGwccff9yBpes+aLZux2ppux8wYACA52PFf/zxR/Ts2ROTJ0+Gu7t7RxWZkDZrr897gUAAQ0NDGBoawsHBodHXYVkW1dXV9QLSF4PSsrIyiESiJsvOsix3TnN0dXXrBaQN/ZeP2/kpKSnYsmULLl++zP0b1NbWIicnB48fP4apqSm8vLy4z5y6TExMGnzN3NxcSCQSuLu7t/r9sCyLTz75BJs3b8azZ88QFBSEX375BT179mz0nA0bNuDgwYNIT0+Hrq4uhgwZgq+++kphCEZISAiioqIUzlu5ciV+/fVXpcumNgGnt7c3ACAtLQ27du1q9DhlftG1xaxZs1BcXIx//etfKCwshK+vL06dOqX2y9oMHDgQe/fu5TJPNFRPGhoaYBgGf//9Ny0CrCLyddkopV/HaEm737t3L3r16oWjR48iPz8fwPPZo//5z3/Qp08fTJ48uckvXULURUd/3jMMA11dXejq6jb7XSiVSlFeXt5gQFr3eVlZWbO386uqqlBVVVVvmNuLXryd/+J/hUIhqquroa+v3+L33pDz589zq9k0FPCXl5dj//79WLBgQYvncjx8+BASiQQeHh7Q0NBocdn+/e9/4/vvv8f27dvh6uqKtWvXYsyYMUhLS2t0OEFUVBRWrVqFgQMHoqamBh9++CHCwsKQlpamUGfLly/Hp59+yj1v6XhStZmlvm7dOqUi+k8++aQDStN6165dw4ABA5CUlMQtj9OREhIS8Nlnn3HrtNXNrTtp0iR8/PHHFGyqUEFBAa5du1Zve//+/WFvb89DibqHlrR7mUyGa9eu4fjx43j06JHC6/j7+2PChAlq/wOztSorKxEdHQ1DQ0Nex3BKpVKkpaXBy8urRbdN5Sldhw8f3qknT7SXzvx5356385XFMAx0dHSgp6cHXV3dBv8r/3/5GMsXpaSkYNmyZZDJZM2OoxUIBHjrrbdaNXxNX18fvXv3hq6urtLtnmVZ2NnZ4b333sM//vEPAEBpaSmsra2xbds2zJ49W6lrFxcXw8rKClFRURg+fDiA5z2cvr6++O6771r8XuRaFHC6urq2uJuXYRhkZWW1uGCdFd8Bp1xeXh7Onz+PsrIyGBkZYeTIkTRmk3R5LWn3tbW1iI2NxYkTJ/Ds2TNuu0AgQGBgIMaNG6fyITwdraMDzsYCy2vXriEiIgITJkxoUQ8QBZwN68qf9+15O78ltLW16wWhenp6+PHHH5GcnNxs7yzwPP7x8vLCyy+/3KoyaGpqwtvbG9ra2kq1+3v37sHd3R3Jycnw9fXltgcHB8PX1xcbN25U6rqZmZno2bMnbt26hT59+gB4HnCmpqaCZVnY2Nhg0qRJWLt2bYv+Dlt0Sz04OLhewJmYmIjU1FR4eXlx9/szMjKQlpaGPn36NDh+QRmlpaUwMDBoVZcyeT6wfPHixXwXg5AO1ZJ2r6GhgaCgIAQEBODSpUs4deoUKioqIJPJcOXKFcTFxWH48OEYM2ZMkxm5SONu3bqFiIgIyGQyLrCUSCS4evUqCgoKEBMTw32hktbryp/37XE7//Hjx8jJyYFUKkV1dTWqqqqa7Z2USCSQSCQKKZ/Ly8uRlJSkdNlZlkVaWhqePn1aL/uQMmpqapCSkqL0claFhYUA6me2s7a25vY1RyaT4e2330ZQUBAXbALA3Llz4ezsDDs7O9y8eRMffPABMjIycPDgQSXfTQsDzm3btik8P3z4MA4fPowzZ84gNDRUYd+ZM2cwc+ZMfPbZZ0q/fmJiIj7++GNER0dDIpEgMjISI0eORElJCZYtW4Z33nkHISEhLSkyIYQ0SUtLCyNHjsSQIUNw4cIFLk1dTU0Nzp8/jytXrmDkyJEYNWpUt0xH11qNBZYpKSnIy8tDz549kZeXh9TU1A5bs5h0bVpaWjAzM6t3Z0Lesy9fh5NlWYjFYm6MqPwhD0brPuqOjy0oKGhxmViWRUZGBgICAlr1nmQyGe7cudPgxMadO3cqrOxz4sSJVl2jrlWrViElJQWXL19W2F537VcfHx/Y2toiNDQUWVlZSk+6bNOkoX/9619444036gWbADB69Gi8/vrr+PjjjzFlypRmXysmJgYjR46Evb095s+fj99//53bZ2FhgdLSUvz2228UcBJCVEJHRwfjxo3D8OHDERkZiYsXL0IqlUIsFuPkyZOIiopCWFgYQkJCqEdOCQ0Flt7e3rh69Sq3JqKmpib1chKV09TUhIGBASoqKhTGg2pqanKz9BvCsixqamogFotRXV2Np0+ftmoN1OrqaqVuwTemuroaLMvWG1c6efJkDBo0iHsuT7NdVFQEW1tbbntRUZHCLfbGvP766zh+/Diio6ObnUApv658XVFltCngvHv3bqMLlQKAubm50uM3P/zwQ/Tu3RuxsbEoLy9XCDgBYMSIEdi+fXtbiksIIc3S19fHtGnTMGLECJw6dQqXL1+GTCZDZWUlDh8+jAsXLmDcuHEYMmRIoxMLujt57+aLgSXLssjPz4dEIsG9e/dQU1OD/Px8ZGRkwMfHh+9iky5KW1sbAQEBbc4sV1FRgT179rToHJZlYWxszCWFaa1evXrV+1H2YrAsH1957tw5LsAsKytDXFwcXn311SbL+MYbb+DQoUO4ePEiXF1dmy3P9evXAUAhsG1Omz4t3d3dsXXrVixbtqxeZZaXl+OPP/5QOgd6QkICNmzYAKFQiIqKinr77e3tlR6DQIg6k0gkSExMhL+/f70PkKb2kY5lYmKC2bNnY9SoUThx4gTi4+PBsixKS0uxZ88enDlzBhMnTsTAgQM7PHOKusvIyGgwsKyoqMC4cePqHd9VVwUg6kNbW7vNn6njx49vVQ+nnp4eZDJZq3+gCoVCODo6KnWtt99+G59//jl69uzJLYtkZ2fHJbMBgNDQUEybNo1LaLNq1Srs2rULR44cgaGhIRdrydc4zcrKwq5duzB+/HiYm5vj5s2beOeddzB8+HD07dtX6ffRpoDz888/x4wZM+Dp6YnFixejR48eAJ73fG7fvh1FRUXYt2+fUq+lpaXVZJdzQUFBm38hENJRmgocY2NjsWPHDtTW1tbLQNTUPsIPCwsLLFq0CKNHj8axY8dw48YNAMDjx4+xfft2REZGYtKkSejXr1+XzRCiLPmsdAsLiwYDS09PT1hZWfFQMkLarqVZngQCAVxdXZGSkgIDA4MmF19vjJaWFkaNGqV04pD3338fIpEIK1aswLNnzzB06FCcOnVKYVWKrKwslJSUcM9/+eUXAKg3ZHHr1q1YvHgxtLW1cfbsWS4RjqOjI6ZPn97iBDJtCjinTp2KiIgIfPDBB/jyyy8V9vn6+mLLli0YM2aMUq81ePBg7N+/H2+//Xa9fSKRCFu3bkVwcHBbiktIh2kscJRnIsrOzq6XgaipfYR/dnZ2WLlyJXJycnD06FGkp6cDeL5Q86ZNm+Ds7IwpU6bA09OT55LyRz4rfcKECdz6fYR0JcpmeZKzsrJCSUkJUlNT4eLi0qJ1Z01NTREaGtqi5dkYhsGnn36qsED7i3JychSeN/c+HB0d62UZao023wcKCwtDcnIyHjx4gKtXr+Lq1at48OABrl27pnSwCQDr169HYmIiJkyYgJMnTwIAbty4gd9//x0DBgxAcXEx1q5d29biEqJyLwaO8oHcQMN51pXZR9SHi4sL3nzzTbz11lsKY51yc3Px/fffY+PGjcjOzuaxhPx4cVZ6ey3WTYg6kWd50tDQaHTZRoFAAIFAgIkTJ0IsFsPe3h5FRUX1Ar2meHt7Y9q0aV1qLeB2G3hkY2ODQYMGYdCgQbCxsWnx+YMGDUJERAQyMzOxcOFCAMB7772HFStWoLa2FhERES0aK0AIXxoLHBvLsy4Wi5vcR9STh4cH/vGPf+CVV16BnZ0dtz0jIwNff/01fv3111Yto9JZNTQrnZCuKDw8HDExMdyYzroYhoGPjw/ee+89SKVSaGhoQFdXFxoaGly646YIhUKEhYUhKCioy01KbHPAmZeXh1deeQUeHh4wMzNDdHQ0AKCkpARvvvkmkpOTGzyvrKys3hiIkSNHIiMjA9euXcPevXuxe/duxMfH486dO3Q7nXQKTQWO8jzrIpEIqampEIlEXJ71pvYR9cUwDPr27YsPP/wQS5YsgaWlJbfv5s2b+PLLL7F169Z6KTS7msZmpVMvJ+mqBg4ciKNHjyInJwcmJiYAnieTWL58OV577TUIBAIUFxdDIpHgwYMHkEgkKC4uxv379xt9TTs7O4SHh8PFxaVj3kQHa1P4nJaWhmHDhkEmk2HQoEHIzMzklh2wsLDA5cuXIRKJsGXLlnrnmpqaYseOHZg7dy4AYOnSpVi5ciUGDRoEX19fpdaMIkTdyAPH6upq7tesPHB0dHTEvHnz6p0jn33Y1D6i3gQCAQYOHIj+/fvj6tWriIiIwLNnz8CyLBISEpCUlIQhQ4Zg/Pjx3JdTV9LYrHRa7oh0dU5OTtDT08OzZ8/AMAzu37+Pvn37wtTUtMHF3hvKOKSvr4+AgAD06NGjS088bFPA+f7778PExASxsbFgGKbe7MMJEyZg7969DZ6rra2tcLtw27ZtGDVqlMIipoR0Nk0Flfb29rC3t2/03Kb2kc5BQ0MDQ4cOVUiXKRKJIJPJcPnyZcTGxiI4OBhjxozpUqtuWFtbc7PSZTIZt0yUmZkZbty4US+XOiFdibwnXyAQcGM1e/bs2Ww6S6FQiH79+qFPnz5d7vZ5Q9r0DqOjo/Gvf/0LlpaWePz4cb39Tk5OjY5h8vT0xO+//w4XFxcYGxsDeD5z6tq1a01es3///m0pMiEq1VxQSboHbW1thIaGYsiQITh//jzOnTvHpcs8d+4cly4zNDS0S6TLtLKy4jocxGIxt7rCtWvX6uVSJ6QrkWchAp4PsZGP1WxqRrqmpiZ8fHzQt2/fbrUSSZsCTplMBj09vUb3FxcXN1qZGzZswKxZszBq1CgAz/+h1q5d2+hMdJZlwTCMUmtfEUKIOtDV1cWECRMQHByMyMhIREVFQSqVorq6GhEREYiKisKYMWMwfPjwLrPQv/wzurFc6oR0JcnJydxQwtraWoWxmi8mvmEYBh4eHvD3928yduqq2hRw9u/fHydOnMBrr71Wb19NTQ327NmDwYMHN3ju2LFjkZ2djYSEBBQVFWHx4sVYsWIFAgMD21IkQghROwYGBggPD8fIkSNx8uRJXLlyBTKZDCKRCAcPHsS5c+cwfvx4DBkypNGlVjoLiUQCPT29BmetUy8n6WocHR2hp6eH6upqCIVCBAUFAag/VtPGxgZBQUFNpgPv6toUcK5ZswYTJ07Eq6++itmzZwN4niT+7Nmz+PLLL3H79m38+OOPDZ578+ZNODs7c2t1bt26FS+99BJCQ0PbUiRCCFFbJiYmmDNnDkJDQ3HixAkkJiZy6TJ3796Ns2fPYuLEiRgwYECnTZcpFotRVVXV4Kx16uUkXY29vT2XxUdTUxP9+vVT2C8QCDBo0CD06dOnS08IUkabPtHGjRuHbdu2Ye/evRg5ciQAYP78+QgLC8O1a9fw559/Npptws/PDydOnGjL5QkhpFOysrLCkiVL8OGHHyqsL1xcXIytW7fiyy+/xM2bN1uUs1mdXL9+Hfn5+aiursa9e/dQXV3NzVonpKuRTxp6cciflpYWxo8fDx8fn24fbAJt7OEEgAULFiA8PBxnzpzB3bt3IZPJ4O7ujjFjxsDQ0LDR83R1dVFZWck9j4qKwvLly9taHEII6TTs7e3xyiuvIDs7G0ePHuUCsgcPHuDXX3+Fi4sLpkyZAg8PD55Lqhx5LnVDQ8MGc6lbW1vzUCpCVKfupCGpVAqpVMpNFhoxYoRCUojurtUBZ2VlJRwdHbF69Wr885//xNSpU1t0fr9+/fDtt99CQ0ODm6WekJCgkGC+IeHh4a0tMiGEqCVXV1e89dZbSE9P5xaTBp6v3LFx40Z4enpi8uTJar8g9K1bt3D27Fn0798f06dP57s4hKhcXFwcN2lIJpNxSyJ5e3ur/d9rR2t1wKmnp8eNz2mNjRs3YsaMGVi2bBmA57O3Nm7ciI0bNzZ6Ds1SJ4R0ZZ6envDw8MDNmzdx9OhRPHz4EACQnp6O9PR09OvXD5MmTVLLXhP5rPTCwkIkJiZiwoQJzXYgENKZyTPLyVNXymQypKamwtfXl9YUb0CbbqlPnz4d+/fvx6uvvtri8Qn+/v7IzMxEVlYWioqKEBISgo8++ohbJokQQrojhmHQr18/+Pj4ICEhASdOnEBJSQkA4MaNG7h58yYGDhyIiRMnwsLCgufS/o98Vrqrqyvu3buHuLg4SklMujR5Zrnhw4ejqqoKRUVFKC4uhrGxcbdYyL2l2lQjs2fPxmuvvYYRI0Zg+fLlcHFxaXAR48YWa9fU1ISHhwc8PDywaNEiTJw4kX4VEEII/je7dcCAAYiJicHJkydRWloKlmURHx+PxMREBAUFYdy4cbyny6ybS11+9+vSpUsIDAykWemky6qbWS4vLw9paWmwtLSk5b8a0aaAMyQkhPv/S5cu1dvfksXat27d2paiEEJIl6SpqYnhw4dj8ODBiIqKQmRkJJcu89KlS1y6zLCwMN7SZdbNpZ6bmwuJRIK8vDykp6crzMInpCupm1kuLS0NWlpaGDt2LGWba0SbAs62BImffvopGIbBRx99BIFAgE8//bTZc+TZiAghpLvR1tbG6NGjMXToUJw7dw7nzp2DWCyGVCrF2bNncfnyZYwaNQojR47s8LGT8lzq3377LUpLS6GtrY2pU6dS7ybpVnR0dODg4MB3MdQWw/K00JtAIADDMKiqqoK2trZSixyretLQF198gRMnTuD69evQ1tbGs2fPWvwa165dw4ABA5CUlER53wkhKlNeXs6ly5TPkgWeZzWSp8t8MZdzZWUloqOjYWhoqJKgdPz48Xj06BGMjY2xbt066OjooH///u2WPam6uhrl5eUYPnx4t0wNSNRXWloaiouLadxyE3hLZSGTyVBbW8v9ApbJZM0+VD1DXSKR4KWXXsKrr76q0usQQkhbGRoaYvr06Vi3bh2CgoK4H+0VFRU4cOAAPvnkE1y+fLlDV/aQ91/I/1tdXY2MjIxOu4A9IS1BvZtNa9Et9aVLl4JhGGzatAkaGhpYunRps+cwDIMtW7a0uoAdaf369QCAbdu28VsQQghRkpmZGebNm4fRo0fj+PHjSExMBAA8e/YMu3bt4tJldsQdF6lUCkAx48rjx4+Rnp4ODw+PTpuukxBlmJmZ8V0EtdaigPP8+fMQCASQyWTQ0NDA+fPnm10OqSXLJd2+fRtZWVkoLy+HoaEhevToAU9Pz5YUscOJxWKIxWLueUVFBY+lIYR0V1ZWVli6dCnCwsJw9OhRpKSkAAAePXqEP/74A6dPn8aYMWNU1tsokUi4FH9SqRQ1NTXc0jAlJSWQSCTo3bs3jeskXRZfk/Y6ixYFnPLsF409b63ffvsNX3zxBQoKCurtc3JywkcffYSXX365Xa7V3jZs2MD1jBJCCN8cHBzw2muvISsrC0ePHsXdu3cBAAUFBfjjjz9gamqKAQMGwNnZuV2vm5KSwvVsymQy5Obmwt3dndtfVlaG5ORk9OrVC6ampu16bUL4JJFIcOvWLfTo0YPvoqg13u9v/OMf/8Crr76KyspKLF26FN9++y02bdqEb7/9FkuWLEF5eTlWrlyJDz74oFWvv3r1ajAM0+QjPT291eVfs2YNSktLuUdUVFSrX4sQQtqLu7s73n77bbzxxhtwcnLitj99+hRnz57FqVOnUFxc3C7Xkq/DWVd6errCZCb5cSkpKbh37x5kMlm7XJsQvsXGxuLo0aOIi4vjuyhqjdel8OPj4/Htt99i2rRp+PPPPxtMk7lx40bMnz8f33zzDV566SX4+/u36BrvvfceFi9e3OQxbm5uLXrNuoRCIYRCIfecutQJIeqCYRj07t0bnp6euHHjBo4cOYKioiIAz3s8CwoK4OLigv79+7ep11G+Dmfd2/UlJSXIz89vMJ90QUEBnjx5gl69esHIyKjV1yWEb/L0lgUFBTh16hQCAgIUYgLyP20OOE+ePIlvv/0W165d47JgvKixWZJbtmyBra0tdu3a1eg/kL6+Pnbv3g03Nzds2bKlxQGnpaUlLC0tW3QOIYR0JQzDwNfXFz169MDu3btx584diEQiAM+HRuXm5qJHjx7w8/ODoaFhi19fvg5nfHw8JBIJtLW1MWDAgCYzIFVVVeHGjRtwcHCAs7MzTSginVJcXBzu3LmDvn374s6dO4iPj8ewYcP4LpZaatNf+IEDBzBx4kQUFRVh9uzZkMlkmDNnDmbPng1dXV307dsX//rXvxo9/+rVq3jppZea/TWgo6ODl156CVeuXGlLcZuVl5eH69evIy8vD7W1tbh+/TquX79OE4EIIV2CQCCAo6MjJk2ahMDAQC4VMcuyuHv3Lvbv34+YmBhUVla26HWtrKwwfPhw7rNcS0sLffr0USrlZn5+Pq5fv84FwIR0FvLeTW1tbRgZGUFbWxunTp1SmEhM/qdNAeeGDRsQEBCA5ORkbuLM0qVLsXPnTqSkpODhw4dwdXVt9Pz79++jd+/eSl3Ly8sL9+/fb0txm/Wvf/0Lfn5++OSTT1BRUQE/Pz/4+flxy4wQQkhXoKGhAS8vL8ycORP+/v4K6yHfvn0bf//9NxISEjrsi1MkEuH69esoLCzskOsR0h6Sk5ORlZUFkUiEtLQ0iEQiZGVlITk5me+iqaU23VJPS0vDhg0boKGhwS1/IV+HzcXFBa+99hq++uorLFy4sMHzy8rKlL59Y2BggPLy8rYUt1nbtm2jNTgJId2GpqYm+vXrB09PT6SkpCAlJQU1NTWora3FzZs3kZ6eDh8fH3h7e9fLWtTeZDIZ7t69i9LSUri7u3PfKYSoK0dHR8ybNw8AFJYBc3R05LNYaqtNf9F6enrcL2MTExMIhUI8fPiQ229tbY3s7OxGz2dZtkXrdFK2CkIIaX9CoRADBgyAl5cXbty4gdu3b0Mmk0EikSApKQmpqalcYNpYIFhYWIiqqioAz2ejP336tFUTkR49eoTS0lL07NmTlk8ias3e3h729vYAFANO0rA25VIPCgpC//798cMPPwAAAgMDoaenh9OnT6OmpgZjxoxBUVFRo8sOCQQC+Pn5cf9gTSkoKMD169c7NE1ba1AudUKIulI2l3pFRQWSk5Nx9+5dhR/6+vr66N+/P3r06MFN8klJScGWLVtw+fJlhWMZhoGXlxfCwsIUlmVqCWtra7i5uXFf5JRLnagrmUxGE9+a0abaCQ8Px9GjR7lxPh999BEuXrwIExMTWFpa4tKlS1i9enWj5zs5OeHJkye4detWs48nT560+kOLEEKI8gwMDDBs2DCEh4crjMMXiUS4dOkSDh48iHv37uHcuXNYtmwZYmJi6t2BYlkWt2/fxsaNG3Hz5s1WlaOoqAjXrl1r8cTNgwcPIiwsDObm5mAYBtevX1fqHH9/f5iYmEBfXx++vr7YsWOHwjEVFRV4/fXX4eDgAF1dXXh5eeHXX39tUdlI1yaRSBATE8Nl3SL/06r+3+rqahw5cgRSqRQff/wxnjx5AltbW0ycOBEXL17EwYMHoaGhgQkTJmDEiBGNvk57ZSoihBDS/kxMTDBy5EiUlJQgKSkJ+fn5AIDS0lLs2bMHhw8fbnIBd/m+7du346233mpVp4FYLMbNmzfh7e2t9PqGIpEIQ4cOxcyZM7F8+XKlzjEzM8NHH30ET09PaGtr4/jx41iyZAmsrKwwZswYAMC7776L8+fP46+//oKLiwsiIyPx2muvwc7ODpMnT27xeyNdh/wHV2xsLHbs2IHa2lpaHukFLQ44Hz16hCFDhiA7O5sbg6mrq4vDhw9j1KhRGDZsGFUyIYR0IRYWFhgzZgwKCwuRmJiIoqIiJCUltWhcfWRkZKtTFNfW1iI1NRWenp5KHb9gwQIALevUCAkJUXj+1ltvYfv27bh8+TIXcMbExGDRokXcsStWrMBvv/2G+Ph4Cji7OYFAwC2TlJ2dTYvAN6DFt9Q/++wz5OTk4J133sHx48fx3//+F7q6uli5cqUqykcIIURN2NjYYMKECejfvz9yc3OVDjhlMhnS0tLw9OnTVl+7trYWWVlZHTJ5lGVZnDt3DhkZGRg+fDi3fciQITh69CgKCgrAsiwuXLiAO3fuICwsTOVlIuqNYZgGF4En/9PiHs7IyEgsXLgQ33zzDbfN2toac+fORUZGBjw8PNq1gIQQQtpXW9fXvHfvXovPYVkWGRkZCAgIaPV1RSKRSheILy0thb29PcRiMTQ0NPDzzz9j9OjR3P4ffvgBK1asgIODAzQ1NSEQCLB582aFoJR0T40tAk+9nP/T4oAzLy8PH3zwgcK2oUOHgmVZFBUVUcBJCCFqSlNTEwYGBqioqGjTpIanT5+CYZgW9TYyDIPq6uomx3wqQ1NTU2H5mZ07dyrcYTt58mSrh3UZGhpy2eXOnTuHd999F25ubtwt9B9++AGxsbE4evQonJ2dER0djVWrVsHOzg6jRo1q0/sinZt8Efjq6mqkpqZCKpVyi8APHjyY7+KphRYHnGKxuN5yGvLnNTU17VMqQggh7U5bWxsBAQFt/qzOyclp8a1tlmVhbGwMAwODNl27bmYkAJg8eTIGDRrEPVdmmb3GCAQC9OjRAwDg6+uL27dvY8OGDQgJCUFVVRU+/PBDHDp0CBMmTAAA9O3bF9evX8c333xDAWc3V3cR+Be3k+daNUs9JycH165d456XlpYCAO7evdtg7lxaj5IQQtSDtra2QsDWGuPHj29VD2fv3r3btFYhwzCwsbFR2GZoaKh0xrqWkslk3PADqVQKqVRar/waGhpt7rUlnZtEIkFubi7GjBnT5r+trqxVAefatWuxdu3aettfe+01hefyWezqvlg7IYQQ5Tk5OWHixImIiIhQ6vNdIBDAx8cHZmZmbbqumZmZUtlcnjx5gry8PDx48AAAkJGRAeD5pCd5wLpw4ULY29tjw4YNAIANGzbA398f7u7uEIvFiIiIwI4dO/DLL78AAIyMjBAcHIx//vOf0NXVhbOzM6KiovDnn3/i22+/bdP7Ip0bLYWknBYHnFu3blVFOQAAp0+fxpYtW3Dv3j08ffq03q9nhmGQlZWlsusTQghRztq1a3Hy5EmlezrHjx/f5mu6u7srddzRo0exZMkS7vns2bMBAJ988gnWrVsH4Pl8hLq9lSKRCK+99hry8/Ohq6sLT09P/PXXX5g1axZ3zJ49e7BmzRrMmzcPT548gbOzM7744gu88sorbX5vpHOipZCU16bUlu3p66+/xurVq2FtbY2AgIBGc+iqMuBtD5TakhDSXRw8eBCzZs0Cy7IN9nTKA7oVK1bAz8+vTdeysrLCxIkTKV81USvR0dH44Ycf4OjoiPv37+PNN9+kXs5GqM1f7saNGzFy5EhERERAS0uL7+IQQghpRnh4OGJiYvDZZ5/h+PHj9XKp+/j4YPz48XBxcWnTdZycnDBy5EgKNolaoaWQWkZt/nqfPn2KGTNmULBJCCGdyMCBA3H06FHk5eXB29sbFRUVEAqFWLduXZvHbMpn1ffu3RsMw7RTiQlpH7QUUsuoTcAZEBDADewmhBDSuVhbWys8b8vMcYZh4OnpCX9/f+jq6ra1aISoBC2F1DJqE3D+/PPPGDduHPz9/TF37ly+i0MIIaQF4uLiuPU9ZTIZcnJy0LNnzxa9BsMw6NGjB/r37w9jY2NVFJOQdmNvb9+mdV+7G7UJOGfNmoWamhosWLAAr776KhwcHKChoaFwDMMwuHHjBk8lJIQQ0hD5WDb5bW+WZZGamgoXFxelh0m5u7tjwIABDa7lTAjp/NQm4DQzM4O5uXmLfxETQgjhl3wsW91JQ8XFxbh//z7c3NyaPNfW1hZDhgyBubm5qotJCOGR2gScFy9e5LsIhBBCWkE+lu3MmTOorq6GUChscnk74PmEoKCgIPTo0YMmBJFOTSKRIDExsV7aVaJIbQJOQgghnZN8LJt8go+Wlhb69euncExNTQ1yc3Ph7OwMW1tbjBo1SmUpKQnpSJRpSDlqF3BKpVKkp6ejtLS0wfy0w4cP56FUhBBCmiO/pd5QPpF79+4hLi4ODg4OmDx5cr0x+oR0RpRpSHlqE3DKZDKsWbMGP//8MyorKxs9jvKyE0KIepJIJADqf05LpVLcvn0bUqkUDx8+RE1NDQWcpEuIi4vDnTt30LdvX9y5cwfx8fHUy9kIQfOHdIwvv/wSX3/9NebPn48///wTLMvi//7v//Drr7+ib9++6NevH06fPs13MQkhhDRALBajuroawPMAUyqVcvsePnwIgUCAIUOG4O7du4iPj+ermIS0m8YyDYnFYr6LppbUJuDctm0bZs6ciV9++QVjx44FAAwYMADLly9HXFwcGIbB+fPneS4lIYSQhjS0DicA6OvrQywWw8jIiL6USZciX51BJBIhNTUVIpGIyzRE6lObgDM/Px8jR44EAFIazAMAAB4ySURBVG78g/zXsra2NubPn48dO3ao7Po5OTlYtmwZXF1doaurC3d3d3zyySfcLSJCCCENk/f06OrqQl9fH5qamkhNTYWGhgZsbW1x//59+lImXY58dYZly5Zh4cKFWLZsGebNm0eZhhqhNmM4zc3NUVFRAQAwMDCAkZER7t27p3DM06dPVXb99PR0yGQy/Pbbb+jRowdSUlKwfPlyiEQifPPNNyq7LiGEdHbynp7hw4ejuroahYWFKC4uhr6+Pjw8PCj9H+mSlMk0REsm/Y/aBJx+fn5ISEjgno8YMQLfffcd/Pz8IJPJ8P3339dbZqM9jR07lruVDwBubm7IyMjAL7/8QgEnIYQ0oW5O6YKCAty6dQu6uroICgqi9H+ky2sqqKQlk/5HbQLOFStWYNu2bRCLxRAKhfjiiy8wfPhwDB8+HCzLwtTUFLt37+7QMpWWlsLMzKxDr0kIIZ1N3aDyzp07EAgEGDx4MPVikm6hsaCSlkxSpDYB5+TJkzF58mTuuZeXF7KysnDx4kVoaGhgyJAhHRr8ZWZm4ocffmi2d1MsFisMfpcPCyCEkO5KW1sbvXv35rsYhKhcU0ElLZmkSG0mDTXE2NgYU6ZMwcSJE1sdbK5evRoMwzT5SE9PVzinoKAAY8eOxUsvvYTly5c3+fobNmyAsbEx9wgODm5VOQkhpLOTSCS4du0aXFxcoKWlxXdxCFG5hoJKgJZMaohaBZy1tbXYs2cPVq5ciWnTpuHWrVsAnt/aPnjwIIqKilr8mu+99x5u377d5MPNzY07/sGDBxgxYgSGDBmCTZs2Nfv6a9asQWlpKfeIiopqcRkJIaQriI2NxcGDB/H48WO+i0KIyjUVVNKSSfWpzS31Z8+eYezYsYiPj4eBgQFEIhHeeOMNAM9nrb/55ptYuHAhvvzyyxa9rqWlJSwtLZU6tqCgACNGjMCAAQOwdetWCATNx+NCoVBhTIaBgUGLykcIIV2B/Ms3Pz8f8fHxmDhxYrcer0a6PnlQWV1djdTUVEilUi6orDuRrq7uPK5ZbQLO1atXIzU1FadPn4afnx+srKy4fRoaGpgxYwYiIiJaHHAqq6CgACEhIXB2dsY333yD4uJibp+NjY1KrkkIIV2F/Nail5cX7t271+3Hq5Gur6mgklZnqE9tAs7Dhw/jjTfewOjRoxu8HdOrVy9s27ZNZdc/c+YMMjMzkZmZCQcHB4V9LMuq7LqEENLZ1b21aGJigqqqKpqVS7o8CipbRm3GcJaWlsLV1bXR/VKplEubpgqLFy8Gy7INPgghhDSu7ni1zMxMGq9GCKlHbXo43d3dce3atUb3R0ZGwsvLqwNLRAghRBl1by3K11KWbyeEEECNAs6XX34ZH3zwAUJCQhAaGgoAYBgGYrEYn376KU6dOqXUrHFCCCEdq+6txerqaujo6PBcIkKIulGbgPOtt95Camoq5syZAxMTEwDA3Llz8fjxY9TU1GDlypVYtmwZv4UkhBDSKIlEgtjYWAwZMqTb540mhChSm4CTYRhs3rwZixYtwv79+3H37l3IZDK4u7tj5syZGD58ON9FJIQQ0oTY2Fj8+eef0NDQoBnqhBAFahNwyg0dOhRDhw7luxiEEEJaQD5TPScnh2aoE0LqUZtZ6oQQQjov+TqcPj4+Cin+CCEE4LmHc/LkyS06nmEYHDlyREWlIYQQ0hp11+E0NTVFSUkJ9XISQhTwGnAeP34cOjo6sLGxUWq9S4ZhOqBUhBBCWqKpFH+DBw/mu3iEEDXAa8Bpb2+PgoICWFhYYO7cuZg9ezalkSSEkE6G8kYTQprDsDyn0omKisKuXbuwf/9+lJWVITg4GPPmzcOMGTNgaGjIZ9Fa5dq1axgwYACSkpLQv39/votDCCGEEMI73icNBQcH47fffkNhYSH2798Pc3NzvP7667CyskJ4eDj2798PsVjMdzEJIYSogEQiQUxMDCQSCd9FIYSoEO8Bp5yWlhamTJmCvXv3oqioiAtCZ82ahX//+998F48QQkgrNRVUxsbGYuvWrYiLi+OhZISQjqI2AaecfLbjkSNHkJycDB0dHbi4uPBdLEIIIa3UWFAp/7zPzs7GqVOn6G4WIV2YWgScMpkMp0+fxuLFi2FtbY05c+agqqoKmzdvxqNHj7BgwQK+i0gIIaQZDfVkNhVUytfu7Nu3L63dSUgXx2vAGRMTg9dffx22traYMGECMjMz8eWXX+LBgweIiIjA/Pnzoa+vz2cRCSGEKKmhnszGgsq6a3caGRlBW1ubejkJ6cJ4XRZp6NCh0NXVxfjx4zFnzhzu1nleXh7y8vIaPIdmfhNCiPp5sSczICAAABoMKgMCAmjtTkK6Gd5zqVdVVeHAgQM4ePBgk8exLAuGYVBbW9tBJSOEEKKshnoytbS0Gg0qae1OQroXXgPOrVu38nl5Qggh7aCx2+PLli1rNKi0t7eHvb09D6UlhPCB14Bz0aJFfF6eEEJIO2js9vijR48wadIkvotHCFEDvN9SJ4QQ0rnR7XFCSHMo4CSEENImdHucENIctViHkxBCCCGEdF0UcBJCCCGEEJWigJMQQgghhKgUBZyEEELaRUOpLQkhBKCAU8HkyZPh5OQEHR0d2NraYsGCBXjw4AHfxSKEkE6hodSWhBACUMCpYMSIEfj777+RkZGBAwcOICsrCzNmzOC7WIQQovZeTG1JOdEJIXXRskh1vPPOO9z/Ozs7Y/Xq1Zg6dSqkUim0tLR4LBkhhKi3hlJbDhs2jO9iEULUBPVwNuLJkyfYuXMnhgwZQsEmIYQ0obHUltTLSQiRo4DzBR988AH09fVhbm6OvLw8HDlypMnjxWIxysrKuEdFRUUHlZQQQtSDPLWlSCRCamoqRCIRsrKykJyczHfRCCFqgmFZluW7EKq0evVqfPXVV00ec/v2bXh6egIASkpK8OTJE+Tm5mL9+vUwNjbG8ePHwTBMg+euW7cO69evr7c9KSkJ/fv3b/sbIIQQNVdQUIBr167V296/f3/KQEQIAdANAs7i4mI8fvy4yWPc3Nygra1db3t+fj4cHR0RExODwMDABs8Vi8UKt42uX7+O4OBgCjgJIYQQQv6/Lj9pyNLSEpaWlq06VyaTAUCT45CEQiGEQiH33MDAoFXXIoQQQgjpqrp8wKmsuLg4JCQkYOjQoTA1NUVWVhbWrl0Ld3f3Rns3CSGEEEJI82jS0P+np6eHgwcPIjQ0FB4eHli2bBn69u2LqKgohR5MQgghhBDSMtTD+f/5+Pjg/PnzfBeDEEIIIaTLoR5OQgghhBCiUhRwEkIIIYQQlaKAkxBCSLuQSCSIiYmBRCLhuyiEEDVDASchhJB2ERsbi61btyIuLo7vohBC1AwFnIQQQtpMnk89Ozub8qgTQuqhgJMQQkibxcXF4c6dO+jbty/u3LmD+Ph4votECFEjFHASQghpE3nvpra2NoyMjKCtrU29nIQQBRRwEkIIaZPk5GRkZWVBJBIhNTUVIpEIWVlZSE5O5rtohBA1QQu/E0IIaRNHR0fMmzevwe2EEAJQwEkIIaSN7O3tYW9vz3cxCCFqjG6pE0IIIYQQlaKAkxBCCCGEqBQFnIQQQgghRKVoDGcX9/DhQzx8+JDvYnRLtra2sLW15bsY3RK1e/5Qu+cPtXv+ULtvHgWc7czW1haffPKJWjQ8sViMOXPmICoqiu+idEvBwcE4ffo0hEIh30XpVqjd84vaPT+o3fOL2n3zGJZlWb4LQVSjrKwMxsbGiIqKgoGBAd/F6VYqKioQHByM0tJSGBkZ8V2cboXaPX+o3fOH2j1/qN0rh3o4uwFfX1/6I+hgZWVlfBeh26N23/Go3fOP2n3Ho3avHJo0RAghhBBCVIoCTkIIIYQQolIUcHZhQqEQn3zyCQ1i5gHVPX+o7vlDdc8fqnv+UN0rhyYNEUIIIYQQlaIeTkIIIYQQolIUcBJCCCGEEJWigJMQQgghhKgUBZyEEEIIIUSlKOAk3RbDMEo9Ll682OZrVVZWYt26dS16rS+++AKTJ0+GtbU1GIbBunXr2lwOQtS53aenp+P999+Hr68vDA0NYWtriwkTJiAxMbHNZSHdmzq3+wcPHmD+/Pnw8PCAoaEhTExMEBAQgO3bt6MrzeumTEOk29qxY4fC8z///BNnzpypt713795tvlZlZSXWr18PAAgJCVHqnI8//hg2Njbw8/PD6dOn21wGQgD1bve///47tmzZgunTp+O1115DaWkpfvvtNwwePBinTp3CqFGj2lwm0j2pc7svKSlBfn4+ZsyYAScnJ0ilUpw5cwaLFy9GRkYGvvzyyzaXSS2whBCWZVl21apVrKr+JIqLi1kA7CeffKL0OdnZ2a0+lxBlqVO7T0xMZMvLyxW2lZSUsJaWlmxQUJAKSki6K3Vq942ZOHEiq6+vz9bU1LRPwXhGt9QJaYJMJsN3330Hb29v6OjowNraGitXrsTTp08VjktMTMSYMWNgYWEBXV1duLq6YunSpQCAnJwcWFpaAgDWr1/P3bpp7ha5i4uLKt4SIc3iq90PGDAABgYGCtvMzc0xbNgw3L59u33fJCEv4PPzviEuLi6orKyERCJp83tTB3RLnZAmrFy5Etu2bcOSJUvw5ptvIjs7Gz/++COSk5Nx5coVaGlp4dGjRwgLC4OlpSVWr14NExMT5OTk4ODBgwAAS0tL/PLLL3j11Vcxbdo0hIeHAwD69u3L51sjpFHq1u4LCwthYWHRru+RkBfx3e6rqqogEolQUVGBqKgobN26FYGBgdDV1VXp++4wfHexEqIuXrzFcunSJRYAu3PnToXjTp06pbD90KFDLAA2ISGh0dduyy0WuqVOVEld271cdHQ0yzAMu3bt2la/BiEvUsd2v2HDBhYA9wgNDWXz8vJa9BrqjG6pE9KIffv2wdjYGKNHj0ZJSQn3kN/2u3DhAgDAxMQEAHD8+HFIpVIeS0xI26lTu3/06BHmzp0LV1dXvP/++yq5BiGAerT7OXPm4MyZM9i1axfmzp0L4HmvZ1dBASchjbh79y5KS0thZWUFS0tLhUdFRQUePXoEAAgODsb06dOxfv16WFhYYMqUKdi6dSvEYjHP74CQllOXdi8SiTBx4kSUl5fjyJEj9cZ2EtKe1KHdOzs7Y9SoUZgzZw527twJNzc3jBo1qssEnTSGk5BGyGQyWFlZYefOnQ3ulw8MZxgG+/fvR2xsLI4dO4bTp09j6dKl+M9//oPY2Fj6oiSdijq0e4lEgvDwcNy8eROnT59Gnz59Wv1ahChDHdr9i2bMmIHNmzcjOjoaY8aMabfX5QsFnIQ0wt3dHWfPnkVQUJBSg7YHDx6MwYMH44svvsCuXbswb9487NmzBy+//DIYhumAEhPSdny3e5lMhoULF+LcuXP4+++/ERwc3Jq3QUiL8N3uGyLv2SwtLW2X1+Mb3VInpBEzZ85EbW0tPvvss3r7ampq8OzZMwDA06dP62WD8PX1BQDuNouenh4AcOcQoq74bvdvvPEG9u7di59//pmb4UuIqvHZ7ouLixvcvmXLFjAMg/79+yv1OuqOejgJaURwcDBWrlyJDRs24Pr16wgLC4OWlhbu3r2Lffv2YePGjZgxYwa2b9+On3/+GdOmTYO7uzvKy8uxefNmGBkZYfz48QAAXV1deHl5Ye/evejVqxfMzMzQp0+fJm8V7tixA7m5uaisrAQAREdH4/PPPwcALFiwAM7OzqqvBNLt8Nnuv/vuO/z8888IDAyEnp4e/vrrL4X906ZNg76+vsrrgHQ/fLb7L774AleuXMHYsWPh5OSEJ0+e4MCBA0hISMAbb7yBHj16dGRVqA7Ps+QJURuNZZ7YtGkTO2DAAFZXV5c1NDRkfXx82Pfff5998OABy7Ise+3aNXbOnDmsk5MTKxQKWSsrK3bixIlsYmKiwuvExMSwAwYMYLW1tZVaMiM4OFhhiYy6jwsXLrTX2ybdnDq1+0WLFjXa5gFw2bcIaSt1aveRkZHsxIkTWTs7O1ZLS4s1NDRkg4KC2K1bt7Iymaxd3zefGJbtQpnhCSGEEEKI2qExnIQQQgghRKUo4CSEEEIIISpFASchhBBCCFEpCjgJIYQQQohKUcBJCCGEEEJUigJOQgghhBCiUhRwEtIKOTk5YBgG27Zt47sohHQYavekO6J23z4o4CSEEEIIISpFC78T0gosy0IsFkNLSwsaGhp8F4eQDkHtnnRH1O7bBwWchBBCCCFEpeiWOum21q1bB4ZhcOfOHcyfPx/GxsawtLTE2rVrwbIs7t+/jylTpsDIyAg2Njb4z3/+w53b0JiexYsXw8DAAAUFBZg6dSoMDAxgaWn5/9q7+5io6zgO4O8fqHeIh6AR4gP3xCIYy8eRaXSZNEsoTUDFFWiRtUpyQcwoJ6alaDmNYkoxIIpWzpyblg9T2GW1WVutESkFB9YaDy4gkhCET384z37y4KEcB9z7td3mfe/7dOy93z7ew/eQlpaGzs5Oe7/S0lIoioLS0lLVfnqas7a2FmvWrMHUqVOh0WgQGBiIJUuWoLq62kl/FRrpmHtyR8y967HgJLe3YsUKdHV1Yfv27bj77ruxdetW7N69Gw8++CCmTJmCrKwsBAcHIy0tDVartc+5Ojs7sWjRIkycOBFvvfUWLBYL3n77beTm5t7U3mJjY3Hw4EGsWbMGOTk5SElJQUtLC86fP39T8xFdxdyTO2LuXUiI3NSmTZsEgKxdu9bedvnyZZk6daooiiLbt2+3tzc2NoqXl5ckJSWJiIjNZhMAkp+fb++TlJQkAOT1119XrTNz5kyZPXu2/X5JSYkAkJKSElW/6+dsbGwUALJz586BecJEwtyTe2LuXY+vcJLbS05Otv/b09MTc+bMgYjgqaeesrf7+voiJCQEVVVVN5zv2WefVd2PjIx0aNz1vLy8MGbMGJSWlqKxsbHf44n6wtyTO2LuXYcFJ7m9oKAg1f3x48dDq9Xitttu69Z+owuBVquFv7+/qs3Pz++mLiAajQZZWVn48ssvERAQgPvuuw87duxAbW1tv+ciuh5zT+6IuXcdFpzk9no65qK3oy/kBoc6OHJkhqIoPbb//4PmV61fvx4VFRXYtm0btFotNm7ciNDQUPzwww83XIeoL8w9uSPm3nVYcBINMj8/PwBAU1OTqr2mpqbH/mazGampqTh+/DjKysrQ3t6u+gYl0XDA3JM7Yu6vYcFJNMj0ej08PT27fQMyJydHdb+1tRVtbW2qNrPZDJ1Oh0uXLjl9n0QDibknd8TcXzPK1Rsgcjfjx49HfHw8srOzoSgKzGYzDh8+jPr6elW/iooKLFy4EMuXL0dYWBhGjRqFgwcPoq6uDitXrnTR7oluDnNP7oi5v4YFJ5ELZGdno6OjA3v37oVGo8Hy5cuxc+dOhIeH2/tMmzYNCQkJOHnyJIqKijBq1Cjceeed+OyzzxAbG+vC3RPdHOae3BFzfwV/2pKIiIiInIqf4SQiIiIip2LBSUREREROxYKTiIiIiJyKBScRERERORULTiIiIiJyKhacRENcdXU1FEVBQUGBq7dCNGiYe3JHIzn3LDhpRKmsrMQzzzwDk8kErVYLHx8fzJ8/H3v27MG///7rtHXLy8uRmZmJ6upqp63hiDfeeAOPPvooAgICoCgKMjMzXbofGhzunPuzZ88iPT0dM2bMgE6nQ2BgIKKjo/H999+7bE80ONw593/++Scef/xxhISEQKfTwdfXFxERESgsLLzhb8C7Cg9+pxHjyJEjiI+Ph0ajQWJiIsLDw9He3o7Tp0/j5Zdfxs8//4zc3FynrF1eXo7Nmzfj/vvvh8FgcMoajnjttdcwadIkzJw5E8eOHXPZPmjwuHvuP/jgA+Tl5SE2NhbPPfccmpubsW/fPsydOxdHjx5FVFSUS/ZFzuXuub9w4QL++OMPxMXFISgoCB0dHThx4gRWr16Nc+fO4c0333TJvvrCgpNGBJvNhpUrV0Kv1+PUqVMIDAy0P/b888/jt99+w5EjR1y4w2tEBG1tbfDy8hrwuW02GwwGAy5cuAB/f/8Bn5+GFuYeSEhIQGZmJsaNG2dve/LJJxEaGorMzEwWnCMQcw/cddddKC0tVbW98MILeOSRR/DOO+9gy5Yt8PT0HNA1bxXfUqcRYceOHfjnn3+Ql5enuvhcFRwcjBdffNF+//Lly9iyZQvMZjM0Gg0MBgMyMjJw6dIl1TiDwYCYmBicPn0aERER0Gq1MJlM+PDDD+19CgoKEB8fDwBYsGABFEWBoij2i8HVOY4dO4Y5c+bAy8sL+/btAwBUVVUhPj4eEyZMwNixYzF37txbulC68tVVGnzMPTB79mxVsQkAEydORGRkJH755ZebmpOGNua+dwaDAa2trWhvbx/QeQeEEI0AU6ZMEZPJ5HD/pKQkASBxcXHy3nvvSWJiogCQpUuXqvrp9XoJCQmRgIAAycjIkHfffVdmzZoliqJIWVmZiIhUVlZKSkqKAJCMjAwpKiqSoqIiqa2ttc8RHBwsfn5+smHDBtm7d6+UlJRIbW2tBAQEiE6nk1dffVV27dol06dPFw8PD/n888/te7DZbAJA8vPzHX5+DQ0NAkA2bdrk8Bgafpj73s2bN0/uuOOOmxpLQxtzf01ra6s0NDSIzWaTgoIC8fb2lnnz5jn8txlMLDhp2GtubhYAsmTJEof6//jjjwJAkpOTVe1paWkCQE6dOmVv0+v1AkCsVqu9rb6+XjQajaSmptrb9u/fLwCkpKSk23pX5zh69Kiqff369QJAvvrqK3tbS0uLGI1GMRgM0tnZKSIsOKlnzH3vrFarKIoiGzdu7PdYGtqYe7Vt27YJAPtt4cKFcv78eYfGDja+pU7D3t9//w0A0Ol0DvX/4osvAAAvvfSSqj01NRUAur3FERYWhsjISPt9f39/hISEoKqqyuE9Go1GLFq0qNs+IiIicO+999rbxo0bh7Vr16K6uhrl5eUOz0/uh7nvWX19PVatWgWj0Yj09PRbmouGHuZeLSEhASdOnEBxcTFWrVoFAE79hv6tYMFJw56Pjw8AoKWlxaH+NTU18PDwQHBwsKp90qRJ8PX1RU1Njao9KCio2xx+fn5obGx0eI9Go7HHfYSEhHRrDw0NtT9O1BvmvruLFy8iJiYGLS0tOHToULfPdtLwx9yr6fV6REVFISEhAR9//DFMJhOioqKGZNHJgpOGPR8fH0yePBllZWX9GqcoikP9evumn/TjrDNnfCOd3Btzr9be3o5ly5bhp59+wqFDhxAeHj5oa9PgYe77FhcXh99//x1Wq9Vle+gNC04aEWJiYlBZWYlvv/32hn31ej26urrw66+/qtrr6urQ1NQEvV7f7/UdvZhdv49z5851az979qz9caK+MPdXdHV1ITExESdPnkRxcTEsFku/56Dhg7nv3dVXNpubmwdkvoHEgpNGhPT0dHh7eyM5ORl1dXXdHq+srMSePXsAAIsXLwYA7N69W9Vn165dAIDo6Oh+r+/t7Q0AaGpqcnjM4sWLcebMGdVF8+LFi8jNzYXBYEBYWFi/90Huhbm/Yt26dfj000+Rk5ODZcuW9Xs8DS/MPdDQ0NBje15eHhRFwaxZs/o132Dgwe80IpjNZhQXF2PFihUIDQ1V/fLEN998g/3792P16tUAgOnTpyMpKQm5ubloamqCxWLBmTNnUFhYiKVLl2LBggX9Xn/GjBnw9PREVlYWmpubodFo8MADD+D222/vdcyGDRvwySef4OGHH0ZKSgomTJiAwsJC2Gw2HDhwAB4e/f//YFFREWpqatDa2goAsFqt2Lp1KwDgiSee4KumIwxzf6WQyMnJwT333IOxY8fio48+Uj3+2GOP2QsEGhmY+ys/Y/z111/joYceQlBQEP766y8cOHAA3333HdatW9ftM6tDgou/JU80oCoqKuTpp58Wg8EgY8aMEZ1OJ/Pnz5fs7Gxpa2uz9+vo6JDNmzeL0WiU0aNHy7Rp0+SVV15R9RG5csRFdHR0t3UsFotYLBZV2/vvvy8mk0k8PT1VR2b0NofIlTPd4uLixNfXV7RarURERMjhw4dVffpzTIbFYlEdkfH/W09HeNDI4M65v3rGYm83m83W53gavtw598ePH5eYmBiZPHmyjB492v7c8/Pzpaurq8+xrqKIDNFfeSciIiKiEYGf4SQiIiIip2LBSUREREROxYKTiIiIiJyKBScRERERORULTiIiIiJyKhacRERERORULDiJiIiIyKlYcBIRERGRU7HgJCIiIiKnYsFJRERERE7FgpOIiIiInIoFJxERERE5FQtOIiIiInKq/wAF/QQWER3vYgAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -636,7 +640,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "For further aesthetic changes, the '[Plot Aesthetics Tutorial](09-plot_aesthetics.html)' provides detailed examples of how to customize the plot.\n"
+ "For further aesthetic changes, the [Plot Aesthetics Tutorial](09-plot_aesthetics.html) provides detailed examples of how to customize the plot.\n"
]
}
],
diff --git a/nbs/tutorials/03-shared_control_and_repeated_measures.ipynb b/nbs/tutorials/03-shared_control_and_repeated_measures.ipynb
index f23abaa0..566fea45 100644
--- a/nbs/tutorials/03-shared_control_and_repeated_measures.ipynb
+++ b/nbs/tutorials/03-shared_control_and_repeated_measures.ipynb
@@ -28,7 +28,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "## Load Libraries"
+ "## Load libraries"
]
},
{
@@ -47,7 +47,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "Compiling numba functions: 100%|██████████| 11/11 [00:00<00:00, 48.87it/s]"
+ "Compiling numba functions: 100%|██████████| 11/11 [00:00<00:00, 25.48it/s]"
]
},
{
@@ -55,7 +55,7 @@
"output_type": "stream",
"text": [
"Numba compilation complete!\n",
- "We're using DABEST v2025.03.14\n"
+ "We're using DABEST v2025.03.27\n"
]
},
{
@@ -137,7 +137,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "## Shared Control Plot"
+ "## Shared control plot"
]
},
{
@@ -148,11 +148,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:57:03 2025.\n",
+ "The current time is Tue Mar 25 16:03:03 2025.\n",
"\n",
"Effect size(s) with 95% confidence intervals will be computed for:\n",
"1. Test 1 minus Control 1\n",
@@ -186,11 +186,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:57:04 2025.\n",
+ "The current time is Tue Mar 25 16:03:04 2025.\n",
"\n",
"The unpaired mean difference between Control 1 and Test 1 is 0.48 [95%CI 0.205, 0.774].\n",
"The p-value of the two-sided permutation t-test is 0.001, calculated for legacy purposes only. \n",
@@ -234,7 +234,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAInCAYAAAAMKK0kAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAyI5JREFUeJzs3Xd8VFX6P/DPvTPJTJJJJSQQIJBQQqgh9CKhSREVcRF+iIJ1sayVteGqYGNXV1d2v4odlAVRUcG29Kb0FqTX0FMIpE2Sqff+/ggZMmQyuclMMu3zfr3ygsycufOMxwl55jnnOYIsyzKIiIiIiIiIXCB6OgAiIiIiIiLyfUwuiYiIiIiIyGVMLomIiIiIiMhlTC6JiIiIiIjIZUwuiYiIiIiIyGVMLomIiIiIiMhlTC6JiIiIiIjIZUwuiYiIiIiIyGVMLomIiIiIiMhlTC7rKDs7G7NmzUJ2dranQyEiIiIiIvIaTC7rKDs7G7Nnz2ZySUREREREVAWTSyIiIiIiInIZk0siIiIiIiJyGZNLIiIiIiIicpna0wEQERER+YsyvQFHMk+jpKAU4dFh6JjWBqE6bb3HERH5EiaXRERERG6QdeQCVizZAkmSIAgCZFnG9jX7MXryQCSlJNR5HBGRr+GyWCIiIiIXlekNWLFkC6xWCbIMSJIMWQasVgkrvtqMMr2hTuOIiHwRk0siIiIiFx3JPA1JkhzeJ0kSjmSertM4IiJfxOSSiIiIyEUlBaUQBMHhfYIgoKSgtE7jiIh8EZNLIiIiIheFR4dBlmWH98myjPDosDqNIyLyRUwuiYiIiFzUMa0NRNHxr1WiKKJjWps6jSMi8kVMLomIiIhcFKrTYvTkgVCpRAgCIIoCBAFQqUSMnjzQdsyI0nFERL5IkGtam0EO7dmzBz179sTu3buRnp7u6XCIiIjIi/CcSyIKZDznkoiIiMhNQnVapA/q6LZxRES+hMtiiYiIiIiIyGVMLomIiIiIiMhlTC6JiIiIiIjIZUwuiYiIiIiIyGVMLomIiIiIiMhlTC6JiIiIiIjIZUwuiYiIiIiIyGVMLomIiIiIiMhlTC6JiIiIiIjIZUwuiYiIiIiIyGVMLomIiIiIiMhlTC6JiIiIiIjIZUwuiYiIiIiIyGVMLomIiIiIiMhlAZVczpo1C4Ig2H117NjR02ERERERERH5PLWnA2hsnTt3xpo1a2zfq9UB95+AiIiIiIjI7QIus1Kr1WjWrJmnwyAiIiI/VKY34EjmaZQUlCI8Ogwd09ogVKf1dFhERI0i4JLL48ePIyEhAVqtFv3798ecOXOQmJhY43ij0Qij0Wj7Xq/XN0aYRERE5GOyjlzAiiVbIEkSBEGALMvYvmY/Rk8eiKSUBE+HR0TU4AJqz2Xfvn2xYMECrFixAvPmzUNWVhZuuOEGlJSU1PiYOXPmIDIy0vaVkZHRiBETERGRLyjTG7BiyRZYrRJkGZAkGbIMWK0SVny1GWV6g6dDJCJqcIIsy7Kng/CUwsJCtG7dGu+++y7uv/9+h2Our1xmZmYiIyMDu3fvRnp6emOFSkRERF5sz+9HsHXVPjj6rUoQgP4juyN9EJsIEpF/C7hlsVVFRUWhQ4cOOHHiRI1jNBoNNBqN7XudTtcYoREREZEPKSkotS2FvZ4gCCgpKPVAVEREjSuglsVeT6/X4+TJk2jevLmnQyEiIiIfFh4d5jCxBABZlhEeHdbIERERNb6ASi7/+te/YuPGjTh9+jS2bNmC8ePHQ6VSYfLkyZ4OjYiIiHxYx7Q2EEXHv1aJooiOaW0aNyAiIg8IqOTy/PnzmDx5MlJSUjBx4kQ0adIE27ZtQ9OmTT0dGhEREfmwUJ0WoycPhEolQhAAURQgCIBKJWL05IE8joSIAkJAN/Spjz179qBnz55s6ENERETV8JxLIgpkAd3Qh4iIyNcZCgtxZuNGlOblISwuDq0zMqCNivJ0WAErVKdlV1giClhMLomIiHzUxV27sPWddyBZLBBEEbIk4cCSJeg/YwYSevXydHh+4+t5q1CmNyBUp8Wkh0d6OhwiIq8VUHsuiYiI/IWhsLAisTSbAVmGbLUCsgzJbMbWd96BobDQ0yH6jTK9AaXF5SjTGzwdChGRV2PlkoiIyEs5W/J6ZuNGSBaLw8dJFgvObNyIlHHjGjFaIiIKdEwuiYiIvFBtS15L8/Iqbrdaqz1WEEWU5uV5IGpypaEPmwERka9jcklERORl7Ja8ArYEsnLJ69h58xAWFwdZkhw+XpYkhMXFNVq8VCHryAWsWLIFkiRBEATIsozta/Zj9OSBSEpJaLDHEhF5C+65JCIi8jJKlry2zsiAqHb8GbGoVqP1kCENGCFdr0xvwIolW2C1SpBlQJJkyDJgtUpY8dVmp/s1XXksEZE3YXJJFKBM+gKc3/odTv7vA5zf+h1M+gJPh0REV1UueXWkcsmrNioK/WfMgBgUBAgCBJUKEASIQUHoP2MGtJGRjRx1YDuSeRpSDZVkSZJwJPN0gzyWiMibcFksUQC6fGw7jnw3B7JkgSCIkGUJZzYsROqEmYhp38fT4REFPKVLXhN69cLYefPsm/4MGcLE0gNKCkpty1mvJwgCSgpKG+SxRETehMklUYAx6QsqEkvr1b1ccsVeLtlqxuGlb6L3Y/MRrIv2ZIhEAcVRR9jWGRk4sGSJbc9lVdcvedVGRbErrBcIjw5zmBwCgCzLCI8Oa5DHEhF5Ey6LJQowefvXQZYc7+WSJQvy9q9r5IiIAtfFXbvwy8MP44///hen1qzBH//9L355+GFcOXGCS159TMe0NhBrWMosiiI6prVpkMcSEXkTJpdEAcZYmAtBqGEvlyDCWJjbyBERBSa7jrCyXNERVpZtHWFj2rXD2Hnz0O2uu5A8YgS63XUXxn74IRJ69fJ06ORAqE6L0ZMHQqUSIQiAKAoQBEClEjF68kCnR4q48lgiIm/CZbFEAUYTFQ9ZrmEvlyxBExXfyBERBSYlHWFTxo3jklcfkpSSgGl/vaXWsyodnWep9LFERN6MySVRgInrOgxnNiy07bmsShDViOs23ANREQWeyo6wlWdYVlXZEZZ8T6hOi/RBHWu8v7bzLJ09lojI23FZLJGfu/7IEQBInTATgurqXi5RdXVPVxBSJ8xEcFiUZwMmChBKO8KS/+B5lkTk71i5JPJjzo4c6f3YfOTtXwdjYS40UfGI6zaciSVRI6pLR1jyHY6WvFYubVVyniUrl0Tky5hcEvkpJUeOtOz/J0+GSBTQtFFR6D9jRkVTH4ulYomsJEFUq9kR1kfVtuSV51kSkb9jcknkp5QcOcLkksizEnr1wth58+zPuRwyhImlD6q65BWALYGsXPI67a+38DxLIvJ7TC6J/FTlkSOVFcuqeOQIkffQRkWxI6wfULLktWNaG2xfs9+WgFbF8yyJyB+woQ+Rn+KRI0REjadyyasjlUteeZ4lEfk7Vi6J/BSPHCEiajxKl7zyPEsi8mesXBL5qWBdNI8cISJqJB3T2kAUHf9adf2S18qzMDNu6Yn0QR2ZWBKR32DlksiPxbTvwyNHiIgaQeWS1xVfbbbrFiuKXPJKRIGDySWRnwvWRbMrLBFRI+CSVyIKdEwuiYiIiNykcskrEVEgYnJJRETkpQyFhfZnYGZkQBsV5emwiIiIHGJySeTnTPoC+z2XXYchWBft6bCIqBYXd+3C1nfegWSxQBBFyJKEA0uWoP+MGUjo1cvT4REREVXD5JLIj10+th1HvpsDWbJAEETIsoQzGxYidcJMxLTv4+nwiKgGhsLCisTSXHGUkGy1AgAksxlb33kHY+fNYwWTiIi8Do8iIfJTJn1BRWJpNQOyDFmyVvxpNePw0jdh0hd4OkQiqsGZjRshWSwO75MsFpzZuLGRIyIiIqpdQCeXf//73yEIAp588klPh0Lkdnn710GWHP9yKksW5O1f18gREZFSpXl5EGo4M1EQRZTm5TVyRERERLUL2GWxO3fuxEcffYRu3bp5OhSiBmEszL26FNZa7T5BEGEszPVAVESBYc2zz8JQWAhtVBRGvPVWnR8fFhcHWZIc3idLEsLi4lwNkYiIyO0CsnKp1+sxZcoUfPLJJ4iOZmMT8k+aqHjIcg2/nMoSNFHxjRwRUeAwFBai/MoVGAoL6/X41hkZENWOP/8V1Wq0HjKk/sERERE1kIBMLh999FGMHTsWI0aM8HQoRA0mruswCKLjX04FUY24bsMbOSIicsRQWIijy5djzyef4Ojy5baKZ/8ZMyAGBQGCAEGlAgQBYlAQ+s+YAW1kpKfDJiIiqibglsUuWbIEe/bswc6dOxWNNxqNMBqNtu/1en1DhUbkVsG6aKROmInDS9+06xYriGqkTpiJ4LAoT4dIFPBqO25k7Lx59udcDhnCxJKIiLxWQCWX586dwxNPPIHVq1dDq9UqesycOXMwe/bsBo7MtxSUlGL1zsPIuVKMZjERuLF3KqLDwzwdFjkQ074Pej823/6cy27DmVgSeQGlx42kjBvnyTDJD5TpDTiSeRolBaUIjw5Dx7Q2CNUp+z2IiKguAiq53L17N/Ly8pCenm67zWq1YtOmTfi///s/GI1GqFQqu8e88MILePrpp23fZ2ZmIiMjo9Fi9jZbD5zCa1/8AotVgigIkGQZC/63FS/fMxb9Oid7OjxyIFgXjZb9/+TpMIjoOkqOG2FiSa7KOnIBK5ZsgSRJEAQBsixj+5r9GD15IJJSEjwdHhH5mYBKLocPH479+/fb3XbvvfeiY8eOeO6556ollgCg0Wig0Whs3+t0ugaP01sVlJTitS9+gdlS8em6VZYBAGaLFa8u+AWLXr6PFUwiIoUqjxuprFhWxeNGSClnVckyvQErlmyB1VrR3E2++u+21SphxVebMe2vt7CCSVQP5jIjLh25CGNxOTQRIWjaMQFBoZraHxgAAiq5DA8PR5cuXexuCwsLQ5MmTardTtWt3nkYFqvj7qMWq4Q1u47gjqE9GzkqIiLfxONGyFW1VSWPZJ6GVMP/Y5Ik4UjmaaQP6tjIUQcufVERMrf8hoL8fETHxiJtwA3QcQ+1zynIysPx/2VCrvK+O7/tONqPSUN0En9uB2S3WKqfnCvFEAXB4X2iICD7clEjRxTYMj97AjvmTkXmZ094OhQiqgceN0KuqFqVlGVAkmTI8rWqZJnegJKCUgg1/LstCAJKCkobOerAdSRzD/75zBNYtfRr7Nq0HquWfo1/PvMEjmbu9XRoVAfmMmNFYmmVABmQJbniT6uE4//LhLnMWPtF/FzAJ5cbNmzAe++95+kwfEKzmAhIV5fUXE+SZTRvwk/fGpNJXwBTyWWY9AWeDoWI6oHHjZArlFQlw6PDbEthryfLMsKjuZWlMeiLirDkg3/DarFAlmVIVitkWYbVYsFXH8yFvogfzvuKS0cuOl1xkn/kYiNH5H28elms1WrFt99+i/Xr1yMvLw+vvvoqunbtiqKiIqxduxYDBw5EfDwPgne3mrrB3tg7FQv+t9W257IqtUrEiF6pHoiWiMh38bgRqq/KqqSj5LGyKtl7aGdsX7PftueyKlEU0TGtTSNE6tuULmV1Ni5zy2+QHOytBgDJakXm1t8xaPTYBn0d5B7G4nKn7ztDcbkHovIuXptcFhYWYvTo0dixYwd0Oh1KS0vx2GOPAahoqvP4449j6tSpePPNNz0cqX+prRvsy/eMxasL7O9Xq0S8fM9YRIeHejp8IiKfw+NGApOS40GcjVFSlQzVaTF68kCs+Gqz3b5MURQxevJANvOpxZHMPVjywb8hWa22c2jX/LAUkx95AilpPRSPK8jPd9q8q+DSpcZ8WaRATQ17NBEhTt932oiQRo7U+3htcvn888/j4MGDWLlyJXr06IG4Ko0NVCoVJkyYgF9//ZXJpRsp6Qbbr3MyFr18H9bsOoLsy0Vo3iQSI3qlMrEkIiKCsqRRyfEgtY3pmNZGUVUyKSUB0/56C8+5rKOqS1mBa+fQVi5l/evbc6GLjFQ0Ljo21ulSyuimTRvhFVGl2jq9OmvY07RjAs5vO16x5/I6gigitiOP9/HaPZfLli3DY489hhtvvNHhZvQOHTrg9OnTjR+YH1PSDRYAosPDcMfQnnh8wjDcMbQnE0siIiJUJIRf/PMnbF21Dwd3ncTWVfvwxT9/QtbRa/uwlDTiUTKmsiqpUokQBEAUBQgCoFJVr0qG6rRIH9QRGbf0RPqgjkwsFVCylFXpuLQBN0B0cNwdAIgqFdIGDHJP0FSrgqw87F2wEee2HMWlg+dwbstR7F2wEQVZFUc/1dawBwDaj0mDoBIBARBEoeJPlYj2Y9J4HAm8uHJZVFSEpKSkGu83m82w1HD4NNVPZTdYq4NyP7vBEhFRoKpMxpwlZUrPlFTSiKfy787GpA/qyKpkA1K6lFXJOF1kJCY/8gS++mCu3dJZUaXC5EeegC6Ce6wbg13iiGvv0crEscc9GYoa9jRPT0KPezKQf+QiDMXl0EaEIJbnXNp4bXLZtm1b7Nmzp8b7V61ahU6dOjViRP6P3WCJfEOBvgBr969FbmEu4qPiMbzrcETroj0dFpHXspitNSZrSoy/b6jt7yaj2eGYg7tOOk0ID+46ie79O6Awv8RpQ5DC/BLb352NqYxDHaRCl95tAVQsh1UHOa6QUd0oXcqqdFxKWg/89e25yNz6OwouXUJ006ZIGzCIiWUjUpI4Km3YExSqQfP0motggcxrk8sHHngAzz33HIYMGYLhw4cDqJhUo9GIV199FStWrMDHH3/s4Sj9C7vBEnm/7ce2483v3oRFskAUREiyhIUbFmLmhJno276vp8Mj8joWsxXnT+XWmBS6y8XTlwAIABx9SCvg4ulLiIzRwWy2QJJq+CBXkmExWyBf/buzMaePVj/yIFgThJbJ8Uww3SBtwA1Y88NS217KqqouZVU6DgB0kZHsCutBShJHNuxxndfuuXziiScwdepUTJ48GR06dAAA3HnnnQgPD8ecOXPw5z//Gffff7+Ho/Qv0eFhePmesQhSqyAIAlSiCEEQEKRWsRsskRco0Bfgze/ehNlqrjgjTao4K81sNePNpW+igGeeElUjSRJMRjNEtQpB2qAG+wqLDHX6S2lYZCiCtEFo3aE5RLF6LwmgYt9kYofmisZc//yiWgWT0exShZauqVzKqlKrIQgCRNXV343UarulrErHkecpSRybdkyAIDpOj9iwRxmvrVwKgoBPPvkE06ZNw9KlS3H8+HFIkoS2bdti4sSJGDx4sKdD9EvsBkvkvdbuXwuL5HivuUWyYN3+dfhT/z81clREvkGlFhEUVL9fezYs3wVDuQnakGAMGdfL4Zg2KQk4lnnaYcVRFAUkpSQgKEiNoCA1+gzrgh3rDkCSZAiiAFmSIYoC+gzrAl1Exb+3SsbYs0BysPKI6k/pUlYuefW8A19vganUiOAwDbpMGuBwjJJOr0GhGrQfk1atW6wgsmGPUl6bXFYaNGgQBg1iF63GVNkNloi8S25hLkRBhFWu/gukKIjIKczxQFRE/s9QboKhzOh0jDYk2GlCqAkJto1tlhiLkZMG4NyJHJSVGBAarkViu2Z1HkMNT+lS1sZe8qovKkLmlt9QkJ+P6NhYpA24AbrIwE1mTaVGmEudv0eVJo7RSXFs2OMCr08uiYgqmfQFyNu/DsbCXGii4hHXdRiCA6iRTXxUPCS5hoYhsoRmUc0aOSLyBobCQpzZuBGleXkIi4tD64wMaKOiPB1WQKpLQqgNCUb7rolOr6dkDAWeI5l7sOSDf9t1nl3zw1JMfuQJpKT18HR4Xk1p4uiNDXtqO5/TW3htcpmUlOTwfMuqBEHAyZMnGykiIt/UmAlZQz7X5WPbceS7OZAlCwRBhCxLOLNhIVInzERM+z5ueQ5vN7zrcCzcsBBma/XGJGpRjeHdhnsgKvKki7t2Yes770CyWGy/ZB5YsgT9Z8xAQi/HyzepYTEh9A3zZr8EfXEhdBFRePiV11y+npJKotJqo7Nx+qIiLPng37YGQpVHoFgtFnz1wVz89e25AV3BVMIbE8faFGTlVau4nt92HO3HpCE6Kc7T4dnx2uQyIyOjWnJptVpx5swZbN68GV26dEGPHvx0hsiZxkzIGvK5TPqCimtfTarkq8tCZasZh5e+id6PzQ+ICma0LhozJ8zEm0vtu8WqRTVmTpiJqLAoT4dIjchQWFiRWJqvvi+u/pIpmc3Y+s47GDtvHiuYRDXQFxeiuMA9TdCUVBKVVhtrG5e55TdIDs7UBADJakXm1t/ZkdYHOatKKjmf05sqmF6bXC5YsKDG+/bt24dRo0ZhypQpjRcQkY9xd0LmrCrpjudydv28/esg19DIRpYsyNu/Di0DpJFN3/Z9seCxBVi3fx1yCnPQLKoZhncbzsQyAJ3ZuBGSg+MPAECyWHBm40akjBvXyFER+Zfaqo1KKokAFFUblVyrID+/Iul0kGAKooiCS5ca6L8E1YeSpay1VSWVnM/pTZVYr00unenevTumT5+O5557Drt37/Z0OEReyZ0JWW1VSVefq7brGwtzr97u4B9TQYSxMFfR6/AX0bpodoUllOblOf0lszQvzwNREfkPJdVGJZVEyLKiaqOSa0XHxjpNNKKbNq3HK6WqlCSE7kgaK69TW1VSyfmc3sRrz7msTXx8PA4dOuTpMIi8VmVC5khdEjK7qqQsQ5asFX9erUqa9AUuPZeS62ui4iHX0MhGliVoouIVvRYifxIWF+f0l8ywOO/ah0PkS6pWEeWryaEsy7Yqor6oCABslURHKiuJSsYovVbagBsgqlQOx4gqFdIG8IQFVxRk5WHvgo04t+UoLh08h3NbjmLvgo0oyMqr0xi7pFEGZEmu+PNq0mi+2n1aSVVSyfmc3sQnk8vLly/js88+Q8uWLT0dCpHXcldCpqQq6cpzKbl+XNdhEETHCy0EUY04NrIhP2coLMTR5cux55NPcHT5chgKC9E6IwOi2vH7QlSr0XrIkMYNksiPKKpIAooqiUqrjUrG6SIjMfmRJ6BSqyEIAkSVCoIgQKVWY/IjT/BsTRcoSQjdmTQCsFUlHamsSjbtmOD0Q4fYjgluePXu47XLYocNG+bw9sLCQhw5cgQmkwkLFy5s5KiIvEflfsSa9jLGdR2GMxsW2vZBVnV9QuZsv6OSJamtbpis+Lmup+T6wbpopE6YicNL37RbOiuIaqROmIlg7jckP+asI2z/GTOq3Seq1eg/Ywa07BhJVG9K9zamDbgBa35YatsnWZWtkiij9jFKrwUgJa0H/vr2XGRu/R0Fly4humlTpA0YxMTSRUoSQvnq352NaZ6epHgpq5KqpNLzOb2F1yaX0tX/eFUJgoCkpCSMGDEC9913Hzp27Oih6KigpBSrdx5GzpViNIuJwI29UxEdHubpsHyGZDFBsjqu1inV5a45tr9bjGXV7heDNOgwbgaOLX+nWkLWYdwMiOpgWIxlKDixC8d+fLfafscO42Ygum1PBOminVYlg3QxTp+rtuRPadUzpn0f9H5svn0S3G14QCaWBfoCrN2/FrmFuYiPisfwrsMRHQDdcgORko6wY+fNsz/ncsgQJpZELlJabaysJH71wVy7vZmiSmVXSVQyRum1KseyK6x7KU0I3ZU0AkDTjgk4v+24bc+l3fWqVCWVns/pDbw2udywYYOnQ6AabD1wCq998QssVgmiIECSZSz431a8fM9Y9Ouc7OnwvJ5kMaHw9D5YDNUTwoaQdOOfUXzuIMxlRQgKjUREYmfIkoQrx3fCYihF1qoPK/Y5wr7L67FlbyNp5ENQh0Q6rSyqQyNw5fhOh88V074XopLSANRcHa1LhTVYFx0wXWFrsv3Ydrz5nf1RJAs3LMTMCTPRt31fT4dH9WAoLLRPDjMybEeIKO0Iy66wRO6ltIoIKKskKq02sirZ8GpqxqMkIZQBtyaNdalK+sr5nF6bXJJ7PfLOYhSUlCE6PBQfzLjT6VhnVcmCklK89sUvMFuutse++gYzW6x4dcEvWPTyfaxg1kKyWmAxlEFUqSGogxv8+VSaUDSNHOLwvsKsvU4/mdVnH0OTjgPRYuBEXNj8TcVYQQCu/uBrMXAiNBHXOtNVfS75anVWslpQcGqv026wXPKqTIG+AG9+9ybMVxNx69WE32w1482lb2LBYwtYwfQxzpa8JvTqxY6wRB5Slypi5fjaKolKq42sSjYcZx1clSaE7k4afakqqYTXJJdffvllvR43depUN0finwpKypBfpK91XG1VydU7D8Pi4A0FABarhDW7juCOoT3dHb5fEtTBUAXV/wfHiV//DxZDCdTacLS76S81jrOUl6Dg1F6YSwsQFBaN6OQeUIeE2+6rTBarByjAUl4CVZAGUa27QReXhMKsvTDpCxCsi0ZUcjrUWl2Nz2sFAKsFptLCWs/A5JJXZdbuXwtLDc2PLJIF6/av4xElPkTJkld2hPU9hnITzp3IQVmJAaHhWrRq1wzakIb/IJHcj1VE/6Lk2A8lCWFDJI2+UpVUwmuSy3vuuafOjxEEgcmlGympSuZcKYYoCLb7qhIFAdmXixo15kBmMZTAUlbsdEzx+cM4t2mRXcUxb98qtBo8BREtUxEUFu04sQQAWbZrFqQOCUdsp8F1jjP/4EZFZ2ByyWvtcgtzIQqirWJZlSiIyCnM8UBUVF9Klry2zsjAgSVLbAloVewI632yz+Zj57oDkCQZgihAlmQc3n0KfYZ1QbPEWE+HR/XAKqL/UNKwp3l6Uq0JYaAmjUp5TXKZlZXl6RACnpKqZLOYCEg1JCOSLKN5E36a5y0s5SVXE8uriUjlJ3SSFec2LULK+OcQndwDeftWXRtThSCKiEpOdzkOY9GlWrvBkjLxUfGQamh+JMkSmkU1a+SIyBVKlrxqo6LYEdZHGMpNtsQSuHpEAQBJkrFj3QGMnDSAFUwiD1LasEdJQthQSWNN+0F9idckl61bt/Z0CAFPSVXy7lF9seB/W23VzarUKhEjeqU2RqikQMEp5/spC7P2IrbTYLQaPKVadVMQRbQaPMXpslelNJFN3XLeJgHDuw7Hwg0LbXsuq1KLagzneZ8+RemS14RevdgR1gecO5FjSyyvJ0kyzp3IQfuuiY0cFVFgCA7T2P3piNIOrnWhNBlUMs7ZftDoJN/ZAuE1ySV5npKqZHR4GF6+ZyxeXWC/L1OtEvHyPWMRHR7ayFFTTcylBU73U5r0BQCAiJapSBn/XJ32U9ZFbOcMnPv963qdgUn2onXRmDlhJt5cat8tVi2qMXPCTERxj6pPqcuSV21UlNs6wjrrTkv1V1ZisC2FvZ4gCigrMXggKqqJLiLK7s/60hcVIXPLbyjIz0d0bCzSBtwAHT/4qRPJYnX4vqmL1PF9bH+3mhxvN4hJjsP5bccgWx2/R6Pbxtf4WEcKT1/CyTV/VMR+9fet89uOoe2N3RDVumkt4+yTRiX7QX2lgunVyWVOTg4+++wz7NmzB0VFRZCu+4RXEASsXbvWQ9H5nxt7pyqqSvbrnIxFL9+HNbuOIPtyEZo3icSIXqlMLL1MQ+yndNYc6PoxppJ8qDSh0CW0ZzdYN+rbvi8WPLYA6/avQ05hDppFNcPwbsOZWPogTyx5ra07LdVfaLi2xl+QZUlGaLi2kSPyX2azCZKD31Xq4r5nZ9r+biwvr9c1ju3fh+8+/bCim+zVf9vW/LAUEx54CO27dncpPgAQ1SoEBfn3UmrJYkXR+ct1SupcEd+tNXL3nbma6AGQKxLL+G6toc8ttBtrMZpRcrEAlnIz1CFBCE+IhloTZLvv7KYj197ztmRQxslVfyBxcEeoNUFOxtknjUr3g/oCr00u//jjDwwZMgTl5eVISUnB/v370alTJxQWFuLChQto27YtWrVq5ekw/UpdqpLR4WGN2hXW2fEo5Fhd9lMqSRpraw5U05jLR7YgdcJMdoN1o2hdNLvC+gl3LnmtrSKppDstK5j116pdMxzefcrh0lhRFJDYjnui3cFsNuHU4UP1TgjdxVBWhl8WfwnJan9OtNViwbefzMPYO6dCG+rah+6akBAkp3by6wRTlmRYTRaIoghBJTb480W0iEFobDiKz1+BucyIoFANIlrG2JLGSvrcQmTvzrJLQgtO5KJ5z2To4iNRdPay0w+TSnOLEdM2vpZx15JGpftBfYHXJpfPP/88dDodMjMzERoairi4OMydOxfDhg3Dt99+i4cffhiLFi3ydJh+xxNVydoSx9qORyHH1CHhivZTKkkalTQHAuB4TJUjR9gNtnEU6Auwdv9a5BbmIj4qHsO7Duf5l16stiWvSpaxKqlIKulO666lt4FIGxKMPsO6YMd13WJFUUCfYV2gYTMft5AsVhjLy6FWq6BWB9X+gAZy8uD+aivqKkmShAtZJ9G5Z+96X99iMcNYXl5RofXcy2w0gkqEKkhV78dnrT8Ii8EMtTYISUM7Ox2rClKh6dXzKB2xGMzXEksAqPxDkpG9+xTajeoOq8FsSzqrEQRYDWaoglROx1VNGhtiP6ineG1yuXnzZjz77LNITEzElStXAMD2Jr7jjjvw+++/45lnnsHGjRs9GaZfcldVUkm1sbbEUcnxKKxg1qy2/ZRKkkZ1SLii5kCyDCdjrh05Qg1r+7HtePM7+z2ZCzcsxMwJM9G3fV9PhxcwKpM/VyuBSpJGpRVJJd1pyTXNEmMxctIAu3MuE9s1Y2LZANTqIARp6r8HbfkXn6O8tBQhYWEYN+2+Oj++rFRv+73leqIgoKxU71J8AGBxcelvILEYzLAYqu9fr4+is/lOq5JF5/IRFBrsOLEEAFlGUFjFe97ZuKpJY9OOCTi/7bhtz2VVgigi1kky7G28NrmUJAnx8RVdJKOioqBSqWxJJgB07doVn332WZ2uOW/ePMybNw+nT58GAHTu3Bkvv/wyxowZ47a4qYKSaqOSxFHJ8SiNuTzXFznbT6m0o6zS5kA1jeGRI42jQF+AN79709ZNtvI8TLPVjDeXvokFjy1gBVMhq8lkW+5WHxmzZ9v+bq7n8j1DURG2/vOftmqjXdL4z39i5HvvQRsZiVNr1jitSJ5aswbtx46FNjpaUXdaco02JJhdYX1AeWkpyvQl9X58eESU0yaI4ZFR9b42NTyLwYyis/kwl5kQFBqMyMRYqLUVJWJzmclpVdJcakJsxwRcOnyhxgZekVfPtY1MjHUy7lrSGBSqQfsxadW6xQqiiPZj0nymmQ/gxcllUlKS7exLURSRlJSENWvWYOLEiQCALVu2IKqOnwi3bNkSf//739G+fXvIsowvvvgC48aNw969e9G5s/MSOimntNqoJHFUcjwKOedsP6XSpFFJcyBZRo1jeORI7R7/7HEU6AsQrYvGv+//d72usXb/Wlgkx0mGRbJg3f513KupgNVkQt6BAzCXlXk0jou7dtWY4EpWKw59/TWa9+yJS4cOOd2rc+nQIeiaNYMmPLzGyuX13WmJqEJ5qR4nDhxASXEhwiOi0K5LF4SE6dCuSxfs/n2jw/eoKIpo17mrB6IlJUqyC3Fhxwm7/ZSXDl9Aiz7tEN48SlFVUq0NQos+7apcp3LrkYAWfdrZ9nBWH1dxGUdJY3RSHHrck4H8IxdhKC6HNiIEsTzn0jUFBQWIjq74VH3kyJH49ttv8cYbbwAAHn74YcyYMQOnTp2CLMvYsGEDZsyYUafr33LLLXbfv/HGG5g3bx62bdvG5LKOnC15VVptVJI4KjkehWpW235KpR1lFTUHunptx2N45EhtCvQFuFxy2aVr5BbmQhREW8WyKlEQkVOY49L1A4VktcJcVgZRrYYY1PCbnUylpcjbvx/GoiJoIiMR17UrgsPCYC4rc5o0mkpLoQ4JQUiTJk736oTGxkIdEgJ1SAg6jh+PIz/8YPfJuKhSNVh3WiJfdvbEcaxb/j0k6doqrN2/b8SwcbcjsV17DBt3e7X7RVHEsHG3IySMW3a8kcVgvpboAXb7KS/sOIF2o7rXUm28VpUMbx6FdqO6o+hcPsylJgSFXa2AXtccqHJcwelLMOkNiGgRg7jOLR0mjUGhGp/pClsTr0oumzVrhptuuglTpkzBjBkzMHnyZJjNZgQFBeHJJ59EaWkpvvvuO6hUKrz00kuYOXNm7RetgdVqxbfffovS0lL079+/xnFGoxFGo9H2vV6vr/dz+ovalrwqrTYqSRxH9Oqo6HgUqk7JfkqlHWWVNgdyOEbFI0fcraaGPfFR8ZDkGhpMyBKaRbFbZV2IQUFQ13PP1O6PPoJJr0ewToee06fXOC7/6FEc+uYbu2Tv7KZN6DxxIkJrSxqbNIFao0FCz544u2lTjXspm6en215HXJcuiGrTBrn79qHs8mUEh4Wh86RJ0DXj/xtEVZWX6isSx8rl6Fffi5LVinXLv8ekhx5FYrv2mPTQozhx8ABKigoRHhmFdp27NkpiqeR8TZ7BWZ2S/ZRN2jdXVJUEKiqTTdo3r/V51dogxLSNh9VsQXSbOKiCvSoFcyuvemUTJkzAjz/+iB9//BHh4eG4/fbbMWXKFAwbNgyCIOBvf/sb/va3v7n0HPv370f//v1hMBig0+nwww8/oFOnTjWOnzNnDmZX2TsT6JQseVVabVRyrmZ0eKji41HIntL9lEqSRqD25kDXjzEW50OlCUPrjLsQElP7D15SxlnDnuFdh2PhhoW2PZdVqUU1hrN63GhMej1MJc73c5n0+orE0naUQWWHZSsOfvMN0v/8Zwjr1tWYNMZ3rzhHL1inQ+eJE3HwuiRVEEV0njgRwTqd3WODdTq0GjgQFqMRlvJyaAL8l00iR04cOOC0G+yJgwfQtU8/hITp0LVPv0aN7UjmHiz54N8V52tebfS15oelmPzIE0hJ66F4TCBSsp8SUF6VpOq8KrlctGgRysvLsWzZMixevBiLFi3CF198gfj4eEyePBlTpkxBenp67RdyIiUlBZmZmSgqKsLSpUsxbdo0bNy4scYE84UXXsDTTz9t+z4zMxMZGRkuxeDtXF3yqiRpBJSfq+mJ41H8gdL9lEqSxkrOmgNdP8ZqNsJqLENQGH9xdRclDXtmTpiJN5faJ59qUY2ZE2YiitVjr5K7b5/TD4AKTpxQnDQ2SUlBv6eeQu6+fTAUFkIbFYX47t2rJZZEpExJcaHTbrAlRYV1ul5NezdrGldUcBnakFC0aJMMTci1Yyj0RUVY8sG/Yb2u0ZfVYsFXH8zFX9+eCwC1jgnUCqbSLq+A8qok2fOq5BIAQkJCMHnyZEyePBkFBQX45ptvsHjxYrz33nt477330L59e9x111248847kZxc9zMOg4OD0a5dOwBAz549sXPnTsydOxcfffSRw/EajQaaKsuidD76D3VlIlZbQuaOJa9Kk0ZAeeJY2/EoSo49CTRK91MCypJG8jylDXsWPLYA6/avQ05hDppFNcPwbsPrnVjyzMyGYygsdH5odmEhWg0cWGvSaNLr7e5vnZHBpJLIRXXpBltb4ljb3k1H4yp/NhzcvdOu2pi55Tenjb4yt/4OyHKtYwaNHlvX/yR+Qel+Sqo/r0suq4qOjsb06dMxffp0XLhwAYsXL8ZXX32Fl19+Ga+88gr69u2LLVu2uPQckiTZ7an0ViazpcaKoRL/fHSC7e9lBpPDMYUlZXhtwS8wWx0seZ3/Cz597m7ERIQ5/WHbJCIMZQYTurVtiU+fvRvr9x5FbkEJ4qPDMTQ9BVG60GrPrwkKwtj+FV3V1CoRwUF1+99SybEngUjpfkryHUob9kTrot3SFZZnZjYsbVSU80Ozr3ZEr1zG6oijPZtZ69ah88SJaJKS0lChE/k9pd1ga0sclezdDAnTVRtX+bPh+mpjQX6+0/NqCy5dsv29tjGBSGmXV6WcHWkSqLw6uayqRYsWeOaZZzB69Gi8/PLLWL58ObZv316na7zwwgsYM2YMEhMTUVJSgsWLF2PDhg1YuXJlA0XtHiazBZnHz6HU0LBJ8LaDWbDU8EmXxWrFFyu2oktygtPKZWSYFtsPnbLdlhAbiYTYiqUXR8/ad6rUlxtx4NRFFOrLEaULQZfkBMRHRyCtfSu7BNNZVVLpsSeBSGkTHmdHlVSldBw1HHc27KmtIskzMxtefPfuyFKwp7Imte3Z7PfUU6xgEtVTSJiu1m6wShJHpXs3nY6rUm2Mjo11upw+umlTQJZrHxPAlOynVJI01nakSaDyieTy7NmztqrlgQMHIMsyBgwYgClTptTpOnl5eZg6dSqys7MRGRmJbt26YeXKlbjxxhsbKHL3sFgllBqMCFKrEKRWNdjzlBqMEEShxqUCpQYj4qLDMXlEL3y1ZhckuUore0HE5BG90DRaWbJx5ExOxTUkyfacGzOP4/aMNHRJboHgq+/f2qqSSo898Udqbbjdn47Utp+ytqNKKikdRw3LXQ17lFQkeWZmw6trI57r1bZnM3ffvhornkRUu9q6wSpJHJXu3XQ2rmq1MW3ADVjzw1Lbfkq766lUSBswCJBR+5gAVi1xbGWfWCpJGpUcaRKoFUyvTS7z8/Nt+y23bt0KWZbRsWNHvPrqq5gyZQratGlT52t+9tln7g+0EQWpVdAG1+9/1Pe+WYuSMiPCQzV4cqLjX0BjI3VOl2g1jQqHNjgIae1boW2Lpth99CyuFJciJiIMPVMSER6qtY0vKTNg15EzKCgpQ3R4KHp1bG27v6TMgCVrd8F69Qdy5RvTKkn4fmMmbu7fDaHaYEVVSaXHnvijdjf9RdG4mvZTKjmqRB0SrngcNbxoXbSihj3OqpJKK5I8M7NxuNKIR8meTSJyA7nqn9feb0oSR6V7N52Nq1pt1EVGYvIjT+CrD+badYIVVSpMfuQJ6CIqVospGROIaksclSaNSo80CURelVyWlpbihx9+wOLFi7F27VqYzWY0b94cTz75pFs6xQaykjIjikrLnY7p1bE1Vu445LASqBJF9ExJtH0fHqrFkB4dHF7nYNZFLFy5HdYqn8Sv3HEIU0f3Q6c2zbHryBlbYnk9SZKwfu9RTBnZV1FVUumxJ1Sd0qNKlI6jxtG3fV+nDXtqq0oqrUjyzMzG42xPJVC9YU9l8ql0zyYR1U9t+ymVJI7tOivbu+l0j+d11caUtB7469tzkbn1dxRcuoTopk2RNmCQXdKoZEygUZI4Kk0alR5pEoi8KrmMi4uznT9555132s64FEXR06EFhPBQLaaO7ocvV2yzSwxVooipo/shPFTrtCIJVFQlF67cbksKK3/xsVglfLliG16cOgYFJWVOP23PLag4G05JVfLuUX0VHXtC1Sk9qkTpOGo8NTXsUVKVVFqR5JmZ3sFZwx5X92wSUc2U7KdU0vQnJCys1r2bQPU9nrbfwWqoNuoiI2vt+KpkTCBRkjgqTRrrcqRJoPGq5HLEiBGYMmUKbr31Vmi12tofQG7XqU1zvDh1jMMlr7VVJAE4rUpaJQm7j55FdHio00/b46/u21RSlazLsSdkT+lRJXU50oQ8S0lVUmlFUukSXGo4Shr2uLJnk/yLsdyEM8eycf5UHqJiw9ExrQ1Cdfxdqr6UNuJRkjjWtnezUtVxRVcuQxsahuG3/QkxcfEN/noDgZLEUWnSyCNNauZVyeXy5cs9HQLB8ZJXJRXJ8FBtrVXJK8WluLF3ao3Lb0VRxND0ivb5N/ZOVVSVVHpWZqCqqcur0qNKeKSJ96lpT6WSquSdN9ypuCJZ2xJcalhKG/bUd88m+QZDuQnnTuSgrMSA0HAtWrVrBm2IfVUk+2w+dq47AEmSIYoV/wZvX7MfoycPRFJKgoci927XKoaOO8orbcSjNHEMCdOha59+CuKqGGc2GmEwGBAWHlHHVxaYKpvnOGuioyRxjGylLGl095Em/sSrkkvyXkoqkkN6dKi1KhkTEVbj8ltREHF7RhqidBVJYV2qktHhYX7bFdYVtXV5VXJUidIjTahxONtTqaQqWdeKpLvOzKS6U9qwp7Y9m+R9lCSMgH3SWNlZ/fDuU+gzrAuaXf0l11Buso0BYPvTapWw4qvNmPbXW1jBdGDctPuc3q+0EQ+gPHGkhpM0tHOtY5RUG9Ua5UmjkiNNAhGTS1JESUUSUN4UyNHy28ozNKtiVbL+lHR5re2okkpKx1HDqm1P5dz75iqqSrIi6RvYsMc/KUkYgepJo1wledyx7gBGThoAbUgwzp3IsY25niRJOJJ5GumDOjb8C/MzSvZTkm9RWm2sS9Ko1gYFbFfYmjC5JEWUVCQBZU2BKl2//NZgMqPMUL27FquS9aO0y2tNR5VcT+k4aji17ancfWq34qokK5Leo6ZusGzY45ucVSWVJowAakkaZZw7kYP2XRNRVmKo+YxqQUBJQWlDvEy/d32DnZr2U5JvUZo4MmmsPyaXVI2jjrB1OabEWVMgajzs8up/lOyp/FP/P3mkKunsbE2qmbNusE1SUtiwx8fUVpVUmjACcJ40igLKSgwAgNBwbc0dMGUZ4dFMgupL6X5K8i1MHBsWk0uy46wjrNKKJOD8HExqHOzy6n/q0um1MauStZ2tSY4p6QbbJCWFDXt8hJKqpNKEEaglaZRkhIZX/Lvbql0zHN59ymHSKooiOqa1cfWlBTTupySqGx4gSTZVO8LKcsU/iLJ8rSNsq7hovDh1DMb274p+nZIwtn9XvDh1jO0YEvIu0ck9INRwRiy7vPqm4V2HQy06/kywoc6eLNAXYOnWpXj/f+9j6dalKLiu4l11H6gsy7BKVsiybNsHev14ukZJN1jgWsOe9mPHotXAgUwsvZSSqqTShBGoSBpFUXA4VhQFJLar+DBJGxKMPsO62MaKogBBAFQqEaMnD2QzHyJqVKxcko3SjrCsSPoGdnn1P4199qSSiqSSszW5t9Mxpd1gyfMq90E66uhaSUlVMqVHGydVxmsJY+Vz9RnWBTuuW2YrigL6DOsCTZVYmiXGYtjtfXD2WDbUQWqec0lEHsPkkmyUdoR1t8o9nvlFeoRpNUhp1Qyh2pr/ASfl2OXV/zRWp9faOtMueGyB4rM1yTF2g/UdQ8b1qnWMkqpkXRJGoCJpHDlpgF2DoMR2zaqNAwBNSDDapCSgTUoCggP8KAQi8hwml2SjtCNsXThqDlR1f2a1PZ6SjN/2ncDL945Fv87J9X4tdA27vPofd+6prKkRj9KKpNJ9oFQdu8H6F+d7H69VJZUkjErPwaSGV16qx4kDB1BSXIjwiCi069IFIWH8gJaoJkwuyaYuHWGVcNYcqFOb5nZ7PIFrzSzMViteXfALFr18H6LD2ZGNqD6UdG91tuxVaUVyeNfhis7WpOqCdTp2g/UjdalKakOCbV1hr6f0HExqeGdPHK92FMnu3zdi2LjbkdiuvafDI/JKbOhDNpVnVKpVIgThWlMAtcpxR1hnamsOVFnRrGmPp8UqYc2uI+56aUQBZfux7bjnP/dg/rr5WLF3Beavm497/nMPth/fbhtTWyOeiJAIxZ1pZ06YiSBVEARBgEpUQRAEBKmCGmQfqL+p7AabPGIEmvfsieQRI2xdYsn3VFYlO/duizYdEtC5d1uMmjRAcVJYW8dZQ3n1s6CpYZSX6isSS6sVkGVIklTxp9WKdcu/R3mp3tMhEnklVi4DRHioxu7PmtTljEpnS16VNAdytsdTFARkXy6q68skCgjOqpJK90rWtuxVgAC1qFZUkWysfaD+qrIbLPkHZ1XJ2tTlHExqWCcOHKhIKB2QJAknDh7gESV+zGIwo+hsPsxlJgSFBiMyMRZqLfcyK8HkMkA8OVH50jQlZ1TWtuRVSXMgZ3s8JVlG8yaRimMmChS1dXBVuleytmWvReVFdepM29hnaxL5o7qcg0kNq6S40LYU9nqiIKCkqLDxgyK3qC1xLMkuxIUdJyrehwIAGbh0+AJa9GmH8OZRHovbVzC5pGpqa8JT017JyiWvL04do6g5UM+UxBr3eKpVIkb0Sm2AV0fknSorj9fvi6xKSVVS6V5JJY14WJFsHCa9Hrn79sFQWAhtVBTiu3fnfks/5qxZT13OwaSGFR4R5TCxBCo+AA+PjGrcgMgtakscLQbztftRcT9Q8f67sOME2o3qzgpmLZhckp3aKpKAsiWvSpoDVe7x/HLFNrtusWqVCi/fMxbR4aEN+lqJ3MVkMcFidVwtVOrvd/3d9vcyY5nDMSv2rnBalVyxdwVidDFOk8YYXQzKjGUYkDLAaSOeASkDUGYsgyZIgzHpY67dp+I/G+6Uf/QoDl3X0Cdr3Tp0njiR+y79UG3NepR2nKWG165LF+z+fWPFnsvriKKIdp27eiAqcoWSxLHobL7TD3iKzuWjSfvmjRSxb+JvCWSjpCIZHqpVtOTVYeIoy1CJ9s2Bqu7xvFRYgjCtBtPG9EdCbFSjvW4iV5gsJuw7vQ9lBscJoTsdOHsAAgTIcPDeg4ADZw9gYMpAp5XLyNBI7Dy+EwBwa+9bsWzHMkhV3qOiKOLW3rfi2MVjDmMI1Yaie5vuCFbzWARXmfT6isTy6i+vlT9TZasVB7/5Bv2eeooVTD9SW7OekZMG1PkcTGo4IWE6DBt3e7VusaIoYti42xESxm72vkZJ4mguM9kqmtUIAsylbKpVGyaXZKOkIjmkRwfF52EqbQ5UucfTYDKjzGBClI4VS/IdFqsFZYYyqFXqBk+4YiNinb73mkY0RdPIppg0cBK+3vx1taRx0sBJaBrR1PaYbq27ITk+GftO70NBaQGiw6LRvU136LSOExqTxYQyQxksVguTSzfI3bcPcg0/c2VJQu6+fWz040eUNutRcg4mNY7Edu0x6aFHceLgAZQUFSI8MgrtOndlYumjlCSOQaHBju8HAFlGUBjfh7Vhckk2SiqSQN3Ow1TSHIjIHwSrg6EJct6N2Zn//PoflBhKEK4Nx2M3PeZwTJ92fbB+/3qHS2NVogp92veBJkiDbq27ISkuCXuz9uKK/gpidDFIT053mDRqgjQY1nWY4jhdXf5L1xgKC53+zDUUFjZ+UOSymvZU1qVZjysdZ8m9QsJ07ArrJ5QkjpGtYnHp8IUa36eRPGu2VkwuyUZpRVLpklciUq7EUILismKnY8JDwjFl8BQs2rQIVsla5b2nwpTBU+ySx/CQcAzuNLihwyYXaKOinP7M1UZFNW5A5DJneyrZrIfIsyITa08c1ZogtOjTrkrTHwGQK97PLfq0g1rDZj61YXJJNnWpSNblPEwicp/Ulql4bvxziqqS5N3iu3dH1rp1tj2XVQmiiPju3T0QFdVXbXsqM27txWY9RB6k1ipLHMObR1U09zmXX7FUNizYlnhS7Zhckk1dK5Jc8krkGbVVJUvKS7Dn1B7bPsr05HSEh4Q3YoSkRLBOh84TJ+Lgdd1iBVFE54kT2czHx9S2pzLvwhU26yHyMKWJo1obxK6w9cTkkuywIknk2w6dP4TFmxbbLZtdvW81pgyegtSWPDvW2zRJSUG/p57iOZd+QMmeyvZdE9msh8jDmDg2LCaXVA0rkkS+qaS8BIs3LbY1/LEdJyRZsGjTIjw3/jlWML1QsE7HrrB+QOmeSjbrISJ/Jno6ACIico89p/bAKlXfvwcAVsmKvVl7GzkiosDRql0ziKLg8D7uqSSiQMHKJRGRj6lpT2VBaYHz44T0VzwQLVFg0IYEc08lEQW8gEou58yZg++//x5HjhxBSEgIBgwYgH/84x9ISUnxdGhERIo421MZHRbt/DghXUwjR0sUWJolxnJPJREFtIBaFrtx40Y8+uij2LZtG1avXg2z2YyRI0eitLTU06EREdWq6p5KGTIkWYIM2banskNCB6hElcPHqkQV0pPTGzniwBWs0yE4PJyNeQJQ5Z7K7gM6oH3XRCaWRBRQAqpyuWLFCrvvFyxYgLi4OOzevRuDB/OwcSLybrXtqTyefRxTBk/Bok2L7CqbKlGFKYOn8CzMRtRz+nRPh0BERNToAiq5vF5RUREAICam5qViRqMRRqPR9r1er2/wuIiIHFGyp3Jwp8F4bvxz2Ju1F1f0VxCji0F6cjoTSy9m0ut5FAkREfmFgE0uJUnCk08+iYEDB6JLly41jpszZw5mz57diJERETmmdE9leEg4BnfiagxfkH/0KA598w1kSbJ9cJC1bh06T5yIJuwHQEREPiag9lxW9eijj+LAgQNYsmSJ03EvvPACioqKbF8bN25spAiJiOylJ6dzT6UfMen1FYml1QrIMmRJqvjTasXBb76BiStliIjIxwRkcvmXv/wFP//8M9avX4+WLVs6HavRaBAREWH70nGpEhF5SHhIOKYMngK1qIYAAaIgQoAAtajmnkoflLtvX0VC6YAsScjdt6+RIyIiInJNQC2LlWUZjz32GH744Qds2LABSUlJng6JiKhOUlumck+lnzAUFjrdQ2soLGz8oIiIiFwQUMnlo48+isWLF2P58uUIDw9HTk4OACAyMhIhISEejo6ISBnuqfQP2qgop3totVFRANjwh4iIfEdAJZfz5s0DAAwZMsTu9vnz5+Oee+5p/ICIiChgxXfvjqx16yr2XF5HEEXEd+/Ohj9ERORTAmrPpSzLDr+YWBIRUWML1unQeeJECCoVIAgQRLHiT5UKnSdOBAA2/CEiIp8SUJVLIiIib9IkJQX9nnrK4bLXc5s319rwp9XAgY0cMRERUc2YXBIR+bmS8hLsObUHBaUFiA6LRnpyOsJDwj0dFl0VrNM5TBLZ8IeIiHwNk0siIj926PwhLN60GFbJaktUVu9bjSmDpyC1ZaqnwyPU3LBHacMfIiIib8HkkojIT5WUl2DxpsWwSBYAsCUqFsmCRZsW4bnxz7GC6WHOGvYoafhDRETkTQKqoQ8Rkb8pKS/BxoMbsWzHMmw8uBEl5SW2+/ac2gOrVD0xAQCrZMXerL2NFSY5YNLrnTbsAeC04Q+PIyEiIm/DyiURkY+qbclrQWmB0z17V/RXPBA1Vcrdt09Rw56aGv4QERF5GyaXREQ+SMmS1+iwaKd79mJ0MY0WL1WntGFPTQ1/iIiIvA2XxRIR+SAlS17Tk9OhElUOx6hEFdKT0xsyRKoFG/YQEZG/YXJJROQFwrXhiAiNQLhWWYOdyiWvjlQueQ0PCceUwVOgFtUQIEAURAgQoBbVmDJ4CnRaLq30pPju3Sv2UTrAhj1EROSLuCyWiMgLPHbTY3Uar3TJa2rLVDw3/jnszdqLK/oriNHFID05nYmlFwjW6dB54kQcvK5brCCKbNhDREQ+icklEZEPSk9Ox+p9q217Lqu6fslreEg4Bnca3JjhkUJNUlLYsIeIiPwGk0siIh9UueR10aZFdt1iVaKKS159DBv2EBGRv2BySUTko7jklYiIiLwJk0siIh9TUl6CPaf2oKC0ANFh0UhPTkd4iLJGQEREREQNhcklEZEPOXT+EBZvWmy3FHb1vtWYMngKUlumejo8IiIiCmA8ioSIyEeUlJdg8abFsEgWyJAhyRJkyLBIFizatAgl5SWeDpHqwaTX49zmzTj+yy84t3kzTHq9p0MiIiKqF1YuiYh8xJ5Te2CVrA7vs0pW7M3ay66wPib/6FEcuu4okqx169B54kQ0SUnxdHhERER1wsolEZGPKCgtgCAIDu8TBAFX9FcaOSJyhUmvr0gsrVZAliFLUsWfVisOfvMNK5hERORzmFwSEfmI6LBoyLLs8D5ZlhGji2nkiMgVufv2VSSUDsiShNx9+xo5IiIiItcwuSQi8hHpyelQiSqH96lEFdKT0xs5InKFobDQaSXaUFjYuAERERG5iMklEZGPCA8Jx5TBU6AW1RAgQBRECBCgFtWYMngKz7f0MdqoKKeVaG1UVOMGRERE5CI29CEi8iGpLVPx3PjnsDdrL67oryBGF4P05HQmlj4ovnt3ZK1bV7Hn8jqCKCK+e3cPREVERFR/TC6JiHxMeEg4u8L6gWCdDp0nTsTB67rFCqKIzhMnIljHDwyIiMi3MLkkIiLykCYpKej31FPI3bcPhsJCaKOiEN+9OxNLIiLySUwuiYj8UEl5Cfac2oOC0gJEh0UjPTkd4SHhng6LHAjW6dBq4EBPh0FEROQyJpdERH7m0PlDWLxpMayS1bbUcvW+1ZgyeApSW6Z6OjwiIiLyU+wWS0TkY0rKS7Dx4EYs27EMGw9uREl5id19izcthkWyQIYMSZYgQ4ZFsmDRpkV2Y4mIiIjciZVLIiIfUltVcs+pPbBK1buPAoBVsmJv1l42AyIiIqIGwcolEZGPUFKVLCgtgCAIDh8vCAKu6K80ctREREQUKAIuudy0aRNuueUWJCQkQBAELFu2zNMhEREpoqQqGR0WDVmWHY6RZRkxupiGDJGIiIgCWMAll6WlpejevTvef/99T4dCRFQnSqqS6cnpUIkqh2NUogrpyekNGSIREREFsIDbczlmzBiMGTPG02EQEdWZkqpkeEg4pgyegkWbFtnty1SJKkwZPAU6Lc9PJCIiooYRcMllXRmNRhiNRtv3er3eg9EQUSBLT07H6n2rYZEs1e6rWpVMbZmK58Y/h71Ze3FFfwUxuhikJ6czsSQiIqIGxeSyFnPmzMHs2bM9HQYRUZ2qkuEh4ewKS0RERI2KyWUtXnjhBTz99NO27zMzM5GRkeHBiIgokLEqSURERN6KyWUtNBoNNBqN7Xudjr/AEZFnsSpJRERE3ijgusUSERERERGR+wVc5VKv1+PEiRO277OyspCZmYmYmBgkJiZ6MDIiIiIiIiLfFXDJ5a5duzB06FDb95X7KadNm4YFCxZ4KCoiIiIiIiLfFnDJ5ZAhQ2o8J47sXcrLRf6lvEZ7PqPZAoPRjGBjEUI0QY32vI3NYipH8dljEIO1UKmDPR1Og7FaTJBMBkTo1VAHh3g6nAZTbirHsbPHoA3WItiP5xMATBYTDCYD1Ho1Qvx4Ti0GAy4dPQq1VgtVkP/+LLKazbAYDMgRRai1Wk+H02DMJgsunrkEdbAaarXK0+E0GIvFCovJgoKyXAQF+++vdyaDAWeOH0OwJhjqIP/9mWsxm2AymlBmlRHsx+9Pq9mC4osFUKlVENWNu1uvWVw8msU3a9TnDASCzEyrTrKzs/HRRx9h+vTpaN68uafDaTBGoxGjRo3Cxo0bPR0KEREREZFbZWRkYOXKlXaNO8l1TC7JoeLiYkRGRmLjxo3skOsH9Ho9MjIyOJ9+hHPqXzif/oXz6V84n/6nck6LiooQERHh6XD8CpNLcqgyueSbzj9wPv0P59S/cD79C+fTv3A+/Q/ntOHwKBIiIiIiIiJyGZNLIiIiIiIichmTS3JIo9HglVde4SZnP8H59D+cU//C+fQvnE//wvn0P5zThsM9l0REREREROQyVi6JiIiIiIjIZUwuiYiIiIiIyGVMLomIiIiIiMhlTC6pwZ0+fRqCIGDBggWeDoWIiIiIiBoIk0svc/LkSUyfPh3JycnQarWIiIjAwIEDMXfuXJSXlzfY8x46dAizZs3C6dOnG+w5lHjjjTdw6623Ij4+HoIgYNasWR6NpzEJgqDoa8OGDS4/V1lZGWbNmlWnawXy3NSHN8/nkSNH8OyzzyItLQ3h4eFo3rw5xo4di127drkci7/y5vm8ePEi7rrrLqSkpCA8PBxRUVHo06cPvvjiC7BnX828eU6vt2jRIgiCAJ1O53Is/sqb57PyQ3ZHX0uWLHE5Hn/kzfNZ6eTJk7jzzjsRFxeHkJAQtG/fHi+++KLL8fg6tacDoGt++eUX3HHHHdBoNJg6dSq6dOkCk8mE33//Hc888wwOHjyIjz/+uEGe+9ChQ5g9ezaGDBmCNm3aNMhzKPG3v/0NzZo1Q48ePbBy5UqPxeEJCxcutPv+yy+/xOrVq6vdnpqa6vJzlZWVYfbs2QCAIUOGKHpMIM9NfXjzfH766af47LPP8Kc//QmPPPIIioqK8NFHH6Ffv35YsWIFRowY4XJM/sab5zM/Px/nz5/HhAkTkJiYCLPZjNWrV+Oee+7B0aNH8eabb7ockz/y5jmtSq/X49lnn0VYWJjLcfgzX5jPyZMn46abbrK7rX///i7H44+8fT4zMzMxZMgQtGjRAjNmzECTJk1w9uxZnDt3zuV4fB2TSy+RlZWF//f//h9at26NdevWoXnz5rb7Hn30UZw4cQK//PKLByO8RpZlGAwGhISEuP3aWVlZaNOmDfLz89G0aVO3X9+b3XXXXXbfb9u2DatXr652u6cE8tzUhzfP5+TJkzFr1iy7Ksh9992H1NRUzJo1i8mlA948n926dav2iftf/vIX3HLLLfj3v/+N1157DSqVyjPBeTFvntOqXn/9dYSHh2Po0KFYtmyZp8PxWr4wn+np6V4Vjzfz5vmUJAl33303OnbsiPXr1zfI78O+jMtivcRbb70FvV6Pzz77zC6xrNSuXTs88cQTtu8tFgtee+01tG3bFhqNBm3atMHMmTNhNBrtHtemTRvcfPPN+P3339GnTx9otVokJyfjyy+/tI1ZsGAB7rjjDgDA0KFDqy01qLzGypUr0atXL4SEhOCjjz4CAJw6dQp33HEHYmJiEBoain79+rmUBHuyauoLJEnCe++9h86dO0Or1SI+Ph7Tp09HQUGB3bhdu3Zh1KhRiI2NRUhICJKSknDfffcBqFieU5kczp492zbftS1z5dy4n6fms2fPntWW1zVp0gQ33HADDh8+7N4XGUA8+f50pE2bNigrK4PJZHL5tQUqT8/p8ePH8a9//Qvvvvsu1GrWA1zl6fkEgNLSUr4n3cRT87lq1SocOHAAr7zyCkJCQlBWVgar1dpgr9PX8CeVl/jpp5+QnJyMAQMGKBr/wAMP4IsvvsCECRMwY8YMbN++HXPmzMHhw4fxww8/2I09ceIEJkyYgPvvvx/Tpk3D559/jnvuuQc9e/ZE586dMXjwYDz++OP497//jZkzZ9qWGFRdanD06FFMnjwZ06dPx4MPPoiUlBTk5uZiwIABKCsrw+OPP44mTZrgiy++wK233oqlS5di/Pjx7vsPRACA6dOnY8GCBbj33nvx+OOPIysrC//3f/+HvXv3YvPmzQgKCkJeXh5GjhyJpk2b4vnnn0dUVBROnz6N77//HgDQtGlTzJs3Dw8//DDGjx+P22+/HUBF9YMal7fNZ05ODmJjY936GgOJp+ezvLwcpaWl0Ov12LhxI+bPn4/+/fvzU3UXeHpOn3zySQwdOhQ33XQTvvnmmwZ9rYHA0/M5e/ZsPPPMMxAEAT179sQbb7yBkSNHNuhr9meems81a9YAADQaDXr16oXdu3cjODgY48ePxwcffICYmJiGf/HeTCaPKyoqkgHI48aNUzQ+MzNTBiA/8MADdrf/9a9/lQHI69ats93WunVrGYC8adMm2215eXmyRqORZ8yYYbvt22+/lQHI69evr/Z8lddYsWKF3e1PPvmkDED+7bffbLeVlJTISUlJcps2bWSr1SrLsixnZWXJAOT58+cren2yLMuXLl2SAcivvPKK4sf4m0cffVSu+hb97bffZADyokWL7MatWLHC7vYffvhBBiDv3Lmzxmu78t+Xc1M/3jqflTZt2iQLgiC/9NJL9b5GIPHG+ZwzZ44MwPY1fPhw+ezZs3W6RiDztjn9+eefZbVaLR88eFCWZVmeNm2aHBYWVodXFNi8aT7PnDkjjxw5Up43b578448/yu+9956cmJgoi6Io//zzz3V/cQHIm+bz1ltvlQHITZo0kadMmSIvXbpUfumll2S1Wi0PGDBAliSp7i/Qj3BZrBcoLi4GAISHhysa/+uvvwIAnn76abvbZ8yYAQDVlqV26tQJN9xwg+37pk2bIiUlBadOnVIcY1JSEkaNGlUtjj59+mDQoEG223Q6Hf785z/j9OnTOHTokOLrU+2+/fZbREZG4sYbb0R+fr7tq3KJ4/r16wEAUVFRAICff/4ZZrPZgxGTM940n3l5ebjzzjuRlJSEZ599tkGew995w3xOnjwZq1evxuLFi3HnnXcCQIN2Gfd3npxTk8mEp556Cg899BA6derklmsGOk/OZ2JiIlauXImHHnoIt9xyC5544gns3bsXTZs2tf3uRnXjyfnU6/UAgN69e+O///0v/vSnP+HVV1/Fa6+9hi1btmDt2rVueR5fxeTSC0RERAAASkpKFI0/c+YMRFFEu3bt7G5v1qwZoqKicObMGbvbExMTq10jOjq62pp0Z5KSkhzGkZKSUu32yuW018dBrjl+/DiKiooQFxeHpk2b2n3p9Xrk5eUBADIyMvCnP/0Js2fPRmxsLMaNG4f58+dX249LnuUt81laWoqbb74ZJSUlWL58OY86qCdvmM/WrVtjxIgRmDx5MhYtWoTk5GSMGDGCCWY9eXJO//WvfyE/P9/WwZJc5w3v0apiYmJw77334ujRozh//rxbrx0IPDmflVsNJk+ebHd75Yd6W7Zsqfe1/QH3XHqBiIgIJCQk4MCBA3V6nCAIisbV1CVQrsP5Z9yz43mSJCEuLg6LFi1yeH/lhnRBELB06VJs27YNP/30E1auXIn77rsP77zzDrZt28bkwUt4w3yaTCbcfvvt+OOPP7By5Up06dKl3tcKdN4wn9ebMGECPvnkE2zatKnayhOqnafmtKioCK+//joeeeQRFBcX21Y36fV6yLKM06dPIzQ0FHFxca69wADjje/RVq1aAQCuXLmCli1buu26gcCT85mQkAAAiI+Pt7u98j1Zl+KNP2Jy6SVuvvlmfPzxx9i6dWutZx61bt0akiTh+PHjdk13cnNzUVhYiNatW9f5+ZUmqtfHcfTo0Wq3HzlyxHY/uU/btm2xZs0aDBw4UFGy369fP/Tr1w9vvPEGFi9ejClTpmDJkiV44IEH6jXf5F6enk9JkjB16lSsXbsW33zzDTIyMurzMugqT8+nI5UVy6KiIrdcL9B4ak4LCgqg1+vx1ltv4a233qp2f1JSEsaNG8djSerIG9+jlduTeLxX3XlyPnv27IlPPvkEFy5csLv94sWLADifXBbrJSoPSH7ggQeQm5tb7f6TJ09i7ty5AGA7gPe9996zG/Puu+8CAMaOHVvn5688nLmwsFDxY2666Sbs2LEDW7dutd1WWlqKjz/+GG3atOE+ETebOHEirFYrXnvttWr3WSwW29wVFBRUq0qnpaUBgG0ZSGhoKIC6zTe5l6fn87HHHsPXX3+NDz74wNYdj+rPk/N56dIlh7d/9tlnEAQB6enpiq5D9jw1p3Fxcfjhhx+qfQ0dOhRarRY//PADXnjhhfq/sADlbe/RCxcu4PPPP0e3bt0cHkFHznlyPseNGweNRoP58+dDkiTb7Z9++ikA4MYbb6zLS/E7rFx6ibZt22Lx4sWYNGkSUlNTMXXqVHTp0gUmkwlbtmzBt99+i3vuuQcA0L17d0ybNg0ff/wxCgsLkZGRgR07duCLL77AbbfdhqFDh9b5+dPS0qBSqfCPf/wDRUVF0Gg0GDZsmNNlN88//zy++uorjBkzBo8//jhiYmLwxRdfICsrC9999x1Ese6fXSxcuBBnzpxBWVkZAGDTpk14/fXXAQB33313QFdDMzIyMH36dMyZMweZmZkYOXIkgoKCcPz4cXz77beYO3cuJkyYgC+++AIffPABxo8fj7Zt26KkpASffPIJIiIibB9MhISEoFOnTvj666/RoUMHxMTEoEuXLk6XRXJu3MuT8/nee+/hgw8+QP/+/REaGor//ve/dvePHz/e9oETKePJ+XzjjTewefNmjB49GomJibhy5Qq+++477Ny5E4899li1/fmkjKfmNDQ0FLfddlu125ctW4YdO3Y4vI9q58n36LPPPouTJ09i+PDhSEhIwOnTp/HRRx+htLTUVjiguvHkfDZr1gwvvvgiXn75ZYwePRq33XYb9u3bh08++QSTJ09G7969G/M/hffxXKNacuTYsWPygw8+KLdp00YODg6Ww8PD5YEDB8r/+c9/ZIPBYBtnNpvl2bNny0lJSXJQUJDcqlUr+YUXXrAbI8sVx4iMHTu22vNkZGTIGRkZdrd98skncnJysqxSqeyOJanpGrIsyydPnpQnTJggR0VFyVqtVu7Tp0+1ttp1OYokIyPDrpV+1S9Hx6T4s+vbblf6+OOP5Z49e8ohISFyeHi43LVrV/nZZ5+VL168KMuyLO/Zs0eePHmynJiYKGs0GjkuLk6++eab5V27dtldZ8uWLXLPnj3l4OBgRS24OTeu8ab5nDZtWo1zCUDOyspy50v3S940n6tWrZJvvvlmOSEhQQ4KCrL9uzF//vyAb4lfF940p47wKJK68ab5XLx4sTx48GC5adOmslqtlmNjY+Xx48fLu3fvdutr9mfeNJ+yLMuSJMn/+c9/5A4dOth+D//b3/4mm0wmt71mXyXIch26uhARERERERE5wD2XRERERERE5DIml0REREREROQyJpdERERERETkMiaXRERERERE5DIml0REREREROQyJpc+5q233kLHjh3tDm31Vc8//zz69u3r6TA8ivPpfzin/oXz6V84n/6F8+l/OKd+wNNnoZByRUVFckxMjPz555/bbsPVc+n++c9/Vhs/f/58GYC8c+dOl5/7u+++kydOnCgnJSXJISEhcocOHeSnn35aLigocDh++fLlco8ePWSNRiO3atVKfvnll2Wz2Ww3Jjs7W9ZoNPLy5ctdjs8XcT79D+fUv3A+/Qvn079wPv0P59Q/MLn0If/617/kiIgIuby83HZb5ZsuPj5eLi0ttRvvzjddkyZN5K5du8ovvfSS/Mknn8iPP/64HBwcLHfs2FEuKyuzG/vrr7/KgiDIQ4cOlT/++GP5sccek0VRlB966KFq1504caJ8ww03uByfL+J8+h/OqX/hfPoXzqd/4Xz6H86pf2By6UO6desm33XXXXa3AZDT0tJkAPI777xjd58733Tr16+vdtsXX3whA5A/+eQTu9s7deokd+/e3e4TnBdffFEWBEE+fPiw3dilS5fKgiDIJ0+edDlGX8P59D+cU//C+fQvnE//wvn0P5xT/8A9lz4iKysLf/zxB0aMGFHtvoEDB2LYsGF46623UF5e3iDPP2TIkGq3jR8/HgBw+PBh222HDh3CoUOH8Oc//xlqtdp2+yOPPAJZlrF06VK7a1S+nuXLlzdA1N6L8+l/OKf+hfPpXzif/oXz6X84p/6DyaWP2LJlCwAgPT3d4f2zZs1Cbm4u5s2b5/Q6RqMR+fn5ir5qk5OTAwCIjY213bZ3714AQK9evezGJiQkoGXLlrb7K0VGRqJt27bYvHlzrc/nTzif/odz6l84n/6F8+lfOJ/+h3PqP9S1DyFvcOTIEQBAUlKSw/tvuOEGDB06FG+//TYefvhhhISEOBz31Vdf4d5771X0nLIsO73/H//4B1QqFSZMmGC7LTs7GwDQvHnzauObN2+OixcvVrs9OTkZhw4dUhSTv+B8+h/OqX/hfPoXzqd/4Xz6H86p/2By6SMuX74MtVoNnU5X45hZs2YhIyMDH374IZ566imHY0aNGoXVq1e7HM/ixYvx2Wef4dlnn0X79u1tt1cuV9BoNNUeo9VqUVxcXO326Ojoap/0+DvOp//hnPoXzqd/4Xz6F86n/+Gc+g8ml35k8ODBGDp0KN566y089NBDDsc0b97c4actdfHbb7/h/vvvx6hRo/DGG2/Y3Vf5SZLRaKz2OIPB4PCTJlmWIQiCSzH5I86n/+Gc+hfOp3/hfPoXzqf/4Zz6BiaXPqJJkyawWCwoKSlBeHh4jeNeeeUVDBkyBB999BGioqKq3V9eXo6ioiJFz9msWbNqt+3btw+33norunTpgqVLl9ptZgauLRPIzs5Gq1at7O7Lzs5Gnz59ql2zoKDAbj17IOB8+h/OqX/hfPoXzqd/4Xz6H86p/2BDHx/RsWNHABXdtJzJyMjAkCFD8I9//MNhR62vv/7a9qlObV/XO3nyJEaPHo24uDj8+uuvDpcupKWlAQB27dpld/vFixdx/vx52/1VZWVlITU11enr8jecT//DOfUvnE//wvn0L5xP/8M59R+sXPqI/v37A6j4n7lbt25Ox86aNQtDhgzBxx9/XO2++q5Fz8nJwciRIyGKIlauXImmTZs6HNe5c2d07NgRH3/8MaZPnw6VSgUAmDdvHgRBsNsUDQBFRUU4efIkHn744TrH5Ms4n/6Hc+pfOJ/+hfPpXzif/odz6kca9VRNckmXLl3kyZMn290GQH700Uerjc3IyJABuO1w2e7du8sA5GeffVZeuHCh3deqVavsxv7000+yIAjysGHD5I8//lh+/PHHZVEU5QcffLDadZcuXSoDkE+cOOFyjL6G8+l/OKf+hfPpXzif/oXz6X84p/6ByaUPeffdd2WdTieXlZXZbqvpTbd+/Xq3vukqr+XoKyMjo9r4H374QU5LS5M1Go3csmVL+W9/+5tsMpmqjZs0aZI8aNAgl+PzRZxP/8M59S+cT//C+fQvnE//wzn1D0wufUhhYaEcExMjf/rpp54OxS2ys7NlrVYrL1u2zNOheATn0/9wTv0L59O/cD79C+fT/3BO/QMb+viQyMhIPPvss3j77bchSZKnw3HZe++9h65du2LcuHGeDsUjOJ/+h3PqXzif/oXz6V84n/6Hc+ofBFmWZU8HQURERERERL6NlUsiIiIiIiJyGZNLIiIiIiIichmTSyIiIiIiInIZk0siIiIiIiJyGZNLIiIiIiIichmTSyIiIiIiInIZk0siIiIiIiJyGZNLIiIiIiIichmTSyIiIiIiInIZk0siIiIiIiJyGZNLIiIiIiIichmTSyIiIiIiInIZk0siIiIiIiJyGZPLOsrOzsasWbOQnZ3t6VCIiIiIiIi8BpPLOsrOzsbs2bOZXBIREREREVXB5JKIiIiIiIhcxuSSiIiIiIiIXMbkkoiIiIiIiFzG5JKIiIiIiIhcxuSSiIiIiIiIXMbkkoiIiIiIiFzG5JKIiIiIiIhcxuSSiIiIyM0sJqunQyAianRMLomIiIjczGKWPB0CEVGjY3JJRERE5GaSVfZ0CEREjY7JJREREZGbyRKTSyIKPEwuiYiIiNxMYnJJRAGIySURERGRm3FZLBEFIiaXRERERG7GZbFEFIiYXBIRERG5mdXCbrFEFHiYXBIRERG5mZnnXBJRAGJySURERORmpnKLp0MgImp0Pp1cbtq0CbfccgsSEhIgCAKWLVvmdPyGDRsgCEK1r5ycnMYJmIiIiAKCQW+GLHPfJREFFp9OLktLS9G9e3e8//77dXrc0aNHkZ2dbfuKi4troAiJiIgoEFktMoylrF4SUWBRezoAV4wZMwZjxoyp8+Pi4uIQFRXl/oCIiIiIriopMECrC/J0GEREjcanK5f1lZaWhubNm+PGG2/E5s2bnY41Go0oLi62fen1+kaKkoiIiHxZyWWDp0MgImpUAZVcNm/eHB9++CG+++47fPfdd2jVqhWGDBmCPXv21PiYOXPmIDIy0vaVkZHRiBETERGRryq5wuSSiAKLIPvJbnNBEPDDDz/gtttuq9PjMjIykJiYiIULFzq832g0wmg02r7PzMxERkYGdu/ejfT0dFdCJiIiIj91eEs2CrJLMeBP7TwdChFRo/HpPZfu0KdPH/z+++813q/RaKDRaGzf63S6xgiLiIiIfFxZscnTIRARNaqAWhbrSGZmJpo3b+7pMIiIiMjPlOuZXBJRYPHpyqVer8eJEyds32dlZSEzMxMxMTFITEzECy+8gAsXLuDLL78EALz33ntISkpC586dYTAY8Omnn2LdunVYtWqVp14CERER+SlDqQWyJEMQBU+HQkTUKHw6udy1axeGDh1q+/7pp58GAEybNg0LFixAdnY2zp49a7vfZDJhxowZuHDhAkJDQ9GtWzesWbPG7hpERERE7iBLMozlFmjDeBwJEQUGv2no01j27NmDnj17sqEPERER1ejwlmzs33Aew6elokkL9msgosAQ8HsuiYiIiBrKlexST4dARNRomFwSERERNZCck0WeDoGIqNEwuSQiIiJqIDlZxTyShIgCBpNLIiIiIjfq1asXht7WEy+8PxWyJOP4rlxPh0RE1CjqnVxarVYsWbIE06dPx/jx47F//34AQFFREb7//nvk5vIHKREREQWenJwc5F7KRqH+CgDg5O48GPRmD0dFRNTw6pVcFhYWYuDAgbjzzjvx1Vdf4ccff8SlS5cAADqdDo8//jjmzp3r1kCJiIiIfJHFLOHQ5oueDoOIqMHVK7l8/vnncfDgQaxcuRKnTp1C1dNMVCoVJkyYgF9//dVtQRIRERH5spN78lB0qczTYRARNah6JZfLli3DY489hhtvvBGCIFS7v0OHDjh9+rSrsRERERH5BVkGdq84A1ni8eJE5L/qlVwWFRUhKSmpxvvNZjMsFku9gyIiIiLyN/nn9Di2kz0piMh/1Su5bNu2Lfbs2VPj/atWrUKnTp3qHRQRERGRP/pj/Xnkny/xdBhERA2iXsnlAw88gM8//xxff/21bb+lIAgwGo148cUXsWLFCkyfPt2tgRIRERH5OlmSseW7EygtMno6FCIit1PX50FPPPEEDh48iMmTJyMqKgoAcOedd+Ly5cuwWCyYPn067r//fnfGSUREROQXDKUW/P7NcQybmoogjcrT4RARuU29kktBEPDJJ59g2rRpWLp0KY4fPw5JktC2bVtMnDgRgwcPdnecRERERH6j6FI5ti07iUF3tIcgVm+OSETki+qVXFYaNGgQBg0a5K5YiIiIiAJG9ski7N94Ad2GtvR0KEREblGvPZdZWVn46aefarz/p59+4lEkRERERLU4sjUbF44WeDoMIiK3qFfl8q9//SuKi4txyy23OLz//fffR1RUFJYsWeJScERERET+bsfPWRjRNAThMVpPh0JE5JJ6VS63bt2KG2+8scb7hw8fjt9++63eQREREREFCrPRit+/PQ5TOc8IJyLfVq/ksqCgAOHh4TXer9PpcPny5XoHRURERBRISi4b8Nu3x2E2WT0dChFRvdUruUxMTMTmzZtrvP+3335Dy5bcnE5ERESk1OXzemxacowVTCLyWfVKLidPnoyvvvoK//73vyFJku12q9WKuXPn4uuvv8add97ptiCJiIiIAsHl83qs/+8RlBWbPB0KEVGd1Su5fOGFFzB06FA8+eSTaN68OQYPHozBgwcjISEBTz31FDIyMvDiiy+6O9ZqNm3ahFtuuQUJCQkQBAHLli2r9TEbNmxAeno6NBoN2rVrhwULFjR4nERERERKFV0qx5oFh3DlYqmnQyEiqpN6JZcajQarVq3CZ599hj59+iA/Px/5+fno06cPPv/8c6xZswYajcbdsVZTWlqK7t274/3331c0PisrC2PHjsXQoUORmZmJJ598Eg888ABWrlzZwJESERERKWfQm7H+v0d4TAkR+ZR6HUUCAKIo4t5778W9997rznjqZMyYMRgzZozi8R9++CGSkpLwzjvvAABSU1Px+++/41//+hdGjRrVUGESERHVSrZaIahUng6DvIjVImHL9yfQY2RrtOsZ5+lwiIhqVa/Kpa/aunUrRowYYXfbqFGjsHXr1hofYzQaUVxcbPvS6/UNHSYREQUg2cQ9dlSdLAN7Vp7Bka3Zng6FiKhW9a5crly5Ep999hlOnTqFgoICyLJsd78gCDh58qTLAbpTTk4O4uPj7W6Lj49HcXExysvLERISUu0xc+bMwezZsxsrRCIiClTX/TtKVNUf689DVAno0KeZp0MhIqpRvZLLt99+G88//zzi4+PRp08fdO3a1d1xeY0XXngBTz/9tO37zMxMZGRkeDAiIiLyS0wuqRaZa84hRBeMVp1iPB0KEZFD9Uou586di2HDhuHXX39FUFCQu2NqMM2aNUNubq7dbbm5uYiIiHBYtQQqmhdVbU6k0+kaNEaiBlNeAIREezoKIqrB9SuAiBzZ8fMphEVpEJMQ5ulQiIiqqdeey4KCAkyYMMGnEksA6N+/P9auXWt32+rVq9G/f38PRUTUiIouABbu6SLyWhaLpyMgH2C1yNj83QkYSs2eDoWIqJp6JZd9+vTB0aNH3R1Lnen1emRmZiIzMxNAxVEjmZmZOHv2LICKJa1Tp061jX/ooYdw6tQpPPvsszhy5Ag++OADfPPNN3jqqac8ET5R4zOxIRWRt5LNTBZImfISE7b+cBKSxGo3EXmXeiWXH3zwAb7//nssXrzY3fHUya5du9CjRw/06NEDAPD000+jR48eePnllwEA2dnZtkQTAJKSkvDLL79g9erV6N69O9555x18+umnPIaEAoexxNMREFENpPJyT4dAbnD27FmUlpYCAIymcuQX5jTI81w6W4JDv19skGsTEdWXINdjk0e3bt1w5coVZGdnQ6fToWXLllBddzaXIAjYt2+f2wL1Fnv27EHPnj2xe/dupKenezocIuVyDgAWI9Cyp6cjISIHyg8eREjnzp4Og+ppx44deO211/DLL7/Y7Z8VBAHpKYNw+9D70a5lJ7c+pyAAw6d14v5LIvIa9WroExMTgyZNmqB9+/bujoeIGtKVU0wuibyUtaDQ0yFQPX3//feYNGkSZFmu1phJlmXsPboFmce24In/9yb6dh7qtueVZWDvqjMYNi0VgiC47bqGMiM2/bIHWUcvQhAEtO3UEjfc1APBGse9NooLSvHluz87vG/0pAFo16UVAODcyVxsX7sfl3OLEBSsRse0Nug3oitEVUAdu07k1+qVXG7YsMHNYRBRo7i4B+h2h6ejICIHrFcuezoEqocdO3Zg0qRJsFqtNXb8lWQrIAuYu2QmXp3+mVsrmJcvliL7RBES2kfV6XHff7YOqT2SkJqeVO2+VUu3oazEgHHThkCSJKz9fgfWL9+FURMdN0DURYbg3mdvtbvt4K5T2Pv7ESS2rziXMz+7AD8t3IReGZ0w4k99UVpcjg0/7oIkyxg0Oq1OsROR9+JHRUSB5PxO7rsk8lKWvDxPh0D18PrrrzusWFYnQ5aBH9Z/7vYYjmzLdtu1ruQV4+zxHAy9rTeatWqChNZNMfjmdBw/cBb6Ysf7gkVRRFh4iN3XqUPn0a5LK1u18/iBc4htFok+Qzsjqkk4WiTFYcCo7ti//QRMRjazIvIX9U4ui4uL8fe//x2jRo1Cjx49sGPHDgDAlStX8O677+LEiRNuC5KI3MRqBk6s8XQUROSAOS8PstXq6TCoDs6ePYuff/4ZVoXzJslW7D76m9ub/OSf0+PKxVK3XCvnXD402iDEt4ix3dYqOR6CICD3vLLqet6FK8jPKUSnnsm226wWK1Rq+/4c6iAVrBYr8i4WuCV2IvK8eiWX58+ft3VlPX/+PP744w/o9RVHHMTExOCjjz7Cf/7zH7cGSkRucuB7QJI8HQURXc9ihSWnYTqLBjqL2QqT0ez2r5UrVimoWNqTZRn7T+60VTvd9XVk+0VYzK5/OFGmNyAkTGt3m6gSoQ0JRpneoOgah/acQnTTCDRPjLXdlti+OXLOXsaxP85AkiToi8uwc/2hiucsYadkIn9Rrz2XzzzzDEpKSpCZmYm4uDjExcXZ3X/bbbfh558db+wmosbXq1cv5Fw8h2ZBZdg1ExXVyw4jPR0WEV3HmHUaQS1aeDoMv2IxW3H+VG6DLL08c/I8RFGEVIcP7ARBQIm+GEaDe+M5lZmHpm21SEpNgDpIVe3+XRsPYfemw7bvLWYrcs9fxqZf9thuu/Ox0S7HYTFbcOyPs+g9xH5faWK7Zhgwqjs2/Lgbq7/bDpVKRO8hnXHxzCW3NiMiIs+qV3K5atUqPPXUU+jUqRMuX66+RCI5ORnnzp1zOTgico+cnBxcyM4DooIrbtj2AdCqNxAS7dnAiMiO8fhx6AYN9HQYfkWSJJiMZohqFVRq97aaiIiKrFNiCVRULkO1YRBE9yZUsiwj70wJWqdIAKonl116t7V1bQWA1Uu3oW2nlkju1NJ2W1h4CEJ1WpSX2lcoJasEQ7kJoTr7iqYjJw6eh8VsRce0NtXu6zEwBWkDOqC0xABtSBCKC8qwdfUfiIjmUSpE/qJeyWV5eTmaNm1a4/0lJWwYQuTVyguANbOBMW8B6mBPR0NEV5X74fnQ3kKlFhEUVK9fe2qUcUMGBEGo09JYAQI6JfeEu4t1MgSUF9VcDdWGaqAN1di+V6lVCAnTIqpJuN24Zq1iYTSYkXfhCuKu7rs8n5UHWZYR37JJrXEc2n0KSSkJ1ZbWVhIEAbqIEADA8f1noIsMRdMEftBJ5C/q9RFep06dsGnTphrvX7ZsGXr06FHvoIioEVzcC6z6G2Aq83QkRHSV+dw5mLPd1/mTGlaLFi0xfNiNUKmqVwodEQURPVIGIjayWQNHVn8xcRFIbN8M65fvRO75y8g+cwkbf96N9l0SbUmhvrgM/537a7UGP4WXS3DxzCV06pXs6NLY8/sR5OcU4nJuEXauP4jdvx3B4Jt6QBR5eAGRv6jXu/nJJ5/EkiVL8I9//ANFRUUAKpadnDhxAnfffTe2bt2Kp556yq2BElEDOLcd+PExoJDL2Im8hX7Tb54Ogergib88DUEQFOwbrBgz7oZ7GiyWkMggt1xn5IR+iIqNwLL5G/DTwt+Q0Lopho7rZbtfssoozC+B+boGQof3ZEEXEYrEto6T5zPHsvH9Z+vwzYercfrYRYy9c5Ddslwi8n2CXNc2Z1e98cYbmDVrFmRZhiRJEEURsixDFEW8/vrreO6559wdq1fYs2cPevbsid27dyM9Pd3T4RAp0rJlS1y4cAEtooJx/u/9qg9Qa4HeDwCdxwMq9y4bIyJlcl59DeX79kEV2wSt5s2DwGqOW5iMZpw+ehFB2iC3L4ut9L8Vv+CRx/8MWZYdHksiCiIEQcBfJryGXqkZDRKDACBtbDO073btbEkiqplVb4JKx61B7lbvn7Ivvvgi7r77bnz33Xc4ceIEJElC27ZtcfvttyM52fFyCCLyUhYDsPX/gMM/An3+DLQZBLdvCCIiRaz5l1G+dy9Ce/b0dCik0JjRY/HDtz9j7v+9i7XrVtvtwRQgIK3DAIy74R4kt0htsBhiWoYiSKNseS4RAVK5hcllA6hzcllWVoYbbrgBDz74IB566CEufyXyJ4VnK/ZhxnUC+j0MNO/m6YiIAlLJqtVMLn1MWvcemP/JQly4cB4jxw5DcXERQrXheOOhBY2yxzK+XXjtg6jerBYzVGpWhP2JbHD9XFiqrs5rbkJDQ5GVlcUziYj8Wd6hir2Y694ADMWejobI7/Xq1Qvp7/wTt65bCwAo27MHloICD0dF9dGiRUuEhoYCADRB2kZJLLVhQYhqXvsxIVR/xtJST4dAbmYtMXk6BL9Urw0do0ePxsqVK90dCxF5m+OrgO/uB3L2ezoSIr+Wk5OD7OJi5BuMFTdIEvQbN3o2KPIZCR0j+KF/AzOVl3s6BHIzyxVD7YOozuqVXL700ks4duwY7r77bvz++++4cOECrly5Uu2LiPyAPg/48XFgxyeAhZ/yETUW/dq1kCXJ02GQl9OGBaFFx0hPh+H3zEYDzAYmI/7EdLa4TmfUkjL1aujTuXNnAMChQ4ewePHiGsc56phGRD5IloC9/wVOrK3oKtt2GMBOlkQNynwxG2U7diCsn4MOz0QAVCoRnTLioVKLkMz8IKKhFeRcRFwbNq30F9ZCI8wX9Ahuyf3K7lSv5PLll1/m8gsiH3H27FmUXt0rUmq04uwVAxJj6rk3pyQbWPcasHs+kHYn0O5GQM1Oa0QN5coXXyIkLQ2ilvvpyJ46SESXYc0R0ZT/bzSWC0cPMbn0M6U7chDUQse8xo3qlVzOmjXLzWEQkbvt2LEDr732Gn755Rfbso/CcivavLgDN3eNwUs3tUbvNvX8tK7oPLDxrYqlsl1uB1JvBUKi3Bf8dczlJTi14kNcOb4dEETEdhyA5FHToQoOqfWxsizj0JJXUHByN1Lv+BuapPS33Vdy8RhOr1sAffYJQADCE1LQZvi90MXzlwfyDpa8POR/+CGaPvEEf/khG12UBp2GxiM0gh/uNabT+/YgbeRYvhf9iOmCHqasYmiSubTcXdyyrq2oqMhjS2Dff/99tGnTBlqtFn379sWOHTtqHLtgwQIIgmD3peWnweSHvv/+ewwcOBD/+9//qu0nkGXg1wNXMOCtTHy/N9+1JyovAHZ+BiyeCPz2LlCcXe9L/fHl88jdt9rhfceWvY2y/DPoMuV1dJr0CorOHsSJX/6j6LoXdyxDxfHi9qymchz86mVoIpqi+33votu0t6EKDsHBxS9Bslrq/TqI3K30t99RsPC/3BtEAIBWnaKQfnMLJpYeUFpwBVcunPN0GORmJZsvQLZyWbm71Du53LVrF0aPHo3Q0FA0adIEG692tcvPz8e4ceOwYcMGd8VYo6+//hpPP/00XnnlFezZswfdu3fHqFGjkJeXV+NjIiIikJ2dbfs6c+ZMg8dJ1Jh27NiBSZMmwWq11vihj1UCrJKMSZ8cxs7TJa4/qcUIHFoOfD0F2PTPiqTTTcryz6Lg5G60G/sEwlt0RGRiZ7QdPR2XDm6CseSy08fqc07iwrYf0P6WJxxc9zws5SVonXEXQpu0RFjT1kgcfCfMpYUwFtX8M4TIE4qWL2eCGeC0YUFIG9UCbXvHQlRxz7unnNxdcxGDfJO10IjSXbmeDsNv1Oun05YtWzBo0CAcP34cd911F6Qq3exiY2NRVFSEjz76yG1B1uTdd9/Fgw8+iHvvvRedOnXChx9+iNDQUHz++ec1PkYQBDRr1sz2FR8f3+BxEjWm119/HbIs1/pLqAxAhozXf3XjByySFTj8E/D13cDZ7W65ZPH5I1BpwxCe0N52W1RSD0AQUHLhaI2Ps5oNOLrsbbQd/TCCdTHV7g9p0gLqkAjkZK6CZDXDajYiN3MVQmJbQRvFnwvkfYqWL8fljz5mB9kAFNdGh163tkRUs9q3AlDDOr5jCy6dyfJ0GOSiXr16Ie3FURj59hQAQOnOHJQf4UkX7lCv5HLmzJlITU3FoUOH8Oabb1a7f+jQodi+3T2/WNbEZDJh9+7dGDFihO02URQxYsQIbN26tcbH6fV6tG7dGq1atcK4ceNw8OBBp89jNBpRXFxs+9Lr9W57DUTudvbsWfz888+Kl6lbJeCn/Vdw1t1nPRlLgJUzgdxDLl/KrC9AcGiU3W2CqEJQSDjMpTVXSLNWfYKIlql2eyyrUmtC0fXuObh0YD22/P12bH1rAgpO7kbn//cqBFHlctxEDaFk9WrkvfMOZBOPBQoEgiCgQ9+mSB0cD3Uwfy55Sq9evdC93wC8vOAryJKEtZ9/iPOHDng6LHJBTk4OsgvzcKn46gooGShefQbF689BMnJrjCvq1dBn586dmDNnDjQajcNkq0WLFsjJyXE5OGfy8/NhtVqrVR7j4+Nx5MgRh49JSUnB559/jm7duqGoqAj//Oc/MWDAABw8eBAtW7Z0+Jg5c+Zg9uzZbo+fAptkMTXIvr5VK36t87I5WQbWHinAPf3dXK2zmoC9CyGMnuPw7nO/f41zm7+xfS9ZTCi5cAQnV3xouy39oXn1eurLx7ah8PQf6PHgv2sOz2zE8Z/nIqJlJ6SMfxayJOHCtu9x6OtZ6H7fv6AK0tTruYkaWtm27cgpm4P4Z5+FGMJKlr8KClah89BmrFZ6gZycHGTn5CA6XAcAsJiM2LDwU7Tt1RfpY8ZBExrq4QjJXcoP5MN4ogBhvZshpEssBDWXoNdVvZLLoKAgu6Ww17tw4QJ0Ol29g2oo/fv3R//+16oYAwYMQGpqKj766CO89tprDh/zwgsv4Omnn7Z9n5mZiYyMjAaPlfyXZDGh8PQ+WAxlbr92btYhiKIASVKeYIoCUFhSDovR/fFI2QcRZDFBdHBcSbOeNyG20w22748uexuxHQeiSccBtts04U0QpIuGqazQ7rGyZIW5vARBYdEOn7fo9B8wFGRj69sT7W4/vPRNRLTqjG5T/45LBzbAWJSH7ve+A0Go+MdDN/4ZbPvnJFw5tg1NO/N9Tt7L8Md+5MyahfgXXoAqKsrT4ZCbaULV6HZjAsKi2LTHm53ctR3nDx1A+k23Ijm9D7vI+gnJYEXJbxdQuicPYb3iEdKpCZPMOqhXctmvXz8sXboUTz75ZLX7SktLMX/+/AZPwGJjY6FSqZCba78BNzc3F82aNVN0jaCgIPTo0QMnTpyocYxGo4FGc62C4Y1JM/kWyWqBxVAGUaWG4OYzIiMio+qUWAKAJAMRIWpbguUusizBEhIPldXiMLkMCglHUMi1o1BEtQZBYZEIiUmwGxfRsiOshlLos49D17xi32Vh1j5AlhHeIsXhc7ccMAHxaSPtbtv78aNIvvFBxLTvAwCQLEZAEFC1k2zFfwOBTVPIJxhPnMTFF2YifuYLCG7VytPhkJuERQaj64jm0OqCPB0KKWAsK8XWpV/h5O4d6HvbHYiMU/Y7KHk/qdSMko3nUborF2HpcdB2agKRy9NrVa/fJmfPno1du3Zh7Nix+N///gcA2LdvHz799FP07NkTly5dwksvveTWQK8XHByMnj17Yu3atbbbJEnC2rVr7aqTzlitVuzfvx/NmzdvqDCJaiSog6EK0rj1a8gNA+v8yakgAEM7RFT8xY1fsiYS5W1vcvm/U2hsIqLb9sTxX/6DkgtHUXzuEE6unIemnQdDE94EAGAszsfuedNtDX6CdTEIi2tj9wUAmsim0EZX/MMfldQDlnI9Tq74AGX5Z1F66QyO/fgvCKIKUa27uRw3UWOw5OXh4gsvoHTbNk+HQm4QGReCtDEtmFj6oLysk/h57lvY9fMPMJaVejocciOp1IyS3y7g8oKDKNl8AdZio6dD8mr1qlz27dsXv/76Kx5++GFMnToVADBjxgwAQNu2bfHrr7+iW7eG/+Xs6aefxrRp09CrVy/06dMH7733HkpLS3HvvfcCAKZOnYoWLVpgzpyKPV+vvvoq+vXrh3bt2qGwsBBvv/02zpw5gwceeKDBYyVqDK1aNMeoYYOxesPvipr6qETgpk5RSIxx7/5CKSwepenTIanDax+sQIfbnsGpFfNwYNGLgCCgSceBaDtquu1+WbKi/PJ5WM3Kf+CHxrZCp0mv4Nymxdg3/68QBAFhzdqi8+RXERxevbsskbeSyw3Ie/ufiBg7FjF3TYEQzKWUvqhpax1Sb4jjMSM+TJYkHNm8ESd2bkOHfgOR0v8GhEU53r5BvkcyWlG2Jw9le/OgaROJkG6xCG4VzuXQ11GUXBYXFyMsLAwq1bVS8LBhw3D06FFkZmbi+PHjkCQJbdu2Rc+ePRvtP/KkSZNw6dIlvPzyy8jJyUFaWhpWrFhha/Jz9uxZiOK1H9IFBQV48MEHkZOTg+joaPTs2RNbtmxBp06dGiVeosbwzGN/xpqNv0MQnC/vrFgQKuCFUe6t3FvjuqA8/c+QoALqsI+z29S/13hfUEg4UsY/W+P92qh4DPrbL06v7+j+6OQeiE7uoThGIm9W/MsvMBw5jLgZMxDEY7Z8SsvUKLTt3YS/pPoJi8mIQ5vW4fBv69EitQva9+6PhA4dIYj84MAvyIAxqwjGrCKoY7QITWsKbUoM92VepSi5jI6OxsKFC3HnnXcCAO677z5Mnz4dffv2RVpaGtLS0hoyRqf+8pe/4C9/+YvD+zZs2GD3/b/+9S/861//aoSoiDwnvXsXfP6ft3DfY89CluGwgqkSKxLLr+5ti96t3beP2Jw8EsZOEwBBBOpQRSQi9zCdPIWLzz6Hpk8+gdAe/ODEFyT1aILErlFMLP2QLMs4f2g/zh/aj9CISCT37Iu2vfogPCbW06EFtLNnz6K0tGLpcpmpHOevZKNlTP0+aLdcMaB43Tnot+cgLD0OIZ2bQAgK7H2ZipLL4OBgGI3XflFcsGABRowYgb59+zZYYERUf7eMHoGVS7/E2//5GCvXbbKrYApCxVLYF0Y1d1tiKQeFwdjtblgSernlekRUf5Jej9w35yD2oekIHz7c0+GQE217xaJV5yhPh0FOVE1EjGYz8ouKERsZUefrlBUX4cD6VTiwfhWat++IlAE3oEWHVFYzG9GOHTvw2muv4ZdffrH9XlRUXoLes2/GjZ1vwFOjHkSP1p3rde3KfZmlO3MQ0iUWIZ1joYpouC0KFoMJpzceRkFWHgRBQEy7eLS+IRWqYMepncVgwvntJ1B0Nh/GEgOCQoIRnRyHlv3aQ625tse76NxlnN92HGWXS6AKUiG2Ywu06t++Tv+fKkouO3bsiE8//RRt2rRBZGQkAOD06dPYs2eP08elp6crDoSI3Cu9exd89em/ce5CNgbfdAcKi0sQFaLC7uc6u3WPpSWhN4ydJ0HWRrntmkTkIklC/gfzIJtMiBgzxtPRkANJaTFMLL2Yo0SkzGDE0/PmI61dEm4b2AfJzevXGTb7+BFkHz+CyPjmSBt5E1qmdmHluoF9//33mDRpEmRZrrZlSJZlrD20GesObcZH9/4dY7vX/0M5yWBF6a5clO7OhSYxAiFdYhHcJgKCWPf5PfT9djRNbYGmqS2r3Xdi5R8wlxmReltvyJKMk2v2I2v9QbQb1d3htUylRphKjUgc1BEhMToYi8txesNBmEqN6HBTxSqX0kvFOPrjLiT0bou2N3aFqdSIrPUHIcsyWg/qqDhuRcnlnDlzMGnSJIwYMQIAIAgCXnrppRo7wsqyDEEQFDUUIaKG1apFc4SGhqCwuARhwaLbEktrkw4wdrwdUkw7t1yPiNzv8qefQZYkRI4d6+lQqIqEDpFI7MZGL97KaSICYN/J0/jj1Bk8Om4MeqfU/9/AotxsbFz4GVqmdkG/2/8ftA103F2ZXo9fFn+Jo5l7IAgiOvXsjZvuvBsarbbG8euWf4cTB/aj6MplhIVHILVHTwwfPwHa0FAAwJ7fN+GHzz92+Pjn3nsfuojIBnkt9bFjxw5MmjQJVqu1xl4UVskKAQKmz38ePz21oN4VTBsZMJ4phvFMMVRRGoTf0AKaNu75b1J+RY+is/noPLE/dPEV12yTkYqjP+5G4sAUBOuqz2tok3BbEgkA2shQtOzXASdX7YMsSRBEEVeO5yA0Nhwt+1T8P62NCkPiwBQc/18mWvZpV2NV9HqKRo0ePRpZWVnYuXMncnNzcc899+DPf/6z4iM/iMh/WJt0gKn9zbDGpl49J5KIvNmVz+dDKilB1KRJrI54gehmIWjfN5Zz4aWUJCKSLAOyjPeX/w8v331HvSuYlc4fPoBf/v0WBv2/qYhPrl+y+tk/XkePgYORPmhwtfuWfvwBSooKMW3G85CsVnz/+cdY/sVnmDj9UYfXKiksQElhIUZPuhNxCS1QeDkfP345H8WFBZj86BMAgK59+qF9V/uTIb7/7CNYzGavSiwB4PXXX3f4QcH1ZMiQAby38lN88Wf39WixFhpR+NMpRI5uA2171z9UKskphEqjtiWWABDZqgkgCNDnFiHGQXLpMC6TGapgtW3Jq2SVIKrs94uKKhGyVUJpXhEiWjZRdF1FyeUff/yB1q1bY9SoUQCA+fPn44477sBw7uUgChjWuG4wtRsDa5P2ng6FiOqo8NulMF+4gNhHHoEYEuLpcAJWsFaF1MHx9VoiR41DaSICVKzUW755J56acIvLz1teUow1n76PrsNGoeuwkW7bi5l38QKOH/gDD730KlokJQMAbp4yFQvf+ydGT7wTEdHVk534lq1sSSQAxMTFY8Ttd2DpJ/NgtVqhUqkQFByMoCrHHpUWFyPr8CHcdu+DbonbXc6ePYuff/5Z0XwCFRXMVQc3udTkpyZlmZfcklyaS40ICrHfzymIItTaIJjLlDVTNJebcGHnScR1aWW7LbJ1LHL2nUb+sYto0q45zGVGXNh5EgBgUnhdQGFy2aNHD7tusUQUIMQgmFv2gzn5RkjhCZ6OhohcULplK0znziP+2WcQlMD3c0NqGhsHq1mCLjjK7vb2/ZoiOKReR4xTI6hrIiLJMvaeOFXvJj/Xk2UZf6xdgcsXzmHwlHugUgfV/qBanDt5AtrQUFtiCQDJnSr2eJ4/dQKdevZWdB1DeRk02hC7YwmrytzyO4KCNejcq0+dY5QsVsiSsv/mdbV65SrF81lJlmX8fmwH/l/fW90aizmnFFaDGSqt43m9sPMkLu4+ZfteslihzynC6Y2Hbbd1mzLI5TgsJguO/rQbIdE6tOhzrVIelRiLxIEpOL3+EE6u2g9RJaJF77YouVgAAco/EFP0Ey4kJARlZdfOq9u4cSMefNC7PpkgIveRg8JgThoOc5shkDWu/4NJRDWza4tvseBCWRlaXN3X5G7mc+dw8fkXEP/ii9CmdGiQ5yDg1x9X4ez+Apzac9l2W3TzUDR149FPgcxsNkGyuL+vx4r//a/uiQiAg6fP4YauqW6L49yh/dj8zSL0v+NOBAW51nFUX1SIsHD7f8dVKhVCwnTQFxcpukZpSQk2/LQMvTKG1jhm928b0K1ff7tqphKSxYqi85dhNVnq9Dilcs9kQxRFSJKk+DGiIKBIXwKL0f0xFZ27jKikphDV1ZP0+K6t0KT9tSXWJ1b9gZi28Yhpe+3c4uAwDYLCNDCXm+weK0sSLAYzgkKd99Wwmiw4unwXVEFqdBjbA6LKvkLevEcSmqW1gbnUCLU2CMbicpzbegyaSOX/JilKLrt37453330XKpXK1i12586d0NawEbjS7bffrjgQIvICai1M7cbAlDQcUCtbs09E9eOoG2WxxYzBK/6HYc2a4y8dO6J7TIzbn1cqLUXOa6+ixVtvua2CaSopwd7PPsPF3bshCAJa9OuHHvfeC7WTJbinVq/G2d9+Q0FWFizl5Rj3xRcIDguz3Z934AA2zprl8LHD//53xLTzrWZirdnAxy3MZhNOHT4EY3m526998uiROiciggCUlOphKC+rfXAdHNn2O9QRUeg96iaHCebGn5dj0y8/2r43m0w4f/Ikfln0he22x17/h8txGMrL8N/3/om45i0wbJzj3+vPnjiOS9kX8acHH67z9WVJhtVkgSiKEFTuP5YlIiKiTvMJVFSkw7Vhbm8rIcZpIclSjVVatTYYau21uRbVIoJCg6GNCrMbF94sClajBaV5RQiLq8jLis5fAWTZbh/m9SwmC44u3wlBJaLDzekOE1ygonFrZVOgy8eyEazTIqyp8kKDouRy7ty5mDBhAu6//37bk86dOxdz586t8THsFkvkWyzN0mDsehePFCFqBLV1o9yQm4ONuTn4d5++GN2ihdufXy43IP+TT9D8lVcUP2bDyy+jzdChaDO0evVi+9y5KC8sxOCXXoJstWLn++9j10cfod+TT9Z4PYvRiGY9eqBZjx7Yv2hRtftjU1Jwyyef2N12YMkS5O3fj+i2bRXH7Q1CI4IRGc8P7NxBslhhLC+HWq2C2g3LRquKioyscyIiy0BIsAai4N7ESJZlnM3chZ7DRwEOXmbvIcPRpfe18+aXfjwPnXr1Rqf0a+dNh0dFQxcZhdKSYrvHWq1WlJfqa228Yywvx5fvvo1grRaTH3sSKrXjtGH3pg1oltgaLdok1eEV2hNUIlRBjpMdVwzNGAJBEOpUkRYEAYPa93Zr00JBJSCoewzcsfg3JEaHyMRYnFp3EElDOkGWZJzZeAhNOjS3JYUmvQGHf9iJtjd2ha5ZFCwmC44s2wnJYkWHkd1hNVls1eKgkGDbPvCLe7IQlRgLCEDByVxc3H0K7Uan1WmfuKLkslevXjhx4gROnjyJ3NxcDBkyBC+++KLtaBIi8mUCjJ0mwJw8kt1fiRqBorb4sgwBwOM7tuPbjCENUsE0/LEf1sJCqKKiXLpO8fnzyMnMtKsm9rj/fvz25pvoPnUqQmqIvcPNNwOoqFA6IgYFQVul2YhkseDizp1oN2aMz3Vabdo6zOdi9nZqdRCCNO47sxkAbrhhUN0TEQCpiS3c36RJAkIiomq8O1SnQ2iVo0vUwUEIC49Ak3j7zrWt2raDoawMF05n2ZK/rMOHIMsyWjrpTGsoL8OX774FlVqNKY8/XePyXKPBgAM7t+PGCRPr8OIaT6sWLTF6+EisWr9GUdFLJaowvONAtIh2rQNwVYJWBW3/OCAiGFaze5bathvVDac3HsbhZTshCAJi2saj9eBrS7NlSYKhsNS2fLwsrwiluRXLoPd9ucnuWmnTBkMTUbHstejMJVzceRKSVUJobDg6jE1HVJumdYpN8a5ytVqNlJQUpKSkYNq0abj55pvRt2/f2h9IRF7N2HUKzG2GeDoMooChvC1+xdf7R4/g4/4DGiQW0/kLCHExubx89CiCwsLslqnGdesGQRBw5fhxtHDT7woXd+2CUa9Hm2HD3HK9xtSkVVjtg8jjWiQkYNiQDGzY9JuiREQUBHRNSkSTCPfupRVFFVp07Y641C4uXysuoQXad+mG5Qs+xa1T74PVasXPi75Alz79bJ1iiwuuYP7bc/CnBx5Cy+S2MJSX4Yt3/gGzyYQ7H3wYRkM5jIaKZchh4REQq3SyPbBjGyTJiu79B7oca0N55okZWL1hba0fHAhX29Y8MeI+tzyvoFUhqF0EgjpEQggSYTXXbUVnp9tr/tmp1gaj3ajuNd6viQhF38dG276PaNnE7vuapI6ve0OmarHV50Hz5893+YmJyPPMbYYysSRqRHVuiy/LWJud3WBNfqSrjYRcYSgshCbSfnmdqFIhWKeDobDQ5etXylq7Fs26d0doE2VnrXmLoGAVwmPdW2GjhvOXhx/Cxt9+V1bBFICb+/RwPqYOBEFEsw4d0Sa9D9QaLQwGg1uuO+HPj+DnRV9g/ttzIIgCOvfsjZvunGq732q1Ij8nG2ZTxXET2WdO///27jwsqrJ/A/h9ZmGGHdlBRRATRVwQd00015+aOyJWLuXSZpqWae5bVrZo9ppppmlapqn1monlWmm5t5r54kKpuLIIKAwzz+8PcmoUFGbhzBzuz3VxXc6ZM+d8h9uZ4TvnOc/BX6eKL0Hx5sTxFtsa9+qbqBL4z5Gsw9/sQWxCU7h7OO8XKAmNGmPF4vcw7MnhEEKU+MWBWqWGBGDJIy+hUUSs9TuTAE2oBzRRXlCHe0JSV74RC2VqLmfNmgVJkjB58mSoVCrMmjXrno+RJAlTp061uUAisl1wUCBgKkKI7p8PKmOVmiiolyxjVUTOy1hYCJMD5g3YbuVslPsuXkT/GjXsXo/xZumTohz/9FMc37Tpn3ULC3H15EkcWb7cvKzrm/a70Pjd5F+9iowff0TLceMqZH/25BfmziGxLqRh/fp46/XX8Mz450ptRFSSBEjA4906Iio02OZ9atx0CK8Th2pxDaH39gYAGArKfl1BAHjshSml3ufh5YUBo54q9f4qgUGY/f6H5ttRdWItbt/NyMllP29bTj3/rwe2b9qK+Qtfx7YdlpcnkSQJHeq0xpiOj1rdWKp83aCN8oY6whOqSn65oTI9+xkzZkCSJLzwwgtwc3PDjFJmb/s3NpdEzmPX5x9Bde1/8PjuZQCA0FfBzSZPAqrK/QZIVBJjYSEu/fILDPn2nf0RAM4dPw6VJMFUjgZTBSA7P98h9WSdOQPPli2hLuHyAdGdO6N6q3+G4/6wcCGqtmiBav8a5qr394fezw8F2ZaXNDAZjSjMzYXexiG3t5zZuRM6Ly+EN2ly75WdjH9Vx1xWhhyna+dOWL/2Q7z9zhLs3L3HshEBUD8qAj2axdvcWPoEhSC8bhxCasVArbXv5ER0p4RGjfHxijX489xfaNM5EVk52fBx98bX49ZYd46lBGiqeUJb2xeqAB2/RPpbmf6yvH3mrPLOpEVETkRS40bTJzkrLFEpTEYjDPn5UGk0UNn5Dz4fX99yNZYAYALgrdVCUtl/NkqjEDAZjShpjkY3b2+4/X0UBQDUbm7Q+/rCKyzMYr2AmBgY8vKQmZZmnsX10s8/QwgB//vus0udZ3btQo3ERKhKma3SmfmHs7l0RQ3r18eyxf/BufPn0b1PP+Tk5MBD54bpD/W36RxLrU6PkPvqICwmFt6B5ZsoheyjetVq8PDwQFZONjzc3K1qLDVhHnBr6A+Vr23XIVUi13uXJiKbFNbqCpOf9dOFE1UWKq0WGjvPRpnYxrrZKFsEBtp9NmcJgGSHWWh9qlVDaKNGOLRkCRJGjoTJaMTR5ctRvXVr80yxN65exZ6ZM9Fs9Ghzw3kzMxM3s7KQm5EBAMg+exZad3d4BAZaNLWXfv4ZeZcuIcoFZ6j38HGDzpN/armyquHh8HB3R05ODnRardWNpW9IGKrWa4jgqGiX/JKEiqk8NHCLD4C6qgePVJbC6v/dx48fR1paGq5fvw5vb2/UqlULderUsWdtJJP09HTs2LHDnG2HDh0QEREhd1lkD2otCmt2lrsKokqrWlgYOiUmYsc3ZZuNUi1JSAwKQri7u91rkQIDIf3rUh+2aD5mDI4sX449M2cCKhWqNW+O+Ef/mXHRZDTi+vnzKPrXeWRp27fjt/Xrzbd3T5sGAGj61FMW19I8vXMnAmJi4OOA6306mk8QJ/Kp7KpUjUDNJi3gGxp275XJaUlqCdoYX2jr+EHS2ncUidKUu7l89913MXfuXJw7d+6O+yIiIjB58mQMHz7cLsVRxTpw4ABmz56NL774AkIIqFQqmEwmSJKEHj16YOrUqWjatKncZZINioLrA27OO6MbUWUwbtQo7Pz23rNRSn//PBFd+rXobOGW2LZc37y3u8tkfm7e3mgxdmyp93sGByNpwwaLZfWSk1Ev+d6Tit1tu87Oy5/NZWWl8/RC7daJCIyM5hEuFyapJGiivaGt61fpJ+opq3L9lp577jm88cYb8Pf3x6OPPoq4uDh4eXkhNzcXP//8MzZv3oxRo0bh5MmTeOWVVxxVMznAxo0bkZycbHHttVvn1gohsHXrVnz55ZdYt24d+vbtK2epZAOjf225SyA7MhgN0Ko5CYSriY+Lw9L58zHy+edLnxZfKr7e2oJG8Whgp0lx/k0bWxeahg1hLOeMlFQ+em++PisbSVKhamx91GzWCpoSJsoi16EJ94BbowCo+DoulzIf1z1w4ADeeOMN9OnTB2fPnsWyZcswZswYPPbYYxgzZgzee+89nD17Fj179sRrr72GQ4cOObJus//85z+IjIyEXq9H8+bNceDAgbuuv379etSpUwd6vR7169fH1q1bK6ROZ3bgwAEkJyfDaDSWOkzr1n3Jyck4ePBgBVdI9mLy5rAcJTGYDHKXQFbq3rEjtqxejQ7333/HUQ0JQGJQED5q0RKdQq2YwfAe1GFh8EhOtvsEQXQnnQePdFQm/lUj0LRfCmq3acfG0oVJWhX0LYOhvz+UjaUVyvzJsnz5coSFhWHt2rXw9Cx5WJ2npyc++ugjhISEYPm/roPlKOvWrcO4ceMwffp0HDlyBA0bNkSXLl1w6dKlEtfft28fUlJS8Nhjj+Ho0aPo3bs3evfujV9++cXhtTqzOXPmWByxLM2tdebMmVNBlZG9mdwD5S6B7EigfLOOknOJj4vD6kWLcCg1Fb5/T2Djo9FgZ7v2eCehiUOOWKr8q8Dz0WGQHHAOJ93Jzb2keXhJafRePmjQ5UE07N4bXgH8nHVlkrsa7h3CoYmwfkbgyq7MzeX+/fuRlJQE3T1mztPr9UhKSsJ3331nc3H38sYbb2DEiBEYNmwYYmNjsWTJEnh4eOD9998vcf2FCxeia9eueP7551G3bl3Mnj0bjRs3xttvv+3wWp1Veno6tmzZUqaJJYDiI5j//e9/kZ6e7uDKyBGE3lfuEsiOjKJsr1tybtXCwuDxd7PnrtY4ZPIeAFB5ecFzxAiofPk+UFG0ejaXShdc8z40S3oIgZE1eW6li5N0ari3D+flRWxU5vEaf/75J+rWrVumdWNjY7Fq1SqriyqLwsJCHD58GJMmTTIvU6lU6NixI/bv31/iY/bv349x48ZZLOvSpQs2b95c6n4KCgpQ8K9zUnJzcwEARUVFMBhcf0haampquabEB4qPYG7fvh1DhgxxUFXKVmQwwGAogtGUD8lQVGH7VRlMMBUagcK8CtmfKCqEyVj8OhEq13+t3E1hUSGKjBWX5S1XblyBcK/Yo5catQZuGmV/8BoMBhiKimC8cQOGoorJ9da1L4UwwVDGL/vKRauF+8BkFOr1QF7xe4DJYIDp1meZgi+NYDAYYDAYYBSmCv3cNgoDbt68WXH7KzLBVGSEwWCApOARz7den+LmjQrL89YcFCaTgMHwz+sztHYdRLW4H4WFhSgsLLTrPouMRSj6O08lX7rEaCh+DzIajZAMFfcf1+I9t8gASBLcGvujUG0E8h3zxa0wmmAyFb8PmaSK++zW2vl6zfdS5v+tOTk58P7XdafuxsvLC9evX7e6qLK4cuUKjEYjQkJCLJaHhITg999/L/ExGRkZJa6f8fc1tkoyb948zJw5847lzZs3t6Jq5RgxYgRGjBghdxlERIpyqbAQcdtTHbPxL7Y4ZrtElUR2fj6e+I/jT/uiinMx5woiJ7aWuwyHKu9BJFuVubkUQpTrcH9FPxFHmTRpksXRzmPHjiExMRE//PAD4uPjZazMPlauXImRI0eW+3HLli3jkUsbmP4+qlehbuYAep8K3aVKrYFK4Ue58gvycejkIVmO6P2a/Svq+darsP3dOkLb5L4m8NB5VNh+5WAsLITJEUcQS3FfnTo4f+ECQnQ67OnS1a7b9h8+HJ6JbUu8T6VWQ10JJh4pMhjNR58qytVzuQioWrHnbalUKmi0yh+KazAUwlRUca/PtomJOH/+PPQQmPZIEjx8fNF51Bi4OfjcZZVGDa1W+a9PU5ERwlSxfUPr+1vj/Km/EOQdgO0vrYNv71qQVI4f1iypJKg0yn6Nlus4+2uvvYaPPvronuuVdA1MewsMDIRarcbFixctll+8eBGhpcyuFxoaWq71AUCn01mcZ+rlVfxBodFoKvwwsyN06dLlntdau50kSejcubMinr9s5PjduWl4jUsH0Jq00Gg18NB5QKet2GvaZWdmw9Oj4jLVGDTIL8iHVqtV/Ou/op/frZlbJUkFN3sNgZMkBIwaCZ9OneyzPRcmx/9XKUwDDy/lNwZyqOg8jxw9istnTyN1yUIAQJv+g+B/20g4soEMr8/DR47g0uJjECYB/y61oPVW9hemFanMn2ARERG4du0arl27Vub1HcnNzQ0JCQnYsWMHevfuDaB4TPyOHTvw9NNPl/iYli1bYseOHRj7rwsyf/XVV2jZsqVDa3VmERER6NGjB7Zu3VqmSX3UajW6d+/u8HzJETjRgNKczz8vdwnkpCStFkFjx8CzRQu5S6m0PHzYWCpR1Tr1UC02Tu4yyE70tfygDWZjaU9lbi7PnDnjwDKsM27cOAwZMgRNmjRBs2bNsGDBAuTl5WHYsGEAgMGDB6Nq1aqYN28eAGDMmDFITEzE66+/ju7du+Pjjz/GoUOHsHTpUjmfhuymTp2KL7/88p5HMCVJgiRJmDJlSgVWR3ajqdijauR45/LPwSRMUCl59g4qN3WAP0ImTICuVi25SyFSFJVGg6YP9pW7DLIjj0bBcpegOC49/VRycjIuX76MadOmISMjA40aNcK2bdvMk/akp6dD9a+LRLdq1Qpr167FlClT8OKLL+K+++7D5s2bERdXub+Batq0KdatW4fk5GQIIUo8gqlWqyFJEj755BM0bdpUhirJZiplj/GvjAqMBbhWcA2Bel5XjYq5N2yIoLFjoPap2POriSqDmvFN4eUfIHcZZCdqPx00ITxqaW8u3VwCwNNPP13qMNjdu3ffsSwpKQlJSUkOrsr19O3bF/v27cPs2bOxZcsWCCGgUqlgMpkgSRK6d++OKVOmsLEkcjLn88+zuSRApUKVlBT49u5lPn+TiOyrWp2Km0CNHM+tujevTeoALt9ckv00bdoUn3/+OdLT07Fz507k5OTAx8cHDzzwAM+xJHJSp3NPo4F/A7nLIBmpAwMQPG4c9DExcpdCpGheAfwiT0k0QTxq6QhsLukOERERGDp0qNxlEFEZ/Jb5G7pX6w6Nim/nlZG+QX0EP/ssh8ESVQBHX3qEKpZ7HX+5S1Akjp0hInJheUV5OHrtqNxlkAy8u3RB6JQpbCyJKoibns0l0b2wuSQicnE7zu/ATeNNucugCuSXlISAEcMhqTlRF1FFUGk00Ljx8jJE98LmkojIxeUacvHlX1/KXQZVEN9+fVFlYDInoiCqQFqdXu4SiFyC1SfppKamYvny5Th16hQyMzPvuD6iJElIS0uzuUAiIrpTSs8UnDp3Cjo/Hdq+2haHrxxGDa8aaBzQWO7SyIG8O3dGlZQUucsgqnS0ejaXRGVhVXM5f/58TJw4ESEhIWjWrBnq169v77qIiOgurly+gpvXLIfCbj67Gd4ab9zne59MVZEjebRoXjwUlkcsiSqcu5e33CUQuQSrmsuFCxfigQcewNatW6HVau1dExERWcEkTFhzag0GRg1EHb86cpdDduQeH4/gMWN4DUsiInJqVn1KZWZmon///mwsiYicTJGpCGtOrcEPl3+QuxSyE329egie8DwkTiZCREROzqrmslmzZjhx4oS9ayEiIjsQQuC/6f/FZ+mfochUJHc5ZAO3mjURMvEFqNhYEhGRC7CquVy8eDE2btyItWvX2rseIiKyk4OXD+L9k+/juuG63KWQFdS+vsWNpYeH3KUQERGViVXnXCYnJ6OoqAiPPPIInnjiCVSrVg3q2661JUkSfvzxR7sUSURE1knPTcc7v7+Dh6MfRrhHuNzlUClCQ0Nhun4dAf86pzLwicehCQiQsSoiIqLysaq59Pf3R0BAAO67jzMSEhE5u5zCHCw9sRT9I/sjrkqc3OVQCQ4dOoSMWbNx4+8vZfX14+DRtKnMVREREZWPVc3l7t277VwGERE5UpGpCB+f+hhtQ9uiY3hHqCTOOurMfB98UO4SiIiIyo1/XRARVSJ7M/bivT/ew9WbV+UuhUqh8vaGe6NGcpdBRERUblYdubzFYDDg999/R3Z2Nkwm0x33t23b1pbNExGRA6TnpuPt42+jQ3gHtApuxaOYTsajSRNIt81jQERE5Aqsai5NJhMmTZqExYsXIz8/v9T1jEaj1YUREZHjGEwGbPtrG45dO4ZeEb1Q3bO63CXR3zyaJMhdAhERkVWs+rr6pZdewvz58/Hwww9j1apVEELg5ZdfxpIlS9CgQQM0bNgQqamp9q6ViIjsLCM/A0tPLMWWP7egwFggdzmkUcO9QQO5qyAiIrKKVc3lypUrMWDAALzzzjvo2rUrACAhIQEjRozADz/8AEmSsHPnTrsWSkREjiGEwPeXvsfbx99Gem663OVUavq6dXldSyIicllWNZd//fUXHnjgAQCATqcDANy8eRMA4ObmhocffhirV6+2U4klu3btGh566CH4+PjAz88Pjz32GHJzc+/6mHbt2kGSJIufxx9/3KF1EhHZ24VzF3Aj/wYAoKigCPmXSz89oTwyCzKx7I9l2HlhJ0zizvPoyfHcGzaSuwQiIiKrWXXOZUBAgLmR8/Lygo+PD06dOmWxTmZmpu3V3cVDDz2ECxcu4KuvvoLBYMCwYcMwcuRIrF279q6PGzFiBGbNmmW+7cFviInIRfx87GcsXbQU3+z6BkIIAEBRXhF2PLkDIQkhqN2/Nvxq+dm0DyEEdp7fibO5Z5EUmQQvrZcdKi/e7od7PsS2Y9uQdzMPsdVi8VS3p1DVv2qpj/lwz4dY+43le3q1gGpY+sTSErc/7eNpOJx2GFOSpqBVTCu71F3R9LF15S6BiIjIalY1l/Hx8Th48KD5dvv27bFgwQLEx8fDZDLhrbfeQsOGDe1W5O2OHz+Obdu24eDBg2jSpAkAYNGiRejWrRtee+01hIeHl/pYDw8PhIaGOqw2IiJH+Hrb15gwegIgYG4szQRw6cglXDp6CQnPJiCsRZjN+0vLScPbx99GclQyoryjbN7ehv0b8PnBzzGu5ziE+oVi9Z7VmLp2KpY8vgRuGrdSH1cjqAbmPjTXfFutKnkW1c0HNkOCZHOdslKp4BYZKXcVREREVrNqWOzIkSNRUFCAgoLiyR/mzp2LrKwstG3bFomJicjJycHrr79u10L/bf/+/fDz8zM3lgDQsWNHqFQq/PDDD3d97Jo1axAYGIi4uDhMmjTprrPdAkBBQQFycnLMP/caektEZG8/H/sZE0ZPgMloKnUWbmESEEaBw28eRtb/suyy31xDLt4/+T6+u/jdnQ1tOQghsPnAZgxsMxAtY1oiKiQK43uOx9XrV7H/xP67PlatUsPfy9/84+vhe8c6aRlp2Pj9Rox9cKzVNToDTWAgVH+fakJEROSKrDpy2bNnT/Ts2dN8OzY2Fmlpadi9ezfUajVatWoFf39/uxV5u4yMDAQHB1ss02g08Pf3R0ZGRqmPGzRoEGrUqIHw8HD89NNPeOGFF3DixAls3Lix1MfMmzcPM2fOtFvtRETlteztZSUfsSyJAP7Y8AeaTWxml30LIfDlX1/iys0r6BzW2aptZGRlIDM3E42iGpmXeeo9EVM1Bsf/Oo7EeomlPvbctXN4eMHDcNO4oU7VOhj6wFAE+/7z/n/TcBOvbn4VT3Z9Ev5ejvvcqQia2z7XiIiIXI1VzWVJfH190atXL5u2MXHiRLzyyit3Xef48eNWb3/kyJHmf9evXx9hYWHo0KED0tLSEB0dXeJjJk2ahHHjxplvHzt2DImJpf8hRERkTxfOXcDenXvLfORQmAQuHr6I/Mv58Aiy3znlB68chFpSo7V/63I/NjO3+Bz8Kp5VLJb7efohM6/08/NjqsZg3IPjUC2gGq7lXsPab9bi+Q+exzuj3oGHrvi5Ldu+DHWr1UXLmJblrsvZqP385C6BiIjIJlY3l0ajEevXr8euXbtw6dIlzJo1C/Xr10d2djZ27NiB1q1bIyQkpFzbHD9+PIYOHXrXdWrWrInQ0FBcunTJYnlRURGuXbtWrvMpmzdvDgD43//+V2pzqdPpzDPiAsUTGBER3a6wqNAh2/3uGyuGpArg8s+XUb19dbvWsu/SPjT3a37P9Xb9vAuLti4y35450LrRH01rNTX/OyokCjFVYzB00VB889s36BLfBd//8T1+PPMjFo1YdJetuA61Nz9fiIjItVnVXGZlZaFr1644cOAAvLy8kJeXh9GjRwMobr6eeeYZDB48GC+99FK5thsUFISgoKB7rteyZUtkZWXh8OHDSEhIAADs3LkTJpPJ3DCWxbFjxwAAYWG2T35BRJWTRq2Bh94D+TfzUWQssvv2s7KzIKkkCFM5GkwJMOQb7H45EXe1O7zcvaBR3/2jo3nt5oipGmO+bTAaAACZeZnw9/5n6GpWXhZqhtQs8/699F6o6l8V5zPPAwB+PPMjLmReQNL8JIv1XtrwEupVr4dXBt99JIyzkfTucpdARERkE6uay4kTJ+LXX39Famoq4uPjLc5/VKvV6N+/P7Zu3Vru5rKs6tati65du2LEiBFYsmQJDAYDnn76aQwcONA8U+y5c+fQoUMHrFq1Cs2aNUNaWhrWrl2Lbt26ISAgAD/99BOeffZZtG3bFg0aNHBInUSkfG4aNzSMbOiQxhIAjkcdL19jCQAC8PTxhKfO0661JNdORnxU/F1ndwUAD52HedgqUHzeZhWvKvjxzI+IDi0eJZJfkI8T506ge0L3Mu//RuENXMi8gAfqF19nOalVEro06mKxzpNLn8SITiPQ/L6yf9HoLCS3u/9eiYiInJ1VzeXmzZsxevRodOrUCVevXr3j/tq1a2PlypW21nZXa9aswdNPP40OHTpApVKhX79+eOutt8z3GwwGnDhxwjwbrJubG77++mssWLAAeXl5qF69Ovr164cpU6Y4tE4iUj43jds9Gy5rdevaDZIklW9orASENAyBSmXVhOAliqkSgz61+5R6KZC7liNJ6N2sNz7+9mOE+4cjxC8Eq3evRoB3gMW5kpM+nIRWMa3wYNMHAQDvff0emt/XHMG+wbh6/So+3PshVCoV2tVrBwDmGWRvF+QbhNAqrnfJKUmrlbsEIiIim1jVXGZnZyMqqvTrnhkMBhQVOeZb/Fv8/f2xdu3aUu+PjIy0+GOsevXq2LNnj0NrIiKyt4iICPTo0QNbt24t9TIk/yapJIQ1CYNnsP2OWga7B+PZhGetaixv6d+yP24W3sSiLxYh92Yu6lWvh1kpsyya8guZF5Cdn22+fSXnCl7Z9ApybuTA18MX9arXw5tD34Sv552XI1ECSWu3OfaIiIhkYdUnWXR0NI4cOVLq/du3b0dsbKzVRRER0T+mTp2KL7/8smxHMCUgNtl+77/hnuGY1HwSquir3Hvlu5AkCY+0ewSPtHuk1HVWjl5pcXti34nl3s/WKVvL/RhnIamtb96JiIicgVVjpoYPH473338f69atM/+hI0kSCgoKMHnyZGzbtg2jRo2ya6FERJVV06ZNsW7dOqjVaqhLaUAklQRJLaHlCy3hX9s+13tsFNQIs1vPRrAHr79YIe4xURIREZGzs+qTbMyYMfj111+RkpICv7+vyzVo0CBcvXoVRUVFGDVqFB577DF71klEVKn17dsX+/btw+zZs7FlyxbLI5gSENYkDLHJsXZrLHtF98LAOgOhkux33ibdnaThkUsiInJtkij3BdT+8e2332LDhg04efIkTCYToqOjMWDAALRt29aeNTqVI0eOICEhAYcPH0bjxo3lLoeIKqH09HQ0bNgQWVlZ0Hpq0fmtznY7x1Kr0uLxho+jTdU2dtkelV1RZiY0VWwbfkxERCQnm8bgtGnTBm3a8A8QIqKKFBERAU9PT2RlZUGj19itsQx2D8bYhLGI9ou2y/aofHjOJRERuTqe4EFEROgY0REP1X0IHlqPe69MjmHDbLxERETOoMzNZc+ePcu1YUmS8Nlnn5W7ICIiqjg1fGrgsbjHEOMfI3cplZ6kkuQugYiIyCZlbi63bNkCvV6P0NDQMl3MW5L4IUlE5Kz0aj0G1hmIzjU623T9SrIjfm4SEZGLK3NzWbVqVZw7dw6BgYEYNGgQBg4ciNDQUEfWRkREDtAgsAFGNRyFQPdAuUuhf1NxZl4iInJtZf4k+/PPP7Fr1y7Ex8dj9uzZqF69Ojp27IgVK1bg+vXrjqyRiIjsQC2p8XDdhzGp+SQ2lk5IpdPJXQIREZFNyvU1aWJiIt59911kZGRgw4YNCAgIwNNPP43g4GD07dsXGzZsQEFBgaNqJSIiK/np/DCt5TQ8GP0gr11JREREDmHVXxharRa9evXCunXrcPHiRXPDmZycjFdffdXeNRIRkQ1q+dXCvPvnoY5/HblLISIiIgWz6VIkBQUFSE1NxWeffYajR49Cr9cjMjLSTqUREZGtmoc2x9PxT8NN7SZ3KURERKRw5W4uTSYTvvrqK3z00UfYvHkz8vPz0bFjRyxbtgx9+vSBp6d9LuZNRES2aV+9PUY2GMlhsERERFQhytxc7tu3D2vXrsX69etx9epVtGjRAi+99BIGDBiAwEBODEFE5EzaVWvHxpKIiIgqVJmbyzZt2sDd3R3dunVDSkqKefhreno60tPTS3xM48aN7VIkERGVXevw1hjVcBQbSyIiIqpQ5RoWe+PGDXz66afYuHHjXdcTQkCSJBiNRpuKIyKi8mke2hxPNXqKjSURERFVuDI3lytWrHBkHUREZKO4gDiMjh8NtUotdylERERUCZW5uRwyZIgj6yAiIhv46/0xNmEstGqt3KUQERFRJcVxU0RECjC03lB4u3nLXQYRERFVYi7bXM6dOxetWrWCh4cH/Pz8yvQYIQSmTZuGsLAwuLu7o2PHjjh58qRjCyUicoDQ0FC4B7hDX0WPSJ9INAttJndJREREVMm5bHNZWFiIpKQkPPHEE2V+zKuvvoq33noLS5YswQ8//ABPT0906dIFN2/edGClRET2d+jQIfRZ1Qed3uyEblHdIEmS3CURERFRJVeu2WKdycyZMwEAK1euLNP6QggsWLAAU6ZMQa9evQAAq1atQkhICDZv3oyBAwc6qlQiIofRq/VoEd5C7jKIiIiIXPfIZXmdPn0aGRkZ6Nixo3mZr68vmjdvjv3795f6uIKCAuTk5Jh/cnNzK6JcIqIyaRLaBDq1Tu4yiIiIiCpPc5mRkQEACAkJsVgeEhJivq8k8+bNg6+vr/knMTHRoXUSEZVH4+DGcpdAREREBMDJmsuJEydCkqS7/vz+++8VWtOkSZOQnZ1t/tmzZ0+F7p+IqDQSJMQFxsldBhEREREAJzvncvz48Rg6dOhd16lZs6ZV2w4NDQUAXLx4EWFhYeblFy9eRKNGjUp9nE6ng073z5AzLy8vq/ZPRGRv4Z7h8NX5yl0GEREREQAnay6DgoIQFBTkkG1HRUUhNDQUO3bsMDeTOTk5+OGHH8o14ywRkbOo6Wfdl21EREREjuBUw2LLIz09HceOHUN6ejqMRiOOHTuGY8eOWUy4U6dOHWzatAkAIEkSxo4dizlz5uDzzz/Hzz//jMGDByM8PBy9e/eW6VkQEVmvund1uUsgIiIiMnOqI5flMW3aNHzwwQfm2/Hx8QCAXbt2oV27dgCAEydOIDs727zOhAkTkJeXh5EjRyIrKwtt2rTBtm3boNfrK7R2IiJ7CPYIlrsEIiIiIjNJCCHkLsKVHDlyBAkJCTh8+DAaN+YsjUQknxPXTiDGP0buMoiIiIgAuPCwWCKiyk6r1spdAhEREZEZm0siIhelldhcEhERkfNgc0lE5KI0Kpc9bZ6IiIgUiM0lEZGLclO7yV0CERERkRmbSyIiF6VT6+QugYiIiMiMzSURkYvihD5ERETkTNhcEhG5KJXEt3AiIiJyHvzLhIjIRUmQ5C6BiIiIyIzNJRGRixIQcpdAREREZMbmkojIVbG3JCIiIifC5pKIyEXxOpdERETkTNhcEhG5KEniOZdERETkPNhcEhERERERkc3YXBIREREREZHN2FwSERERERGRzdhcEhERERERkc3YXBIREREREZHN2FwSERERERGRzXiRNCrVhQsXcOHCBbnLICIiIiKyq7CwMISFhcldhuKwuSynsLAwTJ8+XfH/GQsKCpCSkoI9e/bIXQoRERERkV0lJiYiNTUVOp1O7lIURRJCCLmLIOeTk5MDX19f7NmzB15eXnKXQzbKzc1FYmIi81QQZqoszFNZmKeyME/luZVpdnY2fHx85C5HUdhcUoluNZd80SkD81QeZqoszFNZmKeyME/lYaaOwwl9iIiIiIiIyGZsLomIiIiIiMhmbC6pRDqdDtOnT+dJzgrBPJWHmSoL81QW5qkszFN5mKnj8JxLIiIiIiIishmPXBIREREREZHN2FwSERERERGRzdhcEhERERERkc3YXBIREREREZHN2FwSOQlJksr0s3v3bpv3lZ+fjxkzZpRrW3PnzkXPnj0REhICSZIwY8YMm+tQMmfO8/fff8eECRPQqFEjeHt7IywsDN27d8ehQ4dsrkWpnDnP8+fP4+GHH0ZMTAy8vb3h5+eHZs2a4YMPPgDn7CudM2d6uzVr1kCSJHh5edlci1I5c55nzpwptZ6PP/7Y5nqUyJnzvCUtLQ2DBg1CcHAw3N3dcd9992Hy5Mk21+PqNHIXQETFVq9ebXF71apV+Oqrr+5YXrduXZv3lZ+fj5kzZwIA2rVrV6bHTJkyBaGhoYiPj0dqaqrNNSidM+f53nvvYfny5ejXrx+efPJJZGdn491330WLFi2wbds2dOzY0eaalMaZ87xy5Qr++usv9O/fHxERETAYDPjqq68wdOhQnDhxAi+99JLNNSmRM2f6b7m5uZgwYQI8PT1trkPJXCHPlJQUdOvWzWJZy5Ytba5HiZw9z2PHjqFdu3aoWrUqxo8fj4CAAKSnp+PPP/+0uR6XJ4jIKT311FPCUS/Ry5cvCwBi+vTpZX7M6dOnrX4sOVeehw4dEtevX7dYduXKFREUFCRat27tgAqVx5nyLE2PHj2Ep6enKCoqsk9hCuesmb7wwgsiJiZGPPTQQ8LT09P+xSmUM+V5+vRpAUDMnz/fIfVUBs6Up9FoFHFxcaJ58+YiPz/fITW5Mg6LJXIhJpMJCxYsQL169aDX6xESEoJRo0YhMzPTYr1Dhw6hS5cuCAwMhLu7O6KiovDoo48CKB6eExQUBACYOXOmeWjJvYa5RkZGOuIpVWpy5ZmQkHDH8LqAgADcf//9OH78uH2fZCUi5+uzJJGRkcjPz0dhYaHNz62ykjvTkydP4s0338Qbb7wBjYaDzWwld54AkJeXx9eknciV5/bt2/HLL79g+vTpcHd3R35+PoxGo8Oep6vhOxWRCxk1ahRWrlyJYcOG4ZlnnsHp06fx9ttv4+jRo/juu++g1Wpx6dIldO7cGUFBQZg4cSL8/Pxw5swZbNy4EQAQFBSEd955B0888QT69OmDvn37AgAaNGgg51OrlJwtz4yMDAQGBtr1OVYmcud548YN5OXlITc3F3v27MGKFSvQsmVLuLu7O/R5K5ncmY4dOxbt27dHt27d8Mknnzj0uVYGcuc5c+ZMPP/885AkCQkJCZg7dy46d+7s0OesZHLl+fXXXwMAdDodmjRpgsOHD8PNzQ19+vTB4sWL4e/v7/gn78zkPnRKRCW7fQjIN998IwCINWvWWKy3bds2i+WbNm0SAMTBgwdL3bYtQ7Q4LNY6zprnLXv37hWSJImpU6davY3KxBnznDdvngBg/unQoYNIT08v1zYqM2fLdMuWLUKj0Yhff/1VCCHEkCFDOCy2HJwpz7Nnz4rOnTuLd955R3z++ediwYIFIiIiQqhUKrFly5byP7lKyJny7NmzpwAgAgICxEMPPSQ2bNggpk6dKjQajWjVqpUwmUzlf4IKwmGxRC5i/fr18PX1RadOnXDlyhXzz60hjrt27QIA+Pn5AQC2bNkCg8EgY8V0N86U56VLlzBo0CBERUVhwoQJDtmH0jlDnikpKfjqq6+wdu1aDBo0CEDx0UyyjpyZFhYW4tlnn8Xjjz+O2NhYu2yzspMzz4iICKSmpuLxxx/Hgw8+iDFjxuDo0aMICgrC+PHj7bKPykbOPHNzcwEATZs2xYcffoh+/fph1qxZmD17Nvbt24cdO3bYZT+uis0lkYs4efIksrOzERwcjKCgIIuf3NxcXLp0CQCQmJiIfv36YebMmQgMDESvXr2wYsUKFBQUyPwM6N+cJc+8vDz06NED169fx2effcZLHVjJGfKsUaMGOnbsiJSUFKxZswY1a9ZEx44d2WBaSc5M33zzTVy5csU8gyXZzhleo//m7++PYcOG4cSJE/jrr7/suu3KQM48b51qkJKSYrH81pd6+/bts3rbSsBzLolchMlkQnBwMNasWVPi/bdOSJckCRs2bMD333+P//73v0hNTcWjjz6K119/Hd9//z2bByfhDHkWFhaib9+++Omnn5Camoq4uDirt1XZOUOet+vfvz+WLVuGvXv3okuXLnbbbmUhV6bZ2dmYM2cOnnzySeTk5CAnJwdA8dESIQTOnDkDDw8PBAcH2/YEKxlnfI1Wr14dAHDt2jVUq1bNbtutDOTMMzw8HAAQEhJisfzWa/L2CYUqHbnH5RJRyW4/v+DJJ58UarXaqmmv16xZIwCIZcuWCSGKLzsBnnNZoZwtT6PRKJKTk4VarRaffvppuWuo7Jwtz5Js3rxZABDr1q2zaTuVhbNkeuuyFXf76dWrV7lrqmycJc+7GT9+vAAgzp8/b9N2KgNnynPJkiUCgFi+fLnF8rS0NAFAzJ07t9w1KQmHxRK5iAEDBsBoNGL27Nl33FdUVISsrCwAxd+YCSEs7m/UqBEAmIeBeHh4AID5MVTx5M5z9OjRWLduHRYvXmyeHY+sJ2eely9fLnH58uXLIUkSGjduXKbtkCW5Mg0ODsamTZvu+Gnfvj30ej02bdqESZMmWf/EKilne42eO3cO77//Pho0aICwsLAyPgu6Rc48e/XqBZ1OhxUrVsBkMpmXv/feewCATp06leepKA6HxRK5iMTERIwaNQrz5s3DsWPH0LlzZ2i1Wpw8eRLr16/HwoUL0b9/f3zwwQdYvHgx+vTpg+joaFy/fh3Lli2Dj48PunXrBqD4fIHY2FisW7cOtWvXhr+/P+Li4u46LHL16tU4e/Ys8vPzAQB79+7FnDlzAACPPPIIatSo4fhfgoLImeeCBQuwePFitGzZEh4eHvjwww8t7u/Tpw88PT0d/jtQEjnznDt3Lr777jt07doVERERuHbtGj799FMcPHgQo0ePRq1atSryV6EYcmXq4eGB3r1737F88+bNOHDgQIn30b3J+RqdMGEC0tLS0KFDB4SHh+PMmTN49913kZeXh4ULF1bkr0Ex5MwzNDQUkydPxrRp09C1a1f07t0bP/74I5YtW4aUlBQ0bdq0In8VzkfOw6ZEVLrbh4DcsnTpUpGQkCDc3d2Ft7e3qF+/vpgwYYJ5WM2RI0dESkqKiIiIEDqdTgQHB4sePXqIQ4cOWWxn3759IiEhQbi5uZVpOEhiYmKpQ7R27dplr6etWM6U55AhQ+465O706dP2fOqK5Ex5bt++XfTo0UOEh4cLrVYrvL29RevWrcWKFSsq/ZT45eFMmZaElyIpH2fKc+3ataJt27YiKChIaDQaERgYKPr06SMOHz5s1+esZM6UpxBCmEwmsWjRIlG7dm2h1WpF9erVxZQpU0RhYaHdnrOrkoS47VgxERERERERUTnxnEsiIiIiIiKyGZtLIiIiIiIishmbSyIiIiIiIrIZm0siIiIiIiKyGZtLIiIiIiIishmbSyIiIiIiIrIZm0siBThz5gwkScLKlSvlLoXshJkqC/NUFuapLMxTeZipfNhcEhERERERkc0kIYSQuwgiso0QAgUFBdBqtVCr1XKXQ3bATJWFeSoL81QW5qk8zFQ+bC6JiIiIiIjIZhwWS+QkZsyYAUmS8Mcff+Dhhx+Gr68vgoKCMHXqVAgh8Oeff6JXr17w8fFBaGgoXn/9dfNjSzq3YOjQofDy8sK5c+fQu3dveHl5ISgoCM899xyMRqN5vd27d0OSJOzevduinpK2mZGRgWHDhqFatWrQ6XQICwtDr169cObMGQf9VlwbM1UW5qkszFNZmKfyMFPXxOaSyMkkJyfDZDLh5ZdfRvPmzTFnzhwsWLAAnTp1QtWqVfHKK6+gVq1aeO6557B37967bstoNKJLly4ICAjAa6+9hsTERLz++utYunSpVbX169cPmzZtwrBhw7B48WI888wzuH79OtLT063aXmXBTJWFeSoL81QW5qk8zNTFCCJyCtOnTxcAxMiRI83LioqKRLVq1YQkSeLll182L8/MzBTu7u5iyJAhQgghTp8+LQCIFStWmNcZMmSIACBmzZplsZ/4+HiRkJBgvr1r1y4BQOzatctivdu3mZmZKQCI+fPn2+cJVwLMVFmYp7IwT2VhnsrDTF0Tj1wSOZnhw4eb/61Wq9GkSRMIIfDYY4+Zl/v5+SEmJganTp265/Yef/xxi9v3339/mR53O3d3d7i5uWH37t3IzMws9+MrM2aqLMxTWZinsjBP5WGmroXNJZGTiYiIsLjt6+sLvV6PwMDAO5bf681Mr9cjKCjIYlmVKlWsehPU6XR45ZVX8OWXXyIkJARt27bFq6++ioyMjHJvq7JhpsrCPJWFeSoL81QeZupa2FwSOZmSpswubRptcY/Jnssy/bYkSSUu//fJ7beMHTsWf/zxB+bNmwe9Xo+pU6eibt26OHr06D33U5kxU2VhnsrCPJWFeSoPM3UtbC6JKrkqVaoAALKysiyWnz17tsT1o6OjMX78eGzfvh2//PILCgsLLWZoI/kxU2VhnsrCPJWFeSoPM7UNm0uiSq5GjRpQq9V3zLC2ePFii9v5+fm4efOmxbLo6Gh4e3ujoKDA4XVS2TFTZWGeysI8lYV5Kg8ztY1G7gKISF6+vr5ISkrCokWLIEkSoqOjsWXLFly6dMlivT/++AMdOnTAgAEDEBsbC41Gg02bNuHixYsYOHCgTNVTSZipsjBPZWGeysI8lYeZ2obNJRFh0aJFMBgMWLJkCXQ6HQYMGID58+cjLi7OvE716tWRkpKCHTt2YPXq1dBoNKhTpw4++eQT9OvXT8bqqSTMVFmYp7IwT2VhnsrDTK0niXud+UpERERERER0DzznkoiIiIiIiGzG5pKIiIiIiIhsxuaSiIiIiIiIbMbmkoiIiIiIiGzG5pKIiIiIiIhsxuaSiMrlzJkzkCQJK1eulLsUshNmqizMU1mYp7IwT+VhppbYXBI5UFpaGkaNGoWaNWtCr9fDx8cHrVu3xsKFC3Hjxg2H7fe3337DjBkzcObMGYftoyzmzp2Lnj17IiQkBJIkYcaMGbLWYw/MVFmZMk/maQ/M0zGYp7LyBJipEjO9nUbuAoiU6osvvkBSUhJ0Oh0GDx6MuLg4FBYW4ttvv8Xzzz+PX3/9FUuXLnXIvn/77TfMnDkT7dq1Q2RkpEP2URZTpkxBaGgo4uPjkZqaKlsd9sJMlZUp82Se9sI87Y95KitPgJkCysu0JGwuiRzg9OnTGDhwIGrUqIGdO3ciLCzMfN9TTz2F//3vf/jiiy9krPAfQgjcvHkT7u7udt/26dOnERkZiStXriAoKMju269IzLSYUjJlnsWYZ8VjnvfGPIspJU+Amd6ipExLw2GxRA7w6quvIjc3F8uXL7d4A72lVq1aGDNmjPl2UVERZs+ejejoaOh0OkRGRuLFF19EQUGBxeMiIyPRo0cPfPvtt2jWrBn0ej1q1qyJVatWmddZuXIlkpKSAADt27eHJEmQJAm7d++22EZqaiqaNGkCd3d3vPvuuwCAU6dOISkpCf7+/vDw8ECLFi1serOX89tBe2Om/9SrBMzzn3qVgHn+U68SMM9/6lUKZvpPvYoniMjuqlatKmrWrFnm9YcMGSIAiP79+4v//Oc/YvDgwQKA6N27t8V6NWrUEDExMSIkJES8+OKL4u233xaNGzcWkiSJX375RQghRFpamnjmmWcEAPHiiy+K1atXi9WrV4uMjAzzNmrVqiWqVKkiJk6cKJYsWSJ27dolMjIyREhIiPD29haTJ08Wb7zxhmjYsKFQqVRi48aN5hpOnz4tAIgVK1aU+fldvnxZABDTp08v82OcDTO15OqZMk9LzJN5OhPmacnV8xSCmd5OCZmWhs0lkZ1lZ2cLAKJXr15lWv/YsWMCgBg+fLjF8ueee04AEDt37jQvq1GjhgAg9u7da1526dIlodPpxPjx483L1q9fLwCIXbt23bG/W9vYtm2bxfKxY8cKAOKbb74xL7t+/bqIiooSkZGRwmg0CiEq55soM72TK2fKPO/EPJmns2Ced3LlPIVgpiVx9UzvhsNiiewsJycHAODt7V2m9bdu3QoAGDdunMXy8ePHA8Adwy9iY2Nx//33m28HBQUhJiYGp06dKnONUVFR6NKlyx11NGvWDG3atDEv8/LywsiRI3HmzBn89ttvZd6+0jBTZWGeysI8lYV5Kg8zrVzYXBLZmY+PDwDg+vXrZVr/7NmzUKlUqFWrlsXy0NBQ+Pn54ezZsxbLIyIi7thGlSpVkJmZWeYao6KiSqwjJibmjuV169Y1319ZMVNlYZ7KwjyVhXkqDzOtXNhcEtmZj48PwsPD8csvv5TrcZIklWk9tVpd4nIhRJn35YgZ0JSMmSoL81QW5qkszFN5mGnlwuaSyAF69OiBtLQ07N+//57r1qhRAyaTCSdPnrRYfvHiRWRlZaFGjRrl3n9Z35Bvr+PEiRN3LP/999/N91dmzFRZmKeyME9lYZ7Kw0wrDzaXRA4wYcIEeHp6Yvjw4bh48eId96elpWHhwoUAgG7dugEAFixYYLHOG2+8AQDo3r17uffv6ekJAMjKyirzY7p164YDBw5YvPHn5eVh6dKliIyMRGxsbLnrUBJmqizMU1mYp7IwT+VhppWHRu4CiJQoOjoaa9euRXJyMurWrYvBgwcjLi4OhYWF2LdvH9avX4+hQ4cCABo2bIghQ4Zg6dKlyMrKQmJiIg4cOIAPPvgAvXv3Rvv27cu9/0aNGkGtVuOVV15BdnY2dDodHnjgAQQHB5f6mIkTJ+Kjjz7C//3f/+GZZ56Bv78/PvjgA5w+fRqffvopVKryfxe1evVqnD17Fvn5+QCAvXv3Ys6cOQCARx55xKW+9WOmxZSSKfMsxjyZpzNinsWUkifATG9RUqalknOqWiKl++OPP8SIESNEZGSkcHNzE97e3qJ169Zi0aJF4ubNm+b1DAaDmDlzpoiKihJarVZUr15dTJo0yWIdIYqny+7evfsd+0lMTBSJiYkWy5YtWyZq1qwp1Gq1xfTbpW1DiOJrQfXv31/4+fkJvV4vmjVrJrZs2WKxTnmm3E5MTBQASvwpaTpwV8BMlZUp82SezNN5MU9l5SkEM1VipreThCjH2a5EREREREREJeA5l0RERERERGQzNpdERERERERkMzaXREREREREZDM2l0RERERERGQzNpdERERERERkMzaXREREREREZDM2l0RERERERGQzNpdERERERERkMzaXREREREREZDM2l0RERERERGQzNpdERERERERkMzaXREREREREZDM2l0RERERERGSz/wd99KyRr0MFkgAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAInCAYAAAAMKK0kAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAyUhJREFUeJzs3Xd8U+X+B/DPOUmbjqR70LJaVltGKZQ9LEuGiDhQbwVBHBfHdeL1Kl4HLu514/0pbuCiiFdUcCB7KSCrVkBkFcpsKSMd6UiTnPP7ozQ0NG1Pm7RZn/fr1Rc2eXLyDY8t+eb7PN9HkGVZBhEREREREZEDRFcHQERERERERJ6PySURERERERE5jMklEREREREROYzJJRERERERETmMySURERERERE5jMklEREREREROYzJJRERERERETmMySURERERERE5jMklEREREREROYzJZSPl5eXh+eefR15enqtDISIiIiIichtMLhspLy8Ps2fPZnJJRERERERUA5NLIiIiIiIichiTSyIiIiIiInIYk0siIiIiIiJymNrVARARERF5izJDBQ5k56JEXwpdeDCS0xIQpA1o8jgiIk/C5JKIiIjICY4dOI2VS7ZCkiQIggBZlrF97V6MzRyMxKT4Ro8jIvI0XBZLRERE5KAyQwVWLtkKi0WCLAOSJEOWAYtFwsovtqDMUNGocUREnojJJREREZGDDmTnQpIku/dJkoQD2bmNGkdE5ImYXBIRERE5qERfCkEQ7N4nCAJK9KWNGkdE5ImYXBIRERE5SBceDFmW7d4nyzJ04cGNGkdE5ImYXBIRERE5KDktAaJo/22VKIpITkto1DgiIk/E5JKIiIjIQUHaAIzNHAyVSoQgAKIoQBAAlUrE2MzB1mNGlI4jIvJEglzX2gyyKysrC+np6di9ezd69+7t6nCIiIjIjfCcSyLyZTznkoiIiMhJgrQB6D0k2WnjiIg8CZfFEhERERERkcOYXBIREREREZHDmFwSERERERGRw5hcEhERERERkcOYXBIREREREZHDmFwSERERERGRw5hcEhERERERkcOYXBIREREREZHDmFwSERERERGRw5hcEhERERERkcOYXBIREREREZHDmFwSERERERGRw5hcEhERERERkcOYXBIREREREZHDfCq5fP755yEIgs1XcnKyq8MiIiIiIiLyeGpXB9DSunXrhrVr11q/V6t97q+AiIiIiIjI6Xwus1Kr1WjVqpWrwyAiIiIvVGaowIHsXJToS6ELD0ZyWgKCtAGuDouIqEX4XHJ5+PBhxMfHIyAgAAMHDsScOXPQrl27OscbjUYYjUbr9waDoSXCJCIiIg9z7MBprFyyFZIkQRAEyLKM7Wv3YmzmYCQmxbs6PCKiZudTey779++PBQsWYOXKlZg3bx6OHTuGoUOHoqSkpM7HzJkzB6GhodavjIyMFoyYiIiIPEGZoQIrl2yFxSJBlgFJkiHLgMUiYeUXW1BmqHB1iEREzU6QZVl2dRCuUlhYiPbt2+PNN9/EXXfdZXfMlZXL7OxsZGRkYPfu3ejdu3dLhUpERERuLOuXA9i2+nfYe1clCMDA0T3RewibCBKRd/O5ZbE1hYWFoUuXLjhy5EidYzQaDTQajfV7rVbbEqERERGRBynRl1qXwl5JEASU6EtdEBURUcvyqWWxVzIYDMjJyUFcXJyrQyEiIiIPpgsPtptYAoAsy9CFB7dwRERELc+nksvHH38cmzZtQm5uLrZu3YobbrgBKpUKmZmZrg6NiIiIPFhyWgJE0f7bKlEUkZyW0LIBERG5gE8ll6dOnUJmZiaSkpJwyy23IDIyEr/++iuio6NdHRoRERF5sCBtAMZmDoZKJUIQAFEUIAiASiVibOZgHkdCRD7Bpxv6NEVWVhbS09PZ0IeIiIhq4TmXROTLfLqhDxERkaerKCzE8U2bUFpQgOCYGLTPyEBAWJirw/JZQdoAdoUlIp/F5JKIiMhDndm1C9veeAOS2QxBFCFLEvYtWYKBM2civk8fV4fnNb6ctxplhgoEaQNw632jXR0OEZHb8qk9l0RERN6iorCwKrE0mQBZhmyxALIMyWTCtjfeQEVhoatD9BplhgqUFpejzFDh6lCIiNwaK5dERERuqr4lr8c3bYJkNtt9nGQ24/imTUiaOLEFoyUiIl/H5JKIiMgNNbTktbSgoOp2i6XWYwVRRGlBgQuiJkca+rAZEBF5OiaXREREbsZmyStgTSCrl7yOnzcPwTExkCXJ7uNlSUJwTEyLxUtVjh04jZVLtkKSJAiCAFmWsX3tXozNHIzEpPhmeywRkbvgnksiIiI3o2TJa/uMDIhq+58Ri2o12g8b1owR0pXKDBVYuWQrLBYJsgxIkgxZBiwWCSu/2FLvfk1HHktE5E6YXBL5qEqDHqe2fY2cn97DqW1fo9Kgd3VIRHRJ9ZJXe6qXvAaEhWHgzJkQ/fwAQYCgUgGCANHPDwNnzkRAaGgLR+3bDmTnQqqjkixJEg5k5zbLY4mI3AmXxRL5oAuHtuPA13MgS2YIgghZlnB84yKkTJqFiM79XB0ekc9TuuQ1vk8fjJ83z7bpz7BhTCxdoERfal3OeiVBEFCiL22WxxIRuRMml0Q+ptKgr0osLZf2cslVe7lkiwl/Ln0FfR+cD39tuCtDJPIp9jrCts/IwL4lS6x7Lmu6cslrQFgYu8K6AV14sN3kEABkWYYuPLhZHktE5E64LJbIxxTsXQ9Zsr+XS5bMKNi7voUjIvJdZ3btwo/33Yc9n32Go2vXYs9nn+HH++7DxSNHuOTVwySnJUCsYymzKIpITktolscSEbkTJpdEPsZYeBaCUMdeLkGEsfBsC0dE5JtsOsLKclVHWFm2doSN6NQJ4+fNQ+qUKegwahRSp0zB+PffR3yfPq4OnewI0gZgbOZgqFQiBAEQRQGCAKhUIsZmDq73SBFHHktE5E64LJbIx2jCYiHLdezlkiVowmJbOCIi36SkI2zSxIlc8upBEpPiMe3xCQ2eVWnvPEuljyUicmdMLol8TEyPETi+cZF1z2VNgqhGTOpIF0RF5HuqO8JWn2FZU3VHWPI8QdoA9B6SXOf9DZ1nWd9jiYjcHZfFEnm5K48cAYCUSbMgqC7t5RJVl/Z0+SFl0iz4B4e5NmAiH6G0Iyx5D55nSUTejpVLIi9W35EjfR+cj4K962EsPAtNWCxiUkcysSRqQY3pCEuew96S1+qlrUrOs2Tlkog8GZNLIi+l5MiRNgNvcmWIRD4tICwMA2fOrGrqYzZXLZGVJIhqNTvCeqiGlrzyPEsi8nZMLom8lJIjR5hcErlWfJ8+GD9vnu05l8OGMbH0QDWXvAKwJpDVS16nPT6B51kSkddjcknkpaqPHKmuWNbEI0eI3EdAWBg7wnoBJUtek9MSsH3tXmsCWhPPsyQib8CGPkReikeOEBG1nOolr/ZUL3nleZZE5O1YuSTyUjxyhIio5Shd8srzLInIm7FySeSl/LXhPHKEiKiFJKclQBTtv626cslr9VmYGRPS0XtIMhNLIvIarFwSebGIzv145AgRUQuoXvK68ostNt1iRZFLXonIdzC5JPJy/tpwdoUlImoBXPJKRL6OySURERGRk1QveSUi8kVMLomIiNxURWGh7RmYGRkICAtzdVhERER2Mbkk8nKVBr3tnsseI+CvDXd1WETUgDO7dmHbG29AMpshiCJkScK+JUswcOZMxPfp4+rwiIiIamFySeTFLhzajgNfz4EsmSEIImRZwvGNi5AyaRYiOvdzdXhEVIeKwsKqxNJUdZSQbLEAACSTCdveeAPj581jBZOIiNwOjyIh8lKVBn1VYmkxAbIMWbJU/Wkx4c+lr6DSoHd1iERUh+ObNkEym+3eJ5nNOL5pUwtHRERE1DCfTi7/9a9/QRAEPPLII64OhcjpCvauhyzZf3MqS2YU7F3fwhERkVKlBQUQ6jgzURBFlBYUtHBEREREDfPZZbE7d+7EBx98gNTUVFeHQtQsjIVnLy2FtdS6TxBEGAvPuiAqIt+w9oknUFFYiICwMIx69dVGPz44JgayJNm9T5YkBMfEOBoiERGR0/lk5dJgMGDy5Mn46KOPEB7OxibknTRhsZDlOt6cyhI0YbEtHBGR76goLET5xYuoKCxs0uPbZ2RAVNv//FdUq9F+2LCmB0dERNRMfDK5fOCBBzB+/HiMGjXK1aEQNZuYHiMgiPbfnAqiGjGpI1s4IiKyp6KwEAeXL0fWRx/h4PLl1ornwJkzIfr5AYIAQaUCBAGinx8GzpyJgNBQV4dNRERUi88ti12yZAmysrKwc+dOReONRiOMRqP1e4PB0FyhETmVvzYcKZNm4c+lr9h0ixVENVImzYJ/cJirQyTyeQ0dNzJ+3jzbcy6HDWNiSUREbsunksuTJ0/i4Ycfxpo1axAQEKDoMXPmzMHs2bObOTLPoi8pxZqdfyL/YjFaRYTg6r4pCNcFuzossiOicz/0fXC+7TmXqSOZWBK5AaXHjSRNnOjKMMkLlBkqcCA7FyX6UujCg5GcloAgrbL3QUREjeFTyeXu3btRUFCA3r17W2+zWCzYvHkz/u///g9GoxEqlcrmMU899RQee+wx6/fZ2dnIyMhosZjdzbZ9R/Hiwh9htkgQBQGSLGPBT9vw7B3jMaBbB1eHR3b4a8PRZuBNrg6DiK6g5LgRJpbkqGMHTmPlkq2QJAmCIECWZWxfuxdjMwcjMSne1eERkZfxqeRy5MiR2Lt3r81t06dPR3JyMv7xj3/USiwBQKPRQKPRWL/XarXNHqe70peU4sWFP8Jkrvp03SLLAACT2YIXFvyIz5+9kxVMIiKFqo8bqa5Y1sTjRkip+qqSZYYKrFyyFRZLVXM3+dK/2xaLhJVfbMG0xyewgknUBKYyI84dOANjcTk0IYGITo6HX5Cm4Qf6AJ9KLnU6Hbp3725zW3BwMCIjI2vdTrWt2fknzBb73UfNFglrdx3AzcPTWzgqIiLPxONGyFENVSUPZOdCquP/MUmScCA7F72HJLdw1L7LUFSE7K0/Q3/+PMKjopA2aCi03EPtcfTHCnD4p2zINX7uTv16GJ3HpSE8kb+3fbJbLDVN/sViiIJg9z5REJB3oaiFI/Jt2Z88jB1zpyL7k4ddHQoRNQGPGyFH1KxKyjIgSTJk+XJVssxQgRJ9KYQ6/t0WBAEl+tIWjtp3HcjOwut/fxirl36JXZs3YPXSL/H63x/GwezfXB0aNYKpzFiVWFokQAZkSa760yLh8E/ZMJUZG76Il/P55HLjxo14++23XR2GR2gVEQLp0pKaK0myjLhIfvrWkioNelSWXEClQe/qUIioCXjcCDlCSVVSFx5sXQp7JVmWoQvnVpaWYCgqwpL33oHFbIYsy5AsFsiyDIvZjC/emwtDET+c9xTnDpypd8XJ+QNnWjgi9+PWy2ItFgu++uorbNiwAQUFBXjhhRfQo0cPFBUVYd26dRg8eDBiY3kQvLPV1Q326r4pWPDTNuuey5rUKhGj+qS4IFoiIs/F40aoqaqrkvaSx+qqZN/h3bB97V7rnsuaRFFEclpCC0Tq2ZQuZa1vXPbWnyHZ2VsNAJLFguxtv2DI2PHN+jrIOYzF5fX+3FUUl7sgKvfitsllYWEhxo4dix07dkCr1aK0tBQPPvgggKqmOg899BCmTp2KV155xcWRepeGusE+e8d4vLDA9n61SsSzd4xHuC7I1eETEXkcHjfim5QcD1LfGCVVySBtAMZmDsbKL7bY7MsURRFjMwezmU8DDmRnYcl770CyWKzn0K79diky738YSWm9FI/Tnz9fb/Mu/blzLfmySIG6GvZoQgLr/bkLCAls4Ujdj9sml08++ST++OMPrFq1Cr169UJMjcYGKpUKkyZNwooVK5hcOpGSbrADunXA58/eibW7DiDvQhHiIkMxqk8KE0siIiIoSxqVHA/S0JjktARFVcnEpHhMe3wCz7lspJpLWYHL59BWL2V9/LW50IaGKhoXHhVV71LK8OjoFnhFVK2hTq/1NeyJTo7HqV8PV+25vIIgiohK5vE+brvnctmyZXjwwQdx9dVX292M3qVLF+Tm5rZ8YF5MSTdYAAjXBePm4el4aNII3Dw8nYklERERqhLCha9/j22rf8cfu3KwbfXvWPj69zh28PI+LCWNeJSMqa5KqlQiBAEQRQGCAKhUtauSQdoA9B6SjIwJ6eg9JJmJpQJKlrIqHZc2aChEO8fdAYCoUiFt0BDnBE0N0h8rwG8LNuHk1oM498dJnNx6EL8t2AT9saqjnxpq2AMAncelQVCJgAAIolD1p0pE53FpPI4Ebly5LCoqQmJiYp33m0wmmOs4fJqaprobrMVOuZ/dYImIyFdVJ2P1JWVKz5RU0oin+r/rG9N7SDKrks1I6VJWJeO0oaHIvP9hfPHeXJuls6JKhcz7H4Y2hHusW4JN4ojLP6PViWOvOzIUNeyJ652IXndk4PyBM6goLkdASCCieM6lldsmlx07dkRWVlad969evRpdu3ZtwYi8H7vBEnkGvUGPdXvX4WzhWcSGxWJkj5EI14a7Oiwit2UxWyBJ9v99U+LGu0ZY/9tUaf+D7T925dSbEO7ffRQ9B3ZB4YWSehuCFF4osf53fWOq4/DzV6NHv04AqqqXKrX9Chk1jtKlrErHJaX1wuOvzUX2tl+gP3cO4dHRSBs0hIllC1KSOCpt2OMXpEFc77qLYL7MbZPLu+++G//4xz8wbNgwjBw5EkDVpBqNRrzwwgtYuXIlPvzwQxdH6V3YDZbI/W0/tB2vfP0KzJIZoiBCkiUs2rgIsybNQv/O/V0dHpHbsZgtOHv6IiqNzbvaKf/kBQACAHtJrIC8E+cRFRcOWZLrTHQlSa5ahnfpv+sbczq3dhMYf40asa0jmGA6QdqgoVj77VLrXsqaai5lVToOALShoewK60JKEkc27HGc2+65fPjhhzF16lRkZmaiS5cuAIDbbrsNOp0Oc+bMwV//+lfcddddLo7Su4TrgvHsHePhp1ZBEASoRBGCIMBPrWI3WCI3oDfo8crXr8BkMVWdkSZVnZVmspjwytJXoOeZp0S1SJKMSqMZKpUIf391s33pQoPq794aFgx/fzUSk1tDFGv3kgCqKo+Jya0Vjbny+VUqEZVGs0MVWrqseimrSq2GIAgQVZfeG6nVNktZlY4j11OSOEYnx0MQ7adHbNijjNtWLgVBwEcffYRp06Zh6dKlOHz4MCRJQseOHXHLLbfgqquucnWIXondYInc17q962CW7FdfzJIZ6/eux00Db2rhqIg8g0olQu3XtIremq9/RUVZJQKC/HH1TQPsjumQ0hr7s45Bste9VSWiQ0prqP1U0PoFYtCYnti6ek+t40EGjU6F9lJlRMmYK9nrHEtNp3QpK5e8ut6+L7eistQI/2ANut86yO4YJZ1e/YI06DwurVa3WEFkwx6l3Da5rDZkyBAMGcIuWi2puhssEbmXs4VnIQoiLHLtpeuiICK/MN8FURF5v4qySpSXGusdExCkwaDRqXUmhAGB/tax8e2jce3kIcg9lIfSknIE6wKRkBTf6DHU/JQuZW3pJa+GoiJkb/0Z+vPnER4VhbRBQ6EN9d1ktrLUCFMDP6NKE8fwxBg27HGA2yeXRETVKg16FOxdD2PhWWjCYhHTYwT8faiRTWxYLCS5joYhsoRWYa1aOCJyBxWFhTi+aRNKCwoQHBOD9hkZCAgLc3VYPqkxCWFAkMZ6FmVdlIwh33MgOwtL3nvHpvPs2m+XIvP+h5GU1svV4bk1pYmjOzbsaeh8TnfhtsllYmKi3fMtaxIEATk5OS0UEZFnasmErDmf68Kh7Tjw9RzIkhmCIEKWJRzfuAgpk2YhonM/pzyHuxvZYyQWbVwEk8VU6z61qMbI1JEuiIpc6cyuXdj2xhuQzGbrm8x9S5Zg4MyZiO/Tx9Xh+SQmhJ5h3uxnYCguhDYkDPc996LD11NSSVRabaxvnKGoCEvee8faQKj6CBSL2Ywv3puLx1+b69MVTCXcMXFsiP5YQa2K66lfD6PzuDSEJ8a4OjwbbptcZmRk1EouLRYLjh8/ji1btqB79+7o1YufzhDVpyUTsuZ8rkqDvural5Iq+dKyUNliwp9LX0HfB+f7RAUzXBuOWZNm4ZWltt1i1aIasybNQlhwmKtDpBZUUVhYlViaLv1cXHqTKZlM2PbGGxg/bx4rmER1MBQXoljvnCZoSiqJSquNDY3L3vozJDtnagKAZLEge9sv7EjrgeqrSio5n9OdKphum1wuWLCgzvt+//13jBkzBpMnT265gIg8jLMTsvqqks54rvquX7B3PeQ6GtnIkhkFe9ejjY80sunfuT8WPLgA6/euR35hPlqFtcLI1JFMLH3Q8U2bINk5/gAAJLMZxzdtQtLEiS0cFZF3aajaqKSSCEBRtVHJtfTnz1clnXYSTEEUoT9X+4gach0lS1kbqkoqOZ/TnSqxbptc1qdnz56YMWMG/vGPf2D37t2uDofILTkzIWuoKunoczV0fWPh2Uu32/nHVBBhLDyr6HV4i3BtOLvCEkoLCup9k1laUOCCqIi8h5Jqo5JKImRZUbVRybXCo6LqTTTCo6Ob8EqpJiUJoTOSxurrNFSVVHI+pztx23MuGxIbG4v9+/e7Ogwit1WdkNnTmITMpiopy5AlS9Wfl6qSlQa9Q8+l5PqasFjIdTSykWUJmrBYRa+FyJsEx8TU+yYzOMa99uEQeZKaVUT5UnIoy7K1imgoKgIAayXRnupKopIxSq+VNmgoRJX9I3VElQppg3jCgiP0xwrw24JNOLn1IM79cRIntx7Ebws2QX+soFFjbJJGGZAluerPS0mjqayqs62SqqSS8zndiUcmlxcuXMAnn3yCNm3auDoUIrflrIRMSVXSkedScv2YHiMgiPYXWgiiGjFsZENerqKwEAeXL0fWRx/h4PLlqCgsRPuMDIhq+z8XolqN9sOGtWyQRF5EUUUSUFRJVFptVDJOGxqKzPsfhkqthiAIEFUqCIIAlVqNzPsf5tmaDlCSEDozaQRgrUraU12VjE6Or/dDh6jkeCe8eudx22WxI0aMsHt7YWEhDhw4gMrKSixatKiFoyJyH9X7EevayxjTYwSOb1xk3QdZ05UJWX37HZUsSW07NFPxc11JyfX9teFImTQLfy59xWbprCCqkTJpFvy535C8WH0dYQfOnFnrPlGtxsCZMxHAjpFETaZ0b2PaoKFY++1S6z7JmqyVRBkNj1F6LQBJab3w+Gtzkb3tF+jPnUN4dDTSBg1hYukgJQmhfOm/6xsT1ztR8VJWJVVJpedzugu3TS6rDyCuSRAEJCYmYtSoUbjzzjuRnJzsouhIX1KKNTv/RP7FYrSKCMHVfVMQrgt2dVgeQ7KYqpZ/OqDH1H9b/9tiqqh1v0oTiKTrH8fBZa/XSsiSrn8cKv8AWEwVuHhkJw4te6PWfsek6x9HeKc+8NNF1FuV9NdF1vtcDSV/SqueEZ37oe+D822T4NSRPplY6g16rNu7DmcLzyI2LBYje4xEuA90y/VFSjrCjp83z/acy2HDmFgSOUhptbG6kvjFe3Nt9maKKpVNJVHJGKXXqh7LrrDOpTQhdFbSCADRyfE49eth655Lm+vVqEoqPZ/THbhtcrlx40ZXh0B12LbvKF5c+CPMFgmiIECSZSz4aRuevWM8BnTr4Orw3J5kMaHk9CFYKpt/A7boF4DOEx5BYe7vMBn08NOGIyyhJ0S/ABQd3wdzhQGHv3vTmujW7PJ68NtX0fm6xxAQ1qreyqImLBZFx/fZfa7IzgMQ1qGq6UFd1dHGVFj9teE+0xW2LtsPbccrX9seRbJo4yLMmjQL/Tv3d3V41AQVhYW2yWFGhvUIEaUdYdkVlsi5lFYRAWWVRKXVRlYlm19dzXiUJIQy4NSksTFVSU85n9Ntk0tyrvvfWAx9SRnCdUF4b+Zt9Y6tryqpLynFiwt/hMl8qT32pR8wk9mCFxb8iM+fvZMVzAbIkgWWynKIajVElV+zP59aE4hWPUfZve/i4e31fjJbcnI/ortnoP2w23F842dVSagoAJIMQVSh/bApCAi93Jmu5nNJFhMksxmyZMGFnKx6u8FyyasyeoMer3z9CkyXEnHLpYTfZDHhlaWvYMGDC1jB9DD1LXmN79OHHWGJXKQxVcTq8Q1VEpVWG1mVbD71dXBVmhA6O2n0pKqkEm6TXP73v/9t0uOmTp3q5Ei8k76kDOeLDA2Oa6gquWbnnzDb+YECALNFwtpdB3Dz8HRnh++VRJUfRLV/kx9/cPkbMJcVQx0UgqSJM+scZyovgf7wTlQaLsJfG4Hwzn3hF6gDAJjLiq3JYu0ABZjKiiCq/RGWmIbgVh2hP7ITlSUX4a+LQHiny9epi2Q2o7K0sMEzMLnkVZl1e9fBXEfzI7Nkxvq963lEiQdRsuSVHWE9T0WZEbmH8lBaUo5gXSASusQhwEPfJPo6VhG9i5JjP5QkhM2RNHpKVVIJt0ku77jjjkY/RhAEJpdOpKQqmX+xGKIgWO+rSRQE5F0oatGYfZm5rBimsvr/votO7EPuugU2Fce83SuQMHI6Qtt1g782wn5iCQCSDH9dhPVbv0AdYnrYb7RVn3P7Nio6A5NLXht2tvAsREG0VixrEgUR+YX5LoiKmkrJktf2GRnYt2SJNQGtiR1h3c+Z3HPYumaPtW+ELMvYtzMHg0anIr49zx/0RKwieg8lDXvieic2mBD6atKolNskl8eOHXN1CD5PSVWyVUQIpDrWmkuyjLhIfprnLkzlJZcSy0tvXi8lkbJkRu66+ej6l+cQ3rkv8navsJv8CaIK4Z36OhyHsehcg91gSZnYsFhIdTQ/kmQJrcJatXBE5AglS14DwsLYEdZDVJQZqxLLK6oikkXC1tV7cO3kIaxgErmQ0oY9ShLC5koa69oP6kncJrls3769q0PweUqqkreP6Y8FP22zVjdrUqtEjOqT0hKhkgL6wzvr7EgrSxboj+xETI8RSBg5Hbnr5tfaT5kwcnqDy16V0IRGO+W8TQJG9hiJRRsXWfdc1qQW1RjJ8z49itIlr/F9+rAjrAfIPZQHqY75lCQJuYfykJyW0LJBEfkI/2CNzZ/2KO3g2hhKk0El4+rbDxqe6DlbINwmuSTXU1KVDNcF49k7xuOFBbb7MtUqEc/eMR7huqAWjprqUmm4WO9+ysqSiwCA0Hbd0PUvzzV6P6VS0d2H4eTPS5p0BibZCteGY9akWXhlqW23WLWoxqxJsxDGPaoepTFLXgPCwpzWEba+7rTUdKUl9VdFSkuav0M4KacNCbP5s6kMRUXI3voz9OfPIzwqCmmDhkLLD34aRbJIkOvaoqNQyo2Xu6VbTPY/WI/oGFtvM57wTq3qfKw9hbnnkLNmT9WHhIIAXEoGO45ORViNZfB1jauZNCrZD+opFUy3Ti7z8/PxySefICsrC0VFRbU+ERQEAevWrXNRdN7n6r4piqqSA7p1wOfP3om1uw4g70IR4iJDMapPChNLN9Mc+ynraw505Rhj8TmoArRoO/Qv7AbrRP0798eCBxdg/d71yC/MR6uwVhiZOpKJpQdyxZLXhrrTUtMF6+qvigTrGl8VIfvMZjMkO8vJG+OuJ/9p/e9Ko7FJ1zi0JxtLP5pn00127bdLMemv96NLj54OxQdUHXmiVrv1W3WHSRYJpWcLYal0bD6Vik9PxJldR6uSWQGADAiigPj0RFRcNKDmqeFmownFJy/AVF4Jv0B/hLSNhFrjZ73v6Nq9l5PiGslgzqrf0WFUD6g1fvWOq5k0Kt0P6gnc9v/YPXv2YNiwYSgvL0dSUhL27t2Lrl27orCwEKdPn0bHjh3Rtm1bV4fpVRpTlQzXBbdoV9j6jkch+xqzn1JJ0thQc6BaYy59Ondu30akTJrFbrBOFK4NZ1dYL+HMJa8NVSSVdKdlBbPpErrEYd/OHOuey5pEUURCUrwLovI+ZrMZp4/mwFhR0fDgZlReWopvPv3AmuRW/zxZzGZ89cG7uPHOGQgMdux9iiYgAK07dPTqBFOWZFgqLRBUAkSV2OzPF9o2EsHRISg8cR6mUiP8gjUIaxcFdYDt0XAlZ/Q4tf3IpSS06v3M+YNn0GZAJ+jiwqE/VlBntVWWZJTk6RHVJa6BcZeTRqX7QT2B2/7f+uSTT0Kr1SI7OxtBQUGIiYnB3LlzMWLECHz11Ve477778Pnnn7s6TK/jiqpkQ4ljQ8ejkH1+gTpF+ymVJI1KmgMBsB1j/XTu8pEj7AbbMvQGPdbtXYezhWcRGxaLkT1G8vxLN9bQklcly1iVVCSVdKd11tJbXxQQpMGg0anYutq2W6woihg0OhUBgU0/eooukywWGCsqoPJTQ+XCpOvA71n17rE9kXMIPfoPbPL1LWYzjBUVVcmrFyeX1USVCFGtavLjj6zeA3OFCeoAP3QanVrvWH+tCjFd29R5v7mi8nJiCVx+PyPJOPXrESRN6A1zRaU16axFEGAur4SoVtU7rmbS2Bz7QV3Fbf9v3bJlC5544gm0a9cOFy9W7Q2r/iG++eab8csvv+Dvf/87Nm3a5MowvZKzqpJKqo0NJY5KjkdhBbNuDe2nVJI0+gXqFDUHgox6xlw+coSa1/ZD2/HK17Z7MhdtXIRZk2ahf+f+DV+AnKI6+XO0EqgkaVRakVTSnZYcE98+GtdOHmJ7zmVSPBPLZqBSq+Hn1/S/168/mocygwFBWi1uuue+Rj++rKTE+r7lSqIgoLS42KH4AMBisv9hENVmrjDBXF7plGvpc8/VW5UszD0Pv2CN/cQSAGQZ/sEBAFDvuJpJY3RyfL37QaOSPWflQ/PXn5tIkiTExlZ1kQwLC4NKpbImmQDQo0cP7N69u1HXnDdvHlJTUxESEoKQkBAMHDgQP/30k1Pjpirb9h3F5Bc+xcc/bMGKbfvw8Q9bMPmFT/HrH0etY2omjrIswyJJkGXZmjhWJ6cNHY9C9aveT9lm0CTE9Bhhs9xVUdKIGs2B7LnUHKi+MTxypGXoDXq88vUrMFlMl36mqn62TBYTXln6CvQGvatD9BiSyQSz0djkr2Evvoix//kPhr34YpOvYSgowLbXX69KGmW5KimU5aqk8fXXYSgogNloxNF16+qtSB5bvx5moxEBERGKutOSYwKCNEhOS0D60BQkpyUwsXRTZQYDSkuKUWYwNOnxurDweitNujCuFnFn5opKnDtwGmd2H8W5A6erKoyXmEqNVdVGewQBlaUVCE+IhlDXex5RQFhCVUOf+sddThr9gjToPC4NgkoEhKprQAAElYjO49I8ppkP4MaVy8TEROvZl6IoIjExEWvXrsUtt9wCANi6dSvCGvmJcJs2bfCvf/0LnTt3hizLWLhwISZOnIjffvsN3bp1c/ZL8FlKq41KEkclx6NQ/erbT6m0o6yi5kAy6hzDI0ca9tAnD0Fv0CNcG4537nqnSddYt3cdzHb22AKAWTJj/d713KupgGQy4cKRIzC7eE/XqW3b6mxaIlks+PPrr9FmwABcPHSo3r06Fw4eRFhiIoJjYuqsXF7ZnZaIqpQZDDi0JxslhXrowsLRJTUNQVotuqSmYeeGtbDY+3kSRST1TGv5YEmR4tMXcXLrIZv9lAV7T6Lt4CSExIcrqkqqA/zRdnASTm45aHMdQRTQdnCSdQ9n7XFVlxHE2kljeGIMet2RgfMHzqCiuBwBIYGI4jmXjtHr9QgPr/qkZ/To0fjqq6/w8ssvAwDuu+8+zJw5E0ePHoUsy9i4cSNmzpzZqOtPmDDB5vuXX34Z8+bNw6+//srkspHqW/KqJGm8eXi6osRRyfEoVLeG9lMq7SirtDlQ3WN45EhD9AY9LpRccOgaZwvPQhREWGQ7b3YEEfmF+Q5d31dIkgRzRQVUajXEFtjrVGkwID87GxV6PQLCw9EqLQ3+Wi1MBkO9SaOppAR+AQEIioqqt4ISFBUFv4AA+AUEoHtmJvZ98YXNOWqiStVs3WmJPFnuwQNYs3SJzR7anRvWYvTNmWjfJQmjb87E6q++qLXHdvTNmQgM1ro6fLLDXFF5ObEEbPZTntxyEEkTeiM8IRoFe0/aXRpbsyoZEh+OpAm9UZh7HpWlFfAPDkBYQnSt5kDV4y4eLUBlSQW0rcIQ062N3aTRL0jjMV1h6+JWyWWrVq1wzTXXYPLkyZg5cyYyMzNhMpng5+eHRx55BKWlpfj666+hUqnwzDPPYNasWU1+LovFgq+++gqlpaUYOLDuDddGoxHGGi2qDU1cPuFNGtonqbTaqCRxHNUnWdHxKFSbkv2USpNGpc2B7I5R8cgRZ6urYU9sWCwkuY4GE7KEVmGtWjhSzyaq1VD5N21J4/Z33kFlSQn8dTr0f+ihOsed278fez7/HLLFYn1zenTdOqROmYJABUmjyt8f8X374ui6dZDtLI0VVCq07tfP+jpie/RAWEIC8rOyUHb+PPx0OnS96SYuiSW6QpnBgDVLl1grk9U/ixaLBau/+gKTH34c7bskYfLDj9tUNpN6prVIYqnkfE2ewVmbkv2UUcnxiqqSQFVlUsl+SHWAP6K6xMFSaYGudQRUfk1vXuTu3Cq5nDRpEr777jt899130Ol0uPHGGzF58mSMGDECgiDgn//8J/75z382fKF67N27FwMHDkRFRQW0Wi2+/fZbdO3atc7xc+bMwezZsx16Tm+iZMmr0mqjknM1w3VBio9HIVtK9lPG9BihKGkEGm4OdOUYY9E5qAJ1aDfkLwjgklinqa9hz8geI7Fo4yKYLKZaj1OLaoxk9bjFVJaUwFhcXO8YY0lJVWJ5KSm0HpptNmPPZ5+h39/+hpzVq+tMGuPSqxqvaXQ6pE6Zgj2ffWaTpAoqFVKnTIG/1vaNrkanQ/uMDFgqK2GqqIDGx99sEtlzaE92vd1gD+3JRtqgIQjSapE2aEiLxnYgOwtL3nun1vmamfc/jKS0XorH+CLrfso6urxWllZth1BalaTa3Cq5/Pzzz1FeXo5ly5Zh8eLF+Pzzz7Fw4ULExsYiMzMTkydPRu/evR16jqSkJGRnZ6OoqAhLly7FtGnTsGnTpjoTzKeeegqPPfaY9fvs7GxkZGQ4FIO7c3TJq5KkEVB+rqYrjkfxBkr3UypJGqtVNweqT/UYyVwJs7EcfsF84+osNRv2ALAuf61u2LPgwQWYNWkWXllqm3yqRTVmTZqFMFaP3UpeVpbd/Y9AVcfXi4cOKU4ao1NSMOTJJ5GflYVyvR6B4eGIS0+vlVgSkTIlhfp6l6WXFDauQVpdezfrGld08QICg4IRFReHiOjLKwsMRUVY8t47sFR/KFXjfM0v3puLx1+bCwANjvHVCqbSLq+A8qok2XKr5BIAAgMDkZmZiczMTOj1evzvf//D4sWL8fbbb+Ptt99G586dMWXKFNx2223o0KHxZxz6+/ujU6dOAID09HTs3LkTc+fOxQcffGB3vEajgUZzeU201kP/oa5OxBpKyJyx5FVp0ggoTxwbOh5FybEnvkbpfkpAWdJIrqe0Yc+CBxdg/d71yC/MR6uwVhiZOrLJiSXPzGw+Ffr637yW6/Von5HRYNJoLClBXlaWdc9m4siR0OhqfzhERMo1phtsQ4ljQ3s36xonyTJ+/3WLTbUxe+vP9Tb6yt72S1VX6QbGDBk7vtF/J95A6X5Kajq3Sy5rCg8Px4wZMzBjxgycPn0aixcvxhdffIFnn30Wzz33HPr374+tW7c69BySJNnsqXRXJrMFljqWZyjx5oM3W/+7orL2kjkA0JeU1bvk9ZMnpyIqNLjeJa9RoVpUVJqQ1rktPnlyKjZkHcRZfTFiw0MwIj0JYdqgWs8fqPHHhMFVB96qRBF+jTxEt6GE2Fcp3U9JnkNpw55wbbhTusLyzMzmFRBe/5vXwEsN7qqXsdpjb89mzurVSJ0yBdEp3JNO1FRKu8E2lDgq2bsZpNXWPe6KaqP+/Pl6z6vVnztn/e+GxvgipV1elTJXVEKfew6mUiP8gjUIT4iGOsC3jx9y6+SyptatW+Pvf/87xo4di2effRbLly/H9u3bG3WNp556CuPGjUO7du1QUlKCxYsXY+PGjVi1alUzRe0cJrMFB0/ko8xoPyl0lp9/PwxzHZ90mS0WLF6zA706t623ctkqMhR7ck5bb+vUJgad2lQt5zhxVo8TZy8vIzGUVeC3wyehLylDuC4IvTq3RUy4DkntWtkkmPVVJZUee+KLlDbhqe+okpqUjqPm48yGPQ1VJJUswWUF0zFxvXsr2lNZl4b2bA558klWMImaKEirbbAbrJLEUenezXrH1ag2hkdF1XtebXh0dNW5uA2N8WFK9lMqSRobOtLEV3lEcnnixAlr1XLfvn2QZRmDBg3C5MmTG3WdgoICTJ06FXl5eQgNDUVqaipWrVqFq6++upkidw6LJKHMaIKfqvFVvcYoKauof39BWQViwnWYfs1ALPhpGyw1ftmqRBF3jBuImDBly4b3HTuDhVdcY+2uP5E5qh86tYmBH6peZ0NVSaXHnngjdVCIzZ/2NLSfsqGjSqopHUfNy1kNe5RUJHlmZvNrbCOeKzW0ZzM/K6vOiicRNayhbrBKEkelezfrHVej2pg2aCjWfrvUup+yJlGlqmouJKPhMT7sysQxLCHKJrFUkjQqOdLEVyuYbptcnj9/3rrfctu2bZBlGcnJyXjhhRcwefJkJCQkNPqan3zyifMDbUF+ahX8/Zo2Zf/+fBWKS8sREhyIf0weY3dMdJiu3iVaMeE6+Pup0atLO3RsHY0df+biQlEpIkOD0b9rInRBlzdBF5eWY/v+XFwsLkVESDD6d01ASHCg9b6FP22zJoXVz2m2SFi8Zgeu7puCuMhQRVVJpceeeKOkicrOea1rP6WSo0r8AnWKx1HzC9eGK2rYU19VUmlFkmdmtgxHGvEo2bNJRM5V88dNSeKodO9mveNqVBu1oaHIvP9hfPHeXJtOsKJKhcz7H4Y2pKpRj5IxvqihxFFp0qj0SBNf5FbJZWlpKb799lssXrwY69atg8lkQlxcHB555BGndIr1ZcWl5Sg0lNc7pn/XBPywdY/dSqBKFNG/6+VDXUOCA+s8Y3Jvzml8/MMvNlXJH7buwd0ThqBHh9bYvj+3zv2jkixhQ9ZB3HZ1P0VVSaXHnlBtSo8qUTqOWkb/zv3rbdjTUFVSaUWSZ2a2nPr2VAK1G/bE9e4NjU6neM8mETVNQ/splSSOSvdu1jvuimpjUlovPP7aXGRv+wX6c+cQHh2NtEFDbJJGJWN8jZLEUWnSqPRIE1/kVsllTEyM9fzJ2267zXrGpSiKrg7NJ4QEB+LuCUPw8fdViWH1MlSVKOLuCUOgCwqotyIJVCWxH//wi92q5Mff/4IX774OF4tL6/2k76y+6mw4JVXJ28f0V3TsCdWm9KgSpeOo5dTVsEdJVVJpRZJnZrqH+hr2OLpnk4jqpmQ/pZLEMTC44b2bgP09npIsQ1VHtVEbGtpgx1clY3yJksRRadLYmCNNfI1bJZejRo3C5MmTcd111yEgwHcnxZV6dGiNF+++zu6S14YqkgDqrUpaJAk7/sxFREhwvZ/0xYZX7SFUUpVszLEnZEvpUSWNOdKEXEtJVVJpRVLpElxqPkoa9jiyZ5O8S0V5JY4dOI2jf55CWKQOyWkJCNLyvVRTKW3EoyRxbGjvZrWa44ouXkBgcDCGXXu9zzfgcRYliaPSpJFHmtTNrZLL5cuXuzoEgv0lr0oqkiHBgfVWJUVBwIWiUowb0K3O5beiIGJEetWZT1f3TVFUlVR6VqavqqvLq9KjSnikifupa0+lkqrkbUNvU1yRbGgJLjUvpQ17mrpnkzxDRZkRuYfyUFpSjmBdIBK6xCEgSGMz5kzuOWxd/TskSYYoVv0bvH3tXozNHIzEJN/c99WQ6nMog+r4WVHaiEdp4hik1SpqpFM9zmSqRGV5BYJD6m7aR5dVN+Sp7ygRJYljWEKUoqTR2UeaeBO3Si7JfSmpSI7qk1JvVVKSZUSGBte7/DZzVD+EaauSwsZUJcN1wV7bFdYRDXV5VXJUidIjTahl1LenUklVsrEVSWedmUmNp7RhT0N7Nsn9KEkYgUtJ45o9NlWxfTtzMGh0KuLbR1uvVTWm6v+T6j8tFgkrv9iCaY9PYAXTjpvuua/e+5U24gGUJ47UfDqNTm1wjJJqozrAT3HSqORIE1/E5JIUUVKRBJQ3BbK3/LZX57ZQqWyPWmFVsumUdHlt6KiSakrHUfNqaE/l3DvnKqpKsiLpGdiwxzspSRiBGknjFSuGJIuErav34NrJQxAQpEHuobx6l28eyM5F7yHJzf/CvIzSRjzkOZRWGxuTNKoD/H22K2xdmFySIkoqkoCypkDVrlx+W2kyo8xY+00xq5JNo7TLa11HlVxJ6ThqPg3tqdx9dLfiqiQrku6jrm6wbNjjmeqrSipNGAE0mDTmHspDcloCSkvK61++qS9tjpfp9ew12LG3n5I8i9LEkUlj0zG5pFrsdYRtzDEl9TUFopbDLq/eR8meypsG3uSSqmR9Z2tS3errBhudksKGPR6moaqk0oQRQINJY2lJ1fFiwbrA+pdvhgc758X5IKX7KcmzMHFsXkwuyUZ9HWGVViSB+s/BpJbBLq/epzGdXluyKtnQ2Zpkn5JusNEpKWzY4yGUVCWVJoxAw0ljsK7qGLCELnHYtzPH+rw1iaJoTVapabifkqhxeIAkWdXsCCvLVU0BZPlyR9j2sRF48e7rcP3QNAzu0QnXD03DS/dMtB5DQu4lvHNfCKLK7n3s8uqZRvYYCbVo/zPB5jp7Um/QY+m2pXj3p3exdNtS6A36WvdX7wOVZRkWyQJZlq37QK8cT5cp6QYLXG7Yk3z99WifkcHE0k0pqUoqTRiBqqSxrnO+RVFEwqUusAFBGgwanQpRFC7dJ0AQAJVKxNjMwWzmQ0QtipVLslLaEZYVSc/ALq/ep6XPnlRSkVRytib3dtqntBssuV5AkL/Nn/YoqUp2S+9Qb5UxocaxIdVJ49bVe2rt+Rs0OhUBgZdjiW8fjbF/GYxjB05Xdb3kOZdE5CJMLslKaUdYZ6ve43musAS6oAC0jQlHXGRoszyXr2GXV+/TUp1eG+pMu+DBBYrP1iT72A3Wc1x904AGxyipSjYmYQSqksZrJw+xbRCUFF9rHAAEBPqjY7e2aJ0QDT9/vr0jItfgbx+yUtoRtjHsNQcKCb687MfeHs91uw/g2TvGY0C3Dk1+LXQZu7x6H2fuqayrEY/SiqTSfaBUG7vBepeG9j5WVyWVJIxKz8Gk5ldmMNg09OmSmoYgLk0nqhOTS7JqTEdYJeprDtSjQ2ubPZ7A5eYHJrMFLyz4EZ8/eyfCdexyR9QUSrq31rfsVWlFcmSPkYrO1qTaNDodu8F6kcZUJQOCNHU22lF6DiY1v9yDB7Bm6RKbudi5YS1G35yJ9l2SXB0ekVtiQx+yqj6jUq0Sq5oBXGoKoFbZ7whbn4aaA1VXNOva42m2SFi764CzXhqRT9l+aDvu+M8dmL9+Plb+thLz18/HHf+5A9sPb7eOaagRT0hgiOLOtLMmzYKfyg+CIEAlqiAIAvxUfs2yD9TbVHeD7TxuHFr374/O48Zh6FNPITqFe9s9UXVVMrV/Z3RIaY3U/p1x7ZShipNCm46zMqoOepcvd5ytKDM28yugamUGA9YsXQKLpep3oyRJVb8rLRas/uoLlBkMrg6RyC2xcukjqpei1lySak9jzqisb8mrkuZADe3xzLtQ1NiXSeQT6qtKKt0r2dCyVwEC1KJaUUWypfaBeqvqbrDkHeqrSjakMedgUvM6tCe73rk4tCebR5R4MXNFJfS552AqNcIvWIPwhGioA+pu6EWXMbn0Ef+YPEbxWCVnVDa05FVJc6CG9niyqQ9RbQ11cFW6V7KhZa9F5UWN6kzb0mdrEnmjxpyDSc2rpLD+bs4lhezm7KkaShyLT1/Eya2HqlYOCAIgyyjYexJtBychJJ6N1hrC5JJqaagJT117JauXvL5493WKmgP1S6l7j6daJfLIE/Ip1ZXHK/dF1qSkKql0r6SSRjysSLYMY0kJ8rKyUKHXIyA8HHG9e0OjY0dnb1Vfs57GnINJzUsXVn83Z10YkwxP1FDiaK6ovHw/AFz6f0CWZJzcchBJE3qzgtkAJpdko6GKJKBsyauS5kC6oADcPWEIPv7e9vnUKhWevWM8wnVBzfpaiZzFZDHBItVO5hrj1amvWv+7wlRhd8yq7FX1ViVXZa9CpC6y3qQxUheJClMFhqQMqbcRz+CUwagwVSBQE4jxfcZb71OJqsa8LGrAuf37sefzz20a+uSsXo3UKVO479ILNdSsR2nHWWp+XVLTsHPDWlgsdj6oE0Uk9Uxr+aDIIUoSR33uucv3X0GWZBTmnkdUMn8O68PkkqyUVCRDggMVLXmtbg5UnTiKggBJlqESbZsD1dzjWaCvOudy8uh+aBXBJbHkGUwWEw6ePoiKSvsJoTMdOHUAAgTIsLNMCwIOnDqAYd2H1Vu5bBXWCvuO7wMA3DLoFizZsqRWZ8tbBt2CU+dP4dT5U7WuEeAfgKTWSfBT+Tn/BfoYY0lJVWJ56SiS6t+pstmMPZ99hiFPPskKphexadaDy/Nd3azn2slDGn0OJjWfIK0Wo2/OxOqvvqg1F6NvzkRgMLs5exoliaOp1GitaNYiCKgsbf5/6z0dk0uyUlKRHNUnRfF5mEqbA1Xv8aw0mVFmNCFMy4oleQ6LZEFFZQXUanWzJ1zRodH1LtOKDo1GdGg0pg6bikUbF8EiWSCIAmRJhkpU4fZhtyM69HLXyrQOaegY1xG7c3bjouEiIrQR6NOxD7SB9t80mSwmVFRWwCJZmFw6QV5WFmQ7VREAkC0W5GdlsdGPF1HarEfJOZjUMtp3ScLkhx+3OecyqWcaE0sPpSRx9AvW2L8fAGQZ/sHKT07wVUwuyUpJRRJo3HmYSpoDEXkDP5Uf/NVNf/P3+vLXUVxWjJCgEDw+8XG7YwYkDcCq3+wvjVWJKgxMGgh/tT/SEtPQoVUH7DqyCxdKLiBSF4m+nfpCF1i7Chapi8TotNGK4zSb7S/Lpcar0NffMKRcz4YhnqiuPZWNadbjSMdZcq4grZZdYb2EksQxLCEKBXtP2q1wCqKAsASeNdsQJpdkpbQiqXTJKxEpV1xWjKKy+o/fCQkMwfSR0zF/3fxaVcnpI6fbJI8hgSEY0WNEc4dNDggIr79hSGA4G4Z4mvr2VLJZD5FrhSdEN5g4qgP80HZwEk5uOWjT9EcQBbQdnAR1AFftNITJJVk1piLZmPMwich5urfrjuf+8pyiqiS5t7jevZGzerV1z2VNgkqFuPR0F0RFTdXQnspRN/Zjsx4iF1IH+CtKHEPiw5E0oTcKc8+jsrTiUkUzmomlQkwuyaqxFUkueSVyjYaqksXlxdh5eKd1H2Xfzn0REhjSghGSEhqdDqlTpmDPZ5/ZdIsVVCqkTpkCfy33dXmShvZU5p+8wGY9RC6mNHFUB/izK2wTMbkkG6xIEnm2fSf21Vo2u2L3CkwfOR3d23V3dXh0heiUFAx58knkZ2WhXK9HYHg44tLTmVh6ICV7KpPTEtish8jFmDg2LyaXVAsrkkSeqbi8GPPXzbc2/KneV2KWzJi/bj6e+8tzrGC6IY1Ox66wXkDpnko26yEibya6OgAiInKOnYd3wiLZP9rCIlmw68iuFo6IyHckdImDKNp/W8U9lUTkK1i5JCLyMHXtqbxouGhdCnslQRRwoeSCC6Il8g0BQRruqSQin+dTyeWcOXPwzTff4MCBAwgMDMSgQYPw73//G0lJSa4OjYhIkfr2VEZoI+wmlkDVEtlIXWQLR0vkW+LbR3NPJRH5NJ9aFrtp0yY88MAD+PXXX7FmzRqYTCaMHj0apaWlrg6NiKhBNfdUypAhSRJkyNY9lSltUqASVXYfqxJV6NupbwtH7Lv8dTpoQkLgr+MRMb6mek9l+tAUJKclMLEkIp/iU5XLlStX2ny/YMECxMTEYPfu3bjqqqtcFBURkTIN7ak8cPoApo+cXquyqRJVmD5yOs/CbEH9H3rI1SEQERG1OJ9KLq9UVFQEAIiIiKhzjNFohNFotH5vMBiaPS4iInuU7Kkc0WMEnvvLc9h1ZBculFxApC4SfTv1ZWLpxowlJcjLykKFXo+A8HDE9e4NDSueRETkgXw2uZQkCY888ggGDx6M7t3rPvttzpw5mD17dgtGRkRkn9I9lSGBIRjRY0RLhkZNdG7/fuz5/HPIFou1AUzO6tVInTIF0Sk8EoqIiDyLT+25rOmBBx7Avn37sGTJknrHPfXUUygqKrJ+bdq0qYUiJCKy1bdzX+6p9CLGkpKqxNJsBmQZsiRV/Wk2Y89nn8FYUuLqEImIiBrFJ5PLv/3tb/jhhx+wYcMGtGnTpt6xGo0GISEh1i+tVttCURIR2QoJDMH0kdOhFtUQIEAURQgQoBbV3FPpgfKysiBb7O+hlS0W5GdltXBEREREjvGpZbGyLOPBBx/Et99+i40bNyIxMdHVIRERNUr3dt25p9JLVOj11qWwVxIEAeV6vQuiIiIiajqfSi4feOABLF68GMuXL4dOp0N+fj4AIDQ0FIGBgS6OjohIGe6p9A4B4eF2E0ug6sPQwPBwAGz4Q0REnsOnkst58+YBAIYNG2Zz+/z583HHHXe0fEBEROSz4nr3Rs7q1VV7Lq8gqFSIS09nwx8iIvIoPrXnUpZlu19MLImIqKVpdDqkTpkCQa0GBAGCKFb9qVYjdcoUyLLMhj9ERORRfKpySURE5E6iU1Iw5MknkZ+VhXK9HoHh4YhLT4e/VovcTZsabPjTPiOjhSMmIiKqG5NLIiIvV1xejJ2Hd+Ki4SIitBHo27kvQgJDXB0WXaLR6ewmiWz4Q0REnobJJRGRF9t3Yh/mr5sPi2SBIAqQJRkrdq/A9JHT0b1dd1eHR6i7YY/Shj9ERETugsklEZGXKi4vxvx182GWqhrGyFJVomKWzJi/bj6e+8tzrGC6WH0Ne5Q0/CEiInInPtXQh4jI2xSXF2PdnnX4autXWLdnHYrLi6337Ty8ExbJ/p49i2TBriO7WipMssNYUlJvwx4A9Tb88ddqXfwKiIiIbLFySUTkoRpa8nrRcNF6+5UEUcCFkgsuiJqq5WVlKWrYU1fDHyIiInfD5JKIyAMpWfIaoY2wm1hWj4/URbZYvFSb0oY9dTX8ISIicjdcFktE5IGULHnt27kvVKLK7hiVqELfTn2bM0RqABv2EBGRt2FySUTkBkKCQhAaFIqQIGUNdqqXvNpTveQ1JDAE00dOh1pUQ4AAURQhQIBaVGP6yOnQBeqc+RKokeJ694agsp/8s2EPERF5Ii6LJSJyA49PfLxR45Uuee3erjue+8tz2HVkFy6UXECkLhJ9O/VlYukGNDodUqdMwZ7PPrPpFiuoVGzYQ0REHonJJRGRB+rbuS9W7F5h3XNZ05VLXkMCQzCix4iWDI8Uik5JYcMeIiLyGkwuiYg8UPWS1yu7xapEFZe8ehg27CEiIm/B5JKIyENxySsRERG5EyaXREQepri8GDsP78RFw0VEaCPQt3NfhAQqawRERERE1FyYXBIReZB9J/bVWgq7YvcKTB85Hd3bdXd1eEREROTDeBQJEZGHKC4vxvx182GWzJAhQ5IkyJBhlsyYv24+isuLXR0iNYGxpAS5mzbhwLJlyN20CcaSEleHRERE1CSsXBIReYidh3fCIlns3meRLNh1ZBe7wnqYc/v3Y8/nn9scRZKzejVSp0xBdEqKq8MjIiJqFFYuiYg8xEXDRQiiYPc+QRRwoeRCC0dEjjCWlFQllmYzIMuQJanqT7MZez77jBVMIiLyOEwuiYg8RIQ2ArIk271PlmRE6iJbOCJyRF5WFmSL/Uq0bLEgPyurhSMiIiJyDJNLIiIP0bdzX6hEld37VKIKfTv1beGIyBEVej0EoY5KtCCgXK9v4YiIiIgcw+SSiMhDhASGYPrI6VCLaggQIIoiBAhQi2pMHzmd51t6mIDwcMhyHZVoWUZgeHgLR0REROQYNvQhIvIg3dt1x3N/eQ67juzChZILiNRFom+nvkwsPVBc797IWb26as/lFQSVCnHp6S6IioiIqOmYXBIReZiQwBB2hfUCGp0OqVOmYM9nn9l0ixVUKqROmQJ/rdbVIRIRETUKk0siIiIXiU5JwZAnn0R+VhbK9XoEhocjLj2diSUREXkkJpdERF6ouLwYOw/vxEXDRURoI9C3c1+EBIa4OiyyQ6PToX1GhqvDICIichiTSyIiL7PvxD7MXzcfFskCQRQgSzJW7F6B6SOno3u77q4Oj4iIiLwUu8USEXmY4vJirNuzDl9t/Qrr9qxDcXmxzX3z182HWTJDhgxJkiBDhlkyY/66+TZjiYiIiJyJlUsiIg/SUFVy5+GdsEgWu4+1SBbsOrKLzYCIiIioWbBySUTkIZRUJS8aLkIQBbuPF0QBF0outHDURERE5Ct8LrncvHkzJkyYgPj4eAiCgGXLlrk6JCIiRZRUJSO0EZAl2e4YWZIRqYtszhCJiIjIh/lccllaWoqePXvi3XffdXUoRESNoqQq2bdzX6hEld0xKlGFvp36NmeIRERE5MN8bs/luHHjMG7cOFeHQUTUaEqqkiGBIZg+cnqtfZkqUYXpI6dDF6hr4aiJiIjIV/hcctlYRqMRRqPR+r3BYHBhNETky/p27osVu1fALJlr3VezKtm9XXc895fnsOvILlwouYBIXST6durLxJKIiIiaFZPLBsyZMwezZ892dRhERI2qSoYEhrArLBEREbUoJpcNeOqpp/DYY49Zv8/OzkZGRoYLIyIiX8aqJBEREbkrJpcN0Gg00Gg01u+1Wq0LoyEiYlWSiIiI3JPPdYslIiIiIiIi5/O5yqXBYMCRI0es3x87dgzZ2dmIiIhAu3btXBgZERERERGR5/K55HLXrl0YPny49fvq/ZTTpk3DggULXBQVERERERGRZ/O55HLYsGGQZfvnxJGtgrNnca7gbIs9n8lsQYXJDEtxATR+3vu/psVshCEvByo/DUSVn6vDaTaSxQSLyQjtRRNUak3DD/BQRrMROXk50Php4OfF8wkAJosJRpMRposmaLx4Ts2VldAfPQq1RgOV2pt/F5lhNhoRbjRC7e/v6nCajdlkRsEZPfz81FCpvXc3kMUswWQyo0AfDrUX/xtqqqzEmeO58NP4Q6323t+5ZrMJJmMl9GXl8PPin0+L2YKygmKIfiJEVcv+fLaKbYVWsa1a9Dl9gff+9mkmcXFxeO655xAXF9dizxng74d+KQkt9nxA1fmef739VmzatKlFn5eIiIiIqLllZGRg1apVNo07yXGCzDIe2VFcXIzQ0FBs2rSJHXK9gMFgQEZGBufTi3BOvQvn07twPr0L59P7VM9pUVERQkJCXB2OV2FySXZVJ5f8ofMOnE/vwzn1LpxP78L59C6cT+/DOW0+3rv5gIiIiIiIiFoMk0siIiIiIiJyGJNLskuj0eC5557jJmcvwfn0PpxT78L59C6cT+/C+fQ+nNPmwz2XRERERERE5DBWLomIiIiIiMhhTC6JiIiIiIjIYUwuiYiIiIiIyGFMLqnZ5ebmQhAELFiwwNWhEBERERFRM2Fy6WZycnIwY8YMdOjQAQEBAQgJCcHgwYMxd+5clJeXN9vz7t+/H88//zxyc3Ob7TmUePnll3HdddchNjYWgiDg+eefd2k8LUkQBEVfGzdudPi5ysrK8PzzzzfqWr48N03hzvN54MABPPHEE0hLS4NOp0NcXBzGjx+PXbt2ORyLt3Ln+Txz5gymTJmCpKQk6HQ6hIWFoV+/fli4cCHYs69u7jynV/r8888hCAK0Wq3DsXgrd57P6g/Z7X0tWbLE4Xi8kTvPZ7WcnBzcdtttiImJQWBgIDp37oynn37a4Xg8ndrVAdBlP/74I26++WZoNBpMnToV3bt3R2VlJX755Rf8/e9/xx9//IEPP/ywWZ57//79mD17NoYNG4aEhIRmeQ4l/vnPf6JVq1bo1asXVq1a5bI4XGHRokU23//3v//FmjVrat2ekpLi8HOVlZVh9uzZAIBhw4Ypeowvz01TuPN8fvzxx/jkk09w00034f7770dRURE++OADDBgwACtXrsSoUaMcjsnbuPN8nj9/HqdOncKkSZPQrl07mEwmrFmzBnfccQcOHjyIV155xeGYvJE7z2lNBoMBTzzxBIKDgx2Ow5t5wnxmZmbimmuusblt4MCBDsfjjdx9PrOzszFs2DC0bt0aM2fORGRkJE6cOIGTJ086HI+nY3LpJo4dO4a//OUvaN++PdavX4+4uDjrfQ888ACOHDmCH3/80YURXibLMioqKhAYGOj0ax87dgwJCQk4f/48oqOjnX59dzZlyhSb73/99VesWbOm1u2u4stz0xTuPJ+ZmZl4/vnnbaogd955J1JSUvD8888zubTDneczNTW11ifuf/vb3zBhwgS88847ePHFF6FSqVwTnBtz5zmt6aWXXoJOp8Pw4cOxbNkyV4fjtjxhPnv37u1W8bgzd55PSZJw++23Izk5GRs2bGiW98OejMti3cSrr74Kg8GATz75xCaxrNapUyc8/PDD1u/NZjNefPFFdOzYERqNBgkJCZg1axaMRqPN4xISEnDttdfil19+Qb9+/RAQEIAOHTrgv//9r3XMggULcPPNNwMAhg8fXmupQfU1Vq1ahT59+iAwMBAffPABAODo0aO4+eabERERgaCgIAwYMMChJNiVVVNPIEkS3n77bXTr1g0BAQGIjY3FjBkzoNfrbcbt2rULY8aMQVRUFAIDA5GYmIg777wTQNXynOrkcPbs2db5bmiZK+fG+Vw1n+np6bWW10VGRmLo0KH4888/nfsifYgrfz7tSUhIQFlZGSorKx1+bb7K1XN6+PBhvPXWW3jzzTehVrMe4ChXzycAlJaW8mfSSVw1n6tXr8a+ffvw3HPPITAwEGVlZbBYLM32Oj0Nf1O5ie+//x4dOnTAoEGDFI2/++67sXDhQkyaNAkzZ87E9u3bMWfOHPz555/49ttvbcYeOXIEkyZNwl133YVp06bh008/xR133IH09HR069YNV111FR566CG88847mDVrlnWJQc2lBgcPHkRmZiZmzJiBe+65B0lJSTh79iwGDRqEsrIyPPTQQ4iMjMTChQtx3XXXYenSpbjhhhuc9xdEAIAZM2ZgwYIFmD59Oh566CEcO3YM//d//4fffvsNW7ZsgZ+fHwoKCjB69GhER0fjySefRFhYGHJzc/HNN98AAKKjozFv3jzcd999uOGGG3DjjTcCqKp+UMtyt/nMz89HVFSUU1+jL3H1fJaXl6O0tBQGgwGbNm3C/PnzMXDgQH6q7gBXz+kjjzyC4cOH45prrsH//ve/Zn2tvsDV8zl79mz8/e9/hyAISE9Px8svv4zRo0c362v2Zq6az7Vr1wIANBoN+vTpg927d8Pf3x833HAD3nvvPURERDT/i3dnMrlcUVGRDECeOHGiovHZ2dkyAPnuu++2uf3xxx+XAcjr16+33ta+fXsZgLx582brbQUFBbJGo5Fnzpxpve2rr76SAcgbNmyo9XzV11i5cqXN7Y888ogMQP7555+tt5WUlMiJiYlyQkKCbLFYZFmW5WPHjskA5Pnz5yt6fbIsy+fOnZMByM8995zix3ibBx54QK75I/rzzz/LAOTPP//cZtzKlSttbv/2229lAPLOnTvrvLYjf7+cm6Zx1/mstnnzZlkQBPmZZ55p8jV8iTvO55w5c2QA1q+RI0fKJ06caNQ1fJm7zekPP/wgq9Vq+Y8//pBlWZanTZsmBwcHN+IV+TZ3ms/jx4/Lo0ePlufNmyd/99138ttvvy23a9dOFkVR/uGHHxr/4nyQO83nddddJwOQIyMj5cmTJ8tLly6Vn3nmGVmtVsuDBg2SJUlq/Av0IlwW6waKi4sBADqdTtH4FStWAAAee+wxm9tnzpwJALWWpXbt2hVDhw61fh8dHY2kpCQcPXpUcYyJiYkYM2ZMrTj69euHIUOGWG/TarX461//itzcXOzfv1/x9alhX331FUJDQ3H11Vfj/Pnz1q/qJY4bNmwAAISFhQEAfvjhB5hMJhdGTPVxp/ksKCjAbbfdhsTERDzxxBPN8hzezh3mMzMzE2vWrMHixYtx2223AUCzdhn3dq6c08rKSjz66KO499570bVrV6dc09e5cj7btWuHVatW4d5778WECRPw8MMP47fffkN0dLT1vRs1jivn02AwAAD69u2Lzz77DDfddBNeeOEFvPjii9i6dSvWrVvnlOfxVEwu3UBISAgAoKSkRNH448ePQxRFdOrUyeb2Vq1aISwsDMePH7e5vV27drWuER4eXmtNen0SExPtxpGUlFTr9urltFfGQY45fPgwioqKEBMTg+joaJsvg8GAgoICAEBGRgZuuukmzJ49G1FRUZg4cSLmz59faz8uuZa7zGdpaSmuvfZalJSUYPny5TzqoIncYT7bt2+PUaNGITMzE59//jk6dOiAUaNGMcFsIlfO6VtvvYXz589bO1iS49zhZ7SmiIgITJ8+HQcPHsSpU6ecem1f4Mr5rN5qkJmZaXN79Yd6W7dubfK1vQH3XLqBkJAQxMfHY9++fY16nCAIisbV1SVQbsT5Z9yz43qSJCEmJgaff/653furN6QLgoClS5fi119/xffff49Vq1bhzjvvxBtvvIFff/2VyYObcIf5rKysxI033og9e/Zg1apV6N69e5Ov5evcYT6vNGnSJHz00UfYvHlzrZUn1DBXzWlRURFeeukl3H///SguLraubjIYDJBlGbm5uQgKCkJMTIxjL9DHuOPPaNu2bQEAFy9eRJs2bZx2XV/gyvmMj48HAMTGxtrcXv0z2ZjijTdicukmrr32Wnz44YfYtm1bg2cetW/fHpIk4fDhwzZNd86ePYvCwkK0b9++0c+vNFG9Mo6DBw/Wuv3AgQPW+8l5OnbsiLVr12Lw4MGKkv0BAwZgwIABePnll7F48WJMnjwZS5Yswd13392k+SbncvV8SpKEqVOnYt26dfjf//6HjIyMprwMusTV82lPdcWyqKjIKdfzNa6aU71eD4PBgFdffRWvvvpqrfsTExMxceJEHkvSSO74M1q9PYnHezWeK+czPT0dH330EU6fPm1z+5kzZwBwPrks1k1UH5B899134+zZs7Xuz8nJwdy5cwHAegDv22+/bTPmzTffBACMHz++0c9ffThzYWGh4sdcc8012LFjB7Zt22a9rbS0FB9++CESEhK4T8TJbrnlFlgsFrz44ou17jObzda50+v1tarSaWlpAGBdBhIUFASgcfNNzuXq+XzwwQfx5Zdf4r333rN2x6Omc+V8njt3zu7tn3zyCQRBQO/evRVdh2y5ak5jYmLw7bff1voaPnw4AgIC8O233+Kpp55q+gvzUe72M3r69Gl8+umnSE1NtXsEHdXPlfM5ceJEaDQazJ8/H5IkWW//+OOPAQBXX311Y16K12Hl0k107NgRixcvxq233oqUlBRMnToV3bt3R2VlJbZu3YqvvvoKd9xxBwCgZ8+emDZtGj788EMUFhYiIyMDO3bswMKFC3H99ddj+PDhjX7+tLQ0qFQq/Pvf/0ZRURE0Gg1GjBhR77KbJ598El988QXGjRuHhx56CBEREVi4cCGOHTuGr7/+GqLY+M8uFi1ahOPHj6OsrAwAsHnzZrz00ksAgNtvv92nq6EZGRmYMWMG5syZg+zsbIwePRp+fn44fPgwvvrqK8ydOxeTJk3CwoUL8d577+GGG25Ax44dUVJSgo8++gghISHWDyYCAwPRtWtXfPnll+jSpQsiIiLQvXv3epdFcm6cy5Xz+fbbb+O9997DwIEDERQUhM8++8zm/htuuMH6gRMp48r5fPnll7FlyxaMHTsW7dq1w8WLF/H1119j586dePDBB2vtzydlXDWnQUFBuP7662vdvmzZMuzYscPufdQwV/6MPvHEE8jJycHIkSMRHx+P3NxcfPDBBygtLbUWDqhxXDmfrVq1wtNPP41nn30WY8eOxfXXX4/ff/8dH330ETIzM9G3b9+W/KtwP65rVEv2HDp0SL7nnnvkhIQE2d/fX9bpdPLgwYPl//znP3JFRYV1nMlkkmfPni0nJibKfn5+ctu2beWnnnrKZowsVx0jMn78+FrPk5GRIWdkZNjc9tFHH8kdOnSQVSqVzbEkdV1DlmU5JydHnjRpkhwWFiYHBATI/fr1q9VWuzFHkWRkZNi00q/5Ze+YFG92Zdvtah9++KGcnp4uBwYGyjqdTu7Ro4f8xBNPyGfOnJFlWZazsrLkzMxMuV27drJGo5FjYmLka6+9Vt61a5fNdbZu3Sqnp6fL/v7+ilpwc24c407zOW3atDrnEoB87NgxZ750r+RO87l69Wr52muvlePj42U/Pz/rvxvz58/3+Zb4jeFOc2oPjyJpHHeaz8WLF8tXXXWVHB0dLavVajkqKkq+4YYb5N27dzv1NXszd5pPWZZlSZLk//znP3KXLl2s78P/+c9/ypWVlU57zZ5KkOVGdHUhIiIiIiIisoN7LomIiIiIiMhhTC6JiIiIiIjIYUwuiYiIiIiIyGFMLomIiIiIiMhhTC6JiIiIiIjIYUwuPcyrr76K5ORkm0NbPdWTTz6J/v37uzoMl+J8eh/OqXfhfHoXzqd34Xx6H86pF3D1WSikXFFRkRwRESF/+umn1ttw6Vy6119/vdb4+fPnywDknTt3OvzcX3/9tXzLLbfIiYmJcmBgoNylSxf5sccek/V6vd3xy5cvl3v16iVrNBq5bdu28rPPPiubTCabMXl5ebJGo5GXL1/ucHyeiPPpfTin3oXz6V04n96F8+l9OKfegcmlB3nrrbfkkJAQuby83Hpb9Q9dbGysXFpaajPemT90kZGRco8ePeRnnnlG/uijj+SHHnpI9vf3l5OTk+WysjKbsStWrJAFQZCHDx8uf/jhh/KDDz4oi6Io33vvvbWue8stt8hDhw51OD5PxPn0PpxT78L59C6cT+/C+fQ+nFPvwOTSg6SmpspTpkyxuQ2AnJaWJgOQ33jjDZv7nPlDt2HDhlq3LVy4UAYgf/TRRza3d+3aVe7Zs6fNJzhPP/20LAiC/Oeff9qMXbp0qSwIgpyTk+NwjJ6G8+l9OKfehfPpXTif3oXz6X04p96Bey49xLFjx7Bnzx6MGjWq1n2DBw/GiBEj8Oqrr6K8vLxZnn/YsGG1brvhhhsAAH/++af1tv3792P//v3461//CrVabb39/vvvhyzLWLp0qc01ql/P8uXLmyFq98X59D6cU+/C+fQunE/vwvn0PpxT78Hk0kNs3boVANC7d2+79z///PM4e/Ys5s2bV+91jEYjzp8/r+irIfn5+QCAqKgo622//fYbAKBPnz42Y+Pj49GmTRvr/dVCQ0PRsWNHbNmypcHn8yacT+/DOfUunE/vwvn0LpxP78M59R7qhoeQOzhw4AAAIDEx0e79Q4cOxfDhw/Haa6/hvvvuQ2BgoN1xX3zxBaZPn67oOWVZrvf+f//731CpVJg0aZL1try8PABAXFxcrfFxcXE4c+ZMrds7dOiA/fv3K4rJW3A+vQ/n1LtwPr0L59O7cD69D+fUezC59BAXLlyAWq2GVqutc8zzzz+PjIwMvP/++3j00UftjhkzZgzWrFnjcDyLFy/GJ598gieeeAKdO3e23l69XEGj0dR6TEBAAIqLi2vdHh4eXuuTHm/H+fQ+nFPvwvn0LpxP78L59D6cU+/B5NKLXHXVVRg+fDheffVV3HvvvXbHxMXF2f20pTF+/vln3HXXXRgzZgxefvllm/uqP0kyGo21HldRUWH3kyZZliEIgkMxeSPOp/fhnHoXzqd34Xx6F86n9+GcegYmlx4iMjISZrMZJSUl0Ol0dY577rnnMGzYMHzwwQcICwurdX95eTmKiooUPWerVq1q3fb777/juuuuQ/fu3bF06VKbzczA5WUCeXl5aNu2rc19eXl56NevX61r6vV6m/XsvoDz6X04p96F8+ldOJ/ehfPpfTin3oMNfTxEcnIygKpuWvXJyMjAsGHD8O9//9tuR60vv/zS+qlOQ19XysnJwdixYxETE4MVK1bYXbqQlpYGANi1a5fN7WfOnMGpU6es99d07NgxpKSk1Pu6vA3n0/twTr0L59O7cD69C+fT+3BOvQcrlx5i4MCBAKr+Z05NTa137PPPP49hw4bhww8/rHVfU9ei5+fnY/To0RBFEatWrUJ0dLTdcd26dUNycjI+/PBDzJgxAyqVCgAwb948CIJgsykaAIqKipCTk4P77ruv0TF5Ms6n9+GcehfOp3fhfHoXzqf34Zx6kRY9VZMc0r17dzkzM9PmNgDyAw88UGtsRkaGDMBph8v27NlTBiA/8cQT8qJFi2y+Vq9ebTP2+++/lwVBkEeMGCF/+OGH8kMPPSSLoijfc889ta67dOlSGYB85MgRh2P0NJxP78M59S6cT+/C+fQunE/vwzn1DkwuPcibb74pa7VauayszHpbXT90GzZscOoPXfW17H1lZGTUGv/tt9/KaWlpskajkdu0aSP/85//lCsrK2uNu/XWW+UhQ4Y4HJ8n4nx6H86pd+F8ehfOp3fhfHofzql3YHLpQQoLC+WIiAj5448/dnUoTpGXlycHBATIy5Ytc3UoLsH59D6cU+/C+fQunE/vwvn0PpxT78CGPh4kNDQUTzzxBF577TVIkuTqcBz29ttvo0ePHpg4caKrQ3EJzqf34Zx6F86nd+F8ehfOp/fhnHoHQZZl2dVBEBERERERkWdj5ZKIiIiIiIgcxuSSiIiIiIiIHMbkkoiIiIiIiBzG5JKIiIiIiIgcxuSSiIiIiIiIHMbkkoiIiIiIiBzG5JKIiIiIiIgcxuSSiIiIiIiIHMbkkoiIiIiIiBzG5JKIiIiIiIgcxuSSiIiIiIiIHMbkkoiIiIiIiBzG5JKIiIiIiIgcxuSykfLy8vD8888jLy/P1aEQERERERG5DSaXjZSXl4fZs2czuSQiIiIiIqqBySURERERERE5jMklEREREREROYzJJRERERERETmMySURERERERE5jMklEREREREROYzJJRERERERETmMySURERERERE5jMklERERkZOZKy2uDoGIqMUxuSQiIiJyMrNJcnUIREQtjsklERERkZNJFtnVIRARtTgml0REREROJktMLonI9zC5JCIiInIyicklEfkgJpdERERETsZlsUTki5hcEhERETkZl8USkS9icklERETkZBYzu8USke9hcklERETkZCaec0lEPojJJREREZGTVZabXR0CEVGL8+jkcvPmzZgwYQLi4+MhCAKWLVtW7/iNGzdCEIRaX/n5+S0TMBEREfmECoMJssx9l0TkWzw6uSwtLUXPnj3x7rvvNupxBw8eRF5envUrJiammSIkIiIiX2QxyzCWsnpJRL5F7eoAHDFu3DiMGzeu0Y+LiYlBWFiY8wMiIiIiuqREX4EArZ+rwyAiajEeXblsqrS0NMTFxeHqq6/Gli1b6h1rNBpRXFxs/TIYDC0UJREREXmykgsVrg6BiKhF+VRyGRcXh/fffx9ff/01vv76a7Rt2xbDhg1DVlZWnY+ZM2cOQkNDrV8ZGRktGDERERF5qpKLTC6JyLcIspfsNhcEAd9++y2uv/76Rj0uIyMD7dq1w6JFi+zebzQaYTQard9nZ2cjIyMDu3fvRu/evR0JmYiIiLzUn1vzoM8rxaCbOrk6FCKiFuPRey6doV+/fvjll1/qvF+j0UCj0Vi/12q1LREWERERebiy4kpXh0BE1KJ8almsPdnZ2YiLi3N1GERERORlyg1MLonIt3h05dJgMODIkSPW748dO4bs7GxERESgXbt2eOqpp3D69Gn897//BQC8/fbbSExMRLdu3VBRUYGPP/4Y69evx+rVq131EoiIiMhLVZSaIUsyBFFwdShERC3Co5PLXbt2Yfjw4dbvH3vsMQDAtGnTsGDBAuTl5eHEiRPW+ysrKzFz5kycPn0aQUFBSE1Nxdq1a22uQUREROQMsiTDWG5GQDCPIyEi3+A1DX1aSlZWFtLT09nQh4iIiOr059Y87N14CiOnpSCyNfs1EJFv8Pk9l0RERETN5WJeqatDICJqMUwuiYiIiJpJfk6Rq0MgImoxTC6JiIiImkn+sWIeSUJEPoPJJREREZET9enTB8OvT8dT706FLMk4vOusq0MiImoRTU4uLRYLlixZghkzZuCGG27A3r17AQBFRUX45ptvcPYsf5ESERGR78nPz8fZc3koNFwEAOTsLkCFweTiqIiIml+TksvCwkIMHjwYt912G7744gt89913OHfuHABAq9XioYcewty5c50aKBEREZEnMpsk7N9yxtVhEBE1uyYll08++ST++OMPrFq1CkePHkXN00xUKhUmTZqEFStWOC1IIiIiIk+Wk1WAonNlrg6DiKhZNSm5XLZsGR588EFcffXVEASh1v1dunRBbm6uo7EREREReQVZBnavPA5Z4vHiROS9mpRcFhUVITExsc77TSYTzGZzk4MiIiIi8jbnTxpwaCd7UhCR92pSctmxY0dkZWXVef/q1avRtWvXJgdFRERE5I32bDiF86dKXB0GEVGzaFJyeffdd+PTTz/Fl19+ad1vKQgCjEYjnn76aaxcuRIzZsxwaqBEREREnk6WZGz9+ghKi4yuDoWIyOnUTXnQww8/jD/++AOZmZkICwsDANx22224cOECzGYzZsyYgbvuusuZcRIRERF5hYpSM37532GMmJoCP43K1eEQETlNk5JLQRDw0UcfYdq0aVi6dCkOHz4MSZLQsWNH3HLLLbjqqqucHScRERGR1yg6V45fl+VgyM2dIYi1myMSEXmiJiWX1YYMGYIhQ4Y4KxYiIiIin5GXU4S9m04jdXgbV4dCROQUTdpzeezYMXz//fd13v/999/zKBIiIiKiBhzYlofTB/WuDoOIyCmaVLl8/PHHUVxcjAkTJti9/91330VYWBiWLFniUHBERERE3m7HD8cwKjoQuogAV4dCROSQJlUut23bhquvvrrO+0eOHImff/65yUERERER+QqT0YJfvjqMynKeEU5Enq1JyaVer4dOp6vzfq1WiwsXLjQ5KCIiIiJfUnKhAj9/dRimSourQyEiarImJZft2rXDli1b6rz/559/Rps23JxOREREpNSFUwZsXnKIFUwi8lhNSi4zMzPxxRdf4J133oEkSdbbLRYL5s6diy+//BK33Xab04IkIiIi8gUXThmw4bMDKCuudHUoRESN1qTk8qmnnsLw4cPxyCOPIC4uDldddRWuuuoqxMfH49FHH0VGRgaefvppZ8day+bNmzFhwgTEx8dDEAQsW7aswcds3LgRvXv3hkajQadOnbBgwYJmj5OIiIhIqaJz5Vi7YD8unil1dShERI3SpORSo9Fg9erV+OSTT9CvXz+cP38e58+fR79+/fDpp59i7dq10Gg0zo61ltLSUvTs2RPvvvuuovHHjh3D+PHjMXz4cGRnZ+ORRx7B3XffjVWrVjVzpERERETKVRhM2PDZAR5TQkQepUlHkQCAKIqYPn06pk+f7sx4GmXcuHEYN26c4vHvv/8+EhMT8cYbbwAAUlJS8Msvv+Ctt97CmDFjmitMIiKiBskWCwSVytVhkBuxmCVs/eYIeo1uj07pMa4Oh4ioQU2qXHqqbdu2YdSoUTa3jRkzBtu2bavzMUajEcXFxdYvg8HQ3GESEZEPkiu5x45qk2Uga9VxHNiW5+pQiIga1OTK5apVq/DJJ5/g6NGj0Ov1kGXZ5n5BEJCTk+NwgM6Un5+P2NhYm9tiY2NRXFyM8vJyBAYG1nrMnDlzMHv27JYKkYiIfNUV/44S1bRnwymIKgFd+rVydShERHVqUnL52muv4cknn0RsbCz69euHHj16ODsut/HUU0/hscces36fnZ2NjIwMF0ZEREReicklNSB77UkEav3RtmuEq0MhIrKrScnl3LlzMWLECKxYsQJ+fn7OjqnZtGrVCmfPnrW57ezZswgJCbFbtQSqmhfVbE6k1WqbNUaiZlOuBwLDXR0FEdXhyhVARPbs+OEogsM0iIgPdnUoRES1NGnPpV6vx6RJkzwqsQSAgQMHYt26dTa3rVmzBgMHDnRRREQtqOg0YOaeLiK3ZTa7OgLyABazjC1fH0FFqcnVoRAR1dKk5LJfv344ePCgs2NpNIPBgOzsbGRnZwOoOmokOzsbJ06cAFC1pHXq1KnW8ffeey+OHj2KJ554AgcOHMB7772H//3vf3j00UddET5Ry6tkQyoidyWbmCyQMuUlldj2bQ4kidVuInIvTUou33vvPXzzzTdYvHixs+NplF27dqFXr17o1asXAOCxxx5Dr1698OyzzwIA8vLyrIkmACQmJuLHH3/EmjVr0LNnT7zxxhv4+OOPeQwJ+Q5jiasjIKI6SOXlrg6BnODEiRMoLS0FABgry3G+ML9ZnufciRLs/+VMs1ybiKipBLkJmzxSU1Nx8eJF5OXlQavVok2bNlBdcTaXIAj4/fffnRaou8jKykJ6ejp2796N3r17uzocIuXy9wFmI9Am3dWREJEd5X/8gcBu3VwdBjXRjh078OKLL+LHH3+02T8rCAJ6Jw3BjcPvQqc2XZ36nIIAjJzWlfsvichtNKmhT0REBCIjI9G5c2dnx0NEzeniUSaXRG7Koi90dQjURN988w1uvfVWyLJcqzGTLMv47eBWZB/aiof/8gr6dxvutOeVZeC31ccxYloKBEFw2nUryozY/GMWjh08A0EQ0LFrGwy9phf8NfZ7bRTrS/HfN3+we9/YWwehU/e2AICTOWexfd1eXDhbBD9/NZLTEjBgVA+IKp86dp3IqzUpudy4caOTwyCiFnEmC0i92dVREJEdlosXXB0CNcGOHTtw6623wmKx1NnxV5ItgCxg7pJZeGHGJ06tYF44U4q8I0WI7xzWqMd988l6pPRKRErvxFr3rV76K8pKKjBx2jBIkoR13+zAhuW7MOYW+w0QtaGBmP7EdTa3/bHrKH775QDada46l/N8nh7fL9qMPhldMeqm/igtLsfG73ZBkmUMGZvWqNiJyH3xoyIiX3JqJ/ddErkpc0GBq0OgJnjppZfsVixrkyHLwLcbPnV6DAd+zXPatS4WFOPE4XwMv74vWrWNRHz7aFx1bW8c3ncChmL7+4JFUUSwLtDm6+j+U+jUva212nl430lEtQpFv+HdEBapQ+vEGAwa0xN7tx9BpZHNrIi8RZOTy+LiYvzrX//CmDFj0KtXL+zYsQMAcPHiRbz55ps4cuSI04IkIiexmIAja10dBRHZYSoogGyxuDoMaoQTJ07ghx9+gEXhvEmyBbsP/uz0Jj/nTxpw8UypU66Vf/I8NAF+iG0dYb2tbYdYCIKAs6eUVdcLTl/E+fxCdE3vYL3NYrZApbbtz6H2U8FitqDgjN4psROR6zUpuTx16pS1K+upU6ewZ88eGAxVRxxERETggw8+wH/+8x+nBkpETrLvG0CSXB0FEV3JbIE5v3k6i/o6i9kCU6XZ6V+rV61WULG0Jcsy9ubstFY7nfV1cHseLGbHP5woM1QgMDjA5jZRJSIg0B9lhgpF19ifdRTh0SGIaxdlva1d5zjkn7iAQ3uOQ5IkGIrLsHPD/qrnLGGnZCJv0aQ9l3//+99RUlKC7OxsxMTEICYmxub+66+/Hj/8YH9jNxG1vD59+iD/zEm08ivDrlmoql52Ge3qsIjoCsZjufBr3drVYXgVi9mCs6cvotJodvq1Tx7PgyiKkBrxgZ0gCDCUlsBU6dx4ju45h/huWrTpEF2rQggAuzbtx+7Nf1q/N5ssOHvqAjb/mGW97bYHxzoch9lkxqE9J9B3mO2+0nadWmHQmJ7Y+N1urPl6O1QqEX2HdcOZ4+ec2oyIiFyrScnl6tWr8eijj6Jr1664cKH2EokOHTrg5MmTDgdHRM6Rn5+P03kFQJh/1Q2/vge07QsEhrs2MCKyYTx8GNohg10dhleRJBmVRjNUKhEqJ3clDQsNbVRiCVRVLoMCgp2eUMmSjLNHSxCfEIXaqSXQvW9Ha9dWAFiz9Fd07NoGHbq2sd4WrAtEkDYA5aW2FUrJIqGivBJBWtuKpj1H/jgFs8mC5LSEWvf1GpyEtEFdUFpSgYBAPxTry7BtzR6EhPMoFSJv0aTksry8HNHR0XXeX1LChiFEbq1cD6ydDYx7FVD7uzoaIrqk3AvPh3YXKpUItZ+9tKvpMjKGQRCERi2NFSCgW2I6nF+sE1BaWFnnvQFBGgQEaazfq9QqBAYHICxSZzOuVdsoGCtMKDh9ETGX9l2eOlYAWZYR2yaywSj27z6KxKT4WktrrVEKArQhgQCAw3uPQxsahOh4ftBJ5C2a9BFe165dsXnz5jrvX7ZsGXr16tXkoIioBZz5DVj9T6CyzNWRENElppMnYcpzXudPal5tWrfB1aNGQ6VSlrSKgoheSYMRFdaqmSNruoiYELTr3Aoblu/E2VMXkHf8HDb9sBudu7ezJoWG4jJ8NndFrQY/hRdKcOb4OXTt08HepZH1ywGczy/EhbNF2LnhD+z++QCuuqYXRJGHFxB5iyb9ND/yyCNYsmQJ/v3vf6OoqAgAIEkSjhw5gttvvx3btm3Do48+6tRAiagZnNwOfPcgUMhl7ETuwrD5Z1eHQI3w2MOPQxAEBctcq8Zcf9UdzRZLcJhzVqKMnjQAYVEhWDZ/I75f9DPi20dj+MQ+1vsli4zC8yUwmWwbCP2ZdQzakCC062g/eT5+KA/ffLIe/3t/DXIPncH424bYLMslIs8nyI1tc3bJyy+/jOeffx6yLEOSJIiiCFmWIYoiXnrpJfzjH/9wdqxuISsrC+np6di9ezd69+7t6nCIFGnTpg1Onz6N1mH+OPWvAbUHqAOAvncD3W4AVE1aLU9EDsp/4UWU//47VFGRaDtvHgRWc5zCVGnG6dxz8PdXO31ZbLUfV3yPv95/N2RZtnssiSiIEAQBD978EvqmZDRLDBCAvte3RUJyK/j58/c4UUMshkqotNwa5GxN/u3z9NNP4/bbb8fXX3+NI0eOQJIkdOzYETfeeCM6dLC/HIKI3JS5Atj2f8Cf3wH9/gokDEEzbAgiIgUs5y+g/LffEJSe7upQSKHx10zAD8t+wptzX8eatbbHkwgQkNZlEK6/6g50bN21nqs4JqptMPwCmid5JvJGUrmZyWUzaHRyWVZWhqFDh+Kee+7Bvffey+WvRN6k8ETVPsyYrsCA+4C4VFdHROSTSlavYXLpYXql9cai+Ytx6vQpjLj6KhQVFyEoQIc59y5skT2WcV1Cmv05fJnFbIJK7efqMMiJ5ArHz4Wl2hq95iYoKAjHjh3jmURE3qxgf9VezPUvAxXFro6GyOv16dMHvd94HdetXwcAKMvKglmvd3FU1BRtWrdBUFAQAEDjF9AiiWWA1g8R8UHN/jy+zFha6uoQyMksJXV3V6ama9KGjrFjx2LVqlXOjoWI3M3h1cDXdwH5e10dCZFXy8/PR15xMc5XGKtukCQYNm1ybVDkMdqkhPFD/2ZWWV7u6hDIycwXKxoeRI3WpOTymWeewaFDh3D77bfjl19+wenTp3Hx4sVaX0TkBQwFwHcPATs+Asz8lI+opRjWrYMsSa4Og9xcgNYPbbuFuToMr2cyVsBUwWTEm1SeKG7UGbWkTJMa+nTr1g0AsH//fixevLjOcfY6phGRB5Il4LfPgCPrqrrKdhwBsJMlUbMynclD2Y4dCB5gp8MzEQBRJaLHiDio1CLMJr7nam76/DOISWDTSm9hKTTCdNoA/zY6V4fiVZqUXD777LNcfkHkIU6cOIHSS3tFSo0WnLhYgXYRAU27WEkesP5FYPd8IO02oNPVgJqd1oiay8WF/0VgWhrEgCb+zJLXUvmJSBvdGqExga4OxWecPrifyaWXKd2RD7/WWuY1TtSk5PL55593chhE5Gw7duzAiy++iB9//NG67KOw3IKEp3fg2h4ReOaa9uib0MRP64pOAZterVoq2/1GIOU6IDDMecFfwVRegqMr38fFw9sBQURU8iB0GDMDKv+G31TJsoz9S56DPmc3Um7+JyKTBlrvKzlzCLnrF8CQdwQQAF18EhJGToc2lm8eyD2YCwpw/v33Ef3ww3zzQ1bacA1SR8UjKJQf7rWk3N+zkDZ6PH8WvUjlaQMqjxVD0yHU1aF4DaesaysqKnLZEth3330XCQkJCAgIQP/+/bFjx446xy5YsACCINh8BfDTYPJC33zzDQYPHoyffvqp1n4CWQZW7LuIQa9m45vfzjv2ROV6YOcnwOJbgJ/fBIrzmnypPf99Emd/X2P3vkPLXkPZ+ePoPvkldL31ORSd+ANHfvyPouue2bEMQO03ApbKcvzxxbPQhESj551vInXaa1D5B+KPxc9Aspib/DqInK3051+gX/QZ9wYRAKBd93D0u74dE0sXKNVfxMXTJ10dBjlZyZbTkC3c3+4sTU4ud+3ahbFjxyIoKAiRkZHYdKmr3fnz5zFx4kRs3LjRWTHW6csvv8Rjjz2G5557DllZWejZsyfGjBmDgoKCOh8TEhKCvLw869fx48ebPU6ilrRjxw7ceuutsFgsdX7oY5EAiyTj1o/+xM7cEsef1GwE9i8HvpwMbH69Kul0krLzJ6DP2Y1O4x+GrnUyQtt1Q8exM3Duj80wllyo97GG/Byc/vVbdJ7wsJ3rnoK5vATtM6YgKLINgqPbo91Vt8FUWghjUd2/Q4hcoWj5ciaYPi5A64f08W3RZUAMRBX3vLtKzu66ixjkmSyFRpTuOuvqMLxGk347bd26FUOGDMHhw4cxZcoUSDW62UVFRaGoqAgffPCB04Ksy5tvvol77rkH06dPR9euXfH+++8jKCgIn376aZ2PEQQBrVq1sn7FxsY2e5xELemll16CLMsNvgmVAciQ8dIKJ37AIlmAP78HvrwdOLHdKZcsPnUAqoBg6OI7W28LS+wFCAJKTh+s83EWUwUOLnsNHcfeB39tRK37AyNbQx0Ygvzs1ZAsJlhMRpzNXo3AqLYICOPvBXI/RcuX48IHH7KDrA+K7aDDgBvbIzyOZ1m62uEdW3Hu+DFXh0EO6tOnD9KeHoPRr00GAJTuzEf5AZ504QxNSi5nzZqFlJQU7N+/H6+88kqt+4cPH47t253zxrIulZWV2L17N0aNGmW9TRRFjBo1Ctu2bavzcQaDAe3bt0fbtm0xceJE/PHHH/U+j9FoRHFxsfXLYDA47TUQOduJEyfwww8/KF6mbpGA7/dexAlnn/VkLAFWzQLO7nf4UiaDHv5BYTa3CaIKfoE6mErrrpAeW/0RQtqk2OyxrEmtCUKP2+fg3L4N2PqvG7Ht1UnQ5+xGt7+8AEFUORw3UXMoWbMGBW+8AbmSxwL5AkEQkDwoFt2Hx0Htz99LrtKnTx/0HDAIzy74ArIkYd2n7+PU/n2uDosckJ+fj7zCApwrvrQCSgaK1xxH8YaTkIzcGuOIJjX02blzJ+bMmQONRmM32WrdujXy8/MdDq4+58+fh8ViqVV5jI2NxYEDB+w+JikpCZ9++ilSU1NRVFSE119/HYMGDcIff/yBNm3a2H3MnDlzMHv2bKfHT75NspggS87fp7xm9cpGL5uTZWDdgULcMdDJ1TqLCfhtEYSxc+zeffKXL3Fyy/+s30vmSpScPoCcle9bb+t977wmPfWFQ7+iMHcPet3zTj3hGXH4h7kIadMVSTc8AVmScPrXb7D/y+fR8863oPLTNOm5iZpb2a/bkV82B7FPPAExkJ1CvZXaX4WeV8ezWukG8vPzkZefj3CdFgBgrjRi46KP0bFPf/QeNxGaIM6Rtyjfdx7GI3oE922FwO5RENRcgt5YTUou/fz8bJbCXun06dPQarVNDqq5DBw4EAMHXq5iDBo0CCkpKfjggw/w4osv2n3MU089hccee8z6fXZ2NjIyMpo9VvJeksWEktOHYKksd/q1C44fgiiK9f58XkkUgEJDebPEI509CLXFBFHlV+u+VunXIKrrUOv3B5e9hqjkwYhMHmS9TaOLhJ82HJVlhTaPlSULTOUl8AsOt/u8Rbl7UKHPw7bXbrG5/c+lryCkbTekTv0Xzu3bCGNRAXpOfwOCUPWPh/aGv+PX12/FxUO/Irobf87JfVXs2Yv8559H7FNPQRUW5upwyMk0wWr0GtsG2nB+yOXOcnZtx6n9+9D7muvQoXc/dpH1ElKFBSU/n0ZpVgGC+8QisGskk8xGaFJyOWDAACxduhSPPPJIrftKS0sxf/78Zk/AoqKioFKpcPas7Qbcs2fPolWrVoqu4efnh169euHIkSN1jtFoNNBoLv9yd8ekmTyLLFlgqSyHqFbbTbocERoW1qjEEgAkGQgNVEMQnfuLU5ZlWILjoJIsgJ3X6Reog1/g5aNQRLUGfsGhCIyItxkX0iYZlopSGPIOQxtXte+y8NjvgCxD1zrJ7nO3GTQJsWmjbW777cMH0OHqexDRuR8AQDIbAUFAzU6yVUmmwKYp5BGMR3Jw5qlZiJ31FPzbtnV1OOQkwWH+6DW2DQK0zv33gZqHsawU25Z+gZzdO9D/+psRGqPsPSi5P6nUhJJNp1C66yyCe8cgoGskRC5Pb1CT3k3Onj0bu3btwvjx4/HTTz8BAH7//Xd8/PHHSE9Px7lz5/DMM884NdAr+fv7Iz09HevWrbPeJkkS1q1bZ1OdrI/FYsHevXsRFxfXXGES1UlU+UFU+zv1a/hVQxv9yakgAMO7hKIqyXLilyYEFV2uc/jvKSiqHcI7puPwj/9ByemDKD65Hzmr5iG621XQ6CIBAMbi89g9b4a1wY+/NgLBMQk2XwCgCY1GQHjVP/xhib1gLjcgZ+V7KDt/AqXnjuPQd29BEFUIa5/qcNxELcFcUIAzTz2F0l9/dXUo5ARhsYHoM6EdE0sPVHAsBz/MfRW7fvgWxrJSV4dDTiSVmlDy82lcWPAHSrachqXY6OqQ3FqTKpf9+/fHihUrcN9992Hq1KkAgJkzZwIAOnbsiBUrViA1tfnfnD322GOYNm0a+vTpg379+uHtt99GaWkppk+fDgCYOnUqWrdujTlzqvZ8vfDCCxgwYAA6deqEwsJCvPbaazh+/DjuvvvuZo+VqCW0bROPsaOGY/X6TYqa+qhE4JpuYWgX4dylV7K2Fcr7PwjZzzmHEne5/u84unIe9n3+NCAIiEwejI5jZlx+PsmC8gunYDEp/4UfFNUWXW99Dic3L8bv8x+HIAgIbtUR3TJfgL+udndZIncll1eg4LXXETJ+PCKmTIbgz/MPPVFMog7dh7XiMSMeTJYkHNiyCUd2/oouAwYjaeBQBIfZ375BnkcyWlCWVYCy3wqgSQhFYGoU/NvquBz6CoqSy+LiYgQHB0OlulwKHjFiBA4ePIjs7GwcPnwYkiShY8eOSE9Pb7G/5FtvvRXnzp3Ds88+i/z8fKSlpWHlypXWJj8nTpyAWGOpn16vxz333IP8/HyEh4cjPT0dW7duRdeuXVskXqKW8I9H78eaDZshCPUv76yqLwqYNaa1U5/f0ioVlX3vhyz6AUbl+zhTp/6rzvv8AnVIuuGJOu8PCIvFkH/+WO/17d0f3qEXwjv0UhwjkTsr/vFHVBz4EzEzZ8KPx2x5lHbdw9G5fzTfpHoJc6UR+zevx58/b0DrlO7o3Hcg4rskO337CbmIDBiPFcF4rAjqiAAEpUUjICmC+zIvUZRchoeHY9GiRbjtttsAAHfeeSdmzJiB/v37Iy0tDWlpac0ZY73+9re/4W9/+5vd+zZu3Gjz/VtvvYW33nqrBaIicp30tFQseP8t3HHvo1X7Hu1UMFViVWK55M5O6NveefuIzZ3HwdTjL4AgAmYelUDU0ipzjuLME/9A9CMPI6gXPzjxBB37RCGhZwQTSy8kyzJO7d+LU/v3IigkFB3S+6Njn37QRUS5OjSfduLECZSWVi1dLqssx6mLeWgT0bQtcuaLFShefxKG7fkI7h2DwG6REPx8e1+mouTS398fRuPl5WYLFizAqFGj0L9//2YLjIiabuI1Y7D2uyX491vvYeXaDTYVTEGoWgo7a0xrpyWWsn8wTL2mw9KGvxOIXE0yGHD2lTmIuncGdCNHujocqkfnftFon8pl+O6sZiJiNJlwvqgYUaEhjb5OWXER9m1YjX0bViOuczKSBg1F6y4prGa2oB07duDFF1/Ejz/+aH1fVFRegr6zr8XV3Ybi0TH3oFf7bk26dvW+zNKd+QjsHoXAblFQhTTfFgVzRSVyN/0J/bECCIKAiE6xaD80BSp/+6mduaISp7YfQdGJ8zCWVMAv0B/hHWLQZkBnqDWX93gXnbyAU78eRtmFEqj8VIhKbo22Azs36v9TRcllcnIyPv74YyQkJCA0tGoPVW5uLrKysup9XO/evRUHQkTOlZ6Wiv8tfB8nT53BoKuvQ2FRMcICVch6sodT91ha2gxAZepkIDDMadckIgdJEs6/Nw9yZSVCxo1zdTRkR4f0KCaWbsxeIlJWYcRj8+YjrVMirh/cDx3imtYZNu/wAeQdPoDQ2Dikjb4GbVK6s3LdzL755hvceuutkGW51pYhWZaxbv8WrN+/BR9M/xfG92z6h3JShQWlu86idPdZaNqFILB7FPwTQiCIjZ/f/d9sR3RKa0SntKl135FVe2AqMyLl+r6QJRk5a/fi2IY/0GlMT7vXqiw1orLUiHZDkhEYoYWxuBy5G/9AZakRXa6pWuVSeq4YB7/bhfi+HdHx6h6oLDXi2IY/IMsy2g9JVhy3ouRyzpw5uPXWWzFq1CgAgCAIeOaZZ+rsCCvLMgRBUNRQhIiaV9s28QgKCkRhUTGCNaLTEkspKhmm7rdAiuzslOsRkfNd+PgTyJKE0PHjXR0K1dA6OQyJaUws3VW9iQiA33NysefocTwwcRz6JnVq8vMUnc3DpkWfoE1Kdwy48S8IaKbj7soMBvy4+L84mJ0FQRDRNb0vrrntdmgCAuocv3751ziyby+KLl5AsC4EKb3SMfKGSQgICgIAZP2yGd9++qHdx//j7XehDXFOQz9n2LFjB2699VZYLJY6e1FYJAsECJgx/0l8/+iCJlcwrWTAeLwYxuPFUIVpoBvaGpoE5/ydlF80oOjEeXS7ZSC0sVXXTMhIwcHvdqPd4CT4a2vPa1CkzppEAkBAaBDaDOiCnNW/Q5YkCKKIi4fzERSlQ5t+Vf9PB4QFo93gJBz+KRtt+nWqsyp6JUWjxo4di2PHjmHnzp04e/Ys7rjjDvz1r39VfOQHEXkPKSoZppSJkKK7XTonkojc2cVP50MqKUHYrbeyOuIGwuOCkDwohnPhppQkIpIsA7KMd5f/hGdvv7nJFcxqp/7chx/feRVD/jIVsR2alqx+8u+X0GvwVeg95Kpa9y398D2UFBVi2swnIVks+ObTD7F84Se4ZcYDdq9VUqhHSWEhxt56G2LiW6Pwwnl899/5KC7UI/OBhwEAPfoNQOcetidDfPPJBzCbTG6VWALASy+9ZPeDgivJkCEDeHvVx1j4V+f1aLEUGlH4/VGEjk1AQGfHuweX5BdCpVFbE0sACG0bCQgCDGeLEGEnubQbV6UJKv/L55xLFgmiyna/qKgSIVsklBYUIaRNpKLrKkou9+zZg/bt22PMmDEAgPnz5+Pmm2/GSO7lIPIZllZpMCddCykqydWhEFEjFX61FKbTpxF1//0QAwNdHY7P8g9Uo8eIuCYtkaOWoTQRAapW6i3fshOPTprg8POWlxRj7cfvoseIMegxYrTT9mIWnDmNw/v24N5nXkDrxA4AgGsnT8Wit1/H2FtuQ0h47WQntk1baxIJABExsRh1481Y+tE8WCwWqFQq+Pn7w6/GsUelxcU49ud+XD/9HqfE7SwnTpzADz/8oGg+gaoK5uo/NjvU5KcuZdnnnJJcmkqN8Au03c8piCLUAX4wlSk7ks1UXonTO3MQ072t9bbQ9lHI/z0X5w+dQWSnOJjKjDi9MwcAUKnwuoDC5LJXr1423WKJyEeo/GBuNwjmTmMhh9Re809EnqN06zZUnjyF2Cf+Dr/4eFeH49ViYmJgNknQ+tu+kUweHAP/wCYdMU4toLGJiCTL+O3I0SY3+bmSLMvYs24lLpw+iasm3wGV2q/hBzXgZM4RBAQFWRNLAOjQtWqP56mjR9A1va+i61SUl0ETEGhzLGFN2Vt/gZ+/Bt369Gt0jJJFgiwp+ztvrDWr1yiez2qyLOOXQzvwl/7XOTUW09lSWIxmqDT2fwec3pmDM7uPWr+XzBYY8ouQu+lP622pk4c4HIe50oyD3+9GYLgWrftdrpSHtYtCu8FJyN2wHzmr90JUiWjdtyNKzughQPkHYop+wwUGBqKsrMz6/aZNm3DPPe71yQQROY/sHwxzx9EwdxgJBLjX8hYib2PTFt9sxumyMrS+tK/J2UwnT+LMk08h9umnEZDUpVmeg4DVK9Yj9/cLOLLzvPW2iPggxCToXBiV9zCbzZCaoa/HqpUrG5+IANifexJDezjvzPRT+/dhy1eLMejmyVCrHfswwlBUiGCdbeKrUqkQGKyFobhI0TVKS0qw8ftl6JMxvM4xu3/eiNQBA22qmUpIFgmlZwthqWyePi3nT56FKIqQJEnxY0RBQHGpARaT82MqzS+Etk0ERFXtynRsj7aI7Hx5ifWR1XsQ0TEWER0vn1vsH6yBX7AGpnLb495kSYK5wgS/oPr7algqzTi4fBdUfmp0Gd+rVhxxvRLRKi0BplIj1AF+MBaX4+S2Q9CEKv83SdH/sT179sSbb74JlUpl7Ra7c+dOBNSxEbjajTfeqDgQInID6gCYkq6FueMYwE/Zmn0iahp73SiLzSZctfInjGgVh78lJ6NnhPObvkilpch/8QW0fvVVp1UwK0tK8Nsnn+DM7t0QBAGtBwxAr+nToa5nCe7RNWtw4uefoT92DObyckxcuBD+wcHW+wv27cOm55+3+9iR//oXIjo1vZGKKyT2UrZfiepnNptx+mgOjBUVTr/28ZycRiciggCUlJbCWFHu1FgO/boFQZExSBtxtd0Ec9MPy7H5x++s35sqK3EqJwc/fr7QetuDL/3b4Tgqysvw2duvIyauNUZMtP++/sSRwziXdwY33XNfo68vSzIslRYIKsFuwuWokDBdo+YTqKpI6wKCnd5WQowNhCTLVVVaOwVgdYA/1AGXk3NRLcIvyB8BYcE243StwmAxmlFaUITgmKq8rOjURUCWbfZhXslcacbB5TshqER0ubY3RLX9KrQgCNamQBcO5cFfG4DgaOWVeUXJ5dy5czFp0iTcdddd1iedO3cu5s6dW+dj2C2WyLNY4nujMm06jxQhagENdaPceDYfm87m451+/TG2dWunP79cXoHzH32EuOeeU/yYjc8+i4Thw5EwvHb1YvvcuSgvLMRVzzwD2WLBznffxa4PPsCARx6p83pmoxGtevVCq169sPfzz2vdH5WUhAkffWRz274lS1Cwdy/CO3ZUHLc7CAr1R1gr7nV1BsligbGiAio/NVQOVvWuFBoe2uhERJaBQI3G+edVyjKO7d6O1IwRgJ3X2XfYSHTve/ls6aUfzkPXPn3RtXcf6226sHBoQ8NQWlJs81iLxYLyUkODjXeM5eX475uvwT8gAJkPPlLn3/fuzRvRql17tE5IbMwrtCGqxDqTHUcMzxgOQRAaVZEWBAGDu/R1btNCUUBA7yg4Y/FvYIQWoe2icHT9H0gc1hWyJOP4pv2I7BJnTQorDRX489ud6Hh1D2hbhcFcacaBZTshmS3oMronLJVmWCrNAAC/QH/rPvAzWccQ1i4KEAB9zlmc2X0UncamNWqfuKKfyj59+uDIkSPIycnB2bNnMWzYMDz99NPWo0mIyIMJAkzd/wJz53Hs/krUAhS1xZdlCAAe2rEdX2UMa5YKZsWevbAUFkIVFubQdYpPnUJ+drZNNbHXXXfh51deQc+pUxFYR+xdrr0WQFWF0h7Rzw8BNZqNSGYzzuzciU7jxnlcp9WYRJ3HxezuVGo1/Pyce0h9xtCrGp+IAEhp19rp8ysDCAqru/lLkFaLoBpHl6j9/RCsC0FkrG3n2rYdO6GirAync49Zk79jf+6HLMtoU09n2oryMvz3zVehUqsx+aHH6vy7NlZUYN/O7bh60i2NeHUtp22bthh39RisWrdGUdFLJaowMmUw2oQ71gG4JiFAhcAhrSCG+jtt+W+nManI3fQn/ly2E4IgIKJjLNpflWK9X5YkVBSWQjJXPV9ZQRFKz1Ytg/79v5ttrpU27SpoQqqWvRYdP4czO3MgWSQERenQZXxvhCVENyo2xR/5qNVqJCUlISkpCdOmTcO1116L/v37N/xAInJrlWnTYOnAzs9ELUV5W/yqr3cPHsCHAwc1SyyVp04j0MHk8sLBg/ALDrZZphqTmgpBEHDx8GG0dtJ7hTO7dsFoMCBhxAinXK8lRbcNbngQuVzr1q0xasQIrN+4UVEiIgoCUhPbITLEuXtpRZUKbXumo3X3ng5fKya+NTp3T8XyBR/juql3wmKx4IfPF6J7vwHWTrHF+ouY/9oc3HT3vWjToSMqysuw8I1/w1RZidvuuQ/GinLrst9gXQjEGlXafTt+hSRZ0HPgYIdjbS7/eOwJrF6/tsEPDoRLbWseufpOpzyvEKCCf+dQ+KeEQ/ATrYmeUl1vrPt3pzrAH53G1P3/hyYkCP0fHGv9PqRNpM33dUm5ofENmWrF1pQHzZ8/3+EnJvr/9u48LKqyfwP4fWaAGXZkBxVQNBRXxF0TzQV/au6KWLlULpWlaZmW5p6vLabZay6ZlmmZpr5lJpprpWVqtmeGIqUiLuwIDDPP7w9ychSU2Tgzh/tzXVyXc+Ys3/GGge+c5zyH5Fca3Y2NJVEVMntafCGw9+JFu03yY/hnIiFrFGVnQ+NrOrxOpVbDzcsLRdnZVu//hrN79yK0WTN4BDjXtYsuGjV8gnkNu7OY+OQE7D94sHJnMCWgT5t4mx1bUqkQ3qAR6rZqB1cPD5Rct811pYPHPo4dG97F2lcWQlJJaBTfCr2GjzA+r9frcSXjInQlZbebuHguDX+fKbsFxevTppjsa/LLr6NG4L9nso5/eRCx8a3g7uG4H6DEx7XAu6vewcixD0MIUe4HB2qVGhKAlSMWonlEI6uO5xLuAde6PnCp5QVJXf1GLFSquZw7dy4kScILL7wAlUqFuXPn3nUbSZIwc+ZMqwskIuuFBAUB+lKEav79RWXwrwddkwdkrIrIcRl0OrOvvaqM3RbORnk4MxODIyNtXo/hDpOi/Pbxx/ht2zbjY31JCa6ePo0Ta9YYl/V83XY3Gr+TwqtXkfHDD2g3eXKVHM+W/MM9OCTWiTRv1gzLl72Bx598qsJGRCVJgAQ81rsH6oQGW31MV40WNRs1RUSzFnD/Z2ZXna7kLluZeuS5GRU+5+HlhaHjnqjw+RqBQZj3zvvGx3UaxJo8vpOxL1T+um059evdF3t37MaixS/j8z0pJu/DkiSha8MOmNT9YYsbS5WvG1yjfeAa5Q1VNb/dUKVe/ezZsyFJEp577jm4ublhdgWzt92MzSWR4zi0aytUV09Dc6DsgyHhXgPFbScC6ur9BkhUHoNOh6t//olSO8xGefHPP82fFh9AbmEhSq/bdjZKAMi9cB6eOh1UrrffTy+6Rw/Ubv/vcNxvly5FzbZtUeumYa5af39o/fxQnGN6SwODXo+S/HxorRxye0Pavn3QeHkhvGXLu6/sYAJrOe4ZHSpfr549sX3LZixd9ia+2LfPtBEB0LROBPq0ibe6sfQNCUWtxs0Qek9DuNj4+lG6XXxcC3y0/kP89fdfaHffvcjOyYavuzf2PLPR4mssXSK84NbAD+pALT9E+kel/rK89ZegPT7NJaIqolKjuN0kzgpLVAGDwYDSoiKoXVygsvVslL7mz0ZpAODt5mrz2SiFEDD80+iWt2c3b2+4ef97LZnazQ1aX194hYWZrBcQEwNdQQGyUlONs7hm/vQThBDwr1/fJnWm7d+PyIQEm+dRFfxr2eeepWRfzZs1w9q3V+P8+fPo3qs3cnNz4aFxw+wHh1h1jaWrVovwmEYIj20CnyDrz3qS+WrXqg0PDw9k52TDw83dosbSJcwDmhaBUPvd+b6S1ZHzvUsTkVV09/SGqFFX7jKIHJ7KxQVqM28IfjddOlk2G2XbwCCbz+YsAVDZ4PpFn1q1ENq8OY6tWIH4sWNh0Ovx/Zo1qN2hg3Gm2OtXr+LgnDlo/eSTxoazKCsLRdnZyM/IAADknDsHV3d3eAQGmjS1mT/9hILMTNRxwhnqPXzcoPW8/awwOY+aNWvCw8MDubm50Li6WtxY+oXVRETTOARH32PzW6hQ1ZHcXaBtGQSX2p48U1kBi7+7f/vtN6SmpiIvLw/e3t6oV68eGjRoYMvaSCbp6enYu3evMduuXbsiIiJC7rLIFtSuZbccISJZ1AoPR2KXLthz8GDlpsWXJCQEByPc3fb3SFQFBUGy0S1O2kyciBNr1uDgnDmASoVabdog7uF/Z1w06PXIu3ABpcXFxmWpu3fj182bjY8PvPgiAKDVE0+Y3Evz7L59CIiJgY8d7vdpb74hnMinuguoHYl6bTvCL8z5vn/pJmoJbg38oGnkD8nVxvc0VRizm8uVK1diwYIFOH/+/G3PRURE4IUXXsCjjz5qk+Koah09ehTz5s3DZ599BiGE8bogSZLQp08fzJw5E61atZK7TLKCPrQZ4OZ19xWJyG6emTABXxw6VIlp8cu+Hq9n/dDS8mi73mfWJ++d7zCZn5u3N9pOmlTh857BwRiyZYvJskZJSWiUlHTX495pv47O25/NZXWl9fJGg4SuCK5bn2e4nJkkwa2+D9wa+1f7iXoqy6z/pWeeeQaLFy+Gv78/Hn74YTRu3BheXl7Iz8/HTz/9hO3bt2PcuHE4ffo0Fi1aZK+ayQ62bt2KpKQkk3uv3bguSAiBnTt34vPPP8emTZswcOBAOUslKxgCObpASXR6HVzVHHLnbFo0bYo1S5fikYkTK54WXyq739qSFi3Q1EaT4tzMrXEjuLVogdIS82akJPO4+/Dns7qRJAm1m8ahfrt74eLG6/GcmUtNT2jjA6Hy5mRL5qj0ed2jR49i8eLFGDBgAM6dO4fVq1dj4sSJeOSRRzBx4kS8/fbbOHfuHPr27YtXX30Vx44ds2fdRv/9738RFRUFrVaLNm3a4OjRo3dcf/PmzWjQoAG0Wi2aNGmCnTt3Vkmdjuzo0aNISkqCXq+vcJjWjeeSkpLw3XffVXGFZCsGbw7LURKdQSd3CWSh+xMTseujj9A9IeG2sxoSgITgYHzYvgN6hIaVvwMruISHw+vBB20+QRDdTuvJMx3VSUBEFNolj0LDhG5sLJ2Y5KKCe4dQeHQOZ2NpgUr/ZlmzZg3CwsKwceNGeHqWP622p6cnPvjgA4SEhGDNTffBspdNmzZh8uTJmDVrFk6cOIFmzZohMTERmZmZ5a5/+PBhJCcn45FHHsH333+P/v37o3///vj555/tXqsjmz9/vskZy4rcWGf+/PlVVBnZmvAIlLsEsiEB8+6XSI6lRdOm2LhqFX44eBC+PmX3tvNxccH++7piRctWdjljqfb3h8/4cVDZ4RpOup2bB5vL6sDdxxdxfQYivt8QeAcGyV0OWUFyd4FHYi24Rlk+I3B1V+nm8siRIxgyZAg0mjt/EqPVajFkyBB8/fXXVhd3N4sXL8aYMWMwevRoxMbGYsWKFfDw8MA777xT7vpLly5Fz5498eyzz6Jhw4aYN28eWrRogTfffNPutTqq9PR07Nixo1ITSwBlZzA//fRTpKen27kysgeh9ZO7BLIhvajczy05tlrh4fD4p9lzd3Gxy+Q9AKDy9obPE49D5etrl/3TrSS4atVyF0F2Flo/Bu2Hj0Jw3Xq8ttLJSRo1PLvV5O1FrFTpj9T++usvNGzYsFLrxsbG4r333rO4qMooKSnB8ePHMX36dOMylUqFbt264ciRI+Vuc+TIEUyePNlkWWJiIrZv317hcYqLi1F80+x2+fn5AIDS0lLodM4/JC0lJcWsKfGBsjOYu3fvxsiRI+1UlbLpdTrodKXQi0Ko1FX3PSSVCohSPVBaUCXHM+h1MJTqodPpYICy/8DS6XXQG6q+0bt6/Sok96r9Y0atUiv+Os9Sna7s+1YIqKroff7G+7AQArpKfthnFldXeD/0EHTu7tAVlL0HGEpLof/nd5lQ8BBZna7sNRoMeqh1Vfc6DUKH4qLiu69oI3q9AXq9oexvE0m5oxp0N34+Iars7zBx0xwUutJS4/Lwho1R794uKCktRclNy21BX1oK/T/fu0oewq7Xlf2dUGoohUpdda/TNFMdIElwbxUInasBuF5kl2Ma9AYIvfjn+9e8+x1bw9W1an9nV7q5zM3Nhbd35U4Re3l5IS8vz+KiKuPKlSvQ6/UICQkxWR4SEoLff/+93G0yMjLKXT/jn3tslWfhwoWYM2fObcvbtGljQdXKMWbMGIwZM0buMoiIFCWzuBiNdn1un51/+ol99ktUTWQXFGL8srflLoNsKCP3MiKntpe7DLsy9ySStSrdXAohzDrdX9UvxF6mT59ucrbz5MmTSEhIwLfffou4uDgZK7ONdevWYezYsWZvt3r1ap65tIJBr4Oo6jNdRbmA1qdKDymp1FAp/CxXka4Iv5z7BWqXqj+j99O1n9DEv0mVHU+n10FfqkejyEbQuir7FgsGnc44Y3ZVqBcTgwsXLiBEo8HBnra9F63/mEfhlZBQ7nMqlQqqKv5UWw76Uj0Mhqr9u+Tq+XwE1KzaWz+pVBLULsoeKQKUjR4z2OMMfwXu7dQJF86fhxYCsx4aCncfHyQ+9jTc7HztskqthouL8q/bNegNEFX889mhYwdcOPMXgrwDsPulj+A7oB4klf1HAkkqqUrP0MrBrO/YV199FR988MFd1yvvHpi2FhgYCLVajUuXLpksv3TpEkJDQ8vdJjQ01Kz1AUCj0ZhcZ+rlVfaLwsXFpcpPM9tDYmLiXe+1ditJktCjRw9FvH7ZyPF/56IC3MqfjIssp4ceLq4ucNe4w82lameVy9JnwdO96jItKS3B9eLrcHV1Vf7PfxW/vhsf3kqSCm5qGzUHkoSAcWPh0727bfbnxGT5fg1Vw8OTM03aQ1XneeLECVw+dxYpK5YCADoOHo4aQZy4x2Zk+PE8fuI4MpefhDAI+CdGw9WLk5zZSqWby4iICFy7dg3Xrl2r9Pr25Obmhvj4eOzduxf9+/cHUHZfxr1792LChAnlbtOuXTvs3bsXk266IfOePXvQrl07u9bqyCIiItCnTx/s3LmzUpP6qNVq9O7d2+75kj1wogGl+bvgb7lLIAcluboiaNJEeLZtK3cp1ZaHDxtLJarZoBFqxTaWuwyyEW09P7gGe8hdhqJUurlMS0uzYxmWmTx5MkaOHImWLVuidevWWLJkCQoKCjB69GgAwIgRI1CzZk0sXLgQADBx4kQkJCTgtddeQ+/evfHhhx/i2LFjWLVqlZwvQ3YzZ87E559/ftczmJIkQZIkzJgxowqrI5tx4exnSnO+4DwMwgCVpOwhNmQedYA/QqZOhaZePblLIVIUlYsLWt0/UO4yyIY8mgfLXYLiOPVA7qSkJFy+fBkvvvgiMjIy0Lx5c+zatcs4aU96ejpUN82w1b59e2zcuBEzZszA888/j/r162P79u1o3Lh6fwLVqlUrbNq0CUlJSRBClHsGU61WQ5IkfPTRR2jVqpUMVZLVVMq/Dqe6KdIX4WrRVQS5c3gWlXFv1gxBkyZC7VO111cTVQd141rByz9A7jLIRtR+GriE8KylrTl1cwkAEyZMqHAY7IEDB25bNmTIEAwZMsTOVTmfgQMH4vDhw5g3bx527NgBIQRUKhUMBgMkSULv3r0xY8YMNpZEDuZ8wXk2lwSoVKiRnAzf/v0UfdsCIjnVatBI7hLIhtxqe/PepHbg9M0l2U6rVq3wySefID09Hfv27UNubi58fHxw33338RpLIgeVmpuK5oHN5S6DZKQODEDw5MnQxsTIXQqRonkFBMpdAtmQSxDPWtoDm0u6TUREBEaNGiV3GURUCT9d+wn9ovrBRcW38+pI27QJgp9+msNgiaqAvW89QlXLvYG/3CUoEsfOEBE5sYLSAhy7fEzuMkgG3omJCJ0xg40lURVx07K5JLobNpdERE5u99+7cb30utxlUBXyGzIEAWMehWSre2IS0R2pXFzg4sbbyxDdDZtLIiInl6fLw6fnPpW7DKoivoMGosawJE5EQVSFXDVauUsgcgoWX6STkpKCNWvW4MyZM8jKyrrt/oiSJCE1NdXqAomI6HYDew7En+f/hMZPg86vdMZ3l79DXZ+6aBnUUu7SyI68e/RAjeRkucsgqnZctWwuiSrDoubylVdewbRp0xASEoLWrVujSZMmtq6LiIju4PLlyyi6WgTc9Lne5jOb4e3qjRg/zhqqRB5t25QNheUZS6Iq5+7lLXcJRE7BouZy6dKluO+++7Bz5064urrauiYiIrKAQRiw7tQ6PHTPQ4itESt3OWRD7nFxCJ44kfewJCIih2bRb6msrCwMHjyYjSURkYMpFaVYd2odDmcclrsUshFto0YInvosJE4mQkREDs6i5rJ169Y4deqUrWshIiIbEBDYlrYNH5/5GKWGUrnLISu41a2LkGnPQcXGkoiInIBFzeXy5cuxdetWbNy40db1EBGRjXyT+Q1W/rYSeSV5cpdCFlD7+pY1lh4ecpdCRERUKRZdc5mUlITS0lI89NBDeOyxx1CrVi2ob7nXliRJ+OGHH2xSJBERWSYtLw1Lf16KUTGjUMuzltzlUAVCQ0NhyMtDwE3XVAY+Nh4uAQEyVkVERGQei5pLf39/BAQEoH79+rauh4iIbCynJAf//eW/SI5ORtOApnKXQ+U4duwYMubOw/V/PpTVNmkMj1atZK6KiIjIPBY1lwcOHLBxGUREZE+lhlKsP70eXQq6ILF2ItSS+u4bkWx8779f7hKIiIjMxjnNiYiqkf0X9uOtX97ClaIrcpdCFVB5e8O9eXO5yyAiIjKbRWcub9DpdPj999+Rk5MDg8Fw2/OdOnWyZvdERGQH5/LPYfGPi5FYKxEdwzryLKaD8WjZEpKamRARkfOxqLk0GAyYPn06li9fjsLCwgrX0+v1FhdGRET2ozPosCN9B05cOYGBdQYi0jtS7pLoHx4t4+UugYiIyCIWDYt96aWX8Morr+DBBx/Ee++9ByEE/vOf/2DFihVo2rQpmjVrhpSUFFvXSkRENnah8ALe/OVNbD+7HcX6YrnLIRc13Jty0iUiInJOFjWX69atw9ChQ/HWW2+hZ8+eAID4+HiMGTMG3377LSRJwr59+2xaKBER2c/Xl77G4h8XIy0vTe5SqjVtw4a8ryURETkti5rLv//+G/fddx8AQKPRAACKiooAAG5ubnjwwQexfv16G5VYvmvXruGBBx6Aj48P/Pz88MgjjyA/P/+O23Tu3BmSJJl8jR8/3q51EhHZ2oW/L+B64XUAQGlxKQovV3x5gjmuFV/D8l+WY8/fe2AQt19HT/bn3qy53CUQERFZzKJrLgMCAoyNnJeXF3x8fHDmzBmTdbKysqyv7g4eeOABXLx4EXv27IFOp8Po0aMxduxYbNy48Y7bjRkzBnPnzjU+9uAnxETkJH74/gcsf305Duw9ACEEAKC0oBR7xu9BSHwIYobEoEb9GlYdQ0Bg99+7cSb3DIbXHw5vV29blA4hBN4/+D52ndyFgqICxNaKxRO9nkBN/5oVbvP+wfex8UvT9/RaAbWw6rFV5e7/xQ9fxPHU45gxZAbax7S3Sd1VTRvbUO4SiIiILGZRcxkXF4fvvvvO+LhLly5YsmQJ4uLiYDAY8MYbb6BZs2Y2K/JWv/32G3bt2oXvvvsOLVu2BAAsW7YMvXr1wquvvorw8PAKt/Xw8EBoaKjdaiMisoeUnSl4evzTEEIYG0sjAWSeyETm95loOaUlwttW/B5YWX/m/onXf3wdD9R/ANE+0Vbvb8uRLfjku08wue9khPqFYv3B9Zi5cSZWjF8BNxe3CreLDIrEggcWGB+rVeXPorr96HZIkKyuU1YqFdyiouSugoiIyGIWDYsdO3YsiouLUVxcNvnDggULkJ2djU6dOiEhIQG5ubl47bXXbFrozY4cOQI/Pz9jYwkA3bp1g0qlwrfffnvHbTds2IDAwEA0btwY06dPv+NstwBQXFyM3Nxc49fdht4SEdnaD9//gKfHPw29Xl/hLNzCICD0AsdeO4as07YZOZKny8PKX1fi0MVDtze0ZhBCYPvR7RjWcRjaxbRDnZA6mNJ3Cq7mXcWRU0fuuK1apYa/l7/xy9fD97Z1UjNSsfWbrZh0/ySLa3QELoGBUP1zqQkREZEzsujMZd++fdG3b1/j49jYWKSmpuLAgQNQq9Vo3749/P39bVbkrTIyMhAcHGyyzMXFBf7+/sjIyKhwu+HDhyMyMhLh4eH48ccf8dxzz+HUqVPYunVrhdssXLgQc+bMsVntRETmemvJW+WfsSyPAP7Y8gfaTG9jk2MLCHx67lNkXs9En9p9LNpHRnYGsvKz0LxOc+MyT60nYmrG4Le/f0NCo4QKtz1/7TweXPIg3Fzc0KBmA4y6bxSCff99/y/SFeHl7S/j8Z6Pw9/Lfr93qoLLLb/XiIiInI1FzWV5fH190a9fP6v2MW3aNCxatOiO6/z2228W73/s2LHGfzdp0gRhYWHo2rUrUlNTER1d/rCv6dOnY/LkycbHJ0+eREJCxX8IERHZ0oW/L2D/F/srfeZQGAQyjmWg8HIhPIJsd035t5nfwlVyRefgzmZvm5Vfdia1hqfp9aB+nn7IKqj4LGtMzRhMvn8yagXUwrX8a9j45UY8++6zeGvcW/DQlL221btXo2GthmgX087suhyN2s9P7hKIiIisYnFzqdfrsXnzZuzfvx+ZmZmYO3cumjRpgpycHOzduxcdOnRASEiIWfucMmUKRo0adcd16tati9DQUGRmZposLy0txbVr18y6nrJNm7JP9v/8888Km0uNRmOcERcom8CIiOhWOr3OLvv98tCX5g9JFcDlHy8j4r4I29aS8SU6Bna863r7f9qPZTuXGR/PGWbZ6I9W9VoZ/10npA5iasZg1LJR+PLXL5EYl4hv/vgGP6T9gGVjlt1hL85D7c3fL0RE5Nwsai6zs7PRs2dPHD16FF5eXigoKMCTTz4JoKz5euqppzBixAi89NJLZu03KCgIQUFBd12vXbt2yM7OxvHjxxEfHw8A2LdvHwwGg7FhrIyTJ08CAMLCwsyqk4joBrVKDa2bFkUlRSgtLbX5/rOzs6FSqWAwmHFrEAnQFerM26YStC5aeGg8KpxU54Y297RBTM0Y4+MbjXdWQRb8vf8duppdkI26IXUrfXwvrRdq+tfEhawLAIAf0n7AxayLGPLKEJP1XtryEhrVboRFI+48EsbRSFp3uUsgIiKyikXN5bRp0/DLL78gJSUFcXFxJtc/qtVqDB48GDt37jS7uayshg0bomfPnhgzZgxWrFgBnU6HCRMmYNiwYcaZYs+fP4+uXbvivffeQ+vWrZGamoqNGzeiV69eCAgIwI8//oinn34anTp1QtOmTe1SJxEpn6vaFTE1Y6A3lD/RjrXuibzH/CZRAB4+HnDX2LZZSbonCQ1rNYSr2vWO63loPIzDVoGyCX1qeNXAD2k/IDq0bJRIYXEhTp0/hd7xvSt9/Osl13Ex6yLua1J2n+Uh7YcgsXmiyTqPr3ocY7qPQZv6trnmtCpJbhXPmktEROQMLGout2/fjieffBLdu3fH1atXb3v+nnvuwbp166yt7Y42bNiACRMmoGvXrlCpVBg0aBDeeOMN4/M6nQ6nTp0yzgbr5uaGL774AkuWLEFBQQFq166NQYMGYcaMGXatk4iUz1XteteGy1I9e/SEJEnmDY2VgOCmwZAk292aI6ZGDPrX73/Xs5blliNJ6N+6Pz786kOE+4cjxC8E6w+sR4B3gMm1ktPfn472Me1xf6v7AQBvf/E22tRvg2DfYFzNu4r3D70PlUqFzo06A4BxBtlbBfkGIbSG891ySnK1z/cQERFRVbGouczJyUGdOnUqfF6n09lleNjN/P39sXHjxgqfj4qKMvljrHbt2jh48KBdayIisrWIiAj06dMHO3furPA2JDeTVBLCWobBM9jTZjUEuwfj6finLWosbxjcbjCKSoqw7LNlyC/KR6PajTA3ea7JPS4vZl1ETmGO8fGV3CtYtG0Rcq/nwtfDF41qN8Lro16Hr+fttyNRAsnVZnPsERERycKi32TR0dE4ceJEhc/v3r0bsbGxFhdFRET/mjlzJj7//PPKncGUgNgk273/hnuGY3qb6aihrXH3le9AkiQ81PkhPNT5oQrXWffkOpPH0wZOM/s4O2fsNHsbRyGpLW/eiYiIHIHKko0effRRvPPOO9i0aZPxDx1JklBcXIwXXngBu3btwrhx42xaKBFRddWqVSts2rQJarUa6goaEEklQVJLaPdcO/jfY5v7PTYPao55HeYh2IP3X6wSap65JCIi52bRb7KJEyfil19+QXJyMvz+uS/X8OHDcfXqVZSWlmLcuHF45JFHbFknEVG1NnDgQBw+fBjz5s3Djh07TM9gSkBYyzDEJsXarLHsF90PwxoMg0qy6DNIsoDkwjOXRETk3CRh9g3U/vXVV19hy5YtOH36NAwGA6KjozF06FB06tTJljU6lBMnTiA+Ph7Hjx9HixYt5C6HiKqh9PR0NGvWDNnZ2XD1dEWPN3rY7BpLV5Urxjcbj441734/S7Kt0qwsuNSwbvgxERGRnKwag9OxY0d07Mg/QIiIqlJERAQ8PT2RnZ0NF62LzRrLYPdgTIqfhGi/aJvsj8zDay6JiMjZ8QIPIiJCt4hueKDhA/Bw9bj7ymQfVszGS0RE5Agq3Vz27dvXrB1LkoT//e9/ZhdERERVJ9InEo80fgQx/jFyl1LtSSrb3ZeUiIhIDpVuLnfs2AGtVovQ0NBK3czbljfvJiIi29KqtRjWYBh6RPaw6v6VZEP8vUlERE6u0s1lzZo1cf78eQQGBmL48OEYNmwYQkND7VkbERHZQdPAphjXbBwC3QPlLoVupuLMvERE5Nwq/Zvsr7/+wv79+xEXF4d58+ahdu3a6NatG9auXYu8vDx71khERDagltR4sOGDmN5mOhtLB6TSaOQugYiIyCpmfUyakJCAlStXIiMjA1u2bEFAQAAmTJiA4OBgDBw4EFu2bEFxcbG9aiUiIgv5afzwYrsXcX/0/bx3JREREdmFRX9huLq6ol+/fti0aRMuXbpkbDiTkpLw8ssv27pGIiKyQj2/elh470I08G8gdylERESkYFbdiqS4uBgpKSn43//+h++//x5arRZRUVE2Ko2IiKzVJrQNJsRNgJvaTe5SiIiISOHMbi4NBgP27NmDDz74ANu3b0dhYSG6deuG1atXY8CAAfD0tM3NvImIyDpdanfB2KZjOQyWiIiIqkSlm8vDhw9j48aN2Lx5M65evYq2bdvipZdewtChQxEYyIkhiIgcSedandlYEhERUZWqdHPZsWNHuLu7o1evXkhOTjYOf01PT0d6enq527Ro0cImRRIRUeV1CO+Acc3GsbEkIiKiKmXWsNjr16/j448/xtatW++4nhACkiRBr9dbVRwREZmnTWgbPNH8CTaWREREVOUq3VyuXbvWnnUQEZGVGgc0xpNxT0KtUstdChEREVVDlW4uR44cac86iIjICv5af0yKnwRXtavcpRAREVE1xXFTREQKMKrRKHi7ectdBhEREVVjTttcLliwAO3bt4eHhwf8/PwqtY0QAi+++CLCwsLg7u6Obt264fTp0/YtlIjIDkJDQ+Ee4A5tDS2ifKLQOrS13CURERFRNee0zWVJSQmGDBmCxx57rNLbvPzyy3jjjTewYsUKfPvtt/D09ERiYiKKiorsWCkRke0dO3YMA94bgO6vd0evOr0gSZLcJREREVE1Z9ZssY5kzpw5AIB169ZVan0hBJYsWYIZM2agX79+AID33nsPISEh2L59O4YNG2avUomI7Ear1qJteFu5yyAiIiJy3jOX5jp79iwyMjLQrVs34zJfX1+0adMGR44cqXC74uJi5ObmGr/y8/OrolwiokppGdoSGrVG7jKIiIiIqk9zmZGRAQAICQkxWR4SEmJ8rjwLFy6Er6+v8SshIcGudRIRmaNFcAu5SyAiIiIC4GDN5bRp0yBJ0h2/fv/99yqtafr06cjJyTF+HTx4sEqPT0RUEQkSGgc2lrsMIiIiIgAOds3llClTMGrUqDuuU7duXYv2HRoaCgC4dOkSwsLCjMsvXbqE5s2bV7idRqOBRvPvkDMvLy+Ljk9EZGvhnuHw1fjKXQYRERERAAdrLoOCghAUFGSXfdepUwehoaHYu3evsZnMzc3Ft99+a9aMs0REjqKun2UfthERERHZg0MNizVHeno6Tp48ifT0dOj1epw8eRInT540mXCnQYMG2LZtGwBAkiRMmjQJ8+fPxyeffIKffvoJI0aMQHh4OPr37y/TqyAislxt79pyl0BERERk5FBnLs3x4osv4t133zU+jouLAwDs378fnTt3BgCcOnUKOTk5xnWmTp2KgoICjB07FtnZ2ejYsSN27doFrVZbpbUTEdlCsEew3CUQERERGUlCCCF3Ec7kxIkTiI+Px/Hjx9GiBWdpJCL5nLp2CjH+MXKXQURERATAiYfFEhFVd65qV7lLICIiIjJic0lE5KRcJTaXRERE5DjYXBIROSkXldNeNk9EREQKxOaSiMhJuand5C6BiIiIyIjNJRGRk9KoNXKXQERERGTE5pKIyElxQh8iIiJyJGwuiYiclEriWzgRERE5Dv5lQkTkpCRIcpdAREREZMTmkojISQkIuUsgIiIiMmJzSUTkrNhbEhERkQNhc0lE5KR4n0siIiJyJGwuiYiclCTxmksiIiJyHGwuiYiIiIiIyGpsLomIiIiIiMhqbC6JiIiIiIjIamwuiYiIiIiIyGpsLomIiIiIiMhqbC6JiIiIiIjIarxJGlXo4sWLuHjxotxlEBERERHZVFhYGMLCwuQuQ3HYXJopLCwMs2bNUvw3Y3FxMZKTk3Hw4EG5SyEiIiIisqmEhASkpKRAo9HIXYqiSEIIIXcR5Hhyc3Ph6+uLgwcPwsvLS+5yyEr5+flISEhgngrCTJWFeSoL81QW5qk8NzLNycmBj4+P3OUoCptLKteN5pI/dMrAPJWHmSoL81QW5qkszFN5mKn9cEIfIiIiIiIishqbSyIiIiIiIrIam0sql0ajwaxZs3iRs0IwT+VhpsrCPJWFeSoL81QeZmo/vOaSiIiIiIiIrMYzl0RERERERGQ1NpdERERERERkNTaXREREREREZDU2l0RERERERGQ1NpdEDkKSpEp9HThwwOpjFRYWYvbs2Wbta8GCBejbty9CQkIgSRJmz55tdR1K5sh5/v7775g6dSqaN28Ob29vhIWFoXfv3jh27JjVtSiVI+d54cIFPPjgg4iJiYG3tzf8/PzQunVrvPvuu+CcfRVz5ExvtWHDBkiSBC8vL6trUSpHzjMtLa3Cej788EOr61EiR87zhtTUVAwfPhzBwcFwd3dH/fr18cILL1hdj7NzkbsAIiqzfv16k8fvvfce9uzZc9vyhg0bWn2swsJCzJkzBwDQuXPnSm0zY8YMhIaGIi4uDikpKVbXoHSOnOfbb7+NNWvWYNCgQXj88ceRk5ODlStXom3btti1axe6detmdU1K48h5XrlyBX///TcGDx6MiIgI6HQ67NmzB6NGjcKpU6fw0ksvWV2TEjlypjfLz8/H1KlT4enpaXUdSuYMeSYnJ6NXr14my9q1a2d1PUrk6HmePHkSnTt3Rs2aNTFlyhQEBAQgPT0df/31l9X1OD1BRA7piSeeEPb6Eb18+bIAIGbNmlXpbc6ePWvxtuRYeR47dkzk5eWZLLty5YoICgoSHTp0sEOFyuNIeVakT58+wtPTU5SWltqmMIVz1Eyfe+45ERMTIx544AHh6elp++IUypHyPHv2rAAgXnnlFbvUUx04Up56vV40btxYtGnTRhQWFtqlJmfGYbFETsRgMGDJkiVo1KgRtFotQkJCMG7cOGRlZZmsd+zYMSQmJiIwMBDu7u6oU6cOHn74YQBlw3OCgoIAAHPmzDEOLbnbMNeoqCh7vKRqTa484+PjbxteFxAQgHvvvRe//fabbV9kNSLnz2d5oqKiUFhYiJKSEqtfW3Uld6anT5/G66+/jsWLF8PFhYPNrCV3ngBQUFDAn0kbkSvP3bt34+eff8asWbPg7u6OwsJC6PV6u71OZ8N3KiInMm7cOKxbtw6jR4/GU089hbNnz+LNN9/E999/j6+//hqurq7IzMxEjx49EBQUhGnTpsHPzw9paWnYunUrACAoKAhvvfUWHnvsMQwYMAADBw4EADRt2lTOl1YtOVqeGRkZCAwMtOlrrE7kzvP69esoKChAfn4+Dh48iLVr16Jdu3Zwd3e36+tWMrkznTRpErp06YJevXrho48+sutrrQ7kznPOnDl49tlnIUkS4uPjsWDBAvTo0cOur1nJ5Mrziy++AABoNBq0bNkSx48fh5ubGwYMGIDly5fD39/f/i/ekcl96pSIynfrEJAvv/xSABAbNmwwWW/Xrl0my7dt2yYAiO+++67CfVszRIvDYi3jqHnecOjQISFJkpg5c6bF+6hOHDHPhQsXCgDGr65du4r09HSz9lGdOVqmO3bsEC4uLuKXX34RQggxcuRIDos1gyPlee7cOdGjRw/x1ltviU8++UQsWbJERERECJVKJXbs2GH+i6uGHCnPvn37CgAiICBAPPDAA2LLli1i5syZwsXFRbRv314YDAbzX6CCcFgskZPYvHkzfH190b17d1y5csX4dWOI4/79+wEAfn5+AIAdO3ZAp9PJWDHdiSPlmZmZieHDh6NOnTqYOnWqXY6hdI6QZ3JyMvbs2YONGzdi+PDhAMrOZpJl5My0pKQETz/9NMaPH4/Y2Fib7LO6kzPPiIgIpKSkYPz48bj//vsxceJEfP/99wgKCsKUKVNscozqRs488/PzAQCtWrXC+++/j0GDBmHu3LmYN28eDh8+jL1799rkOM6KzSWRkzh9+jRycnIQHByMoKAgk6/8/HxkZmYCABISEjBo0CDMmTMHgYGB6NevH9auXYvi4mKZXwHdzFHyLCgoQJ8+fZCXl4f//e9/vNWBhRwhz8jISHTr1g3JycnYsGED6tati27durHBtJCcmb7++uu4cuWKcQZLsp4j/IzezN/fH6NHj8apU6fw999/23Tf1YGced641CA5Odlk+Y0P9Q4fPmzxvpWA11wSOQmDwYDg4GBs2LCh3OdvXJAuSRK2bNmCb775Bp9++ilSUlLw8MMP47XXXsM333zD5sFBOEKeJSUlGDhwIH788UekpKSgcePGFu+runOEPG81ePBgrF69GocOHUJiYqLN9ltdyJVpTk4O5s+fj8cffxy5ubnIzc0FUHa2RAiBtLQ0eHh4IDg42LoXWM044s9o7dq1AQDXrl1DrVq1bLbf6kDOPMPDwwEAISEhJstv/EzeOqFQtSP3uFwiKt+t1xc8/vjjQq1WWzTt9YYNGwQAsXr1aiFE2W0nwGsuq5Sj5anX60VSUpJQq9Xi448/NruG6s7R8izP9u3bBQCxadMmq/ZTXThKpjduW3Gnr379+pldU3XjKHneyZQpUwQAceHCBav2Ux04Up4rVqwQAMSaNWtMlqempgoAYsGCBWbXpCQcFkvkJIYOHQq9Xo958+bd9lxpaSmys7MBlH1iJoQweb558+YAYBwG4uHhAQDGbajqyZ3nk08+iU2bNmH58uXG2fHIcnLmefny5XKXr1mzBpIkoUWLFpXaD5mSK9Pg4GBs27bttq8uXbpAq9Vi27ZtmD59uuUvrJpytJ/R8+fP45133kHTpk0RFhZWyVdBN8iZZ79+/aDRaLB27VoYDAbj8rfffhsA0L17d3NeiuJwWCyRk0hISMC4ceOwcOFCnDx5Ej169ICrqytOnz6NzZs3Y+nSpRg8eDDeffddLF++HAMGDEB0dDTy8vKwevVq+Pj4oFevXgDKrheIjY3Fpk2bcM8998Df3x+NGze+47DI9evX49y5cygsLAQAHDp0CPPnzwcAPPTQQ4iMjLT/f4KCyJnnkiVLsHz5crRr1w4eHh54//33TZ4fMGAAPD097f5/oCRy5rlgwQJ8/fXX6NmzJyIiInDt2jV8/PHH+O677/Dkk0+iXr16VflfoRhyZerh4YH+/fvftnz79u04evRouc/R3cn5Mzp16lSkpqaia9euCA8PR1paGlauXImCggIsXbq0Kv8bFEPOPENDQ/HCCy/gxRdfRM+ePdG/f3/88MMPWL16NZKTk9GqVauq/K9wPHKeNiWiit06BOSGVatWifj4eOHu7i68vb1FkyZNxNSpU43Dak6cOCGSk5NFRESE0Gg0Ijg4WPTp00ccO3bMZD+HDx8W8fHxws3NrVLDQRISEiocorV//35bvWzFcqQ8R44cecchd2fPnrXlS1ckR8pz9+7dok+fPiI8PFy4uroKb29v0aFDB7F27dpqPyW+ORwp0/LwViTmcaQ8N27cKDp16iSCgoKEi4uLCAwMFAMGDBDHjx+36WtWMkfKUwghDAaDWLZsmbjnnnuEq6urqF27tpgxY4YoKSmx2Wt2VpIQt5wrJiIiIiIiIjITr7kkIiIiIiIiq7G5JCIiIiIiIquxuSQiIiIiIiKrsbkkIiIiIiIiq7G5JCIiIiIiIquxuSQiIiIiIiKrsbkkUoC0tDRIkoR169bJXQrZCDNVFuapLMxTWZin8jBT+bC5JCIiIiIiIqtJQgghdxFEZB0hBIqLi+Hq6gq1Wi13OWQDzFRZmKeyME9lYZ7Kw0zlw+aSiIiIiIiIrMZhsUQOYvbs2ZAkCX/88QcefPBB+Pr6IigoCDNnzoQQAn/99Rf69esHHx8fhIaG4rXXXjNuW961BaNGjYKXlxfOnz+P/v37w8vLC0FBQXjmmWeg1+uN6x04cACSJOHAgQMm9ZS3z4yMDIwePRq1atWCRqNBWFgY+vXrh7S0NDv9rzg3ZqoszFNZmKeyME/lYabOic0lkYNJSkqCwWDAf/7zH7Rp0wbz58/HkiVL0L17d9SsWROLFi1CvXr18Mwzz+DQoUN33Jder0diYiICAgLw6quvIiEhAa+99hpWrVplUW2DBg3Ctm3bMHr0aCxfvhxPPfUU8vLykJ6ebtH+qgtmqizMU1mYp7IwT+Vhpk5GEJFDmDVrlgAgxo4da1xWWloqatWqJSRJEv/5z3+My7OysoS7u7sYOXKkEEKIs2fPCgBi7dq1xnVGjhwpAIi5c+eaHCcuLk7Ex8cbH+/fv18AEPv37zdZ79Z9ZmVlCQDilVdesc0LrgaYqbIwT2VhnsrCPJWHmTonnrkkcjCPPvqo8d9qtRotW7aEEAKPPPKIcbmfnx9iYmJw5syZu+5v/PjxJo/vvffeSm13K3d3d7i5ueHAgQPIysoye/vqjJkqC/NUFuapLMxTeZipc2FzSeRgIiIiTB77+vpCq9UiMDDwtuV3ezPTarUICgoyWVajRg2L3gQ1Gg0WLVqEzz//HCEhIejUqRNefvllZGRkmL2v6oaZKgvzVBbmqSzMU3mYqXNhc0nkYMqbMruiabTFXSZ7rsz025Iklbv85ovbb5g0aRL++OMPLFy4EFqtFjNnzkTDhg3x/fff3/U41RkzVRbmqSzMU1mYp/IwU+fC5pKomqtRowYAIDs722T5uXPnyl0/OjoaU6ZMwe7du/Hzzz+jpKTEZIY2kh8zVRbmqSzMU1mYp/IwU+uwuSSq5iIjI6FWq2+bYW358uUmjwsLC1FUVGSyLDo6Gt7e3iguLrZ7nVR5zFRZmKeyME9lYZ7Kw0yt4yJ3AUQkL19fXwwZMgTLli2DJEmIjo7Gjh07kJmZabLeH3/8ga5du2Lo0KGIjY2Fi4sLtm3bhkuXLmHYsGEyVU/lYabKwjyVhXkqC/NUHmZqHTaXRIRly5ZBp9NhxYoV0Gg0GDp0KF555RU0btzYuE7t2rWRnJyMvXv3Yv369XBxcUGDBg3w0UcfYdCgQTJWT+VhpsrCPJWFeSoL81QeZmo5SdztylciIiIiIiKiu+A1l0RERERERGQ1NpdERERERERkNTaXREREREREZDU2l0RERERERGQ1NpdERERERERkNTaXRGSWtLQ0SJKEdevWyV0K2QgzVRbmqSzMU1mYp/IwU1NsLonsKDU1FePGjUPdunWh1Wrh4+ODDh06YOnSpbh+/brdjvvrr79i9uzZSEtLs9sxKmPBggXo27cvQkJCIEkSZs+eLWs9tsBMlZUp82SetsA87YN5KitPgJkqMdNbuchdAJFSffbZZxgyZAg0Gg1GjBiBxo0bo6SkBF999RWeffZZ/PLLL1i1apVdjv3rr79izpw56Ny5M6KiouxyjMqYMWMGQkNDERcXh5SUFNnqsBVmqqxMmSfztBXmaXvMU1l5AswUUF6m5WFzSWQHZ8+exbBhwxAZGYl9+/YhLCzM+NwTTzyBP//8E5999pmMFf5LCIGioiK4u7vbfN9nz55FVFQUrly5gqCgIJvvvyox0zJKyZR5lmGeVY953h3zLKOUPAFmeoOSMq0Ih8US2cHLL7+M/Px8rFmzxuQN9IZ69eph4sSJxselpaWYN28eoqOjodFoEBUVheeffx7FxcUm20VFRaFPnz746quv0Lp1a2i1WtStWxfvvfeecZ1169ZhyJAhAIAuXbpAkiRIkoQDBw6Y7CMlJQUtW7aEu7s7Vq5cCQA4c+YMhgwZAn9/f3h4eKBt27ZWvdnL+emgrTHTf+tVAub5b71KwDz/rVcJmOe/9SoFM/23XsUTRGRzNWvWFHXr1q30+iNHjhQAxODBg8V///tfMWLECAFA9O/f32S9yMhIERMTI0JCQsTzzz8v3nzzTdGiRQshSZL4+eefhRBCpKamiqeeekoAEM8//7xYv369WL9+vcjIyDDuo169eqJGjRpi2rRpYsWKFWL//v0iIyNDhISECG9vb/HCCy+IxYsXi2bNmgmVSiW2bt1qrOHs2bMCgFi7dm2lX9/ly5cFADFr1qxKb+NomKkpZ8+UeZpinszTkTBPU86epxDM9FZKyLQibC6JbCwnJ0cAEP369avU+idPnhQAxKOPPmqy/JlnnhEAxL59+4zLIiMjBQBx6NAh47LMzEyh0WjElClTjMs2b94sAIj9+/ffdrwb+9i1a5fJ8kmTJgkA4ssvvzQuy8vLE3Xq1BFRUVFCr9cLIarnmygzvZ0zZ8o8b8c8maejYJ63c+Y8hWCm5XH2TO+Ew2KJbCw3NxcA4O3tXan1d+7cCQCYPHmyyfIpU6YAwG3DL2JjY3HvvfcaHwcFBSEmJgZnzpypdI116tRBYmLibXW0bt0aHTt2NC7z8vLC2LFjkZaWhl9//bXS+1caZqoszFNZmKeyME/lYabVC5tLIhvz8fEBAOTl5VVq/XPnzkGlUqFevXomy0NDQ+Hn54dz586ZLI+IiLhtHzVq1EBWVlala6xTp065dcTExNy2vGHDhsbnqytmqizMU1mYp7IwT+VhptULm0siG/Px8UF4eDh+/vlns7aTJKlS66nV6nKXCyEqfSx7zICmZMxUWZinsjBPZWGeysNMqxc2l0R20KdPH6SmpuLIkSN3XTcyMhIGgwGnT582WX7p0iVkZ2cjMjLS7ONX9g351jpOnTp12/Lff//d+Hx1xkyVhXkqC/NUFuapPMy0+mBzSWQHU6dOhaenJx599FFcunTptudTU1OxdOlSAECvXr0AAEuWLDFZZ/HixQCA3r17m318T09PAEB2dnalt+nVqxeOHj1q8sZfUFCAVatWISoqCrGxsWbXoSTMVFmYp7IwT2VhnsrDTKsPF7kLIFKi6OhobNy4EUlJSWjYsCFGjBiBxo0bo6SkBIcPH8bmzZsxatQoAECzZs0wcuRIrFq1CtnZ2UhISMDRo0fx7rvvon///ujSpYvZx2/evDnUajUWLVqEnJwcaDQa3HfffQgODq5wm2nTpuGDDz7A//3f/+Gpp56Cv78/3n33XZw9exYff/wxVCrzP4tav349zp07h8LCQgDAoUOHMH/+fADAQw895FSf+jHTMkrJlHmWYZ7M0xExzzJKyRNgpjcoKdMKyTlVLZHS/fHHH2LMmDEiKipKuLm5CW9vb9GhQwexbNkyUVRUZFxPp9OJOXPmiDp16ghXV1dRu3ZtMX36dJN1hCibLrt37963HSchIUEkJCSYLFu9erWoW7euUKvVJtNvV7QPIcruBTV48GDh5+cntFqtaN26tdixY4fJOuZMuZ2QkCAAlPtV3nTgzoCZKitT5sk8mafjYp7KylMIZqrETG8lCWHG1a5ERERERERE5eA1l0RERERERGQ1NpdERERERERkNTaXREREREREZDU2l0RERERERGQ1NpdERERERERkNTaXREREREREZDU2l0RERERERGQ1NpdERERERERkNTaXREREREREZDU2l0RERERERGQ1NpdERERERERkNTaXREREREREZDU2l0RERERERGS1/we4lSq8hDcbAwAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -262,11 +262,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:57:05 2025.\n",
+ "The current time is Tue Mar 25 16:03:05 2025.\n",
"\n",
"Effect size(s) with 95% confidence intervals will be computed for:\n",
"1. Test 1 minus Control 1\n",
@@ -300,11 +300,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:57:06 2025.\n",
+ "The current time is Tue Mar 25 16:03:06 2025.\n",
"\n",
"The unpaired mean difference between Control 1 and Test 1 is 0.48 [95%CI 0.205, 0.774].\n",
"The p-value of the two-sided permutation t-test is 0.001, calculated for legacy purposes only. \n",
@@ -348,7 +348,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABG8AAAInCAYAAAAmiHTKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA3HJJREFUeJzs3Xd80+X6P/7X+520SdukTRltWWUVyi5LkCFFQBDHcXHgh3gcZ+E4DsTjwHMcx3PwHP141HO+ylGPRzwcEBHXcYJQAVGU3cMqs+xRRtM2TTPf9++P0tiRpO+02Xk9Hw8eSHInueJNQnrluq9LEkIIEBERERERERFRVJIjHQAREREREREREfnG5A0RERERERERURRj8oaIiIiIiIiIKIoxeUNEREREREREFMWYvCEiIiIiIiIiimJM3hARERERERERRTEmb4iIiIiIiIiIohiTN0REREREREREUYzJGyIiIiIiIiKiKJbQyZtTp07hqaeewqlTpyIdChERERERERGRVwmfvHn66aeZvCEiIiIiIiKiqJXQyRsiIiIiIiIiomjH5A0RERERERERURRj8oaIiIiIiIiIKIppIx0AERH5V24px+odq3HGfAbZpmxMHDgRmYbMSIdFRERERERhwuQNEVEU+2HfD5j//ny4FBdkSYYiFCxaswjzps3DyF4jIx0eERERERGFAY9NERFFqXJLOea/Px9OtxNCCLgVN4QQcLqdmL98Psot5ZEOkYiIiIiIwoCVN0REEdLccajVO1bDpbi83taluFC0owg3jbopXOESERHFHKfVjrMlJ2GvrIEuPQXt+3REUqou0mEREQWMyRsioghQcxzqjPkMZEmGW7ib3F6WZJw2nw532ERERFFBTVKmvLQM+7/YDqEokCQJQggc/34/ek0djMzuWRGKnIioZXhsiogozNQeh8o2ZUMRitf7UISCHFNOOMMmIiKKCuWlZdi2cC2OfbcXZ3cdw7Hv9mLbwrUoLy3zrHFa7bWJG7cCCEAoovZ3t4L9X2yH02qP4DMgIgockzdERGGm5jgUAEwcOBFa2XuBpFbWYuKgiSGLkYiIKBqpTcqcLTkJoXj/AkQoCs6VnAxn2ERErcbkDRFRmNUdh/Km/nGoTEMm5k2bhyRNEiRJgkbWQJIkJGmSMG/aPJjSTGGMmoiIKPLUJmXslTWQJMnrOkmSYKusCVmMREShwJ43RERhFshxqJG9RmLhvQtRtKMIp82nkWPKwcRBE5m4ISKihFSXlBFCNLmuflJGl57idQ0ACCGgT08JaZxERMHG5A0RUZhNHDgRi9YsgtPtbHKdt+NQmYZMTpUiIiKC+qRM+z4dcfz7/bXHqxqRZBnt+nQMaZxERMHGY1NERGHG41BEREQt075PR0iy9x9h6idlklJ16DV1MCSNDEiAJEu1v2tk9Jo6mOPCiSjmSMJX6joBbN26FcOGDcOWLVswdOjQSIdDRAmm3FLO41BEREQB8jYCXJJlryPAnVY7zpWchK2yBvr0FLTzMlKciCgWMHnD5A0RERERUUxhUoaIEg173hARERERUUxJStWhw9DukQ6DiChs2POGiIiIiIiIiCiKMXlDRERERERERBTFmLwhIiIiIiIiIopiTN4QEREREREREUUxJm+IiIiIiIiIiKIYkzdERERERERERFGMyRsiIiIiIiIioijG5A0RERERERERURRj8oaIiIiIiIiIKIoxeUNEREREREREFMWYvCEiIiIiIiIiimJM3hARERERERERRTEmb4iIiIiIiIiIoljMJm+eeuopSJLU4FefPn0iHRYRUdCVW8qxfMNyvPLFK1i+YTnKLeWRDomIiIiIiMJIG+kAWqN///5YtWqV589abUw/HSKiJn7Y9wPmvz8fLsUFWZKhCAWL1izCvGnzMLLXyEiHR0REREREYRDT2Q6tVoucnJxIh0FE1CLllnKs3rEaZ8xnkG3KxsSBE5FpyGxw/fz358PpdgIA3MINAHC6nZi/fD4W3ruwwXoiIqJE4bTacbbkJOyVNdClp6B9n45IStVFOiwiopCJ6eTN/v370bFjR+j1eowaNQrPPvsscnNzfa632+2w2+2eP1sslnCESUTUhJqKmtU7VsOluLze3qW4ULSjCDeNuimcYRMREUVceWkZ9n+xHUJRIEkShBA4/v1+9Jo6GJndsyIdHhFRSMRsz5uRI0di4cKF+PLLL7FgwQKUlpbisssuQ1VVlc/bPPvss8jIyPD8KiwsDGPERES16lfUCCHgVtwQQngqaup62pwxn4EseX+bliUZp82nwxk2ERFRxDmt9trEjVsBBCAUUfu7W8H+L7bDabU3fydERDEoZpM3U6dOxU9/+lMMGjQIU6ZMweeffw6z2Yxly5b5vM1jjz2GiooKz6+1a9eGMWIiolpqKmoAINuUDUUoXtcpQkGOicdGiYgosZwtOQmheP+3USgKzpWcDHNEREThEbPJm8ZMJhN69+6NAwcO+Fyj0+mQnp7u+WUwGMIYIRFRLbUVNRMHToRW9n66VStrMXHQxJDFSEREFI3slTWQJMnrdZIkwVZZE+aIiIjCI26SNxaLBQcPHkSHDh0iHQoRkV9qK2oyDZmYN20ekjRJkCQJGlkDSZKQpEnCvGnzYEozhTFqIiKiyNOlp0AI4fU6IQT06SlhjoiIKDxitmHxQw89hGuvvRZdu3bFyZMn8eSTT0Kj0WDmzJmRDo2IyK+JAydi0ZpFnilS9TWuqBnZayQW3rsQRTuKcNp8GjmmHEwcNJGJGyIiSkjt+3TE8e/31/a8aUSSZbTr0zECURERhV7MJm+OHz+OmTNn4vz582jfvj3Gjh2L77//Hu3bt490aEREftVV1Mxf3nDalFbWeq2oyTRkcqoUERERgKRUHXpNHdxk2pQky+g1dTDHhRNR3JKEr7rDBLB161YMGzYMW7ZswdChQyMdDhElmHJLOStqiOKc1WJDyfbDqCqvhjEzDX0Gd0OqQR/psIhintNqx7mSk7BV1kCfnoJ2fToycUNEcS1mK2+IiGIdK2qI4ltpyQl8ufQ7KPWqA35YtQNXzhyD7vk82kHUGkmpOnQY2j3SYRARhU3cNCwmIiIiihZWiw1fLv0ObrcCIQBFERACcLsVfPnOt7BabJEOkSgq7Xz3O2z919fY+e53kQ6FiCiqMHlDREREFGQl2w9DUXxMlVMUlGw/HN6AiGKEo9oOZ7Udjmp7pEMhIooqPDZFRERE1AL++tlUlVd7jko1JkkSqsqrwx0uERERxTAmb4iIguy+N+9DuaUcmYZM/O0Xf4t0OEQUAs31szFmpnlN3ACAEALGzLQwR0wUX5xWO86WnIS9sga69BS0D7BhcWtvT0QUbkzeEBEFWbmlHOerzkc6DCIKkfr9bAB4kjR1/Wxue+ha9BncDT+s2uFZU58sy+gzuFs4QyaKK+WlZU1GhR//fj96TR2MzO5ZIb89EVEksOcNERERUQDU9LNJNehx5cwx0GhkSBIgyxIkCdBoZFw5cwzHhRO1kNNqr028uBVAAEIRtb+7Fez/YjucVv+9clp7eyKiSGHlDVEccFjKUbajCHbzGehM2cgaOAHJhsxIh0VEFJfU9rPpnt8Rtz10rc++OEQUuLMlJyF8JE+FouBcyUm/I8Rbe3siokhh8oYoxp3f9wNK3n8WQnFBkmQIoeDImkXoO20e2vQaEenwiIjiTiD9bFINegwd2ydcoRHFPXtljd/kqa2yJqS3JyKKFB6bIophDkt5beLG7QSEgFDctb+7ndizfD4clvJIh0hEFLOsFhu2ri/B2k+2YOv6ElgtNgBAn8HdIMveP0Kxnw1RaOnSU/wmT/XpKSG9PRFRpDB5QxTDynYUQSgur9cJxYWyHUVhjoiIKD6UlpzA2//3CTasLMauzQexYWUx3v6/T1C69yT72RBFUPs+HSH5SJ5Ksox2fTqG9PZERJHCY1NEMcxuPnPxqJS7yXWSJMNuPhOBqIiIYpuaaVLsZ0MUGUmpOvSaOrjJtChJltFr6uAm4769jQQP5PZERNGCyRuiGKYzZUMIH033hAKdKTvMERERxT4106SGju3DfjZEEZLZPQtDbi/EuZKTsFXWQJ+egnZ9OjZJvPgbCa7m9kRE0YTJG6IYljVwAo6sWVTb86YRSdYia9DECERFRBTb1E6TIqLISUrV+Z0K1WAkOH6soKsbCT7k9kJOlSKimMKeN0QxxGEpx/EN7+PgF6/i+Ib3AQB9p82DpEkCJAmSrKn9XZOEvtPmITnNFNmAiYhiUCDTpIgoMpxWO05uLUXpmt04ubUUTqu9wfVqRoITEcUSVt4QxQh/I8EvufctlO0ogt18BjpTNrIGTWTihoiohfoM7oYfVu3w9Lypj9OkiCLP33GozO5ZADgSnIjiDytviGJAcyPBAaDzqJvQc+rd6DzqJiZu4kC5pRzLNyzHK1+8guUblqOcY9+JwobTpIiiV4PjUAIQiqj9/eJxqLoKHI4EJ6J4w8obohigZiR451E3hTkqCpUf9v2A+e/Ph0txQZZkKELBojWLMG/aPIzsNTLS4RElBE6TIopOao5DdRjaHe37dMTx7/d7et7Ux5HgRBSLWHlDFAPqRoJ7w5Hg8aXcUo7578+H0+2EEAJuxQ0hBJxuJ+Yvn88KHKIwqpsmVXjtMM90KSKKrLrjUN7UPw5VN1Jc0siABEiyVPu7hiPBiSg2sfKGKAZwJHjiWL1jNVw+qqxcigtFO4pwE6usiIgoQQVyHErtSHEioljAyhuiGJA1cAIk2XuulSPB48sZ8xnIPqqsZEnGafPpMEdEREQUPdr36QhJ9lGN7OU4VN1I8e7j+6HD0O5M3BBRzGLyhigGJBsyORI8QWSbsqH4qLJShIIcU06YIyIiIooePA5FRImKx6aIYkSbXiM4EjzOlFvKsXrHapwxn0G2KRsTB07ExIETsWjNIjjdzibrtbIWE1llRURECY7HoYgoETF5QxRDkg2ZnCoVJ/xNlJo3bR7mL294nVbWYt60eTAxWUdEROQ5DkVElCiYvCEiCrP6E6UAwC3cAOCZKLXw3oVYeO9CFO0owmnzaeSYcjBx0EQmboiiiNVi4xhxIiIiChsmb4iIwkztRClOlSKKTqUlJ/Dl0u+gKAokSYIQAj+s2oErZ45B9/yOzd8BERERUYCYvCGKIQ5LecOeNwMnINmQGemwKEB1E6XqKm7q40Qpouhmtdjw5dLv4HbXNhavG1nsdiv48p1vcdtD17ICJ0pZKiqw/btvUH7uHDLbtcPg0ZfBkJER6bCIiIhUYfKGKEac3/cDSt5/FkJxQZJkCKHgyJpF6DttHtr0GhHp8CgAnChFFLtKth+Govh4/SoKSrYfxtCxfcIcFTWnZPtWLH31b1DcbkiyDKEoWPXhcsy8+37kDx4S6fCIiIiaxVHhRDHAYSmvTdy4nYAQEIq79ne3E3uWz4fDUh7pECkAEwdOhFb2njvnRCmi6FZVXg1JkrxeJ0kSqsqrwxwRNcdSUYGlr/4NbpcLQggobjeEEHC7XHjn1ZdhqaiIdIhERETNipvkzZ///GdIkoQHHngg0qEQBV3ZjiIIHz1ShOJC2Y6iMEdErZFpyMS8afOQpEmCJEnQyBpIkoQkTRInShFFOWNmmueoVGNCCBgz08IcETVn+3ffQHE3PaYKAIrbje0b1oc5IiIiosDFxbGpTZs24bXXXsOgQYMiHQpRSNjNZy4elWr64VOSZNjNZyIQFbXGyF4jOVGKKALeXbASVosNqQY9Ztw1OeDb9xncDT+s2uHpeVOfLMvoM7hbEKKkYCo/d672qJSXBI4kyyg/ezYCUREREQUm5pM3FosFs2bNwhtvvIE//vGPkQ6HKCR0pmwIHz1ShFCgM2WHOSIKhkxDJidKEYWZ1WJDdWWN6rXexoFfOXMMvnzn2wbTpmRZxpUzx7BZcRTKbNcOwkefIqEoyGzfPswRERERBS7mkzf33HMPrr76akyaNKnZ5I3dbofdbvf82WKxhDo8oqDIGjgBR9Ysqu1504gka5HFHilEREHV3Djw2x661mtih6LP4NGXYdWHy+F2NT1+LGs0GDx6bASiIiIiCkxMJ2+WLl2KrVu3YtOmTarWP/vss3j66adDHFVsKa+qxleb9uD0hUrktEnHFZf0RaaR5/WjTbIhE32nzcOe5fMbTJuSZC36TpuHZB61ISIKGrXjwDlVKjYYMjIw8+778c6rLzeYNiVrNJh59/0wpHNcOAWP02rH2ZKTsFfWQJeegvZ9OiIpVRfpsIgoDsRs8ubYsWO4//778dVXX0GvV/dN12OPPYYHH3zQ8+ft27ejsLAwVCFGvQ07D+GZtz+Dy61AliQoQmDhFxvwxO1X49L+PSIdHjXSptcIXHLvWyjbUQS7+Qx0pmxkDZrIxE2cKreUY/WO1ThjPoNsUzYmDpyITENmpMMiSggcBx5/8gcPwUPPv4ztG9aj/OxZZLZvj8GjxzJxQ0FVXlqG/V9sh6hXsXf8+/3oNXUwMrtnRTo8IopxMZu82bJlC8rKyjB06FDPZW63G+vWrcP/+3//D3a7HRqNpsFtdDoddLofM98GgyFs8Uab8qpqPPP2Z3C6apv3uS9+q+h0ufGHhZ9h8RM/ZwVOFEo2ZKIze6TEvR/2/YD578+HS3FBlmQoQsGiNYswb9o8jOw1MtLhEcW9unHg3qZKcRx47DJkZGDslVdHOgyKU06rvTZx06hiT7gV7P9iO4bcXsgKHKIWsFrLsXfvalRVnYHRmI38/IlITU3MLzRjNnkzceJE7Nixo8Fld9xxB/r06YNHHnmkSeKGGvpq0x64vEzKAACXW8GqzSX46eXDwhwVEZVbyjH//flwXuxv5L44YczpdmL+8vlYeO9CVuAQhRjHgVM0sVRUYPt336D83DlktmuHwaMvgyGDFUOR4O9I1NmSk34bY58rOYkOQ7uHM9yEZrFYUFxcDLPZDJPJhIKCgoT+4j5WHT78A1aunA+lXtuITZsWYfLkeejWLfG+0Axb8sbtduO9997D119/jbKyMvzhD3/AwIEDUVFRgdWrV2PMmDHIzlY/McdoNGLAgAENLktLS0Pbtm2bXE5Nnb5QCVmSPBU39cmShFPnKyIQVeLa/ub9cFjKkWzIxOBfvBzpcCiCVu9YDZfStKkmALgUF4p2FHFCFVGIcRw4RYuS7Vux9NW/NejVs+rD5Zh59/3IHzwk0uEllOaORNkra/xW7NlUTrmj1tu7dy+WLVvWoOF8UVERpk+fjvz8/EiHRypZreVYuXI+3Be/0BQXv9B0u51YuXI+brllYcJV4MjheBCz2YwxY8bg5ptvxjvvvIP//ve/OHv2LIDao0v33XcfXn6ZP7CGU06bdCg+vlVUhECHtvxGJ5wclnI4qs7DYSmPdCgUYWfMZyBL3t+aZUnGafPpMEdElHjqxoFrNDIkCZBlCZIEaDQcB07qWCoqsP6LT/HJooVY/8WnsFQ0/VKsuTWWigosffVvcLtcEEJAcbshhIDb5cI7r77s9T4pNBociRKAUETt7xePRDmtdujSU/xW7OnTU8IcdWKyWCxYtmwZ3BdfL4qi1L5u3G4sW7aM04ZjyN69q6H4+EJTUVzYt68ozBFFXlgqbx599FHs2rULK1aswJAhQ5CV9WPDLo1Gg2nTpuHzzz/H/PnzW/U4a9asaWWk8cfXNKkrLumLhV9s8PS8qU+rkTFpeN8IREtE2aZsKMJHo1ShIMeUE+aIiBITx4HHn3AdP1JTLaNmzfbvvoHibvo5DQAUtxvbN6xnD58wUXMkqn2fjjj+/X5Pz5v6JFlGuz4dQx1mzFNz1Km5NcXFxX4bzhcXF2PMmDEhfR4UHFVVZy4elWr6PihJMiorE+8LzbAkbz766CPce++9uOKKK3D+/Pkm1/fu3RsLFy4MRygJpblpUk/cfjX+sLDh9VqNjCduvxqZxtRIh0+UkCYOnIhFaxZ5et7Up5W1mDhoYgSiIkpMHAceP8J1/Kh+tQwAiIvJl7pqmYeer600b26NISMD5efO1cbqJYEjyTLKL1axk39qR3f7W6fmSFRSqg69pg5ucrRKkmX0mjqYzYqboeaok5o1ZrPZ716ZzeZwPi1SwVdDYqMxG8LHF5pCKEhPT7wvNMOSvKmoqED37r4bdDmdTrhc3kuiqGXUTJO6tH8PLH7i51i1uQSnzlegQ9sMTBrel4kbolaqayjcXGNhX+PA502bh/nLG06b0spazJs2D6aLo+E5SpyISB01CZVAKnD8VfCoqZbBxSNQ/taMvfJqZLZr57faI7N9e9UxxyM1SRm1o7ubW6f2SFRm9ywMub0Q50pOwlZZA316Ctr5SBbRj+ofdQJ+nNRVd9Rpzpw5ANDsGoPBAJPJ5HevTCZTiJ8N1VEzJcpfQ+L8/InYtGmRp+dNfbKsRe/eifeFZliSNz179sTWrVt9Xr9y5Ur069cvHKEkDLXTpDKNaZwqRVSPw+WAy926ZPKfb/mz57+tdqvXNZsPbMYL/32hyTjwudfNxfCew7Fg9gKs3bUWZRVlyMrIwvj+45GRlgGr3drsbdXQarRI1ia36nkSEUWDBU//HpZKMwzpJtz15DNNrg/m8aPmKnjUVsuoWTN49GVY9eFyT9KpPlmjweDRY1XFHI/UJGXUju5Wsy6QI1FJqTpOlQqQmqNOdf/tb82YMWNQUFCAoqIiT5KnPlmWUVBQELzAySc1U6LUNCSePHlek/uRZS0mT56H1FRTpJ5exIQlefPLX/4SjzzyCMaPH4+JE2szZJIkwW634w9/+AO+/PJLvP766+EIJWFwmhRR4BwuB4oPF8Nq855wCZZqWzUWrFwAt1JXGffjOPDnP3oed02+C2n6NHTM7IiOmbUfCPed3BfQbZuTqk9FQbcCJnCIKOZZKs2oLPfd8D9Yx4/UVPCoqpYRQlVFjSEjAzPvvh/vvPpyg2SRrNFg5t33w5Aen8MlktN0DX5vTG1SRu3obrXreCQqdNQedVKzxmAwYPr06U2OV8myjOnTp3NceBionRKlpiHx4ME34ZZbFmLfviJUVp5GenoOeveemJCJGyBMyZv7778fu3btwsyZMz2lajfffDPOnz8Pl8uF2bNn4xe/+EU4QkkYnCZFFDiX2wWrzRryqpStpVv9fnu079Q+jOnjvZlea25bx+FywGqzwuV2MXkTZDazGUfWrkV1WRnSsrLQtbAQepZoE0VUsI4fqangUVUtI6C6oiZ/8BA89PzL2L5hPcrPnkVm+/YYPHps1CZuFJe7dhJTK/S9YYTnv92Opv+PynYe87ufZbuOI6egK2zl1YAkAT5+2K8pr4bb4VK9Lr1TGwy6eQzO7z8NR1UN9KY0HokKErVHndQeh8rPz8ecOXOabX5MoaE2KaO2IXFqaiYGD74ppDHHirAkbyRJwhtvvIHbbrsNy5cvx/79+6EoCnr27Inp06dj3Lhx4QgjoXCaFFHLJWuToUtq+Yexv3/+d1TZqmDUG3HvVfc2ub6qpsrvt0eVNZU+H781t62vtUfDqKmTmzdjwwsvQHG5PN+Q71y6FKPmzkXH4eqOsxFR8AXr+JGaCh611TKBVNQYMjJiYqqU4nKj4vh5rwmXYKo86bvKCgAqT1yALiOldr99JJKEIqC43Cg/XKZ6XR1dRgpS2xuR0bktZK2m5U+EPNQedQrkOJTBYOBUqQhRm5RhQ+LAhSV5U2fs2LEYOzZxz+eGU6YxjdOkiCKkylaFSmulz+sz0zL9fnvUxtAmJLel0LGZzbWJG+fFEuGLHy4VpxMbXngBVy9YwAocoggJ5PiRv2bEait41FTLxFpFjRpCEXA7XJBlGZJGDtnjJBv0gK/iHlF7vSZJC1PX9ig/cMZrJZAkS8jo2i6gdZ6HcCtwO1ytrjCiH6k96sTjULFBbVKGDYkDF9bkDYUXp0kRRaehPYbiq+Kv4PJSUqqRNRjaY2hIbkuhc2TtWig+piYqLheOrF2L/OuuC3NURFRHTbKkuWbEgVTwqKmWiZWKmkBJGhmapJZXpJR+vQsumxNafRK6X96/yfWZ3drj/N6TPpMtmd3bQ5OkgSZJg04j8nBi44HatRePRkmyhE4j8qAz6AFA9bo6bgDwkcSjllNz1InHoSJv+fL7YLWWIzU1E9Om/c3rGrVJmdTUTDYkDlBYkjfdu3eHJEl+10iShIMHD4YjnITCaVJE0ceYYsSscbOweN1iuBW359sjjazBrHGzYND7/hASyG2raqqw9dBWlFeXIzMtE0N7DIUxxdjkPjl2vPWqy8r8HqeoLivzcisiCid/yRK148QTsYFwuLlsTrhsTX/oq6PVJ/lNtmh1SZ61xg4m5E0pQMWxc3BWO5CUloyM3HYN1gSyjkJLzVGnSByHslgsTBhdZLWWo7r6vN81gSRlunUbyYbEAQhL8qawsLBJ8sbtduPIkSP49ttvMWDAAAwZMiQcoRBRFHFYylG2owh28xnoTNnIGjgByQmSNOjbuS8eueERbCvdhguWC2hjaIOhPYZ6Tdx4S8I0d9vdx3djybolDRI8XxV/hVnjZqFHdg/Puh/2/YD5789vMnZ83rR5GNlrZFj+X8SDtKwsv8cp0rKywhwRRQurxYaS7YdRVV4NY2Ya+gzuhtRG3+RT5KkdJx6Px51iUSDJFq0+CW17dWj2PtWuo9igNuHS3Lq9e/c2OapVVFSE6dOnIz8/P5xPKaYEkpSJxobEVms59u5djaqqMzAas5GfPxGpqZH/GSUsyZuFCxf6vK64uBhTpkzBrFmzwhEKUUwLZ7Ij1I91ft8PKHn/WYh6Gfkjaxah77R5aNNrRPN3EAeMKUaM6+e/Ybu/JIyv21bVVGHJuiWeo1V1PXJciguL1y3GnGvnQJZkmKvNmP/+fDgvlrXWHzs+f/l8LLx3IStwVOpaWIidS5d6et7UJ2u16Dp+fPiDoogrLTmBL5d+1+BD/w+rduDKmWPQPb9jpMNLOP762QQyTjxejzvFGiZbYsNrr70Gi8UCg8GA2bNnt/r+1CRl1CZcmltnsViwbNkyT5Pkus9Tbrcby5Ytw5w5cxK2AkeNaEzKqHH48A9NqoY2bVqEyZPnoVu3yH6xGbpuYioVFBRg9uzZeOSRRyIdClFUO7/vB2z6+x04XPQWTm/7EoeL3sKmv9+BC/s3xtxjOSzltYkbtxMQAkJx1/7udmLP8vlwWPxPkogXVTVVWLtrLT7a+BHW7lqLqpqqJtfXJWEEBBShQEB4kjCN19fZemgr3Ir3b5DdihvFh4sBAGt3rfXaOweoTfQU7ShqxbNLLHqTCaPmzoWclARIEiSNBpAkyElJGDV3LvQZ/FY+0VgtNny59Du43QqEABRFQAjA7Vbw5TvfwmqxRTrEhFKyfSv+77f3Y+Xyd7F53ddYufxd/N9v78fe7dsABG+cOBE1ZLFYUFVVBYvF0ur72rt3L1588UWsWrUKW7ZswapVq/Diiy9i7969DR6vLuEihICiKBBCeBIudXGoWVdcXAzFx/uCoigoLi5u9XOi8LJay7Ft23KsW/cKtm1bDqu1vMn1K1fOh9vtvPj3wn3x74UTK1fOb7I+3KKiYXF2djZ2794d6TCIolaDZAfgGb1Xl+y45N63AqqK8VdVE6zH8vcYZTuKIHwkDYTiQtmOInQeFXuZ+kD4q6jp27kvgOaTMNtKt3mtvimvLvc7Try8uvYfnrKKMsiS7Km4qU+WZJw2n27NU0w4HYcPx9ULFuDI2rWoLitDWlYWuo4fz8RNgirZftjvh/6S7YcxdGyfMEeVmNT0swnWOHEiajl/VTVqq2DUJFzGjBmjap3ZbPb7ecpsNgfhWVNz1B5ham6dmoqavXtXQ/HxM4qiuLBvX1FEq4kinrw5f/483nzzTXTu3DnSoRBFrWAmO5o7rhSMx2ruMezmMxcv91KeLsmwm8+oei6xqrljTY/c8AiMKcZmkzAXLBe83n9z48Qz02r/IcvKyILiY5SjIhTkmHICfm6JTm8ycaoUAQCqyqv9vn6ryqsjEFViUtvPhs2IiSKnuSNMapMyahMuataZTCa/n6dMJlOLny+pS8qoPcLU3Lr6FTXAj19O11XU3HLLQqSmZqKqyv/PKJWVkf1iMyzJmwkTJni93Gw2o6SkBA6HA4sWLQpHKEQxKVjJDjVVNa19LDWPoTNlQ/hIGgihQGfKVvV8YpXaiprmkjBtDG28XtfcOPGCbgUAgML+hVi6fqmn5019WlmLiYMmqn1KRNSIMTPN7+vXmJkW5ogSl9p+NmxGTBQZaqpq1CZl1CZc1KwrKChAUVGRJ676ZFlGQUFBoE+VLlKTlFGbcFGzTm1FjdHo/2eU9PTIfrEZlp43dWcI6/8CakeI/+Y3v8HOnTsxc+bMcIRCFJWSDZlINrb1eRwpkGSHw1KO4xvex8EvXsXxDe836B+jpqqmtYkVNY+RNXACJNl77liStciK86RBXUWNN/Uraob2GAqNrPG6TiNrMLTHUABNe+cAwKxxs6CVtZAgQZZkSJCglbUNxomb0kyYN20ekjRJkCQJGlkDSZKQpEnCvGnzYEozBfmZE8Ufq8WGretLsPaTLdi6vsTTy6bP4G6QZe8fs2RZRp/B3cIYZWILpJ9NXTPia392O8ZeeXXYEjeWigqs/+JTfLJoIdZ/8SksFRVheVyiaKCmqkZtUqagoMDve29dwkXNOoPBgOnTp0Ojqf18JMty7ecljQbTp09ns+IWUttXRk3CRe26uooab+pX1OTnT4Ts42cUWdaid+/I/owSlsqbNWvWhONhqIXKq6rx1aY9OH2hEjlt0nHFJX2RaeQ3gmopLgcUt/c3DLUG3PKs579ddmuT69vkj8KRNYs81Sz1SbIWbfNHw2W3ovzAZuz771+bHFfqfd1cZPYchprzJ/xW1dScP4FOo6f5fazmEitqKneSDZnoO20e9iyf3yBWSdai77R5SI7zpIHaihpjihGzxs3C4nWLG/TG0cgaTxLGX+8cX+PE7U675/FG9hqJhfcuRNGOIpw2n0aOKQcTB01k4qaFbGZzw543hYXQs6w6bjU3TerKmWPw5TvfNrhelmVcOXMMx4WHUbT3synZvhVLX/1bg+Naqz5cjpl334/8wUMiGhtROKipqiksLFRVBVOXcGl8BEuW5QYJF7Xr8vPzMWfOHFVjx0kdtVUwao8wqVmntqImNTUTkyfPa1IVJMtaTJ48z+uo83CKeM8biqwNOw/hmbc/g8utQJYkKEJg4Rcb8MTtV+PS/j0iHV7UU1wOmA8Xw2VrmnAJtg6XXItTGz+u/fZQkgAhIMkyOlxyLapO7oPLVo3Slf+ondyEhseV9n30PLpPvhNup83vt49upx2Wk/t9Plb+Db/1JFZ8NSRWW7nTptcIXHLvWw3vY9DEuE/cAM0fa6qrqAGAvp37+kzCqOmd09wocgDINGTipjhvEB0OJzdvxoYXXoDicnl+ANu5dClGzZ2LjsOHRzo8agGrxYaS7YdRVV4NY2Ya+gzu5km61J8mBdQv86+dJnXbQ9eie35H3PbQtT7vg4LDkG5q8HuT6zMyItbPxt948rrrm2umbGDTc4pzaqpq1CZbAPUJF7XrDAYDxowZE/wnnqDUJmXUJlzUrOvdewI2bVrkOVpVX+OKmm7dRuKWWxZi374iVFaevnj7iRFP3AAhSt78+9//btHtbr311iBHQv6UV1Xjmbc/g9N18YPCxTdNp8uNPyz8DIuf+DkrcJqhuF1w2ayQNVpI2uSQPlZG10FIy+6BisPFcFabkZRmQka3AmgvHoExl27zm5ixnNqHzLxLcH7Pek+Cpz5JlpGZNxwaXWqTx9KmGGHs3Bem7rXfAPprSJw1cILqyp1kQ2bcT5XyRk1FTeP13pIwLZ1GRcFnM5trEzfOi+etL/4Apjid2PDCC7h6wQJW4MSY5qpq1E6TSjXoOVXKD6fTAcXl/X1MrZ8/PM/z3/aaGq9ruuX3wb3P/AU7Nm6A+fw5mNq2w6CRo5BmTPd5G38slZXY8cMGmC+cg6lNOwwcOQqG9PQGa/btKMb7//yH34oatc2UieKZ2t4ygVTBqE24MDETOr4aEqtNyuTnT1SVcFGzLjXVFFBFTWpqZkSnSvkSkuTN7bffHvBtJEli8kalu19YgvIqKzKNqXh17s1+1/o7EvXVpj1wub2/cFxuBas2l+Cnlw8LevzxSNImQ5Oka/HtD3z+/+CyVUGrNyLvqt/4XKdJ0iFroPcG4K6aKk+VTNMAJbhqqqAztkWXcbNwbN3iJlU1XcbNgs7Y1utjuZ12uC8e51LTkDiRj0Sp5a+ipr6qmipsPbQV5dXlyEzLxNAeQ2FMMQJofiS4r2lUFHxH1q6F4uVIBgAoLheOrF3LKVQxRE1VDadJtZ7T6cChPbtblDxpqTZZ2WiTVVsBerz0kNc1NqsVR/aVoLqqCmlGI7r27gN9aqrn+pOHS7Fh1YoGib2vP/kQo664Eh27dvPcx2dL/u1JzPiqqFHbTJkongVSVcNkS2zw15BYbVJG7REmteuiuaJGrZAkb0pLS0Nxt3RReZUV5yosza5r7kjU6QuVkCXJU3FTnyxJOHWezfLCxWWrgsta2fy6miqUH9oGZ3U5ktIykdljCLQXf5BPSsv0nrgBACE8zZDTO/dF/g2PwFy6DQ5LOZINmTD1GOqp4GmO2lHiiXokKhC+Kmrq+Otn07dz3xZPo6Lgqy4r8/sDWHVZWQSiopZSU1XDaVKtp7jcsNfUQKvVQKtNCvnj1VRX41DJblgqK2BIz0CPPv2QktZwn44dOoh1n3/S4AfInZs3ovCqa9G5R0/UVFfXJm4aTcVR3G5s+OpL3HjHr5CSloaDu3b4/jtUr6ImkGbK1JDL5kTF0XNwWh1ISk1GRm47aPWh/3tEocHeMvFDzfQntVUwahMuatdFa0WNWiFJ3nTt2jUUd0sBUHMkKqdNOhQfHzwVIdChLc9YR5PK43uaVMyUFa9El3GzkN65LzJ7DEFZ8UqfR6JM9fqoaFOMaNfC4zRqR4kn6pGoYFHTzyaQ3jkUWmlZWX5/AEvLygpzRNQaaqpqLrm8P35YtcNTnVMfp0kFRqtNQpKu5dWrH7/9L9RUVyMlLQ3X3fZzr2uOHtiPoo8/gKL8+IXW9g3fYsJ1NyI3rxcAoKbaUpu48ZKYWfv5J5hx5z04sn+f38TekQP7MHDEpbBWWzyP01j9ippob6YcrapOmXFi4wEIRQASAAGc3XMCnUbkwdjBFOnwqIVYVRMf1DYkVlsFozbhEuuJGTXCMiqcwk/NkagrLukLrcb7XwGtRsak4X1DGSIFwFVTdTFx4wYgAKEAEBCKG8fWLYarpgraFCO6jJsFSdYAkABJBiBBkjXoMm6W6sqa5rR2lDipo6afTV3vnOZGglPodS0shKz1MVpSq0XX8ePDGxC1ipqqmlSDHlfOHAONRoYkAbIsQZIAjYbTpMKtproaVksVaqq9H1WrqbbUJm7cbkCI2uSLEFDcbhR9/AFqqmurmQ/s3Ok3MXNg105UVZohS5LXNbIkoarCDAAwppt8fkFWv6KmrpmyRqutHUV8cSSxRqsNeTPlWOWyOX9M3ABA3W+KwImNB+CyNT2KQUTho3Ysd12yZdy4ezB48E1BPb5ktZZj27blWLfuFWzbttwzfryl66JF2KZNnT59Gm+++Sa2bt2KioqKJv84SpKE1atXhyucuKfmSFSmMQ1P3H41/rCw4dEqrUbGE7dfjUxjqpd7pkgoP+S/GbG5dBva9RvX6iNRagTSkJhaTm0/G7W9cyi09CYTRs2d22TalKzVYtTcudBzWkxM6TO4m6qqmlBMk/I34YpaRk1SZuCISz2JGW9Jl7rEjL+kjCIEjBkmAEDegAHYsn6t12bEjStq8gcPwUPPv4ztG9aj/OxZZLZvj8GjxzJx40PF0XM/Jm4aEYpAxbFzaNurQ5ijIkoMqamZDX73Rm1D4pbw1QS5Pn/9drp1GxnwumgSluTN//73P4wfPx41NTXIz8/Hjh070K9fP5jNZpw4cQI9e/ZEly5dwhFKwlB7JOrS/j2w+ImfY9XmEpw6X4EObTMwaXhfJm6ijLO63G8zYoflxyxxa45EqZFsyGRD4iDx14w4kH42zfXOofDoOHw4rl6wAEfWrkV1WRnSsrLQdfx4Jm5iUF1VzZfvfNukeWbjqppgTpNqbsIVtYyapAzgv1qmLjGT199PUkaWkdd/IAAgJc2ACdfd6DmqJV38N9zXeHJDRganSqnktDo8R6WakCQ4qx3hDon8qOtZE4zeNRaLhT1xWsnlcvg80qTGT37yZ89/OxxWr2t69BiNjRsXQQgvX/RKWnTvPtrnbf05enQzVq9+AYrigizLUBQFGzcuwsSJc5GbOxwAUFNjxooV86EovvvtpKZmqurL4y9BFSlhSd48+uijMBgM2L59O1JTU5GVlYWXX34ZEyZMwHvvvYe77roLixcvDkcoCeOKS/pi4RcbPD1v6mt8JCrTmBbxqVL+pmKR+mbEgfDX/LjxGkfVOWh0qTB07AWtLhVteo1gQ+JWaq4ZMfvZxCa9ycSpUnEiFFU1/qiZcMUKnJYJSrXMxcRMSlpag6RMXVJIlmVMuO7GBg2Qc/N6Ycad92Bv8XZUXLiAbvl9MLzw8oAqaiwVFdj+3TcoP3cOme3aYfDoy2BI8IRwUmqy98QNAAiBpLTksMYT75xOp8/KNTXqTyG22+0tvp/9+/fjww8/bJDcLioqwg033IBevXq1+H7ryLKMpKT4bnjtcjlw4kRxixIngRo48Cf43/8+qv2C9+J+SZKMgQN/grKyfV5vY7dX49SpnbDZKqDXZ6BDhwHQ6dI8161fv8CTZFGUut+dWLXqeYwdexd0ujQcPvyDqn47avvyRJuwJG++/fZbPPzww8jNzcWFC7Wl/nVvAj/96U+xfv16/Pa3v8XatWvDEU5CCPeRqNYkX5qbikUIqBmxmqRMc82Pfa05X/Id+k6bhza9RrAhcSuoaUZc189m8brFDRI8GlnDfjYxzGY2N6zMKSyE3mSKdFjkg5qqmkCOOflbq2bCVbAqfBKNmqQM0LRaxldipi4pc2DXztqjVBkmT2KnsZQ0A/oPuwQ2mw35gwZDl5KiOu6S7Vux9NW/QXG7PUcxV324HDPvvh/5g4e08P9G7MvIbYeze054PTolyRIycttFIKr45HQ6UVpa2qqkSzDYbDZ88cUXnvfIH5PbbnzwwQeYOnUq9PrWJbd1Oh26d+8e1wkcRXHB4bBClrXQakOb5OzUaRDateuBEyeKYbWWIzU1E506FUCn8/759cyZvdi27d0GyblDh77BkCEzkJ2dj+PHt/o9inX27D706DEGDoe/gQM/9tup68vjawBL3bpoE5bkjaIoyM6ubWJqMpmg0Wg8SRwAGDhwIN58881whJJQgnUkqrnETGuSL2qmYrECB55mxI2TKZIsN2hGrCYp07D5MTwVPXXNj/NveAQAvK9xO7Fn+Xxccu9bLar2oVpqmhGP6zeO/WzizMnNm5v0xNm5dClGzZ2LjsOHRzq8hFGXLAlGFUsgx5yaW6tmwhW1jNqkDKA+MZOSZsDAEZeGLGZLRQWWvvo3zxQqcTHx5Ha58M6rL+Oh519O2AocrT4JnUbk1Zs2VfeZSEKnEXnQ6uL3h+9wUxQFdrsdGo0GWh9N+cPh4MGDfpPbJ0+eRN++LR+04nK5YLfbW1VhFEu02mRotS2b8Ld27d9ht1dBpzOisPDeZh5Hh969JzR7nzZbFbZtW+appvFM+lPc2LZtGSZNegQ2W5XffyNttkpotToYDO38tB34sd9OKPvyhFJYXoXdu3dHaWkpgNpvOLp3745Vq1Zh+vTpAIDvvvsOpgC/eVywYAEWLFiAw4cPAwD69++PJ554AlOnTg1m6DGvtUeimkvMtDb5omYqVqSPdEWL5poRq0nKaFOMqpofCwE/a1wo21HEqptWUNuMGGA/m3hhM5trEzfOi2erL/4gpjid2PDCC7h6wQJW4Kjkcrpb9QH7hp9f7vlvh73lU2msFhu+WPodFC/HnL5451vcfO+VngSRqrVGfbMTrqjlAq2WCWVipo6/I1Hbv/vGa6UQUDu6fPuG9QndI8fYwYS8KQWoOHYOzmoHktKSkZHbjombENFqtS2uSPn0009RU1ODlJQUXHPNNS26j5qaGp+fm2RZhtVqbXXFjNvH640asturYLNVBnw7m60Kx49v9VThdO48FHp97cmA48e3ehI3jSmKG8ePb0Nqqv9ekKmptb0gO3ceipKSlV7vT5a16N27drBKfv5EbNq0yNPzxte6aBOy5E15eTkyM2u/mZ88eTLee+89/OlPfwIA3HXXXZg7dy4OHToEIQTWrFmDuXPnBnT/nTt3xp///Gf06tULQgi8/fbbuO6667Bt2zb0798/6M8nEalJzLQ2+aJmKhY1VPe/Soh6f4D6iVSqmx/7WCNJMuzmM619GgktkGbEFHmrHn4YNrMZepMJk557rkX3cWTtWiguH2erXS4cWbuWvXJUcDndOH7oTKuSLsFSuvekJxnTmOJWsLFoJ7pdrL5Rs7ZD13Z+fzipm3BFLReupExNtQUHdtaOFTemm9C1V29IGk2DNc0diSo/d672ci8/UEqyjPKzZ0P+PKKdVp/EqVIxoKamBlaruh4rNTU1OHjwICwWCwwGA3r27ImUlBQYDAafn5sURWHT4ih3+vRubN68BEq9NgAlJV9h+PBZyMnpC6vV/5eaVusF9O49ESUlX3ntUyPLGnTpUttCQq83YsiQGdi69V0IoUCW5Yu/azF58jzPOPLU1ExMnjyvybSpxuuiTciSNzk5Objqqqswa9YszJ07FzNnzoTT6URSUhIeeOABVFdX4/3334dGo8Hvf/97zJs3L6D7v/baaxv8+U9/+hMWLFiA77//nskblZo7DqUmMdPa5IvaqVjU/JEotUkZNc2PGyeGGi5RoDNlB+lZJSY2I44tNrMZNfWO+rZEdVmZ3x/EqsvKWnX/iUJRFDjsTshaDTRaOeSPZ69x4PihMtRYbEgx6NG5RxZ0KbV9Ahw2p98Pm3abE0n6JNVrDaY0DC3si61r90BRRO10InifcEXB1zjhkjdgAFLSDAGvOXpgf5PjWVvWr8WoK65E/qDBANQdicps187vFzKZ7dsH+f8AUWQdO3YMa9asaXC0dNu2bRg/fjx69uyJbdu2ea26lGUZPXv2jEDEpIbNVnUxcdOwz6OiuLB582JMmvSIqqoavd6I4cNnYfPmxQ2SQLKswfDhsxr00snOzsfYsXfBbq9AdfUFpKfnoHfviU0SMt26jcQttyzEvn1FqKw87XNdNAlZ8mbatGn473//i//+978wGo248cYbMWvWLEyYMAGSJOF3v/sdfve73wXlsdxuN9577z1UV1dj1KhRPtfZ7fYGDbcsFktQHj8WqelToyYx09rkSyBTsRKZmiNRaidSqWp+fDEx5H2NFlmDorOUMFawGXH88tWQOC0ry+8PYmlZWWGONLZptDKSklr2EWbNx5thq3FAn5KM8df57jV06ug5bCraWZtIkSUIRWDf9sMYMWEAcnLbwZCR6vfDpiEj1ROj2rWdu2ejXU4mDu89ieoKKzp2a4/+w3sycRNivhIuE667Ebl5vVSvqam21K6pOxZZ90OK240NX32JSwonQJeSoupI1ODRl2HVh8s9CZ76ZI0Gg0ePDcX/CqKIqKmp8SRugPo/4CtYs2YNpk2bhvHjx3vW1I2JlmUZ48ePR0oAjcADpXY8OceYe6fmSFTtUafmq2pycvpi0qRHcPz4NlitF5Ca2gZdugz12gRZp0tD797jkZzsv9drampmVE6V8iVkX1stXrwYZWVl+M9//oPLLrsMixcvxuTJk9GpUyfMnTsXW7dubfVj7NixAwaDATqdDnfeeSc+/PBD9OvXz+f6Z599FhkZGZ5fhYWFrY4hFtU/DiWEgFtRIITwHIcqr6ptiqgmMXPFJX2h1Xj/a6Qm+VI3FStJq4EkSdDIMiRJQpJWE5KpWLFKzZGozB5DIMne96L+RKq65seSrAEgAZIMQIIkazzNj32u0SSh77R5HAkeBHXNiKcOnYoRvUZg6tCpePTGR9G3MxOWserk5s347K678L///AeHVq3C//7zH3x21104uXkzuhYWQvbR7FHWatF1/PjwBpvAbDUO2Kx22GocftfUJW4AeKbaKIrAxqKdsNU40CUvB7Iseb29LEvIzfux2WEga/UpyejZvzP6Du2OglG9mbgJsQYJFyFqf3gUAorbjaKPP0BNtUXVGgA4sHOn36aqOzZuAADPkShv6o5EGTIyMPPu+6HRaiFJEmTNxc9JWi1m3n1/QOPGiaJdcw2JDx48iC5dumDatGkYNmwYevXqhWHDhmHatGno0qVLyOLau3cvXnzxRaxatQpbtmzBqlWr8OKLL2Lv3r0tWpeI6o5EeVN3JKquqkaWtQAkSBd/7pBlbZOqGr3eiLy8cRg06Hrk5Y3zOb0qXoW0YXFKSgpmzpyJmTNnory8HMuWLcOSJUvw0ksv4aWXXkKvXr1wyy234Oabb0aPHoGPhM7Pz8f27dtRUVGB5cuX47bbbsPatWt9JnAee+wxPPjgg54/b9++PSETOGr71Kipisk0prZ6JHmwpmLFMzVHotROpAKab37ceI298hw0ujR0LbwFKW14vjxY2Iw4fqhpSDxq7twm06ZkrRaj5s6FPkGnxkSrYwdOexI3jSmKwLEDp9FrYC5GTBiAjY2qc2RZwogJAzzHq4DahIzatRRezSVcDuzaCQg0u2bgiEtRVWn2fA5qTJIkmM+fAwDVR6LyBw/BQ8+/jO0b1qP87Flktm+PwaPHMnFDccdisfjt+VV3WiIlJQUDBgxo9v589c7xta6yshI6nQ6dOnWCTqfzxLRs2TJPI+P648mXLVuGOXPmwGAwqF6XqNQ2Gg6kqiaRhW3mW2ZmJmbPno3Zs2fjxIkTWLJkCd555x088cQTePLJJzFy5Eh89913Ad1ncnIy8vLyAADDhg3Dpk2b8PLLL+O1117zul6n03lekABi9oVUl9RoaXJDbZ+auqqY5hIzLUm+eOu3462xcXN9eRKF2iNRapIydbQpRrRrJnFQt8bttMNttyIpjR8YibxR25D46gULGh6rGj+eiZsoZK2yeRIsjUmyBGuVDQCQk9sOk2eMxrEDp2GtsiHVqEduXo7XZEwgayl8/CVcZElCVYXZ89/NrTGmm3xWLAshYGrbDgACOhJlyMhI6KlSlBiC2ZDYX++c+lU63tbt2bMH06dPR35+PoqLi/0mbYuLizFmzBjV6xKV2iNRwI9VNeRb2JI39XXq1Am//e1vceWVV+KJJ57Axx9/jB9++KHV96soSoOeNtHK4XT5rHxR4//umeb5b6vNd9m3L23S0/weh2qbnua530E9O+OfD/8MX2/bizPlVcjONOLyofkwGVIbPLYuKQlXjxrY4L4cTheSvfQkUNNvJ5B1iUBVn5qL1CRliCi41DYk1ptMQZsq5au/DrVeqlHvNXED1B6hSjX+eJRJn5KMXgNzva611TgaJGu65OX4XEuR4S/hoggBY4aptvKmuTUA8gYMwJb1a732s5FlGYNG1vZlrDsS9c6rLzeYNiVrNDwSRQlJbUPi5ipq1PTOSUlJ8bmufrWM2Wz222jebDYDgOp1iSqQRsPUvLAnb44ePeqputm5cyeEEBg9ejRmzZoV0P089thjmDp1KnJzc1FVVYUlS5ZgzZo1WLFiRYgiDw6H04Xt+4+h2haeJJOlxo6dh07CbKmByZCCAT06IiNN77fyJiNNjx92H2pwecd2GejYrvbDxN6jp1U9ZrXNjv7dOuLKS/t7qmXUjB/PNKapXpcoAjkSpYarpgrlh7bBWV2OpLRMZPYYAm2KMUTRE8W/YDckbi4xc3Lz5iZHsHYuXYpRc+ei43DfTXhJnS55Odiz5ZDXo1ONe9T44q3h8Z4thzwNjyk6NJdwyes/EIBQsaZ2FPmE625s0thYlmWMuuJKpBnTPbfjkSiiH6WkpDTbkFhNRY2a3jkDBgxodl1xcTFMJpPf4z6mi/8mq12XyIJxJMpmq8Lx41thtZYjNTUTnTsPhV6feD+7hCV5c+7cOU+/mw0bNkAIgT59+uAPf/gDZs2ahW7dugV8n2VlZbj11ltx6tQpZGRkYNCgQVixYgWuuOKK4D+BIHK5FVTb7EjSapCk1YT0sUqOnMY7qzbXvsld/OC4dvt+zJw0HDMnDa+9Tvz4BihLMmZOGo72mS1/ITR4TEnCxj1HsGjlD55qGbX9dtSuSyRqjkSpSco0N3KcYktVTRW2HtqK8upyZKZlYmiPoTAyERd2XQsLsXPpUk/Pm/oCbUjcXGJGTX8dVuC0Tmt71DTX8HjyjNHQ87hU0KSkpTX4PbDb+k64TLjuRs99qlkDALl5vTDjzntwYNdOVFWYYcwwoWuvfK8NinkkiuhHdQ2JvVXWqK2oUds7x9+6umqZwsJCFBUVeXrZNL6vgoICAEBBQYGqdYlIbcKluXWnT+++OG78x8qdkpKvMHz4LOTkJNbPLiFL3lRXV+PDDz/EkiVLsHr1ajidTnTo0AEPPPAAZs2ahaFDhzZ/J368+eabQYo0MpK0GuiTk1p025eWrUaV1Q5jqg4PTPc+srnKasPS1ZvhrnuTu/jB0a0oWLp6Mx6/dSp+d9tUbNl7FBcqq9EmPQ3D8nNhTG35VIsmj+mlWkZtvx216+KF9uIblLaZDLK/I1FqkjJqRo6zAid27D6+G0vWLWkwbvyr4q8wa9wsTq0KM73JpKohcXMVNWoSM2r761DrtKZHjdqGxxQc1932c1XraqotOLBzJ6oqzTCmm5A3YABS0gxeEy55/Qc2m5RpvKZOSpoBA0dc6vmz026HzWZr/RMlinO+GhKrrahR2zvH37q6ahmDwYDp06dj2bJlDap9ZFnG9OnTG9yXmnWJRm3Cpbl1NlvVxetrP/f8mLhzYfPmxZg06ZGEqsAJWfImKysLNpsNBoMBN998M2bNmoUJEyZA9jEakdSrstpRUV3jd83mkiOeJEpjbkXBlr1HMX5Ib4wf0juAx7Vhc8kRlFdZkWlMxfA+XRske/w9Zl21jJrx44C6MeXxJO+q37Tq9mqTMmpGjrNfTmyoqqnCknVL4Gr0j5lLcWHxusV45IZHWIETZh2HD/fbkFjNUSc1iRm1/XWo9fz1s/FHbcNjCp+jB/Y3qZzZsn4tJlx3I3LzejVJuHijZg0RtZyvnjZqK2rU9s5pbl1dtUx+fj7mzJmD4uJimM1mmEwmFBQUNEnIqF2XKNQmXNSsO358KxQvPT9r17lx/Pi2hGpyHLLkzaRJkzBr1iz85Cc/gV7f8moOapnyKqvfcsALldUNLmsuMbOr9CQWrfgB7noZ5RUbd+PWKy9Fv24dmn3MumqZn00Z2ez4cQCqxpTTj9QmZdSMHKfYsPXQVrh9/GPmVtzYVrqNY8gjwFdDYrVHndQkZoLdX4dazltDYn1KckANjyn0aqottYmbutdd3Q8IbjeKPv4AM+68BylpiflDFlG08NfTRm1FjZreOd7W1T2eRqNpUi1jMBhUTYtSuy4RqE24qFlntZb7/ZnWar0Q1NijXciSNx9//HGo7ppUyDSm+i0HbJP+Y5lvc4mZKqsNi1b84OlB4/mG363g319+j8dvnQpjqt7vY9ZVy6gdP652HdVSm5RRO3Kcol95tf9/zC5YEusfs2in9qiTmsRMMPvrUMv5a0gcjIbHFDwHdu70e+TiwK6drKghiqDmetpcc801qipqAP+9c+qrv66yshJ6vR6XX3452rRpE8JnmhjUJlzUrEtNzfT7M21qamLtV0RGhVPoDe/TFSs27vba9FcjyxiWX1sGriYxo/YIlr/HrF8tc2n/Hlj8xM+xanMJTp2vQIe2GZg0vG+ThIzadYnEV0NitUmZQEaOU3TLTPP/j1kbQ2L9Yxbt1B51UpOY0WdkqOqvQ6GjpiFxaxoeU3BVVZo9XwI1JksSqirM4Q+KopLL5kTF0XNwWh1ISk1GRm47aPVNe1S67E6c3n4YDqsDuvQUtO/TEUmpughEHP3qV7v40lxPmxMnTqiqqKn/mN5653iLbcCAAXA6nbDb7UhrQdPzRKPTGRv87o3ahIuadZ07D0FJyVeeo1X1ybIGXbok1s8uTN7EKWOqHrdeeSn+/eX3DSpqNLKMW6+81HMkSk1iRu0RrCaPCQkC8Fotk2lMUzUtSu26ROCvIbHapEywR46Td8aLjdOMIWygNrTHUHxV/JWn5019GlmDoUzERYSvhsRqjzqpbXzcXH8dCi21DYlb2vCYgsuYbvLbR8+YYQpvQBRWahMyVafMOLHxQG0yVgIggLN7TqDTiDwYO5g86yxnzDi1pRRCCM/n4+Pf70evqYOR2Z3HVhu75pprml2jpqfNgAEDVFXUUGgVFt7b7JrOnYeqSrioWafTGTB8+Cxs3ry4QVNjWdZg+PBZAY0bjwdM3sSxft064PFb/U+UUpOYCeQIVt1j/rC7FGXlFgzq2QlXjRqY0NUywaCmIbHapIyakePUOvde1fw/bIHwNQ581rhZWLxucYNpUxpZg1njZsHA/Qw7fw2JAznqpDYx46u/DoWe2obELW14TMGVN2AAtqxf6+l5U58sy8jrPzACUVE4qE3IuGzOH9ehdh1QW1V3YuMB5E0pgFafBJfNWZu4qau6q/s85law/4vtGHJ7IStwWiCQnjZqKmoosvR6o6qEi9p1OTl9LzYv3nbxKFUbT2In0TB5E+eMqXq/E6XUJGaG5eeqOoJV/zHHDsqD1ebAyH49kKrnt4ytpbYhsdqkjL+R4xRdmhsH/sgNj2Bb6TZcsFxAG0MbDO0xlImbCFDTkDiQo05MzEQHNiSODylpBky47sYm06ZkWcaE6270Ou6bol9zFTVqEzIAUHH0nN/XdMWxc2jbq0Mz6xScKzmJDkO7B+9JJgi1U6IodqhNuKhdp9cbE2qqlC9M3iQIX9Ok1PTGUXsEi0JHbUNiJmVii6+KmvrXqxkHzqlSkae2ITGPOsUONiSOL7l5vTDjzntwYNdOVFWYYcwwIa//QCZuYpSaihq1CRkAcFodnvtpQpLgrHY0u06SJNgqa1r93BKR2ilRFFvUJlyYmFGPyZsE0Nw0KTWJGTVHsCh0OCUq/jRXUQNwHHgsUduQOFIVNb568ZB3bEgcx0T93338u0pRTW1FjdqEDAAkpSb7/usgBJLSkptdJ4SAPp1JhpZSOyWKKJExeRPn1EyTUpuYae4IFoUOp0TFF7UVNRwHHjvUNiQONjVJGX+9eDoOHx6SuGIdGxLHn6MH9jc5NrVl/VpMuO5G5Ob1inR4FAC1FTVqEzIAkJHbDmf3nPDZxyojt52KdTLa9ekY+BMiD/a0IfJPjnQAFFpqpkkBPyZmbiwcgvFDerOiJsrUTYmSZA0ACZBkABIkWcMpUTFITUUNwHHgsaRrYSFkrffvQxo3JA6Wk5s347O77sL//vMfHFq1Cv/7z3/w2V134eTmzZ41DXrxCFFbGSSEpxePzWwOelzxoK4hsTfeGhIXjO6NXgNzmbiJUjXVltrETd3ff0Wp/d3tRtHHH6Cm2hLpEKkerT7J88sbT0WNN/UqajJy2/l9HdclZOoes9OIvB/XS5JnXacRedDqkjzrOgzrUbtOwo+/a2T0mjqYzYqJKKRYeRPn1I75Dpa63jrnKixI0+uQ3yWHDYuDhFOi4ofaihqOA48dakd8B4uaBsl6k0l1Lx5qiA2J48uBnTu9NkIFaifZHNi1EwNHXBrmqMiX7pf393u92oqauoTMj71x6iZxNkzI1DF2MCFvSgEqjp2Ds9qBpLSLTZAbrTNkZyB3XB+4bS44qu3Qp6egXZ+OTNwQUcgxeRPnAhnz3RxfTY/rNOmtowh8U3wAT9xxNS7t36PVz4XYkDheqK2o4Tjw2KJ2xLda/o5EqU3KqO3FQw2xIXF8qao0e45KNSZLEqoqzOEPilpM7REnQF1CprmpVd5odUlon98JmmT+KBVMNTU17HlD5AffceKcmmlSajTX9NhXbx2n240/LPwMi5/4OTKNnOhABARWUcNx4LFFTUPiYPSpUZuUiVQvnlinT0lmQ+I4Ykw3eU3cAIAiBIwZpvAGRK0SaEWNVp/kmSrVmJqpVRQex44d80ybqvtZY9u2bRg/fjy6dOkS6fCIogJ73sS5ujHfWo0MSar9xlCSAK1G/Zjv+okZIWqbNQrxY9PjuoocX711XG4FqzaXBPupEcWsuooarayFBAmyJEOCBK2s9VpRUzcO/PoR12Ncv3FM3MSwYPWpUZuUiUQvnniRk9sOk2eMRv9LeqJb747of0lPTJkxGjn1vtWn2JA3YABk2ftHXlmWkdd/YJgjotaqq6jJGtAZmd3aI2tAZ+RdWRBQwqW5qVUumzP4gZNXNTU1nsQN8OOXwIqiYM2aNaip4Qh2IoCVNzHJePFMrVHl2Vo106T8HYlS0/TYX28dWZJw6nxFoE+TKK6xoiY++auqCWafmq6Fhdi5dKnnvuqrn5QJdy+eeFPXkJhiW0qaAROuu7HJtClZljHhuhuRksbK4Fjkr6JGDbVTqyj0Dh486Lcv1cGDBzmFKo7ZbFU4fnwrrNZypKZmonPnodDrjZEOKyoxeRODHpg+MeDb+Bvz3dyRKDVNj/311lGEQIe2/AGBqLG6ihqKD80ddQpmn5pAkjLB7sVDFIty83phxp334MCunaiqMMOYYUJe/4FM3MQ5f/1sPFOrvH18rTe1ikLPYrH4/hJYlmGxcCJcLFKTlDl9ejc2b14CpV5vx5KSrzB8+Czk5PSNUOTRi8mbONdck2FfvWrqjkQ9futUVU2Ph+Xn+uyto9XImDScLz4iik11lTON+9LUp6aqJth9agJJyqjpxUNN2WocOHbgNKxVNqQa9eiSlwM9+93ErJQ0A6dKJZDm+tmonVpFoWcwGHx/CawoMBhYlRxr1CRlbLaqi2tqv9j68bicC5s3L8akSY+wAqcRJm/iWHMVNYC6I1Fqmh7X9db595ffN5g2pdVo8MTtVyPTmBrS50pE5Ivb4YDiJWGiVuHTT3v+2+nj3P2hVav8VtUcWrUK+sxMv0kZfWYmnDU16DhyJHa+847X+5M1GnQaOdITh0anQ4/Jkz3XaZL5w0awnDp6DpsaNSzes+UQRkwYwL43RFGuuX42eVMKAppaRaHVs2dPbNu2zevRKVmW0bNnzwhERS2lNilz/PhWKIr3z2eK4sbx49uQl8cK9fqYvIlTaipqjKl6VUeivCZmhIBGbtj0uH5vnbPmKqTpdbht6ih0bGcK2/MmIqrP7XCgbOdOOK3WkD7O2d27/b6Xnt29G51HjvRbeaNLT8epLVsAAHlXXYX9n30GUe89V5Jl5F11FS4cOOA1hqTUVGQNGMAEThDYahyexA0Azw93iiKwsWgnJs8YzQocoiimtp9NIFOrKHRSUlIwfvx4T9NiWZY9v48fP57jwmOM2qSM1Vru97OT1Xoh1KHGHCZv4pSaiprxQ3qrOhIFqGt6DPzYW8fmcMJqc8BkYMUNEUWO4nbDabVC1mohJ4Xug3hK27Z+30tT27VDSrt26HPDDSj58MMmSZk+N9yAlLZtPbdp378/Mrp1w9mdO2Ezm6E3mdB+wAAk++jPoTidcFqtUNxuaELyDBPLsQOnPYmbxhRF4NiB02xkTBTF1PazqZtaVXHsHJzVDiSlXeyLw8RN2HXp0gXTpk3DwYMHYbFYYDAY0LNnTyZuYpDapExqaqb/z06pbUIaZyxi8iZOqamoAaDqSFQdf02PiYiimZyUBK1O3YS+xra89hocFguSDQYMmz3b65qOw4bh6Lp1PqtqOgwdCq1Oh6wBA2Dq1g1nios9SZnsggIkeznPr9Xp0HWcunJhF+Dz2BYFzlpl8xyVakySJVirbBGIiojq89eMOJB+Nq2dWkXBk5KSwqlScUBtUqZz56EoKfnKc7yqPlnWoEuXoSGNMxbJkQ6AQkNtRU3dkSitRoYkAbIsQZJqmwzXPxJFRMFXVVOFtbvW4qONH2HtrrWoqqmKdEjkhcNigaOqCg4/0y6SDQb0nz4dkkYDSBIkWa79XaNB/+nTGyRnkg0GdBkzBr2uvhpdxozxmrihyEo16v0euUg18t9GokiqOmXGgRXFKNt1HOWHy1C26zgOrChG1SkzACAjtx0kWfJ6W/azIQqtzp2HQpa91wHXT8ro9UYMHz4LsqwFIEGSZAASZFmL4cNnQafj56PGWHkTpwKpqFF7JIqIgmf38d1Ysm4J3PW68H9V/BVmjZuFvp05nS0Wtc3Px6Vz5qiqqqHo1iUvB3u2HPJ6dEqWJeTm5UQgKiIC1DUj1uqT2M+GKELqkjKbNy9uMG1KljVNkjI5OX0xadIjOH58G6zWC0hNbYMuXYYyceMDkzdxSm2T4frreSSKKDyqaqqwZN0SuBp14XcpLixetxiP3PAIjCkcjRiL6qpqfHFYLEzuxAB9SjJGTBiAjY2mTcmyhBETBkDHZsVEEaO2GTH72RBFTiBJGb3eyKlSKjF5E8dYUUMUnbYe2gq3jy78bsWNbaXbMK4f/xGLN+f27sXuZcsaNCsuLSpC/+nT0TY/P9LhUSM5ue0wecZoHDtwGtYqG1KNeuTm5TBxQxRhapsRA+xnQxRJTMoEH5M3cY4VNUTRp7zafxf+CxaORow3DoulNnFzsaFx3d4Ltxu7li3DpXPmsAInCulTkjlViijKBNKMmIgonrBhMRFRmGWm+e/C38bA0Yjx5kxxMYTStAcZAAhFwZni4jBHREQUm9iMmIgSVcwmb5599llccsklMBqNyMrKwvXXX4+9e/dGOiwiomYN7TEUGh9d+DWyBkN7cDRirHJYLDj27bfY/9lnOPbtt54JVTazGZLk44cNSYLNbA5jlEREsauuGbEngXPxvZXNiIko3sXssam1a9finnvuwSWXXAKXy4V58+Zh8uTJ2L17N9LS0iIdHhGRT8YUI2aNm4XF6xY3mDalkTWYNW4WDHoen4lF/nra6E0mv9VWepMpvMESEcUwNiMmokQUs8mbL7/8ssGfFy5ciKysLGzZsgXjxrExEhFFt76d++KRGx7BttJtuGC5gDaGNhjaYygTNzGquZ42Q3/9a0hFRZ7r65NkGdkFBWGNN5HpLzYc1rPxMFFMYzNiIko0MZu8aayiogIA0KYNe0UQUWwwphg5VSpONNfTpvzAAfSfPh27GlXmSLKM/tOns1lxGI2/brjqtbYaR4NpU13ycpj0ISIiooiIi+SNoih44IEHMGbMGAwYMMDnOrvdDrvd7vmz5WIvAiIiotao62nja4KYzWxGlzFjcOmcOThTXAyb2Qy9yYTsggImbqLUqaPnsKloJxRFQJIlCEVgz5ZDGDFhAHLYEJWIiIjCLC6SN/fccw927tyJ9evX+1337LPP4umnnw5TVERElCjU9rRJNhjQZcyYMEZGLWGrcXgSNwAgLv6uKAIbi3Zi8ozRrMAhIiKisIrZaVN1fvOb3+DTTz/F119/jc6dO/td+9hjj6GiosLza+3atWGKkoiI4ll2QQEk2fs/qexpE3uOHTjtSdw0pigCxw6cDnNERERElOhiNnkjhMBvfvMbfPjhhygqKkL37t2bvY1Op0N6errnl4Gl6kREFATJBgP6T58OSaMBJKk2kSNJkDQa9rSJQdYq249jiBuRZAnWKluYIyIiIqJEF7PHpu655x4sWbIEH3/8MYxGI06frv0WLCMjAykpKRGOjoiIEk3b/Hz2tIkTqUa956hUY0IRSDXqwxwRERERJbqYTd4sWLAAADB+/PgGl7/11lu4/fbbwx8QERElPPa0iQ9d8nKwZ8shr0enZFlCbl4OAE6jIiIiovCJ2eSNr8aQRERERK2hT0nGiAkDsLHRtClZljBiwgDoUpI5jYqIiIjCKmaTN0REREShkpPbDpNnjG5QWZOblwNdSjKnUREREVHYMXlDREQUQQ6LhX1yopQ+JRm9BuY2uVzNNCpvtyMiIiJqKSZviIiIIuTc3r3YvWwZhKJAkiQIIVBaVIT+06ejbX5+pMNLeL562tRNo/LW1JjTqIiIiCgUmLwhIiKKAIfFUpu4cbsB/NjLTbjd2LVsGS6dM4cVOBHkr6cNp1ERERFRuMmRDoCIiCgRnSkuhlAUr9cJRcGZ4uIwR0R1mutpk9WpDWRZ8nrb+tOoiIiIiIKFyRsiIqIQcVgsOPbtt9j/2Wc49u23cFgsnutsZjMkyXsCQJIk2MzmMEVJjTXX06bsxAWMmDDAk8CRLv5efxoVERERUTDx2BQREVEINNfPRm8yeY5KNSaEgN5kCm/A5KGmp02vgbk+p1ERERERBRsrb4iIiIKsQT8bIWqPRwnh6WfjsFiQXVAASfb+z7Aky8guKAhz1FRHbU+bumlUBaN7o9fAXCZuiIiIKGSYvCEiIvIj2WBAstEYUPNgNf1skg0G9J8+HZJGA0hSbSJHkiBpNOg/fTqbFUdQl7wc9rQhIiKiqMJjU0RERH4Mmz074NvU9bPxdiyqfj+btvn5uHTOHJwpLobNbIbeZEJ2QQETNxGmT0nGiAkDsLHRtCn2tCEiIqJIYfKGiIgoyALpZ5NsMKDLmDFhiozUysltx542REREFDWYvCEiIgqy7IIClBYV1fa8aYT9bGJHXU8bIiIiokhjzxsiIqIgYz8bIiIiIgomVt4QERGFAPvZEBEREVGwMHlDREQUJA6LpUmyhv1siIiIiKi1mLwhIiIKgnN792L3smUQiuKZNFVaVIT+06ejbX5+pMOjFrDVOBo0LO6SlwM9GxYTERFRBDB5Q0RE1EoOi6U2cXOxQXHdpCnhdmPXsmW4dM4cHpeKMaeOnsOmRqPC92w5hBETBiAnt12kwyMiIqIEw4bFRERErXSmuBhCUbxeJxQFZ4qLwxwRtYatxuFJ3ACAuPi7oghsLNoJW40jkuERERFRAmLyhoiIqJVsZjMkSfJ6nSRJsJnN4Q2IWuXYgdOexE1jiiJw7MDpMEdEREREiY7JGyIiolbSm0yeo1KNCSGgN5nCGxC1irXKBkn2kYyTJVirbGGOiIiIiBIdkzdEREStlF1QAEn2/k+qJMvILigIc0TUGqlGveeoVGNCEUg16sMcERERESU6Jm+IiIhaKdlgQP/p0yFpNIAk1SZyJAmSRoP+06ezWXGM6ZKXA9lH5Y0sS8jNywlzRERERJToOG2KiIgoCNrm5+PSOXNwprgYNrMZepMJ2QUFTNzEIH1KMkZMGICNjaZNybKEERMGQMdx4URERBRmTN4QEREFSbLBgC5jxkQ6DAqCnNx2mDxjNI4dOA1rlQ2pRj1y83KYuCEiIqKIYPKGiIgojBwWC6tzYoQ+JRm9BuZGOgwiIiIiJm+IiIjC5dzevdi9bBmEokCSJAghUFpUhP7Tp6Ntfn6kwyMiIiKiKMWGxUREREHisFhw7Ntvsf+zz3Ds22/hsFgaXLd72TIItxsQAkJRan93u7Fr2bIGa4mIiIiI6mPlDRERURA0V1Vzpri4NmHjhVAUnCkuZr8cIiIiIvKKlTdEREStpKaqxmY2Q5K8j5+WJAk2szm8QRMRERFRzIjp5M26detw7bXXomPHjpAkCR999FGkQyIiogSkpqpGbzJBCOF9jRDQm0whjJCIiIiIYllMJ2+qq6tRUFCAV155JdKhEBFRAlNTVZNdUABJ9v7PriTLyC4oCGWIRERERBTDYrrnzdSpUzF16tRIh0FERAlOTVVNssGA/tOnY1ejvjiSLKP/9OkcF05EREREPsV08iZQdrsddrvd82cLJ3sQEVEQZBcUoLSoqLbnTSP1q2ra5ufj0jlzcKa4GDazGXqTCdkFBUzcEBEREZFfCZW8efbZZ/H0009HOgwiIoozgVTVJBsMnCpFRERERAFJqOTNY489hgcffNDz5+3bt6OwsDCCERERUbxgVQ0RERERhUpCJW90Oh10Op3nzwZ+oCYioiBiVQ0RERERhUJMT5siIiIiIiIiIop3MV15Y7FYcODAAc+fS0tLsX37drRp0wa5ubkRjIyIiIiIiIiIKDhiOnmzefNmXH755Z4/1/Wzue2227Bw4cIIRUVEREREREREFDwxnbwZP348hBCRDiMmnC07g3Nny8L2eHanCza7E8n2CqToksL2uOHmctSg8ug+yMl6aLTJYXvc7Kx2yMlqH7bHo9A6W3YW58rOhe3xHC4HbA4btBYtUpJTwva4keCy2XB2715o9XpokuL3vcjtdMJls+G0LEOr10c6nJBxOlw4eeQstMlaaLWasD1uVlY2srOyw/Z4FFplZWdRdvZs2B7P5XTAYXfA6hZIjuPXp9vpQuXJcmi0Gsja+O3MoLgUuF1upJdnQpMU0z9KNcvhcODIkSNITk6GVhu/z9XlcsHhcKC6uhrJyeH7PB9uTmcNTp3ah6QkPTSa8D3PrKx2yM7mzy3BIIkEzn6cOnUKr732GmbPno0OHTpEOpyQsdvtmDJlCtauXRvpUChICgsLsWLFigYNuCk28fVJFP34nhs/+J5LRBRe/Dc0eBI6eZMoKisrkZGRgbVr13LCVhywWCwoLCxERUUF0tPTIx0OtRJfn/Gn7jXKPY0PfM+NL3zPjS98v40/3NP4wn9Dgyt+69+oicGDB/NFEwcqKysjHQKFAF+f8aPuNco9jQ98z41PfH3GB77fxh/uaXzhv6HBFb8HUomIiIiIiIiI4gCTN0REREREREREUYzJmwSg0+nw5JNPsklUnOB+xhfuZ/zhnsYX7md84X7GF+5n/OGexhfuZ3CxYTERERERERERURRj5Q0RERERERERURRj8oaIiIiIiIiIKIoxeUNEREREREREFMWYvKGAHD58GJIkYeHChZEOhYi84GuUiCg8+H5LREThxORNCB08eBCzZ89Gjx49oNfrkZ6ejjFjxuDll19GTU1NyB539+7deOqpp3D48OGQPYYaf/rTn/CTn/wE2dnZkCQJTz31VETjCSdJklT9WrNmTasfy2q14qmnngrovhJ5b+pL5NdoSUkJHn74YQwePBhGoxEdOnTA1Vdfjc2bN0cspnCJ5tdnIu9La0Tznp48eRK33HIL8vPzYTQaYTKZMGLECLz99ttIpJkRifx+m+h/B6L59dnY4sWLIUkSDAZDq2OJV9G8n3UJVW+/li5d2up44lU072mdgwcP4uabb0ZWVhZSUlLQq1cvPP74462OJ9ZoIx1AvPrss8/w05/+FDqdDrfeeisGDBgAh8OB9evX47e//S127dqF119/PSSPvXv3bjz99NMYP348unXrFpLHUON3v/sdcnJyMGTIEKxYsSJicUTCokWLGvz53//+N7766qsml/ft27fVj2W1WvH0008DAMaPH6/qNom8N3US/TX6z3/+E2+++SZuuukm3H333aioqMBrr72GSy+9FF9++SUmTZoUkbjCIZpfn4m8L60RzXt67tw5HD9+HNOmTUNubi6cTie++uor3H777di7dy/mz5/f6piiXaK/3yb634Fofn3WZ7FY8PDDDyMtLa3VccSzWNjPmTNn4qqrrmpw2ahRo1odT7yK9j3dvn07xo8fj06dOmHu3Llo27Ytjh49imPHjrU6npgjKOgOHTokDAaD6NOnjzh58mST6/fv3y9eeumlkD3+e++9JwCIr7/+utm1iqIIq9Wq+r5LS0sFAPHWW2+pWiuEEGfPnhUAxJNPPqn6ceLNPffcI0L1cmvJ/99E3xu+RoXYvHmzqKqqanDZuXPnRPv27cWYMWNUP148iKbXJ/clOKJpT3255pprRFpamnC5XMEJLErx/da3RPk70Fi0vj4feeQRkZ+fL2bNmiXS0tKCH1yciqb9rHtNPv/88yGJJ1FE05663W4xYMAAMXLkyIDen+MVj02FwHPPPQeLxYI333wTHTp0aHJ9Xl4e7r//fs+fXS4XnnnmGfTs2RM6nQ7dunXDvHnzYLfbG9yuW7duuOaaa7B+/XqMGDECer0ePXr0wL///W/PmoULF+KnP/0pAODyyy9vUuZWdx8rVqzA8OHDkZKSgtdeew0AcOjQIfz0pz9FmzZtkJqaiksvvRSfffZZi/8/RLLqJxYoioKXXnoJ/fv3h16vR3Z2NmbPno3y8vIG6zZv3owpU6agXbt2SElJQffu3fHzn/8cQG15aPv27QEATz/9tGe/mzsGleh7w9coMGzYsCZl4W3btsVll12GPXv2tOg+40mkXp/cl9CJ5HuuN926dYPVaoXD4Wj1c4tmfL/1LVH+DqgR6dfn/v378eKLL+Kvf/0rtFoeTGitSO8nAFRXV/O1FUSR2tOVK1di586dePLJJ5GSkgKr1Qq32x2y5xn1Ip09ikedOnUSPXr0UL3+tttuEwDEtGnTxCuvvCJuvfVWAUBcf/31DdZ17dpV5Ofni+zsbDFv3jzx//7f/xNDhw4VkiSJnTt3CiGEOHjwoLjvvvsEADFv3jyxaNEisWjRInH69GnPfeTl5YnMzEzx6KOPin/84x/i66+/FqdPnxbZ2dnCaDSKxx9/XPz1r38VBQUFQpZl8cEHH3hiaMm3TIla3VGftwz2L3/5S6HVasWvfvUr8Y9//EM88sgjIi0tTVxyySXC4XAIIYQ4c+aMyMzMFL179xbPP/+8eOONN8Tjjz8u+vbtK4QQwmKxiAULFggA4oYbbvDsd3Fxsaq4EnVv+Br1bfTo0aJ3794tum2sitbXZ32JuC+tEY17arVaxdmzZ0VpaalYuHChSEtLE6NHjw7+k48yfL/9UaL+HWgsGl+fV111lZgyZYoQovbvICtv1Ium/ax7TRoMBgFASJIkhg8fLlasWBG6/wFxKJr2dO7cuQKAWL16tRg2bJgAIJKTk8WMGTPE+fPnQ/c/IUoxeRNkFRUVAoC47rrrVK3fvn27ACB++ctfNrj8oYceEgBEUVGR57KuXbsKAGLdunWey8rKyoROpxNz5871XOavRLjuPr788ssGlz/wwAMCgPjmm288l1VVVYnu3buLbt26CbfbLYRg8qalGr8JfvPNNwKAWLx4cYN1X375ZYPLP/zwQwFAbNq0yed9t+b/byLuDV+jvq1bt05IkiR+//vfB3zbWBatr886ibovrRGNe/rss88KAJ5fEydOFEePHg3oPmIN328bSsS/A95E2+vz008/FVqtVuzatUsIweRNoKJpP48cOSImT54sFixYIP773/+Kl156SeTm5gpZlsWnn34a+JNLUNG0pz/5yU8EANG2bVsxa9YssXz5cvH73/9eaLVaMXr0aKEoSuBPMIbx2FSQVVZWAgCMRqOq9Z9//jkA4MEHH2xw+dy5cwGgSYluv379cNlll3n+3L59e+Tn5+PQoUOqY+zevTumTJnSJI4RI0Zg7NixnssMBgN+/etf4/Dhw9i9e7fq+6fmvffee8jIyMAVV1yBc+fOeX7VHZn4+uuvAQAmkwkA8Omnn8LpdEYw4vjB16h3ZWVluPnmm9G9e3c8/PDDrbqvWBdNr0/uS3BEw57OnDkTX331FZYsWYKbb74ZAEI6ZSka8P22oUT8O6BGJF+fDocDc+bMwZ133ol+/foF5T4TXST3Mzc3FytWrMCdd96Ja6+9Fvfffz+2bduG9u3be95HKHCR3FOLxQIAuOSSS/Cf//wHN910E/7whz/gmWeewXfffYfVq1cH5XFiBZM3QZaeng4AqKqqUrX+yJEjkGUZeXl5DS7PycmByWTCkSNHGlyem5vb5D4yMzObnDf0p3v37l7jyM/Pb3J5XVfxxnFQ6+zfvx8VFRXIyspC+/btG/yyWCwoKysDABQWFuKmm27C008/jXbt2uG6667DW2+91eTsP6nH12hT1dXVuOaaa1BVVYWPP/444UekRsvrk/sSPNGwp127dsWkSZMwc+ZMLF68GD169MCkSZPi+od3vt82lIh/B9SI5OvzxRdfxLlz5zzTb6j1ouH9tr42bdrgjjvuwN69e3H8+PGg3neiiOSepqSkAKhNftdXlwD/7rvvWnzfsYgduYIsPT0dHTt2xM6dOwO6nSRJqtZpNBqvlwshVD9W3YuAIkdRFGRlZWHx4sVer69r5iVJEpYvX47vv/8en3zyCVasWIGf//zneOGFF/D999/zh7kW4Gu0IYfDgRtvvBH/+9//sGLFCgwYMCBsjx2touH1yX0JrmjY08amTZuGN954A+vWrWtS+REv+H7rXyL8HVAjUq/PiooK/PGPf8Tdd9+NyspKT6WYxWKBEAKHDx9GamoqsrKyWvcEE0w0vt926dIFAHDhwgV07tw5aPebKCK5px07dgQAZGdnN7i87nUZSLI+HjB5EwLXXHMNXn/9dWzYsAGjRo3yu7Zr165QFAX79+/3fKMDAGfOnIHZbEbXrl0Dfny1H3oax7F3794ml5eUlHiup+Dp2bMnVq1ahTFjxqj64HjppZfi0ksvxZ/+9CcsWbIEs2bNwtKlS/HLX/6yRfud6PgaraUoCm699VasXr0ay5YtQ2FhYcD3EY8i/frkvgRfpPfUm7pqi4qKiqDcX7Ti+61vifJ3oDmRen2Wl5fDYrHgueeew3PPPdfk+u7du+O6667DRx99FMjTSXjR+H5bd5SyLslAgYnkng4bNgxvvPEGTpw40eDykydPAki8PeWxqRB4+OGHkZaWhl/+8pc4c+ZMk+sPHjyIl19+GQBw1VVXAQBeeumlBmv++te/AgCuvvrqgB8/LS0NAGA2m1Xf5qqrrsLGjRuxYcMGz2XV1dV4/fXX0a1bN54DDrLp06fD7XbjmWeeaXKdy+Xy7F15eXmTbxAHDx4MAJ4SxNTUVACB7Xei42u01r333ot3330Xr776Km688caAbx+vIv365L4EXyT39OzZs14vf/PNNyFJEoYOHarqfmIV32/5d6A5kXp9ZmVl4cMPP2zy6/LLL4der8eHH36Ixx57rOVPLEFF2/vtiRMn8K9//QuDBg1Chw4dVD4Lqi+Se3rddddBp9PhrbfegqIonsv/+c9/AgCuuOKKQJ5KzGPlTQj07NkTS5YswYwZM9C3b1/ceuutGDBgABwOB7777ju89957uP322wEABQUFuO222/D666/DbDajsLAQGzduxNtvv43rr78el19+ecCPP3jwYGg0GvzlL39BRUUFdDodJkyY4Lfs89FHH8U777yDqVOn4r777kObNm3w9ttvo7S0FO+//z5kOfA836JFi3DkyBFYrVYAwLp16/DHP/4RAPCzn/0soat5CgsLMXv2bDz77LPYvn07Jk+ejKSkJOzfvx/vvfceXn75ZUybNg1vv/02Xn31Vdxwww3o2bMnqqqq8MYbbyA9Pd3zITclJQX9+vXDu+++i969e6NNmzYYMGCA32MWib43fI3W/nD06quvYtSoUUhNTcV//vOfBtffcMMNnh96Ek0kX5/cl9CI5J7+6U9/wrfffosrr7wSubm5uHDhAt5//31s2rQJ9957b5P+LvGG77f8O9CcSL0+U1NTcf311ze5/KOPPsLGjRu9XkfNi+T77cMPP4yDBw9i4sSJ6NixIw4fPozXXnsN1dXVniQxBS6Se5qTk4PHH38cTzzxBK688kpcf/31KC4uxhtvvIGZM2fikksuCef/isiL1JirRLBv3z7xq1/9SnTr1k0kJycLo9EoxowZI/7+978Lm83mWed0OsXTTz8tunfvLpKSkkSXLl3EY4891mCNELUjLa+++uomj1NYWCgKCwsbXPbGG2+IHj16CI1G02BEpq/7EEKIgwcPimnTpgmTyST0er0YMWJEk7F6gYzFLCwsbDASs/4vbyM741njkXt1Xn/9dTFs2DCRkpIijEajGDhwoHj44YfFyZMnhRBCbN26VcycOVPk5uYKnU4nsrKyxDXXXCM2b97c4H6+++47MWzYMJGcnKxq/B73plYiv0Zvu+02n38HAIjS0lK/t48n0fT65L4ERzTt6cqVK8U111wjOnbsKJKSkjzvM2+99VZCjThN5Pdb/h1oKJpen95wVHhgomk/lyxZIsaNGyfat28vtFqtaNeunbjhhhvEli1bgvqc41007akQQiiKIv7+97+L3r17e/5d+N3vficcDkfQnnOskIQIoKsbERERERERERGFFXveEBERERERERFFMSZviIiIiIiIiIiiGJM3RERERERERERRjMkbIiIiIiIiIqIoxuQNEREREREREVEUY/Imgp577jn06dMHiqJEOpRWe/TRRzFy5MhIhxFR3M/4wz2NL9zP+ML9jC/cz/jDPY0v3M/4wv2MUZGeVZ6oKioqRJs2bcS//vUvz2UABADxf//3f03Wv/XWWwKA2LRpU6sf+/333xfTp08X3bt3FykpKaJ3797iwQcfFOXl5V7Xf/zxx2LIkCFCp9OJLl26iCeeeEI4nc4Ga06dOiV0Op34+OOPWx1fLOJ+xh/uaXzhfsYX7md84X7GH+5pfOF+xhfuZ+xi8iZCXnzxRZGeni5qamo8l9W9aLKzs0V1dXWD9cF80bRt21YMHDhQ/P73vxdvvPGGuO+++0RycrLo06ePsFqtDdZ+/vnnQpIkcfnll4vXX39d3HvvvUKWZXHnnXc2ud/p06eLyy67rNXxxSLuZ/zhnsYX7md84X7GF+5n/OGexhfuZ3zhfsYuJm8iZNCgQeKWW25pcBkAMXjwYAFAvPDCCw2uC+aL5uuvv25y2dtvvy0AiDfeeKPB5f369RMFBQUNMpyPP/64kCRJ7Nmzp8Ha5cuXC0mSxMGDB1sdY6zhfsYf7ml84X7GF+5nfOF+xh/uaXzhfsYX7mfsYs+bCCgtLcX//vc/TJo0qcl1Y8aMwYQJE/Dcc8+hpqYmJI8/fvz4JpfdcMMNAIA9e/Z4Ltu9ezd2796NX//619BqtZ7L7777bgghsHz58gb3Ufd8Pv744xBEHb24n/GHexpfuJ/xhfsZX7if8Yd7Gl+4n/GF+xnbmLyJgO+++w4AMHToUK/XP/XUUzhz5gwWLFjg937sdjvOnTun6ldzTp8+DQBo166d57Jt27YBAIYPH95gbceOHdG5c2fP9XUyMjLQs2dPfPvtt80+XjzhfsYf7ml84X7GF+5nfOF+xh/uaXzhfsYX7mds0za/hIKtpKQEANC9e3ev11922WW4/PLL8fzzz+Ouu+5CSkqK13XvvPMO7rjjDlWPKYTwe/1f/vIXaDQaTJs2zXPZqVOnAAAdOnRosr5Dhw44efJkk8t79OiB3bt3q4opXnA/4w/3NL5wP+ML9zO+cD/jD/c0vnA/4wv3M7YxeRMB58+fh1arhcFg8LnmqaeeQmFhIf7xj39gzpw5XtdMmTIFX331VavjWbJkCd588008/PDD6NWrl+fyunI5nU7X5DZ6vR6VlZVNLs/MzGySCY133M/4wz2NL9zP+ML9jC/cz/jDPY0v3M/4wv2MbUzeRKlx48bh8ssvx3PPPYc777zT65oOHTp4zUYG4ptvvsEvfvELTJkyBX/6058aXFeXabXb7U1uZ7PZvGZihRCQJKlVMcUj7mf84Z7GF+5nfOF+xhfuZ/zhnsYX7md84X5GLyZvIqBt27ZwuVyoqqqC0Wj0ue7JJ5/E+PHj8dprr8FkMjW5vqamBhUVFaoeMycnp8llxcXF+MlPfoIBAwZg+fLlDZpBAT+WqZ06dQpdunRpcN2pU6cwYsSIJvdZXl7e4LxiIuB+xh/uaXzhfsYX7md84X7GH+5pfOF+xhfuZ2xjw+II6NOnD4Dabt/+FBYWYvz48fjLX/7iteP3u+++68l6NversYMHD+LKK69EVlYWPv/8c6+lc4MHDwYAbN68ucHlJ0+exPHjxz3X11daWoq+ffv6fV7xhvsZf7in8YX7GV+4n/GF+xl/uKfxhfsZX7ifsY2VNxEwatQoALV/GQcNGuR37VNPPYXx48fj9ddfb3JdS88anj59GpMnT4Ysy1ixYgXat2/vdV3//v3Rp08fvP7665g9ezY0Gg0AYMGCBZAkqUFTKQCoqKjAwYMHcddddwUcUyzjfsYf7ml84X7GF+5nfOF+xh/uaXzhfsYX7meMExQRAwYMEDNnzmxwGQBxzz33NFlbWFgoAAgAYtOmTa1+7IKCAgFAPPzww2LRokUNfq1cubLB2k8++URIkiQmTJggXn/9dXHfffcJWZbFr371qyb3u3z5cgFAHDhwoNUxxhruZ/zhnsYX7md84X7GF+5n/OGexhfuZ3zhfsYuJm8i5K9//aswGAzCarV6LvP1ovn666+D+qKpuy9vvwoLC5us//DDD8XgwYOFTqcTnTt3Fr/73e+Ew+Fosm7GjBli7NixrY4vFnE/4w/3NL5wP+ML9zO+cD/jD/c0vnA/4wv3M3YxeRMhZrNZtGnTRvzzn/+MdChBcerUKaHX68VHH30U6VAigvsZf7in8YX7GV+4n/GF+xl/uKfxhfsZX7ifsYsNiyMkIyMDDz/8MJ5//nkoihLpcFrtpZdewsCBA3HddddFOpSI4H7GH+5pfOF+xhfuZ3zhfsYf7ml84X7GF+5n7JKEECLSQRARERERERERkXesvCEiIiIiIiIiimJM3hARERERERERRTEmb4iIiIiIiIiIohiTN0REREREREREUYzJGyIiIiIiIiKiKMbkDRERERERERFRFGPyhoiIiIiIiIgoijF5Q0REREREREQUxZi8ISIiIiIiIiKKYkzeEBERERERERFFMSZviIiIiIiIiIiiGJM3RERERERERERRjMkbIiIiIiIiIqIoltDJm1OnTuGpp57CqVOnIh0KEREREREREZFXCZ+8efrpp5m8ISIiIiIiIqKoldDJGyIiIiIiIiKiaMfkDRERERERERFRFGPyhoiIiIiIiIgoijF5Q0REREREREQUxZi8ISIiIiIiIiKKYkzeEBERERERERFFMSZviIiIiIiIiIiiGJM3REREREQUk4RLiXQIRERhweQNERERERHFJOFk8oaIEgOTN0REREREFJOEIiDcItJhEBGFHJM3REREREQUs4TTHekQiIhCjskbIiIiIiKKWYrNFekQiIhCjskbIiIiIiKKWUoNK2+IKP4xeUNERERERDFL2Fl5Q0Txj8kbIiIiIiKKWYqNlTdEFP+YvCEiIiIiopgl7EzeEFH8Y/KGiIiIiIhillLDY1NEFP+YvCEiIiIiopilWByRDoGIKOSYvCEiIiIiopjltjgjHQIRUcjFdPJm3bp1uPbaa9GxY0dIkoSPPvoo0iEREREREVEYuSvskQ6BiCjkYjp5U11djYKCArzyyiuRDoWIiIiIiCLAXeWAcCmRDoOIKKS0kQ6gNaZOnYqpU6dGOgwiIiIiIooUUVt9o22bEulIiIhCJqaTN4Gy2+2w238sq7RYLBGMhoiIiIiIgsFVzuQNEcW3mD42Fahnn30WGRkZnl+FhYWRDomIiIiIiFrJda4m0iEQEYVUQiVvHnvsMVRUVHh+rV27NtIhERERERFRKzlPV0c6BCKikEqoY1M6nQ46nc7zZ4PBEMFoiFqh8iSQ3jHSURARERFFBedJC4RTgZSUUN9NE1EC4bsbUSyqOBHpCIiIiIiihnAL2I9URjoMIqKQienKG4vFggMHDnj+XFpaiu3bt6NNmzbIzc2NYGREIeaoAhQFkJl/JSIiosQ0fPhwnD51Gm016Vj528Ww7T4PfZ4p0mEREYVETCdvNm/ejMsvv9zz5wcffBAAcNttt2HhwoURioooDIQCWM8DhvaRjoSIiIgoIk6fPo0TJ09AyXACAOxHKuE8U42k7LQIR0ZEFHwxnbwZP348hBCRDoMoMs7vZ/KGiIiIqJ6qNceROa03JI0U6VCIiIKKZy6IYtXhbyMdAREREVFUcZZZYfn+ZKTDICIKOiZviGLVwSLAbol0FERERERRxbq1DLb95ZEOg4goqFqcvHG73Vi6dClmz56NG264ATt27AAAVFRU4IMPPsCZM2eCFiQReeG0Ars/inQURERERFGnctVRuM7VRDoMIqKgaVHyxmw2Y8yYMbj55pvxzjvv4L///S/Onj0LADAYDLjvvvvw8ssvBzVQIvJi+zuA9UKkoyAiIiKKKsKlwPx5KRSHO9KhEBEFRYuSN48++ih27dqFFStW4NChQw2aBms0GkybNg2ff/550IIkoh8NHz4cncfOxPD5WwGHBVjz59qx4URERETk4a6wo+rrYxxwQkRxoUXJm48++gj33nsvrrjiCkhS007uvXv3xuHDh1sbGxF5cfr0aZw4cw6nKx21Fxz7AVj/AhM4RERERI3Y9pXDtptVykQU+1qUvKmoqED37t19Xu90OuFyuVocFBEFaM+nwIrHgBpzpCMhIiIiiipVa4/Bcao60mEQEbVKi5I3PXv2xNatW31ev3LlSvTr16/FQRFRCxz9Hlh+B3BgNcDyYCIiIiIAgHALVHx6EK7zbGBMRLGrRcmbX/7yl/jXv/6Fd99913OGVJIk2O12PP744/jyyy8xe/bsoAZKRCpYLwCr/wB8eCdw+FsepSIiIiICoNjcKP/wAJxnrZEOhYioRbQtudH999+PXbt2YebMmTCZTACAm2++GefPn4fL5cLs2bPxi1/8IphxElEgzpYAK+YBmV2BQTOAvCsAbXKkoyIiIiKKGKXGhfIPDsB0bQ8kdzREOhwiooC0KHkjSRLeeOMN3HbbbVi+fDn2798PRVHQs2dPTJ8+HePGjQt2nETUEuVHgLXPAZvfAobdDuRfBcgtKrgjIiIiinnC4Yb5owPIuLI7dD0yIh0OEZFqLUre1Bk7dizGjh0brFiIKFSqzwLrngf2fAKMewho1yvSERERERFFhHALmD8/hPTLc5HSv22kwyEiUqVFX8GXlpbik08+8Xn9J598wlHhRNHobAnwwa+Bb/4KVJ+PdDREREREkSGAyqKjsHx/EkLhoAciin4tqrx56KGHUFlZiWuvvdbr9a+88gpMJhOWLl3aquCIqKGjR4+iurp21GW13Y2jF2zIbaMP7E6EAuz+GNj7eW0vnP43AO17hyBaIiIiouhWvekMXGdrkD6pK+SUVh1KICIKqRa9Q23YsAEPPPCAz+snTpyIl156qYUhEVFjGzduxDPPPIPPPvvMM+HNXONGt8c34pqBbfD7q7rikm7GwO7U7axN4Oz9HGifX9sPJ28ioAvwfgLkrKnCoS//gQv7fwAkGe36jEaPKbOhSU5p9rZCCOxe+iTKD25B35/+Dm3zR3muqzq5D4eLFsJy6gAgAcaO+eg28Q4YsnuE8ukQERFRjLMfrsT5JXuQfnkX6HqYIh0OEZFXLTo2VV5eDqPR9w94BoMB58/zSAZRMHzwwQcYM2YMvvjiC0/ipo4QwOc7L2D0c9vxwbZzLX+Qs3uB9S8Ci24EVj8DnNhae+ct9L9/P4ozxV95vW7fR8/Deu4IBsz6I/rNeBIVR3fhwGd/V3W/Jzd+BEBqcrnbUYNd7zwBXXp7FPz8rxh02/PQJKdg15LfQ3G7Wvw8iIiIKDEoVhfMn5XC/OkhuCvskQ6HiKiJFiVvcnNz8e233/q8/ptvvkHnzp1bHBQR1dq4cSNmzJgBt9sNt9vtdY1bAdyKwIw39mDT4arWPaDbARxYBXw6B1j2M2D3f2srdILEeu4oyg9uQd7V98PYqQ8ycvuj55WzcXbXOtir/Cd8LacP4sT3H6LXtfd7ud/jcNVUoWvhLUht2xlp7bsid9zNcFabYa8oC1r8REREFN/spRU4v3gPLBtOQji9f/YiIoqEFiVvZs6ciXfeeQd/+9vfoCiK53K3242XX34Z7777Lm6++eagBUmUqP74xz9CCNGk4qYxAUBA4I+fHwneg5uPAd+8ALz7M+Dk9qDcZeXxEmj0aTB2/HHalan7EECSUHVir8/buZ027P3oefS88i4kG9o0uT6lbSdoU9JxevtKKG4n3E47zmxfiZR2XaA3ZQcldiIiIkoMwi1QvfkMzv9nD+yHKiIdDhERgBb2vHnsscewfv16PPDAA/jTn/6E/Px8AMDevXtx9uxZjB8/Ho8//nhQAyVKNEePHsWnn37abOKmjlsBPtlxoWVNjP2pOgV8Nhe49mUgZ0Cr7sppKUdyqqnBZZKsQVKKEc7qcp+3K135BtI7923Q46Y+rS4VA3/2LPa890ccW1/bKD2lTUf0n/kMJFnTqpiJiIgoMbktTpg/O4SUvm1gLOwCKalF33sTEQVFi5I3Op0OK1euxNtvv40PPvgABw8eBACMGDECN910E2699VbIMt/cKDEoLkdI+qqs/PJz1YmbOkIAq0vKcfuoIFebuB3Azvch+UjeHFv/Lo59u8zzZ8XlQNWJEhz88h+ey4beuaBFD31+3/cwH/4fhvzqb77Dc9qx/9OXkd65H/JveBhCUXDi+w+w+92nUPDzF6FJ0rXosYmIiCg61Z/AaXXU4PiFU+jcpkNIHqtmzwW4Kxww/aQHpCR+KUREkdHieXiyLOOOO+7AHXfcEcx4iGKK4nLAfLgYLps16Pd9pnQ3ZFmCoqhP4MgSYK6qgcse/Hhc5jPQuRyQtclNrssZdhXa9bvM8+e9Hz2Pdn3GoG2f0Z7LdMa2SDJkwmE1N7itUNxw1lQhKS3T6+NWHP4fbOWnsOH56Q0u37N8PtK79MegW/+MszvXwF5RhoI7XoAk1SaODTf8Ft//3wxc2Pc92vcvbOnTJiIioijibQJnRU0VLnn6GlzR/zLMmfIrDOnaP+iP6zhpQdX6E0i/PDeo9+uyOXB47R6Ul5ZBkiS0yctG18v6QpPs+8e00qKdqDh2Ho5qOzRJGhg6ZCJ3dG+ktDE0WHd2z3Gc2nYYNrMVmmQt2uTloPv4fkGNn4jCp8XJGyICFLcLLpsVskYLyUtSozXSM0wBJW4AQBFAeorWk8AIFqHRwdp5HJLcLq/Jm6QUI5JSfpxAJ2t1SErLQEqbjg3WpXfuA7etGpZT+2HoUNv3xlxaDAgBY6d8r4/defQ0ZA+e3OCyba/fgx5X/Apteo0AACguOyBJqD+Jqvb/gRRw9RIRUWOKW4GsYUUxUaR98MEHmDFjhtd+gEIIrN79LYp2f4vX7vgzri6YGPTHr9l1HmnDsqFJD6yid/cHP6B9305o37fpQJcDK/4Hp9WOvtdfAqEIHFy1A6Vf70LelAKf95eWlYG2+R2hM+rhsjlxfOMBlHy8GYNvK4Qk134WOrWtFKe2HUbumHwYckxQnG7YK2sCe8JEFFVanLxZsWIF3nzzTRw6dAjl5eVN3kAlSfIcpyKKd5I2OehHc8ZfNgaSFFjyQZKAy3unX0xkBIdi7ITqgjvgTspo9X2ltstFZs9h2P/Z35E39R4IxY2DKxagff9x0BnbAgDsleewc/Hj6P2TB2HslI9kQxuvTYp1Ge2hz8wBUNv0uHTVv3Dwy1fR8ZJrIYTA8W/fgyRrYOo6qNVxE1FiUxQBts8iiqz6Ezh9fTZyK25IkDD7rUfxyZyFwa/AEYBtXznShucE5e5qLlhQcfQc+k8fBUN27eesboV9sfe/W5A7Jh/JBu89DLMGdPH8ty4d6HJpb+x451vYq2qgz0itTeh8vx+9rxmGjC5tPWtT2xm93R0RxYgWJW+ef/55PProo8jOzsaIESMwcODAYMdFlPC6dOqAKRPG4as1632OCa9PIwNX9TMht02wkkgSHD0nw5F/fe1UuSAdxep9/W9x6MsF2Ln4cUCS0LbPGPScMttzvVDcqDl/HG6nXfV9prbrgn4znsSxdUtQ/NZDkCQJaTk90X/mH5BsbJr4ISIiotiifgKngADw0op/4u1fvxj0OOwHK4KWvKk6bYZGp/UkbgDUJlskCZYzFWjjI3lTn9vpwtk9x6FLT/EkeyqOnYMQgMNiQ/F/voHb4YKxQyZyx+ZDZ0wJSuxEFH4tSt68/PLLmDBhAj7//HMkJSUFOyYiuui39/4aq9aub7YCp/bAkITHpgSnUZ9IaQvb4Dvgbten9gJFfSIFAAbd+mef1yWlGJF/w8M+r9ebsjH2d5/5vX9v12f2GILMHkPUB0lEpBJPXxJFVuATON1YuWtdSJoYO8uscFfaAz465fW+qu1ISml4HF2SZWj1SXBa/X/2OvO/ozj63V4oTjf0pjT0uf4Sz/FOe0UNIARObj6EruP6QKNLwvEN+1Hy0WYMvHkMj4FSWCmKE7LMnEEwtCh5U15ejmnTpjFxQxRiQwsG4F9/fw4/v/dhCAGvFTgauTZx884dPXFJV4OXewmAnARHj0lw9Loa0AZx3DgRUQwTAfYfI0pUissdktfLVytWtmACp8D6fRvx/438SdDjqdlzHoaRHX1ef2LTQZzccsjzZ8XlhuV0BQ6v3eO5bNCssa2KoW1+B2TktoWj2o5T20qx/4vt6D9tJGStprZCSRHoWtgXptx2AIC8Kwuw9c0iVB4/D1PX9q16bKJACOEGwLxBMLQoeTNixAjs3bs32LEQkRfXXjkJK5b/G8///XWsKFrX4MOLJNUelXpsSofWJW60ejhzL4Oj52QIvfepT0REiUpxM3lD1BzF5UbF8fNwO1xBv+8zR05BluXaY9wqyZKECksVXPbgx2PZfRapw7Iha703w8oe2AVte/14tOrAyv+hTc9stOmZ7bksOU2HpDQdnDWOBrcVigKXzYmkVP+VPVpdErS6JOhNaTDkmLDl9dW4cOgM2vXuiOS02tvWnz6VlJIMrT4ZjipbwM+XqHXUv27JvxYlb1599VVMnToVw4cPx8033xzsmIiokaEFA/DOP/+GYydOYdxVP4W5sgqmFA22PNK/VT1uRGp7OLpdDmfuWCApNYgRExHFD7eLHzyJmiMUAbfDBVmWIQX5WE56enpAiRsAUISAUZ8WzBkOHu4Kh98KI62+NlFSR9bKSEpNht6U1mCdMccEt92F6rIKpGXV9r2pOH4BEKJBHxx1BIS79v+RoUPtF3G28mroLvbBcdkccNkcSE5nzxsKLyH4b2iwtCh5M2PGDLhcLvzsZz/DXXfdhc6dO0OjaZh5liQJxcXFQQmSiGp16dQBqakpMFdWIS1ZblniRpLhyhkMZ+44uNv3A4I8VpyIKN64HPzgSaSWpJGhSQrueLbLC8e3YAKnhLG9LgnqBE4AgBCecdytldLGgIzcdjhUtAvdx/eDUASOrN2Ntr07eJoPOyw27PlwE3peMRCGHBNsFVac338Kptx20KYkw2Gx4eSWQ5C1Gs9xqJTMNGR2z8KRdXvQfUJ/aJK1OPbdPqRkGpDeiYMcKNxCkEFNUC1K3rRp0wZt27ZFr169gh0PEYWIYuwIZ5fRcHUeDaFLj3Q4REQxwxmCYxdEpF6XTp1x5cTJWPn1KpUTODWY2GcMOmUGZypUY3J28PoC5k0ZhMNr92DPR5sgSRLa9MxG13F9PdcLRYHNXA3FVfu8ZY2MqpPlOL39CNz22uNVxo6Z6DdtZIOjVj0mD8LRb/Zg7ydbIEkSjB3bIP8nw9ismCKAX4AES4uSN2vWrAlyGEQUEnISnJ1GwNm1EIqpe/C/fSIiSgCOmuZ/WCSi0Prt/XPx1ZrVKiZwSpAA3D/p56EJRCtD0zuwL8H63TjS993pk5E3pcDn9br0VIy890rPn5MNevT5yfDmw0zWosfEgegxcWBAsUYDRVEgy0wyxQu3uwZarTHSYcQFviqI4pFGB0evq1E96TnYB98BJbMHEzdERC3ksLHyhijShg0eirde/Sc0Gk2Tdg11NLIGGlnGP342H4Nz+4UkjuRhbSGltej7b1KpsrIy0iFQEDmd5kiHEDdanLyprKzEn//8Z0yZMgVDhgzBxo0bAQAXLlzAX//6Vxw4cCBoQRKReq6cwaie8Ec4+twAoWOWm4iotZi8IYoOP5l6DVZ++DkmXz4JUqMvpSRJwsQ+Y/Dxb97E1IGXh+TxdcPbQdM5rfmF1CouF99z4wmTN8HTorTx8ePHUVhYiGPHjqFXr14oKSmBxWIBUNsP57XXXsORI0fw8ssvBzVYIvLP0ecGOPKuYpUNEVEQ8dgUUfQYNngolr61GMdOHMfYyYUwV1YgPcWIVQ8uDlmPG8iA7pL2SOpmhNvJ94NQczgczS+imOFymSMdQtxoUeXNb3/7W1RVVWH79u1Yu3Ztk3On119/PVatWhWUAIlIHUefG+DodTUTN0REQeawuQKackNEodelU2ekpqYCAFKTU0KWuJGSZaSM64CkbqxmDhcem4ovNbYTUBRWUwVDi5I3K1euxH333Yd+/fo1KVkEgB49euDYsWOtDo6Imspq3w4d25uQnZ7kuczZfVJtxQ0REQWd4hZwOTktgyjRyBnJSJnUCZrslEiHklDKysoiHQIFkeKuQXn5hkiHERdadGyqpqYG7du393l9VVVViwMiIv++/u870J74AfqtbwAAnF3Hwd5/BituiIhCyF7tRFKy9yapRBR/tF0N0A1vB0nL+S7hdubMGdjtduh0uuYXU0w4dvwtpKcXICkpsElt1FCLkjf9+vXDunXrMHv2bK/Xf/TRRxgyZEirAqPgOHr0KFavXo2qqioYjUZMnDgRubm5kQ6LgsSdNQj2gbcwcROj+Pokih3VFQ4YMvWRDoNage+5pIYkS0ge0hbankavJwwo9BRFQWlpKfr06RPpUChIHI7zOHDwz8jv/TRkOan5G5BXLUrePPDAA7jtttswaNAg/PSnPwVQ+yI7cOAAnn76aWzYsAHvv/9+UAOlwGzcuBHPPPMMPvvsMwghIMsyFEWBJEm45ppr8Pvf/x6XXHJJpMOk1tAkw1ZwKyDxG6FYw9cnUeypPFeD7G78xjAW8T2X1JJSNNCPzoamHRO1kVZcXIzevXtDlvk5N15UVe3CwUMvoGePuUzgtFCLXg233HIL/vCHP+B3v/sdevfuDQC48sorkZ+fj6VLl2L+/Pm4/vrrgxknBeCDDz7AmDFj8MUXX3gaLCpK7Vl9IQQ+//xzjB49Gh988EEkw6RWcna6FEJvinQYFCC+PoliU/lpa6RDoBbgey6pJWde7G/DxE1UMJvN2L59e6TDoFYaPnw4Ro16HLfduhYAUF6+ASUlj8NmOxnhyGJTi1OZjz/+OA4ePIjnn38ed911F371q1/hL3/5C/bu3YtHHnkkmDH69corr6Bbt27Q6/UYOXIkNm7cGLbHjkYbN27EjBkz4Ha74XZ7H2VYd92MGTOwadOmMEdIweLKHhTpEChAfH0Sxa6yI5WcOBVj+J5Lamk7pCLl8o6QU1t0KIGCaPjw4bj77rsxf/58bN68GXv37o10SNQKp0+fxunTZpy/YPdcZqnei50778Ox44vgclVHMLrYE3Dyxmq1YtiwYfjHP/6B3NxczJkzB6+88goWLFiAhx56CD169AhFnF69++67ePDBB/Hkk09i69atKCgowJQpUxK6Q/kf//hHCCGa/YBZt+aPf/xjmCKjYFPSO0c6BAoQX59Escta4YD5DKtvYgnfc0mNpO5G/P/t3Xd4VGXaBvD7TM2k9wqpQABDCRC6hBIBIUsvBhEQC1bWtfDhKgoospZVkV0UUQFZcVk7IoKIFAURIl1aCAmBhBZCepvMvN8fkZFIymQyyZmc3L/rynUxZ055Jk/ew8wzb9H3D4Ck5fAcR3Dx4kXk5OQgP7+yYL59+3Zs3boVhYWFcodGdmQWRly48CkOH74fFy58BpOpRO6QmoV636WcnZ2RlpbmEBN4vf7667jvvvtw9913o2PHjnjnnXfg7OyMDz74QO7QZJGRkYENGzbU+O3Sn5lMJnz99dfIyMho5MjI7lQaCIO33FFQPbB9EjV/aYez5Q6BrMR7LllDF+MFXZwvJJX8n2uoZqdPn8Z///tf7Ny5E7m5uXKHQ3ZUYSrEufMf4tChe3H+/H9QXs7/Z2tjU9/A4cOHY/PmzTWuNtUUysvL8euvv+Lpp5+2bFOpVEhISMDPP1e/jnxZWRnKym7osvV7BbeiogJGo7FxA24CmzdvrneXbiEEvvvuO0yfPr2RolK2CqMRRmMFTOZiSMaKJruuWuhgKmm6CrWoKIfZVNlOhKr5txU5sH3Kx1ReDrOVH+CaM5VaDbVOJ3cYja7CaLLMWdJUykpLYawwImX/BUR084LOqfGHVqhUKmi0XJrcVrznNj2TsfJ9gslkgmRsml4s5t9zLIQZxop6vD9RS9B284G5lQFlJWV1738DYTLDbDbDaDTCLCl/KKXRaGzSe66w5FSgouKP99YVFRU4cuQIjhw5gpCQELRv3x4hISF261CgUqmg1Sp/Et2KinKYzU33mUWI3+cYMwsYa/msZDTm4mzGxzibsQ4e7j3g4zMYbm4xkGxcmEWl0kCjadr3RE3x9yMJGwZwHz9+HBMnTkRsbCxmzZqFiIgIGAyGm/bz9m68ngFZWVkICQnB7t270adPH8v2OXPmYMeOHfjll19uOmb+/PlYsGBBo8VERERERERERC1LU8yLZ9NXR7fccgsA4NixY1i7dm2N+1nbVbWpPP3003j88cctjw8ePIj4+Hj88ssviI2NlTEy+1i1ahXuv//+eh+3YsUKfsvUAObfe6U0qdI8wMmjSS+pUmugauIKtpKwfcrDWFKCC/v3Q6XRQKXgb9TMRiPMFRUI6tYN2mq+TFGK8jIj0k9mQaVRQ61puvkpUvdm42Jq5aSKao2Ebokh0Bkar1eMqcIMc4UJ4dHB0OmV+3fbmHjPlYe5wgRhbrreKFHt2iArKwuB7n7YN//rOvdXuevhMSICaveGvZ+RVBJUGuX3jCsrK8OpU6egVquh0TTNZM6DBw/G5cuX4e7ujvnz51t1jF6vR1RUlM09cSoqKmAymdCuXTvo9fp6H99clJcX4+zZ5CbrlZKVdRGJidNQUFAIV1c13nuvFwICbVnNTYKTUzs4O3eDwak9JKn2tne9d1FYWA/odM62Be+gbGqFzz33nOxz3vj6+kKtVuPSpUtVtl+6dAmBgYHVHqPX66s0SFdXVwCARqNRRDe5YcOGQZKkelX9JEnC0KFDFfH6ZSPH706nAXQuTX9dshnbp0wqKqDVaKAxGKBR8BuyirIyVJSUQKvVKvrvRZgruyVrnbTQaptuVRi9Xg+t5o+hFVdOl6BtL79Gu57RWAFjqVHx+WxMvOfKpIl/d9c/j0iSBG0dH0Y1vgZ4jY6Cypn5tZbZbIZWq628BzZBbjMzM1FaWgqgcrhWfn6+VSM5TCYTTp06hQsXLqBNmzYICgqCSmV9gd9oNKKsrEzx91whKv/v1OmcodE03nuiAweOYMmSd7F164+We3BhoQlJSbvRt68vZsyIRIcO9fsS2lRxGgX5p1FU5ApX1x5wde0Jnda/2n0rKjQoLy+2OZ9CCOzb9x8cP74JZWVFCAzsiAEDHoanZ0iNx2RlHcHBg5/hypXTKC7OwfDhzyIiom+N++/YsRTHjn2Lvn3vR5cuY6yOzaZ3PtZWQRuTTqdD9+7dsXXrVowZMwZA5Q1m69ateOSRR+QNTiahoaFITEzExo0brer1pFarMXLkSISGhjZBdGRfnFivuWH7JFKOCyfz0foWTzi5KvdNfnPHey7dSOPjBK8xbaAycClwR3To0CEsXboU27Zts3zYLykpwYIFC3DLLbdg2LBhCAsLq/M8BQUFOHDgAI4dO4ZWrVohODgY7u7ujdrpQAiBbdu2Yf/+/SgtLUXr1q2RmJgIHx+fGo9JT0/H7t27kZWVhcLCQkyePBkdOnS4ab8rV65gy5YtOHv2LMxmM/z8/DBp0iR4eno22utpqI0bv8dDD82BEDcPIxIC+Pnnq9iz5yoWLuyE+PiAep/fbCpEft525Odth07fGq4u3eDs3Bkajf1GJBw8+CmOHFmPwYMfh7t7IPbuXYMNG+bhjjveqbHHktFYCh+fCLRvPxSbN9e+cuGZM7tx6dJJuLjU/DdSE7v0Oc7Ly5NliNTjjz+OFStWYPXq1Th+/DgefPBBFBUV4e67727yWBzFvHnzIElSnTep6/s8++yzTRQZ2ZVWucMilIztk6j5GTFqKCY/MgTPvTvTss0sBDKO5soXFFmF91wCALWnHp6jWbhxVJs2bcLEiROxY8eOaj7sCxw7dgxvvPEGDh06ZPU5y8rKkJqaih9//BHbtm3D8ePHce3atUaZk2TXrl345ZdfkJiYiHvvvRc6nQ5r1qypdTEco9GIgIAAjBw5ssZ9cnJy8MEHH8DX1xczZszAgw8+iAEDBjTZ8DVbHDhwBA89NAcmk7nG2oDZLGA2Czz33BEcP57XoOuVl51DTs5XOJ/5Ii5c/Dfy83fBZCpu0DmFEDh8+Et0734HIiL6wMcnAoMHP4Hi4qtIS6t+USQACAuLQ69e0xEZWXNvGwAoLMzGTz+9jYSEp6BS1X/opc3Fm+TkZAwfPhzOzs7w8fHBjh07AADZ2dkYPXo0tm/fbuuprTZ58mS89tpreO6559C1a1ccPHgQmzZtQkBA/at4ShEXF4d169ZBrVZDra7+D+L6c//73/8QFxfXxBGSXcg8bJFsw/ZJ1Pxcyb6M7GuXkVuYU2X7xZR8GMsca24/qor3XFK76+A1tg3ULuwl54gOHTqE2bNnw2Qy1fJhv3J1r5UrV+Ls2bP1vkZxcTFSU1Oxa9cu/PDDD/jtt9+Qk5Njl0KOEAJ79uzBgAED0L59ewQGBmLs2LEoKCjAiRMnajyubdu2GDJkSLW9ba7bunUr2rZti6FDhyIoKAje3t5o3769ZdoPR/TWWyuq7XHzZ5X7AKtXp9nnwkKgrDQNOTlf4Pz5F5CX951llav6Kii4iOLia2jVqqtlm17vAn//aFy6dLyBYZqxdetr6Np1PLy96+5JVh2bije7d+9G//79kZKSgqlTp1ZZPs7X1xd5eXlYvny5TQHV1yOPPIKzZ8+irKwMv/zyC3r16tUk13Vk48aNw+7duzFixAjLt03Xx31KkoSRI0di9+7dGDt2rJxhErVIbJ9EymA2C1w4lS93GFQH3nNbLrWbDl5j20LtysUWHNW//vUvCCGsLqRs3ry5QdcrKSlBWloadu/ejR9++AEnT55ESUmJzee7du0aCgsLERkZadnm5OSEVq1a4fz58zaf12w2IyUlBT4+PlizZg1eeeUVrFixAsePN6x40JgyMy/g++93Wj0ax2wW2LXrCi5etP33Xx0hjMgv2I7S0sM2HV9cfA0AYDB4Vdnu7Oxpec5WBw58ApVKjU6dRtt8Dpv6Xf39739Hhw4dsGfPHhQUFOC9996r8vygQYOwevVqm4OihouLi8P69euRkZGBH374Afn5+XB3d8fgwYM5nptIZmyfRMqQeSIPrTp6QKVuupWvqP54z1WuwMBAQAA+avcq21UGDTzHRDV4VSlqPJmZmfjhhx+sLtyYzWZLrxlrJjGuS0lJCVJSUpCamoqIiAi0atWq3ucoLCwEgJt6w7i4uFies0VRURHKy8vx008/YfDgwUhISMDp06exbt06zJgxA+Hh4TafG6hcjcneduzYVe/eTEIAv+7PwYgRwXaNRQgzBKyL5dSpbdixY6nl8ciRC+way3VXrqTg8OH1mDjxrQbNwWRT8Wbfvn1YvHgx9Hp9tX+YISEhuHjxos1Bkf2EhoZixowZcodBRNVg+yRq3sqKK3DhVAFC6rlqBsmD91zlSU5OhqnIiOwPjlq2SSoJnomR0HjasiQxVaeiosLu5/zxxx9t+LAvcOrUKbuOtDCZTEhJSYGXl1ed+x4+fBhff/3HkvR33nmn3eK40fXfS3R0NPr06QMACAoKwrlz55CcnGxz8Ualqlxpqry8GOXl9s1pfn4uVCoJZnN9VvgDigqNEGb7DkHWaPzh7hYHlaruUkd4eC8EBERbHptMlXMVlZRcg4vLH0XC4uJc+PpG3nS8tbKyfkNJSS7WrJlu2SaEGT///B6OHPkSU6eusuo8NhVvtFptlaFSf5aZmenQ4/GIiIiI7CHtwFX4hrpA7+K4k0gStSQuvYOgDXSROwxFUKlU0Ov1KCsrs/viNHl5eVCpVLV+pvwzSZJQUlJSr2OsYTAY4OXlVefy4tHR0QgJ+WO56Ou/k8LCQri5uVm2FxUVVfYKs5GzszNUKhX8/PyqbPfz80NGRobN59VodAgJ6QKz2f7FuNDQ4/Uq3ACVPW/cPZyh09uvvbq4tEdkxJPQ6bxqXBnqRjqdM3Q65xtiEnB29sL584fg6xsFACgvL8blyydxyy01TzBdl+jowVXm0QGAb76Zh3btBiM6+jarz2PTO43evXvj008/xWOPPXbTc0VFRVi5ciXi4+NtOTURERFRs1FhNOPYzkvoMjQYKjUnkyeSk9pdB+eu/nKHoRharRYRERF2L5YAQGRkZL3PK4SAm5sbnJzs26sqJiYGUVFR0Gprn9har9dDr9dXicfV1RVpaWkICgoCAJSWluL8+fPo0aOHzfFoNBoEBwfj6tWrVbZfvXoVHh4N6+lZWdCw/3DCYcMq5xWrT28qSQLi4vwgSfYZeuzl2QtRUU9CpbL99UmShM6dx+DXX/8LD49guLsHYO/eNXB29kFERB/LfuvXP42IiL7o1OkvAACjsQR5eVmW5/PzLyE7OxV6vRvc3Pzh5OQOJ6c/De9UqWEweMHLy/ohezYVbxYsWID4+HiMHDkSSUlJACpnCz9z5gxee+01XLlyBfPmzbPl1ERERETNSt7lEpzYdRkdbvVv0Fh2ImoY5y5+kFhEtau6Chq2Gj58uA0f9iW0b9/ervdZjUaDDh062PQ6JUlC7969sXPnTnh7e8PLyws//PAD3Nzc0L59e8t+q1evRvv27S3DvcrKypCT88cKhrm5ubhw4QIMBgM8PT0BAP369cMnn3yCsLAwhIeH4/Tp0zh58qTDDv0MDQ1FYmIiNm7caFUvLZVaQr9+/ggMdK5z3zrPpdIjOGgSgoLG2aUQ1LXrBBiNpdixYynKywsRGHgLEhMXVunJk59/AaWlfyx1fvlyCtavn2t5vHv3CgBAdHQCBg9+vMExXWdT8aZXr17YuHEjHnzwQUybNg0A8MQTTwAAoqKisHHjRnTu3NluQRIRERE5sstpBZAkILqfP1QqfngkanISoG9b97wl5Bjq/WFfpUJMTIxdJiu+MYbevXtbNd9NTfr164fy8nJ8/fXXKC0tRWhoKKZOnVqlGJSTk4Pi4mLL46ysrCqL+1xfRatLly6Wle86dOiAxMRE/PTTT/j222/h4+ODyZMnIyzMtiWmm8K8efPw7bff1lmUkyRAAjBzZrsGXc9gCIOv72D4+Q6BRuNW9wFWkiQJPXvehZ4976pxnz/PURMS0hkPPrixXtexdp6bG1lVvMnPz4eLiwvUarVl2+DBg3Hy5EkcPHgQKSkpMJvNiIqKQvfu3fmtExERtWiiogKShnOgtDSXzhSgosyMDvEB0Gi5AhVRU9IGuEDt0ji9RKhxWPth/7oRI0Y0+JrOzs5o27Yt2rdvb+nl0hCSJGHw4MEYPHhwjfv87W9/q/I4IiIC8+fPr/Pc3bp1Q7du3RoaYpOJi4vDunXrMHnyZAghqi3KqdQSJAAvvdQDHTvWv2im1wfCx3sAfHxuhcHQ8lYLtOqdpZeXF9asWYMpU6YAAGbOnIlZs2ahV69e6Nq1K7p27dqYMRIRETUv9VxBg5TjamYRDm3KRMyQIOidWcAjaiq6UPt9805Nw6oP+79PInzffffZvMqSXq9HREQEoqKiEBwcXOfExGS7cePGYffu3XjhhRewYcOGKkU5SQL69fPHzJnt6lW4Ual08Pa+FX6+CXB17dCiO4pY9a5Cp9OhrKzM8njVqlVISEiw6zJtREREisE3hi1aQU4ZDnxzHp1uC4aLp/0nhiSim+lasXjTHNX+YV9CTEwMRowYUe/CjU6nQ3h4OKKiohASElJlBAk1rri4OKxfvx4ZGRno0qULcnNz4eamwX8+GlivOW6cnILh7z8Cvj6DoNFwJWvAyuJN+/bt8d577yE8PNwyw3V6ejr2799f63HNqZsXERGR3bTgb4WoUmlxBQ5+m4lOtwXB3de+K6MQ0Z+oJGgDGj7xKcmjug/7BoMB8+bNq9ccN9cLNpGRkQgJCYGGw5dlFRoaChcXF+Tm5sLJoLG6cGMwhCIkZAq8PHvZbSUqpbDqL3rx4sWYPHkyEhISAFRWQefNm1fjilJCCEiSZNXkU0RERERKZCw34fB3WegyLARuPvq6DyAim2h9nCBp+CGvubvxw75er7eqcMOCjXJIkgYhwUkIChoLSWJPqepY9dc9fPhwpKWlYd++fbh06RJmzJiB+++/H3369Kn7YCIiIqIWqsJoxpEtWYgdEQKDO4dQETUGjR973bQkkiShdevWiI6ORmhoKAs2CuDqEo3w8Afh7BwhdygOzaq/9MOHDyMsLAzDhg0DAKxcuRITJ07EkCFDGjU4IiKiZokTFtMNystMOPz9BcTeHgKdgR8yiOxN48OhiS2BJEmIjo5GbGws3N3d5Q6H7ECvD0SrkKnw9u7foicitpZV/QtjY2PxzTffNHYsRERERIpUUmDEka0XUVFuljsUIsVRu3NYotK5u7tjzJgxiI+PZ+FGAVSSFq1CpqJTzFL4+NzKwo2VrCreGAwGFBcXWx7v2LEDly5darSgiIiImjUzP6DTzQquluLI1gss4BDZmcpNK3cI1IhCQkIwduxY+Pv7yx0K2YHBEIqOHf+J4OCJUKk4nLg+rOq726VLF7z++utQq9WW1ab27dsHJ6fauyiOGzeu4RESERE1Nxw2RTXIu1yCQ99loVNCEHROnJCRyB5UHI6oGIGBgSgpKYGra+XS0G3btkV8fDyX+m6mAgMDYTIVwdOz8n2Rj/etCA9/BGo1hzrawqo73ZIlSzBhwgTcc889ACrHGy5ZsgRLliyp8RiuNkVERC0WizdUi4KrpTjwzXl0SgiCswe/dSRqKEnHD/ZKkZycjHXr1iE3NxeRkZEYOHAgVCquJNZcJScnIz19GS5f2YwA/5EIDb2PQ6QawKriTY8ePXD69Gmkpqbi0qVLGDhwIJ555hnL0uFERET0B2EygW9NqDYlhUbs/+Y8OsYHwjuEK+UQ2UqSwGXCFcjV1RXx8fEs3CiEsyEcoaH3sHDTQFb3MdRoNIiOjkZ0dDSmT5+OxMRE9OrVqzFjIyIiap445w1ZocJoxpGtF9C2ly+Coz3kDoeoWVI5c74bJeratSt0OvZMVIqAwFGQJPaQayibBoiuXLnS3nEQEREpB4cNk5WEEDi15wrKS0wI6+LFbyWJqMWTJAlRUVFyh0F25OkRJ3cIimBV8WbhwoWQJAnPPPMMVCoVFi5cWOcxkiRh3rx5DQ6QiIio2WHPG6qn9EM5AIDwrt4yR0JEJK+AgIA6F8ah5sPJKQRaLZd3twerijfz58+HJEn4v//7P+h0OsyfP7/OY1i8ISKilkqweKMImZnnUVxcDAAoM5YiO+8ifD0CG+166YdyYHDTwjvU0GjXICJydMHBwXKHQHbk5BQidwiKYVXxxvynN6F/fkxEREQ34P+TzdqBQ/vx1tLXsXXb9xC/rxxWXFqAx9+cgK7t+mLMgLsRGdKhUa6dsucKungHQd2AlY+FENj7w1H8lnwGZaVGBIX6YuCo7vD0cav1uML8YuzefBhnUy6gwmiCh7crhozriYCQyt5A/5q3rtrj+g7rgm7929seMBHRDTw9PeUOgexIp/OROwTFaMBbAyIiIqpWRYXcEZCNvt30DR6afT+EEJbCzXUCAodSfsbh03vw8ISFiOsw0O7Xr6gw4+zBXET28LT5HPt/PIFDe1KQMK4X3L1c8MvWI1i/egemPHo7NNrqJ4wsLSnHZyu2IiTCH6OmDYDBRY/cq4VwMvwxYejdc0ZVOeZsygX88OU+RHVsZXOsRER/ptVyEmolUatd5A5BMWwu3hw/fhypqakoKCiAm5sb2rRpg/bt+a0LERGRKCuTOwSywYFD+/HQ7PthMpluKtxcZxZmQEj496fP4bmZyxulB0722SK06uhq07FCCBz6+RR6xHdEZIfKruoJ43vhg5e/wpnjmWjXObTa4/b/eByuHs5IGPfHSqLuXlVjcHGrOpwr7XgWWkX4w8PbtliJiKqj0bB/gZJoNLX3+iTr1btlLF++HIsWLUJmZuZNz4WGhuKZZ57Bvffea5fgiIiImiNRWCh3CGSDt/71RrU9bm5Wuc9XP67C3+542e5xCAD5V2wrAOZfK0JxYSlaRwVYtumddAho5YOL57JrLN6knchCaJtAfPvfXchKvwIXNwM69WqDW3pUv+JLcWEpzp7KwpAbij1ERPbg6sqCsJKo1ZzHzV7qVbx58skn8frrr8Pb2xszZ85ETEwMXF1dUVhYiCNHjuDLL7/ErFmzkJKSgpdftv+bGSIioubAfO2a3CFQPWVmnsfWH7ZYUbipZBZmHDi5q9EmMTaW2TZvUnFhKQDA2bXqSi3OLk6W56qTf60QR/edRte+0egxoCMuZeZg5zcHoFKr0CE24qb9TxxIg1av5ZApIiKiJmJ18Wbv3r14/fXXMXbsWHz44Ydwcbl57NqSJUswdepUvPbaa5g4cSJ69Ohh12CJiIiaA/OVbLlDUDRThRmAfecV2vHjDqsLN9cJCBw78ytu7TrSrrFACDi5WfcW7eShdGxf/6vlceLUW229JPyDvdDnts4AAL9gL+RczsPRfanVFm+O7U9Du86hNc6hQ0RERPZldfHm/fffR1BQENauXQu9Xl/tPi4uLvj4448RGRmJ999/n8UbIiJqkUyXLsodgiKpVCro9FqUlxlhrjDZ9dz5uXlQqVT1WlFTkiQUlxZBmOtX9KmLVq+CX2s3qFSqOveNaB+CgFZ/rORRWdiq7IFz4xw1xUWl8A30rPE8Lq5O8PZ3r7LNy88dqb+dv2nfrPQryM0uwPBJfeqMj4iIiOzD6uLNzz//jIkTJ9ZYuLnOyckJEydOxLZt2xocHBERUXMkCotgzs+Hyt297p3JahqtGq0iA+pVYLFWWFSrep9XCAE3V3foney7MkrnIa0Q2jbAql4tOr0WOv0f1xdCwNnVCefPXIJfkBcAoLzUiEvnryImrk2N5wkM9cW17IIq23KzC+Dm6XzTvsf2n4FfsBd8fz8/ERERNb66v9L53blz59Chg3UrKnTs2BHnzp2zOSgiIqLmzlTNxP7UcBqt2lKwsOfPsOFDIUlSvWKRJAmdouIgSZLdfrwCnBHdM8jm4UiSJKFLn3ZI3n4MacczkX0xF1s++wUubgbL6lMA8OXKbTi8J8XyuGvfdrh07iqSdxxD7tUCnDx0Fr8lp6JTr6oFn/JSI04fPYdbukfaFB8RERHZxuqeN/n5+XBzs26ZL1dXVxQUFNS9IxERkUKZzmZAa+WXHiS/0NBQJCYmYuPGjTCZ6h6SpZLU6BbdD76e9p2suEtCKFSq+hWR/qzbre1RYazAtvXJKCstR1CoH/4yLb5KQSgvpxAlxX+saBXQyge3T+mPn787jH3bf4O7pwtuHRGL6C7hVc596kgGAKBtDatWERERUeOwungjhKjXN1L1nfSPiIhISSpOpwAYJncYVA/z5s3Dt99+C0mS6ngfI0GSgLGDZtr1+n6hbggIb/hQO0mS0GtIJ/Qa0qnGfaY/8ZebtkVEByMiOrjWc8fERSEmrvrlw4mIiKjx1Gup8Ndeew0ff/xxnftlsqs4ERG1cBXnzsOclweVh4fcoZCV4uLisG7dOkyePBlCiGp74KgkNSQJeOyOl9CmVUe7Xr9Nd3+7no+IiIiUw+riTWhoKHJycpCTk2P1/kRERC2WEDAeOgz9ANuWbiZ5jBs3Drt378YLL7yADRs2VOmBI0kSukX3w9hBM+1euNE5qRHc1tOu5yQiIiLlsLp4k56e3ohhEBERKU/5nj3Q9e8HyYoln8lxxMXFYf369cjIyECXLl2Qm5sLFyc3vPLoR3af4+a60BgfqDX8OyEiIqLq8V0CERFRIzFlZ8N45IjcYZCNQkND4eLiAgDQ6wyNVrhRayRE92yccxMREZEysHhDRETUiEo3fgtRVlb3jtRi3XJrCFw89XKHQURERA6MxRsiIqJGZL52DSVffMFVGKlaYTE+iO7NXjdERERUu3qtNkVERES1Gzp5Mi6mp8NXo8Hn/foDAMr3H4A6OISTF1MVYTE+iEuMgCRJcodCREREDo7FGyIiIju6nJ2NS8XFgN6pyvaSDRsgubtD17WLTJGRI+nQNwgxA0IgqVi4ISIioro122FTixYtQt++feHs7AxPT0+5wyEiIqpTybp1MJ5KkTsMkpFKLSFuZDg6DWzFwg0RERFZrdkWb8rLyzFx4kQ8+OCDcodCRERkFWEyofjDD1GRkSF3KCQDnZMaA+5oh4gufnKHQkRERM2MzcOmNm/ejPfffx9nzpzBtWvXbpqIUZIkpKamNjjAmixYsAAAsGrVqka7BhERkb2J8nIUffABXGfNgjooSO5wqIkY3LQYcEc0PPwMcodCREREzZBNxZtXX30Vc+fORUBAAHr27IlOnTrZO65GUVZWhrIblmstLCyUMRoiImqpRHEJilasgMt997GA0wIY3HQYNDUarl5Ode9MREREVA2bijdLlizB4MGDsXHjRmi1WnvH1GgWL15s6bFDREQkJ3NhEQrfWQ6X6dOhiYyQOxxqJE4uGgy8k4UbIiIiahib5ry5du0aJkyYYPfCzdy5cyFJUq0/J06csPn8Tz/9NPLy8iw/O3bssGP0RERE9SNKKnvglO/dK3co1Ag0OhVundwObt4s3BAREVHD2NTzpmfPnjh58qS9Y8ETTzyBGTNm1LpPZGSkzefX6/XQ6/WWx66urjafi4iIyB6EyYTiTz9DRfpZGMaMhqTTyR0S2YEkAX3GtoFXoIvcoRAREZEC2FS8WbZsGW6//Xb06NEDU6ZMsVswfn5+8PPjCgxERNTylCcnw5SRAec7p3AeHAXoMqQ1gqI85A6DiIiIFMKm4s3kyZNRUVGBu+66Cw8++CBatWoFtVpdZR9JknDo0CG7BFmdjIwM5OTkICMjAyaTCQcPHgQAtGnThj1qiIioWTJdvozCpf+C06hR0PXqCUmS5A6JbBDRxRdt4wLkDoOIiIgUxKbijbe3N3x8fNC2bVt7x2O15557DqtXr7Y8jo2NBQBs27YNAwcOlCkqIiKihhEVFSj5/HOYMjJgGDsGUjNaGIAAv1A3dBsexsIbERER2ZVNxZvt27fbOYz6W7VqFVatWiV3GERERI2iPDkZ5itX4DxjOlQunDelOXDzcUK/8W2gVtu0HgQRERFRjfjugoiIyEFVnD2LorffgTkvT+5QqA4GVy0G3NEOOoNN34sRERER1apB7zCMRiNOnDiBvLw8mM3mm54fMGBAQ05PRETU4pkuX0bh2+/A9f77oPL2ljscqsb1JcFdPPR170xERERkA5uKN2azGU8//TSWLVuG4uLiGvczmUw2B0ZERESVzDk5KFz2NlzumcmVqByMpJLQb3xbeAY4yx0KERERKZhNw6ZeeuklvPrqq5g6dSo+/PBDCCHwj3/8A++88w46d+6MLl26YPPmzfaOlYiIqMUy5+ej8O23YTxxUu5Q6Abdh4chIMJd7jCIiIhI4Wwq3qxatQqTJk3C22+/jeHDhwMAunfvjvvuuw+//PILJEnCDz/8YNdAiYiIWjpRWoaiVStRtmMHhBByh9Pitenuj8iufnKHQURERC2ATcWb8+fPY/DgwQAAvb5yfHdpaSkAQKfTYerUqVizZo2dQiQiIiILs0DJNxtRsm4dhNEodzQtlk+IC7oktJY7DCIiImohbCre+Pj4oLCwEADg6uoKd3d3nDlzpso+165da3h0REREzcj5CxdQXFICACgxVSDr9383hvL9B1D0/vsQv395Qk1Ho1Oh9+goLglORERETcamCYtjY2Oxb98+y+NBgwbhzTffRGxsLMxmM9566y106dLFbkESERE5sv1HjuD15cvx/c6dluFM+RUVGLx9Gwb6++OhqDbo7Olp9+tWnElD0fsfQD9jus3nOL9nD8589x2unTmD8sJC3Pbqq/CMiKjzmBOff47CixdhNpngGhSE6L/8BWHx8X/EVlKCwx99hKy9e1FWWAgXf3+0vf12RA0bZnOsjqLzoNZw8eTKUkRERNR0bCre3H///Vi1ahXKysqg1+uxaNEiDBgwAAMGDIAQAl5eXvj444/tHSsREZHD+eb773H/U09BCHHTPDQCwM4rV/DjlSt4o2sshgYG2v36FWfPQtq8GerfhzPXl6msDL4dOqBV37749Z13rDpG5+qKDuPHwy0kBCqNBhd+/RX7/v1v6D08ENi1KwDg4OrVuHz0KHrOng0Xf39cOnQI+1esgMHbG8FxcTbF6gg8/AyIiuU8N0RERNS0bCrejBo1CqNGjbI87tixI1JTU7F9+3ao1Wr07dsX3t7edguSiIjIEe0/cgT3P/UUTCZTjRMIm4SABOBvBw/g4959GqUHjnHPL1D17WvTsdd7yxRdvmz1Mf4xMVUetx05EunbtyP7+HFL8ebqyZMIj4+37Bt5221I3bIFOadPN6viTWBgIIylJrjqPQEAHfoFQVJJ8gZFRERELY7dBmt7eHhg9OjRSExMZOGGiIhahDfefbfaHjd/Jn7/eTv1dOMEIgREXn7jnLvOSwtcOnwYBVlZ8OvY0bLdJzoaWcnJKLl6FUIIXD56FIVZWQhoZsOqk5OT8c2an7H44Q/h5KJBq/Z8j0NERERNz6aeNwBgMpnwySefYNu2bbh8+TIWLlyITp06IS8vD1u3bkW/fv0QEBBgz1iJiIgcxvkLF7ClHkt2m4TAtsuXkVVSgmCDwb7BaDSQPD3se846GIuK8PWsWTAbjZBUKnS7994qhZnYe+7Br++8gw2zZkFSqyFJEro/8ECVAk9zExLtBRV73RAREZEMbCre5ObmYvjw4di7dy9cXV1RVFSERx99FEDl6lOzZ8/GtGnT8NJLL9k1WCIiIluYjUZU2PmcO376yerCzXUCwJ7sbIxr1cqusajbtoWkr3sC3bM7d+LXd9+1PL7173+3uZiiMRgw9NVXUVFaiktHjuDQ6tVwCQiwDJM6vXEjrqakoN/cuXD29UX28eM48N57MHh7I6BzZ5uuKbeAcHe5QyAiIqIWyqbizdy5c/Hbb79h8+bNiI2Nhb+/v+U5tVqNCRMmYOPGjSzeEBGRrFRqNbTOzjAWF8NcYd/yTX5eHlSSBHM9CjgqAAVGI4TZbNdYVLFdoXV2hkqtrnW/4Lg4+LRta3lsaMAwZ0mlgmtQEADAMyICBZmZOPHFF/CPiYGprAxHPv4Y/Z56CkHdu1fuEx6O3PR0nFy/vtkWb7yDXeUOgYiIiFoom4o3X375JR599FHcdtttuHr16k3Pt2vXDqtWrWpobERERA2i1ungHxMDs8lk93OH/PZbvQo3AGAG4OHsDK2zs93iUPv5IWjcOKi1Wqh1ulr31RoM0Np7yNbvhNkMs9EIADCbTBAVFYBUdYiRpFIBdi5cNRWdQQ2Dm1buMIiIiKiFsql4k5eXh4iIiBqfNxqNqLDzN5xERES2UOt0qL0/im2G3n47JEmq19ApCUDfgIDKIoaduA2Mh87FxebjywsKUJydjZJr1wAABVlZAAAnT084eXkBAPa+9RYMPj7odOedAIDjn38O76gouAQGwmw04sL+/Ti7cye63XcfAEDr7Ay/jh1xeM0aqHU6uPj54cqxY0jfsQNdp09vyMuVjbuPAZLE+W6IiIhIHjYVb6KiorB///4an//uu+/QsRlPSEhERFSX0NBQJCYmYuPGjTBZ0bNHLUkYFBiIEDv2uoEkwW3w4AadIis5Gfv+/W/L4z1vvAEA6DhxIm6ZPBkAUJydDdxQcDKVlWH/ihUozsmBWqeDe3Awes2ejdb9+ln26f23v+HI2rX45a23UF5YCBdfX3RKSkLk0KENilcurt5OcodARERELZhNxZt7770X//d//4eBAwdiyJAhAABJklBWVoaFCxdi06ZNePeGCRGJiIiUaN68efj222/r7IEj/f7zcHR7u17f5db+0AYGNugc4YMGIXzQoFr3GbhwYZXHMUlJiElKqvUYJy8vxD38cINicySuXnVPCE1ERETUWGwq3vz1r3/Fb7/9hqSkJHh6egIApkyZgqtXr6KiogKzZs3CPffcY884iYiIHE5cXBzWrVuHyZMnQwhRbQ8ctSRBArC0Zy90acAEwX+mcnWF97Rpdjsf1c7Zvfb5hIiIiIgak03FG0mSsGLFCkyfPh2ffvopUlJSYDabERUVhUmTJmHAgAH2jpOIiMghjRs3Drt378YLL7yADRs2VOmBIwEYFBiIh6Pb27VwAwC+Dz8Eze9z0lDjc/FgzxsiIiKSj03Fm+v69++P/v372ysWIiKiZikuLg7r169HRkYGunTpgtzcXLhrtPgmIcG+c9z8znPSJLj07Gn381LNuNIUERERycl+y10QERG1cKGhoXD5feUnZ42mUQo3LgNuheekiXY/L9XO4MZhU0RERCQfq3vejBo1ql4nliQJX331Vb0DIiIiouoZuneD38MPc8nqJqZz0kCt4fddREREJB+rizcbNmyAk5MTAgMDa11R4zq+sSQiIrIf5x494P/E45A0DRrxTDZwcuHvnIiIiORl9buRkJAQZGZmwtfXF1OmTMEdd9yBwAYuT0pERER1c40fAN+HHmLhRiZ6F853Q0RERPKyug/wuXPnsG3bNsTGxuKFF15A69atkZCQgJUrV6KgoKAxYyQiImqxPMaPg++jj7JwIyOdE3/3REREJK96DeCOj4/H8uXLcfHiRXz66afw8fHBI488An9/f4wbNw6ffvopysrKGitWIiKilkOthu/DD8F7yhQORZaZVs/5boiIiEheNr0b0Wq1GD16NNatW4dLly5ZCjqTJ0/GK6+8Yu8YiYiIWhSVqysCn3sOboMHyx0KAdBo1XKHQERERC1cg/oBl5WVYfPmzfjqq69w4MABODk5ITw83E6hERERtTzakBAEPD0X2qAguUOh30kq9nwiIiIiedW7eGM2m7FlyxZ8/PHH+PLLL1FcXIyEhASsWLECY8eOhYuLS2PESUREpHiG2Fj4PfYY1K78v9SRqNQs3hAREZG8rC7e7N69G2vXrsUnn3yCq1evonfv3njppZcwadIk+Pr6NmaMREREiuc+ciS8p0+DpOYQHSIiIiKqyuriTf/+/WEwGDBixAgkJSVZhkdlZGQgIyOj2mO6detmlyCJiIgUS5Lgc89MuN9+u9yRUA04YTQRERHJrV7DpkpKSvDZZ5/h888/r3U/IQQkSYLJZGpQcERERIqmUsHvr3+Fa/9+ckdCtZC42BQRERHJzOrizcqVKxszDiIiopaFhZtmw+CmkzsEIiIiauGsLt5Mnz69MeMgIiJqUXwfmMXCTTOh4mpTREREJDN2BCYiImpiXnfeCbchQ+QOg4iIiIiaCRZviIiImpB7YiI8xo6ROwwiIiIiakZYvCEiImoiLv37Vy4HztWLiIiIiKgeWLwhIiJqAvr20fB7+CFIKv7XS0RERET1w3eQREREjUzt4QH/J5+EpOOqRURERERUf82yeJOeno577rkHERERMBgMiIqKwvPPP4/y8nK5QyMiIrqJ7yOPQOPlJXcYRERERNRMWb1UuCM5ceIEzGYzli9fjjZt2uDo0aO47777UFRUhNdee03u8IiIiCyce/eCc7dYucMgIiIiomasWRZvhg8fjuHDh1seR0ZG4uTJk3j77bdZvCEiIlkFBgbClJsLX60WkCR4T5kid0hERERE1Mw1y+JNdfLy8uDt7S13GERE1MIlJyfj/KOzYczKgiE2FtqQELlDIiIiIqJmThHFm9OnT2Pp0qV19ropKytDWVmZ5XFhYWFjh0ZERC2Y66395Q6BiIiIiBTAoSYsnjt3LiRJqvXnxIkTVY7JzMzE8OHDMXHiRNx33321nn/x4sXw8PCw/MTHxzfmyyEiohbO0Lmz3CEQERERkQJIQgghdxDXXblyBVevXq11n8jISOh+X2o1KysLAwcORO/evbFq1SqoVLXXov7c8+bgwYOIj4/Hr7/+im7dujX8BRAREQE4/+hsCJMJrZf9W+5QiIiIiEgBHGrYlJ+fH/z8/KzaNzMzE4MGDUL37t2xcuXKOgs3AKDX66HX6y2PXV1dbY6ViIioNrrwcLlDICIiIiKFcKjijbUyMzMxcOBAhIWF4bXXXsOVK1cszwUGBsoYGRERUSVdaKjcIRARERGRQjTL4s2WLVtw+vRpnD59Gq1atarynAONAiMiohZMFx4mdwhEREREpBAONWGxtWbMmAEhRLU/REREjoA9b4iIiIjIXppl8YaIiMiRSTodNBzGS0RERER2wuINERGRnWmDAiFZMZE+EREREZE1+M6SiIjIzjT+AXKHQEREREQKwuINERGRnWl8feQOgYiIiIgUhMUbIiIiO1N7esodAhEREREpCIs3REREdqZyc5c7BCIiIiJSEBZviIiI7Mzplo5yh0BERERECsLiDRERkZ1xpSkiIiIisie+uyQiIiIiIiIicmAs3hAREREREREROTAWb4iIiIiIiIiIHBiLN0REREREREREDozFGyIiIiIiIiIiB8biDRERERERERGRA9PIHQA1jQsXLuDChQtyh0F2EhQUhKCgILnDIDth+yRybLznKgvvuURETYf/h9pPiy7eBAUF4fnnn1f8H1NZWRmSkpKwY8cOuUMhO4mPj8fmzZuh1+vlDoUaiO2TyPHxnqscvOcSETUt/h9qP5IQQsgdBDWu/Px8eHh4YMeOHXB1dZU7HGqgwsJCxMfHIy8vD+7u7nKHQw3E9qk819soc6oMvOcqC++5ysL7rfIwp8rC/0Ptq0X3vGlpunbtykajAPn5+XKHQI2A7VM5rrdR5lQZeM9VJrZPZeD9VnmYU2Xh/6H2xQmLiYiIiIiIiIgcGIs3REREREREREQOjMWbFkCv1+P555/nJFEKwXwqC/OpPMypsjCfysJ8KgvzqTzMqbIwn/bFCYuJiIiIiIiIiBwYe94QERERERERETkwFm+IiIiIiIiIiBwYizdERERERERERA6MxRsiIiIiIiIiIgfG4g1RI5Akyaqf7du3N/haxcXFmD9/fr3OtWjRIowaNQoBAQGQJAnz589vcBxEzYUjt88TJ05gzpw56Nq1K9zc3BAUFISRI0ciOTm5wbEomSPnNCsrC1OnTkV0dDTc3Nzg6emJnj17YvXq1eCaEdQSOHL7/LOPPvoIkiTB1dW1wbEolSPnMz09vcZ4/vvf/zY4HqVy5Jxel5qaiilTpsDf3x8GgwFt27bFM8880+B4mhuN3AEQKdGaNWuqPP7www+xZcuWm7Z36NChwdcqLi7GggULAAADBw606phnn30WgYGBiI2NxebNmxscA1Fz4sjt87333sP777+P8ePH46GHHkJeXh6WL1+O3r17Y9OmTUhISGhwTErkyDnNzs7G+fPnMWHCBISGhsJoNGLLli2YMWMGTp48iZdeeqnBMRE5MkdunzcqLCzEnDlz4OLi0uA4lKw55DMpKQkjRoyosq1Pnz4NjkepHD2nBw8exMCBAxESEoInnngCPj4+yMjIwLlz5xocT3PD4g1RI5g6dWqVx3v27MGWLVtu2i6XtLQ0hIeHIzs7G35+fnKHQ9SkHLl9JiUlYf78+VW+9Z05cyY6dOiA+fPns3hTA0fOaefOnW/6hvGRRx7BX/7yF7z11lt44YUXoFar5QmOqAk4cvu80Ysvvgg3NzcMGjQIX375pdzhOKzmkM9u3bo5VDyOzpFzajabcdddd6F9+/bYtm0bDAaD3CHJisOmiGRiNpvx5ptv4pZbboGTkxMCAgIwa9YsXLt2rcp+ycnJGDZsGHx9fWEwGBAREYGZM2cCqOweer34smDBAku3xrqGQYWHhzfGSyJSDLnaZ/fu3W/qru/j44Nbb70Vx48ft++LbGHkvOdWJzw8HMXFxSgvL2/wayNq7uRunykpKXjjjTfw+uuvQ6Phd9sNJXc+AaCoqIj3VzuSK6ffffcdjh49iueffx4GgwHFxcUwmUyN9jodHe9ORDKZNWsWVq1ahbvvvhuzZ89GWloa/vWvf+HAgQPYtWsXtFotLl++jKFDh8LPzw9z586Fp6cn0tPT8fnnnwMA/Pz88Pbbb+PBBx/E2LFjMW7cOACV3/QSke0crX1evHgRvr6+dn2NLY3cOS0pKUFRUREKCwuxY8cOrFy5En369Gnx3yISAfK3z8ceewyDBg3CiBEj8L///a9RX2tLIHc+FyxYgKeeegqSJKF79+5YtGgRhg4d2qivWenkyun3338PANDr9ejRowd+/fVX6HQ6jB07FsuWLYO3t3fjv3hHIoio0T388MPixub2448/CgDio48+qrLfpk2bqmz/4osvBACxb9++Gs995coVAUA8//zz9Y6rIccSKYWjts/rdu7cKSRJEvPmzbP5HC2NI+Z08eLFAoDlZ8iQISIjI6Ne5yBSAkdrnxs2bBAajUb89ttvQgghpk+fLlxcXOrxilo2R8rn2bNnxdChQ8Xbb78t1q9fL958800RGhoqVCqV2LBhQ/1fXAvlSDkdNWqUACB8fHzEnXfeKT799FMxb948odFoRN++fYXZbK7/C2zGOGyKSAaffPIJPDw8cNtttyE7O9vyc33IxLZt2wAAnp6eAIANGzbAaDTKGDFRy+FI7fPy5cuYMmUKIiIiMGfOnEa5RkvgCDlNSkrCli1bsHbtWkyZMgVAZW8copZOzvZZXl6Ov/3tb3jggQfQsWNHu5yzpZMzn6Ghodi8eTMeeOAB/OUvf8Ff//pXHDhwAH5+fnjiiSfsco2WSM6cFhYWAgDi4uLwn//8B+PHj8fChQvxwgsvYPfu3di6datdrtNcsHhDJIOUlBTk5eXB398ffn5+VX4KCwtx+fJlAEB8fDzGjx+PBQsWwNfXF6NHj8bKlStRVlYm8ysgUi5HaZ9FRUVITExEQUEBvvrqKy5d2wCOkNOwsDAkJCQgKSkJH330ESIjI5GQkMACDrV4crbPN954A9nZ2ZbVb6jhHOF+eyNvb2/cfffdOHnyJM6fP2/Xc7cUcub0+tDipKSkKtuvfwmye/dum8/dHHHOGyIZmM1m+Pv746OPPqr2+euTeUmShE8//RR79uzB119/jc2bN2PmzJn45z//iT179vDDHFEjcIT2WV5ejnHjxuHw4cPYvHkzYmJibD4XOUZO/2zChAlYsWIFdu7ciWHDhtntvETNjVztMy8vDy+++CIeeugh5OfnIz8/H0DlN/1CCKSnp8PZ2Rn+/v4Ne4EtjCPeb1u3bg0AyMnJQatWrex23pZCzpwGBwcDAAICAqpsv94u/zxhstKxeEMkg6ioKHz//ffo16+fVZNV9u7dG71798aiRYuwdu1a3Hnnnfjvf/+Le++9F5IkNUHERC2H3O3TbDZj2rRp2Lp1K/73v/8hPj7elpdBN5A7p9W53uMmLy/PLucjaq7kap/Xrl1DYWEhXnnlFbzyyis3PR8REYHRo0dz2fB6csT77ZkzZwD8UWSg+pEzp927d8eKFSuQmZlZZXtWVhaAlpdTDpsiksGkSZNgMpnwwgsv3PRcRUUFcnNzAVS+sRBCVHm+a9euAGDpgujs7AwAlmOIqGHkbp+PPvoo1q1bh2XLlllWYqCGkTOnV65cqXb7+++/D0mS0K1bN6vOQ6RUcrVPf39/fPHFFzf9DBo0CE5OTvjiiy/w9NNP2/7CWihHu99mZmbigw8+QOfOnREUFGTlq6AbyZnT0aNHQ6/XY+XKlTCbzZbt7733HgDgtttuq89LafbY84ZIBvHx8Zg1axYWL16MgwcPYujQodBqtUhJScEnn3yCJUuWYMKECVi9ejWWLVuGsWPHIioqCgUFBVixYgXc3d0xYsQIAJVjQTt27Ih169ahXbt28Pb2RkxMTK3DLNasWYOzZ8+iuLgYALBz5068+OKLAIC77roLYWFhjf9LIHJQcrbPN998E8uWLUOfPn3g7OyM//znP1WeHzt2LFxcXBr9d6A0cuZ00aJF2LVrF4YPH47Q0FDk5OTgs88+w759+/Doo4+iTZs2TfmrIHI4crVPZ2dnjBkz5qbtX375Jfbu3Vvtc1Q3Oe+3c+bMQWpqKoYMGYLg4GCkp6dj+fLlKCoqwpIlS5ry16AocuY0MDAQzzzzDJ577jkMHz4cY8aMwaFDh7BixQokJSUhLi6uKX8V8pNxpSuiFuPPS+5d9+6774ru3bsLg8Eg3NzcRKdOncScOXNEVlaWEEKI/fv3i6SkJBEaGir0er3w9/cXiYmJIjk5ucp5du/eLbp37y50Op1Vy+/Fx8dXWbL2xp9t27bZ62UTNQuO1D6nT59eY9sEINLS0uz50hXLkXL63XfficTERBEcHCy0Wq1wc3MT/fr1EytXrmxxS5wSCeFY7bM6XCq8fhwpn2vXrhUDBgwQfn5+QqPRCF9fXzF27Fjx66+/2vU1K50j5VQIIcxms1i6dKlo166d0Gq1onXr1uLZZ58V5eXldnvNzYUkxJ/6NhERERERERERkcPgnDdERERERERERA6MxRsiIiIiIiIiIgfG4g0RERERERERkQNj8YaIiIiIiIiIyIGxeENERERERERE5MBYvCEiIiIiIiIicmAs3hA5mPT0dEiShFWrVskdChFVg21UWZhPIsfGNqoszKeyMJ9Ni8UbIiIiIiIiIiIHJgkhhNxBENEfhBAoKyuDVquFWq2WOxwi+hO2UWVhPokcG9uosjCfysJ8Ni0Wb4iIiIiIiIiIHBiHTRE1gvnz50OSJJw6dQpTp06Fh4cH/Pz8MG/ePAghcO7cOYwePRru7u4IDAzEP//5T8ux1Y0dnTFjBlxdXZGZmYkxY8bA1dUVfn5+ePLJJ2EymSz7bd++HZIkYfv27VXiqe6cFy9exN13341WrVpBr9cjKCgIo0ePRnp6eiP9VogcB9uosjCfRI6NbVRZmE9lYT6bDxZviBrR5MmTYTab8Y9//AO9evXCiy++iDfffBO33XYbQkJC8PLLL6NNmzZ48sknsXPnzlrPZTKZMGzYMPj4+OC1115DfHw8/vnPf+Ldd9+1Kbbx48fjiy++wN13341ly5Zh9uzZKCgoQEZGhk3nI2qO2EaVhfkkcmxso8rCfCoL89kMCCKyu+eff14AEPfff79lW0VFhWjVqpWQJEn84x//sGy/du2aMBgMYvr06UIIIdLS0gQAsXLlSss+06dPFwDEwoULq1wnNjZWdO/e3fJ427ZtAoDYtm1blf3+fM5r164JAOLVV1+1zwsmambYRpWF+SRybGyjysJ8Kgvz2Xyw5w1RI7r33nst/1ar1ejRoweEELjnnnss2z09PREdHY0zZ87Ueb4HHnigyuNbb73VquP+zGAwQKfTYfv27bh27Vq9jydSCrZRZWE+iRwb26iyMJ/Kwnw6PhZviBpRaGholcceHh5wcnKCr6/vTdvruhk5OTnBz8+vyjYvLy+bbmJ6vR4vv/wyvv32WwQEBGDAgAF45ZVXcPHixXqfi6g5YxtVFuaTyLGxjSoL86kszKfjY/GGqBFVt2ReTcvoiToWfrNm+T1JkqrdfuPkYNc99thjOHXqFBYvXgwnJyfMmzcPHTp0wIEDB+q8DpFSsI0qC/NJ5NjYRpWF+VQW5tPxsXhDpCBeXl4AgNzc3Crbz549W+3+UVFReOKJJ/Ddd9/h6NGjKC8vrzKDPBHZF9uosjCfRI6NbVRZmE9lYT7rj8UbIgUJCwuDWq2+aQb4ZcuWVXlcXFyM0tLSKtuioqLg5uaGsrKyRo+TqKViG1UW5pPIsbGNKgvzqSzMZ/1p5A6AiOzHw8MDEydOxNKlSyFJEqKiorBhwwZcvny5yn6nTp3CkCFDMGnSJHTs2BEajQZffPEFLl26hDvuuEOm6ImUj21UWZhPIsfGNqoszKeyMJ/1x+INkcIsXboURqMR77zzDvR6PSZNmoRXX30VMTExln1at26NpKQkbN26FWvWrIFGo0H79u3xv//9D+PHj5cxeiLlYxtVFuaTyLGxjSoL86kszGf9SKKu2YaIiIiIiIiIiEg2nPOGiIiIiIiIiMiBsXhDREREREREROTAWLwhIiIiIiIiInJgLN4QERERERERETkwFm+IiIiIiIiIiBwYizdELVh6ejokScKqVavkDoWIqsE2qizMJ5FjYxtVFuZTWZhPFm+IrJaamopZs2YhMjISTk5OcHd3R79+/bBkyRKUlJQ02nWPHTuG+fPnIz09vdGuYY1FixZh1KhRCAgIgCRJmD9/vqzxEP1ZS26jJ06cwJw5c9C1a1e4ubkhKCgII0eORHJysmwxNRTzqax8kvK05DaalZWFqVOnIjo6Gm5ubvD09ETPnj2xevVqCCFki6shmE/m0x6Yz8alkTsAoubgm2++wcSJE6HX6zFt2jTExMSgvLwcP/30E5566in89ttvePfddxvl2seOHcOCBQswcOBAhIeHN8o1rPHss88iMDAQsbGx2Lx5s2xxEFWnpbfR9957D++//z7Gjx+Phx56CHl5eVi+fDl69+6NTZs2ISEhQZa4bMV8KiufpDwtvY1mZ2fj/PnzmDBhAkJDQ2E0GrFlyxbMmDEDJ0+exEsvvSRLXLZiPplPe2E+G5kgolqdOXNGuLq6ivbt24usrKybnk9JSRFvvvlmo13/k08+EQDEtm3b6tzXbDaL4uJiq8+dlpYmAIiVK1data8QQly5ckUAEM8//7zV1yFqTGyjQiQnJ4uCgoIq27Kzs4Wfn5/o16+f1ddzBMynsvJJysM2WrPExETh4uIiKioqbDpeDsxnzZjP+mM+GxeLN0R1eOCBBwQAsWvXLqv2NxqNYuHChSIyMlLodDoRFhYmnn76aVFaWlplv7CwMDFy5Ejx448/iri4OKHX60VERIRYvXq1ZZ+VK1cKADf9XL8hXj/Hpk2bRPfu3YVerxdvvPGGEEKI1NRUMWHCBOHl5SUMBoPo1auX2LBhQ5UYbLkJsnhDjoZttGbjxo0T3t7eNh0rF+azZs0xn6Q8bKM1e+SRR4QkSfX6QCo35rNmzOcfmE/HwOINUR1CQkJEZGSk1ftPnz5dABATJkwQ//73v8W0adMEADFmzJgq+4WFhYno6GgREBAg/v73v4t//etfolu3bkKSJHH06FEhROWNbPbs2QKA+Pvf/y7WrFkj1qxZIy5evGg5R5s2bYSXl5eYO3eueOedd8S2bdvExYsXRUBAgHBzcxPPPPOMeP3110WXLl2ESqUSn3/+uSUGFm9ICdhGa9a3b1/Rrl07m46VC/NZs+aYT1IettE/FBcXiytXroi0tDSxatUq4eLiIvr27Wv178YRMJ9/YD6ZT0fH4g1RLfLy8gQAMXr0aKv2P3jwoAAg7r333irbn3zySQFA/PDDD5ZtYWFhAoDYuXOnZdvly5eFXq8XTzzxhGVbbd0Pr59j06ZNVbY/9thjAoD48ccfLdsKCgpERESECA8PFyaTSQjB4g01f2yjNdu5c6eQJEnMmzev3sfKhfmsWXPMJykP22hVixcvrtLDYMiQISIjI8OqYx0B81kV81mJ+XRcXG2KqBb5+fkAADc3N6v237hxIwDg8ccfr7L9iSeeAFA5gdiNOnbsiFtvvdXy2M/PD9HR0Thz5ozVMUZERGDYsGE3xdGzZ0/079/fss3V1RX3338/0tPTcezYMavPT+TI2Eard/nyZUyZMgURERGYM2dOg87VlJjP6jXXfJLysI1WlZSUhC1btmDt2rWYMmUKADTqSj72xnxWxXxWYj4dF4s3RLVwd3cHABQUFFi1/9mzZ6FSqdCmTZsq2wMDA+Hp6YmzZ89W2R4aGnrTOby8vHDt2jWrY4yIiKg2jujo6Ju2d+jQwfI8kRKwjd6sqKgIiYmJKCgowFdffQVXV1ebz9XUmM+bNed8kvKwjVYVFhaGhIQEJCUl4aOPPkJkZCQSEhKazQdE5rMq5rMS8+m4WLwhqoW7uzuCg4Nx9OjReh0nSZJV+6nV6mq3CyGsvpbBYLB6XyKlYRutqry8HOPGjcPhw4fx1VdfISYmpsmubQ/MZ1XNPZ+kPGyjtZswYQLOnTuHnTt3yhZDfTCftWM+q2I+5cfiDVEdEhMTkZqaip9//rnOfcPCwmA2m5GSklJl+6VLl5Cbm4uwsLB6X9/aG+qf4zh58uRN20+cOGF5nkgp2EYrmc1mTJs2DVu3bsXatWsRHx9f73M4AuazklLyScrDNlqz69/o5+Xl2eV8TYH5rBnzyXw6GhZviOowZ84cuLi44N5778WlS5duej41NRVLliwBAIwYMQIA8Oabb1bZ5/XXXwcAjBw5st7Xd3FxAQDk5uZafcyIESOwd+/eKjfuoqIivPvuuwgPD0fHjh3rHQeRo2IbrfToo49i3bp1WLZsGcaNG1fv4x0F81lJKfkk5WEbBa5cuVLt9vfffx+SJKFbt271Op+cmE/mk/lsPjRyB0Dk6KKiorB27VpMnjwZHTp0wLRp0xATE4Py8nLs3r0bn3zyCWbMmAEA6NKlC6ZPn453330Xubm5iI+Px969e7F69WqMGTMGgwYNqvf1u3btCrVajZdffhl5eXnQ6/UYPHgw/P39azxm7ty5+Pjjj3H77bdj9uzZ8Pb2xurVq5GWlobPPvsMKlX967Zr1qzB2bNnUVxcDADYuXMnXnzxRQDAXXfdxd48JBu20co3XsuWLUOfPn3g7OyM//znP1WeHzt2rOUNlaNjPpWVT1IetlFg0aJF2LVrF4YPH47Q0FDk5OTgs88+w759+/Doo4/eNIeII2M+mU/msxmRc6kroubk1KlT4r777hPh4eFCp9MJNzc30a9fP7F06VJRWlpq2c9oNIoFCxaIiIgIodVqRevWrcXTTz9dZR8hKpfLGzly5E3XiY+PF/Hx8VW2rVixQkRGRgq1Wl1l+b2aziGEEKmpqWLChAnC09NTODk5iZ49e4oNGzZU2ac+S+7Fx8dXWW7vxp/qlgMkamotuY1Onz69xvYJQKSlpdV6vCNiPpWVT1KeltxGv/vuO5GYmCiCg4OFVqu1vPaVK1cKs9lc67GOivlkPplPxycJUY8ZhoiIiIiIiIiIqElxzhsiIiIiIiIiIgfG4g0RERERERERkQNj8YaIiIiIiIiIyIGxeENERERERERE5MBYvCEiIiIiIiIicmAs3hAREREREREROTAWb4iIiIiIiIiIHBiLN0REREREREREDozFGyIiIiIiIiIiB8biDRERERERERGRA2PxhoiIiIiIiIjIgbF4Q0RERERERETkwFi8ISIiIiIiIiJyYP8PNnbm97nkXP4AAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABG8AAAInCAYAAAAmiHTKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA3HNJREFUeJzs3Xl4k2XWP/Dv8yRt0jZpm0JbqEDL0pa1VPZNi1RA3BfEYRmVGedldF5XHEdxRlxmcEbHUef9KaOOAw4qqLgryqq4gFrEsgpUoMhelnRJ06ZJnvv3R2loaZI+abPn+7kuLmxyJznxbkJ7cu5zJCGEABERERERERERhSU51AEQEREREREREZFnTN4QEREREREREYUxJm+IiIiIiIiIiMIYkzdERERERERERGGMyRsiIiIiIiIiojDG5A0RERERERERURhj8oaIiIiIiIiIKIwxeUNEREREREREFMaYvCEiIiIiIiIiCmMxnbw5evQoHn74YRw9ejTUoRARERERERERuRXzyZtHHnmEyRsiIiIiIiIiClsxnbwhIiIiIiIiIgp3TN4QEREREREREYUxJm+IiIiIiIiIiMKYNtQBEBGRd2aLGWu3rcXxyuPITM1E8aBimAymUIdFRERERERBwuQNEVEY+3bPt1jw9gI4FAdkSYYiFCz5fAnmTZ2HkbkjQx0eEREREREFAY9NERGFKbPFjAVvL4DdaYcQAk7FCSEE7E47FixfALPFHOoQiYiIiIgoCFh5Q0QUIm0dh1q7bS0cisPtbR2KA+u2rcN1o68LVrhEREQRx2614cSuI7BV10GXnID0vlmIS9SFOiwiIp8xeUNEFAJqjkMdrzwOWZLhFM5Wt5clGccqjwU7bCIiorCgJilj3l+Bsk9KIRQFkiRBCIFD35Qhd0ohTD0zQhQ5EVH78NgUEVGQqT0OlZmaCUUobu9DEQq6pHYJZthERERhwby/Aj8sXo+DG3bjxI6DOLhhN35YvB7m/RWuNXarrTFx41QAAQhFNP7tVFD2SSnsVlsInwERke+YvCEiCjI1x6EAoHhQMbSy+wJJraxFcUFxwGIkIiIKR2qTMid2HYFQ3H8AIhQFJ3cdCWbYREQdxuQNEVGQNR2Hcqf5cSiTwYR5U+chThMHSZKgkTWQJAlxmjjMmzoPqUmpQYyaiIgo9NQmZWzVdZAkye06SZJQX10XsBiJiAKBPW+IiILMl+NQI3NHYvHti7Fu2zocqzyGLqldUFxQzMQNERHFpKakjBCi1XXNkzK65AS3awBACAF9ckJA4yQi8jcmb4iIgqx4UDGWfL4Edqe91XXujkOZDCZOlSIiIoL6pEx63ywc+qas8XjVOSRZRue+WQGNk4jI33hsiogoyHgcioiIqH3S+2ZBkt3/CtM8KROXqEPulEJIGhmQAEmWGv/WyMidUshx4UQUcSThKXUdAzZv3oyhQ4fi+++/x5AhQ0IdDhHFGLPFzONQREREPnI3AlySZbcjwO1WG07uOoL66jrokxPQ2c1IcSKiSMDkDZM3REREREQRhUkZIoo17HlDREREREQRJS5Rh65DeoY6DCKioGHPGyIiIiIiIiKiMMbkDRERERERERFRGGPyhoiIiIiIiIgojDF5Q0REREREREQUxpi8ISIiIiIiIiIKY0zeEBERERERERGFMSZviIiIiIiIiIjCGJM3RERERERERERhjMkbIiIiIiIiIqIwxuQNEREREREREVEYY/KGiIiIiIiIiCiMMXlDRERERERERBTGmLwhIiIiIiIiIgpjEZu8efjhhyFJUos/ffv2DXVYRER+Z7aYsXzjcjz3yXNYvnE5zBZzqEMiIiIiIqIg0oY6gI4YMGAA1qxZ4/paq43op0NE1Mq3e77FgrcXwKE4IEsyFKFgyedLMG/qPIzMHRnq8IiIiIiIKAgiOtuh1WrRpUuXUIdBRNQuZosZa7etxfHK48hMzUTxoGKYDKYW1y94ewHsTjsAwCmcAAC7044Fyxdg8e2LW6wnIiKKFXarDSd2HYGtug665ASk981CXKIu1GEREQVMRCdvysrKkJWVBb1ej9GjR+Pxxx9Hjx49PK632Wyw2Wyury0WSzDCJCJqRU1Fzdpta+FQHG5v71AcWLdtHa4bfV0wwyYiIgo58/4KlH1SCqEokCQJQggc+qYMuVMKYeqZEerwiIgCImJ73owcORKLFy/Gp59+ioULF2L//v244IILUFNT4/E2jz/+OFJSUlx/ioqKghgxEVGj5hU1Qgg4FSeEEK6KmqaeNscrj0OW3L9Ny5KMY5XHghk2ERFRyNmttsbEjVMBBCAU0fi3U0HZJ6WwW21t3wkRUQSK2OTNlClTcP3116OgoACTJ0/GihUrUFlZiTfffNPjbR544AFUVVW5/qxfvz6IERMRNVJTUQMAmamZUITidp0iFHRJ5bFRIiKKLSd2HYFQ3P/bKBQFJ3cdCXJERETBEbHJm3OlpqYiLy8PP/30k8c1Op0OycnJrj8GgyGIERIRNVJbUVM8qBha2f3pVq2sRXFBccBiJCIiCke26jpIkuT2OkmSUF9dF+SIiIiCI2qSNxaLBXv37kXXrl1DHQoRkVdqK2pMBhPmTZ2HOE0cJEmCRtZAkiTEaeIwb+o8pCalBjFqIiKi0NMlJ0AI4fY6IQT0yQlBjoiIKDgitmHxvffeiyuuuALZ2dk4cuQI5s+fD41Gg+nTp4c6NCIir4oHFWPJ50tcU6SaO7eiZmTuSCy+fTHWbVuHY5XH0CW1C4oLipm4ISKimJTeNwuHvilr7HlzDkmW0blvVgiiIiIKvIhN3hw6dAjTp0/HqVOnkJ6ejnHjxuGbb75Benp6qEMjIvKqqaJmwfKW06a0stZtRY3JYOJUKSIiIgBxiTrkTilsNW1KkmXkTinkuHAiilqS8FR3GAM2b96MoUOH4vvvv8eQIUNCHQ4RxRizxcyKGqIoZ7XUY1dpOWrMtTCaktC3MAeJBn2owyKKeHarDSd3HUF9dR30yQno3DeLiRsiimoRW3lDRBTpWFFDFN327zqMT5dtgNKsOuDbNdtwyfSx6JnPox1EHRGXqEPXIT1DHQYRUdBETcNiIiIionBhtdTj02Ub4HQqEAJQFAEhAKdTwadLv4bVUh/qEInC0vY3NmDzfz7D9jc2hDoUIqKwwuQNERERkZ/tKi2HoniYKqco2FVaHtyAiCJEQ60N9lobGmptoQ6FiCis8NgUERERUTt462dTY651HZU6lyRJqDHXBjtcIiIiimBM3hAR+dkdL98Bs8UMk8GEf/76n6EOh4gCoK1+NkZTktvEDQAIIWA0JQU5YqLoYrfacGLXEdiq66BLTkC6jw2LO3p7IqJgY/KGiMjPzBYzTtWcCnUYRBQgzfvZAHAlaZr62dx07xXoW5iDb9dsc61pTpZl9C3MCWbIRFHFvL+i1ajwQ9+UIXdKIUw9MwJ+eyKiUGDPGyIiIiIfqOlnk2jQ45LpY6HRyJAkQJYlSBKg0ci4ZPpYjgsnaie71daYeHEqgACEIhr/dioo+6QUdqv3XjkdvT0RUaiw8oYoCjRYzKjYtg62yuPQpWYiY9AExBtMoQ6LiCgqqe1n0zM/Czfde4XHvjhE5LsTu45AeEieCkXByV1HvI4Q7+jtiYhChckbogh3as+32PX24xCKA5IkQwgFBz5fgn5T5yEtd0SowyMiijq+9LNJNOgxZFzfYIVGFPVs1XVek6f11XUBvT0RUajw2BRRBGuwmBsTN047IASE4mz822nHj8sXoMFiDnWIREQRy2qpx+avdmH9h99j81e7YLXUAwD6FuZAlt3/CMV+NkSBpUtO8Jo81ScnBPT2REShwuQNUQSr2LYOQnG4vU4oDlRsWxfkiIiIosP+XYfxyt8/xMZVW7Bj015sXLUFr/z9Q+zffYT9bIhCKL1vFiQPyVNJltG5b1ZAb09EFCo8NkUUwWyVx88clXK2uk6SZNgqj4cgKiKiyKZmmhT72RCFRlyiDrlTCltNi5JkGblTCluN+3Y3EtyX2xMRhQsmb4gimC41E0J4aLonFOhSM4McERFR5FMzTWrIuL7sZ0MUIqaeGTj/5iKc3HUE9dV10CcnoHPfrFaJF28jwdXcnogonDB5QxTBMgZNwIHPlzT2vDmHJGuRUVAcgqiIiCKb2mlSRBQ6cYk6r1OhWowEx9kKuqaR4OffXMSpUkQUUdjzhiiCNFjMOLTxbez95Hkc2vg2AKDf1HmQNHGAJEGSNY1/a+LQb+o8xCelhjZgIqII5Ms0KSIKDbvVhiOb92P/5ztxZPN+2K22FterGQlORBRJWHlDFCG8jQQffvsiVGxbB1vlcehSM5FRUMzEDRFRO/UtzMG3a7a5et40x2lSRKHn7TiUqWcGAI4EJ6Low8obogjQ1khwAOg2+jr0nnIbuo2+jombKGC2mLF843I898lzWL5xOcwc+04UNJwmRRS+WhyHEoBQROPfZ45DNVXgcCQ4EUUbVt4QRQA1I8G7jb4uyFFRoHy751sseHsBHIoDsiRDEQqWfL4E86bOw8jckaEOjygmcJoUUXhScxyq65CeSO+bhUPflLl63jTHkeBEFIlYeUMUAZpGgrvDkeDRxWwxY8HbC2B32iGEgFNxQggBu9OOBcsXsAKHKIiapkkVXTHUNV2KiEKr6TiUO82PQzWNFJc0MiABkiw1/q3hSHAiikysvCGKABwJHjvWblsLh4cqK4fiwLpt63Adq6yIiChG+XIcSu1IcSKiSMDKG6IIkDFoAiTZfa6VI8Gjy/HK45A9VFnJkoxjlceCHBEREVH4SO+bBUn2UI3s5jhU00jxnuP7o+uQnkzcEFHEYvKGKALEG0wcCR4jMlMzoXioslKEgi6pXYIcERERUfjgcSgiilU8NkUUIdJyR3AkeJQxW8xYu20tjlceR2ZqJooHFaN4UDGWfL4Edqe91XqtrEUxq6yIiCjG8TgUEcUiJm+IIki8wcSpUlHC20SpeVPnYcHyltdpZS3mTZ2HVCbriIiIXMehiIhiBZM3RERB1nyiFAA4hRMAXBOlFt++GItvX4x129bhWOUxdEntguKCYiZuiMKI1VLPMeJEREQUNEzeEBEFmdqJUpwqRRSe9u86jE+XbYCiKJAkCUIIfLtmGy6ZPhY987PavgMiIiIiHzF5QxRBGizmlj1vBk1AvMEU6rDIR00TpZoqbprjRCmi8Ga11OPTZRvgdDY2Fm8aWex0Kvh06de46d4rWIETpixVVSjd8CXMJ0/C1LkzCsdcAENKSqjDIiIiUoXJG6IIcWrPt9j19uMQigOSJEMIBQc+X4J+U+chLXdEqMMjH3CiFFHk2lVaDkXx8PpVFOwqLceQcX2DHBW1ZVfpZix7/p9QnE5IsgyhKFjz7nJMv+1O5BeeH+rwiIiI2sRR4UQRoMFibkzcOO2AEBCKs/Fvpx0/Ll+ABos51CGSD4oHFUMru8+dc6IUUXirMddCkiS310mShBpzbZAjorZYqqqw7Pl/wulwQAgBxemEEAJOhwNLn38WlqqqUIdIRETUpqhJ3vz1r3+FJEm46667Qh0Kkd9VbFsH4aFHilAcqNi2LsgRUUeYDCbMmzoPcZo4SJIEjayBJEmI08RxohRRmDOaklxHpc4lhIDRlBTkiKgtpRu+hOJsfUwVABSnE6UbvwpyRERERL6LimNTJSUleOGFF1BQUBDqUIgCwlZ5/MxRqdY/fEqSDFvl8RBERR0xMnckJ0oRhcAbC1fBaqlHokGPG26d5PPt+xbm4Ns121w9b5qTZRl9C3P8ECX5k/nkycajUm4SOJIsw3ziRAiiIiIi8k3EJ28sFgtmzpyJl156CX/+859DHQ5RQOhSMyE89EgRQoEuNTPIEZE/mAwmTpQiCjKrpR611XWq17obB37J9LH4dOnXLaZNybKMS6aPZbPiMGTq3BnCQ58ioSgwpacHOSIiIiLfRXzy5ne/+x0uu+wyXHzxxW0mb2w2G2w2m+tri8US6PCI/CJj0AQc+HxJY8+bc0iyFhnskUJE5FdtjQO/6d4r3CZ2KPwUjrkAa95dDqej9fFjWaNB4ZhxIYiKiIjINxGdvFm2bBk2b96MkpISVesff/xxPPLIIwGOKrKYa2qxuuRHHDtdjS5pyZg4vB9MRp7XDzfxBhP6TZ2HH5cvaDFtSpK16Dd1HuJ51IaIyG/UjgPnVKnIYEhJwfTb7sTS559tMW1K1mgw/bY7YUjmuHDyH7vVhhO7jsBWXQddcgLS+2YhLlEX6rCIKApEbPLm4MGDuPPOO7F69Wro9eo+6XrggQdwzz33uL4uLS1FUVFRoEIMexu378Njr3wMh1OBLElQhMDiTzbioZsvw6gBvUIdHp0jLXcEht++CBXb1sFWeRy61ExkFBQzcROlzBYz1m5bi+OVx5GZmoniQcUwGUyhDosoJnAcePTJLzwf9z75LEo3fgXziRMwpaejcMw4Jm7Ir8z7K1D2SSlEs4q9Q9+UIXdKIUw9M0IdHhFFuIhN3nz//feoqKjAkCFDXJc5nU588cUX+H//7//BZrNBo9G0uI1Op4NOdzbzbTAYghZvuDHX1OKxVz6G3dHYvM955lNFu8OJRxd/jNce+hUrcMJQvMGEbuyREvW+3fMtFry9AA7FAVmSoQgFSz5fgnlT52Fk7shQh0cU9ZrGgbubKsVx4JHLkJKCcZdcFuowKErZrbbGxM05FXvCqaDsk1Kcf3MRK3CI2sFqNWP37rWoqTkOozET+fnFSEyMzQ80IzZ5U1xcjG3btrW4bPbs2ejbty/+8Ic/tErcUEurS36Ew82kDABwOBWs2bQL1180NMhREZHZYsaCtxfAfqa/kfPMhDG7044Fyxdg8e2LWYFDFGAcB07hxFJVhdINX8J88iRMnTujcMwFMKSwYigUvB2JOrHriNfG2Cd3HUHXIT2DGW5Ms1gs2LJlCyorK5GamorBgwfH9Af3kaq8/FusWrUASrO2ESUlSzBp0jzk5MTeB5pBS944nU689dZb+Oyzz1BRUYFHH30UgwYNQlVVFdauXYuxY8ciM1P9xByj0YiBAwe2uCwpKQmdOnVqdTm1dux0NWRJclXcNCdLEo6eqgpBVLGr9OU70WAxI95gQuGvnw11OBRCa7ethUNp3VQTAByKA+u2reOEKqIA4zhwChe7Sjdj2fP/bNGrZ827yzH9tjuRX3h+qMOLKW0dibJV13mt2KtXOeWOOm737t148803WzScX7duHaZNm4b8/PxQh0cqWa1mrFq1AM4zH2iKMx9oOp12rFq1ALNmLY65Chw5GA9SWVmJsWPHYsaMGVi6dCk++OADnDhxAkDj0aU77rgDzz7LX1iDqUtaMhQPnyoqQqBrJ36iE0wNFjMaak6hwWIOdSgUYscrj0OW3L81y5KMY5XHghwRUexpGgeu0ciQJECWJUgSoNFwHDipY6mqwleffIQPlyzGV598BEtV6w/F2lpjqarCsuf/CafDASEEFKcTQgg4HQ4sff5Zt/dJgdHiSJQAhCIa/z5zJMputUGXnOC1Yk+fnBDkqGOTxWLBm2++CeeZ14uiKI2vG6cTb775JqcNR5Ddu9dC8fCBpqI4sGfPuiBHFHpBqby5//77sWPHDqxcuRLnn38+MjLONuzSaDSYOnUqVqxYgQULFnTocT7//PMORhp9PE2Tmji8HxZ/stHV86Y5rUbGxcP6hSBaIspMzYQiPDRKFQq6pHYJckREsYnjwKNPsI4fqamWUbOmdMOXUJytf04DAMXpROnGr9jDJ0jUHIlK75uFQ9+UuXreNCfJMjr3zQp0mBFPzVGnttZs2bLFa8P5LVu2YOzYsQF9HuQfNTXHzxyVav0+KEkyqqtj7wPNoCRv3nvvPdx+++2YOHEiTp061er6vLw8LF68OBihxJS2pkk9dPNleHRxy+u1GhkP3XwZTMbEUIdPFJOKBxVjyedLXD1vmtPKWhQXFIcgKqLYxHHg0SNYx4+aV8sAgDiTfGmqlrn3ycZK87bWGFJSYD55sjFWNwkcSZZhPlPFTt6pHd3tbZ2aI1FxiTrkTilsdbRKkmXkTilks+I2qDnqpGZNZWWl172qrKwM5tMiFTw1JDYaMyE8fKAphILk5Nj7QDMoyZuqqir07Om5QZfdbofD4b4kitpHzTSpUQN64bWHfoU1m3bh6KkqdO2UgouH9WPihqiDmhoKt9VY2NM48HlT52HB8pbTprSyFvOmzkPqmdHwHCVORKSOmoSKLxU43ip41FTL4MwRKG9rxl1yGUydO3ut9jClp6uOORqpScqoHd3d1jq1R6JMPTNw/s1FOLnrCOqr66BPTkBnD8kiOqv5USfg7KSupqNOd999NwC0ucZgMCA1NdXrXqWmpgb42VATNVOivDUkzs8vRknJElfPm+ZkWYu8vNj7QDMoyZvevXtj8+bNHq9ftWoV+vfvH4xQYobaaVImYxKnShE1Y3fa4VTc/1Ct1hM3PuH673p7vds1JT+V4O/v/b3VOPDfX/17DOszDC/c+gI+3/45KqoqkJGSgfEDxyM1KRX19vo2b6uGRtYgThPXoedJRBQOFj7yJ1iqK2FITsWt8x9rdb0/jx+1VcGjtlpGzZrCMRdgzbvLXUmn5mSNBoVjxqmKORqpScqoHd2tZp0vR6LiEnWcKuUjNUedmv7b25qxY8di8ODBWLdunSvJ05wsyxg8eLD/AieP1EyJUtOQeNKkea3uR5a1mDRpHhITU0P19EImKMmbW265BX/4wx8wfvx4FBc3ZsgkSYLNZsOjjz6KTz/9FC+++GIwQokZnCZF5Du7047dh3ejvsF9wsVfLPUWPPXBU64kUfNx4H9792+Ye+VcGPQG9OnSB3269AEAHDp5CIdOHlJ927bo4/XIPy+fCRwiiniW6kpUmz03/PfX8SM1FTyqqmWEUFVRY0hJwfTb7sTS559tkSySNRpMv+1OGJKjc7hEfJKuxd/nUpuUUTu6W+06HokKHLVHndSsMRgMmDZtWqvjVbIsY9q0aRwXHgRqp0SpaUhcWHgdZs1ajD171qG6+hiSk7sgL684JhM3QJCSN3feeSd27NiB6dOnu0rVZsyYgVOnTsHhcGDOnDn49a9/HYxQYganSRH5zqk4Ud9QD61WG9Ckxrdl33r99GjHwR0YP3C832/bxO60o76hHk7FyeSNn9VXVuLA+vWorahAUkYGsouKoGeJNlFI+ev4kZoKHlXVMgKqK2ryC8/HvU8+i9KNX8F84gRM6ekoHDMubBM3ilNpnMTUAf2uHen6b6e99f/vih2HvO5nxY5D6FKYg/rKWkCSAA+/7NdV1sJpd6pel9ytEwpmjsOpPUfRYKmHPiWRR6L8RO1RJ7XHofLz83H33Xe32fyYAkNtUkZtQ+LERBMKC68LaMyRIijJG0mS8NJLL+Gmm27C8uXLUVZWBkVR0Lt3b0ybNg0XXnhhMMKIKZwmRdR+cZo4xGvj2337v7//d1Rbq5GcmIx7r7q31fVV1ipIsuT2B1xJllBlrfL4+B25bXPsM+Z/RzZtwsannoLicLg+Id++bBlGz52LrGHqjrMRkf/56/iRmgoetdUyvlTUGFJSImKqlOJUUHu8Es6Gjh09bovlWGWb19ccPg0oovGPG42jvoVv685ISk9G8nkmJGWmQtbI7X4edJbao06+HIcyGAycKhUiapMybEjsu6Akb5qMGzcO48bF7vncYDIZkzhNiihEqq3VqLJ6PpqYZkjz+MmkUAQ6GTsF5LYUOPWVlY2JG/uZEuEzP1wqdjs2PvUULlu4kBU4RCHiy/Ejb82I1VbwqKmWibSKGjWEIuBscELSSAFNasQb9ICn4h4BxBv10MRrYOqVgZO7j3j8sMPUM8OndU0UpwJng7NxvabVTagd1B514nGoyKA2KcOGxL4LavKGgovTpIjC0/Dc4Vjx/Qo43JSUamQNhvcZHpDbUuAcWL8eiodqJsXhwIH165F/1VVBjoqImqhJlrTVjNiXCh411TKRUlHjK1kjQ9a2P6vx06qtcNTbodXHoc+kglbXp/XOwImdhzwmW9J6ZULWahBv0KD72Hwc/Hp349ozR6MkWUL3sfmNSSBA9brm3FV/UMeoOerE41Cht3z5HbBazUhMNGHq1H+6XaM2KZOYaGJDYh8FJXnTs2dPSJLkdY0kSdi7d28wwokpnCZFFH6SE5Ixu3g2Fq1dBKfidB2D0sgazC6eDWOC0S+3ra6rRklZCU5bTiPNkIbhucORnJDc6j45drzjaisqvB6nqK2oCEFURNSct2SJ2nHisdhAONgc9XY46ho8Xq/Vx3tNtmj1Z3u5JWeZkH/FEFSWn0RDbT3ik/RIzUlvscaXdRRYao46heI4lMViYcLoDKvVjNraU17X+JKUyckZyYbEPghK8qaoqKhV8sbpdOLAgQP4+uuvMXDgQJx//vnBCIWIwkiDxYyKbetgqzwOXWomMgZNQHyMJA0G9hiI+b+Yj00/bcKpmlPoZOyE4X2Gu03cuEvCtHXb7T9vb5XgWfH9Cswuno28rDzXum/3fIsFby9oNXZ83tR5GJk7slUs5F5SRobX4xRJGRlBjojChdVSj12l5agx18JoSkLfwhwkuvkkn0JL7TjxaDzuFIl8SbZo9fEtRnl7onYdRQa1CZe21u3evbvVUa1169Zh2rRpyM/PD+ZTiii+JGXCsSGx1WrG7t1rUVNzHEZjJvLzi5GYGPrfUYKSvFm8eLHH67Zs2YLJkydj5syZwQiFKKIFM9kR6Mc6tedb7Hr7cYhmGfkDny9Bv6nzkJY7wm+PE86SE5IxYdAEr2u8JWE83ba6rhqL1i5yHa1qKi13KA4sWrsI86bOg1bWorK2EgveXgD7mbLW5mPHFyxfgMW3L2YFjkrZRUXYvmyZq+dNc7JWi+zx44MfFIXc/l2H8emyDS1+6P92zTZcMn0seubzl8Rg89bPxpdx4tF63CnSMNkSGV544QVYLBYYDAbMmTOnw/enJimjNuHS1jqLxYI333zTdUyuadqV0+nEm2++ibvvvjtmK3DUCMekjBrl5d+2qhoqKVmCSZPmIScntB9shrxF+uDBgzFnzhz84Q9/CHUoRGHt1J5vUfJ/s1G+bhGO/fApytctQsn/zcbpsu8i7rEaLObGxI3TDggBoTgb/3ba8ePyBWiwmP3yOOGuuq4aa7euxVsb3sLarWtRXVfd6vqmJIyAgKIoEBCuJMy565uUlJXAqbj/BNmpOPH93u8BAJ9v/9xt7xygMdGzbtu6Djy72KJPTcXouXMhx8UBkgRJowEkCXJcHEbPnQt9Cj+VjzVWSz0+XbYBTqcCIQBFERACcDoVfLr0a1gt9aEOMabsKt2Mv//+Tqxa/gY2ffEZVi1/A3///Z3YXfoDAP+NEyeiliwWC2pqamCxWDp8X7t378bTTz+NNWvW4Pvvv8eaNWvw9NNPY/fu3S0erynhIsSZn52EcCVcmuJQs27Lli1QPLwvKIqCLVu2dPg5UXBZrWb88MNyfPHFc/jhh+WwWs2trl+1agGcTvuZ7wvnme8LO1atWtBqfbCFRcPizMxM7Ny5M9RhEIWtFskOwDV6rynZMfz2RT5VxXirqvHXY3l7jIpt6yA8JA2E4kDFtnXoNjryMvW+8FZRM7DHQABtJ2E2/bTJbfXNactpr+PET1saR55WVFVAlmRXxU1zsiTjWOWxjjzFmJM1bBguW7gQB9avR21FBZIyMpA9fjwTNzFqV2m51x/6d5WWY8i4vkGOKjap6Wfjr3HiRNR+3qpq1FbBqEm4jB07VtW6yspKV0XOuSRJQmVlpR+eNbVF7RGmttapqajZvXstFA+/oyiKA3v2rAtpNVHIkzenTp3Cyy+/jG7duoU6FKKw5c9kR1vHlfzxWG09hq3y+JnL3ZSnSzJslcdVPZdI1daxpvm/mI/khOQ2kzCnatw3jGtrnHiaIQ0AkJGSAcXDKEdFKOiS2sXn5xbr9KmpnCpFAIAac63XH/przLUhiCo2qe1nw2bERKHT1hEmtUkZtQkXNetSU1PdXg80Jo9SU1Pb/XxJXVJG7RGmttY1r6gBzn443VRRM2vWYiQmmlBT4/13lOrq0H6wGZTkzYQJ7vsyVFZWYteuXWhoaMCSJUuCEQpRRPJXskNNVU1HH0vNY+hSMyE8JA2EUKBLzVT1fCKV2oqatpIwnYyd3F7X1jjxYb2HAQDGDxyPpV8udfW8aU4ra1FcUKz2KRHROYymJK8/9BtNSUGOKHap7WfDZsREoaGmqkZtUkZtwkXNusGDB2PdunVuR8PLsozBgwf7+lTpDDVJGbUJFzXr1FbUGI3ef0dJTg7tB5tB6XnTdIaw+R+gcYT4//7v/2L79u2YPn16MEIhCkvxBhPijZ08HkfyJdnRYDHj0Ma3sfeT53Fo49st+seoqarpaGJFzWNkDJoASXafO5ZkLTKiPGnQVFHjTvOKmuG5w6GRNW7XaWQNhvcZDqB17xwAmF08G1pZCwkSZFmGBAlaWYvZxbNhSGgsQU5NSsW8qfMQp4mDJEnQyBpIkoQ4TRzmTZ2H1KRUPz9zouhjtdRj81e7sP7D77H5q12uXjZ9C3Mgy+5/zJJlGX0Lc4IYZWzzpZ9NUzPiK355M8ZdclnQEjeWqip89clH+HDJYnz1yUewVFUF5XGJwoGaqhq1SZnBgwd7fe9tSrioWWcwGDBt2jRoNI0/H8my3PjzkkaDadOmsVlxO6ntK6Mm4aJ2XVNFjTvNK2ry84she/gdRZa1yMsL7e8oQam8+fzzz4PxMNRO5pparC75EcdOV6NLWjImDu8Hk5GfCKqlOO2NDXc7YNCNf3P9t9Peuollp35jceDzJa5qluYkWYvO/cbBaa/H6Z9KsOe9p1odV8q/+l6Y+gxD3ekjXqtq6k4fQbex13t9rLYSK2oqd+INJvSbOg8/Ll/QIlZJ1qLf1HmIj/KkgdqKmuSEZMwunt2qN45G1mB28WwYE4xee+d4Gife4GhwPd7I3JFYfPtirNu2Dscqj6FLahcUFxQzcdNO9ZWVLXveFBVBz7LqqNXWNKlLpo/Fp0u/bnG9LMu4ZPpYjgsPonDvZ7OrdDOWPf/PFse11ry7HNNvuxP5heeHNDaiYFBTVVNUVKSqCqYp4XLuESxZllskXNSuy8/Px913361q7Dipo7YKRu0RJjXr1FbUJCaaMGnSvFZVQbKsxaRJ89yOOg+mkPe8odDauH0fHnvlYzicCmRJgiIEFn+yEQ/dfBlGDegV6vDCnuK0o+bwHjgb6gL+WN3GXI9DX7/R+OmhJAFCQJJldBtzPawnD8Jx6EeUffAPVyKp+XGl3e8+gdwr74FQnF4/fRRCQd3JQx4eS4P8a+5zJVY8NSRWW7mTljsCw29f1PI+CoqjPnEDtH2sqamiBgAG9hjoMQmjpndOW6PIAcBkMOG6KG8QHQxHNm3CxqeeguJwuH4B275sGUbPnYusYcNCHR61g9VSj12l5agx18JoSkLfwhxX0qX5NCmgeZl/4zSpm+69Aj3zs3DTvVd4vA/yD0Nyaou/W12fkhKyfjbexpM3Xd9WM2UDm55TlFNTVaM22QKoT7ioXWcwGDB27Fj/P/EYpTYpozbhomZdXt4ElJQscR2tau7cipqcnJGYNWsx9uxZh+rqY2duXxzyxA0QoOTNf//733bd7sYbb/RzJOSNuaYWj73yMeyOMz8onHnTtDuceHTxx3jtoV+xAqcNQnHC2VAHWauFrIkL6GOZehXC0LU3KvduRoPlNOINaTD1HgrtmSMwp8u+9ZqYqTm4E53yR+HEts/cHmuSZA06542CVpfQ6rHiklKQ3GMQTL2HAPDekDhj0ATVlTvxBlPUT5VyR01Fzbnr3SVh2juNivyvvrKyMXFjP3Pe+swvYIrdjo1PPYXLFi5kBU6EaauqRu00qUSDnlOlvHA4HB6bCav16/v/6PrvBpvN7Zqe/frjjr88gW3fbkTlyZNI7dwZBSPHICk52eNtvLFUV2HrNxtRdeokUjp1RsGo0a2SQHu2lmL5Swu9VtSobaZMFM3U9pbxpQpGbcKFiZnA8dSQWG1SJj+/WFXCRc26xMRUnypqEhNNIZ0q5UlAkjc333yzz7eRJInJG5Vue+p1mGusMBkT8fzcGV7XejsStbrkRzic7l84DqeCNZt24fqLhvo9/mgka+Iga+Pbffvd7z8Fh7Ua2sRk5F811+M6nbETMgsnur3OYa0GZAlwdxxHlmC3VkFn7ISc4tkoX7uosULnzHpJ1iCneDbijWluH0txNMBha6wuUtOQOJaPRKnlraKmueq6apSUleC05TTSDGkYnjscyQnJANoeCe5pGhX534H166G4OZIBAIrDgQPr13MKVQRRU1XDaVId53A4cHjfXtjqWx8XDpSuPXLQtUcOAODE0SM4cfRIqzV1tbXY9+MOWKqrYEhOQa9+A5CQdPbDrIP7fsIXH3/QIrH32QfvoOiyq9CtV2/XfbzznxdciRlPFTVqmykTRTNfqmqYbIkM3hoSq03KqD3CpHZdOFfUqBWQ5M3+/fsDcbd0hrnGipNVljbXtXUk6tjpasiS5Kq4aU6WJBw9xWZ5weKwVsNubfv/t72uBuaykrOVN7nDEXfml/14Q5r7xA0AKMKVmEnpMQD9fzEf5p9K0FBzGvHGNJj6nL2ftqgdJR6rR6J84amipom3fjYDewxs9zQq8r/aigqvv4DVVlSEICpqLzVVNZwm1XGK0wlbfT00cVpotIE/yV9Xa0HZtq2wVFXBkJKC3EEFSEhq+Yn9z2V7sPbd5VCUsz87lW78CsXXTEWP3DzU1VoaEzfnTMVRnE6s//h9/OJ3dyAhyYBdWzZ7/h5qVlHjSzNlaslR3wBz+QnYa22IS9LBlJMOrb79H6RRaLG3TPRQM/1JbRWM2oSL2nXhWlGjVkD+pczOzg7E3ZIP1ByJ6pKWDMXDD56KEOjaiWesw0nVz9tRvnZxi4qZo9+vQE7xbKT0GABT7nAc/X6FxyNRpmZ9VOISjMho53EataPEY/VIlL+o6WfjS+8cCqykjAyvv4AlZWQEOSLqCDVVNcMvGoBv12xzVec0x2lSvtFotYiLa/8v3W+/tBBWiwWJBgOu+82tbteU796F1cuXtfhUf/MXn2PS9dORnZcPALBaLFj37nJXYkZplphZ9+5yzLzzXuzbudPra33fzp0oHDMO1poaV/LnXM0rasK9mXK4qj58Ggc37Gn8t/FMb76KbQfRfWw+krPcT+6k8MeqmuigtiGx2ioYtQmXSE/MqBGUUeEUfGqORE0c3g9ajftvAa1GxsXD+gUyRPKBva7mTOLGAUAAigJAQCgOlK9dBHtdDeISjMgpnn1mBLcEyDIACZKsRU7xbNWVNW3p6ChxUkdNP5um3jmeRoKfewSLAie7qAiyh8oBWatF9vjxwQ2IOkRNVU2iQY9Lpo+FRiNDkgBZliBJgEbDaVLBZrVYUFtTDavFfVWy1WLB6uXL4HQ6z4ylVc6MpXVi1VtLXbfbs7XUa8XVnq2lqKk0Q5Ikt2skSUJNZeOIW2OqyfP3ULOKmqZmyhqttnEU8ZmRxBqtNuDNlCOVo77hbOIGAM78fxaKwMGvd8NR3+Dl1kQUaGrHcjclWy688HcoLLzOr8eXrFYzfvhhOb744jn88MNy1/jx9q4LF0GbNnXs2DG8/PLL2Lx5M6qqqlr94yhJEtauXRuscKKemiNRJmMSHrr5Mjy6uOXRKq1GxkM3XwaTMTEEkZM75rISj+PIheKE+acSZAya0OEjUWr40pCY2k9tPxu1vXMosPSpqRg9d26raVOyVovRc+dCz2kxEaVvYY6qqppATJPyNuGK2kdNUqZwzDhXYsZjxVWl2XtSRggYUxurPvIKClHy2Rr3DVjPqajJLzwf9z75LEo3fgXziRMwpaejcMw4Jm48MJef8HpkuLL8JDr3zQpyVESxITHR1OJvd9Q2JG4PT02Qm/PWbycnZ6TP68JJUJI3W7duxfjx41FXV4f8/Hxs27YN/fv3R2VlJQ4fPozevXuje/fuwQglZqg9EjVqQC+89tCvsGbTLhw9VYWunVJw8bB+TNyEmQbLaa/NiBtqTru+7MiRKDXiDSY2JPYTb82Ifeln01bvHAqOrGHDcNnChTiwfj1qKyqQlJGB7PHjmbiJQE1VNZ8u/bpV88xzq2r8OU2qrQlX1D5qkjJAG9UyZxIzXpMysoz8wYUAgESDAZOun45Vby2F88x+QgiP48kNKSmcKqWSvdbmOirViiShoTZ4DbCpbU09a/zRu8ZisbAnTgc5nXYoHj4QVuOqq55w/bfd7v611qvXOHz33RII4eaDXkmLXr3GerytNwcOlGDt2r9DURyQZRmKouC775bg4ot/jx49hgEArNZKrFy5AIriud9OYqJJVV8ebwmqUAlK8ub++++HwWBAaWkpEhMTkZGRgWeffRYTJkzAW2+9hVtvvRWvvfZaMEKJGROH98PiTza6et40d+6RKJMxKeRTpbxNxSL1zYh94a358blrbNUnoNEbkNC5GxJSuyAtdwQbEndQW82I2c8mMulTUzlVKkoEoqrGGzUTrliB0z5+qZY5k5hJSDqblDk3sTfp+uktGiBn5+Vj5p33Ylfp96g8eRI9+uRi6IXjfaqosVRVoXTDlzCfPAlT584oHHMBDDGeEI5L0rlP3ACAEIhP4uvEnxwOh8fKNTVmz57t+u+GhvYfaSsrK8M777zT4nW3bt06XHvttcjNzW33/TaRZRnaIDRODyWn047jx3fD4Qh8gnPIkGnYvHlZq/fJIUOmobLyECorD7W6jc1mwaFDpairq0RCQiq6dSuETmdwXbdu3VOuxNPZv+1Ys+ZvmDBhLnQ6A/bu/UpVvx21fXnCTVC+Q7/++mvcd9996NGjB06fbqwQaHoTuP766/HVV1/h97//PdavXx+McGJCsI9EdST50tZULIJPzYjVJGXaan7cas2ZT7hObP8c/abOQ1ruCDYk7gA1zYib+tmcm+DRyBr2s4lg9ZWVLStzioqgT00NdVjkgZqqGl+OOXlbq2bClb8qfGJNe6plvCVmmpIyTT1wjKkmV2LnXIkGAwaNHI2Gunrk5PdFvE6nOu5dpZux7Pl/QnE6XUcx17y7HNNvuxP5hee3739GFDDlpKNi20GPx4pTczihy18cDgcOHz7coaSLP9TV1eG9995zvUeeTW478fbbb+Pqq69GQkJChx4jPj4e5513XlQncBTFCYejHhqNFrIcF9DH6tatEJ0798bBg9/Daj2NxMQ09OgxzJWMOdfRoztRUrIEiuJ0vffu2bMOI0b8El269Ed5+bde/408enQHcnPHw2ar8VJpebbfTlNfHk8DWJrWhZugfHcqioLMzMYmpqmpqdBoNK4kDgAMGjQIL7/8cjBCiSn+OhLVVmKmI8kXNVOxWIEDVzPi8rWLWiRcJFnTohmxmqRMy+bHcFX0NDU/7v+L+QDQck1TM0CnHT8uX4Dhty9CvCH8SgkjhZpmxBMGTWA/myhzZNOmVj1xti9bhtFz5yJr2LBQhxczmpIl/qhi8eWYU1tr1Uy4ovZRm5QB1CdmEg2GgE6CslRVYdnz/3RNoRJnEk9OhwNLn38W9z75bMxW4Gj18eg+Nh8Hv97dYtqUJEvoPjYfWn1gfymNJYqioKGhARqNJqRJjT179nj9xf3gwYMYNGhQu+/f4XCgoaGhQxVGkUSW46DVtm/C39q1f0d9fTX0+mQUF9/rda3B0An9+k1q8z7r66vPJG7OvN81TfpTHPjuuyW49NL5qK+v8vpvZH19FbTaeBgM6V4qLc/22wlkX55ACsqrsGfPnti/fz+Axk84evbsiTVr1mDatGkAgA0bNiDVx08eFy5ciIULF6K8vBwAMGDAADz00EOYMmWKP0OPeB09EtVWYqajyRc1U7FCfaQrXLTVjFhNUiYuwaiq+TEEvKxxoGLbOlbddIDaZsQA+9lEi/rKysbEjf3M2eqmUcR2OzY+9RQuW7iQFTgqOR1OKJ6Okapw7a/Pvp7sDe5LptVo65jTjDumuBJEqtYa9W1OuKL287VaJhgjur0diSrd8KVrZPm5FKcTpRu/iukeOclZJuRfMQSV5SfRUFuP+CQ9UnPSmbgJEK1W2+7kzTvvvIO6ujokJCTg2muvbdd91NbWunqcnEuWZdTW1nY4ueSuMo9aq6+vRl1dVbtud+BAiasKJzt7OPT6xj6PBw6UeOzDoyhOHDiwCYmJaV7/jUxMbOwFmZ09HDt2rHB7JEqWtcjLaxyskp9fjJKSJa6eN57WhZuAJW/MZjNMpsZP5idNmoS33noLf/nLXwAAt956K+bOnYt9+/ZBCIHPP/8cc+fO9en+u3Xrhr/+9a/Izc2FEAKvvPIKrrrqKvzwww8YMGCA359PLFKTmOlo8kXNVCw6hzjn7zPUTqRS3fzYwxpJkmGrPN6BJ0C+NCOm0Ftz332or6yEPjUVFz/xRNs3cOPA+vVQHB7OVjscOLB+PXvlqOB0OHH88Gk02NqfdPGXvTsOup1GBTQmZTat34neA7qrXtutV6bHTxWbT7ii9gtWUsZqsbRIEvXq3x8aueWP3G0diTKfPNl4uZtfKCVZhvnEiYA/j3Cn1cdzqlQEqKurQ22tuspBq9WKsrIy1NTUwGg0Ijc3F4mJiTAajd6T20ZWJIezI0e245tvFrU4ErVjxwqMGjUbWVkDYbWe9lpVY7WeQr9+k70kZTTIzm5sIaHXJ2PEiF/iu+/+C0VRIMuNg1VkWYtJk+a5xpEnJpowadK8VtOmzl0XbgKWvOnSpQsuvfRSzJw5E3PnzsX06dNht9sRFxeHu+66C7W1tXj77beh0Wjwpz/9CfPmzfPp/q+44ooWX//lL3/BwoUL8c033zB5o1Jbx6HUJGY6mnxROxWL2j4SpTYpo6r5sYDHNUIo0KVm+ulZxSY2I44s9ZWVqGt21Lc9aisqvP4iVltR0aH7jxWKItBgc0CjkaHRyAF/vPq6BvxcdhRWSz0SDXr0yO0KfUJjqbmtrsFrBZ2trgHx8VrVa40piRhZPAjfrt0GRRGN04ngfsIV+d+5CZe8gkIknjPFRs2a8t27sHp5yyad3322BkWXXYWc/MaeRWqORJk6d4bwcIRDKApM6ezrQtHlwIEDWL16NYQQrtdOSUkJJk6ciNzcXJSUlHj85T4vLy8EEZMa9fXVZxI3rY9EffPNIlx66XxVVTV6fTJGjZrdKgkkyxqMGjUbev3ZBF6XLv0xYcJcVFcfQ23tKSQnd0FeXnGrhExOzkjMmrUYe/asQ3X1MY/rwknAkjdTp07FBx98gA8++ABGoxHXXnstZs6ciQkTJkCSJPzxj3/EH//4R788ltPpxFtvvYXa2lqMHj3a4zqbzQabzeb62mKx+OXxI5GaPjVqEjMdTb74MhUrlqk5EqV2IpXa5see12iRURCepYSRgs2Io5enhsRJGRlefxFLysgIcqSRTaORoY3TtOu2q9/+BvXWBugT4zHxulEe1x0pP4ENq7e2+CV85+b9GDOpAFnZ6TCkJHr9YdOQkuiKUe3a7r0zkd41Fft2HUFNZS269uiM/kN7MXETYO4SLiWfrcGk66cjOy9f9RqrxYLVy5e5jl807blwOrH+4/dROHYc0tIzVB2JKhxzAda8u9yV4GlO1miCUkFEFCxWqxWrV69u1ZBYCIHVq1djxowZmDhxYqvkjiRJmDhxYoebFXujdjw5x5i7p+ZIlPejTmerarKyBuLSS+fjwIFNsFpPITGx05njV61/btbpDCgouBpxcd7//UxMNIXlVClPAvax1WuvvYaKigq8+uqruOCCC/Daa69h0qRJOO+88zB37lxs3ry5w4+xbds2GAwG6HQ6/Pa3v8W7776L/v37e1z/+OOPIyUlxfWnqKiowzFEoubHoYQQcCoKhBCu41DmmsbSRjWJmYnD+0Hr4dNPNcmXpqlYcVoNJEmCRpYhSRLitJqATMWKVGqORJlyh0OS3f8y0zwp09T8WJK1ACRAlgFIkGStq/mxxzWaOPSbOo8jwf2gqRnxlSOuxJj8MbhyxJV4+BcPY2CPgaEOjdrpyKZN+PjWW7H11Vexb80abH31VXx86604smkTsouKIHs4jy9rtcgePz64wcawemsD6mptqLd6np5Sb7U1Jm6cypkeYAIQgOJUsGHVVtRbbcjJ6wpZdv/vnyzLyGnWsNiXtfpEHfIG9cCgkbkYPDqPiZsAa55wEUJAOfMzkdPpxKq3lsJqsahaAwB7tpZ6baq67duNAOA6EuVO05EoQ0oKpt92JzRaLSRJgqw583OSVovpt93p07hxonBXVlbmNcFdVlaG7OxszJgxAyNGjEDfvn0xYsQIzJw5E9nZ2QGLa/fu3Xj66aexZs0afP/991izZg2efvpp7N69u13rYlHTkSh3mo5ENVXVyGd+75Ckxt87ZFnbqqpGr09Gfv4EnH/+9cjPn+A2cRPNAtqwOCEhAdOnT8f06dNhNpvx5ptv4vXXX8czzzyDZ555Brm5uZg1axZmzJiBXr18Hwmdn5+P0tJSVFVVYfny5bjpppuwfv16jwmcBx54APfcc4/r69LS0phM4KjtU6OmKsZkTOzwSHJ/TcWKZmqORKmdSAW03fz43DW2qhPQJBjRY9wvoOeRKb9hM+LooaYh8ei5c1tNm5K1WoyeOxf6GJ0aE67K9xz1+kt4+Z6j6FuYgzGTCrBhVcvqHFmWMWZSget4FdCYkFG7loKrrYTLnq2lrv/2tqZwzDjUVJq99m2oPHkSAFQficovPB/3PvksSjd+BfOJEzClp6NwzDgmbijq1NR4G+8soaamBgCQmJiIwYMHt3l/nnrneFpXVVWFhIQEdOrUCWlpjZXqFosFb775ZqtKOqfTiTfffBN33303DAaD6nWxSm2jYV+qamJZ0Ga+mUwmzJkzB3PmzMHhw4fx+uuvY+nSpXjooYcwf/58jBw5Ehs2bPDpPuPj49GnTx8AwNChQ1FSUoJnn30WL7zwgtv1Op0OOp3O9XWkvpCakhrtTW6o7VPTVBXTVmKmPckXd/123DU2bqsvT6xQeyRKTVKmSVyCERltJA6a1iiOBjhsdYhL4g+MRO6obUh82cKFLY9VjR/PxE0Yqq2p8/qLRG1NHQAgKzsdl88ch/I9R1FbU4ckYwJy8rPcJmN8WUvB01bCpabS7PrvttYYU01ef0lJ7dwZAHw6EmVISYnpqVIUG/zZkNhb75zmVTrnrlMUBVu3bsW0adOQn5+PLVu2eE3abtmyBWPHjlW9LlapPRIFnK2qIc+Clrxp7rzzzsPvf/97XHLJJXjooYfw/vvv49tvv+3w/SqK0qKnTbiyO5xweniRq/GP2693/Xd9Q+vxZm3pnJLk9ThU5xSD634Lc7vj5ftvxGebd+O4uRqZpmRMGJqPVENii8dO0MXjirEFLe7L7nAiTtv6GI+afju+rIsFavvUAOqSMkTkX2obEutTU/02VcpTfx3quCRjgtdfJJKMZ/sr6BN1HidB1VttLZM1eV05NSrMtJVwMaaaXP/d1pq8gkKUfLbG7chhWZZRMHIMALiORC19/tkW06ZkjYZHoigmqW1I3FZFjZreOYmJiR7XNa+Wqays9F5JV1kJAKrXxSpfGg1T24KevPn5559dVTfbt2+HEAJjxozBzJkzfbqfBx54AFOmTEGPHj1QU1OD119/HZ9//jlWrlwZoMj9w+5wYvfPx2C1+Z50aQ+LtR4/lB2EucYKkzER5+d2R5e0FK+VN106pWDr3sMtLu/TLQN9ujU21Pz5uBk/Hze3+Zg11nrk9+iCS0b2d1XLqBk/bjImqV4XK3w5EqWGva4G5rISNFhOI96QBlOu++ocIlLH3w2J20rMHNm0qdURrO3LlmH03LnIGjasI0+F0NijZnvJ3saeN+c4t0eNJ+4aHm8v2etqeEzhoa2ES/7gQgiBNtcAjaPIJ10/HaveWtpi3yVZRtFlVyEpOdl1Ox6JIjorMTGxzYbEaipq1PTOGTx4sNd1TdUyqamp3ivpzvybrHZdLPPHkaj6+mocOFACq/U0EhPTztw+ue0bRpmgJG9Onjzp6nezceNGCCHQt29fPProo5g5cyZycnJ8vs+KigrceOONOHr0KFJSUlBQUICVK1di4sSJ/n8CfuRUFFhtdsRpZLdVKf60ff8RvPLJRjib/QCxZtOPuHnKaMy+dDQWn3OdRpZx85TRyEht/3Gycx9zw/Z9WLLyG1e1jNp+O2rXxRI1R6LUJGXaGjlOkaW6rholZSU4bTmNNEMahucOR3JC7P1jFmrZRUXYvmyZq+dNc742JG4rMaOmvw4rcDqmoz1qWjQ8RrPRqGcaHl8+cxz0iTpvd0E+aBrXfe7YbrW3dZdwkWUZk66fjoSkxvtUswYAsvPyMfPOe1uMFO/VfwA0bgYK8EgU0VlNDYmbV9bk5eUhISFBdUWN2t45ba2rrKxEUVER1q1b5zFp29R7Z/DgwarWxSK1CZe21h05sr1V5c6OHSswatRsZGXF1qCPgCVvamtr8e677+L111/H2rVrYbfb0bVrV9x1112YOXMmhgwZ0qH7f/nll/0UaWjEaTWIj2vf//6/vbYS1bV1SE5KwB9mTna7prq2Dq98stGVAGl6c3I4FSz+ZCMeu+VKPHbLlfjux3KcqqpFp5QkjOzfE8bE9k+18PSYzatl1PbbUbsuWmgTk1v87Ym3I1FqkjJqRo6zAidybP95e6tx4yu+X4HZxbM5tSrI9KmpqhoSt1VRoyYxo7a/DnVMR3rUqG14TP5x3W9uVbXOarG0SKrkFRQi0WBwm3DJH1zYZlLm3DVNEg2GFn1r7PYGNNTVd/yJEkU5Tw2J1VbUqO2d09a61NRUGAwGTJs2DW+++WarpO20adNcvVPVros1ahMuba2rr68+c33jzz2uD0MUB775ZhEuvXR+TFXgBCx5k5GRgfr6ehgMBsyYMQMzZ87EhAkTPI7KJPWqa+tQaanzuubbneUe++o4FQXf/ViOi4f1a3OU97mP++3OcpyurkVachJG9s9BctLZc//eHrOpWkbN+HFA3ZjyaJJ/1dwO3V5tUkbNyHH2y4kM1XXVWLR2ERxN/5id2XOH4sCitYsw/xfzWYETZFnDhnltSKzmqJOaxIza/jrUcd762XijtuExBU/57l1YvXxZi1+uSj5bg0nXT0d2Xn6rhIs7atYQUft56mmjtqJGbe8cb+uaV8vk5+fj7rvvxpYtW1BZWYnU1FQMHjy4VUJG7bpYoTbhombdgQMlUDz87qIoThw4sCmmmhwHLHlz8cUXY+bMmbjyyiuh17e/moPa53R1rcc3OVmScKqqtsVlbSVmtu09jH9/9FWLY1YfbdiKW64Yh0G9zlP1mEdPVeGXk0e2OX4cgKox5XSW2qSMmpHjFBlKykrg9LDnTsWJTT9t4hjyEPDUkFjtUSc1iRl/99eh9nPXkFifqPOp4TEFntViwerly9yO8l311lLMvPPedh25IiL/8dbTRm1FjZreOZ7WKYoCjUbTqlrGYDComhaldl0sUJtwUbPOaj3tNXFntZ7ya+zhLmDJm/fffz9Qd00qpCUneW7EJQQ6pZxt9ttWYqa6tg7//ugrt0ew/v3hV3jsliuRnJTQ5mN27ZSievy42nXUSG1SRu3IcQp/py2nXUelziXJEk7VxNY/ZuFO7VEnNYkZf/bXofbz1pDYHw2PyX/2bC31eoxtz9ZSVtQQhVBbPW2uueYaVRU1gPfeOc01X1dVVYWEhARceOGFMJlMAXymsUFtwkXNusTENK+Ju8TETv4NPsyFZFQ4Bd7I/jn4aMNWt01/NbKMkf17AoCqxIzaI1jeHrN5tcyoAb3w2kO/wppNu3D0VBW6dkrBxcP6tUrIqF0XSzw1JFablPFl5DiFtzRDmtvEDdB4hKqTMbb+MQt3ao86qUnM6FNSVPXXocBR05C4Iw2Pyb9qKs3ej1xUep6gSbHFUd8Ac/kJ2GttiEvSwZSTDq2+9evVYbPjWGk5Gmpt0CUnIL1vFuLYhNytpqTJucmT5trqaXPo0CFVFTVNPPXOOVfTOofDAZvNhqSk2Jlk215N/WW89ZlRm3BRsy47exh27FjhOlrVnCxrkJ0dW7+7MHkTpZKTEnDLFePw7w8bK2qaKlc0soxbrhjnakysJjGj9gjWuY/ZeBu4rZYxGZNUTYtSuy4WeGtIrDYp4++R4+Re8pnG08ltNKDuiOG5w7Hi+xWunjfNaWQNhjMRFxKeGhKrPeqktvFxW/11KLDUNiRub8Nj8i9jqsn7kYtUftIezdQmZKoPn8bBDXsaPxiRJEAIVGw7iO5j85GcdfZ7pOaIGYe+/alFEuHQN2XInVIIU08eWz3Xtdde2+YaNT1tBg8erKqihgKruPjeNtdkZw9XlXBRs06vN2LUqNmtmhrLsgajRs32adx4NGDyJooN6nVemxOl1CRmfDmC1fSYG7fvw3FzDfrndMWUUQNjulrGH9Q0JFablFEzcpw65t6r2v6HzReexoHPLp7datqURtZgdvFsGLmfQeetIbEvR53UJmY89dehwFPbkLi9DY/Jv/IKClHy2RqPo3zzBxcGPygKCrUJGUd9w9l1ANB0bEcROPj1buRfMQRafTwc9Q2NiRvl7LEeABBOBWWflOL8m4tYgdMOvvS0ieXR25FCr09WlXBRuy4ra+CZ5sWbzhyl6uRK7MQaJm+iXHJSgtfmvmoSMyP6qTuC1fwxLxqSD6vNjoLe50EfH9exJ0GqGxKrTcp4GzlO4aWtceDzfzEfm37ahFM1p9DJ2AnD+wxn4iYE1DQk9uWoExMz4YENiaNDosGASddPx6q3lrY6xjbp+ulux31T+GurokZtQgYAzOUnvB5Friw/ic59s9pYp+DkriPoOqSn2+vJM7VToihyqE24qF2n1yfH1FQpT5i8iRGepkmp6Y1jTNSrOoJFgaO2ITGTMpHFU0VN8+vVjAPnVKnQU9uQmEedIgcbEkeX7Lx8zLzzXuzZWoqaSjOMqSbkDy5k4iZCqamoUZuQAQB7rc11P61IEhpq69tcJ0kS6qvr/PQMY4vaKVEUWdQmXJiYUY/JmxjQ1jQpNYkZNUewKHA4JSr6tFVRA3AceCRR25A4VBU1nnrxkHtsSBwbPBRPUZhTW1GjNiEDAHFJOs/fEEIgPknf5johBPTJTDK0l9opUUSxjMmbKKdmmpTaxExbR7AocDglKrqorajhOPDIobYhsb+pScp468WTNWxYQOKKdGxIHH3Kd+/C6uXLWiTbSj5bg0nXT0d2Xn6owyMfqK2oUZuQAQBTTjoqth30+O9tak66inWyq5KH2oc9bYi8k0MdAAWWmmlSwNnEzA3Fw3DxsH6sqAkzTVOiJFkLQAJkGYAESdZySlQEUlNRA3AceCTJLiqCrHX/eci5DYn95cimTfj41lux9dVXsW/NGmx99VV8fOutOLJpk2tNi148QjRWBgnh6sVTX1np97iiQVNDYnfcNSQeekE/9C3MYeImTFktFqxevgxOpxNCCCiKAiEEnE4nVr21FFaLJdQhUjNafRy0CfHQ6t33THRV1LjTrKLGlJMOSfbwOm6WkGl8zHh0H5t/dv2Z+5dkCd3H5rti0erj0W1Un8Z1Es7+rZGRO6WQzYqJKKBYeRPl1I759pem3jonKmtgTNSje4YJXTuxn4M/cEpU9FBbUcNx4JFD7Yhvf1HTIFmfmqq6Fw+1xIbE0WXP1lKvlVR7tpaicMy4IEdFnvSZVOD1erUVNU0JmYNf727RG+fchEyT5CwT8q8Ygsryk2iorUd8kh6pOemt1hm7mtDr4kGwVdehodYGfXJCY6UPEzdEFGBM3kQ5X8Z8t8VT0+Mm7nrrrP1+Fx66+TKMGtCrw8+F2JA4WqitqOE48MiidsS3Wt6ORKlNyqjtxUMtsSFxdKmpNHsd7V5TaQ5BVNReao84AeoSMm1NrXJHq4uDqTATmjiN/54YwWq1tuh5k5ubi8TExFCHRRQ2mLyJcmqmSanRVtNjT7117A4nHl38MV576FcwGdUnioiimS8VNRwHHlnUNCT2R58atUmZUPXiiXT6RB0bEkcRY6rJayWVMdUU5IioI3ytqNHq4z32olEztYqC48CBA62mTZWUlGDixInIzs4OdXhEYYE9b6JcclICbrliHLQaGZIEaGQJkgRoNerHfDdPzAgBKIqAEGebHjdV5HjqreNwKlizaZe/nxpRxGqqqNHKWkiQIMsyJEjQylq3FTVN48CvH3M9JgyawMRNBPNXnxq1SZlQ9OKJFlnZ6bh85jgUjMxFr37noWBkLi6fdQGystPbvjGFlbyCQsiy+x95ZVlG/uDC4AZEHdZUUdNlcDbSemegy+Bs5F8x1KeES1tTqxz1DYEIndywWq1YvXq1qx9V879Xr14Nq9Ua6hCJwgIrbyJQ01Gl5keWvFEzTcrbkSg1TY/b6q1z9FSVr0+TKKqxoiY6eauq8WefmuyiImxftsx1X801T8oEuxdPtGlqSEyRLdFgwKTrp2PVW0tbVVJNun46EpIMoQ6R2sFbRY0aaqdWUeCVlZV5rY4rKyvjFKooVl9fjQMHSmC1nkZiYhqys4dDr08OdVhhicmbCPSHmZN9vo23Md9tHYlS0/S4rd46bFpM1FpTRQ1Fh7aOOvmzT40vSRl/9+IhikTZefmYeee92LO1FDWVZhhTTcgfXMjETZTz1s/GNbXK3c+vzaZWUeDV1NR470tVUxOCqKij1CRljhzZjm++WQRFcbq+B3bsWIFRo2YjK2tgiCIPX0zeRLm2mgx76lXTdCTqsVuuVNX0eEQ/z711tBrZY+KIiCjcNVXOnNuXpjk1VTX+7lPjS1JGTS8eaq3eakP5nqOoralDkjEBOXldoedEmYiVaDBwqlQMaaufjdqpVRR4RqPRe18qI6uSI42apEx9ffWZNY0fbDV9DyiKA998swiXXjqfFTjnYPImirVVUQOoOxKlpumxMVGPW64Yh39/2PLxtBoNHrr5MpiM7BRPRKGh2O0exwSrMf6xx1z/7bDZ3K7Zt3at16qa/evWQZ+W5jUpk9CpExw2G84bPRrbly51e3+yRoNuo0e74tAmJKD3JZc0XifLkOPiWt2G2udI+QlsWN2yYfH2kr0YM6mAfW+Iwlxb/Wzyrxji09QqCqzc3FyUlJR4rLzJy8sLQVTUXmqTMgcOlEBRWn+g1bjWiQMHNiE/nxXqzTF5E6XUVNQkJyWoOhLV1PS4KTEjSxIUIaCRWzY9bt5bp8JcA2OiHjMnjUCXNJbmE1FoKHY7Tv30Exz1gS1/P71nj9eS71O7d6P7uHFeK28SMzJwYudOAEDfa6/Fj2+/DdEscSDJMvpeey2qDx8GDh9udR9avR6d+vRhAscP6q22xsTNOf+GKk4FG1ZtxeUzx7EChyiMqe1n48vUKgqcxMRETJw4sdW0KUmSMHHiRCQkqOvzSeFBbVLGaj3t9Wcnq/VUoEONOEzeRCk1FTUXD+un6kgUoK7pMXC2t06D3QGrzY5UAytuiCh0FEWBo74eGq3W49Qlf0js3NlryXdi585I6twZA6dPx/alS1slZQZOn46kTp1ct8kcNAimnj1xrLQU9WYz9CYTuhQWIt7gvj+H4nDAUV8PRVE4RtIPyvcc9VitpSgKyvccZSNjojCmtp9N09SqyvKTaKitR3ySHqk56UzchEB2djZmzJiBsrIy1NTUwGg0Ii8vj4mbCKQ2KZOYmOb9Z6fETm6vi2VM3kQpNRU1AFQdiWrirekxEVE4k7VaaOLj23Xbb//5TzTU1CDeaMTIO+5wuyZr+HDsW7sWws1RJ0mjwXkjRkATH4/MQYOQmpODY5s3o85sRoLJhK5Dh7pNyiSkpaHnBPXlwk4Px7bId7U1dV5/8KytqQtBVETUnLdmxL70s+no1Cryn8TERE6VigJqkzLZ2cOxY8cK1/Gq5mRZg+zs4QGNMxLxA7oopbaipulIlFYjQ5IAjSxBkhqbDDc/EkVE/lddV421W9firQ1vYe3Wtaiuqw51SORGQ00NbNXVaPAy7UJnNKJg1ixIWi0gSZBkufFvrRYFs2a1SM7ojEZkFxWh79VXI7uoyGM1DYVOkjHB6w+eSUZ+EkwUStWHT2P3h5txfMvPOL23Ase3/IzdH25G9REzAMCUkw5Jltzelv1siAIrO3s4ZFnj9rrmSRm9PhmjRs2GLGsBSJAkGYAEWdZi1KjZ0OvZqPpcrLyJUr5U1Kg9EkVE/rP95+1YtHYRnIoTkixBKAIrvl+B2cWzMbAHRyNGovR+/TDu/vtVVdVQeMvJ64rtJXtdPW+ak2UZOfn8lJ4oVNQ0I9bq49nPhihEmpIy506bkmVNq6RMVtZAXHrpfBw4sAlW6ykkJnY6M1KciRt3mLyJUmqbDDdfzyNRRMFRXVeNRWsXwdHUhf/MD6AOxYFFaxdh/i/mIzmBoxEjUVNVjSe2mhoc3bzZ1cem65Ah0HEEatjRJ+owZlIBNqxqOW1KlmWMmVQAfUL7juARUcepbUbMfjZEoeNLUkavT+ZUKZWYvIlirKghCk8lZSVweujC71Sc2PTTJkwYxH/Eos2JnTux9bXXIJxnP4Xau2oVCmbNQno/Js/DTVZ2Oi6fOQ7le46itqYOScYE5ORnMXFDFGJqmxED7GdDFEpMyvgfkzdRjhU1ROHntOW066jUuSRZwqkajkaMNraamsbEzZmmwk39VITDga2vvopx99/PCpwwpE/UcaoUUZjxpRkxEVE0YcNiIqIgSzOkeS357mTkaMRoc3TzZgin+2or4XTi2ObNQY6IiCgysRkxEcWqiE3ePP744xg+fDiMRiMyMjJw9dVXY/fu3aEOi4ioTcNzh0PjoQu/RtZgeB+ORoxUtpoalK9fj13vvYfy9ethOzOhqt5shiR5+GVDklBnNgczTCKiiNXUjNiVwDnz3spmxEQU7SL22NT69evxu9/9DsOHD4fD4cC8efMwadIk7Ny5E0lJSaEOj4jIo+SEZMwunt1q2pRG1mB28WwYE3h8JhJ562mjN5m8jp5OMJmCHC0RUeRiM2IiikURm7z59NNPW3y9ePFiZGRk4Pvvv8eFF14YoqiIiNQZ2GMg5v9iPjb9tAmnak6hk7EThvcZzsRNhGqrp82I//1f7F21ynV9c5JGg65DhwY13limT4xv8TcRRSY2IyaiWBOxyZtzVVVVAQDS0tJCHAkRkTrJCcmcKhUl2uppc3rPHhTMmoWtr77aojJH0mhQMGsW4g2GIEccuyZeN0r12nqrreW0qbyu0CfqAhgdERERkXtRkbxRFAV33XUXxo4di4EDB3pcZ7PZYLPZXF9bLJZghEdERFGuqaeNu6NRTT1tsouKMO7++3Fs82bUmc1IMJnQdehQJm7C1JHyE9iweisURXHt7faSvRgzqQBZ2WyISkRERMEVFcmb3/3ud9i+fTu++uorr+sef/xxPPLII0GKioiIYoXanjY6oxHZRUXBDI3aod5qa0zcOBUAZ4/BKU4FG1ZtxeUzx7ECh4iIiIIqYqdNNfnf//1ffPTRR/jss8/QrVs3r2sfeOABVFVVuf6sX78+SFESEVE06zpkCCSN+wli7GkTecr3HIWiKG6vUxQF5XuOBjkiIiIiinURm7wRQuB///d/8e6772LdunXo2bNnm7fR6XRITk52/TGwVJ2IiPxAZzSiYNYsSFotIEmQZLnxb62WPW0iUG1NndfR7rU1dUGOiIiIiGJdxB6b+t3vfofXX38d77//PoxGI44dOwYASElJQUJCQoijIyKiWJPerx972kSJJGOC12NwSUb+nEFERETBFbHJm4ULFwIAxo8f3+LyRYsW4eabbw5+QEREFPPY0yY65OR1xfaSva6eN83Jsoyc/MbxxJxGRURERMESsckbT5+IEREREXWEPlGHMZMKsGFVy2lTsixjzKQC6BPiOY2KiIiIgipikzdEREREgZKVnY7LZ45rWVmTnwV9QjynUREREVHQMXlDREQUQraaGhzdvBn1ZjP0JhO6DhkCndEY6rAIjRU4fQtzWl2uZhqVu9sRERERtReTN0RERCFyYudObH3tNQin03X0Zu+qVSiYNQvp/fqFOryY56mnTdM0KndHuDmNioiIiAKByRsiIqIQsNXUNCZuHA4AZ4/eCIcDW199FePuv58VOCHkracNp1ERERFRsMmhDoCIiCgWHd28GcLpdHudcDpxbPPmIEdETVr0tBGAUAQgzva06dK9E2TZ/Y9QzadREREREfkLK2+IiIgCxFs/m3qz2evRmzqzOdjh0hlt9bQ5dvBUm9OoiIiIiPyJyRsiIqIAaKufjd5k8nr0JsFkCnLE1ERNT5u+hTkep1ERERER+RuPTREREflZi342QkAoSuPfZ/rZ2Gpq0HXIEEgajdvbSxoNug4dGuSoqYnanjZN06iGXtAPfQtzmLghIiKigGHyhoiIyIt4oxG65GTE+9A8WE0/G53RiIJZsyBptYAkQZLlxr+1WhTMmoV4g8FfT4F8lJPXlT1tiIiIKKzw2BQREZEXI++4w+fbqO1nk96vH8bdfz+Obd6MOrMZCSYTug4dysRNiOkTdexpQ0RERGGFyRsiIiI/86Wfjc5oRHZRUbBCI5WystPZ04aIiIjCBpM3REREftZ1yBDsXbWqsefNOdjPJnI09bQhIiIiCjX2vCEiIvIz9rMhIiIiIn9i5Q0REVEAsJ8NEREREfkLkzdERER+YqupwdHNm1FvNkNvMqHrkCHsZ0NEREREHcbkDRERkR+c2LkTW197DcLpdE0n2rtqFQpmzUJ6v36hDo/aod5qa9mwOK8r9Im6UIdFREREMYjJGyIiog6y1dQ0Jm7ONChumjQlHA5sffVVjLv/fuiMxlCGSD46Un4CG1a3HBW+vWQvxkwqQFZ2eqjDIyIiohjDhsVEREQddHTzZgin0+11wunEsc2bgxwRdUS91daYuHEqgACEIgABKE4FG1ZtRb3VFuoQiYiIKMYweUNERNRB9WYzJElye50kSagzm4McEXVE+Z6jUBTF7XWKoqB8z9EgR0RERESxjskbIiKiDtKbTK6jUucSQiDBZApyRNQRtTV1XpNxtTV1QY6IiIiIYh2TN0RERB3UdcgQSBqN2+skjQZdhw4NckTUEUnGBK/JuCRjQpAjIiIioljH5A0REVEH6YxGFMyaBUmrBSQJkiw3/q3VomDWLMQbDKEOkXyQk9cVsuz+RyRZlpGTnxXkiIiIiCjWcdoUERGRH6T364dx99+PY5s3o85sRoLJhK5DhzJxE4H0iTqMmVSADataTpuSZRljJhVAnxAf6hCJiIgoxjB5Q0RE5Cc6oxHZRUWhDoP8ICs7HZfPHIfyPUdRW1OHJGMCcvKzmLghIiKikGDyhoiIKIhsNTU4unkz6s1m6E0mdB0yBDqjMdRhkRv6RB36FuaEOgwiIiIiJm+IiIiC5cTOndj62msQTqfrKM7eVatQMGsW0vv1C3V4RERERBSm2LCYiIjIT2w1NShfvx673nsP5evXw1ZT0+K6ra+9BuFwAEJAKErj3w4Htr76aou1RERERETNsfKGiIjID9qqqjm6eTOE0+n2tsLpxLHNm9kvh4iIiIjcYuUNERFRB6mpqqk3myFJktvbS5KEOrM5yFETERERUaSI6OTNF198gSuuuAJZWVmQJAnvvfdeqEMiIqIYpKaqRm8yQQjhfo0QSDCZAhkiEREREUWwiE7e1NbWYvDgwXjuuedCHQoREcUwNVU1XYcMgaTRuF+j0aDr0KGBDJGIiIiIIlhE97yZMmUKpkyZEuowiIgoxqmpqtEZjSiYNQtbX321RV8cSaNBwaxZiDcYghw1EREREUWKiE7e+Mpms8Fms7m+tlgsIYyGiIiiRdchQ7B31arGnjfnaF5Vk96vH8bdfz+Obd6MOrMZCSYTug4dysQNEREREXkVU8mbxx9/HI888kiowyAioijjS1WNzmjkVCkiIiIi8klMJW8eeOAB3HPPPa6vS0tLUcQfoImIyA9YVUNEREREgRJTyRudTgedTuf62sAfqImIyI9YVUNEREREgRDR06aIiIiIiIiIiKJdRFfeWCwW/PTTT66v9+/fj9LSUqSlpaFHjx4hjIyIiIiIiIiIyD8iOnmzadMmXHTRRa6vm/rZ3HTTTVi8eHGIoiIiIiIiIiIi8p+ITt6MHz8eQohQhxERKo4fx4mK40F7PLvDiXq7A87qCujiIvrbzCunwwbL0b3QxOkga+KC9rhdMtPRJTMjaI9HgVVxvAInjp8I2uPZnXbY7DbYT9uh0+ravkEEczQ0wLxvH7Q6HTTaaH4vcsBhs8Fks0EbHx/qcALGYXeg4ogZcXFaaLTBO/mdmZGJzMwuQXs8CqzjFRWoqKgI2uM5HHbYbQ0wW+sQF8WvT6fDCWtFNeQ4GbImejszKE4Fil1BYkUyNFpNqMMJKLvdjqNHjyIuLg7aKP431OFwwG634/Tp04iLC97P88HmcNhw4sReaLU6aLXBe56ZmenI5O8tfiGJGM5+HD16FC+88ALmzJmDrl27hjqcgLHZbJg8eTLWr18f6lDIT4qKirBy5coWDbgpMvH1SRT++J4bPfieS0QUXPw31H9iOnkTK6qrq5GSkoL169dzwlYUsFgsKCoqQlVVFZKTk0MdDnUQX5/Rp+k1yj2NDnzPjS58z40ufL+NPtzT6MJ/Q/0reuvfqJXCwkK+aKJAdXV1qEOgAODrM3o0vUa5p9GB77nRia/P6MD32+jDPY0u/DfUv6L3QCoRERERERERURRg8oaIiIiIiIiIKIwxeRMDdDod5s+fzyZRUYL7GV24n9GHexpduJ/RhfsZXbif0Yd7Gl24n/7FhsVERERERERERGGMlTdERERERERERGGMyRsiIiIiIiIiojDG5A0RERERERERURhj8oZ8Ul5eDkmSsHjx4lCHQkRu8DVKRBQcfL8lIqJgYvImgPbu3Ys5c+agV69e0Ov1SE5OxtixY/Hss8+irq4uYI+7c+dOPPzwwygvLw/YY6jxl7/8BVdeeSUyMzMhSRIefvjhkMYTTJIkqfrz+eefd/ixrFYrHn74YZ/uK5b3prlYfo3u2rUL9913HwoLC2E0GtG1a1dcdtll2LRpU8hiCpZwfn3G8r50RDjv6ZEjRzBr1izk5+fDaDQiNTUVI0aMwCuvvIJYmhkRy++3sf49EM6vz3O99tprkCQJBoOhw7FEq3Dez6aEqrs/y5Yt63A80Sqc97TJ3r17MWPGDGRkZCAhIQG5ubl48MEHOxxPpNGGOoBo9fHHH+P666+HTqfDjTfeiIEDB6KhoQFfffUVfv/732PHjh148cUXA/LYO3fuxCOPPILx48cjJycnII+hxh//+Ed06dIF559/PlauXBmyOEJhyZIlLb7+73//i9WrV7e6vF+/fh1+LKvVikceeQQAMH78eFW3ieW9aRLrr9F///vfePnll3HdddfhtttuQ1VVFV544QWMGjUKn376KS6++OKQxBUM4fz6jOV96Yhw3tOTJ0/i0KFDmDp1Knr06AG73Y7Vq1fj5ptvxu7du7FgwYIOxxTuYv39Nta/B8L59dmcxWLBfffdh6SkpA7HEc0iYT+nT5+OSy+9tMVlo0eP7nA80Src97S0tBTjx4/Heeedh7lz56JTp074+eefcfDgwQ7HE3EE+d2+ffuEwWAQffv2FUeOHGl1fVlZmXjmmWcC9vhvvfWWACA+++yzNtcqiiKsVqvq+96/f78AIBYtWqRqrRBCnDhxQgAQ8+fPV/040eZ3v/udCNTLrT3/f2N9b/gaFWLTpk2ipqamxWUnT54U6enpYuzYsaofLxqE0+uT++If4bSnnlx++eUiKSlJOBwO/wQWpvh+61msfA+cK1xfn3/4wx9Efn6+mDlzpkhKSvJ/cFEqnPaz6TX55JNPBiSeWBFOe+p0OsXAgQPFyJEjfXp/jlY8NhUATzzxBCwWC15++WV07dq11fV9+vTBnXfe6fra4XDgscceQ+/evaHT6ZCTk4N58+bBZrO1uF1OTg4uv/xyfPXVVxgxYgT0ej169eqF//73v641ixcvxvXXXw8AuOiii1qVuTXdx8qVKzFs2DAkJCTghRdeAADs27cP119/PdLS0pCYmIhRo0bh448/bvf/h1BW/UQCRVHwzDPPYMCAAdDr9cjMzMScOXNgNptbrNu0aRMmT56Mzp07IyEhAT179sSvfvUrAI3loenp6QCARx55xLXfbR2DivW94WsUGDp0aKuy8E6dOuGCCy7Ajz/+2K77jCahen1yXwInlO+57uTk5MBqtaKhoaHDzy2c8f3Ws1j5HlAj1K/PsrIyPP300/jHP/4BrZYHEzoq1PsJALW1tXxt+VGo9nTVqlXYvn075s+fj4SEBFitVjidzoA9z7AX6uxRNDrvvPNEr169VK+/6aabBAAxdepU8dxzz4kbb7xRABBXX311i3XZ2dkiPz9fZGZminnz5on/9//+nxgyZIiQJEls375dCCHE3r17xR133CEAiHnz5oklS5aIJUuWiGPHjrnuo0+fPsJkMon7779f/Otf/xKfffaZOHbsmMjMzBRGo1E8+OCD4h//+IcYPHiwkGVZvPPOO64Y2vMpU6xWdzTnLoN9yy23CK1WK37zm9+If/3rX+IPf/iDSEpKEsOHDxcNDQ1CCCGOHz8uTCaTyMvLE08++aR46aWXxIMPPij69esnhBDCYrGIhQsXCgDimmuuce33li1bVMUVq3vD16hnY8aMEXl5ee26baQK19dnc7G4Lx0RjntqtVrFiRMnxP79+8XixYtFUlKSGDNmjP+ffJjh++1Zsfo9cK5wfH1eeumlYvLkyUKIxu9BVt6oF0772fSaNBgMAoCQJEkMGzZMrFy5MnD/A6JQOO3p3LlzBQCxdu1aMXToUAFAxMfHixtuuEGcOnUqcP8TwhSTN35WVVUlAIirrrpK1frS0lIBQNxyyy0tLr/33nsFALFu3TrXZdnZ2QKA+OKLL1yXVVRUCJ1OJ+bOneu6zFuJcNN9fPrppy0uv+uuuwQA8eWXX7ouq6mpET179hQ5OTnC6XQKIZi8aa9z3wS//PJLAUC89tprLdZ9+umnLS5/9913BQBRUlLi8b478v83FveGr1HPvvjiCyFJkvjTn/7k820jWbi+PpvE6r50RDju6eOPPy4AuP4UFxeLn3/+2af7iDR8v20pFr8H3Am31+dHH30ktFqt2LFjhxCCyRtfhdN+HjhwQEyaNEksXLhQfPDBB+KZZ54RPXr0ELIsi48++sj3JxejwmlPr7zySgFAdOrUScycOVMsX75c/OlPfxJarVaMGTNGKIri+xOMYDw25WfV1dUAAKPRqGr9ihUrAAD33HNPi8vnzp0LAK1KdPv3748LLrjA9XV6ejry8/Oxb98+1TH27NkTkydPbhXHiBEjMG7cONdlBoMB//M//4Py8nLs3LlT9f1T29566y2kpKRg4sSJOHnypOtP05GJzz77DACQmpoKAPjoo49gt9tDGHH04GvUvYqKCsyYMQM9e/bEfffd16H7inTh9PrkvvhHOOzp9OnTsXr1arz++uuYMWMGAAR0ylI44PttS7H4PaBGKF+fDQ0NuPvuu/Hb3/4W/fv398t9xrpQ7mePHj2wcuVK/Pa3v8UVV1yBO++8Ez/88APS09Nd7yPku1DuqcViAQAMHz4cr776Kq677jo8+uijeOyxx7BhwwasXbvWL48TKZi88bPk5GQAQE1Njar1Bw4cgCzL6NOnT4vLu3TpgtTUVBw4cKDF5T169Gh1HyaTqdV5Q2969uzpNo78/PxWlzd1FT83DuqYsrIyVFVVISMjA+np6S3+WCwWVFRUAACKiopw3XXX4ZFHHkHnzp1x1VVXYdGiRa3O/pN6fI22Vltbi8svvxw1NTV4//33Y35Eari8Prkv/hMOe5qdnY2LL74Y06dPx2uvvYZevXrh4osvjupf3vl+21Isfg+oEcrX59NPP42TJ0+6pt9Qx4XD+21zaWlpmD17Nnbv3o1Dhw759b5jRSj3NCEhAUBj8ru5pgT4hg0b2n3fkYgdufwsOTkZWVlZ2L59u0+3kyRJ1TqNRuP2ciGE6sdqehFQ6CiKgoyMDLz22mtur29q5iVJEpYvX45vvvkGH374IVauXIlf/epXeOqpp/DNN9/wl7l24Gu0pYaGBlx77bXYunUrVq5ciYEDBwbtscNVOLw+uS/+FQ57eq6pU6fipZdewhdffNGq8iNa8P3Wu1j4HlAjVK/Pqqoq/PnPf8Ztt92G6upqV6WYxWKBEALl5eVITExERkZGx55gjAnH99vu3bsDAE6fPo1u3br57X5jRSj3NCsrCwCQmZnZ4vKm16UvyfpowORNAFx++eV48cUXsXHjRowePdrr2uzsbCiKgrKyMtcnOgBw/PhxVFZWIjs72+fHV/tDz7lx7N69u9Xlu3btcl1P/tO7d2+sWbMGY8eOVfWD46hRozBq1Cj85S9/weuvv46ZM2di2bJluOWWW9q137GOr9FGiqLgxhtvxNq1a/Hmm2+iqKjI5/uIRqF+fXJf/C/Ue+pOU7VFVVWVX+4vXPH91rNY+R5oS6hen2azGRaLBU888QSeeOKJVtf37NkTV111Fd577z1fnk7MC8f326ajlE1JBvJNKPd06NCheOmll3D48OEWlx85cgRA7O0pj00FwH333YekpCTccsstOH78eKvr9+7di2effRYAcOmllwIAnnnmmRZr/vGPfwAALrvsMp8fPykpCQBQWVmp+jaXXnopvvvuO2zcuNF1WW1tLV588UXk5OTwHLCfTZs2DU6nE4899lir6xwOh2vvzGZzq08QCwsLAcBVgpiYmAjAt/2OdXyNNrr99tvxxhtv4Pnnn8e1117r8+2jVahfn9wX/wvlnp44ccLt5S+//DIkScKQIUNU3U+k4vstvwfaEqrXZ0ZGBt59991Wfy666CLo9Xq8++67eOCBB9r/xGJUuL3fHj58GP/5z39QUFCArl27qnwW1Fwo9/Sqq66CTqfDokWLoCiK6/J///vfAICJEyf68lQiHitvAqB37954/fXXccMNN6Bfv3648cYbMXDgQDQ0NGDDhg146623cPPNNwMABg8ejJtuugkvvvgiKisrUVRUhO+++w6vvPIKrr76alx00UU+P35hYSE0Gg3+9re/oaqqCjqdDhMmTPBa9nn//fdj6dKlmDJlCu644w6kpaXhlVdewf79+/H2229Dln3P8y1ZsgQHDhyA1WoFAHzxxRf485//DAD45S9/GdPVPEVFRZgzZw4ef/xxlJaWYtKkSYiLi0NZWRneeustPPvss5g6dSpeeeUVPP/887jmmmvQu3dv1NTU4KWXXkJycrLrh9yEhAT0798fb7zxBvLy8pCWloaBAwd6PWYR63vD12jjL0fPP/88Ro8ejcTERLz66qstrr/mmmtcv/TEmlC+PrkvgRHKPf3LX/6Cr7/+Gpdccgl69OiB06dP4+2330ZJSQluv/32Vv1dog3fb/k90JZQvT4TExNx9dVXt7r8vffew3fffef2OmpbKN9v77vvPuzduxfFxcXIyspCeXk5XnjhBdTW1rqSxOS7UO5ply5d8OCDD+Khhx7CJZdcgquvvhpbtmzBSy+9hOnTp2P48OHB/F8ReqEacxUL9uzZI37zm9+InJwcER8fL4xGoxg7dqz4v//7P1FfX+9aZ7fbxSOPPCJ69uwp4uLiRPfu3cUDDzzQYo0QjSMtL7vsslaPU1RUJIqKilpc9tJLL4levXoJjUbTYkSmp/sQQoi9e/eKqVOnitTUVKHX68WIESNajdXzZSxmUVFRi5GYzf+4G9kZzc4dudfkxRdfFEOHDhUJCQnCaDSKQYMGifvuu08cOXJECCHE5s2bxfTp00WPHj2ETqcTGRkZ4vLLLxebNm1qcT8bNmwQQ4cOFfHx8arG73FvGsXya/Smm27y+D0AQOzfv9/r7aNJOL0+uS/+EU57umrVKnH55ZeLrKwsERcX53qfWbRoUUyNOI3l91t+D7QUTq9Pdzgq3DfhtJ+vv/66uPDCC0V6errQarWic+fO4pprrhHff/+9X59ztAunPRVCCEVRxP/93/+JvLw8178Lf/zjH0VDQ4PfnnOkkITwoasbEREREREREREFFXveEBERERERERGFMSZviIiIiIiIiIjCGJM3RERERERERERhjMkbIiIiIiIiIqIwxuQNEREREREREVEYY/ImhJ544gn07dsXiqKEOpQOu//++zFy5MhQhxFS3M/owz2NLtzP6ML9jC7cz+jDPY0u3M/owv2MUKGeVR6rqqqqRFpamvjPf/7jugyAACD+/ve/t1q/aNEiAUCUlJR0+LHffvttMW3aNNGzZ0+RkJAg8vLyxD333CPMZrPb9e+//744//zzhU6nE927dxcPPfSQsNvtLdYcPXpU6HQ68f7773c4vkjE/Yw+3NPowv2MLtzP6ML9jD7c0+jC/Ywu3M/IxeRNiDz99NMiOTlZ1NXVuS5retFkZmaK2traFuv9+aLp1KmTGDRokPjTn/4kXnrpJXHHHXeI+Ph40bdvX2G1WlusXbFihZAkSVx00UXixRdfFLfffruQZVn89re/bXW/06ZNExdccEGH44tE3M/owz2NLtzP6ML9jC7cz+jDPY0u3M/owv2MXEzehEhBQYGYNWtWi8sAiMLCQgFAPPXUUy2u8+eL5rPPPmt12SuvvCIAiJdeeqnF5f379xeDBw9ukeF88MEHhSRJ4scff2yxdvny5UKSJLF3794OxxhpuJ/Rh3saXbif0YX7GV24n9GHexpduJ/RhfsZudjzJgT279+PrVu34uKLL2513dixYzFhwgQ88cQTqKurC8jjjx8/vtVl11xzDQDgxx9/dF22c+dO7Ny5E//zP/8DrVbruvy2226DEALLly9vcR9Nz+f9998PQNThi/sZfbin0YX7GV24n9GF+xl9uKfRhfsZXbifkY3JmxDYsGEDAGDIkCFur3/44Ydx/PhxLFy40Ov92Gw2nDx5UtWfthw7dgwA0LlzZ9dlP/zwAwBg2LBhLdZmZWWhW7duruubpKSkoHfv3vj666/bfLxowv2MPtzT6ML9jC7cz+jC/Yw+3NPowv2MLtzPyKZtewn5265duwAAPXv2dHv9BRdcgIsuughPPvkkbr31ViQkJLhdt3TpUsyePVvVYwohvF7/t7/9DRqNBlOnTnVddvToUQBA165dW63v2rUrjhw50uryXr16YefOnapiihbcz+jDPY0u3M/owv2MLtzP6MM9jS7cz+jC/YxsTN6EwKlTp6DVamEwGDyuefjhh1FUVIR//etfuPvuu92umTx5MlavXt3heF5//XW8/PLLuO+++5Cbm+u6vKlcTqfTtbqNXq9HdXV1q8tNJlOrTGi0435GH+5pdOF+RhfuZ3ThfkYf7ml04X5GF+5nZGPyJkxdeOGFuOiii/DEE0/gt7/9rds1Xbt2dZuN9MWXX36JX//615g8eTL+8pe/tLiuKdNqs9la3a6+vt5tJlYIAUmSOhRTNOJ+Rh/uaXThfkYX7md04X5GH+5pdOF+RhfuZ/hi8iYEOnXqBIfDgZqaGhiNRo/r5s+fj/Hjx+OFF15Aampqq+vr6upQVVWl6jG7dOnS6rItW7bgyiuvxMCBA7F8+fIWzaCAs2VqR48eRffu3Vtcd/ToUYwYMaLVfZrN5hbnFWMB9zP6cE+jC/czunA/owv3M/pwT6ML9zO6cD8jGxsWh0Dfvn0BNHb79qaoqAjjx4/H3/72N7cdv9944w1X1rOtP+fau3cvLrnkEmRkZGDFihVuS+cKCwsBAJs2bWpx+ZEjR3Do0CHX9c3t378f/fr18/q8og33M/pwT6ML9zO6cD+jC/cz+nBPowv3M7pwPyMbK29CYPTo0QAavxkLCgq8rn344Ycxfvx4vPjii62ua+9Zw2PHjmHSpEmQZRkrV65Eenq623UDBgxA37598eKLL2LOnDnQaDQAgIULF0KSpBZNpQCgqqoKe/fuxa233upzTJGM+xl9uKfRhfsZXbif0YX7GX24p9GF+xlduJ8RTlBIDBw4UEyfPr3FZQDE7373u1Zri4qKBAABQJSUlHT4sQcPHiwAiPvuu08sWbKkxZ9Vq1a1WPvhhx8KSZLEhAkTxIsvvijuuOMOIcuy+M1vftPqfpcvXy4AiJ9++qnDMUYa7mf04Z5GF+5ndOF+RhfuZ/ThnkYX7md04X5GLiZvQuQf//iHMBgMwmq1ui7z9KL57LPP/Pqiabovd3+KioparX/33XdFYWGh0Ol0olu3buKPf/yjaGhoaLXuhhtuEOPGjetwfJGI+xl9uKfRhfsZXbif0YX7GX24p9GF+xlduJ+Ri8mbEKmsrBRpaWni3//+d6hD8YujR48KvV4v3nvvvVCHEhLcz+jDPY0u3M/owv2MLtzP6MM9jS7cz+jC/YxcbFgcIikpKbjvvvvw5JNPQlGUUIfTYc888wwGDRqEq666KtShhAT3M/pwT6ML9zO6cD+jC/cz+nBPowv3M7pwPyOXJIQQoQ6CiIiIiIiIiIjcY+UNEREREREREVEYY/KGiIiIiIiIiCiMMXlDRERERERERBTGmLwhIiIiIiIiIgpjTN4QEREREREREYUxJm+IiIiIiIiIiMIYkzdERERERERERGGMyRsiIiIiIiIiojDG5A0RERERERERURhj8oaIiIiIiIiIKIwxeUNEREREREREFMaYvCEiIiIiIiIiCmNM3hARERERERERhbGYTt4cPXoUDz/8MI4ePRrqUIiIiIiIiIiI3Ir55M0jjzzC5A0RERERERERha2YTt4QEREREREREYU7Jm+IiIiIiIiIiMIYkzdERERERERERGGMyRsiIiIiIiIiojDG5A0RERERERERURhj8oaIiIiIiIiIKIwxeUNEREREREREFMaYvCEiIiIioogkHEqoQyAiCgomb4iIiIiIKCIJO5M3RBQbmLwhIiIiIqKIJBQB4RShDoOIKOCYvCEiIiIioogl7M5Qh0BEFHBM3hARERERUcRS6h2hDoGIKOCYvCEiIiIiooil1LHyhoiiH5M3REREREQUsYSNlTdEFP2YvCEiIiIiooil1LPyhoiiH5M3REREREQUsYSNyRsiin5M3hARERERUcRS6nhsioiiH5M3REREREQUsRRLQ6hDICIKOCZviIiIiIgoYjkt9lCHQEQUcBGdvPniiy9wxRVXICsrC5Ik4b333gt1SEREREREFETOKluoQyAiCriITt7U1tZi8ODBeO6550IdChERERERhYCzpgHCoYQ6DCKigNKGOoCOmDJlCqZMmRLqMIiIiIiIKFREY/WNtlNCqCMhIgqYiE7e+Mpms8FmO1tWabFYQhgNERERERH5g8PM5A0RRbeIPjblq8cffxwpKSmuP0VFRaEOiYiIiIiIOshxsi7UIRARBVRMJW8eeOABVFVVuf6sX78+1CEREREREVEH2Y/VhjoEIqKAiqljUzqdDjqdzvW1wWAIYTREHVB9BEjOCnUURERERGHBfsQCYVcgxcXUZ9NEFEP47kYUiaoOhzoCIiIiorAhnAK2A9WhDoOIKGAiuvLGYrHgp59+cn29f/9+lJaWIi0tDT169AhhZEQB1lADKAogM/9KREREsWnYsGE4dvQYOmmSser3r6F+5yno+6SGOiwiooCI6OTNpk2bcNFFF7m+vueeewAAN910ExYvXhyiqIiCQCiA9RRgSA91JEREREQhcezYMRw+chhKih0AYDtQDfvxWsRlJoU4MiIi/4vo5M348eMhhAh1GEShcaqMyRsiIiKiZmo+PwTT1DxIGinUoRAR+RXPXBBFqvKvQx0BERERUVixV1hh+eZIqMMgIvI7Jm+IItXedYDNEuooiIiIiMKKdXMF6svMoQ6DiMiv2p28cTqdWLZsGebMmYNrrrkG27ZtAwBUVVXhnXfewfHjx/0WJBG5YbcCO98LdRREREREYad6zc9wnKwLdRhERH7TruRNZWUlxo4dixkzZmDp0qX44IMPcOLECQCAwWDAHXfcgWeffdavgRKRG6VLAevpUEdBREREFFaEQ0Hliv1QGpyhDoWIyC/alby5//77sWPHDqxcuRL79u1r0TRYo9Fg6tSpWLFihd+CJKKzhg0bhm7jpmPYgs1AgwX4/K+NY8OJiIiIyMVZZUPNZwc54ISIokK7kjfvvfcebr/9dkycOBGS1LqTe15eHsrLyzsaGxG5cezYMRw+fhLHqhsaLzj4LfDVU0zgEBEREZ2jfo8Z9TtZpUxEka9dyZuqqir07NnT4/V2ux0Oh6PdQRGRj378CFj5AFBXGepIiIiIiMJKzfqDaDhaG+owiIg6pF3Jm969e2Pz5s0er1+1ahX69+/f7qCIqB1+/gZYPhv4aS3A8mAiIiIiAIBwClR9tBeOU2xgTESRq13Jm1tuuQX/+c9/8MYbb7jOkEqSBJvNhgcffBCffvop5syZ49dAiUgF62lg7aPAu78Fyr/mUSoiIiIiAEq9E+Z3f4L9hDXUoRARtYu2PTe68847sWPHDkyfPh2pqakAgBkzZuDUqVNwOByYM2cOfv3rX/szTiLyxYldwMp5gCkbKLgB6DMR0MaHOioiIiKikFHqHDC/8xNSr+iF+CxDqMMhIvJJu5I3kiThpZdewk033YTly5ejrKwMiqKgd+/emDZtGi688EJ/x0lE7WE+AKx/Ati0CBh6M5B/KSC3q+COiIiIKOKJBicq3/sJKZf0hK5XSqjDISJSrV3Jmybjxo3DuHHj/BULEQVK7QngiyeBHz8ELrwX6Jwb6oiIiIiIQkI4BSpX7EPyRT2QMKBTqMMhIlKlXR/B79+/Hx9++KHH6z/88EOOCicKRyd2Ae/8D/DlP4DaU6GOhoiIiCg0BFC97mdYvjkCoXDQAxGFv3ZV3tx7772orq7GFVdc4fb65557DqmpqVi2bFmHgiOiln7++WfU1jaOuqy1OfHz6Xr0SNP7didCAXa+D+xe0dgLZ8A1QHpeAKIlIiIiCm+1JcfhOFGH5IuzISd06FACEVFAtesdauPGjbjrrrs8Xl9cXIxnnnmmnSER0bm+++47PPbYY/j4449dE94q65zIefA7XD4oDX+6NBvDc4y+3anT3pjA2b0CSM9v7IfTpxjQ+Xg/PrLX1WDfp//C6bJvAUlG575j0GvyHGjiE9q8rRACO5fNh3nv9+h3/R/RKX+067qaI3tQvm4xLEd/AiTAmJWPnOLZMGT2CuTTISIioghnK6/Gqdd/RPJF3aHrlRrqcIiI3GrXsSmz2Qyj0fMveAaDAadO8UgGkT+88847GDt2LD755BNX4qaJEMCK7acx5olSvPPDyfY/yIndwFdPA0uuBdY+Bhze3Hjn7bT1v/fj+JbVbq/b896TsJ48gIEz/4z+N8xH1c878NPH/6fqfo989x4AqdXlzoY67Fj6EHTJ6Rj8q3+g4KYnoYlPwI7X/wTF6Wj38yAiIqLYoFgdqPx4Pyo/2gdnlS3U4RARtdKu5E2PHj3w9ddfe7z+yy+/RLdu3dodFBE1+u6773DDDTfA6XTC6XS6XeNUAKcicMNLP6KkvKZjD+hsAH5aA3x0N/DmL4GdHzRW6PiJ9eTPMO/9Hn0uuxPG8/oipccA9L5kDk7s+AK2Gu8JX8uxvTj8zbvIveJON/d7CI66GmQXzUJip25ISs9GjwtnwF5bCVtVhd/iJyIiouhm21+FU6/9CMvGIxB29z97ERGFQruSN9OnT8fSpUvxz3/+E4qiuC53Op149tln8cYbb2DGjBl+C5IoVv35z3+GEKJVxc25BAABgT+vOOC/B688CHz5FPDGL4EjpX65y+pDu6DRJ8GYdXbaVWrP8wFJQs3h3R5v57TXY/d7T6L3Jbci3pDW6vqETudBm5CMY6WroDjtcNptOF66Cgmdu0OfmumX2ImIiCg2CKdA7abjOPXqj7Dtqwp1OEREANrZ8+aBBx7AV199hbvuugt/+ctfkJ+fDwDYvXs3Tpw4gfHjx+PBBx/0a6BEsebnn3/GRx991GbipolTAT7cdrp9TYy9qTkKfDwXuOJZoMvADt2V3WJGfGJqi8skWYO4BCPstWaPt9u/6iUkd+vXosdNc1pdIgb98nH8+NafcfCrxkbpCWlZGDD9MUiypkMxExERUWxyWuyo/HgfEvqlwVjUHVJcuz73JiLyi3Ylb3Q6HVatWoVXXnkF77zzDvbu3QsAGDFiBK677jrceOONkGW+uVFsUJx2CMX/ZbWrV32qOnHTRAhg7a5K3Dzaz9UmTjuw/R1IHpI3B796Awe/ftP1teJoQM3hXdj76b9clw357cJ2PfSpPd+gsnwrzv/NP72EZ0PZR88iuVt/5F9zH4Si4PA372DnGw9j8K+ehiZO167HJiIiovDUfAKntaEOh04fRbe0rgF5rLofT8NZ1YDUK3tBiuOHQkQUGu2ehyfLMmbPno3Zs2f7Mx6iiKI47ag5vAfOhjq/33fFgT2QZbnF0cS2yBJQaakLSDyOmlOId9oha+JaXddl6KXo3P8C19e733sSnfuORae+Y1yX6YydEGcwocFa2eK2QnHCXleDuCST28etKt+KevNRbHxyWovLf1y+AMndB6Dgxr/ixPbPYauqwODZT0GSGhPHhmt+j2/+fgNO7/kG6QOK2vu0iYiIKIy4m8BZVVeD4Y9cjokDLsDdk3+D87MH+P1xG45YUPPVYSRf1MOv9+uob0D5+h9h3l8BSZKQ1icT2Rf0gybe869p+9dtR9XBU2iotUETp4Ghqwk9xuQhIc3QYt2JHw/h6A/lqK+0QhOvRVqfLug5vr9f4yei4Gl38oaIGhMPzoY6yFqt26RGR6SkpvqUuAEARQApCVpIfq58Exo96nOKEac4ATfPMy7BiLiEsxPoZK0OcUkpSEjLarEuuVtfOOtrYTlaBkPXxr43lfu3AELAeF6+28fuNmYqMgsntbjshxd/h14Tf4O03BEAAMVhAyQJzSdRNSZxJJ+rl4iIzqU4FcgaVhQThdo777yDG264wW0/QCEE1u78Gut2fo0XZv8Vlw0u9vvj1+04haShmdAk+1bRu/Odb5He7zyk92s90OWnlVtht9rQ7+rhEIrA3jXbsP+zHegzebDH+0vKSEGn/CzojHo46u049N1P2PX+JhTeVARJbvxZ6OgP+3H0h3L0GJsPQ5dUKHYnbNX+/3CPiIKn3cmblStX4uWXX8a+fftgNptbvYFKkuQ6TkUU7WRNHGRtvF/v86ILL4Ak+ZZ8kCTgorwUuBun3V5KSjfUD50DJd59ZYwvEjv3gKn3UJR9/H/oM+V3EIoTe1cuRPqAC6EzdgIA2KpPYvtrDyLvyntgPC8f8YY0t02KdSnp0Ju6AGhserx/zX+w99PnkTX8CgghcOjrtyDJGqRmF3Q4biKKbYoiwPZZRKHVfAKnp5+NnIoTEiTMWXQ/Prx7sf8rcARQv8eMpGFd/HJ3dactqPr5JAZMGw1DZgoAIKeoH3Z/8D16jM1HvMF9D8OMgd1d/61LBrqPysO2pV/DVlMHfUpiY0LnmzLkXT4UKd07udYmdja6uzsiihDtSt48+eSTuP/++5GZmYkRI0Zg0KBB/o6LKOZ175aFSy6+CKvWrfc4Jrw5jQxcOiAVPdL81N9FkuDInQJ7/6mNPyTZ/PNpTd7Vv8e+Txdi+2sPApKETn3HovfkOa7rheJE3alDcNptqu8zsXN39L9hPg5+8Tq2LLoXkiQhqUtvDJj+KOKNrRM/REREFFnUT+AUEACeWflvvPI/T/s9DtveKr8lb2qOVUKj07oSNwAaky2SBMvxKqR5SN4057Q7cOLHQ9AlJ7iSPVUHT0IIoMFSjy2vfglngwPGrib0GJcPnTHBL7ETUfC1K3nz7LPPYsKECVixYgXi4vx7VISIzvrD3bdh9WdftFmB03hgSMK8yef55XFFYmc0DPsNlPQz56IdDT7dvuDGv3q8Li7BiPxr7vN4vT41E+P++LHX+3d3vanX+TD1Ol99kEREKvH0JVFo+T6B04lVO74ISBNje4UVzmqbz0en3N5XrQ1xCS0rtyVZhlYfB7vV+4dYx7f+jJ837IZid0KfmoS+Vw93He+0VdUBQuDIpn3IvrAvNLo4HNpYhl3vbcKgGWN5DJSCSlHskGXmDPyhXckbs9mMqVOnMnFDFGBDCwuw+F9P4+bf3g0hhNsKHI3cmLhZ9qs+GJ5tcHMvPtDEwdFnMuz5VwFxfhw3TkQUwYTC7A2RGopTCcjrZfWq1e2YwCnw1Z7v8IuRV/o9nrpdp2EY4TkpdLhkL458v8/1teJwwnKsCuXrf3RdVjBzXIdi6JTfFSk9OqGh1oajP+xH2SelGDB1JGStprFCSRHILuqH1B6dAQB9LhmMzS+vQ/WhU0jNTu/QYxP5QggnAOYN/KFdyZsRI0Zg9+7d/o6FiNy46tLJWPPBMvzt6efx6ZrPWvzwIkmNR6XmTT6vY4kbrR6OnuNhz70USOh4bxsiomiiOJm8IWqL4lRQe7wSzoa2j3r76uTB4+2YwCmhutYCp93/8dTuOonEoZkeK1gyB3VHp9yzR6t+WrUVab0zkdY703VZfJIOcUk62OtaVjcLRYGj3o64RO+VPVpdHLS6OOhTk2DokorvX1yL0/uOo3NeFuKTGm/bfPpUXEI8tPp4NNTU+/x8iTrGtwEs5Fm7kjfPP/88pkyZgmHDhmHGjBn+jomIzjG0sABvvvIvHDx0BGMmXonKqmqkJmiw+f5BHepxI5LS4eg9EY6cIiAu0Y8RExFFD6eDP3gStUUoAs4GJySN5PdjOcmpxnZM4BQw6pMah1H6kRCA02xrrDDy0Mhcq29MlDSRtTLiEuOhT01qsc7YJRVOmwO1FVVIymjse1N16DQgRIs+OCojg3A2/j8ydG38IK7eXAvdmT44jvoGOOobEJ/MnjcUXELw31B/aVfy5oYbboDD4cAvf/lL3HrrrejWrRs0mpbvXpIkYcuWLX4Jkogade+WhcTEBFRWVSNJJ7cvcSPLcHYdAkfORVAyBwISzz0TEXnjaOAPnkRqyRoZsta/49kuKrqoHRM4JYzNGw5/Z28kCEDjn/tMSDMgpUdn7Fu3Az3H94dQBA6s34lOeV1dzYcbLPX48d0S9J44CIYuqaivsuJU2VGk9ugMbUI8Giz1OPL9Pshajes4VIIpCaaeGTjwxY/oOWEANPFaHNywBwkmA5LP4yAHCjY/Z1BjWLuSN2lpaejUqRNyc3P9HQ8RBYiSfB6c2RfA0WMcoPf10xwiothltzlCHQJRTOverTumTJyMlWtXq5zAqUFxv7HoZvLPVKhW99/Ff9XKfSYXoHz9j/jxvRJIkoS03pnIvrCf63qhKKivrIXiaHzeskZGzREzjpUegNPWeLzKmGVC/6kjWxy16jWpAD9/+SN2f/g9JEmCMSsN+VcOZbNiCgF+AOIv7UrefP75534Og4gCQhMHR/fRcPa8CIqpt98/fSIiigUNdf7vmUFEvvnDPfdh1bo1KiZwSpAA3DXxV4EJRCtD29e3D8H6XzvS893p49Fn8mCP1+uSEzHy9ktcX8cb9Oh75bC2w4zXolfxIPQqHuRTrOFAURTIMpNM0cLprINWawx1GFGBrwqiaKTVwd73KtRNeRb2ob+BktaHiRsionZqqGflDVGoDT1/CF558T/QaDSt2jU00cgaaGQZL9z4OAp7DAhIHPoR6ZANnJwTSNXV1aEOgfzIbq8MdQhRo93Jm+rqavz1r3/F5MmTcf755+O7774DAJw+fRr/+Mc/8NNPP/ktSCJSz5k1BHWTnoRjwFRAxyw3EVFHMXlDFB6uuuxKrP1oFSYXT4R0zodSkiShuN9YfHDHy5hScFFAHl8/IgPaHh2Y7kmqOBx8z40mTN74T7uOTR06dAhFRUU4ePAgcnNzsWvXLlgsFgCN/XBeeOEFHDhwAM8++6xfgyUi7+wDrocj/wpW2RAR+RGPTRGFj6HnD8GbS5bh4KGDGD3hAlRWVSIlwYjV974esB43kICEUZmI65Xs6j1DgdPQ0ND2IooYDkdlqEOIGu2qvPn973+PmpoalJaWYv369a3OnV599dVYs2aNXwIkInXsA6bC0fdKJm6IiPysod7h05QbIgq87t26IzGxsXFwYnxCwBI3UpyMxIvOQ1yv5IDcP7XGY1PRpa7+MBSF1VT+0K7kzapVq3DHHXegf//+rUoWAaBXr144ePBgh4MjotYy09ORlW5CF2O86zJHn8lw5F8ZwqiIiKKX4hRw2DktgyjWyCnxSJrSHdqu/psuRW2rqKgIdQjkR4qzDmbzxlCHERXadWyqrq4O6enpHq+vqalpd0BE5N0Xn74DzcGNiP/ueQCAo+dFsBfMZMUNEVEA2WrtiIt33ySViKJPXI4R+hEZkOI43yXYjh8/DpvNBp1O1/ZiiggHDy1CcvJgxMWxgq0j2pW86d+/P7744gvMmTPH7fXvvfcezj///A4FRv7x888/Y+3ataipqYHRaERxcTF69OgR6rDIT5xdCmE//2YmbiIUX59EkaO2qgEGkz7UYVAH8D2XVJEk6IelIy432e0JAwo8RVGwf/9+9O3bN9ShkJ80NJzCT3v/ivy8RyDLnNbWXu1K3tx111246aabUFBQgOuvvx5A44vsp59+wiOPPIKNGzfi7bff9mug5JvvvvsOjz32GD7++GMIISDLMhRFgSRJuPzyy/GnP/0Jw4cPD3WY1BHaeDQM+TUg8ROhSMPXJ1HkqT5Zh8wcfmIYifieS2pJeg0SL+wKTXpCqEOJeVu2bEFeXh5kmT/nRouamh3Yu+8p9O41lwmcdmrXq2HWrFl49NFH8cc//hF5eXkAgEsuuQT5+flYtmwZFixYgKuvvtqfcZIP3nnnHYwdOxaffPKJq8GiojSe1RdCYMWKFRgzZgzeeeedUIZJHeToPgZISA11GOQjvj6JIpP5mDXUIVA78D2X1NKYdEia0oOJmzBRWVmJ0tLSUIdBHTRs2DCMHv0gbrpxPQDAbN6IXbseRH39kRBHFpnancp88MEHsXfvXjz55JO49dZb8Zvf/AZ/+9vfsHv3bvzhD3/wZ4xePffcc8jJyYFer8fIkSPx3XffBe2xw9F3332HG264AU6nE06n+1GGTdfdcMMNKCkpCXKE5C/OLjyaGGn4+iSKXBUHqjlxKsLwPZfU0nZNROLEbpAT23Uogfxo2LBhuO2227BgwQJs2rQJu3fvDnVI1AHHjh3DsWOVOHXa5rrMUrsb27ffgYOHlsDhqA1hdJHH5+SN1WrF0KFD8a9//Qs9evTA3Xffjeeeew4LFy7Evffei169egUiTrfeeOMN3HPPPZg/fz42b96MwYMHY/LkyTHdofzPf/4zhBBt/oDZtObPf/5zkCIjfxMpPKcfafj6JIpc1qoGVB5n9U0k4XsuqRHXKxkJ47PYmDhMHDt2DKf/f3t3Ht1UtbYB/DkZm87zCOkEtMxjmaVMQoUqM1hEQAURFfWKlw+vooAi1wlBriiiAhdFEUdEtCAyeEGFMorM0FJopZShM23TZH9/IJFKS9M06UnS57dW1yIn5+zzpm/3IXmzz96XL6Og4FrBfOvWrdi8eTOKiorkDo1syCQM+OOPz3Dw4IP444/PYTRelTskp1Drq5S7uzvS09MdYgKvBQsWYPLkybjvvvvQokULvPPOO3B3d8cHH3wgd2iyyMzMxPr166v9dunvjEYjvvnmG2RmZto5MrI5hQrC3V/uKKgW2D+JnF/6wYtyh0AW4jWXLKFt7Q+3rsGQFPJ/rqHqnTx5Ep988gm2b9+OvLw8ucMhG6owFuHsuf/iwIFJOHfuQ5SX8//ZW7FqbGBSUhJSU1OrXW2qPpSXl2PPnj14+umnzdsUCgX69++Pn3+ueh35srIylJXdMGTrzwpuRUUFDAaDfQOuB6mpqbUe0i2EwMaNGzFhwgQ7ReXajAYDDIYKGEUJFMr6+xtSwA2m0vqrUJuMBpgqjDAYDDCBS+Vag/1TPiaDwTzHhStTKBRQqF1/AkBjhREmU/3evlReVgZDhQEn9v6BmI7+0LjZ/9YKhUKCUsXrrbV4za1/RsO19wkVpgoolPUzikXcMH+RoaIW78MUErSdgwC9B8pLy2re/wYmownCKP58T+T6/7dUVFTU6/+h1/utEAIVFRWV4vjtt99w6NAhREREID4+HhERETYbUKBQKKBSuf5tc0ajASaTZUVtWxDizz5qEjAYqj+vwZCPM5mfIDNzDbx9OiEwoD+8vFpBsnJhFoVCCaWyft8TqevhPZgkrLiB+8iRIxg1ahTat2+PKVOmIDo6GjrdzZN7+fvbb2RAdnY2IiIisHPnTnTr1s28fcaMGdi2bRt+/fXXm46ZPXs25syZY7eYiIiIiIiIiKhhqY958awqL7Zs2RIAcPjwYaxevbra/Swdqlpfnn76aTz55JPmx/v370diYiJ+/fVXtG/v/JO/rlixAg8++GCtj1u2bBm/ZaoDk9EAUY8VbABAaT7g5lOvp5QUSijquYLtStg/5VFRVobcw4ehVKmgcOFv1EwVFTBWVCCoRQuotFq5w7EbQ3kFsjJyoVQqoKynb/YB4PjPF5B9ohAAoFRJ6DJMD43Ofn9PRqMJRqMJEVFBUGtc9+/WnnjNlYfJaIKox5FxsU1jkZ2djVDvIOye/U2N+yu8tfAZHAOlt6ZO55UUUr2NLpJTeXk5zpw5A6VSWW+jUnr06IGcnBx4e3tb/KW7VqtFfHw8GjdubNVInIqKChiNRkRGRkKjqdvfhiMzGErxxx+/Q6lU1stS3VlZ55GUNBoFBYXw9FTivfe7IjTUmtXcJOh0zeHlmQB39+aQpFuPSjWZDDAajQgLawm12s264B2UVb3wueeek33Om8DAQCiVSuTk5FTanpOTg9DQ0CqP0Wq10N7wptbT0xMAoFKp6mWYk70NHDgQkiTVquonSRIGDBjgEq9fNnL87lQKQONR/+clq7F/ykMymaBWq6F2c4PShd+QGcvLYSgthVqthsqV/16EBLVaDY1GBZW6/m4p0mi1UKv+ulX1/LESxHUPttv5KgxGlJdXXPvbVbN4Yw1ec2VSz7+6659HJEmCWnXra7wqUAe/IbFQuDO/lhJCQK1WQ6vV1kvxJisrC1evXrvWGgwGFBQUWHQnh9FoxO+//46zZ88iPj4e4eHhUCgsL65VVFSgrKzsz2uuK/99GKFWq6BW66Cqob/Uxd69B7BgwRJs2rTVfA0uKjIi5e4d6N4jCPdNjEXzFrX7Erqi4hiu5B1DQaEXvL06w9u7KzSaqj/zV1SUw2C4anU+hRDYvftDHDnyPcrKihEa2gK9ej0CX9+Iao/Jzv4N+/d/jtzckygpuYykpGcRHd292v23bVuMw4e/Q/fuD6Jt26EWx2ZVL5w9e7Y1h9mURqNBx44dsXnzZgwdOhQAYDKZsHnzZjz66KPyBicTvV6P5ORkbNiwwaJRT0qlEoMHD4Zez1WLnA8n1nM27J9EruPc0TzoW/tB5+XKb/KdG6+5dCNVgBv8hjaBwo4j5sh6+/btw8KFC7F582bzh/2rV69i9uzZaNmyJZKSkhAZGVljOwUFBdi1axfc3Nyg1+vRqFEj+Pj42HXQgRACW7Zswd69e1FaWorGjRsjOTkZAQEB1R6TkZGBnTt3Ijs7G0VFRRgzZgyaN29+0365ubnYtGkTzpw5A5PJhKCgIIwePRq+vr52ez11tX59Kh588B9VrvQnBPDzzov45eeLmPtCW/TuHVLr9o3GQlzJ24wreZvhpo2El1cneHq2g0rla6NXAOzf/xl++20d+vZ9Et7eodi1axXWr5+Fu+9+p9qil8FQioCAaMTHD0Bq6q1XLjx9eidyco7Bw6P6v5Hq2GS8X35+viy3SD355JNYtmwZVq5ciSNHjmDq1KkoLi7GfffdV++xOIpZs2ZBkqQaL1LX93n22WfrKTKyKbU1Qw5JbuyfRM5nwKC+GPlwHzy79H7zNmESOHPwsoxRkSV4zSUAUPpq4TuEhRtHtWHDBgwdOhRbtmyp4sO+wOHDh7FgwQLs37/f4jZLS0tx/Phx/Pjjj9i4cSMOHTqEy5cv22VOkh07duDXX39FcnIyJk2aBI1Gg1WrVt1yMRyDwYCQkBAMHjy42n0uX76MDz74AIGBgZg4cSKmTp2KXr16OfSkynv3HsCDD/4DRqOx2tqAySRgMgk8N+sAjhzOr9P5SsvOIPfi50jPmIWz595AXt52GI3FdWpTCIGDB79Cx453Izq6GwICotG373SUlFxCenrViyIBQGRkArp0mYCYmOpH2wBAUdFF/O9/b6N//39Coaj9CGKrizdpaWlISkqCu7s7AgICsG3bNgDAxYsXMWTIEGzdutXapi02ZswYvPbaa3juuefQrl077N+/H99//z1CQmpfxXMVCQkJWLNmDZRKJZTKqv8grj/36aefIiEhoZ4jJJuQ+bZFsg77J5HzuXDhAi5ezkFe0aVK27OP58NQ6lhz+1FlvOaS0lsDv2FNoPTgKDlHtG/fPkydOrWGD/smmEwmLF++HGfOnKn1OYqLi3H8+HFs3boVqampOHjwIC5dumSTQo4QAr/88gt69eqF+Ph4hIaGYtiwYSgsLMTRo0erPa5p06bo169flaNtrtu8eTOaNm2KAQMGICwsDP7+/oiPjzdP++GI3njj7SpH3PydENd+Vqw4ZbNzl5aeRu7FtUjPmIXLlzeYV7mqrcLC8ygpuYJGjdqZt2m1HggOjkNOzpE6xSiECZs3v4Z27UbA37/mkWRVsap4s3PnTvTs2RMnTpzAuHHjKi0fFxgYiPz8fCxdutSqgGrr0UcfxZkzZ1BWVoZff/0VXbp0qZfzOrLhw4dj586dGDRokPnbpuv3fUqShMGDB2Pnzp0YNmyYnGESNUjsn0SuwWQUyDpWt28Nyf54zW24lF4a+A1rCqWn68535uwWLVpk0Yf961JTU+t0vpKSEpw8eRLbtm1DamoqDh8+bJ5jxxpXrlxBUVERYmJizNvc3NzQqFEjnDt3zup2TSYTTpw4gYCAAKxatQqvvPIKli1bhiNH6lY8sKdz57KxceMWi+/GMZkEduzIxfnz1v/+qyKEAXn5P6C4ZJ9Vx5eUXAEA6HR+lba7u/uan7PWvn1roVAo0br1EKvbsGrc1b/+9S80b94cv/zyCwoLC/Hee+9Ver5Pnz5YuXKl1UFR3SUkJGDdunXIzMzEjz/+iIKCAnh7e6Nv3768n5tIZuyfRK7h7OEr0LfybRCrzjgzXnNdV2hoKCCAAKV3pe0KnQq+Q2PrvKoU2U9WVhZ++OEHiws3JpPJfPuTJZMY16SkpARHjx7FiRMn0KRJE4vm1Pm7oqIiALhpNIyHh4f5OWsUFxejvLwc//vf/9C3b1/0798fJ0+exJo1azBx4kRERUVZ3TZwbTWmioo6NXGTrVt/qvVoJiGAPWmXMGhw9RMBW0UIwMKRN8ePb8G2bYvNjwcPtmyFs9rKzT2BgwfXYdSoN+s0B5NVxZvdu3dj/vz50Gq1Vf5hRkRE4Pz581YHRbaj1+sxceJEucMgoiqwfxI5t7LiCmQdzUfjln4170yy4zXX9aSlpcFYbMDFDw6Zt0kKCb7JMVD5utYSwXKqsPUnfQDbtm2z4sO+wPHjx216p0VFRQWOHj16ywmGrzt48CC++eavJenvuecem8Vxo+u/l7i4OHTr1g0AEBYWhrNnzyItLc3q4o1CoYRK5YaKilIYjbbNaUFBHhQKRaU7cmoiSUBxscHqW5yqo1aHwNu7s0VzykRFdUFISJz5sdF4ba6iq1evwMPjryJhSUkeAgNjbjreUtnZv+Pq1TysWjXBvE0IE37++T389ttXGDduhUXtWFW8UavVt0xMVlaWQ9+PR0RERGQLp/ZcRFCUJ9w4pwaRQ/DoGgZ1qIfcYbgEhUIBjUaD8vJymy9Ok5+fb8WHfQlXr161+cTDOp0Ofn5+NS4vHhcXh4iIv0aJXP+dFBUVwcvLy7y9uLj42qgwK7m7u0OhUCAoKKjS9qCgIGRmZlrdrlKpRkhIHEwm28/XFhHRrFa5BK4NkPHydofahguxeHrEIybmn9BofKFU1vz/skbjDo3G/YaYBNzd/XDu3AEEBsYCAMrLS3DhwjG0bFn9BNM1iYvrW2keHQD49ttZaNasL+Libre4HauKN127dsVnn32GJ5544qbniouLsXz5ciQmJlrTNBEREZHTqCg34dCPf6DDoMZQKDmZPJGclN4auLcLljsMl6FSqRAREVHrD+WW0Ov1VnzYF/D09IRGY9vb4Vq2bInGjRvXuJKTVquFVqu9KZ709HSEhYUBuLbS1blz59CpUyer41GpVAgPD8elS5Unyr906RJ8fHysbhe4VsCxpKhRWwMGJEGSpFoV1iQJSEgItNlS7n6+XRAb+xQUCuv/PiRJQps2Q7Fnzyfw8QmHt3cIdu1aBXf3AERHdzPvt27d04iO7o7Wre8EABgMV5Gfn21+vqAgBxcvnoJW6wUvr2C4uXnDze1vt3cqlNDp/ODn18ji+Kwq3syZMweJiYkYPHgwUlJSAAAHDhzA6dOn8dprryE3NxezZs2ypmkiIiIip5KXcxW/bzuPVn1CbfYmlIhqz71tECQWUW3KXktTDxw40IoP+xLi4+Ntep1VqVSIj4+36nVKkoSuXbti+/bt8Pf3h5+fH3788Ud4eXkhPj7evN/KlSsRHx9vvt2rrKwMly9fNj+fl5eHP/74AzqdDr6+vgCAHj16YO3atYiMjERUVBROnjyJY8eOOeytn3q9HsnJydiwYYNFo7QUSgk9egQjNNS9xn1rbEuhRXjYaISFDYck1X0OunbtRsJgKMW2bYtRXl6E0NCWSE6eC5Xqr6JQQcEfKC39a9GCCxdOYN26mebHO3cuAwDExfVH375P1jmm66zqjV26dMGGDRswdepUjB8/HgAwffp0AEBsbCw2bNiANm3a2CxIIiIiIkeWc7oAkgJo0SsUCgU/PBLVOwnQNuX8U86i1h/2FQq0atXKJpMV3xhD165d4edn/d9Njx49UF5ejm+++QalpaXQ6/UYN24c1Oq/RrdcvnwZJSUl5sfZ2dmVFve5vopW27ZtzSvfNW/eHMnJyfjf//6H7777DgEBARgzZoxVEyvXl1mzZuG7776rsSgnSYAE4P77m9XpfDpdJAID+yIosB9UKq+aD7CQJEno3PledO58b7X7/H2OmoiINpg6dUOtzmPpPDc3sqh4U1BQAA8PDyiVf03607dvXxw7dgz79+/HiRMnYDKZEBsbi44dO/JbJyIiatBERQUkO31bSY7r/MkCGMqMaN03HCo1V6Aiqk/qEA8oOfeUU7H0w/51gwYNqvM53d3d0bRpU8THx5tHudSFJEno27cv+vbtW+0+//jHPyo9jo6OxuzZs2tsu0OHDujQoUNdQ6w3CQkJWLNmDcaMGQMhRJVFOYVSggTgpZc6oUWL2hfNtNpQBPj3QkDAbdDpGt5qgRa9s/Tz88OqVaswduxYAMD999+PKVOmoEuXLmjXrh3atWtnzxiJiIici40nUyTncelsMfasP4t2AyKg9WABj6i+aPS2++ad6odFH/b/nER48uTJVq+ypNVqER0djdjYWISHh9c4MTFZb/jw4di5cydeeOEFrF+/vlJRTpKAHj2Ccf/9zWpVuFEoNPD3vw1Bgf3h6dm8QQ8UsehdhUajQVlZmfnxihUr0L9/f5su00ZEROQy+MawQSu8VIpd6zLRPikCnn7amg8gojrTNGLxxhnd+sO+hFatWmHQoEG1LtxoNBpERUUhNjYWERERle4gIftKSEjAunXrkJmZibZt2yIvLw9eXip8+FHvWs1x4+YWjuDgQQgM6AOViitZAxYWb+Lj4/Hee+8hKirKPMN1RkYG9u7de8vjnGmYFxERkc004G+F6JqyYgPS1p9Fh6RG8A5ykzscItemkKAOqfvEpySPqj7s63Q6zJo1q1Zz3Fwv2MTExCAiIsJuky2TZfR6PTw8PJCXlwc3ncriwo1Op0dExFj4+XaxyQTErsSiv+j58+djzJgx6N+/P4BrVdBZs2ZVu6KUEAKSJFk0+RQRERGRK6ooM2Lvd2fRYVBjeAeygENkL+oAN0gqfshzdjd+2NdqtRYVbliwcR2SpEJEeArCwoZBkjhSqioW/XUnJSUhPT0du3fvRk5ODiZOnIgHH3wQ3bp1q/lgIiIiogaqotyEfd+fQ8Kderj7aGo+gIhqTRXEUTcNiSRJaNy4MeLi4qDX61mwcQGeHnGIipoKd/douUNxaBb9pR88eBCRkZEYOHAgAGD58uUYNWoU+vXrZ9fgiIiInBInLKYbGEqN1wo4d+mh0fFDBpGtqQI4sq0hkCQJcXFxaN++Pby9veUOh2xAqw1Fo4hx8Pfv2aAnIraUReML27dvj2+//dbesRARERG5pKuFBuxPzUJFOW8pJ7I1pTcnBnd13t7eGDp0KBITE1m4cQEKSY1GEePQutViBATcxsKNhSwq3uh0OpSUlJgfb9u2DTk5OXYLioiIyKmZTHJHQA6o4GIpCzhEdqDwUssdAtlRREQEhg0bhuDgYLlDIRvQ6fRo0eJ1hIePgkLB24lrw6Kxu23btsWCBQugVCrNq03t3r0bbm63HqI4fPjwukdIRETkbHjbFFUjL+cq9m44h3YDI3gLFZGNKNiXXEZoaCiuXr0KT89rS0M3bdoUiYmJXOrbSYWGhsJoLIav77X3RQH+tyEq6lEolbzV0RoWXekWLVqEkSNH4oEHHgBw7X7DRYsWYdGiRdUew9WmiIioweLIG7qFgoul2L0uE+0GRsDDl7d7ENWVpOEHe1eRlpaGNWvWIC8vDzExMejduzcUCq4k5qzS0tKQkbEEF3JTERI8GHr9ZN4iVQcWFW86deqEkydP4tSpU8jJyUHv3r3xzDPPmJcOJyIior8Ikwl8a0K3crXQgN3rMtG6bzgCGnnIHQ6R05IkcJlwF+Tp6YnExEQWblyEuy4Kev0DLNzUkcVjDFUqFeLi4hAXF4cJEyYgOTkZXbp0sWdsREREzsnIkTdUs4pyE/alZiG+ezAaNfeVOxwip6Rw53w3rqhdu3bQaDgfiqsICb0LksQRcnVl1Q2iy5cvt3UcRERErsPE24bJQkLg6I4clF+tQHT7AH4rSUQNniRJiI2NlTsMsiFfnwS5Q3AJFhVv5s6dC0mS8Mwzz0ChUGDu3Lk1HiNJEmbNmlXnAImIiJyN4JxvVEun914CICGmQ4DcoRARySokJKTGhXHIebi5RUCt5vLutmBR8Wb27NmQJAn/93//B41Gg9mzZ9d4DIs3RETUYHHCYpdwLuscSkpKAABlhlJczDuPQN9Qu53v9N6L0HmrERTJOXCIqOEKDw+XOwSyITe3CLlDcBkWFW9Mf3sT+vfHREREdAP+P+nU9u7bgwWLXscPmzdC/Lnse0lpIZ5YOALtm/XA0MSJiI1oYZdzH92RA0//xlBqrb99SgiBXT8ewu9pp1FWakCYPhC97+oI3wCvWx5XVFCCnakHcebEH6gwGOHj74l+wzsjJMIfAPCfWWuqPK77wLbo0DPe6niJiG7k6+srdwhkQxoNR5TailVz3hAREVH1hMEgdwhkpW83fIMHH54EIYS5cHOdgMD+Eztx4OTPmDbyBSS06G3z8xsNJpzeewlNuwVa3cben47iwC8n0H94F3j7eeDXzb9h3cptGDvtDqjUVU8YWXq1HJ8v24yI6GDcNb4XdB5a5F0qgpvurwlD75txV6Vjzpz4Az9+tRuxLRpZHSsR0d+p1ZyE2pUolRxNaitWF2+OHDmCU6dOobCwEF5eXmjSpAni4/mtCxERkSgrkzsEssLefXvw4MOTYDQabyrcXGcSJkBIWPzZLDz/wFK7jMDJzSiCvq2vVccKIXDg5+PolNgCMc2vDVXvP6ILPnj5a5w+koVmbfRVHrf3pyPw9HFH/+F/rSTq7edZaR8PL12lx+lHstEoOhg+/pX3IyKqC5WK4wtciUp161GfZLla94ylS5di3rx5yMrKuuk5vV6PZ555BpMmTbJJcERERM7IVFgkdwhkhTfefL3KETc3u7bPV9tXYHrKKzaPQwggP6cUsKIuVHClGCVFpWgcG2LepnXTIKRRAM6fvVht8Sb9aDb0TULx3Sc7kJ2RCw8vHVp3aYKWnape8aWkqBRnjmej3w3FHiIiW/D0ZEHYlSiVupp3IovUqnjz1FNPYcGCBfD398f999+PVq1awdPTE0VFRfjtt9/w1VdfYcqUKThx4gRefvlle8VMRETk0ExXLssdAtXSuaxz2PTDRgsKN9eYhAn7ju2w2yTGhlLrViwrKSoFALh7Vl6pxd3DzfxcVQquFOHQ7pNo1z0OnXq1QE7WZWz/dh8USgWat4++af+j+9Kh1qp5yxQREVE9sbh4s2vXLixYsADDhg3Df//7X3h43Hzv2qJFizBu3Di89tprGDVqFDp16mTTYImIiJyB8cIFuUNwaUaj7SeE3rZtq8WFm+sEBH5P34Ne7QbbNBYhBHTels35cOxABrau22N+nDzuNivPCQSH+6Hb7W0AAEHhfrh8IR+Hdp+qsnhzeG86mrXRVzuHDhEREdmWxcWb999/H2FhYVi9ejW0Wm2V+3h4eODjjz9GTEwM3n//fRZviIioQTL+cV7uEFySQiFBo1WhvKzC5gWcvPx8KBSKWq2oKUkSSkqLa130qYnaTYngSE8oFDWvOBUdH4GQRn+t5GGsuBZ/SVFppTlqSopLERjqW207Hp5u8A/2rrTNL8gbp34/d9O+2Rm5yLtYiKTR3WqMj4iIiGzD4uLNzz//jFGjRlVbuLnOzc0No0aNwpYtW+ocHBERkTMyFRXBlJ8PhY+P3KG4FKVKiZAIf5hMti2WAEDjyLBaFW6AayNkPD28oNbYdnLNtn0aI0wfCKWq5lEtGq0aGu1fo3SEEHD3dMO50zkICvMDAJSXGpBz7hJaJTSptp1QfSCuXCystC3vYiG8fN1v2vfw3tMICvdD4J/tExERkf0pLN3x7NmzaN68uUX7tmjRAmfPnrU6KCIiImdXce7mEQtUd0qVEmqNyuY/AwYOgCTVPNLlRpIkoXVsAiRJstmPX4g7mnUOtahwU11Mbbs1Q9rWw0g/koWL5/Ow6fNf4eGlM68+BQBfLd+Cg7+cMD9u170Zcs5eQtq2w8i7VIhjB87g97RTaN2lcsGnvNSAk4fOomXHGKviIyIiIutY/FVRQUEBvLwsW+bL09MThYWFNe9IRETkoirSM6Bp2VLuMMhCer0eycnJ2LBhA4zGmicLVkhKdIjrYfPJitv211t0u9StdLgtHhWGCmxZl4ay0nKE6YNw5/jESvPT5F8uwtWSv5a0D2kUgDvG9sTPGw9i99bf4e3rgdsGtUdc26hKbR//LRMA0LSaVauIiIjIPiwu3gghavWNlK3v/yYiInIm5cePwx22nciW7GvWrFn47rvvIElSDe9jJEgSMKzP/TY9f5DeCyFR3jXvWANJktClX2t06de62n0mTL/zpm3RceGIjgu/ZdutEmLRKqHq5cOJiIjIfmp1k/Zrr72Gjz/+uMb9srKyrA6IiIjIFVRkZnLeGyeTkJCANWvWYMyYMRBCVDkCRyEpIUnAE3e/hCaNWtj0/E06Btu0PSIiInIdFhdv9Ho9Ll++jMuXL1u8PxERUYMlBMr27oWuTx+5I6FaGD58OHbu3IkXXngB69evrzQCR5IkdIjrgWF97rd54UbjpkR4U1+btklERESuw+LiTUZGhh3DICIicj2lO3bCLTERksLi9QHIASQkJGDdunXIzMxE27ZtkZeXBw83L7wy7SObz3Fznb5VAJQq/p0QERFR1fgugYiIyE6MubkoP3BA7jDISnq9Hh4eHgAArUZnt8KNUiUhrrN92iYiIiLXwOINERGRHZWsWwdRWip3GOTAWt4WAQ9frdxhEBERkQNj8YaIiMiOjJevoGjtZ1yFkaoU2SoAcV056oaIiIhurVarTREREdGt9R06FOdPn0agWo0vet4GAChLS4OqUQQnL6ZKIlsFICE5GpIkyR0KEREROTgWb4iIiGwoJzcX50tKINzcKm0v/uprKHx8oO3QQabIyJE07x6GVr0iIClYuCEiIqKaOe1tU/PmzUP37t3h7u4OX19fucMhIiKqUdGHH6H86DG5wyAZKZQSEgZHoXXvRizcEBERkcWctnhTXl6OUaNGYerUqXKHQkREZBFhNKLwg/dhyMiQOxSSgcZNiV53N0N02yC5QyEiIiInY/VtU6mpqXj//fdx+vRpXLly5aaJGCVJwqlTp+ocYHXmzJkDAFixYoXdzkFERGRroqwchUvfhfe0R6EKD5c7HKonOi81et0dB58gndyhEBERkROyqnjz6quvYubMmQgJCUHnzp3RunVrW8dlF2VlZSgrKzM/LioqkjEaIiJqqEwlJSh4awm8H3mYBZwGQOelQZ9xcfD0c6t5ZyIiIqIqWFW8WbRoEfr27YsNGzZArVbbOia7mT9/vnnEDhERkZxMRUUoeHMxvCZPgjo2Vu5wyE7cPFTofQ8LN0RERFQ3Vs15c+XKFYwcOdLmhZuZM2dCkqRb/hw9etTq9p9++mnk5+ebf7Zt22bD6ImIiGrHdPUqCt5agtKff5Y7FLIDlUaB28Y0g5c/CzdERERUN1aNvOncuTOOHbP9ahnTp0/HxIkTb7lPTEyM1e1rtVpotVrzY09PT6vbIiIisgVhNKLokzWoSE+Hx8iRkDQauUMiG5AkoNuwJvAL9ZA7FCIiInIBVhVvlixZgjvuuAOdOnXC2LFjbRZMUFAQgoK4AgMRETU8pb/ugiHjDLwmTuA8OC6gbb/GCIv1kTsMIiIichFWFW/GjBmDiooK3HvvvZg6dSoaNWoEpVJZaR9JknDgwAGbBFmVzMxMXL58GZmZmTAajdi/fz8AoEmTJhxRQ0RETsmYk4P81xfAY/hwaLt3gyRJcodEVohuG4imCSFyh0FEREQuxKrijb+/PwICAtC0aVNbx2Ox5557DitXrjQ/bt++PQBgy5Yt6N27t0xRERER1Y2oqEDRp5+i4kwGPEaNguRECwMQEKT3QoekSBbeiIiIyKasKt5s3brVxmHU3ooVK7BixQq5wyAiIrKL0l93wXjhArwmTYKCI0qdgleAG3qMaAKl0qr1IIiIiIiqxXcXREREDsqQnoH8NxfDmJcndyhUA52nGr3ubgaNzqrvxYiIiIhuqU7vMAwGA44ePYr8/HyYTKabnu/Vq1ddmiciImrwjDk5KHhzMbwfeRjKgAC5w6EqXF8S3MNHW/PORERERFawqnhjMpnw9NNPY8mSJSgpKal2P6PRaHVgREREdI3x0iXkL3oT3g9N4UpUDkZSSOgxoil8Q9zlDoWIiIhcmFW3Tb300kt49dVXMW7cOPz3v/+FEAL//ve/8c4776BNmzZo27YtUlNTbR0rERFRg2XKz0f+ojdRfviI3KHQDTomRSIk2lvuMIiIiMjFWVW8WbFiBUaPHo23334bSUlJAICOHTti8uTJ+PXXXyFJEn788UebBkpERNTQidJSFC57F1d//BFCCLnDafCadAxGTLsgucMgIiKiBsCq4s25c+fQt29fAIBWe+3+7tLSUgCARqPBuHHjsGrVKhuFSERERNcJk0Dx1+tQ9OFHEAaD3OE0WAERHmjbv7HcYRAREVEDYVXxJiAgAEVFRQAAT09PeHt74/Tp05X2uXLlSt2jIyIiciLnsrNRcvUqAOBqRQWy//y3PZSlpaHg7Xdg+vPLE6o/Ko0CXYfEcklwIiIiqjdWTVjcvn177N692/y4T58+WLhwIdq3bw+TyYQ333wTbdu2tVmQREREjmzPgQN47T//wcatW823MxVUVKDPj5vRJzgEDzdtija+vjY/r+HUKRS+8w48Jk+2uo1zv/yC0xs34srp0ygvKsLtr74K3+joGo85+sUXKDp/HiajEZ5hYYi7805EJiaa96m4ehUHP/oI2bt2oayoCB7BwWh6xx2IHTjQ6lgdRZs+jeHhy5WliIiIqP5YVbx58MEHsWLFCpSVlUGr1WLevHno1asXevXqBSEE/Pz88PHHH9s6ViIiIofzTWoqHnj8cQghbpqHRgDYlnsB23Mv4I32HTAwLMzm5zekZ+Dqt99C/eccdLVlLCtDYPPmaNS9O/a8845Fx2g8PdF8xAh4RURAoVLhjz17sPutt6D18UFou3YAgP0rV+LCoUPo/Nhj8AgORs6BA9i7bBl0/v4IT0iwKlZH4BOkQ2x7znNDRERE9cuq4s1dd92Fu+66y/y4RYsWOHXqFLZu3QqlUonu3bvD39/fZkESERE5oj0HDuCBxx+H0WisdgJhoxCQAPxj3158outhlxE4ZTt2QtW7t1XHXh8tU3zhgsXHBLdqVelx08GDkbF1Ky4eOWIu3lw6dgxRiYnmfWNuvx2nNm3C5ZMnnap4ExoaCkOpEZ5aXwBA8x5hkBSSvEERERFRg2Ozm7V9fHwwZMgQJCcns3BDREQNwutvvVXliJu/E3/+LDl5wj6BCAFTXp592q7x1AI5Bw+iMDsbQS1amLcHxMUhOy0NVy9dghACFw4dQlF2NkKc7LbqtLQ0fLvqZ8x/5L9w81ChUTzf4xAREVH9s2rkDQAYjUasXbsWW7ZswYULFzB37ly0bt0a+fn52Lx5M3r06IGQkBBbxkpEROQwzmVnI3XLFouX7DYKgS05Oci+ehXhOp1tg1GpoPDzs22bNTAUF+ObKVNgMhggKRToMGlSpcJM+wcewJ533sH6KVMgKZWQJAkdH3qoUoHH2UTE+UHBUTdEREQkA6uKN3l5eUhKSsKuXbvg6emJ4uJiTJs2DcC11acee+wxjB8/Hi+99JJNgyUiIrKGqaLC5m1u2b7d4sLNdQLALxdzMbyRbZeYVsXHQ9LWPIHume3bsefdd82Pb/vXv6wupqh0Ogx49VVUlJYi57ffcGDlSniEhJhvkzq5YQMunTiBHjNnwj0wEBePHMG+996Dzt8fIW3aWHVOuYVEecsdAhERETVQVhVvZs6cid9//x2pqalo3749goODzc8plUqMHDkSGzZsYPGGiIhkpVAooHJzQ0VpKYw2LuDk5+dDoVDAZDJZHg+AwnIDRC2OsYQqoRNUbm5QKG59N3R4QgICmjY1P9bV4TZnSaGA558TMPtGR6MwKwtHv/wSwa1awVhWht8+/hg9/vlPhHXseG2fqCjkZWTg2Lp1Tlu88Q/3lDsEIiIiaqCsKt589dVXmDZtGm6//XZcunTppuebNWuGFStW1DU2IiKiOlGo1Qho0qRWBRZLhVnRrgmAt7s7VDa8bUoVFITQwYOhVKmgUKtvua9ap4Pa1rds/UmYTDAZDAAAk9EIUVEBSJVvMZIUCsAOuagPGp0SOq9b/36JiIiI7MWq4k1+fj6io6Orfd5gMKDCDkPUiYiIakuhVttudv4bDEhKgiRJtbp1SgLQPTgYkmS7eVM8E3vVqSBTXliIkosXcfXKFQBAYXY2AMDN1xduf86js+vNN6ELCEDre+4BABz54gv4x8bCIzQUJoMBf+zdizPbt6PD5MkAALW7O4JatMDBVaug1GjgERSE3MOHkbFtG9pNmFCXlysb7wCdTfNGREREVBtWFW9iY2Oxd+/eap/fuHEjWjjxhIREREQ10ev1SE5OxoYNG2A0GmvcXylJ6BMaigh3d9sFIUnw6tu3Tk1kp6Vh91tvmR//8sYbAIAWo0ah5ZgxAICSixeBG27JMpaVYe+yZSi5fBlKjQbe4eHo8thjaNyjh3mfrv/4B35bvRq/vvkmyouK4BEYiNYpKYgZMKBO8crF099N7hCIiIioAbOqeDNp0iT83//9H3r37o1+/foBACRJQllZGebOnYvvv/8e794wISIREZErmjVrFr777rsaR+BIf/48Ehdv0/N73NYT6tDQOrUR1acPovr0ueU+vefOrfS4VUoKWqWk3PIYNz8/JDzySJ1icySefjVPCE1ERERkL1YVbx5//HH8/vvvSElJga+vLwBg7NixuHTpEioqKjBlyhQ88MADtoyTiIjI4SQkJGDNmjUYM2YMhBBVjsBRShIkAIs7d0HbOkwQ/HcKT0/4jx9vs/bo1ty9NXKHQERERA2YVcUbSZKwbNkyTJgwAZ999hlOnDgBk8mE2NhYjB49Gr169bJ1nERERA5p+PDh2LlzJ1544QWsX7++0ggcCUCf0FA8Ehdv08INAAQ+8jBUf85JQ/bn4cORN0RERCQfq4o31/Xs2RM9e/a0VSxEREROKSEhAevWrUNmZibatm2LvLw8eKvU+LZ/f9vOcfMn39Gj4dG5s83bpepxpSkiIiKSkz0W4CAiImqQ9Ho9PDw8AADuKpVdCjcevW6D7+hRNm+Xbk3nxdumiIiISD4Wj7y56667atWwJEn4+uuvax0QERERVU3XsQOCHnmES1bXM42bCkoVv+8iIiIi+VhcvFm/fj3c3NwQGhp6yxU1ruMbSyIiIttx79QJwdOfhKSq0x3PZAU3D/7OiYiISF4WvxuJiIhAVlYWAgMDMXbsWNx9990IrePypERERFQzz8ReCHz4YRZuZKL14Hw3REREJC+LxwCfPXsWW7ZsQfv27fHCCy+gcePG6N+/P5YvX47CwkJ7xkhERNRg+YwYjsBp01i4kZHGjb97IiIikletbuBOTEzE0qVLcf78eXz22WcICAjAo48+iuDgYAwfPhyfffYZysrK7BUrERFRw6FUIvCRh+E/dixvRZaZWsv5boiIiEheVr0bUavVGDJkCNasWYOcnBxzQWfMmDF45ZVXbB0jERFRg6Lw9EToc8/Bq29fuUMhACq1Uu4QiIiIqIGr0zjgsrIypKam4uuvv8a+ffvg5uaGqKgoG4VGRETU8KgjIhDy9Eyow8LkDoX+JCk48omIiIjkVevijclkwqZNm/Dxxx/jq6++QklJCfr3749ly5Zh2LBh8PDwsEecRERELk/Xvj2CnngCSk/+X+pIFEoWb4iIiEheFhdvdu7cidWrV2Pt2rW4dOkSunbtipdeegmjR49GYGCgPWMkIiJyed6DB8N/wnhISt6iQ0RERESVWVy86dmzJ3Q6HQYNGoSUlBTz7VGZmZnIzMys8pgOHTrYJEgiIiKXJUkIeOB+eN9xh9yRUDU4YTQRERHJrVa3TV29ehWff/45vvjii1vuJ4SAJEkwGo11Co6IiMilKRQIevxxePbsIXckdAsSF5siIiIimVlcvFm+fLk94yAiImpYWLhxGjovjdwhEBERUQNncfFmwoQJ9oyDiIioQQl8aAoLN05CwdWmiIiISGYcCExERFTP/O65B179+skdBhERERE5CRZviIiI6pF3cjJ8hg2VOwwiIiIiciIs3hAREdUTj549ry0HztWLiIiIiKgWWLwhIiKqB9r4OAQ98jAkBf/rJSIiIqLa4TtIIiIiO1P6+CD4qacgabhqERERERHVnlMWbzIyMvDAAw8gOjoaOp0OsbGxeP7551FeXi53aERERDcJfPRRqPz85A6DiIiIiJyUxUuFO5KjR4/CZDJh6dKlaNKkCQ4dOoTJkyejuLgYr732mtzhERERmbl37QL3Du3lDoOIiIiInJhTFm+SkpKQlJRkfhwTE4Njx47h7bffZvGGiIhkFRoaCmNeHgLVakCS4D92rNwhEREREZGTc8riTVXy8/Ph7+8vdxhERNTApaWl4dy0x2DIzoaufXuoIyLkDomIiIiInJxLFG9OnjyJxYsX1zjqpqysDGVlZebHRUVF9g6NiIgaMM/besodAhERERG5AIeasHjmzJmQJOmWP0ePHq10TFZWFpKSkjBq1ChMnjz5lu3Pnz8fPj4+5p/ExER7vhwiImrgdG3ayB0CEREREbkASQgh5A7iutzcXFy6dOmW+8TExEDz51Kr2dnZ6N27N7p27YoVK1ZAobh1LervI2/279+PxMRE7NmzBx06dKj7CyAiIgJwbtpjEEYjGi95S+5QiIiIiMgFONRtU0FBQQgKCrJo36ysLPTp0wcdO3bE8uXLayzcAIBWq4VWqzU/9vT0tDpWIiKiW9FERckdAhERERG5CIcq3lgqKysLvXv3RmRkJF577TXk5uaanwsNDZUxMiIioms0er3cIRARERGRi3DK4s2mTZtw8uRJnDx5Eo0aNar0nAPdBUZERA2YJipS7hCIiIiIyEU41ITFlpo4cSKEEFX+EBEROQKOvCEiIiIiW3HK4g0REZEjkzQaqHgbLxERERHZCIs3RERENqYOC4VkwUT6RERERESW4DtLIiIiG1MFh8gdAhERERG5EBZviIiIbEwVGCB3CERERETkQli8ISIisjGlr6/cIRARERGRC2HxhoiIyMYUXt5yh0BERERELoTFGyIiIhtza9lC7hCIiIiIyIWweENERGRjXGmKiIiIiGyJ7y6JiIiIiIiIiBwYizdERERERERERA6MxRsiIiIiIiIiIgfG4g0RERERERERkQNj8YaIiIiIiIiIyIGxeENERERERERE5MBUcgdA9eOPP/7AH3/8IXcYZCNhYWEICwuTOwyyEfZPIsfGa65r4TWXiKj+8P9Q22nQxZuwsDA8//zzLv/HVFZWhpSUFGzbtk3uUMhGEhMTkZqaCq1WK3coVEfsn0SOj9dc18FrLhFR/eL/obYjCSGE3EGQfRUUFMDHxwfbtm2Dp6en3OFQHRUVFSExMRH5+fnw9vaWOxyqI/ZP13O9jzKnroHXXNfCa65r4fXW9TCnroX/h9pWgx5509C0a9eOncYFFBQUyB0C2QH7p+u43keZU9fAa65rYv90Dbzeuh7m1LXw/1Db4oTFREREREREREQOjMUbIiIiIiIiIiIHxuJNA6DVavH8889zkigXwXy6FubT9TCnroX5dC3Mp2thPl0Pc+pamE/b4oTFREREREREREQOjCNviIiIiIiIiIgcGIs3REREREREREQOjMUbIiIiIiIiIiIHxuINEREREREREZEDY/GGyA4kSbLoZ+vWrXU+V0lJCWbPnl2rtubNm4e77roLISEhkCQJs2fPrnMcRM7Ckfvn0aNHMWPGDLRr1w5eXl4ICwvD4MGDkZaWVudYXJkj5zQ7Oxvjxo1DXFwcvLy84Ovri86dO2PlypXgmhHUEDhy//y7jz76CJIkwdPTs86xuCpHzmdGRka18XzyySd1jsdVOXJOrzt16hTGjh2L4OBg6HQ6NG3aFM8880yd43E2KrkDIHJFq1atqvT4v//9LzZt2nTT9ubNm9f5XCUlJZgzZw4AoHfv3hYd8+yzzyI0NBTt27dHampqnWMgciaO3D/fe+89vP/++xgxYgQefvhh5OfnY+nSpejatSu+//579O/fv84xuSJHzunFixdx7tw5jBw5Enq9HgaDAZs2bcLEiRNx7NgxvPTSS3WOiciROXL/vFFRURFmzJgBDw+POsfhypwhnykpKRg0aFClbd26datzPK7K0XO6f/9+9O7dGxEREZg+fToCAgKQmZmJs2fP1jkeZ8PiDZEdjBs3rtLjX375BZs2bbppu1zS09MRFRWFixcvIigoSO5wiOqVI/fPlJQUzJ49u9K3vvfffz+aN2+O2bNns3hTDUfOaZs2bW76hvHRRx/FnXfeiTfffBMvvPAClEqlPMER1QNH7p83evHFF+Hl5YU+ffrgq6++kjsch+UM+ezQoYNDxePoHDmnJpMJ9957L+Lj47FlyxbodDq5Q5IVb5sikonJZMLChQvRsmVLuLm5ISQkBFOmTMGVK1cq7ZeWloaBAwciMDAQOp0O0dHRuP/++wFcGx56vfgyZ84c87DGmm6DioqKssdLInIZcvXPjh073jRcPyAgALfddhuOHDli2xfZwMh5za1KVFQUSkpKUF5eXufXRuTs5O6fJ06cwBtvvIEFCxZApeJ323Uldz4BoLi4mNdXG5Irpxs3bsShQ4fw/PPPQ6fToaSkBEaj0W6v09Hx6kQkkylTpmDFihW477778NhjjyE9PR3/+c9/sG/fPuzYsQNqtRoXLlzAgAEDEBQUhJkzZ8LX1xcZGRn44osvAABBQUF4++23MXXqVAwbNgzDhw8HcO2bXiKynqP1z/PnzyMwMNCmr7GhkTunV69eRXFxMYqKirBt2zYsX74c3bp1a/DfIhIB8vfPJ554An369MGgQYPw6aef2vW1NgRy53POnDn45z//CUmS0LFjR8ybNw8DBgyw62t2dXLl9IcffgAAaLVadOrUCXv27IFGo8GwYcOwZMkS+Pv72//FOxJBRHb3yCOPiBu7208//SQAiI8++qjSft9//32l7V9++aUAIHbv3l1t27m5uQKAeP7552sdV12OJXIVjto/r9u+fbuQJEnMmjXL6jYaGkfM6fz58wUA80+/fv1EZmZmrdogcgWO1j/Xr18vVCqV+P3334UQQkyYMEF4eHjU4hU1bI6UzzNnzogBAwaIt99+W6xbt04sXLhQ6PV6oVAoxPr162v/4hooR8rpXXfdJQCIgIAAcc8994jPPvtMzJo1S6hUKtG9e3dhMplq/wKdGG+bIpLB2rVr4ePjg9tvvx0XL140/1y/ZWLLli0AAF9fXwDA+vXrYTAYZIyYqOFwpP554cIFjB07FtHR0ZgxY4ZdztEQOEJOU1JSsGnTJqxevRpjx44FcG00DlFDJ2f/LC8vxz/+8Q889NBDaNGihU3abOjkzKder0dqaioeeugh3HnnnXj88cexb98+BAUFYfr06TY5R0MkZ06LiooAAAkJCfjwww8xYsQIzJ07Fy+88AJ27tyJzZs32+Q8zoLFGyIZnDhxAvn5+QgODkZQUFCln6KiIly4cAEAkJiYiBEjRmDOnDkIDAzEkCFDsHz5cpSVlcn8Cohcl6P0z+LiYiQnJ6OwsBBff/01l66tA0fIaWRkJPr374+UlBR89NFHiImJQf/+/VnAoQZPzv75xhtv4OLFi+bVb6juHOF6eyN/f3/cd999OHbsGM6dO2fTthsKOXN6/dbilJSUStuvfwmyc+dOq9t2RpzzhkgGJpMJwcHB+Oijj6p8/vpkXpIk4bPPPsMvv/yCb775Bqmpqbj//vvx+uuv45dffuGHOSI7cIT+WV5ejuHDh+PgwYNITU1Fq1atrG6LHCOnfzdy5EgsW7YM27dvx8CBA23WLpGzkat/5ufn48UXX8TDDz+MgoICFBQUALj2Tb8QAhkZGXB3d0dwcHDdXmAD44jX28aNGwMALl++jEaNGtms3YZCzpyGh4cDAEJCQiptv94v/z5hsqtj8YZIBrGxsfjhhx/Qo0cPiyar7Nq1K7p27Yp58+Zh9erVuOeee/DJJ59g0qRJkCSpHiImajjk7p8mkwnjx4/H5s2b8emnnyIxMdGal0E3kDunVbk+4iY/P98m7RE5K7n655UrV1BUVIRXXnkFr7zyyk3PR0dHY8iQIVw2vJYc8Xp7+vRpAH8VGah25Mxpx44dsWzZMmRlZVXanp2dDaDh5ZS3TRHJYPTo0TAajXjhhRdueq6iogJ5eXkArr2xEEJUer5du3YAYB6C6O7uDgDmY4iobuTun9OmTcOaNWuwZMkS80oMVDdy5jQ3N7fK7e+//z4kSUKHDh0saofIVcnVP4ODg/Hll1/e9NOnTx+4ubnhyy+/xNNPP239C2ugHO16m5WVhQ8++ABt2rRBWFiYha+CbiRnTocMGQKtVovly5fDZDKZt7/33nsAgNtvv702L8XpceQNkQwSExMxZcoUzJ8/H/v378eAAQOgVqtx4sQJrF27FosWLcLIkSOxcuVKLFmyBMOGDUNsbCwKCwuxbNkyeHt7Y9CgQQCu3QvaokULrFmzBs2aNYO/vz9atWp1y9ssVq1ahTNnzqCkpAQAsH37drz44osAgHvvvReRkZH2/yUQOSg5++fChQuxZMkSdOvWDe7u7vjwww8rPT9s2DB4eHjY/XfgauTM6bx587Bjxw4kJSVBr9fj8uXL+Pzzz7F7925MmzYNTZo0qc9fBZHDkat/uru7Y+jQoTdt/+qrr7Br164qn6OayXm9nTFjBk6dOoV+/fohPDwcGRkZWLp0KYqLi7Fo0aL6/DW4FDlzGhoaimeeeQbPPfcckpKSMHToUBw4cADLli1DSkoKEhIS6vNXIT8ZV7oiajD+vuTede+++67o2LGj0Ol0wsvLS7Ru3VrMmDFDZGdnCyGE2Lt3r0hJSRF6vV5otVoRHBwskpOTRVpaWqV2du7cKTp27Cg0Go1Fy+8lJiZWWrL2xp8tW7bY6mUTOQVH6p8TJkyotm8CEOnp6bZ86S7LkXK6ceNGkZycLMLDw4VarRZeXl6iR48eYvny5Q1uiVMiIRyrf1aFS4XXjiPlc/Xq1aJXr14iKChIqFQqERgYKIYNGyb27Nlj09fs6hwpp0IIYTKZxOLFi0WzZs2EWq0WjRs3Fs8++6woLy+32Wt2FpIQfxvbREREREREREREDoNz3hAREREREREROTAWb4iIiIiIiIiIHBiLN0REREREREREDozFGyIiIiIiIiIiB8biDRERERERERGRA2PxhoiIiIiIiIjIgbF4Q+RgMjIyIEkSVqxYIXcoRFQF9lHXwnwSOTb2UdfCfLoW5rN+sXhDREREREREROTAJCGEkDsIIvqLEAJlZWVQq9VQKpVyh0NEf8M+6lqYTyLHxj7qWphP18J81i8Wb4iIiIiIiIiIHBhvmyKyg9mzZ0OSJBw/fhzjxo2Dj48PgoKCMGvWLAghcPbsWQwZMgTe3t4IDQ3F66+/bj62qntHJ06cCE9PT2RlZWHo0KHw9PREUFAQnnrqKRiNRvN+W7duhSRJ2Lp1a6V4qmrz/PnzuO+++9CoUSNotVqEhYVhyJAhyMjIsNNvhchxsI+6FuaTyLGxj7oW5tO1MJ/Og8UbIjsaM2YMTCYT/v3vf6NLly548cUXsXDhQtx+++2IiIjAyy+/jCZNmuCpp57C9u3bb9mW0WjEwIEDERAQgNdeew2JiYl4/fXX8e6771oV24gRI/Dll1/ivvvuw5IlS/DYY4+hsLAQmZmZVrVH5IzYR10L80nk2NhHXQvz6VqYTycgiMjmnn/+eQFAPPjgg+ZtFRUVolGjRkKSJPHvf//bvP3KlStCp9OJCRMmCCGESE9PFwDE8uXLzftMmDBBABBz586tdJ727duLjh07mh9v2bJFABBbtmyptN/f27xy5YoAIF599VXbvGAiJ8M+6lqYTyLHxj7qWphP18J8Og+OvCGyo0mTJpn/rVQq0alTJwgh8MADD5i3+/r6Ii4uDqdPn66xvYceeqjS49tuu82i4/5Op9NBo9Fg69atuHLlSq2PJ3IV7KOuhfkkcmzso66F+XQtzKfjY/GGyI70en2lxz4+PnBzc0NgYOBN22u6GLm5uSEoKKjSNj8/P6suYlqtFi+//DK+++47hISEoFevXnjllVdw/vz5WrdF5MzYR10L80nk2NhHXQvz6VqYT8fH4g2RHVW1ZF51y+iJGhZ+s2T5PUmSqtx+4+Rg1z3xxBM4fvw45s+fDzc3N8yaNQvNmzfHvn37ajwPkatgH3UtzCeRY2MfdS3Mp2thPh0fizdELsTPzw8AkJeXV2n7mTNnqtw/NjYW06dPx8aNG3Ho0CGUl5dXmkGeiGyLfdS1MJ9Ejo191LUwn66F+aw9Fm+IXEhkZCSUSuVNM8AvWbKk0uOSkhKUlpZW2hYbGwsvLy+UlZXZPU6ihop91LUwn0SOjX3UtTCfroX5rD2V3AEQke34+Phg1KhRWLx4MSRJQmxsLNavX48LFy5U2u/48ePo168fRo8ejRYtWkClUuHLL79ETk4O7r77bpmiJ3J97KOuhfkkcmzso66F+XQtzGftsXhD5GIWL14Mg8GAd955B1qtFqNHj8arr76KVq1amfdp3LgxUlJSsHnzZqxatQoqlQrx8fH49NNPMWLECBmjJ3J97KOuhfkkcmzso66F+XQtzGftSKKm2YaIiIiIiIiIiEg2nPOGiIiIiIiIiMiBsXhDREREREREROTAWLwhIiIiIiIiInJgLN4QERERERERETkwFm+IiIiIiIiIiBwYizdEDVhGRgYkScKKFSvkDoWIqsA+6lqYTyLHxj7qWphP18J8snhDZLFTp05hypQpiImJgZubG7y9vdGjRw8sWrQIV69etdt5Dx8+jNmzZyMjI8Nu57DEvHnzcNdddyEkJASSJGH27NmyxkP0dw25jx49ehQzZsxAu3bt4OXlhbCwMAwePBhpaWmyxVRXzKdr5ZNcT0Puo9nZ2Rg3bhzi4uLg5eUFX19fdO7cGStXroQQQra46oL5ZD5tgfm0L5XcARA5g2+//RajRo2CVqvF+PHj0apVK5SXl+N///sf/vnPf+L333/Hu+++a5dzHz58GHPmzEHv3r0RFRVll3NY4tlnn0VoaCjat2+P1NRU2eIgqkpD76Pvvfce3n//fYwYMQIPP/ww8vPzsXTpUnTt2hXff/89+vfvL0tc1mI+XSuf5Hoaeh+9ePEizp07h5EjR0Kv18NgMGDTpk2YOHEijh07hpdeekmWuKzFfDKftsJ82pkgols6ffq08PT0FPHx8SI7O/um50+cOCEWLlxot/OvXbtWABBbtmypcV+TySRKSkosbjs9PV0AEMuXL7doXyGEyM3NFQDE888/b/F5iOyJfVSItLQ0UVhYWGnbxYsXRVBQkOjRo4fF53MEzKdr5ZNcD/to9ZKTk4WHh4eoqKiw6ng5MJ/VYz5rj/m0LxZviGrw0EMPCQBix44dFu1vMBjE3LlzRUxMjNBoNCIyMlI8/fTTorS0tNJ+kZGRYvDgweKnn34SCQkJQqvViujoaLFy5UrzPsuXLxcAbvq5fkG83sb3338vOnbsKLRarXjjjTeEEEKcOnVKjBw5Uvj5+QmdTie6dOki1q9fXykGay6CLN6Qo2Efrd7w4cOFv7+/VcfKhfmsnjPmk1wP+2j1Hn30USFJUq0+kMqN+awe8/kX5tMxsHhDVIOIiAgRExNj8f4TJkwQAMTIkSPFW2+9JcaPHy8AiKFDh1baLzIyUsTFxYmQkBDxr3/9S/znP/8RHTp0EJIkiUOHDgkhrl3IHnvsMQFA/Otf/xKrVq0Sq1atEufPnze30aRJE+Hn5ydmzpwp3nnnHbFlyxZx/vx5ERISIry8vMQzzzwjFixYINq2bSsUCoX44osvzDGweEOugH20et27dxfNmjWz6li5MJ/Vc8Z8kuthH/1LSUmJyM3NFenp6WLFihXCw8NDdO/e3eLfjSNgPv/CfDKfjo7FG6JbyM/PFwDEkCFDLNp///79AoCYNGlSpe1PPfWUACB+/PFH87bIyEgBQGzfvt287cKFC0Kr1Yrp06ebt91q+OH1Nr7//vtK25944gkBQPz000/mbYWFhSI6OlpERUUJo9EohGDxhpwf+2j1tm/fLiRJErNmzar1sXJhPqvnjPkk18M+Wtn8+fMrjTDo16+fyMzMtOhYR8B8VsZ8XsN8Oi6uNkV0CwUFBQAALy8vi/bfsGEDAODJJ5+stH369OkArk0gdqMWLVrgtttuMz8OCgpCXFwcTp8+bXGM0dHRGDhw4E1xdO7cGT179jRv8/T0xIMPPoiMjAwcPnzY4vaJHBn7aNUuXLiAsWPHIjo6GjNmzKhTW/WJ+ayas+aTXA/7aGUpKSnYtGkTVq9ejbFjxwKAXVfysTXmszLm8xrm03GxeEN0C97e3gCAwsJCi/Y/c+YMFAoFmjRpUml7aGgofH19cebMmUrb9Xr9TW34+fnhypUrFscYHR1dZRxxcXE3bW/evLn5eSJXwD56s+LiYiQnJ6OwsBBff/01PD09rW6rvjGfN3PmfJLrYR+tLDIyEv3790dKSgo++ugjxMTEoH///k7zAZH5rIz5vIb5dFws3hDdgre3N8LDw3Ho0KFaHSdJkkX7KZXKKrcLISw+l06ns3hfIlfDPlpZeXk5hg8fjoMHD+Lrr79Gq1at6u3ctsB8Vubs+STXwz56ayNHjsTZs2exfft22WKoDebz1pjPyphP+bF4Q1SD5ORknDp1Cj///HON+0ZGRsJkMuHEiROVtufk5CAvLw+RkZG1Pr+lF9S/x3Hs2LGbth89etT8PJGrYB+9xmQyYfz48di8eTNWr16NxMTEWrfhCJjPa1wln+R62Eerd/0b/fz8fJu0Vx+Yz+oxn8yno2HxhqgGM2bMgIeHByZNmoScnJybnj916hQWLVoEABg0aBAAYOHChZX2WbBgAQBg8ODBtT6/h4cHACAvL8/iYwYNGoRdu3ZVunAXFxfj3XffRVRUFFq0aFHrOIgcFfvoNdOmTcOaNWuwZMkSDB8+vNbHOwrm8xpXySe5HvZRIDc3t8rt77//PiRJQocOHWrVnpyYT+aT+XQeKrkDIHJ0sbGxWL16NcaMGYPmzZtj/PjxaNWqFcrLy7Fz506sXbsWEydOBAC0bdsWEyZMwLvvvou8vDwkJiZi165dWLlyJYYOHYo+ffrU+vzt2rWDUqnEyy+/jPz8fGi1WvTt2xfBwcHVHjNz5kx8/PHHuOOOO/DYY4/B398fK1euRHp6Oj7//HMoFLWv265atQpnzpxBSUkJAGD79u148cUXAQD33nsvR/OQbNhHr73xWrJkCbp16wZ3d3d8+OGHlZ4fNmyY+Q2Vo2M+XSuf5HrYR4F58+Zhx44dSEpKgl6vx+XLl/H5559j9+7dmDZt2k1ziDgy5pP5ZD6diJxLXRE5k+PHj4vJkyeLqKgoodFohJeXl+jRo4dYvHixKC0tNe9nMBjEnDlzRHR0tFCr1aJx48bi6aefrrSPENeWyxs8ePBN50lMTBSJiYmVti1btkzExMQIpVJZafm96toQQohTp06JkSNHCl9fX+Hm5iY6d+4s1q9fX2mf2iy5l5iYWGm5vRt/qloOkKi+NeQ+OmHChGr7JwCRnp5+y+MdEfPpWvkk19OQ++jGjRtFcnKyCA8PF2q12vzaly9fLkwm0y2PdVTMJ/PJfDo+SYhazDBERERERERERET1inPeEBERERERERE5MBZviIiIiIiIiIgcGIs3REREREREREQOjMUbIiIiIiIiIiIHxuINEREREREREZEDY/GGiIiIiIiIiMiBsXhDREREREREROTAWLwhIiIiIiIiInJgLN4QERERERERETkwFm+IiIiIiIiIiBwYizdERERERERERA6MxRsiIiIiIiIiIgfG4g0RERERERERkQP7f2TiJ0rNgFycAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -365,14 +365,14 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "## Repeated Measures Plot"
+ "## Repeated measures plot"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "DABEST version 2023.02.14 expands the repertoire of plots for experiments with repeated-measures designs. DABEST now allows the visualization of paired experiments with one control and multiple test \n",
+ "DABEST **v2023.02.14** expands the repertoire of plots for experiments with repeated-measures designs. DABEST now allows the visualization of paired experiments with one control and multiple test \n",
"groups, as well as repeated measurements of the same group. This is an improved version of paired data plotting in previous versions, which only supported computations involving one test group and one control group.\n",
"\n",
"The repeated-measures function supports the calculation of effect sizes for\n",
@@ -396,11 +396,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:57:06 2025.\n",
+ "The current time is Tue Mar 25 16:03:06 2025.\n",
"\n",
"Paired effect size(s) for repeated measures against baseline \n",
"with 95% confidence intervals will be computed for:\n",
@@ -430,11 +430,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:57:07 2025.\n",
+ "The current time is Tue Mar 25 16:03:07 2025.\n",
"\n",
"The paired mean difference for repeated measures against baseline \n",
"between Control 1 and Test 1 is 0.48 [95%CI 0.241, 0.749].\n",
@@ -472,7 +472,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeUAAAInCAYAAACm+EFAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/Xd8VPed748/1Ua9994LQogqIbpAiGqqjWk2YOwkm+x3b3Y325J9bDbJTXaTvde7SfbGJcamF9tUgymiF1EkEAIJ9V5HbUZtNH3O7w9+c1aDBAgQIPB5Ph7zQIxGM59p53U+7/J6WwmCICAhISEhISHx0rF+2QuQkJCQkJCQuI8kyhISEhISEiMESZQlJCQkJCRGCJIoS0hISEhIjBAkUZaQkJCQkBghSKIsISEhISExQpBEWUJCQkJCYoQgibKEhISEhMQIQRJlCQkJCQmJEYIkysNMc3Mzv/jFL2hubn7ZS5GQkJCQeMWQRHmYaW5u5pe//KUkyhISEhIST4wkyhISEhISEiMESZQlJCQkJCRGCJIoS0hISEhIjBAkUZaQkJCQkBghSKIsISEhISExQpBEWUJCQkLiuWAwGF72El45JFGWkJCQkBh2Ojo6+OMf/0h1dfXLXsorhSTKEhISEhLDikajYe/evchkMgIDA1/2cl4pJFGWkJCQkBg2TCYT+/fvR6VSsXbtWhwcHF72kl4pJFGWkJCQkBg2srKyqKqqYtWqVXh7e7/s5bxySKIsISEhITEs5OXlcf36dRYsWEBUVBTNzc0IgvCyl/VKIYmyhISEhMQzU1tby7fffktKSgqpqancvn2bP//5z5SWlr7spb1S2L7sBUhISEhIvNoolUq+/PJLwsLCWLBgAbdu3eLo0aNMmjSJ+Pj4l728VwpJlCUkJCQknhqtVsvevXtxcHBg1apV3L59m2PHjpGamsrChQuxsrJ62Ut8pZDC1xISzxEpnybxOmMymThw4ABdXV2sXbuWwsJCjh07xuTJkyVBfkokUZaQeE6UlZXx4YcfcufOnZe9FAmJ58K5c+coLy/nrbfeoqqqiuPHjzNlyhQWLFggCfJTIomyhMRzID8/n3379mFjY8Phw4cpKip62UuSkBhW7ty5w5UrV5g3bx7t7e2cOHGCadOmMW/ePEmQnwFJlCUkhpns7GwOHz7MuHHj+F//63+RlJTEgQMHKC8vf9lLk5AYFhoaGvjmm28YP348RqORU6dOMX36dObOnWshyD09PS9xla8mkihLSAwTgiCQlZXF6dOnmTlzJkuWLMHGxobly5cTGxvLl19+KfkAS7zydHV1sW/fPoKDg3F3d+fMmTPMnDmTjIwMC0GuqqriD3/4g3Qy+oRIoiwhMQwYjUYOHz7MtWvXWLhwIXPmzBEPUDY2Nrz11luEh4ezd+9eGhoaXvJqJSSeDp1Ox969e7G1tSU4OJgLFy6Qnp7O7NmzLQS5traWvXv3EhERQWRk5Etc8auHJMoSEs+ITqdj3759FBYW8uabbzJ58uQBt7G1tWX16tUEBASwa9cu5HL5S1iphMTTIwgChw8fRqFQEBYWxrVr15g9ezbp6ekWgtzQ0MDu3bsJCQlh9erV2NpKnbdPgiTKEhLPgFqtZseOHdTW1rJu3TqSkpIeeluZTMa6devw8vJi586dtLW1vcCVSkg8GxcuXKCoqIjg4GDu3r1LRkYGs2bNsrhNc3Mzu3btIiAggLVr12JnZ/eSVvvqIomyhMRT0t3dzRdffIFCoWDjxo1ER0c/9m8cHBx45513cHZ2ZseOHSiVyhewUgmJZ6OwsJALFy7g4eFBdXU1c+fOZcaMGRa3aW1tZefOnXh7e7N+/XpkMtlLWu2rjSTKEhJPQVtbG59//jl6vZ7NmzcTHBw85L91cnJiw4YN2NnZsWPHDrq7u5/jSiUkno2mpiYOHToE3LfTnDdvHtOnT7e4TUdHBzt27MDNzY133nkHe3v7l7HU1wJJlCUknpCGhga++OIL7O3t2bx5Mz4+PoPeTqFQcOTIESoqKgb8zsXFhY0bN2IymdixYwcqlep5L1tC4onp6elhz549dHR0IAgCCxcuZOrUqRa3USqVbN++HUdHR959910cHR1f0mpfDyRRlpB4AsrLy9m+fTu+vr689957uLm5DbiNIAjk5eXxySefcO/ePXbt2sXOnTtpaWmxuJ27uzsbN25Eo9GwY8cO1Gr1i3oaEhKPRa/Xs3fvXsrKynB0dGTx4sWkpaVZ3Karq4vt27dja2vLhg0bcHZ2fkmrfX2QRFlCYojcvXuXvXv3EhUV9dAdgUql4ssvv+Sbb74hKSmJn/zkJ6xZs4bOzk4++eQTjhw5YmGo4OXlxYYNG+jp6WHXrl1otdoX+ZQkJAZFEASOHDlCdnY2rq6urFy5ckBXQU9PDzt27ABg48aNuLq6voylvnZYCZJj/rCSl5fHxIkTuXXrFhMmTHjZy5EYJq5du8apU6cYP348S5Yswdp64PlseXk5R44cwWQysXTpUhISEsTfGY1Gbt26xYULF9Dr9UybNo2pU6eKxTBNTU1s376dwMBA1q9fL1WtSrxULl26xCeffIKHhwebN29m0qRJFr9XqVRs27YNjUbD5s2b8fT0fEkrff2QRHmYkUT59UIQBM6ePcuVK1eYPn36ANciuB/mO336NDk5OcTGxrJs2TJcXFwGvT+NRsPly5e5fv06Tk5OzJ49m3HjxmFtbU1dXR07d+4kPDycNWvWSP2dEi+FoqIifv3rX2Nvb89f/dVfDTiOqdVqtm/fTk9PD++9995Dayokng5JlIcZSZRfH0wmE0ePHuX27dvMnz+fKVOmDLhNc3MzBw4coLOzk/nz5zNp0qQhmfF3dnZy9uxZCgoK8Pf3Z968eURHR1NVVcXu3buJi4tj1apVg+7IJSSeF83NzfzDP/wDWq2Wf/qnfxpwDNNqtezYsQOFQsGmTZvw9/d/SSt9fZFEeZiRRPn1QK/Xs3//fsrLy1m+fDnJyckWvzeZTGRnZ3P+/Hn8/f1ZuXIlvr6+T/w4DQ0NZGVlUVdXR0xMDPPmzUOpVPLll18yZswYli9fLk3ckXgh9PT08OMf/5i2tjb+9V//dUDIWqfTsWvXLlpbW9m4cSOBgYEvaaWvN1J8TELiAdRqNXv37qW5uZm1a9cSGxtr8fvOzk4OHjxIfX0906dPJz09HRsbm6d6rJCQEN577z1KSko4ffo0H3/8MRMmTGDBggWcOHECOzs7Fi9eLAmzxHNFp9Px05/+lIaGBn7xi18MEGS9Xs++ffuQy+Vs2LBBEuTniCTKEhL96OnpYefOnfT09LBx40ZCQkLE3wmCwN27dzl+/DiOjo5s2rSJ8PDwZ35MKysrRo0aRVxcHDdv3uTChQsUFBQQHBzMjRs3kMlkZGZmSsIs8VwwGo38y7/8C8XFxfz0pz8d0IdsNBr56quvqK+vZ/369RbfCYnhRxJlCYn/P+3t7ezatQtBENi8ebNFOFqtVnPs2DHu3bvH2LFjWbhwIQ4ODsP6+DY2NkyePJnk5GQuX77MjRs36Orq4uDBg9jZ2TF79uxhfTwJCZPJxG9/+1tycnL4q7/6K+bOnTvg9/v376eqqop169YRERHxchb6HUISZQkJoLGxkd27d+Ps7Mw777yDu7u7+LuqqioOHz6MXq9n1apVjB49+rmuxdHRkXnz5pGSksLZs2f59ttv+fDDD2lvb2fVqlXP9bElvjsYjUb+9Kc/cebMGd555x1Wrlxp8XuTycShQ4coLS1l9erVQ/J2l3h2JFGW+M5TWVnJl19+iZ+fH+vWrcPJyQkAg8HA2bNnuXbtGlFRUSxfvnxQB6/nhaenJ2+99RZpaWn8/ve/509/+hMlJSX84Ac/wM/P74WtQ+L1w2g08sUXX3D06FHeeOMNNm/ebPF7QRA4evQohYWFrFq1ivj4+Je00u8ekihLfKcpLCzk0KFDREVFsWrVKtHMo6WlhQMHDtDR0cH8+fNJS0t7aTndkJAQ/uM//oPPPvuMw4cP09TUxOLFi0lPT39oP7SExMMwGo3s2rWLQ4cOMW3aNP6//+//s/hsC4LA8ePHyc/PZ8WKFSQmJr7E1X73kERZ4jvLjRs3OHnyJMnJySxduhQbGxsEQeD69eucOXMGHx8fvv/974+IXkxra2u+//3v4+vry4kTJzh//jx3795l+vTpTJkyRXIAkxgSBoOBL7/8kiNHjpCUlMRf//VfW0x0EgSBrKwscnNzWbp06YBWwCdBLpdz7tw5Fi9ebJEOkng0kihLfOcQBIHz589z6dIlpk6dKlY2d3d3c+jQIaqrq5k6dSpz5swZUa5aVlZWLF++HJPJxN27dwkMDOTixYvcvHmTjIwMkpOTpQptiYdiMBjYt28fJ0+eJCwsjL/8y7/Ew8PD4jbnz5/n2rVrLFq06Kl9Frq7uzl37hx37tzBy8uL3t5eSZSfgJFzxJGQeAGYTCa+/fZbbt26RWZmJtOmTQPuh7GPHTuGTCZjw4YNREVFPdPjqNVqsrOzycvLY8aMGcMW/ra2tmbFihXo9XoqKytZsmQJZWVlHDp0iOvXrzNv3jwiIyOf+XEkXi/MgnzlyhVxCMqD7XyXL1/m0qVLZGZmkpqa+sSPodFoyM7O5tq1a9jb24vC/rQ9/N9VJEevR/Db3/6Wn/70p/z4xz/m97///ZD+RnL0GrkYDAb2799PWVkZS5cuZdy4cWg0Go4fP87du3cZPXo0b7zxxjPNg9Vqtdy4cYOrV69iNBqJjIykrKyMcePG8cYbbwzbzttgMLBnzx4aGhrEucynTp2ioaGBuLg4MjMzn8phTOL1w2z8kZ+fj9FoZOHChcyfP9/iNuaBK7Nnz2bWrFlPdP9Go5GbN29y8eJF9Ho9U6ZMYdq0aRZhcYmhI+2UH0Jubi6ffvrpM+VUJEYOGo2Gffv20djYyJo1a4iLi6O2tpaDBw+i0WhYuXIlY8aMeerdrMFgIDc3lytXrqDRaJg0aRIzZszAxcWFu3fv8s0339De3s7q1auHZcSdra0ta9asYefOnezatYtNmzbx/vvvU1RUxJkzZ/j444+ZOHEi6enp0ozb7zB6vZ49e/ZQVlaGjY0N48ePJzMz0+I2ubm5nDp1iunTpzNz5swh37cgCBQXF3PmzBmUSiXjx48nPT39hXYovI5IO+VB6O3tZcKECXz00Uf8+te/Zty4cdJO+RWmp6eH3bt309nZyfr16wkKCuL8+fNkZ2cTFhbGihUrBuTWhorRaCQ/P5+LFy/S29vLuHHjmDVr1oAcWmNjI/v27cPKyorVq1cTHBw8DM/s/snG9u3b6e7uFif2GAwGcnJyuHTpEoIgMH36dNLS0qRisO8YOp2OPXv2UFtbC4C3tzcffPCBhelNfn4+hw8fJi0tjfnz5w/5pLS+vp6srCzq6+uJjY1l7ty5I6Ig8nVAEuVB2LhxI15eXvzXf/0X6enpjxRlrVZrMZg+Pz+fWbNmSaI8QlAoFOzcuRODwcC7776LlZUVBw8epLW1ldmzZzN16tSnmsQkCAKFhYWcP38ehUJBUlISs2fPxtvb+6F/09PTw5dffolcLmfZsmWMGTPmWZ6aSF9fH1u3bkWr1fLee++Js237+vq4dOkSOTk5uLq6kpGR8UzRAIlXB51Ox+7du2lqasLJyQmdTsf3vvc9vLy8xNsUFhZy4MABJkyYwBtvvDGkz0VHRwdnzpyhuLiYgIAA5s2b98z1FxKWSKL8APv27eM3v/kNubm5ODg4PFaUf/GLX/DLX/5ywPWSKL98mpub2bVrF46Ojqxfv57y8nKysrLw8PDgzTfffCpTfUEQKC0t5dy5c7S2thIfH8/s2bMJCAgY0t8bDAaOHTtGfn4+06ZNIyMjY1jGM/b09LB161bRIrR/iLz/gTQoKIh58+ZJdomvMVqtlt27d9PS0kJwcDA1NTW8++67FgWAxcXFfP3110OeRKZSqcRKf1dXV+bMmSNV+z8nJFHuR319PZMmTeL06dNiLlnaKb+aVFdXs2/fPnx8fFi6dCmnT5+moqKC1NRUMjMznziUKwgCVVVVnDt3jsbGRiIjI8nIyHgqc35zL3RWVhYxMTG8+eabw+Kj3dnZydatW5HJZGzatGlALrmuro5Tp07R2NhIfHw8mZmZ0oD61wytViuOVxw7diw5OTksXryYlJQU8Tbl5eXs27ePhIQE3nzzzUeeFOr1eq5fv86VK1ewsrJixowZTJ48ecgFi7W1tYSFhUni/QRIotyPw4cPs2LFCosSfqPRiJWVFdbW1mi12seW90s55ZdPUVERBw4cICIiguTkZE6dOoW1tTXLli0bMIZxKNTX13P27FlqamoICQkhIyNjWNqOKioq2L9/Py4uLqxdu/aRoe+h0tHRwdatW3FxcWHTpk0DxF4QBO7du8eZM2fo7u5m0qRJzJo1SyoGew3QaDTs2rWL9vZ20tPTycrKYuLEiSxevFi8TVVVFXv27CEmJoZVq1Y99Hhm7oU/d+4cKpWKlJQUZs6cKVrQDoWKigp27drFmjVrSEhIeObn911BEuV+9PT0iEURZt577z0SEhL4x3/8R5KSkh57H5Iov1xyc3M5fvw48fHxyGQy7t69S0JCAkuWLHli4TE7EpWVleHv78+cOXOIi4sb1rP+jo4O9u7dS29vL6tWrRoW0/+Wlha2bduGt7c3GzZsEK1D+2MwGLhx4waXL19GEASxl3okmaVIDB21Ws2uXbtQKBQsWbKEY8eOERAQwPr160XhraurY+fOnYSHh7NmzZqHvteVlZWcPn0auVzO6NGjycjIsMhFD3U9H330Ef7+/qxfv17aKT8Bkig/hseFrx9kJImy0WjkzJkzBAcHExQUhKen52v75RAEgYsXL3LhwgWio6Pp6Oigr6+PBQsWMH78+Cd63u3t7Zw/f5579+7h7e3N7NmzGT169HN77TQaDQcOHKCiooJ58+YNi9FIY2MjO3bsICgoiHXr1j00XN/X18fFixfJzc3F1dWVuXPnkpSU9Np+Tl5H1Go1O3bsoLOzk9WrV/Ptt99iNBr53ve+J/bcmz8PgYGBrF+/ftDPg1wu5/Tp01RWVhIWFsa8efOeenbygQMHKC8v50c/+pHUIvWESKfFrzHd3d2UlJRw7do14P5IwODgYFGkg4ODX4uBBiaTiRMnTnDjxg28vb2prKwkJCSEDRs2PNEZfmdnJxcvXiQ/Px83NzfRYGQ4CrEehYODA2vXruXs2bOcOnWKlpaWZzYaCQ4OZt26dezatYuvv/6a1atXDxqqdHJyYuHChaSmpnL69GkOHDggOoM96PgkMfLo6+tjx44ddHd38+6773LhwgV6enr44IMPREGWy+Xs3LlTnIL2oCA/aIu5Zs0a4uPjn/rErKioiIKCAlauXCkJ8lMg7ZSHmZG0UzbT19dHY2MjTU1NNDY20tjYiEqlAsDd3d1CqIOCgl4pJx6DwcDBgwe5desWdnZ2yGQyZs2axYwZM4Yspr29vVy6dIlbt27h4ODAzJkzmThx4ksJ5ZqNRgICAobFaKSyspI9e/YMqagHoKamhqysLJqamhg1ahRz584dlly3xPCjUqnYsWMHvb29bNiwgbt373L16lXWr19PTEwMAK2trWzbtg0PDw82bNhgUWOg1Wq5cuWKaIuZnp7+zLaYvb29fPTRR0RERLBq1Sop4vIUSKI8zIxEUX4QQRDo6uqyEOmmpiZ0Oh1WVlb4+PhY7Kb9/f1HZK5Rq9Wyd+9ebty4gb29PVFRUaxcuXLIITezP/WNGzewsbFh2rRpTJ48edAc7ItkuI1GSkpK+Oqrr0hOTmbZsmWPPVCae7DPnDlDT08PKSkpzJo164mKfCSeLyqViu3bt6NSqdi4cSNNTU0cPnyYBQsWkJaWBvxP0Z+zszObNm0Sd85Go5Fbt25x4cKFYbXFFASBvXv30tTUxI9+9CPp8/KUSKI8zLwKojwYJpOJjo4OUaQbGxtpaWnBaDRiY2NDQECAKNLBwcH4+Pi81LPg3t5evvjiC65du4a/vz8ZGRnMnz9/SIKq1Wq5fv06V69eRRAE0tLSmDp16rC0JQ0Xw200UlBQwMGDB0lJSWHhwoVDeu/0er1YDGZlZcXMmTNJTU0dkSdo3yV6e3vZvn07arWajRs3otFo2LZtG2PHjmXJkiVYWVnR2dnJF198gUwm47333sPZ2RlBECgpKeHMmTMoFArGjRvH7Nmzhy3EfPv2bY4cOcLatWuJj48flvv8LiKJ8jDzqoryYBgMBlpaWiyEur29HQB7e3sCAwNFkQ4ODsbNze2FCLVSqeTDDz8kPz+f8ePH88477wzpIGD2p758+TJarZaUlBRmzJgxYtuBhtto5NatWxw9epRp06Yxd+7cIb9X/Y0j3NzcmDt37nMtfJN4OD09PWzfvh2tVsvGjRuxs7Pjz3/+Mz4+PmzYsAEbGxu6u7vZunUrVlZWvPfee7i6ulrYYsbExJCZmTmstpidnZ18/PHHJCYmsmzZsmG73+8ikigPM6+TKA+GRqOhubnZIuzd1dUFgIuLi8VuOigoaNhDWPX19fziF7+gqamJFStWsG7duscWqw3Vn3okMtxGI9evX+fkyZPMmTPniYYPwP2q9NOnT1NaWkpISAjz5s0jLCzsqdci8WR0d3ezfft29Ho9GzduxNXVlS+++AKNRsP3vvc9nJ2d6e3tZevWrRgMBt577z2MRiNnz56lqKjoudliCoLA9u3b6ezs5Ic//OErVZMyEpFEeZgZSaIsCAJ3794lODgYb2/v57az6e3ttRDpxsZG1Go1AJ6enha76YCAgKfO2d64cYPf/OY3WFtb87d/+7fMmDHjkc/JZDJRWFjIhQsXUCqVJCUlkZ6e/koWLg2n0cilS5c4d+6cRf7xSaiuriYrK4vm5mYSExOZO3fuE/exSjwZ3d3dbNu2DaPRyMaNG/H09OSrr76isrKS999/H39/f/r6+ti2bRtqtZrVq1dTUFAgtro9T1tM84nexo0bpVnew4AkysPMSBLljo4O/vu//xv4n3aokJAQQkJCCA4Ofqa5wY9CEASUSqWFUDc3N6PX67GyssLPz89CqH19fR9Z8Wkymdi1axfbt28nLCyMX//6148sfjLnzs6fPy/6U8+ZM+eVn2IzXEYjgiBw5swZsrOzWbJkCRMnTnyq+7h79y5nz54VHZ9mzZr13D5T32W6urrYtm0bJpOJTZs24enpyblz57h8+bLYvmTuVTaffBYUFACItpjPa0JYe3s7n3zyCZMmTWLBggXP5TG+a0iiPMyMJFGG+xXGTU1NNDQ0iBfzLtbHx0cU6ZCQEPz8/J5bT67JZKK1tdViN93a2orJZMLW1tYiPx0UFISXlxdWVlYolUp+//vfc+nSJWbOnMnPfvazh4bHHvSnjoqKYs6cOU9tgDASGS6jEUEQOH78ODdv3hRnST8NZm/ky5cvY21tzaxZs0hJSZGKwYaJzs5Otm/fjiAIbNq0CQ8PDwoKCjhw4ABz585l+vTpaLVatm/fzr1798TvzYuomDcajXz++efodDp+8IMfSKNBhwlJlIeZkSbKDyIIAgqFwkKkW1paMJlM2NnZERQUZCHUz9on+yj0ej3Nzc0WrVkKhQK4b6hhPuB3dXWxfv16fvCDHzz0pKGuro5z585RU1NDaGgoc+bMeW1DaSaTibNnz5Kdnc24ceOe2mhEEASOHDnC3bt3efvtt5/Jn7i3t5cLFy6Ql5eHu7s7c+fOJTExUSoGewaUSiXbt2/HysqKTZs24e7uTmNjI1u3bmX06NEsX74cg8HAf/7nf3Lt2jWio6OZPHnyC0snXLx4kYsXL/L+++8P23xwCUmUh52RLsqDYRbH/kLd3d0N3DcX6S/SgYGBz3UX1NfXR2VlJQcOHOD06dOoVCrGjBlDVFTUoEYnSqWSc+fOUV5eLrZGxcbGfifEYDiMRkwmE/v376e0tJR169Y9s/d2W1sbp0+fpqysjNDQUObNm0doaOgz3ed3EYVCwfbt27GxsWHjxo24u7vT3d3NZ599hru7O5s2baKlpYVf/epXVFRUsHDhQtasWfPCokJNTU1s2bKFGTNmMHv27BfymN8VJFEeZl5FUR6M7u5uC5FuamrCYDBgY2ODv7+/hVAPp6d2ZWUlBw8e5M6dO+LBJy4uboDRiVKppLq6GpVKRVBQEHPmzGHGjBnP/aRhpDEcRiNGo5F9+/ZRU1PDO++8Myz2mlVVVWRlZYlDDebOnYunp+cz3+93AYVCwbZt27Czs2Pjxo24ubmh1+vZunUrvb29rFmzhhs3brBr1y60Wi1//dd/TUZGxgs7ETUYDHz66afY2trywQcfPJMDmMRAJFEeZl4XUX4Qo9FIa2urhVB3dHQA9/2T+4t0UFDQE7ft6PV6zp49y5UrV2hra8PX15d169aRmJhocbvOzk7Onz/PtWvXMJlMhIeHI5PJaG1tFY1O/P39BxidPG//6pfJcBiN6PV69uzZQ1NTExs3biQoKOiZ1yUIAnfu3BHH/02ePJkZM2ZIxWCPoKOjg23btmFvby+2PQmCwIEDB7h37x6jRo2irKyMkpISnJ2d+clPfkJcXNwLXWNWVhY5OTl8//vfx8/P74U+9ncBSZSHmddVlAfD7KltFunGxkY0Gg1WVlb4+vpaVHv7+vo+VBjlcjkHDx5ELpej0+lwc3Nj7dq1Fjnhnp4eLl++/FB/aqPROKjRiSAIyGSyAUYn7u7ur1WIeziMRnQ6HTt27KCjo4NNmzYNW7W6Xq/n2rVrXLlyBRsbG7EYbLh2WCaTCZ1Oh06nQ6vVij/rdDoAYmJiXondXHt7O9u2bcPR0ZGNGzeK/ffnz59nz549uLu74+HhgcFgwGQysX79+hfunFVbW8u2bdvIzMxk6tSpL/SxvytIojzMfJdE+UEEQaC9vd1CqFtaWkRhfLAly9nZmWvXrnH27FmcnJzQarXIZDLWr19PYGAgMNCfevr06aSmpg7ZTvNBo5POzk4AnJ2dBxidjFRnr6EyHEYjarWa7du309vby3vvvTesPd29vb2cO3dO7J2dPn06ERER6PX6QQX1YUL74HUGg+GRjzt27FiWL18+ok/C2tra2L59O05OTmzcuFG0xfz222/505/+REBAAMuWLUOj0VBaWspbb73F6NGjX+gatVotn3zyCW5ubmzcuPG1jj69TCRRHma+y6I8GDqdbkBLVm9vLxqNhvr6evR6PcnJyajVary9vdm0aRNeXl7PzZ9apVJZ7Kabmpro6+sDwMPDw2I3HRgY+NKHUzwNz2o0olKp2LZtG1qtlnfffRcnJ6cnFspHXa9SqaisrEShUODu7k50dLSF/7J52pf5Ym9vb/H/h1032PWVlZUcOnToqRzMXhStra1s374dFxcXNmzYgLOzM/X19ezfv5+jR48yevRofvazn3H79m1yc3NZvnw5Y8eOfeHrPHr0KAUFBfzwhz+U6gOeI5IoDzOSKD8aQRC4du0aX3/9NSqVCi8vL/Ly8pDJZIwfP57g4GDUajX19fU4OTkxffr05+pPLQgCnZ2dFiLd1NQkGp2Yw/Dmi5+f34gNhRqNRlH45HI5X3/9Nd3d3cydO5eAgIAnEs/u7m5u3LgBwLhx4x7aG25jY/NEItn/uubmZq5evSoaXsybN++59MpfvHiR8+fP8+abbz7zYI/hpqWlhe3bt+Pm5saGDRvQaDScOXOG/Px8ysvLGTduHH//93/PhQsXuHr16lObvTwr5eXl7N69+6U9/ncJSZSHGUmUH45Go+Hbb7+loKCApKQkYmNjOXr0KEFBQUyfPp2rV6+KLlweHh6Eh4eLBifm0PeLmPdsMploa2uzMDox93Lb2toSEBBgEfZ+GgtTQRCGbedpvs5oNFo8hsFgoKioCIVCQXR0NKGhoTg4OAx516nVajl+/DiOjo6sWbMGd3f3Abd91hMUk8kkFoP19fWRlpbGjBkzhnVilyAIHD58mMLCQjZu3Dhi/Lrlcjk7duzA3d2dt956i5ycHHJzc3F0dESlUuHs7MwPfvADbt26xcWLF1m4cCGTJ09+4evs6+vj448/JiAggHXr1o3oNMDrgCTKw4wkyoNTU1PDoUOH0Gg0vPHGGxgMBo4ePUpsbCxxcXFcuXKFzs5OkpKSmD17Nvb29gOKyLRarWjT2b/a+0WMkdTr9cjlcovWLHP1uYODw4D8tKurK9XV1eTm5qJSqQYIql6vf+xjPk249sHrbW1tyc7OJjc3lwkTJrBkyZInahlrb29n69atYh7xeY231Ol0YjGYnZ0ds2bNYtKkScMWlTAajezcuZPW1lY++OCDl+7V3dzczI4dO3BzcyMuLo6cnBwApk+fjlwup7S0lPfee4+qqirOnj1LZmYm06ZNeylr3b9/P5WVlfzoRz964l743t5eHB0dR2x0aSQiifIwI4myJQaDgfPnz3P16lXCwsJYvnw59+7d4/Tp0/j7+2MymWhvbychIYHZs2c/tOLXfLv+uem2tjYEQcDe3t6igCwkJOSFDFg3W5j2F+ru7m46OzuRy+X09PQgk8lITU0lMTERFxeXIQuqnZ3dsJ5oPIvRiFwuZ9u2bfj6+vLuu+8+1zx7T08P58+f5/bt23h5eZGZmUl8fPywvBZqtZotW7YA8P7777+Qz8hgNDU1ifOQXVxc0Gg0pKSkMHPmTPLz8zl9+jRvvvkmKpWKkydPkp6eTnp6+ktZa2FhIfv37+ett94iKSnpsbcXBAG5XE5ZWRllZWU0NTXx7rvvDvtkqtcZSZSHGUmU/4fW1lYOHjxIW1sbc+bMIS0tjdOnT3P8+HHs7OxwcXEhJiaGOXPmPJXphVarHVBEplKpAPDy8rLYTfv7+z/Xs3VBEKiuruabb74hJydHLGiztrbG39+flJQUkpOTmTBhAuHh4S8lBGg2GgFYs2bNE73mDQ0N7Nixg5CQENatW/fcDVpaWlrIysqisrKS8PBw5s2bNyxWjgqFgi1btognGC/aaKahoYE//OEPNDc3ExERQXJyMhkZGXh7e1NWVsbevXuZPn067u7uHDt27IlnXw8nPT09fPTRR0RFRbFq1aqH3k6n01FVVUVZWRnl5eX09PRgb29PTEwMsbGxxMfHS73pT4AkysOMJMr3BSonJ4fTp0/j6enJypUr8fPzY8uWLZw4cQJfX1/S0tLIyMggIiJiWB+3s7PTQqTlcjlGoxFbW1sLX+/g4GDc3NyGfLAzGo2oVCpaW1uRy+W0tLTQ3t5Oe3s71dXVlJaW0traikajwWQyIZPJ8PLyws7Ojq6uLmJjY0lISEAmk+Hj48OECRMYO3bsc/UWH4xnMRqpqalh165dREdH8/bbb7+QkGRFRQVZWVm0trYyZswYMjIy8PDweKb7rKurY/v27SQlJb3QVqm8vDx++9vfotFoWLRoEYsXLxYtSFtbW9myZQtRUVHEx8dz5MgRJk+ezIIFC16KIAuCwJ49e2hubuZHP/rRgKiCUqkURbi6uhqj0YiPj4+YjgoLC5NC1k+JJMrDzHddlHt6ejh8+DCVlZWiOX5TUxO//e1vKSkpYcaMGbzzzjsvzJ/aYDAgl8sthLqzs1MMe3t7e+Pl5SUWMSkUCtrb2+no6EChUKBUKuns7BTbuMxfF0EQMJlMaDQaDAaD2Mbj6+vLpEmTmDFjBv7+/hQXF7Nr1y4aGhrw9vYmPj4eOzs7tFot7u7uJCQkMGHCBGJjY19Y3+ezGI1UVFSwd+9eRo0axcqVK1/Imk0mE/n5+Zw7dw6NRkNaWhrTp09/pvy2edLS7NmzmTVr1jCudiDd3d189dVX7Nu3D39/f/7hH/7BYrZxX18fn332GTKZjLS0NL755hsmTJjAG2+88dKKqm7dusXRo0dZv349sbGxGI1G6uvrKS8vp6ysjLa2NmxsbAgPDycuLo64uLiXnqd/XZBEeZj5LotycXEx33zzDTY2Nixfvhx3d3dOnjzJ119/jSAI/OVf/iXz589/LgcaQRBQq9WoVCpUKhV9fX3izyqVit7eXrq6uujo6BALtpRKJV1dXfT09KDX6zGZTDg6OuLi4oKLiwv+/v74+/vj7e2Nj48Pvr6++Pr6YjAYKC0tFSuyjUYj9vb2pKamMmPGDBoaGjh16hTZ2dm0trbi6OiIwWDA2toaT09P4uPjxbYjs594WFgYkyZNYvz48cNq2PGo1+tpjUaKi4v5+uuvGTt2LEuXLn1hwqHT6cjOzubq1avY2dmRnp7OxIkTn3pHdunSJc6dO8fKlStJTk4e5tXeT69cuXKFkydPUlBQQGpqKj/96U8tQrlGo5EdO3bQ3t7OrFmzOHnyJGPGjHmpZidKpZKPP/5YDD2XlZVRUVGBRqPBxcVF3A1HRUU9906I7yKSKA8z30VR1mq1nDx5ktu3bzNq1ChmzJhBTk4ON27cEKcF/d3f/d0TTbARBAGtVmshrIOJbf/rNBqNeNFqtWi1WuD+TstgMGBlZYVMJsPOzg4HBwe8vLzw8fHB29sbe3t7DAYDKpVK3BlbW1vj6OgoFo8BlJaW0tzcjJ2dnWh3OGrUKKKiosjLy+PKlSs0NjYik8kYO3YsiYmJojirVCr0ej1OTk5i8ZJaraarqwuNRoOdnR3e3t5MmDBBLA573jNqn9Zo5O7duxw6dIjU1NQXHmLt7u7m/Pnz5Ofn4+3tTWZmJnFxcU/VlnbkyBEKCgrYsGHDsAzigPtCa25jksvlKJVKpk6dyoYNGyyK5ARB4OjRo9y5c4dZs2Zx8eJFEhISePPNN1+KW5a5SOuPf/wj1dXVxMbGYmNjQ1BQEHFxccTGxhIUFCS1RD1nJFEeZr5rolxfX8/BgwdRqVTMnDmTrq4u8vLyMBqNdHZ2EhoaKrp06XS6R4rqg9f177s1G2OYDwjm8LHBYECv16PX67G1tRVF183NDW9vbzw8PPDw8MDd3V30DnZ3d8fZ2Vm8L4PBMKDHV6PRiBXVd+7c4dq1a7S1tYkFara2tuIOur6+nqamJmxsbIiNjSU9PZ3Zs2eL+eKqqiq++uorKisr8fX1xcrKCoPBwMSJE+nt7aW2tpbm5mba2tpQKpXo9XocHBzE0Yfp6emPHBBhY2PzTAVLHR0d7N27l97eXlatWjXk8Y03b97k2LFjzJgxg4yMjKd+/KdFLpeTlZVFVVUVERERzJs374kHaRiNRnbt2oVcLueDDz54piiFIAiUlJRw5swZFAoFAQEBNDQ0EBsby9q1awecYN24cYMTJ06QkpLC7du3X2iu3oxer6e6ulrMDxcWFlJTU8OKFSuYOnUqsbGxL7zu4buOJMrDzHdFlI1GI2fPnuXcuXO4ubnh5uZGSUmJWPBRVVUlunSZi6QG8yh2cnLC0dHR4oBlFtv+vb0GgwFbW1usrKywsrLC1dXVQmQf/HmoYTWzwYZarR7wu6amJvLy8mhubsbFxQW9Xk9paSlKpVI8eQBwdXUlPj6eiRMnEhMTg5+f3wAHso6ODo4dO0ZxcTExMTE4OTlhZWXFokWLcHV1FUPrjY2NlJaWUl5eTnNzM2q1WhyoMWHCBMaPH09QUBDu7u7ibsrR0ZHExMRnEmaNRsOBAweoqKhg3rx5pKWlDWlHdPXqVbKyssjIyGDGjBlP/fhPiyAIYjFYW1ubWM3s7u4+5PtQq9V8/vnnmEwmPvjgg6dqlWpoaCArK4u6ujpiYmKIiYnhzJkzhIeHs2bNmgGCXFlZKRbN1dbWEhYWxtq1a19INXhXV5fYslRdXY3BYMDT0xM/Pz9yc3OZO3cuixYtGpbHksvlBAQEDMt9fVeQRHmYeZVF2WAwWOxaB9vBqlQq2trayM3NRaFQ4OjoKBphmGcrV1RU4Ovry+zZs/H09BRzaA+KrUajobu7m66uLgszDVtb24eKrYeHB66ursO2m9BqteTn54uFWnC/dSg3N5empibc3Nzo6+sTc8i2trY4OTnh4+NDUlISkZGR2NjY0NraSktLiyjU5px0QECAGIbu6enhq6++Ijc3l8mTJyOTyTAYDCxZsmRAkYwgCLS1tZGXl0dOTg4lJSV0dnZia2uLn58fUVFRxMbG4unpiYeHBzNnziQ0NPSZwt0mk4mzZ8+SnZ3NuHHjeOONN4YkEhcuXODChQsvzXEK7q/99u3bnDt3Dq1Wy5QpU5g+ffqQT86USiVbtmzB29ubDRs2DFkcFQoFZ86coaioiICAADIzMxEEgX379hEZGcnq1asH3Fd7eztbtmzB2dmZ7u5ugoODWb9+/XNLVZhMJhoaGsQirZaWFqytrQkLCxOLtDw8PPj8888xGAz84Ac/GJaTg9LSUvbt28fq1atJSEgYhmfy3UAS5WFmJImyIAiDiurDwsUajWbAfchkMpydnXF2dsbJyYnm5mbu3r2LRqPBzc0NV1dXxo0bx/jx46moqODkyZP4+vqSnJwsFld1d3fT/2Pm5OQ0QGz7/9+8i3wRmEXZ2dmZtrY2cnJyqKmpQRAE+vr6KCoqoqenBxcXF0JDQ0lKSmLChAnExMQMWhjV29tLS0sLcrlcvAQFBfHGG29gZ2eHRqNh+/btZGdnM3/+fOD+Tm358uX4+Pg8dJ1qtZp79+5x8eJF8vPz6enpwcnJCV9fXzw9PYmKisLOzg4fHx8CAwMJCAggICCAwMDAJ+4RfVKjEUEQOH36NFevXmXZsmWMHz/+iR5vONFqtWRnZ3Pt2jVkMhnp6ekkJSUN6TWor69n+/btJCYmsmLFikd+Bvv6+rh48SI3b97E2dmZOXPmkJycTGVlJV9++SVRUVG8/fbbA8TNbGDS29uLyWQiICCAd955Z9gLptRqNZWVlWKRVl9fH05OTmKRVnR0tMXn9/z581y+fJkPPvhgWGZpy+VyvvjiC6Kioli9erWUh34CXmlRNhqNfP3116Jf8q9+9SvGjBlDV1cXZ8+eZdq0acM2E3aojCRRViqV/OEPf7C4ztbWVhTZ/hcnJ6dBr7O1tUWlUtHc3MyBAwe4evUqGo0GV1dXAgIC8PPzQxAE6uvrqaysJCgoiIkTJ4ptRoOJ70iavKTVajlx4gS3b9+muLgYvV6PWq1GLpfT19eHt7c3EydOJDU1lYSEhCfqkRUEgZqaGk6dOoW/v78ozAaDgU8//ZTr16+zfPly9Ho93d3dLF++fEhD4zUaDTk5OVy9epXi4mI0Gg2xsbGMGTOGqKgo1Go1LS0tYvTB3d19gFA/rkf7SY1GzGMGb926xZtvvjkk96fnSXd3N+fOnePOnTsIgoC/vz/h4eHixTyr+EHMDlYPc9HS6/XcuHGDy5cvA/dtMdPS0rCzs6OsrIwvv/ySmJgYVq1aNUCQjUYju3fvpry8XPRQHy7rUvPYVHNYur6+XhR98244KCho0AKyxsZGPv/8c2bOnDkszmE9PT189tlnYvGgk5OT1LP8BLyyotzZ2cmCBQvIycnBxcUFlUrF6dOnmTNnDkajkfDwcDZs2MC//du/vdB1jSRRNhgMVFZWWgjtg/aNRqNRDCF3dnbS1dU14Ge5XM7NmzdRKpV4enoyZswYJk6cSEhICG5ubhQXF1NSUsLs2bNZvHjxK/MFLCwsZM+ePVy5cgVBEMQQc19fHwEBAWRkZJCWlkZwcPAjBcwckVAoFCgUCrHHWaFQoNPpcHR0pLW1lYSEBJYsWYKdnR0mk4n//u//5tatW6xYsQKdTkdXVxdLly59ohxcR0cHZ8+epaamhqqqKmxtbUXL0oSEBPR6PS0tLTQ3N4snGnA/D20WaPO/3t7eFgft/kYjS5cufWzbkHnwQ0FBAatXryY+Pn7Iz+N50dXVRU1NDbW1tdTW1op+5d7e3hYi3f9k6/Lly5w9e5YVK1aIIxIFQeDu3bucO3eOnp4e0RbTXDtQUlLC119/TVxcHG+99dag34Hjx49z+fJlrKysCA0NZePGjc9k9WkwGKipqRGFuLOzEzs7O6KiosRq6f4jMQdDr9fz6aefIpPJeP/995/5u9vd3c3vf/97GhsbSUpKQqFQsGHDBiIjI5/pfr9LvLKi/Bd/8Rfs3r2bgwcPMn78ePz8/Dhz5gxz5swB4K//+q+5cOEC+fn5L3RdI0mU4f5O8GFia+7R7f8RcHZ2Fne3jo6OXLp0iZycHJydnVm+fDnLli0Tow8mk4lvvvmG/Px8FixYQFpa2st6mkNGqVRy7tw5vv32WyorK7GyssLW1lZsowoODmb+/PmD5iPNIe3BxNfcfmVjY4Onp6doSuLo6EhRUZG4e0lKSuL9998Xe5f/8Ic/cO/ePRYvXozRaEShULBkyZIhW0qa5xOPGzeOtrY2vv32Wy5fviwWpyUmJjJ79mzGjBmDv78/vb29okDL5XKam5vp7OwE7s8x9vPzs9hVe3t7c+rUqSEbjZhMJr7++mvKy8tZt27diPM87unpEQW6traW1tZW4H40ITw8nIiICMLCwrhy5QoFBQW8++67mEwmsrKykMvlJCYmiraYZsx92+Z2psGE7ebNm+zfvx+dTkdUVBSbNm166G79UXR3d4u54aqqKvR6PR4eHqIIR0REPFFu+uTJk9y8eZMf/OAH+Pr6PvF6NBoNdXV11NTUUF1dzenTp1EqlcyYMYMxY8YQERFBfHz8Uz3X7yqvrCgHBASwefNm/u3f/o2Ojg58fX0tRPmjjz7iZz/7mXjAeVGMJFFWKBT88Y9/FP9vbW09aA7X/LObmxt2dnYIgkB2djb/7//9P1pbW0lPT2fz5s0WfcZ6vZ6vv/6aiooKVqxYMeLm1Panra2N4uJirly5Qm5uLm1tbbi4uODr64ter6e+vp7Q0FAWL15MSkoK1tbWFuLbX4DNeXezEYhZfM2X/lXR5t2vu7s7HR0dnDlzhjNnzuDl5cXq1asZN24cRqORP/3pT1RXV5Oeno61tTXt7e288cYbogXjo+gvyuaTCIPBQGFhIVlZWeTl5dHZ2YmXlxcJCQmkpaWRmJhosfs3h7vNYt3c3Ex7ezsmkwkrKyu8vb3p6emhoqKCpKQkNm3a9Mgh9waDgX379lFbW8u77747YkYlDkZfXx91dXWiSDc3NyMIAk5OThQXF9PQ0EBcXBzjx49n/vz5A96ToqIi9u/fL+ahBxPk6upqtmzZQnt7O4mJibz33nuP3cGaEQSBxsZGsWWpubkZKysrwsLCxPywuc3uSampqWHbtm3Mnz+fKVOmDOlv1Gq1KMI1NTXI5XIEQcDNzY2uri5aWlrYvHkzKSkpUh75KXllRdnR0ZE//vGPfO973xtUlP/whz/wz//8z/T29r7QdY0kUTYajRQVFYni6+Li8lhTgurqaj799FNu3LhBWFgYP/7xjwc8D7Vazd69e2lubmb16tXExMQ8z6fxxAiCQEtLC0VFRRQXF1NRUUFNTQ3d3d2iGYitra04pcfHx4fIyEg0Go0ovuYWKWtrazw8PETx9fb2Fiueza+lOXxt9sJua2ujvb2drq4uBEHAysoKT09PAgIC6Ovr4/Tp06LpyJgxYwgJCeHrr7+mra2NsWPHYm9vT3t7O4sXL36socVgotwfpVLJzZs3OX/+PNXV1Wi1Wry8vIiNjWXs2LGMGjWK0NDQAZ8Lg8FAa2urxa763r173L17F5lMxtSpU4mOjrYIf/fPU+v1enbv3k1zczMbN24cluKhF4FWq6WoqIijR4+Sm5tLVVWVOK0qNjZWDHcHBgZSVFTEwYMHGT16NCtWrBj0u6VQKPh//+//UV5ezrhx43j//fcfW5eg0WiorKykvLyc8vJyVCoVjo6OxMTEEBcXR0xMzDMPeNBqtXz88cd4eHiwcePGhwqoWq2mtrZWFOGWlhYEQcDd3Z2IiAjxUllZybFjx16ZiNlI5sWOSBlGoqOjycvLe+jvs7KySExMfIErGnnY2NgMeQfb1NTE0aNH+fbbbzGZTLz33nuDTgPq7u5m165d9Pb2snHjxidy6XqemHcUxcXFFBcXo1Ao6Ovro6mpiba2NqytrcWWLblcjkajwcPDA3t7e+rq6mhpacHHx0fMmZsF2N3d3WL3YzKZRDN+swi3t7eLIm5vb4+Pjw/h4eH4+vri4eGBUqkUhU2hUODv709ZWRl37tyhsbERJycn/P396evro7q6mpCQELy8vDh27BgLFy58phCwp6cnmZmZZGRkUFlZyc2bN8nJyeHevXviCVtISAiJiYmMGjWKiIgIrK2txQEe/cXUZDJRUVHBtm3bqK6uxsHBgfr6+ofmqTMyMjh+/Di7du1i06ZNQypie5n0r9x2cHDgX/7lXwgNDeWPf/wjKpUKtVrN+fPn0ev1KBQKGhoamDBhAhMnTsRkMg0QZXOlfWFhIRMmTOC99957qCB3dHSIueHa2lpMJhN+fn6MHz+euLg4QkJChtXl6+TJk/T19bFp0yYLQe7r6xNFuLa2VhRhDw8PIiIiSEtLIyIiwuJ5VFVVcfz4cVJSUl5aS9zrxCu7U/7973/PP/7jP7Jjxw4yMjLw8/Pj7NmzTJ06lV/96lf89re/5c9//jPvv//+C13XSNopD4W2tjbOnTvHuXPnaGpqYvTo0fzwhz8cdIfW3t7Ozp07AXj33Xcf2cLzIjCZTNTX14s74u7ubmQyGWq1mrt371JXV4cgCPj5+eHl5UVPTw8qlYqwsDCmTZtGXFwc7u7utLS0EBQUNGD3odPpBux+Ozo6RPcvV1dXfH198fHxEb2xXV1dHxm20+l0tLS0UFhYyKlTpzCZTDg7O9Pa2irurM2TrAICAujq6mLBggUPjUY8bqc8GL29vdy9e5dbt25RVVWFWq0Wnco8PT1JSEgQrUMHC8f2NxrJzMxk9OjRA8Lf5rSR2dzD3t6e9evXEx8fj7+//3O3D30SjEYjeXl5XLhwQexxnjZtmlgV3dDQwLZt2xg1ahTLli3j3LlzfPnll7i5ueHj4yO6yYWEhIg76aCgIPbu3cs333zD2LFj+cu//EuLnK3RaKS2tlYUYoVCga2tLZGRkWJ++FmnYT2M0tJS9u7dy9KlS4mPjxdD9+adMNw/mYuIiBDz7A9bS1tbG59//rk40vNl2IO+bryyoiwIAt///vf5/PPP8fDwoLOzE39/fzo6OsQG+I8//viFr+tVEWWlUin2WdbX1+Po6Mj8+fNZtGjRoAf3xsZGdu/ejYuLC++8886Qc2LDjflgdufOHfLy8mhtbRUnPjU3N1NeXk5XVxeOjo6MGzeOSZMm0dXVRVtbGxERESxfvtyiKlir1XL79m3gfqXug+FnuB/C9vLyshBgHx+fZ25laWho4OjRo7i7uzNmzBgKCgo4duwYcrkcR0dHHB0dRUMQs8vWgwUzTyPKZsytbLdv36agoAClUolMJhOL38we3aNGjSI6OnqA69q5c+e4cuXKoEYjGo1GFOjq6mqOHDlCV1cX48aNw9HRER8fH4tddUBAwDNVIj8NgiBQWlrK6dOnUSgUjB07ltmzZw/qBnbv3j2+/vprgoODaWpqYty4cSxdulRMlfQvHuvr66O8vJx79+4RFxfHj3/8YyZOnIjBYLAo0tJqtbi5uYktS5GRkc/9ZKWtrY3f/e53WFtbEx4eTltbG3B//rhZgCMiIobkiKZSqdiyZQt2dnZs3rx5WFq7JF5hUTZz5coV9u/fT3l5OSaTSfSPnTlz5ktZz0gX5Z6eHi5dukReXh59fX309fXh7+/P8uXLHxruNxsi+Pv7s27duhc6sFyv19Pc3Ex+fj63b9+mpKQEpVIJ3D+QWFtb09vbS2NjIwaDgaioKFauXMnChQvJyckhNzfXwtwB7u/4zeFksyiZTCZsbGzE8LN55+vj44OXl9dza/MyC3NgYCCLFy/GZDLx6aefUlJSQnd3t5gHt7W1JTo6mqioKNEpzJzH1Wq1TyXK/dFqtRQWFpKXl0dDQwOCIODq6ipWnMtkMuLi4hg1ahSxsbFir/lQjUa6u7v57LPPUKvVpKeni612crncop/6QaF2d3d/LgVD/W0xo6OjyczMfGwr2hdffMGOHTtYsWIF/+t//a9B12U2UvnNb36Dg4MDiYmJKJVKFAoFJpMJDw8P4uPjSU1NZezYsfj7+z/Xgiizt7q5OvrixYt0dnYyf/584uLiRBF+0pNsg8HAjh076Ojo4Hvf+96gO2mj0UhTUxP+/v4jyptgpPPKi/JIY6SKcl9fH9nZ2dy4cQNra2tkMhldXV3ExcWxfPnyhx5MCwoKOHTokGiI8LzO5A0GA+3t7bS2tooFRsXFxVRWVtLe3o7RaMTb21s0QdDr9VRUVNDY2AjAqFGjWLNmDaNHjyY3N5dLly6h0+lITEwkKChIFOLW1lbRg9tcPd3T00NISAhBQUG4uLi88KrRB4VZrVbz1VdfYWtrS1dXFzdv3gTut6ulpKTg7u5Oa2srRqNRrHydMmUKkZGRhISEPLOQtbS0cPv2be7cuYNarcbT0xMXFxfUajXt7e3Y2dkRExPDqFGjiIuLo6OjY0hGIwqFgq1bt+Lo6MimTZtwcnLCZDKhUCjEXbX534flqQMCAvDx8XnqMKlCoeDs2bPcu3cPf39/5s2bN6QBHLdu3eKbb75BEARsbW3ZsGEDERERA25XWlrKX/3VX6HX65kyZYrYzeDi4oKdnR16vV58bj4+PmKIODw8fFiiT+aWL3NhVnt7O4DYwlVUVMSmTZueKfcrCAIHDx6kuLiYTZs2iXUlRqOR5uZm8QSgvr4enU7H2rVrR0TP+quCJMrDzEgTZa1Wy7Vr17h27RqCIBAfH099fT29vb1kZmaSmpr60AO4eYrNuHHjWLJkybDsFg0GAx0dHbS2ttLW1ib+q1Ao0Ov1dHR0iEU15klJEyZMIC4ujra2NgoKCqitraWtrQ1bW1uSkpJYsGABISEhXL58maysLFpaWkTBlclk2NjY4OfnJx7UAwIC8Pf3x8HBwcJm82nP5s3V1+adrfmiUChoamoSB1SYQ9KOjo7iIA4nJyccHBxQKBScPHlSFOa2tjYOHTpEYmIiDg4OHDx4ELlcDsCsWbNYtmyZ6GlcW1uLTCaju7sbuO+7bc5Lm082nua5medG5+XlUVlZib29PeHh4Tg5OdHa2ipOxoqOjiYsLIy7d++iUCgeaTTS1tbG1q1bxarfwXb3giDQ09NjIdTmEYhw35Wuf7TA/H4+6oSxr6+PS5cuDYicDEXcc3Nz+fbbb0lNTWXevHns2bOHpqYmPvjgA3x8fFAoFJSXl3Pr1i0++eQT9Ho9q1atYvr06cTFxREaGmrx3enu7rYId5tDyJ6enhaGJp6eno89uerp6REFuKamRjRHMQu+WfQFQeCjjz4iNjaWN99887HP+VFcvHiR8+fP8+abb+Ll5UV1dTU1NTXU1dWh0+mQyWSEhYURGRlJREQEgYGBUq75CXhlRTkyMvKxH1grKysqKyuHfJ8ff/wxH3/8MTU1NQCMHj2an//85yxcuHDI9zGSRLm9vZ0vvvgCnU7HpEmTsLW15dq1a/j6+rJy5cqHVsMKgsC5c+e4fPky06ZNY+7cuU+88zIajXR0dIjC2198TSYTcL9QysPDA41GQ2dnJ0qlEgcHB8LDw8VCo6amJu7cuUN9fT1qtRqtVotarcbb25uIiAjs7e0pLi7m3r179PT0EBQUJI6c67+zetgJxVBEWRAEcXjGYJeenh6L0Y8mk4nu7m6am5vRaDSEh4czceJEcdZzX1+faDbSH5VKRWVlJT4+PkyePBmlUklRURGpqam4u7tz/fp15HK5OMRgxowZJCUl4ebmxvjx4zEYDDQ2NtLQ0CBezOMu/f39LYTa29v7id7Tzs5Obt++ze3bt+nu7sbf35/Y2FhsbW2pqqqivr4eQRDo7Oykr6+PN954gzfeeGPQg7FcLmfbtm34+fnxzjvvDPmEwZyn7i/WbW1tYj/1YHlqOzs7cnJyuHz5MoIgWNhiDoWcnByOHz9OWloa8+fPx8rKCpVKxYcffkhzczMxMTHi+3/58mV0Oh3/8R//wfTp04f82qpUKoteaXPvr6urq4VI+/r6Wohwf4cyX19fCxHuX3sgCAK7d++mpaWFH/3oRwPST4ONLh0Mk8nEhQsX2LdvH0FBQTg5OaHVapHJZISGhlq0i9nY2KBWq7l27RpTp059rvnmZx1dOtJ4ZUX5wVJ++J8ioOzsbJKSkhg/fjxbt24d8n0ePXpUnIkrCALbt2/n//yf/8Pt27cZPXr0kO5jJImyVqvlV7/6FcnJyVRXV9Pd3c3s2bOZPXv2Qz/EJpOJY8eOkZeXx7x585g6deojH8PsQtV/19va2kpHR4covmajDj8/P/z8/HBycqKjo4Pq6mqqq6sRBIHQ0FASExOJj4+nra2NO3fucO/ePXH3Z658tra2JjQ0FF9fX2QyGS0tLXR3dxMdHc3y5ctJSkp6IrExi7JMJkOj0YguZw/+q9PpxL+RyWTi6Ejzv46OjuK6KyoqUKlU4vVVVVUkJiayefNm0Q3NaDSiVqsHXOrq6rh06RIuLi4kJCRQXFxMbW0tMTExWFtbU1paikqlQq/Xizttd3d3ZsyYwahRo3BxcREtVR0dHdFoNCiVStrb28X2MEDs1w4JCSE0NJTg4OAhHThNJhNVVVXk5eVRWloKIIaxNRoNRUVFXLlyhcrKSuLi4njnnXcYO3bsgNBsQ0MDO3bsIDQ09JlGFpr7qfsLdUtLi/h+2dnZYTQamTRpErNmzRowUvNRXL9+nZMnT4oTpyoqKigrK6OyspLOzk4KCwuJjIzkgw8+4IsvvuDevXv88pe/ZNq0aU/1XMxoNBrq6+upra2lqKhIrKPo6+vDzs4Od3d3YmJiGDNmDJGRkY/08ob/mXv9zjvvDKjif9ToUpPJREdHB83NzWIRZVFRET4+PqSlpREUFERgYOCAk169Xs/169e5du0aXV1dvPPOO4waNeqZXpNHMRyjS0cSr6woP4o7d+4wf/58du3axdy5c5/pvry8vPg//+f/DLm1aiSJcnd3Nx999BEXL14UzSrCw8MJDg4mKCiI4OBgAgMDxYOxXq/nwIEDlJWVsWzZMtH3F/6nP/fBsLM53wv3c55m8e3/r5OTE93d3RQXF1NUVERdXR1WVlZEREQwatQo4uPjkcvlXLp0iVu3btHW1oaVlRU2NjaoVCp6e3sJCAhg6tSppKSk4ObmRmlpKQUFBbi5uTF37lxGjx79SDE2Go10dXWhVCrFXXlnZyetra0UFxdjNBrFA4uNjY04AcssvOaZ0W5ubjg4OIiPJZfLuXDhAjdv3qS9vR1nZ2ciIyNJSUkhNjYWPz8/Tp8+zYEDB3Bzc2POnDmkpKQ8clBK/xzzwoULOXHiBHK5nDfeeAOVSsW3334rvoa+vr6iSDs4OBAYGIiHhweDfa0dHR2RyWTodDrUajW9vb3iBC87OzsCAgKIiIggOjqa6Oho/Pz8Hhl2VKlU3L17l7y8PNra2vDw8BD7anNyctizZw8qlUo82TL3QpuLgqqrq9m9e7dYrzBcxXT989QKhYLRo0db2GIOhatXr3Lw4EECAwNxd3ensbERQRAIDg4WW5aMRiPbtm3j3r17yOVy/u7v/o433njjmdbe2dlpkRNWKpUYjUZkMhm2traYTCa0Wi3W1tbY29sTFhZm0Yb14GuoUCj45JNPSE5OHnRt/UeX2traijO9m5qaaGpqQqfTYWtri5ubG2VlZYSGhrJu3boBaYfe3l7q6+vJycnh5s2bqFQq/Pz8mDhxIrNmzXpuPeo6nQ69Xv/MhY4jiddSlAH+9V//lWPHjnHr1q2n+nvzBKqNGzdy+/bth1Yma7Vai1Bkfn4+s2bNGhGi3NbWxkcffcTo0aOZPn06HR0dNDU1iV86827CXGlcUFCAVqtl5cqVeHp6DhBfc4GUo6OjhfCaf35wF2IOv5rtCm1sbMQck4uLC3K5nFu3blFYWIhSqcTOzk4Mg/X29tLT00N4eDiLFi1izJgxGI1Grl27xpUrV7C2tmbmzJmkpqZia2sr5iEfFF3zv/3HR1pZWYnWoi4uLrS1teHn54e3tzdubm44Ozs/UuB7e3u5cuUKV69epaamRsyrpqWlMXbsWHx8fAb8fVFREV999RWCIIih99TU1IdW/PYX5oyMDA4fPoy1tTWrVq1Cp9Nx7NgxiouLsbGxYdKkSSxZsoS8vDyKiopwcHBg4sSJjBo1ymJ852AjO3t7e+no6ECpVIrheJVKhSAIODo64uvrS2BgIEFBQYSFheHt7T1gopiTkxNtbW3cvn2be/fuodfrxUrxq1evUl9fT0REBCqVCoPBQFBQkCjQCoWCffv2iTaVLzP3qNfrqaqq4siRI5w9exZ/f3/i4+NFJ63Y2NgBYeGf//zn7Ny5k7fffpv/+I//eOLH7OzstMgJm/u7/f39LcLR/dvFDAYDTU1NYrjbnMu1s7Mb0Cu9e/duenp6+OEPfzggTSAIAnV1dZw5c0as89BqtdjY2BAYGChGUtzd3Tl8+DBGo5FVq1bh6OiIVqulsbGR+vp66uvrqa6upqGhAbgfOZk7dy7x8fHPvcXrWVoCRyqvrSh/9NFH/OQnPxk0LPMoCgoKmDJlChqNBhcXF/bs2cOiRYseevtf/OIX/PKXvxxw/UgQZbi/kxvswG80GqmqqqKoqIiCggKysrJob2/H09NTnKFsFo/o6GhiY2Px9/cXi5YeJlpmn+mioiIaGhpE5yxXV1dsbGzECuuWlhb6+vpwdXUlMTGRyZMnExoaSn5+PhUVFfj6+jJr1izxZCg/P5+srCw6OjqIiYkhJiaGvr4+Ojs7xUv/vJiLiwseHh6iJWb/f93c3MQdxVALvXp7e8nPzyc7O5uSkhL0ej2hoaGkpaUxffr0Ie3ECgoKOH/+PP7+/uj1epRKJaGhoaSkpAxasdxfmKdOncrhw4fFQjCDwcDx48fJzc3FaDSyYcMGli1bhlKp5Pr162Lv9fjx45kyZcojvaoFQUCr1YpCrVQqqauro66ujvr6epqamuju7hZNMhwcHMTogdm61cbGBicnJ2QyGZ2dnTQ3N9Pd3Y2Tk5O421qwYAGBgYHU1tZSVVWFwWDA398fJycnCgsLmT59OkuXLn2h1e+dnZ1i73B1dTWVlZXI5XJmzZrFqlWriIiIGHQHLwgC+/bt47PPPmPUqFH4+PiwfPnyR86SNufc+4twV1eXmPM3i3BYWNgT9WybTCbkcrlF8ZharaaxsZHW1lZWr15NSkoKoaGhdHV1iYVZtbW19PT00NbWRmhoKBEREQQHB+Pv7y+Ggo1GI0ePHqWlpYUZM2bQ3d1NfX296PRlZWVFV1cXer1enE72IsflSqL8itDR0cG8efPEiSpPgk6no66ujq6uLvbv38+WLVu4ePHiK7lThvsHgu7ubouwc2trK+3t7eh0Ovr6+igqKsLJyYlFixbh5eWF0WhEq9XS0dFBe3u7GN4075iCg4MJDg4WD/RyuZzc3Fxu3rxJXV0dGo1GrDL29vbGzs4OmUwmjje0s7MjPj6eSZMmiePdLly4QHFxMc7OzowePRofHx+6urooLS3l+vXrtLW14e3tTWRkJI6Ojjg4ODxUdD08PIZ8hv4oUVYqlZSXl3Pjxg2Ki4vp6ekR5yvPnj3bwmLUvCPt6ekRL729vajVamJiYoiOjsbKyor8/HwuX75MamoqXl5e5Obm0tHRQXBwMCkpKYSEhFiIUn9hHjNmDCdOnGD8+PFMmzYNo9FIVlYW58+fx8PDg+XLl7N06VJxoEZOTg45OTmo1WoSExOZOnXqkKdPDfYZqq+vp6Ghgfr6evF9NplMFgNNnJ2dxddCLpdTUVEhVhhrNBoiIiKYNGkS9vb24klV/6jGxIkTWbFiBRERERb58eHKF5or1s1OWq2traKRhkqloqamhkWLFj12rvC3337LH/7wByZNmsQvf/lLTp48ye3bt3n33XfFMYWCIKBUKi0Ks8wibE4VmEV4OHv/BUHg3r17/PGPf8TZ2VnsF+7q6sLBwQFPT09GjRrF+PHjiYyMpL29fcCcc/N85iNHjnDnzh1CQkJwcnLC3t6e0NBQPDw8aG5uprGxES8vL6ZOnUpERMQLbyeURHkEYR488SCdnZ2UlJSg0+nYuXMna9eufabHmTt3LtHR0Xz66adDuv1IyikrlUo++eQT8aRBJpNZ5HoFQeDs2bN4enqyYcOGQV18dDqd+OVramqivr6exsZGWlpaaGtro7u7G41Gg729PYGBgURFRTF69GiCg4PFgi5zbszZ2ZmYmBiCg4OxtramvLyca9euUV1djY2NDUFBQeLEG41GQ3NzMz09PYSFhZGenk58fLwovMNVzdlflO3s7Ghra6OyspLCwkLR/tDZ2ZnY2FgmTJhAcHCwKL7mEHt3dze9vb1iYZv5tXZxccHW1pbW1la8vLxITU0VPduvXbvGtGnTGD9+PFVVVeL0qsDAQFJSUggLCxMPcP2FOTg4mOvXr5OZmUlCQgJarZZLly6Rn5+PWq1m+fLlrFy5UgwD6/V68vPzuXbtGgqFgoiICLE6/VkOoAaDAblcblHpbQ69urm5WVR6e3l5UVxczMGDB7lw4QJOTk6kp6cTFxeHo6OjWFFs9uR2dnYmMDAQX19f0brUwcFhQNi8f/j8wf/3392q1WqxSKuiogK1Wi2+p3FxcURFRXH9+nUuXLjA7NmzmTVr1iOf+4ULF/jwww+JiIjg3//933FxccFoNLJ7924qKiqYOXMm3d3d4hAUKysrAgMDLXqSn0c1siAI4uf3iy++oL29nTFjxmBraytGwPqfPML9mhmDwUBkZCReXl4olUrx5KuyspKGhgYmT55MWloaoaGhODs7c/PmTQoLC3FycmLy5MkkJCQMSDsIgkBDQwN37txh5syZz80BUBLlEUR6evqAg4p5Gk90dDSbN28mISHhmR9nzpw5hIWFsW3btiHdfiSJstFo5Pr166IQ9zeVqKqqYt++ffj5+bFu3bpBw2UajYaWlhbkcjlNTU3isAezWNra2uLl5YWbm5sYonZwcECtVtPW1iYOXff19cXd3R1bW1usrKzo7u6mrq6O3t5efH19SUlJITk5GW9vb2xsbLh79y4lJSV4e3uTmZlJfHz8czsDV6vVnDx5kvr6esrKysReT4PBIPb7DuZW5OzsjKurKy4uLmJRmIuLixjWNdtVwv1hH7m5udTV1eHl5cWkSZNob28nLy+PWbNmkZycjCAI1NTUcPPmTeRyOf7+/qSkpIi7j/r6eo4dO0ZgYCCOjo5UVlaycuVKvLy8UKlUoii0tbWxfPlyVq9ePWCQRklJCVevXqWhoQFfX1+mTp0qHrSHg97eXguRbmxsRK/XY21tTUBAACEhIWi1Wo4ePUp7e7uYhpgwYQLJyck4OTlx6dIlvvrqK3x9fTEYDHR1dSGTyQgKChJTJ2q12iIvbnYE64+jo6O4wzaHWgMDA8XcsHl0pSAIXLhwgYsXL5KRkcGMGTMe+RyvX7/Ohx9+iJubG7/+9a+xs7MTd8Hl5eVcvnwZk8nE4sWLRcessLCw5ybC7e3tFuFwlUpFbW0tSqWS9evXM2nSJEJCQgZEjrq6uigrK+PatWtcuHCBtrY2tFotDg4OYstce3s7c+fOZcaMGeh0OtHaFmDixImMHTt2wP3qdDpKS0vFnnVvb28yMjKeW0hbEuXXnJ/+9KcsXLiQsLAwenp62LNnD7/73e84deoUmZmZQ7qPkSTKD+PevXscPHiQyMhI3n77bezs7Oju7hZ7QM2Xjo4OMayoVqvFM+7Y2FhiY2Nxc3Oju7ub9vZ2SkpKKCgooLm5GbVaLVYwe3t74+/vT2hoKO7u7mIfq3n3O3r0aKytrS0m9NjZ2ZGens7EiROHpSLXZDKJ7U2dnZ0oFArKysooKSmhoqJCLJQBxJOIyMhIoqKiLKqvzaJr3gE/KXK5nJycHGpra/Hw8BBz7JmZmWLLiNmPOicnh+bmZvGkJSoqioaGBo4dO4a/v794MFqxYgVWVlaMGzeOmpoaPv74Y2pra1m+fDnr168fsE5zcc/Vq1cpLS3F1dWVtLQ0Jk6cOOzCYTKZaG1ttRDq9vZ2tFotZWVl9PX1ERkZib29PW5ubiQlJTFhwgRqa2u5dOkSCxYsICAgQCwW7OnpwcXFhVGjRllMtDKnYR4sYlOpVGi1WoKDg8XP64OvhbkfPzMz87GtTDdv3uTDDz+kq6uLzMxMjEYjvb29WFtbizthLy8vTp8+jY+PDxs3bhzWQidBEMTIkzkvrFKpsLa2Jjg4WHwtT548SWZm5gCrYYPBQENDA1VVVVRVVYknTX19fWJ42mg0Ul1dTXZ2Nu7u7owdOxaTyURbWxsymYzU1FRSUlIGhNu7urq4e/cuxcXF6HQ6oqKiSE5Otpjb/TyQRPk15/333+fs2bM0Nzfj7u5OcnIy//iP/zhkQYanE+WhNu8PBzdu3ODQoUMEBASQkJBAW1sbLS0tYkGcjY0NOp1O7G01GAw4Ojri4eEh9sWaMZlM9Pb2olAoxGKVCRMmiEVbPT09NDY2cvfuXS5dukRFRQUODg5ERkaSmJhIaGgoAQEBdHR0cPfuXdGasP+EnqGg0+no6uoSL52dnRb/7+7uRqfToVAoaG9vp7u7WzQcMHtnBwQEkJyczIQJEwbkdYeblpYWcVZva2srNjY2rF271iKyYw7/3bx5k4aGBry9vUlJSUEmk3H8+HG8vb3p7e3F3t6eefPmiXnahoYG/vjHP1JUVMSSJUvYvHnzQ4Whra2Nq1evcvfuXWxtbZk4cSJpaWnPddiIWq0WXciOHTtGYWEhvr6+ODo60tfXh5WVlZj60Gq1rF27lnHjxomvR1FREUVFRXR1deHk5ERCQgKJiYlERkY+0QmcIAicOXOG7Ozsh/bj99+JXrhwgUOHDtHT08OkSZOYNm2amBMODQ21EITGxka2bdtGXFwcb7311lN/lgRBQKFQiAJcU1MjngQEBwdbPL5MJkOv1/PJJ5/g4ODA+++/j5WVFS0tLaII19bWotfrcXJyIioqiqioKIKDg6mpqRFrKnp7e/nqq6+QyWQEBgaSnZ1NU1MTDg4OYh1J/3ZKtVpNQUEBNTU1yGQykpKSREObF4Ekyi+RHTt2PNXfbdiwYZhX8mieVJQf1bz/rPT29nL06FGxsra2tpbGxkbRSUsmk2Fvb4+trS19fX1igZK5HcbHx4fQ0FCxV9PV1RWZTIZCoaCxsRGlUom9vT0JCQksWbKE8PBwiwNQU1MTFy5coKysDG9vb6ZPn46/vz/Nzc00NDRw+/ZtcnNzUalUBAUFkZaWRmxsrPilN1c09/X1DSq25v+bvYThfgrD/PwcHBzEnXxHRwe2trb4+vpia2srtkgFBgbi7OxMUlLSExlLDAetra3k5ORw5swZent7efvtt8nIyBggLk1NTeTk5FBfX4+XlxchISHcu3cPV1dXlEolwcHB/M3f/I14ItPR0cHvf/97bt68yYIFCwZth+lPT08PN27c4ObNm+h0OsaMGcPUqVOfexWtIAhcu3aNw4cP4+7uTnx8PGVlZRQUFNDS0kJHRwd2dnYsX76cN998U2wNEgSB5uZmUaAVCgUODg4PnWg12OOePn2aq1evsmDBAtLS0sTr29raLAqzVCoV7e3tlJeXYzQaWbZsGd///vcfKwDFxcV89dVXTJ8+nYyMjCG/HgqFwiIc3dPTg7W1NUFBQRaFYYO9nydOnODKlSvMmTMHpVJJdXU1KpUKOzs7wsPDRSHuPwSjf00FwIEDB8SiSoVCQWhoqFi9L5fLaWxspK6ujqKiIpqamtDr9QQGBoondGY3rxeFJMovkafpX7SysnphO1AzTyrK/Zv3h3uSSm1tLT//+c/R6/X09PSgVqtxcXHB3d0da2trNBoNer0enU4ntrR4eXnh4+ODu7s7dnZ2Yt7NXDnd1dWFtbU1Pj4+BAcH4+Pjg52dHbGxsWJLTFdXF4WFhWJlZlpaGomJidjb2yOTyejo6ODSpUs0NjYSHh5OTEyMRauGuVLXaDRiZ2cn5m/NoWMPDw+x4tfd3d3iZ5PJRHl5ueiEBYihOXOI3t7enuTkZCZOnIiHh8cze18/Ky0tLWzZsoXS0lLGjx8vhrMfPLiZq9xramrEyl4fHx96enpYv369xcG/t7eX//7v/+b8+fPMmTOHv/mbv3nsQUur1ZKXl8f169fp6uoiJiZG3BE+z8hBRUUF+/fvx8XFhbVr1+Li4kJNTQ2XL1/myy+/pKqqioCAADHCMmrUKLGIzM/Pj/b2dlGgzWHWwSZawX3hO3XqFNevX2fhwoVERERYiHBfXx82NjbiTtRgMHD+/Hmam5tJS0vj/fffH3JI+urVq2RlZbFs2bJBW6UerM7uXxj2oAg/7L1Tq9VUV1dz9epVDhw4QHBwsOjQZhbhkJCQh6ZbzMcfR0dHjhw5wo0bN/D39ycsLIypU6daFBx2dXVRUFBAUVERGo0GLy8vvLy80Gq1tLS0iC1z5i6NoKAgAgICnqvTliTKLxHzAfZJCQ8PH+aVPJqnFeXnIQoqlYrPP/+ctrY2ent7mThxIp6enhY7Rz8/P8LCwggLC8PZ2Rm9Xo/BYECv19Pa2ir2b/b19eHm5kZQUJDYx6jX69FoNKhUKgICAsTK9+bmZrF1wtPTE51OJ3pHmyfXmHPO5uIvc6+rud3J2toaQRAwmUxivtfBwQE3Nzf8/f0JDAwUv/wGg4H6+npR0GUyGVFRUYSHh6PRaCgvLxcnQU2cOJHRo0eLr/XzfP2fBKPRyFdffUVubi4+Pj4EBQUxYcKEQe0DW1pauHnzJrdv36ampgZ3d3dGjx7Npk2bLELgOp2OTz75hKNHjzJlyhR+9rOfDSktYDQauXfvHlevXkUulxMYGMi0adNITEx8buYeHR0d7N27l97eXt566y3RDtJoNLJlyxYuXLggmlaYTyB9fHxwdHQkKChIFGkHBwfq6+spKipCLpdjZ2fH1KlTmT59OjY2Nuzdu5fz588TFRUl+jPb2NiIphvmcLCdnR0VFRXs2rWL5uZmYmNj+f73v/9EYVlBEPj222/Jy8vjnXfeITIyUuxTNp+APlidHRkZ+UgRNhgM1NXViSHp5uZm9Ho9RUVFhIeH8/3vf5/IyMghp3+0Wq0o6Lm5uYwfP55FixaJxZXmtMHdu3eprq5GJpMxevRoxowZY/FaGI1G2tvbaWhooKmpiebmZtF5bMmSJYSFhQ35dXsSJFGWeCwjSZR1Oh0HDhygpKRErHwFCAgIEHtnHxzZ2NvbS2lpKSUlJSgUCpycnMRdh4+Pj8VtzWYIJSUlNDU1UV5ejkwmIzIyEhcXF7q7u1Gr1Wg0GjF07uzszKhRo4iJiREnJZntH+3t7REEQbTOM+/i9Xq9GIY2n1CYpwb19fUhCAIODg74+fmJ4ej29nYUCoXoThQeHo6Xl5cYkegfmWhoaBArx+3s7ETLQVtbW/Fns81h/+vMt32YUGm1Wtra2sTq7MftNg0GA8eOHaOqqkocN+ns7MzEiRMHFef29naOHTtGVlYWMpmM5ORk/uVf/sWiF9lkMrF9+3Z2797NuHHj+OUvfznkML0gCFRVVZGdnU1VVRUeHh5MmTKF8ePHP5cTGI1Gw4EDB6ioqGDevHmkpaVhZWWFwWBg79691NbWMmXKFJqbmykrK0Oj0eDt7Y2rqytqtVps83F3dyc0NBRXV1daW1u5fPkyGo2Gnp4eFAoFiYmJpKamijvRwaqTa2pq2LlzJwqFAk9PT95///2n6vFWKBR8/PHHlJSUEBcXh9FoFPuUzVOUHlWdLQgCcrncIi9sMBhwdnYWd8Jm69of/vCHg3YKPAytVsvFixf59NNPaWxs5I033mDlypXY2tqi0+koKyvjzp07KBQKvLy8GDt27JBdusy+2U1NTcTExDy31JAkyhKPZSSJckNDA//7f/9vwsPDSUxMFL/ED5rXm+0FS0pKqK+vx9ramsjISOLi4vD09BxgimG+mF2EOjo68PX1JT4+Xvwbs4VlfX099+7dw87OjtmzZzNt2rSnep4mk4na2lqKi4spKSmhq6sLAA8PD+zt7enu7ubu3bs0Njai1Wrx8fFh1KhRjB49Wux1NZlMFkKv1+vFyUw2NjYIgiBebzAYRFvRx2FtbY2dnR0mk0ms+jWnC6ytrbG1tcXJyQk/Pz9xl2/OmTs5OYlpArh/kPnmm29QKBSkp6dTW1tLaWkpTk5OTJgwgdGjR1scFHU6Hbm5uRw/fpyKigpCQkL427/9W6ZPny7eThAEDh06xMcff0xsbCy/+93vHjo/+2E0Nzdz9epV7t27h729PSkpKaSmpj5yEMLTYDKZOHfuHFeuXGHs2LEsWbJEjMrs2rWLlpYWNm7ciJOTE/n5+dy+fZvOzk7x8+fh4YFCoRB3bAaDAa1Wy+3bt5HL5WRkZPD3f//3D7U3Baivr2fnzp309fVhbW3N22+/TVJS0pDWP5htptFopLKyEjc3N77//e+L4zgfhlKpFEXYHKWSyWQWeWE/Pz+srKwoKSlh3759LF++nHHjxg1pjUajkby8PC5cuEB9fT0VFRXMnz+fhQsXit+joqIidDodkZGRJCcnP/fix6dFEuURhlwu5/PPPycvL4+uri4L8wa4n1M+e/bsC13TSBJlQRAoKSkhIiJiQAuDyWSipqaGO3fuUFJSQm9vLy4uLnh7e+Ps7CyOGOyPk5MTbm5uGI1GsdDLw8OD5ORk1q1bJ85/FQSBoqIizpw5Q2dnJxMmTGD27NlPfAA3nywUFxeLLTTu7u4kJCSIecWqqipu3bpFWVkZtra2hIWFiS1DTU1NyOVyTCYTNjY2+Pv7i25kQUFB+Pj4iOYag73+ZpE2C3T/0L65mttspNLa2kpPTw8mkwlHR0fc3d1xc3PDycmJzs5OOjo6xJy8ua/W1tYWZ2dn3NzcxFy+2Y0sPz8frVbLvHnzcHZ2pqysjLq6OlxcXEhNTSU5OVkcLqFSqXBzc2PLli3k5OTg5eXFtGnTmD59OpMmTRKf17lz5/jd735HYGAg//mf/4mXl9eTfqTo7Ozk+vXr5OXlYTKZGDt2LFOmTBkQRXlW7t69yzfffENAQACrV6/G1dUVrVbL9u3b6ezs5L333hMNcKqqqrh9+zbFxcUAxMfHM2HCBMLDw1EqlWRnZ3Pnzh3Gjh0rWktOnTqVGTNmDHjPm5qa2L59uziuMz09/aFGRXA/z9pfhM0zn/s7doWHh6PT6fjss8/EOdL9T6z6+vqorq4WhVipVIoV1v3zwg/WGKhUKj766CNCQkJYs2bNY0VTEASKi4s5e/YsCoWC8PBwMbqVkpJCaWmpGKJOTExkzJgxgxoKjSQkUR5B3L17l/T0dNRqNfHx8RQUFJCYmEhnZyeNjY1ER0cTGhrKuXPnXui6RpIom8fa9d/dtrS0UFlZKRa12Nvb4+PjI7p8mQuqHry4uLigUCjEVh53d3cxBKhWq8UvRV1dHVlZWTQ0NBAXF8fcuXOfaEKMOQdcXFxMRUUFOp1O3PWOGjWKwMBAenp6uH37tngyZq7+HDNmzIAvptl5qv8gDrN1qEwmw8fHB41GQ2hoKCEhIbi5uQ16cDMajbS1tdHY2CiOstNoNOKkJnNhS2Bg4CN9iw0Gg5h7M9+P+T0yGAxYW1vj4OCAra0tNTU1mEwmRo8eLY5hNK/f3t5ePODb2dkxatQo+vr6OHHiBE1NTYwaNUo8iZo5c6bYZpaTk8MvfvEL3N3d+fDDDwkKChr6B6ofarWamzdvcuPGDVQqFfHx8WJh0HDR2NjIvn37AFizZg3BwcH09fWxbds21Go17733nsWJRV9fnzi1qrW1FXd3d7y9vamurmb58uWMHTsWvV7PlStXyM7OxtnZmQULFpCQkCC2D23btg07Ozt6e3uJj4/n7bfftvg8mOsizHlhswibvavNOeHBPgNNTU1s3bqVyMhIUlNTRSE2z0/29fUVRfhxrl+CIPDVV19RW1vLj370o8ee8NbW1nL69GkaGhqIiYlh6tSpHDp0CLlcLkYTfH19SU5OJj4+/qXWVzwJkiiPIBYtWkRhYSFXrlwRQ4Nnzpxhzpw5fP311/zwhz/k+PHjpKamvtB1jSRR7u7uZvv27RgMBtESUq1W4+TkRHR0NImJiURHR4s7ukcNmcjJybEQ47i4ONG4QaVSERoayuXLlykuLiYwMJB58+aJHsCPw5zHLi4uprq6GqPRSHBwsLgj9vHxwWQyUVlZKe6KbWxsGDNmDBMnTiQoKOiJZyibR9OZXbTMBUTm3LSXlxdWVlbi4IiWlhYMBgO2trYEBASIIuzv7z8s71tvb6/oS272KO/q6qKoqAhra2vS0tLw9/fHxcUFKysrSktLqaiowGQy4evra9HLe+7cObGwz2Qy0dzcjK2tLTExMcTHx6NSqTh48CAymYy//Mu/FPP7D16G8rwMBgN3797l6tWrtLe3ExoayrRp04bNha2np4cvv/wSuVzO0qVLSU5Opre3l61bt2I0Gtm8efOgpiBNTU3k5eVRVlbGvHnzGDNmjMVtFAoFJ0+epKysjOjoaFJTU/nmm2+wt7dHq9Xi6urK5s2b0Wq1FoVZCoUCAD8/PzEn/OAUpwcxvwdVVVVcuXKF06dPExISQnJysijCUVFRT1REdufOHQ4dOsTbb7/9UF9+uP/dPXPmDKWlpQQFBZGZmYmLiwv//u//TmlpKYmJibi7uzNp0iQiIyOHPUStUqmea6uhJMojCHd3d/7hH/6Bf/7nf0ahUODj40NWVpY4P/nHP/4x+fn5XLx48YWua6SJclZWFs3NzVhZWRESEkJCQgJRUVFDeqwHxTglJYX4+HiLwqbOzk6ys7NRKpV4enqSkZHBmDFjHvvlViqVlJSUUFxcTH19PQAREREkJCSQkJAghs3674o7Ozvx9/dn0qRJjBkzZlgcqMyvv1qtpqysjPLycnH3otfrRYeviIgIcYRfYGDgcz8AmNvQqqurOXToEL29vURERIgtfo6Ojri5udHW1oZcLhejEpMnT6ahoYGf//zndHd385Of/ARnZ2euXbtGQUEBRqNRTGfs27cPrVZLRkbGoKFsOzu7QcXa7DXd//+Ojo7U19dz/fp16urq8Pb2ZurUqYwdO/aZW2LMBXD5+flMmzaNjIwMenp62Lp1KzY2Nrz33ntPndsuLS3l4MGDXLx4kZiYGCIiImhqaiI1NZW2tjY6OjqA+yLcPxz9KKExtzpVVVVRWVlJdXU1Go0GmUwmjrAsKytj9erVTJo06YnX3NXVxccff0xcXBwrV64c9DY9PT2cP3+e27dv4+HhwezZs3F1deXGjRscPHiQrq4uNm7cyJw5c6itrR32448gCOLJ2qJFi55bF8zrKMrPr4HsOWMymURzA7NlofksFmDMmDF8/vnnL2t5IwIHBweMRiNTpkwhISFhyAeutrY2cnNzqaysxN3dXZyN2l+M9Xo9d+7cIScnB51Ox1tvvcWMGTMeWpkpCAKtra2iEMvlcmxtbYmOjmbp0qXEx8eLuw1BEKisrOTmzZuUlpZiY2PD6NGjmTRp0rDY9plNGurq6qisrOTq1atoNBqxTWvOnDkEBgbi5uaGVqsVR01WV1dTWloKgKenp1i45efnJ/ZrDxdWVla4uLgwZswYwsPDOXDgAHZ2dsyfP5+enh5xV21nZ4eDgwMVFRXk5ubi7u7O5MmTWbNmDZ9//jmffPIJf/zjH0lNTaW3t5erV6+Sm5uLwWDgn/7pn9i/fz/l5eX88z//M2PGjKGvr8/iYp7DbDaXMY/c7OvrG1DDAfc/czY2NhQWFnLx4kXxOYwfPx5PT88Bgm5vb//Y99PW1pZly5bh7+9PVlYWra2tvPnmm2zYsIEvvviCnTt3smnTpqeatOTs7Cy2B169epWTJ08ydepU2tvbiYqKYs6cOURERDx2t2c+gTLnhTs7O7G2tiYkJIS0tDTRPctcUHj8+HGOHz8uevUPFUEQOHLkCDKZbNCRshqNhuzsbK5fv46dnR0ZGRnIZDKys7NpaWkR60D++Z//mbFjx6LVap+63fRh9PT0cObMGRoaGkhOTn7qFMl3lVd2p5ycnMySJUv4zW9+A0BcXBzp6en8+c9/BmDz5s1ibvNFMpJ2yk9KfzF2c3MjNTV1gBgLgiCOU+zt7WXUqFEkJiaSlpY24EzVHE41V0wrFArs7e2Ji4sjISFhgLGDeWbxrVu3UCqV+Pn5MWnSJJKTk59pV2yeN2ueEWwehmFlZYW3tzd6vV7cAT3qxMW8AzKLtHlSlslkwsrKSszNm4Xa29t72Pp6lUolBw8exMnJiRUrVoivh7ntysfHh/r6ei5evChalrq4uFBaWoqvry8//elPiYqKIigoCGtra65fv05OTg59fX3cvHkTvV7PP/3TPw3ZUrb/DOYHhdx8kcvlFBYWirOTzQ5x/d9La2vrR+7AH7w0Nzdz+PBh0WjEaDSybds2cdLZ43ZL5vGMNTU1lJSUcObMGQRBIDY2lqamJkJCQnB2diYhIYGFCxfi6+s76P2YR7yaRVgulwP3d9T988IPW4/JZGLPnj3U19fz/vvvD7nuIicnh+PHj/Puu+9aiLnRaCQ3N5dLly6h1+vFQSMFBQVoNBri4uJwd3fnxo0bZGZmMn36dGB4jz/mwtJLly5hb29PRkYGoaGhz3Sfj+N13Cm/UqJsDpEC/N3f/R3ffPMNZWVlAPzXf/0XP/nJT5gzZ444+eUnP/kJ//Ef//FC1/gqivJgYhwXFzeg2rO+vp7s7Gza2tqIjo5mypQpODs7W3wpjEYjNTU1FBcXU1paSk9Pj3iQS0hIIDIy0iKcKQgC1dXV3Lp1i5KSEqysrMRd8dO2Yej1ehoaGkQBrq+vR6fTYWtrS3BwsGiWEhoaKs44ftrX32ya0F+olUolgiBga2uLj48PXl5eeHp6iq1iZke1J6Wjo4ODBw/i7u7O8uXLLaqv+x+UzDuVixcvUl1dzd27d/Hz82PevHnY2Njg4uJCYGAgXl5etLS0UFpaytmzZ9Hr9fzN3/wN77777rDmFlUqFTk5OeKJXFRUFGPGjMHZ2fmhgm4W+8Ha0gwGA8XFxQiCwLRp0/Dw8ODKlSsEBASwfPlysUbC3G5mrh2orq6mra0NABcXF8rLy3F3d2fJkiWcO3eOqVOnkpmZSVlZGSdOnKCrq4spU6Ywc+ZM8X7MIlxfX4/RaMTV1ZXo6GiioqKIjIx8olYzrVbLF198gVar5YMPPnhsJKujo4NPPvmEcePGsXjxYuB/ZiefPXtWtFy1tbWlrq4Oe3t7xo8fT2pqKt3d3ezYsYPk5GSWLl06qM3msxx/VCoV58+fp7q6mlGjRjFjxowXIpKSKL9k7O3tWbRoEevXr2fatGk0NTWRnJyMnZ0dgiDwm9/8hgMHDmBjY8Mbb7zBz372sxcudK+SKLe3t5OTkyOKsTln/KAYd3R0kJ2dTW1tLQEBAUyfPp3AwEDg/peis7MTV1dXKisrRVMHDw8PsWI6JCRkgAipVCpxV6xQKPD19RXHwT1pGLKvr89iF9zU1ITJZMLBwUEU4LCwMIKCggbkN5/H66/T6cRirdbWVpRKJZ2dnWIrlLW1Ne7u7qJI9xfsxz331tZWDh8+jLe3N0uWLAF46EFJpVJx9epVvvzyS86ePcu4ceP42c9+Rk9PD83NzTQ1NaFSqTAYDLS0tHDlyhU6OzvJzMzkV7/61QAv8+F4XcyznZVKJZGRkUybNo3o6OhBH8fckjaYaCuVSs6cOUNdXR1xcXE4ODiQnZ2Nk5MTSUlJAz5vXl5eYmGWv78/Bw4cQKVSsXTpUg4cOEB4eDhr1qyxmEN9/PhxTpw4QW9vr2g96+DgQEREhLgb9vHxeabXqKuriy1btuDm5samTZsemgIxmUxs3boVlUrFX/zFXyCTyaiurub06dPU19fj6Ogoetj7+PgwefJkxo4dK3rVb9myBT8/P959912L7/dwfP4rKio4f/48VlZWzJ49+4nC8c+KJMovmfXr1/PNN9/Q19eHq6srK1euZP369cyZM2fENLa/CqI8VDHu7e0lJyeHoqIi3NzcmDp1qngA1Wg01NTUUFpaSmVlpWgNaRbi/qb3ZgRBoLa2lps3b1JcXIyVlRWJiYlMnDjRwmP3UQiCQFdXF7W1taIIm3c/bm5uhIeHiyJsNlh4FC/q9TcXbimVSotLZ2cnvb29mL+GDg4OolD3F2x3d3fx/WlububIkSMEBAQwb948tFrtIw9KfX19/O53v2PXrl1ERUXxt3/7t8yYMQNnZ2e6u7tFga6srOTPf/4zlZWVeHl5ib28MTExYrX5k5qODIbJZKK4uFicQOTv78/UqVNJSkp6omEGDxqNjB49mi+//JKIiAjmz5+PRqNBq9Xi7+8vVjZrNBp27NhBZ2cna9as4fDhw9jY2PDBBx+IffHmS//pYhqNRuzHf5TxyNNgbpWKiYkZ0IJl5vLly5w7d47Nmzcjk8k4ffo0hYWF6HQ6ZDIZjo6OxMXFkZqaSlRUlHgfarWaLVu2APDBBx8MOOl7ls+/2RGstLSU6Oho0tPTH1mF/jyQRHkEoFarOXz4MHv27CErKwuDwYC/vz9r165l/fr1L32G8UgW5aGKsU6n4/bt29y+fRtra2tSU1MZM2YMarVaPGA1NDQgCAI+Pj4EBgayZMkScff8IH19fdy5c4ebN2/S0dGBt7c3kyZNYuzYsY/9EptnufYX4e7ubgAL3+6wsLAnshg0MxLSB3q9nq6uLlGk+wu22ffbyspKHLxh9hPPyckhMjKSOXPmiKMbH4YgCPz3f/8327ZtIzg4WHTkmjZtmoXQarVa/u3f/o2DBw/i4OBAUFAQHh4e+Pv74+TkhIuLi9iP/axCbT5Jy87Opry8HDc3N3G285McYPsbjYwfP55vv/2WpKQkcda0GZ1Ox86dO2lra+Pdd9/l5MmTlJaWkpqaKkY14H7Pcf+8sEwmo6KiguPHj9PZ2cnkyZNJT08fVhEoLS1l3759Ygi9P3K5nM8++4zk5GRMJhOXLl2is7MTZ2dngoKCmDhxIikpKQMq6I1GI7t27UIul/O9731v0Ar7p/3819XViSmPmTNnPrQFrrm5GX9//+fmmS6J8ghDqVTy1VdfsWfPHq5cuQJAbGws77zzDuvWrSMqKuqFr2kkivJQxdhkMlFUVMSNGzfQarWMHTuW6OhoGhsbxWIWc2uV+aAlk8kG/VIIgkBdXR03b96kqKgIgFGjRjFp0qRHhkUNBgNNTU2iCNfX14uV0WYPa3M+eDjOykeCKD8M8+7aLNT9BbunpwelUklpaSmenp4sXbpUdCnz9vYWc9n9w/UGg4H/+3//rxjK9vT0xGQyMWHCBKZPny7uJvV6PZ9++ilHjx4lMDCQyMhINBoNAQEBhIaG0tfXR1NTk+j4Zhbq/mL9pELd2trK1atXKSgowNbWlkmTJpGWljbk++lvNDJu3DiuXLnCxIkTWbx4sdhvvnPnTkpLS0lJSeHKlSvcvXuX5ORkwsLCLPLCD8vtGgwGrl27xqVLl3BwcCAzM3NI7X9D5fr165w8eZIlS5YwceJE8TH/9Kc/UV5eLpoBeXt7M2bMGKZMmSKGqB9EEASOHj3KnTt32LBhw0Nbkp7086/T6cT3KTQ0lIyMjEHfo4aGBnJycmhsbGTRokXPLaQtifIIprGxkT179rB3717y8/OxsrJi8uTJXL169YWuYySJcm9vL5cvX6aiogJXV1dSUlJISEgYIMb9dywdHR1iEZBcLkehUGBrayv67kZERFhUzz74pVCr1dy5c4dbt26Jc1nNueLB2ko0Gg319fWiCDc2NmI0GpHJZISGhooiHBwcPKwtR2ZGsig/CoPBQFdXF7dv3+bkyZOi73hHRwcajQa4v7v28PCwEGpHR0e2bt1KWVkZS5YsISYmRmxrM4uzu7s7BoOBbdu2cfjwYWJjY8nIyKC8vJzu7m4SExOZMWMGjo6OogmLOQRuFmpXV1dRoJ9EqLu7u8XZzgaDQZztPJTq5P5GI7GxsRQXF5Oamoq7uzt79uyhvLyc0aNHo9PpaGlpYenSpSxevFg0ihkqXV1dnDp1SpzMtGjRomGZPS0IAidOnODmzZusX7+e8PBwPvzwQ7766isxNTN79mymT59uEaIejOzsbE6fPs2KFSsYO3bsQ2/3JJ//5uZmTp8+jUqlYtq0aYOekPQXY19fX1JSUh671mdBEuVXgIKCAn7+859z5MiRV2qe8vMQBa1Wy6FDhxgzZsygYgz3dyhXrlyhuLgYa2trcZdgb29PZGQkUVFRhIWFPVQQdTodvb29eHt7U1hYyL179xAEgYSEBCZNmjRgFm93d7cYhq6traW1tRVBEHBxcSEsLEwU4ecZ8urPqyrKZnQ6HXfv3qW4uJjJkyezaNEi1Gq1OE2r/79KpRKTyURvby/Xr19Hq9UydepUFi5cSGtrK+Xl5djY2DBx4kRmzJiBq6sr+/btY//+/YSEhPAXf/EXaDQarly5glKpJCEhgVmzZolpC3O+3yzQjxJqs1g/TKg1Go0427m7u5vY2FimTZv22OKz/kYjXl5etLe3U1JSgsFgYPXq1YSGhnL69GlSU1NZuHDhM732lZWVHD9+HKVSSWpqKunp6c9saGMymdi9ezfnzp2jra2Ne/fuER8fzw9+8ANmzZo1JL/y4uJivvzyS2bOnPlI324Y2uffYDCQk5NDXl4e/v7+zJ07V+yCgf9pfczNzRXFODU19bk4hD2IJMojlLq6OnGXXFhYiCAITJ06lfXr1/PDH/7wha5lJIky3P/CDPbFUCqVHD9+XLSYDAgIIDg4WAzjmY0OHrf2goICbt++jb29vVhBPW7cOFxcXBAEgfb2dgsR7uzsBMDb29tChM3DLF40r4Moq1QqAE6cOMGUKVOYN2/eQ/27lUol7e3t3Lp1i71799Ld3U1wcDCxsbEIgkBjYyPt7e3Y2dmRlJTEtGnTKCsr48yZMwQEBPD+++8zYcIECgoKuHTpEgqFgri4OGbOnElISMiAx3xQqM1i3V+o+++mHxRqo9FIYWEh2dnZtLa2EhwczNSpUxk1atRDT9oEQeD69etkZWVhbW2N0Whk/fr1eHt789lnnxEUFMT69euH5aTPYDBw/fp1Ll68iL29PZmZmSQnJz91K9/x48fZu3cvt27dQqfT8cYbb/B//+//HXJHgrloLD4+njfffPOZCx3b2to4ffo0SqWSyZMnM2HCBPF1M4txTk4OTU1NL1SMzUiiPIJob28X88nXrl0Td2fr169n/fr1REREvJR1jTRR7o9Op6O8vJwzZ86Qn58P3J+oM23aNGJjYwetmH4QQRBoaWmhsLCQ8vJydDodQUFBrFixgri4uAEmHebxdwEBAaIIh4aGDvvIv6fldRHlcePGcefOHY4fPz6kHRLAxYsXOXDgAFZWVowbN4709HQ6OzuRy+Xk5uZy+/Zturq68PX1RafTUV1djaurK3PmzCE9PV3ciRYUFNDZ2Ul0dDSzZs167FAKs1D33003NTWhVquBgUIdFBSEs7MzlZWVZGdnU11djaenpzjb+WFRnIqKCk6ePMncuXOJiIhgy5YtCIIwaBXys9LV1UVWVhb37t0jLCyMRYsWDblKu7u7m5MnT3LgwAFaWlqIi4sjODiY69evk5mZyV/91V8NKXXT1dX10ElUD+Nhn3+TyUReXh43btzA09OTzMxM0UjlQTH28/MTh9O86BNrSZRfMiqVikOHDrFnzx6x8i8wMJA1a9aMiMprGHmirFarqa6upry8nFu3blFfX4+DgwOTJ09m/vz5BAQEDOmLpNVqKS0tpbCwkI6ODlxdXYmPj8fFxYWWlhZkMhktLS2iX3RISIhYFR0SEjJivzCvkyjb29uLucSMjAxmzJjxyL8VBIH9+/eLlozJycm8/fbbYnGYXq8nNzeXM2fO0NbWJk5IAkQHNGtrawRBQK1Wi+9/TEwMc+bMYezYsXh4eDxRq9vjhNrsSFZTU0NVVRWOjo5iJfnDrDDN7lkNDQ1873vfw9vb+wle4SejqqqK48eP09HRQWpqKrNnzx40pC0IAvX19Zw9e5ZTp07R1tZGfHw8GzZswMfHh127dpGamkp+fj7R0dGsWrXqkTv7JzUi6f93D37+zT3gLS0tYmW3ra2tKMY3btygubn5pYqxGUmUXzLmOb8uLi4WPcovIvc4VEaSKCuVSnbt2oVSqaSrq0sU4zlz5gzpS2v2qy4sLBRNQdzc3MRCoPb2dnHc4OTJk4mOjiYsLIzAwMAn6jd9mbxuogxw4cIFLly4wIIFC0hLS3vs33/xxRc0NDRgbW1NQkKChTDD/RBtXl4ely9fJj8/n9bWVnx9fUlPT2f27Nn09vbS3t5Oe3s79+7d486dO3R1deHu7k50dDQxMTH4+PiIF3PR2eMOov2Fur9Ym4Xa1taWnp4eOjo6cHFxEYdVPJh3PXXqFDdu3GD9+vUvxNjCaDSKIW07OzsyMzMZO3YsVlZWGAwGCgsLuXz5Mjdu3ECpVBIdHc3atWuZPHkyOp2Ojz76CB8fH959913Ky8vZu3evmJYYDJPJxL59+6itrX0iy06w/Pzb2dlRUFAgjrXMzMwkMDBQPIHIyckRW5xSU1OH3VzmaXgdRfmVGkgxd+5c1q9fz9KlS4dlQtDrjvlkxdnZmbFjxzJt2rQhDaPX6XSUlJRw8+ZNampqMBgM4iSgvr4+bG1tCQoKIikpCR8fH2QyGePHj39tvhSvOrNmzUKv13Py5Ens7OzE9prBkMlkrF27lj//+c+YTCYqKir46quvLITZ1taW1NRUJkyYQF5eHlu3buX27du0tLSgUCj44Q9/aFHhazQaycvL49SpU6LlakhIiOg5bsbFxcVCpM0/e3h4YG1tLVaPe3h4iOMJBUGgs7PTYjddW1tLVVUVf/7zn9myZQvx8fHMmDGDcePGoVAouHbt2nNty3kQGxsbsTo5KyuLw4cPc+XKFfz9/amoqKCsrIy+vj5CQ0P53ve+x5QpU8QTwhMnTqDT6Vi2bBlWVlbExcWxYMECTpw4gZeX16BTpbKysqioqGDdunVPJMj96enp4fLly9TX15OcnMyUKVOws7Ojrq6OGzduIJfL8ff3Z8mSJSNCjF9nXilRPnLkyMtewiuFo6MjYWFhjB8//rF5PpPJRElJCdeuXaOwsJCuri6cnZ3x8/MjPj6ekJAQMcfXf5fdv9BIYmRgZWXF3Llz0ev1HDt2TAxNPwx3d3fWrFnDtm3b8Pf3p7KycoAwg6U4f/7553z55Zd8/fXXFBYW8g//8A8kJSUB90UpJSWFSZMmUVlZycWLF6mvrycoKIh58+bh7e2NQqEQd9eNjY3iEA3z33t5eQ0q2I6OjqLL2YNCXVtby9WrV7l27Rqffvopzs7OhIaGkpmZSUpKynN8xQfH1dWVyZMn09LSwrfffktHRwceHh4kJSXx9ttvM3PmTIuQe3FxMXfu3GHFihXi6FKAyZMno1AoOH78OB4eHsTExIi/M3uKL1682OL6oSIIAmVlZdy6dQtHR0eWL19OSEgI9fX1ohgHBASwdOnSIbvuSTwbr1T4+lVgJIWvH4Ver6elpYW6ujry8vIoKiqiu7sbBwcH4uPjmTBhAtHR0Y+dHfyqh49ex/C1GUEQ+Oabb7hz5w5vvfWWKGIPIz8/n8OHD5OUlERJSQlRUVEDhLk/Fy9eZNu2bVRVVWFra8vy5ct56623Bji7CYJATU0NFy9epKamBn9/f2bNmsWoUaPEg7wgCHR3d1u0cJl/7urqEu/L2dlZFOr+gm0e32q+r5KSEk6fPk1VVRVeXl6EhIQQHh4uFho+z8+qOURt7tc1mUz09fXR0dGBXq8nNjaWZcuWMW7cOPH59/b28tFHHxEeHj6o1Wb/EPXmzZvFXffu3buZPHkyCxYseOJ1qlQqcZb0mDFjmD17Ni0tLeTk5IhinJqaOqLF+P/H3n3HRXmlewD/DX3o0nsVKdIURRERsGHB3rsmMSYmZpPNbq7ZNE02cdN2zWY3RWOwxBZNxIgFsSAogmAHBKnSOwydYWbe+4d33uvIDAx1Bni+n898Et42Z44z88w57znPGezfP9JQUO5jyhqUW1paJOaP5uXloaysDDweD1wuFy4uLuyUh+6UY7B/KIZyUAaefpmfOnUK6enpWLFiBUaNGtXp9aKjo5GYmIjJkyfj5s2bXQbmxMRE/PHHHygsLERNTQ0cHBwQGBiI4OBgWFtbdzj+yZMnuHbtGnJzc2FqasqmaOzsa0icf7q6upp9VFVVoaamhk1DqqKiAiMjIxgZGcHY2Jh9CAQC9n1fWFiIpqYmcDgcmJubS6wW1pvZAKqqquz97eTkZNy+fRtNTU0wMjJCc3MzWlpa4OjoiBkzZkBfXx8xMTF48OABbGxsMGfOHFhaWuL48eMoLCzE1q1bZQ5YE9//b2lpwYIFC3D8+PEOC2nI69GjR4iKioJAIICDgwMMDAxw9+7dQROMxQb79480FJT7mDIFZfGCEqWlpaipqYFQKERLSwtaWlogEolgbm6OcePGwdPTs8f5iwf7h2KoB2Xg6T3eEydOsPcdO0s/++xI5WnTpiE6Opod/SsrMCcnJ+PMmTPg8/ng8XjQ1taGnp4eXFxcEBwcLHX+cmFhIeLi4pCZmQk+nw9PT084Ozt3K7gwDIPm5mbweDzU1dVJ/PfZRT7EVFVVIRAI0NTUxD7a2tqgoqICHR0djBgxgg3senp6UFNTg6qqaofHs9tVVFTQ0tKCxsZG5OfnQ0NDA05OTmhtbUVJSQm7aMioUaMkXlt+fj7OnTuHyspKjBgxAuXl5Vi3bh3c3Nw6fc319fX473//i7t372LKlCl4+eWXu/W+bW1txfnz53H//n24urpi5MiR+P3338Hj8WBtbY0JEyawS5oOBoP9+0eaQXVPmXSPhoYGSktLoaOjA4Zh2FGqHh4e8PT0hKOjo1KNXCf9Q1VVFUuXLsWxY8dw9OhRrFu3TuYYAxUVFSxduhQ//fQTkpKSsGjRIpw6dQonTpyQGZjFU2ZOnz4NLpcLoVAIS0tL1NbW4qeffpI6f9nW1hZr1qxBXl4efvnlF8THxyM1NRVjx46VmpddFl1dXamDm8SLfNTX16O9vR1CoZB9PPv3syPHq6ur8fjxYzbNq66uLvT09KCjowNNTU2IRCKJ69TU1KCsrAyNjY0wNTWFhYUF2tracPPmTWhoaMDBwQHq6uo4duwYOBwO1NXVoaamxj5UVFRQV1eHEydOwNDQENra2hg5cmSH4559AEB5eTlKSkpQV1eH3NxcaGpqyjxe/OBwOMjJycHp06fR2tqKsWPHoqysDKdPn4aKigrmzZvXr+kwifyopdzHlKmlLE5oUFZWBm1tbXh4eMDDw0NiEElvDfZfqsOhpSzW3t6Ow4cPo7S0FBs2bICVlZXMY6urq7F3717Y2NjA398fv/76a5ct5gcPHuDUqVPQ0NBAa2srPD09MWrUKDYbl5OTE4KDgyUWRxDXf0tLC+7du4ecnBzo6enBz88P7u7uMp+rv7S2tqK0tBSlpaUoLi5GRUUFRCIRNDU1YWFhgREjRoDH46GoqAitra0wNzeHtbU1DAwMcOfOHQDA2LFj4enpyU6BkvVob2/HxYsXUVVVBRMTExQWFsLAwACjR4+Gnp6e1OPv37+PyspK2NvbIy8vDzY2Nl0O8BIKhcjPz0dJSQm0tLTYfx8TExO4uLiAz+ezPzye7QkQB/Tnewh6so1yX8uPWspDmI6ODnR0dDB79mw4OjoOmrnDpH+oq6tj1apV+OWXX3Do0CFs3LhR5kIKxsbGWLZsGQ4fPgwzMzOsXLkSx44d67TF7O3tDVVVVfz2228wMDDAo0eP0NTUhE2bNiEvLw/Xrl1DREQEHBwcEBwcLJF1z8TEBHPmzEF1dTVSUlJw7do1pKSkYOzYsfDw8OiXxUik0dLSgqOjIxwdHQE8/SFTVlaG9PR03Lp1C9nZ2QCeLu84evRoCAQCxMXFwc7ODiEhIQgKCpJ79bKkpCQYGBhg27ZtcHJyQkFBAc6ePYuKigp2EZBnryVOmLR8+XKMHDkSN2/exPnz5xEUFARvb2+pgb+oqIhd4tbKygqqqqowNTVlpzO2trYiKyuLTQ7S1taGpqYmCIVCCAQCtldA/P8CgaDT+//SzJ8/X+YqVaQjain3MWVqKQ+Ewf5LdTjWf2trKw4cOID6+nps2rSp07nrSUlJOH/+PBYuXAhdXV0cO3YMzs7OWL58ucwfeZmZmfj1119haGiIhoYGGBoaYs2aNdDX10dmZiauXbuG0tJS2NvbY+LEieDxeNDV1ZWo/5qaGty+fRuZmZngcrkYO3YsRo8ePaD/RgKBANnZ2Xjw4AHKy8thYGDABrMHDx7gxo0bKCkpgY6ODsaMGYORI0eyudzt7Ow6HTxWVVWFH374AX5+fhILY4hEIiQnJ+Pq1avgcDiYNm0axo4diwcPHiAyMhIzZ87EpEmT2OMvXLiApKQkrF69Gi4uLhJlj42NxenTp8Hj8WBhYQF3d3eEhIRIZODqyftfJBKxQb+z4C3eZmNj029pdQf79480FJT7GAXlwWW41n9zczP279+P1tZWbNq0SWLVn2c9uy7vxo0b0dbWJldgzs7OxrFjx2BkZISWlhZwOBysWbMG5ubmYBgGWVlZiI2NRUFBARiGQWBgIJydnTt0c9bV1SElJQUZGRnQ0tKCr68vvL29+/XfqrGxEWlpaUhNTWWTfPj4+MDBwQGlpaW4ceMGysrKYGtri3HjxqG9vR0GBgYoLS1FQUEBamtrATztbRAHaXt7ezblqEgkwr59+9Da2opXXnlFai9AY2Mjm6NeQ0MDNTU1CA4ORnh4uEQdiUQiHD9+HHl5eXjhhRdgYWGBsrIy/PDDD7hz5w6MjY0xefJkTJ06VWo6zOH6/ldmFJT7GAXlwWU4139jYyMiIiIgFAqxadMmmWMNhEIhDhw4gJqaGmzevBmVlZVyBebc3FwcPXqUnZrU0NCAlStXsl3DDMMgPT0dhw8fRl1dHaytrTF+/HipGaPq6+tx+/ZtpKenQ11dHWPGjIG3t3efvufKyspw//59ZGdnQ1VVFW5ubvD29oaRkRGbGSw3NxcmJiYIDAyEnZ2d1PoXL08qXiO8vLwcwNNkIvb29qiurkZ2djbeeOMN2NradlqmBw8e4KOPPgIArF+/HjNnzuwwZYrP5yMiIgINDQ0wMDDAmTNnIBQKMXPmTCxYsKDTxXmG8/tfWVFQ7mMUlAeX4V7/PB4PERERUFVVxaZNm2R2MzY1NWHPnj3Q1tbGpk2bUFBQgKNHj2LkyJGdBuYnT57g8OHDMDY2hrq6OoqLi7Fw4UJ4eXkBeFr/d+/eRW1tLe7cuYOysjKYmZlh/PjxUpcAbGhowJ07d5CWlgY1NTV4e3vD19e3x2l3hUIhsrKy2C5qfX19+Pj4wN3dHZqamuy0wvT0dOjq6mLixIlwdXVlyyVP/be0tKCwsBBPnjzBgwcPcPbsWdjY2MDDw4Pt6ra3t2fv+Yo1Nzdj3759AABfX1/cuHEDADBt2jT4+flJLKF45coVvPPOO2hoaEB4eDi2bt0qV4av4f7+V0YUlPsYBeXBher/6cIlP//8M7hcLjZu3ChzoFJZWRl+/vlnuLi4YOnSpWwXdVeBuaioCL/88gtGjBgBAwMDZGRkYMaMGZg0aRL4fL7EggjPLgloYmICf39/qVN1GhsbcffuXaSmpkJFRYUNzvIuydjU1ITU1NQOXdTila/4fD7u3LmDu3fvsmlDvby8Ogxw6079CwQC7NmzBwzDYNasWSgqKkJBQQEKCwvB5/OhpqbGrq5mY2ODa9euoba2Fi+99BKMjIzQ1NSES5cu4e7du7C0tMTs2bPR2NiIgwcP4tatWxgxYgRMTEwQEhKCFStWyDXdkd7/yoeCch+joDy4UP0/VVVVhYiICOjr62PDhg0yW56PHj3C8ePHERoaiuDgYGRlZckVmEtLS3Hw4EEYGBjAzs4Ot27dwoQJExASEoIHDx50qP+ioiIkJyejqKgIxsbG8Pf3l3rPubm5GXfv3sXDhw/BMAy8vLwwZswYmVmxysvLcf/+fWRlZUFFRQXu7u5sFzXwtOWclpaGW7dugc/nw9fXF35+fjLrtjv1HxMTg8TERLz88ssSo95FIhHKysrY7u78/HzcvXsXFRUVmDlzJnx9fdl70zo6OigsLMS+fftw8+ZN1NXVwdTUFEuWLMGaNWvw5MkTHDlyRO7Um/T+Vz40JYoQAhMTE6xfvx779+/H4cOHsW7dOqlf0u7u7ggNDcXVq1dhamoKDw+PDtOlpAVmS0tLbNy4EQcPHkR+fj6mTp2Kq1evsqk5n2djYwMbGxsUFxcjOTmZXSVp/PjxGDlyJNsK1NbWRmBgIMaOHYt79+7hwYMHePDgATw9PTF27Fjo6upCKBSyo6jLysqgr6+PSZMmwcPDg/0iZxgG2dnZuHnzJurr6+Hm5oYJEyb0ONPd8woKCpCQkIBp06Z1mIamoqLCrhUdEBCAuLg4VFVVYeHChdDQ0EBGRgYSExPBMAwEAgGbZrS1tRU6Ojpwd3eHh4cH1NTU4OLigjlz5uDs2bMwMjKCv79/n5SfDBwKyoQQAE/n3q5duxYHDx7E0aNHsXr1aqkjg6dMmYKKigqcOnUKRkZGcHFxkSswm5ubs4H5wYMHCA8PR1RUFB49esQGoOdZW1vD2toapaWluHXrFqKjo5GcnIxx48bBxcWFDc5cLhcBAQEYM2YM7t+/j/v37yM1NRVOTk4oLi5mu6jnzp0LBwcHia7doqIiJCQkoLy8HPb29pgzZ45cS5zKi8/n49SpU7CxsZGYziRNWloarly5grlz5yIkJATA0x8Mt27dwpkzZ5CVlYXy8nK0tbXB3t4enp6eaGpqwr59+xAbG4uVK1di/PjxqKmpwfnz52FoaNhlvnOiXKj7uo9R9/XgQvXfUUFBAQ4dOsQudiAtUUh7ezt+/vlnNDc34+WXX4aOjg7ble3i4iIzMANP5yAfOHAAqqqqmDJlCn766Sfo6+tj8eLF0NfX77RsZWVluHXrFp48eQJDQ0OMHz++Q15p4Gm9PHjwABkZGbC2toa3tzeMjY0ljqmurkZCQgLy8/NhZmaGSZMmdTka+nny1H9UVBTu37+PV199le0ml6aoqAj79++Hu7s7Fi9eDABIT0/HtWvXUFFRAS6XCx6PB0NDQ8yYMQPa2trsKO+MjAxkZmaipaUFXl5emDVrFrKyslBXV4eXXnoJFhYWUp+T3v/Kh4JyH6OgPLhQ/UuXm5uLI0eOsIO6pAVYHo+HvXv3wsjICBs2bICqqqrcgbmurg4HDhxAe3s7HB0dkZycDIZhMG/ePKm5rJ9XXl6O5ORk5OXlwcDAAOPGjZM7Z3ZjYyMSExORkZEBPT09BAQEwMXFpUepILuq/+zsbPzyyy+YO3dup2s619XV4aeffsKIESOwfv16PH78mA3GdnZ2EAqFKC4uhpubG8LDwzuMkufz+SgqKkJMTAyuXLmC2tpaWFtbo7q6Gjo6OlizZg3c3d1ha2sr8T6n97/yoaD8jF27duH3339HRkYGuFwuJk2ahM8//xyurq5yX4OC8uBC9S/b48ePcfz4cXh4eGDRokVSR/MWFRUhIiICPj4+mDdvHjgcjtyBmcfj4eeff0Z+fj7Cw8ORmJiI2tpazJkzR+aCGc+rqKhASkoKcnJyoK+vj3HjxsHNzU3qc7a1teH27du4d+8e1NXV4e/vD09Pz16ln+2s/ltaWvDdd9/B3Nwca9askRn029rasG/fPvD5fEyaNAkpKSmoqKiAs7Mz+4OltbUVs2fPho+PT5c/HpqbmxETE4O4uDi0t7ejqKgIADB69Gioq6vDwsKCHThmbm6OrKwsev8rEVoi6BnXrl3Da6+9hsTERMTExKC9vR0zZ85EU1OTootGyIAbNWoUlixZgtTUVERFRUnNeWxjY4P58+fjzp07SEpKAgC4uLhgxYoVyMrKwokTJyAUCqVe38DAgB1QFh0djSlTpsDKygp//PEHMjIy5CqjmZkZ5syZg5UrV8LU1BRXrlzBoUOH8PDhQwgEAgBPpyLdvXsXBw4cwP379zFmzBhs2LABPj4+/ZoP/ty5c2hvb8f8+fNlBlJxRq7Hjx+jtbUV586dg76+PtavXw9jY2NcunQJRkZG2Lp1K3x9feVqzWtra2PBggV4++234e3tDScnJ3C5XBgbG2PWrFkwMTFBeno6jh8/jn/+8584ceIEYmNjkZGRgfr6+m7ntiZ9iwZ6PePChQsSf+/fvx9mZma4ffs2pkyZoqBSEaI44lbyqVOnoKamhtmzZ3cIDD4+PigvL0d0dDRMTU3h7OyMUaNGYcWKFTh+/Hing7/09PQwd+5cXL58GVFRUZg/fz50dHQQExODxsZG+Pn5yRWITE1N2QUtkpOT2QUt3NzckJmZicbGRnh4eMDf37/f8jA/Ky0tDQ8fPuz0PrlIJMIPP/yAc+fOwdnZGTY2NuzgrlOnToHH42H27Nnw9/fvUde6lZUVXnzxRdy9exfHjh1DVFQUhEIh3nzzTaiqqoLH4yErK4vNRZ6ZmQng6XKYVlZWsLS0hLW1NYyMjGhJxwFEQbkTPB4PADodnNHW1oa2tjb278bGxn4vFyEDydvbG+3t7Thz5gzU1dUxffr0Dl/S06dPR2VlJU6cOIHNmzfD2NhYIjCfPHlS5r1pLpeL+fPn48KFCzh9+jTmz58PXV1d3Lx5Ew0NDQgODpZ73W9xa7CmpgbJycm4ffs2HBwcMH/+/E4/x32psbERZ8+ehYeHB5u57FkikQhpaWk4cOAAUlJSMH36dGzcuBGWlpaIjY3F9evXYWVlhVWrVvV6FDiHw8HYsWPh7u6OH3/8EZGRkSgrK8Nrr70GBwcHeHl5QSgUQkdHB0KhECUlJSgtLUVJSQmysrLAMAw0NTUlgrSpqSmtONeP6J6yDCKRCPPnz0ddXR2uX78u87gdO3Zg586dHbbTPeXBgepffomJibhw4QKbOOR5ra2t+Omnn8AwDDZv3swmIBHfmx41alSHwPxs/TMMgz/++AM1NTWYP38+amtrceXKFTg4OCAsLKxHyzeKRCK5A3pPPF//DMPg6NGjKCkpwdatWyWyo4mD8bVr15CZmYmSkhIsWbIEq1evRnl5OU6dOoWKigqEhIRg8uTJ/VLuo0eP4tixY7C1tUVISAiCg4ORm5sr9f3P5/NRXl6OkpISlJSUoKysDAKBAGpqarCwsGCDtLm5ucI+O4P9+0caCsoyvPrqqzh//jyuX78OGxsbmcc931K+d+8egoODKSgPElT/3RMfH4/Lly93WEJQrLq6Gj/99BOsra2xevVqNrDICszP1z+fz8eZM2dQWVmJ8PBwCAQCnD9/HiYmJpg7d67caxUPlOfr/86dO/jjjz+watUqdoCoSCRCamoqmxTEzMwMBQUF8PX1xdKlS5GYmIirV6/C2NgYixYtgqWlZb+VV3wP+8aNGxgxYgQ78GvChAldpigVCoWorKxkg3RJSQna2trA4XBgZmYGS0tLNgmKvOlOe2uwf/9IQ93XUrz++uuIiopCXFxcpwEZADQ1NSXeDANxv4oQRQkKCkJ7ezsuXrwIdXX1DtN8jI2NsWzZMvzyyy+IiYlBWFgYAMjdla2hoYF58+bh3LlzOHPmDMLDw7F48WKcOXMGJ0+exPz582FoaDgQL7Xb6urqcOHCBYwZMwaurq5sML527Rqqq6sxatQozJgxA2fPnoWjoyNCQkJw4MABFBUVYdKkSQgNDZU6J7wvqaioYMmSJWhoaGCzqV2+fBn5+fmYNm1ap/O0VVVVYWFhAQsLC4wdOxYMw6CmpoYN0Dk5Obh37x6Ap7f8xEHa3t5+wIL0UECjr5/BMAxef/11nDp1CleuXGGXmCOE/L/Q0FAEBATg7NmzuHv3bof9Tk5OCAsLw82bNyX2iwPz48ePcfLkSZmjsjU0NDB37lxYW1vjzJkzaGlpwbJly8DhcHDy5El2KURlwjAMIiMjoa2tjZkzZ+L+/fv473//i99//x0mJiZ4+eWXsWzZMly7dg0Mw2DUqFHYt28fmpqasGnTJsyYMaPfA7KYhoYGVq9eDU1NTVRVVWHu3LngcrmIjIzE+fPn5R4Xw+FwYGxsDC8vL4SFhWHjxo3YsGEDZsyYAUtLS5SWliImJgZVVVX9/IqGFuq+fsbWrVtx5MgRnD59WmJusoGBgdy/9Gie8uBC9d8zDMPg7NmzuH37NpYsWQJPT88O+6OionDv3j1s2LBBYt7xs13Z8+bNw8OHD6XWv0AgQHR0NPLz8zFr1ixYWVkhKioKVVVVmD17dqfrBA8Ucf23trbiypUrmDBhArKzs1FTUwNXV1cEBwfDysoKDMPg119/RWpqKszMzFBdXY3x48djxowZCnvfVVRU4Mcff4RIJMLChQvx5MkT3LhxA3w+H+PHj8eYMWN6PaCrpaUF6urq/faDY7B//0hDLeVnfP/99+DxeAgJCYGlpSX7OH78uKKLRohS4XA4mDt3Lry9vdmEO8/vnzNnDmxsbHD8+HF2JgMg2WL+/fffZbaY1dTUMGvWLDg5OeH8+fMoLCzEwoULYWdnh6ioKKSlpfXra5RXdXU1jh49ioqKCty6dQtmZmbYsmULVq1aBSsrKwDApUuXcO3aNTQ3N4PP52Pt2rWYO3euQn8ImpmZYcmSJSguLsaNGzfg6uqKtWvXYvTo0UhMTMSRI0dQUFDQq+fgcrkD1gMwVFBQfgbDMFIfGzduVHTRCFE6HA4HCxYsgLu7O06cOIHs7GyJ/aqqqli+fDnU1dVx9OhR8Pl8dp84MGdlZeHKlSsyA7OqqirCwsIwatQoXLx4ETk5OZg9ezY8PT1x5coVJCUlKSzZhXg09b/+9S/k5+cjMDAQW7ZswcqVKyUGa924cQM//vgj2traEBgYiK1bt2LkyJEKKfPznJ2dERgYiNTUVNy/fx+ampqYMmUKVq5cCW1tbZw+fRrnzp1DQ0ODoos6bFBQJoT0mIqKChYvXgxnZ2ccO3YM+fn5Evt1dHSwatUq1NTUIDIyUiKAikdiFxYWIiYmRmZgVlFRwfTp0+Hu7o5Lly7h0aNHCA4ORkBAAG7duoXLly/LPLc/CIVCpKen49ChQzhy5AhEIhF27tyJtWvXdhg5ffnyZezcuRN6enr485//jMWLFyvdoCc3Nzf4+vri+vXryMnJAfB0Kc/FixdjxowZKC0txS+//IKUlBQ2SxrpPxSUCSG9Im4R29nZ4ciRI2yuZTFzc3MsXryYXfHoWaNGjcK0adOQn5+P6OjoTgPz1KlT2Rbyw4cPMW7cOMyYMQMZGRk4e/asREu8P4iD8S+//ILLly9DXV0dRkZGWLJkCXx9fSWObW1txcGDB7Fr1y6MHDkSu3fvxujRo/u1fL0REBAAJycnXLx4kR1Ix+Fw4ObmhnXr1sHT0xOJiYk4evQonjx5ouDSDm0UlAkhvaampoaVK1fCwsICv/zyC0pLSyX2u7m5YerUqYiNjUV6errEPnt7e4SFhSEvL6/TwMzhcBAcHAxfX19cu3YNd+/ehZubG+bPn4/S0lKcOnWqX/LUC4VCpKWlscHY1NQUS5cuBcMwsLW17RCQ8/Ly8M033+DEiRMYN24cvv76axgYGPR5ufoSh8PBjBkzYGxsjLNnz0p0V2toaCAoKAirVq2Cjo4OIiMjcerUKZSUlKCmpgbl5eUoLCxEbm4uMjMzkZaWhnv37iE5ORkJCQmoq6tT3AsbhOgOPCGkT2hoaGDNmjU4ePAgDh06hI0bN0oswxgUFISKigqcOnUKRkZGEmv8Ojo6Yvbs2Th//jyio6MRFhYmdeQvh8PB5MmToaamhuvXr0MoFGLcuHEd5jKPGDGi169HKBQiIyMDycnJaGhogLOzM+bOnQsTExNcv34dPB4PixYtYsvZ3t6OS5cu4ebNmygqKsL48eOxbds2hXVXi0QitLe3g8/ny3w0NjYiPT0dampqYBgGOjo6uHPnDj777DOMGTMGDMOgvb2dffD5fNTW1uL+/fs4deoUm37z+exj6urq7MPe3l5p55YrIwrKhJA+o6mpibVr12L//v04ePAgNm3aBGNjYwD/PzAsIiICR48exebNmyVSZzo5OckdmAMCAqCqqoqbN29CIBBgwoQJWLp0Kf744w+cPHkS4eHhPc6MJRQK8ejRI6SkpLDBODw8nM1DXVRUhHv37mHSpEkwNjZGU1MTioqKcO7cOdTV1UFbWxuOjo7YuHGjXD8Ong18nQVQ8UPe4+S9/1tVVQUdHR1oaWlBQ0MDnp6euH37Nh4/foyJEydCU1NTIsiKR4w/evQIGRkZUFdXx+TJk+Hs7MweQwtY9BzNU+5jNE95cKH67x9NTU2IiIhAe3s7Nm3aJNFSqq+vx549ezBixAisXLkSqampEvWfm5uL8+fPw9HRUWZgFrt9+zYSEhIwduxYTJo0CW1tbYiKikJFRQXCwsLg7Owsd5mfDcaNjY1wdnbG+PHj2WDMMAxaWlpw+PBhaGtrIywsDI2NjUhMTERZWRlMTU1haGiI1NRUTJ48GTY2NnIF0Pb29i5HkKuoqEBDQ0PqQxwou3pIO669vV3q+7+goAB//PEHPD09ERwcLDPI1tTUIC4uDoWFhXB0dERQUNCAdtUr6/u/Nygo9zEKyoML1X//aWhoQEREBBiGwaZNmySWMCwqKsL+/fvh5uYGGxsb6OrqStR/dwLz/fv3ERcXB29vb0yZMgVCoRAXL15Ebm4ugoKCYGtrC4FAINEN++yjra0N2dnZyMzMRFNTE0xNTWFnZwdNTc0OXbe5ubmorq6Gp6cnRCIRsrOz0djYiNGjR0NHRwePHj2Ci4sLXF1dexw8pR2rqqraL63Pzt7/qampuHr1KiZPnowxY8bIvAbDMMjOzsb169fR0tICPz8/jB07tkcLiHSXMr//e4q6rwkh/UJPTw/r169HREQE25Wto6MDALCxscG8efNw4sQJ1NXVYeLEiRLnOjk5YdasWbhw4UKnXdnA0/WcVVRUEBsbC5FIhJCQEMyaNQvx8fGIi4uTWT4Oh4Pa2lqUlpZCIBDA0tIS48ePx4gRI6CmpibRZauuro7KykpUVlZi+vTpAICHDx9izJgxmDBhAkaPHo1Tp05h+vTpWLx48ZDovvX09ER9fT1u3LgBfX19mb0OHA4HLi4usLe3R0pKClJSUpCRkYGgoCA4OTkNcKkHPwrKhJB+Y2hoyAbmQ4cOYcOGDezAJx8fHxQVFSEyMhJWVlYdEmo4OzvLHZi9vLygpqbGzlmeOnUqpkyZAldXVwiFQongyuFwkJ2dzeblHj9+PPz9/Ttdb7mlpQVHjhyBu7s7mpubUVZWxrYgKysrcfbsWdja2mLBggVDIiCLBQQEoK6uDhcvXsTixYthbm4u81gNDQ1MmjQJbm5uiIuLw9mzZ+Hg4IApU6Yo/ehzZUJToggh/crY2Bjr169HfX09fvnlF4mlTqdOnQpbW1tcvHgRNTU1Hc4VB+a8vDxcvHix0yQh7u7u7LzlixcvQiQSwcLCAtbW1jAzM4Oenh5yc3Px66+/Ij4+HpaWlli9ejVmzZrVaUAGgNjYWBQXF6OiogJNTU1YtGgRAgMD2a5yTU1NrFy5csillBRPlTIxMUFUVJRcmb2MjIywYMECzJkzB9XV1RL/3qRrFJQJIf3OzMwM69atQ3V1NQ4fPswm+lBRUUFoaCh0dHRw9uxZtLa2djhXHJhzc3O7DMyurq6YNWsWsrOz2TnPAoEADx48wKFDhxAXFwcrKyusXr0aYWFhXQZj4Oka6WfPnoVIJIKXlxdWrVoFa2trNiA3NzdjxYoVSrfWc19RV1fHnDlzoKqqij/++EOuJC0cDgfOzs5Yv369xLQ40jUKyoSQAWFpaYm1a9eirKwMx44dY6fsaGhoYM6cOWhpacGFCxcgEok6nCsOzDk5OV0G5pEjR2LOnDnIy8vDqVOn2GBsbW3drWDMMAzu3r2Lb7/9Ftra2ti0aRNCQ0OhoaEBhmEQFxeHoqIiTJ8+nR2hPVTp6Ohg/vz5aGpqwvnz56X+G0nz/Pxl0jWqMULIgLGxscHq1atRUFCAX3/9lQ2uBgYGmD17NoqKinD9+nWp5zo7O2P27NlyBWYnJyeEh4ejpqaGDcYzZ86UKxgDT+8hnz9/Hvv27YOxsTHeffdd2Nvbs/vv37+P1NRUdmnG4cDIyAizZ89GYWEhuy406XsUlAkhA8rBwQErV65ETk4OIiMj2VaXra0tpkyZgvv378tclvH5wNxZi83e3h6bN2/uVjAGnk7HOnLkCO7cuQMTExNs3bpVIglIbm4url+/Dj8/P3h4eMh93aHA1tYWoaGhSE1NZQfKkb5FQZkQMuBGjhyJZcuWISMjA3FxcWyry8vLC56enoiNjUVJSYnUc58NzNHR0Z0G5u6MhObz+bh06RLOnj0LXV1d6OvrIygoCA4ODuwxFRUVuHjxIpycnBAQECD3tYeS0aNHw8/PDwkJCeyqUqTvUFAmhCiEm5sbFi5ciOzsbDYwczgcTJkyBZaWljh37hzq6+ulntudwCyPwsJCHDlyBNnZ2QgNDYWqqioblMUaGxtx9uxZjBgxAjNmzBhSU5+6KyAgAM7OzhKrSpG+QUGZEKIwo0ePxpQpU5CWlob4+HgwDANVVVXMnj0bampqnS7J2BeBub29HXFxcYiMjIS+vj5Wr14NPp+PsrIyTJ8+nc1yxefzERUVBQCYO3fugGSrUmYcDocd4BYVFSXzxxPpPgrKhBCFGjVqFHsvOTExEQDA5XIRHh4OHo+HS5cuyRxU1JvAXF5ejuPHjyM1NRVBQUFYtGgR2tvbcfPmTfj4+MDGxgbA09WWYmJiUFdXh/DwcOjq6vb+RQ8B6urqmDt3LtTU1HDmzBmaj9xHKCgTQhTO09MTgYGBbJpGADAxMcGMGTOQm5uLpKQkmed2NzALhUIkJibixIkTUFdXx8qVK+Hr68sGX0NDQ4n7xQkJCcjLy0NYWBhMTU375gUPEdra2pg3bx47VaqzEfFEPhSUCSFKYezYsZgwYQJu3ryJe/fuAXgacCdOnIjk5GRkZWXJPFfewFxdXY0TJ04gJSUF/v7+WLp0KTsyOzk5GVVVVZg+fTqbmUs8yjgoKAiOjo59+4KHCPFUqaKiIpoq1QcoKBNClMb48ePh5+eH+Ph4pKamAgD8/PwwatQoXLp0CRUVFTLP7Wy6lEgkwu3bt3Hs2DEIhUIsW7YM/v7+bC7t8vJypKSkYPz48Wx+58LCQsTGxsLb2xve3t79+KoHP1tbW0ydOhVpaWm4c+eOooszqA2tRK2EkEGNw+EgICAA7e3tiI2NhZqaGtzc3DB16lTU1dXh7NmzWL58Obva1PPEgfn8+fMAgJkzZ6KhoQExMTEoKyuDr68vJk6cKJGjur29HTExMTA1NcW4ceMAPF0n+Pz587C1tUVQUNCwHmktLw8PD/B4PCQkJMDAwKDDAiNEPhSUCSFKRTwtSiAQ4NKlS1BTU8PIkSMxd+5c/Prrrzh37hwWLVokc/GHZwNzU1MTKisrweVysWjRIlhbW3c4/ubNm6ivr8fKlSuhqqqK5uZmnDlzBjo6Opg9ezaliuyGiRMngsfj4eLFi9DV1YWFhYWiizTo0LuNEKJ0OBwOQkND4eLiggsXLiAvLw+6urqYO3cuKisrERsb2+m9S3FgLi8vx6hRo9hFJJ5XWFiI+/fvIyAgAEZGRhAIBDh79iza29sxb948dkoUkY94qpSpqSlNleohCsqEEKWkoqKC6dOnw8nJCefPn0dhYSHMzc0xdepUPHr0qMs0j87OztiyZQumTp0qNbjy+XxcvnwZ1tbW8PX1BcMwuHz5MiorKxEeHg59ff3+emlDmpqaGjuXm6ZKdR8FZUKI0lJVVcXMmTNhbW2NqKgolJSUwM3NjU3zmJ+f3+X5ssTFxaG1tRXTp08Hh8PBrVu38PjxY8yYMYO6XXtJPFWqra2t08F5pCMKyoQQpaampoY5c+bAwsICZ86cQXl5OSZOnAh7e3tER0ejpqam29fMzc3Fo0ePEBQUBH19fWRkZODWrVsICAiAi4tLP7yK4cfIyAjr1q2Dra2toosyqFBQJoQoPXH2KCMjI5w+fRo1NTUICwuDrq4uoqKi0NraKve1WlpacPXqVTg4OMDDwwMlJSW4fPky3N3d4efn14+vYvgZ7ulIe4KCMiFkUNDQ0MD8+fOhr6+PyMhINDY2Yu7cuWhtbcWFCxfkSrHJMAyuXr0KoVCI0NBQ1NfX4+zZs7C0tERoaChNfSIKR0GZEDJoaGpqYsGCBeByuYiMjAQANptUfHx8l+dnZmYiJycHoaGh7EAkLS0tzJ49u9P7z4QMFArKhJBBhcvlYuHChVBXV0dkZCQMDQ0xZcoUPHjwAGlpaTLPa2xsRFxcHEaNGsWO6G5ubkZ4eDi4XO4AvgJCZKOgTAgZdHR0dLBw4UIAQGRkJJydneHp6YnY2FgUFxd3OF483UlNTQ1Tpkxhj5szZw5GjBgxwKUnRDYKyoSQQUlPTw+LFi2CQCBAZGQkxo8fD0tLS5w7d65D0orU1FQUFBRg2rRpePToEdLT0zF16lR2eUZClAUFZULIoGVgYIAFCxagpaUFUVFRbKKQqKgo8Pl8AEBdXR2uX78OT09PCAQCJCQkYNy4cXB3d1dw6QnpiIIyIWRQMzIywsKFC1FfX4+YmBjMnDmT/X+hUIhLly5BW1sbLi4uuHjxIrscJCHKiIIyIWTQMzExwYIFC1BTU4ObN29i6tSpyMvLw8mTJ1FWVoZJkybh4sWLMDY2ZjN4EaKMKCgTQoYEc3NzzJs3D+Xl5Xj06BHGjx+PiooKeHl5ISUlBSoqKmxOZkKUFQVlQsiQYWVlhfDwcBQXF6OyshILFiwAj8dDfX09wsPDZa7DTIiyoPWUCSFDiq2tLebMmYOzZ8+iuroaDQ0NmDdvHkxMTBRdNEK6RC3l58TFxWHevHmwsrICh8NhswYRQgYPBwcHhIWFoampCVOmTIG9vb2ii0SIXKil/Jympib4+PjghRdewOLFixVdHEJID40cORIODg5QU6OvOTJ40Lv1ObNnz8bs2bMVXQxCSB+ggEwGG3rH9lJbWxva2trYvxsbGxVYGkIIIYMZ3VPupV27dsHAwIB9BAcHK7pIhBBCBikKyr307rvvgsfjsY9r164pukiEEEIGKeq+7iVNTU1oamqyf+vq6iqwNIQQQgYzaikTQgghSoJays9pbGxEdnY2+3deXh7u3bsHIyMj2NnZKbBkhBBChjoKys9JSUlBaGgo+/ef//xnAMCGDRuwf/9+BZWqdyoqKlBZWdkv125vb0dLSwsYhoGGhka/PEd/4vP5yMzMBJfLHZQ5kan+FYvqv2umpqYwMzPrl2sPRRyGYRhFF2IoKS0txY8//ogtW7bA0tJS0cVBW1sbwsLCaAAaIUQhgoODER0dLTH2hshGQXmIq6+vh4GBAa5du0aD0BSgsbERwcHBVP8KQvWvWOL65/F40NfXV3RxBgXqvh4mfH196UOhAPX19QCo/hWF6l+xxPVP5EejrwkhhBAlQUGZEEIIURIUlIc4TU1NfPTRRzTIQkGo/hWL6l+xqP67jwZ6EUIIIUqCWsqEEEKIkqCgTAghhCgJCsqEEEKIkqCgTOSWn58PDoczaNONEkKIsqOg3E9ycnKwZcsWODk5QUtLC/r6+ggMDMQ333yDlpaWfnve9PR07NixA/n5+f32HPL49NNPMX/+fJibm4PD4WDHjh0KLY8sHA5HrkdsbGyvn6u5uRk7duzo1rUGSz32lDLXf0ZGBt555x34+vpCT08PlpaWmDt3LlJSUnpdFmWhzPVfUlKCtWvXwtXVFXp6ejA0NIS/vz8OHDiAoTw+mTJ69YOzZ89i2bJl0NTUxPr16+Hp6Qk+n4/r16/jr3/9K9LS0rBnz55+ee709HTs3LkTISEhcHBw6JfnkMf7778PCwsLjBkzBtHR0QorR1cOHTok8ffBgwcRExPTYbu7u3uvn6u5uRk7d+4EAISEhMh1zmCpx55S5vr/6aefsG/fPixZsgRbt24Fj8fDjz/+iIkTJ+LChQuYPn16r8ukaMpc/1VVVSgqKsLSpUthZ2eH9vZ2xMTEYOPGjcjMzMRnn33W6zIpJYb0qdzcXEZXV5dxc3NjSkpKOuzPyspidu/e3W/Pf+LECQYAc/Xq1S6PFYlETHNzs9zXzsvLYwAwERERch3LMAxTWVnJAGA++ugjuZ9HkV577TWmvz4WPamLwVqPPaVM9Z+SksI0NDRIbKuqqmJMTU2ZwMDAfiih4ilT/csSHh7O6OjoMAKBoG8KpmSo+7qPffHFF2hsbMS+ffukrhI1cuRI/OlPf2L/FggE+OSTT+Ds7AxNTU04ODjgb3/7G9ra2iTOc3BwQHh4OK5fvw5/f39oaWnByckJBw8eZI/Zv38/li1bBgAIDQ3t0PUkvkZ0dDTGjRsHLpeLH3/8EQCQm5uLZcuWwcjICNra2pg4cSLOnj3b43pQZCu9r4lEIuzevRujR4+GlpYWzM3NsWXLFtTW1kocl5KSgrCwMJiYmIDL5cLR0REvvPACgKf3401NTQEAO3fuZP9tuuqOHkr12FOKqn8/P78Oi1gYGxsjKCgIjx496tsXqcQU+f6XxsHBAc3NzeDz+b1+bcqIuq/72JkzZ+Dk5IRJkybJdfxLL72EAwcOYOnSpXj77beRlJSEXbt24dGjRzh16pTEsdnZ2Vi6dClefPFFbNiwAT///DM2btwIPz8/jB49GlOmTMEbb7yBf//73/jb3/7Gdjk92/WUmZmJVatWYcuWLdi8eTNcXV1RXl6OSZMmobm5GW+88QaMjY1x4MABzJ8/HydPnsSiRYv6roIGoS1btmD//v3YtGkT3njjDeTl5eE///kP7t69ixs3bkBdXR0VFRWYOXMmTE1NsX37dhgaGiI/Px+///47gKdryn7//fd49dVXsWjRIixevBgA4O3trciXNigoW/2XlZXBxMSkT1+jMlN0/be0tKCpqQmNjY24du0aIiIiEBAQAC6X26+vW2EU3VQfSng8HgOAWbBggVzH37t3jwHAvPTSSxLb//KXvzAAmCtXrrDb7O3tGQBMXFwcu62iooLR1NRk3n77bXZbZ93X4mtcuHBBYvubb77JAGDi4+PZbQ0NDYyjoyPj4ODACIVChmG6130tNti6XZ/vvouPj2cAMIcPH5Y47sKFCxLbT506xQBgkpOTZV67N3Ux2Oqxp5S1/sXi4uIYDofDfPDBBz2+hjJTxvrftWsXA4B9TJs2jSkoKOjWNQYT6r7uQ+JlyvT09OQ6/ty5cwCAP//5zxLb3377bQDo0H3s4eGBoKAg9m9TU1O4uroiNzdX7jI6OjoiLCysQzn8/f0xefJkdpuuri5efvll5OfnIz09Xe7rDzUnTpyAgYEBZsyYgaqqKvYh7tq8evUqAMDQ0BAAEBUVhfb2dgWWeGhRpvqvqKjA6tWr4ejoiHfeeadfnkPZKEP9r1q1CjExMThy5AhWr14NAP06g0XRKCj3IfF6rQ0NDXId/+TJE6ioqGDkyJES2y0sLGBoaIgnT55IbLezs+twjREjRnS4t9MZR0dHqeVwdXXtsF3c7f18OYaTrKws8Hg8mJmZwdTUVOLR2NiIiooKAEBwcDCWLFmCnTt3wsTEBAsWLEBERESHsQGke5Sl/puamhAeHo6GhgacPn26w73moUoZ6t/e3h7Tp0/HqlWrcPjwYTg5OWH69OlDNjDTPeU+pK+vDysrK6SmpnbrPA6HI9dxqqqqUrcz3ZizN2Tvw/QTkUgEMzMzHD58WOp+8eAVDoeDkydPIjExEWfOnEF0dDReeOEFfP3110hMTBw2X+J9TRnqn8/nY/HixXjw4AGio6Ph6enZ42sNNspQ/89bunQp9u7di7i4uA69fkMBBeU+Fh4ejj179uDmzZsICAjo9Fh7e3uIRCJkZWVJDMYqLy9HXV0d7O3tu/388gb458uRmZnZYXtGRga7f7hydnbGpUuXEBgYKNcPmokTJ2LixIn49NNPceTIEaxZswbHjh3DSy+91KN/m+FO0fUvEomwfv16XL58Gb/++iuCg4N78jIGLUXXvzTiFjKPx+uT6ykb6r7uY++88w50dHTw0ksvoby8vMP+nJwcfPPNNwCAOXPmAAB2794tccw///lPAMDcuXO7/fw6OjoAgLq6OrnPmTNnDm7duoWbN2+y25qamrBnzx44ODjAw8Oj2+UYKpYvXw6hUIhPPvmkwz6BQMDWc21tbYceC19fXwBgu/C0tbUBdO/fZrhTdP1v27YNx48fx3fffceOGB5OFFn/lZWVUrfv27cPHA4HY8eOles6gw21lPuYs7Mzjhw5ghUrVsDd3V0io1dCQgJOnDiBjRs3AgB8fHywYcMG7NmzB3V1dQgODsatW7dw4MABLFy4EKGhod1+fl9fX6iqquLzzz8Hj8eDpqYmpk6dCjMzM5nnbN++HUePHsXs2bPxxhtvwMjICAcOHEBeXh5+++03qKh0/7fboUOH8OTJEzQ3NwMA4uLi8Pe//x0AsG7dukHT+g4ODsaWLVuwa9cu3Lt3DzNnzoS6ujqysrJw4sQJfPPNN1i6dCkOHDiA7777DosWLYKzszMaGhqwd+9e6Ovrsz++uFwuPDw8cPz4cYwaNQpGRkbw9PTstDt0qNRjTymy/nfv3o3vvvsOAQEB0NbWxi+//CKxf9GiReyP4KFKkfX/6aef4saNG5g1axbs7OxQU1OD3377DcnJydi2bVuHsThDhmIHfw9djx8/ZjZv3sw4ODgwGhoajJ6eHhMYGMh8++23TGtrK3tce3s7s3PnTsbR0ZFRV1dnbG1tmXfffVfiGIZ5Op1p7ty5HZ4nODiYCQ4Olti2d+9exsnJiVFVVZWYHiXrGgzDMDk5OczSpUsZQ0NDRktLi/H392eioqIkjunOlKjg4GCJaQzPPuTJNqYosjIa7dmzh/Hz82O4XC6jp6fHeHl5Me+88w6bte3OnTvMqlWrGDs7O0ZTU5MxMzNjwsPDmZSUFInrJCQkMH5+foyGhoZc00MGaz32lDLV/4YNG2TWPQA229pQokz1f/HiRSY8PJyxsrJi1NXV2e/QiIgIRiQS9enrViYchhnCmb0JIYSQQYTuKRNCCCFKgoIyIYQQoiQoKBNCCCFKgoIyIYQQoiQoKBNCCCFKgoKygnzxxRdwc3ODSCRSdFF6bfv27ZgwYYKii9EtVP+KRfWvWFT/SkzRc7KGIx6PxxgZGTE///wzuw3/N/fxq6++6nB8REREl8uiyeu3335jli9fzjg6OjJcLpcZNWoU8+c//5mpra2Vevzp06eZMWPGMJqamoytrS3z4YcfMu3t7RLHlJaWMpqamszp06d7Xb6BQPWvWFT/ikX1r9woKCvAv/71L0ZfX59paWlht4k/FObm5kxTU5PE8X35oTA2Nma8vLyYDz74gNm7dy/zxhtvMBoaGoybmxvT3Nwscey5c+cYDofDhIaGMnv27GG2bdvGqKioMK+88kqH6y5fvpwJCgrqdfkGAtW/YlH9KxbVv3KjoKwA3t7ezNq1ayW2AWB8fX0ZAMzXX38tsa8vPxTSskAdOHCAAcDs3btXYruHhwfj4+Mj8cv0vffeYzgcDvPo0SOJY0+ePMlwOBwmJyen12Xsb1T/ikX1r1hU/8qN7ikPsLy8PDx48ADTp0/vsC8wMBBTp07FF1980W9rhYaEhHTYtmjRIgDAo0eP2G3p6elIT0/Hyy+/DDW1/0+RvnXrVjAMg5MnT0pcQ/x6Tp8+3Q+l7jtU/4pF9a9YVP/Kj4LyAEtISAAAmSuc7NixA+Xl5fj+++87vU5bWxuqqqrkenSlrKwMAGBiYsJuu3v3LgBg3LhxEsdaWVnBxsaG3S9mYGAAZ2dn3Lhxo8vnUySqf8Wi+lcsqn/lR6tEDTDxGsWOjo5S9wcFBSE0NBRffvklXn31VZlrmB49ehSbNm2S6zmZLtKbf/7551BVVcXSpUvZbaWlpQAAS0vLDsdbWlqipKSkw3YnJyekp6fLVSZFofpXLKp/xaL6V34UlAdYdXU11NTUoKurK/OYHTt2IDg4GD/88APeeustqceEhYUhJiam1+U5cuQI9u3bh3feeQcuLi7sdnH3laamZodztLS0UF9f32H7iBEjOvyCVTZU/4pF9a9YVP/Kj4KyEpoyZQpCQ0PxxRdf4JVXXpF6jKWlpdRfkd0RHx+PF198EWFhYfj0008l9ol/IYsXKH9Wa2ur1F/QDMOAw+H0qkzKgOpfsaj+FYvqX7EoKA8wY2NjCAQCNDQ0QE9PT+ZxH330EUJCQvDjjz/C0NCww/6WlhbweDy5ntPCwqLDtvv372P+/Pnw9PTEyZMnJQZTAP/fbVRaWgpbW1uJfaWlpfD39+9wzdraWon7QsqI6l+xqP4Vi+pf+dFArwHm5uYG4OkoyM4EBwcjJCQEn3/+udSRkMePH2d/rXb1eF5OTg5mzZoFMzMznDt3TmpXlq+vLwAgJSVFYntJSQmKiorY/c/Ky8uDu7t7p69L0aj+FYvqX7Go/pUftZQHWEBAAICnbzZvb+9Oj92xYwdCQkKwZ8+eDvt6ek+nrKwMM2fOhIqKCqKjo2Fqair1uNGjR8PNzQ179uzBli1boKqqCgD4/vvvweFwJAZlAACPx0NOTg5effXVbpdpIFH9KxbVv2JR/Q8CipkePbx5enoyq1atktgGgHnttdc6HBscHMxm2+mLyfs+Pj4MAOadd95hDh06JPG4ePGixLFnzpxhOBwOM3XqVGbPnj3MG2+8waioqDCbN2/ucN2TJ08yAJjs7Oxel7G/Uf0rFtW/YlH9KzcKygrwz3/+k9HV1ZVIKyfrQ3H16tU+/VCIryXtERwc3OH4U6dOMb6+voympiZjY2PDvP/++wyfz+9w3IoVK5jJkyf3unwDgepfsaj+FYvqX7lRUFaAuro6xsjIiPnpp58UXZQ+UVpaymhpaTGRkZGKLopcqP4Vi+pfsaj+lRsN9FIAAwMDvPPOO/jyyy+HxNJpu3fvhpeXFxYsWKDoosiF6l+xqP4Vi+pfuXEYpot0K4QQQggZENRSJoQQQpQEBWVCCCFESVBQJoQQQpQEBWVCCCFESVBQJoQQQpQEBWVCCCFESVBQJoQQQpQEBWVCCCFESVBQJoQQQpQEBWVCCCFESVBQJoQQQpQEBWVCCCFESVBQJoQQQpQEBeU+Vlpaih07dqC0tFTRRSGEEDLIUFDuY6Wlpdi5cycFZUIIId1GQZkQQghREhSUCSGEECVBQZkQQghREhSUCSGEECVBQZkQQki/4PP5SEhIAJ/PV3RRBg0KyoQQQvpFYmIiIiIikJSUpOiiDBoUlAkhhPS5trY2REdHIy8vDxcuXEBbW5uiizQoUFAmhBDS55KSkvD48WN4e3vj8ePHuHXrlqKLNChQUCaEENKnxK1kDQ0N6OvrQ0NDg1rLcqKgTAghpE/dvXsXOTk5aGpqQlpaGpqampCTk4O7d+8qumhKT03RBSCEEDK02NraYs2aNVK3k85RUCaEENKnrK2tYW1tDT6fj5SUFIwbNw4aGhqKLtagQN3XhBBC+gVNieo+CsqEEEL6HE2J6hkKyoQQQvocTYnqGQrKhBBC+hRNieo5CsqEEEL6FE2J6jkafU0IIaRP0ZSonqOg/Ixdu3bh999/R0ZGBrhcLiZNmoTPP/8crq6uii4aIYQMGuIpUaT7qPv6GdeuXcNrr72GxMRExMTEoL29HTNnzkRTU5Oii0YIIWQYoJbyMy5cuCDx9/79+2FmZobbt29jypQpCioVIYSQ4YKCcid4PB4AwMjISOYxbW1tEiMKGxsb+71chBBChibqvpZBJBLhzTffRGBgIDw9PWUet2vXLhgYGLCP4ODgASwlIYSQoYSCsgyvvfYaUlNTcezYsU6Pe/fdd8Hj8djHtWvXBqiEhBBChhrqvpbi9ddfR1RUFOLi4mBjY9PpsZqamtDU1GT/1tXV7e/iEUIIGaIoKD+DYRhs27YNp06dQmxsLBwdHRVdJEIIIcMIBeVnvPbaazhy5AhOnz4NPT09lJWVAQAMDAzA5XIVXDpCCCFDHd1Tfsb3338PHo+HkJAQWFpaso/jx48rumiEEEKGAWopP4NhGEUXgRBCyDBGLWVC+hGfz0dCQgL4fL6ii0IIGQQoKBPSjxITExEREYGkpCRFF4UQMghQUCakn4jXlM3Ly6O1ZAkhclGqoCwUCnHs2DFs2bIFixYtwsOHDwE8TXf5+++/o7y8XMElJER+SUlJePz4Mby9vfH48WPcunVL0UUihCg5pQnKdXV1CAwMxOrVq3H06FH88ccfqKysBPA0Iccbb7yBb775RsGlJEQ+4layhoYG9PX1oaGhQa1lQkiXlCYob9++HWlpaYiOjkZubq7ESGhVVVUsXboU586dU2AJCZHf3bt3kZOTg6amJqSlpaGpqQk5OTm4e/euootGCFFiSjMlKjIyEtu2bcOMGTNQXV3dYf+oUaOwf//+gS8YIT1ga2uLNWvWSN1OCCGyKE1Q5vF4naa1bG9vh0AgGMASEdJz1tbWsLa2VnQxCCGDjNJ0Xzs7O+POnTsy91+8eBEeHh4DWCJCCCFkYClNUH7ppZfw888/4/jx4+z9ZA6Hg7a2Nrz33nu4cOECtmzZouBSEkIIIf1Habqv//SnPyEtLQ2rVq2CoaEhAGD16tWorq6GQCDAli1b8OKLLyq2kIQQQkg/UpqgzOFwsHfvXmzYsAEnT55EVlYWRCIRnJ2dsXz5ckyZMkXRRSSEEEL6ldIEZbHJkydj8uTJii4GIYSQfsLn85GSkoJx48ZBQ0ND0cVRKkpzTzkvLw9nzpyRuf/MmTPIz88fuAIRQgjpFVkLslBOeNmUJij/5S9/wb///W+Z+//73/9i+/btA1giQgghvSEt+FJO+M4pTVC+efMmZsyYIXP/tGnTEB8fP4AlIqT3aOlGMlzJCr6UE75zShOUa2troaenJ3O/rq6u1ExfhCgz6qYjw5W04Es54bumNEHZzs4ON27ckLk/Pj4eNjY2A1giQnqHuunIcCUr+CYlJVFO+C4ozejrVatW4ZNPPoG/vz9ef/11qKg8/b0gFArxn//8B8ePH8d7772n4FISIj9pLYWgoCBFF4uQfidekKW1tRVpaWlob29HTk4O6urqKCd8F5QmKL/77ru4fv063nzzTXz66adwdXUFAGRmZqKyshIhISEUlMmgIaul4O/vD01NTUUXj5B+JWtBlrFjx1JO+C4oTVDW1NTExYsXceDAAfz+++/IyckBAPj7+2PJkiVYv34923omRNnJaincvXsXEydOVHTxCOlXtCBLzylNUAYAFRUVbNq0CZs2bVJ0UQjpFVq6kRDSE0oVlAkZKqilQAjpCaUKytHR0di3bx9yc3NRW1vLrhYlxuFw2G5tQgghZKhRmqD85ZdfYvv27TA3N4e/vz+8vLwUXSRCCCFkQClNUP7mm28wdepUnDt3Durq6oouDiGEEDLglGY4c21tLZYuXUoBmQx7lJqz71BdksFGaYKyv78/MjMzFV0MQhSOUnP2HapLxeLz+YiNjaUfRd2gNEH5u+++w++//44jR44otBxxcXGYN28erKyswOFwEBkZqdDykKFJVguOUnP2HapLxUtMTMTBgwfpR1E3KE1QXrFiBQQCAdatWwcDAwOMHj0a3t7eEg8fH59+L0dTUxN8fHzw3//+t9+fiwxfslpwtIJO36G6VCz6UdQzSjPQy8jICMbGxnBxcVFoOWbPno3Zs2crtAxk6ODz+UhJScG4ceOgoaEBoOOXlTj1JqXm7DtUl4on/lE0evRoyv3eDUoTlGNjYxVdhB5pa2uT+AXY2NiowNIQZZOYmIhDhw5BKBSyX0iyFqqg1Jx9h+pSsZ79UaSjo0M/irpBaYLyYLVr1y7s3LlT0cUgSkj8xZSbm8t+IQGQ2YKj1Jx9h+pSsZ79UfTo0SOoqKjQjyI5KVVQrq+vx3fffYerV6+ioqICP/74I/z9/VFTU4P9+/dj/vz5GDlypKKLKeHdd9/Fn//8Z/bve/fuITg4WIElIspC3CL28vJiW8Tq6uqdtuAoNWffoDSnivXsj6K6ujoYGhqy20nnlCYoFxUVITg4GIWFhXBxcUFGRgbbFWxkZIQff/wRT548wTfffKPgkkrS1NSU6I7R1dVVYGmIsni2+05PT49tEb/44ovUgiND3rM/igoLC+n93Q1KE5T/+te/oqGhAffu3YOZmRnMzMwk9i9cuBBRUVEKKh0h3fNs993Dhw8BADk5OaioqMC8efMUXDpCBk5ra6uiizCoKE1QvnjxIt566y14eHigurq6w34nJycUFhb2ezkaGxuRnZ3N/p2Xl4d79+7ByMgIdnZ2/f78ZGh4tvuOx+PBwMCA3U7IcNLQ0KDoIgwqShOUW1paYGpqKnP/QP3DpqSkIDQ0lP1bfL94w4YN2L9//4CUgQx+z3bfpaamYtSoUUhJSen0PU7IUFRXV6foIgwqShOUPTw8EBcXhy1btkjdHxkZiTFjxvR7OUJCQjosGUlIb+Tk5KC6uhq//PKLxNQoQoaD2tpaRRdhUFGajF5vvvkmjh07hs8//xw8Hg8AIBKJkJ2djXXr1uHmzZt46623FFxKQrqvqqoKkZGRlNmIDEtNTU3Uhd0NStNSXrt2LZ48eYL3338f7733HgBg1qxZYBgGKioq+Oyzz7Bw4ULFFpKQbho3bhwyMzPBMAw2b97cZWYjaRnACBnscnNzJdIk0/tcNqUJygDw3nvvYd26dfjtt9+QnZ0NkUgEZ2dnLF68GE5OToouHiHdVlpaisbGRqipqYHH40FdXb3TzEbSMoARMtg9fPgQHh4e7NK89D6XTSmCcnNzM4KCgrB582a88sor1E1Nhoz29nb2/+/fvw91dXXw+XypmY1k5cQmZLAaO3YssrOzYWhoCGdnZwQEBND7vAtKcU9ZW1sbeXl54HA4ii4KIX1KVVUVwNMkMxMnToSfnx+srKxQWVmJuLg4iaUbaVUjMtQUFhaioaEBtbW1SE1NRWlpKb3Pu6AUQRl4ev84Ojpa0cUgpE+pqDz9iKmpqcHHxwc+Pj7w9PTEtWvX8OGHH+LQoUNobm6WuaoRDQojg1VbWxubOKS9vR18Ph/R0dE4e/Ysvc87oRTd1wDwwQcfYNmyZVi3bh22bNkCR0dHcLncDscZGRkpoHSEdF9BQQHq6+sBPM1qVFNTAyMjI7S3tyM9PR3l5eX47bff2C+ve/fuQVVVlVY1IkNCUlISBAIBgKczafLz86GqqoqbN2/CyMiI3ucyKE1QHj16NAAgPT0dR44ckXmcUCgcqCIR0iO3bt3CJ598grNnz7Jz3tva2vC3v/0NXl5e8PLyQnl5OaytrVFeXo68vDyYmJjAwcEBKioqMDc3h42NDYyMjPotA1hNTQ22bduGM2fOQEVFBUuWLME333wjV+52hmEwZ84cXLhwAadOnZKYFZGcnIzt27fj9u3b4HA48Pf3xxdffCEx8pYMfeKeH/EtSYZhkJaWhsDAQHh5ecHW1hYeHh7sfsp09/+UJih/+OGHdE+ZDHq///47VqxYAYZhOiShYRgGqampePjwIZycnGBlZYX6+nqkpaVh7ty5HaaMCIVCtLW1gWGYHn02QkJCsHHjRmzcuLHDvjVr1qC0tBQxMTFob2/Hpk2b8PLLL3f6g1hs9+7dUsvT2NiIWbNmYf78+fjuu+8gEAjw0UcfISwsDIWFhezIWzL0iXO/P/sZqKysRENDA/s+t7S0xPjx4xVVRKXVraDs6OjY7S8HDoeDnJycLo/bsWNHt65LiLK5desWVqxYAaFQKDMrnEgkAvA0y5eamhq0tLRQWVmJwsLCDtP+KisrcenSJRgYGMDHxwcuLi7swLHeePToES5cuIDk5GSMGzcOAPDtt99izpw5+Oqrr2BlZSXz3Hv37uHrr79GSkoKLC0tJfZlZGSgpqYGH3/8Mdvy+eijj+Dt7Y0nT54o3bKrpP+Ic7/HxMSgtbUVmpqa8Pf3x4gRIwAAAoEAJ0+ehEAgwMSJE6lB9oxuBeXg4OAOlZeSkoK0tDR4eHjA1dUVAJCZmYn09HR4enrCz8+vRwXj8XjQ1dXtky8hQgbC3//+d6ktZGk4HA7a2towbdo0AGC/rKTh8XiIi4vD7du34ePjAzc3N6ip9byT6+bNmzA0NGQDMgBMnz4dKioqSEpKwqJFi6Se19zcjNWrV+O///0vLCwsOux3dXWFsbEx9u3bh7/97W8QCoXYt28f3N3d4eDg0OPyksFHnPtdPC5IXV1doicoNzcXSUlJ7I9UCsz/r1uf7OcXZIiMjERkZCRiYmLYLxexmJgYLF++HJ988onc109JScH777/PThW5ePEipk6diqqqKrz44ot46623EBIS0p0iEzIgCgoKEBUVJXfedIZh8OTJE9ja2so9eLGpqQkJCQm4e/cuvL29JZIxdEdZWVmHpVHV1NRgZGSEsrIymee99dZbmDRpEhYsWCB1v56eHmJjY7Fw4UL2c+/i4oLo6Ohe/YggQ4t4oGNVVRXS0tLg4OCA1tZWTJkyhRph6OWUqA8//BDbtm3rEJABYMaMGXj99dfx/vvvy3WthIQETJ48GVlZWVi7di37CwoATExMwOPx8OOPP/amuIRIJRAI0NbW1u1Hc3Mz8vLyEB8fj88++6zbC5kwDINHjx6xrWt5H83NzUhMTMQvv/yCBw8esCNcP/vsM+jq6rKP+Ph4vPLKKxLbCgoKelRHf/zxB65cuYLdu3fLPKalpQUvvvgiAgMDkZiYiBs3bsDT0xNz585FS0tLj56XDG7iz8Szn428vDyJgY75+fnIysrChQsXJObtD1e9+vmalZUFY2NjmfuNjY3lup8MAH/729/g7u6OxMRENDQ04KeffpLYHxoaigMHDvSmuIR0IBAIkJ6e3mXQEAgEqK2tRXV1NWpqalBTU4Pa2lr2x2Nqaio4HE63A3NdXR2am5t7VPbm5mZcu3YNIpEInp6eeOWVV7B8+XJ2/5o1a7BkyRIsXryY3WZlZQULCwtUVFR0eH01NTVSu6UB4MqVK8jJyYGhoaHE9iVLliAoKAixsbE4cuQI8vPzcfPmTXZ+9pEjRzBixAicPn0aK1eu7NHrJIOXOMiKZ82IW8mqqqrgcrnsQEcHBwcUFxfjzJkzCAsLk2sWwFDVq6Ds7OyMiIgIvPjiix0qsaGhAT///LPcOauTk5Oxa9cuaGpqorGxscN+a2vrTrvWCOkJoVCIlpYWqKurs4nxW1tbUVVVhcrKSlRVVaGqqgp1dXWdBlwNDY0eLflZV1cHkUjUo+5dcerCtrY2CIVCGBkZSXSFc7lcmJmZdRhgFRAQgLq6Oty+fZsd83HlyhWIRCJMmDBB6nNt374dL730ksQ2Ly8v/Otf/8K8efMAPP2RoKKiInFvUPz3sz1fZHh4PnlIe3s7CgsLUVlZifb2dpSUlEAoFEoMdKyursapU6cwffr0DgMJh4teBeW///3vWLp0Kdzc3LBx40b2w5+VlYUDBw6gvLwcJ06ckOta6urqnX5wi4uLh/WvJ9L3GIZBXV0dmwqwpqYGFRUVci8zN2LECJiamsLMzAyTJ09GbGxstwNzU1MTKisrweVyweVyoaWl1eWAFxUVFYwaNQp2dnZob29HU1NTt57T3d0ds2bNwubNm/HDDz+gvb0dr7/+OlauXMmOvC4uLsa0adNw8OBB+Pv7w8LCQmor2s7ODo6OjgCe3rL661//itdeew3btm2DSCTCP/7xD6ipqSE0NLRbZVQkWsGob0hLHmJiYgJ/f/8Oxz470LGlpQVRUVHw9/eHt7f3sBsA1qugvHDhQpw7dw7/8z//g88++0xin6+vL/bt24ewsDC5rjVx4kScPHkSb775Zod9TU1NiIiIQHBwcG+KS4YxkUjE/iIvKipCYWEhCgsLpfbKPE9FRQXGxsYwMzODmZkZTE1NYWJi0uELOyQkBHFxcXInuNHR0UFzczN7f629vR2NjY3Q0tICl8uV2nrW19eHl5dXhx+ofD4ft2/fljuQHD58GK+//jqmTZvGJg/597//ze5vb29HZmZmt7rW3dzccObMGezcuRMBAQFQUVHBmDFjcOHCBaVr9XQWeGkFo96TlTzk+fn40ggEAjx58gTt7e0oLS1FaGjosFqwotdDImfOnImZM2eirKwMT548AQDY29vLvDcly86dOxEcHIy5c+di1apVAJ6uqpObm4uvvvoKlZWV+OCDD3pbXDIMCAQClJaWSgTfoqIiufLrqqurs61fU1NTmJqawtjYWK5RoVu3bkV8fLxc95Y5HA6mT58OAwMDifu0IpEIzc3NaG5uhoaGBrhcLnR0dGBiYgJra2uYmJhIbTkkJSXh+PHjEoEkNjZW5vMbGRl1mijEwcGhy9cgbf+MGTMwY8aMTs8bSLKCr6zASysY9Y27d+/iwYMH7CppIpGI/Tx2dUvz2elSampqiIyMRFhYWIfxDENVn81TkNW9Ja8JEybg3LlzePXVV7F+/XoAwNtvvw3g6b3rc+fOwdvbu0/KSoaO1tZWFBcXSwTf0tJSttusM7q6urC2toa6ujosLS1hZWUFQ0PDHneXeXt741//+hfeeustMAwjtcUsHgC1adMmtsXAMAza29vR0tKC1tZWMAwDgUCAlpYWVFVVQUtLC7q6uuByuVLLxufzERMTQ4FECmnBt7PAK20FI2otd8+tW7fwwQcf4PLly+wPN5FIhIcPH0IgEGDhwoWwsbHBkydPYG9vL9EjJG26FI/Hw+nTpzFr1iyYm5sr6mUNmF4H5YKCAnz22We4evUqKisrERkZiSlTpqCqqgoff/wxNm3ahDFjxnQ4r76+Hjo6OhItkKlTpyIzMxP37t1DVlYWRCIRnJ2d4efnN+zuK5COGhsbJYJvYWEhKioq5LqPK84jbWtrCxsbG9ja2sLQ0BB8Ph/37t2Djo5On9w/nDlzJo4ePYp//OMfuH37dof9Dg4OWLRoEaytrZGbmws7OzuoqamBy+XCwcEBBgYGKCwsxOXLl9nPR2NjIxITE5GQkAB1dXXMnj0bzs7O7GciLS0NWVlZFEieIyv4ygq8slbqoh858usszSzwNLHU559/jvDwcNTU1EAkEsHFxYXdL226lIuLC9ra2nDu3DmEhYV1mnFOXj3J/b5nzx4cOXIEd+7cYZejfLb1HhsbK3PsxK1bt+ROKdqroJyeno6goCB21GZ2djbbQjExMcH169fR1NSEffv2dTh3xIgROHToEFavXg0AeOGFF7BlyxZMmDABvr6+8PX17U3RyCDGMAxqa2s7BODa2touz+VwODA3N5cIvra2ttDR0RmAkj8lbjHHx8fj73//O1paWqChoYElS5bA3d0dhoaGyM7ORnJyMtTV1REWFgZLS0u2xVBeXg4+n48xY8aAYRjk5eWBYRiUlZXh8ePHKCwshIeHB7y8vGBvb4/ExEQKJFJIC77+/v4yA684X3NrayutYNQD3Ukze+bMGdjZ2UFPTw8ODg5QV1fvdLqUeP/58+cxc+ZMuRaw6Ovc783NzZg1axZmzZqFd999t8P+SZMmobS0VGKbuMfg2ex5XelVUH7nnXdgaGiIxMREcDicDlmC5s6di+PHj0s9V0NDQ+Ie3/79+zF9+nSZUzLI0CQSiVBRUdEhAMszolhNTQ1WVlZsALazs4OVlZVSBCNzc3MsXboU//73v9HS0gIul4uAgAAAT7vosrKy0Nraivr6epibm7MBmc/nIz4+HkVFRTAyMsLrr7/OLut4584d1NfXo7CwEObm5oiPj8fvv/+OrKwsmJiYIDU1FQKBgAIJILPVyzCMzMArztf8PFrBSD7dSTPLMAyampokWsNdTZcCnk5hjI6ORmhoKJydnXtUzp7mfhcPQpY1VkNDQ0PiFm57eztOnz6Nbdu2daunt1dBOS4uDh9++CFMTU1RXV3dYb+dnR2Ki4ulnuvm5oaffvqJ7bIDgPz8fNy5c6fT5xw7dmxvikwUSDyaUhyACwsLUVxcLFcWHy0tLYmWr42NDSwtLZU+Ld/zGY1UVFQgEAggFArh4+OD/Px8PHjwgP1yuH//PvLz8+Hq6iqxj8vlwsDAABYWFsjOzkZ5eTmsrKzA5XLZLxEulwsPDw+MGjVq2AcSWa3euro6mYFXnK+ZdF9308wCQFVVFaysrNjW8IgRI7qcLgU8/SF/5coVAOhRYO5p7vfu+uOPP1BdXY1NmzZ167xeBWWRSARtbW2Z+ysrK2W2Wnbt2oUVK1Zg+vTpAJ52O37wwQcyR1iLl6+j9ZQHh9bW1g6jn0tKSuRKIqGnp8cGX3EANjExYQdJDSba2tpQV1eHlpYWDAwM4Obmhp9//hkaGhrQ1dWFuro64uLi2EGM8fHxUFdXl9jn5uaG+Ph4aGhowNbWFkKhEIaGhvDy8sLjx48l7oOJ77Pz+XwEBQXBxsZGUS9doWS1eseOHUuB9zniH4m9Ie6F6K7a2lqoq6ujoKAATk5OMkdYS1sG9erVq9DX18eIESO6lXynp7nfu0s8Jbi7n8FeBeWxY8fi7Nmz2Lp1a4d9AoEAx44dk9mFNmvWLOTl5SE5ORnl5eXYuHEjXn75ZbaLj/ReQUEBLl++jIaGBujp6WHatGmws7Pr8+dpaGiQaP0WFRV1SOMoi7GxcYcBWAYGBkNiYB+fz0dYWBhiY2Ph4uICHx8fZGZmorCwEG1tbcjKyoJAIEBhYSHS09MBQOq+c+fOddheWVkJY2NjbNiwAenp6SgsLGSnJLa1tSE+Ph7x8fFwdHREUFAQxo4dO6wSYVCrVz7yppntjFAoxK1bt3qUZtba2hqjR4+GlpZWj9LNXrp0CaNHj4aHhwe++OILiXwZLS0tSExMxOuvv85uE3/O+ltRURGio6Px66+/dvvcXgXld999F+Hh4Xj11VfZvLbl5eW4dOkSPvvsMzx69Aj/+c9/pJ774MED2Nvbs8lFIiIisGzZMqmLW5DuuXXrFj755BOcPXsWDMNARUUFIpEIHA4H4eHh+OCDD3q0uDjDMKipqZEIwIWFheDxeF2ey+FwYGFh0SEAd9bTMtiJu6JtbGzQ3NyMtLQ02NrasmkpnyVOriFtn5mZGUxMTKSeo6amBmdnZyxZsgQVFRWIj49HcnIyO14jLy8PeXl5+O233zBx4kQEBQV1aCUMJ50lDRmOmbykpZmVR319PQoKCvDkyRMUFxcjNze3Ry1lR0dHeHl5dfs8sbq6OrS0tEAoFPZr7vfuioiIgLGxMebPn9/tc3sVlGfPno39+/fjT3/6E/bs2QMAWLt2LRiGgb6+Pg4ePIgpU6ZIPXfMmDESo69J35A2JUHcZcwwDM6dO4fz58/j+PHjEm/W54lEIpSXl3doAcvza1ZdXV3qAKzh8kUH/P+ALXV1dejp6aG1tRVxcXF4/fXXMXXqVJnndXce5rP3421tbbF69WosWrQIycnJiIuLQ0lJCYCnWfEuX76My5cvw83NDUFBQfD29lb6e/J9rbNsXcM5k5eGhkann0+BQIDi4mLk5+cjPz+/w0yInvRKcDgcuLq69uq2FJ/PZ7ve+zP3e3cwDIOIiAisX7++R0ur9nqe8rp167B48WLExMRIzC0OCwuDnp6ezPO4XK7EF/y1a9ewefPm3hanT/z3v//Fl19+ibKyMvj4+ODbb7+VOgBB2cgzJUEoFILD4WDFihVISEjA+PHj0d7ejuLiYol7wMXFxWw2ns5wuVyJAVi2trYwNzcfdl/2zxN3Kbe1tYHH40FDQ4Ptpu7v6X5cLhdTpkxBUFAQcnNzER8fjzt37rDTFTMyMpCRkQEDAwNMmjQJgYGBcq/pPJh1ljSEMnl1xOPxkJ+fjydPnqCwsFDm94G2tjbc3d2RmZmJO3fuyHV/WkVFBR4eHr1+3z2/AIo8epL7HXh6L7qsrAzZ2dkAgIcPH0JPTw92dnYSr+PKlSvIy8vrsICLvHoclJubm2Fra4vt27fjr3/9KxYuXNit8318fPDPf/4Tqqqq7Ojr5ORkaGlpdXpeZ627vnD8+HH8+c9/xg8//IAJEyZg9+7dCAsLQ2ZmptJ3+8k7JYFhGIhEImzZsgWLFy9GWVmZXAOw9PX1JYKvra0tjI2Nh8T9375maWnJdkXX19dDX1+f3T5QOBwOnJ2d4ezsjKVLl+LmzZu4fv06KisrATz90j1//jwuXLgALy8vBAUFwd3dfVAOqOtMTU0NjIyMOs3WRZm8nraGS0pK2NZwTU2N1OPEt6IcHR3h4OAAU1NTcDgcWFpaYtWqVXLfW5Z3XYTOWFlZ9ej92pPc7z/88AN27tzJ/i3uBY6IiJCYC71v3z5MmjQJbm5uPXhFAIfpyY2A/2Nubo6PPvpI6kCvrqSkpGDp0qXsouvy5gvu79HXEyZMwPjx49l74SKRCLa2tti2bRu2b9/e5fl37tyBn58fbt++PaDTtwoKCuTKV/y8tWvXSu3RMDU17TAFSfzjaShpa2vr04xe0ogH2vUHPp+PpqYm+Pr6ytWyE4lEyMzMRFxcHB4+fNjhx5ixsTGCgoIQEBDQb2UeaOXl5TA0NMTHH3/MzonNysqCg4MDPvzwQwCQuW+ot5bFCTTKyso67R3T1taGvb09HBwcYG9vL7PxdPHixW6nme0pY2NjeHp6oqWlRe73/2DQq+7rJUuW4OTJk3j11Ve73VoaN24csrOzkZOTg/LycoSEhOC9995jp0gpgnilnWeztaioqGD69Om4efOm1HPa2tokkqCIVx0SCARydf/2lejo6B4NtCgqKkJISAgbgK2trWFrawsul9vh2IF8PQOlvb0dAoEATU1N/fb6xIkS+gOfz2ffa/K2GEaOHImRI0eirq4OCQkJSEhIQF1dHQCgoqICv/32G06fPg0fHx8EBQVJpPTsD30xJUcWPp+PK1euwMjICJmZmWwiFoFAgMzMTNy4cQMAZO6T57aVqqpqj9bDVgTxfO309HSkp6fLnAL0bGY8Ozs7iYVQhEKhzPdzYGAgIiIisHfvXsTFxXXY7+7ujunTp7PLjvaUubk5XF1d0dLS0u33f3f15L5wb/SqpRwXF4etW7fCxMQEmzdvhoODg9Qvc3lajJs2bcIrr7yi0IxeJSUlsLa2RkJCgsTUrHfeeQfXrl1DUlJSh3N27Ngh0aVBCCFk6OhFiOyRXgXlZ3+ZSPslPdgSfvQkKD/fUr537x6Cg4ORlJQkdSGO/rJ//368/PLL3T5v79692LBhQz+UaPDoz5ba9evXcezYMaxatQqBgYH98hx92VKrrKzE9evXkZiY2KE1pKGhgXHjxmHy5Ml9Nt+9ra0N9+/fh5qaWp/fPuDz+dizZw9u3ryJgIAAvPzyy/3yHAKBAD4+PkrTfSoQCJCdnY309HQ8evSoQz5mMQ6HAwcHB7i5ucHV1RXW1tZ93tp0dXVFSUkJDAwMJOYQ9wSXy0VgYGCHNJj93VMx0C3lXr2SiIiIHp/78ccfg8Ph4L333oOKigo+/vjjLs8RZ/3qLyYmJlBVVUV5ebnE9vLycpnz1zQ1NSU+jOLsSmpqagP6jxkWFtbtyfscDgczZ84c8Dedsumv1y9O4lFUVIS4uDiEhIQozRe3LFZWVli+fDkWLVqEu3fvIj4+Hjk5OQCedlsmJSUhKSkJ9vb2mDJlCvz8/HoV6MRr5vbHPf309HQUFxfDysoKeXl5yMnJ6dbCAPJQV1dHU1MT1NXVFfo5qqmpQVpaGtLS0pCZmSnRUHh2JoSuri5Gjx6N0aNHw83NrdNVkfqCuLHG4XB6HDg5HA48PDwwbtw4pf/89IVetZR7QzyUXbyCjjy/0AZqoJe/vz++/fZbAE+/NOzs7PD6668r9UAvAJg/fz7OnTsnVx2pqqpi7ty5OH369ACUbHiKi4vDt99+C1tbWxQWFuKNN94YlCN6i4uLER8fj1u3bqG1tVViH5fLxcSJEzF58uQejSzvr4F2fD4f//nPf1BcXAyGYVBXVwdPT0+8/vrrff483Rlo11fEC4+IA3FXrWFxILa1tR3Q0fU2NjYoLi6GoaEhPv/8826fb2tri4kTJ3bIfz2UKWx0wvOjPuWZkjMQ/vznP2PDhg0YN24c/P39sXv3bjQ1NXU7qbgifPDBBzh//nyXLWYOhwMOh4P3339/AEs3vAyltXmtra2xcuVKLFy4ECkpKYiLi0NRURGAp6kMr169iqtXr8LFxQVBQUHw9fVV+MCnZ+eJ19TUQCAQIDc3d0DmifeXmpoapKenIzU1tUNr+Fm6urrw8PDA6NGj4e7u3u+t4c48vyCLvExNTTFx4sQBnUKoLLr1yXnhhRfA4XCwZ88eqKqq4oUXXujyHA6HI3U9ZWW1YsUKVFZW4sMPP0RZWRl8fX1x4cKFbmdaUoTx48fj+PHjbEYvaS1mVVVVcDgc/Prrrz1KtUnkMxTX5tXS0sLkyZMRGBiI/Px8xMfH4/bt2+wo2qysLGRlZUFfXx8BAQGYPHkyjI2NFVLWZ+eJP3jwAAKBAJqamoMqSUpPWsMeHh6ws7NTmrnm4oxz8vZwcrlc+Pv7Y9SoUcM2/0G3uq8dHBygoqKCzMxMqKurw8HBocuK43A4yM3Nlev6jx49Qk5ODjuvc+TIkT2egK0oiuy+FktOTsYnn3zCLqX2bO7refPm4f3336eA3M+Ki4ulLkM61FYpampqQlJSEuLj4zuMxeBwOBg9ejSCgoIwevRoqYGiv+eJL168GMXFxdDT08Nf//pXcLlcjB07ttPWI5/PR2pqKjw9PbssU193X4tbw2lpacjIyBgUrWFZ2traYGJigsbGRmhqauLrr7/u9L67s7MzAgMDu0wgNdR1q6Wcn5/f6d899eOPP+LTTz+VuvaynZ0d3nvvvR6nLBuOxo8fjz/++AMFBQW4cuUKm1Fq6tSp/bJKFOlouKxSpKOjg6lTpyI0NBSPHz9GfHw87t27B5FIBIZhkJqaitTUVBgZGWHy5MkICAgY0CQ0VVVVqKurY7tPxSsHeXl5yez9un//Pk6fPg2RSNTnA8Oe92xrOD09nc1V/jwOhwN7e3v23rAytYZlSUpKYlO7ikQiNjnL81RVVTF58uRh3Tp+lsJnvP/lL3/BP//5TxgZGeGFF16Ap6cndHV10djYiIcPHyIyMhJbtmxBVlZWjwYKDGd2dnYS6d8I6S/ixQVcXV3B4/GQkJCAGzdusKkaa2pq8McffyAqKgq+vr4ICgrCqFGjFFJWoVCIlJQU8Pl8zJ49W6JlJl5IRDxi3tvbu89b8LW1tRIjpZ8fPCc2GFrDsojHVIiDLMMwSEtLg4ODg0RrmcvlIiwsTOlTGA8khQblW7du4Z///CcWLVqEgwcPQkdHp8Mx33zzDdauXYuvvvoKy5Yt6/dfroSQ3jEwMMDs2bMRFhaG1NRUxMfHIz09nc25fufOHdy5cwfm5uYICAiAlpaW1M9+f8rPz0dycjJ4PB6WLl3KBjzxcpuurq7Iz8/HgwcPev2dIxQKkZOTg9TU1CHXGpZFPKbi2bujlZWVKCwshJOTE4CnPzrmzp07JNP39kavg/L58+fxz3/+E3fu3AGPx5M6yk7WTf59+/bB0tISR44ckXk/RkdHB0ePHoWTkxP27dtHQZmQQUJFRQXe3t7w9vZGVVUVbty4gYSEBDQ0NAB4Ov8/MjISqqqqcHFxga+vL8zNzfu0C1Pa6N/29nY8evQI1dXVSElJgampKZs8Q7zcpq6uLtTV1XvcWu5Oa9jd3Z1tDQ+VfOO2trZYs2YNYmJi0NraCk1NTfj7+7NTm3R0dDBv3rwh83r7Uq+C8m+//Ybly5dj9OjRWLlyJb7//nusXr0aDMPg9OnTcHFx6XT1qJs3b2LZsmVdDpDQ0tLCsmXLcPXq1d4UlxCiICYmJliwYAHmzp2Le/fuIT4+HllZWQCe/mgXLydpZmYGLy8vuLm59UkyDvHI8GcbBk+ePEFlZSWsrKxQWVmJJ0+eQE1NDfHx8Xj8+DFUVFSQlZUFgUAg93KbQqEQjx8/ZgNxV61hcbe0vb39oG0Nd0Y8pkKcdlldXZ1dgEJdXR1z5syhgCxDr4Lyrl274O/vj+vXr6O2thbff/89XnjhBUydOhX5+fmYOHEiHB0dZZ5fWFgId3d3uZ7Lw8MDBw8e7E1xCSEKpqamhnHjxmHcuHEoLS1FbGwsEhMT2eBZUVGBy5cvIz4+Hu7u7vD29u7xtCo+n8+OXm5vb2ef49GjR1BVVYWWlhZUVVWRnp4OOzs7aGtrY+TIkdDW1oa1tTUbNGTNlW1sbER2djZyc3Nx7NgxmSOldXR0JO4ND/dgFBQUNKySgXRXr4Jyeno6du3aJZF7VPzGd3BwwNatW/H5559j/fr1Us+vr6+X+w2qq6vLdnsRMljw+XykpKRg3LhxEl2gsrZ3tW8osbS0xOLFi2Fra4vS0lKkp6ez06r4fD7u37+P+/fvw9raGl5eXhg5cmS3kpLcv3+fbSGLRCIUFBRARUUFVVVVEAgEKC0thUgkQlVVFYqKiuDo6AhDQ0P2/BEjRsDNzY1t7QmFQpSWlrLrDVdVVUl9Xg6HAzs7O/be8FBtDcvDwsICzc3N7Pe8jY0NnJ2dFVwq5daroKytrc1+aRgaGkJTU1Nigru5uTny8vJkni9esEJeCsoISkiPJSYm4tChQxAKhRIpNmVt72rfUKSurg53d3f4+PigvLwcDx48QGZmJjudpri4GMXFxeByufDw8IC3t3eXg4P4fL5EylmRSITbt29j6tSpUselSGu5VVRUoKKiAtra2qirq0NhYSGbDON54taw+DHcW8NiKSkpOHjwIFpbW8HhcDBhwgSa9tSFXgVlV1dXpKens3/7+vri0KFDWLt2LQQCAY4cOdLlvNivvvoKR48e7fK5pM1hJkSZiaeF5OXlSaTYlLW9s3OGC3Nzc8yYMQNBQUHIyMjAgwcP2GlVLS0tuH37Nm7fvg17e3t4e3vD0dGxQyv0wYMH2LVrl0TyFpFIhOvXr6OkpASLFi2Cvb291OdnGAbt7e1oa2tju79LS0ulDkATrzdsZmaGadOmSV229vlrf/TRR9i7dy/q6uoQGBiI77//XurcXTFpS8O6uroiIyND6vXnzJmDCxcu4NSpU52O51EEJycnhWV4G0x6FZQXL16Mf//73/jqq6+gqamJ9957DwsWLIChoSE4HA6amprw888/yzzfzs4ONTU17IeuK5T4ggwmSUlJePz4Mby9vfH48WPcunULQUFBMrd3ds5wo6WlBV9fX/j4+KC4uBgPHjxAdnY2myP/yZMnePLkCXR1deHp6cnmN7h48SLeeustmbn08/Ly8K9//QubNm1iBx4JhUI2APP5fIkeueLiYjx8+BBeXl6wt7eHiYkJLC0t4eXlBQMDAzajlzzd01988QX+/e9/48CBA3B0dMQHH3yAsLAwpKend5rFavTo0bh06RL7t6wu/N27dyttK5TD4Sgsw+Fg06Og3NraitOnT6O9vR3vv/8+ampqYGlpifDwcMTGxuL3339nVyEKDQ2VeZ2+yghGiLKRtSCFj4+PzIUqAAyZRSz6CofDgY2NDWxsbNDU1IT09HQ8fPgQ9fX1AJ4OtkpMTERSUhLU1dXxn//8h80mJg3DMGAYBhEREdiyZQvMzMzYbvLnCQQC5OXloaGhAcXFxfD19WWXakxJSYGzs7PcCyYwDIPdu3fj/fffx4IFCwAABw8ehLm5OSIjI7Fy5UqZ56qpqclcOlbs3r17+Prrr5GSkqKUizjY29vT4C45dTsoV1RUYNKkScjLy2PvCXO5XERGRmL69OkICgoalr/sCXmWrAUpfv31V5kLVQAYcotY9CUdHR2MHz8efn5+ePLkCR4+fMh+DzEMg8jIyE4D8rMYhsGlS5ewfPlyie0cDgeamprQ0NBAYWEhGhsbYWtri5qaGhQUFLCDlAQCATv/WJ7FavLy8lBWVobp06ez2wwMDDBhwgTcvHmz06CclZUFKysraGlpISAgALt27ZLoNWxubsbq1avx3//+t8vgrSijR49WdBEGjW4H5U8++QT5+fl46623MHXqVGRnZ+OTTz7Bli1b2MXQCRnuxMkTnmdpaSn1S9zW1hYApJ4j3keeUlFRgaOjIxwdHVFfX4/U1FQkJCTgyZMncl+DYRhkZWWBx+PB2NgYmpqaUFFRQVlZGYyMjMAwDDIzM6VOnXp2/nRFRYVcQbmsrAwAOhxrbm7O7pNmwoQJ2L9/P1xdXVFaWoqdO3ciKCgIqamp7GCyt956C5MmTWJb4MpGS0sLVlZWii7GoNHtoHzx4kWsX78eX331FbvN3Nwcq1evRmZmJlxdXfu0gIQMRj1dkGI4LGIhjaxRzV3R0tLCuHHjuhWQn1VVVYWRI0cCeNpLkZycDKFQCFVVVVRVVaG9vR2lpaUQCoWoqqpCYWEhHBwc2PNlzU0+fPgwtmzZwv599uzZHpVv9uzZ7P97e3tjwoQJsLe3x6+//ooXX3wRf/zxB65cucL2tCgjMzMzpb3XrYy6HZQLCgrwP//zPxLbJk+eDIZhUF5eTkGZECI3VVVVcLlctLS0sDkOeoLH47FLlMqLw+GgtbUVIpEIAoEA6enpqK6uRnp6OiZOnCh1YJK+vr7Ec/D5fKirq0NVVVXiuPnz52PChAns3+LgXV5eLnHPt7y8vMtsYc8yNDTEqFGjkJ2dDQC4cuUKcnJyJOZXA8CSJUsQFBSE2NhYua/dX54vG+lct4NyW1tbh5GC4r9lDZgghBBp1NTU4OHhITM/vrzu37/frYAMPO3C1tfXh7a2NrKyslBbWws7OzvU1taitbVVrjXH9fX14eXl1WFEtJ6ensRcZYZhYGFhgcuXL7NBuL6+HklJSXj11VflLnNjYyNycnKwbt06AMD27ds7LGvr5eWFf/3rX5g3b57c1+1PA73YyGDXo9HX+fn5EnMAeTwegKcDEqT9KqKh8IQQWdTU1LqVqUuaWbNmgcPhdCvBEIfDgbu7O9tKFrfa6+vrkZ6eDkdHx07zb+vq6mLWrFly5ejmcDh488038fe//x0uLi7slCgrKyuJ+cTTpk3DokWL8PrrrwN4urTtvHnzYG9vj5KSEnz00UdQVVXFqlWrADzNmCVtcJednV2nKY4Hkra2tqKLMKj06JPwwQcf4IMPPuiwfevWrRJ/i0dn9/ZXMCGEdMbOzg7h4eESWbw6w+Fw4OzsDH19fRQUFKCyshLt7e0oKSmBUCjssMzg8+zt7REcHNzp/OLnvfPOO2hqasLLL7+Muro6TJ48GRcuXJC4Rk5OjkT6zqKiIqxatQrV1dUwNTXF5MmTkZiYCFNTU7mfV9GG63S+nuIw3cxdeeDAgW4/yYYNG+Q6Ljo6Gvv27UNubi5qa2s7/OrlcDhKP8L7zp078PPzw+3bt6mHgJABlJycjEmTJkEoFHbZYuZwOPD29saMGTNgYmKCgoKCDsfY2dl1mFurqqqKgIAAuLu70+AlOfF4PFozuRu63VKWN8B215dffont27fD3Nwc/v7+8PLy6pfnIYQMTePHj8fx48exYsUKMAwjtcUszrzl4+ODlpYWpKWlYe7cuWx2r87o6Ohg5syZg6qVqmjixVWCgoKG9OIqfal3N3L60DfffIOpU6fi3LlzfbKOKiFk+Fm8eDESEhLwySefICoqSqLFzOFw4OXlBU9PTzx69AjW1tYoLy9Hfn5+p/mngadzxUNCQrrMb00kJSYm4pdffoGGhgYllZKT0qwnVltbi6VLl1JAJoT0yvjx4/HHH3/g+PHj7AAyVVVVbN68GZs3b0ZNTQ07qEtVVZXNniaNrq4uQkNDMWvWLArI3SRONfvkyRNcuHBB5pxuIklpWsr+/v7IzMxUdDEIIUNAW1sb7t27B3V1dQgEAnA4HBQWFkJPT0+uQV0GBgbw9vbGqFGjOsxBJvIRL67i5eU1rBdX6S6lCcrfffcdZs+ejXHjxmH16tWKLg4hZBAT5x5/tvu6srISLS0t7OIfzxIP6LKwsICPjw/s7OxoIFcvPLsgi6GhIaqqqob94iryUpqgvGLFCggEAqxbtw6vvvoqbGxsOvxC5XA4uH//voJKSAgZLMS5x2NiYtDa2gpNTU34+/tLHVENPE0VPGHCBKVd0GGweXZBlvT0dFpcpRuUJigbGRnB2Ni4ywEXhBDSFXHucfF9YHV1dakjrFVUVBAQEAAPDw9qGfchWQuy0OIqXVOaoKwMOVoJIcOHqqoqZs2aNWwXAelPPV2QhSjR6Gtl8Omnn2LSpEnQ1tamJOqEDGGqqqqYOXMmBQ6idJSmpSzW3t6OjIwM8Hg8qQnmp0yZ0m/PzefzsWzZMgQEBGDfvn399jyEEMVRU1PDzJkzYWNjo+iiECnECUfGjRs3LBOOKE1QFolEePfdd/Hdd9+hublZ5nH9mUd7586dAID9+/f323MQQhRHTU0Ns2fPllg+kQy8zgJvYmIiDh06BKFQOCynUClN9/Vnn32GL7/8EmvXrsXBgwfBMAz+8Y9/4IcffoC3tzd8fHwQHR2t6GJ20NbWhvr6evbR2Nio6CIRQmQIDQ2lgDyA+Hw+EhISwOfzJbYnJiYiIiICSUlJEtvFU6ny8vKGbcIRpQnK+/fvx/Lly/H9999j1qxZAAA/Pz9s3rwZSUlJ4HA4uHLlioJL2dGuXbtgYGDAPoKDgxVdJEKIFI6OjkqznOFwIS34dhZ4xQlHvL292YQjw43SBOWioiJMnToVwP8v9dXa2goA0NDQwNq1a3Ho0KFuX3f79u3gcDidPjIyMnpc7nfffRc8Ho99XLt2rcfXIoT0LQsLC4wYMYLN0CWt1Ub6h6zgKyvwPptwRF9fHxoaGsOytaw095SNjY3Zrl9dXV3o6+sjNzdX4pja2tpuX/ftt9/Gxo0bOz1G1pqp8tDU1JTIUKOrq9vjaxFC+lZKSgoOHjwICwsLZGZmDut7lQNNWvD19/eXGnj9/f0lEo6I85EPx4QjShOUx4wZg+TkZPbv0NBQ7N69G2PGjIFIJMK///1vuZZXe56pqSkttUbIMOfi4oKffvqJbbVRusf+JavVyzCMzMBLCUeeUpqg/PLLL2P//v1oa2uDpqYmPv30U0yZMgVTpkwBwzAYMWIEjh492q9lKCgoQE1NDQoKCiAUCnHv3j0AwMiRI6kFTMggxeVyUVBQ0KHVRq3l/iOr1VtXVycz8FLCkaeUJijPnz8f8+fPZ//28PBATk4OYmNjoaqqikmTJsHIyKhfy/Dhhx/iwIED7N9jxowBAFy9eqOlkbQAABf0SURBVBUhISH9+tyEkP5hZGSEixcvSu0ypdZy/5DV6vX09ERpaemwnYMsD6UJytIYGBhgwYIFA/Z8+/fvpznKhAwxZWVldK9ygMlq9cbFxdF9/S4oVVAWCoU4ceIErl69ioqKCnz88cfw8vICj8fD5cuXERgYCHNzc0UXkxAySPD5fDQ2NmL58uVQV1eX2Dfc7lUq2vOjsamnQjqlCcp1dXWYNWsWbt26BV1dXTQ1NWHbtm0Ano5ofuONN7B+/Xp89tlnCi4pIWSwSExMRFxcHF555RVqmSmYtNHY9G/SkdLMU96+fTvS0tIQHR2N3NxcicXJVVVVsXTpUpw7d06BJSSEDCbilllRUdGwnO+qTGgOsvyUJihHRkZi27ZtmDFjhtR1TUeNGoX8/PyBLxghZFASt8x8fHyGbXYoRROn2bx16xZycnLQ1NSEtLQ0NDU1sff1iSSl6b7m8XidpsBrb2+HQCAYwBIRQgarZ1tmRkZGqK6upvuYCiBeXGL27Nk0B1lOShOUnZ2dcefOHZn7L168CA8PjwEsESFksKLsUIr37MCu27dv48MPP6QfRHJQmqD80ksv4X/+538QEhKCadOmAQA4HA7a2trw8ccf48KFC9izZ4+CS0kIGQwoO5Ti0cCunlGaoPynP/0JaWlpWLVqFQwNDQEAq1evRnV1NQQCAbZs2YIXX3xRsYUkhAwKlB1KsWQN7KLbB11TmqDM4XCwd+9ebNiwASdPnkRWVhZEIhGcnZ2xfPlyTJkyRdFFJIQQIge6fdBzShOUxSZPnozJkycruhiEEEJ6iG4f9JzSBWVCCCGDG90+6DmFBuVnF6CQB4fDwenTp/upNIQQQohiKTQoR0VFQUtLCxYWFhIZvGSRllSEEEIIGSoUGpStra1RXFwMExMTrF69GitXroSFhYUii0QIIYQojELTbBYWFuLq1asYM2YMPvnkE9ja2mL69OmIiIhAQ0ODIotGCCGkl8RpNvl8vqKLMmgoPPd1cHAwfvzxR5SVleHkyZMwNjbG66+/DjMzMyxevBgnT56kpOWEEDIIJSYmIiIiAklJSYouyqCh8KAspq6ujgULFuD48eMoLy9nA/WKFSvwxRdfKLp4hBBCuuH59ZOpcSUfpQnKYuJ/yNOnT+Pu3bvQ0tKCg4ODootFCCGkG6Sl2SRdU4qgLBKJEB0djY0bN8Lc3ByrVq1CS0sL9u7di4qKCqxbt07RRSSEECInWj+55xQ6+johIQFHjhzBiRMnUF1djYkTJ+Kzzz7D8uXLYWJiosiiEUII6SFKs9lzCg3KkydPBpfLxZw5c7Bq1Sq2m7qgoAAFBQVSzxk7duwAlpAQQkh3UZrNnuMw8mTt6CcqKv/fe95VYhCGYcDhcCAUCvu7WL1y584d+Pn54fbt2/QDghBCSLcotKUcERGhyKcnhBBClIpCg/KGDRsU+fSEEEKIUlGK0deEEEIIoaBMCCGEKA0KyoQQQoiSoKBMCCGEKAkKyv8nPz8fL774IhwdHcHlcuHs7IyPPvqIVjchhBAyYBQ6+lqZZGRkQCQS4ccff8TIkSORmpqKzZs3o6mpCV999ZWii0cIIWQYoKD8f2bNmoVZs2axfzs5OSEzMxPff/89BWVCCCEDgoJyJ3g8HoyMjDo9pq2tTSLJemNjY38XixBCyBBF95RlyM7OxrfffostW7Z0etyuXbtgYGDAPoKDgweohIQQQoaaIR+Ut2/fDg6H0+kjIyND4pzi4mLMmjULy5Ytw+bNmzu9/rvvvgsej8c+rl271p8vhxDSDXw+HwkJCTRgkwwaQ777+u2338bGjRs7PcbJyYn9/5KSEoSGhmLSpEnYs2dPl9fX1NSEpqYm+7eurm6Py0oI6VuJiYk4dOgQhEIhgoKCFF0cQro05IOyqakpTE1N5Tq2uLgYoaGh8PPzQ0REhMQqVoSQwaWtrQ3R0dHIy8vDhQsX4O/vL/EDmhBlRFHn/xQXFyMkJAR2dnb46quvUFlZibKyMpSVlSm6aISQHkhKSsLjx4/h7e2Nx48f49atW4ouEiFdGvItZXnFxMQgOzsb2dnZsLGxkdinwCWnCSE9IG4la2hoQF9fHxoaGtRaJoMCtZT/z8aNG8EwjNQHIWRwuXv3LnJyctDU1IS0tDQ0NTUhJycHd+/eVXTRCOkUtZQJIUOOra0t1qxZI3U7IcqMgjIhZMixtraGtbW1zP18Ph8pKSkYN24cNDQ0BrBkhHSOuq8JIcNOYmIiIiIikJSUpOiiECKBgjIhZFh5fqrUs2lyCVE0CsqEkCFLWkYvmipFlBkFZULIkPV8N7WsqVLUWibKgoIyIWRIktZNTVOliLKj0deEkCFJWje1k5MTTZUiSo2CMiFkyJHVTf3hhx9i3rx5ii4eITJR9zUhZMihbmoyWFFLmRAy5FBGLzJYUVAmhAw5XWX0IkRZUfc1IYQQoiQoKBNCCCFKgoIyIYQQoiTonvIwUFpaitLSUkUXgxAyDFlaWsLS0lLRxRg0KCj3MUtLS3z00UdK8yZsa2vDqlWrcO3aNUUXhRAyDAUHByM6OhqampqKLsqgwGEYhlF0IUj/qa+vh4GBAa5duwZdXV1FF2fYaWxsRHBwMNW/glD9K5a4/nk8HvT19RVdnEGBWsrDhK+vL30oFKC+vh4A1b+iUP0rlrj+ifxooBchhBCiJCgoE0IIIUqCgvIQp6mpiY8++ogGWSgI1b9iUf0rFtV/99FAL0IIIURJUEuZEEIIURIUlAkhhBAlQUGZEEIIURIUlAkhhBAlQUGZDGscDkeuR2xsbK+fq7m5GTt27OjWtT799FPMnz8f5ubm4HA42LFjR6/LoUyUuf4zMjLwzjvvwNfXF3p6erC0tMTcuXORkpLS67IoC2Wu/5KSEqxduxaurq7Q09ODoaEh/P39ceDAAQzl8cmU0YsMa4cOHZL4++DBg4iJiemw3d3dvdfP1dzcjJ07dwIAQkJC5Drn/fffh4WFBcaMGYPo6Ohel0HZKHP9//TTT9i3bx+WLFmCrVu3gsfj4ccff8TEiRNx4cIFTJ8+vddlUjRlrv+qqioUFRVh6dKlsLOzQ3t7O2JiYrBx40ZkZmbis88+63WZlBJDCGG99tprTH99LCorKxkAzEcffST3OXl5eT0+dzBSpvpPSUlhGhoaJLZVVVUxpqamTGBgYD+UUPGUqf5lCQ8PZ3R0dBiBQNA3BVMy1H1NSBdEIhF2796N0aNHQ0tLC+bm5tiyZQtqa2sljktJSUFYWBhMTEzA5XLh6OiIF154AQCQn58PU1NTAMDOnTvZbsGuuqMdHBz64yUNKoqqfz8/vw6LWBgbGyMoKAiPHj3q2xepxBT5/pfGwcEBzc3N4PP5vX5tyoi6rwnpwpYtW7B//35s2rQJb7zxBvLy8vCf//wHd+/exY0bN6Curo6KigrMnDkTpqam2L59OwwNDZGfn4/ff/8dAGBqaorvv/8er776KhYtWoTFixcDALy9vRX50gYFZav/srIymJiY9OlrVGaKrv+WlhY0NTWhsbER165dQ0REBAICAsDlcvv1dSuMopvqhCiT57vv4uPjGQDM4cOHJY67cOGCxPZTp04xAJjk5GSZ1+5N991w7b5WlvoXi4uLYzgcDvPBBx/0+BrKTBnrf9euXQwA9jFt2jSmoKCgW9cYTKj7mpBOnDhxAgYGBpgxYwaqqqrYh7hr8+rVqwAAQ0NDAEBUVBTa29sVWOKhRZnqv6KiAqtXr4ajoyPeeeedfnkOZaMM9b9q1SrExMTgyJEjWL16NYCnreehioIyIZ3IysoCj8eDmZkZTE1NJR6NjY2oqKgAAAQHB2PJkiXYuXMnTExMsGDBAkRERKCtrU3Br2BwU5b6b2pqQnh4OBoaGnD69OkO95qHKmWof3t7e0yfPh2rVq3C4cOH4eTkhOnTpw/ZwEz3lAnphEgkgpmZGQ4fPix1v3jwCofDwcmTJ5GYmIgzZ84gOjoaL7zwAr7++mskJiYOmy/xvqYM9c/n87F48WI8ePAA0dHR8PT07PG1BhtlqP/nLV26FHv37kVcXBzCwsL67LrKgoIyIZ1wdnbGpUuXEBgYKNfAkokTJ2LixIn49NNPceTIEaxZswbHjh3DSy+9BA6HMwAlHloUXf8ikQjr16/H5cuX8euvvyI4OLgnL2PQUnT9SyNuIfN4vD65nrKh7mtCOrF8+XIIhUJ88sknHfYJBALU1dUBAGpraztkGfL19QUAtgtPW1sbANhzSNcUXf/btm3D8ePH8d1337EjhocTRdZ/ZWWl1O379u0Dh8PB2LFj5brOYEMtZUI6ERwcjC1btmDXrl24d+8eZs6cCXV1dWRlZeHEiRP45ptvsHTpUhw4cADfffcdFi1aBGdnZzQ0NGDv3r3Q19fHnDlzAABcLhceHh44fvw4Ro0aBSMjI3h6enbaHXro0CE8efIEzc3NAIC4uDj8/e9/BwCsW7cO9vb2/V8JCqTI+t+9eze+++47BAQEQFtbG7/88ovE/kWLFkFHR6ff60CRFFn/n376KW7cuIFZs2bBzs4ONTU1+O2335CcnIxt27Zh5MiRA1kVA0fBo78JUSqyMhrt2bOH8fPzY7hcLqOnp8d4eXkx77zzDlNSUsIwDMPcuXOHWbVqFWNnZ8doamoyZmZmTHh4OJOSkiJxnYSEBMbPz4/R0NCQa3pIcHCwxHSQZx9Xr17tq5etNJSp/jds2CCz7gGw2daGEmWq/4sXLzLh4eGMlZUVo66uzujp6TGBgYFMREQEIxKJ+vR1KxMOwwzhzN6EEELIIEL3lAkhhBAlQUGZEEIIURIUlAkhhBAlQUGZEEIIURIUlAkhhBAlQUGZEEIIURIUlAnphfz8fHA4HOzfv1/RRRmWqP4Vi+q/71FQJoQQQpQEJQ8hpBcYhkFbWxvU1dWhqqqq6OIMO1T/ikX13/coKBNCCCFKgrqvybC3Y8cOcDgcPH78GGvXroWBgQFMTU3xwQcfgGEYFBYWYsGCBdDX14eFhQW+/vpr9lxp99Q2btwIXV1dFBcXY+HChdDV1YWpqSn+8pe/QCgUssfFxsaCw+EgNjZWojzSrllWVoZNmzbBxsYGmpqasLS0xIIFC5Cfn99PtTJwqP4Vi+pfuVBQJuT/rFixAiKRCP/4xz8wYcIE/P3vf8fu3bsxY8YMWFtb4/PPP8fIkSPxl7/8BXFxcZ1eSygUIiwsDMbGxvjqq68QHByMr7/+Gnv27OlR2ZYsWYJTp05h06ZN+O677/DGG2+goaEBBQUFPbqeMqL6VyyqfyWhmHUwCFEeH330EQOAefnll9ltAoGAsbGxYTgcDvOPf/yD3V5bW8twuVxmw4YNDMMwTF5eHgOAiYiIYI8Rry708ccfSzzPmDFjGD8/P/bvq1evSl3t6flr1tbWMgCYL7/8sm9esJKh+lcsqn/lQi1lQv7PSy+9xP6/qqoqxo0bB4Zh8OKLL7LbDQ0N4erqitzc3C6v98orr0j8HRQUJNd5z+NyudDQ0EBsbCxqa2u7ff5gQfWvWFT/yoGCMiH/x87OTuJvAwMDaGlpwcTEpMP2rr4ctLS0YGpqKrFtxIgRPfpS0dTUxOeff47z58/D3NwcU6ZMwRdffIGysrJuX0uZUf0rFtW/cqCgTMj/kTalQ9Y0D6aLSQvyTA/hcDhStz87GEbszTffxOPHj7Fr1y5oaWnhgw8+gLu7O+7evdvl8wwWVP+KRfWvHCgoE6IgI0aMAADU1dVJbH/y5InU452dnfH222/j4sWLSE1NBZ/PlxgJS7qH6l+xqP6lo6BMiILY29tDVVW1w0jW7777TuLv5uZmtLa2SmxzdnaGnp4e2tra+r2cQxXVv2JR/UunpugCEDJcGRgYYNmyZfj222/B4XDg7OyMqKgoVFRUSBz3+PFjTJs2DcuXL4eHhwfU1NRw6tQplJeXY+XKlQoq/eBH9a9YVP/SUVAmRIG+/fZbtLe344cffoCmpiaWL1+OL7/8Ep6enuwxtra2WLVqFS5fvoxDhw5BTU0Nbm5u+PXXX7FkyRIFln7wo/pXLKr/jijNJiGEEKIk6J4yIYQQoiQoKBNCCCFKgoIyIYQQoiQoKBNCCCFKgoIyIYQQoiQoKBMySEhbZ5YMHKp/xRou9U9BmQxJOTk52LJlC5ycnKClpQV9fX0EBgbim2++QUtLS789b3p6Onbs2KHwxdc//fRTzJ8/H+bm5uBwONixY8eAPj/VP9W/Iim6/nuDkoeQIefs2bNYtmwZNDU1sX79enh6eoLP5+P69ev461//irS0tB4vtt6V9PR07Ny5EyEhIXBwcOiX55DH+++/DwsLC4wZMwbR0dED+txU/1T/w7n+e4uCMhlS8vLysHLlStjb2+PKlSuwtLRk97322mvIzs7G2bNnFVjC/8cwDFpbW8Hlcvv82nl5eXBwcEBVVVWHJfT6E9X/U1T/XRuK9d8XqPuaDClffPEFGhsbsW/fPokvJLGRI0fiT3/6E/u3QCDAJ598AmdnZ2hqasLBwQF/+9vfOiS6d3BwQHh4OK5fvw5/f39oaWnByckJBw8eZI/Zv38/li1bBgAI/d/27iekyT+OA/j72ahpNlEhF0U92xSGXpSIIZg82CXaAj0YnnQeVschLsTsIEKXLkOxwPQgY2CHUaeIurQwSPDUQaKSqbs5PbQlhhD2+R3it3h+M37PUNnj4/sFHvw83+f7/fo+PB/359k6O6EoChRFwbt373RzvHnzBlevXkVlZSWePn0KAFhdXcXt27dRV1eHM2fOoK2t7UAXz3I9SmH+f/ZbDsz/z36PLSGykIsXL4rX6zU8PhQKCQDp6emRJ0+eSH9/vwCQ7u5u3ThVVcXn84nL5ZLR0VF5/PixXLlyRRRFkeXlZRERSafTEolEBICMjo5KIpGQRCIhGxsbhTkaGxultrZWRkZGZHp6WlKplGxsbIjL5RKn0ykPHjyQWCwmLS0tYrPZ5MWLF4U9rK2tCQCZm5sz/PdtbW0JABkbGzN8zkEwfz3mf7LyPwxsymQZ+XxeAEhXV5eh8R8/fhQAEg6HdfV79+4JAHn79m2hpqqqAJCFhYVCbXNzUxwOh0Sj0UItmUwKAEmlUkXr/TvH69evdfXBwUEBIO/fvy/Utre3xePxiNvtlr29PREx/0WJ+Rdj/lI0h1XzPyx8+pos4/v37wAAp9NpaPyrV68AAENDQ7p6NBoFgKKnz5qbm9HR0VH4/dy5c/D5fFhdXTW8R4/Hgxs3bhTtw+/349q1a4Xa2bNncffuXayvr+PTp0+G5y8n5l9ezN8a2JTJMqqrqwEA29vbhsZnMhnYbDY0Njbq6ufPn0dNTQ0ymYyufvny5aI5amtr8e3bN8N79Hg8++7D5/MV1ZuamgrHjwPmX17M3xrYlMkyqqurceHCBSwvL5d0nqIohsbZ7fZ961LCt58exTtNzYL5lxfztwY2ZbKUW7duIZ1OY3Fx8X/HqqqKX79+YWVlRVfPZrPI5XJQVbXk9Y1e4P67jy9fvhTVP3/+XDh+XDD/8mL+xx+bMlnK8PAwqqqqEA6Hkc1mi46n02lMTk4CAAKBAABgYmJCNyYWiwEAgsFgyetXVVUBAHK5nOFzAoEAlpaWdBfSnZ0dzMzMwO12o7m5ueR9lAvzLy/mf/zxw0PIUhoaGjA/P4/e3l40NTXpPtHow4cPSCaTGBgYAAC0tLQgFAphZmYGuVwOmqZhaWkJ8Xgc3d3d6OzsLHn91tZW2O12PHr0CPl8Hg6HA9evX0d9ff1fzxkZGcGzZ89w8+ZNRCIR1NXVIR6PY21tDc+fP4fNVvr/zolEAplMBj9+/AAALCws4OHDhwCAvr6+I3v0wfx/Y/4nM/9DUeZ3fxMdia9fv8qdO3fE7XbL6dOnxel0Snt7u0xNTcnu7m5h3M+fP2V8fFw8Ho+cOnVKLl26JPfv39eNEfl9O0cwGCxaR9M00TRNV5udnRWv1yt2u113e8jf5hD5fY9nT0+P1NTUSEVFhfj9fnn58qVuTCm3hGiaJgD2/dnvdpXDxvyZ/0nO/yAUkRJepSciIqIjw9eUiYiITIJNmYiIyCTYlImIiEyCTZmIiMgk2JSJiIhMgk2ZiIjIJNiUiYiITIJNmYiIyCTYlImIiEyCTZmIiMgk2JSJiIhMgk2ZiIjIJNiUiYiITOIf30ujsOZLmNYAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeUAAAInCAYAAACm+EFAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/Xd8VHd+748/1XvvvReEEEISookOohkMtjHNptm7G2++yeZmc5Ps5pHc3X1kk93k+mZ3k9jeNTa92VSDKRJFNCGKJJAEAlXURxppZjSjkWY05fz+8G9ONEhgAQKEfZ6PxzwQ0mjmM6Mz53U+7/J62wiCICAhISEhISHx0rF92QuQkJCQkJCQ+AZJlCUkJCQkJEYJkihLSEhISEiMEiRRlpCQkJCQGCVIoiwhISEhITFKkERZQkJCQkJilCCJsoSEhISExChBEmUJCQkJCYlRgiTKEhISEhISowRJlEeYtrY2fvGLX9DW1vaylyIhISEh8YohifII09bWxi9/+UtJlCUkJCQknhhJlCUkJCQkJEYJkihLSEhISEiMEiRRlpCQkJCQGCVIoiwhISEhITFKkERZQkJCQkJilCCJsoSEhITEc8FoNL7sJbxySKIsISEhITHidHV18Yc//IH6+vqXvZRXCkmUJSQkJCRGFJ1Ox969e3F0dCQkJORlL+eVQhJlCQkJCYkRw2w2c+DAAbRaLWvWrMHZ2fllL+mVQhJlCQkJCYkRIy8vj7q6OlauXImfn9/LXs4rhyTKEhISEhIjQklJCUVFRSxcuJDY2Fja2toQBOFlL+uVQhJlCQkJCYlnpqGhga+//pqJEyeSnZ1NaWkpf/rTn7h///7LXtorhf3LXoCEhISExKuNUqlk//79REZGsnDhQoqLizl27BhZWVkkJSW97OW9UkiiLCEhISHx1Oj1evbu3YuzszMrV66ktLSU48ePk52dzaJFi7CxsXnZS3ylkMLXEhLPESmfJvFdxmw2c/DgQbq7u1mzZg0VFRUcP36cSZMmSYL8lEiiLCHxnKiqquLDDz/k9u3bL3spEhLPhXPnzlFdXc1bb71FXV0dJ06cYMqUKSxcuFAS5KdEEmUJiefArVu32LdvH3Z2dhw5coS7d+++7CVJSIwot2/f5vLly+Tm5tLZ2cnJkyeZNm0aubm5kiA/A5IoS0iMMFeuXOHIkSOkp6fzl3/5l6SmpnLw4EGqq6tf9tIkJEaE5uZmvvrqKyZMmIDJZOL06dPk5OQwb948K0HWaDQvcZWvJpIoS0iMEIIgkJeXR35+PjNmzGDp0qXY2dmxfPlyEhIS2L9/v+QDLPHK093dzb59+wgLC8PLy4szZ84wY8YM5s6dayXIdXV1/P73v5cuRp8QSZQlJEYAk8nEkSNHuHr1KosWLWLOnDniCcrOzo633nqLqKgo9u7dS3Nz80terYTE09Hf38/evXuxt7cnLCyMgoICZs2axezZs60EuaGhgb179xIdHU1MTMxLXPGrhyTKEhLPSH9/P/v27aOiooI333yTSZMmDbqPvb09q1atIjg4mF27diGTyV7CSiUknh5BEDhy5AgKhYLIyEiuXr3K7NmzmTVrlpUgNzc3s3v3bsLDw1m1ahX29lLn7ZMgibKExDPQ19fHjh07aGhoYO3ataSmpj7yvo6OjqxduxZfX1927tyJXC5/gSuVkHg2CgoKuHv3LmFhYZSVlTF37lxmzpxpdZ+2tjZ27dpFcHAwa9aswcHB4SWt9tVFEmUJiadErVbz+eefo1Ao2LBhA3Fxcd/6O87Ozrzzzju4ubmxY8cOlErlC1iphMSzUVFRQUFBAd7e3tTX1zNv3jymT59udZ+Ojg527tyJn58f69atw9HR8SWt9tVGEmUJiadALpfz2WefYTAY2Lx5M2FhYcP+XVdXV9avX4+DgwM7duxArVY/x5VKSDwbra2tHD58GPjGTjM3N5ecnByr+3R1dbFjxw48PT155513cHJyehlL/U4gibKExBPS3NzM559/jpOTE5s3b8bf33/I+ykUCo4ePUpNTc2gn7m7u7NhwwbMZjM7duxAq9U+72VLSDwxGo2GPXv20NXVhSAILFq0iKlTp1rdR6lUsn37dlxcXHj33XdxcXF5Sav9biCJsoTEE1BdXc327dsJCAhg06ZNeHp6DrqPIAiUlJTwySefcOfOHXbt2sXOnTtpb2+3up+XlxcbNmxAp9OxY8cO+vr6XtTLkJD4VgwGA3v37qWqqgoXFxeWLFnC5MmTre7T3d3N9u3bsbe3Z/369bi5ub2k1X53kERZQmKYlJWVsXfvXmJjYx+5I9Bqtezfv5+vvvqK1NRUfvrTn7J69WpUKhWffPIJR48etTJU8PX1Zf369Wg0Gnbt2oVer3+RL0lCYkgEQeDo0aNcuXIFDw8P3njjjUFdBRqNhh07dgCwYcMGPDw8XsZSv3PYCJJj/ohSUlJCZmYmxcXFZGRkvOzlSIwQV69e5fTp00yYMIGlS5diazv4era6upqjR49iNptZtmwZycnJ4s9MJhPFxcUUFBRgMBiYNm0aU6dOFYthWltb2b59OyEhIaxbt06qWpV4qVy8eJFPPvkEb29vNm/eTFZWltXPtVot27ZtQ6fTsXnzZnx8fF7SSr97SKI8wkii/N1CEATOnj3L5cuXycnJGeRaBN+E+fLz87l+/ToJCQm8/vrruLu7D/l4Op2OS5cuUVRUhKurK7NnzyY9PR1bW1saGxvZuXMnUVFRrF69WurvlHgp3L17l3/+53/GycmJv/iLvxh0Huvr62P79u1oNBo2bdr0yJoKiadDEuURRhLl7w5ms5ljx45RWlrKggULmDJlyqD7tLW1cfDgQVQqFQsWLCArK2tYZvwqlYqzZ89SXl5OUFAQubm5xMXFUVdXx+7du0lMTGTlypVD7sglJJ4XbW1t/O3f/i16vZ6///u/H3QO0+v17NixA4VCwcaNGwkKCnpJK/3uIonyCCOJ8ncDg8HAgQMHqK6uZvny5aSlpVn93Gw2c+XKFc6fP09QUBBvvPEGAQEBT/w8zc3N5OXl0djYSHx8PLm5uSiVSvbv38+4ceNYvny5NHFH4oWg0Wj4yU9+glwu5//8n/8zKGTd39/Prl276OjoYMOGDYSEhLyklX63keJjEhIP0dfXx969e2lra2PNmjUkJCRY/VylUnHo0CGamprIyclh1qxZ2NnZPdVzhYeHs2nTJu7du0d+fj4ff/wxGRkZLFy4kJMnT+Lg4MCSJUskYZZ4rvT39/Ozn/2M5uZmfvGLXwwSZIPBwL59+5DJZKxfv14S5OeIJMoSEgPQaDTs3LkTjUbDhg0bCA8PF38mCAJlZWWcOHECFxcXNm7cSFRU1DM/p42NDWPGjCExMZGbN29SUFBAeXk5YWFhXLt2DUdHR+bPny8Js8RzwWQy8Y//+I9UVlbys5/9bFAfsslk4osvvqCpqYl169ZZfSYkRh5JlCUk/v90dnaya9cuBEFg8+bNVuHovr4+jh8/zp07dxg/fjyLFi3C2dl5RJ/fzs6OSZMmkZaWxqVLl7h27Rrd3d0cOnQIBwcHZs+ePaLPJyFhNpv5zW9+w/Xr1/mLv/gL5s2bN+jnBw4coK6ujrVr1xIdHf1yFvo9QhJlCQmgpaWF3bt34+bmxjvvvIOXl5f4s7q6Oo4cOYLBYGDlypWMHTv2ua7FxcWF3NxcJk6cyNmzZ/n666/58MMP6ezsZOXKlc/1uSW+P5hMJv77v/+bM2fO8M477/DGG29Y/dxsNnP48GHu37/PqlWrhuXtLvHsSKIs8b2ntraW/fv3ExgYyNq1a3F1dQXAaDRy9uxZrl69SmxsLMuXLx/Swet54ePjw1tvvcXkyZP53e9+x3//939z7949fvSjHxEYGPjC1iHx3cNkMvH5559z7NgxXnvtNTZv3mz1c0EQOHbsGBUVFaxcuZKkpKSXtNLvH5IoS3yvqaio4PDhw8TGxrJy5UrRzKO9vZ2DBw/S1dXFggULmDx58kvL6YaHh/Nv//ZvfPrppxw5coTW1laWLFnCrFmzHtkPLSHxKEwmE7t27eLw4cNMmzaN/+//+/+sjm1BEDhx4gS3bt1ixYoVpKSkvMTVfv+QRFnie8u1a9c4deoUaWlpLFu2DDs7OwRBoKioiDNnzuDv788Pf/jDUdGLaWtryw9/+EMCAgI4efIk58+fp6ysjJycHKZMmSI5gEkMC6PRyP79+zl69Cipqan81V/9ldVEJ0EQyMvL48aNGyxbtmxQK+CTIJPJOHfuHEuWLLFKB0k8HkmUJb53CILA+fPnuXjxIlOnThUrm9VqNYcPH6a+vp6pU6cyZ86cUeWqZWNjw/LlyzGbzZSVlRESEsKFCxe4efMmc+fOJS0tTarQlngkRqORffv2cerUKSIjI/nzP/9zvL29re5z/vx5rl69yuLFi5/aZ0GtVnPu3Dlu376Nr68vPT09kig/AaPnjCMh8QIwm818/fXXFBcXM3/+fKZNmwZ8E8Y+fvw4jo6OrF+/ntjY2Gd6nr6+Pq5cuUJJSQnTp08fsfC3ra0tK1aswGAwUFtby9KlS6mqquLw4cMUFRWRm5tLTEzMMz+PxHcLiyBfvnxZHILycDvfpUuXuHjxIvPnzyc7O/uJn0On03HlyhWuXr2Kk5OTKOxP28P/fUVy9HoMv/nNb/jZz37GT37yE373u98N63ckR6/Ri9Fo5MCBA1RVVbFs2TLS09PR6XScOHGCsrIyxo4dy2uvvfZM82D1ej3Xrl2jsLAQk8lETEwMVVVVpKen89prr43YzttoNLJnzx6am5vFucynT5+mubmZxMRE5s+f/1QOYxLfPSzGH7du3cJkMrFo0SIWLFhgdR/LwJXZs2czc+bMJ3p8k8nEzZs3uXDhAgaDgSlTpjBt2jSrsLjE8JF2yo/gxo0b/PGPf3ymnIrE6EGn07Fv3z5aWlpYvXo1iYmJNDQ0cOjQIXQ6HW+88Qbjxo176t2s0Wjkxo0bXL58GZ1OR1ZWFtOnT8fd3Z2ysjK++uorOjs7WbVq1YiMuLO3t2f16tXs3LmTXbt2sXHjRt577z3u3r3LmTNn+Pjjj8nMzGTWrFnSjNvvMQaDgT179lBVVYWdnR0TJkxg/vz5Vve5ceMGp0+fJicnhxkzZgz7sQVBoLKykjNnzqBUKpkwYQKzZs16oR0K30WknfIQ9PT0kJGRwUcffcQ///M/k56eLu2UX2E0Gg27d+9GpVKxbt06QkNDOX/+PFeuXCEyMpIVK1YMyq0NF5PJxK1bt7hw4QI9PT2kp6czc+bMQTm0lpYW9u3bh42NDatWrSIsLGwEXtk3Fxvbt29HrVaLE3uMRiPXr1/n4sWLCIJATk4OkydPlorBvmf09/ezZ88eGhoaAPDz8+P999+3Mr25desWR44cYfLkySxYsGDYF6VNTU3k5eXR1NREQkIC8+bNGxUFkd8FJFEegg0bNuDr68t//Md/MGvWrMeKsl6vtxpMf+vWLWbOnCmJ8ihBoVCwc+dOjEYj7777LjY2Nhw6dIiOjg5mz57N1KlTn2oSkyAIVFRUcP78eRQKBampqcyePRs/P79H/o5Go2H//v3IZDJef/11xo0b9ywvTaS3t5etW7ei1+vZtGmTONu2t7eXixcvcv36dTw8PJg7d+4zRQMkXh36+/vZvXs3ra2tuLq60t/fzw9+8AN8fX3F+1RUVHDw4EEyMjJ47bXXhnVcdHV1cebMGSorKwkODiY3N/eZ6y8krJFE+SH27dvHr3/9a27cuIGzs/O3ivIvfvELfvnLXw76viTKL5+2tjZ27dqFi4sL69ato7q6mry8PLy9vXnzzTefylRfEATu37/PuXPn6OjoICkpidmzZxMcHDys3zcajRw/fpxbt24xbdo05s6dOyLjGTUaDVu3bhUtQgeGyAeeSENDQ8nNzZXsEr/D6PV6du/eTXt7O2FhYTx48IB3333XqgCwsrKSL7/8ctiTyLRarVjp7+HhwZw5c6Rq/+eEJMoDaGpqIisri/z8fDGXLO2UX03q6+vZt28f/v7+LFu2jPz8fGpqasjOzmb+/PlPHMoVBIG6ujrOnTtHS0sLMTExzJ0796nM+S290Hl5ecTHx/Pmm2+OiI+2SqVi69atODo6snHjxkG55MbGRk6fPk1LSwtJSUnMnz9fGlD/HUOv14vjFcePH8/169dZsmQJEydOFO9TXV3Nvn37SE5O5s0333zsRaHBYKCoqIjLly9jY2PD9OnTmTRp0rALFhsaGoiMjJTE+wmQRHkAR44cYcWKFVYl/CaTCRsbG2xtbdHr9d9a3i/llF8+d+/e5eDBg0RHR5OWlsbp06extbXl9ddfHzSGcTg0NTVx9uxZHjx4QHh4OHPnzh2RtqOamhoOHDiAu7s7a9aseWzoe7h0dXWxdetW3N3d2bhx4yCxFwSBO3fucObMGdRqNVlZWcycOVMqBvsOoNPp2LVrF52dncyaNYu8vDwyMzNZsmSJeJ+6ujr27NlDfHw8K1eufOT5zNILf+7cObRaLRMnTmTGjBmiBe1wqKmpYdeuXaxevZrk5ORnfn3fFyRRHoBGoxGLIixs2rSJ5ORk/u7v/o7U1NRvfQxJlF8uN27c4MSJEyQlJeHo6EhZWRnJycksXbr0iYXH4khUVVVFUFAQc+bMITExcUSv+ru6uti7dy89PT2sXLlyREz/29vb2bZtG35+fqxfv160Dh2I0Wjk2rVrXLp0CUEQxF7q0WSWIjF8+vr62LVrFwqFgqVLl3L8+HGCg4NZt26dKLyNjY3s3LmTqKgoVq9e/ci/dW1tLfn5+chkMsaOHcvcuXOtctHDXc9HH31EUFAQ69atk3bKT4Akyt/Ct4WvH2Y0ibLJZOLMmTOEhYURGhqKj4/Pd/bDIQgCFy5coKCggLi4OLq6uujt7WXhwoVMmDDhiV53Z2cn58+f586dO/j5+TF79mzGjh373N47nU7HwYMHqampITc3d0SMRlpaWtixYwehoaGsXbv2keH63t5eLly4wI0bN/Dw8GDevHmkpqZ+Z4+T7yJ9fX3s2LEDlUrFqlWr+PrrrzGZTPzgBz8Qe+4tx0NISAjr1q0b8niQyWTk5+dTW1tLZGQkubm5Tz07+eDBg1RXV/PjH/9YapF6QqTL4u8warWae/fucfXqVeCbkYBhYWGiSIeFhX0nBhqYzWZOnjzJtWvX8PPzo7a2lvDwcNavX/9EV/gqlYoLFy5w69YtPD09RYORkSjEehzOzs6sWbOGs2fPcvr0adrb25/ZaCQsLIy1a9eya9cuvvzyS1atWjVkqNLV1ZVFixaRnZ1Nfn4+Bw8eFJ3BHnZ8khh99Pb2smPHDtRqNe+++y4FBQVoNBref/99UZBlMhk7d+4Up6A9LMgP22KuXr2apKSkp74wu3v3LuXl5bzxxhuSID8F0k55hBlNO2ULvb29tLS00NraSktLCy0tLWi1WgC8vLyshDo0NPSVcuIxGo0cOnSI4uJiHBwccHR0ZObMmUyfPn3YYtrT08PFixcpLi7G2dmZGTNmkJmZ+VJCuRajkeDg4BExGqmtrWXPnj3DKuoBePDgAXl5ebS2tjJmzBjmzZs3IrluiZFHq9WyY8cOenp6WL9+PWVlZRQWFrJu3Tri4+MB6OjoYNu2bXh7e7N+/XqrGgO9Xs/ly5dFW8xZs2Y9sy1mT08PH330EdHR0axcuVKKuDwFkiiPMKNRlB9GEAS6u7utRLq1tZX+/n5sbGzw9/e32k0HBQWNylyjXq9n7969XLt2DScnJ2JjY3njjTeGHXKz+FNfu3YNOzs7pk2bxqRJk4bMwb5IRtpo5N69e3zxxRekpaXx+uuvf+uJ0tKDfebMGTQaDRMnTmTmzJlPVOQj8XzRarVs374drVbLhg0baG1t5ciRIyxcuJDJkycD/1P05+bmxsaNG8Wds8lkori4mIKCghG1xRQEgb1799La2sqPf/xj6Xh5SiRRHmFeBVEeCrPZTFdXlyjSLS0ttLe3YzKZsLOzIzg4WBTpsLAw/P39X+pVcE9PD59//jlXr14lKCiIuXPnsmDBgmEJql6vp6ioiMLCQgRBYPLkyUydOnVE2pJGipE2GikvL+fQoUNMnDiRRYsWDetvZzAYxGIwGxsbZsyYQXZ29qi8QPs+0dPTw/bt2+nr62PDhg3odDq2bdvG+PHjWbp0KTY2NqhUKj7//HMcHR3ZtGkTbm5uCILAvXv3OHPmDAqFgvT0dGbPnj1iIebS0lKOHj3KmjVrSEpKGpHH/D4iifII86qK8lAYjUba29uthLqzsxMAJycnQkJCRJEOCwvD09PzhQi1Uqnkww8/5NatW0yYMIF33nlnWCcBiz/1pUuX0Ov1TJw4kenTp4/adqCRNhopLi7m2LFjTJs2jXnz5g37bzXQOMLT05N58+Y918I3iUej0WjYvn07er2eDRs24ODgwJ/+9Cf8/f1Zv349dnZ2qNVqtm7dio2NDZs2bcLDw8PKFjM+Pp758+ePqC2mSqXi448/JiUlhddff33EHvf7iCTKI8x3SZSHQqfT0dbWZhX27u7uBsDd3d1qNx0aGjriIaympiZ+8Ytf0NrayooVK1i7du23FqsN1596NDLSRiNFRUWcOnWKOXPmPNHwAfimKj0/P5/79+8THh5Obm4ukZGRT70WiSdDrVazfft2DAYDGzZswMPDg88//xydTscPfvAD3Nzc6OnpYevWrRiNRjZt2oTJZOLs2bPcvXv3udliCoLA9u3bUalUfPDBB69UTcpoRBLlEWY0ibIgCJSVlREWFoafn99z29n09PRYiXRLSwt9fX0A+Pj4WO2mg4ODnzpne+3aNX79619ja2vLX//1XzN9+vTHviaz2UxFRQUFBQUolUpSU1OZNWvWK1m4NJJGIxcvXuTcuXNW+ccnob6+nry8PNra2khJSWHevHlP3Mcq8WSo1Wq2bduGyWRiw4YN+Pj48MUXX1BbW8t7771HUFAQvb29bNu2jb6+PlatWkV5ebnY6vY8bTEtF3obNmyQZnmPAJIojzCjSZS7urr4z//8T+B/2qHCw8MJDw8nLCzsmeYGPw5BEFAqlVZC3dbWhsFgwMbGhsDAQCuhDggIeGzFp9lsZteuXWzfvp3IyEj++Z//+bHFT5bc2fnz50V/6jlz5rzyU2xGymhEEATOnDnDlStXWLp0KZmZmU/1GGVlZZw9e1Z0fJo5c+ZzO6a+z3R3d7Nt2zbMZjMbN27Ex8eHc+fOcenSJbF9ydKrbLn4LC8vBxBtMZ/XhLDOzk4++eQTsrKyWLhw4XN5ju8bkiiPMKNJlOGbCuPW1laam5vFm2UX6+/vL4p0eHg4gYGBz60n12w209HRYbWb7ujowGw2Y29vb5WfDg0NxdfXFxsbG5RKJb/73e+4ePEiM2bM4Oc///kjw2MP+1PHxsYyZ86cpzZAGI2MlNGIIAicOHGCmzdvirOknwaLN/KlS5ewtbVl5syZTJw4USoGGyFUKhXbt29HEAQ2btyIt7c35eXlHDx4kHnz5pGTk4Ner2f79u3cuXNH/Ny8iIp5k8nEZ599Rn9/Pz/60Y+k0aAjhCTKI8xoE+WHEQQBhUJhJdLt7e2YzWYcHBwIDQ21Eupn7ZN9HAaDgba2NqvWLIVCAXxjqGE54Xd3d7Nu3Tp+9KMfPfKiobGxkXPnzvHgwQMiIiKYM2fOdzaUZjabOXv2LFeuXCE9Pf2pjUYEQeDo0aOUlZXx9ttvP5M/cU9PDwUFBZSUlODl5cW8efNISUmRisGeAaVSyfbt27GxsWHjxo14eXnR0tLC1q1bGTt2LMuXL8doNPL//t//4+rVq8TFxTFp0qQXlk64cOECFy5c4L333hux+eASkiiPOKNdlIfCIo4DhVqtVgPfmIsMFOmQkJDnugvq7e2ltraWgwcPkp+fj1arZdy4ccTGxg5pdKJUKjl37hzV1dVia1RCQsL3QgxGwmjEbDZz4MAB7t+/z9q1a5/Ze1sul5Ofn09VVRURERHk5uYSERHxTI/5fUShULB9+3bs7OzYsGEDXl5eqNVqPv30U7y8vNi4cSPt7e386le/oqamhkWLFrF69eoXFhVqbW1ly5YtTJ8+ndmzZ7+Q5/y+IInyCPMqivJQqNVqK5FubW3FaDRiZ2dHUFCQlVCPpKd2bW0thw4d4vbt2+LJJzExcZDRiVKppL6+Hq1WS2hoKHPmzGH69OnP/aJhtDESRiMmk4l9+/bx4MED3nnnnRGx16yrqyMvL08cajBv3jx8fHye+XG/DygUCrZt24aDgwMbNmzA09MTg8HA1q1b6enpYfXq1Vy7do1du3ah1+v5q7/6K+bOnfvCLkSNRiN//OMfsbe35/33338mBzCJwUiiPMJ8V0T5YUwmEx0dHVZC3dXVBXzjnzxQpENDQ5+4bcdgMHD27FkuX76MXC4nICCAtWvXkpKSYnU/lUrF+fPnuXr1KmazmaioKBwdHeno6BCNToKCggYZnTxv/+qXyUgYjRgMBvbs2UNraysbNmwgNDT0mdclCAK3b98Wx/9NmjSJ6dOnS8Vgj6Grq4tt27bh5OQktj0JgsDBgwe5c+cOY8aMoaqqinv37uHm5sZPf/pTEhMTX+ga8/LyuH79Oj/84Q8JDAx8oc/9fUAS5RHmuyrKQ2Hx1LaIdEtLCzqdDhsbGwICAqyqvQMCAh4pjDKZjEOHDiGTyejv78fT05M1a9ZY5YQ1Gg2XLl16pD+1yWQa0uhEEAQcHR0HGZ14eXl9p0LcI2E00t/fz44dO+jq6mLjxo0jVq1uMBi4evUqly9fxs7OTiwGG6kdltlspr+/n/7+fvR6vfh1f38/APHx8a/Ebq6zs5Nt27bh4uLChg0bxP778+fPs2fPHry8vPD29sZoNGI2m1m3bt0Ld85qaGhg27ZtzJ8/n6lTp77Q5/6+IInyCPN9EuWHEQSBzs5OK6Fub28XhfHhliw3NzeuXr3K2bNncXV1Ra/X4+joyLp16wgJCQEG+1Pn5OSQnZ09bDvNh41OVCoVAG5uboOMTkars9dwGQmjkb6+PrZv305PTw+bNm0a0Z7unp4ezp07J/bO5uTkEB0djcFgGFJQHyW0D3/PaDQ+9nnHjx/P8uXLR/VFmFwuZ/v27bi6urJhwwbRFvPrr7/mv//7vwkODub1119Hp9Nx//593nrrLcaOHftC16jX6/nkk0/w9PRkw4YN3+no08tEEuUR5vssykPR398/qCWrp6cHnU5HU1MTBoOBtLQ0+vr68PPzY+PGjfj6+j43f2qtVmu1m25tbaW3txcAb29vq910SEjISx9O8TQ8q9GIVqtl27Zt6PV63n33XVxdXZ9YKB/3fa1WS21tLQqFAi8vL+Li4qz8ly3Tviw3Jycnq/8/6ntDfb+2tpbDhw8/lYPZi6Kjo4Pt27fj7u7O+vXrcXNzo6mpiQMHDnDs2DHGjh3Lz3/+c0pLS7lx4wbLly9n/PjxL3ydx44do7y8nA8++ECqD3iOSKI8wkii/HgEQeDq1at8+eWXaLVafH19KSkpwdHRkQkTJhAWFkZfXx9NTU24urqSk5PzXP2pBUFApVJZiXRra6todGIJw1tugYGBozYUajKZROGTyWR8+eWXqNVq5s2bR3Bw8BOJp1qt5tq1awCkp6c/sjfczs7uiURy4Pfa2tooLCwUDS9yc3OfS6/8hQsXOH/+PG+++eYzD/YYadrb29m+fTuenp6sX78enU7HmTNnuHXrFtXV1aSnp/O///f/pqCggMLCwqc2e3lWqqur2b1790t7/u8TkiiPMJIoPxqdTsfXX39NeXk5qampJCQkcOzYMUJDQ8nJyaGwsFB04fL29iYqKko0OLGEvl/EvGez2YxcLrcyOrH0ctvb2xMcHGwV9n4aC1NBEEZs52n5nslksnoOo9HI3bt3USgUxMXFERERgbOz87B3nXq9nhMnTuDi4sLq1avx8vIadN9nvUAxm81iMVhvby+TJ09m+vTpIzqxSxAEjhw5QkVFBRs2bBg1ft0ymYwdO3bg5eXFW2+9xfXr17lx4wYuLi5otVrc3Nz40Y9+RHFxMRcuXGDRokVMmjTpha+zt7eXjz/+mODgYNauXTuq0wDfBSRRHmEkUR6aBw8ecPjwYXQ6Ha+99hpGo5Fjx46RkJBAYmIily9fRqVSkZqayuzZs3FychpURKbX60WbzoHV3i9ijKTBYEAmk1m1Zlmqz52dnQflpz08PKivr+fGjRtotdpBgmowGL71OZ8mXPvw9+3t7bly5Qo3btwgIyODpUuXPlHLWGdnJ1u3bhXziM9rvGV/f79YDObg4MDMmTPJysoasaiEyWRi586ddHR08P777790r+62tjZ27NiBp6cniYmJXL9+HYCcnBxkMhn3799n06ZN1NXVcfbsWebPn8+0adNeyloPHDhAbW0tP/7xj5+4F76npwcXF5dRG10ajUiiPMJIomyN0Wjk/PnzFBYWEhkZyfLly7lz5w75+fkEBQVhNpvp7OwkOTmZ2bNnP7Li13K/gblpuVyOIAg4OTlZFZCFh4e/kAHrFgvTgUKtVqtRqVTIZDI0Gg2Ojo5kZ2eTkpKCu7v7sAXVwcFhRC80nsVoRCaTsW3bNgICAnj33Xefa55do9Fw/vx5SktL8fX1Zf78+SQlJY3Ie9HX18eWLVsAeO+9917IMTIUra2t4jxkd3d3dDodEydOZMaMGdy6dYv8/HzefPNNtFotp06dYtasWcyaNeulrLWiooIDBw7w1ltvkZqa+q33FwQBmUxGVVUVVVVVtLa28u677474ZKrvMpIojzCSKP8PHR0dHDp0CLlczpw5c5g8eTL5+fmcOHECBwcH3N3diY+PZ86cOU9leqHX6wcVkWm1WgB8fX2tdtNBQUHP9WpdEATq6+v56quvuH79uljQZmtrS1BQEBMnTiQtLY2MjAyioqJeSgjQYjQCsHr16id6z5ubm9mxYwfh4eGsXbv2uRu0tLe3k5eXR21tLVFRUeTm5o6IlaNCoWDLli3iBcaLNpppbm7m97//PW1tbURHR5OWlsbcuXPx8/OjqqqKvXv3kpOTg5eXF8ePH3/i2dcjiUaj4aOPPiI2NpaVK1c+8n79/f3U1dVRVVVFdXU1Go0GJycn4uPjSUhIICkpSepNfwIkUR5hJFH+RqCuX79Ofn4+Pj4+vPHGGwQGBrJlyxZOnjxJQEAAkydPZu7cuURHR4/o86pUKiuRlslkmEwm7O3trXy9w8LC8PT0HPbJzmQyodVq6ejoQCaT0d7eTmdnJ52dndTX13P//n06OjrQ6XSYzWYcHR3x9fXFwcGB7u5uEhISSE5OxtHREX9/fzIyMhg/fvxz9RYfimcxGnnw4AG7du0iLi6Ot99++4WEJGtqasjLy6Ojo4Nx48Yxd+5cvL29n+kxGxsb2b59O6mpqS+0VaqkpITf/OY36HQ6Fi9ezJIlS0QL0o6ODrZs2UJsbCxJSUkcPXqUSZMmsXDhwpciyIIgsGfPHtra2vjxj388KKqgVCpFEa6vr8dkMuHv7y+moyIjI6WQ9VMiifII830XZY1Gw5EjR6itrRXN8VtbW/nNb37DvXv3mD59Ou+8884L86c2Go3IZDIroVapVGLY28/PD19fX7GISaFQ0NnZSVdXFwqFAqVSiUqlEtu4LB8XQRAwm83odDqMRqPYxhMQEEBWVhbTp08nKCiIyspKdu3aRXNzM35+fiQlJeHg4IBer8fLy4vk5GQyMjJISEh4YX2fz2I0UlNTw969exkzZgxvvPHGC1mz2Wzm1q1bnDt3Dp1Ox+TJk8nJyXmm/LZl0tLs2bOZOXPmCK52MGq1mi+++IJ9+/YRFBTE3/7t31rNNu7t7eXTTz/F0dGRyZMn89VXX5GRkcFrr7320oqqiouLOXbsGOvWrSMhIQGTyURTUxPV1dVUVVUhl8uxs7MjKiqKxMREEhMTX3qe/ruCJMojzPdZlCsrK/nqq6+ws7Nj+fLleHl5cerUKb788ksEQeDP//zPWbBgwXM50QiCQF9fH1qtFq1WS29vr/i1Vqulp6eH7u5uurq6xIItpVJJd3c3Go0Gg8GA2WzGxcUFd3d33N3dCQoKIigoCD8/P/z9/QkICCAgIACj0cj9+/fFimyTyYSTkxPZ2dlMnz6d5uZmTp8+zZUrV+jo6MDFxQWj0YitrS0+Pj4kJSWJbUcWP/HIyEiysrKYMGHCiBp2PO79elqjkcrKSr788kvGjx/PsmXLXphw9Pf3c+XKFQoLC3FwcGDWrFlkZmY+9Y7s4sWLnDt3jjfeeIO0tLQRXu036ZXLly9z6tQpysvLyc7O5mc/+5lVKNdkMrFjxw46OzuZOXMmp06dYty4cS/V7ESpVPLxxx+LoeeqqipqamrQ6XS4u7uLu+HY2Njn3gnxfUQS5RHm+yjKer2eU6dOUVpaypgxY5g+fTrXr1/n2rVr4rSgv/mbv3miCTaCIKDX662EdSixHfg9nU4n3vR6PXq9Hvhmp2U0GrGxscHR0REHBwecnZ3x9fXF398fPz8/nJycMBqNaLVacWdsa2uLi4uLWDwGcP/+fdra2nBwcBDtDseMGUNsbCwlJSVcvnyZlpYWHB0dGT9+PCkpKaI4a7VaDAYDrq6uYvFSX18f3d3d6HQ6HBwc8PPzIyMjQywOe94zap/WaKSsrIzDhw+TnZ39wkOsarWa8+fPc+vWLfz8/Jg/fz6JiYlP1ZZ29OhRysvLWb9+/YgM4oBvhNbSxiSTyVAqlUydOpX169dbFckJgsCxY8e4ffs2M2fO5MKFCyQnJ/Pmm2++FLcsS5HWH/7wB+rr60lISMDOzo7Q0FASExNJSEggNDRUaol6zkiiPMJ830S5qamJQ4cOodVqmTFjBt3d3ZSUlGAymVCpVERERIguXf39/Y8V1Ye/N7Dv1mKMYTkhWMLHRqMRg8GAwWDA3t5eFF1PT0/8/Pzw9vbG29sbLy8v0TvYy8sLNzc38bGGsmrU6XRiVfXt27cpKipCLpfj6OiIm5sb9vb2+Pr6EhAQQFNTE62trdjZ2REfHy9Wy1ryxfX19XzxxRfU1dWJwzEMBgOZmZlotVoaGhpoa2tDLpejVCoxGo04OzsTHh7O/PnzmTlz5mMHRFhe99PS1dXF3r176enpYeXKlcMe33jz5k2OHz/O9OnTmTt37lM//9Mik8nIy8ujrq6O6OhocnNzn3iQhslkYteuXchkMt5///1nilIIgsC9e/c4c+YMCoWC4OBgmpubSUhIYM2aNYMusK5du8bJkyeZOHEipaWlLzRXb8FgMFBfXy/mhysqKnjw4AErVqxg6tSpJCQkvPC6h+87kiiPMN8XUTaZTJw9e5Zz587h6emJp6cn9+7dEws+6urqRJcuS5HUUB7Frq6uuLi4WJ2wLGI7sLfXaDRib2+PjY0NNjY2eHh4WInsw18PN6zW39/P9evX6enpGfSz9vZ2ysrKaG9vx83NDYPBQG1tLSqVit7eXnp7exEEQawiHz9+PDExMfj7+w8qjFEoFOKc4djYWJydnbG1tWXu3Lm4u7ujVqtRKpW0tbVRU1NDfX097e3t9PX14ejoSFBQEGlpaYwbN46goCA8PT3F3ZS7u/uw/cAfhU6n4+DBg9TU1JCbm8vkyZOHtSMqLCwkLy+PuXPnMn369Kd+/qdFEASxGEwul4vVzF5eXsN+jL6+Pj777DPMZjPvv//+U7VKNTc3k5eXR2NjI/Hx8cTHx3PmzBmioqJYvXr1IEGura0Vi+YaGhqIjIxkzZo1L6QavLu7W2xZqq+vx2g04uPjQ2BgIDdu3GDevHksXrx4RJ5LJpMRHBw8Io/1fUES5RHmVRZlo9FotWsdager1WqRy+XcuHEDhUKBi4uLaIRhma1cU1NDQEAAs2fPxsfHR8yhPSy2Op0OtVpNd3e3lZmGvb39I8XW29sbDw+PEdtN9Pb2cvHiRbE/GL4xdigtLaWtrQ0PDw/6+vqorq5GLpdjb2+Pi4sLfn5+jBkzhqioKGxtbens7EQul4stWe7u7gQEBBAYGEhycjL29vb09PRw5MgRSktLyczMFEPgCxcuHOQlbBnuUVZWRnFxMdXV1ajVauzs7AgICCAqKoq4uDi8vLzw8PBg8eLFREVFPVO422w2c/bsWa5cuUJ6ejqvvfbasESioKCAgoKCl+Y4Bd+svbS0lHPnzqHX65kyZQo5OTnDvjhTKpVs2bIFPz8/1q9fP2xxVCgUnDlzhrt37xIcHMz8+fMRBIF9+/YRExPDqlWrBj1WZ2cnW7Zswc3NDbVaTVhYGOvWrXtuqQqz2Uxzc7NYpNXe3o6trS2RkZFikZa3tzefffYZRqORH/3oRyNycXD//n327dvHqlWrSE5OHoFX8v1AEuURZjSJsiAIQ4rqo8LFOp1u0GNYwrVubm64urrS1tZGWVkZOp0OT09PPDw8SE9PZ8KECdTU1HDq1CkCAgJIS0sTi6vUajUDDzNXV9dBYjvw/66uri8sb2URZQ8PD5RKJcXFxTQ0NCAIgjiRR61W4+bmRkREBMnJyaSnpxMTEzNkYVRPTw9yuZz29nY6Ojro6OggODiYhQsXYm9vj06nY+/evVy7do158+aJBWpLlix5bOhUp9NRWVnJ5cuXqaioQKPR4Orqip+fn1jFbWm3CgkJITg4mODgYEJCQp64R/RJjUYEQSA/P5/CwkJef/11JkyY8ETPN5Lo9XquXLnC1atXcXR0ZNasWaSmpg7rPWhqamL79u2kpKSwYsWKxx6Dvb29XLhwgZs3b+Lm5sacOXNIS0ujtraW/fv3Exsby9tvvz1I3CwGJj09PZjNZoKDg3nnnXdGvGCqr6+P2tpasUirt7cXV1dXsUgrLi7O6vg9f/48ly5d4v333x+RWdoymYzPP/+c2NhYVq1aJeWhn4BXWpRNJhNffvml6Jf8q1/9inHjxtHd3c3Zs2eZNm3aiM2EHS6jSZSVSiW///3vrb5nb28viuzAm6ur65Dfs7e3R6vV0tbWxsGDByksLESn0+Hh4UFwcDCBgYEIgkBTUxO1tbWEhoaSmZkpthkNJb6jafJSb28vX375JRUVFdTU1GAwGNDr9chkMvr6+vD19WX8+PFkZWWRkJDwRGFRQRBobGzk7NmzBAYGisJsNBrZtm0b169fZ8mSJRiNRjQaDa+99hr+/v7f+rg6nY6SkhKuXbvGvXv30Ov1JCcnk5aWRmxsLH19fbS3t4vRBy8vr0FC/W092k9qNGIZM1hcXMybb745LPen54larebcuXPcvn0bQRAICgoiKipKvFlmFT+MxcHqUS5aBoOBa9eucenSJeAbW8zJkyfj4OBAVVUV+/fvJz4+npUrVw4SZJPJxO7du6murhY91EfKutQSWbGEpZuamkTRt+yGQ0NDhywga2lp4bPPPmPGjBkj4hym0Wj49NNPxeJBV1dXqWf5CXhlRVmlUrFw4UKuX7+Ou7s7Wq2W/Px85syZg8lkIioqivXr1/Mv//IvL3Rdo0mUjUYjtbW1VkL7sH2jyWQSQ8gqlYru7u5BX8tkMm7evIlSqcTHx4dx48aRmZlJeHg4np6eVFZWcu/ePWbPns2SJUtemQ9gRUUFu3fvpqCgAPhmZGBPTw+9vb0EBQUxa9YssrKyCAkJeayACYJAb28vSqUSpVIp9jcrlUr6+/txcXFBLpeTmJjIokWLsLe3x2w286c//YnS0lKWLl0qtkgtWrToiS4k5XI5BQUFyOVy6uvrsbe3Fy1Lk5OTMRgMtLe309bWhkwmE8dUuri4iAJt+dfPz8/qpD3QaGTZsmXf2jZkGfxQXl7OqlWrSEpKGvbreF50d3fz4MEDGhoaaGhoEP3K/fz8rER6oCHJpUuXOHv2LCtWrBBHJAqCQFlZGefOnUOj0Yi2mJbpZffu3ePLL78kMTGRt956a8jPwIkTJ7h06RI2NjZERESwYcOGZ7L6NBqNPHjwQBRilUqFg4MDsbGxYrX0wJGYQ2EwGPjjH/+Io6Mj77333jN/dtVqNb/73e9oaWkhNTUVhULB+vXriYmJeabH/T7xyoryn/3Zn7F7924OHTrEhAkTCAwM5MyZM8yZMweAv/qrv6KgoIBbt2690HWNJlGGb8J5jxJbS4/uwEPAzc1N3N26uLhw8eJFrl+/jpubG8uXL+f1118XRcNsNvPVV19x69YtFi5cyOTJk1/Wyxw2SqWSc+fO8fXXX1NbWyt+3zIoIiQkhDlz5jB16tRBO3pLqFmhUKBSqazE19J+ZWdnh7e3N76+vvj6+uLs7My9e/eora2lubmZMWPGsH79epydnTEajXzyySdUVlayYMECTCYTSqWSRYsWERISMqzXo9Pp0Gg0zJgxA4VCwddff82lS5doa2vD3d2dlJQUZs+eLRaI9fT0iAItk8loa2tDpVIB31yUBAYGWu2q/fz8OH369LCNRsxmM19++SXV1dWsXbt21HkeazQaUaAbGhro6OgAvokmREVFER0dTWRkJJcvX6a8vJx3330Xs9lMXl4eMpmMlJQU0RbTgqVv29LONJSw3bx5kwMHDtDf309sbCwbN2585G79cajVajE3XFdXh8FgwNvbWxTh6OjoJ8pNnzp1ips3b/KjH/2IgICAJ16PTqejsbGRBw8eUF9fT35+PkqlkunTpzNu3Diio6NJSkp6qtf6feWVFeXg4GA2b97Mv/zLv9DV1UVAQICVKH/00Uf8/Oc/F084L4rRJMoKhYI//OEP4v9tbW2HzOFavvb09MTBwQFBELhy5Qr/9V//RUdHB7NmzWLz5s1WfcYGg4Evv/ySmpoaVqxYMerm1A5ELpeL+dgbN24gl8vFQqz+/n4ePHhAWFgYCxcuZMKECdja2tLX1yfuegcKsCXvbhFfHx8ffHx88PX1Fd9Di2gZDAa6u7vx9PREoVBw4cIFCgoK8Pb2FkO8ZrOZTz/9lIaGBnJycrC1taWrq4uFCxcOy+t5oChbdl1Go5GKigry8vIoKSlBpVLh6+tLcnIykydPJiUlhbCwMHH3bwl3W8S6ra2Nzs5OzGYzNjY2+Pn5odFoqKmpITU1lY0bNz52yL3RaGTfvn00NDTw7rvvjppRiUPR29tLY2OjKNJtbW0IgoCrqyuVlZU0NzeTmJjIhAkTWLBggWiLaeHu3bscOHBAzEMPJcj19fVs2bKFzs5OUlJS2LRp07fuYC0IgkBLS4vYstTW1oaNjQ2RkZFifjggIOCpcrYPHjxg27ZtLFiwgClTpgzrd/r6+kQRfvDgATKZDEEQ8PT0pLu7m/b2djZv3szEiROlPPJT8sqKsouLC3/4wx/4wQ9+MKQo//73v+cf/uEfhmx1eZ6MJlE2mUzcvXtXFF93d/dvNSWor6/nj3/8I9euXSMyMpKf/OQng15HX18fe/fupa2tjVWrVhEfH/88X8YTIwgC7e3t3L17l8rKSmpqanjw4AFqtVo0A7G3txen9Li4uBAdHU1/f7+48+3r6wO+EV8vLy8r8fXx8bESX0v4uqurS7x1dnaKBW42NjZiy0lfXx/nz5/HbDaTlJQkCuThw4fp7OwkNTUVJycnurq6hhSBhxlKlAeiVCq5efMm58+fp76+Hr1ej6+vLwkJCYwfP54xY8YQEREx6LgwGo10dHRY7arv3LlDWVkZjo6OTJ06lbi4OKvw98A8tcFgYPfu3bS1tbFhw4YRKR56Eej1eu7evcuxY8e4ceMGdXV14rSqhIQEMdwdEhLC3bt3OXToEGPHjmXFihVDfrYUCgX/9V//RXV1Nenp6bz33nvf6t2t0+mora2lurqa6upqtFotLi4uxMfHk5iYSHx8/DMPeNDr9Xz88cd4e3uzYcOGRwpoX18fDQ0Nogi3t7cjCAJeXl5ER0eLt9raWo4fP/7KRMxGMy92RMoIEhcXR0lJySN/npeXR0pKygtc0ejDzs5u2DvY1tZWjh07xtdff43ZbGbTpk1DTgNSq9Xs2rWLnp4eNmzY8EQuXc8Ty46isrKSyspKFAoFvb29tLa2IpfLsbW1FVu2ZDIZOp0Ob29vHB0dxdnIfn5++Pj4kJKSIgqwp6en1e7HbDajUqmora21EmGLiFv8tCMjI8XKaJVKJVZiKxQKAgICqKmpoaKigra2NlxcXAgICBBPgKGhofj4+HD69GnmzZv3TEM7fHx8mD9/PnPnzqW2tpabN29y/fp17ty5I16whYeHk5KSwpgxY4iOjsbW1lYc4DFQTM1mMzU1NWzbto36+nqcnZ1pamp6ZJ567ty5nDhxgl27drFx40YCAwOf+nW8CAZWbjs7O/OP//iPRERE8Ic//AGtViteUBkMBhQKBc3NzWRkZJCZmYnZbB4kyjqdju3bt1NRUUFGRgabNm16pCB3dXWJueGGhgbMZjOBgYFMmDCBxMREwsPDR9Tl69SpU/T29rJx40YrQe7t7RVFuKGhQRRhb29voqOjmTx5MtHR0Vavo66ujhMnTjBx4sSX1hL3XeKV3Sn/7ne/4+/+7u/YsWMHc+fOJTAwkLNnzzJ16lR+9atf8Zvf/IY//elPvPfeey90XaNppzwc5HI5586d49y5c7S2tjJ27Fg++OCDIS0HOzs72blzJwDvvvvusCqFnydms5mmpiZxR6xWq3F0dKSvr4+ysjIaGxsRBIHAwEB8fX3RaDRotVoiIyOZNm0aiYmJuLu7i1XjlqIdC/39/VYDKixDKixOYx4eHvj5+Yne2H5+fri7uz82bNff3y+G08+cOSOGSuVyORqNBrPZTHh4OCEhIQQGBqLRaJg7d+4jc7PftlMeip6eHrH/ua6ujr6+PnGUpo+PD8nJyaJ16FDh2IFGI/Pnz2fs2LGDwt+WtJHF3MPJyYl169aRlJREUFDQc7cPfRJMJhMlJSUUFBSIPc7Tpk0Tq6Kbm5vZtm0bY8aM4fXXX+fcuXPs378fT09P/P39RTe58PBwcScdGhrK3r17+eqrrxg/fjx//ud/bpWzNZlMNDQ0iEKsUCiwt7cnJiZGzA8/6zSsR3H//n327t3LsmXLSEpKEkP3lp0wfHMxFx0dLebZH7UWuVzOZ599Jo70fBn2oN81XllRFgSBH/7wh3z22Wd4e3ujUqkICgqiq6tLbID/+OOPX/i6XhVRViqVYp9lU1MTLi4uLFiwgMWLFw/ZM9nS0sLu3btxd3fnnXfeGXZObKSxnMxu375NSUkJHR0d4sSntrY2qqur6e7uxsXFhfT0dLKysuju7kYulxMdHc3y5cutqoIt/aZ2dnb09PRY7X67u7uB/8kfW4TXMlnqWVtZWltbOXnyJF5eXqSkpHDnzh1Onz5Ne3s7zs7OYqjdwcGBOXPmMHHixEEXDk8jyhYsrWylpaWUl5ejVCpxdHTExsYGe3t70aN7zJgxxMXFDXJdO3fuHJcvXx7SaESn04kCXV9fz9GjR+nu7iY9PR0XFxf8/f2tdtXBwcHPVIn8NAiCwP3798nPz0ehUDB+/Hhmz549ZNvbnTt3+PLLLwkLC6O1tZX09HSWLVsmpkoGFo/19vZSXV3NnTt3SExM5Cc/+QmZmZkYjUarIi29Xo+np6fYshQTE/PcL1bkcjm//e1vsbW1JSoqCrlcDnwzf9wiwNHR0cNq/dNqtWzZsgUHBwc2b948Iq1dEq+wKFu4fPkyBw4coLq6GrPZLPrHzpgx46WsZ7SLskaj4eLFi5SUlIhWkUFBQSxfvvyR4X6LIUJQUBBr1659oQPLDQYDbW1t3Lp1i9LSUu7du4dSqQS+OZHY2trS09NDS0sLRqOR2NhY3njjDRYtWsT169e5ceOGlbkDfLPjt+RJGxoaKCoqQhAE7O3txfDzwJuPj89za/OyCHNQUBALFy7EbDazdetWqqqq0Gg0qNVqXF1dsbW1JSYmhujoaIKCgggMDCQoKAg3Nzf6+vqeSpQHotfrqaiooKSkhObmZgRBwMPDQ8yXOzo6kpiYyJgxY0hISBAr04drNKJWq/n000/p6+tj1qxZYqudTCaz6qd+WKi9vLyeS8HQQFvMuLg45s+f/612kJ9//jk7duxgxYoV/OVf/uWQ67IYqfz617/G2dmZlJQUsWDQbDbj7e1NUlIS2dnZjB8/nqCgoOdaENXT0yPuguvr67lw4QIqlYoFCxaQmJgoivCTXmQbjUZ27NhBV1cXP/jBD4bcSZtMJlpbWwkKChpV3gSjnVdelEcbo1WUe3t7uXLlCteuXcPW1hZHR0e6u7tJTExk+fLljzyZlpeXc/jwYdEQ4XldyRuNRjo7O8Xca1tbG5WVldTW1tLZ2YnJZMLPz080QTAYDNTU1NDS0gLAmDFjWL16NWPHjuXGjRtcvHiR/v5+UlJSCA0NFYW4o6ND9OC2FG/JZDIiIiLEEPaLrhp9WJj7+vo4fPgw9vb2dHd3U1paio2NDa6urmRkZODp6YlcLsdkMiEIAm5ubsyaNYv4+HjCw8OfWcja29spLS3l9u3b9PX14ePjg7u7O319fXR2duLg4EB8fDxjxowhMTGRrq6uYRmNKBQKtm7diouLCxs3bsTV1RWz2YxCoRB31ZZ/H5WnDg4OFod6PA0KhYKzZ89y584dgoKCyM3NHdYAjuLiYr766ivx4m39+vVD5vrv37/PX/zFX2AwGJgyZYrYzeDu7o6DgwMGg0F8bf7+/mKIOCoqakSiT5aWL0thVmdnJ4DYwnX37l02btz4TLlfQRA4dOgQlZWVbNy4UawrMZlMtLW1iRcATU1N9Pf3s2bNmlHRs/6qIInyCDPaRFmv13P16lWuXr2KIAgkJSXR1NRET08P8+fPJzs7+5EncMsUm/T0dJYuXToiu0Wj0UhXVxcdHR3I5XLxX4VCgcFgoKurSyyqcXZ2JiIigoyMDBITE5HL5ZSXl9PQ0CD6UKemprJw4ULCw8O5dOkSeXl5tLe34+Pjg5+fH46OjtjZ2REYGCie1IODgwkKCsLZ2dnKZvNpw28WO9Oenh7UajUajQaNRoNKpaKtrQ1/f3/c3NzEkLSLi8ugr1UqFfn5+aIwd3Z2cvz4cZKSknBycuLYsWNiqD4nJ4fFixeL4efGxka8vLzETgN3d3fCw8PFW2ho6FPtVCxzo0tKSqitrcXJyYmoqChcXV3p6OgQJ2PFxcURGRlJWVkZCoXisUYjcrmcrVu3ilW/Q6VKBEFAo9FYCbVlBCJ840oXFBRkJdbflqe2/J0fjpwMR9xv3LjB119/TXZ2Nrm5uezZs4fW1lbef/99/P39USgUVFdXU1xczCeffILBYGDlypXk5OSQmJhIRESE1WdHrVZbhbstIWQfHx8rQxMfH59vvbjSaDSiAD948EA0R7EIvkX0BUHgo48+IiEhgTfffPNbX/PjuHDhAufPn+fNN9/E19eX+vp6Hjx4QGNjI/39/Tg6OhIZGSlGdkJCQqRc8xPwyopyTEzMtx6wNjY2VgYR38bHH3/Mxx9/zIMHDwAYO3Ys//RP/8SiRYuG/RijSZQ7Ozv5/PPP6e/vJysrC3t7e65evUpAQABvvPHGI6thBUHg3LlzXLp0iWnTpjFv3rwn3nmZTCa6urpE4R0ovmazGfimUMrb2xudTodKpUKpVOLs7ExUVJRYaNTa2srt27dpamqir68PvV5PX18ffn5+REdH4+TkRGVlJXfu3EGj0RAaGiqOnBu4s3rUBcVwRNky29kSTraIruX/PT09VmMmBUFArVbT3t6OXq8nIiKC8ePHo9fr0el04usYai0PHjzA19eXrKwsVCoV9+7dIzMzE09PT27cuEFHRwcajYaQkBCmTJlCcnIyrq6uzJw5U6xAb25uFm+WcZdBQUFWQu3n5/dEf1OVSkVpaSmlpaWo1WqCgoJISEjA3t6euro6mpqaEARBnKD12muv8dprrw15MpbJZGzbto3AwEDeeeedYV8wWPLUA8VaLpeL/dRD5akdHBy4fv06ly5dEi9oLLaYw+H69eucOHGCyZMns2DBAmxsbNBqtXz44Ye0tbURHx+PRqPBZDJx6dIl+vv7+bd/+zdycnKG/d5qtVqrXmlL76+Hh4eVSAcEBFiJ8ECHsoCAACsRHmjWIQgCu3fvpr29nR//+MeD0k9DjS4dCrPZTEFBAV988QWhoaG4uLiIIjywyC04OBg7Ozv6+vooKipiypQpzzXf/KyjS0cbr6woP1zKD/9TBHTlyhVSU1OZMGECW7duHfZjHjt2DDs7OxISEhAEge3bt/Pv//7vlJaWMnbs2GE9xmgSZb1ez69+9SvS0tKor69HrVYze/ZsZs+e/cgpMGazmePHj1NSUkJubi5Tp0597HOYTCYUCoXVrrejo4Ouri5RfAdOTAoMDMTV1ZWuri7q6+upr69HEAQiIiJISUkhKSkJuVzO7du3uXPnDmq1GkCsgLa1tSUiIoKAgAAcHR1pb29HrVYTFxfH8uXLSU1NfSKxsYiys7MzBoNBFNmHxbe/v1/8HUdHRzw8PMSbp6cnzs7OdHZ2UlFRQX19Pb29vXh4eODi4sKDBw9ITk5m3bp14oWQyWQSBVqn04lfNzc3U1hYiKurK4mJiaKPcWxsLDY2NlRXV9Pb2yvOXHZ2dsbT05PZs2czduxY3N3dRUtVFxcXdDodSqWSzs5OsT0MEIvIwsPDiYiIICwsbFgnTrPZTF1dHSUlJdy/fx9ADGPrdDru3r3L5cuXqa2tJTExkXfeeYfx48cPCs02NzezY8cOIiIinmlkoaWfeqBQt7e3i38vBwcHTCYTWVlZzJw5c1Ch3OMoKiri1KlT4sSpmpoaqqqqxPGdFRUVxMTE8P777/P5559z584dfvnLXzJt2rSnei0WdDodTU1NNDQ0cPfuXbGOore3FwcHB7y8vIiPj2fcuHHExMQ81ssb/mfu9TvvvDPIU+Bxo0vNZjNKpZL29nba29upq6ujqqoKX19fMjMzxQiFr6+v1UWvwWCgpKSEGzduoFareeutt0hMTHym9+RxjMTo0tHEKyvKj+P27dssWLCAXbt2MW/evGd6LF9fX/793/992K1Vo0mU1Wo1H330ERcuXMBsNoujBsPCwggNDSUsLIyQkBDxZGwwGDh48CBVVVW8/vrrou8v/M8H9OGwsyXfC99YdFrEd+C/rq6uqNVqKisruXv3Lo2NjdjY2BAdHc2YMWNISkpCJpNx8eJFiouLkcvl2NjYYGdnJ4aFg4ODmTp1KhMnTsTT05P79+9TXl6Op6cn8+bNY+zYsY8VY5PJRHd3N0qlUtyVq1QqMX9qNptFYbCzs7MSXHd3d/FrDw8PnJycxOfq6Ojg8uXLlJaW0tnZiZubG9HR0UyYMIG4uDj8/f0pKCjg6NGjeHh4MGPGDDIzMx9raWjJMVtGAebn59Pe3s6CBQvo6+vj9OnTNDc3A9/kCrVaLTY2Nri4uBASEoK3tzdDfaxdXFxwdHSkv7+fvr4+8eJDEAQcHBwIDg4mOjqauLg44uLiCAwMfGzYUavVUlZWRklJCXK5HG9vb7Gv9vr16+zZswetVitebFl6oS1FQfX19ezevVusVxipYrqBeWqFQsHYsWMfO4FrKAoLCzl06BAhISF4eXnR0tKCIAiEhYWJLUsmk4lt27Zx584dZDIZf/M3f8Nrr732TGtXqVRWOWGlUonJZMLR0VH0TNfr9dja2uLk5ERkZKRVG9bD76FCoeCTTz4hLS1tyLUNHF3q4OAwKL/f39+Pvb09np6e1NTUEBYWxptvvjko7aDVamlubqakpIRbt27R29tLYGAgaWlpTJs27bm1T1rscZ+10HE08Z0UZYD/83/+D8ePH6e4uPipft8ygWrDhg2UlpY+sjJZr9dbhSJv3brFzJkzR4Uoy+VyPvroI8aOHUtOTg5dXV20trbS0tJCa2uruJvw9/cnICCA8vJy9Ho9b7zxBj4+PoPE1xLicnFxsRJey9cP70KUSqXYQ9zc3IydnZ2YY3J3d0cmk1FcXExFRQVKpRIHBwciIiKIioqip6cHjUZDVFQUixcvZty4cZhMJq5evcrly5extbVlxowZZGdnY29vL+YhHxZdy78Dx0fa2NiI1qKurq48ePCAoKAg/P398fDw+NbRkT09PRQVFXHt2jWampqwtbUlNjaWiRMnigLw8O/fu3ePw4cPIwiC2H6SkZHxyOETA4V55syZHD9+HFtbW5YvX47BYODUqVNUVVVhY2PD+PHjWbVqFbdu3eLu3bs4OzuTmZnJmDFjrMZ3DjWy09IGplQqUavVqNVqtFotgiCIpiYhISGEhoaKhigPTxSz9FmXlpZy584dDAYDcXFxxMbGUlhYSFNTE9HR0Wi1WoxGI6GhoaJAKxQK9u3bJ9pUvszco8FgoK6ujqNHj3L27FmCgoJISkoSnbQSEhIGhYX/6Z/+iZ07d/L222/zb//2b0/8nCqVyionbOnvDgoKsgpHDxQco9FIa2urGO625HIdHBwG9Urv3r0bjUbDBx98MKSX+8B2ta6uLvR6PXZ2dmIaICwsDA8PD9FUaPny5Tg7O6PX62lraxPTJQ0NDbS2tgKQmJjIrFmzSExMHJG5zI/jWVoCRyvfWVH+6KOP+OlPfyo6LQ2X8vJypkyZgk6nw93dnT179rB48eJH3v8Xv/gFv/zlLwd9fzSIMnyTvxuq1cNkMlFXV8fdu3cpLy8nLy+Pzs5OfHx8xBnKlrxtXFwcCQkJYivO4yqULcYYd+/epbm5WXTO8vDwwM7OTqywbm9vF0O8KSkpTJo0iYiICG7dukVNTQ0BAQHMnDlTvBi6desWeXl5dHV1ER8fT3x8PL29vahUKvE2MK/r7u4uelM//O9Al67hFnpptVrKy8spKiqiuroag8FAWFgYWVlZTJkyBV9f32/9W9y9e5eLFy8SFBREf38/KpWKsLAwMjMzhxxAMVCYJ02axPHjxwkODiY3Nxej0Uh+fj4lJSUYDAbee+89VqxYgVKppKioiNLSUgAmTJjAlClTHutVbcmZW4RaqVTS2NhIY2MjTU1NtLa2olarRZMMZ2dnqyiCra0tdnZ2uLq64ujoKBa4Wdq5LLuthQsXEhISQkNDA3V1dRiNRoKCgnB1daWiooKcnByWLVv2QqvfVSqV2DtcX19PbW0tMpmMmTNnsnLlSqKjo4fcwQuCwL59+/j0008ZM2YM/v7+LF++/LGzpC0594Ei3N3dLeb8LSIcGRn5RAJjNpvF9j7Lra+vj5aWFjo6Oli1ahUTJ04kIiKC7u5usTCroaEBtVpNc3OzKOahoaEEBASIYmoymTh58iRyuZypU6ei0Whobm4Wc/m2trbisZGYmEhOTs4LdW6TRPkVoauri9zcXHGiypPQ399PY2Mj3d3dHDhwgC1btnDhwoVXcqcM/1N0NDDs3NHRQWdnJ/39/fT29nL37l1cXV1ZvHgxvr6+mEwm9Hq96OFsCW9adkxhYWGEhYWJJ3qZTMaNGze4efMmjY2N6HQ6sbLYz88PBwcHHB0d0Wq1KBQKHBwcSEpKIisrSxzvVlBQQGVlJW5ubowdOxZ/f3+6u7u5f/8+RUVFyOVy/Pz8iImJESuWHyW63t7ewy7keZwoW+w0i4uLuX//Pj09PeJ85RkzZlhZUFr6eTUaDT09PeJNp9MRGxsrFiaWl5dTWFhIZmYmPj4+lJaW0tXVRWhoKBkZGYSGhlqJ0kBhTklJIT8/n7S0NCZPnozJZOLMmTNcvnyZgIAAVqxYwbJly7C1taW3t5fr169z/fp1+vr6SElJYerUqcMacvGoY6ipqYnm5max4lun02E2m60Gmri5uYm7c5lMRk1NjVhhrNPpiI6OJisrCycnJ/GiamBUIzMzkxUrVhAdHW2VHx+pHZfZbKa5uVl00uro6BCNNLRaLQ8ePGDx4sXfOlf466+/5ve//z1ZWVn88pe/5NSpU5SWlvLuu++KYwoFQUCpVFoVZllE2JIqsIjwSPb+C4LAnTt3+MMf/oCbm5vYL9zd3Y2zszM+Pj6MGTOGCRMmEBUVRV1dHd7e3lbHvyAIdHV1ceLECSoqKsTCLicnJ7HtTiaT0draiq+vL9nZ2URGRr7wdkJJlEcRlsETD2OpWO3v72fnzp2sWbPmmZ5n3rx5xMXF8cc//nFY9x9NOWWlUsknn3wiXjQ4Ojpa5XoFQeDs2bP4+Piwfv36IV18+vv7xTBVa2srTU1NtLS00N7ejlwuR61Wo9PpcHJyIiQkhNjYWMaOHUtYWJhY0GXJjbm5uREfH09YWBi2trZUV1dz9epV6uvrsbOzE6/SbWxs0Ol0tLW1odFoiIyMZNasWSQlJYnCO1LVnANF2TIIor6+nsrKSqqrq1Eqlbi6uhIXF0d6ejrBwcFiPtZys9h3DtypOzo64u7ujp2dHXK5HF9fXzIyMoiJieH27dtcv36dyZMnk5aWRkNDA8XFxXR2dhIcHExGRgbh4eHiCW6gMIeEhHDjxg1mz55NYmIifX19YmFVX18fy5cv54033rCaVHXr1i2uXr2KQqEgOjparE5/lhOo0WhEJpNZVXpbQq+enp5Wld6+vr5UVlZy6NAhCgoKcHV1FcObLi4uYkWxxZPbzc2NkJAQAgICCAgIEC+YHg6bDwyfP/z/gbvbvr4+sUirpqaGvr4+3NzcxClLsbGxFBUVUVBQwOzZs5k5c+ZjX3tBQQEffvgh0dHR/Ou//ivu7u6YTCZ2795NTU0NM2bMQK1Wi0NQbGxsCAkJsepJfh7VyIIgIJfLqa2t5fPPP6ezs5Nx48Zhb28vRsAsF0wajQYAb29v1Go1MTEx+Pn5oVQqxc96fX09LS0tTJw4kaysLMLDw3F1daW0tJTKykqcnZ3JysoiMTFxUNrB0glQUVHBtGnTHumD8KxIojyKmDVr1qCTimUaT1xcHJs3byY5OfmZn2fOnDlERkaybdu2Yd1/NImyyWSiqKhIFOKBphJ1dXXs27ePwMBA1q5dO+QBrdPpaG9vF6+ILcMeLGJpb28vDm2whKidnZ3p6+tDLpeLQ9cDAgLw8vLC3t4eGxsb1Go1jY2N9PT0EBAQwMSJE0lLS8PPzw87OzvKysq4d+8efn5+zJ8/n6SkpOd2Bd7T08OBAweQyWTU1tbS2Ngo+lu7ubkRGho6ZOGUm5sb7u7uQ948PDxEu0r4JpJQUlJCU1MTPj4+ZGRk0NnZye3bt8nJyWHs2LEIgkBjYyOlpaW0t7cTGBhIRkaGuPtoaWnh1KlTBAcH4+zsTH19PUuXLsXLywuNRoO7uzt79+5FLpezfPlyVq1aNWiQxr179ygsLKS5uZmAgACmTp0qnrRH6r0cKNItLS0YDAZsbW0JDg4mPDwcvV7PsWPH6OzsFNMQGRkZpKWl4erqysWLF/niiy8ICAjAaDTS3d2No6MjoaGhYuqkr6/PKi9ucQQbiIuLi7jDtgxVCAkJEXPDltGVgiBQUFDAhQsXmDt3LtOnT3/saywqKuLDDz/E09OTf/7nf8bBwUHcBVdXV3Pp0iXMZjNLliwRHbMiIyOfmwh3dnZahcO1Wi0NDQ0olUrWrVsniunDkaPu7m6qqqq4cuUK+fn5dHV1YTAYcHZ2JjQ0FF9fXzo7O5k1axZTp07FYDBQXl7O7du3AUhPTx/y2DEYDFRXV4t1In5+fsyYMeO5hbQlUf6O87Of/YxFixYRGRmJRqNhz549/Pa3v+X06dPMnz9/WI8xmkT5Udy5c4dDhw4RExPD22+/jYODA2q1WuwBtdy6urrEsGJfX594xZ2QkEBCQgKenp6o1Wo6Ozu5d+8e5eXltLW10dfXh52dHZ6envj5+REUFERERIQ4Mam3t1fc/Y4dOxZbW1urCT0ODg7MmjWLzMzMEanINZvNaDQauru7xdnIVVVV3Lt3j+rqaurr68UTu4ODgxgmj4yMFEdeenh4iKL7tOHU9vZ2SkpKRLMPOzs7urq6mD17tuh4ZNlhFBcXI5PJ8Pf3JyMjg+joaFpbWzl16hSBgYFi6mHx4sWYzWZmzJhBU1MTH3/8MQ0NDSxfvpx169YNWqdF/AsLC7l//z4eHh5MnjyZzMzMERcOs9lMR0eHlVB3dnai1+upqqqit7eXmJgYnJyc8PT0JDU1lYyMDBoaGrh48SILFy4kODhYLBa0XHyMGTPGaqKV5b14uIhNq9Wi1+sJCwsTj9eH3wtLP/78+fO/tZXp5s2bfPjhh3R3dzN//nxMJhM9PT3Y2tqKO2FfX1/y8/Px9/dnw4YNI+qAZwkpWxyzLCJsa2tLWFiY+F6eOnWK+fPnD7IaNhqNNDc3U1dXR11dHS0tLeLQldDQUHHHb7GetfxNLOLv5OTEhAkThjxW1Go1d+7c4f79+/T39xMdHU1qaiohISHPNaQtifJ3nPfee4+zZ8/S1taGl5cXaWlp/N3f/d2wBRmeTpSH27w/Ely/fp0jR44QFBREcnIycrmc9vZ2dDodgHiSUyqV4nAPFxcXvLy8cHV1xcXFRfyQmUwmsTDIUqySkZEhFm1pNBpaWlooKyvj4sWL1NTU4OzsTExMDCkpKURERBAcHExXVxdlZWWiNeHACT3Dob+/n+7ubvGmUqms/q9Wq60mPqnVauzs7LC3t8fW1haFQkFQUBCpqamkp6cPyuuONHK5nOLiYtGBycbGhpUrV5KQkCDeRxAEWltbKS0tpaWlBT8/PyZMmICjoyN5eXn4+fmh0WhwdHRkxowZzJkzB1dXV5qbm/nDH/7A3bt3Wbp0KZs3b36kMMjlcgoLCykrK8Pe3p7MzEwmT578XIeNWHqxGxoaOH78OBUVFQQEBODi4kJvby82NjZi6kOv17NmzRrS09MRBIHm5mbu3r3L3bt36e7uxtXVleTkZFJSUoiJiXmiCzhBEDhz5gxXrlx5ZD/+wJ1oQUEBhw8fRqPRkJWVxbRp08SccEREhFWLUEtLC9u2bSMxMZG33nrrqY8lQRBQKBSiAD948EC8CAgLC7N6fkdHRwwGA5988gnOzs6899572NjYiP3FdXV1NDQ0YDAYcHV1JTY2ltjYWIKDgykrKxOjXD09PRw5ckSsIbl69SoymQxnZ2ex3S4kJISQkBCCgoLQ6XTcuXOHxsZGHB0dGTNmDCkpKc8tXP0wkii/RHbs2PFUv7d+/foRXsnjeVJRflzz/rOi1WrJy8sTjSmampqQyWS4u7vj6emJo6Oj2P9oyZNa2mGcnJzw9fUlPDycwMBAsdLWwcFBNBRQqVQ4OjqSlJTEypUrB7mstba2UlBQQFVVFX5+fuTk5BAUFERbWxvNzc2UlpZy48YNtFotoaGhTJ48mYSEBLGYzNJb2tvbO6TYWv5v8RKGb1IYFqcwZ2dncSff1dWFvb29WFlqaZEKDg7GbDaTmpr6WAOG50FnZyc3b96koKCA3t5eli9fzsyZMweJi6V1rLm5GR8fH8LCwqisrMTDw0O8oPj5z38utqR1dXXxu9/9jps3b7Jw4cIh22EGotFouHbtGjdv3qS/v59x48YxderUR7ZrjRSCIHD16lWOHDmCl5cXSUlJVFVVUV5eTnt7O11dXTg4OLB8+XLefPNNsTVIEATa2tpEgVYoFDg7Oz9yotVQz5ufn09hYSELFy5k8uTJ4vflcrlVYZZWq6Wzs5Pq6mpMJhOvv/46P/zhD4e0Bx1IZWUlX3zxBTk5OcydO3fY74dCobAKR2s0GmxtbQkNDbUqDBvq73ny5EkuX77MnDlzUCqV1NfXo9VqcXBwICoqShTigUMwBtZU2NnZcfToUTo7O/Hz80OhUBAWFsakSZPw9vYWx3M2NzdTWVkpDhMJDg4WJ7JZ3LxeFJIov0Sepn/RxsbGqvjmRfCkojywef/bPuhPSmNjI7/5zW8wGo309PTQ19cnhmItIWODwSDm/VxdXUXPaA8PD/HEZqksViqVaDQa0dIwJCREnNQ0fvx43N3dxUEXFRUVtLS04Ovry+TJk0lJScHJyQlHR0e6urq4ePEiLS0tREVFER8fb9WqYanUNZlMODg44ObmJpp5WFqdLBW/Xl5eVl+bzWaqq6uprKykoaEBQCxQsYTonZycSEtLIzMzEw8Pj2f2vn5WOjo62LlzJ1VVVeL4wMTExEEnN4vRieV1qVQqfHx80Gg0bNq0ySqi09PTw3/+539y/vx55syZw//6X//rW48vvV5PSUkJRUVFdHd3Ex8fL+4In2fkoKamhgMHDuDu7s6aNWtwd3fnwYMHXLp0if3791NXV0dwcLAYYRkzZoxYRBYYGEhnZ6co0HK5/JETreCbY/n06dMUFRWxaNEioqOjrUS4t7cXOzs7cSdqNBo5f/48bW1tTJ48mffee2/YIenCwkLy8vJ4/fXXh2yVerg6e2Bh2MMi/Ki/XV9fH/X19RQWFnLw4EHCwsJEhzaLCIeHhz8y3WI5/7i5uXHq1Clu3rxJQEAAERERTJo0yargUK1Wiw5jOp0OX19fvL296e/vp6OjQ2yZCwoKEnfTgYGBz7VXWRLll4jlRPSkREVFjfBKHs/TivLzEIXe3l5xvFpPTw/p6el4e3ujUChQKBTY2dkREBBAZGSkGDI0Go0YjUYMBoNYyfngwQP6+vrw8PAQrfXs7OwwGAziDjs2Npbu7m7u3btHW1sbTk5ORERE4OPjQ39/PzqdTqxI7ezsFHPOluIvS6+rpd3J1tYWQRAwm82iyYnFUnLghz40NBSj0UhTU5Mo6I6OjsTGxhIVFYVOp6O6uhqNRkN4eDiZmZmMHTtWPFE/z/f/STCZTBw+fJiSkhL8/PzE3UdSUtKgk5pcLqekpEQczuHu7s6ECRPYtGmTVXFjf38/n3zyCceOHWPKlCn8/Oc/H9ZrNJlM3Llzh8LCQmQyGSEhIUybNo2UlJTnZu7R1dXF3r176enp4a233hLtIE0mE1u2bKGgoAAXFxfR3MLV1RV/f39cXFwIDQ0VRdrZ2Zmmpibu3r2LTCbDwcGBqVOnkpOTg52dHXv37uX8+fPExsaK/sx2dnZin64lHOzg4EBNTQ27du2ira2NhIQEfvjDHz5RaF8QBL7++mtKSkp45513iImJEfuULRegD1dnW2oZHiXCRqORxsZGMSTd1taGwWDg7t27REVF8cMf/pCYmJhhH8u9vb2cPn2ar7/+mlu3bjFu3Dhyc3PF6nxLGqWiooKGhgYcHR1JTk5m7NixViFqi9d9a2urWJNi+VtZBsY8DyRRlvhWRpMo9/f3c+zYMaqqqggNDaW/vx9BEAgKChJ7Zx8O2Wq1Wqqrq6murkahUODq6io6Gj1sVWi50r937x5qtZra2locHR3Fx1Wr1aK3c0NDAy0tLbi5uTFmzBji4+PFHLXF/tHJyQlBEOjv7xd38JavLWFoSyjaMjWot7cXQRBwdnYmMDCQkJAQ3Nzc6OzsFC88QkJCiIqKwtfXV+yZtvxr2VlbnLzs7e1xcHDA3t5+0NdDfc/BweGRQmXp9bbs8L9tt2k0Gjl16hQNDQ1irt3V1ZX09HSSk5MHiXNXVxcnT57k/PnzuLq6kpaWxj/+4z9a9SKbzWa2b9/O7t27SU9P55e//OWw/Z8FQaCuro4rV66IvaxTpkwRc9sjjU6n4+DBg9TU1JCbm8vkyZOxsbHBaDSyd+9eGhoamDJlCm1tbVRVVaHT6cSoTl9fn9jm4+XlRUREBB4eHnR0dHDp0iXx5K1QKEhJSSE7O1vciQ5VnfzgwQN27tyJQqHAx8eH995776l6vBUKBR9//DH37t0jMTERk8kk9ilbpig9rjpbEARkMplVXthoNOLm5ibuhC3WtR988MGQc40fhV6v5/z58/zXf/0XMpmMhQsXsnTpUuzt7cXRqBUVFSgUCnx9fUlNTRWHkHwbA61OY2Njn5tgSqIs8a2MJlFuaWnh3//934mMjCQxMVE8CTx8UjYajTx48ICqqiqam5uxtbUlOjqa2NhYfHx8RDvGh2/t7e1iC1FwcDDJyckkJiaKBh7u7u40NTVx584dHBwcmD17NtOmTXuqE7rZbKahoYHKykru3btHd3c38E2fpZOTE2q1mrKyMlpaWtDr9fj7+zNmzBjGjh0r9rqazWYroTcYDGg0Gu7cuSOeaCxRAkvEYDhYisbMZrNYBWxJF9ja2mJvby9aVlpGSFpC/y4uLjg4OIiCbTAYOHHiBEqlkunTp9PY2Eh1dTWurq6MHz+eMWPGWJ0UdTodN2/e5NKlS9TW1hIeHs5f//Vfk5OTY5V+OHz4MB9//DEJCQn89re/feJCnLa2NgoLC7lz5w5OTk5MnDiR7OzsEc/Dm81mzp07x+XLlxk/fryVSOzatYv29nY2bNiAq6srt27dorS0FJVKRUBAgNjHrlAoaG5uprW1FaPRiF6vp7S0FJlMxty5c/nf//t/D+lyZ6GpqYmdO3fS29uLra0tb7/9NqmpqcNa/1C2mSaTidraWjw9PfnhD39ISkrKYz/rSqVSFGHLcBNHR0ervHBgYCA2Njbcu3ePffv2sXz5ctLT04e1RpPJRElJCQUFBTQ2NlJZWcncuXPJzc0VPw8Wr4eoqChSU1Ofe/Hj0yKJ8ihDJpPx2WefUVJSQnd3tziVyIKNjQ1nz559oWsaTaIsCALV1dVDXombzWYaGxspLy+nuroarVaLm5sbvr6+uLm5odPprAqoAFxdXUVxa21tRalU4uXlRXJysjhb1hLyunv3LmfOnEGlUpGRkcHs2bOf+ARu8SKurKwUW2gsz2fJK9bV1VFcXExVVRX29vZERkaKNpaWUJrZbMbOzo6goCDRjSw0NBR/f390Ot0j339BEERxflisLRXqbW1toltaT08PZrMZZ2dnvLy8xClR3d3dKBQKMSdvab+yt7cX31NLLt/Sz11eXk5/f79YVV1TU0NzczPu7u5kZGSQmpqKg4ODeFKKiIjg888/5/r16/j6+jJt2jRycnLIysoSL4LOnTvHb3/7W0JCQvh//+//Dcsa9GFUKhVFRUWUlJRgNpsZP348U6ZMGfGBA2VlZXz11VcEBwezatUqPDw80Ov1bN++HZVKxaZNm0QDnLq6OtHQAiApKYmMjAyioqJQKpVcuXKF27dvM378eBoaGtBoNEydOpXp06cPukBsbW1l+/btCIKATqdj1qxZjzQqgm/6fQeKsGXm80DHrqioKPr7+/n000/FOdIDd+a9vb3U19eLQqxUKsUK64F54YdrDLRaLR999BHh4eGsXr36W0VTEAQqKys5e/YsCoWCqKgoqqqqMBqNZGZmUltbaxWiTklJea6V+COBJMqjiLKyMmbNmkVfXx9JSUmUl5eTkpKCSqWipaWFuLg4IiIiOHfu3Atd12gSZaPRSGdnp5XzlFwup76+nsbGRvr6+nB0dMTPz4+AgAD8/f2HNMKw9OaqVCqxlcfLy0t0ntJqteKHorGxkby8PJqbm0lMTGTevHlPZBxgyQFXVlZSU1NDf3+/uOsdM2YMISEhaDQaSktLxYuxkJAQMjMzGTdu3KBcnMV5auAgDot1qKOjI76+vnR1dREZGUl4eDgeHh5DntxMJhOdnZ1W4wF1Oh22trb4+flZzfB9nGWi0WhEoVDQ0tKCTCYTbU97enowGo3Y2tri7OyMvb09DQ0NCIJAcnKyOATA0j9u2TmFhYVhZ2dHRkYGOp2OkydP0traypgxY3B1dcXT05MZM2aIbWbXr1/nF7/4BV5eXnz44YdWVqFPQl9fHzdv3uTatWtotVqSkpKYOnUqkZGRT/V4Q9HS0sK+ffsAWL16NWFhYfT29rJt2zb6+vrYtGmT1YVFb2+vOLWqo6MDLy8v/Pz8qK+vZ/ny5YwfPx6DwcDly5e5cuUKbm5uLFy4kOTkZLF9aNu2bTg4ONDT00NSUhJvv/221fFgqYuw5IUtImzxrrbkhIcSiNbWVrZu3UpMTAzZ2dmiEFvmJwcEBIgi/G2uX4Ig8MUXX9DQ0MCPf/zjb73gbWhoID8/n+bmZuLj45k6dSqHDx+mra1N7OcODAxk7NixJCQkjGh/9fNEEuVRxOLFi6moqODy5cu4uroSGBjImTNnmDNnDl9++SUffPABJ06cIDs7+4WuazSJssUAxWg0WoVUXV1diYmJISkpiZiYGDw9Pa36jx+ms7NzkBjHx8dja2srfijGjh1LYWEhlZWVhISEkJubK3oAfxs9PT3cv3+fyspK6uvrMZlMhIWFiTtif39/zGaz6ENdVVWFnZ0d48aNIzMz84lDa3q9ntbWVlpbW6mrq+Py5ctWwxYCAgLw8fHBxsYGg8GASqWio6MDo9EoVpdaBDgoKGhETmBarVacxtXZ2YlcLhe9v21tbZk4cSKBgYG4u7sjCAI1NTXU19djNBrx9fVl0qRJ2NjY0NzczLlz5+jp6SEzMxOz2UxbWxv29vbEx8eTlJSEVqvl0KFDODo68ud//udifv/h23DSDEajkbKyMgoLC+ns7CQiIoJp06aNmAubRqNh//79yGQyli1bRlpaGj09PWzduhWTycTmzZuHNAVpbW2lpKSEqqoqcnNzGTdunNV9FAqFOGkrLi6O7OxsvvrqK5ycnNDr9Xh4eLB582b0er1VYZZCoQAgMDBQTAc9PMXpYSx/A8uxlp+fT3h4OGlpaaIIx8bGPtGu9Pbt2xw+fJi33377kb788E1R4JkzZ7h//z6hoaHMnz8fd3d3/vVf/5X79++L6ZDMzMxBLY0jQW9v73MVS0mURxFeXl787d/+Lf/wD/+AQqHA39+fvLw8cX7yT37yE27dusWFCxde6LpGkyir1WrOnz+PTCYTTRks1n/DEZKHxXjChAkkJCRYFTYplUoKCwsxGAz4+voyd+5cxo0b960fbkuBWGVlJU1NTQBER0eTnJxMcnKy6MM9cFesUqkICgoiKyuLcePGjcj7ZXn/LaFySwivvb1dFGp/f38iIyPFcYTBwcEj3r72MBaP4sbGRo4dO4ZWqyUqKspqfKaHhwdyuRyZTEZqaiq5ublMmjSJ5uZm/umf/gm1Ws1Pf/pT3NzcuHr1KuXl5ZhMJqKjo3FxcWHfvn3o9Xrmzp07ZCjbwcFhSLG2eE0P/L+LiwtNTU0UFRXR2NiIn58fU6dOZfz48c/cEmM0Gjl+/Di3bt1i2rRpzJ07F41Gw9atW7Gzs2PTpk1Pndu+f/8+hw4d4sKFC8THx4vOadnZ2cjlcrq6uoBvRHhgOPpxxXKWAkjL8VRfX49Op8PR0VEcYVlVVcWqVavIysp64jV3d3fz8ccfk5iYyBtvvDHkfTQaDefPn6e0tBRvb29mz56Nh4cH165d49ChQ3R3d7NhwwZmzpxJeXn5iJ9/LEMxrl27Rm5uLhERESP22AP5Lory8x12+Rwxm82iuYG3tzd2dnbiVSzAuHHj+Oyzz17W8kYFzs7OmEwmJk2aRHx8/LBPXJ2dnZSUlFBfX4+XlxezZs0aJMZGo5GKigpu3LiBXq9n3bp1zJw585FiLwgCHR0dohDLZDLs7e2Ji4tj2bJlJCUliR8qQRCora3l5s2b3L9/Hzs7O8aOHUtWVpboWfwsWEwaLEVU58+fR6/Xi8Pcp0+fTnBwsJjHlMvloqlEVVUV8M0xZync8vf3x9/ff0T7MW1sbHB3dxedz44ePYqDgwNz5swRDS3kcjn29vY4OTlRU1NDcXExXl5eTJo0idWrV/PZZ5/xySef8Ic//IHs7Gx6enooLCzkxo0bGI1G/v7v/54DBw5QXV3NP/zDPzBu3Dh6e3utbpY5zJYJWJaRm729vYNqOOCbY87Ozo6KigouXLiAu7s748aNY8KECfj4+AwSdCcnp2/9e9rb2/P6668TFBREXl4eHR0dvPnmm6xfv57PP/+cnTt3snHjxqeatOTm5iYayxQWFnLq1CmmTp1KZ2cnsbGxzJkzZ8jiyIfRarVWeWGVSoWtrS3h4eFMnjyZ2NhYMdUgCAInTpzgxIkTolf/cBEEgaNHj+Lo6DjkSFmdTseVK1coKirCwcGBuXPn4ujoyJUrV2hvb0epVOLt7c0//MM/MH78+EF1IyNBT08PBQUFtLS0iFabEsPnld0pp6WlsXTpUn79618D/zNY+09/+hMAmzdvFnObL5LRtFN+UgaKsaenJxkZGYPE2FI8duPGDXp7e8WhArm5uYOuVC3WiJaKaYVCgZOTE4mJiSQnJw8ydujp6eHWrVsUFxejVCoJDAwkKyuLtLS0Z3pvLPNmLTOCLcMwLANMVCqVmAt83IWLZR6uZQSmZSdlMpmwtbXF19fXSqgtxiojgUql4tixY7i4uPDaa6+J70dfXx/t7e3ExsbS2trKhQsXRMtSd3d37t+/T0BAAD/72c+IjY0lNDQUW1tbioqKuH79Or29vdy8eRODwcDf//3fD9tSduAM5oeF3HKTyWRUVFSIs5P9/f2JiIiw+ltaTGsetQN/+NbW1saRI0dEoxGTycS2bdvESWffFsGwjGd88OAB9+7d48yZMwiCQEJCAq2trYSHh+Pm5kZycjKLFi0iICBgyMexjHi1iLBMJgO+2VEPzAs/aj1ms5k9e/bQ1NTEe++9N+y6i+vXr3PixAneffddKzE3mUzcuHFDjPpYhkWUl5ej0+lITEzEy8uLa9euMX/+fHJycoCRPf8IgkBVVRWFhYU4Ojoyc+bM59afbOG7uFN+pURZqVSKM3z/5m/+hq+++krcufzHf/wHP/3pT5kzZ444+eWnP/0p//Zv//ZC1/gqivJQYhwfHz+o2rO5uZlr166Ju4iJEyfi7Oxs9aEwmUw8ePCAyspK7t+/j0ajEU9yycnJxMTEWO0oBUGgvr6e4uJi7t27h42NjbgrHugm9CQYDAaam5tFAW5qaqK/vx97e3vCwsKIjIwkMjKSiIgIzGbzM73/JpMJhUJhJdRKpRJBELC3t8fPz09sEbO4jnl6ej6VWCsUCo4dO4anpydLlizB0dFxyJOSRqPhzJkzXLhwgfr6esrKyggMDCQ3Nxc7Ozvc3d3Flqz29nbu37/P2bNnMRgM/K//9b949913RzS3qNVquX79OkVFRaLRzLhx43Bzc3ukoFvEfqi2NKPRSGVlJYIgMG3aNLy9vbl8+TLBwcEsX74cT09PUcQdHBxobW0V88JyuRwAd3d3qqur8fLyYunSpZw7d46pU6cyf/58qqqqOHnyJN3d3UyZMoUZM2aIj2MR4aamJkwmEx4eHmJaIyYm5olazfR6PZ9//jl6vZ7333//WyNZXV1dfPLJJ6Snp7NkyRLgf8LEZ8+eRalUEhYWhr29PY2NjeIAiezsbNRqNTt27CAtLY1ly5YNabP5LOcfy+M0NDSQlJTElClTnnuKByRRfuk4OTmxePFi1q1bx7Rp02htbSUtLQ0HBwcEQeDXv/41Bw8exM7Ojtdee42f//znz8Xk4HG8SqLc1dVFcXGxKMaWnPHDYqxQKLh27RqNjY0EBQUxefJksc9Tp9OJHrmW8K5Op8Pb21usmA4PDx8kQlqtVtwVKxQKAgICyMzMZPz48U8chuzt7bXaBbe2toqtSRYBjoyMJDQ0dFCI+Xm8/waDQQwvW0ZYdnd3i61QdnZ2oj+3xSLUcvu2NXR2dnL8+HF8fX1ZtGgRJpPpkSclrVZLYWEh+/fv5+zZs6Snp/Pzn/8cjUZDW1sbra2taLVajEYj7e3tXL58GZVKxfz58/nVr35FVFTUiIpzf3+/ONtZqVQSExPDtGnTiIuLG/J5BEHAYDAMKdpKpZIzZ87Q2NhIYmIizs7OXLlyBVdXV1JTUwcdb76+vmJhVlBQEAcPHkSr1bJs2TIOHjxIVFQUq1evtppDfeLECU6ePElPTw/+/v54eXnh7Ows9vDHxsaKbYBPS3d3N1u2bMHT05ONGzc+Mv1jNpvZunUrWq2WP/uzP8PR0ZH6+nry8/NpamrCxcUFe3t7ent78ff3Z9KkSYwfPx5HR0cUCgVbtmwhMDCQd9991+rzPRLHf11dHZcuXcLGxoYZM2YQHR39VI/zNEii/JJZt24dX331Fb29vXh4ePDGG2+wbt065syZM2oa218FUe7q6qKkpIS6urrHirFWqxV3sJ6enmRnZ4sVmjqdjsbGRqqqqqirqyM8PJywsDBRiAea3lsQBIGGhgZu3rxJZWUlNjY2pKSkkJmZKc4N/jYEQaC7u5uGhgZRhC27H09PT6KiokQRthgsPI4X9f5bCrdUKpUo0pZ/e3p6xHnNlh7ngUJtmVVt+fvIZDJOnDhBUFAQM2fOpK+v77Enpd7eXn7729+ya9cuYmNj+eu//mumT5+Om5sbarVaFOja2lr+9Kc/UVtbi6+vr9jLGx8fT2hoKKGhoSMy/cdsNlNZWcmVK1dobW0lKCiIqVOnkpqa+kTDDB42Ghk7diz79+8nOjqaBQsWoNPp0Ov1BAUFiZXNOp2OHTt2oFKpWL16NUeOHMHOzo73339fLPaz3AZOF9PpdKSlpbF27drHGo88DZZWqfj4+EEtWBYuXbrEuXPn2Lx5M46OjuTn51NRUUF/fz+Ojo64uLiQmJhIdnY2sbGx4mP09fWxZcsWAN5///1BF7zPcvxbxq1WV1cTExPD9OnTnyqv/yxIojwK6Ovr48iRI+zZs4e8vDyMRiNBQUGsWbOGdevWvfQZxqNZlIcrxgaDgdu3b1NWVoatrS2ZmZmkpKSg0+nEMGBbWxtms1nMo65ateqR+aPe3l5u377NzZs36erqws/Pj6ysLMaPH/+tHySz2YxcLrcSYbVaDXyTvxu4E34Si8GBa3vZ6QOj0Wgl0gOF2+L7bWtrK+6uLUMASkpKiIiIYOrUqaLJyKMQBIH//M//ZNu2bYSFhYmOXNOmTbMSWr1ez7/8y79w6NAhceC9t7c3QUFBuLq64u7uTmhoqOg7/ixCbblIs5zYPT09xdnOTxL6HGg0MmHCBL7++mtSU1NZsWKFlcD19/ezc+dO5HI57777LqdOneL+/ftkZ2eL/eKAaENryQs7OjpSU1PDiRMnUKlUTJo0iVmzZo1oePb+/fvs27dPDKEPRCaT8emnn5KWliamW1QqFW5uboSGhpKZmcnEiRMHVdCbTCZ27dqFTCbjBz/4wZAV9k97/Dc3N1NQUIDRaGTq1KmiV/bDyGQyAgMDn5tnuiTKowylUskXX3zBnj17uHz5MgAJCQm88847rF27ltjY2Be+ptEoysMVY7PZzP3797l58yZ6vZ7U1FSxgOjBgwe0t7cPGiNnZ2c35IdCEAQaGxu5efMmd+/eBWDMmDFkZWU9NixqNBppbW0VRbipqQmdTmflYW3JB4/Eh3A0iPKjsEznGkqwNRoNKpVKzIu++eabhIWF4e/vj5+fn1hoNjBcbzQa+b//9/+KoWwfHx/MZjMZGRnk5OSIu0mDwcAf//hHjh07RkhICDExMeh0OoKDg4mIiKC3t5fW1laxctci1APF+kmFuqOjg8LCQsrLy7G3tycrK4vJkycP+3EGGo2kp6dz+fJlMjMzWbJkidhvvnPnTu7fv8/EiRO5fPkyZWVlpKWlWbW7DeUHP/D9u3r1KhcvXsTZ2Zn58+cPq/1vuBQVFXHq1CmWLl1KZmam+Jz//d//TXV1NUajkY6ODvz8/Bg3bhxTpkwRQ9QPIwgCx44d4/bt26xfv/6Rg3me9Pg3GAxcu3aNO3fuEBYWxqxZs4Z8v1pbWykuLqa1tZUFCxY8t5C2JMqjmJaWFvbs2cPevXu5desWNjY2TJo0icLCwhe6jtEkylqtlqtXr1JbW4uHh4dYTf2wGAuCQFNTE9euXRPn81qKgBQKBfb29kRERAxpnv/wh6Kvr4/bt29TXFyMXC7Hz89PzBUP1Vai0+loamoSRbilpQWTyYSjoyMRERGiCIeFhT0Xl6HRLMqPw2g0olaruXXrFmfOnCE1NZXk5GS6urrQ6XTAN21V3t7eVkLt4uLC1q1bqaqqYunSpcTHx3P9+nX6+/tFcfby8sJoNLJt2zaOHDlCQkICc+fOpbq6GrVaTUpKihiqtJiwWELgFqH28PAQBfpJhFqtVouznY1GozjbeTjVyQONRhISEqisrCQ7OxsvLy/27NlDdXU1Y8eOpb+/n/b2dpYtW8aSJUvw9fV9ImHt7u7m9OnT4mSmxYsXj8jsaUEQOHnyJDdv3mTdunVERUXx4Ycf8sUXX4ipmdmzZ5OTk2MVoh6KK1eukJ+fz4oVKxg/fvwj7/ckx79MJqOgoACtVsukSZMYO3bsoDUMFGN/f38yMzNHvDZhIJIovwKUl5fzT//0Txw9evSVmqf8PERBr9dz/Phx0TpvqHxdZ2cnhYWFVFdXY2tri5ubG4Ig4OTkZDXK7lE9uJaRjJZpNXfu3BGtIbOysgbN4lWr1WIYuqGhgY6ODgRBwN3dncjISFGEg4KCnlvIayCvqihb0Ol0lJeX09zczOTJk1m8eDF9fX3iNK2B/yqVSsxmMz09PRQVFaHX65k6dSqLFi2io6OD6upq7OzsyMzMZPr06Xh4eLBv3z4OHDhAeHg4f/Znf4ZOp+Py5csolUqSk5OZOXOm2IdqyfdbBPpxQm0R60cJtU6nE2c7q9VqEhISmDZt2ree4Acajfj6+tLZ2cm9e/cwGo2sWrWKiIgI8vPzyc7OZtGiRc/03tfW1orDQ7Kzs5k1a9YzH0Nms5ndu3dz7tw55HI5d+7cISkpiR/96EfMnDlzWH7llZWV7N+/nxkzZjzWtxuGd/wbjUaKi4u5ffs2gYGBzJo1yypVNNBB7UWJsQVJlEcpjY2N4i65oqICQRCYOnUq69at44MPPnihaxlNogzffGCG+mCoVCry8vK4deuW6HsbGhoqVqiGhIR8a9GNXq+noqKCsrIyvLy8CAwMJDMzk/T0dNEOsrOz00qEVSoVAH5+flYibLG1fNF8F0RZo9Hg6elJXl4eU6ZMITc395H+3UqlUnRq27t3L2q1mrCwMBISEhAEgZaWFjo7O3FwcCA1NZVp06ZRVVXFmTNnCA4O5r333iMjI4Py8nIuXryIQqEgMTGRGTNmDFlT8LBQW8R6oFAP3E0/LNQmk4mKigquXLlCR0cHYWFhTJ06lTFjxjzyok0QBIqKisjLy8PW1haTycS6devw8/Pj008/JTQ0lHXr1o3IRZ/RaKSoqIgLFy7g5OTE/PnzSUtLe+pWvhMnTrB3716Ki4vp7+/ntdde4//+3/877AIqS9FYUlISb7755jMXOnZ2dlJQUIBKpRI9Ayzvm0WMi4uLaWtre6FibOG7KMqvrKNXZ2enmE++evWquDv71a9+xbp1615oWf5o5uFCl9raWgoKCqioqAC+ycFnZ2cTFxc3rGplizNXZWUltbW19Pf3ExgYyJo1a0hOTkYmk1FWViYKsWX8nWW0Y1RUFBERESM+8u/7Tnp6Ovb29pw4cUJ0/noYOzs70X0sOTmZ8PBwDh48iI2NDTExMcyaNQuVSoVMJuPGjRuUlpZy6dIlAgICsLGxoaioiDt37jBnzhxmzZrFzJkz6ezspLy8nC1bthAXF8fMmTOthlJYQuiWFjn4H6EeuJu+du0afX19wGChjouLIy0tjdraWq5cucKXX36Jj4+PONv54bSGjY0NU6ZMISAggFOnTjFv3jwiIiLYsmULrq6uvPXWWyMWhbG3tycnJ4dx48aRl5fH4cOHKS4uZvHixcOu0lar1Zw6dYqDBw/S3t5OYmIi77zzDkVFRcTFxQ3bKa67u5s9e/YQFBTE66+//kzCaDabxTSUt7c3y5cvFyeBWS7eSkpKaGtrIyAggIULFw67g0Li8bxSO2WtVsvhw4fZs2ePaHYQEhLC6tWrR0XlNYy+nbKlYtoy3q6lpQVnZ2eysrKYM2fOkK1LQ6HX66mpqaGyspKuri48PDzEQQYymQwfHx/kcjkGgwEHBwfCw8PFqujw8PAXYiTwNHxXdsqWnYIllzh37lymT5/+2N8VBIEDBw6IloxpaWm8/fbboggYDAZu3LjBmTNnkMvl4oQkQPSAtrW1RRAE0VnMYDAQHx/PnDlzGD9+PN7e3k/U6jZQqFtbWwcJtcWRzHJMu7i4iJXkj7LCtLhnNTc384Mf/AA/P78neIefjLq6Ok6cOEFXVxfZ2dnMnj17yOPKUsdx9uxZTp8+jVwuJykpifXr1+Pv78+uXbvIzs7m1q1bxMXFsXLlysdeSDypEYmFoY5/lUpFQUEBHR0dpKenk5GRgb29vSjGxcXFyGQy0VvgZYqxtFN+yQQGBqLT6XB3d2ft2rVij/KLyD2+iqhUKvbv349KpUKtVuPs7MzSpUuZPn36sD60giAgl8vFMYqW6TnBwcEYjUZu375Nf3+/aBowe/ZsIiMjhxX6lng+TJs2DYPBwNmzZ3FwcGDy5MmPvK+NjQ2vv/46XV1dNDc3c+/ePb744gtRmB0cHJg6dSrZ2dmUlJRw6dIlzGYzHR0dmEwmIiMjmT17Nj09PeJ0qzt37nD79m0uXryIl5cXcXFxxMfHizv0gUVnAy/UBu6oLVOPBgq1RayLiopEoba3t6erq4vdu3dz9OhRcVjFw3nX/Px86urqxBD28yQ2NpYPPvhADGlXVFQwf/58xo8fj42NjegZf+nSJa5du4ZSqSQuLo6f/OQnTJo0if7+fj766CNiY2NZtGgR8fHx7N27lzNnzpCbmzvkc5rNZg4ePIhKpeK999576ijUwCESbm5uLFu2jODgYNEu1yLGgYGBLFq0iIiICGln/Bx4pUR53rx5rFu3jmXLlr2Su5oXjeVixc3NjXHjxjFp0qRhnZT6+/uprq6mtLSUhoYGTCYTLi4uODs709vbi729PcHBwaSkpIjDQGbOnPmduVJ91Zk5cyYGg4FTp07h4OAgttcMhaOjI2vWrOFPf/oTZrOZmpoaK2GGb8QvOzubjIwMSkpK2Lp1K6WlpWJ1/gcffGBV4WsymSgpKeH06dOi5Wp4eLjoOW7B3d3dSqQtX3t7e2Nra/tIoVapVFa76YaGBurq6vjTn/7Eli1bSEpKYvr06aSnp6NQKLh69SqLFy9+osEPz4KdnR3Tpk0TQ9pHjhzh8uXLBAUFUVNTQ1VVFb29vURERPCDH/yAKVOmiG1NJ0+epL+/Xww/JyYmsnDhQk6ePImvr++QU6Xy8vKoqalh7dq1TzS7fCA9PT2cOXOGlpYWxo4dy6RJk7C3t6e5uZmbN2/S3t4uifEL4pUS5aNHj77sJbxSuLi4EBERQVpa2rcaw5vNZqqrq7l+/TqVlZV0d3fj6upKQEAAiYmJhISEiDOEB16JW8JHEqMHGxsb5s2bh8Fg4Pjx42Jo+lF4eXmxevVqtm3bRlBQELW1tYOEGazF+bPPPmP//v18+eWXVFRU8Ld/+7ekpqYC34jSxIkTycrKora2lgsXLtDU1ERoaCi5ubn4+fmhUCjE3XVLS4s4RMPy+76+vkMKtouLCz4+Pvj4+AwS6oaGBgoLC7l69Sp//OMfcXNzIyIigvnz5zNx4sTn+I4PjYeHB5MmTaK9vZ2vv/6arq4uvL29SU1N5e2332bGjBlWIffKykpu377NihUrxNGlAJMmTUKhUHDixAm8vb2Jj48Xf2bxFF+yZInV94eLZSJbeXk5Li4uLFmyhLCwMFpaWkQxDgoKYvHixU/tRS/xZLxSoizxZDg4OAw53g0QjQiampooKyvj3r17aDQanJycSEhIYMGCBcTExBAUFDRq88ESj8bGxoZFixZhMBg4cuQI9vb2oogNRUREBEuXLuXIkSOkpqYOCmUPxN7enh/96EckJyezbds26urq+MlPfsLy5ct56623xBYpGxsb4uPjiYuL48GDB1y4cIFDhw6J9qCzZs0ST/KCIKBWq61auCxFZN3d3eJzu7m5iUI9ULC9vb1JT08nPT2dDz74gHv37olh69u3b9PV1UVUVJRYaPg8j2lLiPr69eu0tLRgNpsZM2YMXV1dGAwGMQU0MLLU09PDsWPHGDNmzJAXUAsWLECpVPLll1+yefNmcdd98uRJJk+e/FQXHVqtlgMHDnD16lVSUlKYOXMmcrmco0ePSmL8EpFE+XuCTqdDJpOJt8bGRmQyGWq1WvTNzczMJC0t7YUP8ZB4PtjY2LB06VKMRiMHDx7E3t6exMTER94/PT2d9vZ2ioqKyMnJ4erVq48UZvgmTO7k5MRXX33F/4+9+w6L6kr/AP4dYOi99967oogoUlRAxd67JjGmmU3ZzZpN02QTN23X7G5i1BgsibElamxgAbECIhhFpHek9w7D3N8f/uauIzMw1Bng/TzPPMncNmeOw7xzzj3nPUVFRYiKikJ6ejqmTJmCwMBAmJmZseWwsbGBjY0NCgoKEBcXh2PHjsHAwADTpk2Dg4MD+Hw+uFwuTExMuq2/K8g/XV1dzf63oKAAKSkpQmlIdXR0oKurCz09Pejq6iIsLAydnZ0oLy9HSUkJ4uPjERMTAw6HAyMjI3Yw4kBnAygoKEBRURGNjY24c+cO7t69i+bmZujq6kJFRQWtra3w8PDAzJkzoampiUuXLuH06dPsKG0TExOcPXsWHA4HERERIgOgnJwclixZgh9//BGHDx/G/Pnzcfz4cTg4OIi919yTR48e4ezZs+jo6EBAQAC0tbURFRVFwVgGjKjR1yOBLI2+FiwoUVZWhtraWnR1daGtrQ1tbW3g8/kwMDDA+PHj4eLi0u8vpZE++nG0jb4WpaurC8ePH2fvO/aUfvbpkcrTp09HdHQ0O/pX3NScO3fu4MyZM+jo6GBve2hoaMDBwUHsmrpFRUW4du0a20Pj6OgIa2vrPg3aFKQhbWxsRH19PRobG9HQ0ID6+nq0tLTg2a82OTk58Hg8tLa2sstDdnR0QE5ODioqKuz9a11dXaipqUFBQQHy8vKQk5ODvLy8yIecnBw6OjrA5/NRUFAARUVF2Nraoq2tDY8fP4axsTFCQ0Ph6Ogo9N7y8/Nx/vx5VFZWQkdHB+Xl5Vi7di2cnZ17fM8NDQ349ttvkZKSgmnTpuHFF1/s04/otrY2XLhwAX/88QecnJxga2uLw4cPo7GxEWZmZpgwYQLMzMxGTDAe6d8/olBLeRTjcrkoLy9n71vV1NRAXV0dzs7OcHV1haWlJY1cHwPk5eWxZMkSHDlyBL/88gvWrl0rNJf4aYIW2Q8//ICEhAQsXLgQJ0+exPHjx8UG5okTJ0JBQQGnT5+GiooKurq6YGJigtraWrHzly0sLLB69Wrk5ORg7969SEhIQEZGBry8vESu5S2OpqamyPnAgjSkDQ0N4PF46OrqYh9PP29ubmZb4DU1NcjLy0N2dja4XC7U1dWhrq4ONTU1KCoqgs/nC12nrq4O5eXlaG5uhrGxMUxMTNDe3o7bt29DUVER1tbW4HK5OHLkCDgcDrhcLhQUFNiHnJwc6urqcPz4cWhra0NVVRX29vbdjnv6AQDl5eV4/Pgx6urqkJubCyUlJbHHCx4cDgc5OTk4ffo02traMH78eJSVleH333+HnJwcwsPDe03dSYYHtZQHmSy1lBsaGhATE4Py8nKoqqrCyckJzs7O7MIDg2Gk/1IdCy1lgc7OTvz8888oLS3F+vXrYWpqKvbY6upq7N27F+bm5vD19cWxY8d6bTHfv38fJ0+ehKKiItra2uDu7g5HR0c2G5etrS0CAwOFFkcQ1H9HRwfS0tKQm5sLdXV1jBs3Do6OjhInzhgsbW1tKC8vR1lZGUpLS1FVVYWuri4oKSnByMgI2traaGhoQElJCdra2mBgYAAjIyOYmpri3r17AIDx48fD3d2dnQIl7tHZ2YmLFy+iqqoK+vr6KCoqgpaWFtzc3KChoSHy+D/++AOVlZWwsrJCXl4ezM3Nex3g1dXVhfz8fDx+/BjKysrsv4++vj7s7e1RV1cHdXV1KCsrs70D8vLyYv+/r9vk5eUp93UfUEt5FFNVVYWqqipmzpwJKysrmjs8xnG5XKxcuRI//fQTDh06hA0bNohdSEFPTw9Lly7Fzz//DENDQ6xYsQJHjhzpscXs6ekJeXl5/Prrr9DS0sKjR4/Q3NyMjRs3Ii8vD3FxcYiMjIS1tTUCAwOFsu7p6elh5syZqKmpQUpKCm7cuIHk5GR4e3vD2dl52IKzsrIyOyAMeNLiLi8vR3p6OrvSGsMwMDQ0hIuLC7tylL29PYKCghAQECBxcEhISICWlha2bNkCW1tbFBYW4ty5c6ioqGAXAXn6WoKEScuWLYO9vT1u376NCxcuICAgAJ6eniIDf3FxMbvErampKeTl5WFgYAB3d3fo6+ujpaUF9+/fZ7OitbW1CfUGPNuzwOPxut0W6M3s2bNhYWHRp3PGMmopDzJZaikPh5H+S3Us1n9bWxsOHDiAhoYGbNy4kU2fKEpCQgIuXLiABQsWQF1dHUeOHIGdnR2WLVsm9kdeRkYGjh07Bm1tbTQ2NkJbWxurV6+GpqYmMjIyEBcXh9LSUlhZWcHX1xeFhYXQ1NQUqv+6ujqkpKQgOzsbysrK8PLygouLy5CsFCYOj8dDXl4eUlNTUVFRAS0tLbi4uEBXVxdpaWmIj49HaWkpVFRU4OvrCwcHBzaXu6WlZY/jNKqqqvD999/Dx8dHaGEMPp+PO3fuIDY2FhwOB9OnT8f48eNx//59nDp1CqGhofD392ePj4qKQkJCAlatWgUHBwehsl+9ehWnT59GfX09jI2N4eLigqCgIKFFYvrz+efz+d0CdU+B3MzMTGy2tYEa6d8/olBQHmQUlEeWsVr/LS0t2L9/P9ra2rBx40bo6OiIPO7pdXk3bNiA9vZ2iQJzdnY2jhw5Al1dXbS2toLD4WD16tUwMjICwzDIysrC1atXUVBQgJaWFvj5+cHOzq5bN2d9fT1SUlKQlZUFJSUleHp6wtXVdUhnCDQ3N+PRo0d49OgRWlpaYG5uDnd3d1haWrKj08vLy2Fubg5PT0+0t7fD3NwcFRUVKCwsRG1tLYAnrX9BkLaysmJTjvL5fOzbtw9tbW146aWXRP7QECTzuHfvHhQVFVFTU4PAwMBuo7P5fD6OHj2KvLw8PPfcczA2NkZZWRm+//57JCcnQ09PD1OnTkVISEi3FduAsfv5l2UUlAcZBeWRZSzXf1NTEyIjI9HV1YWNGzcKJax4WldXFw4cOICamhps2rQJlZWVEgXm3Nxc/PLLL9DT0wOPx0NjYyNWrFgBGxsbAE8C/oMHD/Djjz+yq1WNHz9eZMaoxsZG3Lt3DxkZGVBQUICnpyfc3NwGdb5xeXk5UlNTkZeXBzk5OTg6OsLNzQ06Ojqoq6tDQkIC8vPzoaenBz8/P5ibm4usf8HypII1wsvLywE8SSZiZWWF6upqZGdn4/XXX++1W/f+/fv46KOPAADr1q1DaGhot1ZnR0cHIiMj0djYCC0tLZw5cwZdXV0IDQ3F/Pnze1ycZyx//mUVBeVBRkF5ZBnr9V9fX4/IyEjIy8tj48aNYrtcm5ubsWfPHqiqqmLjxo0oLCzEL7/8Ant7+x4Dc0FBAX7++Wfo6emBy+WipKQECxYsgIeHB4An9R8XF4fGxkY8ePAA5eXl7FQ9UUsANjU14d69e0hPT4eCggLc3d3h7u7e73+7rq4u5Obmsl3Umpqa7AA1JSUldlphRkYG1NTUMHHiRNjb27PlkqT+W1tbUVRUhIKCAty/fx/nzp2Dubk5OwNC0JIW3PMVaGlpwb59+wA8mUN+8+ZNAMD06dPh4+MjtIRiTEwM3nnnHTQ2NiIiIgKvvPKKRBm+xvrnXxZRUB5kFJRHFqp/oLa2Fj/++CNUVFSwYcMGsdcpKyvDjz/+CAcHByxZsoTtou4tMBcXF+Onn36Cjo4OtLS0kJ6ejpkzZ8Lf3x+tra1s/SspKQktCainpwcfHx+R3a7Nzc24f/8+0tLSICcnBzc3N3h6ekr8b9jS0oK0tLRuXdQWFhbs3OP79+/jjz/+gLy8PMaPHw9XV9duA876Uv88Hg979uwBwzAIDw9HcXExCgsLUVRUhI6ODigoKLAJTczNzREXF4fa2lq88MIL0NXVRXNzMy5fvoyUlBSYmJhg1qxZaGpqwsGDB5GYmAgdHR3o6+sjKCgIy5cvl2i6I33+ZQ+NviZkjNPR0cH69esRGRmJQ4cOYf369SK/oI2NjbFw4UIcPXoUhoaGCAwMZEdlCzJ/iQrM5ubmWL9+PQ4ePAiGYeDr64tLly6hoaFBaHlJDocDc3NzmJub4/Hjx0hOTsbFixehp6eH8ePHw8bGhg3OampqmDx5Mry9vfHHH38gNTUVDx48YIOzuC/oiooKpKamIjc3FxwOB05OTmwXNfCk5Zyamork5GR0dHTAw8MD3t7eg9JNHhsbi+rqarz44oswMjJiF8jg8/koKytju7vv3LmDPXv2oKKiAqGhoUhMTGTvTc+fP5/NPb5p0ybU1dXBwMAAa9euxerVq1FQUIDDhw/j4sWLCA8PH3CZyfCjoEwIgb6+PtatW4f9+/fj559/xtq1a0UOpnJxcUFwcDBiY2NhYGAAV1fXbtOlRAVmExMTbNiwAQcPHkR+fj5CQkIQGxuLqqoqkYPMBGsnl5aW4u7du7h06RJ0dXUxbtw42Nrasq1AFRUV+Pn5wdvbGw8ePEBqaipSU1Ph6uoKLy8vqKmpoaurix1FXV5eDk1NTfj6+sLJyYkNtgzDIDc3F3fu3EFDQwMcHR0xYcKEAaXffFphYSFu3bqF6dOnd5uGJicnx77fyZMn49q1a6iqqsKCBQugqKiI9PR0xMfHg2EY8Hg8Njd4W1sb1NTU4OLiwrbiHRwcMHv2bJw7dw66urrw9fUdlPKT4UNBmRACADAyMsKaNWtw8OBB/PLLL1i1apXIkcHTpk1DRUUFTp48CV1dXTg4OEgUmI2MjNjAfP/+fURERODMmTOor6/H3LlzRbbOTUxMEBERgbKyMiQnJ+PKlStITk7G+PHjhYKzsrIyJk6cCA8PDzYwp6WlwdraGqWlpWhpaYGZmRnCwsK6ZbJ7/PgxEhISUFFRAUtLS8ycOXNQ113u6OjAyZMnYW5uLjSdSZSHDx8iJiYGc+bMQVBQEIAnPxgSExNx5swZZGVloby8HO3t7bCysoK7uzuam5uxb98+XL16FStWrMDEiRNRU1ODCxcuQFtbu8d850T2UI5FQgjLzMwMq1evRnFxMY4ePQoej9ftGA6HgwULFkBfXx+//PILmpub2cCclZWF48ePo6urS+T1DQwMsHHjRnR2duLmzZuYN28eGhoacPbs2R6XADU2Nsbs2bOxYMECaGho4MqVKzh27BgyMzPB5/PZ45SVlTFhwgSsWrUKPj4+qK6uhrW1NZYuXYqIiAih/No1NTWIiorCmTNnwDAMIiIiMGvWrEENyMCT9Y6bmpqwcOHCHu/zFhcX4+TJk/Dw8EBgYCAYhsHDhw+xa9cuXLhwARoaGrC3t8ecOXOwa9cufPzxx/Dz84O9vT00NTVx48YNPP/883jzzTcBPJmSdezYMZSVlQ3q+yFDiwZ6DTIa6DWyUP2Llpubi8OHD7ODukS1fOvr67F3717o6upi/fr1kJeXR1ZWFo4cOQIHBwexLWbgSXKQAwcOoL29Hfr6+vjjjz/Y5SZ7SmYiUFlZibt376KgoABaWlrw9vaGg4ODRFnrmpqakJSUhMzMTGhoaGDixIki50hLorf6z87Oxk8//YQ5c+b0uLxiXV0dfvjhB+jo6GDdunXIzMxEXFwc23rv6upCSUkJnJ2dERER0a1bvaOjA8XFxbh06RJiYmJQW1sLMzMzVFdXQ01NDatXr4aLiwssLCyEbkvQ51/2UEv5KTt27MDEiROhoaEBQ0NDLFiwABkZGdIuFiHDztbWFsuWLUNmZiZOnTol1BoV0NLSwooVK1BSUoJz586BYRiJW8za2trYsGED5OXlER8fj2nTpkFNTQ2///47iouLey2fgYEBwsPDsXjxYujq6rLLQaanp4t9zfb2diQkJODIkSMoKCiAv78/m7JyKHIzt7a24vTp07C3t8eECRPEHtfe3o7Dhw9DQUEBHh4e2Lt3L44fPw4NDQ3MmDED9fX17D3m5cuXi7zPLVidavPmzYiMjMSrr74KXV1dWFtbo729HT/++CP279+Pf/zjH9izZw+io6PZNKhEtlBQfkpcXBxeffVVxMfH49KlS+js7ERoaCh9cMmY5OjoiMWLFyM1NRVnz54VmfPY3Nwc8+bNQ3JyMhISEgAADg4OWL58ea+BWUtLC2vWrAGXy0VMTAymTJkCExMTXLhwAZmZmRKVUV9fH6GhoVi8eDH09fURFxeHo0ePIi0tje165/F4uH//Pn755RekpqbCy8sLK1euhLu7+5Dmgz9//jw6Ozsxb948sUFfkJErMzMTbW1tOH/+PDQ1NbFu3Tro6enh8uXL0NXVxSuvvAJvb2+Jfjyoqqpi/vz5ePvtt+Hp6QlbW1uoqKhAT08P4eHh0NfXR1paGo4ePYqdO3fi999/x40bN5CZmYnGxsY+57Ymg4sGej0lKipK6Pn+/fthaGiIu3fvYtq0aVIqFSHS4+rqyi7fqKCggFmzZnULDF5eXigvL0d0dDQMDAxgZ2cHR0dHLF++HEePHu1x8JeGhgZmzpyJGzduICoqCrNmzYKqqipiY2PR3NwscSDS19dnF7RITk5mF7RwcnJCVlYWmpqa4OzsDB8fnyHLw/y0hw8f4sGDB1i0aJHYVdn4fD6+//57nD9/HnZ2djA3N2cHd508eRL19fWYNWsWfH19+9WSNzU1xfPPP4+UlBQcOXIEZ8+eRVdXF9544w3Iy8ujvr4e6enpiIqKQnl5OXJycgA8mW5mYmLCLkepo6NDSzoOIwrKPaivrwcA6Orqij2mvb0d7e3t7POmpqYhLxchw8nT0xOdnZ04c+YMuFwuZsyY0e1LesaMGaisrMTx48exadMm6OnpCQXmEydOiL03raysjFmzZiEmJgbnz5/H7NmzoaamhsTERDQ1NWHKlCkSr/utq6uLGTNmoLa2FsnJyUhJSYGlpSVmzZolNr/3YGtqasK5c+fg6urKZi57Gp/Px8OHD3HgwAEkJSVhxowZ2LBhA0xMTHD16lXcuHEDpqamWLlypUT313vC4XAwfvx4uLi4YPfu3Th16hTKysrw6quvwtraGh4eHqitrYWGhgaAJwliBMtW5ubmgs/nQ0lJCcbGxmyQ1tfXpxXnhhAFZTH4fD7eeOMNTJkyBe7u7mKP27FjB7Zv3z6MJSNk+Pn4+KCzsxNRUVFQVFREYGCg0H45OTksXrwYP/zwAw4fPoxNmzZBWVm5T4F5zpw5uHDhAs6dO4dZs2ZBXV0d169fR3NzM2bMmNGn5Rt1dHQwffp0BAcHSxzQBwPDMPj9998hJycncvGIhw8fIi4uDhkZGXj8+DFefPFFrFq1CuXl5di7dy8qKioQHByMqVOnDmq5VVRU8MYbb8DIyAhHjhzBV199haCgIEydOpU9RllZGdbW1myu7M7OTnZt6bKyMty9exc8Hg8KCgowMjJiA7WRkdGwrt412tHoazFefvllXLhwATdu3IC5ubnY455tKd+7dw+BgYE0+nqEoPrvm+vXr+PKlSvdlhAUqK6uxg8//AAzMzOsWrWKDSyZmZk4evQoHB0dhQLzs/Xf0dGBqKgoVFVVITw8HDweD5cuXYKenh7CwsKgoqIy5O+xL56t/+TkZPz+++9YuXIlnJycADwJxqmpqWxSEENDQxQWFsLb2xtLlixBfHw8YmNjoaenh4ULF8LExGTIyiu4h33z5k3o6OhAQUEB6urqmDhxYq/d+l1dXaiqqmJb0mVlZWhvb4ecnBz09fXZlrSxsfGw/S2N9O8fUailLMJrr72Gs2fP4tq1az0GZABQUlISSsE3WBmACJFFAQEB6OzsxMWLF8HlcrtN89HT08PSpUvx008/4dKlSwgLCwMAiVvMioqKmDVrFqKjo3HhwgWEhYVh3rx5uHDhAk6fPo1Zs2aJXc1K2urq6hAVFYVx48bBycmJDcZxcXGorq6Go6MjZs6ciXPnzsHGxgZBQUE4cOAAiouL4e/vj+Dg4D71BvSHoEejsbERNTU1sLCwQFRUFEpKShAYGNjj9528vDyMjIxgZGQELy8vMAyD2tpaoe7u+/fvA3jSUyEI0hYWFiPyB6+00OjrpzAMg9deew0nT55ETEwMu8QcIeR/goODMXnyZJw7dw4pKSnd9tva2iIsLAy3b98W2i8IzJmZmThx4oTYUdlcLhfh4eEwNTVFVFQUWltbsWDBAgDA6dOnUVFRMSTvayAYhsGpU6egqqqK0NBQ/PHHH/j222/x22+/QV9fHy+++CKWLl2KuLg4MAwDR0dH7Nu3D83Nzdi4cSNmzpw55AFZQFFREatWrYKSkhKqq6sxY8YMKCkp4dy5c7h8+bLE42I4HA50dXXh6uqK6dOnY/Xq1Vi1ahVCQkLYdZ1jYmJQVVU1xO9odKGW8lNeffVVHD58GKdPn4aGhgabCUdLS0vmus0IkRYOh4PQ0FB0dnbi999/B5fL7TbuwtfXFxUVFTh79iz09PRgaWkJoHuLefbs2SJfQ0FBATNnzsSVK1dw8eJFzJgxAwsWLGAzcM2cOZO9pixITExEXl4eJk2ahL1796KmpgZOTk5YvHgxTE1NwTAMjh07hqKiIhgaGiIuLg4TJ07EzJkzReYYH2rq6upYvXo1du3aheLiYkRERKCkpAQJCQk4evQofHx84OHh0ecBXRoaGtDQ0ICDgwOAJ93Lw/VjY7SglvJTdu3ahfr6egQFBcHExIR9HD16VNpFI0SmcDgczJkzB56envjtt9+Qnp7ebf/s2bNhbm6Oo0ePsjMZAOEW88mTJ8W2mBUUFDBjxgxYW1vj0qVLbPAwNzdHdHR0t9eUlpqaGhw5cgQVFRVITEyEoaEhNm/ejJUrV8LU1BQAcPnyZcTFxaGlpQUdHR1Ys2YN5syZI5WALGBoaIhFixahtLQUiYmJcHBwwLJly+Di4oI7d+7g+PHjEiVy6YmysjIF5T6ioPwUhmFEPjZs2CDtohEiczgcDubPnw8XFxccP34c2dnZQvvl5eWxbNkycLlc/PLLL+jo6GD3CQJzdnY2bty4ITYwy8vLIyQkBHZ2doiJiUFubi5mzpwJFxcXxMXFISkpSWrJLvh8PtLT07F7927k5+djypQp2Lx5M1asWCE0WOvmzZvYvXs32tvbMWXKFLzyyiuwt7eXSpmfZWdnB19fX6SlpSE1NRVKSkrw9/fHokWLoKqqinPnzrG5u8nwoKBMCOk3OTk5LFq0CHZ2djhy5Ajy8/OF9qupqWHlypWoqanBqVOnhAKoo6MjFi1ahJKSEly9elVsYJaTk0NQUBCcnJxw9epVZGZmYsqUKfD19cXdu3cRFxcn9tyh0NXVhfT0dBw9ehS//vor+Hw+tm3bhjVr1nQbOX3lyhVs374dGhoaeOutt7Bo0SKZuxXm4OAAT09P3L59m/3309PTw9y5cxESEoLy8nIcPXoUKSkpIhcoIYOLgjIhZEAELWJLS0scPny4W5enkZERFi1ahLS0NMTFxQntc3R0xLRp01BUVIQrV670GJinTZsGV1dXxMXF4eHDhxg3bhyCg4ORlZWFixcvorOzc8jeI/C/YHzs2DHExcWBy+VCW1sbERER8PLyEjq2ra0NBw8exI4dO2Bvb4+dO3fCzc1tSMs3EBMmTIC1tTWuXLmCyspKAE96QgQpU11dXZGUlIQTJ06gqKhIyqUd3SgoE0IGTEFBAStWrICxsTF++uknlJaWCu13dnZGSEgIrl69irS0NKF95ubmCAkJQWFhIWJiYsQGZg6HgylTpsDT0xM3b97E/fv34ejoiFmzZqGsrAxnzpxBS0vLoL+3Z4Oxnp4eFixYAD6fDzMzs26D3PLy8vDNN9/g+PHjmDBhAr7++muZncYlwOFwEBISAl1dXURHRwt1VysqKmLy5MlYvHgx1NTUcO7cOZw9exalpaWora1FRUUFSkpKkJ+fj+zsbKSnp+PBgwdsPvSnxxOQ3tEdeELIoFBUVMTq1atx8OBBHDp0CBs2bIChoSG7PyAgABUVFTh58iR0dXVhbGzM7rO0tMSMGTNw+fJlxMTEICQkROTIXw6HAz8/P8jLy+P27dvo6urCuHHjMHfuXERFRbFzmbW1tQf8frq6upCVlYXk5GQ0NjbC1tYWoaGh0NPTQ3x8PBoaGjBnzhy2nJ2dnbh8+TJu376N4uJiTJw4EVu2bJFadzWfz0dnZyc6OjrEPhoaGpCamgpFRUVwOByoqanhjz/+wNdffw1PT08wDIPOzk50dnaCx+Ohs7MTtbW1ePDgAc6cOQMTExMYGRl1yz7G5XLZh6Wlpcz/KJElFJQJIYNGSUkJa9aswf79+3Hw4EFs3LgRenp6AP43MCwyMhK//PILNm3aJPRlbm1tLXFg9vX1hby8PBITE9HV1QUfHx/Mnz8f58+fx+nTpxEWFiYU9Puiq6sLmZmZSElJYYNxWFgY+z4eP36M+/fvY9KkSdDR0UFjYyNKSkoQFRWFuro6qKqqwsbGBhs2bJAo3/bTga+nACp4SHqcJPd/GYZBcXEx1NXVoaKiAi6XC2dnZ/zxxx/Izs7GxIkToaSkBC6XCwUFBTbQAk+ytGVlZYHL5cLPzw+2trbscbSARf9RUCaEDCoVFRWsW7cOkZGRbGAWtFy5XC5WrFiBPXv24OjRo1i6dKnQuZIGZuBJPm55eXkkJCSAx+Nh0qRJmD9/PqKjo3H27Fl2OpWkng7GTU1N3YIxwzBobW3F5cuXoaOjA3Nzc5SVlSEhIQGnT5+GoaEhtLW1kZqaiqlTp7LduJIE2d5GkMvJyUFRUVHkQ0VFBVpaWmL3Cx5cLrfbtra2NpFpZqdOnYoLFy5AQUEBfn5+IoOso6MjamtrcfPmTdy8eZPNTCZuVSwiGcp9PciSk5Ph4+NDua9HCKr/odPY2IjIyEgwDIONGzcKfVkXFxdj//79cHR0hIaGBjQ1NYXqPz8/H5cvX4aVlVWPgRkAUlNTcfPmTbi7u8Pf3x9dXV2IjY1FXl4e/P39YW5uzna9Pv0QbGtvb0deXh6ysrLQ0tICfX19mJubQ1FRsduxeXl5qKmpgaurK/h8PnJyctDc3AxPT0+oq6vj0aNHcHBwgJOTk0RBUdIAKi8vPyStz54+/48ePcK1a9cwefJkeHp6ir0GwzDIzc3F7du30dbWBm9vb3h7ew/L/GRZ/vz3F7WUCSFDQkNDo1uLWbDogbm5OebOnYtjx45BX18fvr6+Quf2pcXs7u4OOTk5XL9+HXw+H1OnTsX06dNx+/Zt3Lx5U2z5OBwO6urqUF5eDh6PB2NjY3h7e7MLNTx9X1RBQQHV1dWorKxEUFAQOBwOUlNT4eXlhXHjxmHixIn4/fffMWPGDCxatGhUdN+6uLigoaEB8fHx0NTUFNvrwOFwYGdnB0tLSyQnJ+PevXvIysrC5MmT+9RTQZ6goEwIGTLa2tpsYD506BDWr1/PDnzy8vJCYWEhjh07BlNT024JNfoSmF1dXSEvL8/OWZ42bRr8/f1hb28PPp/PBlbB/c68vDz88ccfAIDx48fDx8enx/u/bW1tOH78OJycnNDa2ory8nJMnjwZ7u7uqKiowPnz52FhYYH58+ePioAs4Ovri4aGBly5cgXz5s2DgYGB2GO5XC4mTZoEJycn3Lx5E9HR0bCysqIu7T6iKVGEkCGlp6eHdevWoaGhAT/99JPQUqfBwcEwNTVFbGws6urqup0rCMwFBQWIjY3tMUmIk5MTQkJCkJWVhZiYGPD5fBgZGcHExAT6+vpQV1dHQUEBTp48iVu3bsHY2BhLly7FjBkzeh2Qdf36dTx+/BiVlZVoaWnB3Llz4efnh66uLly9ehVKSkpYsWLFqEspyeFwEBwcDD09PURFRUmU2UtbWxuzZ89GaGgoampqhDK5kd5RUCaEDDlDQ0OsXbsW1dXV+Pnnn9kvajk5OUyZMgWqqqqIiopCW1tbt3MFgTk/P7/XwGxvb4/p06cjLy+PTUbC4/GQmpqKI0eO4ObNmzAxMcHSpUsxffp0iUZH379/H9HR0eDz+XBzc8OSJUtgYmLC3rtubW3FsmXLRs09zWcpKCggNDQU8vLyuHDhgkRBlsPhwMbGBitWrIC+vv4wlHL0oKBMCBkWJiYmWLNmDcrKynDkyBF2yo6ioiJmzpyJtrY2XLlyBXw+v9u5gsCcl5fXa2C2tbXFzJkzUVhYiLNnz+LIkSO4desWTE1NsWzZMomDMcMwuH//Pvbu3QtVVVWsWbMGAQEB4HK5YBgGt27dQmlpKaZNmzbqA4+qqipmzZqF5uZmXL58WeS/kSjPzl8mvaMaI4QMG3Nzc6xatYq9lywIrpqampg5cyYeP36M+Ph4kedaW1tj5syZEgVma2trhIWFoba2lg3GISEhEicVaWtrw6VLl3Do0CHo6Ojg7bffhoWFBbs/NTUVaWlp8Pf37/d86JFGR0cHM2bMQElJCW7evCm1hUBGOwrKhJBhZW1tjRUrViAnJwenT59mW11mZmaYPHkyHjx4IHZZxmcDc08tNgsLC6xfv75PwRh4Mh3r+PHj+OOPP6Crq4sXXnhBKCNVfn4+bt++DW9vbzg5OUl83dHA3NwcAQEBSEtLw/3796VdnFGJgjIhZNjZ29tj6dKlyMjIwO3bt9lWl5ubG1xdXXHjxg2UlZWJPPfpwCwY0CVOX0ZCd3R04OrVq4iOjoa6ujo0NTXh7+8PS0tL9piqqirExMTA2tq62zSuscLZ2Rne3t5ISEhAXl6etIsz6lBQJoRIhbOzM+bNm4f8/HzcunULDMOAw+HA398fRkZGuHjxIhobG0We25fALImSkhKcOHECubm5mDZtGuTk5KChoYHJkyezxzQ1NSEqKgra2toICQkZVVOf+srX1xe2traIiYlBRUWFtIszqlBQJoRIjZubG/z8/JCens62mOXl5TFz5kwoKCggOjpa7JKMgxGYeTwebt26hbNnz0JDQwNLly5FR0cHysvLERQUBEVFRQBPFpuIjo4GAISFhY26qU99xeFwEBQUBD09PURHR4v98UT6joIyIUSq7Ozs4O/vjwcPHiApKQkAoKysjLCwMDQ0NCA2NlbsoKKBBOaKigr8+uuv7ICtiIgIdHZ24s6dO/Dw8ICpqSmAJ6stxcTEoL6+HuHh4WxWsrFOQUGB/YESFRUlNP+c9B8FZUKI1Lm4uMDPzw/JyclISUkB8CTpSEhICPLz83H37l2x5z49XUqSwNzV1YWkpCScPn0aXC4XixcvhoeHB/h8PmJjY6GpqYmJEyeyxycmJqKgoADTp08f9VOf+kpFRQXh4eHsVKmeRsQTyVBQJoTIBC8vL0yYMAGJiYl48OABgCcBd+LEibh79y5ycnLEnmtjYyNRYK6pqcGpU6eQkpKC8ePHY/78+eyc5ZSUFNTU1CA4OJjtnn706BH++OMP+Pv7w8rKapDf8eigo6PDTmejqVIDR0GZECIzxo8fD29vb9y6dQuPHj0CAHh7e8Pe3h5Xr15FVVWV2HN7Csx8Ph/37t3Db7/9hq6uLixYsIBd+hF40pWdkpKCcePGsfmdi4uLcePGDbi5ucHNzW0I3/XIZ2ZmhoCAAPZHDOk/CsqEEJnB4XDg6+sLd3d3XL9+HVlZWeBwOAgMDISOjg6ioqLQ0tIi9nxRgbmhoQFnzpxBYmIi3N3dsWjRIqGFFXg8HmJjY6Gnp4dx48YBAGpra3H58mWYmZnB399/TI+0lpSzszPGjRuHhIQE5ObmSrs4IxYFZUKITBFMi3JyckJsbCxyc3PZ/MsAcPHiRTZFpyhPB+azZ8/ixIkTQotIPDtyOjExEY2NjQgODoa8vDxaW1sRFRUFNTU1zJgxg1JF9sHEiRNhZ2eHmJgYlJeXS7s4IxJ92gghMofD4SAgIAB2dna4cuUKCgoKoK6ujtDQUFRVVeHGjRs93rsUBOaKigrY29tj8eLFMDEx6XZcSUkJHjx4AF9fX+jo6IDH47HTsMLDw9kpUUQygqlS+vr6NFWqnygoE0JkkpycHIKCgmBlZYVLly6huLgYhoaGCAwMREZGRq9pHm1sbLBx40ZMmzZNZHDt6OhAXFwcTE1N4eHhAYZhEBcXh6qqKoSFhUFDQ2Oo3tqoJpgqxeVyceHCBZoq1UcUlAkhMkteXh4hISEwNTVFdHQ0ysrK4ODgwKZ5LCws7PV8cW7duoW2tjYEBQWBw+Hg7t27yM7ORnBwMIyMjAb7rYwpKioqmDVrFjo6OnocnEe6o6BMCJFpgvvJRkZGuHDhAioqKjBx4kRYWlriypUrqK2t7fM18/PzkZGRAX9/f2hoaCArKwt3796Fr68v7OzshuBdjD3a2tpYsWIFzMzMpF2UEYWCMiFE5gm6RHV0dHD+/HnU1tYiJCQE6urqiI6ORltbm8TXamtrw/Xr12FlZQUnJyeUlZUhLi4OTk5O8Pb2Hro3MQaN9XSk/UFBmRAyInC5XMyaNQsaGho4d+4cWlpaEBoaira2Nly+fFmiFJsMw+D69evo6upCQEAAGhsbER0dDSMjIwQEBNDUJyJ1FJQJISOGkpIS5syZAxUVFZw9exYAMHPmTJSWluL27du9np+dnY3c3FwEBARAQUEBFy5cgJKSEmbOnNnj/WdChgsFZULIiKKsrIw5c+ZAQUEB586dg5aWFvz9/ZGamor09HSx5zU1NeHmzZuwt7eHtbU1Ll26hNbWVoSHh0NZWXkY3wEh4lFQJoSMOKqqqoiIiAAAnD17FjY2NnB1dcWNGzdQWlra7XiGYXDt2jUoKCjA398fN27cQFlZGUJDQ6GtrT3MpSdEPArKhJARSV1dHREREeDxeDh37hzGjx8PIyMjXLx4sVvSikePHqGoqAiBgYHIzMxEeno6AgIC2OUZCZEVFJQJISOWpqYmIiIi2NSYgkQhgqxcAFBfX4/bt2/D1dUVXV1dSEhIwLhx4+Dk5CTl0hPSHQVlQsiIpq2tjTlz5qCxsRGxsbEIDg5GQ0MDYmJi0NXVhatXr0JVVZVN2Wlrayu0XjIhsoSCMiFkxNPT08OcOXNQW1uLO3fuYNq0aSgoKMDp06dRXl6OSZMmISYmBrq6umwGL0JkEQVlQsioYGBggFmzZqGiogKZmZnw8fFBZWUlXF1dkZycDA6Hg7CwMEpoQWQaBWVCyKhhbGyMsLAwPH78GFVVVZgzZw4aGhrQ2NiI8PBwqKqqSruIhPSIfjISQkYVc3NzhIaG4uLFi6ipqUFjYyNmzZoFPT09aReNkF5RS/kZ165dw9y5c2FqagoOh4NTp05Ju0iEkD6ytLRESEgImpubMWXKFFhYWEi7SIRIhFrKz2huboaXlxeee+45LFq0SNrFIYT0k62tLSwtLekeMhlR6NP6jFmzZmHWrFnSLgYhZBBQQCYjDX1iB6i9vR3t7e3s86amJimWhhBCyEhG95QHaMeOHdDS0mIfgYGB0i4SIYSQEYqC8gC9++67qK+vZx9xcXHSLhIhhJARirqvB0hJSQlKSkrsc3V1dSmWhhBCyEhGLWVCCCFERlBL+RlNTU3Izs5mn+fl5eHevXvQ1dWFpaWlFEtGCCFktKOg/IykpCQEBwezz9966y0AwPr167F//34plWpgqqqqUFVVNSTXbm9vR0tLCzQ0NKCiojIkrzGUWltbkZ2dDVVVVaHbECMF1b90Uf33Tl9fH/r6+kNy7dGIwzAMI+1CjCalpaXYvXs3Nm/eDBMTE2kXB+3t7QgLC6MBaIQQqQgMDER0dPSI/NElDRSUR7mGhgZoaWkhLi6OBqFJQVNTEwIDA6n+pYTqX7oE9V9fXw9NTU1pF2dEoO7rMcLb25v+KKSgoaEBANW/tFD9S5eg/onkaPQ1IYQQIiMoKBNCCCEygoLyKKekpISPPvqIBllICdW/dFH9SxfVf9/RQC9CCCFERlBLmRBCCJERFJQJIYQQGUFBmRBCCJERFJSJxPLz88HhcEZsulFCCJF1FJSHSE5ODjZv3gxbW1soKytDU1MTU6ZMwTfffIPW1tYhe920tDRs27YN+fn5Q/Yakvj0008xb948GBkZgcPhYNu2bVItjzgcDkeix9WrVwf8Wi0tLdi2bVufrjVS6rG/ZLn+09PT8c4778Db2xsaGhowMTHBnDlzkJSUNOCyyApZrv/Hjx9jzZo1cHJygoaGBrS1teHr64sDBw5gNI9PpoxeQ+DcuXNYunQplJSUsG7dOri7u6OjowM3btzAX/7yFzx8+BB79uwZktdOS0vD9u3bERQUBGtr6yF5DUm8//77MDY2xrhx4xAdHS21cvTm0KFDQs8PHjyIS5cuddvu4uIy4NdqaWnB9u3bAQBBQUESnTNS6rG/ZLn+f/jhB+zbtw+LFy/GK6+8gvr6euzevRt+fn6IiorCjBkzBlwmaZPl+q+qqkJxcTGWLFkCS0tLdHZ24tKlS9iwYQMyMjLw2WefDbhMMokhgyo3N5dRV1dnnJ2dmcePH3fbn5WVxezcuXPIXv/48eMMACY2NrbXY/l8PtPS0iLxtfPy8hgATGRkpETHMgzDVFZWMgCYjz76SOLXkaZXX32VGao/i/7UxUitx/6SpfpPSkpiGhsbhbZVVVUxBgYGzJQpU4aghNInS/UvTkREBKOmpsbweLzBKZiMoe7rQfbFF1+gqakJ+/btE7lKlL29Pf70pz+xz3k8Hj755BPY2dlBSUkJ1tbW+Nvf/ob29nah86ytrREREYEbN27A19cXysrKsLW1xcGDB9lj9u/fj6VLlwIAgoODu3U9Ca4RHR2NCRMmQEVFBbt37wYA5ObmYunSpdDV1YWqqir8/Pxw7ty5fteDNFvpg43P52Pnzp1wc3ODsrIyjIyMsHnzZtTW1godl5SUhLCwMOjr60NFRQU2NjZ47rnnADy5H29gYAAA2L59O/tv01t39Giqx/6SVv37+Ph0W8RCT08PAQEBePTo0eC+SRkmzc+/KNbW1mhpaUFHR8eA35ssou7rQXbmzBnY2trC399fouNfeOEFHDhwAEuWLMHbb7+NhIQE7NixA48ePcLJkyeFjs3OzsaSJUvw/PPPY/369fjxxx+xYcMG+Pj4wM3NDdOmTcPrr7+Of//73/jb3/7Gdjk93fWUkZGBlStXYvPmzdi0aROcnJxQXl4Of39/tLS04PXXX4eenh4OHDiAefPm4cSJE1i4cOHgVdAItHnzZuzfvx8bN27E66+/jry8PPz3v/9FSkoKbt68CS6Xi4qKCoSGhsLAwABbt26FtrY28vPz8dtvvwEADAwMsGvXLrz88stYuHAhFi1aBADw9PSU5lsbEWSt/svKysbU+sDSrv/W1lY0NzejqakJcXFxiIyMxOTJk0fk+tUSkXZTfTSpr69nADDz58+X6Ph79+4xAJgXXnhBaPuf//xnBgATExPDbrOysmIAMNeuXWO3VVRUMEpKSszbb7/Nbuup+1pwjaioKKHtb7zxBgOAuX79OrutsbGRsbGxYaytrZmuri6GYfrWfS0w0rpdn+2+u379OgOA+fnnn4WOi4qKEtp+8uRJBgBz584dsdceSF2MtHrsL1mtf4Fr164xHA6H+eCDD/p9DVkmi/W/Y8cOBgD7mD59OlNYWNina4wk1H09iATLlGloaEh0/Pnz5wEAb731ltD2t99+GwC6dR+7uroiICCAfW5gYAAnJyfk5uZKXEYbGxuEhYV1K4evry+mTp3KblNXV8eLL76I/Px8pKWlSXz90eb48ePQ0tLCzJkzUVVVxT4EXZuxsbEAAG1tbQDA2bNn0dnZKcUSjy6yVP8VFRVYtWoVbGxs8M477wzJa8gaWaj/lStX4tKlSzh8+DBWrVoFAEM6g0XaKCgPIsF6rY2NjRIdX1BQADk5Odjb2wttNzY2hra2NgoKCoS2W1padruGjo5Ot3s7PbGxsRFZDicnp27bBd3ez5ZjLMnKykJ9fT0MDQ1hYGAg9GhqakJFRQUAIDAwEIsXL8b27duhr6+P+fPnIzIystvYANI3slL/zc3NiIiIQGNjI06fPt3tXvNoJQv1b2VlhRkzZmDlypX4+eefYWtrixkzZozawEz3lAeRpqYmTE1NkZqa2qfzOByORMfJy8uL3M70Yc7eqL0PM0T4fD4MDQ3x888/i9wvGLzC4XBw4sQJxMfH48yZM4iOjsZzzz2Hr7/+GvHx8WPmS3ywyUL9d3R0YNGiRbh//z6io6Ph7u7e72uNNLJQ/89asmQJ9u7di2vXrnXr9RsNKCgPsoiICOzZswe3b9/G5MmTezzWysoKfD4fWVlZQoOxysvLUVdXBysrqz6/vqQB/tlyZGRkdNuenp7O7h+r7OzscPnyZUyZMkWiHzR+fn7w8/PDp59+isOHD2P16tU4cuQIXnjhhX7924x10q5/Pp+PdevW4cqVKzh27BgCAwP78zZGLGnXvyiCFnJ9ff2gXE/WUPf1IHvnnXegpqaGF154AeXl5d325+Tk4JtvvgEAzJ49GwCwc+dOoWP++c9/AgDmzJnT59dXU1MDANTV1Ul8zuzZs5GYmIjbt2+z25qbm7Fnzx5YW1vD1dW1z+UYLZYtW4auri588skn3fbxeDy2nmtra7v1WHh7ewMA24WnqqoKoG//NmOdtOt/y5YtOHr0KL777jt2xPBYIs36r6ysFLl937594HA4GD9+vETXGWmopTzI7OzscPjwYSxfvhwuLi5CGb1u3bqF48ePY8OGDQAALy8vrF+/Hnv27EFdXR0CAwORmJiIAwcOYMGCBQgODu7z63t7e0NeXh6ff/456uvroaSkhJCQEBgaGoo9Z+vWrfjll18wa9YsvP7669DV1cWBAweQl5eHX3/9FXJyff/tdujQIRQUFKClpQUAcO3aNfz9738HAKxdu3bEtL4DAwOxefNm7NixA/fu3UNoaCi4XC6ysrJw/PhxfPPNN1iyZAkOHDiA7777DgsXLoSdnR0aGxuxd+9eaGpqsj++VFRU4OrqiqNHj8LR0RG6urpwd3fvsTt0tNRjf0mz/nfu3InvvvsOkydPhqqqKn766Seh/QsXLmR/BI9W0qz/Tz/9FDdv3kR4eDgsLS1RU1ODX3/9FXfu3MGWLVu6jcUZNaQ7+Hv0yszMZDZt2sRYW1szioqKjIaGBjNlyhTmP//5D9PW1sYe19nZyWzfvp2xsbFhuFwuY2Fhwbz77rtCxzDMk+lMc+bM6fY6gYGBTGBgoNC2vXv3Mra2toy8vLzQ9Chx12AYhsnJyWGWLFnCaGtrM8rKyoyvry9z9uxZoWP6MiUqMDBQaBrD0w9Jso1Ji7iMRnv27GF8fHwYFRUVRkNDg/Hw8GDeeecdNmtbcnIys3LlSsbS0pJRUlJiDA0NmYiICCYpKUnoOrdu3WJ8fHwYRUVFiaaHjNR67C9Zqv/169eLrXsAbLa10USW6v/ixYtMREQEY2pqynC5XPY7NDIykuHz+YP6vmUJh2FGcWZvQgghZAShe8qEEEKIjKCgTAghhMgICsqEEEKIjKCgTAghhMgICsqEEEKIjKCgLCVffPEFnJ2dwefzpV2UAdu6dSsmTZok7WL0CdW/dFH9SxfVvwyT9pyssai+vp7R1dVlfvzxR3Yb/n/u41dffdXt+MjIyF6XRZPUr7/+yixbtoyxsbFhVFRUGEdHR+att95iamtrRR5/+vRpZty4cYySkhJjYWHBfPjhh0xnZ6fQMaWlpYySkhJz+vTpAZdvOFD9SxfVv3RR/cs2CspS8K9//YvR1NRkWltb2W2CPwojIyOmublZ6PjB/KPQ09NjPDw8mA8++IDZu3cv8/rrrzOKioqMs7Mz09LSInTs+fPnGQ6HwwQHBzN79uxhtmzZwsjJyTEvvfRSt+suW7aMCQgIGHD5hgPVv3RR/UsX1b9so6AsBZ6ensyaNWuEtgFgvL29GQDM119/LbRvMP8oRGWBOnDgAAOA2bt3r9B2V1dXxsvLS+iX6XvvvcdwOBzm0aNHQseeOHGC4XA4TE5OzoDLONSo/qWL6l+6qP5lG91THmZ5eXm4f/8+ZsyY0W3flClTEBISgi+++GLI1goNCgrqtm3hwoUAgEePHrHb0tLSkJaWhhdffBEKCv9Lkf7KK6+AYRicOHFC6BqC93P69OkhKPXgofqXLqp/6aL6l30UlIfZrVu3AEDsCifbtm1DeXk5du3a1eN12tvbUVVVJdGjN2VlZQAAfX19dltKSgoAYMKECULHmpqawtzcnN0voKWlBTs7O9y8ebPX15Mmqn/povqXLqp/2UerRA0zwRrFNjY2IvcHBAQgODgYX375JV5++WWxa5j+8ssv2Lhxo0SvyfSS3vzzzz+HvLw8lixZwm4rLS0FAJiYmHQ73sTEBI8fP+623dbWFmlpaRKVSVqo/qWL6l+6qP5lHwXlYVZdXQ0FBQWoq6uLPWbbtm0IDAzE999/jzfffFPkMWFhYbh06dKAy3P48GHs27cP77zzDhwcHNjtgu4rJSWlbucoKyujoaGh23YdHZ1uv2BlDdW/dFH9SxfVv+yjoCyDpk2bhuDgYHzxxRd46aWXRB5jYmIi8ldkX1y/fh3PP/88wsLC8OmnnwrtE/xCFixQ/rS2tjaRv6AZhgGHwxlQmWQB1b90Uf1LF9W/dFFQHmZ6enrg8XhobGyEhoaG2OM++ugjBAUFYffu3dDW1u62v7W1FfX19RK9prGxcbdtf/zxB+bNmwd3d3ecOHFCaDAF8L9uo9LSUlhYWAjtKy0tha+vb7dr1tbWCt0XkkVU/9JF9S9dVP+yjwZ6DTNnZ2cAT0ZB9iQwMBBBQUH4/PPPRY6EPHr0KPtrtbfHs3JychAeHg5DQ0OcP39eZFeWt7c3ACApKUlo++PHj1FcXMzuf1peXh5cXFx6fF/SRvUvXVT/0kX1L/uopTzMJk+eDODJh83T07PHY7dt24agoCDs2bOn277+3tMpKytDaGgo5OTkEB0dDQMDA5HHubm5wdnZGXv27MHmzZshLy8PANi1axc4HI7QoAwAqK+vR05ODl5++eU+l2k4Uf1LF9W/dFH9jwDSmR49trm7uzMrV64U2gaAefXVV7sdGxgYyGbbGYzJ+15eXgwA5p133mEOHTok9Lh48aLQsWfOnGE4HA4TEhLC7Nmzh3n99dcZOTk5ZtOmTd2ue+LECQYAk52dPeAyDjWqf+mi+pcuqn/ZRkFZCv75z38y6urqQmnlxP1RxMbGDuofheBaoh6BgYHdjj958iTj7e3NKCkpMebm5sz777/PdHR0dDtu+fLlzNSpUwdcvuFA9S9dVP/SRfUv2ygoS0FdXR2jq6vL/PDDD9IuyqAoLS1llJWVmVOnTkm7KBKh+pcuqn/povqXbTTQSwq0tLTwzjvv4MsvvxwVS6ft3LkTHh4emD9/vrSLIhGqf+mi+pcuqn/ZxmGYXtKtEEIIIWRYUEuZEEIIkREUlAkhhBAZQUGZEEIIkREUlAkhhBAZQUGZEEIIkREUlAkhhBAZQUGZEEIIkREUlAkhhBAZQUGZEEIIkREUlAkhhBAZQUGZEEIIkREUlAkhhBAZQUGZEEIIkREUlAdZaWkptm3bhtLSUmkXhRBCyAhDQXmQlZaWYvv27RSUCSGE9BkFZUIIIURGUFAmhBBCZAQFZUIIIURGUFAmhBBCZAQFZUIIIUOio6MDt27dQkdHh7SLMmJQUCaEEDIk4uPjERkZiYSEBGkXZcSgoEwIIWTQtbe3Izo6Gnl5eYiKikJ7e7u0izQiUFAmhBAy6BISEpCZmQlPT09kZmYiMTFR2kUaESgoE0IIGVSCVrKioiI0NTWhqKhIrWUJUVAmhBAyqFJSUpCTk4Pm5mY8fPgQzc3NyMnJQUpKirSLJvMUpF0AQggho4uFhQVWr14tcjvpGQVlQgghg8rMzAxmZmbo6OhAUlISJkyYAEVFRWkXa0Sg7mtCCCFDgqZE9R0FZUIIIYOOpkT1DwVlQgghg46mRPUPBWVCCCGDiqZE9R8FZUIIIYOKpkT1H42+JoQQMqhoSlT/UVB+yo4dO/Dbb78hPT0dKioq8Pf3x+effw4nJydpF40QQkYMwZQo0nfUff2UuLg4vPrqq4iPj8elS5fQ2dmJ0NBQNDc3S7tohBBCxgBqKT8lKipK6Pn+/fthaGiIu3fvYtq0aVIqFSGEkLGCgnIP6uvrAQC6urpij2lvbxcaUdjU1DTk5SKEEDI6Ufe1GHw+H2+88QamTJkCd3d3scft2LEDWlpa7CMwMHAYS0kIIWQ0oaAsxquvvorU1FQcOXKkx+Peffdd1NfXs4+4uLhhKiEhhJDRhrqvRXjttddw9uxZXLt2Debm5j0eq6SkBCUlJfa5urr6UBePEELIKEVB+SkMw2DLli04efIkrl69ChsbG2kXiRBCyBhCQfkpr776Kg4fPozTp09DQ0MDZWVlAAAtLS2oqKhIuXSEEEJGO7qn/JRdu3ahvr4eQUFBMDExYR9Hjx6VdtEIIYSMAdRSfgrDMNIuAiGEkDGMWsqEDKGOjg7cunULHR0d0i4KIWQEoKBMyBCKj49HZGQkEhISpF0UQsgIQEGZkCEiWFM2Ly+P1pIlhEhEpoJyV1cXjhw5gs2bN2PhwoV48OABgCfpLn/77TeUl5dLuYSESC4hIQGZmZnw9PREZmYmEhMTpV0kQoiMk5mgXFdXhylTpmDVqlX45Zdf8Pvvv6OyshLAk4Qcr7/+Or755hspl5IQyQhayYqKitDU1ISioiK1lgkhvZKZoLx161Y8fPgQ0dHRyM3NFRoJLS8vjyVLluD8+fNSLCEhkktJSUFOTg6am5vx8OFDNDc3IycnBykpKdIuGiFEhsnMlKhTp05hy5YtmDlzJqqrq7vtd3R0xP79+4e/YIT0g4WFBVavXi1yOyGEiCMzQbm+vr7HtJadnZ3g8XjDWCJC+s/MzAxmZmbSLgYhZISRme5rOzs7JCcni91/8eJFuLq6DmOJCCGEkOElM0H5hRdewI8//oijR4+y95M5HA7a29vx3nvvISoqCps3b5ZyKQkhhJChIzPd13/605/w8OFDrFy5Etra2gCAVatWobq6GjweD5s3b8bzzz8v3UISQgghQ0hmgjKHw8HevXuxfv16nDhxAllZWeDz+bCzs8OyZcswbdo0aReREEIIGVIyE5QFpk6diqlTp0q7GIQQQoZIR0cHkpKSMGHCBCgqKkq7ODJFZu4p5+Xl4cyZM2L3nzlzBvn5+cNXIEIIIQMibkEWygkvnswE5T//+c/497//LXb/t99+i61btw5jiQghhAyEqOBLOeF7JjNB+fbt25g5c6bY/dOnT8f169eHsUSEDBwt3UjGKnHBl3LC90xmgnJtbS00NDTE7ldXVxeZ6YsQWUbddGSsEhV8KSd872QmKFtaWuLmzZti91+/fh3m5ubDWCJCBoa66chYJS74JiQkUE74XsjM6OuVK1fik08+ga+vL1577TXIyT35vdDV1YX//ve/OHr0KN577z0pl5IQyYlqKQQEBEi7WIQMOcGCLG1tbXj48CE6OzuRk5ODuro6ygnfC5kJyu+++y5u3LiBN954A59++imcnJwAABkZGaisrERQUBAFZTJiiGsp+Pr6QklJSdrFI2RIiVuQZfz48ZQTvhcyE5SVlJRw8eJFHDhwAL/99htycnIAAL6+vli8eDHWrVvHtp4JkXXiWgopKSnw8/OTdvEIGVK0IEv/yUxQBgA5OTls3LgRGzdulHZRCBkQWrqRENIfMhWUCRktqKVACOkPmQrK0dHR2LdvH3Jzc1FbW8uuFiXA4XDYbm1CCCFktJGZoPzll19i69atMDIygq+vLzw8PKRdJEIIIWRYyUxQ/uabbxASEoLz58+Dy+VKuziEEELIsJOZ4cy1tbVYsmQJBWQy5lFqzsFDdUlGGpkJyr6+vsjIyJB2MQiROkrNOXioLqWro6MDV69epR9FfSAzQfm7777Db7/9hsOHD0u1HNeuXcPcuXNhamoKDoeDU6dOSbU8ZHQS14Kj1JyDh+pS+uLj43Hw4EH6UdQHMhOUly9fDh6Ph7Vr10JLSwtubm7w9PQUenh5eQ15OZqbm+Hl5YVvv/12yF+LjF3iWnC0gs7gobqULvpR1D8yM9BLV1cXenp6cHBwkGo5Zs2ahVmzZkm1DGT06OjoQFJSEiZMmABFRUUA3b+sBKk3KTXn4KG6lD7BjyI3NzfK/d4HMhOUr169Ku0i9Et7e7vQL8CmpiYplobImvj4eBw6dAhdXV3sF5K4hSooNefgobqUrqd/FKmpqdGPoj6QmaA8Uu3YsQPbt2+XdjGIDBJ8MeXm5rJfSADEtuAoNefgobqUrqd/FD169AhycnL0o0hCMhWUGxoa8N133yE2NhYVFRXYvXs3fH19UVNTg/3792PevHmwt7eXdjGFvPvuu3jrrbfY5/fu3UNgYKAUS0RkhaBF7OHhwbaIuVxujy04Ss05OCjNqXQ9/aOorq4O2tra7HbSM5kJysXFxQgMDERRUREcHByQnp7OdgXr6upi9+7dKCgowDfffCPlkgpTUlIS6o5RV1eXYmmIrHi6+05DQ4NtET///PPUgiOj3tM/ioqKiujz3QcyE5T/8pe/oLGxEffu3YOhoSEMDQ2F9i9YsABnz56VUukI6Zunu+8ePHgAAMjJyUFFRQXmzp0r5dIRMnza2tqkXYQRRWaC8sWLF/Hmm2/C1dUV1dXV3fbb2tqiqKhoyMvR1NSE7Oxs9nleXh7u3bsHXV1dWFpaDvnrk9Hh6e67+vp6aGlpsdsJGUsaGxulXYQRRWaCcmtrKwwMDMTuH65/2KSkJAQHB7PPBfeL169fj/379w9LGcjI93T3XWpqKhwdHZGUlNTjZ5yQ0aiurk7aRRhRZCYou7q64tq1a9i8ebPI/adOncK4ceOGvBxBQUHdlowkZCBycnJQXV2Nn376SWhqFCFjQW1trbSLMKLITEavN954A0eOHMHnn3+O+vp6AACfz0d2djbWrl2L27dv480335RyKQnpu6qqKpw6dYoyG5Exqbm5mbqw+0BmWspr1qxBQUEB3n//fbz33nsAgPDwcDAMAzk5OXz22WdYsGCBdAtJSB9NmDABGRkZYBgGmzZt6jWzkagMYISMdLm5uUJpkulzLp7MBGUAeO+997B27Vr8+uuvyM7OBp/Ph52dHRYtWgRbW1tpF4+QPistLUVTUxMUFBRQX18PLpfbY2YjURnACBnpHjx4AFdXV3ZpXvqciycTQbmlpQUBAQHYtGkTXnrpJeqmJqNGZ2cn+/9//PEHuFwuOjo6RGY2EpcTm5CRavz48cjOzoa2tjbs7OwwefJk+pz3QibuKauqqiIvLw8cDkfaRSFkUMnLywN4kmTGz88PPj4+MDU1RWVlJa5duya0dCOtakRGm6KiIjQ2NqK2thapqakoLS2lz3kvZCIoA0/uH0dHR0u7GIQMKjm5J39iCgoK8PLygpeXF9zd3REXF4cPP/wQhw4dQktLi9hVjWhQGBmp2tvb2cQhnZ2d6OjoQHR0NM6dO0ef8x7IRPc1AHzwwQdYunQp1q5di82bN8PGxgYqKirdjtPV1ZVC6Qjpu8LCQjQ0NAB4ktWopqYGurq66OzsRFpaGsrLy/Hrr7+yX1737t2DvLw8rWpERoWEhATweDwAT2bS5OfnQ15eHrdv34auri59zsWQmaDs5uYGAEhLS8Phw4fFHtfV1TVcRSKkXxITE/HJJ5/g3Llz7Jz39vZ2/O1vf4OHhwc8PDxQXl4OMzMzlJeXIy8vD/r6+rC2toacnByMjIxgbm4OXV3dIcsAVlNTgy1btuDMmTOQk5PD4sWL8c0330iUu51hGMyePRtRUVE4efKk0KyIO3fuYOvWrbh79y44HA58fX3xxRdfCI28JaOfoOdHcEuSYRg8fPgQU6ZMgYeHBywsLODq6srup0x3/yMzQfnDDz+ke8pkxPvtt9+wfPlyMAzTLQkNwzBITU3FgwcPYGtrC1NTUzQ0NODhw4eYM2dOtykjXV1daG9vB8Mw/frbCAoKwoYNG7Bhw4Zu+1avXo3S0lJcunQJnZ2d2LhxI1588cUefxAL7Ny5U2R5mpqaEB4ejnnz5uG7774Dj8fDRx99hLCwMBQVFbEjb8noJ8j9/vTfQGVlJRobG9nPuYmJCSZOnCitIsqsPgVlGxubPn85cDgc5OTk9Hrctm3b+nRdQmRNYmIili9fjq6uLrFZ4fh8PoAnWb4UFBSgrKyMyspKFBUVdZv2V1lZicuXL0NLSwteXl5wcHBgB44NxKNHjxAVFYU7d+5gwoQJAID//Oc/mD17Nr766iuYmpqKPffevXv4+uuvkZSUBBMTE6F96enpqKmpwccff8y2fD766CN4enqioKBA5pZdJUNHkPv90qVLaGtrg5KSEnx9faGjowMA4PF4OHHiBHg8Hvz8/KhB9pQ+BeXAwMBulZeUlISHDx/C1dUVTk5OAICMjAykpaXB3d0dPj4+/SpYfX091NXVB+VLiJDh8Pe//11kC1kUDoeD9vZ2TJ8+HQDYLytR6uvrce3aNdy9exdeXl5wdnaGgkL/O7lu374NbW1tNiADwIwZMyAnJ4eEhAQsXLhQ5HktLS1YtWoVvv32WxgbG3fb7+TkBD09Pezbtw9/+9vf0NXVhX379sHFxQXW1tb9Li8ZeQS53wXjgrhcrlBPUG5uLhISEtgfqRSY/6dPf9nPLshw6tQpnDp1CpcuXWK/XAQuXbqEZcuW4ZNPPpH4+klJSXj//ffZqSIXL15ESEgIqqqq8Pzzz+PNN99EUFBQX4pMyLAoLCzE2bNnJc6bzjAMCgoKYGFhIfHgxebmZty6dQspKSnw9PQUSsbQF2VlZd2WRlVQUICuri7KysrEnvfmm2/C398f8+fPF7lfQ0MDV69exYIFC9i/ewcHB0RHRw/oRwQZXQQDHauqqvDw4UNYW1ujra0N06ZNo0YYBjgl6sMPP8SWLVu6BWQAmDlzJl577TW8//77El3r1q1bmDp1KrKysrBmzRr2FxQA6Ovro76+Hrt37x5IcQkRqaOjAy0tLX1+NDY2Ijs7G3Fxcfj000/7vJAJwzB49OgR+Hx+nx7Nzc24ffs2fvrpJ9y7d4+d6/zZZ59BXV2dfVy/fh0vvfSS0LbCwsJ+1dHvv/+OmJgY7Ny5U+wxra2teP755zFlyhTEx8fj5s2bcHd3x5w5c9Da2tqv1yUjm+Bv4um/jby8PKGBjvn5+cjKykJUVJTQvP2xakA/X7OysqCnpyd2v56enkT3kwHgb3/7G1xcXBAfH4/Gxkb88MMPQvuDg4Nx4MCBgRSXkG46OjqQmJiIpqamHo/j8XhoaGhAfX09GhoaUFdXh8bGRvbH48OHD8HhcPocmGtqanp9bXGampoQGxuLhoYG+Pn54aWXXsKyZcvY/atXr8bixYuxaNEidpupqSmMjY1RUVHR7f3V1NSI7JYGgJiYGOTk5EBbW1to++LFixEQEICrV6/i8OHDyM/Px+3bt9n52YcPH4aOjg5Onz6NFStW9Ot9kpFLEGQFs2YErWR5eXmoqKiwAx2tra1RUlKCM2fOICwsTKJZAKPVgIKynZ0dIiMj8fzzz3erxMbGRvz4448S56y+c+cOduzYASUlJZFfUmZmZj12rRHSHzweD01NTVBUVGRT/bW3t6O2thY1NTXsfxsbG3sMuIqKiv1a8rO+vh4Mw/Sr205DQwNmZmZoaWkBj8eDrq6uUFe4iooKDA0Nuw2wmjx5Murq6nD37l12zEdMTAz4fD4mTZok8rW2bt2KF154QWibh4cH/vWvf2Hu3LkAntxzlpOTE7o3KHj+dM8XGRueTR7S2dmJoqIiVFZWorOzE48fP0ZXV5fQQMfq6mqcPHkSM2bM6DaQcKwYUFD++9//jiVLlsDZ2RkbNmxg//izsrJw4MABlJeX4/jx4xJdi8vl9viHW1JSMqZ/PZHBxzAM6urqUFZWhra2NtTX16O6ulrilquWlhb09PSgp6cHHx8fXL16tc+BuaWlBdXV1VBRUYGysjIUFRV7HfAiJycHa2trmJqaor29vc/L4rm4uCA8PBybNm3C999/j87OTrz22mtYsWIFO/K6pKQE06dPx8GDB+Hr6wtjY2ORrWhLS0vY2NgAeHLL6i9/+QteffVVbNmyBXw+H//4xz+goKCA4ODgPpVRmmgFo8EhKnmIvr4+fH19ux379EDH1tZWnD17Fr6+vvD09BxzA8AGFJQXLFiA8+fP469//Ss+++wzoX3e3t7Yt28fwsLCJLqWn58fTpw4gTfeeKPbvubmZkRGRiIwMHAgxSVjGJ/PZ3+RFxcXo6ioCEVFRRIFYDk5Oejo6LABWE9PD7q6ut0GWQUEBODmzZsSJ7hRU1NDS0sLe3+ts7MTHA4HysrKUFZWFtl61tDQgIODA9TU1IS2d3R04N69exIHkp9//hmvvfYapk+fziYP+fe//83u7+zsREZGBlpaWiR6LwDg7OyMM2fOYPv27Zg8eTLk5OQwbtw4REVFyVyrp6fASysYDZy45CHPzscXhcfjoaCgAJ2dnSgtLUVwcPCYWrBiwEMiQ0NDERoairKyMhQUFAAArKysxN6bEmf79u0IDAzEnDlzsHLlSgBPVtXJzc3FV199hcrKSnzwwQcDLS4ZA3g8HkpLS4WCb3FxsUT5dblcLnR1dYUCsLa2tkTdy88//zxu3rwp0b1lDoeDkJAQaGtrC92nZRgGra2taG1tBZfLZVvQurq6MDIygo6OjsiWQ2JiIo4fPy4USK5evSr29XV1dXtMFGJtbd3rexC1f+bMmZg5c2aP5w0nccFXXOClFYwGR0pKCu7fv8+uksbn89m/x95uaT49XUpBQQGnTp1CWFhYt/EMo9WgzVMQ170lqUmTJuH8+fN4+eWXsW7dOgDA22+/DeDJvevz58/D09NzUMpKRo+2tjaUlJQIBd/S0lK226wn6urqMDU1BZ/Ph5GREUxMTKCpqdnv7jI3Nzfs2LED7777LhiGEXk7RjAAav369UKf587OTrS1tbEZvHg8HlpbW1FdXQ0lJSWoqqpCSUlJZNk6Ojpw48YNCiQiiAq+PQVeUSsYUWu5bxITE/HBBx/gypUr7A83Pp+PBw8egMfjYcGCBTA3N0dBQQGsrKyEpsuJmi5VX1+P06dPIzw8HEZGRtJ6W8NmwEG5sLAQn332GWJjY1FZWYlTp05h2rRpqKqqwscff4yNGzdi3Lhx3c5raGiAmpqaUAskJCQEGRkZuHfvHrKyssDn82FnZwcfH58xd1+BdNfU1CQUfIuKilBRUSHRfVxBHmkLCwuYm5vDwsIC2traaG1txbVr16ChoQFlZeUBlzEkJAQ//vgj/vWvf+HevXvd9ltbW2P+/PkwNTVFXl4eLCws2Mxe5ubmUFdXR0lJCW7cuMH+ffB4PCQnJyMpKQlycnKYPn06rKys2L+JjIwMZGVlUSB5hrjgKy7wilupi37kSK6nNLPAk8/q559/joiICNTU1IDP58PBwYHdL2q6lIODA9rb23H+/HmEhYX1mHFOUv3J/b5nzx4cPnwYycnJ7HKUT7fer169KnbsRGJiosQpRQcUlNPS0hAQEMCO2szOzmZbKPr6+rhx4waam5uxb9++bufq6Ojg0KFDWLVqFQDgueeew+bNmzFp0iR4e3vD29t7IEUjIxjDMKitre0WgGtra3s9l8PhwMjISCj4WlhYdLsHO5Tc3Nzw2Wef4fbt2/jqq6/Q2toKRUVFLFy4EM7OztDW1kZOTg6SkpLYQVCGhobsD9SysjI0NTXB1dUVcnJyKCoqAsMwKCsrQ2ZmJh4/fgxnZ2c4OzvD2NgYd+/epUAigqjg6+vrKzbwCvI1t7W10QpG/dCXNLNnzpyBpaUlNDQ0YG1tDS6X2+N0KcH+CxcuIDQ0VKIFLAY793tLSwvCw8MRHh6Od999t9t+f39/lJaWCm0T9Bg8nT2vNwMKyu+88w60tbURHx8PDofTLUvQnDlzcPToUZHnKioqCt3j279/P2bMmCF2SgYZnfh8PioqKroF4Obm5l7PVVBQgKmpKRuALS0tYWpqKhPByNDQEPPnz8fu3bvR2toKFRUV9oudx+MhKysLra2tqKmpgZ6eHhuQOzo6cPv2bTx+/BjZ2dnYtGkTOjo6kJqairt376KhoQFFRUUwMjJCYmIiKioqkJmZCQMDA6SmpoLH41EgAcS2ehmGERt4Bfman0UrGEmmL2lmGYZBc3OzUGu4t+lSwJP5ztHR0QgODoadnV2/ytnf3O+CQcjixmooKioK3cLt7OzE6dOnsWXLlj719A4oKF+7dg0ffvghDAwMUF1d3W2/paUlSkpKRJ7r7OyMH374AdbW1tDS0gIA5OfnIzk5ucfXHD9+/ECKTKRIMJpSEICLiopQUlIiURYfQffu013QJiYmMp+W79mMRnJycmhra0NnZyfc3NxQVFSEhw8fsrd4UlNTUVhYCAcHBxQWFrL7FBUVoa6ujnHjxiE3Nxfl5eUwNTWFqqoqzM3NATyZl+zq6gpHR8cxH0jEtXrr6urEBl5BvmbSd31NMwsAVVVVMDU1ZVvDOjo6vU6XAp78kI+JiQGAfgXm/uZ+76vff/8d1dXV2LhxY5/OG1BQ5vP5UFVVFbu/srJSbKtlx44dWL58OWbMmAHgSbfjBx98IHaEtWD5OlpPeWRoa2vrNvr58ePHEiWR0NDQYIOvIADr6+uzg6RGElVVVXC5XCgpKUFDQwO2trY4dOgQuFwu1NTUoKCggFu3brHrid++fRsKCgpC+xwcHHD79m1wuVyYmJigs7MTampqcHJyQl5entB9MMF99o6ODgQEBLABe6wR1+odP348Bd5ndHR0SDQwsifnz5/vV/Kc2tpacLlcFBQUwNbWFh4eHiKPE/W9ERMTAzU1Nejq6vZpPnl/c7/3lWBKcF//BgcUlMePH49z587hlVde6baPx+PhyJEjYrvQwsPDkZeXhzt37qC8vBwbNmzAiy++iMmTJw+kSOQphYWFuHLlChobG6GhoYHp06fD0tJy0F+nsbFRqPVbXFzcLY2jOHp6et0GYGlpaY2KgX0dHR0ICQnBzZs3YW9vDycnJ2RnZ6O4uBgdHR3Izc0Fj8dDcXExMjIyAEDkvsuXL3fbXllZCS0tLSxcuBCZmZmoqalhpyS2t7fj+vXruH79OmxsbBAQEIDx48ePqUQY1OqVjKRpZnvS1dWFGzdu9CvNrKmpKVxdXcVmcuzN+fPn4ejoCF9fX3z11VdC+TJaW1sRHx+P1157jd2WlpbW59foj+LiYkRHR+PYsWN9PndAQfndd99FREQEXn75ZTavbXl5OS5fvozPPvsMjx49wn//+1+R596/fx9WVlZscpHIyEgsXbpU5OIWpG8SExPxySef4Ny5c2AYBnJycuDz+eBwOIiIiMAHH3zQr8XFGYZBTU2NUAAuKipCfX19r+dyOBwYGxt3C8A99bSMdIKuaDMzMzQ3NyM9PR1mZmaYNWtWt2MFUz1E7dPX1xe5kpSRkREUFBTYVmF1dTWuX7+OO3fusOM18vLykJeXh19//RV+fn4ICAjo1koYS3pKGjIWM3mJSjMriaamJjx+/BiPHz9GWVkZHj9+3K+WsrW1Ndzd3ft8nkBzczOamprA4/GGNPd7X0VGRkJPTw/z5s3r87kDCsqzZs3C/v378ac//Ql79uwBAKxZswYMw0BTUxMHDx7EtGnTRJ47btw4odHXZHCImpIg6PphGAbnz5/HhQsXcPToUaEP67P4fD7Ky8u7tYAlyfDE5XJFDsAaK190wP8GbCkoKEBVVRUtLS24desWNm3aJPZvAkCfA6YgtzDwpMt21apVWLhwIe7cuYNr167h8ePHAJ58eV25cgVXrlyBs7MzAgIC4OnpKfP35AdbT9m6xnImLyUlpR6nBHZ1daGsrIz9Hnj2h3h/eiU4HA6cnJwGdFuqs7OTvaU5lLnf+4JhGERGRmLdunX9Wlp1wPOU165di0WLFuHSpUtCc4vDwsKgoaEh9jwVFRWhL/i4uDhs2rRpoMUZFN9++y2+/PJLlJWVwcvLC//5z39EDkCQNZJMSejq6gKHw8Hy5ctx69YtTJw4EZ2dnSgpKRG6B1xSUsJm4+mJioqK0AAsCwsLGBkZjbkv+2dlZGSwXc6NjY3gcrlsN7W4+2aDRUVFBdOmTUNAQAByc3Nx/fp1JCcns/cN09PTkZ6eDi0tLfj7+2PKlCkSr+k8kvWUNIQyeXXX2NiI4uJidjyIuPvOKioqcHBwwKNHj5CSkiLRuBE5OTm4uLh0G8TVVxwOp8+3uvqT+x14ci+6rKwM2dnZAIAHDx5AQ0MDlpaWQn8/MTExyMvL67aAi6T6HZRbWlpgYWGBrVu34i9/+QsWLFjQp/O9vLzwz3/+E/Ly8uzo6zt37vSawKGn1t1gOHr0KN566y18//33mDRpEnbu3ImwsDBkZGTIfLefpFMSBNmmNm/ejEWLFqGsrEyiPyRNTU2h4GthYQE9Pb1Rcf93sBkZGbFd0U1NTexgrOHMSMThcGBnZwc7OzssWbIEt2/fxo0bN1BZWQngyQpVFy5cQFRUFDw8PBAQEAAXF5cROaCuJzU1NdDV1e0xWxdl8vpfa1gQiOvq6kQex+FwYGBgwPaECb4D9PT08Nxzz0l8bzk0NHTAZTY0NOzX57U/ud+///57bN++nX0u6PGKjIwUmgu9b98++Pv7w9nZuR/vCOAw/bkR8P+MjIzw0UcfiRzo1ZukpCQsWbKEXXRd0nzBQz36etKkSZg4cSJ7L5zP58PCwgJbtmzB1q1bez0/OTkZPj4+uHv37rBO3yosLJQoX/Gz1qxZI7JHw8DAoNsUJMGPp9GkpaVlUDN6idLc3DxkyUva2trQ2NiIadOmSXR/ns/nIyMjA9euXcODBw+6/RjT09NDQEAAJk+e3GNP10hSXl4ObW1tfPzxx+yc2KysLFhbW+PDDz8EALH7Rntrubi4GGfPnkVNTQ3KysrEtoaVlZXZ7wEzMzOx9RITE8Mm1hD1XS0uzWx/6OjowNbWFs3NzRJ//keCAXVfL168GCdOnMDLL7/c59bShAkTkJ2djZycHJSXlyMoKAjvvfceO0VKGjo6OnD37l2hbC1ycnKYMWMGbt++LfKc9vZ2oSQoghGEPB5Pou7fwRIdHd2vgRbFxcUICgpiA7CZmRksLCygoqLS7djhfD/DpbOzEzweD83NzQOeFiJOV1fXgEa39qS9vZ39rEn672Nvbw97e3vU1dXh1q1buHXrFtsqqqiowK+//orTp0/Dy8sLAQEBsLOzG9LekMGYktPTtS9dugQ9PT2kp6ejra0NKSkp4PF4SE9Px/Xr1wFA7D5JBkQqKCiMmPESgvnaaWlpSEtLEzsFSNDyNTU1hYmJCXR1ddnPQE+fNV9fX/z3v//FwYMHRX5nOjs7IyQkBJaWlgP6PtHT04OlpSVaW1v7/Pnvq/7cFx6IAbWUr127hldeeQX6+vrYtGkTrK2tRX6ZS9Ji3LhxI1566SWpZvR6/PgxzMzMcOvWLaGpWe+88w7i4uKQkJDQ7Zxt27YJdWkQQggZPQYQIvtlQEH56b58Ub+kR1rCj/4E5Wdbyvfu3UNgYCASEhJELsQxVPbv348XX3yxz+ft3bsX69evH4ISjRxD2VK7efMmjh49ihUrVsDf339IXmMwW2qVlZW4ceMG4uPju6U6VVRUxIQJEzB16tRBm+/e0tKC69ev93lKjiQ6Ojpw8OBBNp3i+vXrB71F297eziZqkZXuUx6Ph+zsbKSlpeHRo0fd8jELcDgcWFtbw8nJCY6OjjA1NR308QQuLi4oLS2FlpYWPv300wFdS0VFBf7+/t3W5h7qnorhbikPqPs6MjKy3+d+/PHH4HA4eO+99yAnJ4ePP/6413MEWb+Gir6+PuTl5VFeXi60vby8XOz8NSUlJaEvE8GAHgUFhWH9xwwLC+vz5H0Oh4PQ0NBh/9DJmqF6/+3t7bh58ya76lNISIjM36M0NTXFsmXLsHDhQqSkpOD69evIyckB8KQbPiEhAQkJCbCyssK0adPg4+MzoC9ELpfLZjAb7Hv6ycnJKC0thampKYqKilBQUDDoP5QVFBTA5/PB5XKl+ndUU1ODhw8f4uHDh8jIyBBqKDw9E0JdXR1ubm5wc3ODs7Nzj6siDQZBkOdwOP2uHw6HA1dXV0yYMEHm/34Gw4CC8kBaWNu2bQOHw8Ff//pXKCoqYtu2bb2eM9RBWVFRET4+Prhy5Qo7mpzP5+PKlStCWWFkkaWlJSIiInD+/HmJeibk5eUxZ86cIcnwRZ4YySN6uVwufH194evri5KSEly/fh2JiYnsvOiCggIcOnQIJ06cgJ+fH6ZOndqtBSNNT88Tl5OTY++fu7m5jZj7vz0RLDwiCMS9tYYFgdjCwmJEja63sLCAn5/fgKdOjSQDnqfcX8+O+pRkSs5weOutt7B+/XpMmDABvr6+2LlzJ5qbm/ucVFwaPvjgA1y4cKHXFrNgbt/7778/jKUbW0bT2rxmZmZYsWIFFixYgKSkJFy7dg3FxcUAnqQyjI2NRWxsLBwcHBAQEABvb2+hheul4el54vX19eDxeMjPzx+WeeJDpaamBmlpaUhNTe3WGn6auro6XF1d4ebmBhcXlyFvDffk2QVZJGVgYAA/Pz+Z+qE3XPr0lyOYg7Znzx7Iy8vjueee6/UcDocjcj1lWbV8+XJUVlbiww8/RFlZGby9vREVFTWs80v7a+LEiTh69Cib0UtUi1leXh4cDgfHjh3rV6pNIpnRuDavsrIypk6diilTpiA/Px/Xr1/H3bt32VGvWVlZyMrKgqamJiZPnoypU6dCT09PKmV9ep54eno6urq6oKioOKKSpPSnNezq6gpLS0uZaQ0LVoCTdFyRiooKfH194ejoOGbzH/RpoJe1tTXk5OSQkZEBLpcLa2vrXiuOw+EgNzdXous/evQIOTk57AIK9vb2/Z6ALS3Smqf8tDt37uCTTz5hl1J7Ovf13Llz8f7771NAHmIlJSUilyEdbasUNTc3IyEhAdevX+82FoPD4cDNzQ0BAQFwc3MTGSiGep742rVrUVpaCnV1dbz99ttQVlaGm5tbj4OyOjs7kZaWBldX117vg/Z1nnhvBK3hhw8fIj09fUS0hsVpb2+Hvr4+mpqaoKSkhK+//rrH+rSzs8OUKVOGLF/ASNGnlnJ+fn6Pz/tr9+7d+PTTT0WuvWxpaYn33nuv3ynLxqKJEyfi999/R2FhIWJiYtDQ0ABNTU12fiAZemNllSI1NTWEhIQgODgYmZmZuH79Ou7duwc+nw+GYZCamorU1FTo6upi6tSpmDx58rAmoamurkZdXR3bfdrW1oZ79+7B0dER+vr6Is958OABzp8/Dz6fP+QzKJ5uDaelpbG5yp/F4XBgZWXF3huWpdawOAkJCeysBj6fzyZneZa8vDymTp06plvHT5PujR8Af/7zn/HPf/4Turq6eO655+Du7g51dXU0NTXhwYMHOHXqFDZv3oysrCx8/vnn0i7uiGJpaSmU/o2QoSJYXMDJyQn19fW4desWbt68iZqaGgBPWoC///47zp49C29vbwQEBMDR0VEqZe3q6sKDBw/Q1tbWbUS8YIBYSUnJkA0Mq62tFRop/fSiIk8bCa1hcQRjKgRBlmEYPHz4ENbW1kKtZRUVFYSFhcl8CuPhJNWgnJiYiH/+859YuHAhDh48KDIV4TfffIM1a9bgq6++wtKlSzFhwgQplJQQIiktLS3MmjULYWFhSE1NxfXr15GWlsbmXE9OTkZycjKMjIzg5+fH3nccTgUFBUhKSkJDQwPmzp3Ldj0Lltt0cHBAYWEhHj58OODWcldXF3JycpCamjrqWsPiCMZUPH13tLKyEkVFRbC1tQXw5EfHnDlzRmX63oEYcFC+cOEC/vnPfyI5ORn19fUiR9mJu8m/b98+mJiY4PDhw2JHpKqpqeGXX36Bra0t9u3bR0GZkBFCTk4Onp6e8PT0RFVVFW7evIlbt26hsbERwJP5/6dPn4a8vDysrKzg7u4OfX39Qe3CFDX6V5BGs7q6GikpKTAyMoKNjQ0MDQ3ZaVRqampQUFDod2u5L61hFxcXtjU8WvKNC9b4vnTpEtra2qCkpARfX192apOamhrmzp07at7vYBpQUP7111+xbNkyuLm5YcWKFdi1axdWrVoFhmFw+vRpODg49Lh61O3bt7F06dJep4goKytj6dKliI2NHUhxCSFSoq+vj/nz52POnDm4d+8erl+/jqysLABPfrTn5uYiNzcXenp6cHZ2hp2d3aAk4xCMDH+6YVBQUICKigqYmpqioqIC+fn5kJeXR3x8PLKzsyEnJ4fc3FzweDyJl9vs6upCZmYmG4h7aw0LuqWtrKxGbGu4J4IxFYK0y1wuF15eXuz/z549mwKyGAMKyjt27ICvry9u3LiB2tpa7Nq1C8899xxCQkKQn58PPz8/2NjYiD2/qKgILi4uEr2Wq6srDh48OJDiEkKkTEFBARMmTMCECRNQWlqK2NhYxMfHswOCqqurcfPmTSQmJsLe3n5Aa+52dHSwXeOChUeAJ1OkFBQUoKysDAUFBaSnp8PKygqqqqpwdHSEsrIyjIyMel1us7m5GXl5eSgsLER0dLTYkdJqampC94bHejAKCAgYU8lA+mpAQTktLQ07duyAvLw8myxA8MvU2toar7zyCj7//HOsW7dO5PkNDQ0Sf0DV1dXZbi9CRoqOjg4kJSVhwoQJQl2g4rb3tm80MTExwYIFC6CpqYmamhpkZ2ejqqoKwJPvkUePHuHRo0cwMjKCi4sLrK2thVJG9iY1NZVtIfP5fBQUFEBeXh5VVVXg8XgoKytDV1cXqqqqUFxcDGtra2hra7Pn6+npwdbWlp2iw+fzUV5ejuLiYhQVFaG2tlbk63I4HFhaWrL3hkdra1gSxsbGaGlpYb/nzc3NYWdnJ+VSybYBBWVVVVX2S0NbWxtKSkpCE9yNjIyQl5cn9nzBghWSGu7VOggZqPj4eBw6dAhdXV1CKTbFbe9t32ikoKAAOzs7uLm5obKyEunp6cjJyWEDanl5OcrLy6GsrAwHBwc4OztDU1Ozx2sKlmx8Oijfu3cPQUFB8PHx6Xb808FYoLq6GtXV1VBWVkZ9fT0eP34sdnlAVVVVNnmHq6vrmG8NCyQlJeHgwYNoa2sDh8PBpEmTaNpTLwYUlJ2cnJCWlsY+9/b2xqFDh7BmzRrweDwcPny413mxX331FX755ZdeX0vUHGZCZJlgWkheXp5Qik1x23s6Z6wwMDCAgYEBfH19kZ2djfT0dHat57a2Njx48AAPHjyAmZkZXFxcROZyTk1Nxb/+9S/88ccf7DY+n48bN26gpKQECxYsEPu9xDAMeDwe2/Xd0dGB0tJSGBkZdXsdfX19mJiYQEtLC/Pmzet1yhLDMPjoo4+wd+9e1NXVYcqUKdi1a5fIubsCopaGdXJyQnp6usjrz549G1FRUTh58mSP43mkwdbWVmoZ3kaSAQXlRYsW4d///je++uorKCkp4b333sP8+fOhra0NDoeD5uZm/Pjjj2LPt7S0RE1NDTuXsTeU+IKMJOIWpOhpoYqRvIjFYFJSUmJbnmVlZUhPT0d+fj6bI7+kpAQlJSVQU1Njlx5UU1NDTEwM3n33XbG9avn5+fjmm2+wfv16eHp6AngSsAUBuLOzU+jckpISPHjwAB4eHrCysoKuri4MDAzg7OwMDQ0NNqOXJN3TX3zxBf7973/jwIEDsLGxwQcffICwsDCkpaX1mMXKzc0Nly9fZp+Lyyu+c+dOmW2FcjgcqWU4HGn6FZTb2tpw+vRpdHZ24v3330dNTQ1MTEwQERGBq1ev4rfffmNXIQoODhZ7ncHKCEaIrBG3IIWXl5fYhSoAjJpFLAYLh8OBiYkJTExM0NraiszMTKSnp6OpqQnAk8FWycnJSElJgZycHHbt2sVmExOFYRgwDIMDBw7gxRdfhKGhodgpmzweD3l5eWhoaEBxcTE8PDzA5XLZFrsgSEuCYRjs3LkT77//PubPnw8AOHjwIIyMjHDq1CmsWLFC7LkKCgpil44VuHfvHr7++mskJSXJ5CIOVlZWNLhLQn0OyhUVFfD390deXh57T1hFRQWnTp3CjBkzEBAQMCZ/2RPyNHELUhw7dkzsQhUARt0iFoNJRUUFXl5e8PDwQElJCdLT01FUVMQG2jNnzvQYkJ/GMAyuXLmCZcuWCW3ncDhQVFQEl8tFUVERGhoaYGFhgerqahQWFrKDlATTuFpbWyVKfpGXl4eysjLMmDGD3aalpYVJkybh9u3bPQblrKwsmJqaQllZGZMnT8aOHTuEeg1bWlqwatUqfPvtt70Gb2lxc3OTdhFGjD4H5U8++QT5+fl48803ERISguzsbHzyySfYvHkzuxg6IWOdIHnCs0xMTEROsbGwsAAAkecI9pEn5OTkYGFhAQsLCzQ1NSEjIwN37txBQUGBxNdgGAZZWVmor6+Hnp4eFBUVweFwUFpayga8zMxMkVOnnu4+rqmpkSgol5WVAeg+vcrIyIjdJ8qkSZOwf/9+ODk5obS0FNu3b0dAQABSU1PZwWRvvvkm/P392Ra4rFFWVoapqam0izFi9DkoX7x4EevWrcNXX33FbjMyMsKqVauQkZEBJyenQS0gISNRfxekGAuLWIgibo5vbxQUFODm5tbjLI+eVFRUsLkUcnJycPfuXfD5fHbqVGdnJx4/fgw+n4+qqioUFRXBysqq13L//PPP2Lx5M/v83Llz/SqfYPlJAPD09MSkSZNgZWWFY8eO4fnnn8fvv/+OmJgYtqdFFhkaGsrsvW5Z1OegXFhYiL/+9a9C26ZOnQqGYVBeXk5BmRAiMQUFBXYBmoHkwK6rqwOHw+nTtEkOh4P29nbw+Xyh1JuPHj2Cr6+vyJzXmpqa7GAz4MkgMRUVlW6Dr+bNm4dJkyaxzwXBu7y8XOieb3l5Oby9vSUus7a2NhwdHZGdnQ0AiImJQU5OTrcpXYsXL0ZAQACuXr0q8bWHiqjpZkS8Pgfl9vb2biMFBc8FGXMIIUQSioqK8PX1HfB3R35+fp/zGDAMAy0tLairqyMrKwu1tbWwsrJCTU0NOjo62MF3PdHU1ISfn1+3JC8aGhpCc5UZhoGxsTGuXLnCBuGGhgYkJCTg5ZdflrjMTU1NyMnJwdq1awEAW7du7basrYeHB/71r39h7ty5El93KIlaaIiI16/R1/n5+UILuNfX1wN4MiBB1K8iGgpPCBFHUVFxwJnLZs+e3a+WsouLC7q6uvDo0SMoKCiwrd5Hjx7B1ta2x/zb6urqmDVrlkQj4zkcDt544w38/e9/h4ODAzslytTUVGg+8fTp07Fw4UK89tprAJ4sbTt37lxYWVnh8ePH+OijjyAvL4+VK1cCeJIxS9TgLktLyx5THA8nwQpcRDL9CsoffPABPvjgg27bX3nlFaHngtHZ4qYcEELIYLC0tERERATOnz8v0fcNh8OBnZ0dNDU1UVhYiMrKSvb+cVdXV7dlBp9lZWWFwMDAHucXP+udd95Bc3MzXnzxRdTV1WHq1KmIiooSukZOTg6bahQAiouLsXLlSlRXV8PAwABTp05FfHw8DAwMJH5daRur0/n6i8P0sc/nwIEDfX6R9evXS3RcdHQ09u3bh9zcXNTW1nb71cvhcGR+hHdycjJ8fHxw9+5d6iEgZBjduXMH/v7+6Orq6rXFzOFw4OnpiZkzZ0JfXx+FhYXdjrG0tOw2t1ZeXh6TJ0+Gi4sLDV6SUH19Pa2Z3Ad9bilLGmD76ssvv8TWrVthZGQEX1/fXpdKI4SQp02cOBFHjx7F8uXLwTCMyBazIPOWl5cXWltb8fDhQ8yZM4ddVrAnampqCA0NHVGtVGkTLK4SEBAwqhdXGUwDSrM5mL755huEhITg/Pnzg7KOKiFk7Fm0aBFu3bqFTz75BGfPnhVqMXM4HHh4eMDd3R2PHj2CmZkZysvLkZ+f32P+aeDJXPGgoCB2fWAimfj4ePz0009QVFSkpFISkpn1xGpra7FkyRIKyISQAZk4cSJ+//13HD16lJ2qJC8vj02bNmHTpk2oqamBvLw8VFRUIC8vz2ZPE0VdXR3BwcEIDw+ngNxHglSzBQUFiIqK6vdc9LFGZlrKvr6+yMjIkHYxCCGjQHt7O+7duwculwsejwcOh4OioiJoaGhINKhLS0sLnp6ecHR07NMazuR/BIureHh4jOnFVfpKZoLyd999h1mzZmHChAlYtWqVtItDCBnBBLnHn+6+rqysRGtrq8j5x4IBXcbGxvDy8oKlpSUN5BqApxdk0dbWRlVV1ZhfXEVSMhOUly9fDh6Ph7Vr1+Lll1+Gubl5t1+oHA5HaI1UQggRRZB7/NKlS2hra4OSkhJ8fX1FjqgGnqQKnjRpkswu6DDSPL0gS1paGi2u0gcyE5R1dXWhp6fX64ALQgjpjSD3uOA+MJfLFTnCWk5ODpMnT4arqyu1jAeRuAVZaHGV3slMUJaFHK2EkLFDXl4e4eHhY3YRkKHU3wVZiAyNvpYFn376Kfz9/aGqqkpJ1AkZxeTl5REaGkqBg8gcmWkpC3R2diI9PR319fVCq7EITJs2bcheu6OjA0uXLsXkyZOxb9++IXsdQoj0KCgoIDQ0FObm5tIuChFBkHBkwoQJYzLhiMwEZT6fj3fffRffffcdWlpaxB43lHm0t2/fDgDYv3//kL0GIUR6FBQUMGvWLKHlE8nw6ynwxsfH49ChQ+jq6hqTU6hkpvv6s88+w5dffok1a9bg4MGDYBgG//jHP/D999/D09MTXl5eiI6OlnYxu2lvb0dDQwP7aGpqknaRCCFiBAcHU0AeRh0dHbh161a3tbLj4+MRGRmJhIQEoe2CqVR5eXljNuGIzATl/fv3Y9myZdi1axfCw8MBAD4+Pti0aRMSEhLA4XAQExMj5VJ2t2PHDmhpabGPwMBAaReJECKCjY2NzCxnOFaICr49BV5BwhFPT0824chYIzNBubi4GCEhIQD+t9RXW1sbgCfrra5ZswaHDh3q83W3bt0KDofT4yM9Pb3f5X733XdRX1/PPuLi4vp9LULI4DI2NoaOjg6boUtUq40MDXHBV1zgfTrhiKamJhQVFcdka1lm7inr6emxXb/q6urQ1NREbm6u0DG1tbV9vu7bb7+NDRs29HiMuDVTJaGkpCSUoUZdXb3f1yKEDK6kpCQcPHgQxsbGyMjIGNP3KoebqODr6+srMvD6+voKJRwR5CMfiwlHZCYojxs3Dnfu3GGfBwcHY+fOnRg3bhz4fD7+/e9/S7S82rMMDAxoqTVCxjgHBwf88MMPbKuN0j0OLXGtXoZhxAZeSjjyhMwE5RdffBH79+9He3s7lJSU8Omnn2LatGmYNm0aGIaBjo4OfvnllyEtQ2FhIWpqalBYWIiuri7cu3cPAGBvb08tYEJGKBUVFRQWFnZrtVFreeiIa/XW1dWJDbyUcOQJmQnK8+bNw7x589jnrq6uyMnJwdWrVyEvLw9/f3/o6uoOaRk+/PR4QuYAABgASURBVPBDHDhwgH0+btw4AEBsbCyCgoKG9LUJIUNDV1cXFy9eFNllSq3loSGu1evu7o7S0tIxOwdZEjITlEXR0tLC/Pnzh+319u/fT3OUCRllysrK6F7lMBPX6r127Rrd1++FTAXlrq4uHD9+HLGxsaioqMDHH38MDw8P1NfX48qVK5gyZQqMjIykXUxCyAjR0dGBpqYmLFu2DFwuV2jfWLtXKW3PjsamngrRZCYo19XVITw8HImJiVBXV0dzczO2bNkC4MmI5tdffx3r1q3DZ599JuWSEkJGivj4eFy7dg0vvfQStcykTNRobPo36U5m5ilv3boVDx8+RHR0NHJzc4UWJ5eXl8eSJUtw/vx5KZaQEDKSCFpmxcXFY3K+qyyhOciSk5mgfOrUKWzZsgUzZ84Uua6po6Mj8vPzh79ghJARSdAy8/LyGrPZoaRNkGYzMTEROTk5aG5uxsOHD9Hc3Mze1yfCZKb7ur6+vscUeJ2dneDxeMNYIkLISPV0y0xXVxfV1dV0H1MKBItLzJo1i+YgS0hmgrKdnR2Sk5PF7r948SJcXV2HsUSEkJGKskNJ39MDu+7evYsPP/yQfhBJQGaC8gsvvIC//vWvCAoKwvTp0wEAHA4H7e3t+PjjjxEVFYU9e/ZIuZSEkJGAskNJHw3s6h+ZCcp/+tOf8PDhQ6xcuRLa2toAgFWrVqG6uho8Hg+bN2/G888/L91CEkJGBMoOJV3iBnbR7YPeyUxQ5nA42Lt3L9avX48TJ04gKysLfD4fdnZ2WLZsGaZNmybtIhJCCJEA3T7oP5kJygJTp07F1KlTpV0MQggh/US3D/pP5oIyIYSQkY1uH/SfVIPy0wtQSILD4eD06dNDVBpCCCFEuqQalM+ePQtlZWUYGxsLZfASR1RSEUIIIWS0kGpQNjMzQ0lJCfT19bFq1SqsWLECxsbG0iwSIYQQIjVSTbNZVFSE2NhYjBs3Dp988gksLCwwY8YMREZGorGxUZpFI4QQMkCCNJsdHR3SLsqIIfXc14GBgdi9ezfKyspw4sQJ6Onp4bXXXoOhoSEWLVqEEydOUNJyQggZgeLj4xEZGYmEhARpF2XEkHpQFuByuZg/fz6OHj2K8vJyNlAvX74cX3zxhbSLRwghpA+eXT+ZGleSkZmgLCD4hzx9+jRSUlKgrKwMa2traReLEEJIH4hKs0l6JxNBmc/nIzo6Ghs2bICRkRFWrlyJ1tZW7N27FxUVFVi7dq20i0gIIURCtH5y/0l19PWtW7dw+PBhHD9+HNXV1fDz88Nnn32GZcuWQV9fX5pFI4QQ0k+UZrP/pBqUp06dChUVFcyePRsrV65ku6kLCwtRWFgo8pzx48cPYwkJIYT0FaXZ7D8OI0nWjiEiJ/e/3vPeEoMwDAMOh4Ourq6hLtaAJCcnw8fHB3fv3qUfEIQQQvpEqi3lyMhIab48IYQQIlOkGpTXr18vzZcnhBBCZIpMjL4mhBBCCAVlQgghRGZQUCaEEEJkBAVlQgghREZQUP5/+fn5eP7552FjYwMVFRXY2dnho48+otVNCCGEDBupjr6WJenp6eDz+di9ezfs7e2RmpqKTZs2obm5GV999ZW0i0cIIWQMoKD8/8LDwxEeHs4+t7W1RUZGBnbt2kVBmRBCyLCgoNyD+vp66Orq9nhMe3u7UJL1pqamoS4WIYSQUYruKYuRnZ2N//znP9i8eXOPx+3YsQNaWlrsIzAwcJhKSAghZLQZ9UF569at4HA4PT7S09OFzikpKUF4eDiWLl2KTZs29Xj9d999F/X19ewjLi5uKN8OIaQPOjo6cOvWLRqwSUaMUd99/fbbb2PDhg09HmNra8v+/+PHjxEcHAx/f3/s2bOn1+srKSlBSUmJfa6urt7vshJCBld8fDwOHTqErq4uBAQESLs4hPRq1AdlAwMDGBgYSHRsSUkJgoOD4ePjg8jISKFVrAghI0t7ezuio6ORl5eHqKgo+Pr6Cv2AJkQWUdT5fyUlJQgKCoKlpSW++uorVFZWoqysDGVlZdIuGiGkHxISEpCZmQlPT09kZmYiMTFR2kUipFejvqUsqUuXLiE7OxvZ2dkwNzcX2ifFJacJIf0gaCUrKipCU1MTioqK1FomIwK1lP/fhg0bwDCMyAchZGRJSUlBTk4Ompub8fDhQzQ3NyMnJwcpKSnSLhohPaKWMiFk1LGwsMDq1atFbidEllFQJoSMOmZmZjAzMxO7v6OjA0lJSZgwYQIUFRWHsWSE9Iy6rwkhY058fDwiIyORkJAg7aIQIoSCMiFkTHl2qtTTaXIJkTYKyoSQUUtURi+aKkVkGQVlQsio9Ww3tbipUtRaJrKCgjIhZFQS1U1NU6WIrKPR14SQUUlUN7WtrS1NlSIyjYIyIWTUEddN/eGHH2Lu3LnSLh4hYlH3NSFk1KFuajJSUUuZEDLqUEYvMlJRUCaEjDq9ZfQiRFZR9zUhhBAiIygoE0IIITKCgjIhhBAiI+ie8hhQWlqK0tJSaReDEDIGmZiYwMTERNrFGDEoKA8yExMTfPTRRzLzIWxvb8fKlSsRFxcn7aIQQsagwMBAREdHQ0lJSdpFGRE4DMMw0i4EGToNDQ3Q0tJCXFwc1NXVpV2cMaepqQmBgYFU/1JC9S9dgvqvr6+HpqamtIszIlBLeYzw9vamPwopaGhoAED1Ly1U/9IlqH8iORroRQghhMgICsqEEEKIjKCgPMopKSnho48+okEWUkL1L11U/9JF9d93NNCLEEIIkRHUUiaEEEJkBAVlQgghREZQUCaEEEJkBAVlQgghREZQUCZjGofDkehx9erVAb9WS0sLtm3b1qdrffrpp5g3bx6MjIzA4XCwbdu2AZdDlshy/aenp+Odd96Bt7c3NDQ0YGJigjlz5iApKWnAZZEVslz/jx8/xpo1a+Dk5AQNDQ1oa2vD19cXBw4cwGgen0wZvciYdujQIaHnBw8exKVLl7ptd3FxGfBrtbS0YPv27QCAoKAgic55//33YWxsjHHjxiE6OnrAZZA1slz/P/zwA/bt24fFixfjlVdeQX19PXbv3g0/Pz9ERUVhxowZAy6TtMly/VdVVaG4uBhLliyBpaUlOjs7cenSJWzYsAEZGRn47LPPBlwmmcQQQlivvvoqM1R/FpWVlQwA5qOPPpL4nLy8vH6fOxLJUv0nJSUxjY2NQtuqqqoYAwMDZsqUKUNQQumTpfoXJyIiglFTU2N4PN7gFEzGUPc1Ib3g8/nYuXMn3NzcoKysDCMjI2zevBm1tbVCxyUlJSEsLAz6+vpQUVGBjY0NnnvuOQBAfn4+DAwMAADbt29nuwV76462trYeirc0okir/n18fLotYqGnp4eAgAA8evRocN+kDJPm518Ua2trtLS0oKOjY8DvTRZR9zUhvdi8eTP279+PjRs34vXXX0deXh7++9//IiUlBTdv3gSXy0VFRQVCQ0NhYGCArVu3QltbG/n5+fjtt98AAAYGBti1axdefvllLFy4EIsWLQIAeHp6SvOtjQiyVv9lZWXQ19cf1Pcoy6Rd/62trWhubkZTUxPi4uIQGRmJyZMnQ0VFZUjft9RIu6lOiCx5tvvu+vXrDADm559/FjouKipKaPvJkycZAMydO3fEXnsg3XdjtftaVupf4Nq1awyHw2E++OCDfl9Dlsli/e/YsYMBwD6mT5/OFBYW9ukaIwl1XxPSg+PHj0NLSwszZ85EVVUV+xB0bcbGxgIAtLW1AQBnz55FZ2enFEs8ushS/VdUVGDVqlWwsbHBO++8MySvIWtkof5XrlyJS5cu4fDhw1i1ahWAJ63n0YqCMiE9yMrKQn19PQwNDWFgYCD0aGpqQkVFBQAgMDAQixcvxvbt26Gvr4/58+cjMjIS7e3tUn4HI5us1H9zczMiIiLQ2NiI06dPd7vXPFrJQv1bWVlhxowZWLlyJX7++WfY2tpixowZozYw0z1lQnrA5/NhaGiIn3/+WeR+weAVDoeDEydOID4+HmfOnEF0dDSee+45fP3114iPjx8zX+KDTRbqv6OjA4sWLcL9+/cRHR0Nd3f3fl9rpJGF+n/WkiVLsHfvXly7dg1hYWGDdl1ZQUGZkB7Y2dnh8uXLmDJlikQDS/z8/ODn54dPP/0Uhw8fxurVq3HkyBG88MIL4HA4w1Di0UXa9c/n87Fu3TpcuXIFx44dQ2BgYH/exogl7foXRdBCrq+vH5TryRrqviakB8uWLUNXVxc++eSTbvt4PB7q6uoAALW1td2yDHl7ewMA24WnqqoKAOw5pHfSrv8tW7bg6NGj+O6779gRw2OJNOu/srJS5PZ9+/aBw+Fg/PjxEl1npKGWMiE9CAwMxObNm7Fjxw7cu3cPoaGh4HK5yMrKwvHjx/HNN99gyZIlOHDgAL777jssXLgQdnZ2aGxsxN69e6GpqYnZs2cDAFRUVODq6oqjR4/C0dERurq6cHd377E79NChQygoKEBLSwsA4Nq1a/j73/8OAFi7di2srKyGvhKkSJr1v3PnTnz33XeYPHkyVFVV8dNPPwntX7hwIdTU1Ia8DqRJmvX/6aef4ubNmwgPD4elpSVqamrw66+/4s6dO9iyZQvs7e2HsyqGj5RHfxMiU8RlNNqzZw/j4+PDqKioMBoaGoyHhwfzzjvvMI8fP2YYhmGSk5OZlStXMpaWloySkhJjaGjIREREMElJSULXuXXrFuPj48MoKipKND0kMDBQaDrI04/Y2NjBetsyQ5bqf/369WLrHgCbbW00kaX6v3jxIhMREcGYmpoyXC6X0dDQYKZMmcJERkYyfD5/UN+3LOEwzCjO7E0IIYSMIHRPmRBCCJERFJQJIYQQGUFBmRBCCJERFJQJIYQQGUFBmRBCCJERFJQJIYQQGUFBmZAByM/PB4fDwf79+6VdlDGJ6l+6qP4HHwVlQgghREZQ8hBCBoBhGLS3t4PL5UJeXl7axRlzqP6li+p/8FFQJoQQQmQEdV+TMW/btm3gcDjIzMzEmjVroKWlBQMDA3zwwQdgGAZFRUWYP38+NDU1YWxsjK+//po9V9Q9tQ0bNkBdXR0lJSVYsGAB1NXVYWBggD//+c/o6upij7t69So4HA6uXr0qVB5R1ywrK8PGjRthbm4OJSUlmJiYYP78+cjPzx+iWhk+VP/SRfUvWygoE/L/li9fDj6fj3/84x+YNGkS/v73v2Pnzp2YOXMmzMzM8Pnnn8Pe3h5//vOfce3atR6v1dXVhbCwMOjp6eGrr75CYGAgvv76a+zZs6dfZVu8eDFOnjyJjRs34rvvvsPrr7+OxsZGFBYW9ut6sojqX7qo/mWEdNbBIER2fPTRRwwA5sUXX2S38Xg8xtzcnOFwOMw//vEPdnttbS2joqLCrF+/nmEYhsnLy2MAMJGRkewxgtWFPv74Y6HXGTduHOPj48M+j42NFbna07PXrK2tZQAwX3755eC8YRlD9S9dVP+yhVrKhPy/F154gf1/eXl5TJgwAQzD4Pnnn2e3a2trw8nJCbm5ub1e76WXXhJ6HhAQINF5z1JRUYGioiKuXr2K2traPp8/UlD9SxfVv2ygoEzI/7O0tBR6rqWlBWVlZejr63fb3tuXg7KyMgwMDIS26ejo9OtLRUlJCZ9//jkuXLgAIyMjTJs2DV988QXKysr6fC1ZRvUvXVT/soGCMiH/T9SUDnHTPJheJi1IMj2Ew+GI3P70YBiBN954A5mZmdixYweUlZXxwQcfwMXFBSkpKb2+zkhB9S9dVP+ygYIyIVKio6MDAKirqxPaXlBQIPJ4Ozs7vP3227h48SJSU1PR0dEhNBKW9A3Vv3RR/YtGQZkQKbGysoK8vHy3kazfffed0POWlha0tbUJbbOzs4OGhgba29uHvJyjFdW/dFH9i6Yg7QIQMlZpaWlh6dKl+M9//gMOhwM7OzucPXsWFRUVQsdlZmZi+vTpWLZsGVxdXaGgoICTJ0+ivLwcK1askFLpRz6qf+mi+heNgjIhUvSf//wHnZ2d+P7776GkpIRly5bhyy+/hLu7O3uMhYUFVq5ciStXruDQoUNQUFCAs7Mzjh07hsWLF0ux9CMf1b90Uf13R2k2CSGEEBlB95QJIYQQGUFBmRBCCJERFJQJIYQQGUFBmRBCCJERFJQJIYQQGUFBmZARQtQ6s2T4UP1L11ipfwrKZFTKycnB5s2bYWtrC2VlZWhqamLKlCn45ptv0NraOmSvm5aWhm3btkl98fVPP/0U8+bNg5GRETgcDrZt2zasr0/1T/UvTdKu/4Gg5CFk1Dl37hyWLl0KJSUlrFu3Du7u7ujo6MCNGzfwl7/8BQ8fPuz3Yuu9SUtLw/bt2xEUFARra+sheQ1JvP/++zA2Nsa4ceMQHR09rK9N9U/1P5brf6AoKJNRJS8vDytWrICVlRViYmJgYmLC7nv11VeRnZ2Nc+fOSbGE/8MwDNra2qCiojLo187Ly4O1tTWqqqq6LaE3lKj+n6D6791orP/BQN3XZFT54osv0NTUhH379gl9IQnY29vjT3/6E/ucx+Phk08+gZ2dHZSU/q+9uwdpq4/CAP7cBBurRkzAD1o0N6kQdLGIBEEl6CJVQQelU5sO6hhKFdF0KEKXLqKo0OrgR6AOYicRXVRUWnDqINIqMc2mdTBRlEKx5x3kTblvLG9ClVzj8wMHT87937/PcI9JvNEEVVXh8/liPuheVVU0NTVhY2MDLpcL6enpcDgcmJ6ejvZMTk6ira0NAFBbWwtFUaAoClZXVzVrLC0toaKiAnfv3sW7d+8AAHt7e2hra4PVakVGRgYqKyv/6uKZrGcpzP/3fpOB+f/e740lRCnk/v374nA44u73eDwCQFpbW2V0dFSePn0qAKSlpUXTZ7PZxOl0Sn5+vvh8PhkZGZHy8nJRFEW2trZERCQQCIjX6xUA4vP5xO/3i9/vl/39/egaxcXFYrFYpLe3V96+fSsrKyuyv78v+fn5Yjab5eXLlzIwMCBlZWViMBjkw4cP0T0Eg0EBIBMTE3H/fIeHhwJAXr16Ffcxf4P5azH/25X/VeBQppQRiUQEgDQ3N8fV//nzZwEg7e3tmnp3d7cAkOXl5WjNZrMJAFlbW4vWvn//LiaTSbq6uqK12dlZASArKysx5/t3jcXFRU39+fPnAkDW19ejtZOTE7Hb7aKqqpyfn4uI/i9KzD8W85eYNVI1/6vCl68pZRwfHwMAzGZzXP0LCwsAgBcvXmjqXV1dABDz8llpaSlqamqi3+fm5sLpdGJvby/uPdrtdtTX18fsw+Vyobq6OlrLyspCZ2cnvn37hu3t7bjXTybmn1zMPzVwKFPKyM7OBgCcnJzE1R8KhWAwGFBcXKypFxQUICcnB6FQSFMvKiqKWcNiseDo6CjuPdrt9kv34XQ6Y+olJSXRx28C5p9czD81cChTysjOzsa9e/ewtbWV0HGKosTVZzQaL61LAv/99Dr+0lQvmH9yMf/UwKFMKaWpqQmBQACfPn36316bzYZfv35hd3dXUz84OEA4HIbNZkv4/PFe4P67j69fv8bUv3z5En38pmD+ycX8bz4OZUopPT09yMzMRHt7Ow4ODmIeDwQCGBoaAgA0NDQAAAYHBzU9AwMDAIDGxsaEz5+ZmQkACIfDcR/T0NCAzc1NzYX09PQUY2NjUFUVpaWlCe8jWZh/cjH/m48fHkIp5cGDB3j//j0eP36MkpISzScaffz4EbOzs3j27BkAoKysDB6PB2NjYwiHw3C73djc3MTU1BRaWlpQW1ub8PkfPnwIo9GIN2/eIBKJwGQyoa6uDnl5eX88pre3FzMzM3j06BG8Xi+sViumpqYQDAYxNzcHgyHx3539fj9CoRDOzs4AAGtra3j9+jUA4MmTJ9f27IP5X2D+tzP/K5Hkv/4muhY7OzvS0dEhqqrKnTt3xGw2S1VVlQwPD8uPHz+ifT9//pT+/n6x2+2SlpYmhYWF0tfXp+kRubido7GxMeY8brdb3G63pjY+Pi4Oh0OMRqPm9pA/rSFycY9na2ur5OTkSHp6urhcLpmfn9f0JHJLiNvtFgCXfl12u8pVY/7M/zbn/zcUkQTepSciIqJrw/eUiYiIdIJDmYiISCc4lImIiHSCQ5mIiEgnOJSJiIh0gkOZiIhIJziUiYiIdIJDmYiISCc4lImIiHSCQ5mIiEgnOJSJiIh0gkOZiIhIJziUiYiIdOIfkiutJVP+8AoAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -493,11 +493,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:57:07 2025.\n",
+ "The current time is Tue Mar 25 16:03:07 2025.\n",
"\n",
"Paired effect size(s) for the sequential design of repeated-measures experiment \n",
"with 95% confidence intervals will be computed for:\n",
@@ -527,11 +527,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:57:08 2025.\n",
+ "The current time is Tue Mar 25 16:03:08 2025.\n",
"\n",
"The paired mean difference for the sequential design of repeated-measures experiment \n",
"between Control 1 and Test 1 is 0.48 [95%CI 0.241, 0.749].\n",
@@ -569,7 +569,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeUAAAInCAYAAACm+EFAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/Xd8VPed748/1Ua9994LQogqIbpAiGqqjWk2YOwkm+x3b3Y325J9bDbJTXaTvde7SfbGJcamF9tUgymiF1EkEAIJ9V5HbUZtNH3O7w9+c1aDBAgQIPB5Ph7zQIxGM59p53U+7/J6WwmCICAhISEhISHx0rF+2QuQkJCQkJCQuI8kyhISEhISEiMESZQlJCQkJCRGCJIoS0hISEhIjBAkUZaQkJCQkBghSKIsISEhISExQpBEWUJCQkJCYoQgibKEhISEhMQIQRJlCQkJCQmJEYIkysNMc3Mzv/jFL2hubn7ZS5GQkJCQeMWQRHmYaW5u5pe//KUkyhISEhIST4wkyhISEhISEiMESZQlJCQkJCRGCJIoS0hISEhIjBAkUZaQkJCQkBghSKIsISEhISExQpBEWUJCQkLiuWAwGF72El45JFGWkJCQkBh2Ojo6+OMf/0h1dfXLXsorhSTKEhISEhLDikajYe/evchkMgIDA1/2cl4pJFGWkJCQkBg2TCYT+/fvR6VSsXbtWhwcHF72kl4pJFGWkJCQkBg2srKyqKqqYtWqVXh7e7/s5bxySKIsISEhITEs5OXlcf36dRYsWEBUVBTNzc0IgvCyl/VKIYmyhISEhMQzU1tby7fffktKSgqpqancvn2bP//5z5SWlr7spb1S2L7sBUhISEhIvNoolUq+/PJLwsLCWLBgAbdu3eLo0aNMmjSJ+Pj4l728VwpJlCUkJCQknhqtVsvevXtxcHBg1apV3L59m2PHjpGamsrChQuxsrJ62Ut8pZDC1xISzxEpnybxOmMymThw4ABdXV2sXbuWwsJCjh07xuTJkyVBfkokUZaQeE6UlZXx4YcfcufOnZe9FAmJ58K5c+coLy/nrbfeoqqqiuPHjzNlyhQWLFggCfJTIomyhMRzID8/n3379mFjY8Phw4cpKip62UuSkBhW7ty5w5UrV5g3bx7t7e2cOHGCadOmMW/ePEmQnwFJlCUkhpns7GwOHz7MuHHj+F//63+RlJTEgQMHKC8vf9lLk5AYFhoaGvjmm28YP348RqORU6dOMX36dObOnWshyD09PS9xla8mkihLSAwTgiCQlZXF6dOnmTlzJkuWLMHGxobly5cTGxvLl19+KfkAS7zydHV1sW/fPoKDg3F3d+fMmTPMnDmTjIwMC0GuqqriD3/4g3Qy+oRIoiwhMQwYjUYOHz7MtWvXWLhwIXPmzBEPUDY2Nrz11luEh4ezd+9eGhoaXvJqJSSeDp1Ox969e7G1tSU4OJgLFy6Qnp7O7NmzLQS5traWvXv3EhERQWRk5Etc8auHJMoSEs+ITqdj3759FBYW8uabbzJ58uQBt7G1tWX16tUEBASwa9cu5HL5S1iphMTTIwgChw8fRqFQEBYWxrVr15g9ezbp6ekWgtzQ0MDu3bsJCQlh9erV2NpKnbdPgiTKEhLPgFqtZseOHdTW1rJu3TqSkpIeeluZTMa6devw8vJi586dtLW1vcCVSkg8GxcuXKCoqIjg4GDu3r1LRkYGs2bNsrhNc3Mzu3btIiAggLVr12JnZ/eSVvvqIomyhMRT0t3dzRdffIFCoWDjxo1ER0c/9m8cHBx45513cHZ2ZseOHSiVyhewUgmJZ6OwsJALFy7g4eFBdXU1c+fOZcaMGRa3aW1tZefOnXh7e7N+/XpkMtlLWu2rjSTKEhJPQVtbG59//jl6vZ7NmzcTHBw85L91cnJiw4YN2NnZsWPHDrq7u5/jSiUkno2mpiYOHToE3LfTnDdvHtOnT7e4TUdHBzt27MDNzY133nkHe3v7l7HU1wJJlCUknpCGhga++OIL7O3t2bx5Mz4+PoPeTqFQcOTIESoqKgb8zsXFhY0bN2IymdixYwcqlep5L1tC4onp6elhz549dHR0IAgCCxcuZOrUqRa3USqVbN++HUdHR959910cHR1f0mpfDyRRlpB4AsrLy9m+fTu+vr689957uLm5DbiNIAjk5eXxySefcO/ePXbt2sXOnTtpaWmxuJ27uzsbN25Eo9GwY8cO1Gr1i3oaEhKPRa/Xs3fvXsrKynB0dGTx4sWkpaVZ3Karq4vt27dja2vLhg0bcHZ2fkmrfX2QRFlCYojcvXuXvXv3EhUV9dAdgUql4ssvv+Sbb74hKSmJn/zkJ6xZs4bOzk4++eQTjhw5YmGo4OXlxYYNG+jp6WHXrl1otdoX+ZQkJAZFEASOHDlCdnY2rq6urFy5ckBXQU9PDzt27ABg48aNuLq6voylvnZYCZJj/rCSl5fHxIkTuXXrFhMmTHjZy5EYJq5du8apU6cYP348S5Yswdp64PlseXk5R44cwWQysXTpUhISEsTfGY1Gbt26xYULF9Dr9UybNo2pU6eKxTBNTU1s376dwMBA1q9fL1WtSrxULl26xCeffIKHhwebN29m0qRJFr9XqVRs27YNjUbD5s2b8fT0fEkrff2QRHmYkUT59UIQBM6ePcuVK1eYPn36ANciuB/mO336NDk5OcTGxrJs2TJcXFwGvT+NRsPly5e5fv06Tk5OzJ49m3HjxmFtbU1dXR07d+4kPDycNWvWSP2dEi+FoqIifv3rX2Nvb89f/dVfDTiOqdVqtm/fTk9PD++9995Dayokng5JlIcZSZRfH0wmE0ePHuX27dvMnz+fKVOmDLhNc3MzBw4coLOzk/nz5zNp0qQhmfF3dnZy9uxZCgoK8Pf3Z968eURHR1NVVcXu3buJi4tj1apVg+7IJSSeF83NzfzDP/wDWq2Wf/qnfxpwDNNqtezYsQOFQsGmTZvw9/d/SSt9fZFEeZiRRPn1QK/Xs3//fsrLy1m+fDnJyckWvzeZTGRnZ3P+/Hn8/f1ZuXIlvr6+T/w4DQ0NZGVlUVdXR0xMDPPmzUOpVPLll18yZswYli9fLk3ckXgh9PT08OMf/5i2tjb+9V//dUDIWqfTsWvXLlpbW9m4cSOBgYEvaaWvN1J8TELiAdRqNXv37qW5uZm1a9cSGxtr8fvOzk4OHjxIfX0906dPJz09HRsbm6d6rJCQEN577z1KSko4ffo0H3/8MRMmTGDBggWcOHECOzs7Fi9eLAmzxHNFp9Px05/+lIaGBn7xi18MEGS9Xs++ffuQy+Vs2LBBEuTniCTKEhL96OnpYefOnfT09LBx40ZCQkLE3wmCwN27dzl+/DiOjo5s2rSJ8PDwZ35MKysrRo0aRVxcHDdv3uTChQsUFBQQHBzMjRs3kMlkZGZmSsIs8VwwGo38y7/8C8XFxfz0pz8d0IdsNBr56quvqK+vZ/369RbfCYnhRxJlCYn/P+3t7ezatQtBENi8ebNFOFqtVnPs2DHu3bvH2LFjWbhwIQ4ODsP6+DY2NkyePJnk5GQuX77MjRs36Orq4uDBg9jZ2TF79uxhfTwJCZPJxG9/+1tycnL4q7/6K+bOnTvg9/v376eqqop169YRERHxchb6HUISZQkJoLGxkd27d+Ps7Mw777yDu7u7+LuqqioOHz6MXq9n1apVjB49+rmuxdHRkXnz5pGSksLZs2f59ttv+fDDD2lvb2fVqlXP9bElvjsYjUb+9Kc/cebMGd555x1Wrlxp8XuTycShQ4coLS1l9erVQ/J2l3h2JFGW+M5TWVnJl19+iZ+fH+vWrcPJyQkAg8HA2bNnuXbtGlFRUSxfvnxQB6/nhaenJ2+99RZpaWn8/ve/509/+hMlJSX84Ac/wM/P74WtQ+L1w2g08sUXX3D06FHeeOMNNm/ebPF7QRA4evQohYWFrFq1ivj4+Je00u8ekihLfKcpLCzk0KFDREVFsWrVKtHMo6WlhQMHDtDR0cH8+fNJS0t7aTndkJAQ/uM//oPPPvuMw4cP09TUxOLFi0lPT39oP7SExMMwGo3s2rWLQ4cOMW3aNP6//+//s/hsC4LA8ePHyc/PZ8WKFSQmJr7E1X73kERZ4jvLjRs3OHnyJMnJySxduhQbGxsEQeD69eucOXMGHx8fvv/974+IXkxra2u+//3v4+vry4kTJzh//jx3795l+vTpTJkyRXIAkxgSBoOBL7/8kiNHjpCUlMRf//VfW0x0EgSBrKwscnNzWbp06YBWwCdBLpdz7tw5Fi9ebJEOkng0kihLfOcQBIHz589z6dIlpk6dKlY2d3d3c+jQIaqrq5k6dSpz5swZUa5aVlZWLF++HJPJxN27dwkMDOTixYvcvHmTjIwMkpOTpQptiYdiMBjYt28fJ0+eJCwsjL/8y7/Ew8PD4jbnz5/n2rVrLFq06Kl9Frq7uzl37hx37tzBy8uL3t5eSZSfgJFzxJGQeAGYTCa+/fZbbt26RWZmJtOmTQPuh7GPHTuGTCZjw4YNREVFPdPjqNVqsrOzycvLY8aMGcMW/ra2tmbFihXo9XoqKytZsmQJZWVlHDp0iOvXrzNv3jwiIyOf+XEkXi/MgnzlyhVxCMqD7XyXL1/m0qVLZGZmkpqa+sSPodFoyM7O5tq1a9jb24vC/rQ9/N9VJEevR/Db3/6Wn/70p/z4xz/m97///ZD+RnL0GrkYDAb2799PWVkZS5cuZdy4cWg0Go4fP87du3cZPXo0b7zxxjPNg9Vqtdy4cYOrV69iNBqJjIykrKyMcePG8cYbbwzbzttgMLBnzx4aGhrEucynTp2ioaGBuLg4MjMzn8phTOL1w2z8kZ+fj9FoZOHChcyfP9/iNuaBK7Nnz2bWrFlPdP9Go5GbN29y8eJF9Ho9U6ZMYdq0aRZhcYmhI+2UH0Jubi6ffvrpM+VUJEYOGo2Gffv20djYyJo1a4iLi6O2tpaDBw+i0WhYuXIlY8aMeerdrMFgIDc3lytXrqDRaJg0aRIzZszAxcWFu3fv8s0339De3s7q1auHZcSdra0ta9asYefOnezatYtNmzbx/vvvU1RUxJkzZ/j444+ZOHEi6enp0ozb7zB6vZ49e/ZQVlaGjY0N48ePJzMz0+I2ubm5nDp1iunTpzNz5swh37cgCBQXF3PmzBmUSiXjx48nPT39hXYovI5IO+VB6O3tZcKECXz00Uf8+te/Zty4cdJO+RWmp6eH3bt309nZyfr16wkKCuL8+fNkZ2cTFhbGihUrBuTWhorRaCQ/P5+LFy/S29vLuHHjmDVr1oAcWmNjI/v27cPKyorVq1cTHBw8DM/s/snG9u3b6e7uFif2GAwGcnJyuHTpEoIgMH36dNLS0qRisO8YOp2OPXv2UFtbC4C3tzcffPCBhelNfn4+hw8fJi0tjfnz5w/5pLS+vp6srCzq6+uJjY1l7ty5I6Ig8nVAEuVB2LhxI15eXvzXf/0X6enpjxRlrVZrMZg+Pz+fWbNmSaI8QlAoFOzcuRODwcC7776LlZUVBw8epLW1ldmzZzN16tSnmsQkCAKFhYWcP38ehUJBUlISs2fPxtvb+6F/09PTw5dffolcLmfZsmWMGTPmWZ6aSF9fH1u3bkWr1fLee++Js237+vq4dOkSOTk5uLq6kpGR8UzRAIlXB51Ox+7du2lqasLJyQmdTsf3vvc9vLy8xNsUFhZy4MABJkyYwBtvvDGkz0VHRwdnzpyhuLiYgIAA5s2b98z1FxKWSKL8APv27eM3v/kNubm5ODg4PFaUf/GLX/DLX/5ywPWSKL98mpub2bVrF46Ojqxfv57y8nKysrLw8PDgzTfffCpTfUEQKC0t5dy5c7S2thIfH8/s2bMJCAgY0t8bDAaOHTtGfn4+06ZNIyMjY1jGM/b09LB161bRIrR/iLz/gTQoKIh58+ZJdomvMVqtlt27d9PS0kJwcDA1NTW8++67FgWAxcXFfP3110OeRKZSqcRKf1dXV+bMmSNV+z8nJFHuR319PZMmTeL06dNiLlnaKb+aVFdXs2/fPnx8fFi6dCmnT5+moqKC1NRUMjMznziUKwgCVVVVnDt3jsbGRiIjI8nIyHgqc35zL3RWVhYxMTG8+eabw+Kj3dnZydatW5HJZGzatGlALrmuro5Tp07R2NhIfHw8mZmZ0oD61wytViuOVxw7diw5OTksXryYlJQU8Tbl5eXs27ePhIQE3nzzzUeeFOr1eq5fv86VK1ewsrJixowZTJ48ecgFi7W1tYSFhUni/QRIotyPw4cPs2LFCosSfqPRiJWVFdbW1mi12seW90s55ZdPUVERBw4cICIiguTkZE6dOoW1tTXLli0bMIZxKNTX13P27FlqamoICQkhIyNjWNqOKioq2L9/Py4uLqxdu/aRoe+h0tHRwdatW3FxcWHTpk0DxF4QBO7du8eZM2fo7u5m0qRJzJo1SyoGew3QaDTs2rWL9vZ20tPTycrKYuLEiSxevFi8TVVVFXv27CEmJoZVq1Y99Hhm7oU/d+4cKpWKlJQUZs6cKVrQDoWKigp27drFmjVrSEhIeObn911BEuV+9PT0iEURZt577z0SEhL4x3/8R5KSkh57H5Iov1xyc3M5fvw48fHxyGQy7t69S0JCAkuWLHli4TE7EpWVleHv78+cOXOIi4sb1rP+jo4O9u7dS29vL6tWrRoW0/+Wlha2bduGt7c3GzZsEK1D+2MwGLhx4waXL19GEASxl3okmaVIDB21Ws2uXbtQKBQsWbKEY8eOERAQwPr160XhraurY+fOnYSHh7NmzZqHvteVlZWcPn0auVzO6NGjycjIsMhFD3U9H330Ef7+/qxfv17aKT8Bkig/hseFrx9kJImy0WjkzJkzBAcHExQUhKen52v75RAEgYsXL3LhwgWio6Pp6Oigr6+PBQsWMH78+Cd63u3t7Zw/f5579+7h7e3N7NmzGT169HN77TQaDQcOHKCiooJ58+YNi9FIY2MjO3bsICgoiHXr1j00XN/X18fFixfJzc3F1dWVuXPnkpSU9Np+Tl5H1Go1O3bsoLOzk9WrV/Ptt99iNBr53ve+J/bcmz8PgYGBrF+/ftDPg1wu5/Tp01RWVhIWFsa8efOeenbygQMHKC8v50c/+pHUIvWESKfFrzHd3d2UlJRw7do14P5IwODgYFGkg4ODX4uBBiaTiRMnTnDjxg28vb2prKwkJCSEDRs2PNEZfmdnJxcvXiQ/Px83NzfRYGQ4CrEehYODA2vXruXs2bOcOnWKlpaWZzYaCQ4OZt26dezatYuvv/6a1atXDxqqdHJyYuHChaSmpnL69GkOHDggOoM96PgkMfLo6+tjx44ddHd38+6773LhwgV6enr44IMPREGWy+Xs3LlTnIL2oCA/aIu5Zs0a4uPjn/rErKioiIKCAlauXCkJ8lMg7ZSHmZG0UzbT19dHY2MjTU1NNDY20tjYiEqlAsDd3d1CqIOCgl4pJx6DwcDBgwe5desWdnZ2yGQyZs2axYwZM4Yspr29vVy6dIlbt27h4ODAzJkzmThx4ksJ5ZqNRgICAobFaKSyspI9e/YMqagHoKamhqysLJqamhg1ahRz584dlly3xPCjUqnYsWMHvb29bNiwgbt373L16lXWr19PTEwMAK2trWzbtg0PDw82bNhgUWOg1Wq5cuWKaIuZnp7+zLaYvb29fPTRR0RERLBq1Sop4vIUSKI8zIxEUX4QQRDo6uqyEOmmpiZ0Oh1WVlb4+PhY7Kb9/f1HZK5Rq9Wyd+9ebty4gb29PVFRUaxcuXLIITezP/WNGzewsbFh2rRpTJ48edAc7ItkuI1GSkpK+Oqrr0hOTmbZsmWPPVCae7DPnDlDT08PKSkpzJo164mKfCSeLyqViu3bt6NSqdi4cSNNTU0cPnyYBQsWkJaWBvxP0Z+zszObNm0Sd85Go5Fbt25x4cKFYbXFFASBvXv30tTUxI9+9CPp8/KUSKI8zLwKojwYJpOJjo4OUaQbGxtpaWnBaDRiY2NDQECAKNLBwcH4+Pi81LPg3t5evvjiC65du4a/vz8ZGRnMnz9/SIKq1Wq5fv06V69eRRAE0tLSmDp16rC0JQ0Xw200UlBQwMGDB0lJSWHhwoVDeu/0er1YDGZlZcXMmTNJTU0dkSdo3yV6e3vZvn07arWajRs3otFo2LZtG2PHjmXJkiVYWVnR2dnJF198gUwm47333sPZ2RlBECgpKeHMmTMoFArGjRvH7Nmzhy3EfPv2bY4cOcLatWuJj48flvv8LiKJ8jDzqoryYBgMBlpaWiyEur29HQB7e3sCAwNFkQ4ODsbNze2FCLVSqeTDDz8kPz+f8ePH88477wzpIGD2p758+TJarZaUlBRmzJgxYtuBhtto5NatWxw9epRp06Yxd+7cIb9X/Y0j3NzcmDt37nMtfJN4OD09PWzfvh2tVsvGjRuxs7Pjz3/+Mz4+PmzYsAEbGxu6u7vZunUrVlZWvPfee7i6ulrYYsbExJCZmTmstpidnZ18/PHHJCYmsmzZsmG73+8ikigPM6+TKA+GRqOhubnZIuzd1dUFgIuLi8VuOigoaNhDWPX19fziF7+gqamJFStWsG7duscWqw3Vn3okMtxGI9evX+fkyZPMmTPniYYPwP2q9NOnT1NaWkpISAjz5s0jLCzsqdci8WR0d3ezfft29Ho9GzduxNXVlS+++AKNRsP3vvc9nJ2d6e3tZevWrRgMBt577z2MRiNnz56lqKjoudliCoLA9u3b6ezs5Ic//OErVZMyEpFEeZgZSaIsCAJ3794lODgYb2/v57az6e3ttRDpxsZG1Go1AJ6enha76YCAgKfO2d64cYPf/OY3WFtb87d/+7fMmDHjkc/JZDJRWFjIhQsXUCqVJCUlkZ6e/koWLg2n0cilS5c4d+6cRf7xSaiuriYrK4vm5mYSExOZO3fuE/exSjwZ3d3dbNu2DaPRyMaNG/H09OSrr76isrKS999/H39/f/r6+ti2bRtqtZrVq1dTUFAgtro9T1tM84nexo0bpVnew4AkysPMSBLljo4O/vu//xv4n3aokJAQQkJCCA4Ofqa5wY9CEASUSqWFUDc3N6PX67GyssLPz89CqH19fR9Z8Wkymdi1axfbt28nLCyMX//6148sfjLnzs6fPy/6U8+ZM+eVn2IzXEYjgiBw5swZsrOzWbJkCRMnTnyq+7h79y5nz54VHZ9mzZr13D5T32W6urrYtm0bJpOJTZs24enpyblz57h8+bLYvmTuVTaffBYUFACItpjPa0JYe3s7n3zyCZMmTWLBggXP5TG+a0iiPMyMJFGG+xXGTU1NNDQ0iBfzLtbHx0cU6ZCQEPz8/J5bT67JZKK1tdViN93a2orJZMLW1tYiPx0UFISXlxdWVlYolUp+//vfc+nSJWbOnMnPfvazh4bHHvSnjoqKYs6cOU9tgDASGS6jEUEQOH78ODdv3hRnST8NZm/ky5cvY21tzaxZs0hJSZGKwYaJzs5Otm/fjiAIbNq0CQ8PDwoKCjhw4ABz585l+vTpaLVatm/fzr1798TvzYuomDcajXz++efodDp+8IMfSKNBhwlJlIeZkSbKDyIIAgqFwkKkW1paMJlM2NnZERQUZCHUz9on+yj0ej3Nzc0WrVkKhQK4b6hhPuB3dXWxfv16fvCDHzz0pKGuro5z585RU1NDaGgoc+bMeW1DaSaTibNnz5Kdnc24ceOe2mhEEASOHDnC3bt3efvtt5/Jn7i3t5cLFy6Ql5eHu7s7c+fOJTExUSoGewaUSiXbt2/HysqKTZs24e7uTmNjI1u3bmX06NEsX74cg8HAf/7nf3Lt2jWio6OZPHnyC0snXLx4kYsXL/L+++8P23xwCUmUh52RLsqDYRbH/kLd3d0N3DcX6S/SgYGBz3UX1NfXR2VlJQcOHOD06dOoVCrGjBlDVFTUoEYnSqWSc+fOUV5eLrZGxcbGfifEYDiMRkwmE/v376e0tJR169Y9s/d2W1sbp0+fpqysjNDQUObNm0doaOgz3ed3EYVCwfbt27GxsWHjxo24u7vT3d3NZ599hru7O5s2baKlpYVf/epXVFRUsHDhQtasWfPCokJNTU1s2bKFGTNmMHv27BfymN8VJFEeZl5FUR6M7u5uC5FuamrCYDBgY2ODv7+/hVAPp6d2ZWUlBw8e5M6dO+LBJy4uboDRiVKppLq6GpVKRVBQEHPmzGHGjBnP/aRhpDEcRiNGo5F9+/ZRU1PDO++8Myz2mlVVVWRlZYlDDebOnYunp+cz3+93AYVCwbZt27Czs2Pjxo24ubmh1+vZunUrvb29rFmzhhs3brBr1y60Wi1//dd/TUZGxgs7ETUYDHz66afY2trywQcfPJMDmMRAJFEeZl4XUX4Qo9FIa2urhVB3dHQA9/2T+4t0UFDQE7ft6PV6zp49y5UrV2hra8PX15d169aRmJhocbvOzk7Onz/PtWvXMJlMhIeHI5PJaG1tFY1O/P39BxidPG//6pfJcBiN6PV69uzZQ1NTExs3biQoKOiZ1yUIAnfu3BHH/02ePJkZM2ZIxWCPoKOjg23btmFvby+2PQmCwIEDB7h37x6jRo2irKyMkpISnJ2d+clPfkJcXNwLXWNWVhY5OTl8//vfx8/P74U+9ncBSZSHmddVlAfD7KltFunGxkY0Gg1WVlb4+vpaVHv7+vo+VBjlcjkHDx5ELpej0+lwc3Nj7dq1Fjnhnp4eLl++/FB/aqPROKjRiSAIyGSyAUYn7u7ur1WIeziMRnQ6HTt27KCjo4NNmzYNW7W6Xq/n2rVrXLlyBRsbG7EYbLh2WCaTCZ1Oh06nQ6vVij/rdDoAYmJiXondXHt7O9u2bcPR0ZGNGzeK/ffnz59nz549uLu74+HhgcFgwGQysX79+hfunFVbW8u2bdvIzMxk6tSpL/SxvytIojzMfJdE+UEEQaC9vd1CqFtaWkRhfLAly9nZmWvXrnH27FmcnJzQarXIZDLWr19PYGAgMNCfevr06aSmpg7ZTvNBo5POzk4AnJ2dBxidjFRnr6EyHEYjarWa7du309vby3vvvTesPd29vb2cO3dO7J2dPn06ERER6PX6QQX1YUL74HUGg+GRjzt27FiWL18+ok/C2tra2L59O05OTmzcuFG0xfz222/505/+REBAAMuWLUOj0VBaWspbb73F6NGjX+gatVotn3zyCW5ubmzcuPG1jj69TCRRHma+y6I8GDqdbkBLVm9vLxqNhvr6evR6PcnJyajVary9vdm0aRNeXl7PzZ9apVJZ7Kabmpro6+sDwMPDw2I3HRgY+NKHUzwNz2o0olKp2LZtG1qtlnfffRcnJ6cnFspHXa9SqaisrEShUODu7k50dLSF/7J52pf5Ym9vb/H/h1032PWVlZUcOnToqRzMXhStra1s374dFxcXNmzYgLOzM/X19ezfv5+jR48yevRofvazn3H79m1yc3NZvnw5Y8eOfeHrPHr0KAUFBfzwhz+U6gOeI5IoDzOSKD8aQRC4du0aX3/9NSqVCi8vL/Ly8pDJZIwfP57g4GDUajX19fU4OTkxffr05+pPLQgCnZ2dFiLd1NQkGp2Yw/Dmi5+f34gNhRqNRlH45HI5X3/9Nd3d3cydO5eAgIAnEs/u7m5u3LgBwLhx4x7aG25jY/NEItn/uubmZq5evSoaXsybN++59MpfvHiR8+fP8+abbz7zYI/hpqWlhe3bt+Pm5saGDRvQaDScOXOG/Px8ysvLGTduHH//93/PhQsXuHr16lObvTwr5eXl7N69+6U9/ncJSZSHGUmUH45Go+Hbb7+loKCApKQkYmNjOXr0KEFBQUyfPp2rV6+KLlweHh6Eh4eLBifm0PeLmPdsMploa2uzMDox93Lb2toSEBBgEfZ+GgtTQRCGbedpvs5oNFo8hsFgoKioCIVCQXR0NKGhoTg4OAx516nVajl+/DiOjo6sWbMGd3f3Abd91hMUk8kkFoP19fWRlpbGjBkzhnVilyAIHD58mMLCQjZu3Dhi/Lrlcjk7duzA3d2dt956i5ycHHJzc3F0dESlUuHs7MwPfvADbt26xcWLF1m4cCGTJ09+4evs6+vj448/JiAggHXr1o3oNMDrgCTKw4wkyoNTU1PDoUOH0Gg0vPHGGxgMBo4ePUpsbCxxcXFcuXKFzs5OkpKSmD17Nvb29gOKyLRarWjT2b/a+0WMkdTr9cjlcovWLHP1uYODw4D8tKurK9XV1eTm5qJSqQYIql6vf+xjPk249sHrbW1tyc7OJjc3lwkTJrBkyZInahlrb29n69atYh7xeY231Ol0YjGYnZ0ds2bNYtKkScMWlTAajezcuZPW1lY++OCDl+7V3dzczI4dO3BzcyMuLo6cnBwApk+fjlwup7S0lPfee4+qqirOnj1LZmYm06ZNeylr3b9/P5WVlfzoRz964l743t5eHB0dR2x0aSQiifIwI4myJQaDgfPnz3P16lXCwsJYvnw59+7d4/Tp0/j7+2MymWhvbychIYHZs2c/tOLXfLv+uem2tjYEQcDe3t6igCwkJOSFDFg3W5j2F+ru7m46OzuRy+X09PQgk8lITU0lMTERFxeXIQuqnZ3dsJ5oPIvRiFwuZ9u2bfj6+vLuu+8+1zx7T08P58+f5/bt23h5eZGZmUl8fPywvBZqtZotW7YA8P7777+Qz8hgNDU1ifOQXVxc0Gg0pKSkMHPmTPLz8zl9+jRvvvkmKpWKkydPkp6eTnp6+ktZa2FhIfv37+ett94iKSnpsbcXBAG5XE5ZWRllZWU0NTXx7rvvDvtkqtcZSZSHGUmU/4fW1lYOHjxIW1sbc+bMIS0tjdOnT3P8+HHs7OxwcXEhJiaGOXPmPJXphVarHVBEplKpAPDy8rLYTfv7+z/Xs3VBEKiuruabb74hJydHLGiztrbG39+flJQUkpOTmTBhAuHh4S8lBGg2GgFYs2bNE73mDQ0N7Nixg5CQENatW/fcDVpaWlrIysqisrKS8PBw5s2bNyxWjgqFgi1btognGC/aaKahoYE//OEPNDc3ExERQXJyMhkZGXh7e1NWVsbevXuZPn067u7uHDt27IlnXw8nPT09fPTRR0RFRbFq1aqH3k6n01FVVUVZWRnl5eX09PRgb29PTEwMsbGxxMfHS73pT4AkysOMJMr3BSonJ4fTp0/j6enJypUr8fPzY8uWLZw4cQJfX1/S0tLIyMggIiJiWB+3s7PTQqTlcjlGoxFbW1sLX+/g4GDc3NyGfLAzGo2oVCpaW1uRy+W0tLTQ3t5Oe3s71dXVlJaW0traikajwWQyIZPJ8PLyws7Ojq6uLmJjY0lISEAmk+Hj48OECRMYO3bsc/UWH4xnMRqpqalh165dREdH8/bbb7+QkGRFRQVZWVm0trYyZswYMjIy8PDweKb7rKurY/v27SQlJb3QVqm8vDx++9vfotFoWLRoEYsXLxYtSFtbW9myZQtRUVHEx8dz5MgRJk+ezIIFC16KIAuCwJ49e2hubuZHP/rRgKiCUqkURbi6uhqj0YiPj4+YjgoLC5NC1k+JJMrDzHddlHt6ejh8+DCVlZWiOX5TUxO//e1vKSkpYcaMGbzzzjsvzJ/aYDAgl8sthLqzs1MMe3t7e+Pl5SUWMSkUCtrb2+no6EChUKBUKuns7BTbuMxfF0EQMJlMaDQaDAaD2Mbj6+vLpEmTmDFjBv7+/hQXF7Nr1y4aGhrw9vYmPj4eOzs7tFot7u7uJCQkMGHCBGJjY19Y3+ezGI1UVFSwd+9eRo0axcqVK1/Imk0mE/n5+Zw7dw6NRkNaWhrTp09/pvy2edLS7NmzmTVr1jCudiDd3d189dVX7Nu3D39/f/7hH/7BYrZxX18fn332GTKZjLS0NL755hsmTJjAG2+88dKKqm7dusXRo0dZv349sbGxGI1G6uvrKS8vp6ysjLa2NmxsbAgPDycuLo64uLiXnqd/XZBEeZj5LotycXEx33zzDTY2Nixfvhx3d3dOnjzJ119/jSAI/OVf/iXz589/LgcaQRBQq9WoVCpUKhV9fX3izyqVit7eXrq6uujo6BALtpRKJV1dXfT09KDX6zGZTDg6OuLi4oKLiwv+/v74+/vj7e2Nj48Pvr6++Pr6YjAYKC0tFSuyjUYj9vb2pKamMmPGDBoaGjh16hTZ2dm0trbi6OiIwWDA2toaT09P4uPjxbYjs594WFgYkyZNYvz48cNq2PGo1+tpjUaKi4v5+uuvGTt2LEuXLn1hwqHT6cjOzubq1avY2dmRnp7OxIkTn3pHdunSJc6dO8fKlStJTk4e5tXeT69cuXKFkydPUlBQQGpqKj/96U8tQrlGo5EdO3bQ3t7OrFmzOHnyJGPGjHmpZidKpZKPP/5YDD2XlZVRUVGBRqPBxcVF3A1HRUU9906I7yKSKA8z30VR1mq1nDx5ktu3bzNq1ChmzJhBTk4ON27cEKcF/d3f/d0TTbARBAGtVmshrIOJbf/rNBqNeNFqtWi1WuD+TstgMGBlZYVMJsPOzg4HBwe8vLzw8fHB29sbe3t7DAYDKpVK3BlbW1vj6OgoFo8BlJaW0tzcjJ2dnWh3OGrUKKKiosjLy+PKlSs0NjYik8kYO3YsiYmJojirVCr0ej1OTk5i8ZJaraarqwuNRoOdnR3e3t5MmDBBLA573jNqn9Zo5O7duxw6dIjU1NQXHmLt7u7m/Pnz5Ofn4+3tTWZmJnFxcU/VlnbkyBEKCgrYsGHDsAzigPtCa25jksvlKJVKpk6dyoYNGyyK5ARB4OjRo9y5c4dZs2Zx8eJFEhISePPNN1+KW5a5SOuPf/wj1dXVxMbGYmNjQ1BQEHFxccTGxhIUFCS1RD1nJFEeZr5rolxfX8/BgwdRqVTMnDmTrq4u8vLyMBqNdHZ2EhoaKrp06XS6R4rqg9f177s1G2OYDwjm8LHBYECv16PX67G1tRVF183NDW9vbzw8PPDw8MDd3V30DnZ3d8fZ2Vm8L4PBMKDHV6PRiBXVd+7c4dq1a7S1tYkFara2tuIOur6+nqamJmxsbIiNjSU9PZ3Zs2eL+eKqqiq++uorKisr8fX1xcrKCoPBwMSJE+nt7aW2tpbm5mba2tpQKpXo9XocHBzE0Yfp6emPHBBhY2PzTAVLHR0d7N27l97eXlatWjXk8Y03b97k2LFjzJgxg4yMjKd+/KdFLpeTlZVFVVUVERERzJs374kHaRiNRnbt2oVcLueDDz54piiFIAiUlJRw5swZFAoFAQEBNDQ0EBsby9q1awecYN24cYMTJ06QkpLC7du3X2iu3oxer6e6ulrMDxcWFlJTU8OKFSuYOnUqsbGxL7zu4buOJMrDzHdFlI1GI2fPnuXcuXO4ubnh5uZGSUmJWPBRVVUlunSZi6QG8yh2cnLC0dHR4oBlFtv+vb0GgwFbW1usrKywsrLC1dXVQmQf/HmoYTWzwYZarR7wu6amJvLy8mhubsbFxQW9Xk9paSlKpVI8eQBwdXUlPj6eiRMnEhMTg5+f3wAHso6ODo4dO0ZxcTExMTE4OTlhZWXFokWLcHV1FUPrjY2NlJaWUl5eTnNzM2q1WhyoMWHCBMaPH09QUBDu7u7ibsrR0ZHExMRnEmaNRsOBAweoqKhg3rx5pKWlDWlHdPXqVbKyssjIyGDGjBlP/fhPiyAIYjFYW1ubWM3s7u4+5PtQq9V8/vnnmEwmPvjgg6dqlWpoaCArK4u6ujpiYmKIiYnhzJkzhIeHs2bNmgGCXFlZKRbN1dbWEhYWxtq1a19INXhXV5fYslRdXY3BYMDT0xM/Pz9yc3OZO3cuixYtGpbHksvlBAQEDMt9fVeQRHmYeZVF2WAwWOxaB9vBqlQq2trayM3NRaFQ4OjoKBphmGcrV1RU4Ovry+zZs/H09BRzaA+KrUajobu7m66uLgszDVtb24eKrYeHB66ursO2m9BqteTn54uFWnC/dSg3N5empibc3Nzo6+sTc8i2trY4OTnh4+NDUlISkZGR2NjY0NraSktLiyjU5px0QECAGIbu6enhq6++Ijc3l8mTJyOTyTAYDCxZsmRAkYwgCLS1tZGXl0dOTg4lJSV0dnZia2uLn58fUVFRxMbG4unpiYeHBzNnziQ0NPSZwt0mk4mzZ8+SnZ3NuHHjeOONN4YkEhcuXODChQsvzXEK7q/99u3bnDt3Dq1Wy5QpU5g+ffqQT86USiVbtmzB29ubDRs2DFkcFQoFZ86coaioiICAADIzMxEEgX379hEZGcnq1asH3Fd7eztbtmzB2dmZ7u5ugoODWb9+/XNLVZhMJhoaGsQirZaWFqytrQkLCxOLtDw8PPj8888xGAz84Ac/GJaTg9LSUvbt28fq1atJSEgYhmfy3UAS5WFmJImyIAiDiurDwsUajWbAfchkMpydnXF2dsbJyYnm5mbu3r2LRqPBzc0NV1dXxo0bx/jx46moqODkyZP4+vqSnJwsFld1d3fT/2Pm5OQ0QGz7/9+8i3wRmEXZ2dmZtrY2cnJyqKmpQRAE+vr6KCoqoqenBxcXF0JDQ0lKSmLChAnExMQMWhjV29tLS0sLcrlcvAQFBfHGG29gZ2eHRqNh+/btZGdnM3/+fOD+Tm358uX4+Pg8dJ1qtZp79+5x8eJF8vPz6enpwcnJCV9fXzw9PYmKisLOzg4fHx8CAwMJCAggICCAwMDAJ+4RfVKjEUEQOH36NFevXmXZsmWMHz/+iR5vONFqtWRnZ3Pt2jVkMhnp6ekkJSUN6TWor69n+/btJCYmsmLFikd+Bvv6+rh48SI3b97E2dmZOXPmkJycTGVlJV9++SVRUVG8/fbbA8TNbGDS29uLyWQiICCAd955Z9gLptRqNZWVlWKRVl9fH05OTmKRVnR0tMXn9/z581y+fJkPPvhgWGZpy+VyvvjiC6Kioli9erWUh34CXmlRNhqNfP3116Jf8q9+9SvGjBlDV1cXZ8+eZdq0acM2E3aojCRRViqV/OEPf7C4ztbWVhTZ/hcnJ6dBr7O1tUWlUtHc3MyBAwe4evUqGo0GV1dXAgIC8PPzQxAE6uvrqaysJCgoiIkTJ4ptRoOJ70iavKTVajlx4gS3b9+muLgYvV6PWq1GLpfT19eHt7c3EydOJDU1lYSEhCfqkRUEgZqaGk6dOoW/v78ozAaDgU8//ZTr16+zfPly9Ho93d3dLF++fEhD4zUaDTk5OVy9epXi4mI0Gg2xsbGMGTOGqKgo1Go1LS0tYvTB3d19gFA/rkf7SY1GzGMGb926xZtvvjkk96fnSXd3N+fOnePOnTsIgoC/vz/h4eHixTyr+EHMDlYPc9HS6/XcuHGDy5cvA/dtMdPS0rCzs6OsrIwvv/ySmJgYVq1aNUCQjUYju3fvpry8XPRQHy7rUvPYVHNYur6+XhR98244KCho0AKyxsZGPv/8c2bOnDkszmE9PT189tlnYvGgk5OT1LP8BLyyotzZ2cmCBQvIycnBxcUFlUrF6dOnmTNnDkajkfDwcDZs2MC//du/vdB1jSRRNhgMVFZWWgjtg/aNRqNRDCF3dnbS1dU14Ge5XM7NmzdRKpV4enoyZswYJk6cSEhICG5ubhQXF1NSUsLs2bNZvHjxK/MFLCwsZM+ePVy5cgVBEMQQc19fHwEBAWRkZJCWlkZwcPAjBcwckVAoFCgUCrHHWaFQoNPpcHR0pLW1lYSEBJYsWYKdnR0mk4n//u//5tatW6xYsQKdTkdXVxdLly59ohxcR0cHZ8+epaamhqqqKmxtbUXL0oSEBPR6PS0tLTQ3N4snGnA/D20WaPO/3t7eFgft/kYjS5cufWzbkHnwQ0FBAatXryY+Pn7Iz+N50dXVRU1NDbW1tdTW1op+5d7e3hYi3f9k6/Lly5w9e5YVK1aIIxIFQeDu3bucO3eOnp4e0RbTXDtQUlLC119/TVxcHG+99dag34Hjx49z+fJlrKysCA0NZePGjc9k9WkwGKipqRGFuLOzEzs7O6KiosRq6f4jMQdDr9fz6aefIpPJeP/995/5u9vd3c3vf/97GhsbSUpKQqFQsGHDBiIjI5/pfr9LvLKi/Bd/8Rfs3r2bgwcPMn78ePz8/Dhz5gxz5swB4K//+q+5cOEC+fn5L3RdI0mU4f5O8GFia+7R7f8RcHZ2Fne3jo6OXLp0iZycHJydnVm+fDnLli0Tow8mk4lvvvmG/Px8FixYQFpa2st6mkNGqVRy7tw5vv32WyorK7GyssLW1lZsowoODmb+/PmD5iPNIe3BxNfcfmVjY4Onp6doSuLo6EhRUZG4e0lKSuL9998Xe5f/8Ic/cO/ePRYvXozRaEShULBkyZIhW0qa5xOPGzeOtrY2vv32Wy5fviwWpyUmJjJ79mzGjBmDv78/vb29okDL5XKam5vp7OwE7s8x9vPzs9hVe3t7c+rUqSEbjZhMJr7++mvKy8tZt27diPM87unpEQW6traW1tZW4H40ITw8nIiICMLCwrhy5QoFBQW8++67mEwmsrKykMvlJCYmiraYZsx92+Z2psGE7ebNm+zfvx+dTkdUVBSbNm166G79UXR3d4u54aqqKvR6PR4eHqIIR0REPFFu+uTJk9y8eZMf/OAH+Pr6PvF6NBoNdXV11NTUUF1dzenTp1EqlcyYMYMxY8YQERFBfHz8Uz3X7yqvrCgHBASwefNm/u3f/o2Ojg58fX0tRPmjjz7iZz/7mXjAeVGMJFFWKBT88Y9/FP9vbW09aA7X/LObmxt2dnYIgkB2djb/7//9P1pbW0lPT2fz5s0WfcZ6vZ6vv/6aiooKVqxYMeLm1Panra2N4uJirly5Qm5uLm1tbbi4uODr64ter6e+vp7Q0FAWL15MSkoK1tbWFuLbX4DNeXezEYhZfM2X/lXR5t2vu7s7HR0dnDlzhjNnzuDl5cXq1asZN24cRqORP/3pT1RXV5Oeno61tTXt7e288cYbogXjo+gvyuaTCIPBQGFhIVlZWeTl5dHZ2YmXlxcJCQmkpaWRmJhosfs3h7vNYt3c3Ex7ezsmkwkrKyu8vb3p6emhoqKCpKQkNm3a9Mgh9waDgX379lFbW8u77747YkYlDkZfXx91dXWiSDc3NyMIAk5OThQXF9PQ0EBcXBzjx49n/vz5A96ToqIi9u/fL+ahBxPk6upqtmzZQnt7O4mJibz33nuP3cGaEQSBxsZGsWWpubkZKysrwsLCxPywuc3uSampqWHbtm3Mnz+fKVOmDOlv1Gq1KMI1NTXI5XIEQcDNzY2uri5aWlrYvHkzKSkpUh75KXllRdnR0ZE//vGPfO973xtUlP/whz/wz//8z/T29r7QdY0kUTYajRQVFYni6+Li8lhTgurqaj799FNu3LhBWFgYP/7xjwc8D7Vazd69e2lubmb16tXExMQ8z6fxxAiCQEtLC0VFRRQXF1NRUUFNTQ3d3d2iGYitra04pcfHx4fIyEg0Go0ovuYWKWtrazw8PETx9fb2Fiueza+lOXxt9sJua2ujvb2drq4uBEHAysoKT09PAgIC6Ovr4/Tp06LpyJgxYwgJCeHrr7+mra2NsWPHYm9vT3t7O4sXL36socVgotwfpVLJzZs3OX/+PNXV1Wi1Wry8vIiNjWXs2LGMGjWK0NDQAZ8Lg8FAa2urxa763r173L17F5lMxtSpU4mOjrYIf/fPU+v1enbv3k1zczMbN24cluKhF4FWq6WoqIijR4+Sm5tLVVWVOK0qNjZWDHcHBgZSVFTEwYMHGT16NCtWrBj0u6VQKPh//+//UV5ezrhx43j//fcfW5eg0WiorKykvLyc8vJyVCoVjo6OxMTEEBcXR0xMzDMPeNBqtXz88cd4eHiwcePGhwqoWq2mtrZWFOGWlhYEQcDd3Z2IiAjxUllZybFjx16ZiNlI5sWOSBlGoqOjycvLe+jvs7KySExMfIErGnnY2NgMeQfb1NTE0aNH+fbbbzGZTLz33nuDTgPq7u5m165d9Pb2snHjxidy6XqemHcUxcXFFBcXo1Ao6Ovro6mpiba2NqytrcWWLblcjkajwcPDA3t7e+rq6mhpacHHx0fMmZsF2N3d3WL3YzKZRDN+swi3t7eLIm5vb4+Pjw/h4eH4+vri4eGBUqkUhU2hUODv709ZWRl37tyhsbERJycn/P396evro7q6mpCQELy8vDh27BgLFy58phCwp6cnmZmZZGRkUFlZyc2bN8nJyeHevXviCVtISAiJiYmMGjWKiIgIrK2txQEe/cXUZDJRUVHBtm3bqK6uxsHBgfr6+ofmqTMyMjh+/Di7du1i06ZNQypie5n0r9x2cHDgX/7lXwgNDeWPf/wjKpUKtVrN+fPn0ev1KBQKGhoamDBhAhMnTsRkMg0QZXOlfWFhIRMmTOC99957qCB3dHSIueHa2lpMJhN+fn6MHz+euLg4QkJChtXl6+TJk/T19bFp0yYLQe7r6xNFuLa2VhRhDw8PIiIiSEtLIyIiwuJ5VFVVcfz4cVJSUl5aS9zrxCu7U/7973/PP/7jP7Jjxw4yMjLw8/Pj7NmzTJ06lV/96lf89re/5c9//jPvv//+C13XSNopD4W2tjbOnTvHuXPnaGpqYvTo0fzwhz8cdIfW3t7Ozp07AXj33Xcf2cLzIjCZTNTX14s74u7ubmQyGWq1mrt371JXV4cgCPj5+eHl5UVPTw8qlYqwsDCmTZtGXFwc7u7utLS0EBQUNGD3odPpBux+Ozo6RPcvV1dXfH198fHxEb2xXV1dHxm20+l0tLS0UFhYyKlTpzCZTDg7O9Pa2irurM2TrAICAujq6mLBggUPjUY8bqc8GL29vdy9e5dbt25RVVWFWq0Wnco8PT1JSEgQrUMHC8f2NxrJzMxk9OjRA8Lf5rSR2dzD3t6e9evXEx8fj7+//3O3D30SjEYjeXl5XLhwQexxnjZtmlgV3dDQwLZt2xg1ahTLli3j3LlzfPnll7i5ueHj4yO6yYWEhIg76aCgIPbu3cs333zD2LFj+cu//EuLnK3RaKS2tlYUYoVCga2tLZGRkWJ++FmnYT2M0tJS9u7dy9KlS4mPjxdD9+adMNw/mYuIiBDz7A9bS1tbG59//rk40vNl2IO+bryyoiwIAt///vf5/PPP8fDwoLOzE39/fzo6OsQG+I8//viFr+tVEWWlUin2WdbX1+Po6Mj8+fNZtGjRoAf3xsZGdu/ejYuLC++8886Qc2LDjflgdufOHfLy8mhtbRUnPjU3N1NeXk5XVxeOjo6MGzeOSZMm0dXVRVtbGxERESxfvtyiKlir1XL79m3gfqXug+FnuB/C9vLyshBgHx+fZ25laWho4OjRo7i7uzNmzBgKCgo4duwYcrkcR0dHHB0dRUMQs8vWgwUzTyPKZsytbLdv36agoAClUolMJhOL38we3aNGjSI6OnqA69q5c+e4cuXKoEYjGo1GFOjq6mqOHDlCV1cX48aNw9HRER8fH4tddUBAwDNVIj8NgiBQWlrK6dOnUSgUjB07ltmzZw/qBnbv3j2+/vprgoODaWpqYty4cSxdulRMlfQvHuvr66O8vJx79+4RFxfHj3/8YyZOnIjBYLAo0tJqtbi5uYktS5GRkc/9ZKWtrY3f/e53WFtbEx4eTltbG3B//rhZgCMiIobkiKZSqdiyZQt2dnZs3rx5WFq7JF5hUTZz5coV9u/fT3l5OSaTSfSPnTlz5ktZz0gX5Z6eHi5dukReXh59fX309fXh7+/P8uXLHxruNxsi+Pv7s27duhc6sFyv19Pc3Ex+fj63b9+mpKQEpVIJ3D+QWFtb09vbS2NjIwaDgaioKFauXMnChQvJyckhNzfXwtwB7u/4zeFksyiZTCZsbGzE8LN55+vj44OXl9dza/MyC3NgYCCLFy/GZDLx6aefUlJSQnd3t5gHt7W1JTo6mqioKNEpzJzH1Wq1TyXK/dFqtRQWFpKXl0dDQwOCIODq6ipWnMtkMuLi4hg1ahSxsbFir/lQjUa6u7v57LPPUKvVpKeni612crncop/6QaF2d3d/LgVD/W0xo6OjyczMfGwr2hdffMGOHTtYsWIF/+t//a9B12U2UvnNb36Dg4MDiYmJKJVKFAoFJpMJDw8P4uPjSU1NZezYsfj7+z/Xgiizt7q5OvrixYt0dnYyf/584uLiRBF+0pNsg8HAjh076Ojo4Hvf+96gO2mj0UhTUxP+/v4jyptgpPPKi/JIY6SKcl9fH9nZ2dy4cQNra2tkMhldXV3ExcWxfPnyhx5MCwoKOHTokGiI8LzO5A0GA+3t7bS2tooFRsXFxVRWVtLe3o7RaMTb21s0QdDr9VRUVNDY2AjAqFGjWLNmDaNHjyY3N5dLly6h0+lITEwkKChIFOLW1lbRg9tcPd3T00NISAhBQUG4uLi88KrRB4VZrVbz1VdfYWtrS1dXFzdv3gTut6ulpKTg7u5Oa2srRqNRrHydMmUKkZGRhISEPLOQtbS0cPv2be7cuYNarcbT0xMXFxfUajXt7e3Y2dkRExPDqFGjiIuLo6OjY0hGIwqFgq1bt+Lo6MimTZtwcnLCZDKhUCjEXbX534flqQMCAvDx8XnqMKlCoeDs2bPcu3cPf39/5s2bN6QBHLdu3eKbb75BEARsbW3ZsGEDERERA25XWlrKX/3VX6HX65kyZYrYzeDi4oKdnR16vV58bj4+PmKIODw8fFiiT+aWL3NhVnt7O4DYwlVUVMSmTZueKfcrCAIHDx6kuLiYTZs2iXUlRqOR5uZm8QSgvr4enU7H2rVrR0TP+quCJMrDzEgTZa1Wy7Vr17h27RqCIBAfH099fT29vb1kZmaSmpr60AO4eYrNuHHjWLJkybDsFg0GAx0dHbS2ttLW1ib+q1Ao0Ov1dHR0iEU15klJEyZMIC4ujra2NgoKCqitraWtrQ1bW1uSkpJYsGABISEhXL58maysLFpaWkTBlclk2NjY4OfnJx7UAwIC8Pf3x8HBwcJm82nP5s3V1+adrfmiUChoamoSB1SYQ9KOjo7iIA4nJyccHBxQKBScPHlSFOa2tjYOHTpEYmIiDg4OHDx4ELlcDsCsWbNYtmyZ6GlcW1uLTCaju7sbuO+7bc5Lm082nua5medG5+XlUVlZib29PeHh4Tg5OdHa2ipOxoqOjiYsLIy7d++iUCgeaTTS1tbG1q1bxarfwXb3giDQ09NjIdTmEYhw35Wuf7TA/H4+6oSxr6+PS5cuDYicDEXcc3Nz+fbbb0lNTWXevHns2bOHpqYmPvjgA3x8fFAoFJSXl3Pr1i0++eQT9Ho9q1atYvr06cTFxREaGmrx3enu7rYId5tDyJ6enhaGJp6eno89uerp6REFuKamRjRHMQu+WfQFQeCjjz4iNjaWN99887HP+VFcvHiR8+fP8+abb+Ll5UV1dTU1NTXU1dWh0+mQyWSEhYURGRlJREQEgYGBUq75CXhlRTkyMvKxH1grKysqKyuHfJ8ff/wxH3/8MTU1NQCMHj2an//85yxcuHDI9zGSRLm9vZ0vvvgCnU7HpEmTsLW15dq1a/j6+rJy5cqHVsMKgsC5c+e4fPky06ZNY+7cuU+88zIajXR0dIjC2198TSYTcL9QysPDA41GQ2dnJ0qlEgcHB8LDw8VCo6amJu7cuUN9fT1qtRqtVotarcbb25uIiAjs7e0pLi7m3r179PT0EBQUJI6c67+zetgJxVBEWRAEcXjGYJeenh6L0Y8mk4nu7m6am5vRaDSEh4czceJEcdZzX1+faDbSH5VKRWVlJT4+PkyePBmlUklRURGpqam4u7tz/fp15HK5OMRgxowZJCUl4ebmxvjx4zEYDDQ2NtLQ0CBezOMu/f39LYTa29v7id7Tzs5Obt++ze3bt+nu7sbf35/Y2FhsbW2pqqqivr4eQRDo7Oykr6+PN954gzfeeGPQg7FcLmfbtm34+fnxzjvvDPmEwZyn7i/WbW1tYj/1YHlqOzs7cnJyuHz5MoIgWNhiDoWcnByOHz9OWloa8+fPx8rKCpVKxYcffkhzczMxMTHi+3/58mV0Oh3/8R//wfTp04f82qpUKoteaXPvr6urq4VI+/r6Wohwf4cyX19fCxHuX3sgCAK7d++mpaWFH/3oRwPST4ONLh0Mk8nEhQsX2LdvH0FBQTg5OaHVapHJZISGhlq0i9nY2KBWq7l27RpTp059rvnmZx1dOtJ4ZUX5wVJ++J8ioOzsbJKSkhg/fjxbt24d8n0ePXpUnIkrCALbt2/n//yf/8Pt27cZPXr0kO5jJImyVqvlV7/6FcnJyVRXV9Pd3c3s2bOZPXv2Qz/EJpOJY8eOkZeXx7x585g6deojH8PsQtV/19va2kpHR4covmajDj8/P/z8/HBycqKjo4Pq6mqqq6sRBIHQ0FASExOJj4+nra2NO3fucO/ePXH3Z658tra2JjQ0FF9fX2QyGS0tLXR3dxMdHc3y5ctJSkp6IrExi7JMJkOj0YguZw/+q9PpxL+RyWTi6Ejzv46OjuK6KyoqUKlU4vVVVVUkJiayefNm0Q3NaDSiVqsHXOrq6rh06RIuLi4kJCRQXFxMbW0tMTExWFtbU1paikqlQq/Xizttd3d3ZsyYwahRo3BxcREtVR0dHdFoNCiVStrb28X2MEDs1w4JCSE0NJTg4OAhHThNJhNVVVXk5eVRWloKIIaxNRoNRUVFXLlyhcrKSuLi4njnnXcYO3bsgNBsQ0MDO3bsIDQ09JlGFpr7qfsLdUtLi/h+2dnZYTQamTRpErNmzRowUvNRXL9+nZMnT4oTpyoqKigrK6OyspLOzk4KCwuJjIzkgw8+4IsvvuDevXv88pe/ZNq0aU/1XMxoNBrq6+upra2lqKhIrKPo6+vDzs4Od3d3YmJiGDNmDJGRkY/08ob/mXv9zjvvDKjif9ToUpPJREdHB83NzWIRZVFRET4+PqSlpREUFERgYOCAk169Xs/169e5du0aXV1dvPPOO4waNeqZXpNHMRyjS0cSr6woP4o7d+4wf/58du3axdy5c5/pvry8vPg//+f/DLm1aiSJcnd3Nx999BEXL14UzSrCw8MJDg4mKCiI4OBgAgMDxYOxXq/nwIEDlJWVsWzZMtH3F/6nP/fBsLM53wv3c55m8e3/r5OTE93d3RQXF1NUVERdXR1WVlZEREQwatQo4uPjkcvlXLp0iVu3btHW1oaVlRU2NjaoVCp6e3sJCAhg6tSppKSk4ObmRmlpKQUFBbi5uTF37lxGjx79SDE2Go10dXWhVCrFXXlnZyetra0UFxdjNBrFA4uNjY04AcssvOaZ0W5ubjg4OIiPJZfLuXDhAjdv3qS9vR1nZ2ciIyNJSUkhNjYWPz8/Tp8+zYEDB3Bzc2POnDmkpKQ8clBK/xzzwoULOXHiBHK5nDfeeAOVSsW3334rvoa+vr6iSDs4OBAYGIiHhweDfa0dHR2RyWTodDrUajW9vb3iBC87OzsCAgKIiIggOjqa6Oho/Pz8Hhl2VKlU3L17l7y8PNra2vDw8BD7anNyctizZw8qlUo82TL3QpuLgqqrq9m9e7dYrzBcxXT989QKhYLRo0db2GIOhatXr3Lw4EECAwNxd3ensbERQRAIDg4WW5aMRiPbtm3j3r17yOVy/u7v/o433njjmdbe2dlpkRNWKpUYjUZkMhm2traYTCa0Wi3W1tbY29sTFhZm0Yb14GuoUCj45JNPSE5OHnRt/UeX2traijO9m5qaaGpqQqfTYWtri5ubG2VlZYSGhrJu3boBaYfe3l7q6+vJycnh5s2bqFQq/Pz8mDhxIrNmzXpuPeo6nQ69Xv/MhY4jiddSlAH+9V//lWPHjnHr1q2n+nvzBKqNGzdy+/bth1Yma7Vai1Bkfn4+s2bNGhGi3NbWxkcffcTo0aOZPn06HR0dNDU1iV86827CXGlcUFCAVqtl5cqVeHp6DhBfc4GUo6OjhfCaf35wF2IOv5rtCm1sbMQck4uLC3K5nFu3blFYWIhSqcTOzk4Mg/X29tLT00N4eDiLFi1izJgxGI1Grl27xpUrV7C2tmbmzJmkpqZia2sr5iEfFF3zv/3HR1pZWYnWoi4uLrS1teHn54e3tzdubm44Ozs/UuB7e3u5cuUKV69epaamRsyrpqWlMXbsWHx8fAb8fVFREV999RWCIIih99TU1IdW/PYX5oyMDA4fPoy1tTWrVq1Cp9Nx7NgxiouLsbGxYdKkSSxZsoS8vDyKiopwcHBg4sSJjBo1ymJ852AjO3t7e+no6ECpVIrheJVKhSAIODo64uvrS2BgIEFBQYSFheHt7T1gopiTkxNtbW3cvn2be/fuodfrxUrxq1evUl9fT0REBCqVCoPBQFBQkCjQCoWCffv2iTaVLzP3qNfrqaqq4siRI5w9exZ/f3/i4+NFJ63Y2NgBYeGf//zn7Ny5k7fffpv/+I//eOLH7OzstMgJm/u7/f39LcLR/dvFDAYDTU1NYrjbnMu1s7Mb0Cu9e/duenp6+OEPfzggTSAIAnV1dZw5c0as89BqtdjY2BAYGChGUtzd3Tl8+DBGo5FVq1bh6OiIVqulsbGR+vp66uvrqa6upqGhAbgfOZk7dy7x8fHPvcXrWVoCRyqvrSh/9NFH/OQnPxk0LPMoCgoKmDJlChqNBhcXF/bs2cOiRYseevtf/OIX/PKXvxxw/UgQZbi/kxvswG80GqmqqqKoqIiCggKysrJob2/H09NTnKFsFo/o6GhiY2Px9/cXi5YeJlpmn+mioiIaGhpE5yxXV1dsbGzECuuWlhb6+vpwdXUlMTGRyZMnExoaSn5+PhUVFfj6+jJr1izxZCg/P5+srCw6OjqIiYkhJiaGvr4+Ojs7xUv/vJiLiwseHh6iJWb/f93c3MQdxVALvXp7e8nPzyc7O5uSkhL0ej2hoaGkpaUxffr0Ie3ECgoKOH/+PP7+/uj1epRKJaGhoaSkpAxasdxfmKdOncrhw4fFQjCDwcDx48fJzc3FaDSyYcMGli1bhlKp5Pr162Lv9fjx45kyZcojvaoFQUCr1YpCrVQqqauro66ujvr6epqamuju7hZNMhwcHMTogdm61cbGBicnJ2QyGZ2dnTQ3N9Pd3Y2Tk5O421qwYAGBgYHU1tZSVVWFwWDA398fJycnCgsLmT59OkuXLn2h1e+dnZ1i73B1dTWVlZXI5XJmzZrFqlWriIiIGHQHLwgC+/bt47PPPmPUqFH4+PiwfPnyR86SNufc+4twV1eXmPM3i3BYWNgT9WybTCbkcrlF8ZharaaxsZHW1lZWr15NSkoKoaGhdHV1iYVZtbW19PT00NbWRmhoKBEREQQHB+Pv7y+Ggo1GI0ePHqWlpYUZM2bQ3d1NfX296PRlZWVFV1cXer1enE72IsflSqL8itDR0cG8efPEiSpPgk6no66ujq6uLvbv38+WLVu4ePHiK7lThvsHgu7ubouwc2trK+3t7eh0Ovr6+igqKsLJyYlFixbh5eWF0WhEq9XS0dFBe3u7GN4075iCg4MJDg4WD/RyuZzc3Fxu3rxJXV0dGo1GrDL29vbGzs4OmUwmjje0s7MjPj6eSZMmiePdLly4QHFxMc7OzowePRofHx+6urooLS3l+vXrtLW14e3tTWRkJI6Ojjg4ODxUdD08PIZ8hv4oUVYqlZSXl3Pjxg2Ki4vp6ekR5yvPnj3bwmLUvCPt6ekRL729vajVamJiYoiOjsbKyor8/HwuX75MamoqXl5e5Obm0tHRQXBwMCkpKYSEhFiIUn9hHjNmDCdOnGD8+PFMmzYNo9FIVlYW58+fx8PDg+XLl7N06VJxoEZOTg45OTmo1WoSExOZOnXqkKdPDfYZqq+vp6Ghgfr6evF9NplMFgNNnJ2dxddCLpdTUVEhVhhrNBoiIiKYNGkS9vb24klV/6jGxIkTWbFiBRERERb58eHKF5or1s1OWq2traKRhkqloqamhkWLFj12rvC3337LH/7wByZNmsQvf/lLTp48ye3bt3n33XfFMYWCIKBUKi0Ks8wibE4VmEV4OHv/BUHg3r17/PGPf8TZ2VnsF+7q6sLBwQFPT09GjRrF+PHjiYyMpL29fcCcc/N85iNHjnDnzh1CQkJwcnLC3t6e0NBQPDw8aG5uprGxES8vL6ZOnUpERMQLbyeURHkEYR488SCdnZ2UlJSg0+nYuXMna9eufabHmTt3LtHR0Xz66adDuv1IyikrlUo++eQT8aRBJpNZ5HoFQeDs2bN4enqyYcOGQV18dDqd+OVramqivr6exsZGWlpaaGtro7u7G41Gg729PYGBgURFRTF69GiCg4PFgi5zbszZ2ZmYmBiCg4OxtramvLyca9euUV1djY2NDUFBQeLEG41GQ3NzMz09PYSFhZGenk58fLwovMNVzdlflO3s7Ghra6OyspLCwkLR/tDZ2ZnY2FgmTJhAcHCwKL7mEHt3dze9vb1iYZv5tXZxccHW1pbW1la8vLxITU0VPduvXbvGtGnTGD9+PFVVVeL0qsDAQFJSUggLCxMPcP2FOTg4mOvXr5OZmUlCQgJarZZLly6Rn5+PWq1m+fLlrFy5UgwD6/V68vPzuXbtGgqFgoiICLE6/VkOoAaDAblcblHpbQ69urm5WVR6e3l5UVxczMGDB7lw4QJOTk6kp6cTFxeHo6OjWFFs9uR2dnYmMDAQX19f0brUwcFhQNi8f/j8wf/3392q1WqxSKuiogK1Wi2+p3FxcURFRXH9+nUuXLjA7NmzmTVr1iOf+4ULF/jwww+JiIjg3//933FxccFoNLJ7924qKiqYOXMm3d3d4hAUKysrAgMDLXqSn0c1siAI4uf3iy++oL29nTFjxmBraytGwPqfPML9mhmDwUBkZCReXl4olUrx5KuyspKGhgYmT55MWloaoaGhODs7c/PmTQoLC3FycmLy5MkkJCQMSDsIgkBDQwN37txh5syZz80BUBLlEUR6evqAg4p5Gk90dDSbN28mISHhmR9nzpw5hIWFsW3btiHdfiSJstFo5Pr166IQ9zeVqKqqYt++ffj5+bFu3bpBw2UajYaWlhbkcjlNTU3isAezWNra2uLl5YWbm5sYonZwcECtVtPW1iYOXff19cXd3R1bW1usrKzo7u6mrq6O3t5efH19SUlJITk5GW9vb2xsbLh79y4lJSV4e3uTmZlJfHz8czsDV6vVnDx5kvr6esrKysReT4PBIPb7DuZW5OzsjKurKy4uLmJRmIuLixjWNdtVwv1hH7m5udTV1eHl5cWkSZNob28nLy+PWbNmkZycjCAI1NTUcPPmTeRyOf7+/qSkpIi7j/r6eo4dO0ZgYCCOjo5UVlaycuVKvLy8UKlUoii0tbWxfPlyVq9ePWCQRklJCVevXqWhoQFfX1+mTp0qHrSHg97eXguRbmxsRK/XY21tTUBAACEhIWi1Wo4ePUp7e7uYhpgwYQLJyck4OTlx6dIlvvrqK3x9fTEYDHR1dSGTyQgKChJTJ2q12iIvbnYE64+jo6O4wzaHWgMDA8XcsHl0pSAIXLhwgYsXL5KRkcGMGTMe+RyvX7/Ohx9+iJubG7/+9a+xs7MTd8Hl5eVcvnwZk8nE4sWLRcessLCw5ybC7e3tFuFwlUpFbW0tSqWS9evXM2nSJEJCQgZEjrq6uigrK+PatWtcuHCBtrY2tFotDg4OYstce3s7c+fOZcaMGeh0OtHaFmDixImMHTt2wP3qdDpKS0vFnnVvb28yMjKeW0hbEuXXnJ/+9KcsXLiQsLAwenp62LNnD7/73e84deoUmZmZQ7qPkSTKD+PevXscPHiQyMhI3n77bezs7Oju7hZ7QM2Xjo4OMayoVqvFM+7Y2FhiY2Nxc3Oju7ub9vZ2SkpKKCgooLm5GbVaLVYwe3t74+/vT2hoKO7u7mIfq3n3O3r0aKytrS0m9NjZ2ZGens7EiROHpSLXZDKJ7U2dnZ0oFArKysooKSmhoqJCLJQBxJOIyMhIoqKiLKqvzaJr3gE/KXK5nJycHGpra/Hw8BBz7JmZmWLLiNmPOicnh+bmZvGkJSoqioaGBo4dO4a/v794MFqxYgVWVlaMGzeOmpoaPv74Y2pra1m+fDnr168fsE5zcc/Vq1cpLS3F1dWVtLQ0Jk6cOOzCYTKZaG1ttRDq9vZ2tFotZWVl9PX1ERkZib29PW5ubiQlJTFhwgRqa2u5dOkSCxYsICAgQCwW7OnpwcXFhVGjRllMtDKnYR4sYlOpVGi1WoKDg8XP64OvhbkfPzMz87GtTDdv3uTDDz+kq6uLzMxMjEYjvb29WFtbizthLy8vTp8+jY+PDxs3bhzWQidBEMTIkzkvrFKpsLa2Jjg4WHwtT548SWZm5gCrYYPBQENDA1VVVVRVVYknTX19fWJ42mg0Ul1dTXZ2Nu7u7owdOxaTyURbWxsymYzU1FRSUlIGhNu7urq4e/cuxcXF6HQ6oqKiSE5Otpjb/TyQRPk15/333+fs2bM0Nzfj7u5OcnIy//iP/zhkQYanE+WhNu8PBzdu3ODQoUMEBASQkJBAW1sbLS0tYkGcjY0NOp1O7G01GAw4Ojri4eEh9sWaMZlM9Pb2olAoxGKVCRMmiEVbPT09NDY2cvfuXS5dukRFRQUODg5ERkaSmJhIaGgoAQEBdHR0cPfuXdGasP+EnqGg0+no6uoSL52dnRb/7+7uRqfToVAoaG9vp7u7WzQcMHtnBwQEkJyczIQJEwbkdYeblpYWcVZva2srNjY2rF271iKyYw7/3bx5k4aGBry9vUlJSUEmk3H8+HG8vb3p7e3F3t6eefPmiXnahoYG/vjHP1JUVMSSJUvYvHnzQ4Whra2Nq1evcvfuXWxtbZk4cSJpaWnPddiIWq0WXciOHTtGYWEhvr6+ODo60tfXh5WVlZj60Gq1rF27lnHjxomvR1FREUVFRXR1deHk5ERCQgKJiYlERkY+0QmcIAicOXOG7Ozsh/bj99+JXrhwgUOHDtHT08OkSZOYNm2amBMODQ21EITGxka2bdtGXFwcb7311lN/lgRBQKFQiAJcU1MjngQEBwdbPL5MJkOv1/PJJ5/g4ODA+++/j5WVFS0tLaII19bWotfrcXJyIioqiqioKIKDg6mpqRFrKnp7e/nqq6+QyWQEBgaSnZ1NU1MTDg4OYh1J/3ZKtVpNQUEBNTU1yGQykpKSREObF4Ekyi+RHTt2PNXfbdiwYZhX8mieVJQf1bz/rPT29nL06FGxsra2tpbGxkbRSUsmk2Fvb4+trS19fX1igZK5HcbHx4fQ0FCxV9PV1RWZTIZCoaCxsRGlUom9vT0JCQksWbKE8PBwiwNQU1MTFy5coKysDG9vb6ZPn46/vz/Nzc00NDRw+/ZtcnNzUalUBAUFkZaWRmxsrPilN1c09/X1DSq25v+bvYThfgrD/PwcHBzEnXxHRwe2trb4+vpia2srtkgFBgbi7OxMUlLSExlLDAetra3k5ORw5swZent7efvtt8nIyBggLk1NTeTk5FBfX4+XlxchISHcu3cPV1dXlEolwcHB/M3f/I14ItPR0cHvf/97bt68yYIFCwZth+lPT08PN27c4ObNm+h0OsaMGcPUqVOfexWtIAhcu3aNw4cP4+7uTnx8PGVlZRQUFNDS0kJHRwd2dnYsX76cN998U2wNEgSB5uZmUaAVCgUODg4PnWg12OOePn2aq1evsmDBAtLS0sTr29raLAqzVCoV7e3tlJeXYzQaWbZsGd///vcfKwDFxcV89dVXTJ8+nYyMjCG/HgqFwiIc3dPTg7W1NUFBQRaFYYO9nydOnODKlSvMmTMHpVJJdXU1KpUKOzs7wsPDRSHuPwSjf00FwIEDB8SiSoVCQWhoqFi9L5fLaWxspK6ujqKiIpqamtDr9QQGBoondGY3rxeFJMovkafpX7SysnphO1AzTyrK/Zv3h3uSSm1tLT//+c/R6/X09PSgVqtxcXHB3d0da2trNBoNer0enU4ntrR4eXnh4+ODu7s7dnZ2Yt7NXDnd1dWFtbU1Pj4+BAcH4+Pjg52dHbGxsWJLTFdXF4WFhWJlZlpaGomJidjb2yOTyejo6ODSpUs0NjYSHh5OTEyMRauGuVLXaDRiZ2cn5m/NoWMPDw+x4tfd3d3iZ5PJRHl5ueiEBYihOXOI3t7enuTkZCZOnIiHh8cze18/Ky0tLWzZsoXS0lLGjx8vhrMfPLiZq9xramrEyl4fHx96enpYv369xcG/t7eX//7v/+b8+fPMmTOHv/mbv3nsQUur1ZKXl8f169fp6uoiJiZG3BE+z8hBRUUF+/fvx8XFhbVr1+Li4kJNTQ2XL1/myy+/pKqqioCAADHCMmrUKLGIzM/Pj/b2dlGgzWHWwSZawX3hO3XqFNevX2fhwoVERERYiHBfXx82NjbiTtRgMHD+/Hmam5tJS0vj/fffH3JI+urVq2RlZbFs2bJBW6UerM7uXxj2oAg/7L1Tq9VUV1dz9epVDhw4QHBwsOjQZhbhkJCQh6ZbzMcfR0dHjhw5wo0bN/D39ycsLIypU6daFBx2dXVRUFBAUVERGo0GLy8vvLy80Gq1tLS0iC1z5i6NoKAgAgICnqvTliTKLxHzAfZJCQ8PH+aVPJqnFeXnIQoqlYrPP/+ctrY2ent7mThxIp6enhY7Rz8/P8LCwggLC8PZ2Rm9Xo/BYECv19Pa2ir2b/b19eHm5kZQUJDYx6jX69FoNKhUKgICAsTK9+bmZrF1wtPTE51OJ3pHmyfXmHPO5uIvc6+rud3J2toaQRAwmUxivtfBwQE3Nzf8/f0JDAwUv/wGg4H6+npR0GUyGVFRUYSHh6PRaCgvLxcnQU2cOJHRo0eLr/XzfP2fBKPRyFdffUVubi4+Pj4EBQUxYcKEQe0DW1pauHnzJrdv36ampgZ3d3dGjx7Npk2bLELgOp2OTz75hKNHjzJlyhR+9rOfDSktYDQauXfvHlevXkUulxMYGMi0adNITEx8buYeHR0d7N27l97eXt566y3RDtJoNLJlyxYuXLggmlaYTyB9fHxwdHQkKChIFGkHBwfq6+spKipCLpdjZ2fH1KlTmT59OjY2Nuzdu5fz588TFRUl+jPb2NiIphvmcLCdnR0VFRXs2rWL5uZmYmNj+f73v/9EYVlBEPj222/Jy8vjnXfeITIyUuxTNp+APlidHRkZ+UgRNhgM1NXViSHp5uZm9Ho9RUVFhIeH8/3vf5/IyMghp3+0Wq0o6Lm5uYwfP55FixaJxZXmtMHdu3eprq5GJpMxevRoxowZY/FaGI1G2tvbaWhooKmpiebmZtF5bMmSJYSFhQ35dXsSJFGWeCwjSZR1Oh0HDhygpKRErHwFCAgIEHtnHxzZ2NvbS2lpKSUlJSgUCpycnMRdh4+Pj8VtzWYIJSUlNDU1UV5ejkwmIzIyEhcXF7q7u1Gr1Wg0GjF07uzszKhRo4iJiREnJZntH+3t7REEQbTOM+/i9Xq9GIY2n1CYpwb19fUhCAIODg74+fmJ4ej29nYUCoXoThQeHo6Xl5cYkegfmWhoaBArx+3s7ETLQVtbW/Fns81h/+vMt32YUGm1Wtra2sTq7MftNg0GA8eOHaOqqkocN+ns7MzEiRMHFef29naOHTtGVlYWMpmM5ORk/uVf/sWiF9lkMrF9+3Z2797NuHHj+OUvfznkML0gCFRVVZGdnU1VVRUeHh5MmTKF8ePHP5cTGI1Gw4EDB6ioqGDevHmkpaVhZWWFwWBg79691NbWMmXKFJqbmykrK0Oj0eDt7Y2rqytqtVps83F3dyc0NBRXV1daW1u5fPkyGo2Gnp4eFAoFiYmJpKamijvRwaqTa2pq2LlzJwqFAk9PT95///2n6vFWKBR8/PHHlJSUEBcXh9FoFPuUzVOUHlWdLQgCcrncIi9sMBhwdnYWd8Jm69of/vCHg3YKPAytVsvFixf59NNPaWxs5I033mDlypXY2tqi0+koKyvjzp07KBQKvLy8GDt27JBdusy+2U1NTcTExDy31JAkyhKPZSSJckNDA//7f/9vwsPDSUxMFL/ED5rXm+0FS0pKqK+vx9ramsjISOLi4vD09BxgimG+mF2EOjo68PX1JT4+Xvwbs4VlfX099+7dw87OjtmzZzNt2rSnep4mk4na2lqKi4spKSmhq6sLAA8PD+zt7enu7ubu3bs0Njai1Wrx8fFh1KhRjB49Wux1NZlMFkKv1+vFyUw2NjYIgiBebzAYRFvRx2FtbY2dnR0mk0ms+jWnC6ytrbG1tcXJyQk/Pz9xl2/OmTs5OYlpArh/kPnmm29QKBSkp6dTW1tLaWkpTk5OTJgwgdGjR1scFHU6Hbm5uRw/fpyKigpCQkL427/9W6ZPny7eThAEDh06xMcff0xsbCy/+93vHjo/+2E0Nzdz9epV7t27h729PSkpKaSmpj5yEMLTYDKZOHfuHFeuXGHs2LEsWbJEjMrs2rWLlpYWNm7ciJOTE/n5+dy+fZvOzk7x8+fh4YFCoRB3bAaDAa1Wy+3bt5HL5WRkZPD3f//3D7U3Baivr2fnzp309fVhbW3N22+/TVJS0pDWP5htptFopLKyEjc3N77//e+L4zgfhlKpFEXYHKWSyWQWeWE/Pz+srKwoKSlh3759LF++nHHjxg1pjUajkby8PC5cuEB9fT0VFRXMnz+fhQsXit+joqIidDodkZGRJCcnP/fix6dFEuURhlwu5/PPPycvL4+uri4L8wa4n1M+e/bsC13TSBJlQRAoKSkhIiJiQAuDyWSipqaGO3fuUFJSQm9vLy4uLnh7e+Ps7CyOGOyPk5MTbm5uGI1GsdDLw8OD5ORk1q1bJ85/FQSBoqIizpw5Q2dnJxMmTGD27NlPfAA3nywUFxeLLTTu7u4kJCSIecWqqipu3bpFWVkZtra2hIWFiS1DTU1NyOVyTCYTNjY2+Pv7i25kQUFB+Pj4iOYag73+ZpE2C3T/0L65mttspNLa2kpPTw8mkwlHR0fc3d1xc3PDycmJzs5OOjo6xJy8ua/W1tYWZ2dn3NzcxFy+2Y0sPz8frVbLvHnzcHZ2pqysjLq6OlxcXEhNTSU5OVkcLqFSqXBzc2PLli3k5OTg5eXFtGnTmD59OpMmTRKf17lz5/jd735HYGAg//mf/4mXl9eTfqTo7Ozk+vXr5OXlYTKZGDt2LFOmTBkQRXlW7t69yzfffENAQACrV6/G1dUVrVbL9u3b6ezs5L333hMNcKqqqrh9+zbFxcUAxMfHM2HCBMLDw1EqlWRnZ3Pnzh3Gjh0rWktOnTqVGTNmDHjPm5qa2L59uziuMz09/aFGRXA/z9pfhM0zn/s7doWHh6PT6fjss8/EOdL9T6z6+vqorq4WhVipVIoV1v3zwg/WGKhUKj766CNCQkJYs2bNY0VTEASKi4s5e/YsCoWC8PBwMbqVkpJCaWmpGKJOTExkzJgxgxoKjSQkUR5B3L17l/T0dNRqNfHx8RQUFJCYmEhnZyeNjY1ER0cTGhrKuXPnXui6RpIom8fa9d/dtrS0UFlZKRa12Nvb4+PjI7p8mQuqHry4uLigUCjEVh53d3cxBKhWq8UvRV1dHVlZWTQ0NBAXF8fcuXOfaEKMOQdcXFxMRUUFOp1O3PWOGjWKwMBAenp6uH37tngyZq7+HDNmzIAvptl5qv8gDrN1qEwmw8fHB41GQ2hoKCEhIbi5uQ16cDMajbS1tdHY2CiOstNoNOKkJnNhS2Bg4CN9iw0Gg5h7M9+P+T0yGAxYW1vj4OCAra0tNTU1mEwmRo8eLY5hNK/f3t5ePODb2dkxatQo+vr6OHHiBE1NTYwaNUo8iZo5c6bYZpaTk8MvfvEL3N3d+fDDDwkKChr6B6ofarWamzdvcuPGDVQqFfHx8WJh0HDR2NjIvn37AFizZg3BwcH09fWxbds21Go17733nsWJRV9fnzi1qrW1FXd3d7y9vamurmb58uWMHTsWvV7PlStXyM7OxtnZmQULFpCQkCC2D23btg07Ozt6e3uJj4/n7bfftvg8mOsizHlhswibvavNOeHBPgNNTU1s3bqVyMhIUlNTRSE2z0/29fUVRfhxrl+CIPDVV19RW1vLj370o8ee8NbW1nL69GkaGhqIiYlh6tSpHDp0CLlcLkYTfH19SU5OJj4+/qXWVzwJkiiPIBYtWkRhYSFXrlwRQ4Nnzpxhzpw5fP311/zwhz/k+PHjpKamvtB1jSRR7u7uZvv27RgMBtESUq1W4+TkRHR0NImJiURHR4s7ukcNmcjJybEQ47i4ONG4QaVSERoayuXLlykuLiYwMJB58+aJHsCPw5zHLi4uprq6GqPRSHBwsLgj9vHxwWQyUVlZKe6KbWxsGDNmDBMnTiQoKOiJZyibR9OZXbTMBUTm3LSXlxdWVlbi4IiWlhYMBgO2trYEBASIIuzv7z8s71tvb6/oS272KO/q6qKoqAhra2vS0tLw9/fHxcUFKysrSktLqaiowGQy4evra9HLe+7cObGwz2Qy0dzcjK2tLTExMcTHx6NSqTh48CAymYy//Mu/FPP7D16G8rwMBgN3797l6tWrtLe3ExoayrRp04bNha2np4cvv/wSuVzO0qVLSU5Opre3l61bt2I0Gtm8efOgpiBNTU3k5eVRVlbGvHnzGDNmjMVtFAoFJ0+epKysjOjoaFJTU/nmm2+wt7dHq9Xi6urK5s2b0Wq1FoVZCoUCAD8/PzEn/OAUpwcxvwdVVVVcuXKF06dPExISQnJysijCUVFRT1REdufOHQ4dOsTbb7/9UF9+uP/dPXPmDKWlpQQFBZGZmYmLiwv//u//TmlpKYmJibi7uzNp0iQiIyOHPUStUqmea6uhJMojCHd3d/7hH/6Bf/7nf0ahUODj40NWVpY4P/nHP/4x+fn5XLx48YWua6SJclZWFs3NzVhZWRESEkJCQgJRUVFDeqwHxTglJYX4+HiLwqbOzk6ys7NRKpV4enqSkZHBmDFjHvvlViqVlJSUUFxcTH19PQAREREkJCSQkJAghs3674o7Ozvx9/dn0qRJjBkzZlgcqMyvv1qtpqysjPLycnH3otfrRYeviIgIcYRfYGDgcz8AmNvQqqurOXToEL29vURERIgtfo6Ojri5udHW1oZcLhejEpMnT6ahoYGf//zndHd385Of/ARnZ2euXbtGQUEBRqNRTGfs27cPrVZLRkbGoKFsOzu7QcXa7DXd//+Ojo7U19dz/fp16urq8Pb2ZurUqYwdO/aZW2LMBXD5+flMmzaNjIwMenp62Lp1KzY2Nrz33ntPndsuLS3l4MGDXLx4kZiYGCIiImhqaiI1NZW2tjY6OjqA+yLcPxz9KKExtzpVVVVRWVlJdXU1Go0GmUwmjrAsKytj9erVTJo06YnX3NXVxccff0xcXBwrV64c9DY9PT2cP3+e27dv4+HhwezZs3F1deXGjRscPHiQrq4uNm7cyJw5c6itrR32448gCOLJ2qJFi55bF8zrKMrPr4HsOWMymURzA7NlofksFmDMmDF8/vnnL2t5IwIHBweMRiNTpkwhISFhyAeutrY2cnNzqaysxN3dXZyN2l+M9Xo9d+7cIScnB51Ox1tvvcWMGTMeWpkpCAKtra2iEMvlcmxtbYmOjmbp0qXEx8eLuw1BEKisrOTmzZuUlpZiY2PD6NGjmTRp0rDY9plNGurq6qisrOTq1atoNBqxTWvOnDkEBgbi5uaGVqsVR01WV1dTWloKgKenp1i45efnJ/ZrDxdWVla4uLgwZswYwsPDOXDgAHZ2dsyfP5+enh5xV21nZ4eDgwMVFRXk5ubi7u7O5MmTWbNmDZ9//jmffPIJf/zjH0lNTaW3t5erV6+Sm5uLwWDgn/7pn9i/fz/l5eX88z//M2PGjKGvr8/iYp7DbDaXMY/c7OvrG1DDAfc/czY2NhQWFnLx4kXxOYwfPx5PT88Bgm5vb//Y99PW1pZly5bh7+9PVlYWra2tvPnmm2zYsIEvvviCnTt3smnTpqeatOTs7Cy2B169epWTJ08ydepU2tvbiYqKYs6cOURERDx2t2c+gTLnhTs7O7G2tiYkJIS0tDTRPctcUHj8+HGOHz8uevUPFUEQOHLkCDKZbNCRshqNhuzsbK5fv46dnR0ZGRnIZDKys7NpaWkR60D++Z//mbFjx6LVap+63fRh9PT0cObMGRoaGkhOTn7qFMl3lVd2p5ycnMySJUv4zW9+A0BcXBzp6en8+c9/BmDz5s1ibvNFMpJ2yk9KfzF2c3MjNTV1gBgLgiCOU+zt7WXUqFEkJiaSlpY24EzVHE41V0wrFArs7e2Ji4sjISFhgLGDeWbxrVu3UCqV+Pn5MWnSJJKTk59pV2yeN2ueEWwehmFlZYW3tzd6vV7cAT3qxMW8AzKLtHlSlslkwsrKSszNm4Xa29t72Pp6lUolBw8exMnJiRUrVoivh7ntysfHh/r6ei5evChalrq4uFBaWoqvry8//elPiYqKIigoCGtra65fv05OTg59fX3cvHkTvV7PP/3TPw3ZUrb/DOYHhdx8kcvlFBYWirOTzQ5x/d9La2vrR+7AH7w0Nzdz+PBh0WjEaDSybds2cdLZ43ZL5vGMNTU1lJSUcObMGQRBIDY2lqamJkJCQnB2diYhIYGFCxfi6+s76P2YR7yaRVgulwP3d9T988IPW4/JZGLPnj3U19fz/vvvD7nuIicnh+PHj/Puu+9aiLnRaCQ3N5dLly6h1+vFQSMFBQVoNBri4uJwd3fnxo0bZGZmMn36dGB4jz/mwtJLly5hb29PRkYGoaGhz3Sfj+N13Cm/UqJsDpEC/N3f/R3ffPMNZWVlAPzXf/0XP/nJT5gzZ444+eUnP/kJ//Ef//FC1/gqivJgYhwXFzeg2rO+vp7s7Gza2tqIjo5mypQpODs7W3wpjEYjNTU1FBcXU1paSk9Pj3iQS0hIIDIy0iKcKQgC1dXV3Lp1i5KSEqysrMRd8dO2Yej1ehoaGkQBrq+vR6fTYWtrS3BwsGiWEhoaKs44ftrX32ya0F+olUolgiBga2uLj48PXl5eeHp6iq1iZke1J6Wjo4ODBw/i7u7O8uXLLaqv+x+UzDuVixcvUl1dzd27d/Hz82PevHnY2Njg4uJCYGAgXl5etLS0UFpaytmzZ9Hr9fzN3/wN77777rDmFlUqFTk5OeKJXFRUFGPGjMHZ2fmhgm4W+8Ha0gwGA8XFxQiCwLRp0/Dw8ODKlSsEBASwfPlysUbC3G5mrh2orq6mra0NABcXF8rLy3F3d2fJkiWcO3eOqVOnkpmZSVlZGSdOnKCrq4spU6Ywc+ZM8X7MIlxfX4/RaMTV1ZXo6GiioqKIjIx8olYzrVbLF198gVar5YMPPnhsJKujo4NPPvmEcePGsXjxYuB/ZiefPXtWtFy1tbWlrq4Oe3t7xo8fT2pqKt3d3ezYsYPk5GSWLl06qM3msxx/VCoV58+fp7q6mlGjRjFjxowXIpKSKL9k7O3tWbRoEevXr2fatGk0NTWRnJyMnZ0dgiDwm9/8hgMHDmBjY8Mbb7zBz372sxcudK+SKLe3t5OTkyOKsTln/KAYd3R0kJ2dTW1tLQEBAUyfPp3AwEDg/peis7MTV1dXKisrRVMHDw8PsWI6JCRkgAipVCpxV6xQKPD19RXHwT1pGLKvr89iF9zU1ITJZMLBwUEU4LCwMIKCggbkN5/H66/T6cRirdbWVpRKJZ2dnWIrlLW1Ne7u7qJI9xfsxz331tZWDh8+jLe3N0uWLAF46EFJpVJx9epVvvzyS86ePcu4ceP42c9+Rk9PD83NzTQ1NaFSqTAYDLS0tHDlyhU6OzvJzMzkV7/61QAv8+F4XcyznZVKJZGRkUybNo3o6OhBH8fckjaYaCuVSs6cOUNdXR1xcXE4ODiQnZ2Nk5MTSUlJAz5vXl5eYmGWv78/Bw4cQKVSsXTpUg4cOEB4eDhr1qyxmEN9/PhxTpw4QW9vr2g96+DgQEREhLgb9vHxeabXqKuriy1btuDm5samTZsemgIxmUxs3boVlUrFX/zFXyCTyaiurub06dPU19fj6Ogoetj7+PgwefJkxo4dK3rVb9myBT8/P959912L7/dwfP4rKio4f/48VlZWzJ49+4nC8c+KJMovmfXr1/PNN9/Q19eHq6srK1euZP369cyZM2fENLa/CqI8VDHu7e0lJyeHoqIi3NzcmDp1qngA1Wg01NTUUFpaSmVlpWgNaRbi/qb3ZgRBoLa2lps3b1JcXIyVlRWJiYlMnDjRwmP3UQiCQFdXF7W1taIIm3c/bm5uhIeHiyJsNlh4FC/q9TcXbimVSotLZ2cnvb29mL+GDg4OolD3F2x3d3fx/WlububIkSMEBAQwb948tFrtIw9KfX19/O53v2PXrl1ERUXxt3/7t8yYMQNnZ2e6u7tFga6srOTPf/4zlZWVeHl5ib28MTExYrX5k5qODIbJZKK4uFicQOTv78/UqVNJSkp6omEGDxqNjB49mi+//JKIiAjmz5+PRqNBq9Xi7+8vVjZrNBp27NhBZ2cna9as4fDhw9jY2PDBBx+IffHmS//pYhqNRuzHf5TxyNNgbpWKiYkZ0IJl5vLly5w7d47Nmzcjk8k4ffo0hYWF6HQ6ZDIZjo6OxMXFkZqaSlRUlHgfarWaLVu2APDBBx8MOOl7ls+/2RGstLSU6Oho0tPTH1mF/jyQRHkEoFarOXz4MHv27CErKwuDwYC/vz9r165l/fr1L32G8UgW5aGKsU6n4/bt29y+fRtra2tSU1MZM2YMarVaPGA1NDQgCAI+Pj4EBgayZMkScff8IH19fdy5c4ebN2/S0dGBt7c3kyZNYuzYsY/9EptnufYX4e7ubgAL3+6wsLAnshg0MxLSB3q9nq6uLlGk+wu22ffbyspKHLxh9hPPyckhMjKSOXPmiKMbH4YgCPz3f/8327ZtIzg4WHTkmjZtmoXQarVa/u3f/o2DBw/i4OBAUFAQHh4e+Pv74+TkhIuLi9iP/axCbT5Jy87Opry8HDc3N3G285McYPsbjYwfP55vv/2WpKQkcda0GZ1Ox86dO2lra+Pdd9/l5MmTlJaWkpqaKkY14H7Pcf+8sEwmo6KiguPHj9PZ2cnkyZNJT08fVhEoLS1l3759Ygi9P3K5nM8++4zk5GRMJhOXLl2is7MTZ2dngoKCmDhxIikpKQMq6I1GI7t27UIul/O9731v0Ar7p/3819XViSmPmTNnPrQFrrm5GX9//+fmmS6J8ghDqVTy1VdfsWfPHq5cuQJAbGws77zzDuvWrSMqKuqFr2kkivJQxdhkMlFUVMSNGzfQarWMHTuW6OhoGhsbxWIWc2uV+aAlk8kG/VIIgkBdXR03b96kqKgIgFGjRjFp0qRHhkUNBgNNTU2iCNfX14uV0WYPa3M+eDjOykeCKD8M8+7aLNT9BbunpwelUklpaSmenp4sXbpUdCnz9vYWc9n9w/UGg4H/+3//rxjK9vT0xGQyMWHCBKZPny7uJvV6PZ9++ilHjx4lMDCQyMhINBoNAQEBhIaG0tfXR1NTk+j4Zhbq/mL9pELd2trK1atXKSgowNbWlkmTJpGWljbk++lvNDJu3DiuXLnCxIkTWbx4sdhvvnPnTkpLS0lJSeHKlSvcvXuX5ORkwsLCLPLCD8vtGgwGrl27xqVLl3BwcCAzM3NI7X9D5fr165w8eZIlS5YwceJE8TH/9Kc/UV5eLpoBeXt7M2bMGKZMmSKGqB9EEASOHj3KnTt32LBhw0Nbkp7086/T6cT3KTQ0lIyMjEHfo4aGBnJycmhsbGTRokXPLaQtifIIprGxkT179rB3717y8/OxsrJi8uTJXL169YWuYySJcm9vL5cvX6aiogJXV1dSUlJISEgYIMb9dywdHR1iEZBcLkehUGBrayv67kZERFhUzz74pVCr1dy5c4dbt26Jc1nNueLB2ko0Gg319fWiCDc2NmI0GpHJZISGhooiHBwcPKwtR2ZGsig/CoPBQFdXF7dv3+bkyZOi73hHRwcajQa4v7v28PCwEGpHR0e2bt1KWVkZS5YsISYmRmxrM4uzu7s7BoOBbdu2cfjwYWJjY8nIyKC8vJzu7m4SExOZMWMGjo6OogmLOQRuFmpXV1dRoJ9EqLu7u8XZzgaDQZztPJTq5P5GI7GxsRQXF5Oamoq7uzt79uyhvLyc0aNHo9PpaGlpYenSpSxevFg0ihkqXV1dnDp1SpzMtGjRomGZPS0IAidOnODmzZusX7+e8PBwPvzwQ7766isxNTN79mymT59uEaIejOzsbE6fPs2KFSsYO3bsQ2/3JJ//5uZmTp8+jUqlYtq0aYOekPQXY19fX1JSUh671mdBEuVXgIKCAn7+859z5MiRV2qe8vMQBa1Wy6FDhxgzZsygYgz3dyhXrlyhuLgYa2trcZdgb29PZGQkUVFRhIWFPVQQdTodvb29eHt7U1hYyL179xAEgYSEBCZNmjRgFm93d7cYhq6traW1tRVBEHBxcSEsLEwU4ecZ8urPqyrKZnQ6HXfv3qW4uJjJkyezaNEi1Gq1OE2r/79KpRKTyURvby/Xr19Hq9UydepUFi5cSGtrK+Xl5djY2DBx4kRmzJiBq6sr+/btY//+/YSEhPAXf/EXaDQarly5glKpJCEhgVmzZolpC3O+3yzQjxJqs1g/TKg1Go0427m7u5vY2FimTZv22OKz/kYjXl5etLe3U1JSgsFgYPXq1YSGhnL69GlSU1NZuHDhM732lZWVHD9+HKVSSWpqKunp6c9saGMymdi9ezfnzp2jra2Ne/fuER8fzw9+8ANmzZo1JL/y4uJivvzyS2bOnPlI324Y2uffYDCQk5NDXl4e/v7+zJ07V+yCgf9pfczNzRXFODU19bk4hD2IJMojlLq6OnGXXFhYiCAITJ06lfXr1/PDH/7wha5lJIky3P/CDPbFUCqVHD9+XLSYDAgIIDg4WAzjmY0OHrf2goICbt++jb29vVhBPW7cOFxcXBAEgfb2dgsR7uzsBMDb29tChM3DLF40r4Moq1QqAE6cOMGUKVOYN2/eQ/27lUol7e3t3Lp1i71799Ld3U1wcDCxsbEIgkBjYyPt7e3Y2dmRlJTEtGnTKCsr48yZMwQEBPD+++8zYcIECgoKuHTpEgqFgri4OGbOnElISMiAx3xQqM1i3V+o+++mHxRqo9FIYWEh2dnZtLa2EhwczNSpUxk1atRDT9oEQeD69etkZWVhbW2N0Whk/fr1eHt789lnnxEUFMT69euH5aTPYDBw/fp1Ll68iL29PZmZmSQnJz91K9/x48fZu3cvt27dQqfT8cYbb/B//+//HXJHgrloLD4+njfffPOZCx3b2to4ffo0SqWSyZMnM2HCBPF1M4txTk4OTU1NL1SMzUiiPIJob28X88nXrl0Td2fr169n/fr1REREvJR1jTRR7o9Op6O8vJwzZ86Qn58P3J+oM23aNGJjYwetmH4QQRBoaWmhsLCQ8vJydDodQUFBrFixgri4uAEmHebxdwEBAaIIh4aGDvvIv6fldRHlcePGcefOHY4fPz6kHRLAxYsXOXDgAFZWVowbN4709HQ6OzuRy+Xk5uZy+/Zturq68PX1RafTUV1djaurK3PmzCE9PV3ciRYUFNDZ2Ul0dDSzZs167FAKs1D33003NTWhVquBgUIdFBSEs7MzlZWVZGdnU11djaenpzjb+WFRnIqKCk6ePMncuXOJiIhgy5YtCIIwaBXys9LV1UVWVhb37t0jLCyMRYsWDblKu7u7m5MnT3LgwAFaWlqIi4sjODiY69evk5mZyV/91V8NKXXT1dX10ElUD+Nhn3+TyUReXh43btzA09OTzMxM0UjlQTH28/MTh9O86BNrSZRfMiqVikOHDrFnzx6x8i8wMJA1a9aMiMprGHmirFarqa6upry8nFu3blFfX4+DgwOTJ09m/vz5BAQEDOmLpNVqKS0tpbCwkI6ODlxdXYmPj8fFxYWWlhZkMhktLS2iX3RISIhYFR0SEjJivzCvkyjb29uLucSMjAxmzJjxyL8VBIH9+/eLlozJycm8/fbbYnGYXq8nNzeXM2fO0NbWJk5IAkQHNGtrawRBQK1Wi+9/TEwMc+bMYezYsXh4eDxRq9vjhNrsSFZTU0NVVRWOjo5iJfnDrDDN7lkNDQ1873vfw9vb+wle4SejqqqK48eP09HRQWpqKrNnzx40pC0IAvX19Zw9e5ZTp07R1tZGfHw8GzZswMfHh127dpGamkp+fj7R0dGsWrXqkTv7JzUi6f93D37+zT3gLS0tYmW3ra2tKMY3btygubn5pYqxGUmUXzLmOb8uLi4WPcovIvc4VEaSKCuVSnbt2oVSqaSrq0sU4zlz5gzpS2v2qy4sLBRNQdzc3MRCoPb2dnHc4OTJk4mOjiYsLIzAwMAn6jd9mbxuogxw4cIFLly4wIIFC0hLS3vs33/xxRc0NDRgbW1NQkKChTDD/RBtXl4ely9fJj8/n9bWVnx9fUlPT2f27Nn09vbS3t5Oe3s79+7d486dO3R1deHu7k50dDQxMTH4+PiIF3PR2eMOov2Fur9Ym4Xa1taWnp4eOjo6cHFxEYdVPJh3PXXqFDdu3GD9+vUvxNjCaDSKIW07OzsyMzMZO3YsVlZWGAwGCgsLuXz5Mjdu3ECpVBIdHc3atWuZPHkyOp2Ojz76CB8fH959913Ky8vZu3evmJYYDJPJxL59+6itrX0iy06w/Pzb2dlRUFAgjrXMzMwkMDBQPIHIyckRW5xSU1OH3VzmaXgdRfmVGkgxd+5c1q9fz9KlS4dlQtDrjvlkxdnZmbFjxzJt2rQhDaPX6XSUlJRw8+ZNampqMBgM4iSgvr4+bG1tCQoKIikpCR8fH2QyGePHj39tvhSvOrNmzUKv13Py5Ens7OzE9prBkMlkrF27lj//+c+YTCYqKir46quvLITZ1taW1NRUJkyYQF5eHlu3buX27du0tLSgUCj44Q9/aFHhazQaycvL49SpU6LlakhIiOg5bsbFxcVCpM0/e3h4YG1tLVaPe3h4iOMJBUGgs7PTYjddW1tLVVUVf/7zn9myZQvx8fHMmDGDcePGoVAouHbt2nNty3kQGxsbsTo5KyuLw4cPc+XKFfz9/amoqKCsrIy+vj5CQ0P53ve+x5QpU8QTwhMnTqDT6Vi2bBlWVlbExcWxYMECTpw4gZeX16BTpbKysqioqGDdunVPJMj96enp4fLly9TX15OcnMyUKVOws7Ojrq6OGzduIJfL8ff3Z8mSJSNCjF9nXilRPnLkyMtewiuFo6MjYWFhjB8//rF5PpPJRElJCdeuXaOwsJCuri6cnZ3x8/MjPj6ekJAQMcfXf5fdv9BIYmRgZWXF3Llz0ev1HDt2TAxNPwx3d3fWrFnDtm3b8Pf3p7KycoAwg6U4f/7553z55Zd8/fXXFBYW8g//8A8kJSUB90UpJSWFSZMmUVlZycWLF6mvrycoKIh58+bh7e2NQqEQd9eNjY3iEA3z33t5eQ0q2I6OjqLL2YNCXVtby9WrV7l27Rqffvopzs7OhIaGkpmZSUpKynN8xQfH1dWVyZMn09LSwrfffktHRwceHh4kJSXx9ttvM3PmTIuQe3FxMXfu3GHFihXi6FKAyZMno1AoOH78OB4eHsTExIi/M3uKL1682OL6oSIIAmVlZdy6dQtHR0eWL19OSEgI9fX1ohgHBASwdOnSIbvuSTwbr1T4+lVgJIWvH4Ver6elpYW6ujry8vIoKiqiu7sbBwcH4uPjmTBhAtHR0Y+dHfyqh49ex/C1GUEQ+Oabb7hz5w5vvfWWKGIPIz8/n8OHD5OUlERJSQlRUVEDhLk/Fy9eZNu2bVRVVWFra8vy5ct56623Bji7CYJATU0NFy9epKamBn9/f2bNmsWoUaPEg7wgCHR3d1u0cJl/7urqEu/L2dlZFOr+gm0e32q+r5KSEk6fPk1VVRVeXl6EhIQQHh4uFho+z8+qOURt7tc1mUz09fXR0dGBXq8nNjaWZcuWMW7cOPH59/b28tFHHxEeHj6o1Wb/EPXmzZvFXffu3buZPHkyCxYseOJ1qlQqcZb0mDFjmD17Ni0tLeTk5IhinJqaOqLF+P/H3n3HRXWlfQD/Db333osoICCKoKg0BVHB3rvGGBNTNpu8m0021c0mbjbZXbPJJlFj7N2IBQtiQVSkKaAUERCkd+ll2n3/8J37OjKDQ50Bn+/nM5+Ee+/cOXOcmeeec895zlD//ZGEgnI/U9Sg3N7eLjZ/tLCwEJWVlWhsbISmpiZcXFzYKQ89KcdQ/1IM56AMPP0xj4qKQnZ2NpYuXYqRI0d2e76YmBgkJiZiypQpuH379gsDc2JiIs6cOYOSkhLU19fDwcEBkydPRlBQEKytrbsc//jxY1y/fh2PHj2Cqakpm6Kxu58hUf7puro69lFbW4v6+no2DamSkhKMjIxgZGQEY2Nj9sHn89nPfUlJCVpbW8HhcGBubi62WlhfZgMoKyuz97dTUlJw584dtLa2wsjICG1tbWhvb4ejoyPCwsKgp6eH2NhY3Lt3DzY2Npg1axYsLS1x9OhRlJSUYPPmzVIHrInu/7e3t2Pu3Lk4evRol4U0ZJWTk4Po6Gjw+Xw4ODhAX18faWlpQyYYiwz13x9JKCj3M0UKyqIFJSoqKlBfXw+BQID29na0t7dDKBTC3Nwc48ePh4eHR6/zFw/1L8VwD8rA03u8x48fZ+87dpd+9tmRytOmTUNMTAw7+ldaYE5JScHZs2fB5XLR2NgILS0t6OrqwsXFBUFBQRLnL5eUlCA+Ph65ubngcrnw8PCAs7Nzj4ILwzBoa2tDY2MjGhoaxP777CIfIsrKyuDz+WhtbWUfnZ2dUFJSgra2NgwNDdnArqurCxUVFSgrK3d5PLtdSUkJ7e3taGlpQVFREdTU1ODk5ISOjg6Ul5ezi4aMHDlS7L0VFRXh/PnzqKmpgaGhIaqqqrB69Wq4urp2+56bmprw3//+F2lpaQgMDMRrr73Wo89tR0cHLly4gIyMDIwaNQojRozAyZMn0djYCGtra0yYMIFd0nQoGOq/P5IMqXvKpGfU1NRQUVEBbW1tMAzDjlJ1d3eHh4cHHB0dFWrkOhkYysrKWLRoEY4cOYLDhw9j9erVUscYKCkpYdGiRfj111+RlJSE+fPnIyoqCsePH5camEVTZk6fPg1NTU0IBAJYWlriyZMn+PXXXyXOX7a1tcXKlStRWFiIAwcO4MaNG8jMzMS4ceMk5mWXRkdHR+LgJtEiH01NTeDxeBAIBOzj2b+fHTleV1eHhw8fsmledXR0oKurC21tbairq0MoFIqdp76+HpWVlWhpaYGpqSksLCzQ2dmJ27dvQ01NDQ4ODlBVVcWRI0fA4XCgqqoKFRUV9qGkpISGhgYcP34cBgYG0NLSwogRI7oc9+wDAKqqqlBeXo6GhgY8evQI6urqUo8XPTgcDgoKCnD69Gl0dHRg3LhxqKysxOnTp6GkpITZs2cPaDpMIjtqKfczRWopixIaVFZWQktLC+7u7nB3dxcbRNJXQ/1K9WVoKYvweDwcPHgQFRUVWLt2LaysrKQeW1dXh507d8LGxgZ+fn44duzYC1vM9+7dQ1RUFNTU1NDR0QEPDw+MHDmSzcbl5OSEoKAgscURRPXf3t6O9PR0FBQUQFdXFz4+PnBzc5P6WgOlo6MDFRUVqKioQFlZGaqrqyEUCqGurg4LCwsYGhqisbERpaWl6OjogLm5OaytraGvr4+7d+8CAMaNGwcPDw92CpS0B4/Hw6VLl1BbWwsTExOUlJRAX18fo0ePhq6ursTjMzIyUFNTA3t7exQWFsLGxuaFA7wEAgGKiopQXl4ODQ0N9t/HxMQELi4u4HK57IXHsz0BooD+fA9Bb7ZR7mvZUUt5GNPW1oa2tjZmzpwJR0fHITN3mAwMVVVVLF++HAcOHMD+/fuxbt06qQspGBsbY/HixTh48CDMzMywbNkyHDlypNsWs5eXF5SVlfH7779DX18fOTk5aG1txfr161FYWIjr169j9+7dcHBwQFBQkFjWPRMTE8yaNQt1dXVITU3F9evXkZqainHjxsHd3X1AFiORRENDA46OjnB0dATw9EKmsrIS2dnZSE5ORn5+PoCnyzuOHj0afD4f8fHxsLOzQ3BwMAICAmRevSwpKQn6+vp4++234eTkhOLiYpw7dw7V1dXsIiDPnkuUMGnJkiUYMWIEbt++jQsXLiAgIABeXl4SA39paSm7xK2VlRWUlZVhamrKTmfs6OhAXl4emxyks7MTra2tEAgE4PP5bK+A6P/5fH639/8lmTNnjtRVqkhX1FLuZ4rUUh4MQ/1K9WWs/46ODuzduxdNTU1Yv359t3PXk5KScOHCBcybNw86Ojo4cuQInJ2dsWTJEqkXebm5uTh27BgMDAzQ3NwMAwMDrFy5Enp6esjNzcX169dRUVEBe3t7TJw4EY2NjdDR0RGr//r6ety5cwe5ubnQ1NTEuHHjMHr06EH9N+Lz+cjPz8e9e/dQVVUFfX19Npjdu3cPt27dQnl5ObS1tTF27FiMGDGCzeVuZ2fX7eCx2tpa/PLLL/Dx8RFbGEMoFCIlJQXXrl0Dh8PBtGnTMG7cONy7dw+nTp3C9OnTMWnSJPb4ixcvIikpCStWrICLi4tY2ePi4nD69Gk0NjbCwsICbm5uCA4OFsvA1ZvPv1AoZIN+d8FbtM3GxmbA0uoO9d8fSSgo9zMKykPLy1r/bW1t2LNnDzo6OrB+/XqxVX+e9ey6vOvWrUNnZ6dMgTk/Px9HjhyBkZER2tvbweFwsHLlSpibm4NhGOTl5SEuLg7FxcVgGAaTJ0+Gs7Nzl27OhoYGpKam4sGDB9DQ0IC3tze8vLwG9N+qpaUFWVlZyMzMZJN8jBkzBg4ODqioqMCtW7dQWVkJW1tbjB8/HjweD/r6+qioqEBxcTGePHkC4GlvgyhI29vbsylHhUIhdu3ahY6ODrz++usSewFaWlrYHPVqamqor69HUFAQIiMjxepIKBTi6NGjKCwsxCuvvAILCwtUVlbil19+wd27d2FsbIwpU6Zg6tSpEtNhvqyff0VGQbmfUVAeWl7m+m9pacHu3bshEAiwfv16qWMNBAIB9u7di/r6emzcuBE1NTUyBeZHjx7h8OHD7NSk5uZmLFu2jO0aZhgG2dnZOHjwIBoaGmBtbQ1fX1+JGaOamppw584dZGdnQ1VVFWPHjoWXl1e/fuYqKyuRkZGB/Px8KCsrw9XVFV5eXjAyMmIzgz169AgmJiaYPHky7OzsJNa/aHlS0RrhVVVVAJ4mE7G3t0ddXR3y8/PxzjvvwNbWttsy3bt3D59//jkAYM2aNZg+fXqXKVNcLhe7d+9Gc3Mz9PX1cfbsWQgEAkyfPh1z587tdnGel/nzr6goKPczCspDy8te/42Njdi9ezeUlZWxfv16qd2Mra2t2LFjB7S0tLB+/XoUFxfj8OHDGDFiRLeB+fHjxzh48CCMjY2hqqqKsrIyzJs3D56engCe1n9aWhqePHmCu3fvorKyEmZmZvD19ZW4BGBzczPu3r2LrKwsqKiowMvLC97e3r1OuysQCJCXl8d2Uevp6WHMmDFwc3ODuro6O60wOzsbOjo6mDhxIkaNGsWWS5b6b29vR0lJCR4/fox79+7h3LlzsLGxgbu7O9vVbW9vz97zFWlra8OuXbsAAN7e3rh16xYAYNq0afDx8RFbQvHq1av44IMP0NzcjMjISGzevFmmDF8v++dfEVFQ7mcUlIcWqv+nC5f89ttv0NTUxLp166QOVKqsrMRvv/0GFxcXLFq0iO2iflFgLi0txYEDB2BoaAh9fX08ePAAYWFhmDRpErhcrtiCCM8uCWhiYgI/Pz+JU3VaWlqQlpaGzMxMKCkpscFZ1iUZW1tbkZmZ2aWLWrTyFZfLxd27d5GWlsamDfX09OwywK0n9c/n87Fjxw4wDIMZM2agtLQUxcXFKCkpAZfLhYqKCru6mo2NDa5fv44nT57g1VdfhZGREVpbW3H58mWkpaXB0tISM2fOREtLC/bt24fk5GQYGhrCxMQEwcHBWLp0qUzTHenzr3goKPczCspDC9X/U7W1tdi9ezf09PSwdu1aqS3PnJwcHD16FCEhIQgKCkJeXp5MgbmiogL79u2Dvr4+7OzskJycjAkTJiA4OBj37t3rUv+lpaVISUlBaWkpjI2N4efnJ/Gec1tbG9LS0nD//n0wDANPT0+MHTtWalasqqoqZGRkIC8vD0pKSnBzc2O7qIGnLeesrCwkJyeDy+XC29sbPj4+Uuu2J/UfGxuLxMREvPbaa2Kj3oVCISorK9nu7qKiIqSlpaG6uhrTp0+Ht7c3e29aW1sbJSUl2LVrF27fvo2GhgaYmppi4cKFWLlyJR4/foxDhw7JnHqTPv+Kh6ZEEUJgYmKCNWvWYM+ePTh48CBWr14t8Ufazc0NISEhuHbtGkxNTeHu7t5lupSkwGxpaYl169Zh3759KCoqwtSpU3Ht2jU2NefzbGxsYGNjg7KyMqSkpLCrJPn6+mLEiBFsK1BLSwuTJ0/GuHHjkJ6ejnv37uHevXvw8PDAuHHjoKOjA4FAwI6irqyshJ6eHiZNmgR3d3f2h5xhGOTn5+P27dtoamqCq6srJkyY0OtMd88rLi5GQkICpk2b1mUampKSErtWtL+/P+Lj41FbW4t58+ZBTU0NDx48QGJiIhiGAZ/PZ9OMdnR0QFtbG25ubnB3d4eKigpcXFwwa9YsnDt3DkZGRvDz8+uX8pPBQ0GZEALg6dzbVatWYd++fTh8+DBWrFghcWRwYGAgqqurERUVBSMjI7i4uMgUmM3NzdnAfO/ePURGRiI6Oho5OTlsAHqetbU1rK2tUVFRgeTkZMTExCAlJQXjx4+Hi4sLG5w1NTXh7++PsWPHIiMjAxkZGcjMzISTkxPKysrYLuqIiAg4ODiIde2WlpYiISEBVVVVsLe3x6xZs2Ra4lRWXC4XUVFRsLGxEZvOJElWVhauXr2KiIgIBAcHA3h6wZCcnIyzZ88iLy8PVVVV6OzshL29PTw8PNDa2opdu3YhLi4Oy5Ytg6+vL+rr63HhwgUYGBi8MN85USzUfd3PqPt6aKH676q4uBj79+9nFzuQlCiEx+Pht99+Q1tbG1577TVoa2uzXdkuLi5SAzPwdA7y3r17oaysjMDAQPz666/Q09PDggULoKen123ZKisrkZycjMePH8PAwAC+vr5d8koDT+vl3r17ePDgAaytreHl5QVjY2OxY+rq6pCQkICioiKYmZlh0qRJLxwN/TxZ6j86OhoZGRl444032G5ySUpLS7Fnzx64ublhwYIFAIDs7Gxcv34d1dXV0NTURGNjIwwMDBAWFgYtLS12lPeDBw+Qm5uL9vZ2eHp6YsaMGcjLy0NDQwNeffVVWFhYSHxN+vwrHgrK/YyC8tBC9S/Zo0ePcOjQIXZQl6QA29jYiJ07d8LIyAhr166FsrKyzIG5oaEBe/fuBY/Hg6OjI1JSUsAwDGbPni0xl/XzqqqqkJKSgsLCQujr62P8+PEy58xuaWlBYmIiHjx4AF1dXfj7+8PFxaVXqSBfVP/5+fk4cOAAIiIiul3TuaGhAb/++isMDQ2xZs0aPHz4kA3GdnZ2EAgEKCsrg6urKyIjI7uMkudyuSgtLUVsbCyuXr2KJ0+ewNraGnV1ddDW1sbKlSvh5uYGW1tbsc85ff4VDwXlZ2zduhUnT57EgwcPoKmpiUmTJuGbb77BqFGjZD4HBeWhhepfuocPH+Lo0aNwd3fH/PnzJY7mLS0txe7duzFmzBjMnj0bHA5H5sDc2NiI3377DUVFRYiMjERiYiKePHmCWbNmSV0w43nV1dVITU1FQUEB9PT0MH78eLi6ukp8zc7OTty5cwfp6elQVVWFn58fPDw8+pR+trv6b29vx08//QRzc3OsXLlSatDv7OzErl27wOVyMWnSJKSmpqK6uhrOzs7sBUtHRwdmzpyJMWPGvPDioa2tDbGxsYiPjwePx0NpaSkAYPTo0VBVVYWFhQU7cMzc3Bx5eXn0+VcgtETQM65fv44333wTiYmJiI2NBY/Hw/Tp09Ha2irvohEy6EaOHImFCxciMzMT0dHREnMe29jYYM6cObh79y6SkpIAAC4uLli6dCny8vJw/PhxCAQCiefX19dnB5TFxMQgMDAQVlZWOHPmDB48eCBTGc3MzDBr1iwsW7YMpqamuHr1Kvbv34/79++Dz+cDeDoVKS0tDXv37kVGRgbGjh2LtWvXYsyYMQOaD/78+fPg8XiYM2eO1EAqysj18OFDdHR04Pz589DT08OaNWtgbGyMy5cvw8jICJs3b4a3t7dMrXktLS3MnTsX77//Pry8vODk5ARNTU0YGxtjxowZMDExQXZ2No4ePYp//etfOH78OOLi4vDgwQM0NTX1OLc16V800OsZFy9eFPt7z549MDMzw507dxAYGCinUhEiP6JWclRUFFRUVDBz5swugWHMmDGoqqpCTEwMTE1N4ezsjJEjR2Lp0qU4evRot4O/dHV1ERERgStXriA6Ohpz5syBtrY2YmNj0dLSAh8fH5kCkampKbugRUpKCrughaurK3Jzc9HS0gJ3d3f4+fkNWB7mZ2VlZeH+/fvd3icXCoX45ZdfcP78eTg7O8PGxoYd3BUVFYXGxkbMnDkTfn5+vepat7KywoYNG5CWloYjR44gOjoaAoEA7777LpSVldHY2Ii8vDw2F3lubi6Ap8thWllZwdLSEtbW1jAyMqIlHQcRBeVuNDY2AkC3gzM6OzvR2dnJ/t3S0jLg5SJkMHl5eYHH4+Hs2bNQVVVFaGholx/p0NBQ1NTU4Pjx49i4cSOMjY3FAvOJEyek3pvW1NTEnDlzcPHiRZw+fRpz5syBjo4Obt++jebmZgQFBcm87reoNVhfX4+UlBTcuXMHDg4OmDNnTrff4/7U0tKCc+fOwd3dnc1c9iyhUIisrCzs3bsXqampCA0Nxbp162BpaYm4uDjcvHkTVlZWWL58eZ9HgXM4HIwbNw5ubm7Yvn07Tp06hcrKSrz55ptwcHCAp6cnBAIBtLW1IRAIUF5ejoqKCpSXlyMvLw8Mw0BdXV0sSJuamtKKcwOI7ilLIRQKMWfOHDQ0NODmzZtSj/viiy+wZcuWLtvpnvLQQPUvu8TERFy8eJFNHPK8jo4O/Prrr2AYBhs3bmQTkIjuTY8cObJLYH62/hmGwZkzZ1BfX485c+bgyZMnuHr1KhwcHBAeHt6r5RuFQqHMAb03nq9/hmFw+PBhlJeXY/PmzWLZ0UTB+Pr168jNzUV5eTkWLlyIFStWoKqqClFRUaiurkZwcDCmTJkyIOU+fPgwjhw5AltbWwQHByMoKAiPHj2S+PnncrmoqqpCeXk5ysvLUVlZCT6fDxUVFVhYWLBB2tzcXG7fnaH++yMJBWUp3njjDVy4cAE3b96EjY2N1OOebymnp6cjKCiIgvIQQfXfMzdu3MCVK1e6LCEoUldXh19//RXW1tZYsWIFG1ikBebn65/L5eLs2bOoqalBZGQk+Hw+Lly4ABMTE0RERMi8VvFgeb7+7969izNnzmD58uXsAFGhUIjMzEw2KYiZmRmKi4vh7e2NRYsWITExEdeuXYOxsTHmz58PS0vLASuv6B72rVu3YGhoyA78mjBhwgtTlAoEAtTU1LBBury8HJ2dneBwODAzM4OlpSWbBEXWdKd9NdR/fySh7msJ3nrrLURHRyM+Pr7bgAwA6urqYh+GwbhfRYi8BAQEgMfj4dKlS1BVVe0yzcfY2BiLFy/GgQMHEBsbi/DwcACQuStbTU0Ns2fPxvnz53H27FlERkZiwYIFOHv2LE6cOIE5c+bAwMBgMN5qjzU0NODixYsYO3YsRo0axQbj69evo66uDiNHjkRYWBjOnTsHR0dHBAcHY+/evSgtLcWkSZMQEhIicU54f1JSUsLChQvR3NzMZlO7cuUKioqKMG3atG7naSsrK8PCwgIWFhYYN24cGIZBfX09G6ALCgqQnp4O4OktP1GQtre3H7QgPRzQ6OtnMAyDt956C1FRUbh69Sq7xBwh5P+FhITA398f586dQ1paWpf9Tk5OCA8Px+3bt8X2iwLzw4cPceLECamjstXU1BAREQFra2ucPXsW7e3tWLx4MTgcDk6cOMEuhahIGIbBqVOnoKWlhenTpyMjIwP//e9/cfLkSZiYmOC1117D4sWLcf36dTAMg5EjR2LXrl1obW3F+vXrERYWNuABWURNTQ0rVqyAuro6amtrERERAU1NTZw6dQoXLlyQeVwMh8OBsbExPD09ER4ejnXr1mHt2rUICwuDpaUlKioqEBsbi9ra2gF+R8MLdV8/Y/PmzTh06BBOnz4tNjdZX19f5is9mqc8tFD99w7DMDh37hzu3LmDhQsXwsPDo8v+6OhopKenY+3atWLzjp/typ49ezbu378vsf75fD5iYmJQVFSEGTNmwMrKCtHR0aitrcXMmTO7XSd4sIjqv6OjA1evXsWECROQn5+P+vp6jBo1CkFBQbCysgLDMDh27BgyMzNhZmaGuro6+Pr6IiwsTG6fu+rqamzfvh1CoRDz5s3D48ePcevWLXC5XPj6+mLs2LF9HtDV3t4OVVXVAbvgGOq/P5JQS/kZP//8MxobGxEcHAxLS0v2cfToUXkXjRCFwuFwEBERAS8vLzbhzvP7Z82aBRsbGxw9epSdyQCIt5hPnjwptcWsoqKCGTNmwMnJCRcuXEBJSQnmzZsHOzs7REdHIysra0Dfo6zq6upw+PBhVFdXIzk5GWZmZti0aROWL18OKysrAMDly5dx/fp1tLW1gcvlYtWqVYiIiJDrhaCZmRkWLlyIsrIy3Lp1C6NGjcKqVaswevRoJCYm4tChQyguLu7Ta2hqag5aD8BwQUH5GQzDSHysW7dO3kUjROFwOBzMnTsXbm5uOH78OPLz88X2KysrY8mSJVBVVcXhw4fB5XLZfaLAnJeXh6tXr0oNzMrKyggPD8fIkSNx6dIlFBQUYObMmfDw8MDVq1eRlJQkt2QXotHU//73v1FUVITJkydj06ZNWLZsmdhgrVu3bmH79u3o7OzE5MmTsXnzZowYMUIuZX6es7MzJk+ejMzMTGRkZEBdXR2BgYFYtmwZtLS0cPr0aZw/fx7Nzc3yLupLg4IyIaTXlJSUsGDBAjg7O+PIkSMoKioS26+trY3ly5ejvr4ep06dEgugopHYJSUliI2NlRqYlZSUEBoaCjc3N1y+fBk5OTkICgqCv78/kpOTceXKFanPHQgCgQDZ2dnYv38/Dh06BKFQiC1btmDVqlVdRk5fuXIFW7Zsga6uLt577z0sWLBA4QY9ubq6wtvbGzdv3kRBQQGAp0t5LliwAGFhYaioqMCBAweQmprKZkkjA4eCMiGkT0QtYjs7Oxw6dIjNtSxibm6OBQsWsCsePWvkyJGYNm0aioqKEBMT021gnjp1KttCvn//PsaPH4+wsDA8ePAA586dE2uJDwRRMD5w4ACuXLkCVVVVGBkZYeHChfD29hY7tqOjA/v27cPWrVsxYsQIbNu2DaNHjx7Q8vWFv78/nJyccOnSJXYgHYfDgaurK1avXg0PDw8kJibi8OHDePz4sZxLO7xRUCaE9JmKigqWLVsGCwsLHDhwABUVFWL7XV1dMXXqVMTFxSE7O1tsn729PcLDw1FYWNhtYOZwOAgKCoK3tzeuX7+OtLQ0uLq6Ys6cOaioqEBUVNSA5KkXCATIyspig7GpqSkWLVoEhmFga2vbJSAXFhbi+++/x/HjxzF+/Hj885//hL6+fr+Xqz9xOByEhYXB2NgY586dE+uuVlNTQ0BAAJYvXw5tbW2cOnUKUVFRKC8vR319PaqqqlBSUoJHjx4hNzcXWVlZSE9PR0pKChISEtDQ0CC/NzYE0R14Qki/UFNTw8qVK7Fv3z7s378f69atE1uGMSAgANXV1YiKioKRkZHYGr+Ojo6YOXMmLly4gJiYGISHh0sc+cvhcDBlyhSoqKjg5s2bEAgEGD9+fJe5zIaGhn1+PwKBAA8ePEBKSgqam5vh7OyMiIgImJiY4ObNm2hsbMT8+fPZcvJ4PFy+fBm3b99GaWkpfH198fbbb8utu1ooFILH44HL5Up9tLS0IDs7GyoqKmAYBtra2rh79y6+/vprjB07FgzDgMfjsQ8ul4snT54gIyMDUVFRbPrN57OPqaqqsg97e3uFnVuuiCgoE0L6jbq6OlatWoU9e/Zg3759WL9+PYyNjQH8/8Cw3bt34/Dhw9i4caNY6kwnJyeZA7O/vz+UlZVx+/Zt8Pl8TJgwAYsWLcKZM2dw4sQJREZG9jozlkAgQE5ODlJTU9lgHBkZyeahLi0tRXp6OiZNmgRjY2O0traitLQU58+fR0NDA7S0tODo6Ih169bJdHHwbODrLoCKHrIeJ+v939raWmhra0NDQwNqamrw8PDAnTt38PDhQ0ycOBHq6upiQVY0YjwnJwcPHjyAqqoqpkyZAmdnZ/YYWsCi92iecj+jecpDC9X/wGhtbcXu3bvB4/Gwfv16sZZSU1MTduzYAUNDQyxbtgyZmZli9f/o0SNcuHABjo6OUgOzyJ07d5CQkIBx48Zh0qRJ6OzsRHR0NKqrqxEeHg5nZ2eZy/xsMG5paYGzszN8fX3ZYMwwDNrb23Hw4EFoaWkhPDwcLS0tSExMRGVlJUxNTWFgYIDMzExMmTIFNjY2MgVQHo/3whHkSkpKUFNTk/gQBcoXPSQdx+PxJH7+i4uLcebMGXh4eCAoKEhqkK2vr0d8fDxKSkrg6OiIgICAQe2qV9TPf19QUO5nFJSHFqr/gdPc3Izdu3eDYRisX79ebAnD0tJS7NmzB66urrCxsYGOjo5Y/fckMGdkZCA+Ph5eXl4IDAyEQCDApUuX8OjRIwQEBMDW1hZ8Pl+sG/bZR2dnJ/Lz85Gbm4vW1laYmprCzs4O6urqXbpuHz16hLq6Onh4eEAoFCI/Px8tLS0YPXo0tLW1kZOTAxcXF4waNarXwVPSscrKygPS+uzu85+ZmYlr165hypQpGDt2rNRzMAyD/Px83Lx5E+3t7fDx8cG4ceN6tYBITyny57+3qPuaEDIgdHV1sWbNGuzevZvtytbW1gYA2NjYYPbs2Th+/DgaGhowceJEsec6OTlhxowZuHjxYrdd2cDT9ZyVlJQQFxcHoVCI4OBgzJgxAzdu3EB8fLzU8nE4HDx58gQVFRXg8/mwtLSEr68vDA0NoaKiItZlq6qqipqaGtTU1CA0NBQAcP/+fYwdOxYTJkzA6NGjERUVhdDQUCxYsGBYdN96eHigqakJt27dgp6entReBw6HAxcXF9jb2yM1NRWpqal48OABAgIC4OTkNMilHvooKBNCBoyBgQEbmPfv34+1a9eyA5/GjBmD0tJSnDp1ClZWVl0Sajg7O8scmD09PaGiosLOWZ46dSoCAwMxatQoCAQCseDK4XCQn5/P5uX29fWFn59ft+stt7e349ChQ3Bzc0NbWxsqKyvZFmRNTQ3OnTsHW1tbzJ07d1gEZBF/f380NDTg0qVLWLBgAczNzaUeq6amhkmTJsHV1RXx8fE4d+4cHBwcEBgYqPCjzxUJTYkihAwoY2NjrFmzBk1NTThw4IDYUqdTp06Fra0tLl26hPr6+i7PFQXmwsJCXLp0qdskIW5ubuy85UuXLkEoFMLCwgLW1tYwMzODrq4uHj16hGPHjuHGjRuwtLTEihUrMGPGjG4DMgDExcWhrKwM1dXVaG1txfz58zF58mS2q1xdXR3Lli0bdiklRVOlTExMEB0dLVNmLyMjI8ydOxezZs1CXV2d2L83eTEKyoSQAWdmZobVq1ejrq4OBw8eZBN9KCkpISQkBNra2jh37hw6Ojq6PFcUmB89evTCwDxq1CjMmDED+fn57JxnPp+Pe/fuYf/+/YiPj4eVlRVWrFiB8PDwFwZj4Oka6efOnYNQKISnpyeWL18Oa2trNiC3tbVh6dKlCrfWc39RVVXFrFmzoKysjDNnzsiUpIXD4cDZ2Rlr1qwRmxZHXoyCMiFkUFhaWmLVqlWorKzEkSNH2Ck7ampqmDVrFtrb23Hx4kUIhcIuzxUF5oKCghcG5hEjRmDWrFkoLCxEVFQUG4ytra17FIwZhkFaWhp++OEHaGlpYf369QgJCYGamhoYhkF8fDxKS0sRGhrKjtAerrS1tTFnzhy0trbiwoULEv+NJHl+/jJ5MaoxQsigsbGxwYoVK1BcXIxjx46xwVVfXx8zZ85EaWkpbt68KfG5zs7OmDlzpkyB2cnJCZGRkaivr2eD8fTp02UKxsDTe8gXLlzArl27YGxsjI8++gj29vbs/oyMDGRmZrJLM74MjIyMMHPmTJSUlLDrQpP+R0GZEDKoHBwcsGzZMhQUFODUqVNsq8vW1haBgYHIyMiQuizj84G5uxabvb09Nm7c2KNgDDydjnXo0CHcvXsXJiYm2Lx5s1gSkEePHuHmzZvw8fGBu7u7zOcdDmxtbRESEoLMzEx2oBzpXxSUCSGDbsSIEVi8eDEePHiA+Ph4ttXl6ekJDw8PxMXFoby8XOJznw3MMTEx3QbmnoyE5nK5uHz5Ms6dOwcdHR3o6ekhICAADg4O7DHV1dW4dOkSnJyc4O/vL/O5h5PRo0fDx8cHCQkJ7KpSpP9QUCaEyIWrqyvmzZuH/Px8NjBzOBwEBgbC0tIS58+fR1NTk8Tn9iQwy6KkpASHDh1Cfn4+QkJCoKyszAZlkZaWFpw7dw6GhoYICwsbVlOfesrf3x/Ozs5iq0qR/kFBmRAiN6NHj0ZgYCCysrJw48YNMAwDZWVlzJw5EyoqKt0uydgfgZnH4yE+Ph6nTp2Cnp4eVqxYAS6Xi8rKSoSGhrJZrrhcLqKjowEAERERg5KtSpFxOBx2gFt0dLTUiyfScxSUCSFyNXLkSPZecmJiIgBAU1MTkZGRaGxsxOXLl6UOKupLYK6qqsLRo0eRmZmJgIAAzJ8/HzweD7dv38aYMWNgY2MD4OlqS7GxsWhoaEBkZCR0dHT6/qaHAVVVVUREREBFRQVnz56l+cj9hIIyIUTuPDw8MHnyZDZNIwCYmJggLCwMjx49QlJSktTn9jQwCwQCJCYm4vjx41BVVcWyZcvg7e3NBl8DAwOx+8UJCQkoLCxEeHg4TE1N++cNDxNaWlqYPXs2O1WquxHxRDYUlAkhCmHcuHGYMGECbt++jfT0dABPA+7EiRORkpKCvLw8qc+VNTDX1dXh+PHjSE1NhZ+fHxYtWsSOzE5JSUFtbS1CQ0PZzFyiUcYBAQFwdHTs3zc8TIimSpWWltJUqX5AQZkQojB8fX3h4+ODGzduIDMzEwDg4+ODkSNH4vLly6iurpb63O6mSwmFQty5cwdHjhyBQCDA4sWL4efnx+bSrqqqQmpqKnx9fdn8ziUlJYiLi4OXlxe8vLwG8F0Pfba2tpg6dSqysrJw9+5deRdnSBteiVoJIUMah8OBv78/eDwe4uLioKKiAldXV0ydOhUNDQ04d+4clixZwq429TxRYL5w4QIAYPr06WhubkZsbCwqKyvh7e2NiRMniuWo5vF4iI2NhampKcaPHw/g6TrBFy5cgK2tLQICAl7qkdaycnd3R2NjIxISEqCvr99lgREiGwrKhBCFIpoWxefzcfnyZaioqGDEiBGIiIjAsWPHcP78ecyfP1/q4g/PBubW1lbU1NRAU1MT8+fPh7W1dZfjb9++jaamJixbtgzKyspoa2vD2bNnoa2tjZkzZ1KqyB6YOHEiGhsbcenSJejo6MDCwkLeRRpy6NNGCFE4HA4HISEhcHFxwcWLF1FYWAgdHR1ERESgpqYGcXFx3d67FAXmqqoqjBw5kl1E4nklJSXIyMiAv78/jIyMwOfzce7cOfB4PMyePZudEkVkI5oqZWpqSlOleomCMiFEISkpKSE0NBROTk64cOECSkpKYG5ujqlTpyInJ+eFaR6dnZ2xadMmTJ06VWJw5XK5uHLlCqytreHt7Q2GYXDlyhXU1NQgMjISenp6A/XWhjUVFRV2LjdNleo5CsqEEIWlrKyM6dOnw9raGtHR0SgvL4erqyub5rGoqOiFz5cmPj4eHR0dCA0NBYfDQXJyMh4+fIiwsDDqdu0j0VSpzs7Obgfnka4oKBNCFJqKigpmzZoFCwsLnD17FlVVVZg4cSLs7e0RExOD+vr6Hp/z0aNHyMnJQUBAAPT09PDgwQMkJyfD398fLi4uA/AuXj5GRkZYvXo1bG1t5V2UIYWCMiFE4YmyRxkZGeH06dOor69HeHg4dHR0EB0djY6ODpnP1d7ejmvXrsHBwQHu7u4oLy/HlStX4ObmBh8fnwF8Fy+flz0daW9QUCaEDAlqamqYM2cO9PT0cOrUKbS0tCAiIgIdHR24ePGiTCk2GYbBtWvXIBAIEBISgqamJpw7dw6WlpYICQmhqU9E7igoE0KGDHV1dcydOxeampo4deoUALDZpG7cuPHC5+fm5qKgoAAhISHsQCQNDQ3MnDmz2/vPhAwWCsqEkCFFU1MT8+bNg6qqKk6dOgUDAwMEBgbi3r17yMrKkvq8lpYWxMfHY+TIkeyI7ra2NkRGRkJTU3MQ3wEh0lFQJoQMOdra2pg3bx4A4NSpU3B2doaHhwfi4uJQVlbW5XjRdCcVFRUEBgayx82aNQuGhoaDXHpCpKOgTAgZknR1dTF//nzw+XycOnUKvr6+sLS0xPnz57skrcjMzERxcTGmTZuGnJwcZGdnY+rUqezyjIQoCgrKhJAhS19fH3PnzkV7ezuio6PZRCHR0dHgcrkAgIaGBty8eRMeHh7g8/lISEjA+PHj4ebmJufSE9IVBWVCyJBmZGSEefPmoampCbGxsZg+fTr7/wKBAJcvX4aWlhZcXFxw6dIldjlIQhQRBWVCyJBnYmKCuXPnor6+Hrdv38bUqVNRWFiIEydOoLKyEpMmTcKlS5dgbGzMZvAiRBFRUCaEDAvm5uaYPXs2qqqqkJOTA19fX1RXV8PT0xOpqalQUlJiczIToqgoKBNChg0rKytERkairKwMNTU1mDt3LhobG9HU1ITIyEip6zAToihoPWVCyLBia2uLWbNm4dy5c6irq0NzczNmz54NExMTeReNkBeilvJz4uPjMXv2bFhZWYHD4bBZgwghQ4eDgwPCw8PR2tqKwMBA2Nvby7tIhMiEWsrPaW1txZgxY/DKK69gwYIF8i4OIaSXRowYAQcHB6io0M8cGTro0/qcmTNnYubMmfIuBiGkH1BAJkMNfWL7qLOzE52dnezfLS0tciwNIYSQoYzuKffR1q1boa+vzz6CgoLkXSRCCCFDFAXlPvroo4/Q2NjIPq5fvy7vIhFCCBmiqPu6j9TV1aGurs7+raOjI8fSEEIIGcqopUwIIYQoCGopP6elpQX5+fns34WFhUhPT4eRkRHs7OzkWDJCCCHDHQXl56SmpiIkJIT9+7333gMArF27Fnv27JFTqfqmuroaNTU1A3JuHo+H9vZ2MAwDNTW1AXmNgcTlcpGbmwtNTc0hmROZ6l++qP5fzNTUFGZmZgNy7uGIwzAMI+9CDCcVFRXYvn07Nm3aBEtLS3kXB52dnQgPD6cBaIQQuQgKCkJMTIzY2BsiHQXlYa6pqQn6+vq4fv06DUKTg5aWFgQFBVH9ywnVv3yJ6r+xsRF6enryLs6QQN3XLwlvb2/6UshBU1MTAKp/eaH6ly9R/RPZ0ehrQgghREFQUCaEEEIUBAXlYU5dXR2ff/45DbKQE6p/+aL6ly+q/56jgV6EEEKIgqCWMiGEEKIgKCgTQgghCoKCMiGEEKIgKCgTmRUVFYHD4QzZdKOEEKLoKCgPkIKCAmzatAlOTk7Q0NCAnp4eJk+ejO+//x7t7e0D9rrZ2dn44osvUFRUNGCvIYuvvvoKc+bMgbm5OTgcDr744gu5lkcaDocj0yMuLq7Pr9XW1oYvvviiR+caKvXYW4pc/w8ePMAHH3wAb29v6OrqwtLSEhEREUhNTe1zWRSFItd/eXk5Vq1ahVGjRkFXVxcGBgbw8/PD3r17MZzHJ1NGrwFw7tw5LF68GOrq6lizZg08PDzA5XJx8+ZN/OlPf0JWVhZ27NgxIK+dnZ2NLVu2IDg4GA4ODgPyGrL45JNPYGFhgbFjxyImJkZu5XiR/fv3i/29b98+xMbGdtnu5ubW59dqa2vDli1bAADBwcEyPWeo1GNvKXL9//rrr9i1axcWLlyIzZs3o7GxEdu3b8fEiRNx8eJFhIaG9rlM8qbI9V9bW4vS0lIsWrQIdnZ24PF4iI2Nxbp165Cbm4uvv/66z2VSSAzpV48ePWJ0dHQYV1dXpry8vMv+vLw8Ztu2bQP2+sePH2cAMNeuXXvhsUKhkGlra5P53IWFhQwAZvfu3TIdyzAMU1NTwwBgPv/8c5lfR57efPNNZqC+Fr2pi6Faj72lSPWfmprKNDc3i22rra1lTE1NmcmTJw9ACeVPkepfmsjISEZbW5vh8/n9UzAFQ93X/ewf//gHWlpasGvXLomrRI0YMQJ/+MMf2L/5fD6+/PJLODs7Q11dHQ4ODvjLX/6Czs5Osec5ODggMjISN2/ehJ+fHzQ0NODk5IR9+/axx+zZsweLFy8GAISEhHTpehKdIyYmBuPHj4empia2b98OAHj06BEWL14MIyMjaGlpYeLEiTh37lyv60GerfT+JhQKsW3bNowePRoaGhowNzfHpk2b8OTJE7HjUlNTER4eDhMTE2hqasLR0RGvvPIKgKf3401NTQEAW7ZsYf9tXtQdPZzqsbfkVf8+Pj5dFrEwNjZGQEAAcnJy+vdNKjB5fv4lcXBwQFtbG7hcbp/fmyKi7ut+dvbsWTg5OWHSpEkyHf/qq69i7969WLRoEd5//30kJSVh69atyMnJQVRUlNix+fn5WLRoETZs2IC1a9fit99+w7p16+Dj44PRo0cjMDAQ77zzDv7zn//gL3/5C9vl9GzXU25uLpYvX45NmzZh48aNGDVqFKqqqjBp0iS0tbXhnXfegbGxMfbu3Ys5c+bgxIkTmD9/fv9V0BC0adMm7NmzB+vXr8c777yDwsJC/Pjjj0hLS8OtW7egqqqK6upqTJ8+Haampvjwww9hYGCAoqIinDx5EsDTNWV//vlnvPHGG5g/fz4WLFgAAPDy8pLnWxsSFK3+KysrYWJi0q/vUZHJu/7b29vR2tqKlpYWXL9+Hbt374a/vz80NTUH9H3Ljbyb6sNJY2MjA4CZO3euTMenp6czAJhXX31VbPv//M//MACYq1evstvs7e0ZAEx8fDy7rbq6mlFXV2fef/99dlt33deic1y8eFFs+7vvvssAYG7cuMFua25uZhwdHRkHBwdGIBAwDNOz7muRodbt+nz33Y0bNxgAzMGDB8WOu3jxotj2qKgoBgCTkpIi9dx9qYuhVo+9paj1LxIfH89wOBzm008/7fU5FJki1v/WrVsZAOxj2rRpTHFxcY/OMZRQ93U/Ei1TpqurK9Px58+fBwC89957Ytvff/99AOjSfezu7o6AgAD2b1NTU4waNQqPHj2SuYyOjo4IDw/vUg4/Pz9MmTKF3aajo4PXXnsNRUVFyM7Olvn8w83x48ehr6+PsLAw1NbWsg9R1+a1a9cAAAYGBgCA6Oho8Hg8OZZ4eFGk+q+ursaKFSvg6OiIDz74YEBeQ9EoQv0vX74csbGxOHToEFasWAEAAzqDRd4oKPcj0Xqtzc3NMh3/+PFjKCkpYcSIEWLbLSwsYGBggMePH4ttt7Oz63IOQ0PDLvd2uuPo6CixHKNGjeqyXdTt/Xw5XiZ5eXlobGyEmZkZTE1NxR4tLS2orq4GAAQFBWHhwoXYsmULTExMMHfuXOzevbvL2ADSM4pS/62trYiMjERzczNOnz7d5V7zcKUI9W9vb4/Q0FAsX74cBw8ehJOTE0JDQ4dtYKZ7yv1IT08PVlZWyMzM7NHzOByOTMcpKytL3M70YM7esL0PM0CEQiHMzMxw8OBBiftFg1c4HA5OnDiBxMREnD17FjExMXjllVfwz3/+E4mJiS/Nj3h/U4T653K5WLBgAe7du4eYmBh4eHj0+lxDjSLU//MWLVqEnTt3Ij4+vkuv33BAQbmfRUZGYseOHbh9+zb8/f27Pdbe3h5CoRB5eXlig7GqqqrQ0NAAe3v7Hr++rAH++XLk5uZ22f7gwQN2/8vK2dkZly9fxuTJk2W6oJk4cSImTpyIr776CocOHcLKlStx5MgRvPrqq736t3nZybv+hUIh1qxZgytXruDYsWMICgrqzdsYsuRd/5KIWsiNjY39cj5FQ93X/eyDDz6AtrY2Xn31VVRVVXXZX1BQgO+//x4AMGvWLADAtm3bxI7517/+BQCIiIjo8etra2sDABoaGmR+zqxZs5CcnIzbt2+z21pbW7Fjxw44ODjA3d29x+UYLpYsWQKBQIAvv/yyyz4+n8/W85MnT7r0WHh7ewMA24WnpaUFoGf/Ni87edf/22+/jaNHj+Knn35iRwy/TORZ/zU1NRK379q1CxwOB+PGjZPpPEMNtZT7mbOzMw4dOoSlS5fCzc1NLKNXQkICjh8/jnXr1gEAxowZg7Vr12LHjh1oaGhAUFAQkpOTsXfvXsybNw8hISE9fn1vb28oKyvjm2++QWNjI9TV1TF16lSYmZlJfc6HH36Iw4cPY+bMmXjnnXdgZGSEvXv3orCwEL///juUlHp+7bZ//348fvwYbW1tAID4+Hj87W9/AwCsXr16yLS+g4KCsGnTJmzduhXp6emYPn06VFVVkZeXh+PHj+P777/HokWLsHfvXvz000+YP38+nJ2d0dzcjJ07d0JPT4+9+NLU1IS7uzuOHj2KkSNHwsjICB4eHt12hw6Xeuwtedb/tm3b8NNPP8Hf3x9aWlo4cOCA2P758+ezF8HDlTzr/6uvvsKtW7cwY8YM2NnZob6+Hr///jtSUlLw9ttvdxmLM2zId/D38PXw4UNm48aNjIODA6Ompsbo6uoykydPZn744Qemo6ODPY7H4zFbtmxhHB0dGVVVVcbW1pb56KOPxI5hmKfTmSIiIrq8TlBQEBMUFCS2befOnYyTkxOjrKwsNj1K2jkYhmEKCgqYRYsWMQYGBoyGhgbj5+fHREdHix3TkylRQUFBYtMYnn3Ikm1MXqRlNNqxYwfj4+PDaGpqMrq6uoynpyfzwQcfsFnb7t69yyxfvpyxs7Nj1NXVGTMzMyYyMpJJTU0VO09CQgLj4+PDqKmpyTQ9ZKjWY28pUv2vXbtWat0DYLOtDSeKVP+XLl1iIiMjGSsrK0ZVVZX9Dd29ezcjFAr79X0rEg7DDOPM3oQQQsgQQveUCSGEEAVBQZkQQghREBSUCSGEEAVBQZkQQghREBSUCSGEEAVBQVlO/vGPf8DV1RVCoVDeRemzDz/8EBMmTJB3MXqE6l++qP7li+pfgcl7TtbLqLGxkTEyMmJ+++03dhv+b+7jd9991+X43bt3v3BZNFn9/vvvzJIlSxhHR0dGU1OTGTlyJPPee+8xT548kXj86dOnmbFjxzLq6uqMra0t89lnnzE8Hk/smIqKCkZdXZ05ffp0n8s3GKj+5YvqX76o/hUbBWU5+Pe//83o6ekx7e3t7DbRl8Lc3JxpbW0VO74/vxTGxsaMp6cn8+mnnzI7d+5k3nnnHUZNTY1xdXVl2traxI49f/48w+FwmJCQEGbHjh3M22+/zSgpKTGvv/56l/MuWbKECQgI6HP5BgPVv3xR/csX1b9io6AsB15eXsyqVavEtgFgvL29GQDMP//5T7F9/fmlkJQFau/evQwAZufOnWLb3d3dmTFjxohdmX788ccMh8NhcnJyxI49ceIEw+FwmIKCgj6XcaBR/csX1b98Uf0rNrqnPMgKCwtx7949hIaGdtk3efJkTJ06Ff/4xz8GbK3Q4ODgLtvmz58PAMjJyWG3ZWdnIzs7G6+99hpUVP4/RfrmzZvBMAxOnDghdg7R+zl9+vQAlLr/UP3LF9W/fFH9Kz4KyoMsISEBAKSucPLFF1+gqqoKP//8c7fn6ezsRG1trUyPF6msrAQAmJiYsNvS0tIAAOPHjxc71srKCjY2Nux+EX19fTg7O+PWrVsvfD15ovqXL6p/+aL6V3y0StQgE61R7OjoKHF/QEAAQkJC8O233+KNN96Quobp4cOHsX79eplek3lBevNvvvkGysrKWLRoEbutoqICAGBpadnleEtLS5SXl3fZ7uTkhOzsbJnKJC9U//JF9S9fVP+Kj4LyIKurq4OKigp0dHSkHvPFF18gKCgIv/zyC/74xz9KPCY8PByxsbF9Ls+hQ4ewa9cufPDBB3BxcWG3i7qv1NXVuzxHQ0MDTU1NXbYbGhp2uYJVNFT/8kX1L19U/4qPgrICCgwMREhICP7xj3/g9ddfl3iMpaWlxKvInrhx4wY2bNiA8PBwfPXVV2L7RFfIogXKn9XR0SHxCpphGHA4nD6VSRFQ/csX1b98Uf3LFwXlQWZsbAw+n4/m5mbo6upKPe7zzz9HcHAwtm/fDgMDgy7729vb0djYKNNrWlhYdNmWkZGBOXPmwMPDAydOnBAbTAH8f7dRRUUFbG1txfZVVFTAz8+vyzmfPHkidl9IEVH9yxfVv3xR/Ss+Gug1yFxdXQE8HQXZnaCgIAQHB+Obb76ROBLy6NGj7NXqix7PKygowIwZM2BmZobz589L7Mry9vYGAKSmpoptLy8vR2lpKbv/WYWFhXBzc+v2fckb1b98Uf3LF9W/4qOW8iDz9/cH8PTD5uXl1e2xX3zxBYKDg7Fjx44u+3p7T6eyshLTp0+HkpISYmJiYGpqKvG40aNHw9XVFTt27MCmTZugrKwMAPj555/B4XDEBmUAQGNjIwoKCvDGG2/0uEyDiepfvqj+5YvqfwiQz/Tol5uHhwezfPlysW0AmDfffLPLsUFBQWy2nf6YvD9mzBgGAPPBBx8w+/fvF3tcunRJ7NizZ88yHA6HmTp1KrNjxw7mnXfeYZSUlJiNGzd2Oe+JEycYAEx+fn6fyzjQqP7li+pfvqj+FRsFZTn417/+xejo6IillZP2pbh27Vq/filE55L0CAoK6nJ8VFQU4+3tzairqzM2NjbMJ598wnC53C7HLV26lJkyZUqfyzcYqP7li+pfvqj+FRsFZTloaGhgjIyMmF9//VXeRekXFRUVjIaGBnPq1Cl5F0UmVP/yRfUvX1T/io0GesmBvr4+PvjgA3z77bfDYum0bdu2wdPTE3PnzpV3UWRC9S9fVP/yRfWv2DgM84J0K4QQQggZFNRSJoQQQhQEBWVCCCFEQVBQJoQQQhQEBWVCCCFEQVBQJoQQQhQEBWVCCCFEQVBQJoQQQhQEBWVCCCFEQVBQJoQQQhQEBWVCCCFEQVBQJoQQQhQEBeVn/Pzzz/Dy8oKenh709PTg7++PCxcuyLtYhBBCXhK0IMUzzp49C2VlZbi4uIBhGOzduxfffvst0tLSMHr0aHkXjxBCyDBHQfkFjIyM8O2332LDhg0yHV9RUYHt27dj06ZNsLS0HODSEUIIGU6o+1oKgUCAI0eOoLW1Ff7+/jI/r6KiAlu2bEFFRcUAlo4QQshwpCLvAiia+/fvw9/fHx0dHdDR0UFUVBTc3d2lHt/Z2YnOzk7275aWlsEoJiGEkGGIWsrPGTVqFNLT05GUlIQ33ngDa9euRXZ2ttTjt27dCn19ffYRFBQ0iKUlhBAynNA95RcIDQ2Fs7Mztm/fLnH/8y3l9PR0BAUF4c6dOxg3btxgFZMQQsgwQN3XLyAUCsWC7vPU1dWhrq7O/q2jozMYxSKEEDIMUVB+xkcffYSZM2fCzs4Ozc3NOHToEOLi4hATEyPvohFCyJDD5XKRmpqK8ePHQ01NTd7FGRIoKD+juroaa9asQUVFBfT19eHl5YWYmBiEhYXJu2iEEDLkJCYmYv/+/RAIBAgICJB3cYYECsrP2LVrl7yLQAghw0JnZydiYmJQWFiIixcvws/PT+xWH5GMRl8TQgjpd0lJSXj48CG8vLzw8OFDJCcny7tIQwIFZUIIIf1K1EpWU1ODnp4e1NTUcPHixW4HzZKnKCgTQgjpV2lpaSgoKEBrayuysrLQ2tqKgoICpKWlybtoCo/uKRNCCOlXtra2WLlypcTtpHsUlAkhhPQra2trWFtby7sYQxJ1XxNCCCEKgoIyIYQQoiAoKBNCCCEKgoIyIYQQoiAoKBNCCCEKgoIyIYQQoiAoKBNCCCEKgoIyIYQQoiAoKBNCCCEKgoIyIYSQQcXlcpGQkAAulyvvoigcCsqEEEIGVWJiInbv3o2kpCR5F0XhUFAmhBAyICS1iEXLOhYWFtJyjhJQUCaEEDIgJLWIk5KS8PDhQ3h5eeHhw4dITk6WYwkVDwVlQggh/U5Si1i0TU1NDXp6elBTU6PW8nMoKBNCCOl3klrEaWlpKCgoQGtrK7KystDa2oqCggKkpaXJu7gKg9ZTJoQQ0q+ktYg3bNiAlStXdjne1tZWDqVUTBSUCSGE9CtRi7ijowNZWVng8XgoKChAdXU1Zs+eLe/iKTQKyoQQQvqVra0ttYh7iYIyIYSQfmVtbQ1ra2t5F2NIooFehBBCiIJQqKAsEAhw5MgRbNq0CfPnz8f9+/cBAI2NjTh58iSqqqoG9PW3bt0KX19f6OrqwszMDPPmzUNubu6AviYhhBAiojBBuaGhAZMnT8aKFStw+PBhnDlzBjU1NQAAHR0dvPPOO/j+++8HtAzXr1/Hm2++icTERMTGxoLH42H69OlobW0d0NclhJCXBeW97p7CBOUPP/wQWVlZiImJwaNHj8AwDLtPWVkZixYtwvnz5we0DBcvXsS6deswevRojBkzBnv27EFxcTHu3LkzoK9LCCEvC8p73T2FCcqnTp3C22+/jbCwMHA4nC77R44ciaKiokEtU2NjIwDAyMhI6jGdnZ1oampiHy0tLYNVPEIIGVIo7/WLKUxQbmxshKOjo9T9PB4PfD5/0MojFArx7rvvYvLkyfDw8JB63NatW6Gvr88+goKCBq2MhBCiyJ7vqqa81y+mMEHZ2dkZd+/elbr/0qVLcHd3H7TyvPnmm8jMzMSRI0e6Pe6jjz5CY2Mj+7h+/foglZAQQhTbs13VlPdaNgoTlF999VX89ttvOHr0KHs/mcPhoLOzEx9//DEuXryITZs2DUpZ3nrrLURHR+PatWuwsbHp9lh1dXXo6emxDx0dnUEpIyGEKLLnu6qTkpIo77UMFCZ5yB/+8AdkZWVh+fLlMDAwAACsWLECdXV14PP52LRpEzZs2DCgZWAYBm+//TaioqIQFxfXbXc6IYQQ6Z7vqvbx8aEsXzJQmKDM4XCwc+dOrF27FidOnEBeXh6EQiGcnZ2xZMkSBAYGDngZ3nzzTRw6dAinT5+Grq4uKisrAQD6+vrQ1NQc8NcnhJDhQFJX9Z07d/DZZ59BXV1d3sVTaBzm2blHLzlJo74BYPfu3Vi3bp1M57h79y58fHxw584djBs3rh9LR4YiLpeL1NRUjB8/HmpqavIuDiGDIjExEdu2bUNHRwdUVVXB4/GgoaGBd999FxMnTpR38RSawrSUCwsLkZmZKXUFkbNnz8LT0xMODg4DVga6PiH9LTExEfv374dAIEBAQIC8i0PIoKAFKXpPYYLy//zP/6CpqUlqUP7vf/8LAwODF46GJkRRPD/Qxc/Pj7ruyEuBFqToPYUZfX379m2EhYVJ3T9t2jTcuHFjEEtESN/QnExCSE8pTFB+8uQJdHV1pe7X0dFBXV3dIJaIkN6jOZmEkN5QmKBsZ2eHW7duSd1/48aNF84ZJkRRpKWl0ZxMQkiPKcw95eXLl+PLL7+En58f3nrrLSgpPb1eEAgE+PHHH3H06FF8/PHHci4lIbKhgS6EkN5QmClRnZ2diIiIwNWrV2FqaopRo0YBAHJzc1FTU4Pg4GBcuHBB4QfK0JQoQgghvaUw3dfq6uq4dOkSdu3aBT8/P9TW1qK2thZ+fn747bffcPnyZYUPyIQQQkhfKEz3NQAoKSlh/fr1WL9+vbyLQgghpB8wDCM1MRPpSmFayoQQQoaf9vZ2eRdhSFGolnJMTAx27dqFR48e4cmTJ10ybHE4HBQUFMipdIQQQnqKz+fLuwhDisIE5W+//RYffvghzM3N4efnB09PT3kXiRBCSB/R3PyeUZig/P3332Pq1Kk4f/48VFVV5V0cQggh/aC1tRWmpqbyLsaQoTD3lJ88eYJFixZRQCaEkGGkqalJ3kUYUhQmKPv5+SE3N1fexSCkX3G5XCQkJIDL5cq7KITIRUNDg7yLMKQoTFD+6aefcPLkSRw6dEjeRSGk3yQmJmL37t1ISkqSd1EIGXRcLhe3bt2ii9IeUJigvHTpUvD5fKxevRr6+voYPXo0vLy8xB5jxoyRdzEJkdnzSzfSgBfysklMTERMTAzi4uLkXZQhQ2EGehkZGcHY2BguLi7yLgoh/ULS0o0BAQHyLhYhg0J0UVpTU4Pff/8dQUFBlJVRBgoTlOlKigwn0pZu9PPzox8m8lIQXZTa2tri3r17SEpKQmBgoLyLpfAUpvuakOGElm4kL7NnL0o1NTUhEAhw5MgRuoUjA4VpKQNPh87/9NNPuHbtGqqrq7F9+3b4+fmhvr4ee/bswZw5czBixAh5F5OQF6KlG8nLTHRR2tHRgbKyMvB4PNy9exeJiYkICgqSd/EUmsIE5dLSUgQFBaGkpAQuLi548OABWlpaADy937x9+3Y8fvwY33//vZxLSsiLWVtbw9raWt7FIEQuRBelf/zjH1FZWQlNTU0sWbIEhYWFmDJlCpSVleVdRIWlMN3Xf/rTn9Dc3Iz09HRcv369S97refPm4fLly3IqHSGEEFlZW1tj9uzZ6OjoQGtrK/h8PsaMGQMul4tLly5BIBDIu4gKS2GC8qVLl/DOO+/A3d1d4jJfTk5OKCkpkUPJCCGE9JeSkhKcP3+e7i9LoTBBub29vdv8qM3NzYNYGkLkh7KAkeGuoqICp0+flinb18v2fVCYoOzu7o74+Hip+0+dOoWxY8cOeDni4+Mxe/ZsWFlZgcPh4NSpUwP+moQ8i7KAkZdBQ0MDoqKikJ+f323gfdm+DwoTlN99910cOXIE33zzDRobGwEAQqEQ+fn5WL16NW7fvo0//vGPA16O1tZWjBkzBv/9738H/LXIy0vajxBlASMvEx6Ph6tXr+Knn37Crl27ugTel/H7oDCjr1etWoXHjx/jk08+wccffwwAmDFjBhiGgZKSEr7++mvMmzdvwMsxc+ZMzJw5c8Bfh7wcuFwuUlNTMX78eKipqbHbExMTsX//fggEArEsX5QFjLxseDweLl26hJKSEujr64sl2HkZvw8KE5QB4OOPP8bq1avx+++/Iz8/H0KhEM7OzliwYAGcnJzkXTyJOjs7xa7eRNO4CAEkB9/nr/5FP0KUBYwMd3w+H48fP4a9vT1UVJ6Gn8LCQlRVVcHc3Bw3btzA2bNnsWjRopf2+6AQQbmtrQ0BAQHYuHEjXn/99UHppu4vW7duxZYtW+RdDKKApAVfaVf/zyZcyMrKAo/HY7OATZw4Ud5vh5A+e/ToEZKSkiAUCuHi4gIej4fs7GwoKytDU1MTTU1N+O233+Ds7IzOzs6X8vugEEFZS0sLhYWFEqdCKbqPPvoI7733Hvt3eno6ZawhAP6/683T05MNvn5+flKv/ikLGBnORAG4trYWWVlZcHBwQElJCWpqasDj8VBeXg6BQICamhocPXoUfn5+WLZsWZdEI8P9+6AQQRl4ev84JiYGmzZtkndRekRdXV2sK0VHR0eOpSGK4tmuN11dXTb4MgzT7dU/ZQEjw5Wom9ra2hpVVVUoKiqCiYkJ/Pz8uhxraGiI2tpamJubY+rUqdDW1pZDieVDYYLyp59+isWLF2P16tXYtGkTHB0doamp2eU4IyMjOZSOkJ55tiv6/v37bDBuaGig1jB5KRQXF6O1tRUA0NHRgTt37oh1U2dlZSEiIgJjxoyReo6qqir8/vvvCAkJeWm+IwoTlEePHg0AyM7OxqFDh6QeN9Dp2VpaWpCfn8/+XVhYiPT0dBgZGcHOzm5AX5sMH892RTc3N0NXVxcAMG7cOGoNk2EtOTkZX375Jc6dO8emS+7o6EBcXBz09PTQ1NQEDQ0N1NTUoKSk5IWDeDs6OnDhwgV4enrCz89v2OfNVpig/NlnnynEPeXU1FSEhISwf4vuF69duxZ79uyRU6nIUPPsghS5ubkYNWoUOz3K1NRUbHoUIcPFyZMnsXTpUjAM02X9AuDpBWpLSwvCwsLg7OwMQ0NDmc99//59VFVVISwsrM/d2fX19Xj77bdx9uxZKCkpYeHChfj++++l3n4sKiqCo6OjxH3Hjh3D4sWLkZGRgb///e+4efMmamtr4eDggNdffx1/+MMfelS2HgVlR0fHHgdODoeDgoKCFx73xRdf9Oi8AyU4OFjih4mQ3srPz8eoUaOkzk0mZDhITk7G0qVLIRAIpP6GioJ1bGwsxo0b16OgDADV1dU4deoUZs6c+cJbmcHBwVi3bh3WrVvXZd/KlStRUVGB2NhY8Hg8rF+/Hq+99prUXlpbW1tUVFSIbduxYwe+/fZbNq/FnTt3YGZmhgMHDsDW1hYJCQl47bXXoKysjLfeekvm99ijoBwUFNQlKKempiIrKwvu7u4YNWoUgKctg+zsbHh4eMDHx6cnL8FqbGyEjo7OsO+qIMNfXV0dSktLJU6PkkZa0hFCFNXf/vY3qS1kSc6fP4/Nmzf3+HVaW1sRHR2NyMjIXo0xysnJwcWLF5GSkoLx48cDAH744QfMmjUL3333HaysrLo8R1lZGRYWFmLboqKisGTJErZ1/corr4jtd3Jywu3bt3Hy5MkeBeUepdncs2cPdu/ezT7mzp2L0tJSxMbGIjMzE7///jt+//13ZGZmIiYmBiUlJT3KwpWamooZM2ZAS0sLxsbGuH79OgCgtrYWc+fORVxcXE+KS4jcjR8/Hu+++y4mTJiA3NxcsbnJ3XnZ8v2Soa24uBjR0dEyj/kRCoW4d+8e6uvre/V6ovvMooFkPXH79m0YGBiwARkAQkNDoaSkJPP37c6dO0hPT8eGDRu6Pa6xsbHHFw59yn392Wef4e2338a0adO67AsLC8Nbb72FTz75RKZzJSQkYMqUKcjLy8OqVasgFArZfSYmJmhsbMT27dv7UlxCBl1lZSWePHmCuro61NXVQVtbm50eJS2P78uY75fID5/PZzMT9vYhmu7XEwzDICcnh21d9/TR0tKC69evg8/n9+h1KysrYWZmJrZNRUUFRkZGqKyslOkcu3btgpubGyZNmiT1mISEBBw9ehSvvfZaj8rXp4FeeXl5MDY2lrrf2NhYpvvJAPCXv/wFbm5uSExMRHNzM3799Vex/SEhIdi7d29fikuI3AiFQjx58gQxMTHQ19eHQCCQmpnoZcz3S+SDz+cjOzsb7e3tfTrPgwcPoKSkJNaYehEOh4Ompia0tbX1+nVzc3NhaWkJT09P/OMf/8DXX3/N7mtvb0diYqJY13F2dnavX+vZ8x46dAiffvqp1GMyMzMxd+5cfP7555g+fXqPzt+noOzs7Izdu3djw4YNXUatNTc347fffpM5Z3VKSgq2bt0KdXV1ifmjra2tZb6KIURRiFoPqqqqmDx5MrvdwMAASkpK6OzsxJ07d9h7xy9rvl8iHwKBAO3t7VBVVe3T2AVDQ8MeBWTg6XdDU1MTSkq977AV5YwXCAR4/fXXsWTJEnbfypUrsXDhQixYsIDdZmVlBQsLC1RXV4udh8/no76+vst9Y0lOnDiBtrY2rFmzRuL+7OxsTJs2Da+99prMPcXP6lNQ/tvf/oZFixbB1dUV69atw4gRIwA8bUHv3bsXVVVVOH78uEznUlVV7fYftaysjLJlkSGluLgYTU1NAJ7++Nna2ordX0pPT8e5c+dw7949bNy4ETNnzqT810Qu1NTUeh2UGYaBubl5j5/H4XAwatSoXgdlJSUljB49mh18bGRkJPb90tTUhJmZGRuXRPz9/dHQ0IA7d+6wA5GvXr0KoVCICRMmvPB1d+3ahTlz5sDU1LTLvqysLEydOhVr167FV1991bv31atn/Z958+bh/PnzMDU1xddff41XXnkFr7zyCrZu3QozMzNER0fLPNBr4sSJOHHihMR9ra2t2L17N+WUJkNCcnIyZs+eDQcHB7bXp7OzE3/5y1/w3//+F0VFRQCe5gJOSUnBgwcP8OOPP+LgwYOora3F7Nmz8corr2DNmjXYsGEDVq5c2e/ZjOrr67Fy5Uro6enBwMAAGzZskHmFM4ZhMHPmTHA4HJw6dUpsX0pKCqZNmwYDAwMYGhoiPDwcGRkZ/Vp2ojgaGhpw8uRJpKenw97eXuYps6KA2tNBUHw+H48ePYKSkhLGjx/f4ylVAODm5oYZM2Zg48aNSE5Oxq1bt/DWW29h2bJl7MjrsrIyuLq6dhmQmZ+fj/j4eLz66qtdzpuZmYmQkBBMnz4d7733HiorK1FZWYmampoela9PQRkApk+fjrS0NJSXl+P27du4ffs2ysvLcffuXYSHh8t8ni1btiA1NRURERG4cOECACAjIwO//vorfHx8UFNT020fPiGK4OTJk5g8eTIuXLjQZeALwzDIzMzEN998g7t373bJBZyRkYHy8nK0traCx+NhxIgRmDlzJmbPnt2rLGDBwcFSE96sXLkSWVlZiI2NRXR0NOLj42UekLJt2zaJP74tLS2YMWMG7OzskJSUhJs3b0JXVxfh4eHg8Xg9Lj9RXAKBACkpKdi/fz9KSkoAPJ1pwOFwZA7M0uKDKPBKGsBVVFSEu3fvQltbu1cBWeTgwYNwdXXFtGnTMGvWLEyZMgU7duxg9/N4POTm5na53/3bb7/BxsZG4n3iEydOoKamBgcOHIClpSX78PX17VHZOIwCZcq4evUq3njjDeTl5Yltd3Z2xq+//jokWsp3796Fj48P7ty5g3Hjxsm7OGQQJScnY/Lkyd0mTxBRUlLChAkTwOfzYW5ujqqqKpiYmCAiIgKqqqrscerq6nBzc4O7u3uPb99IS56Qk5MDd3d3sXmaFy9exKxZs1BaWipxnqZIeno6IiMjkZqaCktLS0RFRbG9YampqfD19UVxcTHbsr9//z68vLyQl5fXpRuRyF9nZyfS09PZWQGyqKqqwuXLl8VagLq6upg2bRoePnyIP/7xj2AYRuL0KFFX9Zo1a2BgYAA7Ozt2XWWR/Px8pKSkwM/PD87Ozux2Ho+Ha9euoba2FmPGjGEHcLW2tsLb23vYjLnoc0u5uLgYr7/+OkaNGgUjIyPEx8cDeDq3+J133kFaWprE5zU1NXX5R5s6dSpyc3Nx9+5dHD16FIcPH0ZycjIePnw4JAIyebn1JHkCwzDIzs4Gl8tFeXk5uFwumwv4WaIfzcOHD+Py5ctdBqj0Rm/naba1tWHFihX473//K3FAzKhRo2BsbIxdu3aBy+Wivb2dnTri4ODQ53IT+eLxeIiPj8eRI0fYgMzhcDB27FisXr0aDg4OmD59Og4fPozAwMAuLWYOhwN3d3f88Y9/hJ6eHpKSkvD48eMur5GTk4O6ujpkZ2eL9bCUlpaio6MDrq6uKCoqwr179wb+TctBnwZ6ZWdnIyAggL1Bnp+fz3Y5mJiY4ObNm2htbcWuXbu6PNfQ0BD79+/HihUrADzNhrJp0yZMmDAB3t7e8Pb27kvRCBlUouQJsnY8MQyDxsZGeHl5sYtVAJDaJccwDB49eoRHjx7BwsICnp6esLe379Ugmd7O0/zjH/+ISZMmYe7cuRL36+rqIi4uDvPmzcOXX34JAHBxcUFMTEyX1hAZWh4/fowrV66wAxeBp7/xoaGhXS7QvLy88Msvv6C8vBwRERFoa2uDmpoa/vKXv8DIyAg8Hg8XL15kA6+dnR3bO/T48WPU1NTAysoKNTU1KC4uhrOzM3g8HmpqaqChoQEdHR2oqqoiPj4erq6ug1oPg6FP35QPPvgABgYGSExMBIfD6fJFj4iIwNGjRyU+VzT9Q2TPnj0IDQ2VafQbIf2Jz+f3ePUxhmHQ0NCA8vJyVFRU4MSJE73Kmc7hcODl5dXl3N2pqKhARUUFdHR04OPjgxEjRkBFRQVff/31gM3TPHPmDK5evSq150v0ehs2bMDkyZNx+PBhCAQCfPfdd4iIiEBKSorEpViJYmtvb0d8fDxycnLYbcrKypgwYQJ8fHy6TYNsYmIi9rfo4rO7wJuTkwNlZWVoaGhAWVkZ2dnZcHBwgIaGBurr69HZ2Ym8vDzw+XyUlJQgJydn2N0W6VNQjo+Px2effQZTU1PU1dV12W9nZ4eysjKJz3V1dcWvv/4KBwcH6OvrA/j/m/jdofu0pD/JkjyBy+XiyZMnePLkCRoaGtj/f7ZrLS8vDxwOp8eBuaGhodfJE9ra2nD58mV0dnZi9OjRAzpP8+rVqygoKICBgYHY9oULFyIgIABxcXE4dOgQioqKcPv2bbYFf+jQIRgaGuL06dNYtmxZr94nGXwMwyA3NxfXr18X+25YW1sjNDRUpkFWGRkZ7MWuUChEcXEx7OzsJAZeOzs7lJaWora2Fnw+HxUVFRAKhWhoaIC+vj5GjBghsVdIlnnFQ02fgrJQKISWlpbU/TU1NVJvvm/duhVLly5FaGgogKcthk8//VTqCGuGYcDhcAZ8PWXycnk2eYKysjIaGhrYlJj19fWoq6uTaaqQmppar1rKbW1tvZ6naW5uDnt7e3R0dEAgEAzoPM0PP/ywyzQQT09P/Pvf/8bs2bPF3suz9xJFf/c0sQSRn6amJly9epWdugc8/XwHBgaKzQvuDpfLxY0bN8S2ZWdng2GYLoG3trYWpaWlMDQ0ZMc5cDgcWFhYwNzcHCNGjIC5ubnEudBcLrdX+a8VWZ+C8rhx43Du3DmJK33w+XwcOXJEasKDGTNmoLCwECkpKaiqqsK6devw2muvwd/fvy9FIuSFGIbBkydPUF5ejuLiYmRlZaGxsRENDQ0yBw8dHR2YmJiwj2nTpiEuLq7HgbmlpQV8Pr9HiRs0NTUxevRoGBsbsz9KXC5XLDNYd56dp/nLL7+Ax+NJnKc5bdo07Nu3D35+frCwsJDYKrGzs2PXmQ0LC8Of/vQnvPnmm3j77bchFArx97//HSoqKmJrlBPFJBQKkZGRgYSEBLFeIBcXFwQHB/doDePs7GyUlJSIfR9qa2vR3t4uNsBQxNDQEAYGBjAwMICxsTHc3Nz6vGbyUNWnoPzRRx8hMjISb7zxBts1JRou//XXXyMnJwc//vijxOfeu3cP9vb27Fy13bt3Y/HixRIXtyCkt9rb21FeXo6ysjKUl5ez/y9rrl81NTUYGxuLBWBjY2NoaGh0OTY4OBjx8fEy9+Zoa2ujsbERWVlZGDVqFDQ1NbtthaioqLBB8PmBU0lJSTh69KjMazUfPHgQb731FqZNm8Yu8v6f//yH3S9tnmZ3XF1dcfbsWWzZsgX+/v5QUlLC2LFjcfHiRVhaWsp8HjL46urqEBcXh6qqKnabtrY2QkJCenXP1tLSErNnz0ZCQgK4XC7U1NQwfvx42NradrkFIqKmpgZXV1dYWFjIPNd5OOpTUJ45cyb27NmDP/zhD+zE61WrVoFhGOjp6WHfvn0IDAyU+NyxY8eKjb4mpC8EAgGqqqrYoCsKwrIuDcfhcGBkZCQWgI2NjaGnpyfzD8TmzZtx48YNme4tczgcTJw4EUZGRtDR0UFzczPa2tqgo6MDdXV19jW1tLRgZGTElknSwBoul4vY2NguazV3t9SpkZGR1AXdAcDBweGF70HS/rCwMISFhXX7PKI4eDwe0tLSkJmZKdZL5OXlhcmTJ/d67q+ou1n0fFVVVXh6eko93tLSEm5ubmJz9F9WfZ6nsHr1aixYsACxsbHIy8uDUCiEs7MzwsPDxaZ6PE9TU1PsKvz69evYuHFjX4tDhrlnRz2LAm9ZWRmqqqpkXsLNwMAAVlZWsLa2hpmZGZqammBlZdXn0cFeXl7497//LVPyhPXr12P06NFoaWlhZyEIBALU19dDTU0NWlpaCAsL65IwhMvlIjMzEx4eHmw3dVZWFvLy8mhVKdIjeXl5OHjwoNigP0NDQ4SGhvYqg1xviOYu29jYDMrrDQW9DsptbW2wtbXFhx9+iD/96U8y57gWGTNmDP71r39BWVmZHX2dkpIisVvwWc+OJCXDW0dHR5fgW15eLnOXqrq6Oht8n/3vs/eqRMk5upva0ROi5Al///vfcefOnS77HRwcMH/+fFhbW7OjUY2MjFBXV4fq6moIhUKUl5fj4cOHKCsrw+rVq9nvB/B0ROvp06chFAoxfvx4cLlcJCYm0qpSRGbt7e2IiorCzZs32W1KSkrw9fWFr6/voM0pV1JSwrhx47pd/vdl1Ova19LSgoqKSq9vxn///fdYtGgRNmzYAODpFdP333+P77//XupzaPT18CQQCFBdXd0l+EqaZieJkpISzM3NYWVlJRZ8jYyM+rQsXG+JWsw3btzA3/72N7S3t0NNTQ0LFy6Em5sbDAwMkJ+fj3v37sHFxYUdR1FQUIC4uDiUlJSgqakJt27dAp/Ph4+PD3x9faGkpIQbN26gtLQU8fHx8PLyQk5ODsrKyqCpqUmrSpEXSk9Px9GjR9HY2MhuMzU1xdSpUwf1vj+Hw6GALEWfLokWLlyIEydO4I033ujxjfnx48cjPz8fBQUFqKqqQnBwMD7++GN2ihQZfkRZrJ4PvpWVlTJ3Pevr63dp+VpYWCjcvShzc3MsWrQI33//Pdrb26GhocHOLNDR0UFjYyM6Oztx7949BAYGQk1NDSNGjEBdXR3i4+Nhbm7OdtMDT7uodXV1UVhYiFGjRrFpBi0sLBAeHg4nJyexOujvVaXI0NbQ0IBjx44hPT2d3aauro6IiAhoa2t3e6txIHh5eVFAlqJPQXnZsmXYvHkzQkJCsHHjRjg4OEi8Lyct4YeKigpGjRqFUaNGYe3atYiMjKSMXsNER0cHKioqxAZdiVZAkoWo6/n51u9QW1NbS0sLqqqq0NDQgLq6Otzd3VFUVITKykqx4Crqir516xZMTU1hY2ODtLQ0lJaWwtzcHK2trWwiB2NjY6ioqLArOwUEBAyrhPyk/wiFQiQkJCAqKkpsxoGHhweWLVsGbW1tsUA9GEaNGjUsk370lz4F5eDgYPb/n58oDvQs4cfu3bv7UhQiQXFxMa5cuYLm5mZ2FRc7O7t+fQ2BQICamhqx1m9ZWZnMXc+i9KzW1tZiLWB5dT33Jy6Xi/DwcMTFxcHZ2Rk+Pj5QV1fHzZs3oaqqKpbD18vLi53b2dnZicLCQujo6EBJSQna2tooKipCY2MjBAIBkpKSoKamhra2tmGZZrA/cblcpKamyjR/e7ipqqrCwYMHkZ+fz27T0dHBkiVL4OPjAw6HI5bqeDCYmZnB3t5+UF9zqOlTUO5LIP3rX/8KDoeDjz/+GEpKSvjrX//6wueIsn6R7iUnJ+PLL7/EuXPnwDAMlJSUIBQKweFwEBkZiU8//bTHa3wyDIOmpqYuLd+KiooedT0/2/K1trZWyK7n/pKRkYGioiLY2Nigo6MDubm5UFFRYQPvszl8s7Oz2bmdzxs9ejRqamoQFRXV5WLnwYMHXXLOk/+XmJiI/fv3yzx/ezjg8/mIjY3FhQsXxL6bEydOxIIFC+TW26SiogIXFxekpaWJzR4g4uS2nrIo/Z5oEIwsraLBGuj13//+F99++y0qKysxZswY/PDDD/Dz85PpufJeT/nkyZNYunSp1Ck5ysrK4HA4OHr0qNSR7KKu5+fn/Pak69nS0pJt+YqCsCJ2PfdmPVlZcLlc/PjjjygrK4OGhgY6OjpgbW2NxYsXd1kvHHgaeCWlEXwWwzAoKirCjRs3xOZfczgcTJkyBbNnz1bIOpaXzs5O/PWvf0VSUhImTJiAzz77bNh38RcWFuLgwYPsWATg6cIQK1askLii0kB9/kUWLFiAsrIy6OrqYseOHairq8Pp06cxb948iZm9ekqU0W443b6R23pqz6czVJTcuEePHsV7772HX375BRMmTMC2bdsQHh6O3NxchW+RJCcnY+nSpRAIBFITPwgEAnA4HCxduhQ3b96Eg4NDl9ZvbW2tTOkin+16fjb4GhsbD/mu5756tiu6qakJqqqqKCkpQV1dHaZOndqrc3I4HDg6OsLe3h6ZmZlITExEW1sbGIbBjRs3kJqaivDwcISEhAzb3oeeSEpKwsOHD1+K+dsdHR04e/asWKpXDoeDadOmITIyUm6t0pMnT+Lq1asQCAQwNzfHqVOnxGYPUGu5qx4F5VdeeQUcDgc7duyAsrIyXnnllRc+h8PhSFxPWVH961//wsaNG7F+/XoAwC+//IJz587ht99+w4cffijn0nXvb3/7GxiGkSkTk0AgwPLlyzFjxgyZzq2npyfW7Swa9UxfKsme7YoW3dMXbe8rJSUleHl5wdXVFcnJyUhLS2MX1jh16hTi4+MxZ84cjB8//qW9OOrs7ERMTMxLMX87KysLhw8fFus9sbW1xcqVK/t9DElvmZiYIDs7G0VFRV0GOBJxPQrKV69eZe9PKisr4+rVqy+cCtWTqVI5OTkoKChgf8RGjBgxqItYi5L6f/TRR+w2JSUlhIaG4vbt24NWjt4oLi5GdHS0zAsiMAyDwsJCsYABPM0/K2nU82BPmRjqnl3VprW1dUCS66upqcHPzw8ODg4oKSlBcnIyGIZBfX099uzZg6tXr2LBggUYOXJkv7+2oktLS0NBQQE6OjqG7fzt5uZmnDhxAikpKew2VVVVREZGYurUqf2WEKc/6Ovr49SpUxIHONKFvbgeBeVnl/KS9Hdvbd++HV999ZXEtZft7Ozw8ccfd1k2biDU1tay3SzPMjc3x4MHDyQ+p7OzU2wEo2iZPz6fL7bSykCLiYnp1dKBSkpKmDFjBiwtLWFlZQUTExOJravBfC+Dicfjgc/no7W1dUDf40AtL8flcqGuro6FCxciKCgIp0+fRnZ2NoCn9xf/+c9/wtPTE3PmzFHYRSH4fH6/jxUxNDSUOGbC0NBQpqU4e0JZWXnQsmABTy+oU1JS8Pvvv4t9rkaNGoVly5bB1NQUQqFQpluCA/35Fy1sIhQKUVhYiM7OTuTk5IDP56OwsBB37tyBl5dXr8/P5XLZ39qB6hUa9FtBjJy9//77DIfDYYyNjZlXX32V2bZtG/Prr78y27ZtYzZs2MAYGxszSkpKzAcffDDgZSkrK2MAMAkJCWLb//SnPzF+fn4Sn/P5558zAOhBD3rQgx7D8DHY5Db6Gng6MGnixImYP38+9u3bJ7GLr7W1FatWrcKZM2eQlJQ0oPcguFwutLS0cOLECbFc3mvXrkVDQwNOnz7d5TnPt5TT09MRFBSEpKQkjB07dsDK+rw9e/bgtdde6/Hzdu7cibVr1w5AiYaOgWipidy8eRNHjhzB8uXLMXny5AF5DUktNaFQiOTkZERHR6OhoYHdrq6ujrCwMEydOlUhug07OzuRkZEBFRUVhShPT4laamPGjBnQe9UCgQDXr19HdHQ0uFwuu93HxwcLFy6Enp5er889UJ//zs5ObN26FZcuXcL06dPx0UcfDUgdDXRPxWC3lPv8Ti5cuIB//etfuHv3LhobGyV2oUr7B9+1axcsLS1x6NAhqf9Y2traOHz4MJycnLBr164BDcpqamrw8fHBlStX2KAsFApx5coVvPXWWxKfo66uLlZ20ZQUFRWVQf3HDA8Pl2nJwGdxOBxMnz79pR+pO1Dvv7OzUyxXdXBw8KAOMgoICMCECRNw5coVXLp0CZ2dneDz+bhw4QISEhIwZ84cTJgwQa6DwYRCIZtDfyCCsqRVtbrb3lOqqqpobW2FqqrqgH2OSkpKcPDgQRQXFwN4GoQMDAywfPnybpdDlNVAlfvu3bt4/PgxXF1d8fjxY2RnZw/b0e/9qU/fxt9//x2RkZGoqqrCsmXLIBQKsXz5cixbtgyamprw8vLCZ599JvX5t2/fxuLFi1/4Q6WhoYHFixfj1q1bfSmuTN577z3s3LkTe/fuRU5ODt544w20trayo7EVlZ2dHSIjI2Ue3KGsrIzZs2crzOjM4UjSlJzBpqamhpkzZ2LLli0ICAhgA3BjYyP279+PrVu3svegh6OMjAycPHkS9+7dk2m7IuFyuTh16hS++eYbNiBzOBwEBwfjs88+65eAPFCeHf1uaGjIjn4f7AxiQ1GfgvLWrVvh5+eHtLQ0bNmyBcDTaVMHDx5EZmYmKioq4OjoKPX5JSUlcHNzk+m13N3dUVJS0pfiymTp0qX47rvv8Nlnn8Hb2xvp6em4ePHiCxM7KIJPP/0UHA5HphHxHA4Hn3zyySCV7OUjbUqOvH6U9PT0sHz5cnzyySdiA2vKysrw448/4ocffkBpaalcyjZQuFyuWE+FqNtX2nZFkpubi6+++gqXLl1iB2xZWlri/fffx5IlS164xK28iUa/t7a2oqioCK2trezod9K9PnVfZ2dnY+vWrWJ9+qIRfA4ODti8eTO++eYbrFmzRuLzm5qaZJ5qo6Ojg+bm5r4UV2ZvvfWW1O5qRebr64ujR4/KlNHr2LFjPU61SWSnqFNyLCws8Prrr+Phw4c4efIk2wLLycnBgwcPMHHiRMyePRsGBgZyK2N/EaU5fX5erLTtiqCtrQ0nT55EQkICu01FRQUzZszA9OnTB3WUd1+I5kkDQE1NDUxNTdntpHt9+hfW0tJi78cYGBhAXV0dFRUV7H5zc3MUFhZKfT7zfwtWyEqOY9KGjAULFiAhIQFffvklO2/52dzXERER+OSTTyggD7Bnf5Se364IRo4ciQ8++AB37tzB6dOnUV9fD4ZhcPv2baSmpiI0NBRhYWEK3yKTRtQafn5erKurq8Tt8p4vyzAM0tLScOzYMTQ1NbHbnZ2dsWLFCoWdziaNKMkQ8HRhjKHQ06go+jT6evLkyRg3bhx++OEHAIC/vz+0tLQQExMDPp+P8PBwVFVVSZ3jq6SkhLFjx7L/eN0pKytDenr6oOS+7gt5575+VnFxMa5evYqmpibo6elh6tSpdA+ZdMHj8RAXF4eLFy+KLe+nq6uLiIgITJ48ecASUQxU7uX09HTs3bsXnZ2dUFFRAZ/Ph7q6Ovz9/XH79u0u29euXQtvb+9uzylpcFh/5F5+8uQJjh49KnZ/W0NDA/PmzcOUKVOGfFa2hoaGYdHzMlj61FJesGAB/vOf/+C7776Duro6Pv74Y8ydOxcGBgbgcDhobW3Fb7/9JvX5dnZ2qK+vF0sP1x0KKD1jZ2eHdevWybsYRMGpqqoiLCwM/v7+uHjxIq5fvw6BQIDm5mYcOXIEcXFxmD9/Pjw8PHrUsyVP0lbcMjMzg4mJicTjXyQjIwOnT5+GUCjsl+5uoVCIGzdu4PTp0+jo6GC3e3l5YdmyZcMmkA23tKYDrVdBuaOjA6dPnwaPx8Mnn3yC+vp6WFpaIjIyEnFxcTh58iSUlZURERGBkJAQqefpr4xghJC+09HRwaJFixAYGIjTp0+zg3IqKyvx888/w8XFBQsXLhwSF8fPpjntD88PDutrd3dFRQUOHjyIR48esdv09PSwdOlSeHt7D5mLH1loamrKuwhDSo+DcnV1NSZNmoTCwkL2nrCmpiZOnTqF0NBQBAQE0Fw0QoYwMzMzbNy4EQUFBTh58iQ7LiQvLw9///vf4evrizlz5sDY2FjOJe297uYpS9rXX4PDeDweLl26xN7iE5k8eTLmz58PLS2tvr0xMuT1+GbFl19+iaKiIvzxj39EdHQ0/v3vf0NTUxObNm0aiPIRMixxuVwkJCRInI7T3b7B5OzsjP/5n//Bxo0b2dGzAJCSkoItW7YgKioKbW1tcixh73U3T/n5fdIGjfX036egoAB///vfce7cOTYgm5mZ4d1338XKlSspIBMAvWgpX7p0CWvWrMF3333HbjM3N8eKFSuQm5uLUaNG9WsBCRnKuFwuUlNTMX78eLEWWWJiIvbv3w+BQNClZ6m7fYONw+Fg7Nix8PT0xI0bN3D+/Hm0traCz+cjNjYWCQkJmDVrFgICAhRyuo60wVnSuqIl7Xt2bey8vDzw+XyUlJQgOzsb7u7uLyxDe3s7zpw5g/j4eHYGiZKSEsLCwjBz5swhmV6UDJwef4uKi4vx5z//WWzblClTwDAMqqqqKCgT8gxJAVaUWKSwsLDLGr/d7ZMnFRUVhISEYMKECYiJicG1a9fY1YWOHz+OuLg4zJs3T+Huh0oanNVdV7Skfba2thIHjckyOOz+/fs4fPiwWP5xOzs7rFq1CjY2Nv3zJhWYtItSadtJL4JyZ2dnl7mLor+fvUdCyMtOWoCVlH5TFLC726cItLS0MH/+fAQGBuLMmTPsWr41NTXYuXMnnJycsHDhwm4z+Q0WSa1eAFLnKUvb99Zbb2Hq1KlSX0OSpqYmHDt2DHfv3mW3qampYfbs2QgJCRny05xkJa3XR5F6gxRNr/qbioqKxD5sjY2NAJ4OBJE0jF/e83UJkQdJAdbPz09i+k0/Pz8AkLpPEVrLzzI2Nsb69esxdepUnDx5Enl5eQCAR48e4dtvv8W4ceMwd+5csXvRg01Sq1dFRUVqVzQAqfteNIdZhGEYJCYm4vfffxe73+7u7o5ly5ZJnI41XEm7KFXU3iBF0aug/Omnn+LTTz/tsn3z5s1if4tGZyt6wg9C+pu03NcMw0hNvwlAIVNzdsfe3h7vvvsu7t+/j6ioKFRVVQF4mkQnIyMDQUFBmDFjBrt62mCRNjhr8eLF3XZF97abGng6M+Xw4cPIzc1lt2lra2PRokXw8/NTqG79wSCt10fRe4PkrcdBeffu3QNRDgBPWwm7du3Co0eP8OTJky5pNTkcDgoKCgbs9QnpL9JyXzc0NHSbflORU3NKw+Fw4OXlhdGjR+PWrVs4d+4cmpubIRAIcPXqVdy+fRszZsxAcHDwoC0TKm1wVl1dndSuaAC9mtssWt41JiaGzf0PAH5+fli4cKHM+f2HE2kXpWPGjBkyvUHy0qc0m/3p22+/xYcffghzc3P4+fnB0NBQ4nEDeVHQHxQpzSaRn7KyMrFbPCLjxo2TKa3sUNbR0YHY2FhcvnxZLEgZGRlh7ty58PHxYe+pDlSazaqqKmRlZbGvIfrBHz16dL8mFSkrK8OVK1fEshIaGRlhxYoVMo3MHq4SExOxbds2dHR0QFVVFTweDxoaGggNDcXly5e7bH/33XcVtjdosClMULaxsYGbmxvOnz8/aFfTA4GCMiFPNTQ04OzZs0hMTBTr9bKzs8OCBQswcuTIAQvKz3ry5InYRX53iUNkxePxkJiYiLt377LvjcPhICQkBJGRkUN2IY/+Iu2i1NLSUmzRIpGX4WJVVgozsfDJkydYtGjRkA7IhJD/Z2BggNWrVyMkJARRUVHIyckB8HRa5bZt2+Dl5YVZs2YNeDmam5vFgnJfc1g/fvwYV65cEVvNydLSEqtXr4aDg0N/FHnIe3aVKNIzChOU/fz8xAZIEEKGBxsbG7z99tvIzs7GyZMnUV5eDgC4d+8eMjMz4eLiAn9//wFrKZeVlcHKygoqKip9ymHd3t6O+Ph49uICeLo++ZgxY7BixQrKyEX6hcIE5Z9++gkzZ87E+PHjsWLFCnkXhxDSz9zd3eHq6orExEScPXsWjY2NEAqFyM3NxaNHj+Dr64uxY8f2e29Ze3s77t+/jzFjxvQqhzXDMMjNzcX169fFlra0trZGUFAQVFVVB2xpS/LyUZigvHTpUvD5fKxevRpvvPEGbGxsunzQORwOMjIy5FRCQkhfKSkpYdKkSfDx8cHVq1dx6dIldHZ2gsfjISEhAffu3cOkSZPg6uraLwk2uFwuCgoKYGVlhc7OTty6dUti4hBpreWmpiZcvXpVbEU7NTU1BAYGYvTo0eDxeGhtbe1zOQkRUZigbGRkBGNjY7i4uMi7KISQAaauro6ZM2fC19cXBw4cQF5eHhiGQUtLCy5duoS7d+8iMDCwz8tEzp49G2VlZTA0NMTKlSuRkZEBLS2tFyYHEQqFyMjIQEJCgtgI8hEjRiAkJATa2tp9Khch0ihMUI6Li5N3EQghg0xXVxf+/v4YN24ckpOT2fWFa2trcfLkSdjb2yMgIKBXmbC4XC6qq6vB4/HQ0NAAXV1deHl5QVNTE05OTuw0qeeTg9TW1uLy5cuorKxkt2lrayMkJAQjRozow7sl5MUUJigTQl5eRkZGmDNnDkpKSnDjxg1UV1cDeDrSubi4GO7u7vD39+9RZrCMjAw2m6BQKERjYyM8PT0BPF1gw8PDA2ZmZuzxfD4fKSkpSElJgVAoZLd7enpiypQplNyCDAqFC8o8Hg8PHjxgB4E8LzAwUA6lIoQMBltbWyxfvhy5ubm4desWmpubwTAMsrKykJubCx8fH/j4+LxwxLRolPWzsrOzYWdnB1VVVfD5fKSlpcHS0hIuLi6or6/H5cuX8eTJE/Z4Q0NDhIaG0tQeMqgUJigLhUJ89NFH+Omnn7pdOJ3yaBMyvHE4HLi6umLEiBFIT09HcnIyuFwu+Hw+kpKScP/+ffj7+2P06NFSB4OJ0mw+m7SktrYWpaWlYitYlZWVITc3Fw0NDejs7ATwdDCar68vfH192TWi+yPhCCGyUJj1w77++mt8++23WLVqFfbt2weGYfD3v/8dv/zyC7y8vNicqYSQl4OKigrGjx+P9evXw9vbmw3AbW1tuHLlCg4cOIDCwsIuOfKBp/eJJ0+ezM7gUFJSgqurq1gSkY6ODtTV1aG9vR3q6urQ09ODubk5Jk+eDHd3d7HZHxkZGTh58iTu3bs3wO+avOwUJijv2bMHS5Yswc8//4wZM2YAAHx8fLBx40YkJSWBw+Hg6tWrci4lIWSwaWpqIjg4GKtXrxYbaFVfX4/Tp0/j5MmT7D1o4GlSks8++wyffPIJO6+Yy+XiyJEjOHbsGPLz83Hv3j3U19ezt8g4HA50dXWhq6uL5ORk3Lx5E7du3cLjx4/R2toqlnBE2hrK3Tl58iSmT58OY2NjcDgcpKeny/S848ePw9XVFRoaGvD09MT58+fZfTweD3/+85/h6ekJbW1tWFlZYc2aNWxyFjI0KUxQLi0tZVdvEQ2o6OjoAPB0XuCqVauwf//+AS3DV199hUmTJkFLS0viutCEEPkxNDREZGQklixZAgsLC3Z7SUkJDh06hJiYGJw6dQrLly/HjRs3urSgGYZBdnY2fvjhB1y+fBllZWUAnv6+GBsbQ0tLC48fP0ZSUhIbjB88eIB9+/bh/v37cHZ2ZhOO9FRrayumTJmCb775RubnJCQkYPny5diwYQPS0tIwb948zJs3D5mZmQCe9hjcvXsXn376Ke7evYuTJ08iNzcXc+bM6XH5iOJQmHvKxsbGaGlpAQDo6OhAT0+PnR4h8uwgjIHA5XKxePFi+Pv7Y9euXQP6WoSQ3rGyssLSpUuRn5+PmzdvotyQUDYAACD3SURBVLGxEcDTaZWnTp2SOEBURLSvqKgIenp6cHNzg7a2NjgcDng8HnJyclBXV8cOCgOArKwsdHZ2oq6uju0670l6TgBYvXo1+7qy+v777zFjxgz86U9/AgB8+eWXiI2NxY8//ohffvkF+vr6iI2NFXvOjz/+CD8/PxQXF/d5jjeRD4UJymPHjkVKSgr7d0hICLZt24axY8dCKBTiP//5D8aMGTOgZdiyZQuAp13phBDFxeFw4OLiAicnJ9y7dw9JSUm4c+eOxPvL0hQVFaGqqgrOzs4Ank6/qqmpgZWVFWpqalBcXAwlJSXU1taCz+ejvLwcQqEQaWlpiIqKQlhYWI+maPXU7du38d5774ltCw8Px6lTp6Q+p7GxERwOh3r6hjCFCcqvvfYa9uzZw659+tVXXyEwMBCBgYFgGAaGhoY4fPiwvIvZRWdnJztqEwDb2ieEDDxlZWWMHTsWBgYG2LZtW4+CclNTE+7cucO2KHNycqCsrAwNDQ0oKysjOzsb/v7+UnNjp6SkwMTERGw0d3+qrKzssvazubm5WFKTZ3V0dODPf/4zli9fDj09vQEpExl4ChOU58yZI3YvxN3dHQUFBYiLi4OysjImTZoEIyMjOZZQsq1bt7ItbEJI7/Rm8NSzkpOTexSQRYqLi1FSUgLg6ZQpHo+HiooKCAQC1NbWoqmpCaNHj5b4XKFQiCdPnnRZrvHgwYPYtGkT+/eFCxcQEBDQ47L1BI/Hw5IlS8AwDH7++ecBfS0ysBQmKEuir6+PuXPn9ukcH3744QsHV+Tk5MDV1bVX5//oo4/EupjS09MRFBTUq3MR8rJRVlaGpqYm2tvbxXJM99STJ0+gpKTU7f1kSaysrNhW5bhx47rs19PT6/acDg4O0NbWFps+NWfOHEyYMIH9u7fJRywsLFBVVSW2raqqSmyQG/D/Afnx48e4evUqtZKHOIUKygKBAMePH8e1a9dQXV2Nv/71r/D09ERjYyOuXLmCyZMnd+nOeZH3338f69at6/YYJyenXpdZXV1dLP3eQN5jImS4UVFRgbu7e5+TAmVkZPQ4IAPAyJEjYWVlBQDsf3vCz88PBgYGbJIRAOzUqr7y9/fHlStX8O6777LbYmNj4e/vz/4tCsh5eXm4du0ajI2N+/y6/YnL5SI1NRXjx4+npCsyUpig3NDQgBkzZiA5ORk6OjpobW3F22+/DeBpoHvnnXewZs0afP311z06r6mpKUxNTQeiyISQfqCioiIW1HpjxowZ4HA4PerC5nA4cHNzA4fD6dVrmpqawsjISKYlJuvr61FcXMzOIc7NzQXwtDUsavmuWbMG1tbW2Lp1KwDgD3/4A4KCgvDPf/4TEREROHLkCFJTU7Fjxw4ATwPyokWLcPfuXURHR0MgELD3m42MjBQiCCYmJmL//v0QCAQD3oU/XCjMPOUPP/wQWVlZiImJwaNHj8S+XMrKyli0aJHYxPmBUFxcjPT0dBQXF0MgECA9PR3p6ek0eIsQBWdnZ4fIyMgua7BLo6SkBC8vr16NU9HQ0ICvry9mz54t85rPZ86cwdixYxEREQEAWLZsGcaOHYtffvmFPaa4uBgVFRXs35MmTcKhQ4ewY8cOjBkzBidOnMCpU6fg4eEB4GmK0DNnzqC0tBTe3t6wtLRkHwkJCT1+X/2ts7MTMTExKCwsxMWLF8UGxBLpFKalfOrUKbz99tsICwtDXV1dl/0jR44c8KlKn332Gfbu3cv+PXbsWADAtWvXEBwcPKCvTQjpm08//RQXLlyQucU8a9Ysmc/N4XBgbW3NTsOSNfiLrFu37oW30SQtX7t48WIsXrxY4vEODg69Gtw2WJKSkvDw4UN4eXnh4cOHSE5OptayDBQmKDc2NnY7tYDH44HP5w9oGfbs2UNzlAkZonx9fXH06FEsXboUDMNIvE8tatm+9tprXUZNP4/D4cDCwgLOzs5wdHSEpqbmQBR7WBK1ktXU1KCnpwc1NTVcvHgRfn5+tATmCyhMUHZ2dsbdu3el7r906RLc3d0HsUSEkKFmwYIFSEhIwJdffono6GixliSHw4GnpydmzZrVbUDW0tKCm5sbRo0aRQM3eyktLQ0FBQXo6OhAVlYWeDweCgoKkJaWhokTJ8q7eApNYYLyq6++ij//+c8IDg7GtGnTADz9EnV2duKvf/0rLl68yA5wIIQQaXx9fXHmzBkUFxdjzJgxaGhogKamJj777LNu7yGrq6tj7NixcHd37/PAs5edra0tVq5cKXE76Z7CfPL+8Ic/ICsrC8uXL2dTxK1YsQJ1dXXg8/nYtGkTNmzYIN9CEkKGDDs7O2hra6OhoQHq6upSA7KSkhLc3Nzg4+MDDQ2NQS7l8GRtbd3r+dkvO4UJyhwOBzt37sTatWtx4sQJ5OXlQSgUwtnZGUuWLEFgYKC8i0gIGUZUVFTg6uoKLy8v6qYmCkNhgrLIlClTMGXKFHkXgxAyTKmoqMDT0xOenp7UMiYKR+GCMiGEDBRjY2OEhYVRKkqisOQalHu6GDeHw8Hp06cHqDSEkOHGwsICbW1t0NXVhb6+PiIiIqh1TBSaXINydHQ0NDQ0YGFhIdMk+N6mwyOEvJxSU1Oxb98+8Hg8hIWFUUAmCk+uQdna2hplZWUwMTHBihUrsGzZsi4roBBCSF95e3sr5NKvhDxPrrmvS0pKcO3aNYwdOxZffvklbG1tERoait27d6O5uVmeRSOEDBOqqqrw8vKSdzEIkYncF6QICgrC9u3bUVlZiRMnTsDY2BhvvfUWzMzMsGDBApw4cYISmRNCes3Ozg6qqqryLgYhMpF7UBZRVVXF3LlzcfToUVRVVbGBeunSpfjHP/4h7+IRQoYoS0tL9v+5XC4SEhLA5XLlWCJCpFOYoCwiSmR++vRppKWlQUND44WJ4wkhRBpRhkDg6fq+u3fvRlJSkvwKREg3FCIoC4VCxMTEYN26dTA3N8fy5cvR3t6OnTt3orq6GqtXr5Z3EQkhQ5RodSda35cMBXIdfZ2QkIBDhw7h+PHjqKurw8SJE/H1119jyZIlMDExkWfRCCHDhGjtY1rflwwFcg3KU6ZMgaamJmbNmoXly5ez3dTFxcUoLi6W+Jxx48YNYgkJIUMZl8tFUlISvL29aX1fMiTIPc1me3s7fv/9d5w8ebLb4xiGAYfDkbhwOSGESJKYmIj9+/cjKyuL1vclQ4Jcg/Lu3bvl+fKEkGHs2XvImpqaWLJkSZepUbS+L1E0cg3Ka9eulefLE0KGsWfvIZeUlMDU1JTuIROFpxCjrwkhpD+JWsnP30OmEddE0VFQJoQMO2lpaSgoKEBrayuysrLQ2trK3kMmRJHJfaAXIYT0N1tbW6xcuVLi9t7icrlITU3F+PHjoaam1pfiESIVBWVCyLBjbW0Na2vrfj2naCS3QCCge9NkwFD3NSGEPENSfmzKBkYGCwXl/1NUVIQNGzbA0dERmpqacHZ2xueff06J6wl5yUjKjy0pGxghA4GC8v958OABhEIhtm/fjqysLPz73//GL7/8gr/85S/yLhohZJBIahHTSG4ymOie8v+ZMWMGZsyYwf7t5OSE3Nxc/Pzzz/juu+/kWDJCSG9JG5wlbbukFrGqqiplAyODhoJyNxobG2FkZNTtMaIraZGWlpaBLhYhREbSBmdJ2i6tRbxhw4Z+H8lNiDQUlKXIz8/HDz/88MJW8tatW7Fly5ZBKhUhRFbPd0WLFp+Qtl00t/n5FnF1dTVmz54t77dDXhLD/p7yhx9+CA6H0+3jwYMHYs8pKyvDjBkzsHjxYmzcuLHb83/00UdobGxkH9evXx/It0MIkZG0wVnStovmNm/YsAFr1qxhW8jUIiaDadi3lN9//32sW7eu22OcnJzY/y8vL0dISAgmTZqEHTt2vPD86urqYku/6ejo9LqshJD+Ia0resyYMVKXcByIuc2E9NSwD8qmpqYwNTWV6diysjKEhITAx8cHu3fvhpLSsO9IIGRYktYVfezYMRq0RRTasA/KsiorK0NwcDDs7e3x3Xffoaamht1nYWEhx5IRQnpKWppNS0tLmJubSzyeEEVAQfn/xMbGIj8/H/n5+bCxsRHbxzCMnEpFCOkN6oomQxX1z/6fdevWgWEYiQ9CCCE9JyllKekeBWVCCCEDQlLKUtI9CsqEEEL6HS3i0TsUlAkhhPQ7WsSjdygoE0KGLbqnKR+0iEfvUVAmhAxbdE9TPkTzxFtbW5GVlYXW1lZ2PjjpHk2JIoQMS9JyXJOBJ22eOM0HfzEKyoSQYUnSPc1nV4oiA4fmifcedV8TQoYduqdJhioKyoSQYYfuaZKhirqvCSHDDt3TJEMVBWVCyLBD9zTJUEXd14QQQoiCoKBMCCGEKAgKyoQQQoiCoHvKL4GKigpUVFTIuxiEkJeQpaUlLC0t5V2MIYOCcj+ztLTE559/rjAfws7OTixfvhzXr1+Xd1EIIS+hoKAgxMTEUDY1GXEYhmHkXQgycJqamqCvr4/r169DR0dH3sV56bS0tCAoKIjqX06o/uVLVP+NjY3Q09OTd3GGBGopvyS8vb3pSyEHTU1NAKj+5YXqX75E9U9kRwO9CCGEEAVBQZkQQghREBSUhzl1dXV8/vnnNMhCTqj+5YvqX76o/nuOBnoRQgghCoJayoQQQoiCoKBMCCGEKAgKyoQQQoiCoKBMCCGEKAgKyuSlxuFwZHrExcX1+bXa2trwxRdf9OhcX331FebMmQNzc3NwOBx88cUXfS6HIlHk+n/w4AE++OADeHt7Q1dXF5aWloiIiEBqamqfy6IoFLn+y8vLsWrVKowaNQq6urowMDCAn58f9u7di+E8PpkyepGX2v79+8X+3rdvH2JjY7tsd3Nz6/NrtbW1YcuWLQCA4OBgmZ7zySefwMLCAmPHjkVMTEyfy6BoFLn+f/31V+zatQsLFy7E5s2b0djYiO3bt2PixIm4ePEiQkND+1wmeVPk+q+trUVpaSkWLVoEOzs78Hg8xMbGYt26dcjNzcXXX3/d5zIpJIYQwnrzzTeZgfpa1NTUMACYzz//XObnFBYW9vq5Q5Ei1X9qairT3Nwstq22tpYxNTVlJk+ePAAllD9Fqn9pIiMjGW1tbYbP5/dPwRQMdV8T8gJCoRDbtm3D6NGjoaGhAXNzc2zatAlPnjwROy41NRXh4eEwMTGBpqYmHB0d8corrwAAioqKYGpqCgDYsmUL2y34ou5oBweHgXhLQ4q86t/Hx6fLIhbGxsYICAhATk5O/75JBSbPz78kDg4OaGtrA5fL7fN7U0TUfU3IC2zatAl79uzB+vXr8c4776CwsBA//vgj0tLScOvWLaiqqqK6uhrTp0+HqakpPvzwQxgYGKCoqAgnT54EAJiamuLnn3/GG2+8gfnz52PBggUAAC8vL3m+tSFB0eq/srISJiYm/foeFZm867+9vR2tra1oaWnB9evXsXv3bvj7+0NTU3NA37fcyLupTogieb777saNGwwA5uDBg2LHXbx4UWx7VFQUA4BJSUmReu6+dN+9rN3XilL/IvHx8QyHw2E+/fTTXp9DkSli/W/dupUBwD6mTZvGFBcX9+gcQwl1XxPSjePHj0NfXx9hYWGora1lH6KuzWvXrgEADAwMAADR0dHg8XhyLPHwokj1X11djRUrVsDR0REffPDBgLyGolGE+l++fDliY2Nx6NAhrFixAsDT1vNwRUGZkG7k5eWhsbERZmZmMDU1FXu0tLSguroaABAUFISFCxdiy5YtMDExwdy5c7F79250dnbK+R0MbYpS/62trYiMjERzczNOnz7d5V7zcKUI9W9vb4/Q0FAsX74cBw8ehJOTE0JDQ4dtYKZ7yoR0QygUwszMDAcPHpS4XzR4hcPh4MSJE0hMTMTZs2cRExODV155Bf/85z+RmJj40vyI9zdFqH8ul4sFCxbg3r17iImJgYeHR6/PNdQoQv0/b9GiRdi5cyfi4+MRHh7eb+dVFBSUCemGs7MzLl++jMmTJ8s0sGTixImYOHEivvrqKxw6dAgrV67EkSNH8Oqrr4LD4QxCiYcXede/UCjEmjVrcOXKFRw7dgxBQUG9eRtDlrzrXxJRC7mxsbFfzqdoqPuakG4sWbIEAoEAX375ZZd9fD4fDQ0NAIAnT550yTLk7e0NAGwXnpaWFgCwzyEvJu/6f/vtt3H06FH89NNP7Ijhl4k867+mpkbi9l27doHD4WDcuHEynWeooZYyId0ICgrCpk2bsHXrVqSnp2P69OlQVVVFXl4ejh8/ju+//x6LFi3C3r178dNPP2H+/PlwdnZGc3Mzdu7cCT09PcyaNQsAoKmpCXd3dxw9ehQjR46EkZERPDw8uu0O3b9/Px4/foy2tjYAQHx8PP72t78BAFavXg17e/uBrwQ5kmf9b9u2DT/99BP8/f2hpaWFAwcOiO2fP38+tLW1B7wO5Eme9f/VV1/h1q1bmDFjBuzs7FBfX4/f/7e9+4+pqv7/AP68Itx7lQuoXPyRwoXLIhBLd52hpFcrdSkTEVApE3+gVE5yYcxcTkidv7JhNkrMEE1L0VhTSzSFoakpU9fMH6hcqOWE3IBQ8he8vn984n67XswLYvdwfT62u3Fe933e531ebPd17/v82rULJ0+exNy5cxEcHPxfpuK/4+Szv4kU5UF3NMrOzhaTySRarVZ0Op3069dP0tLS5OrVqyIicurUKUlISBB/f39Rq9Xi5+cnUVFRUlJSYtPP0aNHxWQyiYeHh0OXh5jNZpvLQf75KiwsbKvdVgwl5T8xMfGBuQdgvduaK1FS/vfv3y9RUVHSq1cvcXd3F51OJ5GRkZKTkyONjY1tut9KohJx4Tt7ExERtSM8pkxERKQQLMpEREQKwaJMRESkECzKRERECsGiTEREpBAsykRERArBokz0CMrLy6FSqbBp0yZnD+WJxPw7F/Pf9liUiYiIFII3DyF6BCKC27dvw93dHW5ubs4ezhOH+Xcu5r/tsSgTEREpBKev6YmXnp4OlUqF0tJSTJkyBd7e3tDr9Vi0aBFEBL/99huio6Ph5eWFHj16YM2aNdZ1mzumNm3aNHh6euL333/H+PHj4enpCb1ej/nz56OhocHarqioCCqVCkVFRTbjaa7Pa9euYfr06ejduzfUajV69uyJ6OholJeXP6as/HeYf+di/pWFRZnob5MmTUJjYyNWrFiB559/HkuXLkVmZiZGjhyJp556CitXrkRwcDDmz5+P4uLif+2roaEBo0ePRrdu3fDhhx/CbDZjzZo1yM7ObtXYYmNjkZ+fj+nTpyMrKwspKSmoq6vDr7/+2qr+lIj5dy7mXyGc8xwMIuVYvHixAJDZs2dbY/fu3ZPevXuLSqWSFStWWOPV1dWi1WolMTFRREQsFosAkJycHGubpqcLffDBBzbbGTBggJhMJutyYWFhs097ur/P6upqASCrV69umx1WGObfuZh/ZeEvZaK/JSUlWf92c3PDwIEDISKYOXOmNe7j44OQkBCUlZU9tL833njDZnno0KEOrXc/rVYLDw8PFBUVobq6usXrtxfMv3Mx/8rAokz0N39/f5tlb29vaDQa+Pr62sUf9uGg0Wig1+ttYl26dGnVh4parcbKlSvx/fffo3v37hg2bBhWrVqFa9eutbgvJWP+nYv5VwYWZaK/NXdJx4Mu85CHXLTgyOUhKpWq2fg/T4ZpMm/ePJSWlmL58uXQaDRYtGgRQkNDcfr06Ydup71g/p2L+VcGFmUiJ+nSpQsAoKamxiZeUVHRbHuj0YjU1FTs378fZ8+exZ07d2zOhKWWYf6di/lvHosykZMEBATAzc3N7kzWrKwsm+X6+nrcunXLJmY0GqHT6XD79u3HPk5Xxfw7F/PfvI7OHgDRk8rb2xvx8fFYt24dVCoVjEYj9uzZg6qqKpt2paWleOmllzBx4kSEhYWhY8eOyM/PR2VlJSZPnuyk0bd/zL9zMf/NY1EmcqJ169bh7t27+Oyzz6BWqzFx4kSsXr0a4eHh1jZ9+vRBQkICDh48iC1btqBjx4545plnsGPHDsTGxjpx9O0f8+9czL893maTiIhIIXhMmYiISCFYlImIiBSCRZmIiEghWJSJiIgUgkWZiIhIIViUidqJ5p4zS0SuhUWZXNKVK1eQnJyMoKAgaDQaeHl5ITIyEmvXrsVff/312LZ77tw5pKenO/3h68uWLcO4cePQvXt3qFQqpKenO3U8D6JSqRx6FRUVPfK26uvrkZ6e3qK+2kseW0vJ+b9w4QLS0tLQv39/6HQ69OzZE2PHjkVJSckjj0XJePMQcjl79+5FfHw81Go1pk6divDwcNy5cwdHjhzBu+++i19++aXVD1t/mHPnziEjIwPDhw+HwWB4LNtwxPvvv48ePXpgwIABKCgocNo4HmbLli02y5s3b8aBAwfs4qGhoY+8rfr6emRkZAAAhg8f7tA67SWPraXk/H/++efYuHEjYmNj8dZbb6G2thbr169HREQE9u3bh5dffvmRx6RELMrkUiwWCyZPnoyAgAAcOnQIPXv2tL43Z84cXL58GXv37nXiCP+fiODWrVvQarVt3rfFYoHBYMD169ftHqGnJFOmTLFZPn78OA4cOGAXd5b2ksfWUnL+ExISkJ6eDk9PT2tsxowZCA0NRXp6ussWZU5fk0tZtWoVbty4gY0bN9oU5CbBwcF4++23rcv37t3DkiVLYDQaoVarYTAYsHDhQrsb3RsMBkRFReHIkSMYNGgQNBoNgoKCsHnzZmubTZs2IT4+HgAwYsQIu6m/pj4KCgowcOBAaLVarF+/HgBQVlaG+Ph4dO3aFZ06dUJERMQjfXlw5q/0ttbY2IjMzEz07dsXGo0G3bt3R3Jyst2zeUtKSjB69Gj4+vpCq9UiMDAQM2bMAPC/4/FNRTUjI8P6v3nYdLQr5bG1nJV/k8lkU5ABoFu3bhg6dCjOnz/ftjupIPylTC5l9+7dCAoKwpAhQxxqn5SUhNzcXMTFxSE1NRU//fQTli9fjvPnzyM/P9+m7eXLlxEXF4eZM2ciMTERX3zxBaZNmwaTyYS+ffti2LBhSElJwccff4yFCxdap/z+OfV38eJFJCQkIDk5GbNmzUJISAgqKysxZMgQ1NfXIyUlBd26dUNubi7GjRuHnTt3IiYmpu0S1A4lJydj06ZNmD59OlJSUmCxWPDJJ5/g9OnT+PHHH+Hu7o6qqiqMGjUKer0eCxYsgI+PD8rLy/HNN98AAPR6PT799FO8+eabiImJwYQJEwAAzz77rDN3rV1QWv6vXbsGX1/fNt1HRREiF1FbWysAJDo62qH2Z86cEQCSlJRkE58/f74AkEOHDlljAQEBAkCKi4utsaqqKlGr1ZKammqN5eXlCQApLCy0215TH/v27bOJz5s3TwDI4cOHrbG6ujoJDAwUg8EgDQ0NIiJisVgEgOTk5Di0fyIif/zxhwCQxYsXO7yOM82ZM0f++bF0+PBhASBbt261abdv3z6beH5+vgCQkydPPrDvR8lFe8tjayk1/02Ki4tFpVLJokWLWt2H0nH6mlzGn3/+CQDQ6XQOtf/uu+8AAO+8845NPDU1FQDspo/DwsIwdOhQ67Jer0dISAjKysocHmNgYCBGjx5tN45BgwbhhRdesMY8PT0xe/ZslJeX49y5cw7372ry8vLg7e2NkSNH4vr169ZX09RmYWEhAMDHxwcAsGfPHty9e9eJI3YtSsp/VVUVXn31VQQGBiItLe2xbEMJWJTJZXh5eQEA6urqHGpfUVGBDh06IDg42Cbeo0cP+Pj4oKKiwibu7+9v10eXLl3sjq39m8DAwGbHERISYhdvmva+fxxPkkuXLqG2thZ+fn7Q6/U2rxs3blifvWs2mxEbG4uMjAz4+voiOjoaOTk5ducGUMsoJf83b95EVFQU6urq8O2339oda3YlPKZMLsPLywu9evXC2bNnW7SeSqVyqJ2bm1uzcWnB008fx5nWrqyxsRF+fn7YunVrs+83nTykUqmwc+dOHD9+HLt370ZBQQFmzJiBNWvW4Pjx4y79If44KSH/d+7cwYQJE/Dzzz+joKDA5lnLrohFmVxKVFQUsrOzcezYMQwePPhf2wYEBKCxsRGXLl2yORmrsrISNTU1CAgIaPH2HS3w94/j4sWLdvELFy5Y339SGY1G/PDDD4iMjHToC01ERAQiIiKwbNkybNu2Da+99hq+/vprJCUltep/86Rzdv4bGxsxdepUHDx4EDt27IDZbG7NbrQrnL4ml5KWlobOnTsjKSkJlZWVdu9fuXIFa9euBQCMGTMGAJCZmWnT5qOPPgIAjB07tsXb79y5MwCgpqbG4XXGjBmDEydO4NixY9bYzZs3kZ2dDYPBgLCwsBaPw1VMnDgRDQ0NWLJkid179+7ds+a5urrabsaif//+AGCdQu3UqROAlv1vnnTOzv/cuXOxfft2ZGVlWc/YdnX8pUwuxWg0Ytu2bZg0aRJCQ0Nt7uh19OhR5OXlYdq0aQCA5557DomJicjOzkZNTQ3MZjNOnDiB3NxcjB8/HiNGjGjx9vv37w83NzesXLkStbW1UKvVePHFF+Hn5/fAdRYsWICvvvoKr7zyClJSUtC1a1fk5ubCYrFg165d6NCh5d+dt2zZgoqKCtTX1wMAiouLsXTpUgDA66+/3m5+fZvNZiQnJ2P58uU4c+YMRo0aBXd3d1y6dAl5eXlYu3Yt4uLikJubi6ysLMTExMBoNKKurg4bNmyAl5eX9cuXVqtFWFgYtm/fjqeffhpdu3ZFeHj4v06HukoeW8uZ+c/MzERWVhYGDx6MTp064csvv7R5PyYmxvol2KU4+exvoseitLRUZs2aJQaDQTw8PESn00lkZKSsW7dObt26ZW139+5dycjIkMDAQHF3d5c+ffrIe++9Z9NG5H+XM40dO9ZuO2azWcxms01sw4YNEhQUJG5ubjaXRz2oDxGRK1euSFxcnPj4+IhGo5FBgwbJnj17bNq05JIos9ksAJp9NXe5llLcf0lOk+zsbDGZTKLVakWn00m/fv0kLS1Nrl69KiIip06dkoSEBPH39xe1Wi1+fn4SFRUlJSUlNv0cPXpUTCaTeHh4OHR5TnvNY2spKf+JiYkPzD0AsVgsbbnriqESacFZKkRERPTY8JgyERGRQrAoExERKQSLMhERkUKwKBMRESkEizIREZFCsCgTEREpBIsyERGRQrAoExERKQSLMhERkUKwKBMRESkEizIREZFCsCgTEREpBIsyERGRQvwf5bY8FdHn2hAAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeUAAAInCAYAAACm+EFAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/Xd8VHd+748/1XvvvReEEEISookOohkMtjHNptm7G2++yeZmc5Ps5pHc3X1kk93k+mZ3k9jeNTa92VSDKRJFNCGKJJAEAlXURxppZjSjkWY05fz+8G9ONEhgAQKEfZ6PxzwQ0mjmM6Mz53U+7/J62wiCICAhISEhISHx0rF92QuQkJCQkJCQ+AZJlCUkJCQkJEYJkihLSEhISEiMEiRRlpCQkJCQGCVIoiwhISEhITFKkERZQkJCQkJilCCJsoSEhISExChBEmUJCQkJCYlRgiTKEhISEhISowRJlEeYtrY2fvGLX9DW1vaylyIhISEh8YohifII09bWxi9/+UtJlCUkJCQknhhJlCUkJCQkJEYJkihLSEhISEiMEiRRlpCQkJCQGCVIoiwhISEhITFKkERZQkJCQkJilCCJsoSEhITEc8FoNL7sJbxySKIsISEhITHidHV18Yc//IH6+vqXvZRXCkmUJSQkJCRGFJ1Ox969e3F0dCQkJORlL+eVQhJlCQkJCYkRw2w2c+DAAbRaLWvWrMHZ2fllL+mVQhJlCQkJCYkRIy8vj7q6OlauXImfn9/LXs4rhyTKEhISEhIjQklJCUVFRSxcuJDY2Fja2toQBOFlL+uVQhJlCQkJCYlnpqGhga+//pqJEyeSnZ1NaWkpf/rTn7h///7LXtorhf3LXoCEhISExKuNUqlk//79REZGsnDhQoqLizl27BhZWVkkJSW97OW9UkiiLCEhISHx1Oj1evbu3YuzszMrV66ktLSU48ePk52dzaJFi7CxsXnZS3ylkMLXEhLPESmfJvFdxmw2c/DgQbq7u1mzZg0VFRUcP36cSZMmSYL8lEiiLCHxnKiqquLDDz/k9u3bL3spEhLPhXPnzlFdXc1bb71FXV0dJ06cYMqUKSxcuFAS5KdEEmUJiefArVu32LdvH3Z2dhw5coS7d+++7CVJSIwot2/f5vLly+Tm5tLZ2cnJkyeZNm0aubm5kiA/A5IoS0iMMFeuXOHIkSOkp6fzl3/5l6SmpnLw4EGqq6tf9tIkJEaE5uZmvvrqKyZMmIDJZOL06dPk5OQwb948K0HWaDQvcZWvJpIoS0iMEIIgkJeXR35+PjNmzGDp0qXY2dmxfPlyEhIS2L9/v+QDLPHK093dzb59+wgLC8PLy4szZ84wY8YM5s6dayXIdXV1/P73v5cuRp8QSZQlJEYAk8nEkSNHuHr1KosWLWLOnDniCcrOzo633nqLqKgo9u7dS3Nz80terYTE09Hf38/evXuxt7cnLCyMgoICZs2axezZs60EuaGhgb179xIdHU1MTMxLXPGrhyTKEhLPSH9/P/v27aOiooI333yTSZMmDbqPvb09q1atIjg4mF27diGTyV7CSiUknh5BEDhy5AgKhYLIyEiuXr3K7NmzmTVrlpUgNzc3s3v3bsLDw1m1ahX29lLn7ZMgibKExDPQ19fHjh07aGhoYO3ataSmpj7yvo6OjqxduxZfX1927tyJXC5/gSuVkHg2CgoKuHv3LmFhYZSVlTF37lxmzpxpdZ+2tjZ27dpFcHAwa9aswcHB4SWt9tVFEmUJiadErVbz+eefo1Ao2LBhA3Fxcd/6O87Ozrzzzju4ubmxY8cOlErlC1iphMSzUVFRQUFBAd7e3tTX1zNv3jymT59udZ+Ojg527tyJn58f69atw9HR8SWt9tVGEmUJiadALpfz2WefYTAY2Lx5M2FhYcP+XVdXV9avX4+DgwM7duxArVY/x5VKSDwbra2tHD58GPjGTjM3N5ecnByr+3R1dbFjxw48PT155513cHJyehlL/U4gibKExBPS3NzM559/jpOTE5s3b8bf33/I+ykUCo4ePUpNTc2gn7m7u7NhwwbMZjM7duxAq9U+72VLSDwxGo2GPXv20NXVhSAILFq0iKlTp1rdR6lUsn37dlxcXHj33XdxcXF5Sav9biCJsoTEE1BdXc327dsJCAhg06ZNeHp6DrqPIAiUlJTwySefcOfOHXbt2sXOnTtpb2+3up+XlxcbNmxAp9OxY8cO+vr6XtTLkJD4VgwGA3v37qWqqgoXFxeWLFnC5MmTre7T3d3N9u3bsbe3Z/369bi5ub2k1X53kERZQmKYlJWVsXfvXmJjYx+5I9Bqtezfv5+vvvqK1NRUfvrTn7J69WpUKhWffPIJR48etTJU8PX1Zf369Wg0Gnbt2oVer3+RL0lCYkgEQeDo0aNcuXIFDw8P3njjjUFdBRqNhh07dgCwYcMGPDw8XsZSv3PYCJJj/ohSUlJCZmYmxcXFZGRkvOzlSIwQV69e5fTp00yYMIGlS5diazv4era6upqjR49iNptZtmwZycnJ4s9MJhPFxcUUFBRgMBiYNm0aU6dOFYthWltb2b59OyEhIaxbt06qWpV4qVy8eJFPPvkEb29vNm/eTFZWltXPtVot27ZtQ6fTsXnzZnx8fF7SSr97SKI8wkii/N1CEATOnj3L5cuXycnJGeRaBN+E+fLz87l+/ToJCQm8/vrruLu7D/l4Op2OS5cuUVRUhKurK7NnzyY9PR1bW1saGxvZuXMnUVFRrF69WurvlHgp3L17l3/+53/GycmJv/iLvxh0Huvr62P79u1oNBo2bdr0yJoKiadDEuURRhLl7w5ms5ljx45RWlrKggULmDJlyqD7tLW1cfDgQVQqFQsWLCArK2tYZvwqlYqzZ89SXl5OUFAQubm5xMXFUVdXx+7du0lMTGTlypVD7sglJJ4XbW1t/O3f/i16vZ6///u/H3QO0+v17NixA4VCwcaNGwkKCnpJK/3uIonyCCOJ8ncDg8HAgQMHqK6uZvny5aSlpVn93Gw2c+XKFc6fP09QUBBvvPEGAQEBT/w8zc3N5OXl0djYSHx8PLm5uSiVSvbv38+4ceNYvny5NHFH4oWg0Wj4yU9+glwu5//8n/8zKGTd39/Prl276OjoYMOGDYSEhLyklX63keJjEhIP0dfXx969e2lra2PNmjUkJCRY/VylUnHo0CGamprIyclh1qxZ2NnZPdVzhYeHs2nTJu7du0d+fj4ff/wxGRkZLFy4kJMnT+Lg4MCSJUskYZZ4rvT39/Ozn/2M5uZmfvGLXwwSZIPBwL59+5DJZKxfv14S5OeIJMoSEgPQaDTs3LkTjUbDhg0bCA8PF38mCAJlZWWcOHECFxcXNm7cSFRU1DM/p42NDWPGjCExMZGbN29SUFBAeXk5YWFhXLt2DUdHR+bPny8Js8RzwWQy8Y//+I9UVlbys5/9bFAfsslk4osvvqCpqYl169ZZfSYkRh5JlCUk/v90dnaya9cuBEFg8+bNVuHovr4+jh8/zp07dxg/fjyLFi3C2dl5RJ/fzs6OSZMmkZaWxqVLl7h27Rrd3d0cOnQIBwcHZs+ePaLPJyFhNpv5zW9+w/Xr1/mLv/gL5s2bN+jnBw4coK6ujrVr1xIdHf1yFvo9QhJlCQmgpaWF3bt34+bmxjvvvIOXl5f4s7q6Oo4cOYLBYGDlypWMHTv2ua7FxcWF3NxcJk6cyNmzZ/n666/58MMP6ezsZOXKlc/1uSW+P5hMJv77v/+bM2fO8M477/DGG29Y/dxsNnP48GHu37/PqlWrhuXtLvHsSKIs8b2ntraW/fv3ExgYyNq1a3F1dQXAaDRy9uxZrl69SmxsLMuXLx/Swet54ePjw1tvvcXkyZP53e9+x3//939z7949fvSjHxEYGPjC1iHx3cNkMvH5559z7NgxXnvtNTZv3mz1c0EQOHbsGBUVFaxcuZKkpKSXtNLvH5IoS3yvqaio4PDhw8TGxrJy5UrRzKO9vZ2DBw/S1dXFggULmDx58kvL6YaHh/Nv//ZvfPrppxw5coTW1laWLFnCrFmzHtkPLSHxKEwmE7t27eLw4cNMmzaN/+//+/+sjm1BEDhx4gS3bt1ixYoVpKSkvMTVfv+QRFnie8u1a9c4deoUaWlpLFu2DDs7OwRBoKioiDNnzuDv788Pf/jDUdGLaWtryw9/+EMCAgI4efIk58+fp6ysjJycHKZMmSI5gEkMC6PRyP79+zl69Cipqan81V/9ldVEJ0EQyMvL48aNGyxbtmxQK+CTIJPJOHfuHEuWLLFKB0k8HkmUJb53CILA+fPnuXjxIlOnThUrm9VqNYcPH6a+vp6pU6cyZ86cUeWqZWNjw/LlyzGbzZSVlRESEsKFCxe4efMmc+fOJS0tTarQlngkRqORffv2cerUKSIjI/nzP/9zvL29re5z/vx5rl69yuLFi5/aZ0GtVnPu3Dlu376Nr68vPT09kig/AaPnjCMh8QIwm818/fXXFBcXM3/+fKZNmwZ8E8Y+fvw4jo6OrF+/ntjY2Gd6nr6+Pq5cuUJJSQnTp08fsfC3ra0tK1aswGAwUFtby9KlS6mqquLw4cMUFRWRm5tLTEzMMz+PxHcLiyBfvnxZHILycDvfpUuXuHjxIvPnzyc7O/uJn0On03HlyhWuXr2Kk5OTKOxP28P/fUVy9HoMv/nNb/jZz37GT37yE373u98N63ckR6/Ri9Fo5MCBA1RVVbFs2TLS09PR6XScOHGCsrIyxo4dy2uvvfZM82D1ej3Xrl2jsLAQk8lETEwMVVVVpKen89prr43YzttoNLJnzx6am5vFucynT5+mubmZxMRE5s+f/1QOYxLfPSzGH7du3cJkMrFo0SIWLFhgdR/LwJXZs2czc+bMJ3p8k8nEzZs3uXDhAgaDgSlTpjBt2jSrsLjE8JF2yo/gxo0b/PGPf3ymnIrE6EGn07Fv3z5aWlpYvXo1iYmJNDQ0cOjQIXQ6HW+88Qbjxo176t2s0Wjkxo0bXL58GZ1OR1ZWFtOnT8fd3Z2ysjK++uorOjs7WbVq1YiMuLO3t2f16tXs3LmTXbt2sXHjRt577z3u3r3LmTNn+Pjjj8nMzGTWrFnSjNvvMQaDgT179lBVVYWdnR0TJkxg/vz5Vve5ceMGp0+fJicnhxkzZgz7sQVBoLKykjNnzqBUKpkwYQKzZs16oR0K30WknfIQ9PT0kJGRwUcffcQ///M/k56eLu2UX2E0Gg27d+9GpVKxbt06QkNDOX/+PFeuXCEyMpIVK1YMyq0NF5PJxK1bt7hw4QI9PT2kp6czc+bMQTm0lpYW9u3bh42NDatWrSIsLGwEXtk3Fxvbt29HrVaLE3uMRiPXr1/n4sWLCIJATk4OkydPlorBvmf09/ezZ88eGhoaAPDz8+P999+3Mr25desWR44cYfLkySxYsGDYF6VNTU3k5eXR1NREQkIC8+bNGxUFkd8FJFEegg0bNuDr68t//Md/MGvWrMeKsl6vtxpMf+vWLWbOnCmJ8ihBoVCwc+dOjEYj7777LjY2Nhw6dIiOjg5mz57N1KlTn2oSkyAIVFRUcP78eRQKBampqcyePRs/P79H/o5Go2H//v3IZDJef/11xo0b9ywvTaS3t5etW7ei1+vZtGmTONu2t7eXixcvcv36dTw8PJg7d+4zRQMkXh36+/vZvXs3ra2tuLq60t/fzw9+8AN8fX3F+1RUVHDw4EEyMjJ47bXXhnVcdHV1cebMGSorKwkODiY3N/eZ6y8krJFE+SH27dvHr3/9a27cuIGzs/O3ivIvfvELfvnLXw76viTKL5+2tjZ27dqFi4sL69ato7q6mry8PLy9vXnzzTefylRfEATu37/PuXPn6OjoICkpidmzZxMcHDys3zcajRw/fpxbt24xbdo05s6dOyLjGTUaDVu3bhUtQgeGyAeeSENDQ8nNzZXsEr/D6PV6du/eTXt7O2FhYTx48IB3333XqgCwsrKSL7/8ctiTyLRarVjp7+HhwZw5c6Rq/+eEJMoDaGpqIisri/z8fDGXLO2UX03q6+vZt28f/v7+LFu2jPz8fGpqasjOzmb+/PlPHMoVBIG6ujrOnTtHS0sLMTExzJ0796nM+S290Hl5ecTHx/Pmm2+OiI+2SqVi69atODo6snHjxkG55MbGRk6fPk1LSwtJSUnMnz9fGlD/HUOv14vjFcePH8/169dZsmQJEydOFO9TXV3Nvn37SE5O5s0333zsRaHBYKCoqIjLly9jY2PD9OnTmTRp0rALFhsaGoiMjJTE+wmQRHkAR44cYcWKFVYl/CaTCRsbG2xtbdHr9d9a3i/llF8+d+/e5eDBg0RHR5OWlsbp06extbXl9ddfHzSGcTg0NTVx9uxZHjx4QHh4OHPnzh2RtqOamhoOHDiAu7s7a9aseWzoe7h0dXWxdetW3N3d2bhx4yCxFwSBO3fucObMGdRqNVlZWcycOVMqBvsOoNPp2LVrF52dncyaNYu8vDwyMzNZsmSJeJ+6ujr27NlDfHw8K1eufOT5zNILf+7cObRaLRMnTmTGjBmiBe1wqKmpYdeuXaxevZrk5ORnfn3fFyRRHoBGoxGLIixs2rSJ5ORk/u7v/o7U1NRvfQxJlF8uN27c4MSJEyQlJeHo6EhZWRnJycksXbr0iYXH4khUVVVFUFAQc+bMITExcUSv+ru6uti7dy89PT2sXLlyREz/29vb2bZtG35+fqxfv160Dh2I0Wjk2rVrXLp0CUEQxF7q0WSWIjF8+vr62LVrFwqFgqVLl3L8+HGCg4NZt26dKLyNjY3s3LmTqKgoVq9e/ci/dW1tLfn5+chkMsaOHcvcuXOtctHDXc9HH31EUFAQ69atk3bKT4Akyt/Ct4WvH2Y0ibLJZOLMmTOEhYURGhqKj4/Pd/bDIQgCFy5coKCggLi4OLq6uujt7WXhwoVMmDDhiV53Z2cn58+f586dO/j5+TF79mzGjh373N47nU7HwYMHqampITc3d0SMRlpaWtixYwehoaGsXbv2keH63t5eLly4wI0bN/Dw8GDevHmkpqZ+Z4+T7yJ9fX3s2LEDlUrFqlWr+PrrrzGZTPzgBz8Qe+4tx0NISAjr1q0b8niQyWTk5+dTW1tLZGQkubm5Tz07+eDBg1RXV/PjH/9YapF6QqTL4u8warWae/fucfXqVeCbkYBhYWGiSIeFhX0nBhqYzWZOnjzJtWvX8PPzo7a2lvDwcNavX/9EV/gqlYoLFy5w69YtPD09RYORkSjEehzOzs6sWbOGs2fPcvr0adrb25/ZaCQsLIy1a9eya9cuvvzyS1atWjVkqNLV1ZVFixaRnZ1Nfn4+Bw8eFJ3BHnZ8khh99Pb2smPHDtRqNe+++y4FBQVoNBref/99UZBlMhk7d+4Up6A9LMgP22KuXr2apKSkp74wu3v3LuXl5bzxxhuSID8F0k55hBlNO2ULvb29tLS00NraSktLCy0tLWi1WgC8vLyshDo0NPSVcuIxGo0cOnSI4uJiHBwccHR0ZObMmUyfPn3YYtrT08PFixcpLi7G2dmZGTNmkJmZ+VJCuRajkeDg4BExGqmtrWXPnj3DKuoBePDgAXl5ebS2tjJmzBjmzZs3IrluiZFHq9WyY8cOenp6WL9+PWVlZRQWFrJu3Tri4+MB6OjoYNu2bXh7e7N+/XqrGgO9Xs/ly5dFW8xZs2Y9sy1mT08PH330EdHR0axcuVKKuDwFkiiPMKNRlB9GEAS6u7utRLq1tZX+/n5sbGzw9/e32k0HBQWNylyjXq9n7969XLt2DScnJ2JjY3njjTeGHXKz+FNfu3YNOzs7pk2bxqRJk4bMwb5IRtpo5N69e3zxxRekpaXx+uuvf+uJ0tKDfebMGTQaDRMnTmTmzJlPVOQj8XzRarVs374drVbLhg0baG1t5ciRIyxcuJDJkycD/1P05+bmxsaNG8Wds8lkori4mIKCghG1xRQEgb1799La2sqPf/xj6Xh5SiRRHmFeBVEeCrPZTFdXlyjSLS0ttLe3YzKZsLOzIzg4WBTpsLAw/P39X+pVcE9PD59//jlXr14lKCiIuXPnsmDBgmEJql6vp6ioiMLCQgRBYPLkyUydOnVE2pJGipE2GikvL+fQoUNMnDiRRYsWDetvZzAYxGIwGxsbZsyYQXZ29qi8QPs+0dPTw/bt2+nr62PDhg3odDq2bdvG+PHjWbp0KTY2NqhUKj7//HMcHR3ZtGkTbm5uCILAvXv3OHPmDAqFgvT0dGbPnj1iIebS0lKOHj3KmjVrSEpKGpHH/D4iifII86qK8lAYjUba29uthLqzsxMAJycnQkJCRJEOCwvD09PzhQi1Uqnkww8/5NatW0yYMIF33nlnWCcBiz/1pUuX0Ov1TJw4kenTp4/adqCRNhopLi7m2LFjTJs2jXnz5g37bzXQOMLT05N58+Y918I3iUej0WjYvn07er2eDRs24ODgwJ/+9Cf8/f1Zv349dnZ2qNVqtm7dio2NDZs2bcLDw8PKFjM+Pp758+ePqC2mSqXi448/JiUlhddff33EHvf7iCTKI8x3SZSHQqfT0dbWZhX27u7uBsDd3d1qNx0aGjriIaympiZ+8Ytf0NrayooVK1i7du23FqsN1596NDLSRiNFRUWcOnWKOXPmPNHwAfimKj0/P5/79+8THh5Obm4ukZGRT70WiSdDrVazfft2DAYDGzZswMPDg88//xydTscPfvAD3Nzc6OnpYevWrRiNRjZt2oTJZOLs2bPcvXv3udliCoLA9u3bUalUfPDBB69UTcpoRBLlEWY0ibIgCJSVlREWFoafn99z29n09PRYiXRLSwt9fX0A+Pj4WO2mg4ODnzpne+3aNX79619ja2vLX//1XzN9+vTHviaz2UxFRQUFBQUolUpSU1OZNWvWK1m4NJJGIxcvXuTcuXNW+ccnob6+nry8PNra2khJSWHevHlP3Mcq8WSo1Wq2bduGyWRiw4YN+Pj48MUXX1BbW8t7771HUFAQvb29bNu2jb6+PlatWkV5ebnY6vY8bTEtF3obNmyQZnmPAJIojzCjSZS7urr4z//8T+B/2qHCw8MJDw8nLCzsmeYGPw5BEFAqlVZC3dbWhsFgwMbGhsDAQCuhDggIeGzFp9lsZteuXWzfvp3IyEj++Z//+bHFT5bc2fnz50V/6jlz5rzyU2xGymhEEATOnDnDlStXWLp0KZmZmU/1GGVlZZw9e1Z0fJo5c+ZzO6a+z3R3d7Nt2zbMZjMbN27Ex8eHc+fOcenSJbF9ydKrbLn4LC8vBxBtMZ/XhLDOzk4++eQTsrKyWLhw4XN5ju8bkiiPMKNJlOGbCuPW1laam5vFm2UX6+/vL4p0eHg4gYGBz60n12w209HRYbWb7ujowGw2Y29vb5WfDg0NxdfXFxsbG5RKJb/73e+4ePEiM2bM4Oc///kjw2MP+1PHxsYyZ86cpzZAGI2MlNGIIAicOHGCmzdvirOknwaLN/KlS5ewtbVl5syZTJw4USoGGyFUKhXbt29HEAQ2btyIt7c35eXlHDx4kHnz5pGTk4Ner2f79u3cuXNH/Ny8iIp5k8nEZ599Rn9/Pz/60Y+k0aAjhCTKI8xoE+WHEQQBhUJhJdLt7e2YzWYcHBwIDQ21Eupn7ZN9HAaDgba2NqvWLIVCAXxjqGE54Xd3d7Nu3Tp+9KMfPfKiobGxkXPnzvHgwQMiIiKYM2fOdzaUZjabOXv2LFeuXCE9Pf2pjUYEQeDo0aOUlZXx9ttvP5M/cU9PDwUFBZSUlODl5cW8efNISUmRisGeAaVSyfbt27GxsWHjxo14eXnR0tLC1q1bGTt2LMuXL8doNPL//t//4+rVq8TFxTFp0qQXlk64cOECFy5c4L333hux+eASkiiPOKNdlIfCIo4DhVqtVgPfmIsMFOmQkJDnugvq7e2ltraWgwcPkp+fj1arZdy4ccTGxg5pdKJUKjl37hzV1dVia1RCQsL3QgxGwmjEbDZz4MAB7t+/z9q1a5/Ze1sul5Ofn09VVRURERHk5uYSERHxTI/5fUShULB9+3bs7OzYsGEDXl5eqNVqPv30U7y8vNi4cSPt7e386le/oqamhkWLFrF69eoXFhVqbW1ly5YtTJ8+ndmzZ7+Q5/y+IInyCPMqivJQqNVqK5FubW3FaDRiZ2dHUFCQlVCPpKd2bW0thw4d4vbt2+LJJzExcZDRiVKppL6+Hq1WS2hoKHPmzGH69OnP/aJhtDESRiMmk4l9+/bx4MED3nnnnRGx16yrqyMvL08cajBv3jx8fHye+XG/DygUCrZt24aDgwMbNmzA09MTg8HA1q1b6enpYfXq1Vy7do1du3ah1+v5q7/6K+bOnfvCLkSNRiN//OMfsbe35/33338mBzCJwUiiPMJ8V0T5YUwmEx0dHVZC3dXVBXzjnzxQpENDQ5+4bcdgMHD27FkuX76MXC4nICCAtWvXkpKSYnU/lUrF+fPnuXr1KmazmaioKBwdHeno6BCNToKCggYZnTxv/+qXyUgYjRgMBvbs2UNraysbNmwgNDT0mdclCAK3b98Wx/9NmjSJ6dOnS8Vgj6Grq4tt27bh5OQktj0JgsDBgwe5c+cOY8aMoaqqinv37uHm5sZPf/pTEhMTX+ga8/LyuH79Oj/84Q8JDAx8oc/9fUAS5RHmuyrKQ2Hx1LaIdEtLCzqdDhsbGwICAqyqvQMCAh4pjDKZjEOHDiGTyejv78fT05M1a9ZY5YQ1Gg2XLl16pD+1yWQa0uhEEAQcHR0HGZ14eXl9p0LcI2E00t/fz44dO+jq6mLjxo0jVq1uMBi4evUqly9fxs7OTiwGG6kdltlspr+/n/7+fvR6vfh1f38/APHx8a/Ebq6zs5Nt27bh4uLChg0bxP778+fPs2fPHry8vPD29sZoNGI2m1m3bt0Ld85qaGhg27ZtzJ8/n6lTp77Q5/6+IInyCPN9EuWHEQSBzs5OK6Fub28XhfHhliw3NzeuXr3K2bNncXV1Ra/X4+joyLp16wgJCQEG+1Pn5OSQnZ09bDvNh41OVCoVAG5uboOMTkars9dwGQmjkb6+PrZv305PTw+bNm0a0Z7unp4ezp07J/bO5uTkEB0djcFgGFJQHyW0D3/PaDQ+9nnHjx/P8uXLR/VFmFwuZ/v27bi6urJhwwbRFvPrr7/mv//7vwkODub1119Hp9Nx//593nrrLcaOHftC16jX6/nkk0/w9PRkw4YN3+no08tEEuUR5vssykPR398/qCWrp6cHnU5HU1MTBoOBtLQ0+vr68PPzY+PGjfj6+j43f2qtVmu1m25tbaW3txcAb29vq910SEjISx9O8TQ8q9GIVqtl27Zt6PV63n33XVxdXZ9YKB/3fa1WS21tLQqFAi8vL+Li4qz8ly3Tviw3Jycnq/8/6ntDfb+2tpbDhw8/lYPZi6Kjo4Pt27fj7u7O+vXrcXNzo6mpiQMHDnDs2DHGjh3Lz3/+c0pLS7lx4wbLly9n/PjxL3ydx44do7y8nA8++ECqD3iOSKI8wkii/HgEQeDq1at8+eWXaLVafH19KSkpwdHRkQkTJhAWFkZfXx9NTU24urqSk5PzXP2pBUFApVJZiXRra6todGIJw1tugYGBozYUajKZROGTyWR8+eWXqNVq5s2bR3Bw8BOJp1qt5tq1awCkp6c/sjfczs7uiURy4Pfa2tooLCwUDS9yc3OfS6/8hQsXOH/+PG+++eYzD/YYadrb29m+fTuenp6sX78enU7HmTNnuHXrFtXV1aSnp/O///f/pqCggMLCwqc2e3lWqqur2b1790t7/u8TkiiPMJIoPxqdTsfXX39NeXk5qampJCQkcOzYMUJDQ8nJyaGwsFB04fL29iYqKko0OLGEvl/EvGez2YxcLrcyOrH0ctvb2xMcHGwV9n4aC1NBEEZs52n5nslksnoOo9HI3bt3USgUxMXFERERgbOz87B3nXq9nhMnTuDi4sLq1avx8vIadN9nvUAxm81iMVhvby+TJ09m+vTpIzqxSxAEjhw5QkVFBRs2bBg1ft0ymYwdO3bg5eXFW2+9xfXr17lx4wYuLi5otVrc3Nz40Y9+RHFxMRcuXGDRokVMmjTpha+zt7eXjz/+mODgYNauXTuq0wDfBSRRHmEkUR6aBw8ecPjwYXQ6Ha+99hpGo5Fjx46RkJBAYmIily9fRqVSkZqayuzZs3FychpURKbX60WbzoHV3i9ijKTBYEAmk1m1Zlmqz52dnQflpz08PKivr+fGjRtotdpBgmowGL71OZ8mXPvw9+3t7bly5Qo3btwgIyODpUuXPlHLWGdnJ1u3bhXziM9rvGV/f79YDObg4MDMmTPJysoasaiEyWRi586ddHR08P777790r+62tjZ27NiBp6cniYmJXL9+HYCcnBxkMhn3799n06ZN1NXVcfbsWebPn8+0adNeyloPHDhAbW0tP/7xj5+4F76npwcXF5dRG10ajUiiPMJIomyN0Wjk/PnzFBYWEhkZyfLly7lz5w75+fkEBQVhNpvp7OwkOTmZ2bNnP7Li13K/gblpuVyOIAg4OTlZFZCFh4e/kAHrFgvTgUKtVqtRqVTIZDI0Gg2Ojo5kZ2eTkpKCu7v7sAXVwcFhRC80nsVoRCaTsW3bNgICAnj33Xefa55do9Fw/vx5SktL8fX1Zf78+SQlJY3Ie9HX18eWLVsAeO+9917IMTIUra2t4jxkd3d3dDodEydOZMaMGdy6dYv8/HzefPNNtFotp06dYtasWcyaNeulrLWiooIDBw7w1ltvkZqa+q33FwQBmUxGVVUVVVVVtLa28u677474ZKrvMpIojzCSKP8PHR0dHDp0CLlczpw5c5g8eTL5+fmcOHECBwcH3N3diY+PZ86cOU9leqHX6wcVkWm1WgB8fX2tdtNBQUHP9WpdEATq6+v56quvuH79uljQZmtrS1BQEBMnTiQtLY2MjAyioqJeSgjQYjQCsHr16id6z5ubm9mxYwfh4eGsXbv2uRu0tLe3k5eXR21tLVFRUeTm5o6IlaNCoWDLli3iBcaLNpppbm7m97//PW1tbURHR5OWlsbcuXPx8/OjqqqKvXv3kpOTg5eXF8ePH3/i2dcjiUaj4aOPPiI2NpaVK1c+8n79/f3U1dVRVVVFdXU1Go0GJycn4uPjSUhIICkpSepNfwIkUR5hJFH+RqCuX79Ofn4+Pj4+vPHGGwQGBrJlyxZOnjxJQEAAkydPZu7cuURHR4/o86pUKiuRlslkmEwm7O3trXy9w8LC8PT0HPbJzmQyodVq6ejoQCaT0d7eTmdnJ52dndTX13P//n06OjrQ6XSYzWYcHR3x9fXFwcGB7u5uEhISSE5OxtHREX9/fzIyMhg/fvxz9RYfimcxGnnw4AG7du0iLi6Ot99++4WEJGtqasjLy6Ojo4Nx48Yxd+5cvL29n+kxGxsb2b59O6mpqS+0VaqkpITf/OY36HQ6Fi9ezJIlS0QL0o6ODrZs2UJsbCxJSUkcPXqUSZMmsXDhwpciyIIgsGfPHtra2vjxj388KKqgVCpFEa6vr8dkMuHv7y+moyIjI6WQ9VMiifII830XZY1Gw5EjR6itrRXN8VtbW/nNb37DvXv3mD59Ou+8884L86c2Go3IZDIroVapVGLY28/PD19fX7GISaFQ0NnZSVdXFwqFAqVSiUqlEtu4LB8XQRAwm83odDqMRqPYxhMQEEBWVhbTp08nKCiIyspKdu3aRXNzM35+fiQlJeHg4IBer8fLy4vk5GQyMjJISEh4YX2fz2I0UlNTw969exkzZgxvvPHGC1mz2Wzm1q1bnDt3Dp1Ox+TJk8nJyXmm/LZl0tLs2bOZOXPmCK52MGq1mi+++IJ9+/YRFBTE3/7t31rNNu7t7eXTTz/F0dGRyZMn89VXX5GRkcFrr7320oqqiouLOXbsGOvWrSMhIQGTyURTUxPV1dVUVVUhl8uxs7MjKiqKxMREEhMTX3qe/ruCJMojzPdZlCsrK/nqq6+ws7Nj+fLleHl5cerUKb788ksEQeDP//zPWbBgwXM50QiCQF9fH1qtFq1WS29vr/i1Vqulp6eH7u5uurq6xIItpVJJd3c3Go0Gg8GA2WzGxcUFd3d33N3dCQoKIigoCD8/P/z9/QkICCAgIACj0cj9+/fFimyTyYSTkxPZ2dlMnz6d5uZmTp8+zZUrV+jo6MDFxQWj0YitrS0+Pj4kJSWJbUcWP/HIyEiysrKYMGHCiBp2PO79elqjkcrKSr788kvGjx/PsmXLXphw9Pf3c+XKFQoLC3FwcGDWrFlkZmY+9Y7s4sWLnDt3jjfeeIO0tLQRXu036ZXLly9z6tQpysvLyc7O5mc/+5lVKNdkMrFjxw46OzuZOXMmp06dYty4cS/V7ESpVPLxxx+LoeeqqipqamrQ6XS4u7uLu+HY2Njn3gnxfUQS5RHm+yjKer2eU6dOUVpaypgxY5g+fTrXr1/n2rVr4rSgv/mbv3miCTaCIKDX662EdSixHfg9nU4n3vR6PXq9Hvhmp2U0GrGxscHR0REHBwecnZ3x9fXF398fPz8/nJycMBqNaLVacWdsa2uLi4uLWDwGcP/+fdra2nBwcBDtDseMGUNsbCwlJSVcvnyZlpYWHB0dGT9+PCkpKaI4a7VaDAYDrq6uYvFSX18f3d3d6HQ6HBwc8PPzIyMjQywOe94zap/WaKSsrIzDhw+TnZ39wkOsarWa8+fPc+vWLfz8/Jg/fz6JiYlP1ZZ29OhRysvLWb9+/YgM4oBvhNbSxiSTyVAqlUydOpX169dbFckJgsCxY8e4ffs2M2fO5MKFCyQnJ/Pmm2++FLcsS5HWH/7wB+rr60lISMDOzo7Q0FASExNJSEggNDRUaol6zkiiPMJ830S5qamJQ4cOodVqmTFjBt3d3ZSUlGAymVCpVERERIguXf39/Y8V1Ye/N7Dv1mKMYTkhWMLHRqMRg8GAwWDA3t5eFF1PT0/8/Pzw9vbG29sbLy8v0TvYy8sLNzc38bGGsmrU6XRiVfXt27cpKipCLpfj6OiIm5sb9vb2+Pr6EhAQQFNTE62trdjZ2REfHy9Wy1ryxfX19XzxxRfU1dWJwzEMBgOZmZlotVoaGhpoa2tDLpejVCoxGo04OzsTHh7O/PnzmTlz5mMHRFhe99PS1dXF3r176enpYeXKlcMe33jz5k2OHz/O9OnTmTt37lM//9Mik8nIy8ujrq6O6OhocnNzn3iQhslkYteuXchkMt5///1nilIIgsC9e/c4c+YMCoWC4OBgmpubSUhIYM2aNYMusK5du8bJkyeZOHEipaWlLzRXb8FgMFBfXy/mhysqKnjw4AErVqxg6tSpJCQkvPC6h+87kiiPMN8XUTaZTJw9e5Zz587h6emJp6cn9+7dEws+6urqRJcuS5HUUB7Frq6uuLi4WJ2wLGI7sLfXaDRib2+PjY0NNjY2eHh4WInsw18PN6zW39/P9evX6enpGfSz9vZ2ysrKaG9vx83NDYPBQG1tLSqVit7eXnp7exEEQawiHz9+PDExMfj7+w8qjFEoFOKc4djYWJydnbG1tWXu3Lm4u7ujVqtRKpW0tbVRU1NDfX097e3t9PX14ejoSFBQEGlpaYwbN46goCA8PT3F3ZS7u/uw/cAfhU6n4+DBg9TU1JCbm8vkyZOHtSMqLCwkLy+PuXPnMn369Kd+/qdFEASxGEwul4vVzF5eXsN+jL6+Pj777DPMZjPvv//+U7VKNTc3k5eXR2NjI/Hx8cTHx3PmzBmioqJYvXr1IEGura0Vi+YaGhqIjIxkzZo1L6QavLu7W2xZqq+vx2g04uPjQ2BgIDdu3GDevHksXrx4RJ5LJpMRHBw8Io/1fUES5RHmVRZlo9FotWsdager1WqRy+XcuHEDhUKBi4uLaIRhma1cU1NDQEAAs2fPxsfHR8yhPSy2Op0OtVpNd3e3lZmGvb39I8XW29sbDw+PEdtN9Pb2cvHiRbE/GL4xdigtLaWtrQ0PDw/6+vqorq5GLpdjb2+Pi4sLfn5+jBkzhqioKGxtbens7EQul4stWe7u7gQEBBAYGEhycjL29vb09PRw5MgRSktLyczMFEPgCxcuHOQlbBnuUVZWRnFxMdXV1ajVauzs7AgICCAqKoq4uDi8vLzw8PBg8eLFREVFPVO422w2c/bsWa5cuUJ6ejqvvfbasESioKCAgoKCl+Y4Bd+svbS0lHPnzqHX65kyZQo5OTnDvjhTKpVs2bIFPz8/1q9fP2xxVCgUnDlzhrt37xIcHMz8+fMRBIF9+/YRExPDqlWrBj1WZ2cnW7Zswc3NDbVaTVhYGOvWrXtuqQqz2Uxzc7NYpNXe3o6trS2RkZFikZa3tzefffYZRqORH/3oRyNycXD//n327dvHqlWrSE5OHoFX8v1AEuURZjSJsiAIQ4rqo8LFOp1u0GNYwrVubm64urrS1tZGWVkZOp0OT09PPDw8SE9PZ8KECdTU1HDq1CkCAgJIS0sTi6vUajUDDzNXV9dBYjvw/66uri8sb2URZQ8PD5RKJcXFxTQ0NCAIgjiRR61W4+bmRkREBMnJyaSnpxMTEzNkYVRPTw9yuZz29nY6Ojro6OggODiYhQsXYm9vj06nY+/evVy7do158+aJBWpLlix5bOhUp9NRWVnJ5cuXqaioQKPR4Orqip+fn1jFbWm3CgkJITg4mODgYEJCQp64R/RJjUYEQSA/P5/CwkJef/11JkyY8ETPN5Lo9XquXLnC1atXcXR0ZNasWaSmpg7rPWhqamL79u2kpKSwYsWKxx6Dvb29XLhwgZs3b+Lm5sacOXNIS0ujtraW/fv3Exsby9tvvz1I3CwGJj09PZjNZoKDg3nnnXdGvGCqr6+P2tpasUirt7cXV1dXsUgrLi7O6vg9f/48ly5d4v333x+RWdoymYzPP/+c2NhYVq1aJeWhn4BXWpRNJhNffvml6Jf8q1/9inHjxtHd3c3Zs2eZNm3aiM2EHS6jSZSVSiW///3vrb5nb28viuzAm6ur65Dfs7e3R6vV0tbWxsGDByksLESn0+Hh4UFwcDCBgYEIgkBTUxO1tbWEhoaSmZkpthkNJb6jafJSb28vX375JRUVFdTU1GAwGNDr9chkMvr6+vD19WX8+PFkZWWRkJDwRGFRQRBobGzk7NmzBAYGisJsNBrZtm0b169fZ8mSJRiNRjQaDa+99hr+/v7f+rg6nY6SkhKuXbvGvXv30Ov1JCcnk5aWRmxsLH19fbS3t4vRBy8vr0FC/W092k9qNGIZM1hcXMybb745LPen54larebcuXPcvn0bQRAICgoiKipKvFlmFT+MxcHqUS5aBoOBa9eucenSJeAbW8zJkyfj4OBAVVUV+/fvJz4+npUrVw4SZJPJxO7du6murhY91EfKutQSWbGEpZuamkTRt+yGQ0NDhywga2lp4bPPPmPGjBkj4hym0Wj49NNPxeJBV1dXqWf5CXhlRVmlUrFw4UKuX7+Ou7s7Wq2W/Px85syZg8lkIioqivXr1/Mv//IvL3Rdo0mUjUYjtbW1VkL7sH2jyWQSQ8gqlYru7u5BX8tkMm7evIlSqcTHx4dx48aRmZlJeHg4np6eVFZWcu/ePWbPns2SJUtemQ9gRUUFu3fvpqCgAPhmZGBPTw+9vb0EBQUxa9YssrKyCAkJeayACYJAb28vSqUSpVIp9jcrlUr6+/txcXFBLpeTmJjIokWLsLe3x2w286c//YnS0lKWLl0qtkgtWrToiS4k5XI5BQUFyOVy6uvrsbe3Fy1Lk5OTMRgMtLe309bWhkwmE8dUuri4iAJt+dfPz8/qpD3QaGTZsmXf2jZkGfxQXl7OqlWrSEpKGvbreF50d3fz4MEDGhoaaGhoEP3K/fz8rER6oCHJpUuXOHv2LCtWrBBHJAqCQFlZGefOnUOj0Yi2mJbpZffu3ePLL78kMTGRt956a8jPwIkTJ7h06RI2NjZERESwYcOGZ7L6NBqNPHjwQBRilUqFg4MDsbGxYrX0wJGYQ2EwGPjjH/+Io6Mj77333jN/dtVqNb/73e9oaWkhNTUVhULB+vXriYmJeabH/T7xyoryn/3Zn7F7924OHTrEhAkTCAwM5MyZM8yZMweAv/qrv6KgoIBbt2690HWNJlGGb8J5jxJbS4/uwEPAzc1N3N26uLhw8eJFrl+/jpubG8uXL+f1118XRcNsNvPVV19x69YtFi5cyOTJk1/Wyxw2SqWSc+fO8fXXX1NbWyt+3zIoIiQkhDlz5jB16tRBO3pLqFmhUKBSqazE19J+ZWdnh7e3N76+vvj6+uLs7My9e/eora2lubmZMWPGsH79epydnTEajXzyySdUVlayYMECTCYTSqWSRYsWERISMqzXo9Pp0Gg0zJgxA4VCwddff82lS5doa2vD3d2dlJQUZs+eLRaI9fT0iAItk8loa2tDpVIB31yUBAYGWu2q/fz8OH369LCNRsxmM19++SXV1dWsXbt21HkeazQaUaAbGhro6OgAvokmREVFER0dTWRkJJcvX6a8vJx3330Xs9lMXl4eMpmMlJQU0RbTgqVv29LONJSw3bx5kwMHDtDf309sbCwbN2585G79cajVajE3XFdXh8FgwNvbWxTh6OjoJ8pNnzp1ips3b/KjH/2IgICAJ16PTqejsbGRBw8eUF9fT35+PkqlkunTpzNu3Diio6NJSkp6qtf6feWVFeXg4GA2b97Mv/zLv9DV1UVAQICVKH/00Uf8/Oc/F084L4rRJMoKhYI//OEP4v9tbW2HzOFavvb09MTBwQFBELhy5Qr/9V//RUdHB7NmzWLz5s1WfcYGg4Evv/ySmpoaVqxYMerm1A5ELpeL+dgbN24gl8vFQqz+/n4ePHhAWFgYCxcuZMKECdja2tLX1yfuegcKsCXvbhFfHx8ffHx88PX1Fd9Di2gZDAa6u7vx9PREoVBw4cIFCgoK8Pb2FkO8ZrOZTz/9lIaGBnJycrC1taWrq4uFCxcOy+t5oChbdl1Go5GKigry8vIoKSlBpVLh6+tLcnIykydPJiUlhbCwMHH3bwl3W8S6ra2Nzs5OzGYzNjY2+Pn5odFoqKmpITU1lY0bNz52yL3RaGTfvn00NDTw7rvvjppRiUPR29tLY2OjKNJtbW0IgoCrqyuVlZU0NzeTmJjIhAkTWLBggWiLaeHu3bscOHBAzEMPJcj19fVs2bKFzs5OUlJS2LRp07fuYC0IgkBLS4vYstTW1oaNjQ2RkZFifjggIOCpcrYPHjxg27ZtLFiwgClTpgzrd/r6+kQRfvDgATKZDEEQ8PT0pLu7m/b2djZv3szEiROlPPJT8sqKsouLC3/4wx/4wQ9+MKQo//73v+cf/uEfhmx1eZ6MJlE2mUzcvXtXFF93d/dvNSWor6/nj3/8I9euXSMyMpKf/OQng15HX18fe/fupa2tjVWrVhEfH/88X8YTIwgC7e3t3L17l8rKSmpqanjw4AFqtVo0A7G3txen9Li4uBAdHU1/f7+48+3r6wO+EV8vLy8r8fXx8bESX0v4uqurS7x1dnaKBW42NjZiy0lfXx/nz5/HbDaTlJQkCuThw4fp7OwkNTUVJycnurq6hhSBhxlKlAeiVCq5efMm58+fp76+Hr1ej6+vLwkJCYwfP54xY8YQEREx6LgwGo10dHRY7arv3LlDWVkZjo6OTJ06lbi4OKvw98A8tcFgYPfu3bS1tbFhw4YRKR56Eej1eu7evcuxY8e4ceMGdXV14rSqhIQEMdwdEhLC3bt3OXToEGPHjmXFihVDfrYUCgX/9V//RXV1Nenp6bz33nvf6t2t0+mora2lurqa6upqtFotLi4uxMfHk5iYSHx8/DMPeNDr9Xz88cd4e3uzYcOGRwpoX18fDQ0Nogi3t7cjCAJeXl5ER0eLt9raWo4fP/7KRMxGMy92RMoIEhcXR0lJySN/npeXR0pKygtc0ejDzs5u2DvY1tZWjh07xtdff43ZbGbTpk1DTgNSq9Xs2rWLnp4eNmzY8EQuXc8Ty46isrKSyspKFAoFvb29tLa2IpfLsbW1FVu2ZDIZOp0Ob29vHB0dxdnIfn5++Pj4kJKSIgqwp6en1e7HbDajUqmora21EmGLiFv8tCMjI8XKaJVKJVZiKxQKAgICqKmpoaKigra2NlxcXAgICBBPgKGhofj4+HD69GnmzZv3TEM7fHx8mD9/PnPnzqW2tpabN29y/fp17ty5I16whYeHk5KSwpgxY4iOjsbW1lYc4DFQTM1mMzU1NWzbto36+nqcnZ1pamp6ZJ567ty5nDhxgl27drFx40YCAwOf+nW8CAZWbjs7O/OP//iPRERE8Ic//AGtViteUBkMBhQKBc3NzWRkZJCZmYnZbB4kyjqdju3bt1NRUUFGRgabNm16pCB3dXWJueGGhgbMZjOBgYFMmDCBxMREwsPDR9Tl69SpU/T29rJx40YrQe7t7RVFuKGhQRRhb29voqOjmTx5MtHR0Vavo66ujhMnTjBx4sSX1hL3XeKV3Sn/7ne/4+/+7u/YsWMHc+fOJTAwkLNnzzJ16lR+9atf8Zvf/IY//elPvPfeey90XaNppzwc5HI5586d49y5c7S2tjJ27Fg++OCDIS0HOzs72blzJwDvvvvusCqFnydms5mmpiZxR6xWq3F0dKSvr4+ysjIaGxsRBIHAwEB8fX3RaDRotVoiIyOZNm0aiYmJuLu7i1XjlqIdC/39/VYDKixDKixOYx4eHvj5+Yne2H5+fri7uz82bNff3y+G08+cOSOGSuVyORqNBrPZTHh4OCEhIQQGBqLRaJg7d+4jc7PftlMeip6eHrH/ua6ujr6+PnGUpo+PD8nJyaJ16FDh2IFGI/Pnz2fs2LGDwt+WtJHF3MPJyYl169aRlJREUFDQc7cPfRJMJhMlJSUUFBSIPc7Tpk0Tq6Kbm5vZtm0bY8aM4fXXX+fcuXPs378fT09P/P39RTe58PBwcScdGhrK3r17+eqrrxg/fjx//ud/bpWzNZlMNDQ0iEKsUCiwt7cnJiZGzA8/6zSsR3H//n327t3LsmXLSEpKEkP3lp0wfHMxFx0dLebZH7UWuVzOZ599Jo70fBn2oN81XllRFgSBH/7wh3z22Wd4e3ujUqkICgqiq6tLbID/+OOPX/i6XhVRViqVYp9lU1MTLi4uLFiwgMWLFw/ZM9nS0sLu3btxd3fnnXfeGXZObKSxnMxu375NSUkJHR0d4sSntrY2qqur6e7uxsXFhfT0dLKysuju7kYulxMdHc3y5cutqoIt/aZ2dnb09PRY7X67u7uB/8kfW4TXMlnqWVtZWltbOXnyJF5eXqSkpHDnzh1Onz5Ne3s7zs7OYqjdwcGBOXPmMHHixEEXDk8jyhYsrWylpaWUl5ejVCpxdHTExsYGe3t70aN7zJgxxMXFDXJdO3fuHJcvXx7SaESn04kCXV9fz9GjR+nu7iY9PR0XFxf8/f2tdtXBwcHPVIn8NAiCwP3798nPz0ehUDB+/Hhmz549ZNvbnTt3+PLLLwkLC6O1tZX09HSWLVsmpkoGFo/19vZSXV3NnTt3SExM5Cc/+QmZmZkYjUarIi29Xo+np6fYshQTE/PcL1bkcjm//e1vsbW1JSoqCrlcDnwzf9wiwNHR0cNq/dNqtWzZsgUHBwc2b948Iq1dEq+wKFu4fPkyBw4coLq6GrPZLPrHzpgx46WsZ7SLskaj4eLFi5SUlIhWkUFBQSxfvvyR4X6LIUJQUBBr1659oQPLDQYDbW1t3Lp1i9LSUu7du4dSqQS+OZHY2trS09NDS0sLRqOR2NhY3njjDRYtWsT169e5ceOGlbkDfLPjt+RJGxoaKCoqQhAE7O3txfDzwJuPj89za/OyCHNQUBALFy7EbDazdetWqqqq0Gg0qNVqXF1dsbW1JSYmhujoaIKCgggMDCQoKAg3Nzf6+vqeSpQHotfrqaiooKSkhObmZgRBwMPDQ8yXOzo6kpiYyJgxY0hISBAr04drNKJWq/n000/p6+tj1qxZYqudTCaz6qd+WKi9vLyeS8HQQFvMuLg45s+f/612kJ9//jk7duxgxYoV/OVf/uWQ67IYqfz617/G2dmZlJQUsWDQbDbj7e1NUlIS2dnZjB8/nqCgoOdaENXT0yPuguvr67lw4QIqlYoFCxaQmJgoivCTXmQbjUZ27NhBV1cXP/jBD4bcSZtMJlpbWwkKChpV3gSjnVdelEcbo1WUe3t7uXLlCteuXcPW1hZHR0e6u7tJTExk+fLljzyZlpeXc/jwYdEQ4XldyRuNRjo7O8Xca1tbG5WVldTW1tLZ2YnJZMLPz080QTAYDNTU1NDS0gLAmDFjWL16NWPHjuXGjRtcvHiR/v5+UlJSCA0NFYW4o6ND9OC2FG/JZDIiIiLEEPaLrhp9WJj7+vo4fPgw9vb2dHd3U1paio2NDa6urmRkZODp6YlcLsdkMiEIAm5ubsyaNYv4+HjCw8OfWcja29spLS3l9u3b9PX14ePjg7u7O319fXR2duLg4EB8fDxjxowhMTGRrq6uYRmNKBQKtm7diouLCxs3bsTV1RWz2YxCoRB31ZZ/H5WnDg4OFod6PA0KhYKzZ89y584dgoKCyM3NHdYAjuLiYr766ivx4m39+vVD5vrv37/PX/zFX2AwGJgyZYrYzeDu7o6DgwMGg0F8bf7+/mKIOCoqakSiT5aWL0thVmdnJ4DYwnX37l02btz4TLlfQRA4dOgQlZWVbNy4UawrMZlMtLW1iRcATU1N9Pf3s2bNmlHRs/6qIInyCDPaRFmv13P16lWuXr2KIAgkJSXR1NRET08P8+fPJzs7+5EncMsUm/T0dJYuXToiu0Wj0UhXVxcdHR3I5XLxX4VCgcFgoKurSyyqcXZ2JiIigoyMDBITE5HL5ZSXl9PQ0CD6UKemprJw4ULCw8O5dOkSeXl5tLe34+Pjg5+fH46OjtjZ2REYGCie1IODgwkKCsLZ2dnKZvNpw28WO9Oenh7UajUajQaNRoNKpaKtrQ1/f3/c3NzEkLSLi8ugr1UqFfn5+aIwd3Z2cvz4cZKSknBycuLYsWNiqD4nJ4fFixeL4efGxka8vLzETgN3d3fCw8PFW2ho6FPtVCxzo0tKSqitrcXJyYmoqChcXV3p6OgQJ2PFxcURGRlJWVkZCoXisUYjcrmcrVu3ilW/Q6VKBEFAo9FYCbVlBCJ840oXFBRkJdbflqe2/J0fjpwMR9xv3LjB119/TXZ2Nrm5uezZs4fW1lbef/99/P39USgUVFdXU1xczCeffILBYGDlypXk5OSQmJhIRESE1WdHrVZbhbstIWQfHx8rQxMfH59vvbjSaDSiAD948EA0R7EIvkX0BUHgo48+IiEhgTfffPNbX/PjuHDhAufPn+fNN9/E19eX+vp6Hjx4QGNjI/39/Tg6OhIZGSlGdkJCQqRc8xPwyopyTEzMtx6wNjY2VgYR38bHH3/Mxx9/zIMHDwAYO3Ys//RP/8SiRYuG/RijSZQ7Ozv5/PPP6e/vJysrC3t7e65evUpAQABvvPHGI6thBUHg3LlzXLp0iWnTpjFv3rwn3nmZTCa6urpE4R0ovmazGfimUMrb2xudTodKpUKpVOLs7ExUVJRYaNTa2srt27dpamqir68PvV5PX18ffn5+REdH4+TkRGVlJXfu3EGj0RAaGiqOnBu4s3rUBcVwRNky29kSTraIruX/PT09VmMmBUFArVbT3t6OXq8nIiKC8ePHo9fr0el04usYai0PHjzA19eXrKwsVCoV9+7dIzMzE09PT27cuEFHRwcajYaQkBCmTJlCcnIyrq6uzJw5U6xAb25uFm+WcZdBQUFWQu3n5/dEf1OVSkVpaSmlpaWo1WqCgoJISEjA3t6euro6mpqaEARBnKD12muv8dprrw15MpbJZGzbto3AwEDeeeedYV8wWPLUA8VaLpeL/dRD5akdHBy4fv06ly5dEi9oLLaYw+H69eucOHGCyZMns2DBAmxsbNBqtXz44Ye0tbURHx+PRqPBZDJx6dIl+vv7+bd/+zdycnKG/d5qtVqrXmlL76+Hh4eVSAcEBFiJ8ECHsoCAACsRHmjWIQgCu3fvpr29nR//+MeD0k9DjS4dCrPZTEFBAV988QWhoaG4uLiIIjywyC04OBg7Ozv6+vooKipiypQpzzXf/KyjS0cbr6woP1zKD/9TBHTlyhVSU1OZMGECW7duHfZjHjt2DDs7OxISEhAEge3bt/Pv//7vlJaWMnbs2GE9xmgSZb1ez69+9SvS0tKor69HrVYze/ZsZs+e/cgpMGazmePHj1NSUkJubi5Tp0597HOYTCYUCoXVrrejo4Ouri5RfAdOTAoMDMTV1ZWuri7q6+upr69HEAQiIiJISUkhKSkJuVzO7du3uXPnDmq1GkCsgLa1tSUiIoKAgAAcHR1pb29HrVYTFxfH8uXLSU1NfSKxsYiys7MzBoNBFNmHxbe/v1/8HUdHRzw8PMSbp6cnzs7OdHZ2UlFRQX19Pb29vXh4eODi4sKDBw9ITk5m3bp14oWQyWQSBVqn04lfNzc3U1hYiKurK4mJiaKPcWxsLDY2NlRXV9Pb2yvOXHZ2dsbT05PZs2czduxY3N3dRUtVFxcXdDodSqWSzs5OsT0MEIvIwsPDiYiIICwsbFgnTrPZTF1dHSUlJdy/fx9ADGPrdDru3r3L5cuXqa2tJTExkXfeeYfx48cPCs02NzezY8cOIiIinmlkoaWfeqBQt7e3i38vBwcHTCYTWVlZzJw5c1Ch3OMoKiri1KlT4sSpmpoaqqqqxPGdFRUVxMTE8P777/P5559z584dfvnLXzJt2rSnei0WdDodTU1NNDQ0cPfuXbGOore3FwcHB7y8vIiPj2fcuHHExMQ81ssb/mfu9TvvvDPIU+Bxo0vNZjNKpZL29nba29upq6ujqqoKX19fMjMzxQiFr6+v1UWvwWCgpKSEGzduoFareeutt0hMTHym9+RxjMTo0tHEKyvKj+P27dssWLCAXbt2MW/evGd6LF9fX/793/992K1Vo0mU1Wo1H330ERcuXMBsNoujBsPCwggNDSUsLIyQkBDxZGwwGDh48CBVVVW8/vrrou8v/M8H9OGwsyXfC99YdFrEd+C/rq6uqNVqKisruXv3Lo2NjdjY2BAdHc2YMWNISkpCJpNx8eJFiouLkcvl2NjYYGdnJ4aFg4ODmTp1KhMnTsTT05P79+9TXl6Op6cn8+bNY+zYsY8VY5PJRHd3N0qlUtyVq1QqMX9qNptFYbCzs7MSXHd3d/FrDw8PnJycxOfq6Ojg8uXLlJaW0tnZiZubG9HR0UyYMIG4uDj8/f0pKCjg6NGjeHh4MGPGDDIzMx9raWjJMVtGAebn59Pe3s6CBQvo6+vj9OnTNDc3A9/kCrVaLTY2Nri4uBASEoK3tzdDfaxdXFxwdHSkv7+fvr4+8eJDEAQcHBwIDg4mOjqauLg44uLiCAwMfGzYUavVUlZWRklJCXK5HG9vb7Gv9vr16+zZswetVitebFl6oS1FQfX19ezevVusVxipYrqBeWqFQsHYsWMfO4FrKAoLCzl06BAhISF4eXnR0tKCIAiEhYWJLUsmk4lt27Zx584dZDIZf/M3f8Nrr732TGtXqVRWOWGlUonJZMLR0VH0TNfr9dja2uLk5ERkZKRVG9bD76FCoeCTTz4hLS1tyLUNHF3q4OAwKL/f39+Pvb09np6e1NTUEBYWxptvvjko7aDVamlubqakpIRbt27R29tLYGAgaWlpTJs27bm1T1rscZ+10HE08Z0UZYD/83/+D8ePH6e4uPipft8ygWrDhg2UlpY+sjJZr9dbhSJv3brFzJkzR4Uoy+VyPvroI8aOHUtOTg5dXV20trbS0tJCa2uruJvw9/cnICCA8vJy9Ho9b7zxBj4+PoPE1xLicnFxsRJey9cP70KUSqXYQ9zc3IydnZ2YY3J3d0cmk1FcXExFRQVKpRIHBwciIiKIioqip6cHjUZDVFQUixcvZty4cZhMJq5evcrly5extbVlxowZZGdnY29vL+YhHxZdy78Dx0fa2NiI1qKurq48ePCAoKAg/P398fDw+NbRkT09PRQVFXHt2jWampqwtbUlNjaWiRMnigLw8O/fu3ePw4cPIwiC2H6SkZHxyOETA4V55syZHD9+HFtbW5YvX47BYODUqVNUVVVhY2PD+PHjWbVqFbdu3eLu3bs4OzuTmZnJmDFjrMZ3DjWy09IGplQqUavVqNVqtFotgiCIpiYhISGEhoaKhigPTxSz9FmXlpZy584dDAYDcXFxxMbGUlhYSFNTE9HR0Wi1WoxGI6GhoaJAKxQK9u3bJ9pUvszco8FgoK6ujqNHj3L27FmCgoJISkoSnbQSEhIGhYX/6Z/+iZ07d/L222/zb//2b0/8nCqVyionbOnvDgoKsgpHDxQco9FIa2urGO625HIdHBwG9Urv3r0bjUbDBx98MKSX+8B2ta6uLvR6PXZ2dmIaICwsDA8PD9FUaPny5Tg7O6PX62lraxPTJQ0NDbS2tgKQmJjIrFmzSExMHJG5zI/jWVoCRyvfWVH+6KOP+OlPfyo6LQ2X8vJypkyZgk6nw93dnT179rB48eJH3v8Xv/gFv/zlLwd9fzSIMnyTvxuq1cNkMlFXV8fdu3cpLy8nLy+Pzs5OfHx8xBnKlrxtXFwcCQkJYivO4yqULcYYd+/epbm5WXTO8vDwwM7OTqywbm9vF0O8KSkpTJo0iYiICG7dukVNTQ0BAQHMnDlTvBi6desWeXl5dHV1ER8fT3x8PL29vahUKvE2MK/r7u4uelM//O9Al67hFnpptVrKy8spKiqiuroag8FAWFgYWVlZTJkyBV9f32/9W9y9e5eLFy8SFBREf38/KpWKsLAwMjMzhxxAMVCYJ02axPHjxwkODiY3Nxej0Uh+fj4lJSUYDAbee+89VqxYgVKppKioiNLSUgAmTJjAlClTHutVbcmZW4RaqVTS2NhIY2MjTU1NtLa2olarRZMMZ2dnqyiCra0tdnZ2uLq64ujoKBa4Wdq5LLuthQsXEhISQkNDA3V1dRiNRoKCgnB1daWiooKcnByWLVv2QqvfVSqV2DtcX19PbW0tMpmMmTNnsnLlSqKjo4fcwQuCwL59+/j0008ZM2YM/v7+LF++/LGzpC0594Ei3N3dLeb8LSIcGRn5RAJjNpvF9j7Lra+vj5aWFjo6Oli1ahUTJ04kIiKC7u5usTCroaEBtVpNc3OzKOahoaEEBASIYmoymTh58iRyuZypU6ei0Whobm4Wc/m2trbisZGYmEhOTs4LdW6TRPkVoauri9zcXHGiypPQ399PY2Mj3d3dHDhwgC1btnDhwoVXcqcM/1N0NDDs3NHRQWdnJ/39/fT29nL37l1cXV1ZvHgxvr6+mEwm9Hq96OFsCW9adkxhYWGEhYWJJ3qZTMaNGze4efMmjY2N6HQ6sbLYz88PBwcHHB0d0Wq1KBQKHBwcSEpKIisrSxzvVlBQQGVlJW5ubowdOxZ/f3+6u7u5f/8+RUVFyOVy/Pz8iImJESuWHyW63t7ewy7keZwoW+w0i4uLuX//Pj09PeJ85RkzZlhZUFr6eTUaDT09PeJNp9MRGxsrFiaWl5dTWFhIZmYmPj4+lJaW0tXVRWhoKBkZGYSGhlqJ0kBhTklJIT8/n7S0NCZPnozJZOLMmTNcvnyZgIAAVqxYwbJly7C1taW3t5fr169z/fp1+vr6SElJYerUqcMacvGoY6ipqYnm5max4lun02E2m60Gmri5uYm7c5lMRk1NjVhhrNPpiI6OJisrCycnJ/GiamBUIzMzkxUrVhAdHW2VHx+pHZfZbKa5uVl00uro6BCNNLRaLQ8ePGDx4sXfOlf466+/5ve//z1ZWVn88pe/5NSpU5SWlvLuu++KYwoFQUCpVFoVZllE2JIqsIjwSPb+C4LAnTt3+MMf/oCbm5vYL9zd3Y2zszM+Pj6MGTOGCRMmEBUVRV1dHd7e3lbHvyAIdHV1ceLECSoqKsTCLicnJ7HtTiaT0draiq+vL9nZ2URGRr7wdkJJlEcRlsETD2OpWO3v72fnzp2sWbPmmZ5n3rx5xMXF8cc//nFY9x9NOWWlUsknn3wiXjQ4Ojpa5XoFQeDs2bP4+Piwfv36IV18+vv7xTBVa2srTU1NtLS00N7ejlwuR61Wo9PpcHJyIiQkhNjYWMaOHUtYWJhY0GXJjbm5uREfH09YWBi2trZUV1dz9epV6uvrsbOzE6/SbWxs0Ol0tLW1odFoiIyMZNasWSQlJYnCO1LVnANF2TIIor6+nsrKSqqrq1Eqlbi6uhIXF0d6ejrBwcFiPtZys9h3DtypOzo64u7ujp2dHXK5HF9fXzIyMoiJieH27dtcv36dyZMnk5aWRkNDA8XFxXR2dhIcHExGRgbh4eHiCW6gMIeEhHDjxg1mz55NYmIifX19YmFVX18fy5cv54033rCaVHXr1i2uXr2KQqEgOjparE5/lhOo0WhEJpNZVXpbQq+enp5Wld6+vr5UVlZy6NAhCgoKcHV1FcObLi4uYkWxxZPbzc2NkJAQAgICCAgIEC+YHg6bDwyfP/z/gbvbvr4+sUirpqaGvr4+3NzcxClLsbGxFBUVUVBQwOzZs5k5c+ZjX3tBQQEffvgh0dHR/Ou//ivu7u6YTCZ2795NTU0NM2bMQK1Wi0NQbGxsCAkJsepJfh7VyIIgIJfLqa2t5fPPP6ezs5Nx48Zhb28vRsAsF0wajQYAb29v1Go1MTEx+Pn5oVQqxc96fX09LS0tTJw4kaysLMLDw3F1daW0tJTKykqcnZ3JysoiMTFxUNrB0glQUVHBtGnTHumD8KxIojyKmDVr1qCTimUaT1xcHJs3byY5OfmZn2fOnDlERkaybdu2Yd1/NImyyWSiqKhIFOKBphJ1dXXs27ePwMBA1q5dO+QBrdPpaG9vF6+ILcMeLGJpb28vDm2whKidnZ3p6+tDLpeLQ9cDAgLw8vLC3t4eGxsb1Go1jY2N9PT0EBAQwMSJE0lLS8PPzw87OzvKysq4d+8efn5+zJ8/n6SkpOd2Bd7T08OBAweQyWTU1tbS2Ngo+lu7ubkRGho6ZOGUm5sb7u7uQ948PDxEu0r4JpJQUlJCU1MTPj4+ZGRk0NnZye3bt8nJyWHs2LEIgkBjYyOlpaW0t7cTGBhIRkaGuPtoaWnh1KlTBAcH4+zsTH19PUuXLsXLywuNRoO7uzt79+5FLpezfPlyVq1aNWiQxr179ygsLKS5uZmAgACmTp0qnrRH6r0cKNItLS0YDAZsbW0JDg4mPDwcvV7PsWPH6OzsFNMQGRkZpKWl4erqysWLF/niiy8ICAjAaDTS3d2No6MjoaGhYuqkr6/PKi9ucQQbiIuLi7jDtgxVCAkJEXPDltGVgiBQUFDAhQsXmDt3LtOnT3/saywqKuLDDz/E09OTf/7nf8bBwUHcBVdXV3Pp0iXMZjNLliwRHbMiIyOfmwh3dnZahcO1Wi0NDQ0olUrWrVsniunDkaPu7m6qqqq4cuUK+fn5dHV1YTAYcHZ2JjQ0FF9fXzo7O5k1axZTp07FYDBQXl7O7du3AUhPTx/y2DEYDFRXV4t1In5+fsyYMeO5hbQlUf6O87Of/YxFixYRGRmJRqNhz549/Pa3v+X06dPMnz9/WI8xmkT5Udy5c4dDhw4RExPD22+/jYODA2q1WuwBtdy6urrEsGJfX594xZ2QkEBCQgKenp6o1Wo6Ozu5d+8e5eXltLW10dfXh52dHZ6envj5+REUFERERIQ4Mam3t1fc/Y4dOxZbW1urCT0ODg7MmjWLzMzMEanINZvNaDQauru7xdnIVVVV3Lt3j+rqaurr68UTu4ODgxgmj4yMFEdeenh4iKL7tOHU9vZ2SkpKRLMPOzs7urq6mD17tuh4ZNlhFBcXI5PJ8Pf3JyMjg+joaFpbWzl16hSBgYFi6mHx4sWYzWZmzJhBU1MTH3/8MQ0NDSxfvpx169YNWqdF/AsLC7l//z4eHh5MnjyZzMzMERcOs9lMR0eHlVB3dnai1+upqqqit7eXmJgYnJyc8PT0JDU1lYyMDBoaGrh48SILFy4kODhYLBa0XHyMGTPGaqKV5b14uIhNq9Wi1+sJCwsTj9eH3wtLP/78+fO/tZXp5s2bfPjhh3R3dzN//nxMJhM9PT3Y2tqKO2FfX1/y8/Px9/dnw4YNI+qAZwkpWxyzLCJsa2tLWFiY+F6eOnWK+fPnD7IaNhqNNDc3U1dXR11dHS0tLeLQldDQUHHHb7GetfxNLOLv5OTEhAkThjxW1Go1d+7c4f79+/T39xMdHU1qaiohISHPNaQtifJ3nPfee4+zZ8/S1taGl5cXaWlp/N3f/d2wBRmeTpSH27w/Ely/fp0jR44QFBREcnIycrmc9vZ2dDodgHiSUyqV4nAPFxcXvLy8cHV1xcXFRfyQmUwmsTDIUqySkZEhFm1pNBpaWlooKyvj4sWL1NTU4OzsTExMDCkpKURERBAcHExXVxdlZWWiNeHACT3Dob+/n+7ubvGmUqms/q9Wq60mPqnVauzs7LC3t8fW1haFQkFQUBCpqamkp6cPyuuONHK5nOLiYtGBycbGhpUrV5KQkCDeRxAEWltbKS0tpaWlBT8/PyZMmICjoyN5eXn4+fmh0WhwdHRkxowZzJkzB1dXV5qbm/nDH/7A3bt3Wbp0KZs3b36kMMjlcgoLCykrK8Pe3p7MzEwmT578XIeNWHqxGxoaOH78OBUVFQQEBODi4kJvby82NjZi6kOv17NmzRrS09MRBIHm5mbu3r3L3bt36e7uxtXVleTkZFJSUoiJiXmiCzhBEDhz5gxXrlx5ZD/+wJ1oQUEBhw8fRqPRkJWVxbRp08SccEREhFWLUEtLC9u2bSMxMZG33nrrqY8lQRBQKBSiAD948EC8CAgLC7N6fkdHRwwGA5988gnOzs6899572NjYiP3FdXV1NDQ0YDAYcHV1JTY2ltjYWIKDgykrKxOjXD09PRw5ckSsIbl69SoymQxnZ2ex3S4kJISQkBCCgoLQ6XTcuXOHxsZGHB0dGTNmDCkpKc8tXP0wkii/RHbs2PFUv7d+/foRXsnjeVJRflzz/rOi1WrJy8sTjSmampqQyWS4u7vj6emJo6Oj2P9oyZNa2mGcnJzw9fUlPDycwMBAsdLWwcFBNBRQqVQ4OjqSlJTEypUrB7mstba2UlBQQFVVFX5+fuTk5BAUFERbWxvNzc2UlpZy48YNtFotoaGhTJ48mYSEBLGYzNJb2tvbO6TYWv5v8RKGb1IYFqcwZ2dncSff1dWFvb29WFlqaZEKDg7GbDaTmpr6WAOG50FnZyc3b96koKCA3t5eli9fzsyZMweJi6V1rLm5GR8fH8LCwqisrMTDw0O8oPj5z38utqR1dXXxu9/9jps3b7Jw4cIh22EGotFouHbtGjdv3qS/v59x48YxderUR7ZrjRSCIHD16lWOHDmCl5cXSUlJVFVVUV5eTnt7O11dXTg4OLB8+XLefPNNsTVIEATa2tpEgVYoFDg7Oz9yotVQz5ufn09hYSELFy5k8uTJ4vflcrlVYZZWq6Wzs5Pq6mpMJhOvv/46P/zhD4e0Bx1IZWUlX3zxBTk5OcydO3fY74dCobAKR2s0GmxtbQkNDbUqDBvq73ny5EkuX77MnDlzUCqV1NfXo9VqcXBwICoqShTigUMwBtZU2NnZcfToUTo7O/Hz80OhUBAWFsakSZPw9vYWx3M2NzdTWVkpDhMJDg4WJ7JZ3LxeFJIov0Sepn/RxsbGqvjmRfCkojywef/bPuhPSmNjI7/5zW8wGo309PTQ19cnhmItIWODwSDm/VxdXUXPaA8PD/HEZqksViqVaDQa0dIwJCREnNQ0fvx43N3dxUEXFRUVtLS04Ovry+TJk0lJScHJyQlHR0e6urq4ePEiLS0tREVFER8fb9WqYanUNZlMODg44ObmJpp5WFqdLBW/Xl5eVl+bzWaqq6uprKykoaEBQCxQsYTonZycSEtLIzMzEw8Pj2f2vn5WOjo62LlzJ1VVVeL4wMTExEEnN4vRieV1qVQqfHx80Gg0bNq0ySqi09PTw3/+539y/vx55syZw//6X//rW48vvV5PSUkJRUVFdHd3Ex8fL+4In2fkoKamhgMHDuDu7s6aNWtwd3fnwYMHXLp0if3791NXV0dwcLAYYRkzZoxYRBYYGEhnZ6co0HK5/JETreCbY/n06dMUFRWxaNEioqOjrUS4t7cXOzs7cSdqNBo5f/48bW1tTJ48mffee2/YIenCwkLy8vJ4/fXXh2yVerg6e2Bh2MMi/Ki/XV9fH/X19RQWFnLw4EHCwsJEhzaLCIeHhz8y3WI5/7i5uXHq1Clu3rxJQEAAERERTJo0yargUK1Wiw5jOp0OX19fvL296e/vp6OjQ2yZCwoKEnfTgYGBz7VXWRLll4jlRPSkREVFjfBKHs/TivLzEIXe3l5xvFpPTw/p6el4e3ujUChQKBTY2dkREBBAZGSkGDI0Go0YjUYMBoNYyfngwQP6+vrw8PAQrfXs7OwwGAziDjs2Npbu7m7u3btHW1sbTk5ORERE4OPjQ39/PzqdTqxI7ezsFHPOluIvS6+rpd3J1tYWQRAwm82iyYnFUnLghz40NBSj0UhTU5Mo6I6OjsTGxhIVFYVOp6O6uhqNRkN4eDiZmZmMHTtWPFE/z/f/STCZTBw+fJiSkhL8/PzE3UdSUtKgk5pcLqekpEQczuHu7s6ECRPYtGmTVXFjf38/n3zyCceOHWPKlCn8/Oc/H9ZrNJlM3Llzh8LCQmQyGSEhIUybNo2UlJTnZu7R1dXF3r176enp4a233hLtIE0mE1u2bKGgoAAXFxfR3MLV1RV/f39cXFwIDQ0VRdrZ2Zmmpibu3r2LTCbDwcGBqVOnkpOTg52dHXv37uX8+fPExsaK/sx2dnZin64lHOzg4EBNTQ27du2ira2NhIQEfvjDHz5RaF8QBL7++mtKSkp45513iImJEfuULRegD1dnW2oZHiXCRqORxsZGMSTd1taGwWDg7t27REVF8cMf/pCYmJhhH8u9vb2cPn2ar7/+mlu3bjFu3Dhyc3PF6nxLGqWiooKGhgYcHR1JTk5m7NixViFqi9d9a2urWJNi+VtZBsY8DyRRlvhWRpMo9/f3c+zYMaqqqggNDaW/vx9BEAgKChJ7Zx8O2Wq1Wqqrq6murkahUODq6io6Gj1sVWi50r937x5qtZra2locHR3Fx1Wr1aK3c0NDAy0tLbi5uTFmzBji4+PFHLXF/tHJyQlBEOjv7xd38JavLWFoSyjaMjWot7cXQRBwdnYmMDCQkJAQ3Nzc6OzsFC88QkJCiIqKwtfXV+yZtvxr2VlbnLzs7e1xcHDA3t5+0NdDfc/BweGRQmXp9bbs8L9tt2k0Gjl16hQNDQ1irt3V1ZX09HSSk5MHiXNXVxcnT57k/PnzuLq6kpaWxj/+4z9a9SKbzWa2b9/O7t27SU9P55e//OWw/Z8FQaCuro4rV66IvaxTpkwRc9sjjU6n4+DBg9TU1JCbm8vkyZOxsbHBaDSyd+9eGhoamDJlCm1tbVRVVaHT6cSoTl9fn9jm4+XlRUREBB4eHnR0dHDp0iXx5K1QKEhJSSE7O1vciQ5VnfzgwQN27tyJQqHAx8eH995776l6vBUKBR9//DH37t0jMTERk8kk9ilbpig9rjpbEARkMplVXthoNOLm5ibuhC3WtR988MGQc40fhV6v5/z58/zXf/0XMpmMhQsXsnTpUuzt7cXRqBUVFSgUCnx9fUlNTRWHkHwbA61OY2Njn5tgSqIs8a2MJlFuaWnh3//934mMjCQxMVE8CTx8UjYajTx48ICqqiqam5uxtbUlOjqa2NhYfHx8RDvGh2/t7e1iC1FwcDDJyckkJiaKBh7u7u40NTVx584dHBwcmD17NtOmTXuqE7rZbKahoYHKykru3btHd3c38E2fpZOTE2q1mrKyMlpaWtDr9fj7+zNmzBjGjh0r9rqazWYroTcYDGg0Gu7cuSOeaCxRAkvEYDhYisbMZrNYBWxJF9ja2mJvby9aVlpGSFpC/y4uLjg4OIiCbTAYOHHiBEqlkunTp9PY2Eh1dTWurq6MHz+eMWPGWJ0UdTodN2/e5NKlS9TW1hIeHs5f//Vfk5OTY5V+OHz4MB9//DEJCQn89re/feJCnLa2NgoLC7lz5w5OTk5MnDiR7OzsEc/Dm81mzp07x+XLlxk/fryVSOzatYv29nY2bNiAq6srt27dorS0FJVKRUBAgNjHrlAoaG5uprW1FaPRiF6vp7S0FJlMxty5c/nf//t/D+lyZ6GpqYmdO3fS29uLra0tb7/9NqmpqcNa/1C2mSaTidraWjw9PfnhD39ISkrKYz/rSqVSFGHLcBNHR0ervHBgYCA2Njbcu3ePffv2sXz5ctLT04e1RpPJRElJCQUFBTQ2NlJZWcncuXPJzc0VPw8Wr4eoqChSU1Ofe/Hj0yKJ8ihDJpPx2WefUVJSQnd3tziVyIKNjQ1nz559oWsaTaIsCALV1dVDXombzWYaGxspLy+nuroarVaLm5sbvr6+uLm5odPprAqoAFxdXUVxa21tRalU4uXlRXJysjhb1hLyunv3LmfOnEGlUpGRkcHs2bOf+ARu8SKurKwUW2gsz2fJK9bV1VFcXExVVRX29vZERkaKNpaWUJrZbMbOzo6goCDRjSw0NBR/f390Ot0j339BEERxflisLRXqbW1toltaT08PZrMZZ2dnvLy8xClR3d3dKBQKMSdvab+yt7cX31NLLt/Sz11eXk5/f79YVV1TU0NzczPu7u5kZGSQmpqKg4ODeFKKiIjg888/5/r16/j6+jJt2jRycnLIysoSL4LOnTvHb3/7W0JCQvh//+//Dcsa9GFUKhVFRUWUlJRgNpsZP348U6ZMGfGBA2VlZXz11VcEBwezatUqPDw80Ov1bN++HZVKxaZNm0QDnLq6OtHQAiApKYmMjAyioqJQKpVcuXKF27dvM378eBoaGtBoNEydOpXp06cPukBsbW1l+/btCIKATqdj1qxZjzQqgm/6fQeKsGXm80DHrqioKPr7+/n000/FOdIDd+a9vb3U19eLQqxUKsUK64F54YdrDLRaLR999BHh4eGsXr36W0VTEAQqKys5e/YsCoWCqKgoqqqqMBqNZGZmUltbaxWiTklJea6V+COBJMqjiLKyMmbNmkVfXx9JSUmUl5eTkpKCSqWipaWFuLg4IiIiOHfu3Atd12gSZaPRSGdnp5XzlFwup76+nsbGRvr6+nB0dMTPz4+AgAD8/f2HNMKw9OaqVCqxlcfLy0t0ntJqteKHorGxkby8PJqbm0lMTGTevHlPZBxgyQFXVlZSU1NDf3+/uOsdM2YMISEhaDQaSktLxYuxkJAQMjMzGTdu3KBcnMV5auAgDot1qKOjI76+vnR1dREZGUl4eDgeHh5DntxMJhOdnZ1W4wF1Oh22trb4+flZzfB9nGWi0WhEoVDQ0tKCTCYTbU97enowGo3Y2tri7OyMvb09DQ0NCIJAcnKyOATA0j9u2TmFhYVhZ2dHRkYGOp2OkydP0traypgxY3B1dcXT05MZM2aIbWbXr1/nF7/4BV5eXnz44YdWVqFPQl9fHzdv3uTatWtotVqSkpKYOnUqkZGRT/V4Q9HS0sK+ffsAWL16NWFhYfT29rJt2zb6+vrYtGmT1YVFb2+vOLWqo6MDLy8v/Pz8qK+vZ/ny5YwfPx6DwcDly5e5cuUKbm5uLFy4kOTkZLF9aNu2bTg4ONDT00NSUhJvv/221fFgqYuw5IUtImzxrrbkhIcSiNbWVrZu3UpMTAzZ2dmiEFvmJwcEBIgi/G2uX4Ig8MUXX9DQ0MCPf/zjb73gbWhoID8/n+bmZuLj45k6dSqHDx+mra1N7OcODAxk7NixJCQkjGh/9fNEEuVRxOLFi6moqODy5cu4uroSGBjImTNnmDNnDl9++SUffPABJ06cIDs7+4WuazSJssUAxWg0WoVUXV1diYmJISkpiZiYGDw9Pa36jx+ms7NzkBjHx8dja2srfijGjh1LYWEhlZWVhISEkJubK3oAfxs9PT3cv3+fyspK6uvrMZlMhIWFiTtif39/zGaz6ENdVVWFnZ0d48aNIzMz84lDa3q9ntbWVlpbW6mrq+Py5ctWwxYCAgLw8fHBxsYGg8GASqWio6MDo9EoVpdaBDgoKGhETmBarVacxtXZ2YlcLhe9v21tbZk4cSKBgYG4u7sjCAI1NTXU19djNBrx9fVl0qRJ2NjY0NzczLlz5+jp6SEzMxOz2UxbWxv29vbEx8eTlJSEVqvl0KFDODo68ud//udifv/h23DSDEajkbKyMgoLC+ns7CQiIoJp06aNmAubRqNh//79yGQyli1bRlpaGj09PWzduhWTycTmzZuHNAVpbW2lpKSEqqoqcnNzGTdunNV9FAqFOGkrLi6O7OxsvvrqK5ycnNDr9Xh4eLB582b0er1VYZZCoQAgMDBQTAc9PMXpYSx/A8uxlp+fT3h4OGlpaaIIx8bGPtGu9Pbt2xw+fJi33377kb788E1R4JkzZ7h//z6hoaHMnz8fd3d3/vVf/5X79++L6ZDMzMxBLY0jQW9v73MVS0mURxFeXl787d/+Lf/wD/+AQqHA39+fvLw8cX7yT37yE27dusWFCxde6LpGkyir1WrOnz+PTCYTTRks1n/DEZKHxXjChAkkJCRYFTYplUoKCwsxGAz4+voyd+5cxo0b960fbkuBWGVlJU1NTQBER0eTnJxMcnKy6MM9cFesUqkICgoiKyuLcePGjcj7ZXn/LaFySwivvb1dFGp/f38iIyPFcYTBwcEj3r72MBaP4sbGRo4dO4ZWqyUqKspqfKaHhwdyuRyZTEZqaiq5ublMmjSJ5uZm/umf/gm1Ws1Pf/pT3NzcuHr1KuXl5ZhMJqKjo3FxcWHfvn3o9Xrmzp07ZCjbwcFhSLG2eE0P/L+LiwtNTU0UFRXR2NiIn58fU6dOZfz48c/cEmM0Gjl+/Di3bt1i2rRpzJ07F41Gw9atW7Gzs2PTpk1Pndu+f/8+hw4d4sKFC8THx4vOadnZ2cjlcrq6uoBvRHhgOPpxxXKWAkjL8VRfX49Op8PR0VEcYVlVVcWqVavIysp64jV3d3fz8ccfk5iYyBtvvDHkfTQaDefPn6e0tBRvb29mz56Nh4cH165d49ChQ3R3d7NhwwZmzpxJeXn5iJ9/LEMxrl27Rm5uLhERESP22AP5Lory8x12+Rwxm82iuYG3tzd2dnbiVSzAuHHj+Oyzz17W8kYFzs7OmEwmJk2aRHx8/LBPXJ2dnZSUlFBfX4+XlxezZs0aJMZGo5GKigpu3LiBXq9n3bp1zJw585FiLwgCHR0dohDLZDLs7e2Ji4tj2bJlJCUliR8qQRCora3l5s2b3L9/Hzs7O8aOHUtWVpboWfwsWEwaLEVU58+fR6/Xi8Pcp0+fTnBwsJjHlMvloqlEVVUV8M0xZync8vf3x9/ff0T7MW1sbHB3dxedz44ePYqDgwNz5swRDS3kcjn29vY4OTlRU1NDcXExXl5eTJo0idWrV/PZZ5/xySef8Ic//IHs7Gx6enooLCzkxo0bGI1G/v7v/54DBw5QXV3NP/zDPzBu3Dh6e3utbpY5zJYJWJaRm729vYNqOOCbY87Ozo6KigouXLiAu7s748aNY8KECfj4+AwSdCcnp2/9e9rb2/P6668TFBREXl4eHR0dvPnmm6xfv57PP/+cnTt3snHjxqeatOTm5iYayxQWFnLq1CmmTp1KZ2cnsbGxzJkzZ8jiyIfRarVWeWGVSoWtrS3h4eFMnjyZ2NhYMdUgCAInTpzgxIkTolf/cBEEgaNHj+Lo6DjkSFmdTseVK1coKirCwcGBuXPn4ujoyJUrV2hvb0epVOLt7c0//MM/MH78+EF1IyNBT08PBQUFtLS0iFabEsPnld0pp6WlsXTpUn79618D/zNY+09/+hMAmzdvFnObL5LRtFN+UgaKsaenJxkZGYPE2FI8duPGDXp7e8WhArm5uYOuVC3WiJaKaYVCgZOTE4mJiSQnJw8ydujp6eHWrVsUFxejVCoJDAwkKyuLtLS0Z3pvLPNmLTOCLcMwLANMVCqVmAt83IWLZR6uZQSmZSdlMpmwtbXF19fXSqgtxiojgUql4tixY7i4uPDaa6+J70dfXx/t7e3ExsbS2trKhQsXRMtSd3d37t+/T0BAAD/72c+IjY0lNDQUW1tbioqKuH79Or29vdy8eRODwcDf//3fD9tSduAM5oeF3HKTyWRUVFSIs5P9/f2JiIiw+ltaTGsetQN/+NbW1saRI0dEoxGTycS2bdvESWffFsGwjGd88OAB9+7d48yZMwiCQEJCAq2trYSHh+Pm5kZycjKLFi0iICBgyMexjHi1iLBMJgO+2VEPzAs/aj1ms5k9e/bQ1NTEe++9N+y6i+vXr3PixAneffddKzE3mUzcuHFDjPpYhkWUl5ej0+lITEzEy8uLa9euMX/+fHJycoCRPf8IgkBVVRWFhYU4Ojoyc+bM59afbOG7uFN+pURZqVSKM3z/5m/+hq+++krcufzHf/wHP/3pT5kzZ444+eWnP/0p//Zv//ZC1/gqivJQYhwfHz+o2rO5uZlr166Ju4iJEyfi7Oxs9aEwmUw8ePCAyspK7t+/j0ajEU9yycnJxMTEWO0oBUGgvr6e4uJi7t27h42NjbgrHugm9CQYDAaam5tFAW5qaqK/vx97e3vCwsKIjIwkMjKSiIgIzGbzM73/JpMJhUJhJdRKpRJBELC3t8fPz09sEbO4jnl6ej6VWCsUCo4dO4anpydLlizB0dFxyJOSRqPhzJkzXLhwgfr6esrKyggMDCQ3Nxc7Ozvc3d3Flqz29nbu37/P2bNnMRgM/K//9b949913RzS3qNVquX79OkVFRaLRzLhx43Bzc3ukoFvEfqi2NKPRSGVlJYIgMG3aNLy9vbl8+TLBwcEsX74cT09PUcQdHBxobW0V88JyuRwAd3d3qqur8fLyYunSpZw7d46pU6cyf/58qqqqOHnyJN3d3UyZMoUZM2aIj2MR4aamJkwmEx4eHmJaIyYm5olazfR6PZ9//jl6vZ7333//WyNZXV1dfPLJJ6Snp7NkyRLgf8LEZ8+eRalUEhYWhr29PY2NjeIAiezsbNRqNTt27CAtLY1ly5YNabP5LOcfy+M0NDSQlJTElClTnnuKByRRfuk4OTmxePFi1q1bx7Rp02htbSUtLQ0HBwcEQeDXv/41Bw8exM7Ojtdee42f//znz8Xk4HG8SqLc1dVFcXGxKMaWnPHDYqxQKLh27RqNjY0EBQUxefJksc9Tp9OJHrmW8K5Op8Pb21usmA4PDx8kQlqtVtwVKxQKAgICyMzMZPz48U8chuzt7bXaBbe2toqtSRYBjoyMJDQ0dFCI+Xm8/waDQQwvW0ZYdnd3i61QdnZ2oj+3xSLUcvu2NXR2dnL8+HF8fX1ZtGgRJpPpkSclrVZLYWEh+/fv5+zZs6Snp/Pzn/8cjUZDW1sbra2taLVajEYj7e3tXL58GZVKxfz58/nVr35FVFTUiIpzf3+/ONtZqVQSExPDtGnTiIuLG/J5BEHAYDAMKdpKpZIzZ87Q2NhIYmIizs7OXLlyBVdXV1JTUwcdb76+vmJhVlBQEAcPHkSr1bJs2TIOHjxIVFQUq1evtppDfeLECU6ePElPTw/+/v54eXnh7Ows9vDHxsaKbYBPS3d3N1u2bMHT05ONGzc+Mv1jNpvZunUrWq2WP/uzP8PR0ZH6+nry8/NpamrCxcUFe3t7ent78ff3Z9KkSYwfPx5HR0cUCgVbtmwhMDCQd9991+rzPRLHf11dHZcuXcLGxoYZM2YQHR39VI/zNEii/JJZt24dX331Fb29vXh4ePDGG2+wbt065syZM2oa218FUe7q6qKkpIS6urrHirFWqxV3sJ6enmRnZ4sVmjqdjsbGRqqqqqirqyM8PJywsDBRiAea3lsQBIGGhgZu3rxJZWUlNjY2pKSkkJmZKc4N/jYEQaC7u5uGhgZRhC27H09PT6KiokQRthgsPI4X9f5bCrdUKpUo0pZ/e3p6xHnNlh7ngUJtmVVt+fvIZDJOnDhBUFAQM2fOpK+v77Enpd7eXn7729+ya9cuYmNj+eu//mumT5+Om5sbarVaFOja2lr+9Kc/UVtbi6+vr9jLGx8fT2hoKKGhoSMy/cdsNlNZWcmVK1dobW0lKCiIqVOnkpqa+kTDDB42Ghk7diz79+8nOjqaBQsWoNPp0Ov1BAUFiZXNOp2OHTt2oFKpWL16NUeOHMHOzo73339fLPaz3AZOF9PpdKSlpbF27drHGo88DZZWqfj4+EEtWBYuXbrEuXPn2Lx5M46OjuTn51NRUUF/fz+Ojo64uLiQmJhIdnY2sbGx4mP09fWxZcsWAN5///1BF7zPcvxbxq1WV1cTExPD9OnTnyqv/yxIojwK6Ovr48iRI+zZs4e8vDyMRiNBQUGsWbOGdevWvfQZxqNZlIcrxgaDgdu3b1NWVoatrS2ZmZmkpKSg0+nEMGBbWxtms1nMo65ateqR+aPe3l5u377NzZs36erqws/Pj6ysLMaPH/+tHySz2YxcLrcSYbVaDXyTvxu4E34Si8GBa3vZ6QOj0Wgl0gOF2+L7bWtrK+6uLUMASkpKiIiIYOrUqaLJyKMQBIH//M//ZNu2bYSFhYmOXNOmTbMSWr1ez7/8y79w6NAhceC9t7c3QUFBuLq64u7uTmhoqOg7/ixCbblIs5zYPT09xdnOTxL6HGg0MmHCBL7++mtSU1NZsWKFlcD19/ezc+dO5HI57777LqdOneL+/ftkZ2eL/eKAaENryQs7OjpSU1PDiRMnUKlUTJo0iVmzZo1oePb+/fvs27dPDKEPRCaT8emnn5KWliamW1QqFW5uboSGhpKZmcnEiRMHVdCbTCZ27dqFTCbjBz/4wZAV9k97/Dc3N1NQUIDRaGTq1KmiV/bDyGQyAgMDn5tnuiTKowylUskXX3zBnj17uHz5MgAJCQm88847rF27ltjY2Be+ptEoysMVY7PZzP3797l58yZ6vZ7U1FSxgOjBgwe0t7cPGiNnZ2c35IdCEAQaGxu5efMmd+/eBWDMmDFkZWU9NixqNBppbW0VRbipqQmdTmflYW3JB4/Eh3A0iPKjsEznGkqwNRoNKpVKzIu++eabhIWF4e/vj5+fn1hoNjBcbzQa+b//9/+KoWwfHx/MZjMZGRnk5OSIu0mDwcAf//hHjh07RkhICDExMeh0OoKDg4mIiKC3t5fW1laxctci1APF+kmFuqOjg8LCQsrLy7G3tycrK4vJkycP+3EGGo2kp6dz+fJlMjMzWbJkidhvvnPnTu7fv8/EiRO5fPkyZWVlpKWlWbW7DeUHP/D9u3r1KhcvXsTZ2Zn58+cPq/1vuBQVFXHq1CmWLl1KZmam+Jz//d//TXV1NUajkY6ODvz8/Bg3bhxTpkwRQ9QPIwgCx44d4/bt26xfv/6Rg3me9Pg3GAxcu3aNO3fuEBYWxqxZs4Z8v1pbWykuLqa1tZUFCxY8t5C2JMqjmJaWFvbs2cPevXu5desWNjY2TJo0icLCwhe6jtEkylqtlqtXr1JbW4uHh4dYTf2wGAuCQFNTE9euXRPn81qKgBQKBfb29kRERAxpnv/wh6Kvr4/bt29TXFyMXC7Hz89PzBUP1Vai0+loamoSRbilpQWTyYSjoyMRERGiCIeFhT0Xl6HRLMqPw2g0olaruXXrFmfOnCE1NZXk5GS6urrQ6XTAN21V3t7eVkLt4uLC1q1bqaqqYunSpcTHx3P9+nX6+/tFcfby8sJoNLJt2zaOHDlCQkICc+fOpbq6GrVaTUpKihiqtJiwWELgFqH28PAQBfpJhFqtVouznY1GozjbeTjVyQONRhISEqisrCQ7OxsvLy/27NlDdXU1Y8eOpb+/n/b2dpYtW8aSJUvw9fV9ImHt7u7m9OnT4mSmxYsXj8jsaUEQOHnyJDdv3mTdunVERUXx4Ycf8sUXX4ipmdmzZ5OTk2MVoh6KK1eukJ+fz4oVKxg/fvwj7/ckx79MJqOgoACtVsukSZMYO3bsoDUMFGN/f38yMzNHvDZhIJIovwKUl5fzT//0Txw9evSVmqf8PERBr9dz/Phx0TpvqHxdZ2cnhYWFVFdXY2tri5ubG4Ig4OTkZDXK7lE9uJaRjJZpNXfu3BGtIbOysgbN4lWr1WIYuqGhgY6ODgRBwN3dncjISFGEg4KCnlvIayCvqihb0Ol0lJeX09zczOTJk1m8eDF9fX3iNK2B/yqVSsxmMz09PRQVFaHX65k6dSqLFi2io6OD6upq7OzsyMzMZPr06Xh4eLBv3z4OHDhAeHg4f/Znf4ZOp+Py5csolUqSk5OZOXOm2IdqyfdbBPpxQm0R60cJtU6nE2c7q9VqEhISmDZt2ree4Acajfj6+tLZ2cm9e/cwGo2sWrWKiIgI8vPzyc7OZtGiRc/03tfW1orDQ7Kzs5k1a9YzH0Nms5ndu3dz7tw55HI5d+7cISkpiR/96EfMnDlzWH7llZWV7N+/nxkzZjzWtxuGd/wbjUaKi4u5ffs2gYGBzJo1yypVNNBB7UWJsQVJlEcpjY2N4i65oqICQRCYOnUq69at44MPPnihaxlNogzffGCG+mCoVCry8vK4deuW6HsbGhoqVqiGhIR8a9GNXq+noqKCsrIyvLy8CAwMJDMzk/T0dNEOsrOz00qEVSoVAH5+flYibLG1fNF8F0RZo9Hg6elJXl4eU6ZMITc395H+3UqlUnRq27t3L2q1mrCwMBISEhAEgZaWFjo7O3FwcCA1NZVp06ZRVVXFmTNnCA4O5r333iMjI4Py8nIuXryIQqEgMTGRGTNmDFlT8LBQW8R6oFAP3E0/LNQmk4mKigquXLlCR0cHYWFhTJ06lTFjxjzyok0QBIqKisjLy8PW1haTycS6devw8/Pj008/JTQ0lHXr1o3IRZ/RaKSoqIgLFy7g5OTE/PnzSUtLe+pWvhMnTrB3716Ki4vp7+/ntdde4//+3/877AIqS9FYUlISb7755jMXOnZ2dlJQUIBKpRI9Ayzvm0WMi4uLaWtre6FibOG7KMqvrKNXZ2enmE++evWquDv71a9+xbp1615oWf5o5uFCl9raWgoKCqioqAC+ycFnZ2cTFxc3rGplizNXZWUltbW19Pf3ExgYyJo1a0hOTkYmk1FWViYKsWX8nWW0Y1RUFBERESM+8u/7Tnp6Ovb29pw4cUJ0/noYOzs70X0sOTmZ8PBwDh48iI2NDTExMcyaNQuVSoVMJuPGjRuUlpZy6dIlAgICsLGxoaioiDt37jBnzhxmzZrFzJkz6ezspLy8nC1bthAXF8fMmTOthlJYQuiWFjn4H6EeuJu+du0afX19wGChjouLIy0tjdraWq5cucKXX36Jj4+PONv54bSGjY0NU6ZMISAggFOnTjFv3jwiIiLYsmULrq6uvPXWWyMWhbG3tycnJ4dx48aRl5fH4cOHKS4uZvHixcOu0lar1Zw6dYqDBw/S3t5OYmIi77zzDkVFRcTFxQ3bKa67u5s9e/YQFBTE66+//kzCaDabxTSUt7c3y5cvFyeBWS7eSkpKaGtrIyAggIULFw67g0Li8bxSO2WtVsvhw4fZs2ePaHYQEhLC6tWrR0XlNYy+nbKlYtoy3q6lpQVnZ2eysrKYM2fOkK1LQ6HX66mpqaGyspKuri48PDzEQQYymQwfHx/kcjkGgwEHBwfCw8PFqujw8PAXYiTwNHxXdsqWnYIllzh37lymT5/+2N8VBIEDBw6IloxpaWm8/fbboggYDAZu3LjBmTNnkMvl4oQkQPSAtrW1RRAE0VnMYDAQHx/PnDlzGD9+PN7e3k/U6jZQqFtbWwcJtcWRzHJMu7i4iJXkj7LCtLhnNTc384Mf/AA/P78neIefjLq6Ok6cOEFXVxfZ2dnMnj17yOPKUsdx9uxZTp8+jVwuJykpifXr1+Pv78+uXbvIzs7m1q1bxMXFsXLlysdeSDypEYmFoY5/lUpFQUEBHR0dpKenk5GRgb29vSjGxcXFyGQy0VvgZYqxtFN+yQQGBqLT6XB3d2ft2rVij/KLyD2+iqhUKvbv349KpUKtVuPs7MzSpUuZPn36sD60giAgl8vFMYqW6TnBwcEYjUZu375Nf3+/aBowe/ZsIiMjhxX6lng+TJs2DYPBwNmzZ3FwcGDy5MmPvK+NjQ2vv/46XV1dNDc3c+/ePb744gtRmB0cHJg6dSrZ2dmUlJRw6dIlzGYzHR0dmEwmIiMjmT17Nj09PeJ0qzt37nD79m0uXryIl5cXcXFxxMfHizv0gUVnAy/UBu6oLVOPBgq1RayLiopEoba3t6erq4vdu3dz9OhRcVjFw3nX/Px86urqxBD28yQ2NpYPPvhADGlXVFQwf/58xo8fj42NjegZf+nSJa5du4ZSqSQuLo6f/OQnTJo0if7+fj766CNiY2NZtGgR8fHx7N27lzNnzpCbmzvkc5rNZg4ePIhKpeK999576ijUwCESbm5uLFu2jODgYNEu1yLGgYGBLFq0iIiICGln/Bx4pUR53rx5rFu3jmXLlr2Su5oXjeVixc3NjXHjxjFp0qRhnZT6+/uprq6mtLSUhoYGTCYTLi4uODs709vbi729PcHBwaSkpIjDQGbOnPmduVJ91Zk5cyYGg4FTp07h4OAgttcMhaOjI2vWrOFPf/oTZrOZmpoaK2GGb8QvOzubjIwMSkpK2Lp1K6WlpWJ1/gcffGBV4WsymSgpKeH06dOi5Wp4eLjoOW7B3d3dSqQtX3t7e2Nra/tIoVapVFa76YaGBurq6vjTn/7Eli1bSEpKYvr06aSnp6NQKLh69SqLFy9+osEPz4KdnR3Tpk0TQ9pHjhzh8uXLBAUFUVNTQ1VVFb29vURERPCDH/yAKVOmiG1NJ0+epL+/Xww/JyYmsnDhQk6ePImvr++QU6Xy8vKoqalh7dq1TzS7fCA9PT2cOXOGlpYWxo4dy6RJk7C3t6e5uZmbN2/S3t4uifEL4pUS5aNHj77sJbxSuLi4EBERQVpa2rcaw5vNZqqrq7l+/TqVlZV0d3fj6upKQEAAiYmJhISEiDOEB16JW8JHEqMHGxsb5s2bh8Fg4Pjx42Jo+lF4eXmxevVqtm3bRlBQELW1tYOEGazF+bPPPmP//v18+eWXVFRU8Ld/+7ekpqYC34jSxIkTycrKora2lgsXLtDU1ERoaCi5ubn4+fmhUCjE3XVLS4s4RMPy+76+vkMKtouLCz4+Pvj4+AwS6oaGBgoLC7l69Sp//OMfcXNzIyIigvnz5zNx4sTn+I4PjYeHB5MmTaK9vZ2vv/6arq4uvL29SU1N5e2332bGjBlWIffKykpu377NihUrxNGlAJMmTUKhUHDixAm8vb2Jj48Xf2bxFF+yZInV94eLZSJbeXk5Li4uLFmyhLCwMFpaWkQxDgoKYvHixU/tRS/xZLxSoizxZDg4OAw53g0QjQiampooKyvj3r17aDQanJycSEhIYMGCBcTExBAUFDRq88ESj8bGxoZFixZhMBg4cuQI9vb2oogNRUREBEuXLuXIkSOkpqYOCmUPxN7enh/96EckJyezbds26urq+MlPfsLy5ct56623xBYpGxsb4uPjiYuL48GDB1y4cIFDhw6J9qCzZs0ST/KCIKBWq61auCxFZN3d3eJzu7m5iUI9ULC9vb1JT08nPT2dDz74gHv37olh69u3b9PV1UVUVJRYaPg8j2lLiPr69eu0tLRgNpsZM2YMXV1dGAwGMQU0MLLU09PDsWPHGDNmzJAXUAsWLECpVPLll1+yefNmcdd98uRJJk+e/FQXHVqtlgMHDnD16lVSUlKYOXMmcrmco0ePSmL8EpFE+XuCTqdDJpOJt8bGRmQyGWq1WvTNzczMJC0t7YUP8ZB4PtjY2LB06VKMRiMHDx7E3t6exMTER94/PT2d9vZ2ioqKyMnJ4erVq48UZvgmTO7k5MRXX33F/4+9+w6L6kz/Bv4dOkjvTaSoINIUQSxIERQUe+8aY0zfbLKbTTbVzSZuNtlds5umxh4LdmyAKIhKFQEVqVKlg/Q6w8x5//A353VkBoc6A96f65or4ZwzZ555hLnnaffz+PFjREREIDs7GzNmzICPjw8sLCzYctjY2MDGxgbFxcWIjY3FyZMnYWRkhFmzZmHcuHEQCARQVlaGmZlZt/13hfmnnzx5wv63uLgYaWlpImlI9fT0oK+vDwMDA+jr62Pu3Lng8XioqqpCWVkZEhMTER0dDQ6HAxMTE3YyYn9XAygpKUFFRQXNzc24c+cO7t69i9bWVujr60NdXR3t7e1wdnZGYGAgtLW1ERUVhbCwMHaWtpmZGS5dugQOh4OQkBCxAVBBQQHLly/H/v37cezYMSxatAinTp3CuHHjJI419yQrKwuXLl0Cl8uFt7c3dHV1ERERQcFYDgyr2dfDgTzNvhZuKFFZWYn6+nrw+Xx0dHSgo6MDAoEARkZGmDx5MiZMmNDnD6XhPvtxpM2+FofP5+PUqVPsuGNP6Wefnak8e/ZsREZGsrN/JS3NuXPnDi5evAgul8sOe2hpaWHcuHES99R9/Pgxbt68yfbQjB8/HtbW1r2atClMQ9rc3IzGxkY0NzejqakJjY2NaGtrw/MfbQoKCujq6kJ7ezu7PSSXy4WCggLU1dXZ8Wt9fX2MGjUKSkpKUFRUhIKCAhQVFcU+FBQUwOVyIRAIUFxcDBUVFdja2qKjowPl5eUwNTXFnDlzMH78eJH3VlRUhCtXrqCmpgZ6enqoqqrChg0b4ODg0ON7bmpqwk8//YS0tDTMmjULr732Wq++RHd0dCA8PBz37t2Dvb09bG1tcezYMTQ3N8PCwgJTpkyBhYXFsAnGw/3zRxxqKY9gysrKqKqqYset6urqoKmpCQcHBzg6OsLKyopmrr8EFBUVsXz5cpw4cQLHjx/Hhg0bRNYSP0vYIvvtt9+QlJSEJUuW4Ny5czh16pTEwOzh4QElJSWEhYVBXV0dfD4fZmZmqK+vl7h+efTo0Vi3bh3y8/Oxd+9eJCUlIScnB66urmL38pZEW1tb7HpgYRrSpqYmdHV1gc/ns49nf25tbWVb4HV1dSgsLMSjR4+grKwMTU1NaGpqYtSoUVBRUYFAIBC5T0NDA6qqqtDa2gpTU1OYmZmhs7MTCQkJUFFRgbW1NZSVlXHixAlwOBwoKytDSUmJfSgoKKChoQGnTp2Crq4uNDQ0MHbs2G7XPfsAgKqqKpSXl6OhoQEFBQVQVVWVeL3wweFwkJ+fj7CwMHR0dGDy5MmorKzEhQsXoKCggKCgoBem7iRDg1rKA0yeWspNTU2Ijo5GVVUVNDQ0YG9vDwcHB3bjgYEw3L+pvgwtZSEej4ejR4+ioqICmzZtgrm5ucRrnzx5gr1798LS0hKenp44efLkC1vM9+/fx7lz56CiooKOjg44OTlh/PjxbDYuW1tb+Pj4iGyOIKx/LpeLzMxMFBQUQFNTE5MmTcL48eOlTpwxUDo6OlBVVYXKykpUVFSgtrYWfD4fqqqqMDExga6uLpqamlBWVoaOjg4YGRnBxMQE5ubmSE9PBwBMnjwZTk5O7BIoSQ8ej4erV6+itrYWhoaGePz4MXR0dDBx4kRoaWmJvf7evXuoqanBmDFjUFhYCEtLyxdO8OLz+SgqKkJ5eTnU1NTYfx9DQ0OMHTsWDQ0N0NTUhJqaGts7oKioKPH/e3tMUVGRcl/3ArWURzANDQ1oaGggMDAQY8aMobXDLzllZWWsWbMGv//+O44cOYLNmzdL3EjBwMAAK1aswNGjR2FsbIzVq1fjxIkTPbaYXVxcoKioiDNnzkBHRwdZWVlobW3Fli1bUFhYiNjYWBw4cADW1tbw8fERybpnYGCAwMBA1NXVIS0tDbdv30Zqairc3Nzg4OAwZMFZTU2NnRAGPG1xV1VVITs7m91pjWEYGBsbY8KECezOUWPHjoWvry+8vb2lDg5JSUnQ0dHBO++8A1tbW5SUlODy5cuorq5mNwF59l7ChEkrV67E2LFjkZCQgPDwcHh7e8PFxUVs4C8tLWW3uDU3N4eioiKMjIzg5OQEQ0NDtLW14f79+2xWtI6ODpHegOd7Frq6uroNC7zIvHnzMHr06F4952VGLeUBJk8t5aEw3L+pvoz139HRgUOHDqGpqQlbtmxh0yeKk5SUhPDwcCxevBiampo4ceIE7OzssHLlSolf8nJycnDy5Eno6uqiubkZurq6WLduHbS1tZGTk4PY2FhUVFRgzJgx8PT0RElJCbS1tUXqv6GhAWlpaXj06BHU1NTg6uqKCRMmDMpOYZJ0dXWhsLAQGRkZqK6uho6ODiZMmAB9fX1kZmYiMTERFRUVUFdXh6enJ8aNG8fmcreysupxnkZtbS1+/fVXuLu7i2yMIRAIcOfOHcTExIDD4WD27NmYPHky7t+/j/Pnz2POnDmYPn06e31ERASSkpKwdu1ajBs3TqTsN27cQFhYGBobG2FqaooJEybA19dXZJOYvvz+CwSCboG6p0BuYWEhMdtafw33zx9xKCgPMArKw8vLWv9tbW04ePAgOjo6sGXLFujp6Ym97tl9eTdv3ozOzk6pAvOjR49w4sQJ6Ovro729HRwOB+vWrYOJiQkYhkFeXh5u3LiB4uJitLW1wcvLC3Z2dt26ORsbG5GWloa8vDyoqqrCxcUFjo6Og7pCoLW1FVlZWcjKykJbWxssLS3h5OQEKysrdnZ6VVUVLC0t4eLigs7OTlhaWqK6uholJSWor68H8LT1LwzSY8aMYVOOCgQC7Nu3Dx0dHXj99dfFftEQJvNIT0+HiooK6urq4OPj0212tkAgQGhoKAoLC/HKK6/A1NQUlZWV+PXXX5GamgoDAwPMnDkT/v7+3XZsA17e3395RkF5gFFQHl5e5vpvaWnBgQMHwOfzsWXLFpGEFc/i8/k4dOgQ6urqsG3bNtTU1EgVmAsKCnD8+HEYGBigq6sLzc3NWL16NWxsbAA8DfgPHjzA/v372d2qJk+eLDZjVHNzM9LT05GTkwMlJSW4uLhg4sSJA7reuKqqChkZGSgsLISCggLGjx+PiRMnQk9PDw0NDUhKSkJRUREMDAzg5eUFS0tLsfUv3J5UuEd4VVUVgKfJRMaMGYMnT57g0aNHePfdd1/YrXv//n188cUXAICNGzdizpw53VqdXC4XBw4cQHNzM3R0dHDx4kXw+XzMmTMHixYt6nFznpf5919eUVAeYBSUh5eXvf4bGxtx4MABKCoqYsuWLRK7XFtbW7Fnzx5oaGhgy5YtKCkpwfHjxzF27NgeA3NxcTGOHj0KAwMDKCsro6ysDIsXL4azszOAp/UfGxuL5uZmPHjwAFVVVexSPXFbALa0tCA9PR3Z2dlQUlKCk5MTnJyc+vxvx+fzUVBQwHZRa2trsxPUVFVV2WWFOTk5GDVqFDw8PDB27Fi2XNLUf3t7Ox4/fozi4mLcv38fly9fhqWlJbsCQtiSFo75CrW1tWHfvn0Anq4hj4uLAwDMnj0b7u7uIlsoRkdH48MPP0RzczNCQkLw5ptvSpXh62X//ZdHFJQHGAXl4YXqH6ivr8f+/fuhrq6OzZs3S7xPZWUl9u/fj3HjxmH58uVsF/WLAnNpaSl+//136OnpQUdHB9nZ2QgMDMT06dPR3t7O1r+qqqrIloAGBgZwd3cX2+3a2tqK+/fvIzMzEwoKCpg4cSJcXFyk/jdsa2tDZmZmty7q0aNHs2uP79+/j3v37kFRURGTJ0+Go6Njtwlnvan/rq4u7NmzBwzDICgoCKWlpSgpKcHjx4/B5XKhpKTEJjSxtLREbGws6uvr8eqrr0JfXx+tra24du0a0tLSYGZmhuDgYLS0tODw4cNITk6Gnp4eDA0N4evri1WrVkm13JF+/+UPzb4m5CWnp6eHTZs24cCBAzhy5Ag2bdok9gPa1NQUS5YsQWhoKIyNjeHj48POyhZm/hIXmC0tLbFp0yYcPnwYDMPA09MTUVFRaGpqEtleksPhwNLSEpaWligvL0dqaiquXr0KAwMDTJ48GTY2NmxwHjVqFKZNmwY3Nzfcu3cPGRkZePDgARucJX1AV1dXIyMjAwUFBeBwOLC3t2e7qIGnLeeMjAykpqaCy+XC2dkZbm5uA9JNHhMTgydPnuC1116DiYkJu0GGQCBAZWUl2919584d7NmzB9XV1ZgzZw6Sk5PZselFixaxuce3bduGhoYGGBkZYcOGDVi3bh2Ki4tx7NgxXL16FUFBQf0uMxl6FJQJITA0NMTGjRtx8OBBHD16FBs2bBA7mWrChAnw8/NDTEwMjIyM4Ojo2G25lLjAbGZmhs2bN+Pw4cMoKiqCv78/YmJiUFtbK3aSmXDv5IqKCty9exdRUVHQ19fHpEmTYGtry7YC1dXV4eXlBTc3Nzx48AAZGRnIyMiAo6MjXF1dMWrUKPD5fHYWdVVVFbS1teHp6Ql7e3s22DIMg4KCAty5cwdNTU0YP348pkyZ0q/0m88qKSlBfHw8Zs+e3W0ZmoKCAvt+p02bhps3b6K2thaLFy+GiooKsrOzkZiYCIZh0NXVxeYG7+jowKhRozBhwgS2FT9u3DjMmzcPly9fhr6+Pjw9PQek/GToUFAmhAAATExMsH79ehw+fBjHjx/H2rVrxc4MnjVrFqqrq3Hu3Dno6+tj3LhxUgVmExMTNjDfv38fISEhuHjxIhobG7FgwQKxrXMzMzOEhISgsrISqampuH79OlJTUzF58mSR4KympgYPDw84OzuzgTkzMxPW1taoqKhAW1sbLCwsMHfu3G6Z7MrLy5GUlITq6mpYWVkhMDBwQPdd5nK5OHfuHCwtLUWWM4nz8OFDREdHY/78+fD19QXw9AtDcnIyLl68iLy8PFRVVaGzsxNjxoyBk5MTWltbsW/fPty4cQOrV6+Gh4cH6urqEB4eDl1d3R7znRP5QzkWCSEsCwsLrFu3DqWlpQgNDUVXV1e3azgcDhYvXgxDQ0McP34cra2tbGDOy8vDqVOnwOfzxd7fyMgIW7ZsAY/HQ1xcHBYuXIimpiZcunSpxy1ATU1NMW/ePCxevBhaWlq4fv06Tp48idzcXAgEAvY6NTU1TJkyBWvXroW7uzuePHkCa2trrFixAiEhISL5tevq6hAREYGLFy+CYRiEhIQgODh4QAMy8HS/45aWFixZsqTHcd7S0lKcO3cOzs7O8PHxAcMwePjwIX755ReEh4dDS0sLY8eOxfz58/HLL7/gb3/7G7y8vDB27Fhoa2vj9u3b2Lp1K/74xz8CeLok6+TJk6isrBzQ90MGF030GmA00Wt4ofoXr6CgAMeOHWMndYlr+TY2NmLv3r3Q19fHpk2boKioiLy8PJw4cQLjxo2T2GIGniYHOXToEDo7O2FoaIh79+6x2032lMxEqKamBnfv3kVxcTF0dHTg5uaGcePGSZW1rqWlBSkpKcjNzYWWlhY8PDzErpGWxovq/9GjR/j9998xf/78HrdXbGhowG+//QY9PT1s3LgRubm5iI2NZVvvfD4fZWVlcHBwQEhISLdudS6Xi9LSUkRFRSE6Ohr19fWwsLDAkydPMGrUKKxbtw4TJkzA6NGjRYYl6Pdf/lBL+Rk7d+6Eh4cHtLS0YGxsjMWLFyMnJ0fWxSJkyNna2mLlypXIzc3F+fPnRVqjQjo6Oli9ejXKyspw+fJlMAwjdYtZV1cXmzdvhqKiIhITEzFr1iyMGjUKFy5cQGlp6QvLZ2RkhKCgICxbtgz6+vrsdpDZ2dkSX7OzsxNJSUk4ceIEiouLMX36dDZl5WDkZm5vb0dYWBjGjh2LKVOmSLyus7MTx44dg5KSEpydnbF3716cOnUKWlpaCAgIQGNjIzvGvGrVKrHj3MLdqbZv344DBw7grbfegr6+PqytrdHZ2Yn9+/fj4MGD+Mc//oE9e/YgMjKSTYNK5AsF5WfExsbirbfeQmJiIqKiosDj8TBnzhz6xSUvpfHjx2PZsmXIyMjApUuXxOY8trS0xMKFC5GamoqkpCQAwLhx47Bq1aoXBmYdHR2sX78eysrKiI6OxowZM2BmZobw8HDk5uZKVUZDQ0PMmTMHy5Ytg6GhIWJjYxEaGorMzEy2672rqwv379/H8ePHkZGRAVdXV6xZswZOTk6Dmg/+ypUr4PF4WLhwocSgL8zIlZubi46ODly5cgXa2trYuHEjDAwMcO3aNejr6+PNN9+Em5ubVF8eNDQ0sGjRInzwwQdwcXGBra0t1NXVYWBggKCgIBgaGiIzMxOhoaHYtWsXLly4gNu3byM3NxfNzc29zm1NBhZN9HpGRESEyM8HDx6EsbEx7t69i1mzZsmoVITIjqOjI7t9o5KSEoKDg7sFBldXV1RVVSEyMhJGRkaws7PD+PHjsWrVKoSGhvY4+UtLSwuBgYG4ffs2IiIiEBwcDA0NDcTExKC1tVXqQGRoaMhuaJGamspuaGFvb4+8vDy0tLTAwcEB7u7ug5aH+VkPHz7EgwcPsHTpUom7sgkEAvz666+4cuUK7OzsYGlpyU7uOnfuHBobGxEcHAxPT88+teTNzc2xdetWpKWl4cSJE7h06RL4fD7ee+89KCoqorGxEdnZ2YiIiEBVVRXy8/MBPF1uZmZmxm5HqaenR1s6DiEKyj1obGwEAOjr60u8prOzE52dnezPLS0tg14uQoaSi4sLeDweLl68CGVlZQQEBHT7kA4ICEBNTQ1OnTqFbdu2wcDAQCQwnz59WuLYtJqaGoKDgxEdHY0rV65g3rx5GDVqFJKTk9HS0oIZM2ZIve+3vr4+AgICUF9fj9TUVKSlpcHKygrBwcES83sPtJaWFly+fBmOjo5s5rJnCQQCPHz4EIcOHUJKSgoCAgKwefNmmJmZ4caNG7h9+zbMzc2xZs0aqcbXe8LhcDB58mRMmDABu3fvxvnz51FZWYm33noL1tbWcHZ2Rn19PbS0tAA8TRAj3LayoKAAAoEAqqqqMDU1ZYO0oaEh7Tg3iCgoSyAQCPDee+9hxowZcHJyknjdzp07sWPHjiEsGSFDz93dHTweDxEREVBRUYGPj4/IeQUFBSxbtgy//fYbjh07hm3btkFNTa1XgXn+/PkIDw/H5cuXERwcDE1NTdy6dQutra0ICAjo1faNenp6mD17Nvz8/KQO6AOBYRhcuHABCgoKYjePePjwIWJjY5GTk4Py8nK89tprWLt2LaqqqrB3715UV1fDz88PM2fOHNByq6ur47333oOJiQlOnDiB77//Hr6+vpg5cyZ7jZqaGqytrdlc2Twej91burKyEnfv3kVXVxeUlJRgYmLCBmoTE5Mh3b1rpKPZ1xK88cYbCA8Px+3bt2FpaSnxuudbyunp6fDx8aHZ18ME1X/v3Lp1C9evX++2haDQkydP8Ntvv8HCwgJr165lA0tubi5CQ0Mxfvx4kcD8fP1zuVxERESgtrYWQUFB6OrqQlRUFAwMDDB37lyoq6sP+nvsjefrPzU1FRcuXMCaNWtgb28P4GkwzsjIYJOCGBsbo6SkBG5ubli+fDkSExMRExMDAwMDLFmyBGZmZoNWXuEYdlxcHPT09KCkpARNTU14eHi8sFufz+ejtraWbUlXVlais7MTCgoKMDQ0ZFvSpqamQ/a3NNw/f8ShlrIYb7/9Ni5duoSbN2/2GJABQFVVVSQF30BlACJEHnl7e4PH4+Hq1atQVlbutszHwMAAK1aswO+//46oqCjMnTsXAKRuMauoqCA4OBiRkZEIDw/H3LlzsXDhQoSHhyMsLAzBwcESd7OStYaGBkRERGDSpEmwt7dng3FsbCyePHmC8ePHIzAwEJcvX4aNjQ18fX1x6NAhlJaWYvr06fDz8+tVb0BfCHs0mpubUVdXh9GjRyMiIgJlZWXw8fHp8fNOUVERJiYmMDExgaurKxiGQX19vUh39/379wE87akQBunRo0cPyy+8skKzr5/BMAzefvttnDt3DtHR0ewWc4SQ/8/Pzw/Tpk3D5cuXkZaW1u28ra0t5s6di4SEBJHzwsCcm5uL06dPS5yVraysjKCgIJibmyMiIgLt7e1YvHgxACAsLAzV1dWD8r76g2EYnD9/HhoaGpgzZw7u3buHn376CWfPnoWhoSFee+01rFixArGxsWAYBuPHj8e+ffvQ2tqKLVu2IDAwcNADspCKigrWrl0LVVVVPHnyBAEBAVBVVcXly5dx7do1qefFcDgc6Ovrw9HREbNnz8a6deuwdu1a+Pv7s/s6R0dHo7a2dpDf0chCLeVnvPXWWzh27BjCwsKgpaXFZsLR0dGRu24zQmSFw+Fgzpw54PF4uHDhApSVlbvNu/D09ER1dTUuXboEAwMDWFlZAejeYp43b57Y11BSUkJgYCCuX7+Oq1evIiAgAIsXL2YzcAUGBrL3lAfJyckoLCzE1KlTsXfvXtTV1cHe3h7Lli2Dubk5GIbByZMn8fjxYxgbGyM2NhYeHh4IDAwUm2N8sGlqamLdunX45ZdfUFpaipCQEJSVlSEpKQmhoaFwd3eHs7Nzryd0aWlpQUtLC+PGjQPwtHt5qL5sjBTUUn7GL7/8gsbGRvj6+sLMzIx9hIaGyrpohMgVDoeD+fPnw8XFBWfPnkV2dna38/PmzYOlpSVCQ0PZlQyAaIv53LlzElvMSkpKCAgIgLW1NaKiotjgYWlpicjIyG6vKSt1dXU4ceIEqqurkZycDGNjY2zfvh1r1qyBubk5AODatWuIjY1FW1sbuFwu1q9fj/nz58skIAsZGxtj6dKlqKioQHJyMsaNG4eVK1diwoQJuHPnDk6dOiVVIpeeqKmpUVDuJQrKz2AYRuxj8+bNsi4aIXKHw+Fg0aJFmDBhAk6dOoVHjx6JnFdUVMTKlSuhrKyM48ePg8vlsueEgfnRo0e4ffu2xMCsqKgIf39/2NnZITo6GgUFBQgMDMSECRMQGxuLlJQUmSW7EAgEyM7Oxu7du1FUVIQZM2Zg+/btWL16tchkrbi4OOzevRudnZ2YMWMG3nzzTYwdO1YmZX6enZ0dPD09kZmZiYyMDKiqqmL69OlYunQpNDQ0cPnyZTZ3NxkaFJQJIX2moKCApUuXws7ODidOnEBRUZHI+VGjRmHNmjWoq6vD+fPnRQLo+PHjsXTpUpSVleHGjRsSA7OCggJ8fX1hb2+PGzduIDc3FzNmzICnpyfu3r2L2NhYic8dDHw+H9nZ2QgNDcWZM2cgEAjw5ZdfYv369d1mTl+/fh07duyAlpYW3n//fSxdulTuhsLGjRsHFxcXJCQksP9+BgYGWLBgAfz9/VFVVYXQ0FCkpaWJ3aCEDCwKyoSQfhG2iK2srHDs2LFuXZ4mJiZYunQpMjMzERsbK3Ju/PjxmDVrFh4/fozr16/3GJhnzZoFR0dHxMbG4uHDh5g0aRL8/PyQl5eHq1evgsfjDdp7BP5/MD558iRiY2OhrKwMXV1dhISEwNXVVeTajo4OHD58GDt37sTYsWOxa9cuTJw4cVDL1x9TpkyBtbU1rl+/jpqaGgBPe0KEKVMdHR2RkpKC06dP4/HjxzIu7chGQZkQ0m9KSkpYvXo1TE1N8fvvv6OiokLkvIODA/z9/XHjxg1kZmaKnLO0tIS/vz9KSkoQHR0tMTBzOBzMmDEDLi4uiIuLw/379zF+/HgEBwejsrISFy9eRFtb24C/t+eDsYGBARYvXgyBQAALC4tuk9wKCwvxww8/4NSpU5gyZQr+9a9/ye0yLiEOhwN/f3/o6+sjMjJSpLtaRUUF06ZNw7JlyzBq1ChcvnwZly5dQkVFBerr61FdXY2ysjIUFRXh0aNHyM7OxoMHD9h86M/OJyAvRiPwhJABoaKignXr1uHw4cM4cuQINm/eDGNjY/a8t7c3qqurce7cOejr68PU1JQ9Z2VlhYCAAFy7dg3R0dHw9/cXO/OXw+HAy8sLioqKSEhIAJ/Px6RJk7BgwQJERESwa5l1dXX7/X74fD7y8vKQmpqK5uZm2NraYs6cOTAwMEBiYiKampowf/58tpw8Hg/Xrl1DQkICSktL4eHhgXfeeUdm3dUCgQA8Hg9cLlfio6mpCRkZGVBRUQGHw8GoUaNw7949/Otf/4KLiwsYhgGPxwOPx0NXVxd4PB7q6+vx4MEDXLx4EWZmZjAxMemWfUxZWZl9WFlZyf2XEnlCQZkQMmBUVVWxfv16HDx4EIcPH8aWLVtgYGAA4P9PDDtw4ACOHz+Obdu2iXyYW1tbSx2YPT09oaioiOTkZPD5fLi7u2PRokW4cuUKwsLCMHfuXJGg3xt8Ph+5ublIS0tjg/HcuXPZ91FeXo779+9j6tSp0NPTQ3NzM8rKyhAREYGGhgZoaGjAxsYGmzdvlirf9rOBr6cAKnxIe500478Mw6C0tBSamppQV1eHsrIyHBwccO/ePTx69AgeHh5QVVWFsrIylJSU2EALPM3SlpeXB2VlZXh5ecHW1pa9jjaw6DsKyoSQAaWuro6NGzfiwIEDbGAWtlyVlZWxevVq7NmzB6GhoVixYoXIc6UNzMDTfNyKiopISkpCV1cXpk6dikWLFiEyMhKXLl1il1NJ69lg3NLS0i0YMwyD9vZ2XLt2DXp6erC0tERlZSWSkpIQFhYGY2Nj6OrqIiMjAzNnzmS7caUJsi+aQa6goAAVFRWxD3V1dejo6Eg8L3woKyt3O9bR0SE2zezMmTMRHh4OJSUleHl5iQ2y48ePR319PeLi4hAXF8dmJpO0KxaRDuW+HmCpqalwd3en3NfDBNX/4GlubsaBAwfAMAy2bNki8mFdWlqKgwcPYvz48dDS0oK2trZI/RcVFeHatWsYM2ZMj4EZADIyMhAXFwcnJydMnz4dfD4fMTExKCwsxPTp02Fpacl2vT77EB7r7OxEYWEh8vLy0NbWBkNDQ1haWkJFRaXbtYWFhairq4OjoyMEAgHy8/PR2toKFxcXaGpqIisrC+PGjYO9vb1UQVHaAKqoqDgorc+efv+zsrJw8+ZNTJs2DS4uLhLvwTAMCgoKkJCQgI6ODri5ucHNzW1I1ifL8+9/X1FLmRAyKLS0tLq1mIWbHlhaWmLBggU4efIkDA0N4enpKfLc3rSYnZycoKCggFu3bkEgEGDmzJmYPXs2EhISEBcXJ7F8HA4HDQ0NqKqqQldXF0xNTeHm5sZu1PDsuKiSkhKePHmCmpoa+Pr6gsPhICMjA66urpg0aRI8PDxw4cIFBAQEYOnSpSOi+3bChAloampCYmIitLW1JfY6cDgc2NnZwcrKCqmpqUhPT0deXh6mTZvWq54K8hQFZULIoNHV1WUD85EjR7Bp0yZ24pOrqytKSkpw8uRJmJubd0uo0ZvA7OjoCEVFRXbN8qxZszB9+nSMHTsWAoGADazC8c7CwkLcu3cPADB58mS4u7v3OP7b0dGBU6dOwd7eHu3t7aiqqsK0adPg5OSE6upqXLlyBaNHj8aiRYtGREAW8vT0RFNTE65fv46FCxfCyMhI4rXKysqYOnUq7O3tERcXh8jISIwZM4a6tHuJlkQRQgaVgYEBNm7ciKamJvz+++8iW536+fnB3NwcMTExaGho6PZcYWAuLi5GTExMj0lC7O3t4e/vj7y8PERHR0MgEMDExARmZmYwNDSEpqYmiouLce7cOcTHx8PU1BQrVqxAQEDACydk3bp1C+Xl5aipqUFbWxsWLFgALy8v8Pl83LhxA6qqqli9evWISynJ4XDg5+cHAwMDRERESJXZS1dXF/PmzcOcOXNQV1cnksmNvBgFZULIoDM2NsaGDRvw5MkTHD16lP2gVlBQwIwZM6ChoYGIiAh0dHR0e64wMBcVFb0wMI8dOxazZ89GYWEhm4ykq6sLGRkZOHHiBOLi4mBmZoYVK1Zg9uzZUs2Ovn//PiIjIyEQCDBx4kQsX74cZmZm7Nh1e3s7Vq5cOWLGNJ+npKSEOXPmQFFREeHh4VIFWQ6HAxsbG6xevRqGhoZDUMqRg4IyIWRImJmZYf369aisrMSJEyfYJTsqKioIDAxER0cHrl+/DoFA0O25wsBcWFj4wsBsa2uLwMBAlJSU4NKlSzhx4gTi4+Nhbm6OlStXSh2MGYbB/fv3sXfvXmhoaGD9+vXw9vaGsrIyGIZBfHw8KioqMGvWrBEfeDQ0NBAcHIzW1lZcu3ZN7L+ROM+vXyYvRjVGCBkylpaWWLt2LTuWLAyu2traCAwMRHl5ORITE8U+19raGoGBgVIFZmtra8ydOxf19fVsMPb395c6qUhHRweioqJw5MgR6Onp4YMPPsDo0aPZ8xkZGcjMzMT06dP7vB56uNHT00NAQADKysoQFxcns41ARjoKyoSQIWVtbY3Vq1cjPz8fYWFhbKvLwsIC06ZNw4MHDyRuy/h8YO6pxTZ69Ghs2rSpV8EYeLoc69SpU7h37x709fXx6quvimSkKioqQkJCAtzc3GBvby/1fUcCS0tLeHt7IzMzE/fv35d1cUYkCsqEkCE3duxYrFixAjk5OUhISGBbXRMnToSjoyNu376NyspKsc99NjALJ3RJ0puZ0FwuFzdu3EBkZCQ0NTWhra2N6dOnw8rKir2mtrYW0dHRsLa27raM62Xh4OAANzc3JCUlobCwUNbFGXEoKBNCZMLBwQELFy5EUVER4uPjwTAMOBwOpk+fDhMTE1y9ehXNzc1in9ubwCyNsrIynD59GgUFBZg1axYUFBSgpaWFadOmsde0tLQgIiICurq68Pf3H1FLn3rL09MTtra2iI6ORnV1tayLM6JQUCaEyMzEiRPh5eWF7OxstsWsqKiIwMBAKCkpITIyUuKWjAMRmLu6uhAfH49Lly5BS0sLK1asAJfLRVVVFXx9faGiogLg6WYTkZGRAIC5c+eOuKVPvcXhcODr6wsDAwNERkZK/PJEeo+CMiFEpuzs7DB9+nQ8ePAAKSkpAAA1NTXMnTsXTU1NiImJkTipqD+Bubq6GmfOnGEnbIWEhIDH4+HOnTtwdnaGubk5gKe7LUVHR6OxsRFBQUFsVrKXnZKSEvsFJSIiQmT9Oek7CsqEEJmbMGECvLy8kJqairS0NABPk474+/ujqKgId+/elfjcZ5dLSROY+Xw+UlJSEBYWBmVlZSxbtgzOzs4QCASIiYmBtrY2PDw82OuTk5NRXFyM2bNnj/ilT72lrq6OoKAgdqlUTzPiiXQoKBNC5IKrqyumTJmC5ORkPHjwAMDTgOvh4YG7d+8iPz9f4nNtbGykCsx1dXU4f/480tLSMHnyZCxatIhds5yWloa6ujr4+fmx3dNZWVm4d+8epk+fjjFjxgzwOx4Z9PT02OVstFSq/ygoE0LkxuTJk+Hm5ob4+HhkZWUBANzc3DB27FjcuHEDtbW1Ep/bU2AWCARIT0/H2bNnwefzsXjxYnbrR+BpV3ZaWhomTZrE5ncuLS3F7du3MXHiREycOHEQ3/XwZ2FhAW9vb/ZLDOk7CsqEELnB4XDg6ekJJycn3Lp1C3l5eeBwOPDx8YGenh4iIiLQ1tYm8fniAnNTUxMuXryI5ORkODk5YenSpSIbK3R1dSEmJgYGBgaYNGkSAKC+vh7Xrl2DhYUFpk+f/lLPtJaWg4MDJk2ahKSkJBQUFMi6OMMWBWVCiFwRLouyt7dHTEwMCgoK2PzLAHD16lU2Rac4zwbmS5cu4fTp0yKbSDw/czo5ORnNzc3w8/ODoqIi2tvbERERgVGjRiEgIIBSRfaCh4cH7OzsEB0djaqqKlkXZ1ii3zZCiNzhcDjw9vaGnZ0drl+/juLiYmhqamLOnDmora3F7du3exy7FAbm6upqjB07FsuWLYOZmVm368rKyvDgwQN4enpCT08PXV1d7DKsoKAgdkkUkY5wqZShoSEtleojCsqEELmkoKAAX19fjBkzBlFRUSgtLYWxsTF8fHyQk5PzwjSPNjY22LJlC2bNmiU2uHK5XMTGxsLc3BzOzs5gGAaxsbGora3F3LlzoaWlNVhvbUQTLpVSVlZGeHg4LZXqJQrKhBC5paioCH9/f5ibmyMyMhKVlZUYN24cm+axpKTkhc+XJD4+Hh0dHfD19QWHw8Hdu3fx6NEj+Pn5wcTEZKDfyktFXV0dwcHB4HK5PU7OI91RUCaEyDXheLKJiQnCw8NRXV0NDw8PWFlZ4fr166ivr+/1PYuKipCTk4Pp06dDS0sLeXl5uHv3Ljw9PWFnZzcI7+Llo6uri9WrV8PCwkLWRRlWKCgTQuSesEtUT08PV65cQX19Pfz9/aGpqYnIyEh0dHRIfa+Ojg7cunULY8aMgb29PSorKxEbGwt7e3u4ubkN3pt4Cb3s6Uj7goIyIWRYUFZWRnBwMLS0tHD58mW0tbVhzpw56OjowLVr16RKsckwDG7dugU+nw9vb280NzcjMjISJiYm8Pb2pqVPROYoKBNChg1VVVXMnz8f6urquHTpEgAgMDAQFRUVSEhIeOHzHz16hIKCAnh7e0NJSQnh4eFQVVVFYGBgj+PPhAwVCsqEkGFFTU0N8+fPh5KSEi5fvgwdHR1Mnz4dGRkZyM7Olvi8lpYWxMXFYezYsbC2tkZUVBTa29sRFBQENTW1IXwHhEhGQZkQMuxoaGggJCQEAHDp0iXY2NjA0dERt2/fRkVFRbfrGYbBzZs3oaSkhOnTp+P27duorKzEnDlzoKurO8SlJ0QyCsqEkGFJU1MTISEh6OrqwuXLlzF58mSYmJjg6tWr3ZJWZGVl4fHjx/Dx8UFubi6ys7Ph7e3Nbs9IiLygoEwIGba0tbUREhLCpsYUJgoRZuUCgMbGRiQkJMDR0RF8Ph9JSUmYNGkS7O3tZVx6QrqjoEwIGdZ0dXUxf/58NDc3IyYmBn5+fmhqakJ0dDT4fD5u3LgBDQ0NNmWnra2tyH7JhMgTCsqEkGHPwMAA8+fPR319Pe7cuYNZs2ahuLgYYWFhqKqqwtSpUxEdHQ19fX02gxch8oiCMiFkRDAyMkJwcDCqq6uRm5sLd3d31NTUwNHREampqeBwOJg7dy4ltCByjYIyIWTEMDU1xdy5c1FeXo7a2lrMnz8fTU1NaG5uRlBQEDQ0NGRdREJ6RF8ZCSEjiqWlJebMmYOrV6+irq4Ozc3NCA4OhoGBgayLRsgLUUv5OTdv3sSCBQtgbm4ODoeD8+fPy7pIhJBesrKygr+/P1pbWzFjxgyMHj1a1kUiRCrUUn5Oa2srXF1d8corr2Dp0qWyLg4hpI9sbW1hZWVFY8hkWKHf1ucEBwcjODhY1sUghAwACshkuKHf2H7q7OxEZ2cn+3NLS4sMS0MIIWQ4ozHlftq5cyd0dHTYh4+Pj6yLRAghZJiioNxPH3/8MRobG9lHbGysrItECCFkmKLu635SVVWFqqoq+7OmpqYMS0MIIWQ4o5YyIYQQIieopfyclpYWPHr0iP25sLAQ6enp0NfXh5WVlQxLRgghZKSjoPyclJQU+Pn5sT+///77AIBNmzbh4MGDMipV/9TW1qK2tnZQ7t3Z2Ym2tjZoaWlBXV19UF5jMLW3t+PRo0fQ0NAQGYYYLqj+ZYvq/8UMDQ1haGg4KPceiTgMwzCyLsRIUlFRgd27d2P79u0wMzOTdXHQ2dmJuXPn0gQ0QohM+Pj4IDIyclh+6ZIFCsojXFNTE3R0dBAbG0uT0GSgpaUFPj4+VP8yQvUvW8L6b2xshLa2tqyLMyxQ9/VLws3Njf4oZKCpqQkA1b+sUP3LlrD+ifRo9jUhhBAiJygoE0IIIXKCgvIIp6qqii+++IImWcgI1b9sUf3LFtV/79FEL0IIIUROUEuZEEIIkRMUlAkhhBA5QUGZEEIIkRMUlInUioqKwOFwhm26UUIIkXcUlAdJfn4+tm/fDltbW6ipqUFbWxszZszADz/8gPb29kF73czMTHz55ZcoKioatNeQxtdff42FCxfCxMQEHA4HX375pUzLIwmHw5HqcePGjX6/VltbG7788ste3Wu41GNfyXP9Z2dn48MPP4Sbmxu0tLRgZmaG+fPnIyUlpd9lkRfyXP/l5eVYv3497O3toaWlBV1dXXh6euLQoUMYyfOTKaPXILh8+TJWrFgBVVVVbNy4EU5OTuByubh9+zb+/Oc/4+HDh9izZ8+gvHZmZiZ27NgBX19fWFtbD8prSOPTTz+FqakpJk2ahMjISJmV40WOHDki8vPhw4cRFRXV7fiECRP6/VptbW3YsWMHAMDX11eq5wyXeuwrea7/3377Dfv27cOyZcvw5ptvorGxEbt374aXlxciIiIQEBDQ7zLJmjzXf21tLUpLS7F8+XJYWVmBx+MhKioKmzdvRk5ODr755pt+l0kuMWRAFRQUMJqamoyDgwNTXl7e7XxeXh6za9euQXv9U6dOMQCYmJiYF14rEAiYtrY2qe9dWFjIAGAOHDgg1bUMwzA1NTUMAOaLL76Q+nVk6a233mIG68+iL3UxXOuxr+Sp/lNSUpjm5maRY7W1tYyRkREzY8aMQSih7MlT/UsSEhLCjBo1iunq6hqYgskZ6r4eYP/85z/R0tKCffv2id0lauzYsfjDH/7A/tzV1YWvvvoKdnZ2UFVVhbW1Nf7617+is7NT5HnW1tYICQnB7du34enpCTU1Ndja2uLw4cPsNQcPHsSKFSsAAH5+ft26noT3iIyMxJQpU6Curo7du3cDAAoKCrBixQro6+tDQ0MDXl5euHz5cp/rQZat9IEmEAiwa9cuTJw4EWpqajAxMcH27dtRX18vcl1KSgrmzp0LQ0NDqKurw8bGBq+88gqAp+PxRkZGAIAdO3aw/zYv6o4eSfXYV7Kqf3d3926bWBgYGMDb2xtZWVkD+yblmCx//8WxtrZGW1sbuFxuv9+bPKLu6wF28eJF2NraYvr06VJd/+qrr+LQoUNYvnw5PvjgAyQlJWHnzp3IysrCuXPnRK599OgRli9fjq1bt2LTpk3Yv38/Nm/eDHd3d0ycOBGzZs3Cu+++i//+97/461//ynY5Pdv1lJOTgzVr1mD79u3Ytm0b7O3tUVVVhenTp6OtrQ3vvvsuDAwMcOjQISxcuBCnT5/GkiVLBq6ChqHt27fj4MGD2LJlC959910UFhbixx9/RFpaGuLi4qCsrIzq6mrMmTMHRkZG+Oijj6Crq4uioiKcPXsWAGBkZIRffvkFb7zxBpYsWYKlS5cCAFxcXGT51oYFeav/ysrKl2p/YFnXf3t7O1pbW9HS0oLY2FgcOHAA06ZNG5b7V0tF1k31kaSxsZEBwCxatEiq69PT0xkAzKuvvipy/E9/+hMDgImOjmaPjRkzhgHA3Lx5kz1WXV3NqKqqMh988AF7rKfua+E9IiIiRI6/9957DADm1q1b7LHm5mbGxsaGsba2Zvh8PsMwveu+Fhpu3a7Pd9/dunWLAcAcPXpU5LqIiAiR4+fOnWMAMHfu3JF47/7UxXCrx76S1/oXunnzJsPhcJjPPvusz/eQZ/JY/zt37mQAsI/Zs2czJSUlvbrHcELd1wNIuE2ZlpaWVNdfuXIFAPD++++LHP/ggw8AoFv3saOjI7y9vdmfjYyMYG9vj4KCAqnLaGNjg7lz53Yrh6enJ2bOnMke09TUxGuvvYaioiJkZmZKff+R5tSpU9DR0UFgYCBqa2vZh7BrMyYmBgCgq6sLALh06RJ4PJ4MSzyyyFP9V1dXY+3atbCxscGHH344KK8hb+Sh/tesWYOoqCgcO3YMa9euBYBBXcEiaxSUB5Bwv9bm5mapri8uLoaCggLGjh0rctzU1BS6urooLi4WOW5lZdXtHnp6et3GdnpiY2Mjthz29vbdjgu7vZ8vx8skLy8PjY2NMDY2hpGRkcijpaUF1dXVAAAfHx8sW7YMO3bsgKGhIRYtWoQDBw50mxtAekde6r+1tRUhISFobm5GWFhYt7HmkUoe6n/MmDEICAjAmjVrcPToUdja2iIgIGDEBmYaUx5A2traMDc3R0ZGRq+ex+FwpLpOUVFR7HGmF2v2Ruw4zCARCAQwNjbG0aNHxZ4XTl7hcDg4ffo0EhMTcfHiRURGRuKVV17Bv/71LyQmJr40H+IDTR7qn8vlYunSpbh//z4iIyPh5OTU53sNN/JQ/89bvnw59u7di5s3b3br9RsJKCgPsJCQEOzZswcJCQmYNm1aj9eOGTMGAoEAeXl5IpOxqqqq0NDQgDFjxvT69aUN8M+XIycnp9vx7Oxs9vzLys7ODteuXcOMGTOk+kLj5eUFLy8vfP311zh27BjWrVuHEydO4NVXX+3Tv83LTtb1LxAIsHHjRly/fh0nT56Ej49PX97GsCXr+hdH2EJubGwckPvJG+q+HmAffvghRo0ahVdffRVVVVXdzufn5+OHH34AAMybNw8AsGvXLpFr/v3vfwMA5s+f3+vXHzVqFACgoaFB6ufMmzcPycnJSEhIYI+1trZiz549sLa2hqOjY6/LMVKsXLkSfD4fX331VbdzXV1dbD3X19d367Fwc3MDALYLT0NDA0Dv/m1edrKu/3feeQehoaH4+eef2RnDLxNZ1n9NTY3Y4/v27QOHw8HkyZOlus9wQy3lAWZnZ4djx45h1apVmDBhgkhGr/j4eJw6dQqbN28GALi6umLTpk3Ys2cPGhoa4OPjg+TkZBw6dAiLFy+Gn59fr1/fzc0NioqK+Pbbb9HY2AhVVVX4+/vD2NhY4nM++ugjHD9+HMHBwXj33Xehr6+PQ4cOobCwEGfOnIGCQu+/ux05cgTFxcVoa2sDANy8eRN///vfAQAbNmwYNq1vHx8fbN++HTt37kR6ejrmzJkDZWVl5OXl4dSpU/jhhx+wfPlyHDp0CD///DOWLFkCOzs7NDc3Y+/evdDW1ma/fKmrq8PR0RGhoaEYP3489PX14eTk1GN36Eipx76SZf3v2rULP//8M6ZNmwYNDQ38/vvvIueXLFnCfgkeqWRZ/19//TXi4uIQFBQEKysr1NXV4cyZM7hz5w7eeeedbnNxRgzZTv4euXJzc5lt27Yx1tbWjIqKCqOlpcXMmDGD+d///sd0dHSw1/F4PGbHjh2MjY0No6yszIwePZr5+OOPRa5hmKfLmebPn9/tdXx8fBgfHx+RY3v37mVsbW0ZRUVFkeVRku7BMAyTn5/PLF++nNHV1WXU1NQYT09P5tKlSyLX9GZJlI+Pj8gyhmcf0mQbkxVJGY327NnDuLu7M+rq6oyWlhbj7OzMfPjhh2zWttTUVGbNmjWMlZUVo6qqyhgbGzMhISFMSkqKyH3i4+MZd3d3RkVFRarlIcO1HvtKnup/06ZNEuseAJttbSSRp/q/evUqExISwpibmzPKysrsZ+iBAwcYgUAwoO9bnnAYZgRn9iaEEEKGERpTJoQQQuQEBWVCCCFETlBQJoQQQuQEBWVCCCFETlBQJoQQQuQEBWUZ+ec//wkHBwcIBAJZF6XfPvroI0ydOlXWxegVqn/ZovqXLap/OSbrNVkvo8bGRkZfX5/Zv38/ewz/t/bx+++/73b9gQMHXrgtmrTOnDnDrFy5krGxsWHU1dWZ8ePHM++//z5TX18v9vqwsDBm0qRJjKqqKjN69Gjm888/Z3g8nsg1FRUVjKqqKhMWFtbv8g0Fqn/ZovqXLap/+UZBWQb+85//MNra2kx7ezt7TPhHYWJiwrS2topcP5B/FAYGBoyzszPz2WefMXv37mXeffddRkVFhXFwcGDa2tpErr1y5QrD4XAYPz8/Zs+ePcw777zDKCgoMK+//nq3+65cuZLx9vbud/mGAtW/bFH9yxbVv3yjoCwDLi4uzPr160WOAWDc3NwYAMy//vUvkXMD+UchLgvUoUOHGADM3r17RY47Ojoyrq6uIt9MP/nkE4bD4TBZWVki154+fZrhcDhMfn5+v8s42Kj+ZYvqX7ao/uUbjSkPscLCQty/fx8BAQHdzs2YMQP+/v745z//OWh7hfr6+nY7tmTJEgBAVlYWeywzMxOZmZl47bXXoKT0/1Okv/nmm2AYBqdPnxa5h/D9hIWFDUKpBw7Vv2xR/csW1b/8o6A8xOLj4wFA4g4nX375JaqqqvDLL7/0eJ/Ozk7U1tZK9XiRyspKAIChoSF7LC0tDQAwZcoUkWvNzc1haWnJnhfS0dGBnZ0d4uLiXvh6skT1L1tU/7JF9S//aJeoISbco9jGxkbseW9vb/j5+eG7777DG2+8IXEP0+PHj2PLli1SvSbzgvTm3377LRQVFbF8+XL2WEVFBQDAzMys2/VmZmYoLy/vdtzW1haZmZlSlUlWqP5li+pftqj+5R8F5SH25MkTKCkpQVNTU+I1X375JXx8fPDrr7/ij3/8o9hr5s6di6ioqH6X59ixY9i3bx8+/PBDjBs3jj0u7L5SVVXt9hw1NTU0NTV1O66np9ftG6y8ofqXLap/2aL6l38UlOXQrFmz4Ofnh3/+8594/fXXxV5jZmYm9ltkb9y6dQtbt27F3Llz8fXXX4ucE35DFm5Q/qyOjg6x36AZhgGHw+lXmeQB1b9sUf3LFtW/bFFQHmIGBgbo6upCc3MztLS0JF73xRdfwNfXF7t374aurm638+3t7WhsbJTqNU1NTbsdu3fvHhYuXAgnJyecPn1aZDIF8P+7jSoqKjB69GiRcxUVFfD09Ox2z/r6epFxIXlE9S9bVP+yRfUv/2ii1xBzcHAA8HQWZE98fHzg6+uLb7/9VuxMyNDQUPbb6osez8vPz0dQUBCMjY1x5coVsV1Zbm5uAICUlBSR4+Xl5SgtLWXPP6uwsBATJkzo8X3JGtW/bFH9yxbVv/yjlvIQmzZtGoCnv2wuLi49Xvvll1/C19cXe/bs6Xaur2M6lZWVmDNnDhQUFBAZGQkjIyOx102cOBEODg7Ys2cPtm/fDkVFRQDAL7/8Ag6HIzIpAwAaGxuRn5+PN954o9dlGkpU/7JF9S9bVP/DgGyWR7/cnJycmDVr1ogcA8C89dZb3a718fFhs+0MxOJ9V1dXBgDz4YcfMkeOHBF5XL16VeTaixcvMhwOh/H392f27NnDvPvuu4yCggKzbdu2bvc9ffo0A4B59OhRv8s42Kj+ZYvqX7ao/uUbBWUZ+Pe//81oamqKpJWT9EcRExMzoH8UwnuJe/j4+HS7/ty5c4ybmxujqqrKWFpaMp9++inD5XK7Xbdq1Spm5syZ/S7fUKD6ly2qf9mi+pdvFJRloKGhgdHX12d+++03WRdlQFRUVDBqamrM+fPnZV0UqVD9yxbVv2xR/cs3muglAzo6Ovjwww/x3XffjYit03bt2gVnZ2csWrRI1kWRCtW/bFH9yxbVv3zjMMwL0q0QQgghZEhQS5kQQgiRExSUCSGEEDlBQZkQQgiRExSUCSGEEDlBQZkQQgiRExSUCSGEEDlBQZkQQgiRExSUCSGEEDlBQZkQQgiRExSUCSGEEDlBQZkQQgiRExSUn/HLL7/AxcUF2tra0NbWxrRp0xAeHi7rYhFCCHlJ0IYUz7h48SIUFRUxbtw4MAyDQ4cO4bvvvkNaWhomTpwo6+IRQggZ4Sgov4C+vj6+++47bN26VarrKyoqsHv3bmzfvh1mZmaDXDpCCCEjCXVfS8Dn83HixAm0trZi2rRpUj+voqICO3bsQEVFxSCWjhBCyEikJOsCyJsHDx5g2rRp6OjogKamJs6dOwdHR0eJ13d2dqKzs5P9uaWlZSiKSQghZASilvJz7O3tkZ6ejqSkJLzxxhvYtGkTMjMzJV6/c+dO6OjosA8fH58hLC0hhJCRhMaUXyAgIAB2dnbYvXu32PPPt5TT09Ph4+ODu3fvYvLkyUNVTEIIISMAdV+/gEAgEAm6z1NVVYWqqir7s6am5lAUixBCyAhEQfkZH3/8MYKDg2FlZYXm5mYcO3YMN27cQGRkpKyLRgghww6Xy0VKSgqmTJkCFRUVWRdnWKCg/Izq6mps3LgRFRUV0NHRgYuLCyIjIxEYGCjrohFCyLCTmJiII0eOgM/nw9vbW9bFGRYoKD9j3759si4CIYSMCJ2dnYiMjERhYSEiIiLg6ekpMtRHxKPZ14QQQgZcUlIScnNz4eLigtzcXCQnJ8u6SMMCBWVCCCEDSthKVlFRgba2NlRUVBAREdHjpFnyFAVlQgghAyotLQ35+flobW3Fw4cP0draivz8fKSlpcm6aHKPxpQJIYQMqNGjR2PdunVij5OeUVAmhBAyoCwsLGBhYSHrYgxL1H1NCCGEyAkKyoQQQoicoKBMCCGEyAkKyoQQQoicoKBMCCGEyAkKyoQQQoicoKBMCCGEyAkKyoQQQoicoKBMCCGEyAkKyoQQQoYUl8tFfHw8uFyurIsidygoE0IIGVKJiYk4cOAAkpKSZF0UuUNBmRBCyKAQ1yIWbutYWFhI2zmKQUGZEELIoBDXIk5KSkJubi5cXFyQm5uL5ORkGZZQ/lBQJoQQMuDEtYiFx1RUVKCtrQ0VFRVqLT+HgjIhhJABJ65FnJaWhvz8fLS2tuLhw4dobW1Ffn4+0tLSZF1cuUH7KRNCCBlQklrEW7duxbp167pdP3r0aBmUUj5RUCaEEDKghC3ijo4OPHz4EDweD/n5+aiursaCBQtkXTy5RkGZEELIgBo9ejS1iPuIgjIhhJABZWFhAQsLC1kXY1iiiV6EEEKInJCroMzn83HixAls374dS5YswYMHDwAAjY2NOHv2LKqqqgb19Xfu3AkPDw9oaWnB2NgYixcvRk5OzqC+JiGEECIkN0G5oaEBM2bMwNq1a3H8+HFcuHABNTU1AABNTU28++67+OGHHwa1DLGxsXjrrbeQmJiIqKgo8Hg8zJkzB62trYP6uoQQ8rKgvNc9k5ug/NFHH+Hhw4eIjIxEQUEBGIZhzykqKmL58uW4cuXKoJYhIiICmzdvxsSJE+Hq6oqDBw+ipKQEd+/eHdTXJYSQlwXlve6Z3ATl8+fP45133kFgYCA4HE638+PHj0dRUdGQlqmxsREAoK+vL/Gazs5ONDU1sY+WlpahKh4hhAwrlPf6xeQmKDc2NsLGxkbieR6Ph66uriErj0AgwHvvvYcZM2bAyclJ4nU7d+6Ejo4O+/Dx8RmyMhJCiDx7vqua8l6/mNwEZTs7O6Smpko8f/XqVTg6Og5Zed566y1kZGTgxIkTPV738ccfo7GxkX3ExsYOUQkJIUS+PdtVTXmvpSM3QfnVV1/F/v37ERoayo4nczgcdHZ24pNPPkFERAS2b98+JGV5++23cenSJcTExMDS0rLHa1VVVaGtrc0+NDU1h6SMhBAiz57vqk5KSqK811KQm+Qhf/jDH/Dw4UOsWbMGurq6AIC1a9fiyZMn6Orqwvbt27F169ZBLQPDMHjnnXdw7tw53Lhxo8fudEIIIZI931Xt7u5OWb6kIDdBmcPhYO/evdi0aRNOnz6NvLw8CAQC2NnZYeXKlZg1a9agl+Gtt97CsWPHEBYWBi0tLVRWVgIAdHR0oK6uPuivTwghI4G4ruq7d+/i888/h6qqqqyLJ9c4zLNrj15y4mZ9A8CBAwewefNmqe6RmpoKd3d33L17F5MnTx7A0pHhiMvlIiUlBVOmTIGKioqsi0PIkEhMTMSuXbvQ0dEBZWVl8Hg8qKmp4b333oOXl5esiyfX5KalXFhYiIyMDIk7iFy8eBHOzs6wtrYetDLQ9xMy0BITE3HkyBHw+Xx4e3vLujiEDAnakKLv5CYo/+lPf0JTU5PEoPzTTz9BV1f3hbOhCZEXz0908fT0pK478lKgDSn6Tm5mXyckJCAwMFDi+dmzZ+PWrVtDWCJC+ofWZBJCektugnJ9fT20tLQkntfU1MSTJ0+GsESE9B2tySSE9IXcBGUrKyvExcVJPH/r1q0XrhkmRF6kpaXRmkxCSK/JzZjymjVr8NVXX8HT0xNvv/02FBSefl/g8/n48ccfERoaik8++UTGpSREOjTRhRDSF3KzJKqzsxPz589HdHQ0jIyMYG9vDwDIyclBTU0NfH19ER4eLvcTZWhJFCGEkL6Sm+5rVVVVXL16Ffv27YOnpydqa2tRW1sLT09P7N+/H9euXZP7gEwIIYT0h9x0XwOAgoICtmzZgi1btsi6KIQQQgYAwzASEzOR7uSmpUwIIWTkaW9vl3URhhW5ailHRkZi3759KCgoQH19fbcMWxwOB/n5+TIqHSGEkN7q6uqSdRGGFbkJyt999x0++ugjmJiYwNPTE87OzrIuEiGEkH6itfm9IzdB+YcffoC/vz+uXLkCZWVlWReHEELIAGhtbYWRkZGsizFsyM2Ycn19PZYvX04BmRBCRpCmpiZZF2FYkZug7OnpiZycHFkXg5ABxeVyER8fDy6XK+uiECITDQ0Nsi7CsCI3Qfnnn3/G2bNncezYMVkXhZABk5iYiAMHDiApKUnWRSFkyHG5XMTFxdGX0l6Qm6C8atUqdHV1YcOGDdDR0cHEiRPh4uIi8nB1dZV1MQmR2vNbN9KEF/KySUxMRGRkJG7cuCHrogwbcjPRS19fHwYGBhg3bpysi0LIgBC3daO3t7esi0XIkBB+Ka2pqcGZM2fg4+NDWRmlIDdBmb5JkZFE0taNnp6e9MFEXgrCL6WjR4/G/fv3kZSUhFmzZsm6WHJPbrqvCRlJaOtG8jJ79kupuro6+Hw+Tpw4QUM4UpCbljLwdOr8zz//jJiYGFRXV2P37t3w9PREXV0dDh48iIULF2Ls2LGyLiYhL0RbN5KXmfBLaUdHB8rKysDj8ZCamorExET4+PjIunhyTW6CcmlpKXx8fPD48WOMGzcO2dnZaGlpAfB0vHn37t0oLi7GDz/8IOOSEvJiFhYWsLCwkHUxCJEJ4ZfSP/7xj6isrIS6ujpWrlyJwsJCzJw5E4qKirIuotySm+7rP//5z2hubkZ6ejpiY2O75b1evHgxrl27JqPSEUIIkZaFhQUWLFiAjo4OtLa2oqurC66uruByubh69Sr4fL6siyi35CYoX716Fe+++y4cHR3FbvNla2uLx48fy6BkhBBCBsrjx49x5coVGl+WQG6Ccnt7e4/5UZubm4ewNITIDmUBIyNdRUUFwsLCpMr29bL9PchNUHZ0dMTNmzclnj9//jwmTZo06OW4efMmFixYAHNzc3A4HJw/f37QX5OQZ1EWMPIyaGhowLlz5/Do0aMeA+/L9vcgN0H5vffew4kTJ/Dtt9+isbERACAQCPDo0SNs2LABCQkJ+OMf/zjo5WhtbYWrqyt++umnQX8t8vKS9CFEWcDIy4TH4yE6Oho///wz9u3b1y3wvox/D3Iz+3r9+vUoLi7Gp59+ik8++QQAEBQUBIZhoKCggG+++QaLFy8e9HIEBwcjODh40F+HvBy4XC5SUlIwZcoUqKiosMcTExNx5MgR8Pl8kSxflAWMvGx4PB6uXr2Kx48fQ0dHRyTBzsv49yA3QRkAPvnkE2zYsAFnzpzBo0ePIBAIYGdnh6VLl8LW1lbWxROrs7NT5NubcBkXIYD44Pv8t3/hhxBlASMjXVdXF4qLizFmzBgoKT0NP4WFhaiqqoKJiQlu3bqFixcvYvny5S/t34NcBOW2tjZ4e3tj27ZteP3114ekm3qg7Ny5Ezt27JB1MYgckhR8JX37fzbhwsOHD8Hj8dgsYF5eXrJ+O4T0W0FBAZKSkiAQCDBu3DjweDxkZmZCUVER6urqaGpqwv79+2FnZ4fOzs6X8u9BLoKyhoYGCgsLxS6Fkncff/wx3n//ffbn9PR0ylhDAPz/rjdnZ2c2+Hp6ekr89k9ZwMhIJgzAtbW1ePjwIaytrfH48WPU1NSAx+OhvLwcfD4fNTU1CA0NhaenJ1avXt0t0chI/3uQi6AMPB0/joyMxPbt22VdlF5RVVUV6UrR1NSUYWmIvHi2601LS4sNvgzD9Pjtn7KAkZFK2E1tYWGBqqoqFBUVwdDQEJ6ent2u1dPTQ21tLUxMTODv749Ro0bJoMSyITdB+bPPPsOKFSuwYcMGbN++HTY2NlBXV+92nb6+vgxKR0jvPNsV/eDBAzYYNzQ0UGuYvBRKSkrQ2toKAOjo6MDdu3dFuqkfPnyI+fPnw9XVVeI9qqqqcObMGfj5+b00fyNyE5QnTpwIAMjMzMSxY8ckXjfY6dlaWlrw6NEj9ufCwkKkp6dDX18fVlZWg/raZOR4tiu6ubkZWlpaAIDJkydTa5iMaMnJyfjqq69w+fJlNl1yR0cHbty4AW1tbTQ1NUFNTQ01NTV4/PjxCyfxdnR0IDw8HM7OzvD09BzxebPlJih//vnncjGmnJKSAj8/P/Zn4Xjxpk2bcPDgQRmVigw3z25IkZOTA3t7e3Z5lJGRkcjyKEJGirNnz2LVqlVgGKbb/gXA0y+oLS0tCAwMhJ2dHfT09KS+94MHD1BVVYXAwMB+d2fX1dXhnXfewcWLF6GgoIBly5bhhx9+kDj8WFRUBBsbG7HnTp48iRUrVuDevXv4xz/+gdu3b6O2thbW1tZ4/fXX8Yc//KFXZetVULaxsel14ORwOMjPz3/hdV9++WWv7jtYfH19xf4yEdJXjx49gr29vcS1yYSMBMnJyVi1ahX4fL7Ez1BhsI6KisLkyZN7FZQBoLq6GufPn0dwcPALhzJ9fX2xefNmbN68udu5devWoaKiAlFRUeDxeNiyZQtee+01ib20o0ePRkVFhcixPXv24LvvvmPzWty9exfGxsb4/fffMXr0aMTHx+O1116DoqIi3n77banfY6+Cso+PT7egnJKSgocPH8LR0RH29vYAnrYMMjMz4eTkBHd39968BKuxsRGampojvquCjHxPnjxBaWmp2OVRkkhKOkKIvPr73/8usYUszpUrV/Dmm2/2+nVaW1tx6dIlhISE9GmOUVZWFiIiInDnzh1MmTIFAPC///0P8+bNw/fffw9zc/Nuz1FUVISpqanIsXPnzmHlypVs6/qVV14ROW9ra4uEhAScPXu2V0G5V2k2Dx48iAMHDrCPRYsWobS0FFFRUcjIyMCZM2dw5swZZGRkIDIyEo8fP+5VFq6UlBQEBQVBQ0MDBgYGiI2NBQDU1tZi0aJFuHHjRm+KS4jMTZkyBe+99x6mTp2KnJwckbXJPXnZ8v2S4a2kpASXLl2Ses6PQCDA/fv3UVdX16fXE44zCyeS9UZCQgJ0dXXZgAwAAQEBUFBQkPrv7e7du0hPT8fWrVt7vK6xsbHXXxz6lfv6888/xzvvvIPZs2d3OxcYGIi3334bn376qVT3io+Px8yZM5GXl4f169dDIBCw5wwNDdHY2Ijdu3f3p7iEDLnKykrU19fjyZMnePLkCUaNGsUuj5KUx/dlzPdLZIfL5aKtra1fjytXrvR62I9hGGRlZUEgEPTp0dzcjJiYmF7vHlVZWQljY2ORY0pKStDX10dlZaVU99i3bx8mTJiA6dOnS7wmPj4eoaGheO2113pVvn5N9MrLy4OBgYHE8wYGBlKNJwPAX//6V0yYMAGJiYlobm7Gb7/9JnLez88Phw4d6k9xCZEZgUCA+vp6REZGQkdHB3w+X2Jmopcx3y+RDS6Xi+Tk5H6nB7537x44HE6vAjOHw0FjY2O/Xjs7Oxva2trw8vLC999/j2+++YY9197ejsTERJGu48zMzD6/1rP3PXbsGD777DOJ12RkZGDRokX44osvMGfOnF7dv19B2c7ODgcOHMDWrVu7zVprbm7G/v37pc5ZfefOHezcuROqqqpi/5EsLCyk/hZDiLwQfkgpKytjxowZ7HFdXV0oKCigs7MTd+/eZceOX9Z8v0Q2urq60NLSAhUVlX79funp6fWppaympgYFhb532CorK6O1tRVdXV14/fXXsXLlSvbcunXrsGzZMixdupQ9Zm5uDlNTU1RXV4vcp6urC3V1dd3GjcU5ffo02trasHHjRrHnMzMzMXv2bLz22mtS9xQ/q19B+e9//zuWL18OBwcHbN68GWPHjgXwtAV96NAhVFVV4dSpU1LdS1lZWaTL+nllZWWULYsMKyUlJWhqagLwdH396NGjRcaX0tPTcfnyZdy/fx/btm1DcHAw5b8mMqGqqgo1NbU+PZdhGJiZmfX6eRwOB/b29n0OygoKChg7diw7+VhfX1/k70tdXR3GxsZsXBKaNm0aGhoacPfuXXYicnR0NAQCAaZOnfrC1923bx8WLlwIIyOjbucePnwIf39/bNq0CV9//XXf3lefnvV/Fi9ejCtXrsDIyAjffPMNXnnlFbzyyivYuXMnjI2NcenSJaknenl5eeH06dNiz7W2tuLAgQOUU5oMC8nJyViwYAGsra3ZXp/Ozk789a9/xU8//YSioiIAT3MB37lzB9nZ2fjxxx9x9OhR1NbWYsGCBXjllVewceNGbN26FevWrRvwbEZ1dXVYt24dtLW1oauri61bt0rdjcgwDIKDg8HhcHD+/HmRc3fu3MHs2bOhq6sLPT09zJ07F/fu3RvQshP50dTUhPDwcGRlZWHMmDFSL5lVUFCAo6Njr5dEdXV1sfskODs7Q1tbu9dlnjBhAoKCgrBt2zYkJycjLi4Ob7/9NlavXs3OvC4rK4ODg0O3CZmPHj3CzZs38eqrr3a7b0ZGBvz8/DBnzhy8//77qKysRGVlJWpqanpVvn4FZQCYM2cO0tLSUF5ejoSEBCQkJKC8vBypqamYO3eu1PfZsWMHUlJSMH/+fISHhwN4Ok7x22+/wd3dHTU1NT324RMiD86ePYsZM2YgPDy8W3cewzDIyMjAt99+i9TU1G65gO/du4fy8nK0traCx+Nh7NixCA4OxoIFC/qUBczX11diwpt169bh4cOHiIqKwqVLl3Dz5k2pJ6Ts2rVL7IdvS0sLgoKCYGVlhaSkJNy+fRtaWlqYO3cueDxer8tP5JdAIMC9e/dw9uxZdv3ulClTwOFwpA7MksZahYG3q6ur27ni4mKkpqZCWVm5TwFZ6OjRo3BwcMDs2bMxb948zJw5E3v27GHP83g85OTkoK2tTeR5+/fvh6Wlpdiynz59GjU1Nfj9999hZmbGPjw8PHpVNg4jR5kyoqOj8cYbbyAvL0/kuJ2dHX777bdh0VJOTU2Fu7s77t69i8mTJ8u6OGQIJScnY8aMGT0mTxBSUFDA1KlT0dXVBRMTE1RVVcHQ0BDz58+HsrIye52qqiomTJgAR0fHXg/fSEqekJWVBUdHR5F1mhEREZg3bx5KS0vFrtMUSk9PR0hICFJSUmBmZoZz586xvWEpKSnw8PBASUkJ27J/8OABXFxckJeX160bkcheW1sbbt68CS0tLam7r2tra3Hr1i2R5UyampqYMWMGcnNz8fHHHwMQnxJZ2FW9fv166OrqYvTo0ey+ykL5+fnsGn07Ozv2eFdXF2JiYlBTUwMnJyds27aNnYU9a9YsaGho9Pr9y6N+t5RLSkrw+uuvw97eHvr6+rh58yaAp/9w7777LtLS0sQ+r6mpqds/mr+/P3JycpCamorQ0FAcP34cycnJyM3NHRYBmbzcepM8gWEYZGZmgsvlory8HFwul80F/KzOzk6kp6fj+PHjuHbtWrcJKn3R13WabW1tWLt2LX766SexE2Ls7e1hYGCAffv2gcvlor29nV06Ym1t3e9yE9ni8XhISkrChQsX2IDM4XAwceJELF26FJaWlvD398f+/fsxY8aMbi1mDoeDCRMm4A9/+AO0tbWRnJyM4uJikWu6urqQnZ2NJ0+eIDs7W6S1/PjxY7S1tWHcuHEoKSnBw4cPB/9Ny0C/JnplZmbC29ubHSB/9OgRW4mGhoa4ffs2WltbsW/fvm7P1dPTw5EjR7B27VoAT7OhbN++HVOnToWbmxvc3Nz6UzRChpQweYK0HU8Mw6CxsREuLi7sZhUAJI6xMQyDgoICFBQUwNTUFM7OzhgzZkyfJsn0dZ3mH//4R0yfPh2LFi0Se15LSws3btzA4sWL8dVXXwEAxo0bh8jIyG6tITK8lJWVIS4uDs3NzewxfX19zJw5s9uEp4kTJ+Lf//43KisrsWLFCrS3t0NFRQUfffQR9PT00NXVhcjISDbwjhkzhv39KC4uRnV1NczNzVFdXY3i4mLY2dmhq6sL1dXVUFVVxahRo6CkpIT4+HiRlvRI0a+/lA8//BC6urpITEwEh8Pp9oc+f/58hIaGin2ucPmH0MGDBxEQECDV7DdCBhKXyxU7ftUThmHQ0NCAiooKVFRU4MyZM33KmS6csPKsnlYhAEB5eTnKy8uhqamJSZMmYdy4cVBRUcE333wzaOs0L1y4gOjoaIk9X8LX27p1K2bMmIHjx4+Dz+fj+++/x/z583Hnzh2xW7ES+dbR0YGkpCSRnfMUFRUxadIkODs79/ilUF9fX6S1LPzy2VPgzc7OhpKSEtTU1KCkpITs7GzY2NhAUVERT548AZfLRUFBAbq6ulBaWorc3FyMGTNm8CpABvoVlG/evInPP/8cRkZGePLkSbfzVlZWKCsrE/tcBwcH/Pbbb7C2toaOjg6ApztxpKam9viaNE5LBpI0yRN4PB6amprQ1NSE5uZm9v+fDeSPHj3qdfIE4Oks6L4mT2hpacHVq1dRV1eHqVOnDuo6zejoaOTn50NXV1fk+LJly+Dt7Y0bN27g2LFjKCoqQkJCAvthfezYMejp6SEsLAyrV6/u0/skQ0/YM5OYmIiOjg72uKmpKWbOnMl+ZvckIyODHaIUCAQoLi7GmDFjxAbeMWPGoLS0FLW1tejq6kJlZSX4fD4aGhqgpqYmcYcmExOTgXnDcqRfQVkgEPQ4uF5TUyNxQfrOnTuxatUqBAQEAHjaYvjss88kzrBmGAYcDmfQ91MmL5dnkycoKyujqakJ9fX1aGhoYB/Pz8AUR0VFpU8t5ba2tj6v0zQwMICJiQmbPGEw12l+9NFH3ZaBODs74z//+Q8WLFgg8l6ebR0Jf35R65/Ij+bmZsTHx6O0tJQ9pqKiAk9PT4wfP16q2dVcLhcJCQkix7KzswGgW+Ctra1FaWkpdHV12d9HDocDQ0NDGBkZwcbGBsbGxt16YoGnLflnu9RHgn4F5cmTJ+Py5ctid/ro6urCiRMnJCY8CAoKQmFhIe7cuYOqqips3rwZr732GqZNm9afIhHyQgzDoL6+HuXl5SgqKsK9e/fQ2tqKpqYmqYPHqFGjoKenB319fejp6WHGjBm4ceNGrwNza2sr+Hy+yIzrF1FTU8PYsWOhp6fHfihxuVykp6dLtavUs+s0f/31V/B4PLHrNGfPno3Dhw/D09MTpqamYlvRVlZWbCsmMDAQf/7zn/HWW2/hnXfegUAgwD/+8Q8oKSmJ7FFO5JNAIEBmZibu3r0r0gtkbW2NadOm9Wp2c05ODkpLS0X+Hmpra9He3i5250BdXV2Rx9ixY1/a4Y5+BeWPP/4YISEheOONN9iuqaqqKly7dg3ffPMNsrKy8OOPP4p97v379zFmzBh2LfOBAwewYsUKsZtbENJX7e3tKC8vR1lZGTsWW1ZWhvb2dqmer6ysLBJ8hf8V1wPk7e2NuLg4qXtzRo0ahaamJmRmZsLe3h6qqqo9tkKUlJRgZmaG0aNHd9vSNDk5GadOnZJ6r+ajR4/i7bffxuzZs9lN3v/73/+y5yWt0+yJg4MDLl68iB07dmDatGlQUFDApEmTEBER0aeMT2To1NfX486dOyKJLjQ0NDBt2rQ+zZw3MTFBcHAwkpOTweVyoaKiAnd3d1haWnYbAhFSUVGBra0tDA0NpV7rPBL1KygHBwfj4MGD+MMf/sAuvF6/fj0YhoG2tjYOHz6MWbNmiX3upEmTRGZfE9IffD4fVVVVbNAVBmFpt4bjcDjQ0dHpFnw1NTWl/oDYunUr4uLipBpb5nA48PLygr6+PrS0tNDS0oL29nZ2FykhdXV16OjoQE9PD3p6emL3F+dyubh9+3a3vZp72upUX19f4obuwNPW0Yveg7jzgYGBCAwM7PF5RH7weDxkZ2cjLy9P5N/TwcEBHh4efd7LW9jdLPzyqqysDCcnpx6vt7W17VWP0UjV73UKGzZswNKlSxEVFYW8vDwIBALY2dlh7ty5Iks9nqeuri7yLTw2Nhbbtm3rb3HICCec9fxs67esrAxVVVVSz6DW1dWFubk5LCwsYGhoiPLycpiZmWHUqFH9KtvEiROxc+dOfPzxx2AYRmxXuHD8eNOmTZg4cSLa2trYVQh8Ph/19fVQUlKCsrIyfH19u5WJx+MhMzMTjo6O7AdYTk4O8vLyaFcp0it5eXn4/fffRVrHOjo6mDlzplQbMwwEDoeDsWPHDtnrDQd9DsptbW0YPXo0PvroI/z5z3+WOse1kKurK/79739DUVGRncl3586dF2aVeXYmKRnZOjo6ugXf8vJyqbtUVVVV2eD77H+fDXRtbW1obW0V2wLtC2HyhP/85z9IT0/vdt7a2hqLFi2Cubk5m/lKR0cH9fX1qKmpgUAgQHl5OXJzc1FVVYUVK1aIfLl98OABrly5AoFAgEmTJoHL5eLu3bu0qxSRWnt7O86dO4fbt2+zxxQUFODq6gpXV9cB+1t4kb7mvx7p+hyUNTQ0oKSk1OfWxQ8//IDly5dj69atAJ5+Y/rhhx/www8/SHwOzb4emfh8Pqqrq7sFX3HL7MRRUFCAiYkJzM3NRYKvvr5+v7aF66uJEyfim2++QUJCAr7//ns2ecKSJUvg4OAAXV1d5Ofn4/79+7C2tmY3Si8uLkZCQgIeP36MpqYmJCYmQiAQwMXFBa6uruBwOEhISEBZWRni4+MxceJE5ObmoqKiAtra2rSrFHmh9PR0hIaGorGxkT2mp6eH6dOnD2lrlcPhUECWoF/d18uWLcPp06fxxhtv9HpgfsqUKXj06BHy8/NRVVUFX19ffPLJJ+wSKTLyCLNYPR98Kysrpe561tHR6dbyNTU1lbuxKGNjYyxatAi//vor2tvboaamxgZJDQ0N1NXVob29HQ8ePICXlxdUVFRgbW2N2tpa3Lx5E8bGxmxyEg6Hg9zcXKirq6O4uFgkzaCJiQn8/Pzg5OQk0jIe6F2lyPDW0NCAkydPivTeqKqqIjg4GHw+v1+bO/SFg4MDBWQJ+hWUV69ejTfffBN+fn7Ytm0brK2txU5jl5TwQ0lJCfb29rC3t8emTZsQEhJCGb1GiI6ODlRUVIhMuhLugCQNYdfz863f4bantoaGBpSVlaGqqgoVFRWMHTsWRUVFqKqqEgmuwq7opKQk6Ovrw8LCAg8ePEBpaSlMTEzYjQPa29thYGDAphncsGEDvLy8RlRCfjJwBAIB4uPjce7cOZEVB05OTli9ejXU1NTY/QqGio2NDQwNDYf0NYeTfgVlX19f9v9v3brV7XxvEn4cOHCgP0UhYpSUlOD69etobm6GlpYWZs+eDSsrqwF9DT6fj5qaGpHWb1lZmdRdz8L0rBYWFiItYFl1PQ8kLpcLf39/xMXFwdbWFhMnToSKigoSExPZoR9hcJ04cSK7tpPL5aK4uBgaGhpQUFCAqqoqSktL0djYCD6fj7t370JZWRltbW0jMs3gQOJyueyOQ32dSTxcVVVV4ejRoyIpMjU1NbFy5Uq4u7uDw+H0asnbQDAwMOjTNqQvk34F5f4E0r/97W/gcDj45JNPoKCggL/97W8vfI4w6xfpWXJyMr766itcvnwZDMNAQUEBAoEAHA4HISEh+Oyzz3q9xyfDMGhqaurW8q2oqOhV1/OzLV8LCwu57HoeKBkZGSgpKYGFhQXa2tqQl5cHJSUlNvA+m8M3JyeHXdv5PAcHB9TV1UFdXR319fUi5woLC2FgYDBUb2nYSUxMxJEjR6Revz0SdHV1ISoqCuHh4SJ/m15eXli6dKnMepuUlJQwZswY3L9/X2T1ABHVr6C8adOmPj/3yy+/BIfDwV/+8heoqKjgyy+/fOFzhioo//TTT/juu+9QWVkJV1dX/O9//4Onp+egv+5AOHv2LFatWiWyhaBwaQ7DMLhy5QrCw8MRGhoqcSa7sOv5+TW/vel6NjMzY1u+wiA83Lqe+0OYZlBJSQkaGhpoa2tDfHw8Fi9eLDbwmpiYSEwlCDwdo7a3t8fjx49x584dNDQ0AHi6BWpMTAy4XC4WLlz4UtXxi3R2diIyMrLb+u2RrLCwEEePHkV5eTl7zNDQEGvXroWDg8OQl8fAwABcLheampqwtLRETk6OyOoB0p3M9lN7fg2nvOTGDQ0Nxfvvv49ff/0VU6dOxa5duzB37lzk5ORI/MCUF8nJyVi1ahX4fL7ExA98Ph8cDgerVq3C7du3YW1t3a31W1tbK1W6yGe7np8NvgYGBsO+67m/nu2KbmlpYVvIdXV1EhPqvAiHw4GVlRUsLS2Rm5uL1NRUtLe3g2EY3L59G3fv3sXcuXPh5+dHrRAASUlJyM3NfSnWb3d0dODixYsiqV45HA5mz56NkJAQmXXdHzlyBAkJCRAIBDAwMMCFCxdEVg+8bEMK0uhVUH7llVfA4XCwZ88eKCoq4pVXXnnhczgcjtj9lOXVv//9b2zbtg1btmwBAPz666+4fPky9u/fj48++kjGpevZ3//+d5EWsiQMw4DP52PNmjUICgqS6t7a2toi3c7CWc/0RyXes13Rra2t7NLBgdjVRkFBAQ4ODrC1tUVaWhqysrLA5/PR3t6O8+fP4+bNm1i4cCGmTJny0n45EraSX4b12w8fPsTx48dFsteNHj0a69atG/A5JH2lp6eH7OxslJSUdJvgSET1KihHR0ez45OKioqIjo5+4VKo3iyVysrKQn5+PjsxaezYsUPa5SJMxPDxxx+zxxQUFBAQENBtxxN5U1JSgkuXLkm9IQLDMCgsLGTrWkhFRUXsrOeesrOR7p7tim5vbx+U5PoqKipwdXWFmZkZGhsbcefOHTAMg7q6Ohw8eBDR0dFYunQpxo8fP+CvLe/S0tKQn5+Pjo6OEbt+u7m5GadPn8adO3fYY8rKyggJCYG/v/+QJQGRhpaWFmJiYsROcKQv9qJ6FZSLiop6/Lmvdu/eja+//lrs3stWVlb45JNPum0bNxhqa2vB5/O7tWZMTEzYbcee19nZyaZJBMDujdvV1QUejzd4hX1OZGRkn7YOVFBQQFBQEMzMzGBubg5DQ0OxrauhfC9Dicfjoauri93+cLD0dc/kF+ns7ISysjKWLFkCX19fhIWFITMzE8DT8cV//etfcHZ2xsKFC+V2Uwgulzvgda+joyM2y6COjo5I4oyBoKSkNKSBhWEY3LlzB2fOnBGZ52Fvb4/Vq1fDyMgIAoFAqiHBwf795/F4yM3NRUdHB4qKitDZ2YmcnBx0dXWhqKgIaWlpmDhxYp/v39nZyX7WDtZn1JAPBTEy9sEHHzAcDocxMDBgXn31VWbXrl3Mb7/9xuzatYvZunUrY2BgwCgoKDAffvjhoJelrKyMAcDEx8eLHP/zn//MeHp6in3OF198wQCgBz3oQQ96jMDHUOMwTB+aVwMkOTkZXl5eWLJkCQ4fPiw2ZWdrayvWr1+PCxcuICkpCVOmTBm08nC5XGhoaOD06dMi37I3bdqEhoYGhIWFdXvO8y3l9PR0+Pj4ICkpaUjHSw4ePIjXXnut18/bu3dvv2bRjwSD0VITiouLQ2hoKFavXs2m0xxo4lpqAoEAycnJuHTpEjtTG3g6Mz4wMBD+/v5y0W3Y1taGW7duQUVFZViO9XZ2doLL5cLb23tQk7fw+XzExsbi0qVL4HK57HF3d3csW7asXxm5Buv3v7OzE99++y2ioqIQGBiIv/zlL4PybzzYPRVD3VLu9+zr8PBw/Pvf/0ZqaioaGxvFdqFKSh6yb98+mJmZ4dixYxL/sUaNGoXjx4/D1tYW+/btG9SgLNzz8/r162xQFggEuH79Ot5++22xz1FVVRUpu3BJinCnn6Eyd+5cqbYMfBaHw8GcOXNe+pm6g/X+Ozs7ERcXh7KyMty+fRv+/v5DGni8vb0xdepUXL9+HVevXmW7+sLDwxEfH4+FCxdi6tSpMp0MpqyszI4zvmgzmr4Qt6tWT8d7S0lJCQKBAMrKyoP2e/T48WMcPXoUJSUlAABFRUXo6upizZo1cHZ27vf9B6vcN2/eRElJCRwcHFBSUoKcnJwRO/t9IPXrr/HMmTMICQlBVVUVVq9eDYFAgDVr1mD16tVQV1eHi4sLPv/8c4nPT0hIwIoVK174QaWmpoYVK1YgLi6uP8WVyvvvv4+9e/fi0KFDyMrKwhtvvIHW1lZ2Nra8srKyQkhIiNSTOxQVFbFgwQK5mZ05EolbkjPUVFRUEBwcjB07dsDb25sNwI2NjThy5Ah27tzJjkGPRA8ePMDFixeRkZEh1XF5wuVycf78eXz77bdsQOZwOPD19cXnn38+IAF5sDw7+11PT4+d/f5sryIRr19BeefOnfD09ERaWhp27NgB4OmyqaNHjyIjIwMVFRWwsbGR+PzHjx9jwoQJUr2Wo6MjHj9+3J/iSmXVqlX4/vvv8fnnn8PNzQ3p6emIiIgYkKUsg+2zzz4Dh8ORakY8h8PBp59+OkQle/lIWpIjqw8lbW1trFmzBp9++ilcXFzY42VlZfjxxx/xv//9D6WlpTIp22ARJnARrosVdvtKOi5PcnJy8PXXX+Pq1avshC0zMzN88MEHWLly5aD0Kgwk4ez31tZWFBUVobW1lZ39TnrWr+7rzMxM7Ny5E4qKilBSenor4Qw4a2trvPnmm/j222+xceNGsc9vamqSeqmNpqYmmpub+1Ncqb399tsSu6vlmYeHB0JDQ9mMXuKGDRQVFcHhcHDy5Mlep9ok0pPXJTmmpqZ4/fXXkZubi7Nnz7ItsKysLGRnZ8PLywsLFiyArq6uzMo4UIRpTp9fFyvpuDxoa2vD2bNnER8fzx5TUlJCUFAQ5syZw37OyjvhOmkAqKmpgZGREXuc9Kxf/8IaGhrsALuuri5UVVVRUVHBnjcxMUFhYaHE5zP/t2GFtGQ4J23YWLp0KeLj4/HVV1+x65afzX09f/58fPrppxSQB9mzH0rPH5cH48ePx4cffoi7d+8iLCwMdXV1YBgGCQkJSElJQUBAAAIDA+W+RSbJs2lOn10XO27cOLHHZb1elmEYpKWl4eTJk2hqamKP29nZYe3atXK7nE0SYZIh4OnGGMOhp1Fe9Cso29vbi4xHubm54ciRI1i/fj26urpw7NixF45Zfv/99zh+/PgLX0vcGmYinoeHBy5cuICSkhJER0ejqakJ2tra8Pf3pzHkIfLsh5K8UlBQgIeHB9zc3HDjxg1ERESgvb0dPB4P4eHhuH37NubPn48ZM2bIVSIKaTyb5vTZjT+uXbsmcUOQF43RDtTksOfV19cjNDQU9+/fZ4+pqalh8eLFmDlz5rDPyjYcZ9XLUr+C8tKlS/Hf//4X33//PVRVVfHJJ59g0aJF0NXVBYfDQWtrK/bv3y/x+VZWVqirqxNJD9cTCii9Y2Vlhc2bN8u6GETOKSsrIzAwENOmTUNERARiY2PB5/PR3NyMEydO4MaNG1iyZAmcnJx61bMlS5J23DI0NIS+vr7Y61/kwYMHA7qZgkAgwK1btxAWFoaOjg72uIuLC1avXj0ihhAACsq91aeg3NHRgbCwMPB4PHz66aeoq6uDmZkZQkJCcOPGDZw9exaKioqYP38+/Pz8JN5noDKCEUL6T1NTE8uXL8esWbMQFhbGTsqprKzEL7/8gnHjxmHZsmXD4stxTztu9cXzk8P6291dUVGBo0ePoqCggD2mra2NVatWwc3Nbdh8+ZHGYKSYHcl6HZSrq6sxffp0FBYWsmPC6urqOH/+PAICAuDt7U1r0QgZxoyNjbFt2zbk5+fj7Nmz7LyQvLw8/OMf/4CHhwcWLlw4rPdx7qkrWty5gZocxuPxcPXqVURGRook7JgxYwaWLFkyqAlIyPDQ68GKr776CkVFRfjjH/+IS5cu4T//+Q/U1dWxffv2wSgfISMSl8uVuBynp3NDyc7ODn/605+wbds2dvYsANy5cwc7duzAuXPn0NbWJsMS9l1P65SfPydp0lhv/33y8/Pxj3/8A5cvX2YDsrGxMd577z2sW7eOAjIB0IeW8tWrV7Fx40Z8//337DETExOsXbsWOTk5sLe3H9ACEjKccblcpKSkYMqUKSLdnYmJiThy5Aj4fH63nqWezg01DoeDSZMmwdnZGbdu3cKVK1fYzQuioqIQHx+PefPmwdvbWy6X64hr9fbUFS3unKRJYzk5ORg3btwLy9De3o4LFy7g5s2b7AoSBQUFBAYGIjg4WC7SnRL50eu/opKSEvzlL38ROTZz5kwwDIOqqioKyoQ8Q1yAFSYWKSws7LbHb0/nZElJSQl+fn6YOnUqIiMjERMTw+4udOrUKdy4cQOLFy+Wu/FQcZOzeuqKFnfOwsJC7KQxaSeHHT9+XCT/uJWVFdavXw9LS8uBeZNyTNKXUknHSR+CcmdnZ7e1i8KfB3PrO0KGG0kBVlz6TWHA7umcPNDQ0MCSJUswa9YsXLhwgd3Lt6amBnv37oWtrS2WLVvWYya/oSKu1QtA4jplSee2bduGWbNmiX2NZ2dNP6upqQknT55Eamoqe0xFRQULFiyAn5/fsF/mJC1JvT7y1Bskb/rU31RUVCTyyybcnzQvL0/sNP7Jkyf3rXSEDGPiAqynp6fY9Juenp4AIPGcPLSWn2VgYIAtW7bA398fZ8+eRV5eHgCgoKAA3333HSZPnoxFixaJjEUPNXGtXiUlJYld0QD6vIZZiGEYJCYm4syZMyLj7Y6Ojli9ejUMDQ0H5b3KI0lfSuW1N0he9Ckof/bZZ/jss8+6HX/zzTdFfhbOzpa0SxQhI5Wk3NcMw0hMvwlALlNz9mTMmDF477338ODBA5w7dw5VVVUAgNTUVNy7dw8+Pj4ICgpid08bKpImZy1evLjHrui+dlMDT1emHD9+nA3wwNNd7pYvXw5PT0+56tYfCpJ6feS9N0jWeh2UDxw4MBjlAPC0lbBv3z4UFBSgvr6+W1pNDoeD/Pz8QXt9QgaKpNzXDQ0NPabflOfUnJJwOBy4uLhg4sSJiIuLw+XLl9Hc3Aw+n4/o6GgkJCQgKCgIvr6+Q7ZNqKTJWXV1dRK7ogH0aW2zQCBATEwMrl69yub+BwBPT08sW7ZM6vz+I4mkL6Wurq7DpjdIVjiMnCSU/u677/DRRx/BxMQEnp6e0NPTE3vdYH4pGAipqalwd3fH3bt3qdv+JVZWViYyxCM0efJkuU+/2V8dHR2IiorCtWvXRIKUvr4+Fi1aBHd3d3ZMta2tDTdv3oSWltaA5tmurq5GdnY2gKetZuFkIgcHhwFNKlJeXo74+Hh2CA94+j7Xrl0LR0fHAXud4SYxMRG7du1CR0cHlJWVwePxoKamhoCAAFy7dq3b8ffee09ue4OGmtwEZUtLS0yYMAFXrlwZsm/Tg4GCMiFPNTQ04OLFi0hMTBTp9bKyssLSpUsxfvz4QQvKzxLmfhcaiBzWXV1dSE1NRUZGBvveOBwO/Pz8EBISMmw38hgokr6UmpmZiWxaJPQyfFmVltwsLKyvr8fy5cuHdUAmhPx/urq62LBhA/z8/HDu3DlkZWUBeLqscteuXXBxcUFQUNCgl6OlpUUkKPc3h3VZWRni4uJEtpI1MzPDhg0bYG1tPRBFHvaGw4Ys8kpugrKnp6fIBAlCyMhgaWmJd955B5mZmTh79izKy8sBAPfv30dGRgasrKzg7u4+aK1L4daBioqK/cph3dHRgeTkZHamOfA0CYi9vT02b978Uo4dk4EnN0H5559/RnBwMKZMmYK1a9fKujiEkAHm6OgIBwcHJCYm4uLFi2hsbIRAIEBRURFKS0vh6uoKJyenAc8M1tHRgZycHDg4OPQphzXDMCgoKEBiYqLIumRTU1N4eHiAw+EMu60tifySm6C8atUqdHV1YcOGDXjjjTdgaWnZ7Redw+Hg3r17MiohIaS/FBQUMH36dLi7uyM6OhpXr15FZ2cnurq6cPfuXWRlZWHKlCmws7MbkAQbPB4PBQUFMDc3Z3OKi0scIqm13NLSgri4OJSWlrLHVFRU4OnpifHjx6Ozs1OkG5uQ/pKboKyvrw8DAwOpcskSQoY3VVVVBAcHY/LkyTh48CBKSkrAMAw78SsjIwOenp79HpdcvXo1ysvLoauri7Vr1yIzMxNqamovTA4iEAiQlZWFlJQUkUyF1tbWmDZtGm0eQQaN3ATlGzduyLoIhJAhpqWlBVdXVzg7O+P+/fsoKSkBANTV1SEiIgKWlpbw8PCAvr5+r+/N5XJRU1MDHo+HxsZGaGlpwdnZGWpqahg9ejTbOn4+OUhdXR1u376Nmpoa9piGhgamTZtGE7nIoJOboEwIeXnp6OggMDAQFRUVSE5ORm1tLYCnaS/Lysowbtw4TJ48GaNGjZL6nhkZGWw2QYFAgIaGBjg5OQF4usHG+PHjRfaE7urqwr1793Dv3j2RJVwODg7w8PCgjRPIkJC7oMzj8ZCdnc1OAnleT9l4CCHDm5mZGRYuXIj8/HykpKSgtbUVDMMgNzcXBQUFcHZ2hrOz8wuXTgpnWT8rOzsbY8aMgZKSErq6upCZmQljY2OMGTMGDQ0NuH37tkgSEB0dHcycOROmpqaD8l4JEUdugrJAIMDHH3+Mn3/+uceN0ymPNiEjG4fDwdixY2FtbY3MzEykp6eDx+Ohq6sLaWlpyM7OxuTJkzF+/HiJk8GEaTafbfHW1taitLRUpAu6qqoKBQUFaGxsRGdnJ4Cnk9FcXFzg6urKzgQfiIQjhEhDbvYP++abb/Ddd99h/fr1OHz4MBiGwT/+8Q/8+uuv7B9IZGSkrItJCBkiSkpKcHFxwcqVK+Ho6Mhu6NDe3o64uDicO3cOjx8/7pYjH3g6Tuzl5cWu4BCuJ352F7vOzk7U19ejo6MDqqqq0NbWhrGxMTw8PDB+/HiR1R8PHjzAxYsXkZGRMbhvmrz05CYoHzx4ECtXrsQvv/zCZvlxd3fHtm3bkJSUBA6Hg+joaBmXkhAy1NTU1DBt2jQsW7ZMpJXb0NCAq1evIjw8nB2DBp6OJe/cuRN///vf0d7eDuBpd/bJkydx+vRp5OfnIyMjAw0NDewQGYfDwahRozBq1CikpqYiJSUFqampKCsrQ1tbm0jCES6X2+v3cPbsWcyZMwcGBgbgcDhIT0+X6nmnTp2Cg4MD1NTU4OzsjCtXrrDneDwe/vKXv8DZ2RmjRo2Cubk5Nm7cyCZnIcOT3ATl0tJS+Pv7AwC7W4hwob6KigrWr1+PI0eODGoZvv76a0yfPh0aGhpi94UmhMiOjo4OZs+ejZCQEJF9misqKhAWFobY2FhcuXIFW7duRXx8fLcWNMMwyMrKwk8//YTr16+jrKwMwNPPF11dXairq6OkpATJyckoLi5GW1sbCgoKcPr0aWRlZcHW1pZNONJbra2tmDlzJr799lupnxMfH481a9Zg69atSEtLw+LFi7F48WK2td7W1obU1FR89tlnSE1NxdmzZ5GTk4OFCxf2unxEfsjNmLKBgaa7u98AACEXSURBVAFaWloAAJqamtDW1kZBQYHINfX19YNaBi6XixUrVmDatGnYt2/foL4WIaRvTExMsGDBAhQVFeHOnTts8o64uDicP39e7ARRIeG5oqIiaGtrw97enp3R3dXVhezsbDx58oSdFAYAmZmZ4HK5aGhoQHt7O27evNmr9JwAsGHDBvZ1pfXDDz8gKCgIf/7znwEAX331FaKiovDjjz/i119/hY6ODqKiokSe8+OPP8LT0xMlJSWwsrKS+rWI/JCboDxp0iTcuXOH/dnPzw+7du3CpEmTIBAI8N///heurq6DWoYdO3YAeNqVTgiRXxwOBzY2NrCyskJWVhbS09Nx9+5dsePLkhQWFqKyshJ2dnYAgOLiYlRXV8Pc3BzV1dUoLi6GoqIiamtr0dXVhcrKSvD5fDx48ADh4eHw9fUd1D2AExIS8P7774scmzt3Ls6fPy/xOY2NjeBwONTTN4zJTVB+7bXXcPDgQXR2dkJVVRVff/01Zs2ahVmzZoFhGOjp6eH48eOyLmY3nZ2d7KxNAGxrnxAy+BQVFeHk5AQtLS388MMPvQrKzc3NSE9PZ1vE2dnZUFJSgpqaGpSUlJCdnQ0vLy+4u7t3e66CggLu378PXV3dbslHBkplZWW3e5uYmKCyslLs9R0dHfjLX/6CNWvWiOyKRYYXuQnKCxcuFBkLcXR0RH5+Pm7cuAFFRUVMnz69T1l9BtvOnTvZFjYhpG+e/WLbFykpKb0KyELFxcV4/PgxgKdLpng8HsrLyyEQCFBbW4umpiY4OjqKfa5AIEBTUxOMjY1Fjh89ehTbt29nfw4PD4e3t3evy9YbPB4PK1euBMMw+OWXXwb1tcjgkpugLI6Ojg4WLVrUr3t89NFHL5xckZWVBQcHhz7d/+OPPxbpYkpPT4ePj0+f7kXIy0ZJSQmamppoaWnp06xmofr6enA4nF4HZnNzc7ZVKW63KG1t7R7HqE1MTKCtrS2ys9XChQsxdepU9ue+5u82NTVFVVWVyLGqqqpuyUyEAbm4uBjR0dHUSh7m5Coo8/l8nDp1CjExMaiursbf/vY3ODs7o7GxEdevX8eMGTN63VX0wQcfYPPmzT1eY2tr2+cyq6qqiowraWpq9vlehLxshDsuPbvpQ18UFRX1qaVsb2/PBs2+BE9fX1/o6emJTPrS0tIakL2Vp02bhuvXr+O9995jj0VFRWHatGnsz8KAnJeXh5iYGJG0ofKAy+UiJSUFU6ZMoTSlUpKboNzQ0ICgoCAkJydDU1MTra2teOeddwA8DXTvvvsuNm7ciG+++aZX9zUyMhJZPkEIkS8qKir9/sCeN29er1vKHA4HEyZM6PMWkcLPFmmeX1dXh5KSEnYNcU5ODoCnrWFhy3fjxo2wsLDAzp07AQB/+MMf4OPjg3/961+YP38+Tpw4gZSUFOzZswfA04C8fPlypKam4tKlS+Dz+ex4s76+vlwEwcTERBw5cgR8Pn/Qu/BHCrlZp/zRRx/h4cOHiIyMREFBgcgfl6KiIpYvXy6ycH4wlJSUID09HSUlJeDz+UhPT0d6ejpN3iJEzllZWSEkJKTbHuySCFNp9mWeipqaGjw8PLBgwQKpA/qFCxcwadIkzJ8/H8DTLSUnTZqEX3/9lb2mpKQEFRUV7M/Tp0/HsWPHsGfPHri6uuL06dM4f/48u6lGWVkZLly4gNLSUri5ucHMzIx9xMfH9/p9DbTOzk5ERkaisLAQERER/Z438LKQm5by+fPn8c477yAwMBBPnjzpdn78+PGDvlTp888/x6FDh9ifhWNMMTEx8PX1HdTXJoT0z2effYbw8HCpW8zz5s2T+t4cDgcWFhYYN24cbG1tpQ7+Qps3b37hMJq47WtXrFiBFStWiL3e2tq6T132QyUpKQm5ublwcXFBbm4ukpOTqbUsBbkJyo2NjbCxsZF4XpiQfjAdPHiQ1igTMkx5eHggNDQUq1atAsMwYjevEbZsX3vttRfujczhcGBqago7OzvY2NhAXV19MIo9IglbySoqKtDW1oaKigoiIiLg6ek5qGu7RwK5Ccp2dnZITU2VeP7q1asSlyYQQggALF26FPHx8fjqq69w6dIlkZYkh8OBs7Mz5s2b12NA1tDQwIQJE2Bvb08TN/soLS0N+fn56OjowMOHD8Hj8ZCfn4+0tDR4eXnJunhyTW6C8quvvoq//OUv8PX1xezZswE8/SPq7OzE3/72N0RERLATHAghRBIPDw9cuHABJSUlcHV1RUNDA9TV1fH555/3OIasqqqKSZMmwdHRUWSJE+m90aNHY926dWKPk57JzW/eH/7wBzx8+BBr1qxhU8StXbsWT548QVdXF7Zv346tW7fKtpCEkGHDysoKo0aNQkNDA1RVVSUGZAUFBUyYMAHu7u5QU1Mb4lKOTBYWFn1en/2yk5ugzOFwsHfvXmzatAmnT59GXl4eBAIB7OzssHLlSsyaNUvWRSSEjCBKSkpwcHCAi4sLdVMTuSE3QVlo5syZmDlzpqyLQQgZoZSUlODs7AxnZ2dqGRO5I3dBmRBCBouBgQECAwMpFSWRWzINyr3djJvD4SAsLGyQSkMIGWlMTU3R1tYGLS0t6OjoYP78+dQ6JnJNpkH50qVLUFNTg6mpqVSL4DkczhCUihAyUqSkpODw4cPg8XgIDAykgEzknkyDsoWFBcrKymBoaIi1a9di9erV3XZAIYSQ/nJzc5PLrV8JeZ5Mc18/fvwYMTExmDRpEr766iuMHj0aAQEBOHDgAJqbm2VZNELICKGsrAwXFxdZF4MQqch8QwofHx/s3r0blZWVOH36NAwMDPD222/D2NgYS5cuxenTpymROSGkz6ysrKCsrCzrYhAiFZkHZSFlZWUsWrQIoaGhqKqqYgP1qlWr8M9//lPWxSOEDFNmZmbs/3O5XMTHx4PL5cqwRIRIJjdBWUiYyDwsLAxpaWlQU1N7YeJ4QgiRRJghEHi6v++BAweQlJQkuwIR0gO5CMoCgQCRkZHYvHkzTExMsGbNGrS3t2Pv3r2orq7Ghg0bZF1EQsgwJdzdifb3JcOBTGdfx8fH49ixYzh16hSePHkCLy8vfPPNN1i5ciUMDQ1lWTRCyAgh3PuY9vclw4FMg/LMmTOhrq6OefPmYc2aNWw3dUlJCUpKSsQ+Z/LkyUNYQkLIcMblcpGUlAQ3Nzfa35cMCzJPs9ne3o4zZ87g7NmzPV7HMAw4HI7YjcsJIUScxMREHDlyBA8fPqT9fcmwINOgfODAAVm+PCFkBHt2DFldXR0rV67stjSK9vcl8kamQXnTpk2yfHlCyAj27Bjy48ePYWRkRGPIRO7JxexrQggZSMJW8vNjyDTjmsg7CsqEkBEnLS0N+fn5aG1txcOHD9Ha2sqOIRMiz2Q+0YsQQgba6NGjsW7dOrHH+4rL5SIlJQVTpkyBiopKf4pHiEQUlAkhI46FhQUsLCwG9J7Cmdx8Pp/Gpsmgoe5rQgh5hrj82JQNjAwVCsr/p6ioCFu3boWNjQ3U1dVhZ2eHL774ghLXE/KSEZcfW1w2MEIGAwXl/5OdnQ2BQIDdu3fj4cOH+M9//oNff/0Vf/3rX2VdNELIEBHXIqaZ3GQo0Zjy/wkKCkJQUBD7s62tLXJycvDLL7/g+++/l2HJCCF9JWlylqTj4lrEysrKlA2MDBkKyj1obGyEvr5+j9cIv0kLtbS0DHaxCCFSkjQ5S9xxSS3irVu3DvhMbkIkoaAswaNHj/C///3vha3knTt3YseOHUNUKkKItJ7vihZuPiHpuHBt8/Mt4urqaixYsEDWb4e8JEb8mPJHH30EDofT4yM7O1vkOWVlZQgKCsKKFSuwbdu2Hu//8ccfo7GxkX3ExsYO5tshhEhJ0uQsSceFa5u3bt2KjRs3si1kahGToTTiW8offPABNm/e3OM1tra27P+Xl5fDz88P06dPx549e154f1VVVZGt3zQ1NftcVkLIwJDUFe3q6ipxC8fBWNtMSG+N+KBsZGQEIyMjqa4tKyuDn58f3N3dceDAASgojPiOBEJGJEld0SdPnqRJW0SujfigLK2ysjL4+vpizJgx+P7771FTU8OeMzU1lWHJCCG9JSnNppmZGUxMTMReT4g8oKD8f6KiovDo0SM8evQIlpaWIucYhpFRqQghfUFd0WS4ov7Z/7N582YwDCP2QQghpPfEpSwlPaOgTAghZFCIS1lKekZBmRBCyICjTTz6hoIyIYSQAUebePQNBWVCyIhFY5qyQZt49B0FZULIiEVjmrIhXCfe2tqKhw8forW1lV0PTnpGS6IIISOSpBzXZPBJWidO68FfjIIyIWREEjem+exOUWTw0DrxvqPua0LIiENjmmS4oqBMCBlxaEyTDFfUfU0IGXFoTJMMVxSUCSEjDo1pkuGKuq8JIYQQOUFBmRBCCJETFJQJIYQQOUFjyi+BiooKVFRUyLoYhJCXkJmZGczMzGRdjGGDgvIAMzMzwxdffCE3v4SdnZ1Ys2YNYmNjZV0UQshLyMfHB5GRkZRNTUochmEYWReCDJ6mpibo6OggNjYWmpqasi7OS6elpQU+Pj5U/zJC9S9bwvpvbGyEtra2rIszLFBL+SXh5uZGfxQy0NTUBIDqX1ao/mVLWP9EejTRixBCCJETFJQJIYQQOUFBeYRTVVXFF198QZMsZITqX7ao/mWL6r/3aKIXIYQQIieopUwIIYTICQrKhBBCiJygoEwIIYTICQrKhBBCiJygoExeahwOR6rHjRs3+v1abW1t+PLLL3t1r6+//hoLFy6EiYkJOBwOvvzyy36XQ57Ic/1nZ2fjww8/hJubG7S0tGBmZob58+cjJSWl32WRF/Jc/+Xl5Vi/fj3s7e2hpaUFXV1deHp64tChQxjJ85Mpoxd5qR05ckTk58OHDyMqKqrb8QkTJvT7tdra2rBjxw4AgK+vr1TP+fTTT2FqaopJkyYhMjKy32WQN/Jc/7/99hv27duHZcuW4c0330RjYyN2794NLy8vREREICAgoN9lkjV5rv/a2lqUlpZi+fLlsLKyAo/HQ1RUFDZv3oycnBx88803/S6TXGIIIay33nqLGaw/i5qaGgYA88UXX0j9nMLCwj4/dziSp/pPSUlhmpubRY7V1tYyRkZGzIwZMwahhLInT/UvSUhICDNq1Cimq6trYAomZ6j7mpAXEAgE2LVrFyZOnAg1NTWYmJhg+/btqK+vF7kuJSUFc+fOhaGhIdTV1WFjY4NXXnkFAFBUVAQjIyMAwI4dO9huwRd1R1tbWw/GWxpWZFX/7u7u3TaxMDAwgLe3N7Kysgb2TcoxWf7+i2NtbY22tjZwudx+vzd5RN3XhLzA9u3bcfDgQWzZsgXvvvsuCgsL8eOPPyItLQ1xcXFQVlZGdXU15syZAyMjI3z00UfQ1dVFUVERzp49CwAwMjLCL7/8gjfeeANLlizB0qVLAQAuLi6yfGvDgrzVf2VlJQwNDQf0PcozWdd/e3s7Wltb0dLSgtjYWBw4cADTpk2Durr6oL5vmZF1U50QefJ8992tW7cYAMzRo0dFrouIiBA5fu7cOQYAc+fOHYn37k/33cvafS0v9S908+ZNhsPhMJ999lmf7yHP5LH+d+7cyQBgH7Nnz2ZKSkp6dY/hhLqvCenBqVOnoKOjg8DAQNTW1rIPYddmTEwMAEBXVxcAcOnSJfB4PBmWeGSRp/qvrq7G2rVrYWNjgw8//HBQXkPeyEP9r1mzBlFRUTh27BjWrl0L4GnreaSioExID/Ly8tDY2AhjY2MYGRmJPFpaWlBdXQ0A8PHxwbJly7Bjxw4YGhpi0aJFOHDgADo7O2X8DoY3ean/1tZWhISEoLm5GWFhYd3Gmkcqeaj/MWPGICAgAGvWrMHRo0dha2uLgICAERuYaUyZkB4IBAIYGxvj6NGjYs8LJ69wOBycPn0aiYmJuHjxIiIjI/HKK6/gX//6FxITE1+aD/GBJg/1z+VysXTpUty/fx+RkZFwcnLq872GG3mo/+ctX74ce/fuxc2bNzF37twBu6+8oKBMSA/s7Oxw7do1zJgxQ6qJJV5eXvDy8sLXX3+NY8eOYd26dThx4gReffVVcDicISjxyCLr+hcIBNi4cSOuX7+OkydPwsfHpy9vY9iSdf2LI2whNzY2Dsj95A11XxPSg5UrV4LP5+Orr77qdq6rqwsNDQ0AgPr6+m5Zhtzc3ACA7cLT0NAAAPY55MVkXf/vvPMOQkND8fPPP7Mzhl8msqz/mpoascf37dsHDoeDyZMnS3Wf4YZayoT0wMfHB9u3b8fOnTuRnp6OOXPmQFlZGXl5eTh16hR++OEHLF++HIcOHcLPP/+MJUuWwM7ODs3Nzdi7dy+0tbUxb948AIC6+v9r796DoirfOIB/V4TdRRYQWbyksLCMBGLprEMo4WqlljIiAiql4gWlciQnjDEnR0gdb9FgNpSYIaKWojGNWqApDN5IGXUa84KXhZocIScglLzB+/uj2F/roi4IncP6/czsDOfZ97znPQ8z++y+56ZGUFAQduzYgf79+8PDwwPBwcGPnA7Nzc1FZWUlGhoaAAAlJSVYvnw5AGDatGnw8fHp+CRISMr8Z2RkIDMzE0OHDoWzszO2bt1q8X5UVBS6devW4TmQkpT5X7FiBY4ePYpXX30V3t7e+OOPP7B7926cPHkS8+fPh7+//3+Ziv+OxGd/E8nKw+5olJWVJQwGg1Cr1UKj0YiBAweKlJQUce3aNSGEEKdOnRJxcXHC29tbKJVK4eXlJSIiIkRZWZlFP8eOHRMGg0E4OTnZdHmI0Wi0uBzk36+ioqL22m3ZkFP+4+PjH5p7AOa7rdkTOeV///79IiIiQvTp00c4OjoKjUYjwsLCRHZ2tmhqamrX/ZYThRB2fGdvIiKiToTHlImIiGSCRZmIiEgmWJSJiIhkgkWZiIhIJliUiYiIZIJFmYiISCZYlImeQEVFBRQKBTZv3iz1UJ5KzL+0mP/2x6JMREQkE7x5CNETEELgzp07cHR0hIODg9TDeeow/9Ji/tsfizIREZFMcPqannqpqalQKBQoLy/H1KlT4ebmBq1WiyVLlkAIgV9//RWRkZFwdXVFr169kJ6ebl63pWNqM2bMgIuLC3777TdMmDABLi4u0Gq1WLhwIRobG83tiouLoVAoUFxcbDGelvq8fv06Zs6cib59+0KpVKJ3796IjIxERUVFB2Xlv8P8S4v5lxcWZaJ/TJ48GU1NTVi1ahVeeOEFLF++HBkZGRg1ahSeeeYZrF69Gv7+/li4cCFKSkoe2VdjYyPGjBmDHj164KOPPoLRaER6ejqysrLaNLbo6Gjk5+dj5syZyMzMRFJSEurr6/HLL7+0qT85Yv6lxfzLhDTPwSCSj6VLlwoAYu7cuebY/fv3Rd++fYVCoRCrVq0yx2tqaoRarRbx8fFCCCFMJpMAILKzs81tmp8u9OGHH1psZ/DgwcJgMJiXi4qKWnza04N91tTUCABi7dq17bPDMsP8S4v5lxf+Uib6R0JCgvlvBwcHDBkyBEIIzJ492xx3d3dHQEAArl69+tj+3nzzTYvl8PBwm9Z7kFqthpOTE4qLi1FTU9Pq9TsL5l9azL88sCgT/cPb29ti2c3NDSqVCp6enlbxx304qFQqaLVai1j37t3b9KGiVCqxevVqfP/99+jZsyeGDx+ONWvW4Pr1663uS86Yf2kx//LAokz0j5Yu6XjYZR7iMRct2HJ5iEKhaDH+75Nhmi1YsADl5eVYuXIlVCoVlixZgsDAQJw+ffqx2+ksmH9pMf/ywKJMJJHu3bsDAGpray3ilZWVLbbX6/VITk7G/v37cfbsWdy9e9fiTFhqHeZfWsx/y1iUiSTi4+MDBwcHqzNZMzMzLZYbGhpw+/Zti5her4dGo8GdO3c6fJz2ivmXFvPfsq5SD4DoaeXm5obY2FisX78eCoUCer0ee/fuRXV1tUW78vJyvPzyy5g0aRKCgoLQtWtX5Ofno6qqClOmTJFo9J0f8y8t5r9lLMpEElq/fj3u3buHzz//HEqlEpMmTcLatWsRHBxsbtOvXz/ExcXh4MGDyM3NRdeuXfHss89i586diI6OlnD0nR/zLy3m3xpvs0lERCQTPKZMREQkEyzKREREMsGiTEREJBMsykRERDLBokxERCQTLMpEnURLz5klIvvCokx26cqVK0hMTISfnx9UKhVcXV0RFhaGdevW4a+//uqw7Z47dw6pqamSP3x9xYoVGD9+PHr27AmFQoHU1FRJx/MwCoXCpldxcfETb6uhoQGpqamt6quz5LGt5Jz/CxcuICUlBYMGDYJGo0Hv3r0xbtw4lJWVPfFY5Iw3DyG7s2/fPsTGxkKpVGL69OkIDg7G3bt3ceTIEbz33nv4+eef2/yw9cc5d+4c0tLSMGLECOh0ug7Zhi0++OAD9OrVC4MHD0ZhYaFk43ic3Nxci+UtW7bgwIEDVvHAwMAn3lZDQwPS0tIAACNGjLBpnc6Sx7aSc/6/+OILbNq0CdHR0Xj77bdRV1eHDRs2IDQ0FAUFBXjllVeeeExyxKJMdsVkMmHKlCnw8fHBoUOH0Lt3b/N78+bNw+XLl7Fv3z4JR/h/Qgjcvn0barW63fs2mUzQ6XS4ceOG1SP05GTq1KkWy6WlpThw4IBVXCqdJY9tJef8x8XFITU1FS4uLubYrFmzEBgYiNTUVLstypy+JruyZs0a3Lx5E5s2bbIoyM38/f3xzjvvmJfv37+PZcuWQa/XQ6lUQqfTYfHixVY3utfpdIiIiMCRI0cQEhIClUoFPz8/bNmyxdxm8+bNiI2NBQCMHDnSauqvuY/CwkIMGTIEarUaGzZsAABcvXoVsbGx8PDwgLOzM0JDQ5/oy4OUv9LbW1NTEzIyMjBgwACoVCr07NkTiYmJVs/mLSsrw5gxY+Dp6Qm1Wg1fX1/MmjULwN/H45uLalpamvl/87jpaHvKY1tJlX+DwWBRkAGgR48eCA8Px/nz59t3J2WEv5TJruzZswd+fn4YNmyYTe0TEhKQk5ODmJgYJCcn48cff8TKlStx/vx55OfnW7S9fPkyYmJiMHv2bMTHx+PLL7/EjBkzYDAYMGDAAAwfPhxJSUn45JNPsHjxYvOU37+n/i5evIi4uDgkJiZizpw5CAgIQFVVFYYNG4aGhgYkJSWhR48eyMnJwfjx47Fr1y5ERUW1X4I6ocTERGzevBkzZ85EUlISTCYTPv30U5w+fRpHjx6Fo6MjqqurMXr0aGi1WixatAju7u6oqKjAN998AwDQarX47LPP8NZbbyEqKgoTJ04EADz33HNS7lqnILf8X79+HZ6enu26j7IiiOxEXV2dACAiIyNtan/mzBkBQCQkJFjEFy5cKACIQ4cOmWM+Pj4CgCgpKTHHqqurhVKpFMnJyeZYXl6eACCKioqsttfcR0FBgUV8wYIFAoA4fPiwOVZfXy98fX2FTqcTjY2NQgghTCaTACCys7Nt2j8hhPj9998FALF06VKb15HSvHnzxL8/lg4fPiwAiG3btlm0KygosIjn5+cLAOLkyZMP7ftJctHZ8thWcs1/s5KSEqFQKMSSJUva3Ifccfqa7Maff/4JANBoNDa1/+677wAA7777rkU8OTkZAKymj4OCghAeHm5e1mq1CAgIwNWrV20eo6+vL8aMGWM1jpCQELz44ovmmIuLC+bOnYuKigqcO3fO5v7tTV5eHtzc3DBq1CjcuHHD/Gqe2iwqKgIAuLu7AwD27t2Le/fuSThi+yKn/FdXV+P111+Hr68vUlJSOmQbcsCiTHbD1dUVAFBfX29T+8rKSnTp0gX+/v4W8V69esHd3R2VlZUWcW9vb6s+unfvbnVs7VF8fX1bHEdAQIBVvHna+8FxPE0uXbqEuro6eHl5QavVWrxu3rxpfvau0WhEdHQ00tLS4OnpicjISGRnZ1udG0CtI5f837p1CxEREaivr8e3335rdazZnvCYMtkNV1dX9OnTB2fPnm3VegqFwqZ2Dg4OLcZFK55+2hFnWtuzpqYmeHl5Ydu2bS2+33zykEKhwK5du1BaWoo9e/agsLAQs2bNQnp6OkpLS+36Q7wjySH/d+/excSJE/HTTz+hsLDQ4lnL9ohFmexKREQEsrKycPz4cQwdOvSRbX18fNDU1IRLly5ZnIxVVVWF2tpa+Pj4tHr7thb4B8dx8eJFq/iFCxfM7z+t9Ho9fvjhB4SFhdn0hSY0NBShoaFYsWIFtm/fjjfeeANff/01EhIS2vS/edpJnf+mpiZMnz4dBw8exM6dO2E0GtuyG50Kp6/JrqSkpKBbt25ISEhAVVWV1ftXrlzBunXrAABjx44FAGRkZFi0+fjjjwEA48aNa/X2u3XrBgCora21eZ2xY8fixIkTOH78uDl269YtZGVlQafTISgoqNXjsBeTJk1CY2Mjli1bZvXe/fv3zXmuqamxmrEYNGgQAJinUJ2dnQG07n/ztJM6//Pnz8eOHTuQmZlpPmPb3vGXMtkVvV6P7du3Y/LkyQgMDLS4o9exY8eQl5eHGTNmAACef/55xMfHIysrC7W1tTAajThx4gRycnIwYcIEjBw5stXbHzRoEBwcHLB69WrU1dVBqVTipZdegpeX10PXWbRoEb766iu89tprSEpKgoeHB3JycmAymbB792506dL67865ubmorKxEQ0MDAKCkpATLly8HAEybNq3T/Po2Go1ITEzEypUrcebMGYwePRqOjo64dOkS8vLysG7dOsTExCAnJweZmZmIioqCXq9HfX09Nm7cCFdXV/OXL7VajaCgIOzYsQP9+/eHh4cHgoODHzkdai95bCsp85+RkYHMzEwMHToUzs7O2Lp1q8X7UVFR5i/BdkXis7+JOkR5ebmYM2eO0Ol0wsnJSWg0GhEWFibWr18vbt++bW537949kZaWJnx9fYWjo6Po16+feP/99y3aCPH35Uzjxo2z2o7RaBRGo9EitnHjRuHn5yccHBwsLo96WB9CCHHlyhURExMj3N3dhUqlEiEhIWLv3r0WbVpzSZTRaBQAWny1dLmWXDx4SU6zrKwsYTAYhFqtFhqNRgwcOFCkpKSIa9euCSGEOHXqlIiLixPe3t5CqVQKLy8vERERIcrKyiz6OXbsmDAYDMLJycmmy3M6ax7bSk75j4+Pf2juAQiTydSeuy4bCiFacZYKERERdRgeUyYiIpIJFmUiIiKZYFEmIiKSCRZlIiIimWBRJiIikgkWZSIiIplgUSYiIpIJFmUiIiKZYFEmIiKSCRZlIiIimWBRJiIikgkWZSIiIplgUSYiIpKJ/wGb7E3KTODjAgAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -597,7 +597,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAInCAYAAACbVci7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvXdUXVmWp/nhvfBIQsILK7xHgCTkHfImQuEVJrN69aqpnpnVuXpquiuzurKyatVUV2dOdVZnZHhFSIpA3oS8FwLhQXjvvXfPvzt/xLzbEAgJEHIR51vrLR5w373nuXvP7+y9f9tIkiQJgUAgEAgEAoFAIBDMGeMXPQCBQCAQCAQCgUAgeNURwkogEAgEAoFAIBAInhIhrAQCgUAgEAgEAoHgKRHCSiAQCAQCgUAgEAieEiGsBAKBQCAQCAQCgeApEcJKIBAIBAKBQCAQCJ4SIawEAoFAIBAIBAKB4CkRwkogEAgEAoFAIBAInhIhrAQCgUAgEAgEAoHgKRHCap7p6Ojg17/+NR0dHS96KAKBQCAQCAQCgeA5IYTVPNPR0cFvfvMbIawEAoFAIBAIBIKfEUJYCQQCgUAgEAgEAsFTIoSVQCAQCAQCgUAgEDwlQlgJBAKBQCAQCAQCwVMihJVAIBAIBAKBQCAQPCVCWAkEAoFAIBAIBALBUyKElUAgEAgEryg6ne5FD0EgEAgE/z+mL3oAAoFAIBAI5saxY8cwNjYmMTERb29vjIyMXvSQBAKB4GeLiFgJBAKBQPAKIkkSISEhDAwM8OWXX/KnP/2J4uJiEcUSCASCF4SIWAkEAoFA8ApiZGREVFQUkZGR1NfXk5WVxalTp7h69Srx8fHExsZibW39oocpEAgEPxuEsBIIBAKB4BVEkiSuX7+Oi4sLkZGR+Pn50dPTQ3Z2Nnfu3OHOnTtERESQmJiIq6vrix7uTwqtVkttbS2BgYEi/VIgEMgIYSUQCAQCwSvK+Pg4Z86cwcjIiIiICFxdXUlPT2fNmjXk5eWRm5tLfn4+/v7+JCYm4uvrK4TAU6JUKvkv/+W/kJuby7Zt2/jlL3+JjY3Nix6WQCB4CRDCSiAQCASCVxAjIyPS09MBOH36NAAREREA2NjYsGrVKpKTkyktLSU7O5vDhw+zcOFCEhMTCQsLw9RUTAFmS3t7O//0T/9ESUkJUVFRXL16lcHBQT744AO8vLxe9PAEAsELxkiSJOlFD+KnREFBATExMeTn5xMdHf2ihyMQCASCnziSJHHu3DkKCwvZtWsX4eHhj9ymsbGRrKwsqqursbGxIS4ujri4OBFtmQGSJJGVlUVGRgZ1dXW88847bN++nT//+c/cvHkTb29v0tPTSUlJwdhY+IIJBD9XxHKVQCAQCASvMIbIlSRJnDp1CmCKuDIyMsLHxwcfHx96e3t58OABmZmZ3Lt3j7CwMJKSknBzc3sRw3/pGR0d5dSpU5SVlTEyMsKePXvYtWsXxsbGHDp0CEmSKC0t5fvvv6exsZHdu3dja2v7ooctEAheACJiNc+IiJVAIBAIXgSSJHH27FmKioqmjVxNRKFQkJ+fz4MHDxgZGcHPz4/ExESWLVsm6rD+f2prazl16hR6vR6NRoOtrS0fffTRJLfFkZERPvvsMwYGBjA3N8fc3Jzdu3fj6+v7AkcuEAheBEJYzTNCWAkEAoHgRTFbcQWg0+koKysjKyuLjo4OXF1dSUxMJDw8HDMzs+cw6pcPnU7H9evXuX//Pn5+fpiamlJfX8/777/PokWLpmzf39/PZ599hrm5OTY2NrS2trJy5UpWrVolUgMFgp8RQljNM0JYCQQCgeBFMlFc7d69m7CwsBk/rrm5maysLKqqqrCysiI2Npa4uDjs7Oye8ahfHvr6+jhx4gRdXV2sW7cOIyMjLl26xJ49ex77WnZ2dvLFF1+wcOFCvLy8uHv3Ll5eXuzZs+dn9foJBD9nhLCaZ4SwEggEAsGLRpIkzpw5Q3Fx8azElYH+/n4ePHhAYWEhOp2O0NBQkpKSHhmt+akgSRIlJSVcuHABOzs79u7di0ql4quvviIhIYGNGzc+cR9NTU0cPnwYf39/4uPjOXnyJDqdjt27d7Ns2bLn8CwEAsGLRAireUYIK4FAIBC8DOj1es6ePTtncQU/9GwqKCjgwYMHDA0N4ePjQ2JiIgEBAT+pOiyVSsWFCxcoKSkhMjKSLVu2oFAo+Pjjj3F1deXtt9+ecUpfVVUV3377LZGRkaxZs4YzZ85QU1NDSkoKaWlpmJiYPONnIxAIXhTCFVAgEAgEgp8gxsbGbN++HYCTJ08CzFpcWVpasmLFChISEqioqCArK4ujR4/i7OxMYmIiERERmJubz/vYnydtbW0cP36c8fFxOd1Pq9Xy3XffYWpqyr59+2ZVJxUYGMj27ds5ffo01tbWHDx4kPv373P9+nWamprYu3cv9vb2z/AZCQSCF4UQVgKBQCAQ/EQxiCtJkjh58iRGRkaEhobOej8mJiaEhoayfPlyWltbycrK4vvvv+fGjRvExMQQHx/PggULnsEzeHZIkiQLnsWLF/P222/j6OiIJElcuHCBrq4uDh06NKc+X5GRkSgUCi5fvoy1tTXJycl4enpy/Phx/uf//J/s3LmTwMDAZ/CsBALBi0QIK4FAIBAIfsIYGxuzY8cOAE6cOAEwJ3EFP/TD8vDwwMPDg8HBQR48eEBubi73799n+fLlJCUl4e7uPm9jf1aMjIxw6tQpGhoaSE5OnpSil5eXJzdbfprnkpSUxNjYGFeuXMHa2prIyEh++ctfcvr0aY4ePUpSUhLr1q0TqYECwU8IIawEAoFAIPiJM5/iyoCDgwMbN25k9erVFBYWkp2dzcOHD/Hy8iIxMZHAwMCX0mq8pqaG06dPY2RkxFtvvTWp31RzczMXL14kISGBiIiIpz7W2rVrGR8f5+zZs1hZWREYGMhrr73GgwcPuHr1Ks3NzezduxdHR8enPpZAIHjxCPOKeUaYVwgEAoHgZUWv13PmzBkePnzInj17WL58+bzuu7KykuzsbJqbm3F0dCQxMZHIyEgsLCzm7ThzRavVcv36dbKysvD392fnzp2T0vxGRkb405/+hLOzM2+//fa8RZL0ej0ZGRnU1NTw1ltv4eXlBfyv2i6FQsGOHTsIDg6el+MJBIIXhxBW84wQVgKBQCB4mdHr9Zw+fZrS0tJ5F1cG2trayMrKory8HHNzc6Kjo0lISHhhpg19fX0cP36c7u5u1q9fT0JCwiRXQ61Wy5dffsnQ0BAfffQRtra283p8rVbLN998Q3t7O++9955sW69UKjl79izl5eXEx8ezYcMGTE1FMpFA8KoihNU8I4SVQCAQCF52noe4AhgaGiInJ4f8/HzUajXBwcEkJSWxdOnSZ3K8HyNJEsXFxXz//fdyb6rFixdP2e78+fMUFhZy6NAhlixZ8kzGolKp+OKLLxgZGeHQoUM4OTnJY8zLy+PSpUu4ubmxb98++X8CgeDVQgireUYIK4FAIBC8CjwvcQWgVqspKioiOzub/v5+PDw8SExMJDg4+JnVYalUKs6fP8/Dhw+Jiopi8+bNj7SGz8/P59y5c2zfvv2ZX7fHxsb47LPP0Ov1HDp0CDs7O/l/HR0dZGRkMDY2Rnp6+lPXwAkEguePEFbzjBBWAoFAIHhV0Ov1nDp1irKyMvbu3UtISMgzP151dTXZ2dk0Njbi4OBAQkICUVFRWFpazttxWltbOXHiBOPj42zbtm3a/l2tra18/vnnREVFsW3btnk7/uMYHBzk008/xdramvfee2/S854oBmNiYti0aRNmZmbPZVwCgeDpEcJqnhHCSiAQCASvEs9bXBno6OggKyuL0tJSzMzMiIqKIiEh4akc8iRJIjMzkxs3buDu7s6ePXum3d/o6Ch/+tOfcHBw4N13332utufd3d18/vnnuLq68tZbb00ST5IkUVBQwMWLF3F2dmbfvn24uLg8t7EJBIK5I4TVPCOElUAgEAheNV6UuAIYHh4mNzeXvLw8lEolQUFBJCUl4eHhMclg4klM7E2VkpLC6tWrpxVLOp2OL7/8koGBAT766KNJKXnPi9bWVr788kt8fHw4cODAlLF2dXWRkZHB8PAw27ZtIzw8/LmPUSAQzA4hrCbw61//mt/85jeT/hYYGEhlZeWM9yGElUAgEAheRfR6PSdPnqS8vJx9+/Y9d/tvjUZDcXExWVlZ9PX1sWTJEhITEwkJCXliNKmmpoZTp05hYmLCrl27JvWmehTff/89+fn5vPvuu3h4eMzn05gVtbW1HDlyhLCwMHbu3DlFSKrVai5cuEBxcfFj68QEAsHLgfD0/BHLly/n2rVr8u/C9lQgEAgEPweMjY3ZvXs3ABkZGc9dXJmZmREbG0tMTAw1NTVkZ2dz4sQJrl69SkJCAtHR0VhZWU16jFar5dq1a2RnZxMQEMCOHTsm9aZ6FIWFheTk5LBt27YXKqoAli1bxq5duzh58iTW1tZs2LBhkrgyNzdn165d+Pj4cOHCBVpbW9m3bx9ubm4vcNQCgWA6hGr4EaampnJ/CYFAIBAIXmZ0Oh3GxsazSpl7HC9aXAEYGRkREBBAQEAAnZ2dZGdnc+PGDW7fvk1kZCSJiYk4OTnR29vL8ePH6enpYfPmzcTHxz/xdWhvb+fChQtER0cTExPznJ7R4wkLC0OhUPD9999jbW1NamrqlG0iIyNZsmQJGRkZ/PnPf2bLli1ERkbO2/suEAjmByGsfkRNTQ3u7u5YWlqSlJTE7373Ozw9PafdXqVSoVKp5N9HR0efxzAFAoFA8DNHkiSOHTuGq6srGzZsmLf9vgziysCiRYvYuXMn69atIzc3l9zcXHJycrCwsKCvrw8vLy8+/PDDGS2Ijo2N8e2337Jo0SK2bNnyUomS+Ph4xsfHuX79OtbW1o8Ufa6urnz44YdcvHiRM2fO0NDQwNatW7GwsHgBIxYIBI/i2TSPeEVJSEjgiy++4NKlS/zbv/0bDQ0NpKamMjIyMu1jfve732Fvby/fVq1a9RxHLBAIBIKfK0ZGRixbtoz79+/z4MGDed23QVwFBweTkZExq1rjZ4GtrS1paWn8xV/8BdbW1ty9e5e2tjaMjY3p7u5Gp9M99vE6nY6MjAx0Oh379++flzR/rVb71PuYyKpVq4iPj+f8+fOUl5c/chszMzO2b9/Onj17qKys5OOPP6azs3NexyEQCOaOMK94DIODg3h5efHf/tt/4/3333/kNj+OWBUVFbFq1SphXiEQCASCZ05ZWRnFxcXU1NSwb9++eXfz0+v1nDhxgoqKCvbv309QUNC87n82tLa2cvz4cRQKBdu2bcPKyors7Gxqa2uxs7MjPj6emJgYrK2tpzz20qVL5OTk8M477+Dl5fVU45AkievXr3P//n0iIyNZuXIlDg4OT7XPifs2vN5vvvkmPj4+027b19dHRkYGvb29bNq0iZiYmJcqCicQ/BwRwuoJxMXFsW7dOn73u9/NaHvhCigQCASC54EkSXzxxRd0dHTg6OhIX18fb7/99mPT1+fCixZXer2ezMxMbt68+cjeVN3d3WRnZ1NSUoKRkREREREkJibKvZ9KSko4efIkW7ZsIT4+/qnHcv78eQoKCoiMjKSmpgalUkl0dDSpqaksWLDgqfYPP0TXjhw5QktLC++++y7u7u7TbqvVarl8+TK5ubksX76c7du3i9RAgeAFIoTVYxgdHcXT05Nf//rX/OVf/uWMHiOElUAgEAieF2q1Wp6EW1paotfrOXToEK6urvN6HJ1Ox4kTJ6iqqmLfvn3PTVyNjIxw8uRJGhsbSU1NZdWqVdNar4+NjZGXl0dOTg5jY2P4+/vj5+fH1atXCQsLY8eOHU8V0dFqtRw/fpzq6mp27NhBREQEarWanJwcMjMz0Wg0xMbGkpKSgq2t7ZyPAz+8r1999RX9/f0cOnToiQ2Cy8rKOHv2LDY2Nuzdu/exYkwgEDw7hLCawP/5f/6fpKen4+XlRXt7O3/zN39DUVER5eXlM75ICWElEAgEgueJRqPh2LFj1NXVAeDg4MD7778/701vJ4qr/fv3ExgYOK/7/zHV1dWcPn0aExMTdu/e/di0uIlotVpKS0u5ffs2Fy9exNnZmb/6q78iKipqzrVVSqWSY8eO0dbWxr59+wgICJj0f5VKRXZ2NllZWeh0OuLj41mxYsUTrd8fx/j4OJ9//jlqtZr333//idGwgYEBMjIy6OrqYsOGDTNySRQIBPOLEFYTeO2117hz5w59fX24urqSkpLCb3/7W/z8/Ga8DyGsBAKBQPC80Wq1ZGRkUFpailarxcfHh/fee2/e08Keh7jSarVcvXqVBw8eEBgYyI4dOx5ZN/U49Ho9hw8fpry8HH9/f1pbW7G1tSUuLo7Y2NhZCZ7R0VG+/vprBgcHOXjw4GNTLRUKBVlZWWRnZwM/mGKtWLFiSv+tmTI8PMynn36Kubk577333hNfh4l9vYKDg9m+ffucjy0QCGaPEFbzjBBWAoFAIHgR6HQ6Tp48SW5uLiqVitjYWA4ePDht6tzTHOdZiStDb6re3l42bNhAXFzcnKIuV65cITs7m7feegsfHx96e3vJzs6muLgYSZIIDw8nMTHxiY12BwYGOHz4MBqNhjfffJOFCxfO6Pjj4+NkZmaSk5ODsbExSUlJJCYmYmlpOevn0tfXx6effoqTkxNvv/025ubmT3xMZWUlp0+fxtLSkr1797J06dJZH1cgEMweIazmGSGsBAKBQPCi0Ov1nDlzhtu3b6NWq1m/fj07d+6c95QwnU4n1xvNh7iSJInCwkIuXryIvb09e/funVFvqkdRWlrK8ePH2bRpE4mJiZP+Nz4+Tn5+Pjk5OYyMjODn50dSUhJ+fn5TXqOuri4OHz6Mubk5b7311iTDjJkyOjpKZmYmubm5mJmZsWLFChISEmYkjibS3t7OF198gYeHx4zF8uDgIMePH6e9vZ1169aRlJQkUgMFgmeMEFbzjBBWAoFAIHiRSJLE+fPn+f7779HpdLz22musWbNm3o8zUVwdOHBgSt3RTFEqlZw7d46ysjKio6PZtGnTrIWHgc7OTj799FOCg4PZtWvXtEJCp9NRVlZGVlYWHR0duLq6kpSURFhYGGZmZjQ1NXH06FEcHR158803n6pWCn4w4bh79y75+flYWFiQkpJCXFwcZmZmM95HQ0MDX3/9NcHBwezevRtj4ye3ItXpdNy4cYPMzEwCAgLYuXPnrNMqBQLBzBHCap4RwkogEPzckCSJhoYGfH19X/RQBP8/kiRx6dIlMjIyMDY25pe//CWxsbHzfpynFVctLS2cOHECpVJJeno6y5cvn/NYFAoFH3/8MRYWFrz//vszEi2SJNHU1ER2djZVVVVYWVmxcOFCamtrWbZsGa+99tq81qkNDQ1x584dCgsLsba2JjU1lZiYmBmbalRUVPDdd98RGxvLli1bZhyBMhiBmJqasnfv3nm35BcIBD8ghNU8I4SVQCD4OSFJEhcuXCA/P59f/vKXM65BETx7JEni2rVrfPHFF1hYWPCrX/3qmZhNzEVc6fV67t27x61bt1iyZAl79ux5qia7er2eI0eO0NbWxi9+8Ys57au/v59vvvmGM2fO4OTkxIEDB0hJSXkmn+mBgQFu375NcXExdnZ2rFy5kqioqBml+OXn53Pu3DlWr17N6tWrZ3zM4eFhjh8/TmtrK2lpaaSkpIjUQIFgnhHCap4RwkogEPxc0Ov1nDt3jqKiIrZv305UVNSLHpLgR0iSxM2bN/njH/+Ivb09v/71r/Hw8Jj34+h0OjIyMqipqeG1117D399/2m2Hh4c5deqU3Jtq9erVM0prexzXr1/n3r17vPnmm7Ny8p3I/fv3uXLlCqGhoSxcuJDc3FyGh4fx8fEhKSkJf3//eRcivb293L59m9LSUuzt7Vm5ciURERFPFFh3797l+vXrbN68mYSEhBkfT6/Xc+vWLe7evYuvry+7d+9+6jRHgUDwvxDCap4RwkogEPwc0Ov1nD59mocPH7Jr1y7Cw8Nf9JAEj+H27dv8t//233B1deUf/uEfnthwdi7MRFxVVVVx5swZTE1N2b17N97e3k993PLycr777jvWr19PcnLyrB9viOxlZmaSmprKmjVrMDIyQqfTUVFRQVZWFm1tbbi4uJCYmEhERMSsaqNmQnd3N7du3aK8vBwnJydWrVpFWFjYtIJTkiSuXLlCVlYWe/bsISwsbFbHq6ur4+TJkxgbG7Nnz555eR8EAoEQVvOOEFYCgeCnjsHWu6Kigj179uDr60t2djarVq166siD4Nlx+/Zt/vEf/xEPDw/++Z//GVtb23k/xnTiSqvVcuXKFXJycggKCmL79u3zYqLQ3d3NJ598gr+/P3v37p11RMkQdS0sLHykiyD8IGJaWlrIzs6moqICS0tLYmNjiYuLe2LT3tnS2dnJzZs3qaqqwsXFhdWrV7N8+fJHPi9JkuTFjYMHD7Js2bJZHWtkZISTJ0/S2NjI6tWrSU1NFd9fgeApEcJqnhHCSiAQ/JTRarUcP36cmpoa9u3bh5OTE8eOHUOhUHDo0CFcXV1f9BAFj+HWrVv8/d//Pf7+/vzzP//znPoqPYkfiysHBweOHz9OX1/fU/Wm+jFKpZKPP/4YMzMz3n///Vk7CWo0GvmzvHPnzhlFXQcGBrh//z6nTp2is7OTTZs28e677867SG1ra+PWrVvU1NTg5uZGWloaQUFBU143nU7Ht99+S0NDA2+//fas0zz1ej137tzh9u3beHt7s2fPnmciuAWCnwtCWM0zQlgJBIKfKlqtVp7E7d+/H41Gw5kzZ3B0dOS1116bU58fwfPn2rVr/O53vyMsLIz/5//5f2bsSDcbDBP+e/fuYWlpiZ+fH3v37p03IwhJkjhy5AgtLS189NFHODk5zerxSqWSo0eP0t7ezv79+x9bEzaRxsZGzp07R29vLxqNhgcPHmBvb8/BgwdZv3499vb2c3k609LS0sLNmzepr69n8eLFpKWlTan10mg0HD58mJ6eHt57770nNj1+FA0NDZw4cQJJkuQotEAgmD1CWM0zQlgJ4IemkGLVT/BTQqPRcOzYMZqbm9m/fz+NjY1kZmYSFhZGenr6nPsOCV4MFy9e5J/+6Z+Ii4vjt7/97byLK6VSyZkzZ/juu++wsrLir//6rwkODp63/d+8eZM7d+7wxhtvzDoFbnR0lK+//prBwUHeeOONGUV5FAoFV69epaCgAA8PD7Zv346rqyvl5eX867/+K/X19fj4+LB+/XpSUlLmJG4eR2NjIzdv3qSpqYmlS5eSlpaGr6+vLLCUSiWff/454+PjvP/++3NyRRwbG+PkyZPU19fPm6mIQPBzQwireUYIq583arWaCxcuUFxcTHJyMuvWrRN2toJXHrVazZEjR2hvb2fXrl3k5eVRX1/Phg0bSExMFJ/xV5TTp0/z+9//npSUFP7mb/5m3sRVS0sLx48fR6VSsXXrVkpLS6mrq+O1116btQh6FJWVlRw7doy1a9eSmpo6q8f29/dz+PBhtFotb7311hMFkCRJlJeXc/HiRTQaDevWrSM2NnbSZ16lUnHu3DkuXryISqXC09OTsLAwUlJS5tWB0dAv7saNG7S2tuLp6UlaWho+Pj7ADzVTn332GcbGxhw6dGhObn+SJHHv3j1u3ryJh4cHe/bsmfc6MoHgp4wQVvOMEFY/Xzo6Ojh+/DgjIyOEhYVRUFBAUFAQu3btEqv5glcWlUrFN998Q1dXF+vXr+fevXuo1Wr27dsnT+jgh1oNsbr96nHkyBE++eQT0tLS+NWvfvVU56qJvamWLl3K7t27cXBwQKvV8t1331FfX//U4qqnp4dPPvkEPz8/9u3bNytR39nZyddff42FhQVvvfXWE6M6Q0NDXLhwgerqaoKDg9m8efNjRUZlZSVnzpyho6MDW1tbTE1N8fLyIjk5eV6t2iVJora2lps3b9Le3o6Pjw9paWl4enrS39/PZ599hp2dHe++++6cmxs3Nzdz/PhxtFotu3btmnGqpEDwc0cIq3lGCKufH5IkkZOTw5UrV3Bzc2Pv3r04OztTVVXFiRMncHFx4fXXX8fOzu5FD1UgmBUKhYKvv/6avr4+YmJiyMnJwcXFhQMHDkyalNbV1XHx4kXeeuutea8xETxbJEni008/5dixY6xbt47/8B/+w5wm48PDw5w8eZKmpiZWrlw5xSFyorh6/fXX59RrSqlU8sknn2BkZMQHH3wwq3E2NjZy9OhRnJ2deeONNx4bzdHr9eTm5nL9+nUsLCzYsmXLjNMYx8bGOHfuHBUVFbi4uGBqakpXVxcLFy4kOTmZ0NDQeVuAkCSJqqoqbt68SVdXF8uWLSMtLQ0TExO++OILFi1axJtvvjnnSOT4+DinT5+murqa5ORk1qxZM6MGxgLBzxkhrOYZIax+XoyPj3PmzBmqqqpISEhg/fr1ky5inZ2dHDlyBIDXX3+dxYsXv6ihCgSzYnx8nMOHD9Pf34+3tzdVVVVERESwbdu2ST18cnNzuXjxIr6+vuzdu/eZuMwJni16vZ7/8T/+B+fPn2f9+vX8+3//72f1PhoiNWZmZo/tTfU04kqSJI4dO0ZjYyMfffQRzs7Osxrf8ePH8fDw4LXXXnusIOvq6uLcuXO0trYSFxfH2rVrZ/2ZliSJ4uJiLl68iLm5OXFxcbS0tFBTU4ODgwMrVqwgKipq3nphGdIVb926RU9PD4GBgSxbtozLly/j7+/Pvn375izmJEkiKyuLa9eusWTJEvbu3SsWTwSCxyCE1TwjhNXPh6amJk6cOIFGo2Hnzp0EBgY+cruRkRGOHj1KT08Pe/funXY7geBlYWxsjK+++or+/n7s7OwYHBxk48aNxMfHy+lMer2eS5cukZOTQ2JiIhs2bBCpgK8warWa3//+99y6dYt169bxi1/84ol9pjQaDVevXp1Vb6q5iqvbt29z8+ZNDh48SEBAwIyfV2FhIWfPniU4OJjdu3dPG73RarXcvn2bzMxMnJ2dSU9Px9PT87HPY2BgABcXl2lT/IaGhjh9+jQNDQ0kJCQQGhpKTk4OpaWlWFlZkZiYSFxcHFZWVjN+Po9Dr9dTWlrKrVu36O/vx97ens7OTpKTk0lPT3+qVMTW1la5bu5x1zuB4OeOEFbzjBBWP330ej13797l1q1beHp6zqi4V6PRcOrUKSoqKli/fj1JSUmi4F/wUjIyMsJXX31FZ2cn5ubmWFpasn//fry8vORtlEolGRkZNDQ0sGXLFmJjY1/giAXzxdjYGP/yL/9CXl4eq1ev5oMPPpjW3bSnp0fuTbVx48Yphg6PY6Jt/0zEVXV1NUePHmX16tWsWrVqxs8nMzOTq1evEhsby5YtW6YV/gYL9cHBQVJTU0lJSZlWgCmVSvLz88nOzmZkZITAwEC2bNkybRTHkCp+9epVHBwc2LVrF9bW1ty/f5/CwkKMjY2JiYkhKSlp3kwi9Ho9xcXF3L59m6qqKvr6+jhw4AB79ux5qv0qFArOnDlDZWUliYmJrF+/XqQGCgQ/QgireUYIq582T6ojeBySJHHjxg3u3r1LTEwMW7ZsERclwUvF8PAwX375JY2NjVhYWODj48OBAwcmTfj6+/s5cuQIY2Nj7N+/f5KBheDVp7+/nz/84Q+Ul5ezYsUKDh06NOn9lySJgoICLl26hKOjI3v27JlTb6qJ4urgwYPT9k3q6+vj448/xtvbm9dee21G4k2SJK5evcr9+/dZtWoVq1evfuTjJlqoe3p6kp6ePm2D65GRER48eEBubi5arZaIiAg8PDy4ceMGKpWKtLQ0EhISpr0e9PT0yE2FU1NTWblyJUqlkgcPHpCTk4NGoyE8PJwVK1bMW5NtnU5HYWEhX331FSUlJWzcuJFf/OIXs+75NZGJNcULFy5k3759on+dQDABIazmGSGsfrpUV1dz+vRpTExM2LNnzyPrCAy57iUlJfj7+xMRETElj76oqIhz587h5eXFvn375i0NRCB4GgYHB/n8888pLy/HycmJFStWsHXr1kkr9w0NDXz33XdYW1tz8ODBWdW5CF4d2tra+OMf/0hLSwvR0dG8++67ODg4oFAoOHfuHOXl5cTGxrJx48anqhN6krhSqVR88sknSJLEBx98MKNaJ51Ox7lz5ygqKmLz5s0kJCRM2UaSJMrKyrh48SJarZb169cTExPzSPHV19fH/fv3KSoqwtTUlNjYWBITExkcHKShoQFPT0/KysrIy8tj0aJFpKen4+7uPu3Y7t69y507d1i4cCG7d+/G1dUVlUpFfn4+WVlZjIyMEBQUREpKCkuXLp3hK/l4tFot//N//k/Onj2Ln58fmzdvZuXKlXPqdWWgvb2djIwMxsfH2bFjByEhIfMyVoHgVUcIq3lGCKufHjqdjmvXrpGVlUVAQAA7d+58ZB1BW1sbly9fprm5mYULF9Ld3Y2VlRVxcXHEx8dPcqFqbGzk22+/xcbGhoMHDz7VCqJA8LT09/fz8ccfU1JSgo+PD7t27Zoy0czPz+fChQt4e3uLBYGXCIVCgaWl5bynFldXV/PZZ58xODiIv78/69atk6MzO3bsmLdmv1qtVjalmCiuJEmSa7E+/PBDXFxcnrgvjUZDRkYGtbW17Nq1i7CwsCnb/NhCfcuWLY90bG1vb+fevXtUVFRgY2NDYmIiMTExtLW1ce/ePRobGzE1NUWr1eLm5saSJUtoaGhgaGiIhIQE0tLSpjXJaG9v5+TJkwwODrJ27Vq5F5xWq6WkpITMzEz6+vrw9vYmJSUFPz+/p35/JUni1KlTXLx4EQcHBxYsWEB0dDSpqalzTkFUKpWcO3eOsrIy4uLi2Lhx47w3mhYIXjWEsJpnhLD6adHf38/x48fp6upi3bp1j2yGOjw8zLVr1ygpKWHhwoVs3LgRX19f+vv7yc7OprCwEEmSCA8PJykpSU7z6Ovr48iRIygUCg4cODCphkUgeF709vbyhz/8gYcPHxITE8M777wzqampXq/nypUrZGdnExcXx6ZNm0QK60uCwSrdwsKCnTt3zntLh/z8fDIyMqirq2NoaIitW7fy7rvvzrsr3KPE1d27d7l+/TqvvfYaQUFBT9yHUqnkyJEjdHR0cODAgSm9svR6PTk5Ody4cQMLCwu2bt06Zb+SJFFfX8+9e/doaGiQI7fh4eHU1NRw7949Ojo6WLJkCSkpKQQEBFBfX09RURFVVVVotVokSWJgYAAPDw/S09OnHbtGo+H69etkZ2fj7e3Nzp075QiSXq+nqqqKe/fu0dbWxqJFi0hOTmb58uVPZRCj1+vJyMigsrKS5cuXU1dXh0ajITY2lpSUlGnr6R6HJEnk5+dz6dIlXFxc2Ldvn4hkC37WCGE1zwhh9dPh4cOHnD9/HhsbG/bu3TslvUOtVpOZmcn9+/cxNzdnzZo1REVFTbnwKRQK8vLyePDgAaOjo/j7+7NixQq8vb1RKpV89913NDc3s337diIiIp7nUxT8zOnp6eG3v/0ttbW1bN68mbfffnvS5FylUnH8+HH5//Hx8S9wtIJHUVdXx6lTp9Dr9ezYsWNe3dqGhob47W9/S1ZWFt7e3oSGhvLOO++waNGieTuGAYO4ampqYsWKFdy5c4eVK1eSlpb2xMeOjIzw9ddfMzw8zBtvvDElha6rq4uzZ8/S3t5ObGzsFAt1vV5PeXk5mZmZdHR04O7uTnJyMgEBATx8+FCOIPn6+pKSkoKPj8+UBTaFQkFZWRlFRUXU1tbS0NCAiYkJqampHDx4cFox2tDQwOnTp1EqlWzatInIyEh535Ik0djYyL1796irq8PR0ZEVK1YQGRk55xRMrVbLN998Q3t7OwcPHqSxsZGsrCx0Oh1xcXEkJyc/tsfXdHR2dpKRkcHIyAjp6emPjBYKBD8HhLCaZ4SwevVRq9VcvHiRwsJCwsLC2LZt26SUDkOPkuvXrzM+Pk5SUhKpqalPbFap1WopLS0lKyuLrq4uFi1axIoVKwgKCuLSpUsUFBSQmprKmjVrhGOg4JnT1tbG//1//990d3fz3nvvsWvXrkmRqIGBAY4ePcrw8DD79u2bU0NXwfNhbGyMs2fPUlVVRVxcHBs2bHjqHkkVFRWcPXsWMzMzbG1taW1txdLSEmNjY9566y2WLFkyT6P/X2i1Wj755BNOnjzJ5s2b+au/+qsnngv7+/v56quv0Ov1vPXWW5OMHzQaDXfu3JEt1Ldv3z4pGqvRaCgqKuL+/fsMDAzIwmnJkiUUFBSQlZXF8PAwwcHB8t9nQm9vL0VFRVy5coWioiIsLS3ZunXrlMbaBpRKJZcuXaKoqIjAwEDS09OnRI86OjrIzMykrKwMa2tr2ap9Ln3jVCoVX3zxBSMjIxw6dAgrKyuysrLIzs4GICEhgRUrVsw63VelUnH+/Hk5+r1p06Z569UlELwqCGE1zwhh9WrT1dVFRkYGQ0NDbNmyZdLqIfzQu+ry5cu0t7ezfPly1q1bN2tHJEO6SVZWFrW1tSxYsID4+Hh5EhAcHMyuXbvEBUnwzKipqeE//af/hFqt5le/+hXJycmT/t/c3MyxY8ewtLTk9ddfnzeXMsGzQ5Ik8vLyuHz5suzWN5fIkkaj4cqVK+Tm5hIcHMz27dsxNzfnyJEjNDQ0YGdnh1Kp5I033nhsn6e5oFar+dOf/kROTg5+fn688847j3Wd7Ojo4Ouvv8bKyoq33nprUlSooaGBc+fOMTQ0xMqVK0lJSZEXDhQKBbm5uTx48IDx8XFCQkJITk7G0dGRBw8e8ODBA1QqFeHh4SQnJ8/586/X66msrOTw4cM8ePAAW1tb1q9fz+rVqwkKCppyjq+srOTcuXMAbNu27ZF1bP39/bKZhomJiWzVPts00LGxMT777DP0ej2HDh3Czs6O8fFxMjMzycnJwdjYmKSkJBITE2cl3iRJorCwkIsXL+Lo6Mi+ffvE+UPws0IIq3lGCKtXk4mTEmdnZ/bu3TvpYjAwMMDVq1cpLy/H3d2dTZs2zcukoru7m6ysLEpKSjAxMcHV1ZWmpia8vLx4/fXX55TzLhA8jgcPHvCb3/wGW1tbfve7302JRBlcKz08PNi/f/8TG74KXi56eno4ceIEPT0909aFTkd3dzfHjx+nv7+fTZs2TTIwMUQ5hoaGsLW1ZWBggIMHD86b3b4kSRw/fpyamhreffddrl+/TnNz87THaGxs5OjRozg7O/PGG2/I6WsKhYIrV65QWFiIl5cX6enpsvHF8PAwWVlZ5Ofno9friYyMZMWKFZiamsp/lySJ6OhokpKSnso178fU1tbyySefUFlZiZ2dHYGBgURERMi27YbXeWxsjHPnzlFZWUlkZCSbNm16pLAZHR0lOzt7kv17cnLyrOqbBgcH+eyzz7CysuLdd9+VI1Sjo6NkZmaSm5uLmZkZK1asICEhAXNz8xnvu7u7m4yMDAYHB9m6dSuRkZEzfqxA8CojhNU8I4TVq4dCoeDs2bNUVFRMSaNRKpXcvXuX7OxsbGxsWLt2LeHh4fOeqjc6OkpOTg65ubn09PTQ1dWFr68v/+7f/bs59YgRCH6MJEmcP3+e3//+93h6evJP//RPkyZher2e69evk5mZSXR0NFu3bhUmFa8oWq2W69evk5WVhZ+f3xONLSYaEDg5ObF3717c3NymbDcyMsKnn36KiYkJtra2tLW1ceDAAfz9/Z96zIZmvvv37yckJASNRsOxY8dobm7mjTfemNTeoqKighMnTuDp6cmBAwewsLCYZKGu0+lYv3490dHRGBkZ0dPTQ2ZmJg8fPsTMzIy4uDgSEhJQqVRkZmZSXFyMmZkZ8fHxJCQkzKnGaCbodDru37/PxYsXGRoawt7eHnNzc5ydnWWRZW9vL6ebX7x4EUtLS3bu3DmtgDU0LM7KymJsbIzg4GCSk5NnnLbY3d3N559/jqurK2+99dakKNrIyAh3794lPz8fCwsLUlJSiIuLm3E2xcS0+sjISLZs2TIrcSYQvIoIYTXPCGH1atHS0sLx48enWAjr9XoKCgq4efMmarWa5ORkVqxY8cwvCmq1muLiYm7evMmdO3cwNzfnww8/ZOPGjU/lBiX4eaPVavnss8/49ttviYyM5O/+7u8m1U+o1WpOnDhBdXU1GzZsmFWUQ/BiaWpqAmDBggUsWLBgkhiura3l9OnTjzW2eNzC0qPo7e3l008/xcXFBQsLCxoaGti3b9+MnPumo76+nsOHD5OcnMy6devkvz9KXBUUFHDu3DlCQkLYtWsXpqamDA4OcuHCBWpqaggJCWHz5s3Y2dnR0tJCZmamHCVKSkoiJiaGgYEB7t69S3l5OTY2NiQlJREbG/vEOtn5or+/nwsXLlBbW4ubmxtOTk40NDSg0Wjw9vYmMjKS4OBgxsfHOX36NI2NjSQmJrJ27dpp3xutVktxcTGZmZn09/fj6+tLcnIyvr6+T/wut7a28uWXX8oNwX+8oDI0NMSdO3coLCzE2tqa1NRUYmJiZmytXlxczIULF1iwYAH79+9/pGgXCH4qCGE1zwhh9WogSRL37t3j5s2bLFmyhD179shpH3V1dVy+fJnu7m4iIiJYu3btnPt8zBW9Xk9paSl//OMfqaysJDo6mgMHDhAVFSVW/ASzYmhoiH/913/l5s2bpKWl8R//43+cNDkbGhriyJEjDA4OsmfPHgICAl7gaAWz5U9/+hMdHR3y77a2trLIsre3x8zMjLy8PDo7O0lKSmLHjh1yallTUxMnT55ErVazffv2Gfemam5u5quvvsLf3x8jIyMqKyvZvXs3oaGhsx7/wMAAH3/8Me7u7rzxxhtTFpAM4qqpqYnAwEC5Z9LmzZsBZAt1g0FEQEAANTU1ZGZm0tTUhIuLC8nJyYSFhdHW1sbdu3epra3F0dGR5ORkIiMjX0jvJUmSKC0t5dKlS2i1WlatWoWVlRXFxcU0NjZibm7O8uXLCQ8Pp7Ozk+vXr+Pg4MCuXbseG43S6/VUVFSQmZlJe3s7ixcvJiUlheDg4McuztXW1nL06FGWL1/Orl27HinGBgYGuH37NsXFxdjZ2ZGamkp0dPSMItu9vb1kZGTQ19fHli1biIqKEos3gp8kQljNM0JYvfyMjo5y8uRJGhoaSElJIS0tDWNjY3p7e7ly5QrV1dV4enqyadOmKRbrzxtJkjh27BinTp2SL7Tx8fHEx8fPe88awU+PxsZG/u3f/o2HDx+ydetWfvGLX0yaRLa0tHDs2DHMzMw4ePDgnFeSh4aGKC4uJjU1VUyWnjNqtZrh4WGGhoYYHh6ecn94eBiFQkF7ezt1dXVYWVkRExPD2NgYzc3NLF26VD7X2dvbs2DBAuzs7J44Wa6oqOC7774jISEBhUJBSUkJO3bsmFUtjUaj4dNPP0WlUvHRRx9N60KnVqv567/+a/Lz8/noo484cOAAXV1dnDt3jvb2duLi4li9erUsqLq7u1m6dKnca6q2tpZ79+7JzdtTUlKeuifUfKFQKLh69SoFBQUsXbqU9PR0LCwsKC4upqioiIGBARwcHPD29qahoYGRkRFWrlxJamrqY98jSZJoaGjg3r171NfXyz25HickS0tLOXHiBAkJCWzcuHHa73JfXx+3bt2itLQUe3t7Vq5cSURExBM/MxqNhkuXLpGfn/9Ix12B4KeAEFbzjBBWLze1tbWcOnUKIyMjdu/eja+vL+Pj49y+fZvc3FwWLFjAhg0bCA4OfqoJolarnddV0IKCAo4fP45Go8HOzg4jIyPCwsJISkoSNViCKUiSRE5ODl9//TVtbW1s376dt956a9LEp6SkhLNnz+Lu7s6BAwfmVFfS1tZGVlYW5eXlmJub8/777wsHsJcQlUrF8PAwDQ0NHDt2jNzcXCwtLYmPj2fx4sWMjIygUqnk7Y2MjCZFvgzRr4m/29nZkZeXx8WLF9m4cSO9vb3k5+ezbds2YmNjnzgmSZI4deoUFRUVfPDBB9Oex3Q6HWfPnqWwsBAjIyNMTEzw8/Ojrq4OFxcX+dj3799naGgIf39/UlJSWLp0KeXl5dy7d4+uri48PDxITU2Vo2wvG01NTZw7d47+/n5WrFjBqlWrMDU1pbm5meLiYsrKylAoFPJ7GRoayv79+2f0fWtvb+fevXtUVFRgY2NDYmIisbGxjzTFyMnJ4fvvv2ft2rWkpqY+dr/d3d3cunWL8vJynJycWLVqFWFhYU8UrKWlpZw9exY7Ozv27dv3TPqiCQQvCiGsHsM//MM/8J/+03/if/vf/jf++3//7zN6jBBWLyc6nY4bN26QmZnJsmXL2LlzJ1ZWVuTm5nL79m30ej2pqakkJibOWRDpdDrKy8vJycmhpaWFuLg41q1bN28rcg0NDXz77bdYWloSFBREeXk5w8PD+Pn5kZSUhJ+f30s5YRA8XzQaDefPn+fq1auMjo6ydetW9u7dK4sqSZLkGr7IyEi2bds2q8+8wUI6KyuLlpYWnJycSExMJDIyUqSpvuRUVFTINTvW1tZER0fLxhaGCfvjol+PEl+tra20traydu1axsbGqKurY8OGDaSlpWFrazttFCM7O5tLly6xd+/eaVMINRoNGRkZ1NXVyS0o/ut//a90dnbyzjvv4O7uTn5+PkqlktDQUNkVr6ioiMzMTAYGBli2bBmpqal4enq+9OdHrVZLZmYmd+/exc7Ojq1bt7Js2TLgh9eioqKCoqIiiouLqa6uxtbWlr1797Jr164ZRd/6+vpkq3ZTU1Pi4uJITEyc4j5769Ytbt26RXp6OjExMU/cb2dnJ7du3aKyshIXFxdWr17N8uXLH/t69/X1cfz4cXp6eti4cSOxsbEv/fsjEMwEIaymITc3l/3797NgwQLS0tKEsHqFGRgY4MSJE7S3t7N27VqSkpKoqanhypUr9Pf3Ex0dLU8C5sLw8DD5+fnk5+czOjqKj48PHh4eZGdnY21tTXp6+rw1V+3t7eXIkSMolUr27dvH6Ogo9+/fp6OjAzc3N5KSkggLC3shNQOCF8/g4CDffvstpaWl6HQ61q1bx86dO+VJl1qt5tSpU1RWVrJu3TpWrFgx48mMSqWisLCQ7OxsBgcH8fLyIikpiYCAgJcipUowPRqNhsuXL5OXl0dISAjp6em0tbU90djix6hUqilphoODg9y4cYOGhgaCgoLo6uqiubkZHx8fvL295cjXxIjXyMgIV65cISUlhR07djzy86NQKDhy5AhdXV1s376d2tpaioqKcHJyorKykpqaGrkGNikpCSsrK/Ly8mR3vJCQEFJSUli8ePGzeEmfKX19fZw/f56GhgbCwsLYuHHjpOvT0NAQBQUFfPfdd1RUVODu7s5rr702Y7v1kZERsrOzycvLQ6fTyVbtTk5OwA+LLxcvXiQ3N5d9+/YREhIyo3G3t7dz8+ZNampqcHNzIy0tjaCgoGnPMVqtlitXrpCTk0NISAjbt2+fU8NjgeBlQgirRzA6Okp0dDR//OMf+bu/+zsiIyOFsHpFKSsr4+zZs1hZWbF3717MzMy4dOkSDQ0N+Pr6snHjxjml0kmSRHNzMzk5OVRUVGBqakpERARxcXFyncrAwABnz56loaGB6OhoNmzYMC8XjfHxcb799ltaW1vZsWMHYWFhNDU1kZWVRVVVFba2tsTHxxMbGyt6EP2MqK+vl1eAJUkiNTWV9PR0edI6PDzM0aNH6evrY/fu3TN2cRscHOTBgwcUFBSg0WgIDQ0lMTHxhdcfCmaGoTfVwMAAmzZtki3I4YeeSWfOnKG6unpGjoDTodVq+eabb+js7OT111+noKCAGzdusHz5cvz9/RkZGZGjX4befba2toSHh2NsbIydnd2kNENTU1Nu3bqFVqslMTGR6upqhoeHcXBwYGxsDDMzM4aHh7GysmL//v10dHSQk5ODRqOZUz+nlxGD5fqVK1fQ6/WT7OMnbnP//n0+//xzWltb8fb2JjY2lqioKJYvX/7E641SqSQ3N5fs7Gy5UbJBjEqSxIkTJ6ioqOCNN97A19d3xmNvaWnh5s2b1NfXs3jxYtLS0h6bglleXj7pOj1Tq3iB4GVECKtH8M477+Dk5MS//Mu/sHr16scKK5VKNSk9oqioiFWrVglh9YKZWCS7fPly0tLSyMrKoqCgAGdnZzZs2DCnXHu1Wk1JSQk5OTl0d3fj4uJCfHw8ERERj0z5kySJgoICrly5goWFBenp6fPS80Wn03Hu3Dn587Z69WqMjIzo7e0lOzuboqIijIyMiIyMJDEx8ZWfZAimR5IksrKyuHr1KkZGRqhUKpKSkti6dav8+W5ra+PYsWMYGxvz+uuvz6imobW1Va6fsrS0JCYmhvj4+OfukCmYG09qej5xu9zcXK5cuYKjoyN79uyZU82LUqnks88+Q6VS8cEHH1BSUsLVq1dZsWIF69evx8jICI1Gw2effcbw8DD79u1Do9FMin4NDQ3R0dHBnTt3UCgUWFlZ0dfXhyRJ2Nra4uLiQlhYGJGRkZiYmHDs2DEaGhqIiopi06ZNJCcn/+Q+n+Pj41y5coWioiI8PT1JT0+f8j4qlUrOnTvHzZs3MTIywsHBASsrK4KCgoiMjMTX1/exUWWNRiNbtQ8MDODn50dKSgoeHh6y3f27774768WUxsZGbt68SVNTE0uXLiUtLW1a+/eBgQGOHz9OZ2cn69evJyEhQaQGCl5JhLD6EceOHeO3v/2tXNz7JGH161//mt/85jdT/i6E1YvDsELb39/P+vXrUavV3Lt3D2NjY1avXk1sbOysG5/29fWRm5tLYWEharWawMBA4uPj8fHxmdHJf2hoiHPnzlFbW0tERASbNm2a1gFrpkiSRGZmJteuXSM0NJSdO3fKKYBjY2Pk5eWRk5PD+Pg4gYGBJCUlvRJ1BoKZo1arOXv2LKWlpTg7O9Pb20tiYiKbNm2S3+eysjJOnTrFokWLeO211x6b8mqwas7Ozpbrp5KSkoiIiHhi/ZQkSeKz9ZKgUCg4c+YMlZWVxMfHs379+idGorq7uzlx4gS9vb2sW7duTr3MhoeH+eSTT7C2tua9996jqKiIixcvEh8fz6ZNmzhz5gxlZWW8//77j0zRa29v5/Dhw3R2djI2NkZXVxd2dnYsXbqUZcuW4eTkRHt7O8XFxdTX1wM/LG6ampoSExPDkiVLpphsTPzd1tb2lU1bbWho4Pz58wwODpKcnMzKlSunpHxXVFRw7tw5VCoVfn5+DAwM0NPTg52dndyA+HFmF3q9Xjb86OzsxN3dnYSEBB48eMDg4CCHDh3CxcVlVuM2uBPeuHGD1tZWPD09SUtLe2TDY51Ox7Vr18jKyiIoKIgdO3Y89XVSIHjeCGE1gZaWFmJjY7l69Srh4eEAImL1CmGIDl26dAkHBwdCQ0MpLCxkeHiY+Ph4uU/ITNHr9dTU1JCbm0ttba1c7B0bGyv3vJrt+IqKirh8+TKmpqZs27btqZpqGigvL+fUqVMsXLhwysRZq9VSUlJCVlYWPT09LFmyhKSkJEJCQl7ZCYbgB/r7+/n2228ZGBjA09OT2tpaucGqkZERkiRx+/Ztbt26RXh4ONu3b5+29k6lUlFQUCBPoLy9veX6qZlMrnt7ezl79ix79uzB3t5+vp+qYBY0NTVx4sQJNBoNO3bsmNU5RqvVcu3aNbKzs1m2bBk7duyYdVuH7u5uPvvsM7kvVVFREefPn8fGxoaRkRF2795NRETElMc1NDTwpz/9iYcPH6LVanFxcZGj8f7+/rKznaHZb2JiIsuXL2d4eJhvvvmG5uZmUlNTsbKymmS6odFo5GM8Ku3wx0LsZRZfWq2Wu3fvcu/ePRwcHNi6deuUFL3R0VHOnTtHVVWVLKYqKyt5+PAhCoWCJUuWEBkZSWho6LTXQ0mSqKurIzMzk4aGBhYsWCBnaHz44Ydz+o5LkkRtbS03b96kvb0dHx8f0tLS8PT0nLJtVVUVp0+fxtzcnH379rF06dJZH08geFEIYTWB06dPs2vXrknRDJ1Oh5GREcbGxqhUqidGOkSN1YvBkApRVlaGt7c3KpWKjo4OAgMDWb9+/axW2cbHxyksLCQ3N5fBwUGWLFlCfHw8y5cvnxdTiOHhYc6fP091dTVhYWFs3rz5qWuh2traOHr0KKampo/sR2S4qN2/f5+Ghgbs7e1JTEwkOjpa9BF5BamtreXEiRNYWVnh5eVFYWEhK1euJC0tTU65OnPmDKWlpaxZs2ba/lI/rp8KCwsjMTFxVgX/4+PjfPLJJ5iYmPD++++L4vMXhF6v5/bt29y5cwcvLy92794957S42tpa2dhi586ds24a3dDQwNdffy1H0i9fvsw//uM/kpyczN/+7d9OES65ubn8l//yX2hra2PJkiVs3bqVHTt2sHTp0km9mJydnUlOTiY8PHzSuVitVnPkyBHa29t588035cm6JEkolcpH9vaa+Pt04mu66JeNjc0LFV89PT2cP3+epqYmIiIi2LBhw6R2CYZFvEuXLmFpacnOnTvx8PCgurqa4uJiampqMDIyIjAwkMjISJYtWzbt82lra+PevXuy5bufnx//+T//ZxwdHec0dkmSqKqq4ubNm3R1dbFs2TLS0tKm1FUNDQ1x/Phx2traWLt27ayMdgSCF4kQVhMYGRmhqalp0t/ee+89goKC+NWvfjWjrvIvk7DKyclheHgYV1dX3NzccHFxmVNh8stOa2srJ06coL+/H0dHRwYHB1m4cCEbN26cVcGtoQD64cOHSJJEaGgo8fHxz6SQVpIkHj58yMWLFzE2Nmbr1q0zdl6ajqGhIY4ePcrAwAD79u2TbXp/TGdnJ/fv36e0tBQzMzNiYmJISEgQkYZXAEmSuHfvHjdu3MDPzw9XV1eysrJIS0tj1apVwA/nsWPHjtHd3c2uXbse+blqaWkhKyuLiooKLC0tiY2NnVPTaa1Wy1dffUVfXx8ffPDBnCdbgqdjcHCQkydP0trayurVq0lJSXnqif/TGluUlpZy/PhxoqOjqaqqQq1Wo9FoCAkJYc+ePZiYmDA6Osq//Mu/cPjwYSwsLNi/fz8ffvghCxcupKqqirt379LW1sbixYtJSUkhODh42uc1nbh6Egbx9bgGy0NDQ2i1WvkxE8WXlZUVVlZWWFpaPvH+bFPQnzTuwsJCubZyw4YNRERETBIfg4ODsr1+UlISa9aswczMjNHRUR4+fEhRURFdXV2ykUhERMS0Zk69vb1cvHiRw4cPY2try0cffURKSsqc3XQlSaK8vJxbt27R09NDQEAAaWlpkxZ1dDodN2/e5N69e/j7+7Nr1y5hyCR46XmlhZVOpyMjI4ObN2/S3d3N3/7t3xIWFsbQ0BDXr18nOTn5qZunPikV8Me8TMLqypUrlJWVMTQ0BPzQd8TR0RE3NzdZbLm5ueHs7PxK2nMbHJGuXLnC6OgoVlZW2Nvbs2bNGqKiomY0sdBqtXLvqdbWVuzt7YmNjSU6OnpODVNny+joKBcuXKCiooKQkBC2bt36VMdVqVScOHGCmpoaNm/eTHx8/LTbDg8P8+DBA/Lz81Gr1SxfvpykpCTh9vaSolKpOHPmDOXl5axcuRKtVsv9+/dZv349ycnJwA+LA0ePHgXg9ddfnzRJMdRPZWVl0drairOzs1w/NZcFF0mSOH36NGVlZbzzzjt4eHjMzxMVzAqDo5qFhQV79uyZsaCYCT82tti7d++srql37tzhn/7pn1i2bBl/93d/R2trK9999x0LFy7E3t6eP//5z9TV1REVFcU///M/4+npSWlpKffu3aOnpwdvb29SUlJm3KNvorh666235u0zKUkSCoViivAaGRlBoVCgUChQKpXy/YkibCJmZmazEmKG3y0tLae9no2NjXH58mVKSkrw9vZm27ZtkzI0JEkiOzub69ev4+joyK5duyad4zs7OykqKqKkpITx8XEWL15MZGQkYWFhjxQxVVVV/MM//AOjo6OEhYURExPDihUr5ryootfrKS0t5fbt2/T19REcHExaWtqkrIva2lpOnjyJqakpe/bswcvLa07HEgieB6+ssBocHGTTpk3k5ORga2vL2NgYV69eZc2aNeh0Ory8vHj77bf5+7//+6c6zqssrAyoVCp6enro7u6mu7tbvj8yMgL8sPrm5OQ0SWy5urri7Ow8ryts88nY2BgnT54kMzMTSZJwd3cnOTmZ1NTUGaW2DQ8Pk5eXR35+PmNjY/j6+hIfH/9CevIYVu4uXLgAwObNmwkNDZ1z2oNer+fq1atkZWXJReOPe05qtVruTzQwMDDr+hrBs6evr49jx44xPDzMzp07aWpqIjs7m02bNpGYmAj8ULh+8uRJXF1def311+Xok1KplOunhoaG8PHxISkpaU6umBO5c+cON27cYM+ePYSFhc3L8xTMDkmS+PLLL7GxsWHbtm3PrNB/orHFTB3bJEni7NmznDhxAldXVz766CMWLFhARkYGX3/9Nb29vTg4OPD+++/zwQcfyK50Q0NDBAYGyq50s0WtVvPNN9/Q0dExr+LqxyiVSlQq1SMj/Vqt9pGCayb39Xr9I49nEFjTibG+vj4ePHiAQqEgNTWVlStXYmtri4WFBUZGRnR3d3Pq1Cm6urpYtWoVKSkpU8oeampq5ObDkiQREBBAZGQk/v7+k7ZtaGjg888/x9TUFEtLSxQKBcuXLyclJWVOjpLww3WrpKSE27dvMzg4yPLly1m9erUsEoeHhzlx4gTNzc2kpaVNm94seHaMjY1RX18vzvdP4JUVVr/85S/55ptvOHnyJFFRUbi5uXHt2jXWrFkDwF/91V9x69YtioqKnuu4XkZhNR0KhUIWWRN/jo6OAj8ILmdn50liy83NDScnpxeaX15fX8+nn35KZWUlS5YsITU1lXXr1j1xxUySJBobG8nNzaWyshJTU1MiIyOJi4t7rFPS82JsbIyLFy9SWlpKUFAQW7dunXVq1kTy8vL4/vvv8fPzY+/evU8UnHq9nsrKSu7fv09raysuLi4kJibOOaIhmB+qq6s5efIktra2HDhwgJycHHJzc9m6dStxcXFyeuD169dZvnw5O3fuxMzMjIGBAbl+SqfTyfVTc534TKSsrIyMjIxJKYiCF4NarcbMzOyZTzJ/bGyxc+fOx6aB5eXlcf78edLT07l//z537tzB1dWVoaEhmpqa5MXRzZs3U1BQgEKhIDQ0dF4yTQziqrOzkzfffHNO4kqv1zM8PMzAwIB86+/vl+8rFAoAlixZQmxsLMuXL3+ic+aTkCQJjUYji6zZCDOlUolWq6WpqYmWlhasrKwICAjA0dFRFl8WFhY0NTVRV1eHm5sba9asYeHChVPEmqEmt7S0lM7OTqytrWWb+0WLFmFkZERFRQXfffed/LesrCwGBwdZtmwZKSkpeHl5zekzqdPpKCoq4s6dOwwPDxMeHs6qVatwcnKaVEdoZ2eHn58ffn5++Pr6ihTBZ4TBxKuwsJDq6mqMjY35D//hPzyXjJ5XlVdWWC1atIhDhw7x93//9/T19eHq6jpJWP3xj3/k//q//i8GBwef67heJWE1HePj44+McI2PjwNgYmKCi4vLlAiXo6PjMxVcer2es2fP8s0336DVaklLS2Pnzp1PTH1Rq9UUFxeTk5NDT08Prq6uxMXFTdt76kVTUVHB+fPn0el0bN68mfDw8DlPmurq6sjIyGDBggUcPHhwxm6GLS0t3L9/n8rKSqysrIiLiyM+Pl6cTJ8jkiRx584dbt68KVsPX716lcLCQrZv305UVBRarZazZ89SUlLC6tWrWblypdx/yvDexcbGEhcX91QifSKtra188cUXhISEsGvXLrFq/DPDYGwhSRI7dux4pLFFS0sLn3/+Oa6urpiYmNDc3ExeXh7Dw8O4u7vj6uqKt7c3N27cwMrKinfeeYfVq1fPa43eTMSVWq2eVjgNDg6i0+mAH9LoFyxYgKOjI05OTjg6OspjLSoqoq6uDnNzc8LDw4mNjX1qYTgXDLViSqWSlpYWLly4QEtLC35+fkRERMjpjAqFgvb2drKzsxkZGcHb2xtXV9dHfo9NTEzQarX09vbS09ODTqfDxcWFwMBAgoOD5WbPK1asYNWqVTQ2NlJYWEh/fz+enp6kpKQQGBg4p3OEVquloKCAu3fvMjY2RmRkJCtXrsTBwYHW1lbKysqoq6uju7sbIyMj3N3dZaG1dOnSlzbb5lWhp6eHoqIiiouLGR0dZfHixURFRREWFiYs8J/AKyusrKys+MMf/sCHH374SGH1+9//nr/+67+Woy/Pi5dJWM13X5mxsbEpYqunp0deuTM1NcXFxWVKhMvBweGpx9HV1cU//uM/UlRUREhICB988MGUQt0f09vbS25uLkVFRajVaoKCgoiPj8fb2/ulnwyOj49z6dIlSkpK8Pf3Jz09fc4OXz09PRw5cgS1Ws3rr78+K+va/v5+Hjx4QGFhIXq9nvDwcJKSkl6KCN9PGaVSyalTp6iurpbNCAwCateuXYSHhzM6Osq3335LR0cH6enpmJiYkJWVRVtb2zOLNg4ODvLnP/8ZJycn3nnnnVeyNlPw9Ew0tvhxn6yBgQF+85vf0N3dzbJly3B2dmZkZISRkREyMzNRKBSsWLECd3d3fHx8qK6uZuHChbz11lvzHnVQqVR8+umnNDU1sWbNGszNzScJqYnzAzMzsynCyfC7vb39Yz/rAwMDFBQUUFhYyOjoKEuXLpWjWC8q2i9JEvn5+Vy7dg0TExM2btxIWFiYfO3TaDRcu3aNBw8e4OXlxcaNGzE3N582KjY+Pk5jYyM1NTW0traiVqtZsGABOp2Ovr4+/P39Wbp0KZIk0d/fT1tbG2NjYzg4OBAcHExAQAA2NjZPrC37cT2ZRqMhLy+Pe/fuoVQqiY6OJjU1Vb4eDg8PU19fT21tLfX19YyPj2Nubo6Pj48stJycnF76a/7LgEqlorS0lKKiIjnqGR4eTlRU1LxkOvxceGWFVWhoKKmpqfzbv/3bI4XV1q1b6enpIScn57mO62USVqdPn6ajowM3NzcWLlwo/1ywYMG8nWQkSWJ0dHSK2Oru7pb7e5mZmckia+JPe3v7J45Dr9dz4sQJPv/8cwDeffdddu7cOW3KhSFsnZOTQ11dHdbW1sTExBAbG/tKut5VVVVx/vx51Go1GzduJCoqak7v3djYGN9++y3t7e3s3LlzRg6XE1EoFOTn5/PgwQNGRkbw9/cnKSlpxg2SBTOnp6eHb7/9ltHRUXbv3o2fnx+nTp2ivLyc3bt3ExoaSldXF0eOHEGpVBIcHEx9fT3Dw8P4+vqSlJTEsmXL5v19MUxSNRoNH3zwgYhezgKtVitHP15FTExMpgiLicYWTk5ObN26lcbGRv7H//gfDA0NceDAASwtLamtrUWSJKqrq2lvb8fY2Jjo6Gj+83/+zyxYsICuri6++uorbGxsePvtt2ftMqfVahkcHJwScTLclEolJSUljI6OkpSUhK+v7xTh5OjoiI2Nzay+M4ap08TH6HQ6qqqqyM/Pp66uDktLSzmK9eMWGM+L0dFRLl26RGlpKb6+vmzbtg0nJyf5//X19Zw+fRqVSsWWLVtmlCGhUCjkCXhzczONjY2MjY2xd+9eoqOj5chZU1MTBQUFNDY2YmpqiqenJ25ubnIN2nT1ZBYWFlMEl6mpKU1NTVRXVwMQFhZGdHQ0Pj4+uLm5yb37Ojo6qKuro66ujubmZvR6PY6OjrLI8vHxES0hJiBJEk1NTRQWFlJeXo5Wq2XZsmVERUUREBAgFs/mwCsrrP77f//v/OpXv+Krr75i7dq1uLm5cf36dVasWMHf/u3f8g//8A98/PHHvP/++891XC+TsCorK6OhoYGurq5JQsfS0lKOKk0UXPN5spEkieHh4UfWcKnVagDMzc2niC03Nzfs7OwwMjKiqqqK3//+95SXlxMTE8N//I//cdoUi/HxcQoKCsjLy2NwcJClS5cSFxc3b72nXiRKpZLLly9TWFiIn58f6enpc2pQPDFtLC0tjZUrV8568q3T6SgtLeX+/ft0dXWxaNEikpKSCA0NFakX80BlZSUnT57E3t6e1157DQcHB44fP051dTV79+4lODiYqqoqDh8+zNDQEI6OjpiZmc1r/dSj0Ov1HDlyhNbWVt5//30RsZwFBudRQ2R/vhkbG5vkQidJ0qTbo/4+220tLCzw8/PDxMRk0t/1ej3Nzc189dVX1NfXY2RkhL29PevXr6elpYWuri70ej319fWYm5uzZcsWlixZws2bN3F2diYlJQVJkhgcHOTWrVsYGxuTkpKChYUFer0enU6HTqdDpVIxOjoq38bGxhgbG2N8fFyeoBsyNCwsLLCwsMDS0hJzc3MsLCwwMTGhrq6O8fFxgoODsba2Rq/Xy48z3H/c3378P0mSMDExwc/Pj9DQUIKCgnBwcJB7XikUCjmKNTY2hoeHB7GxsYSEhLyQKFZNTQ0XLlxgdHSUlStXkpycLJ+zlUol33//PSUlJQQHB7Nt27YZL5wYUsa++eYbmpqaWLlyJRs2bCA8PFxOP+7p6SEzM5OSkhIsLCzk1HIzM7NZm3uMjo5SX19Pb28v4+Pj2Nvb4+7uTkREBMuXL8fb25uFCxdiZGSESqWiqamJ2tpa6urq6Ovrw9jYmCVLluDn58eyZctwd3d/aRtCP0uGhoYoLi6msLCQgYEBnJyciIqKIiIiYtrsGJ1OR3NzMz4+Ps95tK8Wr6ywkiSJjz76iE8//RQHBwe5d1FfXx9arZZf/OIX/Nu//dtzH9fLJKwmIkkSQ0NDdHd3y0Krq6uL3t5eedVowYIFk4SWoffVfAqTieOYKLZ6enrkJo06nY6mpibKy8vlVcz9+/dja2s7RQi0t7eTk5NDaWkp8EMkMy4u7pn0nnrR1NbWcvbsWZRKJevXryc2NnbWwmhi3U54eDjbt2+f0/srSRINDQ3cv3+f2tpa7OzsSEhIICYmRuRfzwG9Xs+tW7e4c+cOISEh7Ny5E2NjY7777jvq6uo4cOAAy5Yt49SpUxw9ehQjIyOioqJISkoiLi5uzr1kZsr3339PXl4eb7755qx6wwl+iPQVFRVhZmb21OYGj+IPf/gDnZ2dU8TQj0XTXP4+UWAYzr+Gv6vVagYHB+V0Oo1Gw8jICBYWFvI5xcjICLVajbW1NZ6enrKgUCgUdHV1YWdnh4uLC0ZGRnLtjyHCYDBy0Gq1k6JDpqammJuby6Jp4s3MzAwTExOMjY3lmwHDOUupVBIQECBnbkzc1rC94b5Wq5XHoFar5V5cGo0GtVotR2Z0Oh1WVlYsXLiQhQsXYmNjg5mZmdxMeGRkhI6ODvr7+7GzsyMqKooVK1bg6en52HP4oyKFT4Nareb27dtkZWXh4uLCtm3bJtUol5eXc/78eYyMjNi+fTuBgYEz3rdGo+Ff//Vfyc3NZcmSJdja2uLn50dkZCSBgYGYmZkxNDREVlYWBQUFSJIkvw6zXSjU6/W0t7dTVVVFXl4elZWV9Pf3o9FocHBwYPHixYSHhxMQEICXlxeLFi3C2NiYwcFBOZpVX1+PUqnE0tISX19fOaI1l0XLVwWtVktlZSWFhYXU19djZmZGSEgIUVFRj/0s6vV67ty5Q0ZGBm1tbXz55ZevZAbQ8+KVFVYG7t27x/Hjx6mpqUGv1+Pn58f+/ftZuXLlCxnPyyqspkOn09Hb2ztFcBl6XxmcAX8suOajbmoihhPl999/z/fff09LSwtubm6Eh4fLE3UrKyvZlXBkZITW1la5AXJcXBzR0dE/eWcglUrFlStXyM/Px8fHh+3bt8+p4Lu0tJTTp0/j7u7OgQMHniqty1DAXFJSgomJCVFRUSQmJopmsTNEoVBw8uRJamtrWbt2LcnJyWi1Wo4dO0ZTUxP79+9nbGyMP//5z5SXlxMeHs7bb7/93NwaHzx4wMWLF0lPTycmJuaZH++nhkFY2djYPBNh9c0339DT0yOLAYNYMAgMIyOjKWLDxMTkkaJi4t8Nj9Hr9ajVavz9/bGwsGBgYIDS0lJaW1uxtrYmPDwcFxcXjhw5QktLC/39/VhZWclpywEBAezZswdTU1NGRkYYGhpiZGSEkpISMjMzWbJkCa6urkiSJNd4WFpasn79ejw9PXF2dp6UujebzIofRwvVajWXL1+mt7eXVatWYW1tLUe+DFGwidGwialqJiYmWFtbY2NjI98Ampqa6OjoYHBwEI1Gg5mZGQsXLmTx4sU4Ojqi1Wrlffb399Pd3S0vANvZ2eHp6YmHhwd2dnaT9m1jY4OLiwsxMTHz/rnp7Ozk3LlztLW1ERMTw7p16+Tr7OjoKGfPnqW6upqoqCg2bdo0Y5MnjUbD119/TVtbGwkJCbS0tNDc3IylpSXLly8nMjKSpUuXolAoyM3N5cGDByiVyqd2g1QqlXL9V35+Po2NjfIcxt7enkWLFhEaGoqPjw/e3t5yf7/29nY5mtXW1oZer8fZ2VmOZnl7ez+T7+zzRJIkOjs7KSws5OHDhygUCjw9PYmKiiIkJOSx721vby+XL1/m/PnzdHR0sHjxYrZs2cLevXvFAupjeOWF1cvGqyaspkOpVMpGFRMFl1KpBP5XGt+PBddchI1OpyM3N5fr169TXl6OhYUF27ZtY9u2bZiamjIwMEB3dzcNDQ08ePCAkpISBgcHcXBwYMmSJXh4eMjHn+hU+FP+4tfX13P27FnGxsZYt24d8fHxsxa6ra2tHD16FHNzcw4ePPjU6V2jo6Pk5OSQl5eHQqEgODiYpKQk0Tj2MXR3d3Ps2DEUCgV79uxh2bJlqNVqjh49SkNDAyEhIdTX15OVlYWpqSnvvfceW7dufW51bTU1NRw5coTExEQ2btz4XI75U+NZC6tnjVqtZnR0lAULFpCTk0NjYyPOzs6sWLGCiIgIWltb+eUvf0lrayvLli0jMjJSdofz8vJiw4YNjI+Py66y8ENqoaOjI52dndTV1cn92AzOsl9//TVKpZJ33nln1ucltVrNyMgIw8PD9Pb2UlBQIPecGhsbk1OgFAoFAQEB2NraYmpqiq2tLTY2NtP+tLKyeuT3zmDWMNFAYXBwUI68hYeHs3z5cry8vDAxMUGhUDA0NERVVRVlZWW0tbUhSZJskiFJkpwCqdPpcHd3x9HRUU4xfNTNzs5u1ulser2evLw8rl+/jpmZGZs2bWL58uVyVLKwsJBLly5hbW3Nzp078fb2ntF+lUolX3zxBWNjY7z//vvodDqKi4spLi5maGgIZ2dnIiMj5UXTwsJC7t+/z9DQEP7+/qSkpDwxkvckDJGp6upqiouL6erqYnR0FGNjYxYsWMCiRYsICAiYJLQ0Gg0NDQ3U1dVRW1vL4OAgJiYmeHh4yNGsxYsXvzI1xePj45SUlFBUVERnZyd2dnZEREQQGRk5qYH0jxkcHKSsrIx79+6RlZXFyMgIQUFB7N+/f0rvM8GjEcJqnvmpCKtHIUkSIyMjk4SWIZXPUJhtZ2c3RXC5uro+Mp3BUNB85coVGhsbGRkZwd3dfVLDUUPvqZycHCorKzE3NycyMpLo6GiMjY2n2ML39fXJq4y2trZTxJarq+tPpnBVrVZz7do1cnJy8PT0ZMeOHTg7O89qH4ODgxw5coTh4WH27duHn5/fU49Lo9FQVFREdnY2fX19eHh4kJSURFBQ0FPlshvSkgypONPdlixZ8kqkc5SVlXHmzBkcHR157bXXcHR0RKVS8fHHH5OXl4ebmxsmJib09vbi7u7Ohx9++FxFaldXF59++ik+Pj4cOHDgZ1mHMB+8ysJKr9dTXl7OgwcPMDMzY8mSJYSGhuLi4kJ3dzcZGRmcOXMGlUpFZGQkoaGhjI6OUl1dLT9fNzc3Nm/ejJ+fn2wWYRApkiRx4cIFCgoKOHjwIMuWLQN+qBv76quvGBkZ4e2332bRokWynfjw8LB8MwioiTfD4h/8ELEy1I/Y29tja2uLra0t5ubmZGdnywsaHh4e8zZhHhgYoK6ujoqKCqqqqujv78fExISFCxcSHx9PeHi4XANk2L68vJzy8nKUSiWLFy/G398fR0dHBgYGWLJkyZTnPTw8LNcqww8pkra2tk8UX4+6Dg8PD3Pp0iXKy8tZtmwZW7dulbMNBgYGOH36NM3NzSQmJrJ27doZpSaOjo7y6aefYmRkxPvvv4+NjY18LS8qKpJNEnx8fOQGxNXV1WRmZtLd3Y2HhwcpKSnz0qTekA1TX19PTU0N5eXl9Pf3y3WJCxYswM3NDV9fX7y8vPD29sbd3Z3h4WE5mtXQ0CCntPr6+rJs2TJ8fX3n7NT7rNDr9dTV1VFYWEhVVRUAgYGBREZGsmzZsmnP4aOjo5SVlVFaWkpVVRVNTU3o9XqCg4PZv3+/LLgFM+OVFVYzcSMzMjKirq7uOY3oB37Kwmo6dDod/f39UwTXwMAA8MP7YGg0bBBc8EOKUUNDg5wCYmhk6+TkhEqlori4mNzcXHp6enBzcyMuLo7w8PDHhq4N1q8Ta7i6u7vp7++X8/QXLFgwRWy5urq+lD2tZkJjYyNnz55leHiYNWvWkJiYOKtJsEql4vjx49TV1bFlyxZiY2NnPYZHCR61Wk1VVRW5ubm0tLRgY2NDSEiIXKPzJIE08WaodZjORWoiVlZWvPHGG7OylX+e6PV6rl+/TmZmJmFhYaSnp2NmZkZ1dTX//M//TH19PYmJiQQFBVFbW8vChQt5/fXXn6tYHB0d5c9//jNWVlYcOnTolRMELxOvkrCSJInx8XH6+vrkwvbe3l4sLCwICgrC0tISrVZLTU0NpaWlDA0NYW9vzy9+8QsSEhKora2lpKSElStXys68J06coK+vj3Xr1pGQkDDluq3X6zl27BhVVVXs2LEDa2tr2fjo3Llz9PX1ER4ejrGxsVyHC5PFhJ2d3SPFhLm5OWVlZY987dVqNWfOnGFgYIAdO3Y8k95Tw8PD1NXVUVxcTHl5OX19fVhaWuLt7U1SUhIRERGywYNWq6W+vp6ysjJaW1sxMzPDy8uLvXv3TqkZNlwzfyy2HicyAWxsbKYVXl1dXdy7dw+VSsXq1atJTEzExMQEvV5PdnY2169fx8nJid27d8updI+jv7+fzz77DDs7O959991J11eVSkV5eTnFxcU0NjZibm7O8uXLiYiIQKVSkZmZSXNzM66urqSkpMyrOZJKpaKxsVGOTBnSBg2fSzs7O5ycnPD09MTb2xtvb28WLVokR1fr6upob29HkiTc3NzkaJaXl9cLs9bv6+uTe04NDw+zcOFCuefUdGn+CoWC8vJySktLaWxsRKPRoFQqGR8fx8fHh/Xr18vfO8HseGWF1bvvvjvlBG0wPcjMzCQ0NJSoqCjZpvt58XMUVtOhUqno6emZJLhaWlooLy+no6NDzlc3MTEhMTGRrVu3YmZmJp9wNRqN3Htqrl3cDUxscjgxwjUwMCALLnt7+yk9uFxcXF76yRD8IFJu3LhBdnY2S5YsYceOHXLdgkGUPO6mUqm4e/cuDx8+JDAwkIiICHQ63YyFz5OspEdGRmhpaaGnpwdzc3O8vLzw9fXFzs4OMzOzebtJkkRGRgadnZ28/vrrL5170fj4OCdOnKC+vp4NGzYQFxdHeXk5t2/f5sqVK5iYmPDLX/4SW1tbrl+/TkBAALt3736uol+j0fDFF18wPDzMhx9++NKtyr5qvGzCSqfTyRPvoaEhhoaG5Pv9/f20trbS2dmJTqeTU6acnZ0JCAigtbWVe/fuyY6gLi4uvPvuu8TGxnLp0iUePHjAmjVrSE1Nlc/XKpWKc+fOkZmZiZubG/Hx8Wi12kkCYHBwkIKCAlQqFVFRUdja2mJnZ4eVlRVFRUWoVCrS09Nl04kFCxZga2v7xMn2k1775yGuDIyOjlJbW0teXh6lpaUMDAxga2tLYGCgLB4MYxwYGKC4uJiSkhIcHBxYtmwZMTExBAcHz8rMQqVSPTKqN/E2MUVTp9PR3t5OV1cXrq6urFy5Uo7MaDQabt++zcjICOvWrSMlJeWJk+7Ozk6++OILFi1axJtvvvnIsRuea3FxMQMDAzg6OhIZGYmTkxMPHz6kuroae3t7kpKSiI6Onvfv0ODgIPX19bJo6unpYWxsDDMzM/R6PTY2NtjZ2eHh4SFHtJycnGhtbZUjWsPDw7Kd/LJly/Dz85Mt4J8VarWasrIyioqKaGpqwtLSkrCwMKKioqZNWVSpVFRVVVFaWiq3QViyZAkajYbOzk6sra1ZuXIlcXFxr7yb8ovklRVWj6O4uJiNGzfy9ddfs27duud6bCGsHo1WqyU7O5s7d+6g1WpxdXWltLSU0dFRfHx8GBgYoLm5mYGBAWxsbAgLCyMuLg5fX19Z7DyL1SCNRiObd0yMcg0ODgI/rIo6ODhMsYV3cXF5qvEY8uhnEqWZza27u1u29/Xy8ppVTriZmRmdnZ3U1NSwaNEiYmNjsba2npWwMTU1fez/R0ZGyMnJoaCgAK1WS2hoKElJSfNqE65Wq/n2229pampi3759s3K2epZ0dnZy7Ngx1Go16enp9PX18eDBA/r6+mhvb8fNzY2//Mu/pLCwkPz8fJKTk1m7du1zXTE0CNOamhree+893N3dn9uxf6q8CGGlVConCaaJ90dHR+XFJEPNibm5uXzuMzc3Jzw8nBUrVsgpf1lZWTQ3N9PQ0ICbmxsbNmygurqakJAQUlNTOXHiBA8fPiQ6OlpOozJM6A2ugX19fVRWVmJiYkJ8fDx+fn6TIiampqacP38eKysr/uIv/kJeaVer1Rw5coS2tjYOHjw4q8WSmbz2z1NcGRgfH6e6upr79+9TVlbG0NAQDg4OhIeHk5qaSlBQEBqNhqGhISwtLXn48CGNjY1YW1sTGRlJTEzMrNO+p8Pg5jhRbDU2NnL79m06Oztxc3Nj8eLFmJqaotfraWpqoq2tDTc3N1JSUliyZAkLFizA3t5+0vtpYWGBkZERTU1NHD58mGXLlrF///5pz2eSJNHc3ExRURFlZWWo1Wq8vb3x9PSkt7eXyspKLCwsSEhIID4+/pkYVen1ejo6OmSh1dzczNDQEDqdDjMzM9n90dLSkiVLluDt7Y2XlxeWlpa0tLRQV1cnR38Mroh+fn74+vrOi3OrJEm0tLRQWFhIWVkZGo0GX19fIiMjCQoKeuScRKPRyBHm6upqtFotnp6eBAUFMTY2Jl+Lk5KSWLFixU+mVOJF8pMUVgB/8zd/w/nz58nPz3+uxxXCajKSJFFWVsa1a9cYHh4mNjYWExMTsrOzWbRoEV5eXlRUVDA4OIijoyNeXl7Y2dnR19dHV1eXHFEyMjLC0dFxilmGk5PTM5l4qtXqR/bgMjgNGRkZ4eTkNKUHl4ODA7W1tVRUVKBUKh8rgmb61TMxMZmVuDEyMqK0tJTy8nIWLlzIunXrWLRo0RMFkUGA1dbWkpGRgaOjI6+//vozsVVVKpUUFBTw4MEDhoaG8PX1ZcWKFfj5+c3LKp9Wq+XkyZNUVlaya9cuuWbvRfHw4UPOnj2LpaUlS5culVcL/f39aWhowNTUlL1793Lr1i1aWlrYtm0bUVFRz32c169f5969exw4cICgoKAZP06v18tRDJGLP5lnLazOnDmDQqHA1tZWNmcw9CyEH4wiDJNee3v7SfcNY6uqqsLc3JywsDAiIiKwsrKitbWVrKwsHj58SGtrK7a2tvj7++Pv78/du3flGoyKigoGBgYICQnB09PzkbU9hvvGxsZcunSJ2tpa4uPjWb9+/aTJYH9/P59++ilOTk68/fbb8v80Gg3ffvstjY2NHDhwAH9//xm9NjN97V+EuJo4xocPH5KZmUlZWRnj4+M4OzvLjYW3b9+OhYUFvb295OfnU1RUhEKhwMfHR45iPQtDAb1eT05ODjdu3MDU1JSVK1eyaNEiRkZGqK2t5cqVKwwMDODr64uTkxNjY2OTrmnm5uby+24wNgoLC2Pbtm3yZ3A6QxC1Wk1lZSVFRUXy+dHLywuNRkNbWxtGRkYsXrxYtt03tDKYeJvJ3yZe9x6FWq2W0wYN0azx8XF5AdHgAmlqasqSJUvw8vJi6dKlGBkZ0dzcTF1dHZ2dnQAsWrRIjmZ5eHjMKiI0MjIip+b29fXJUb2IiIhHpojrdDrq6uooLS2lsrIStVqNu7s7oaGhBAcH09DQwK1btxgdHSUmJoaVK1fKKamPwtAmx+CAuXHjRnGefww/WWH1xz/+kf/j//g/nllTxukQwup/0dbWxqVLl2hpaSEwMJDExERu3bpFaWkpjo6O6PV6jI2N5ejUo1bHJwqciSmFY2NjAJiamuLq6jpFcD2q59V8YEhv/HGEq7u7m46ODlpbWxkbG5NNNgIDA1m6dCmWlpZzTm+bq3Bsa2vj9OnT9Pf3s3Llylk5+nR3d3PkyBG0Wi2vv/76M+sLptPpqKio4P79+7S3t+Pq6kpSUhLh4eFPnYqg1+s5e/YsxcXFbN26dU61Y0+LXq/nypUrXLp0CWNjYznFKS4ujsDAQI4fP45arWbbtm1cvnwZpVLJgQMH8PLyeu5jLSoq4vTp06xfv57k5OTHbmuY4DQ3N9PU1ERraysqlYq//Mu/xMnJ6TmN+NXgWQurd999l76+PhYtWkRISAihoaF4e3vL4unHK9CSJFFfX092djZ1dXWy85mLiwtKpZK2tjZqamrkAn+NRoOlpSUrVqwgKCiIkpIS1Go127dvl6Pjr732GuHh4TOK4kuSRG5uLleuXMHJyYk9e/ZMEjJtbW188cUXcusUw/lPq9WSkZFBbW2t3Cz7SczmtX+R4sqASqUiLy9PjmQZem6tXr2aTZs24eXlhU6no7y8nPz8fJqamrCxsZGjWM/iuzc0NMT3339PVVUVAQEBbN26FXt7+0nmSb6+vmzbtg0TE5NpUw4rKirIz8/Hw8NDrrM1NTV9rOHGggUL0Gq1lJSUUFxcTF9fH1ZWVigUChwdHXFzc5M/o4Y+YxP7jT1pemtkZDQrUWaYj3R2dtLe3o5arUaSJPnzpdPpMDY2xszMDHd3d7y9vXF1dUWr1coRrdHRUczMzPD29pYjWoZebhPR6XRUVVVRWFhIbW0tJiYmcs8pb2/vR9YqNjY2UlpaSkVFBQqFAldXV8LCwli+fDlOTk5UVlZy/fp1ent7CQ0NZc2aNY/8zEiSRG9vL01NTTQ1NVFfX09raytDQ0OYmJjw//6//+9PvrXN0/CTFFZ9fX1s2LCB4eFhampqnuuxhbD6oWD32rVrlJSUsHDhQjZu3IhCoeDjjz+mo6NDPuHExcURFRU1py/o2NjYFLOM7u5uubjZ2tr6kXbwTzux0ev19Pf3y/VapaWlFBUVUVlZSU9PDwqFQu4D4+DgQEREBL6+vgQEBBAUFIS/v/9zDbVrtVru3LnDvXv3cHNzY8eOHTMqPIYfagKOHTtGV1cXu3btIiQk5JmN05AGcv/+faqrq7G2tiY+Pp64uLinOoFLkiTXfhjqAp4Xw8PD/P73vycnJ0cuJl6xYgVhYWGMjY3x5ZdfotPpWLlyJVevXsXOzo6DBw++kP5fjY2NHD58mIiICNLT06dctBUKhdyTpqmpifb2dnQ6HRYWFnh6euLp6YmXlxdLliwRdrw/4lkKK0mSqKioICsri6qqKhQKBXZ2dixduhRPT09cXV1lu/TR0VF5FX14eBgrKysWL16Mm5sbNjY2qFQqOjo6GB8fl+27jYyMCAwMJCEhgZSUFG7dusWDBw/YuXMnd+/eZWxsjDfffHNOKaPd3d0cP36c/v5+1q9fP6llRHV1NUePHiUuLo7NmzfLf9fpdJw8eZKKigp2795NaGjoY48x29depVJx9uzZFyquDAwODnLnzh0aGxupqqpCq9Xi7e3NqlWrWLt2LUuXLpWjWAb7eF9fX2JiYggKCprX76EkSVRWVnLx4kWUSiVpaWkkJCRgbGxMXV0dZ86cQa1Ws2XLFsLCwqZd1MzMzOT8+fMkJiYSEBAwrQibWLNrSFc1MTGhsbGRiooKenp60Ov12NnZ4e/vT1hYGDExMfKCquH4Wq1WvhlS7w2///j+xN8NDaEnbjcx28TwmoyPjzM4OCin2kqSJDd1NiwM6vV6TE1NZSFoa2srOywbDL4WLFggn0Pt7Oxoa2ujvr4etVqNh4cHUVFRstGJ4XtpcNVsbW2lrKyM8vJyxsbGcHR0JDQ0lLCwMNkorLGxkWvXrtHa2oqfnx9r166d9J01ZBwYhFR1dTUdHR2MjIwgSZL8HhjMOnbv3v2TbmfztLyywmrNmjWP/Pvg4KAc+jx8+DCvv/76cx3Xz1lYqdVqMjMzuX//Pubm5qxZswYPDw8+/fRTbty4wYIFC9iyZQspKSn4+/vPewqfJEkMDAxMEVx9fX3yypWjoyOurq44OzvLaSqGJpH9/f0MDAzIN0MjS0O9gKHJoyEnfWRkBJVKhSRJ8onT4CRkKMa2sLCQ+2wZ3BFDQkIICgoiMDDwseH3+aSjo4PTp0/T09NDSkoKK1eunFFESKPRcObMGUpLS1m7di0pKSnPPAWgr6+PrKwsioqKMDIyIiIigqSkpDnXFEiSxK1bt7h9+zYpKSmsXbv2mT6H8fFxLl++zBdffMH4+Dhbtmxh+/bt+Pr6YmRkxMDAAF9++SVGRkaEhoaSmZkpO2K+CGfKvr4+PvnkE7nA3LDqbBBRzc3NdHd3I0mS3NDUy8sLT09P3NzchGvUE3jWEavbt2/L0fKGhga6urpQq9XyZGjp0qVyOpZarWbx4sVER0cTFBSEtbU1bW1tFBQU0NfXx8KFC7G2tqa5uRlra2tWr16Nu7s7Y2NjmJiYcP78eZKSkigvLwfg7bfffqpaH61Wy9WrV3nw4AH+/v7s2LFDrkXJz8/n3LlzUxZE9Ho9Z86coaSkhB07dhAZGTnt/ufy2r8s4kqtVjM2NkZkZCRKpZJLly5x69YtamtrAfD19WX16tUkJyezaNEiOSLU3NyMjY0NUVFRREdHz2sUS6VScePGDXJycli0aBHp6em4u7ujUCi4ePEiJSUlhISEsG3btmkXxK5fv87du3fZuXPnI987g2AZHh6mr6+Phw8fyu6BGo0GJycnuVygpaWFzs5OxsfH5XIBd3d3PD09cXFxeSbnJkmSpvQa0+l0qNVqBgcHGRgYYHBwkPHxcXluMLHRtiGSZoiKwQ/v9dDQEGNjY3I9l52dHY6OjlOyb4yNjdFqtXJvOJ1Oh7m5Ofb29jg6Osq2+iYmJqjVajo7OxkZGcHW1hYfHx/5dVEoFJP6vRnmNoYxW1lZ4eTkNKlBt52dHUZGRvy7f/fvhLnFY3hlhdXq1aunTI4MXyw/Pz8OHTo0qxqB+eLnKKwkSaK4uJjr16+jUChISEhg6dKl3Lt3j7Nnz6JUKtm6dStvvvnmYxvTzRatVotSqUShUKBQKKbcn3hy7ujooKOjQ3YCHBkZQalUotPp0Ov1ch2TlZUVVlZW2NrayvUIdnZ22NnZodFo6OvrY2BgALVajZmZGc7OzixfvpzY2FjGx8fJycmhqKiI9vZ2jI2NGR0dxcTERDbgUKlUsmW4vb29bDEbFBQ0r6/No9DpdNy9e5c7d+7g4uLCjh07ZpTiJ0kSt2/f5tatW0RGRpKenv5cohLj4+Pk5uaSk5PD+Pg4AQEBrFixYs7NI7Oysrh8+TJxcXFs2bJl3sVVb28v2dnZXLp0icrKSoKCgvjf//f/XU57gR9EzJdffompqSmLFi2ivLycxMRENmzY8EIEikKh4M9//jPj4+OsXLmSrq4u2UQGwNnZeZKQcnR0FLn1s+RZC6usrCwUCoXczFatVtPQ0CBbSff39wPg5eVFWloaKSkpWFpaUlFRQUFBAcPDw/KCUFlZGf39/URERJCQkIC5uTlqtZqmpiby8vJYsmQJfX192NnZ8eabb86bY2RNTQ2nT58GYMeOHQQEBABw8+ZNbt++ze7duwkPD5e3lyRJrqHetm3btGm+c33tJ4qrnTt3yiv/z5OJwmrigkt7ezuXL1/m7t27si27r68vq1atIiYmRm66W1xcjFKpxM/Pj5iYGAIDA+ftvN3W1sa5c+fo6uoiISGBtLQ0LCwsKCsr4/z585iYmLB9+3b5fZyI4b0rLCzkwIEDU8yFJEmira2NoqIiSktLUSqVeHl5yan1dXV15Ofno1arZXfI8fFxKioqqKmpobW1FZ1Oh5OTE8uXLyc+Pp74+HgcHR3lBVaDOPrx74/732y3HRkZkSNAjY2NKJVKTExMcHJywtzcXE7da2xsZGBgAEtLSzw8PFi0aBE2NjZ0dXUxPj6OsbExrq6uWFlZMT4+TldXF0NDQ3IZhCHiPDGyNjIyQn19Pd3d3ZiamrJw4ULMzMwYHR1leHiYgYEBVCoVWq0WIyMjTExMZCFlb2+Pg4MDjo6OWFtbY2JiIkfhDHOuv/3bv31l29M8D15ZYfWy8nMTVk1NTVy+fJn29nYCAgJwc3OjsrJS7igfGBjIv//3/37amhG9Xo9SqZxWID1OMBlWYH9802q1cjNZQw61ITRvaWkpCyZDSp5hW5VKJa98GUSWnZ2d3BRZrVbLFyZbW1ucnJxkl6T6+nqUSiV2dnYEBwfj7u5Ofn6+nIdtsG11d3dHr9czNjYmN3k0GGEEBgbKqWLu7u6PncAaTnRzoauri9OnT9PZ2UlycjKrV6+e0b4ePnzI6dOnWbp0KQcOHHhuOdaGHPusrCx6enpwd3cnKSmJkJCQWU8UCgoKOHfuHGFhYezYseOpJxqGppdZWVlUVlbS1taGTqdj8+bN7NmzZ9Lr2tPTw5dffomJiQnW1tZ0dXXNuW/Y06DX6+ns7KS+vp5vvvmG5uZmQkNDsba2lg1lDOl98+Fk9XPnebsCjo+PU1JSQl5eHs3Nzej1eqytrbG1tUWn0zEyMoJarcbe3p6YmBgiIiKor6+nuLgYZ2dn1qxZMylKMzQ0xJEjR7C3t8fExAR3d3cOHjw476lAo6OjnDlzhpqaGtnYwtTUlLNnz1JSUsIbb7wxaZFiYprvpk2bSExMnLLPp3ntVSoVZ86cYXBw8IWIq+mElQGdTkdNTQ03b94kKyuL7u5urK2t8fHxISUlhcDAQBQKBUVFRbS0tGBraytHseYj3djQ3+rmzZtYWVmxZcsWgoKCGBkZ4dy5c1RXVxMdHc3GjRunjF+v18vuo2+99RZeXl6yQUNRURG9vb3Y29sTERFBZGQkJiYm5Ofnk5+fz9jYGD4+Pjg6Ok5yuzQ0TFar1bS1tdHV1UVvby9KpRILCwuWLl1KdHQ0qampREdHY29v/9wWiSRJkvtgPXz4kNzcXNra2gDkhtBLlixhaGhIXtQyRJYMaYGdnZ2YmJjg7e1NQkKCbPY0sbRgbGyMO3fukJWVhVqtZunSpWg0GrlR9djYmFzr6+zsjI+Pj2wC5uDgIM+DBgcH5X6ghkVpQ1RLpVKRnZ393LJtXkWEsJpnfi7CamBggKtXr1JeXi43aWxpaZFFj1KpJCIigpiYGHQ63SMFkuGnAcOX2iCO4IcopF6vl2+G/GeDUDK489jZ2eHg4CCvuBhMAib+tLW1lU/wWq2W8vLyKeYmkiQxPDxMZWUlJSUlNDY2ytEtlUqFTqeTJ+N6vR4LCwsWL14s94/w8fGRJ9Pd3d1cv36d8vJyzM3NcXR0RKPREBgYKDdkbGlpkU0wRkdH0Wq1WFlZ4ezsTGBgIFFRUQQGBk65CFhZWRESEjJncaXT6bh//z63bt3C0dGRHTt24OHh8cTHtbS0cOzYMSwsLDh48OAzj7JNRJIkamtrycrKor6+Hnt7exISEoiJiZnV6llZWRknTpwgICCAvXv3zuk11Gq1lJaWkp2dTWdnJw4ODgwNDSFJEtu2bSMmJmbS+9XV1cVXX30F/K9Ujv379z+XPlsGowlDWl9LSwsqlYra2lrGx8fZv38/cXFxeHh4PNUq5MTvhuB/8byE1dDQEEVFRXKanqHQ3dLSksLCQi5dukRdXR2SJOHi4iI7hQ4PD7NgwQJWrVolT2IN6PV6Tp48SWlpKR4eHoSHh7Nv375n9jwkSSInJ4erV6/KxhYuLi4cPXqUlpYWDh06NEn0SZIkO1muXbuW1NTUSft72tf+RYqrJwmriSgUCkpLS7l16xYPHz6Ue2R5eXkRHx+Pm5sb/f39lJeXo1Kp8PX1JTY2loCAgKf+zg4ODnLhwgVqamoICgpiy5Yt2NnZyZ85a2trdu3aNWVxVavV8tVXX1FSUoK/vz+9vb2YmJgQHBxMVFQUXl5eNDU1kZubS1VVFWZmZkRERBAXF4erq+ukfUmShFKpnNJeYGBggOrqakpKSqirq2NgYEC+xi5atIigoCCCg4Px8PDAwcFhkmOmwTJ+PtBoNJSXl1NYWEhjY6McbbKxsWFoaIienh7gB5G1YMEC2tvbqauro6GhAZVKhYuLC35+frLjoKEswdjYmKVLl+Li4kJtbS2FhYV0d3fLaYYajQYrKyvs7e3x8/MjODgYLy8vPDw8cHR0ZGxsTC6bqK+vp7GxkZaWFgYGBhgfH0epVGJlZYWNjQ2Ojo54eHjg4+PDrl27hC37Y3hlhJVhUjJb3n777XkeyeN5lYWVVqudNkpkuD80NCR3kR8fH8fExASVSoW5uTkODg4MDAyg1+vx9/eX7VANFuAwNT95oqOPocjT4IRnamoqC6IfC6SJ92fSKPLHGC64E/Ocx8fHqayspLy8nMHBQZRKJYODg3R3dzMyMiKP32Bf7ODgIFvGmpiY4ODggLOzM05OTri5ucmrRbdv3+bSpUvo9XrCw8NRKBSEhoaSnJwsv34DAwO0tLRQU1NDRUUF9fX1DAwMyH0zXF1d8ff3Z/ny5bJwTE5Oxt3d/alO/t3d3Zw5c4b29nYSExNZs2bNE529BgYGOHLkCCMjIxw4cOCFNOHt7OwkKyuL0tJSTE1NiY6OJjExccbW8DU1NXz77bd4enry2muvzXjSNT4+Tl5eHjk5OYyOjuLv74+3tzfZ2dlIksSBAwemCNSOjg4OHz6MRqNBr9fj4ODAwYMH560PzY8xGE0YhJTBaMKQauLl5UVXVxfFxcXs2bOHiIiIpz5mXV0d586d4+233xaugD/iWQurnp4eCgoKqKmpwcLCgvDwcMLDw7GysmJkZISCggJZbDk5OcnOZgaXL2trazw9PfH39yckJARfX195sSEzM5MLFy5gamrKrl272Lt373MRz11dXZw4cUI2toiIiODLL79kdHSUDz74YNL3XJIk7ty5w82bN1m1atWkMoH5eO1flLiajbCaSF9fH0VFRWRmZlJXV8f4+Dg2NjZ4eHgQEhKCmZkZvb29dHZ2YmtrS3R0NNHR0Y+07Z4pkiRRXl7OxYsXUavVrF27lri4OIaGhjh16hQtLS0kJSWxZs0aTExM6OjooKioiMLCQrKzs7G0tOQv/uIvWLFiBfBDL9Lc3Fx6e3txc3MjLi6O8PDwp7rWGXpA3b17l8zMTCorK+nv78fIyAhbW1sWLlyIi4uLnKoHTMpwmSi4Jv5tuu+DIaWxsLCQ0tJSVCoVPj4+REVFERwcPOk629nZyfXr18nKypJ7Tbm5ucmmFVZWVgwPD9PU1CRH4RQKBX19fVRVVdHa2iqLKEONWXx8vCxQHR0dGRkZobOzk4aGBtnlr7+/XxZQlpaWsoDy9PTEx8cHb29vuYzhWTkt/xR5ZYTVXOoPjIyMJrnLPA9eJmFl6Lv0uLS6if8zRIl+jJmZGZaWlvT09Mg2vBYWFtjZ2eHq6oqfnx8KhYLi4mKsra2Jjo7GzMxMTtv78X4tLCyeKJbs7Oym7XExHxguuNbW1vT09PDw4UNZUI2NjdHe3i430nR2dsbLy0uuh/L29pbTYJRKJX19fVNuarWaZcuWsXbtWszNzamqquKTTz6hr6+PtLQ0hoeHcXNzY/PmzY9MtzKka+Xl5ZGXl0dNTY0s7gw1X+Hh4XIhr4uLC87Ozri4uMj37e3tZ/S90ev1ZGVlcfPmTRYsWMCOHTueaPetVCrJyMigoaGBbdu2vbDP+vDwMDk5OeTl5aFWqwkJCSEiIoLFixc/MY2tqamJI0eO4OrqyhtvvPHY1CZD/VRRUREAkZGRJCQk0NLSwoULF3B3d2f//v1T0iPa2to4fPgwo6OjGBkZ4e/vz759++Y1jcpwwTWYTXR3dwM/fE4MaX1eXl64ublhZGRERUUF3377LStXrpzWBGg2VFZWkpGRga+vL/v3738mjbxfZZ61K+C3336LUqmUJ2zm5ub09/dTUFBAZWUl5ubmREREEB4ejqWlJZWVlVy4cIH29nYWLFjA4sWLcXJyQqvV0tvbi4WFBUFBQVhaWnLixAmMjIxYuXIlv/zlL5/rKrVGo+HatWuyscXatWs5duwYZmZmHDp0aMp3KDMzk6tXr7JixQrWr1+PkZHRvL32L0JczVVYGTCkKRtESnt7O3q9HktLSxYvXsyiRYvQaDQMDg6i1+vx8/OTo1hzrfdUKpVcv36dvLw8Fi9eTHp6OgsXLiQrK4tLly6hUChkW387OzsiIiLw9/fn7NmzDA0NERAQQG1tLVqtluDgYOLi4vDy8npmrVNqamq4f/8+eXl5tLe3y66aHh4eBAYG4ubmhqWlpVybZJhPTcRQj20QXGZmZnR0dNDY2MjY2BguLi5ER0cTGRk5KQVTqVRSUVFBaWkpDQ0NwA+GJMuXL8fR0ZG2tjbq6upoamqS03d1Oh19fX309PTQ1tYmL2Q7ODjg7+8vm2QZyhoMjzFM89Vq9SMFlI+PDwsXLsTV1VUIqHnglRFWTU1Nc3rc8+4H8zIJq6NHj1JVVQX8UJNjaWkpmzMYuof/+L6hu/pEG9La2louX75MbW0ter1ett10d3fH0tKSqqoqent78fPzk3OXHyeankedwZMYHBzk8OHDFBcX09HRwejoqOz0p9PpZPe+5ORk/Pz8cHd3f+JKrSE3eWhoiNraWqqrq3Fzc5P7fgwNDfGHP/yB6upqUlNTMTExQZIkNm3axNKlSx+7b61WS3V1NXl5eZSW/n/s/XdwnFd65Y9/OqAbQCOjkXPOkSRAMFOiKJIiJSqRlKgwntE4zMzuer2uXYfa+doub02td73jDeXxWBprRtJQokRRYpAoSiIVmANyzhloAI3YOf/+0O+97ibAKIAiPDhVb6EbaDQab7997z33Oc85TfT396NSqYiIiBDWysHBwUJOCN9khERGRs4jXFqtdsGJWq/Xc+zYMQYHB6moqGDbtm23fK/cbjenTp3i2rVrrF+/nm3btn1nA7Ldbhe7n5JGPTg4mLi4OOLi4oiPjycuLk64GkkYGRnhrbfeIjg4mBdffNGHjHk8Hnp7e7l06RKdnZ0EBQVRUVHB6tWrUalUfPLJJ1y/fp3Vq1ezc+fOedfH4OAgb775JhMTE2g0GqqqqtixY8e32vH3eDxMTk76EKmZmRkAsQEgEamwsLB578fIyAivv/66kEF+2/eroaGB999/n5iYGEE2V+SAvljqitXc3BwajQaFQsHY2BjV1dX09PSIfKOCggJUKhUzMzMigDonJ4cNGzZgt9uFAsHj8ZCQkIBaraa9vZ0zZ86I4OqHHnqIysrK76Rh3dvYYtOmTXz55ZdER0fz4osvzpPxXrlyhVOnTlFRUcHOnTux2+2Ldu5tNhsffvghs7OzPPnkk/PkaIuNb0usbnyu1tZW8V5PT0+LPt2wsDBUKhVWqxWPx0NERATl5eWUlZXdcxVrcHCQEydOMD4+LnIcGxoaaGtrIyAggCeeeIJ9+/Yhk8loa2vjyy+/5Pjx4wQFBfH7v//7rFu37r728Hg8HkZGRqivrxdVo5mZGfz9/YmNjaWsrIyysjIyMzMJCgrCYDD49HdJksPW1lYGBwd95LbSJmdoaCiBgYHMzc2h0+nQ6/X4+fmRlZVFeXk5BQUFBAYG4na7GR8fp7u7m7q6OtGSMDExIVwFJSVLeno6ubm5WCwWuru7hUW6w+FAoVAIxVBoaCjR0dHk5eVRVFREeXk5GRkZd0ygPR4PNptN9MPHxsYu8TuyvLFsiNVywYNErKRcBX9/f5xOJyaTCYPBIDJNFrpts9nE70vNpKOjo2IAqKyspLi4mMjISAwGA19++SUymYxnnnmGgoKC7/C/vT3MZjOXLl3i7Nmz1NTUMDQ0hFwux+PxYLfbCQgIoLCwkE2bNlFUVDRP0uTxeDAajT4abun27Oysz7mTdNBjY2OEh4fz/PPPk5GRgcvl4le/+hXnzp2jqKiIhIQEpqenWbduHWVlZXe00LXb7YyMjDA9PS1kPgaDAY1GQ2ZmJoWFhaSkpODv74/BYECv16PX60XFC74hHQsRruDgYK5fv86ZM2cICgri8ccfv6XUz+PxcOXKFU6fPk1OTg5PPfXUd0qcPR4PMzMzouF2dHSUkZERzGYzABqNRpAt6XA4HLz55pv4+fnx0ksvERQURGNjI5cvX2ZsbIzY2FjWrl1LYWEhSqUSg8HAu+++y8jICI899tiCn/O+vj7eeOMNhoeHiYmJYffu3VRUVNz1/+N2uxkdHWVgYEAcJpMJmUxGXFycMJm4E6OJ2dlZXnvtNUJDQ3n55ZfvqbLkcDhEOOa5c+f44osvCA4OJicnB6VSyY9+9KMlkzguVyw1sZKybKqrqxkcHCQsLIzy8nLxnrhcLmpra7l69SqBgYFs3bp13oaj1WqlqamJ+vp6ZmZmqK6uxuFwsHHjRmHus23bNiorK0lISLjvGyjexhbp6en09vaSn5+/4OZAdXU1J0+epKysjEceeYSGhoZFO/f3k1wtJrHyxuzsLA0NDcK91mw2C/m9x+MRGU6Sa+3q1avvOh5lbGyM69ev89FHH9HW1oZWq2Xfvn3s2LGDK1eucObMGRwOB8HBwbjdblJSUsjMzOT8+fPExMTw4osvfqeV77m5OTo6Orh27Ro1NTWC1ISHh5OWlsaaNWvIzs5Go9HQ1tZGfX09JpOJ+Ph4SktLyczMFBbqU1NTtLa20tLSQk9PD2azGbVaTVRUFFFRUULdYzKZxFwtKX2CgoKEhbxcLqejowOdTofD4RCW6TKZTDyfJOeNjo4W1cipqSksFotwJLZYLKhUKrHxGB0dTVRUFDKZzKf3/cav3lThL//yL1eUCbfACrFaZDxIxOrUqVO0tbVhNBrnSSL9/f3nVZOkryaTiRMnTnDlyhX8/PzYunUre/fuFYOr2+3m/PnzfPHFFyQlJfH000/fcW/L/YTD4WBgYID29nbOnTsn3IYUCgVqtRqDwYBSqSQhIYG1a9eydetWNBoNBoOBmZmZeY2ws7Ozwipd0mXfqLeWdqVsNhsTExM0NzfzxRdfYDQaqaqq4tFHHyU5OZkTJ05w4sQJEhMTycvLY3x8nMzMzNtWiWD+hGu322loaODrr78WzasA0dHRPhNjVFQUMzMz6PV6JicnxSA+OTnpU+WKiIgQkqG5uTmqqqrYu3fvLd/jjo4Ojhw5QmRkJM8999yi2TAvBiTr2xvJlkQ0/f39CQkJoaamBqPRSHJyMgEBAeTk5FBVVeWTcj8wMMC7776LXC5n3759C1Yae3p6+Jd/+RcGBgbIycnhwIEDZGRk3NFrdTgcDA0NiWrU0NAQdrsdpVIpKpMpKSkkJibe1WLLbrfzL//yL1itVl555ZU7cvuTSJR0vkZGRpiYmBC9AzqdjlWrVoksm+jo6JVq1QJYaimgVGWOiopi1apVPjvRY2NjnD17lsnJSUpLS6moqLjlazAajfz5n/85nZ2drFq1iqKiItLT04UEymg0Eh0dTXl5OcXFxffNGRR8jS3sdjsWi4Vt27bx6KOPzntsQ0MDH3zwATk5OSJ0dbHOvdVq5dixY0tOrpaKWEmQPsf19fU0NTUxOzsrHHHtdjuTk5NYrVaUSiXp6emsW7dOKFIWgtlsprGxkbq6OkZHR9FoNBQXF5OSksK1a9fo6uoSvToNDQ20t7eLTccdO3Ygk8kYGhriN7/5DWlpaezfv/+BGE8cDgd9fX00Nzdz5coVent7GR4eFg7CSUlJQn5aUlIiWlB6e3tpamqitbUVm81GbGwshYWFZGdnMzs7KyTsHR0dTExMYDKZxN+Uy+U+PehGo1G4e8bFxYkwdmkesNlsTE1NMTo6itVqxc/Pj7CwMMLCwlCr1SLfU1rXSFbr8M11oNFohAopKSmJhIQEgoKCfNRM3l/j4uJW8gtvgWVNrHQ6Hb/61a+oqanxWfRKkMlknDlz5r6+pgeJWNXU1DAzM7OgHO/G3QaPx0NnZyfvvPMO586dQ6FQsH37dg4ePOjjwmQwGDh69Ch9fX1s2rSJzZs3PzAfMLfbzfDwML29vXR3d9PS0iLK4x6PR2ihpcf6+fmRn5+PVqsVQXlGo1E8n0KhmEeapNtBQUFYLBZmZmZ8QgFnZmbEgl3KVQsICKCpqYmOjg7CwsIoLi4mNzeX6elpvvzySwICAsjOzsZkMhEaGsquXbtuaQBwqwnX5XLR19fHtWvXuHLlCkNDQxiNRkJCQoSkITs7m7S0NGJjY0V6++zs7DzCpdfraWtro6enRxhE5OTkzKt0hYWFIZfLGRsb49ChQ7jdbp5//nni4uKW4F1ePBiNRkZHR2ltbeX8+fPU1dXR19dHYGAgmzdvFr1aUj9Cf38/n376KYmJiTz77LMLkpPOzk5++ctfMjw8TEVFBS+++OItnRMtFouoRPX39zM6OiqMJqRKVEpKCnFxcffsAOl2u3nnnXfo7+/nBz/4wYL9IQuRKL1eLzLeYmJihJyyt7eXhoYGNm/ezEMPPbSix78Nlrpi1dLSgkaj8cl3s9vtXL58mYaGBrRaLVu3br1t0K3FYuEf/uEfaG9v5w//8A+Ji4sTLmYqlUqE5TY3N9PW1gZAXl4e5eXlpKWl3bfrQDK2aGhowOl08oMf/ICqqqp5j2tububw4cOo1Wp27969qH2NErnS6/UEBgaKSA/vrzf7nnf8x43f8/6Zw+FYUmLlDUlqXl9fT2dnJ06nU8hLpQq12WwmMjKSyspKtmzZQmZmJgBdXV3U1dXR3t6Ox+MhOztbyOYkc6b6+nqOHTvG1atXCQgI4Mknn+Spp57i/PnzXLt2jYyMDJ544glCQkLo6uri7bffpqCggCeffPKBGF+kfrWamhquXbvG+Pi4yHSSCIrU+xwUFCTc9BISEsjOziYwMJDe3l5qa2tpa2tjbGwMi8Uixle5XC5aA1QqlbgWpBDggIAAYmJi0Gg0IqLGmxwBIiJG2vyWcq0CAgKIi4sjOzubvLw8EhMTmZubY3x8HJ1OJ3q1pEBjlUolWiEyMzPJyMgQ/bkruDMsW2LV0NDAli1bsFgs5OTk0NjYSH5+PjMzMwwPD5ORkUFSUhJnz569r6/rQSJWdwKr1UpdXZ0IW1QoFGzbto2XX355XtZFZ2cnH3zwAQqFgqeeeuo7cYPzhsfjYXx8XLjc9Pf3YzQaGRwcFFI5mUxGWFgY/v7+ItU8KiqKuLg4LBYLoaGhREZGEhISQkhIiHD6Cw0NRaPRCMc+bwI1PT3N7OysqAJKBExKJw8LCxM2qhJRmZqaYmhoiI6ODmGI4e/vL+zdo6KiSE5OxuPxiPdAmrhuxJ3uZHo8HkEcrl69SmdnJ3NzcygUCsLDw0lMTCQ7O5v09HTS09MXDH+12Wz09PRw9OhROjo6iImJISkpibm5ORwOB/CvVa7IyEg0Gg1Xr17FarVy8ODBRXGcWwp4PB56enq4dOkSXV1dBAcHU1FRQWpqKm+88QaDg4OUlJTgdDqZmJigo6OD8fFxioqKePjhh0lMTCQuLo6oqChBeNrb2/nf//t/o9frefTRR3nuuefm7ejPzs4KEjUwMCCqiyEhIT5BvIs5kZ0+fZrLly9z8OBBMjMzcTgcjI2NCQIlBWcvRKK8K1Eej4dPP/2US5cuLWhtvYKFcb9zrPr6+vjyyy+xWCzCGex2m18Gg4HXXntN5EVt27ZN/GxkZISrV69iMpnw9/envLycoqIi+vv7hUwqLCxM9KHcj2q1ZGxx6NAhzGYzf/Znf8aaNWvmPa6xsZH/9//+H+np6ezZs+eeNycWgs1mo7W1VSyuvQNapWOh79+4AbwQZDKZ2PRKSUkhICBA9Mvc7OutfnbjY251PZhMJhobG0UbgOT463K5aGlpYXBwEKvVSmBgIOHh4aKCUlZWRlFRERqNBvjGPOvatWvU19djt9vJzc2lqKiIzs5OamtrSUxMZM+ePRgMBo4dO4bD4eCxxx6jsLBQRGJUVlby6KOPfmeL+pmZGerr66mtrWVmZobIyEjxf/r5+TExMcH58+eFWkRy8pVklVLUjN1uF1I6KXBX6m8PDAwULsOxsbGEh4cLN2J/f3/KysooLCwkKChoXvVILpdjt9uxWq2i70vq+ZLUKRMTE2Ld4u0cmJqaSmZmplgLTU9Po9frGRgYEJlX0oZ0fHw8xcXFZGZmkpaWJt7jpcC3yeh8ULBsidWuXbtoamri/PnzBAYGEh0dzeeff85DDz3Ee++9xx/90R/x8ccf31Nfw7fBciFW4+PjXL16lQsXLtDe3o5SqWTt2rU8//zz8xoTXS4XZ86c4eLFi2RlZbF3794l/WDdCtPT0/T09IhGUckuVGoIHRsbE9ptKW3c7XYTHBxMfn4+lZWVpKWlERgYyMDAABEREcjlcpF5IQ1I0lfvnC0pK0tKJZduBwcH33bhIvVntbe3c+rUKebm5ggLC2N8fJy+vj5hexwVFYVWq0Wj0VBZWcn27dvnVRe/jQ2vFN4sOSBKO2WRkZHExMQIkpWWljbPyKGmpoZPP/0UtVrNY489RkxMjCCO3pWu6elp2tramJiYoKCggFWrVon/S6p2SVWu+w2n00ljY6MI1IyNjaWqqorCwkIhO7HZbLz99tsMDw/z2GOPcfHiRXp6eigpKSEoKEgQEYkER0dHY7fbOXXqFDKZjN/7vd/jySefRC6Xi4lKIlKS0YRWq/UhUgsZTSwGLl++zLvvvit6BiU5nzeJkgjUreR8brebjz76iOrqanbt2nXfx9XljPtFrEwmE+fOnaOzs5OkpCS2bt16RxLtqakpDh06RENDA4888si8viVpvMnIyBAOc3a7nYKCAtauXYvb7aampoampiacTieZmZmUl5cvSkbS7dDR0cHf/u3fMj4+zp/92Z+xZcsWn5/bbDZOnjzJV199RWJiIrt27frOzZO8JV43I19OpxOz2SykyTKZTBgX3Pj1xtt3sqTzNja4FUEzmUz09/fT39+P2WzG5XJhNBrFZqFkdrFmzRp27drFunXr6O3t5fr163R3dxMQECBCib2vxf7+fk6dOsXk5CRr165lzZo1nDlzhqamJvLz89m5c6ewb9+6dSsbNmxYkvfBu4fIZrMJuWtXVxdtbW0MDQ3h8XiIjo4mNjYWf39/rFYrU1NTIv9pamoKo9GI1WrFaDRiNpt93gelUolarSYsLIyUlBRR0SssLCQhIUFsssrlcq5cucKFCxdwu92sW7eOqqqqu65Wemd0SqYTUi+91K87NDTE+Pi4WN9IbQ3BwcH4+/vjcrlwOByYzWYmJyex2Ww4HA5Bsv/4j/94ycxFvm1G54OAZUusQkND+c//+T/zl3/5l0xNTaHVavn000/FTtt/+A//gbq6Or766qv7+roeZGLlcrlob2/n6tWrdHR0CIlcYWEhjz/+OFlZWfMWd1NTUxw5coSxsTG2bdvG2rVr78vukcfjwWQyMTQ0JKQn3d3dIsNBeg2zs7PMzMzgcrkIDw+ntLSUwsJCbDYber2eyMhI1q5dK4KKJQKg0+moqanBYrGIEjgggnxvJFChoaGLNiGbzWZOnTqFTqdj48aNREZGcuTIES5cuCCaTBUKBYGBgcTExLBmzRri4+OFw19ISAgymYyysrJ7lohIJK+trY2Ojg6mpqaAf90t0mg0xMTEkJaWRnp6ujDDmJ2d5cSJE3R1dVFSUsKOHTvmSWzsdjt6vZ6PP/5YNCOnpKSIHTPp70RERMwzz4iMjFxUyY4Ek8nEtWvXuHbtGiaTSfRP3czK1+Fw8I//+I98/PHHlJWV8e///b8nPj7e5+eSdO7cuXP89re/xWazUVRURFBQkHDWVKlUhISEkJGRQWZmppD3LcXGhHclanR0lPr6er788kvi4uLIzc31IVFS0/KdTF4ul4sPP/yQpqYmnnjiCUpLSxf82zqdTgRYruBfcT/MKyQ5q0wmY+PGjeTk5NzR+6DT6Th69Cjt7e2UlJTwwgsvzHuNC/V0ejtwpqamis9Sc3MzNTU1DA8PC1fC8vLyJTU0mZ2d5T//5/9Md3c3r7zyik/ot3TuZ2ZmOH36NFFRUezZs+c7J1d3gnvZQPM2n7gZ+brdV+/bVquVsbEx+vr66OvrE4ZYUq+Pv78/U1NTDAwMMDc3JzYx09LSiI+PJyIi4qZSR6mnqqenh8DAQMrKyvB4PDQ0NKBUKqmqqmJ2dpbm5mbWrVsnzIO8N+RcLhc2mw273Y7NZhOHdP/Gr94/l+Yi6bxJJGJmZgaFQkFqaipZWVmkp6ej0WiYmpoSskdvC3TpeaSxPj4+nvz8fHJycggKCsJoNDI0NMTc3BxOpxO5XE5YWBhJSUmiAjQ7O8uVK1cwm82sXr2ajRs33lEf7EJYKKNzITidTnQ6Hf39/fT09DA6Oirs2ENCQggMDESpVAoibTAYhFrn1VdfXZL+Sul83g/561Ji2RKr4OBgfv7zn/PKK6/gdrtRq9X89re/Zd++fQC89tpr/PEf/7FPz8z9wINIrIxGIzU1NVy/fp2ZmRmxExEbG8tDDz3E6tWrF9xZbGpq4sSJEwQGBvLMM8+QkJCwqK/L5XKJsvXU1JRosOzu7hb2olJDZ1hYmDBVsFqt6HQ6DAYDERERlJWVsX37dvz9/blw4QJ9fX0EBASQkpJCSEgIMzMzIlsKvmkMlazJpVBAiUAFBgZ+64WhNCH5+fmhVqsXfD6Xy8W5c+dobGwUToS1tbWcPXsWlUpFa2sr4+PjyGQyIiMjKSkpEU3FLpcLmUxGcXExiYmJxMTEiBC/e8mZsdlsYoeuo6NDWM4HBATgdruRyWQoFAri4+NJT08nNTWVqakpPv/8c5RKJbt37yY3N3fB566vr+f48eMkJyfz7LPP4nA4FjTPmJ2dFb+j0WjmEa57rXKNj4+LXhOZTEZpaSlr16695UJPapI/deoUer2e0NBQnn322XmEwuFwcPToUf7hH/4BmUxGRUUFCoVCuD5J8jmpByMiIkKQGqlv615JpESibjSWkCpRAQEBNDQ0kJ2dzfe+9z1iY2PvaQfQ6XRy5MgROjs7efrpp8nPz8fpdPpICUdGRhgfH8fj8fDv//2/XwkIvgFLbV5x4sQJ+vv7yc3NZf369Xe84Onv7+ejjz5idHSU2NhYDh48uKC99s0W+G63m7a2Ni5dusTg4CBarZa1a9dSUlIicrQaGhqwWCykpKRQXl4uAmoXGxaLhf/v//v/aGpq4pFHHuHgwYNER0f7nPvJyUmOHz9OREQEjz/++AO/cFtq84pbQQoZrq+vF1J1ybofvpFY1tTU0NzcLPqNJFI3OTmJy+VCpVKRlZVFdnY2ISEhPn0/3l8NBgOdnZ3MzMwQERFBbGwsw8PDzM7Oiv5UKc5FUpj4+fmJyt9CkMvlqNXq2x6SgYdEDENCQkhISCAkJISIiAja2to4d+6csF+X1hASiUpOTqagoICNGzeydu1a4uLiFvz8Wa1WobRpa2sT5klSaK9cLqewsJCdO3dSWlpKQkLCPSs67nW8MZvNDA4OisNoNIp5X9rYValUGI1G8vLy7um13Q7f5TW/mFi2xKq4uJg9e/bw3/7bfwMgOzubLVu28M///M8AfP/73+fTTz9laGjojp/zF7/4Bb/4xS/o6+sDoKCggJ/+9Kfs3Lnzjp/jQSJWQ0NDXLlyhZaWFtFrJFUmKioq2Lx584ILO7vdzieffEJNTQ1FRUXs3r37ni9yqUdJIk7SV2nnw+l0+tiV2+121Go1Wq2WtLQ0kWw+MjLC4OAgk5OTyOVyMdBrtVpaW1uFvjkoKIikpCQh0fOuhHjL0JxO510PPm63G7PZjMlkwmg0YjKZxCHdn5qaQqfTCevVwMBAVCoV/v7+YjCXbvv7+zMyMkJjYyMxMTFs27aNwcFBamtrKS4uZmJigkuXLqHT6VCr1axZs4aqqio0Gg3j4+OEhIQIXbSk2w8NDSUmJkaQrZiYGCIjI+9YkiO5GbW1tdHe3s7c3BwymYzg4GCUSiVmsxmbzYafnx9RUVEMDw9jNBqprKxk9+7dC04q/f39HD58mICAAA4ePLjgwltyobqRcOn1+gWrXDcaaHhfxx6Ph+7ubi5fviz6pyorK1m1atVtiYzD4eDkyZPU19ezbt06HnroIU6dOkV1dTVbt24VJhYDAwN8+eWXXLp0icjISL73ve9RUlJCcnKyT+aZy+VCr9f7OBLqdDoxQUs9Ct7HjdUsaWdRIlGjo6OMj48LEiW5OUnVKI1Gw+uvv45areb73/++z2fX6XTecWi63W7nnXfeoa2tjYqKCvz8/ASJcrvdyOVyn78dEhJCWlraksm/lqv2fqkrVo2NjYSGhpKcnHzHv9PR0SHc9eRyOU888QSpqakLPvZOFjuDg4NcvHhR5BRVVFSwZs0a1Gq1GJ97enrw9/cXOTqLbW4zNzfHz3/+c1pbW8nNzWXXrl0UFxdTX18vzv3Y2BjHjh0TQehLUR1fLNzvRabNZqO5uZm6ujoGBgbw9/ensLCQsrIy4uPjfYxRGhsbuXr1Kn19fZjNZhQKBUFBQURFRZGTk4NOp+Ojjz5ieHgYhUJBYmIilZWVQv524xjh8Xhoa2vjq6++wuVysWrVKpxOJ5cvX0apVKJQKJienmbDhg1otVrsdrvI5vSeX6X7fn5+N90gdbvdwoiipaWF2dlZYSBhMpkYHh4W9up2ux2ZTCaMKMrLy1m/fj1bt269Z8MWt9vNpUuXeP/99+no6EAmkxEREYFGo8Hj8RAcHEx4eLhQOWRkZNyV6/JijDcej4fp6WlhrDQ8PCyMMJKSkti8efOShIWvEKvvANPT08JQ4U//9E85fvw4HR0dAPz85z/nP/2n/8RDDz2Ex+Phyy+/5D/9p//E3/3d393x8584cQKFQkFWVhYej4ff/OY3/I//8T+ora2944ymB4lY/Z//83/Q6XTk5+czOzvLxMQEOTk5PPLIIzd1KhsbG+PIkSPMzMywa9cuSktLbzl4SL1DCxEnqf9JglqtJjQ0VOQvSBbmfn5+hIeHk56eTmRkpMhp6u3tRa/XC4tQyWUvPDwctVotdukDAgLIy8tj7dq1ZGRkCBJ1qw++9+AjVYK8ydJCxMlbMgj/arkuk8mYmppieHhYVMbcbjcajYatW7eSnZ0tqlhWq1U0m0q67snJSTo7O5HJZGRlZWE0Gunv7yc+Pp7w8HB6e3uZmJgQuRbx8fGi2piXl4darRZ6fImkTkxMMDc3B3yzINVqtT5kKyYmZl5Y7kLv7fDwMG1tbbS2tjI5OYlSqSQqKgp/f3/hwjg8PExfXx8RERHs2bOHbdu2ERkZ6fPcUh+HyWTiwIEDdxzcLZl7LES4FqpyRUZGCv14XFwcVVVVFBQU3NFif2ZmhsOHD6PX63n88cdJTk4W/QWffvopjY2NpKWlUVhYyMDAABcuXKC8vJy///u/vyu9udvtFta43mRJyhmRLI/hG2Im2a3frCfKm2w4nU5+85vfMD09zQ9/+EOfCdlbe78QXC4XMzMzTExMMDo6ytdff41eryctLU00V0u9clqtloiICBQKBUNDQ4LE/tEf/dE9h4reDstVe3+/zStuBymaISwsjMnJSdatW7eg8YOEu1nsTE1NcfnyZWpra/F4PJSUlFBVVYVWq2V6epra2lpqa2sxGAzExcUJI4zFWqSNj4/z6quvMjU1hUajERV2rVYrzr1er+fDDz8kICDgO+0Xvh3uxyJTcrurq6ujpaUFp9NJeno6ZWVl5OTk+FQXJycnuXbtGnV1ddhsNrKzs6moqCA9PR34JopCeh7J+CAhIYGJiQnq6+uFg6JEUDIyMkhOTvb5PFssFi5cuEBraytxcXFiLTUyMoLdbicwMJCnn376tg6X3v+f0WhkfHxcyFS7urqYnp7G4/GIvy3Z90t5TUqlkoyMDNatW8euXbtYu3btovQUjY6O8vnnn9Pd3U1iYiLbtm0jPDyczs5OOjo6xGtzOp1izgoJCSEmJkYQrZSUlFtWfZdivHE6nYyOjjI0NIROp+OJJ55Ykh7pFWL1HUCtVrNr1y4OHjzI+vXrGRkZobi4GD8/PzweD//tv/033n//fRQKBbt37+Yv/uIvvvWFFRERwf/4H/+DH/zgB3f0+AeJWP3TP/0TZ8+eFdWNNWvWkJ+fT1RUlAiFCw8PFw421dXVfPLJJ0RGRvLMM8+IfA6n0+njiOdNoiRpoYTg4GAiIiIIDw8nIiKCsLAwYec9PDxMf38/VqsVlUolshgky+nm5mbGxsaEDtpisYhdkszMTIqKiggICGBoaAi9Xo9Wq2Xjxo2sWbPmppOj0+kUJXfJUt1gMDA1NUVzc/M8y1QJ/v7+aDQagoKC0Gg0PrcDAwMxGo00NjbS0NDA0NAQNptN7BoXFRURGhrK8ePHGRwcJDc3l61bt5Kfn7/gotPtdjM5OcnJkyeZmJhgzZo1GI1Grly5Inpyrl69Sm9vL2az2ceOVaVSERMTQ2xsrM85kB7jcDhEYrrFYhETnp+fHxqNhtjYWOLj40lISCApKYmkpKSbLnIk+/XW1laGh4eRy+UkJycTHh6O3W7n7NmzIgyyvLycvLw80aMVHByMxWLhvffeo7+/nz179izYq3M3sNvtTE1NzZMWhoaGsnbt2pv2Ty2E7u5ufvOb32AymcjPzxekH/7VaEKv14sqXktLC1u3bv1WQYk3Suq6urro7e1lbm5OvE9qtZrg4GCio6PJysoiMTFRVIhCQ0N9/j+Px8PRo0dpbW3l937v9+ZJd72190qlkunpaSYmJhgfH2diYgK9Xi/kNYODgyiVSrZv305eXh6RkZFinJ2dnWVkZITa2loaGxuFe1VcXBx/9Ed/dEt7+XvFctbePyjESgrzluytBwYGSE5OZufOnbf8nNzLYsdisXD9+nWuXLmC0WgkOzubdevWkZKSgsfjoauri5qaGjo6OpDL5RQUFFBeXu5jGX+v6Ovr48033yQiIoLZ2VlGR0fZsWMHWVlZ4jFTU1N8+OGH+Pn58eSTT95zP8tSYikXmdPT09TX14v+s8jISEpLSykpKfFxdXS73SIot7u7m8DAQMrLy1m9evVNN1AcDgcNDQ2cOHGCiYkJ/Pz8SEpKws/Pj76+Pnp6erBYLGKTMCsrS/SfSp+PwcFBvvzyS+bm5igtLcXPz4/Lly/T399PUlISL730ko/yQerJHhsbE1UWaeNqbGxM9PdKMml/f3+cTqdwCpY2bTMzM1m9ejVr1qxhw4YNi3bep6amOHv2LE1NTWi1Wh5++GFyc3PnXesOh4Pe3l46Ojro6OhgcnISk8kkTLjUajWBgYGkpKSQkZGxoBX6gzLe3AtWiNV3gIMHD3L8+HHMZjPBwcE89dRTHDx4cEmyVFwuF++99x4vv/wytbW15OfnL/g4iQRIqKurY/PmzQ8EsXrjjTfo7++nuLiY6OhoYb3p7QajVCoJDQ2lq6sLnU5Hbm4u5eXleDweQaakhlVAWHVLxMn7dlhYGH5+fszOztLT00Nvb69YKDocDpEDJZPJGB8fp6urS5SY1Wo1ERERBAQE4HA4UCqVZGZmsn79etasWUNXV5eQxUVHR7N27VrS09OxWCw+hOnG294VM/gm6yE4OJiAgABhbiHZo0vkSWra9IbNZqOlpYXq6mpaWlqYmJhALpcTFxdHQUEBpaWlpKam+uxqud1u4UilVquJjY0lOTmZ/Px80tPT5/0Np9PJl19+SWtrK6WlpYSFhfHVV1+Rn58vrqkvv/yS4eFh4uLieOGFFzAajUIHL8kHJEmQd3K69yHJB6WqnNFoFA5C8K/kODIykqioKGJiYoiKikKj0QibV5fLxcjIiJjA5HI5iYmJKJVKamtrMZvNQhInk8nQarXCBKOtrY3GxkY2bNjAww8//J2YHbhcLnQ6HX19fZw5c4Zz584RFBREYWGhT35UUlKSIKx2u50f/ehHfP755zzyyCP84he/uOPqiUSivHuiFpLUSaQpJiYGhULB3Nycj4xwdHRU5KRJ+STS0d3dTU1NDfv37/cZrzweD5OTk/T19XH+/HmxsSBtJoSHh4sePY1Gw6VLl7Db7WI3f2xsjLGxMXQ6ndDfj4+Po1AoSE9PZ82aNRQVFREVFbVkMsDlPOE+CAsdt9vN119/TWNjI6tXr6arqwu5XM6zzz5714HkdwOn00lTUxMXL14UVeR169aRn5+PQqHAYDBQX19PTU0NU1NTREZGUl5eLhw47xVNTU0cOXKE4uJiGhsbGRsbo6ysjPXr14vP7MzMDB9++CEymYwnn3zygQo1h8W/5u12u5BlStlkhYWFlJaWkpSU5DMOm0wm0Zc9OztLYmIia9asoaCg4I7GPOma93g8Qlo+NTUlnG+dTqfoo5bL5QQEBBAREUFqaioZGRmkpaUhl8uprq7m+vXrBAcHU1paSm1tLRcuXCApKYkNGzYwODgo5NUGgwGbzSas6iXXP6fTiZ+fn5iLJPmrSqUiIiKCwsJCqqqqyMjIQKPRLOp5NxqNfPXVV1RXVxMUFMSWLVsoLS29o2qPx+NhbGxMkKyhoSFMJpMw8HC5XKjVah9zpPT0dBQKxaKMN96OggaDQTgLmkymJZu3l/M4741lRazgm8Xihx9+yKFDh/j0009xOp3ExMTw3HPPcfDgwW9NZhobG6mqqsJqtRIUFMShQ4fYtWvXTR//V3/1V/z1X//1vO8/CMRqZmaGgIAA0aQpWYpPTk4yMjJCX18fbW1tIqMkNDQUtVqNUqkkKCjIJ4lbyjxITEyct3gym8309vbS3t5OU1MTIyMjWCwWVCoVAQEB4vESUZOyFJKTk0Xg7PT0NMPDw/j7+1NQUCDkmJcvX6a6ulrIQOPj4/H39xdJ5BIkWZ5kGRocHOxzW7ovmUncbrEjlb6lPA9ply0wMJCsrCxKS0spKyubJ3mz2+3CblWr1SKTyWhoaOCLL77A399fWKz7+/uTm5tLQUHBvJ23hoYGzp07R2JiIqmpqZw/f57c3FweeughxsbGOHHiBPX19aSlpfHcc8+xYcMGuru7qa+vFzlZWVlZlJSUkJ2dveBEKA2aEvEyGAxi0a/T6dDpdExMTGAwGET2itQjplKpRPVOpVIJt0Wpb87tdgvTkczMTEpKSrBarUxMTGCxWETj8cTEBBUVFfzBH/zBklm3er8vQ0NDwvp8aGgIq9VKV1cXFouFDRs2sHfvXp9dU2/MzMzwN3/zN9TX1/PQQw/hdDpFgOWNn4c7JVGSpC8mJuau5G1Sw7M32Wpvb6e1tZXs7GyRseLxeHA4HBiNRux2u7BwlqpeUtVamsAmJyd5++23mZ2dJT8/X+SiwDdEVJKbBgcHs2rVKlavXn3fjCqW84T7XRMrp9PJZ599Rnd3N1u2bBHX/7PPPntH799inHspN+7ixYt0d3cTGhpKZWUl5eXlIs9PysVqaWnB7XaTk5MjJGP3Iju6ePEiH3/8Menp6fj7+3P16lXCwsJ49NFHhXmNwWDggw8+wOVysXfv3nnZjd8lFuu8S327zc3N2O120tLSKC0tJS8vz+d69Hg8DA0Nce3aNZqbm5HJZBQVFQlX2rvBjde8lDkpGSRZrVaffMmJiQlsNhtqtRq5XC4C0jMyMggLC+PcuXP09fURFxeH0Wjk888/x+12ExYWJhQbwcHBwsFQr9eLXmBpXeDv749SqSQyMpLU1FRycnLIzMycN/csxnm3Wq1cvHiRS5cuoVAo2Lhxo+hTvVeYTCa6urqEZNBisYi1lMvlwu12C6m+FNS80HoNvnmvpfYHb9LkfRgMBh8lj0wmE5vPTzzxxJKMZct5nPfGsiNW3pienubdd9/l0KFDnD9/HoCsrCxeeOEFnn/+eaH9vRvY7XYGBgaYnZ3lyJEjvPbaa6JqsBAe5IrV5cuX6e7uFhI+qWldMiPQ6/X09fWRlJQkFpWSvaYkD5K+Sv+jQqFArVaLRdfExISQA0q9UhIBkpLDJTv0kJAQ0tPTSUhIQK1W09LSQkNDAzMzM2g0GqKjowkKCmJubk5oeQESExMpKCggPj5+HmGSbms0mruafG8c+F0uF+Pj4wwMDNDU1ER7e7swhYiMjCQnJ4e8vDwSEhLEgCSloptMJnFbMiWAb7TRBQUF5ObmMjk5ySeffEJwcDDr169ncHBQhEvGx8dTUFBARkaGGHgHBwf55JNPUKlU5OTkcP36dbKzs9m2bRtms5lPP/2UlpYWbDYbO3bs4MCBAwQEBGA2m2lqaqK+vp7h4WECAgIoLCykpKSEhISEu95lMpvNIq9D+qrT6TCbzTidTpRKpXgPgoKCUKvVzM7O0tfXR2NjI729vcA3BCs1NRWVSiUI/tDQEKOjo6jVanJzc0lKSiIhIUEkzEvVMenwvi/dvpnrotlsFpKQ/v5+RkdHcbvdgtCHhYVRW1uL2+3mySefvGUP5dDQEH/zN39Df38/P/7xj3n88cdpbW3lyJEjpKSksHnzZiYmJnyMJaSQyG9Lom4FSZZ3/fp1Xn/9dZRKpbA/NhqNohE6LCxM5JNZrVaSk5OJiYnBaDSK97O3t5dz584hk8nIz88nKSkJrVaL2+1Gp9MxOTlJcHAwxcXFFBQUzJOLSlXq2/Vk3iuW84T7XRIru93Oxx9/zMjICI8++qjogXrsscfueH5c7HM/NjbGpUuXaGxsRKlUUl5eztq1a0U/oMViEa5zOp2OkJAQysrKKC0tvSvi4/F4OHnyJMePH2fPnj1otVpOnz7N7OwsGzZsoKioCJlMhtFo5MMPP8Rms/Hkk08+MK6W3+a8z87OCqnf1NQUYWFhlJaWCiWENxwOB42NjVy7do3R0VHCw8NZs2YNpaWl92ypfatr3uVy0dfXR3t7O729vbjdbkJDQ7HZbExMTIixy3tTSMp5knqyU1JScLlcGAwGxsfHRT+3ZNKVmpoqIkIcDocwiMjOziYrK+uWfaDftkJ77do1zp07h91uZ+3ataxfv37RTVJcLhcDAwN0dHTQ3t7O1NSUj5NvT0+P2MgLDw8nJCQEjUaD2+0WxMm7hUMmkxEYGCjWUkFBQWJOl24HBgYuefbkch7nvbGsiZU3hoeHOXToEG+//TZ1dXXIZDIqKyu5ePHit3rebdu2kZGRwS9/+cs7evyD1GN15swZxsfH58n2lEolJ06coKenhw0bNrBlyxafXQ2p4VPqWxkbG6OpqYmmpib6+/uZnp4WBEJysImKiiIyMlJUQmZnZ3G5XCJVPCgoCD8/P6anpxkdHWVychI/Pz/S0tIEYbFYLPT19TE2NkZYWBhr165l06ZNS9IMb7FY+PTTT0WOQ1tbG+Pj4xgMBuRyOUFBQcTGxqLVasXuvzckrbPUc+V9W5KOtbe309nZicvlEoSytrYWp9PJY489RlRUFD09PSLNXq1Wk5OTQ0FBAVqtlrm5OT766CNmZ2fJysqitbWVzMxMNm/ejNVqRalU8vbbb9Pe3k55eTl/+Id/6OO0NTExQUNDg5AKSrbtxcXF3+qcSjJRb7I1NjbG5OSkOE/h4eFotVrh7NTR0UFISAj5+flkZ2eTkpJCbGwsbW1tvPPOOyKLDhCTo0TY5HI5NpttweBLybHJm3RJhB8QfW9SEG9UVBTd3d28//77BAQEcODAAaKjo2/6vzY2NvI//+f/ZHp6mp/85CcUFhbOy4nSaDSUlJT4EKilIFGSLNDb5nxycpKamhoiIyN5/PHHRTUqPj4euVwuKlt9fX00NzdTW1srKpVSn11wcDDT09PEx8ezf/9+YmJi6OzspL6+ntnZWWJjYyktLRUyEwlSkGZnZyc6nQ6lUsn+/fuXZGG6nCfc74pYmc1mTpw4wczMDI899hgOh4OPPvqINWvWUFlZecfPs1Tn3mAwcPXqVRE4nJ+fz7p160R1xOPxMDo6Sk1NDY2NjdhsNtLT0ykvLyc3N/eOPltWq5W///u/Z2xsjGeeeYbIyEguXrxIQ0MDqampPPzwwwQGBmI2m/nwww8xmUzs3btX9Bd/l7jb8+5wOGhra6Ouro6enh6USiX5+fmUlZUt2G86NTUlzCisViuZmZlUVFSQmZn5rTdHFrrmrVYrc3Nzon91bm4OvV5Pd3e3yIWSjHskS3XJ2dff3x+z2Yzb7RbhxDMzM8zMzIhIi4iICLE5K/WnJiUlkZubS3Z29h1nqd3L9e52u4UyxWAwUFZWxubNm5dEXmq328X5k87l0NAQnZ2d9PT0MDw8zPT0tHBHlCCF+0oKpNTUVCIiIkT7w1KHed8JlvM4741/M8RKQmNjIz/96U85duyY0Nl+Gzz00EMkJyfz61//+o4ef7fE6m7sjxcD3d3d4tzs3LmT0NBQpqamhNX15OSkuC9J90wmkyjPS65y0dHR+Pn50d/fT3d3NzqdTlSuJGIiBeyGh4cLGZJSqSQ7O1vkZymVSpqbm7l06RKjo6NERUVRVVVFcXHxPS1KpRK3d3lb6rcaHh6mt7eXoaEhBgcHRX+X5AIUEhIi+mok22uJKHnfDggIuOOSvs1mExLJyclJ1Go1c3NzKJVKduzYIfKfZmZmaGlpobW1VWSM5efnk5qayrlz5+js7CQ+Pp6RkRFSUlJYt24dq1atwmKx8NZbb3H69Gmio6P50Y9+xKpVq3xeg2QvW19fT0tLCw6Hg7S0NEpKSoSr4GLA6XQyMTHhQ7gksqrX68Xfjo6OJjQ01IdoNTQ0MDc3x4YNG5DJZPT09DA0NITL5SI4OJjU1FQSExOJjY3Fz89vwf4x6b7U3CtVpryvjfPnz3P27FkyMzN5+umnb2rU4XA4+OCDD/iXf/kXjEYj69evJygoSFSioqKiRA/ZhQsXSE5O5uWXX1600ESDweBDoEZGRoS8Umr61mq1nD9/nuDgYH784x+Lvy31jw0PDzM0NCTcKqWMGUmC4/F4mJqa4vr166jVatLT07HZbBgMBvz9/cnPz2f9+vU+Nt4Wi4Xu7m46OzsZHh5GJpORkpJCVlYWaWlpS0YclvOE+10Qq7m5OY4fP47VauXxxx/Hz8+P9957j7i4OHbv3n1XC+elPvc3Bg5L41t2draPxXdLSws1NTUMDAwQGBhIcXEx5eXlt9wYsdlsXL9+nbNnzzI3N8czzzwjnFbPnDmDTCZj27ZtpKSkYLVaOXbsGLOzszzxxBN37Dy3VLiT8y45t9bV1dHU1CQq0mVlZeTn58/7PbfbTVdXF1evXqWrq4uAgADKyspYs2bNt5ZBSq6i09PTjI+Pc/36dSGNn5ub81H2SDlQ0hEaGorH40Gn04leIskCXTLzkaqL0jgfFhZGZWWlcD1uaWkR7oFKpZKAgACCg4NFO4O0sXa7qsvdXO8ej4eOjg6xiZ2fn89DDz10zwY+DodjHmm68bbUHy9BkjpK51Eul1NXV4fZbBZKJUm+LzkyWywW5HK5ODcpKSmideG7xHIe573xb4JYDQwMiGpVU1MTHo+HdevWcfDgQf7oj/7ojp/nz//8z9m5cyfJyckYDAYOHTrEf//v/53Tp0/zyCOP3NFz3A2xup398bfF5OSksPSem5ujrq6O9vZ2AgMDiY+PF657UlifNGBJMi9JMihVDgICAoTTnNRvIZPJSEhIEJUWqYndYDBQXV3NhQsXaGtrEy5Aks23XC4XMjOZTEZeXh4PP/wwJSUlCw58UobUjZrghW47HA48Ho8wapBke1JAoVKpxO1243K5SE1NFXK9pKSkJdu1kTTmTU1NtLW10dXVhdPp5OGHH2bPnj0+uUdSdWFgYAA/Pz+ysrJwuVy0t7eLikxiYiL/8T/+R1He/+KLL3jttdcwmUw899xzPPvsswsSU2mBUl9fT19fH0qlkry8PGG+sRSlfrPZzNjYGIODg5w+fZqGhgbkcjmhoaHMzc1hNpuFZEOlUvHMM8+wb98+ZDIZAwMDwghFp9Ph8XiIjIwkPT2dtLQ00tLS7khmYbPZOHbsGC0tLWzevJktW7aIScTlcvn0REmOVC0tLahUKrZv305VVZWPsYQ3sdbpdLz55psEBgby0ksv3XW/mMlkmkeiJIMK6bPqfQQHB+N2u/ntb3/LyMgIzzzzDBaLRRApnU4n7HpjY2NJTEwkISGBqKgo+vv7CQoKQqVSMTg4yMmTJ4VTVkdHB3a7ndDQUPz9/UUWTFBQkOibMxgMBAYGkpqaSlZWFhkZGUuSZ3IjlvOEe7+JlRSEK+VTBQYG8t577+F2u9m3b99dn7/7de5vFTjs/XnT6/XU1NRQX1+PyWQiMTGR8vJyCgsL551f6dwrFApOnDiB0+nkmWeeQaPRYDKZ+PzzzxkYGKCkpIR169bhcrk4fvw4U1NT7Nmz5657ixYTtzrvBoOBhoYG6urqmJiYICQkREj9FqoYm81mamtruXbtGjMzM8THx1NRUUFBQcEdbxJKzntSa4G3U/CNJleS5EyKZfBe+Ev9TjdbxLtcLhobGzl//jwNDQ3CGt3Pz4/AwEAiIyOJjo4WG0VWq1XkTCUlJQmlgMViYWpqiomJCRGe7u/vT0JCgjAoioyMRKlUijgLydziTq73gYEBcf2kpaWxbdu2eU6s3nA4HIIk3Yw03bgW1Gg0886d920pX9Ib3uONUqkUfWe9vb1MTk4CiMgaiQw7HA4CAwNJTk4WJHSxNgnvBst5nPfGsiVWer1e9FddunQJj8dDbm4uBw8e5ODBgzcNO7wVfvCDH3DmzBlGR0cJDQ2luLiY//Jf/ssdkyq4O2LlbX+8FBPuX/3VX9Ha2ipKx06nU1RcPB4Pbrcbt9stGhSlRk9JOhgZGUlQUBAKhcInJ0nq3ZDykDZs2CA+4Ha7nY6ODlpbWzEYDMTExLBq1SpKSkrQaDRi0Xr9+nUMBgMhISEEBASIAc3j8Qhpl2QLLZPJRGXJG4GBgT5aYI/Hg8FgEDbSEomSeqgsFosYgDMyMnC5XCQmJn4nfQ9tbW18/PHHNDU1kZCQwBNPPEFxcbGPE5Zk693a2orRaEQulzM5OSlIyNatW3nhhRfEwDo4OMg//MM/0NDQwLp16/iTP/mTWwYLzs7Oisl5cnKSkJAQiouLKSkpWVIpTFdXl1i8FBcXExoaSn19Pa2trdTV1TE9PY1Wq2XNmjUUFhaSl5cnCPnc3Jyw7J2amkImkxEXFyds3ZOTk+ctFCYnJ3nnnXeYm5vj8ccfJzw83Cc/amxsTFSigoOD6ejooLe3l9jYWH7yk5+wevXq2/5Per2eN998E7lczksvvXTT3V+z2TxPzicZRAQEBMwjUSEhIT4LEIvFwtDQEEeOHKG6uprMzExBbCIiIkhISBBEKjY21mfS9Z5wBwcH+e1vf4vFYiEmJgatVktJSQk5OTmoVCpsNpu4Njo7O5mbm/NxBNVqtcL8Ijo6Gq1Wu6QT8XKecO8nsRodHeXEiRMEBQXx+OOPo9FoOHXqFAMDA+zbt++eZJrfxbm/MXB4zZo1VFRU+ERKSJtNNTU1dHd34+fnR2FhIeXl5aKf1PvcW61Wjhw5gkaj4cknnxSmCvX19Vy4cIHw8HAeffRRgoODOXnyJGNjY+zevZukpKT78j/fiBvPu9PppL29nbq6Orq6ulAoFGJTTHLRuxHDw8Ncu3ZNbDgXFhZSUVFxUwJgt9vnESbv+959OYGBgWI8kA5JpeLv709DQ8NNr3lpo0baFJ2bm2NgYIDe3l4GBweZm5sTagXpfZR6qCSDCymGIioqSmw2SZvEkhJIMl6S/p6U8yjFWfj7+wuSIm0oyWQy3G43KSkpQp3ifZhMJpqbmxkdHRXkPzExEbvdLmTW3moKqQfbZrMJ8ib1NN2MMEnHvah2bjXeGAwGent76evr81GEBAcHo1AoMJlMTE1NARAVFSUIaFxc3H2RCi7ncd4by4pYmUwmPvjgAw4dOsSZM2dwOBzExcVx4MCBRXEEXAzcC7Faqgn3H//xH6mvr2dmZgZ/f3/RrCyV0xUKBWFhYWIXPiIiAplMhsPhEAGmksTP4/EQEhJCWFiYsFWXQvW0Wq2QLun1egAiIyNFKKPdbheuf9PT06ISJpWmpYHM4XAIWaQ0GEp5TVIAbHR0NHFxcSQkJBAUFITRaBR9JJJkUeqLkgZjKfldWqRHRER8505d8M0O4NWrVzly5Ahms5mMjAyys7MpKCggJSVFTJRut5v+/n6am5uFq5LH4yEtLY2HHnqI5557TpAJq9XKW2+9xXvvvUd0dDR/8Rd/QV5e3m1fx/DwMPX19TQ1NWGxWEhISKCkpITCwsIlWTDbbDY+++wzrl+/TmpqKo8//jgRERGYzWbefvtt3nvvPSwWi5CIBAcHi2BaidBrNBrhaChJ5RQKBdnZ2WzcuJGYmBguXbrE4cOHsdvt5OTkiNwSSc7n3RPlcrl49913aW5uJioqipdffpnCwsI7/p9mZ2d54403sNvtvPjii4SEhMwjUdPT08A3PXo3kqiwsDAfEiVV0iQ539DQEJOTkwwODtLf38+WLVtYv369IFK3e59sNhuXL1/m3LlznD59Go1Gw+bNm1m1ahUpKSm43W6h1e/u7sZut6PVakXDd1BQEDMzM8LQRjq8+y337t27JD2Ry3nCvV9jTX9/Px9//DFRUVHs2bMHtVrN9evXuXTpErt27SIjI+Oenve7PPe3Chz2xuzsLHV1ddTU1DA7O0t0dDTl5eXk5OTQ0dEhzv3ExARHjx4VkkhpjNXr9T7GFrm5uZw6dYrh4WF27dp1Txu13xaSSVJMTAytra00NjZisVhITEyktLSUwsLCBavFksX9tWvXGB4eJiwsjNWrV1NWVkZAQIDYfLzxmJmZwWg0iudRKpU+cv4bCdTNrgWn04ler+fy5cu43W5h2e1NpCRVjNQnNTc3h1wuJyQkhKSkJLFJJvVnBwUFiU1bybpdpVIRGxvrE3y/UOi9y+USJEsiXSaTSbQEDA0NiWqbtL7RaDQUFxejUChEb9jY2BiNjY309/eL3CuVSiUIlPdSWqlUolar8ff3F2660uHv709QUJBwKbyRuN3quJPHu91umpubhQvyzeBwOBgaGqKvr4++vj6MRiMqlYro6GhRzRobGxNOvomJiYJoLVUI/HIe572xrIiVtOsUFBTkk2G11E4ld4MHiVi9++67XL16lYCAACIjI1EoFGLgSkxMJDExUSzG7HY7g4OD9Pb20t/fj9lsRq1Wk5KSIhx2VCqVjwve2NiYcPWTBjqpGdLj8YgBdnh4GIvFQnBwsBgwJUc3qcFS+ir1xTmdTtHvIQ38k5OT6HQ6kcHk3c8VGhqKSqXyyakIDQ0lKioKrVYrXIWkwQm+cacKDAwUFvMKhcJHFnC3t2UyGQaDQUxQ4eHhREZGinyum2F8fJxjx44xMTFBdHS0kE3m5+eTn5/vIy0zGo3U1NTw/vvvCwOQhx56iD/90z/1qU5duXKFv//7v2dubo4f/vCHPPXUU3ekn3Y6nXR0dFBfX09nZycymczHun2xd616e3s5duyYyMaoqKhALpfT19fH22+/jcPhIC8vj97eXoaHh3E4HMKhCBCTWUBAAIGBgTidTlpbW4WczmazkZiYyKZNm0hOThZyPqlXS0JLSwvvv/8+Q0NDaLVaDh48eFMn0IVgs9nQ6XR0dXVx+PBhxsbGhJWvSqXyIXDx8fFiE0OCZAji3Rc1OjrqI+lLSEjA6XRy4cIFtm3bdleV9PHxcc6fP89vf/tbhoaGKCsr48UXX0Sr1TIyMkJnZyednZ3CBlkiU7ercEjOhJKDaGVl5aIZdnhjOU+494NYtbe389lnn5Gamsqjjz4q+l9PnDjBqlWrqKqquufnfhDO/UKBw1VVVaSmpvp8jtxuN729vdTU1NDW1obT6cTf31+Yr0jy4uPHj5OXl+eTgelwOHyMLTZv3ixsvnfs2HHPxPReILm7NjQ0CNOBkpISSktLb6ommJ6e5vr161y9epWpqSmio6NJTk5Go9EwOzsr4jC8e7pDQkJ8Kk3eR1BQ0Lw5Q+pf9pa03XiYTCacTic6nQ6VSuXTp6xUKkWO3szMDEqlkri4OLKyskhPT58XdrsQpHyn4eFhnz5e+GYe8O4Dj4mJueWGk8vlwmQyMTo6KgLaJVfokJAQIZs2Go3o9XrRI56Xlyfc9qRKk9SHLSlwHA7HvENqvbib48bfuV1PvnTupfWVRMaktYp0eH9PoVBgsVjEptns7CxyuZzIyEhBIE0mk5ASevf0LiYehLFmMbCsiNUTTzzBwYMHefzxx++Lrv9e8CARq1/+8pfo9XpWrVpFUlISSUlJPi41kqyqs7OTvr4+oVWOiooSZXHvUrbVasXtdvtYnMpkMgoLCyksLBQBuX5+fgwODtLe3o7NZiMnJ4eNGzfetduQxWKhv79fBA2Pj48D30iepMlleHiYjo4OQQaDgoKEO1BMTIwIJZb0yH5+fsJIo6OjQywCJTInSQhuddvj8YgB2dtyXdq1kpyNpKR3qYdFqvhJDo1arVacZ2nBbDQaWb16NXa7na6uLlwuFykpKeTn5wu5hzS5tbe38+677zI4OEhGRgbPPfcclZWVwgFqcnKSn/3sZ1y/fp1NmzbxZ3/2Z3c1GJpMJmHdPjIyQkBAAEVFRcIBb7EaXe12O2fOnOHKlSskJSXxxBNPoNVqmZyc5NChQ1gsFvbv349araatrY22tjZ0Op2wM9dqtWg0GgwGA2NjYzidTmpra+np6SEuLo5HH32UrVu3ioWVNzweD+fOnePzzz9nbm6OsLAwnnvuOXJycm75eqUqqVSJ0uv1og8gIiKCtrY2PB4PL7/8MmVlZfM2f6xWqw+JGh4eFuYU4eHhogolGXYolUp0Oh3/8i//QkZGhuhBuxU8Hg9dXV0idmFiYoL+/n5hHCM5+knZVFlZWWRlZREVFfWdNzHfiOU84S71OF9fX8/XX38tiIJkS3348GFiY2N9KjP3ggfp3N8ucNgbJpOJ69evc/LkSUwmE2FhYRQUFJCXl8fQ0BCfffYZFRUV8xwSvY0ttm7dSnt7O93d3Wzfvp3s7Owl+9+k/tq2tjZhQx4XF8fevXvJy8sT76G3ScT09DTNzc3U1NTQ29sr8hPj4+PFpuFCUj3ptjT/SW6+tyJMCxknSHK2Gw+1Ws3AwABarRa73S76ZMfGxkRfttQjeyu5+p3CZDLNiwWxWCzY7XZUKpUgPdImqtVqFZUz7yWwSqUS656goCC6u7uF7DI3N5ft27dTVFREWlrad9KDBP+6VrkZETObzTQ2NoqNau8+eum48f6Nh9RLNzMzI8i4SqUiODgYtVrN3/zN3yzJGvxBGmu+DZYVsVoOeJCIleTEI5EjSTIlBUROT0+LviupBO7v749CoZjnhufn5ydyniwWC5GRkRQVFZGSksLatWtRq9VMT09z5coVampqcLlcFBUVsXbtWmJjY+/o9dpsNqGz9jYrCA8PJy0tjdTUVEJDQxkaGqKlpYXh4WEUCgUZGRnk5eWRlZWFzWabl8Gl1+vFLo+U/B4eHs7U1JTITbrVIGkymdDr9eI5x8fHRTaXZA3ufUg7fd7Ns1NTU2KgmpubEwMbfCMLCwgIQKVSodfrMZvNpKSkEBcXJ3b3zGazcLuT8jkKCwtFo3pLSwsxMTHk5uYSHx8vwjcDAgJ46623eOONN4iOjuav//qvycrKuutraXx8nPr6ehoaGjAYDGi1WkpLSykuLl40S9n+/n6OHTvG3NwcW7dupaqqCpvNxuHDhxkcHBR9aPDN7qxEsgYGBgBISkoiKyuL+vp6jEYjTz75JB6Ph6+//pqRkRESEhLYtGmTcBtzOp0cO3aMuro60dj83HPPkZmZKV6TtPvnLeebmJgQTpIxMTE+lSjJdcput/POO+8wMDDAM888Q0hIiA+RkiSzUjO1RKQSEhJ8+kgkGAwGXn31VYKCgvi93/u9Wzac2+126uvruXLlCnq9nri4OFQqFfX19TidToKCgjCZTAQEBAgyFRcX98CRKW8s5wl3Kcd5j8fDRx99RFhYGOvXrxcV+yNHjuB0Otm3b9+3XgA9iOf+xsDhkJAQ1q5dKwKHJdhsNmprazEajXR0dIj4i5SUFDweD729vWzbtm1ejp23sUVRUZEIE3/44YdvK62+W+j1elpbW2lvb8disRAVFUVaWhrh4eHMzMwQExMjHN4kkwjvzR232y0iEaSKlkSgJKWExWK5LWnyzmCUwmAXIk3SIW1U3gi3201nZyenTp1Cp9NhMpnw8/MjOTmZ9PR0UlNTv/U1KZlZLWReZTKZRFaitwRR6nFSq9VEREQQGxsrXPGSkpIICwsT0r6amhrGxsZwOByUlpaSlJTE6OgoPT09TExMiN7ejIwM0tPTSUpKWpJK/b1gscYbqf/earUyNDQkerPm5ub4kz/5kyVzCH3Qxpp7wQqxWmQ8SMTqxIkTdHV1MTs7K+Rp0oApOeOkpKQQHh7uQ6QkSZ1Ucm9qaqKjowO32016ejpFRUUkJiaKAD+tVktNTQ2tra0EBASwevVq1qxZc1t3NIfDIeSHvb29jIyM4Ha7CQkJITU1VexoORwOYeKg0+nw8/MjMzOT/Px8srKybjtIu91upqamfAjX6Ogozc3NPhUlqekWvtkVkkw/zGYz8M1ullarJSoqShzh4eF3LY9zu93Mzc0xNTUlrO3Hx8cFqRoZGWFsbEwQpcDAQOx2O3q9nvHxcWw2GwEBAeTk5BAWFiZ2ZgcHB0UK/fT0tLBTlXrrTp06hdVqZffu3Tz88MMi+8nf33/BY6GFtiS1qaurE1Ibb+v2b3sdOxwOzp49y+XLl4mPj2fv3r1ERERw8uRJamtr2bRpE1u3bvV5bSaTSWjvu7u7iYiIYP/+/SK3xOPx0N3dzblz5+jv7xeGKnV1dYyMjIgm9n379qHRaHxI1Pj4OG63G4VCsSCJuvG9l6RxQ0NDDAwMcOzYMbq6usjJySE2NtbHpS8hIYHIyMjbEhq73c7rr7+OyWTihz/84U0/V7Ozs1y7do3q6mqsVit5eXnk5uby2WefcfbsWWFGk5ubS35+PomJiYsmo5ZcL5fKono5T7hLPc5LQaDwzftw+vRpent72bdv3x1n99wKD/q5XyhwuLKykrCwsHnnXurTaWlpEcTE5XLxwgsviE0bCd7GFtKG2cDAAFu2bKGoqOhbvWYpwLehoYHR0VE8Hg8RERHChEFSSNjtdjIyMtBqtYSHh4s+yJGREdRqNSUlJRQVFREcHCxiRRYiTdImHiCMH24kSTfev5t5TVJYtLe309HRIV5HTk4OWVlZJCYm3jPxkAwV9Hq9yNaUAnElKJVKn0Bb70P6vlKpnJe/qNfrxecnMjISl8vF4OAgdrud3bt3s2PHjnn9RHNzc3R3d9PT00NPT48gjqmpqaSnp5ORkfGdVv2XeiNHUjgsBR70seZOsUKsFhkPErH64IMPaG9vR6lUEhsbS0ZGBqmpqcTExNxyQSW51jU3N6PX6wkODhbGD9JuumSNe/XqVeRyOTExMVRVVc2zxvWGy+USOx9SnpTL5UKj0fgQqfDwcMbGxmhtbaWlpQW9Xo9KpSI7O5v8/HwyMzO/9fkym80ie2J4eJjBwUFGR0cxGAwiPFVyPZJIaGJi4h31TN0rJDvbqakpamtrOXfuHCqVisTERB9TD6vVyuTkJBqNhujoaFatWkVxcTEnTpzg1KlT5OXl8fzzz9Pd3U1jY6PIz5IIcH9/P6mpqaxfv37B0F1AuC/dSLa8iZhcLmdkZERIPAICAigsLGTVqlVkZWV9q0X74OAgx44dY3p6mi1btlBVVcXly5f5/PPPKSgoYO/evQteZ1JP0s0mtf7+fo4fP86JEycAhKY/Pz9fLGYkiaE3iYqOjl5wYSBJ+qRDymCBbyR9cXFx9PT0MD4+zv79++8qmBW+uSYOHz5MT08P3//+9xes/g4NDXH58mVaWlrw8/MTn9O+vj6++OILdDod27ZtY/fu3RgMBtGPuFgYGxvjwoULDA8P8/zzzy/KYv5GLOcJ934a5dTU1HDhwgV27NhxT5XphbBczr0UOHz9+nVsNhv5+fmsWrWK8fHxBc+9Xq+nqamJ48ePMzk5KcaZjIyMefbup0+fZmZmhqCgIGZnZ9m0aROlpaU3fS3eLnSSnfbMzIxwNB0bGxNmCTExMaSkpIhQdOmQiGBaWhotLS1cu3aNwcFB0XMZHh6O3W7H7XaLvyv1Ud/q0Gg0i7KhYjAYxIZWb28vTqeT6OhocnJySEtLY3x8XPQo3Qkk06wbSZRkQa5UKomMjBSHRHaDgoJQq9X3RGSkPvCGhgYuXLggNtqk/yMpKUlsgi1kMCRlb/X09NDd3c3AwABOp1P0k0sVLW+336XGg2DMda9YLmPN7bBCrBYZDxKxam1txeFwkJqaekdyrbGxMZqbm+no6BCViMLCQpKSksRAbLPZRA7SzMwMWq2Wffv2UVBQMG9gc7vdYuHd19fHwMAADocDf39/HyLl3S8lVaamp6dFVSYvL4+MjIx73vGy2WyMjY2JHUpJ2jU8PCxkAd6VqPDwcJ9BfnJyUsgwpI+LlPQuHRLhWkzd8ejoKB999BF+fn48/PDDyGQyUXmTLMJ7enrQ6XS4XC6RudLa2kp6ejp//dd/TXp6OpOTk1RXV9Pc3IzT6WR8fJza2lpSUlL4r//1v5KamiosYr2tYm/83kLfl3ZCrVYrOp1OaNsDAgJISkoiLS1NmIcsRM5u9n2FQoHT6eTLL7/kwoULxMbGsnfvXqampjh69CgxMTEcOHDgjiYst9uNXq9nZGSEK1eu8Mknn4jQ4rm5OXJzc9m6dasIw70xp0qCy+VifHzcx6XvRkmft6xP2oTweDx8/PHHXLt2je3bt7Nu3bo7vgY+++wzLl68yHPPPefT3+FyuWhtbeXy5csMDQ0J10SHw8Hw8DDwza641Wrl5ZdfprKyctHHm7m5OS5fvkx7ezsRERGsW7dunpnAYmE5T7j3a6EjbUaUlZWxfv36RXve5Xbu7XY7dXV1XLp0Sci2KioqfAKHvWGxWHjttdfo7u4mISGB0NBQsYknhQ9LxhZ1dXXYbDY8Hg8VFRXk5+djMBh8CNTc3BwGg0EQHqvVKio4MpmMqKgocnNzycjIIDAwUPTr3uicJ41ZNpsNl8uFVqslJyeHzMzMeSRMOgIDA5esUuLxeNDr9bS1tdHe3s7Q0JAICM/JySEnJ0eY3dzqmvd4PMzNzQnyJB2S+7BMJiMkJAStVutDpKTw28XE2NgYFy9eZGhoiNjYWNavX09ISAj9/f2EhYUxMTHByMgIMzMzwDfzvkSyFpJuOxwOBgYGREVLp9MBEBMTI0hWSkrKHWeH3QtWiNV3jxVitch4kIjVncBut9PZ2UlTU5PYYcrPz6egoGBeplJ9fT0tLS04HA5ycnLIz88nMDBQfAik3RuJSPX392Oz2VCpVKSkpAgiJVXM3G43AwMDtLa20traytzcHBqNRkiVUlNT71pmJ9mve5OoqakpPB4PCoWC6OhoYmNjiYyMZHJykqSkpDveTZKahicnJwXpktyNpI+RRqMR5hShoaEiI0Jq6L3bSW9ubo4TJ05gNBrZsWMHKSkpPoMPfEPArly5wpUrV+jv72dsbIze3l5CQ0PZuXMncXFxREVFERISImRqvb29XL9+HZVKxY9+9CNefvnle5q0nE6nD9mSDEcaGxtpb2/HbDYTGhoqqj5ut9vn8Tcbfvz8/ATZslgswgZeCjK+cOECKpWKvXv3kpiY6EPQbgzcHR0dxW63MzQ0xOjoqMh+UigUPP300yKQOSgoiHXr1rFq1Sr8/PyYnZ2d59InOVHGxMT4GEzcTtLn8Xg4e/Ys586dW1DOuBBqamo4fvw4O3bsYO3atcA3i8Dq6mrh/CX9z5LMNy0tjdzcXNrb2+nt7eWpp54SlvGLNd7YbDauX79OfX09arWayspK8vPzl9SddTlPuPdjnJ+bm+Pw4cNERUXx+OOPL+p7sVzPvcPhoKamhvfee4/JyUlCQ0PJyckhOTkZj8fj0/BvNBr54osvsFqtREdHMzIygsVi8enJ9Xg8TExM0N3dLezBU1NTCQ8PF+N+ZGQkGo1GzIX9/f0iYkSaF4B5JhBqtVpI8a1Wq5CrqVQqYb6TmJh43+VlbrdbGFF525xnZGSQm5tLVlbWgv3J0jWvVCqZm5sT1SeJREl5WJKSQopnkTYol3o9ND09zaVLl4R0vKqqirS0tJsGBJtMJoaHh8WG7PDwsGgRCA0N9alqxcfHi98zGo1CMtjd3Y3BYECpVIp+s4yMDGJjYxf1fX0Q1pX3iuU61tyIFWK1yFguxEqSQbS3t+NwOEhOThbOft6Tsk6no7a2lu7ublQqFUVFRRQVFREUFITNZmNoaIigoCBGRkbo6+vDYrGIgUMynIiPjxcESXI+ksiUyWQiJCSEvLw88vLySE5OvqNFgWRPLZEn6atku6pWq0VPi2Sv7d0Ts5jnXsrj8K5uTU1NiZBDCZKrjqRh9759qzR6u93OJ598wsDAAJs2bSI3N/emg8/4+DjV1dWcOnWKjz76CLVazfPPP09WVpaY1JxOJ0ajkZGREaqrq5mdnSUnJ4d/9+/+HVu3br2jvp87PS/t7e3U19fT1dWFTCYjOzub0tJSMjMzhcnDnVTITCYTDQ0NtLS04O/vT3JyMh0dHVgsFvLz8xeUn0VERAhCJ5lcrFu3jv7+fgwGAy+99JKQ1g0PD3Py5EmuXr2KxWIR7o1Slot3X1RcXNw97zheuHCBzz77jMrKSnbs2HHT89zb28ubb75JeXk5jz32GJOTk8IYZmJiQkgx/f39SUpKorCwkIKCAtRqNYcPH6avr49nn33Wx93w217zLpeLxsZGrl27htPppLy8nLKysvsydi3nCXepx3mHw8GRI0ew2Wzs379/0WXKS33upWgOu92+aIe365lOp8NutzM+Ps709DRKpdLHilvK/3E4HCLUtrKyUoyRks12cnIyWVlZhIeHU11dTUNDAw6HA5VKJeJBvMNgpcpLTEwMCQkJglhJCglvKZvH4xFZVTMzM0RERJCfn09CQgJr1qy5r9e85OInZSZKbrtSVSo9PX2eesTlcjE5OcnY2JjI3qurq8Nut6NQKJDL5cIJ15tEaTSa+0oWjUYjV69epaWlhaCgICorK8nJyfFZc9zJ9S710kokS9rEs9vtyGQy4cwoka3Y2FgUCgUTExOCZPX19eFwONBoNKSlpZGRkUFGRsa3NoNaIVbfPVaI1SLjQSZWDodD9N3odDoCAwNFdcr7w+x2u+np6aG2thadTkdoaCilpaXk5ORgNpvFLn5/fz+zs7MkJCQIaV9qauq8RlWn00lPTw8tLS3C+Sg8PJy8vDwxedxqcHW5XOj1+nkkymazARAUFCTIk/Q1PDz8ls95P869x+PBbDaLZHlJIiLJQgwGg0+SvVKp9CFaQUFBPrr42tpa6uvrycvLo6ysjPLy8psOPg6HgzNnzvDTn/6U6elpHn74YZ5++mlKS0uRy+Ui3HVoaIi3336by5cvA5Cenk5+fj5FRUUkJycLeaRWqyUiIuKec6yMRiONjY3U19eLa0+ybr8bR7rR0VGOHTvG+Pg4a9asYWRkhI6ODjZu3EheXp6IDIiLiyMgIACTycThw4cZGRlh27Zt1NTUYDKZ2LFjh9gYkFz6PB4Pbrcbo9HIzMwMYWFhPPzww2zdunVRrXWvX7/ORx99RElJyYLVBb1ez2uvvUZ8fDxr167lypUrXLt2jbm5Ofz8/IiKihIbIYWFhaK52mazcejQIUZHRzlw4IAwLZFwr9e8ZP5x8eJF5ubmyMvLo7Ky8r72DSznCXepm8k/++wzuru7eeaZZ26acfRt4H3upWD4eyE6t/r57ZYhcrkclUp11wdAV1cXoaGhBAYGYjabaWtro7OzE7lcTk5ODmVlZULCNjY2xtGjR0lOTmbnzp3I5XKMRiNtbW20tLQwOztLWFgY+fn5OBwOmpubsdlswjXWbrej0WiIi4sTkmKJcHn3QsE3471krDQ5OYlSqRTRGlJupNvtpqqqasnMAiSYTCba29uFtbzT6SQqKoqcnBxyc3PFHO3xeETcikSiJBMIaRMxNDSU8PBwDAaD2IgKCwtb9AzEu4HNZqO6upr6+noUCgVr1qyhqKhowfaCex1rvCXnEuGSJPve5kfSBl1YWBgjIyN0d3fT3d0tTEy0Wq0gWSkpKXc93q0Qq+8eK8RqkfEgEqupqSmamppoa2vDZrOJHe60tDSfwc5ut9PS0kJdXZ0YFDMzM1EqlYJMSZKjmJgYYmJiCA8P59FHH523yJJcglpbW+no6MBms6HVasnPzycvL++m5W+73c7Y2JgPiRofHxeDdkRExDwSdS8LvAdh8PF4PCLV/UbyJX31tsBVKBQYDAb6+/uJioripZdeIjExkdDQUMLCwhZMnZ+YmOA//sf/SFtbG9nZ2WRmZpKRkcGqVavIzc0VE0t1dTU//elPGRgYIDo6msjISEHqgoKCkMvlwjlJIloS6YqMjLyrCs7Y2JhwxDIajURHR1NSUkJxcfEdLSBcLhfnz5/n66+/FrvAHR0dVFRUsGPHDkFUxsfH+e1vf4vRaKSkpITTp0+j1+vJyMhApVIJSZ93X5RWqxVBz5cuXeL69et4PB5Wr17NunXrFm2B09jYyAcffEBOTg5PP/20eB/MZjO//OUvGR0dJSAgQIT2RkdHk5ubS2lpKQUFBfMW0GazmbfeeoupqSkOHjxIUlLSvL95L9f86Ogo58+fR6fTkZKSwvr16+dVB61Wq1iU7d27d0k+T8t5wl1qYnXt2jUhc/P+/r2Ekd54SBVlk8mEVqu9o9ckBb5/m+PG57iVIc2tcLNzb7VaRQCvyWQiNTWV0tJSEhMT6e/v5+TJkxQWFrJ582bxdz0ej+gD7urqwu12ExERIcyBsrKyyMvLIyYmZsG8PJvNJizCOzo6aGpqYnR0VIxDERERuFwuka0kuQLGxsYSGBhIUFAQGo1mnuud9/c0Gs0dj8V6vV5I/IaGhoBvIityc3PJyckhODhYxIt4kyjJTEKlUol1gHcob0BAwAMxvwKiClldXY3L5aK0tPSWG5KwuGON0+lkbGzMh2xJm3hScLxU1QoPD2d6epre3l66u7uZmZlBLpeTlJQk+rPi4+Nvq+h5UM79vWA5j/PeWCFWi4wHiVh1dXXR0NDA8PAw/v7+ojp1o32owWCgvr6e5uZmTCaTSBSXFvtSadt7ASo5Fnl/CGw2m7Cy7erqwuFwEBsbKypTNy4GTSaTTwVqdHTUpx8qKirKh0TFxMQs2odtuQw+3qGN0vvR1dXFpUuXCA4OJj8/X0h/FAqFCET2ztWSyWT88pe/pKuri/LycpKTkxkbGxP9catWrSIyMpLx8XH+1//6X1RXV5OcnExeXp7QhEu5Wg6HQ+zOSrJLKcvrRsIlmVbcDG63m+7uburr62lra8PlcpGenk5paSm5ubm3XSCMjY1x7NgxRkdH0Wq1jI+Pk5WVRVVVFVeuXOH48ePY7XZSUlJoa2tDrVbzxBNPkJOTQ2Ji4h1J+sxmM5cvX+bq1as4HA7KysrYsGHDvM/QvaC9vZ333nuPlJQU9u/fj9Fo5C//8i+prq4WQdd5eXls3LiRoqKim25GGAwG3nzzTUwmEy+++OJNc+Pu5pqfmZkRGUFarZYNGzb4kDWph0Qyu5GiGDZu3Lgku+vLecJd6rHmzJkzTExMzCNFt5vaZTKZIDF+fn4olUpx2/uQyWS4XC7y8/OFy9utCNFS9trdLW537p1OJ52dndTW1jI5OUlUVBSlpaXY7Xa++uorqqqqWL169bzfs1qtdHR0MDo6Kmy2bzeWGI1GmpqaaG5uxmw2k5CQQHFx8bwNTmnDTernlfpqJVMLb4MLk8k0731Wq9ULEq/AwEDRfzo0NITBYECtVpOWlkZcXBzBwcEYjUZBoCSzJplMRmRk5DwSdaND3t2c96WG5Fp85coVTCYThYWFrF69+o42YZd6rLHZbIyOjvr0bHmbY0h9WlK/3ejoKL29vdhsNvz9/UlPTxf9WVLP3o3PvxzWNgthOY/z3lghVouMB4lYff7558zNzVFYWLigLnpsbIwrV65QV1cnAmil1xIREUFiYqIgUgstkO12O5OTk/j7+4tytsvlIiEhQVSmIiIiRD/UjSRKWpirVCqfCpRktrCU0oHlPvhIO6cWi4VHH32U4OBgZmZmRFK6dFuy/rZarVy5coWJiQmys7PZuHGjj4NcdnY269evJysri3feeYdjx44RERHBE088gb+/P42NjSK4eNWqVeTl5QmJpiQrlMKYvc08goODFyRcN2rrrVarqJYODAygVqvJz8+npKSElJSUm07gbrebixcv8sUXX+ByubBarUxMTNDf309WVhYPPfQQtbW1hIaG8gd/8Af3TIisVivXrl3j0qVLWK1WiouL2bBhwx3v4t8Mvb29/PznP6e/v5+BgQFmZ2epqKjgySefpKqqiqSkpFvu1M/MzPDGG2/gdDp56aWXbvl67uSat1gsXL16lcbGRjQaDVVVVeTk5IjXYLPZaG9vp6mpicnJSUJCQigoKPCJYlgKLOcJd6nHmqtXr4osnYUOb/LkfdxpFeh34dx7PB4GBwepqalhcHCQoKAgFAoFk5OT7Ny5k9zc3Hv6+x6Ph6GhIRobG+np6UGpVJKbm0tRUdFtYwnu5LxLZkAS0bqRfM3MzNDf309/f78w5PB4PCKQXuoPUygUqFQqQkJCxBycmJgosi5DQ0Pvaj7+ruZXKTj68uXLTE1NkZWVxdq1a+9q3P8urneJ8Hr3bElzd2hoqNgElLI1pXzF8PBwIRtMS0vD399/2a9tlutY440VYrXIeJCIlaTt9YbFYuHKlStcvHiRvr4+kdou6XlvtIpeCCaTiZ6eHtrb2+nr6yMmJoa0tDTy8/PJzs7G4XD4kCidTidckIKCguaRqNv1Qy0F/i0MPjk5ORw7doyBgQH27NmzYK6Kw+EQRGtoaIhDhw7R1NREeHg4ubm5aDQaJiYmGB0dFTktUuhyTU0NdrudrVu3cuDAAcxmM/X19fT29hIQEEBxcTHl5eXzQmGlqpY36ZIcoaQ+g4CAgHmES3IunJ6epqGhgfr6eqanpwkLC6OkpISSkhLRC3EjJiYmOHbsGD09PTgcDh555BHKy8t58803USgUvPzyy4SGhi7Kua+urubixYsYjUby8/PZtGnTXQfjTk5O8vHHH/Ppp5/S1dXFyMgIAQEB/NVf/RX79u27o13/yclJ3njjDeRyOS+99NKCu5feuNU173Q6qa+vp7q6Go/Hw6pVq0QmnXdQeGdnp6gsFhQUkJycfF8+u8t5wl3OYw387p17vV5PXV2dmN8Avv/975OXl3fHf1fKgmxsbGRqaoqIiAiKiorIzc2949dxr+fdZDLR0tJCdXU1TU1NzM7OIpPJ8Pf3x8/PTzj4ajQaAgMDCQgIQK1Wi4gLo9Eo5H7ekOSIC0kSve8HBgbicDju+zU/NDTEpUuX0Ol0JCUlUVVVdU+B5Q/C9e5tjiERLskcA74hW0qlEofDgclkwuFwoFAoSEhIICkpCYvFQlpa2pLkbS4lHoRzvxhYIVaLjAeJWME3F6pUSq6urqa1tVX0bJSXl1NeXk5SUtJt5TsGg8GnyRIgKiqKwMBAiouLsVgs6HQ6xsfHRbZRRETEPBJ1Pxveb4XlvNjxHnyUSiUfffQRNTU1bNiwQeRd3QwGg4HXX3+d2tpatFotW7ZsoaKigrm5Ofr6+nwmY7fbzfDwMCaTiaioKIqLi0Xlc2pqSmR0pKSkUFVVRWVl5S0JucvlEuGP3oRLr9cLEw+VSiXIVmRkJA6Hg9HRUfr7+3E4HCQlJVFSUkJhYeG8Kqrb7aa6upqAgABiY2P5zW9+g1qt5uWXX150eZrT6aSuro7z588zMzNDTk4OGzduJDEx8aa/YzAYqKmp4ZNPPqG2tha73U5eXh4FBQV0dXUJh8OXXnrptiRwbGyMN998k4CAAF588cU7cpJa6Jr3eDy0t7dz+fJljEYjRUVFrFmzhsDAwAWDwqXq1P3+HC/nCXc5jzXwu3vujUYjdXV1HDlyhJmZGXbt2sXmzZtvuVifnJyksbGRtrY2nE4n6enpFBUV3ZNV+p26083NzdHW1ibG7v7+fsxms8i2k/pzJCmf1M91q80b72ythSSI3vdvtI6XwuWnpqZEW4FE4CRVjHQ/ICDgW2/M6PV6Ll68SH9/P9HR0axbt27BHtM7xYN6vbvdbiYnJ33IlpRhKblQut1uDAaDyBhNSUkhKSmJpKSk72QD+27xoJ77u8UKsVpkPEjE6uzZs8LZb2ZmBo1GQ2FhIZs2bSIrK+u2H7LZ2Vm6urro7u5maGgIq9UqsjYUCgVzc3PYbDahCfYmUbGxsQ/0B2M5L3ZuHHw8Hg+XL1/m008/JScnh6eeeuqW/5PJZOLXv/41bW1twhny2WefFc53TqdTTNQtLS00NTUxMTFBVFQUa9euFXbvU1NT9PT0MDIywtTUFAqFQrhaJScn+/R5SX1fC10TklT0RsI1MTHhM2k7nU5mZ2cxGAwEBwdTXFzM+vXrycnJ8anMjo+P85vf/AaNRsNLL720pCTA5XLR1NTEuXPn0Ov1pKens2nTJiFftFgstLS0cPnyZbGbGh4ezvr169m7dy9KpZJf//rX5OXlsWXLFt588008Hg8vvfTSTaVCw8PDvPXWW4SFhfHCCy/csQTvxmt+cHCQCxcuMDExQUZGBlVVVYSFhTE+Pk5TUxMdHR24XC7S0tJEdeq76p9ZzhPuch5rYOXcm0wmfvGLX9DT00N6ejppaWmUlZWJ3CMpqL2xsZHh4WECAwMpKCigsLDwW409C/UwS0YSOp2OtrY22traGBkZwWw2o1KphHJEen3R0dFL/p5JVS5v4jU1NUVjYyNutxu73Y7ZbMZsNvu44MI3JCwwMFAQLYl0LUTEbsyBnJ2d5cqVK3R0dBAaGsratWvJzMz81uRhOV3vTqeT8fHxebbv3d3d4lw7nU4CAwOJiYkhKyuL5ORkkpKSHshq1nI697fCCrFaZDxIxOrQoUO0trYSGRnJ6tWrKSkpue3OvbTjJpleWK1W1Go1AQEBhIWFERAQICoKYWFhBAYGsmXLliXtr1gKLOfFzs0Gn46ODo4cOUJERATPP//8LasYZrOZN954g76+Pvz8/IiMjOS5556btxs7OTnJtWvXOHz4MI2Njfj5+bF+/Xp+/OMfk5aWJnbI+vv7uXr1KjU1NUxPT+Pv779gTol0HXmTLe/Duwrl8XgwGo0+RGtiYoLh4WGRam8ymQgNDRUW9Onp6XzxxReEhITw0ksvLapN+q3gdrtpbW3l66+/ZmRkBKVSSVBQEIODgwwNDeFyuUhOTmbHjh1s2LBB9MS9+uqrRERE8PLLL4swzTfeeAOr1cqLL7447/3o6+vj0KFDxMTEcPDgwVuag9wI6Zq32Wxcu3aNvr4+YmNjWb9+PVqtlvb2dpqbm5mYmBDGKJJhwXeN5TzhLuexBlbOPXxDrt59911mZ2eJjo5mcnKSsLAwUlJS6OrqwmQyERcXR3FxMRkZGd+qP9jtdoue5OHhYYKDg0UYvZSRKOVFRkZGUlRUJOb3B+X9udl5t9vtWCwWQbRudUjKFwlyuVyQLrVazfDwMAEBAaxZs4b8/PxF68leztc7fBMWfubMGUwmE5OTk4Jszc7OYjabkclkBAUFkZSURH5+PllZWcTFxS1oPX+/sdzPvYQVYrXIeJCIVVNTEy6Xi7y8vAWfX8rQ6OzspLGxkc7OTiYmJvB4PISFhREXFyc+dFI/jLcT0HL+ECznxc6tzvvY2BiHDh3C5XLx3HPPkZCQcNPnsVgsvPnmm6K/x+l0snfvXgoKCuY91uVy8eGHH/LrX/+agYEBwsPD2bVrFy+++CJxcXHicW63m87OTmpqaujo6EChUIjmWn9/f9Hv5W2w4T2BqtXqBStd0iFJRywWC+Pj47S3t3Pt2jWampqYnp5GoVCQm5vLCy+8QGpq6i2dqxYTkrtYY2Mj58+fF/1hISEhbNiwgWeffZbi4mLhHGaz2fjVr36Fw+HglVde8dmYMJlMvPXWW0xPT/PCCy8IeWFnZyeHDx8mOTmZAwcO3PV1Ozk5yeuvv05vby9hYWHCPr6lpYWOjg6cTiepqakUFBSQkpLyQLm7rYw13x1Wzv03mJqa4v333yciIoKKigpRocrIyKC4uPiejGykxa906PV6pqamcLlcuFwuPB4PsbGx2O12DAYDKpVKmEPl5uaSlJT0QH1OJXzb8+7xeHA4HPPIlslkEsQsNjaW4uLiRf9MLefrHRY+92azWVQ7BwYG6OjoYGJigtnZWeRyOSEhIaSkpJCXl0dRUdFdZUsuJpb7uZewQqwWGQ8SsfKGw+FgcnKS8fFxJiYmRL/U5OSkkPilp6eTm5tLYWEhMTExt92pXs4fguW82LndeTcajbzzzjvodDqefPLJBYmSBKvVyltvvcXY2BharZbR0VE2btzI1q1bF5ywR0dH+dWvfsXFixcxGAxERESwbds2Nm7cSEFBgY/l8NzcHHV1ddTU1DAzM0N0dDSrVq2iuLhYyBA8Hg8mk2ke2fJ2OPTO8lKpVPPIVmhoqNjVbW1tFX1hAP7+/vNyz7Ra7aIsRqQg7aamJlpbWzEYDFitVqxWK8HBwcTFxYn3Kjo6mo0bN1JYWAh8U00eGhriBz/4wYKhrlarlUOHDqHT6Thw4ABWq5X333+fzMxMnn322bvaXbTb7Vy8eJGvv/6asbExKioqCAwMpK2tjfHxcYKCgkR1aqmDSO8VK2PNd4eVc/+vGB0d5YMPPiAtLY0dO3bc8eLT4XCIIGCJPOn1emESIVWfIiMj8ff3x2g0otfrGR0dJTo6mpSUFJEvFRUV9cD3yizna345X+9wZ+deUoPodDo6Ozvp6Oigt7eX6elp3G43oaGhpKamkp2dTVFREcnJyfelorXcz72EFWK1yHiQiFVbWxv9/f1MTEwwPT3N3Nwc09PT2Gw2lEol4eHhQkJ1Y5bGnWA5fwj+rQ/8TqeTY8eO0djYyNatW9m0adMtM0ckcpWbm0tjYyNZWVk89dRTC0rNLBYLR48e5erVq0xMTOB0OomKiiIpKUk4BXpnKUkEpKamhra2NgBycnIoKyu7raucx+PBYrEIkiUd3kTMZrOJxyuVSlF9M5vNPs3WFosFmUyGn58f4eHhREREEBERgVarFSHHCoUCpVKJQqEQx433JyYm6Ovro6urC7vdLrJ+LBYLISEhlJaWsnbtWqKjo1EoFAwODnLu3Dk6OzuFq+HU1BQvvfQS6enpN/3fHQ4Hhw8f5uLFiygUCrZs2cLevXvv+HPqdrupq6vjiy++wGw2k5qaytDQEGNjY7jdblJSUigoKCA1NfWB3PX2xspY891h5dz7oru7m1OnTlFSUsLGjRt9fiaZSUguqBKJkiIoZDIZISEhYszRarVERERgs9no7e2lp6eHqakp5HK52AjavXv3t451uN9Yztf8cr7e4d7PvcfjYWJigpaWFlpbW+nu7mZsbAyPx0NgYCDJyclkZWWRm5tLfn7+HQdR3w2W+7mX8N2LKlewZBgeHqa3txeHw8Hc3JyQSWVlZZGRkXFHKd4rWJ5QKpU89dRTaLVavvjiC/R6PU888cSCu05qtZoXXniBQ4cO0dbWxpYtW7h06RKvvvoqzz333LxJPSAggOeff56EhAQ+++wzjEYjSqUSu91OQ0MDV69eJTExkVWrVlFQUIBKpSIzM5PMzExmZmb48MMPuXLlCp999hlhYWHk5OSQlZV1R820/v7++Pv7+/Qe2Ww2jEYjBoMBo9GIzWbD7XYLVyyXy4Xb7cZqtTI7O8vc3Byzs7MMDg76BGxKvYSSht/f3184LZnNZtHf4HK5RH+h1DPg7+8vYgoaGhpoaGgQr08iZA6Hg48//piuri6SkpIwm82kpaWhUqluSuhGR0dpaGjAz8+PwsJCzp8/f1vyJ5fLGRoaEsYUISEh+Pv709DQgNFopLS0lNLS0vsmk1zBCv4tISMjg02bNvHVV1+hVCrRaDSCSE1OTgrTAH9/f7RaLUlJSZSVlaHVagkPDxfZUVKv6FdffYXJZEKtVpOamkplZSXJycnAN1LBB7WKvIJ/W5DJZERHRxMdHc2WLVuAb5xsGxsbaW1tpauri88//5xTp07xf//v/10SYvVvBSvE6t8wpHyD4OBgysrKyMzMJCYmZmUx9TsCmUzG5s2b0Wq1fPDBB0xPT3PgwIEFJZ5qtZqDBw/y9ttvc/78eXbu3CnI1dNPP012dva8596yZQvx8fG8//77TE9PY7VaCQkJoaqqiqGhIY4fP84nn3xCUVERq1atIi4ujoCAAKHjlnbH6uvrqa+vF45Wd2tNrNFobppvdTtIEh3JHENaILlcLiwWCzabTZCvqKgoKisrRcVobm6OuLg4SktLSUtLw+Px4HK5cDqdokfC+35fXx8jIyOsXr0auVxOT08Per2erKws0tLSkMvlOJ1ObDYbLpeLtrY2mpqaKCkpwWaz8cEHH5CTk0N8fLzP83vDYDDQ09MjqlJKpRKlUklERAQxMTHY7Xbq6+tpamoS76NSqUQul/sQtdvdv9ljSkpK7spQYwUrWI4oLi7GaDRy/fp15HK5qHynp6eLatRCIeg9PT309vYyMDCA3W4nODiYzMxM0tLSSEhI8Nno9JZAr2AF3wWCg4NZt24d69atw+PxMD09LQxVVnBzrBCrf8NYvXo1a9euXRaa7BUsHQoKCggLC+Ptt9/m1Vdf5fnnn18wi0WlUvH888/zzjvvcOrUKZ588kkaGhp4++232bp1Kxs3bpx3HWVnZ/OHf/iHHD58mMHBQaanp/nqq6/YsmULO3fupL6+npqaGq5fv058fDxFRUU4nU7R05eeno7FYqGtrY2WlhY+/vhjQkJCKCgoIDc3d8kd6VQqFRqNRuSezM7O0t7eLswn7HY7ISEhwhL+k08+Ab75bG3cuFE0+t6u+jM2NsYXX3zB9u3b2b9/P3K5nKmpKWF00d/fT2VlJZWVlfj7+3P27Fn6+vr40z/9UzZv3gzA6dOnuXz5MuvWrRMSJInMTU1Ncfr0ab744gsUCgV5eXkkJCRQUFAgnP3MZjNNTU2o1WrkcrkgZm63G6fTidvtvu19h8OB1WoV3/cmeG63m/z8/BVitYLfCaxbt070i95Mnjs3NyckfsPDw3g8HqKjo4WDaWRk5MrcvIJlAZlMJuTzK7g1VojVv2HEx8d/1y9hBQ8IEhIS+OEPf8jbb7/Nr371K5555pl5VSgAPz8/nnvuOQ4fPszRo0fZt28fsbGxnD17Fp1Ox969e+fptsPDw/nBD37AyZMnqa2txc/PjzNnztDd3c1TTz3F5s2b6ezspLq6mo8//hi9Xk9BQQElJSXExMQQEBBAWVkZpaWljI6O0tzczNWrV7l8+fJ9yVAyGo10d3fT0dGBTqdDqVSSlpbG1q1bUalUNDU10d3dTVhYGKtXryYgIICoqCgGBwdpbW0FvpH93BiGLZlkGI1GDh06REREBE8//bT4PyIiInj88cfZvHkzFy9e5Pz581y4cAGZTIbRaGT37t2sW7dOvM5HH30Uf39/zpw5g81m4+GHH8Zms3Hy5EmOHz+OXq8nMTGRPXv2UFFRQXZ2ts+CT5JMLse+hxWs4EHEjRs/Ho+H8fFxQaYmJyeRy+UkJiayadMm0tPTH4j4ghWsYAVLhxVitYIV/I4gNDSU73//+xw9epS3336b7du3s3bt2nk7pkqlkv379/Pee+9x+PBh9u3bx4EDBzh69Ci/+tWvOHDgAOHh4T6/4+fnx969e0lMTOSTTz5Bo9Gg0+n4xS9+wZ49eygoKCAnJ4fx8XGOHDlCb28v7e3tREVFiZ+pVCoRNr1p0yba29tpamrixIkTBAcHk5eXt2jOdVarla6uLjo7OxkeHkYmk5GSksL27dtJTk6mv7+f6upqxsfHCQ8PZ8uWLeTk5AD4NNcaDAZ0Oh2jo6MitPPSpUviPGq1Wpqbm1EoFPzhH/7hguQwNDSUnTt3sn79en7+85/z9ddfk52dLfrBpDwySX7p7+/PyZMnOXXqFH19fUxPT5OVlcVPfvITqqqq5r03K1jBCpYOLpdL9Ev19vZiNBpRq9WkpKSwZs0aUlJSVjYyVrCC3yGsEKsVrOB3CCqViv379/P5559z+vRp9Ho9u3btmidlUSqV7Nu3jyNHjnD48GGeffZZUfH653/+Z5599tl5jnYymYw1a9YQFxfHu+++i8vlIjg4mPfee4+uri527txJaGgoq1atYsOGDaI69dVXX3HhwgWysrIoLCwkOjoatVpNcXExRUVFjI+P09TURG1tLdeuXSMlJYX8/HzRl3SnsNvt9PT00NnZycDAAB6Ph8TERLZu3UpGRgYej4empibefvttTCYTycnJPP744z7OhTf2PQQHBxMcHExWVpb4ntVqRafTMTIywgcffEB/fz85OTm88847yOVytFotcXFxoroVGxuLn58fp0+fRiaT8bOf/Qyz2cyVK1e4fv06paWlrF+/noiICMbHx2loaODcuXP09/dTUFDA3/7t3/r0fq1gBQ8qPB6Pz+F2u2/59U4ec6vHWq1Went7UavVKJXKBf/2Qr8rvdbbPcZsNvv0S0ny5vj4+JXP4wpW8DuKFWK1ghX8jkEmk/HII48QFRXFiRMnmJqaYt++ffNc+RQKBc888wwffPAB7733Hk8//TQ//OEPef/993nzzTdvWvFKTEzkD/7gDzhy5Ah9fX2kpqbS1NREf38/u3fvBkAul5OWlkZaWhpGo5GWlhZxaLVaUcVSq9XExMQQExPDxo0b6ejooLm5mY8//hiNRiOqWKGhoQv+r06nk/7+fjo6Oujr68PpdBIbG8uGDRvIzMxEo9EwOTnJhQsXaG9vByA3N5fS0tJ71pL7+/uTmppKd3c3QUFB/N3f/R0ZGRmMj4+LypZEKr2NLex2O3v27CE8PJz8/Hyqqqq4fv0658+f59SpU5jNZnQ6HS6Xi7Vr1/Knf/qn1NXV0d/fT0VFxT291hUsfzQ2NmI0GucRDGAeEbiReCz0vRtJhNPpxGq1cu3aNRQKxbcmQvcTTqcTnU4nnDdvhEwmE4dcLve5v9D3brzv5+dHaQcDGE0AAK+RSURBVGmpMK1Y6ZdawQpWsEKsVrCC31GUlpYSHh7O4cOHee2113j++eeJjIz0eYxCoeCpp55CLpdz5MgRnnrqKZ5//nnOnj3L6dOnGR0dZc+ePfOsVzUaDS+++CJnzpzhwoULJCcnY7PZ+PWvf01CQgJVVVXisUFBQVRUVLB69WoGBgZobm7m66+/9qlixcTEoFKpKCwspLCwkImJCZqbm2loaOD69eskJSVRUFBAeno6MpmMwcFBOjs76e7uxm63o9VqWbNmDdnZ2cKMor+/n88++4zBwUE0Gg0VFRUUFBTcke377VBXV8e5c+d45JFHyM3NBb7pc0tISBCPcbvdDA8P8/rrr6NQKFi1ahVDQ0N0dXUB3yz6zGYzIyMjdHR0MDc3R1RUFE899RT79+8nLi6OvLw8Dh8+zG9/+1sOHDiwrLM/VnBv6O/vR6/X35IYSJXdG+97P0b6DHs/RiaT4XQ6sdvtJCQkoFar5z3vjYTjZj+7m8cs1vM5HA4aGhoIDg5GpVItSI5WsIIVrGAxsUKsVrCC32GkpKTwyiuvcOjQIV577TX27dtHWlqaz2Pkcjl79+5FLpdz9OhRXC4X27ZtIzY2lmPHjqHX69m/f/+8qpFcLueRRx4hISGBDz/8kODgYPLz8zlz5gwTExPs3LnTp19KLpeTmppKamoqRqOR1tZWmpubaW1tJTIyksLCQlHFioqKYsuWLaxbt47u7m6ampr45JNPCAgIEBKgsLAwSkpKyM7OFtUnKWuroaGB6elpoqOj2b59O5mZmYsm3env7+fEiROUl5f7mE/cCJvNxieffIKfnx9/8zd/Q3JyMg6Hg6tXr/Lll1/S0tLC8PAwRqOR4OBgSkpKUKlUXLt2jevXr5Ofn8/OnTuFk+Mbb7zBCy+8sCjEcAXLB1IVeKmwnEM7bTYb/v7+qFSqlT6nFaxgBfcFK8TKCz/72c84evQobW1tBAQEsG7dOv77f//voml9BSv4t4iIiAheeeUV3nvvPd58800ee+wxVq1a5fMYuVzOE088gUKh4NixY7jdbsrLy4mMjOSdd97hn//5n9m3bx8pKSnznj8/P5/o6GgOHz5MZ2cnxcXFDAwMCBt37/4kCUFBQaxZs4ZVq1YxODg4r4pVUFBAbGwsKpWKvLw88vLymJycpLW1FZlMRlZWlk/MgMFgoKGhgebmZux2O+np6Tz88MPExsYu6q715OQk77zzDsnJyTz22GM3fW6j0cibb76JwWDg5ZdfRq1W8+mnn1JXV4fRaMTlchEVFUVubi6bN2+mqKgIvV6PTqdjeHiY2tpazp8/z6effkpERATZ2dm0t7fT1dXF97//fdLT01cCHFewghWsYAUruM9YIVZe+Oqrr/jxj3/MmjVrcDqd/MVf/AXbt2+npaUFjUbzXb+8FaxgyeDv78/Bgwc5deoUJ06cYGJigu3bt/uYQ8hkMnbv3o1cLuf48eO43W5Wr17N7//+7/Pee+/xm9/8hl27drF69ep5z6/VannllVd4//33OXv2LGVlZaJi09/fz6ZNmxbcUZbL5aSkpJCSkoLRaKStrU1UsSIiIkQVy9/fn8jISDZs2ODz+zqdjrq6Orq6ulCpVOTn51NcXCyc9hYTFouFQ4cOodFo2Ldv300rYLOzs7zxxhtYLBYqKyv57LPP6O3txd/fn7CwMOx2O263m3Xr1rFlyxYx9oSHhwsSeuDAASwWCxcuXBC/73Q66e7upr6+nrKyMpKSknzs31fcAlewghWsYAUrWFqsECsvSOGfEn79618THR1NdXU1mzZt+o5e1QpWcH8gl8t57LHHiIqK4tSpU0xNTfH000/7yH9kMplwETx58iQul4vKykpefPFFPv30U06ePMno6OiCToNqtZqnnnoKs9lMbW0tSUlJrF+/nqtXrzIyMsKjjz66YHCxhKCgIFavXi2qWE1NTZw7d86nihUXF4fb7RYEQ6fTERoayqZNm8jNzV0yOZDL5eLdd9/FbDbzwx/+8KZyvKmpKf7pn/6JwcFBYmNj+eKLL0hJSaGyspK+vj50Oh25ubls27YNrVZ7y78ZEBDAtm3bePjhh+nq6uLrr7+mra2NtrY2hoeHyc/PR6/XC5MMp9OJ2WwmPj6euLg4oqKi0Gq1K7k6K1jBClawghUsElaI1S0wOzsLsJI0vYLfKVRUVBAREcF7773Hr371K55//nnCwsLEz2UyGY8++ihyuZxTp07hdrupqqpi586dxMbGcvLkScbHx9m/f/+8RbtMJqOoqIikpCTOnDnD7OwsW7dupa6ujvfee4+1a9dSXl5+Sxt1mUxGcnIyycnJmEwm0YvV1tZGREQEdrsdo9FIYmIiu3fvJjU1dUmb1D0eDydPnmRgYICXXnppwfHC5XJx4cIF/vEf/5HZ2VkqKyuprKwkNTWV2tparly5QkJCAr/3e7+3oJzyVpCkj5mZmfT393P69GmOHz/O+++/z09+8hO+973vMT09zcDAABcuXMBgMFBbW4vNZgMgMDCQqKgocWi1WkJDQ1ca+1ewghWsYAUruEusEKubwO1288d//MesX7+ewsLCmz7OZrOJBQp80zuxghUsd2RmZgpTi1dffZUDBw6QlJQkfi5ZtisUCk6fPo3L5WLDhg2UlZURFRXF4cOH+ed//mf279/v44QnISEhgQMHDnDq1Ck+//xzNmzYQGJiIpcvX2ZgYIDt27ffUSVFo9GIKtbQ0BAtLS0olUpKSkpuW/FZLFy8eJHa2lqefPLJeaRoenqa6upqvvrqKy5dukRsbCw//elPyc3N5eLFi7z77ruEhITwzDPPUFBQ8K3IjEwmIzU1lT/4gz/goYce4u/+7u/42c9+xrlz59izZw95eXm4XC40Gg1+fn7Mzc2h1+sZHx9nYmKC1tZWrl+/DnxTXdRqtWi1WqKjo4mKiiI8PPyucsNWsIIVrGAFK/hdwwqxugl+/OMf09TUxPnz52/5uJ/97Gf89V//9X16VStYwf1DVFQUr7zyCocPH+bXv/41TzzxBMXFxeLnMpmMhx56CIVCweeff47L5WLz5s0kJiby+7//+xw+fJjXX3+d3bt3U1paOu/5g4KCeOqppzh//jxff/01eXl5PPbYY3z55ZccOnSIhx56iMzMzDt6rTKZjKSkJB/ydz/Q2trK559/zqZNmygpKQG+qU51dHRw/fp1uru7sVgsjI2NsWvXLl555RXq6ur4xS9+gVwuZ9u2bVRUVKBULu5QnJWVxf/7f/+Pf/qnf+Ly5cu8+eabxMfHExkZyapVq1CpVISGhhIaGkpGRob4PZPJhF6vZ2JigvHxcfr6+qivrwe+sd6XyFZUVBTR0dFERESsmGSsYAUrWMEKVvD/xwqxWgA/+clPOHnyJF9//TWJiYm3fOyf//mf8yd/8ififl1dHZs3b17ql7iCFdwXaDQaXnrpJU6ePMnRo0fR6/Vs3bpVVFZkMhlbtmxBLpdz9uxZ3G43W7ZsITg4mO9973t8/PHHfPjhh+h0OrZv3z7v+RUKBZs3byYmJoYvvviCiYkJHnvsMa5fv86pU6fIz89n48aND6RV8sjICEePHiU/P5+tW7cyMzNDTU0NNTU1Qoq4atUqamtr2bRpEwUFBbz66quYzWYqKirYtGnTklqjq9VqfvSjHxEVFUVDQwMqlYqrV6/S0tLC6tWrKSoqmmefrdFo0Gg0PpU3m80myNbExAQ6nY6WlhY8Hg8ymYzw8HAhI8zNzV2xe1/BClawghX8zmKFWHnB4/Hw7/7dv+ODDz7gyy+/nJfnsxDUarXP4mSlEXwF/9agVCp54okn0Gq1nDlzBr1ez5NPPulTqdi0aRMKhYLPPvsMl8vFww8/jFKpZM+ePcTFxXHq1CnGxsZ4/PHHF/wbubm5REZGCiL2yCOPkJKSwtdff83IyAjbt2+/pbHF/cbs7Cxvv/22IBO//e1v6e7uRqVSUVxczKpVq5ienubIkSMEBQVhNps5deoUhYWFPPzww/fNoc/Pz4/9+/ejVqupq6ujrKwMt9vNlStXqKmpoaioiNLS0luSIbVaPS/c2Ol0Mjk5KciWXq+nu7ub7Ozs+/FvrWAFK1jBClbwQGKFWHnhxz/+MYcOHeLYsWMEBwej0+kACA0NXdmFXcHvNGQyGRs2bCAyMpKjR4/y+uuv89xzz/kE/K5fvx65XC56rrZv345MJmPNmjVERUUJM4z8/PwF4wuioqLYv38/n332GR999BFr1qwR9yVji1WrVn3npgoOh4Pf/OY39PX1kZCQwPvvv09CQgJ79uyhsLAQlUpFQ0MDb731FhaLhfDwcFJTU3nllVduWwFfCigUCp588knkcjkfffQRW7du5eWXX6a2tpa6ujrq6+spLCyktLT0jjeGlEolMTExPmTX7Xav9GCtYAUrWMEKfqexQqy88Itf/AKALVu2+Hz/9ddf53vf+979f0ErWMEDhry8PL7//e/z9ttv8+qrr/Lcc88R9/9j777jmrr3/4G/Ejay9xAEAXGBA8QtWvfeWrXVttbafdvbe1t77bK9bW/H7e34tla9VltbR6t1VC1o666C4qzgYCqyBGUjSUjO7w9/OZdIwEAIJ8Dr+Xjk0eack+STj+Gc8/6M98fXV9w/cOBAWFhYYO/evdBoNBg3bpyYVOGJJ57Ahg0bsGvXLowbNw7du3ev8/62traYNGkSkpKSkJiYiIKCAkyaNAnnz59HQkICsrOzMXr0aEl6hjUaDTIyMvDdd9/h9u3bGDBggNg7VbsODh06hFWrVgEABgwYgLFjxyI8PFzSgFAul2P8+PHIzs7GH3/8AY1GgyFDhiAqKgrnz5/HhQsXcOHCBXTv3h19+/Zt0jpfDKqIiKi9Y2BViyAIUheByOz5+vpiyZIl2LRpE7755hvMmDED3bp1E/fHxMTAwsICv/zyC9RqNSZOnAiZTAZnZ2c88sgj+OKLL7Bv3z4x7fi9N+TaXi4vLy/Ex8dj69atmDBhAgICAvDbb79h48aNGDlypE7SBVOqqKhAcnIyUlJS8Oeff6K0tBTPP/88pk6dqjP3S6FQYNWqVdixY4eYnS86OrrehYJbmkwmQ//+/eHs7IyTJ09CqVRiyJAhGDhwIPr27YsLFy7g3LlzuHjxIrp27YqoqCguKkxERNQIDKyIqNEcHR3x6KOPYvv27diyZQtGjRqFwYMHi70yUVFRkMvl2LVrFzQaDSZPngyZTAYrKyuMGDECaWlpOHnyJAoLCzF27Ng6SRQAoFOnTnjwwQexd+9e/PTTT3jggQfw4IMP4uDBg9i7d69JE1toNBpcu3YNycnJyMrKgqWlJWxsbODu7o4ZM2ZgypQp4ueq1WqcPn0aa9euRWpqKsaPH49nn33WbIcPR0VFoUOHDjh8+DCUSiVGjBgBGxsb9OvXD7169cLFixdx9uxZXL58GaGhoYiOjm4wdb0gCNBoNKipqYGVlRV7roiIqN1iYEVETWJlZYXZs2fj4MGD+O2331BUVIRJkyaJqcP79OkDuVyOHTt2QK1WY+rUqQDu9pz07t0b3t7eiI+Px48//oiJEyfqXVjXyckJM2fOxOHDh7F//35ERESYNLFFRUUFUlJSkJKSgvLycnh6eiI2NhZ2dnaIi4vDgAED0KNHDwB3A4orV65g//79SExMRE1NDV5++WWMGzeuWcpiLLVajZqaGqhUKqhUKlRUVKCwsBClpaVwdnZG165dcezYMWRkZCA6OhpqtVp8TXBwMDIzM3Ho0CHs2bMH7u7uCAgIgIODg/ieNTU14kPb279o0aImDSMkIiJqCxhYEVGTadey8vDwwM6dO3H79m08+OCDsLe3BwD06tULcrkc27dvh0ajwYQJE8TXdurUCXPmzMGePXvw008/YfTo0ejcuXOdz7CyssLIkSPh4+ODw4cPo7CwEOPHj8fcuXOxb98+bN26FQMGDEDfvn2bNI9Jo9EgOzsbFy9eRGZmJiwsLNClSxf07NkTXl5eKC4uxk8//YTAwEAMHjwYd+7cQU5ODg4fPoysrCyUlpbCx8cHc+bMQUxMzH0/Sxvo1A569D035JiGnms0Gp3PrqmpQX5+PqytrcXhiTKZDEePHsWff/6Jbt26wdbWFpaWlrCwsICTkxP69euHwsJCZGVl4c8//4S3tze6desGb29vWFpa1nnY2to2uv6JiIjaCgZWRGS0yMhIuLq6YvPmzVizZg3mz58PT09PAEBERAQsLCywdetWKBQKBAUFia9zcXHB7Nmz8dtvv2Hv3r3o378/oqOj6wRIMpkMPXv2hKenJ3799Vds3rwZY8eOxezZs5GQkIATJ07g+vXrjUpsUVFRgUuXLuHixYsoLS2Fi4sLoqKiEBQUBLlcLi70u3v3bsjlcnTq1AknT55EUlISKisr4ezsDLVajZKSEkRFRSEzMxNXr15tMOhRq9UG16mlpSWsrKzE/2of2uc2NjZwcHCod/+92zQaDa5evQonJyfY2dmJwVBeXh727NkDLy8vTJo0Se+wTI1Gg7S0NCQlJSE7OxtqtRrR0dEIDAyUPEsjERGRuWBgRUTNIiAgAEuWLMHGjRvx3//+F7Nnz0ZoaCgAoHv37pgzZw42bdqEjIwMTJ48WXydtbU1xo8fj1OnTiEhIQGFhYUYNWqU3rlT3t7emDNnDvbt24edO3di4MCBGDRoEAIDA7F//35s3LgR4eHh4pA2bXCjfa5UKlFUVIQbN27g1q1bEAQBrq6u8PLyglwuR1JSEpKSkgDcDSYuX76M6upqhIeH4/vvv0d+fj4sLS3Rp08flJWVobi4WJyDpJ1jZG9vX2+QU1/Qc+9zS0vLZp+rpFAocOvWLXTo0EGnbgMDAzFt2jT88ssv2L59O6ZOnVpnfphcLkeXLl0QFhaGzMxMJCUlYdeuXfDy8kJ0dDQ6d+7MAIuIiNo9BlZE1GxcXFywePFibNu2DT/88APGjx8vDo/r2rUrZs+ejS+++ALx8fE687FkMhliYmLg4eEhrls1ceJEuLi41PkMe3t7TJkyBYmJiTh+/DgKCgowatQozJs3D0ePHsWNGzdgZWUFCwsLMWiRy+UoLCxETk4Oqqur4ebmhn79+iEkJAT29vbi8DdtYGNhYYFjx46hpqYG3bp1w7Vr1+Ds7Ixp06YhKCgIGRkZyMvLw9y5cxEWFtaSVWwSvr6+mD59Onbu3Imff/4ZU6dO1dvzJ5PJ0LlzZwQHByM7OxunTp3C3r174ebmhujoaISFhTF5BRERtVsMrIioWdnY2ODBBx/E/v37sXfvXnFOlFwuR1hYGEaPHo3Dhw9j7969mDBhghhcAUDnzp0xe/Zs7NmzBz/++CPGjRuHwMDAOp8hl8sxcOBAeHl54bfffsOPP/6ICRMmYMyYMeIxgiDgxo0b+PPPP3Ht2jXI5XIMHToUPXv2hI+PT4M9LAkJCfjzzz/h4OCAjIwM9OjRAzExMdBoNPj5559hY2ODhQsX6gxrbO08PT0xc+ZM7Ny5E1u3bsW0adP0BrbA3QArMDAQgYGByMnJQVJSEvbv3w9PT0+9SUiIiIjaAwZWRNTs5HI5xo4dCw8PD+zZswe3b9/G7NmzIZPJEBAQgAkTJmDfvn3YvXs3Jk6cCCsrK/G1bm5umDNnDuLj47Fr1y4MGjQIffr00RsIhYSEwM3NDXv37sWPP/6IkSNHwt/fH5cuXUJycjJKS0vh5uaGoUOHIjw83KDkCseOHcP3338PV1dXREVFYfDgwXBzc0NVVRV27tyJkpISvPTSS20qqNJydXXFzJkzsWPHDrHnyt3dvcHX+Pv7w9/fHyUlJfUGYkRERO0BAysiMpmoqCi4ublhy5Yt+O9//4uZM2cCuDsfa/Lkydi9e7cYXNWe92NjY4NJkyYhISEBf/zxB4qKijBixAidAEzL1dUVs2fPxoEDBxAXFweZTAa5XI7Q0FCMGjUKvr6+Bs3/KS4uxp49exAfH4/OnTvj8ccfR0BAAIC7iS527NiBqqoqTJw4Ef7+/s1UQ+bH0dERM2bMwK5du7Bt2zZMnTrVoHT2DKqIiKi942B4IjKp4OBgLFmyBIIgYN26dcjLywMAdOzYEVOmTEFBQQF++eUXKJVKndfJ5XIMGjQI48aNQ3p6OrZt24by8nK9n2FtbY2xY8di9OjRGDp0KB599FGMGTMGfn5+9w2qqqqqcPjwYXzzzTc4evQo+vfvj9dee00MqkpLS7Ft2zbU1NRg2rRp9+3BaQs6dOiA6dOnw9XVFdu3b8eNGzekLhIREZHZY2BFRCbn7u6Oxx9/HF5eXvj1119x6dIlAICfnx+mTZuGoqIi7Ny5EwqFos5rw8LCMGvWLFRXV2PLli3IycnR+xkymQxdu3ZFr1696mS100elUiEpKQkbNmxAcnIylEolBg4ciMWLF4s9Y7dv38a2bdsgk8kwY8aMdtUrY2tri6lTp8LHxwe7du1CZmam1EUiIiIyawysiKhF2NnZYf78+QgLC8PBgwfxxx9/QBAE+Pj4YNq0aSguLsbOnTtRXV1d57Wenp6YO3cu3N3dsX37dly4cAGCIDSpHIIg4PLly/j++++RkJCA8PBweHh4wN3dHVOmTBGDsps3b2Lbtm2wsbHBjBkz4OTkZNT3b42sra0xadIkBAUFYc+ePbhy5YrURSIiIjJbDKyIqMVYWFhgyJAhGDRoEM6ePYu9e/dCqVTC29sb06ZNQ0lJCXbs2IE7d+7Uea2dnR2mTJmCyMhIHD58GAcOHEBNTU2jPj87OxubN2/G/v374e3tjQULFkAQBNy8eRPjx48XM9rl5eVhx44dcHJywowZMwxedLgtsrS0xLhx4xAeHo79+/fj4sWLUheJiIjILDGwIqIWJZPJ0Lt3b0ycOBHZ2dni3CkvLy/MmDED5eXlYqKIe1lYWGDYsGEYNWoUrly5gu3bt6OiouK+n3nr1i3s2rULO3bsgKWlJWbNmoUJEyYgKysLFy9exAMPPCDOqcrOzsaOHTvg7u6O6dOnGzSssK2Ty+UYNWoUIiIicPDgQZw+fVrqIhEREZkdBlZEJIng4GDMmjULCoUCP/74IwoKCuDh4YEZM2agqqoK27dvR2Vlpd7XduvWDTNnzkR5eTl+/PFH5Ofn6z2uoqICv//+OzZt2oSSkhKMHz8es2bNgq+vLzIyMvDHH3+gb9++6N69OwAgIyMDu3btgp+fH6ZMmaKTqbC9k8lkGDZsGKKjo3H8+HGcOHGiycMxiYiI2iIGVkQkGQ8PD8yePRtOTk7Ytm0bUlNTxZ4ihULRYI+Ut7c35syZA0dHR2zbtk1MiAEASqUSCQkJ2LBhAzIyMjB06FAsWLAAoaGhkMlkKCwsxL59+9C5c2cMGjQIAHDlyhXs3bsXwcHBddbWortkMhkGDhyIwYMHIykpCUeOHGFwRURE9P9xHSsikpQ2tffvv/+OuLg4FBcXo1+/fpg+fTp27NiB7du3Y/r06XrnOTk4OGD69Ok4cuQIfvvtN9y8eRPu7u5ITEyEQqFA7969ERUVBRsbG/E1FRUV2L17N1xdXTF69GjIZDIkJyfj4MGDCA8Px8iRIyGXs82pIX379oW1tTUOHToEpVLJOiMiIgIDKyIyA5aWlhgzZgzc3NyQkJCA4uJijBw5EjNmzMD27duxbds2TJ8+XW9mPktLS4wYMQIeHh5iD0p4eDgGDBhQ53ilUondu3cDgNgrdfbsWRw7dgwRERGIjY01aDFhAnr27Alra2vs27cPSqUSY8eOhaUlLylERNR+8SpIRGZBJpOhX79+cHFxwf79+1FWVoYJEyaIwdXPP/+M6dOnw9nZWe9rIyMj4ePjA5lMBk9PzzrHCIKA/fv3o6SkBDNnzkSHDh1w8uRJJCYmom/fvhg0aBCDqkbq0qULrKys8Ouvv2L37t2YMGEC56UREVG7xbEbRGRWwsLCMHPmTJSVleGnn36CUqnEzJkzIZfLsX37dpSUlNT7Wi8vL71BFQAcP34cmZmZGDNmDDw8PPDHH38gMTERAwYMYFBlhODgYEyZMgXl5eV60+QTERG1FwysiMjsaBNT2NjYYOvWrSgsLMSMGTNgaWmJn3/+Gbdv327U+yUnJ+PMmTMYMmQIgoODcejQIZw9exZDhw5Fv379GFQZqWPHjliwYIHe3kQiIqL2goEVEZklR0dHzJw5EwEBAdizZw9SU1Mxbdo02NjYYPv27QYHV9nZ2Th48CB69uyJiIgI7N+/H8nJyRg5ciR69+5t2i/RjjB5BRERtXe8EhKR2bK2tsaECRPQt29fHDt2DImJiZgyZQrs7Ozw888/o6ioqMHX3759G7/++is6duyIQYMGIS4uDlevXsWYMWPEtauIiIiImgMDKyIyazKZDIMGDcKoUaNw+fJl7N+/H+PHj4eDgwO2b9+OwsJCva+7c+cOdu/ejQ4dOmDUqFH49ddfce3aNUycOBFdunRp4W9BREREbR0DKyJqFbp164Zp06bh1q1b2L17N4YPHw5nZ2ds374dBQUFOsfW1NRg7969UCqVGD16NOLi4pCfn4/JkycjODhYom9AREREbRkDKyJqNfz9/TF79mzI5XLs2rULUVFRcHV1xc6dO5Gfnw/gblr1gwcPoqCgACNHjsTBgwdx+/ZtTJs2DQEBARJ/AyIiImqrGFgRUavi4uKCWbNmwcvLC7/++itCQ0Ph5uaGnTt3Ijc3F0lJSbh8+TIGDhyI48ePo7y8HNOnT4ePj4/URSciIqI2jAsEE1GrY2NjgylTpuDo0aM4duwYevToAQDYuXMnampq0KNHD/z5559Qq9WYMWMG3NzcJC4xERERtXUMrIioVZLL5YiNjYWrqyuOHDkCf39/+Pv7QyaTISsrCxYWFpgxYwbXViIiIqIWwaGA9zhy5AgmT54MPz8/yGQy7NixQ+oiEVEDIiMjMWXKFNy8eRPl5eUoKCiAjY0NZs6cyaCKiIiIWgwDq3tUVlaiV69e+PLLL6UuChEZKDAwELNnz4ZarYaDgwNmzJgBBwcHqYtFRERE7QiHAt5j/PjxGD9+vNTFIKJGcnNzw4IFCyCTySCXs82IiIiIWhYDKyMpFAooFArxeUVFhYSlIWrfLCwspC4CERERtVNs1jXS+++/D2dnZ/ERGxsrdZGIiIiIiKiFMbAy0quvvorS0lLxcfjwYamLRERERERELYxDAY1kY2MDGxsb8TknzBMRERERtT/ssSIiIiIiIjISe6zuUVFRgbS0NPF5ZmYmzp07Bzc3NwQGBkpYMiIiIiIiMlcMrO6RlJSEESNGiM//+te/AgAWLVqE9evXS1QqIiIiIiIyZwys7jF8+HAIgiB1MZrNzZs3UVhYaJL3VqlUuHPnDgRBgLW1tUk+w1SUSiWuXLkCOzs7WFlZSV2cRmG9S4d1Xz9PT094eXk1+/vS/fE8r19rPt+w3qXRmusd4HneHMiEthRFmIG8vDysWrUKS5cuha+vr6RlUSgUGDt2LDMVEpHJxcbGIj4+XieZD5kez/NE1FJ4nr8/BlZtWFlZGZydnXH48GFmK2xBFRUViI2NZb1LgHUvDW29l5aWwsnJSeritCs8z0uD5xrpsO6lwfO8YTgUsB3o3bs3/whaUFlZGQDWuxRY99LQ1jtJh7/5lsVzjXRY99Lged4wTLdORERERERkJAZWRERERERERmJg1YbZ2NjgzTff5CTDFsZ6lw7rXhqsd+mw7qXBepcO614arHfDMHkFERERERGRkdhjRUREREREZCQGVkREREREREZiYEVERERERGQkBlZkkKysLMhkMqxfv17qohARkQnwPE9EZBwGViaQnp6OpUuXonPnzrC1tYWTkxMGDx6Mzz77DHfu3DHZ56akpOCtt95CVlaWyT7DEO+++y6mTJkCb29vyGQyvPXWW5KWRx+ZTGbQ49ChQ0Z/VlVVFd56661GvVdrqMOmMue6v3z5Ml5++WX07t0bjo6O8PX1xcSJE5GUlGR0WaRmzvWem5uLhx56COHh4XB0dISLiwtiYmLw7bffwlzzK7Xn83xr+Tsx59/8vX744QfIZDI4ODgYXRZzYM51r21A0PfYvHmz0eWRkjnXu1Z6ejrmz58PLy8v2NnZISwsDMuXLze6PObCUuoCtDV79uzB7NmzYWNjg4ULF6Jnz55QKpU4duwY/v73vyM5ORmrV682yWenpKRgxYoVGD58OIKCgkzyGYZ47bXX4OPjgz59+iA+Pl6ycjRkw4YNOs+/++477N+/v872bt26Gf1ZVVVVWLFiBQBg+PDhBr2mNdRhU5lz3f/3v//F2rVrMXPmTDz99NMoLS3FqlWrMGDAAMTFxWHUqFFGl0kq5lzvRUVFuHHjBmbNmoXAwECoVCrs378fjzzyCK5cuYL33nvP6DI1p/Z+nm8tfyfm/JuvraKiAi+//DI6dOhgdDnMRWuo+3nz5mHChAk62wYOHGh0eaRk7vV+7tw5DB8+HP7+/njppZfg7u6O69evIzs72+jymA2Bmk1GRobg4OAgdO3aVcjNza2zPzU1Vfj0009N9vk//fSTAEA4ePDgfY/VaDRCVVWVwe+dmZkpABDWrVtn0LGCIAiFhYUCAOHNN980+HOk8swzzwim+nNoSj20xjpsKnOq+6SkJKG8vFxnW1FRkeDp6SkMHjzYBCWUjjnVe30mTZokdOjQQaipqWmegjUDnudb79+Juf7mX3nlFSE8PFxYsGCB0KFDh+YvnBkwp7rX/s4/+ugjk5THnJhTvavVaqFnz55C//79G3Veam04FLAZffjhh6ioqMDatWvh6+tbZ39oaCj+8pe/iM9ramrwzjvvICQkBDY2NggKCsI//vEPKBQKndcFBQVh0qRJOHbsGGJiYmBra4vOnTvju+++E49Zv349Zs+eDQAYMWJEne5e7XvEx8cjOjoadnZ2WLVqFQAgIyMDs2fPhpubG+zt7TFgwADs2bOnyfUgZW9Zc9JoNPj000/Ro0cP2NrawtvbG0uXLkVxcbHOcUlJSRg7diw8PDxgZ2eH4OBgPPbYYwDuDjnw9PQEAKxYsUL8d7nf0L62UodNJVXdR0VF1RmK4+7ujqFDh+LSpUvN+yXNkJS/eX2CgoJQVVUFpVJp9HdrLjzPt62/E6l/86mpqfjPf/6DTz75BJaW7WsQkdR1DwCVlZVmdX5pCVLV+759+3Dx4kW8+eabsLOzQ1VVFdRqtcm+p2SkjuzaEn9/f6Fz584GH79o0SIBgDBr1izhyy+/FBYuXCgAEKZNm6ZzXKdOnYTw8HDB29tb+Mc//iH83//9n9C3b19BJpMJFy9eFARBENLT04Xnn39eACD84x//EDZs2CBs2LBByM/PF98jNDRUcHV1FZYtWyZ8/fXXwsGDB4X8/HzB29tbcHR0FJYvXy588sknQq9evQS5XC78/PPPYhka02Ol1Zp6W/S16jz++OOCpaWlsGTJEuHrr78WXnnlFaFDhw5Cv379BKVSKQiCIBQUFAiurq5Cly5dhI8++khYs2aNsHz5cqFbt26CIAhCRUWFsHLlSgGAMH36dPHf5fz58waVqzXVYVOZa93XNmjQIKFLly7Gf1kzYo71XlVVJRQWFgqZmZnC+vXrhQ4dOgiDBg1q/i9vBJ7n62fufyfm+JufMGGCMHbsWEEQ7v5W2lOPlVR1r/2dOzg4CAAEmUwmREdHC/Hx8aarAImYU72/9NJLAgDh999/F6KiogQAgrW1tTB37lzh1q1bpquEFsbAqpmUlpYKAISpU6cadPy5c+cEAMLjjz+us/1vf/ubAEA4cOCAuK1Tp04CAOHIkSPitps3bwo2NjbCSy+9JG5raIiI9j3i4uJ0tr/wwgsCAOHo0aPitvLyciE4OFgICgoS1Gq1IAjtL7A6evSoAED44YcfdI6Li4vT2b59+3YBgHDq1Kl639uYemhNddhU5lr3WkeOHBFkMpnw+uuvN/k9zJE51vv7778vABAfI0eOFK5fv96o9zAlnufr1xr+TsztN797927B0tJSSE5OFgShfQVWUtb9tWvXhDFjxggrV64Udu3aJXz66adCYGCgIJfLhd27dzf+y5kxc6r3KVOmCAAEd3d3YcGCBcLWrVuF119/XbC0tBQGDRokaDSaxn9BM8ShgM2krKwMAODo6GjQ8Xv37gUA/PWvf9XZ/tJLLwFAnSEa3bt3x9ChQ8Xnnp6eCA8PR0ZGhsFlDA4OxtixY+uUIyYmBkOGDBG3OTg44IknnkBWVhZSUlIMfv+25KeffoKzszNGjx6NoqIi8aEdAnPw4EEAgIuLCwBg9+7dUKlUEpa47TCnur958ybmz5+P4OBgvPzyyyb5DHNhDvU+b9487N+/Hxs3bsT8+fMBwKQZ9hqL53n9WuvfiZS/eaVSiRdffBFPPvkkunfv3izv2ZpIWfeBgYGIj4/Hk08+icmTJ+Mvf/kLzp49C09PT/Fvs62Sst4rKioAAP369cP333+PmTNn4u2338Y777yD48eP4/fff2+Wz5EaA6tm4uTkBAAoLy836Phr165BLpcjNDRUZ7uPjw9cXFxw7do1ne2BgYF13sPV1bXOmNiGBAcH6y1HeHh4ne3ajDH3lqO9SE1NRWlpKby8vODp6anzqKiowM2bNwEAsbGxmDlzJlasWAEPDw9MnToV69atqzN/ggxnLnVfWVmJSZMmoby8HDt37mwzaZDrYw713qlTJ4waNQrz5s3DDz/8gM6dO2PUqFFmE1zxPF9Xa/47kfI3/5///AdFRUViVrX2xhzON7W5ubnh0UcfxZUrV3Djxo1mfW9zImW929nZAbjbgFabthHt+PHjTX5vc9K+ZkqakJOTE/z8/HDx4sVGvU4mkxl0nIWFhd7tQiPWeNH+qOn+NBoNvLy88MMPP+jdr520KZPJsHXrViQkJOCXX35BfHw8HnvsMfz73/9GQkJCq7rJMBfmUPdKpRIzZszAhQsXEB8fj549ezb5vVoLc6j3e82aNQtr1qzBkSNH6vTCSIHneV2t/e9Eqt98aWkp/vnPf+Lpp59GWVmZ2BNaUVEBQRCQlZUFe3t7eHl5GfcFzZg5nm8CAgIAALdv30bHjh2b7X3NiZT17ufnBwDw9vbW2a79nTemAcmcMbBqRpMmTcLq1atx4sSJ+66F0KlTJ2g0GqSmpuqsJ1BQUICSkhJ06tSp0Z9v6MX73nJcuXKlzvbLly+L+9ujkJAQ/Pbbbxg8eLBBNyoDBgzAgAED8O6772Ljxo1YsGABNm/ejMcff7xJ/y7tmdR1r9FosHDhQvz+++/48ccfERsb25Sv0epIXe/6aHuqSktLm+X9mgPP83e1hb8TqX7zxcXFqKiowIcffogPP/ywzv7g4GBMnToVO3bsaMzXaVXM8XyjHXKrDS7aIinrPSoqCmvWrEFOTo7O9tzcXABtp945FLAZaRf4e/zxx1FQUFBnf3p6Oj777DMAEBel+/TTT3WO+eSTTwAAEydObPTnaxcXLCkpMfg1EyZMwMmTJ3HixAlxW2VlJVavXo2goKB2OfYbAObMmQO1Wo133nmnzr6amhqxjouLi+u0Jvfu3RsAxC5ze3t7AI37d2nPpK775557Dlu2bMFXX32FGTNmNP4LtFJS1nthYaHe7WvXroVMJkPfvn0Nep+WwPP8XW3h70Sq37yXlxe2b99e5zFixAjY2tpi+/btePXVV5v+xVoBczvf5OTk4JtvvkFkZKTeZRTaCinrferUqbCxscG6deug0WjE7f/9738BAKNHj27MVzFb7LFqRiEhIdi4cSPmzp2Lbt26YeHChejZsyeUSiWOHz+On376CY888ggAoFevXli0aBFWr16NkpISxMbG4uTJk/j2228xbdo0jBgxotGf37t3b1hYWOCDDz5AaWkpbGxs8MADDzQ4nGDZsmXYtGkTxo8fj+effx5ubm749ttvkZmZiW3btkEub3zsvWHDBly7dg1VVVUAgCNHjuCf//wnAODhhx9uFb1gsbGxWLp0Kd5//32cO3cOY8aMgZWVFVJTU/HTTz/hs88+w6xZs/Dtt9/iq6++wvTp0xESEoLy8nKsWbMGTk5O4k2VnZ0dunfvji1btqBLly5wc3NDz549Gxw20xbqsKmkrPtPP/0UX331FQYOHAh7e3t8//33OvunT58u3ti2NVLW+7vvvos//vgD48aNQ2BgIG7fvo1t27bh1KlTeO655+rMUZISz/Nt5+9Eqt+8vb09pk2bVmf7jh07cPLkSb372hopzzcvv/wy0tPTMXLkSPj5+SErKwurVq1CZWWl2CjSVklZ7z4+Pli+fDneeOMNjBs3DtOmTcP58+exZs0azJs3D/369WvJqjAdyfIRtmFXr14VlixZIgQFBQnW1taCo6OjMHjwYOGLL74QqqurxeNUKpWwYsUKITg4WLCyshICAgKEV199VecYQbibQnfixIl1Pic2NlaIjY3V2bZmzRqhc+fOgoWFhU5K3vreQxDuro0ya9YswcXFRbC1tRViYmLqpBxtTBre2NhYnZTJtR/6UgSbg/pWJ1+9erUQFRUl2NnZCY6OjkJERITw8ssvC7m5uYIgCMKZM2eEefPmCYGBgYKNjY3g5eUlTJo0SUhKStJ5n+PHjwtRUVGCtbW1QelJW2MdNpU51b12zaH6HpmZmc351SVlTvW+b98+YdKkSYKfn59gZWUlnjPXrVtntil42/N5vrX+nZjTb16f9pRuXUuKut+4caMwbNgwwdPTU7C0tBQ8PDyE6dOnC6dPn27W72wOzKneBUEQNBqN8MUXXwhdunQRz4evvfaauH5WWyAThEbMiiUiIiIiIqI6OMeKiIiIiIjISAysiIiIiIiIjMTAioiIiIiIyEgMrIiIiIiIiIzEwIqIiIiIiMhIDKwk8OGHH6Jr1646C6S1VsuWLUP//v2lLobBWPfSYL1Lh3UvDda7dFj30mC9S4d1b0akzvfe3pSWlgpubm7CN998I27D/1/74+OPP65z/Lp16wQAwqlTp4z+7G3btglz5swRgoODBTs7O6FLly7CX//6V6G4uFjv8Tt37hT69Okj2NjYCAEBAcIbb7whqFQqnWPy8vIEGxsbYefOnUaXz9RY99JgvUuHdS8N1rt0WPfSYL1Lh3VvXhhYtbD//Oc/gpOTk3Dnzh1xm/YPwNvbW6isrNQ5vjn/ANzd3YWIiAjh9ddfF9asWSM8//zzgrW1tdC1a1ehqqpK59i9e/cKMplMGDFihLB69WrhueeeE+RyufDkk0/Wed85c+YIQ4cONbp8psa6lwbrXTqse2mw3qXDupcG6106rHvzwsCqhUVGRgoPPfSQzjYAQu/evQUAwr///W+dfc35B3Dw4ME627799lsBgLBmzRqd7d27dxd69eql05KwfPlyQSaTCZcuXdI5duvWrYJMJhPS09ONLqMpse6lwXqXDuteGqx36bDupcF6lw7r3rxwjlULyszMxIULFzBq1Kg6+wYPHowHHngAH374Ie7cuWOSzx8+fHidbdOnTwcAXLp0SdyWkpKClJQUPPHEE7C0tBS3P/300xAEAVu3btV5D+332blzpwlK3TxY99JgvUuHdS8N1rt0WPfSYL1Lh3VvfhhYtaDjx48DAPr27at3/1tvvYWCggKsXLmywfdRKBQoKioy6HE/+fn5AAAPDw9x29mzZwEA0dHROsf6+fmhY8eO4n4tZ2dnhISE4I8//rjv50mFdS8N1rt0WPfSYL1Lh3UvDda7dFj35sfy/odQc7l8+TIAIDg4WO/+oUOHYsSIEfjoo4/w1FNPwc7OTu9xmzZtwqOPPmrQZwqC0OD+Dz74ABYWFpg1a5a4LS8vDwDg6+tb53hfX1/k5ubW2d65c2ekpKQYVCYpsO6lwXqXDuteGqx36bDupcF6lw7r3vwwsGpBt27dgqWlJRwcHOo95q233kJsbCy+/vprvPjii3qPGTt2LPbv3290eTZu3Ii1a9fi5ZdfRlhYmLhd22VsY2NT5zW2trYoKyurs93V1bVOi4M5Yd1Lg/UuHda9NFjv0mHdS4P1Lh3WvflhYGVmhg0bhhEjRuDDDz/Ek08+qfcYX19fvVF/Yxw9ehSLFy/G2LFj8e677+rs07ZoKBSKOq+rrq7W2+IhCAJkMplRZZIa614arHfpsO6lwXqXDuteGqx36bDuWxYDqxbk7u6OmpoalJeXw9HRsd7j3nzzTQwfPhyrVq2Ci4tLnf137txBaWmpQZ/p4+NTZ9v58+cxZcoU9OzZE1u3btWZSAj8r6s2Ly8PAQEBOvvy8vIQExNT5z2Li4t1xtOaG9a9NFjv0mHdS4P1Lh3WvTRY79Jh3ZsfJq9oQV27dgVwN4tLQ2JjYzF8+HB88MEHejO5bNmyRWxduN/jXunp6Rg3bhy8vLywd+9evd3HvXv3BgAkJSXpbM/NzcWNGzfE/bVlZmaiW7duDX4vKbHupcF6lw7rXhqsd+mw7qXBepcO6978sMeqBQ0cOBDA3R9WZGRkg8e+9dZbGD58OFavXl1nX1PHwubn52PMmDGQy+WIj4+Hp6en3uN69OiBrl27YvXq1Vi6dCksLCwAACtXroRMJtOZkAgApaWlSE9Px1NPPdXoMrUU1r00WO/SYd1Lg/UuHda9NFjv0mHdm6GWWzKLBEEQevbsKcybN09nGwDhmWeeqXNsbGysuHp2cyzk1qtXLwGA8PLLLwsbNmzQeezbt0/n2F9++UWQyWTCAw88IKxevVp4/vnnBblcLixZsqTO+27dulUAIKSlpRldRlNi3UuD9S4d1r00WO/SYd1Lg/UuHda9eWFg1cI++eQTwcHBQaiqqhK31fcHcPDgwWb9A9C+l75HbGxsneO3b98u9O7dW7CxsRE6duwovPbaa4JSqaxz3Ny5c4UhQ4YYXT5TY91Lg/UuHda9NFjv0mHdS4P1Lh3WvXlhYNXCSkpKBDc3N+G///2v1EVpFnl5eYKtra2wY8cOqYtyX6x7abDepcO6lwbrXTqse2mw3qXDujcvDKwk8K9//UsIDw8X1Gq11EUx2iuvvCL069dP6mIYjHUvDda7dFj30mC9S4d1Lw3Wu3RY9+ZDJgj3WUKZiIiIiIiIGsR060REREREREZiYEVERERERGQkBlZERERERERGYmBFRERERERkJAZWRERERERERmJgRUREREREZCQGVkREREREREZiYEVERERERGQkBlZERERERERGYmBFRERERERkJAZWRERERERERmJgRUREREREZCQGVkREREREREZiYNXM8vLy8NZbbyEvL0/qohARERERUQthYNXM8vLysGLFCgZWRERERETtCAMrIiIiIiIiIzGwIiIiIiIiMhIDKyIiIiIiIiMxsKpl5cqViIyMhJOTE5ycnDBw4ED8+uuvUheLiIiIiIjMHAOrWjp27Ih//etfOH36NJKSkvDAAw9g6tSpSE5OlrpoREREZCaUSiWOHz8OpVIpdVGIyIxYSl0AczJ58mSd5++++y5WrlyJhIQE9OjRQ6JSERERkTlJSEjAhg0boFarMXToUKmLQ0Rmgj1W9VCr1di8eTMqKysxcODAeo9TKBQoKysTHxUVFS1YSiIiImpJCoUC8fHxyMzMRFxcHBQKhdRFIiIzwcDqHn/++SccHBxgY2ODJ598Etu3b0f37t3rPf7999+Hs7Oz+IiNjW3B0hIREVFLSkxMxNWrVxEZGYmrV6/i5MmTUheJiMwEA6t7hIeH49y5c0hMTMRTTz2FRYsWISUlpd7jX331VZSWloqPw4cPt2BpiYiIqKVoe6usra3h5OQEa2tr9loRkYiB1T2sra0RGhqKqKgovP/+++jVqxc+++yzeo+3sbERswg6OTnBwcGhBUtLRERELeXs2bNIT09HZWUlkpOTUVlZifT0dJw9e1bqohGRGWDyivvQaDRsiSIiIiIEBARgwYIFercTETGwquXVV1/F+PHjERgYiPLycmzcuBGHDh1CfHy81EUjIiIiifn7+8Pf31/qYhCRmWJgVcvNmzexcOFC5OXlwdnZGZGRkYiPj8fo0aOlLhoREREREZkxBla1rF27VuoiEBERERFRK8TkFUREREREREZiYEVERERERGQkBlZERERERERGYmBFRERERERkJAZWRERERERERmJgRUREREREZCQGVkREREREREZiYEVERERERGQkBlZERERERERGYmBFRETNSqlU4vjx41AqlVIXhYiIqMUwsCIiomaVkJCAdevWITExUeqiEBERtRgGVkRE1GwUCgXi4+ORmZmJuLg4KBQKqYtERETUIhhYERFRs0lMTMTVq1cRGRmJq1ev4uTJk1IXiYiIqEUwsCIiomah7a2ytraGk5MTrK2t2WtFRETtBgMrIiJqFmfPnkV6ejoqKyuRnJyMyspKpKen4+zZs1IXjYiIyOQspS4AERG1bkqlEklJSfD19cWCBQvq7A8ICJCgVERERC2LgRURERklISEBGzZswMKFCzF58mSpi0NkctrGhOjoaFhbW0tdHCIyExwKSERETcYsgNQecUkBItLHrAIrtVqNzZs3Y+nSpZg+fTr+/PNPAEBpaSl+/vlnFBQUSFxCIiKqjVkAqb1hYwIR1cdsAquSkhIMHjwY8+fPx6ZNm7Br1y4UFhYCABwcHPD888/js88+k7iURESkxSyA1B6xMYGI6mM2gdWyZcuQnJyM+Ph4ZGRkQBAEcZ+FhQVmzZqFvXv3SlhCIiKqjVkAqb1hYwIRNcRsklfs2LEDzz33HEaPHo1bt27V2d+lSxesX7/epGV4//338fPPP+Py5cuws7PDoEGD8MEHHyA8PNykn0tE1BoFBAQwCyC1K9rGhOrqaiQnJ0OlUomNCQMGDJC6eEQkMbMJrEpLSxEcHFzvfpVKhZqaGpOW4fDhw3jmmWfQr18/1NTU4B//+AfGjBmDlJQUdOjQwaSfTUTU2vj7+8Pf31/qYhC1GDYmEFFDzCawCgkJwZkzZ+rdv2/fPnTv3t2kZYiLi9N5vn79enh5eeH06dMYNmyYST+biIiIzBsbE4ioIWYzx+rxxx/HN998gy1btojzq2QyGRQKBZYvX464uDgsXbq0RctUWloKAHBzc6v3GIVCgbKyMvFRUVHRUsUjIiIiIiIzIRNqZ4mQkCAIeOKJJ7B27Vq4uLigpKQE3t7euHXrFmpqarB06VKsXLmyxcqj0WgwZcoUlJSU4NixY/Ue99Zbb2HFihV1tp8+fRp9+/Y1ZRGJiIiIiMhMmE1gpXXs2DFs3boVqamp0Gg0CAkJwZw5c1p8KN5TTz2FX3/9FceOHUPHjh3rPU6hUOhkAzp37hxiY2MZWBERERERtSNmM8dKa8iQIRgyZIikZXj22Wexe/duHDlypMGgCgBsbGxgY2MjPndwcDB18YiIiIiIyMyYzRyrzMxM/PLLL/Xu/+WXX5CVlWXSMgiCgGeffRbbt2/HgQMHGsxSSEREREREpGU2PVZ/+9vfUFZWhsmTJ+vd/+WXX8LFxQWbN282WRmeeeYZbNy4ETt37oSjoyPy8/MBAM7OzrCzszPZ5xIRERERUetmNj1WJ06cwOjRo+vdP3LkSBw9etSkZVi5ciVKS0sxfPhw+Pr6io8tW7aY9HOpbVEqlTh+/DiUSqXURSEiIhPgeZ6I9DGbHqvi4mI4OjrWu9/BwQG3bt0yaRnMLI8HtVIJCQnYsGED1Go1hg4dKnVxiIiomfE8T0T6mE2PVWBgIP7444969x89evS+iSSIpKZQKBAfH4/MzEzExcXpZIwkIqLWj+d5IqqP2QRW8+bNw6ZNm/D5559Do9GI29VqNT777DNs2bIF8+fPl7CERPeXmJiIq1evIjIyElevXsXJkyelLhIRETUjnueJqD5mE1i9+uqrGDFiBF544QX4+vpi2LBhGDZsGPz8/PDiiy8iNjYWy5cvl7qYRPXStmJaW1vDyckJ1tbWbM0kImpDeJ4nooaYTWBlY2ODffv2Ye3atYiJiUFRURGKiooQExODb775Br/99pvOelFE5ubs2bNIT09HZWUlkpOTUVlZifT0dJw9e1bqohERUTPgeZ6IGmI2ySsAQC6X49FHH8Wjjz4qdVGIGi0gIAALFizQu52IiFo/nueJqCFmFVgRtWb+/v7w9/eXuhhERGQi2vO8UqlEUlISoqOjYW1tLXWxiMhMmFVgFR8fj7Vr1yIjIwPFxcV10p/LZDKkp6dLVDoiIiIiplsnIv3MJrD66KOPsGzZMnh7eyMmJgYRERFSF4mIiIhIx73p1mNiYjgHnIgAmFFg9dlnn+GBBx7A3r17YWVlJXVxiIioGXDIFLU1+tKts9eKiAAzygpYXFyMWbNmMagiImpllEoljh8/DqVSWWdfQkIC1q1bh8TERAlKRtS8mG6diBpiNoFVTEwMrly5InUxiIiokeoLnu4dMsWbT2rtmG6diBpiNkMBv/rqK4wfPx7R0dGYP3++1MUhajIOfaL2pKH5JhwyRW0N061Te8V7G8OYTWA1d+5c1NTU4OGHH8ZTTz2Fjh07wsLCQucYmUyG8+fPS1RCIsMwWxS1J/UFT/UNmeJEf2rNuKwGtVe8tzGM2QRWbm5ucHd3R1hYmNRFIWoyZoui9qSh4Ek7ZKq6uhrJyclQqVTikKkBAwZIXXQiIjIQ720MZzaB1aFDh6QuApHROPSJ2pOGgicOmaK2TqPRQC43m6nqRCbDexvDmU1gRdTacegTtTcNBU8cMkVtnSAIUhehXeJcn5bFe5vGMavAqqysDF999RUOHjyImzdvYtWqVYiJicHt27exfv16TJkyBaGhoVIXk0gvDn2i9obBE7VnMplM6iK0S5zr07J4b9M4ZhNY3bhxA7GxscjOzkZYWBguX76MiooKAHfnX61atQrXrl3DZ599JnFJifTj0CciovaDgVXL41yflsd7m8Yxm8Dq73//O8rLy3Hu3Dl4eXnBy8tLZ/+0adOwe/duiUpHdH9svSciah+USiVOnjyJmJiYOsPROFTNdDjXp+Xx3qZxzGbW5b59+/D888+je/fueluBOnfujOzsbAlKRkRERPQ/CQkJWL9+fZ1FsbX79C2YTcapb64PFx4nc2I2gdWdO3fg6elZ7/7y8vIWLA2RtJRKJY4fPw6lUil1UVoV1hsRmZr2Bj8jI6POjf29Q9V40998tHN9KisrkZycjMrKSnGuD5G5MJvAqnv37jhy5Ei9+3fs2IE+ffqYvBxHjhzB5MmT4efnB5lMhh07dpj8M4nuxRbPpmG9SUOpVOLIkSO8iaR2QTscrUePHrhy5QpOnjxZZ1/toWrUPLRzfRYvXoyFCxdi8eLFWLBgAef6kFkxmzlWL7zwAhYtWoTIyEjMnj0bwN01ItLS0rBixQqcOHEC27ZtM3k5Kisr0atXLzz22GOYMWOGyT+P2q/6xuFzcm7TsN6kox0WJQgCYmNjpS4OkcnUHo7m6OiIoqIi8XwDgGmpTYhzfag1MJvA6qGHHsK1a9fw2muvYfny5QCAcePGQRAEyOVyvPfee5g2bZrJyzF+/HiMHz/e5J9D7Ud9AVR9KWM5ObdpWG/S0N5oZmVlIS4uDgMGDOBNJLVZtVNPp6SkQK1W6wxHY1rqlsMkIWSOzCawAoDly5fj4YcfxrZt25CWlgaNRoOQkBDMmDEDnTt3lrp4eikUCp3hL9oU8URa+gKo+npXuBBf07DepKMNaHv27CkOi2JAS21V7dTTd+7cgUajQYcOHcThaExL3XK4nhWZI7MIrKqqqjB06FAsWbIETz75JF588UWpi2Sw999/HytWrJC6GGSm6gug6utd4UJ8TcN6k8a9Aa2lpSUDWmrTag9Hq6ioQGVlJby9vXX2k+lx6DeZK7MIrOzt7ZGZmdkqF9t79dVX8de//lV8fu7cOc4xIGg0GshkMr0BVExMTL29K1yIr2lYb9K4d1iUQqFgQEvtSmVlpdRFaJc49JvMlVkEVsDd+VTx8fFYunSp1EVpFBsbG51WEgcHBwlLQ+akqqpKbwAlCEKDvSts8Ww8TmqWRu2AVqVSobKyEi4uLgxoqd3gUjAtj0O/yZyZTWD1+uuvY/bs2Xj44YexdOlSBAcHw87Ors5xbm5uEpSOqPESExP1BlAlJSXsXaE2oXZAq1AokJubi+DgYIlLRdRyOK+65XHoN5kzswmsevToAQBISUnBxo0b6z1OrVabtBwVFRVIS0sTn2dmZuLcuXNwc3NDYGCgST+b2galUomTJ0/Czs5ObwDVt29f9q5Qm1RSUiJ1EYhaVFVVldRFaHc49JvMmdkEVm+88YZZzLFKSkrCiBEjxOfa+VOLFi3C+vXrJSoVtSYJCQn47rvvEBkZieeff17q4hC1mKKiIqmLQNSilEql1EVodzw9PeHu7s4062SWGhVYBQcHNzr4kclkSE9Pv+9xb731VqPe11SGDx8OQRCkLga1UrUzFeXl5WHRokVwdnZu0ntxjQ5qbfLz8yEIwn2vE/xtU1tRe7kVahlMs07mrFGBVWxsbJ0LZlJSEpKTk9G9e3eEh4cDAK5cuYKUlBT07NkTUVFRTSpYaWkpHBwcYGFh0aTXE0khMTERX331FVQqFTQaDdatW4e//OUvTeqN5cWDWps7d+4gKyvrvvOs+NumtqKsrMygxgRqHkyzTuZO3piD169fj3Xr1omPqVOn4saNG9i/fz8uXryIbdu2Ydu2bbh48SLi4+ORnZ2NadOmGfz+SUlJGDduHOzt7eHu7o7Dhw8DuDu8ZOrUqTh06FBjikvUorQnfIVCgcrKSqhUKuzbtw+//vpro1s17714sFWUWouEhASoVCoolUocP368zlAp/rapLVEqlbh586bUxWg39KVZJzInjQqs7vXGG2/gueeew8iRI+vsGz16NJ599lm89tprBr3X8ePHMWTIEKSmpuKhhx6CRqMR93l4eKC0tBSrVq0yprhEJqXNVFR7KGlhYSGOHDmC77//Hhs2bNA70VnfDSgvHtSaREdHIyQkBO+++y7Ky8tx+PBhnDhxAuvWrUNiYqLOsfxtU1uTkpIidRHahfrSrLNxhsyJUYFVamoq3N3d693v7u5u0PwqAPjHP/6Bbt26ISUlBe+9916d/SNGjKhzgSYyJwEBARgzZow4fFUul6Nbt25wdXXFpUuXsHr1arz33ns4ffq0ztonCQkJOjegvHhQa5Ofn4+cnByUlZUBuDsc/Ntvv63TK8XfNrVFaWlp4m+fTEfbeFlZWYnk5GRUVlaKadaJzIVRgVVISAjWrVundx2H8vJyfPPNN+jcubNB73Xq1Ck8+uijsLGx0TtW2d/fH/n5+cYUl8hkTp48iSeffBKPP/44KisrAdztifr+++/x/fff4/jx4ygqKsKZM2eQkJCATZs2Yfv27Thx4gS2b9+OjIwM8QbTVBeP27dvY8GCBXBycoKLiwsWL15s8BosgiBg/PjxkMlk2LFjh86+U6dOYeTIkXBxcYGrqyvGjh2L8+fPG1VWat0yMzNx/vx5+Pv76/RK8caI2iJBEHDq1Cmpi9HmadOsL168GAsXLsTixYuxYMECplmXSH3Dvds7o9Kt//Of/8SsWbPQtWtXPPLIIwgNDQVwtyfr22+/RUFBAX766SeD3svKykpn+N+9cnJy4ODgYExxiUzi559/xty5cyEIQp2MkoIgIDk5GYIgICIiAgUFBcjKykJYWBgKCwvxxx9/4MiRI/Dy8sLx48cRFxeHqKioJq/RMXz4cDzyyCN45JFH6uxbsGAB8vLysH//fqhUKjz66KN44oknGlw3TuvTTz/V2+BRUVGBcePGYcqUKfjqq69QU1ODN998E2PHjkV2djasrKzu+97UtqhUKqSkpMDCwgK3b9+GRqMRJ5lz/RlqK6Kjo5GXlwdLS0ssX74c6enp6N69O3x9faUuWptVe0Fykh6TEOlnVGA1bdo07N27F6+88kqd4Xu9e/fG2rVrMXbsWIPea8CAAdi6dSteeOGFOvsqKyuxbt06xMbGGlNcomZ38uRJzJ07F2q1ut40/drtFy9eRNeuXZGcnIygoCAAEG9ALS0tUVlZiVWrVuGhhx5CREQEwsLCYGtr2yzlvHTpEuLi4nDq1ClER0cDAL744gtMmDABH3/8Mfz8/Op97blz5/Dvf/8bSUlJdW4aLl++jNu3b+Ptt98Wb47ffPNNREZG4tq1a2JjC7Vt2t+4IAjIzs5GYWEhVCoVcnNzoVaroVKpcObMGQwcOJA3RtQm5OfnIzc3Fy4uLuK2o0ePYsaMGbC0NJslQolMgtkZ62f0X/+YMWMwZswY5Ofn49q1awCATp06wcfHp1Hvs2LFCsTGxmLixImYN28eAOD8+fPIyMjAxx9/jMLCQrz++uvGFpeoWf3zn//U21OljyAIyMnJQYcOHZCdnQ0AdW5ACwsLceHCBVRUVODkyZMIDg5Gt27d4OPjY1Q63xMnTsDFxUUMqgBg1KhRkMvlSExMxPTp0/W+rqqqCvPnz8eXX36p9286PDwc7u7uWLt2Lf7xj39ArVZj7dq16Natmxg8UtunHQqiVqvh6uqKmJiYOsdkZWUhOjqavZjUZpWUlODEiRNsvac2T18SIv7u72q2ZhUfH59GB1O19e/fH3v37sVTTz2FhQsXAgBeeuklAHfncu3duxeRkZHNUlai5nD9+nXs3r27UQtKl5WViQktAOi9AdXuU6vVSEtLQ1paGtzc3NC9e3eEhoY2aUHV/Px8eHl56WyztLSEm5tbg3MXX3zxRQwaNAhTp07Vu9/R0RGHDh3CtGnT8M477wAAwsLCEB8fz1bbdkKhUKC6uhrA3WGADg4O6NWrV53jysvLsWPHDowaNUr8jRO1NZcuXYKvry97680EFyNvfvUlIWKv1V1GJa8A7t5cPvnkkwgPD4ebmxuOHDkC4O7aU88//3y9k5LLysqgVqt1tj3wwAO4cuUKzpw5gy1btmDTpk04efIkrl69ymGA1OxqamqgUCgMflRXV6OgoAAXLlzA/v378c477zQqqNKSyWRwcXGBi4sLIiMj6zxcXFzEXjDt49atWzh69Cg2bNiAQ4cOiVkF33vvPTg4OIiPo0eP4sknn9TZdv369SbVz65du3DgwAF8+umn9R5z584dLF68GIMHD0ZCQgL++OMP9OzZExMnTsSdO3ea9LnUuiQmJqKmpgYAoNFokJWVVe+xxcXF2LFjB1JTUxt8T06Kptbs6NGjKC0tlboY7UZD54t7s+6S8ZojCVFbPscb1aSckpKCoUOHQqPRoH///khLSxMvsB4eHjh27BgqKyuxdu3aOq91dXXFhg0bMH/+fADAY489hqVLl6J///7o3bs3evfubUzRiBpUU1ODlJQUvTf/giCgoqICpaWlKCkp0fmvSqUSj7t06RJkMlmjgiuZTIbbt2+jsrKyyUP7zp49izt37mD06NF48sknMWfOHHHfggULMHPmTMyYMQNKpRIXL16Eh4cHfHx86ixiWVNTg9u3b9fb03zgwAGkp6frzCEAgJkzZ2Lo0KE4dOgQNm7ciKysLJw4cQJy+d12mo0bN8LV1RU7d+7Egw8+2KTvSK2DtuVS+1vWJmsJCgqqd8ifSqXCwYMHkZOTg8GDB+s9jpOiqTVTqVT47bffMHXqVPbct4D6zhecB9S8tL1/vr6+RichasvneKP+4l9++WW4uLggISEBMpmszlCjiRMnYsuWLXpfa21trbN2yfr16zFq1Cj079/fmCIRGUStVqOyshJ37txBeXk5iouLxUdJSYnYQNAQa2vrRvdYaY+/ffs2bGxsYGNjA2tra4ODLEdHRwQFBaFDhw5Qq9Vwc3ODm5ubuN/Ozg5eXl4IDQ3FkSNHsH//fvj6+mLgwIEoKSnB6dOnERUVBeBu4KRtFNFn2bJlePzxx3W2RURE4D//+Q8mT54M4O4cLLlcrlN+7fOGsnyaGw4XaZr6FsXOzs6+71IbV69eRV5eHoYNG6aT0II3Q9QW3Lp1CwcPHsSoUaOMmh9LDWvofMF5QM1LGwwtXLhQvAdoirZ+jjcqsDpy5AjeeOMNeHp64tatW3X2BwYGIicnR+9ru3btiv/+978ICgqCs7MzgLuTm8+cOdPgZ/bt29eYIlM7pFKpUFBQgPz8fOTl5YnZnAoLCxt18+/o6Ah3d3cxmImNjcWhQ4caHVxpkzpohxjKZDLY2NjA1ta23iDLysoKXbp0gb+/P1Qqlc5aWfoCgntPXG+88QbGjRuHJUuW4Ouvv4ZKpcKzzz6LBx98UMwImJOTg5EjR+K7775DTExMvfMmAwMDERwcDAAYPXo0/v73v+OZZ57Bc889B41Gg3/961+wtLTEiBEjGlUvptZQ8NSWW89MSbso9u7duwHoLoptiOLiYnz++ecYNWoUhg0bBhsbG94MUatXU1ODa9euoaamBnK5HMOHDxcXjqfmVd/5gvOAmldzBkNt/RxvVGCl0Whgb29f7/7CwsJ6K/7999/H3LlzMWrUKAB3h0i9/vrr9Wb+EwQBMpmszrwsIq3q6mrk5+frBFD5+fkoKioyOPjRzn9ydXXVCaJcXV319mQMHz4cR44cMeh3KZfL0bVrV/j4+EChUIhBnSAIqK6uRnV1NWQyGWxtbWFrawsrKys4OTnB19cXAQEBeoeU1BcQ6Dtx/fDDD3j22WcxcuRIyOVyzJw5E59//rn4GpVKhStXrqCqqsqgugLuNpD88ssvWLFiBQYOHAi5XI4+ffogLi5OkvVcmhI8tfXWM1M5efIk3nnnHezZs0f8+9Iuih0REYGJEyfeNzNkRkYGEhMTodFokJ+fj/79+/NmiFq92r9rS0tLlJeXY+TIkXB0dJS6aG1KQ8GTtje9uroaycnJUKlU4jygAQMGSF30VqepwdC91+T2EPAaFVj17dsXe/bswdNPP11nX01NDTZv3lzvD3jcuHHIzMzEqVOnUFBQgEceeQRPPPEEBg4caEyRqB2oqKgQg6baQVRxcbHB72FhYSH2QHl4eIhBlIuLS6PGxD/99NM4evSowXOtxo8fDycnJwiCAKVSierqaigUCjFJhUqlQlVVFWpqamBtbS2uZaVWq3HhwgX07NlTfC99AcGhQ4egUCjw9ttv6z1xNbQYcFBQ0H2/g779o0ePxujRo+/73VtCU4Kntt56Zgr3WxT74sWLuHjxIpYsWSKuadapUyedvy3tQsJFRUXivKxvvvkGSUlJcHBwaJabodu3b+O5557DL7/8IjYmfPbZZw0uNr969Wps3LgRZ86cEYcJ155neOjQoXp7Y0+ePIl+/fo1upzU+tReu602fb/rmzdvYtu2bejfvz+6du3KoYFG0t6sq9XqeoMnLkbefIwJhu69JreHgNeowOrVV1/FpEmT8NRTT4mT1AsKCvDbb7/hvffew6VLl/B///d/el974cIFdOrUSVxAeN26dZg9ezZGjhxpTJGojRAEAWVlZWLQVLsHSpsRzxDW1tbikDYfHx/4+vrCx8cHjo6O+PPPP9GhQwej5tRERkbiP//5D1588UUIgqC350qb1OHRRx+Fv78/MjIyEBgYCBsbG3h7e8Pd3R3V1dVIT0/HyZMn4ebmBgsLC6hUKpw7dw7nzp1DaWkpsrOz8eCDD4o3/dqMmfcGBO3hxKVPU4Kn9tB61twMWRRb2xu7Zs0azJs3D9euXYNGo0FYWJh4TGZmJgoKCuDv74+CggJkZWXBw8NDzDDbu3dv8W+zoZuh4cOH45FHHsEjjzxSZ9+CBQuQl5eH/fv3Q6VS4dFHH8UTTzzRYANDVVUVxo0bh3HjxuHVV1+ts3/QoEHIy8vT2fb666/j999/11knjtq22mu31abvdx0WFgalUomjR4/i6tWrGDJkCNzd3aUodpugvVkfP358vcGTv78/FyNvJk29p9B3TW4PAa9RgdX48eOxfv16/OUvf8Hq1asBAA899BAEQYCTkxO+++47DBs2TO9r+/Tpo5MVkNonjUaD4uJineBJ+9/GpOu2s7MTgybtf318fODq6ioGNrXVTpxirDFjxmDTpk346quv6sy5kslk6N69O8aOHYtOnTohLS0Np0+fhq+vLx544AHY2dmJx965cweCICA4OBiWlpa4du0a1Go11Go1Ll++jIKCAqxduxZZWVno1KkTLl26pDcgaA8nLn2aEjy11yDUGI1ZFBsA9u/fDzc3N51sgdpWfQsLC9jZ2aGsrAzJycmYOHGiuAaWUqnEsGHD4Onp2aRyXrp0CXFxcTh16pQY8HzxxReYMGECPv74Y3Fu4b1eeOEFAHd7pvTRNtZoqVQq7Ny5E8899xx7ItqJe9duU6lUDf6ua2fJLCgowM8//4yePXtywewmqH2zfvr0abzxxhtsBDMxQ+4p9A3Dr++a3NYDXqPzgD788MOYMWMG9u/fj9TUVGg0GoSEhGDs2LENjie2s7PTmctx+PBhLFmyxNjikJlSq9UoKirS6XnKy8tDQUFBo9YxcHJygre3d50gysnJSdKbmsjISHz99dfIzc3FlClTUF5eDltbWyxbtkzM2mdtbY2ioiKo1WpkZGToTGbWtmbm5uYiKysLzz77LDQaDdLT0xEXF4eSkhK4u7ujpKQEV69eRVpaGi5cuABra2tkZ2fDwcEBarVaDAja+onrXk0NntprENpUjV0UW6PR4ObNmwgLC9Npvc/OzkZhYSFUKhVyc3OhVqvrZBMsLy/Hrl27MGzYMJ2eLkOdOHECLi4uOr1Io0aNglwuR2JiIqZPn97o99Rn165duHXrFh599NFmeT8yf/rWbjP0dw3cHZHx559/IjMzE7Gxse3ufG0M7c16REQEh263EG3vX2PmMLfn0SBNDqyqqqoQEBCAZcuW4e9//zumTZvWqNf36tULn3zyCSwsLMSsgKdOnYKtrW2Dr5sxY0ZTi9yuXL9+Hb///jvKy8vh6OiIkSNHIjAw0OSfq1KpcPPmzTrD927evGlQCnMtV1dXnZ4n7f936NDBhKU3np+fH9zd3aFSqeDk5AQ3NzfY2tqiS5cuyM7Oxq1bt9C1a1dkZWXhwoUL4k3f+fPnkZWVhfDwcJ19YWFhiI+PR3h4ODp06ICrV68iOzsb3bp1Q5cuXXQ+297eHjdu3EBZWRmcnJyk+PqSaWrw1N6Gi9TU1BiVACguLq5Ji2KXl5fDxsYGFy9eRKdOneDi4oKYmJg6x2kXx65d3gMHDkChUKBr166Nmv+Yn59fZwkQS0tLuLm5IT8/v9HfoT5r167F2LFj0bFjx2Z7T0NJdZ5vzxpau83V1VXv77q+LJkVFRXYu3cvYmJiEBkZCZVKxWUfGlD7Zt3e3r5d3aybg8bMYW7Po0GaHFjZ29vD0tKyyTe6n332GWbNmoXFixcDuDtk6rPPPsNnn31W72uYFfD+7s3UJZfLodFoIJPJMGnSJLz++uvNMrm6urq6Tgrz/Px8FBYWNioDn4eHh04ApX3cL8A2V0qlEmPHjsX58+fh6OgIBwcHxMTEQBAEbNq0CVZWVnBwcICVlRWOHDmCyMhIAMDRo0f17ktJSUF2djaUSiU0Go04LKpTp07o3r07bty4ofP5Bw4cwMGDBxEeHo7o6Gj07t27wcydbUVTg6f2tH5VQ4tiG0KpVIprFjY2uCoqKhIDmtTUVAQFBSE0NFTvsfqyUmqDq169euHDDz/Ee++9J+67c+cOEhIS8Oyzz4rbUlJSGlW+prpx4wbi4+Px448/tsjnabXUeZ7qut/abYYuNaAlCILYA1ZZWcllHxpQ+2b9zz//hFwubzc361Jr7Bzmzp07t9vRIEYNBZw5cya2bt2Kp556qtHDsKKjo5GWlob09HQUFBRg+PDhWL58uZh+nRpPX6au2im99+7di19//RVbtmwxuOevqqqqzvC9/Px83L592+ByWVhYwMvLq878J29v7zY3vrx2z9OFCxcgk8lgZWWFc+fOITs7GwqFAqmpqaipqUF2drZ4A1jfPl9f3zoL8dXU1KBTp04YM2YMSktLkZSUhKSkJLEVXhAEXL58GZcvX8amTZvQo0cPREVFITIyss226jU1eGpP61ep1WrcuXMHVlZWBgWRd+7cQW5uLvLy8pCbm4uioiJkZWU1qccqNDRU7GF1c3PTO++xIRqNBrm5uejZsyeefPJJzJkzR9y3YMECzJw5U+ec5ufnBx8fH9y8eVPnfWpqanD79m2967M1xbp16+Du7o4pU6Y0y/sZwhTneTKcsWu31SchIQEXLlzgsg8NqN2AVlBQAG9vb3E7mVZj5zC/8cYbRi0i3JoZFVg9+OCDePrppzFixAgsWbIEQUFBOpPxtepb1NfS0hLh4eEIDw/HokWLMGnSJPTv39+YIjWLL7/8Eh999BHy8/PRq1cvfPHFF3q7982JIZm61Go1ZDIZ5s6di+PHj4stmoIgoLy8XCeA0gZRZWVlBpfBysqqTgY+X19feHh4tIvFEbXzpLQ9T46OjkhISEB0dLTeAAmAuNZTffu8vb3Fi0ftz9EuEOzl5YUJEyZg/PjxyM3NFYMs7YLd2jTt2vlYERERiI6ORvfu3dtcUFsfrl+ly9raWm9gVV5ejpycHPGhr/GkKcMmZTIZHnjgAXGuYVNoNBqxJ0u7tpyWnZ0dvLy86vSADRw4ECUlJTh9+jSioqIA3O350mg0zXKdEQQB69atw8KFC1vsb8mY8zwZz9C127QLBN+7xACAevdlZmYiKSkJUVFRjZ47JAgC3nzzTaxZswYlJSUYPHgwVq5ced+5ife71xk+fDgOHz6s85qlS5fi66+/Nqhcza12A1piYiJiYmKYMKYF3DsE08LCgkP+GmBUYDV8+HDx/48ePVpnf2MW9V23bp0xRWk2W7ZswV//+ld8/fXX6N+/Pz799FOMHTsWV65cqTNe35wYmqlLe8xf/vIXPPPMM2IA1ZhFYW1tbfXOf2pKS3Rboh22p+150mg0Ys9T79696wRItTW0zxAymUy86EyZMgVZWVk4ffo0Tp8+jdLSUgB3bwC02+zs7NCrVy9ER0cjPDy8TQW+1dXV4lBSrl+lnyAIKCkp0Qmk7teI4uHhgd69e+Pq1as4ffq0wYtid+/e3aigSquxi6t269YN48aNw5IlS/D1119DpVLh2WefxYMPPihmBMzJycHIkSPx3XffiTeU2oaltLQ0AMCff/4JR0dHBAYG6nyPAwcOIDMzE48//rjR381QjT3P//Of/8TOnTtbqHRtW2PWbnNwcBAXCL43uKm9eLB2X+1sgoWFhbCysmpUY8+HH36Izz//HN9++y2Cg4Px+uuvY+zYsUhJSal3WL2h9zpLlizB22+/LT43l6HlVVVVuHnzptHXTrq/e4dgKhQKJoBqgFGBlTHB0Ntvvw2ZTIbly5dDLpfr/OHWRyaT4fXXX2/yZxrik08+wZIlS8QMT19//TX27NmDb775BsuWLTPpZzdVYzN1qdVqnDhxAiEhIQ3erDg4OOgETtr/Ojs7s5VIj9q9UoIg4M6dO7C3txd7pVqKTCZDcHAwgoODMWPGDKSlpSEpKQlnz54Ve7q081ISEhLg4OCAPn36oF+/fujcuXOrD461GRkBrl+lpR1Kd/nyZTE7Z0ONKXK5HF5eXmKw7ufnJ9apm5sb5s2bZ/BcK+1ahcbo1KlTk4KzH374Ac8++yxGjhwpLhD8+eefi/tVKhWuXLmiUxdff/01VqxYIT7XLhmybt06nbWy1q5di0GDBqFr165N+EaN15Tz/C+//IJDhw4hICAAFhYWkMvlkMvlsLCwMOi5TCbjuR6NX7utf//+KC4urpNqXd/iwVZWVjrZBK9fvw4rKyvI5XKDWv0FQcCnn36K1157DVOnTgUAfPfdd/D29saOHTvENUbvZei9jr29fbMNnW1uly9f1juio73Mm20ptYOniooKFBcXIyAgoF0mgDKETGjKgPlmIJfLIZPJcOfOHVhbWxt0M2fq5BVKpRL29vbYunWrTpbDRYsWoaSkRG/Ln0Kh0FkT6dy5c4iNjUViYiL69OljsrLWtn79ejzxxBONfl1sbCzCw8Ph4uJSJ3mEj48PHBwcTFBa86BQKHD+/HlYWlqa5OSrXSy4MVnMDKVUKlFTU4NevXo1KgjQrod1+vRpXLhwQVyHpTYXFxf07dsXUVFRCAwMNMlNlbGZ6RqiVCoRHx+PsWPHQhAEvP/++7h+/TpCQkKQnp6OwMBAvPrqqzh//jy++uorVFdXw9LSEjU1NbC1tcXTTz9932G/FhYWJvl3bU5qtRrZ2dniPNb09PQGAykLCwtxGQM/Pz94eXk1OLztwIEDeOWVVyAIgnhDWZv2d7No0SJEREQ0+XtYWlqiS5cucHV1bdJvvi0x9jzfVI0JxGo/1/ff2o+mvKe+z7jf8doepvuVSftc3zlvzpw5iI+P1/tb18fJyQlRUVEoKSlBbGys2DOVmpqKw4cPw8XFRWdfcXExsrOzdd4jJCQE06dPR6dOnRr8rIyMDHTt2hUnT55E7969xe0jR44Usy/fS6lUwtnZGZs3bxaDMQB47LHHUFJSgp9//hnA3eUJUlJSIAgCvL29MXHiRCxfvtygXitTn+fXrVsHW1tbzJ49W6c8x44dw+bNmzFv3jwMHjy4Se/fGs7xDTFl3ZeUlODy5csmG+Zn6rpviWHbkgVW5ig3Nxf+/v44fvw4Bg4cKG5/+eWXcfjwYSQmJtZ5zVtvvaXTuklEREREROalJUKeRoWFjz32GGQyGVavXg0LCws89thj932NTCbD2rVrm1xAc/fqq6/ir3/9q/i8NfVYrVmzBosWLTJBiVoHU7XqNEeL2f00Z6tOdXU1Lly4gDNnziAlJUVvq6yfnx+ioqIQFRUFDw+PJn+WKXsKlUolVq9ejVOnTqFHjx5YsGAB0tPT6xzXtWvXJs+XbGpvYXOrrq5GRkaG2BuVlZXV4DpxHTp0QGhoKIKDgxEUFAQ/P79mm1d3/fp1DBo0CKWlpbC1tcXy5cuNmlNla2uLPn36IDQ0VKf3oLW3Ihurqef5p556CrGxsVCr1VCr1dBoNNBoNOL/a4e31X5e+5jGPje0V6e1uHLlSp0EDobw9fWFs7MzrK2tMXToUMhkMhw9ehQ1NTWwsLAQRzQMHToUQUFBdV4vCAI6deqE8ePH65xrNm7ciGeeeUZ8vnPnTowaNQrXrl3TGXauHa67cePGOu+dm5uLoKAgHDlyRKfnYdmyZTh69Cj++OMPvd/p4MGDGDt2LC5duoSQkJB6v3tLnOcTExPh7e2NsWPHIjo6Gq6urjh9+jQ2b94MHx8f5OfnY968efUmT2vo/c3hHN9Uph6NU1VVhcTERISFhTX72n2tve61GnWVOnDggLhehoWFBQ4cOHDfoUKNGUp06dIlpKeni4sdhoaGttj4dQBi9rqCggKd7QUFBfWOMbaxsdH5AWiHz1laWrZYpqixY8c2em0ZmUyGMWPGtJvMcPqY4rsrFAocPXoUN27cwJEjRzB8+HCzP0FYWVlh8ODBGDx4MCoqKnDu3DmcPn0aV69eFX9TBQUF2Lt3L/bu3YugoCBER0ejb9++cHFxadRnaTQacf275j7pp6SkICcnB8HBwUhLS0NpaSnGjx/frJ9hZWWFyspKWFlZtejfTkVFBdLT05GWloa0tDRkZ2fXuYGtHSg5OzsjLCwMoaGhCAsLg7e3t8nmznXv3h0ODg5iYNXUoLVDhw6IjIxEt27d2nUAVZ+mnueXLVvWoosGa4eH3hu8SfFflUqFW7duQaVS6ZRL+//3/lffNu1cs8a2dHt7e4tDALVDDXv06FFn6GFDSZ/s7e1ha2ur8/cwY8YMnQY77VSE27dv6/w7FxYWonfv3nrPU76+vrCwsMCtW7d09hcVFcHX17fec5v2c69du9bgvZmpz/M//fQTlEolMjIyEBERgbS0NERHRyMpKQl2dnZwdXVFaWkpTp06hf79+zeqDFKd45uLKeseuPv3rZ0X2LFjxyavZatPa697rUZdvbKyshp83lSrVq3Cu+++i5ycnDr7AgMDsXz58hbJvGRtbY2oqCj8/vvv4hwrjUaD33//XWfxSXMTGBiISZMmYe/evQb1wFhYWGDixIkterFtL1p7pjkHBwcMGTIEQ4YMQWlpKc6cOYOkpCRkZmaKx2RlZSErKwvbtm1DaGgooqOj0adPH0nn5NVOdW9vbw9BEPDrr7+iV69erXICc0lJiRhEpaWlITc3t8HjPT09ERoaKgZS7u7uLZp0QHvT2ZRhFq6urujVqxdCQkLaVHbK5tZazvMymUyc32QON0fGjkz49ttvceDAgUa/rmPHjuLabVrBwcE6z7V1VV1dLa4vp01cIZfLMWjQoDqNDI6OjjpJpwRBgI+PD37//XdxjlVZWRkSExPx1FNP6S1bU+91zp07BwAtnpBJS3ueVyqVUCgUsLS0REpKCgIDA7F7925cv34dSqWyznqQteeeUdPNmDEDhYWFsLGxwd///necPXsW/fv3N4u/c3MiebPg3/72N3zyySdwc3PDY489hp49e8LBwQEVFRX4888/sWPHDixduhSpqan44IMPTF6ev/71r1i0aBGio6MRExODTz/9FJWVlWLmHHP1+uuv49dff71vy5o2y9Nrr73WgqVrH9papjlnZ2eMGDECI0aMQFFRkRhk3bhxA8DdC3pqaipSU1OxZcsWdOvWDVFRUejVq5fe9exMqXaq+9u3b0OpVOLSpUs4ceIEYmNjm/SeSqUSFy9eRM+ePU0anAmCgFu3biEtLQ2pqalIS0tDYWFhg6/x8/NDSEiI2CvV2J7D5qZUKgGgUTew7u7uiIqKQqdOnZh5zkA8zzeepaWlUT2g48aNa1JPYVRUFBwdHaFUKqFSqcRes9oEQYBSqRT/frQsLCzg6OiIgwcPilk5fXx89N7AymQyvPDCC/jnP/+JsLAwMd26n5+fThKukSNHYvr06WLgdL97nfT0dGzcuBETJkyAu7s7Lly4gBdffBHDhg1DZGSkwXXRnLTn+dr1WFRUhBs3bsDV1RUREREICgrSOZ9IFQS2RUVFRbh58yacnZ0BAJWVlTh16hSioqIafY/TUtdXKUgaWJ08eRKffPIJpk+fju+++05vl+Jnn32Ghx56CB9//DFmz56N6Ohok5Zp7ty5KCwsxBtvvIH8/Hz07t0bcXFxZr9WQr9+/bBlyxZxnQ19NzjaIQ0//vgjF400gba8UJ6HhwfGjBmDMWPGIC8vD6dPn0ZSUhJu3rwJ4G5rZ3JyMpKTk2FpaYmePXsiOjq6xU6a2lT377//PoqLi2FjY4Pp06ejoKAAGRkZCA4ObvTN+/nz57Fz505oNJpmPe8IgoD8/HwxiEpLS0NJSUm9x8tkMgQEBIhBVEhIiFll7FQoFGKGSe0NZEMtmPb29ujfv3+dOVR0fzzPt7zG9hTK5XJERESIa6XVVlNTIwZa2v/qmxtZXV2NwsJCZGRk6Lyvt7e3GGhp/+vm5oaXX34ZlZWVeOKJJ1BSUoIhQ4YgLi5OZw2r9PR0FBUVic/vd69jbW2N3377TQy4AgICMHPmTEmDde15/vjx41AqlbC2thbnVzk4OOD27duwsbFB3759zWa9rbaqpqYG169fR2BgIE6cOIHIyMhGza011fXVHBgdWP3666/45JNPcObMGZSWlupt1anvZLR27Vr4+vpi48aN9Ua7HTp0wKZNm9C5c2esXbu2Rf4Bnn32WbMe+lefGTNm4Pjx43jnnXfE9U60c+JkMhkmTpyI1157jRdbE2kvC+X5+vpi0qRJmDhxIm7cuIFTp07h9OnTKC4uBnD3hHvu3DmcO3cONjY2iIyMRHR0NLp162ayMnl7e8Pb2xtvvfUWysvLxZsb4G6K45s3b4q94bXV12qmHXKinSsXGRnZ5ABRo9Hgxo0bYo9Ueno6Kioq6j3e0tISnTp1Eof1BQcHt3gPYGMkJiaKN4cajQZZWVl1FkXV6tKlCwYOHNgqe3DNBc/zLc/QnkKtCRMm6N2ur/dMEASdQEutVovn0to0Gg3y8vKQl5ens93W1hb+/v7o1q0bfvzxRzHouvecoW/qRkP3OgEBAU1K2mFK2vO89vxhZWUlnufT0tJw6tQpCIKA6upqhISEoFOnTq1+XUZzlZWVJdZ3SEgITp06JTYA3m9oYHNeX82RUYHVtm3bMGfOHPTo0QMPPvggVq5cifnz50MQBOzcuRNhYWE6XdH3OnHiBGbPnn3fi6x2rYKDBw8aU9x2oV+/fti1axeuX7+OAwcOoKysDE5OTnjggQc4p8rE2ttCedqelICAAEybNg2ZmZlISkrCmTNnUF5eDuBub8apU6dw6tQpdOjQAREREXByckLnzp1btKylpaU4fvw4goOD0blzZ3EuT32tZufPn0dWVhbCw8ORlZWFCxcuGNyoU1NTg2vXrom9UdpezPpYW1ujc+fO4hypoKCgVnOR0Q5/1fY8CYJQZ1FU4O4N0LBhwxrMJEaG43m+ZRnSU6i9gX/iiSf0Zvmrj0wmg7W1NaytrREQEIBRo0bB0tISpaWlyMnJQU5ODnJzc5GTk4P8/Pw6n11dXS1mB63Nzc1NDLK0vVve3t5tch6jSqXCpUuXcOvWLXHO1dWrV3Hjxg0xeQ97x5uPIAh16lub0CI/P1/MGFhfnRtzfW0NjAqs3n//fcTExODYsWMoLi7GypUr8dhjj+GBBx5AVlYWBgwYUGeyZm3Z2dkGt2J3794d3333nTHFbVcCAwPxyCOPSF0MaifkcjlCQkIQEhKCWbNmITU1FadOncK5c+dw584dAHfHYyckJAC4OxysS5cu6NKlC3x9fU160as9ZCEjIwO5ubkIDQ2Fu7u73laz2okwHBwcYGVlJe7XR6FQIDMzUwykMjMzoVKp6i2PnZ2dTqKJgICAVnuzox3+WrsVv7CwENnZ2WLw7ODggHHjxhmVgp3043m+5ejrKdSSyWSIiIjAhAkTGhVU1da7d2/069dPPBe6uLjAxcUFPXr0EI9Rq9UoKCjQCbZyc3Nx+/btOu93+/Zt3L59GxcvXhS3WVpawsfHR2coob+/P5ydnVt14HHt2jUUFhbCz88PhYWF4qLwVVVVOH/+PJycnNClSxe4u7tLXdQ2Qa1W661v4G6Qq50L161bN7i6uuqMDAHQqOtra2RUYJWSkoL3339fZ30R7Q1FUFAQnn76aXzwwQdYuHCh3teXlZXpZLdpiIODg9gKTkTmy8LCAl27dkXXrl3x4IMP4tKlS0hKSsKFCxfESdpVVVXicEFHR0eEh4cjPDwcHh4ezX6Bv3fIQnV1NS5evIgbN24gJSUFYWFhOq1mtRNh3Jtdqnv37lAqlUhOThZ7pa5du9bg2j1OTk5iIBUaGgo/P782MzxFO/x1//79qK6uho2NDWJiYuDq6grg7nefPHlys6bkJZKKtqfwp59+wvz588U1qRYvXoyoqKgmvae1tTVGjBiBTp063fdYCwsL+Pn51Zm/VVVVpRNoaf97b095TU0Nbty4ISYg0urQoUOd3i0/Pz+zHbJbOwuptrfKwsICtra2sLCw0OlFAe7eayYlJcHDwwNhYWFwcnKSsvitnkqlarC+AaC8vBwnT56El5cXysvLsW/fPjEVfEPX17bAqMDK3t5eHLLi4uICGxsbnfG/3t7eOmma7yUIQqNuolpixWQiYymVSiQlJSE6OrrOkK6m7mutrKysEBkZicjISCgUCpw9exYHDx5ETk6OGIyUl5cjKSkJSUlJcHV1FYMs7c25oXJzc8XeMaVSidu3b8PR0VHvkAWVSoWzZ8+iqqoKt27dQnV1NQ4dOoTIyEhxgrSWQqHArVu3kJmZiYsXL+pMANfHzc1N7I0KDQ2Fl5dXq24Nboj2Rkw7n8PKygq9evUCcHeNvwkTJjCoojZFoVDg3LlzsLKyQk1NDWQyGbKzsxEZGdnotNPOzs4YN26cmGWtqezt7cWGGy1BEHD79u06wVZBQUGdhqDKykoxw6uWTCaDh4dHnd4tT09PyRuGtA34arUaN27cQFFREWpqapCXlweNRiNmCrx3xFRRURGKiorg5eWF0NBQgxv2SZdGo4FSqbxvfQNATk4O4uLikJeXBwcHByxYsEDn+qrVlrI3GhVYhYeHIyUlRXzeu3dvbNiwAQ899BBqamqwcePG+473/vjjj7Fp06b7fpa+Na6IzFFCQgI2bNgAtVpdZw2rpu5rC2xsbNCnTx/IZDJYWlri+vXruHr1Kq5fvy42mhQXFyMhIQEJCQnw9PREeHg4unTp0mAL44ULF/Dll1/i8OHD4vvcuXMHK1asEOf63DtkofbF+MaNG9BoNDhz5gz279+PQYMGwdfXV5zfoJ1IXl9ApV0IVHtj0x6HvGkXUK89pHHw4MFsGaY2x5Dhr4bw8vLCuHHjdDL3NSeZTAZ3d3e4u7vrDLNSqVTIz8+vE3CVlpbqvF4QBBQWFqKwsBDnz58Xt1tZWcHX11end8vf37/FgpRr166hsrISwN35ZfVllavdMFd7OLilpSVu3ryJmzdvwtvbG6GhoWaVZdVc1W64lMvldZJBOTo6IiMjQ6xjLe0wTQ8PD5w9exaBgYGYMmWK3jq/d9mB1sqowGrGjBn4/PPP8fHHH8PGxgbLly/H1KlT4eLiAplMhsrKSnzzzTf1vj4wMFAcB2wITsolc6edzJ+ZmVlnDaum7muLbGxs0KNHD/To0QNVVVVITU3F1atXdRpQtBf1Y8eOwc/PD126dEFYWJhOD8i+ffvw4osvQhAEvWvEZGVlQRAE2Nvb6wxZcHV1FS/GGo0GNTU1YtKJwsJCVFdXQ6FQ6O0ld3NzQ48ePdC1a1eEhIToDR4EQcCbb76JNWvWoKSkBIMHD8bKlSvrzZYHAG+99RZWrFihsy08PByXL1/W+/4TJkxAXFwctm/f3mCSoJaQlJQEhUKBb7/9FsDdIYJMVEFt0f2Gvxr6HqNGjZJkYVUrKysx6VBtFRUVdYKt3NzcOje7KpUK169fx/Xr13W2Ozk5iUGWdviXjY1Ns42+0NeAplar8dlnn6Fnz54YO3ZsvcMp7x0OrlVQUICCggIEBgYiLCzMqPXO2ip99a5UKrF582b06NFDrPfaWRlrz7e6d5jm8ePH4ezsjO7du9dZc6wxTHWNHT58eJ1smEuXLsXXX39tcNma9Cuqrq7Gzp07oVKp8Nprr+H27dtiCuZDhw7h559/Fld9HzFiRL3voy/9J1FrlpiYiKtXryIyMhJXr17FyZMnxd6npu5r6+zt7dGrVy/06tUL5eXlSE1NxZUrV1BQUCAeo73IHz58GAEBAejSpQvu3LmDF198EWq1ut5hwtrt586dQ0hICDQaDa5duwY/Pz8EBARApVLpnR9lb28POzs71NTUwN7eHv7+/ggICICHhwdqamrQu3fvBgPfDz/8EJ9//jm+/fZbccHOsWPHIiUlpcEW6h49euC3334Tn9d3of/000/NdnihhYUFBg0aZLblIzJGQ8NfDREaGorhw4dLPpzuXg4ODuIwbC3tMK97A67CwsI659yysjKUlZXp3KTKZDK4uLjAw8ND5+Hk5NSo80NDDWjA3fn+KSkpePTRR+v8W+jLGHhvQHv9+nXcunULffv2bVRwZYqb+6ysrHqTvv3444+YPXu2weUz1v0aLrX1/vDDDyM3N7dOHdc3TDM7O1vMfNmzZ88mBbSmvMYuWbIEb7/9tvi8sWuiNfrb3Lx5E4MGDUJmZqY4R8rOzg47duzAqFGjMHTo0HZzQ0hUm7bXydraGk5OTrC2thZ7nwA0aV9b7rXSx9HREX379kXfvn1RUlKCK1eu4MqVK2KvtiAIYmvpr7/+Co1GY9DcS5lMhurqakRFRUEQhAYT4VhbW8PKygpWVlawtrYWbwC0z/Ut6FmbIAj49NNP8dprr2Hq1KkAgO+++w7e3t7YsWMHHnzwwXpfq83a1ZBz587h3//+N5KSksxyXHr37t2NnjNC1Bb16NGjVTU6yOVyeHl5wcvLC3369BG3KxQK5OXl6fRs5eTk1FmfTxAEFBcXo7i4WGf+lpWVFTw8PODu7g5PT0+4u7vDw8ND7w3xhQsX7tuApm0cW7duHebMmYOYmBjxhrm+jIH3qqysRFJSUqOSkJji5j4gIKDOWmWrV6/GRx99hPHjxxtcNmM1pt43bNggJmaqXce1R4bUpu3dLSgoQFlZGXr06NGojI2mvsba29vf95iGNDqweuedd5CVlYUXX3wRDzzwANLS0vDOO+9g6dKlddZRIGpPtGPvq6urkZycDJVKhfT0dJw9exYAmrRvwIABUn4lSbm4uKB///7o378/ioqKcOXKFVy9ehWlpaUoLy9vVI+3IAjIycmBl5eXztA9jUaDmzdvIigoCHZ2drCyshJvempqapCZmYnAwEDcuXMHycnJ8PPzQ8eOHRv8rMzMTOTn52PUqFHiNmdnZ/Tv3x8nTpxo8KSfmpoKPz8/2NraYuDAgXj//fd1hkBXVVVh/vz5+PLLL4068ZuKhYUFevfuLXUxiMxOr169EBMT02qCqobY2NggKChIJ7W8IAgoKytDTk4Orl+/juTkZJSWlqK4uLjO2lsqlUrvYscODg51ere+/PLLenuq7iUIAuLj4+Ht7Y2QkBCDMgbWdufOHVy+fNmguXKmurm3sLCos2/79u2YM2dOi84F++qrrxpV7wUFBeIakdo61i4Z0JA7d+4gKSkJHTt2NHiOoimvsQDwww8/4Pvvv4ePjw8mT56M119/vVG9Vo0OrPbt24eFCxfi448/Frd5e3tj/vz5uHLlik43MlF7oh17r287gCbva4saO0nVyckJ/fr1Q3R0NG7evNnkNe2uXbuGfv36iT1S165dQ3JyMuzt7RESEqJzIcnMzMSpU6egVqvFFs7CwsL7Blb5+fkA7p4Xa/P29hb36dO/f3+sX78e4eHhyMvLw4oVKzB06FBcvHhRnBj+4osvYtCgQeKF3Nx07NhRHCJFRHdFRka2maCqPjKZDM7OznB2dhZ7Kzp06ABLS0uUlJSgsLAQt27dEjPzlZWV1XmPiooKVFRUiI1m5eXlOHTokMFl0PaQnT59Gh07dsSNGzdQWFiImpoa5ObmQqPRoLCwENeuXRODwnsDh9zcXAB3G/YsLS3Fa0Lth0ajwfXr15Gfn49OnTrhwoUL4uiJHj16YOfOnQgNDRWPrf3a69ev48qVK/Dw8IC1tTW6d++Oxx9/HF5eXnqPv3r1Ks6dO4f58+fjl19+qbO/dpkEQUBNTQ0KCwthaWkJuVyu99ja1zl924uLi3Ho0CGDM3ELgoDS0lJcu3YNlpaWDWYJrM+NGzdQWVmpk9myPqa8xs6fPx+dOnWCn58fLly4gFdeeQVXrlzBzz//bPB3aXRgdf36dbzyyis624YMGSJGrAysqL3Sjr1vaH9T9rUlFhYWsLOzw507dxpcRLchDg4OcHd3h1wub3D9qHvJZDJYWFiIrX41NTVISUkRx4UHBASIQzLq26edrF47+90PP/yApUuXis/37NnTpO9Ve5hHZGQk+vfvj06dOuHHH3/E4sWLsWvXLhw4cEDs5TRH5tiLRiSliIgI9O/fv00HVfXRNqA5ODjAwcFB50ZbqVTi1q1buH37Nm7duiU+aje6NTUbdFpaGi5cuAAXFxe9850EQcCtW7fqfX1hYSGOHj3a4Gdob+B3796NgwcPittLS0tx6tSpehO3FRQUYNiwYXBxcRGHHy5ZsgRz587Vm+jjyJEjcHV1RWZmZoPLFzWny5cvN2l5I09PT3Tp0gXA3R6kxlyfgbuZdz09Petsb6lrLAA88cQT4jERERHw9fXFyJEjkZ6ebnBCpkYHVgqFos7YUe3z+809IKL2zdLSEt27d68zNKSxzp8/3+iTtiAIcHJyErv0U1NTUVxcjMDAQBQXF6OgoEC8CNe3z9raGt26ddMZEz9lyhT0799ffK5QKADcvYDWngNVUFDQqGFyLi4u6NKlC9LS0gAABw4cQHp6ep2hFTNnzsTQoUMb1bJrKpxbRfQ/ERERGDBgQLsLqgxtQHNycoKTk5NO71FVVZU4LysnJwcymaxJN/np6ekYOnSoeKPf2PLf6+rVqzrZ4iZOnNjo9wWgk7nQ3d0d3t7e+P7775Geno5u3brpHFtTU4PU1NQmLz7dVEqlstH1LpPJ4ObmprPIb2Ov0QDERbdra6lrrD7az01LSzNdYAXczVpy5swZ8bl2/YPU1FS94yn79u3blI8hojbI0tLS6LS248aNa9KJ397eXpyMm5KSIt4AlJWVISUlRWxR1bevR48eGD9+fJ2EIo6OjjpruAiCAB8fH/z+++/iSb6srAyJiYl46qmnDC5vRUUF0tPT8fDDDwMAli1bhscff1znmIiICPznP//Ru+CiFLgYMNFdbWlOVWM1VwOaRqPBrl27Gv06mUyG8vJylJSUICAgQO+/wb3baj+3trYW11zUPoYOHYpZs2aJz2tqarBz507069cPoaGhkMvlkMlkOHbsGEJDQ8VjtdtrP+7dduLECXTq1AmPP/64zvY9e/ZAo9Hggw8+EEdp3Pte+t5POyxQ37H1lan2Y9OmTfjjjz8aVef3Nlw2Ve/evevcH7TUNVafc+fOAWjcAsZNurt5/fXX8frrr9fZ/vTTT+s81/7DGvvHRURUW2BgICZNmoS9e/cadH6Ry+UIDg7GxYsX4eDgAAsLCxQWFkKlUiE3NxdqtVpc5BOAzj7tKvMhISEGDXWTyWR44YUX8M9//hNhYWFitig/Pz+d9aZGjhyJ6dOn49lnnwUA/O1vf8PkyZPRqVMn5Obm4s0334SFhQXmzZsH4O4wO32fHxgY2Kix7KbE+VVEQM+ePdttUKUlVQMaAIwaNQqOjo7imoWN1atXL50eEn0EQcA777wDhUKBcePGAbh7c3/16lX84x//wAMPPGDQZ1VUVCA/P1/MhlvbX/7yF0ydOrXFM21PnjwZzz33XKMbLrt169bk37xMJsOAAQMMmhZhqmtseno6Nm7ciAkTJsDd3V3MjDhs2DCdRbbvp9G/+nXr1jX2JQaLj4/H2rVrkZGRgeLi4jr/qDKZjJkHiQjA3QaeX3/91eALr5eXF4qKipCcnIzBgweLqe5r016EtfucnJzQo0cPcUK2oV5++WVUVlbiiSeeQElJCYYMGYK4uDidYdTp6ekoKioSn9+4cQPz5s3DrVu34OnpiSFDhiAhIUHvmHNzo1QqceLEiRYfskJkbjp37oyBAwe266CquTSlAS0iIgJDhgxp8mdaWFigR48e9z3OVDf3WmlpaThy5Aj27t3b5O/SVE2tdzc3tyZ9npubG4YOHVonGUVDTHGNtba2xm+//YZPP/0UlZWVCAgIwMyZM/Haa6816vs0OrBatGhRY19ikI8++gjLli2Dt7c3YmJiEBERYZLPIaK2oV+/ftiyZQvmzp0LQRD0XgC0i3BOmjQJN27cgL+/PwoKClBSUtLgop7u7u7o1asX+vbtq3e8/f3IZDK8/fbbOosM3uvedPGbN29u9Oc0Ze6BKSQkJIiZGocPHy5tYYgk4uzsjNjYWAZVzaixDWgTJkxo8mfJZDIMGTLE4LTmpmxA++abb9CxY0eMGTOmyd/HGC1R7/b29oiKikLXrl0b/TdjimtsQECAzjy6ppIJZnJl7tixI7p164a9e/fqXV+gtThz5gyioqJw+vRpzi0jagGnTp3CO++8g927d9e5APTq1QtjxozBxYsXUVRUBG9vbxQUFMDDwwMTJ06sc66RyWQICgpCv3797rv+Bt2lUCjw9ttv48SJExgwYADefPPNdrewNbU/HTt2RE5ODlxcXPDBBx8AuDuEyhwX7W7tfv75Z4Ma0J544gmdhYwbw9nZGUOGDGk3GXoNYap6t7a2RmRkJCIiIlr1/X595FIXQKu4uBizZs1qk5VMRKbTr18//PTTT3j66afF84dcLsfw4cOxZMkSyOVyFBYWQqlUIjc3F0qlUmc+FXB3blCvXr0wd+5cjB49mkFVIyQmJuLq1auIiIhAamoqTp48KXWRiEzOx8cHfn5+4oLjQUFBDKpMZMaMGTh+/DgmTJigN+lEREQEXnnlFfTp0wc1NTVIT083OEu1m5sbYmNjMXv2bAZV92io3gHo1LshbGxsEBUVhXnz5qFv375t9n7fuJmFzSgmJgZXrlyRuhhE1AqdPXsWRUVFsLCwgEqlglwuR0VFBbKzs+Hq6qp3PpWbmxuCgoIQHh6OgIAAsfWNDKdQKBAfHw9ra2u4uLigqKgIcXFxiImJYa8VtWlJSUmoqKjAxo0bATD7san169cPu3btwvXr19GrVy+UlJTAzs4Ob7zxhs7cnoyMDCQmJkKj0ehdwwr438iEnj17wsfHh0M3G6BtuHzppZewevVq8fo6bNgwgztDHB0dERkZiS5durTZYKo2swmsvvrqK4wfPx7R0dGYP3++1MUholYkICAACxYswP79+8VFfGNiYuDq6io+tORyObp3745evXoxPbiRzp49i/T0dFRXVyMlJQUqlQrp6ek4e/YsBgwYIHXxiFqEj48PPDw8pC5GuxAYGChmG7SwsNAJqlQqFVJSUsQkRUFBQTo38hYWFujatSsiIyN10ndTwxpquOzcuXO9r+vQoQOio6MRFhbWrhouzSawmjt3LmpqavDwww/jqaeeQseOHetMGpfJZDh//rxEJSQic+Xv7w9/f38x3beVlZXe5BSurq4YNWpUk1LwUl3agFbfdqL2wtBFaJVKJZKSkhAdHQ1ra2sTl6ptUigUqK6uBnA3kFKpVGLwlJmZiYKCAjFJUVZWlthrFRAQgCFDhjCgaoKGGi71kclkYvInY1Put0Zm843d3Nzg7u5eb9dtS3j33XexZ88enDt3DtbW1igpKZGsLETUvDp27IhRo0bxhqYZaQNaovYsMDDQoOMSEhKwYcMGqNXqFl+bqK1ITEwU509pNBoxeNL2VtVe2D05ORnBwcEYNmwYevTowSF/TWRowyVwt/FyxIgR7boH12wCq0OHDkldBCiVSsyePRsDBw7E2rVrpS4OETWTnj17YsCAAe1qOEJrw9Z8ao2cnJxgb29/3+O08xEzMzM5D7GJtHWoDZAEQRCH/GVnZ9dZ9L2oqAj+/v7o2bOnxCVvH7p3744BAwa0y16q2tr3t7/HihUrAADr16+XtiBE1CxkMhmGDh2Krl27Sl2UNs3QoKih49iaT62RoS3z2uyZkZGRuHr1Kk6ePMnfeSNp53TWXlZDm+H13iRFlpaW6NOnD6Kjo6UoartiY2ODYcOGITg4WOqimAWzC6xUKhUuX76M0tJSaDSaOvuHDRsmQanqp1AooFAoxOcVFRUSloaIahs8eDCDqhZgaFBU33FszafWRqlUIiEhQe9isvc2INTOnunk5ARra2v+zpvA0CRFNjY2GDduHLy9vSUucdvn7u6OMWPGcO5aLWYTWGk0Grz66qv46quvUFVVVe9x+hYpk9L7778v9nQRkbR8fHygVCphZ2cHf39/dOvWjUPMTMzQoKih49iaT61NQkICvv/+e4wZM6ZOBsx7GxBqZ89MTk5m9swmMmSuj7OzM8aNGwdnZ2cpitimaXsKtf91dXXFpEmT2DhwD7OZcPDee+/ho48+wkMPPYTvvvsOgiDgX//6F77++mtERkaiV69eiI+Pb/T7Llu2DDKZrMHH5cuXm1zuV199FaWlpeLj8OHDTX4vIjJOUlISfvnlF7z22msYNGgQZDIZEhISsG7dOiQmJkpdvDZJX1DUmOPqa82vPRKAyJxof7PXrl3DiRMndH6r9zYgKBQKsadl8eLFWLhwIRYvXowFCxYwe2Yz8/HxwbRp0xhUmYiDgwPs7OzEQGr48OEMqvQwmx6r9evXY86cOVi5ciVu3boFAIiKisIDDzyARYsWYeDAgThw4ABGjRrVqPd96aWX8MgjjzR4TEN5+O/HxsZG54elb1gAEbWs0NBQuLq6coiZiRk6xKmh49iaT62NtpGgZ8+euHbtmk4Pa329r8yeaVre3t4YP358u1iAVgoKhQKzZs3CH3/8AXt7e3h4eMDT01PqYpklswmsbty4gZdffhkAxAuydq0Ca2trPPTQQ/jkk0/w3nvvNep9PT09+Y9P1M6Eh4cD4BAzU7tfUKQdhqlWq+s9jmthUWtSu5HA0dERtra2YiMBAM6lkoCDgwPGjh3LoMqEtNfSHj16ICEhgSMKGmA2gZW7u7uY+MHBwQFOTk7IyMjQOaa4uNikZbh+/Tpu376N69evQ61W49y5cwDutn6zJ4qodbCwsICPjw8njLeA+wVF2rkm48ePr/c4roVFrUntxoSUlBRoNBqxkQAAe19bmEwmw8iRI2Frayt1UdqsexsTbGxscOHCBcyYMYPXUj3MJrDq06cPTp06JT4fMWIEPv30U/Tp0wcajQaff/55vQuSNZc33ngD3377rU6ZAODgwYMYPny4ST+biIynVCqRnp6OyMhIDjFrAQ0FRbWHYZ4+fRpvvPEGL8LU6tVuTNBmppPJZGJjAntfTU/bcGZvb49u3box+5+J1b6WXrp0CVZWVsjMzNR7LWWyKDMKrJ544gmsX78eCoUCNjY2ePfddzFs2DAMGzYMgiDA1dUVmzZtMmkZ1q9fzzWsiFqxhIQE7Nq1C35+fujcuTNvciTEYZjUFtVuTFCr1bCwsKizn0wrKSkJBw8eRHp6utgATqZTuzGhoqICSqUSbm5ueq+lXI/QjAKrKVOmYMqUKeLz7t27Iz09HYcOHYKFhQUGDRoENzc3CUtIROZM20OSk5ODuLg4vPHGG5g8ebLUxWoXuG4PtUf3BlXUsjp16oQOHTpIXYw2r3ZjQklJCezt7fX2RjFZ1F1mk25dH2dnZ0ydOhWTJk1iUEVEDTI07Tc1v3tT2muHjlRWViI5ORmVlZU681CIiIxlTEZnapoOHTrA2toaSqUSx48fh1KpFPfxGnyX2fRYAXe71X/66SccPHgQN2/exNtvv42IiAiUlpbi999/x+DBgzmWlojqqN1D4ubmhlu3brXrFrOWpK+Vkpn+iMjU/Pz8pC5Cu6PNvHjvkD+OUvgfswmsSkpKMG7cOJw8eRIODg6orKzEc889B+BulsDnn38eCxcubHS6dSJq+5ioQjpct4eIWpqTkxPs7OykLka7pK8xjdfg/zGbwGrZsmVITk5GfHw8+vTpAy8vL3GfhYUFZs2ahb179zKwIqI62EMiDbZSElFLUyqVyMjIQERERLvNPCclfY1pTBb1P2YTWO3YsQPPPfccRo8ejVu3btXZ36VLF2bsIyK9uBaSNNhKSUQtLSEhAb/88gt8fHzabeY5qdTXmMZkUf9jNoFVaWkpgoOD692vUqlQU1PTgiUiIqKGsKeQiFqS9sY+NzeXveMSYGPa/ZlNYBUSEoIzZ87Uu3/fvn3o3r17C5aIiIgawp5CImpJXB9POkqlEgUFBZgzZ46YxEKLjWn/YzaB1eOPP45XXnkFw4cPx8iRIwEAMpkMCoUCb7/9NuLi4rB69WqJS0lERERELY1zOqWVkJCA3bt3Y+HChQxmG2A2gdVf/vIXJCcnY968eXBxcQEAzJ8/H7du3UJNTQ2WLl2KxYsXS1tIIiIiImpxHIYmHS7+azizCaxkMhnWrFmDRYsWYevWrUhNTYVGo0FISAjmzJmDYcOGSV1EIiLSQ6lUIikpCdHR0czSRUQmwTmd0uEQTMOZTWClNWTIEAwZMkTqYhARkYHuXSySiKi5cU6nNDgEs3HkUheAiIhar3uHiCgUCqmLREREzUQ7BLOyshLJycmorKwUh2BSXZL2WE2ZMqVRx8tkMuzcudNEpSEiosbiEBFqjzj8ldoLDsFsHEkDq927d8PW1hY+Pj4QBOG+x8tkshYoFRERGYJDRKi94vBXai84BLNxJA2s/P39kZOTAw8PD8yfPx8PPvggfHx8pCwSEREZiFm6qD1ihjQiqo+kgVV2djYOHz6MjRs34p133sHf//53xMbGYsGCBZg1axYcHR2lLB4RETWAQ0SoPeLwVyKqj0wwZAxeC1CpVNi7dy82btyI3bt3Q6PRYPz48Zg/fz4mT57calqDzpw5g6ioKJw+fRp9+/aVujhERETUTBQKBd5++21kZWUhLCwMqampCAoKwhtvvNFq7lOIyHTMJiuglZUVpk6dii1btqCgoACrVq1Cfn4+5s6diw8//FDq4hEREVE7xwxpRNQQs1vHSjt2eefOnTh79ixsbW0RFBQkdbGIiIionePwVyJqiFkEVhqNBvv378emTZuwY8cOVFVVYdSoUVizZg2mT5+ODh06SF1EIiIiaueYIY2IGiLpUMDjx4/j2Wefha+vLyZOnIi0tDS89957yM3Nxd69e/HQQw+1WFCVlZWFxYsXIzg4GHZ2dggJCcGbb74JpVLZIp9PREREREStl6Q9VkOGDIGdnR0mTJiAefPmiUP+rl+/juvXr+t9jakSQly+fBkajQarVq1CaGgoLl68iCVLlqCyshIff/yxST6TiIiIiMjccVFsw0iaFVAu/1+H2f0W/xUEATKZDGq12tTFEn300UdYuXIlMjIyDH4NswISERERUVty5MgRbNiwAQsXLuTyAg2QtMdq3bp1Un78fZWWlsLNza3BYxQKBRQKhfi8oqLC1MUiIiIiImoRXBTbcJIGVosWLZLy4xuUlpaGL7744r7DAN9//32sWLGihUpFRERERNRyuCi24cxmHStTWbZsGWQyWYOPy5cv67wmJycH48aNw+zZs7FkyZIG3//VV19FaWmp+Dh8+LApvw4RNUCpVOL48eNMOkNERNQMtL1V1tbWcHJygrW1NeLi4nRGa9H/mEW6dVN66aWX8MgjjzR4TOfOncX/z83NxYgRIzBo0CCsXr36vu9vY2Oj0x3q4ODQ5LISkXESEhKwYcMGqNVqtqYREREZSbsodnV1NZKTk6FSqcRFsQcMGCB18cxOmw+sPD094enpadCxOTk5GDFiBKKiorBu3Tqd5BpEZN44BpyIiKh5cVHsxmnzgZWhcnJyMHz4cHTq1Akff/wxCgsLxX0+Pj4SloyIDMEx4ERERM2Li2I3DgOr/2///v1IS0tDWloaOnbsqLNPwoz0RGSA+saAs9eKiIiIWgrHuv1/jzzyCARB0PsgIvOmHQNeWVmJ5ORkVFZWimPAASa1ICJqK3g+J3PGHisiavXuNwacSS2IqKUolUokJSUhOjoa1tbWUhenzeH53PzwN/8/DKyIqNXTjgHXd3JnUgsiakm88Tcdns+l01DwxN/8/3AoIBG1GQkJCVi3bh0SExPFbfqSWhARmcK9N/5c66d58XwuHX3XV4C/+XsxsCKiNkHfyZ0LGxKRKdQ3z4c3/qbD87l0Ggqe+JvXxcCKiNoEfSf3+yW1ICJqCn2t97zxNy2ez6VTX/DE33xdnGNFRK1efSf3xYsXc2FDImpW9c3z0d74V1dXIzk5GSqVSrzxHzBggNTFbvW4UK00GlrOhL/5uhhYEVGrV9/J/ebNm5g8ebLUxSOiNqS+xch5429aTVmoltnqjNdQ8MTffF0MrIio1ePJnYhaQkOt90258SfjMVudaTV0feVvvi4GVkTU6vHkTkQtgUOfzE99wRNTszcPXl8bh4EVERERkQHYO25eGgqe6huySWRKDKyIiIiIDMDWe/NSX/DU0JBN9lqRKTHdOhERERG1Kg2l+mZqdpIKe6yIiIiIGoHZ5qTHbHVkjhhYERERETUCs81JRxvU+vr6MlsdmR0GVkREREQGYrY5aWmD2oULF3KdQjI7nGNFREREZCB9CROoZdwb1CoUCqmLRKSDgRURERGRARpKmECmx6CWzB0DKyIiIiIDMNucdBjUUmvAOVZEREREBmC2Oek0lAVwwIABUhePCAADKyIiIiKDMNucdBjUUmvAwIqIiIiIzBqDWmoNOMeKiIiIiIjISAysiIiIiIiIjMTAioiIiIiIyEicY9XG5eXlIS8vT+piEFEb5+vrC19fX6mL0S7xPE9ELYHn+ftjYNXMfH198eabb5rFD0+hUGDevHk4fPiw1EUhojYuNjYW8fHxsLGxkboo7QrP80TUUnievz+ZIAiC1IUg0ygrK4OzszMOHz4MBwcHqYvTblRUVCA2Npb1LgHWvTS09V5aWgonJyepi9Ou8DwvDZ5rpMO6lwbP84Zhj1U70Lt3b/4RtKCysjIArHcpsO6loa13kg5/8y2L5xrpsO6lwfO8YZi8goiIiIiIyEgMrIiIiIiIiIzEwKoNs7GxwZtvvslJhi2M9S4d1r00WO/SYd1Lg/UuHda9NFjvhmHyCiIiIiIiIiOxx4qIiIiIiMhIDKyIiIiIiIiMxMCKiIiIiIjISAysiIiIiIiIjMTAitolmUxm0OPQoUNGf1ZVVRXeeuutRr3Xu+++iylTpsDb2xsymQxvvfWW0eUwF+Zc95cvX8bLL7+M3r17w9HREb6+vpg4cSKSkpKMLovUzLnec3Nz8dBDDyE8PByOjo5wcXFBTEwMvv32WzC/EjWVOf/m7/XDDz9AJpPBwcHB6LKYA3Ou+6ysrHrLs3nzZqPLIyVzrnet9PR0zJ8/H15eXrCzs0NYWBiWL19udHnMhaXUBSCSwoYNG3Sef/fdd9i/f3+d7d26dTP6s6qqqrBixQoAwPDhww16zWuvvQYfHx/06dMH8fHxRpfBnJhz3f/3v//F2rVrMXPmTDz99NMoLS3FqlWrMGDAAMTFxWHUqFFGl0kq5lzvRUVFuHHjBmbNmoXAwECoVCrs378fjzzyCK5cuYL33nvP6DJR+2POv/naKioq8PLLL6NDhw5Gl8NctIa6nzdvHiZMmKCzbeDAgUaXR0rmXu/nzp3D8OHD4e/vj5deegnu7u64fv06srOzjS6P2RCISHjmmWcEU/05FBYWCgCEN9980+DXZGZmNvm1rY051X1SUpJQXl6us62oqEjw9PQUBg8ebIISSsec6r0+kyZNEjp06CDU1NQ0T8GoXTPX3/wrr7wihIeHCwsWLBA6dOjQ/IUzA+ZU95mZmQIA4aOPPjJJecyJOdW7Wq0WevbsKfTv31+oqqoySZnMAYcCEtVDo9Hg008/RY8ePWBrawtvb28sXboUxcXFOsclJSVh7Nix8PDwgJ2dHYKDg/HYY48BuDvkwNPTEwCwYsUKsRv+fkP7goKCTPGVWg2p6j4qKqrOUBx3d3cMHToUly5dat4vaYak/M3rExQUhKqqKiiVSqO/G5E+Uv/mU1NT8Z///AeffPIJLC3b1yAiqeseACorK9vd+UWqet+3bx8uXryIN998E3Z2dqiqqoJarTbZ95RK+/orJmqEpUuXYv369Xj00Ufx/PPPIzMzE//3f/+Hs2fP4o8//oCVlRVu3ryJMWPGwNPTE8uWLYOLiwuysrLw888/AwA8PT2xcuVKPPXUU5g+fTpmzJgBAIiMjJTyq5k9c6v7/Px8eHh4NOt3NEdS1/udO3dQWVmJiooKHD58GOvWrcPAgQNhZ2dn0u9N7ZfUv/kXXngBI0aMwIQJE/Djjz+a9LuaG6nrfsWKFfj73/8OmUyGqKgovPvuuxgzZoxJv7M5kKref/vtNwCAjY0NoqOjcfr0aVhbW2P69On46quv4ObmZvov3xKk7jIjMgf3dpcfPXpUACD88MMPOsfFxcXpbN++fbsAQDh16lS9723MEJH2OBTQXOpe68iRI4JMJhP+X3v3HhRV+YcB/FkBF1BQVEC8sFwcDYbylpqabuY1JUHxhqWomTI2moUx3kg0HDXzNhYpaOigNqaGFpbYKA6mOWZpjjpeQsCyQXQERExR+P7+YNhfK6DAAu+y+3xmdgbec8573vPMOzv73T2XqKioGvdhjswx9xUrVggAw2vgwIFy48aNavVBVBlzm/PJyclia2srFy9eFBGRsLAwqzkVUGX2WVlZMmTIEPnyyy/lu+++k/Xr14unp6c0atRIkpOTq39wZsycch85cqQAkJYtW8pbb70le/fulaioKLG1tZU+ffpISUlJ9Q/QDPFUQKIK7NmzB82aNcPgwYNx584dw6vsVLHU1FQAQPPmzQEAycnJePz4scIRWw5zyj4nJwcTJ06Et7c3IiMj62Qf5sIccg8NDcVPP/2EXbt2YeLEiQBKf8Uiqgsq53xRURE++OADhIeHw9/fv1b6bEhUZu/p6YmUlBSEh4fjzTffxPvvv4+zZ8/C1dUVERERtbIPc6Uy9/v37wMAevTogR07diAkJATLli3DJ598gpMnT+LIkSO1sh/VWFgRVeDatWvIz8+Hm5sbXF1djV73799HTk4OAECv1yMkJARLly5Fq1atEBQUhISEBDx69EjxETRc5pJ9YWEhAgMDUVBQgAMHDljMbZArYw6563Q6DBo0CKGhodi5cyd8fHwwaNAgFldUJ1TO+XXr1uHOnTuGu6pZG3N4v/mvFi1aYOrUqbhy5Qr+/vvvWu3bnKjMveyU7tDQUKP2si/RTp48WeO+zQmvsSKqQElJCdzc3LBz584Kl5ddtKnRaLB3716cOnUK33//PVJSUjBt2jSsWbMGp06dsvgP43XBHLIvKirC6NGjcf78eaSkpCAgIKDGfTUU5pD708aMGYP4+HikpaVh6NChtdYvEaBuzufn5yMmJgazZs3CvXv3cO/ePQCl3+iLCDIzM+Ho6Ag3NzfTDtCMmeP7Tfv27QEAd+/eRbt27WqtX3OiMvc2bdoAANzd3Y3ay+b50zfPaLBUn4tIZA6ePg951qxZYmNjU6Nbgu7cuVMASHx8vIiU3q4bvMaqUuaWfXFxsYwfP15sbGxk37591R5DQ2FuuVdk//79AkB2795tUj9EIuYz58tu9/2sV1BQULXHZM7MJftniYiIEADyzz//mNSPOTGn3Ddt2iQAZOvWrUbt6enpAkCWL19e7TGZI54KSFSBcePGobi4GJ988km5ZU+ePEFeXh6A0m9YRMRoeZcuXQDA8JO5o6MjABi2oWdTnf3s2bOxe/duxMbGGu50ZA1U5n779u0K27du3QqNRoNu3bpVqR+i6lA1593c3JCUlFTuNWDAANjb2yMpKQkLFiyo+YE1AOb2fnPz5k189dVXeOmll+Dh4VHFo2h4VOYeFBQErVaLhIQElJSUGNq3bNkCABg8eHB1DsVs8VRAogro9XrMnDkTK1aswLlz5zBkyBDY2dnh2rVr2LNnDzZs2IAxY8Zg+/btiI2NxahRo+Dr64uCggLEx8fD2dnZ8ER3BwcH+Pv7Y/fu3ejYsSNatGiBgICAZ55elpiYiKysLDx48AAAkJaWhpiYGADApEmToNPp6j4ERVRmv379esTGxqJ3795wdHTEjh07jJaPGjUKTZo0qfMMVFCZ+/Lly3HixAkMGzYMnp6euHv3Lvbt24dff/0Vs2fPRocOHeozCrISqua8o6MjgoODy7Xv378fp0+frnCZpVH5fhMZGYn09HQMHDgQbdq0QWZmJjZv3ozCwkJs2LChPmOodypzb926NRYtWoSPP/4Yw4YNQ3BwMP744w/Ex8cjNDQUPXr0qM8o6o7Kn8uIzEVlTyePi4uT7t27i4ODgzg5OcmLL74okZGRhlMFfv/9dwkNDRVPT0/RarXi5uYmgYGBcubMGaN+Tp48Kd27d5fGjRtX6adzvV5f6SkiqamptXXYZsGcsg8LC3vm6TkZGRm1eehKmVPuhw8flsDAQGnTpo3Y2dmJk5OT9O3bVxISEizmFryknjnN+YpY0+3Wy6jIfteuXdK/f39xdXUVW1tbadWqlYwaNUp+++23Wj1mc2BOuYuIlJSUyMaNG6Vjx45iZ2cn7du3l8WLF0tRUVGtHbNqGpGnfusjIiIiIiKiauE1VkRERERERCZiYUVERERERGQiFlZEREREREQmYmFFRERERERkIhZWREREREREJmJhRUREREREZCIWVkQ1kJmZCY1Gg23btqkeilVh7uowe7I2nPNqMHd1mL3pWFgRERERERGZiA8IJqoBEcGjR49gZ2cHGxsb1cOxGsxdHWZP1oZzXg3mrg6zNx0LKyIiIiIiIhPxVECyWtHR0dBoNLh69SrefvttNGvWDK6uroiKioKI4K+//kJQUBCcnZ3RunVrrFmzxrBtRechT5kyBU2bNsXNmzcRHByMpk2bwtXVFfPmzUNxcbFhvWPHjkGj0eDYsWNG46moz+zsbEydOhXt2rWDVquFh4cHgoKCkJmZWUep1D3mrg6zJ2vDOa8Gc1eH2avFwoqs3vjx41FSUoKVK1eiV69eiImJwfr16zF48GC0bdsWq1atQocOHTBv3jykpaU9s6/i4mIMHToULVu2xGeffQa9Xo81a9YgLi6uRmMLCQlBUlISpk6ditjYWMyZMwcFBQW4ceNGjfozJ8xdHWZP1oZzXg3mrg6zV0SIrNSSJUsEgMyYMcPQ9uTJE2nXrp1oNBpZuXKloT03N1ccHBwkLCxMREQyMjIEgCQkJBjWCQsLEwCybNkyo/107dpVunfvbvg/NTVVAEhqaqrRek/3mZubKwBk9erVtXPAZoK5q8PsydpwzqvB3NVh9mrxFyuyetOnTzf8bWNjg5dffhkignfeecfQ3rx5c3Tq1AnXr19/bn/h4eFG//fr169K2z3NwcEBjRs3xrFjx5Cbm1vt7c0dc1eH2ZO14ZxXg7mrw+zVYGFFVs/T09Po/2bNmsHe3h6tWrUq1/68NwF7e3u4uroatbm4uNTozUOr1WLVqlX48ccf4e7ujv79++PTTz9FdnZ2tfsyR8xdHWZP1oZzXg3mrg6zV4OFFVm9im4pWtltRuU5N9Gsyu1JNRpNhe3/vQi0zNy5c3H16lWsWLEC9vb2iIqKgp+fH86ePfvc/Zg75q4OsydrwzmvBnNXh9mrwcKKqJ65uLgAAPLy8ozas7KyKlzf19cXEREROHz4MC5cuICioiKju/hQ1TB3dZg9WRvOeTWYuzrMvhQLK6J6ptPpYGNjU+4uPLGxsUb/P3jwAA8fPjRq8/X1hZOTEx49elTn47Q0zF0dZk/WhnNeDeauDrMvZat6AETWplmzZhg7diw2btwIjUYDX19fJCcnIycnx2i9q1evYuDAgRg3bhz8/f1ha2uLpKQk3Lp1CxMmTFA0+oaLuavD7MnacM6rwdzVYfalWFgRKbBx40Y8fvwYmzZtglarxbhx47B69WoEBAQY1mnfvj1CQ0Nx5MgRJCYmwtbWFi+88AK++eYbhISEKBx9w8Xc1WH2ZG0459Vg7uowe0Ajz7tijYiIiIiIiJ6J11gRERERERGZiIUVERERERGRiVhYERERERERmYiFFRERERERkYlYWBEREREREZmIhRWRmcvMzIRGo8G2bdtUD8WqMHd1mD1ZG855NZi7GpacOwsrsijp6emYOXMmfHx8YG9vD2dnZ/Tt2xcbNmzAv//+W2f7vXTpEqKjo5GZmVln+6iK5cuXY+TIkXB3d4dGo0F0dHS97Je5q8kdYPYqsyc1rHnOX758GZGRkejSpQucnJzg4eGBESNG4MyZM3W+b+bO3Oubytxrig8IJotx8OBBjB07FlqtFpMnT0ZAQACKiorw888/46OPPsLFixcRFxdXJ/u+dOkSli5ditdeew1eXl51so+qWLx4MVq3bo2uXbsiJSWlXvbJ3NXkDjB7QF32pIa1z/ktW7Zg69atCAkJwaxZs5Cfn4/NmzfjlVdewaFDhzBo0KA62S9zZ+4qqMrdFCysyCJkZGRgwoQJ0Ol0OHr0KDw8PAzL3nvvPfz55584ePCgwhH+n4jg4cOHcHBwqPW+MzIy4OXlhTt37sDV1bXW+69of8y9/nMv2yezV5M9qcE5D4SGhiI6OhpNmzY1tE2bNg1+fn6Ijo6ukw+azJ25P48l5W4yIbIA4eHhAkBOnDhRpfUfP34sy5YtEx8fH2ncuLHodDpZsGCBPHz40Gg9nU4nI0aMkOPHj0uPHj1Eq9WKt7e3bN++3bBOQkKCACj3Sk1NNerj0KFD0r17d9FqtbJu3ToREUlPT5cxY8aIi4uLODg4SK9evSQ5OdloDBkZGQJAEhISqpzH7du3BYAsWbKkytvUBHM3Vl+5izD7p9Vn9qQG53zlRo8eLS1atKjRts/D3CvH3C0vd1OxsCKL0LZtW/Hx8any+mFhYQJAxowZI1988YVMnjxZAEhwcLDRejqdTjp16iTu7u6ycOFC+fzzz6Vbt26i0WjkwoULIlL6JjJnzhwBIAsXLpTExERJTEyU7OxsQx8dOnQQFxcXmT9/vmzatElSU1MlOztb3N3dxcnJSRYtWiRr166Vzp07S6NGjeTbb781jMGcP2Qyd2P1+eGe2RtjYWX5OOcr16dPH+nYsWONtn0e5l455m55uZuKhRU1ePn5+QJAgoKCqrT+uXPnBIBMnz7dqH3evHkCQI4ePWpo0+l0AkDS0tIMbTk5OaLVaiUiIsLQtmfPHqNvc/6rrI9Dhw4Ztc+dO1cAyPHjxw1tBQUF4u3tLV5eXlJcXCwi5vshk7mXV18f7pl9eSysLBvnfOXS0tJEo9FIVFRUtbd9HuZeOeZuebnXBt4VkBq8e/fuAQCcnJyqtP4PP/wAAPjwww+N2iMiIgCg3DnL/v7+6Nevn+F/V1dXdOrUCdevX6/yGL29vTF06NBy4+jZsydeffVVQ1vTpk0xY8YMZGZm4tKlS1XuXwXmrg6zJ2vDOV+xnJwcTJw4Ed7e3oiMjDSpr4ow94oxd8vMvTawsKIGz9nZGQBQUFBQpfWzsrLQqFEjdOjQwai9devWaN68ObKysozaPT09y/Xh4uKC3NzcKo/R29u7wnF06tSpXLufn59huTlj7uowe7I2nPPlFRYWIjAwEAUFBThw4IDRBf61hbmXx9xLWWLutYF3BaQGz9nZGW3atMGFCxeqtZ1Go6nSejY2NhW2i0iV91UXd0NTjbmrw+zJ2nDOGysqKsLo0aNx/vx5pKSkICAgoE72w9yNMff/s8TcawN/sSKLEBgYiPT0dPzyyy/PXVen06GkpATXrl0zar916xby8vKg0+mqvf+qvpk9PY4rV66Ua798+bJhublj7uowe7I2nPOlSkpKMHnyZBw5cgS7du2CXq+vdh/VwdxLMffns4TcTcXCiixCZGQkmjRpgunTp+PWrVvllqenp2PDhg0AgOHDhwMA1q9fb7TO2rVrAQAjRoyo9v6bNGkCAMjLy6vyNsOHD8fp06eN3jQLCwsRFxcHLy8v+Pv7V3sc9Y25q8PsydpwzpeaPXs2du/ejdjYWIwePbra21cXcy/F3J/PEnI3FU8FJIvg6+uLXbt2Yfz48fDz8zN6QvnJkyexZ88eTJkyBQDQuXNnhIWFIS4uDnl5edDr9Th9+jS2b9+O4OBgDBgwoNr779KlC2xsbLBq1Srk5+dDq9Xi9ddfh5ubW6XbzJ8/H19//TXeeOMNzJkzBy1atMD27duRkZGBffv2oVGj6n/vkZiYiKysLDx48AAAkJaWhpiYGADApEmTav0XAeZeqr5zB5h9GRXZkxqc86UfnGNjY9G7d284Ojpix44dRstHjRpl+EBcW5g7c7em3E2m8paERLXt6tWr8u6774qXl5c0btxYnJycpG/fvrJx40ajh+Q9fvxYli5dKt7e3mJnZyft27d/5oP0nqbX60Wv1xu1xcfHi4+Pj9jY2FT4IL2KlD1Ir3nz5mJvby89e/Y06UF6er2+wof6oZJbptYW5q4mdxFmrzJ7UsOa53zZs4oqe2VkZDxze1Mwd+ZuTbnXlEakGleqERERERERUTm8xoqIiIiIiMhELKyIiIiIiIhMxMKKiIiIiIjIRCysiIiIiIiITMTCioiIiIiIyEQsrIiIiIiIiEzEwoqIiIiIiMhELKyIiIiIiIhMxMKKiIiIiIjIRCysiIiIiIiITMTCioiIiIiIyEQsrIiIiIiIiEzEwoqIiIiIiMhE/wNpmlaXbuh5+wAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAInCAYAAACbVci7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvXdUXGmap/ngjUAYAUJIeOG9BwGSkHfIm0xlKo3SVHWfOb3du3umzmzvTFf1dHV1n96enurtqZ7KSq9MSZnIm5T3QjghjPDee+/Cx90/cuMOCCEBQi7ze86JQwAR935xI+Le7/e97/t7jSRJkhAIBAKBQCAQCAQCwawxftkDEAgEAoFAIBAIBILXHSGsBAKBQCAQCAQCgeAZEcJKIBAIBAKBQCAQCJ4RIawEAoFAIBAIBAKB4BkRwkogEAgEAoFAIBAInhEhrAQCgUAgEAgEAoHgGRHCSiAQCAQCgUAgEAieESGsBAKBQCAQCAQCgeAZEcJKIBAIBAKBQCAQCJ4RIazmmPb2dn7961/T3t7+sociEAgEAoFAIBAIXhBCWM0x7e3t/OY3vxHCSiAQCAQCgUAg+BkhhJVAIBAIBAKBQCAQPCNCWAkEAoFAIBAIBALBMyKElUAgEAgEAoFAIBA8I0JYCQQCgUAgEAgEAsEzIoSVQCAQCAQCgUAgEDwjQlgJBAKBQPCaotPpXvYQBAKBQPD/Y/qyByAQCAQCgWB2HD16FGNjYxITE/Hy8sLIyOhlD0kgEAh+toiIlUAgEAgEryGSJBEcHEx/fz9fffUVf/zjHykqKhJRLIFAIHhJiIiVQCAQCASvIUZGRkRFRREZGUldXR1ZWVmcPHmSK1euEB8fT2xsLNbW1i97mAKBQPCzQQgrgUAgEAheQyRJ4tq1azg5OREZGYmvry/d3d1kZ2dz+/Ztbt++TUREBImJiTg7O7/s4f6k0Gq11NTUEBAQINIvBQKBjBBWAoFAIBC8poyNjXH69GmMjIyIiIjA2dmZ9PR0Vq1axf3798nLyyM/Px8/Pz8SExPx8fERQuAZUSqV/Jf/8l/Iy8tjy5Yt/PKXv2TevHkve1gCgeAVQAgrgUAgEAheQ4yMjEhPTwfg1KlTAERERAAwb948VqxYQXJyMiUlJWRnZ3Po0CEWLlxIYmIiYWFhmJqKKcBMaWtr45/+6Z8oLi4mKiqKK1euMDAwwIcffoinp+fLHp5AIHjJGEmSJL3sQfyUePDgATExMeTn5xMdHf2yhyMQCASCnziSJHH27FkKCgrYsWMH4eHhj31MQ0MDWVlZVFVVMW/ePOLi4oiLixPRlmkgSRJZWVlkZGRQW1vLu+++y9atW/nTn/7EjRs38PLyIj09nZSUFIyNhS+YQPBzRSxXCQQCgUDwGmOIXEmSxMmTJwEmiSsjIyO8vb3x9vamp6eHnJwcMjMzuXv3LmFhYSQlJeHi4vIyhv/KMzIywsmTJyktLWV4eJhdu3axY8cOjI2NOXjwIJIkUVJSwg8//EBDQwM7d+7ExsbmZQ9bIBC8BETEao4RESuBQCAQvAwkSeLMmTMUFhZOGbkaj0KhID8/n5ycHIaHh/H19SUxMZGlS5eKOqz/n5qaGk6ePIler0ej0WBjY8PHH388wW1xeHiYzz//nP7+fszNzTE3N2fnzp34+Pi8xJELBIKXgRBWc4wQVgKBQCB4WcxUXAHodDpKS0vJysqivb0dZ2dnEhMTCQ8Px8zM7AWM+tVDp9Nx7do17t27h6+vL6amptTV1fHBBx/g6uo66fF9fX18/vnnmJubM2/ePFpaWli+fDkrVqwQqYECwc8IIazmGCGsBAKBQPAyGS+udu7cSVhY2LSf19TURFZWFpWVlVhZWREbG0tcXBy2trbPedSvDr29vRw/fpzOzk7WrFmDkZERFy9eZNeuXU88lh0dHXz55ZcsXLgQT09P7ty5g6enJ7t27fpZHT+B4OeMEFZzjBBWAoFAIHjZSJLE6dOnKSoqmpG4MtDX10dOTg4FBQXodDpCQ0NJSkp6bLTmp4IkSRQXF3P+/HlsbW3ZvXs3KpWKr7/+moSEBNavX//UbTQ2NnLo0CH8/PyIj4/nxIkT6HQ6du7cydKlS1/AqxAIBC8TIazmGCGsBAKBQPAqoNfrOXPmzKzFFfzYs+nBgwfk5OQwODiIt7c3iYmJ+Pv7/6TqsFQqFefPn6e4uJjIyEg2bdqEQqHgk08+wdnZmXfeeWfaKX2VlZV89913REZGsmrVKk6fPk11dTUpKSmkpaVhYmLynF+NQCB4WQhXQIFAIBAIfoIYGxuzdetWAE6cOAEwY3FlaWnJsmXLSEhIoLy8nKysLI4cOcKCBQtITEwkIiICc3PzOR/7i6S1tZVjx44xNjYmp/tptVq+//57TE1N2bNnz4zqpAICAti6dSunTp3C2tqa/fv3c+/ePa5du0ZjYyO7d+/Gzs7uOb4igUDwshDCSiAQCASCnygGcSVJEidOnMDIyIjQ0NAZb8fExITQ0FBCQkJoaWkhKyuLH374gevXrxMTE0N8fDzz589/Dq/g+SFJkix4Fi1axDvvvIODgwOSJHH+/Hk6Ozs5ePDgrPp8RUZGolAouHTpEtbW1iQnJ+Ph4cGxY8f4n//zf7J9+3YCAgKew6sSCAQvEyGsBAKBQCD4CWNsbMy2bdsAOH78OMCsxBX82A/L3d0dd3d3BgYGyMnJIS8vj3v37hESEkJSUhJubm5zNvbnxfDwMCdPnqS+vp7k5OQJKXr379+Xmy0/y2tJSkpidHSUy5cvY21tTWRkJL/85S85deoUR44cISkpiTVr1ojUQIHgJ4QQVgKBQCAQ/MSZS3FlwN7envXr17Ny5UoKCgrIzs7m4cOHeHp6kpiYSEBAwCtpNV5dXc2pU6cwMjLiwIEDE/pNNTU1ceHCBRISEoiIiHjmfa1evZqxsTHOnDmDlZUVAQEBvPHGG+Tk5HDlyhWamprYvXs3Dg4Oz7wvgUDw8hHmFXOMMK8QCAQCwauKXq/n9OnTPHz4kF27dhESEjKn266oqCA7O5umpiYcHBxITEwkMjISCwuLOdvPbNFqtVy7do2srCz8/PzYvn37hDS/4eFh/vjHP7JgwQLeeeedOYsk6fV6MjIyqK6u5sCBA3h6egL/q7ZLoVCwbds2goKC5mR/AoHg5SGE1RwjhJVAIBAIXmX0ej2nTp2ipKRkzsWVgdbWVrKysigrK8Pc3Jzo6GgSEhJemmlDb28vx44do6uri7Vr15KQkDDB1VCr1fLVV18xODjIxx9/jI2NzZzuX6vV8u2339LW1sb7778v29YrlUrOnDlDWVkZ8fHxrFu3DlNTkUwkELyuCGE1xwhhJRAIBIJXnRchrgAGBwfJzc0lPz8ftVpNUFAQSUlJLFmy5Lns71EkSaKoqIgffvhB7k21aNGiSY87d+4cBQUFHDx4kMWLFz+XsahUKr788kuGh4c5ePAgjo6O8hjv37/PxYsXcXFxYc+ePfL/BALB64UQVnOMEFYCgUAgeB14UeIKQK1WU1hYSHZ2Nn19fbi7u5OYmEhQUNBzq8NSqVScO3eOhw8fEhUVxcaNGx9rDZ+fn8/Zs2fZunXrc79uj46O8vnnn6PX6zl48CC2trby/9rb28nIyGB0dJT09PRnroETCAQvHiGs5hghrAQCgUDwuqDX6zl58iSlpaXs3r2b4ODg576/qqoqsrOzaWhowN7enoSEBKKiorC0tJyz/bS0tHD8+HHGxsbYsmXLlP27Wlpa+OKLL4iKimLLli1ztv8nMTAwwGeffYa1tTXvv//+hNc9XgzGxMSwYcMGzMzMXsi4BALBsyOE1RwjhJVAIBAIXidetLgy0N7eTlZWFiUlJZiZmREVFUVCQsIzOeRJkkRmZibXr1/Hzc2NXbt2Tbm9kZER/vjHP2Jvb8977733Qm3Pu7q6+OKLL3B2dubAgQMTxJMkSTx48IALFy6wYMEC9uzZg5OT0wsbm0AgmD1CWM0xQlgJBAKB4HXjZYkrgKGhIfLy8rh//z5KpZLAwECSkpJwd3efYDDxNMb3pkpJSWHlypVTiiWdTsdXX31Ff38/H3/88YSUvBdFS0sLX331Fd7e3uzbt2/SWDs7O8nIyGBoaIgtW7YQHh7+wscoEAhmhhBW4/j1r3/Nb37zmwl/CwgIoKKiYtrbEMJKIBAIBK8jer2eEydOUFZWxp49e164/bdGo6GoqIisrCx6e3tZvHgxiYmJBAcHPzWaVF1dzcmTJzExMWHHjh0TelM9jh9++IH8/Hzee+893N3d5/JlzIiamhoOHz5MWFgY27dvnyQk1Wo158+fp6io6Il1YgKB4NVAeHo+QkhICFevXpV/F7anAoFAIPg5YGxszM6dOwHIyMh44eLKzMyM2NhYYmJiqK6uJjs7m+PHj3PlyhUSEhKIjo7GyspqwnO0Wi1Xr14lOzsbf39/tm3bNqE31eMoKCggNzeXLVu2vFRRBbB06VJ27NjBiRMnsLa2Zt26dRPElbm5OTt27MDb25vz58/T0tLCnj17cHFxeYmjFggEUyFUwyOYmprK/SUEAoFAIHiV0el0GBsbzyhl7km8bHEFYGRkhL+/P/7+/nR0dJCdnc3169e5desWkZGRJCYm4ujoSE9PD8eOHaO7u5uNGzcSHx//1OPQ1tbG+fPniY6OJiYm5gW9oicTFhaGQqHghx9+wNramtTU1EmPiYyMZPHixWRkZPCnP/2JTZs2ERkZOWfvu0AgmBuEsHqE6upq3NzcsLS0JCkpid/97nd4eHhM+XiVSoVKpZJ/HxkZeRHDFAgEAsHPHEmSOHr0KM7Ozqxbt27OtvsqiCsDrq6ubN++nTVr1pCXl0deXh65ublYWFjQ29uLp6cnH3300bQWREdHR/nuu+9wdXVl06ZNr5QoiY+PZ2xsjGvXrmFtbf1Y0efs7MxHH33EhQsXOH36NPX19WzevBkLC4uXMGKBQPA4nk/ziNeUhIQEvvzySy5evMi///u/U19fT2pqKsPDw1M+53e/+x12dnbybcWKFS9wxAKBQCD4uWJkZMTSpUu5d+8eOTk5c7ptg7gKCgoiIyNjRrXGzwMbGxvS0tL4sz/7M6ytrblz5w6tra0YGxvT1dWFTqd74vN1Oh0ZGRnodDr27t07J2n+Wq32mbcxnhUrVhAfH8+5c+coKyt77GPMzMzYunUru3btoqKigk8++YSOjo45HYdAIJg9wrziCQwMDODp6cl/+2//jQ8++OCxj3k0YlVYWMiKFSuEeYVAIBAInjulpaUUFRVRXV3Nnj175tzNT6/Xc/z4ccrLy9m7dy+BgYFzuv2Z0NLSwrFjx1AoFGzZsgUrKyuys7OpqanB1taW+Ph4YmJisLa2nvTcixcvkpuby7vvvounp+czjUOSJK5du8a9e/eIjIxk+fLl2NvbP9M2x2/bcLzffvttvL29p3xsb28vGRkZ9PT0sGHDBmJiYl6pKJxA8HNECKunEBcXx5o1a/jd7343rccLV0CBQCAQvAgkSeLLL7+kvb0dBwcHent7eeedd56Yvj4bXra40uv1ZGZmcuPGjcf2purq6iI7O5vi4mKMjIyIiIggMTFR7v1UXFzMiRMn2LRpE/Hx8c88lnPnzvHgwQMiIyOprq5GqVQSHR1Namoq8+fPf6btw4/RtcOHD9Pc3Mx7772Hm5vblI/VarVcunSJvLw8QkJC2Lp1q0gNFAheIkJYPYGRkRE8PDz49a9/zV/8xV9M6zlCWAkEAoHgRaFWq+VJuKWlJXq9noMHD+Ls7Dyn+9HpdBw/fpzKykr27NnzwsTV8PAwJ06coKGhgdTUVFasWDGl9fro6Cj3798nNzeX0dFR/Pz88PX15cqVK4SFhbFt27ZniuhotVqOHTtGVVUV27ZtIyIiArVaTW5uLpmZmWg0GmJjY0lJScHGxmbW+4Ef39evv/6avr4+Dh48+NQGwaWlpZw5c4Z58+axe/fuJ4oxgUDw/BDCahz/5//5f5Keno6npydtbW38zd/8DYWFhZSVlU37IiWElUAgEAheJBqNhqNHj1JbWwuAvb09H3zwwZw3vR0vrvbu3UtAQMCcbv9RqqqqOHXqFCYmJuzcufOJaXHj0Wq1lJSUcOvWLS5cuMCCBQv4y7/8S6KiomZdW6VUKjl69Citra3s2bMHf3//Cf9XqVRkZ2eTlZWFTqcjPj6eZcuWPdX6/UmMjY3xxRdfoFar+eCDD54aDevv7ycjI4POzk7WrVs3LZdEgUAwtwhhNY433niD27dv09vbi7OzMykpKfz2t7/F19d32tsQwkogEAgELxqtVktGRgYlJSVotVq8vb15//335zwt7EWIK61Wy5UrV8jJySEgIIBt27Y9tm7qSej1eg4dOkRZWRl+fn60tLRgY2NDXFwcsbGxMxI8IyMjfPPNNwwMDLB///4nploqFAqysrLIzs4GfjTFWrZs2aT+W9NlaGiIzz77DHNzc95///2nHofxfb2CgoLYunXrrPctEAhmjhBWc4wQVgKBQCB4Geh0Ok6cOEFeXh4qlYrY2Fj2798/Zercs+zneYkrQ2+qnp4e1q1bR1xc3KyiLpcvXyY7O5sDBw7g7e1NT08P2dnZFBUVIUkS4eHhJCYmPrXRbn9/P4cOHUKj0fD222+zcOHCae1/bGyMzMxMcnNzMTY2JikpicTERCwtLWf8Wnp7e/nss89wdHTknXfewdzc/KnPqaio4NSpU1haWrJ7926WLFky4/0KBIKZI4TVHCOElUAgEAheFnq9ntOnT3Pr1i3UajVr165l+/btc54SptPp5HqjuRBXkiRRUFDAhQsXsLOzY/fu3dPqTfU4SkpKOHbsGBs2bCAxMXHC/8bGxsjPzyc3N5fh4WF8fX1JSkrC19d30jHq7Ozk0KFDmJubc+DAgQmGGdNlZGSEzMxM8vLyMDMzY9myZSQkJExLHI2nra2NL7/8End392mL5YGBAY4dO0ZbWxtr1qwhKSlJpAYKBM8ZIazmGCGsBAKBQPAykSSJc+fO8cMPP6DT6XjjjTdYtWrVnO9nvLjat2/fpLqj6aJUKjl79iylpaVER0ezYcOGGQsPAx0dHXz22WcEBQWxY8eOKYWETqejtLSUrKws2tvbcXZ2JikpibCwMMzMzGhsbOTIkSM4ODjw9ttvP1OtFPxownHnzh3y8/OxsLAgJSWFuLg4zMzMpr2N+vp6vvnmG4KCgti5cyfGxk9vRarT6bh+/TqZmZn4+/uzffv2GadVCgSC6SOE1RwjhJVAIPi5IUkS9fX1+Pj4vOyhCP5/JEni4sWLZGRkYGxszC9/+UtiY2PnfD/PKq6am5s5fvw4SqWS9PR0QkJCZj0WhULBJ598goWFBR988MG0RIskSTQ2NpKdnU1lZSVWVlYsXLiQmpoali5dyhtvvDGndWqDg4Pcvn2bgoICrK2tSU1NJSYmZtqmGuXl5Xz//ffExsayadOmaUegDEYgpqam7N69e84t+QUCwY8IYTXHCGElEAh+TkiSxPnz58nPz+eXv/zltGtQBM8fSZK4evUqX375JRYWFvzqV796LmYTsxFXer2eu3fvcvPmTRYvXsyuXbueqcmuXq/n8OHDtLa28otf/GJW2+rr6+Pbb7/l9OnTODo6sm/fPlJSUp7LZ7q/v59bt25RVFSEra0ty5cvJyoqalopfvn5+Zw9e5aVK1eycuXKae9zaGiIY8eO0dLSQlpaGikpKSI1UCCYY4SwmmOEsBIIBD8X9Ho9Z8+epbCwkK1btxIVFfWyhyR4BEmSuHHjBn/4wx+ws7Pj17/+Ne7u7nO+H51OR0ZGBtXV1bzxxhv4+flN+dihoSFOnjwp96ZauXLltNLansS1a9e4e/cub7/99oycfMdz7949Ll++TGhoKAsXLiQvL4+hoSG8vb1JSkrCz89vzoVIT08Pt27doqSkBDs7O5YvX05ERMRTBdadO3e4du0aGzduJCEhYdr70+v13Lx5kzt37uDj48POnTufOc1RIBD8L4SwmmOEsBIIBD8H9Ho9p06d4uHDh+zYsYPw8PCXPSTBE7h16xb/7b/9N5ydnfmHf/iHpzacnQ3TEVeVlZWcPn0aU1NTdu7ciZeX1zPvt6ysjO+//561a9eSnJw84+cbInuZmZmkpqayatUqjIyM0Ol0lJeXk5WVRWtrK05OTiQmJhIRETGj2qjp0NXVxc2bNykrK8PR0ZEVK1YQFhY2peCUJInLly+TlZXFrl27CAsLm9H+amtrOXHiBMbGxuzatWtO3geBQCCE1ZwjhJVAIPipY7D1Li8vZ9euXfj4+JCdnc2KFSueOfIgeH7cunWLf/zHf8Td3Z1//ud/xsbGZs73MZW40mq1XL58mdzcXAIDA9m6deucmCh0dXXx6aef4ufnx+7du2ccUTJEXQsKCh7rIgg/ipjm5mays7MpLy/H0tKS2NhY4uLintq0d6Z0dHRw48YNKisrcXJyYuXKlYSEhDz2dUmSJC9u7N+/n6VLl85oX8PDw5w4cYKGhgZWrlxJamqq+P4KBM+IEFZzjBBWAoHgp4xWq+XYsWNUV1ezZ88eHB0dOXr0KAqFgoMHD+Ls7Pyyhyh4Ajdv3uTv//7v8fPz45//+Z9n1VfpaTwqruzt7Tl27Bi9vb3P1JvqUZRKJZ988glmZmZ88MEHM3YS1Gg08md5+/bt04q69vf3c+/ePU6ePElHRwcbNmzgvffem3OR2trays2bN6mursbFxYW0tDQCAwMnHTedTsd3331HfX0977zzzozTPPV6Pbdv3+bWrVt4eXmxa9eu5yK4BYKfC0JYzTFCWAkEgp8qWq1WnsTt3bsXjUbD6dOncXBw4I033phVnx/Bi+fq1av87ne/IywsjP/n//l/pu1INxMME/67d+9iaWmJr68vu3fvnjMjCEmSOHz4MM3NzXz88cc4OjrO6PlKpZIjR47Q1tbG3r17n1gTNp6GhgbOnj1LT08PGo2GnJwc7Ozs2L9/P2vXrsXOzm42L2dKmpubuXHjBnV1dSxatIi0tLRJtV4ajYZDhw7R3d3N+++//9Smx4+jvr6e48ePI0mSHIUWCAQzRwirOUYIKwH82BRSrPoJfkpoNBqOHj1KU1MTe/fupaGhgczMTMLCwkhPT5913yHBy+HChQv80z/9E3Fxcfz2t7+dc3GlVCo5ffo033//PVZWVvz1X/81QUFBc7b9GzducPv2bd56660Zp8CNjIzwzTffMDAwwFtvvTWtKI9CoeDKlSs8ePAAd3d3tm7dirOzM2VlZfzbv/0bdXV1eHt7s3btWlJSUmYlbp5EQ0MDN27coLGxkSVLlpCWloaPj48ssJRKJV988QVjY2N88MEHs3JFHB0d5cSJE9TV1c2ZqYhA8HNDCKs5RgirnzdqtZrz589TVFREcnIya9asEXa2gtcetVrN4cOHaWtrY8eOHdy/f5+6ujrWrVtHYmKi+Iy/ppw6dYrf//73pKSk8Dd/8zdzJq6am5s5duwYKpWKzZs3U1JSQm1tLW+88caMRdDjqKio4OjRo6xevZrU1NQZPbevr49Dhw6h1Wo5cODAUwWQJEmUlZVx4cIFNBoNa9asITY2dsJnXqVScfbsWS5cuIBKpcLDw4OwsDBSUlLm1IHR0C/u+vXrtLS04OHhQVpaGt7e3sCPNVOff/45xsbGHDx4cFZuf5IkcffuXW7cuIG7uzu7du2a8zoygeCnjBBWc4wQVj9f2tvbOXbsGMPDw4SFhfHgwQMCAwPZsWOHWM0XvLaoVCq+/fZbOjs7Wbt2LXfv3kWtVrNnzx55Qgc/1mqI1e3Xj8OHD/Ppp5+SlpbGr371q2c6V43vTbVkyRJ27tyJvb09Wq2W77//nrq6umcWV93d3Xz66af4+vqyZ8+eGYn6jo4OvvnmGywsLDhw4MBTozqDg4OcP3+eqqoqgoKC2Lhx4xNFRkVFBadPn6a9vR0bGxtMTU3x9PQkOTl5Tq3aJUmipqaGGzdu0NbWhre3N2lpaXh4eNDX18fnn3+Ora0t77333qybGzc1NXHs2DG0Wi07duyYdqqkQPBzRwirOUYIq58fkiSRm5vL5cuXcXFxYffu3SxYsIDKykqOHz+Ok5MTb775Jra2ti97qALBjFAoFHzzzTf09vYSExNDbm4uTk5O7Nu3b8KktLa2lgsXLnDgwIE5rzERPF8kSeKzzz7j6NGjrFmzhr/6q7+a1WR8aGiIEydO0NjYyPLlyyc5RI4XV2+++easek0plUo+/fRTjIyM+PDDD2c0zoaGBo4cOcKCBQt46623nhjN0ev15OXlce3aNSwsLNi0adO00xhHR0c5e/Ys5eXlODk5YWpqSmdnJwsXLiQ5OZnQ0NA5W4CQJInKykpu3LhBZ2cnS5cuJS0tDRMTE7788ktcXV15++23Zx2JHBsb49SpU1RVVZGcnMyqVaum1cBYIPg5I4TVHCOE1c+LsbExTp8+TWVlJQkJCaxdu3bCRayjo4PDhw8D8Oabb7Jo0aKXNVSBYEaMjY1x6NAh+vr68PLyorKykoiICLZs2TKhh09eXh4XLlzAx8eH3bt3PxeXOcHzRa/X8z/+x//g3LlzrF27lv/wH/7DjN5HQ6TGzMzsib2pnkVcSZLE0aNHaWho4OOPP2bBggUzGt+xY8dwd3fnjTfeeKIg6+zs5OzZs7S0tBAXF8fq1atn/JmWJImioiIuXLiAubk5cXFxNDc3U11djb29PcuWLSMqKmrOemEZ0hVv3rxJd3c3AQEBLF26lEuXLuHn58eePXtmLeYkSSIrK4urV6+yePFidu/eLRZPBIInIITVHCOE1c+HxsZGjh8/jkajYfv27QQEBDz2ccPDwxw5coTu7m5279495eMEgleF0dFRvv76a/r6+rC1tWVgYID169cTHx8vpzPp9XouXrxIbm4uiYmJrFu3TqQCvsao1Wp+//vfc/PmTdasWcMvfvGLp/aZ0mg0XLlyZUa9qWYrrm7dusWNGzfYv38//v7+035dBQUFnDlzhqCgIHbu3Dll9Ear1XLr1i0yMzNZsGAB6enpeHh4PPF19Pf34+TkNGWK3+DgIKdOnaK+vp6EhARCQ0PJzc2lpKQEKysrEhMTiYuLw8rKatqv50no9XpKSkq4efMmfX192NnZ0dHRQXJyMunp6c+UitjS0iLXzT3peicQ/NwRwmqOEcLqp49er+fOnTvcvHkTDw+PaRX3ajQaTp48SXl5OWvXriUpKUkU/AteSYaHh/n666/p6OjA3NwcS0tL9u7di6enp/wYpVJJRkYG9fX1bNq0idjY2Jc4YsFcMTo6yr/8y79w//59Vq5cyYcffjilu2l3d7fcm2r9+vWTDB2exHjb/umIq6qqKo4cOcLKlStZsWLFtF9PZmYmV65cITY2lk2bNk0p/A0W6gMDA6SmppKSkjKlAFMqleTn55Odnc3w8DABAQFs2rRpyiiOIVX8ypUr2Nvbs2PHDqytrbl37x4FBQUYGxsTExNDUlLSnJlE6PV6ioqKuHXrFpWVlfT29rJv3z527dr1TNtVKBScPn2aiooKEhMTWbt2rUgNFAgeQQirOUYIq582T6sjeBKSJHH9+nXu3LlDTEwMmzZtEhclwSvF0NAQX331FQ0NDVhYWODt7c2+ffsmTPj6+vo4fPgwo6Oj7N27d4KBheD1p6+vj3/913+lrKyMZcuWcfDgwQnvvyRJPHjwgIsXL+Lg4MCuXbtm1ZtqvLjav3//lH2Tent7+eSTT/Dy8uKNN96YlniTJIkrV65w7949VqxYwcqVKx/7vPEW6h4eHqSnp0/Z4Hp4eJicnBzy8vLQarVERETg7u7O9evXUalUpKWlkZCQMOX1oLu7W24qnJqayvLly1EqleTk5JCbm4tGoyE8PJxly5bNWZNtnU5HQUEBX3/9NcXFxaxfv55f/OIXM+75NZ7xNcULFy5kz549on+dQDAOIazmGCGsfrpUVVVx6tQpTExM2LVr12PrCAy57sXFxfj5+RERETEpj76wsJCzZ8/i6enJnj175iwNRCB4FgYGBvjiiy8oKyvD0dGRZcuWsXnz5gkr9/X19Xz//fdYW1uzf//+GdW5CF4fWltb+cMf/kBzczPR0dG899572Nvbo1AoOHv2LGVlZcTGxrJ+/fpnqhN6mrhSqVR8+umnSJLEhx9+OK1aJ51Ox9mzZyksLGTjxo0kJCRMeowkSZSWlnLhwgW0Wi1r164lJibmseKrt7eXe/fuUVhYiKmpKbGxsSQmJjIwMEB9fT0eHh6UlpZy//59XF1dSU9Px83Nbcqx3blzh9u3b7Nw4UJ27tyJs7MzKpWK/Px8srKyGB4eJjAwkJSUFJYsWTLNI/lktFot//N//k/OnDmDr68vGzduZPny5bPqdWWgra2NjIwMxsbG2LZtG8HBwXMyVoHgdUcIqzlGCKufHjqdjqtXr5KVlYW/vz/bt29/bB1Ba2srly5doqmpiYULF9LV1YWVlRVxcXHEx8dPcKFqaGjgu+++Y968eezfv/+ZVhAFgmelr6+PTz75hOLiYry9vdmxY8ekiWZ+fj7nz5/Hy8tLLAi8QigUCiwtLec8tbiqqorPP/+cgYEB/Pz8WLNmjRyd2bZt25w1+9VqtbIpxXhxJUmSXIv10Ucf4eTk9NRtaTQaMjIyqKmpYceOHYSFhU16zKMW6ps2bXqsY2tbWxt3796lvLycefPmkZiYSExMDK2trdy9e5eGhgZMTU3RarW4uLiwePFi6uvrGRwcJCEhgbS0tClNMtra2jhx4gQDAwOsXr1a7gWn1WopLi4mMzOT3t5evLy8SElJwdfX95nfX0mSOHnyJBcuXMDe3p758+cTHR1NamrqrFMQlUolZ8+epbS0lLi4ONavXz/njaYFgtcNIazmGCGsflr09fVx7NgxOjs7WbNmzWOboQ4NDXH16lWKi4tZuHAh69evx8fHh76+PrKzsykoKECSJMLDw0lKSpLTPHp7ezl8+DAKhYJ9+/ZNqGERCF4UPT09/Ou//isPHz4kJiaGd999d0JTU71ez+XLl8nOziYuLo4NGzaIFNZXBINVuoWFBdu3b5/zlg75+flkZGRQW1vL4OAgmzdv5r333ptzV7jHias7d+5w7do13njjDQIDA5+6DaVSyeHDh2lvb2ffvn2TemXp9Xpyc3O5fv06FhYWbN68edJ2JUmirq6Ou3fvUl9fL0duw8PDqa6u5u7du7S3t7N48WJSUlLw9/enrq6OwsJCKisr0Wq1SJJEf38/7u7upKenTzl2jUbDtWvXyM7OxsvLi+3bt8sRJL1eT2VlJXfv3qW1tRVXV1eSk5MJCQl5JoMYvV5PRkYGFRUVhISEUFtbi0ajITY2lpSUlCnr6Z6EJEnk5+dz8eJFnJyc2LNnj4hkC37WCGE1xwhh9dPh4cOHnDt3jnnz5rF79+5J6R1qtZrMzEzu3buHubk5q1atIioqatKFT6FQcP/+fXJychgZGcHPz49ly5bh5eWFUqnk+++/p6mpia1btxIREfEiX6LgZ053dze//e1vqampYePGjbzzzjsTJucqlYpjx47J/4+Pj3+JoxU8jtraWk6ePIler2fbtm1z6tY2ODjIb3/7W7KysvDy8iI0NJR3330XV1fXOduHAYO4amxsZNmyZdy+fZvly5eTlpb21OcODw/zzTffMDQ0xFtvvTUpha6zs5MzZ87Q1tZGbGzsJAt1vV5PWVkZmZmZtLe34+bmRnJyMv7+/jx8+FCOIPn4+JCSkoK3t/ekBTaFQkFpaSmFhYXU1NRQX1+PiYkJqamp7N+/f0oxWl9fz6lTp1AqlWzYsIHIyEh525Ik0dDQwN27d6mtrcXBwYFly5YRGRk56xRMrVbLt99+S1tbG/v376ehoYGsrCx0Oh1xcXEkJyc/scfXVHR0dJCRkcHw8DDp6emPjRYKBD8HhLCaY4Swev1Rq9VcuHCBgoICwsLC2LJly4SUDkOPkmvXrjE2NkZSUhKpqalPbVap1WopKSkhKyuLzs5OXF1dWbZsGYGBgVy8eJEHDx6QmprKqlWrhGOg4LnT2trK//1//990dXXx/vvvs2PHjgmRqP7+fo4cOcLQ0BB79uyZVUNXwYthdHSUM2fOUFlZSVxcHOvWrXvmHknl5eWcOXMGMzMzbGxsaGlpwdLSEmNjYw4cOMDixYvnaPT/C61Wy6effsqJEyfYuHEjf/mXf/nUc2FfXx9ff/01er2eAwcOTDB+0Gg03L59W7ZQ37p164RorEajobCwkHv37tHf3y8Lp8WLF/PgwQOysrIYGhoiKChI/vt06OnpobCwkMuXL1NYWIilpSWbN2+e1FjbgFKp5OLFixQWFhIQEEB6evqk6FF7ezuZmZmUlpZibW0tW7XPpm+cSqXiyy+/ZHh4mIMHD2JlZUVWVhbZ2dkAJCQksGzZshmn+6pUKs6dOydHvzds2DBnvboEgtcFIazmGCGsXm86OzvJyMhgcHCQTZs2TVg9hB97V126dIm2tjZCQkJYs2bNjB2RDOkmWVlZ1NTUMH/+fOLj4+VJQFBQEDt27BAXJMFzo7q6mv/0n/4TarWaX/3qVyQnJ0/4f1NTE0ePHsXS0pI333xzzlzKBM8PSZK4f/8+ly5dkt36ZhNZ0mg0XL58mby8PIKCgti6dSvm5uYcPnyY+vp6bG1tUSqVvPXWW0/s8zQb1Go1f/zjH8nNzcXX15d33333ia6T7e3tfPPNN1hZWXHgwIEJUaH6+nrOnj3L4OAgy5cvJyUlRV44UCgU5OXlkZOTw9jYGMHBwSQnJ+Pg4EBOTg45OTmoVCrCw8NJTk6e9edfr9dTUVHBoUOHyMnJwcbGhrVr17Jy5UoCAwMnneMrKio4e/YsAFu2bHlsHVtfX59spmFiYiJbtc80DXR0dJTPP/8cvV7PwYMHsbW1ZWxsjMzMTHJzczE2NiYpKYnExMQZiTdJkigoKODChQs4ODiwZ88ecf4Q/KwQwmqOEcLq9WT8pGTBggXs3r17wsWgv7+fK1euUFZWhpubGxs2bJiTSUVXVxdZWVkUFxdjYmKCs7MzjY2NeHp68uabb84q510geBI5OTn85je/wcbGht/97neTIlEG10p3d3f27t371IavgleL7u5ujh8/Tnd395R1oVPR1dXFsWPH6OvrY8OGDRMMTAxRjsHBQWxsbOjv72f//v1zZrcvSRLHjh2jurqa9957j2vXrtHU1DTlPhoaGjhy5AgLFizgrbfektPXFAoFly9fpqCgAE9PT9LT02Xji6GhIbKyssjPz0ev1xMZGcmyZcswNTWV/y5JEtHR0SQlJT2Ta96j1NTU8Omnn1JRUYGtrS0BAQFERETItu2G4zw6OsrZs2epqKggMjKSDRs2PFbYjIyMkJ2dPcH+PTk5eUb1TQMDA3z++edYWVnx3nvvyRGqkZERMjMzycvLw8zMjGXLlpGQkIC5ufm0t93V1UVGRgYDAwNs3ryZyMjIaT9XIHidEcJqjhHC6vVDoVBw5swZysvLJ6XRKJVK7ty5Q3Z2NvPmzWP16tWEh4fPeareyMgIubm55OXl0d3dTWdnJz4+Pvz5n//5rHrECASPIkkS586d4/e//z0eHh780z/904RJmF6v59q1a2RmZhIdHc3mzZuFScVrilar5dq1a2RlZeHr6/tUY4vxBgSOjo7s3r0bFxeXSY8bHh7ms88+w8TEBBsbG1pbW9m3bx9+fn7PPGZDM9+9e/cSHByMRqPh6NGjNDU18dZbb01ob1FeXs7x48fx8PBg3759WFhYTLBQ1+l0rF27lujoaIyMjOju7iYzM5OHDx9iZmZGXFwcCQkJqFQqMjMzKSoqwszMjPj4eBISEmZVYzQddDod9+7d48KFCwwODmJnZ4e5uTkLFiyQRZadnZ2cbn7hwgUsLS3Zvn37lALW0LA4KyuL0dFRgoKCSE5OnnbaYldXF1988QXOzs4cOHBgQhRteHiYO3fukJ+fj4WFBSkpKcTFxU07m2J8Wn1kZCSbNm2akTgTCF5HhLCaY4Swer1obm7m2LFjkyyE9Xo9Dx484MaNG6jVapKTk1m2bNlzvyio1WqKioq4ceMGt2/fxtzcnI8++oj169c/kxuU4OeNVqvl888/57vvviMyMpK/+7u/m1A/oVarOX78OFVVVaxbt25GUQ7By6WxsRGA+fPnM3/+/AliuKamhlOnTj3R2OJJC0uPo6enh88++wwnJycsLCyor69nz54903Lum4q6ujoOHTpEcnIya9askf/+OHH14MEDzp49S3BwMDt27MDU1JSBgQHOnz9PdXU1wcHBbNy4EVtbW5qbm8nMzJSjRElJScTExNDf38+dO3coKytj3rx5JCUlERsb+9Q62bmir6+P8+fPU1NTg4uLC46OjtTX16PRaPDy8iIyMpKgoCDGxsY4deoUDQ0NJCYmsnr16infG61WS1FREZmZmfT19eHj40NycjI+Pj5P/S63tLTw1VdfyQ3BH11QGRwc5Pbt2xQUFGBtbU1qaioxMTHTtlYvKiri/PnzzJ8/n7179z5WtAsEPxWEsJpjhLB6PZAkibt373Ljxg0WL17Mrl275LSP2tpaLl26RFdXFxEREaxevXrWfT5mi16vp6SkhD/84Q9UVFQQHR3Nvn37iIqKEit+ghkxODjIv/3bv3Hjxg3S0tL4j//xP06YnA0ODnL48GEGBgbYtWsX/v7+L3G0gpnyxz/+kfb2dvl3GxsbWWTZ2dlhZmbG/fv36ejoICkpiW3btsmpZY2NjZw4cQK1Ws3WrVun3ZuqqamJr7/+Gj8/P4yMjKioqGDnzp2EhobOePz9/f188sknuLm58dZbb01aQDKIq8bGRgICAuSeSRs3bgSQLdQNBhH+/v5UV1eTmZlJY2MjTk5OJCcnExYWRmtrK3fu3KGmpgYHBweSk5OJjIx8Kb2XJEmipKSEixcvotVqWbFiBVZWVhQVFdHQ0IC5uTkhISGEh4fT0dHBtWvXsLe3Z8eOHU+MRun1esrLy8nMzKStrY1FixaRkpJCUFDQExfnampqOHLkCCEhIezYseOxYqy/v59bt25RVFSEra0tqampREdHTyuy3dPTQ0ZGBr29vWzatImoqCixeCP4SSKE1RwjhNWrz8jICCdOnKC+vp6UlBTS0tIwNjamp6eHy5cvU1VVhYeHBxs2bJhksf6ikSSJo0ePcvLkSflCGx8fT3x8/Jz3rBH89GhoaODf//3fefjwIZs3b+YXv/jFhElkc3MzR48exczMjP379896JXlwcJCioiJSU1PFZOkFo1arGRoaYnBwkKGhoUn3h4aGUCgUtLW1UVtbi5WVFTExMYyOjtLU1MSSJUvkc52dnR3z58/H1tb2qZPl8vJyvv/+exISElAoFBQXF7Nt27YZ1dJoNBo+++wzVCoVH3/88ZQudGq1mr/+678mPz+fjz/+mH379tHZ2cnZs2dpa2sjLi6OlStXyoKqq6uLJUuWyL2mampquHv3rty8PSUl5Zl7Qs0VCoWCK1eu8ODBA5YsWUJ6ejoWFhYUFRVRWFhIf38/9vb2eHl5UV9fz/DwMMuXLyc1NfWJ75EkSdTX13P37l3q6urknlxPEpIlJSUcP36chIQE1q9fP+V3ube3l5s3b1JSUoKdnR3Lly8nIiLiqZ8ZjUbDxYsXyc/Pf6zjrkDwU0AIqzlGCKtXm5qaGk6ePImRkRE7d+7Ex8eHsbExbt26RV5eHvPnz2fdunUEBQU90wRRq9XO6SrogwcPOHbsGBqNBltbW4yMjAgLCyMpKUnUYAkmIUkSubm5fPPNN7S2trJ161YOHDgwYeJTXFzMmTNncHNzY9++fbOqK2ltbSUrK4uysjLMzc354IMPhAPYK4hKpWJoaIj6+nqOHj1KXl4elpaWxMfHs2jRIoaHh1GpVPLjjYyMJkS+DNGv8b/b2tpy//59Lly4wPr16+np6SE/P58tW7YQGxv71DFJksTJkycpLy/nww8/nPI8ptPpOHPmDAUFBRgZGWFiYoKvry+1tbU4OTnJ+7537x6Dg4P4+fmRkpLCkiVLKCsr4+7du3R2duLu7k5qaqocZXvVaGxs5OzZs/T19bFs2TJWrFiBqakpTU1NFBUVUVpaikKhkN/L0NBQ9u7dO63vW1tbG3fv3qW8vJx58+aRmJhIbGzsY00xcnNz+eGHH1i9ejWpqalP3G5XVxc3b96krKwMR0dHVqxYQVhY2FMFa0lJCWfOnMHW1pY9e/Y8l75oAsHLQgirJ/AP//AP/Kf/9J/43/63/43//t//+7SeI4TVq4lOp+P69etkZmaydOlStm/fjpWVFXl5edy6dQu9Xk9qaiqJiYmzFkQ6nY6ysjJyc3Npbm4mLi6ONWvWzNmKXH19Pd999x2WlpYEBgZSVlbG0NAQvr6+JCUl4evr+0pOGAQvFo1Gw7lz57hy5QojIyNs3ryZ3bt3y6JKkiS5hi8yMpItW7bM6DNvsJDOysqiubkZR0dHEhMTiYyMFGmqrzjl5eVyzY61tTXR0dGysYVhwv6k6NfjxFdLSwstLS2sXr2a0dFRamtrWbduHWlpadjY2EwZxcjOzubixYvs3r17yhRCjUZDRkYGtbW1cguK//pf/ysdHR28++67uLm5kZ+fj1KpJDQ0VHbFKywsJDMzk/7+fpYuXUpqaioeHh6v/PlRq9WSmZnJnTt3sLW1ZfPmzSxduhT48ViUl5dTWFhIUVERVVVV2NjYsHv3bnbs2DGt6Ftvb69s1W5qakpcXByJiYmT3Gdv3rzJzZs3SU9PJyYm5qnb7ejo4ObNm1RUVODk5MTKlSsJCQl54vHu7e3l2LFjdHd3s379emJjY1/590cgmA5CWE1BXl4ee/fuZf78+aSlpQlh9RrT39/P8ePHaWtrY/Xq1SQlJVFdXc3ly5fp6+sjOjpangTMhqGhIfLz88nPz2dkZARvb2/c3d3Jzs7G2tqa9PT0OWuu2tPTw+HDh1EqlezZs4eRkRHu3btHe3s7Li4uJCUlERYW9lJqBgQvn4GBAb777jtKSkrQ6XSsWbOG7du3y5MutVrNyZMnqaioYM2aNSxbtmzakxmVSkVBQQHZ2dkMDAzg6elJUlIS/v7+r0RKlWBqNBoNly5d4v79+wQHB5Oenk5ra+tTjS0eRaVSTUozHBgY4Pr169TX1xMYGEhnZydNTU14e3vj5eUlR77GR7yGh4e5fPkyKSkpbNu27bGfH4VCweHDh+ns7GTr1q3U1NRQWFiIo6MjFRUVVFdXyzWwSUlJWFlZcf/+fdkdLzg4mJSUFBYtWvQ8Dulzpbe3l3PnzlFfX09YWBjr16+fcH0aHBzkwYMHfP/995SXl+Pm5sYbb7wxbbv14eFhsrOzuX//PjqdTrZqd3R0BH5cfLlw4QJ5eXns2bOH4ODgaY27ra2NGzduUF1djYuLC2lpaQQGBk55jtFqtVy+fJnc3FyCg4PZunXrrBoeCwSvEkJYPYaRkRGio6P5wx/+wN/93d8RGRkphNVrSmlpKWfOnMHKyordu3djZmbGxYsXqa+vx8fHh/Xr188qlU6SJJqamsjNzaW8vBxTU1MiIiKIi4uT61T6+/s5c+YM9fX1REdHs27dujm5aIyNjfHdd9/R0tLCtm3bCAsLo7GxkaysLCorK7GxsSE+Pp7Y2FjRg+hnRF1dnbwCLEkSqamppKeny5PWoaEhjhw5Qm9vLzt37py2i9vAwAA5OTk8ePAAjUZDaGgoiYmJL73+UDA9DL2p+vv72bBhg2xBDj/2TDp9+jRVVVXTcgScCq1Wy7fffktHRwdvvvkmDx484Pr164SEhODn58fw8LAc/TL07rOxsSE8PBxjY2NsbW0npBmamppy8+ZNtFotiYmJVFVVMTQ0hL29PaOjo5iZmTE0NISVlRV79+6lvb2d3NxcNBrNrPo5vYoYLNcvX76MXq+fYB8//jH37t3jiy++oKWlBS8vL2JjY4mKiiIkJOSp1xulUkleXh7Z2dlyo2SDGJUkiePHj1NeXs5bb72Fj4/PtMfe3NzMjRs3qKurY9GiRaSlpT0xBbOsrGzCdXq6VvECwauIEFaP4d1338XR0ZF/+Zd/YeXKlU8UViqVakJ6RGFhIStWrBDC6iUzvkg2JCSEtLQ0srKyePDgAQsWLGDdunWzyrVXq9UUFxeTm5tLV1cXTk5OxMfHExER8diUP0mSePDgAZcvX8bCwoL09PQ56fmi0+k4e/as/HlbuXIlRkZG9PT0kJ2dTWFhIUZGRkRGRpKYmPjaTzIEUyNJEllZWVy5cgUjIyNUKhVJSUls3rxZ/ny3trZy9OhRjI2NefPNN6dV09DS0iLXT1laWhITE0N8fPwLd8gUzI6nNT0f/7i8vDwuX76Mg4MDu3btmlXNi1Kp5PPPP0elUvHhhx9SXFzMlStXWLZsGWvXrsXIyAiNRsPnn3/O0NAQe/bsQaPRTIh+DQ4O0t7ezu3bt1EoFFhZWdHb24skSdjY2ODk5ERYWBiRkZGYmJhw9OhR6uvriYqKYsOGDSQnJ//kPp9jY2NcvnyZwsJCPDw8SE9Pn/Q+KpVKzp49y40bNzAyMsLe3h4rKysCAwOJjIzEx8fniVFljUYjW7X39/fj6+tLSkoK7u7ust39e++9N+PFlIaGBm7cuEFjYyNLliwhLS1tSvv3/v5+jh07RkdHB2vXriUhIUGkBgpeS4SweoSjR4/y29/+Vi7ufZqw+vWvf81vfvObSX8XwurlYVih7evrY+3atajVau7evYuxsTErV64kNjZ2xo1Pe3t7ycvLo6CgALVaTUBAAPHx8Xh7e0/r5D84OMjZs2epqakhIiKCDRs2TOmANV0kSSIzM5OrV68SGhrK9u3b5RTA0dFR7t+/T25uLmNjYwQEBJCUlPRa1BkIpo9arebMmTOUlJSwYMECenp6SExMZMOGDfL7XFpaysmTJ3F1deWNN954Ysqrwao5Oztbrp9KSkoiIiLiqfVTkiSJz9YrgkKh4PTp01RUVBAfH8/atWufGonq6uri+PHj9PT0sGbNmln1MhsaGuLTTz/F2tqa999/n8LCQi5cuEB8fDwbNmzg9OnTlJaW8sEHHzw2Ra+trY1Dhw7R0dHB6OgonZ2d2NrasmTJEpYuXYqjoyNtbW0UFRVRV1cH/Li4aWpqSkxMDIsXL55ksjH+dxsbm9c2bbW+vp5z584xMDBAcnIyy5cvn5TyXV5eztmzZ1GpVPj6+tLf3093dze2trZyA+InmV3o9XrZ8KOjowM3NzcSEhLIyclhYGCAgwcP4uTkNKNxG9wJr1+/TktLCx4eHqSlpT224bFOp+Pq1atkZWURGBjItm3bnvk6KRC8aISwGkdzczOxsbFcuXKF8PBwABGxeo0wRIcuXryIvb09oaGhFBQUMDQ0RHx8vNwnZLro9Xqqq6vJy8ujpqZGLvaOjY2Ve17NdHyFhYVcunQJU1NTtmzZ8kxNNQ2UlZVx8uRJFi5cOGnirNVqKS4uJisri+7ubhYvXkxSUhLBwcGv7QRD8CN9fX1899139Pf34+HhQU1Njdxg1cjICEmSuHXrFjdv3iQ8PJytW7dOWXunUql48OCBPIHy8vKS66emM7nu6enhzJkz7Nq1Czs7u7l+qYIZ0NjYyPHjx9FoNGzbtm1G5xitVsvVq1fJzs5m6dKlbNu2bcZtHbq6uvj888/lvlSFhYWcO3eOefPmMTw8zM6dO4mIiJj0vPr6ev74xz/y8OFDtFotTk5OcjTez89PdrYzNPtNTEwkJCSEoaEhvv32W5qamkhNTcXKymqC6YZGo5H38bi0w0eF2KssvrRaLXfu3OHu3bvY29uzefPmSSl6IyMjnD17lsrKSllMVVRU8PDhQxQKBYsXLyYyMpLQ0NApr4eSJFFbW0tmZib19fXMnz9fztD46KOPZvUdlySJmpoabty4QVtbG97e3qSlpeHh4THpsZWVlZw6dQpzc3P27NnDkiVLZrw/geBlIYTVOE6dOsWOHTsmRDN0Oh1GRkYYGxujUqmeGukQNVYvB0MqRGlpKV5eXqhUKtrb2wkICGDt2rUzWmUbGxujoKCAvLw8BgYGWLx4MfHx8YSEhMyJKcTQ0BDnzp2jqqqKsLAwNm7c+My1UK2trRw5cgRTU9PH9iMyXNTu3btHfX09dnZ2JCYmEh0dLfqIvIbU1NRw/PhxrKys8PT0pKCggOXLl5OWlianXJ0+fZqSkhJWrVo1ZX+pR+unwsLCSExMnFHB/9jYGJ9++ikmJiZ88MEHovj8JaHX67l16xa3b9/G09OTnTt3zjotrqamRja22L59+4ybRtfX1/PNN9/IkfRLly7xj//4jyQnJ/O3f/u3k4RLXl4e/+W//BdaW1tZvHgxmzdvZtu2bSxZsmRCL6YFCxaQnJxMeHj4hHOxWq3m8OHDtLW18fbbb8uTdUmSUCqVj+3tNf73qcTXVNGvefPmvVTx1d3dzblz52hsbCQiIoJ169ZNaJdgWMS7ePEilpaWbN++HXd3d6qqqigqKqK6uhojIyMCAgKIjIxk6dKlU76e1tZW7t69K1u++/r68p//83/GwcFhVmOXJInKykpu3LhBZ2cnS5cuJS0tbVJd1eDgIMeOHaO1tZXVq1fPyGhHIHiZCGE1juHhYRobGyf87f333ycwMJBf/epX0+oq/yoJq9zcXIaGhnB2dsbFxQUnJ6dZFSa/6rS0tHD8+HH6+vpwcHBgYGCAhQsXsn79+hkV3BoKoB8+fIgkSYSGhhIfH/9cCmklSeLhw4dcuHABY2NjNm/ePG3npakYHBzkyJEj9Pf3s2fPHtmm91E6Ojq4d+8eJSUlmJmZERMTQ0JCgog0vAZIksTdu3e5fv06vr6+ODs7k5WVRVpaGitWrAB+PI8dPXqUrq4uduzY8djPVXNzM1lZWZSXl2NpaUlsbOysmk5rtVq+/vprent7+fDDD2c92RI8GwMDA5w4cYKWlhZWrlxJSkrKM0/8n9XYoqSkhGPHjhEdHU1lZSVqtRqNRkNwcDC7du3CxMSEkZER/uVf/oVDhw5hYWHB3r17+eijj1i4cCGVlZXcuXOH1tZWFi1aREpKCkFBQVO+rqnE1dMwiK8nNVgeHBxEq9XKzxkvvqysrLCyssLS0vKp92eagv60cRcUFMi1levWrSMiImKC+BgYGJDt9ZOSkli1ahVmZmaMjIzw8OFDCgsL6ezslI1EIiIipjRz6unp4cKFCxw6dAgbGxs+/vhjUlJSZu2mK0kSZWVl3Lx5k+7ubvz9/UlLS5uwqKPT6bhx4wZ3797Fz8+PHTt2CEMmwSvPay2sdDodGRkZ3Lhxg66uLv72b/+WsLAwBgcHuXbtGsnJyc/cPPVpqYCP8ioJq8uXL1NaWsrg4CDwY98RBwcHXFxcZLHl4uLCggULXkt7boMj0uXLlxkZGcHKygo7OztWrVpFVFTUtCYWWq1W7j3V0tKCnZ0dsbGxREdHz6ph6kwZGRnh/PnzlJeXExwczObNm59pvyqViuPHj1NdXc3GjRuJj4+f8rFDQ0Pk5OSQn5+PWq0mJCSEpKQk4fb2iqJSqTh9+jRlZWUsX74crVbLvXv3WLt2LcnJycCPiwNHjhwB4M0335wwSTHUT2VlZdHS0sKCBQvk+qnZLLhIksSpU6coLS3l3Xffxd3dfW5eqGBGGBzVLCws2LVr17QFxXR41Nhi9+7dM7qm3r59m3/6p39i6dKl/N3f/R0tLS18//33LFy4EDs7O/70pz9RW1tLVFQU//zP/4yHhwclJSXcvXuX7u5uvLy8SElJmXaPvvHi6sCBA3P2mZQkCYVCMUl4DQ8Po1AoUCgUKJVK+f54ETYeMzOzGQkxw++WlpZTXs9GR0e5dOkSxcXFeHl5sWXLlgkZGpIkkZ2dzbVr13BwcGDHjh0TzvEdHR0UFhZSXFzM2NgYixYtIjIykrCwsMeKmMrKSv7hH/6BkZERwsLCiImJYdmyZbNeVNHr9ZSUlHDr1i16e3sJCgoiLS1tQtZFTU0NJ06cwNTUlF27duHp6TmrfQkEL4LXVlgNDAywYcMGcnNzsbGxYXR0lCtXrrBq1Sp0Oh2enp688847/P3f//0z7ed1FlYGVCoV3d3ddHV10dXVJd8fHh4Gflx9c3R0nCC2nJ2dWbBgwZyusM0lo6OjnDhxgszMTCRJws3NjeTkZFJTU6eV2jY0NMT9+/fJz89ndHQUHx8f4uPjX0pPHsPK3fnz5wHYuHEjoaGhs0570Ov1XLlyhaysLLlo/EmvSa1Wy/2J+vv7Z1xfI3j+9Pb2cvToUYaGhti+fTuNjY1kZ2ezYcMGEhMTgR8L10+cOIGzszNvvvmmHH1SKpVy/dTg4CDe3t4kJSXNyhVzPLdv3+b69evs2rWLsLCwOXmdgpkhSRJfffUV8+bNY8uWLc+t0H+8scV0HdskSeLMmTMcP34cZ2dnPv74Y+bPn09GRgbffPMNPT092Nvb88EHH/Dhhx/KrnSDg4MEBATIrnQzRa1W8+2339Le3j6n4upRlEolKpXqsZF+rVb7WME1nft6vf6x+zMIrKnEWG9vLzk5OSgUClJTU1m+fDk2NjZYWFhgZGREV1cXJ0+epLOzkxUrVpCSkjKp7KG6ulpuPixJEv7+/kRGRuLn5zfhsfX19XzxxReYmppiaWmJQqEgJCSElJSUWTlKwo/XreLiYm7dusXAwAAhISGsXLlSFolDQ0McP36cpqYm0tLSpkxvFjw/RkdHqaurE+f7p/DaCqtf/vKXfPvtt5w4cYKoqChcXFy4evUqq1atAuAv//IvuXnzJoWFhS90XK+isJoKhUIhi6zxP0dGRoAfBdeCBQsmiC0XFxccHR1fan55XV0dn332GRUVFSxevJjU1FTWrFnz1BUzSZJoaGggLy+PiooKTE1NiYyMJC4u7olOSS+K0dFRLly4QElJCYGBgWzevHnGqVnjuX//Pj/88AO+vr7s3r37qYJTr9dTUVHBvXv3aGlpwcnJicTExFlHNARzQ1VVFSdOnMDGxoZ9+/aRm5tLXl4emzdvJi4uTk4PvHbtGiEhIWzfvh0zMzP6+/vl+imdTifXT8124jOe0tJSMjIyJqQgCl4OarUaMzOz5z7JfNTYYvv27U9MA7t//z7nzp0jPT2de/fucfv2bZydnRkcHKSxsVFeHN24cSMPHjxAoVAQGho6J5kmBnHV0dHB22+/PStxpdfrGRoaor+/X7719fXJ9xUKBQCLFy8mNjaWkJCQpzpnPg1JktBoNLLImokwUyqVaLVaGhsbaW5uxsrKCn9/fxwcHGTxZWFhQWNjI7W1tbi4uLBq1SoWLlw4SawZanJLSkro6OjA2tpatrl3dXXFyMiI8vJyvv/+e/lvWVlZDAwMsHTpUlJSUvD09JzVZ1Kn01FYWMjt27cZGhoiPDycFStW4OjoOKGO0NbWFl9fX3x9ffHx8REpgs8Jg4lXQUEBVVVVGBsb81d/9VcvJKPndeW1FVaurq4cPHiQv//7v6e3txdnZ+cJwuoPf/gD/9f/9X8xMDDwQsf1OgmrqRgbG3tshGtsbAwAExMTnJycJkW4HBwcnqvg0uv1nDlzhm+//RatVktaWhrbt29/auqLWq2mqKiI3Nxcuru7cXZ2Ji4ubsreUy+b8vJyzp07h06nY+PGjYSHh8960lRbW0tGRgbz589n//7903YzbG5u5t69e1RUVGBlZUVcXBzx8fHiZPoCkSSJ27dvc+PGDdl6+MqVKxQUFLB161aioqLQarWcOXOG4uJiVq5cyfLly+X+U4b3LjY2lri4uGcS6eNpaWnhyy+/JDg4mB07dohV458ZBmMLSZLYtm3bY40tmpub+eKLL3B2dsbExISmpibu37/P0NAQbm5uODs74+XlxfXr17GysuLdd99l5cqVc1qjNx1xpVarpxROAwMD6HQ64Mc0+vnz5+Pg4ICjoyMODg7yWAsLC6mtrcXc3Jzw8HBiY2OfWRjOBkOtmFKppLm5mfPnz9Pc3Iyvry8RERFyOqNCoaCtrY3s7GyGh4fx8vLC2dn5sd9jExMTtFotPT09dHd3o9PpcHJyIiAggKCgILnZ87Jly1ixYgUNDQ0UFBTQ19eHh4cHKSkpBAQEzOocodVqefDgAXfu3GF0dJTIyEiWL1+Ovb09LS0tlJaWUltbS1dXF0ZGRri5uclCa8mSJa9sts3rQnd3N4WFhRQVFTEyMsKiRYuIiooiLCxMWOA/hddWWFlZWfGv//qvfPTRR48VVr///e/567/+azn68qJ4lYTVXPeVGR0dnSS2uru75ZU7U1NTnJycJkW47O3tn3kcnZ2d/OM//iOFhYUEBwfz4YcfTirUfZSenh7y8vIoLCxErVYTGBhIfHw8Xl5er/xkcGxsjIsXL1JcXIyfnx/p6emzdvjq7u7m8OHDqNVq3nzzzRlZ1/b19ZGTk0NBQQF6vZ7w8HCSkpJeiQjfTxmlUsnJkyepqqqSzQgMAmrHjh2Eh4czMjLCd999R3t7O+np6ZiYmJCVlUVra+tzizYODAzwpz/9CUdHR959993XsjZT8OyMN7Z4tE9Wf38/v/nNb+jq6mLp0qUsWLCA4eFhhoeHyczMRKFQsGzZMtzc3PD29qaqqoqFCxdy4MCBOY86qFQqPvvsMxobG1m1ahXm5uYThNT4+YGZmdkk4WT43c7O7omf9f7+fh48eEBBQQEjIyMsWbJEjmK9rGi/JEnk5+dz9epVTExMWL9+PWFhYfK1T6PRcPXqVXJycvD09GT9+vWYm5tPGRUbGxujoaGB6upqWlpaUKvVzJ8/H51OR29vL35+fixZsgRJkujr66O1tZXR0VHs7e0JCgrC39+fefPmPbW27NF6Mo1Gw/3797l79y5KpZLo6GhSU1Pl6+HQ0BB1dXXU1NRQV1fH2NgY5ubmeHt7y0LL0dHxlb/mvwqoVCpKSkooLCyUo57h4eFERUXNSabDz4XXVliFhoaSmprKv//7vz9WWG3evJnu7m5yc3Nf6LheJWF16tQp2tvbcXFxYeHChfLP+fPnz9lJRpIkRkZGJomtrq4uub+XmZmZLLLG/7Szs3vqOPR6PcePH+eLL74A4L333mP79u1TplwYwta5ubnU1tZibW1NTEwMsbGxr6XrXWVlJefOnUOtVrN+/XqioqJm9d6Njo7y3Xff0dbWxvbt26flcDkehUJBfn4+OTk5DA8P4+fnR1JS0rQbJAumT3d3N9999x0jIyPs3LkTX19fTp48SVlZGTt37iQ0NJTOzk4OHz6MUqkkKCiIuro6hoaG8PHxISkpiaVLl875+2KYpGo0Gj788EMRvZwBarV6SkOD1wFTU9NJ59zxxhaOjo5s3ryZhoYG/sf/+B8MDg6yb98+LC0tqampQZIkqqqqaGtrw9jYmOjoaP7zf/7PzJ8/n87OTr7++mvmzZvHO++8M2OXOa1Wy8DAwKSIk+GmVCopLi5mZGSEpKQkfHx8JgknBwcH5s2bN6PvjGHqNP45Op2OyspK8vPzqa2txdLSUo5iPdoC40UxMjLCxYsXKSkpwcfHhy1btuDo6Cj/v66ujlOnTqFSqdi0adO0MiQUCoU8AW9qaqKhoYHR0VF2795NdHS0HDlrbGzkwYMHNDQ0YGpqioeHBy4uLnIN2lT1ZBYWFpMEl6mpKY2NjVRVVQEQFhZGdHQ03t7euLi4yL372tvbqa2tpba2lqamJvR6PQ4ODrLI8vb2Fi0hxiFJEo2NjRQUFFBWVoZWq2Xp0qVERUXh7+8vFs9mwWsrrP77f//v/OpXv+Lrr79m9erVuLi4cO3aNZYtW8bf/u3f8g//8A988sknfPDBBy90XK+SsCotLaW+vp7Ozs4JQsfS0lKOKo0XXHN5spEkiaGhocfWcKnVagDMzc0niS0XFxdsbW0xMjKisrKS3//+95SVlRETE8N//I//ccoUi7GxMR48eMD9+/cZGBhgyZIlxMXFzVnvqZeJUqnk0qVLFBQU4OvrS3p6+qwaFI9PG0tLS2P58uUznnzrdDpKSkq4d+8enZ2duLq6kpSURGhoqEi9mAMqKio4ceIEdnZ2vPHGG9jb23Ps2DGqqqrYvXs3QUFBVFZWcujQIQYHB3FwcMDMzGxO66ceh16v5/Dhw7S0tPDBBx+IiOUMUKvV5ObmPrfsidHRUXmCKkmSfDP8/ujPJ/3tcduAHzNEwsLCMDMzm/A/vV5PU1MTX3/9NXV1dRgZGWFnZ8fatWtpbm6ms7MTvV5PXV0d5ubmbNq0icWLF3Pjxg0WLFhASkoKkiQxMDDAzZs3MTY2JiUlBQsLC/R6PTqdDp1Oh0qlYmRkRL6Njo4yOjrK2NiYPEE3ZGhYWFhgYWGBpaUl5ubmWFhYYGJiQm1tLWNjYwQFBWFtbY1er5efZ7j/pL89+j9JkjAxMcHX15fQ0FACAwOxt7eXe14pFAo5ijU6Ooq7uzuxsbEEBwe/lChWdXU158+fZ2RkhOXLl5OcnCyfs5VKJT/88APFxcUEBQWxZcuWaS+cGFLGvv32WxobG1m+fDnr1q0jPDxcTj/u7u4mMzOT4uJiLCws5NRyMzOzGZt7jIyMUFdXR09PD2NjY9jZ2eHm5kZERAQhISF4eXmxcOFCjIyMUKlUNDY2UlNTQ21tLb29vRgbG7N48WJ8fX1ZunQpbm5ur2xD6OfJ4OAgRUVFFBQU0N/fj6OjI1FRUUREREyZHaPT6WhqasLb2/sFj/b14rUVVpIk8fHHH/PZZ59hb28v9y7q7e1Fq9Xyi1/8gn//939/4eN6lYTVeCRJYnBwkK6uLllodXZ20tPTI1+U58+fP0FoGXpfzaUwGT+O8WKru7tbbtKo0+lobGykrKxMXsXcu3cvNjY2k4RAW1sbubm5lJSUAD9GMuPi4p5L76mXTU1NDWfOnEGpVLJ27VpiY2NnLIzG1+2Eh4ezdevWWb2/kiRRX1/PvXv3qKmpwdbWloSEBGJiYkT+9SzQ6/XcvHmT27dvExwczPbt2zE2Nub777+ntraWffv2sXTpUk6ePMmRI0cwMjIiKiqKpKQk4uLiZt1LZrr88MMP3L9/n7fffntGveEEPy763L59W57kzzWffPIJnZ2dwERR9Khwms7vj/ubTqdDr9djb2+PsbGx/He1Ws3AwIAsGDUaDcPDw1hYWMjnFCMjI9RqNdbW1nh4eMiCQqFQ0NnZia2tLU5OThgZGcm1P4YIg8HIQavVTogOGaJnhuM5/mZmZoaJiQnGxsbybbwIbGhoQKVS4efnh62t7YTHGRkZTfqp0+nQarVyDy6NRiPfV6vVcmRGr9djaWkpXzdtbGwwMzPD1taWefPmMTw8THt7O/39/dja2hIREcGyZcvw8PB44jn8cZHCZ0GtVnPr1i2ysrJwcnJiy5YtE2qUy8rKOHfuHEZGRmzdupWAgIBpb1uj0fBv//Zv5OXlsXjxYmxsbPD19SUyMpKAgADMzMwYHBwkKyuLBw8eIEkSUVFRLFu2bMYLhXq9nra2NiorK7l//z4VFRX09fWh0Wiwt7dn0aJFhIeH4+/vj6enJ66urhgbGzMwMCBHs+rq6lAqlVhaWuLj4yNHtGazaPm6oNVqqaiooKCggLq6OszMzAgODiYqKuqJn0W9Xs/t27fJyMigtbWVr7766rXMAHpRvLbCysDdu3c5duwY1dXV6PV6fH192bt3L8uXL38p43lVhdVU6HQ6enp6JgkuQ+8rgzPgo4JrLuqmxmM4Uf7www/88MMPNDc34+LiQnh4uDxRt7Kykl0Jh4eHaWlpkRsgx8XFER0d/ZN3BlKpVFy+fJn8/Hy8vb3ZunXrrAq+S0pKOHXqFG5ubuzbt++Z0roMBczFxcWYmJgQFRVFYmKiaBY7TRQKBSdOnKCmpobVq1eTnJyMVqvl6NGjNDY2snfvXkZHR/nTn/5EWVkZ4eHhvPPOOy/MrTEnJ4cLFy6Qnp5OTEzMc9/fTw2DsLK1tX0uKUjff/+9vBI/XhQYBIbh/vifxsbGE+4/7mZ4vFarRaVSERERgZWVFf39/ZSUlNDS0oK1tTXh4eE4OTlx+PBhmpub6evrw8rKSk5b9vf3Z9euXZiamjI8PMzg4CDDw8MUFxeTmZnJ4sWLcXZ2RpIkucbD0tKStWvX4uHhwYIFCyak7s3kGD4aLVSr1dy4cYO+vj6SkpKwtraWo15jY2OTbuOnR8bGxlhZWWFtbS3f4Eczl87OToaGhtBoNBNS3x0cHNBoNPL2BgYG6Onpob+/H61Wi42NDYsXL5aFyPhtW1tb4+LiwvLly+f8c9PR0cHZs2dpbW0lJiaGNWvWyNfZkZERzpw5Q1VVFVFRUWzYsGHaCwIajYZvvvmG1tZWEhISaG5upqmpCUtLS0JCQoiMjGTJkiUoFAry8vLIyclBqVQ+sxukUqmU67/y8/NpaGiQ5zB2dna4uroSGhqKt7c3Xl5ecn+/trY2OZrV2tqKXq9nwYIFcjTLy8trToXty0CSJDo6OigoKODhw4coFAo8PDyIiooiODj4ie9tT08Ply5d4ty5c7S3t7No0SI2bdrE7t27xQLqE3jthdWrxusmrKZCqVTKRhXjBZdSqQT+Vxrfo4JrNsJGp9ORl5fHtWvXKCsrw8LCgi1btrBlyxZMTU3p7++nq6uL+vp6cnJyKC4uZmBgAHt7exYvXoy7u7u8//FOhT/lL35dXR1nzpxhdHSUNWvWEB8fP2Oh29LSwpEjRzA3N2f//v3PnN41MjJCbm4u9+/fR6FQEBQURFJSkmgc+wS6uro4evQoCoWCXbt2sXTpUtRqNUeOHKG+vp7g4GDq6urIysrC1NSU999/n82bN7+wurbq6moOHz5MYmIi69evfyH7/KnxvIXV80apVDI0NMSSJUvkSeuCBQtYtmwZERERtLS08Mtf/pKWlhaWLl1KZGSk7A7n6enJunXrZGFhwMLCAgcHBzo6OqitrZX7sRmcZb/55huUSiXvvvvujM9LarWa4eFhhoaG6Ozs5O7du6jVatRqNWNjYwwNDVFSUoJSqWTp0qVYW1tjamo6QdjMmzdPvhl+t7S0fOz3zpDKWF9fT319vWwlDz9O6oODgwkMDMTd3R0TExMUCgXDw8NUV1dTUVFBe3s7kiTh4ODA/Pnz5Sih4ebt7Y2jo6OcYvi4myH6NhP0ej3379/n2rVrmJmZsWHDBkJCQuRapYKCAi5evIi1tTXbt2/Hy8trWttVKpV8+eWXjI6O8sEHH6DT6SgqKqKoqIjBwUEWLFhAZGSkvGhaUFDAvXv3GBwcxM/Pj5SUlKdG8p6GITJVVVVFUVERnZ2djIyMYGxszPz583F1dcXf33+C0NJoNNTX11NbW0tNTQ0DAwOYmJjg7u4uR7MWLVr02tQUj42NUVxcTGFhIR0dHXKkNDIyckID6UcZGBigtLSUu3fvkpWVxfDwMIGBgezdu3dS7zPB4xHCao75qQirxyFJEsPDwxOEliGVz2BLa2trO0lwOTs7PzbdzFDQfPnyZRoaGhgeHsbNzW1Cw1FD76nc3FwqKiowNzcnMjKS6OhojI2NJ9nC9/b2yqmNNjY2k8SWs7Pzazm5eRxqtZqrV6+Sm5uLh4cH27ZtY8GCBTPaxsDAAIcPH2ZoaIg9e/bg6+v7zOPSaDQUFhaSnZ1Nb28v7u7uJCUlERgY+Ey57IbaBkNKzlS3xYsXvxbpHKWlpZw+fRoHBwfeeOMNHBwcUKlUfPLJJ9y/fx8XFxdMTEzo6enBzc2Njz766IWK1M7OTj777DO8vb3Zt2/fz7IOYS54nYWVXq+nvLycvLw85s+fz5IlSwgNDcXJyYmuri4yMjI4ffo0KpWKyMhIQkNDGRkZoaqqinnz5skLcBs3bsTX11c2i7CyspIn8OfPn+fBgwfs37+fpUuXAj/WjX399dcMDw/zzjvv4OrqKtuJDw0NyTeDgBp/Myz+wY/novb2dhwdHbG3t5fFkrm5OXl5eSgUCrZt28bixYvnbMI8MDBAQ0MDlZWVVFVVMTAwgLGxMS4uLsTExBASEiKbLRgeX1FRQWVlJUqlEldXV3x9fbG1taWvr4/AwEDUavWk12moVYYfUyRtbGyeKr4edx0eGhri4sWLlJWVsXTpUjZv3ixnG/T393Pq1CmamppITExk9erV00odHxkZ4bPPPsPIyIgPPviAefPmydfywsJC2STB29tbbkBcVVVFZmYmXV1duLu7k5KSMidN6g3ZMHV1dVRXV1NWVkZfX59sJjN//nxcXFzw8fHB09MTLy8v3NzcGBoakqNZ9fX1ckqrj48PS5cuxcfHZ9ZOvc8LvV5PbW0tBQUFVFZWAhAQEEBkZCRLly6d8hw+MjJCaWkpJSUlVFZW0tjYiF6vJygoiL1798qCWzA9XlthNR03MiMjI2pra1/QiH7kpyyspkKn09HX1zdJcPX39wM/vg+GRsMGwQU/phjV19fLKSCGRraOjo6oVCqKiorIy8uju7sbFxcX4uLiCA8Pf2Lo2mD9Or6Gq6uri76+PjmtY/78+ZPElrOz8yvZ02o6NDQ0cObMGYaGhli1ahWJiYkzmgSrVCqOHTtGbW0tmzZtIjY2dsZjeJzgUavVVFZWkpeXR3NzM/PmzSM4OFiu0XmaQBp/02q1aDSaKV2kxmNlZcVbb701I1v5F4ler+fatWtkZmYSFhZGeno6ZmZmVFVV8c///M/U1dWRmJhIYGAgNTU1LFy4kDfffPOFisWRkRH+9Kc/YWVlxcGDB1/7dJiXyeskrAy9jvr7+ykuLubhw4f09PRgZmYmRxi0Wi3V1dWUlJQwODiInZ0dv/jFL0hISKCmpobi4mKWL18uO/MeP36c3t5e1qxZQ0JCwqTrtl6v5+jRo1RWVrJt2zasra1l46OzZ8/S29tLeHg4xsbGch0uTBQTtra2jxUThhYEjzv2arWaH374gYGBATZt2vRcXPuGh4epr6+npKRErgOytLTE3d2dhIQEQkND5fpIrVZLQ0MDFRUVtLa2YmpqyuLFizlw4MCkXo2Ga+ajYutJIhNg3rx5UwovQ3RPpVKxcuVKEhMTMTExQa/Xk52dzbVr13B0dGTnzp1yKt2T6Ovr4/PPP8fW1pb33ntvwvVVpVJRVlZGUVERDQ0NmJubExISQkREBCqViszMTJqamnB2diYlJWVOzZFUKhUNDQ1yZMqQNmj4XNra2uLo6IiHhwdeXl54eXnh6uoqR1dra2tpa2tDkiRcXFzkaJanp+dLs9bv7e2Ve04NDQ2xcOFCuefUVGn+CoWCsrIySkpKaGhoQKPRoFQqGRsbw9vbm7Vr18rfO8HMeG2F1XvvvTfpBG0wPcjMzCQ0NJSoqCjZpvtF8XMUVlOhUqno7u6eILiam5spKyujvb1dTrEwMTEhMTGRzZs3Y2ZmJp9wNRqN3Htqtl3cDYxvcjg+wtXf3y8LLjs7u0k9uJycnF6LSaVGo+H69etkZ2ezePFitm3bJtctGETJk24qlYo7d+7w8OFDAgICiIiIQKfTTVv4GCKWUzE8PExzczPd3d2Ym5vj6emJj48Ptra2mJmZzdlNkiQyMjLo6OjgzTfffOXci8bGxjh+/Dh1dXWsW7eOuLg4ysrKuHXrFpcvX8bExIRf/vKX2NjYcO3aNfz9/dm5c+cLFf0ajYYvv/ySoaEhPvroo1duVfZ141UTVjqdTu4r9Wj0p6+vj7a2Nrq6utBqtSxcuFC2J4+MjKS1tZW7d+/KjqBOTk689957xMbGcvHiRXJycli1ahWpqany+VqlUnH27FkyMzNxcXEhPj4erVY7Yd8DAwM8ePAAlUpFVFQUNjY22NraYmVlRWFhISqVivT0dPz9/WUhYGNj89TJ9tOO/YsQVwZGR0epq6ujoKCA8vJy+vv7mTdvHn5+fiQmJk7oeTUwMEBxcTElJSW4urri5+dHTEwMQUFBMzIbUqlUj43qjb+NT9HU6XS0tbXR2dmJs7Mzy5cvlyMzGo2GW7duMTw8zJo1a0hJSXnqpLujo4Mvv/wSV1dX3n777ceOvb+/X04V7O/vlz9rjo6OPHz4kKqqKuzs7EhKSiI6OnrOr8cDAwPU1dXJoqm7u5vR0VHMzMzQ6/XMmzcPW1tb3N3d5YiWo6MjLS0tckRraGhItpNfunQpvr6+E6KSzwO1Wk1paSmFhYU0NjZiaWlJWFgYUVFRU6YsqlQqKisrKSkpkdsgLF68GI1GQ0dHB9bW1ixfvpy4uLjX3k35ZfLaCqsnUVRUxPr16/nmm29Ys2bNC923EFaPR6vVkp2dze3bt9FqtTg7O1NSUsLIyAje3t709/fT1NQkX2zCwsKIi4vDx8dHFjvPYzVIo9HI5h3jo1yGHHkjIyPs7e0n2cI7OTk903gMefTTidLM5NbV1SXb+3p6es4oJ9zMzIyOjg6qq6txdXUlNjYWa2vrGQkbU1PTJ/5/eHiY3NxcHjx4gFarJTQ0lKSkpDm1CVer1Xz33Xc0NjayZ8+eGTlbPU86Ojo4evQoarWa9PR0ent7ycnJobe3l7a2NlxcXPiLv/gLCgoKyM/PJzk5mdWrV7/QFUODMK2urub999/Hzc3the37p8rLEFZKpfKxwmloaIiRkRF5McnExAQbGxvMzc3lSL+5uTmhoaHEx8ezYMECOjs7yc3Npaenh4aGBlxcXFi3bh1VVVUEBweTmprK8ePHefjwIdHR0XIa1fj9wY+r6hUVFZiYmBAfH4+vr++EiImpqSnnzp3DysqKP/uzP5NX2tVqNYcPH6a1tZX9+/fPaLFkOsd+vLjavHnzC2kloFAoqKmpIScnh4qKCoaGhpg/f758PvT390elUjEwMICzszNlZWU0NDRgbW1NZGQkMTExM077ngqDm+P4z0pDQwO3bt2io6MDFxcXFi1ahKmpKXq9nsbGRlpbW3FxcSElJYXFixczf/587OzsJryfFhYWGBkZ0djYyKFDh1i6dCl79+6d8nwmSRJNTU0UFhZSWlqKWq3Gy8sLDw8Penp6qKiowMLCgoSEBOLj45+LUZVer6e9vV0WWk1NTQwODqLT6TAzM0On08m9tRYvXoyXlxeenp5YWlrS3NxMbW2tHP0xuCL6+vri4+MzJ86tkiTR3NxMQUEBpaWlaDQafHx8iIyMJDAw8LFzEo1GI0eYq6qq0Gq1eHh4EBgYyOjoqHwtTkpKYtmyZa/E4s/rzk9SWAH8zd/8DefOnSM/P/+F7lcIq4lIkkRpaSlXr15laGiI2NhYTExMyM7OxtXVFU9PT8rLyxkYGMDBwQFPT09sbW3p7e2ls7NTjigZGRnh4OAwySzD0dHxuUw81Wr1Y3twGZyGjIyMcHR0nNSDy97enpqaGsrLy1EqlU8UQdP96pmYmMxI3BgZGVFSUkJZWRkLFy5kzZo1uLq6PlUQGQRYTU0NGRkZODg48Oabbz4XW1WlUsmDBw/IyclhcHAQHx8fli1bhq+v75ys8mm1Wk6cOEFFRQU7duyQa/ZeFg8fPuTMmTNYWlqyZMkSebXQz8+P+vp6TE1N2b17Nzdv3qS5uZktW7YQFRX1wsd57do17t69y759+wgMDJz28/R6vRzFELn4E3newur8+fMolUpsbGwYHR1laGhI7lkIPxpFjK+zsbOzk1PnVCoVDx8+pKamBjMzM0JCQggNDcXS0pLW1lby8vIoKSmhvb0dOzs7/P398fPz486dO3INhiH6EhwcjIeHx2Nrewz3jY2NuXjxIjU1NcTHx7N27doJk8G+vj4+++wzHB0deeedd+T/aTQavvvuOxoaGti3bx9+fn7TOjbTPfYvQ1wZMKTF5eTkUF5ejkKhwMHBgZCQEMLCwti/fz/W1tb09PSQn59PYWEhCoUCb29vOYr1PAwF9Ho9ubm5XL9+HVNTU5YvX46rqyvDw8PU1NRw+fJl+vv78fHxwdHRkdHR0QnXNHNzc/l9NxgbhYWFsWXLFlmEGWrtHkWtVlNRUUFhYaF8fvT09ESj0dDa2oqRkRGLFi2SbffNzMzk+zP52/jr3uNQq9Vy2qAhmjU2NiYvIBpcIA1pm56enixZsgQjIyOampqora2lo6MDAFdXVzma5e7uPqOI0PDwsNxzqre3V47qRUREPDZFXKfTUVtbK6egqtVq3NzcCA0NJSgoiPr6em7evMnIyAgxMTEsX75c7jn2OAxtchobG2lvb2f9+vXiPP8EfrLC6g9/+AP/x//xf6BQKF7ofoWw+l+0trZy8eJFmpubCQgIIDExkZs3b1JSUoKDgwN6vR5jY2M5OvW41fHxAmd8SuHo6CjwY58PZ2fnSYLrcT2v5gJDeuOjEa6uri7a29tpaWlhdHRUNtkICAhgyZIlWFpazjq9bbbCsbW1lVOnTtHX18fy5ctn5OjT1dXF4cOH0Wq1vPnmm8+tL5hOp6O8vJx79+7R1taGs7MzSUlJhIeHP3Mqgl6v58yZMxQVFbF58+ZZ1Y49K3q9nsuXL3Px4kWMjY3lFKe4uDgCAgI4duwYarWaLVu2cOnSJZRKJfv27cPT0/OFj7WwsJBTp06xdu1akpOTn/hYwwSnqamJxsZGWlpaUKlU/MVf/AWOjo4vaMSvB89bWP35n/85fX19uLi4EBgYSHBwMO7u7rKoeXSfBhOBvLw86uvrMTExYfHixSxYsACVSiUX+vf19clRdQsLC1JSUggODqa4uBi1Ws3WrVvl6Pgbb7xBeHj4tKL4kiSRl5fH5cuXcXR0ZNeuXRNstltbW/nyyy/l1imG859WqyUjI4Oamhq5WfbTmMmxf5niyoBKpaKgoIDc3Fx5cS44OJiVK1eyYcMGPD090el0lJWVkZ+fT2NjI/PmzZOjWM/juzc4OMgPP/xAZWUl/v7+bN68GTs7uwnmST4+PmzZsgUTE5MpUw7Ly8vJz8/H3d1drrM1NTV9ouHG/Pnz0Wq1FBcXU1RURG9vL1ZWVrL4dHFxkTM7DM6Phtt0Fi+NjIxmJMoM85GOjg7a2tpQq9VIkiQbouh0OoyNjTEzM8PNzQ0vLy+cnZ3RarVyRGtkZAQzMzO8vLzkiJahl9t4dDodlZWVFBQUUFNTg4mJidxzysvL67G1ig0NDZSUlMgC3dnZmbCwMEJCQnB0dKSiooJr167R09NDaGgoq1ateuxnRpIkenp6aGxspLGxkbq6OlpaWhgcHMTExIT/9//9f3/yrW2ehZ+ksOrt7WXdunUMDQ1RXV39QvcthNWPLkNXr16luLiYhQsXsn79ehQKBZ988gnt7e3yCScuLo6oqKhZfUFHR0cnmWV0dXXJxc2GHiCPCq5nzc/W6/X09fXJ9VolJSUUFhZSUVFBd3c3CoVC7g1jb29PREQEPj4++Pv7ExgYiJ+f3wsNtWu1Wm7fvs3du3dxcXFh27Zt0yo8hh8NDI4ePUpnZyc7duwgODj4uY3TkAZy7949qqqqsLa2Jj4+nri4uGc6gUuSJNd+GOoCXhRDQ0P8/ve/Jzc3Vy4mXrZsGWFhYYyOjvLVV1+h0+lYvnw5V65cwdbWlv3797+U/l8NDQ0cOnSIiIgI0tPTJ120FQqF3JOmsbGRtrY2dDodFhYWeHh44OHhgaenJ4sXLxZ2vI/wPIWVJEmyQUxNTQ0KhULujbRkyRKcnJxQq9WMjo4yMjJCc3Oz7MBqaWkp10nNmzcPlUpFZ2cnY2Nj2NjYyL2sDBbqGzdu5M6dO+Tk5LB9+3bu3LnD6Ogob7/99qxSRru6ujh27Bh9fX2sXbt2QsuIqqoqjhw5QlxcHBs3bpT/rtPpOHHiBOXl5ezcuZPQ0NAn7mOmx16lUnHhwoWXKq4MDAwMcPfuXbq6uuQULi8vL1asWMHq1atZsmSJHMUqKipCoVDg4+NDTEwMgYGBc/o9lCSJiooKLly4gFKpJC0tjYSEBIyNjamtreX06dOo1Wo2bdpEWFjYlIuamZmZnDt3jsTERPz9/acUYeNrdg0W6SYmJjQ0NFBeXk53dzd6vR5bW1v8/PwICwsjJiZGXlA17F+r1co3wyKB4fdH74//3dAUevzjxmebGI6JoTfZ4OAgQ0NDSJKEiYkJpqam8sKgXq/H1NRUFoI2Njayw7LB4Gv+/PnyOdTW1pbW1lbq6upQq9W4u7sTFRVFRESEbKtveI2SJNHS0kJpaSllZWWMjo7i4OBAaGgoYWFhcs1gQ0MDV69epaWlBV9fX1avXj3hO2vIODAIqaqqKtrb2xkeHkaSJPk9MJh17Ny58yfdzuZZeW2F1apVqx77d4N1qVqt5tChQ7z55psvdFw/Z2GlVqvJzMzk3r17mJubs2rVKtzd3fnss8+4fv068+fPZ9OmTaSkpODn5zfnKXySJNHf3z9JcPX29sorVw4ODjg7O7NgwQJ5Rdfa2prR0VH6+vro7++Xb4ZGloZ6gdHRUUZHR+Wc9OHhYVQqFZIkySdOg5OQoRjbwsJC7rNlcEc09DUJCAh4Yvh9Lmlvb+fUqVN0d3eTkpLC8uXLpxUR0mg0nD59mpKSElavXk1KSspzTwHo7e0lKyuLwsJCjIyMiIiIICkpadY1BZIkcfPmTW7dukVKSgqrV69+rq9hbGyMS5cu8eWXXzI2NsamTZvYunUrPj4+GBkZ0d/fz1dffYWRkRGhoaFkZmbKjpgvw5myt7eXTz/9VC4wN6w6G0RUU1MTXV1dSJKEra2tPAHw8PDAxcVFuEY9hecdsTKYSbS1tdHQ0EB3dzdqtRoTExNsbW1xc3PDxsaGsbEx1Go1rq6uRERE4O/vj5WVFe3t7XI0wND/z9D8NyUlBRcXF4aHh3FwcODChQskJSVRVlYGwDvvvPNMtT5arZYrV66Qk5ODn58f27Ztk2tR8vPzOXv27KQFEb1ez+nTpykuLmbbtm1ERkZOuf3ZHPtXRVwZ6uSWL1+ORqPh4sWL3Lx5k5qaGgB8fHxYuXIlycnJuLq6yhGhpqYm5s2bR1RUFNHR0XMaxVKpVFy/fp3c3FxcXV1JT0/Hzc0NhULBhQsXKC4uJjg4mC1btky5IHbt2jXu3LnD9u3bH/veGQTL0NAQvb29PHz4UHYP1Gg0ODo6yuUCzc3NdHR0MDY2JpcLuLm54eHhgZOT03M5N0mSNKnXmE6nQ61WMzAwQH9/PwMDA3KDaVNTU4yNjdHr9RMiaYaoGPw4dxocHGR0dFSu57K1tcXBwWFS9o2xsTFarVbuDafT6TA3N8fOzg4HBwfZVt/ExAS1Wk1HRwfDw8PY2Njg7e0tHxdDP7WhoSF6enrkuY1hzFZWVjg6Ok5o0G1ra4uRkRF//ud/LswtnsBrK6xWrlw5aXJk+GL5+vpy8ODBGdUIzBU/R2ElSRJFRUVcu3YNhUJBQkICS5Ys4e7du5w5cwalUsnmzZt5++23n9iYbqZotVqUSiUKhQKFQjHp/viTc3t7O+3t7bIT4PDwMEqlEp1Oh16vl+uYrKyssLKywsbGBjs7O7kewdbWFo1GQ29vL/39/ajVaszMzFiwYAEhISHExsYyNjZGbm4uhYWFtLW1YWxszMjICCYmJrIBh0qlki3D7ezsZIvZwMDAOT02j0On03Hnzh1u376Nk5OT3L/laUiSxK1bt7h58yaRkZGkp6e/kKjE2NgYeXl55ObmMjY2hr+/P8uWLZt188isrCwuXbpEXFwcmzZtmnNx1dPTQ3Z2NhcvXqSiooLAwED+9//9f5fTXuBHEfPVV19hamqKq6srZWVlJCYmsm7dupciUBQKBX/6058YGxtj+fLldHZ2yiYyAAsWLJggpBwcHERu/Qx53sIqNzcXpVKJtbU1NjY2cl1IXV0dzc3N9Pf3Y2RkxJIlS0hNTSUpKQkLCwu5eerQ0BDu7u54eHjI9VJhYWHExsZiZmaGUqmUV7GXLFlCb28vtra2vP3223PmGFldXc2pU6cA2LZtG/7+/gDcuHGDW7dusXPnTsLDw+XHS5Ik11Bv2bJlyjTf2R778eJqy5Ytz/3c/DjGC6vxIqWtrY1Lly5x584dWlpaMDMzw8fHhxUrVhATEyM33S0qKkKpVOLr60tMTAwBAQFzdt5ubW3l7NmzdHZ2kpCQQFpaGhYWFpSWlnLu3DlMTEzYunWr/D6Ox/DeFRQUsG/fvknmQpIk0draSmFhodzI2dPTU06tr62tJT8/H7VaLbtDjo2NUV5eTnV1NS0tLeh0OhwdHQkJCSE+Pp74+HgcHBzkBVaDOHr09yf9b6aPHR4eliNADQ0NKJVKTExMcHR0xNzcXE7da2hooL+/X7bhd3V1Zd68eXL02NjYGGdnZ6ysrBgbG6Ozs5PBwUG5DMLFxYV58+ZNiKwNDw9TV1dHV1cXpqamLFy4EDMzM0ZGRhgaGqK/vx+VSoVWq8XIyAgTExNZSNnZ2WFvb4+DgwPW1taYmJjIUTjDnOtv//ZvX9v2NC+C11ZYvar83IRVY2Mjly5doq2tDX9/f1xcXKioqKC0tJTW1lYCAgL4D//hP0xZM6LX61EqlVMKpCcJppGRkUl51YbwvaGZrCGH2hCat7S0lAWThYWFfBI0rCaNjo7Kz7GyssLW1pbh4WG6urrkVWD4sR+Io6MjkiTJOchKpRJbW1uCgoJYtGgRDx48mJCHbW1tjZubGzqdjrGxMTniZWxsjKOjI35+fnKq2NPc/ExNTWed1tjZ2cmpU6fo6OggOTmZlStXTmv16eHDh5w6dYolS5awb9++F5Zjbcixz8rKoru7Gzc3N5KSkggODp7xROHBgwecPXuWsLAwtm3b9swTDUO9SlZWltx/RqfTsXHjRnbt2jXhuHZ3d/PVV19hYmKCtbU1nZ2ds+4b9izo9Xo6Ojqoq6vj22+/pampidDQUKytrWVDGUN631w4Wf3cedGugAqFgtLSUh48eEBrayt6vR5LS0tsbGzQ6XSMjo6iUqmws7MjIiKCsLAwGhoaePjwIY6OjqxYsWJClGZgYIDvv/9enpy5ubmxf//+OU8FGhkZ4fTp01RXV8vGFqamppw5c4bi4mLeeuutCYsU49N8N2zYQGJi4qRtPsuxV6lU/PDDDwwODr4UcTWVsDKg0+morq7mxo0bZGVl0dXVhbW1Nd7e3qSkpBAQEIBCoaCwsJDm5mZsbGzkKNZcpBsb+lvduHEDKysrNm3aRGBgIMPDw5w9e5aqqiqio6NZv379pEm4Xq+X3UcPHDiAp6enbNBQWFhIT0+P/PmMjIzExMSE/Px88vPzGR0dxdvbGwcHBzkFb3BwUG6YrFaraW1tpbOzk56eHpRKJRYWFixZsoTo6GhSU1OJjo7Gzs7uhS0SSZIk98F6+PAheXl5tLa2ArBo0SL8/PxYvHgxg4OD8qKWIbJkSAvs6OjAxMQELy8vEhISZLOn8Z/r0dFRbt++TVZWFmq1miVLlqDRaKisrKSvr4/R0VG51nfBggV4e3vLJmD29vbo9XrZjdLgEmpYlDZEtVQqFdnZ2S8s2+Z1RAirOebnIqz6+/u5cuUKZWVlcpPG5uZmWfQolUoiIiKIiYlBp9M9ViAZfhowfKkN4gh+jELq9Xr5Zsh/NgglgzuPra0t9vb28oqLwSRg/E8bGxv5BK9Wq8nNzZWtgA0YVppqamooLS2lublZFnBKpVI23DA81sLCAmdnZ4KDgwkNDcXLy0uerPf09HDnzh0qKyvlUL1Wq8XX1xdbW1u6u7tpa2uju7ub3t5eOQ3A0tISBwcHli5dSlhYmGxLPP4iYGNjQ3x8/KzFlU6n4969e9y8eRMHBwe2bduGu7v7U5/X3NzM0aNHsbCwYP/+/S90siFJEjU1NWRlZVFXV4ednR0JCQnExMTMaPWstLSU48eP4+/vz+7du2eV0qDVaikpKSE7O5uOjg7s7e0ZHBxEkiS2bNlCTEzMhPers7OTr7/+GvhfqRx79+59IX22DEYThrS+5uZmVCoVNTU1jI2NsXfvXuLi4nB3d3+mVUidTifqqx7DixJWQ0NDFBcXU1lZCUBgYCDh4eFYWlrKGQV1dXUAcsN2U1NTRkZGsLW1JTk5mbCwsAnvoSHtrqysjKVLlxIREcGePXueW28/SZLIzc3lypUrsrGFk5MTR44cobm5mYMHD04wupAkSXayXL16NampqRO296zH/mWKq6cJq/EoFApKSkq4efMmDx8+pL+/HxsbGzw9PYmPj8fFxYW+vj7KyspQqVT4+PgQGxuLv7//M39nBwYGOH/+PNXV1QQGBrJp0yZsbW0pKCjg4sWLWFtbs2PHjkmLq1qtlq+//pri4mL8/Pzo6enBxMSEoKAgoqKi8PT0pLGxkby8PCorKzEzMyMiIoK4uLhJ6ZmSJKFUKmWRZRBc/f39VFVVUVxcTG1tLf39/Wi1WqysrHB1dSUwMJCgoCDc3d2xt7eX3QoNP+cqKqPRaCgrK6OgoICGhgY52jRv3jwGBwfp7u4GfhRZ8+fPp62tjdraWurr61GpVDg5OeHr6ys7DhrKEoyNjeVaypqaGgoKCujq6pLTDDUaDVZWVtjZ2eHr60tQUBCenp64u7vj4ODA6OioXDZRV1dHQ0ODHOUeGxtDqVRiZWXFvHnzcHBwwN3dHW9vb3bs2CFs2Z/AayOsDJOSmfLOO+/M8UiezOssrLRa7ZRRIsP9wcFBioqKKCsrY2xsDBMTE1QqFebm5tjb29Pf349er8fPz0+2QzVYgMPk/OTxjj6GIk+DE56pqaksiB4VSOPvT6dR5KMYLrjm5ubyyVOhUFBVVUVlZSVDQ0NyDnJPT49cmGpkZDTJvtjS0lJ2N3J0dMTBwQEnJyfc3NzQaDTcu3ePa9euodfrCQ0NZWxsjKCgIBISEuTjNzg4SEtLC3V1dVRVVdHY2MjAwIAstJycnPD29iYoKIj58+djbW3NunXrWLJkyTOd/Lu6ujh9+jRtbW0kJiayatWqpzp79ff3c/jwYYaHh9m3b99LacLb0dFBVlYWJSUlmJqaEh0dTWJi4rSt4aurq/nuu+/w8PDgjTfemPZEcWxsjPv378ui3M/PDy8vL7Kzs5EkiX379k0SqO3t7Rw6dAiNRoNer8fe3p79+/fPWR+aRzEYTRiElMFowpBq4unpSWdnJ0VFRezatYuIiIhn3mdtbS1nz57lnXfeEa6Aj/C8hVVPTw9FRUXU1dVhbm4+wTJ9ZGSEoqIiKioqgB9rTNVqtdw7bXBwECsrK5YsWYKvry+BgYF4eXnJiw3Z2dlcunQJExMT9u7dy969e1+IeO7s7OT48eOysUVERARfffUVIyMjfPjhhxO+55Ikcfv2bW7cuMGKFSsmlAnMxbF/WeJqJsJqPL29vRQWFpKZmUltbS1jY2PMmzcPd3d3goODMTMzo6enh46ODmxsbIiOjiY6Ovqxtt3TRZIkysrKuHDhAmq1mtWrVxMXF8fg4CAnT56kubmZpKQkVq1ahYmJCe3t7RQWFlJQUEB2djaWlpb82Z/9GcuWLQN+7EWal5dHT08PLi4uxMXFER4e/kzXOkMPqDt37pCZmUlFRQV9fX0YGRlhY2PDwoULcXJyklP1gAkZLuMF1/i/TfV9MKQ0FhQUUFJSgkqlwtvbm6ioKIKCgiZcZzs6Orh27RpZWVmyUYmLi4tsWmFlZcXQ0BCNjY1yFE6hUNDb20tlZSUtLS2yiDLUmMXHx8sC1cHBgeHhYTo6Oqivr5dd/vr6+mQBZWlpKQsoDw8PvL298fLykssYnpfT8k+R10ZYzab+wMjIaIK7zIvgVRJWhr5LT0qrG/8/Q5ToUczMzLC0tKS7u5vq6mr6+vqwsLDA1tYWZ2dnfH19USgUFBUVYW1tTXR0tJybPzY2Nmm7FhYWTxVLtra2U/a4mAsMF1wbGxv6+/spKyujoqKCgYEBFAoF7e3tcjTL0dERd3d3goKCCAkJkRsCwo8Xv/7+fvr6+ibc1Go1vr6+rFixAjMzM6qrq/n666/p6+sjNTWVkZERnJycWLNmzWPTrQwuPQUFBRQWFso2rZIkyccoOjqaBQsWYGtri5OTEwsWLMDJyUm+b2dnN63vjV6vJysrixs3bjB//ny2bdv2VLtvpVJJRkYG9fX1bNmy5aV91oeGhsjNzeX+/fuo1WqCg4OJiIhg0aJFT01ja2xs5PDhwzg7O/PWW289MbXJUD9VWFgIQGRkJAkJCTQ3N3P+/Hnc3NzYu3fvpPSI1tZWDh06xMjICEZGRvj5+bFnz545TaMyXHANZhNdXV0A2Nrayml9np6euLi4YGRkRHl5Od999x3Lly+f0gRoJlRUVJCRkYGPjw979+59Lo28X2eetyvgiRMnUKlUhIeHExAQgJmZGf39/RQVFVFdXY2ZmRmhoaGEhobKtVWXL1+WJ9aurq44ODig1Wrp7e3FwsICf39/LCwsOHPmDACJiYn81V/9ldy090Wg0Wi4evWqbGyxevVqjh49ipmZGQcPHpz0HcrMzOTKlSssW7aMtWvXYmRkNGfH/mWIq9kKKwOGNGWDSGlra5PTQhctWoSrqysajYaBgQH0ej2+vr5yFGu29Z5KpZJr165x//59Fi1aRHp6OgsXLiQrK4uLFy+iUChwcnKS0+YjIiLw8/PjzJkzDA4O4u/vT01NDVqtlqCgIOLi4vD09HxurVOqq6u5d+8e9+/fp62tDYVCga2tLe7u7gQEBODi4iIvUBiiYY+28DHUYxsEl5mZGe3t7TQ0NDA6OoqTkxPR0dFERkZOSMFUKpWUl5dTUlJCfX098KMhSUhICA4ODrS2tlJbW0tjYyPDw8Oo1Wp0Oh29vb10d3fT2toqL2Tb29vj5+cnm2SpVCrZrEan08k1YGq1+rECytvbm4ULF+Ls7CwE1Bzw2girxsbGWT3vRfeDeZWE1ZEjR+S0EBMTEywtLWVzBkP38EfvG7qrj7chramp4dKlS9TU1KDX62XbTTc3NywtLamsrKSnpwdfX185d/lJoul5pZHMhN7eXj755BNKS0vp6uqS7YhHRkbkwteAgAASEhLw8fHB1dX1qSu1KpVKPvnW1dVRU1ODi4sL69atY/78+QwNDfHHP/6Rmpoali1bhrGxMZIksWbNmqfaFWu1Wmpra+WO683N/x977x0c15Vf+X86AN2NRs4550yQBAhmihRFUolKFCWOpIkOo9ldr+3a9dq18/O41jVle+3xbm157EkaiRpKFKlAiWISFZnAhJxzjo1G6Jx/f7DedTcARgEU4cGpetXdQKO7cfu9e+/5hnMGCAgIIDw8nMTERJKTkwkKCsJoNAoiq1QqiYiImEe4IiMjF4z86XQ6jh07xsDAAOXl5ezYseOW35Xb7ebkyZNcvXqVDRs2sGPHjm9sQrbb7SL6KdWoBwUFERcXR1xcHPHx8cTFxQlVIwnDw8O8+eabBAUF8dJLL/mQMY/HQ09PD5cuXaKjo0OUX65ZswZ/f39OnTrFtWvXWLNmDbt37553fgwMDHDw4EEmJibQarVUVlaya9eurxXx93g8TE5O+hCp6elp4EZ5lzeRCg0Nnfd9DA8P89prr4kyyK/7fdXX1/Puu+8SExMjyOZKOaAvljpjZTAYRJP5+Pg4tbW19Pb2EhAQQHFxsYiOz8zMcO7cOYaGhsjKyqKyshK73U5DQwNtbW14PB4SEhJEIOjLL7/Ez8+PJ554gvXr17Njx45vxLvGW9hi8+bNfPHFF0RHR/PSSy/NK+O9fPkyJ0+epLy8nN27d2OxWBZt7G02Gx9//DGzs7P3hVx9XWLlDbvdTktLi6g2mZqaEoIEoaGh+Pv7Y7Va8Xg8hIeHU1ZWxqpVq+45izUwMMBHH33E+Pi48HGsr6+ntbUVjUbDk08+yb59+5DJZLS2tvLFF1/w4YcfEhgYyB/8wR+wfv36+9rD4/F4GB4epq6uTmSNpqenhSXBqlWrWLVqFZmZmQQGBmIwGHz6u6SSw5aWFgYGBvB4PERGRhIbGyuCnCEhIQQEBDA7O8vo6Cg6nQ4/Pz+ysrIoKyujoKCAgIAA3G434+PjdHV1UVtbS319vY/ap8PhwOVyodFoSE9PJzc3F4vFQldXl5BIdzgcKBQKUTEUEhJCdHQ0eXl5FBUVUVZWRkZGxh0TaI/Hg81mE/3wsbGxS/yNLG8sG2K1XPAgESupfE2tVuN0OjGZTBgMBkEgFrpvs9nE30vNpCMjI2ICqKiooLi4mIiICAwGA1988QUymYxnn32WgoKCb/C/vT3MZjOXLl3is88+E7K0ErlxOByo1Wry8/NZv349BQUF8xYVj8eDyWS6qfeG99hJ0dLx8XHCwsJ49tlnSUtLw+VycfDgQS5dukR+fj5xcXHMzMxQXl5OcXHxHW10rVarEEmora2lubkZg8GAVqslMzOTwsJCkVWTShl1Oh0Gg0G8RlBQ0IKEKygoiGvXrvHpp58SGBjIE088cctSP4/Hw+XLlzl9+jQ5OTk8/fTT3yhx9ng8TE9Pi4bbkZERhoeHMZvNwA3REYlsSYfD4eDgwYP4+fnx8ssvExgYSENDA1VVVYyNjREbG8u6desoLCxEqVRiMBh45513GB4e5tFHH13wOu/t7eWNN95gaGiImJgYHnvsMcrLy+/6/3G73YyMjNDf3y8OSWAlLi5OiEzcidDEzMwMv/rVrwgJCeGVV165p8ySw+EQ5pjnzp3j888/JygoiJycHJRKJT/84Q+XrMRxuWKpiZW3itrQ0BAhISGUlpaSmZmJUqnE5XLR0NDAtWvXCAgIYNOmTfPKVb2j5zMzM9TW1uJwOFi/fr0o23700UeprKwkISHhvgdQvIUt0tPT6enpIT8/f8HgwPXr1zl+/DirVq3ioYce4vz584s29veTXC0msfLGzMwM9fX1Qr3WbDaL8nuPxyM8nCTV2jVr1ty1PcrY2BjXrl3j448/prW1lcjISPbt28euXbu4fPkyn376KQ6Hg6CgINxuNykpKWRmZnL+/HliYmJ46aWXvtHM9+zsLO3t7Vy9epXq6mpBasLCwkhLS2Pt2rVkZ2ej1WppbW2lrq4Ok8lEfHy8uPYkCXW9Xk9LSwvNzc10d3djNptFb3ZUVJSo7jGZTGKtlip9AgMDhYS8XC6nvb2d0dFRHA6HkEyX2hOioqLIysoiPz+f6OhokY3U6/VYLBahSGyxWPD39xeBx+joaKKiopDJZD6973NvvanCX/3VX61UJtwCK8RqkfEgEauTJ0/S2toqsjDekFSiFhJ5MJlMfPTRR1y+fBk/Pz+2bdvG3r17xeTqdrs5f/48n3/+OUlJSTzzzDN33NtyP+FwOOjv76etrY1z584JtSEpkjM9PY1SqSQ+Pp7y8nI2btyIVqsV0SjJ40E6DAaDGEeZTIZWq/VxiA8KCiIkJASNRoPNZkOn09Ha2iqMNNeuXSuMHU+ePMnp06eJi4sjJycHnU4nJHNvR0zmLrh2u536+nq++uor0bwKEB0d7bMwRkVFMT09jU6nY3JyUkzik5OTPlmu8PBw1Go1ra2tzM7OUllZyd69e2/5Hbe3t3P06FEiIiJ44YUXFk2GeTEgCZLMJVsS0VSr1QQHB1NdXY3RaCQ5ORmNRkNOTg6VlZU+Lvf9/f288847yOVy9u3bR2Ji4rz36+7u5je/+Q39/f3k5OSwf/9+MjIy7uizOhwOBgcHRTZqcHAQu92OUqkUmcmUlJS77q2z2+385je/wWq18v3vf/+O1P4kEiWNlyS0Im3kR0dHWb16tfCyiY6OXslWLYClLgU8ceIEg4ODREZGUlpaSlpamtgEj4+P89VXX6HX6ykuLmb16tW33BCZTCZ+8pOf0N3dTUlJCfn5+SQnJzM9PY1cLsdsNhMdHU1ZWRnFxcX3NYPlLWxht9uxWCzs2LGDRx55ZN5z6+vref/998nKyhKiBIs19larlRMnTiw5uVoqYiVBuo7r6uoEoZYUcaU+PKvVilKpJD09nfXr14uKlIVgNptpaGigtraWkZERtFotxcXFpKSkCANrqVdHElkJCwvjxRdfZNeuXchkMgYHB3n99ddJS0vj+eeffyDmE4fDQW9vL01NTVy+fJmenh6GhoaEd1ZSUpIoPy0pKREtKD09PTQ2NtLS0oLNZiM2NpbCwkKys7OZmZkRJezt7e1MTExgMpnEe8rlcp8edKPRiNvtJiAggLi4OGHGLq0DNpsNvV7PyMgIVqsVPz8/QkNDCQ0NRaVSCX/P6elpEQSW1nyPx4NWqxVVSElJSSQkJBAYGOhTzeR9GxcXt+JfeAssa2I1OjrKr3/9a6qrq5mZmRH+QBJkMhmffvrpff1MDxKxqq6uZnp6esFyvLmLq8fjoaOjg7fffptz586hUCjYuXMnBw4c8FFhMhgMvPfee/T29rJ582a2bNnywFxgbreboaEhenp66Orqorm5WaTHpd4kaVGQ/Kvy8/OJiIgQNdTek5tCofAhTt5HQEAAVqtVKBBNT08LB3apN0sulxMaGoparaalpYXOzk4RBczOzmZqaorz58+j0WjIzMzEZDIRHBzMzp07bymHe6sF1+Vy0dvby9WrV7l8+TKDg4MYjUaCg4NFSUN2djZpaWnExsYK9/aZmZl5hEsiht3d3UIgIicnZ16mKzQ0FLlcztjYGIcOHcLtdvPiiy8SFxe3BN/y4sFoNDIyMkJLSwvnz5/3KaHasmWL6NWS+hH6+vo4c+YMiYmJPPfccwuSk46ODv7t3/6NoaEhysvLeemll2658bJYLCIT1dfXx8jIiBCakDJRKSkpxMXF3bMho9vt5u2336avr4/vfe97REdHz3vOQiRKp9MJj7eYmBhRTtnT00N9fT1btmzhoYceWqnHvw2WOmPV2tqKVqsVimFw4/u8evUqjY2NREREsHnz5tsa3VqtVv7lX/6Fjo4Ovvvd7xIbGyvKkPz8/Ni3bx9xcXE0NTUJMYy8vDzKyspIS0u7b+eBJGxRX1+P0+nke9/7HpWVlfOe19TUxNtvv43L5WLXrl2L2h8mkSu9Xo9arRaWHt7WHgv97HbPkW4lUaOlJFbecDqdwteso6MDp9OJVqtFoVCIDLXZbCYiIoKKigq2bt1KZmYmAJ2dndTW1opy0uzsbFE2J/0fdXV1HDt2jCtXrqDRaHjqqad4+umnOX/+PFevXiUjI4Mnn3yS4OBgOjs7eeuttygoKOCpp556IOYXqV+turqaq1evMj4+LjydJIIi+V0GBgYKNb2EhASys7MJCAigp6eHmpoaWltbGRsbw2KxiPlVLpejUCjweDz4+/uLc0EyAdZoNMTExKDVaoVFjTc5AoRFjBT8lnytNBoNcXFxZGdnk5eXR2JiIrOzs4yPjzM6Oip6tSRDY39/fyIiIsjPzyczM5OMjAzRn7uCO8OyJVb19fVs3boVi8VCTk4ODQ0N5OfnMz09zdDQEBkZGSQlJfHZZ5/d18/1IBGrO4HVaqW2tlaYLSoUCnbs2MErr7wyb3Pf0dHB+++/j0Kh4Omnn/5G1OC84fF4GB8fFyo3fX19GI1GBgYGGB4eFsaYErmR5MyjoqKIjY1lenqakJAQIQAxN/uk1WqFp4M3gZLuS9krhUIhaqil6KhWq2V2dha9Xi9MhaVmVKmOXfLRmp2dJSoqSmQ/5HI5W7du9fFs8cadRjI9Ho8gDleuXKGjo4PZ2VkUCgVhYWEkJiaSnZ1Neno66enpC5q/2mw2uru7ee+992hvbycmJoakpCRmZ2dxOBzAv2e5IiIi0Gq1wrD0wIEDi6I4txTweDx0d3dz6dIlOjs7CQoKory8nNTUVN544w0GBgYoKSnB6XQyMTFBe3s74+PjFBUViaxjXFwcUVFRgvC0tbXxf/7P/0Gn0/HII4/wwgsvzPt+ZmZmBInq7+8X2cXg4GAfI97FXMhOnz5NVVUVBw4cIDMzE4fDwdjYmCBQknH2QiTKOxPl8Xg4c+YMly5dWlDaegUL4377WPX393P+/HksFgurV6+muLj4tsEvo9HI66+/TlNTE/v27WPr1q3id8PDw1y9ehUAjUZDWVkZRUVF9PX1iTKp0NBQ0YdyP7LVkrDFoUOHMJvN/MVf/AVr166d97za2lr+6Z/+ibS0NPbs2XPPwYmFYLPZaG9vFxtcb4PWhW6l404EtaRr3+VykZOTg1arFf0yN7u91e/mPudW54PJZKKhoUG0AUiKvy6Xi+bmZgYGBoQhdVhYmMigrFq1iqKiIkFgJyYmuHr1KnV1ddjtdnJzcykqKqKjo4OamhoSExN5/PHHMRgMHDt2DIfDwaOPPkphYaGwxKioqOCRRx75xjb109PT1NXVUVNTw/T0NBEREeL/9PPzY2JigvPnz4tqkampKVwulyirlKxmJC9LQBjuSv3tAQEBYu8gCclMT08zPj6OWq1m1apVFBYWEhgYOC97JJfLhRWMVGkjlR9OTU2h0+mYmJhgenraR2o+Li6O1NRU0tPTiY+Px2KxiGqW/v5+4XklBaTj4uIoLi4mIyODtLS0JRWx+ToenQ8Kli2x2rNnD42NjZw/f56AgACio6M5e/YsDz30EEeOHOGP//iPOXHixD31NXwdLBdiNT4+zpUrV7hw4QJtbW0olUrWrVvHiy++OK8x0eVy8emnn3Lx4kWysrLYu3fvfVWH8sbU1JSQJG9paRFyoVJD6NjYmKjdlgwt3W43QUFB5OfnU1FRQVpamnCJj4iIEH0zEmnyzj55+2xJGS8pxS6RqcDAwNtuXKT+rI6ODj755BMMBgMhISFMTEwwMDDAzMwMAQEBQmxCq9WyZs0atm3bNi+7+HVkeCXz5ubmZlHeo1AoiIiIICYmRpCstLS0eUIO1dXVnDlzBpVKxaOPPkpMTIzIcHlnuqampmhtbWViYoKCggJWr15NVFSUTy+XlOW633A6nTQ0NAhDzdjYWCorKyksLBRlJzabjbfeeouhoSEeffRRLl68KEqjAgMDBRHxeDwoFAqio6Ox2+2cPHkSmUzGd77zHZ566inkcrlYqCQiJQlNREZG+hCphYQmFgNVVVW88847FBUVER4eLsr5vEmURKBuVc7ndrv5+OOPuX79Onv27Lnv8+pyxv0iVmazmYsXL9LV1UViYiKbNm26I5IzNTXFkSNHaGpqYtu2bTz55JM+56I036xatYrGxkauXr2K3W6noKCAdevW4Xa7qa6uprGxEafTSWZmJmVlZYvikXQ7tLe387/+1/9ifHycv/iLv/AhhHBjTN5++22qqqpISEjgkUce+cZ7Q6QSr4VIl/djqZ83Ly8PhUIhhAvm3s69fydbOm9hg1sRNJPJRF9fH319fZjNZlwuF0ajEZ1Oh16vF0HCtWvXsmfPHtavX09PTw/Xrl2js7NTEINVq1b5lBD29/dz8uRJ9Ho9FRUVrFmzhs8++4ympiby8vLYtWsXLS0tnDp1iq1bt7Jhw4Yl+R6kHiJJmMFisWAymejs7KS9vZ3BwUE8Hg/R0dHExsaiVquxWq3o9Xrh/6TX6zEajVitVoxGI2az2ed7UCqVqFQqQkNDSUlJERm9wsJCEhISiIiIQK1WI5fLuXz5MhcuXMDtdrN+/XoqKyvvWmLe26NTEp0wm82YTCbGxsYYHBwUa5jUF67VakW2TaVSiYyXxWIRKsdOp1MIYfzBH/zBkpnHf12PzgcBy5ZYhYSE8N/+23/jr/7qr9Dr9URGRnLmzBl27NgBwH/5L/+F2tpavvzyy/v6uR5kYuVyuWhra+PKlSu0t7eLErnCwkKeeOIJsrKy5m3u9Ho9R48eZWxsjB07drBu3br7Ej2SiMjg4KAoPenq6hIeDtJnkIiQy+UiLCyM0tJSCgsLRY9TREQE69atE0bFEgEYGhri4sWLYkKVLgMpOjc3AyXJqC4GLBYLn3zyCePj46xbt47w8HA+/PBDqqqqRIpfimhJ/QySulBYWJgoB9iyZcs9l4gYjUba2tpobW2lvb0dvV4PIJSitFotMTExpKWlkZ6eLsQwZmZm+Oijj+js7KSkpIRdu3bNkz222+3odDpOnDghmpFTUlKYmpoSWS6FQkF4ePg88YyIiIhFlSKXYDKZuHr1KlevXsVkMon+qZtJ+TocDv7lX/6FEydOsGrVKv7zf/7PPsqN3qVz586d43e/+x02m42ioiICAwOFsqa/vz/BwcFkZGSQmZkpyvuWIjDhnYkaGRmhrq6OL774gri4OHJzc31IlNS0fCcRfJfLxQcffEBjYyNPPvkkpaWlC7736OioTznaCm7gfohXtLW1UVVVhUwmo7KycsG5fCGMjY2J67mwsJDnn3/+toGcuQqcqamp4lpqamqiurqaoaEhtFotpaWlwhZiqTAzM8N/+2//ja6uLr7//e/7mH5LY280Gvn888+JjIxk165dy2LTdi8BNG/xiZuRr9vdet+3Wq2MjY3R29tLb2+vEMSSen3UajV6vZ7+/n5mZ2dFEDM1NZXIyEhCQkJEaZtCocDPz0/cymQyhoaG6O/vR61WU1xcLPywFAoFa9asYXZ2lra2NtauXUtubi5KpdInIOdyubDb7QseNpsNh8OBzWZb8PfeZXQejweLxcLU1JTovc7MzCQrK4v09HS0Wi16vV6UPXpLoEtrmjTXx8fHk5+fT05ODoGBgRiNRgYHB5mdncXpdIoWgaSkJDIzM0lLS2NmZobLly9jNptZs2YNmzZtumfispBH50JwOp2Mj48zMDBAb2+vEMVQq9XC7kYi15OTkz5KiD/72c+WpDxV+q7uR/nrUmLZEqugoCB+9rOf8f3vfx+3241KpeJ3v/sd+/btA+BXv/oVf/InfyL6Xe4XHkRiZTQaqa6u5tq1a0xPT+NwODCbzcTGxvLQQw+xZs2aBSOLjY2NfPTRRwQEBPDss8+SkJCwqJ/L5XIJqVIpdT02NkZXV5eQF5V6nkJDQ4WogtVqZXR0FIPBQHh4OKtWrWLnzp2o1WouXLhAb28vGo2GlJQUgoODmZ6eZnJyErvdDtwotdNqtUxMTAjvBolALYZ3llR7LUWqFno9l8vFpUuXaGpqEkqEkgCFn58f7e3t6HQ64IaPVmFhoWgqlhaEtWvXkpycTExMjDDxu5eNm81mo7OzU5AsSaRDo9HgdruRyWQoFAri4+NJT08nNTUVvV7P2bNnUSqVPPbYY+Tm5i742nV1dXz44YckJyfz3HPP4XA4FhTPmJmZEX+j1WrnEa57zXKNj49TVVVFfX09MpmM0tJS1q1bd8uNntQkf/LkSXQ6HSEhITz33HPzCIXD4eC9997jn//5n5HJZJSXl6NQKITqk1Q+FxAQgJ+fH+Hh4YLUSH1b90oiJRI1V1hCykRpNBrq6+vJzs7m29/+NrGxsfdUBuV0Ojl69CgdHR0888wz5Ofn43Q6fUoJh4eHGR8fx+Px8J//839eMQieg6UWrzh16hT9/f1kZ2ezbt26Oz6nBgYGOH36NKOjo8TExLBv374FhQlutsF3u920trZy6dIlBgYGiIyMZN26dZSUlKDX66murqa+vh6LxUJKSgplZWXCoHaxYbFY+P/+v/+PxsZGHn74YQ4cOEB0dLTP2E9PT3Py5EnCwsLYvXv31zKbvR9YavGKW0EyGa6rqxOl6qWlpUL5t6GhgerqamFX4nQ6BamTxJDkcjnp6elkZWUJ9T9JKtw7M2c0Gunq6mJmZoawsDCio6MZGRlhdnZWzCV6vZ60tDRCQ0NF8E/K/C0EKSOnUqlueSuVyw8ODmIwGAgKCiI2NlYYKnd0dHDu3Dkhvy7tISQSlZycTEFBAZs2bWLdunXExcUt+F1ZrVZRadPa2irEkyTTXrlcTmFhIbt376a0tJSEhIR7rui41/nGYrEwNDTE4OAgg4ODmEwmFAoFsbGxxMXFCeNko9FITk7OPX222+GbPOcXE8uWWBUXF/P444/zt3/7twBkZ2ezdetWfvGLXwDw3e9+lzNnzjA4OHjHr/nzn/+cn//85/T29gJQUFDAj3/8Y3bv3n3Hr/EgEavBwUEuX75Mc3Oz6DWSMhPl5eVs2bJlwUXYbrdz6tQpqqurKSoq4rHHHrvnRchms/kQJ+l2amqKmZkZnE6nqAuWohUqlYrIyEjS0tKEs/nw8DADAwNMTk4il8vFRB8ZGUlLS4uobw4MDCQpKYnQ0FAfSXFvP6fQ0FBsNttdTz6SVKnJZBKpde/7ZrMZvV7P2NgYZrOZuLg4NBoN/v7+qNVqMaF7H6OjozQ1NREdHc3WrVuFSlNhYSE6nY4rV64wPj6Ov78/ZWVllJeXo1arGR8fF1LtksgA3MjkxsTECLIVExNDRETEHZfkSGpGra2ttLW1MTs7i0wmIygoCKVSidlsxmaz4efnR1RUFENDQxiNRioqKnjssccWnAz7+vo4fPgwGo2GAwcOLLjxllSo5hIunU63YJZrroCG93ns8Xjo6uqiqqpK9E9VVFSwevXq2246HQ4Hx48fp66ujvXr1/PQQw9x8uRJrl+/zrZt24SIRX9/P1988QWXLl0iIiKCb3/725SUlJCcnEx8fLwYb5fLhU6n81EkHB0dFQu01KPgfczNZjmdTh9hiZGREcbHxwWJktScpGyUVqvltddeQ6VS8d3vftfn2p0bqb0V7HY7hw8fFhFjyfhSem+5XE50dLT43MHBwaSmpi5Z+ddyrb1f6oxVc3MzwcHBCypU3gydnZ188cUX2O125HI5e/bsITk5ecHn3slmZ2BggIsXLwqfovLyctauXYtKpRLzc3d3N2q1WvjoLLa4jRRJb2lpITc3lz179lBQUMC5c+fE2E9MTPDxxx8TFBTEo48+el963u4V93uTabPZaGpqora2VmSRCgsLWbVqFfHx8SJAKHmfXblyhd7eXsxmMwqFgsDAQKKiosjJyWFoaIhjx44xOjqKQqEgISGB1atXC4uRuXOEx+Ohvb2dCxcu4HK5KC0txeVycfXqVZGlmp6eprKykvDwcEHcvNdS7/VVqVTeNEDqdrvp7++nrq6OtrY2ZmZmxPNNJhMjIyPodDqR+ZPJZEKIoqysjA0bNrBt27Z7Fmxxu91cunSJd999l/b2dmQyGeHh4Wi1WjweD0FBQYSFhYkqh4yMjLtSXV6M+UayLZFI1vDwsOjPSkhIYMOGDUty7awQq28AU1NTQlDhz//8z/nwww9pb28H4Gc/+xl/9md/xkMPPYTH4+GLL77gz/7sz/j7v//7O379jz76CIVCQVZWFh6Ph9dff51/+Id/oKam5o49mh4kYvV//+//ZXR0lPz8fGZmZpiYmCAnJ4eHH374pkplY2NjHD16lOnpafbs2UNpaektJw+Px4PRaFyQOEn9TxJUKhUhISHCf0Ey1/Pz8yMsLIz09HQiIiKw2+0MDw/T09ODTqcTEqEymYywsDDCwsJQqVQiSq/RaMjLy2PdunVkZGQIEnWrC9978lGpVNjt9lsSJunW+3KRy+UEBAQgl8uZmppiZGSEyclJUV8dEBDAxo0bhWCAzWZb8NDr9XR3dwOQkZGByWRiYGBANLL29vaKKKBUohcdHc2uXbsoKChApVJhNpsxGo2CpE5MTDA7OwvcICSRkZE+ZCsmJmaeWe5C3+3Q0BCtra20tLQwOTmJUqkkKioKtVotVBiHhobo7e0lPDycxx9/nB07dhAREeHz2nq9nkOHDmEymdi/f/8dG3dL4h4LEa6FslwREREMDg4K4llZWUlBQcEdbfanp6c5fPgwOp2OJ554guTkZNFfcObMGRoaGkhLS6OwsJD+/n4uXLhAWVkZ//iP/3hXZpZut1tI43qTJclnRJI8hn8vdZFKaRbqifLORDmdTl5//XWmpqb4wQ9+4LMge9feLwQpgywFBy5dusTk5CQpKSnCSiAiIkIIlYSFhSGXyxkZGeHatWv09PTw7W9/e8msF5Zr7f39Fq+4HRobG7l48SIhISFMTU1RXl5+y7XqbjY7er2eqqoqampq8Hg8lJSUUFlZSWRkJFNTU9TU1FBTU4PBYCAuLk4IYSzWuIyPj/PLX/4SvV6PVqslNTWV8PBwMWfBjWzMxx9/jEaj4dFHH31gN3D3Y5Mpqd1JfohOp5P09HRWrVpFTk6OT3ZxcnKSq1evUltbi81mIzs7m/LyciGy1N/fL17HaDRiMplISEhAr9fT2NgoFBTj4+MpKSkhLS2NxMREn/nLarVSVVVFW1sbsbGxlJaWCvl2u91OQEAATzzxxILKpjf7/0wmE+Pj47S1tVFbW0tPTw/T09OiR1Ymk4m1WGoLkEoB169fz549e1i3bt2iGBaPjIxw9uxZ0Qe5Y8cOwsLC6OjooL29nc7OTiEyIa1ZwcHBxMTECKKVkpJyy6zvUsw3UpXC0NAQ4+Pj7NmzZ0l6pFeI1TcAlUrFnj17OHDgABs2bGB4eJji4mL8/PzweDz87d/+Le+++y4KhYLHHnuMv/zLv/zai3B4eDj/8A//wPe+9707ev6DRKz+9V//lc8++4zx8XGCg4NZu3Yt+fn5REVFCVM4aXPk8Xi4fv06p06dIiIigmeffVbI8zqdTqEqMzf7JJUWSggKCiI8PJywsDDCw8MJDQ0Vct5DQ0P09fVhtVrx9/cXXgyS5HRTUxNjY2NikrNYLCJKkpmZSVFRERqNhsHBQXQ6HZGRkWzatIm1a9fetGfF6XSKlLvkSyWZ5l67dg23271gFF+tVqPVatFqtQQEBPjcDwgIwGg0ChGIoaEhbDYbwcHBJCUlUVBQQHBwMCdOnGBoaIisrCw2bdpEbm7ugptOt9vN1NQUp06dQqfTUVZWJnqCkpKSSEpK4tq1a/T19WGxWESdukajQaVSERMTI8oXJEh17RKh827M9Xg8+Pn5odVqiY2NJT4+noSEBPFeN5uMJfn1lpYWhoaGkMvlJCcnExYWht1u57PPPhNmkGVlZeTl5YkeraCgICwWC0eOHKGvr4/HH398wV6du4Hdbkev188rLQwJCWHdunU37Z9aCF1dXbz++uuYTCby8/MF6Yd/F5rQ6XQii9fc3My2bdu+llHi3JK6zs5Oenp6hOy/x+NBpVIRFBREdHQ0WVlZJCYmiuxUSEiIz//n8Xh47733aGlp4Tvf+c680l3v2ns/Pz+R7fQmrJIZ7NDQEEqlkm3btpGVlSVEXiSiOzo6SkNDA01NTeh0OlQqFbGxsXznO99Zkn6a5Vx7/6AQK2mOv379Ounp6QwMDJCYmMjDDz98y+vkXjY7FouFa9eucfnyZYxGI9nZ2axfv56UlBQ8Hg+dnZ1UV1fT3t6OXC6noKCAsrIykpOTv3Ypdm9vLwcPHiQ8PJzp6Wl6enrYsWMHWVlZ4jnT09McP35clDIvVSP+18FSbjKnpqaoq6ujtrZWqN2VlpZSUlLiI3jidruFUW5XVxcBAQGUlZWxZs0aQkNDF3xth8NBTU0NR44cQa/X4+/vT0JCAv7+/vT394ssl2TWnpGRQXp6OklJSWIuHRoa4ty5cxiNRoqKilAqlVy7do2BgQESEhJ44YUXfN7f4/FgNpuZmJigv79f+OyNjo4KVTyHw4FCoUCtVqNWq3E6nUKQQ6roSU9Pp7S0lKKiIvbs2bNo467X6/nss89obGwkMjKS7du3k5ubO+9cdzgc9PT00N7eTnt7O5OTk5hMJiHCpVKpCAgIICUlhYyMjAWl0B+U+eZesEKsvgEcOHCADz/8ELPZTFBQEE8//TQHDhxYEi8Vl8vFkSNHeOWVV6ipqSE/P3/B50kkQEJtbS1btmx5IIjVG2+8QV9fH8XFxURHRwvpzfHxcaF2p1QqCQkJobOzk9HRUXJzcykrKxOp4KmpKdGwCgipbok4ed8PDQ0VG7bu7m56enrERtHhcAgRCJlMxvj4OJ2dnQwNDeF0OlGpVISHh6PRaHA4HCJitGHDBtauXUtnZyeXLl1idHSU6Oho1q1bR3p6OhaLxYcwzb3vnTGDG14PUpZqYGBARN69yZNGo5nXj2K322ltbaWmpoa2tjZhNBwTE0Nubi7FxcUkJyf7LNBut5tTp05x8eJF/Pz8iImJITExkdzcXFJTU+e9h9Pp5Pz587S1tVFcXExISAjnz58nNzeXDRs2UFtby/nz5xkeHiY6OprvfOc7WCwWUQcvlQ9IJT3ezunehyTDKkUVjUYjFotFfMcSOY6IiCAqKkr0oWm1WiHz6nK5GB4epr+/n5GREeRyuYg+1tTUYDabRUmcTCYjMjJSiGC0trbS0NDAxo0b2b59+zciduByuRgdHaW3t5dPP/2Uc+fOERgYSGFhoY9/VFJSkiCsdrudH/7wh5w9e5aHH36Yn//853fctySRKO+eqLkldVIWKi4ujpiYGBQKBbOzsz5lhCMjI8LYWJLNlY6uri6qq6t5/vnnfeYrj8fD5OQkXV1dfPLJJ5hMJlGGCzf6F6OiosR3fPnyZSF9rNVqGR8fF8fg4CBDQ0NMTEygUChITU0VCld3U3J6t1jOC+6DsNFxu91cvHiRpqYmysrK6O7uRiaTsXfv3rs2JL8bOJ1OkSGTssjr168nPz8fhUKBwWCgrq6O6upq9Ho9ERERlJWVCQXOe0VjYyNHjx6lsLCQK1euoNPpKC0tpaKiQlyzMzMzHD9+HLlczmOPPbYoGYnFxGKf83a7XZRl9vb24u/vT2FhIaWlpSQlJfnMwyaTSfRlz8zMkJiYyNq1aykoKLijOU865+VyOQMDA7S3tzM1NUVAQACRkZE4nU76+vpEab9arSYsLIzk5GTS09NJTk5GLpdTW1tLbW2tmJsbGhq4fPky8fHxVFZWCgI1NjaG0WjEZrMhk8mEwa7VasXlcolyQplMhsPhQC6XC6Gq/Px81q5dS3p6uvCnXKxxNxqNfPnll1y/fp3AwEC2bt1KaWnpHWV7PB4PY2NjgmRJfU/S/+JyuVCpVD7iSFL2cDHmG0lRUNojSJU8JpOJLVu2LMm6vZzneW8sK2IFNzaLH3zwAYcOHeLMmTM4nU5iYmJ44YUXOHDgwNcmMw0NDVRWVmK1WgkMDOTQoUPs2bPnps//67/+a37yk5/M+/mDQKymp6dFVkOKNE9NTTE5Ocnw8DC9vb20trZy5coVTCYTISEhoj45MDDQx4k7NTWVzMxMEhMT522ezGYzPT09tLW10djYyPDwMBaLBX9/fzQajXi+RNQcDgcajYbk5GRhOCv5PKnVagoKCkQ5ZlVVFdevXxdloPHx8ajVauFELkEmkxEYGCg8qCRfKum+9FgSk7jdZkfaCDc3N9PQ0EBvb68w/cvIyKCoqIiSkpJ53k+SMIjD4RDlcJItgFQKOTExgVqtFoZ9cyNvTU1NXLp0ibi4OJKTk6mqqiI7O5vNmzczPj7OiRMnaGxsJCsriwMHDrBx40a6urqoq6ujvb0dj8dDVlYWJSUlZGdnL7gQSpOmRLwMBoPY9HtH+gwGAw6HQ0TLpFr2wMBA4a0iqS1KfXNut1uIjmRmZlJSUoLVamViYkJk3FwuFxMTE5SXl/OHf/iHS76psdvtDA4OCunzwcFBrFYrnZ2dWCwWNm7cyN69e0lOTl5wozk9Pc3f/M3fUFdXx0MPPYTT6RQGlnOvhzslUVJJX0xMzF0JS0gNz95kq62tjZaWFrKzs4XHisfjweFwYDQahXqVXq8nISGB+Ph4oqKiiIiIED1YkgKowWAgOztbEDBA+LGYTCYCAwOF2tvNotaLjeW84H7TxMrpdPLFF1/Q3d3Npk2b6O/vZ3h4mKeeeuqOvr/FGHvJN06Sgw8JCaGiooKysjLUajUej0f4YjU3N+N2u8nJyaGsrIyMjIx7Kju6ePEiH3/8MVFRUQQEBFBTU0NoaCgPPfSQ6PM0Go0cP34cp9PJY489dt/O5zvBYo37wMAANTU1NDU1YbfbSUtLo7S0lLy8PJ+5zuPxMDg4yNWrV2lqakImk1FUVMTatWt9FFHvBHPPeY/Hg06nE+VuVquV0NBQUcau0+mw2+3CY0utVpOYmEhqaiqhoaFcunSJvr4+YmJiMJvNfPHFF7jdblEmFx0djVarRafT0dfXh16vx2azCYXb4OBg1Go1SqVSEDhJ8W8ugV+McbdarVy8eJFLly6hUCjYtGkT5eXlX0u4xVsGXlq3pL2Uy+XC7XajVCqJjIzEYDCQlZVFUlLSgsEuj8cj2h+8SZPRaPQJuHpX8shkMgICAggMDGTPnj1LUpK9nOd5byw7YuWNqakp3nnnHQ4dOsT58+cByMrK4lvf+hYvvvjiTQ1WbwW73U5/fz8zMzMcPXqUX/3qV3z55ZfLMmNVVVVFV1eXKOGTjAklMQKdTkdvby9JSUliU6lUKjEajYyPj4vslrffgUKhQKVSCelN7zS71CslESDJOVySQw8ODiY9PZ2EhARUKhXNzc3U19czPT2NVqslOjqawMBAZmdnGRwcZHR0FIDExEQKCgqIj4+fR5i8zXzvZvGdO/FLG/3BwUFaWlro6OhgcnJS+HRkZmaSnZ1NfHw8drtdOKJ7H5IRoITg4GByc3PJzs4WKnpBQUGsW7eOwcFB2trasFqtQg47PT1dbLCHhoY4e/Ys/v7+ZGVlUV1dTWZmJlu3bsVoNPLpp5/S19eH3W5n165d7N+/H41Gg9lsprGxkbq6OoaGhtBoNBQWFlJSUkJCQsJdR5nMZrPw65BuR0dHMZvNOJ1OlEql+A4kD4yZmRl6e3tpaGigp6cHuEGwUlNT8ff3FwRf8tNQqVTk5uaSlJREQkKCcJiXsmPS4f1Yun8z1UWz2Ux/f78gUiMjI7jdbkHoQ0NDqampwe1289RTT92yh3JwcJC/+Zu/oa+vj1dffZUnnniClpYWjh49SkpKClu2bGFiYsJHWEIyify6JOpWkEpsr127xmuvvYZSqRTyx5KHSVBQkChxSU1NZXJykqSkJGJjYzGZTExMTDA2NkZfXx+XLl0CIDc3V/ireDweRkdHmZqaQqvVUlhYSG5u7jyCMDs7S29vL0VFRSuRzDn4JomV3W7nzJkzjI6OsmPHDvR6PVevXuWRRx4hNTX1jl5jscde6t9raGhAqVRSVlbGunXrRJm0xWIRqnOjo6MEBwezatUqSktL55nW3woej4djx47x7rvvsnv3biIjI/nss8+YmZlh3bp1FBQUCMGC48ePY7fbeeyxx+7qPZYSX2fcZ2ZmRKmfXq8nNDSU0tJSSktL55FHh8NBQ0MDV69eZWRkhLCwMNauXUtpaek9f9+3OuddLpfIYvX39wuJdsmmQwrKSRt/h8Mh5vnZ2Vn8/PxITk7G5XKJ/tupqSksFgsymYzg4GBSUlJITExErVbjcDiEQIRUPnerPtCvm6G9evUq586dw263s27dOjZs2LDoFiIul4v+/n7a29tpa2tDr9cLJV/JyFlS85WEvDQajeiJl8ZVgjdpkip35t6X+smXEst5nvfGsiZW3hgaGuLQoUO89dZb1NbWIpPJqKio4OLFi1/rdXfs2EFGRgb/9m//dkfPf5B6rD799FPGx8fnle0plUo++ugjuru72bhxI1u3bvWJakgXn9S3MjY2RmNjI42NjfT19TE1NSUIhKRgI0W/pUzIzMwMLpdLuIoHBgbi5+fnI/Lg5+dHWloaeXl5oteqt7eXsbExQkNDWbduHZs3b16SKKLRaOT9999nYmKCoaEh2tvbmZiYwGg0IpfLRcZOkhj1zo7BjX4/jUYjSgel3quAgAAxiXZ2dtLV1YXb7SYlJYX4+Hjq6+txOp3s3LmTyMhIkTUcGhpCpVKRlZVFbm4uERERGAwGTp8+zezsLBkZGbS3t5OWlkZlZSVms5nw8HDeeecd2traKCsr44/+6I98lLYmJiaor68XpYIRERGUlJRQXFz8tcZUKhP1JltjY2OCiMINtTup5KOqqor29naCg4PJz88nOzublJQUYmNjaW1t5e233xZedICod5cIm1wux2azLWh8KSk2eZMuifDDDZVEbyPeqKgourq6ePfdd9FoNOzfv/+WjdANDQ387//9v5mamuJHP/oRhYWF83yitFotJSUlPgRqKUiUVBboLXM+OTlJdXU1ERERPPHEE6IHKz4+HrlcLjJbEtGVzF0lZceAgACCgoKYmpoiLi6Op556iujoaLq7u2lsbGRmZoaYmBiKiormKf6ZTCa6u7vp6upibGwMpVLJM888syTX63JecL8pYmWxWDh58iQzMzM88sgjOBwOTp8+LXpk7hRLNfYGg4ErV66Ic1KynZCyI5IUdnV1NQ0NDdhsNtLT0ykrKxOeRreDyWTib//2b9HpdOzdu5eIiAiqqqpoamoSQRGNRoPFYuHjjz/GZDLx6KOP3lTc6X7ibsfd4XDQ2tpKbW0t3d3dKJVK8vPzWbVq1YL9phLJrq2txWq1kpmZSXl5OZmZmV87OLLQOS8Z6M7Ozopy/cnJSXp6ehgYGMBoNCKTyUSpm5+fH4GBgYSHh6NSqbBarbjdbmFCL/XBejweNBqNWHOk0m2VSkVCQgLZ2dlkZGTcsQ3EvZzvbreb+vp6Pv/8c2GmvWXLljsy6L5b2O124ScljcHg4CAdHR10d3eLHnR/f38hKS8JIoWEhJCQkCDWxNDQUAIDA30qi75JLOd53hv/YYiVhIaGBn784x9z7NgxZDKZyNLcKx566CGSk5P57W9/e0fPv1tidTfyx4uB7u5uMTZ79uwhKCgIvV6PXq9ncnJS3EreQlNTU8LPQKVSCb+k6Oho/Pz86O/vp7u7m9HRUZG5kohJaGioIHNSo6hSqSQ7O1v4ZymVSlH6NjIyQlRUFJWVlRQXF9/TplRKcRsMBpHWlvqthoaG6OnpESVhAwMDYuyVSiVBQUEiaxIbG+tDliTCdLMerJvBZrPR0dFBa2srk5OTwmTXz8/Pp6F6ZmZG+EiZzWbRu5WcnCzKZ+Li4hgdHRXStdu2bcNut/Pmm29y+vRpoqOj+eEPf8jq1at9PoPb7aa3t5e6ujqam5txOBykpaVRUlJCXl7eovm5OJ1OkQHxznJJYiHSe0dHRxMSEuJDtOrr65mdnWXjxo3IZDKxQLhcLmE4mZiYSGxsLH5+fgv2j0mPpeZeKTPlfW6cP3+ezz77jMzMTJ555pmbbnQdDgfvv/8+v/nNbzAajWzYsIHAwECRiYqKihI9ZBcuXCA5OZlXXnll0RYDg8HgQ6CGh4dFJDcwMJD4+HgiIyM5f/48QUFBvPrqq+K9pf4xyZNkaGhIqFUODQ0RGhqKWq1GJpMxOTlJXV0d/v7+pKamimtHrVYLE2VvEQyr1UpPTw9dXV0MDw+L3ro7Uav6OljOC+43QawMBgMnTpzAZrOxZ88elEolH3zwAbGxsTzyyCN3tXFe6rGfazickpLC+vXryc7O9pH4bm5uprq6mv7+fgICAiguLqasrOyWgRGz2cznn3/O+fPnMZlMPPnkk4SGhtLX18eXX36JTCZj69atJCUlYbVaOXHiBLOzs+zZs+eOleeWCncy7pJya21tLY2NjVitVpKTk1m1ahX5+fnz5na3201nZydXrlyhs7MTjUbDqlWrWLt27dfO1LlcLlHuPzo6yldffSU8HQ0Gg09lj7+//7yqE4/Hw/j4OENDQ0LCXS6XYzAYMJlMyOVyTCYTVqsVs9lMWFgYq1evJjc3l9nZWVpbWxkZGRE92pLRbWxsLAkJCSQmJhIZGXnbrMvdnO+STLwUxM7Pz+ehhx66Z2LucDjmkaa596X+eAlSC0RwcLDIxF28eFEEuN1utxCrksvlYp2UPKoSExNJTEycp+T7TWA5z/Pe+A9BrPr7+0W2qrGxEY/Hw/r16zlw4AB//Md/fMev8z/+x/9g9+7dJCcnYzAYOHToEH/3d3/H6dOnefjhh+/oNe6GWN1O/vjrQqozljZLTU1NYjKNiYnBZrMJrwaXyyV6bryVcrRarSjzkgiF1EckEa6UlBRyc3MpKCigqKiIqKgoDAYD169f58KFC7S2tmKxWAgMDBQy33K5XJSZyWQy8vLy2L59OyUlJQtOfG63W0iKzyVNc+9LcueSUIPRaMRsNguDQqVSKTypUlJSyMvLIzs7m4SEhCWL2ng8HiYmJmhpaaG9vZ2enh6cTidbtmxh165dPr5H/f39tLa2MjAwgJ+fHxkZGUKdScrIxMTE8Jd/+ZcEBwfjdrv5/PPP+dWvfoXJZOKFF17gueeeW5D8SRuUuro6ent7USqV5OXlUVpaSmpq6pKk+s1mM2NjY8KQtL6+HrlcTkhICLOzs5jNZlGy4e/vz7PPPsu+ffuQyWSCuPf09DA6OorH4yEiIoL09HTS0tJIS0u7ozILm83GsWPHaG5uZsuWLWzdulUsIi6Xy6cnamBggC+++ILm5mb8/f3ZuXMnlZWVPsIS3gRidHSUgwcPEhAQwMsvv3zX/WImk2keiZIEKgICAkQGSjoks83f/e53DA8P8+yzz/qYO46Ojgq5XmnhTEhIIDw8nIaGBtFvMDQ0xOnTp4VSVmdnJ3a73acfQZoDJNlio9FIQEAASUlJorzzfpCF5bzg3m9ipdfrOXHiBAqFgj179qDRaPjggw9E2evdBlLu19jfynDY+3rT6XRUV1dTV1eHyWQiMTGRsrIyCgsL5/V9eCthnj59GpfLxZNPPklAQIDo1RkYGKCoqIjy8nJcLhcnT55kamqK3bt3Exsbu2T/7+1wq3E3GAzU19dTW1vLxMQEwcHBotRvocyM2WympqaGq1evMj09TXx8POXl5RQUFNxxMESaA6TWAm+l4LkiV1JpvWSB4U2ivHudF4JUylZVVUVjY6OQRvfz8xOZqejoaJxOp9jjSDLuCQkJREVFoVQqsdlsIkgsKZ5Kz5PIhFTBI9lZyGSyOz7f+/v7OXv2LP39/aSlpbFjx455SqzecDgcgiTdjDRZLBafv5H6wyTSNPe+5C8597uW5ht/f3/Gx8dFWfzk5KSoCJH6o2dmZnA4HAQEBIhxSUxMXPTyxTvBcp7nvbFsiZVOpxP9VZcuXcLj8ZCbm8uBAwc4cODAHdePe+N73/sen376KSMjI4SEhFBcXMx//+///Y5JFdwdsfKe9JfCBf7v/u7v6OjowGazCRECKfPi8Xhwu914PB5cLpfwbggMDCQkJERkmrRaLQqFwieNDzeiJJJB686dOwkJCUGpVGK322lvb6elpQWDwUBMTAyrV6+mpKQErVYrNq3Xrl3DYDAQHByMRqNBJpNht9tFWl+tVuPn5yc2d5KzuzekmmCJ+Hk8HgwGA1NTU0xMTAgSJU0gFotFGNylpaUxNTV1S3nxpYLdbqejo4MzZ87Q0tJCXFwcjz76KPn5+T6NtAaDgba2NlpbW0XETq/XC9+tRx55hJdffllMrAMDA/zzP/8z9fX1rF+/nj/90z+9ZS35zMyMWJwnJycJDg6muLiYkpISIbW/FOjs7OTDDz9Er9cL9cO6ujpaWlqora1lamqKyMhI1q5dS2FhIXl5eYKQS7083d3d6PV6ZDIZcXFxQtY9OTl53kZhcnKSt99+m9nZWZ544gnCwsJ8/KPGxsZEJiooKEgQ39jYWH70ox/dUdmUTqfj4MGDyOVyXn755ZtGf81m87xyPkkgQqPRzCNRwcHBPhsQi8XC4OAgR48e5fr162RmZorzNzw8XERmpayr96LrveCOjIzwzjvvYLVaRclrUVERWVlZ+Pn5CbPQhoYGurq6MBgMKBQKMTdIipE3M2lebCznBfd+EqvR0VFOnTpFYGAgu3fvJiAggLNnzzIwMMBTTz11T1mJb2Ls5xoOr127lvLych9LCZfLRVtbG9XV1XR1deHn50dhYSFlZWWin9R77B0OB8eOHSMgIIDHH39cCLw0NjZy+fJlIWwRFBTEqVOnGB8fZ9euXbfcLC8l5o670+kUXkydnZ0oFAoRFEtLS1swKDY0NMTVq1dFwLmwsJDy8vKb/k92u30eYfJ+7N2XExAQIPYJ0iFVqfj5+Yls+kLnvHeg1GQyYTAYGBwcpK+vj6GhIWZnZ3G73Wi1WqHkZzKZkMlkqFQqURUjzUFBQUG4XC6cTqc4pMfS/sZkMgkiI2X/JVU9b8IHN6ovcnJy0Gq1+Pn5+Rwmk4mmpiZGRkYE+U9MTBQl1lar1aeaQvLAtNlsgrxJPU03I0zScS9VO7eab4xGozC4HxoaEhUh3sFuvV4P3LAZSUxMJCkpSajULjWW8zzvjWVFrEwmE++//z6HDh3i008/xeFwEBcXx/79+xdFEXAxcC/EaqkW3F/96lc0NTUxPT2NWq0WddZGoxGr1Sqk0yU5bUnhzuFwiHT+2NiYiERJJqEhISFi82U2m0lISBBRd51OB0BERASRkZH4+/tjt9uF6t/U1JQQzwgMDBQSqFI2SSrddLvdQuVGSmNHRkYSHR1NXFwcCQkJBAYGYjQaRR+JRD4iIyN9Pp9CoSAxMVFs0sPDw79xpS64EQGsrq7mgw8+wGKxCOXFvLw8kpKSxELpdrsZGBgQohodHR243W6ys7PZvn07L7zwgiATVquVN998kyNHjhAdHc1f/uVfkpeXd9vPMTQ0RF1dHY2NjVgsFhISEigpKaGwsHBJJjibzcYnn3zCtWvXSE1N5YknnhDfy1tvvcWRI0ewWCyEhISIc0/axEsGx1qtVigaSqVyCoWC7OxsNm3aRExMDJcuXeLw4cPY7XZycnIwmUw+5XzePVEul4t33nmHpqYmoqKieOWVVygsLLzj/2lmZoY33ngDu93OSy+9RHBw8DwSNTU1BdxY0OeSqNDQUB8SJWXSpHK+wcFBJicnGRgYoK+vj61bt7JhwwZBpG73PZnNZs6cOcPVq1f57LPPhIG1JLfsdrsZHh6mq6uLnp4e7HY7ERERZGZmkpGRgVarned9Jal5wY1gy2OPPbYkBsHLecG9X3PNwMAAZ86cITIykl27dqFSqaitreXy5cvs3LmTtLS0e3rdb3Lsb2U47I2ZmRlqa2uprq5mZmaG6OhoysrKyMzM5Nq1a2LsdTodH330kSiJlObYyclJH2GLnJwcPvnkE4aHh9m5c6ewsLifsFqtzM7Okp2dTVtbGw0NDVgsFhITEyktLaWwsPCmiraNjY1cvXpVlP6uWbOGVatWodFoRPBx7jE9Pe1TPaNUKn3K+ecSqJsFgyVV1LNnz/qQIu9DEj+SDO0NBoMIbCUmJopSbmmfoNVqsdvtdHZ20tHRIfyxpL2L5M0ZGBg4LxMmefN5ky6z2czQ0BDDw8OCyAGC3KjVaioqKvDz8xPfw9jYGA0NDfT19SGTyQgLC8Pf318QKO+ttFKpRKVSoVarhZqudKjVagIDA0VVwFzidqvjTp7vcDioqqoiJCTklsEup9PJ0NCQEHgymUz4+/sTFRUl+srHx8eFkq+U6UtKSloyE/jlPM97Y1kRK61WK2TQvT2sllqp5G7wIBGr999/n+vXr4v0uUKhIDg4WMgtJyQkiAvP4XCIiNHAwABmsxmVSkVSUpJQ2PH39xfqd2azmdHRURobG7HZbExNTeHv7094eLjIHjmdTnQ6HUNDQ1gsFoKCgkRWQVJ0k8xKpVupL87pdIpMmzTxT05OMjo6KjyYvPu5QkJC8Pf3F5kvqdRMimip1WrRECuVAvb19Qn1OakUQKFQzLsvPV7oOd6/hxsRoenpacxmM6GhoUI05Fbfr06n4+OPP2ZycpLIyEgsFgtarZbc3Fxyc3N9sliSv8hHH32EwWDAz8+Phx56iD//8z/3mewuX77MP/7jPzI7O8sPfvADnn766Tuqn3Y6nbS3t1NXV0dHRwcymcxHun2xo1Y9PT0cO3YMk8nE9u3bKS8vRy6X09vby1tvvYXD4SAvL4+enh6GhoZwOBwEBQWJSVeaviQBEafTSUtLiyins9lsJCYmsnnzZpKTk0U5n9SrJaG5uZl3332XwcFBIiMjOXDgwE2VQBeCzWZjdHSUzs5ODh8+zNjYGJmZmaIcw5vAxcfHEx4ePs/cd3p62qcvamRkxKekLyEhAafTyYULF9ixY8ddZdLHx8f56quv+O1vf8vIyAjFxcXs37+fiIgIRkdH6erqoqurC6vVSkhICJmZmWRmZt5WiEIS1ZA88qS+ycXGcl5w7wex6uzs5PPPPycpKYkdO3agVCoZGBjg5MmToofmXvEgjP1ChsOVlZWkpqb6XEdut5uenh6qq6tpbW0VwbqSkhLS09ORyWQMDg5y8uRJYWEh/b0ktCMJW2zYsIGLFy8yMDDA9u3b75mY3uv/K2WMpSxxSUkJpaWlN60mmJqa4tq1a1y5cgW9Xk90dDTJyckiICLZYXj3nQcHB/tkmryPhUiK1FbgXdI295AU5/r6+vD390er1QqfSIVCIcoJp6enUSqVxMTEiLLiyMjI265TUi/WyMiIUC6WCKFGoxFESyJbtyIXLpdL7GV6enpENkfyhQwODsbf3x+j0YhOpxM94nl5eeL3EhmT/k+pAsfhcMw7nE7ngj+/1TH3b26nGyCNvUTkpD3KrQ6FQoHZbGZycpKJiQlmZ2eRy+VEREQQGhqKUqkU2SyZTMYPfvCDJalQeBDmmsXAsiJWTz75JAcOHOCJJ554YB2lHyRi9dvf/lYYI0pRbe/+D4PBQF9fn5hQpFrliIgI0Wch9VyZzWahyiNNMlLKWFKaS01NJSgoCD8/PwYGBmhra8Nms5GTk8OmTZvuWm3IYrGIz9fT08P4+Dhwo+RJWlwkRb++vj7MZrNQEYqOjiYmJkZk2KR6ZD8/P5xOJ0ajkZqaGuGb4V024H3fu6xAeiyVT0oE03t8pMtJeh+5XI5CoUCj0YiMn/fiJXmHuVwuqqqqMBqNlJWVYbfb6e7uxuVykZycLIQspObTmZkZRkdHOXr0KAMDA2RkZPDCCy9QUVEhMpOTk5P89Kc/5dq1a2zevJm/+Iu/uKvJymQyCen24eFhNBqN8O+Kj49ftEZXu93Op59+yuXLl0lKSuLJJ58kMjKSyclJDh06hMVi4fnnn0elUtHa2kprayujo6NCzlxSgjIYDIyNjeF0OqmpqaG7u5u4uDgeeeQRtm3bJjZW3vB4PJw7d46zZ88yOztLaGgoL7zwAjk5Obf8vFKWVMpE6XQ60QcQHh5Oa2srHo+HV155hVWrVs0L/litVh8SNTQ0JMpTwsLCxPUqCXYolUpGR0f5zW9+Q0ZGhuhBuxU8Hg+dnZ3CdmFsbIyuri42b97M6tWr6e7uprOzU3hTSSaTD0IT81ws5wV3qef5xsZGLly4QE5ODps3b0YulzM7O8t7771HTEyMT2bmXvAgjf3tDIe9YTKZuHLlCkePHsVisRAWFibsL4aHh/n8889ZvXr1vFJfb2GLTZs20dnZSU9PD9u2bSMzM3PJ/jdJhrytrY3+/n5cLhdRUVHs37+fwsJC8R16i0RMTU3R1NREdXU1PT09OBwOIiMjiY+PJyAgAJVKtWCpnnRfCoJIar63IkwLCSdI5WxzDz8/PxobG4mKisLlctHb20tfXx/j4+PI5XLi4uJISUkhJSVlUZTzzGYzExMT4pAyLVLfrkR4VCoVCoVCGN+azWafTJOkpGexWIiMjBRzpEKhIDc3l507d1JUVERaWto3di1I+5CbETGDwcDly5fx9/dHoVD4ZOpudszN6En96dPT06Is08/PTwQK/+qv/mpJ2lcepLnm62BZEavlgAeJWEkRe6vVKlLwIyMjDAwMMDQ0xPT0NE6nU0iiSylwhUIxTxFPqVSi0+kYHBzEYrEQHh5Obm4u8fHx7Ny5k4CAAKamprh8+TLV1dW4XC6KiopYt27dHTcA22w2+vv7BZGSxArCwsJIS0sjNTWVkJAQBgcHaW5uZmhoCIVCQUZGBnl5eWRlZWGz2eZ5cOl0OhHlCQgIICoqipCQEAYGBkQvyq2iL1IkRyp9kry73G43MpnMh7yFhIQI8ipNTpLPhjRJzc7O+kSe/P39UavV+Pv7Mzk5icViEV5DRqMRvV4v1O4k1UJ/f3/Ky8uZmpriww8/pLm5WSgJxsfHC/NNjUbDm2++yRtvvEF0dDQ/+clPhBLh3WB8fJy6ujrq6+sxGAxERkZSWlpKcXHxoknK9vX1cezYMWZnZ9m2bRuVlZXYbDYOHz7MwMAATz75JMXFxcCN6KxEsvr7+wFISkoiKyuLuro6jEYjTz31FB6Ph6+++orh4WESEhLYvHmzUBtzOp0cO3aM2tpa3G43arWaF154wWfz5HQ6GR0d9Snnm5iYED2JMTExPpmoqKgo5HI5drudt99+m/7+fp599lmCg4N9iJRUMqtWq336ohISEnz6SCQYDAZ++ctfEhgYyHe+851bNpzb7Xbq6uq4fPkyOp2OuLg4/P39qa2txWg0EhgYKPoN09PTyczMJCYm5oEjU95YzgvuUs7zHo+H06dPExoaSkVFhYiUHzt2DKfTyd69e7/2ez6IYz/XcDg4OJh169YJw2EJZrOZL7/8EovFItQspWCVVLWwbds2cnNzfV7fW9iioKAAq9VKd3c3W7ZsuWXQ5V4wOTlJe3s7HR0dYkMvEY7p6WnS09OxWq0+IhHewR23201sbKwQr4iKihIESlrXLBbLbUmTtwejJFqzEGmSDilQORdut5u2tjbeffddH1P4pKQkUlNTF6WveW6P1lyjW4PBwPT0tE/5odTj5O/vL1ogvMV9pKoXk8lETU2NKBuXSqVHRkbo7u5mYmJC9PZmZGSQnp5OUlLSkmTq7wWLNd+43W5ROTQ0NCSyeQaDgVdffXWFWN0CK8RqkfEgEatTp07R1dUlVGfMZjPw70pjSUlJJCUlERoa6uPFJJXUSSn3lpYWOjs78Xg8pKamCt8pKcKVkZFBbW0tLS0taDQa1qxZw9q1a2+rjuZwOBgYGBBEanh4WLipp6amCtU3h8NBc3MzLS0tjI6O4ufnR2ZmJvn5+WRlZd127NxuN3q93odwDQ0NUV1dLVLhGo1G1I1L5YiS9Kk0bv7+/qJ3TLoNDQ296/I4t9stShynp6d9SJvFYhElDtHR0WRlZREQEIDD4RDPsVqtqNVqCgsLCQsLw2Qyce3aNQYGBsRiMTU1hVwuJz4+Xhhlnzx5EqvVymOPPcb27duF95NarV7wWGijLZXa1NbW0traitPp9JFu/7pu7A6Hg88++4yqqiri4+PZu3cv4eHhHD9+nJqaGjZv3sy2bdt8PpvJZKK9vZ3W1la6uroIDw/n+eefJyIiArixCevq6uLcuXP09fUJQZXa2lqGh4eF18e+ffvQarU+JGp8fBy3241CoViQRM397iXTXknS/9ixY3R2dpKTk0NsbKzPQi6Z8N6O0Njtdl577TVMJhM/+MEPbnpdzczMcPXqVa5fv47VaiUvL4/c3Fw++eQTPvvsM8LDw1EqleTk5JCXlye8rhYDHo8HnU63ZKIny3nBXep53u12i+/R4/EI8/Cnnnrqjr17boUHfewXMhyuqKggNDR03tjb7Xa6urpobW0VlhAul4t9+/bNMwn3FrYICQkhICCAwcFBNm3adFdlwgtBUvVrampibGxMBBDnijDY7Xby8vKIjo4mLCwMt9vN4OAgw8PDqFQqSkpKKCoqIigoSNiKLESavC1dpF6muSRp7uO7Wdek/qe2tjba29uZnZ1lfHycrKwssrKyiI+Pv2fiIZWgedvCTE1N+ZTEScJbkpntQka3SqWSmZkZxsfH0el0jI+PC2Ndqd9c6me22Ww8/fTT7NmzZ1459OzsLF1dXXR3d9Pd3Y3JZMLPz4/U1FTS09PJyMggKirqGwtULXUgR6pwWAo86HPNnWKFWC0yHiRi9fHHH9Pe3o5SqSQ6Opq0tDSSk5OJjo6+5YZKUq1raWlhcnKSoKAg8vLyyMnJESe7JI17/fp1tFotsbGxVFZWzpPG9YbL5WJwcFAQKcmnSKvV+hCpsLAwxsbGaGlpobm5WZjdZWdnk5+fT2Zm5tfewBsMBo4dO4ZerxeeP2NjYyLLp1QqCQgIIDQ0lLi4OB/J6tv1TN0rpElrenqa+vp6Ll26JJpGpUVEkpGfnJwUUbfVq1dTXFzMRx99xMmTJ8nLy+PFF1+kq6uLhoYGJicnUalUREZGUl1dTV9fH6mpqWzYsGFB011AqC/NJVveREwulzM8PExPTw9jY2NoNBoKCwtZvXo1WVlZX2vTPjAwwLFjx5iammLr1q1UVlZSVVXF2bNnKSgoYO/evQueZ1JP0s0Wtb6+Pj788EM++ugjAKKjo5HJZOTn54uSCKnE0JtERUdHL7gxkEr6pGNwcNCnpC8uLo7u7m7Gx8d5/vnnqaiouKtx8Hg8HD58mO7ubr773e8umP0dHBykqqqK5uZm/Pz8yMvLQ6vV0tvby+eff87o6Cg7duxg9+7dDA8PCx+rxcLExARVVVUMDw/z3HPPLcpmfi6W84J7P4Vy6urqqKqqEsb2i4HlMvaS4fC1a9ew2WzCHLejo2PBsZ+cnKSlpYUTJ06g1+vZtGkTa9euJT093edan5yc5NNPP2VmZkaUHK9fv56ioqKbfhYpo+Jthjs9PU1/fz+9vb2irF3qA5YCnN6eRAqFAovFQklJCa2trVy9epWBgQHRcxkWFobdbvcxr5f6qG91SH5GizHeUkBLsg+Jjo4mJyeHlJQUOjo6REvBncDpdDI1NTXPV1OSIFcqlYSHh4tD6mvSarW3lG+/3XtOTk7S1NTE5cuXGRkZwc/Pj4iICIqLi0lOThZBsIUEhjweD6Ojo8Iovb+/H6fTKfrJpYzWUhGRhfAgCHPdK5bLXHM7rBCrRcaDRKza2tpwOBykpKTckbeO5LPU2dmJ0+kkJSWF/Px8EhISxERss9mEQtH09DRhYWG8/PLLFBcXz5vYJJWxnp4eent76e/vx+FwoFarfYiUd7+UlJmamppCo9GI6HpGRsY9R7xsNhtjY2OidEIiUt3d3ahUKsLDw31ko0NDQ4Uyovchme3BfKnZ8PDwRd+wjo6OcubMGfz8/NiyZQsymYypqSnGxsYYGxvD39+f3t5eRkdHcblcxMfHA9DS0kJ6ejo/+clPSE9PZ3JykuvXr9PU1ITT6WR8fJyamhpSUlL4n//zf5KamiokYr2lYuf+bKGfS5FQq9UqVCSlMrOkpCTS0tKEeMhC5OxmP5dqw7/44gsuXLhAbGwse/fuRa/Xi96R/fv339GC5Xa70el0DA8Pc/nyZU6dOiVMi2dnZ8nNzWXbtm1s2LCB5OTkeT5VElwuF+Pj4z4qfXNL+rzL+qSSPo/Hw4kTJ7h69So7d+5k/fr1d3wOfPLJJ1y8eJEXXniB7Oxsn8/S0tJCVVUVg4ODQjVRMgGGGxksq9XKK6+8QkVFxaLPNwaDgatXr9LR0UFYWBgVFRUkJycvSaR2OS+492ujMzg4yIkTJyguLmbdunWL9rrLbeztdju1tbVcunRJ9NqsXbuWrKysBc9Nq9XKG2+8QU9PD3FxcQQHB5OZmUlubq5QH5SELSSxJo/HI8xppSyR963RaBTBMMmqxGAwIJPJiIqKIjMzk/T0dDQaDW63e55qnslkQqfTMTIyInp6IyMjycnJEaIyC5GmgICAJcuUSFnp1tZW2traGBwcRCaTkZKSQk5ODjk5OSKocqtzXrJF8c4+TU5OMjMzg8fjQSaTERwc7EOiwsPDCQ4OXnShsvHxca5cucLQ0BAxMTGsW7eOgIAA+vv7SUxMZHJykuHhYaanp4Eb6763+Nfc0m2Hw0F/f7/IaI2OjgIQExMjSNZSGqnDCrF6ELBCrBYZDxKxuhM4HA66urpobm5mYmLipmp0BoOBxsZGUf6VmZlJVlYWKpVKXARS9EYiUpIghr+/PykpKYJIxcTEIJfLcbvd9Pf309LSQktLC7Ozs+L98/PzSU1NvesyO0l+3ZtE6fV6PB4PCoWC6OhoEe3r7e0lKSnpjnuEJDM9vV7P9PQ0er1e1LxLhEur1Yr6dqmkQipNuJeomsFg4NSpUxiNRnbs2EFSUpLP5KNQKBgZGeHy5ctcvnyZvr4+xsbG6OnpISQkhN27dxMXF0dUVBTBwcGiTK2np4dr167h7+/PD3/4Q1555ZV7WrSkRldv4tXX10dDQwNtbW2YzWZCQkJE1kcyZpaef7Ppx8/PT5Ati8UiZOAlI+MLFy7g7+/P3r17SUxM9CFocw13R0ZGsNvtDA4OMjIyIryfFAoFzzzzDL29vTQ1NREYGMj69etZvXo1fn5+zMzMzFPpk5QoY2JifAQmblfS5/F4+Oyzzzh37tyC5YwLobq6mg8//JBdu3aJjbLFYuH69etC+Uv6n41GIzKZjLS0NHJzc2lra6Onp4enn35aSMYv1nxjs9moqamhsbERlUrFmjVryMnJWVJ11uW84N6Ped5gMPDee+8RGRnJ7t27F/W7WK5j73A4uHr1Km+++SbT09OEhISQlZVFYmKiUK2VGv6NRiPnzp3DZrMRFRXF6OioCBBJJd8Ssejp6RHXW3JyMqGhoSLQFh4eLgy1JVP06elpIc8tlZXNFYFQqVRCVc5qtYqydaVSyeOPP8727dtJTEy87+VlUmmc5KcoyZxnZGSQm5srStXnwtujU+pR9i7nk/ywVCoVERERhIeHExERIcZwKYkHwPT0NFevXqW7u5uwsDDKy8uF6NNC57vJZPKRZx8aGhItAiEhIT5Zrfj4eNF/ZDQaRcmg5AeoVCpJTk4WGa3Y2NhF/V4fhH3lvWK5zjVzsUKsFhnLhVhJZRAdHR04HA6SkpLIy8sTynMSJO+G7u5u/P39yc/PF0a2kllpXFwco6Oj9Pb2YrFYxMQhCU7Ex8cLgiQpBElkymQyERwcTF5e3oLvfzNI8tQSeZJuDQYDcGPClnpaJHlt756YxRx7yY9jbobLYDD41IH7+/v7EC3JmE86bka8JNW8wcFBKisryczMvOnkMz4+zvXr1zl58iQff/wxKpWKF198kaysLOFAL6kiDg8Pc/36dWZmZsjJyeE//af/xLZt2xZNFU4ytKyrq6OzsxOZTEZ2djalpaVkZmYKkYc7yZCZTCbq6+tpbm5GrVaTnJxMe3s7FouF/Px80U/ljfDwcEHoJJGL9evX09fXh8Fg4OWXXxaldUNDQxw/fpwrV65gsViEVL7k5eLdFxUXF3fPC/+FCxf45JNPqKioYNeuXTcd556eHg4ePEhZWRmPPvook5OTQhhmYmJClGKq1WqSkpIoLCykoKAAlUrF4cOH6e3t5bnnnvNptP+657zL5aK5uZnq6mqcTiclJSW3LP1dTCznBXep53mn08kHH3yA3W7n6aefXvT3WOqxl0iO3W5ftMNbprqvrw+73c7k5KSQ+JbkuAMCAnz8fxobGwkMDGT16tUYjUZGRkbQ6/UolUoSExNFtqimpoampiYcDgd+fn64XC7sdrtQmrPb7cKvMSoqSlgsSKqw0n3JOsLj8dDe3k5TUxMzMzOEh4eTlZVFdHQ027dvv6/nvKRI29raSnt7u1DblbJSc0sl4cbcMDk5Kaop+vv7uXz5Mg6HQ8h5S3OqRKLCw8OXNMO2EEwmE9evX6etrY2AgADWrFkzr2z9Ts53qZdWIllSEE/63iVlRolsxcbGolAomJiYECSrt7cXh8OBVqslLS2NjIwMMjIyvrYY1Aqx+ubxYMiYrOC+wOl00t3dTXNzM2NjYwQEBFBYWEhubq5PqaDb7aa3t5f6+nrGxsYICQlhw4YNZGVlYTabhapgf38/MzMzpKenk5aWRkVFBampqSQmJvpMvJI3UnNzM21tbUL6tqSkRJQa3mpydblcoizCm0TZbDbghjFpXFwcpaWlgkRJZsf3A0qlkoiIiHmbe6kfSioDkUpEpAW7vb3dx8leqVT6EC1vArZp0ybq6uq4cOECExMTN22ejo6OZvfu3ezYsYM9e/bw4x//mNdff53t27fzzDPP8NxzzyGXy4Us7eDgIG+99RZVVVW8+uqrpKenk5+fT1FREcnJyWIDEhkZSXh4+F1lEJVKJQUFBRQUFGA0GmloaKCuro633nqLgIAAId0eFxd3x4aDIyMjHDt2jPHxcV599VWGh4dpb29nzZo15OXlYbVa0Wg0xMXFodFoMJlMHD58mPHxcR577DGqq6sxmUzs3r1b9CZJKn0ej4eEhAQfL7Lt27ezbdu2RZvkN2zYgEql4uOPP8Zms/HEE0/MCyTodDoOHz5Mamoq2dnZvPnmm1y9epXZ2Vn8/PyIiooiOTmZwsJCCgsLRRTcZrPx5ptvMjIywosvvihES74uPB4PPT09XLlyhdnZWXJyclizZs2C6oUruL+QVC9nZmZ48sknl3wj5Xa775no3Or3t4vvyuVyIYU999BqtcKsde7hcrmoq6sjJCREBAPb29vp7u5GJpORkZFBcXExYWFhwI3A1EcffYRCoeDZZ59FLpcLcZy2tjaam5sJCQmhuLiYvLw8WltbsVqtoqxNymZLgTzJqF4ykbVYLKI8TPJTlPqKlEolSUlJ5ObmkpSUhEKhwGq1Yrfbl3yTaTKZaGtro62tja6uLpxOJ1FRUZSVlZGbmyvWaKmMTxL+kA5v5V1JJTc1NVUEokJCQhbdA/FuYLPZqK2tpbGxEYVCQUVFBfn5+ffcXiCTyQgNDSU0NFSInniXnEuEq7GxUYhjSOJHCQkJPPzww4SGhgpD9q6uLpqamvB4PERGRgqSlZKSsiTqeytYWqxkrBYZD2LGanp6mubmZtrb24Vhal5eHikpKT6Tnd1uF/1TBoNBKMpJ5WaS145MJhP+QUFBQTzzzDPzNsaSSlBLS4t438jISPLz88nLy7tp+ttutzM2NuZDosbHx8WkHR4eLsiTdHsvjaEPQlRH8g6RCJdEvrwfe0vgKhQKjEYj/f39hIeH8/3vf5/k5GRCQkIIDQ0lKCho3phOTEzwX//rf6W1tZXs7GwyMzPJyMgQ/QHSwnL9+nV+/OMf09/fT3R0tPAyCw4OJjAwELlcLgwDJaIlka6IiIi7ylqMjY0J6Xaj0Uh0dLTwQruTXkCXy8X58+f56quvhJhIe3s75eXl7Nq1SxCV8fFxfve732E0GikpKeH06dPodDoyMjKEf1lMTIxPX5RkUGkwGLh06RLXrl3D4/GwZs0a1q9ff0ef707Q0NDA+++/T05ODs8884z4HsxmM//2b//GyMgIGo2Gjo4OrFYr0dHR5ObmUlpaSkFBwTz1PbPZzJtvvoler+fAgQMkJSXNe897OedHR0epqqpibGyM5ORkKioq5olTWK1WOjs76ejo4NFHH/3awjILYTlHMpdapau6ulqYOnv/XFI2nWs2upAHzq1+JgWH7rQUTTJ8/zrH3Ne4lSDNrXCzsbdarbS0tNDU1ITJZCIlJYWioiLi4+MZGBjg9OnT5OXlsWHDBvG+Ho+HkZERWltb6e7uFkp+kjhQRkYG2dnZQhBn7vckWZ8YDAY6OztFgFMSywkNDRWl0pLUtd1uJyUlxUfdTgq4eavfed+/07lYp9OJEr/BwUEAQexycnIICgpifHx8HomSxCT8/f2JiYkhJiZG+EZKhrwPwvoK/+57Vltbi8vlori4mOLi4luSlcWca5xOJ2NjYz5kSwriScbxUlYrLCyMqakpYQswPT2NXC4nKSlJ9GfdiZLrgzL294LlPM97Y4VYLTIeJGLV3d1NU1MTw8PDqNVqIQQxlwQZjUYaGxtpaWnBbDYL13WTycTs7CwymYyIiAhRPyz54sy9CGw2m8hMdXZ24nA4iI2NJS8vj/z8/HmbQZPJ5JOBksoupH6oqKgoHxIVExOzaNGb5TL5eBMviWx1dnZy5coVwsPDKSgoEF4lCoVCRAulaJqkYvRv//ZvdHZ2UlZWRnJysshYlpaWsnr1aiIiIhgfH+ef/umfuH79OsnJyeTl5Yma8JSUFOLi4oTs+8TEhCi7lKJ3cwmXJFpxM7jdbrq6uqirq6O1tRWXy0V6ejqlpaXk5ubedoMwNjbGsWPHGBkZITIyUsj7VlZWcvnyZT788EOxMWltbUWlUvHkk0+Sk5NDYmLiHZX0mc1mqqqquHLlCg6Hg1WrVrFx48Z5Erz3gra2No4cOUJKSgrPP/88RqORv/qrv+L69evC6DovL49NmzZRVFR002CEwWDg4MGDmEwmXnrppZv6xt3NOT8zM8OVK1fo7u4mIiKCdevWkZiYKH4v9ZC0trb6WDFUVlYuiQLWcl5wl3qu+fLLL9HpdPMI0u2WdplMhr+/P0qlEj8/P3ErHdJjj8eDw+Fg7dq1BAcH35YQLWWv3d3idmPvdDp91FMjIyMpLi7G4XBw7tw5KioqKC0tnfd3UjBhbGyMlJQUUlNTb5v9MBqNtLa2inU2Pj6egoKCeQFOiYRNTU0xMTFBQUEBLpdLrAGSZ5N0f+73rFKpFiReAQEBov90cHAQg8GASqUiLS2NuLg4goKCMBqNgkBNTU0JMYmIiIh5JGquQt7djPtSw+12097ezrVr17BYLOTl5bFq1ao7yrIv9Vxjs9lEoFoiXN7iGNI+S6vVYrVaGRkZoaenB5vNhlqtJj09XfRnSZlWb3zTY/91sJzneW+sEKtFxoNErL744gsMBgN5eXkLTvxSP05DQwNms1l4WUkGelLaOi4ubsHPZ7Vahd9Sb2+vMF9MSEgQmanw8HDRDzWXREkbc39/f58MlCS2sJSlA8t98hkcHGRwcBCbzcYjjzxCUFAQ09PTTE9PMzMzI+5L0t9Wq5XLly8zMTFBdnY2mzZt8lGQy87OFuWeb7/9NseOHSM8PFyUF0nnSEpKCqtXryYvL0+UaHo73ut0Oqanp8ViL/UYzCVcWq3WZ1G2Wq00NzdTW1tLf38/KpWK/Px8SkpKRFPxQnC73Vy8eJHPP/8cl8slzsm+vj6ysrJ46KGHqKmpISQkhD/8wz+8Z0JktVq5evUqly5dwmq1UlxczMaNG4Vq2L2ip6eHn/3sZ8J8cWZmhvLycp566ikqKytJSkq6ZaR+enqaN954A6fTycsvv3zLz3Mn57zVauX69es0Nzej0WgoLy/3UVOz2Wx0dHTQ2trK5OQkwcHBIsK9lAvhcl5wl3quuX79OmazeUFydKuf3WkW6Pdh7D0eD0NDQ9TV1TE4OCh8jyYnJ3n44Yd9FDnvBh6Ph+HhYZqamujr60OhUAjbkNvZEtzJuEsZLolozSVf09PT9PX10dfXx/DwMBaLBY/Hg0ajEWRYsqjw9/cnODhYrMGJiYkkJyeTkpJy16V839T66vF46O3t5erVq0xNTZGRkcHatWvvuNQcvpnzXSK83j1b0todEhIigoB2u114cbndbsLCwkTZYFpaGmq1etnvbZbrXOONFWK1yHiQiJVU2+sNSVXs8uXL9Pf343a7iY6OFu7hUrTkVie12Wymt7eXtrY2+vr6SElJEb052dnZOBwOHxI1OjoqVJACAwPnkaj72Q/l/T8s98ln7dq1HD9+nP7+fh5//PEFI6uSyfH09DSDg4McOnSIxsZGwsLCyM3NRavVMjExwcjICNPT0wQGBgrT5erqaux2O9u2bWP//v2YzWbq6uro6elBo9FQXFxMWVkZMTEx895TMjP2JlyTk5NCPVGj0cwjXJJy4dTUFPX19dTV1TE1NUVoaKgQSrjZZmRiYoJjx47R3d2Nw+Hg4YcfpqysjIMHD6JQKHjllVfuanG9Gex2O9evX+fixYsYjUby8/PZvHnzvDG4HSYnJzlx4gRnzpyhs7OT4eFhNBoNf/3Xf82+ffvuKOo/OTnJG2+8gVwu5+WXX14weumNW53z3iUzHo+HVatWUVhYiFKp9DEK7+rqwu12k5KSQl5e3n1TKlvOC+5ynmvg92/sJycnaWhooKOjg/7+fmQyGS+++CK5ubl3/L52u11Ub0xNTREWFibWxzstlb3XcTeZTDQ3N3P9+nUaGxuZmZlBJpOhVqvx8/NDpVLh8XiECqFGo0GlUgmLC6PRKMr9vBEQELBg+eHcx5Ky4f0+54eHh7ly5QpjY2MkJiZSXl5+T4blD8L57i2OIREuSRwDbpAtpVKJw+HAZDLhcDhQKBRCYGl8fJy0tLRl1wf7IIz9YmCFWC0yHiRiBQiS09vbS11dHW1tbaLfqbS0lOLiYhITE29bvmM0GoWx7+joqJCPVavVrFu3DpvNxujoKOPj48LbKDw8fB6Jup9GebfCct7seE8+khBCdXU1GzduZPv27bfc6BoMBl577TVqamqIjIxk69atlJeXMzs7S29vr89i7Ha7RV9dVFQUxcXFQhFKMlYGSElJobKykoqKiltO5C6XC71eP49wSWVMcCN7KZGtiIgIHA4HIyMj9PX1CfXKkpISCgsL531vbreb69evo9FoiI2N5fXXX0elUvHKK68sWm+UBKfTSW1tLefPn2d6epqcnBw2bdrkUy43FwaDgerqak6dOkVNTQ12u528vDwKCgro7OwUCocvv/zybUng2NgYBw8eRKPR8NJLL92RktRC57zH4xGlpWazmby8PFavXo1Go1nQKFzKTt3vBXs5L7jLea6B39+xN5lMNDQ0cOzYMWZmZnj44YfZsGED0dHRN/0bvV4v+pldLhepqank5+cTHx9/1wGIO1Wnm52dpbW1VczdfX19mM1m4W0n9edIpXwxMTGEh4ffMnjjcrl8Sg7nliB6P54rHS+TyfDz82N4eJiwsDBCQkLQaDSiIsb7Vq1Wf+3AzOTkJFeuXKG/v5+oqCjKy8tvOQ/fDg/q+e52u5mcnPQhW5KHpc1mQyaT4Xa7mZ2dZWxsjMjISJKTk0lMTCQxMZGQkJD7HsC+WzyoY3+3WCFWi4wHiVh99dVXQtlPco3Py8tj/fr1ZGRk3PYim52dpbu7m56eHoaHh7FarWi1WjQaDQqFgtnZWWw2G2lpaSQkJPiQqNjY2AdazWY5b3bmTj4ej4eqqirOnDlDTk4OTz/99C2joiaTid/+9re0trYSEBBAfn4+zz33nJjInE6nWKibm5tpbGxkYmKCqKgo1q1bR25uLiaTCb1eT3d3N8PDw+j1ehQKhTCVlvxdpEPq+1ronJBKRecSromJCZ9FW5K1NxgMBAUFUVxczIYNG8jJyfHJzI6Pj/P666+j1Wp5+eWXl5TMu1wuGhsbOXfuHDqdjvT0dDZv3izKFy0WC83NzVRVVXHp0iVGR0cJCwtjw4YN7N27F6VSyW9/+1vy8vLYunUrBw8exOPx8PLLLy8oIQ83pOHffPNNQkND+da3vnXHJGfuOT80NERVVRU6nY60tDTKy8sJCQnxMQp3u92i3y4xMfEb659Zzgvucp5rYGXszWYzv/71r+nt7SU1NZWUlBSKi4vFNS5ZiDQ3NzM8PExAQAB5eXnzvCDvFgv1MEtCEqOjo7S2ttLa2srw8DBmsxl/f3/S0tLIz89n1apVpKWlER0dveTrsJTl8iZeOp2Oy5cvi99bLBbMZrOPCi7cUHuUSNdCxMv7/lw7ktnZWa5du0ZnZyfBwcGsXbuW9PT0r00eltP57nQ6GR8f9ykhHBoaoqWlBafTKc5PtVpNdHQ0GRkZgmg9iHPRchr7W2GFWC0yHiRideTIEdrb2wkPDxelPbeb6KWImyR6YbPZ8PPzQ6PRiMiTJC0eHByMSqXiscce+9reC/cby3mzc7PJp729naNHjxIeHs6LL754y+/EbDbzxhtv0Nvbi5+fHxEREbzwwgvzStomJye5evUqhw8fpqGhAT8/PzZs2MCrr75KWloabrcbg8FAX18fV65cobq6mqmpKdRqNREREfN6qTQazTyy5X14fxcejwej0ehDtCYmJhgaGhKu9iaTiZCQENGcnJ6ezueff05wcDAvv/zyfZuc3W43LS0tfPXVVwwPD6NUKgkMDGRgYIDBwUFcLhfJycns2rWLjRs3ip64X/7yl4SHh/PKK6+gVCqZnZ3ljTfewGq18tJLL837Pnp7ezl06BAxMTEcOHDgrs5d6Zx3Op3U1dXR19dHTEwM69atIzw8XKh46nQ6AgMDRXbqQcgyL+cFdznPNbAy9tLrvP/++8zOzhIVFcXk5CQhISEkJyfT3d2NyWQiNjaWgoIC0tLSvlZ/sNvtZmZmRggcxMbG+hjS6/V64RcZERFBUVERa9asoaSk5IEJZt5s3CWVSbPZLOTnpftzfyZVvkhQKBSo1WoCAgJQqVSMjIygVqspKyubF1z7OljO5zvA1NQUH374IRaLRZxHIyMjzM7OYrFYkMlkBAYGEh8fT25uLhkZGcTExNyz9PxiYrmPvYRvfiRXsGQoLCwkLy/vpnXdkodGV1cXzc3NdHV1CSnQkJAQYmNjxUUXGRlJRESETzpZuggehAtyBTcEKL73ve9x6NAhfvGLX/DCCy+QkJCw4HMDAgJ45ZVXOHjwoCDQv/rVr9i7d6/w5QCIiIhg165dPPzww3zwwQf89re/5ZNPPuHatWvs2bOHl156ibi4OCFj63a76ejooLq6mvb2dhQKhWiuVavVot9rZmaGzs5OpqenfRZQlUq1YKYrMTGRwsJCNBqNyASNj4/T1tbG1atXRX+QQqEgNzeXhx9+GJvNJp6/1HC73UKOvqWlRfSHBQcHs3HjRp577jmKi4uFCqHNZuPQoUP4+/uzf/9+cQ0FBwfzne98hzfffJPXXnuNb33rW6KspaOjg8OHD5OcnMz+/fvvWtbcaDRSVVXFwMAAYWFh7Nixg6CgIKHs53Q6SU5OZs2aNSQlJT1Q6m4rWME3iYCAAB599FGOHTuGv78/jz32GM3NzXR0dJCWlkZBQcFNM8y3gtlsRq/Xi2NycpKpqSlcLhdOpxOPx4PVasXhcAgVvzVr1pCfny/8rpbTdSqJp9wuECspUXoTrbnEa/Xq1RQWFt4Xg/LlBJVKRUxMjA+ptVgsTExMMD4+zuDgIF1dXXR3d1NbW4tcLicoKIjk5GSysrIoKCi4qQLtCu4MKxmrRcaDlLHyhtPpZHJyUvS0SP1Ser0em81GQECAMCTNy8sjOjr6tiVGyzm6sJyjyLcbd6PRyNtvv83o6ChPPfWUD1Fa6LXefPNNUZM9MjLCpk2b2LZt24IL9sjICL/+9a+5ePEiBoOB8PBwduzYwaZNmygoKPBZ5GZnZ6mtraW6uprp6Wmio6NZvXo1xcXFQiLe4/FgMpnmqRl6Kxx6e3n5+/vPy3SFhIQQFBSEXq+npaVF9IUBqNXqeb5nkZGRi7IZcbvddHd3C6sCg8GA1WrFarUSFBREXFwcdrsdk8lEdHQ0mzZtorCwEIBDhw4xODjI9773vQUbrK1WK4cOHWJ0dJT9+/djtVp59913yczM5LnnnrurYIbdbufixYt8+eWX9PX1sXr1agIDA2lvb2diYgKtVktubu7XLl1aSqzMNd8cVsb+3zE6Osrx48dJTU29bT+rN5xOJ1NTU0xOTvoQKUkkQqlUEh4eTnh4OGq1GpPJJESFkpOTSU1NFRnkqKioB37Tu5zP+eV8vsOdjb207o6NjdHV1UVnZyf9/f1CYj8oKIiUlBQyMzPJy8sjKSnpvgTQl/vYS1hJNfwHRnt7OwMDA0IC22AwMDMzg81mQ6FQEBYWRllZGYWFhaSmpn6jzugrWDwEBgby7W9/m2PHjnHkyBF0Oh2bN29ecDFWq9W89NJLglwVFxdz/vx5xsbGePrpp+dNzHFxcfzZn/0ZaWlpXLlyhYmJCc6dO0draytJSUlCKTA2Npbg4GA2b97Mxo0b6e7uprq6mtOnT3Pq1Cmys7NZtWqViLhKm4q58Hg8oqRhenqa2dnZeRkvb+KlVCpRq9UolUpMJhOTk5O0t7cLpSu5XI6fnx+hoaGEhYWJslbJ5FihUAgp6psdk5OT9PX10dnZid1ux8/PT2TRpAzVunXriI6ORqFQMDAwwLlz53jvvff44osvgBslty+//PJNVauk7+Xw4cP87//9v1EoFGzdupW9e/fe8XXqdrupra3l888/x2w2k5qaisPhoKGhAY/HQ3JyMo888gjJycnLKuq9ghV8U4iNjWXHjh2cOXMGrVZLZWWlz+89Hg8Gg0FknyQCNTMzIzyhgoODCQ8PJz8/n4iICMLCwrDZbPT399Pb2yv6VaOjo1m7di3PP//8XauOrmAFt4JUDhgYGEhGRgY7d+7E4/EwOTlJS0sL7e3t9PT00NTUxAcffEBAQAAJCQnCBDs3N3elUukWWBmZ/8DwVlMzGo0oFAqysrKE50FsbOzKhuo/KJRKJU8//TSRkZF8/vnn6HQ6nnzyyQUnQ5VKxbe+9S0OHTpEa2srW7du5dKlS/zyl7/khRdemOeNpNFoePHFF0lISOCTTz7BaDSiVCqx2+3U19dz5coVEhMTWb16NQUFBfj7+5OZmUlmZiZ6vZ63336br776io8//pjg4GAyMzNJT0+/48im1NQsGeHa7Xaf5mmpQTowMFD0BLrdbmG2PDs7y8TEBD09PcJg0+PxoFKphFKVSqUSzdKSV4xE6NxuNxEREQQEBGC327FYLKjVahISEtBqtdTX11NfXy8+r0TIHA4HJ06coLOzk6SkJMxmM2lpafj7+y9I6JRKJSMjI9TX1+Pn50dhYSHnz5+/6XOl+3K5nMHBQS5cuMDExATBwcHCi0yn01FcXExJScmyUIlawQoeNKSmprJ+/XouXLiAUqlEo9H4ZKGk+UfqM01MTBRWEWFhYfj5+eF0OhkZGaG3t5cLFy5gMplQqVQkJyezevVqEhMTRf/qYiuarmAFC0EmkxEZGcmmTZvYtGkTcKP6pbm5mba2Nrq7u/nyyy/55JNP+Id/+IcHtrrhQcAKsfoPDEmFJygoiJKSEqEStLKZ+v2ATCZjy5YtREZG8v777zM1NcX+/fsXnBBVKhUHDhzgrbfe4vz58+zevVuQq2eeeWaeQaZMJmPr1q3Ex8fz7rvvMjU1hdVqJTg4mMrKSgYHB/nwww85deoURUVFrF69WhhNp6enk5OTg16vp62tjZaWFlpaWkhOTiYnJ+eepInvpb8BfEt0dDqd2BxJZsN2ux2z2Sz83lavXo1CoUCj0WA0GomLi6O0tJS0tDQ8Ho/ojXC5XOKQHvf29jI8PMyaNWuQy+V0d3ej0+nIysoiLS0NuVyO0+nEZrPhcrlobW2lsbGRkpISbDYb77//vhgf79f3hsFgoLu7m7GxMdxuN0qlUpQZRUVF4XA4aGxspLW1FbihyiWRMe/bm92f+zO5XI5SqRT3F5LBX8EK/qOhsLAQk8lEdXU1CoWC0NBQIiIiSE1NJSIigvDwcAICAuaZoPf29tLX18fAwAB2u52goCDS09NJSUkhLi7OJ9A5V8Z8BSu43wgMDKS8vJzy8nKh3jsyMrJCqm6DFWL1HxirVq1i7dq1RERErJCp32MUFBQQGhrKW2+9xS9/+UtefPHFBUtL/P39efHFF3n77bc5efIkTz31FPX19bz11lts27aNTZs2zTuPsrOz+aM/+iMOHz7MwMAAU1NTfPnll2zdupXdu3dTV1dHdXU1165dIz4+noKCAp8NRXp6Olarlfb2dlpbWzl79izBwcHk5uaSnZ19X/ySAgMDSUpKAm70hXV2dtLQ0MDMzAwOh4Pg4GBh2NjZ2YnH46GiooItW7ZQVFREXFwcoaGht7zGxsbG+Pzzz9m5cyfPP/88crkcvV7P+fPnhUJfRUUFFRUVqNVqPvvsM3p7e/nzP/9ztmzZAsDp06epqqpi/fr1IqIokTm9Xs/p06f5/PPPUSgU5OXlkZCQQEFBAfn5+QQGBmIwGLh8+bIolXS73bhcLnF7s/veP/Mmfm63G7fbjdPpFPfvxkR1BStYzqioqBCBhJuV50qKqb29vYyMjOB2u4UnYGpqKuHh4Str8wqWBSTv0tsZ0a9ghVj9h4ZUKrWCFSQkJPCDH/yAt956i1//+tc8++yz87JQcEO16YUXXuDw4cO899577Nu3j9jYWD777DNGR0fZu3fvPDW6sLAwvve973H8+HFqamrw8/Pj008/pauri6effpotW7bQ0dHB9evXOXnyJIODg+Tl5VFSUkJUVBRqtZri4mKKiooYGxujpaWF69evc+3atfvioWQymejp6aGzs5OxsTGUSiUpKSls3rwZPz8/Wlpa6OnpISQkREgap6SkMDAwQEtLC3Cj7GeuGbYkkmE0Gjl06BDh4eE888wz4v8IDw/niSeeYMuWLVy8eJHz589z4cIFZDIZRqORxx57jPXr14vP+cgjj6BWq/n000+x2Wxs374dm83G8ePH+fDDD9HpdCQmJvL4449TXl5Odna2z4bPbDYzPDy8LBvKV7CCBxFzAz8ejwedTifI1OTkJAqFgvj4eNavX09KSspKtH8FK/gPjhVitYIV/J4gJCSE7373u7z33nu89dZb7Ny5k3Xr1s2LmCqVSp5//nmOHDnC4cOH2bdvH/v37+e9997j17/+Nfv3758XtfLz82Pv3r0kJiZy6tQptFoto6Oj/PznP+fxxx+noKCAnJwcRkZGOHjwIAMDA3R1dREZGUleXh6ZmZn4+/sLc+n169fT0dFBa2srJ0+eJDAwkJycnEVTrrNarfT09NDV1cXw8DByuZzExES2b99OYmIiAwMD1NTUMDExQWhoKBs3biQrKwuXy+WjWmQwGBgdHWVkZESYdl66dEmMY2RkJE1NTSgUCv7oj/5oQXIYEhLC7t272bBhAz/72c/46quvyM7OZmZmhtnZWSFNLJVfqtVqjh8/zsmTJ+nt7WVqaoqsrCx+9KMfUVlZuRJRXMEK7iNcLpfol+rt7RX9UklJSUKg526tEVawghUsX6wQqxWs4PcI/v7+PP/885w9e5bTp0+j0+nYs2fPvFIWpVLJvn37OHr0KIcPH+a5554TGa9f/OIXPPfcc6Snp/v8jUwmY+3atcTFxfHOO+/gcrkICgriyJEjdHZ2snv3bkJCQiguLqayspKJiQlaWlo4f/48VVVVZGRkkJeXR1RUFCqVisLCQgoKCsTz6uvrqa6uJjk5mdzc3LtWs3M4HPT29tLV1cXg4CBut5v4+Hg2b95MamoqAM3NzRw9ehSTyURSUhJ79uwhMTFRkM+5PU1BQUEEBQWRlZUlfma1WhkdHWV4eJj333+fvr4+cnJyePvtt5HL5URGRhIXFyeyW7Gxsfj5+XH69GlkMhk//elPMZvNXL58mWvXrlFaWsqGDRsIDw9nfHyc+vp6zp07R19fHwUFBfyv//W/qKioWFH1XMEDD0koRjrcbvctb+/kObd6rslkoq+vj4CAAPz9/X2e6/03wF39TnpstVpFv1RgYCBpaWmiX2rlelzBCn4/sUKsVrCC3zPIZDIefvhhoqKi+Oijj9Dr9ezbt094S0lQKBQ8++yzvP/++xw5coRnnnmGH/zgB7z77rscPHjwphmvxMRE/vAP/5CjR4/S29tLamoqjY2N9PX1sWfPHuCGaEJKSgopKSkYjUba2tpobW2ltbWViIgIkcVSqVRER0cTHR1NZWUlXV1dtLS0cPr0abRarZB+vZnhpNPpFNmxvr4+nE4nMTExrFu3jvT0dAICAtDr9Vy+fJmOjg7gRt9YUVHRPWd+1Go1qampdHV1ERgYyN///d+TkZHB+Pi4yGyNjIzQ1NTkI2xht9t5/PHHCQsLIz8/n8rKSq5du8b58+c5efIkZrOZ0dFRXC4X69at48///M+preZPW2MAAK+ASURBVK2lr6+P8vLye/qsK1j+aG5uxmg0ChIwl2x8XfLgcDgwm810dHSgVCq/NhG6n3A4HPT19eHv77+gIqpMJhPBGblcjkwm8zlu9jvpsVKppKioSIhWrPRLrWAFK1ghVitYwe8pSktLCQsL4/Dhw/zqV7/ixRdfnKeup1AoePrpp5HL5Rw9epSnn36aF198kc8++4zTp08zMjLC448/7mMMDDd6D1566SU+/fRTLly4QHJyMjabjddff52QkBAqKirEcwMDA1m9ejWrVq1icHCQlpYWLl686JPFio6Oxt/fn7y8PPLy8tDpdLS2ttLU1ERNTQ2JiYnk5uaSmpqKTCZjaGiIrq4uenp6sNvtREREsHr1ajIyMggKCsLj8TAwMEBDQwODg4NotVpWr15NXl7eovQf1dbWcu7cOR5++GEh6JCQkEBCQoJ4jtvtZmhoiNdeew2FQsHq1asZHByks7MTuLHpk/qi2tvbmZ2dJSoqiqeffprnn3+euLg48vLyOHz4ML/73e/Yv38/KpXqa3/2FSwv9Pf3o9frBQnw3vjfjiB4/06pVC5IHhwOB2q1mvj4eDQajc/v5t7e6nd385zFej2r1cqFCxcIDg4Wn33usYIVrGAFi4kVYrWCFfweIyUlhe9///scOnSIX/3qV+zbt4+0tDSf58jlcvbu3YtcLue9997D5XKxY8cOYmNjOXbsGDqdjueff56QkJB5f/fwww+TkJDABx98QFBQEHl5eZw8eZKpqSl27tzp0y8ll8tJTk4mOTkZk8kkslhtbW1ERESQm5tLVlYWKpWKyMhINm7cSEVFBd3d3bS0tHD27Fk0Go0o0QkJCaGoqIiMjAyRfXI4HDQ1NdHY2Mj09DRRUVFs376dtLS0RSvd6evr46OPPqKsrMxHfGIubDYbp06dws/Pj7/5m78hOTkZh8PBlStX+OKLL2hubmZoaAij0SgsE/z9/bl69SrXrl0jPz+f3bt3CyXHN954g29961vzMo8r+I+NXbt2LenrW61Wn77C5QS5XI5KpcLf339e8GcFK1jBCpYCK8TKCz/96U957733aG1tRaPRsH79ev7u7/6OnJycb/qjrWAFS4bw8HC+//3vc+TIEQ4ePMijjz7K6tWrfZ4jl8t58sknUSgUHDt2DLfbTVlZGREREbz99tv84he/YN++faSkpMx7/fz8fKKjozl8+DAdHR3k5+czPDzM0aNH2bRpExkZGfP+RqvVUlZWRmlpKUNDQ7S0tHDp0iUuX75MRkYGubm5xMTE4OfnR05OjvDFam9vByAzM9OnNMdoNAr/JrvdTlpaGlu2bCEmJmZRo9aTk5O8/fbbJCcn8+ijj970tY1GIwcPHsRgMPDKK6+gUqk4c+YMtbW1GI1GXC4XUVFR5ObmCll3nU7H6OgoQ0ND1NTUcP78ec6cOUN4eDjZ2dm0tbXR2dnJd7/7XdLT01c2kitYwQpWsIIV3GesECsvfPnll7z66qusXbsWp9PJX/7lX7Jz506am5vvi5/OClbwTUGtVnPgwAFOnjzJRx99xMTEBDt37vQRh5DJZDz22GPI5XI+/PBD3G43a9as4Q/+4A84cuQIr7/+Onv27GHNmjXzXj8yMlKQt1OnTlFcXIzT6eTs2bMMDAywYcOGBYmAXC4nKSmJpKQkTCaT8Ltqa2sjPDxc9GKp1WrCw8NZt26dz9+PjY3R0NBAT08Pfn5+5ObmUlBQQFBQ0KKPocVi4dChQ2i1Wvbt23fTDNjMzAxvvPEGFouFiooKPvnkE3p6elCr1YSGhmK323G73axfv56tW7eKuScsLEyIZOzfvx+LxcKFCxfE3zudTrq6uqirqxNqZN7y7zfrQ1vBClawghWsYAWLgxVi5YVTp075PP7tb39LdHQ0169fZ/Pmzd/Qp1rBCu4P5HI5jz76KFFRUZw8eRK9Xs8zzzzj07cjk8mEiuDx48dxuVxUVFTw0ksvcebMGY4fP87IyMiCSoMqlYqnnnqKiYkJmpqaSExMpKKigurqakZHR3nooYeIjo6+6efTarWsWrVqXhbLuxcrJiYGt9tNT08PjY2NjI2NERISQmVlJTk5OUuWxXG5XLzzzjuYzWZ+8IMf3LQcT6/X86//+q8MDAwQGxvL559/TkpKChUVFfT29jI6Okpubi47duwgMjLylu+p0WjYsWMH27dvp7Ozk6+++koIgAwNDZGfn49OpxMiGQ6Hg8nJSeLj44XPVkRExErQaAUrWMEKVrCCRcIKsboFZmZmgBulUitYwe8LysvLCQ8P58iRI/z617/mxRdfJDQ0VPxeJpPxyCOPIJfLOXnyJG63m8rKSnbv3k1sbCzHjx9nfHyc559/fp7nlEwmIy8vj6SkJM6dO8fMzAybNm2ioaGBY8eOsXbtWoqLi28poy6TyUhMTCQxMRGz2Ux7ezstLS20t7cTFhaG3W7HZDKRkJDArl27SE5OXtImdY/Hw/Hjx+nv7+fll19ecL5wuVxcuHCBf/mXf2FmZoaKigoqKipITU2lpqaGy5cvk5CQwHe+850FyylvBZlMRlZWFpmZmfT19XH69Gk+/PBD3n33XX70ox/x7W9/m6mpKXp6ejh79ixms5n6+npsNhsAAQEBgmRJt8HBwSuN/StYwQpWsIIV3CVWiNVN4Ha7+ZM/+RM2bNhAYWHhTZ9ns9nEBgVu9E6sYAXLHZmZmULU4pe//CX79+8nKSlJ/F6SbFcoFJw+fRqXy8XGjRtZtWoVUVFRHD58mF/84hc8//zzPkp4EuLi4nj66ac5e/YsX375JevWrcNoNHLlyhUGBgbYtm3bHRkBBwQEUFpaSklJCUNDQ7S1taFUKiksLJyncLhUuHjxIjU1NTz11FPzSNHU1BTXr1/nyy+/5NKlS8TGxvLjH/+Y3NxcLl68yDvvvENwcDDPPvssBQUFX4vMyGQyUlNT+cM//EMeeugh/v7v/56f/vSnnDt3jscff5y8vDympqYICgpCpVJhMBiYnJxEp9Oh0+lob2+npqYGuJFdjIiIEGQrMjKS0NDQu/INW8EKVrCCFazg9w0rxOomePXVV2lsbOT8+fO3fN5Pf/pTfvKTn9ynT7WCFdw/REVF8f3vf5/Dhw/z29/+lieffJLi4mLxe5lMxkMPPYRCoeDs2bO4XC62bNlCYmIif/AHf8Dhw4d57bXXeOyxxygtLZ33+oGBgTz++ONcunSJCxcukJOTwyOPPMK5c+c4evQomzdvnmdCfDN4Z7HuJyQ1ws2bN1NSUgLcyE61t7dz7do1urq6sFgsjI2NsWfPHr7//e9TW1vLz3/+c+RyOTt27KC8vHxBj52vg6ysLP7f//t//Ou//itVVVUcPHiQ2NhY1Go1q1atQq1WExwcTHBwsI8KpNls9iFb/f39NDQ0ADek9+eSrfDw8EX/7CtYwQpWsIIVLFesrIgL4Ec/+hHHjx/nq6++uu1G7X/8j//Bn/7pn4rHtbW1bNmyZak/4gpWcF+g1Wp5+eWXOX78OO+99x46nY5t27aJzIpMJmPr1q3I5XI+++wz3G43W7duJSgoiG9/+9ucOHGCDz74gNHRUXbu3Dnv9RUKBRs3biQmJoavvvoKnU7Hzp07qaur45NPPiE3N5f169c/kAp3w8PDvPfee+Tn57Nt2zamp6eprq6muroao9FIYmIiq1evpqamhs2bN1NQUMAvf/lLzGYz5eXlbN68eUml0VUqFT/84Q+Jioqivr4ef39/qqur6ejooKysjPz8/Hm+VwEBAQQEBPhkJ202G3q9XpCt8fFx2tracLvdyOVyQkNDBdnKzs5eFB+wFaxgBStYwQqWI1aIlRc8Hg//6T/9J95//32++OKLeX4+C0GlUvlsTu6kfGkFK1hOUCqVPPnkk0RGRvLpp5+i0+l46qmnfMjO5s2bUSgUfPLJJ7hcLrZv345SqeTxxx8nLi6OkydPMjY2xqOPPrrge2RlZREWFsYnn3zCiRMn2LZtG0lJSVy4cIGRkRG2b99OVFTU/fqXb4uZmRneeustIYn+u9/9jq6uLvz9/SkuLmb16tVMTU1x9OhRAgMDMZvNnDx5ksLCQrZv3y58tZYafn5+PP/886hUKmpqaigqKgLg+vXr1NXVUVBQQFFR0S3JkEqlIi4ujri4OPEzp9PJ1NSUIFuTk5P09PSQmZm55P/TClawghWsYAUPKlaIlRdeffVVDh06xLFjxwgKCmJ0dBSAkJCQFdPNFfxeQyaTsXHjRiIiInjvvfd47bXXeOGFF3xkyzds2IBcLhc9Vzt37kQmk7F27VqioqI4cuQIv/nNb0hMTFxQ7jwyMpKnnnqKL/5/9u47PKoy/Rv4d1JJ7530QAiQBEgInYQaekcEFFRE7GXdRRQV0VXXsq66vxWFRRAUxUZHQu8kEIpAQktIg/SQHjIzmTnvH7xzNkMmIW1yJsn3c125cM45M/PM48w5537K/Rw+jLi4OPTr1w8zZszAoUOHsHXrVvTv3x/h4eGSJ1VQKpXYsGEDMjMz4eXlhd9++w1eXl6YPHkyevfuDTMzM1y8eBHff/897t69CwcHB/j5+eHJJ59s86GKwL1ewenTpwMAtmzZgmHDhuHhhx/GpUuXcPHiRVy6dAk9e/ZEaGhoozMEmpiYwMXFRSvY1fRgERERdVYMrGpZtWoVACAmJkZr+7p16/DYY4+1fYGIDExISAieeOIJ/Pjjj1izZg3mzp2r1ZMxaNAgGBsbY/fu3VCr1Rg3bpyYVOGpp57Chg0bEBcXh9GjR6Nnz551Xr9Lly6IjY3F+fPnkZiYiIKCAsTGxuLy5cs4ffo0bt26hZiYGEl6htVqNdLT0/HTTz+hoqICgwYNEnunatfB4cOH8c033wAABg4ciNjYWAQHB0saEBoZGWHcuHG4du0aEhISxLL16dMHly5dQlJSEi5fvowePXogPDy8Wet8MagiIqLOjoFVLYIgSF0EIoPn4eGBxYsX48cff8S3336LGTNmICQkRNwfFRUFY2Nj7NixAyqVChMnToRMJoOdnR0WLFiAvLw8HDp0CBUVFYiMjKxzQy6TydCvXz+4uLjgwIED2L59O8aMGYOuXbvi0KFD+PXXXxEdHd2oobqtoaKiQlwfKjk5GaWlpXjllVcwffp0mJmZicfJ5XJ888032Lp1q5idLzIyst6Fgtuapl7t7e1x9uxZKJVKDBw4EFFRUQgPD0dSUhIuXbqEK1euoFu3bujTp49Wmn0iIiJqGAMrImoyGxsbPP7449iyZQs2b96M0aNHY8iQIWKvTEREBIyMjLB9+3ao1WpMnjwZMpkMpqamGDJkCDIyMnD+/HkUFRVh5MiRdZIoAIC3tzdmzpyJvXv3YuvWrRg+fDhmzZqFo0ePYu/evXpNbKFWq5GVlYUrV64gMzMTJiYmMDc3h4ODAyZMmIDJkyeLQZVKpcLZs2exdu1a3LhxA+PHj8fzzz9vsMOHw8PDYWVlhRMnTkChUGDYsGEwNzdHv379EBoaiuTkZFy8eBHXr19HQEAA+vbt22DqekEQoFarUVNTA1NTU/ZcERFRp8XAioiaxdTUFLNnz8ahQ4ewf/9+FBYWYtKkSWL67b59+8LIyAhbt26FSqXC1KlTAdzrOQkNDYW7uzsOHDiALVu2IDY2VmdCBxsbG0ydOhXHjx/HoUOH0KtXL4wYMQI+Pj56SWxRWVkp9k5VVFTA2dkZQ4cOhYWFBfbv34/IyEgEBwcDuBdQXLt2Dfv27UNCQgJqamqwdOlSjBs3rlXK0lIqlQo1NTVQKpVQKpUoLS1FUVERKisrYWdnh+7duyM+Ph7p6eno27evGBzV1NTAx8cHGRkZOH78OPbu3QtHR0d4eXnByspKPEbzp1KpoFarAQDz5s1r1jBCIiKijoCBFRE1m2YtK2dnZ2zbtg137tzBww8/DEtLSwD3ekeMjIywZcsWqNVqxMbGis/19vbG9OnTxR6pESNGwM/Pr857mJiYIDo6Gm5ubjhx4gQKCwsxevRozJw5EwcOHMC2bdsQGRnZ7MQWarUat2/fRnJyMjIzM2FkZISgoCCEhITAxcUFJSUl2Lp1K7p27YoBAwagsrIS2dnZOHbsGNLT01FaWgp3d3c89NBDiIqKeuB7aQKd2kGPrseNOaahx5pgR0OpVCIjIwNmZmZaa0+dPHkSSUlJCA4Ohrm5OUxMTGBiYgJbW1v069cPhYWFyMrKQnJyMlxcXBAcHAwXFxfxOBMTExgbG8PExISp1omIqFNjYEVELRYWFgYHBwf89NNPWLNmDebNmyf2IoWGhsLY2Bi//vqrmCVPw87ODlOnTsXhw4exd+9eREZGom/fvnUCJJlMhpCQEDg5OWHfvn34/fffMWrUKEybNg1nzpxpVmKLyspKXLt2DVeuXEFpaSns7e3Rp08f+Pj4wMjICCqVCqmpqdizZw+MjIzQtWtXcZ0qlUoFe3t7qFQqlJSUICIiAmlpabh+/XqDQY9KpWp0nZqYmMDU1FT8V/OneWxubg5ra+t699+/raamBomJibC3t4eVlZUYFOXk5GDv3r1wcXFBbGyszmGZarUaN2/exIULF3Dr1i2oVCr07dsXXbt2lTxLIxERkaFgYEVErcLb2xuLFy/Gpk2b8N///hezZ88W1zXq2bMnHnroIWzatAlKpRLjx48Xn2dmZoYxY8bg3LlzOHPmjLgIsa65U66urpgxYwYOHDiAXbt2ISoqCgMGDIC3t7eY2CIoKEhrWJsmoNEEOkVFRcjOzkZRUREEQYC9vT2cnZ1hZGQkBk7AvWDi+vXrUCgUCAoKws8//4z8/HwYGRkhMjISZWVlKC4uRmRkJJydncU5RpaWlvUGOfUFPfc/NjExafW5SlVVVbh58yZsbGy0epa8vb0xceJE7NmzBzt37sTEiRPr9DxpevECAwPF+XG7d++Gi4sL+vXrB19fXwZYRETU6TGwIqJWY29vj0WLFuG3337DDz/8gPHjx4vD43r06IGZM2fin//8Jw4ePIjx48eLQ9JkMhkiIiLg5OQkrls1duxY2NnZ1XkPCwsLTJgwAYmJiUhISEB+fj5iYmIwa9YsnDx5Ejk5OVrD00xMTCCTyVBYWIjs7GzI5XLY29ujb9++8PPzg6WlpdawNs1zT506BZVKheDgYGRlZcHW1hYTJkyAp6cnioqKkJeXhzlz5qBbt25tWsf64O7ujkmTJmH37t3Yvn07JkyYoLPnT5M639fXF7dv38a5c+cQFxcHR0dH9O3bFwEBAUxeQUREnRYDKyJqVebm5nj44Yexb98+7N69GwUFBRg/fjyMjIzQrVs3xMTE4NSpU9i3bx/GjBmjNd/Hz88P06ZNQ1xcHLZs2YLRo0frXFTXyMgIUVFRcHV1xaFDh7BlyxaMHTsWI0eOFI8RBAG3b9/GlStXcOvWLchkMgwePBghISFwc3NrsIflzJkzSEpKgrW1NdLS0hASEoKIiAgolUrs2LED9vb2WLhwoc45Ye2Vs7MzpkyZgl27dmH79u2YOHGizsAWuBdgde3aFV27dkVOTg7Onz+PgwcPwsnJSWcSEiIios6ATYtE1OqMjIwQGxuLyZMn4+zZs/jhhx9QXV0NAPD09MSYMWOQnZ2NuLg41NTUaD3XwcEB06dPh5ubG3bv3o0///yz3jXm/Pz8MH36dDFBRmpqKu7evYsLFy5g8+bN2LVrF4qLizFo0CA88sgjGDFiBNzd3RsMquLj47Fp0yYoFAp069YNs2fPxrBhwyCTyfDHH3+gtLQU8+fP71BBlYa9vT2mTp0KIyMj7NixA3fu3Hngczw8PDBhwgTMmTOHQRUREXVq7LEiIr2JiIiAo6MjNm/ejP/+97+YNm0aAMDLywvjx4/Hnj17sGfPHsTGxmrNqTI3N0dsbCzOnDmD+Ph4FBUVYfjw4Vq9Wxr29vaYNm0ajhw5gv3798PIyAgymQwBAQGIiYl5YO+URklJCfbu3YsDBw7Az88Pjz76qNhbVlFRgV27dqGqqgpjxoyBp6dn61SQAbK2tsaUKVO0hgW6uro+8Hn19W4RERF1FgysiEiv/P39xaQW69evh7e3N2xsbODp6YkJEyZg9+7d+OOPPzBu3Dhx0V3gXq/XgAED4OzsjMOHD6O4uBixsbE65/6Ymppi1KhR8PHxEZNNNDb19927d3H27FlcuHABKSkpiIyMxGOPPSYGemVlZdi1axfUajUmTpzYKeYQWVpaYtKkSWJCi3HjxnXoYJKIiKg1dPw7BCKSnJOTE5588km4urriwIEDuH79OoB7SRMmTpyIoqIi7N69G3K5vM5zAwMDMXXqVMjlcvz+++/IycnR+R4ymQzdu3dH7969GxVU1dTU4Pz58/jpp59w9epVKBQKREVF4dFHHxWDquLiYmzfvh0ymQxTpkzpVL0yXbp0wcSJE8UhmRkZGVIXiYiIyKAxsCKiNmFhYYG5c+ciICAAx44dQ3x8PARBgJubGyZNmoSSkhLs3r1bnItVm7OzM2bMmAFHR0fs3LkTSUlJ9c67ehBBEHD9+nX89NNPSExMRLdu3eDk5ARHR0dMmDBBDMoKCwuxfft2mJubY/LkybCxsWnR52+PTE1NERsbCx8fH+zduxcpKSlSF4mIiMhgMbAiojZjbGyMAQMGYMCAAbh48SL27t0LpVIJFxcXTJo0CaWlpdi1a5fO4KpLly4YP348evXqhePHj+Po0aN1El88yK1bt/Dbb7/h0KFDcHNzw+zZsyEIAgoLCzFmzBjY29sDAHJzc7Fz507Y2Nhg8uTJsLKyao2P3y6ZmJhg9OjRCAoKwsGDB3HlyhWpi0RERGSQGFgRUZuSyWTo3bs3YmNjcfv2bWzbtg0VFRVwdnbG5MmTUVFRgZ07d+Lu3bt1nmtsbIzBgwcjJiYGN27cwM6dO1FZWfnA97xz5w7++OMP7Nq1CyYmJpg6dSrGjBmDzMxMJCcnY9iwYfDy8gJwL/jatWsXHB0dMWnSpEbP1erIjIyMEBMTg549e+Lo0aO4cOGC1EUiIiIyOAysiEgSvr6+4typLVu2ID8/H05OTpg8eTLu3r2LnTt3oqqqSudzg4ODMWXKFFRUVGDLli3Iy8vTeVxlZSWOHDmCX3/9FaWlpRgzZgymTp0Kd3d3pKenIz4+HuHh4ejRowcAID09HXv27BFTiNdOptHZyWQyDBkyBP369UNCQgJOnz7d7OGYREREHREDKyKSjJOTE6ZPnw4bGxts374dqampcHR0xOTJkyGXy7Fjx456e6RcXV0xffp0WFtbY8eOHbh27Zq4T6lUIjExET/99BPS09MxePBgzJ49GwEBAZDJZCgsLMTBgwfh5+eHAQMGAABSUlKwb98++Pj4YOzYsTpTu3d2MpkM/fv3x8CBA3H+/HmcOHGCwRUREdH/xzsHIpKUJrW3Zh2qkpIS9OvXD5MmTcLOnTuxY8cOTJo0SWeadSsrK0yaNAknT57E4cOHUVhYCEdHRyQmJkIulyM0NBR9+vSBubm5+JzKykrs2bMH9vb2GDlyJGQyGa5evYqjR4+iW7duiI6O7hQp1VsiPDwcZmZmOHbsGJRKJeuMiIgIDKyIyACYmJhg5MiRcHBwwJkzZ1BSUoLo6GhMmTIFO3bsEIMrXZn5TExMMGzYMDg5OeHkyZNQq9Xo1q0b+vfvX+d4pVKJPXv2AABiY2NhYmKCixcv4tSpU+jVqxeGDBnSqMWECQgJCYGpqSkOHToEhUKBUaNGsZePiIg6NV4FicggyGQy9OvXD3Z2djh06BDKy8sxduxYTJkyRavnytbWVudze/XqBTc3NwD30rPfTxAEHDx4EKWlpZgyZQosLS1x9uxZJCYmIjw8HAMGDGBQ1URBQUEwNTXFvn37sGfPHsTGxoprgBEREXU2HLtBRAYlMDAQU6ZMQXl5ObZs2QKFQoHJkyfDyMgIO3bsQGlpab3PdXZ21hlUAUBCQgIyMjIwcuRIODk5ISEhAYmJiejfvz+Dqhbw9fXFhAkTUFFRoTOTIxERUWfBwIqIDI4mMYW5uTm2bduGoqIiTJ48GSYmJtixYwdKSkqa9HpXr17Fn3/+iUGDBsHX1xfHjx/Hn3/+icGDB6Nfv34MqlrI09MTDz30kM7eRCIios6CgRURGSRra2tMnToVXl5eiIuLQ2pqKiZNmgQzMzPs2LEDxcXFjXqd27dv49ixY+jZsyd69uyJQ4cO4cqVK4iOjkZoaKieP0XnweQVRETU2fFKSEQGy9TUFGPHjkV4eDhOnTqFxMRETJgwARYWFtixYweKiooafH5JSQn27dsHT09PREVFYf/+/UhNTcXIkSPFtauIiIiIWgMDKyIyaDKZDAMGDEBMTAxu3LiBQ4cOYcyYMbCyssLOnTtRWFio83nV1dXYs2cPLC0tER0djf379yMrKwtjx45FUFBQG38KIiIi6ugYWBFRuxAcHIyJEyfizp07+OOPPzB06FDY2tpi586dKCgo0Dq2pqYGe/fuhUKhwMiRI3HgwAHk5eVh/Pjx8PX1legTEBERUUfGwIqI2g0PDw9MmzYNRkZG+OOPPxAeHg57e3vs2rULeXl5AO6lVT927Bjy8/MxfPhwHD16FMXFxZg4cSK8vLwk/gRERETUUTGwIqJ2xc7ODlOnToWLiwsOHDgAf39/ODg4YPfu3cjNzcX58+dx/fp1DBgwAKdPn0ZFRQUmTZokrnFFREREpA9cIJiI2h1zc3OMHz8eJ0+eRHx8PEJCQiCTybBr1y7U1NQgJCQESUlJqKmpwZQpU2Bvby91kYmIiKiDY2BFRO2SkZERhg4dCnt7e5w6dQoeHh7w8PCATCZDZmYmjI2NMWXKFK6tRERERG2CQwHvc/ToUUyePBmenp6QyWTYunWr1EUiogb07t0b48ePR0FBASoqKlBQUAAzMzMGVURERNSmGFjdp7KyEuHh4fjPf/4jdVGIqJG6du2KadOmQa1Ww8rKClOmTIGVlZXUxSIiIqJOhEMB7zN+/HiMHz9e6mIQURM5ODhg9uzZkMlkMDJimxERERG1LQZWLSSXyyGXy8XHFRUVEpaGqHMzNjaWughERETUSbFZt4U+/PBD2NnZiX/R0dFSF4mIiIiIiNoYA6sWev3111FaWir+HTlyROoiERERERFRG+NQwBYyNzeHubm5+Nja2lrC0hARERERkRTYY0VERERERNRC7LG6T0VFBVJSUsTHaWlpuHDhAhwdHeHj4yNhyYiIiIiIyFAxsLpPYmIiRowYIT7+y1/+AgBYuHAh1q9fL1GpiIiIiIjIkDGwuk9MTAwEQZC6GK2msLAQhYWFenltuVyOqqoq2NjYwMLCQi/voS93795FSkoKLC0ttebItQesd+mw7uvn7OwMZ2fnVn9dejCe53Vrz+cb1rs02nO9AzzPGwKZ0JGiCAOQk5ODb775BkuWLIGHh4ekZZHL5YiNjWWmQiLSu+joaMTFxbW7G6n2jud5ImorPM8/GAOrDqysrAx2dnY4cuQIsxW2oYqKCkRHR7PeJcC6l4am3ktLS2Frayt1cToVnuelwXONdFj30uB5vnE4FLAT6NOnD38EbaisrAwA610KrHtpaOqdpMPvfNviuUY6rHtp8DzfOEy3TkRERERE1EIMrIiIiIiIiFqIgVUHZm5ujhUrVnCSYRtjvUuHdS8N1rt0WPfSYL1Lh3UvDdZ74zB5BRERERERUQuxx4qIiIiIiKiFGFgRERERERG1EAMrIiIiIiKiFmJgRY2Snp4OmUyG9evXS10UIiLSA57niYhahoGVHqSmpmLJkiUICAhAly5dYGtriyFDhuCLL77A3bt39fa+ycnJeOedd5Cenq6392iM999/H1OmTIGbmxtkMhneeecdScuji0wma9Tf4cOHW/xeVVVVeOedd5r0Wu2hDpvLkOv+6tWrWLp0Kfr06QMbGxt4eHhg4sSJSExMbHFZpGbI9Z6dnY1HHnkEwcHBsLGxgb29PaKiovDdd9/BUPMrdebzfHv5nRjyd/5+P/zwA2QyGaytrVtcFkNgyHWvaUDQ9ffTTz+1uDxSMuR610hNTcW8efPg6uoKCwsLdOvWDcuXL29xeQyFidQF6Gh27dqF2bNnw9zcHAsWLEDv3r2hUChw/Phx/O1vf0NSUhJWr16tl/dOTk7GypUrERMTAz8/P728R2O8+eabcHd3R9++fREXFydZORqyceNGrccbNmzAvn376mwPCQlp8XtVVVVh5cqVAICYmJhGPac91GFzGXLd//e//8XatWsxc+ZMPPvssygtLcU333yDgQMHYs+ePRg9enSLyyQVQ673wsJC3Lp1C7NmzYKPjw+USiX27duHxx57DNeuXcMHH3zQ4jK1ps5+nm8vvxND/s7XVlFRgaVLl8LKyqrF5TAU7aHu586diwkTJmhtGzRoUIvLIyVDr/cLFy4gJiYGXl5eePXVV+Hk5ITMzExkZWW1uDwGQ6BWc/PmTcHa2lro0aOHkJ2dXWf/jRs3hM8//1xv7//LL78IAIRDhw498Fi1Wi1UVVU1+rXT0tIEAMK6desadawgCEJBQYEAQFixYkWj30cqzz33nKCvn0Nz6qE91mFzGVLdJyYmCuXl5VrbCgsLBRcXF2HIkCF6KKF0DKne6zNp0iTByspKqKmpaZ2CtQKe59vv78RQv/OvvfaaEBwcLMyfP1+wsrJq/cIZAEOqe833/JNPPtFLeQyJIdW7SqUSevfuLQwYMKBJ56X2hkMBW9HHH3+MiooKrF27Fh4eHnX2BwUF4aWXXhIf19TU4L333kNgYCDMzc3h5+eHN954A3K5XOt5fn5+mDRpEo4fP46oqCh06dIFAQEB2LBhg3jM+vXrMXv2bADAiBEj6nT3al4jLi4OkZGRsLCwwDfffAMAuHnzJmbPng1HR0dYWlpi4MCB2LVrV7PrQcrestakVqvx+eefo1evXujSpQvc3NywZMkSFBcXax2XmJiI2NhYODs7w8LCAv7+/njiiScA3Bty4OLiAgBYuXKl+P/lQUP7OkodNpdUdR8REVFnKI6TkxOGDRuGK1eutO6HNEBSfud18fPzQ1VVFRQKRYs/W2vheb5j/U6k/s7fuHED//rXv/DZZ5/BxKRzDSKSuu4BoLKy0qDOL21Bqnrfu3cvLl++jBUrVsDCwgJVVVVQqVR6+5ySkTqy60i8vLyEgICARh+/cOFCAYAwa9Ys4T//+Y+wYMECAYAwbdo0reN8fX2F4OBgwc3NTXjjjTeE//u//xP69esnyGQy4fLly4IgCEJqaqrw4osvCgCEN954Q9i4caOwceNGITc3V3yNoKAgwcHBQVi2bJnw9ddfC4cOHRJyc3MFNzc3wcbGRli+fLnw2WefCeHh4YKRkZHw+++/i2VoSo+VRnvqbdHVqvPkk08KJiYmwuLFi4Wvv/5aeO211wQrKyuhf//+gkKhEARBEPLy8gQHBwehe/fuwieffCKsWbNGWL58uRASEiIIgiBUVFQIq1atEgAI06dPF/+//Pnnn40qV3uqw+Yy1LqvbfDgwUL37t1b/mENiCHWe1VVlVBQUCCkpaUJ69evF6ysrITBgwe3/odvAZ7n62fovxND/M5PmDBBiI2NFQTh3nelM/VYSVX3mu+5tbW1AECQyWRCZGSkEBcXp78KkIgh1furr74qABAOHDggRERECAAEMzMzYc6cOUJRUZH+KqGNMbBqJaWlpQIAYerUqY06/sKFCwIA4cknn9Ta/te//lUAIBw8eFDc5uvrKwAQjh49Km7Lz88XzM3NhVdffVXc1tAQEc1r7NmzR2v7yy+/LAAQjh07Jm4rLy8X/P39BT8/P0GlUgmC0PkCq2PHjgkAhB9++EHruD179mht37JliwBAOHPmTL2v3ZJ6aE912FyGWvcaR48eFWQymfDWW281+zUMkSHW+4cffigAEP9GjRolZGZmNuk19Inn+fq1h9+JoX3nd+7cKZiYmAhJSUmCIHSuwErKus/IyBDGjh0rrFq1Sti+fbvw+eefCz4+PoKRkZGwc+fOpn84A2ZI9T5lyhQBgODk5CTMnz9f+PXXX4W33npLMDExEQYPHiyo1eqmf0ADxKGAraSsrAwAYGNj06jjd+/eDQD4y1/+orX91VdfBYA6QzR69uyJYcOGiY9dXFwQHByMmzdvNrqM/v7+iI2NrVOOqKgoDB06VNxmbW2Np556Cunp6UhOTm7063ckv/zyC+zs7DBmzBgUFhaKf5ohMIcOHQIA2NvbAwB27twJpVIpYYk7DkOq+/z8fMybNw/+/v5YunSpXt7DUBhCvc+dOxf79u3Dpk2bMG/ePADQa4a9puJ5Xrf2+juR8juvUCjwyiuv4Omnn0bPnj1b5TXbEynr3sfHB3FxcXj66acxefJkvPTSSzh//jxcXFzE32ZHJWW9V1RUAAD69++P77//HjNnzsS7776L9957DydPnsSBAwda5X2kxsCqldja2gIAysvLG3V8RkYGjIyMEBQUpLXd3d0d9vb2yMjI0Nru4+NT5zUcHBzqjIltiL+/v85yBAcH19muyRhzfzk6ixs3bqC0tBSurq5wcXHR+quoqEB+fj4AIDo6GjNnzsTKlSvh7OyMqVOnYt26dXXmT1DjGUrdV1ZWYtKkSSgvL8e2bds6TBrk+hhCvfv6+mL06NGYO3cufvjhBwQEBGD06NEGE1zxPF9Xe/6dSPmd/9e//oXCwkIxq1pnYwjnm9ocHR3x+OOP49q1a7h161arvrYhkbLeLSwsANxrQKtN04h28uTJZr+2IelcMyX1yNbWFp6enrh8+XKTnieTyRp1nLGxsc7tQhPWeNF8qenB1Go1XF1d8cMPP+jcr5m0KZPJ8OuvvyI+Ph47duxAXFwcnnjiCfzzn/9EfHx8u7rJMBSGUPcKhQIzZszAxYsXERcXh969ezf7tdoLQ6j3+82aNQtr1qzB0aNH6/TCSIHneW3t/Xci1Xe+tLQUf//73/Hss8+irKxM7AmtqKiAIAhIT0+HpaUlXF1dW/YBDZghnm+8vb0BAHfu3EHXrl1b7XUNiZT17unpCQBwc3PT2q75njelAcmQMbBqRZMmTcLq1atx6tSpB66F4OvrC7VajRs3bmitJ5CXl4eSkhL4+vo2+f0be/G+vxzXrl2rs/3q1avi/s4oMDAQ+/fvx5AhQxp1ozJw4EAMHDgQ77//PjZt2oT58+fjp59+wpNPPtms/y+dmdR1r1arsWDBAhw4cAA///wzoqOjm/Mx2h2p610XTU9VaWlpq7xea+B5/p6O8DuR6jtfXFyMiooKfPzxx/j444/r7Pf398fUqVOxdevWpnycdsUQzzeaIbea4KIjkrLeIyIisGbNGty+fVtre3Z2NoCOU+8cCtiKNAv8Pfnkk8jLy6uzPzU1FV988QUAiIvSff7551rHfPbZZwCAiRMnNvn9NYsLlpSUNPo5EyZMwOnTp3Hq1ClxW2VlJVavXg0/P79OOfYbAB566CGoVCq89957dfbV1NSIdVxcXFynNblPnz4AIHaZW1paAmja/5fOTOq6f+GFF7B582Z89dVXmDFjRtM/QDslZb0XFBTo3L527VrIZDL069evUa/TFniev6cj/E6k+s67urpiy5Ytdf5GjBiBLl26YMuWLXj99deb/8HaAUM739y+fRvffvstwsLCdC6j0FFIWe9Tp06Fubk51q1bB7VaLW7/73//CwAYM2ZMUz6KwWKPVSsKDAzEpk2bMGfOHISEhGDBggXo3bs3FAoFTp48iV9++QWPPfYYACA8PBwLFy7E6tWrUVJSgujoaJw+fRrfffcdpk2bhhEjRjT5/fv06QNjY2N89NFHKC0thbm5OUaOHNngcIJly5bhxx9/xPjx4/Hiiy/C0dER3333HdLS0vDbb7/ByKjpsffGjRuRkZGBqqoqAMDRo0fx97//HQDw6KOPtotesOjoaCxZsgQffvghLly4gLFjx8LU1BQ3btzAL7/8gi+++AKzZs3Cd999h6+++grTp09HYGAgysvLsWbNGtja2oo3VRYWFujZsyc2b96M7t27w9HREb17925w2ExHqMPmkrLuP//8c3z11VcYNGgQLC0t8f3332vtnz59unhj29FIWe/vv/8+Tpw4gXHjxsHHxwd37tzBb7/9hjNnzuCFF16oM0dJSjzPd5zfiVTfeUtLS0ybNq3O9q1bt+L06dM693U0Up5vli5ditTUVIwaNQqenp5IT0/HN998g8rKSrFRpKOSst7d3d2xfPlyvP322xg3bhymTZuGP//8E2vWrMHcuXPRv3//tqwK/ZEsH2EHdv36dWHx4sWCn5+fYGZmJtjY2AhDhgwR/v3vfwvV1dXicUqlUli5cqXg7+8vmJqaCt7e3sLrr7+udYwg3EuhO3HixDrvEx0dLURHR2ttW7NmjRAQECAYGxtrpeSt7zUE4d7aKLNmzRLs7e2FLl26CFFRUXVSjjYlDW90dLRWyuTaf7pSBBuC+lYnX716tRARESFYWFgINjY2QmhoqLB06VIhOztbEARBOHfunDB37lzBx8dHMDc3F1xdXYVJkyYJiYmJWq9z8uRJISIiQjAzM2tUetL2WIfNZUh1r1lzqL6/tLS01vzokjKket+7d68wadIkwdPTUzA1NRXPmevWrTPYFLyd+TzfXn8nhvSd16UzpVvXkKLuN23aJAwfPlxwcXERTExMBGdnZ2H69OnC2bNnW/UzGwJDqndBEAS1Wi38+9//Frp37y6eD998801x/ayOQCYITZgVS0RERERERHVwjhUREREREVELMbAiIiIiIiJqIQZWRERERERELcTAioiIiIiIqIUYWBEREREREbUQAysJfPzxx+jRo4fWAmnt1bJlyzBgwACpi9ForHtpsN6lw7qXButdOqx7abDepcO6NyBS53vvbEpLSwVHR0fh22+/Fbfh/6/98emnn9Y5ft26dQIA4cyZMy1+799++0146KGHBH9/f8HCwkLo3r278Je//EUoLi7Wefy2bduEvn37Cubm5oK3t7fw9ttvC0qlUuuYnJwcwdzcXNi2bVuLy6dvrHtpsN6lw7qXButdOqx7abDepcO6NywMrNrYv/71L8HW1la4e/euuE3zA3BzcxMqKyu1jm/NH4CTk5MQGhoqvPXWW8KaNWuEF198UTAzMxN69OghVFVVaR27e/duQSaTCSNGjBBWr14tvPDCC4KRkZHw9NNP13ndhx56SBg2bFiLy6dvrHtpsN6lw7qXButdOqx7abDepcO6NywMrNpYWFiY8Mgjj2htAyD06dNHACD885//1NrXmj+AQ4cO1dn23XffCQCENWvWaG3v2bOnEB4ertWSsHz5ckEmkwlXrlzROvbXX38VZDKZkJqa2uIy6hPrXhqsd+mw7qXBepcO614arHfpsO4NC+dYtaG0tDRcvHgRo0ePrrNvyJAhGDlyJD7++GPcvXtXL+8fExNTZ9v06dMBAFeuXBG3JScnIzk5GU899RRMTEzE7c8++ywEQcCvv/6q9Rqaz7Nt2zY9lLp1sO6lwXqXDuteGqx36bDupcF6lw7r3vAwsGpDJ0+eBAD069dP5/533nkHeXl5WLVqVYOvI5fLUVhY2Ki/B8nNzQUAODs7i9vOnz8PAIiMjNQ61tPTE127dhX3a9jZ2SEwMBAnTpx44PtJhXUvDda7dFj30mC9S4d1Lw3Wu3RY94bH5MGHUGu5evUqAMDf31/n/mHDhmHEiBH45JNP8Mwzz8DCwkLncT/++CMef/zxRr2nIAgN7v/oo49gbGyMWbNmidtycnIAAB4eHnWO9/DwQHZ2dp3tAQEBSE5OblSZpMC6lwbrXTqse2mw3qXDupcG6106rHvDw8CqDRUVFcHExATW1tb1HvPOO+8gOjoaX3/9NV555RWdx8TGxmLfvn0tLs+mTZuwdu1aLF26FN26dRO3a7qMzc3N6zynS5cuKCsrq7PdwcGhTouDIWHdS4P1Lh3WvTRY79Jh3UuD9S4d1r3hYWBlYIYPH44RI0bg448/xtNPP63zGA8PD51Rf1McO3YMixYtQmxsLN5//32tfZoWDblcXud51dXVOls8BEGATCZrUZmkxrqXButdOqx7abDepcO6lwbrXTqs+7bFwKoNOTk5oaamBuXl5bCxsan3uBUrViAmJgbffPMN7O3t6+y/e/cuSktLG/We7u7udbb9+eefmDJlCnr37o1ff/1VayIh8L+u2pycHHh7e2vty8nJQVRUVJ3XLC4u1hpPa2hY99JgvUuHdS8N1rt0WPfSYL1Lh3VveJi8og316NEDwL0sLg2Jjo5GTEwMPvroI52ZXDZv3iy2Ljzo736pqakYN24cXF1dsXv3bp3dx3369AEAJCYmam3Pzs7GrVu3xP21paWlISQkpMHPJSXWvTRY79Jh3UuD9S4d1r00WO/SYd0bHvZYtaFBgwYBuPfFCgsLa/DYd955BzExMVi9enWdfc0dC5ubm4uxY8fCyMgIcXFxcHFx0Xlcr1690KNHD6xevRpLliyBsbExAGDVqlWQyWRaExIBoLS0FKmpqXjmmWeaXKa2wrqXButdOqx7abDepcO6lwbrXTqsewPUdktmkSAIQu/evYW5c+dqbQMgPPfcc3WOjY6OFlfPbo2F3MLDwwUAwtKlS4WNGzdq/e3du1fr2B07dggymUwYOXKksHr1auHFF18UjIyMhMWLF9d53V9//VUAIKSkpLS4jPrEupcG6106rHtpsN6lw7qXButdOqx7w8LAqo199tlngrW1tVBVVSVuq+8HcOjQoVb9AWheS9dfdHR0neO3bNki9OnTRzA3Nxe6du0qvPnmm4JCoahz3Jw5c4ShQ4e2uHz6xrqXButdOqx7abDepcO6lwbrXTqse8PCwKqNlZSUCI6OjsJ///tfqYvSKnJycoQuXboIW7dulbooD8S6lwbrXTqse2mw3qXDupcG6106rHvDwsBKAv/4xz+E4OBgQaVSSV2UFnvttdeE/v37S12MRmPdS4P1Lh3WvTRY79Jh3UuD9S4d1r3hkAnCA5ZQJiIiIiIiogYx3ToREREREVELMbAiIiIiIiJqIQZWRERERERELcTAioiIiIiIqIUYWBEREREREbUQAysiIiIiIqIWYmBFRERERETUQgysiIiIiIiIWoiBFRERERERUQsxsCIiIiIiImohBlZEREREREQtxMCKiIiIiIiohRhYERERERERtRADq1aWk5ODd955Bzk5OVIXhYiIiIiI2ggDq1aWk5ODlStXMrAiIiIiIupEGFgRERERERG1EAMrIiIiIiKiFmJgRURERERE1EIMrGpZtWoVwsLCYGtrC1tbWwwaNAh//PGH1MUiIiIiIiIDx8Cqlq5du+If//gHzp49i8TERIwcORJTp05FUlKS1EUjIiIiA6FQKHDy5EkoFAqpi0JEBsRE6gIYksmTJ2s9fv/997Fq1SrEx8ejV69eEpWKiIiIDEl8fDw2btwIlUqFYcOGSV0cIjIQ7LGqh0qlwk8//YTKykoMGjSo3uPkcjnKysrEv4qKijYsJREREbUluVyOuLg4pKWlYc+ePZDL5VIXiYgMBAOr+1y6dAnW1tYwNzfH008/jS1btqBnz571Hv/hhx/Czs5O/IuOjm7D0hIREVFbSkhIwPXr1xEWFobr16/j9OnTUheJiAwEA6v7BAcH48KFC0hISMAzzzyDhQsXIjk5ud7jX3/9dZSWlop/R44cacPSEhERUVvR9FaZmZnB1tYWZmZm7LUiIhEDq/uYmZkhKCgIERER+PDDDxEeHo4vvvii3uPNzc3FLIK2trawtrZuw9ISERFRWzl//jxSU1NRWVmJpKQkVFZWIjU1FefPn5e6aERkAJi84gHUajVbooiIiAje3t6YP3++zu1ERAysann99dcxfvx4+Pj4oLy8HJs2bcLhw4cRFxcnddGIiIhIYl5eXvDy8pK6GERkoBhY1ZKfn48FCxYgJycHdnZ2CAsLQ1xcHMaMGSN10YiIiIiIyIAxsKpl7dq1UheBiIiIiIjaISavICIiIiIiaiEGVkRERERERC3EwIqIiIiIiKiFGFgRERERERG1EAMrIiIiIiKiFmJgRURERERE1EIMrIiIiIiIiFqIgRUREREREVELMbAiIiIiIiJqIQZWRETUqhQKBU6ePAmFQiF1UYiIiNoMAysiImpV8fHxWLduHRISEqQuChERUZthYEVERK1GLpcjLi4OaWlp2LNnD+RyudRFIiIiahMMrIiIqNUkJCTg+vXrCAsLw/Xr13H69Gmpi0RERNQmGFgREVGr0PRWmZmZwdbWFmZmZuy1IiKiToOBFRERtYrz588jNTUVlZWVSEpKQmVlJVJTU3H+/Hmpi0ZERKR3JlIXgIiI2jeFQoHExER4eHhg/vz5dfZ7e3tLUCoiIqK2xcCKiIhaJD4+Hhs3bsSCBQswefJkqYtDpHeaxoTIyEiYmZlJXRwiMhAcCkhERM3GLIDUGXFJASLSxaACK5VKhZ9++glLlizB9OnTcenSJQBAaWkpfv/9d+Tl5UlcQiIiqo1ZAKmzYWMCEdXHYAKrkpISDBkyBPPmzcOPP/6I7du3o6CgAABgbW2NF198EV988YXEpSQiIg1mAaTOiI0JRFQfgwmsli1bhqSkJMTFxeHmzZsQBEHcZ2xsjFmzZmH37t0SlpCIiGpjFkDqbNiYQEQNMZjkFVu3bsULL7yAMWPGoKioqM7+7t27Y/369Xotw4cffojff/8dV69ehYWFBQYPHoyPPvoIwcHBen1fIqL2yNvbm1kAqVPRNCZUV1cjKSkJSqVSbEwYOHCg1MUjIokZTGBVWloKf3//evcrlUrU1NTotQxHjhzBc889h/79+6OmpgZvvPEGxo4di+TkZFhZWen1vYmI2hsvLy94eXlJXQyiNsPGBCJqiMEEVoGBgTh37ly9+/fu3YuePXvqtQx79uzRerx+/Xq4urri7NmzGD58uF7fm4iIiAwbGxOIqCEGM8fqySefxLfffovNmzeL86tkMhnkcjmWL1+OPXv2YMmSJW1aptLSUgCAo6NjvcfI5XKUlZWJfxUVFW1VPCIiIiIiMhAyoXaWCAkJgoCnnnoKa9euhb29PUpKSuDm5oaioiLU1NRgyZIlWLVqVZuVR61WY8qUKSgpKcHx48frPe6dd97BypUr62w/e/Ys+vXrp88iEhERERGRgTCYwErj+PHj+PXXX3Hjxg2o1WoEBgbioYceavOheM888wz++OMPHD9+HF27dq33OLlcrpUN6MKFC4iOjmZgRURERETUiRjMHCuNoUOHYujQoZKW4fnnn8fOnTtx9OjRBoMqADA3N4e5ubn42NraWt/FIyIiIiIiA2Mwc6zS0tKwY8eOevfv2LED6enpei2DIAh4/vnnsWXLFhw8eLDBLIVEREREREQaBtNj9de//hVlZWWYPHmyzv3/+c9/YG9vj59++klvZXjuueewadMmbNu2DTY2NsjNzQUA2NnZwcLCQm/vS0RERERE7ZvB9FidOnUKY8aMqXf/qFGjcOzYMb2WYdWqVSgtLUVMTAw8PDzEv82bN+v1faljUSgUOHnyJBQKhdRFISIiPeB5noh0MZgeq+LiYtjY2NS739raGkVFRXotg4Hl8aB2Kj4+Hhs3boRKpcKwYcOkLg4REbUynueJSBeD6bHy8fHBiRMn6t1/7NixByaSIJKaXC5HXFwc0tLSsGfPHq2MkURE1P7xPE9E9TGYwGru3Ln48ccf8eWXX0KtVovbVSoVvvjiC2zevBnz5s2TsIRED5aQkIDr168jLCwM169fx+nTp6UuEhERtSKe54moPgYTWL3++usYMWIEXn75ZXh4eGD48OEYPnw4PD098corryA6OhrLly+XuphE9dK0YpqZmcHW1hZmZmZszSQi6kB4nieihhhMYGVubo69e/di7dq1iIqKQmFhIQoLCxEVFYVvv/0W+/fv11ovisjQnD9/HqmpqaisrERSUhIqKyuRmpqK8+fPS100IiJqBTzPE1FDDCZ5BQAYGRnh8ccfx+OPPy51UYiazNvbG/Pnz9e5nYiI2j+e54moIQYVWBG1Z15eXvDy8pK6GEREpCea87xCoUBiYiIiIyNhZmYmdbGIyEAYVGAVFxeHtWvX4ubNmyguLq6T/lwmkyE1NVWi0hEREREx3ToR6WYwgdUnn3yCZcuWwc3NDVFRUQgNDZW6SERERERa7k+3HhUVxTngRATAgAKrL774AiNHjsTu3bthamoqdXGIiKgVcMgUdTS60q2z14qIAAPKClhcXIxZs2YxqCIiamcUCgVOnjwJhUJRZ198fDzWrVuHhIQECUpG1LqYbp2IGmIwgVVUVBSuXbsmdTGIiKiJ6gue7h8yxZtPau+Ybp2IGmIwQwG/+uorjB8/HpGRkZg3b57UxSFqNg59os6kofkmHDJFHQ3TrVNnxXubxjGYwGrOnDmoqanBo48+imeeeQZdu3aFsbGx1jEymQx//vmnRCUkahxmi6LOpL7gqb4hU5zoT+0Zl9Wgzor3No1jMIGVo6MjnJyc0K1bN6mLQtRszBZFnUlDwZNmyFR1dTWSkpKgVCrFIVMDBw6UuuhERNRIvLdpPIMJrA4fPix1EYhajEOfqDNpKHjikCnq6NRqNYyMDGaqOpHe8N6m8QwmsCJq7zj0iTqbhoInDpmijk4QBKmL0Clxrk/b4r1N0xhUYFVWVoavvvoKhw4dQn5+Pr755htERUXhzp07WL9+PaZMmYKgoCCpi0mkE4c+UWfD4Ik6M5lMJnUROiXO9WlbvLdpGoMJrG7duoXo6GhkZWWhW7duuHr1KioqKgDcm3/1zTffICMjA1988YXEJSXSjUOfiIg6DwZWbY9zfdoe722axmACq7/97W8oLy/HhQsX4OrqCldXV63906ZNw86dOyUqHdGDsfWeiKhzUCgUOH36NKKiouoMR+NQNf3hXJ+2x3ubpjGYWZd79+7Fiy++iJ49e+psBQoICEBWVpYEJSMiIiL6n/j4eKxfv77OotiafboWzKaWqW+uDxceJ0NiMIHV3bt34eLiUu/+8vLyNiwNkbQUCgVOnjwJhUIhdVHaFdYbEemb5gb/5s2bdW7s7x+qxpv+1qOZ61NZWYmkpCRUVlaKc32IDIXBBFY9e/bE0aNH692/detW9O3bV+/lOHr0KCZPngxPT0/IZDJs3bpV7+9JdD+2eDYP600aCoUCR48e5U0kdQqa4Wi9evXCtWvXcPr06Tr7ag9Vo9ahmeuzaNEiLFiwAIsWLcL8+fM514cMisHMsXr55ZexcOFChIWFYfbs2QDurRGRkpKClStX4tSpU/jtt9/0Xo7KykqEh4fjiSeewIwZM/T+ftR51TcOn5Nzm4f1Jh3NsChBEBAdHS11cYj0pvZwNBsbGxQWFornGwBMS61HnOtD7YHBBFaPPPIIMjIy8Oabb2L58uUAgHHjxkEQBBgZGeGDDz7AtGnT9F6O8ePHY/z48Xp/H+o86gug6ksZy8m5zcN6k4bmRjM9PR179uzBwIEDeRNJHVbt1NPJyclQqVRaw9GYlrrtMEkIGSKDCawAYPny5Xj00Ufx22+/ISUlBWq1GoGBgZgxYwYCAgKkLp5Ocrlca/iLJkU8kYauAKq+3hUuxNc8rDfpaALa3r17i8OiGNBSR1U79fTdu3ehVqthZWUlDkdjWuq2w/WsyBAZRGBVVVWFYcOGYfHixXj66afxyiuvSF2kRvvwww+xcuVKqYtBBqq+AKq+3hUuxNc8rDdp3B/QmpiYMKClDq32cLSKigpUVlbCzc1Naz/pH4d+k6EyiMDK0tISaWlp7XKxvddffx1/+ctfxMcXLlzgHAOCWq2GTCbTGUBFRUXV27vChfiah/UmjfuHRcnlcga01KlUVlZKXYROiUO/yVAZRGAF3JtPFRcXhyVLlkhdlCYxNzfXaiWxtraWsDRkSKqqqnQGUIIgNNi7whbPpuOkZmnUDmiVSiUqKythb2/PgJY6DS4F0/Y49JsMmcEEVm+99RZmz56NRx99FEuWLIG/vz8sLCzqHOfo6ChB6YiaLiEhQWcAVVJSwt4V6hBqB7RyuRzZ2dnw9/eXuFREbYfzqtseh36TITOYwKpXr14AgOTkZGzatKne41QqlV7LUVFRgZSUFPFxWloaLly4AEdHR/j4+Oj1valjUCgUOH36NCwsLHQGUP369WPvCnVIJSUlUheBqE1VVVVJXYROh0O/yZAZTGD19ttvG8Qcq8TERIwYMUJ8rJk/tXDhQqxfv16iUlF7Eh8fjw0bNiAsLAwvvvii1MUhajOFhYVSF4GoTSkUCqmL0Om4uLjAycmJadbJIDUpsPL3929y8COTyZCamvrA4955550mva6+xMTEQBAEqYtB7VTtTEU5OTlYuHAh7OzsmvVaXKOD2pvc3FwIgvDA6wS/29RR1F5uhdoG06yTIWtSYBUdHV3ngpmYmIikpCT07NkTwcHBAIBr164hOTkZvXv3RkRERLMKVlpaCmtraxgbGzfr+URSSEhIwFdffQWlUgm1Wo1169bhpZdealZvLC8e1N7cvXsX6enpD5xnxe82dRRlZWWNakyg1sE062TojJpy8Pr167Fu3Trxb+rUqbh16xb27duHy5cv47fffsNvv/2Gy5cvIy4uDllZWZg2bVqjXz8xMRHjxo2DpaUlnJyccOTIEQD3hpdMnToVhw8fbkpxidqU5oQvl8tRWVkJpVKJvXv34o8//mhyq+b9Fw+2ilJ7ER8fD6VSCYVCgZMnT9YZKsXvNnUkCoUC+fn5Uhej09CVZp3IkDQpsLrf22+/jRdeeAGjRo2qs2/MmDF4/vnn8eabbzbqtU6ePImhQ4fixo0beOSRR6BWq8V9zs7OKC0txTfffNOS4hLplSZTUe2hpAUFBTh69Ci+//57bNy4UedEZ103oLx4UHsSGRmJwMBAvP/++ygvL8eRI0dw6tQprFu3DgkJCVrH8rtNHU1ycrLURegU6kuzzsYZMiQtCqxu3LgBJyenevc7OTk1an4VALzxxhsICQlBcnIyPvjggzr7R4wYUecCTWRIvL29MXbsWHH4qpGREUJCQuDg4IArV65g9erV+OCDD3D27FmttU/i4+O1bkB58aD2Jjc3F7dv30ZZWRmAe8PBv/vuuzq9UvxuU0eUkpIifvdJfzSNl5WVlUhKSkJlZaWYZp3IULQosAoMDMS6det0ruNQXl6Ob7/9FgEBAY16rTNnzuDxxx+Hubm5zrHKXl5eyM3NbUlxifTm9OnTePrpp/Hkk0+isrISwL2eqO+//x7ff/89Tp48icLCQpw7dw7x8fH48ccfsWXLFpw6dQpbtmzBzZs3xRtMfV087ty5g/nz58PW1hb29vZYtGhRo9dgEQQB48ePh0wmw9atW7X2nTlzBqNGjYK9vT0cHBwQGxuLP//8s0VlpfYtLS0Nf/75J7y8vLR6pXhjRB2RIAg4c+aM1MXo8DRp1hctWoQFCxZg0aJFmD9/PtOsS6S+4d6dXYvSrf/973/HrFmz0KNHDzz22GMICgoCcK8n67vvvkNeXh5++eWXRr2Wqamp1vC/+92+fRvW1tYtKS6RXvz++++YM2cOBEGok1FSEAQkJSVBEASEhoYiLy8P6enp6NatGwoKCnDixAkcPXoUrq6uOHnyJPbs2YOIiIhmr9ERExODxx57DI899lidffPnz0dOTg727dsHpVKJxx9/HE899VSD68ZpfP755zobPCoqKjBu3DhMmTIFX331FWpqarBixQrExsYiKysLpqamD3xt6liUSiWSk5NhbGyMO3fuQK1Wi5PMuf4MdRSRkZHIycmBiYkJli9fjtTUVPTs2RMeHh5SF63Dqr0gOUmPSYh0a1FgNW3aNOzevRuvvfZaneF7ffr0wdq1axEbG9uo1xo4cCB+/fVXvPzyy3X2VVZWYt26dYiOjm5JcYla3enTpzFnzhyoVKp60/Rrtl++fBk9evRAUlIS/Pz8AEC8ATUxMUFlZSW++eYbPPLIIwgNDUW3bt3QpUuXVinnlStXsGfPHpw5cwaRkZEAgH//+9+YMGECPv30U3h6etb73AsXLuCf//wnEhMT69w0XL16FXfu3MG7774r3hyvWLECYWFhyMjIEBtbqGPTfMcFQUBWVhYKCgqgVCqRnZ0NlUoFpVKJc+fOYdCgQbwxog4hNzcX2dnZsLe3F7cdO3YMM2bMgImJwSwRSqQXzM5Yvxb/+seOHYuxY8ciNzcXGRkZAABfX1+4u7s36XVWrlyJ6OhoTJw4EXPnzgUA/Pnnn7h58yY+/fRTFBQU4K233mppcYla1d///nedPVW6CIKA27dvw8rKCllZWQBQ5wa0oKAAFy9eREVFBU6fPg1/f3+EhITA3d29Rel8T506BXt7ezGoAoDRo0fDyMgICQkJmD59us7nVVVVYd68efjPf/6j8zcdHBwMJycnrF27Fm+88QZUKhXWrl2LkJAQMXikjk8zFESlUsHBwQFRUVF1jklPT0dkZCR7ManDKikpwalTp9h6Tx2eriRE/N7f02rNKu7u7k0OpmobMGAAdu/ejWeeeQYLFiwAALz66qsA7s3l2r17N8LCwlqlrEStITMzEzt37mzSgtJlZWViQgsAOm9ANftUKhVSUlKQkpICR0dH9OzZE0FBQc1aUDU3Nxeurq5a20xMTODo6Njg3MVXXnkFgwcPxtSpU3Xut7GxweHDhzFt2jS89957AIBu3bohLi6OrbadhFwuR3V1NYB7wwCtra0RHh5e57jy8nJs3boVo0ePFr/jRB3NlStX4OHhwd56A8HFyFtffUmI2Gt1T4vvfDIzM/HBBx/g0KFDKCgowNatWzF8+HAUFhbi3XffxeOPP46+ffvWeV5ZWRmsrKy0FgAeOXIkrl27hgsXLuDGjRtQq9UIDAxEREQEF9+jVqdQKFBTU9Po4wVBQFlZGfLy8sT5g00JqjRkMhns7OwAAKGhoTqPuX++YWFhIY4ePYqTJ08iMDAQ/fr1g52dHT744AOtYbh3795FfHw8nn/+eXFbc1MBb9++HQcPHmwwscDdu3exaNEiDBkyBD/++CNUKhU+/fRTTJw4EWfOnIGFhUWz3pvaj4SEBPF3pFarxTmEuhQXF2Pr1q0YOnRovccAvBmi9u3YsWNwcXERz/OkXw2dLzgPqPVpkhBVV1cjKSkJSqVSTEI0cODARr1GRz7HtyiwSk5OxrBhw6BWqzFgwACkpKSIF1hnZ2ccP34clZWVWLt2bZ3nOjg4YOPGjZg3bx4A4IknnsCSJUswYMAA9OnTB3369GlJ0YgapFAocPr0aZ1Z8QRBQFVVFSoqKlBeXo7y8nLxv2sHYlevXoVMJmtScCWTyVBUVITy8vJmNxacPXsWd+7cweTJk/H000/joYceEvfNnz8fM2fOxIwZM6BQKHD58mU4OzvD3d29ziKWNTU1uHPnTr09zQcPHkRqaqrWHAIAmDlzJoYNG4bDhw9j06ZNSE9Px6lTp2BkdC/J6KZNm+Dg4IBt27bh4YcfbtZnpPZB03Kp+S5rkrX4+fnVO+RPqVTi0KFDuH37NoYMGaLzON4MUXumVCqxf/9+TJ06lT33baC+8wXnAbUuTTDk4eHR4iREHfkc36Jf/NKlS2Fvb4/4+HjIZLI6Q40mTpyIzZs363yumZmZ1tol69evx+jRozFgwICWFImoUWpqalBWVgaFQoG7d++irKwMpaWlKC0tRVlZGVQq1QNfw8zMrMk9VoIgQCaTobS0FGZmZjAzM4OpqWmjgywrKyu4u7vD3NwcNTU1cHR0hKOjo7jfwsICrq6uCAoKwtGjR7Fv3z54eHhg0KBBKCkpwdmzZxEREQHgXuCkaRTRZdmyZXjyySe1toWGhuJf//oXJk+eDODeHCwjIyOt8mseN5Tl09B05NYzfapvUeysrKwHLrVx/fp15OTkYPjw4VoJLXgzRB1BUVERDh06hNGjR3PEjR41dL7gPKDWpQmGFixYIN4DNEdHP8e3KLA6evQo3n77bbi4uKCoqKjOfh8fH9y+fVvnc3v06IH//ve/8PPzE7vL09PTce7cuQbfs1+/fi0pMnVCSqUSeXl5yM3NRU5OjpjNKT8/v0mBkbW1Nezt7cW/qKgoHD58uMnBlSapg0KhgEKhgEwmg5mZGczNzesNskxNTeHn5wc3NzfI5XJxgeH6AoL7T1xvv/02xo0bh8WLF+Prr7+GUqnE888/j4cffljMCHj79m2MGjUKGzZsQFRUVL3zJn18fODv7w8AGDNmDP72t7/hueeewwsvvAC1Wo1//OMfMDExwYgRI5pUL/rG4SKtT7Mo9s6dOwFoL4rdGMXFxfjyyy8xevRoDB8+HObm5rwZonavpqYGGRkZqKmpgZGREWJiYrSmPVDrqe98wXlAras1g6GOfo5vUWClVqthaWlZ7/6CgoJ6K/7DDz/EnDlzMHr0aAD3hki99dZb9Wb+07T0N6YngTqn6upq5ObmagVQubm5KCwsbHTwI5PJYGtrCzs7Ozg4OGj9q2vI0rBhw3DixIlGfS+NjIzQo0cPMTiqnaJaLpdDLpdDJpPB3Nwc5ubmMDExgbW1NVxdXeHu7q5zSEl9AYGuE9cPP/yA559/HqNGjYKRkRFmzpyJL7/8UnyOUqnEtWvXUFVV1ai6Au41kOzYsQMrV67EoEGDYGRkhL59+2LPnj2SrOfSnOCpo7ee6cvp06fx3nvvYdeuXeJ3WbModmhoKCZOnPjAzJA3b95EQkIC1Go1cnNzMWDAAN4MUbtX+3ttYmKC8vJyjBo1CjY2NlIXrUNpKHhqjXlA9D/NDYbuvyZ3hoC3RYFVv379sGvXLjz77LN19tXU1OCnn36q9ws8btw4pKWl4cyZM8jLy8Njjz2Gp556CoMGDWpJkagTqKioEIOm2kFUcXFxo1/D2NgYlpaWcHBwgJOTk9gLZWdn16SWxUWLFuHEiRONnmsVGxsLa2trWFlZQalUQi6XQ6FQiCnblUolqqqqUFNTA1NTU/j7+8PMzAxqtRp//vknevbsKb6WroDg8OHDkMvlePfdd3WeuBpaDNjPz++Bn0HX/jFjxmDMmDEP/OxtoTnBU0dvPdOHBy2KffnyZVy+fBmLFy8W1zTz9fXVahzQLCRcWFgozsv69ttvkZiYCGtr61a5Gbpz5w5eeOEF7NixQ2xM+OKLLxpcbH716tXYtGkTzp07h/LychQXF2vNMzx8+HC9vbGnT59G//79m1xOan9qN4zVput7nZ+fj99++w0DBgxAjx49ODSwhTQ36yqVqt7giYuRt56WBEP3X5M7Q8DbosDq9ddfx6RJk/DMM8+Ik9Tz8vKwf/9+fPDBB7hy5Qr+7//+T+dzL168CF9fX3EB4XXr1mH27NkYNWpUS4pEHYQmA58maKrdA6UZBtcYZmZm4pA2d3d3eHh4wN3dHZaWljhx4gRsbGxatAhvr1698OGHH+L1118HAJ09V5qkDgsXLoSnpyfS0tLg7e0NMzMzODs7w97eHtXV1cjIyMC5c+fg6OgIY2NjKJVKJCUlISkpCcXFxcjKysL06dPFOVFnzpzRGRB0hhOXLs0JnjpD61lra8yi2Jr5dWvWrMHcuXORkZEBtVqtlQkwLS0NeXl58PLyQl5eHtLT0+Hs7Izg4GA4OjqiT58+Yq9jQzdDMTExeOyxx/DYY4/V2Td//nzk5ORg3759UCqVePzxx/HUU0812MBQVVWFcePGYdy4ceLvurbBgwcjJydHa9tbb72FAwcOaK0TRx1b7bXbatP1ve7WrRsUCgWOHTuG69evY+jQoXBycpKi2B2C5mZ9/Pjx9QZPXl5eXIy8lTT3nkLXNbkzBLwtCqzGjx+P9evX46WXXsLq1asBAI888ggEQYCtrS02bNiA4cOH63xu3759tbICUuekVqtRXFysFTxp/r17926jX8fCwkIMmjT/uru7w8HBQQxsamvKcLcHGTlyJL799lusXbsWx44d07rZlMlkCAkJwdixY+Hj44PU1FScO3cOLi4uGDFihFZQV1lZCYVCAS8vL5iZmeHWrVtQq9VQqVS4fv068vLysGnTJuTk5MDDwwNpaWk6A4LOcOLSpTnBU2cNQluiKYtiA8C+ffvg6OiolS1Q06pvbGwMCwsLlJWVISkpCRMnThTXwFIoFBg+fDhcXFyaVc4rV65gz549OHPmjBjw/Pvf/8aECRPw6aefinML7/fyyy8DuNczpYumsUZDqVRi27ZteOGFF9gT0Uncv3abUqls8HtdO0tmXl4efv/9d/Tu3ZsLZjdD7Zv1s2fP4u2332YjmJ415p5C1zD8+q7JHT3gbXEe0EcffRQzZszAvn37tNaeio2NbXA8sYWFhdbN7ZEjR7B48eKWFocMlEqlQmFhoVbPU05ODvLy8sSWv8awtbWFm5tbnSDK1tZW0puaXr164bPPPkNubi7mzp2L8vJydOnSBUuXLhUn8puamiI/Px9KpRI3b97U6p1VKBQ4deoUcnJykJ6ejsWLF0MQBGRkZODAgQMoKSmBk5MTSkpKkJKSgps3b+LixYswMzNDVlYWrK2toVKpxICgo5+47tfc4KmzBqHN1dRFsdVqNfLz89GtWzet1vusrCwUFBRAqVQiOzsbKpWqTjbB8vJybN++HcOHD29wzav6nDp1Cvb29lq9SKNHj4aRkRESEhIwffr0Jr+mLtu3b0dRUREef/zxVnk9Mnz1rd3WmO81cG9ExqVLl5CWlobo6OhOd75uCc3NemhoKIdutxFN719T5jB35tEgzQ6sqqqq4O3tjWXLluFvf/sbpk2b1qTnh4eH47PPPoOxsbGYFfDMmTMPHJY1Y8aM5ha5U8nMzMSBAwdQXl4OGxsbjBo1Cj4+Pnp/X6VSifz8/DrD9/Lz85u0GK+Dg4NWz5Pmv62srPRY+pZzd3eHo6MjlEolbGxs4ODgAHNzc/j7+yMzMxNFRUXo1q0bMjMzkZSUJC6effnyZWRmZtbZ5+fnB7VajYCAAFhbWyMlJQVZWVkICQlB9+7dtd7b0tISt27dQllZGWxtbaX4+JJpbvDU2YaLNHVR7Pvt3r27WYtil5eXw9zcHJcvX4aPjw/s7e11zkWyt7fXStOvVqtx4MAB3L17Fz169GhSKvzc3Nw6S4CYmJjA0dERubm5Tf4M9Vm7di1iY2PRtWvXVnvNxpLqPN+ZNbR2m4ODA6Kiouo8p74smRUVFdi9ezeioqIQFhYGpVLJZR8aUPtm3dLSslPdrBuCpsxh7syjQZodWFlaWsLExKTZN7pffPEFZs2ahUWLFgG4N2Tqiy++wBdffFHvc5gV8MHuz9RlZGQEtVoNmUyGSZMm4a233mqVydXV1dV1Upjn5uaioKCgSRn4nJ2dtQIozV9L5j1JSaFQYOTIkbh8+TLs7OxgaWmJ8PBwqNVqxMfHi78ZExMTnDx5Er169QJwr3Vd175r167h1q1bUCqVKC8vF8flu7m5oWfPnrh165bW+x88eBCHDh1CcHAwIiMj0adPnwYzd3YUzQ2eOtP6VQ0tit0YSqUSx48fb/Ki2MC9DLEODg5QKBS4fv06fH19613nSlf59u/fjzt37mDw4MH49NNP8cEHH4j77t69i/j4eDz//PPituTk5CaVr7lu3bqFuLg4/Pzzz23yfhptdZ6nuh60dltjlxrQEARB7AGrrKzksg8NqH2zfunSJRgZGXWam3WpNXUOc0BAQKcdDdKioYAzZ87Er7/+imeeeabJw7AiIyORkpKC1NRU5OXlISYmBsuXLxfTr1PT6crUpWn9FQQBu3fvxh9//IHNmzc3uuevqqqqzvC93Nxc3Llzp9HlMjY2FlOG1w6i3NzcOtz48to9T8nJyVCpVDAxMcGlS5dw69YtKBQK3Lx5EzU1Nbh16xauXbsGAPXuc3Nzw/jx47XeQzMPa8aMGaioqEBiYiISExPFVnhBEHD16lVcvXoVP/74I3r16oWIiAiEhYV12Fa95gZPnWn9qpqaGlRUVIhrpj1IdXU18vPzxb/i4mJkZ2c3q8cqKChIHM7n6Oioc95jQwRBQE5ODmpqavD000/joYceEvfNnz8fM2fO1DqneXp6wt3dHfn5+VqvU1NTgzt37uhcn6051q1bBycnJ0yZMqVVXq8x9HGep8Zr6dpt9YmPj8fFixe57EMDajeg5eXlwc3NTdxO+tXUOcxvv/12ixYRbs9aFFg9/PDDePbZZzFixAgsXrwYfn5+sLCwqHNcfYv6mpiYIDg4GMHBwVi4cCEmTZokZjyT0n/+8x988sknyM3NRXh4OP7973/r7N43JI3J1KVSqSCTyTBnzhycPHlSbNEUBAHl5eVaAZQmiCorK2t0GUxNTetk4PPw8ICzs3OnWBxRM09K0/NkZWWFM2fOoE+fPjoDJADihaG+fa6urnWGM1VXV4uZEV1dXTFhwgSMHz8e2dnZYpClWbBbpVLh4sWL4nys0NBQREZGomfPnh0uqK0P16/SZm5urrNHWLOMgaYnuqSkpM4xzRk2KZPJMGLEiBbdeKrVasjlcgD3AjNHR0dxn4WFBVxdXREUFKT1nEGDBqGkpARnz55FREQEgHs9umq1ulWuM4IgYN26dViwYEGb/ZZacp6nlmvs2m2aBYLvX2IAQL370tLSkJiYiIiIiCbPHRIEAStWrMCaNWtQUlKCIUOGYNWqVQ+cm/ige52YmBgcOXJE6zlLlizB119/3ahytbbaDWgJCQmIiopiwpg2cP8QTGNjYw75a0CLAquYmBjxv48dO1Znf1MW9V23bl1LitJqNm/ejL/85S/4+uuvMWDAAHz++eeIjY3FtWvX6tzgGpLGZurSHPPSSy/hueeeEwOopmTJ69Kli875T81pie5INMP2FAoFUlNToVarxZ6n0NDQBr8/Lf1uyWQy8aIzZcoUpKen4+zZszh79ixKS0sB3LsB0GyzsLBAeHg4IiMjERwc3KEC3+rqajFw4PpVummWM6jdkPKgIYKOjo7o2bMnrly5gvPnz2vNhapPa7XmA9DZaNeQkJAQjBs3DosXL8bXX38NpVKJ559/Hg8//LCYEfD27dsYNWoUNmzYIN5QauojJSUFAHDp0iXY2NjAx8dHK6A7ePAg0tLS8OSTT7b4szVWU8/zf//737Ft27Y2Kl3H1pS126ytrcUFgu8PbmovHqzZVzubYEFBAUxNTZvU2PPxxx/jyy+/xHfffQd/f3+89dZbiI2NRXJycr3D6ht7r7N48WK8++674mNDGVpeVVWF/Px8sXGS9Of+IZhyuZwJoBrQosCqJcHQu+++C5lMhuXLl8PIyEjrh1sfmUyGt956q9nv2RifffYZFi9eLGZ4+vrrr7Fr1y58++23WLZsmV7fu7mamqlLpVLh1KlTCAwMbDBzo7W1tVbgpPnXzs6OrUQ61O6VEgQBcrkcXbp0afMTv0wmg7+/P/z9/TFjxgykpKQgMTER58+fR2VlJYD/zUuJj4+HtbU1+vbti/79+yMgIKDdB8eajIwA16/SUKvVyMnJQVpaGkpLS1FQUNDgcgaa+Y+1h+1q6sXW1hZPPPFEo+dajR07tsXl9/T0bFZClh9++AHPP/88Ro0aJS4Q/OWXX4r7lUolrl27ptWw9PXXX2PlypXiY82SIevWrdNaK2vt2rUYPHgwevTo0YxP1HTNOc/v2LEDhw8fhre3N4yNjWFkZAQjIyMYGxs36rFMJuO5Hk1fu23AgAEoLi6uk2pd1+LBpqamWtkEMzMzYWpqCiMjo0a1+guCgM8//xxvvvkmpk6dCgDYsGED3NzcsHXrVnGN0fs19l7H0tKy1YbOtrarV6/Wub52pnmzbaV28FRRUYHi4mJ4e3t3ygRQjSETmjNgvhUYGRlBJpPh7t27MDMza9TNnL6TVygUClhaWuLXX3/VynK4cOFClJSU6Gz5k8vl4hAVALhw4QKio6ORkJAgZnzTt/Xr1+Opp55q8vOio6MRHBwMe3v7Oskj3N3dYW1trYfSGoaqqiocO3as0fNNmkoQBKjVar30BMnlcigUCgwbNqxJrYcqlQpXr17F2bNncfHiRXEdltrs7e3Rr18/REREwMfHRy83VS3NTPeg1963bx/GjBkDQRDw0UcfITMzE4GBgUhNTYWPjw9ee+01XLx4EatWrUJ1dTVMTExQU1ODLl264Jlnnnng0CkTExODv2CrVCpkZWWJ81hTU1Mb7JU2NjaGs7MzXF1d4eLiAmdn5zpDmGo7evQo3nnnnXp7TzTfm0cffRS9e/du9ucwNjaGr68vbGxsmvWd70haep5vrqYEYrUf6/q39l9zXlPXezzoeE0wpOt4Xf+t65z38MMPY+/evY3qpQUAGxsbREZGori4GNHR0WLP1I0bN3DkyBE4ODho7SspKUFmZqbWawQEBGD69Onw9/dv8L1u3ryJHj164PTp0+jTp4+4fdSoUWL25fspFArY2dnhp59+EoMxAHjiiSdQUlKC33//HcC95QmSk5MhCALc3NwwceJELF++vFG/QX2f57/77jt06dIFM2fO1CrPiRMnsHnzZjz88MMYPHhws16/PZzjG6LPui8tLcXVq1f1Nm1H33XfFsO2JQusDFF2dja8vLxw8uRJDBo0SNy+dOlSHDlyBAkJCXWe884772i1bhIRERERkWFpi5CnSUMBNcM/Vq9eDWNjYzzxxBMPfI5MJsPatWubXUBD9/rrr+Mvf/mL+Lg99VitWbMGCxcu1EOJ2gd9teq0RovZg7Rmq051dTUuXryIc+fOITk5WWerrKenJyIiIhAREQFnZ+dmv5c+ewoVCgU2bNiAc+fOoUePHpg5cybS09PrHNe9e3e4uLg06z2a21vY2qqrq3Hz5k2xNyo9Pb3B77KVlRWCgoLg5+cHX19feHh4tFpvalZWFoYOHYrS0lJ06dIFb7zxhtZcpKbq0qUL+vTpg8DAQK3eg/beitxSzT3PP/PMM4iOjoZKpYJKpYJarYZarRb/W9OjU/tx7WOa+rixvTrtxbVr1+okcGgMDw8P2NnZwdTUFEOHDoVMJsPx48dRU1Mjpsc3MTHB0KFD4evrW+f5ml6i6dOna51rNm3ahOeee058vG3bNowePRoZGRnw8PAQt8+dOxcymQybNm2q89rZ2dnw8/PD0aNHtYYaLlu2DMeOHcOJEyd0fqZDhw4hNjYWV65cQWBgYL2fvS3O82fPnoW7uzvGjBmDXr16wc7ODn/++Sd+++03uLq6Ij8/H7NmzUJYWFiTXt9QzvHNpe/ROHfv3sWlS5fg4+PT6kNE23vdazQpsDp48KB4QjA2NsbBgwcfOFSoKUOJrly5gtTUVHGxw6CgoDYbvw5AzF6Xl5entT0vL6/eL5C5ubnWl1czfM7ExKTNMkXFxsY2eW0ZmUyGsWPHdprMcLro47PL5XKcOHECt2/fxvHjxzFy5EiDn7NjamqKIUOGYMiQIaioqMCFCxdw9uxZXL9+XfxO5eXlYffu3di9ezf8/PwQGRmJfv36wd7evsnvpcma2NprlZ07dw45OTkICAhARkYGKisrERsb26rvYWJiArVaDVNT0zb97VRUVCA1NRUpKSniItH338DWDpTs7OzQrVs3Mc25m5ub3ubO2dnZwdraWgysmjun0MrKCmFhYQgJCWlwGGJn1dzz/LJly9p00WDNMOj7gzcp/lUqlcjNzYVCoYBarRaHrtb337r2aYYHNrWl283NTRwCaGJiAiMjI/Tq1UtryKGRkVGDSZ+sra1hYWGhda6ZMWMGhgwZIj7WTEW4c+eO1v/ngoIC9OnTR+d5StOwUlRUpLW/sLAQHh4e9Z7bNO+bkZHR4L2Zvs/z27Ztg0KhQHp6uhhU2dvb48KFC7CwsICDgwPKy8tx/vz5Js+1kuoc31r0WffAvaHBpqamyM/Ph5eXV5OTCjWkvde9RpOuXve3/upqDW6Ob775Bu+//z5u375dZ5+Pjw+WL1/eJpmXzMzMEBERgQMHDohzrNRqNQ4cOKC1+KSh8fHxwaRJk7B79+5GzUEzNjbGxIkT2/Ri21m090xz1tbWGDp0qNgDce7cOSQmJiItLU08Jj09Henp6fjtt98QFBSEyMhI9O3bV9I5ebVT3VtYWEAQBOzfvx+9e/dul70cJSUlYhCVkpKC7OzsBo93cXFBUFCQGEg5OTm1adIBzU1nc4ZZODg4IDw8HIGBgR0qO2Vray/neZlMJs5vMoSbo5aOTNiwYQMOHTrU5Od17doV3bt319p2/zlSJpPB1NQUSqVSvJnUJK4wMjLCyJEj65y/bGxstJJOCYIAd3d3HDhwQJxjVVZWhoSEBDzzzDM6y9bce50LFy4AgFbPWFvSnOcVCgXkcjlMTExw9epV+Pr6Yt++ffWuBxkaGipJeTuaRx99FIWFhTA3N8err76K5ORkhIWFGcTv3JBI3iz417/+FZ999hkcHR3xxBNPoHfv3rC2tkZFRQUuXbqErVu3YsmSJbhx4wY++ugjvZfnL3/5CxYuXIjIyEhERUXh888/R2VlpZg5x1C99dZb+OOPPx7YsqbJ8vTmm2+2Yek6h46Wac7Ozg4jRozAiBEjUFhYKAZZt27dAnDvgn7jxg3cuHEDmzdvRkhICCIiIhAeHt6qrViNUTvVfWlpKRQKBW7cuIHExMRmD8fUZPDS95pfgiCgqKgIKSkpuHHjBlJSUlBQUNDgczw9PREYGCj2SjW157C1KRQKAGhSciEnJydERETA19eXmecaief5pjMzM2tR48qECROa1VMYEREhJl1RKpVQKpU607QrFArx96NhbGwMGxsbHD58GF5eXuKC17rOQzKZDC+//DL+/ve/o1u3bmK6dU9PT60kXKNGjcL06dPFwOlB9zqpqanYtGkTJkyYACcnJ1y8eBGvvPIKhg8f3uThda1Fc56vXY+FhYW4desW7O3tERoaCi8vL63zCdOxt56ioiIUFBTAzs4OwL1hh5cuXWpWA2ZbXV+lIGlgdfr0aXz22WeYPn06NmzYACsrqzrHfPHFF3jkkUfw6aefYvbs2YiMjNRrmebMmYOCggK8/fbbyM3NRZ8+fbBnzx6D/3H2798fmzdvFtfZ0HWDo0mf+/PPP3PRSD3oyAvlOTs7Y+zYsRg7dixycnJw9uxZJCYmIj8/H8C91s6kpCQkJSXBxMQEvXv3RmRkZJv1GGlS3X/22WcoKSmBubk5pk2bhjt37iArKwtdu3Zt8s37pUuXsHv3bqjV6ladLykIAnJzc8UgKiUlRedivBoymQze3t5iEBUYGGhQGTvlcrmYYVJzA9nQhdLS0hIDBgxAUFAQA6om4nm+7TW1p9DIyAihoaHiWmm11dTUiIGW5l9dvWnV1dUoKCjAzZs3tV7Xzc1NDLQ0/zo6OmLp0qWorKzEU089hZKSEgwdOhR79uzRGgqWmpqKwsJC8fGD7nXMzMywf/9+MeDy9vbGzJkzJQ3WNef506dPQ6FQiD1v9vb2sLa2RnFxMaytrdGrVy+9DIOj/6mpqUFWVha8vb1x/vx59OjRQwy4GkNf11dD0OLA6o8//sBnn32Gc+fOobS0VGerTn0no7Vr18LDwwObNm2qt0XfysoKP/74IwICArB27Vq9B1YA8Pzzzxv00L/6zJgxAydPnsR7770nrneimRMnk8kwceJEvPnmm7zY6klnWSjPw8MDkyZNwsSJE3Hr1i2cOXMGZ8+eRXFxMYB7J9wLFy7gwoULMDc3R1hYGCIjIxESEqK3Mrm6usLV1RX/+Mc/UFFRAWNjYzHNd3p6OoqKitCtW7c6jTf1tZpphpzcvn0bJ0+eRK9evZodIGoWitb0SKWmpja4GK+JiQl8fX3FYX3+/v5t3gPYFAkJCeLNoVqtRnp6ep1FUTW6d++OQYMGtcseXEPB83zba2xPocaECRN0bjcxMakzf1AQBK1AS6VSiefS2jRr0eXk5Ght79KlC7y8vBASEoKff/5ZDLruP2fomrrR0L2Ot7d3s5J26JPmPK85f5iamorn+dTUVCQmJkKtVkMul8PHxweenp7tfl1GQ5WRkSHWd2BgIC5evAgPDw/4+vo+sAeqNa+vhqhFgdVvv/2Ghx56CL169cLDDz+MVatWYd68eRAEAdu2bUO3bt20uqLvd+rUKcyePfuBF9kuXbpg9uzZzRrn3Nn0798f27dvR2ZmJg4ePIiysjLY2tpi5MiRnFOlZ51toTxNT4q3tzemTZuGtLQ0JCYm4ty5cygvLwdwrzfjzJkzOHPmDKysrNC7d28YGRnp7J3WJ81E5q5du4qLpQL1t5pdvnwZmZmZ6NatGzIzM5GUlNToVrWamhpkZGSIvVGaXsz6mJmZISAgQJwj5efn124uMprhr5qeJ0EQ6iyKCty7ARo+fHiDmcSo8Xieb1uN6SnU3MA/9dRT8PPza/Rry2Qycbiit7c3Ro8eDRMTE5SWluL27du4ffs2srOzcfv2beTm5tZ57+rqajE7aG2Ojo5ikKXp3XJzc+uQ8xhrampw9epVFBUViXOu0tLSkJOTA39//zafc9rRCYJQp75NTEyQk5ODwsJC+Pr6wt3dvd46b8n1tT1oUWD14YcfIioqCsePH0dxcTFWrVqFJ554AiNHjkR6ejoGDhzY4OJ2WVlZjW7F7tmzJzZs2NCS4nYqPj4+eOyxx6QuBnUSRkZGCAwMRGBgIGbNmoUbN27gzJkzuHDhAu7evQsAqKysFNeCO3/+PAICAhAQEABXV1e9XvRqD1nIyspCfn4+fH19YW9vr7PVrHYiDCsrK5iYmIj7dZHL5UhLSxMDqbS0NCiVynrLY2FhoZVoonag195ohr/WbsUvKChAVlYWAgICANybsD9u3LgWpWAn3Xiebzu6ego1ZDIZQkNDMWHChCYFVbX16dMH/fv3F8+F9vb2sLe31zrvqFQq5OXlaQVb2dnZuHPnTp3Xu3PnDu7cuYPLly+L20xMTODu7q41lNDLywt2dnbtOvDIyMhAfn4+PD09kZ+fj4yMDAQGBqK6uhpXrlyBtbU1/P39JZ+L2lGoVCqd9Q3cGwWSkpKC3NxcBAYGwtbWVmtkiCAITbq+tkctCqySk5Px4YcfwtjYWOze1txQ+Pn54dlnn8VHH32EBQsW6Hx+WVmZVnabhlhbW4ut4ERkuIyNjdGjRw/06NEDDz/8MK5cuYLExERcvHhRnKRdXV2N5ORkJCcnw9raWgyyHB0dW/0Cf/+QBblcjuvXryMrKwvXrl1DUFCQVqtZ7UQY92eX6tatm3iRyMrKQkpKCjIyMhpcu8fW1lYMpIKCgjrU8BTN8Nd9+/ahuroa5ubmiIqKgoODA4B7n33y5Mlt3kNJpA+ansJffvkF8+bNQ01NDYyNjbFo0SJEREQ06zXNzMwwYsQInWtZ3c/Y2Bienp515m9VVVVpBVqaf+/vKdecyzQJiDSsrKzq9G55enoa7JDd2llINb1VJiYm6NKli1amQM19qSYZmoODA/z8/Axqjmp7pFQqG6xv4F6d//nnn3ByckJJSQkOHjwort3W0PW1I2hRYGVpaSkOWbG3t4e5ubnW+F83NzetNM33EwShSTdRbbFiMlFLKRQKJCYm6lw/o7n72itTU1OEhYUhLCwMcrkcZ8+exf79+5Gfny8GIxUVFbh48SIuXrwIOzs7BAYGIiAgoEkTYQEgNzdX7B1TKBQoLi6GjY2NziELNTU1uHjxIqqrq1FSUgKFQoHjx4+jV69e4gRpDc1r3bp1Czdu3NA5/6E2R0dHsTcqKChI7z1yUtLciGnmc5iamiI8PBzAvTX+JkyYwKCKOhS5XI4LFy7A1NQUNTU1kMlkyMrKalbaaTs7O4wbN67J57r7WVpaig03GoIg4M6dO3WCrby8vDoNQZWVlWKGVw2ZTAZnZ+c6vVsuLi6SNwxpGvBVKhVu3bqFwsJC1NTUiEMlNZkC7+89LC4uRnFxMZycnODr68tzUzOp1WooFIoH1jdwbw3MuLg4ZGdnw8rKCg899JDW9VXD0BPENUWLAqvg4GAkJyeLj/v06YONGzfikUceQU1NDTZt2vTA8d6ffvopfvzxxwe+l641rogMUXx8PDZu3AiVSlVnDavm7usIzM3N0adPH5SVlcHc3By5ubm4efMmsrOzxUYTzdpZ586dg5OTk9iT1VAL4+XLl7F27VocP35cfJ27d+/ivffeEwMpLy8vrSELtS/G2dnZUKlUuHTpEo4ePYr+/fvD09MTubm5yM3NRWlpKYB7Pey6aBYC1dzYdMYhb5oF1GsPaRwyZAhsbW2lKhKRXjRm+GtjuLq6Yty4cXrLXieTyeDk5AQnJyet9OiaRZPvD7g05zkNQRBQUFCAgoIC/Pnnn+J2U1NTeHh4aPVueXl5NXr0UUtlZmaiqqoKwL2RD2q1WmdvYe1hf7WHg5uYmKCoqAhFRUVwdnaGr68vLC0t26Ts7VnthkvNYte1r8s2NjZIS0sT61hDM0zTxcUFly5dgp+fH2JjY3XWeUNzkduTFgVWM2bMwJdffolPP/0U5ubmWL58OaZOnQp7e3vIZDJUVlbi22+/rff5Pj4+4jjgxuCkXDJ0msn8aWlpddawau6+jsjMzAzdu3dH9+7dcffuXaSnpyM1NRV5eXniMZqL35kzZ+Dm5oaAgIA6GfIOHjyI119/HUDdHm1BEJCRkQFBEGBtba01ZMHe3l68GKvVaqhUKtTU1CAnJwf79+9HdXU15HK5zl5yW1tbhIWFISQkRBxDfj9BELBixQqsWbMGJSUlGDJkCFatWtXgUId33nkHK1eu1NoWHByMq1ev6nz9CRMmYM+ePdiyZUuDSYLaQmJiIuRyOb777jsA94YIMlEFdUQPGv7a2NcYPXq0JOv3mJqaikmHaquoqKgTbGVnZ9dZY0upVCIzMxOZmZla221tbcUgy9nZGSUlJa0asOhqQFOpVPj3v/+NXr16YezYsfXeI94/HFyjsLAQhYWF8PT0hJ+fX7ud66pPuupdoVDg559/Rs+ePcV6r52VUVPHuoZpJiQkwMHBAUFBQXXWHGsKfV1jY2Ji6mTDXLJkCb7++utGl61ZgVV1dTW2bdsGpVKJN998E3fu3BFTMB8+fBi///67uOr7iBEj6n0dXek/idqzhIQEXL9+HWFhYbh+/TpOnz4t9j41d19HZ2FhgZCQEISEhKCyshI3b97EzZs3tdZcycvLQ15eHuLj4+Hh4YGAgABUVVXh9ddfh1qtrneYsGb7hQsXEBAQALVajYyMDHh6esLX1xdKpVLn/ChLS0tYWFhAqVTCwsICbm5u8PDwgL29PeRyOYYPH97gTcPHH3+ML7/8Et999524YGdsbCySk5MbbKHu1asX9u/fLz6+PzWzxueff26wwwuNjY0xePBggy0fUUs0NPy1MYKCghATEyP5cLr7WVtbIzg4GMHBweI2tVqNwsLCOgFXQUFBnXNuWVkZysrKtG5SZTIZbG1t4ejoCAcHBzg6OsLR0RHW1tZNOj9oGtAEQdB5rr9y5QquXLmChQsX1lm8WFfGwPvPq9nZ2SgpKWlyAgV93Nynp6fXm/Tt559/xuzZs5tUxpZ4UMOlpt4feeQRZGdn16nj+oZpZmVlwdjYGOXl5ejevXuzAlp9XmMXL16Md999V3zc1AaCJgdW+fn5GDx4MNLS0sQ5UhYWFti6dStGjx6NYcOGdZobQqLaNL1OZmZmsLW1hZmZmdj7BKBZ+zpyr5UuVlZWCA0NRWhoKMrKypCamoqbN2+KC+gKgiC2pP7xxx/1XmjvJ5PJIJfL0b17d7E3vT6mpqbin4mJCWQyGYyMjGBmZgZTU1PI5fIG30sQBHz++ed48803MXXqVADAhg0b4Obmhq1bt+Lhhx+u97marF0NuXDhAv75z38iMTERHh4eDR4rhZ49e7Z4zghRR9SrV6921ehgZGQkrh1VOx22XC5HTk6OVs/W7du366zPJwgCSktLUVpaqjXf3tTUFA4ODmKwpflX1/Xu8uXLD2xA0zSOfffdd5g9ezYiIyPFG+b6Mgber6qqCpcuXWrSeov6uLn39vaus1bZ6tWr8cknn+icm6QvTan377//HgEBAXWG3NceGVKbZphmYWEhKioqEBQU1KQeX31fYy0tLR94TEOaHFi99957SE9PxyuvvIKRI0ciJSUF7733HpYsWVJnHQWizkQz9r66uhpJSUlQKpVITU3F+fPnAaBZ+wYOHCjlR5KUra0t+vbti759++LOnTtiT1Z5eTnKy8ub1OMtCAJu374NV1dXraF7arUa+fn58PHxgYWFhRhIAfdaOtPT0+Ht7Y3q6mrcuHEDLi4ucHJyavC90tLSkJubi9GjR4vb7OzsMGDAAJw6darBk/6NGzfg6emJLl26YNCgQfjwww+1hrdUVVVh3rx5+M9//tOiE7++GBsbo0+fPlIXg8jghIeHIyoqqt0EVQ0xNzeHn5+fVrICQRBQVlaG27dvIz09HRcuXEBlZSVKS0vrjApQKpXIz89Hfn6+1nYrK6s6wdbatWvF138QQRCwd+9euLi4IDAwsFEZA2urrq5GWlpao86t+rq5NzY2rrNvy5YteOihh9o0m6FmGk9j672goACBgYF1htw/KMV9dXU1Ll++DHd390avA6rPaywA/PDDD/j+++/h7u6OyZMn46233mpSr1WTA6u9e/diwYIF+PTTT8Vtbm5umDdvHq5du6bVjUzUmWjG3uvaDqDZ+zqiB/X63M/S0hK9e/dGr169UFRUhM2bNzfrfTMyMsTWTFNTU6Snp+Py5cvo0qULAgICtHrA0tLScPbsWahUKnFS+p07dx4YWOXm5gKom+XIzc1N3KfLgAEDsH79egQHByMnJwcrV67EsGHDcPnyZXFi+CuvvILBgweLF3JD07VrV605cEQEhIWFdZigqj4ymQx2dnaws7ODn58fjIyMYGNjAzMzM5SVlYnz6YuLi3Hnzp06vVvAveyElZWVYjr48vJyHDt2rNFlEAQBxcXFOH/+PLy9vXH79m0UFhZCqVQiOzsbarUaBQUFyMzMhK+vr86gIT8/HyqVChkZGTAzMxOvCbX/1Go1MjMzkZubC19fX1y8eFHs2enVqxe2bduGoKAg8djaz83MzMS1a9fg7OwMMzMz9OzZE08++SRcXV11Hn/9+nVcuHAB8+bNw44dO+rsr10mQRCgVCpx+/ZtmJqaisNNax/3oMeCIKCkpARHjx5tUr2XlpYiMzMTxsbGDWYJrE9ubi4qKyvrLCVQ37GAfq6x8+bNg6+vLzw9PXHx4kW89tpruHbtGn7//fdGf5YmB1aZmZl47bXXtLYNHToUgiAgLy+PgRV1Wpqx9w3tb86+jsTExATW1taoqKioMym6sczNzcUFLZuyBINMJoNMJhNbnmqPvb9y5Qq6du0qtmLWt08ul8PS0lKrtfOHH37AkiVLxMe7du1q1ueqPcwjLCwMAwYMgK+vL37++WcsWrQI27dvx8GDB8VeTkNkiL1oRFIKDQ3FgAEDOnRQVR9NA1qXLl3qrL+lVCpRUlKCkpISFBcXi/9de3H15maDTk1NxeXLl2Fvb1/vfKeGls24c+cOzp492+B7aG7gd+7ciUOHDonbS0tLcebMmXoTt+Xl5WH48OGwt7dHZWUlEhMTsXjxYsyZM0fnMitHjx6Fg4MD0tLSGly+qDXpSpjUGM7OzmJ929nZNbi+oy4lJSU6h5G31TUWAJ566inxmNDQUHh4eGDUqFFITU1tdEKmJgdWcrm8zthRzeOampqmvhwRdSJmZmaIiopq8bkiPT29yevaCYIAe3t7cTiFZk0qX19f3LlzBwUFBeJFob59ZmZm6N+/v9YFcMqUKRgwYID4WHMzkZeXpzUHKi8vr0nD5Ozt7dG9e3ekpKQAuDeRODU1tc7QipkzZ2LYsGE4fPhwU6pDLzi3iuh/QkNDMXDgwE4XVDW2Aa1Lly5wd3cXG2QEQUB1dbWYCCMzM7PJDWgaqampGDZsGLp3797k5+pKpnD9+nWtbHETJ05s8usC0FoI2snJCW5ubvj++++RmppaZ35XTU0Nbty40ezFp5tLoVA0q+HS0dFR6zM0NbDSuH+YZltdY3XRvG9KSor+Aivg3k3NuXPnxMea9Q9u3Lihczxlv379mvM2RNQBmZmZtXgB5AkTJjTrxG9paSkOmbhy5QpMTEzEuVVXrlwRh/zp2te7d2+MHz++zlA3GxsbrTVcBEGAu7s7Dhw4IJ7ky8rKkJCQgGeeeabR5a2oqEBqaioeffRRAMCyZcvw5JNPah0TGhqKf/3rX5g8eXKjX1efuOAm0T0daU5VU7VWA5qpqWmzeidkMhnKy8tRUlIiDqnX9f/h/m2ax6ampujbt684ykEmk2HYsGGYNWuW+Limpgbbtm1D//79ERQUBCMjI8hkMhw/fhxBQUHisZrttf/u33bq1Cn4+vriySef1Nq+a9cuqNVqfPTRR3ByctL5Wrper6amBmq1ut799f1pjvvxxx9x4sSJJtW5IAiws7Nr8TywgQMH1rk/aKtrrC4XLlwAgCYlimpWYPXWW2/hrbfeqrP92Wef1XqsyRqoUqma8zZERDr5+Phg0qRJ2L17d6POL0ZGRvD398fly5dhbW0NY2NjFBQUiGPvVSqVuMgnAK19mlXmAwMDGzXUTSaT4eWXX8bf//53dOvWTcwW5enpqbXe1KhRozB9+nQ8//zzAIC//vWvmDx5Mnx9fZGdnY0VK1bA2NgYc+fOBQCtlt3766K+9LxtjfOriIDevXt32qBKQ6oGNAAYPXo0bGxs4OPj06Rscxrh4eFaPSS6CIKA9957D3K5HOPGjQNw7+b++vXreOONNzBy5MhGvVdFRQVyc3PRr1+/Op0QL730EqZOndrmmbanTp2Kl156qckNlyEhIc1eRkAmk2HgwIHo2rVro47VxzU2NTUVmzZtwoQJE+Dk5ISLFy/ilVdewfDhw+uk8W9IkwOrdevWNfUpjRYXF4e1a9fi5s2bKC4urvM/VSaTMfMgEQG418Dzxx9/NPrC6+rqisLCQiQlJWHIkCFiqvvaNBdhzT5bW1v06tULdnZ2TVrwdunSpaisrMRTTz2FkpISDB06FHv27NEaRp2amqq1VtetW7cwd+5cFBUVwcXFBUOHDkV8fDxcXFwa/b5SUSgUOHXqVJsPWSEyNAEBARg0aFCnDqpaS3Ma0EJDQzF06NBmv6exsXGj1rPS1829RkpKCo4ePYrdu3c3+7M0V3Pr3dHRsVnv5+joiGHDhtVJRtEQfVxjzczMsH//fnz++eeorKyEt7c3Zs6ciTfffLNJn6fJgdXChQub+pRG+eSTT7Bs2TK4ubkhKioKoaGhenkfIuoY+vfvj82bN2POnDkQBEHnBUDTejZp0iTcunULXl5eyMvLQ0lJSYOLejo5OSE8PBz9+vVr1uKFMpkM7777rtYig/e7P138Tz/91OT3ac7cA32Ij4/Hhg0bANxbuZ6oM7Kzs0N0dDSDqlbU1Aa0CRMmNPu9ZDIZhg4d2ujhbPpsQPv222/RtWtXjB07ttmfpyXaot4tLS0RERGBHj16NPk3o49rrLe3t9Y8uuaSCQZyZe7atStCQkKwe/dumJqaSl2cZjt37hwiIiJw9uxZzi0jagNnzpzBe++9h507d9a5AISHh2Ps2LG4fPkyCgsL4ebmhry8PDg7O2PixIl1zjUymQx+fn7o37//A9ffoHvkcjneffddnDp1CgMHDsSKFSs63cLW1Pl07doVt2/fhr29PT766CMAwOTJkw1y0e727vfff29UA9pTTz2ltZBxU9jZ2WHo0KGdJkNvY+ir3s3MzBAWFobQ0NB2fb9fn+YNhtSD4uJizJo1q0NWMhHpT//+/fHLL7/g2WefFc8fRkZGiImJweLFi2FkZISCggIoFApkZ2dDoVBozacC7s0NCg8Px5w5czBmzBgGVU2QkJCA69evIzQ0FDdu3MDp06elLhKR3rm7u8PT01NccNzPz49BlZ7MmDEDJ0+eFOdc1SaTyRAaGorXXnsNffv2RU1NDVJTUxudOMPR0RHR0dGYPXs2g6r7NFTvALTqvTHMzc0RERGBuXPnol+/fh32fr9ZySv0ISoqCteuXZO6GETUDp0/fx6FhYUwNjaGUqmEkZERKioqkJWVBQcHB53zqRwdHeHn54fg4GB4e3s3e9JtZyaXyxEXFwczMzPY29ujsLAQe/bsQVRUFHutqENLTExERUUFNm3aBIDZj/Wtf//+2L59OzIzMxEeHo6SkhJYWFjg7bff1prbc/PmTSQkJECtVte7hpVmZELv3r3h7u7OoZsN0DRcvvrqq1i9erV4fR0+fHijO0NsbGwQFhaG7t27d9hgqjaDCay++uorjB8/HpGRkZg3b57UxSGidsTb2xvz58/Hvn37UF1dDXNzc0RFRcHBwUH80zAyMkLPnj0RHh7O9OAtdP78eaSmpqK6uhrJyclQKpVITU3F+fPnMXDgQKmLR9Qm3N3d4ezsLHUxOgUfHx9xnSNjY2OtoEqpVCI5OVlMUuTn56d1I29sbIwePXogLCxMK303NayhhkvNEiW6WFlZITIyEt26detUDZcGE1jNmTMHNTU1ePTRR/HMM8+ga9eudSaNy2Qy/PnnnxKVkIgMlZeXF7y8vMR036ampjqTUzg4OGD06NHNSsFLdWkCWl3biTqLxi5Cq1AokJiYiMjIyBanIu+s5HI5qqurAdwLpJRKpRg8paWlIS8vT0xSlJ6eLvZaeXt7Y+jQoQyomqGhhktdZDKZmPzp/sV+OwOD+cSOjo5wcnKqt+u2Lbz//vvYtWsXLly4ADMzM5SUlEhWFiJqXV27dsXo0aN5Q9OKNAEtUWfm4+PTqOPi4+OxceNGqFSqNl+bqKNISEgQ50+p1WoxeNL0VhkbG8PCwgJlZWVISkqCv78/hg8fjl69enHIXzM1tuESuNd4OWLEiE7dg2swgdXhw4elLgIUCgVmz56NQYMGYe3atVIXh4haSe/evTFw4MBONRyhvWFrPrVHtra2sLS0fOBxmvmIaWlpnIfYTJo61ARIgiCIQ/6ysrLqLPpeWFgILy8v9O7dW+KSdw49e/bEwIEDO2UvVW2d+9PfZ+XKlQCA9evXS1sQImoVMpkMw4YNQ48ePaQuSofW2KCooePYmk/tUWNb5jXZM8PCwnD9+nWcPn2a3/Mm0szprL2shibD6/1JikxMTNC3b19ERkZKUdROxdzcHMOHD4e/v7/URTEIBhdYKZVKXL16FaWlpVCr1XX2Dx8+XIJS1U8ul0Mul4uPKyoqJCwNEdU2ZMgQBlVtoLFBUX3HsTWf2huFQoH4+Hidi8ne34BQO3umra0tzMzM+D1vhsYmKTI3N8e4cePg5uYmcYk7PicnJ4wdO5Zz12oxmMBKrVbj9ddfx1dffYWqqqp6j9O1SJmUPvzwQ7Gni4ik5e7uDoVCAQsLC3h5eSEkJIRDzPSssUFRQ8exNZ/am/j4eHz//fcYO3ZsnQyY9zcg1M6emZSUxOyZzdSYuT52dnYYN24c7OzspChih6bpKdT86+DggEmTJrFx4D4GM+Hggw8+wCeffIJHHnkEGzZsgCAI+Mc//oGvv/4aYWFhCA8PR1xcXJNfd9myZZDJZA3+Xb16tdnlfv3111FaWir+HTlypNmvRUQtk5iYiB07duDNN9/E4MGDIZPJEB8fj3Xr1iEhIUHq4nVIuoKiphxXX2t+7ZEARIZE853NyMjAqVOntL6r9zcgyOVysadl0aJFWLBgARYtWoT58+cze2Yrc3d3x7Rp0xhU6Ym1tTUsLCzEQComJoZBlQ4G02O1fv16PPTQQ1i1ahWKiooAABERERg5ciQWLlyIQYMG4eDBgxg9enSTXvfVV1/FY4891uAxDeXhfxBzc3OtL5auYQFE1LaCgoLg4ODAIWZ61tghTg0dx9Z8am80jQS9e/dGRkaGVg9rfb2vzJ6pX25ubhg/fnynWIBWCnK5HLNmzcKJEydgaWkJZ2dnuLi4SF0sg2QwgdWtW7ewdOlSABAvyJq1CszMzPDII4/gs88+wwcffNCk13VxceH/fKJOJjg4GACHmOnbg4IizTBMlUpV73FcC4vak9qNBDY2NujSpYvYSACAc6kkYG1tjdjYWAZVeqS5lvbq1Qvx8fEcUdAAgwmsnJycxMQP1tbWsLW1xc2bN7WOKS4u1msZMjMzcefOHWRmZkKlUuHChQsA7rV+syeKqH0wNjaGu7s7J4y3gQcFRZq5JuPHj6/3OK6FRe1J7caE5ORkqNVqsZEAAHtf25hMJsOoUaPQpUsXqYvSYd3fmGBubo6LFy9ixowZvJbqYDCBVd++fXHmzBnx8YgRI/D555+jb9++UKvV+PLLL+tdkKy1vP322/juu++0ygQAhw4dQkxMjF7fm4haTqFQIDU1FWFhYRxi1gYaCopqD8M8e/Ys3n77bV6Eqd2r3ZigyUwnk8nExgT2vuqfpuHM0tISISEhzP6nZ7WvpVeuXIGpqSnS0tJ0XkuZLMqAAqunnnoK69evh1wuh7m5Od5//30MHz4cw4cPhyAIcHBwwI8//qjXMqxfv55rWBG1Y/Hx8di+fTs8PT0REBDAmxwJcRgmdUS1GxNUKhWMjY3r7Cf9SkxMxKFDh5Camio2gJP+1G5MqKiogEKhgKOjo85rKdcjNKDAasqUKZgyZYr4uGfPnkhNTcXhw4dhbGyMwYMHw9HRUcISEpEh0/SQ3L59G3v27MHbb7+NyZMnS12sToHr9lBndH9QRW3L19cXVlZWUhejw6vdmFBSUgJLS0udvVFMFnWPwaRb18XOzg5Tp07FpEmTGFQRUYMam/abWt/9Ke01Q0cqKyuRlJSEyspKrXkoREQt1ZKMztQ8VlZWMDMzg0KhwMmTJ6FQKMR9vAbfYzA9VsC9bvVffvkFhw4dQn5+Pt59912EhoaitLQUBw4cwJAhQziWlojqqN1D4ujoiKKiok7dYtaWdLVSMtMfEembp6en1EXodDSZF+8f8sdRCv9jMIFVSUkJxo0bh9OnT8Pa2hqVlZV44YUXANzLEvjiiy9iwYIFTU63TkQdHxNVSIfr9hBRW7O1tYWFhYXUxeiUdDWm8Rr8PwYTWC1btgxJSUmIi4tD37594erqKu4zNjbGrFmzsHv3bgZWRFQHe0ikwVZKImprCoUCN2/eRGhoaKfNPCclXY1pTBb1PwYTWG3duhUvvPACxowZg6Kiojr7u3fvzox9RKQT10KSBlspiaitxcfHY8eOHXB3d++0meekUl9jGpNF/Y/BBFalpaXw9/evd79SqURNTU0bloiIiBrCnkIiakuaG/vs7Gz2jkuAjWkPZjCBVWBgIM6dO1fv/r1796Jnz55tWCIiImoIewqJqC1xfTzpKBQK5OXl4aGHHhKTWGiwMe1/DCawevLJJ/Haa68hJiYGo0aNAgDIZDLI5XK8++672LNnD1avXi1xKYmIiIiorXFOp7Ti4+Oxc+dOLFiwgMFsAwwmsHrppZeQlJSEuXPnwt7eHgAwb948FBUVoaamBkuWLMGiRYukLSQRERERtTkOQ5MOF/9tPIMJrGQyGdasWYOFCxfi119/xY0bN6BWqxEYGIiHHnoIw4cPl7qIRESkg0KhQGJiIiIjI5mli4j0gnM6pcMhmI1nMIGVxtChQzF06FCpi0FERI10/2KRREStjXM6pcEhmE1jJHUBiIio/bp/iIhcLpe6SERE1Eo0QzArKyuRlJSEyspKcQgm1SVpj9WUKVOadLxMJsO2bdv0VBoiImoqDhGhzojDX6mz4BDMppE0sNq5cye6dOkCd3d3CILwwONlMlkblIqIiBqDQ0Sos+LwV+osOASzaSQNrLy8vHD79m04Oztj3rx5ePjhh+Hu7i5lkYiIqJGYpYs6I2ZII6L6SBpYZWVl4ciRI9i0aRPee+89/O1vf0N0dDTmz5+PWbNmwcbGRsriERFRAzhEhDojDn8lovrIhMaMwWsDSqUSu3fvxqZNm7Bz506o1WqMHz8e8+bNw+TJk9tNa9C5c+cQERGBs2fPol+/flIXh4iIiFqJXC7Hu+++i/T0dHTr1g03btyAn58f3n777XZzn0JE+mMwWQFNTU0xdepUbN68GXl5efjmm2+Qm5uLOXPm4OOPP5a6eERERNTJMUMaETXE4Nax0oxd3rZtG86fP48uXbrAz89P6mIRERFRJ8fhr0TUEIMIrNRqNfbt24cff/wRW7duRVVVFUaPHo01a9Zg+vTpsLKykrqIRERE1MkxQxoRNUTSoYAnT57E888/Dw8PD0ycOBEpKSn44IMPkJ2djd27d+ORRx5ps6AqPT0dixYtgr+/PywsLBAYGIgVK1ZAoVC0yfsTEREREVH7JWmP1dChQ2FhYYEJEyZg7ty54pC/zMxMZGZm6nyOvhJCXL16FWq1Gt988w2CgoJw+fJlLF68GJWVlfj000/18p5ERERERIaOi2I3jqRZAY2M/tdh9qDFfwVBgEwmg0ql0nexRJ988glWrVqFmzdvNvo5zApIRERERB3J0aNHsXHjRixYsIDLCzRA0h6rdevWSfn2D1RaWgpHR8cGj5HL5ZDL5eLjiooKfReLiIiIiKhNcFHsxpM0sFq4cKGUb9+glJQU/Pvf/37gMMAPP/wQK1eubKNSERERERG1HS6K3XgGs46VvixbtgwymazBv6tXr2o95/bt2xg3bhxmz56NxYsXN/j6r7/+OkpLS8W/I0eO6PPjEFEDFAoFTp48yaQzRERErUDTW2VmZgZbW1uYmZlhz549WqO16H8MIt26Pr366qt47LHHGjwmICBA/O/s7GyMGDECgwcPxurVqx/4+ubm5lrdodbW1s0uKxG1THx8PDZu3AiVSsXWNCIiohbSLIpdXV2NpKQkKJVKcVHsgQMHSl08g9PhAysXFxe4uLg06tjbt29jxIgRiIiIwLp167SSaxCRYeMYcCIiotbFRbGbpsMHVo11+/ZtxMTEwNfXF59++ikKCgrEfe7u7hKWjIgag2PAiYiIWhcXxW4aBlb/3759+5CSkoKUlBR07dpVa5+EGemJqBHqGwPOXisiIiJqKxzr9v899thjEARB5x8RGTbNGPDKykokJSWhsrJSHAMOMKkFEVFHwfM5GTL2WBFRu/egMeBMakFEbUWhUCAxMRGRkZEwMzOTujgdDs/nhoff+f9hYEVE7Z5mDLiukzuTWhBRW+KNv/7wfC6dhoInfuf/h0MBiajDiI+Px7p165CQkCBu05XUgohIH+6/8edaP62L53Pp6Lq+AvzO34+BFRF1CLpO7lzYkIj0ob55Przx1x+ez6XTUPDE77w2BlZE1CHoOrk/KKkFEVFz6Gq9542/fvF8Lp36gid+5+viHCsiavfqO7kvWrSICxsSUauqb56P5sa/uroaSUlJUCqV4o3/wIEDpS52u8eFaqXR0HIm/M7XxcCKiNq9+k7u+fn5mDx5stTFI6IOpL7FyHnjr1/NWaiW2eparqHgid/5uhhYEVG7x5M7EbWFhlrvm3PjTy3HbHX61dD1ld/5uhhYEVG7x5M7EbUFDn0yPPUFT0zN3jp4fW0aBlZEREREjcDeccPSUPBU35BNIn1iYEVERETUCGy9Nyz1BU8NDdlkrxXpE9OtExEREVG70lCqb6ZmJ6mwx4qIiIioCZhtTnrMVkeGiIEVERERURMw25x0NEGth4cHs9WRwWFgRURERNRIzDYnLU1Qu2DBAq5TSAaHc6yIiIiIGklXwgRqG/cHtXK5XOoiEWlhYEVERETUCA0lTCD9Y1BLho6BFREREVEjMNucdBjUUnvAOVZEREREjcBsc9JpKAvgwIEDpS4eEQAGVkRERESNwmxz0mFQS+0BAysiIiIiMmgMaqk94BwrIiIiIiKiFmJgRURERERE1EIMrIiIiIiIiFqIc6w6uJycHOTk5EhdDCLq4Dw8PODh4SF1MTolnueJqC3wPP9gDKxamYeHB1asWGEQXzy5XI65c+fiyJEjUheFiDq46OhoxMXFwdzcXOqidCo8zxNRW+F5/sFkgiAIUheC9KOsrAx2dnY4cuQIrK2tpS5Op1FRUYHo6GjWuwRY99LQ1HtpaSlsbW2lLk6nwvO8NHiukQ7rXho8zzcOe6w6gT59+vBH0IbKysoAsN6lwLqXhqbeSTr8zrctnmukw7qXBs/zjcPkFURERERERC3EwIqIiIiIiKiFGFh1YObm5lixYgUnGbYx1rt0WPfSYL1Lh3UvDda7dFj30mC9Nw6TVxAREREREbUQe6yIiIiIiIhaiIEVERERERFRCzGwIiIiIiIiaiEGVkRERERERC3EwIo6JZlM1qi/w4cPt/i9qqqq8M477zTptd5//31MmTIFbm5ukMlkeOedd1pcDkNhyHV/9epVLF26FH369IGNjQ08PDwwceJEJCYmtrgsUjPkes/OzsYjjzyC4OBg2NjYwN7eHlFRUfjuu+/A/ErUXIb8nb/fDz/8AJlMBmtr6xaXxRAYct2np6fXW56ffvqpxeWRkiHXu0ZqairmzZsHV1dXWFhYoFu3bli+fHmLy2MoTKQuAJEUNm7cqPV4w4YN2LdvX53tISEhLX6vqqoqrFy5EgAQExPTqOe8+eabcHd3R9++fREXF9fiMhgSQ677//73v1i7di1mzpyJZ599FqWlpfjmm28wcOBA7NmzB6NHj25xmaRiyPVeWFiIW7duYdasWfDx8YFSqcS+ffvw2GOP4dq1a/jggw9aXCbqfAz5O19bRUUFli5dCisrqxaXw1C0h7qfO3cuJkyYoLVt0KBBLS6PlAy93i9cuICYmBh4eXnh1VdfhZOTEzIzM5GVldXi8hgMgYiE5557TtDXz6GgoEAAIKxYsaLRz0lLS2v2c9sbQ6r7xMREoby8XGtbYWGh4OLiIgwZMkQPJZSOIdV7fSZNmiRYWVkJNTU1rVMw6tQM9Tv/2muvCcHBwcL8+fMFKyur1i+cATCkuk9LSxMACJ988oleymNIDKneVSqV0Lt3b2HAgAFCVVWVXspkCDgUkKgearUan3/+OXr16oUuXbrAzc0NS5YsQXFxsdZxiYmJiI2NhbOzMywsLODv748nnngCwL0hBy4uLgCAlStXit3wDxra5+fnp4+P1G5IVfcRERF1huI4OTlh2LBhuHLlSut+SAMk5XdeFz8/P1RVVUGhULT4sxHpIvV3/saNG/jXv/6Fzz77DCYmnWsQkdR1DwCVlZWd7vwiVb3v3bsXly9fxooVK2BhYYGqqiqoVCq9fU6pdK5fMVETLFmyBOvXr8fjjz+OF198EWlpafi///s/nD9/HidOnICpqSny8/MxduxYuLi4YNmyZbC3t0d6ejp+//13AICLiwtWrVqFZ555BtOnT8eMGTMAAGFhYVJ+NINnaHWfm5sLZ2fnVv2Mhkjqer979y4qKytRUVGBI0eOYN26dRg0aBAsLCz0+rmp85L6O//yyy9jxIgR/6+9ew+KqvzDAP6sXBaQi6CAV5aLo8lQWmRmplt5TUlAvGEpWmaOjWahjDcSTcfMVByLFDR0UBtvoYUFluJgmqOV1qhTGgJ2GUVHQdIUhe/vD4b9tQIKLPAedp/PzM7Au+e85z3PvLOz3z03DB06FDt27GjUfdUa1dkvWrQIs2fPhk6nQ2hoKJYuXYpBgwY16j5rgarcv/32WwCAXq/Hk08+iR9//BGOjo6IjIxEUlISvLy8Gn/nm4LqQ2ZEWnD/4fLDhw8LANm6davZcpmZmWbt6enpAkBOnDhRY9+WnCJii6cCaiX7Sjk5OaLT6SQ+Pr7efWiRFnNftmyZADC9+vfvLxcvXqxTH0Q10dqcz8jIEHt7ezlz5oyIiMTExNjMqYAqsy8oKJBBgwbJJ598Il988YUkJiaKn5+ftGjRQjIyMuq+cxqmpdyHDx8uAKR169by8ssvy65duyQ+Pl7s7e3lmWeekfLy8rrvoAbxVECiauzcuRMeHh4YOHAgrl69anpVniqWnZ0NAGjVqhUAICMjA3fv3lU4YuuhpewLCwsxbtw4BAQEIC4urlG2oRVayD06OhrffPMNtm3bhnHjxgGoOIpF1BhUzvnS0lK8/fbbmDp1KoKDgxukz+ZEZfZ+fn7IysrC1KlT8dJLL+Gtt97CyZMn4e3tjdjY2AbZhlapzP2ff/4BAPTs2RNbtmxBVFQUFi9ejPfeew9Hjx7FgQMHGmQ7qrGwIqrG+fPnUVxcDB8fH3h7e5u9/vnnHxQWFgIAjEYjoqKisGjRIrRp0wbh4eFITU3FnTt3FO9B86WV7G/evImwsDCUlJRg7969VnMb5JpoIXeDwYABAwYgOjoaW7duRWBgIAYMGMDiihqFyjm/evVqXL161XRXNVujhc+b//Ly8sKkSZPw22+/4c8//2zQvrVEZe6Vp3RHR0ebtVf+iHb06NF6960lvMaKqBrl5eXw8fHB1q1bq32/8qJNnU6HXbt24dixY/jyyy+RlZWFV199FStXrsSxY8es/st4Y9BC9qWlpRgxYgR++eUXZGVlISQkpN59NRdayP1+I0eOREpKCnJycjB48OAG65cIUDfni4uLsWTJEkybNg03btzAjRs3AFT8oi8iyM/Ph4uLC3x8fCzbQQ3T4udNp06dAADXrl1Dx44dG6xfLVGZe/v27QEAvr6+Zu2V8/z+m2c0W6rPRSTSgvvPQ542bZrY2dnV65agW7duFQCSkpIiIhW36wavsaqR1rIvKyuTMWPGiJ2dnezevbvOY2gutJZ7dfbs2SMAZPv27Rb1QySinTlfebvvB73Cw8PrPCYt00r2DxIbGysA5O+//7aoHy3RUu7r1q0TALJx40az9tzcXAEgS5curfOYtIinAhJVY/To0SgrK8N7771X5b179+6hqKgIQMUvLCJi9n6PHj0AwHTI3MXFBQBM69CDqc5++vTp2L59O5KSkkx3OrIFKnO/cuVKte0bN26ETqfDE088Uat+iOpC1Zz38fFBenp6ldfzzz8PJycnpKenY+7cufXfsWZAa583f/31Fz799FM89thjaNeuXS33ovlRmXt4eDj0ej1SU1NRXl5uat+wYQMAYODAgXXZFc3iqYBE1TAajXjjjTewbNkynDp1CoMGDYKDgwPOnz+PnTt3Ys2aNRg5ciQ2b96MpKQkREZGIigoCCUlJUhJSYG7u7vpie7Ozs4IDg7G9u3b0aVLF3h5eSEkJOSBp5elpaWhoKAAt27dAgDk5ORgyZIlAIDx48fDYDA0fgiKqMw+MTERSUlJ6N27N1xcXLBlyxaz9yMjI9GyZctGz0AFlbkvXboUR44cwZAhQ+Dn54dr165h9+7dOHHiBKZPn47OnTs3ZRRkI1TNeRcXF0RERFRp37NnD44fP17te9ZG5edNXFwccnNz0b9/f7Rv3x75+flYv349bt68iTVr1jRlDE1OZe5t27bF/Pnz8e6772LIkCGIiIjAzz//jJSUFERHR6Nnz55NGUXjUXm4jEgrano6eXJysoSGhoqzs7O4ubnJo48+KnFxcaZTBX766SeJjo4WPz8/0ev14uPjI2FhYfLDDz+Y9XP06FEJDQ0VR0fHWh06NxqNNZ4ikp2d3VC7rQlayj4mJuaBp+fk5eU15K4rpaXc9+/fL2FhYdK+fXtxcHAQNzc36dOnj6SmplrNLXhJPS3N+erY0u3WK6nIftu2bdKvXz/x9vYWe3t7adOmjURGRsqPP/7YoPusBVrKXUSkvLxc1q5dK126dBEHBwfp1KmTLFiwQEpLSxtsn1XTidx3rI+IiIiIiIjqhNdYERERERERWYiFFRERERERkYVYWBEREREREVmIhRUREREREZGFWFgRERERERFZiIUVERERERGRhVhYEdVDfn4+dDodNm3apHooNoW5q8PsydZwzqvB3NVh9pZjYUVERERERGQhPiCYqB5EBHfu3IGDgwPs7OxUD8dmMHd1mD3ZGs55NZi7OszeciysiIiIiIiILMRTAclmJSQkQKfT4dy5c3jllVfg4eEBb29vxMfHQ0Twxx9/IDw8HO7u7mjbti1WrlxpWre685AnTpwIV1dX/PXXX4iIiICrqyu8vb0xa9YslJWVmZY7dOgQdDodDh06ZDae6vq8dOkSJk2ahI4dO0Kv16Ndu3YIDw9Hfn5+I6XS+Ji7OsyebA3nvBrMXR1mrxYLK7J5Y8aMQXl5Od5//3306tULS5YsQWJiIgYOHIgOHTpg+fLl6Ny5M2bNmoWcnJwH9lVWVobBgwejdevW+PDDD2E0GrFy5UokJyfXa2xRUVFIT0/HpEmTkJSUhBkzZqCkpAQXL16sV39awtzVYfZkazjn1WDu6jB7RYTIRi1cuFAAyJQpU0xt9+7dk44dO4pOp5P333/f1H79+nVxdnaWmJgYERHJy8sTAJKammpaJiYmRgDI4sWLzbbz+OOPS2hoqOn/7OxsASDZ2dlmy93f5/Xr1wWArFixomF2WCOYuzrMnmwN57wazF0dZq8Wj1iRzZs8ebLpbzs7Ozz55JMQEbz22mum9latWqFr1664cOHCQ/ubOnWq2f99+/at1Xr3c3Z2hqOjIw4dOoTr16/XeX2tY+7qMHuyNZzzajB3dZi9GiysyOb5+fmZ/e/h4QEnJye0adOmSvvDPgScnJzg7e1t1ubp6VmvDw+9Xo/ly5fj66+/hq+vL/r164cPPvgAly5dqnNfWsTc1WH2ZGs459Vg7uowezVYWJHNq+6WojXdZlQechPN2tyeVKfTVdv+34tAK82cORPnzp3DsmXL4OTkhPj4eHTr1g0nT5586Ha0jrmrw+zJ1nDOq8Hc1WH2arCwImpinp6eAICioiKz9oKCgmqXDwoKQmxsLPbv34/Tp0+jtLTU7C4+VDvMXR1mT7aGc14N5q4Os6/AwoqoiRkMBtjZ2VW5C09SUpLZ/7du3cLt27fN2oKCguDm5oY7d+40+jitDXNXh9mTreGcV4O5q8PsK9irHgCRrfHw8MCoUaOwdu1a6HQ6BAUFISMjA4WFhWbLnTt3Dv3798fo0aMRHBwMe3t7pKen4/Llyxg7dqyi0TdfzF0dZk+2hnNeDeauDrOvwMKKSIG1a9fi7t27WLduHfR6PUaPHo0VK1YgJCTEtEynTp0QHR2NAwcOIC0tDfb29njkkUewY8cOREVFKRx988Xc1WH2ZGs459Vg7uowe0AnD7tijYiIiIiIiB6I11gRERERERFZiIUVERERERGRhVhYERERERERWYiFFRERERERkYVYWBEREREREVmIhRWRxuXn50On02HTpk2qh2JTmLs6zJ5sDee8GsxdDWvOnYUVWZXc3Fy88cYbCAwMhJOTE9zd3dGnTx+sWbMG//77b6Nt9+zZs0hISEB+fn6jbaM2li5diuHDh8PX1xc6nQ4JCQlNsl3mriZ3gNmrzJ7UsOU5/+uvvyIuLg49evSAm5sb2rVrh2HDhuGHH35o9G0zd+be1FTmXl98QDBZjX379mHUqFHQ6/WYMGECQkJCUFpaiu+++w6zZ8/GmTNnkJyc3CjbPnv2LBYtWoTnnnsO/v7+jbKN2liwYAHatm2Lxx9/HFlZWU2yTeauJneA2QPqsic1bH3Ob9iwARs3bkRUVBSmTZuG4uJirF+/Hk8//TQyMzMxYMCARtkuc2fuKqjK3RIsrMgq5OXlYezYsTAYDDh48CDatWtneu/NN9/E77//jn379ikc4f+JCG7fvg1nZ+cG7zsvLw/+/v64evUqvL29G7z/6rbH3Js+98ptMns12ZManPNAdHQ0EhIS4Orqamp79dVX0a1bNyQkJDTKF03mztwfxppyt5gQWYGpU6cKADly5Eitlr97964sXrxYAgMDxdHRUQwGg8ydO1du375ttpzBYJBhw4bJ4cOHpWfPnqLX6yUgIEA2b95sWiY1NVUAVHllZ2eb9ZGZmSmhoaGi1+tl9erVIiKSm5srI0eOFE9PT3F2dpZevXpJRkaG2Rjy8vIEgKSmptY6jytXrggAWbhwYa3XqQ/mbq6pchdh9vdryuxJDc75mo0YMUK8vLzqte7DMPeaMXfry91SLKzIKnTo0EECAwNrvXxMTIwAkJEjR8rHH38sEyZMEAASERFhtpzBYJCuXbuKr6+vzJs3Tz766CN54oknRKfTyenTp0Wk4kNkxowZAkDmzZsnaWlpkpaWJpcuXTL10blzZ/H09JQ5c+bIunXrJDs7Wy5duiS+vr7i5uYm8+fPl1WrVkn37t2lRYsW8vnnn5vGoOUvmczdXFN+uWf25lhYWT/O+Zo988wz0qVLl3qt+zDMvWbM3fpytxQLK2r2iouLBYCEh4fXavlTp04JAJk8ebJZ+6xZswSAHDx40NRmMBgEgOTk5JjaCgsLRa/XS2xsrKlt586dZr/m/FdlH5mZmWbtM2fOFABy+PBhU1tJSYkEBASIv7+/lJWViYh2v2Qy96qa6ss9s6+KhZV145yvWU5Ojuh0OomPj6/zug/D3GvG3K0v94bAuwJSs3fjxg0AgJubW62W/+qrrwAA77zzjll7bGwsAFQ5Zzk4OBh9+/Y1/e/t7Y2uXbviwoULtR5jQEAABg8eXGUcTz31FJ599llTm6urK6ZMmYL8/HycPXu21v2rwNzVYfZkazjnq1dYWIhx48YhICAAcXFxFvVVHeZePeZunbk3BBZW1Oy5u7sDAEpKSmq1fEFBAVq0aIHOnTubtbdt2xatWrVCQUGBWbufn1+VPjw9PXH9+vVajzEgIKDacXTt2rVKe7du3UzvaxlzV4fZk63hnK/q5s2bCAsLQ0lJCfbu3Wt2gX9DYe5VMfcK1ph7Q+BdAanZc3d3R/v27XH69Ok6rafT6Wq1nJ2dXbXtIlLrbTXG3dBUY+7qMHuyNZzz5kpLSzFixAj88ssvyMrKQkhISKNsh7mbY+7/Z425NwQesSKrEBYWhtzcXHz//fcPXdZgMKC8vBznz583a798+TKKiopgMBjqvP3afpjdP47ffvutSvuvv/5qel/rmLs6zJ5sDed8hfLyckyYMAEHDhzAtm3bYDQa69xHXTD3Csz94awhd0uxsCKrEBcXh5YtW2Ly5Mm4fPlylfdzc3OxZs0aAMDQoUMBAImJiWbLrFq1CgAwbNiwOm+/ZcuWAICioqJarzN06FAcP37c7EPz5s2bSE5Ohr+/P4KDg+s8jqbG3NVh9mRrOOcrTJ8+Hdu3b0dSUhJGjBhR5/XrirlXYO4PZw25W4qnApJVCAoKwrZt2zBmzBh069bN7AnlR48exc6dOzFx4kQAQPfu3RETE4Pk5GQUFRXBaDTi+PHj2Lx5MyIiIvD888/Xefs9evSAnZ0dli9fjuLiYuj1erzwwgvw8fGpcZ05c+bgs88+w4svvogZM2bAy8sLmzdvRl5eHnbv3o0WLer+u0daWhoKCgpw69YtAEBOTg6WLFkCABg/fnyDHxFg7hWaOneA2VdSkT2pwTlf8cU5KSkJvXv3houLC7Zs2WL2fmRkpOkLcUNh7szdlnK3mMpbEhI1tHPnzsnrr78u/v7+4ujoKG5ubtKnTx9Zu3at2UPy7t69K4sWLZKAgABxcHCQTp06PfBBevczGo1iNBrN2lJSUiQwMFDs7OyqfZBedSofpNeqVStxcnKSp556yqIH6RmNxmof6ocabpnaUJi7mtxFmL3K7EkNW57zlc8qqumVl5f3wPUtwdyZuy3lXl86kTpcqUZERERERERV8BorIiIiIiIiC7GwIiIiIiIishALKyIiIiIiIguxsCIiIiIiIrIQCysiIiIiIiILsbAiIiIiIiKyEAsrIiIiIiIiC7GwIiIiIiIishALKyIiIiIiIguxsCIiIiIiIrIQCysiIiIiIiILsbAiIiIiIiKyEAsrIiIiIiIiC/0Psvbp8lorr9kAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -617,7 +617,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "For further aesthetic changes, the '[Plot Aesthetics Tutorial](09-plot_aesthetics.html)' provides detailed examples of how to customize the plot.\n"
+ "For further aesthetic changes, the [Plot Aesthetics Tutorial](09-plot_aesthetics.html) provides detailed examples of how to customize the plot.\n"
]
}
],
diff --git a/nbs/tutorials/04-proportion_plot.ipynb b/nbs/tutorials/04-proportion_plot.ipynb
index 6546fad5..32160d08 100644
--- a/nbs/tutorials/04-proportion_plot.ipynb
+++ b/nbs/tutorials/04-proportion_plot.ipynb
@@ -43,7 +43,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "Compiling numba functions: 100%|██████████| 11/11 [00:00<00:00, 40.58it/s]"
+ "Compiling numba functions: 100%|██████████| 11/11 [00:00<00:00, 34.27it/s]"
]
},
{
@@ -51,7 +51,7 @@
"output_type": "stream",
"text": [
"Numba compilation complete!\n",
- "We're using DABEST v2025.03.14\n"
+ "We're using DABEST v2025.03.27\n"
]
},
{
@@ -290,14 +290,14 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "### `dabest.prop_dataset` helper function to create a binary table"
+ "### Helper function to create a binary table - `dabest.prop_dataset` "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "In DABEST v2024.3.29, we incorporated feedback from biologists who may not have tables of 0’s and 1’s readily available. As a result, a convenient function - `dabest.prop_dataset` - to generate a binary dataset based on the specified sample sizes is provided. Users can generate a pandas.DataFrame containing the sample sizes for each element in the groups and the group names (optional if the sample sizes are provided in a dict)."
+ "In DABEST **v2024.3.29**, we incorporated feedback from biologists who may not have tables of 0’s and 1’s readily available. As a result, a convenient function - `dabest.prop_dataset` - to generate a binary dataset based on the specified sample sizes is provided. Users can generate a pandas.DataFrame containing the sample sizes for each element in the groups and the group names (optional if the sample sizes are provided in a dict)."
]
},
{
@@ -419,11 +419,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:58:05 2025.\n",
+ "The current time is Tue Mar 25 17:22:24 2025.\n",
"\n",
"Effect size(s) with 95% confidence intervals will be computed for:\n",
"1. Test 1 minus Control 1\n",
@@ -454,7 +454,7 @@
"source": [
"To generate a proportion plot, the **dabest** library features two effect sizes:\n",
"\n",
- " - the mean difference (``mean_diff``)\n",
+ " - Mean difference (``mean_diff``)\n",
" - [Cohen's h](https://en.wikipedia.org/wiki/Cohen's_h) (`cohens_h`)\n",
"\n",
"These are attributes of the ``Dabest`` object."
@@ -468,11 +468,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:58:05 2025.\n",
+ "The current time is Tue Mar 25 17:22:24 2025.\n",
"\n",
"The unpaired mean difference between Control 1 and Test 1 is 0.575 [95%CI 0.35, 0.725].\n",
"The p-value of the two-sided permutation t-test is 0.0, calculated for legacy purposes only. \n",
@@ -509,11 +509,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:58:05 2025.\n",
+ "The current time is Tue Mar 25 17:22:25 2025.\n",
"\n",
"The unpaired Cohen's h between Control 1 and Test 1 is 1.24 [95%CI 0.784, 1.66].\n",
"The p-value of the two-sided permutation t-test is 0.0, calculated for legacy purposes only. \n",
@@ -563,7 +563,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "Unpaired proportion plots utilise the common bar plot. The bar plot displays the proportion of observations in the dataset that belong to the category of interest. \n",
+ "Unpaired proportion plots utilise the common bar plot. The bar plot displays the proportion of observations in the dataset that belong to the category of interest: \n",
"\n",
"- The white portion represents the proportion of observations that do not belong to the category (proportion of 0s in the data). \n",
"- The colored portion represents the proportion of observations belonging to the category (proportion of 1s in the data)."
@@ -583,7 +583,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWUdJREFUeJzt3XdUFNffBvBnl46IohSRIGBFQgTFQBQV8adi7IkaSyyxxxIVNLEDxkLUqBi7JqgpRmMSu7FExV5iIbGiIogaAVGRppTdef/wZePKgtt3gedzzp64M3fmPusYvszszL0iQRAEEBERkVESGzoAERERlYyFmoiIyIixUBMRERkxFmoiIiIjxkJNRERkxFioiYiIjBgLNRERkRFjoSYiIjJiLNRERERGrMIX6ocPHyIyMhIPHz40dBQiInoFfz6/xEL98CFmzZpV4f8hEBEZG/58fqnCF2oiIiJjxkJNRERkxFioiYiIjBgLNRERkRFjoSYiIjJiLNRERERGjIWaiIjIiLFQExERGTGjKtTHjh1Dly5dULNmTYhEImzfvv2N28TGxqJJkyawsLBA3bp1sWHDBp3nJCIi0hejKtQ5OTnw8fHBihUrlGqfmJiITp06ITg4GHFxcZgwYQKGDRuG/fv36zgpERGRfpgaOsCr3n//fbz//vtKt1+9ejU8PDywaNEiAEDDhg1x4sQJLFmyBCEhIbqKSUREpDdGVahVdfr0abRt21ZuWUhICCZMmFDiNnl5ecjLy5O9z87O1lU8pYxetAlPs3INmsFY2FW2xsqJ/QwdQ+/ivhuP/Oynho5hcOY2dvAdutTQMYiMTpku1CkpKXBycpJb5uTkhMzMTDx//hxWVlbFtomKisKsWbP0FfGNnmblIv2ZYX9ZIMPKz36K/KzHho5B5YWkABCbAiKRoZOQlpTpQq2OqVOnIiwsTPY+Li4OQUFBBkz0klgkQjXbSoaOYRBPMnMgFQRDxzA8kRjmNnaGTqF3+dlPAUFq6BjlR046UMkBMKlwP97LrTJ9JGvUqIHU1FS5ZampqbC1tVV4Ng0AFhYWsLCwkL23sbHRaUZlVbOthJ8jhxk6hkH0jfyWVxXw8tKv//jvDR1D784tHcgrCtomyWehLkeM6q5vVTVr1gyHDh2SW3bw4EE0a9bMQImIiIyAJN/QCUiLjKpQZ2dnIy4uDnFxcQBePn4VFxeH5ORkAC8vWw8cOFDW/tNPP8WdO3fwxRdf4MaNG1i5ciV++eUXhIaGGiI+EZFxKMx7cxsqM4yqUJ8/fx6NGzdG48aNAQBhYWFo3LgxwsPDAQAPHz6UFW0A8PDwwJ49e3Dw4EH4+Phg0aJF+Pbbb/loFhFVbIUvDJ2AtMiovsRo3bo1hFJuKlI06ljr1q1x6dIlHaYiIipjCp4bOgFpkVGdURMRkRYU5Bg6AWkRCzURUXmTz0GUyhMWaiKi8iYvy9AJSItYqImIypu8TEMnMJgVK1bA3d0dlpaWCAgIwLlz50ptHx0djQYNGsDKygqurq4IDQ3FixfGdTMeCzURUXnz4pmhExjEli1bEBYWhoiICFy8eBE+Pj4ICQlBWlqawvabNm3ClClTEBERgevXr+O7777Dli1bMG3aND0nLx0LNRFReVNBC/XixYsxfPhwDB48GF5eXli9ejWsra0RExOjsP2pU6cQGBiIfv36wd3dHe3bt0ffvn3feBaubyzURETlzfMMQyfQu/z8fFy4cEFuRkWxWIy2bdvi9OnTCrdp3rw5Lly4ICvMd+7cwd69e9GxY0e9ZFaWUT1HTUREWvAiw9AJtCo7OxuZmf997/76nA0AkJ6eDolEonBGxRs3bijcb79+/ZCeno4WLVpAEAQUFhbi008/5aVvIiLSsdwnhk6gVUFBQahSpYrsFRUVpZX9xsbGYt68eVi5ciUuXryI33//HXv27MHs2bO1sn9t4Rk1EVF5k/sYEIRyMyf10aNH4evrK3v/+tk0ANjb28PExEThjIo1atRQuN+ZM2diwIABGDbs5cyF77zzDnJycjBixAhMnz4dYrFxnMsaRwoiItIeSX65epbaxsYGtra2speiQm1ubg4/Pz+5GRWlUikOHTpU4oyKubm5xYqxiYkJAJQ6nLW+8YyaiKg8yk4FLG0NnUKvwsLCMGjQIDRt2hT+/v6Ijo5GTk4OBg8eDAAYOHAgXFxcZJfOu3TpgsWLF6Nx48YICAjA7du3MXPmTHTp0kVWsI0BCzURUXn07B5gX8/QKfSqd+/eePToEcLDw5GSkgJfX1/s27dPdoNZcnKy3Bn0jBkzIBKJMGPGDDx48AAODg7o0qUL5s6da6iPoBALNRFRefQ0ydAJDGLs2LEYO3aswnWxsbFy701NTREREYGIiAg9JFMfv6MmIiqP0m8ZOgFpCQs1EVF5lHIZkEoNnYK0gIWaiKg8yssC0m8aOgVpAQs1EVF5dfekoROQFrBQExGVV3diXw58QmUaCzURUXmVkQw8vm3oFKQhFmoiovLs9p+GTkAaYqEmIirPbv/Ju7/LOBZqIqLyLCcdeBhn6BSkARZqIqLyLuHQm9uQ0WKhJiIq7+4cBSSFhk5BamKhJiIq7/KygPt/GToFqYmFmoioIrh1wNAJSE0s1EREFUHSCeBFpqFTkBpYqImIyommTZvirYZ+aDrvYvGVknzg5n79hyKNsVATEZUTKSkpePDvQ6Rk5itucOU3QCrRbyjSGAs1EVFFkfUQSDhs6BSkIhZqIqKK5MIGnlWXMSzUREQVybP7wPVdhk5BKmChJiKqaM7HvHy2msoEFmoioormxbOXl8CpTGChJiKqiK78DjxJNHQKUgILNRFRRSRIgVPLAEEwdBJ6AxZqIqKK6sEF4O5JQ6egN2ChJiKqyM6sAiQFhk5BpWChJiKqyJ7dB65uM3QKKgULNRFRRXdhI5D7xNApqARaK9SCIODw4cP4448/kJXF5/OIiMqM/Gzgr28NnYJKoFahnj59OoKDg2XvBUFA+/bt0a5dO3Tq1AnvvPMOEhIStBaSiIh07MYeIPWqoVOUaQ8fPsTff/+NnJwcre5XrUL922+/wd/fX/b+119/xaFDhzBnzhzs3r0bEokEkZGR2spIRET6cHwRICk0dIoyZ8eOHfD09MRbb72FJk2a4OzZswCA9PR0NG7cGNu3b9do/2oV6gcPHqBu3bqy97///ju8vLwwdepUdOzYEaNGjUJsbKxGwYiISM8eJwCXtxo6RZmya9cufPjhh7C3t0dERASEV55Lt7e3h4uLC9avX69RH2oValNTU+Tl5QF4edn70KFD6NChg2y9k5MT0tPTNQpGREQGcD4GyLhn6BRlxpdffolWrVrhxIkTGDNmTLH1zZo1w6VLlzTqQ61C7e3tjR9//BFPnz7F+vXr8fjxY3Tq1Em2/u7du7C3t1cr0IoVK+Du7g5LS0sEBATg3LlzpbaPjo5GgwYNYGVlBVdXV4SGhuLFixdq9U1EVOFJ8oFjCwGp1NBJyoQrV67go48+KnG9k5MT0tLSNOrDVJ2NwsPD0aVLF1kxDgwMlLu5bM+ePXj33XdV3u+WLVsQFhaG1atXIyAgANHR0QgJCUF8fDwcHR2Ltd+0aROmTJmCmJgYNG/eHDdv3sQnn3wCkUiExYsXq/PRiIjo4d/Ate2A94eGTmL0rK2tS7157M6dO6hevbpGfah1Rt2uXTtcvHgRixcvRkxMDA4cOCBb9/TpU7Rq1Qrjxo1Teb+LFy/G8OHDMXjwYHh5eWH16tWwtrZGTEyMwvanTp1CYGAg+vXrB3d3d7Rv3x59+/Z941k4ERG9wbl1QLZmZ4IVQXBwMDZu3IjCwuI34aWkpGDdunVo3769Rn2o/Ry1l5cXxo8fj0GDBsHS0lK23M7ODkuWLEHr1q1V2l9+fj4uXLiAtm3b/hdOLEbbtm1x+vRphds0b94cFy5ckBXmO3fuYO/evejYsaPqH4iIiP5TkAucXGroFEZv7ty5uH//Pt59912sWbMGIpEI+/fvx4wZM/DOO+9AEARERERo1Idal76zsrKQkZEBV1dX2bJ///0Xq1evRl5eHnr27Knype/09HRIJBI4OTnJLXdycsKNGzcUbtOvXz+kp6ejRYsWEAQBhYWF+PTTTzFt2rQS+8nLy5PdCAcA2dnZKuUkIqowkk68nLjDxc/QSYxWgwYNcOLECYwfPx4zZ86EIAhYuHAhAKB169ay+640oVahHjFiBBITE3HmzBkAQGZmJt577z3cv38fYrEYS5cuxb59+1Q+q1ZVbGws5s2bh5UrVyIgIAC3b9/G+PHjMXv2bMycOVPhNlFRUZg1a5ZOcxGVJU2bNkVKSgpq1KiB8+fPGzoOGZtz64DuTQCRyNBJjNbbb7+NP//8E0+fPsXt27chlUpRu3ZtODg4aGX/al36PnHiBDp37ix7/+OPP+Lff//FqVOn8PTpUzRq1Ahz5sxRaZ/29vYwMTFBamqq3PLU1FTUqFFD4TYzZ87EgAEDMGzYMLzzzjv44IMPMG/ePERFRUFawh2LU6dOxbNnz2Svo0ePqpSTqLxJSUnBgwcPkJKSYugoZIzSrgP/XjR0ijLBzs4O7777LgICArRWpAE1C3V6ejpcXFxk73fu3IkWLVrgvffeQ+XKlTFw4ED8/fffKu3T3Nwcfn5+OHTokGyZVCrFoUOH0KxZM4Xb5ObmQiyW/wgmJiYAIPfQ+assLCxga2sre9nY2KiUk4iowuHsWiX65ptvEBISUuL6999/H6tWrdKoD7UKddWqVWW/fT9//hzHjx+Xu6vN1NQUubm5Ku83LCwM69atw8aNG3H9+nWMGjUKOTk5GDx4MABg4MCBmDp1qqx9ly5dsGrVKmzevBmJiYk4ePAgZs6ciS5dusgKNhERaSjpJJDz2NApjNJ3330HLy+vEtd7eXlh7dq1GvWh1nfUzZs3x8qVK+Hp6Yl9+/bhxYsX6Natm2z9zZs35c64ldW7d288evQI4eHhSElJga+vL/bt2ye7wSw5OVnuDHrGjBkQiUSYMWMGHjx4AAcHB3Tp0gVz585V52MREZEighS4fRDw6WPoJEYnISFB4YhkRTw9PbFu3TqN+lCrUM+fPx/t27dHjx49AAATJ07E22+/DQCQSCTYunWr3JCiqhg7dizGjh2rcN3r44ebmpoiIiJC41vfiYjoDeL/ABr15k1lrzE3Ny/1/o6HDx8W+4pWVWoV6rp16yI+Ph7Xrl1DlSpV5G49z83NxfLly+Hj46NRMCIiMiJPk4DHtwH7eoZOYlTee+89bNiwAaGhoahcubLcumfPnmH9+vV47733NOpDrUINAGZmZgqLceXKleUugxMRUTlx6wAL9WsiIiIQFBQEX19fTJgwQXZ1+cqVK4iOjsbDhw+xadMmjfpQu1BnZmZi5cqVOHLkCNLS0rBmzRr4+/vjyZMn2LBhA7p27So3FSYRUVlR8DwLd/atxpNbZwGRGPaezVE7ZCRMzK1K3Oaf76cgM/my3LIaTd5H3Y4vv8pL/fsgbu2KVritf+hPMK9UVVvxdef2ISBgFKDhpdzyJCAgALt27cLIkSMxfvx4iP7/qwFBEODh4YGdO3eW+OSSstQq1Pfv30dQUBDu3buHevXq4caNG7IRvqpVq4Y1a9bg7t27WLqUw88RkXH65/spcPL5H5x82hVbd3P7QuRnP4H3x3MglUhwa1c0bu9ZhgYffFHqPp0ah8AtqL/svdjsv+GV7b1awa6O/AhfN3cugbSwoGwUaQDIfQz8ewl4y3hHKluxYgUWLlyIlJQU+Pj4YNmyZfD39y+xfUZGBqZPn47ff/8dT548gZubG6Kjo1Uairpdu3a4ffs2Ll26hISEBABAnTp10KRJE1nh1oRahfrzzz9HVlYW4uLi4OjoWGxmq+7du2P37t0ahyMi0rfc9GQ8TbgAnyHRqFzz5WXeOh1G4urPkXBvOxQWlUueCcnEzBLmNtVKWGcBEzML2fuCnGd4lvQP6nUer90PoGu3DhhtoVZ1Bsb8/Hy0a9cOjo6O+PXXX+Hi4oK7d++iatWqKvctFovh5+cHPz/t/92oVagPHDiA0NBQeHl54fHj4s/W1a5dG/fuceJxIip7Mu/fgIllJVmRBoCqHo0BkQhZD+Jh4dm8xG3TrhxB2uUjMLexQ7V6/nBt2Qcmr5xVvyr18iGIzSxQvWGg1j+DTiUdBwonAqbmhk5SzKszMALA6tWrsWfPHsTExGDKlCnF2sfExODJkyc4deoUzMzMAEDtcbmvXbuGO3fu4OnTpwoH3Bo4cKBa+wXULNTPnz8vdXi0rKwstQMRERlSQfZTmFtXlVsmEpvAzKoyCnKelrido3cQLKo4wrxydeSkJiLp8Ho8f3wfDXvNUNg+Ne4AHLyD5M6yy4T8HOD+OcC9haGTyCmagfHVQbHeNANj0ffHY8aMwY4dO+Dg4IB+/fph8uTJSg+alZCQgP79++PcuXMljogpEon0X6i9vLxw7NgxjBw5UuH67du3o3HjxmqHIiLStnsntuDeyV9k76WF+ch6cAMJ+1bLljX5VP2hHms0eV/250qO7jC3qYYrP03D8ycPYVXNWa5t5v3reJ5+Dw26TVS7P4O6e1qvhTo7OxuZmZmy9xYWFrCwkP8FR50ZGO/cuYPDhw/j448/xt69e3H79m2MHj0aBQUFSo/PMXLkSFy+fBnR0dFo2bIl7OzsVPx0b6ZWoZ4wYQIGDRqERo0aoVevXgBejst9+/ZtzJo1C6dPn8Zvv/2m1aBERJqo4dcR9l4tZe/jty+EvWcgqr9yKduicnWY2dghPzdDbltBKkHB8yyYVVL+h3BllwYAgBdP/y1WqFMv7Uclp9qwcdbeo07JycnIyckBAOTkSZD85AVqVVN82V1jD+N0s98SBAUFyb2PiIhAZGSkxvuVSqVwdHTE2rVrYWJiAj8/Pzx48AALFy5UulCfPHkS06ZNw2effaZxnpKoVaj79++Pu3fvYsaMGZg+fToAoEOHDhAEAWKxGPPmzUP37t21mZOISCNmVpVhZvXfgBRiUwuYVaoCq2o15drZvuUJyYscZD+8JSukGYl/A4IgK77KyEm9AwDFbi6T5D9H+vUTcAsepO5HkXPu3DnMnj0be/bskV16zXgugfv0c+j8TjXM7OiGd90rv2EvKnp2/+UlcPNK2t1vCY4ePQpfX1/Z+9fPpgH1ZmB0dnaGmZmZ3GXuhg0bIiUlBfn5+TA3f/P38Pb29qhSpYqSn0Q9aj8MN336dCQkJGDhwoUYNWoUhg8fjvnz5yM+Ph6TJ0/WZkYiIr2xtq8Fuzp+uLVnGbIexCPz3jUk7F8Fh7dbye74zstMx4VVI5H1IB4A8PzJQyQf/xnZD2/hRUYqHt88g5s7FsG2ljcqOXnI7f/R1WMQpBI4vhOscdbff/8dgYGB+OOPP4p9PyoIwN4rT9B8QRx+v5SucV/FZP6r/X2WwMbGRm7WQ0WFWp0ZGAMDA2XzRxe5efMmnJ2dlSrSAPDpp5/ixx9/hEQiUfFTKU/tAU8AoFatWggNDdVWFiIio1C/++e4s28Vrvw0HRCJUN0zEHVC/rsnR5BK8PzxfUgK8gAAYhNTZCTG4d9zOyDJfwELWwdUbxgI1xbFJ7FI/fsAqjdoDlNLzabYPXfuHHr37g2JRFLiTUwSKSCCgN7rruPUF77aPbPOTjW6UcrCwsIwaNAgNG3aFP7+/oiOji42A6OLiwuioqIAAKNGjcLy5csxfvx4fPbZZ7h16xbmzZuHcePGKd1n/fr1IZFI4OPjgyFDhsDV1VXhjWgffvih2p9LrUJ98eJFnDlzBqNHj1a4fuXKlWjevLncpQoiMk5FlwVLujxYXjUa+FWJ68ysKpc6uIllVSe0mLFH9t6iigMaDZyvVL8+nyxSPmQp5syZA0EQSizSRQQAAgTM2XsXO0Z7a6VvAMDzDO3tS0tUnYHR1dUV+/fvR2hoKBo1agQXFxeMHz9epavCvXv3lv150qRJCtuIRCKNzrjVKtTTp0+HlZVViYX68OHD2Lt3Lwc9ISoDzp8/b+gIpKLk5GTs3r37jUW6iEQK7Lr8RLs3mOUZ52O4qszACADNmjXDmTNn1O7vyJEjam+rLLUK9evPqr2uZcuWsksLRGT8JBKJ3Pd0+lQokaJQIoVYIkVBQYFBMuiLtDAfUkmhxvvZu2eX0kW6iCAA+689waD3io/QpQ4h5ynEOj5ehYWa/13p2ut3pOuCWoU6KysLpqYlbyoWi/Hs2TO1QxFVNM9EVYDsQuyZ288g/f906DJ+PnLFIH3LmfiToROUayN+vI0RP97W0t5OARijpX2VfXl5ebh48SLS0tIQGBgIe3t7re1brUJdr149HDhwoMTnxvbt24fatWtrFIyI9KdP8Nvo3fptg/VfRXgG88rV8e5n6w2WQdcK83Lx5NZ5iE1MIdJw+M3N23YjdMY8lbdb3ccNA/1LHqtcWYIg4IVrK1i9PwumFtYa768kly5dQkBAgM72ry3ffPMNIiMjZSeoBw8eRJs2bZCeng5PT08sWLAAQ4YMUXv/ahXqoUOHIjQ0FGFhYQgPD5cNYJ6RkYFZs2Zh3759WLhwodqhiEi/TAw8baGpIIapiVg23nJ5JJKawczMFCYW1hoPG/q/1q0gEkWpdPlbJALaeVaBmalyQ2OWShAgMTOHmZkZTHV4zEq7cmss1q9fjwkTJqBPnz5o3769XEG2t7dHmzZtsHnzZv0X6nHjxiEuLg7R0dH45ptvULPmywED/v33X0ilUgwYMICPbRER6YirizNC2rTCwdgTSt1NbCIGOnpVRa1q2htXXBAbfxHVh0WLFqFbt27YtGmTwkmq/Pz88M0332jUh1p/0yKRCOvXr8fAgQPx22+/4c6dlyPwdOvWDT169EDr1q01CkVE+jNh5X48zX4OOxsrRI8OMXQcUtLnn43An0dPQCQSlXpmLQIggghTQ5xLbKMOwVRHw5OWMbdv3y71uetq1aopLOCq0OhXouDgYAQHaz66DhEZztPs53ic+dzQMUhFTXy8EbNsAYZ89gUEAQrPrE3EL4v0z4Pr4F03zQZYeZ1gpp/hQ41d1apVkZ5e8shv165d03iMArW+mEpMTMSuXbtKXL9r1y4kJSWpm4mIiJTQpUNb7P/1e7Rr3QIikUhunUj08nL3sVBPdPfR/oxOUgvdjm9dVnTs2BFr165FRkZGsXVXr17FunXr0LVrV436UOuMetKkScjMzESXLl0Url+xYgWqVq2KzZs3axSOiIhK18THGz9/+w3uPXiIVh17ISMzC1WtTHBh8tta/U76dZJKTm9uVAHMmTMHAQEB8Pb2RpcuXSASibBx40bExMTgt99+g7OzM8LDwzXqQ60z6tOnT6Ndu3Ylrv/f//6H48ePqx2KiIhU4+riDGtrKwBAJXOxTou01MIWgoWtzvZfltSsWRMXLlxAhw4dsGXLFgiCgB9++AG7du1C3759cebMGY2fqVbrjPrp06eoXLnkwd1tbGw0/vKciIiMU6GD4Z65NyZ5eXnYv38/3N3d8e233+Lbb7/Fo0ePIJVK4eDgIDeuuCbU2kutWrVw8uTJEtcfP34cb731ltqhiIjIeBU4+hg6glEwNzdHr169cOrUKdkyBwcHODk5aa1IA2oW6r59++Lnn3/GN998Izc+sEQiwdKlS7Flyxb062eYoRCJiEh3BAtbnlH/P5FIhHr16pV617c2qFWop06diuDgYEyYMAHOzs5o1aoVWrVqhZo1ayI0NBRBQUGYPn26trMSEZGBFdRqBYi1MLpZOTFt2jQsX74c8fHxOutDre+oLSwscODAAWzcuBG///47EhISAAD+/v7o0aMHBg4cqNXTfiIiMgImZijw+J+hUxiVM2fOoHr16vD29kbr1q3h7u4OKysruTYikQhLly5Vuw+1BzwRi8UYPHgwBg8erHbnRERUduTX6QDBojJQkGfoKEZj+fLlsj8fOnRIYRuDFWoiIqo4BEs75NfpYOgYRkcf87irVajbtGnzxjYikajE3y6IiKhseeEzEDDV3bPZVDK1CrVUKi02XJ1EIsHdu3dx79491K1bFy4uLloJSEREhlVQqwUkju8YOoZRO3PmDI4cOYK0tDSMHj0a9erVQ25uLm7cuIH69evDxkb9sdbVKtSxsbElrtu9ezdGjBiBxYsXq5uJiIiMhGBtj7y3+xg6htHKz89Hnz59sGPHDgiCAJFIhC5duqBevXoQi8Vo3749QkNDNXoSSuu3Znfu3Bn9+/fHhAkTtL1rIiLSsxe+gwFOaVmimTNnYvfu3Vi1ahXi4+Plphy1tLREr169sGPHDo360MkzVHXq1MFff/2li10TEZGeFLi1hqR6A0PHMGo///wzRo0ahREjRqBatWrF1jds2BB37tzRqA+t3/VdWFiIX375ReNByIlIP+xsrOT+SwQAgnkl5Hl+YOgYRi8tLQ3vvFPy9/cmJibIzc3VqA+1CvWQIUMULs/IyMCZM2eQkpLC76iJyojo0SGGjkBGKL9+V8C8kqFjGD1XV1fcuHGjxPUnT55E3bp1NepDrUJ9+PBhBZOUi2BnZ4cWLVpg2LBhaN++vUbBiIjIMARLu5dDhdIb9evXD4sXL0aPHj1Qv359AJDVx3Xr1uGXX37BV199pVEfahXqpKQkjTolIiLjlV+nPWBiZugYZcL06dNx5swZtGrVCg0bNoRIJEJoaCiePHmC+/fvo2PHjggNDdWoDw7ITURE/zG1REGtloZOUWaYm5tj3759WL9+PWrXrg1PT0/k5eWhUaNG2LBhA3bt2gUTE80mMVH6jDo3Nxfp6emoUaMGzM3N5dbFxMTgp59+wsOHD+Hp6YmpU6fi3Xff1SgYERHpX0GtVnwcqxRhYWEYMGAAGjduDABITk6Gg4MD+vfvj/79++ukT6XPqL/88ks0atQI+fn5csvnzJmD4cOH4+jRo3j06BG2b9+O1q1b4++//9Z6WCIi0iGRGPkebx4iuiKLjo7G9evXZe89PDywbds2nfapdKE+cuQIOnfuLDcMWmZmJubMmQMXFxfcunULjx49wpkzZ2Bubq7xl+dERKRfhS7+EKz5aG1pnJyc5J6LfnWAE11R+tJ3UlISevToIbds7969yM/Px+TJk+Hh4QHg5ZzUgwcPxi+//KLdpEREpDsiMfLqdTZ0CqPXqVMnfPnllzhw4ACqVq0KAFi0aBE2b95c4jYikUij0cmULtRZWVmoXr263LJjx45BJBIhJET+OUwvLy88evRI7VBERKRfBe7BEGxqGDqG0Vu6dCkcHR1x5MgRXL16FSKRCPfu3cOTJ09K3Ob1x5lVpfSlbzc3t2IPdcfGxsLJyanYw9z5+fmwtbVVK9CKFSvg7u4OS0tLBAQE4Ny5c6W2z8jIwJgxY+Ds7AwLCwvUr18fe/fuVatvIqKKSLCwRV79roaOUSZUqlQJ8+bNw+nTp5GQkABBEBAdHY3ExMQSX5oOIap0oW7fvj1iYmJw9uxZAMD333+PGzdu4IMPig8xd+HCBbi7u6scZsuWLQgLC0NERAQuXrwIHx8fhISEIC0tTWH7/Px8tGvXDklJSfj1118RHx+PdevWcYpNIiIV5L3dh6OQKenDDz/E8ePHZe+PHDmCdu3a6bRPpQv1zJkzYWNjg+bNm8Pc3ByffPIJHBwcEB4eLtcuNzcX27Ztw//+9z+VwyxevBjDhw/H4MGD4eXlhdWrV8Pa2hoxMTEK28fExODJkyfYvn07AgMD4e7ujqCgIPj4+KjcNxFRRVTo5IPCmnycVlk7duxAcnKy7H2bNm1w8OBBnfapdKG2t7dHXFwcvvrqKwwdOhTz5s3D5cuX4eTkJNfuypUr+PjjjzFgwACVguTn5+PChQto27btf+HEYrRt2xanT59WuM3OnTvRrFkzjBkzBk5OTvD29sa8efMgkUhU6puIqEIytUTeO/0BDb9DrUhcXFxw6dIl2fuiOah1SaUhRO3s7PD555+X2sbf3x/+/v4qB0lPT4dEIilW+J2cnEoc8PzOnTs4fPgwPv74Y+zduxe3b9/G6NGjUVBQgIiICIXb5OXlIS8vT/Y+Oztb5axEROVBnucHEKzsDB2jTOnTpw++/vpr/PLLL7K7vqdMmYKoqKgStxGJRBqNLaL1aS71SSqVwtHREWvXroWJiQn8/Pzw4MEDLFy4sMRCHRUVhVmzZuk5KRGRcZFWqYUC92BDxyhzoqKiULduXRw5cgRpaWkQiUSoVKlSsaeitMloCrW9vT1MTEyQmpoqtzw1NRU1aih+ZMDZ2RlmZmZy46g2bNgQKSkpyM/PLzbUKQBMnToVYWFhsvdxcXEICgrS0qcgIiobXnj3A0Sc7kFVJiYmGDFiBEaMGAHg5Ve0M2bMQL9+/XTWp9EcJXNzc/j5+eHQoUOyZVKpFIcOHUKzZs0UbhMYGIjbt29DKpXKlt28eRPOzs4KizQAWFhYwNbWVvZ6daQ1IqKKoNC5KaTVNJsjmV5KTExE9+7dddqH0RRq4OVg5+vWrcPGjRtx/fp1jBo1Cjk5ORg8eDAAYODAgZg6daqs/ahRo/DkyROMHz8eN2/exJ49ezBv3jyMGTPGUB+BiMi4icTI8yz+WC2px83NDdbW1jrtQ6lL3zt37kTTpk1Rs2ZNnYbp3bs3Hj16hPDwcKSkpMDX1xf79u2T3WCWnJwMsfi/3y1cXV2xf/9+hIaGolGjRnBxccH48eMxefJkneYkIiqrCt5qBsHG6c0NSSGxWAyxWIzc3FyYm5tDLBa/8a5vkUiEwsJCtftUqlB/8MEH+OGHH2TX4GvXro3o6Gh07ar9kWzGjh2LsWPHKlwXGxtbbFmzZs1w5swZrecgIip/RMiv29HQIcq08PBwiEQimJqayr3XJaUKdeXKlZGRkSF7n5SUxMeaiIjKmMIavjyb1lBkZGSp73VBqULt7++PuXPnIjU1FVWqVAHwcuaslJSUErcRiUQIDQ3VTkoiItJYgUfbNzcio6NUoV65ciUGDhyI2bNnA3hZhDdt2oRNmzaVuA0LNRGR8ZDaOENSvb6hY5QreXl5+PHHH3HgwAEkJCQgKysLlStXRt26ddGhQwf069evxCeQVKFUoa5bty5OnTqFFy9eIC0tDe7u7oiOjka3bt00DkBERLpX4NaKQ4Vq0eXLl9GtWzfcvXsXgiCgSpUqsLGxQVpaGi5evIitW7di7ty52LlzJxo2bKhRXyo9nmVpaYlatWohIiICbdq0gZubW6kvIiIyAiIxCl3eM3QKvVB1quQimzdvhkgkUuqZ6OzsbHTt2hWpqamYO3cu7t27h6dPn8r9d86cOfj333/RpUsX5OTkaPSZ1HqOOiIiAt7e3rLA169fx/Xr13mDGRGREZI4eEOwqGzoGDqn6lTJRZKSkjBp0iS0bNlSqX7Wr1+P5ORk7NmzB1OmTCk2tbKLiwumTp2KXbt2ITExERs2bFD3IwHQYMCTv/76C8HBwbCzs4O3tze8vb1hZ2eHNm3a4Pz58xqFIiIi7SlwqRjTWKo6VTIASCQSfPzxx5g1axZq166tVD979uxB+/bt0bp161LbtWnTBu3atcOuXbtU+RjFqFWoz549i1atWuHixYsYNmwYlixZgiVLlmDYsGG4ePEiWrVqpfTlBiIi0iGRGIWOjQydQiPZ2dnIzMyUvV6dAbGIOlMlA8CXX34JR0dHDB06VOk8ly9ffmORLtKmTRtcvnxZ6X0rotakHNOnT4eLiwtOnDhRbMKMyMhIBAYGYvr06TqfTJuIiEonqV4fMK9k6BgaeX3ipIiIiGLPL6szVfKJEyfw3XffIS4uTqU8T548KXGyqNc5OTnhyZMnKu3/dWoV6rNnzyI8PFxhUCcnJ4wYMUL2KBcRERlOoaO3oSNo7OjRo/D19ZW9t7Cw0HifWVlZGDBgANatWwd7e3uVts3Ly4OZmZlSbU1NTZGfn69OxP/2oc5GYrG41HFLJRKJ3JjcRERkGBKHtw0dQWM2NjawtbUttY2qUyUnJCQgKSkJXbp0kS0rmonR1NQU8fHxqFOnTon9JSUl4eLFi2/MnpiY+MY2b6JWoW7evDlWrFiBfv36FXsMKzk5GStXrkRgYKDG4YiISH2CeSVIK7u8uWE58OpUyUWPWBVNlaxo/ghPT89i3x3PmDEDWVlZWLp0KVxdXUvtb+bMmZg5c+YbcwmCoPFY4GoV6nnz5qFVq1bw9PTEBx98gPr1X452Ex8fjx07dsDU1BRRUVEaBSMiIs1IqtUDRBXn6mZYWBgGDRqEpk2bwt/fH9HR0cWmSnZxcUFUVBQsLS1ljxkXqVq1KgAUW/669evX6yR/SdQq1I0bN8bZs2cxffp07Ny5E7m5uQAAa2trdOjQAXPmzIGXl5dWgxIRkWokdnUNHUGvVJ0qWV2DBg3SeB+qUKtQA4CXlxe2bdsGqVSKR48eAQAcHBz43TQRkZGQVq14I0SqOlXyqzQdmERX1C7URcRicbHb4YmIyPAktrUMHYG0gKe/RETlkGBRpcw/P00vsVATEZVD0srOho5AWsJCTURUDkkrORo6AmkJCzURUTkktXYwdATSEo1vJiMiIuMjWFU3dIQK5dq1a7hz5w6ePn0KQRCKrR84cKDa+9aoUOsyGBERqU9qVc3QESqEhIQE9O/fH+fOnVNYBwFAJBLpv1DrIxgREalPsKxq6AgVwsiRI3H58mVER0ejZcuWsLOz03ofahVqfQQjIiLVODrYA4IUTua5Lx/PIp07efIkpk2bhs8++0xnfahVqPURjIiIVHNk588Q5abD+ths5JgoNw0jacbe3h5Vquj2lyK17vrWRzAiIlKPYFHZ0BEqjE8//RQ//vgjJBKJzvpQ64y6KNiYMWNgYmKi7UxERKQBwaL0uZtJe+rXrw+JRAIfHx8MGTIErq6uCuvihx9+qHYfahVqfQQjIiL1COY2ho5QYfTu3Vv250mTJilsIxKJNDrjVqtQ6yMYERGph4Vaf44cOaLzPtQq1PoIRkRE6hHM+R21vgQFBem8D7UKtT6CERGRegQza0NHqJCuXbuGu3fvAgDc3Nzg5eWllf1qPISoroIREZF6BDNOb6lPO3bsQFhYGJKSkuSWe3h4YPHixejatatG+1e7UOs6GBERqYln1Hqzd+9e9OjRA25ubpg3bx4aNmwIALh+/TrWrl2LDz/8ELt370aHDh3U7kOtQq2PYEREpB7BzMrQESqM2bNno1GjRjh+/DgqVfrvSkbXrl0xduxYtGjRArNmzdJ/odZHMCIiUo9gamnoCBXGP//8g3nz5snVwiKVKlXCJ598gmnTpmnUh1ojk/3zzz8YNGhQqcH++ecfjYIREZGaTCwMnaDCsLS0xJMnT0pc/+TJE1haavaLk1qFWh/BiIhIPYJY4/uESUlt2rTB0qVLcfr06WLrzp49i2+++QZt27bVqA+1jmZRsA4dOqBZs2YKg7Vv316jYEREpCYWar1ZsGABmjVrhhYtWsDf3x8NGjQAAMTHx+PcuXNwdHTE/PnzNepDraOpj2BERKQukaEDVBgeHh74559/EBUVhT/++ANbtmwB8PJx5fHjx2PKlClwdHTUqA+1CrU+ghEREZUFjo6OWLJkCZYsWaKT/at9fUTXwYiISE2C1NAJSIv4RQYRUbkjGDpAuTVkyBCIRCKsXbsWJiYmGDJkyBu3EYlE+O6779TuU6lCbYhgRESkJp5R68zhw4chFoshlUphYmKCw4cPQyQq/Z6AN61/E6UKtSGCERGRmgSeUevK68Nmv/5eF5Qq1IYIRkREZOySk5Ph4OAAKyvFw7Y+f/4cjx49Qq1atdTuQ60BT5KTk/H8+fMS1z9//hzJyclqhyIiIg3wgqbeeHh4YNu2bSWu37lzJzw8PDTqQ61CrY9gRESkJpGJoRNUGMIbvmYoKCiAWKxWqZVRa2tdB1uxYgXc3d1haWmJgIAAnDt3TqntNm/eDJFIhO7du6vdNxFRmcdCrVOZmZlITk6WXTl+/Pix7P2rr3/++QebN2+Gs7OzRv0p/XhWZmYmMjIyZO+Lgr0uIyNDo2BbtmxBWFgYVq9ejYCAAERHRyMkJATx8fGlDqKSlJSESZMmoWXLlmr1S0RUbohZqHVpyZIl+PLLLwG8vHF6woQJmDBhgsK2giBgzpw5GvWndKHWV7DFixdj+PDhGDx4MABg9erV2LNnD2JiYjBlyhSF20gkEnz88ceYNWsWjh8/LvcLBRFRRcNJOXSrffv2sLGxgSAI+OKLL9C3b180adJEro1IJEKlSpXg5+eHpk2batSf0kdTH8Hy8/Nx4cIFTJ06VbZMLBajbdu2CmcmKfLll1/C0dERQ4cOxfHjx0vtIy8vD3l5ebL32dnZKuckIjJqYjNDJyjXmjVrJpuQKicnBz169IC3t7fO+lO6UOsjWHp6OiQSCZycnOSWOzk54caNGwq3OXHiBL777jvExcUp1UdUVBRmzZqlaVQiIuNkYsFL33qSm5uLb775BtbW1jot1Crf8VUU7I8//tBFHpVkZWVhwIABWLduHezt7ZXaZurUqXj27JnsdfToUR2nJCLSH8GiMiDS7C5jUo61tTVMTU1RqVIlnfaj8hcZugxmb28PExMTpKamyi1PTU1FjRo1irVPSEhAUlISunTpIlsmlb4cOs/U1BTx8fGoU6eO3DYWFhawsLCQvbexsdHmRyAiogqkR48e+PXXXzFq1Cidjcip1q9dRcHe9JiWqszNzeHn54dDhw7JlkmlUhw6dEh22f1Vnp6euHz5MuLi4mSvrl27Ijg4GHFxcXB1ddVqPiIiolf16dMHaWlpCA4Oxk8//YSTJ0/i4sWLxV6aUOvWwD59+mD06NEIDg7G8OHD4e7urnD4tNdvNlNGWFgYBg0ahKZNm8Lf3x/R0dHIycmR3QU+cOBAuLi4ICoqCpaWlsW+F6hatSoA6PT7AiIiIgBo3bq17M+KbmYWBAEikQgSiUTtPtQq1LoM1rt3bzx69Ajh4eFISUmBr68v9u3bJ7vBLDk5WeNRXoiIiLRh/fr1Ou9DrUKt62Bjx47F2LFjFa6LjY0tddsNGzZoPxAREZECgwYN0nkfahVqfQQjIiIqS7Kzs3Hv3j0AgKurq9ZuVtb4GnJ2djauX7+O69evc/AQIiKqcP766y8EBwfDzs4O3t7e8Pb2hp2dHdq0aYPz589rvH+1x5n766+/8MUXX+DEiROyR6LEYjFatmyJBQsWaDxkGhERkbE7e/YsWrduDXNzcwwbNgwNGzYEAFy/fh0///wzWrVqhdjYWPj7+6vdh1qFWh/BiIiIVLVixQosXLgQKSkp8PHxwbJly0qsRevWrcP333+PK1euAAD8/Pwwb948lWrX9OnT4eLighMnThQb7yMyMhKBgYGYPn06Dh48qPZnUuvSd1Gw+Ph4rFq1CuPGjcO4ceOwatUqxMfHo2bNmpg+fbraoYiIiFRVNPtiREQELl68CB8fH4SEhCAtLU1h+9jYWPTt2xdHjhzB6dOn4erqivbt2+PBgwdK93n27FmMHDlS4aBcTk5OGDFiBM6cOaP2ZwLULNT6CEZERKSKV2df9PLywurVq2FtbY2YmBiF7X/66SeMHj0avr6+8PT0xLfffisbZEtZYrEYhYWFJa6XSCQaP1Ks1tb6CEZERAS8vGk5MzNT9np1BsQiRbMvtm3bVrZMmdkXX5Wbm4uCggJUq1ZN6WzNmzfHihUrcPfu3WLrkpOTsXLlSgQGBiq9P0XU+o66KFi/fv3g5uamk2BEREQAEBQUJPc+IiICkZGRcsvUmX3xdZMnT0bNmjXliv2bzJs3D61atYKnpyc++OAD1K9fHwAQHx+PHTt2wNTUFFFRUUrvTxG1CrU+ghEREQHA0aNH4evrK3v/6sRK2vLVV19h8+bNiI2NhaWlpdLbNW7cGGfPnsX06dOxc+dO5ObmAng5gVWHDh0wZ84ceHl5aZRNrUKtj2BERETAy1kObW1tS22j6uyLr/r666/x1Vdf4c8//0SjRo1Uzufl5YVt27ZBKpXi0aNHAAAHBwetfQWs9nPUug5GRESkrFdnX+zevTuA/2ZfLGlIagBYsGAB5s6di/3792s8/odIJJJNdanNKS81rqpFwV4NSEREpG9hYWFYt24dNm7ciOvXr2PUqFHFZl+cOnWqrP38+fMxc+ZMxMTEwN3dHSkpKUhJSVF5lM1r166hZ8+esLW1hbOzM5ydnWFra4uePXvKntHWhNpn1NeuXUN4eDj2798vd+k7JCQEkZGRnGaSiIj0StXZF1etWoX8/Hz07NlTbj+KblYryfHjx/H+++9DKpWiW7ducvds7dy5E3/88Qf27duHli1bqv251CrU+ghGRESkKlVmX0xKStK4v9DQUDg6OuLo0aNwdXWVW3fv3j20atUKYWFh+Ouvv9TuQ61CrY9gRERExu7q1auYPXt2sVoIvJxBa9SoUUqfnZdEre+or169itGjR5ca7OrVqxoFIyIiMnZubm4KB2Apkp+fr7BWqkKtQq2PYERERMYuPDwc33zzDeLi4oqtu3TpEpYtW6bxGbVal77Dw8MRGhqKTp06yT2E/mqw6OhojYIREREZuzNnzsDJyQl+fn5o3rw56tatCwC4desWTp8+DW9vb5w+fVpuGFORSISlS5cq3YdahVofwYiIiIzd8uXLZX8+efIkTp48Kbf+8uXLuHz5stwyvRRqfQQjIiIydlKpVOd9qFWo9RGMiIiINBjwhIiIiF5KTEzEH3/8IZvu0s3NDe+//z48PDw03rdGhVqXwYiIiMqCiRMnYunSpcWuNovFYkyYMAFff/21RvtXu1DrOhgREZGxW7RoEZYsWYKePXti4sSJaNiwIQDg+vXrWLJkCZYsWQIXFxeEhoaq3Ydaz1EXBfvwww9x+vRpZGRkICMjA6dPn0bPnj1l4YiIiMqzdevWoWvXrvjll18QEBAAW1tb2NraIiAgAJs3b0aXLl2wZs0ajfpQq1DrIxgREZGxS0pKQkhISInrQ0JCNB5TXK1CrY9gRERExs7R0RF///13iev//vtvODg4aNSHWoVaH8GIiIiMXa9evfDtt9/iq6++Qk5Ojmx5Tk4O5s+fj2+//Ra9e/fWqA+1bibr1asXli5dCnd3d3z22WeoVKmSLNjy5cvx7bffYsKECRoFIyIiMnazZ89GXFwcpk2bhvDwcNSsWRMA8O+//6KwsBDBwcH48ssvNepDrUKtj2BERETGztraGocOHcKOHTvkHlfu0KEDOnbsiC5dukAkEmnUh1qFWh/BiIiIjFlubi769++PHj164OOPP0a3bt100o/KhVpfwYiIiIyZtbU1/vzzT7z//vs67Uflm8mKguXm5uoiDxERUZnRokULuZkidUGtu771EYyIiMjYLV++HMePH8eMGTNw//59nfShVqHWRzAiIiJj5+Pjg/v37yMqKgpubm6wsLCQDQJW9KpSpYpGfah1M5mPjw8KCwsRFRWFqKgomJqawsLCQq6NSCTCs2fPNApHRERkzHr06KHzm6fVKtT6CEZERGTsNmzYoPM+1CrU+ghGRERkrF68eIEdO3YgMTER9vb26NSpE5ydnXXSl0qFWp/BiIiIjFFaWhqaN2+OxMRECIIA4OUTUdu3b0fbtm213p/ShVrfwYiIiIzR7NmzkZSUhNDQULRp0wa3b9/G7NmzMXLkSCQkJGi9P6ULtb6DERERGaMDBw5g4MCB+Prrr2XLnJyc0K9fP8THx6NBgwZa7U/pQq3vYERERMYoOTkZkydPllvWokULCIKA1NRUrddDpZ+jTk5ORosWLUoMRkREVBHk5eXB0tJSblnR+8LCQq33p/QZtb6DERERGaukpCRcvHhR9r5o3JBbt26hatWqxdo3adJE7b5Uuutbn8GIiIiM1cyZMzFz5sxiy0ePHi33XhAEiEQiSCQStftSqVDrMxgREZExWr9+vV77U7pQ6zPYihUrsHDhQqSkpMDHxwfLli2Dv7+/wrbr1q3D999/jytXrgAA/Pz8MG/evBLbExERaWLQoEF67U/pQq2vYFu2bEFYWBhWr16NgIAAREdHIyQkBPHx8XB0dCzWPjY2Fn379kXz5s1haWmJ+fPno3379rh69SpcXFz0kpmIiEhX1Jo9S5cWL16M4cOHY/DgwfDy8sLq1athbW2NmJgYhe1/+uknjB49Gr6+vvD09MS3334LqVSKQ4cO6Tl52dS0aVO89dZbaNq0qaGjEBGRAmqN9a0r+fn5uHDhAqZOnSpbJhaL0bZtW6Xnv87NzUVBQQGqVaumcH1eXh7y8vJk77OzszULXcalpKTgwYMHho5BREQlMKoz6vT0dEgkEjg5Ocktd3JyQkpKilL7mDx5MmrWrFnisKZRUVGoUqWK7BUUFKRxbiIiIl0xqkKtqa+++gqbN2/Gtm3bij3zXWTq1Kl49uyZ7HX06FE9pyQiIlKeUV36tre3h4mJSbGRzlJTU1GjRo1St/3666/x1Vdf4c8//0SjRo1KbGdhYQELCwvZexsbG81CExER6ZBRnVGbm5vDz89P7kawohvDmjVrVuJ2CxYswOzZs7Fv3z7eFEVEROWKUZ1RA0BYWBgGDRqEpk2bwt/fH9HR0cjJycHgwYMBAAMHDoSLiwuioqIAAPPnz0d4eDg2bdoEd3d32XfZNjY2PFsmIqIyz+gKde/evfHo0SOEh4cjJSUFvr6+2Ldvn+wGs+TkZIjF/10IWLVqFfLz89GzZ0+5/URERCAyMlKf0YmIiLTO6Ao1AIwdOxZjx45VuC42NlbufVJSku4DERERGYhRfUdNRERE8lioiYiIjBgLNRERkRFjoSYionJjxYoVcHd3h6WlJQICAnDu3LlS22/duhWenp6wtLTEO++8g7179+opqfJYqCu4GjVqwMXF5Y0DyhARGbui2RcjIiJw8eJF+Pj4ICQkBGlpaQrbnzp1Cn379sXQoUNx6dIldO/eHd27d5dNm2wsWKgruPPnz+P+/fs4f/68oaMQEWlE1dkXly5dig4dOuDzzz9Hw4YNMXv2bDRp0gTLly/Xc/LSsVATEVGZVzT74qsTMr1p9sXTp08Xm8ApJCRE6dka9cUon6Mm/ZJIJJBKpQbrXyophFQigVRSiIKCAoPlMJRCiRSFEsP9/RuDQkEKsURaro9/YUEBCgoKIZHmQlRQaOg4GhEK82X/vwpi3R2zwsKXf0/Z2dnIzMyULX99zgag9NkXb9y4oXD/KSkpGs3WqC8s1EbAWshFbkYuuk2YZ5D+b5w5hJtnDxuk79f9MmeUoSOQIU38ydAJyAi9Ph1xRRt5koWa0MA/GPXfbW3QDLkia9hXqYQfw4caNIch/LVsMB5ll+0zLE1VEZ7BvHJ1vPvZekNH0Snp/5+JlgdiE1OITc112selS5cQEBCAo0ePwtfXV7b89bNpQL3ZF2vUqKHWbI36xkJNEInFEBk4g1hkArGJKczMzAycRP9MTcQwNanYt4uYCi//Dsr98S/vn0/LTE1fligbGxvY2tqW2vbV2Re7d+8O4L/ZF0sakrpZs2Y4dOgQJkyYIFt28ODBUmdrNAQW6gru6M8rkJebDQtrGwT1HWPoOEREalN19sXx48cjKCgIixYtQqdOnbB582acP38ea9euNeTHKIaFuoLLy83Gi+zMNzckIjJyqs6+2Lx5c2zatAkzZszAtGnTUK9ePWzfvh3e3t6G+ggKsVATEVG5ocrsiwDQq1cv9OrVS8epNFOxvxgjIiIycizURERERoyFmoiIyIixUBMRERkxFmoiIiIjxkJNRERkxFioiYiIjBgLNRERkRFjoSYiIjJiLNRERERGjIWaiIjIiHGs7wrOwtpG7r9ERGRcWKgrOE5tSURk3Hjpm4iIyIixUBMRERkxFmoiIiIjxkJNRERkxFioiYiIjBgLNRERkRFjoSYiIjJiLNRERERGjIWaiIjIiLFQExERGTEWaiIiIiPGQk1ERGTEWKiJiIiMGAs1ERGREWOhJiIiMmIs1EREREaMhZqIiMiIsVATEREZMRZqIiIiI2aUhXrFihVwd3eHpaUlAgICcO7cuVLbb926FZ6enrC0tMQ777yDvXv36ikpERGRbhldod6yZQvCwsIQERGBixcvwsfHByEhIUhLS1PY/tSpU+jbty+GDh2KS5cuoXv37ujevTuuXLmi5+RERETaZ3SFevHixRg+fDgGDx4MLy8vrF69GtbW1oiJiVHYfunSpejQoQM+//xzNGzYELNnz0aTJk2wfPlyPScnIiLSPqMq1Pn5+bhw4QLatm0rWyYWi9G2bVucPn1a4TanT5+Waw8AISEhJbYnIiIqS0wNHeBV6enpkEgkcHJyklvu5OSEGzduKNwmJSVFYfuUlBSF7fPy8pCXlyd7n52dDQC4fv26JtHV9uThXbzIemKQvo3JC5ElxLnWuHjxoqGj6N2Ne4/x9LnE0DEMykbIhpk1YPra8Xd2doazs7OBUmnm4cOHePjwoaFjlGmG+rlsbIyqUOtDVFQUZs2aJbfMzc0N/fv3N1AietWBtXMMHYEMaZH8jaARERGIjIw0TBYNrVmzptjPGlJdUFBQmf1lTVuMqlDb29vDxMQEqampcstTU1NRo0YNhdvUqFFDpfZTp05FWFiY3LInT57gyZOKeVabnZ2NoKAgHD16FDY2NoaOQwZgzP8GyvIP6JEjR6Jr16567dOYj6W6yvJVFW0RCYIgGDrEqwICAuDv749ly5YBAKRSKWrVqoWxY8diypQpxdr37t0bubm52LVrl2xZ8+bN0ahRI6xevVpvucuqzMxMVKlSBc+ePYOtra2h45AB8N9A+cFjWT4Z1Rk1AISFhWHQoEFo2rQp/P39ER0djZycHAwePBgAMHDgQLi4uCAqKgoAMH78eAQFBWHRokXo1KkTNm/ejPPnz2Pt2rWG/BhERERaYXSFunfv3nj06BHCw8ORkpICX19f7Nu3T3bDWHJyMsTi/25Wb968OTZt2oQZM2Zg2rRpqFevHrZv3w5vb29DfQQiIiKtMbpL36RfeXl5iIqKwtSpU2FhYWHoOGQA/DdQfvBYlk8s1EREREbMqAY8ISIiInks1EREREaMhZq0KikpCSKRCBs2bDB0FCKicoGF2oASEhIwcuRI1K5dG5aWlrC1tUVgYCCWLl2K58+f66zfa9euITIyEklJSTrrQxlz585F165d4eTkBJFIVGZHoNI1kUik1Cs2NlbjvnJzcxEZGanSvngcVcPjSaoyusezKoo9e/agV69esLCwwMCBA+Ht7Y38/HycOHECn3/+Oa5evaqzZ8GvXbuGWbNmoXXr1nB3d9dJH8qYMWMGatSogcaNG2P//v0Gy2HsfvjhB7n333//PQ4ePFhsecOGDTXuKzc3VzbsZevWrZXahsdRNTyepCoWagNITExEnz594ObmhsOHD8sNjzdmzBjcvn0be/bsMWDC/wiCgBcvXsDKykrr+05MTIS7uzvS09Ph4OCg9f2XF6+PQ3/mzBkcPHjQaMan53FUDY8nqYqXvg1gwYIFyM7OxnfffadwDNu6deti/PjxsveFhYWYPXs26tSpAwsLC7i7u2PatGlys4ABgLu7Ozp37owTJ07A398flpaWqF27Nr7//ntZmw0bNqBXr14AgODg4GKX2Yr2sX//fjRt2hRWVlZYs2YNAODOnTvo1asXqlWrBmtra7z33nsa/UJhyLP58kYqlSI6Ohpvv/02LC0t4eTkhJEjR+Lp06dy7c6fP4+QkBDY29vDysoKHh4eGDJkCICX9xcU/WCeNWuW7N/Gmy598jhqH48nvYpn1Aawa9cu1K5dG82bN1eq/bBhw7Bx40b07NkTEydOxNmzZxEVFYXr169j27Ztcm1v376Nnj17YujQoRg0aBBiYmLwySefwM/PD2+//TZatWqFcePG4ZtvvsG0adNkl9devcwWHx+Pvn37YuTIkRg+fDgaNGiA1NRUNG/eHLm5uRg3bhyqV6+OjRs3omvXrvj111/xwQcfaO8viFQ2cuRIbNiwAYMHD8a4ceOQmJiI5cuX49KlSzh58iTMzMyQlpaG9u3bw8HBAVOmTEHVqlWRlJSE33//HQDg4OCAVatWYdSoUfjggw/w4YcfAgAaNWpkyI9WIfF4khyB9OrZs2cCAKFbt25KtY+LixMACMOGDZNbPmnSJAGAcPjwYdkyNzc3AYBw7Ngx2bK0tDTBwsJCmDhxomzZ1q1bBQDCkSNHivVXtI99+/bJLZ8wYYIAQDh+/LhsWVZWluDh4SG4u7sLEolEEARBSExMFAAI69evV+rzCYIgPHr0SAAgREREKL1NRTZmzBjh1f91jx8/LgAQfvrpJ7l2+/btk1u+bds2AYDw119/lbhvTY4Fj6N6eDzpTXjpW88yMzMBAJUrV1aq/d69L+fnfX1qzokTJwJAsUvPXl5eaNmypey9g4MDGjRogDt37iid0cPDAyEhIcVy+Pv7o0WLFrJlNjY2GDFiBJKSknDt2jWl90/atXXrVlSpUgXt2rVDenq67OXn5wcbGxscOXIEAFC1alUAwO7du1FQUGDAxFQaHk96HQu1nhVNPZeVlaVU+7t370IsFqNu3bpyy2vUqIGqVavi7t27cstr1apVbB92dnbFvtsqjYeHh8IcDRo0KLa86JL56zlIf27duoVnz57B0dERDg4Ocq/s7GykpaUBAIKCgtCjRw/MmjUL9vb26NatG9avX1/sXgcyLB5Peh2/o9YzW1tb1KxZE1euXFFpO5FIpFQ7ExMThcsFFYZ018Ud3qQ7UqkUjo6O+OmnnxSuL7qhSCQS4ddff8WZM2ewa9cu7N+/H0OGDMGiRYtw5swZ2NjY6DM2lYDHk17HQm0AnTt3xtq1a3H69Gk0a9as1LZubm6QSqW4deuW3A1fqampyMjIgJubm8r9K1v0X88RHx9fbPmNGzdk68kw6tSpgz///BOBgYFK/ZL13nvv4b333sPcuXOxadMmfPzxx9i8eTOGDRum1r8N0i4eT3odL30bwBdffIFKlSph2LBhSE1NLbY+ISEBS5cuBQB07NgRABAdHS3XZvHixQCATp06qdx/pUqVAAAZGRlKb9OxY0ecO3cOp0+fli3LycnB2rVr4e7uDi8vL5VzkHZ89NFHkEgkmD17drF1hYWFsuP89OnTYldWfH19AUB2udTa2hqAav82SLt4POl1PKM2gDp16mDTpk3o3bs3GjZsKDcy2alTp7B161Z88sknAAAfHx8MGjQIa9euRUZGBoKCgnDu3Dls3LgR3bt3R3BwsMr9+/r6wsTEBPPnz8ezZ89gYWGBNm3awNHRscRtpkyZgp9//hnvv/8+xo0bh2rVqmHjxo1ITEzEb7/9BrFY9d/5fvjhB9y9exe5ubkAgGPHjmHOnDkAgAEDBvAsXUlBQUEYOXIkoqKiEBcXh/bt28PMzAy3bt3C1q1bsXTpUvTs2RMbN27EypUr8cEHH6BOnTrIysrCunXrYGtrK/uF0MrKCl5eXtiyZQvq16+PatWqwdvbG97e3iX2z+OoXTyeVIyB7zqv0G7evCkMHz5ccHd3F8zNzYXKlSsLgYGBwrJly4QXL17I2hUUFAizZs0SPDw8BDMzM8HV1VWYOnWqXBtBePloVadOnYr1ExQUJAQFBcktW7dunVC7dm3BxMRE7lGtkvYhCIKQkJAg9OzZU6hatapgaWkp+Pv7C7t375Zro8rjWUFBQQIAhS9Fj47RS68/zlNk7dq1gp+fn2BlZSVUrlxZeOedd4QvvvhC+PfffwVBEISLFy8Kffv2FWrVqiVYWFgIjo6OQufOnYXz58/L7efUqVOCn5+fYG5urtTjOTyOmuHxpDcRCYIKdxkRERGRXvE7aiIiIiPGQk1ERGTEWKiJiIiMGAs1ERGREWOhJiIiMmIs1EREREaMhdqILViwAJ6enpBKpYaOorE+ffrgo48+MnSMMoXHnxRJSkqCSCTChg0bDB2F9ISF2khlZmZi/vz5mDx5smzUL5FIBJFIhEWLFhVrv2HDBohEIpw/f17rWdq1aweRSISxY8cqXP/dd9+hYcOGsLS0RL169bBs2bJibSZPnozffvsNf//9t9bzlUc8/kRUhIXaSMXExKCwsBB9+/Yttm7hwoWy4f107ffff5cb3/t1a9aswbBhw/D2229j2bJlaNasGcaNG4f58+fLtWvcuDGaNm2qsMhQcTz+VBI3Nzc8f/4cAwYMMHQU0hdDD41GijVq1Ejo37+/3DIAgq+vrwBAWLRokdy69evXCwCEv/76S2sZnj9/Lri7uwtffvmlAEAYM2aM3Prc3FyhevXqxYYc/fjjj4VKlSoJT548kVv+9ddfC5UqVRKysrK0lrG84vEnoiI8ozZCiYmJ+Oeff9C2bdti6wIDA9GmTRssWLAAz58/12mOBQsWQCqVYtKkSQrXHzlyBI8fP8bo0aPllo8ZMwY5OTnYs2eP3PJ27dohJycHBw8e1Fnm8oDHv/yLjIyESCTCzZs30b9/f1SpUgUODg6YOXMmBEHAvXv30K1bN9ja2qJGjRpyVyIUfUf9ySefwMbGBg8ePED37t1hY2MDBwcHTJo0CRKJRNYuNjYWIpEIsbGxcnkU7TMlJQWDBw/GW2+9BQsLCzg7O6Nbt25ISkrS0d8KlYSF2gidOnUKANCkSROF6yMjI5GamopVq1aVup+8vDykp6cr9XpdcnIyvvrqK8yfP7/EOXEvXboEAGjatKnccj8/P4jFYtn6Il5eXrCyssLJkydLzV3R8fhXHL1794ZUKsVXX32FgIAAzJkzB9HR0WjXrh1cXFwwf/581K1bF5MmTcKxY8dK3ZdEIkFISAiqV6+Or7/+GkFBQVi0aBHWrl2rVrYePXpg27ZtGDx4MFauXIlx48YhKysLycnJau2P1MdpLo3QjRs3AAAeHh4K17ds2RLBwcFYuHAhRo0aVeIP0p9//hmDBw9Wqk/htblZJk6ciMaNG6NPnz4lbvPw4UOYmJgUmx7T3Nwc1atXx7///iu33NTUFK6urrh27ZpSmSoqHv+Kw9/fH2vWrAEAjBgxAu7u7pg4cSKioqIwefJkAEDfvn1Rs2ZNxMTEoFWrViXu68WLF+jduzdmzpwJAPj000/RpEkTfPfddxg1apRKuTIyMnDq1CksXLhQ7orK1KlTVf2IpAUs1Ebo8ePHMDU1hY2NTYltIiMjERQUhNWrVyM0NFRhm5CQELUuMx45cgS//fYbzp49W2q758+fw9zcXOE6S0tLhZdm7ezsFJ7B0X94/CuOYcOGyf5sYmKCpk2b4v79+xg6dKhsedWqVdGgQQPcuXPnjfv79NNP5d63bNkSP/zwg8q5rKysYG5ujtjYWAwdOhR2dnYq74O0h4W6jGrVqhWCg4OxYMGCYv9zFnF2doazs7NK+y0sLMS4ceMwYMAAvPvuu6W2tbKyQn5+vsJ1L168UHimJwgCRCKRSpmoOB7/8qFWrVpy76tUqQJLS0vY29sXW/748eNS92VpaQkHBwe5ZXZ2dnj69KnKuSwsLDB//nxMnDgRTk5OeO+999C5c2cMHDgQNWrUUHl/pBkWaiNUvXp1FBYWIisrC5UrVy6xXUREBFq3bo01a9agatWqxdY/f/4cz549U6rPov/5vv/+e8THx2PNmjXFbhrJyspCUlISHB0dYW1tDWdnZ0gkEqSlpcld/szPz8fjx49Rs2bNYv08ffoU9erVUypTRcXjX3GYmJgotQwo/vWEstu9qqRfkl694azIhAkT0KVLF2zfvh379+/HzJkzERUVhcOHD6Nx48Zv7Iu0hzeTGSFPT08AL+/+LU1QUBBat26N+fPnK7zMuGXLFtlZ1ZteRZKTk1FQUIDAwEB4eHjIXsDLH+IeHh44cOAAAMDX1xcAig2ycf78eUilUtn6IoWFhbh37x4aNmyo0t9HRcPjT7pSdAk7IyNDbvndu3cVtq9Tpw4mTpyIAwcO4MqVK8jPz+ez8AbAM2oj1KxZMwAvf+A1atSo1LaRkZFo3bq1wjs71fmOsk+fPsV+wALABx98gI4dO2L48OEICAgAALRp0wbVqlXDqlWr0LFjR1nbVatWwdraGp06dZLbx7Vr1/DixQs0b95cpUwVDY8/6YqbmxtMTExw7NgxdO/eXbZ85cqVcu1yc3MhFothaWkpW1anTh1UrlwZeXl5+opL/4+F2gjVrl0b3t7e+PPPPzFkyJBS2wYFBSEoKAhHjx4ttk6d7yg9PT1lZ3Sv8/DwkPuf28rKCrNnz8aYMWPQq1cvhISE4Pjx4/jxxx8xd+5cVKtWTW77gwcPwtraGu3atVMpU0XD40+6UqVKFfTq1QvLli2DSCRCnTp1sHv3bqSlpcm1u3nzJv73v//ho48+gpeXF0xNTbFt2zakpqaW+iQA6QYLtZEaMmQIwsPD8fz58xIfvykSGRmJ4OBgPSWTN3r0aJiZmWHRokXYuXMnXF1dsWTJEowfP75Y261bt+LDDz8s9XtXeonHn3Rl2bJlKCgowOrVq2FhYYGPPvoICxcuhLe3t6yNq6sr+vbti0OHDuGHH36AqakpPD098csvv6BHjx4GTF8xiYQ33aFABvHs2TPUrl0bCxYskHtUo6yKi4tDkyZNcPHiRYWXVkkejz8RFWGhNmLz58/H+vXrce3aNdkMSmVVnz59IJVK8csvvxg6SpnB409EAAs1ERGRUSvbv6YTERGVcyzURERERoyFmoiIyIixUBMRERkxFmoiIiomKSkJIpEIGzZsMHSUCo+FmohIQwkJCRg5ciRq164NS0tL2NraIjAwEEuXLlU4Dru2XLt2DZGRkcUmUNG3uXPnomvXrnBycoJIJEJkZKRB85Q3HJmMiEgDe/bsQa9evWBhYYGBAwfC29sb+fn5OHHiBD7//HNcvXpV4Vjs2nDt2jXMmjULrVu3hru7u076UMaMGTNQo0YNNG7cGPv37zdYjvKKhZqISE2JiYno06cP3NzccPjwYbmx1ceMGYPbt29jz549Bkz4H0EQSpwnXFOJiYlwd3dHenp6sTmxSXO89E1EpKYFCxYgOzsb3333ncIJUOrWrSs37nlhYSFmz56NOnXqwMLCAu7u7pg2bVqxGanc3d3RuXNnnDhxAv7+/rC0tETt2rXx/fffy9ps2LABvXr1AgAEBwdDJBJBJBIhNjZWbh/79+9H06ZNYWVlhTVr1gAA7ty5g169eqFatWqwtrbGe++9p9EvFIY8m68IWKiJiNS0a9cu1K5dW+mpO4cNG4bw8HA0adIES5YsQVBQEKKiohTOSHX79m307NkT7dq1w6JFi2BnZ4dPPvkEV69eBQC0atUK48aNAwBMmzYNP/zwA3744Qe5+b7j4+PRt29ftGvXDkuXLoWvry9SU1PRvHlz7N+/H6NHj8bcuXPx4sULdO3aFdu2bdPC3wppnUBERCp79uyZAEDo1q2bUu3j4uIEAMKwYcPklk+aNEkAIBw+fFi2zM3NTQAgHDt2TLYsLS1NsLCwECZOnChbtnXrVgGAcOTIkWL9Fe1j3759cssnTJggABCOHz8uW5aVlSV4eHgI7u7ugkQiEQRBEBITEwUAwvr165X6fIIgCI8ePRIACBEREUpvQ2/GM2oiIjVkZmYCgNLTdu7duxcAEBYWJrd84sSJAFDs0rOXlxdatmwpe+/g4IAGDRrgzp07Smf08PBASEhIsRz+/v5o0aKFbJmNjQ1GjBiBpKQkXLt2Ten9k36wUBMRqcHW1hYAkJWVpVT7u3fvQiwWo27dunLLa9SogapVq+Lu3btyy2vVqlVsH3Z2dnj69KnSGT08PBTmaNCgQbHlRZfMX89BhsdCTUSkBltbW9SsWRNXrlxRaTuRSKRUOxMTE4XLBRUmPNTFHd6kfyzURERq6ty5MxISEnD69Ok3tnVzc4NUKsWtW7fklqempiIjIwNubm4q969s0X89R3x8fLHlN27ckK0n48JCTUSkpi+++AKVKlXCsGHDkJqaWmx9QkICli5dCgDo2LEjACA6OlquzeLFiwEAnTp1Urn/SpUqAQAyMjKU3qZjx444d+6c3C8XOTk5WLt2Ldzd3eHl5aVyDtItDnhCRKSmOnXqYNOmTejduzcaNmwoNzLZqVOnsHXrVnzyyScAAB8fHwwaNAhr165FRkYGgoKCcO7cOWzcuBHdu3dHcHCwyv37+vrCxMQE8+fPx7Nnz2BhYYE2bdrA0dGxxG2mTJmCn3/+Ge+//z7GjRuHatWqYePGjUhMTMRvv/0GsVj187cffvgBd+/eRW5uLgDg2LFjmDNnDgBgwIABPEvXlKFvOyciKutu3rwpDB8+XHB3dxfMzc2FypUrC4GBgcKyZcuEFy9eyNoVFBQIs2bNEjw8PAQzMzPB1dVVmDp1qlwbQXj5aFWnTp2K9RMUFCQEBQXJLVu3bp1Qu3ZtwcTERO5RrZL2IQiCkJCQIPTs2VOoWrWqYGlpKfj7+wu7d++Wa6PK41lBQUECAIUvRY+OkWpEgqDCnQlERESkV/yOmoiIyIixUBMRERkxFmoiIiIjxkJNRERkxFioiYiIjBgLNRERkRFjoSYiIjJiLNRERERGjIWaiIjIiLFQExERGTEWaiIiIiPGQk1ERGTEWKiJiIiM2P8BhW1zBs9AD4IAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWTFJREFUeJzt3XdYFNf7NvB7F6SJCEpTgoAVCREUAxFUxJ+KsRs1llhij+WrgiZ2wFiIGhVj1wQ1xWhMYjeWqNhLLCRWVARRIyAq0pSyO+8fvmxcWXT7LnB/rmuvuDNn5tzrGB5mduYckSAIAoiIiMgoiQ0dgIiIiErHQk1ERGTEWKiJiIiMGAs1ERGREWOhJiIiMmIs1EREREaMhZqIiMiIsVATEREZMRZqIiIiI1bhC/XDhw8RFRWFhw8fGjoKERG9gj+fX2KhfvgQs2bNqvD/EIiIjA1/Pr9U4Qs1ERGRMWOhJiIiMmIs1EREREaMhZqIiMiIsVATEREZMRZqIiIiI8ZCTUREZMRYqImIiIyYURXqY8eOoXPnzqhZsyZEIhG2b9/+1m3i4uLQpEkTmJubo27dutiwYYPOcxIREemLURXq3Nxc+Pj4YMWKFUq1T0pKQseOHRESEoL4+HhMmDABw4YNw/79+3WclIiISD9MDR3gVR9++CE+/PBDpduvXr0aHh4eWLRoEQCgYcOGOHHiBJYsWYLQ0FBdxSQiItIboyrUqjp9+jTatGkjtyw0NBQTJkwodZv8/Hzk5+fL3ufk5OgqnlJGL9qEp9l5Bs1gLOyqWGHlxH6GjqF38d+NR0HOU0PHMDgzazv4Dl1q6BhERqdMF+rU1FQ4OTnJLXNyckJWVhaeP38OS0vLEttER0dj1qxZ+or4Vk+z85DxzLC/LJBhFeQ8RUH2Y0PHoPJCUgiITQGRyNBJSEvKdKFWx9SpUxEeHi57Hx8fj+DgYAMmekksEqGaTWVDxzCIJ1m5kAqCoWMYnkgMM2s7Q6fQu4Kcp4AgNXSM8iM3A6jsAJhUuB/v5VaZPpLOzs5IS0uTW5aWlgYbGxuFZ9MAYG5uDnNzc9l7a2trnWZUVjWbyvg5apihYxhE36hveVUBLy/9+o//3tAx9O7c0oG8oqBtkgIW6nLEqO76VlWzZs1w6NAhuWUHDx5Es2bNDJSIiMgISAoMnYC0yKgKdU5ODuLj4xEfHw/g5eNX8fHxSElJAfDysvXAgQNl7T/77DPcuXMHX3zxBW7cuIGVK1fil19+QVhYmCHiExEZh6L8t7ehMsOoCvX58+fRuHFjNG7cGAAQHh6Oxo0bIyIiAgDw8OFDWdEGAA8PD+zZswcHDx6Ej48PFi1ahG+//ZaPZhFRxVb0wtAJSIuM6kuMVq1aQXjDTUWKRh1r1aoVLl26pMNURERlTOFzQycgLTKqM2oiItKCwlxDJyAtYqEmIipvCjiIUnnCQk1EVN7kZxs6AWkRCzURUXmTn2XoBAazYsUKuLu7w8LCAgEBATh37twb28fExKBBgwawtLSEq6srwsLC8OKFcd2Mx0JNRFTevHhm6AQGsWXLFoSHhyMyMhIXL16Ej48PQkNDkZ6errD9pk2bMGXKFERGRuL69ev47rvvsGXLFkybNk3Pyd+MhZqIqLypoIV68eLFGD58OAYPHgwvLy+sXr0aVlZWiI2NVdj+1KlTCAoKQr9+/eDu7o527dqhb9++bz0L1zcWaiKi8uZ5pqET6F1BQQEuXLggN6OiWCxGmzZtcPr0aYXbBAYG4sKFC7LCfOfOHezduxcdOnTQS2ZlGdVz1EREpAUvMg2dQKtycnKQlfXf9+6vz9kAABkZGZBIJApnVLxx44bC/fbr1w8ZGRlo3rw5BEFAUVERPvvsM176JiIiHct7YugEWhUcHIyqVavKXtHR0VrZb1xcHObNm4eVK1fi4sWL+P3337Fnzx7Mnj1bK/vXFp5RExGVN3mPAUEoN3NSHz16FL6+vrL3r59NA4C9vT1MTEwUzqjo7OyscL8zZ87EgAEDMGzYy5kL33vvPeTm5mLEiBGYPn06xGLjOJc1jhRERKQ9koJy9Sy1tbU1bGxsZC9FhdrMzAx+fn5yMypKpVIcOnSo1BkV8/LyShRjExMTAHjjcNb6xjNqIqLyKCcNsLAxdAq9Cg8Px6BBg9C0aVP4+/sjJiYGubm5GDx4MABg4MCBcHFxkV0679y5MxYvXozGjRsjICAAt2/fxsyZM9G5c2dZwTYGLNREROXRs3uAfT1Dp9Cr3r1749GjR4iIiEBqaip8fX2xb98+2Q1mKSkpcmfQM2bMgEgkwowZM/DgwQM4ODigc+fOmDt3rqE+gkIs1ERE5dHTZEMnMIixY8di7NixCtfFxcXJvTc1NUVkZCQiIyP1kEx9/I6aiKg8yrhl6ASkJSzURETlUeplQCo1dArSAhZqIqLyKD8byLhp6BSkBSzURETl1d2Thk5AWsBCTURUXt2JeznwCZVpLNREROVVZgrw+LahU5CGWKiJiMqz238aOgFpiIWaiKg8u/0n7/4u41ioiYjKs9wM4GG8oVOQBlioiYjKu8RDb29DRouFmoiovLtzFJAUGToFqYmFmoiovMvPBu7/ZegUpCYWaiKiiuDWAUMnIDWxUBMRVQTJJ4AXWYZOQWpgoSYiKieaNm2Kdxr6oem8iyVXSgqAm/v1H4o0xkJNRFROpKam4sG/D5GaVaC4wZXfAKlEv6FIYyzUREQVRfZDIPGwoVOQilioiYgqkgsbeFZdxrBQExFVJM/uA9d3GToFqYCFmoioojkf+/LZaioTWKiJiCqaF89eXgKnMoGFmoioIrryO/AkydApSAks1EREFZEgBU4tAwTB0EnoLVioiYgqqgcXgLsnDZ2C3oKFmoioIjuzCpAUGjoFvQELNRFRRfbsPnB1m6FT0BuwUBMRVXQXNgJ5TwydgkqhtUItCAIOHz6MP/74A9nZfD6PiKjMKMgB/vrW0CmoFGoV6unTpyMkJET2XhAEtGvXDm3btkXHjh3x3nvvITExUWshiYhIx27sAdKuGjpFmfbw4UP8/fffyM3N1ep+1SrUv/32G/z9/WXvf/31Vxw6dAhz5szB7t27IZFIEBUVpa2MRESkD8cXAZIiQ6coc3bs2AFPT0+88847aNKkCc6ePQsAyMjIQOPGjbF9+3aN9q9WoX7w4AHq1q0re//777/Dy8sLU6dORYcOHTBq1CjExcVpFIyIiPTscSJweauhU5Qpu3btwkcffQR7e3tERkZCeOW5dHt7e7i4uGD9+vUa9aFWoTY1NUV+fj6Al5e9Dx06hPbt28vWOzk5ISMjQ6NgRERkAOdjgcx7hk5RZnz55Zdo2bIlTpw4gTFjxpRY36xZM1y6dEmjPtQq1N7e3vjxxx/x9OlTrF+/Ho8fP0bHjh1l6+/evQt7e3u1Aq1YsQLu7u6wsLBAQEAAzp0798b2MTExaNCgASwtLeHq6oqwsDC8ePFCrb6JiCo8SQFwbCEglRo6SZlw5coVfPzxx6Wud3JyQnp6ukZ9mKqzUUREBDp37iwrxkFBQXI3l+3Zswfvv/++yvvdsmULwsPDsXr1agQEBCAmJgahoaFISEiAo6NjifabNm3ClClTEBsbi8DAQNy8eROffvopRCIRFi9erM5HIyKih38D17YD3h8ZOonRs7KyeuPNY3fu3EH16tU16kOtM+q2bdvi4sWLWLx4MWJjY3HgwAHZuqdPn6Jly5YYN26cyvtdvHgxhg8fjsGDB8PLywurV6+GlZUVYmNjFbY/deoUgoKC0K9fP7i7u6Ndu3bo27fvW8/CiYjoLc6tA3I0OxOsCEJCQrBx40YUFZW8CS81NRXr1q1Du3btNOpD7eeovby8MH78eAwaNAgWFhay5XZ2dliyZAlatWql0v4KCgpw4cIFtGnT5r9wYjHatGmD06dPK9wmMDAQFy5ckBXmO3fuYO/evejQoYPqH4iIiP5TmAecXGroFEZv7ty5uH//Pt5//32sWbMGIpEI+/fvx4wZM/Dee+9BEARERkZq1Idal76zs7ORmZkJV1dX2bJ///0Xq1evRn5+Pnr27Knype+MjAxIJBI4OTnJLXdycsKNGzcUbtOvXz9kZGSgefPmEAQBRUVF+OyzzzBt2rRS+8nPz5fdCAcAOTk5KuUkIqowkk+8nLjDxc/QSYxWgwYNcOLECYwfPx4zZ86EIAhYuHAhAKBVq1ay+640oVahHjFiBJKSknDmzBkAQFZWFj744APcv38fYrEYS5cuxb59+1Q+q1ZVXFwc5s2bh5UrVyIgIAC3b9/G+PHjMXv2bMycOVPhNtHR0Zg1a5ZOcxGVJU2bNkVqaiqcnZ1x/vx5Q8chY3NuHdCtCSASGTqJ0Xr33Xfx559/4unTp7h9+zakUilq164NBwcHrexfrUvfJ06cQKdOnWTvf/zxR/z77784deoUnj59ikaNGmHOnDkq7dPe3h4mJiZIS0uTW56WlgZnZ2eF28ycORMDBgzAsGHD8N5776F79+6YN28eoqOjIS3ljsWpU6fi2bNnstfRo0dVyklU3qSmpuLBgwdITU01dBQyRunXgX8vGjpFmWBnZ4f3338fAQEBWivSgJqFOiMjAy4uLrL3O3fuRPPmzfHBBx+gSpUqGDhwIP7++2+V9mlmZgY/Pz8cOnRItkwqleLQoUNo1qyZwm3y8vIgFst/BBMTEwCQe+j8Vebm5rCxsZG9rK2tVcpJRFThcHatUn3zzTcIDQ0tdf2HH36IVatWadSHWoXa1tZW9tv38+fPcfz4cbm72kxNTZGXl6fyfsPDw7Fu3Tps3LgR169fx6hRo5Cbm4vBgwcDAAYOHIipU6fK2nfu3BmrVq3C5s2bkZSUhIMHD2LmzJno3LmzrGATEZGGkk8CuY8NncIofffdd/Dy8ip1vZeXF9auXatRH2p9Rx0YGIiVK1fC09MT+/btw4sXL9C1a1fZ+ps3b8qdcSurd+/eePToESIiIpCamgpfX1/s27dPdoNZSkqK3Bn0jBkzIBKJMGPGDDx48AAODg7o3Lkz5s6dq87HIiIiRQQpcPsg4NPH0EmMTmJiosIRyYp5enpi3bp1GvWhVqGeP38+2rVrhx49egAAJk6ciHfffRcAIJFIsHXrVrkhRVUxduxYjB07VuG618cPNzU1RWRkpMa3vhMR0Vsk/AE06s2byl5jZmb2xvs7Hj58WOIrWlWpVajr1q2LhIQEXLt2DVWrVpW79TwvLw/Lly+Hj4+PRsGIiMiIPE0GHt8G7OsZOolR+eCDD7BhwwaEhYWhSpUqcuuePXuG9evX44MPPtCoD7UKNQBUqlRJYTGuUqWK3GVwIiIqJ24dYKF+TWRkJIKDg+Hr64sJEybIri5fuXIFMTExePjwITZt2qRRH2oX6qysLKxcuRJHjhxBeno61qxZA39/fzx58gQbNmxAly5d5KbCJCIydoXPs3Fn32o8uXUWEIlh7xmI2qEjYWJmWeo2/3w/BVkpl+WWOTf5EHU7vPwKL+3vg7i1K0bhtv5hP8Gssq224uve7UNAwChAw0u55UlAQAB27dqFkSNHYvz48RD9/68GBEGAh4cHdu7cWeqTS8pSq1Dfv38fwcHBuHfvHurVq4cbN27IRviqVq0a1qxZg7t372LpUg4/R0TG5Z/vp8DJ5//g5NO2xLqb2xeiIOcJvD+ZA6lEglu7YnB7zzI06P7FG/fp1DgUbsH9Ze/Flf4bVtneqyXs6siP7HVz5xJIiwrLVpEGgLzHwL+XgHeMd6SyFStWYOHChUhNTYWPjw+WLVsGf3//UttnZmZi+vTp+P333/HkyRO4ubkhJiZGpaGo27Zti9u3b+PSpUtITEwEANSpUwdNmjSRFW5NqFWoP//8c2RnZyM+Ph6Ojo4lZrbq1q0bdu/erXE4IiJ9yctIwdPEC/AZEoMqNV9e3q3TfiSu/hwF9zZDYV6l9BmQTCpZwMy6WinrzGFSyVz2vjD3GZ4l/4N6ncZr9wPoy60DRluoVZ2BsaCgAG3btoWjoyN+/fVXuLi44O7du7C1tVW5b7FYDD8/P/j5af/vRq1CfeDAAYSFhcHLywuPH5d8tq527dq4d48TjxNR2ZF1/wZMLCrLijQA2Ho0BkQiZD9IgLlnYKnbpl85gvTLR2BmbYdq9fzh2qIPTF45q35V2uVDEFcyR/WGQVr/DHqRfBwomgiYmhk6SQmvzsAIAKtXr8aePXsQGxuLKVOmlGgfGxuLJ0+e4NSpU6hUqRIAqD0u97Vr13Dnzh08ffpU4YBbAwcOVGu/gJqF+vnz528cHi07O1vtQEREhlCY8xRmVrZyy0RiE1SyrILC3KelbufoHQzzqo4wq1IduWlJSD68Hs8f30fDXjMUtk+LPwAH72C5s+wypSAXuH8OcG9u6CRyimdgfHVQrLfNwFj8/fGYMWOwY8cOODg4oF+/fpg8ebLSg2YlJiaif//+OHfuXKkjYopEIv0Xai8vLxw7dgwjR45UuH779u1o3Lix2qGIiLTl3oktuHfyF9l7aVEBsh/cQOK+1bJlTT5Tf4hH5yYfyv5c2dEdZtbVcOWnaXj+5CEsq9WQa5t1/zqeZ9xDg64T1e7PKNw9rddCnZOTg6ysLNl7c3NzmJvL/6KjzgyMd+7cweHDh/HJJ59g7969uH37NkaPHo3CwkKlx+cYOXIkLl++jJiYGLRo0QJ2dnYqfrq3U6tQT5gwAYMGDUKjRo3Qq1cvAC/H5b59+zZmzZqF06dP47ffftNqUCIidTj7dYC9VwvZ+4TtC2HvGYTqr1zKNq9SHZWs7VCQlym3rSCVoPB5NipVVv6HbxWXBgCAF0//LVGo0y7tR2Wn2rCuof1HnFJSUpCbmwsAyM2XIOXJC9Sqpvjyu8Yexutmv6UIDg6Wex8ZGYmoqCiN9yuVSuHo6Ii1a9fCxMQEfn5+ePDgARYuXKh0oT558iSmTZuG//3vfxrnKY1ahbp///64e/cuZsyYgenTpwMA2rdvD0EQIBaLMW/ePHTr1k2bOYmI1FLJsgoqWf43EIXY1ByVKleFZbWacu1s3vGE5EUuch7ekhXSzKS/AUGQFV9l5KbdAYASN5dJCp4j4/oJuIUMUvejKHTu3DnMnj0be/bskV16zXwugfv0c+j0XjXM7OCG992rvGUvKnp2/+UlcLPK2t1vKY4ePQpfX1/Z+9fPpgH1ZmCsUaMGKlWqJHeZu2HDhkhNTUVBQQHMzN7+Pby9vT2qVq2q5CdRj9oPw02fPh2JiYlYuHAhRo0aheHDh2P+/PlISEjA5MmTtZmRiEjnrOxrwa6OH27tWYbsBwnIuncNiftXweHdlrI7vvOzMnBh1UhkP0gAADx/8hApx39GzsNbeJGZhsc3z+DmjkWwqeWNyk4ecvt/dPUYBKkEju+FaC3z77//jqCgIPzxxx8lvh8VBGDvlScIXBCP3y9laK1Pmax/tb/PUlhbW8vNeqioUKszA2NQUJBs/uhiN2/eRI0aNZQq0gDw2Wef4ccff4REIlHxUylP7QFPAKBWrVoICwvTVhYiIoOq3+1z3Nm3Cld+mg6IRKjuGYQ6of/diyNIJXj++D4khfkAALGJKTKT4vHvuR2QFLyAuY0DqjcMgmvzkpNXpP19ANUbBMLUQjtT6547dw69e/eGRCIp9SYmiRQQQUDvdddx6gtf7Z5Z56QZ3Shl4eHhGDRoEJo2bQp/f3/ExMSUmIHRxcUF0dHRAIBRo0Zh+fLlGD9+PP73v//h1q1bmDdvHsaNG6d0n/Xr14dEIoGPjw+GDBkCV1dXhTeiffTRR2p/LrUK9cWLF3HmzBmMHj1a4fqVK1ciMDBQ7lIFERmn4suCpV0eLG8aDfyq1HWVLKu8cXATC1snNJ+xR/bevKoDGg2cr1S/Pp8uUj6kEubMmQNBEEot0sUEAAIEzNl7FztGe2svwPNM7e1LS1SdgdHV1RX79+9HWFgYGjVqBBcXF4wfP16lq8K9e/eW/XnSpEkK24hEIo3OuNUq1NOnT4elpWWphfrw4cPYu3cvBz0hKgPOnz9v6AikopSUFOzevfutRbqYRArsuvxEuzeY5RvnY7iqzMAIAM2aNcOZM2fU7u/IkSNqb6sstQr168+qva5FixaySwtEZPwkEonc93T6VCSRokgihVgiRWFhoUEy6ItUUghBqvl3mX/s3aN0kS4mCMD+a08x6IOSI3SpQ8h9CrGOj1dRUZFO968Nr9+RrgtqFers7GyYmpa+qVgsxrNnz9QORVTRPBNVBXKKsGduP4P0/9Ohy/j5yBWD9C1n4k+GTlCujfjxFkb8eEtLezsJYIyW9lX25efn4+LFi0hPT0dQUBDs7e21tm+1CnW9evVw4MCBUp8b27dvH2rXrq1RMCLSnz4h76J3q3cN1n9V4RnMqlTH+/9bb7AMuiYpfIFnd69CbGoCsUkljfa16dcdGDc5SuXt1vR1x8AAzQuIIAjId28Ni3YzSx0qVRsuXbqEgIAAne1fW7755htERUXJTlAPHjyI1q1bIyMjA56enliwYAGGDBmi9v7VKtRDhw5FWFgYwsPDERERIRvAPDMzE7NmzcK+ffuwcOFCtUMRkX6ZGHjaQlNBDFMTsWy85fJIDAkqVTKFqbklxBqOk90mpBVEIpFKl79FIqCtpy0qKTk05psJkFYye/kMsg6P2Zuu3BqL9evXY8KECejTpw/atWsnV5Dt7e3RunVrbN68Wf+Fety4cYiPj0dMTAy++eYb1Kz5cuCAf//9F1KpFAMGDOBjW0REOuL6Tk20bxOCA4ePKnU3sYkY6PCuLWpV0+L44uLy+0uVKhYtWoSuXbti06ZNCiep8vPzwzfffKNRH2oVapFIhPXr12PgwIH47bffcOfOy5F4unbtih49eqBVq1YahSIi/Zmwcj+e5jyHnbUlYkaHGjoOKWly2GgcPHLsrWfWIgAiiDAt1EWr/QumurvkXZbcvn37jc9dV6tWTWEBV4VG1xVCQkIQEqK9UXaISP+e5jzH46znho5BKvLzbYQNq5fg08/CIAiCwjNrE/HLIr15SF2876adgVaKCWba3V9ZZWtri4yM0kd+u3btmsZjFKj1xVRSUhJ27dpV6vpdu3YhOTlZ3UxERKSErh1C8efOzWjXOhgikUhunUj08nL38XAvdPOpVsoe1Cc11+341mVFhw4dsHbtWmRmZpZYd/XqVaxbtw5dunTRqA+1zqgnTZqErKwsdO7cWeH6FStWwNbWFps3b9YoHBERvZmfbyP8snE17t3/F4FtuyDzWRZsLU1wccp72v1O+jVS6xpvb1QBzJkzBwEBAfD29kbnzp0hEomwceNGxMbG4rfffkONGjUQERGhUR9qnVGfPn0abdu2LXX9//3f/+H48eNqhyIiItW4vlMTVlaWAIDK5mKdFmnBvCoEC55RA0DNmjVx4cIFtG/fHlu2bIEgCPjhhx+wa9cu9O3bF2fOnNH4mWq1zqifPn2KKlVKH9zd2tpa4y/PiYjIOBU5vWfoCEYhPz8f+/fvh7u7O7799lt8++23ePToEaRSKRwcHOTGFdeEWnupVasWTp48Wer648eP45133lE7FBERGS+Jc2NDRzAKZmZm6NWrF06dOiVb5uDgACcnJ60VaUDNQt23b1/8/PPP+Oabb+TGB5ZIJFi6dCm2bNmCfv0MMxQiERHpjmBhAwnPqAG8fFS5Xr16b7zrWxvUKtRTp05FSEgIJkyYgBo1aqBly5Zo2bIlatasibCwMAQHB2P69OnazkpERAZW5BECiI1/xDB9mTZtGpYvX46EhASd9aHW37a5uTkOHDiAjRs34vfff0diYiIAwN/fHz169MDAgQO1etpPRERGwKQSiuq0M3QKo3LmzBlUr14d3t7eaNWqFdzd3WFpaSnXRiQSYenSpWr3ofavRWKxGIMHD8bgwYPV7pyIiMqOwvodAXMboKjA0FGMxvLly2V/PnTokMI2BivURERUcQiWdiiq39HQMYyOPuZxV6tQt27d+q1tRCJRqb9dEBFR2VLQZCjA8b0NQq1CLZVKSwxXJ5FIcPfuXdy7dw9169aFi4t2B4AnIiLDKHIPhtTZx9AxjNqZM2dw5MgRpKenY/To0ahXrx7y8vJw48YN1K9fH9bW6o+NrlahjouLK3Xd7t27MWLECCxevFjdTEREZCSEyvYobNTf0DGMVkFBAfr06YMdO3ZAEASIRCJ07twZ9erVg1gsRrt27RAWFqbRk1BavzW7U6dO6N+/PyZMmKDtXRMRkZ4V+I0EKvGSd2lmzpyJ3bt3Y9WqVUhISJCbctTCwgK9evXCjh07NOpDJ89Q1alTB3/99Zcudk1ERHpSVPv/IHXwNHQMo/bzzz9j1KhRGDFiBKpVKzlLWcOGDXHnzh2N+tD6Xd9FRUX45ZdfNB6EnIj0w87aUu6/RMDL+aYL3+1p6BhGLz09He+9V/pIbSYmJsjLy9OoD7UK9ZAhQxQuz8zMxJkzZ5CamsrvqInKiJjRoYaOQEaoqGF3wEz9G6AqCldXV9y4caPU9SdPnkTdunU16kOtQn348GEFk5SLYGdnh+bNm2PYsGFo146j1xARlUWCpd3LoULprfr164fFixejR48eqF+/PgDI6uO6devwyy+/4KuvvtKoD7UKdXJyskadEhGR8Sqq1wEwqWToGGXC9OnTcebMGbRs2RINGzaESCRCWFgYnjx5gvv376NDhw4ICwvTqA8OyE1ERP+pZIki91aGTlFmmJmZYd++fVi/fj1q164NT09P5Ofno1GjRtiwYQN27doFExMTjfpQ+ow6Ly8PGRkZcHZ2hpmZmdy62NhY/PTTT3j48CE8PT0xdepUvP/++xoFIyIi/Styb8XHsd4gPDwcAwYMQOPGL+fkTklJgYODA/r374/+/XXzvLnSZ9RffvklGjVqhIIC+cHY58yZg+HDh+Po0aN49OgRtm/fjlatWuHvv//WelgiItIhkQhFddoaOoVRi4mJwfXr12XvPTw8sG3bNp32qXShPnLkCDp16iQ3DFpWVhbmzJkDFxcX3Lp1C48ePcKZM2dgZmam8ZfnRESkXxLXQAiVHQwdw6g5OTnJPRf96gAnuqL0pe/k5GT06NFDbtnevXtRUFCAyZMnw8PDA8DLOakHDx6MX375RbtJiYhId0QiFHp2NXQKo9exY0d8+eWXOHDgAGxtbQEAixYtwubNm0vdRiQSaTQ6mdKFOjs7G9WrV5dbduzYMYhEIoSGyj+H6eXlhUePHqkdioiI9KuoTlsIVWoYOobRW7p0KRwdHXHkyBFcvXoVIpEI9+7dw5MnT0rd5vXHmVWl9KVvNze3Eg91x8XFwcnJqcTD3AUFBbCxsVEr0IoVK+Du7g4LCwsEBATg3Llzb2yfmZmJMWPGoEaNGjA3N0f9+vWxd+9etfomIqqIBAsbFDbsbugYZULlypUxb948nD59GomJiRAEATExMUhKSir1pekQokoX6nbt2iE2NhZnz54FAHz//fe4ceMGuncveXAvXLgAd3d3lcNs2bIF4eHhiIyMxMWLF+Hj44PQ0FCkp6crbF9QUIC2bdsiOTkZv/76KxISErBu3TpOsUlEpILCRgM4CpmSPvroIxw/flz2/siRI2jbVrc34CldqGfOnAlra2sEBgbCzMwMn376KRwcHBARESHXLi8vD9u2bcP//d//qRxm8eLFGD58OAYPHgwvLy+sXr0aVlZWiI2NVdg+NjYWT548wfbt2xEUFAR3d3cEBwfDx4fzphIRKUNSozEk7wQYOkaZsWPHDqSkpMjet27dGgcPHtRpn0oXant7e8THx+Orr77C0KFDMW/ePFy+fBlOTk5y7a5cuYJPPvkEAwYMUClIQUEBLly4gDZt2vwXTixGmzZtcPr0aYXb7Ny5E82aNcOYMWPg5OQEb29vzJs3DxKJRKW+iYgqJFMLFDb+FNDwO9SKxMXFBZcuXZK9L56DWpdUGkLUzs4On3/++Rvb+Pv7w9/fX+UgGRkZkEgkJQq/k5NTqQOe37lzB4cPH8Ynn3yCvXv34vbt2xg9ejQKCwsRGRmpcJv8/Hzk5+fL3ufk5KiclYioPCh8txcEy5JTM1Lp+vTpg6+//hq//PKL7K7vKVOmIDo6utRtRCKRRmOLaH2aS32SSqVwdHTE2rVrYWJiAj8/Pzx48AALFy4stVBHR0dj1qxZek5KRGRcpLZuKKrT5u0NSU50dDTq1q2LI0eOID09HSKRCJUrVy7xVJQ2GU2htre3h4mJCdLS0uSWp6WlwdnZWeE2NWrUQKVKleTGUW3YsCFSU1NRUFBQYqhTAJg6dSrCw8Nl7+Pj4xEcHKylT0FEVDYU+g4ERJzuQVUmJiYYMWIERowYAeDlV7QzZsxAv379dNan0RwlMzMz+Pn54dChQ7JlUqkUhw4dQrNmzRRuExQUhNu3b0MqlcqW3bx5EzVq1FBYpAHA3NwcNjY2sterI60REVUEknf8Ia1e39AxyoWkpCR069ZNp30YTaEGXg52vm7dOmzcuBHXr1/HqFGjkJubi8GDBwMABg4ciKlTp8rajxo1Ck+ePMH48eNx8+ZN7NmzB/PmzcOYMWMM9RGIiIybSIRCr16GTlFuuLm5wcrKSqd9KHXpe+fOnWjatClq1qyp0zC9e/fGo0ePEBERgdTUVPj6+mLfvn2yG8xSUlIgFv/3u4Wrqyv279+PsLAwNGrUCC4uLhg/fjwmT56s05xERGVVUa3mEKoo/jqR3k4sFkMsFiMvLw9mZmYQi8VvvetbJBKhqKhI7T6VKtTdu3fHDz/8ILsGX7t2bcTExKBLly5qd1yasWPHYuzYsQrXxcXFlVjWrFkznDlzRus5iIjKHZEIRQ20/3O7IomIiIBIJIKpqance11SqlBXqVIFmZmZsvfJycl8rImIqIyR1GjCs2kNRUVFvfG9LihVqP39/TF37lykpaWhatWqAF7OnJWamlrqNiKRCGFhYdpJSUREGiuqG/r2RmR0lCrUK1euxMCBAzF79mwAL4vwpk2bsGnTplK3YaEmIjIegk1NSO09DR2jXMnPz8ePP/6IAwcOIDExEdnZ2ahSpQrq1q2L9u3bo1+/fqU+gaQKpQp13bp1cerUKbx48QLp6elwd3dHTEwMunbl3KVERGVBkXsIhwrVosuXL6Nr1664e/cuBEFA1apVYW1tjfT0dFy8eBFbt27F3LlzsXPnTjRs2FCjvlR6PMvCwgK1atVCZGQkWrduDTc3tze+iIjICIjFKKoVaOgUeqHqVMnFNm/eDJFIpNQz0Tk5OejSpQvS0tIwd+5c3Lt3D0+fPpX775w5c/Dvv/+ic+fOyM3N1egzqfUcdWRkJLy9vWWBr1+/juvXr/MGMyIiIyRxbASY2xg6hs6pOlVyseTkZEyaNAktWrRQqp/169cjJSUFe/bswZQpU0pMrezi4oKpU6di165dSEpKwoYNG9T9SAA0GPDkr7/+QkhICOzs7ODt7Q1vb2/Y2dmhdevWOH/+vEahiIhIeySuFWMaS1WnSgYAiUSCTz75BLNmzULt2rWV6mfPnj1o164dWrVq9cZ2rVu3Rtu2bbFr1y5VPkYJahXqs2fPomXLlrh48SKGDRuGJUuWYMmSJRg2bBguXryIli1bKn25gYiIdEgshsTZ19ApNJKTk4OsrCzZ69UZEIupM1UyAHz55ZdwdHTE0KFDlc5z+fLltxbpYq1bt8bly5eV3rciak3KMX36dLi4uODEiRMlJsyIiopCUFAQpk+frvPJtImI6M2k9p6AWdme0+D1iZMiIyNLPL+szlTJJ06cwHfffYf4+HiV8jx58qTUyaJe5+TkhCdPnqi0/9epVajPnj2LiIgIhUGdnJwwYsQI2aNcRERkOBKnRoaOoLGjR4/C19dX9t7c3FzjfWZnZ2PAgAFYt24d7O3tVdo2Pz8flSpVUqqtqakpCgoK1In43z7U2UgsFr9x3FKJRCI3JjcRERmGxOk9Q0fQmLW1NWxs3nwznKpTJScmJiI5ORmdO3eWLSueidHU1BQJCQmoU6dOqf0lJyfj4sWLb82elJT01jZvo1ahDgwMxIoVK9CvX78Sj2GlpKRg5cqVCAoK0jgcERGpTzCzhmDzjqFj6MWrUyUXP2JVPFWyovkjPD09S3x3PGPGDGRnZ2Pp0qVwdXV9Y38zZ87EzJkz35pLEASNxwJXq1DPmzcPLVu2hKenJ7p374769V/Oa5qQkIAdO3bA1NQU0dHRGgUjIiLNSO3rA6KKc3UzPDwcgwYNQtOmTeHv74+YmJgSUyW7uLggOjoaFhYWsseMi9na2gJAieWvW79+vU7yl0atQt24cWOcPXsW06dPx86dO5GXlwcAsLKyQvv27TFnzhx4eXlpNSgREalGWr2eoSPolapTJatr0KBBGu9DFWoVagDw8vLCtm3bIJVK8ejRIwCAg4MDv5smIjISUlsPQ0fQO1WnSn6VpgOT6IrahbqYWCwucTs8EREZntSWQzmXBzz9JSIqhwQL2zL//DS9xEJNRFQOCTY1DR2BtISFmoioHJJW5leS5QULNRFROSRUdjR0BNISjW8mIyIi4yNYqTYsJmnm2rVruHPnDp4+fQpBEEqsHzhwoNr71qhQ6zIYERGpT7CqbugIFUJiYiL69++Pc+fOKayDACASifRfqPURjIiI1CdY2Bo6QoUwcuRIXL58GTExMWjRogXs7Oy03odahVofwYiISDVODg6AVApnszwWaj05efIkpk2bhv/9738660OtQq2PYEREpJpj+36HKPcRzA/PxAsT5aZhJM3Y29ujatWqOu1Drbu+9RGMiIjUZP7mKSFJez777DP8+OOPkEgkOutDrTPq4mBjxoyBiYmJtjMREZEGBHOeSOlL/fr1IZFI4OPjgyFDhsDV1VVhXfzoo4/U7kOtQq2PYEREpB7BnEOH6kvv3r1lf540aZLCNiKRSKMzbrUKtT6CERGRegSzKoaOUGEcOXJE532oVaj1EYyIiNQjmLNQ60twcLDO+1CrUOsjGBERqalSZUMnqJCuXbuGu3fvAgDc3Nzg5eWllf1qPISoroIREZF6BDMWan3asWMHwsPDkZycLLfcw8MDixcvRpcuXTTav9qFWtfBiIhITTyj1pu9e/eiR48ecHNzw7x589CwYUMAwPXr17F27Vp89NFH2L17N9q3b692H2oVan0EIyIi9QiVLA0docKYPXs2GjVqhOPHj6Ny5f9+QerSpQvGjh2L5s2bY9asWfov1PoIRkRE6mGh1p9//vkH8+bNk6uFxSpXroxPP/0U06ZN06gPtUYm++effzBo0KA3Bvvnn380CkZERGoyMTN0ggrDwsICT548KXX9kydPYGFhoVEfahVqfQQjIiI1iTnOt760bt0aS5cuxenTp0usO3v2LL755hu0adNGoz7UuvRdHKx9+/Zo1qyZwmDt2rXTKBgREalJrPEDPaSkBQsWoFmzZmjevDn8/f3RoEEDAEBCQgLOnTsHR0dHzJ8/X6M+1Dqa+ghGRERqEokMnaDC8PDwwD///IPo6Gj88ccf2LJlC4CXjyuPHz8eU6ZMgaOjo0Z9qFWo9RGMiIioLHB0dMSSJUuwZMkSnexf7esjug5GRERqEqSGTkBaxC8yiIjKG0EwdIJya8iQIRCJRFi7di1MTEwwZMiQt24jEonw3Xffqd2nUoXaEMGIiEhNPKPWmcOHD0MsFkMqlcLExASHDx+G6C33BLxt/dsoVagNEYyIiNTEM2qdeX3Y7Nff64JShdoQwYiIiIxdSkoKHBwcYGmpeDS458+f49GjR6hVq5bafag14ElKSgqeP39e6vrnz58jJSVF7VBERKQBXtDUGw8PD2zbtq3U9Tt37oSHh4dGfahVqPURjIiI1CQyMXSCCkN4y9cMhYWFEIvVKrUyam2t62ArVqyAu7s7LCwsEBAQgHPnzim13ebNmyESidCtWze1+yYiKvPELNS6lJWVhZSUFNmV48ePH8vev/r6559/sHnzZtSoUUOj/pR+PCsrKwuZmZmy98XBXpeZmalRsC1btiA8PByrV69GQEAAYmJiEBoaioSEhDcOopKcnIxJkyahRYsWavVLRFReCDyj1qklS5bgyy+/BPDyxukJEyZgwoQJCtsKgoA5c+Zo1J/ShVpfwRYvXozhw4dj8ODBAIDVq1djz549iI2NxZQpUxRuI5FI8Mknn2DWrFk4fvy43C8UREQVjgkn5dCldu3awdraGoIg4IsvvkDfvn3RpEkTuTYikQiVK1eGn58fmjZtqlF/ShdqfQQrKCjAhQsXMHXqVNkysViMNm3aKJyZpNiXX34JR0dHDB06FMePH39jH/n5+cjPz5e9z8nJUTknEZFR4+xZOtWsWTPZhFS5ubno0aMHvL29ddaf0oVaH8EyMjIgkUjg5OQkt9zJyQk3btxQuM2JEyfw3XffIT4+Xqk+oqOjMWvWLE2jEhEZJcHUnN9R60leXh6++eYbWFlZ6bRQq3zHV3GwP/74Qxd5VJKdnY0BAwZg3bp1sLe3V2qbqVOn4tmzZ7LX0aNHdZySiEiPzG0AkWZ3GZNyrKysYGpqisqVK+u0H5XH+tZlMHt7e5iYmCAtLU1ueVpaGpydnUu0T0xMRHJyMjp37ixbJpW+HDrP1NQUCQkJqFOnjtw25ubmMDc3l723trbW5kcgIqIKpEePHvj1118xatQonY3IqdavXcXB3vaYlqrMzMzg5+eHQ4cOyZZJpVIcOnRIdtn9VZ6enrh8+TLi4+Nlry5duiAkJATx8fFwdXXVaj4iIqJX9enTB+np6QgJCcFPP/2EkydP4uLFiyVemlBr9qw+ffpg9OjRCAkJwfDhw+Hu7q5w+LTXbzZTRnh4OAYNGoSmTZvC398fMTExyM3Nld0FPnDgQLi4uCA6OhoWFhYlvhewtbUFAJ1+X0BERAQArVq1kv1Z0c3MgiBAJBJBIpGo3YdahVqXwXr37o1Hjx4hIiICqamp8PX1xb59+2Q3mKWkpGg8ygsREZE2rF+/Xud9qFWodR1s7NixGDt2rMJ1cXFxb9x2w4YN2g9ERESkwKBBg3Teh1qFWh/BiIiIypKcnBzcu3cPAODq6qq1m5U1voack5OD69ev4/r16xw8hIiIKpy//voLISEhsLOzg7e3N7y9vWFnZ4fWrVvj/PnzGu9frTPq4mBffPEFTpw4IXskSiwWo0WLFliwYIHGQ6YREREZu7Nnz6JVq1YwMzPDsGHD0LBhQwDA9evX8fPPP6Nly5aIi4uDv7+/2n2oVaj1EYyIiEhVK1aswMKFC5GamgofHx8sW7as1Fq0bt06fP/997hy5QoAwM/PD/PmzVOpdk2fPh0uLi44ceJEifE+oqKiEBQUhOnTp+PgwYNqfya1Ln0XB0tISMCqVaswbtw4jBs3DqtWrUJCQgJq1qyJ6dOnqx2KiIhIVcWzL0ZGRuLixYvw8fFBaGgo0tPTFbaPi4tD3759ceTIEZw+fRqurq5o164dHjx4oHSfZ8+exciRIxUOyuXk5IQRI0bgzJkzan8mQM1CrY9gREREqnh19kUvLy+sXr0aVlZWiI2NVdj+p59+wujRo+Hr6wtPT098++23skG2lCUWi1FUVFTqeolEovEjxWptrY9gREREwMublrOysmSvV2dALFY8+2KbNm1ky5SZffFVeXl5KCwsRLVq1ZTOFhgYiBUrVuDu3bsl1qWkpGDlypUICgpSen+KqPUddXGwfv36wc3NTSfBiIiIACA4OFjufWRkJKKiouSWqTP74usmT56MmjVryhX7t5k3bx5atmwJT09PdO/eHfXr1wcAJCQkYMeOHTA1NUV0dLTS+1NErUKtj2BEREQAcPToUfj6+srevzqxkrZ89dVX2Lx5M+Li4mBhYaH0do0bN8bZs2cxffp07Ny5E3l5eQBeTmDVvn17zJkzB15eXhplU6tQ6yMYERER8HKWQxsbmze2UXX2xVd9/fXX+Oqrr/Dnn3+iUaNGKufz8vLCtm3bIJVK8ejRIwCAg4OD1r4CVvs5al0HIyIiUtarsy9269YNwH+zL5Y2JDUALFiwAHPnzsX+/fs1Hv9DJBLJprrU5pSXGlfV4mCvBiQiItK38PBwrFu3Dhs3bsT169cxatSoErMvTp06VdZ+/vz5mDlzJmJjY+Hu7o7U1FSkpqaqPMrmtWvX0LNnT9jY2KBGjRqoUaMGbGxs0LNnT9kz2ppQ+4z62rVriIiIwP79++UufYeGhiIqKorTTBIRkV6pOvviqlWrUFBQgJ49e8rtR9HNaqU5fvw4PvzwQ0ilUnTt2lXunq2dO3fijz/+wL59+9CiRQu1P5dahVofwYiIiFSlyuyLycnJGvcXFhYGR0dHHD16FK6urnLr7t27h5YtWyI8PBx//fWX2n2oVaj1EYyIiMjYXb16FbNnzy5RC4GXM2iNGjVK6bPz0qj1HfXVq1cxevToNwa7evWqRsGIiIiMnZubm8IBWIoVFBQorJWqUKtQ6yMYERGRsYuIiMA333yD+Pj4EusuXbqEZcuWaXxGrdal74iICISFhaFjx45yD6G/GiwmJkajYERERMbuzJkzcHJygp+fHwIDA1G3bl0AwK1bt3D69Gl4e3vj9OnTcsOYikQiLF26VOk+1CrU+ghGRERk7JYvXy7788mTJ3Hy5Em59ZcvX8bly5fllumlUOsjGBERkbGTSqU670OtQq2PYERERKTBgCdERET0UlJSEv744w/ZdJdubm748MMP4eHhofG+NSrUugxGRERUFkycOBFLly4tcbVZLBZjwoQJ+PrrrzXav9qFWtfBiIiIjN2iRYuwZMkS9OzZExMnTkTDhg0BANevX8eSJUuwZMkSuLi4ICwsTO0+1HqOujjYRx99hNOnTyMzMxOZmZk4ffo0evbsKQtHRERUnq1btw5dunTBL7/8goCAANjY2MDGxgYBAQHYvHkzOnfujDVr1mjUh1qFWh/BiIiIjF1ycjJCQ0NLXR8aGqrxmOJqFWp9BCMiIjJ2jo6O+Pvvv0td//fff8PBwUGjPtQq1PoIRkREZOx69eqFb7/9Fl999RVyc3Nly3NzczF//nx8++236N27t0Z9qHUzWa9evbB06VK4u7vjf//7HypXriwLtnz5cnz77beYMGGCRsGIiIiM3ezZsxEfH49p06YhIiICNWvWBAD8+++/KCoqQkhICL788kuN+lCrUOsjGBERkbGzsrLCoUOHsGPHDrnHldu3b48OHTqgc+fOEIlEGvWhVqHWRzAiIiJjlpeXh/79+6NHjx745JNP0LVrV530o3Kh1lcwIiIiY2ZlZYU///wTH374oU77UflmsuJgeXl5ushDRERUZjRv3lxupkhdUOuub30EIyIiMnbLly/H8ePHMWPGDNy/f18nfahVqPURjIiIyNj5+Pjg/v37iI6OhpubG8zNzWWDgBW/qlatqlEfat1M5uPjg6KiIkRHRyM6OhqmpqYwNzeXayMSifDs2TONwhERERmzHj166PzmabUKtT6CERERGbsNGzbovA+1CrU+ghERERmrFy9eYMeOHUhKSoK9vT06duyIGjVq6KQvlQq1PoMREREZo/T0dAQGBiIpKQmCIAB4+UTU9u3b0aZNG633p3Sh1ncwIiIiYzR79mwkJycjLCwMrVu3xu3btzF79myMHDkSiYmJWu9P6UKt72BERETG6MCBAxg4cCC+/vpr2TInJyf069cPCQkJaNCggVb7U7pQ6zsYERGRMUpJScHkyZPlljVv3hyCICAtLU3r9VDp56hTUlLQvHnzUoMRERFVBPn5+bCwsJBbVvy+qKhI6/0pfUat72BERETGKjk5GRcvXpS9Lx435NatW7C1tS3RvkmTJmr3pdJd3/oMRkREZKxmzpyJmTNnllg+evRoufeCIEAkEkEikajdl0qFWp/BiIiIjNH69ev12p/ShVqfwVasWIGFCxciNTUVPj4+WLZsGfz9/RW2XbduHb7//ntcuXIFAODn54d58+aV2p6IiEgTgwYN0mt/ShdqfQXbsmULwsPDsXr1agQEBCAmJgahoaFISEiAo6NjifZxcXHo27cvAgMDYWFhgfnz56Ndu3a4evUqXFxc9JKZiIhIV9SaPUuXFi9ejOHDh2Pw4MHw8vLC6tWrYWVlhdjYWIXtf/rpJ4wePRq+vr7w9PTEt99+C6lUikOHDuk5ednUtGlTvPPOO2jatKmhoxARkQJqjfWtKwUFBbhw4QKmTp0qWyYWi9GmTRul57/Oy8tDYWEhqlWrpnB9fn4+8vPzZe9zcnI0C13Gpaam4sGDB4aOQUREpTCqM+qMjAxIJBI4OTnJLXdyckJqaqpS+5g8eTJq1qxZ6rCm0dHRqFq1quwVHByscW4iIiJdMapCramvvvoKmzdvxrZt20o8811s6tSpePbsmex19OhRPackIiJSnlFd+ra3t4eJiUmJkc7S0tLg7Oz8xm2//vprfPXVV/jzzz/RqFGjUtuZm5vD3Nxc9t7a2lqz0ERERDpkVGfUZmZm8PPzk7sRrPjGsGbNmpW63YIFCzB79mzs27ePN0UREVG5YlRn1AAQHh6OQYMGoWnTpvD390dMTAxyc3MxePBgAMDAgQPh4uKC6OhoAMD8+fMRERGBTZs2wd3dXfZdtrW1Nc+WiYiozDO6Qt27d288evQIERERSE1Nha+vL/bt2ye7wSwlJQVi8X8XAlatWoWCggL07NlTbj+RkZGIiorSZ3QiIiKtM7pCDQBjx47F2LFjFa6Li4uTe5+cnKz7QERERAZiVN9RExERkTwWaiIiIiPGQk1ERGTEWKiJiKjcWLFiBdzd3WFhYYGAgACcO3fuje23bt0KT09PWFhY4L333sPevXv1lFR5LNQVnLOzM1xcXN46oAwRkbErnn0xMjISFy9ehI+PD0JDQ5Genq6w/alTp9C3b18MHToUly5dQrdu3dCtWzfZtMnGgoW6gjt//jzu37+P8+fPGzoKEZFGVJ19cenSpWjfvj0+//xzNGzYELNnz0aTJk2wfPlyPSd/MxZqIiIq84pnX3x1Qqa3zb54+vTpEhM4hYaGKj1bo74Y5XPUpF8SiQRSqdRg/UslRZBKJJBKilBYWGiwHIZSJJGiSGK4v39jUCRIIZZIy/XxlxQWorCwCBIhD2KTsv05pZJCSIskKCwshBQmOuunqKgIwMvpiLOysmTLX5+zAXjz7Is3btxQuP/U1FSNZmvUFxZqI2Al5CEvMw9dJ8wzSP83zhzCzbOHDdL3636ZM8rQEciQJv5k6ARkhF6fjriijTzJQk1o4B+C+u+3MmiGPJEV7KtWxo8RQw2awxD+WjYYj3KKDB3DoKoKz2BWpTre/996Q0fRKamkEIJUYugYWiESm0BsUkmnfVy6dAkBAQE4evQofH19ZctfP5sG1Jt90dnZWa3ZGvWNhZogEoshMnAGscgEYhNTVKqk2//xjZGpiRimJhX7dhFT4eXfQbk//uX982mZqenLEmVtbQ0bG5s3tn119sVu3boB+G/2xdKGpG7WrBkOHTqECRMmyJYdPHjwjbM1GgILdQV39OcVyM/LgbmVNYL7jjF0HCIitak6++L48eMRHByMRYsWoWPHjti8eTPOnz+PtWvXGvJjlMBCXcHl5+XgRU7W2xsSERk5VWdfDAwMxKZNmzBjxgxMmzYN9erVw/bt2+Ht7W2oj6AQCzUREZUbqsy+CAC9evVCr169dJxKMxX7izEiIiIjx0JNRERkxFioiYiIjBgLNRERkRFjoSYiIjJiLNRERERGjIWaiIjIiLFQExERGTEWaiIiIiPGQk1ERGTEWKiJiIiMGMf6ruDMrazl/ktERMaFhbqC49SWRETGjZe+iYiIjBgLNRERkRFjoSYiIjJiLNRERERGjIWaiIjIiLFQExERGTEWaiIiIiPGQk1ERGTEWKiJiIiMGAs1ERGREWOhJiIiMmIs1EREREaMhZqIiMiIsVATEREZMRZqIiIiI8ZCTUREZMRYqImIiIwYCzUREZERY6EmIiIyYkZZqFesWAF3d3dYWFggICAA586de2P7rVu3wtPTExYWFnjvvfewd+9ePSUlIiLSLaMr1Fu2bEF4eDgiIyNx8eJF+Pj4IDQ0FOnp6Qrbnzp1Cn379sXQoUNx6dIldOvWDd26dcOVK1f0nJyIiEj7jK5QL168GMOHD8fgwYPh5eWF1atXw8rKCrGxsQrbL126FO3bt8fnn3+Ohg0bYvbs2WjSpAmWL1+u5+RERETaZ1SFuqCgABcuXECbNm1ky8RiMdq0aYPTp08r3Ob06dNy7QEgNDS01PZERERliamhA7wqIyMDEokETk5OcsudnJxw48YNhdukpqYqbJ+amqqwfX5+PvLz82Xvc3JyAADXr1/XJLranjy8ixfZTwzStzF5IbKAOM8KFy9eNHQUvbtx7zGePpcYOoZBWQs5qGQFmL52/GvUqIEaNWoYKJVmHj58iIcPHxo6RplmqJ/LxsaoCrU+REdHY9asWXLL3Nzc0L9/fwMlolcdWDvH0BHIkBbJ3wgaGRmJqKgow2TR0Jo1a0r8rCHVBQcHl9lf1rTFqAq1vb09TExMkJaWJrc8LS0Nzs7OCrdxdnZWqf3UqVMRHh4ut+zJkyd48qRintXm5OQgODgYR48ehbW1taHjkAEY87+BsvwDeuTIkejSpYte+zTmY6musnxVRVtEgiAIhg7xqoCAAPj7+2PZsmUAAKlUilq1amHs2LGYMmVKifa9e/dGXl4edu3aJVsWGBiIRo0aYfXq1XrLXVZlZWWhatWqePbsGWxsbAwdhwyA/wbKDx7L8smozqgBIDw8HIMGDULTpk3h7++PmJgY5ObmYvDgwQCAgQMHwsXFBdHR0QCA8ePHIzg4GIsWLULHjh2xefNmnD9/HmvXrjXkxyAiItIKoyvUvXv3xqNHjxAREYHU1FT4+vpi3759shvGUlJSIBb/d7N6YGAgNm3ahBkzZmDatGmoV68etm/fDm9vb0N9BCIiIq0xukvfpF/5+fmIjo7G1KlTYW5ubug4ZAD8N1B+8FiWTyzURERERsyoBjwhIiIieSzURERERoyFmrQqOTkZIpEIGzZsMHQUIqJygYXagBITEzFy5EjUrl0bFhYWsLGxQVBQEJYuXYrnz5/rrN9r164hKioKycnJOutDGXPnzkWXLl3g5OQEkUhUZkeg0jWRSKTUKy4uTuO+8vLyEBUVpdK+eBxVw+NJqjK6x7Mqij179qBXr14wNzfHwIED4e3tjYKCApw4cQKff/45rl69qrNnwa9du4ZZs2ahVatWcHd310kfypgxYwacnZ3RuHFj7N+/32A5jN0PP/wg9/7777/HwYMHSyxv2LChxn3l5eXJhr1s1aqVUtvwOKqGx5NUxUJtAElJSejTpw/c3Nxw+PBhueHxxowZg9u3b2PPnj0GTPgfQRDw4sULWFpaan3fSUlJcHd3R0ZGBhwcHLS+//Li9XHoz5w5g4MHDxrN+PQ8jqrh8SRV8dK3ASxYsAA5OTn47rvvFI5hW7duXYwfP172vqioCLNnz0adOnVgbm4Od3d3TJs2TW4WMABwd3dHp06dcOLECfj7+8PCwgK1a9fG999/L2uzYcMG9OrVCwAQEhJS4jJb8T7279+Ppk2bwtLSEmvWrAEA3LlzB7169UK1atVgZWWFDz74QKNfKAx5Nl/eSKVSxMTE4N1334WFhQWcnJwwcuRIPH36VK7d+fPnERoaCnt7e1haWsLDwwNDhgwB8PL+guIfzLNmzZL923jbpU8eR+3j8aRX8YzaAHbt2oXatWsjMDBQqfbDhg3Dxo0b0bNnT0ycOBFnz55FdHQ0rl+/jm3btsm1vX37Nnr27ImhQ4di0KBBiI2Nxaeffgo/Pz+8++67aNmyJcaNG4dvvvkG06ZNk11ee/UyW0JCAvr27YuRI0di+PDhaNCgAdLS0hAYGIi8vDyMGzcO1atXx8aNG9GlSxf8+uuv6N69u/b+gkhlI0eOxIYNGzB48GCMGzcOSUlJWL58OS5duoSTJ0+iUqVKSE9PR7t27eDg4IApU6bA1tYWycnJ+P333wEADg4OWLVqFUaNGoXu3bvjo48+AgA0atTIkB+tQuLxJDkC6dWzZ88EAELXrl2Vah8fHy8AEIYNGya3fNKkSQIA4fDhw7Jlbm5uAgDh2LFjsmXp6emCubm5MHHiRNmyrVu3CgCEI0eOlOiveB/79u2TWz5hwgQBgHD8+HHZsuzsbMHDw0Nwd3cXJBKJIAiCkJSUJAAQ1q9fr9TnEwRBePTokQBAiIyMVHqbimzMmDHCq//rHj9+XAAg/PTTT3Lt9u3bJ7d827ZtAgDhr7/+KnXfmhwLHkf18HjS2/DSt55lZWUBAKpUqaJU+717X87P+/rUnBMnTgSAEpeevby80KJFC9l7BwcHNGjQAHfu3FE6o4eHB0JDQ0vk8Pf3R/PmzWXLrK2tMWLECCQnJ+PatWtK75+0a+vWrahatSratm2LjIwM2cvPzw/W1tY4cuQIAMDW1hYAsHv3bhQWFhowMb0Jjye9joVaz4qnnsvOzlaq/d27dyEWi1G3bl255c7OzrC1tcXdu3fllteqVavEPuzs7Ep8t/UmHh4eCnM0aNCgxPLiS+av5yD9uXXrFp49ewZHR0c4ODjIvXJycpCeng4ACA4ORo8ePTBr1izY29uja9euWL9+fYl7HciweDzpdfyOWs9sbGxQs2ZNXLlyRaXtRCKRUu1MTEwULhdUGNJdF3d4k+5IpVI4Ojrip59+Uri++IYikUiEX3/9FWfOnMGuXbuwf/9+DBkyBIsWLcKZM2dgbW2tz9hUCh5Peh0LtQF06tQJa9euxenTp9GsWbM3tnVzc4NUKsWtW7fkbvhKS0tDZmYm3NzcVO5f2aL/eo6EhIQSy2/cuCFbT4ZRp04d/PnnnwgKClLql6wPPvgAH3zwAebOnYtNmzbhk08+webNmzFs2DC1/m2QdvF40ut46dsAvvjiC1SuXBnDhg1DWlpaifWJiYlYunQpAKBDhw4AgJiYGLk2ixcvBgB07NhR5f4rV64MAMjMzFR6mw4dOuDcuXM4ffq0bFlubi7Wrl0Ld3d3eHl5qZyDtOPjjz+GRCLB7NmzS6wrKiqSHeenT5+WuLLi6+sLALLLpVZWVgBU+7dB2sXjSa/jGbUB1KlTB5s2bULv3r3RsGFDuZHJTp06ha1bt+LTTz8FAPj4+GDQoEFYu3YtMjMzERwcjHPnzmHjxo3o1q0bQkJCVO7f19cXJiYmmD9/Pp49ewZzc3O0bt0ajo6OpW4zZcoU/Pzzz/jwww8xbtw4VKtWDRs3bkRSUhJ+++03iMWq/873ww8/4O7du8jLywMAHDt2DHPmzAEADBgwgGfpSgoODsbIkSMRHR2N+Ph4tGvXDpUqVcKtW7ewdetWLF26FD179sTGjRuxcuVKdO/eHXXq1EF2djbWrVsHGxsb2S+ElpaW8PLywpYtW1C/fn1Uq1YN3t7e8Pb2LrV/Hkft4vGkEgx813mFdvPmTWH48OGCu7u7YGZmJlSpUkUICgoSli1bJrx48ULWrrCwUJg1a5bg4eEhVKpUSXB1dRWmTp0q10YQXj5a1bFjxxL9BAcHC8HBwXLL1q1bJ9SuXVswMTGRe1SrtH0IgiAkJiYKPXv2FGxtbQULCwvB399f2L17t1wbVR7PCg4OFgAofCl6dIxeev1xnmJr164V/Pz8BEtLS6FKlSrCe++9J3zxxRfCv//+KwiCIFy8eFHo27evUKtWLcHc3FxwdHQUOnXqJJw/f15uP6dOnRL8/PwEMzMzpR7P4XHUDI8nvY1IEFS4y4iIiIj0it9RExERGTEWaiIiIiPGQk1ERGTEWKiJiIiMGAs1ERGREWOhJiIiMmIs1EZswYIF8PT0hFQqNXQUjfXp0wcff/yxoWOUKTz+pEhycjJEIhE2bNhg6CikJyzURiorKwvz58/H5MmTZaN+iUQiiEQiLFq0qET7DRs2QCQS4fz581rP0rZtW4hEIowdO1bh+u+++w4NGzaEhYUF6tWrh2XLlpVoM3nyZPz222/4+++/tZ6vPOLxJ6JiLNRGKjY2FkVFRejbt2+JdQsXLpQN76drv//+u9z43q9bs2YNhg0bhnfffRfLli1Ds2bNMG7cOMyfP1+uXePGjdG0aVOFRYZK4vGn0ri5ueH58+cYMGCAoaOQvhh6aDRSrFGjRkL//v3llgEQfH19BQDCokWL5NatX79eACD89ddfWsvw/Plzwd3dXfjyyy8FAMKYMWPk1ufl5QnVq1cvMeToJ598IlSuXFl48uSJ3PKvv/5aqFy5spCdna21jOUVjz8RFeMZtRFKSkrCP//8gzZt2pRYFxQUhNatW2PBggV4/vy5TnMsWLAAUqkUkyZNUrj+yJEjePz4MUaPHi23fMyYMcjNzcWePXvklrdt2xa5ubk4ePCgzjKXBzz+5V9UVBREIhFu3ryJ/v37o2rVqnBwcMDMmTMhCALu3buHrl27wsbGBs7OznJXIhR9R/3pp5/C2toaDx48QLdu3WBtbQ0HBwdMmjQJEolE1i4uLg4ikQhxcXFyeRTtMzU1FYMHD8Y777wDc3Nz1KhRA127dkVycrKO/laoNCzURujUqVMAgCZNmihcHxUVhbS0NKxateqN+8nPz0dGRoZSr9elpKTgq6++wvz580udE/fSpUsAgKZNm8ot9/Pzg1gslq0v5uXlBUtLS5w8efKNuSs6Hv+Ko3fv3pBKpfjqq68QEBCAOXPmICYmBm3btoWLiwvmz5+PunXrYtKkSTh27Ngb9yWRSBAaGorq1avj66+/RnBwMBYtWoS1a9eqla1Hjx7Ytm0bBg8ejJUrV2LcuHHIzs5GSkqKWvsj9XGaSyN048YNAICHh4fC9S1atEBISAgWLlyIUaNGlfqD9Oeff8bgwYOV6lN4bW6WiRMnonHjxujTp0+p2zx8+BAmJiYlpsc0MzND9erV8e+//8otNzU1haurK65du6ZUpoqKx7/i8Pf3x5o1awAAI0aMgLu7OyZOnIjo6GhMnjwZANC3b1/UrFkTsbGxaNmyZan7evHiBXr37o2ZM2cCAD777DM0adIE3333HUaNGqVSrszMTJw6dQoLFy6Uu6IydepUVT8iaQELtRF6/PgxTE1NYW1tXWqbqKgoBAcHY/Xq1QgLC1PYJjQ0VK3LjEeOHMFvv/2Gs2fPvrHd8+fPYWZmpnCdhYWFwkuzdnZ2Cs/g6D88/hXHsGHDZH82MTFB06ZNcf/+fQwdOlS23NbWFg0aNMCdO3feur/PPvtM7n2LFi3www8/qJzL0tISZmZmiIuLw9ChQ2FnZ6fyPkh7WKjLqJYtWyIkJAQLFiwo8T9nsRo1aqBGjRoq7beoqAjjxo3DgAED8P7777+xraWlJQoKChSue/HihcIzPUEQIBKJVMpEJfH4lw+1atWSe1+1alVYWFjA3t6+xPLHjx+/cV8WFhZwcHCQW2ZnZ4enT5+qnMvc3Bzz58/HxIkT4eTkhA8++ACdOnXCwIED4ezsrPL+SDMs1EaoevXqKCoqQnZ2NqpUqVJqu8jISLRq1Qpr1qyBra1tifXPnz/Hs2fPlOqz+H++77//HgkJCVizZk2Jm0ays7ORnJwMR0dHWFlZoUaNGpBIJEhPT5e7/FlQUIDHjx+jZs2aJfp5+vQp6tWrp1SmiorHv+IwMTFRahlQ8usJZbd7VWm/JL16w1mxCRMmoHPnzti+fTv279+PmTNnIjo6GocPH0bjxo3f2hdpD28mM0Kenp4AXt79+ybBwcFo1aoV5s+fr/Ay45YtW2RnVW97FUtJSUFhYSGCgoLg4eEhewEvf4h7eHjgwIEDAABfX18AKDHIxvnz5yGVSmXrixUVFeHevXto2LChSn8fFQ2PP+lK8SXszMxMueV3795V2L5OnTqYOHEiDhw4gCtXrqCgoIDPwhsAz6iNULNmzQC8/IHXqFGjN7aNiopCq1atFN7Zqc53lH369CnxAxYAunfvjg4dOmD48OEICAgAALRu3RrVqlXDqlWr0KFDB1nbVatWwcrKCh07dpTbx7Vr1/DixQsEBgaqlKmi4fEnXXFzc4OJiQmOHTuGbt26yZavXLlSrl1eXh7EYjEsLCxky+rUqYMqVaogPz9fX3Hp/2OhNkK1a9eGt7c3/vzzTwwZMuSNbYODgxEcHIyjR4+WWKfOd5Senp6yM7rXeXh4yP3PbWlpidmzZ2PMmDHo1asXQkNDcfz4cfz444+YO3cuqlWrJrf9wYMHYWVlhbZt26qUqaLh8SddqVq1Knr16oVly5ZBJBKhTp062L17N9LT0+Xa3bx5E//3f/+Hjz/+GF5eXjA1NcW2bduQlpb2xicBSDdYqI3UkCFDEBERgefPn5f6+E2xqKgohISE6CmZvNGjR6NSpUpYtGgRdu7cCVdXVyxZsgTjx48v0Xbr1q346KOP3vi9K73E40+6smzZMhQWFmL16tUwNzfHxx9/jIULF8Lb21vWxtXVFX379sWhQ4fwww8/wNTUFJ6envjll1/Qo0cPA6avmETC2+5QIIN49uwZateujQULFsg9qlFWxcfHo0mTJrh48aLCS6skj8efiIqxUBux+fPnY/369bh27ZpsBqWyqk+fPpBKpfjll18MHaXM4PEnIoCFmoiIyKiV7V/TiYiIyjkWaiIiIiPGQk1ERGTEWKiJiIiMGAs1ERGVkJycDJFIhA0bNhg6SoXHQk1EpKHExESMHDkStWvXhoWFBWxsbBAUFISlS5cqHIddW65du4aoqKgSE6jo29y5c9GlSxc4OTlBJBIhKirKoHnKG45MRkSkgT179qBXr14wNzfHwIED4e3tjYKCApw4cQKff/45rl69qnAsdm24du0aZs2ahVatWsHd3V0nfShjxowZcHZ2RuPGjbF//36D5SivWKiJiNSUlJSEPn36wM3NDYcPH5YbW33MmDG4ffs29uzZY8CE/xEEodR5wjWVlJQEd3d3ZGRklJgTmzTHS99ERGpasGABcnJy8N133ymcAKVu3bpy454XFRVh9uzZqFOnDszNzeHu7o5p06aVmJHK3d0dnTp1wokTJ+Dv7w8LCwvUrl0b33//vazNhg0b0KtXLwBASEgIRCIRRCIR4uLi5Paxf/9+NG3aFJaWllizZg0A4M6dO+jVqxeqVasGKysrfPDBBxr9QmHIs/mKgIWaiEhNu3btQu3atZWeunPYsGGIiIhAkyZNsGTJEgQHByM6OlrhjFS3b99Gz5490bZtWyxatAh2dnb49NNPcfXqVQBAy5YtMW7cOADAtGnT8MMPP+CHH36Qm+87ISEBffv2Rdu2bbF06VL4+voiLS0NgYGB2L9/P0aPHo25c+fixYsX6NKlC7Zt26aFvxXSOoGIiFT27NkzAYDQtWtXpdrHx8cLAIRhw4bJLZ80aZIAQDh8+LBsmZubmwBAOHbsmGxZenq6YG5uLkycOFG2bOvWrQIA4ciRIyX6K97Hvn375JZPmDBBACAcP35ctiw7O1vw8PAQ3N3dBYlEIgiCICQlJQkAhPXr1yv1+QRBEB49eiQAECIjI5Xeht6OZ9RERGrIysoCAKWn7dy7dy8AIDw8XG75xIkTAaDEpWcvLy+0aNFC9t7BwQENGjTAnTt3lM7o4eGB0NDQEjn8/f3RvHlz2TJra2uMGDECycnJuHbtmtL7J/1goSYiUoONjQ0AIDs7W6n2d+/ehVgsRt26deWWOzs7w9bWFnfv3pVbXqtWrRL7sLOzw9OnT5XO6OHhoTBHgwYNSiwvvmT+eg4yPBZqIiI12NjYoGbNmrhy5YpK24lEIqXamZiYKFwuqDDhoS7u8Cb9Y6EmIlJTp06dkJiYiNOnT7+1rZubG6RSKW7duiW3PC0tDZmZmXBzc1O5f2WL/us5EhISSiy/ceOGbD0ZFxZqIiI1ffHFF6hcuTKGDRuGtLS0EusTExOxdOlSAECHDh0AADExMXJtFi9eDADo2LGjyv1XrlwZAJCZman0Nh06dMC5c+fkfrnIzc3F2rVr4e7uDi8vL5VzkG5xwBMiIjXVqVMHmzZtQu/evdGwYUO5kclOnTqFrVu34tNPPwUA+Pj4YNCgQVi7di0yMzMRHByMc+fOYePGjejWrRtCQkJU7t/X1xcmJiaYP38+nj17BnNzc7Ru3RqOjo6lbjNlyhT8/PPP+PDDDzFu3DhUq1YNGzduRFJSEn777TeIxaqfv/3www+4e/cu8vLyAADHjh3DnDlzAAADBgzgWbqmDH3bORFRWXfz5k1h+PDhgru7u2BmZiZUqVJFCAoKEpYtWya8ePFC1q6wsFCYNWuW4OHhIVSqVElwdXUVpk6dKtdGEF4+WtWxY8cS/QQHBwvBwcFyy9atWyfUrl1bMDExkXtUq7R9CIIgJCYmCj179hRsbW0FCwsLwd/fX9i9e7dcG1UezwoODhYAKHwpenSMVCMSBBXuTCAiIiK94nfURERERoyFmoiIyIixUBMRERkxFmoiIiIjxkJNRERkxFioiYiIjBgLNRERkRFjoSYiIjJiLNRERERGjIWaiIjIiLFQExERGTEWaiIiIiPGQk1ERGTE/h8rO21xhiX6FQAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -603,7 +603,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAR2xJREFUeJzt3XlcVOX+B/DPMMAAsqnI4gaIphIqqGmiBhpESpaVpmS5pGamVw3M7aeCuZCa2zX33Ms1l1vi1QxFMy2vC7dcSwUxYnFhl3Xm/P7wOjUy4GxwjjOf9+s1r5rnPOc83/EoH84yz5EJgiCAiIiIJMlK7AKIiIioagxqIiIiCWNQExERSRiDmoiISMIY1ERERBLGoCYiIpIwBjUREZGEMaiJiIgkjEFNREQkYRYf1BkZGYiLi0NGRobYpRARGS8/A7h6UOwqTII/nx9iUGdkYNasWRb/F4GIzIiqQuwKTII/nx+y+KAmIjI7ZhLU9BCDmojI3CjLxa6ATIhBTURkbpRlYldAJsSgJiIyNxUlYldAJsSgJiIyNwxqs8KgJiIyN+XFYldAJsSgJiIyN2VFYldAJsSgJiIyNwxqsyKpoD5x4gT69OmDhg0bQiaTYf/+/U9cJykpCe3bt4dCoUDz5s2xadOmGq+TiEjSygrFroBMSFJBXVRUhHbt2mHFihU69U9JSUFkZCR69OiB5ORkTJgwASNGjMDhw4druFIiIgkrLRC7AjIha7EL+LtevXqhV69eOvdfvXo1fH19sWjRIgBA69atcfLkSSxZsgQRERE1VSYRkbTxiNqsSCqo9XX69GmEhYVptEVERGDChAlVrlNaWorS0lL1+8JCcf9Cf7hoG3IKHohag1TUdXLAypi3xS6j1iWvH4+ywhyxyxCdrWNdBA5fJnYZ5qG0EBAEQCYTuxIygac6qDMzM+Hh4aHR5uHhgfz8fBQXF8Pe3r7SOvHx8Zg1a1ZtlfhEOQUPcDePv/1asrLCHJQV3BO7DDInqoqHX9GydRC7EjKBpzqoDTF16lRER0er3ycnJyMkJETEih6ykslQz7mO2GWI4n5+EVSCIHYZ4pNZwdaxrthV1LqywhxAUIldhvkpzWdQm4mnOqg9PT2RlZWl0ZaVlQVnZ2etR9MAoFAooFAo1O8dHR1rtEZd1XOug+1xI8QuQxRRcV/wrAIenvrtNH6L2GXUujPLBvOMQk0oyQOcPMWugkxAUnd966tLly5ITEzUaDty5Ai6dOkiUkVERBJRzPsezIWkgrqwsBDJyclITk4G8PDrV8nJyUhLSwPw8LT14MGD1f0/+OAD3Lx5E5MmTcLVq1excuVK7Nq1Cx999JEY5RMRSUfRXbErIBORVFCfPXsWQUFBCAoKAgBER0cjKCgIM2fOBABkZGSoQxsAfH19kZCQgCNHjqBdu3ZYtGgRvvjiC341i4io6I7YFZCJSOoadWhoKIRqbirSNutYaGgoLly4UINVERE9hQoyxK6ATERSR9RERGQieeliV0AmwqAmIjJHubceTnpCTz0GNRGROSot4A1lZoJBTURkru79LnYFZAIMaiIic5V9WewKyAQY1ERE5irrktgVkAkwqImIzFXWJaCiTOwqyEgMaiIic1VRCty5InYVZCQGNRGROUs/J3YFZCQGNRGROfvjrNgVkJEY1ERE5iz7ClCSL3YVZAQGNRGRORNUwB//EbsKMgKDmojI3KX9JHYFZAQGNRGRubv9M6BSiV0FGYhBTURk7krygDtXxa6CDMSgJiKyBLd/FrsCMhCDmojITHTs2BGNW3dAx3nnKy/kdeqnFoOaiMhMZGZmIv3PDGTma5k29M5V4MH92i+KjMagJiKyFJz85KnEoCYishRpp8SugAzAoCYishS3/wMoK8SugvTEoCYishRlhUDGf8WugvTEoCYisiQpSWJXQHpiUBMRWZKUHwCVUuwqSA8MaiIiS1KcA9w+I3YVpAcGNRGRpbmWIHYFpAcGNRGRpbl1Cii8I3YVpCMGNRGRpVEpgavfil0F6YhBTURkiS5/AyjLxa6CdMCgJiKyRMU5wM0ksasgHTCoiYgs1cU9YldAOmBQExFZquwrD18kaQxqIiJLdnGv2BXQEzCoiYgs2c1jZvOc6hMnTqBPnz5o2LAhZDIZ9u/fX23/pKQkyGSySq/MzMzaKVhHDGoiIkumLAeufCN2FSZRVFSEdu3aYcWKFXqtd+3aNWRkZKhf7u7uNVShYazFLoCIiER2aT/Q7m3A2lbsSozSq1cv9OrVS+/13N3d4erqavqCTIRH1ERElq44B7h+ROwqRBMYGAgvLy+Eh4fjxx9/FLucShjUREQE/HcHoFKJXYVWhYWFyM/PV79KS0tNsl0vLy+sXr0ae/bswZ49e9CkSROEhobi/PnzJtm+qfDUNxERAblpQOoPQLMQsSupJCREs6bY2FjExcUZvd2WLVuiZcuW6vfBwcG4ceMGlixZgq1btxq9fVNhUBMR0UPJ2wDfFwCZTOxKNBw/fhyBgYHq9wqFosbG6tSpE06ePFlj2zcEg5qIiB66cxVIPwc07ih2JRocHR3h7OxcK2MlJyfDy8urVsbSFYOaiIj+cuFLyQW1rgoLC3H9+nX1+5SUFCQnJ6NevXpo2rQppk6divT0dGzZsgUAsHTpUvj6+uLZZ59FSUkJvvjiCxw9ehTfffedWB9BKwY1ERH95c8LD6cVdW8tdiV6O3v2LHr06KF+Hx0dDQAYMmQINm3ahIyMDKSlpamXl5WVISYmBunp6XBwcEDbtm3x/fffa2xDChjURESk6ZedQFic2FXoLTQ0FIIgVLl806ZNGu8nTZqESZMm1XBVxuPXs4iISNPN40B+hthV0P8wqImISJOgMptpRc2B5IJ6xYoV8PHxgZ2dHTp37owzZ85U23/p0qVo2bIl7O3t0aRJE3z00UcoKSmppWqJiMzUlW+BijKxqyBILKh37tyJ6OhoxMbG4vz582jXrh0iIiKQnZ2ttf+2bdswZcoUxMbG4sqVK1i/fj127tyJadOm1XLlRERmprQAuJkkdhUEiQX14sWLMXLkSAwbNgz+/v5YvXo1HBwcsGHDBq39T506ha5du+Ltt9+Gj48PXnrpJURFRT3xKJyIiHTA09+SIJmgLisrw7lz5xAWFqZus7KyQlhYGE6fPq11neDgYJw7d04dzDdv3sTBgwfRu3fvWqmZiMisZf4K3E8RuwqLJ5mvZ929exdKpRIeHh4a7R4eHrh69arWdd5++23cvXsX3bp1gyAIqKiowAcffFDtqe/S0lKNCd0LCwtN8wGIiMzRlW+BruPErsKiSeaI2hBJSUmYN28eVq5cifPnz2Pv3r1ISEjA7Nmzq1wnPj4eLi4u6tfjk70TWZqOHTuicePG6Njx6ZyNimrYb4eBsgdiV2HRJBPUbm5ukMvlyMrK0mjPysqCp6en1nVmzJiBd999FyNGjECbNm3w+uuvY968eYiPj4eqise1TZ06FXl5eerX8ePHTf5ZiJ4mmZmZSE9PR2ZmptilkBSVFQK/HRK7CosmmaC2tbVFhw4dkJiYqG5TqVRITExEly5dtK7z4MEDWFlpfgS5XA4AVc5Oo1Ao4OzsrH45Ojqa6BMQEZmpi3sk+6xqSyCZa9TAw3lZhwwZgo4dO6JTp05YunQpioqKMGzYMADA4MGD0ahRI8THxwMA+vTpg8WLFyMoKAidO3fG9evXMWPGDPTp00cd2EREZKS8P4DbPwPe2g+aqGZJKqgHDBiAO3fuYObMmcjMzERgYCAOHTqkvsEsLS1N4wh6+vTpkMlkmD59OtLT09GgQQP06dMHc+fOFesjEBGZp193M6hFIqmgBoCxY8di7NixWpclJSVpvLe2tkZsbCxiY2NroTIiIguWfg7IvQ24NhG7EosjmWvUREQkcdcOil2BRWJQExGRbq5/D1TzGEmqGZI79U1EJLbbJ3fg/vX/oCgzBTK5Nbp8vKva/iplBW4lbUHO9bMoyc2EtaIOXHwD4dNzKBRO9Sv3ryjHfzd+hKKsFASO+CccPf1q6qOYVmE2cO8G4NZc7EosCo+oicgi/bJlCrL+e0TrMpWyAm6tu8Gzg27TEavKS1GUeQNNukchcMQ/0arf/6H43h+4susTrf1TEjfA1rFygD8Vbv8kdgUWh0FNRPQY75B30Kjz66jj7q1Tf2u7OggYNBcN/LvDoX5jODduBb+XR6Mw4zpK8jSf/nf/+lnk3jwP37DhNVF6zcu6LHYFFodBTURUA5QlRQBksLb7a1KlssIcXE/4J555bSKsbBTiFWeM7Eu8Tl3LGNRERCamqihDytGNaPBsCKwVDgAezpb4+7dL4Nm+N5wathC5QiMU5wLFOWJXYVF4MxkRWYTbJ3fi9o9/3RSmqihDQfpV3Di0Wt3W/oNVsHNxN2oclbICV/c8nD3Rr/cYdXvGf76FsrQYTbr2N2r7knD/JuBQT+wqLAaDmogsgmeH3nDz765+f23/Qri16or6rYLVbdru0NaHSlmBq3s/RUneHbR5Z576aBoAclP/i/z0q/gxvq/GOsnrJ8A9oAeeeS3aqLHT0tJQVFQEACgqVSLtfgma1rMzaptVykkFGvNpa7WFQU1EFsHG3gk29k7q91bWCtjUcYF9vYYm2b46pO//iTbvxMPGwVljebOIUfAOfVf9vqzgPi5tn4FWb0yBU6OWBo975swZzJ49GwkJCeqHEeUWK+Hzf2fwSpt6mNHbG8/5OD1hK3rKvWXa7VG1GNRERI8pyctGRXEBSvPuAIIKhZk3AAD29RpCbmsPADi3ahS8ewyBW6vg/53unofCjBvwHxgLQVCirPA+AMDa3glWcptKp9QfbceuricUzm4G1bl3714MGDAAgiBUemKgIAAHL97Hvy/mYOfI1ngjyLAxtMphUNcmBjUR0WPSjn+J7F/+euRu8hfjAAAB78TD1actAKD43h9Qlj481VxWcA/3f/v5Yd91/9DY1t/XMaUzZ85gwIABUCqVVT7WV6kCZBAwYN0VnJoUaLoj69w002yHdMKgJrJwnp6eGv+1FG0Hf1rlsmdejcYzr1Z/zbjb9AT1/9u5emi814Uh6/zdnDlztB5JP04AIEDAnIO38K8PAwweT0NxDlCSD9g5P7kvGY1BTWThzp49K3YJpKe0tDQcOHDgiSH9iFIFfPvrfdPeYJb/J4O6ljCoiQhKpRIqlUqUsSuUKlQoVbBSqlBeXi5KDbVFVVEGlbLC6O0cTPhW55B+RBCAw5fvY8jzxn39TL297Ouwqluzc5RXVBj/Z2UOGNREEpAncwEKK5Aw921Rxv8q8VdsP3ZRlLE1xHwldgVm7f0vr+P9L6+baGt9TLQdehIGNRFhYI9nMSD0WdHGdxHyYOtUH8/9Y6NoNdS0itIHuP/7WVjJrSGztjVqWzv2HcBH0+fpvd7qgd4Y3Mn4h4EIgoBi7xfhEDFd47vipnbhwgV07ty5xrb/tGBQExHkVuLOJmwtWMFabgUbGxtR66hJMpUNbGysIVc4QG7kPN8vhr4AmSxer9PfMhkQ3soFNtZyo8YGAAgClHLAxsYG1jW4z6ytGVEA5/omInrqNGnkhYieL0Au1y105VbAK8+6omk90z0IRJAbd1aAdMdfV4gs3ISVh5FTWIy6jvZY+mGE2OWQjj7+x/v4/vhJyGSyao+sZQBkkGFqhJdJxxes7U26Paoaj6iJLFxOYTHu5Rcjp7BY7FJID+3bBWDD8gWQy62qPLKWWwFyKxm2D/PDc96OWvsYSmlvwpnOqFoMaiKip1Sfl8Nw+OstCA/tBplMprFMJgN6+7vixEet0LddXZOPrapjmq950ZPx1DcR0VOsfbsAbP/in7idnoEXevdHbn4BXO3lODf5WZNek/47lW0dqOz4mMvawiNqIiIz0KSRFxwcHl43rmNrVWMhDQBKV9+Hh+xUKxjURESkl4p6hj+Wk/THoCYiIr1UuLUWuwSLwqAmIiKdCfb1oHI07Ve9qHoMaiIi0lmFZxCvT9cyBjUREemswqu92CVYHAY1ERHpRLCvD2W9FmKXYXEY1EREpJPyxs8DMsZGbeOfOBERPZnMCuXeIWJXYZEY1ERE9EQVnu0h2HM2MjFwClEiInqiMj8+Wa0qOTk52L59O27evImcnJxKTzOTyWRYv369wdtnUBMRUbWU7gFQ1fUVuwxJOnz4MPr164eioiI4Ozujbt3KD0B5/IEp+mJQExFRtUpbvCJ2CZIVExMDT09P7N27F23atKmRMRjURBaurqO9xn+J/k7pHgBVveZilyFZ169fx8KFC2sspAEGNZHFW/ohrz1S1UpbviZ2CZLWokULFBQU1OgYvOubiIi0UroHQOXKa9PVmTNnDlauXInU1NQaG4NH1EREpBWvTVc2bty4Sm0NGjRA69atER4ejiZNmkAul2ssl8lkWLZsmcFjMqiJiKgSZf1WvDatxeeff17lsgMHDmhtZ1ATEZHJlTXnvQvaqFSqWh+T16iJiEiDyrkxlA0CxC6D/odBTUREGsr8Xn4qnzl94sQJ9OnTBw0bNoRMJsP+/fufuE5SUhLat28PhUKB5s2bY9OmTTVep74Y1EREpCY4uKGiYUexyzBIUVER2rVrhxUrVujUPyUlBZGRkejRoweSk5MxYcIEjBgxAocPH67hSvXDa9RERKRW2iISsHo6o6FXr17o1auXzv1Xr14NX19fLFq0CADQunVrnDx5EkuWLEFEhHSu0UvuiHrFihXw8fGBnZ0dOnfujDNnzlTbPzc3F2PGjIGXlxcUCgWeeeYZHDx4sJaqJSIyH4JDA1Q07iJ2GZUUFhYiPz9f/SotLTXJdk+fPo2wsDCNtoiICJw+fdok2zcVSQX1zp07ER0djdjYWJw/fx7t2rVDREQEsrOztfYvKytDeHg4UlNT8fXXX+PatWtYt24dGjVqVMuVExE9/UpbvynJo+mQkBC4uLioX/Hx8SbZbmZmJjw8PDTaPDw8kJ+fj+LiYpOMYQqS2iOLFy/GyJEjMWzYMAAPT0skJCRgw4YNmDJlSqX+GzZswP3793Hq1CnY2NgAAHx8fGqzZCIis6Cs1xwVXh3ELkOr48ePIzAwUP1eoVCIV4wOBEHAsWPHUFpaim7dusHJycmo7UnmiLqsrAznzp3TOA1hZWWFsLCwKk9DfPPNN+jSpQvGjBkDDw8PBAQEYN68eVAqlbVVNhHR009mhdKAtyV7p7ejoyOcnZ3VL1MFtaenJ7KysjTasrKy4OzsDHt73R5S83//93/o0aOH+r0gCHjppZcQHh6OyMhItGnTBjdu3DCqTskE9d27d6FUKrWehsjMzNS6zs2bN/H1119DqVTi4MGDmDFjBhYtWoQ5c+ZUOU5paanGtY7CwkKTfg4ioqdNuU8PqFyail1GrevSpQsSExM12o4cOYIuXXS/Tr9nzx506tRJ/f7rr79GYmIi5syZgwMHDkCpVCIuLs6oOiV16ltfKpUK7u7uWLt2LeRyOTp06ID09HQsXLgQsbGxWteJj4/HrFmzarlSIiJpEhQuZvOErMLCQly/fl39PiUlBcnJyahXrx6aNm2KqVOnIj09HVu2bAEAfPDBB/j8888xadIkvPfeezh69Ch27dqFhIQEncdMT09H8+Z/TbW6d+9e+Pv7Y+rUqQCA0aNHY9WqVUZ9LoOPqJVKJXbs2IFRo0bh9ddfx6+//goAyMvLw969eyudTngSNzc3yOVyrachPD09ta7j5eWFZ555RmMC9NatWyMzMxNlZWVa15k6dSry8vLUr+PHj+tVJxGROSl9dgBg4yB2GSZx9uxZBAUFISgoCAAQHR2NoKAgzJw5EwCQkZGBtLQ0dX9fX18kJCTgyJEjaNeuHRYtWoQvvvhCr69mWVtbq+9CFwQBiYmJePnll9XLPTw8cPfuXaM+l0FH1Lm5uXj55Zdx5swZODo6oqioCP/4xz8APLyWMG7cOAwePBjz5s3TeZu2trbo0KEDEhMT0bdvXwAPj5gTExMxduxYret07doV27Ztg0qlgpXVw985fvvtN3h5ecHW1lbrOgqFQuP6hqOjo841EhGZE6Vba1Q0fE7sMkwmNDQUgiBUuVzbrGOhoaG4cOGCwWMGBATgyy+/xKBBg7Bv3z7cu3cPkZGR6uW3bt2Cm5ubwdsHDDyinjJlCi5duoTDhw/j5s2bGn8wcrkc/fr1M+i7zNHR0Vi3bh02b96MK1euYPTo0SgqKlLfBT548GD16QTg4SmF+/fvY/z48fjtt9+QkJCAefPmYcyYMYZ8LCIiyyGzQmlAlGRvIHtazJw5E8nJyXBzc8PIkSPRtWtXjZvLEhIS8Nxzxv0yZNAR9f79+/GPf/wD4eHhuHfvXqXlzzzzjEHzpQ4YMAB37tzBzJkzkZmZicDAQBw6dEh9g1laWpr6yBkAmjRpgsOHD+Ojjz5C27Zt0ahRI4wfPx6TJ0825GMREVmMcp9QqJwail3GUy88PBznz5/HkSNH4OrqigEDBqiX5eTk4IUXXsBrrxl3D4BBQZ2XlwdfX98ql5eXl6OiosKggsaOHVvlqe6kpKRKbV26dMFPP/1k0FhERBbJ2g5lLfqIXYXZ8Pf3h7+/f6X2unXrYsmSJUZv36BT335+fjh//nyVy7/77jutRRMRkfjKfF+EoDBuEg6qPQYdUY8YMQKTJ09GaGgoXnzxRQCATCZDaWkpPvnkExw6dAhr1641aaFERGQCcgXKmr0kdhVPNV9fX8geu7Z/8+bNGhvPoKAeP348Ll26hKioKLi6ugIA3n77bdy7dw8VFRUYNWoUhg8fbso6iYjIBMqbdgNs64hdxlNtyJAhlYK6JhkU1DKZDOvWrcOQIUPw9ddf4/fff4dKpYKfnx/eeustvPDCC6auk4iIjCZDWbNwsYt46hk705i+jJqZrFu3bujWrZupaiEiohqkdH8WgoNx3+ml2vdUTyFKRES6K28aInYJZkmpVKrnFcnJyak06YpMJsOMGTMM3r5BQa3tQvrjZDKZ0U8MISIi0xBsHVHh0UbsMszO2bNn8eabb+KPP/6oclY0UYI6JCSkUlArlUrcunULP/74IwICAtRzrRIRkfgqGj4HWPEkqql9+OGHKC4uxv79+9G9e3f1DdamZNBeq27Wsf/+97+IiIjAoEGDDK2JiIhMrLxRZ7FLMEu//PIL5s6diz59am4CGZM/j7pdu3YYNWoUp/EkIpIIwc4VqrrNxC7DLDVu3LjaB4GYgsmDGnj4WK/Lly/XxKaJiEhPFZ5BgKxGftxbvMmTJ2PdunXIz8+vsTFMfsHi3r17WL9+PRo3bmzqTRMRkQEqPNqKXYLZKigogKOjI5o3b46BAweiSZMmkMvlGn1kMhk++ugjg8cwKKh79uyptT03NxdXr15FWVkZtm7danBRRERkInIbKOu3FLsKszVx4kT1/3/++eda+4gS1CqVqtJd3zKZDL6+vggLC8N7772HVq1aGVwUERGZhrLeM4DcVuwyzFZKSkqNj2FQUGt73CQREUlPhVtrsUswa97e3jU+Br9UR0RkxpRuPO1dG9LT03HixAlkZ2fjzTffROPGjaFUKpGXlwcXF5dK1631oVNQb9myxaCNDx482KD1iIjIBKztoHJuKnYVZk0QBMTExODzzz9HRUUFZDIZ2rRpg8aNG6OwsBA+Pj745JNPMGHCBIPH0Cmohw4dqveGZTIZg5qISERKV1/AyvAjOXqyhQsXYtmyZZg8eTJefPFFhIf/9XQyFxcXvPHGG9izZ0/NB3VtXCwnIiLTUnKSkxq3bt06DB48GPPmzcO9e/cqLW/bti3+/e9/GzWGTkFdGxfLiYjItJSuvmKXYPZu376N4ODgKpfXqVPH6MlQeDMZEZGZcG/gBggqeNg+AAConJuIXJH5c3d3x+3bt6tcfu7cOTRtatx9AgYHdWZmJtavX4/z588jLy8PKpVKY7lMJkNiYqJRxRERke6OfbMdsgd3USdxCgQbBwj29cQuyey98cYbWL16NYYOHQoXFxcAUM8z8t1332HTpk2YNGmSUWMYFNS//PILQkNDUVxcjJYtW+LXX3+Fv78/cnNzkZ6eDj8/PzRpwt/kiIjEonL0Ah6bmIpMb9asWTh27BgCAwPRvXt3yGQyzJ8/HzNmzMDp06cRFBSEadOmGTWGQbO0T5kyBY6Ojrh27Rq+//57CIKAZcuW4fbt29i5cydycnLw6aefGlUYEREZTuXoKXYJFsHFxQU//fQTJk2ahPT0dNjZ2eH48ePIzc1FbGwsfvjhBzg4OBg1hkFH1D/++CMmTZqEpk2b4v79+wCgPvXdv39/nDx5Eh9//DGOHz9uVHFERGQYoY672CVYDHt7e0yfPh3Tp0+vke0bdEStUqng4eEBAHB1dYVcLlcHNgC0adMG586dM02FRESkN5VDA7FLIBMx6Ija19dX/d1qKysr+Pr64vvvv8dbb70FADh16hRcXV1NViQREelHxRvJas2VK1ewceNG3Lx5Ezk5ORAEQWO5sTdX63xEnZOTo/7/l156Cbt371a/Hz16NL744guEhYXhxRdfxObNm/H2228bXBQRERmHd3zXjq1bt6JNmzZYvnw5rl+/DpVKBUEQNF6PfytKXzofUXt6eqJ3794YNGgQYmJiEBUVhfLyctjY2GDChAkoKirCnj17IJfLMWPGDKPvciMiIkPJICicxS7CIsTFxSEoKAj//ve/4ebmViNj6BzU/fr1wzfffINvvvkGTk5OeOONNzBo0CD07NkTMpmsRi+kExGR7gRbR8CK81nVhj///BMTJ06ssZAG9Dj1/dVXXyE7Oxtffvklunfvjq+++govvfQSGjVqhJiYGJw/f77GiiQiIt3xaLr2tG3bFn/++WeNjqHXXd/29vaIiorCt99+i8zMTKxcuRItWrTA0qVL8dxzz6FVq1aYM2cObt68WVP1EhHREzCoa8/ixYuxfv16nDp1qsbGMPjcSN26dTFq1CiMGjUK6enp2LZtG7Zv346ZM2ciNjYWnTt3rtHCiYhIO8HWUewSzNarr75aqc3FxQXdu3eHv78/mjZtCrlc89GiMpkM//rXvwwe0yQXMRo1aoSPP/4YL7/8MmbOnIl//etf+Pnnn02xaSIi0hODuub88ssv6rm8/65p06YoLCzE5cuXKy3T1l8fRgd1Wlqa+mj64sWLEAQBwcHBGDRokLGbJiIiAwi2TmKXYLZSU1NrfUyDgvru3bvYtWsXtm3bhtOnT0MQBLRq1QqffPIJBg0aBB8fHxOXSUREuhJsjJtbmqRF56AuKirCvn37sG3bNiQmJqK8vBxeXl6YMGECBg0ahPbt29dknUREpCMGde07fvw4EhIScOvWLQCAt7c3IiMjERISYvS2dQ5qd3d3lJSUwNHREW+//bb6O9RWVgZNF05ERDXF2k7sCixGWVkZoqKisH//fgiCoJ4+Ozc3F4sWLcLrr7+O7du3w8bGxuAxdE7ZsLAwbN++HVlZWdi4cSPCwsIY0kREEiTIFWKXYDFmzZqFffv2ISYmBhkZGbh//z7u37+PzMxMTJw4EXv37sUnn3xi1Bg6H1Ebc2s5ERHVIrnhR2+kn23btmHIkCFYsGCBRru7uzvmz5+PrKwsbN26FbNnzzZ4DB4SExGZGcGKQV1bMjIy0Llz5yqXd+7cGZmZmUaNwaAmIjI3VvIn9yGTaNy4MZKSkqpcfvz4cTRu3NioMRjURETmxsgJNkh3Q4YMwa5du/DBBx/g2rVrUCqVUKlUuHbtGkaPHo3du3dj6NChRo3Bx6sQEZkdBnVtmTZtGm7cuIG1a9di3bp16pusHz2XesiQIUY/9plBTURkdhjUtUUul2PTpk2Ijo7GwYMHNb5H3bt3b7Rt29boMRjURETmhqe+a13btm1NEsra8Bo1ERGRHkpKSvDBBx9g+fLl1fb75z//idGjR6O8vNyo8SQZ1CtWrICPjw/s7OzQuXNnnDlzRqf1duzYAZlMhr59+9ZsgUREksYj6pq0du1abNq0CZGRkdX2i4yMxMaNG/HFF18YNZ7kgnrnzp2Ijo5GbGwszp8/j3bt2iEiIgLZ2dnVrpeamoqJEyeie/futVQpEZE0CTLJ/Wg3K7t27cKbb76JZs2aVdvPz88P/fv3x/bt240aT3J7c/HixRg5ciSGDRsGf39/rF69Gg4ODtiwYUOV6yiVSgwaNAizZs164h8cEZHZ4wF1jfr111/RrVs3nfoGBwfjl19+MWo8SQV1WVkZzp07h7CwMHWblZUVwsLCcPr06SrX++STT+Du7o7hw4c/cYzS0lLk5+erX4WFhSapnYhIMmSc8KQmlZWVwdbWVqe+tra2KC0tNWo8Sd31fffuXSiVSnh4eGi0e3h44OrVq1rXOXnyJNavX4/k5GSdxoiPj8esWbOMLZWISLo4M1mNatiwIS5evKhT34sXL6Jhw4ZGjSepI2p9FRQU4N1338W6devg5uam0zpTp05FXl6e+nX8+PEarpKIqJbJJHUMVqv0uRl506ZNkMlkGi87uyc/IjQsLAxbtmx54r1T2dnZ2LJlC8LDw/X+HH8nqaB2c3ODXC5HVlaWRntWVhY8PT0r9b9x4wZSU1PRp08fWFtbw9raGlu2bME333wDa2tr3Lhxo9I6CoUCzs7O6pejo2ONfR4iIjEIFnpEbcjNyM7OzsjIyFC/Hk1YUp3JkyejpKQEPXv2xM8//6y1z88//4wXX3wRJSUl+Pjjjw3+TIDETn3b2tqiQ4cOSExMVH/FSqVSITExEWPHjq3Uv1WrVvj111812qZPn46CggIsW7YMTZo0qY2yiYikxUpSP9przd9vRgaA1atXIyEhARs2bMCUKVO0riOTybQeCFanWbNm2LVrF6KiohAcHIxmzZqhTZs2cHJyQkFBAS5evIgbN27AwcEBO3bsgJ+fn1GfS3J7Mzo6GkOGDEHHjh3RqVMnLF26FEVFReo/+MGDB6NRo0aIj4+HnZ0dAgICNNZ3dXUFgErtREQWw8yCurCwEPn5+er3CoUCCoVCo8+jm5GnTp2qbtPlZuTCwkJ4e3tDpVKhffv2mDdvHp599tkn1hQZGYlffvkF8+fPx4EDB7B//371soYNG2LkyJGYNGmSSb6JJLm9OWDAANy5cwczZ85EZmYmAgMDcejQIfUNZmlpaepJz4mISJNg5wqY2feoQ0JCNN7HxsYiLi5Oo82Qm5FbtmyJDRs2oG3btsjLy8Nnn32G4OBgXLp0SadHU/r4+GDVqlVYtWoVCgoKkJ+fD2dnZzg5Oen3AZ9AckENAGPHjtV6qhtAtc/9BB7eHEBEZLHM7GgaePhM58DAQPX7x4+mDdWlSxd06dJF/T44OBitW7fGmjVrMHv2bL225eTkZPKAfsT89igREZkVR0dHODs7V9tH35uRtbGxsUFQUBCuX79ucK01wbzOjxARkUX6+83Ijzy6GfnvR83VUSqV+PXXX+Hl5VVTZRqER9RERGQW9LkZGXg4q+Xzzz+P5s2bIzc3FwsXLsStW7cwYsQIMT9GJQxqIiIyC/rejJyTk4ORI0ciMzMTdevWRYcOHXDq1Cn4+/uL9RG0YlATEZHZ0Odm5CVLlmDJkiW1UJVxeI2aiIhIwhjUREREEsagJiIikjAGNRERkYQxqImIiCSMQU1ERCRhDGoiIiIJY1ATERFJGIOaiIhIwhjUREREEsagJiIikjAGNRERkYQxqImIiCSMQU1ERCRhDGoiIiIJY1ATERFJGIOaiIhIwhjUREREEsagJiIikjAGNRERkYQxqImIiCSMQU1ERCRhDGoiIiIJY1ATERFJGIOaiIhIwhjUREREEsagJiIikjAGNRERkYQxqImIiCSMQU1ERCRhDGoiIiIJY1ATERFJGIOaiIhIwhjUREREEsagJiIikjAGNRERkYQxqImIiCSMQU1ERCRhDGoiIiIJY1ATERFJGIOaiIhIwiQZ1CtWrICPjw/s7OzQuXNnnDlzpsq+69atQ/fu3VG3bl3UrVsXYWFh1fYnIiJ6mkguqHfu3Ino6GjExsbi/PnzaNeuHSIiIpCdna21f1JSEqKionDs2DGcPn0aTZo0wUsvvYT09PRarpyIiMj0JBfUixcvxsiRIzFs2DD4+/tj9erVcHBwwIYNG7T2/+qrr/Dhhx8iMDAQrVq1whdffAGVSoXExMRarvzp1LFjRzRu3BgdO3YUuxQiItLCWuwC/q6srAznzp3D1KlT1W1WVlYICwvD6dOnddrGgwcPUF5ejnr16mldXlpaitLSUvX7wsJC44p+ymVmZvLsAxGRhEnqiPru3btQKpXw8PDQaPfw8EBmZqZO25g8eTIaNmyIsLAwrcvj4+Ph4uKifoWEhBhdNxERUU2RVFAb69NPP8WOHTuwb98+2NnZae0zdepU5OXlqV/Hjx+v5SqJiIh0J6lT325ubpDL5cjKytJoz8rKgqenZ7XrfvbZZ/j000/x/fffo23btlX2UygUUCgU6veOjo7GFU1ERFSDJHVEbWtriw4dOmjcCPboxrAuXbpUud6CBQswe/ZsHDp0iDdFERGRWZHUETUAREdHY8iQIejYsSM6deqEpUuXoqioCMOGDQMADB48GI0aNUJ8fDwAYP78+Zg5cya2bdsGHx8f9bVsR0dHHi0TEdFTT3JBPWDAANy5cwczZ85EZmYmAgMDcejQIfUNZmlpabCy+utEwKpVq1BWVoZ+/fppbCc2NhZxcXG1WToREZHJSS6oAWDs2LEYO3as1mVJSUka71NTU2u+ICIiIpFI6ho1ERERaWJQExERSRiDmoiISMIY1EREZDb0efoiAOzevRutWrWCnZ0d2rRpg4MHD9ZSpbpjUFs4T09PNGrU6IkTyhARSZ2+T188deoUoqKiMHz4cFy4cAF9+/ZF3759cfHixVquvHoMagt39uxZ/PHHHzh79qzYpRARGUXfpy8uW7YML7/8Mj7++GO0bt0as2fPRvv27fH555/XcuXVY1ATEdFT79HTF//+QKYnPX3x9OnTlR7gFBERofPTGmuLJL9HTbVLqVRCpVKJNr5KWQGVUgmVsgLl5eWi1SGWCqUKFUrx/vyloEJQwUqpMuv9X1FejvLyCihVDyArrxC7HKMIFWXqf6+CVc3ts4qKh39OhYWFyM/PV7c//swGoPqnL169elXr9jMzM416WmNtYVBLgIPwAA9yH+C1CfNEGf/qT4n47eejooz9uF1zRotdAokp5iuxKyAJevxxxJY28ySDmtCyUw8881yoqDU8kDnAzaUOvpw5XNQ6xPCf5cNwp/DpPsIylouQB1un+njuHxvFLqVGqf53JGoOrOTWsLK2rdExLly4gM6dO+P48eMIDAxUtz9+NA0Y9vRFT09Pg57WWNsY1ASZlRVkItdgJZPDSm4NGxsbkSupfdZyK1jLLft2EWvh4Z+B2e9/c/98JmZt/TCiHB0d4ezsXG3fvz99sW/fvgD+evpiVVNSd+nSBYmJiZgwYYK67ciRI9U+rVEMDGoLd3z7CpQ+KITCwREhUWPELoeIyGD6Pn1x/PjxCAkJwaJFixAZGYkdO3bg7NmzWLt2rZgfoxIGtYUrfVCIksL8J3ckIpI4fZ++GBwcjG3btmH69OmYNm0aWrRogf379yMgIECsj6AVg5qIiMyGPk9fBID+/fujf//+NVyVcSz7whgREZHEMaiJiIgkjEFNREQkYQxqIiIiCWNQExERSRiDmoiISMIY1ERERBLGoCYiIpIwBjUREZGEMaiJiIgkjEFNREQkYZzr28IpHBw1/ktERNLCoLZwfLQlEZG08dQ3ERGRhDGoiYiIJIxBTUREJGEMaiIiIgljUBMREUkYg5qIiEjCGNREREQSxqAmIiKSMAY1ERGRhDGoiYiIJIxBTUREJGEMaiIiIgljUBMREUkYg5qIiEjCGNREREQSxqAmIiKSMAY1ERGRhDGoiYiIJIxBTUREJGGSDOoVK1bAx8cHdnZ26Ny5M86cOVNt/927d6NVq1aws7NDmzZtcPDgwVqqlIiIqGZJLqh37tyJ6OhoxMbG4vz582jXrh0iIiKQnZ2ttf+pU6cQFRWF4cOH48KFC+jbty/69u2Lixcv1nLlREREpie5oF68eDFGjhyJYcOGwd/fH6tXr4aDgwM2bNigtf+yZcvw8ssv4+OPP0br1q0xe/ZstG/fHp9//nktV05ERGR6kgrqsrIynDt3DmFhYeo2KysrhIWF4fTp01rXOX36tEZ/AIiIiKiyPxER0dPEWuwC/u7u3btQKpXw8PDQaPfw8MDVq1e1rpOZmam1f2Zmptb+paWlKC0tVb8vLCwEAFy5csWY0g12P+MWSgruizK2lJTI7GD1wAHnz58Xu5Rad/X2PeQUK8UuQ1SOQiFsHADrx/a/l5cXvLy8RKrKOBkZGcjIyBC7jKeaWD+XpUZSQV0b4uPjMWvWLI02b29vvPPOOyJVRH/33do5YpdAYlqkeSNobGws4uLixKnFSGvWrKn0s4b0FxIS8tT+smYqkgpqNzc3yOVyZGVlabRnZWXB09NT6zqenp569Z86dSqio6M12u7fv4/79y3zqLawsBAhISE4fvw4HB0dxS6HRCDlvwNP8w/oUaNG4dVXX63VMaW8Lw31NJ9VMRWZIAiC2EX8XefOndGpUycsX74cAKBSqdC0aVOMHTsWU6ZMqdR/wIABePDgAb799lt1W3BwMNq2bYvVq1fXWt1Pq/z8fLi4uCAvLw/Ozs5il0Mi4N8B88F9aZ4kdUQNANHR0RgyZAg6duyITp06YenSpSgqKsKwYcMAAIMHD0ajRo0QHx8PABg/fjxCQkKwaNEiREZGYseOHTh79izWrl0r5scgIiIyCckF9YABA3Dnzh3MnDkTmZmZCAwMxKFDh9Q3jKWlpcHK6q+b1YODg7Ft2zZMnz4d06ZNQ4sWLbB//34EBASI9RGIiIhMRnKnvql2lZaWIj4+HlOnToVCoRC7HBIB/w6YD+5L88SgJiIikjBJTXhCREREmhjUREREEsagJpNKTU2FTCbDpk2bxC6FiMgsMKhFdOPGDYwaNQrNmjWDnZ0dnJ2d0bVrVyxbtgzFxcU1Nu7ly5cRFxeH1NTUGhtDF3PnzsWrr74KDw8PyGSyp3YGqpomk8l0eiUlJRk91oMHDxAXF6fXtrgf9cP9SfqS3NezLEVCQgL69+8PhUKBwYMHIyAgAGVlZTh58iQ+/vhjXLp0qca+C3758mXMmjULoaGh8PHxqZExdDF9+nR4enoiKCgIhw8fFq0Oqdu6davG+y1btuDIkSOV2lu3bm30WA8ePFBPexkaGqrTOtyP+uH+JH0xqEWQkpKCgQMHwtvbG0ePHtWYHm/MmDG4fv06EhISRKzwL4IgoKSkBPb29ibfdkpKCnx8fHD37l00aNDA5Ns3F4/PQ//TTz/hyJEjkpmfnvtRP9yfpC+e+hbBggULUFhYiPXr12udw7Z58+YYP368+n1FRQVmz54NPz8/KBQK+Pj4YNq0aRpPAQMAHx8fvPLKKzh58iQ6deoEOzs7NGvWDFu2bFH32bRpE/r37w8A6NGjR6XTbI+2cfjwYXTs2BH29vZYs2YNAODmzZvo378/6tWrBwcHBzz//PNG/UIh5tG8uVGpVFi6dCmeffZZ2NnZwcPDA6NGjUJOTo5Gv7NnzyIiIgJubm6wt7eHr68v3nvvPQAP7y949IN51qxZ6r8bTzr1yf1oetyf9Hc8ohbBt99+i2bNmiE4OFin/iNGjMDmzZvRr18/xMTE4Oeff0Z8fDyuXLmCffv2afS9fv06+vXrh+HDh2PIkCHYsGEDhg4dig4dOuDZZ5/FCy+8gHHjxuGf//wnpk2bpj699vfTbNeuXUNUVBRGjRqFkSNHomXLlsjKykJwcDAePHiAcePGoX79+ti8eTNeffVVfP3113j99ddN9wdEehs1ahQ2bdqEYcOGYdy4cUhJScHnn3+OCxcu4Mcff4SNjQ2ys7Px0ksvoUGDBpgyZQpcXV2RmpqKvXv3AgAaNGiAVatWYfTo0Xj99dfxxhtvAADatm0r5kezSNyfpEGgWpWXlycAEF577TWd+icnJwsAhBEjRmi0T5w4UQAgHD16VN3m7e0tABBOnDihbsvOzhYUCoUQExOjbtu9e7cAQDh27Fil8R5t49ChQxrtEyZMEAAIP/zwg7qtoKBA8PX1FXx8fASlUikIgiCkpKQIAISNGzfq9PkEQRDu3LkjABBiY2N1XseSjRkzRvj7P90ffvhBACB89dVXGv0OHTqk0b5v3z4BgPCf//ynym0bsy+4Hw3D/UlPwlPftSw/Px8A4OTkpFP/gwcfPp/38UdzxsTEAEClU8/+/v7o3r27+n2DBg3QsmVL3Lx5U+cafX19ERERUamOTp06oVu3buo2R0dHvP/++0hNTcXly5d13j6Z1u7du+Hi4oLw8HDcvXtX/erQoQMcHR1x7NgxAICrqysA4MCBAygvLxexYqoO9yc9jkFdyx49eq6goECn/rdu3YKVlRWaN2+u0e7p6QlXV1fcunVLo71p06aVtlG3bt1K17aq4+vrq7WOli1bVmp/dMr88Tqo9vz+++/Iy8uDu7s7GjRooPEqLCxEdnY2ACAkJARvvvkmZs2aBTc3N7z22mvYuHFjpXsdSFzcn/Q4XqOuZc7OzmjYsCEuXryo13oymUynfnK5XGu7oMeU7jVxhzfVHJVKBXd3d3z11Vdalz+6oUgmk+Hrr7/GTz/9hG+//RaHDx/Ge++9h0WLFuGnn36Co6NjbZZNVeD+pMcxqEXwyiuvYO3atTh9+jS6dOlSbV9vb2+oVCr8/vvvGjd8ZWVlITc3F97e3nqPr2voP17HtWvXKrVfvXpVvZzE4efnh++//x5du3bV6Zes559/Hs8//zzmzp2Lbdu2YdCgQdixYwdGjBhh0N8NMi3uT3ocT32LYNKkSahTpw5GjBiBrKysSstv3LiBZcuWAQB69+4NAFi6dKlGn8WLFwMAIiMj9R6/Tp06AIDc3Fyd1+nduzfOnDmD06dPq9uKioqwdu1a+Pj4wN/fX+86yDTeeustKJVKzJ49u9KyiooK9X7OycmpdGYlMDAQANSnSx0cHADo93eDTIv7kx7HI2oR+Pn5Ydu2bRgwYABat26tMTPZqVOnsHv3bgwdOhQA0K5dOwwZMgRr165Fbm4uQkJCcObMGWzevBl9+/ZFjx499B4/MDAQcrkc8+fPR15eHhQKBXr27Al3d/cq15kyZQq2b9+OXr16Ydy4cahXrx42b96MlJQU7NmzB1ZW+v/Ot3XrVty6dQsPHjwAAJw4cQJz5swBALz77rs8StdRSEgIRo0ahfj4eCQnJ+Oll16CjY0Nfv/9d+zevRvLli1Dv379sHnzZqxcuRKvv/46/Pz8UFBQgHXr1sHZ2Vn9C6G9vT38/f2xc+dOPPPMM6hXrx4CAgIQEBBQ5fjcj6bF/UmViHzXuUX77bffhJEjRwo+Pj6Cra2t4OTkJHTt2lVYvny5UFJSou5XXl4uzJo1S/D19RVsbGyEJk2aCFOnTtXoIwgPv1oVGRlZaZyQkBAhJCREo23dunVCs2bNBLlcrvFVraq2IQiCcOPGDaFfv36Cq6urYGdnJ3Tq1Ek4cOCARh99vp4VEhIiAND60vbVMXro8a/zPLJ27VqhQ4cOgr29veDk5CS0adNGmDRpkvDnn38KgiAI58+fF6KiooSmTZsKCoVCcHd3F1555RXh7NmzGts5deqU0KFDB8HW1lanr+dwPxqH+5OeRCYIetxlRERERLWK16iJiIgkjEFNREQkYQxqIiIiCWNQExERSRiDmoiISMIY1ERERBLGoJawBQsWoFWrVlCpVGKXYrSBAwfirbfeEruMpwr3P2mTmpoKmUyGTZs2iV0K1RIGtUTl5+dj/vz5mDx5snrWL5lMBplMhkWLFlXqv2nTJshkMpw9e9bktYSHh0Mmk2Hs2LFal69fvx6tW7eGnZ0dWrRogeXLl1fqM3nyZOzZswf//e9/TV6fOeL+J6JHGNQStWHDBlRUVCAqKqrSsoULF6qn96tpe/fu1Zjf+3Fr1qzBiBEj8Oyzz2L58uXo0qULxo0bh/nz52v0CwoKQseOHbWGDFXG/U9V8fb2RnFxMd59912xS6HaIvbUaKRd27ZthXfeeUejDYAQGBgoABAWLVqksWzjxo0CAOE///mPyWooLi4WfHx8hE8++UQAIIwZM0Zj+YMHD4T69etXmnJ00KBBQp06dYT79+9rtH/22WdCnTp1hIKCApPVaK64/4noER5RS1BKSgp++eUXhIWFVVrWtWtX9OzZEwsWLEBxcXGN1rFgwQKoVCpMnDhR6/Jjx47h3r17+PDDDzXax4wZg6KiIiQkJGi0h4eHo6ioCEeOHKmxms0B97/5i4uLg0wmw2+//YZ33nkHLi4uaNCgAWbMmAFBEHD79m289tprcHZ2hqenp8aZCG3XqIcOHQpHR0ekp6ejb9++cHR0RIMGDTBx4kQolUp1v6SkJMhkMiQlJWnUo22bmZmZGDZsGBo3bgyFQgEvLy+89tprSE1NraE/FaoKg1qCTp06BQBo37691uVxcXHIysrCqlWrqt1OaWkp7t69q9PrcWlpafj0008xf/78Kp+Je+HCBQBAx44dNdo7dOgAKysr9fJH/P39YW9vjx9//LHaui0d97/lGDBgAFQqFT799FN07twZc+bMwdKlSxEeHo5GjRph/vz5aN68OSZOnIgTJ05Uuy2lUomIiAjUr18fn332GUJCQrBo0SKsXbvWoNrefPNN7Nu3D8OGDcPKlSsxbtw4FBQUIC0tzaDtkeH4mEsJunr1KgDA19dX6/Lu3bujR48eWLhwIUaPHl3lD9Lt27dj2LBhOo0pPPZslpiYGAQFBWHgwIFVrpORkQG5XF7p8Zi2traoX78+/vzzT412a2trNGnSBJcvX9apJkvF/W85OnXqhDVr1gAA3n//ffj4+CAmJgbx8fGYPHkyACAqKgoNGzbEhg0b8MILL1S5rZKSEgwYMAAzZswAAHzwwQdo37491q9fj9GjR+tVV25uLk6dOoWFCxdqnFGZOnWqvh+RTIBBLUH37t2DtbU1HB0dq+wTFxeHkJAQrF69Gh999JHWPhEREQadZjx27Bj27NmDn3/+udp+xcXFsLW11brMzs5O66nZunXraj2Co79w/1uOESNGqP9fLpejY8eO+OOPPzB8+HB1u6urK1q2bImbN28+cXsffPCBxvvu3btj69atetdlb28PW1tbJCUlYfjw4ahbt67e2yDTYVA/pV544QX06NEDCxYsqPSP8xEvLy94eXnptd2KigqMGzcO7777Lp577rlq+9rb26OsrEzrspKSEq1HeoIgQCaT6VUTVcb9bx6aNm2q8d7FxQV2dnZwc3Or1H7v3r1qt2VnZ4cGDRpotNWtWxc5OTl616VQKDB//nzExMTAw8MDzz//PF555RUMHjwYnp6eem+PjMOglqD69eujoqICBQUFcHJyqrJfbGwsQkNDsWbNGri6ulZaXlxcjLy8PJ3GfPSPb8uWLbh27RrWrFlT6aaRgoICpKamwt3dHQ4ODvDy8oJSqUR2drbG6c+ysjLcu3cPDRs2rDROTk4OWrRooVNNlor733LI5XKd2oDKlyd0Xe/vqvol6e83nD0yYcIE9OnTB/v378fhw4cxY8YMxMfH4+jRowgKCnriWGQ6vJlMglq1agXg4d2/1QkJCUFoaCjmz5+v9TTjzp071UdVT3o9kpaWhvLycnTt2hW+vr7qF/Dwh7ivry++++47AEBgYCAAVJpk4+zZs1CpVOrlj1RUVOD27dto3bq1Xn8elob7n2rKo1PYubm5Gu23bt3S2t/Pzw8xMTH47rvvcPHiRZSVlfG78CLgEbUEdenSBcDDH3ht27attm9cXBxCQ0O13tlpyDXKgQMHVvoBCwCvv/46evfujZEjR6Jz584AgJ49e6JevXpYtWoVevfure67atUqODg4IDIyUmMbly9fRklJCYKDg/WqydJw/1NN8fb2hlwux4kTJ9C3b191+8qVKzX6PXjwAFZWVrCzs1O3+fn5wcnJCaWlpbVVLv0Pg1qCmjVrhoCAAHz//fd47733qu0bEhKCkJAQHD9+vNIyQ65RtmrVSn1E9zhfX1+Nf9z29vaYPXs2xowZg/79+yMiIgI//PADvvzyS8ydOxf16tXTWP/IkSNwcHBAeHi4XjVZGu5/qikuLi7o378/li9fDplMBj8/Pxw4cADZ2dka/X777Te8+OKLeOutt+Dv7w9ra2vs27cPWVlZ1X4TgGoGg1qi3nvvPcycORPFxcVVfv3mkbi4OPTo0aOWKtP04YcfwsbGBosWLcI333yDJk2aYMmSJRg/fnylvrt378Ybb7xR7XVXeoj7n2rK8uXLUV5ejtWrV0OhUOCtt97CwoULERAQoO7TpEkTREVFITExEVu3boW1tTVatWqFXbt24c033xSxesskE550hwKJIi8vD82aNcOCBQs0vqrxtEpOTkb79u1x/vx5radWSRP3PxE9wqCWsPnz52Pjxo24fPmy+glKT6uBAwdCpVJh165dYpfy1OD+JyKAQU1ERCRpT/ev6URERGaOQU1ERCRhDGoiIiIJY1ATERFJGIOaiIgqSU1NhUwmw6ZNm8QuxeIxqImIjHTjxg2MGjUKzZo1g52dHZydndG1a1csW7ZM6zzspnL58mXExcVVeoBKbZs7dy5effVVeHh4QCaTIS4uTtR6zA1nJiMiMkJCQgL69+8PhUKBwYMHIyAgAGVlZTh58iQ+/vhjXLp0Setc7KZw+fJlzJo1C6GhofDx8amRMXQxffp0eHp6IigoCIcPHxatDnPFoCYiMlBKSgoGDhwIb29vHD16VGNu9TFjxuD69etISEgQscK/CIJQ5XPCjZWSkgIfHx/cvXu30jOxyXg89U1EZKAFCxagsLAQ69ev1/oAlObNm2vMe15RUYHZs2fDz88PCoUCPj4+mDZtWqUnUvn4+OCVV17ByZMn0alTJ9jZ2aFZs2bYsmWLus+mTZvQv39/AECPHj0gk8kgk8mQlJSksY3Dhw+jY8eOsLe3x5o1awAAN2/eRP/+/VGvXj04ODjg+eefN+oXCjGP5i0Bg5qIyEDffvstmjVrpvOjO0eMGIGZM2eiffv2WLJkCUJCQhAfH6/1iVTXr19Hv379EB4ejkWLFqFu3boYOnQoLl26BAB44YUXMG7cOADAtGnTsHXrVmzdulXjed/Xrl1DVFQUwsPDsWzZMgQGBiIrKwvBwcE4fPgwPvzwQ8ydOxclJSV49dVXsW/fPhP8qZDJCUREpLe8vDwBgPDaa6/p1D85OVkAIIwYMUKjfeLEiQIA4ejRo+o2b29vAYBw4sQJdVt2dragUCiEmJgYddvu3bsFAMKxY8cqjfdoG4cOHdJonzBhggBA+OGHH9RtBQUFgq+vr+Dj4yMolUpBEAQhJSVFACBs3LhRp88nCIJw584dAYAQGxur8zr0ZDyiJiIyQH5+PgDo/NjOgwcPAgCio6M12mNiYgCg0qlnf39/dO/eXf2+QYMGaNmyJW7evKlzjb6+voiIiKhUR6dOndCtWzd1m6OjI95//32kpqbi8uXLOm+fageDmojIAM7OzgCAgoICnfrfunULVlZWaN68uUa7p6cnXF1dcevWLY32pk2bVtpG3bp1kZOTo3ONvr6+Wuto2bJlpfZHp8wfr4PEx6AmIjKAs7MzGjZsiIsXL+q1nkwm06mfXC7X2i7o8cDDmrjDm2ofg5qIyECvvPIKbty4gdOnTz+xr7e3N1QqFX7//XeN9qysLOTm5sLb21vv8XUN/cfruHbtWqX2q1evqpeTtDCoiYgMNGnSJNSpUwcjRoxAVlZWpeU3btzAsmXLAAC9e/cGACxdulSjz+LFiwEAkZGReo9fp04dAEBubq7O6/Tu3RtnzpzR+OWiqKgIa9euhY+PD/z9/fWug2oWJzwhIjKQn58ftm3bhgEDBqB169YaM5OdOnUKu3fvxtChQwEA7dq1w5AhQ7B27Vrk5uYiJCQEZ86cwebNm9G3b1/06NFD7/EDAwMhl8sxf/585OXlQaFQoGfPnnB3d69ynSlTpmD79u3o1asXxo0bh3r16mHz5s1ISUnBnj17YGWl//Hb1q1bcevWLTx48AAAcOLECcyZMwcA8O677/Io3Vhi33ZORPS0++2334SRI0cKPj4+gq2treDk5CR07dpVWL58uVBSUqLuV15eLsyaNUvw9fUVbGxshCZNmghTp07V6CMID79aFRkZWWmckJAQISQkRKNt3bp1QrNmzQS5XK7xVa2qtiEIgnDjxg2hX79+gqurq2BnZyd06tRJOHDggEYffb6eFRISIgDQ+tL21THSj0wQ9LgzgYiIiGoVr1ETERFJGIOaiIhIwhjUREREEsagJiIikjAGNRERkYQxqImIiCSMQU1ERCRhDGoiIiIJY1ATERFJGIOaiIhIwhjUREREEsagJiIikjAGNRERkYT9P9Fk9GpBMbhlAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAR3BJREFUeJzt3XlcVOX+B/DPMMAAsioCroBYKrmAmiRqoIGkZGppSpZL6jXTqwbm9lPBXEjN7Zp7Kmq55nJLvJqhaKZlLtxyLRXEiMWFXdaZ8/vD69TIgDPMwDnOfN6v17xqnvOc83zHo3w4yzxHJgiCACIiIpIkC7ELICIiosoxqImIiCSMQU1ERCRhDGoiIiIJY1ATERFJGIOaiIhIwhjUREREEsagJiIikjAGNRERkYSZfVCnp6cjJiYG6enpYpdCRGS4vHTg2iGxqzAK/nx+hEGdno45c+aY/V8EIjIhqnKxKzAK/nx+xOyDmojI5JhIUNMjDGoiIlOjLBO7AjIiBjURkalRlopdARkRg5qIyNSUF4tdARkRg5qIyNQwqE0Kg5qIyNSUFYldARkRg5qIyNSUFopdARkRg5qIyNQwqE2KpIL65MmT6NOnDxo2bAiZTIYDBw48dZ3ExES0b98eCoUCzZs3R1xcXI3XSUQkaaUFYldARiSpoC4sLES7du2watUqnfonJycjPDwc3bt3R1JSEiZNmoRRo0bhyJEjNVwpEZGEleSLXQEZkaXYBfxdr1690KtXL537r127Ft7e3liyZAkAoFWrVjh16hSWLVuGsLCwmiqTiEjaeERtUiQV1Po6c+YMQkJCNNrCwsIwadKkStcpKSlBSUmJ+n1Bgbh/oT9Ysh3Z+Q9FrUEqXBzssDrqbbHLqHVJGyeitCBb7DJEZ23vAr+RK8QuwzSUFACCAMhkYldCRvBMB3VGRgbc3d012tzd3ZGXl4eioiLY2tpWWCc2NhZz5syprRKfKjv/Ie7l8rdfc1ZakI3S/Ptil0GmRFX+6Cta1nZiV0JG8EwHdXVMnz4dkZGR6vdJSUkICgoSsaJHLGQy1HWsI3YZoniQVwiVIIhdhvhkFrC2dxG7ilpXWpANCCqxyzA9JXkMahPxTAe1h4cHMjMzNdoyMzPh6Oio9WgaABQKBRQKhfq9vb19jdaoq7qOdbAjZpTYZYgiIuZznlXAo1O/nSZuFbuMWnd2xVCeUagJxbmAg4fYVZARSOqub3117twZCQkJGm1Hjx5F586dRaqIiEgiinjfg6mQVFAXFBQgKSkJSUlJAB59/SopKQmpqakAHp22Hjp0qLr/+++/j1u3bmHKlCm4du0aVq9ejd27d+PDDz8Uo3wiIukovCd2BWQkkgrqc+fOwd/fH/7+/gCAyMhI+Pv7Y/bs2QCA9PR0dWgDgLe3N+Lj43H06FG0a9cOS5Ysweeff86vZhERFd4VuwIyEkldow4ODoZQxU1F2mYdCw4OxsWLF2uwKiKiZ1B+utgVkJFI6oiaiIiMJDdN7ArISBjURESmKOf2o0lP6JnHoCYiMkUl+byhzEQwqImITNX938WugIyAQU1EZKqyrohdARkBg5qIyFRlXha7AjICBjURkanKvAyUl4pdBRmIQU1EZKrKS4C7V8WuggzEoCYiMmVp58WugAzEoCYiMmV/nBO7AjIQg5qIyJRlXQWK88SuggzAoCYiMmWCCvjjZ7GrIAMwqImITF3qj2JXQAZgUBMRmbo7PwEqldhVUDUxqImITF1xLnD3mthVUDUxqImIzMGdn8SugKqJQU1EZCI6duyIxq06oOOCCxUX8jr1M4tBTURkIjIyMpD2Zzoy8rRMG3r3GvDwQe0XRQZjUBMRmQtOfvJMYlATEZmL1NNiV0DVwKAmIjIXd34GlOViV0F6YlATEZmL0gIg/b9iV0F6YlATEZmT5ESxKyA9MaiJiMxJ8veASil2FaQHBjURkTkpygbunBW7CtIDg5qIyNxcjxe7AtIDg5qIyNzcPg0U3BW7CtIRg5qIyNyolMC1b8SugnTEoCYiMkdXvgaUZWJXQTpgUBMRmaOibOBWothVkA4Y1ERE5urSXrErIB0wqImIzFXW1UcvkjQGNRGRObu0T+wK6CkY1ERE5uzWcZN5TvXJkyfRp08fNGzYEDKZDAcOHKiyf2JiImQyWYVXRkZG7RSsIwY1EZE5U5YBV78WuwqjKCwsRLt27bBq1Sq91rt+/TrS09PVLzc3txqqsHosxS6AiIhEdvkA0O5twNJa7EoM0qtXL/Tq1Uvv9dzc3ODs7Gz8goyER9REROauKBu4cVTsKkTj5+eHBg0aIDQ0FD/88IPY5VTAoCYiIuC/OwGVSuwqtCooKEBeXp76VVJSYpTtNmjQAGvXrsXevXuxd+9eNGnSBMHBwbhw4YJRtm8sPPVNRERATiqQ8j3QLEjsSioICtKsKTo6GjExMQZvt0WLFmjRooX6fWBgIG7evIlly5Zh27ZtBm/fWBjURET0SNJ2wPtlQCYTuxINJ06cgJ+fn/q9QqGosbE6deqEU6dO1dj2q4NBTUREj9y9BqSdBxp3FLsSDfb29nB0dKyVsZKSktCgQYNaGUtXDGoiIvrLxS8kF9S6KigowI0bN9Tvk5OTkZSUhLp166Jp06aYPn060tLSsHXrVgDA8uXL4e3tjRdeeAHFxcX4/PPPcezYMXz77bdifQStGNRERPSXPy8+mlbUrZXYlejt3Llz6N69u/p9ZGQkAGDYsGGIi4tDeno6UlNT1ctLS0sRFRWFtLQ02NnZoW3btvjuu+80tiEFDGoiItL0yy4gJEbsKvQWHBwMQRAqXR4XF6fxfsqUKZgyZUoNV2U4fj2LiIg03ToB5KWLXQX9D4OaiIg0CSqTmVbUFEguqFetWgUvLy/Y2NggICAAZ8+erbL/8uXL0aJFC9ja2qJJkyb48MMPUVxcXEvVEhGZqKvfAOWlYldBkFhQ79q1C5GRkYiOjsaFCxfQrl07hIWFISsrS2v/7du3Y9q0aYiOjsbVq1exceNG7Nq1CzNmzKjlyomITExJPnArUewqCBIL6qVLl2L06NEYMWIEfH19sXbtWtjZ2WHTpk1a+58+fRpdunTB22+/DS8vL/Ts2RMRERFPPQonIiId8PS3JEgmqEtLS3H+/HmEhISo2ywsLBASEoIzZ85oXScwMBDnz59XB/OtW7dw6NAh9O7du1ZqJiIyaRm/Ag+Sxa7C7Enm61n37t2DUqmEu7u7Rru7uzuuXbumdZ23334b9+7dQ9euXSEIAsrLy/H+++9Xeeq7pKREY0L3goIC43wAIiJTdPUboMsEsaswa5I5oq6OxMRELFiwAKtXr8aFCxewb98+xMfHY+7cuZWuExsbCycnJ/XrycneicxNx44d0bhxY3Ts+GzORkU17LcjQOlDsaswa5IJaldXV8jlcmRmZmq0Z2ZmwsPDQ+s6s2bNwrvvvotRo0ahTZs26N+/PxYsWIDY2FioKnlc2/Tp05Gbm6t+nThxwuifhehZkpGRgbS0NGRkZIhdCklRaQHw22GxqzBrkglqa2trdOjQAQkJCeo2lUqFhIQEdO7cWes6Dx8+hIWF5keQy+UAUOnsNAqFAo6OjuqXvb29kT4BEZGJurRXss+qNgeSuUYNPJqXddiwYejYsSM6deqE5cuXo7CwECNGjAAADB06FI0aNUJsbCwAoE+fPli6dCn8/f0REBCAGzduYNasWejTp486sImIyEC5fwB3fgI8tR80Uc2SVFAPGjQId+/exezZs5GRkQE/Pz8cPnxYfYNZamqqxhH0zJkzIZPJMHPmTKSlpaF+/fro06cP5s+fL9ZHICIyTb/uYVCLRFJBDQDjx4/H+PHjtS5LTEzUeG9paYno6GhER0fXQmVERGYs7TyQcwdwbiJ2JWZHMteoiYhI4q4fErsCs8SgJiIi3dz4DqjiMZJUMyR36puISCx3Tu3Egxs/ozAjGTK5JTp/tLvK/iplOW4nbkX2jXMozsmApaIOnLz94NVjOBQO9Sr2Ly/Dfzd/iMLMZPiN+hfsPXxq6qPUjIIs4P5NwLW52JWYFR5RE5FZ+WXrNGT+96jWZSplOVxbdYVHB92mIVaVlaAw4yaadIuA36h/oeWA/0PR/T9wdffHWvsnJ2yCtX3FAH+m3PlR7ArMDoOaiOh/PIPeQaOA/qjj5qlTf0ubOmg9ZD7q+3aDXb3GcGzcEj6vjkVB+g0U52o+9e/BjXPIuXUB3iEja6L02pN5RewKzA6DmojIiJTFhQBksLT5azKl0oJs3Ij/F57vOxkWVgrxijOGrMu8Tl3LGNREREaiKi9F8rHNqP9CECwVdgAezZL4+zfL4NG+NxwaPidyhUZQlAMUZYtdhVnhzWREZNLunNqFOz/8dVOYqrwU+WnXcPPwWnVb+/fXwMbJzaBxVMpyXNv7aNZEn97j1O3pP38DZUkRmnQZaND2JeXBLcCurthVmA0GNRGZNI8OveHq2039/vqBxXBt2QX1Wgaq27Tdoa0PlbIc1/Z9guLcu2jzzgL10TQA5KT8F3lp1/BDbD+NdZI2ToJb6+54vm+kQWM/lpqaisLCQgBAYYkSqQ+K0bSujVG2XUF2CtCYT1urLQxqIjJpVrYOsLJ1UL+3sFTAqo4TbOs2NMr21SH94E+0eScWVnaOGsubhY2BZ/C76vel+Q9weccstHxjGhwatTB4/LNnz2Lu3LmIj49XP4wop0gJr/87i9fa1MWs3p540cvhKVvRU85t426PqsSgJiL6n+LcLJQX5aMk9y4gqFCQcRMAYFu3IeTWtgCA82vGwLP7MLi2DPzf6e4FKEi/Cd/B0RAEJUoLHgAALG0dYCG3qnBK/fF2bFw8oHB0Najeffv2YdCgQRAEocITAwUBOHTpAf5zKRu7RrfCG/6GjaUhm0FdmxjURET/k3riC2T98tejdpM+nwAAaP1OLJy92gIAiu7/AWXJo1PMpfn38eC3nx713fBPjW39fZ2acPbsWQwaNAhKpbLSx/oqVYAMAgZtuIrTU/yMd2Sdk2qc7ZBOGNREZs7Dw0Pjv6au7dBPKl32/OuReP71qq8Zd50Zr/5/G2d3jfe6qM462sybN0/rkfSTBAACBMw7dBv//qC1weMCeHTXd3EeYOP49L5kMAY1kZk7d+6c2CWQnlJTU3Hw4MGnhvRjShXwza8PjHuDWd6fDOpawqAmIiiVSqhUKlHGLleqUK5UwUKpQllZmSg11BaVsgyCSmnwdv5zKF7nkH5MEIAjV7Ix7CXDvoam3t7dm7Bwqdm5ysvLy2t0+88KBjWRBOTKnICCcsTPf1uU8b9M+BU7jl8SZWwNUV+KXYFJ+8cXv+MfX/xupK29ZqTt0NMwqIkIg7u/gEHBL4g2vpOQC2uHenjxn5tFq6GmKcuKkXv7Miws5bCQWxm0re1f/RsTpsbovd66CC8MDTD87m9BEFDS7FXYhEyF3KqGvqsN4OLFiwgICKix7T8rGNREBLmFuLMJWwoWsJRbwMrKsACTMgsoYWVlCUuFLSwsrQ3aVkj3YMhkMr1Of8tkQGhLZ1jJ5QaN/YgAlYUAKysryGtwn1laMqIAzvVNRPTMadK4IV4N6Q65jqErtwBea+2MpnWN+EAQuWG/bJDu+OsKkZmbtPoIsguK4GJvi+UfhIldDulo6ocf4Ojxk089spYBkEGGGWGNjDq+YGX39E5kFDyiJjJz2QVFuJ9XhOyCIrFLIT108GuLuLXLIJfLKz2yllsAcgsZdr7XHC962mvtU12qOsa5e5yejkFNRPSM6ts7DN99vRM9ewRBJpNpLJPJgN4vOOP7SF/0a2f8J10pGdS1hqe+iYieYR382mL3lrW488efCAx9HTm5eXC2lePCtDbGvSb9N4K1PQRbI84dTlXiETURkQlo0rgh7OwePfCjjsKixkIaAJQuPo8O2alWMKiJiEgvyvqtxC7BrDCoiYhIL8r64k2OY44Y1EREpDPBrh4Eh4Zil2FWGNRERKQzZcMOvD5dyxjURESkM2XDF8UuwewwqImISCeCnStUrs+LXYbZYVATEZFOypt2AWSMjdrGP3EiIno6mQxK7+5iV2GWGNRERPRUykYvQrCrJ3YZZolTiBIR0VOVP9db7BIkKzs7Gzt27MCtW7eQnZ1d4WlmMpkMGzdurPb2GdRERFQlpUdbqOr6iF2GJB05cgQDBgxAYWEhHB0d4eLiUqHPkw9M0ReDmoiIqlTesp/YJUhWVFQUPDw8sG/fPrRp06ZGxmBQE5k5F3tbjf8S/Z3Soy1U9Z4TuwzJunHjBhYvXlxjIQ0wqInM3vIPwsQugSSszPdNsUuQtOeeew75+fk1Ogbv+iYiIq2UHm0huDQTuwxJmzdvHlavXo2UlJQaG4NH1EREpBWvTVc0YcKECm3169dHq1atEBoaiiZNmkAul2ssl8lkWLFiRbXHZFATEVEFqvqteG1ai88++6zSZQcPHtTazqAmIiKjK3s+XOwSJEmlUtX6mLxGTUREGlROTaBybyt2GfQ/DGoiItJQ/nz4M/nM6ZMnT6JPnz5o2LAhZDIZDhw48NR1EhMT0b59eygUCjRv3hxxcXE1Xqe+GNRERKQm1HGFsnGA2GVUS2FhIdq1a4dVq1bp1D85ORnh4eHo3r07kpKSMGnSJIwaNQpHjhyp4Ur1w2vURESkVtayL2DxbEZDr1690KtXL537r127Ft7e3liyZAkAoFWrVjh16hSWLVuGsDDpzC8guSPqVatWwcvLCzY2NggICMDZs2er7J+Tk4Nx48ahQYMGUCgUeP7553Ho0KFaqpaIyHQIdepD2bSr2GVUUFBQgLy8PPWrpKTEKNs9c+YMQkJCNNrCwsJw5swZo2zfWCQV1Lt27UJkZCSio6Nx4cIFtGvXDmFhYcjKytLav7S0FKGhoUhJScFXX32F69evY8OGDWjUqFEtV05E9Owraz1IkkfTQUFBcHJyUr9iY2ONst2MjAy4u7trtLm7uyMvLw9FRUVGGcMYJLVHli5ditGjR2PEiBEAHp2WiI+Px6ZNmzBt2rQK/Tdt2oQHDx7g9OnTsLKyAgB4eXnVZslERCZB5fo8lI06iV2GVidOnICfn5/6vUKhEK8YHQiCgOPHj6OkpARdu3aFg4ODQduTzBF1aWkpzp8/r3EawsLCAiEhIZWehvj666/RuXNnjBs3Du7u7mjdujUWLFgApVJZW2UTET37ZDKUtntXsnd629vbw9HRUf0yVlB7eHggMzNToy0zMxOOjo6wtdXtITX/93//h+7du6vfC4KAnj17IjQ0FOHh4WjTpg1u3rxpUJ2SCep79+5BqVRqPQ2RkZGhdZ1bt27hq6++glKpxKFDhzBr1iwsWbIE8+bNq3SckpISjWsdBQUFRv0cRETPmnKfUAjOXmKXUes6d+6MhIQEjbajR4+ic+fOOm9j79696NTprzMRX331FRISEjBv3jwcPHgQSqUSMTExBtUpqVPf+lKpVHBzc8P69eshl8vRoUMHpKWlYfHixYiOjta6TmxsLObMmVPLlRIRSZNg42wyT8gqKCjAjRs31O+Tk5ORlJSEunXromnTppg+fTrS0tKwdetWAMD777+Pzz77DFOmTMF7772HY8eOYffu3YiPj9d5zLS0NDRv3lz9ft++ffD19cX06dMBAGPHjsWaNWsM+lzVPqJWKpXYuXMnxowZg/79++PXX38FAOTm5mLfvn0VTic8jaurK+RyudbTEB4eHlrXadCgAZ5//nmNCdBbtWqFjIwMlJaWal1n+vTpyM3NVb9OnDihV51ERKakrO0QwMpO7DKM4ty5c/D394e/vz8AIDIyEv7+/pg9ezYAID09Hampqer+3t7eiI+Px9GjR9GuXTssWbIEn3/+uV5fzbK0tFTfhS4IAhISEvDqq6+ql7u7u+PevXsGfa5qHVHn5OTg1VdfxdmzZ2Fvb4/CwkL885//BPDoWsKECRMwdOhQLFiwQOdtWltbo0OHDkhISEC/fv0APDpiTkhIwPjx47Wu06VLF2zfvh0qlQoWFo9+5/jtt9/QoEEDWFtba11HoVBoXN+wt7fXuUYiIlOicnvhmZ3cRJvg4GAIglDpcm2zjgUHB+PixYvVHrN169b44osvMGTIEOzfvx/3799HePhf86Tfvn0brq6u1d4+UM0j6mnTpuHy5cs4cuQIbt26pfEHI5fLMWDAgGp9lzkyMhIbNmzAli1bcPXqVYwdOxaFhYXqu8CHDh2qPp0APDql8ODBA0ycOBG//fYb4uPjsWDBAowbN646H4uIyHzIZCht945kbyB7VsyePRtJSUlwdXXF6NGj0aVLF42by+Lj4/Hiiy8aNEa1jqgPHDiAf/7znwgNDcX9+/crLH/++eerNV/qoEGDcPfuXcyePRsZGRnw8/PD4cOH1TeYpaamqo+cAaBJkyY4cuQIPvzwQ7Rt2xaNGjXCxIkTMXXq1Op8LCIis1HeLASCY2Oxy3jmhYaG4sKFCzh69CicnZ0xaNAg9bLs7Gy8/PLL6Nu3r0FjVCuoc3Nz4e3tXenysrIylJeXV6ug8ePHV3qqOzExsUJb586d8eOPP1ZrLCIis2Rpg7JW/cWuwmT4+vrC19e3QruLiwuWLVtm8Parderbx8cHFy5cqHT5t99+q7VoIiISX1nznoDCsEk4qPZU64h61KhRmDp1KoKDg/HKK68AAGQyGUpKSvDxxx/j8OHDWL9+vVELJSIiI7BUoPw53R9cQRV5e3tD9sS1/Vu3btXYeNUK6okTJ+Ly5cuIiIiAs7MzAODtt9/G/fv3UV5ejjFjxmDkyJHGrJOIiIyg3CsIsOa3XQwxbNiwCkFdk6oV1DKZDBs2bMCwYcPw1Vdf4ffff4dKpYKPjw/eeustvPzyy8auk4iIDCWTobz5q0/vR1UydKYxfRk0M1nXrl3Rtav0HolGREQVKd3bQKhTX+wySE/P9BSiRESkO6V396d3Ir0plUr1vCLZ2dkVJl2RyWSYNWtWtbdfraDWdiH9STKZzOAnhhARkXEICgcoPfzELsPknDt3Dm+++Sb++OOPSmdFEyWog4KCKgS1UqnE7du38cMPP6B169bquVaJiEh8ysYBgAVPohrbBx98gKKiIhw4cADdunVT32BtTNXaa1XNOvbf//4XYWFhGDJkSHVrIiIiI1M20f3RjaS7X375BfPnz0efPn1qbAyjP4+6Xbt2GDNmDKfxJCKSCMHWBaq6zZ/ekfTWuHHjKh8EYgxGD2rg0WO9rly5UhObJiIiPSkbtgdkNfLj3uxNnToVGzZsQF5eXo2NYfQLFvfv38fGjRvRuDEneycikgKlB+8Zqin5+fmwt7dH8+bNMXjwYDRp0gRyuVyjj0wmw4cffljtMaoV1D169NDanpOTg2vXrqG0tBTbtm2rdlFERGQkciuo6rcSuwqTNXnyZPX/f/bZZ1r7iBLUKpWqwl3fMpkM3t7eCAkJwXvvvYeWLVtWuygiIjIOpWtLQG4tdhkmKzk5ucbHqFZQa3vcJBERSY/KjU8yrEmenp41Pga/VEdEZMKU9RnUtSEtLQ0nT55EVlYW3nzzTTRu3BhKpRK5ublwcnKqcN1aHzoF9datW6u18aFDh1ZrPSIiMgJLGwhONX/EZ84EQUBUVBQ+++wzlJeXQyaToU2bNmjcuDEKCgrg5eWFjz/+GJMmTar2GDoF9fDhw/XesEwmY1ATEYlIVdcHsKj+kRw93eLFi7FixQpMnToVr7zyCkJDQ9XLnJyc8MYbb2Dv3r01H9S1cbGciIiMS1nXR+wSTN6GDRswdOhQLFiwAPfv36+wvG3btvjPf/5j0Bg6BXVtXCwnIiLjUrkwqGvanTt3EBgYWOnyOnXqGDwZCm8mIyIyEe716wMqFTysHwIABOemIldk+tzc3HDnzp1Kl58/fx5Nmxq2H6od1BkZGdi4cSMuXLiA3NxcqFQqjeUymQwJCQkGFUdERLo7eXgfZIV3YXM4EoK1HQTbemKXZPLeeOMNrF27FsOHD4eTkxMAqOcZ+fbbbxEXF4cpU6YYNEa1gvqXX35BcHAwioqK0KJFC/z666/w9fVFTk4O0tLS4OPjgyZNmhhUGBERVZ/g0BB4YmIqMr45c+bg+PHj8PPzQ7du3SCTybBw4ULMmjULZ86cgb+/P2bMmGHQGNWapX3atGmwt7fH9evX8d1330EQBKxYsQJ37tzBrl27kJ2djU8++cSgwoiIqPpUDg3FLsEsODk54ccff8SUKVOQlpYGGxsbnDhxAjk5OYiOjsb3338POzs7g8ao1hH1Dz/8gClTpqBp06Z48OABAKhPfQ8cOBCnTp3CRx99hBMnThhUHBERVY9Qx13sEsyGra0tZs6ciZkzZ9bI9qt1RK1SqeDu/ugvgbOzM+RyuTqwAaBNmzY4f/68cSokIiK9CXXcxC6BjKRaR9Te3t7q71ZbWFjA29sb3333Hd566y0AwOnTp+Hs7Gy0IomISD+CHW8kqy1Xr17F5s2bcevWLWRnZ0MQBI3lht5crfMRdXZ2tvr/e/bsiT179qjfjx07Fp9//jlCQkLwyiuvYMuWLXj77berXRQRERlGsK0rdglmYdu2bWjTpg1WrlyJGzduQKVSQRAEjdeT34rSl85H1B4eHujduzeGDBmCqKgoREREoKysDFZWVpg0aRIKCwuxd+9eyOVyzJo1y+C73IiIqJpkMgg2TmJXYRZiYmLg7++P//znP3B1da2RMXQO6gEDBuDrr7/G119/DQcHB7zxxhsYMmQIevToAZlMVqMX0omISHeCtT1gwfmsasOff/6JyZMn11hIA3qc+v7yyy+RlZWFL774At26dcOXX36Jnj17olGjRoiKisKFCxdqrEgiItKdoODRdG1p27Yt/vzzzxodQ6+7vm1tbREREYFvvvkGGRkZWL16NZ577jksX74cL774Ilq2bIl58+bh1q1bNVUvERE9DU9715qlS5di48aNOH36dI2NUe1zIy4uLhgzZgzGjBmDtLQ0bN++HTt27MDs2bMRHR2NgICAGi2ciIi0E6wdxC7BZL3++usV2pycnNCtWzf4+vqiadOmkMs1Hy0qk8nw73//u9pjGuUiRqNGjfDRRx/h1VdfxezZs/Hvf/8bP/30kzE2TUREehIU9mKXYLJ++eUX9Vzef9e0aVMUFBTgypUrFZZp668Pg4M6NTVVfTR96dIlCIKAwMBADBkyxNBNExFRNfCIuuakpKTU+pjVCup79+5h9+7d2L59O86cOQNBENCyZUt8/PHHGDJkCLy8vIxcJhER6cy6jtgVkBHpHNSFhYXYv38/tm/fjoSEBJSVlaFBgwaYNGkShgwZgvbt29dknUREpCPBikFd206cOIH4+Hjcvn0bAODp6Ynw8HAEBQUZvG2dg9rNzQ3FxcWwt7fH22+/rf4OtYVFtaYLJyKimmJpI3YFZqO0tBQRERE4cOAABEFQT5+dk5ODJUuWoH///tixYwesrKyqPYbOKRsSEoIdO3YgMzMTmzdvRkhICEOaiEiCBEuF2CWYjTlz5mD//v2IiopCeno6Hjx4gAcPHiAjIwOTJ0/Gvn378PHHHxs0hs5H1IbcWk5ERLVIXv2jN9LP9u3bMWzYMCxatEij3c3NDQsXLkRmZia2bduGuXPnVnsMHhITEZkaCwZ1bUlPT0dAQEClywMCApCRkWHQGAxqIiITI1jIn96JjKJx48ZITEysdPmJEyfQuHFjg8ZgUBMRmRoZf7TXlmHDhmH37t14//33cf36dSiVSqhUKly/fh1jx47Fnj17MHz4cIPG4ONViIhMjmEzYZHuZsyYgZs3b2L9+vXYsGGD+ibrx8+lHjZsmMGPfWZQExGZHAZ1bZHL5YiLi0NkZCQOHTqk8T3q3r17o23btgaPwaAmIjI1zOla17ZtW6OEsja8kEFERKSH4uJivP/++1i5cmWV/f71r39h7NixKCsrM2g8SQb1qlWr4OXlBRsbGwQEBODs2bM6rbdz507IZDL069evZgskIpIy3kxWo9avX4+4uDiEh4dX2S88PBybN2/G559/btB4ktubu3btQmRkJKKjo3HhwgW0a9cOYWFhyMrKqnK9lJQUTJ48Gd26daulSomIpEpyP9pNyu7du/Hmm2+iWbNmVfbz8fHBwIEDsWPHDoPGk9zeXLp0KUaPHo0RI0bA19cXa9euhZ2dHTZt2lTpOkqlEkOGDMGcOXOe+gdHRGTyeI26Rv3666/o2rWrTn0DAwPxyy+/GDSepIK6tLQU58+fR0hIiLrNwsICISEhOHPmTKXrffzxx3Bzc8PIkSOfOkZJSQny8vLUr4KCAqPUTkQkGTLeJ1yTSktLYW1trVNfa2trlJSUGDSepPbmvXv3oFQq4e7urtHu7u6Oa9euaV3n1KlT2LhxI5KSknQaIzY2FnPmzDG0VCIiyeLMZDWrYcOGuHTpkk59L126hIYNGxo0nqSOqPWVn5+Pd999Fxs2bICrq6tO60yfPh25ubnq14kTJ2q4SiKiWmYhqWOwWqXPzchxcXGQyWQaLxubpz8iNCQkBFu3bn3qvVNZWVnYunUrQkND9f4cfyepoHZ1dYVcLkdmZqZGe2ZmJjw8PCr0v3nzJlJSUtCnTx9YWlrC0tISW7duxddffw1LS0vcvHmzwjoKhQKOjo7ql729fY19HiIiUZjpEXV1bkZ2dHREenq6+vV4wpKqTJ06FcXFxejRowd++uknrX1++uknvPLKKyguLsZHH31U7c8ESOzUt7W1NTp06ICEhAT1V6xUKhUSEhIwfvz4Cv1btmyJX3/9VaNt5syZyM/Px4oVK9CkSZPaKJuISFrM9Ij67zcjA8DatWsRHx+PTZs2Ydq0aVrXkclkWg8Eq9KsWTPs3r0bERERCAwMRLNmzdCmTRs4ODggPz8fly5dws2bN2FnZ4edO3fCx8fHoM8lub0ZGRmJYcOGoWPHjujUqROWL1+OwsJC9R/80KFD0ahRI8TGxsLGxgatW7fWWN/Z2RkAKrQTEZkNEwvqgoIC5OXlqd8rFAooFAqNPo9vRp4+fbq6TZebkQsKCuDp6QmVSoX27dtjwYIFeOGFF55aU3h4OH755RcsXLgQBw8exIEDB9TLGjZsiNGjR2PKlClG+SaS5PbmoEGDcPfuXcyePRsZGRnw8/PD4cOH1TeYpaamqic9JyIiTYKti8lNeBIUFKTxPjo6GjExMRpt1bkZuUWLFti0aRPatm2L3NxcfPrppwgMDMTly5d1ejSll5cX1qxZgzVr1iA/Px95eXlwdHSEg4ODfh/wKSQX1AAwfvx4rae6AVT53E/g0c0BRERmy8SOpoFHz3T28/NTv3/yaLq6OnfujM6dO6vfBwYGolWrVli3bh3mzp2r17YcHByMHtCPmd4eJSIik2Jvbw9HR8cq++h7M7I2VlZW8Pf3x40bN6pda00wrfMjRERklv5+M/Jjj29G/vtRc1WUSiV+/fVXNGjQoKbKrBYeURMRkUnQ52Zk4NGsli+99BKaN2+OnJwcLF68GLdv38aoUaPE/BgVMKiJiMgk6HszcnZ2NkaPHo2MjAy4uLigQ4cOOH36NHx9fcX6CFoxqImIyGToczPysmXLsGzZslqoyjC8Rk1ERCRhDGoiIiIJY1ATERFJGIOaiIhIwhjUREREEsagJiIikjAGNRERkYQxqImIiCSMQU1ERCRhDGoiIiIJY1ATERFJGIOaiIhIwhjUREREEsagJiIikjAGNRERkYQxqImIiCSMQU1ERCRhDGoiIiIJY1ATERFJGIOaiIhIwhjUREREEsagJiIikjAGNRERkYQxqImIiCSMQU1ERCRhDGoiIiIJY1ATERFJGIOaiIhIwhjUREREEsagJiIikjAGNRERkYQxqImIiCSMQU1ERCRhDGoiIiIJY1ATERFJGIOaiIhIwhjUREREEsagJiIikjAGNRERkYQxqImIiCSMQU1ERCRhkgzqVatWwcvLCzY2NggICMDZs2cr7bthwwZ069YNLi4ucHFxQUhISJX9iYiIniWSC+pdu3YhMjIS0dHRuHDhAtq1a4ewsDBkZWVp7Z+YmIiIiAgcP34cZ86cQZMmTdCzZ0+kpaXVcuVERETGJ7mgXrp0KUaPHo0RI0bA19cXa9euhZ2dHTZt2qS1/5dffokPPvgAfn5+aNmyJT7//HOoVCokJCTUcuXPpo4dO6Jx48bo2LGj2KUQEZEWlmIX8HelpaU4f/48pk+frm6zsLBASEgIzpw5o9M2Hj58iLKyMtStW1fr8pKSEpSUlKjfFxQUGFb0My4jI4NnH4iIJExSR9T37t2DUqmEu7u7Rru7uzsyMjJ02sbUqVPRsGFDhISEaF0eGxsLJycn9SsoKMjguomIiGqKpILaUJ988gl27tyJ/fv3w8bGRmuf6dOnIzc3V/06ceJELVdJRESkO0md+nZ1dYVcLkdmZqZGe2ZmJjw8PKpc99NPP8Unn3yC7777Dm3btq20n0KhgEKhUL+3t7c3rGgiIqIaJKkjamtra3To0EHjRrDHN4Z17ty50vUWLVqEuXPn4vDhw7wpioiITIqkjqgBIDIyEsOGDUPHjh3RqVMnLF++HIWFhRgxYgQAYOjQoWjUqBFiY2MBAAsXLsTs2bOxfft2eHl5qa9l29vb82iZiIieeZIL6kGDBuHu3buYPXs2MjIy4Ofnh8OHD6tvMEtNTYWFxV8nAtasWYPS0lIMGDBAYzvR0dGIiYmpzdKJiIiMTnJBDQDjx4/H+PHjtS5LTEzUeJ+SklLzBREREYlEUteoiYiISBODmoiISMIY1ERERBLGoCYiIpOhz9MXAWDPnj1o2bIlbGxs0KZNGxw6dKiWKtUdg9rMeXh4oFGjRk+dUIaISOr0ffri6dOnERERgZEjR+LixYvo168f+vXrh0uXLtVy5VVjUJu5c+fO4Y8//sC5c+fELoWIyCD6Pn1xxYoVePXVV/HRRx+hVatWmDt3Ltq3b4/PPvusliuvGoOaiIieeY+fvvj3BzI97emLZ86cqfAAp7CwMJ2f1lhbJPk9aqpdSqUSKpVKtPFVynKolEqolOUoKysTrQ6xlCtVKFeK9+cvBeWCChZKlUnvf2VZGcrKyqEUHsJC/mx/TpWyDKpyJcrKyqCCvMbGKS8vB/DoccR5eXnq9ief2QBU/fTFa9euad1+RkaGQU9rrC0MagmwEx7iYc5D9J20QJTxr/2YgN9+OibK2E/aPW+s2CWQmKK+FLsCkqAnH0dsbjNPMqgJLTp1x/MvBotaw0OZHVyd6uCL2SNFrUMMP68cgbsF5WKXISonIRfWDvXw4j83i11KjVIpyyColGKXYRQyCzks5FY1OsbFixcREBCAEydOwM/PT93+5NE0UL2nL3p4eFTraY21jUFNkFlYQCZyDRYyOSzklrCyqtl/+FJkKbeApdy8bxexFB79GZj8/jf1z2dklpaPIsre3h6Ojo5V9v370xf79esH4K+nL1Y2JXXnzp2RkJCASZMmqduOHj1a5dMaxcCgNnMndqxCycMCKOzsERQxTuxyiIiqTd+nL06cOBFBQUFYsmQJwsPDsXPnTpw7dw7r168X82NUwKA2cyUPC1BckPf0jkREEqfv0xcDAwOxfft2zJw5EzNmzMBzzz2HAwcOoHXr1mJ9BK0Y1EREZDL0efoiAAwcOBADBw6s4aoMY94XxoiIiCSOQU1ERCRhDGoiIiIJY1ATERFJGIOaiIhIwhjUREREEsagJiIikjAGNRERkYQxqImIiCSMQU1ERCRhDGoiIiIJ41zfZk5hZ6/xXyIikhYGtZnjoy2JiKSNp76JiIgkjEFNREQkYQxqIiIiCWNQExERSRiDmoiISMIY1ERERBLGoCYiIpIwBjUREZGEMaiJiIgkjEFNREQkYQxqIiIiCWNQExERSRiDmoiISMIY1ERERBLGoCYiIpIwBjUREZGEMaiJiIgkjEFNREQkYQxqIiIiCZNkUK9atQpeXl6wsbFBQEAAzp49W2X/PXv2oGXLlrCxsUGbNm1w6NChWqqUiIioZkkuqHft2oXIyEhER0fjwoULaNeuHcLCwpCVlaW1/+nTpxEREYGRI0fi4sWL6NevH/r164dLly7VcuVERETGJ7mgXrp0KUaPHo0RI0bA19cXa9euhZ2dHTZt2qS1/4oVK/Dqq6/io48+QqtWrTB37ly0b98en332WS1XTkREZHySCurS0lKcP38eISEh6jYLCwuEhITgzJkzWtc5c+aMRn8ACAsLq7Q/ERHRs8RS7AL+7t69e1AqlXB3d9dod3d3x7Vr17Suk5GRobV/RkaG1v4lJSUoKSlRvy8oKAAAXL161ZDSq+1B+m0U5z8QZWwpKZbZwOKhHS5cuCB2KbXu2p37yC5Sil2GqOyFAljZAZZP7P8GDRqgQYMGIlVlmPT0dKSnp4tdxjNNrJ/LUiOpoK4NsbGxmDNnjkabp6cn3nnnHZEqor/7dv08sUsgMS3RvBE0OjoaMTEx4tRioHXr1lX4WUP6CwoKemZ/WTMWSQW1q6sr5HI5MjMzNdozMzPh4eGhdR0PDw+9+k+fPh2RkZEabQ8ePMCDB+Z5VFtQUICgoCCcOHEC9vb2YpdDIpDy34Fn+Qf0mDFj8Prrr9fqmFLel9X1LJ9VMRaZIAiC2EX8XUBAADp16oSVK1cCAFQqFZo2bYrx48dj2rRpFfoPGjQIDx8+xDfffKNuCwwMRNu2bbF27dpaq/tZlZeXBycnJ+Tm5sLR0VHsckgE/DtgOrgvTZOkjqgBIDIyEsOGDUPHjh3RqVMnLF++HIWFhRgxYgQAYOjQoWjUqBFiY2MBABMnTkRQUBCWLFmC8PBw7Ny5E+fOncP69evF/BhERERGIbmgHjRoEO7evYvZs2cjIyMDfn5+OHz4sPqGsdTUVFhY/HWzemBgILZv346ZM2dixowZeO6553DgwAG0bt1arI9ARERkNJI79U21q6SkBLGxsZg+fToUCoXY5ZAI+HfAdHBfmiYGNRERkYRJasITIiIi0sSgJiIikjAGNRlVSkoKZDIZ4uLixC6FiMgkMKhFdPPmTYwZMwbNmjWDjY0NHB0d0aVLF6xYsQJFRUU1Nu6VK1cQExODlJSUGhtDF/Pnz8frr78Od3d3yGSyZ3YGqpomk8l0eiUmJho81sOHDxETE6PXtrgf9cP9SfqS3NezzEV8fDwGDhwIhUKBoUOHonXr1igtLcWpU6fw0Ucf4fLlyzX2XfArV65gzpw5CA4OhpeXV42MoYuZM2fCw8MD/v7+OHLkiGh1SN22bds03m/duhVHjx6t0N6qVSuDx3r48KF62svg4GCd1uF+1A/3J+mLQS2C5ORkDB48GJ6enjh27JjG9Hjjxo3DjRs3EB8fL2KFfxEEAcXFxbC1tTX6tpOTk+Hl5YV79+6hfv36Rt++qXhyHvoff/wRR48elcz89NyP+uH+JH3x1LcIFi1ahIKCAmzcuFHrHLbNmzfHxIkT1e/Ly8sxd+5c+Pj4QKFQwMvLCzNmzNB4ChgAeHl54bXXXsOpU6fQqVMn2NjYoFmzZti6dau6T1xcHAYOHAgA6N69e4XTbI+3ceTIEXTs2BG2trZYt24dAODWrVsYOHAg6tatCzs7O7z00ksG/UIh5tG8qVGpVFi+fDleeOEF2NjYwN3dHWPGjEF2drZGv3PnziEsLAyurq6wtbWFt7c33nvvPQCP7i94/IN5zpw56r8bTzv1yf1ofNyf9Hc8ohbBN998g2bNmiEwMFCn/qNGjcKWLVswYMAAREVF4aeffkJsbCyuXr2K/fv3a/S9ceMGBgwYgJEjR2LYsGHYtGkThg8fjg4dOuCFF17Ayy+/jAkTJuBf//oXZsyYoT699vfTbNevX0dERATGjBmD0aNHo0WLFsjMzERgYCAePnyICRMmoF69etiyZQtef/11fPXVV+jfv7/x/oBIb2PGjEFcXBxGjBiBCRMmIDk5GZ999hkuXryIH374AVZWVsjKykLPnj1Rv359TJs2Dc7OzkhJScG+ffsAAPXr18eaNWswduxY9O/fH2+88QYAoG3btmJ+NLPE/UkaBKpVubm5AgChb9++OvVPSkoSAAijRo3SaJ88ebIAQDh27Ji6zdPTUwAgnDx5Ut2WlZUlKBQKISoqSt22Z88eAYBw/PjxCuM93sbhw4c12idNmiQAEL7//nt1W35+vuDt7S14eXkJSqVSEARBSE5OFgAImzdv1unzCYIg3L17VwAgREdH67yOORs3bpzw93+633//vQBA+PLLLzX6HT58WKN9//79AgDh559/rnTbhuwL7sfq4f6kp+Gp71qWl5cHAHBwcNCp/6FDj57P++SjOaOiogCgwqlnX19fdOvWTf2+fv36aNGiBW7duqVzjd7e3ggLC6tQR6dOndC1a1d1m729Pf7xj38gJSUFV65c0Xn7ZFx79uyBk5MTQkNDce/ePfWrQ4cOsLe3x/HjxwEAzs7OAICDBw+irKxMxIqpKtyf9CQGdS17/Oi5/Px8nfrfvn0bFhYWaN68uUa7h4cHnJ2dcfv2bY32pk2bVtiGi4tLhWtbVfH29tZaR4sWLSq0Pz5l/mQdVHt+//135Obmws3NDfXr19d4FRQUICsrCwAQFBSEN998E3PmzIGrqyv69u2LzZs3V7jXgcTF/UlP4jXqWubo6IiGDRvi0qVLeq0nk8l06ieXy7W2C3pM6V4Td3hTzVGpVHBzc8OXX36pdfnjG4pkMhm++uor/Pjjj/jmm29w5MgRvPfee1iyZAl+/PFH2Nvb12bZVAnuT3oSg1oEr732GtavX48zZ86gc+fOVfb19PSESqXC77//rnHDV2ZmJnJycuDp6an3+LqG/pN1XL9+vUL7tWvX1MtJHD4+Pvjuu+/QpUsXnX7Jeumll/DSSy9h/vz52L59O4YMGYKdO3di1KhR1fq7QcbF/UlP4qlvEUyZMgV16tTBqFGjkJmZWWH5zZs3sWLFCgBA7969AQDLly/X6LN06VIAQHh4uN7j16lTBwCQk5Oj8zq9e/fG2bNncebMGXVbYWEh1q9fDy8vL/j6+updBxnHW2+9BaVSiblz51ZYVl5ert7P2dnZFc6s+Pn5AYD6dKmdnR0A/f5ukHFxf9KTeEQtAh8fH2zfvh2DBg1Cq1atNGYmO336NPbs2YPhw4cDANq1a4dhw4Zh/fr1yMnJQVBQEM6ePYstW7agX79+6N69u97j+/n5QS6XY+HChcjNzYVCoUCPHj3g5uZW6TrTpk3Djh070KtXL0yYMAF169bFli1bkJycjL1798LCQv/f+bZt24bbt2/j4cOHAICTJ09i3rx5AIB3332XR+k6CgoKwpgxYxAbG4ukpCT07NkTVlZW+P3337Fnzx6sWLECAwYMwJYtW7B69Wr0798fPj4+yM/Px4YNG+Do6Kj+hdDW1ha+vr7YtWsXnn/+edStWxetW7dG69atKx2f+9G4uD+pApHvOjdrv/32mzB69GjBy8tLsLa2FhwcHIQuXboIK1euFIqLi9X9ysrKhDlz5gje3t6ClZWV0KRJE2H69OkafQTh0VerwsPDK4wTFBQkBAUFabRt2LBBaNasmSCXyzW+qlXZNgRBEG7evCkMGDBAcHZ2FmxsbIROnToJBw8e1Oijz9ezgoKCBABaX9q+OkaPPPl1nsfWr18vdOjQQbC1tRUcHByENm3aCFOmTBH+/PNPQRAE4cKFC0JERITQtGlTQaFQCG5ubsJrr70mnDt3TmM7p0+fFjp06CBYW1vr9PUc7kfDcH/S08gEQY+7jIiIiKhW8Ro1ERGRhDGoiYiIJIxBTUREJGEMaiIiIgljUBMREUkYg5qIiEjCGNQStmjRIrRs2RIqlUrsUgw2ePBgvPXWW2KX8Uzh/idtUlJSIJPJEBcXJ3YpVEsY1BKVl5eHhQsXYurUqepZv2QyGWQyGZYsWVKhf1xcHGQyGc6dO2f0WkJDQyGTyTB+/Hityzdu3IhWrVrBxsYGzz33HFauXFmhz9SpU7F3717897//NXp9poj7n4geY1BL1KZNm1BeXo6IiIgKyxYvXqye3q+m7du3T2N+7yetW7cOo0aNwgsvvICVK1eic+fOmDBhAhYuXKjRz9/fHx07dtQaMlQR9z9VxtPTE0VFRXj33XfFLoVqi9hTo5F2bdu2Fd555x2NNgCCn5+fAEBYsmSJxrLNmzcLAISff/7ZaDUUFRUJXl5ewscffywAEMaNG6ex/OHDh0K9evUqTDk6ZMgQoU6dOsKDBw802j/99FOhTp06Qn5+vtFqNFXc/0T0GI+oJSg5ORm//PILQkJCKizr0qULevTogUWLFqGoqKhG61i0aBFUKhUmT56sdfnx48dx//59fPDBBxrt48aNQ2FhIeLj4zXaQ0NDUVhYiKNHj9ZYzaaA+9/0xcTEQCaT4bfffsM777wDJycn1K9fH7NmzYIgCLhz5w769u0LR0dHeHh4aJyJ0HaNevjw4bC3t0daWhr69esHe3t71K9fH5MnT4ZSqVT3S0xMhEwmQ2JiokY92raZkZGBESNGoHHjxlAoFGjQoAH69u2LlJSUGvpTocowqCXo9OnTAID27dtrXR4TE4PMzEysWbOmyu2UlJTg3r17Or2elJqaik8++QQLFy6s9Jm4Fy9eBAB07NhRo71Dhw6wsLBQL3/M19cXtra2+OGHH6qs29xx/5uPQYMGQaVS4ZNPPkFAQADmzZuH5cuXIzQ0FI0aNcLChQvRvHlzTJ48GSdPnqxyW0qlEmFhYahXrx4+/fRTBAUFYcmSJVi/fn21anvzzTexf/9+jBgxAqtXr8aECROQn5+P1NTUam2Pqo+PuZSga9euAQC8vb21Lu/WrRu6d++OxYsXY+zYsZX+IN2xYwdGjBih05jCE89miYqKgr+/PwYPHlzpOunp6ZDL5RUej2ltbY169erhzz//1Gi3tLREkyZNcOXKFZ1qMlfc/+ajU6dOWLduHQDgH//4B7y8vBAVFYXY2FhMnToVABAREYGGDRti06ZNePnllyvdVnFxMQYNGoRZs2YBAN5//320b98eGzduxNixY/WqKycnB6dPn8bixYs1zqhMnz5d349IRsCglqD79+/D0tIS9vb2lfaJiYlBUFAQ1q5diw8//FBrn7CwsGqdZjx+/Dj27t2Ln376qcp+RUVFsLa21rrMxsZG66lZFxcXrUdw9Bfuf/MxatQo9f/L5XJ07NgRf/zxB0aOHKlud3Z2RosWLXDr1q2nbu/999/XeN+tWzds27ZN77psbW1hbW2NxMREjBw5Ei4uLnpvg4yHQf2Mevnll9G9e3csWrSowj/Oxxo0aIAGDRrotd3y8nJMmDAB7777Ll588cUq+9ra2qK0tFTrsuLiYq1HeoIgQCaT6VUTVcT9bxqaNm2q8d7JyQk2NjZwdXWt0H7//v0qt2VjY4P69etrtLm4uCA7O1vvuhQKBRYuXIioqCi4u7vjpZdewmuvvYahQ4fCw8ND7+2RYRjUElSvXj2Ul5cjPz8fDg4OlfaLjo5GcHAw1q1bB2dn5wrLi4qKkJubq9OYj//xbd26FdevX8e6desq3DSSn5+PlJQUuLm5wc7ODg0aNIBSqURWVpbG6c/S0lLcv38fDRs2rDBOdnY2nnvuOZ1qMlfc/+ZDLpfr1AZUvDyh63p/V9kvSX+/4eyxSZMmoU+fPjhw4ACOHDmCWbNmITY2FseOHYO/v/9TxyLj4c1kEtSyZUsAj+7+rUpQUBCCg4OxcOFCracZd+3apT6qetrrsdTUVJSVlaFLly7w9vZWv4BHP8S9vb3x7bffAgD8/PwAoMIkG+fOnYNKpVIvf6y8vBx37txBq1at9PrzMDfc/1RTHp/CzsnJ0Wi/ffu21v4+Pj6IiorCt99+i0uXLqG0tJTfhRcBj6glqHPnzgAe/cBr27ZtlX1jYmIQHBys9c7O6lyjHDx4cIUfsADQv39/9O7dG6NHj0ZAQAAAoEePHqhbty7WrFmD3r17q/uuWbMGdnZ2CA8P19jGlStXUFxcjMDAQL1qMjfc/1RTPD09IZfLcfLkSfTr10/dvnr1ao1+Dx8+hIWFBWxsbNRtPj4+cHBwQElJSW2VS//DoJagZs2aoXXr1vjuu+/w3nvvVdk3KCgIQUFBOHHiRIVl1blG2bJlS/UR3ZO8vb01/nHb2tpi7ty5GDduHAYOHIiwsDB8//33+OKLLzB//nzUrVtXY/2jR4/Czs4OoaGhetVkbrj/qaY4OTlh4MCBWLlyJWQyGXx8fHDw4EFkZWVp9Pvtt9/wyiuv4K233oKvry8sLS2xf/9+ZGZmVvlNAKoZDGqJeu+99zB79mwUFRVV+vWbx2JiYtC9e/daqkzTBx98ACsrKyxZsgRff/01mjRpgmXLlmHixIkV+u7ZswdvvPFGlddd6RHuf6opK1euRFlZGdauXQuFQoG33noLixcvRuvWrdV9mjRpgoiICCQkJGDbtm2wtLREy5YtsXv3brz55psiVm+eZMLT7lAgUeTm5qJZs2ZYtGiRxlc1nlVJSUlo3749Lly4oPXUKmni/ieixxjUErZw4UJs3rwZV65cUT9B6Vk1ePBgqFQq7N69W+xSnhnc/0QEMKiJiIgk7dn+NZ2IiMjEMaiJiIgkjEFNREQkYQxqIiIiCWNQExFRBSkpKZDJZIiLixO7FLPHoCYiMtDNmzcxZswYNGvWDDY2NnB0dESXLl2wYsUKrfOwG8uVK1cQExNT4QEqtW3+/Pl4/fXX4e7uDplMhpiYGFHrMTWcmYyIyADx8fEYOHAgFAoFhg4ditatW6O0tBSnTp3CRx99hMuXL2udi90Yrly5gjlz5iA4OBheXl41MoYuZs6cCQ8PD/j7++PIkSOi1WGqGNRERNWUnJyMwYMHw9PTE8eOHdOYW33cuHG4ceMG4uPjRazwL4IgVPqccEMlJyfDy8sL9+7dq/BMbDIcT30TEVXTokWLUFBQgI0bN2p9AErz5s015j0vLy/H3Llz4ePjA4VCAS8vL8yYMaPCE6m8vLzw2muv4dSpU+jUqRNsbGzQrFkzbN26Vd0nLi4OAwcOBAB0794dMpkMMpkMiYmJGts4cuQIOnbsCFtbW6xbtw4AcOvWLQwcOBB169aFnZ0dXnrpJYN+oRDzaN4cMKiJiKrpm2++QbNmzXR+dOeoUaMwe/ZstG/fHsuWLUNQUBBiY2O1PpHqxo0bGDBgAEJDQ7FkyRK4uLhg+PDhuHz5MgDg5ZdfxoQJEwAAM2bMwLZt27Bt2zaN531fv34dERERCA0NxYoVK+Dn54fMzEwEBgbiyJEj+OCDDzB//nwUFxfj9ddfx/79+43wp0JGJxARkd5yc3MFAELfvn116p+UlCQAEEaNGqXRPnnyZAGAcOzYMXWbp6enAEA4efKkui0rK0tQKBRCVFSUum3Pnj0CAOH48eMVxnu8jcOHD2u0T5o0SQAgfP/99+q2/Px8wdvbW/Dy8hKUSqUgCIKQnJwsABA2b96s0+cTBEG4e/euAECIjo7WeR16Oh5RExFVQ15eHgDo/NjOQ4cOAQAiIyM12qOiogCgwqlnX19fdOvWTf2+fv36aNGiBW7duqVzjd7e3ggLC6tQR6dOndC1a1d1m729Pf7xj38gJSUFV65c0Xn7VDsY1ERE1eDo6AgAyM/P16n/7du3YWFhgebNm2u0e3h4wNnZGbdv39Zob9q0aYVtuLi4IDs7W+cavb29tdbRokWLCu2PT5k/WQeJj0FNRFQNjo6OaNiwIS5duqTXejKZTKd+crlca7ugxwMPa+IOb6p9DGoiomp67bXXcPPmTZw5c+apfT09PaFSqfD7779rtGdmZiInJweenp56j69r6D9Zx/Xr1yu0X7t2Tb2cpIVBTURUTVOmTEGdOnUwatQoZGZmVlh+8+ZNrFixAgDQu3dvAMDy5cs1+ixduhQAEB4ervf4derUAQDk5OTovE7v3r1x9uxZjV8uCgsLsX79enh5ecHX11fvOqhmccITIqJq8vHxwfbt2zFo0CC0atVKY2ay06dPY8+ePRg+fDgAoF27dhg2bBjWr1+PnJwcBAUF4ezZs9iyZQv69euH7t276z2+n58f5HI5Fi5ciNzcXCgUCvTo0QNubm6VrjNt2jTs2LEDvXr1woQJE1C3bl1s2bIFycnJ2Lt3Lyws9D9+27ZtG27fvo2HDx8CAE6ePIl58+YBAN59910epRtK7NvOiYiedb/99pswevRowcvLS7C2thYcHByELl26CCtXrhSKi4vV/crKyoQ5c+YI3t7egpWVldCkSRNh+vTpGn0E4dFXq8LDwyuMExQUJAQFBWm0bdiwQWjWrJkgl8s1vqpV2TYEQRBu3rwpDBgwQHB2dhZsbGyETp06CQcPHtToo8/Xs4KCggQAWl/avjpG+pEJgh53JhAREVGt4jVqIiIiCWNQExERSRiDmoiISMIY1ERERBLGoCYiIpIwBjUREZGEMaiJiIgkjEFNREQkYQxqIiIiCWNQExERSRiDmoiISMIY1ERERBLGoCYiIpKw/weV++7l8pCeagAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -620,7 +620,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "Instead of a Gardner-Altman plot, you can generate a **Cumming estimation plot** by setting ``float_contrast=False`` in the ``plot()`` method. This will plot the bootstrap effect sizes below the raw data."
+ "Instead of a Gardner-Altman plot, you can generate a **Cumming estimation plot** by setting ``float_contrast=False`` in the ``.plot()`` method. This will plot the bootstrap effect sizes below the raw data."
]
},
{
@@ -630,7 +630,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUYAAAInCAYAAADkl/CSAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZNRJREFUeJzt3XdcU9f7B/DPTZAAIoICAS0S3CIVFAURFfSL4t4WJxbrqKMOtK04GC7UOsCtODusaFvrLGhxK4iCWOvABWJVloIyJEhyf3/4M20gaHJJCITn/XrlVe655977YOrjufecew7DsiwLQgghMjxtB0AIIVUNJUZCCCmFEiMhhJRCiZEQQkqhxEgIIaVQYiSEkFIoMRJCSCmUGAkhpBRKjIQQUkqNT4zPnz9HcHAwnj9/ru1QCCFVBCXG588REhJCiZEQIlPjEyMhhJRGiZEQQkqhxEgIIaVUqcR4/vx59O/fHw0aNADDMPj9998/eszZs2fRrl07CAQCNG3aFHv27NF4nIQQ3ValEmNBQQEcHR2xadMmpeqnpKSgb9++6NatG5KSkjBr1ixMmDAB0dHRGo6UEKLL9LQdwH/17t0bvXv3Vrr+1q1bYWdnhzVr1gAAWrVqhYsXL2LdunXw9vbWVJiEEB1XpRKjqmJjY+Hl5SVX5u3tjVmzZpV7jFgshlgslm3n5+drKrxyTV2zDzl5hZV+XW0xq2OEzXNGaTsMjUraORPF+TnaDqPS6BubwemLcG2HoTHVOjGmp6dDKBTKlQmFQrx+/Rpv3ryBoaFhmWNCQ0MREhJSWSEqlJNXiOxXlZ+QieYU5+egOO+FtsMgalKtEyMXAQEB8Pf3l20nJSXBw8NDK7HwGAb1TGpr5dqV4eXrAkhr2pJCDA/6xmbajkJjivNzAFaq7TA0rlonRisrK2RkZMiVZWRkwMTERGFrEQAEAgEEAoFs29jYWKMxfkg9k9r4OXiC1q6vaSODd9S4lrG+sRlcZn6v7TA0Jj7ct0a0jNXWK82yLE6fPo0//vgDeXl56jrtB7m5uSEmJkau7NSpU3Bzc6uU6xNCdBOnxLhgwQJ069ZNts2yLHr27IkePXqgb9+++PTTT/Hw4UOVz5ufn4+kpCQkJSUBeDccJykpCWlpaQDe3Qb7+vrK6n/55Zd49OgRvvnmG9y9exebN2/GgQMHMHv2bC6/FiGEAOCYGH/99Ve4uLjItn/55RfExMRg6dKlOHbsGCQSCYKDg1U+77Vr19C2bVu0bdsWAODv74+2bdsiMDAQwLsJH94nSQCws7PD8ePHcerUKTg6OmLNmjXYsWMHDdUhhFQIp2eMT58+RdOmTWXbv/32G+zt7REQEAAAmDJlCrZs2aLyeT09PcF+4GG9ordaPD09cf36dZWvRQgh5eHUYtTT05ONBWRZFjExMejVq5dsv1AoRHZ2tnoiJISQSsYpMTo4OODHH39ETk4Odu/ejRcvXqBv376y/Y8fP4a5ubnagiSEkMrE6VY6MDAQ/fv3lyU/d3d3uc6Y48ePo0OHDuqJkBBCKhmnxNijRw8kJibi1KlTMDU1hY+Pj2xfTk4OunbtioEDB6otSEIIqUycB3jb29vD3t6+TLmZmRnWrVtXoaAIIUSbOCXGvLw85ObmwsbGRlb27NkzbN26FWKxGMOGDaNbaUJItcUpMU6aNAkpKSmIi4sDALx+/RodO3bEP//8Ax6Ph/DwcERFRcHT01OdsRJCSKXg1Ct98eJF9OvXT7b9448/4tmzZ7h8+TJycnLQpk0bLF26VG1BEkJIZeKUGLOzs9GwYUPZ9pEjR9C5c2d07NgRderUga+vL27cuKG2IAkhpDJxSoympqZIT08HALx58wYXLlxAz549Zfv19PRQWFhzJmIlhOgWTs8YO3XqhM2bN6Nly5aIiopCUVGR3PCce/fuybUoCSGkOuGUGFeuXImePXti6NChAIA5c+agdevWAACJRIKDBw/KvSJICCHVCafE2LRpUyQnJ+P27duoW7cuRCKRbF9hYSE2btwIR0dHdcVICCGVivMA71q1ailMfnXq1KG3Xggh1RrnGbxfv36NFStWwNvbG23btkV8fDwA4OXLl1i7di0ePHigtiAJIaQycWox/vPPP/Dw8MCTJ0/QrFkz3L17V7YMab169bBt2zY8fvwY4eG6u7wiIUR3cUqMX3/9NfLy8pCUlARLS0tYWlrK7R80aBCOHTumlgAJIaSycbqVPnnyJGbMmAF7e3swDFNmf+PGjfHkyZMKB0cIIdrAKTG+efMGFhYW5e6vrFUCCSFEEzglRnt7e5w/f77c/b///rtsQStCCKluOCXGWbNmYf/+/Vi5ciVevXoFAJBKpXjw4AHGjh2L2NhYWsKUEFJtcep8GTNmDB4/foyFCxdiwYIFAIBevXqBZVnweDwsX74cgwYNUmechBBSaTgP8F6wYAHGjh2LX3/9FQ8ePIBUKkWTJk0wZMgQNG7cWJ0xEkJIpeKcGAGgUaNGdMtMCNE5nJ4xJiYmYvPmzeXu37x5M5KSkrjGRAghWsUpMS5YsAB//vlnuftPnz6NhQsXcg6KEEK0iVNiTEhIQJcuXcrd36VLF1y7do1zUIQQok2cEmNeXh709Mp/PMnj8WTDeFS1adMmiEQiGBgYwNXVVTY5RXnCwsLQokULGBoawsbGBrNnz0ZRURGnaxNCCMAxMTZr1gwnT54sd39UVBSnnunIyEj4+/sjKCgIiYmJcHR0hLe3NzIzMxXW37dvH+bNm4egoCDcuXMHO3fuRGRkJObPn6/ytQkh5D1OifGLL77A8ePH4e/vj9zcXFl5bm4uZs+ejaioKHzxxRcqn3ft2rWYOHEi/Pz8YG9vj61bt8LIyAi7du1SWP/y5ctwd3fHqFGjIBKJ0LNnT4wcOfKjrUxCCPkQTolxxowZGDduHMLCwmBubo5GjRqhUaNGMDc3R3h4OMaMGaPyMJ7i4mIkJCTAy8vr3+B4PHh5eSE2NlbhMZ06dUJCQoIsET569AgnTpxAnz59uPxahBACgOM4RoZhsHv3bvj6+uLXX3/Fo0ePAAADBw7E0KFD4enpqfI5s7OzIZFIIBQK5cqFQiHu3r2r8JhRo0YhOzsbnTt3BsuyKCkpwZdffvnBW2mxWAyxWCzbfj+PJCHVTfv27ZGeng4rKyvq7FSzCg3w7tatG7p166auWFR29uxZLF++HJs3b4arqysePHiAmTNnYsmSJVi0aJHCY0JDQxESElLJkRKifunp6Xj69Km2w9BJnG6lU1JScPTo0XL3Hz16FKmpqSqd09zcHHw+HxkZGXLlGRkZsLKyUnjMokWLMHbsWEyYMAGffvopBg8ejOXLlyM0NBRSqVThMQEBAXj16pXsc+7cOZXiJIToPk6Jce7cuVi/fn25+zdt2oR58+apdE59fX04OzsjJiZGViaVShETEwM3NzeFxxQWFoLHk/8V+Hw+AIBlWYXHCAQCmJiYyD7GxsYqxUkI0X2cEmNsbCx69OhR7v7//e9/uHDhgsrn9ff3R0REBPbu3Ys7d+5gypQpKCgogJ+fHwDA19cXAQEBsvr9+/fHli1bsH//fqSkpODUqVNYtGgR+vfvL0uQhBCiKk7PGHNyclCnTp1y9xsbG+PFixcqn9fHxwdZWVkIDAxEeno6nJycEBUVJeuQSUtLk2shLly4EAzDYOHChXj69CksLCzQv39/LFu2TPVfihBC/h+nxNioUSNcunQJU6ZMUbj/woUL+OSTTzgFNH36dEyfPl3hvrNnz8pt6+npISgoCEFBQZyuRQghinC6lR45ciR+/vlnrF+/Xq6TQyKRIDw8HJGRkRg1apTagiSEkMrEqcUYEBCAixcvYtasWVi2bBlatGgBAEhOTkZWVhY8PT1lM3sTQkh1w6nFKBAIcPLkSezcuRMuLi7Izs5GdnY2XFxcsGvXLvz5558QCATqjpUQQioF5wHePB4Pfn5+sh5jQgjRFZxajIQQoss4tRi7d+/+0ToMw8gN1iaEkOqCU2KUSqVgGEauTCKR4PHjx3jy5AmaNm2Khg0bqiVAQohi71+VLe+VWcIdp8RYejzhfx07dgyTJk3C2rVrucZECFECzaijORWaXUeRfv36YcyYMZg1axZN0EBqlFdMXSC/BMeX6fYY3rraDqASaKTzpUmTJrh69aomTk0IIRqn9hZjSUkJDhw4AHNzc3WfmhDyH7M2RyMn/w3MjA0RNtVb2+HoFE6Jcfz48QrLc3NzERcXh/T0dHrGSIiG5eS/wYvXb7Qdhk7ilBhPnz5dpleaYRiYmZmhc+fOmDBhAnr27KmWAAkhpLJxSoyqzs5NCCHVCb35QgghpSidGAsLC5GWlobi4uIy+3bt2oX//e9/sLe3x5AhQ6hHmhBSrSmdGBcvXow2bdqUSYxLly7FxIkTce7cOWRlZeH333+Hp6cnbty4ofZgCSGkMiidGM+cOYN+/frJLR71+vVrLF26FA0bNsT9+/eRlZWFuLg46OvrY8WKFRoJmBBCNE3pxJiamoo2bdrIlZ04cQLFxcX49ttvYWdnBwBwcXGBn58fp8WwCCGkKlA6Mebl5aF+/fpyZefPnwfDMPD2lh9cam9vj6ysLPVESAghlUzpxGhra4u7d+/KlZ09exZCoRBNmzaVKy8uLoaJiYl6IiSEkEqmdGLs2bMndu3ahStXrgAAvv/+e9y9exeDBw8uUzchIQEikUhtQRJCSGVSeoD3okWL8Pvvv6NTp07g8/koKSmBhYUFAgMD5eoVFhbi0KFDmDRpktqDJYT8y8zYUO6/RH2UTozm5uZISkrCjh078OjRI9ja2mL8+PGwtLSUq/f3339j9OjRGDt2rNqDJYT8iyaO0ByVXgk0MzPD119//cE6Li4ucHFxqVBQhBCiTfRKICGElEKJkRBCSqHESAghpVS5xLhp0yaIRCIYGBjA1dUV8fHxH6yfm5uLadOmwdraGgKBAM2bN8eJEycqKVpCiC5SKjEeOXIEz54903QsiIyMhL+/P4KCgpCYmAhHR0d4e3sjMzNTYf3i4mL06NEDqamp+OWXX5CcnIyIiAhaupUQUiFKJcbBgwfLLZnauHFjHDlyRO3BrF27FhMnToSfnx/s7e2xdetWGBkZYdeuXQrr79q1Cy9fvsTvv/8Od3d3iEQieHh4wNHRUe2xEUJqDqUSY506dZCbmyvbTk1NRX5+vloDKS4uRkJCAry8vP4NjseDl5cXYmNjFR5z5MgRuLm5Ydq0aRAKhXBwcMDy5cshkUjKvY5YLMbr169lH3X/HoSQ6k+pcYwuLi5YtmwZMjIyULfuu1VlT5w4gfT09HKPYRgGs2fPVjqQ7OxsSCQSCIVCuXKhUFjmHe33Hj16hNOnT2P06NE4ceIEHjx4gKlTp+Lt27cICgpSeExoaChCQkKUjosQUvMolRg3b94MX19fLFmyBMC7pLdv3z7s27ev3GNUTYxcSKVSWFpaYvv27eDz+XB2dsbTp0/x3XfflZsYAwIC4O/vL9tOSkqCh4eHRuMkhFQvSiXGpk2b4vLlyygqKkJmZiZEIhHCwsIwcOBAtQVibm4OPp+PjIwMufKMjAxYWVkpPMba2hq1atUCn8+XlbVq1Qrp6ekoLi6Gvr5+mWMEAgEEAoFs+78T7xJCCKDiK4EGBgZo1KgRgoKC0L17d9ja2qotEH19fTg7OyMmJgaDBg0C8K5FGBMTg+nTpys8xt3dHfv27YNUKgWP9+5x6b1792Btba0wKRJCiDI4jWMMCgqCg4MDACA/Px937tzBnTt3KtyR4e/vj4iICOzduxd37tzBlClTUFBQAD8/PwCAr68vAgICZPWnTJmCly9fYubMmbh37x6OHz+O5cuXY9q0aRWKgxBSs3FaVxoArl69im+++QYXL16EVCoF8K4XuUuXLli1ahXat2+v8jl9fHyQlZWFwMBApKenw8nJCVFRUbIOmbS0NFnLEABsbGwQHR2N2bNno02bNmjYsCFmzpyJb7/9luuvRQgh3BLjlStX4OnpCX19fUyYMAGtWrUCANy5cwc///wzunbtirNnz3KaZWf69Onl3jr/dyzle25uboiLi1P5OoQQUh5OiXHBggVo2LAhLl68WKZjJDg4GO7u7liwYAFOnTqlliAJIaQycXrGeOXKFUyePFlhb7FQKMSkSZOoFUcIqbY4JUYej4eSkpJy90skErlngYQQUp1wyl6dOnXCpk2b8Pjx4zL70tLSsHnzZri7u1c4OEII0QZOzxiXL1+Orl27omXLlhg8eDCaN28OAEhOTsbhw4ehp6eH0NBQtQZKCCGVhVNibNu2La5cuYIFCxbgyJEjKCwsBAAYGRmhV69eWLp0Kezt7dUaKCGEVBbO4xjt7e1x6NAhSKVSZGVlAQAsLCzo2SIhpNrjnBjf4/F4ZWbEIYSQ6oyad4QQUgolRkIIKYUSIyGElEKJkRBCSqHESAghpVSoV/r27dt49OgRcnJywLJsmf2+vr4VOT0hhGgFp8T48OFDjBkzBvHx8QoTIvBuzRdKjISQ6ohTYpw8eTJu3ryJsLAwdOnSBWZmZuqOixBCtIZTYrx06RLmz5+Pr776St3xEEKI1nHqfDE3N5etL00IIbqGU2L88ssv8eOPP0Iikag7HkII0TpOt9LNmzeHRCKBo6Mjxo8fDxsbG7m1nd8bMmRIhQMkhJDKxikx+vj4yH6eO3euwjoMw1CLkhBSLXFKjGfOnFF3HIQQUmVwSoweHh7qjoMQQqqMCs/HePv2bdnaL7a2tjRzNyGk2uOcGA8fPgx/f3+kpqbKldvZ2WHt2rUYMGBARWMjhBCt4DRc58SJExg6dCiAdwtjHTp0CIcOHcLy5cvBsiyGDBmCqKgotQZKCCGVhVOLccmSJWjTpg0uXLiA2rVry8oHDBiA6dOno3PnzggJCUGvXr3UFighhFQWTi3Gv/76C+PGjZNLiu/Vrl0bn3/+Of766y/OQW3atAkikQgGBgZwdXVFfHy8Usft378fDMNg0KBBnK9NCCGcEqOBgQFevnxZ7v6XL1/CwMCAU0CRkZHw9/dHUFAQEhMT4ejoCG9vb2RmZn7wuNTUVMydOxddunThdF1CCHmPU2Ls3r07wsPDERsbW2bflStXsH79enh5eXEKaO3atZg4cSL8/Pxgb2+PrVu3wsjICLt27Sr3GIlEgtGjRyMkJASNGzfmdF1CCHmP0zPGVatWwc3NDZ07d4aLiwtatGgBAEhOTkZ8fDwsLS2xcuVKlc9bXFyMhIQEBAQEyMp4PB68vLwUJuH3Fi9eDEtLS3zxxRe4cOHCB68hFoshFotl2/n5+SrHSQjRbZxajHZ2dvjrr78wY8YM5OTkIDIyEpGRkcjJycHMmTNx48YNiEQilc+bnZ0NiURSZp1qoVCI9PR0hcdcvHgRO3fuREREhFLXCA0NRd26dWUfGqxOCCmN8zhGS0tLrFu3DuvWrVNnPCrJy8vD2LFjERERAXNzc6WOCQgIgL+/v2w7KSmJkiMhRE6F33xRJ3Nzc/D5fGRkZMiVZ2RkwMrKqkz9hw8fIjU1Ff3795eVSaVSAICenh6Sk5PRpEkTuWMEAgEEAoFs29jYWJ2/AiFEByiVGMePHw+GYbB9+3bw+XyMHz/+o8cwDIOdO3eqFIy+vj6cnZ0RExMjG3IjlUoRExOD6dOnl6nfsmVL3Lx5U65s4cKFyMvLQ3h4OGxsbFS6PiGEAEomxtOnT4PH40EqlYLP5+P06dNgGOaDx3xsf3n8/f0xbtw4tG/fHi4uLggLC0NBQQH8/PwAvFt5sGHDhggNDYWBgQEcHBzkjjc1NQWAMuWEEKIspRJj6fehS2+rk4+PD7KyshAYGIj09HQ4OTkhKipK1iGTlpYGHo+WwyaEaA6nZ4xpaWmwsLCAoaGhwv1v3rxBVlYWGjVqxCmo6dOnK7x1BoCzZ89+8Ng9e/ZwuiYhhLzHebjOoUOHyt1/5MgR2NnZcQ6KEEK0iVNiZFn2g/vfvn1Lt7uEkGpL6Vvp169fIzc3V7b94sULpKWllamXm5uL/fv3w9raWi0BEkJIZVM6Ma5btw6LFy8G8K7HedasWZg1a5bCuizLYunSpWoJkBBCKpvSibFnz54wNjYGy7L45ptvMHLkSLRr106uDsMwqF27NpydndG+fXu1B0sIIZVB6cTo5uYGNzc3AEBBQQGGDh1KYwUJITpJ5eE6hYWFWL9+PYyMjCgxEkJ0kspdx0ZGRtDT01M4ezchhOgCTmNqhg4dil9++eWjw3YIIaQ64vTmy4gRIzB16lR069YNEydOhEgkUvgWTOnOGUIIqQ44JUZPT0/Zz4pmzGZZFgzDQCKRcA6MEEK0hVNi3L17t7rjIISQKoNTYhw3bpy64yCEkCqjwjN45+fn48mTJwAAGxsbmhGbEFLtcZ7p4erVq+jWrRvMzMzg4OAABwcHmJmZoXv37rh27Zo6YySEkErFqcV45coVeHp6Ql9fHxMmTECrVq0AAHfu3MHPP/+Mrl274uzZs3BxcVFrsIQQUhk4JcYFCxagYcOGuHjxYplFqoKDg+Hu7o4FCxbg1KlTagmSEEIqE6db6StXrmDy5MkKV+4TCoWYNGkS4uLiKhwcIYRoA6fEyOPxUFJSUu5+iURCE9USQqotTtmrU6dO2LRpEx4/flxmX1paGjZv3gx3d/cKB0cIIdrA6Rnj8uXL0bVrV7Rs2RKDBw9G8+bNAQDJyck4fPgw9PT0EBoaqtZACSGksnBKjG3btsWVK1ewYMECHDlyBIWFhQDezbzTq1cvLF26FPb29moNlBBCKgvnAd729vY4dOgQpFIpsrKyAAAWFhb0bJEQUu1V+M0XhmHAMIzsZ0IIqe44N+9u376NYcOGwcTEBNbW1rC2toaJiQmGDRuGv//+W50xEkJIpeLUYrxw4QJ69+4NqVSKgQMHynW+HDlyBH/88QeioqLQpUsXtQZLCCGVgVNinD17NiwtLXHu3DnY2NjI7Xvy5Am6du0Kf39/XL16VS1BEkJIZeJ0K33r1i1MnTq1TFIE3s2wM2XKFNy6dYtzUJs2bYJIJIKBgQFcXV0RHx9fbt2IiAh06dIFZmZmMDMzg5eX1wfrE0LIx3BKjLa2thCLxeXuLy4uVpg0lREZGQl/f38EBQUhMTERjo6O8Pb2RmZmpsL6Z8+exciRI3HmzBnExsbCxsYGPXv2xNOnTzldnxBCOCXGwMBArF+/HklJSWX2Xb9+HRs2bEBwcDCngNauXYuJEyfCz88P9vb22Lp1K4yMjLBr1y6F9X/66SdMnToVTk5OaNmyJXbs2AGpVIqYmBhO19dV7du3xyeffIL27dtrOxRCqjxOzxjj4uIgFArh7OyMTp06oWnTpgCA+/fvIzY2Fg4ODoiNjUVsbKzsGIZhEB4e/sHzFhcXIyEhAQEBAbIyHo8HLy8vuXN9SGFhId6+fYt69eop3C8Wi+Vau/n5+Uqdt7pLT0+nVjQhSuKUGDdu3Cj7+dKlS7h06ZLc/ps3b+LmzZtyZcokxuzsbEgkEgiFQrlyoVCIu3fvKhXbt99+iwYNGsDLy0vh/tDQUISEhCh1LkJIzcTpVloqlar8qYwVA1esWIH9+/fj0KFDMDAwUFgnICAAr169kn3OnTun8bgIIdVLhd98USdzc3Pw+XxkZGTIlWdkZCic+/G/Vq9ejRUrVuDPP/9EmzZtyq0nEAggEAhk27RGDSGktAolxpSUFPzxxx+y6cdsbW3Ru3dv2NnZcTqfvr4+nJ2dERMTg0GDBgGArCNl+vTp5R63atUqLFu2DNHR0dS5QAipMM6Jcc6cOQgPD4dUKpUr5/F4mDVrFlavXs3pvP7+/hg3bhzat28PFxcXhIWFoaCgAH5+fgAAX19fNGzYUDat2cqVKxEYGIh9+/ZBJBIhPT0dwLuWILUGCSFccHrGuGbNGqxbtw5DhgxBbGwscnNzkZubi9jYWAwbNgzr1q3DunXrOAXk4+OD1atXIzAwEE5OTkhKSkJUVJSsQyYtLQ3Pnz+X1d+yZQuKi4sxbNgw2Tvb1tbWnBMzIYRwajFGRERgwIABOHDggFy5q6sr9u/fj6KiImzbtg2zZ8/mFNT06dPLvXU+e/as3HZqaiqnaxBCSHk4tRhTU1Ph7e1d7n5vb29KWISQaotTi9HS0hI3btwod/+NGzdgYWHBOSiifu979T/Wu08I4ZgYhw8fjvDwcIhEInz11VeoXbs2AKCgoAAbN27Ejh07MGvWLHXGSSro2rVr2g6BkGqDU2JcsmQJkpKSMH/+fAQGBqJBgwYAgGfPnqGkpATdunXD4sWL1RqorjFiC1GYW4iBs5ZrOxTNYoy0HQEhKuOUGI2MjBATE4PDhw/LjWPs1asX+vTpg/79+9MyB4SQakvlxFhYWIgxY8Zg6NChGD16NAYOHKiJuIianft5E8SF+RAYGcNj5DRth0NIlaZyr7SRkRH+/PNP2ZKppHoQF+ajKP81xIU1YzYhQiqC03Cdzp07Kz0NGCGEVDecEuPGjRtx4cIFLFy4EP/884+6YyKEEK3ilBgdHR3xzz//IDQ0FLa2thAIBDAxMZH71K1bV92xEkJIpeDUKz106FDqdSaE6CxOiXHPnj1qDoMQQqoOlRJjUVERDh8+jJSUFJibm6Nv376wtrbWVGyEEKIVSifGzMxMdOrUCSkpKWBZFsC7oTu///57ueurEEJIdaR058uSJUuQmpqK2bNn49ixYwgLC4OhoSEmT56syfgIIaTSKd1iPHnyJHx9feUmgBUKhRg1ahSSk5PRokULjQRI1ENgZCz3X0JI+ZROjGlpafj222/lyjp37gyWZZGRkUGJsYqj1wAJUZ7St9JisbjMkqTvt0tKStQbFSGEaJFKvdKpqalITEyUbb969QoAcP/+fZiampap365du4pFRwghWqBSYly0aBEWLVpUpnzq1Kly2yzLgmEYSCSSikVHCCFaoHRi3L17tybjIISQKkPpxDhu3DhNxkEIIVUGp0kkCCFEl1FiJISQUigxEkJIKZQYCSGkFEqMhBBSSpVMjJs2bYJIJIKBgQFcXV0RHx//wfoHDx5Ey5YtYWBggE8//RQnTpyopEgJIbqoyiXGyMhI+Pv7IygoCImJiXB0dIS3tzcyMzMV1r98+TJGjhyJL774AtevX8egQYMwaNAg/P3335UcOSFEV1S5xLh27VpMnDgRfn5+sLe3x9atW2FkZIRdu3YprB8eHo5evXrh66+/RqtWrbBkyRK0a9cOGzdurOTICSG6okolxuLiYiQkJMhNfMvj8eDl5VXucq2xsbFlJsr19vam5V0JIZxxWvNFU7KzsyGRSCAUCuXKhUIh7t69q/CY9PR0hfXT09MV1heLxRCLxbLt/PyaswB9UcFrFBXkVe41GQPwCo3kJh/RRXefvEDOm8qfG6BeHUPUq2NY6dfVdVUqMVaG0NBQhISEyJV5eHhU6to1PwdPqLRrvScWi+Ht7Y3z585V+rUB4OT2pVq5rq7z8PBAdPR+CAQCbYeiU6pUYjQ3Nwefz0dGRoZceUZGBqysrBQeY2VlpVL9gIAA+Pv7y5UJBAKd/x9LLBbj3LlzOHfuHIyNaRZvXZCfnw8PDw+IxWKd//+3slWpxKivrw9nZ2fExMRg0KBBAACpVIqYmBhMnz5d4TFubm6IiYnBrFmzZGWnTp2Cm5ubwvo1IQl+iJOTE0xMTLQdBlGD169fazsEnVWlEiMA+Pv7Y9y4cWjfvj1cXFwQFhaGgoIC+Pn5AQB8fX3RsGFDhIaGAgBmzpwJDw8PrFmzBn379sX+/ftx7do1bN++XZu/BiGkGqtyidHHxwdZWVkIDAxEeno6nJycEBUVJetgSUtLA4/3b2d6p06dsG/fPixcuBDz589Hs2bN8Pvvv8PBwUFbvwIhpJpj2PeLRBOdJhaLERoaioCAgBr9KEGX0HeqOZQYCSGklCo1wJsQQqoCSoyEEFIKJUZCCCmFEiPhJDU1FQzDYM+ePdoOhRC1o8RYCR4+fIjJkyejcePGMDAwgImJCdzd3REeHo43b95o7Lq3b99GcHAwUlNTNXYNZSxbtgwDBgyAUCgEwzAIDg7WajyVhWEYpT5nz56t8LUKCwsRHBys0rlq6veijCo3jlHXHD9+HMOHD4dAIICvry8cHBxQXFyMixcv4uuvv8atW7c0Nhj99u3bCAkJgaenJ0QikUauoYyFCxfCysoKbdu2RXR0tNbiqGw//PCD3Pb333+PU6dOlSlv1apVha9VWFgomwPA09NTqWNq6veiDEqMGpSSkoIRI0bA1tYWp0+flpuoYtq0aXjw4AGOHz+uxQj/xbIsioqKYGio/plaUlJSIBKJkJ2dDQsLC7Wfv6oaM2aM3HZcXBxOnTpVplxbaur3ogy6ldagVatWIT8/Hzt37lQ4e0/Tpk0xc+ZM2XZJSQmWLFmCJk2aQCAQQCQSYf78+XLTpAGASCRCv379cPHiRbi4uMDAwACNGzfG999/L6uzZ88eDB8+HADQrVu3Mrdt788RHR2N9u3bw9DQENu2bQMAPHr0CMOHD0e9evVgZGSEjh07ViiBa7O1WtVJpVKEhYWhdevWMDAwgFAoxOTJk5GTkyNX79q1a/D29oa5uTkMDQ1hZ2eH8ePHA3j3vPd9YgsJCZF91x+7NabvpXzUYtSgo0ePonHjxujUqZNS9SdMmIC9e/di2LBhmDNnDq5cuYLQ0FDcuXMHhw4dkqv74MEDDBs2DF988QXGjRuHXbt24fPPP4ezszNat26Nrl27YsaMGVi/fj3mz58vu137721bcnIyRo4cicmTJ2PixIlo0aIFMjIy0KlTJxQWFmLGjBmoX78+9u7diwEDBuCXX37B4MGD1fcHRDB58mTs2bMHfn5+mDFjBlJSUrBx40Zcv34dly5dQq1atZCZmYmePXvCwsIC8+bNg6mpKVJTU/Hbb78BACwsLLBlyxZMmTIFgwcPxpAhQwAAbdq00eavVr2xRCNevXrFAmAHDhyoVP2kpCQWADthwgS58rlz57IA2NOnT8vKbG1tWQDs+fPnZWWZmZmsQCBg58yZIys7ePAgC4A9c+ZMmeu9P0dUVJRc+axZs1gA7IULF2RleXl5rJ2dHSsSiViJRMKyLMumpKSwANjdu3cr9fuxLMtmZWWxANigoCClj9El06ZNY//7V+7ChQssAPann36SqxcVFSVXfujQIRYAe/Xq1XLPXZE/25r+vShCt9Ia8n5KqDp16ihV//3KhqXnipwzZw4AlLmVtbe3R5cuXWTbFhYWaNGiBR49eqR0jHZ2dvD29i4Th4uLCzp37iwrMzY2xqRJk5Camorbt28rfX7yYQcPHkTdunXRo0cPZGdnyz7Ozs4wNjbGmTNnAACmpqYAgGPHjuHt27dajLjmoMSoIe/nPMzLU24pgcePH4PH46Fp06Zy5VZWVjA1NcXjx4/lyhs1alTmHGZmZmWeTX2InZ2dwjhatGhRpvz9LXjpOAh39+/fx6tXr2BpaQkLCwu5T35+vmxlTA8PDwwdOhQhISEwNzfHwIEDsXv37jLPnon60DNGDTExMUGDBg1UXsaVYRil6vH5fIXlrApzgmiiB5ooTyqVwtLSEj/99JPC/e87VBiGwS+//IK4uDgcPXoU0dHRGD9+PNasWYO4uDiakV0DKDFqUL9+/bB9+3bExsaWO6P4e7a2tpBKpbh//75cB0lGRgZyc3Nha2ur8vWVTbKl40hOTi5T/n4xMi5xEMWaNGmCP//8E+7u7kr9I9WxY0d07NgRy5Ytw759+zB69Gjs378fEyZM4PRdk/LRrbQGffPNN6hduzYmTJhQZl0a4N0bMeHh4QCAPn36AADCwsLk6qxduxYA0LdvX5WvX7t2bQBAbm6u0sf06dMH8fHxcsvPFhQUYPv27RCJRLC3t1c5DqLYZ599BolEgiVLlpTZV1JSIvvecnJyytwJODk5AYDsdtrIyAiAat81KR+1GDWoSZMm2LdvH3x8fNCqVSu5N18uX76MgwcP4vPPPwcAODo6Yty4cdi+fTtyc3Ph4eGB+Ph47N27F4MGDUK3bt1Uvr6TkxP4fD5WrlyJV69eQSAQoHv37rC0tCz3mHnz5uHnn39G7969MWPGDNSrVw979+5FSkoKfv31V7nZ05X1ww8/4PHjxygsLAQAnD9/HkuXvls1cOzYsTW2Ferh4YHJkycjNDQUSUlJ6NmzJ2rVqoX79+/j4MGDCA8Px7Bhw7B3715s3rwZgwcPRpMmTZCXl4eIiAiYmJjI/kE1NDSEvb09IiMj0bx5c9SrVw8ODg4fnMmevpcP0Ha3eE1w7949duLEiaxIJGL19fXZOnXqsO7u7uyGDRvYoqIiWb23b9+yISEhrJ2dHVurVi3WxsaGDQgIkKvDsu+G2vTt27fMdTw8PFgPDw+5soiICLZx48Ysn8+XG7pT3jlYlmUfPnzIDhs2jDU1NWUNDAxYFxcX9tixY3J1VBmu4+HhwQJQ+FE0lEhXlR6u89727dtZZ2dn1tDQkK1Tpw776aefst988w377NkzlmVZNjExkR05ciTbqFEjViAQsJaWlmy/fv3Ya9euyZ3n8uXLrLOzM6uvr6/U8Bv6XspHM3gTQkgp9IyREEJKocRICCGlUGIkhJBSKDESQkgplBgJIaQUSoxVwKpVq9CyZUtIpVJth1JhI0aMwGeffabtMLSKvk8doO3xQjXdq1ev2Hr16rG7du2SleH/x5KtXr26TP3du3d/dAoqrry8vFgA7LRp0xTu37FjB9uyZUtWIBCwTZs2ZdevX1+mTmJiIsvj8dikpCS1x1cd0PepG6jFqGW7du1CSUkJRo4cWWbfd999J3srQdN+++03udcAS9u2bRsmTJiA1q1bY8OGDXBzc8OMGTOwcuVKuXpt27ZF+/btsWbNGk2HXCXR96kjtJ2Za7o2bdqwY8aMkSsDwDo5ObEA2DVr1sjt00QL482bN6xIJGIXL16ssIVRWFjI1q9fv8ybMqNHj2Zr167Nvnz5Uq589erVbO3atdm8vDy1xVhd0PepG6jFqEUpKSn466+/4OXlVWafu7s7unfvjlWrVml0iVXg3TMxqVSKuXPnKtx/5swZvHjxAlOnTpUrnzZtGgoKCspMotujRw8UFBTg1KlTGou5KqLvU3dQYtSiy5cvAwDatWuncH9wcDAyMjKwZcuWD55HLBbLzQD9oU9paWlpWLFiBVauXFnu1FfXr18HALRv316u3NnZGTweT7b/PXt7exgaGuLSpUsfjFvX0PepO2h2HS16P8ehopm0AaBLly7o1q0bvvvuO0yZMqXc/9F//vln+Pn5KXVNttSr8XPmzEHbtm0xYsSIco95/vw5+Hx+mVl59PX1Ub9+fTx79kyuXE9PDzY2NjVuGQT6PnUHJUYtevHiBfT09D44A3NwcDA8PDywdetWzJ49W2Edb29vTrc5Z86cwa+//oorV658sN6bN2+gr6+vcJ+BgYHCW0MzMzOFLRpdRt+n7qDEWMV17doV3bp1w6pVq/Dll18qrGNtba1w3eoPKSkpwYwZMzB27Fh06NDhg3UNDQ1RXFyscF9RUZHClg/LsjSrtAL0fVYPlBi1qH79+igpKUFeXt4HVxMMCgqCp6cntm3bJlsx7r/evHmDV69eKXVNKysrAMD333+P5ORkbNu2DampqXJ18vLykJqaCktLSxgZGcHa2hoSiQSZmZlyt1/FxcV48eIFGjRoUOY6OTk5aNasmVIx6Qr6PnUHdb5oUcuWLQG86838EA8PD3h6emLlypUKb3MiIyNlrYyPfd5LS0vD27dv4e7uDjs7O9kHePeXzM7ODidPngTw7zT6165dk7vutWvXIJVKZfvfKykpwZMnT+TWrqkJ6PvUHdRi1KL3C2Rdu3YNbdq0+WDd4OBgeHp6Yvv27WX2cXkmNWLEiDJ/AQBg8ODB6NOnDyZOnAhXV1cAQPfu3VGvXj1s2bJFNpU+AGzZsgVGRkZl1qO5ffs2ioqK0KlTJ5Viqu7o+9Qh2h1GSRwcHNiRI0fKlaGc17j+OxW9Jl4h+9C1N23axAJghw0bxkZERLC+vr4sAHbZsmVl6q5evZo1MjJiX79+rZEYqzL6PnUDJUYtW7t2LWtsbMwWFhbKysr7n/nMmTNa+4vEsu/WJmnRogWrr6/PNmnShF23bh0rlUrL1HN1dS3z9kdNQd+nbqDEqGW5ublsvXr12B07dmg7FLW4fv06yzAMe/36dW2HohX0feoGWgyrCli5ciV2796N27dvc1qetCoZMWIEpFIpDhw4oO1QtIa+z+qPEiMhhJRSvf85I4QQDaDESAghpVBiJISQUigxEkJIKZQYCSGkFEqMhBBSCiVGQggphRIjIYSUQomREEJKocRICCGlUGIkhJBSKDESQkgplBgJIaSUGp8Ynz9/juDgYDx//lzboRBCqghKjM+fIyQkhBIjIUSmxidGQggpjRIjIYSUQomREEJKocRICCGlUGIkhJBSKDESQkgplBgJIaQUSoyEVGeFL7UdgU6ixEhIdUaJUSMoMRJSnZW80XYEOokSIyHVmThf2xHopAonxufPn+PGjRsoKChQRzyEEFWI87QdgU7inBgPHz6Mli1b4pNPPkG7du1w5coVAEB2djbatm2L33//XV0xEkLKU/RK2xHoJE6J8ejRoxgyZAjMzc0RFBQElmVl+8zNzdGwYUPs3r1bbUESQsrxJkfbEegkTolx8eLF6Nq1Ky5evIhp06aV2e/m5obr169zCmjTpk0QiUQwMDCAq6sr4uPjP1g/LCwMLVq0gKGhIWxsbDB79mwUFRVxujYh1U5htrYj0EmcEuPff/+Nzz77rNz9QqEQmZmZKp83MjIS/v7+CAoKQmJiIhwdHeHt7V3uufbt24d58+YhKCgId+7cwc6dOxEZGYn58+erfG1CqqX8DG1HoJM4JUYjI6MPdrY8evQI9evXV/m8a9euxcSJE+Hn5wd7e3ts3boVRkZG2LVrl8L6ly9fhru7O0aNGgWRSISePXti5MiRH21lEqIzCl8CJcXajkLncEqM3bp1w969e1FSUlJmX3p6OiIiItCzZ0+VzllcXIyEhAR4eXn9GxyPBy8vL8TGxio8plOnTkhISJAlwkePHuHEiRPo06dPudcRi8V4/fq17JOfT8MdSHXGUqtRA/S4HLRs2TJ07NgRHTp0wPDhw8EwDKKjo3H69Gls27YNLMsiKChIpXNmZ2dDIpFAKBTKlQuFQty9e1fhMaNGjUJ2djY6d+4MlmVRUlKCL7/88oO30qGhoQgJCVEpNkKqtNfPAFMbbUehUzi1GFu0aIGLFy+ifv36WLRoEViWxXfffYfly5fj008/xYULFyASidQcallnz57F8uXLsXnzZiQmJuK3337D8ePHsWTJknKPCQgIwKtXr2Sfc+fOaTxOQjQqN03bEegcTi1GAGjdujX+/PNP5OTk4MGDB5BKpWjcuDEsLCw4nc/c3Bx8Ph8ZGfK3BRkZGbCyslJ4zKJFizB27FhMmDABAPDpp5+ioKAAkyZNwoIFC8Djlc37AoEAAoFAtm1sbMwpXkKqjJwUbUegcyr85ouZmRk6dOgAV1dXzkkRAPT19eHs7IyYmBhZmVQqRUxMDNzc3BQeU1hYWCb58fl8AJAbW0mITsu8o+0IdA6nxLh+/Xp4e3uXu793797YsmWLyuf19/dHREQE9u7dizt37mDKlCkoKCiAn58fAMDX1xcBAQGy+v3798eWLVuwf/9+pKSk4NSpU1i0aBH69+8vS5CE6LyXj2iWHTXjdCu9c+dOdO/evdz99vb22L59O6ZMmaLSeX18fJCVlYXAwECkp6fDyckJUVFRsg6ZtLQ0uRbiwoULwTAMFi5ciKdPn8LCwgL9+/fHsmXLuPxahFRfKeeA1oO1HYXOYFgO95zGxsZYu3YtJk2apHB/REQE5syZg9evX1c4QE1LTEyEs7MzEhIS0K5dO22HQ4hqIscAuU+A+k2BoTsAhtF2RDqB0620vr4+0tPTy93//PlzhR0fhBANefEAeEIvNqgLp+zVsWNH7NmzB3l5Zac8evXqFXbv3o2OHTtWODhCiAqu7QKo01EtOD1jDAoKgoeHB5ycnDBr1iy0bt0awLt3qMPCwvD8+XPs27dPrYESQj4i6y7w6CzQpJu2I6n2OCVGV1dXHD16FJMnT8bMmTPB/P9zDZZlYWdnhyNHjpQ7xIYQokFXdwCiLgCf8xBlggoM8O7RowcePHiA69ev4+HDhwCAJk2aoF27drJESQipZK/+Ae79AbTqr+1IqrUK/bPC4/Hg7OwMZ2dndcVDCKmohL1AM29AT1/bkVRbFUqMt2/fxqNHj5CTk6PwTRNfX9+KnJ4QwkVBFnD7MNBmuLYjqbY4JcaHDx9izJgxiI+PL/fVO4ZhKDESoi2Je4FmPQBDU21HUi1xSoyTJ0/GzZs3ERYWhi5dusDMzEzdcRFCPqJ9+/ZIT7kNK2M+rs0v9XKCOA+4sg3w/FY7wVVznBLjpUuXMH/+fHz11VfqjocQoqT09HQ8ffkGkJbzLDH5BGDXFbClESKq4jTA29zcHHXr1lV3LIQQdTu7HMgr/y01ohinxPjll1/ixx9/hEQiUXc8hBB1KnoNRC8Aigu1HUm1wulWunnz5pBIJHB0dMT48eNhY2OjcJqvIUOGVDhAQkgFvXgAxCwGvJcBPJqOTxmcEqOPj4/s57lz5yqswzAMtSgJqSrSYoGLa4Euc2kGHiVwSoxnzpxRdxyEEE27cwwwtgLajdV2JFUep8To4eGh7jgIIZXh6g7AxBpo6vXxujVYhSZNFIvFiI2NxeHDh5Gdna2umAghmnR2BfD8L21HUaVxTozr16+HtbU1OnfujCFDhuCvv979QWdnZ8Pc3By7du1SW5CEEDWSvAWi57+b+ZsoxCkx7t69G7NmzUKvXr2wc+dOudcCzc3N0b17d+zfv19tQRJC1EycB5z4Gih4oe1IqiROiXHNmjUYOHAg9u3bh/79y05v5OzsjFu3blU4OEKIBuU9B07MfTfWkcjhlBgfPHiA3r17l7u/Xr16ePGC/iUipMp7+Qj441uguEDbkVQpnBKjqanpBztbbt++DSsrK85BEUIqUebt/0+O9HbMe5wSY58+fbB9+3bk5uaW2Xfr1i1ERERgwIABFY2NEFJZ0m8Cf3xDyfH/cUqMS5cuhUQigYODg2zR+71792LMmDFo3749LC0tERgYqO5YCSGalH4TiA4A3hZpOxKt45QYGzRogISEBPTq1QuRkZFgWRY//PADjh49ipEjRyIuLg7m5ubqjpUQomnPkt69Vy2VajsSrVL5zRexWIzo6GiIRCLs2LEDO3bsQFZWFqRSKSwsLMDjVWjMOCFE2x5fAq5GAK6TtR2J1qicxfT19TF8+HBcvnxZVmZhYQGhUEhJkRBdkbQPeJqg7Si0RuVMxjAMmjVrRq8AEqLrLqwFSoq1HYVWcGrizZ8/Hxs3bkRycrK64yGEVBWv/gH+/lXbUWgFp9l14uLiUL9+fTg4OMDT0xMikQiGhoZydRiGQXh4uFqCJIRoyfUfgBa9AMOateAdp8S4ceNG2c8xMTEK61BiJEQHFBcAid8D7jO1HUml4nQrLZVKP/rhOnv3pk2bIBKJYGBgAFdXV8THx3+wfm5uLqZNmwZra2sIBAI0b94cJ06c4HRtQogCt48Ar55qO4pKVaW6kSMjI+Hv74+goCAkJibC0dER3t7eyMzMVFi/uLgYPXr0QGpqKn755RckJycjIiICDRs2rOTICdFh0hLg2k5tR1GpON1KvxcXF4czZ84gMzMTU6dORbNmzVBYWIi7d++iefPmMDY2Vul8a9euxcSJE+Hn5wcA2Lp1K44fP45du3Zh3rx5Zerv2rULL1++xOXLl1GrVi0AgEgkqsivRAhR5EEM0GYEYNFc25FUCk4txuLiYgwZMgTu7u5YsGAB1q9fjydP3k16yePx0LNnT5WfLxYXFyMhIQFeXv9Ouc7j8eDl5YXY2FiFxxw5cgRubm6YNm0ahEIhHBwcsHz5clqEi+i8tLQ0FBS8mxGnQCxB2stKeI3vWs2ZfJpTi3HRokU4duwYtmzZgm7duqFFixayfQYGBhg+fDgOHz6MBQsWKH3O7OxsSCQSCIVCuXKhUIi7d+8qPObRo0c4ffo0Ro8ejRMnTuDBgweYOnUq3r59i6CgIIXHiMViiMVi2XZ+fr7SMRKibfHx8ViyZAmOHz8umyA6940EogXx6PdpPSzqY4sOojqauXhaLPAyBahnp5bTvX2Th0dRW/Hy/hWA4cG8ZSc09p4Mvr5hucf89f08vE67KVdm1a43mvaZDgDIuHEK94+GKTzWZfZP0K9tqlRsnBLjzz//jClTpmDSpEkK511s1aoVDh48yOXUKpFKpbC0tMT27dvB5/Ph7OyMp0+f4rvvvis3MYaGhiIkJETjsRGibr/99ht8fHzAsqzcrPkAwLLAib9f4o+/cxA5sRWGtNXQXAUPTwP1vlC6+l/fz4PQ8X8QOvYos+/e79+hOP8lHEYvhVQiwf2jYXhwfANaDP7mg+cUtvWGrccY2TavloHsZ3P7rjBr4ix/nSPrIC15q3RSBDjeSmdmZuLTTz8tdz+fz0dhoWrTF5mbm4PP5yMjI0OuPCMjo9y5Ha2trdG8eXPw+f8uIt6qVSukp6ejuFjxiP2AgAC8evVK9jl37pxKcRKiDfHx8fDx8YFEIin3UZFECkikLHwi7uBqap5mAnmaqJbTFGanIedhApr2nYk6DVuibqPWaNJrMrJunYc478OTXPNrGUDfuJ7soycw+s8+gdw+huHjVepfsHLqqVJ8nBKjjY1Nube3AHDp0iU0bdpUpXPq6+vD2dlZblykVCpFTEwM3NzcFB7j7u6OBw8eQPqfmUDu3bsHa2tr6OvrKzxGIBDAxMRE9lG1g4gQbVi6dKnClmJpLAAWLJaeeKyZQF4+etc8raDX/9wF36A26jRoJisztWsLMAzynn74jbrMv88gbs1IJG6bitTTeyD5wDRpGTdjwKslQP1W7irFxykxjho1Ctu2bZPrFGEYBgAQERGBAwcOwNfXV+Xz+vv7IyIiAnv37sWdO3cwZcoUFBQUyHqpfX19ERAQIKs/ZcoUvHz5EjNnzsS9e/dw/PhxLF++HNOmTePyaxFSJaWlpeHYsWNKdypKpMDRmy810yHzthAQV3yNmLf5OdA3MpUrY3h81DKsg7cFOeUeZ+nggRYD5+LTsaH4pNNwZN48jXu/ry63fkbSSVg4eIBfS6BSfJyeMS5YsABxcXHo2rUrWrVqBYZhMHv2bLx8+RL//PMP+vTpg9mzZ6t8Xh8fH2RlZSEwMBDp6elwcnJCVFSUrEMmLS1NbgYfGxsbREdHY/bs2WjTpg0aNmyImTNn4ttvv+XyaxFSIdKSYkglJWo/78moEx9tKZbGskDM3Rx87ib8eGUVsXmZ4BnUVbjvycVIPLl0QLYtLSlG3tO7eBi1VVbW7sstnK9t1e7ftaZqW4qgb1wPf/80H29ePodhPWu5uq//uYM32U/QYuAcla/DKTHq6+sjKioKP/30E3755RdIJBKIxWK0adMGS5cuxdixY2UtSFVNnz4d06dPV7jv7NmzZcrc3NwQFxfH6VqEqIu0pBi5qTdQUqT+pQEyUm6Dx2MglSqfHHkMkJv3BiVi9cdT8PgGTMxswdMr+7jKyrkPzO27yLaTf/8O5i3dUb9lJ1mZoE591DI2Q3FhrtyxrFSCt2/yUKu28u9l12n4bkRMUc6zMokx43o0agsbw9i6maJDP0ipxOjv74+xY8eibdu2AN613CwsLDBmzBiMGTPmI0cTovukkhKUFBWCx9cDoyBhVIRJXVOVkiIASFnAxFAPDKPel9tYVgpJ8RtIJSUKE2MtwzqoZfjvcCGengC1ateFYb0GcvVMPmkJSVEB8p/flyWu3JQbAMvKkp0yCjIeAQD0jevJlUuK3yD7zkXYdhun9Ln+S6k/tbCwMNy5c0e2bWdnh0OHDnG6ICG6jNHTB7+WQK0fzy7uKt+BMQzQrbnJux/U+GEYHlhexRO/kXkjmDVxxv3jG5D3NBmvn9zGw+gtsGjdFYI69QEA4tfZSNgyWdYZ8+blc6Rd+Bn5z++jKDcDL+7F4d7hNTBp5IDaQvmxlVm3zoOVSmD5aTdO8SnVYhQKhXj06JFsW9XnHYQQ7mwaWsO7e1ecOntRqQ4YPg/oY2+KRvVU63BQFqtfWy3naT7oazyK2oK/f1oAMAzqt3RHE+9/l1NgpRK8efEPJG/fvZDB4+shNyUJz+IPQ1JcBIGJBeq3codN5xFlzp1x4yTqt+gEPQNuo04YVoksN2HCBHz//ffo2LEjTE1NcezYMbRt2/aDkzUwDIPDhw9zCqoyJSYmwtnZGQkJCWjXrp22wyHVVIm4EC/vXwVfYKRyD6gyEm/8De9hvpBIpB9smDAA+DwG52e3RAdb9Q9FY3l6yOm6DPWau8qNH9Q1SrUYw8PDYWlpiTNnzuDWrVtgGAZPnjzBy5cvyz2Ga+cLIaSsdo4O2LVhFcZ/9Q1YFgpbjnwewIDBz35NNJIUAUBS5xNAzc8tqyKlEmPt2rWxfPly2TaPx0NYWBhGjRqlscAIIfL69/JC9C/f47sN2xF9+rxcy5Fh3t0+B3hbaywpAkCJ0FFj565KlEr9Q4YMwYULF2TbZ86cQY8eZd99JIRoVjtHB/y8Yz1uXPgDpibven9NDfl4ENQGv01qptGkCH4tFH/S6eP1dIBSifHw4cNIS0uTbXfv3h2nTp3SWFCEkA+zaWgNI6N3s9DU1udprKPlv4obe4PVrxmv0CqVGBs2bIjr16/LtlmWpWeIhNQg0tpCFDft/fGKOkKpZ4wjRozA6tWrceDAAZiamgIA5s2bh9DQ0HKPYRgGN27cUEuQhBAt4tVCUbuJgJ4AeCv+eH0doFRiDA0NRdOmTWXLGDAMg9q1a6N+/fqajo8QolUMitpNgNRUpO1AKpVSiZHP52PSpEmYNGkSgHe90gsXLqReaUJ0GoOituNRYu388ao6htMkEikpKbCwsFB3LISQqoLhocjpC5R84qrtSLSCU2K0tbVVdxyEkKqC4aHIeXKNbCm+p1Ri5PF44PF4KCwshL6+Png83kd7pRmGQUmJ+uemI4RoEMNDUbtJNTopAkomxsDAQDAMAz09PbltQohuEbcegZIG7bUdhtYplRiDg4M/uE0Iqf7e2rjjrV13bYdRJej+2+CEkI+S1hZC7ECjTN5TufNFLBbjxx9/xMmTJ/Hw4UPk5eWhTp06aNq0KXr16oVRo0aVu0IfIaQKYngocvJ7N4CbAFAxMd68eRMDBw7E48ePwbIs6tatC2NjY2RmZiIxMREHDx7EsmXLcOTIEbRq1UpTMRNC1Oit3f8grafacse6Tulb6fz8fAwYMAAZGRlYtmwZnjx5gpycHLn/Ll26FM+ePUP//v1RUFCgybgJIWogNbGBuOUQbYdR5SidGHfv3o20tDQcP34c8+bNKzN7d8OGDREQEICjR48iJSUFe/bsUXeshBA1YvVr443zlwC/lrZDqXKUTozHjx9Hz5494enp+cF63bt3R48ePXD06NGKxkYI0RR+Lbzp8BVYY/WvO60LlE6MN2/e/GhSfK979+64efMm15gIIZrE08ObDtPpueIHKJ0YX758CSsrK6XqCoXCD64HQwjREoaPN+2nQGLRWtuRVGlKJ0axWIxatZR7FqGnp4fi4mLOQRFCNIDhoch5EiQ1ZN2WilBpuE5qaioSExM/Wi8lJYVzQIQQzShqM7bGvwOtLJUS46JFi7Bo0aKP1qOlDwipWoqb90dJoy7aDqPaUDox7t69W5NxEEI0pMS6HYqb99d2GNWK0olx3LhxmoyDEKIB0tqWKHIaDzA0LYIq6E+LEF3F8P5/ESsDbUdS7VBiJERHFTftDampnbbDqJaqZGLctGkTRCIRDAwM4Orqivj4eKWO279/PxiGwaBBgzQbICFVHGtkgeJmfbUdRrVV5RJjZGQk/P39ERQUhMTERDg6OsLb2xuZmZkfPC41NRVz585Fly7U80ZIUWsfgE/T/3FV5RLj2rVrMXHiRPj5+cHe3h5bt26FkZERdu3aVe4xEokEo0ePRkhICBo3blyJ0RJS9Ujqt6BB3BVUpRJjcXExEhIS4OXlJSvj8Xjw8vJCbGxsucctXrwYlpaW+OKLLyojTEKqNHHLwQCNI64QTsunvnf79m08evQIOTk5YFm2zH5fX1+VzpednQ2JRAKhUH7GD6FQiLt37yo85uLFi9i5cyeSkpKUuoZYLIZYLJZt5+fnqxQjIVWZpH4LmhxCDTglxocPH2LMmDGIj49XmBCBd8unqpoYVZWXl4exY8ciIiIC5ubmSh0TGhqKkJAQjcZFiLYUN+6h7RB0AqfEOHnyZNy8eRNhYWHo0qULzMzM1BKMubk5+Hw+MjIy5MozMjIUzuzz8OFDpKamon//f0f1S6VSAO8mskhOTkaTJk3kjgkICIC/v79sOykpCR4eHmqJnxBtYg3rQSJso+0wdAKnxHjp0iXMnz8fX331lVqD0dfXh7OzM2JiYmRDbqRSKWJiYjB9+vQy9Vu2bFlm3seFCxciLy8P4eHhsLGxKXOMQCCAQPDvoj/GxsZq/R0I0Za3n3SiN1zUhFNiNDc3R926ddUdCwDA398f48aNQ/v27eHi4oKwsDAUFBTAz88PwLvnlg0bNkRoaCgMDAzg4OAgd7ypqSkAlCknRNeVNHTRdgg6g1Ni/PLLL/Hjjz9i2rRp4PP5ag3Ix8cHWVlZCAwMRHp6OpycnBAVFSXrkElLSwOPR/8qEvJf0tpCSOs00HYYOoNTYmzevDkkEgkcHR0xfvx42NjYKEyQQ4ZwW31s+vTpCm+dAeDs2bMfPJYW4SI1kcSS7pDUiVNi9PHxkf08d+5chXUYhoFEIuEWFSFEJZL6zbUdgk7hlBjPnDmj7jgIIRUgMaM3vtSJU2Kk4S2EVCEMD6yBeobMkXcq9OYL8O7tl8ePHwMAbG1tYW9vX+GgCCEq4Km3A5RUIDEePnwY/v7+SE1NlSu3s7PD2rVrMWDAgIrGRghRAstQYlQ3TonxxIkTGDp0KGxtbbF8+XK0atUKAHDnzh1s374dQ4YMwbFjx9CrVy+1BksI+ZelhTkY8WtY1tfMmOKajGHLe9n5A9zc3CAWi3HhwgXUrl1bbl9BQQE6d+4MAwODD86IU1UkJibC2dkZCQkJaNeunbbDIdVUibgQL+9fBV9gBH4twccPUBOjMwshbj2i0obrSN6KIREXol6zDtATGFXKNbWB00jpv/76C+PGjSuTFAGgdu3a+Pzzz/HXX39VODhCyMdJjSy0HYLO4ZQYDQwM8PLly3L3v3z5EgYGtAAPIZWBNayn7RB0DqfE2L17d4SHhyu8Vb5y5QrWr18vN9ksIUQzWIEJwK+l7TB0DqfOl1WrVsHNzQ2dO3eGi4sLWrRoAQBITk5GfHw8LC0tsXLlSrUGSggpi8YvaganFqOdnR3++usvzJgxAzk5OYiMjERkZCRycnIwc+ZM3LhxAyKRSM2hEkJKkxqYajsEncR5HKOlpSXWrVuHdevWqTMeQogKWEEdbYegk2j+LkKqMVafEqMmKNViHD9+PBiGwfbt28Hn8zF+/PiPHsMwDHbu3FnhAAkhH6BnqO0IdJJSifH06dPg8XiQSqXg8/k4ffo0mI8sz/ix/YSQimOpR1ojlEqMpd+HLr1NCNESek9aIzg9Y0xLS8ObN2/K3f/mzRukpaVxDooQQrSJ83CdQ4cOlbv/yJEjsLOz4xwUIURJLM2SrwmcEuPH5p14+/YtLVhFSGVgpdqOQCcpPY7x9evXyM3NlW2/ePFC4e1ybm4u9u/fD2tra7UESAj5ANUnxyJKUDoxrlu3DosXLwbwrsd51qxZmDVrlsK6LMti6dKlagmQEEIqm9KJsWfPnjA2NgbLsvjmm28wcuTIMvMXMgyD2rVrw9nZGe3bt1d7sISQUmhZA41QOjG6ubnBzc0NwLvJaIcOHQoHB1rLlhCt4tE4Rk1Q+V3pwsJCrF+/HkZGRpQYCdEylq+v7RB0kspdx0ZGRtDT01M4ezchpJLRmy8awWlMzdChQ/HLL798dNgOIUSzpIbm2g5BJ3GadmzEiBGYOnUqunXrhokTJ0IkEsHQsOzL7LS4FCEaVosmkdAETonR09NT9vOFCxfK7GdZFgzDQCKhUfmEkOqHU2LcvXu3uuMghJAqg1NiHDdunLrjIISQKoPz0gbv5efn48mTJwAAGxsbGBsbVzgoQgjRJs4zPVy9ehXdunWDmZkZHBwc4ODgADMzM3Tv3h3Xrl2rUFCbNm2CSCSCgYEBXF1dER8fX27diIgIdOnSBWZmZjAzM4OXl9cH6xNCyMdwajFeuXIFnp6e0NfXx4QJE9CqVSsAwJ07d/Dzzz+ja9euOHv2LFxcXFQ+d2RkJPz9/bF161a4uroiLCwM3t7eSE5OhqWlZZn6Z8+exciRI9GpUycYGBhg5cqV6NmzJ27duoWGDRty+fUIITUcw3IYjOjl5YXU1FRcvHgRVlZWcvsyMjLg7u4OOzs7nDp1SuWAXF1d0aFDB2zcuBEAIJVKYWNjg6+++grz5s376PESiQRmZmbYuHEjfH19P1o/MTERzs7OSEhIoOFFhLMScSFe3r8KvsAI/FoCbYejMZK3YkjEhajXrAP0BEbaDkdjON1KX7lyBZMnTy6TFAFAKBRi0qRJiIuLU/m8xcXFSEhIgJeX178B8njw8vJCbGysUucoLCzE27dvUa9ePZWvTwghAMdbaR6Ph5KSknL3SyQSThPVZmdnQyKRQCgUypULhULcvXtXqXN8++23aNCggVxy/S+xWAyxWCzbzs/PVzlOQohu49Ri7NSpEzZt2oTHjx+X2ZeWlobNmzfD3d29wsGpasWKFdi/fz8OHToEAwMDhXVCQ0NRt25d2cfDw6OSoySEVHWcWozLly9H165d0bJlSwwePBjNmzcHACQnJ+Pw4cPQ09NDaGioyuc1NzcHn89HRkaGXHlGRobC2/b/Wr16NVasWIE///wTbdq0KbdeQEAA/P39ZdtJSUmUHAkhcjglxrZt2+LKlStYsGABjhw5gsLCQgDvZt7p1asXli5dCnt7e5XPq6+vD2dnZ8TExGDQoEEA3nW+xMTEYPr06eUet2rVKixbtgzR0dEfnSBXIBBAIPj34TiNuySElMZ5gLe9vT0OHToEqVSKrKwsAICFhUWFF8Hy9/fHuHHj0L59e7i4uCAsLAwFBQXw8/MDAPj6+qJhw4ayFunKlSsRGBiIffv2QSQSIT09HcC7hEdJjxDCRYXffGEYBgzDyH6uKB8fH2RlZSEwMBDp6elwcnJCVFSUrEMmLS1NLvlu2bIFxcXFGDZsmNx5goKCEBwcXOF4CCE1D+fEePv2bQQGBiI6OlruVtrb2xvBwcEVmt17+vTp5d46nz17Vm47NTWV83UIIUQRTonxwoUL6N27N6RSKQYOHCjX+XLkyBH88ccfiIqKQpcuXdQaLCGEVAZOiXH27NmwtLTEuXPnYGNjI7fvyZMn6Nq1K/z9/XH16lW1BEkIIZWJU0/JrVu3MHXq1DJJEXg3w86UKVNw69atCgdHCCHawCkx2trayr09UlpxcbHCpEkIIdUBp8QYGBiI9evXIykpqcy+69evY8OGDdQjTAiptjg9Y4yLi4NQKISzszM6deqEpk2bAgDu37+P2NhYODg4IDY2Vm7iB4ZhEB4erp6oCSFEgzhNO8ZlEHdVXRyLph0j6kDTjukWTi1GqVSq7jgIIaTKqNj7e4QQooMq9EpgSkoK/vjjD9n0Y7a2tujduzfs7OzUEhwhhGgD58Q4Z84chIeHl7mt5vF4mDVrFlavXl3h4AghRBs43UqvWbMG69atw5AhQxAbG4vc3Fzk5uYiNjYWw4YNw7p167Bu3Tp1x0oIIZWCU4sxIiICAwYMwIEDB+TKXV1dsX//fhQVFWHbtm2YPXu2WoIkhJDKxKnFmJqaCm9v73L3e3t706w3hJBqi1NitLS0xI0bN8rdf+PGDVhYWHAOihBCtIlTYhw+fDh27NiBFStWoKCgQFZeUFCAlStXYseOHfDx8VFbkIQQUpk4PWNcsmQJkpKSMH/+fAQGBqJBgwYAgGfPnqGkpATdunXD4sWL1RooIYRUFk6J0cjICDExMTh8+LDcOMZevXqhT58+6N+/v1qWOSCEEG1QOTEWFhZizJgxGDp0KEaPHo2BAwdqIi5CCNEalZ8xGhkZ4c8//5St80IIIbqGU+dL586d5aYUI4QQXcIpMW7cuBEXLlzAwoUL8c8//6g7JkII0SpOidHR0RH//PMPQkNDYWtrC4FAABMTE7lP3bp11R0rIYRUCk690kOHDqVeZ0KIzuKUGPfs2aPmMAghpOpQKTEWFRXh8OHDSElJgbm5Ofr27Qtra2tNxUYIIVqhdGLMzMxEp06dkJKSgvfLxBgZGeH333+Hl5eXxgIkhJDKpnTny5IlS5CamorZs2fj2LFjCAsLg6GhISZPnqzJ+AghpNIp3WI8efIkfH195WbmFgqFGDVqFJKTk9GiRQuNBEgIIZVN6RZjWloaOnfuLFfWuXNnsCyLjIwMtQdGCCHaonSLUSwWw8DAQK7s/XZJSYl6oyJqlZaWhpiYGOTl5aFOnTr43//+h0aNGmk7LEKqLJV6pVNTU5GYmCjbfvXqFQDg/v37MDU1LVOfFrDXrvj4eCxZsgTHjx8Hy7Lg8XiQSqVgGAb9+vXDokWL0KFDB22HSUiVw7Dvu5g/gsfjKRzUzbJsmfL3ZRKJhFNQmzZtwnfffYf09HQ4Ojpiw4YNcHFxKbf+wYMHsWjRIqSmpqJZs2ZYuXIl+vTpo9S1EhMT4ezsjISEBJ1K5L/99ht8fHzAsqzC74HP54NhGERGRmLIkCFaiFC3lIgL8fL+VfAFRuDXEmg7HI2RvBVDIi5EvWYdoCcw0nY4GqN0i3H37t2ajEMmMjIS/v7+2Lp1K1xdXREWFgZvb28kJyfD0tKyTP3Lly9j5MiRCA0NRb9+/bBv3z4MGjQIiYmJcHBwqJSYq5r4+Hj4+PhAIpGgvH/3JBIJGIaBj48PLl++TC1HQv5D6RZjZXF1dUWHDh2wceNGAIBUKoWNjQ2++uorzJs3r0x9Hx8fFBQU4NixY7Kyjh07wsnJCVu3bv3o9XSxxThgwACcOHFCqRY7n89H3759cfjw4UqITHdRi1G3cJpEQlOKi4uRkJAgN2Ccx+PBy8ur3GnOYmNjywww9/b2rrHToqWlpeHYsWNKP8aQSCQ4evQo0tLSNBwZIdUHp3elNSU7OxsSiQRCoVCuXCgU4u7duwqPSU9PV1g/PT1dYX2xWAyxWCzbzs/PB/CuZ/3t27cVCb9KiI6OLvf2uTwsy+LkyZMYN26chqLSfSVv3+Lt2xJIpIVg3uruKA22pBhSybu/Kyyv8v6+1KpVq9KuBVSxxFgZQkNDERISUqbc1dVVC9FUHRMnTsTEiRO1HQYhClX2E78qlRjNzc3B5/PLDBjPyMiAlZWVwmOsrKxUqh8QEAB/f3/ZdlJSEjw8PHDlyhW0bdu2gr+B9u3ZsweTJk1S+biIiAhqMVaQ9P9bU7qOx9cDT09f22FoVJVKjPr6+nB2dkZMTAwGDRoE4F3nS0xMDKZPn67wGDc3N8TExGDWrFmyslOnTsHNzU1hfYFAAIHg34fjxsbGAAA9Pb1Kb65rgre3NxiGUelfWIZh0LNnT534/bWK/vx0RpXqfAEAf39/REREYO/evbhz5w6mTJmCgoIC+Pn5AQB8fX0REBAgqz9z5kxERUVhzZo1uHv3LoKDg3Ht2rVyE6mua9SoEfr16wc+n69UfT6fj/79+9ObMIT8F1sFbdiwgW3UqBGrr6/Puri4sHFxcbJ9Hh4e7Lhx4+TqHzhwgG3evDmrr6/Ptm7dmj1+/LjS10pISGABsAkJCeoKX+vi4+NZPT09lmEYFkC5H4ZhWD09PTY+Pl7bIRNSpVS5cYyVTRfHMQLKv/ly4MABDB48WAsRElJ1VblbaaIeQ4YMweXLl9GnTx/ZK5s83ruvm2EY9O3bF5cvX6akSIgCVarzhahXhw4dcOTIEaSlpeH06dN4/fo1TExM0L17d3qmSMgHUGKsARo1aoTPP/8cz58/x/Pnz5GdnY3s7Gxth0XUwNramtZd0oAanxitra0RFBSk8/9zicVijBw5EufOndN2KESNPDw8EB0dLTcEjVRcje98qSlev36NunXr4ty5c7Kxm6R6y8/Ph4eHB169egUTExNth6NTanyLsaZxcnKiv0Q64vXr19oOQWdRrzQhhJRCiZEQQkqhxFhDCAQCBAUF0UN6HULfqeZQ5wshhJRCLUZCCCmFEiMhhJRCiZEQQkqhxEgIIaVQYiREQxiGUepz9uzZCl+rsLAQwcHBKp1r2bJlGDBgAIRCIRiGQXBwcIXj0BX05gshGvLDDz/IbX///fc4depUmfJWrVpV+FqFhYWyRd48PT2VOmbhwoWwsrJC27ZtER0dXeEYdAklRkI0ZMyYMXLbcXFxOHXqVJlybUlJSYFIJEJ2djYsLCy0HU6VQrfShGiRVCpFWFgYWrduDQMDAwiFQkyePBk5OTly9a5duwZvb2+Ym5vD0NAQdnZ2GD9+PAAgNTVVlthCQkJkt+gfuzUWiUSa+JV0ArUYCdGiyZMnY8+ePfDz88OMGTOQkpKCjRs34vr167h06RJq1aqFzMxM9OzZExYWFpg3bx5MTU2RmpqK3377DQBgYWGBLVu2YMqUKRg8eDCGDBkCAGjTpo02f7XqTYvrzRBSo0ybNo3971+5CxcusADYn376Sa5eVFSUXPmhQ4dYAOzVq1fLPXdWVhYLgA0KClI5roocq6voVpoQLTl48CDq1q2LHj16yGZVz87OhrOzM4yNjXHmzBkAgKmpKQDg2LFjePv2rRYjrjkoMRKiJffv38erV69gaWkJCwsLuU9+fj4yMzMBvJule+jQoQgJCYG5uTkGDhyI3bt3QywWa/k30F30jJEQLZFKpbC0tMRPP/2kcP/7DhWGYfDLL78gLi4OR48eRXR0NMaPH481a9YgLi6OZmTXAEqMhGhJkyZN8Oeff8Ld3R2GhoYfrd+xY0d07NgRy5Ytw759+zB69Gjs378fEyZMkC2RS9SDbqUJ0ZLPPvsMEokES5YsKbOvpKQEubm5AICcnBywpWYHdHJyAgDZ7bSRkREAyI4hFUMtRkK0xMPDA5MnT0ZoaCiSkpLQs2dP1KpVC/fv38fBgwcRHh6OYcOGYe/evdi8eTMGDx6MJk2aIC8vDxERETAxMUGfPn0AAIaGhrC3t0dkZCSaN2+OevXqwcHBAQ4ODuVe/4cffsDjx49RWFgIADh//jyWLl0KABg7dixsbW01/4dQVWm7W5yQmqL0cJ33tm/fzjo7O7OGhoZsnTp12E8//ZT95ptv2GfPnrEsy7KJiYnsyJEj2UaNGrECgYC1tLRk+/Xrx167dk3uPJcvX2adnZ1ZfX19pYbfeHh4sAAUfs6cOaOuX7taohm8CSGkFHrGSAghpVBiJISQUigxEkJIKZQYCSGkFEqMhBBSCiVGQggphRIjIVVUamoqGIbBnj17tB1KjUOJkRBCSqEB3oRUUSzLQiwWo1atWuDz+doOp0ahxEgIIaXQrTQhGhQcHAyGYXDv3j2MGTMGdevWhYWFBRYtWgSWZfHkyRMMHDgQJiYmsLKywpo1a2THKnrG+Pnnn8PY2BhPnz7FoEGDYGxsDAsLC8ydOxcSiURW7+zZswrXrFZ0zvT0dPj5+eGTTz6BQCCAtbU1Bg4ciNTUVA39qVR9lBgJqQQ+Pj6QSqVYsWIFXF1dsXTpUoSFhaFHjx5o2LAhVq5ciaZNm2Lu3Lk4f/78B88lkUjg7e2N+vXrY/Xq1fDw8MCaNWuwfft2TrENHToUhw4dgp+fHzZv3owZM2YgLy8PaWlpnM6nE7Q3fwUhui8oKIgFwE6aNElWVlJSwn7yyScswzDsihUrZOU5OTmsoaEhO27cOJZlWTYlJYUFwO7evVtWZ9y4cSwAdvHixXLXadu2Levs7CzbPnPmjMJZckqfMycnhwXAfvfdd+r5hXUEtRgJqQQTJkyQ/czn89G+fXuwLIsvvvhCVm5qaooWLVrg0aNHHz3fl19+KbfdpUsXpY4rzdDQEPr6+jh79myZtaxrMkqMhFSCRo0ayW3XrVsXBgYGMDc3L1P+sQRlYGAgWw/mPTMzM06JTSAQYOXKlfjjjz8gFArRtWtXrFq1Cunp6SqfS5dQYiSkEigablPeEBz2IwNFlBm6U94aMP/toHlv1qxZuHfvHkJDQ2FgYIBFixahVatWuH79+kevo6soMRKig8zMzACUXQPm8ePHCus3adIEc+bMwcmTJ/H333+juLhYroe8pqHESIgOsrW1BZ/PL9PDvXnzZrntwsJCFBUVyZU1adIEderUqdHrVtNiWITooLp162L48OHYsGEDGIZBkyZNcOzYMWRmZsrVu3fvHv73v//hs88+g729PfT09HDo0CFkZGRgxIgRWope+ygxEqKjNmzYgLdv32Lr1q0QCAT47LPP8N1338mtHGhjY4ORI0ciJiYGP/zwA/T09NCyZUscOHAAQ4cO1WL02kWvBBJCSCn0jJEQQkqhxEgIIaVQYiSEkFIoMRJCSCmUGAkhpBRKjIQQWl+mFEqMhKjo4cOHmDx5Mho3bgwDAwOYmJjA3d0d4eHhePPmjcaue/v2bQQHB2t9Atlly5ZhwIABEAqFYBgGwcHBWo1HE2iANyEqOH78OIYPHw6BQABfX184ODiguLgYFy9exNdff41bt25xnjD2Y27fvo2QkBB4enpCJBJp5BrKWLhwIaysrNC2bVtER0drLQ5NosRIiJJSUlIwYsQI2Nra4vTp07C2tpbtmzZtGh48eIDjx49rMcJ/sSyLoqIiGBoaqv3cKSkpEIlEyM7OLjP9ma6gW2lClLRq1Srk5+dj586dcknxvaZNm2LmzJmy7ZKSEixZsgRNmjSBQCCASCTC/Pnzy0zOIBKJ0K9fP1y8eBEuLi4wMDBA48aN8f3338vq7NmzB8OHDwcAdOvWDQzDyK3p8v4c0dHRaN++PQwNDbFt2zYAwKNHjzB8+HDUq1cPRkZG6NixY4USuDZbq5WFEiMhSjp69CgaN26MTp06KVV/woQJCAwMRLt27bBu3Tp4eHggNDRU4eQMDx48wLBhw9CjRw+sWbMGZmZm+Pzzz3Hr1i0AQNeuXTFjxgwAwPz58/HDDz/ghx9+QKtWrWTnSE5OxsiRI9GjRw+Eh4fDyckJGRkZ6NSpE6KjozF16lQsW7YMRUVFGDBgAA4dOqSGPxUdpdWFFQipJl69esUCYAcOHKhU/aSkJBYAO2HCBLnyuXPnsgDY06dPy8psbW1ZAOz58+dlZZmZmaxAIGDnzJkjKzt48KDCdVz+e46oqCi58lmzZrEA2AsXLsjK8vLyWDs7O1YkErESiYRlWcXry3xMVlYWC4ANCgpS+pjqglqMhCjh9evXAIA6deooVf/EiRMAAH9/f7nyOXPmAECZW1l7e3t06dJFtm1hYaH0+i/v2dnZwdvbu0wcLi4u6Ny5s6zM2NgYkyZNQmpqKm7fvq30+WsSSoyEKMHExAQAkJeXp1T9x48fg8fjoWnTpnLlVlZWMDU1LTOTduk1YQDV13Gxs7NTGEeLFi3KlL+/BS9vRu+ajhIjIUowMTFBgwYN8Pfff6t0XHlrr5TGdf2X/9JED3RNRYmRECX169cPDx8+RGxs7Efr2traQiqV4v79+3LlGRkZyM3Nha2trcrXVzbJlo4jOTm5TPndu3dl+0lZlBgJUdI333yD2rVrY8KECcjIyCiz/+HDhwgPDwcA9OnTBwAQFhYmV2ft2rUAgL59+6p8/dq1awMou8DVh/Tp0wfx8fFyybygoADbt2+HSCSCvb29ynHUBDTAmxAlNWnSBPv27YOPjw9atWol9+bL5cuXcfDgQXz++ecAAEdHR4wbNw7bt29Hbm4uPDw8EB8fj71792LQoEHo1q2bytd3cnICn8/HypUr8erVKwgEAnTv3h2WlpblHjNv3jz8/PPP6N27N2bMmIF69eph7969SElJwa+//goeT/W20Q8//IDHjx+jsLAQAHD+/HksXboUADB27FjdaIVqu1uckOrm3r177MSJE1mRSMTq6+uzderUYd3d3dkNGzawRUVFsnpv375lQ0JCWDs7O7ZWrVqsjY0NGxAQIFeHZd8Ntenbt2+Z63h4eLAeHh5yZREREWzjxo1ZPp8vN3SnvHOwLMs+fPiQHTZsGGtqasoaGBiwLi4u7LFjx+TqqDJcx8PDgwWg8KNoKFF1RGu+EEJIKfSMkRBCSqHESAghpVBiJISQUigxEkJIKZQYCSGkFEqMhBBSCiVGQggphRIjIYSUQomREEJKocRICCGlUGIkhJBSKDESQkgplBgJIaSU/wPyYcmoniaWyAAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUYAAAInCAYAAADkl/CSAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZKxJREFUeJzt3XdcU9f7B/DPTZAAIoICAS0S1DqQCooFERXwi+LeFicW66ijDrStOBh1oNYB1lVxdlipbd0WtLgVpIJY68AFYlWWAjIkQHJ/f/gzbSBockkIhOf9euVV7rnn3vtg6uO595x7DsOyLAtCCCEyPG0HQAghtQ0lRkIIqYASIyGEVECJkRBCKqDESAghFVBiJISQCigxEkJIBZQYCSGkAkqMhBBSQb1PjM+ePUNISAiePXum7VAIIbUEJcZnzxAaGkqJkRAiU+8TIyGEVESJkRBCKqDESAghFdSqxHj+/HkMGjQIzZo1A8MwOHTo0DuPOXv2LDp37gyBQIDWrVtjz549Go+TEKLbalViLCoqgqOjIzZv3qxU/dTUVAwYMABeXl5ITk7G3LlzMXnyZMTExGg4UkKILtPTdgD/1a9fP/Tr10/p+tu2bYOdnR3WrVsHAGjfvj0uXryIDRs2wMfHR1NhEkJ0XK1KjKqKi4uDt7e3XJmPjw/mzp1b5TFisRhisVi2XVhYqKnwqjRj3T7kFhTX+HW1xayREbbMH6vtMDQqeecclBbmajuMGqNvbAanTyK0HYbG1OnEmJGRAaFQKFcmFArx8uVLvHr1CoaGhpWOCQsLQ2hoaE2FqFBuQTFy8ms+IRPNKS3MRWnBc22HQdSkTidGLgIDAxEQECDbTk5OhoeHh1Zi4TEMmpg01Mq1a8KLl0WQ1rclhRge9I3NtB2FxpQW5gKsVNthaFydToxWVlbIzMyUK8vMzISJiYnC1iIACAQCCAQC2baxsbFGY3ybJiYN8VPIZK1dX9PGhOyody1jfWMzuMz5TtthaExChF+9aBmrrVeaZVmcPn0av//+OwoKCtR12rdyc3NDbGysXNmpU6fg5uZWI9cnhOgmTolx8eLF8PLykm2zLIs+ffqgd+/eGDBgAD744AM8ePBA5fMWFhYiOTkZycnJAF4Px0lOTkZ6ejqA17fBfn5+svqffvopHj58iC+++AJ37tzBli1b8PPPP2PevHlcfi1CCAHAMTH++uuvcHFxkW3/8ssviI2NxfLly3Hs2DFIJBKEhISofN6rV6+iU6dO6NSpEwAgICAAnTp1QlBQEIDXEz68SZIAYGdnh+PHj+PUqVNwdHTEunXrsGPHDhqqQwipFk7PGJ88eYLWrVvLtn/77TfY29sjMDAQADB9+nRs3bpV5fN6enqCfcvDekVvtXh6euLatWsqX4sQQqrCqcWop6cnGwvIsixiY2PRt29f2X6hUIicnBz1REgIITWMU2J0cHDADz/8gNzcXOzevRvPnz/HgAEDZPsfPXoEc3NztQVJCCE1idOtdFBQEAYNGiRLfu7u7nKdMcePH8eHH36onggJIaSGcUqMvXv3RlJSEk6dOgVTU1P4+vrK9uXm5qJnz54YMmSI2oIkhJCaxHmAt729Pezt7SuVm5mZYcOGDdUKihBCtIlTYiwoKEBeXh5sbGxkZU+fPsW2bdsgFosxcuRIupUmhNRZnBLj1KlTkZqaivj4eADAy5cv0bVrV/zzzz/g8XiIiIhAdHQ0PD091RkrIYTUCE690hcvXsTAgQNl2z/88AOePn2Ky5cvIzc3Fx07dsTy5cvVFiQhhNQkTokxJycHzZs3l20fOXIE3bt3R9euXdGoUSP4+fnh+vXraguSEEJqEqfEaGpqioyMDADAq1evcOHCBfTp00e2X09PD8XF9WciVkKIbuH0jLFbt27YsmUL2rVrh+joaJSUlMgNz7l7965ci5IQQuoSTolx9erV6NOnD0aMGAEAmD9/Pjp06AAAkEgkOHDggNwrgoQQUpdwSoytW7dGSkoKbt26hcaNG0MkEsn2FRcXY9OmTXB0dFRXjIQQUqM4D/Bu0KCBwuTXqFEjeuuFEFKncZ7B++XLl1i1ahV8fHzQqVMnJCQkAABevHiB9evX4/79+2oLkhBCahKnFuM///wDDw8PPH78GO+//z7u3LkjW4a0SZMm+Pbbb/Ho0SNEROju8oqEEN3FKTF+/vnnKCgoQHJyMiwtLWFpaSm3f+jQoTh27JhaAiSEkJrG6Vb65MmTmD17Nuzt7cEwTKX9LVu2xOPHj6sdHCGEaAOnxPjq1StYWFhUub+mVgkkhBBN4JQY7e3tcf78+Sr3Hzp0SLagFSGE1DWcEuPcuXOxf/9+rF69Gvn5+QAAqVSK+/fvY8KECYiLi6MlTAkhdRanzpfx48fj0aNHWLJkCRYvXgwA6Nu3L1iWBY/Hw8qVKzF06FB1xkkIITWG8wDvxYsXY8KECfj1119x//59SKVStGrVCsOHD0fLli3VGSMhhNQozokRAFq0aEG3zIQQncPpGWNSUhK2bNlS5f4tW7YgOTmZa0yEEKJVnBLj4sWL8ccff1S5//Tp01iyZAnnoAghRJs4JcbExET06NGjyv09evTA1atXOQdFCCHaxCkxFhQUQE+v6seTPB5PNoxHVZs3b4ZIJIKBgQFcXV1lk1NUJTw8HG3btoWhoSFsbGwwb948lJSUcLo2IYQAHBPj+++/j5MnT1a5Pzo6mlPPdFRUFAICAhAcHIykpCQ4OjrCx8cHWVlZCuvv27cPCxcuRHBwMG7fvo2dO3ciKioKixYtUvnahBDyBqfE+Mknn+D48eMICAhAXl6erDwvLw/z5s1DdHQ0PvnkE5XPu379ekyZMgX+/v6wt7fHtm3bYGRkhF27dimsf/nyZbi7u2Ps2LEQiUTo06cPxowZ885WJiGEvA2nxDh79mxMnDgR4eHhMDc3R4sWLdCiRQuYm5sjIiIC48ePV3kYT2lpKRITE+Ht7f1vcDwevL29ERcXp/CYbt26ITExUZYIHz58iBMnTqB///5cfi1CCAHAcRwjwzDYvXs3/Pz88Ouvv+Lhw4cAgCFDhmDEiBHw9PRU+Zw5OTmQSCQQCoVy5UKhEHfu3FF4zNixY5GTk4Pu3buDZVmUl5fj008/feuttFgshlgslm2/mUeSkLqmS5cuyMjIgJWVFXV2qlm1Bnh7eXnBy8tLXbGo7OzZs1i5ciW2bNkCV1dX3L9/H3PmzMGyZcuwdOlShceEhYUhNDS0hiMlRP0yMjLw5MkTbYehkzjdSqempuLo0aNV7j969CjS0tJUOqe5uTn4fD4yMzPlyjMzM2FlZaXwmKVLl2LChAmYPHkyPvjgAwwbNgwrV65EWFgYpFKpwmMCAwORn58v+5w7d06lOAkhuo9TYlywYAE2btxY5f7Nmzdj4cKFKp1TX18fzs7OiI2NlZVJpVLExsbCzc1N4THFxcXg8eR/BT6fDwBgWVbhMQKBACYmJrKPsbGxSnESQnQfp8QYFxeH3r17V7n/f//7Hy5cuKDyeQMCAhAZGYm9e/fi9u3bmD59OoqKiuDv7w8A8PPzQ2BgoKz+oEGDsHXrVuzfvx+pqak4deoUli5dikGDBskSJCGEqIrTM8bc3Fw0atSoyv3GxsZ4/vy5yuf19fVFdnY2goKCkJGRAScnJ0RHR8s6ZNLT0+VaiEuWLAHDMFiyZAmePHkCCwsLDBo0CCtWrFD9lyKEkP/HKTG2aNECly5dwvTp0xXuv3DhAt577z1OAc2aNQuzZs1SuO/s2bNy23p6eggODkZwcDCnaxFCiCKcbqXHjBmDn376CRs3bpTr5JBIJIiIiEBUVBTGjh2rtiAJIaQmcWoxBgYG4uLFi5g7dy5WrFiBtm3bAgBSUlKQnZ0NT09P2czehBBS13BqMQoEApw8eRI7d+6Ei4sLcnJykJOTAxcXF+zatQt//PEHBAKBumMlhJAawXmAN4/Hg7+/v6zHmBBCdAWnFiMhhOgyTi3GXr16vbMOwzByg7UJIaSu4JQYpVIpGIaRK5NIJHj06BEeP36M1q1bo3nz5moJkBCi2JtXZat6ZZZwxykxVhxP+F/Hjh3D1KlTsX79eq4xEUKUQDPqaE61ZtdRZODAgRg/fjzmzp1LEzSQeiWfaQwUluP4Ct0ew9tY2wHUAI10vrRq1Qp//vmnJk5NCCEap/YWY3l5OX7++WeYm5ur+9SEkP+YuyUGuYWvYGZsiPAZPtoOR6dwSoyTJk1SWJ6Xl4f4+HhkZGTQM0ZCNCy38BWev3yl7TB0EqfEePr06Uq90gzDwMzMDN27d8fkyZPRp08ftQRICCE1jVNiVHV2bkIIqUvozRdCCKlA6cRYXFyM9PR0lJaWVtq3a9cu/O9//4O9vT2GDx9OPdKEkDpN6cT41VdfoWPHjpUS4/LlyzFlyhScO3cO2dnZOHToEDw9PXH9+nW1B0sIITVB6cR45swZDBw4UG7xqJcvX2L58uVo3rw57t27h+zsbMTHx0NfXx+rVq3SSMCEEKJpSifGtLQ0dOzYUa7sxIkTKC0txZdffgk7OzsAgIuLC/z9/TkthkUIIbWB0omxoKAATZs2lSs7f/48GIaBj4/84FJ7e3tkZ2erJ0JCCKlhSidGW1tb3LlzR67s7NmzEAqFaN26tVx5aWkpTExM1BMhIYTUMKUTY58+fbBr1y5cuXIFAPDdd9/hzp07GDZsWKW6iYmJEIlEaguSEEJqktIDvJcuXYpDhw6hW7du4PP5KC8vh4WFBYKCguTqFRcX4+DBg5g6daragyWE/MvM2FDuv0R9lE6M5ubmSE5Oxo4dO/Dw4UPY2tpi0qRJsLS0lKv3999/Y9y4cZgwYYLagyWE/IsmjtAclV4JNDMzw+eff/7WOi4uLnBxcalWUIQQok30SiAhhFRAiZEQQiqgxEgIIRXUusS4efNmiEQiGBgYwNXVFQkJCW+tn5eXh5kzZ8La2hoCgQBt2rTBiRMnaihaQoguUioxHjlyBE+fPtV0LIiKikJAQACCg4ORlJQER0dH+Pj4ICsrS2H90tJS9O7dG2lpafjll1+QkpKCyMhIWrqVEFItSiXGYcOGyS2Z2rJlSxw5ckTtwaxfvx5TpkyBv78/7O3tsW3bNhgZGWHXrl0K6+/atQsvXrzAoUOH4O7uDpFIBA8PDzg6Oqo9NkJI/aFUYmzUqBHy8vJk22lpaSgsLFRrIKWlpUhMTIS3t/e/wfF48Pb2RlxcnMJjjhw5Ajc3N8ycORNCoRAODg5YuXIlJBJJldcRi8V4+fKl7KPu34MQUvcpNY7RxcUFK1asQGZmJho3fr2q7IkTJ5CRkVHlMQzDYN68eUoHkpOTA4lEAqFQKFcuFAorvaP9xsOHD3H69GmMGzcOJ06cwP379zFjxgyUlZUhODhY4TFhYWEIDQ1VOi5CSP2jVGLcsmUL/Pz8sGzZMgCvk96+ffuwb9++Ko9RNTFyIZVKYWlpie3bt4PP58PZ2RlPnjzB119/XWViDAwMREBAgGw7OTkZHh4eGo2TEFK3KJUYW7dujcuXL6OkpARZWVkQiUQIDw/HkCFD1BaIubk5+Hw+MjMz5cozMzNhZWWl8Bhra2s0aNAAfD5fVta+fXtkZGSgtLQU+vr6lY4RCAQQCASy7f9OvEsIIYCKrwQaGBigRYsWCA4ORq9evWBra6u2QPT19eHs7IzY2FgMHToUwOsWYWxsLGbNmqXwGHd3d+zbtw9SqRQ83uvHpXfv3oW1tbXCpEgIIcrgNI4xODgYDg4OAIDCwkLcvn0bt2/frnZHRkBAACIjI7F3717cvn0b06dPR1FREfz9/QEAfn5+CAwMlNWfPn06Xrx4gTlz5uDu3bs4fvw4Vq5ciZkzZ1YrDkJI/cZpXWkA+PPPP/HFF1/g4sWLkEqlAF73Ivfo0QNr1qxBly5dVD6nr68vsrOzERQUhIyMDDg5OSE6OlrWIZOeni5rGQKAjY0NYmJiMG/ePHTs2BHNmzfHnDlz8OWXX3L9tQghhFtivHLlCjw9PaGvr4/Jkyejffv2AIDbt2/jp59+Qs+ePXH27FlOs+zMmjWrylvn/46lfMPNzQ3x8fEqX4cQQqrCKTEuXrwYzZs3x8WLFyt1jISEhMDd3R2LFy/GqVOn1BIkIYTUJE7PGK9cuYJp06Yp7C0WCoWYOnUqteIIIXUWp8TI4/FQXl5e5X6JRCL3LJAQQuoSTtmrW7du2Lx5Mx49elRpX3p6OrZs2QJ3d/dqB0cIIdrA6RnjypUr0bNnT7Rr1w7Dhg1DmzZtAAApKSk4fPgw9PT0EBYWptZACSGkpnBKjJ06dcKVK1ewePFiHDlyBMXFxQAAIyMj9O3bF8uXL4e9vb1aAyWEkJrCeRyjvb09Dh48CKlUiuzsbACAhYUFPVskhNR5nBPjGzwer9KMOIQQUpdR844QQiqgxEgIIRVQYiSEkAooMRJCSAWUGAkhpIJq9UrfunULDx8+RG5uLliWrbTfz8+vOqcnhBCt4JQYHzx4gPHjxyMhIUFhQgRer/lCiZEQUhdxSozTpk3DjRs3EB4ejh49esDMzEzdcRFCiNZwSoyXLl3CokWL8Nlnn6k7HkII0TpOnS/m5uay9aUJIUTXcEqMn376KX744QdIJBJ1x0MIIVrH6Va6TZs2kEgkcHR0xKRJk2BjYyO3tvMbw4cPr3aAhBBS0zglRl9fX9nPCxYsUFiHYRhqURJC6iROifHMmTPqjoMQQmoNTonRw8ND3XEQQkitUe35GG/duiVb+8XW1pZm7iaE1HmcE+Phw4cREBCAtLQ0uXI7OzusX78egwcPrm5shBCiFZyG65w4cQIjRowA8HphrIMHD+LgwYNYuXIlWJbF8OHDER0drdZACSGkpnBqMS5btgwdO3bEhQsX0LBhQ1n54MGDMWvWLHTv3h2hoaHo27ev2gIlhJCawqnF+Ndff2HixIlySfGNhg0b4uOPP8Zff/3FOajNmzdDJBLBwMAArq6uSEhIUOq4/fv3g2EYDB06lPO1CSGEU2I0MDDAixcvqtz/4sULGBgYcAooKioKAQEBCA4ORlJSEhwdHeHj44OsrKy3HpeWloYFCxagR48enK5LCCFvcEqMvXr1QkREBOLi4irtu3LlCjZu3Ahvb29OAa1fvx5TpkyBv78/7O3tsW3bNhgZGWHXrl1VHiORSDBu3DiEhoaiZcuWnK5LCCFvcHrGuGbNGri5uaF79+5wcXFB27ZtAQApKSlISEiApaUlVq9erfJ5S0tLkZiYiMDAQFkZj8eDt7e3wiT8xldffQVLS0t88sknuHDhwluvIRaLIRaLZduFhYUqx0kI0W2cWox2dnb466+/MHv2bOTm5iIqKgpRUVHIzc3FnDlzcP36dYhEIpXPm5OTA4lEUmmdaqFQiIyMDIXHXLx4ETt37kRkZKRS1wgLC0Pjxo1lHxqsTgipiPM4RktLS2zYsAEbNmxQZzwqKSgowIQJExAZGQlzc3OljgkMDERAQIBsOzk5mZIjIUROtd98USdzc3Pw+XxkZmbKlWdmZsLKyqpS/QcPHiAtLQ2DBg2SlUmlUgCAnp4eUlJS0KpVK7ljBAIBBAKBbNvY2FidvwIhRAcolRgnTZoEhmGwfft28Pl8TJo06Z3HMAyDnTt3qhSMvr4+nJ2dERsbKxtyI5VKERsbi1mzZlWq365dO9y4cUOubMmSJSgoKEBERARsbGxUuj4hhABKJsbTp0+Dx+NBKpWCz+fj9OnTYBjmrce8a39VAgICMHHiRHTp0gUuLi4IDw9HUVER/P39AbxeebB58+YICwuDgYEBHBwc5I43NTUFgErlhBCiLKUSY8X3oStuq5Ovry+ys7MRFBSEjIwMODk5ITo6WtYhk56eDh6PlsMmhGgOp2eM6enpsLCwgKGhocL9r169QnZ2Nlq0aMEpqFmzZim8dQaAs2fPvvXYPXv2cLomIYS8wXm4zsGDB6vcf+TIEdjZ2XEOihBCtIlTYmRZ9q37y8rK6HaXEFJnKX0r/fLlS+Tl5cm2nz9/jvT09Er18vLysH//flhbW6slQEIIqWlKJ8YNGzbgq6++AvC6x3nu3LmYO3euwrosy2L58uVqCZAQQmqa0omxT58+MDY2Bsuy+OKLLzBmzBh07txZrg7DMGjYsCGcnZ3RpUsXtQdLCCE1QenE6ObmBjc3NwBAUVERRowYQWMFCSE6SeXhOsXFxdi4cSOMjIwoMRJCdJLKXcdGRkbQ09NTOHs3IYToAk5jakaMGIFffvnlncN2CCGkLuL05svo0aMxY8YMeHl5YcqUKRCJRArfgqnYOUMIIXUBp8To6ekp+1nRjNksy4JhGEgkEs6BEUKItnBKjLt371Z3HIQQUmtwSowTJ05UdxyEEFJrVHsG78LCQjx+/BgAYGNjQzNiE0LqPM4zPfz555/w8vKCmZkZHBwc4ODgADMzM/Tq1QtXr15VZ4yEEFKjOLUYr1y5Ak9PT+jr62Py5Mlo3749AOD27dv46aef0LNnT5w9exYuLi5qDZYQQmoCp8S4ePFiNG/eHBcvXqy0SFVISAjc3d2xePFinDp1Si1BEkJITeJ0K33lyhVMmzZN4cp9QqEQU6dORXx8fLWDI4QQbeCUGHk8HsrLy6vcL5FIaKJaQkidxSl7devWDZs3b8ajR48q7UtPT8eWLVvg7u5e7eAIIUQbOD1jXLlyJXr27Il27dph2LBhaNOmDQAgJSUFhw8fhp6eHsLCwtQaKCGE1BROibFTp064cuUKFi9ejCNHjqC4uBjA65l3+vbti+XLl8Pe3l6tgRJCSE3hPMDb3t4eBw8ehFQqRXZ2NgDAwsKCni0SQuq8ar/5wjAMGIaR/UwIIXUd5+bdrVu3MHLkSJiYmMDa2hrW1tYwMTHByJEj8ffff6szRkIIqVGcWowXLlxAv379IJVKMWTIELnOlyNHjuD3339HdHQ0evToodZgCSGkJnBKjPPmzYOlpSXOnTsHGxsbuX2PHz9Gz549ERAQgD///FMtQRJCSE3idCt98+ZNzJgxo1JSBF7PsDN9+nTcvHmTc1CbN2+GSCSCgYEBXF1dkZCQUGXdyMhI9OjRA2ZmZjAzM4O3t/db6xNCyLtwSoy2trYQi8VV7i8tLVWYNJURFRWFgIAABAcHIykpCY6OjvDx8UFWVpbC+mfPnsWYMWNw5swZxMXFwcbGBn369MGTJ084XZ8QQjglxqCgIGzcuBHJycmV9l27dg3ffPMNQkJCOAW0fv16TJkyBf7+/rC3t8e2bdtgZGSEXbt2Kaz/448/YsaMGXByckK7du2wY8cOSKVSxMbGcrq+rurSpQvee+89dOnSRduhEFLrcXrGGB8fD6FQCGdnZ3Tr1g2tW7cGANy7dw9xcXFwcHBAXFwc4uLiZMcwDIOIiIi3nre0tBSJiYkIDAyUlfF4PHh7e8ud622Ki4tRVlaGJk2aKNwvFovlWruFhYVKnbeuy8jIoFY0IUrilBg3bdok+/nSpUu4dOmS3P4bN27gxo0bcmXKJMacnBxIJBIIhUK5cqFQiDt37igV25dffolmzZrB29tb4f6wsDCEhoYqdS5CSP3E6VZaKpWq/KmJFQNXrVqF/fv34+DBgzAwMFBYJzAwEPn5+bLPuXPnNB4XIaRuqfabL+pkbm4OPp+PzMxMufLMzEyFcz/+19q1a7Fq1Sr88ccf6NixY5X1BAIBBAKBbJvWqCGEVFStxJiamorff/9dNv2Yra0t+vXrBzs7O07n09fXh7OzM2JjYzF06FAAkHWkzJo1q8rj1qxZgxUrViAmJoY6Fwgh1cY5Mc6fPx8RERGQSqVy5TweD3PnzsXatWs5nTcgIAATJ05Ely5d4OLigvDwcBQVFcHf3x8A4Ofnh+bNm8umNVu9ejWCgoKwb98+iEQiZGRkAHjdEqTWICGEC07PGNetW4cNGzZg+PDhiIuLQ15eHvLy8hAXF4eRI0diw4YN2LBhA6eAfH19sXbtWgQFBcHJyQnJycmIjo6Wdcikp6fj2bNnsvpbt25FaWkpRo4cKXtn29ramnNiJoQQTi3GyMhIDB48GD///LNcuaurK/bv34+SkhJ8++23mDdvHqegZs2aVeWt89mzZ+W209LSOF2DEEKqwqnFmJaWBh8fnyr3+/j4UMIihNRZnFqMlpaWuH79epX7r1+/DgsLC85BEfV706v/rt59QgjHxDhq1ChERERAJBLhs88+Q8OGDQEARUVF2LRpE3bs2IG5c+eqM05STVevXtV2CITUGZwS47Jly5CcnIxFixYhKCgIzZo1AwA8ffoU5eXl8PLywldffaXWQHWNEVuM4rxiDJm7UtuhaBZjpO0ICFEZp8RoZGSE2NhYHD58WG4cY9++fdG/f38MGjSIljkghNRZKifG4uJijB8/HiNGjMC4ceMwZMgQTcRF1OzcT5shLi6EwMgYHmNmajscQmo1lXuljYyM8Mcff8iWTCV1g7i4ECWFLyEurh+zCRFSHZyG63Tv3l3pacAIIaSu4ZQYN23ahAsXLmDJkiX4559/1B0TIYRoFafE6OjoiH/++QdhYWGwtbWFQCCAiYmJ3Kdx48bqjpUQQmoEp17pESNGUK8zIURncUqMe/bsUXMYhBBSe6iUGEtKSnD48GGkpqbC3NwcAwYMgLW1taZiI4QQrVA6MWZlZaFbt25ITU0Fy7IAXg/dOXToUJXrqxBCSF2kdOfLsmXLkJaWhnnz5uHYsWMIDw+HoaEhpk2bpsn4CCGkxindYjx58iT8/PzkJoAVCoUYO3YsUlJS0LZtW40ESNRDYGQs919CSNWUTozp6en48ssv5cq6d+8OlmWRmZlJibGWo9cACVGe0rfSYrG40pKkb7bLy8vVGxUhhGiRSr3SaWlpSEpKkm3n5+cDAO7duwdTU9NK9Tt37ly96AghRAtUSoxLly7F0qVLK5XPmDFDbptlWTAMA4lEUr3oCCFEC5ROjLt379ZkHIQQUmsonRgnTpyoyTgIIaTW4DSJBCGE6DJKjIQQUgElRkIIqYASIyGEVECJkRBCKqiViXHz5s0QiUQwMDCAq6srEhIS3lr/wIEDaNeuHQwMDPDBBx/gxIkTNRQpIUQX1brEGBUVhYCAAAQHByMpKQmOjo7w8fFBVlaWwvqXL1/GmDFj8Mknn+DatWsYOnQohg4dir///ruGIyeE6IpalxjXr1+PKVOmwN/fH/b29ti2bRuMjIywa9cuhfUjIiLQt29ffP7552jfvj2WLVuGzp07Y9OmTTUcOSFEV9SqxFhaWorExES5iW95PB68vb2rXK41Li6u0kS5Pj4+tLwrIYQzTmu+aEpOTg4kEgmEQqFcuVAoxJ07dxQek5GRobB+RkaGwvpisRhisVi2XVhYfxagLyl6iZKigpq9JmMAXrGR3OQjuujO4+fIfVXzcwM0aWSIJo0Ma/y6uq5WJcaaEBYWhtDQULkyDw+PGl275qeQyTV2rTfEYjF8fHxw/ty5Gr82AJzcvlwr19V1Hh4eiInZD4FAoO1QdEqtSozm5ubg8/nIzMyUK8/MzISVlZXCY6ysrFSqHxgYiICAALkygUCg8/9jicVinDt3DufOnYOxMc3irQsKCwvh4eEBsVis8///1rRalRj19fXh7OyM2NhYDB06FAAglUoRGxuLWbNmKTzGzc0NsbGxmDt3rqzs1KlTcHNzU1i/PiTBt3FycoKJiYm2wyBq8PLlS22HoLNqVWIEgICAAEycOBFdunSBi4sLwsPDUVRUBH9/fwCAn58fmjdvjrCwMADAnDlz4OHhgXXr1mHAgAHYv38/rl69iu3bt2vz1yCE1GG1LjH6+voiOzsbQUFByMjIgJOTE6Kjo2UdLOnp6eDx/u1M79atG/bt24clS5Zg0aJFeP/993Ho0CE4ODho61cghNRxDPtmkWii08RiMcLCwhAYGFivHyXoEvpONYcSIyGEVFCrBngTQkhtQImREEIqoMRICCEVUGIknKSlpYFhGOzZs0fboRCidpQYa8CDBw8wbdo0tGzZEgYGBjAxMYG7uzsiIiLw6tUrjV331q1bCAkJQVpamsauoYwVK1Zg8ODBEAqFYBgGISEhWo2npjAMo9Tn7Nmz1b5WcXExQkJCVDpXff1elFHrxjHqmuPHj2PUqFEQCATw8/ODg4MDSktLcfHiRXz++ee4efOmxgaj37p1C6GhofD09IRIJNLINZSxZMkSWFlZoVOnToiJidFaHDXt+++/l9v+7rvvcOrUqUrl7du3r/a1iouLZXMAeHp6KnVMff1elEGJUYNSU1MxevRo2Nra4vTp03ITVcycORP379/H8ePHtRjhv1iWRUlJCQwN1T9TS2pqKkQiEXJycmBhYaH289dW48ePl9uOj4/HqVOnKpVrS339XpRBt9IatGbNGhQWFmLnzp0KZ+9p3bo15syZI9suLy/HsmXL0KpVKwgEAohEIixatEhumjQAEIlEGDhwIC5evAgXFxcYGBigZcuW+O6772R19uzZg1GjRgEAvLy8Kt22vTlHTEwMunTpAkNDQ3z77bcAgIcPH2LUqFFo0qQJjIyM0LVr12olcG22Vms7qVSK8PBwdOjQAQYGBhAKhZg2bRpyc3Pl6l29ehU+Pj4wNzeHoaEh7OzsMGnSJACvn/e+SWyhoaGy7/pdt8b0vVSNWowadPToUbRs2RLdunVTqv7kyZOxd+9ejBw5EvPnz8eVK1cQFhaG27dv4+DBg3J179+/j5EjR+KTTz7BxIkTsWvXLnz88cdwdnZGhw4d0LNnT8yePRsbN27EokWLZLdr/71tS0lJwZgxYzBt2jRMmTIFbdu2RWZmJrp164bi4mLMnj0bTZs2xd69ezF48GD88ssvGDZsmPr+gAimTZuGPXv2wN/fH7Nnz0Zqaio2bdqEa9eu4dKlS2jQoAGysrLQp08fWFhYYOHChTA1NUVaWhp+++03AICFhQW2bt2K6dOnY9iwYRg+fDgAoGPHjtr81eo2lmhEfn4+C4AdMmSIUvWTk5NZAOzkyZPlyhcsWMACYE+fPi0rs7W1ZQGw58+fl5VlZWWxAoGAnT9/vqzswIEDLAD2zJkzla735hzR0dFy5XPnzmUBsBcuXJCVFRQUsHZ2dqxIJGIlEgnLsiybmprKAmB3796t1O/HsiybnZ3NAmCDg4OVPkaXzJw5k/3vX7kLFy6wANgff/xRrl50dLRc+cGDB1kA7J9//lnluavzZ1vfvxdF6FZaQ95MCdWoUSOl6r9Z2bDiXJHz588HgEq3svb29ujRo4ds28LCAm3btsXDhw+VjtHOzg4+Pj6V4nBxcUH37t1lZcbGxpg6dSrS0tJw69Ytpc9P3u7AgQNo3LgxevfujZycHNnH2dkZxsbGOHPmDADA1NQUAHDs2DGUlZVpMeL6gxKjhryZ87CgQLmlBB49egQej4fWrVvLlVtZWcHU1BSPHj2SK2/RokWlc5iZmVV6NvU2dnZ2CuNo27ZtpfI3t+AV4yDc3bt3D/n5+bC0tISFhYXcp7CwULYypoeHB0aMGIHQ0FCYm5tjyJAh2L17d6Vnz0R96BmjhpiYmKBZs2YqL+PKMIxS9fh8vsJyVoU5QTTRA02UJ5VKYWlpiR9//FHh/jcdKgzD4JdffkF8fDyOHj2KmJgYTJo0CevWrUN8fDzNyK4BlBg1aODAgdi+fTvi4uKqnFH8DVtbW0ilUty7d0+ugyQzMxN5eXmwtbVV+frKJtmKcaSkpFQqf7MYGZc4iGKtWrXCH3/8AXd3d6X+keratSu6du2KFStWYN++fRg3bhz279+PyZMnc/quSdXoVlqDvvjiCzRs2BCTJ0+utC4N8PqNmIiICABA//79AQDh4eFyddavXw8AGDBggMrXb9iwIQAgLy9P6WP69++PhIQEueVni4qKsH37dohEItjb26scB1Hso48+gkQiwbJlyyrtKy8vl31vubm5le4EnJycAEB2O21kZARAte+aVI1ajBrUqlUr7Nu3D76+vmjfvr3cmy+XL1/GgQMH8PHHHwMAHB0dMXHiRGzfvh15eXnw8PBAQkIC9u7di6FDh8LLy0vl6zs5OYHP52P16tXIz8+HQCBAr169YGlpWeUxCxcuxE8//YR+/fph9uzZaNKkCfbu3YvU1FT8+uuvcrOnK+v777/Ho0ePUFxcDAA4f/48li9/vWrghAkT6m0r1MPDA9OmTUNYWBiSk5PRp08fNGjQAPfu3cOBAwcQERGBkSNHYu/evdiyZQuGDRuGVq1aoaCgAJGRkTAxMZH9g2poaAh7e3tERUWhTZs2aNKkCRwcHN46kz19L2+h7W7x+uDu3bvslClTWJFIxOrr67ONGjVi3d3d2W+++YYtKSmR1SsrK2NDQ0NZOzs7tkGDBqyNjQ0bGBgoV4dlXw+1GTBgQKXreHh4sB4eHnJlkZGRbMuWLVk+ny83dKeqc7Asyz548IAdOXIka2pqyhoYGLAuLi7ssWPH5OqoMlzHw8ODBaDwo2goka6qOFznje3bt7POzs6soaEh26hRI/aDDz5gv/jiC/bp06csy7JsUlISO2bMGLZFixasQCBgLS0t2YEDB7JXr16VO8/ly5dZZ2dnVl9fX6nhN/S9VI1m8CaEkAroGSMhhFRAiZEQQiqgxEgIIRVQYiSEkAooMRJCSAWUGGuBNWvWoF27dpBKpdoOpdpGjx6Njz76SNthaBV9nzpA2+OF6rv8/Hy2SZMm7K5du2Rl+P+xZGvXrq1Uf/fu3e+cgoorb29vFgA7c+ZMhft37NjBtmvXjhUIBGzr1q3ZjRs3VqqTlJTE8ng8Njk5We3x1QX0feoGajFq2a5du1BeXo4xY8ZU2vf111/L3krQtN9++03uNcCKvv32W0yePBkdOnTAN998Azc3N8yePRurV6+Wq9epUyd06dIF69at03TItRJ9nzpC25m5vuvYsSM7fvx4uTIArJOTEwuAXbdundw+TbQwXr16xYpEIvarr75S2MIoLi5mmzZtWulNmXHjxrENGzZkX7x4IVe+du1atmHDhmxBQYHaYqwr6PvUDdRi1KLU1FT89ddf8Pb2rrTP3d0dvXr1wpo1azS6xCrw+pmYVCrFggULFO4/c+YMnj9/jhkzZsiVz5w5E0VFRZUm0e3duzeKiopw6tQpjcVcG9H3qTsoMWrR5cuXAQCdO3dWuD8kJASZmZnYunXrW88jFovlZoB+26ei9PR0rFq1CqtXr65y6qtr164BALp06SJX7uzsDB6PJ9v/hr29PQwNDXHp0qW3xq1r6PvUHTS7jha9meNQ0UzaANCjRw94eXnh66+/xvTp06v8H/2nn36Cv7+/UtdkK7waP3/+fHTq1AmjR4+u8phnz56Bz+dXmpVHX18fTZs2xdOnT+XK9fT0YGNjU++WQaDvU3dQYtSi58+fQ09P760zMIeEhMDDwwPbtm3DvHnzFNbx8fHhdJtz5swZ/Prrr7hy5cpb67169Qr6+voK9xkYGCi8NTQzM1PYotFl9H3qDkqMtVzPnj3h5eWFNWvW4NNPP1VYx9raWuG61W9TXl6O2bNnY8KECfjwww/fWtfQ0BClpaUK95WUlChs+bAsS7NKK0DfZ91AiVGLmjZtivLychQUFLx1NcHg4GB4enri22+/la0Y91+vXr1Cfn6+Ute0srICAHz33XdISUnBt99+i7S0NLk6BQUFSEtLg6WlJYyMjGBtbQ2JRIKsrCy526/S0lI8f/4czZo1q3Sd3NxcvP/++0rFpCvo+9Qd1PmiRe3atQPwujfzbTw8PODp6YnVq1crvM2JioqStTLe9XkjPT0dZWVlcHd3h52dnewDvP5LZmdnh5MnTwL4dxr9q1evyl336tWrkEqlsv1vlJeX4/Hjx3Jr19QH9H3qDmoxatGbBbKuXr2Kjh07vrVuSEgIPD09sX379kr7uDyTGj16dKW/AAAwbNgw9O/fH1OmTIGrqysAoFevXmjSpAm2bt0qm0ofALZu3QojI6NK69HcunULJSUl6Natm0ox1XX0feoQ7Q6jJA4ODuyYMWPkylDFa1z/nYpeE6+Qve3amzdvZgGwI0eOZCMjI1k/Pz8WALtixYpKddeuXcsaGRmxL1++1EiMtRl9n7qBEqOWrV+/njU2NmaLi4tlZVX9z3zmzBmt/UVi2ddrk7Rt25bV19dnW7VqxW7YsIGVSqWV6rm6ulZ6+6O+oO9TN1Bi1LK8vDy2SZMm7I4dO7Qdilpcu3aNZRiGvXbtmrZD0Qr6PnUDLYZVC6xevRq7d+/GrVu3OC1PWpuMHj0aUqkUP//8s7ZD0Rr6Pus+SoyEEFJB3f7njBBCNIASIyGEVECJkRBCKqDESAghFVBiJISQCigxEkJIBZQYCSGkAkqMhBBSASVGQgipgBIjIYRUQImREEIqoMRICCEVUGIkhJAK6n1ifPbsGUJCQvDs2TNth0IIqSUoMT57htDQUEqMhBCZep8YCSGkIkqMhBBSASVGQgipgBIjIYRUQImREEIqoMRICCEVUGIkhJAKKDESUpcVv9B2BDqJEiMhdRklRo2gxEhIXVb+StsR6CRKjITUZeJCbUegk6qdGJ89e4br16+jqKhIHfEQQlQhLtB2BDqJc2I8fPgw2rVrh/feew+dO3fGlStXAAA5OTno1KkTDh06pK4YCSFVKcnXdgQ6iVNiPHr0KIYPHw5zc3MEBweDZVnZPnNzczRv3hy7d+9WW5CEkCq8ytV2BDqJU2L86quv0LNnT1y8eBEzZ86stN/NzQ3Xrl3jFNDmzZshEolgYGAAV1dXJCQkvLV+eHg42rZtC0NDQ9jY2GDevHkoKSnhdG1C6pziHG1HoJM4Jca///4bH330UZX7hUIhsrKyVD5vVFQUAgICEBwcjKSkJDg6OsLHx6fKc+3btw8LFy5EcHAwbt++jZ07dyIqKgqLFi1S+dqE1EmFmdqOQCdxSoxGRkZv7Wx5+PAhmjZtqvJ5169fjylTpsDf3x/29vbYtm0bjIyMsGvXLoX1L1++DHd3d4wdOxYikQh9+vTBmDFj3tnKJERnFL8Ayku1HYXO4ZQYvby8sHfvXpSXl1fal5GRgcjISPTp00elc5aWliIxMRHe3t7/BsfjwdvbG3FxcQqP6datGxITE2WJ8OHDhzhx4gT69+9f5XXEYjFevnwp+xQW0nAHUpex1GrUAD0uB61YsQJdu3bFhx9+iFGjRoFhGMTExOD06dP49ttvwbIsgoODVTpnTk4OJBIJhEKhXLlQKMSdO3cUHjN27Fjk5OSge/fuYFkW5eXl+PTTT996Kx0WFobQ0FCVYiOkVnv5FDC10XYUOoVTi7Ft27a4ePEimjZtiqVLl4JlWXz99ddYuXIlPvjgA1y4cAEikUjNoVZ29uxZrFy5Elu2bEFSUhJ+++03HD9+HMuWLavymMDAQOTn58s+586d03ichGhUXrq2I9A5nFqMANChQwf88ccfyM3Nxf379yGVStGyZUtYWFhwOp+5uTn4fD4yM+VvCzIzM2FlZaXwmKVLl2LChAmYPHkyAOCDDz5AUVERpk6disWLF4PHq5z3BQIBBAKBbNvY2JhTvITUGrmp2o5A51T7zRczMzN8+OGHcHV15ZwUAUBfXx/Ozs6IjY2VlUmlUsTGxsLNzU3hMcXFxZWSH5/PBwC5sZWE6LSs29qOQOdwSowbN26Ej49Plfv79euHrVu3qnzegIAAREZGYu/evbh9+zamT5+OoqIi+Pv7AwD8/PwQGBgoqz9o0CBs3boV+/fvR2pqKk6dOoWlS5di0KBBsgRJiM578ZBm2VEzTrfSO3fuRK9evarcb29vj+3bt2P69OkqndfX1xfZ2dkICgpCRkYGnJycEB0dLeuQSU9Pl2shLlmyBAzDYMmSJXjy5AksLCwwaNAgrFixgsuvRUjdlXoO6DBM21HoDIblcM9pbGyM9evXY+rUqQr3R0ZGYv78+Xj58mW1A9S0pKQkODs7IzExEZ07d9Z2OISoJmo8kPcYaNoaGLEDYBhtR6QTON1K6+vrIyMjo8r9z549U9jxQQjRkOf3gcf0YoO6cMpeXbt2xZ49e1BQUHnKo/z8fOzevRtdu3atdnCEEBVc3QVQp6NacHrGGBwcDA8PDzg5OWHu3Lno0KEDgNfvUIeHh+PZs2fYt2+fWgMlhLxD9h3g4VmglZe2I6nzOCVGV1dXHD16FNOmTcOcOXPA/P9zDZZlYWdnhyNHjlQ5xIYQokF/7gBEPQA+5yHKBNUY4N27d2/cv38f165dw4MHDwAArVq1QufOnWWJkhBSw/L/Ae7+DrQfpO1I6rRq/bPC4/Hg7OwMZ2dndcVDCKmuxL3A+z6Anr62I6mzqpUYb926hYcPHyI3N1fhmyZ+fn7VOT0hhIuibODWYaDjKG1HUmdxSowPHjzA+PHjkZCQUOWrdwzDUGIkRFuS9gLv9wYMTbUdSZ3EKTFOmzYNN27cQHh4OHr06AEzMzN1x0UIeYcuXbogI/UWrIz5uLqowssJ4gLgyreA55faCa6O45QYL126hEWLFuGzzz5TdzyEECVlZGTgyYtXgLSKZ4kpJwC7noAtjRBRFacB3ubm5mjcuLG6YyGEqNvZlUBB1W+pEcU4JcZPP/0UP/zwAyQSibrjIYSoU8lLIGYxUFqs7UjqFE630m3atIFEIoGjoyMmTZoEGxsbhdN8DR8+vNoBEkKq6fl9IPYrwGcFwKPp+JTBKTH6+vrKfl6wYIHCOgzDUIuSkNoiPQ64uB7osYBm4FECp8R45swZdcdBCNG028cAYyug8wRtR1LrcUqMHh4e6o6DEFIT/twBmFgDrb3fXbceq9akiWKxGHFxcTh8+DBycnLUFRMhRJPOrgKe/aXtKGo1zolx48aNsLa2Rvfu3TF8+HD89dfrP+icnByYm5tj165daguSEKJGkjIgZtHrmb+JQpwS4+7duzF37lz07dsXO3fulHst0NzcHL169cL+/fvVFiQhRM3EBcCJz4Gi59qOpFbilBjXrVuHIUOGYN++fRg0qPL0Rs7Ozrh582a1gyOEaFDBM+DEgtdjHYkcTonx/v376NevX5X7mzRpgufP6V8iQmq9Fw+B378ESou0HUmtwikxmpqavrWz5datW7CysuIcFCGkBmXd+v/kSG/HvMEpMfbv3x/bt29HXl5epX03b95EZGQkBg8eXN3YCCE1JeMG8PsXlBz/H6fEuHz5ckgkEjg4OMgWvd+7dy/Gjx+PLl26wNLSEkFBQeqOlRCiSRk3gJhAoKxE25FoHafE2KxZMyQmJqJv376IiooCy7L4/vvvcfToUYwZMwbx8fEwNzdXd6yEEE17mvz6vWqpVNuRaJXKb76IxWLExMRAJBJhx44d2LFjB7KzsyGVSmFhYQEer1pjxgkh2vboEvBnJOA6TduRaI3KWUxfXx+jRo3C5cuXZWUWFhYQCoWUFAnRFcn7gCeJ2o5Ca1TOZAzD4P3336dXAAnRdRfWA+Wl2o5CKzg18RYtWoRNmzYhJSVF3fEQQmqL/H+Av3/VdhRawWl2nfj4eDRt2hQODg7w9PSESCSCoaGhXB2GYRAREaGWIAkhWnLte6BtX8Cwfi14xykxbtq0SfZzbGyswjqUGAnRAaVFQNJ3gPscbUdSozjdSkul0nd+uM7evXnzZohEIhgYGMDV1RUJCQlvrZ+Xl4eZM2fC2toaAoEAbdq0wYkTJzhdmxCiwK0jQP4TbUdRo2pVN3JUVBQCAgIQHByMpKQkODo6wsfHB1lZWQrrl5aWonfv3khLS8Mvv/yClJQUREZGonnz5jUcOSE6TFoOXN2p7ShqFKdb6Tfi4+Nx5swZZGVlYcaMGXj//fdRXFyMO3fuoE2bNjA2NlbpfOvXr8eUKVPg7+8PANi2bRuOHz+OXbt2YeHChZXq79q1Cy9evMDly5fRoEEDAIBIJKrOr0QIUeR+LNBxNGDRRtuR1AhOLcbS0lIMHz4c7u7uWLx4MTZu3IjHj19Pesnj8dCnTx+Vny+WlpYiMTER3t7/TrnO4/Hg7e2NuLg4hcccOXIEbm5umDlzJoRCIRwcHLBy5UpahIvovPT0dBQVvZ4Rp0gsQfqLGniN72r9mXyaU4tx6dKlOHbsGLZu3QovLy+0bdtWts/AwACjRo3C4cOHsXjxYqXPmZOTA4lEAqFQKFcuFApx584dhcc8fPgQp0+fxrhx43DixAncv38fM2bMQFlZGYKDgxUeIxaLIRaLZduFhYVKx0iItiUkJGDZsmU4fvy4bILovFcSiBYnYOAHTbC0vy0+FDXSzMXT44AXqUATO7WcruxVAR5Gb8OLe1cAhgfzdt3Q0mca+PqGVR7z13cL8TL9hlyZVed+aN1/FgAg8/op3DsarvBYl3k/Qr+hqVKxcUqMP/30E6ZPn46pU6cqnHexffv2OHDgAJdTq0QqlcLS0hLbt28Hn8+Hs7Mznjx5gq+//rrKxBgWFobQ0FCNx0aIuv3222/w9fUFy7Jys+YDAMsCJ/5+gd//zkXUlPYY3klDcxU8OA00+UTp6n99txBCx/9B6Ni70r67h75GaeELOIxbDqlEgntHw3H/+DdoO+yLt55T2MkHth7jZdu8Bgayn83te8KslbP8dY5sgLS8TOmkCHC8lc7KysIHH3xQ5X4+n4/iYtWmLzI3Nwefz0dmZqZceWZmZpVzO1pbW6NNmzbg8/9dRLx9+/bIyMhAaaniEfuBgYHIz8+Xfc6dO6dSnIRoQ0JCAnx9fSGRSKp8VCSRAhIpC9/I2/gzrUAzgTxJUstpinPSkfsgEa0HzEGj5u3QuEUHtOo7Ddk3z0Nc8PZJrvkNDKBv3ET20RMY/WefQG4fw/CRn/YXrJz6qBQfp8RoY2NT5e0tAFy6dAmtW7dW6Zz6+vpwdnaWGxcplUoRGxsLNzc3hce4u7vj/v37kP5nJpC7d+/C2toa+vr6Co8RCAQwMTGRfVTtICJEG5YvX66wpVgRC4AFi+UnHmkmkBcPXzdPq+nlP3fAN2iIRs3el5WZ2nUCGAYFT97+Rl3W32cQv24Mkr6dgbTTeyB5yzRpmTdiwWsgQNP27irFxykxjh07Ft9++61cpwjDMACAyMhI/Pzzz/Dz81P5vAEBAYiMjMTevXtx+/ZtTJ8+HUVFRbJeaj8/PwQGBsrqT58+HS9evMCcOXNw9+5dHD9+HCtXrsTMmTO5/FqE1Erp6ek4duyY0p2KEilw9MYLzXTIlBUD4uqvEVNWmAt9I1O5MobHRwPDRigryq3yOEsHD7QdsgAfTAjDe91GIevGadw9tLbK+pnJJ2Hh4AF+A4FK8XF6xrh48WLEx8ejZ8+eaN++PRiGwbx58/DixQv8888/6N+/P+bNm6fyeX19fZGdnY2goCBkZGTAyckJ0dHRsg6Z9PR0uRl8bGxsEBMTg3nz5qFjx45o3rw55syZgy+//JLLr0VItUglZWCl6h8Rcepk9DtbihWxLBB7Jw8fuwnfXVlFbGE2eAaNFe57fDEKjy/9LNuWlpei4MkdPIjeJivr/OlWzte26vzvWlMNLUXQN26Cv39chFcvnsGwibVc3Zf/3MarnMdoO2S+ytfhlBj19fURHR2NH3/8Eb/88gskEgnEYjE6duyI5cuXY8KECbIWpKpmzZqFWbNmKdx39uzZSmVubm6Ij4/ndC1C1EUqKUPBk7uQlL5S+7mzHt0Fj8eTe2T0LjwGyCt8pZF4Xj25g4ZmtuDxG1TaZ+XcH+b2PWTbKYe+hnk7dzRt101WJmjUFA2MzVBanCd3LCuVoOxVARo0VP697EbNX4+IKcl9WikxZl6LQUNhSxhbv6/o0LdSKjEGBARgwoQJ6NSpE4DXLTcLCwuMHz8e48ePf8fRhOg+ViqBpPQVeHp6ChNGdTQ2NVUpKQKAlAUaG+qBUfMcqSzLQlJW8rplrOD3bGDYCA0M/x0uxNMToEHDxjBs0kyunsl77SApKULhs3uyxJWXeh1gWVmyU0ZR5kMAgL5xE7lySekr5Ny+CFuviUqf67+U+lMLDw/H7du3Zdt2dnY4ePAgpwsSost4/Abg6emr9ePVs4fKd2AMA3i1aQyAUeuHYRiAr7hjUxVG5i1g1soZ945/g4InKXj5+BYexGyFRYeeEDRqCgAQv8xB4tZpss6YVy+eIf3CTyh8dg8leZl4fjcedw+vg0kLBzQUyo+tzL55HqxUAssPvDjFp1SLUSgU4uHDh7JtVZ93EEK4s3mvGfp6e+Hk6XNKdcDweUD/DqZo0US1DgdlsfrqGcnRZujneBi9FX//uBhgGDRt545WPv8up8BKJXj1/B9Iyl6/kMHj6yEvNRlPEw5DUloCgYkFmrZ3h0330ZXOnXn9JJq27QY9A26xMqwSWW7y5Mn47rvv0LVrV5iamuLYsWPo1KnTWydrYBgGhw8f5hRUTUpKSoKzszMSExPRuXNnbYdD6ihJWQnyH/0NPYEheHrVb1FVlJj8F7wHj4ZEInlrw4QBwOcxuBBgjw9t1T8UjeU3wEvvdWgs6gj+fwZW6xqlWowRERGwtLTEmTNncPPmTTAMg8ePH+PFixdVHsO184UQUpmzU0fs2bYBH3867/VzPgUtRz4PYMBg/6TWGkmKACA1sQGYWjUpl0YolRgbNmyIlStXyrZ5PB7Cw8MxduxYjQVGCJE3pL8P/jiyH6s3bEH0H2fkWo4M8/r2eZFPc40lRQCQWHfS2LlrE6VS//Dhw3HhwgXZ9pkzZ9C7d+V3HwkhmuXs1BE/792Gm1fOwLSxCQDA1JCPByFOODi1rUaTIvgNUNaix7vr6QClEuPhw4eRnp4u2+7VqxdOnTqlsaAIIW9n814zGBm9noWmoYCnsY6W/ypr0x8QaGjmnlpGqcTYvHlzXLt2TbbNsiw9QySkHmGNrVDeZpC2w6gxSj1jHD16NNauXYuff/4ZpqamAICFCxciLCysymMYhsH169fVEiQhRIv4DSB2mQHoCerNOtNKJcawsDC0bt1atowBwzBo2LAhmjZtqun4CCHaxDAo/XA6WDP1TE5bVyiVGPl8PqZOnYqpU6cCeN0rvWTJEuqVJkSXMQxKu0yFpPmH2o6kxnGaRCI1NRUWFhbqjoUQUlswDEq7fApJi27vrquDOCVGW1tbdcdBCKkteDyUusyqly3FN5RKjDweDzweD8XFxdDX1wePx3tnrzTDMCgvL1dLkISQGsIwKP1wZr1OioCSiTEoKAgMw0BPT09umxCiW8ocJ0Dynou2w9A6pRJjSEjIW7cJIXVfuagnylvRG20AxzVfCCG6hTW2Qpmj6us06SqVO1/EYjF++OEHnDx5Eg8ePEBBQQEaNWqE1q1bo2/fvhg7dmyVK/QRQmqh/x+WAz3Nv1ZYV6iUGG/cuIEhQ4bg0aNHYFkWjRs3hrGxMbKyspCUlIQDBw5gxYoVOHLkCNq3b6+pmAkhalTe2gfSpqqvi6LLlL6VLiwsxODBg5GZmYkVK1bg8ePHyM3Nlfvv8uXL8fTpUwwaNAhFRUWajJsQogZS0xYo6/CRtsOodZROjLt370Z6ejqOHz+OhQsXVpq9u3nz5ggMDMTRo0eRmpqKPXv2qDtWQogasfrGKHX5TOGiVvWd0onx+PHj6NOnDzw9Pd9ar1evXujduzeOHj1a3dgIIZrCb4DSbvPANrLSdiS1ktKJ8caNG+9Mim/06tULN27c4BoTIUSTeHoQuwVA2rSNtiOptZROjC9evICVlXL/ugiFwreuB0MI0RIeH+KusyEVOmg7klpN6cQoFovRoIFyzyL09PRQWlo/5m0jpM5gGJS6zIS0nqzbUh0qDddJS0tDUlLSO+ulpqZyDogQohmlnSfV+3eglaVSYly6dCmWLl36znq09AEhtUtZ+6GQiDy1HUadoXRi3L17tybjIIRoiKR5F5S3H6btMOoUpRPjxIkTNRkHIUQDWGMhSp2nAQxNi6AK+tMiRFcxzOtFrBoYaDuSOocSIyE6qqztILBmLbUdRp1UKxPj5s2bIRKJYGBgAFdXVyQkJCh13P79+8EwDIYOHarZAAmp5VhjS5S3G6LtMOqsWpcYo6KiEBAQgODgYCQlJcHR0RE+Pj7Iysp663FpaWlYsGABevToUUORElJ7lX4wDuDT9H9c1brEuH79ekyZMgX+/v6wt7fHtm3bYGRkhF27dlV5jEQiwbhx4xAaGoqWLenWgdRvUot2NIi7mmpVYiwtLUViYiK8vb1lZTweD97e3oiLi6vyuK+++gqWlpb45JNPaiJMQmq1sg4fATSOuFo4LZ/6xq1bt/Dw4UPk5uaCZdlK+/38VJsqPScnBxKJBEKhUK5cKBTizp07Co+5ePEidu7cieTkZKWuIRaLIRaLZduFhYUqxUhIbSa1aEeTzqoBp8T44MEDjB8/HgkJCQoTIvB6+VRVE6OqCgoKMGHCBERGRsLc3FypY8LCwhAaGqrRuAjRlrLW/bQdgk7glBinTZuGGzduIDw8HD169ICZmZlagjE3Nwefz0dmZqZceWZmpsKZfR48eIC0tDQMGjRIViaVSgG8nsgiJSUFrVq1kjsmMDAQAQEBsu3k5GR4eHioJX5CtIk1agqptZO2w9AJnBLjpUuXsGjRInz22WdqDUZfXx/Ozs6IjY2VDbmRSqWIjY3FrFmzKtVv165dpXkflyxZgoKCAkRERMDGxqbSMQKBAALBv4v+GBsbq/V3IERbym270xsuasIpMZqbm6Nx48bqjgUAEBAQgIkTJ6JLly5wcXFBeHg4ioqK4O/vD+D1c8vmzZsjLCwMBgYGcHCQn1fO1NQUACqVE6LrJO+5aTsEncEpMX766af44YcfMHPmTPD5fLUG5Ovri+zsbAQFBSEjIwNOTk6Ijo6Wdcikp6eDx6N/FQn5L9bYCqxJ83dXJErhlBjbtGkDiUQCR0dHTJo0CTY2NgoT5PDhwzkFNWvWLIW3zgBw9uzZtx5Li3CR+khi1VHbIegUTonR19dX9vOCBQsU1mEYBhKJhFtUhBCVSM3baTsEncIpMZ45c0bdcRBCqkHSpLW2Q9ApnBIjDW8hpDbhAYbqGTJHXqvWmy/A67dfHj16BACwtbWFvb19tYMihKiAp94OUFKNxHj48GEEBAQgLS1NrtzOzg7r16/H4MGDqxsbIUQZDCVGdeOUGE+cOIERI0bA1tYWK1euRPv27QEAt2/fxvbt2zF8+HAcO3YMffv2VWuwhJB/CS0swJTkQ2hOt9HqxrBVvez8Fm5ubhCLxbhw4QIaNmwot6+oqAjdu3eHgYHBW2fEqS2SkpLg7OyMxMREdO7cWdvhkDpKUlaC/Ed/Q09gCJ5ezc2DaHDyc5R2nABpDQ3XkZaXolz8Co1tHcDX4SUTOI2U/uuvvzBx4sRKSREAGjZsiI8//hh//fVXtYMjhLwb29BS2yHoHE6J0cDAAC9evKhy/4sXL2BgoLv/mhBSezBgjZpqOwidwykx9urVCxEREQpvla9cuYKNGzfKTTZLCNEMVtAY4DfQdhg6h1Pny5o1a+Dm5obu3bvDxcUFbdu2BQCkpKQgISEBlpaWWL16tVoDJYRUxtL4RY3g1GK0s7PDX3/9hdmzZyM3NxdRUVGIiopCbm4u5syZg+vXr0MkEqk5VEJIRZQYNYPzOEZLS0ts2LABGzZsUGc8hBAVsAITbYegk2j+LkLqMFa/kbZD0ElKtRgnTZoEhmGwfft28Pl8TJo06Z3HMAyDnTt3VjtAQshbNDDSdgQ6SanEePr0afB4PEilUvD5fJw+fRrMO5ZnfNd+Qkj1sdQjrRFKJcaK70NX3CaEaAlNIKERnJ4xpqen49WrV1Xuf/XqFdLT0zkHRQgh2sR5uM7Bgwer3H/kyBHY2dlxDooQoiQpzZKvCZwS47vmnSgrK6MFqwipCaxU2xHoJKXHMb58+RJ5eXmy7efPnyu8Xc7Ly8P+/fthbW2tlgAJIW+h+uRYRAlKJ8YNGzbgq6++AvC6x3nu3LmYO3euwrosy2L58uVqCZAQQmqa0omxT58+MDY2Bsuy+OKLLzBmzJhK8xcyDIOGDRvC2dkZXbp0UXuwhJAKqFdaI5ROjG5ubnBzcwPwejLaESNGwMHBQWOBEUKUQOMYNULld6WLi4uxceNGGBkZUWIkRNv4NTdbeH2ictexkZER9PT0FM7eTQipWSwlRo3gNKZmxIgR+OWXX945bIcQolmskYW2Q9BJnKYdGz16NGbMmAEvLy9MmTIFIpEIhoaGlerR4lKEaFiDyn/vSPVxSoyenp6yny9cuFBpP8uyYBgGEgmNyieE1D2cEuPu3bvVHQchhNQanBLjxIkT1R0HIYTUGpyXNnijsLAQjx8/BgDY2NjA2Ni42kERQog2cZ7p4c8//4SXlxfMzMzg4OAABwcHmJmZoVevXrh69Wq1gtq8eTNEIhEMDAzg6uqKhISEKutGRkaiR48eMDMzg5mZGby9vd9anxBC3oVTi/HKlSvw9PSEvr4+Jk+ejPbt2wMAbt++jZ9++gk9e/bE2bNn4eLiovK5o6KiEBAQgG3btsHV1RXh4eHw8fFBSkoKLC0tK9U/e/YsxowZg27dusHAwACrV69Gnz59cPPmTTRv3pzLr0cIqecYlsNgRG9vb6SlpeHixYuwsrKS25eZmQl3d3fY2dnh1KlTKgfk6uqKDz/8EJs2bQIASKVS2NjY4LPPPsPChQvfebxEIoGZmRk2bdoEPz+/d9ZPSkqCs7MzEhMTaXgR4UxSVoL8R39DT2AInp7uDrqWlpeiXPwKjW0dwG9goO1wNIbTrfSVK1cwbdq0SkkRAIRCIaZOnYr4+HiVz1taWorExER4e3v/GyCPB29vb8TFxSl1juLiYpSVlaFJkyYqX58QQgCOt9I8Hg/l5eVV7pdIJJwmqs3JyYFEIoFQKJQrFwqFuHPnjlLn+PLLL9GsWTO55PpfYrEYYrFYtl1YWKhynIQQ3capxditWzds3rwZjx49qrQvPT0dW7Zsgbu7e7WDU9WqVauwf/9+HDx4EAYGipv5YWFhaNy4sezj4eFRw1ESQmo7Ti3GlStXomfPnmjXrh2GDRuGNm3aAABSUlJw+PBh6OnpISwsTOXzmpubg8/nIzMzU648MzNT4W37f61duxarVq3CH3/8gY4dO1ZZLzAwEAEBAbLt5ORkSo6EEDmcEmOnTp1w5coVLF68GEeOHEFxcTGA1zPv9O3bF8uXL4e9vb3K59XX14ezszNiY2MxdOhQAK87X2JjYzFr1qwqj1uzZg1WrFiBmJiYd06QKxAIIBAIZNs07pIQUhHnAd729vY4ePAgpFIpsrOzAQAWFhbVXgQrICAAEydORJcuXeDi4oLw8HAUFRXB398fAODn54fmzZvLWqSrV69GUFAQ9u3bB5FIhIyMDACvEx4lPUIIF9V+84VhGDAMI/u5unx9fZGdnY2goCBkZGTAyckJ0dHRsg6Z9PR0ueS7detWlJaWYuTIkXLnCQ4ORkhISLXjIYTUP5zGMQLArVu3EBQUhJiYGLlbaR8fH4SEhNSZ2b1pHCNRBxrHqFs4tRgvXLiAfv36QSqVYsiQIXKdL0eOHMHvv/+O6Oho9OjRQ63BEkJITeCUGOfNmwdLS0ucO3cONjY2cvseP36Mnj17IiAgAH/++adagiSEkJrEqafk5s2bmDFjRqWkCLyeYWf69Om4efNmtYMjhBBt4JQYbW1t5d4eqai0tFRh0iSEkLqAU2IMCgrCxo0bkZycXGnftWvX8M0331CPMCGkzuL0jDE+Ph5CoRDOzs7o1q0bWrduDQC4d+8e4uLi4ODggLi4OLmJHxiGQUREhHqiJoQQDeI0XIfLIO7aujgWDdch6kDDdXQLpxajVCpVdxyEEFJrVO/9PUII0UHVeiUwNTUVv//+u2z6MVtbW/Tr1w92dnZqCY4QQrSBc2KcP38+IiIiKt1W83g8zJ07F2vXrq12cIQQog2cbqXXrVuHDRs2YPjw4YiLi0NeXh7y8vIQFxeHkSNHYsOGDdiwYYO6YyWEkBrBqVe6Xbt2aNeuHQ4dOqRw/9ChQ3Hnzh2llyPQJuqVJupAvdK6hVOLMS0tDT4+PlXu9/HxQVpaGteYCCFEqzglRktLS1y/fr3K/devX4eFhQXnoAghRJs4JcZRo0Zhx44dWLVqFYqKimTlRUVFWL16NXbs2AFfX1+1BUkIITWJ0zPG4uJiDBo0CGfOnIGenh6aNWsGAHj69CnKy8vh5eWFo0ePwsjISO0Bqxs9YyTqQM8YdQun4TpGRkaIjY3F4cOH5cYx9u3bF/3798egQYPUsswBIYRog8qJsbi4GOPHj8eIESMwbtw4DBkyRBNxEUKI1qj8jNHIyAh//PGHbJ0XQgjRNZw6X7p37y43pRghhOgSTolx06ZNuHDhApYsWYJ//vlH3TERQohWcUqMjo6O+OeffxAWFgZbW1sIBAKYmJjIfRo3bqzuWAkhpEZw6pUeMWIE9ToTQnQWp8S4Z88eNYdBCCG1h0qJsaSkBIcPH0ZqairMzc0xYMAAWFtbayo2QgjRCqUTY1ZWFrp164bU1FS8eVnGyMgIhw4dgre3t8YCJISQmqZ058uyZcuQlpaGefPm4dixYwgPD4ehoSGmTZumyfgIIaTGKd1iPHnyJPz8/ORm5hYKhRg7dixSUlLQtm1bjQRICCE1TekWY3p6Orp37y5X1r17d7Asi8zMTLUHRggh2qJ0i1EsFsPAQH42jTfb5eXl6o2KqFV6ejpiY2NRUFCARo0a4X//+x9atGih7bAIqbVU6pVOS0tDUlKSbDs/Px8AcO/ePZiamlaqT9N4aVdCQgKWLVuG48ePg2VZ8Hg8SKVSMAyDgQMHYunSpfjwww+1HSYhtY7S8zHyeDyFg7pZlq1U/qZMIpFwCmrz5s34+uuvkZGRAUdHR3zzzTdwcXGpsv6BAwewdOlSpKWl4f3338fq1avRv39/pa6lq/Mx/vbbb/D19QXLsgq/Bz6fD4ZhEBUVheHDh2shQt1C8zHqFqVbjLt379ZkHDJRUVEICAjAtm3b4OrqivDwcPj4+CAlJQWWlpaV6l++fBljxoxBWFgYBg4ciH379mHo0KFISkqCg4NDjcRc2yQkJMDX1xcSiQRV/bsnkUjAMAx8fX1x+fJlajkS8h+cZvDWJFdXV3z44YfYtGkTAEAqlcLGxgafffYZFi5cWKm+r68vioqKcOzYMVlZ165d4eTkhG3btr3zerrYYhw8eDBOnDihVIudz+djwIABOHz4cA1EpruoxahbOE0ioSmlpaVITEyUGzDO4/Hg7e1d5TRncXFxlQaY+/j41Ntp0dLT03Hs2DGlH2NIJBIcPXoU6enpGo6MkLqD07vSmpKTkwOJRAKhUChXLhQKq1yjOiMjQ2H9jIwMhfXFYjHEYrFsu7CwEMDrnvWysrLqhF8rxMTEVHn7XBWWZXHy5ElMnDhRQ1HpPklZGcrKyiFhi8Hj1/3/j6oilZRBWi5BWVkZpODX2HUbNGhQY9cCallirAlhYWEIDQ2tVO7q6qqFaGqPKVOmYMqUKdoOgxCFavqJX61KjObm5uDz+ZUGjGdmZsLKykrhMVZWVirVDwwMREBAgGw7OTkZHh4euHLlCjp16lTN30D79uzZg6lTp6p8XGRkJLUYq0kqKQMr5TYSoy5heHzw+DXbgqtptSox6uvrw9nZGbGxsRg6dCiA150vsbGxmDVrlsJj3NzcEBsbi7lz58rKTp06BTc3N4X1BQIBBAKBbNvY2BgAoKenV+PNdU3w8fEBwzAq/QvLMAz69OmjE7+/VtGfn86oVZ0vABAQEIDIyEjs3bsXt2/fxvTp01FUVAR/f38AgJ+fHwIDA2X158yZg+joaKxbtw537txBSEgIrl69WmUi1XUtWrTAwIEDwecr9/yHz+dj0KBB9CYMIf/F1kLffPMN26JFC1ZfX591cXFh4+PjZfs8PDzYiRMnytX/+eef2TZt2rD6+vpshw4d2OPHjyt9rcTERBYAm5iYqK7wtS4hIYHV09NjGYZhAVT5YRiG1dPTYxMSErQdMiG1Sq0bx1jTdHEcI6D8my8///wzhg0bpoUICam9at2tNFGP4cOH4/Lly+jfv7/slU0e7/XXzTAMBgwYgMuXL1NSJESBWtX5QtTrww8/xJEjR5Ceno7Tp0/j5cuXMDExQa9eveiZIiFvQYmxHmjRogU+/vhjPHv2DM+ePUNOTg5ycnK0HRZRA2tra1p3SQPqfWK0trZGcHCwzv/PJRaLMWbMGJw7d07boRA18vDwQExMjNwQNFJ99b7zpb54+fIlGjdujHPnzsnGbpK6rbCwEB4eHsjPz4eJiYm2w9Ep9b7FWN84OTnRXyId8fLlS22HoLOoV5oQQiqgxEgIIRVQYqwnBAIBgoOD6SG9DqHvVHOo84UQQiqgFiMhhFRAiZEQQiqgxEgIIRVQYiSEkAooMRKiIQzDKPU5e/Zsta9VXFyMkJAQlc61YsUKDB48GEKhEAzDICQkpNpx6Ap684UQDfn+++/ltr/77jucOnWqUnn79u2rfa3i4mLZIm+enp5KHbNkyRJYWVmhU6dOiImJqXYMuoQSIyEaMn78eLnt+Ph4nDp1qlK5tqSmpkIkEiEnJwcWFhbaDqdWoVtpQrRIKpUiPDwcHTp0gIGBAYRCIaZNm4bc3Fy5elevXoWPjw/Mzc1haGgIOzs7TJo0CQCQlpYmS2yhoaGyW/R33RqLRCJN/Eo6gVqMhGjRtGnTsGfPHvj7+2P27NlITU3Fpk2bcO3aNVy6dAkNGjRAVlYW+vTpAwsLCyxcuBCmpqZIS0vDb7/9BgCwsLDA1q1bMX36dAwbNgzDhw8HAHTs2FGbv1rdpsX1ZgipV2bOnMn+96/chQsXWADsjz/+KFcvOjparvzgwYMsAPbPP/+s8tzZ2dksADY4OFjluKpzrK6iW2lCtOTAgQNo3LgxevfuLZtVPScnB87OzjA2NsaZM2cAAKampgCAY8eOoaysTIsR1x+UGAnRknv37iE/Px+WlpawsLCQ+xQWFiIrKwvA61m6R4wYgdDQUJibm2PIkCHYvXs3xGKxln8D3UXPGAnREqlUCktLS/z4448K97/pUGEYBr/88gvi4+Nx9OhRxMTEYNKkSVi3bh3i4+NpRnYNoMRIiJa0atUKf/zxB9zd3WFoaPjO+l27dkXXrl2xYsUK7Nu3D+PGjcP+/fsxefJk2RK5RD3oVpoQLfnoo48gkUiwbNmySvvKy8uRl5cHAMjNzQVbYXZAJycnAJDdThsZGQGA7BhSPdRiJERLPDw8MG3aNISFhSE5ORl9+vRBgwYNcO/ePRw4cAAREREYOXIk9u7diy1btmDYsGFo1aoVCgoKEBkZCRMTE/Tv3x8AYGhoCHt7e0RFRaFNmzZo0qQJHBwc4ODgUOX1v//+ezx69AjFxcUAgPPnz2P58uUAgAkTJsDW1lbzfwi1lba7xQmpLyoO13lj+/btrLOzM2toaMg2atSI/eCDD9gvvviCffr0KcuyLJuUlMSOGTOGbdGiBSsQCFhLS0t24MCB7NWrV+XOc/nyZdbZ2ZnV19dXaviNh4cHC0Dh58yZM+r6teskmsGbEEIqoGeMhBBSASVGQgipgBIjIYRUQImREEIqoMRICCEVUGIkhJAKKDESUkulpaWBYRjs2bNH26HUO5QYCSGkAhrgTUgtxbIsxGIxGjRoAD6fr+1w6hVKjIQQUgHdShOiQSEhIWAYBnfv3sX48ePRuHFjWFhYYOnSpWBZFo8fP8aQIUNgYmICKysrrFu3TnasomeMH3/8MYyNjfHkyRMMHToUxsbGsLCwwIIFCyCRSGT1zp49q3DNakXnzMjIgL+/P9577z0IBAJYW1tjyJAhSEtL09CfSu1HiZGQGuDr6wupVIpVq1bB1dUVy5cvR3h4OHr37o3mzZtj9erVaN26NRYsWIDz58+/9VwSiQQ+Pj5o2rQp1q5dCw8PD6xbtw7bt2/nFNuIESNw8OBB+Pv7Y8uWLZg9ezYKCgqQnp7O6Xw6QXvzVxCi+4KDg1kA7NSpU2Vl5eXl7HvvvccyDMOuWrVKVp6bm8saGhqyEydOZFmWZVNTU1kA7O7du2V1Jk6cyAJgv/rqK7nrdOrUiXV2dpZtnzlzRuEsORXPmZubywJgv/76a/X8wjqCWoyE1IDJkyfLfubz+ejSpQtYlsUnn3wiKzc1NUXbtm3x8OHDd57v008/ldvu0aOHUsdVZGhoCH19fZw9e7bSWtb1GSVGQmpAixYt5LYbN24MAwMDmJubVyp/V4IyMDCQrQfzhpmZGafEJhAIsHr1avz+++8QCoXo2bMn1qxZg4yMDJXPpUsoMRJSAxQNt6lqCA77joEiygzdqWoNmP920Lwxd+5c3L17F2FhYTAwMMDSpUvRvn17XLt27Z3X0VWUGAnRQWZmZgAqrwHz6NEjhfVbtWqF+fPn4+TJk/j7779RWloq10Ne31BiJEQH2drags/nV+rh3rJli9x2cXExSkpK5MpatWqFRo0a1et1q2kxLEJ0UOPGjTFq1Ch88803YBgGrVq1wrFjx5CVlSVX7+7du/jf//6Hjz76CPb29tDT08PBgweRmZmJ0aNHayl67aPESIiO+uabb1BWVoZt27ZBIBDgo48+wtdffy23cqCNjQ3GjBmD2NhYfP/999DT00O7du3w888/Y8SIEVqMXrvolUBCCKmAnjESQkgFlBgJIaQCSoyEEFIBJUZCCKmAEiMhhFRAiZEQQuvLVECJkRAVPXjwANOmTUPLli1hYGAAExMTuLu7IyIiAq9evdLYdW/duoWQkBCtTyC7YsUKDB48GEKhEAzDICQkRKvxaAIN8CZEBcePH8eoUaMgEAjg5+cHBwcHlJaW4uLFi/j8889x8+ZNzhPGvsutW7cQGhoKT09PiEQijVxDGUuWLIGVlRU6deqEmJgYrcWhSZQYCVFSamoqRo8eDVtbW5w+fRrW1tayfTNnzsT9+/dx/PhxLUb4L5ZlUVJSAkNDQ7WfOzU1FSKRCDk5OZWmP9MVdCtNiJLWrFmDwsJC7Ny5Uy4pvtG6dWvMmTNHtl1eXo5ly5ahVatWEAgEEIlEWLRoUaXJGUQiEQYOHIiLFy/CxcUFBgYGaNmyJb777jtZnT179mDUqFEAAC8vLzAMI7emy5tzxMTEoEuXLjA0NMS3334LAHj48CFGjRqFJk2awMjICF27dq1WAtdma7WmUGIkRElHjx5Fy5Yt0a1bN6XqT548GUFBQejcuTM2bNgADw8PhIWFKZyc4f79+xg5ciR69+6NdevWwczMDB9//DFu3rwJAOjZsydmz54NAFi0aBG+//57fP/992jfvr3sHCkpKRgzZgx69+6NiIgIODk5ITMzE926dUNMTAxmzJiBFStWoKSkBIMHD8bBgwfV8Keio7S6sAIhdUR+fj4LgB0yZIhS9ZOTk1kA7OTJk+XKFyxYwAJgT58+LSuztbVlAbDnz5+XlWVlZbECgYCdP3++rOzAgQMK13H57zmio6PlyufOncsCYC9cuCArKygoYO3s7FiRSMRKJBKWZRWvL/Mu2dnZLAA2ODhY6WPqCmoxEqKEly9fAgAaNWqkVP0TJ04AAAICAuTK58+fDwCVbmXt7e3Ro0cP2baFhYXS67+8YWdnBx8fn0pxuLi4oHv37rIyY2NjTJ06FWlpabh165bS569PKDESogQTExMAQEFBgVL1Hz16BB6Ph9atW8uVW1lZwdTUtNJM2hXXhAFUX8fFzs5OYRxt27atVP7mFryqGb3rO0qMhCjBxMQEzZo1w99//63ScVWtvVIR1/Vf/ksTPdD1FSVGQpQ0cOBAPHjwAHFxce+sa2trC6lUinv37smVZ2ZmIi8vD7a2tipfX9kkWzGOlJSUSuV37tyR7SeVUWIkRElffPEFGjZsiMmTJyMzM7PS/gcPHiAiIgIA0L9/fwBAeHi4XJ3169cDAAYMGKDy9Rs2bAig8gJXb9O/f38kJCTIJfOioiJs374dIpEI9vb2KsdRH9AAb0KU1KpVK+zbtw++vr5o37693Jsvly9fxoEDB/Dxxx8DABwdHTFx4kRs374deXl58PDwQEJCAvbu3YuhQ4fCy8tL5es7OTmBz+dj9erVyM/Ph0AgQK9evWBpaVnlMQsXLsRPP/2Efv36Yfbs2WjSpAn27t2L1NRU/Prrr+DxVG8bff/993j06BGKi4sBAOfPn8fy5csBABMmTNCNVqi2u8UJqWvu3r3LTpkyhRWJRKy+vj7bqFEj1t3dnf3mm2/YkpISWb2ysjI2NDSUtbOzYxs0aMDa2NiwgYGBcnVY9vVQmwEDBlS6joeHB+vh4SFXFhkZybZs2ZLl8/lyQ3eqOgfLsuyDBw/YkSNHsqampqyBgQHr4uLCHjt2TK6OKsN1PDw8WAAKP4qGEtVFtOYLIYRUQM8YCSGkAkqMhBBSASVGQgipgBIjIYRUQImREEIqoMRICCEVUGIkhJAKKDESQkgFlBgJIaQCSoyEEFIBJUZCCKmAEiMhhFRAiZEQQir4P5Zp/MbwvYM2AAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -659,11 +659,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:58:06 2025.\n",
+ "The current time is Tue Mar 25 17:22:25 2025.\n",
"\n",
"Effect size(s) with 95% confidence intervals will be computed for:\n",
"1. Test 1 minus Control 1\n",
@@ -692,11 +692,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:58:07 2025.\n",
+ "The current time is Tue Mar 25 17:22:26 2025.\n",
"\n",
"The unpaired mean difference between Control 1 and Test 1 is 0.575 [95%CI 0.35, 0.725].\n",
"The p-value of the two-sided permutation t-test is 0.0, calculated for legacy purposes only. \n",
@@ -731,7 +731,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAx8AAAInCAYAAAD5+uTRAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAhzZJREFUeJzs3Xl4TNf/B/D3neyrhKyUJHZpagshtoSGqH39KdUotbSllmi19l1aLUJLLbV1UbopRYPGXrFvVaRKIrYkQvY9M/f3h69pRxKSycy9k5n363nmYc4999zP5Dj4zLnnXEEURRFERERERER6ppA7ACIiIiIiMg1MPoiIiIiISBJMPoiIiIiISBJMPoiIiIiISBJMPoiIiIiISBJMPoiIiIiISBJMPoiIiIiISBJMPoiIiIiISBJMPoiIiIiISBJMPsrp/v37mDNnDu7fvy93KERERERElQqTj3K6f/8+5s6dy+SDiIiIiKicmHwQEREREZEkmHwQEREREZEkmHwQEREREZEkKnXyceTIEfTs2RPVq1eHIAj45ZdfnnvOoUOH0Lx5c1hZWaFu3brYtGmT3uMkIiIiIqJKnnxkZ2ejSZMmWLlyZZnqx8XFoXv37ujYsSMuXLiAiRMnYuTIkdi7d6+eIyUiIiIiInO5A6iIV155Ba+88kqZ669evRo+Pj5YsmQJAKBRo0Y4duwYli1bhtDQUH2FSUREREREqOTJR3nFxMQgJCREoyw0NBQTJ04s9Zz8/Hzk5+er32dlZekrvFK9s2QLUjNzJL+uXJwdbLFq8hC5w9CbC+snoCArVe4wJGNp74ymby6XOwy9Gb9+PFJNqD8BwNneGSveXCF3GHrz+5QpyEtLkzsMyVg7OSFk8WK5w9CbbV/sQ05WntxhSMbW3hqD3u4idxh688XcmcjKSJM7DMnYOzrh7dnz5Q5Dp0wq+UhMTIS7u7tGmbu7OzIyMpCbmwsbG5ti50RERGDu3LlShVii1MwcpKRLn/SQfhRkpaIg86HcYZCOpGal4iH706jkpaUh99EjucMgHcnJykN2Rq7cYZCOZGWkISPVtL7wMTYmlXxoY+rUqQgPD1e/v3DhAoKCgmSJRSEIqOpoJ8u1pfAoIxsqUZQ7DOkICljaO8sdhd4UZKUCokruMCSjEBRwNuL+BB4nWioT6lMoFLBxcpI7Cr3JTUsDVKbTn4IgwNbBWu4w9CYnMw+iCf0bKggCHIx4fGampRltf5pU8uHh4YGkpCSNsqSkJDg6OpY46wEAVlZWsLKyUr+3t7fXa4zPUtXRDt/NGSnb9fVt8JwvTWqGx9LeGQETvpI7DL05tTzMpGZ4nO2d8fWEr+UOQ69eX/66Sc3y2Dg5ocfatXKHoTe7Ro82qRkeWwdrDH+/l9xh6M3GT3aa1AyPg5MT3l/ymdxh6M0nk9812hke2Xa7EkURBw4cwG+//YbMzExJrhkYGIjo6GiNsv379yMwMFCS6xMRERERmTJJko/p06ejY8eO6veiKKJLly7o3Lkzunfvjpdeegk3btwod7tZWVm4cOECLly4AODxVroXLlxAQkICgMe3TIWFhanrv/XWW7h58yamTJmCa9euYdWqVfj+++8xadKkin1AIiIiIiJ6LkmSj59++gkBAQHq9z/++COio6OxYMEC7Nq1C0qlEnPmzCl3u2fOnEGzZs3QrFkzAEB4eDiaNWuGWbNmAQDu37+vTkQAwMfHB7t378b+/fvRpEkTLFmyBF9++SW32SUiIiIikoAkaz7u3r2LunXrqt///PPP8PX1xdSpUwEAb7/9Nr744otytxscHPzMxTglPb08ODgY58+fL/e1iIiIiIioYiSZ+TA3N1c/K0MURURHR6Nr167q4+7u7khJSZEiFCIiIiIikokkyYefnx+++eYbpKamYuPGjXj48CG6d++uPn7r1i24uLhIEQoREREREclEktuuZs2ahZ49e6oTjLZt22osQN+9ezdatmwpRShERERERCQTSZKPzp0749y5c9i/fz+cnJwwaNAg9bHU1FR06NABvXv3liIUIiIiIiKSiWQPGfT19YWvr2+xcmdnZyxbtkyqMIiIiIiISCaSJB+ZmZlIS0tDzZo11WX37t3D6tWrkZ+fjwEDBvC2KyIiIiIiIydJ8jF69GjExcXhxIkTAICMjAy0bt0ad+7cgUKhwPLlyxEVFYXg4GApwiEiIiLSmxYtWiAxMREeHh44c+aM3OEQGRRJdrs6duwYevTooX7/zTff4N69ezh+/DhSU1PRuHFjLFiwQIpQiIiIiPQqMTERd+/eRWJiotyhEBkcSZKPlJQU1KhRQ/1+586daNeuHVq3bg0HBweEhYXh4sWLUoRCREREREQykST5cHJyUmf/ubm5OHr0KLp06aI+bm5ujpycHClCISIiIiIimUiy5qNNmzZYtWoVGjZsiKioKOTl5Wlsrfv3339rzIwQEREREZHxkST5+Pjjj9GlSxf0798fADB58mS8+OKLAAClUokffvgBXbt2lSIUIiIiIiKSiSTJR926dREbG4srV66gSpUq8Pb2Vh/LycnB559/jiZNmkgRChERERERyUSyhwxaWFiUmGA4ODjw6eZERERERCZAkgXnwONne3z00UcIDQ1Fs2bNcOrUKQDAo0ePsHTpUvzzzz9ShUJERERERDKQZObjzp07CAoKwu3bt1GvXj1cu3YNWVlZAICqVatizZo1uHXrFpYvXy5FOERERER64+HhofErEf1LkuTj/fffR2ZmJi5cuAA3Nze4ublpHO/Tpw927dolRShEREREesWnmhOVTpLkY9++fZg0aRJ8fX3x8OHDYsdr166N27dvSxEKERERmRrLAmTnFeDz+V/LHYmeWcodANFzSbLmIzc3F66urqUez8zMlCIMIiIiIiKSkSTJh6+vL44cOVLq8V9++QXNmjWTIhQiIiIivVq8ehZmfjoBi1fPkjsUIoMjyW1XEydOxLBhw9C4cWMMHDgQAKBSqfDPP/9g7ty5iImJwU8//SRFKERERER6lZmVjrSMVLnDIDJIkiQfQ4cOxa1btzBjxgxMnz4dANC1a1eIogiFQoFFixahT58+UoRCREREREQykewhg9OnT8frr7+On376Cf/88w9UKhXq1KmDfv36oXbt2lKFQUREREREMpEs+QCAWrVqYdKkSVJekoiIiIiIDIQkC87PnTuHVatWlXp81apVuHDhghShEBERERGRTCRJPqZPn47ff/+91OMHDhzAjBkzpAiFiIiIiIhkIknycfbsWbRv377U4+3bt+fTQImIiIiIjJwkyUdmZibMzUtfXqJQKJCenq5V2ytXroS3tzesra3RqlUrnDp16pn1IyMj0aBBA9jY2KBmzZqYNGkS8vLytLo2ERERERGVnSTJR7169bBv375Sj0dFRWm149W2bdsQHh6O2bNn49y5c2jSpAlCQ0ORnJxcYv0tW7bgww8/xOzZs3H16lWsX78e27Ztw7Rp08p9bSIiIqKSONhXgZOjMxzsq8gdCpHBkST5ePPNN7F7926Eh4cjLS1NXZ6WloZJkyYhKioKb775ZrnbXbp0KUaNGoXhw4fD19cXq1evhq2tLTZs2FBi/ePHj6Nt27YYMmQIvL290aVLFwwePPi5syVEREREZTXlrXmY/95yTHlrntyhEBkcSZKP8ePHY9iwYYiMjISLiwtq1aqFWrVqwcXFBcuXL8fQoUPLvQVvQUEBzp49i5CQEHWZQqFASEgIYmJiSjynTZs2OHv2rDrZuHnzJvbs2YNu3bpp/+GIiIiIiKhMJHnOhyAI2LhxI8LCwvDTTz/h5s2bAIDevXujf//+CA4OLnebKSkpUCqVcHd31yh3d3fHtWvXSjxnyJAhSElJQbt27SCKIoqKivDWW28987ar/Px85Ofnq99nZWWVO1YiubVo0QKJiYnw8PDg5g5EREQkG0kfMtixY0d07NhRyktqOHToEBYtWoRVq1ahVatW+OeffzBhwgTMnz8fM2fOLPGciIgIzJ07V+JIiXQrMTERd+/elTsMIiIiMnGS3HYVFxeHX3/9tdTjv/76K+Lj48vVpouLC8zMzJCUlKRRnpSUBA8PjxLPmTlzJl5//XWMHDkSL730Evr27YtFixYhIiICKpWqxHOmTp2K9PR09evw4cPlipOIiIiIiB6TJPl47733sGLFilKPr1y5Eh9++GG52rS0tIS/vz+io6PVZSqVCtHR0QgMDCzxnJycHCgUmh/ZzMwMACCKYonnWFlZwdHRUf2yt7cvV5xERERERPSYJMlHTEwMOnfuXOrxl19+GUePHi13u+Hh4Vi3bh02b96Mq1ev4u2330Z2djaGDx8OAAgLC8PUqVPV9Xv27IkvvvgCW7duRVxcHPbv34+ZM2eiZ8+e6iSEiIiIiIj0Q5I1H6mpqXBwcCj1uL29PR4+fFjudgcNGoQHDx5g1qxZSExMRNOmTREVFaVehJ6QkKAx0zFjxgwIgoAZM2bg7t27cHV1Rc+ePbFw4cLyfygiIiIiIioXSZKPWrVq4Y8//sDbb79d4vGjR4/ihRde0KrtcePGYdy4cSUeO3TokMZ7c3NzzJ49G7Nnz9bqWkREREREpD1JbrsaPHgwvvvuO6xYsUJjYbdSqcTy5cuxbds2DBkyRIpQiIiIiIhIJpLMfEydOhXHjh3DxIkTsXDhQjRo0AAAEBsbiwcPHiA4OBjTp0+XIhQiIiIiIpKJJDMfVlZW2LdvH9avX4+AgACkpKQgJSUFAQEB2LBhA37//XdYWVlJEQoREREREclEsocMKhQKDB8+XL0TFRERERERmRZJZj6IiIiIiIgkmfno1KnTc+sIgqDxwEAiIiIiIjIukiQfKpUKgiBolCmVSty6dQu3b99G3bp1UaNGDSlCITJJHh4eGr8SERERyUGS5OPp5238165duzB69GgsXbpUilCITNKZM2fkDoGIiIhIugXnpenRoweGDh2KiRMn4vDhw3KHQySJdKEKkFWE3QuN+/k2VeQOgIiIiAyKQSw4r1OnDk6fPi13GEREREREpEeyz3wUFRXh+++/h4uLi9yhEBmtiav2IjUrF872Noh8J1TucIiIiMhESZJ8jBgxosTytLQ0nDhxAomJiVzzQaRHqVm5eJiRK3cYREREZOIkST4OHDhQbLcrQRDg7OyMdu3aYeTIkejSpYsUoRARERERkUwkST7i4+OluAwRERERERkwg1hwTkRERERExk9vyUdOTg4SEhJQUFBQ7NiGDRvw8ssvw9fXF/369eNOV0REREREJkBvyce8efPQuHHjYsnHggULMGrUKBw+fBgPHjzAL7/8guDgYFy8eFFfoRARERERkQHQW/Jx8OBB9OjRA/b29uqyjIwMLFiwADVq1MD169fx4MEDnDhxApaWlvjoo4/0FQoRERERERkAvSUf8fHxaNy4sUbZnj17UFBQgA8++AA+Pj4AgICAAAwfPhxHjx7VVyhERERERGQA9JZ8ZGZmolq1ahplR44cgSAICA3VfMiZr68vHjx4oK9QiIiIiIjIAOgt+fDy8sK1a9c0yg4dOgR3d3fUrVtXo7ygoACOjo76CoWIiIiIiAyA3pKPLl26YMOGDTh58iQA4KuvvsK1a9fQt2/fYnXPnj0Lb29vfYVCREREREQGQG8PGZw5cyZ++eUXtGnTBmZmZigqKoKrqytmzZqlUS8nJwfbt2/H6NGj9RUKkclztrfR+JWIiIhIDnpLPlxcXHDhwgV8+eWXuHnzJry8vDBixAi4ublp1Lt8+TJee+01vP766/oKhcjkRb4T+vxKRERERHqmt+QDAJydnfH+++8/s05AQAACAgL0GQYRERERERkAva35ICIiIiIi+i8mH0REREREJAkmH0REREREJIlKn3ysXLkS3t7esLa2RqtWrXDq1Kln1k9LS8PYsWPh6ekJKysr1K9fH3v27JEoWiIiIiIi06WX5GPnzp24d++ePprWsG3bNoSHh2P27Nk4d+4cmjRpgtDQUCQnJ5dYv6CgAJ07d0Z8fDx+/PFHxMbGYt26dahRo4beYyUiIiIiMnV6ST769u2LQ4cOqd/Xrl0bO3fu1Pl1li5dilGjRmH48OHw9fXF6tWrYWtriw0bNpRYf8OGDXj06BF++eUXtG3bFt7e3ggKCkKTJk10HhsREREREWnSS/Lh4OCAtLQ09fv4+HhkZWXp9BoFBQU4e/YsQkJC1GUKhQIhISGIiYkp8ZydO3ciMDAQY8eOhbu7O/z8/LBo0SIolcpSr5Ofn4+MjAz1S9efg4iIiIjIVOjlOR8BAQFYuHAhkpKSUKVKFQDAnj17kJiYWOo5giBg0qRJZb5GSkoKlEol3N3dNcrd3d1x7dq1Es+5efMmDhw4gNdeew179uzBP//8g3feeQeFhYWYPXt2iedERERg7ty5ZY6LiIiIiIhKppfkY9WqVQgLC8P8+fMBPE4stmzZgi1btpR6TnmTD22oVCq4ublh7dq1MDMzg7+/P+7evYtPPvmk1ORj6tSpCA8PV7+/cOECgoKC9BonEREREZEx0kvyUbduXRw/fhx5eXlITk6Gt7c3IiMj0bt3b51dw8XFBWZmZkhKStIoT0pKgoeHR4nneHp6wsLCAmZmZuqyRo0aITExEQUFBbC0tCx2jpWVFaysrNTv7e3tdfQJiIiIiIhMi16Sjyesra1Rq1YtzJ49G506dYKXl5fO2ra0tIS/vz+io6PRp08fAI9nNqKjozFu3LgSz2nbti22bNkClUoFheLxcpe///4bnp6eJSYeRERERESkO5I852P27Nnw8/MDAGRlZeHq1au4evVqhRdvh4eHY926ddi8eTOuXr2Kt99+G9nZ2Rg+fDgAICwsDFOnTlXXf/vtt/Ho0SNMmDABf//9N3bv3o1FixZh7NixFYqDiIiIiIieT68zH/91+vRpTJkyBceOHYNKpQLweHeq9u3bY/HixWjRokW52xw0aBAePHiAWbNmITExEU2bNkVUVJR6EXpCQoJ6hgMAatasib1792LSpElo3LgxatSogQkTJuCDDz7QzYckIiIiIqJSSZJ8nDx5EsHBwbC0tMTIkSPRqFEjAMDVq1fx3XffoUOHDjh06BACAgLK3fa4ceNKvc3qv88aeSIwMBAnTpwo93WIiIiIiKhiJEk+pk+fjho1auDYsWPFFoPPmTMHbdu2xfTp07F//34pwiEiIiIiIhlIsubj5MmTGDNmTIm7ULm7u2P06NGcjSAiIiIiMnKSJB8KhQJFRUWlHlcqlRprM4iIiIiIyPhI8j/+Nm3aYOXKlbh161axYwkJCVi1ahXatm0rRShERERERCQTSdZ8LFq0CB06dEDDhg3Rt29f1K9fHwAQGxuLHTt2wNzcHBEREVKEQkREREREMpEk+WjWrBlOnjyJ6dOnY+fOncjJyQEA2NraomvXrliwYAF8fX2lCIWIiIiIiGQi2XM+fH19sX37dqhUKjx48AAA4OrqyrUeREREREQmQrLk4wmFQqF+CCAREREREZkOTjsQEREREZEkmHwQEREREZEkmHwQEREREZEkmHwQEREREZEkmHwQEREREZEkJN3t6sqVK7h58yZSU1MhimKx42FhYVKGQ0REREREEpIk+bhx4waGDh2KU6dOlZh0AIAgCEw+iIiIiIiMmCTJx5gxY/Dnn38iMjIS7du3h7OzsxSXJSIiIiIiAyJJ8vHHH39g2rRpePfdd6W4HBERERERGSBJFpy7uLigSpUqUlyKiIiIiIgMlCTJx1tvvYVvvvkGSqVSissREREREZEBkuS2q/r160OpVKJJkyYYMWIEatasCTMzs2L1+vXrJ0U4REREREQkA0mSj0GDBql//95775VYRxAEzowQERERERkxSZKPgwcPSnEZIiIiIiIyYJIkH0FBQVJchoiIiIiIDJikTzgHHj/l/NatWwAALy8v+Pr6Sh0CERERERHJQLLkY8eOHQgPD0d8fLxGuY+PD5YuXYpevXpJFQoREREREclAkq129+zZg/79+wMAFi1ahO3bt2P79u1YtGgRRFFEv379EBUVJUUoREREREQkE0lmPubPn4/GjRvj6NGjsLOzU5f36tUL48aNQ7t27TB37lx07dpVinCIiIiIiEgGksx8XLp0CcOGDdNIPJ6ws7PDG2+8gUuXLmnV9sqVK+Ht7Q1ra2u0atUKp06dKtN5W7duhSAI6NOnj1bXJSIiIiKi8pEk+bC2tsajR49KPf7o0SNYW1uXu91t27YhPDwcs2fPxrlz59CkSROEhoYiOTn5mefFx8fjvffeQ/v27ct9TSIiIiIi0o4kyUenTp2wfPlyxMTEFDt28uRJrFixAiEhIeVud+nSpRg1ahSGDx8OX19frF69Gra2ttiwYUOp5yiVSrz22muYO3cuateuXe5rEhERERGRdiRZ87F48WIEBgaiXbt2CAgIQIMGDQAAsbGxOHXqFNzc3PDxxx+Xq82CggKcPXsWU6dOVZcpFAqEhISUmOQ8MW/ePLi5ueHNN9/E0aNHn3ud/Px85Ofnq99nZWWVK04iIiIiInpMkpkPHx8fXLp0CePHj0dqaiq2bduGbdu2ITU1FRMmTMDFixfh7e1drjZTUlKgVCrh7u6uUe7u7o7ExMQSzzl27BjWr1+PdevWlfk6ERERqFKlivrFByYSEREREWlHsud8uLm5YdmyZVi2bJlUl9SQmZmJ119/HevWrYOLi0uZz5s6dSrCw8PV7y9cuMAEhIiIiIhIC5I/4VxXXFxcYGZmhqSkJI3ypKQkeHh4FKt/48YNxMfHo2fPnuoylUoFADA3N0dsbCzq1KlT7DwrKytYWVmp39vb2+vqIxARERERmRS9JB8jRoyAIAhYu3YtzMzMMGLEiOeeIwgC1q9fX+ZrWFpawt/fH9HR0ertclUqFaKjozFu3Lhi9Rs2bIg///xTo2zGjBnIzMzE8uXLUbNmzTJfm4iIiIiIyk8vyceBAwegUCigUqlgZmaGAwcOQBCEZ57zvOMlCQ8Px7Bhw9CiRQsEBAQgMjIS2dnZGD58OAAgLCwMNWrUQEREBKytreHn56dxvpOTEwAUKyciIiIiIt3TS/IRHx//zPe6MmjQIDx48ACzZs1CYmIimjZtiqioKPUi9ISEBCgUkqypJyIiIiKi55BkzUdCQgJcXV1hY2NT4vHc3Fw8ePAAtWrVKnfb48aNK/E2KwA4dOjQM8/dtGlTua9HRERERETakWyr3e3bt5d6fOfOnfDx8ZEiFCIiIiIikokkyYcois88XlhYyNujiIiIiIiMnN5uu8rIyEBaWpr6/cOHD5GQkFCsXlpaGrZu3QpPT099hUJEREREpJUWLVogMTERHh4eOHPmjNzhVHp6Sz6WLVuGefPmAXi8k9XEiRMxceLEEuuKoogFCxboKxQiIiIiIq0kJibi7t27codhNPSWfHTp0gX29vYQRRFTpkzB4MGD0bx5c406giDAzs4O/v7+aNGihb5CISIiIiIiA6C35CMwMBCBgYEAgOzsbPTv35/P0yAiIiIiMmF632o3JycHK1asgK2tLZMPIiIiIiITpvctpmxtbWFubg47Ozt9X4qIiIiIiAyYJPvb9u/fHz/++ONzt9wlIiIiIiLjJckTzl999VW888476NixI0aNGgVvb+8Sn3b+9IJ0IiIiIiIyHpIkH8HBwerfHz16tNhxURQhCAKUSqUU4RARERERkQwkST42btwoxWWIiIiIiMiASZJ8DBs2TIrLEBERERGRAZMk+fivrKws3L59GwBQs2ZN2NvbSx0CERERERHJQJLdrgDg9OnT6NixI5ydneHn5wc/Pz84OzujU6dOOHPmjFRhEBERERGRTCSZ+Th58iSCg4NhaWmJkSNHolGjRgCAq1ev4rvvvkOHDh1w6NAhBAQESBEOEREREVGZeHh4aPxKFSNJ8jF9+nTUqFEDx44dK9Zxc+bMQdu2bTF9+nTs379finCIiIiIiMqEd+jolmQzH7NmzSoxY3R3d8fo0aMxf/58KUIhIiIiokqsSGGOR+mZmDryDblD0SvJF2ZLRJI1HwqFAkVFRaUeVyqVUCgkW35CREREREQykOR//G3atMHKlStx69atYscSEhKwatUqtG3bVopQiIiIiIjKbNOOXVj53Q/YtGOX3KEYBUlmdBYtWoQOHTqgYcOG6Nu3L+rXrw8AiI2NxY4dO2Bubo6IiAgpQiEiIiIiKrPsnFxk5uTIHYbRkCT5aNasGU6ePInp06dj586dyPlfB9ra2qJr165YsGABfH19pQiFiIiIiIhkItlaFl9fX2zfvh0qlQoPHjwAALi6unKtBxERERGRiZB8Ib0gCBAEQf17IiIiIiIyDZJNO1y5cgUDBgyAo6MjPD094enpCUdHRwwYMACXL1+WKgwiIiKD06JFC7zwwgto0aKF3KEQEemVJDMfR48exSuvvAKVSoXevXtrLDjfuXMnfvvtN0RFRaF9+/ZShENERGRQEhMTcffuXbnDICLSO0mSj0mTJsHNzQ2HDx9GzZo1NY7dvn0bHTp0QHh4OE6fPi1FOEREREREJANJbrv666+/8M477xRLPACgZs2aePvtt/HXX39p1fbKlSvh7e0Na2trtGrVCqdOnSq17rp169C+fXs4OzvD2dkZISEhz6xPRERERES6I0ny4eXlhfz8/FKPFxQUlJiYPM+2bdsQHh6O2bNn49y5c2jSpAlCQ0ORnJxcYv1Dhw5h8ODBOHjwIGJiYlCzZk106dKFU91ERERERBKQJPmYNWsWVqxYgQsXLhQ7dv78eXz22WeYM2dOudtdunQpRo0aheHDh8PX1xerV6+Gra0tNmzYUGL9b7/9Fu+88w6aNm2Khg0b4ssvv4RKpUJ0dHS5r23suPiRyLBxjBIRUWUkyZqPEydOwN3dHf7+/mjTpg3q1q0LALh+/TpiYmLg5+eHmJgYxMTEqM8RBAHLly8vtc2CggKcPXsWU6dOVZcpFAqEhIRotPMsOTk5KCwsRNWqVUutk5+frzFrk5WVVaa2KzsufiQybByjRERUGUmSfHz++efq3//xxx/4448/NI7/+eef+PPPPzXKnpd8pKSkQKlUwt3dXaPc3d0d165dK1NcH3zwAapXr46QkJBS60RERGDu3Lllao+IiIiIjIudrY3Gr1QxkiQfKpVKisuUy0cffYStW7fi0KFDsLa2LrXe1KlTER4ern5/4cIFBAUFSREiEREREcnsjd495A7BqEj+hHNdcXFxgZmZGZKSkjTKk5KS4OHh8cxzP/30U3z00Uf4/fff0bhx42fWtbKygpWVlfq9vb299kETEREREZkwSZOPuLg4/Pbbb7h16xaAx7tgvfLKK/Dx8Sl3W5aWlvD390d0dDT69OkDAOrF4+PGjSv1vMWLF2PhwoXYu3cvF2oSEZFBePKl2fO+PCMiquwkSz4mT56M5cuXF7sFS6FQYOLEifj000/L3WZ4eDiGDRuGFi1aICAgAJGRkcjOzsbw4cMBAGFhYahRowYiIiIAAB9//DFmzZqFLVu2wNvbG4mJiQAez2ZwRoOIiORy5swZuUMgIpKEJMnHkiVLsGzZMgwYMACTJ09Go0aNAABXr17FsmXLsGzZMtSoUQOTJk0qV7uDBg3CgwcPMGvWLCQmJqJp06aIiopSL0JPSEiAQvHvbsJffPEFCgoKMGDAAI12Zs+erdVWv0REZJyy7eyQnZ+PTcOGyR2KXtnJHQARmRxJko9169ahV69e+P777zXKW7Vqha1btyIvLw9r1qwpd/IBAOPGjSv1NqtDhw5pvI+Pjy93+0REREREpBuSPGQwPj4eoaGhpR4PDQ1lYkBERCZr7u7dCP/xR8zdvVvuUIiI9EqSmQ83NzdcvHix1OMXL16Eq6urFKFQGXHxI5Fh4xg1Lum5uUjNyZE7DCIivZMk+Rg4cCCWL18Ob29vvPvuu7Cze3yXaXZ2Nj7//HN8+eWXmDhxohShUBlx8SORYeMYJSKiykiS5GP+/Pm4cOECpk2bhlmzZqF69eoAgHv37qGoqAgdO3bEvHnzpAil0rIVc5CTloPeExfJHYp+CbZyR0BUblb5VsjKz0LfmX3lDkX/rJ5fhYiIqDSSJB+2traIjo7Gjh07NJ7z0bVrV3Tr1g09e/aEIAhShEJERERERDLRe/KRk5ODoUOHon///njttdfQu3dvfV+SdODwdyuRn5MFK1t7BA0eK3c4RPSUQ+sPIS8rD9b21gh+M1jucIiIiMpE77td2dra4vfff0cOF9JVKvk5WcjLykB+TpbcoRBRCfKy8pCXmYe8rDy5QyEiIiozSbbabdeuHWJiYqS4FBERERERGShJko/PP/8cR48exYwZM3Dnzh0pLklERERERAZGkuSjSZMmuHPnDiIiIuDl5QUrKys4OjpqvKpUqSJFKEREREREJBNJdrvq378/d7MiIiIiIjJxkiQfmzZtkuIyRERElVIVGxuNX4mIjJVek4+8vDzs2LEDcXFxcHFxQffu3eHp6anPSxIREVU6s7t3lzsEIiJJ6C35SE5ORps2bRAXFwdRFAE83nb3l19+QUhIiL4uS0REREREBkpvC87nz5+P+Ph4TJo0Cbt27UJkZCRsbGwwZswYfV2SiIiIiIgMmN5mPvbt24ewsDB8+umn6jJ3d3cMGTIEsbGxaNCggb4uTTpgZWuv8SsRGRZre2uNX4mIiCoDvSUfCQkJ+OCDDzTK2rVrB1EUkZSUxOTDwAUNHit3CET0DMFvBssdAhERUbnp7bar/Px8WFtrfiP35H1RUZG+LktERERERAZKr7tdxcfH49y5c+r36enpAIDr16/DycmpWP3mzZvrMxwiIiIiIpKRXpOPmTNnYubMmcXK33nnHY33oihCEAQolUp9hkNERERERDLSW/KxceNGfTVNRERERESVkN6Sj2HDhumraSIiIiIiqoT0tuCciIiIiIjov5h8EBERERGRJJh8EBERERGRJJh8EBERERGRJJh8EBERERGRJCp98rFy5Up4e3vD2toarVq1wqlTp55Z/4cffkDDhg1hbW2Nl156CXv27JEoUiIiIiIi01apk49t27YhPDwcs2fPxrlz59CkSROEhoYiOTm5xPrHjx/H4MGD8eabb+L8+fPo06cP+vTpg8uXL0scORERERGR6anUycfSpUsxatQoDB8+HL6+vli9ejVsbW2xYcOGEusvX74cXbt2xfvvv49GjRph/vz5aN68OT7//HOJIyciIiIiMj2VNvkoKCjA2bNnERISoi5TKBQICQlBTExMiefExMRo1AeA0NDQUusTEREREZHu6O0J5/qWkpICpVIJd3d3jXJ3d3dcu3atxHMSExNLrJ+YmFjqdfLz85Gfn69+n5WVVYGoK5e87AzkZWdKe03BGoocW5w7d07S60rp2u2HSM1VSn7dqg42qOpgI/l1SX/yMvOQl5Un6TULLAsAWxj1GP0nJQVpBQWSX9fJxgZOtraSX5f0Iz0zDRmZadJetNACNhlWRj0+7yQlIyMrR/Lr2tvawJ7jUycqbfIhlYiICMydO1ejLCgoCJ6enpLF8N2ckZJd64n8/HyEhobiyOHDkl8bAPatXSDLdY1ZUFAQ9u7dCisrK7lDMSpfT/halus+GaOHZRqjvy35TZbrGrPHY3Qvx6iODX+/l+TXlHt8zl0hy2WNGsen7lTa5MPFxQVmZmZISkrSKE9KSoKHh0eJ53h4eJSrPgBMnToV4eHhGmVWVlZG/4cvPz8fhw8fxuHDh2Fvby93OFRBWVlZCAoKQn5+vtH/2TUVHKPGhWPUuHB8GheOT92qtMmHpaUl/P39ER0djT59+gAAVCoVoqOjMW7cuBLPCQwMRHR0NCZOnKgu279/PwIDA0u9jikkGs/StGlTODo6yh0GVVBGRobcIZCecIwaB45R48TxaRw4PnWr0iYfABAeHo5hw4ahRYsWCAgIQGRkJLKzszF8+HAAQFhYGGrUqIGIiAgAwIQJExAUFIQlS5age/fu2Lp1K86cOYO1a9fK+TGIiIiIiExCpU4+Bg0ahAcPHmDWrFlITExE06ZNERUVpV5UnpCQAIXi3w292rRpgy1btmDGjBmYNm0a6tWrh19++QV+fn5yfQQiIiIiIpNRqZMPABg3blypt1kdOnSoWNnAgQMxcOBAPUdV+VlZWWH27NkmfcuZMWF/Gh/2qXFhfxoX9qdxYX/qliCKoih3EEREREREZPwq7UMGiYiIiIiocmHyQUREREREkmDyQUREREREkmDyQXoXHx8PQRCwadMmuUMhohJwjBIZLo5PMjZMPgzMjRs3MGbMGNSuXRvW1tZwdHRE27ZtsXz5cuTm5urtuleuXMGcOXMQHx+vt2uUxcKFC9GrVy+4u7tDEATMmTNH1nikJAhCmV4l7eJWXjk5OZgzZ0652jLlvvkvUx6j165dw5QpU9C0aVM4ODjA09MT3bt3x5kzZ2SLSSqGPD5NuV+eZsrj8969exg6dCgaNGgABwcHODk5ISAgAJs3b4Yp7C1kyGPU1PvmaZV+q11jsnv3bgwcOBBWVlYICwuDn58fCgoKcOzYMbz//vv466+/9PZAxCtXrmDu3LkIDg6Gt7e3Xq5RFjNmzICHhweaNWuGvXv3yhaHHL7++muN91999RX2799frLxRo0YVvlZOTg7mzp0LAAgODi7TOabcN0+Y+hj98ssvsX79evTv3x/vvPMO0tPTsWbNGrRu3RpRUVEICQmRJS4pGPL4NOV++S9TH58pKSm4c+cOBgwYgFq1aqGwsBD79+/HG2+8gdjYWCxatEiWuKRiyGPU1PumGJEMws2bN0V7e3uxYcOG4r1794odv379uhgZGam36//www8iAPHgwYPPratSqcScnJwytx0XFycCEDdu3FimuqIoig8ePBABiLNnzy7zdYzN2LFjRX0NUW1+vqbeNxyjonjmzBkxMzNToywlJUV0dXUV27ZtW+brGQNDGp/sF47PZ+nRo4doZ2cnFhUVaXV+ZWVIY7Q0pto3vO3KQCxevBhZWVlYv349PD09ix2vW7cuJkyYoH5fVFSE+fPno06dOrCysoK3tzemTZuG/Px8jfO8vb3Ro0cPHDt2DAEBAbC2tkbt2rXx1Vdfqets2rRJ/eDFjh07FpuafNLG3r170aJFC9jY2GDNmjUAgJs3b2LgwIGoWrUqbG1t0bp1a+zevVvrn4Ocsy6VgUqlQmRkJF588UVYW1vD3d0dY8aMQWpqqka9M2fOIDQ0FC4uLrCxsYGPjw9GjBgB4PH9w66urgCAuXPnqvv7ebdRmXrfcIwC/v7+sLe31yirVq0a2rdvj6tXr2rVpjGRa3yyXzg+n8Xb2xs5OTkoKCjQabuVkZz/hpbEZPtG7uyHHqtRo4ZYu3btMtcfNmyYCEAcMGCAuHLlSjEsLEwEIPbp00ejnpeXl9igQQPR3d1dnDZtmvj555+LzZs3FwVBEC9fviyKoijeuHFDHD9+vAhAnDZtmvj111+LX3/9tZiYmKhuo27duqKzs7P44YcfiqtXrxYPHjwoJiYmiu7u7qKDg4M4ffp0cenSpWKTJk1EhUIh/vzzz+oYtPnWxlS/Xf+vkr61GTlypGhubi6OGjVKXL16tfjBBx+IdnZ2YsuWLcWCggJRFEUxKSlJdHZ2FuvXry9+8skn4rp168Tp06eLjRo1EkVRFLOyssQvvvhCBCD27dtX3d8XL14sU1ym2jcco6Vr06aNWL9+fa3OrawMdXz+lyn1C8fnv3JycsQHDx6IcXFx4qZNm0Q7OzuxTZs2Zf7ZGAtDHKPsm8eYfBiA9PR0EYDYu3fvMtW/cOGCCEAcOXKkRvl7770nAhAPHDigLvPy8hIBiEeOHFGXJScni1ZWVuLkyZPVZc+aMn7SRlRUlEb5xIkTRQDi0aNH1WWZmZmij4+P6O3tLSqVSlEUmXxo6+m/OI8ePSoCEL/99luNelFRURrl27dvFwGIp0+fLrXtivx8TbFvOEZLd+TIEVEQBHHmzJnlPrcyM9Tx+YQp9QvHp6aIiAgRgPr18ssviwkJCWU615gY4hhl3zzG264MQEZGBgDAwcGhTPX37NkDAAgPD9conzx5MgAUm7L19fVF+/bt1e9dXV3RoEED3Lx5s8wx+vj4IDQ0tFgcAQEBaNeunbrM3t4eo0ePRnx8PK5cuVLm9un5fvjhB1SpUgWdO3dGSkqK+vXklouDBw8CAJycnAAAu3btQmFhoYwRGw+O0ZIlJydjyJAh8PHxwZQpUyrUVmVnSOPT1PqF41PT4MGDsX//fmzZsgVDhgwBAL3u9FVZGMIYZd88xuTDADg6OgIAMjMzy1T/1q1bUCgUqFu3rka5h4cHnJyccOvWLY3yWrVqFWvD2dm52D2Oz+Lj41NiHA0aNChW/mQniafjoIq5fv060tPT4ebmBldXV41XVlYWkpOTAQBBQUHo378/5s6dCxcXF/Tu3RsbN24sdi8zlR3HaHHZ2dno0aMHMjMzsWPHjmJrDkyNoYxPU+wXjk9NXl5eCAkJweDBg/Htt9+idu3aCAkJMcn/5P6XIYxR9s1j3GrXADg6OqJ69eq4fPlyuc4TBKFM9czMzEosF8uxt7SNjU2Z65J+qFQquLm54dtvvy3x+JMFcIIg4Mcff8SJEyfw66+/Yu/evRgxYgSWLFmCEydOmMR/RnSNY1RTQUEB+vXrh0uXLmHv3r3w8/OT7NqGyhDGp6n2C8fnsw0YMADr1q3DkSNHis2+mBJDGKNPM9W+YfJhIHr06IG1a9ciJiYGgYGBz6zr5eUFlUqF69eva+xXnZSUhLS0NHh5eZX7+mX9S/jpOGJjY4uVX7t2TX2cdKdOnTr4/fff0bZt2zL9Q9a6dWu0bt0aCxcuxJYtW/Daa69h69atGDlypFb9beo4Rh9TqVQICwtDdHQ0vv/+ewQFBZW7DWMk9/g09X7h+Czdk2/V09PTddJeZSX3GC2JqfYNb7syEFOmTIGdnR1GjhyJpKSkYsdv3LiB5cuXAwC6desGAIiMjNSos3TpUgBA9+7dy319Ozs7AEBaWlqZz+nWrRtOnTqFmJgYdVl2djbWrl0Lb29v+Pr6ljsOKt3//d//QalUYv78+cWOFRUVqfsuNTW12DdyTZs2BQD1tLGtrS2A8vW3qeMYfezdd9/Ftm3bsGrVKvTr16/c5xsrucenqfcLxyfw4MGDEsvXr18PQRDQvHnzcrVnbOQco+wbTZz5MBB16tTBli1bMGjQIDRq1Ejj6azHjx/HDz/8gDfeeAMA0KRJEwwbNgxr165FWloagoKCcOrUKWzevBl9+vRBx44dy339pk2bwszMDB9//DHS09NhZWWFTp06wc3NrdRzPvzwQ3z33Xd45ZVXMH78eFStWhWbN29GXFwcfvrpJygU5c9tv/76a9y6dQs5OTkAgCNHjmDBggUAgNdff92kZ1OCgoIwZswYRERE4MKFC+jSpQssLCxw/fp1/PDDD1i+fDkGDBiAzZs3Y9WqVejbty/q1KmDzMxMrFu3Do6Ojup/dG1sbODr64tt27ahfv36qFq1Kvz8/J55m4ap9w3H6OP/rK1atQqBgYGwtbXFN998o3G8b9++6v+EmRo5xyf7heMTABYuXIg//vgDXbt2Ra1atfDo0SP89NNPOH36NN59991ia1xMjZxjlH3zFDm32qLi/v77b3HUqFGit7e3aGlpKTo4OIht27YVP/vsMzEvL09dr7CwUJw7d67o4+MjWlhYiDVr1hSnTp2qUUcUH2/x171792LXCQoKEoOCgjTK1q1bJ9auXVs0MzPT2DKwtDZE8fH+5gMGDBCdnJxEa2trMSAgQNy1a5dGnfJsExgUFKSxDd1/X2V5cqwxKe3prGvXrhX9/f1FGxsb0cHBQXzppZfEKVOmqJ/qe+7cOXHw4MFirVq1RCsrK9HNzU3s0aOHeObMGY12jh8/Lvr7+4uWlpZl2jKQffOYKY/RJ89GKO0VFxf3zPONiSGNT/bLv0x5fO7bt0/s0aOHWL16ddHCwkL92Tdu3CiqVKpnnmuMDGmMsm80CaJYjhVTREREREREWuKaDyIiIiIikgSTDyIiIiIikgSTDyIiIiIikgSTDyIiIiIikgSTDyIiIiIikgSTj0pm8eLFaNiwIVQqldyhVNirr76K//u//5M7DNmxT40L+9O4sD+NC/vT+LBPKyG59/qlsktPTxerVq0qbtiwQV2G/+3j/umnnxarv3HjRhGAePr0aZ3HEhISIgIQx44dW+LxL7/8UmzYsKFoZWUl1q1bV1yxYkWxOufOnRMVCoV44cIFncdXWbBPjQv707iwP40L+9P4sE8rJ858VCIbNmxAUVERBg8eXOzYJ598on7ytL79/PPPiImJKfX4mjVrMHLkSLz44ov47LPPEBgYiPHjx+Pjjz/WqNesWTO0aNECS5Ys0XfIBot9alzYn8aF/Wlc2J/Gh31aScmd/VDZNW7cWBw6dKhGGQCxadOmIgBxyZIlGsf0keHn5uaK3t7e4rx580rM8HNycsRq1aoVe5rra6+9JtrZ2YmPHj3SKP/0009FOzs7MTMzU2cxVibsU+PC/jQu7E/jwv40PuzTyokzH5VEXFwcLl26hJCQkGLH2rZti06dOmHx4sXIzc3VaxyLFy+GSqXCe++9V+LxgwcP4uHDh3jnnXc0yseOHYvs7Gzs3r1bo7xz587Izs7G/v379RazoWKfGhf2p3FhfxoX9qfxYZ9WXkw+Konjx48DAJo3b17i8Tlz5iApKQlffPHFM9vJz89HSkpKmV5PS0hIwEcffYSPP/4YNjY2JbZ//vx5AECLFi00yv39/aFQKNTHn/D19YWNjQ3++OOPZ8ZtjNinxoX9aVzYn8aF/Wl82KeVl7ncAVDZXLt2DQDg4+NT4vH27dujY8eO+OSTT/D222+XOgi+++47DB8+vEzXFEVR4/3kyZPRrFkzvPrqq6Wec//+fZiZmcHNzU2j3NLSEtWqVcO9e/c0ys3NzVGzZk1cuXKlTDEZE/apcWF/Ghf2p3Fhfxof9mnlxeSjknj48CHMzc1hb29fap05c+YgKCgIq1evxqRJk0qsExoaqtVU3sGDB/HTTz/h5MmTz6yXm5sLS0vLEo9ZW1uXOP3p7Oxc4jcKxo59alzYn8aF/Wlc2J/Gh31aeTH5MCIdOnRAx44dsXjxYrz11lsl1vH09ISnp2e52i0qKsL48ePx+uuvo2XLls+sa2Njg4KCghKP5eXllfjNgyiKEAShXDGZCvapcWF/Ghf2p3Fhfxof9qlhYvJRSVSrVg1FRUXIzMyEg4NDqfVmz56N4OBgrFmzBk5OTsWO5+bmIj09vUzX9PDwAAB89dVXiI2NxZo1axAfH69RJzMzE/Hx8XBzc4OtrS08PT2hVCqRnJysMcVYUFCAhw8fonr16sWuk5qainr16pUpJmPCPjUu7E/jwv40LuxP48M+rby44LySaNiwIYDHuzs8S1BQEIKDg/Hxxx+XOJW3bds2dZb/vNcTCQkJKCwsRNu2beHj46N+AY8HoI+PD/bt2wcAaNq0KQDgzJkzGtc9c+YMVCqV+vgTRUVFuH37Nho1alSun4cxYJ8aF/ancWF/Ghf2p/Fhn1ZenPmoJAIDAwE8/sPauHHjZ9adM2cOgoODsXbt2mLHtLm38dVXXy02OACgb9++6NatG0aNGoVWrVoBADp16oSqVaviiy++QLdu3dR1v/jiC9ja2qJ79+4abVy5cgV5eXlo06ZNuWIyBuxT48L+NC7sT+PC/jQ+7NNKTJ7Hi5A2/Pz8xMGDB2uUoYQH2oiiKAYFBYkAdP4wnbJce+XKlSIAccCAAeK6devEsLAwEYC4cOHCYnU//fRT0dbWVszIyNBLjIaOfWpc2J/Ghf1pXNifxod9Wjkx+ahEli5dKtrb24s5OTnqstL+oB88eFC2QSaKorh27VqxQYMGoqWlpVinTh1x2bJlokqlKlavVatWxZ5OakrYp8aF/Wlc2J/Ghf1pfNinlROTj0okLS1NrFq1qvjll1/KHYpOnD9/XhQEQTx//rzcociGfWpc2J/Ghf1pXNifxod9WjkJovjUE1PIoH388cfYuHEjrly5AoWicu8X8Oqrr0KlUuH777+XOxRZsU+NC/vTuLA/jQv70/iwTysfJh9ERERERCSJyp0iEhERERFRpcHkg4iIiIiIJMHkg4iIiIiIJMHkg4iIiIiIJMHkg4iIiIiIJMHkg4iIiIiIJMHkg4iIiIiIJMHkg4iIiIiIJMHkg4iIiIiIJMHkg4iIiIiIJMHkg4iIiIiIJMHkg4iIiIiIJMHkg4iIiIiIJMHko5zu37+POXPm4P79+3KHQkRERERUqTD5KKf79+9j7ty5TD6IiIiIiMqJyQcREREREUmCyQcREREREUmCyQcREREREUmCyQcREREREUmCyQcREREREUmCyQcREREREUmCyQcREREREUmCyQeRqch5JHcEREREZOKYfBCZisxEoKhA7iiIiIjIhDH5IDIZIpB5T+4giIiIyIQx+SAyJQ9vyB0BERERmbAKJx/379/HxYsXkZ2drYt4iEifEv+UOwIiIiIyYVonHzt27EDDhg3xwgsvoHnz5jh58iQAICUlBc2aNcMvv/yiqxiJSFfunpE7AiIiIjJhWiUfv/76K/r16wcXFxfMnj0boiiqj7m4uKBGjRrYuHGjzoIkIh1Juw08ipM7CiIiIjJRWiUf8+bNQ4cOHXDs2DGMHTu22PHAwECcP3++wsERkR5c/E7uCIiIiMhEaZV8XL58Gf/3f/9X6nF3d3ckJydrHRQR6dHfe4Hr++WOgoiIiEyQVsmHra3tMxeY37x5E9WqVdM6KCLSs4OLHichRERERBLSKvno2LEjNm/ejKKiomLHEhMTsW7dOnTp0qXCwRGRnoiqxwnI+W+A/6zZIiIiItInrZKPhQsX4s6dO2jZsiXWrFkDQRCwd+9ezJgxAy+99BJEUcTs2bN1HSsR6dqpdUDMSkClkjsSIiIiMgGCKGr3tedff/2FCRMm4ODBgxq7XQUHB2PlypVo1KiRzoI0JOfOnYO/vz/Onj2L5s2byx0OUZm0aNECiffuwMMiG2emlfDntnYwEPQBYGkreWxERERkOsy1PfHFF1/E77//jtTUVPzzzz9QqVSoXbs2XF1ddRkfEelAYmIi7t5PApwsS65w8xDw8J/HCYhnY0ljIyIiItOhdfLxhLOzM1q2bKmLWIhITul3gJ3vAvW6AC1HAg7uckdERERERkarNR8rVqxAaGhoqcdfeeUVfPHFF1oHRUQyur4P2DYUOPEFkJchdzRERERkRLRKPtavXw9fX99Sj/v6+mLt2rVaB0VEMlMWABe3AluHAJd+AJSFckdERERERkCr5OPGjRvPXFDesGFD3LhxQ+ugiMhA5GcCMZ8D3w8D/onmrlhERERUIVolH5aWlkhMTCz1+P3796FQaNU0ERmijLtA9Dzg55FA3BEmIURERKQVrTKE1q1bY9OmTcjMzCx2LD09HRs3bkTr1q0rHBwRGZiHN4B9M4Gf3gT++Z1JCBEREZWLVrtdzZ49G0FBQWjatCkmTpyIF198EQBw+fJlREZG4v79+9iyZYtOAyUiA/LoJhA9Hzi7CWg5CvDpAAiC3FERERGRgdMq+WjVqhV+/fVXjBkzBhMmTIDwv/90iKIIHx8f7Ny5E4GBgToNlIi0k5CQgOzsbABAdr4SCY/yUKuqtW4aT7sN7J8F1AwAgqcCtlV10y4REREZJa2fcA4AKpUK58+fVy8ur1OnDpo3b65ORowRn3BOlcWpU6cwf/587N69G/8d5oIA9HipKmZ280JLbwfdXdDOBQiNAFzr665NIiIiMioVSj5MEZMPqgx+/vlnDBo0CKIoQqlUFjtupgAECNg2qhH6NXPR3YXNrYGQOYCXbmc+C3MzcTNqNR5dPwkICrg0bIPaoWNgZmlT6jmXvvoQGQl/apR5NH8FdbuNAwAkXdyP679GlnhuwKRvYWnnpKvwiYiI6H8q9ITzK1eu4ObNm0hNTUVJOUxYWFhFmiciLZw6dQqDBg2CUqkscVwCgFIFCBAxaN1VHJ/SVHczIEV5wN5pQPtwoFHPcp166asP4d7kZbg36Vzs2N+/fIKCrEfwe20BVEolrv8aiX92f4YGfac8s033ZqHwChqqfq+w+Pd2MxffDnCu4695nZ3LoCoqZOJBRESkJ1olHzdu3MDQoUNx6tSpUv9zIwgCkw8iGSxYsACiKJY6Np8QAYgQsWDPLex4x093AYgq4MinQEE20OTVCjeXk5KA1Btn0WREJByq1wMA1Ok6Bn99NwfeIW/CyqFaqeeaWVjD0r7kdShmFlYws7BSvy/MTkd6/CXU6zGhwjETERFRybRKPsaMGYM///wTkZGRaN++PZydnXUdFxFpISEhAbt27Xpu4vGEUgX8+ucj3S5Cf+LEF4CbL+DZuELNZNy5BjNrO3XiAQBOPs0AQUDm3VhYNWxT6rnJlw8i+c+DsLR3RtV6AajZ/lWYWZT8OZP+jIbCwgrVGrWtULxERERUOq2Sjz/++APTpk3Du+++q+t4iEyCqqgAKmWRztvdF7WnzInHE6IIRF9LxRuB7jqPB1d2QKhg8lGYlQpLWyeNMkFhBgsbBxRmp5Z6nptfEKyquMHSoRqyk+IQf2Ajch/eQaOBM0qsn3RhH1z9gjRmQ4iIiEi3tEo+XFxcUKVKFV3HQmQSVEUFSIu/iKK8HJ23nRR3BQqFAJWq7AmIQgDSMnNRlK/7eFS3z8KiqAAKc8tix24f24bbf3z/b92iAmTevYYbUavVZc3f+kLra3s0f0X9ezs3b1jaV8Xlb6ch99F92FT11KibcecqclNuo0HvyVpfj4iIiJ5Pq+TjrbfewjfffIOxY8fCzMxM1zERGTWVsghFeTlQmJlDKOE/5RXhWMWpXIkHAKhEwNHGHIKg0GksoqiCqFRBpSwqMfnw8O8GF9/26vexv3wCl4ZtUe0/t1FZOVSDhb0zCnLSNNtWKVGYmwkLu7Lf8ulQowEAIC/1XrHkI+n8Xti514a9Z72STiUiIiId0Sr5qF+/PpRKJZo0aYIRI0agZs2aJSYh/fr1q3CARMZKMLfU+S0+we3bQhCEct16JQhAx/qOOn9CuQAFlPaepf4lY2HjAAubf3fZUphbwcKuCmyqVteo5/hCQyjzspF1/7o6OUiLuwiIojqhKIvspJsAUGwBurIgFylXj8Gr47Ayt0VERETa0Sr5GDRokPr37733Xol1BEEo8fkCRKQ/NWt4IrRTB+w/dKxM489MAXTzdUKtqrpf5yAqzJFXKxgVbdnWpRac6/jj+u7PUPeVsRBVStzY+wVcX+yg3ukqPyMFl7+djvq9wuFQowFyH93Hg78OoWrdFjC3cUR2chzi9q2DYy0/2Ln7aLT/4K8jEFVKuL3UsYKREhER0fNolXwcPHhQ13FobeXKlfjkk0+QmJiIJk2a4LPPPkNAQECJdTdt2oThw4drlFlZWSEvL0+KUIkk8f67o/H74WPPnQER8PhBg1NDPUutoy3Rwg7ZTUdAaV/9+ZXLoH6f93Ez6gtc/nY6IAio1rAt6oSO+fd6KiVyH96BsjAfAKAwM0da3AXcO7UDyoI8WDm6olqjtqjZrvjWv0kX96FagzYwt7bXSaxERERUukr9hPNt27YhLCwMq1evRqtWrRAZGYkffvgBsbGxcHNzK1Z/06ZNmDBhAmJjY9VlgiDA3b3su/zwCedUUUX5OXh0/TTMrGz1trPSr1G/Y8S7UyCKeOYTzr8bXgd9muh2q+wij2bI9xuCInNbKPNzULVeS5hb2er0GkRERFQ5VWiFaX5+PmJiYrBjxw6kpKToKqYyW7p0KUaNGoXhw4fD19cXq1evhq2tLTZs2FDqOYIgwMPDQ/0qT+JBVFn07BqCvT9+hc7B7SA8tZZDEB7fanVkUkOdJh5F7k2Q024q8lqOhWjDZ/8QERFRcVonHytWrICnpyfatWuHfv364dKlSwCAlJQUuLi4PDMB0IWCggKcPXsWISEh6jKFQoGQkBDExMSUel5WVha8vLxQs2ZN9O7dG3/99dczr5Ofn4+MjAz1KysrS2efgUifmjfxw3dfrsDFo7/ByfHxwm4nGzP8M7sxfh5dDy29dHCbkaBA0QuByAmeh7yAd6FyrlPxNomIiMhoaZV8bNy4ERMnTkTXrl2xfv16jfvKXVxc0KlTJ2zdulVnQZYkJSUFSqWy2MyFu7s7EhMTSzynQYMG2LBhA3bs2IFvvvkGKpUKbdq0wZ07d0q9TkREBKpUqaJ+BQUF6fRzEOlbzRqesLW1AQDYWSp0trhc6dYY2cHzkNfsTagcdLO2g4iIiIybVsnHkiVL0Lt3b2zZsgU9e/Ysdtzf3/+5MwpyCAwMRFhYGJo2bYqgoCD8/PPPcHV1xZo1a0o9Z+rUqUhPT1e/Dh8+LGHERAbI3AZ5zUYhN+BdiPYeckdDRERElYhWu139888/GD9+fKnHq1atiocPH2odVFm4uLjAzMwMSUlJGuVJSUnw8Cjbf4gsLCzQrFkz/PPPP6XWsbKygpXVv98U29tzRxwyXcpq9ZHXdAREWxe5QyEiIqJKSKuZDycnp2cuML9y5UqZEwBtWVpawt/fH9HR0eoylUqF6OhoBAYGlqkNpVKJP//8E56eut9qlMiYiDZVkdd0BHID32PiQURERFrTKvno1q0b1q5di7S0tGLH/vrrL6xbtw69evWqaGzPFR4ejnXr1mHz5s24evUq3n77bWRnZ6uf5REWFoapU6eq68+bNw/79u3DzZs3ce7cOQwdOhS3bt3CyJEj9R4rUWUk2rogv/HryO60CEU12wBChTbIIyIiIhOn1W1XCxYsQKtWreDn54eePXtCEARs3rwZGzZswE8//QRPT0/MmjVL17EWM2jQIDx48ACzZs1CYmIimjZtiqioKPUi9ISEBCgU//5nKTU1FaNGjUJiYiKcnZ3h7++P48ePw9fXV++xElUmorUzCur3RGHNNoBCq78miIiIiIrR+iGDycnJmDZtGn7++Wf1DIiDgwP69++Pjz76qMSH/BkDPmSQKkqKhww+7cXAzriXmIwaVSwQP79p6RUVFiio9woKaocC5hWLTVmYz4cMEhERkYZyf6WZn5+PvXv3wtvbG19++SW+/PJLPHjwACqVCq6urhozDURUeSid6zxeTG7PB28SERGRfpQ7U7C0tMTAgQNx/PhxdZmrqyvc3d2ZeBBVUgV1uiK3zRQmHkRERKRX5Z75EAQB9erVe+ZuV0RUSQgK5DUZhqKabeWOhIiIiEyAVlMV06ZNw+eff47Y2Fhdx0NEUhEUyGs+mokHERERSUarbWxOnDiBatWqwc/PD8HBwfD29oaNjY1GHUEQsHz5cp0ESUS6l+87EEXVW8gdBhEREZkQrZKPzz//XP37/z7k77+YfBAZriL3Jij0CZE7DCIiIjIxWiUfKpVK13EQkVQEM+T7DQYEQe5IiIiIyMRweyoiE1NUoyVEWxe5wyAiIiITVKFHF584cQIHDx5EcnIy3nnnHdSrVw85OTm4du0a6tevD3t7e13FSUQ6UvhCG7lDIKISiKIIgTOSRGTktEo+CgoK8Oqrr2LHjh3qvyx79uyJevXqQaFQoEuXLpg0aRKmT5+u63iJSAturi6Aqgju1gVQVqsvdzhEVJLCQsDSUu4oiIj0SqvbrmbOnIldu3bhiy++QGxsLERRVB+ztrbGwIEDsWPHDp0FSUQVc3Dnd7ga9SX++HQIoKjQhCcR6QtnPYjIBGiVfHz33Xd4++23MXr0aFStWrXY8UaNGuHmzZsVDo6IdEtZtZ7cIRBRaf7zRR4RkbHSKvlITk7GSy+9VOpxMzMz5OTkaB0UEemHyslL7hCIqBSqgkK5QyAi0jutko+aNWvi2rVrpR7/448/ULduXa2DIiL9UNm5yx0CEZVCzM+TOwQiIr3TKvkYMmQI1qxZg5iYGHXZkx061q1bh++//x5hYWG6iZCIdEY0t5Y7BCIqhZifL3cIRER6p9XK0+nTp+PEiRPo0KEDGjVqBEEQMGnSJDx69Ah37txBt27dMGnSJF3HSkQVpVLKHQERlUIsKJA7BCIivdNq5sPS0hJRUVHYuHEjateujYYNGyI/Px+NGzfGpk2b8Ouvv8LMzEzXsRJRBQkikw8iQ6XKzZU7BCIivSvTzEd4eDhef/11NGvWDACQkJAAV1dXDB06FEOHDtVrgESkO6LCQu4QiKgUyrQ0uUMgItK7Ms18REZG4urVq+r3Pj4+2L59u96CIiI9EMwArvkgMliF9xPlDoGISO/KlHy4u7trPLdD5F7kRJWOyqEGH2JGZMAK4uMhqlRyh0FEpFdluu2qe/fumDdvHvbt2wcnJycAwJIlS7B169ZSzxEEgU85JzIkZrzlisiQqbKzkX/9OqwbNJA7FCIivSlT8rF8+XK4ubnh4MGD+OuvvyAIAm7fvo1Hjx6Veo7Ab1iJiIjKJeO335h8EJFRK1PyYWdnh0WLFqnfKxQKREZGYsiQIXoLjIiIyNRkHz2G3E6dYNO4sdyhEBHpRZnWfPTr1w9Hjx5Vvz948CA6d+6st6CIiIhM1YPISBSlpsodBhGRXpQp+dixYwcSEhLU7zt16oT9+/frLSgiIiJTpUzPQOrX38gdBhGRXpQp+ahRowbOnz+vfi+KItd0EBER6UnW0aMoTE6WOwwiIp0r05qPV199FZ9++im+//579W5XH374ISIiIko9RxAEXLx4USdBEhERmRSVCg/XroP71A8hmJnJHQ0Rkc6UKfmIiIhA3bp1cfDgQSQnJ0MQBNjZ2aFatWr6jo+IiMgk5Z4/j6RFEXAZNxbmzs5yh0NEpBOCqMUTAxUKBb755huT3O3q3Llz8Pf3x9mzZ9G8eXO5w6FKqCg/B4+un4aZlS3MLKzkDkdvlIX5UObnoGq9ljC3spU7HCKD1qJFC9y7fh3VFArs7PSyxjGFjQ2qDOiPKt26QbC0lClCIiLdKNPMx9Pi4uLg6uqq61iIiIhMUmJiIu5nZEC0til2TJWbi9Svv0Fm1F44vzYEdm3bQlCUackmEZHB0epvLy8vL9ja8ptMIiIiqRQ9eIAHkctx78MPkXPuPLS4cYGISHZlmvlQKBRQKBTIycmBpaUlFArFc3e7EgQBRUVFOgmSiIiIHiu4cRNJCxfCqm5dVOnXD7YtW3AmhIgqjTIlH7NmzYIgCDA3N9d4T0RERPLI/+cfJC9eDIsaNVClV0/YdegABdeEEJGBK1PyMWfOnGe+JyIiInkU3r2LlC9W49E338KhUyc4hHaBhbu73GEREZVIqwXnREREZFhUmZlI37ED6Tt3wrZVAJxffRWWNWvKHRYRkYZyJx/5+fn45ptvsG/fPty4cQOZmZlwcHBA3bp10bVrVwwZMgSWnPYlIiIqk4SEBGRnZwMAcoqKcDcnBzUqsqmLKCLnxEnknDoNx9AucHp1MMzs7XQULRFRxZTrOR9//vknevfujVu3bkEURVSpUgX29vbIyspCeno6BEFA7dq1sXPnTjRq1EifccuGz/mgiuJzPogIAE6dOoX58+dj9+7dGjtXCQA6eXhiXMOGaFK1aoWvY1alCpwGvwqHl1/W28L0gsxMnF+/HvfOnoUgCKjRujWaDR8Oc5viWwc/oSwowMXNm3H7jz+gLCqCR5MmaD5qFKydnAAAafHxuLZ9O1KuXUN+ZibsXF1Rp0sX1OveXS+fgYikUebkIysrCy+99BKSk5Mxc+ZMvP7666hRo4b6+N27d/HVV19hwYIF8PT0xMWLF2FnZ3zftJhC8pGQkIDo6Gj1rNbLL7+MWrVqyR2W0WDyQRXFMVr5/fzzzxg0aBBEUYRSqSx23EwQIABYEdAKXf/zb21FWHp7o+qI4bB58UWtzj80axa8O3aEd8eOxY4dXbAAuWlp8B89GqJSidMrV8K5bl20njix1PbOrl2L++fOIWDsWFjY2uLc+vUQBAGdFi4EAMRFRyPt1i280KoVbFxc8DA2FmdXr0bj119H3Vde0eozSIHjk+jZynzb1caNG9UDKjg4uNjxGjVqYOrUqWjVqhU6d+6MTZs2YezYsbqMlfTs6W/hFAoFVCoVBEFAjx49MHPmTLRs2VLuMIlMFseocTh16hQGDRoEpVJZ6rM6lKIIAcD4UyfxQ1CwTmZACuLjkThrNmxbt0LVoUNh4elZ4TYBIOPOHSReuICXP/oIVevWBQA0e/NNHF20CE3CwmBTQuyF2dmIO3AArSdMgNtLLwEAWo4di70TJuDh33+jWv368HlZ80nv9u7ueBgbizsnTxpk8sHxSVQ2ZZ5/3b17N7p06VJi4vFfnTp1QufOnfHrr79WNDaS0M8//4y2bdvit99+U/9jqFKpAACiKGLPnj1o06YNfv75ZznDJDJZHKPGY8GCBRBF8bkPCRT/91oZe02n1885cRJ3J4Uj648/dNLew9hYWNjZqRMPAHBr3BiCIODR9eslnpN68ybEoiK4NW6sLnOsUQO2/5vhKE1hTg4s7e11ErcucXwSlV2Zk48///zzuYnHE506dcKff/6pbUzlsnLlSnh7e8Pa2hqtWrXCqVOnnln/hx9+QMOGDWFtbY2XXnoJe/bskSROQ/bfb+FKmv4HoD42aNAgnD59WuIIiUwbx6jxSEhIwK5du0rtx6cpRRHR9+/jbk6OTuMQCwuRvmOHTtrKS0uDVZUqGmUKMzNY2tsjLy2t1HMU5uawfOr2bCsnp1LPSbl2DbePH0ftkBBdhK0zHJ9E5VPm264ePXoEDw+PMtV1d3fHo0ePtA6qrLZt24bw8HCsXr0arVq1QmRkJEJDQxEbGws3N7di9Y8fP47BgwcjIiICPXr0wJYtW9CnTx+cO3cOfn5+eo/XUJX5W7j/1VmwYAF26OgfLSJ6Po5R6SkLCqAqY4JQHvv+8814WYkAjiclYYCXl05jEWxsoCwogFkpO1Re/eknXN2+Xf1eWVCAh9ev49z69eqyrsuW6TSm0qQnJOCPxYvhO3AgPJo2leSaZcXxSVQ+ZU4+8vPzYWFhUbZGzc1RUFCgdVBltXTpUowaNQrDhw8HAKxevRq7d+/Ghg0b8OGHHxarv3z5cnTt2hXvv/8+AGD+/PnYv38/Pv/8c6xevVrv8RqiJ9/ClfUfQ6VSiV9//RUJCQlcQEckAY5R6SkLCpB8+TIKdTzbAAB3r16FQhCgKkcCogCQnpOj83iUCQlIvnwZbn5+JSYgdbp0Qc02bdTvTy5fjhqtW+OFVq3UZdZVq8LayQn56eka56qUShRkZal3rnqatZMTVEVFKMjO1pj9yE9LK3ZOxu3bODx3LmqHhMB3wAAtPqn+cHwSlV+5nvMRHx+Pc+fOPbdeXFyc1gGVVUFBAc6ePYupU6eqyxQKBUJCQhATE1PiOTExMQgPD9coCw0NxS+//FLqdfLz85Gfn69+n5WVBQAoKipCYWFhBT6BYdi7d2/5v4UTRezbtw/Dhg3TU1TGraiwEIWFRVCqciAUFskdjt6IRQVQKR+PE1FR+ceKXDhGpVeYl4ecjIzHi4bNdfssXhtr63IlHgCgAmBjboZCUaXTWHDvPoTEROTXrQsLQSh2WLC2hpW19b/vLSxgbm8PKxcXdZlSpUKVOnVQmJ2NB7GxcKpdGwCQfOkSRFGEg7d3if9W2teqBcHMDPfOn0eN/yUzmffuIScl5XF7/zsn4/Zt/LFgAWp26ICGAwca3L+7HJ/yKCwsgKpI9zOThkZhbgYLC2mfnVfWiYYKEctIEARRoVCU6fWkrj7dvXtXBCAeP35co/z9998XAwICSjzHwsJC3LJli0bZypUrRTc3t1KvM3v27Cdr/vjiiy+++OLLZF+zO3QQg7y8Sjw2tW1b8aNOncQ6zs5ig2rVxMguXcTxLVuqjztbW4vLunQR6zg7q8tGNmsmruzaVXzR1VX0cXIS5wcHi/ODg9XHazo6iuu6dxfHtWghVrGyUr8cLC1l/1nwxZexvqRQrq12TdHUqVM1ZksuXLiAoKAgnDx5Es2aNZMxMt3YtGkTRo8eXe7z1q1bx29tKkD1v1kBY6cwM4fCXNpvbYwNx6g89LXmAwAGDhqEqH371LshPYsCQJC7O75o1Vq3QSgUcOjeDc6DBsH8P7Mbz3J03jwMDQqCV1BQsWMFWVm4tHEj6nt6AoKA6gEBGP3GG/j0f21nP3iA/ePH48jBg3D19QXw+Gd8+ZtvUN3NDar/7XzVZMQIfPC/266u/vgjYn/6CR28vNDhP+tdbFxcEPrZZxX8AegGx6f08nNzEfvnRZibm8HcTLczk4akSFmEoiIlGrzUBFbPeFhnZVTmXjO0QeLi4gIzMzMkJSVplCclJZW6MN7Dw6Nc9QHAysoKVlb/PgjO/n9b/Jmbm0szNaVnoaGhEAShXNPGgiCgS5cuRvH5ZcOfHZURx6g89PmzmzNvHvb9/vtzFykLABSCgPGNfGGpw9u/bPybo+rrr8OyZs1ynddp/vxSj1k4OyPwqdua/8upenUM/PFHzXMsLNBizBi0GDOmxHMaDx6MxoMHlytGqXF8Sk9VVAQLc3NYW1vDwsp4H9RbmJ+PvLw8WFhYGN2flTJvtWtoLC0t4e/vj+joaHWZSqVCdHQ0AgMDSzwnMDBQoz4A7N+/v9T6pqBWrVro0aMHzMzMylTfzMwMPXv25EI5IolwjBqfli1bYtu2bTAzMyu1X80EAWaCgM8CWunkAYMAYNOsGTwXLYTHtGnlTjyoZByfROVXaZMPAAgPD8e6deuwefNmXL16FW+//Tays7PVu1+FhYVpLEifMGECoqKisGTJEly7dg1z5szBmTNnMG7cOLk+gkGYOXMmBEGAUMKCw/96UmfGjBkSRUZEAMeoMerXrx+OHz+Obt26FetXAUBHDw/8EBSM0Bo1KnQdwcICDp07o0bkMnjMmA7rBg0q1B4Vx/FJVD6V+ma5QYMG4cGDB5g1axYSExPRtGlTREVFwd3dHcDjLfAUin/zqzZt2mDLli2YMWMGpk2bhnr16uGXX34x6Wd8AP9+Czdo0CCIoljiQ5LMzMwgCAK+//57tGzZUoYoiUwXx6hxatmyJXbu3ImEhAQ0adIEaWlpcDS3wO6QENSwta1Q2wp7ezh2DYVjt24we+oBgKRbHJ9E5SOI5blRkXDu3Dn4+/vj7NmzaN68udzh6NTp06cxf/589Z7lCoUCKpUKgiCgZ8+emDFjBv/SJJIRx6jxeuGFF3D37l14WNvgeLduWrdj7u4Ox+7d4NCpExRGtkjV0HF8SiM/Nxexly6YzJqPBo2bmu6CczJ+//0W7sCBA8jIyICjoyM6derE+1OJDADHKJXG2tcXVXr1hI2/PwRFpb6jutLi+CQqGyYfVEytWrXwxhtvyB0GEZWCY5QAAIIA25YtUaVvH1jXry93NPQ/HJ9Ez1ah5OPKlSu4efMmUlNTS9xmLiwsrCLNExER0VMEc3PYd+yIKj17wKKCC9KJiKSmVfJx48YNDB06FKdOnSp1b2tBEJh8EBER6ZB9p45wfvVVmFerJncoRERa0Sr5GDNmDP78809ERkaiffv2cHZ21nVcRERE9D8Ke3u4hU+CTZMmcodCRFQhWiUff/zxB6ZNm4Z3331X1/EQERHRfyhsbOAxZzasfHzkDoWIqMK02hLDxcUFVbhvOBERkX4pFHAND2fiQURGQ6vk46233sI333xT4oN0iIiISAcUCriOfxe2zZvJHQkRkc5oddtV/fr1oVQq0aRJE4wYMQI1a9aEmZlZsXr9+vWrcIBEREQmRxDgOn487Nu3kzsSIiKd0ir5GDRokPr37733Xol1BEHgzAgREZEWnAcPZuJBREZJq+Tj4MGDuo6DiIjIZHl4eECVmYlqCgWsGjRAlb595A6JiEgvtEo+goKCdB0HERGRyTpz5gwS5y9A7oULqDosDIJCqyWZREQGr0JPOAceP+X81q1bAAAvLy/4+vpWOCgiIiJTZNWoIawbNJA7DCIivdE6+dixYwfCw8MRHx+vUe7j44OlS5eiV69eFY2NiIjIpDh27ix3CEREeqXVvO6ePXvQv39/AMCiRYuwfft2bN++HYsWLYIoiujXrx+ioqJ0GigREZFRUyhg499C7iiIiPRKq5mP+fPno3Hjxjh69Cjs7OzU5b169cK4cePQrl07zJ07F127dtVZoERERMbMslYtmNnbPb8iEVElptXMx6VLlzBs2DCNxOMJOzs7vPHGG7h06VKFgyMiIjIVFjVfkDsEIiK90yr5sLa2xqNHj0o9/ujRI1hbW2sdFBERkakxd3aWOwQiIr3TKvno1KkTli9fjpiYmGLHTp48iRUrViAkJKTCwREREZkKwcZG7hCIiPROqzUfixcvRmBgINq1a4eAgAA0+N+2gLGxsTh16hTc3Nzw8ccf6zRQIiIiY2ZerZrcIRBRKVRKJRRmZnKHYRS0mvnw8fHBpUuXMH78eKSmpmLbtm3Ytm0bUlNTMWHCBFy8eBHe3t46DpWIiMh4MfkgMlzKwkK5QzAaWj/nw83NDcuWLcOyZct0GQ8RERERkUFRqZRyh2A0tJr5ICIiIiIyFaJSJXcIRqNMMx8jRoyAIAhYu3YtzMzMMGLEiOeeIwgC1q9fX+EAiYiIiIjkxJkP3SlT8nHgwAEoFAqoVCqYmZnhwIEDEAThmec87zgRERERUWWgKiqSOwSjUabkIz4+/pnviYiIiIiMlbKwEKJKBUHBFQsVpdVPMCEhAbm5uaUez83NRUJCgtZBEREREREZkqKCfLlDMApab7W7ffv2Uo/v3LkTPj4+WgdFRERERGRICvOZfOiCVsmHKIrPPF5YWAgFp6WIiIiIyEgUMfnQiTI/5yMjIwNpaWnq9w8fPizx1qq0tDRs3boVnp6eOgmQiIiIiEhuhXmlLzmgsitz8rFs2TLMmzcPwOOdrCZOnIiJEyeWWFcURSxYsEAnARIRERERyS0vK1PuEIxCmZOPLl26wN7eHqIoYsqUKRg8eDCaN2+uUUcQBNjZ2cHf3x8tWrTQebBERERERHLISnkgdwhGoczJR2BgIAIDAwEA2dnZ6N+/P/z8/PQWGBERERGRoXh45xZEUeSz7Cqo3KvCc3JysGLFCvz222/6iIeIiIiIyODkZWbgYUK83GFUeuVOPmxtbWFubg47Ozt9xENEREREZJD+OXGMTzuvIK32w+3fvz9+/PHH5265S0RERERkLHLSHuHv40fkDqNSK/Oaj/969dVX8c4776Bjx44YNWoUvL29YWNjU6ze0wvSiYiIiIgqk14D/g/JSUmwUQAzh/TDvat/ws7ZGTVfaiZ3aJWSVslHcHCw+vdHjx4tdvzJYhylUql1YEREREREcktJSUFySgqc7f9dcnD9+FHYVnFGtVre8gVWSWmVfGzcuFHXcRARERERVRIirhzYixb9B8PGwVHuYCoVrZKPYcOG6ToOIiIiIqJKozA/D5f37kKzXgNgbmkpdziVhlYLzv8rKysLV69exdWrV5GVlaWLmIiIiIiIDF7mwwe4sHs7CnJy5A6l0tA6+Th9+jQ6duwIZ2dn+Pn5wc/PD87OzujUqRPOnDmjyxhL9OjRI7z22mtwdHSEk5MT3nzzzecmP8HBwRAEQeP11ltv6T1WIiIiIjJOGcmJOP3zd3h097bcoVQKWt12dfLkSQQHB8PS0hIjR45Eo0aNAABXr17Fd999hw4dOuDQoUMICAjQabD/9dprr+H+/fvYv38/CgsLMXz4cIwePRpbtmx55nmjRo3CvHnz1O9tbW31FiMRERERGb/87Cxc2PUzqjf0Q51WbWFhbS13SAZLq+Rj+vTpqFGjBo4dOwYPDw+NY3PmzEHbtm0xffp07N+/XydBPu3q1auIiorC6dOn0aJFCwDAZ599hm7duuHTTz9F9erVSz3X1ta2WMxERERERBV179plPIi/gdotA1G94YsQFBVe4WB0tPqJnDx5EmPGjCnxP/Hu7u4YPXo0Tpw4UeHgShMTEwMnJyd14gEAISEhUCgUOHny5DPP/fbbb+Hi4gI/Pz9MnToVOc+5Ry8/Px8ZGRnqF9e1EBEREVFpCvNyEXv0AE7/9B0e3r4ldzgGR6uZD4VCgaJnPFpeqVRCocdMLzExEW5ubhpl5ubmqFq1KhITE0s9b8iQIfDy8kL16tVx6dIlfPDBB4iNjcXPP/9c6jkRERGYO3euzmInIiIiIuOX9SgFF/f8gmo1vVGvTQfYOjnLHZJB0CpDaNOmDVauXIlbt4pncwkJCVi1ahXatm1b7nY//PDDYgvCn35du3ZNm5ABAKNHj0ZoaCheeuklvPbaa/jqq6+wfft23Lhxo9Rzpk6divT0dPXr8OHDWl+fiIiIiEzLw9vxOPnDt/jnxDEUFRTIHY7stJr5WLRoETp06ICGDRuib9++qF+/PgAgNjYWO3bsgLm5OSIiIsrd7uTJk/HGG288s07t2rXh4eGB5ORkjfKioiI8evSoXOs5WrVqBQD4559/UKdOnRLrWFlZwcrKSv3e3t6+zO0TEREREYkqJRIunkXi39dQp1UbeNRraLLrQbRKPpo1a4aTJ09i+vTp2Llzp3rdhK2tLbp27YoFCxbA19e33O26urrC1dX1ufUCAwORlpaGs2fPwt/fHwBw4MABqFQqdUJRFhcuXAAAeHp6ljtWIiIiIjJud+/dQ05uLgAgv7AQDzOyUM1R+y+iC3KzcfXQfty7ehn12gTB0c1dV6FWGoIoimJFGlCpVHjw4AGAx8mDPtd6/Ncrr7yCpKQkrF69Wr3VbosWLdRb7d69excvv/wyvvrqKwQEBODGjRvYsmULunXrhmrVquHSpUuYNGkSXnjhhXLdSnXu3Dn4+/vj7NmzaN68ub4+HhERERE9JT83F7GXLsDa2hoW/7kzRdcuXrqEz75YjYOHj+C//1UWADT2qYUerZrDx8Ot9AbKRIBHvYaoHdAG1k/dWVOYn4+8vDw0aNwUVjY25W5ZFEUc+OUnnDlyEHk5OahVtz56hQ1HNfdn3yGUkfoIe3/Yiut/XkJhQT6qurmj34jRqOFTu0Lt/leFM4Wn12RI5dtvv0XDhg3x8ssvo1u3bmjXrh3Wrl2rPl5YWIjY2Fj1rIylpSV+//13dOnSBQ0bNsTkyZPRv39//Prrr5LFTERERESGLWrffgx87XUcPnoMT39HLwL4M/42Ir7fgbP/xFXwSiISr1/Fia2bcePkcZ2uBzn62y6c+H0feoWNwJgZc2FpZYXNSz5GYWHp18jNzsa6RfNgZmaGsEnvY/yCj/HKoNdgY2dXoXafpnXyceXKFQwYMACOjo7w9PSEp6cnHB0dMWDAAFy+fFnbZsusatWq2LJlCzIzM5Geno4NGzZorMfw9vaGKIoIDg4GANSsWROHDx/Gw4cPkZeXh+vXr2Px4sVwdHTUe6xEREREZPguXrqE8ZPfg1KphFKpLLGOShShUolYs+d3xCUml1inPFTKIty6cBontm7GvWt/QVSpKtSeKIqI2R+FoJ690aiZPzxq1kL/kW8hMy0NV8+dLfW8o3t+RZWqVdHvzTF4oXYdOLu6oa7fS6j6v1vDtG33aVqt+Th69CheeeUVqFQq9O7dW2PB+c6dO/Hbb78hKioK7du316Z5IiIiIiLJfb56DURRLDbjUSIR2HXqPN7tFaqTaxfk5uDa4d9x/9oV1G8XDFhYatVO6oMHyEpPRx1fP3WZta0tXqhdB7dvXEfjVoElnnftwjnU9WuMratWID72GhycndGqYwhaBHWsULtP0yr5mDRpEtzc3HD48GHUrFlT49jt27fRoUMHhIeH4/Tp09o0T0REREQkqbv37uHAocNlSzzweAbk0s1bFV6E/rT0pHs4v+tn+HbpodX5WRlpAAD7p+7usXN0RFZ6eqnnpT54gNMHo9EmtCs6dO+Fu3E3sXvLVzAzN0Ozth20bvdpWiUff/31F+bPn18s8QAe39709ttvY86cOdo0TURERET0TEVFhTpv82gJazyeRwRwNeEu2vrW12ksBTk5uPvnBTQObPfcuhdj/sDOrzao3w+d+J5W1xRFFap710bn/oMAANW9vJF89w5OHzqAZm07aNVmSbRKPry8vJCfn1/q8YKCghITEyIiIiIibSnMzWBlY4P83FwUFZW8JkNbaenpUCgUUJVjzYUgALkF+VCJFVunUZLc9FQozM2eW69h0+Z4ofa/z6srKioCAGRlZMDhP09Vz87IgEetWqW2Y+/kBLfq1TXKXKtXx19nH9/JZO/opFW7T9Mq+Zg1axYmTZqE7t27o2nTphrHzp8/j88++wyRkZHaNE1EREREVCILC0vUbuQLlY4TDwCoc+FSuRIPABBFwMHOHtY2tjqPx8O7NizKsO7DysZGYzteURRhX6UKbl75C561vAAAebk5uHPzBlp2fLnUdmrVrY+UxPsaZSmJiXCq5gIAcHZ11ardp2mVfJw4cQLu7u7w9/dHmzZtULduXQDA9evXERMTAz8/P8TExCAmJkZ9jiAIWL58uTaXIyIiIiIC8DgBgYXu2+36yisQBKFct14JAF70rqmX59z5NNHueXKCICCwc1cc2vULqrq7w9nVDdHbf4SDkxMaNfdX19v4ySI0at4CrV/uAgBo06Ur1i2ah8O7dsCvZSvcibuJM4cPovewEeVq97nxafOQQW1+wIIglLplWWXChwwSERERGadevXphz549Zfo/q0IQ0LSODyYN6KnzOByquaDHxA9hZq7VPMG/DwM8/L+HAdarj56vvwEXD091nSXvT0Sztu3RqU9/dVnshfPY99M2PEpKgpOrK9p2eUW921VZ232eCj/h3NQw+SAiIiIyTqdPn0abNm2gVCqfOwNiplBg1usDUduz7E/3LgtBEBAycizca9fVabuGQvdzRERERERElVDLli2xbds2mJmZwcys5MXeCkGAmUKBcb1f0XniAQho1XeQ0SYegJZrPp6Ii4vDb7/9hlu3bgF4vAvWK6+8Ah8fH50ER0REREQkpX79+uH48eOYP38+du3apTEDIgBoWscHvdu21HniYetYBYEDh8CzbgOdtmtotE4+Jk+ejOXLlxfbFUChUGDixIn49NNPKxwcEREREZHUWrZsiZ07dyIhIQFNmjRBWloabK2tsHD4ELhUcXx+A+UgCAIaBLZHk87dYGFtrdO2DZFWt10tWbIEy5YtQ79+/RATE4O0tDSkpaUhJiYGAwYMwLJly7Bs2TJdx0pEREREJJlatWrBzs4OAGBlYaHzxKNGwxfRfcIHaNGzn0kkHoCWMx/r1q1Dr1698P3332uUt2rVClu3bkVeXh7WrFmDSZMm6SRIIiIiIiJjUb1+IzQO6QqXml5yhyI5rZKP+Ph4TJgwodTjoaGhiIqK0jooIiIiIiJjU6Phi3ipUxeTTDqe0Cr5cHNzw8WLF0s9fvHiRbi6umodFBERERGRMRAEAbVeaooXg0JQtXoNucORnVbJx8CBA7F8+XJ4e3vj3XffVd8Ll52djc8//xxffvklJk6cqMs4iYiIiIgqDYXCDHVatIJvh05wqOYidzgGQ6vkY/78+bhw4QKmTZuGWbNmoXr16gCAe/fuoaioCB07dsS8efN0GigRERERkaETFArUbdEafh07w87JWe5wDI5WyYetrS2io6OxY8cOjed8dO3aFd26dUPPnj0hCIJOAyUiIiIiMmQ+zVqgScgrsK9aTe5QDFa5k4+cnBwMHToU/fv3x2uvvYbevXvrIy4iIiIiokrBpaYXWvbqj2ov1JI7FINX7uTD1tYWv//+O1555RV9xENEREREVCkozM3RLLQHGrbpAEGh1ePzTI5WP6V27dohJiZG17EQERERERkUDw8PeHp4wMnOVqPczskZXd+ehEbtgpl4lINWP6nPP/8cR48exYwZM3Dnzh1dx0REREREZBDOnDmDiyeOY94bg9Vlds5VEfrWBG6dqwWtko8mTZrgzp07iIiIgJeXF6ysrODo6KjxqlKliq5jJSIiIiKSlaBQIGjoCNhWcZI7lEpJq92u+vfvz92siIiIiMjkNAhsj6rVX5A7jEpLq+Rj06ZNOg6DiIiIiMiwWVhZw69jZ7nDqNTKlXzk5eVhx44diIuLg4uLC7p37w5PT099xUZEREREZDBeDHoZ1nb2codRqZU5+UhOTkabNm0QFxcHURQBPN5295dffkFISIjeAiQiIiIikpuFlTUatGkvdxiVXpkXnM+fPx/x8fGYNGkSdu3ahcjISNjY2GDMmDH6jI+IiIiISHY1X2wMCytrucOo9Mo887Fv3z6EhYXh008/VZe5u7tjyJAhiI2NRYMGDfQSIBERERGR3Dzq1pM7BKNQ5pmPhIQEtGvXTqOsXbt2EEURSUlJOg+MiIiIiMhQOLlXlzsEo1Dm5CM/Px/W1ppTTU/eFxUV6TYqIiIiIiID4lCtmtwhGIVy7XYVHx+Pc+fOqd+np6cDAK5fvw4nJ6di9Zs3b16x6IiIiIiIZGZuacn1HjoiiE+2rnoOhUJR4oMFRVEsVv6kTKlU6iZKA3Lu3Dn4+/vj7NmzTK6IiIiITEB2WirsnJzlDsMolHnmY+PGjfqMg4iIiIjIICnMtXouN5WgzD/JYcOG6TMOIiIiIiKDpFCYyR2C0SjzgnMiIiIiIlOkUPC/zLrCnyQRERER0bMUX/ZMWmLyQURERET0DOaWVnKHYDSYfBARERERPUNJO76Sdph8EBERERGRJCpt8rFw4UK0adMGtra2JT7gsCSiKGLWrFnw9PSEjY0NQkJCcP36df0GSkREREREACpx8lFQUICBAwfi7bffLvM5ixcvxooVK7B69WqcPHkSdnZ2CA0NRV5enh4jJSIiIiIioBzP+TA0c+fOBQBs2rSpTPVFUURkZCRmzJiB3r17AwC++uoruLu745dffsGrr76qr1CJiIiIiAiVeOajvOLi4pCYmIiQkBB1WZUqVdCqVSvExMSUel5+fj4yMjLUr6ysLCnCJSIiIiIyOiaTfCQmJgIA3N3dNcrd3d3Vx0oSERGBKlWqqF9BQUF6jZOIiIiIyFgZ1G1XH374IT7++ONn1rl69SoaNmwoUUTA1KlTER4ern5/4cIFk0lA7t+/j/v378sdBumIp6cnPD095Q6DdIhj1LhwjBoXjk/jwvGpOwaVfEyePBlvvPHGM+vUrl1bq7Y9PDwAAElJSRp/eJKSktC0adNSz7OysoKV1b8PlqlXrx5mz55t9H8A8/PzMXjwYBw+fFjuUEhHgoKCsHfvXo0/z1R5cYwaH45R48HxaXw4PnXHoJIPV1dXuLq66qVtHx8feHh4IDo6Wp1sZGRk4OTJk+XaMcvT0xNz5szRS4yGJD8/H4cPH8bhw4dhb28vdzhUQVlZWQgKCkJ+fj7/4jQSHKPGhWPUuHB8GheOT90yqOSjPBISEvDo0SMkJCRAqVTiwoULAIC6deuqB3rDhg0RERGBvn37QhAETJw4EQsWLEC9evXg4+ODmTNnonr16ujTp498H8TANW3aFI6OjnKHQRWUkZEhdwikJxyjxoFj1DhxfBoHjk/dqrTJx6xZs7B582b1+2bNmgEADh48iODgYABAbGws0tPT1XWmTJmC7OxsjB49GmlpaWjXrh2ioqJgbW0taexERERERKZIEEVRlDsIMjwZGRmoUqUK0tPT+a2NEWB/Gh/2qXFhfxoX9qdxYX/qlslstUvlY2VlhdmzZ/PeRiPB/jQ+7FPjwv40LuxP48L+1C3OfBARERERkSQ480FERERERJJg8kFERERERJJg8kFERERERJJg8kFERERERJJg8kFkIARBKNPr0KFDFb5WTk4O5syZU662Fi5ciF69esHd3R2CIGDOnDkVjoOosjDk8Xnt2jVMmTIFTZs2hYODAzw9PdG9e3ecOXOmwrEQVRaGPEbv3buHoUOHokGDBnBwcICTkxMCAgKwefNmmOK+T5X2IYNExubrr7/WeP/VV19h//79xcobNWpU4Wvl5ORg7ty5AKB+KOfzzJgxAx4eHmjWrBn27t1b4RiIKhNDHp9ffvkl1q9fj/79++Odd95Beno61qxZg9atWyMqKgohISEVjonI0BnyGE1JScGdO3cwYMAA1KpVC4WFhdi/fz/eeOMNxMbGYtGiRRWOqTJh8kFkIIYOHarx/sSJE9i/f3+xcrnExcXB29sbKSkpcHV1lTscIkkZ8vgcPHgw5syZA3t7e3XZiBEj0KhRI8yZM4fJB5kEQx6jjRs3LjZLMm7cOPTs2RMrVqzA/PnzYWZmJk9wMuBtV0SViEqlQmRkJF588UVYW1vD3d0dY8aMQWpqqka9M2fOIDQ0FC4uLrCxsYGPjw9GjBgBAIiPj1cnD3PnzlVPRT/vNipvb299fCQioyHX+PT399dIPACgWrVqaN++Pa5evarbD0lUicn5b2hJvL29kZOTg4KCggp/tsqEMx9ElciYMWOwadMmDB8+HOPHj0dcXBw+//xznD9/Hn/88QcsLCyQnJyMLl26wNXVFR9++CGcnJwQHx+Pn3/+GQDg6uqKL774Am+//Tb69u2Lfv36AXj8zQwRac/QxmdiYiJcXFx0+hmJKjO5x2hubi6ys7ORlZWFw4cPY+PGjQgMDISNjY1eP7fBEYnIII0dO1b87xA9evSoCED89ttvNepFRUVplG/fvl0EIJ4+fbrUth88eCACEGfPnl3uuCpyLpGxMNTx+cSRI0dEQRDEmTNnat0GUWVmiGM0IiJCBKB+vfzyy2JCQkK52jAGvO2KqJL44YcfUKVKFXTu3BkpKSnq15NbLg4ePAgAcHJyAgDs2rULhYWFMkZMZDoMaXwmJydjyJAh8PHxwZQpU/RyDaLKxhDG6ODBg7F//35s2bIFQ4YMAfB4NsTUMPkgqiSuX7+O9PR0uLm5wdXVVeOVlZWF5ORkAEBQUBD69++PuXPnwsXFBb1798bGjRuRn58v8ycgMl6GMj6zs7PRo0cPZGZmYseOHcXWghCZKkMYo15eXggJCcHgwYPx7bffonbt2ggJCTG5BIRrPogqCZVKBTc3N3z77bclHn+yAE4QBPz44484ceIEfv31V+zduxcjRozAkiVLcOLECf5nhEgPDGF8FhQUoF+/frh06RL27t0LPz8/rdsiMjaGMEafNmDAAKxbtw5HjhxBaGiozto1dEw+iCqJOnXq4Pfff0fbtm3LtDitdevWaN26NRYuXIgtW7bgtddew9atWzFy5EgIgiBBxESmQ+7xqVKpEBYWhujoaHz//fcICgrS5mMQGS25x2hJnsx4pKen66S9yoK3XRFVEv/3f/8HpVKJ+fPnFztWVFSEtLQ0AEBqamqxJ6Y2bdoUANTTxra2tgCgPoeIKkbu8fnuu+9i27ZtWLVqlXr3HSL6l5xj9MGDByWWr1+/HoIgoHnz5mVqx1hw5oOokggKCsKYMWMQERGBCxcuoEuXLrCwsMD169fxww8/YPny5RgwYAA2b96MVatWoW/fvqhTpw4yMzOxbt06ODo6olu3bgAAGxsb+Pr6Ytu2bahfvz6qVq0KPz+/Z96m8fXXX+PWrVvIyckBABw5cgQLFiwAALz++uvw8vLS/w+ByEDJOT4jIyOxatUqBAYGwtbWFt98843G8b59+8LOzk7vPwMiQybnGF24cCH++OMPdO3aFbVq1cKjR4/w008/4fTp03j33XdRt25dKX8U8pN5ty0iKsXT2wQ+sXbtWtHf31+0sbERHRwcxJdeekmcMmWKeO/ePVEURfHcuXPi4MGDxVq1aolWVlaim5ub2KNHD/HMmTMa7Rw/flz09/cXLS0ty7RlYFBQkMYWgf99HTx4UFcfm6hSMKTxOWzYsFLHJgAxLi5Olx+dqFIwpDG6b98+sUePHmL16tVFCwsL0cHBQWzbtq24ceNGUaVS6fRzVwaCKD41t0RERERERKQHXPNBRERERESSYPJBRERERESSYPJBRERERESSYPJBRERERESSYPJBRERERESSYPJBRERERESSYPJBZATi4+MhCAI2bdokdyhEVAKOUSLDxfEpLSYfREREREQkCT5kkMgIiKKI/Px8WFhYwMzMTO5wiOgpHKNEhovjU1pMPoiIiIiISBK87YrIQMyZMweCIODvv//G0KFDUaVKFbi6umLmzJkQRRG3b99G79694ejoCA8PDyxZskR9bkn3q77xxhuwt7fH3bt30adPH9jb28PV1RXvvfcelEqlut6hQ4cgCAIOHTqkEU9JbSYmJmL48OF44YUXYGVlBU9PT/Tu3Rvx8fF6+qkQGQ6OUSLDxfFZeTD5IDIwgwYNgkqlwkcffYRWrVphwYIFiIyMROfOnVGjRg18/PHHqFu3Lt577z0cOXLkmW0plUqEhoaiWrVq+PTTTxEUFIQlS5Zg7dq1WsXWv39/bN++HcOHD8eqVaswfvx4ZGZmIiEhQav2iCojjlEiw8XxWQmIRGQQZs+eLQIQR48erS4rKioSX3jhBVEQBPGjjz5Sl6empoo2NjbisGHDRFEUxbi4OBGAuHHjRnWdYcOGiQDEefPmaVynWbNmor+/v/r9wYMHRQDiwYMHNeo93WZqaqoIQPzkk09084GJKhmOUSLDxfFZeXDmg8jAjBw5Uv17MzMztGjRAqIo4s0331SXOzk5oUGDBrh58+Zz23vrrbc03rdv375M5z3NxsYGlpaWOHToEFJTU8t9PpGx4BglMlwcn4aPyQeRgalVq5bG+ypVqsDa2houLi7Fyp/3F5i1tTVcXV01ypydnbX6i8/Kygoff/wxfvvtN7i7u6NDhw5YvHgxEhMTy90WUWXGMUpkuDg+DR+TDyIDU9I2f6Vt/Sc+Z7O6smwZKAhCieX/XVD3xMSJE/H3338jIiIC1tbWmDlzJho1aoTz588/9zpExoJjlMhwcXwaPiYfRCbO2dkZAJCWlqZRfuvWrRLr16lTB5MnT8a+fftw+fJlFBQUaOwaQkS6xTFKZLg4PsuPyQeRifPy8oKZmVmxXT9WrVql8T4nJwd5eXkaZXXq1IGDgwPy8/P1HieRqeIYJTJcHJ/lZy53AEQkrypVqmDgwIH47LPPIAgC6tSpg127diE5OVmj3t9//42XX34Z//d//wdfX1+Ym5tj+/btSEpKwquvvipT9ETGj2OUyHBxfJYfkw8iwmeffYbCwkKsXr0aVlZW+L//+z988skn8PPzU9epWbMmBg8ejOjoaHz99dcwNzdHw4YN8f3336N///4yRk9k/DhGiQwXx2f5COLzVtsQERERERHpANd8EBERERGRJJh8EBERERGRJJh8EBERERGRJJh8EBERERGRJJh8EBERERGRJJh8EFG5xMfHQxAEbNq0Se5QiKgEHKNEhovjk8kHkV7duHEDY8aMQe3atWFtbQ1HR0e0bdsWy5cvR25urt6ue+XKFcyZMwfx8fF6u0ZZLFy4EL169YK7uzsEQcCcOXNkjYfoaaY8Rq9du4YpU6agadOmcHBwgKenJ7p3744zZ87IFhPRf5ny+Lx37x6GDh2KBg0awMHBAU5OTggICMDmzZtR2Z+SwYcMEunJ7t27MXDgQFhZWSEsLAx+fn4oKCjAsWPH8P777+Ovv/7C2rVr9XLtK1euYO7cuQgODoa3t7derlEWM2bMgIeHB5o1a4a9e/fKFgdRSUx9jH755ZdYv349+vfvj3feeQfp6elYs2YNWrdujaioKISEhMgSFxHA8ZmSkoI7d+5gwIABqFWrFgoLC7F//3688cYbiI2NxaJFi2SJSxeYfBDpQVxcHF599VV4eXnhwIED8PT0VB8bO3Ys/vnnH+zevVvGCP8liiLy8vJgY2Oj87bj4uLg7e2NlJQUuLq66rx9Im1xjAKDBw/GnDlzYG9vry4bMWIEGjVqhDlz5jD5INlwfAKNGzfGoUOHNMrGjRuHnj17YsWKFZg/fz7MzMx0ek2p8LYrIj1YvHgxsrKysH79eo2/NJ+oW7cuJkyYoH5fVFSE+fPno06dOrCysoK3tzemTZuG/Px8jfO8vb3Ro0cPHDt2DAEBAbC2tkbt2rXx1Vdfqets2rQJAwcOBAB07NgRgiBAEAT1X2JP2ti7dy9atGgBGxsbrFmzBgBw8+ZNDBw4EFWrVoWtrS1at25dob/g5Zx1IXoWjlHA399fI/EAgGrVqqF9+/a4evWqVm0S6QLHZ+m8vb2Rk5ODgoICnbYrKZGIdK5GjRpi7dq1y1x/2LBhIgBxwIAB4sqVK8WwsDARgNinTx+Nel5eXmKDBg1Ed3d3cdq0aeLnn38uNm/eXBQEQbx8+bIoiqJ448YNcfz48SIAcdq0aeLXX38tfv3112JiYqK6jbp164rOzs7ihx9+KK5evVo8ePCgmJiYKLq7u4sODg7i9OnTxaVLl4pNmjQRFQqF+PPPP6tjiIuLEwGIGzduLPPne/DggQhAnD17dpnPIdInjtHStWnTRqxfv75W5xLpAsfnv3JycsQHDx6IcXFx4qZNm0Q7OzuxTZs2Zf7ZGCImH0Q6lp6eLgIQe/fuXab6Fy5cEAGII0eO1Ch/7733RADigQMH1GVeXl4iAPHIkSPqsuTkZNHKykqcPHmyuuyHH34QAYgHDx4sdr0nbURFRWmUT5w4UQQgHj16VF2WmZkp+vj4iN7e3qJSqRRFkckHVX4co6U7cuSIKAiCOHPmzHKfS6QLHJ+aIiIiRADq18svvywmJCSU6VxDxduuiHQsIyMDAODg4FCm+nv27AEAhIeHa5RPnjwZAIpN2fr6+qJ9+/bq966urmjQoAFu3rxZ5hh9fHwQGhpaLI6AgAC0a9dOXWZvb4/Ro0cjPj4eV65cKXP7RIaMY7RkycnJGDJkCHx8fDBlypQKtUWkLY5PTYMHD8b+/fuxZcsWDBkyBAD0utOXFJh8EOmYo6MjACAzM7NM9W/dugWFQoG6detqlHt4eMDJyQm3bt3SKK9Vq1axNpydnZGamlrmGH18fEqMo0GDBsXKGzVqpD5OZAw4RovLzs5Gjx49kJmZiR07dhRbC0IkFY5PTV5eXggJCcHgwYPx7bffonbt2ggJCanUCQiTDyIdc3R0RPXq1XH58uVynScIQpnqlba7hViOfb/1sbMVUWXBMaqpoKAA/fr1w6VLl7Bjxw74+flJdm2ip3F8PtuAAQNw+/ZtHDlyRLYYKorJB5Ee9OjRAzdu3EBMTMxz63p5eUGlUuH69esa5UlJSUhLS4OXl1e5r1/Wv4SfjiM2NrZY+bVr19THiYwFx+hjKpUKYWFhiI6OxpYtWxAUFFTuNoh0jeOzdE9mPNLT03XSnhyYfBDpwZQpU2BnZ4eRI0ciKSmp2PEbN25g+fLlAIBu3boBACIjIzXqLF26FAD+v737d0ktjOM4/jGxogikoSEwrKZaioYgGg45WTZUBE1RS6PNNQo1NAcORoQUSoRbk6OQg/4HLdIchA1FEPRtkBv30A/uudBT9/Z+wVmOz3MeHb5yPsrzPUqlUoHX7+7uliQ1m80/njM3N6dareb7sr+7u1Mul1M8Htfo6Gjg9wF8V9RoSzqd1unpqbLZrJaWlgLPBz4D9SldX1+/ef7w8FChUEgTExOBrved8JBB4BMMDw+rUChoZWVFIyMjvqezVqtVnZ2daX19XZI0NjamtbU15XI5NZtNeZ6nWq2mfD6vhYUFzczMBF5/fHxc4XBYe3t7ur29VUdHhxKJhPr6+t6ds7W1pWKxqNnZWW1ubqq3t1f5fF6NRkOlUkltbcF/qzg+PtbV1ZXu7+8lSZVKRTs7O5Kk1dVV/k3Bl6FGWzdr2WxWU1NT6urq0snJie/1xcXFl5swwCXqU9rd3dXFxYWSyaQGBgZ0c3OjUqmker2udDr9ao/LP+WLu20B/7XLy0vb2NiweDxu7e3t1tPTY9PT07a/v28PDw8v4x4fHy2Tydjg4KBFIhGLxWK2vb3tG2PWavGXSqVereN5nnme5zt3cHBgQ0NDFg6HfS0D37uGWau/+fLyskWjUevs7LTJyUk7Pz/3jQnSJtDzPF+LwN+Pt1oYAq795Br99WyE945Go/HhfOCz/eT6LJfLNj8/b/39/RaJRF4++9HRkT09PX0497sLmQXYYQMAAAAAf4k9HwAAAACcIHwAAAAAcILwAQAAAMAJwgcAAAAAJwgfAAAAAJwgfAAAAABwgvABAAAAwAnCBwAAAAAnCB8AAAAAnCB8AAAAAHCC8AEAAADACcIHAAAAACcIHwAAAACceAZvjWlo6ei2BgAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAx8AAAInCAYAAAD5+uTRAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAhuFJREFUeJzs3XdYFMf/B/D3Hr2DUjUKKLEQYkNRbKhBMfb6tcRgNJYYjYUkJnasJCbWqDEaW4rRNKNRgxrsEXtLohILiI2i0pF2t78//HnJCSgcd7vH3fv1PPfozc7Ofo5xkA+zMyuIoiiCiIiIiIhIzxRyB0BERERERKaByQcREREREUmCyQcREREREUmCyQcREREREUmCyQcREREREUmCyQcREREREUmCyQcREREREUmCyQcREREREUmCyQcREREREUmCyUc53bt3D5GRkbh3757coRARERERVSpMPsrp3r17mD17NpMPIiIiIqJyYvJBRERERESSYPJBRERERESSYPJBRERERESSqNTJx+HDh9G9e3dUq1YNgiDgl19+ee45Bw8eRJMmTWBlZQU/Pz9s3LhR73ESEREREVElTz5ycnLQsGFDrFy5skz14+Pj0bVrV7Rv3x7nz5/HxIkTMWLECOzZs0fPkRIRERERkbncAVTEq6++ildffbXM9VevXg1fX18sWrQIAFC/fn0cPXoUS5YsQVhYmL7CJCIiIiIiVPLko7xiY2MRGhqqURYWFoaJEyeWek5+fj7y8/PV77Ozs/UVXqneXrQZaVm5kl9XLi4Otlj17mC5w9Cb8+smoCA7Te4wJGNp74JGby6TOwy9Gb9uPNJMqD8BwMXeBcvfXC53GHrz++TJyEtPlzsMyVg7OyN04UK5w9CbrZ/vRW52ntxhSMbW3hoDxnSSOwy9+Xz2DGRnpssdhmTsHZ0xZtZcucPQKZNKPpKSkuDh4aFR5uHhgczMTDx69Ag2NjbFzomKisLs2bOlCrFEaVm5uJ8hfdJD+lGQnYaCrAdyh0E6kpadhgfsT6OSl56ORw8fyh0G6Uhudh5yMh/JHQbpSHZmOjLTTOsXPsbGpJIPbUyZMgURERHq9+fPn0dISIgssSgEAVUc7WS5thQeZuZAJYpyhyEdQQFLexe5o9Cbguw0QFTJHYZkFIICLkbcn8DjREtlQn0KhQI2zs5yR6E3j9LTAZXp9KcgCLB1sJY7DL3JzcqDaEL/hwqCAAcjHp9Z6elG258mlXx4enoiOTlZoyw5ORmOjo4lznoAgJWVFaysrNTv7e3t9Rrjs1RxtMN3kSNku76+DYr80qRmeCztXRA04Su5w9Cbk8vCTWqGx8XeBV9P+FruMPTq9WWvm9Qsj42zM7qtWSN3GHqzc9Qok5rhsXWwxrD3e8gdht5s+GSHSc3wODg74/1Fn8kdht588u47RjvDI9tuV6IoYv/+/fjtt9+QlZUlyTWDg4MRExOjUbZv3z4EBwdLcn0iIiIiIlMmSfIxbdo0tG/fXv1eFEV06tQJHTt2RNeuXfHyyy/j+vXr5W43Ozsb58+fx/nz5wE83kr3/PnzSExMBPD4lqnw8HB1/bfeegs3btzA5MmTceXKFaxatQrff/89Jk2aVLEPSEREREREzyVJ8vHTTz8hKChI/f7HH39ETEwM5s2bh507d0KpVCIyMrLc7Z4+fRqNGzdG48aNAQARERFo3LgxZs6cCQC4d++eOhEBAF9fX+zatQv79u1Dw4YNsWjRInz55ZfcZpeIiIiISAKSrPm4c+cO/Pz81O9//vln+Pv7Y8qUKQCAMWPG4PPPPy93u+3atXvmYpySnl7erl07nDt3rtzXIiIiIiKiipFk5sPc3Fz9rAxRFBETE4POnTurj3t4eOD+/ftShEJERERERDKRJPkICAjAN998g7S0NGzYsAEPHjxA165d1cdv3rwJV1dXKUIhIiIiIiKZSHLb1cyZM9G9e3d1gtGqVSuNBei7du1Cs2bNpAiFiIiIiIhkIkny0bFjR5w9exb79u2Ds7MzBgwYoD6WlpaGtm3bomfPnlKEQkREREREMpHsIYP+/v7w9/cvVu7i4oIlS5ZIFQYREREREclEkuQjKysL6enpqFGjhrrs7t27WL16NfLz89GvXz/edkVEREREZOQkST5GjRqF+Ph4HD9+HACQmZmJFi1a4Pbt21AoFFi2bBmio6PRrl07KcIhIiIi0pumTZsiKSkJnp6eOH36tNzhEBkUSXa7Onr0KLp166Z+/8033+Du3bs4duwY0tLS0KBBA8ybN0+KUIiIiIj0KikpCXfu3EFSUpLcoRAZHEmSj/v376N69erq9zt27EDr1q3RokULODg4IDw8HBcuXJAiFCIiIiIikokkyYezs7M6+3/06BGOHDmCTp06qY+bm5sjNzdXilCIiIiIiEgmkqz5aNmyJVatWoV69eohOjoaeXl5Glvr/vPPPxozI0REREREZHwkST4+/vhjdOrUCX379gUAvPvuu3jppZcAAEqlEj/88AM6d+4sRShERERERCQTSZIPPz8/xMXF4dKlS3BycoKPj4/6WG5uLlasWIGGDRtKEQoREREREclEsocMWlhYlJhgODg48OnmREREREQmQJIF58DjZ3t89NFHCAsLQ+PGjXHy5EkAwMOHD7F48WJcu3ZNqlCIiIiIiEgGksx83L59GyEhIbh16xZefPFFXLlyBdnZ2QCAKlWq4IsvvsDNmzexbNkyKcIhIiIi0htPT0+NP4noX5IkH++//z6ysrJw/vx5uLu7w93dXeN4r169sHPnTilCISIiItIrPtWcqHSSJB979+7FpEmT4O/vjwcPHhQ7XqtWLdy6dUuKUIiIiMjUWBYgJ68AK+Z+LXckemYpdwBEzyXJmo9Hjx7Bzc2t1ONZWVlShEFERERERDKSJPnw9/fH4cOHSz3+yy+/oHHjxlKEQkRERKRXC1fPxIxPJ2Dh6plyh0JkcCS57WrixIkYOnQoGjRogP79+wMAVCoVrl27htmzZyM2NhY//fSTFKEQERER6VVWdgbSM9PkDoPIIEmSfAwZMgQ3b97E9OnTMW3aNABA586dIYoiFAoFFixYgF69ekkRChERERERyUSyhwxOmzYNr7/+On766Sdcu3YNKpUKtWvXRp8+fVCrVi2pwiAiIiIiIplIlnwAQM2aNTFp0iQpL0lERERERAZCkgXnZ8+exapVq0o9vmrVKpw/f16KUIiIiIiISCaSJB/Tpk3D77//Xurx/fv3Y/r06VKEQkREREREMpEk+Thz5gzatGlT6vE2bdrwaaBEREREREZOkuQjKysL5ualLy9RKBTIyMjQqu2VK1fCx8cH1tbWaN68OU6ePPnM+kuXLkXdunVhY2ODGjVqYNKkScjLy9Pq2kREREREVHaSJB8vvvgi9u7dW+rx6OhorXa82rp1KyIiIjBr1iycPXsWDRs2RFhYGFJSUkqsv3nzZnz44YeYNWsWLl++jHXr1mHr1q2YOnVqua9NREREVBIHeyc4O7rAwd5J7lCIDI4kycebb76JXbt2ISIiAunp6ery9PR0TJo0CdHR0XjzzTfL3e7ixYsxcuRIDBs2DP7+/li9ejVsbW2xfv36EusfO3YMrVq1wuDBg+Hj44NOnTph0KBBz50tISIiIiqryW/Nwdz3lmHyW3PkDoXI4EiSfIwfPx5Dhw7F0qVL4erqipo1a6JmzZpwdXXFsmXLMGTIkHJvwVtQUIAzZ84gNDRUXaZQKBAaGorY2NgSz2nZsiXOnDmjTjZu3LiB3bt3o0uXLtp/OCIiIiIiKhNJnvMhCAI2bNiA8PBw/PTTT7hx4wYAoGfPnujbty/atWtX7jbv378PpVIJDw8PjXIPDw9cuXKlxHMGDx6M+/fvo3Xr1hBFEUVFRXjrrbeeedtVfn4+8vPz1e+zs7PLHSuR3Jo2bYqkpCR4enpycwciIiKSjaQPGWzfvj3at28v5SU1HDx4EAsWLMCqVavQvHlzXLt2DRMmTMDcuXMxY8aMEs+JiorC7NmzJY6USLeSkpJw584ducMgIiIiEyfJbVfx8fH49ddfSz3+66+/IiEhoVxturq6wszMDMnJyRrlycnJ8PT0LPGcGTNm4PXXX8eIESPw8ssvo3fv3liwYAGioqKgUqlKPGfKlCnIyMhQvw4dOlSuOImIiIiI6DFJko/33nsPy5cvL/X4ypUr8eGHH5arTUtLSwQGBiImJkZdplKpEBMTg+Dg4BLPyc3NhUKh+ZHNzMwAAKIolniOlZUVHB0d1S97e/tyxUlERERERI9JknzExsaiY8eOpR5/5ZVXcOTIkXK3GxERgbVr12LTpk24fPkyxowZg5ycHAwbNgwAEB4ejilTpqjrd+/eHZ9//jm2bNmC+Ph47Nu3DzNmzED37t3VSQgREREREemHJGs+0tLS4ODgUOpxe3t7PHjwoNztDhgwAKmpqZg5cyaSkpLQqFEjREdHqxehJyYmasx0TJ8+HYIgYPr06bhz5w7c3NzQvXt3zJ8/v/wfioiIiIiIykWS5KNmzZr4448/MGbMmBKPHzlyBC+88IJWbY8bNw7jxo0r8djBgwc13pubm2PWrFmYNWuWVtciIiIiIiLtSXLb1aBBg/Ddd99h+fLlGgu7lUolli1bhq1bt2Lw4MFShEJERERERDKRZOZjypQpOHr0KCZOnIj58+ejbt26AIC4uDikpqaiXbt2mDZtmhShEBERERGRTCSZ+bCyssLevXuxbt06BAUF4f79+7h//z6CgoKwfv16/P7777CyspIiFCIiIiIikolkDxlUKBQYNmyYeicqIiIiIiIyLZLMfBAREREREUky89GhQ4fn1hEEQeOBgUREREREZFwkST5UKhUEQdAoUyqVuHnzJm7dugU/Pz9Ur15dilCITJKnp6fGn0RERERykCT5ePp5G/+1c+dOjBo1CosXL5YiFCKTdPr0ablDICIiIpJuwXlpunXrhiFDhmDixIk4dOiQ3OEQSSJDcAKyi7BrvnE/38ZJ7gCIiIjIoBjEgvPatWvj1KlTcodBRERERER6JPvMR1FREb7//nu4urrKHQqR0Zq4ag/Ssh/Bxd4GS98OkzscIiIiMlGSJB/Dhw8vsTw9PR3Hjx9HUlIS13wQ6VFa9iM8yHwkdxhERERk4iRJPvbv319stytBEODi4oLWrVtjxIgR6NSpkxShEBERERGRTCRJPhISEqS4DBERERERGTCDWHBORERERETGT2/JR25uLhITE1FQUFDs2Pr16/HKK6/A398fffr04U5XREREREQmQG/Jx5w5c9CgQYNiyce8efMwcuRIHDp0CKmpqfjll1/Qrl07XLhwQV+hEBERERGRAdBb8nHgwAF069YN9vb26rLMzEzMmzcP1atXx9WrV5Gamorjx4/D0tISH330kb5CISIiIiIiA6C35CMhIQENGjTQKNu9ezcKCgrwwQcfwNfXFwAQFBSEYcOG4ciRI/oKhYiIiIiIDIDeko+srCxUrVpVo+zw4cMQBAFhYZoPOfP390dqaqq+QiEiIiIiIgOgt+TD29sbV65c0Sg7ePAgPDw84Ofnp1FeUFAAR0dHfYVCREREREQGQG/JR6dOnbB+/XqcOHECAPDVV1/hypUr6N27d7G6Z86cgY+Pj75CISIiIiIiA6C3hwzOmDEDv/zyC1q2bAkzMzMUFRXBzc0NM2fO1KiXm5uLbdu2YdSoUfoKhcjkudjbaPxJREREJAe9JR+urq44f/48vvzyS9y4cQPe3t4YPnw43N3dNer99ddfeO211/D666/rKxQik7f07bDnVyIiIiLSM70lHwDg4uKC999//5l1goKCEBQUpM8wiIiIiIjIAOhtzQcREREREdF/MfkgIiIiIiJJMPkgIiIiIiJJVPrkY+XKlfDx8YG1tTWaN2+OkydPPrN+eno6xo4dCy8vL1hZWaFOnTrYvXu3RNESEREREZkuvSQfO3bswN27d/XRtIatW7ciIiICs2bNwtmzZ9GwYUOEhYUhJSWlxPoFBQXo2LEjEhIS8OOPPyIuLg5r165F9erV9R4rEREREZGp00vy0bt3bxw8eFD9vlatWtixY4fOr7N48WKMHDkSw4YNg7+/P1avXg1bW1usX7++xPrr16/Hw4cP8csvv6BVq1bw8fFBSEgIGjZsqPPYiIiIiIhIk16SDwcHB6Snp6vfJyQkIDs7W6fXKCgowJkzZxAaGqouUygUCA0NRWxsbInn7NixA8HBwRg7diw8PDwQEBCABQsWQKlUlnqd/Px8ZGZmql+6/hxERERERKZCL8/5CAoKwvz585GcnAwnJycAwO7du5GUlFTqOYIgYNKkSWW+xv3796FUKuHh4aFR7uHhgStXrpR4zo0bN7B//3689tpr2L17N65du4a3334bhYWFmDVrVonnREVFYfbs2WWOi4iIiIiISqaX5GPVqlUIDw/H3LlzATxOLDZv3ozNmzeXek55kw9tqFQquLu7Y82aNTAzM0NgYCDu3LmDTz75pNTkY8qUKYiIiFC/P3/+PEJCQvQaJxERERGRMdJL8uHn54djx44hLy8PKSkp8PHxwdKlS9GzZ0+dXcPV1RVmZmZITk7WKE9OToanp2eJ53h5ecHCwgJmZmbqsvr16yMpKQkFBQWwtLQsdo6VlRWsrKzU7+3t7XX0CYiIiIiITIteko8nrK2tUbNmTcyaNQsdOnSAt7e3ztq2tLREYGAgYmJi0KtXLwCPZzZiYmIwbty4Es9p1aoVNm/eDJVKBYXi8XKXf/75B15eXiUmHkREREREpDuSPOdj1qxZCAgIAABkZ2fj8uXLuHz5coUXb0dERGDt2rXYtGkTLl++jDFjxiAnJwfDhg0DAISHh2PKlCnq+mPGjMHDhw8xYcIE/PPPP9i1axcWLFiAsWPHVigOIiIiIiJ6Pr3OfPzXqVOnMHnyZBw9ehQqlQrA492p2rRpg4ULF6Jp06blbnPAgAFITU3FzJkzkZSUhEaNGiE6Olq9CD0xMVE9wwEANWrUwJ49ezBp0iQ0aNAA1atXx4QJE/DBBx/o5kMSEREREVGpJEk+Tpw4gXbt2sHS0hIjRoxA/fr1AQCXL1/Gd999h7Zt2+LgwYMICgoqd9vjxo0r9Tar/z5r5Ing4GAcP3683NchIiIiIqKKkST5mDZtGqpXr46jR48WWwweGRmJVq1aYdq0adi3b58U4RARERERkQwkWfNx4sQJjB49usRdqDw8PDBq1CjORhARERERGTlJkg+FQoGioqJSjyuVSo21GUREREREZHwk+Ym/ZcuWWLlyJW7evFnsWGJiIlatWoVWrVpJEQoREREREclEkjUfCxYsQNu2bVGvXj307t0bderUAQDExcVh+/btMDc3R1RUlBShEBERERGRTCRJPho3bowTJ05g2rRp2LFjB3JzcwEAtra26Ny5M+bNmwd/f38pQiEiIiIiIplI9pwPf39/bNu2DSqVCqmpqQAANzc3rvUgIiIiIjIRkiUfTygUCvVDAImIiIiIyHRw2oGIiIiIiCTB5IOIiIiIiCTB5IOIiIiIiCTB5IOIiIiIiCTB5IOIiIiIiCQh6W5Xly5dwo0bN5CWlgZRFIsdDw8PlzIcIiIiIiKSkCTJx/Xr1zFkyBCcPHmyxKQDAARBYPJBRERERGTEJEk+Ro8ejT///BNLly5FmzZt4OLiIsVliYiIiIjIgEiSfPzxxx+YOnUq3nnnHSkuR0REREREBkiSBeeurq5wcnKS4lJERERERGSgJEk+3nrrLXzzzTdQKpVSXI6IiIiIiAyQJLdd1alTB0qlEg0bNsTw4cNRo0YNmJmZFavXp08fKcIhIiIiIiIZSJJ8DBgwQP339957r8Q6giBwZoSIiIiIyIhJknwcOHBAissQEREREZEBkyT5CAkJkeIyRERERERkwCR9wjnw+CnnN2/eBAB4e3vD399f6hCIiIiIiEgGkiUf27dvR0REBBISEjTKfX19sXjxYvTo0UOqUIiIiIiISAaSbLW7e/du9O3bFwCwYMECbNu2Ddu2bcOCBQsgiiL69OmD6OhoKUIhIiIiIiKZSDLzMXfuXDRo0ABHjhyBnZ2durxHjx4YN24cWrdujdmzZ6Nz585ShENERERERDKQZObj4sWLGDp0qEbi8YSdnR3eeOMNXLx4Uau2V65cCR8fH1hbW6N58+Y4efJkmc7bsmULBEFAr169tLouERERERGVjyTJh7W1NR4+fFjq8YcPH8La2rrc7W7duhURERGYNWsWzp49i4YNGyIsLAwpKSnPPC8hIQHvvfce2rRpU+5rEhERERGRdiRJPjp06IBly5YhNja22LETJ05g+fLlCA0NLXe7ixcvxsiRIzFs2DD4+/tj9erVsLW1xfr160s9R6lU4rXXXsPs2bNRq1atcl+TiIiIiIi0I8maj4ULFyI4OBitW7dGUFAQ6tatCwCIi4vDyZMn4e7ujo8//rhcbRYUFODMmTOYMmWKukyhUCA0NLTEJOeJOXPmwN3dHW+++SaOHDny3Ovk5+cjPz9f/T47O7tccRIRERER0WOSzHz4+vri4sWLGD9+PNLS0rB161Zs3boVaWlpmDBhAi5cuAAfH59ytXn//n0olUp4eHholHt4eCApKanEc44ePYp169Zh7dq1Zb5OVFQUnJyc1C8+MJGIiIiISDuSPefD3d0dS5YswZIlS6S6pIasrCy8/vrrWLt2LVxdXct83pQpUxAREaF+f/78eSYgRERERERakPwJ57ri6uoKMzMzJCcna5QnJyfD09OzWP3r168jISEB3bt3V5epVCoAgLm5OeLi4lC7du1i51lZWcHKykr93t7eXlcfgYiIiIjIpOgl+Rg+fDgEQcCaNWtgZmaG4cOHP/ccQRCwbt26Ml/D0tISgYGBiImJUW+Xq1KpEBMTg3HjxhWrX69ePfz5558aZdOnT0dWVhaWLVuGGjVqlPnaRERERERUfnpJPvbv3w+FQgGVSgUzMzPs378fgiA885znHS9JREQEhg4diqZNmyIoKAhLly5FTk4Ohg0bBgAIDw9H9erVERUVBWtrawQEBGic7+zsDADFyomIiIiISPf0knwkJCQ8872uDBgwAKmpqZg5cyaSkpLQqFEjREdHqxehJyYmQqGQZE09ERERERE9hyRrPhITE+Hm5gYbG5sSjz969AipqamoWbNmudseN25cibdZAcDBgwefee7GjRvLfT0iIiIiItKOZFvtbtu2rdTjO3bsgK+vrxShEBERERGRTCRJPkRRfObxwsJC3h5FRERERGTk9HbbVWZmJtLT09XvHzx4gMTExGL10tPTsWXLFnh5eekrFCIiIiIirTRt2hRJSUnw9PTE6dOn5Q6n0tNb8rFkyRLMmTMHwOOdrCZOnIiJEyeWWFcURcybN09foRARERERaSUpKQl37tyROwyjobfko1OnTrC3t4coipg8eTIGDRqEJk2aaNQRBAF2dnYIDAxE06ZN9RUKEREREREZAL0lH8HBwQgODgYA5OTkoG/fvnyeBhERERGRCdP7Vru5ublYvnw5bG1tmXwQEREREZkwvW8xZWtrC3Nzc9jZ2en7UkREREREZMAk2d+2b9+++PHHH5+75S4RERERERkvSZ5wPnDgQLz99tto3749Ro4cCR8fnxKfdv70gnQiIiIiIjIekiQf7dq1U//9yJEjxY6LoghBEKBUKqUIh4iIiIiIZCBJ8rFhwwYpLkNERERERAZMkuRj6NChUlyGiIiIiIgMmCTJx39lZ2fj1q1bAIAaNWrA3t5e6hCIiIiIiEgGkux2BQCnTp1C+/bt4eLigoCAAAQEBMDFxQUdOnTA6dOnpQqDiIiIiIhkIsnMx4kTJ9CuXTtYWlpixIgRqF+/PgDg8uXL+O6779C2bVscPHgQQUFBUoRDRERERFQmnp6eGn9SxUiSfEybNg3Vq1fH0aNHi3VcZGQkWrVqhWnTpmHfvn1ShENEREREVCa8Q0e3JJv5mDlzZokZo4eHB0aNGoW5c+dKEQoRERERVWJFCnM8zMjClBFvyB2KXkm+MFsikqz5UCgUKCoqKvW4UqmEQiHZ8hMiIiIiIpKBJD/xt2zZEitXrsTNmzeLHUtMTMSqVavQqlUrKUIhIiIiIiqzjdt3YuV3P2Dj9p1yh2IUJJnRWbBgAdq2bYt69eqhd+/eqFOnDgAgLi4O27dvh7m5OaKioqQIhYiIiIiozHJyHyErN1fuMIyGJMlH48aNceLECUybNg07duxA7v93oK2tLTp37ox58+bB399filCIiIiIiEgmkq1l8ff3x7Zt26BSqZCamgoAcHNz41oPIiIiIiITIflCekEQIAiC+u9ERERERGQaJJt2uHTpEvr16wdHR0d4eXnBy8sLjo6O6NevH/766y+pwiAiIjI4TZs2xQsvvICmTZvKHQoRkV5JMvNx5MgRvPrqq1CpVOjZs6fGgvMdO3bgt99+Q3R0NNq0aSNFOERERAYlKSkJd+7ckTsMIiK9kyT5mDRpEtzd3XHo0CHUqFFD49itW7fQtm1bRERE4NSpU1KEQ0REREREMpDktqu///4bb7/9drHEAwBq1KiBMWPG4O+//9aq7ZUrV8LHxwfW1tZo3rw5Tp48WWrdtWvXok2bNnBxcYGLiwtCQ0OfWZ+IiIiIiHRHkuTD29sb+fn5pR4vKCgoMTF5nq1btyIiIgKzZs3C2bNn0bBhQ4SFhSElJaXE+gcPHsSgQYNw4MABxMbGokaNGujUqROnuomIiIiIJCBJ8jFz5kwsX74c58+fL3bs3Llz+OyzzxAZGVnudhcvXoyRI0di2LBh8Pf3x+rVq2Fra4v169eXWP/bb7/F22+/jUaNGqFevXr48ssvoVKpEBMTU+5rGzsufiQybByjRERUGUmy5uP48ePw8PBAYGAgWrZsCT8/PwDA1atXERsbi4CAAMTGxiI2NlZ9jiAIWLZsWaltFhQU4MyZM5gyZYq6TKFQIDQ0VKOdZ8nNzUVhYSGqVKlSap38/HyNWZvs7OwytV3ZcfEjkWHjGCUiospIkuRjxYoV6r//8ccf+OOPPzSO//nnn/jzzz81yp6XfNy/fx9KpRIeHh4a5R4eHrhy5UqZ4vrggw9QrVo1hIaGllonKioKs2fPLlN7RERERGRc7GxtNP6kipEk+VCpVFJcplw++ugjbNmyBQcPHoS1tXWp9aZMmYKIiAj1+/PnzyMkJESKEImIiIhIZm/07CZ3CEZF8iec64qrqyvMzMyQnJysUZ6cnAxPT89nnvvpp5/io48+wu+//44GDRo8s66VlRWsrKzU7+3t7bUPmoiIiIjIhEmafMTHx+O3337DzZs3ATzeBevVV1+Fr69vuduytLREYGAgYmJi0KtXLwBQLx4fN25cqectXLgQ8+fPx549e7hQk4iIDMKTX5o975dnRESVnWTJx7vvvotly5YVuwVLoVBg4sSJ+PTTT8vdZkREBIYOHYqmTZsiKCgIS5cuRU5ODoYNGwYACA8PR/Xq1REVFQUA+PjjjzFz5kxs3rwZPj4+SEpKAvB4NoMzGkREJJfTp0/LHQIRkSQkST4WLVqEJUuWoF+/fnj33XdRv359AMDly5exZMkSLFmyBNWrV8ekSZPK1e6AAQOQmpqKmTNnIikpCY0aNUJ0dLR6EXpiYiIUin93E/78889RUFCAfv36abQza9Ysrbb6JSIi45RjZ4ec/HxsHDpU7lD0yk7uAIjI5EiSfKxduxY9evTA999/r1HevHlzbNmyBXl5efjiiy/KnXwAwLhx40q9zergwYMa7xMSEsrdPhERERER6YYkDxlMSEhAWFhYqcfDwsKYGBARkcmavWsXIn78EbN37ZI7FCIivZJk5sPd3R0XLlwo9fiFCxfg5uYmRShURlz8SGTYOEaNS8ajR0jLzZU7DCIivZMk+ejfvz+WLVsGHx8fvPPOO7Cze3yXaU5ODlasWIEvv/wSEydOlCIUKiMufiQybByjRERUGUmSfMydOxfnz5/H1KlTMXPmTFSrVg0AcPfuXRQVFaF9+/aYM2eOFKFUWrZiLnLTc9Fz4gK5Q9EvwVbuCIjKzSrfCtn52eg9o7fcoeif1fOrEBERlUaS5MPW1hYxMTHYvn27xnM+OnfujC5duqB79+4QBEGKUIiIiIiISCZ6Tz5yc3MxZMgQ9O3bF6+99hp69uyp70uSDhz6biXyc7NhZWuPkEFj5Q6HiJ5ycN1B5GXnwdreGu3ebCd3OERERGWi992ubG1t8fvvvyOXC+kqlfzcbORlZyI/N1vuUIioBHnZecjLykNedp7coRAREZWZJFvttm7dGrGxsVJcioiIiIiIDJQkyceKFStw5MgRTJ8+Hbdv35bikkREREREZGAkST4aNmyI27dvIyoqCt7e3rCysoKjo6PGy8nJSYpQiIiIiIhIJpLsdtW3b1/uZkVEREREZOIkST42btwoxWWIiIgqJScbG40/iYiMlV6Tj7y8PGzfvh3x8fFwdXVF165d4eXlpc9LEhERVTqzunaVOwQiIknoLflISUlBy5YtER8fD1EUATzedveXX35BaGiovi5LREREREQGSm8LzufOnYuEhARMmjQJO3fuxNKlS2FjY4PRo0fr65JERERERGTA9DbzsXfvXoSHh+PTTz9Vl3l4eGDw4MGIi4tD3bp19XVp0gErW3uNP4nIsFjbW2v8SUREVBnoLflITEzEBx98oFHWunVriKKI5ORkJh8GLmTQWLlDIKJnaPdmO7lDICIiKje93XaVn58Pa2vN38g9eV9UVKSvyxIRERERkYHS625XCQkJOHv2rPp9RkYGAODq1atwdnYuVr9Jkyb6DIeIiIiIiGSk1+RjxowZmDFjRrHyt99+W+O9KIoQBAFKpVKf4RARERERkYz0lnxs2LBBX00TEREREVElpLfkY+jQofpqmoiIiIiIKiG9LTgnIiIiIiL6LyYfREREREQkCSYfREREREQkCSYfREREREQkCSYfREREREQkiUqffKxcuRI+Pj6wtrZG8+bNcfLkyWfW/+GHH1CvXj1YW1vj5Zdfxu7duyWKlIiIiIjItFXq5GPr1q2IiIjArFmzcPbsWTRs2BBhYWFISUkpsf6xY8cwaNAgvPnmmzh37hx69eqFXr164a+//pI4ciIiIiIi01Opk4/Fixdj5MiRGDZsGPz9/bF69WrY2tpi/fr1JdZftmwZOnfujPfffx/169fH3Llz0aRJE6xYsULiyImIiIiITE+lTT4KCgpw5swZhIaGqssUCgVCQ0MRGxtb4jmxsbEa9QEgLCys1PpERERERKQ7envCub7dv38fSqUSHh4eGuUeHh64cuVKieckJSWVWD8pKanU6+Tn5yM/P1/9Pjs7uwJRVy55OZnIy8mS9pqCNRS5tjh79qyk15XSlVsPkPZIKfl1qzjYoIqDjeTXJf3Jy8pDXnaepNcssCwAbGHUY/Ta/ftILyiQ/LrONjZwtrWV/LqkHxlZ6cjMSpf2ooUWsMm0MurxeTs5BZnZuZJf197WBvYcnzpRaZMPqURFRWH27NkaZSEhIfDy8pIshu8iR0h2rSfy8/MRFhaGw4cOSX5tANi7Zp4s1zVmISEh2LNnC6ysrOQOxah8PeFrWa77ZIwekmmM/rboN1mua8wej9E9HKM6Nuz9HpJfU+7xOXu5LJc1ahyfulNpkw9XV1eYmZkhOTlZozw5ORmenp4lnuPp6Vmu+gAwZcoUREREaJRZWVkZ/T++/Px8HDp0CIcOHYK9vb3c4VAFZWdnIyQkBPn5+Ub/b9dUcIwaF45R48LxaVw4PnWr0iYflpaWCAwMRExMDHr16gUAUKlUiImJwbhx40o8Jzg4GDExMZg4caK6bN++fQgODi71OqaQaDxLo0aN4OjoKHcYVEGZmZlyh0B6wjFqHDhGjRPHp3Hg+NStSpt8AEBERASGDh2Kpk2bIigoCEuXLkVOTg6GDRsGAAgPD0f16tURFRUFAJgwYQJCQkKwaNEidO3aFVu2bMHp06exZs0aOT8GEREREZFJqNTJx4ABA5CamoqZM2ciKSkJjRo1QnR0tHpReWJiIhSKfzf0atmyJTZv3ozp06dj6tSpePHFF/HLL78gICBAro9ARERERGQyKnXyAQDjxo0r9TargwcPFivr378/+vfvr+eoKj8rKyvMmjXLpG85MybsT+PDPjUu7E/jwv40LuxP3RJEURTlDoKIiIiIiIxfpX3IIBERERERVS5MPoiIiIiISBJMPoiIiIiISBJMPkjvEhISIAgCNm7cKHcoRFQCjlEiw8XxScaGyYeBuX79OkaPHo1atWrB2toajo6OaNWqFZYtW4ZHjx7p7bqXLl1CZGQkEhIS9HaNspg/fz569OgBDw8PCIKAyMhIWeORkiAIZXqVtItbeeXm5iIyMrJcbZly3/yXKY/RK1euYPLkyWjUqBEcHBzg5eWFrl274vTp07LFJBVDHp+m3C9PM+XxeffuXQwZMgR169aFg4MDnJ2dERQUhE2bNsEU9hYy5DFq6n3ztEq/1a4x2bVrF/r37w8rKyuEh4cjICAABQUFOHr0KN5//338/fffensg4qVLlzB79my0a9cOPj4+erlGWUyfPh2enp5o3Lgx9uzZI1sccvj666813n/11VfYt29fsfL69etX+Fq5ubmYPXs2AKBdu3ZlOseU++YJUx+jX375JdatW4e+ffvi7bffRkZGBr744gu0aNEC0dHRCA0NlSUuKRjy+DTlfvkvUx+f9+/fx+3bt9GvXz/UrFkThYWF2LdvH9544w3ExcVhwYIFssQlFUMeo6beN8WIZBBu3Lgh2tvbi/Xq1RPv3r1b7PjVq1fFpUuX6u36P/zwgwhAPHDgwHPrqlQqMTc3t8xtx8fHiwDEDRs2lKmuKIpiamqqCECcNWtWma9jbMaOHSvqa4hq8/U19b7hGBXF06dPi1lZWRpl9+/fF93c3MRWrVqV+XrGwJDGJ/uF4/NZunXrJtrZ2YlFRUVanV9ZGdIYLY2p9g1vuzIQCxcuRHZ2NtatWwcvL69ix/38/DBhwgT1+6KiIsydOxe1a9eGlZUVfHx8MHXqVOTn52uc5+Pjg27duuHo0aMICgqCtbU1atWqha+++kpdZ+PGjeoHL7Zv377Y1OSTNvbs2YOmTZvCxsYGX3zxBQDgxo0b6N+/P6pUqQJbW1u0aNECu3bt0vrrIOesS2WgUqmwdOlSvPTSS7C2toaHhwdGjx6NtLQ0jXqnT59GWFgYXF1dYWNjA19fXwwfPhzA4/uH3dzcAACzZ89W9/fzbqMy9b7hGAUCAwNhb2+vUVa1alW0adMGly9f1qpNYyLX+GS/cHw+i4+PD3Jzc1FQUKDTdisjOf8PLYnJ9o3c2Q89Vr16dbFWrVplrj906FARgNivXz9x5cqVYnh4uAhA7NWrl0Y9b29vsW7duqKHh4c4depUccWKFWKTJk1EQRDEv/76SxRFUbx+/bo4fvx4EYA4depU8euvvxa//vprMSkpSd2Gn5+f6OLiIn744Yfi6tWrxQMHDohJSUmih4eH6ODgIE6bNk1cvHix2LBhQ1GhUIg///yzOgZtfmtjqr9d/6+SfmszYsQI0dzcXBw5cqS4evVq8YMPPhDt7OzEZs2aiQUFBaIoimJycrLo4uIi1qlTR/zkk0/EtWvXitOmTRPr168viqIoZmdni59//rkIQOzdu7e6vy9cuFCmuEy1bzhGS9eyZUuxTp06Wp1bWRnq+PwvU+oXjs9/5ebmiqmpqWJ8fLy4ceNG0c7OTmzZsmWZvzbGwhDHKPvmMSYfBiAjI0MEIPbs2bNM9c+fPy8CEEeMGKFR/t5774kAxP3796vLvL29RQDi4cOH1WUpKSmilZWV+O6776rLnjVl/KSN6OhojfKJEyeKAMQjR46oy7KyskRfX1/Rx8dHVCqVoigy+dDW0984jxw5IgIQv/32W4160dHRGuXbtm0TAYinTp0qte2KfH1NsW84Rkt3+PBhURAEccaMGeU+tzIz1PH5hCn1C8enpqioKBGA+vXKK6+IiYmJZTrXmBjiGGXfPMbbrgxAZmYmAMDBwaFM9Xfv3g0AiIiI0Ch/9913AaDYlK2/vz/atGmjfu/m5oa6devixo0bZY7R19cXYWFhxeIICgpC69at1WX29vYYNWoUEhIScOnSpTK3T8/3ww8/wMnJCR07dsT9+/fVrye3XBw4cAAA4OzsDADYuXMnCgsLZYzYeHCMliwlJQWDBw+Gr68vJk+eXKG2KjtDGp+m1i8cn5oGDRqEffv2YfPmzRg8eDAA6HWnr8rCEMYo++YxJh8GwNHREQCQlZVVpvo3b96EQqGAn5+fRrmnpyecnZ1x8+ZNjfKaNWsWa8PFxaXYPY7P4uvrW2IcdevWLVb+ZCeJp+Ogirl69SoyMjLg7u4ONzc3jVd2djZSUlIAACEhIejbty9mz54NV1dX9OzZExs2bCh2LzOVHcdocTk5OejWrRuysrKwffv2YmsOTI2hjE9T7BeOT03e3t4IDQ3FoEGD8O2336JWrVoIDQ01yR9y/8sQxij75jFutWsAHB0dUa1aNfz111/lOk8QhDLVMzMzK7FcLMfe0jY2NmWuS/qhUqng7u6Ob7/9tsTjTxbACYKAH3/8EcePH8evv/6KPXv2YPjw4Vi0aBGOHz9uEj+M6BrHqKaCggL06dMHFy9exJ49exAQECDZtQ2VIYxPU+0Xjs9n69evH9auXYvDhw8Xm30xJYYwRp9mqn3D5MNAdOvWDWvWrEFsbCyCg4OfWdfb2xsqlQpXr17V2K86OTkZ6enp8Pb2Lvf1y/pN+Ok44uLiipVfuXJFfZx0p3bt2vj999/RqlWrMv1H1qJFC7Ro0QLz58/H5s2b8dprr2HLli0YMWKEVv1t6jhGH1OpVAgPD0dMTAy+//57hISElLsNYyT3+DT1fuH4LN2T36pnZGTopL3KSu4xWhJT7RvedmUgJk+eDDs7O4wYMQLJycnFjl+/fh3Lli0DAHTp0gUAsHTpUo06ixcvBgB07dq13Ne3s7MDAKSnp5f5nC5duuDkyZOIjY1Vl+Xk5GDNmjXw8fGBv79/ueOg0v3vf/+DUqnE3Llzix0rKipS911aWlqx38g1atQIANTTxra2tgDK19+mjmP0sXfeeQdbt27FqlWr0KdPn3Kfb6zkHp+m3i8cn0BqamqJ5evWrYMgCGjSpEm52jM2co5R9o0mznwYiNq1a2Pz5s0YMGAA6tevr/F01mPHjuGHH37AG2+8AQBo2LAhhg4dijVr1iA9PR0hISE4efIkNm3ahF69eqF9+/blvn6jRo1gZmaGjz/+GBkZGbCyskKHDh3g7u5e6jkffvghvvvuO7z66qsYP348qlSpgk2bNiE+Ph4//fQTFIry57Zff/01bt68idzcXADA4cOHMW/ePADA66+/btKzKSEhIRg9ejSioqJw/vx5dOrUCRYWFrh69Sp++OEHLFu2DP369cOmTZuwatUq9O7dG7Vr10ZWVhbWrl0LR0dH9X+6NjY28Pf3x9atW1GnTh1UqVIFAQEBz7xNw9T7hmP08Q9rq1atQnBwMGxtbfHNN99oHO/du7f6hzBTI+f4ZL9wfALA/Pnz8ccff6Bz586oWbMmHj58iJ9++gmnTp3CO++8U2yNi6mRc4yyb54i51ZbVNw///wjjhw5UvTx8REtLS1FBwcHsVWrVuJnn30m5uXlqesVFhaKs2fPFn19fUULCwuxRo0a4pQpUzTqiOLjLf66du1a7DohISFiSEiIRtnatWvFWrVqiWZmZhpbBpbWhig+3t+8X79+orOzs2htbS0GBQWJO3fu1KhTnm0CQ0JCNLah+++rLE+ONSalPZ11zZo1YmBgoGhjYyM6ODiIL7/8sjh58mT1U33Pnj0rDho0SKxZs6ZoZWUluru7i926dRNPnz6t0c6xY8fEwMBA0dLSskxbBrJvHjPlMfrk2QilveLj4595vjExpPHJfvmXKY/PvXv3it26dROrVasmWlhYqD/7hg0bRJVK9cxzjZEhjVH2jSZBFMuxYoqIiIiIiEhLXPNBRERERESSYPJBRERERESSYPJBRERERESSYPJBRERERESSYPJBRERERESSYPJRySxcuBD16tWDSqWSO5QKGzhwIP73v//JHYbs2KfGhf1pXNifxoX9aXzYp5WQ3Hv9UtllZGSIVapUEdevX68uw//v4/7pp58Wq79hwwYRgHjq1CmdxxIaGioCEMeOHVvi8S+//FKsV6+eaGVlJfr5+YnLly8vVufs2bOiQqEQz58/r/P4Kgv2qXFhfxoX9qdxYX8aH/Zp5cSZj0pk/fr1KCoqwqBBg4od++STT9RPnta3n3/+GbGxsaUe/+KLLzBixAi89NJL+OyzzxAcHIzx48fj448/1qjXuHFjNG3aFIsWLdJ3yAaLfWpc2J/Ghf1pXNifxod9WknJnf1Q2TVo0EAcMmSIRhkAsVGjRiIAcdGiRRrH9JHhP3r0SPTx8RHnzJlTYoafm5srVq1atdjTXF977TXRzs5OfPjwoUb5p59+KtrZ2YlZWVk6i7EyYZ8aF/ancWF/Ghf2p/Fhn1ZOnPmoJOLj43Hx4kWEhoYWO9aqVSt06NABCxcuxKNHj/Qax8KFC6FSqfDee++VePzAgQN48OAB3n77bY3ysWPHIicnB7t27dIo79ixI3JycrBv3z69xWyo2KfGhf1pXNifxoX9aXzYp5UXk49K4tixYwCAJk2alHg8MjISycnJ+Pzzz5/ZTn5+Pu7fv1+m19MSExPx0Ucf4eOPP4aNjU2J7Z87dw4A0LRpU43ywMBAKBQK9fEn/P39YWNjgz/++OOZcRsj9qlxYX8aF/ancWF/Gh/2aeVlLncAVDZXrlwBAPj6+pZ4vE2bNmjfvj0++eQTjBkzptRB8N1332HYsGFluqYoihrv3333XTRu3BgDBw4s9Zx79+7BzMwM7u7uGuWWlpaoWrUq7t69q1Fubm6OGjVq4NKlS2WKyZiwT40L+9O4sD+NC/vT+LBPKy8mH5XEgwcPYG5uDnt7+1LrREZGIiQkBKtXr8akSZNKrBMWFqbVVN6BAwfw008/4cSJE8+s9+jRI1haWpZ4zNrausTpTxcXlxJ/o2Ds2KfGhf1pXNifxoX9aXzYp5UXkw8j0rZtW7Rv3x4LFy7EW2+9VWIdLy8veHl5lavdoqIijB8/Hq+//jqaNWv2zLo2NjYoKCgo8VheXl6Jv3kQRRGCIJQrJlPBPjUu7E/jwv40LuxP48M+NUxMPiqJqlWroqioCFlZWXBwcCi13qxZs9CuXTt88cUXcHZ2Lnb80aNHyMjIKNM1PT09AQBfffUV4uLi8MUXXyAhIUGjTlZWFhISEuDu7g5bW1t4eXlBqVQiJSVFY4qxoKAADx48QLVq1YpdJy0tDS+++GKZYjIm7FPjwv40LuxP48L+ND7s08qLC84riXr16gF4vLvDs4SEhKBdu3b4+OOPS5zK27p1qzrLf97ricTERBQWFqJVq1bw9fVVv4DHA9DX1xd79+4FADRq1AgAcPr0aY3rnj59GiqVSn38iaKiIty6dQv169cv19fDGLBPjQv707iwP40L+9P4sE8rL858VBLBwcEAHv9jbdCgwTPrRkZGol27dlizZk2xY9rc2zhw4MBigwMAevfujS5dumDkyJFo3rw5AKBDhw6oUqUKPv/8c3Tp0kVd9/PPP4etrS26du2q0calS5eQl5eHli1blismY8A+NS7sT+PC/jQu7E/jwz6txOR5vAhpIyAgQBw0aJBGGUp4oI0oimJISIgIQOcP0ynLtVeuXCkCEPv16yeuXbtWDA8PFwGI8+fPL1b3008/FW1tbcXMzEy9xGjo2KfGhf1pXNifxoX9aXzYp5UTk49KZPHixaK9vb2Ym5urLivtH/qBAwdkG2SiKIpr1qwR69atK1paWoq1a9cWlyxZIqpUqmL1mjdvXuzppKaEfWpc2J/Ghf1pXNifxod9Wjkx+ahE0tPTxSpVqohffvml3KHoxLlz50RBEMRz587JHYps2KfGhf1pXNifxoX9aXzYp5WTIIpPPTGFDNrHH3+MDRs24NKlS1AoKvd+AQMHDoRKpcL3338vdyiyYp8aF/ancWF/Ghf2p/Fhn1Y+TD6IiIiIiEgSlTtFJCIiIiKiSoPJBxERERERSYLJBxERERERSYLJBxERERERSYLJBxERERERSYLJBxERERERSYLJBxERERERSYLJBxERERERSYLJBxERERERSYLJBxERERERSYLJBxERERERSYLJBxERERERSYLJBxERERERSYLJRzndu3cPkZGRuHfvntyhEBERERFVKkw+yunevXuYPXs2kw8iIiIionJi8kFERERERJJg8kFERERERJJg8kFERERERJJg8kFERERERJJg8kFERERERJJg8kFERERERJJg8kFERERERJJg8kFkKnIfyh0BERERmTgmH0SmIisJKCqQOwoiIiIyYUw+iEyGCGTdlTsIIiIiMmFMPohMyYPrckdAREREJqzCyce9e/dw4cIF5OTk6CIeItKnpD/ljoCIiIhMmNbJx/bt21GvXj288MILaNKkCU6cOAEAuH//Pho3boxffvlFVzESka7cOS13BERERGTCtEo+fv31V/Tp0weurq6YNWsWRFFUH3N1dUX16tWxYcMGnQVJRDqSfgt4GC93FERERGSitEo+5syZg7Zt2+Lo0aMYO3ZssePBwcE4d+5chYMjIj248J3cERAREZGJ0ir5+Ouvv/C///2v1OMeHh5ISUnROigi0qN/9gBX98kdBREREZkgrZIPW1vbZy4wv3HjBqpWrap1UESkZwcWPE5CiIiIiCSkVfLRvn17bNq0CUVFRcWOJSUlYe3atejUqVOFgyMiPRFVjxOQc98A/1mzRURERKRPWiUf8+fPx+3bt9GsWTN88cUXEAQBe/bswfTp0/Hyyy9DFEXMmjVL17ESka6dXAvErgRUKrkjISIiIhMgiKJ2v/b8+++/MWHCBBw4cEBjt6t27dph5cqVqF+/vs6CNCRnz55FYGAgzpw5gyZNmsgdDlGZNG3aFEl3b8PTIgenp5bw77ZWOyDkA8DSVvLYiIiIyHSYa3viSy+9hN9//x1paWm4du0aVCoVatWqBTc3N13GR0Q6kJSUhDv3kgFny5Ir3DgIPLj2OAHxaiBpbERERGQ6tE4+nnBxcUGzZs10EQsRySnjNrDjHeDFTkCzEYCDh9wRERERkZHRas3H8uXLERYWVurxV199FZ9//rnWQRGRjK7uBbYOAY5/DuRlyh0NERERGRGtko9169bB39+/1OP+/v5Ys2aN1kERkcyUBcCFLcCWwcDFHwBlodwRERERkRHQKvm4fv36MxeU16tXD9evX9c6KCIyEPlZQOwK4PuhwLUY7opFREREFaJV8mFpaYmkpKRSj9+7dw8KhVZNE5EhyrwDxMwBfh4BxB9mEkJERERa0SpDaNGiBTZu3IisrKxixzIyMrBhwwa0aNGiwsERkYF5cB3YOwP46U3g2u9MQoiIiKhctNrtatasWQgJCUGjRo0wceJEvPTSSwCAv/76C0uXLsW9e/ewefNmnQZKRAbk4Q0gZi5wZiPQbCTg2xYQBLmjIiIiIgOnVfLRvHlz/Prrrxg9ejQmTJgA4f9/6BBFEb6+vtixYweCg4N1GigRaScxMRE5OTkAgJx8JRIf5qFmFWvdNJ5+C9g3E6gRBLSbAthW0U27REREZJS0fsI5AKhUKpw7d069uLx27dpo0qSJOhkxRnzCOVUWJ0+exNy5c7Fr1y78d5gLAtDt5SqY0cUbzXwcdHdBO1cgLApwq6O7NomIiMioVCj5MEVMPqgy+PnnnzFgwACIogilUlnsuJkCECBg68j66NPYVXcXNrcGQiMBb93OfBY+ysKN6NV4ePUEICjgWq8laoWNhpmlTannXPzqQ2Qm/qlR5tnkVfh1GQcASL6wD1d/XVriuUGTvoWlnbOuwiciIqL/V6EnnF+6dAk3btxAWloaSsphwsPDK9I8EWnh5MmTGDBgAJRKZYnjEgCUKkCAiAFrL+PY5Ea6mwEpygP2TAXaRAD1u5fr1ItffQiPhq/Ao2HHYsf++eUTFGQ/RMBr86BSKnH116W4tusz1O09+ZltejQOg3fIEPV7hcW/t5u5+reFS+1AzevsWAJVUSETDyIiIj3RKvm4fv06hgwZgpMnT5b6w40gCEw+iGQwb948iKJY6th8QgQgQsS83Tex/e0A3QUgqoDDnwIFOUDDgRVuLvd+ItKun0HD4UvhUO1FAEDtzqPx93eR8Al9E1YOVUs918zCGpb2Ja9DMbOwgpmFlfp9YU4GMhIu4sVuEyocMxEREZVMq+Rj9OjR+PPPP7F06VK0adMGLi4uuo6LiLSQmJiInTt3PjfxeEKpAn7986FuF6E/cfxzwN0f8GpQoWYyb1+BmbWdOvEAAGffxoAgIOtOHKzqtSz13JS/DiDlzwOwtHdBlReDUKPNQJhZlPw5k/+MgcLCClXrt6pQvERERFQ6rZKPP/74A1OnTsU777yj63iITIJKWQhRVXwtRkXt2xtd5sTjCVEEYq6k441gD53Hg0vbIVQw+SjMToOlrbNGmaAwg4WNAwpz0ko9zz0gBFZO7rB0qIqc5Hgk7N+ARw9uo37/6SXWTz6/F24BIRqzIURERKRbWiUfrq6ucHJy0nUsRCZBpSxE1p1/oCx4pPO2U27+A4VCAVU5Hv6nEID07Ed6iUd15wLMlYVQmFkUO3br6Fbc+uP7f+sWFSDrzhVcj16tLmvy1udaX9uzyavqv9u5+8DSvgr++nYqHj28B5sqXhp1M29fxqP7t1C357taX4+IiIieT6vk46233sI333yDsWPHwszMTNcxERk1UaWEsuARFObmJf5QXhFOzs7lSjwAQCUCTjbmEBQKncYiiiJElerxDE8Jn9MzsAtc/duo38f98glc67VC1f/cRmXlUBUW9i4oyE3XbFulROGjLFjYlf2WT4fqdQEAeWl3iyUfyef2wM6jFuy9XizpVCIiItIRrZKPOnXqQKlUomHDhhg+fDhq1KhRYhLSp0+fCgdIZKwUZhZQmFvqtM32bdtAEIRy3XolCED7Ok4AdPt8HkEAVA7VSz1uYeMAC5t/d9lSmFvBws4JNlWqadRzfKEelHk5yL53VZ0cpMdfAERRnVCURU7yDQAotgBdWfAI9y8fhXf7oWVui4iIiLSjVfIxYMAA9d/fe++9EusIglDi8wWISH9qvFANnUPbY+/+Q2Uaf2YKoMtLzqhZRffrHESFOfJ9X0FF0ytb15pwqR2Iq7s+g9+rYyGqlLi+53O4vdRWvdNVfuZ9/PXtNNTpEQGH6nXx6OE9pP59EFX8msLcxhE5KfGI37sWjjUDYOfhq9F+6t+HIaqUcH+5fQUjJSIioufRKvk4cOCAruPQ2sqVK/HJJ58gKSkJDRs2xGeffYagoKAS627cuBHDhg3TKLOyskJeXp4UoRJJ4oNJb2PfgcPPnQER8PhBg1PDSp+d0JZoaYe8pm9B5fiCTtqr0+t93Ij+HH99Ow0QBFSt1wq1w0b/ez2VEo8e3IayMB8AoDAzR3r8edw9uR3KgjxYObqhav1WqNG6+Na/yRf2omrdljC3ttdJrERERFS6Sv2E861btyI8PByrV69G8+bNsXTpUvzwww+Ii4uDu7t7sfobN27EhAkTEBcXpy4TBAEeHmXf5YdPOKeKUhbmIePmXzC3stH5bVdPbN+9B2+8Nem5TzjfMtwPvRqW/BwMbSmrNUVho9ehtLBHUf4jOHkHlLq9LREREZmWCq0wzc/PR2xsLLZv34779+/rKqYyW7x4MUaOHIlhw4bB398fq1evhq2tLdavX1/qOYIgwNPTU/0qT+JBVFn07BKG33dsQacOIRAEzbUcgvD4VqsjEf46TTyUXo2R324WCoInQLTRbUJDRERExkHr5GP58uXw8vJC69at0adPH1y8eBEAcP/+fbi6uj4zAdCFgoICnDlzBqGhoeoyhUKB0NBQxMbGlnpednY2vL29UaNGDfTs2RN///33M6+Tn5+PzMxM9Ss7O1tnn4FInwIbNcD3m1bj7xMH4OzkCABwtjHD9chG2DaqLpp56+A2I0GAsmZr5HWMQkHLCKiq+lW8TSIiIjJaWiUfGzZswMSJE9G5c2esW7dO475yV1dXdOjQAVu2bNFZkCW5f/8+lEplsZkLDw8PJCUllXhO3bp1sX79emzfvh3ffPMNVCoVWrZsidu3b5d6naioKDg5OalfISEhOv0cRPpW44VqsLW1AQDYWSl0trhc6dkIeR0/RkGz0RB1tLaDiIiIjJtWyceiRYvQs2dPbN68Gd27dy92PDAw8LkzCnIIDg5GeHg4GjVqhJCQEPz8889wc3PDF198Ueo5U6ZMQUZGhvp16NAhCSMmMkAWNihoNgYFLSMgOng9vz4RERHR/9Nqt6tr165h/PjxpR6vUqUKHjx4oHVQZeHq6gozMzMkJydrlCcnJ8PT07NMbVhYWKBx48a4du1aqXWsrKxgZfXvb4rt7bkjDpkulWs9FDQdBdHOTe5QiIiIqBLSaubD2dn5mQvML126VOYEQFuWlpYIDAxETEyMukylUiEmJgbBwcFlakOpVOLPP/+Elxd/e0v0LKJtVRQ0HY38tlOYeBAREZHWtEo+unTpgjVr1iA9Pb3Ysb///htr165Fjx49Khrbc0VERGDt2rXYtGkTLl++jDFjxiAnJ0f9LI/w8HBMmTJFXX/OnDnYu3cvbty4gbNnz2LIkCG4efMmRowYofdYiSoj0c4VBY2HIa/Tp1B6twaECm2QR0RERCZOq9uu5s2bh+bNmyMgIADdu3eHIAjYtGkT1q9fj59++gleXl6YOXOmrmMtZsCAAUhNTcXMmTORlJSERo0aITo6Wr0IPTExEQrFvz8spaWlYeTIkUhKSoKLiwsCAwNx7Ngx+Pv76z1WospEtHFBYf3eUHq3ARRafZsgIiIiKkbrhwympKRg6tSp+Pnnn9UzIA4ODujbty8++uijEh/yZwz4kEGqKCkeMvi0uoFtcPdeMqo7W+Dm3Gf8uzWzQGHd7ih6sQtgXrFdsVRFBXzIIBEREWko96808/PzsWfPHvj4+ODLL7/El19+idTUVKhUKri5uWnMNBBR5aGq6oeCwNEQHfS7XouIiIhMV7kzBUtLS/Tv3x/Hjh1Tl7m5ucHDw4OJB1ElVVSnK/LbTmfiQURERHpV7pkPQRDw4osvPnO3KyKqJAQBBU1GQOnTVu5IiIiIyARoNVUxdepUrFixAnFxcbqOh4ikIggoCBrLxIOIiIgko9U2NsePH0fVqlUREBCAdu3awcfHBzY2Nhp1BEHAsmXLdBIkEele4cuDoXyhudxhEBERkQnRKvlYsWKF+u//fcjffzH5IDJcSq/GKPILkzsMIiIiMjFaJR8qlUrXcRCRVBRmKGz4OiAIckdCREREJobbUxGZGOULLSDauckdBhEREZmgCj26+Pjx4zhw4ABSUlLw9ttv48UXX0Rubi6uXLmCOnXqwN7eXldxEpGOFHm3ljsEIiqBKIoQOCNJREZOq+SjoKAAAwcOxPbt29XfLLt3744XX3wRCoUCnTp1wqRJkzBt2jRdx0tEWvBwcwOURfC0zofKtZ7c4RBRSQoLAUtLuaMgItIrrW67mjFjBnbu3InPP/8ccXFxEEVRfcza2hr9+/fH9u3bdRYkEVXM4eifcTXmaxxbEg4oKjThSUT6wlkPIjIBWiUf3333HcaMGYNRo0ahSpUqxY7Xr18fN27cqHBwRKRbKte6codARKX5zy/yiIiMlVbJR0pKCl5++eVSj5uZmSE3N1froIhIP1TOvnKHQESlUBUUyh0CEZHeaZV81KhRA1euXCn1+B9//AE/Pz+tgyIi/VDZe8odAhGVQszPkzsEIiK90yr5GDx4ML744gvExsaqy57s0LF27Vp8//33CA8P102ERKQ75tZyR0BEpRDz8+UOgYhI77RaeTpt2jQcP34cbdu2Rf369SEIAiZNmoSHDx/i9u3b6NKlCyZNmqTrWImoosQiuSMgolKIBQVyh0BEpHdazXxYWloiOjoaGzZsQK1atVCvXj3k5+ejQYMG2LhxI3799VeYmZnpOlYiqiiVUu4IiKgUqkeP5A6BiEjvyjTzERERgddffx2NGzcGACQmJsLNzQ1DhgzBkCFD9BogEemQGZ8hQGSolOnpcodARKR3ZZr5WLp0KS5fvqx+7+vri23btuktKCLSPVFhxjUfRAas8F6S3CEQEeldmZIPDw8Pjed2iNyLnKjSER1f4EPMiAxYQUICRJVK7jCIiPSqTLddde3aFXPmzMHevXvh7OwMAFi0aBG2bNlS6jmCIPAp50SGxMxC7giI6BlUOTnIv3oV1nX5MFAiMl5lSj6WLVsGd3d3HDhwAH///TcEQcCtW7fw8OHDUs8R+BtWIiKicsn87TcmH0Rk1MqUfNjZ2WHBggXq9wqFAkuXLsXgwYP1FhgREZGpyTlyFI86dIBNgwZyh0JEpBdlWvPRp08fHDlyRP3+wIED6Nixo96CIiIiMlWpS5eiKC1N7jCIiPSiTMnH9u3bkZiYqH7foUMH7Nu3T29BERERmSplRibSvv5G7jCIiPSiTMlH9erVce7cOfV7URS5poOIiEhPso8cQWFKitxhEBHpXJnWfAwcOBCffvopvv/+e/VuVx9++CGioqJKPUcQBFy4cEEnQRIREZkUlQoP1qyFx5QPIZiZyR0NEZHOlCn5iIqKgp+fHw4cOICUlBQIggA7OztUrVpV3/ERERGZpEfnziF5QRRcx42FuYuL3OEQEemEIGrxxECFQoFvvvnGJHe7Onv2LAIDA3HmzBk0adJE7nCoElIW5iHj5l8wt7KBwtxS7nD0RlVUgKL8R3DyDoCZBZ+sTvQsTZs2xd2rV1FVocCODq9oHFPY2MCpX184dekCwdJ4v2cQkWko08zH0+Lj4+Hm5qbrWIiIiExSUlIS7mVmQrS2KXZM9egR0r7+BlnRe+Dy2mDYtWoFQVGmJZtERAZHq+9e3t7esLW11XUsREREVIqi1FSkLl2Gux9+iNyz56DFjQtERLIr08yHQqGAQqFAbm4uLC0toVAonrvblSAIKCoq0kmQRERE9FjB9RtInj8fVn5+cOrTB7bNmnImhIgqjTIlHzNnzoQgCDA3N9d4T0RERPLIv3YNKQsXwqJ6dTj16A67tm2h4JoQIjJwZUo+IiMjn/meiIiI5FF45w7uf74aD7/5Fg4dOsAhrBMsPDzkDouIqERaLTgnIiIiw6LKykLG9u3I2LEDts2D4DJwICxr1JA7LCIiDeVOPvLz8/HNN99g7969uH79OrKysuDg4AA/Pz907twZgwcPhiWnfYmIiMokMTEROTk5AIDcoiLcyc1F9Yps6iKKyD1+ArknT8ExrBOcBw6Cmb2djqIlIqqYcj3n488//0TPnj1x8+ZNiKIIJycn2NvbIzs7GxkZGRAEAbVq1cKOHTtQv359fcYtGz7ngyqKz/kgIgA4efIk5s6di127dmnsXCUA6ODphXH16qFhlSoVvo6ZkxOcBw2Ewyuv6G1hekFWFs6tW4e7Z85AEARUb9ECjYcNg7lN8a2Dn1AWFODCpk249ccfUBYVwbNhQzQZORLWzs4AgPSEBFzZtg33r1xBflYW7NzcULtTJ7zYtatePgMRSaPMyUd2djZefvllpKSkYMaMGXj99ddRvXp19fE7d+7gq6++wrx58+Dl5YULFy7Azs74ftNiCslHYmIiYmJi1LNar7zyCmrWrCl3WEaDyQdVFMdo5ffzzz9jwIABEEURSqWy2HEzQYAAYHlQc3T+z/+1FWHp44Mqw4fB5qWXtDr/4MyZ8GnfHj7t2xc7dmTePDxKT0fgqFEQlUqcWrkSLn5+aDFxYqntnVmzBvfOnkXQ2LGwsLXF2XXrIAgCOsyfDwCIj4lB+s2beKF5c9i4uuJBXBzOrF6NBq+/Dr9XX9XqM0iB45Po2cp829WGDRvUA6pdu3bFjlevXh1TpkxB8+bN0bFjR2zcuBFjx47VZaykZ0//Fk6hUEClUkEQBHTr1g0zZsxAs2bN5A6TyGRxjBqHkydPYsCAAVAqlaU+q0MpihAAjD95Aj+EtNPJDEhBQgKSZs6CbYvmqDJkCCy8vCrcJgBk3r6NpPPn8cpHH6GKnx8AoPGbb+LIggVoGB4OmxJiL8zJQfz+/WgxYQLcX34ZANBs7FjsmTABD/75B1Xr1IHvK5pPerf38MCDuDjcPnHCIJMPjk+isinz/OuuXbvQqVOnEhOP/+rQoQM6duyIX3/9taKxkYR+/vlntGrVCr/99pv6P0OVSgUAEEURu3fvRsuWLfHzzz/LGSaRyeIYNR7z5s2DKIrPfUig+P+vlXFXdHr93OMncGdSBLL/+EMn7T2Ii4OFnZ068QAA9wYNIAgCHl69WuI5aTduQCwqgnuDBuoyx+rVYfv/MxylKczNhaW9vU7i1iWOT6KyK3Py8eeffz438XiiQ4cO+PPPP7WNqVxWrlwJHx8fWFtbo3nz5jh58uQz6//www+oV68erK2t8fLLL2P37t2SxGnI/vtbuJKm/wGojw0YMACnTp2SOEIi08YxajwSExOxc+fOUvvxaUpRRMy9e7iTm6vTOMTCQmRs366TtvLS02Hl5KRRpjAzg6W9PfLS00s9R2FuDsunbs+2cnYu9Zz7V67g1rFjqBUaqouwdYbjk6h8ynzb1cOHD+Hp6Vmmuh4eHnj48KHWQZXV1q1bERERgdWrV6N58+ZYunQpwsLCEBcXB3d392L1jx07hkGDBiEqKgrdunXD5s2b0atXL5w9exYBAQF6j9dQlfm3cP9fZ968ediuo/+0iOj5OEalpyosVP/mWpf2Rkc/tx+fJgI4lpKCft7eOo1FsLGFqrAQCguLEo9f/uknXN62Tf1eWVCAB1ev4uy6deqyzkuW6DSm0mQkJuKPhQvh378/PBs1kuSaZcXxSVQ+ZU4+8vPzYVHKN6hijZqbo6CgQOugymrx4sUYOXIkhg0bBgBYvXo1du3ahfXr1+PDDz8sVn/ZsmXo3Lkz3n//fQDA3LlzsW/fPqxYsQKrV6/We7yG6Mlv4cr6n6FSqcSvv/6KxMRELqAjkgDHqPRUhYV4cO0aivLydN72vWvX1GsBykoBIDM3F0WPHuk0lty7d/Dg2jVU9fMrMQGp3akTarRsqX5/YtkyVG/RAi80b64us65SBdbOzsjPyNA4V6VUoiA7W71z1dOsnZ2hKipCQU6OxuxHfnp6sXMyb93CodmzUSs0FP79+mnxSfWH45Oo/Mr1nI+EhAScPXv2ufXi4+O1DqisCgoKcObMGUyZMkVdplAoEBoaitjY2BLPiY2NRUREhEZZWFgYfvnll1Kvk5+fj/z8fPX77OxsAEBRUREKCwsr8AkMw549e8r/WzhRxN69ezF06FA9RWXclIWFKCwsglLMhcKs8v8bKo1KWQhVkRKFhYVQwUzucCotjlHpFeXn41FWFgQAgplu/+3a2tiUe0ZFBcDG3ByF5fx38Fx37iI3JQX2NWqU+MOAYG0NK+t/d6oTLCxgbm8PK1dXdZlSpYJT7doozMlBalwcnGvVAgCkXLwIURTh4ONT4v+V9jVrQjAzw91z51D9/5OZrLt3kXv//uP2/v+czFu38Me8eajRti3q9e9vcP/vcnzKo6ioCKoy3rpYmSnMzGBuLu3zwMs60VAhYhkJgiAqFIoyvZ7U1ac7d+6IAMRjx45plL///vtiUFBQiedYWFiImzdv1ihbuXKl6O7uXup1Zs2a9WTNH1988cUXX3yZ7GtW27ZiiLd3icemtGolftShg1jbxUWsW7WquLRTJ3F8s2bq4y7W1uKSTp3E2i4u6rIRjRuLKzt3Fl9ycxN9nZ3Fue3aiXPbtVMfr+HoKK7t2lUc17Sp6GRlpX45WFrK/rXgiy9jfUmhXFvtmqIpU6ZozJacP38eISEhOHHiBBo3bixjZLqxceNGjBo1qtznrV27lr+1qQCVshCiyvh/ayMozKAwk+C3KEaMY1Qe+lrzAQD9/vc/RO/ZU6b2FQBCPDzxeYsWug1CEODYrStcBgyAmZVVmU45MmcOhoSEwDskpNixguxsXNywAXW8vABBQLWgIIx64w18+v8zJzmpqdg3fjwOHzgAN39/AI/XkPz1zTeo5u4O1f/vfNVw+HB88P+3XV3+8UfE/fQT2np7o+1/1rvYuLoi7LPPKvgF0A2OT+kV5OcjIe4KzCzMYSbxrICUlEVFUBYWwaduPViWcYxWFmXuNUMbJK6urjAzM0NycrJGeXJycqkL4z09PctVHwCsrKxg9Z9Ot///Lf7Mzc2lmZrSs7CwMAiCUK5pY0EQ0KlTJ6P4/LLh147KiGNUJnr82kXOno29+/Y9d5GyAEAhCBhfvz4sdXj7l01gE1R5/XVY1qhRrvM6zJ1b6jELFxcEP3Vb8385V6uG/j/+qHmOhQWajh6NpqNHl3hOg0GD0GDQoHLFKDWOT+mJKhUsLCxgaWMNCwvjfVBvYWEBCpAHCwsLo/u3Uuatdg2NpaUlAgMDERMToy5TqVSIiYlBcHBwiecEBwdr1AeAffv2lVrfFNSsWRPdunWDWRn/YzMzM0P37t25UI5IIhyjxqdZs2bYunUrzMzMSu1XM0GAmSDgs6DmOnnAIADYNG4MrwXz4Tl1arkTDyoZxydR+VXa5AMAIiIisHbtWmzatAmXL1/GmDFjkJOTo979Kjw8XGNB+oQJExAdHY1FixbhypUriIyMxOnTpzFu3Di5PoJBmDFjBgRBgCAIz6z3pM706dMlioyIAI5RY9SnTx8cO3YMXbp0KdavAoD2np74IaQdwqpXr9B1BAsLOHTsiOpLl8Bz+jRY161bofaoOI5PovKp1DfLDRgwAKmpqZg5cyaSkpLQqFEjREdHw8PDA8DjLfAUin/zq5YtW2Lz5s2YPn06pk6dihdffBG//PKLST/jA/j3t3ADBgyAKIolPiTJzMwMgiDg+++/R7NmzWSIksh0cYwap2bNmmHHjh1ITExEw4YNkZ6eDkdzC+wKDUV1W9sKta2wt4dj5zA4dukCs6ceAEi6xfFJVD6CWJ4bFQlnz55FYGAgzpw5gyZNmsgdjk6dOnUKc+fOVe9Z/mQvekEQ0L17d0yfPp3fNIlkxDFqvF544QXcuXMHntY2ONali9btmHt4wLFrFzh06ACFjY0OI6Tn4fiUxpMF5yax5uNRnmkvOCfj99/fwu3fvx+ZmZlwdHREhw4deH8qkQHgGKXSWPv7w6lHd9gEBkJQVOo7qistjk+ismHyQcXUrFkTb7zxhtxhEFEpOEYJACAIsG3WDE69e8G6Th25o6H/x/FJ9GwVSj4uXbqEGzduIC0trcRt5sLDwyvSPBERET1FMDeHffv2cOreDRYVXJBORCQ1rZKP69evY8iQITh58mSpe1sLgsDkg4iISIfsO7SHy8CBMK9aVe5QiIi0olXyMXr0aPz5559YunQp2rRpAxcXF13HRURERP9PYW8P94hJsGnYUO5QiIgqRKvk448//sDUqVPxzjvv6DoeIiIi+g+FjQ08I2fBytdX7lCIiCpMqy0xXF1d4cR9w4mIiPRLoYBbRAQTDyIyGlolH2+99Ra++eabEh+kQ0RERDqgUMBt/DuwbdJY7kiIiHRGq9uu6tSpA6VSiYYNG2L48OGoUaMGzMzMitXr06dPhQMkIiIyOYIAt/HjYd+mtdyREBHplFbJx4ABA9R/f++990qsIwgCZ0aIiIi04DJoEBMPIjJKWiUfBw4c0HUcREREJsvT0xOqrCxUVShgVbcunHr3kjskIiK90Cr5CAkJ0XUcREREJuv06dNImjsPj86fR5Wh4RAUWi3JJCIyeBV6wjnw+CnnN2/eBAB4e3vD39+/wkERERGZIqv69WBdt67cYRAR6Y3Wycf27dsRERGBhIQEjXJfX18sXrwYPXr0qGhsREREJsWxY0e5QyAi0iut5nV3796Nvn37AgAWLFiAbdu2Ydu2bViwYAFEUUSfPn0QHR2t00CJiIiMmkIBm8CmckdBRKRXWs18zJ07Fw0aNMCRI0dgZ2enLu/RowfGjRuH1q1bY/bs2ejcubPOAiUiIjJmljVrwsze7vkViYgqMa1mPi5evIihQ4dqJB5P2NnZ4Y033sDFixcrHBwREZGpsKjxgtwhEBHpnVbJh7W1NR4+fFjq8YcPH8La2lrroIiIiEyNuYuL3CEQEemdVslHhw4dsGzZMsTGxhY7duLECSxfvhyhoaEVDo6IiMhUCDY2codARKR3Wq35WLhwIYKDg9G6dWsEBQWh7v9vCxgXF4eTJ0/C3d0dH3/8sU4DJSIiMmbmVavKHQIRlUKlVEJhZiZ3GEZBq5kPX19fXLx4EePHj0daWhq2bt2KrVu3Ii0tDRMmTMCFCxfg4+Oj41CJiIiMF5MPIsOlLCyQOwSjofVzPtzd3bFkyRIsWbJEl/EQERERERkUlVIldwhGQ6uZDyIiIiIiU6FSKeUOwWiUaeZj+PDhEAQBa9asgZmZGYYPH/7ccwRBwLp16yocIBERERGRnFRKJh+6UqbkY//+/VAoFFCpVDAzM8P+/fshCMIzz3necSIiIiKiykBVVCR3CEajTMlHQkLCM98TERERERkrZWEBVCoVFAquWKgorb6CiYmJePToUanHHz16hMTERK2DIiIiIiIyJEX5+XKHYBS03mp327ZtpR7fsWMHfH19tQ6KiIiIiMiQFObnyR2CUdAq+RBF8ZnHCwsLOS1FREREREajiMmHTpT5OR+ZmZlIT09Xv3/w4EGJt1alp6djy5Yt8PLy0kmARERERERyK3zGkgMquzInH0uWLMGcOXMAPN7JauLEiZg4cWKJdUVRxLx583QSIBERERGR3B5lZ8odglEoc/LRqVMn2NvbQxRFTJ48GYMGDUKTJk006giCADs7OwQGBqJp06Y6D5aIiIiISA5ZqSlyh2AUypx8BAcHIzg4GACQk5ODvn37IiAgQG+BEREREREZivs34yGKIp9lV0HlXhWem5uL5cuX47ffftNHPEREREREBudRZgZSE67LHUalV+7kw9bWFubm5rCzs9NHPEREREREBumfo4eg5NPOK0Sr/XD79u2LH3/88blb7hIRERERGYuctAe4cjhG7jAqtTKv+fivgQMH4u2330b79u0xcuRI+Pj4wMbGpli9pxekExERERFVJl169EByUjKsBWDma31x+68LsK9SFd6NuLmSNrRKPtq1a6f++5EjR4odf7IYR6lUah0YEREREZHcUlLvIzk1FS72/y45iDtyAHbOVeDqU0vGyConrZKPDRs26DoOIiIiIqJKQRRFXNy7E8EDh8LG0UnucCoVrZKPoUOH6joOIiIiIqJKozAvD+d3/YJmfQfC3NJK7nAqDa0WnP9XdnY2Ll++jMuXLyM7O1sXMRERERERGbzM1GSc/uV75OfmyB1KpaF18nHq1Cm0b98eLi4uCAgIQEBAAFxcXNChQwecPn1alzGW6OHDh3jttdfg6OgIZ2dnvPnmm89Nftq1awdBEDReb731lt5jJSIiIiLjlJF0D8e3fIUHt27KHUqloNVtVydOnEC7du1gaWmJESNGoH79+gCAy5cv47vvvkPbtm1x8OBBBAUF6TTY/3rttddw79497Nu3D4WFhRg2bBhGjRqFzZs3P/O8kSNHYs6cOer3tra2eouRiIiIiIxfXnYWTm/bihdeaoA6rUJgYV18F1h6TKvkY9q0aahevTqOHj0KT09PjWORkZFo1aoVpk2bhn379ukkyKddvnwZ0dHROHXqFJo2fbzN2WeffYYuXbrg008/RbVq1Uo919bWtljMREREREQVdfvvi0i5cRV+wW3wgn8DCIoKr3AwOlp9RU6cOIHRo0eX+EO8h4cHRo0ahePHj1c4uNLExsbC2dlZnXgAQGhoKBQKBU6cOPHMc7/99lu4uroiICAAU6ZMQW5u7jPr5+fnIzMzU/3iuhYiIiIiKk3Bo0e4tH8vYr/bhPs34+UOx+BoNfOhUChQ9IxHyyuVSij0mOklJSXB3d1do8zc3BxVqlRBUlJSqecNHjwY3t7eqFatGi5evIgPPvgAcXFx+Pnnn0s9JyoqCrNnz9ZZ7ERERERk/LIepOLM9h/g5lMLddt0gJ1LFblDMghaZQgtW7bEypUrcfNm8YU1iYmJWLVqFVq1alXudj/88MNiC8Kffl25ckWbkAEAo0aNQlhYGF5++WW89tpr+Oqrr7Bt2zZcv3691HOmTJmCjIwM9evQoUNaX5+IiIiITEtqwg0c+3YD/vnjIIoK8uUOR3ZazXwsWLAAbdu2Rb169dC7d2/UqVMHABAXF4ft27fD3NwcUVFR5W733XffxRtvvPHMOrVq1YKnpydSUlI0youKivDw4cNyredo3rw5AODatWuoXbt2iXWsrKxgZfXv3s329vZlbp+IiIiISKVSIv7MSdy9/DdebBWCanX9TXY9iFbJR+PGjXHixAlMmzYNO3bsUK+bsLW1RefOnTFv3jz4+/uXu103Nze4ubk9t15wcDDS09Nx5swZBAYGAgD2798PlUqlTijK4vz58wAALy+vcsdKRERERMbtzp076p9z8wsL8SAzC1UdHbRuLz83B3/t243bf11AvbYd4ORhej+DCqIoihVpQKVSITU1FcDj5EGfaz3+69VXX0VycjJWr16t3mq3adOm6q1279y5g1deeQVfffUVgoKCcP36dWzevBldunRB1apVcfHiRUyaNAkvvPBCuW6lOnv2LAIDA3HmzBk0adJEXx+PiIiIiJ5SkJ+PhLgrsLSxhoWFpd6uc+78BSz77DPEHDiA//6oLABoUMsb3ZsHwtfTvfQGykAQBHjV9ceLLdvC2l4zoSksLEDBozz41K0HS6vyPz1dFEXs/+UnnD58AHm5uajpVwc9woehqsez7xDKTHuIPT9swdU/L6KwIB9V3D3QZ/goVPetVaF2/6vCmcLTazKk8u2336JevXp45ZVX0KVLF7Ru3Rpr1qxRHy8sLERcXJw6W7W0tMTvv/+OTp06oV69enj33XfRt29f/Prrr5LFTERERESGbXd0NHr3748Dhw7h6d/RiwD+jE/Egq3bcObqjQpdRxRF3L3yN45sWourxw7rdD3Ikd924vjve9EjfDhGT58NSysrbFr0MQoLC0o951FODtYumAMzMzOET3of4+d9jFcHvAYbO7sKtfs0rWc+Ll26hJkzZ2LPnj0at12FhYUhMjISAQEB2jRr8DjzQURERCQPfc98nDt/Ab3794dSqSyWeDxNoRAwdUDvCs+APGFpa4cXg9ugev0AFCmLtJ75EEURCyPGoVVYF7Tu3BUAkJebi48njkXvN0ehQfPgEs/b+8MWJF77ByOmzNRpu0/Tas3HkSNH8Oqrr0KlUqFnz54aC8537NiB3377DdHR0WjTpo02zRMRERERSW75ihUQRfG5iQcAQAR2njiDd3q+qpNrF+Tm4O+YaNy59Cfqd+gEM4vy324FAGmpqcjOyEBt/38nAqxtbfFCrdq4df1qqUnClfNn4RfQAFtWLUdC3BU4uLigeftQNA1pX6F2n6ZV8jFp0iS4u7vj0KFDqFGjhsaxW7duoW3btoiIiMCpU6e0aZ6IiIiISFJ37tzB7/v3ly3xAKASRVy4cbPCi9Cfln7vDk7/tAWNuvXV6vzszHQAgL2jo0a5naMjsjMySj0vLTUVpw7EoGVYZ7Tt2gN34m9g1+avYGZuhsat2mrd7tO0Sj7+/vtvzJ07t1jiAQA1atTAmDFjEBkZqU3TRERERETPpHzGw661dejI4TInHk+IAC4n3kGrl+rqNJaC3BzcPH8KdQObPrfuhdg/sOOr9er3Qya+p9U1RVGFaj610LHvAABANW8fpNy5jVMH96Nxq7ZatVkSrZIPb29v5OeXviimoKCgxMSEiIiIiEhbCjMzWFlbIz8vD8pC3SYgGWkZUCgUUKlUZT5HEIBH+fkQy3FOWeU+fACFmdlz69Vr1AQv1Pr3eXVF/5+YZWdmwsHZRV2ek5kJz5o1S23H3tkZ7tWqaZS5VauGv888vpPJ3tFZq3afplXyMXPmTEyaNAldu3ZFo0aNNI6dO3cOn332GZYuXapN00REREREJTI3N0f1WrWhUip13rZ37drlSjwAQBQBBzs7WFnb6Dwe95reMDd//o/qVjY2sLL59/qiKMLeyQk3Lv0Nr5reAIC8R7m4feM6mrV/pdR2avrVwf2kexpl95OS4FzVFQDg4uamVbtP0yr5OH78ODw8PBAYGIiWLVvCz88PAHD16lXExsYiICAAsbGxiI2NVZ8jCAKWLVumzeWIiIiIiAA8TkBQhh/Kyyusc2cIglCuW68EAP4+NSAodP+4CZ+G2u2qKggCgjt2xsGdv6CKhwdc3NwRs+1HODg7o36TQHW9DZ8sQP0mTdHilU4AgJadOmPtgjk4tHM7Apo1x+34Gzh96AB6Dh1ernafG582W+1q8yBBQRCg1EOWKjVutUtERERknHr06IHdu3eX6WdWhSCgUW1fTOrXXedxOFR1RbeJH8JMyyRL/TDAQ///MMAX66D762/A1fPfJ6oven8iGrdqgw69/l3YHnf+HPb+tBUPk5Ph7OaGVp1eVe92VdZ2n6fCTzg3NUw+iIiIiIzTqVOn0LJlyzI958NMocDM1/ujllfZn+5dFoIgIHTEWHjU8tNpu4aiwk84JyIiIiIyBs2aNcPWrVthZmYGs1IWeysEAWYKBcb1fFXniQcgoHnvAUabeABarvl4Ij4+Hr/99htu3rwJ4PEuWK+++ip8fX11EhwRERERkZT69OmDY8eOYe7cudi5c6fGDIgAoFFtX/Rs1UzniYetoxOC+w+Gl59ut+01NFonH++++y6WLVtWbFcAhUKBiRMn4tNPP61wcEREREREUmvWrBl27NiBxMRENGzYEOnp6bC1tsL8YYPh6uT4/AbKQRAE1A1ug4Ydu8DC2lqnbRsirW67WrRoEZYsWYI+ffogNjYW6enpSE9PR2xsLPr164clS5ZgyZIluo6ViIiIiEgyNWvWhJ2dHQDAysJC54lH9XovoeuED9C0ex+TSDwALWc+1q5dix49euD777/XKG/evDm2bNmCvLw8fPHFF5g0aZJOgiQiIiIiMhbV6tRHg9DOcK3hLXcoktMq+UhISMCECRNKPR4WFobo6GitgyIiIiIiMjbV672Elzt0Msmk4wmtkg93d3dcuHCh1OMXLlyAm5ub1kERERERERkDQRBQ8+VGeCkkFFWqVZc7HNlplXz0798fy5Ytg4+PD9555x31vXA5OTlYsWIFvvzyS0ycOFGXcRIRERERVRoKhRlqN20O/7Yd4FDVVe5wDIZWycfcuXNx/vx5TJ06FTNnzkS1atUAAHfv3kVRURHat2+POXPm6DRQIiIiIiJDJygU8GvaAgHtO8LO2UXucAyOVsmHra0tYmJisH37do3nfHTu3BldunRB9+7dIQiCTgMlIiIiIjJkvo2bomHoq7CvUlXuUAxWuZOP3NxcDBkyBH379sVrr72Gnj176iMuIiIiIqJKwbWGN5r16IuqL9SUOxSDV+7kw9bWFr///jteffVVfcRDRERERFQpKMzN0TisG+q1bAtBodXj80yOVl+l1q1bIzY2VtexEBEREREZFE9PT3h5esLZzlaj3M7ZBZ3HTEL91u2YeJSDVl+pFStW4MiRI5g+fTpu376t65iIiIiIiAzC6dOnceH4Mcx5Y5C6zM6lCsLemsCtc7WgVfLRsGFD3L59G1FRUfD29oaVlRUcHR01Xk5OTrqOlYiIiIhIVoJCgZAhw2Hr5Cx3KJWSVrtd9e3bl7tZEREREZHJqRvcBlWqvSB3GJWWVsnHxo0bdRwGEREREZFhs7CyRkD7jnKHUamVK/nIy8vD9u3bER8fD1dXV3Tt2hVeXl76io2IiIiIyGC8FPIKrO3s5Q6jUitz8pGSkoKWLVsiPj4eoigCeLzt7i+//ILQ0FC9BUhEREREJDcLK2vUbdlG7jAqvTIvOJ87dy4SEhIwadIk7Ny5E0uXLoWNjQ1Gjx6tz/iIiIiIiGRX46UGsLCyljuMSq/MMx979+5FeHg4Pv30U3WZh4cHBg8ejLi4ONStW1cvARIRERERyc3T70W5QzAKZZ75SExMROvWrTXKWrduDVEUkZycrPPAiIiIiIgMhbNHNblDMAplTj7y8/Nhba051fTkfVFRkW6jIiIiIiIyIA5Vq8odglEo125XCQkJOHv2rPp9RkYGAODq1atwdnYuVr9JkyYVi46IiIiISGbmlpZc76Ejgvhk66rnUCgUJT5YUBTFYuVPypRKpW6iNCBnz55FYGAgzpw5w+SKiIiIyATkpKfBztlF7jCMQplnPjZs2KDPOIiIiIiIDJLCXKvnclMJyvyVHDp0qD7jICIiIiIySAqFmdwhGI0yLzgnIiIiIjJFCgV/ZNYVfiWJiIiIiJ6l+LJn0hKTDyIiIiKiZzC3tJI7BKPB5IOIiIiI6BlK2vGVtMPkg4iIiIiIJFFpk4/58+ejZcuWsLW1LfEBhyURRREzZ86El5cXbGxsEBoaiqtXr+o3UCIiIiIiAlCJk4+CggL0798fY8aMKfM5CxcuxPLly7F69WqcOHECdnZ2CAsLQ15enh4jJSIiIiIioBzP+TA0s2fPBgBs3LixTPVFUcTSpUsxffp09OzZEwDw1VdfwcPDA7/88gsGDhyor1CJiIiIiAiVeOajvOLj45GUlITQ0FB1mZOTE5o3b47Y2NhSz8vPz0dmZqb6lZ2dLUW4RERERERGx2SSj6SkJACAh4eHRrmHh4f6WEmioqLg5OSkfoWEhOg1TiIiIiIiY2VQt119+OGH+Pjjj59Z5/Lly6hXr55EEQFTpkxBRESE+v358+dNJgG5d+8e7t27J3cYpCNeXl7w8vKSOwzSIY5R48Ixalw4Po0Lx6fuGFTy8e677+KNN954Zp1atWpp1banpycAIDk5WeMfT3JyMho1alTqeVZWVrCy+vfBMi+++CJmzZpl9P8A8/PzMWjQIBw6dEjuUEhHQkJCsGfPHo1/z1R5cYwaH45R48HxaXw4PnXHoJIPNzc3uLm56aVtX19feHp6IiYmRp1sZGZm4sSJE+XaMcvLywuRkZF6idGQ5Ofn49ChQzh06BDs7e3lDocqKDs7GyEhIcjPz+c3TiPBMWpcOEaNC8enceH41C2DSj7KIzExEQ8fPkRiYiKUSiXOnz8PAPDz81MP9Hr16iEqKgq9e/eGIAiYOHEi5s2bhxdffBG+vr6YMWMGqlWrhl69esn3QQxco0aN4OjoKHcYVEGZmZlyh0B6wjFqHDhGjRPHp3Hg+NStSpt8zJw5E5s2bVK/b9y4MQDgwIEDaNeuHQAgLi4OGRkZ6jqTJ09GTk4ORo0ahfT0dLRu3RrR0dGwtraWNHYiIiIiIlMkiKIoyh0EGZ7MzEw4OTkhIyODv7UxAuxP48M+NS7sT+PC/jQu7E/dMpmtdql8rKysMGvWLN7baCTYn8aHfWpc2J/Ghf1pXNifusWZDyIiIiIikgRnPoiIiIiISBJMPoiIiIiISBJMPoiIiIiISBJMPoiIiIiISBJMPogMhCAIZXodPHiwwtfKzc1FZGRkudqaP38+evToAQ8PDwiCgMjIyArHQVRZGPL4vHLlCiZPnoxGjRrBwcEBXl5e6Nq1K06fPl3hWIgqC0Meo3fv3sWQIUNQt25dODg4wNnZGUFBQdi0aRNMcd+nSvuQQSJj8/XXX2u8/+qrr7Bv375i5fXr16/wtXJzczF79mwAUD+U83mmT58OT09PNG7cGHv27KlwDESViSGPzy+//BLr1q1D37598fbbbyMjIwNffPEFWrRogejoaISGhlY4JiJDZ8hj9P79+7h9+zb69euHmjVrorCwEPv27cMbb7yBuLg4LFiwoMIxVSZMPogMxJAhQzTeHz9+HPv27StWLpf4+Hj4+Pjg/v37cHNzkzscIkkZ8vgcNGgQIiMjYW9vry4bPnw46tevj8jISCYfZBIMeYw2aNCg2CzJuHHj0L17dyxfvhxz586FmZmZPMHJgLddEVUiKpUKS5cuxUsvvQRra2t4eHhg9OjRSEtL06h3+vRphIWFwdXVFTY2NvD19cXw4cMBAAkJCerkYfbs2eqp6OfdRuXj46OPj0RkNOQan4GBgRqJBwBUrVoVbdq0weXLl3X7IYkqMTn/Dy2Jj48PcnNzUVBQUOHPVplw5oOoEhk9ejQ2btyIYcOGYfz48YiPj8eKFStw7tw5/PHHH7CwsEBKSgo6deoENzc3fPjhh3B2dkZCQgJ+/vlnAICbmxs+//xzjBkzBr1790afPn0APP7NDBFpz9DGZ1JSElxdXXX6GYkqM7nH6KNHj5CTk4Ps7GwcOnQIGzZsQHBwMGxsbPT6uQ2OSEQGaezYseJ/h+iRI0dEAOK3336rUS86OlqjfNu2bSIA8dSpU6W2nZqaKgIQZ82aVe64KnIukbEw1PH5xOHDh0VBEMQZM2Zo3QZRZWaIYzQqKkoEoH698sorYmJiYrnaMAa87Yqokvjhhx/g5OSEjh074v79++rXk1suDhw4AABwdnYGAOzcuROFhYUyRkxkOgxpfKakpGDw4MHw9fXF5MmT9XINosrGEMbooEGDsG/fPmzevBmDBw8G8Hg2xNQw+SCqJK5evYqMjAy4u7vDzc1N45WdnY2UlBQAQEhICPr27YvZs2fD1dUVPXv2xIYNG5Cfny/zJyAyXoYyPnNyctCtWzdkZWVh+/btxdaCEJkqQxij3t7eCA0NxaBBg/Dtt9+iVq1aCA0NNbkEhGs+iCoJlUoFd3d3fPvttyUef7IAThAE/Pjjjzh+/Dh+/fVX7NmzB8OHD8eiRYtw/Phx/jBCpAeGMD4LCgrQp08fXLx4EXv27EFAQIDWbREZG0MYo0/r168f1q5di8OHDyMsLExn7Ro6Jh9ElUTt2rXx+++/o1WrVmVanNaiRQu0aNEC8+fPx+bNm/Haa69hy5YtGDFiBARBkCBiItMh9/hUqVQIDw9HTEwMvv/+e4SEhGjzMYiMltxjtCRPZjwyMjJ00l5lwduuiCqJ//3vf1AqlZg7d26xY0VFRUhPTwcApKWlFXtiaqNGjQBAPW1sa2sLAOpziKhi5B6f77zzDrZu3YpVq1apd98hon/JOUZTU1NLLF+3bh0EQUCTJk3K1I6x4MwHUSUREhKC0aNHIyoqCufPn0enTp1gYWGBq1ev4ocffsCyZcvQr18/bNq0CatWrULv3r1Ru3ZtZGVlYe3atXB0dESXLl0AADY2NvD398fWrVtRp04dVKlSBQEBAc+8TePrr7/GzZs3kZubCwA4fPgw5s2bBwB4/fXX4e3trf8vApGBknN8Ll26FKtWrUJwcDBsbW3xzTffaBzv3bs37Ozs9P41IDJkco7R+fPn448//kDnzp1Rs2ZNPHz4ED/99BNOnTqFd955B35+flJ+KeQn825bRFSKp7cJfGLNmjViYGCgaGNjIzo4OIgvv/yyOHnyZPHu3buiKIri2bNnxUGDBok1a9YUraysRHd3d7Fbt27i6dOnNdo5duyYGBgYKFpaWpZpy8CQkBCNLQL/+zpw4ICuPjZRpWBI43Po0KGljk0AYnx8vC4/OlGlYEhjdO/evWK3bt3EatWqiRYWFqKDg4PYqlUrccOGDaJKpdLp564MBFF8am6JiIiIiIhID7jmg4iIiIiIJMHkg4iIiIiIJMHkg4iIiIiIJMHkg4iIiIiIJMHkg4iIiIiIJMHkg4iIiIiIJMHkg8gIJCQkQBAEbNy4Ue5QiKgEHKNEhovjU1pMPoiIiIiISBJ8yCCRERBFEfn5+bCwsICZmZnc4RDRUzhGiQwXx6e0mHwQEREREZEkeNsVkYGIjIyEIAj4559/MGTIEDg5OcHNzQ0zZsyAKIq4desWevbsCUdHR3h6emLRokXqc0u6X/WNN96Avb097ty5g169esHe3h5ubm547733oFQq1fUOHjwIQRBw8OBBjXhKajMpKQnDhg3DCy+8ACsrK3h5eaFnz55ISEjQ01eFyHBwjBIZLo7PyoPJB5GBGTBgAFQqFT766CM0b94c8+bNw9KlS9GxY0dUr14dH3/8Mfz8/PDee+/h8OHDz2xLqVQiLCwMVatWxaeffoqQkBAsWrQIa9as0Sq2vn37Ytu2bRg2bBhWrVqF8ePHIysrC4mJiVq1R1QZcYwSGS6Oz0pAJCKDMGvWLBGAOGrUKHVZUVGR+MILL4iCIIgfffSRujwtLU20sbERhw4dKoqiKMbHx4sAxA0bNqjrDB06VAQgzpkzR+M6jRs3FgMDA9XvDxw4IAIQDxw4oFHv6TbT0tJEAOInn3yimw9MVMlwjBIZLo7PyoMzH0QGZsSIEeq/m5mZoWnTphBFEW+++aa63NnZGXXr1sWNGzee295bb72l8b5NmzZlOu9pNjY2sLS0xMGDB5GWllbu84mMBccokeHi+DR8TD6IDEzNmjU13js5OcHa2hqurq7Fyp/3Dcza2hpubm4aZS4uLlp947OyssLHH3+M3377DR4eHmjbti0WLlyIpKSkcrdFVJlxjBIZLo5Pw8fkg8jAlLTNX2lb/4nP2ayuLFsGCoJQYvl/F9Q9MXHiRPzzzz+IioqCtbU1ZsyYgfr16+PcuXPPvQ6RseAYJTJcHJ+Gj8kHkYlzcXEBAKSnp2uU37x5s8T6tWvXxrvvvou9e/fir7/+QkFBgcauIUSkWxyjRIaL47P8mHwQmThvb2+YmZkV2/Vj1apVGu9zc3ORl5enUVa7dm04ODggPz9f73ESmSqOUSLDxfFZfuZyB0BE8nJyckL//v3x2WefQRAE1K5dGzt37kRKSopGvX/++QevvPIK/ve//8Hf3x/m5ubYtm0bkpOTMXDgQJmiJzJ+HKNEhovjs/yYfBARPvvsMxQWFmL16tWwsrLC//73P3zyyScICAhQ16lRowYGDRqEmJgYfP311zA3N0e9evXw/fffo2/fvjJGT2T8OEaJDBfHZ/kI4vNW2xAREREREekA13wQEREREZEkmHwQEREREZEkmHwQEREREZEkmHwQEREREZEkmHwQEREREZEkmHwQUbkkJCRAEARs3LhR7lCIqAQco0SGi+OTyQeRXl2/fh2jR49GrVq1YG1tDUdHR7Rq1QrLli3Do0eP9HbdS5cuITIyEgkJCXq7RlnMnz8fPXr0gIeHBwRBQGRkpKzxED3NlMfolStXMHnyZDRq1AgODg7w8vJC165dcfr0adliIvovUx6fd+/exZAhQ1C3bl04ODjA2dkZQUFB2LRpEyr7UzL4kEEiPdm1axf69+8PKysrhIeHIyAgAAUFBTh69Cjef/99/P3331izZo1ern3p0iXMnj0b7dq1g4+Pj16uURbTp0+Hp6cnGjdujD179sgWB1FJTH2Mfvnll1i3bh369u2Lt99+GxkZGfjiiy/QokULREdHIzQ0VJa4iACOz/v37+P27dvo168fatasicLCQuzbtw9vvPEG4uLisGDBAlni0gUmH0R6EB8fj4EDB8Lb2xv79++Hl5eX+tjYsWNx7do17Nq1S8YI/yWKIvLy8mBjY6PztuPj4+Hj44P79+/Dzc1N5+0TaYtjFBg0aBAiIyNhb2+vLhs+fDjq16+PyMhIJh8kG45PoEGDBjh48KBG2bhx49C9e3csX74cc+fOhZmZmU6vKRXedkWkBwsXLkR2djbWrVun8U3zCT8/P0yYMEH9vqioCHPnzkXt2rVhZWUFHx8fTJ06Ffn5+Rrn+fj4oFu3bjh69CiCgoJgbW2NWrVq4auvvlLX2bhxI/r37w8AaN++PQRBgCAI6m9iT9rYs2cPmjZtChsbG3zxxRcAgBs3bqB///6oUqUKbG1t0aJFiwp9g5dz1oXoWThGgcDAQI3EAwCqVq2KNm3a4PLly1q1SaQLHJ+l8/HxQW5uLgoKCnTarqREItK56tWri7Vq1Spz/aFDh4oAxH79+okrV64Uw8PDRQBir169NOp5e3uLdevWFT08PMSpU6eKK1asEJs0aSIKgiD+9ddfoiiK4vXr18Xx48eLAMSpU6eKX3/9tfj111+LSUlJ6jb8/PxEFxcX8cMPPxRXr14tHjhwQExKShI9PDxEBwcHcdq0aeLixYvFhg0bigqFQvz555/VMcTHx4sAxA0bNpT586WmpooAxFmzZpX5HCJ94hgtXcuWLcU6depodS6RLnB8/is3N1dMTU0V4+PjxY0bN4p2dnZiy5Yty/y1MURMPoh0LCMjQwQg9uzZs0z1z58/LwIQR4wYoVH+3nvviQDE/fv3q8u8vb1FAOLhw4fVZSkpKaKVlZX47rvvqst++OEHEYB44MCBYtd70kZ0dLRG+cSJE0UA4pEjR9RlWVlZoq+vr+jj4yMqlUpRFJl8UOXHMVq6w4cPi4IgiDNmzCj3uUS6wPGpKSoqSgSgfr3yyitiYmJimc41VLztikjHMjMzAQAODg5lqr97924AQEREhEb5u+++CwDFpmz9/f3Rpk0b9Xs3NzfUrVsXN27cKHOMvr6+CAsLKxZHUFAQWrdurS6zt7fHqFGjkJCQgEuXLpW5fSJDxjFaspSUFAwePBi+vr6YPHlyhdoi0hbHp6ZBgwZh37592Lx5MwYPHgwAet3pSwpMPoh0zNHREQCQlZVVpvo3b96EQqGAn5+fRrmnpyecnZ1x8+ZNjfKaNWsWa8PFxQVpaWlljtHX17fEOOrWrVusvH79+urjRMaAY7S4nJwcdOvWDVlZWdi+fXuxtSBEUuH41OTt7Y3Q0FAMGjQI3377LWrVqoXQ0NBKnYAw+SDSMUdHR1SrVg1//fVXuc4TBKFM9Urb3UIsx77f+tjZiqiy4BjVVFBQgD59+uDixYvYvn07AgICJLs20dM4Pp+tX79+uHXrFg4fPixbDBXF5INID7p164br168jNjb2uXW9vb2hUqlw9epVjfLk5GSkp6fD29u73Ncv6zfhp+OIi4srVn7lyhX1cSJjwTH6mEqlQnh4OGJiYrB582aEhISUuw0iXeP4LN2TGY+MjAydtCcHJh9EejB58mTY2dlhxIgRSE5OLnb8+vXrWLZsGQCgS5cuAIClS5dq1Fm8eDEAoGvXruW+vp2dHQAgPT29zOd06dIFJ0+e1Phmn5OTgzVr1sDHxwf+/v7ljoPIUHGMPvbOO+9g69atWLVqFfr06VPu84n0geMTSE1NLbF83bp1EAQBTZo0KVd7hoQPGSTSg9q1a2Pz5s0YMGAA6tevr/F01mPHjuGH/2vvjlkaCcIwjj9n2BiEQEiRQjBEv4BWgqRYTKVokUDakDSWsY5lQIvUgkUsZEkghWyXKqVgE7+BTcgXCNqEgJD3Crlwi6eQgxvvzv8Pptmd2WWLgXl2mXdvb1Wr1SRJ29vbqlararfbenp6ku/7Gg6HCoJAxWJR+/v7S99/Z2dHsVhMrVZLz8/PWl1dVaFQUCaTeXdMo9FQr9fT4eGhTk9PlU6nFQSBRqORwjDUysry7yo6nY7G47Gm06kk6e7uTufn55KkSqXC1xR8Gubo62Lt6upKe3t7WltbU7fbjZwvlUqLRRjgEvNTuri40P39vQ4ODpTNZjWZTBSGoR4eHlSv19/scfmnfHK1LeC/9vj4aCcnJ5bL5Swej1symbR8Pm+Xl5c2m80W/V5eXqzZbNrm5qZ5nmcbGxt2dnYW6WP2WuLv6OjozX183zff9yPHrq+vbWtry2KxWKRk4HvXMHutb14uly2VSlkikbDd3V3r9/uRPsuUCfR9P1Ii8Of2qxKGgGtfeY7++DfCe200Gn04HvjTvvL8HAwGdnx8bOvr6+Z53uLZb25ubD6ffzj2b/fNbIkdNgAAAADwm9jzAQAAAMAJwgcAAAAAJwgfAAAAAJwgfAAAAABwgvABAAAAwAnCBwAAAAAnCB8AAAAAnCB8AAAAAHCC8AEAAADACcIHAAAAACcIHwAAAACcIHwAAAAAcILwAQAAAMCJ74aFT5YEw/V/AAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -752,11 +752,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:58:07 2025.\n",
+ "The current time is Tue Mar 25 17:22:26 2025.\n",
"\n",
"Effect size(s) with 95% confidence intervals will be computed for:\n",
"1. Test 1 minus Control 1\n",
@@ -786,11 +786,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:58:07 2025.\n",
+ "The current time is Tue Mar 25 17:22:27 2025.\n",
"\n",
"The unpaired mean difference between Control 1 and Test 1 is 0.575 [95%CI 0.35, 0.725].\n",
"The p-value of the two-sided permutation t-test is 0.0, calculated for legacy purposes only. \n",
@@ -828,7 +828,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq4AAAInCAYAAABZQNsWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAkxJJREFUeJzs3Xd4k1X/BvD7Sdqme0AnZbRsaplFoKwCFooMmf4QRBAEGaJAVaRsZFR4laUM2TiQuhgCFrBsKBuUWRktZXXRvdvk+f3BS15jB22a5GnS+3NduSTPvMMR+PbkPOcIoiiKICIiIiKq5GRSByAiIiIiKgsWrkRERERkFFi4EhEREZFRYOFKREREREaBhSsRERERGQUWrkRERERkFFi4EhEREZFRYOFKREREREaBhSsRERERGQUWruX05MkTzJs3D0+ePJE6ChEREVGVwsK1nJ48eYL58+ezcCUiIiIyMBauRERERGQUWLgSERERkVFg4UpERERERsGoC9fjx4+jb9++qFGjBgRBwK5du154ztGjR9GqVSsoFArUr18fW7du1XtOIiIiIqo4oy5cs7Ky0Lx5c6xevbpMx0dHR6N3797o2rUrrly5gilTpmDMmDE4cOCAnpMSERERUUWZSR2gIl599VW8+uqrZT5+3bp18Pb2xhdffAEAaNKkCU6ePInly5cjKChIXzGJiIiISAeMunAtr8jISAQGBmpsCwoKwpQpU0o8Jy8vD3l5eer3mZmZ+opXoolfbEdKRrbB7ysVJztrrPlwmNQx9ObKpsnIz0yROobBWNg6ocU7K6WOoTcfbPoAKVWoPZ1snbDqnVVSx9CrP6ZNQ25qqtQxDMbS0RGBS5dKHUNvwtYeRHZmrtQxDMba1hJDJvSQOobeVKnCNS4uDm5ubhrb3NzckJ6ejpycHFhZWRU5JzQ0FPPnzzdUxGKlZGQjKc3wBTPpR35mCvIznkodg3QkJTMFT9meJiU3NRU5yclSxyAdyc7MRVZ6jtQxSEeqVOGqjZCQEAQHB6vfX7lyBQEBAZJkkQkCqtnbSHJvQ0hOz4JKFKWOYTiCDBa2TlKn0Jv8zBRAVEkdw2BkggxOJtyeKZkpUFWh9gQAyGSwcnSUOoXe5KSmAqqq06aCIMDazlLqGHqTnZELsQr8G1qlCld3d3fEx8drbIuPj4e9vX2xva0AoFAooFAo1O9tbW31mrE01ext8MO8MZLdX9+GzttYpXqWLWyd0GbyN1LH0JtzK0dUqZ5lJ1snfDv5W6lj6M1bK9+qcj3LVo6O6LN+vdQx9Gbvu+9WqZ5laztLjPr4Nalj6M2W/+ypEj3Lks0qIIoiDh8+jN9//x0ZGRkGuae/vz8iIiI0th06dAj+/v4GuT8RERERac8ghevMmTPRtWtX9XtRFNGjRw90794dvXv3RtOmTXH37t1yXzczMxNXrlzBlStXADyb7urKlSuIjY0F8Oxr/hEjRqiPHz9+PO7du4dp06bh1q1bWLNmDX788UdMnTq1Yh+QiIiIiPTOIIXrL7/8gjZt2qjf//zzz4iIiMDChQuxd+9eKJVKzJs3r9zXvXDhAlq2bImWLVsCAIKDg9GyZUvMmTMHAPDkyRN1EQsA3t7e2LdvHw4dOoTmzZvjiy++wMaNGzkVFhEREZERMMgY10ePHqF+/frq97/++it8fHwQEhICAJgwYQLWrl1b7ut26dKl1IHIxa2K1aVLF1y+fLnc9yIiIiIiaRmkx9XMzEw9F6ooioiIiEDPnj3V+93c3JCUlGSIKERERERkpAxSuPr6+uK7775DSkoKtmzZgqdPn6J3797q/ffv34ezs7MhohARERGRkTLIUIE5c+agb9++6uK0Q4cOGg9r7du3Dy+//LIhohARERGRkTJI4dq9e3dcunQJhw4dgqOjI4YMGaLel5KSgs6dO6Nfv36GiEJERERERspgCxD4+PjAx8enyHYnJycsX77cUDGIiIiIyEgZpHDNyMhAamoqatWqpd72+PFjrFu3Dnl5eRg8eDCHChARERFRqQxSuL777ruIjo7GmTNnAADp6elo164dHj58CJlMhpUrVyI8PBxdunQxRBwiIiIiMkIGmVXg5MmT6NOnj/r9d999h8ePH+P06dNISUlBs2bNsHDhQkNEISIiIiIjZZDCNSkpCZ6enur3e/bsQceOHdGuXTvY2dlhxIgR+PPPPw0RhYiIiIiMlEEKV0dHR8TFxQEAcnJycOLECfTo0UO938zMDNnZ2YaIQkRERERGyiBjXNu3b481a9agcePGCA8PR25ursb0V3///bdGjywRERER0b8ZpHBdsmQJevTogUGDBgEAPvzwQ7z00ksAAKVSiZ9++kljCVgiIiIion8zSOFav359REVF4caNG3BwcICXl5d6X3Z2Nr766is0b97cEFGIiIiIyEgZbAECc3PzYotTOzs7rppFRERERC9kkIezgGdzt3722WcICgpCy5Ytce7cOQBAcnIyli1bhjt37hgqChEREREZIYP0uD58+BABAQF48OABGjRogFu3biEzMxMAUK1aNXz99de4f/8+Vq5caYg4RERERGSEDFK4fvzxx8jIyMCVK1fg6uoKV1dXjf39+/fH3r17DRGFiIiIiIyUQYYKHDx4EB988AF8fHwgCEKR/XXr1sWDBw8MEYWIiIiIjJRBCtecnBy4uLiUuD8jI8MQMYiIiIjIiBmkcPXx8cHx48dL3L9r1y60bNnSEFGIiIiIyEgZpHCdMmUKduzYgSVLliAtLQ0AoFKpcOfOHbz11luIjIzE1KlTDRGFiIiIiIyUQR7OGj58OO7fv49Zs2Zh5syZAICePXtCFEXIZDIsXrwY/fv3N0QUIiIiIjJSBluAYObMmXjrrbfwyy+/4M6dO1CpVKhXrx4GDhyIunXrGioGERERERkpgxWuAFC7dm0OCSAiIiIirRhkjOulS5ewZs2aEvevWbMGV65cMUQUIiIiIjJSBilcZ86ciT/++KPE/YcPH8asWbMMEYWIiIiIjJRBCteLFy+iU6dOJe7v1KkTLly4YIgoRERERGSkDFK4ZmRkwMys5OG0MplMPU1Wea1evRpeXl6wtLRE27Ztce7cuVKPX7FiBRo1agQrKyvUqlULU6dORW5urlb3JiIiIiLDMUjh2qBBAxw8eLDE/eHh4VrNLBAWFobg4GDMnTsXly5dQvPmzREUFISEhIRij9++fTumT5+OuXPn4ubNm9i0aRPCwsIwY8aMct+biIiIiAzLIIXrO++8g3379iE4OBipqanq7ampqZg6dSrCw8PxzjvvlPu6y5Ytw9ixYzFq1Cj4+Phg3bp1sLa2xubNm4s9/vTp0+jQoQOGDRsGLy8v9OjRA0OHDn1hLy0RERERSc8ghesHH3yAkSNHYsWKFXB2dkbt2rVRu3ZtODs7Y+XKlRg+fHi5p8nKz8/HxYsXERgYqN4mk8kQGBiIyMjIYs9p3749Ll68qC5U7927h/3796NXr17afzgiIiIiMgiDzOMqCAK2bNmCESNG4JdffsG9e/cAAP369cOgQYPQpUuXcl8zKSkJSqUSbm5uGtvd3Nxw69atYs8ZNmwYkpKS0LFjR4iiiMLCQowfP77UoQJ5eXnIy8tTv8/MzCx3ViKptW7dGnFxcXB3d+eDkEREZLQMugBB165d0bVrV0PeUsPRo0exePFirFmzBm3btsWdO3cwefJkLFiwALNnzy72nNDQUMyfP9/ASYl0Ky4uDo8ePZI6BhERUYUYZKhAdHQ0fvvttxL3//bbb4iJiSnXNZ2dnSGXyxEfH6+xPT4+Hu7u7sWeM3v2bLz11lsYM2YMmjZtigEDBmDx4sUIDQ2FSqUq9pyQkBCkpaWpX8eOHStXTiIiIiLSDYMUrh999BFWrVpV4v7Vq1dj+vTp5bqmhYUF/Pz8EBERod6mUqkQEREBf3//Ys/Jzs6GTKb5keVyOQBAFMViz1EoFLC3t1e/bG1ty5WTiIiIiHTDIIVrZGQkunfvXuL+V155BSdOnCj3dYODg7FhwwZs27YNN2/exIQJE5CVlYVRo0YBAEaMGIGQkBD18X379sXatWuxY8cOREdH49ChQ5g9ezb69u2rLmCJiIiIqHIyyBjXlJQU2NnZlbjf1tYWT58+Lfd1hwwZgsTERMyZMwdxcXFo0aIFwsPD1Q9sxcbGavSwzpo1C4IgYNasWXj06BFcXFzQt29fLFq0qPwfioiIiIgMyiCFa+3atXHq1ClMmDCh2P0nTpxAzZo1tbr2pEmTMGnSpGL3HT16VOO9mZkZ5s6di7lz52p1LyIiIiKSjkGGCgwdOhQ//PADVq1apfEQlFKpxMqVKxEWFoZhw4YZIgoRERERGSmD9LiGhITg5MmTmDJlChYtWoRGjRoBAKKiopCYmIguXbpg5syZhohCREREREbKID2uCoUCBw8exKZNm9CmTRskJSUhKSkJbdq0webNm/HHH39AoVAYIgoRERERGSmDLUAgk8kwatQo9RP/RERERETlYZAeVyIiIiKiijJIj2u3bt1eeIwgCBqLCRARERER/ZNBCleVSgVBEDS2KZVK3L9/Hw8ePED9+vXh6elpiChEVdLzZZBLWg6ZiIjIGBikcP33fKr/tHfvXrz77rtYtmyZIaIQVUkXLlyQOgIREVGFGezhrJL06dMHw4cPx5QpU3Ds2DGp4xAZRJrgAGQWYt8i056/2EHqAEREZFIqxcNZ9erVw/nz56WOQURERESVmOQ9roWFhfjxxx/h7OwsdRQikzVlzQGkZObAydYKKyYGSR2HiIhIKwYpXEePHl3s9tTUVJw5cwZxcXEc40qkRymZOXianiN1DCIiogoxSOF6+PDhIrMKCIIAJycndOzYEWPGjEGPHj0MEYWIiIiIjJRBCteYmBhD3IaIiIiITFileDiLiIiIiOhF9Fa4ZmdnIzY2Fvn5+UX2bd68Ga+88gp8fHwwcOBAzihARERERC+kt8L1008/RbNmzYoUrgsXLsTYsWNx7NgxJCYmYteuXejSpQv+/PNPfUUhIiIiIhOgt8L1yJEj6NOnD2xtbdXb0tPTsXDhQnh6euL27dtITEzEmTNnYGFhgc8++0xfUYiIiIjIBOitcI2JiUGzZs00tu3fvx/5+fn45JNP4O3tDQBo06YNRo0ahRMnTugrChERERGZAL0VrhkZGahevbrGtuPHj0MQBAQFaU6A7uPjg8TERH1FISIiIiIToLfCtU6dOrh165bGtqNHj8LNzQ3169fX2J6fnw97e3t9RSEiIiIiE6C3wrVHjx7YvHkzzp49CwD45ptvcOvWLQwYMKDIsRcvXoSXl5e+ohARERGRCdDbAgSzZ8/Grl270L59e8jlchQWFsLFxQVz5szROC47Oxs7d+7Eu+++q68oRFWek62Vxn+JiIiMkd4KV2dnZ1y5cgUbN27EvXv3UKdOHYwePRqurq4ax127dg1vvvkm3nrrLX1FIaryVkwMevFBRERElZxel3x1cnLCxx9/XOoxbdq0QZs2bfQZg4iIiIhMAJd8JSIiIiKjwMKViIiIiIwCC1ciIiIiMgpGX7iuXr0aXl5esLS0RNu2bXHu3LlSj09NTcV7770HDw8PKBQKNGzYEPv37zdQWiIiIiLSll4K1z179uDx48f6uLSGsLAwBAcHY+7cubh06RKaN2+OoKAgJCQkFHt8fn4+unfvjpiYGPz888+IiorChg0b4OnpqfesRERERFQxeilcBwwYgKNHj6rf161bF3v27NH5fZYtW4axY8di1KhR8PHxwbp162BtbY3NmzcXe/zmzZuRnJyMXbt2oUOHDvDy8kJAQACaN2+u82xEREREpFt6KVzt7OyQmpqqfh8TE4PMzEyd3iM/Px8XL15EYGCgeptMJkNgYCAiIyOLPWfPnj3w9/fHe++9Bzc3N/j6+mLx4sVQKpUl3icvLw/p6enql64/BxERERGVjV7mcW3Tpg0WLVqE+Ph4ODg4AAD279+PuLi4Es8RBAFTp04t8z2SkpKgVCrh5uamsd3NzQ23bt0q9px79+7h8OHDePPNN7F//37cuXMHEydOREFBAebOnVvsOaGhoZg/f36ZcxERERGRfuilcF2zZg1GjBiBBQsWAHhWlG7fvh3bt28v8ZzyFq7aUKlUcHV1xfr16yGXy+Hn54dHjx7hP//5T4mFa0hICIKDg9Xvr1y5goCAAL3mJCIiIqKi9FK41q9fH6dPn0Zubi4SEhLg5eWFFStWoF+/fjq7h7OzM+RyOeLj4zW2x8fHw93dvdhzPDw8YG5uDrlcrt7WpEkTxMXFIT8/HxYWFkXOUSgUUCgU6ve2trY6+gREREREVB56XfLV0tIStWvXxty5c9GtWzfUqVNHZ9e2sLCAn58fIiIi0L9/fwDPelQjIiIwadKkYs/p0KEDtm/fDpVKBZns2fDev//+Gx4eHsUWrURERERUeRhkHte5c+fC19cXAJCZmYmbN2/i5s2bFX7QKTg4GBs2bMC2bdtw8+ZNTJgwAVlZWRg1ahQAYMSIEQgJCVEfP2HCBCQnJ2Py5Mn4+++/sW/fPixevBjvvfdehXIQERERkf7ptcf1n86fP49p06bh5MmTUKlUAJ7NAtCpUycsXboUrVu3Lvc1hwwZgsTERMyZMwdxcXFo0aIFwsPD1Q9sxcbGqntWAaBWrVo4cOAApk6dimbNmsHT0xOTJ0/GJ598opsPSURERER6Y5DC9ezZs+jSpQssLCwwZswYNGnSBABw8+ZN/PDDD+jcuTOOHj2KNm3alPvakyZNKnFowD/nkn3O398fZ86cKfd9iIiIiEhaBilcZ86cCU9PT5w8ebLIg1Pz5s1Dhw4dMHPmTBw6dMgQcYiIiIjICBlkjOvZs2cxbty4Yp/2d3Nzw7vvvsteUCIiIiIqlUEKV5lMhsLCwhL3K5VKjbGoRERERET/ZpBqsX379li9ejXu379fZF9sbCzWrFmDDh06GCIKERERERkpg4xxXbx4MTp37ozGjRtjwIABaNiwIQAgKioKu3fvhpmZGUJDQw0RhYiIiIiMlEEK15YtW+Ls2bOYOXMm9uzZg+zsbACAtbU1evbsiYULF8LHx8cQUYiIiIjISBlsHlcfHx/s3LkTKpUKiYmJAAAXFxeObSUiIiKiMjFY4fqcTCZTLxBARERERFRW7O4kIiIiIqPAwpWIiIiIjAILVyIiIiIyCixciYiIiMgosHAlIiIiIqNg0FkFbty4gXv37iElJQWiKBbZP2LECEPGISIiIiIjYpDC9e7duxg+fDjOnTtXbMEKAIIgsHAlIiIiohIZpHAdN24crl69ihUrVqBTp05wcnIyxG2JiIiIyIQYpHA9deoUZsyYgffff98QtyMiIiIiE2SQh7OcnZ3h4OBgiFsRERERkYkySOE6fvx4fPfdd1AqlYa4HRERERGZIIMMFWjYsCGUSiWaN2+O0aNHo1atWpDL5UWOGzhwoCHiEBEREZERMkjhOmTIEPWvP/roo2KPEQSBPbJEREREVCKDFK5HjhwxxG2IiIiIyIQZpHANCAgwxG2IiIiIyIQZdOUs4NnqWffv3wcA1KlTBz4+PoaOQERERERGyGCF6+7duxEcHIyYmBiN7d7e3li2bBlee+01Q0UhIiIiIiNkkOmw9u/fj0GDBgEAFi9ejJ07d2Lnzp1YvHgxRFHEwIEDER4ebogoRERERGSkDNLjumDBAjRr1gwnTpyAjY2Nevtrr72GSZMmoWPHjpg/fz569uxpiDhEREREZIQM0uP6119/YeTIkRpF63M2NjZ4++238ddff2l17dWrV8PLywuWlpZo27Ytzp07V6bzduzYAUEQ0L9/f63uS0RERESGZZDC1dLSEsnJySXuT05OhqWlZbmvGxYWhuDgYMydOxeXLl1C8+bNERQUhISEhFLPi4mJwUcffYROnTqV+55EREREJA2DFK7dunXDypUrERkZWWTf2bNnsWrVKgQGBpb7usuWLcPYsWMxatQo+Pj4YN26dbC2tsbmzZtLPEepVOLNN9/E/PnzUbdu3XLfk4iIiIikYZAxrkuXLoW/vz86duyINm3aoFGjRgCAqKgonDt3Dq6urliyZEm5rpmfn4+LFy8iJCREvU0mkyEwMLDYAvm5Tz/9FK6urnjnnXdw4sSJF94nLy8PeXl56veZmZnlyklEREREumGQHldvb2/89ddf+OCDD5CSkoKwsDCEhYUhJSUFkydPxp9//gkvL69yXTMpKQlKpRJubm4a293c3BAXF1fsOSdPnsSmTZuwYcOGMt8nNDQUDg4O6hcXUyAiIiKShsHmcXV1dcXy5cuxfPlyQ91SQ0ZGBt566y1s2LABzs7OZT4vJCQEwcHB6vdXrlxh8UpEREQkAYOvnKUrzs7OkMvliI+P19geHx8Pd3f3IsffvXsXMTEx6Nu3r3qbSqUCAJiZmSEqKgr16tUrcp5CoYBCoVC/t7W11dVHICIiIqJy0EvhOnr0aAiCgPXr10Mul2P06NEvPEcQBGzatKnM97CwsICfnx8iIiLUU1qpVCpERERg0qRJRY5v3Lgxrl69qrFt1qxZyMjIwMqVK1GrVq0y35uIiIiIDE8vhevhw4chk8mgUqkgl8tx+PBhCIJQ6jkv2l+c4OBgjBw5Eq1bt0abNm2wYsUKZGVlYdSoUQCAESNGwNPTE6GhobC0tISvr6/G+Y6OjgBQZDsRERGRtlq3bo24uDi4u7vjwoULUscxKXopXGNiYkp9rytDhgxBYmIi5syZg7i4OLRo0QLh4eHqB7ZiY2Mhkxnk+TMiIiIiAEBcXBwePXokdQyTZJAxrrGxsXBxcYGVlVWx+3NycpCYmIjatWuX+9qTJk0qdmgAABw9erTUc7du3Vru+xERERGRNAw2HdbOnTtL3L9nzx54e3sbIgoRERERGSmDFK6iKJa6v6CggF/pExEREVGp9DZUID09Hampqer3T58+RWxsbJHjUlNTsWPHDnh4eOgrChERUaXGh3mIykZvhevy5cvx6aefAng2Y8CUKVMwZcqUYo8VRRELFy7UVxQiIqJKjQ/zEJWN3grXHj16wNbWFqIoYtq0aRg6dChatWqlcYwgCLCxsYGfnx9at26tryhEREREZAL0Vrj6+/vD398fAJCVlYVBgwZxvlQiIiIi0prep8PKzs7GqlWrYG1tzcKViIiIiLSm90f5ra2tYWZmBhsbG33fioiIiIhMmEHmoBo0aBB+/vnnF06LRURERERUEoOsnPXGG29g4sSJ6Nq1K8aOHQsvL69iV9H698NbRERERETPGaRw7dKli/rXJ06cKLJfFEUIggClUmmIOERERER64+7urvFf0h2DFK5btmwxxG2IiIiIJMdFJPTHIIXryJEjDXEbIiIioqIs8pGVm4+vFnwrdRI9s5A6gN4ZpHD9p8zMTDx48AAAUKtWLdja2ho6AhEREREZIYPMKgAA58+fR9euXeHk5ARfX1/4+vrCyckJ3bp1Y5c6ERERmYyl6+Zg9ueTsXTdHKmjmByD9LiePXsWXbp0gYWFBcaMGYMmTZoAAG7evIkffvgBnTt3xtGjR9GmTRtDxCEiIqpU+DCPacnITENqeorUMUySQQrXmTNnwtPTEydPnizyh3LevHno0KEDZs6ciUOHDhkiDhERUaXCbx6JysZgPa5z5swp9idJNzc3vPvuu1iwYIEhohAREb1Qlo0NsvLysNXEHy7mmpZkbAwyxlUmk6GwsLDE/UqlEjKZwYbbEhEREZERMki12L59e6xevRr3798vsi82NhZr1qxBhw4dDBGFiIio0pm/bx+Cf/4Z8/ftkzoKUaVmkKECixcvRufOndG4cWMMGDAADRs2BABERUVh9+7dMDMzQ2hoqCGiEBERVTppOTlIyc6WOgZRpWeQwrVly5Y4e/YsZs6ciT179iD7v384ra2t0bNnTyxcuBA+Pj6GiEJERERERspgCxD4+Phg586dUKlUSExMBAC4uLhwbCsRERERlYnBV84SBAGCIKh/TURERERUFgbr7rxx4wYGDx4Me3t7eHh4wMPDA/b29hg8eDCuXbtmqBhEREavdevWqFmzJlq3bi11FCIigzJIj+uJEyfw6quvQqVSoV+/fhoPZ+3Zswe///47wsPD0alTJ0PEISIyanFxcXj06JHUMYiIDM4ghevUqVPh6uqKY8eOoVatWhr7Hjx4gM6dOyM4OBjnz583RBwiIiIiMkIGGSpw/fp1TJw4sUjRCgC1atXChAkTcP36da2uvXr1anh5ecHS0hJt27bFuXPnSjx2w4YN6NSpE5ycnODk5ITAwMBSjyciIiIqLztbBzjaO8HO1kHqKCbHID2uderUQV5eXon78/Pziy1qXyQsLAzBwcFYt24d2rZtixUrViAoKAhRUVFwdXUtcvzRo0cxdOhQtG/fHpaWlliyZAl69OiB69evw9PTs9z3JyIiIvq3aeM/lTqCyTJIj+ucOXOwatUqXLlypci+y5cv48svv8S8efPKfd1ly5Zh7NixGDVqFHx8fLBu3TpYW1tj8+bNxR7//fffY+LEiWjRogUaN26MjRs3QqVSISIiotz3NnV8+IOIiIgqG4P0uJ45cwZubm7w8/ND+/btUb9+fQDA7du3ERkZCV9fX0RGRiIyMlJ9jiAIWLlyZYnXzM/Px8WLFxESEqLeJpPJEBgYqHGd0mRnZ6OgoADVqlUr8Zi8vDyN3uLMzMwyXdvY8eEPIiIiqmwMUrh+9dVX6l+fOnUKp06d0th/9epVXL16VWPbiwrXpKQkKJVKuLm5aWx3c3PDrVu3ypTrk08+QY0aNRAYGFjiMaGhoZg/f36ZrkdERKQNBysrjf8SUfEMUriqVCpD3KZcPvvsM+zYsQNHjx6FpaVliceFhIQgODhY/f7KlSsICAgwREQiIqoi5vbuLXUEIqNg8JWzdMXZ2RlyuRzx8fEa2+Pj4+Hu7l7quZ9//jk+++wz/PHHH2jWrFmpxyoUCigUCvV7W1tb7UMTERERkdYMWrhGR0fj999/x/379wE8m23g1Vdfhbe3d7mvZWFhAT8/P0RERKB///4AoH7QatKkSSWet3TpUixatAgHDhzgg0dEZJSe/3D+oh/SiYhMjcEK1w8//BArV64sMmxAJpNhypQp+Pzzz8t9zeDgYIwcORKtW7dGmzZtsGLFCmRlZWHUqFEAgBEjRsDT0xOhoaEAgCVLlmDOnDnYvn07vLy8EBcXB+BZLyp7UonIWFy4cEHqCEREkjBI4frFF19g+fLlGDx4MD788EM0adIEAHDz5k0sX74cy5cvh6enJ6ZOnVqu6w4ZMgSJiYmYM2cO4uLi0KJFC4SHh6sf2IqNjYVM9r8Zv9auXYv8/HwMHjxY4zpz587VajouIiIAUOQpkJmXiQGzB0gdRb8ULz6EiEifDFK4btiwAa+99hp+/PFHje1t27bFjh07kJubi6+//rrchSsATJo0qcShAUePHtV4HxMTU+7rExEREVHlYJAFCGJiYhAUFFTi/qCgIBaVRERldHTTUYSvDMfRTUeljkJEZFAG6XF1dXXFn3/+WeL+P//8Ey4uLoaIQmXEhz+IKq/czFzkZuRKHYOIyOAMUri+/vrrWLlyJby8vPD+++/DxsYGAJCVlYWvvvoKGzduxJQpUwwRhcqID38QERFRZWOQwnXBggW4cuUKZsyYgTlz5qBGjRoAgMePH6OwsBBdu3bFp59+aogoRstazEZ2ajb6TVksdRT9EqylTkBERESVlEEKV2tra0RERGD37t0a87j27NkTvXr1Qt++fSEIgiGiEBEREZGR0nvhmp2djeHDh2PQoEF488030a9fP33fknTg2A+rkZedCYW1LQKGvid1HCIiIiL9zypgbW2NP/74A9nZ2fq+FelQXnYmcjPTkZedKXUUIiIiIgAGmg6rY8eOiIyMNMStiIiIiMhEGaRw/eqrr3DixAnMmjULDx8+NMQtiYiIiMjEGKRwbd68OR4+fIjQ0FDUqVMHCoUC9vb2Gi8HBwdDRCEiIiIiI2WQWQUGDRrEWQOIiIiIqEIMUrhu3brVELchIqoSLG0tNf5LRFRV6LVwzc3Nxe7duxEdHQ1nZ2f07t0bHh4e+rwlEZHJ6/JOF6kjEBFJQm+Fa0JCAtq3b4/o6GiIogjg2dRYu3btQmBgoL5uS0REREQmSm8PZy1YsAAxMTGYOnUq9u7dixUrVsDKygrjxo3T1y2JiIiIyITprcf14MGDGDFiBD7//HP1Njc3NwwbNgxRUVFo1KiRvm5NOqCwttX4LxEREZHU9Fa4xsbG4pNPPtHY1rFjR4iiiPj4eBaulRyXeSUiIqLKRm9DBfLy8mBpqfnE6/P3hYWF+rotEREREZkovc4qEBMTg0uXLqnfp6WlAQBu374NR0fHIse3atVKn3GIiIiIyIjptXCdPXs2Zs+eXWT7xIkTNd6LoghBEKBUKvUZh4iIiIiMmN4K1y1btujr0kRERERUBemtcB05cqS+Lk1EREREVZDeHs4iIiIiItIlFq5EREREZBRYuBIRERGRUWDhSkRERERGgYUrERERERkFoy9cV69eDS8vL1haWqJt27Y4d+5cqcf/9NNPaNy4MSwtLdG0aVPs37/fQEmJiIiIqCKMunANCwtDcHAw5s6di0uXLqF58+YICgpCQkJCscefPn0aQ4cOxTvvvIPLly+jf//+6N+/P65du2bg5ERERERUXkZduC5btgxjx47FqFGj4OPjg3Xr1sHa2hqbN28u9viVK1eiZ8+e+Pjjj9GkSRMsWLAArVq1wldffWXg5ERERERUXkZbuObn5+PixYsIDAxUb5PJZAgMDERkZGSx50RGRmocDwBBQUElHk9ERERElYfeVs7St6SkJCiVSri5uWlsd3Nzw61bt4o9Jy4urtjj4+LiSrxPXl4e8vLy1O8zMzMrkNq45GalIzcrw7D3FCwhy7bGpUuXDHpfQ7r14ClScpRSxzAIWzET5taAmQm359MHT5GTmiN1DIPIt8gHrGHSfz4B4E5SElLz86WOYRBWOTlQqFQm3ab3H95FTr7h/+22t3OEg52jwe9r6oy2cDWU0NBQzJ8/X2NbQEAAPDw8DJbhh3ljDHav5/Ly8hAUFITjx44Z/N4AcHD9QknuS3ryBR+CNCW/f/G71BFI13bulDqByQkICMCBAwegUCikjmJSjLZwdXZ2hlwuR3x8vMb2+Ph4uLu7F3uOu7t7uY4HgJCQEAQHB2tsUygUJv8/Yl5eHo4dO4Zjx47B1tZW6jhUQZmZmQgICGB7mgi2p+lhm5qW5+2Zl5dn8vWCoRlt4WphYQE/Pz9ERESgf//+AACVSoWIiAhMmjSp2HP8/f0RERGBKVOmqLcdOnQI/v7+Jd6nKhSppWnRogXs7e2ljkEVlJ6eDoDtaSrYnqaHbWpanrcn6Z7RFq4AEBwcjJEjR6J169Zo06YNVqxYgaysLIwaNQoAMGLECHh6eiI0NBQAMHnyZAQEBOCLL75A7969sWPHDly4cAHr16+X8mMQERERURkYdeE6ZMgQJCYmYs6cOYiLi0OLFi0QHh6ufgArNjYWMtn/Jk5o3749tm/fjlmzZmHGjBlo0KABdu3aBV9fX6k+AhERERGVkVEXrgAwadKkEocGHD16tMi2119/Ha+//rqeUxk/hUKBuXPnVulhEqaE7Wla2J6mh21qWtie+iOIoihKHYKIiIiI6EWMdgECIiIiIqpaWLgSERERkVFg4UpERERERoGFK+ldTEwMBEHA1q1bpY5CRERERoyFayVz9+5djBs3DnXr1oWlpSXs7e3RoUMHrFy5Ejk5+lsP/caNG5g3bx5iYmL0do+yWLRoEV577TW4ublBEATMmzdP0jyGJAhCmV7FzZZRXtnZ2Zg3b165rlWV20Yblbk9b926hWnTpqFFixaws7ODh4cHevfujQsXLlQ4i6mqzO35+PFjDB8+HI0aNYKdnR0cHR3Rpk0bbNu2DXz+umSVuU3/7fvvv4cgCFxVDSYwHZYp2bdvH15//XUoFAqMGDECvr6+yM/Px8mTJ/Hxxx/j+vXrelss4caNG5g/fz66dOkCLy8vvdyjLGbNmgV3d3e0bNkSBw4ckCyHFL799luN99988w0OHTpUZHuTJk0qfK/s7GzMnz8fANClS5cynVOV20Yblbk9N27ciE2bNmHQoEGYOHEi0tLS8PXXX6Ndu3YIDw9HYGBghTOZmsrcnklJSXj48CEGDx6M2rVro6CgAIcOHcLbb7+NqKgoLF68uMKZTFFlbtN/yszMxLRp02BjY1PhHKaAhWslER0djTfeeAN16tTB4cOH4eHhod733nvv4c6dO9i3b5+ECf9HFEXk5ubCyspK59eOjo6Gl5cXkpKS4OLiovPrV2bDhw/XeH/mzBkcOnSoyHapVOW20UZlbs+hQ4di3rx5Gr03o0ePRpMmTTBv3jwWrsWozO3ZrFmzIj15kyZNQt++fbFq1SosWLAAcrlcmnCVWGVu039auHAh7Ozs0LVrV+zatUvqOJLjUIFKYunSpcjMzMSmTZs0itbn6tevj8mTJ6vfFxYWYsGCBahXrx4UCgW8vLwwY8YM5OXlaZzn5eWFPn364OTJk2jTpg0sLS1Rt25dfPPNN+pjtm7dql6UoWvXrkW+Hnl+jQMHDqB169awsrLC119/DQC4d+8eXn/9dVSrVg3W1tZo165dhQpsKXt7jYFKpcKKFSvw0ksvwdLSEm5ubhg3bhxSUlI0jrtw4QKCgoLg7OwMKysreHt7Y/To0QCejTl+XnjOnz9f3d4v+uqfbaN7UrWnn59fka8cq1evjk6dOuHmzZu6/ZBViJR/Povj5eWF7Oxs5OfnV/izVVVSt+nt27exfPlyLFu2DGZm7GsE2ONaafz222+oW7cu2rdvX6bjx4wZg23btmHw4MH48MMPcfbsWYSGhuLmzZvYuXOnxrF37tzB4MGD8c4772DkyJHYvHkz3n77bfj5+eGll15C586d8cEHH2DVqlWYMWOG+muRf349EhUVhaFDh2LcuHEYO3YsGjVqhPj4eLRv3x7Z2dn44IMPUL16dWzbtg2vvfYafv75ZwwYMEB3v0EEABg3bhy2bt2KUaNG4YMPPkB0dDS++uorXL58GadOnYK5uTkSEhLQo0cPuLi4YPr06XB0dERMTAx+/fVXAICLiwvWrl2LCRMmYMCAARg4cCCAZ702ZFiVrT3j4uLg7Oys089YlUjdnjk5OcjKykJmZiaOHTuGLVu2wN/fXy/fjlUVUrfplClT0LVrV/Tq1Qs//vijXj+r0RBJcmlpaSIAsV+/fmU6/sqVKyIAccyYMRrbP/roIxGAePjwYfW2OnXqiADE48ePq7clJCSICoVC/PDDD9XbfvrpJxGAeOTIkSL3e36N8PBwje1TpkwRAYgnTpxQb8vIyBC9vb1FLy8vUalUiqIoitHR0SIAccuWLWX6fKIoiomJiSIAce7cuWU+x9S899574j//iJ44cUIEIH7//fcax4WHh2ts37lzpwhAPH/+fInXrsjvL9tGO5W1PZ87fvy4KAiCOHv2bK2vUZVUxvYMDQ0VAahfr7zyihgbG1uua1Rlla1N9+7dK5qZmYnXr18XRVEUR44cKdrY2JTjE5kmDhWoBNLT0wEAdnZ2ZTp+//79AIDg4GCN7R9++CEAFPmq3sfHB506dVK/d3FxQaNGjXDv3r0yZ/T29kZQUFCRHG3atEHHjh3V22xtbfHuu+8iJiYGN27cKPP16cV++uknODg4oHv37khKSlK/nn/te+TIEQCAo6MjAGDv3r0oKCiQMDGVpjK1Z0JCAoYNGwZvb29MmzZNL/cwdZWhPYcOHYpDhw5h+/btGDZsGADodTYaUydlm+bn52Pq1KkYP348fHx8dHJNU8HCtRKwt7cHAGRkZJTp+Pv370Mmk6F+/foa293d3eHo6Ij79+9rbK9du3aRazg5ORUZo1Mab2/vYnM0atSoyPbnQwz+nYMq5vbt20hLS4OrqytcXFw0XpmZmUhISAAABAQEYNCgQZg/fz6cnZ3Rr18/bNmypcj4Z5JWZWnPrKws9OnTBxkZGdi9ezen29FSZWjPOnXqIDAwEEOHDsX333+PunXrIjAwkMWrlqRs0+XLlyMpKUk9EwH9D8e4VgL29vaoUaMGrl27Vq7zBEEo03ElPU0qlmN+P46Rkp5KpYKrqyu+//77Yvc/H/wvCAJ+/vlnnDlzBr/99hsOHDiA0aNH44svvsCZM2dYmFQSlaE98/PzMXDgQPz11184cOAAfH19tb5WVVcZ2vPfBg8ejA0bNuD48eNFvjGjF5OqTdPS0rBw4UJMnDgR6enp6m9lMzMzIYoiYmJiYG1tDVdX14p9QCPFwrWS6NOnD9avX4/IyEj4+/uXemydOnWgUqlw+/ZtjQeo4uPjkZqaijp16pT7/mUtgv+dIyoqqsj2W7duqfeT7tSrVw9//PEHOnToUKYfJNq1a4d27dph0aJF2L59O958803s2LEDY8aM0aq9Sbekbk+VSoURI0YgIiICP/74IwICArT5GPRfUrdncZ73tKalpenkelWNVG2akpKCzMxMLF26FEuXLi2y39vbG/369auyU2NxqEAl8Xxy4TFjxiA+Pr7I/rt372LlypUAgF69egEAVqxYoXHMsmXLAAC9e/cu9/2fT2ycmppa5nN69eqFc+fOITIyUr0tKysL69evh5eXF8fl6Nj//d//QalUYsGCBUX2FRYWqtsuJSWlSG96ixYtAED91ZW1tTWA8rU36ZbU7fn+++8jLCwMa9asUT/lTNqTsj0TExOL3b5p0yYIgoBWrVqV6TqkSao2dXV1xc6dO4u8unbtCktLS+zcuRMhISHafzAjxx7XSqJevXrYvn07hgwZgiZNmmisnHX69Gn89NNPePvttwEAzZs3x8iRI7F+/XqkpqYiICAA586dw7Zt29C/f3907dq13Pdv0aIF5HI5lixZgrS0NCgUCnTr1q3UryKmT5+OH374Aa+++io++OADVKtWDdu2bUN0dDR++eUXyGTl/7no22+/xf3795GdnQ0AOH78OBYuXAgAeOutt6p0L25AQADGjRuH0NBQXLlyBT169IC5uTlu376Nn376CStXrsTgwYOxbds2rFmzBgMGDEC9evWQkZGBDRs2wN7eXv1Dj5WVFXx8fBAWFoaGDRuiWrVq8PX1LfWrYraNbknZnitWrMCaNWvg7+8Pa2trfPfddxr7BwwYwFV6yknK9ly0aBFOnTqFnj17onbt2khOTsYvv/yC8+fP4/333y/yPASVjVRtam1tjf79+xfZvmvXLpw7d67YfVWKlFMaUFF///23OHbsWNHLy0u0sLAQ7ezsxA4dOohffvmlmJubqz6uoKBAnD9/vujt7S2am5uLtWrVEkNCQjSOEcVnU1n17t27yH0CAgLEgIAAjW0bNmwQ69atK8rlco2psUq6hiiK4t27d8XBgweLjo6OoqWlpdimTRtx7969GseUZzqsgIAAjelc/vkqbqouU/bvqVmeW79+vejn5ydaWVmJdnZ2YtOmTcVp06aJjx8/FkVRFC9duiQOHTpUrF27tqhQKERXV1exT58+4oULFzSuc/r0adHPz0+0sLAo0zQtbJuKqUztOXLkyBLbEoAYHR2ty49ukipTex48eFDs06ePWKNGDdHc3Fz978aWLVtElUql089tyipTmxaH02E9I4hiOZ7QISIiIiKSCMe4EhEREZFRYOFKREREREaBhSsRERERGQUWrkRERERkFFi4EhEREZFRYOFqZJYuXYrGjRtDpVJJHaXC3njjDfzf//2f1DEkxfY0PWxT08L2NC1sTxMg9XxcVHZpaWlitWrVxM2bN6u34b/zLn7++edFjt+yZYsIQDx//rzOswQGBooAxPfee6/Y/Rs3bhQbN24sKhQKsX79+uKqVauKHHPp0iVRJpOJV65c0Xk+Y8D2ND1sU9PC9jQtbE/TwB5XI7J582YUFhZi6NChRfb95z//Ua9opG+//vqrxjKv//b1119jzJgxeOmll/Dll1/C398fH3zwAZYsWaJxXMuWLdG6dWt88cUX+o5cKbE9TQ/b1LSwPU0L29NESF05U9k1a9ZMHD58uMY2AGKLFi1EAOIXX3yhsU8fPy3m5OSIXl5e4qefflrsT4vZ2dli9erVi6y09eabb4o2NjZicnKyxvbPP/9ctLGxETMyMnSW0ViwPU0P29S0sD1NC9vTNLDH1UhER0fjr7/+QmBgYJF9HTp0QLdu3bB06VLk5OToNcfSpUuhUqnw0UcfFbv/yJEjePr0KSZOnKix/b333kNWVhb27dunsb179+7IysrCoUOH9Ja5MmJ7mh62qWlhe5oWtqfpYOFqJE6fPg0AaNWqVbH7582bh/j4eKxdu7bU6+Tl5SEpKalMr3+LjY3FZ599hiVLlsDKyqrY61++fBkA0Lp1a43tfn5+kMlk6v3P+fj4wMrKCqdOnSo1t6lhe5oetqlpYXuaFran6TCTOgCVza1btwAA3t7exe7v1KkTunbtiv/85z+YMGFCiX8ofvjhB4waNapM9xRFUeP9hx9+iJYtW+KNN94o8ZwnT55ALpfD1dVVY7uFhQWqV6+Ox48fa2w3MzNDrVq1cOPGjTJlMhVsT9PDNjUtbE/TwvY0HSxcjcTTp09hZmYGW1vbEo+ZN28eAgICsG7dOkydOrXYY4KCgrT6SuHIkSP45ZdfcPbs2VKPy8nJgYWFRbH7LC0ti/0axsnJqdifTk0Z29P0sE1NC9vTtLA9TQcLVxPSuXNndO3aFUuXLsX48eOLPcbDwwMeHh7lum5hYSE++OADvPXWW3j55ZdLPdbKygr5+fnF7svNzS32p1hRFCEIQrkyVQVsT9PDNjUtbE/TwvY0DixcjUT16tVRWFiIjIwM2NnZlXjc3Llz0aVLF3z99ddwdHQssj8nJwdpaWlluqe7uzsA4JtvvkFUVBS+/vprxMTEaByTkZGBmJgYuLq6wtraGh4eHlAqlUhISND4qiM/Px9Pnz5FjRo1itwnJSUFDRo0KFMmU8H2ND1sU9PC9jQtbE/TwYezjETjxo0BPHsysjQBAQHo0qULlixZUuxXCmFhYeqfGF/0ei42NhYFBQXo0KEDvL291S/g2R9Ib29vHDx4EADQokULAMCFCxc07nvhwgWoVCr1/ucKCwvx4MEDNGnSpFy/H8aO7Wl62Kamhe1pWtiepoM9rkbC398fwLP/eZs1a1bqsfPmzUOXLl2wfv36Ivu0GZ/zxhtvFPnDAgADBgxAr169MHbsWLRt2xYA0K1bN1SrVg1r165Fr1691MeuXbsW1tbW6N27t8Y1bty4gdzcXLRv375cmYwd29P0sE1NC9vTtLA9TYhUE8hS+fn6+opDhw7V2IYSlowLCAhQL2Wnj+XqSrv36tWrRQDi4MGDxQ0bNogjRowQAYiLFi0qcuznn38uWltbi+np6XrJWJmxPU0P29S0sD1NC9vTNLBwNSLLli0TbW1txezsbPW2kv7HP3LkiGR/6ERRFNevXy82atRItLCwEOvVqycuX75cVKlURY5r27ZtkZVMqgq2p+lhm5oWtqdpYXuaBhauRiQ1NVWsVq2auHHjRqmj6MTly5dFQRDEy5cvSx1FEmxP08M2NS1sT9PC9jQNgij+a4ZcqtSWLFmCLVu24MaNG5DJjPvZujfeeAMqlQo//vij1FEkw/Y0PWxT08L2NC1sT+PHwpWIiIiIjIJx/7hBRERERFUGC1ciIiIiMgosXImIiIjIKLBwJSIiIiKjwMKViIiIiIwCC1ciIiIiMgosXImIiIjIKLBwJSIiIiKjwMKViIiIiIwCC1ciIiIiMgosXImIiIjIKLBwJSIiIiKjwMKViIiIiIwCC9dyevLkCebNm4cnT55IHYWIiIioSmHhWk5PnjzB/PnzWbgSERERGRgLVyIiIiIyCixciYiIiMgosHAlIiIiIqPAwpWIiIiIjAILVyIiIiIyCixciYiIiMgosHAlIiIiIqPAwpWoqshOljoBERFRhbBwJaoqshKlTkBERFQhLFyJqoq8DKkTEBERVQgLV6KqIjcNUBZKnYKIiEhrFS5cnzx5gj///BNZWVm6yFNuq1evhpeXFywtLdG2bVucO3eu1ONXrFiBRo0awcrKCrVq1cLUqVORm5troLREEstOkjoBERGR1rQuXHfv3o3GjRujZs2aaNWqFc6ePQsASEpKQsuWLbFr1y5dZSxRWFgYgoODMXfuXFy6dAnNmzdHUFAQEhISij1++/btmD59OubOnYubN29i06ZNCAsLw4wZM/SelahSyHgidQIiIiKtaVW4/vbbbxg4cCCcnZ0xd+5ciKKo3ufs7AxPT09s2bJFZyFLsmzZMowdOxajRo2Cj48P1q1bB2tra2zevLnY40+fPo0OHTpg2LBh8PLyQo8ePTB06NAX9tISmYzUB1InICIi0ppWheunn36Kzp074+TJk3jvvfeK7Pf398fly5crHK40+fn5uHjxIgIDA9XbZDIZAgMDERkZWew57du3x8WLF9WF6r1797B//3706tWrxPvk5eUhPT1d/crMzNTtByEypNRYqRMQERFpzUybk65du4Zly5aVuN/Nza3Er+t1JSkpCUqlEm5ubkXufevWrWLPGTZsGJKSktCxY0eIoojCwkKMHz++1KECoaGhmD9/vk6zE0km+Z7UCYiIiLSmVY+rtbV1qQ9j3bt3D9WrV9c6lL4cPXoUixcvxpo1a3Dp0iX8+uuv2LdvHxYsWFDiOSEhIUhLS1O/jh07ZsDERDqW9Dfwj6E9RERExkSrwrVr167Ytm0bCguLTq0TFxeHDRs2oEePHhUOVxpnZ2fI5XLEx8drbI+Pj4e7u3ux58yePRtvvfUWxowZg6ZNm2LAgAFYvHgxQkNDoVKpij1HoVDA3t5e/bK1tdX5ZyEymLwMIPW+1CmIiIi0olXhumjRIjx8+BAvv/wyvv76awiCgAMHDmDWrFlo2rQpRFHE3LlzdZ1Vg4WFBfz8/BAREaHeplKpEBERAX9//2LPyc7Ohkym+ZHlcjkAaDxgRmTSYk5JnYCIiEgrWhWujRo1wsmTJ1G9enXMnj0boijiP//5DxYvXoymTZvixIkT8PLy0nHUooKDg7FhwwZs27YNN2/exIQJE5CVlYVRo0YBAEaMGIGQkBD18X379sXatWuxY8cOREdH49ChQ5g9ezb69u2rLmCJTN6tvYBKKXUKIiKictPq4SwAeOmll/DHH38gJSUFd+7cgUqlQt26deHi4qLLfKUaMmQIEhMTMWfOHMTFxaFFixYIDw9XP7AVGxur0cM6a9YsCIKAWbNm4dGjR3BxcUHfvn2xaNEig2Umklz6Y+DGbsB3oNRJiIiIykUQ+R15uVy6dAl+fn64ePEiWrVqJXUcorK7EwFEfPrs1xY2wODNgF3x48GJiIgqI62GCqxatQpBQUEl7n/11Vexdu1arUMRkZ7lZwFHFgMlPJRIRERUGWlVuG7atAk+Pj4l7vfx8cH69eu1DkVEBvDkT+DP7VKnICIiKjOtCte7d++iSZMmJe5v3Lgx7t69q3UoIjKQC1uApDtSpyAiIioTrQpXCwsLxMXFlbj/yZMnRaadIqJKSFUIHF4AFOZJnYSIiOiFtKou27Vrh61btyIjI6PIvrS0NGzZsgXt2rWrcDgi0o3WrVujZsc30HrxpaI7U2KAU6sMnomIiKi8tJoOa+7cuQgICECLFi0wZcoUvPTSSwCAa9euYcWKFXjy5Am2b+fYOaLKIi4uDo/ikwBHi+IPuLUXcPICmr1u0FxERETloVXh2rZtW/z2228YN24cJk+eDEEQADxbfcrb2xt79uwpcfUqIqqkIr8CzBSAz2tSJyEiIiqW1gsQdO/eHXfu3MHly5fVD2LVq1cPrVq1UheyRGRkTnwB5KUDLd4E+OeYiIgqGa0LVwCQyWTw8/ODn5+frvIQkdTObQDSnwAdpwLyCv0VQUREpFMV+lfpxo0buHfvHlJSUlDcAlwjRoyoyOWJSCq39gIZT4Du8wGFndRpiIiIAGhZuN69exfDhw/HuXPnii1YAUAQBBauRMbs0UVg9ySg138AW1ep0xAREWlXuI4bNw5Xr17FihUr0KlTJzg5Oek6FxFVBikxwK4JQM8lgHN9qdMQEVEVp1XheurUKcyYMQPvv/++rvMQUWWTlQTseR94ZTZQp73UaYiIqArTagECZ2dnODg46DoLEVVWBdnAgRnA5e+BEoYHERER6ZtWhev48ePx3XffQalU6joPEVVWogicWw8cmgPkZ0mdhoiIqiCthgo0bNgQSqUSzZs3x+jRo1GrVi3I5fIixw0cOLDCAYmokok+DiTfAwLnc9wrEREZlFaF65AhQ9S//uijj4o9RhAE9sgSmaq0h88e2ur8EdAwSOo0RERURWhVuB45ckTXOYjI2CjzgSOLgdRY4OUxXGmLiIj0TqvCNSAgQNc5iMhYXf4OUCmBduOlTkJERCZOq4eznsvLy0NkZCR2796NpKQkXWUiImPz5w/Azb1SpyAiIhOndeG6atUqeHh4oGPHjhg4cCD++usvAEBSUhKcnZ2xefNmnYUkIiNwaiWQdEfqFEREZMK0Kly3bNmCKVOmoGfPnti0aZPGsq/Ozs7o1q0bduzYobOQpVm9ejW8vLxgaWmJtm3b4ty5c6Uen5qaivfeew8eHh5QKBRo2LAh9u/fb5CsRCZNmQ9EzAPys6VOQkREJkqrwvWLL75Av379sH37dvTt27fIfj8/P1y/fr3C4V4kLCwMwcHBmDt3Li5duoTmzZsjKCgICQkJxR6fn5+P7t27IyYmBj///DOioqKwYcMGeHp66j0rUZWQ+gCI/ErqFEREZKK0Klzv3LmDV199tcT91apVw9OnT7UOVVbLli3D2LFjMWrUKPj4+GDdunWwtrYucZjC5s2bkZycjF27dqFDhw7w8vJCQEAAmjdvrvesRFKJjY1FVtazBQOy8pSITc7V7w1v7QPuHdPvPYiIqErSalYBR0fHUh/GunHjBtzd3bUOVRb5+fm4ePEiQkJC1NtkMhkCAwMRGRlZ7Dl79uyBv78/3nvvPezevRsuLi4YNmwYPvnkk2IXUCAyZufOncOCBQuwb98+9XCe1BwlvGaeQ5+m1TC7Vx287GWnn5sf/w/g5gvYVNfJ5QpyMnAvfB2Sb58FBBmcG7dH3aBxkFtYlXjOX99MR3rsVY1t7q1eRf1ekwAA8X8ewu3fVhR7bpup38PCxlEn2YmISHe0Klx79eqF9evXY+LEiUX2Xb9+HRs2bMDo0aMrHK40SUlJUCqVcHNz09ju5uaGW7duFXvOvXv3cPjwYbz55pvYv38/7ty5g4kTJ6KgoABz584t9py8vDzk5eWp32dmZuruQxDpya+//oohQ4ZAFEWNMejAs5Vb919Lxu/XUhA2tgkGtnTWfYC8DODsOqDbzDKf8tc30+HW/BW4Ne9eZN/fu/6D/Mxk+L65ECqlErd/W4E7+75EowHTSr2mW8sg1AkYrn4vM7dU/9rZpzOc6vlp3mfPcqgKC1i0EhFVUloNFVi4cCGUSiV8fX0xa9YsCIKAbdu2Yfjw4WjdujVcXV0xZ84cXWetMJVKBVdXV6xfvx5+fn4YMmQIZs6ciXXr1pV4TmhoKBwcHNQvzmFLld25c+cwZMgQKJXKElevU6oApUrEkA03cT4mQz9B7vwBZCZW+DLZSbFIuXsR9XtPhp1nYzjUfgn1eo5D4vXjyMsofUiS3NwSFrbV1C8zhfU/9ik09gmCHGkxf8G9RY8KZyYiIv3QqnCtUaMGLl68iJ49eyIsLAyiKOLbb7/Fb7/9hqFDh+LMmTNwdtZDL84/ODs7Qy6XIz4+XmN7fHx8icMUPDw80LBhQ41hAU2aNEFcXBzy8/OLPSckJARpaWnq17FjHLtHldvChQuL7Wn9NxGACBEL99/XTxBRBTw8X+HLpD+8BbmlDexqNFBvc/RuCQgCMh5FlXpuwrUjOPPFUFz6eiJiDm+FsqDk8b3xVyMgM1egepMOFc5MRET6Ue6hAnl5eThw4AC8vLywceNGbNy4EYmJiVCpVHBxcYFMVqE1DcrMwsICfn5+iIiIQP/+/QE861GNiIjApEmTij2nQ4cO2L59O1QqlTrn33//DQ8PD1hYWBR7jkKhgEKhUL+3tbXV7Qch0qHY2Fjs3bv3hUXrc0oV8NvVZMQm56J2NcsXn1BeyXcrfImCzBRYWDtqbBNkcphb2aEgK6XE81x9A6BwcIWFXXVkxUcj5vAW5Dx9iCavzyr2+PgrB+HiGwC5uaLY/UREJL1yF64WFhZ4/fXXsXLlSjRr1gwA4OLiovNgZREcHIyRI0eidevWaNOmDVasWIGsrCyMGjUKADBixAh4enoiNDQUADBhwgR89dVXmDx5Mt5//33cvn0bixcvxgcffCBJfqq6VIX5UCkLdX7dg+H7y1y0PieKQMStFLzt7/big8srIw5CCbsenAzDg1M/qt+rCvOR8egW7ob/b+hOq/Frtb61e6v/zXxi4+oFC9tquPb9DOQkP4FVNQ+NY9Mf3kRO0gM06veh1vcjIiL9K3fhKggCGjRoUCmWeB0yZAgSExMxZ84cxMXFoUWLFggPD1c/sBUbG6vRA1yrVi0cOHAAU6dORbNmzeDp6YnJkyfjk08+keojUBWkKsxHasyfKMzV/UT98dE3IJMJUKnKXrzKBCA1IweFebrPo0x+CIvCfMjMin6j4e7XC84+ndTvo3b9B86NO6B64/bqbQq76jC3dUJ+dqrGuaJKiYKcDJjbOJU5i51nIwBAbsrjIoVr/OUDsHGrC1uPBsWdSkRElYRWswrMmDEDwcHBeP3119GoUSNdZyqXSZMmlTg04OjRo0W2+fv748yZM3pORVQylbIQhbnZkMnNIBRT0FWEvYNjuYpWAFCJgL2VGQRBt8N8RFEFpSiDSllYbOFqbmUHc6v/TcclM1PA3MYBVtVqaBxnX7MxlLlZyHxyW11Ypkb/CYiiuhgti6z4ewAAC9tqGtuV+TlIunkSdbqOLPO1iIhIGloVrmfOnEH16tXh6+uLLl26wMvLC1ZWmvMpCoKAlStX6iQkkSkSzCx0Pp6yS6cOEAShXMMFBAHo2tD+2S90SIAMKkuHCl/H2rk2nOr54fa+L1H/1fcgqpS4e2AtXF7qDIXds3li89KTcO37mWj4WjDsPBshJ/kJEq8fRbX6rWFmZY+shGhEH9wA+9q+sHHz1rh+4vXjEFVKuDbtWuGsRESkX1oVrl999b8lHSMiIoo9hoUrkeHV8vRAULfOOHT0ZIlTYf2TXAb08nFE7Wr6eSBJaVdTJ9dp2P9j3Atfi2vfzwQEAdUbd0C9oHHq/aJKiZynD6EseDbnskxuhtToK3h8bjeU+blQ2LugepMOqNXxjSLXjv/zIKo3ag8zSz54SURU2QlieZ/kqOIuXboEPz8/XLx4Ea1atZI6DhmhwrxsJN8+D7nCWi9PsF/68xqCBo+AUqkqtedVACCXCTg+tTFerqP7ok2UWSC1wyw4NemsMX8qERGRtgwzdxURGUyr5r7Y/OVSyOWyEpcylsueFa0/jKqnl6IVAHIb9IFoVvKSrEREROVVocL1zJkzCA0NxdSpU3H79m0AQHZ2Ni5dusSlUYkk1LdnIA78/A26d+kI4V9jVwXh2fCA41Mbo3/zsj+VXx6Fbs2R78Uxo0REpFtajXHNz8/HG2+8gd27d0MURQiCgL59+6JBgwaQyWTo0aMHpk6dipkzy75OORHpVqvmvvhh4yo8ePQEnXu9jtT0DDhayXHxk5f0NqYVAJTVGyO31bvPluYiIiLSIa16XGfPno29e/di7dq1iIqK0hhHZ2lpiddffx27d+/WWUgi0l4tTw9YWz/7yt7GQqbXorWwZjvktJ0MmHH1KSIi0j2tCtcffvgBEyZMwLvvvotq1aoV2d+kSRPcu3evwuGIyEjIzZHX7C3ktngHkJtLnYaIiEyUVkMFEhIS0LRp0xL3y+VyZGfrfhUeIqp8VHY1kOs3Hiq7Gi8+mIiIqAK0Klxr1aqFW7dulbj/1KlTqF+/vtahiMg4FNZ4GbnN3+bQACIiMgithgoMGzYMX3/9NSIjI9Xbnj+5vGHDBvz4448YMWKEbhISUaWUX6/ns4ewWLQSEZGBaNXjOnPmTJw5cwadO3dGkyZNIAgCpk6diuTkZDx8+BC9evXC1KlTdZ2ViCqJ/Ho9kd9kkM6XiSUiIiqNVj2uFhYWCA8Px5YtW1C3bl00btwYeXl5aNasGbZu3YrffvutxInPici4FdZsx6KViIgkUaYe1+DgYLz11lto2bIlACA2NhYuLi4YPnw4hg8frteARFR5KJ2bPBvTyqKViIgkUKYe1xUrVuDmzZvq997e3ti5c6feQhFR5aN0eQk5L08CZFqNMCKiF1Dl50sdgXSoIF8pdQSTVKZ/gdzc3DTmZf3nggNEZPoK6nRGnu8wFq1E+lRQAFhYSJ2CdERZoIK5BYdN6lqZ/hXq3bs3Pv30Uxw8eBCOjo4AgC+++AI7duwo8RxBELh6FpGxk5kjt+kwFNbuJHUSIpPHTiHTolKyPfWhTIXrypUr4erqiiNHjuD69esQBAEPHjxAcnJyiecIHANHZNREq2rIaf0eVI51pI5CVDUo+dWyKVEpVVJHMEllKlxtbGywePFi9XuZTIYVK1Zg2LBhegtGRNJRVquP3NbvQVTYSR2FqMoQCwuljkA6VJjPwlUfyvRw1sCBA3HixAn1+yNHjqB79+56C0VE0in08ENOuw9ZtBIZmFhQIHUE0qHCAvag60OZCtfdu3cjNjZW/b5bt244dOiQ3kIRkTQKa7ZHrt84QG4udRSiKkfMy5M6AulQfi4LV30oU+Hq6emJy5cvq9+LosgxrEQmptCjNXJbvA0IWq1LQkQVpMpl4WpKCvJYuOpDmf6FeuONN7Bs2TLUrl0bzZo1AwBMnz4dzZo1K/HVvHlzvQZ/bvXq1fDy8oKlpSXatm2Lc+fOlem8HTt2QBAE9O/fX78BiYyA0qkeclu+w6KVSEJiXq7UEUiHCtjjqhdlejgrNDQU9evXx5EjR5CQkABBEGBjY4Pq1avrO1+pwsLCEBwcjHXr1qFt27ZYsWIFgoKCEBUVBVdX1xLPi4mJwUcffYROnTjFD5GosEdu64kcHkAkMQ4VMC0c46ofZSpc5XI53n33Xbz77rsAns0qMGvWLMlnFVi2bBnGjh2LUaNGAQDWrVuHffv2YfPmzZg+fXqx5yiVSrz55puYP38+Tpw4gdTUVAMmJqp8cluOgWjpIHUMoipPlceVs0wJe1z1Q6vvBaOjoyX/ij0/Px8XL15EYGCgeptMJkNgYCAiIyNLPO/TTz+Fq6sr3nnnnTLdJy8vD+np6epXZmZmhbMTVRYFXl2hdPGROgYRARBzc6SOQDpUkKeEqOIiBLqm1fqNdepIPyF5UlISlEol3NzcNLa7ubnh1q1bxZ5z8uRJbNq0CVeuXCnzfUJDQzF//vyKRCWqlESFPfIaD5Q6BhH9lyqHhaspUalE5GYXwMqWy/jqUpl6XGUyGczMzJCfn69+L5fLS32ZmVWuNc0zMjLw1ltvYcOGDXB2di7zeSEhIUhLS1O/jh07pseURIaT3/A1wNxK6hhE9F/KjAypI5COZSZz3LKulam6nDNnDgRBUBejz99LydnZGXK5HPHx8Rrb4+Pj4e7uXuT4u3fvIiYmBn379lVvU6merWphZmaGqKgo1KtXr8h5CoUCCoVC/d7W1lZXH4FIMqKlEwpqd5Q6BhH9gyo9XeoIpGOpCdlwqc3FXHSpTIXrvHnzSn0vBQsLC/j5+SEiIkI93lalUiEiIgKTJk0qcnzjxo1x9epVjW2zZs1CRkYGVq5ciVq1ahkiNlGlUODVFZBVrm9FiKo6ZUqK1BFIx5IfZ0kdweQY9b9cwcHBGDlyJFq3bo02bdpgxYoVyMrKUs8yMGLECHh6eiI0NBSWlpbw9fXVON/R0REAimwnMm0CCmq1lzoEEf1L4dNkLvBjYpIe8oFuXSt34ZqXl4fvvvsOBw8exN27d5GRkQE7OzvUr18fPXv2xLBhw2BhYZiByEOGDEFiYiLmzJmDuLg4tGjRAuHh4eoHtmJjYyGTcUJ1on9SVqsH0dJR6hhE9C9iXi5UmZmQ2/GrZVORlZqH7PR8WNvzAS1dKVfhevXqVfTr1w/379+HKIpwcHCAra0tEhIScOnSJfz0009YtGgR9uzZgyZNmugrs4ZJkyYVOzQAAI4ePVrquVu3btV9IKJKTunCbxiIKqvCuDgWribmyd1U1GtZ8qJIVD5l7o7MzMzEa6+9hvj4eCxatAgPHjxASkqKxn8XLlyIx48fo2/fvsjK4rgOospIWb2B1BGIqAQFT55IHYF07OFNjl3WpTIXrlu2bEFsbCz27duH6dOnw9PTU2O/p6cnQkJC8NtvvyE6Opq9mUSVkQAoHbykTkFEJch/+FDqCKRjCffTkZnCabF0pcyF6759+9CjRw906dKl1OO6deuG7t2747fffqtoNiLSEVcXZ9RwcYSbgzVgpnjxCUQkiYL796WOQDomikDUWfak60qZC9erV6++sGh9rlu3bkWmniIi6RzZ8wOidv4Hpz4fJnUUIipF3u07EEUuE2pq7l1JQnoSV0bThTIXrsnJycVO7F8cNzc3JCcnax2KiPRDZechdQQiKkbr1q3x8pYt6L3zVxTExkodh3RMVIm4GH4fooo/lFRUmQvXvLw8mJubl+nYfy4PS0SVh8qmbD98UuVXoCyQOgLpUFxcHOKyspCUm4esM2eljkN6kBibgdsX4l98IJWqXNNhxcTE4NKlSy88Ljo6WutARKQ/KhsXqSOQjmQXZsNB7iB1DNKDjMMRcBw8CIJcLnUU0rG/jjxEdU9bVPfk8vHaKlfhOnv2bMyePfuFx3HlD6LKSbSqLnUE0hGVqEKhqhBmXLrX5CiTniLz2HHYdesqdRTSMZVSxOlf7uCVt324KIGWyvw33pYtW/SZg4j0TRAgKjixuSnJV+azcDVRKT/8AJt2bSGztpY6CmmhdevWeBDzCLYKR4S+943GvpzMApz86Ta6vtUY5hbsVS+vMv+NN3LkSH3mICI9E80sAYFLIJuSAhXHuZoqZXIykrdtg/OECVJHIS3ExcUh4WkcCu1Vxe5Pjc/G6V/uoOP/NYBczr+Xy4O/W0RVhcCf7E0NC1fTlvFHBDJPnJA6BulJfHQ6zu2J5kwD5cTClaiq4NyQJoczC5i+pDVrkfv331LHID15cDMZ5/exeC0PFq5EVYWolDoB6ViekstImjoxPx/xoaHIf/hI6iikJzFXn+Lc3mioWLyWCQtXoqpCLH6sFRmv7MJsqSOQAajSMxD36XwUxCdIHYX05P61p4jceRfKAv49/SIsXImqCj6YZXIy8jOkjkAGonyajLh581CYlCR1FNKTR1EpOPZDFPKyOQSoNPyXjKiq4LRJJiclL0XqCGRAhQkJeDJnLgoTE6WOQnqS9DATf2y9idR4fptSkgr9S3bjxg3cu3cPKSkpEIt58GPEiBEVuTwR6ZBoZil1BNKxpGz2vlU1hfHxeDJrNtznzYW5h4fUcUgPslLzELHtBlr2qAPv5s5c0OlftCpc7969i+HDh+PcuXPFFqwAIAgCC1eiSkS04BKDpiY+m+ueV0WFSUl4MnMW3OfMhoWXl9RxSA+UhSIu7I9BfEw6/HrWgYUlvzF7TqvfiXHjxuHq1atYsWIFOnXqBCcnJ13nIiIdE21cpY5AOvYok0+aV1XKtDQ8mTMXbjNnwLJRI6njkJ48uJGMpw8z0aavN1zr2Esdp1LQqnA9deoUZsyYgffff1/XeYiIqIyeZD5BgbIA5nJzqaOQBFRZWYibNx+uH38E61atpI5DepKdno9j26PQ4GU3NO1SE3Kzqv14klaf3tnZGQ4ODrrOQkRE5aCCCvfT70sdgyT0bJ7Xz5B57JjUUUiPRBH4+1w8Dm2+UeUf3NKqcB0/fjy+++47KJXST2i+evVqeHl5wdLSEm3btsW5c+dKPHbDhg3qoQ1OTk4IDAws9XgiosruduptqSOQ1FQqJK76Eunh4VInIT1LT8rBH1tv4N6VqjuzhFZDBRo2bAilUonmzZtj9OjRqFWrFuTyouugDxw4sMIBSxMWFobg4GCsW7cObdu2xYoVKxAUFISoqCi4uhYdz3f06FEMHToU7du3h6WlJZYsWYIePXrg+vXr8PT01GtWIiJ9uJV8C696vyp1DKoEnm7YCFGphEPv3lJHIT1SKZ89uJXxNBfNutWscrMOaFW4DhkyRP3rjz76qNhjBEHQe4/ssmXLMHbsWIwaNQoAsG7dOuzbtw+bN2/G9OnTixz//fffa7zfuHEjfvnlF0RERHAGBCIyStefXodKVEHGBSYIQPLmLRAsLGDfvbvUUUjPos7GobBAiVZBdapU8apV4XrkyBFd5yi3/Px8XLx4ESEhIeptMpkMgYGBiIyMLNM1srOzUVBQgGrVqpV4TF5eHvLy/rceeGZmpvahiYh0LCM/A1HJUWhSvYnUUaiSePr1eshtbWHj7y91FNKzu5cSobA2h2/nqvOtsVaFa0BAgK5zlFtSUhKUSiXc3Nw0tru5ueHWrVtlusYnn3yCGjVqIDAwsMRjQkNDMX/+/AplJSLSp5OPTrJwpf8RRSSuXAW5kxMsGzeWOg3p2Y2Tj1HNwwY1GjhKHcUgKvzd0o0bN/D777/j999/x40bN3SRySA+++wz7NixAzt37oSlZckrCoWEhCAtLU39OsYnN4mokjn56CQy8jOkjkGViFhQgPglS1AQnyB1FDKAi+ExKMiX/oF5Q9C6cN29ezfq1auHpk2bok+fPujTpw+aNm2K+vXrY8+ePbrMWCxnZ2fI5XLEx2uuHBMfHw93d/dSz/3888/x2Wef4eDBg2jWrFmpxyoUCtjb26tftrZcfYiIKpdcZS723NX/37tkXFTpGYj/LBSqnBypo1QpsbGxyMrKAgDk5ecgKTVO7/fMySjA3YtV44cUrYYK7N+/H4MGDUKdOnWwePFiNGny7CuqmzdvYv369Rg4cCD27t2Lnj176jTsP1lYWMDPzw8RERHo378/AEClUiEiIgKTJk0q8bylS5di0aJFOHDgAFq3bq23fEREhrT/3n50qNEBXg5eUkehSqQg9gESvlgGt+mfQDDjsqH6dO7cOSxYsAD79u2DKIoAgKzcDEz6vB9aNeqIgV3fQf2aPnq7/52LCWjU1h2CrOIPauVm5+H4vkuIjnoMQRBQz6cmOvVqCQtFyYudXDt/F3//dR+JT1JQkFeIsTMGQGFloXHMti9+Q0aq5jy0/t2bwa9z2Yc6afV/8YIFC9CsWTOcOHECNjY26u2vvfYaJk2ahI4dO2L+/Pl6LVwBIDg4GCNHjkTr1q3Rpk0brFixAllZWepZBkaMGAFPT0+EhoYCAJYsWYI5c+Zg+/bt8PLyQlzcs5+CbG1t2ZNKREatUCzEyksrsbDjQtiY27z4BKoyci5fRuLq1XB5/30IMs4+oQ+//vorhgwZAlEU1UXrc6Io4nLUaVz5+zQmv7EYbV/qqpcM2en5SInPRjWPsv35/3XTYTRp6Y0mrbyL7Dv48xlkZ+Si38guzzoFfz2HI7svIOj/Sn7gr7CgEHUaeKBOAw9EHvqrxOPadvOFT+u66velFcPF0er/4L/++gsjR47UKFqfs7Gxwdtvv42//io5tK4MGTIEn3/+OebMmYMWLVrgypUrCA8PVz+wFRsbiydPnqiPX7t2LfLz8zF48GB4eHioX59//rnesxIR6dvjrMdYdmEZ8pX5UkehSibr+AkkrV0LUaWSOorJOXfuHIYMGQKlUlniNKAqUQmlSoWVO2bgzkP9PQ+ki1W1khPSEXs7Dl37vwz3WtVRo44LOvdphdvXYpGZXvKwkxbtG8GvcxO41ape6vXNFWawsbNSv8wtyteHqlWPq6WlJZKTk0vcn5ycXOoDT7o0adKkEocGHD16VON9TEyM/gMREUno2tNrWHp+KT5s/SGszKykjkNl8M8xkdmFhXiUnQ1Pa2ud3yfz8BFAJcL5vYnsedWhhQsXFtvTWpQIUQR2HtmMj9/ST4dZfm5hha8R9yAJCktzuHn+b6rQWnXdIAgC4h8+ha1PzQpd/9KJWzh/9AbsHKzRsHkdtPBvCJm87P8/alW4duvWDStXrkTPnj3h/6954s6ePYtVq1ahR48e2lyaiIgq6GrSVcyPnI/pL0+Ho6Wj1HGoBMWNiUwvLEDn8N/Rzd0Dkxo3RvNS5hnXRuZ/O3R0XbzmZ2Tg8qZNeHzxIgRBgGe7dmg5ahTMrEr+4eneoUOIPXECKdHRKMzJQb9t22Dxr29yT372GVJjYpCXlgYLGxu4NmuGZsOHw0rHvy/aio2Nxd69e8tQtD6jEpW4GHUCSalxcHYs/UFyrZQtRqmyM3NhZaPZ+SiTy2BpZYHszNwKXbtZu4ZwqeEESysLxMUmIfLQX8jKyEGnV1uW+RpaFa5Lly6Fv78/OnbsiDZt2qBRo0YAgKioKJw7dw6urq5YsmSJNpcmIqIXaN26NR4/eYxc61x0X178CknRadGYfWo2ZrWbBTcbt2KPIemUOiYSwNH4OByLj8OqNm3RU8dLkmcePQq5kxOqDX+zXOcdnTMHXl27wqtr0TGaZ1euRE5qKjrPng1RqcT51atx4euv0W7KlBKvV5iXB/eWLeHesiWu/mtly+dcX3oJTQYOhKWTE3KePsVf33yDyM8/R7fFi8uVvbBACZUehkkcCD9Y5qL1OVEUcfXueXRp1UfneVTKkj/jhWM3cPH4TfX7wgIl4h8+xfF9l9Tbhr2v32eTWnZopP61s7sjZHIZju65gPbdm0FuJi/TNbQqXL29vfHXX38hNDQUv//+O8LCwgAAderUweTJkzF9+nS4urpqc2kiInqBuLg4PHn8BFbVSx8KkJCTgHmR8zC//Xy4WvPv5Mrin2MiSyp6lKIIAcAH587ip4AuOu95Tdu5E1YtW8DqpZcqfK30hw8Rd+UKXvnsM1SrXx8A0PKdd3Bi8WI0HzGixN7Rhn2eFW4J166VeO2Gffuqf23j4oLGAwbg1NKlUBUWQlbGWRIKC5R4eC8e+XkFZf1IZXb/7kPIZLJyFcWCICAjMx15ubrPk5yUjsICd5iZFy0CfV+uh/q+tdTvD/18BvV8aqLuP776t7GzgrWtJXKyNHtWVUoVcnPyYW2r22GgbjWrQ6USkZ6SBScX+zKdo/XcGK6urli+fDmWL1+u7SWIiEjPknOTseDMAnza/lM4WTpJHYdQ9jGR4n9fq6NuYb1/e53nSPvlV50Urk+jomBuY6MuWgHAtVkzCIKA5Nu34dm2bYXvATwbjnD/xAlUb9SozEUr8GyqzPy8AsjM5JCb6XZsr72jQ7l7ckVRhLWljU6mrfrXhaFSPu9ZLlq4WlorYGmtUL+Xm8lhZWMJx+p2Gse513JGXm4BEh4lw/W/41wfRidAFEW41Sz9wavySopLgSAIsCpHQcxJ3YiITFxCdgIWnFmAOe3mcMyrxMo7JlIpioh48kQvD2zlXL0KVU4OZKWMQy2L3NRUKBwcNLbJ5HJY2NoiNzW1QtcGgL++/RZ3wsOhzMtDtYYN0TEkRKvryM1kMDfXbdkT0CkAgiCUa7iAAAE+df0g6LpuhaCTYriaqz1qN3DHkd3n0eW11lApVTi29yIa+NaGrf2z/1cy07Oxa8tRdB/UVl3MZmXkIDszF2lPn63i9zQ+DeYKM9g5WMPSWoEnsUmIf/gUNb1dYa4wR9yDJJz8/QoaNq8Dy3/N91qaMrXg6NGjIQgC1q9fD7lcjtGjR7/wHEEQsGnTpjIHISIi/XmU+QjzIudhZtuZcLF2kTpOpafMz4eqhKmNKuLg77+Xf0wkgNPx8Rhcp45uw6hUyHv4EFYNGhS7++Yvv+Dmzp3q98r8fDy9fRuX/vFve08DfOvaqF8/eL/yCrITE3H9p59w7ssv0TEkBIKuKz8teHrWxCvduuPI0YgSp8L6J5kgQ4uG7eHsoIcHswCYmeumR7nH4HY4tvcSdm05+mwBgpeeLUDwnEopIjUpAwUF//vM187fxfkj19Xvf910GADwyoA2aNLKG3IzGW5fjcW5I9ehLFTB3skGzf0baox7LYsyFa6HDx9Wj+GQy+U4fPjwC/+HqQz/QxER0f88yXqC2adnY1rraajrWPfFJ1RRyvx8JFy7hoLsis+J+W+Pbt6ETBCgKkfxKgOQlp2tlzxPo6LgUacO5BZFe7zq9eiBWu3/N0Th7MqV8GzXDjX/8dW/ZbVqsHR0RF5amsa5KqUS+ZmZsHR0rHBGhb09FPb2sKtRA3Y1a2LfuHFI/vtvVG9UvoJHXyZPCsbRY4fL0PMqQBAE9Ov0tt6yWDmUfTL/ge90K3GfpbWi1MUG7J1sMGnBEI1tbbv5om033xLPca1RDa+PK/5h0vIoU+H67/lPOR8qEZFxSslNwdzTczHadzS61OrCToZiqJRKFGRnQ2ZmBpl5+Vb1eRF7B4dyFa0AoAJgZ26u87lXRVGE0swMKqWymBGRgIWdHSzs/jf+UW5hAUsHB9h6eGgcV71RIxRkZSHl7l041asHAEi4ehWiKKJaCb25WvvveFJlge4fbNJWi+YtsWbVekz84N1nv6fF9LzKBBkEQcCkwQtQ17Psy5uWh5WtGazsTX8EqFZ/CmJjY5GTU/LqCTk5OYiNjdU6FBER6U++Kh/r/lqHLy9/iayCLKnjVFoyc3OYKRQ6fQV07FjuHxYEAO2cnQFB0OlLUCiAYlbALC/7mjXh3qIFLqxbh+Tbt5F06xYub9qEWh06qGcUyHn6FOEffIDk27fV5+WmpCA1OhqZ/11+Pe3+faRGRyM/479jJP/+G3d+/x2p0dHISkxEwtWrOLNiBWzc3StNb+tzr/bsjZ0/7UXXLq8UaV8BAlo0bI85o79G6yYBestQo7F9lfhBVOvpsL799lsMGzas2P179uzBsGHDyjTeg4iIpHHq8Sn8nfI3JreajAZOOu4Zo2LV9PBA94AARJw4UaZ/I+WCgAAXF9So4ANUxZG5uOis0Gk7eTIubdqEY/PnAzIZarZti5b/eB5GpVQi4/FjFOblqbfdPXgQN376Sf3+6Jw5AICX33sPXl27wkyhwMOzZ3E9LAyFeXmwdHKCe4sW8B80CHId94TrQovmLbFlw7d49OghevTuhvT0NFhb2mHR+K16G9P6nK2TAm717aAsqPjKWZWdVoXriwaWFxQUQMbl5IiIKr3EnETMOz0PY5qOQdfaRSeWJ90LHjcOh0+efOGYSOG/rwn16pd4TEXIXMr3kF6XTz8tcZ+FnV2piw3YuLri9Z9/1tj20pAheGnIkBLOABzq1EGXefPKlbEy8PSsCWtra6Snp0Fhbqn3otXcQo4mnd0gkwtQVp4RFHpT5sI1PT0dqf+Y1uLp06fFDgdITU3Fjh074PGvMTBERFQ5FYqFWPfXOiTlJmFwg8FV4utGKbX09cX6//wH7378cYljIuWCAAHAihYt0UwHDzgVR1ZTtytykeGZmcvg+4oHbBwtUFAFeluBcoxxXb58Oby9veHt7Q1BEDBlyhT1+3++WrZsif3792P8+PH6zE1ERDr2898/Y91f61Coqhr/AEqpd2Ag9n77LV7p1KmYMZFAgIsLfmjnj+7ueuqtkwkwq2TjRKl8LCzlaB7kCQdX3a5mVdmVuce1R48esLW1hSiKmDZtGoYOHYpWrVppHCMIAmxsbODn54fWrVvrPCwREenX0QdHkZCdgGC/YNhZ2L3weNJeS19ffPvll3j45Am6DRqEtIwM2JuZYXfHTnoZ0/pPFq38IHNygqqUB62p8rJxsIDvKx6wsqt8Y331rcyFq7+/P/z9n83plZWVhUGDBsHXt+T5uoiIyDjdeHoDs07OwvQ20+Fhy2Ff+lbTwwPWVlZIy8iAldxM70WrvKYnrPq9Bj4+bZyqeVrDp7MbzCyKm8TM9JX7Cars7GysWrUKv//+uz7yEBFRKWJjY5GV9WwKq8LcQmQl6Gc6q7jsOMw6NQvXn15/8cFkNMybNIbtuHHPpsIio1OnqROavuJRZYtWQItZBaytrWFmZgYbHcz9RkREZXPu3DksWLAA+/btUz+JXpBVgH1j9sHjZQ+8NOQlVGtYTaf3zCzIxKIzizDadzQC6wTq9NoZORlYG74WZ2+fhUyQoUPjDhgXNA5WFiX3NuYX5mPDoQ04fuM4CgoL0KpeK7zX8z042ToBAO7F38NPp37C9QfXkZ6TDjcHN7zq9yr6t+mv0+xGSSbAMigIioAAnS9kQPonN5OhcUdXuNSxlTqK5LT6v3fQoEH4+eefy73eMhERld+vv/6KDh064Pfi1rkXgbgLcYiYFoGHpx/q/N5KUYkNVzfg19u/lvvcT775BIf+PFTsvqW7liI2KRaL3lyEeUPm4VrsNazat6rU660/uB7nbp9DyMAQLBmxBMkZyVj480L1/jtP7sDBxgEf9/8Ya8etxZCOQ7Dt8Db8dv63cmc3JTIHB9iOHw/Lrl1ZtBohSxtztHzVk0Xrf2k1j+sbb7yBiRMnomvXrhg7diy8vLxgVcyYnH8/vEVEROVz7tw5DBkyBEqlssTOAlH1bHvk0ki8svQVnfe8AkBYVBjqOdZDc5fmFb5WbFIsLt69iBWjV6BhjYYAgPE9x2PuD3MxJnAMqttVL3JOVm4WDl45iGkDpqGFdwsAwNS+UzFu3TjcengLjWs2Ro8WPTTO8XDywM2HN3Hq1in0fblvhXMbI7P69WA9bBhktix6jJGDiyVe6uoOCyvTX8q1rLT6nejSpYv61ydOnCiyXxRFCILAlbOMVGxsLCIiIpCRkQE7Ozu88sorqF27ttSxiKqkhQsXQhTFsn3DJQI3wm6g4+yOeslyKOaQTgrXWw9vwdbSVl20AkBL75YQBAFRj6LQvnH7IufcfnIbhapCddEKALWca8HF3gU3H91E45qNi71Xdl427Kyq5uwIFm3bwqp/Pwjyqjse0pi51bVDo/YukMnZS/5PWhWuW7Zs0XUOqgT+PYZOJpNBpVJBEAT06dMHs2fPxssvvyx1TKIqIzY2Fnv37i3zsCxRJeLx+cfISsiCjavun0O4n3FfJ9dJyUyBg7WDxja5TA47KzukZKUUf05WCszkZrC11Ow5dLJ1Qkpm8efceHADx28cx/wh83WS25hYdu8OReArXEzCSHm3rI7aTR3ZfsXQqnAdOXKkrnOQxH799VcMGTJEo2dHpVIBeNaDvn//fvz+++8ICwvDwIEDpYxKVOnkF+ajUKn7Sfv3h+8v/7MEIhD/Zzy8XvHSeZ603LRS94edDEPYqTD1+/zCfNx6dAtrw9eqt60bv07nuYoTkxCDT3/6FMM6DUOrelVr2JpVv9eg6NBB6hikBbn8vw9heXFoR0kqPGgiMzMTDx48AADUqlULtgYeR7N69Wr85z//QVxcHJo3b44vv/wSbdq0KfH4n376CbNnz0ZMTAwaNGiAJUuWoFevXgZMXPmUZQydUqmEIAgYMmQITp8+zZ5Xov/KL8zHnzF/Ijs3W+fXvhF9A4JMUI9hLRMByErPQlae7qfJMhPNkF+YDwszi2L39/LrhU4+ndTvl+5aig6NO6BD4/8VUdXtqsPJ1glp2ZpFsFKlREZOBpxsnIq9tpONEwqVhcjMzdTodU3JTFHPKvBcbGIsZnw/A6+2fBVDOw0t9+c0VoJcDqvXX4dFq5ZSRyEtWNma46Wu7rCtxqnKSqP1wInz58+ja9eucHJygq+vL3x9feHk5IRu3brhwoULusxYorCwMAQHB2Pu3Lm4dOkSmjdvjqCgICQkJBR7/OnTpzF06FC88847uHz5Mvr374/+/fvj2rVrBslbWZV1DN3zYxYuXFjqcURVSaGyENm52TCTm8FaYa3Tl6ODY/mKVgAQAXNrc8gEmU5fAgS4K9xL7Vm2s7JDjWo11C+FmQKONo4a2+QyORrXbIzM3EzcfnJbfe6f0X9CFEU08ix+GdIGHg1gJjPDlegr6m0Pnz5EYnoimng2UW+7n3gf07+bjleavYKRXavOt4OCtRVsxrzDotVIVfe0Qas+NVm0loFWPa5nz55Fly5dYGFhgTFjxqBJk2d/ady8eRM//PADOnfujKNHj5ba86kLy5Ytw9ixYzFq1CgAwLp167Bv3z5s3rwZ06dPL3L8ypUr0bNnT3z88ccAgAULFuDQoUP46quvsG6dYb6+qmzKO4ZOqVTit99+Q2xsLB/YIvoHCzMLKMx1+49Oh04dIAhC+YYLCIBLUxfIBN0+0KGCCvXt6uvkWrWda8Ovnh9W7VuFSa9OQqGqEGsOrEHnlzqrZxRISk/CjO9n4MPXPkQjz0awsbRBjxY9sOHQBthZ2cFaYY11B9ahSc0m6gezYhJiEPJdCFrVbYUBbQcgOTMZACAX5HCwcSgxj7GTu7rC+u2RkDs7Sx2FtODVvBrqNHfieNYy0qpwnTlzJjw9PXHy5Em4u7tr7Js3bx46dOiAmTNn4tCh4ufv04X8/HxcvHgRISEh6m0ymQyBgYGIjIws9pzIyEgEBwdrbAsKCsKuXbtKvE9eXh7y8vLU7zMzMwEAhYWFKCgoqMAnqBwOHDhQ7jF0oiji4MGDHOuspcKCAhQUFEKpyoZQoPtxkZWFWJgPlfLZnxNRZvx/VkpSUFCAwoJCZKuyUajj9rR3skf7gPaIPB6pHnNeKgFwbekKC0cLnWdRyBSoa1kXBQUFKChje4qiCKVSWezflVN7T8X6Q+sR8n0IZJDBv5E/xgaOVR+bm5+Lh08fIis3S71tVNdREEURi35ehAJlAVp6t8T47uPV+49fP4607DQcuXYER64dUd/L1d4VGyZsKPNnLSgoQEFhIZQ5OSgoNMyfUdV//x4WRRUKyjEjj7xRQ1gMGoR8S0sgq3zDQ1QFBVA9/7fMzHSnWyooKEBBQQGUospg/26L/3hGpKT/h2QyAQ3bV0f1WlbIycmt8D2VhSqoCp/9edPxz62lMjc3N9zNAEDUgq2trbh06dIS9y9ZskS0tbXV5tJl9ujRIxGAePr0aY3tH3/8sdimTZtizzE3Nxe3b9+usW316tWiq6trifeZO3euCIAvvvjiiy+++OKLr3+9DE2rH7FkMhkKS/kpVKlUQmYiq3OEhIRo9NJeuXIFAQEBOHv2LFq2NP6xRFu3bsW7775b7vM2bNjAHtcKUP23N9LUyeRmkJXwII8p0desAs/t2b0Ho0Y+620studVePZq+2FbeLbz1Pn9B9UfhN51e8NMblbig1mmRpmfD5UB5yJv0LgxHj95AjeFAseCepZ+sJkc1UaPhk2nTqUfVwYyuRxyC9Nv08ICZdm+tdCRho0a4PHjx3Cyc8aXH+0usr91rzqo2bj4BxErQiaTwczctOft1apwbd++PVavXo1hw4ahTp06GvtiY2OxZs0adNDzVBzOzs6Qy+WIj4/X2B4fH19k+MJz7u7u5ToeABQKBRSK/41bez5rgpmZmeG7x/UgKCio3GPoBEFAjx49TOLzS4a/dyZF338W3nrzLTRu2BgLFiwoOiZdAGq8XAM+Q3z0smLWaN/RCPIK0vl1KztD//32fClWQZDBopSv7QVLS7hN+xhWzZsbKppJMHh7/ne8qiDIYG6mee8Grd3QqLXuf8CsKrTqFl28eDHS0tLQuHFjDBs2DPPmzcO8efMwdOhQNG7cGGlpaQgNDdV1Vg0WFhbw8/NDRESEeptKpUJERAT8/f2LPcff31/jeAA4dOhQicdXBbVr10afPn0gL+PKKnK5HH379uWDWUQG9vLLL2PPnj2IiYmBo6MjAMDcxhy9N/ZGx9kd9VK0vtvs3SpZtFZWgkIB91kzWbQaMRtHBZp2ZdFaEVr1uLZs2RJnz57FzJkzsWfPHmRnP5u/0NraGj179sTChQvh4+Oj06DFCQ4OxsiRI9G6dWu0adMGK1asQFZWlnqWgREjRsDT01NdRE+ePBkBAQH44osv0Lt3b+zYsQMXLlzA+vXr9Z61Mps9ezZ+//33F/a8CoIAQRAwa9YsA6Yjon+qXbs2bGxskJqaCjNLM72skAUAbzR6A6/UfkUv1yYtCAJcp06BZZMmLz6WKq3mr9Qy+a/y9U3rxwh9fHywc+dOqFQqJCYmAgBcXFwMOrZ1yJAhSExMxJw5cxAXF4cWLVogPDwcbm5uAJ4NW/hnnvbt22P79u2YNWsWZsyYgQYNGmDXrl3w9fU1WObK6OWXX0ZYWJh65SxlMeO65HI5BEHAjz/+yMUHiExchxod0L9+f6ljVCnu7u5QpqbCuYSvtB0GDoA1/+41ai617eDZ0FHqGEavwvNfPO+Fe/5rQ5s0aRImTZpU7L6jR48W2fb666/j9ddf13Mq4zNw4ECcPn1aYwydTCaDSqWCIAjo3bs3Zs2axaKVyMTVtK2Jd5u9yzklDezChQt4+P77KHj8pMg+Cy8vOP3f/0mQinSpWdea/HOlA1oXrjdu3MCcOXNw4MABjaECQUFBmDdvXpXvxTRGz8fQxcbG4vDhw0hPT4e9vT26devGMa1EVYCl3BJT/KbA0sxS6ij0nCDAecJ4CCY8z2pV4F7PAdU9bV98IL2QVn8STpw4gVdffRUqlQr9+vVDw4YNAQBRUVHYs2cPfv/9d4SHh6OTDqbqIMOrXbs23n77baljEJEBWZtZY9rL01DLrpbUUegf7F/tCUV93axYRtJp3K7k2YuofLQqXKdOnQpXV1ccO3YMtWpp/iX34MEDdO7cGcHBwTh//rxOQhIRkf7UdaiLya0mw92G/7hWJmaurnAaNkzqGKQFd3d3FOQqYatwhL2zJVxq20kdyWRoVbhev34dCxYsKFK0AkCtWrUwYcIEzJs3r6LZiIhIj8wEMwxuOBh96/WFmYxfRVc2zhMnQGZlJXUM0sKFCxdw4fcY3LuciNovVefYVh3S6m+qOnXqIC8vr8T9+fn5xRa1RERUOdSxq4NJLSehtj3Hr1dGtl27wqppU6ljkA54NtT9CllVmVZzV82ZMwerVq3ClStXiuy7fPkyvvzyS/a4EhFVUoG1A7Go4yIWrZWUYGEBpzc5RMAUWNmaw96ZDzvqklY9rmfOnIGbmxv8/PzQvn171P/vwPHbt28jMjISvr6+iIyMRGRkpPocQRCwcuVK3aQmIqJyk0GGd5q+g8A6gVJHoVLYdukCMyf20pmC6p62HCagY1oVrl999ZX616dOncKpU6c09l+9ehVXr17V2MbClYhIOpZySwS3DkZzFy4XWtnZdukidQTSEUd3a6kjmBytCleVSqXrHEREpCe25rb4pM0naOjUUOoo9AJyB3soGnD6K1Ph4MyH63SNj5ESEZmw6pbVEdImBLXs+cCsMVA0aQLBgEunk37ZcXyrzlWocI2Ojsbvv/+O+/fvA3g228Crr74Kb29vnYQjIiLtNa7WGFNbTYWjpaPUUaiMFA0aSB2BdEQmE2DrqJA6hsnRunD98MMPsXLlyiLDBmQyGaZMmYLPP/+8wuGIiEg7vb17Y1iTYZyf1cgo2PFjMmwcLCCTs/dc17T6Hf3iiy+wfPlyDBw4EJGRkUhNTUVqaioiIyMxePBgLF++HMuXL9d1ViIiegEzwQyTWkzCiJdGsGg1QuY1a0odgXTEhr2teqHV32obNmzAa6+9hh9//FFje9u2bbFjxw7k5ubi66+/xtSpU3USkoiIXkwuyPHxyx+jhWsLqaOQFgRzc8g5DZbJsLKzkDqCSdKqxzUmJgZBQUEl7g8KCkJMTIy2mYiISAujfEexaDVicqdqfDDLhFhY8RsPfdDqT4irqyv+/PPPEvf/+eefcHFx0ToUERGVT1PnpgiszYUFjJncwV7qCKRDZub8IUQftPpdff3117Fx40Z89tlnyMrKUm/PysrCkiVLsHHjRgwZMkRnIYmIqHRDGw/lCj1GTmbHwtWUyMxYuOqDVv3YCxYswJUrVzBjxgzMmTMHNWrUAAA8fvwYhYWF6Nq1Kz799FOdBiUiouLVd6yPeo71pI5BFSSztZE6AukQf4zUD60KV2tra0RERGD37t0a87j27NkTvXr1Qt++ffmTPxGRnri7u0MlqpBrnQsA6OTZSeJEpAtyBwepI5AusQzSi3IXrtnZ2Rg+fDgGDRqEN998E/369dNHLiIiKsGFCxeQkpuC8X+MBwC08WgjcSLSBbmDo9QRiCq9cg/AsLa2xh9//IHs7Gx95CEionKo51AP1SyrSR2DdEDuyB5XohfRauRwx44dERkZqess5ZKcnIw333wT9vb2cHR0xDvvvIPMzMxSj3///ffRqFEjWFlZoXbt2vjggw+QlpZmwNRERLrVzKWZ1BFIR2Q2tlJHIKr0tCpcv/rqK5w4cQKzZs3Cw4cPdZ2pTN58801cv34dhw4dwt69e3H8+HG8++67JR7/+PFjPH78GJ9//jmuXbuGrVu3Ijw8HO+8844BUxMR6Zavs6/UEUhHZFaWUkcgqvQEURTF8p5kZ2eHwsJC5OfnAwDMzMygUGgubSYIgt56M2/evAkfHx+cP38erVu3BgCEh4ejV69eePjwoXqWgxf56aefMHz4cGRlZcHMrGzDfS9dugQ/Pz9cvHgRrVq10vozEBFVREpuCiZFTMKWnltgIecKPaZAmZbGB7RMSEGeEuYKudQxTI5WswoMGjRI0lkDIiMj4ejoqC5aASAwMBAymQxnz57FgAEDynSdtLQ02Nvbl1q05uXlIS8vT/2+tOEIRESGVNu+NotWU8JVs0wLZxXQC60K161bt+o4RvnExcXB1dVVY5uZmRmqVauGuLi4Ml0jKSkJCxYsKHV4AQCEhoZi/vz5WmclItIXT1tPqSOQLgksXE0J61b9KNefktzcXISFheGzzz7Dxo0b8eTJE52GmT59OgRBKPV169atCt8nPT0dvXv3ho+PD+bNm1fqsSEhIUhLS1O/jh07VuH7ExHpQnWr6lJHIB2ScwECk2JmwWEC+lDmHteEhAS0b98e0dHReD4s1traGrt27UJgoG7Wx/7www/x9ttvl3pM3bp14e7ujoSEBI3thYWFSE5Ohru7e6nnZ2RkoGfPnrCzs8POnTthbm5e6vEKhUJj/K6tLZ/6JKLKwcrMSuoIREQGVebCdcGCBYiJicHUqVPRrVs33LlzBwsWLMC4ceNw9+5dnYRxcXGBi4vLC4/z9/dHamoqLl68CD8/PwDA4cOHoVKp0LZt2xLPS09PR1BQEBQKBfbs2QNLSz7BSUTGy1xW+g/eRESmpsyF68GDBzFixAh8/vnn6m1ubm4YNmwYoqKi0KhRI70ELE6TJk3Qs2dPjB07FuvWrUNBQQEmTZqEN954Qz2jwKNHj/DKK6/gm2++QZs2bZCeno4ePXogOzsb3333HdLT05Geng7gWcEsl7NLn4iMi1zGv7eIqGop8xjX2NhYdOzYUWNbx44dIYoi4uPjdR7sRb7//ns0btwYr7zyCnr16oWOHTti/fr16v0FBQWIiopSr/B16dIlnD17FlevXkX9+vXh4eGhfj148MDg+YmIKoo9rkRU1ZS5xzUvL6/IV+vP3xcWFuo2VRlUq1YN27dvL3G/l5cX/jlFbZcuXaDFlLVERJUWx7gSUVVTrumwYmJicOnSJfX75wsM3L59G46OjkWO5wT9RET6Y2POp9CJqGop88pZMpms2EUHRFEssv35NqVSqZuUlQhXziKiyiAlNwXJucmo51hP6ihERAZT5h7XLVu26DMHERGVE4cKEFFVU+bCdeTIkfrMQURE5WRpxin9iKhq4fpyRERGylLOwpWIqhYWrkRERorTYRFRVVOuWQWIiKhycFA4QEDRB2aJiEwZC1ciIiMkE/iFGRFVPfybj4iIiIiMAgtXIiIiIjIKLFyJiIiIyCiwcCUiIiIio8DClYiIiIiMAgtXIiIiIjIKnA6LSvTkyRM8efJE6hhERERGx8PDAx4eHlLHMDksXMvJw8MDc+fONfn/GfPy8jB06FAcO3ZM6ihERERGJyAgAAcOHIBCoZA6ikkRRFEUpQ5BlU96ejocHBxw7Ngx2NraSh2HKigzMxMBAQFsTxPB9jQ9bFPT8rw909LSYG9vL3Uck8LClYr1vHDlHzrTwPY0LWxP08M2NS1sT/3hw1lEREREZBRYuBIRERGRUWDhSsVSKBSYO3cuB5WbCLanaWF7mh62qWlhe+oPx7gSERERkVFgjysRERERGQUWrkRERERkFFi4EhEREZFRYOFKREREREaBhStRJSEIQpleR48erfC9srOzMW/evHJda9GiRXjttdfg5uYGQRAwb968CucwZZW5PW/duoVp06ahRYsWsLOzg4eHB3r37o0LFy5UOIupqszt+fjxYwwfPhyNGjWCnZ0dHB0d0aZNG2zbtg18/rpklblN/+3777+HIAhcVQ2AmdQBiOiZb7/9VuP9N998g0OHDhXZ3qRJkwrfKzs7G/PnzwcAdOnSpUznzJo1C+7u7mjZsiUOHDhQ4QymrjK358aNG7Fp0yYMGjQIEydORFpaGr7++mu0a9cO4eHhCAwMrHAmU1OZ2zMpKQkPHz7E4MGDUbt2bRQUFODQoUN4++23ERUVhcWLF1c4kymqzG36T5mZmZg2bRpsbGwqnMMkiERUKb333nuivv6IJiYmigDEuXPnlvmc6Ohorc+lytWeFy5cEDMyMjS2JSUliS4uLmKHDh30kND0VKb2LEmfPn1EGxsbsbCwUDfBTFxlbdNPPvlEbNSokfjmm2+KNjY2ug9nZDhUgMiIqFQqrFixAi+99BIsLS3h5uaGcePGISUlReO4CxcuICgoCM7OzrCysoK3tzdGjx4NAIiJiYGLiwsAYP78+eqvw1701b+Xl5c+PlKVJlV7+vn5FfnKsXr16ujUqRNu3ryp2w9ZhUj557M4Xl5eyM7ORn5+foU/W1UldZvevn0by5cvx7Jly2Bmxi/JAQ4VIDIq48aNw9atWzFq1Ch88MEHiI6OxldffYXLly/j1KlTMDc3R0JCAnr06AEXFxdMnz4djo6OiImJwa+//goAcHFxwdq1azFhwgQMGDAAAwcOBAA0a9ZMyo9WJVW29oyLi4Ozs7NOP2NVInV75uTkICsrC5mZmTh27Bi2bNkCf39/WFlZ6fVzmzKp23TKlCno2rUrevXqhR9//FGvn9VoSN3lS0TF+/fXVidOnBABiN9//73GceHh4Rrbd+7cKQIQz58/X+K1K/K1FYcKaKeytudzx48fFwVBEGfPnq31NaqSytieoaGhIgD165VXXhFjY2PLdY2qrLK16d69e0UzMzPx+vXroiiK4siRIzlUQORQASKj8dNPP8HBwQHdu3dHUlKS+vX8a98jR44AABwdHQEAe/fuRUFBgYSJqTSVqT0TEhIwbNgweHt7Y9q0aXq5h6mrDO05dOhQHDp0CNu3b8ewYcMAPOuFJe1I2ab5+fmYOnUqxo8fDx8fH51c01SwcCUyErdv30ZaWhpcXV3h4uKi8crMzERCQgIAICAgAIMGDcL8+fPh7OyMfv36YcuWLcjLy5P4E9A/VZb2zMrKQp8+fZCRkYHdu3dzuh0tVYb2rFOnDgIDAzF06FB8//33qFu3LgIDA1m8aknKNl2+fDmSkpLUMxHQ/3CMK5GRUKlUcHV1xffff1/s/ueD/wVBwM8//4wzZ87gt99+w4EDBzB69Gh88cUXOHPmDAuTSqIytGd+fj4GDhyIv/76CwcOHICvr6/W16rqKkN7/tvgwYOxYcMGHD9+HEFBQTq7blUhVZumpaVh4cKFmDhxItLT05Geng7g2bRYoigiJiYG1tbWcHV1rdgHNFZSj1UgouL9e7zVxIkTRblcLmZnZ5f7Wt9//70IQNywYYMois+mPgLHuBpUZWtPpVIpDhkyRJTL5eIvv/xS7gxVXWVrz+Ls2rVLBCCGhYVV6DpVRWVp0+joaI2xysW9+vXrV+5MpoJDBYiMxP/93/9BqVRiwYIFRfYVFhYiNTUVAJCSklJktZwWLVoAgPqrK2trawBQn0OGJ3V7vv/++wgLC8OaNWvUTzmT9qRsz8TExGK3b9q0CYIgoFWrVmW6DmmSqk1dXV2xc+fOIq+uXbvC0tISO3fuREhIiPYfzMhxqACRkQgICMC4ceMQGhqKK1euoEePHjA3N8ft27fx008/YeXKlRg8eDC2bduGNWvWYMCAAahXrx4yMjKwYcMG2Nvbo1evXgAAKysr+Pj4ICwsDA0bNkS1atXg6+tb6lfF3377Le7fv4/s7GwAwPHjx7Fw4UIAwFtvvYU6dero/zfBhEjZnitWrMCaNWvg7+8Pa2trfPfddxr7BwwYwFV6yknK9ly0aBFOnTqFnj17onbt2khOTsYvv/yC8+fP4/3330f9+vUN+VthMqRqU2tra/Tv37/I9l27duHcuXPF7qtSpO3wJaKSlLSKy/r160U/Pz/RyspKtLP7//buPyTq+48D+PPjqXcuzx/Vpf3yTk9wSlGtcAPXbm2MWMkUyn5A64qsDQIX6aJZkW2NZa0o3KIZQ5uwwWLrn9pWUCcWBTG2/eFkWXrnoqEVaLMfWunr+4d0fT9p66y7zs/7ng8I+rzv/Xm/39cTPry6+9z7Y5WpU6fKhg0b5J9//hERkd9++02WLl0qaWlpYjabZdy4cZKfny+//vqrbpyzZ8/KzJkzJTY2NqCvsFwu12O/tvJ4PMF628oaSXm63e7//BrywVPS6PFGUp4nTpyQ/Px8mTBhgsTExIjVapW8vDypqamR/v7+oL5vlY2kTIfC7bAGaCKPfL5NRERERDQC8R5XIiIiIjIEFq5EREREZAgsXImIiIjIEFi4EhEREZEhsHAlIiIiIkNg4UpEREREhsDClUgBPp8PmqahtrY23EuhIGGmamGeamGe4cPClYiIiIgMgQ8gIFKAiKC3txcxMTEwmUzhXg4FATNVC/NUC/MMHxauRERERGQIvFWAaISoqKiApmlobm7GsmXLkJiYCJvNhi1btkBEcPnyZRQUFCAhIQGpqanYvXu3/9yh7rdasWIF4uPjceXKFRQWFiI+Ph42mw1lZWXo6+vz96uvr4emaaivr9etZ6gx29vbsXLlSkyaNAlmsxnjx49HQUEBfD5fiP5VjI2ZqoV5qoV5GhMLV6IRZvHixejv78eOHTvw8ssvY/v27di7dy/eeustTJw4EZWVlcjMzERZWRkaGhr+c6y+vj7MnTsXY8aMweeffw6Xy4Xdu3ejurr6qda2YMECHDlyBCtXrsT+/ftRUlKC7u5u/P333081XqRgpmphnmphngYjRDQibN26VQDImjVr/G3379+XSZMmiaZpsmPHDn97Z2enxMXFidvtFhERr9crAKSmpsbfx+12CwD5+OOPdfPMmDFDZs6c6T/2eDwCQDwej67fo2N2dnYKANm1a1dw3nAEYKZqYZ5qYZ7GxE9ciUaY4uJi/99NJhNmzZoFEcGqVav87UlJScjKykJra+sTx3v//fd1x7Nnzw7ovEfFxcUhNjYW9fX16OzsHPb5kYyZqoV5qoV5GgsLV6IRJi0tTXecmJgIi8WCsWPHDmp/0sXMYrHAZrPp2pKTk5/qImg2m1FZWYmff/4ZKSkpeO2117Bz5060t7cPe6xIw0zVwjzVwjyNhYUr0Qgz1NYqj9tuRZ6wKUgg27RomjZk+///mOCBdevWobm5GZ999hksFgu2bNmC7Oxs/P7770+cJ5IxU7UwT7UwT2Nh4UoU4ZKTkwEAXV1duva2trYh+zudTpSWluLEiRNobGzE3bt3db+2pfBjpmphnmphns+GhStRhLPb7TCZTIN+Lbt//37d8e3bt9HT06NrczqdsFqt6O3tDfk6KXDMVC3MUy3M89lEh3sBRBReiYmJKCoqQlVVFTRNg9PpxNGjR3H16lVdv+bmZrz55ptYtGgRcnJyEB0djSNHjqCjowNLliwJ0+ppKMxULcxTLczz2bBwJSJUVVXh3r17OHDgAMxmMxYtWoRdu3ZhypQp/j6TJ0/G0qVLcfLkSdTV1SE6Ohovvvgivv/+eyxYsCCMq6ehMFO1ME+1MM+nx0e+EhEREZEh8B5XIiIiIjIEFq5EREREZAgsXImIiIjIEFi4EhEREZEhsHAlIiIiIkNg4UpEw+Lz+aBpGmpra8O9FAoSZqoW5qkW5qnHwpUohFpaWvDee+8hIyMDFosFCQkJyMvLw759+3Dnzp2QzdvU1ISKigr4fL6QzRGITz/9FO+88w5SUlKgaRoqKirCup5gYKZqZco8mWcwMM/nhw8gIAqRY8eOoaioCGazGcuXL8eUKVNw9+5dnDlzBh9++CH+/PNPVFdXh2TupqYmbNu2Da+//jocDkdI5gjE5s2bkZqaihkzZuD48eNhW0ewMFO1MmWezDNYmOfzw8KVKAS8Xi+WLFkCu92OU6dOYfz48f7X1q5di0uXLuHYsWNhXOFDIoKenh7ExcUFfWyv1wuHw4Hr16/DZrMFffzniZkOUCVT5jmAeT5/zPPZ8FYBohDYuXMnbt68ia+//lp3AX0gMzMTH3zwgf/4/v37+OSTT+B0OmE2m+FwOFBeXo7e3l7deQ6HA/n5+Thz5gxyc3NhsViQkZGBb775xt+ntrYWRUVFAIA5c+ZA0zRomob6+nrdGMePH8esWbMQFxeHr776CgDQ2tqKoqIijB49Gi+88AJeeeWVZ7rYh/OTh2Bjpg/XqwLm+XC9KmCeD9erPCGioJs4caJkZGQE3N/tdgsAWbhwoXz55ZeyfPlyASCFhYW6fna7XbKysiQlJUXKy8vliy++kJdeekk0TZPGxkYREWlpaZGSkhIBIOXl5VJXVyd1dXXS3t7uHyMzM1OSk5Nl48aNcuDAAfF4PNLe3i4pKSlitVpl06ZNsmfPHpk2bZpERUXJjz/+6F+D1+sVAFJTUxPw+7t27ZoAkK1btwZ8zkjDTPWMninz1GOezNMoWLgSBdmNGzcEgBQUFATU/48//hAAUlxcrGsvKysTAHLq1Cl/m91uFwDS0NDgb7t69aqYzWYpLS31tx0+fFgAiMfjGTTfgzF++eUXXfu6desEgJw+fdrf1t3dLenp6eJwOKSvr09EIvMiykwHM3KmzHMw5sk8jYK3ChAF2b///gsAsFqtAfX/6aefAADr16/XtZeWlgLAoK+NcnJyMHv2bP+xzWZDVlYWWltbA15jeno65s6dO2gdubm5ePXVV/1t8fHxWLNmDXw+H5qamgIeXzXMVC3MUy3MM7KwcCUKsoSEBABAd3d3QP3b2toQFRWFzMxMXXtqaiqSkpLQ1tama09LSxs0RnJyMjo7OwNeY3p6+pDryMrKGtSenZ3tfz1SMVO1ME+1MM/IwsKVKMgSEhIwYcIENDY2Dus8TdMC6mcymYZsF5GA5wrFr1lVxkzVwjzVwjwjCwtXohDIz89HS0sLzp0798S+drsd/f39uHjxoq69o6MDXV1dsNvtw54/0Avyo+u4cOHCoPa//vrL/3okY6ZqYZ5qYZ6Rg4UrUQhs2LABo0aNQnFxMTo6Oga93tLSgn379gEA5s2bBwDYu3evrs+ePXsAAPPnzx/2/KNGjQIAdHV1BXzOvHnzcP78ed2F/9atW6iurobD4UBOTs6w16ESZqoW5qkW5hk5+AACohBwOp349ttvsXjxYmRnZ+ue4nL27FkcPnwYK1asAABMmzYNbrcb1dXV6Orqgsvlwvnz53Ho0CEUFhZizpw5w55/+vTpMJlMqKysxI0bN2A2m/HGG29g3Lhxjz1n48aN+O677/D222+jpKQEo0ePxqFDh+D1evHDDz8gKmr4/8+tq6tDW1sbbt++DQBoaGjA9u3bAQDvvvuuoT5RYKYDVMmUeQ5gnszTcMK7qQGR2pqbm2X16tXicDgkNjZWrFar5OXlSVVVlfT09Pj73bt3T7Zt2ybp6ekSExMjkydPlo8++kjXR2RgW5X58+cPmsflconL5dK1HTx4UDIyMsRkMum2aXncGCID+xEuXLhQkpKSxGKxSG5urhw9elTXZzhbs7hcLgEw5J+hto0xAmaqVqbMk3kyT2PRRIZxdzERERERUZjwHlciIiIiMgQWrkRERERkCCxciYiIiMgQWLgSERERkSGwcCUiIiIiQ2DhSkRERESGwMKViIiIiAyBhSsRERERGQILVyIiIiIyBBauRERERGQILFyJiIiIyBBYuBIRERGRIbBwJSIiIiJD+B+gFk3wEu3H3wAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq4AAAInCAYAAABZQNsWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAkxxJREFUeJzs3Xd4k1X/BvD7Sbp3oZMyWjYVoVAslFXAQpEh018FEQRBBFGgKlI2Miq8ylKGbBxIXQwZBSwbCmUqMiqjpawuunebPL8/eMlr7KBNkzxNen+uK5fkmXc8jG9PznOOIIqiCCIiIiKiak4mdQAiIiIioopg4UpEREREBoGFKxEREREZBBauRERERGQQWLgSERERkUFg4UpEREREBoGFKxEREREZBBauRERERGQQWLgSERERkUFg4VpJjx8/xrx58/D48WOpoxARERHVKCxcK+nx48eYP38+C1ciIiIiPWPhSkREREQGgYUrERERERkEFq5EREREZBAMunA9ceIE+vfvjzp16kAQBOzateu55xw7dgxt27aFubk5GjdujK1bt+o8JxERERFVnUEXrjk5OWjdujVWr15doeNjY2PRt29fdO/eHVeuXMGUKVMwduxYHDx4UMdJiYiIiKiqTKQOUBWvvPIKXnnllQofv27dOnh5eeGLL74AALRo0QKnTp3C8uXLERQUpKuYRERERKQFBl24VlZUVBQCAwPVtgUFBWHKlCllnlNQUICCggLV++zsbF3FK9PEL7YjLStX7/eViqOtFdZ8OFzqGDpzZdNkFGanSR1Db8xsHOHz9kqpY+jMB5s+QFoNak9HG0esenuV1DF06vdp05Cfni51DL2xcHBA4NKlUsfQmfC1h5CbnS91DL2xsrFA8IReUsfQmRpVuCYkJMDV1VVtm6urKzIzM5GXlwdLS8sS54SFhWH+/Pn6iliqtKxcpGTov2Am3SjMTkNh1hOpY5CWpGWn4Qnb06jkp6cjLzVV6hikJbnZ+cjJzJM6BmlJjSpcNREaGoqQkBDV+ytXriAgIECSLDJBQC07a0nurQ+pmTlQiqLUMfRHkMHMxlHqFDpTmJ0GiEqpY+iNTJDB0YjbMy07Dcoa1J4AAJkMlg4OUqfQmbz0dEBZc9pUEARY2VpIHUNncrPyIdaAf0NrVOHq5uaGxMREtW2JiYmws7MrtbcVAMzNzWFubq56b2Njo9OM5allZ40f5o2V7P66NmzexhrVs2xm4wi/yd9IHUNnoleOrFE9y442jvh28rdSx9CZN1e+WeN6li0dHNBv/XqpY+jM3nfeqVE9y1a2Fhj98atSx9CZLf/ZUyN6liWbVUAURRw5cgQHDhxAVlaWXu7p7++PyMhItW2HDx+Gv7+/Xu5PRERERJrTS+E6c+ZMdO/eXfVeFEX06tULPXv2RN++ffHiiy/izp07lb5udnY2rly5gitXrgB4Ot3VlStXEB8fD+Dp1/wjR45UHf/uu+/i7t27mDZtGm7evIk1a9bgxx9/xNSpU6v2AYmIiIhI5/RSuP7yyy/w8/NTvf/5558RGRmJhQsXYu/evVAoFJg3b16lr3vhwgW0adMGbdq0AQCEhISgTZs2mDNnDgDg8ePHqiIWALy8vLBv3z4cPnwYrVu3xhdffIGNGzdyKiwiIiIiA6CXMa4PHz5E48aNVe9//fVXeHt7IzQ0FAAwYcIErF27ttLX7datW7kDkUtbFatbt264fPlype9FRERERNLSS4+riYmJai5UURQRGRmJ3r17q/a7uroiJSVFH1GIiIiIyEDppXBt2bIlvvvuO6SlpWHLli148uQJ+vbtq9p/7949ODk56SMKERERERkovQwVmDNnDvr3768qTjt16qT2sNa+ffvw0ksv6SMKERERERkovRSuPXv2xKVLl3D48GE4ODggODhYtS8tLQ1du3bFgAED9BGFiIiIiAyU3hYg8Pb2hre3d4ntjo6OWL58ub5iEBEREZGB0kvhmpWVhfT0dNSrV0+17dGjR1i3bh0KCgowdOhQDhUgIiIionLppXB95513EBsbi7NnzwIAMjMz0aFDBzx48AAymQwrV65EREQEunXrpo84RERERGSA9DKrwKlTp9CvXz/V+++++w6PHj3CmTNnkJaWhlatWmHhwoX6iEJEREREBkovhWtKSgo8PDxU7/fs2YPOnTujQ4cOsLW1xciRI/HHH3/oIwoRERERGSi9FK4ODg5ISEgAAOTl5eHkyZPo1auXar+JiQlyc3P1EYWIiIiIDJRexrh27NgRa9asQfPmzREREYH8/Hy16a/+/vtvtR5ZIiIiIqJ/00vhumTJEvTq1QtDhgwBAHz44Yd44YUXAAAKhQI//fST2hKwRERERET/ppfCtXHjxoiJicH169dhb28PT09P1b7c3Fx89dVXaN26tT6iEBEREZGB0tsCBKampqUWp7a2tlw1i4iIiIieSy8PZwFP52797LPPEBQUhDZt2iA6OhoAkJqaimXLluH27dv6ikJEREREBkgvPa4PHjxAQEAA7t+/jyZNmuDmzZvIzs4GANSqVQtff/017t27h5UrV+ojDhEREREZIL0Urh9//DGysrJw5coVuLi4wMXFRW3/wIEDsXfvXn1EISIiIiIDpZehAocOHcIHH3wAb29vCIJQYn/Dhg1x//59fUQhIiIiIgOll8I1Ly8Pzs7OZe7PysrSRwwiIiIiMmB6KVy9vb1x4sSJMvfv2rULbdq00UcUIiIiIjJQeilcp0yZgh07dmDJkiXIyMgAACiVSty+fRtvvvkmoqKiMHXqVH1EISIiIiIDpZeHs0aMGIF79+5h1qxZmDlzJgCgd+/eEEURMpkMixcvxsCBA/URhYiIiIgMlN4WIJg5cybefPNN/PLLL7h9+zaUSiUaNWqEwYMHo2HDhvqKQUREREQGSm+FKwDUr1+fQwKIiIiISCN6GeN66dIlrFmzpsz9a9aswZUrV/QRhYiIiIgMlF4K15kzZ+L3338vc/+RI0cwa9YsfUQhIiIiIgOll8L14sWL6NKlS5n7u3TpggsXLugjChEREREZKL0UrllZWTAxKXs4rUwmU02TVVmrV6+Gp6cnLCws0L59e0RHR5d7/IoVK9CsWTNYWlqiXr16mDp1KvLz8zW6NxERERHpj14K1yZNmuDQoUNl7o+IiNBoZoHw8HCEhIRg7ty5uHTpElq3bo2goCAkJSWVevz27dsxffp0zJ07Fzdu3MCmTZsQHh6OGTNmVPreRERERKRfeilc3377bezbtw8hISFIT09XbU9PT8fUqVMRERGBt99+u9LXXbZsGcaNG4fRo0fD29sb69atg5WVFTZv3lzq8WfOnEGnTp0wfPhweHp6olevXhg2bNhze2mJiIiISHp6KVw/+OADjBo1CitWrICTkxPq16+P+vXrw8nJCStXrsSIESMqPU1WYWEhLl68iMDAQNU2mUyGwMBAREVFlXpOx44dcfHiRVWhevfuXezfvx99+vTR/MMRERERkV7oZR5XQRCwZcsWjBw5Er/88gvu3r0LABgwYACGDBmCbt26VfqaKSkpUCgUcHV1Vdvu6uqKmzdvlnrO8OHDkZKSgs6dO0MURRQXF+Pdd98td6hAQUEBCgoKVO+zs7MrnZVIau3atUNCQgLc3Nz4ICQRERksvS5A0L17d3Tv3l2ft1Rz7NgxLF68GGvWrEH79u1x+/ZtTJ48GQsWLMDs2bNLPScsLAzz58/Xc1Ii7UpISMDDhw+ljkFERFQlehkqEBsbi99++63M/b/99hvi4uIqdU0nJyfI5XIkJiaqbU9MTISbm1up58yePRtvvvkmxo4dixdffBGDBg3C4sWLERYWBqVSWeo5oaGhyMjIUL2OHz9eqZxEREREpB16KVw/+ugjrFq1qsz9q1evxvTp0yt1TTMzM/j6+iIyMlK1TalUIjIyEv7+/qWek5ubC5lM/SPL5XIAgCiKpZ5jbm4OOzs71cvGxqZSOYmIiIhIO/RSuEZFRaFnz55l7n/55Zdx8uTJSl83JCQEGzZswLZt23Djxg1MmDABOTk5GD16NABg5MiRCA0NVR3fv39/rF27Fjt27EBsbCwOHz6M2bNno3///qoCloiIiIiqJ72McU1LS4OtrW2Z+21sbPDkyZNKXzc4OBjJycmYM2cOEhIS4OPjg4iICNUDW/Hx8Wo9rLNmzYIgCJg1axYePnwIZ2dn9O/fH4sWLar8hyIiIiIivdJL4Vq/fn2cPn0aEyZMKHX/yZMnUbduXY2uPWnSJEyaNKnUfceOHVN7b2Jigrlz52Lu3Lka3YuIiIiIpKOXoQLDhg3DDz/8gFWrVqk9BKVQKLBy5UqEh4dj+PDh+ohCRERERAZKLz2uoaGhOHXqFKZMmYJFixahWbNmAICYmBgkJyejW7dumDlzpj6iEBEREZGB0kuPq7m5OQ4dOoRNmzbBz88PKSkpSElJgZ+fHzZv3ozff/8d5ubm+ohCRERERAZKbwsQyGQyjB49WvXEPxERERFRZeilx5WIiIiIqKr00uPao0eP5x4jCILaYgJERERERP+kl8JVqVRCEAS1bQqFAvfu3cP9+/fRuHFjeHh46CMKUY30bBnkspZDJiIiMgR6KVz/PZ/qP+3duxfvvPMOli1bpo8oRDXShQsXpI5ARERUZXp7OKss/fr1w4gRIzBlyhQcP35c6jhEepEh2APZxdi3yLjnL7aXOgARERmVavFwVqNGjXD+/HmpYxARERFRNSZ5j2txcTF+/PFHODk5SR2FyGhNWXMQadl5cLSxxIqJQVLHISIi0oheCtcxY8aUuj09PR1nz55FQkICx7gS6VBadh6eZOZJHYOIiKhK9FK4HjlypMSsAoIgwNHREZ07d8bYsWPRq1cvfUQhIiIiIgOll8I1Li5OH7chIiIiIiNWLR7OIiIiIiJ6Hp0Vrrm5uYiPj0dhYWGJfZs3b8bLL78Mb29vDB48mDMKEBEREdFz6axw/fTTT9GqVasShevChQsxbtw4HD9+HMnJydi1axe6deuGP/74Q1dRiIiIiMgI6KxwPXr0KPr16wcbGxvVtszMTCxcuBAeHh64desWkpOTcfbsWZiZmeGzzz7TVRQiIiIiMgI6K1zj4uLQqlUrtW379+9HYWEhPvnkE3h5eQEA/Pz8MHr0aJw8eVJXUYiIiIjICOiscM3KykLt2rXVtp04cQKCICAoSH0CdG9vbyQnJ+sqChEREREZAZ0Vrg0aNMDNmzfVth07dgyurq5o3Lix2vbCwkLY2dnpKgoRERERGQGdFa69evXC5s2bce7cOQDAN998g5s3b2LQoEEljr148SI8PT11FYWIiIiIjIDOFiCYPXs2du3ahY4dO0Iul6O4uBjOzs6YM2eO2nG5ubnYuXMn3nnnHV1FIarxHG0s1f5LRERkiHRWuDo5OeHKlSvYuHEj7t69iwYNGmDMmDFwcXFRO+6vv/7CG2+8gTfffFNXUYhqvBUTg55/EBERUTWn0yVfHR0d8fHHH5d7jJ+fH/z8/HQZg4iIiIiMAJd8JSIiIiKDwMKViIiIiAwCC1ciIiIiMggGX7iuXr0anp6esLCwQPv27REdHV3u8enp6Xjvvffg7u4Oc3NzNG3aFPv379dTWiIiIiLSlE4K1z179uDRo0e6uLSa8PBwhISEYO7cubh06RJat26NoKAgJCUllXp8YWEhevbsibi4OPz888+IiYnBhg0b4OHhofOsRERERFQ1OilcBw0ahGPHjqneN2zYEHv27NH6fZYtW4Zx48Zh9OjR8Pb2xrp162BlZYXNmzeXevzmzZuRmpqKXbt2oVOnTvD09ERAQABat26t9WxEREREpF06KVxtbW2Rnp6ueh8XF4fs7Gyt3qOwsBAXL15EYGCgaptMJkNgYCCioqJKPWfPnj3w9/fHe++9B1dXV7Rs2RKLFy+GQqEo8z4FBQXIzMxUvbT9OYiIiIioYnQyj6ufnx8WLVqExMRE2NvbAwD279+PhISEMs8RBAFTp06t8D1SUlKgUCjg6uqqtt3V1RU3b94s9Zy7d+/iyJEjeOONN7B//37cvn0bEydORFFREebOnVvqOWFhYZg/f36FcxERERGRbuikcF2zZg1GjhyJBQsWAHhalG7fvh3bt28v85zKFq6aUCqVcHFxwfr16yGXy+Hr64uHDx/iP//5T5mFa2hoKEJCQlTvr1y5goCAAJ3mJCIiIqKSdFK4Nm7cGGfOnEF+fj6SkpLg6emJFStWYMCAAVq7h5OTE+RyORITE9W2JyYmws3NrdRz3N3dYWpqCrlcrtrWokULJCQkoLCwEGZmZiXOMTc3h7m5ueq9jY2Nlj4BEREREVWGTpd8tbCwQP369TF37lz06NEDDRo00Nq1zczM4Ovri8jISAwcOBDA0x7VyMhITJo0qdRzOnXqhO3bt0OpVEImezq89++//4a7u3upRSsRERERVR96mcd17ty5aNmyJQAgOzsbN27cwI0bN6r8oFNISAg2bNiAbdu24caNG5gwYQJycnIwevRoAMDIkSMRGhqqOn7ChAlITU3F5MmT8ffff2Pfvn1YvHgx3nvvvSrlICIiIiLd02mP6z+dP38e06ZNw6lTp6BUKgE8nQWgS5cuWLp0Kdq1a1fpawYHByM5ORlz5sxBQkICfHx8EBERoXpgKz4+XtWzCgD16tXDwYMHMXXqVLRq1QoeHh6YPHkyPvnkE+18SCIiIiLSGb0UrufOnUO3bt1gZmaGsWPHokWLFgCAGzdu4IcffkDXrl1x7Ngx+Pn5VfrakyZNKnNowD/nkn3G398fZ8+erfR9iIiIiEhaeilcZ86cCQ8PD5w6darEg1Pz5s1Dp06dMHPmTBw+fFgfcYiIiIjIAOlljOu5c+cwfvz4Up/2d3V1xTvvvMNeUCIiIiIql14KV5lMhuLi4jL3KxQKtbGoRERERET/ppdqsWPHjli9ejXu3btXYl98fDzWrFmDTp066SMKERERERkovYxxXbx4Mbp27YrmzZtj0KBBaNq0KQAgJiYGu3fvhomJCcLCwvQRhYiIiIgMlF4K1zZt2uDcuXOYOXMm9uzZg9zcXACAlZUVevfujYULF8Lb21sfUYiIiIjIQOltHldvb2/s3LkTSqUSycnJAABnZ2eObSUiIiKiCtFb4fqMTCZTLRBARERERFRR7O4kIiIiIoPAwpWIiIiIDAILVyIiIiIyCCxciYiIiMggsHAlIiIiIoOg11kFrl+/jrt37yItLQ2iKJbYP3LkSH3GISIiIiIDopfC9c6dOxgxYgSio6NLLVgBQBAEFq5EREREVCa9FK7jx4/H1atXsWLFCnTp0gWOjo76uC0RERERGRG9FK6nT5/GjBkz8P777+vjdkRERERkhPTycJaTkxPs7e31cSsiIiIiMlJ6KVzfffddfPfdd1AoFPq4HREREREZIb0MFWjatCkUCgVat26NMWPGoF69epDL5SWOGzx4sD7iEBEREZEB0kvhGhwcrPr1Rx99VOoxgiCwR5aIiIiIyqSXwvXo0aP6uA0RERERGTG9FK4BAQH6uA0RERERGTG9rpwFPF096969ewCABg0awNvbW98RiIiIiMgA6a1w3b17N0JCQhAXF6e23cvLC8uWLcOrr76qryhEREREZID0Mh3W/v37MWTIEADA4sWLsXPnTuzcuROLFy+GKIoYPHgwIiIi9BGFiIiIiAyUXnpcFyxYgFatWuHkyZOwtrZWbX/11VcxadIkdO7cGfPnz0fv3r31EYeIiIiIDJBeelz//PNPjBo1Sq1ofcba2hpvvfUW/vzzT42uvXr1anh6esLCwgLt27dHdHR0hc7bsWMHBEHAwIEDNbovEREREemXXgpXCwsLpKamlrk/NTUVFhYWlb5ueHg4QkJCMHfuXFy6dAmtW7dGUFAQkpKSyj0vLi4OH330Ebp06VLpexIRERGRNPRSuPbo0QMrV65EVFRUiX3nzp3DqlWrEBgYWOnrLlu2DOPGjcPo0aPh7e2NdevWwcrKCps3by7zHIVCgTfeeAPz589Hw4YNK31PIiIiIpKGXsa4Ll26FP7+/ujcuTP8/PzQrFkzAEBMTAyio6Ph4uKCJUuWVOqahYWFuHjxIkJDQ1XbZDIZAgMDSy2Qn/n000/h4uKCt99+GydPnnzufQoKClBQUKB6n52dXamcRERERKQdeulx9fLywp9//okPPvgAaWlpCA8PR3h4ONLS0jB58mT88ccf8PT0rNQ1U1JSoFAo4Orqqrbd1dUVCQkJpZ5z6tQpbNq0CRs2bKjwfcLCwmBvb696cTEFIiIiImnobR5XFxcXLF++HMuXL9fXLdVkZWXhzTffxIYNG+Dk5FTh80JDQxESEqJ6f+XKFRavRERERBLQ+8pZ2uLk5AS5XI7ExES17YmJiXBzcytx/J07dxAXF4f+/furtimVSgCAiYkJYmJi0KhRoxLnmZubw9zcXPXexsZGWx+BiIiIiCpBJ4XrmDFjIAgC1q9fD7lcjjFjxjz3HEEQsGnTpgrfw8zMDL6+voiMjFRNaaVUKhEZGYlJkyaVOL558+a4evWq2rZZs2YhKysLK1euRL169Sp8byIiIiLSP50UrkeOHIFMJoNSqYRcLseRI0cgCEK55zxvf2lCQkIwatQotGvXDn5+flixYgVycnIwevRoAMDIkSPh4eGBsLAwWFhYoGXLlmrnOzg4AECJ7URERESaateuHRISEuDm5oYLFy5IHceo6KRwjYuLK/e9tgQHByM5ORlz5sxBQkICfHx8EBERoXpgKz4+HjKZXp4/IyIiIgIAJCQk4OHDh1LHMEp6GeMaHx8PZ2dnWFpalro/Ly8PycnJqF+/fqWvPWnSpFKHBgDAsWPHyj1369atlb4fEREREUlDb9Nh7dy5s8z9e/bsgZeXlz6iEBEREZGB0kvhKopiufuLior4lT4RERERlUtnQwUyMzORnp6uev/kyRPEx8eXOC49PR07duyAu7u7rqIQERFVa3yYh6hidFa4Ll++HJ9++imApzMGTJkyBVOmTCn1WFEUsXDhQl1FISIiqtb4MA9RxeiscO3VqxdsbGwgiiKmTZuGYcOGoW3btmrHCIIAa2tr+Pr6ol27drqKQkRERERGQGeFq7+/P/z9/QEAOTk5GDJkCOdLJSIiIiKN6Xw6rNzcXKxatQpWVlYsXImIiIhIYzp/lN/KygomJiawtrbW9a2IiIiIyIjpZQ6qIUOG4Oeff37utFhERERERGXRy8pZr7/+OiZOnIju3btj3Lhx8PT0LHUVrX8/vEVERERE9IxeCtdu3bqpfn3y5MkS+0VRhCAIUCgU+ohDREREpDNubm5q/yXt0UvhumXLFn3choiIiEhyXERCd/RSuI4aNUoftyEiIiIqyawQOfmF+GrBt1In0TEzqQPonF4K13/Kzs7G/fv3AQD16tWDjY2NviMQERERkQHSy6wCAHD+/Hl0794djo6OaNmyJVq2bAlHR0f06NGDXepERERkNJaum4PZn0/G0nVzpI5idPTS43ru3Dl069YNZmZmGDt2LFq0aAEAuHHjBn744Qd07doVx44dg5+fnz7iEBERVSt8mMe4ZGVnID0zTeoYRkkvhevMmTPh4eGBU6dOlfhDOW/ePHTq1AkzZ87E4cOH9RGHiIioWuE3j0QVo7ce1zlz5pT6k6SrqyveeecdLFiwQB9RiIiInivH2ho5BQXYauQPF3NNSzI0ehnjKpPJUFxcXOZ+hUIBmUxvw22JiIiIyADppVrs2LEjVq9ejXv37pXYFx8fjzVr1qBTp076iEJERFTtzN+3DyE//4z5+/ZJHYWoWtPLUIHFixeja9euaN68OQYNGoSmTZsCAGJiYrB7926YmJggLCxMH1GIiIiqnYy8PKTl5kodg6ja00vh2qZNG5w7dw4zZ87Enj17kPvfP5xWVlbo3bs3Fi5cCG9vb31EISIiIiIDpbcFCLy9vbFz504olUokJycDAJydnTm2lYiIiIgqRO8rZwmCAEEQVL8mIiIiIqoIvXV3Xr9+HUOHDoWdnR3c3d3h7u4OOzs7DB06FH/99Ze+YhARGbx27dqhbt26aNeundRRiIj0Si89ridPnsQrr7wCpVKJAQMGqD2ctWfPHhw4cAARERHo0qWLPuIQERm0hIQEPHz4UOoYRER6p5fCderUqXBxccHx48dRr149tX33799H165dERISgvPnz+sjDhEREREZIL0MFbh27RomTpxYomgFgHr16mHChAm4du2aRtdevXo1PD09YWFhgfbt2yM6OrrMYzds2IAuXbrA0dERjo6OCAwMLPd4IiIiosqytbGHg50jbG3spY5idPTS49qgQQMUFBSUub+wsLDUovZ5wsPDERISgnXr1qF9+/ZYsWIFgoKCEBMTAxcXlxLHHzt2DMOGDUPHjh1hYWGBJUuWoFevXrh27Ro8PDwqfX8iIiKif5v27qdSRzBaeulxnTNnDlatWoUrV66U2Hf58mV8+eWXmDdvXqWvu2zZMowbNw6jR4+Gt7c31q1bBysrK2zevLnU47///ntMnDgRPj4+aN68OTZu3AilUonIyMhK39vY8eEPIiIiqm700uN69uxZuLq6wtfXFx07dkTjxo0BALdu3UJUVBRatmyJqKgoREVFqc4RBAErV64s85qFhYW4ePEiQkNDVdtkMhkCAwPVrlOe3NxcFBUVoVatWmUeU1BQoNZbnJ2dXaFrGzo+/EFERETVjV4K16+++kr169OnT+P06dNq+69evYqrV6+qbXte4ZqSkgKFQgFXV1e17a6urrh582aFcn3yySeoU6cOAgMDyzwmLCwM8+fPr9D1iIiINGFvaan2XyIqnV4KV6VSqY/bVMpnn32GHTt24NixY7CwsCjzuNDQUISEhKjeX7lyBQEBAfqISERENcTcvn2ljkBkEPS+cpa2ODk5QS6XIzExUW17YmIi3Nzcyj33888/x2effYbff/8drVq1KvdYc3NzmJubq97b2NhoHpqIiIiINKbXwjU2NhYHDhzAvXv3ADydbeCVV16Bl5dXpa9lZmYGX19fREZGYuDAgQCgetBq0qRJZZ63dOlSLFq0CAcPHuSDR0RkkJ79cP68H9KJiIyN3grXDz/8ECtXriwxbEAmk2HKlCn4/PPPK33NkJAQjBo1Cu3atYOfnx9WrFiBnJwcjB49GgAwcuRIeHh4ICwsDACwZMkSzJkzB9u3b4enpycSEhIAPO1FZU8qERmKCxcuSB2BiEgSeilcv/jiCyxfvhxDhw7Fhx9+iBYtWgAAbty4geXLl2P58uXw8PDA1KlTK3Xd4OBgJCcnY86cOUhISICPjw8iIiJUD2zFx8dDJvvfjF9r165FYWEhhg4dqnaduXPnajQdFxERAJgXmCO7IBuDZg+SOopumT//ECIiXdJL4bphwwa8+uqr+PHHH9W2t2/fHjt27EB+fj6+/vrrSheuADBp0qQyhwYcO3ZM7X1cXFylr09ERERE1YNeFiCIi4tDUFBQmfuDgoJYVBIRVdCxTccQsTICxzYdkzoKEZFe6aXH1cXFBX/88UeZ+//44w84OzvrIwpVEB/+IKq+8rPzkZ+VL3UMIiK900vh+tprr2HlypXw9PTE+++/D2trawBATk4OvvrqK2zcuBFTpkzRRxSqID78QURERNWNXgrXBQsW4MqVK5gxYwbmzJmDOnXqAAAePXqE4uJidO/eHZ9++qk+ohgsKzEXuem5GDBlsdRRdEuwkjoBERERVVN6KVytrKwQGRmJ3bt3q83j2rt3b/Tp0wf9+/eHIAj6iEJEREREBkrnhWtubi5GjBiBIUOG4I033sCAAQN0fUvSguM/rEZBbjbMrWwQMOw9qeMQERER6X5WASsrK/z+++/Izc3V9a1Iiwpys5GfnYmC3GypoxAREREB0NN0WJ07d0ZUVJQ+bkVERERERkovhetXX32FkydPYtasWXjw4IE+bklERERERkYvhWvr1q3x4MEDhIWFoUGDBjA3N4ednZ3ay97eXh9RiIiIiMhA6WVWgSFDhnDWACIiIiKqEr0Urlu3btXHbYiIagQLGwu1/xIR1RQ6LVzz8/Oxe/duxMbGwsnJCX379oW7u7sub0lEZPS6vd1N6ghERJLQWeGalJSEjh07IjY2FqIoAng6NdauXbsQGBioq9sSERERkZHS2cNZCxYsQFxcHKZOnYq9e/dixYoVsLS0xPjx43V1SyIiIiIyYjrrcT106BBGjhyJzz//XLXN1dUVw4cPR0xMDJo1a6arW5MWmFvZqP2XiIiISGo6K1zj4+PxySefqG3r3LkzRFFEYmIiC9dqjsu8EhERUXWjs6ECBQUFsLBQf+L12fvi4mJd3ZaIiIiIjJROZxWIi4vDpUuXVO8zMjIAALdu3YKDg0OJ49u2bavLOERERERkwHRauM6ePRuzZ88usX3ixIlq70VRhCAIUCgUuoxDRERERAZMZ4Xrli1bdHVpIiIiIqqBdFa4jho1SleXJiIiIqIaSGcPZxERERERaRMLVyIiIiIyCCxciYiIiMggsHAlIiIiIoPAwpWIiIiIDILBF66rV6+Gp6cnLCws0L59e0RHR5d7/E8//YTmzZvDwsICL774Ivbv36+npERERERUFQZduIaHhyMkJARz587FpUuX0Lp1awQFBSEpKanU48+cOYNhw4bh7bffxuXLlzFw4EAMHDgQf/31l56TExEREVFlGXThumzZMowbNw6jR4+Gt7c31q1bBysrK2zevLnU41euXInevXvj448/RosWLbBgwQK0bdsWX331lZ6TExEREVFlGWzhWlhYiIsXLyIwMFC1TSaTITAwEFFRUaWeExUVpXY8AAQFBZV5PBERERFVHzpbOUvXUlJSoFAo4Orqqrbd1dUVN2/eLPWchISEUo9PSEgo8z4FBQUoKChQvc/Ozq5CasOSn5OJ/Jws/d5TsIAs1wqXLl3S63316eb9J0jLU0gdQy9sxGyYWgEmRtyeT+4/QV56ntQx9KLQrBCwglH/+QSA2ykpSC8slDqGXljm5cFcqTTqNr334A7yCvX/b7edrQPsbR30fl9jZ7CFq76EhYVh/vz5atsCAgLg7u6utww/zBurt3s9U1BQgKCgIJw4flzv9waAQ+sXSnJf0pEv+BCkMTnwxQGpI5C27dwpdQKjExAQgIMHD8Lc3FzqKEbFYAtXJycnyOVyJCYmqm1PTEyEm5tbqee4ublV6ngACA0NRUhIiNo2c3Nzo/+NWFBQgOPHj+P48eOwsbGROg5VUXZ2NgICAtieRoLtaXzYpsblWXsWFBQYfb2gbwZbuJqZmcHX1xeRkZEYOHAgAECpVCIyMhKTJk0q9Rx/f39ERkZiypQpqm2HDx+Gv79/mfepCUVqeXx8fGBnZyd1DKqizMxMAGxPY8H2ND5sU+PyrD1J+wy2cAWAkJAQjBo1Cu3atYOfnx9WrFiBnJwcjB49GgAwcuRIeHh4ICwsDAAwefJkBAQE4IsvvkDfvn2xY8cOXLhwAevXr5fyYxARERFRBRh04RocHIzk5GTMmTMHCQkJ8PHxQUREhOoBrPj4eMhk/5s4oWPHjti+fTtmzZqFGTNmoEmTJti1axdatmwp1UcgIiIiogoy6MIVACZNmlTm0IBjx46V2Pbaa6/htdde03Eqw2dubo65c+fW6GESxoTtaVzYnsaHbWpc2J66I4iiKEodgoiIiIjoeQx2AQIiIiIiqllYuBIRERGRQWDhSkREREQGgYUr6VxcXBwEQcDWrVuljkJEREQGjIVrNXPnzh2MHz8eDRs2hIWFBezs7NCpUyesXLkSeXm6Ww/9+vXrmDdvHuLi4nR2j4pYtGgRXn31Vbi6ukIQBMybN0/SPPokCEKFXqXNllFZubm5mDdvXqWuVZPbRhPVuT1v3ryJadOmwcfHB7a2tnB3d0ffvn1x4cKFKmcxVtW5PR89eoQRI0agWbNmsLW1hYODA/z8/LBt2zbw+euyVec2/bfvv/8egiBwVTUYwXRYxmTfvn147bXXYG5ujpEjR6Jly5YoLCzEqVOn8PHHH+PatWs6Wyzh+vXrmD9/Prp16wZPT0+d3KMiZs2aBTc3N7Rp0wYHDx6ULIcUvv32W7X333zzDQ4fPlxie4sWLap8r9zcXMyfPx8A0K1btwqdU5PbRhPVuT03btyITZs2YciQIZg4cSIyMjLw9ddfo0OHDoiIiEBgYGCVMxmb6tyeKSkpePDgAYYOHYr69eujqKgIhw8fxltvvYWYmBgsXry4ypmMUXVu03/Kzs7GtGnTYG1tXeUcxoCFazURGxuL119/HQ0aNMCRI0fg7u6u2vfee+/h9u3b2Ldvn4QJ/0cUReTn58PS0lLr146NjYWnpydSUlLg7Oys9etXZyNGjFB7f/bsWRw+fLjEdqnU5LbRRHVuz2HDhmHevHlqvTdjxoxBixYtMG/ePBaupajO7dmqVasSPXmTJk1C//79sWrVKixYsAByuVyacNVYdW7Tf1q4cCFsbW3RvXt37Nq1S+o4kuNQgWpi6dKlyM7OxqZNm9SK1mcaN26MyZMnq94XFxdjwYIFaNSoEczNzeHp6YkZM2agoKBA7TxPT0/069cPp06dgp+fHywsLNCwYUN88803qmO2bt2qWpShe/fuJb4eeXaNgwcPol27drC0tMTXX38NALh79y5ee+011KpVC1ZWVujQoUOVCmwpe3sNgVKpxIoVK/DCCy/AwsICrq6uGD9+PNLS0tSOu3DhAoKCguDk5ARLS0t4eXlhzJgxAJ6OOX5WeM6fP1/V3s/76p9to31Staevr2+Jrxxr166NLl264MaNG9r9kDWIlH8+S+Pp6Ync3FwUFhZW+bPVVFK36a1bt7B8+XIsW7YMJibsawTY41pt/Pbbb2jYsCE6duxYoePHjh2Lbdu2YejQofjwww9x7tw5hIWF4caNG9i5c6fasbdv38bQoUPx9ttvY9SoUdi8eTPeeust+Pr64oUXXkDXrl3xwQcfYNWqVZgxY4bqa5F/fj0SExODYcOGYfz48Rg3bhyaNWuGxMREdOzYEbm5ufjggw9Qu3ZtbNu2Da+++ip+/vlnDBo0SHv/gwgAMH78eGzduhWjR4/GBx98gNjYWHz11Ve4fPkyTp8+DVNTUyQlJaFXr15wdnbG9OnT4eDggLi4OPz6668AAGdnZ6xduxYTJkzAoEGDMHjwYABPe21Iv6pbeyYkJMDJyUmrn7Emkbo98/LykJOTg+zsbBw/fhxbtmyBv7+/Tr4dqymkbtMpU6age/fu6NOnD3788UedflaDIZLkMjIyRADigAEDKnT8lStXRADi2LFj1bZ/9NFHIgDxyJEjqm0NGjQQAYgnTpxQbUtKShLNzc3FDz/8ULXtp59+EgGIR48eLXG/Z9eIiIhQ2z5lyhQRgHjy5EnVtqysLNHLy0v09PQUFQqFKIqiGBsbKwIQt2zZUqHPJ4qimJycLAIQ586dW+FzjM17770n/vOP6MmTJ0UA4vfff692XEREhNr2nTt3igDE8+fPl3ntqvz/Zdtoprq25zMnTpwQBUEQZ8+erfE1apLq2J5hYWEiANXr5ZdfFuPj4yt1jZqsurXp3r17RRMTE/HatWuiKIriqFGjRGtr60p8IuPEoQLVQGZmJgDA1ta2Qsfv378fABASEqK2/cMPPwSAEl/Ve3t7o0uXLqr3zs7OaNasGe7evVvhjF5eXggKCiqRw8/PD507d1Zts7GxwTvvvIO4uDhcv369wten5/vpp59gb2+Pnj17IiUlRfV69rXv0aNHAQAODg4AgL1796KoqEjCxFSe6tSeSUlJGD58OLy8vDBt2jSd3MPYVYf2HDZsGA4fPozt27dj+PDhAKDT2WiMnZRtWlhYiKlTp+Ldd9+Ft7e3Vq5pLFi4VgN2dnYAgKysrAodf+/ePchkMjRu3Fhtu5ubGxwcHHDv3j217fXr1y9xDUdHxxJjdMrj5eVVao5mzZqV2P5siMG/c1DV3Lp1CxkZGXBxcYGzs7PaKzs7G0lJSQCAgIAADBkyBPPnz4eTkxMGDBiALVu2lBj/TNKqLu2Zk5ODfv36ISsrC7t37+Z0OxqqDu3ZoEEDBAYGYtiwYfj+++/RsGFDBAYGsnjVkJRtunz5cqSkpKhmIqD/4RjXasDOzg516tTBX3/9VanzBEGo0HFlPU0qVmJ+P46Rkp5SqYSLiwu+//77Uvc/G/wvCAJ+/vlnnD17Fr/99hsOHjyIMWPG4IsvvsDZs2dZmFQT1aE9CwsLMXjwYPz55584ePAgWrZsqfG1arrq0J7/NnToUGzYsAEnTpwo8Y0ZPZ9UbZqRkYGFCxdi4sSJyMzMVH0rm52dDVEUERcXBysrK7i4uFTtAxooFq7VRL9+/bB+/XpERUXB39+/3GMbNGgApVKJW7duqT1AlZiYiPT0dDRo0KDS969oEfzvHDExMSW237x5U7WftKdRo0b4/fff0alTpwr9INGhQwd06NABixYtwvbt2/HGG29gx44dGDt2rEbtTdoldXsqlUqMHDkSkZGR+PHHHxEQEKDJx6D/kro9S/OspzUjI0Mr16tppGrTtLQ0ZGdnY+nSpVi6dGmJ/V5eXhgwYECNnRqLQwWqiWeTC48dOxaJiYkl9t+5cwcrV64EAPTp0wcAsGLFCrVjli1bBgDo27dvpe//bGLj9PT0Cp/Tp08fREdHIyoqSrUtJycH69evh6enJ8flaNn//d//QaFQYMGCBSX2FRcXq9ouLS2tRG+6j48PAKi+urKysgJQufYm7ZK6Pd9//32Eh4djzZo1qqecSXNStmdycnKp2zdt2gRBENC2bdsKXYfUSdWmLi4u2LlzZ4lX9+7dYWFhgZ07dyI0NFTzD2bg2ONaTTRq1Ajbt29HcHAwWrRoobZy1pkzZ/DTTz/hrbfeAgC0bt0ao0aNwvr165Geno6AgABER0dj27ZtGDhwILp3717p+/v4+EAul2PJkiXIyMiAubk5evToUe5XEdOnT8cPP/yAV155BR988AFq1aqFbdu2ITY2Fr/88gtkssr/XPTtt9/i3r17yM3NBQCcOHECCxcuBAC8+eabNboXNyAgAOPHj0dYWBiuXLmCXr16wdTUFLdu3cJPP/2ElStXYujQodi2bRvWrFmDQYMGoVGjRsjKysKGDRtgZ2en+qHH0tIS3t7eCA8PR9OmTVGrVi20bNmy3K+K2TbaJWV7rlixAmvWrIG/vz+srKzw3Xffqe0fNGgQV+mpJCnbc9GiRTh9+jR69+6N+vXrIzU1Fb/88gvOnz+P999/v8TzEFQxUrWplZUVBg4cWGL7rl27EB0dXeq+GkXKKQ2opL///lscN26c6OnpKZqZmYm2trZip06dxC+//FLMz89XHVdUVCTOnz9f9PLyEk1NTcV69eqJoaGhaseI4tOprPr27VviPgEBAWJAQIDatg0bNogNGzYU5XK52tRYZV1DFEXxzp074tChQ0UHBwfRwsJC9PPzE/fu3at2TGWmwwoICFCbzuWfr9Km6jJm/56a5Zn169eLvr6+oqWlpWhrayu++OKL4rRp08RHjx6JoiiKly5dEocNGybWr19fNDc3F11cXMR+/fqJFy5cULvOmTNnRF9fX9HMzKxC07SwbaqmOrXnqFGjymxLAGJsbKw2P7pRqk7teejQIbFfv35inTp1RFNTU9W/G1u2bBGVSqVWP7cxq05tWhpOh/WUIIqVeEKHiIiIiEgiHONKRERERAaBhSsRERERGQQWrkRERERkEFi4EhEREZFBYOFKRERERAaBhauBWbp0KZo3bw6lUil1lCp7/fXX8X//939Sx5AU29P4sE2NC9vTuLA9jYDU83FRxWVkZIi1atUSN2/erNqG/867+Pnnn5c4fsuWLSIA8fz581rPEhgYKAIQ33vvvVL3b9y4UWzevLlobm4uNm7cWFy1alWJYy5duiTKZDLxypUrWs9nCNiexodtalzYnsaF7Wkc2ONqQDZv3ozi4mIMGzasxL7//Oc/qhWNdO3XX39VW+b1377++muMHTsWL7zwAr788kv4+/vjgw8+wJIlS9SOa9OmDdq1a4cvvvhC15GrJban8WGbGhe2p3FhexoJqStnqrhWrVqJI0aMUNsGQPTx8REBiF988YXaPl38tJiXlyd6enqKn376aak/Lebm5oq1a9cusdLWG2+8IVpbW4upqalq2z///HPR2tpazMrK0lpGQ8H2ND5sU+PC9jQubE/jwB5XAxEbG4s///wTgYGBJfZ16tQJPXr0wNKlS5GXl6fTHEuXLoVSqcRHH31U6v6jR4/iyZMnmDhxotr29957Dzk5Odi3b5/a9p49eyInJweHDx/WWebqiO1pfNimxoXtaVzYnsaDhauBOHPmDACgbdu2pe6fN28eEhMTsXbt2nKvU1BQgJSUlAq9/i0+Ph6fffYZlixZAktLy1Kvf/nyZQBAu3bt1Lb7+vpCJpOp9j/j7e0NS0tLnD59utzcxobtaXzYpsaF7Wlc2J7Gw0TqAFQxN2/eBAB4eXmVur9Lly7o3r07/vOf/2DChAll/qH44YcfMHr06ArdUxRFtfcffvgh2rRpg9dff73Mcx4/fgy5XA4XFxe17WZmZqhduzYePXqktt3ExAT16tXD9evXK5TJWLA9jQ/b1LiwPY0L29N4sHA1EE+ePIGJiQlsbGzKPGbevHkICAjAunXrMHXq1FKPCQoK0ugrhaNHj+KXX37BuXPnyj0uLy8PZmZmpe6zsLAo9WsYR0fHUn86NWZsT+PDNjUubE/jwvY0HixcjUjXrl3RvXt3LF26FO+++26px7i7u8Pd3b1S1y0uLsYHH3yAN998Ey+99FK5x1paWqKwsLDUffn5+aX+FCuKIgRBqFSmmoDtaXzYpsaF7Wlc2J6GgYWrgahduzaKi4uRlZUFW1vbMo+bO3cuunXrhq+//hoODg4l9ufl5SEjI6NC93RzcwMAfPPNN4iJicHXX3+NuLg4tWOysrIQFxcHFxcXWFlZwd3dHQqFAklJSWpfdRQWFuLJkyeoU6dOifukpaWhSZMmFcpkLNiexodtalzYnsaF7Wk8+HCWgWjevDmAp09GlicgIADdunXDkiVLSv1KITw8XPUT4/Nez8THx6OoqAidOnWCl5eX6gU8/QPp5eWFQ4cOAQB8fHwAABcuXFC774ULF6BUKlX7nykuLsb9+/fRokWLSv3/MHRsT+PDNjUubE/jwvY0HuxxNRD+/v4Anv7mbdWqVbnHzps3D926dcP69etL7NNkfM7rr79e4g8LAAwaNAh9+vTBuHHj0L59ewBAjx49UKtWLaxduxZ9+vRRHbt27VpYWVmhb9++ate4fv068vPz0bFjx0plMnRsT+PDNjUubE/jwvY0IlJNIEuV17JlS3HYsGFq21DGknEBAQGqpex0sVxdefdevXq1CEAcOnSouGHDBnHkyJEiAHHRokUljv38889FKysrMTMzUycZqzO2p/FhmxoXtqdxYXsaBxauBmTZsmWijY2NmJubq9pW1m/8o0ePSvaHThRFcf369WKzZs1EMzMzsVGjRuLy5ctFpVJZ4rj27duXWMmkpmB7Gh+2qXFhexoXtqdxYOFqQNLT08VatWqJGzdulDqKVly+fFkUBEG8fPmy1FEkwfY0PmxT48L2NC5sT+MgiOK/Zsilam3JkiXYsmULrl+/DpnMsJ+te/3116FUKvHjjz9KHUUybE/jwzY1LmxP48L2NHwsXImIiIjIIBj2jxtEREREVGOwcCUiIiIig8DClYiIiIgMAgtXIiIiIjIILFyJiIiIyCCwcCUiIiIig8DClYiIiIgMAgtXIiIiIjIILFyJiIiIyCCwcCUiIiIig8DClYiIiIgMAgtXIiIiIjIILFyJiIiIyCCwcK2kx48fY968eXj8+LHUUYiIiIhqFBaulfT48WPMnz+fhSsRERGRnrFwJSIiIiKDwMKViIiIiAwCC1ciIiIiMggsXImIiIjIILBwJSIiIiKDwMKViIiIiAwCC1ciIiIiMggsXIlqitxUqRMQERFVCQtXopoiJ1nqBERERFXCwpWopijIkjoBERFRlbBwJaop8jMARbHUKYiIiDRW5cL18ePH+OOPP5CTk6ONPJW2evVqeHp6wsLCAu3bt0d0dHS5x69YsQLNmjWDpaUl6tWrh6lTpyI/P19PaYkklpsidQIiIiKNaVy47t69G82bN0fdunXRtm1bnDt3DgCQkpKCNm3aYNeuXdrKWKbw8HCEhIRg7ty5uHTpElq3bo2goCAkJSWVevz27dsxffp0zJ07Fzdu3MCmTZsQHh6OGTNm6DwrUbWQ9VjqBERERBrTqHD97bffMHjwYDg5OWHu3LkQRVG1z8nJCR4eHtiyZYvWQpZl2bJlGDduHEaPHg1vb2+sW7cOVlZW2Lx5c6nHnzlzBp06dcLw4cPh6emJXr16YdiwYc/tpSUyGun3pU5ARESkMY0K108//RRdu3bFqVOn8N5775XY7+/vj8uXL1c5XHkKCwtx8eJFBAYGqrbJZDIEBgYiKiqq1HM6duyIixcvqgrVu3fvYv/+/ejTp0+Z9ykoKEBmZqbqlZ2drd0PQqRP6fFSJyAiItKYiSYn/fXXX1i2bFmZ+11dXcv8ul5bUlJSoFAo4OrqWuLeN2/eLPWc4cOHIyUlBZ07d4YoiiguLsa7775b7lCBsLAwzJ8/X6vZiSSTelfqBERERBrTqMfVysqq3Iex7t69i9q1a2scSleOHTuGxYsXY82aNbh06RJ+/fVX7Nu3DwsWLCjznNDQUGRkZKhex48f12NiIi1L+Rv4x9AeIiIiQ6JR4dq9e3ds27YNxcUlp9ZJSEjAhg0b0KtXryqHK4+TkxPkcjkSExPVticmJsLNza3Uc2bPno0333wTY8eOxYsvvohBgwZh8eLFCAsLg1KpLPUcc3Nz2NnZqV42NjZa/yxEelOQBaTfkzoFERGRRjQqXBctWoQHDx7gpZdewtdffw1BEHDw4EHMmjULL774IkRRxNy5c7WdVY2ZmRl8fX0RGRmp2qZUKhEZGQl/f/9Sz8nNzYVMpv6R5XI5AKg9YEZk1OJOS52AiIhIIxoVrs2aNcOpU6dQu3ZtzJ49G6Io4j//+Q8WL16MF198ESdPnoSnp6eWo5YUEhKCDRs2YNu2bbhx4wYmTJiAnJwcjB49GgAwcuRIhIaGqo7v378/1q5dix07diA2NhaHDx/G7Nmz0b9/f1UBS2T0bu4FlAqpUxAREVWaRg9nAcALL7yA33//HWlpabh9+zaUSiUaNmwIZ2dnbeYrV3BwMJKTkzFnzhwkJCTAx8cHERERqge24uPj1XpYZ82aBUEQMGvWLDx8+BDOzs7o378/Fi1apLfMRJLLfARc3w20HCx1EiIiokoRRH5HXimXLl2Cr68vLl68iLZt20odh6jibkcCkZ8+/bWZNTB0M2Bb+nhwIiKi6kijoQKrVq1CUFBQmftfeeUVrF27VuNQRKRjhTnA0cVAGQ8lEhERVUcaFa6bNm2Ct7d3mfu9vb2xfv16jUMRkR48/gP4Y7vUKYiIiCpMo8L1zp07aNGiRZn7mzdvjjt37mgcioj05MIWIOW21CmIiIgqRKPC1czMDAkJCWXuf/z4cYlpp4ioGlIWA0cWAMUFUichIiJ6Lo2qyw4dOmDr1q3IysoqsS8jIwNbtmxBhw4dqhyOiLSjXbt2qNv5dbRbfKnkzrQ44PQqvWciIiKqLI2mw5o7dy4CAgLg4+ODKVOm4IUXXgAA/PXXX1ixYgUeP36M7ds5do6oukhISMDDxBTAwaz0A27uBRw9gVav6TUXERFRZWhUuLZv3x6//fYbxo8fj8mTJ0MQBABPV5/y8vLCnj17yly9ioiqqaivABNzwPtVqZMQERGVSuMFCHr27Inbt2/j8uXLqgexGjVqhLZt26oKWSIyMCe/AAoyAZ83AP45JiKiakbjwhUAZDIZfH194evrq608RCS16A1A5mOg81RAXqW/IoiIiLSqSv8qXb9+HXfv3kVaWhpKW4Br5MiRVbk8EUnl5l4g6zHQcz5gbit1GiIiIgAaFq537tzBiBEjEB0dXWrBCgCCILBwJTJkDy8CuycBff4D2LhInYaIiEizwnX8+PG4evUqVqxYgS5dusDR0VHbuYioOkiLA3ZNAHovAZwaS52GiIhqOI0K19OnT2PGjBl4//33tZ2HiKqbnBRgz/vAy7OBBh2lTkNERDWYRgsQODk5wd7eXttZiKi6KsoFDs4ALn8PlDE8iIiISNc0KlzfffddfPfdd1AoFNrOQ0TVlSgC0euBw3OAwhyp0xARUQ2k0VCBpk2bQqFQoHXr1hgzZgzq1asHuVxe4rjBgwdXOSARVTOxJ4DUu0DgfI57JSIivdKocA0ODlb9+qOPPir1GEEQ2CNLZKwyHjx9aKvrR0DTIKnTEBFRDaFR4Xr06FFt5yAiQ6MoBI4uBtLjgZfGcqUtIiLSOY0K14CAAG3nICJDdfk7QKkAOrwrdRIiIjJyGj2c9UxBQQGioqKwe/dupKSkaCsTERmaP34AbuyVOgURERk5jQvXVatWwd3dHZ07d8bgwYPx559/AgBSUlLg5OSEzZs3ay0kERmA0yuBlNtSpyAiIiOmUeG6ZcsWTJkyBb1798amTZvUln11cnJCjx49sGPHDq2FLM/q1avh6ekJCwsLtG/fHtHR0eUen56ejvfeew/u7u4wNzdH06ZNsX//fr1kJTJqikIgch5QmCt1EiIiMlIaFa5ffPEFBgwYgO3bt6N///4l9vv6+uLatWtVDvc84eHhCAkJwdy5c3Hp0iW0bt0aQUFBSEpKKvX4wsJC9OzZE3Fxcfj5558RExODDRs2wMPDQ+dZiWqE9PtA1FdSpyAiIiOlUeF6+/ZtvPLKK2Xur1WrFp48eaJxqIpatmwZxo0bh9GjR8Pb2xvr1q2DlZVVmcMUNm/ejNTUVOzatQudOnWCp6cnAgIC0Lp1a51nJZJKfHw8cnKeLhiQU6BAfGq+bm94cx9w97hu70FERDWSRrMKODg4lPsw1vXr1+Hm5qZxqIooLCzExYsXERoaqtomk8kQGBiIqKioUs/Zs2cP/P398d5772H37t1wdnbG8OHD8cknn5S6gAKRIYuOjsaCBQuwb98+1XCe9DwFPGdGo9+LtTC7TwO85Gmrm5uf+A/g2hKwrq2VyxXlZeFuxDqk3joHCDI4Ne+IhkHjITezLPOcP7+Zjsz4q2rb3Nq+gsZ9JgEAEv84jFu/rSj1XL+p38PM2kEr2YmISHs0Klz79OmD9evXY+LEiSX2Xbt2DRs2bMCYMWOqHK48KSkpUCgUcHV1Vdvu6uqKmzdvlnrO3bt3ceTIEbzxxhvYv38/bt++jYkTJ6KoqAhz584t9ZyCggIUFBSo3mdnZ2vvQxDpyK+//org4GCIoqg2Bh14unLr/r9SceCvNISPa4HBbZy0H6AgCzi3Dugxs8Kn/PnNdLi2fhmurXuW2Pf3rv+gMDsVLd9YCKVCgVu/rcDtfV+i2aBp5V7TtU0QGgSMUL2XmVqofu3k3RWOjXzV77NnOZTFRSxaiYiqKY2GCixcuBAKhQItW7bErFmzIAgCtm3bhhEjRqBdu3ZwcXHBnDlztJ21ypRKJVxcXLB+/Xr4+voiODgYM2fOxLp168o8JywsDPb29qoX57Cl6i46OhrBwcFQKBRlrl6nUAIKpYjgDTdwPi5LN0Fu/w5kJ1f5Mrkp8Ui7cxGN+06GrUdz2Nd/AY16j0fytRMoyCp/SJLc1AJmNrVULxNzq3/sM1fbJwhyZMT9CTefXlXOTEREuqFR4VqnTh1cvHgRvXv3Rnh4OERRxLfffovffvsNw4YNw9mzZ+HkpINenH9wcnKCXC5HYmKi2vbExMQyhym4u7ujadOmasMCWrRogYSEBBQWFpZ6TmhoKDIyMlSv48c5do+qt4ULF5ba0/pvIgARIhbuv6ebIKISeHC+ypfJfHATcgtr2NZpotrm4NUGEARkPYwp99ykv47i7BfDcOnriYg7shWKorLH9yZejYTM1By1W3SqcmYiItKNSg8VKCgowMGDB+Hp6YmNGzdi48aNSE5OhlKphLOzM2SyKq1pUGFmZmbw9fVFZGQkBg4cCOBpj2pkZCQmTZpU6jmdOnXC9u3boVQqVTn//vtvuLu7w8zMrNRzzM3NYW5urnpvY2Oj3Q9CpEXx8fHYu3fvc4vWZxRK4LerqYhPzUf9WhbPP6GyUu9U+RJF2Wkws3JQ2ybI5DC1tEVRTlqZ57m0DIC5vQvMbGsjJzEWcUe2IO/JA7R4bVapxydeOQTnlgGQm5qXup+IiKRX6cLVzMwMr732GlauXIlWrVoBAJydnbUerCJCQkIwatQotGvXDn5+flixYgVycnIwevRoAMDIkSPh4eGBsLAwAMCECRPw1VdfYfLkyXj//fdx69YtLF68GB988IEk+anmUiqKICpL/xq/Kg4fiqhw0fqMKAKRN9Pxlr/r8w+urKwECGXsun8qHPdP/6h6rywuRNbDm7gT8b+hO23fXavxrd3a/m/mE2sXT5jZ1MJf389AXupjWNZyVzs288EN5KXcR7MBH2p8PyIi0r1KF66CIKBJkybVYonX4OBgJCcnY86cOUhISICPjw8iIiJUD2zFx8er9QDXq1cPBw8exNSpU9GqVSt4eHhg8uTJ+OSTT6T6CFQDKRVFyHr4NxSFeVq/dtK9vyGTyaBUKit8jkwA0rPzdJJHkZEAU0URZHLTEvvcfPvAybuL6n3Mrv/AqXkn1G7eUbXN3LY2TG0cUZibrnauqFSgKC8LptaOFc5i69EMAJCf9qhE4Zp4+SCsXRvCxr1JaacSEVE1odGsAjNmzEBISAhee+01NGvWTNuZKmXSpEllDg04duxYiW3+/v44e/asjlMRlU1UKqAozIPMxKTUgq4q7B0cKlW0AoBSBOwtTSBoeZiPKIpQQv60Z7mUz2lqaQtTy/9NxyUzMYeptT0sa9VRO86ubnMo8nOQ/fiWqrBMj/0DEEVVMVoROYl3AQBmNrXUtisK85By4xQadB9V4WsREZE0NCpcz549i9q1a6Nly5bo1q0bPD09YWmpPp+iIAhYuXKlVkISGSOZ3BQyk9LHVmuqe9cuEAShUsMFBAHo3tQeKPNLfc0IAiBaOFT5OlZO9eHYyBe39n2Jxq+8B1GpwJ2Da+H8QleY2z6dJ7YgMwV/fT8TTV8Nga1HM+SlPkbytWOo1bgdTCztkJMUi9hDG2BXvyWsXb3Urp987QREpQIuL3avclYiItItjQrXr77635KOkZGRpR7DwpVI/+rVrYPegd1x6MjxMqfC+ie5DOjzggPq19LNA0kKu/pauU7TgR/jbsRa/PX9TEAQULt5JzQKGq/aLyoVyHvyAIqip3Muy+QmSI+9gkfRu6EozIe5nTNqt+iEep1fL3HtxD8OoXazjjCx4IOXRETVnSBW9kmOGu7SpUvw9fXFxYsX0bZtW6njkAFSFOUj495fMDG31HqPKwBcvPInAl99HQqFotyeVwGAXCbgZIg3Xmqg/aJNlJshs9si2Dd+CXJTHcxYQERENY5+5q4iIr3x9WmFreuWQy6Xl7mUsVz2tGjdMaaxTopWAChsMQgwLXtJViIiosqqUuF69uxZhIWFYerUqbh16xYAIDc3F5cuXeLSqEQSGtAnCL/v2YFePQIgCOpjVwXh6fCAkyHeGNi6VhlXqBqFexsUNwzUybWJiKjm0miMa2FhIV5//XXs3r0boihCEAT0798fTZo0gUwmQ69evTB16lTMnFnxdcqJSLt8fVrhx23rcP/BI3Ts+SrSMzLhYCnHpekv6mxMKwAonVug0O89aPthLyIiIo16XGfPno29e/di7dq1iImJURtHZ2Fhgddeew27d+/WWkgi0ly9unVgZfX0K3trc5lOi1ZF/U4o6PQxYMLVp4iISPs0Klx/+OEHTJgwAe+88w5q1Sr5VWOLFi1w9+7dKocjIgMhN0Vhm9EobDe+1DlbiYiItEGjoQJJSUl48cUXy9wvl8uRm5urcSgiMhxKOw8Utp8E0a6u1FGIiMjIaVS41qtXDzdv3ixz/+nTp9G4cWONQxGRYVDU7YBC37cBE053RUREuqfRUIHhw4fj66+/RlRUlGrbsyeXN2zYgB9//BEjR47UTkIiqpaKm/ZFod9EFq1ERKQ3GvW4zpw5E2fPnkXXrl3RokULCIKAqVOnIjU1FQ8ePECfPn0wdepUbWclomqiuGlfFLUMfjq3FhERkZ5o1ONqZmaGiIgIbNmyBQ0bNkTz5s1RUFCAVq1aYevWrfjtt9/KnPiciAybon4nFq1ERCSJCvW4hoSE4M0330SbNm0AAPHx8XB2dsaIESMwYsQInQYkoupD6fICCtuOZdFKRESSqFCP64oVK3Djxg3Vey8vL+zcuVNnoYio+lG4tkSB/1RArtEIIyJ6DmVhodQRSIuKChVSRzBKFfoXyNXVVW1e1n8uOEBExq/YqzuKfEYCMhatRDpTVASYmUmdgrREUaSEqRmHTWpbhf4V6tu3Lz799FMcOnQIDg4OAIAvvvgCO3bsKPMcQRC4ehaRoZObotBnJBSe3aROQmT02ClkXJQKtqcuVKhwXblyJVxcXHD06FFcu3YNgiDg/v37SE1NLfMcgWPgiAyaaFUbBR2mQHT0lDoKUc2g4FfLxkSpUEodwShVqHC1trbG4sWLVe9lMhlWrFiB4cOH6ywYEUlH6dQUBR0mA+Z2UkchqjHE4mKpI5AWFReycNWFCj2cNXjwYJw8eVL1/ujRo+jZs6fOQhGRdBQeL6Gg83QWrUR6JhYVSR2BtKi4iD3oulChwnX37t2Ij49Xve/RowcOHz6ss1BEJA1Fg84obD8JkJtKHYWoxhELCqSOQFpUmM/CVRcqVLh6eHjg8uXLqveiKHIMK5GRUdT1Q6HvOEDQaF0SIqoiZT4LV2NSVMDCVRcq9C/U66+/jmXLlqF+/fpo1aoVAGD69Olo1apVma/WrVvrNPgzq1evhqenJywsLNC+fXtER0dX6LwdO3ZAEAQMHDhQtwGJDICydmMUtnuXRSuRhMSCfKkjkBYVscdVJyr0cFZYWBgaN26Mo0ePIikpCYIgwNraGrVr19Z1vnKFh4cjJCQE69atQ/v27bFixQoEBQUhJiYGLi4uZZ4XFxeHjz76CF26dNFjWqLqSbSwf/ogFocHEEmKQwWMC8e46kaFCle5XI533nkH77zzDoCnswrMmjVL8lkFli1bhnHjxmH06NEAgHXr1mHfvn3YvHkzpk+fXuo5CoUCb7zxBubPn4+TJ08iPT1dj4mJqp/Cl94FLBykjkFU4ykLuHKWMWGPq25o9L1gbGys5F+xFxYW4uLFiwgMDFRtk8lkCAwMRFRUVJnnffrpp3BxccHbb79dofsUFBQgMzNT9crOzq5ydqLqorhRIJQuLaWOQUQAxPw8qSOQFhUVKCAquQiBtmm0fmODBg20naPSUlJSoFAo4Orqqrbd1dUVN2/eLPWcU6dOYdOmTbhy5UqF7xMWFob58+dXJSpRtSRa2KHohf+TOgYR/Zcyj4WrMVEqReTnFsHShsv4alOFelxlMhlMTExQWFioei+Xy8t9mZhUrzXNs7Ky8Oabb2LDhg1wcnKq8HmhoaHIyMhQvY4fP67DlET6U9RiMGBqKXUMIvovRVaW1BFIy7JTOW5Z2ypUXc6ZMweCIKiK0WfvpeTk5AS5XI7ExES17YmJiXBzcytx/J07dxAXF4f+/furtimVT1e1MDExQUxMDBo1alTiPHNzc5ibm6ve29jYaOsjEElGtHSEokGA1DGI6B+UmZlSRyAtS0/KhXN9W6ljGJUKFa7z5s0r970UzMzM4Ovri8jISNV4W6VSicjISEyaNKnE8c2bN8fVq1fVts2aNQtZWVlYuXIl6tWrp4/YRNVCcaOegLx6fStCVNMp0tKkjkBalvooR+oIRseg/+UKCQnBqFGj0K5dO/j5+WHFihXIyclRzTIwcuRIeHh4ICwsDBYWFmjZUv0hFAcHBwAosZ3IqAkCiutzKjii6qb4SSoX+DEyKQ/4QLe2VbpwLSgowHfffYdDhw7hzp07yMrKgq2tLRo3bozevXtj+PDhMDPTz0Dk4OBgJCcnY86cOUhISICPjw8iIiJUD2zFx8dDJuOE6kT/pKzVGLB0kDoGEf2LWJAPZXY25Lb8atlY5KQXIDezEFZ2fEBLWypVuF69ehUDBgzAvXv3IIoi7O3tYWNjg6SkJFy6dAk//fQTFi1ahD179qBFixa6yqxm0qRJpQ4NAIBjx46Ve+7WrVu1H4iomlO4tZI6AhGVoTghgYWrkXl8Jx2N2pS9KBJVToW7I7Ozs/Hqq68iMTERixYtwv3795GWlqb234ULF+LRo0fo378/cnI4roOoOlLWbi51BCIqQ9Hjx1JHIC17cINjl7WpwoXrli1bEB8fj3379mH69Onw8PBQ2+/h4YHQ0FD89ttviI2NZW8mUbUkQOnoKXUIIipD4YMHUkcgLUu6l4nsNE6LpS0VLlz37duHXr16oVu3buUe16NHD/Ts2RO//fZbVbMRkZa4OjujjrMjXB2sABMLqeMQURmK7t2TOgJpmSgCMefYk64tFS5cr169+tyi9ZkePXqUmHqKiKRzIuJX3N67ElHL35Q6ChGVo+DWbYgilwk1NnevpCAzhSujaUOFC9fU1NRSJ/YvjaurK1JTUzUORUS6obStI3UEIipFu3bt8NKWLei781cUxcdLHYe0TFSKuBhxD6KSP5RUVYUL14KCApiamlbo2H8uD0tE1Ydo4y51BNKSIkWR1BFIixISEpCQk4OU/ALknD0ndRzSgeT4LNy6kPj8A6lclZoOKy4uDpcuXXrucbGxsRoHIiLdEW04JYuxyC3Ohb3cXuoYpANZRyLhMHQIBLlc6iikZX8efYDaHjao7cHl4zVVqcJ19uzZmD179nOP48ofRNWT0spJ6gikJUpRiWJlMUxkBr0AIpVCkfIE2cdPwLZHd6mjkJYpFSLO/HIbL7/lzUUJNFThv/G2bNmiyxxEpGsCAHM7qVOQFhUqClm4Gqm0H36AdYf2kFlZSR2FNNCuXTvcj3sIG3MHhL33jdq+vOwinPrpFrq/2RymZuxVr6wK/403atQoXeYgIh0TTSwBgUsgG5MiJce5GitFaipSt22D04QJUkchDSQkJCDpSQKK7ZSl7k9PzMWZX26j8/81gVzOv5crg/+3iGoKGX+yNzYsXI1b1u+RyD55UuoYpCOJsZmI3hPLmQYqiYUrUU3BuSGNDmcWMH4pa9Yi/++/pY5BOnL/RirO72PxWhksXIlqCqVC6gSkZQUKLiNp7MTCQiSGhaHwwUOpo5COxF19gui9sVCyeK0QFq5ENYVY+lgrMly5xblSRyA9UGZmIeHT+ShKTJI6CunIvb+eIGrnHSiK+Pf087BwJaop+GCW0ckqzJI6AumJ4kkqEubNQ3FKitRRSEcexqTh+A8xKMjlEKDy8F8yoppCzmmTjE1aQZrUEUiPipOS8HjOXBQnJ0sdhXQk5UE2ft96A+mJ/DalLFX6l+z69eu4e/cu0tLSIJby4MfIkSOrcnki0iYTC6kTkJal5LL3raYpTkzE41mz4TZvLkzduYSzMcpJL0Dktuto06sBvFo7cUGnf9GocL1z5w5GjBiB6OjoUgtWABAEgYUrUTUimtlKHYG0LDGX657XRMUpKXg8cxbc5syGmaen1HFIBxTFIi7sj0NiXCZ8ezeAmQW/MXtGo/8T48ePx9WrV7FixQp06dIFjo6O2s5FRFom2rhKHYG07GE2nzSvqRQZGXg8Zy5cZ86ARbNmUschHbl/PRVPHmTDr78XXBpw5UNAw8L19OnTmDFjBt5//31t5yEiogp6nP0YRYoimMpNpY5CElDm5CBh3ny4fPwRrNq2lToO6UhuZiGOb49Bk5dc8WK3upCb1OzHkzT69E5OTrC3t9d2FiIiqgQllLiXeU/qGCShp/O8fobs48eljkI6JIrA39GJOLz5eo1/cEujwvXdd9/Fd999B4VC+gnNV69eDU9PT1hYWKB9+/aIjo4u89gNGzaohjY4OjoiMDCw3OOJiKq7W+m3pI5AUlMqkbzqS2RGREidhHQsMyUPv2+9jrtXau7MEhoNFWjatCkUCgVat26NMWPGoF69epDLS66DPnjw4CoHLE94eDhCQkKwbt06tG/fHitWrEBQUBBiYmLg4uJS4vhjx45h2LBh6NixIywsLLBkyRL06tUL165dg4eHh06zEhHpws3Um3jF6xWpY1A18GTDRogKBez79pU6CumQUvH0wa2sJ/lo1aNujZt1QKPCNTg4WPXrjz76qNRjBEHQeY/ssmXLMG7cOIwePRoAsG7dOuzbtw+bN2/G9OnTSxz//fffq73fuHEjfvnlF0RGRnIGBCIySNeeXINSVELGBSYIQOrmLRDMzGDXs6fUUUjHYs4loLhIgbZBDWpU8apR4Xr06FFt56i0wsJCXLx4EaGhoaptMpkMgYGBiIqKqtA1cnNzUVRUhFq1apV5TEFBAQoK/rceeHZ2tuahiYi0LKswCzGpMWhRu4XUUaiaePL1eshtbGDt7y91FNKxO5eSYW5lipZda863xhoVrgEBAdrOUWkpKSlQKBRwdVWf4sfV1RU3b96s0DU++eQT1KlTB4GBgWUeExYWhvnz51cpKxGRLp16eIqFK/2PKCJ55SrIHR1h0by51GlIx66feoRa7tao08RB6ih6UeXvlq5fv44DBw7gwIEDuH79ujYy6cVnn32GHTt2YOfOnbCwKHtFodDQUGRkZKhex/nkJhFVM6cenkJWYZbUMagaEYuKkLhkCYoSk6SOQnpwMSIORYXSPzCvDxoXrrt370ajRo3w4osvol+/fujXrx9efPFFNG7cGHv27NFmxlI5OTlBLpcjMVF95ZjExES4ubmVe+7nn3+Ozz77DIcOHUKrVq3KPdbc3Bx2dnaql42NTZWzExFpU74iH3vu6P7vXTIsyswsJH4WBmVentRRapT4+Hjk5OQAAAoK85CSnqDze+ZlFeHOxZrxQ4pGQwX279+PIUOGoEGDBli8eDFatHj6FdWNGzewfv16DB48GHv37kXv3r21GvafzMzM4Ovri8jISAwcOBAAoFQqERkZiUmTJpV53tKlS7Fo0SIcPHgQ7dq101k+IiJ92n93PzrV6QRPe0+po1A1UhR/H0lfLIPr9E8gmHDZUF2Kjo7GggULsG/fPoiiCADIyc/CpM8HoG2zzhjc/W00ruuts/vfvpiEZu3dIMiq/qBWfm4BTuy7hNiYRxAEAY2866JLnzYwMy97sZO/zt/B33/eQ/LjNBQVFGPcjEEwtzRTO2bbF78hK119Hlr/nq3g27XiQ500+l28YMECtGrVCidPnoS1tbVq+6uvvopJkyahc+fOmD9/vk4LVwAICQnBqFGj0K5dO/j5+WHFihXIyclRzTIwcuRIeHh4ICwsDACwZMkSzJkzB9u3b4enpycSEp7+FGRjY8OeVCIyaMViMVZeWomFnRfC2tT6+SdQjZF3+TKSV6+G8/vvQ5Bx9gld+PXXXxEcHAxRFFVF6zOiKOJyzBlc+fsMJr++GO1f6K6TDLmZhUhLzEUt94r9+f910xG0aOOFFm29Suw79PNZ5GblY8Cobk87BX+NxtHdFxD0f2U/8FdcVIwGTdzRoIk7og7/WeZx7Xu0hHe7hqr35RXDpdHod/Cff/6JUaNGqRWtz1hbW+Ott97Cn3+WHVpbgoOD8fnnn2POnDnw8fHBlStXEBERoXpgKz4+Ho8fP1Ydv3btWhQWFmLo0KFwd3dXvT7//HOdZyUi0rVHOY+w7MIyFCoKpY5C1UzOiZNIWbsWolIpdRSjEx0djeDgYCgUijKnAVWKCiiUSqzcMQO3H+jueSBtrKqVmpSJ+FsJ6D7wJbjVq406DZzRtV9b3PorHtmZZQ878enYDL5dW8C1Xu1yr29qbgJrW0vVy9Sscn2oGvW4WlhYIDU1tcz9qamp5T7wpE2TJk0qc2jAsWPH1N7HxcXpPhARkYT+evIXlp5fig/bfQhLE0up41AF/HNMZG5xMR7m5sLDykrr98k+chRQinB6byJ7XrVo4cKFpfa0liRCFIGdRzfj4zd102FWmF9c5Wsk3E+BuYUpXD3+N1VovYauEAQBiQ+ewMa7bpWuf+nkTZw/dh229lZo2roBfPybQiav+O9HjQrXHj16YOXKlejduzf8/zVP3Llz57Bq1Sr06tVLk0sTEVEVXU25ivlR8zH9pelwsHCQOg6VobQxkZnFRegacQA93NwxqXlztC5nnnFNZP+3Q0fbxWthVhYub9qERxcvQhAEeHTogDajR8PEsuwfnu4ePoz4kyeRFhuL4rw8DNi2DWb/+ib31GefIT0uDgUZGTCztoZLq1ZoNWIELLX8/0VT8fHx2Lt3bwWK1qeUogIXY04iJT0BTg7lP0iukYrFKFdudj4srdU7H2VyGSwszZCbnV+la7fq0BTOdRxhYWmGhPgURB3+EzlZeejySpsKX0OjwnXp0qXw9/dH586d4efnh2bNmgEAYmJiEB0dDRcXFyxZskSTSxMR0XO0a9cOjx4/Qr5VPnouL32FpNiMWMw+PRuzOsyCq7VrqceQdModEwngWGICjicmYJVfe/TW8pLk2ceOQe7oiFoj3qjUecfmzIFn9+7w7F5yjOa5lSuRl56OrrNnQ1QocH71alz4+mt0mDKlzOsVFxTArU0buLVpg6v/WtnyGZcXXkCLwYNh4eiIvCdP8Oc33yDq88/RY/HiSmVXFCugVGqhqvuXQwcPVbhofUYURVy9cx7d2vbTeh5lOUNBLhy/josnbqjeFxcpkPjgCU7su6TaNvx93T6b1KZTM9WvndwcIJPLcGzPBXTs2QpyE3mFrqFR4erl5YU///wTYWFhOHDgAMLDwwEADRo0wOTJkzF9+nS4uLhocmkiInqOhIQEPH70GJa1yx8KkJSXhHlR8zC/43y4WPHv5Orin2Miyyp6FKIIAcAH0efwU0A3rfe8ZuzcCcs2PrB84YUqXyvzwQMkXLmClz/7DLUaNwYAtHn7bZxcvBitR44ss3e0ab+nhVvSX3+Vee2m/furfm3t7Izmgwbh9NKlUBYXQ1bBWRIUxQokPkxFYUHVv0b/t/v3HkMmk5VbMP6bIAjIzslCUaH282Sm50BRrCi1CGz5UiM0bllP9f7wz2fRyLsuGv7jq39rW0tY2VggL0e9Z1WpUCI/rxBWNtodBupatzaUShGZaTlwdLar0Dkaz43h4uKC5cuXY/ny5ZpegoiIdCw1PxULzi7Apx0/haOFo9RxCBUfEyn+97U65ibW+3fUeo6MX37VSuH6JCYGptbWqqIVAFxatYIgCEi9dQse7dtX+R7A0+EI906eRO1mzSpctAKAUimisKAYcrkM8kqMpawIB3v7ShWtwNMeVysLawhC1aet+vd1lQollEoRpfVdWliZw8LKXPVebiKHpbUFHGrbqh3nVs8JBflFSHqYCpf/jnN9EJsEURThWrf8B68qKyUhDYIgwLISBTEndSMiMnJJuUlYcHYB5nSYwzGvEqvsmEiFKCLy8WOdPLCVd/UqlHl5kJUzDrUi8tPTYW5vr7ZNJpfDzMYG+enpVbo2APz57be4HREBRUEBajVtis6hoRpdRy6XwcS0Yl9HV1RAQDcIglCp4QICBLzg5Qst161Pr6yFOVxrudihfhM3HN19Ht1ebQelQonjey+iScv6sLF7+nslOzMXu7YcQ88h7VXFbE5WHnKz85Hx5Okqfk8SM2BqbgJbeytYWJnjcXwKEh88QV0vF5iamyLhfgpOHbiCpq0bwOJf872Wp0KF65gxYyAIAtavXw+5XI4xY8Y89xxBELBp06YKByEiIt15mP0Q86LmYWb7mXC2cpY6TrWnLCqqdE9aRRyKiKj8mEgAZ5KSMLRBA+2GUShQ+PAhLP7RU/pPN375BTd27vzf4YWFeHLrFi7949/23nr41rXZgAHwevll5CYn49pPPyH6yy/ROTRU6z2WmqjrURc9A3sh8sjvZU6F9U8yQQafph1182AWABMz7fQo9xraAcf3XsKuLceeLkDwwtMFCJ5RKkSkp2ShqOh/n/mv83dw/ug11ftfNx0BALw8yA8t2npBbiLDravxiD56DYpiJewcrdHav6nauNeKqFDheuTIEdUYDrlcjiNHjjz3N0x1+A1FRET/8zjnMWafmY1p7aahoUPD559QQymLivDk9m0U51ftCerSPL59u9JjImUAMnNzUayDpVvT4uLg2qABZKYlJ4Fv1KsX6nX83xCFcytXwqNDB9T9x1f/FrVqwcLBAQUZGWrnKhUKFGZnw8LBocoZze3sYG5nB9s6dWBbty72jR+P1L//Ru1mlSt4dCVk8kc4cjSyAj2vAgRBwMCub+ksi7VDxXsuB7/do8x9Flbm5S42YOdojUkLgtW2te/REu17tCzzHJc6tfDa+NIfJq2MChWu/57/lPOhEhEZprT8NMw9MxdjWo5Bt3rd2MlQCqVSieL8fMhNTCo1lrIi7DUYE6kEYGtmqvW5V0VRhNLMDEqlstTViMxsbWFm+7/xj3IzM1jY28PG3V3tuNrNmqEoJwdpd+7AsVEjAEDS1asQRRG1mjTRamb89/+doqhIu9etgjY+bbF+zUa8M3EsRFEstedVJsggCALef20hGnnoZtlXS1tTWNpXbhUqQ6TRn4L4+HjklfOTX15eHuLj4zUORUREulOoLMS6P9fhy8tfIqcoR+o41ZbMxARyMzOtvrp37VrpHxYEAB2cnAFB0OpLZmEBQQvLndvVrQs3Hx9cWLcOqbduIeXmTVzetAn1OnVSzSiQ9+QJIj74AKm3bqnOy09LQ3psLLL/u/x6xr17SI+NRWHWf8dI/v03bh84gPTYWOQkJyPp6lWcXbEC1m5u1aa39Zm+ffpj764DeLlHYIn2FSDAp2lHzH37a7zUIkBnGep629eIH0Q1ng7r22+/xfDhw0vdv2fPHgwfPrxC4z2IiEgapx+dxt9pf2Ny28lo4qjlnjEqVd06dRDUvTsOHz9eoX8j5YKAABcX1KniA1Slkbk4a63QaT95Mi5t2oTj8+cDMhnqtm+PNv94HkapUCDr0SMUFxSott05dAjXf/pJ9f7YnDkAgJfeew+e3bvDxNwcD86dw7XwcBQXFMDC0RFuPj7wHzIE8lKGNkitjU9bfLtlOx48fIAePbsiIzMDVha2CHt3m87GtD5jU8scdZrao7gG1F0aFa7PG1heVFQEGZeTIyKq9pLzkjHvzDyMfXEsutcvObE8ad9Hkybh9xMnnjsmUvjva2Jj3fxQIXep3MIU3T79tMx9Zra25S42YO3igtd+/llt2wvBwXghOLiMMwD7Bg3Qbd68SmWsDup61IWVlRUyMjNgbmqh86LVxFyOF7u7QyYXAOOvWyteuGZmZiL9H9NaPHnypNThAOnp6dixYwfc/zUGhoiIqqdisRjr/lyHlPwUDG0ytEZ83Siltq1aYdPKlXh78uQyx0TKBQECgBVt26KVFh5wKo28fr3nH0TVmomZDD69PGDtaI7iohpQtaISY1yXL18OLy8veHl5QRAETJkyRfX+n682bdpg//79ePfdd3WZm4iItOznv3/Guj/XoVip/RV9SF3/oCBE/PgjegYElDImEghwccGOjp3Qy003nUCCTIBpixY6uTbph5mlCXz71IODq/aHkVRnFe5x7dWrF2xsbCCKIqZNm4Zhw4ahbdu2ascIggBra2v4+vqiXbt2Wg9LRES6dez+MSTlJiHENwS2ZrbPPZ4017ZVK2xfvx4PHj1Cl379kJGZCTsTE+zpGqCTMa3/ZP7SS5DXqgWlDqb8It2zdjCDT1BdWNpWv7G+ulbhwtXf3x/+/k/n9MrJycGQIUPQsmXZ83UREZFhuv7kOmadmoXpftPhbsNhX7pWt04dWFlaIiMzE5YmJjovWk3q1YP1kCHQ/vIKpA+161rjxR7uMDHT7ipghqLST1Dl5uZi1apVOHDggC7yEBFROeLj45GT83QKq+L8YuQk6WY6q4TcBMw6PQvXnlx7/sFkMMxe8Ib9pPcgmJs//2Cqdjx9asMnyKPGFq2ABrMKWFlZwcTEBNbW1rrIQ0REpYiOjsaCBQuwb98+1ZPoRTlF2Dd2H9xfcscLwS+gVtNaWr1ndlE2Fp1dhDEtxyCwQaBWr52Vl4W1EWtx7tY5yAQZOjXvhPFB42FpVnZvY2FxITYc3oAT10+gqLgIbRu1xXu934OjjSMA4G7iXfx0+idcu38NmXmZcLV3xSu+r2Cg30CtZjdEgkyAZZ++sHy5h9YXMiDdk5vI8EKAG1y8OHxHo9+9Q4YMwc8//1zp9ZaJiKjyfv31V3Tq1AkHDhwo+feuCCRcSEDktEg8OPNA6/dWiApsuLoBv976tdLnfvLNJzj8x+FS9y3dtRTxKfFY9MYizAueh7/i/8KqfavKvd76Q+sRfSsaoYNDsWTkEqRmpWLhzwtV+28/vg17a3t8PPBjrB2/FsGdg7HtyDb8dv63Smc3JjIHe9i9/z6segayaDVAFjamaNe/PovW/9JoHtfXX38dEydORPfu3TFu3Dh4enrCspQxOf9+eIuIiConOjoawcHBUCgUZXYWiMqn26OWRuHlpS9rvecVAMJjwtHIoRFaO7eu8rXiU+Jx8c5FrBizAk3rNAUAvNv7Xcz9YS7GBo5FbdvaJc7Jyc/BoSuHMG3QNPh4+QAApvafivHrxuPmg5toXrc5evn0UjvH3dEdNx7cwOmbp9H/pf5Vzm2ITJs2ge3IUZDZVn2FLNI/e1dLtA6sAzNL7S49bMg0+j/RrVs31a9PnjxZYr8oihAEgStnGaj4+HhERkYiKysLtra2ePnll1G/fn2pYxHVSAsXLoQoihX7hksErodfR+fZnXWS5XDcYa0Urjcf3ISNhY2qaAWANl5tIAgCYh7GoGPzjiXOufX4FoqVxaqiFQDqOdWDs50zbjy8geZ1m5d6r9yCXNha1syeKouOHWE9dAgEec0dD2nI3BrbwbuLK2Ry9pL/k0aF65YtW7Sdg6qBf4+hk8lkUCqVEAQB/fr1w+zZs/HSSy9JHZOoxoiPj8fevXsrPCxLVIp4dP4RcpJyYO2i/ecQ7mXd08p10rLTYG9lr7ZNLpPD1tIWaTlppZ+TkwYTuQlsLNR7Dh1tHJGWXfo51+9fx4nrJzA/eL5WchsSq1d6wzIoiItJGKhG7Zzg2boW268UGhWuo0aN0nYOktivv/6K4OBgtZ4dpfLpZCmiKGL//v04cOAAwsPDMXjwYCmjElU7RYoiKJTa/4Yp4lBE5Z8lEIGkP5Pg+bKn1vNkFGSUuz/8VDjCT4er3hcWF+Lmw5tYG7FWtW3du+u0nqs0cUlx+PSnTzG8y3C0bVSzhq1ZDxkMy65dpY5BGpD99yEsV45nLVOVB01kZ2fj/v37AIB69erBxka/42hWr16N//znP0hISEDr1q3x5Zdfws/Pr8zjf/rpJ8yePRtxcXFo0qQJlixZgj59+ugxcfVTkTF0CoUCgiAgODgYZ86cYc8r0X8VKYoQ8zAG+YXan8j973t/q775qDAByM3MRV5BntbzmMEMRYoimMpLn/S8j28fdPHuonq/dNdSdGreCZ2ad1Jtq21bG442jsjIVS+CFUoFsvKy4GjtWOq1Ha0dUawoRnZ+tlqva1p2mmpWgWfik+Mx4/sZeKXNKxjWZVilP6ehEuRy2AwfBnMuAGSQLG1N0SqwDmxrW0gdpVrTeODE+fPn0b17dzg6OqJly5Zo2bIlHB0d0aNHD1y4cEGbGcsUHh6OkJAQzJ07F5cuXULr1q0RFBSEpKSkUo8/c+YMhg0bhrfffhuXL1/GwIEDMXDgQPz11196yVtdVXQM3bNjFi5cWO5xRDWJQqlAfmE+TExMYGluqdWXg4ND5YpWABABUytTyGQyrb4EQUAdyzrl9izbWtqiTq06qpe5iTkcrB3UtsllcjSv2xzZ+dm49fiW6tw/Yv+AKIpo5tGs1Gs3cW8CE5kJrsReUW178OQBkjOT0cLjf0uX3ku+h+nfTcfLrV7GqO4159tBmZUV7CZMYNFqoJzqWcNvYAMWrRWgUY/ruXPn0K1bN5iZmWHs2LFo8d/1jm/cuIEffvgBXbt2xbFjx8rt+dSGZcuWYdy4cRg9ejQAYN26ddi3bx82b96M6dOnlzh+5cqV6N27Nz7++GMAwIIFC3D48GF89dVXWLdOP19fVTeVHUOnUCjw22+/IT4+ng9sEf2DqdwUZiZmWr1ml65dIAhC5YYLCIBzK2edjI1rZld6UVlZ9Z3qw7eRL1btW4VJr0xCsbIYaw6uQdcXuqpmFEjJTMGM72fgw1c/RDOPZrC2sEYvn17YcHgDbC1tYWVuhXUH16FF3RaqB7PikuIQ+l0o2jZsi0HtByE1OxUAIBfksLe2LzOPoZO7usJu3FjInZ2ljkIaaNjWCV5tOJ61ojQqXGfOnAkPDw+cOnUKbm5uavvmzZuHTp06YebMmTh8uPT5+7ShsLAQFy9eRGhoqGqbTCZDYGAgoqKiSj0nKioKISEhatuCgoKwa9euMu9TUFCAgoIC1fvs7GwAQHFxMYqKiqrwCaqHgwcPVnoMnSiKOHToEMc6a0hRVISiomIoxFzI5Ib/e6gsSkURlMUKFBUVQQnjfaq5qKgIxUXFyBVzUaTl9rSvbY8u3bvg1LFTFet5FQCXti4wdzCHoki7Y27NZeZoYtUERUVFkFewPUVRhEKhKPXvyql9p2L94fUI/T4UMsjg38wf4wLHqY7NL8zHgycPkJOfo9o2uvtoiKKIRT8vQpGiCG282uDdnu+q9p+4dgIZuRk4+tdRHP3rqOpeLnYu2DBhQ4U/a3FR0dPft6IImZ7+nn/297AoiiiqxIw8pi1awOL1YBRZWKAop3KrqCmLi6H4779lohHP71pU9PQzKpUKyIv08zmV/2zP4uJSj5HJBTTv7AKXBtbIzyso9ZjKUCiUUCiUT/88CPqbZ9/UtPShQzojasDGxkZcunRpmfuXLFki2tjYaHLpCnv48KEIQDxz5oza9o8//lj08/Mr9RxTU1Nx+/btattWr14turi4lHmfuXPnigD44osvvvjiiy+++PrXS9806nGVyWQoLuMnCODp18kyI/npLTQ0VK2X9sqVKwgICMC5c+fQpk0bCZNpx9atW/HOO+9U+rwNGzawx7UKlIoiiDp4Cr26EWRyyMp4kMeY6GpWgWd279qNt0a+BVEUS+95FZ6+OnzUAR4dPLR+/yFNhqBfw36Qy+RlPphlbJRFRZUfX1wFjZs1w6NHj+Bqbo7jvV8p91hBLofj22/DpmuXco+rCJlMBpm+e8wkoChWQPnfhTr0oUnTxnj06BEcbZ3w5Ue7S+x/qa8n6jYv/UHEqpDJBMhNjPcbLkDDoQIdO3bE6tWrMXz4cDRo0EBtX3x8PNasWYNOnTqVcbZ2ODk5QS6XIzExUW17YmJiieELz7i5uVXqeAAwNzeHubm56v2zWRNMTEz03z2uA0H/nedPrMRwAUEQ0KtXL6P4/JLh/zujous/CyOGj0CzJs2wYMGCkmPSBaDOS3XgHeytkxWzxrQcgyDPIK1ft9rT85/RZ+MbBUEGs3IWDBAsLOA67WNYtm6tr2hGQd//Xv2zPU1N1O/dpJ0rmvrW0WseY6JRt+jixYuRkZGB5s2bY/jw4Zg3bx7mzZuHYcOGoXnz5sjIyEBYWJi2s6oxMzODr68vIiMjVduUSiUiIyPh7+9f6jn+/v5qxwPA4cOHyzy+Jqhfvz769esHeQVXVpHL5ejfvz8fzCLSs5deegl79uxBXFwcHBwcAACm1qbou7EvOs/urJOi9Z1W79TMorWaEszN4TZrJotWA2btYI4Xu2v/W5GaRKMe1zZt2uDcuXOYOXMm9uzZg9zcXACAlZUVevfujYULF8Lb21urQUsTEhKCUaNGoV27dvDz88OKFSuQk5OjmmVg5MiR8PDwUBXRkydPRkBAAL744gv07dsXO3bswIULF7B+/XqdZ63OZs+ejQMHDjy351UQBAiCgFmzZukxHRH9U/369WFtbY309HSYWJjoZIUsAHi92et4uf7LOrk2aUAQ4DJ1CixatHj+sVRttX65HkxMjfurfF3TeAECb29v7Ny5E0qlEsnJyQAAZ2dnvY5tDQ4ORnJyMubMmYOEhAT4+PggIiICrq6uAJ4OW/hnno4dO2L79u2YNWsWZsyYgSZNmmDXrl1o2bKl3jJXRy+99BLCw8NVK2cpSnmiVS6XQxAE/Pjjj1x8gMjIdarTCQMbD5Q6Ro3i5uYGRXo6nMr4Stt+8CBY8e9eg+Zc3xYeTR2kjmHwqrxy1rNeuGe/1rdJkyZh0qRJpe47duxYiW2vvfYaXnvtNR2nMjyDBw/GmTNn1MbQPVuxRxAE9O3bF7NmzWLRSmTk6trUxTut3uGcknp24cIFPHj/fRQ9elxin5mnJxz/7/8kSEXa1Kp7Xf650gKNC9fr169jzpw5OHjwoNpQgaCgIMybN6/G92Iaomdj6OLj43HkyBFkZmbCzs4OPXr04JhWohrAQm6BKb5TYGHC1XuqDUGA04R3IZhUuZ+JJOTWyB61PWyefyA9l0Z/Ek6ePIlXXnkFSqUSAwYMQNOmTQEAMTEx2LNnDw4cOICIiAh06VL1qTpI/+rXr4+33npL6hhEpEdWJlaY9tI01LOtJ3UU+ge7V3rDvHFjqWNQFTXvUPbsRVQ5GhWuU6dOhYuLC44fP4569dT/krt//z66du2KkJAQnD9/XishiYhIdxraN8TktpPhZs1/XKsTExcXOA4fLnUM0oCbmxuK8hWwMXeAnZMFnOvbSh3JaGhUuF67dg0LFiwoUbQCQL169TBhwgTMmzevqtmIiEiHTAQTDG06FP0b9YeJjF9FVzdOEydAZmkpdQzSwIULF3DhQBzuXk5G/Rdqc2yrFmn0N1WDBg1QUFD2urqFhYWlFrVERFQ9NLBtgEltJqG+HcevV0c23bvD8sUXpY5BWuDRVPsrZNVkGs1dNWfOHKxatQpXrlwpse/y5cv48ssv2eNKRFRNBdYPxKLOi1i0VlOCmRkc3+AQAWNgaWMKOyc+7KhNGvW4nj17Fq6urvD19UXHjh3R+L8Dx2/duoWoqCi0bNkSUVFRiIqKUp0jCAJWrlypndRERFRpMsjw9otvI7BBoNRRqBw23brBxJG9dMagtocNhwlomUaF61dffaX69enTp3H69Gm1/VevXsXVq1fVtrFwJSKSjoXcAiHtQtDamcuFVnc23bpJHYG0xMHNSuoIRkejwlWpVGo7BxER6YiNqQ0+8fsETR2bSh2FnkNubwfzJpz+yljYO/HhOm3jY6REREastkVthPqFop4dH5g1BOYtWkDQ49LppFu2HN+qdVUqXGNjY3HgwAHcu3cPwNPZBl555RV4eXlpJRwREWmuea3mmNp2KhwsHKSOQhVk3qSJ1BFIS2QyATYO5lLHMDoaF64ffvghVq5cWWLYgEwmw5QpU/D5559XORwREWmmr1dfDG8xnPOzGhhzdvwYDWt7M8jk7D3XNo3+j37xxRdYvnw5Bg8ejKioKKSnpyM9PR1RUVEYOnQoli9fjuXLl2s7KxERPYeJYIJJPpMw8oWRLFoNkGndulJHIC2xZm+rTmj0t9qGDRvw6quv4scff1Tb3r59e+zYsQP5+fn4+uuvMXXqVK2EJCKi55MLcnz80sfwcfGROgppQDA1hZzTYBkNS1szqSMYJY16XOPi4hAUFFTm/qCgIMTFxWmaiYiINDC65WgWrQZM7liLD2YZETNLfuOhCxr9CXFxccEff/xR5v4//vgDzs7OGociIqLKedHpRQTW58IChkxubyd1BNIiE1P+EKILGv1ffe2117Bx40Z89tlnyMnJUW3PycnBkiVLsHHjRgQHB2stJBERlW9Y82FcocfAyWxZuBoTmQkLV13QqB97wYIFuHLlCmbMmIE5c+agTp06AIBHjx6huLgY3bt3x6effqrVoEREVLrGDo3RyKGR1DGoimQ21lJHIC3ij5G6oVHhamVlhcjISOzevVttHtfevXujT58+6N+/P3/yJyLSETc3NyhFJfKt8gEAXTy6SJyItEFuby91BNImlkE6UenCNTc3FyNGjMCQIUPwxhtvYMCAAbrIRUREZbhw4QLS8tPw7u/vAgD83P0kTkTaILd3kDoCUbVX6QEYVlZW+P3335Gbm6uLPEREVAmN7BuhlkUtqWOQFsgd2ONK9DwajRzu3LkzoqKitJ2lUlJTU/HGG2/Azs4ODg4OePvtt5GdnV3u8e+//z6aNWsGS0tL1K9fHx988AEyMjL0mJqISLtaObeSOgJpiczaRuoIRNWeRoXrV199hZMnT2LWrFl48OCBtjNVyBtvvIFr167h8OHD2Lt3L06cOIF33nmnzOMfPXqER48e4fPPP8dff/2FrVu3IiIiAm+//bYeUxMRaVdLp5ZSRyAtkVlaSB2BqNoTRFEUK3uSra0tiouLUVhYCAAwMTGBubn60maCIOisN/PGjRvw9vbG+fPn0a5dOwBAREQE+vTpgwcPHqhmOXien376CSNGjEBOTg5MTCo23PfSpUvw9fXFxYsX0bZtW40/AxFRVaTlp2FS5CRs6b0FZnKu0GMMFBkZfEDLiBQVKGBqLpc6htHRaFaBIUOGSDprQFRUFBwcHFRFKwAEBgZCJpPh3LlzGDRoUIWuk5GRATs7u3KL1oKCAhQUFKjelzccgYhIn+rb1WfRaky4apZx4awCOqFR4bp161Ytx6ichIQEuLi4qG0zMTFBrVq1kJCQUKFrpKSkYMGCBeUOLwCAsLAwzJ8/X+OsRES64mHjIXUE0iaBhasxYd2qG5X6U5Kfn4/w8HB89tln2LhxIx4/fqzVMNOnT4cgCOW+bt68WeX7ZGZmom/fvvD29sa8efPKPTY0NBQZGRmq1/Hjx6t8fyIibahtWVvqCKRFci5AYFRMzDhMQBcq3OOalJSEjh07IjY2Fs+GxVpZWWHXrl0IDNTO+tgffvgh3nrrrXKPadiwIdzc3JCUlKS2vbi4GKmpqXBzcyv3/KysLPTu3Ru2trbYuXMnTE1Nyz3e3NxcbfyujQ2f+iSi6sHSxFLqCEREelXhwnXBggWIi4vD1KlT0aNHD9y+fRsLFizA+PHjcefOHa2EcXZ2hrOz83OP8/f3R3p6Oi5evAhfX18AwJEjR6BUKtG+ffsyz8vMzERQUBDMzc2xZ88eWFjwCU4iMlymsvJ/8CYiMjYVLlwPHTqEkSNH4vPPP1dtc3V1xfDhwxETE4NmzZrpJGBpWrRogd69e2PcuHFYt24dioqKMGnSJLz++uuqGQUePnyIl19+Gd988w38/PyQmZmJXr16ITc3F9999x0yMzORmZkJ4GnBLJezS5+IDItcxr+3iKhmqfAY1/j4eHTu3FltW+fOnSGKIhITE7Ue7Hm+//57NG/eHC+//DL69OmDzp07Y/369ar9RUVFiImJUa3wdenSJZw7dw5Xr15F48aN4e7urnrdv39f7/mJiKqKPa5EVNNUuMe1oKCgxFfrz94XFxdrN1UF1KpVC9u3by9zv6enJ/45RW23bt2gwZS1RETVFse4ElFNU6npsOLi4nDp0iXV+2cLDNy6dQsODg4ljucE/UREumNtyqfQiahmqfDKWTKZrNRFB0RRLLH92TaFQqGdlNUIV84iouogLT8NqfmpaOTQSOooRER6U+Ee1y1btugyBxERVRKHChBRTVPhwnXUqFG6zEFERJVkYcIp/YioZuH6ckREBspCzsKViGoWFq5ERAaK02ERUU1TqVkFiIioerA3t4eAkg/MEhEZMxauREQGSCbwCzMiqnn4Nx8RERERGQQWrkRERERkEFi4EhEREZFBYOFKRERERAaBhSsRERERGQQWrkRERERkEDgdFpXp8ePHePz4sdQxiIiIDI67uzvc3d2ljmF0WLhWkru7O+bOnWv0vxkLCgowbNgwHD9+XOooREREBicgIAAHDx6Eubm51FGMiiCKoih1CKp+MjMzYW9vj+PHj8PGxkbqOFRF2dnZCAgIYHsaCban8WGbGpdn7ZmRkQE7Ozup4xgVFq5UqmeFK//QGQe2p3FhexoftqlxYXvqDh/OIiIiIiKDwMKViIiIiAwCC1cqlbm5OebOnctB5UaC7Wlc2J7Gh21qXNieusMxrkRERERkENjjSkREREQGgYUrERERERkEFq5EREREZBBYuBIRERGRQWDhSlRNCIJQodexY8eqfK/c3FzMmzevUtdatGgRXn31Vbi6ukIQBMybN6/KOYxZdW7PmzdvYtq0afDx8YGtrS3c3d3Rt29fXLhwocpZjFV1bs9Hjx5hxIgRaNasGWxtbeHg4AA/Pz9s27YNfP66bNW5Tf/t+++/hyAIXFUNgInUAYjoqW+//Vbt/TfffIPDhw+X2N6iRYsq3ys3Nxfz588HAHTr1q1C58yaNQtubm5o06YNDh48WOUMxq46t+fGjRuxadMmDBkyBBMnTkRGRga+/vprdOjQAREREQgMDKxyJmNTndszJSUFDx48wNChQ1G/fn0UFRXh8OHDeOuttxATE4PFixdXOZMxqs5t+k/Z2dmYNm0arK2tq5zDKIhEVC299957oq7+iCYnJ4sAxLlz51b4nNjYWI3PperVnhcuXBCzsrLUtqWkpIjOzs5ip06ddJDQ+FSn9ixLv379RGtra7G4uFg7wYxcdW3TTz75RGzWrJn4xhtviNbW1toPZ2A4VIDIgCiVSqxYsQIvvPACLCws4OrqivHjxyMtLU3tuAsXLiAoKAhOTk6wtLSEl5cXxowZAwCIi4uDs7MzAGD+/Pmqr8Oe99W/p6enLj5SjSZVe/r6+pb4yrF27dro0qULbty4od0PWYNI+eezNJ6ensjNzUVhYWGVP1tNJXWb3rp1C8uXL8eyZctgYsIvyQEOFSAyKOPHj8fWrVsxevRofPDBB4iNjcVXX32Fy5cv4/Tp0zA1NUVSUhJ69eoFZ2dnTJ8+HQ4ODoiLi8Ovv/4KAHB2dsbatWsxYcIEDBo0CIMHDwYAtGrVSsqPViNVt/ZMSEiAk5OTVj9jTSJ1e+bl5SEnJwfZ2dk4fvw4tmzZAn9/f1haWur0cxszqdt0ypQp6N69O/r06YMff/xRp5/VYEjd5UtEpfv311YnT54UAYjff/+92nERERFq23fu3CkCEM+fP1/mtavytRWHCmimurbnMydOnBAFQRBnz56t8TVqkurYnmFhYSIA1evll18W4+PjK3WNmqy6tenevXtFExMT8dq1a6IoiuKoUaM4VEDkUAEig/HTTz/B3t4ePXv2REpKiur17Gvfo0ePAgAcHBwAAHv37kVRUZGEiak81ak9k5KSMHz4cHh5eWHatGk6uYexqw7tOWzYMBw+fBjbt2/H8OHDATzthSXNSNmmhYWFmDp1Kt599114e3tr5ZrGgoUrkYG4desWMjIy4OLiAmdnZ7VXdnY2kpKSAAABAQEYMmQI5s+fDycnJwwYMABbtmxBQUGBxJ+A/qm6tGdOTg769euHrKws7N69m9PtaKg6tGeDBg0QGBiIYcOG4fvvv0fDhg0RGBjI4lVDUrbp8uXLkZKSopqJgP6HY1yJDIRSqYSLiwu+//77Uvc/G/wvCAJ+/vlnnD17Fr/99hsOHjyIMWPG4IsvvsDZs2dZmFQT1aE9CwsLMXjwYPz55584ePAgWrZsqfG1arrq0J7/NnToUGzYsAEnTpxAUFCQ1q5bU0jVphkZGVi4cCEmTpyIzMxMZGZmAng6LZYoioiLi4OVlRVcXFyq9gENldRjFYiodP8ebzVx4kRRLpeLubm5lb7W999/LwIQN2zYIIri06mPwDGuelXd2lOhUIjBwcGiXC4Xf/nll0pnqOmqW3uWZteuXSIAMTw8vErXqSmqS5vGxsaqjVUu7TVgwIBKZzIWHCpAZCD+7//+DwqFAgsWLCixr7i4GOnp6QCAtLS0Eqvl+Pj4AIDqqysrKysAUJ1D+id1e77//vsIDw/HmjVrVE85k+akbM/k5ORSt2/atAmCIKBt27YVug6pk6pNXVxcsHPnzhKv7t27w8LCAjt37kRoaKjmH8zAcagAkYEICAjA+PHjERYWhitXrqBXr14wNTXFrVu38NNPP2HlypUYOnQotm3bhjVr1mDQoEFo1KgRsrKysGHDBtjZ2aFPnz4AAEtLS3h7eyM8PBxNmzZFrVq10LJly3K/Kv72229x79495ObmAgBOnDiBhQsXAgDefPNNNGjQQPf/E4yIlO25YsUKrFmzBv7+/rCyssJ3332ntn/QoEFcpaeSpGzPRYsW4fTp0+jduzfq16+P1NRU/PLLLzh//jzef/99NG7cWJ//K4yGVG1qZWWFgQMHlti+a9cuREdHl7qvRpG2w/f/27v/mKjrPw7gzw8H3J1y/LBO8Bd3cGwIs5niqI3ssuZcyoJN8ceWni6ytjZyQc5QJ5Yt0XQ6yum5BsZWW678Ryvd9Bg625yz/iBWFNxRq4G1gVEGKry+fzDP70cgD73z+Lzv+djc/Lzv/Xm/3+dz++zl3efeHyIay1hPcfF6vVJQUCBWq1VsNps89thjsnnzZvn9999FROTKlSuyZs0ayczMFLPZLFOnTpXi4mK5fPmybpyLFy9KQUGBJCYmhvQVltvtHvNrK5/PF663rayJlKfH4/nPryFvPyWNxjaR8jxz5owUFxfL9OnTJSEhQWw2mxQVFUl9fb0MDQ2F9X2rbCJlOhpuhzVME7nr820iIiIiogmI97gSERERkSGwcCUiIiIiQ2DhSkRERESGwMKViIiIiAyBhSsRERERGQILVyIiIiIyBBauRAoIBALQNA0NDQ3RXgqFCTNVC/NUC/OMHhauRERERGQIfAABkQJEBAMDA0hISIDJZIr2cigMmKlamKdamGf0sHAlIiIiIkPgrQJEE0RNTQ00TUNbWxtefPFFpKSkwG63Y/v27RAR/PrrrygpKUFycjIyMjKwb9++4Lmj3W+1fv16JCUl4bfffkNpaSmSkpJgt9tRVVWFwcHBYL+mpiZomoampibdekYbs6urCxs2bMDMmTNhNpsxbdo0lJSUIBAIROhfxdiYqVqYp1qYpzGxcCWaYFatWoWhoSHs3r0bTzzxBHbt2oUDBw5g8eLFmDFjBmpra5GTk4Oqqio0Nzf/51iDg4NYsmQJHnnkEbz//vtwu93Yt28fvF7vfa1t+fLlOHHiBDZs2IBDhw6hoqICfX19+OWXX+5rvFjBTNXCPNXCPA1GiGhC2LFjhwCQjRs3Bttu3bolM2fOFE3TZPfu3cH2np4esVqt4vF4RETE7/cLAKmvrw/28Xg8AkDefvtt3Tzz5s2TgoKC4LHP5xMA4vP5dP3uHrOnp0cAyN69e8PzhmMAM1UL81QL8zQmfuJKNMGUl5cH/24ymbBgwQKICF566aVge2pqKnJzc9HR0XHP8V599VXd8cKFC0M6725WqxWJiYloampCT0/PuM+PZcxULcxTLczTWFi4Ek0wmZmZuuOUlBRYLBY8+uijI9rvdTGzWCyw2+26trS0tPu6CJrNZtTW1uKrr75Ceno6nn76aezZswddXV3jHivWMFO1ME+1ME9jYeFKNMGMtrXKWNutyD02BQllmxZN00Zt//8fE9y2adMmtLW14b333oPFYsH27duRl5eHb7/99p7zxDJmqhbmqRbmaSwsXIliXFpaGgCgt7dX197Z2Tlqf5fLhcrKSpw5cwYtLS24ceOG7te2FH3MVC3MUy3M88GwcCWKcQ6HAyaTacSvZQ8dOqQ7vn79Ovr7+3VtLpcLNpsNAwMDEV8nhY6ZqoV5qoV5Ppj4aC+AiKIrJSUFZWVlqKurg6ZpcLlcOHnyJK5evarr19bWhueeew4rV65Efn4+4uPjceLECXR3d2P16tVRWj2NhpmqhXmqhXk+GBauRIS6ujrcvHkThw8fhtlsxsqVK7F3717MmTMn2GfWrFlYs2YNzp49i8bGRsTHx2P27Nn47LPPsHz58iiunkbDTNXCPNXCPO8fH/lKRERERIbAe1yJiIiIyBBYuBIRERGRIbBwJSIiIiJDYOFKRERERIbAwpWIiIiIDIGFKxGNSyAQgKZpaGhoiPZSKEyYqVqYp1qYpx4LV6IIam9vxyuvvILs7GxYLBYkJyejqKgIBw8exL///huxeVtbW1FTU4NAIBCxOULx7rvv4oUXXkB6ejo0TUNNTU1U1xMOzFStTJkn8wwH5vnw8AEERBFy6tQplJWVwWw2Y926dZgzZw5u3LiBCxcu4M0338T3338Pr9cbkblbW1uxc+dOPPPMM3A6nRGZIxTbtm1DRkYG5s2bh9OnT0dtHeHCTNXKlHkyz3Bhng8PC1eiCPD7/Vi9ejUcDgfOnTuHadOmBV977bXX8PPPP+PUqVNRXOEdIoL+/n5Yrdawj+33++F0OvHnn3/CbreHffyHiZkOUyVT5jmMeT58zPPB8FYBogjYs2cP/v77b3z00Ue6C+htOTk5eP3114PHt27dwjvvvAOXywWz2Qyn04nq6moMDAzoznM6nSguLsaFCxdQWFgIi8WC7OxsfPzxx8E+DQ0NKCsrAwAsWrQImqZB0zQ0NTXpxjh9+jQWLFgAq9WKI0eOAAA6OjpQVlaGKVOmYNKkSXjyyScf6GIfzU8ewo2Z3lmvCpjnnfWqgHneWa/yhIjCbsaMGZKdnR1yf4/HIwBkxYoV8uGHH8q6desEgJSWlur6ORwOyc3NlfT0dKmurpYPPvhA5s+fL5qmSUtLi4iItLe3S0VFhQCQ6upqaWxslMbGRunq6gqOkZOTI2lpabJlyxY5fPiw+Hw+6erqkvT0dLHZbLJ161bZv3+/zJ07V+Li4uSLL74IrsHv9wsAqa+vD/n9/fHHHwJAduzYEfI5Ew0z1TN6psxTj3kyT6Ng4UoUZteuXRMAUlJSElL/7777TgBIeXm5rr2qqkoAyLlz54JtDodDAEhzc3Ow7erVq2I2m6WysjLYdvz4cQEgPp9vxHy3x/j666917Zs2bRIAcv78+WBbX1+fZGVlidPplMHBQRGJzYsoMx3JyJkyz5GYJ/M0Ct4qQBRmf/31FwDAZrOF1P/LL78EALzxxhu69srKSgAY8bVRfn4+Fi5cGDy22+3Izc1FR0dHyGvMysrCkiVLRqyjsLAQTz31VLAtKSkJGzduRCAQQGtra8jjq4aZqoV5qoV5xhYWrkRhlpycDADo6+sLqX9nZyfi4uKQk5Oja8/IyEBqaio6Ozt17ZmZmSPGSEtLQ09PT8hrzMrKGnUdubm5I9rz8vKCr8cqZqoW5qkW5hlbWLgShVlycjKmT5+OlpaWcZ2naVpI/Uwm06jtIhLyXJH4NavKmKlamKdamGdsYeFKFAHFxcVob2/HN998c8++DocDQ0ND+Omnn3Tt3d3d6O3thcPhGPf8oV6Q717Hjz/+OKL9hx9+CL4ey5ipWpinWphn7GDhShQBmzdvxuTJk1FeXo7u7u4Rr7e3t+PgwYMAgKVLlwIADhw4oOuzf/9+AMCyZcvGPf/kyZMBAL29vSGfs3TpUly6dEl34f/nn3/g9XrhdDqRn58/7nWohJmqhXmqhXnGDj6AgCgCXC4XPvnkE6xatQp5eXm6p7hcvHgRx48fx/r16wEAc+fOhcfjgdfrRW9vL9xuNy5duoRjx46htLQUixYtGvf8jz/+OEwmE2pra3Ht2jWYzWY8++yzmDp16pjnbNmyBZ9++imef/55VFRUYMqUKTh27Bj8fj8+//xzxMWN//+5jY2N6OzsxPXr1wEAzc3N2LVrFwBg7dq1hvpEgZkOUyVT5jmMeTJPw4nupgZEamtra5OXX35ZnE6nJCYmis1mk6KiIqmrq5P+/v5gv5s3b8rOnTslKytLEhISZNasWfLWW2/p+ogMb6uybNmyEfO43W5xu926tqNHj0p2draYTCbdNi1jjSEyvB/hihUrJDU1VSwWixQWFsrJkyd1fcazNYvb7RYAo/4ZbdsYI2CmamXKPJkn8zQWTWQcdxcTEREREUUJ73ElIiIiIkNg4UpEREREhsDClYiIiIgMgYUrERERERkCC1ciIiIiMgQWrkRERERkCCxciYiIiMgQWLgSERERkSGwcCUiIiIiQ2DhSkRERESGwMKViIiIiAyBhSsRERERGQILVyIiIiIyhP8BDitCXGX7VSwAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -849,11 +849,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:58:08 2025.\n",
+ "The current time is Tue Mar 25 17:22:27 2025.\n",
"\n",
"Effect size(s) with 95% confidence intervals will be computed for:\n",
"1. Test 1 minus Control 1\n",
@@ -883,11 +883,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:58:08 2025.\n",
+ "The current time is Tue Mar 25 17:22:28 2025.\n",
"\n",
"The unpaired mean difference between Control 1 and Test 1 is 0.575 [95%CI 0.35, 0.725].\n",
"The p-value of the two-sided permutation t-test is 0.0, calculated for legacy purposes only. \n",
@@ -925,7 +925,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyMAAAInCAYAAACLNYZnAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAl8BJREFUeJzs3Xl4TOffBvD7zCSZ7IKsIiSoJUUQDbEFDVFLKfoqVUotpWpJV2uoJaVqa6lSWxelm52gsRNrxFKktogtiZB9z8x5/1Dz6zSLZDInZzK5P9c1F3PWezwO+c45z/MIoiiKICIiIiIiKmcKuQMQEREREVHlxGKEiIiIiIhkwWKEiIiIiIhkwWKEiIiIiIhkwWKEiIiIiIhkwWKEiIiIiIhkwWKEiIiIiIhkwWKEiIiIiIhkwWKEiIiIiIhkwWKklB4+fIiZM2fi4cOHckchIiIiIqrQWIyU0sOHDzFr1iwWI0REREREZcRihIiIiIiIZMFihIiIiIiIZMFihIiIiIiIZFGhi5EjR46gV69eqFGjBgRBwNatW5+7z6FDh9CiRQuoVCrUq1cP69evlzwnEREREREVVKGLkYyMDPj4+GD58uUl2v727dvo0aMHOnXqhKioKEycOBEjRozA3r17JU5KRERERET/ZSZ3gLJ45ZVX8Morr5R4+5UrV8LLywtffvklAKBRo0Y4duwYFi9ejKCgIKliEhERERFRISp0MVJaERERCAwM1FkWFBSEiRMnFrlPTk4OcnJytO/T09OlileksV9uRFJaZrmfVy5V7ayx4oNBcseQTNSaCchNT5I7RrmxsK2KZu8slTuGZMavGY+kStSeVW2rYtk7y+SOIak/P/4Y2cnJcscoN5YODghcsEDuGJLZ/M0+ZKZnyx2j3FjbWmLAmK5yx5DMN7OmIz01We4Y5cbW3gFjQmbLHUNSlaoYiYuLg4uLi84yFxcXpKamIisrC1ZWVgX2CQ0NxaxZs8orYqGS0jKRmFL+RRBJIzc9Cblpj+WOQQaSlJ6Ex2xPk5KdnIysJ0/kjkEGkpmejYzULLljkIGkpyYjNanyfAFUGVSqYkQfkydPRnBwsPZ9VFQUAgICZMmiEARUs7eR5dzl4UlqBjSiKHeM8iMoYGFbVe4UkslNTwJEjdwxyo1CUKCqCbdnUnoSNJWoPQEACgWsHBzkTiGZrORkQFN52lQQBFjbWcodQzKZadkQK9H/oYIgwM6Er8+05ORK056VqhhxdXVFfHy8zrL4+HjY29sXelcEAFQqFVQqlfa9ra2tpBmLU83eBj/PHCHb+aU2cOZ3leoOkIVtVfhN+F7uGJI5vXRIpboDVNW2Kn6Y8IPcMSTz1tK3Kt0dICsHB/RctUruGJLZOWpUpboDZG1niWEfvSp3DMms+2J7pboDZOfggI++/EruGJL54oP3K80dIFlG0xJFEQcOHMCePXuQlpZWbuf19/dHeHi4zrL9+/fD39+/3DIQEREREdFTkhcjU6dORadOnbTvRVFE165d0aVLF/To0QNNmjTBzZs39Tp2eno6oqKiEBUVBeDp0L1RUVGIjY0F8PQRqyFDhmi3f/fdd3Hr1i18/PHHuHbtGlasWIFffvkFkyZN0v8DEhERERGRXiQvRn7//Xf4+flp3//2228IDw/HnDlzsHPnTqjVasycOVOvY589exbNmzdH8+bNAQDBwcFo3rw5ZsyYAQB4+PChtjABAC8vL+zatQv79++Hj48PvvzyS3z33Xcc1peIiIiISAaS9xm5f/8+6tWrp33/xx9/wNvbG5MnTwYAjBkzBt98841ex+7YsWOxnXsKm129Y8eOOH/+vF7nIyIiIiIiw5H8zoiZmZl2ng5RFBEeHo5u3bpp17u4uCAxMVHqGEREREREZGQkL0YaN26MH3/8EUlJSVi3bh0eP36MHj16aNffuXMHjo6OUscgIiIiIiIjI/ljWjNmzECvXr20BUfbtm11OrTv2rULL730ktQxiIiIiIjIyEhejHTp0gWRkZHYv38/HBwcMGDAAO26pKQkdOjQAb1795Y6BhERERERGZlymfTQ29sb3t7eBZZXrVoVixcvLo8IRERERERkZCQvRtLS0pCcnAwPDw/tsgcPHmDlypXIyclB//79+ZgWEREREVElJHkxMmrUKNy+fRsnT54EAKSmpqJ169a4d+8eFAoFli5dirCwMHTs2FHqKEREREREZEQkH03r2LFj6Nmzp/b9jz/+iAcPHuDEiRNISkpC06ZNMWfOHKljEBERERGRkZG8GElMTIS7u7v2/fbt29GuXTu0bt0adnZ2GDJkCC5cuCB1DCIiIiIiMjKSFyMODg6Ii4sDAGRlZeHo0aPo2rWrdr2ZmRkyMzOljkFEREREREZG8j4jbdq0wYoVK9CwYUOEhYUhOztbZyjfv//+W+fOCRERERERVQ6SFyPz589H165d0a9fPwDABx98gBdffBEAoFar8euvv6Jbt25SxyAiIiIiIiMjeTFSr149REdH48qVK6hSpQo8PT216zIzM/H111/Dx8dH6hhERERERGRkymXSQ3Nz80ILDjs7O86+TkRERERUSUnegR14OrfI559/jqCgIDRv3hynT58GADx58gSLFi3CjRs3yiMGEREREREZEcnvjNy7dw8BAQG4e/cuXnjhBVy7dg3p6ekAgGrVquHbb7/FnTt3sHTpUqmjEBERERGREZG8GPnoo4+QlpaGqKgoODs7w9nZWWd9nz59sHPnTqljEBERERGRkZH8Ma19+/Zh/Pjx8Pb2hiAIBdbXqVMHd+/elToGEREREREZGcmLkaysLDg5ORW5Pi0tTeoIRERERERkhCQvRry9vXHkyJEi12/duhXNmzeXOgYRERERERkZyYuRiRMnYtOmTZg/fz5SUlIAABqNBjdu3MBbb72FiIgITJo0SeoYRERERERkZCTvwD548GDcuXMH06ZNw9SpUwEA3bp1gyiKUCgUmDdvHvr06SN1DCIiIiIiMjLlMunh1KlT8dZbb+H333/HjRs3oNFoULduXfTt2xd16tQpjwhERERERGRkyqUYAYBatWrxcSwiIiIiItKSvM9IZGQkVqxYUeT6FStWICoqSuoYRERERERkZCQvRqZOnYo///yzyPUHDhzAtGnTpI5BRERERERGRvJi5Ny5c2jfvn2R69u3b4+zZ89KHYOIiIiIiIyM5MVIWloazMyK7pqiUCi0Q/7qY/ny5fD09ISlpSVatWqF06dPF7v9kiVL0KBBA1hZWcHDwwOTJk1Cdna23ucnIiIiIiL9SF6MvPDCC9i3b1+R68PCwvQeUWvz5s0IDg5GSEgIIiMj4ePjg6CgICQkJBS6/caNG/Hpp58iJCQEV69exZo1a7B582ZMmTJFr/MTEREREZH+JC9G3nnnHezatQvBwcFITk7WLk9OTsakSZMQFhaGd955R69jL1q0CCNHjsSwYcPg7e2NlStXwtraGmvXri10+xMnTqBt27YYNGgQPD090bVrVwwcOPC5d1OIiIiIiMjwJC9Gxo8fj6FDh2LJkiVwdHRErVq1UKtWLTg6OmLp0qUYPHiwXkP+5ubm4ty5cwgMDNQuUygUCAwMRERERKH7tGnTBufOndMWH7du3cLu3bvRvXt3/T4cERERERHpTfJ5RgRBwLp16zBkyBD8/vvvuHXrFgCgd+/e6NevHzp27KjXcRMTE6FWq+Hi4qKz3MXFBdeuXSt0n0GDBiExMRHt2rWDKIrIz8/Hu+++W+xjWjk5OcjJydG+T09P1ysvkZxatmyJuLg4uLq6csAIIiIiMhrlNulhp06d0KlTp/I6XaEOHTqEefPmYcWKFWjVqhVu3LiBCRMmYPbs2Zg+fXqh+4SGhmLWrFnlnJTIsOLi4nD//n25YxARERHpkPwxrdu3b2PHjh1Frt+xYwdiYmJKfVxHR0colUrEx8frLI+Pj4erq2uh+0yfPh1vvfUWRowYgSZNmuC1117DvHnzEBoaCo1GU+g+kydPRkpKivZ1+PDhUmclIiIiIqKCJC9GPvzwQyxbtqzI9cuXL8enn35a6uNaWFjA19cX4eHh2mUajQbh4eHw9/cvdJ/MzEwoFLofWalUAgBEUSx0H5VKBXt7e+3L1ta21FmJiIiIiKggyYuRiIgIdOnSpcj1L7/8Mo4eParXsYODg7F69Wps2LABV69exZgxY5CRkYFhw4YBAIYMGYLJkydrt+/Vqxe++eYbbNq0Cbdv38b+/fsxffp09OrVS1uUEBERERFR+ZC8z0hSUhLs7OyKXG9ra4vHjx/rdewBAwbg0aNHmDFjBuLi4tCsWTOEhYVpO7XHxsbq3AmZNm0aBEHAtGnTcP/+fTg5OaFXr16YO3euXucnIiIiIiL9SV6M1KpVC8ePH8eYMWMKXX/06FHUrFlT7+OPGzcO48aNK3TdoUOHdN6bmZkhJCQEISEhep+PiIiIiIgMQ/LHtAYOHIiff/4Zy5Yt0+kkrlarsXTpUmzevBmDBg2SOgYRERERERkZye+MTJ48GceOHcPEiRMxd+5cNGjQAAAQHR2NR48eoWPHjpg6darUMYiIiIiIyMhIfmdEpVJh3759WLNmDfz8/JCYmIjExET4+flh7dq1+PPPP6FSqaSOQURERERERqZcJj1UKBQYNmyYdpQrIiIiIiIiye+MEBERERERFUbyOyOdO3d+7jaCIOhMXkhERERERKZP8mJEo9FAEASdZWq1Gnfu3MHdu3dRr149uLu7Sx2DqFJzdXXV+ZWIiIjIGEhejPx3ro9/27lzJ0aNGoVFixZJHYOoUjt79qzcEYiIiIgKKJcO7EXp2bMnBg8ejIkTJ+Lw4cNyRiEqVylCFSA9H7vmmvYcO1XkDkBERERGTfYO7HXr1sWZM2fkjkFEREREROVM1jsj+fn5+OWXX+Do6ChnDCKTN3HFXiSlZ6GqrRWWjA2SOw4RERERgHIoRoYPH17o8uTkZJw8eRJxcXHsM0IksaT0LDxOzZI7BhEREZEOyYuRAwcOFBhNSxAEVK1aFe3atcOIESPQtWtXqWMQEREREZGRkbwYiYmJkfoURERERERUAcnegZ2IiIiIiConSYqRzMxMxMbGIjc3t8C6tWvX4uWXX4a3tzf69u3LkbSIiIiIiCopSYqRzz77DE2bNi1QjMyZMwcjR47E4cOH8ejRI2zduhUdO3bEhQsXpIhBRERERERGTJJi5ODBg+jZsydsbW21y1JTUzFnzhy4u7vj+vXrePToEU6ePAkLCwt8/vnnUsQgIiIiIiIjJkkxEhMTg6ZNm+os2717N3Jzc/HJJ5/Ay8sLAODn54dhw4bh6NGjUsQgIiIiIiIjJkkxkpaWhurVq+ssO3LkCARBQFCQ7oRr3t7eePTokRQxiIiIiIjIiElSjNSuXRvXrl3TWXbo0CG4uLigXr16Ostzc3Nhb28vRQwiIiIiIjJikhQjXbt2xdq1a3Hq1CkAwPfff49r167htddeK7DtuXPn4OnpKUUMIiIiIiIyYpJMejh9+nRs3boVbdq0gVKpRH5+PpycnDBjxgyd7TIzM7FlyxaMGjVKihhE9I+qtlY6vxIREREZA0mKEUdHR0RFReG7777DrVu3ULt2bQwfPhzOzs46212+fBlvvvkm3nrrLSliENE/lowNev5GREREROVMkmIEAKpWrYqPPvqo2G38/Pzg5+cnVQQiIiIiIjJikvQZISIiIiIieh4WI0REREREJAsWI0REREREJIsKX4wsX74cnp6esLS0RKtWrXD69Olit09OTsZ7770HNzc3qFQq1K9fH7t37y6ntERERERE9IzBi5Ht27fjwYMHhj5soTZv3ozg4GCEhIQgMjISPj4+CAoKQkJCQqHb5+bmokuXLoiJicFvv/2G6OhorF69Gu7u7uWSl4iIiIiI/sfgxchrr72GQ4cOad/XqVMH27dvN/RpAACLFi3CyJEjMWzYMHh7e2PlypWwtrbG2rVrC91+7dq1ePLkCbZu3Yq2bdvC09MTAQEB8PHxkSQfEREREREVzeDFiJ2dHZKTk7XvY2JikJ6ebujTIDc3F+fOnUNgYKB2mUKhQGBgICIiIgrdZ/v27fD398d7770HFxcXNG7cGPPmzYNarS7yPDk5OUhNTdW+pPgsRERERESVkcHnGfHz88PcuXMRHx+PKlWqAAB2796NuLi4IvcRBAGTJk0q1XkSExOhVqvh4uKis9zFxQXXrl0rdJ9bt27hwIEDePPNN7F7927cuHEDY8eORV5eHkJCQgrdJzQ0FLNmzSpVNiIiIiIiej6DFyMrVqzAkCFDMHv2bABPC42NGzdi48aNRe6jTzGiD41GA2dnZ6xatQpKpRK+vr64f/8+vvjiiyKLkcmTJyM4OFj7PioqCgEBAZJnJSIiIiIydQYvRurVq4cTJ04gOzsbCQkJ8PT0xJIlS9C7d2+DnsfR0RFKpRLx8fE6y+Pj4+Hq6lroPm5ubjA3N4dSqdQua9SoEeLi4pCbmwsLC4sC+6hUKqhUKu17W1tbA30CIiIiIqLKzeDFyDOWlpaoVasWQkJC0LlzZ9SuXdugx7ewsICvry/Cw8PRp08fAE/vfISHh2PcuHGF7tO2bVts3LgRGo0GCsXT7jJ///033NzcCi1EiIiIiIhIOpLPMxISEoLGjRsDANLT03H16lVcvXrVIB3Bg4ODsXr1amzYsAFXr17FmDFjkJGRgWHDhgEAhgwZgsmTJ2u3HzNmDJ48eYIJEybg77//xq5duzBv3jy89957Zc5CRERERESlI9mdkX87c+YMPv74Yxw7dgwajQbA05Gv2rdvjwULFqBly5Z6HXfAgAF49OgRZsyYgbi4ODRr1gxhYWHaTu2xsbHaOyAA4OHhgb1792LSpElo2rQp3N3dMWHCBHzyySdl/5BERERERFQqkhcjp06dQseOHWFhYYERI0agUaNGAICrV6/i559/RocOHXDo0CH4+fnpdfxx48YV+VjWv+c7ecbf3x8nT57U61xERERERGQ4khcjU6dOhbu7O44dO1agY/nMmTPRtm1bTJ06Ffv375c6ChERERERGRHJ+4ycOnUKo0ePLnSEKxcXF4waNYp3KoiIiIiIKiHJixGFQoH8/Pwi16vVap1+HUREREREVDlIXgW0adMGy5cvx507dwqsi42NxYoVK9C2bVupYxARERERkZGRvM/IvHnz0KFDBzRs2BCvvfYa6tevDwCIjo7Gtm3bYGZmhtDQUKljEBERERGRkZG8GGnevDlOnTqFqVOnYvv27cjMzAQAWFtbo1u3bpgzZw68vb2ljkFEREREREamXOYZ8fb2xpYtW6DRaPDo0SMAgJOTE/uKEBERERFVYuVSjDyjUCi0ExISEREREVHlxlsTREREREQkCxYjREREREQkCxYjREREREQkCxYjREREREQkCxYjREREREQki3IbTevKlSu4desWkpKSIIpigfVDhgwpryhERERERGQEJC9Gbt68icGDB+P06dOFFiEAIAgCixEiIiIiokpG8mJk9OjRuHTpEpYsWYL27dujatWqUp+SiIiIiIgqAMmLkePHj2PKlCl4//33pT4VERERERFVIJJ3YHd0dESVKlWkPg0REREREVUwkhcj7777Ln788Ueo1WqpT0VERERERBWI5I9p1a9fH2q1Gj4+Phg+fDg8PDygVCoLbNe3b1+poxARERERkRGRvBgZMGCA9vcffvhhodsIgsA7J0RERERElYzkxcjBgwelPgUREREREVVAkhcjAQEBUp+CiIiIiIgqoHKbgR14Ogv7nTt3AAC1a9eGt7d3eZ6eiIiIiIiMSLkUI9u2bUNwcDBiYmJ0lnt5eWHRokV49dVXyyMGEREREREZEcmH9t29ezf69esHAJg3bx62bNmCLVu2YN68eRBFEX379kVYWJjUMYiIiIiIyMhIfmdk9uzZaNq0KY4ePQobGxvt8ldffRXjxo1Du3btMGvWLHTr1k3qKEREREREZEQkvzNy8eJFDB06VKcQecbGxgZvv/02Ll68qPfxly9fDk9PT1haWqJVq1Y4ffp0ifbbtGkTBEFAnz599D43ERERERHpT/JixNLSEk+ePCly/ZMnT2BpaanXsTdv3ozg4GCEhIQgMjISPj4+CAoKQkJCQrH7xcTE4MMPP0T79u31Oi8REREREZWd5MVI586dsXTpUkRERBRYd+rUKSxbtgyBgYF6HXvRokUYOXIkhg0bBm9vb6xcuRLW1tZYu3Ztkfuo1Wq8+eabmDVrFurUqaPXeYmIiIiIqOwk7zOyYMEC+Pv7o127dvDz80ODBg0AANHR0Th9+jScnZ0xf/78Uh83NzcX586dw+TJk7XLFAoFAgMDCy18nvnss8/g7OyMd955B0ePHn3ueXJycpCTk6N9n56eXuqsRERERERUkOR3Rry8vHDx4kWMHz8eSUlJ2Lx5MzZv3oykpCRMmDABFy5cgKenZ6mPm5iYCLVaDRcXF53lLi4uiIuLK3SfY8eOYc2aNVi9enWJzxMaGooqVapoX5zEkYiIiIjIMMplnhFnZ2csXrwYixcvLo/TFSotLQ1vvfUWVq9eDUdHxxLvN3nyZAQHB2vfR0VFsSAhIiIiIjKAcp2B3ZAcHR2hVCoRHx+vszw+Ph6urq4Ftr958yZiYmLQq1cv7TKNRgMAMDMzQ3R0NOrWrVtgP5VKBZVKpX1va2trqI9ARERERFSpGbwYGT58OARBwKpVq6BUKjF8+PDn7iMIAtasWVOq81hYWMDX1xfh4eHa4Xk1Gg3Cw8Mxbty4Ats3bNgQly5d0lk2bdo0pKWlYenSpfDw8CjV+YmIiIiIqGwMXowcOHAACoUCGo0GSqUSBw4cgCAIxe7zvPVFCQ4OxtChQ9GyZUv4+flhyZIlyMjIwLBhwwAAQ4YMgbu7O0JDQ2FpaYnGjRvr7O/g4AAABZYTEREREQFAy5YtERcXB1dXV5w9e1buOCbH4MVITExMse8NacCAAXj06BFmzJiBuLg4NGvWDGFhYdpO7bGxsVAoJO+jT0REREQmKi4uDvfv35c7hsmSvM9IbGwsnJycYGVlVej6rKwsPHr0CLVq1dLr+OPGjSv0sSwAOHToULH7rl+/Xq9zEhERERFR2ZXL0L5btmwpcv327dvh5eUldQwiIiIiIjIykhcjoigWuz4vL4+PUhERERERVUKSPKaVmpqK5ORk7fvHjx8jNja2wHbJycnYtGkT3NzcpIhBREREVO7Y4Zmo5CQpRhYvXozPPvsMwNORsiZOnIiJEycWuq0oipgzZ44UMYiIiIjKHTs8E5WcJMVI165dYWtrC1EU8fHHH2PgwIFo0aKFzjaCIMDGxga+vr5o2bKlFDGIiIiIiMiISVKM+Pv7w9/fHwCQkZGBfv36cS4PIiIiIiLSIenQvpmZmVi2bBmsra1ZjBARERERkQ5Jh7GytraGmZkZbGxspDwNERERERFVQJKPqduvXz/89ttvzx3il4iIiIiIKhfJZ2B/4403MHbsWHTq1AkjR46Ep6dnobOx/7eDOxERERERmTbJi5GOHTtqf3/06NEC60VRhCAIUKvVUkchIiIiIioVV1dXnV/JsCQvRtatWyf1KYiIiIiIJMGJK6UleTEydOhQqU9BRERERJVEvsIMT1LSMHnE23JHkZTkP6QbiXL9nOnp6bh79y4AwMPDA7a2tuV5eiIiIiIiMiKSj6YFAGfOnEGnTp1QtWpVNG7cGI0bN0bVqlXRuXNn3voiIiIiIqO1fttOLP/5V6zftlPuKCZJ8jsjp06dQseOHWFhYYERI0agUaNGAICrV6/i559/RocOHXDo0CH4+flJHYWIiIhIcuzwbFoyMrOQlpkpdwyTJXkxMnXqVLi7u+PYsWMFLsqZM2eibdu2mDp1Kvbv3y91FCIiIiLJ8akPopIrlzsjM2bMKPTbARcXF4waNQqzZ8+WOgYRERFVVha5yMjOxdezf5A7icQs5A5AVGqS9xlRKBTIz88vcr1arYZCUS5dV4iIiIiIyIhIfmekTZs2WL58OQYNGoTatWvrrIuNjcWKFSvQtm1bqWMQERERlYsFK2cgLT0FdrZV8PG7n8kdh8ioSV6MzJs3Dx06dEDDhg3x2muvoX79+gCA6OhobNu2DWZmZggNDZU6BhEREVG5SEtPQXJqktwxiCoEyYuR5s2b49SpU5g6dSq2b9+OzH9GI7C2tka3bt0wZ84ceHt7Sx2DiIiIiIiMTLlMeujt7Y0tW7ZAo9Hg0aNHAAAnJyf2FSEiIiIiqsTKdQZ2QRAgCIL290REREREVHmVy62JK1euoH///rC3t4ebmxvc3Nxgb2+P/v374/Lly+URgYiIyGi1bNkSNWvWRMuWLeWOQkRUriS/M3L06FG88sor0Gg06N27t04H9u3bt2PPnj0ICwtD+/btpY5CRERklOLi4nD//n25YxARlTvJi5FJkybB2dkZhw8fhoeHh866u3fvokOHDggODsaZM2ekjkJEREREREZE8se0/vrrL4wdO7ZAIQIAHh4eGDNmDP766y+9j798+XJ4enrC0tISrVq1wunTp4vcdvXq1Wjfvj2qVq2KqlWrIjAwsNjtiYiIiKhys7G2gp21NWysreSOYpIkvzNSu3Zt5OTkFLk+Nze30EKlJDZv3ozg4GCsXLkSrVq1wpIlSxAUFITo6Gg4OzsX2P7QoUMYOHAg2rRpA0tLS8yfPx9du3bFX3/9BXd3d70yEBEREZHpert3T7kjmDTJ74zMmDEDy5YtQ1RUVIF158+fx1dffYWZM2fqdexFixZh5MiRGDZsGLy9vbFy5UpYW1tj7dq1hW7/008/YezYsWjWrBkaNmyI7777DhqNBuHh4Xqd35SxMyWR8eL1SUREpkLyOyMnT56Ei4sLfH190aZNG9SrVw8AcP36dURERKBx48aIiIhARESEdh9BELB06dJij5ubm4tz585h8uTJ2mUKhQKBgYE6xypOZmYm8vLyUK1atSK3ycnJ0bmzk56eXqJjV3TsTElkvHh9EhGRqZC8GPn666+1vz9+/DiOHz+us/7SpUu4dOmSzrKSFCOJiYlQq9VwcXHRWe7i4oJr166VKNsnn3yCGjVqIDAwsMhtQkNDMWvWrBIdj4iIiMjOtorOr0RUNMmLEY1GI/Up9PL5559j06ZNOHToECwtLYvcbvLkyQgODta+j4qKQkBAQHlEJCIiogro43c/kzsCUYVRrjOwG5KjoyOUSiXi4+N1lsfHx8PV1bXYfRcuXIjPP/8cf/75J5o2bVrstiqVCiqVSvve1tZW/9BERERERKRVbsXI7du3sWfPHty5cwfA01G2XnnlFXh5eel1PAsLC/j6+iI8PBx9+vQBAG1n9HHjxhW534IFCzB37lzs3buXnT+JiMgoPPsS7XlfphERmZpyKUY++OADLF26tMAjWwqFAhMnTsTChQv1Om5wcDCGDh2Kli1bws/PD0uWLEFGRgaGDRsGABgyZAjc3d0RGhoKAJg/fz5mzJiBjRs3wtPTE3FxcQCe3u3gHQ8iIpLL2bNn5Y5ARCQLyYuRL7/8EosXL0b//v3xwQcfoFGjRgCAq1evYvHixVi8eDHc3d0xadKkUh97wIABePToEWbMmIG4uDg0a9YMYWFh2k7tsbGxUCj+N3rxN998g9zcXPTv31/nOCEhIXoPL0xERKYnw8YGGTk5WD90qNxRJGUjdwAiqvQkL0ZWr16NV199Fb/88ovO8latWmHTpk3Izs7Gt99+q1cxAgDjxo0r8rGsQ4cO6byPiYnR6xxERERERGR4kk96GBMTg6CgoCLXBwUFsUggIqJKbdauXQj+7TfM2rVL7ihEROVK8jsjzs7OuHDhQpHrL1y4ACcnJ6ljUCmxMyWR8eL1aXpSsrKQlJkpdwwionIneTHy+uuvY+nSpfD09MT7778PG5unT6hmZGTg66+/xnfffYeJEydKHYNKiZ0piYwXr08iIjIVkhcjs2fPRlRUFKZMmYIZM2agRo0aAIAHDx4gPz8fnTp1wmefcXKg57EWM5GZnIneE+fJHUVagrXcCYhKTZWjQnpOOl6b/prcUaSlev4mREREpSF5MWJtbY3w8HBs27ZNZ56Rbt26oXv37ujVqxcEQZA6BhERERERGRlJi5HMzEwMHjwY/fr1w5tvvonevXtLeToyoMM/L0dOZjpU1rYIGPie3HGI6F8OrTmE7PRsWNpaouM7HeWOQ0REpDdJR9OytrbGn3/+iUx2yqtwcjLTkZ2eipzMdLmjENF/ZKdnIzstG9np2XJHISIiKhPJh/Zt164dIiIipD4NERERERFVMJIXI19//TWOHj2KadOm4d69e1KfjoiIiIiIKgjJixEfHx/cu3cPoaGhqF27NlQqFezt7XVeVapUkToGEREREREZGclH0+rXrx9HyyIiIiIiogIkL0bWr18v9SmIiIgqtCpWVjq/EhFVFpIVI9nZ2di2bRtu374NR0dH9OjRA25ublKdjoiIqMIK6dFD7ghERLKQpBhJSEhAmzZtcPv2bYiiCODpML9bt25FYGCgFKckIiIiIqIKRpIO7LNnz0ZMTAwmTZqEnTt3YsmSJbCyssLo0aOlOB0REREREVVAktwZ2bdvH4YMGYKFCxdql7m4uGDQoEGIjo5GgwYNpDgtGZDK2lbnVyIyHpa2ljq/EhERVVSSFCOxsbH45JNPdJa1a9cOoigiPj6exUgFEDDwPbkjEFEROr7TUe4IREREBiHJY1o5OTmwtNT9xu7Z+/z8fClOSUREREREFYxko2nFxMQgMjJS+z4lJQUAcP36dTg4OBTYvkWLFlJFISIiIiIiIyRZMTJ9+nRMnz69wPKxY8fqvBdFEYIgQK1WSxWFiIiIiIiMkCTFyLp166Q4LBERERERmRBJipGhQ4dKcVgiIiIiIjIhknRgJyIiIiIieh4WI0REREREJAsWI0REREREJAsWI0REREREJAsWI0REREREJIsKX4wsX74cnp6esLS0RKtWrXD69Olit//111/RsGFDWFpaokmTJti9e3c5JSUiIiIion+r0MXI5s2bERwcjJCQEERGRsLHxwdBQUFISEgodPsTJ05g4MCBeOedd3D+/Hn06dMHffr0weXLl8s5ORERERERVehiZNGiRRg5ciSGDRsGb29vrFy5EtbW1li7dm2h2y9duhTdunXDRx99hEaNGmH27Nlo0aIFvv7663JOTkREREREFbYYyc3Nxblz5xAYGKhdplAoEBgYiIiIiEL3iYiI0NkeAIKCgorcnoiIiIiIpCPJDOzlITExEWq1Gi4uLjrLXVxccO3atUL3iYuLK3T7uLi4Is+Tk5ODnJwc7fv09PQypK5YsjNSkZ2RVr7nFCyhyLRGZGRkuZ63PF27+xhJWepyP281OytUs7Mq9/OSNLLTspGdnl2u58y1yAWsYdLXJwDcSExEcm6u3DHKhVVWFlQajUm36Z17N5GVW0n+784zh1WqyqTb8158AlLTM8v9vLbWVrC1ti7381YGFbYYKS+hoaGYNWuWzrKAgAC4ubmVW4afZ44ot3M9k5OTg6CgIBw5fLjczw0A+1bNkeW8piwgIAB7926CSqWSO4pJ+WHCD+V+zmfX52GZrs89X+6R5bwkoS1b5E5ABjRrmdwJTM/T/0P38v9QCVTYYsTR0RFKpRLx8fE6y+Pj4+Hq6lroPq6urqXaHgAmT56M4OBgnWUqlcrk/zLm5OTg8OHDOHz4MGxtbeWOQ2WUnp6OgIAA5OTkmPzf3cqA16fpeXaNsk1NA9vTtPD/UGlV2GLEwsICvr6+CA8PR58+fQAAGo0G4eHhGDduXKH7+Pv7Izw8HBMnTtQu279/P/z9/Ys8T2UoPIrTrFkz2Nvbyx2Dyig1NVXuCCQBXp+m49k1yjY1DWxP08L/Q6VVYYsRAAgODsbQoUPRsmVL+Pn5YcmSJcjIyMCwYcMAAEOGDIG7uztCQ0MBABMmTEBAQAC+/PJL9OjRA5s2bcLZs2exatUqOT8GEREREVGlVKGLkQEDBuDRo0eYMWMG4uLi0KxZM4SFhWk7qcfGxkKh+N+AYW3atMHGjRsxbdo0TJkyBS+88AK2bt2Kxo0by/URiIiIiIgqrQpdjADAuHHjinws69ChQwWWvf7663j99dclTlXxqVQqhISEVOpH1EwJ29O0sD1ND9vUtLA9TQvbU1qCKIqi3CGIiIiIiKjyqbCTHhIRERERUcXGYoSIiIiIiGTBYoSIiIiIiGTBYoQkFxMTA0EQsH79ermjEFEheI0SEZFcWIwYmZs3b2L06NGoU6cOLC0tYW9vj7Zt22Lp0qXIysqS7LxXrlzBzJkzERMTI9k5SmLu3Ll49dVX4eLiAkEQMHPmTFnzlCdBEEr0KmyUuNLKzMzEzJkzS3Wsytw2/1aZr9Fr167h448/RrNmzWBnZwc3Nzf06NEDZ8+elS1TeTHm67Myt0tZGHObPnjwAIMHD0aDBg1gZ2cHBwcH+Pn5YcOGDeC4Q4Uz5vb8r59++gmCIMDW1rbMWUxBhR/a15Ts2rULr7/+OlQqFYYMGYLGjRsjNzcXx44dw0cffYS//vpLsgkar1y5glmzZqFjx47w9PSU5BwlMW3aNLi6uqJ58+bYu3evbDnk8MMPP+i8//7777F///4Cyxs1alTmc2VmZmLWrFkAgI4dO5Zon8rcNs9U9mv0u+++w5o1a9CvXz+MHTsWKSkp+Pbbb9G6dWuEhYUhMDBQllzlwZivz8rcLmVhzG2amJiIe/fuoX///qhVqxby8vKwf/9+vP3224iOjsa8efPKnMnUGHN7/lt6ejo+/vhj2NjYlDmHyRDJKNy6dUu0tbUVGzZsKD548KDA+uvXr4tLliyR7Py//vqrCEA8ePDgc7fVaDRiZmZmiY99+/ZtEYC4bt26Em0riqL46NEjEYAYEhJS4vOYmvfee0+U6hLV58+3srcNr1FRPHv2rJiWlqazLDExUXRychLbtm1b4vOZAmO6PtkuhmFMbVqUnj17ijY2NmJ+fr5hgpkwY23PTz75RGzQoIH45ptvijY2NoYPVwHxMS0jsWDBAqSnp2PNmjVwc3MrsL5evXqYMGGC9n1+fj5mz56NunXrQqVSwdPTE1OmTEFOTo7Ofp6enujZsyeOHTsGPz8/WFpaok6dOvj++++126xfv147EWSnTp0K3Mp8doy9e/eiZcuWsLKywrfffgsAuHXrFl5//XVUq1YN1tbWaN26NXbt2qX3n4Ocd2UqAo1GgyVLluDFF1+EpaUlXFxcMHr0aCQlJelsd/bsWQQFBcHR0RFWVlbw8vLC8OHDATztH+Dk5AQAmDVrlra9n/fYVWVvG16jgK+vb4HHCqpXr4727dvj6tWreh3TlMh1fbJdpCPnv7mF8fT0RGZmJnJzc8v82Sojudvz+vXrWLx4MRYtWgQzMz6c9Az/JIzEjh07UKdOHbRp06ZE248YMQIbNmxA//798cEHH+DUqVMIDQ3F1atXsWXLFp1tb9y4gf79++Odd97B0KFDsXbtWrz99tvw9fXFiy++iA4dOmD8+PFYtmwZpkyZor2F+e9bmdHR0Rg4cCBGjx6NkSNHokGDBoiPj0ebNm2QmZmJ8ePHo3r16tiwYQNeffVV/Pbbb3jttdcM9wdEAIDRo0dj/fr1GDZsGMaPH4/bt2/j66+/xvnz53H8+HGYm5sjISEBXbt2hZOTEz799FM4ODggJiYGf/zxBwDAyckJ33zzDcaMGYPXXnsNffv2BQA0bdpUzo9m9HiNFi0uLg6Ojo4GOVZFZmzXJ9ul7ORu06ysLGRkZCA9PR2HDx/GunXr4O/vDysrK0k/t6mSuz0nTpyITp06oXv37vjll18k/awVity3ZkgUU1JSRABi7969S7R9VFSUCEAcMWKEzvIPP/xQBCAeOHBAu6x27doiAPHIkSPaZQkJCaJKpRI/+OAD7bLiHgF5doywsDCd5RMnThQBiEePHtUuS0tLE728vERPT09RrVaLoli6x7SeqayPAv3bf28xHz16VAQg/vTTTzrbhYWF6SzfsmWLCEA8c+ZMkccuy59vZWwbXqNFO3LkiCgIgjh9+vRS71uRGev1+UxlbZeyMMY2DQ0NFQFoXy+//LIYGxtbqmNUVsbWnjt37hTNzMzEv/76SxRFURw6dCgf0/oHH9MyAqmpqQAAOzu7Em2/e/duAEBwcLDO8g8++AAACjyC4e3tjfbt22vfOzk5oUGDBrh161aJM3p5eSEoKKhADj8/P7Rr1067zNbWFqNGjUJMTAyuXLlS4uPT8/3666+oUqUKunTpgsTERO3r2SMaBw8eBAA4ODgAAHbu3Im8vDwZE5sOXqOFS0hIwKBBg+Dl5YWPP/64TMeq6Izp+mS7GIYxtOnAgQOxf/9+bNy4EYMGDQIASUftM2Vytmdubi4mTZqEd999F97e3gY5pilhMWIE7O3tAQBpaWkl2v7OnTtQKBSoV6+eznJXV1c4ODjgzp07Ostr1apV4BhVq1Yt8Ixkcby8vArN0aBBgwLLnz068t8cVDbXr19HSkoKnJ2d4eTkpPNKT09HQkICACAgIAD9+vXDrFmz4OjoiN69e2PdunUF+ipQyfEaLSgjIwM9e/ZEWloatm3bVumHqDSW65PtYjjG0Ka1a9dGYGAgBg4ciJ9++gl16tRBYGAgCxI9yNmeixcvRmJionYELtLFPiNGwN7eHjVq1MDly5dLtZ8gCCXaTqlUFrpcLMVY5Xw+VX4ajQbOzs746aefCl3/rEOdIAj47bffcPLkSezYsQN79+7F8OHD8eWXX+LkyZP84UQPvEZ15ebmom/fvrh48SL27t2Lxo0bl9u5jZUxXJ9sF8Myhjb9r/79+2P16tU4cuRIgTuhVDy52jMlJQVz5szB2LFjkZqaqr3Tnp6eDlEUERMTA2trazg7O5ftA1ZgLEaMRM+ePbFq1SpERETA39+/2G1r164NjUaD69ev63RgjY+PR3JyMmrXrl3q85f0h6b/5oiOji6w/Nq1a9r1ZDh169bFn3/+ibZt25boB8/WrVujdevWmDt3LjZu3Ig333wTmzZtwogRI/Rq78qO1+hTGo0GQ4YMQXh4OH755RcEBASU+himSO7rk+1ieHK3aWGe3RFJSUkxyPEqE7naMykpCenp6ViwYAEWLFhQYL2Xlxd69+6NrVu3lubjmBQ+pmUknk2AM2LECMTHxxdYf/PmTSxduhQA0L17dwDAkiVLdLZZtGgRAKBHjx6lPv+zyXeSk5NLvE/37t1x+vRpREREaJdlZGRg1apV8PT05HORBvZ///d/UKvVmD17doF1+fn52rZLSkoq8I16s2bNAEB7m9na2hpA6dq7suM1+tT777+PzZs3Y8WKFdpRZEj+65PtYnhytumjR48KXb5mzRoIgoAWLVqU6Dj0P3K1p7OzM7Zs2VLg1alTJ1haWmLLli2YPHmy/h/MBPDOiJGoW7cuNm7ciAEDBqBRo0Y6szufOHECv/76K95++20AgI+PD4YOHYpVq1YhOTkZAQEBOH36NDZs2IA+ffqgU6dOpT5/s2bNoFQqMX/+fKSkpEClUqFz587F3jb89NNP8fPPP+OVV17B+PHjUa1aNWzYsAG3b9/G77//DoWi9LXuDz/8gDt37iAzMxMAcOTIEcyZMwcA8NZbb1Xquy0BAQEYPXo0QkNDERUVha5du8Lc3BzXr1/Hr7/+iqVLl6J///7YsGEDVqxYgddeew1169ZFWloaVq9eDXt7e+0PyVZWVvD29sbmzZtRv359VKtWDY0bNy72sY7K3ja8Rp8WVytWrIC/vz+sra3x448/6qx/7bXXKu2swnJen2wXacjZpnPnzsXx48fRrVs31KpVC0+ePMHvv/+OM2fO4P333y/QH42eT672tLa2Rp8+fQos37p1K06fPl3oukpHxpG8qBB///23OHLkSNHT01O0sLAQ7ezsxLZt24pfffWVmJ2drd0uLy9PnDVrlujl5SWam5uLHh4e4uTJk3W2EcWnQ3726NGjwHkCAgLEgIAAnWWrV68W69SpIyqVSp0hRIs6hiiK4s2bN8X+/fuLDg4OoqWlpejn5yfu3LlTZ5vSDBsaEBCgM4zhv18lmXnalBQ1e+yqVatEX19f0crKSrSzsxObNGkifvzxx9pZwSMjI8WBAweKtWrVElUqlejs7Cz27NlTPHv2rM5xTpw4Ifr6+ooWFhYlGqKQbfNUZb5Ghw4dWuTfAQDi7du3i93flBjT9cl2MQxjatN9+/aJPXv2FGvUqCGam5tr/51Zt26dqNFoDPq5TZUxtWdhOLTv/wiiWIoekkRERERERAbCPiNERERERCQLFiNERERERCQLFiNERERERCQLFiNERERERCQLFiNERERERCQLFiMVzIIFC9CwYUNoNBq5o5TZG2+8gf/7v/+TO4as2J6mh21qWtiepoXtaVrYniZC7rGFqeRSUlLEatWqiWvXrtUuwz/jyC9cuLDA9uvWrRMBiGfOnDF4lsDAQBGA+N577xW6/rvvvhMbNmwoqlQqsV69euKyZcsKbBMZGSkqFAoxKirK4PkqAran6WGbmha2p2lhe5oWtqfp4J2RCmTt2rXIz8/HwIEDC6z74osvtDNjS+2PP/5AREREkeu//fZbjBgxAi+++CK++uor+Pv7Y/z48Zg/f77Ods2bN0fLli3x5ZdfSh3ZKLE9TQ/b1LSwPU0L29O0sD1NiNzVEJVc06ZNxcGDB+ssAyA2a9ZMBCB++eWXOuuk+BYgKytL9PT0FD/77LNCvwXIzMwUq1evXmA26DfffFO0sbERnzx5orN84cKFoo2NjZiWlmawjBUF29P0sE1NC9vTtLA9TQvb03TwzkgFcfv2bVy8eBGBgYEF1rVt2xadO3fGggULkJWVJWmOBQsWQKPR4MMPPyx0/cGDB/H48WOMHTtWZ/l7772HjIwM7Nq1S2d5ly5dkJGRgf3790uW2RixPU0P29S0sD1NC9vTtLA9TQuLkQrixIkTAIAWLVoUun7mzJmIj4/HN998U+xxcnJykJiYWKLXf8XGxuLzzz/H/PnzYWVlVejxz58/DwBo2bKlznJfX18oFArt+me8vb1hZWWF48ePF5vb1LA9TQ/b1LSwPU0L29O0sD1Ni5ncAahkrl27BgDw8vIqdH379u3RqVMnfPHFFxgzZkyRF8bPP/+MYcOGleicoijqvP/ggw/QvHlzvPHGG0Xu8/DhQyiVSjg7O+sst7CwQPXq1fHgwQOd5WZmZvDw8MCVK1dKlMlUsD1ND9vUtLA9TQvb07SwPU0Li5EK4vHjxzAzM4OtrW2R28ycORMBAQFYuXIlJk2aVOg2QUFBet3+O3jwIH7//XecOnWq2O2ysrJgYWFR6DpLS8tCb5lWrVq10G8dTBnb0/SwTU0L29O0sD1NC9vTtLAYMSEdOnRAp06dsGDBArz77ruFbuPm5gY3N7dSHTc/Px/jx4/HW2+9hZdeeqnYba2srJCbm1vouuzs7EK/nRBFEYIglCpTZcD2ND1sU9PC9jQtbE/TwvasOFiMVBDVq1dHfn4+0tLSYGdnV+R2ISEh6NixI7799ls4ODgUWJ+VlYWUlJQSndPV1RUA8P333yM6OhrffvstYmJidLZJS0tDTEwMnJ2dYW1tDTc3N6jVaiQkJOjclszNzcXjx49Ro0aNAudJSkrCCy+8UKJMpoLtaXrYpqaF7Wla2J6mhe1pWtiBvYJo2LAhgKcjSBQnICAAHTt2xPz58wu9/bd582btNwHPez0TGxuLvLw8tG3bFl5eXtoX8PSi9PLywr59+wAAzZo1AwCcPXtW57xnz56FRqPRrn8mPz8fd+/eRaNGjUr151HRsT1ND9vUtLA9TQvb07SwPU0L74xUEP7+/gCe/gVu2rRpsdvOnDkTHTt2xKpVqwqs0+f5yDfeeKPABQMAr732Grp3746RI0eiVatWAIDOnTujWrVq+Oabb9C9e3fttt988w2sra3Ro0cPnWNcuXIF2dnZaNOmTakyVXRsT9PDNjUtbE/TwvY0LWxPEyPP9Cakj8aNG4sDBw7UWYZCJtkRRVEMCAgQARh8gp+SnHv58uUiALF///7i6tWrxSFDhogAxLlz5xbYduHChaK1tbWYmpoqSUZjxvY0PWxT08L2NC1sT9PC9jQdLEYqkEWLFom2trZiZmamdllRf/kPHjwo24UniqK4atUqsUGDBqKFhYVYt25dcfHixaJGoymwXatWrQrMoFpZsD1ND9vUtLA9TQvb07SwPU0Hi5EKJDk5WaxWrZr43XffyR3FIM6fPy8KgiCeP39e7iiyYHuaHrapaWF7mha2p2lhe5oOQRT/M4sLGbX58+dj3bp1uHLlChSKij3+wBtvvAGNRoNffvlF7iiyYXuaHrapaWF7mha2p2lhe5oGFiNERERERCSLil1GEhERERFRhcVihIiIiIiIZMFihIiIiIiIZMFihIiIiIiIZMFihIiIiIiIZMFihIiIiIiIZMFihIiIiIiIZMFihIiIiIiIZMFihIiIiIiIZMFihIiIiIiIZMFihIiIiIiIZMFihIiIiIiIZMFihIiIiIiIZMFipJQePnyImTNn4uHDh3JHISIiIiKq0FiMlNLDhw8xa9YsFiNERERERGXEYoSIiIiIiGTBYoSIiIiIiGTBYoSIiIiIiGTBYoSIiIiIiGTBYoSIiIiIiGTBYoSIiIiIiGTBYoSIiIiIiGTBYoSossh8IncCIiIiIh0sRogqi4xHcicgIiIi0sFihKiyyEmTOwERERGRDhYjRJVFTiqgUcudgoiIiEirzMXIw4cPceHCBWRkZBgiT6ktX74cnp6esLS0RKtWrXD69Olit1+yZAkaNGgAKysreHh4YNKkScjOzi6ntEQyEkX2GyEiIiKjoncxsm3bNjRs2BA1a9ZEixYtcOrUKQBAYmIimjdvjq1btxoqY5E2b96M4OBghISEIDIyEj4+PggKCkJCQkKh22/cuBGffvopQkJCcPXqVaxZswabN2/GlClTJM9KZBTSHsqdgIiIiEhLr2Jkx44d6Nu3LxwdHRESEgJRFLXrHB0d4e7ujnXr1hksZFEWLVqEkSNHYtiwYfD29sbKlSthbW2NtWvXFrr9iRMn0LZtWwwaNAienp7o2rUrBg4c+Ny7KUQmI/W+3AmIiIiItPQqRj777DN06NABx44dw3vvvVdgvb+/P86fP1/mcMXJzc3FuXPnEBgYqF2mUCgQGBiIiIiIQvdp06YNzp07py0+bt26hd27d6N79+5FnicnJwepqanaV3p6umE/CFF5So6VOwERERGRlpk+O12+fBmLFi0qcr2Li0uRj0oZSmJiItRqNVxcXAqc+9q1a4XuM2jQICQmJqJdu3YQRRH5+fl49913i31MKzQ0FLNmzTJodiLZJMXInYCIiIhIS687I9bW1sV2WL916xaqV6+udyipHDp0CPPmzcOKFSsQGRmJP/74A7t27cLs2bOL3Gfy5MlISUnRvg4fPlyOiYkM7PENuRMQERERaelVjHTq1AkbNmxAfn5+gXVxcXFYvXo1unbtWuZwxXF0dIRSqUR8fLzO8vj4eLi6uha6z/Tp0/HWW29hxIgRaNKkCV577TXMmzcPoaGh0Gg0he6jUqlgb2+vfdna2hr8sxCVm/QEICNR7hREREREAPQsRubOnYt79+7hpZdewrfffgtBELB3715MmzYNTZo0gSiKCAkJMXRWHRYWFvD19UV4eLh2mUajQXh4OPz9/QvdJzMzEwqF7kdWKpUAoNMJn8ik3eWADURERGQc9CpGGjRogGPHjqF69eqYPn06RFHEF198gXnz5qFJkyY4evQoPD09DRy1oODgYKxevRobNmzA1atXMWbMGGRkZGDYsGEAgCFDhmDy5Mna7Xv16oVvvvkGmzZtwu3bt7F//35Mnz4dvXr10hYlRCbv7z1yJyAiIiICoGcHdgB48cUX8eeffyIpKQk3btyARqNBnTp14OTkZMh8xRowYAAePXqEGTNmIC4uDs2aNUNYWJi2U3tsbKzOnZBp06ZBEARMmzYN9+/fh5OTE3r16oW5c+eWW2Yi2T28CDyIAmo0kzsJERERVXKCyOeTSiUyMhK+vr44d+4cWrRoIXccopK7EQ6Ef/b091U9gb6rATMLWSMRERFR5abXY1rLli1DUFBQketfeeUVfPPNN3qHIiKJJcUAkRvkTkFERESVnF7FyJo1a+Dt7V3kem9vb6xatUrvUERUDqJ+evrIFhEREZFM9CpGbt68iUaNGhW5vmHDhrh586beoYioHIgicCgUyMuSOwkRERFVUnoVIxYWFoiLiyty/cOHDwsMoUtERij1AXDqW7lTEBERUSWlV8XQunVrrF+/HmlpaQXWpaSkYN26dWjdunWZwxFROfhrCxB7Su4UREREVAnpNbRvSEgIAgIC0KxZM0ycOBEvvvgiAODy5ctYsmQJHj58iI0bNxo0KBHpr2XLloi7dweuqmycnVLIKHAHZgN9VwH2Nco/HBEREVVaehUjrVq1wo4dOzB69GhMmDABgiAAeDqLuZeXF7Zv317kLOhEVP7i4uJwPz4RcChiKN+cNGD3R8CrXwHW1co3HBEREVVaek962KVLF9y4cQPnz5/XdlavW7cuWrRooS1OiKgCSbkH7JwE9PgSsHGUOw0RERFVAnoXIwCgUCjg6+sLX19fQ+UhIjklxQDb3gNeWQBUrS13GiIiIjJxZSpGrly5glu3biEpKQmFTeQ+ZMiQshyeiOSQFve0IOk6B6jRTO40REREZML0KkZu3ryJwYMH4/Tp04UWIQAgCAKLEaKKKicN2P0h0GkKULez3GmIiIjIROlVjIwePRqXLl3CkiVL0L59e1StWtXQuYhIbuo8IPwzICsJaNxP7jRERERkgvQqRo4fP44pU6bg/fffN3QeIjImoggcXwZkJAIvjQQ4mSkREREZkF4/WTg6OqJKlSqGzkJExipqI3DgMyA/R+4kREREZEL0Kkbeffdd/Pjjj1Cr1YbOQ0TG6uZBYPv7QPojuZMQERGRidDrMa369etDrVbDx8cHw4cPh4eHB5RKZYHt+vbtW+aARGREHkUDf4wEAmdypC0iIiIqM72KkQEDBmh//+GHHxa6jSAIvHNCZIqykp5OjthqNNB0AMBJTomIiEhPehUjBw8eNHQOIqpIRA1w8pund0o6fgqYqeRORERERBWQXsVIQECAoXMQUUV08wCQmQh0+xywsJE7DREREVUwZRqnMycnBxEREdi2bRsSExMNlYmIKpKHF4F90wB1vtxJiIiIqILRuxhZtmwZ3Nzc0K5dO/Tt2xcXL14EACQmJsLR0RFr1641WEgiMnL3I4FT38idgoiIiCoYvYqRdevWYeLEiejWrRvWrFkDURS16xwdHdG5c2ds2rTJYCGJqAK49BsQc1zuFERERFSB6FWMfPnll+jduzc2btyIXr16FVjv6+uLv/76q8zhSmL58uXw9PSEpaUlWrVqhdOnTxe7fXJyMt577z24ublBpVKhfv362L17d7lkJTJ5hz8HMh7LnYKIiIgqCL2KkRs3buCVV14pcn21atXw+LH0P5Bs3rwZwcHBCAkJQWRkJHx8fBAUFISEhIRCt8/NzUWXLl0QExOD3377DdHR0Vi9ejXc3d0lz0pUKWSnAofnA/+6W0pERERUFL2KEQcHh2I7rF+5cgWurq56hyqpRYsWYeTIkRg2bBi8vb2xcuVKWFtbF9lfZe3atXjy5Am2bt2Ktm3bwtPTEwEBAfDx8ZE8K5FcYmNjkZGRAQDIyFEj9km2tCe8ewq4slXacxAREZFJ0Gto3+7du2PVqlUYO3ZsgXV//fUXVq9ejeHDh5c5XHFyc3Nx7tw5TJ48WbtMoVAgMDAQERERhe6zfft2+Pv747333sO2bdvg5OSEQYMG4ZNPPil0Bnng6YhhOTk52vfp6emG/SBEEjl9+jRmz56NXbt2aft1JWep4Tn1NHo2qYbp3WvjJU87aU5+ciVQ0w+oYpi7jnlZabgVthJPrp8CBAUcG7ZBnaDRUFpYFbnPxe8/RWrsJZ1lri1eQb3u4wAA8Rf24/qOJYXu6zfpJ1jYOBgkOxERERVNr2Jkzpw5aNWqFRo3boxevXpBEARs2LABa9euxe+//w43NzfMmDHD0Fl1JCYmQq1Ww8XFRWe5i4sLrl27Vug+t27dwoEDB/Dmm29i9+7duHHjBsaOHYu8vDyEhIQUuk9oaChmzZpl8PxEUvrjjz8wYMAAiKKoM8AE8PQJqt2Xn2DP5SRsHtkIfZs7Gj5AfjZwcgUQNLfEu1z8/lO4+LwMF58uBdb9vfUL5KY/QeM350CjVuP6jiW4sesrNHjt42KP6dI8CLUDBmvfK8wttb939O6AqnV9dc+zfTE0+XksRIiIiMqJXo9p1ahRA+fOnUO3bt2wefNmiKKIH374ATt27MDAgQNx8uRJODpK8ANOGWk0Gjg7O2PVqlXw9fXFgAEDMHXqVKxcubLIfSZPnoyUlBTt6/Dhw+WYmKj0Tp8+jQEDBkCtVkOtVhe6jVoDqDUiBqy+ijMxadIEiTkGpD4s82EyE2ORdPMc6vWYADv3hqhS60XU7TYaj/46gpy04vumKc0tYWFbTfsyU1n/a51KZ50gKJEScxGuzbqWOTMRERGVTKnvjOTk5GDv3r3w9PTEd999h++++w6PHj2CRqOBk5MTFIoyzaNYYo6OjlAqlYiPj9dZHh8fX2R/FTc3N5ibm+s8ktWoUSPExcUhNzcXFhYWBfZRqVRQqVTa97a2tgb6BETSmDNnTqF3RP5LBCBCxJzdd7BtbGNpwtw/B9j3LNMhUu9dg9LSBnY1XtAuc/BqDggC0u5HQ9WwTZH7Jlw+iIRLB2FhWxXVXvCDR/s3oPzX3ZF/i78UDoW5CtUbtS1TXiIiIiq5UlcOFhYWeP3113HixAntMicnJ7i4uJRbIfIsh6+vL8LDw7XLNBoNwsPD4e/vX+g+bdu2xY0bN6DRaLTL/v77b7i5uRVaiBBVNLGxsdi5c2eRd0T+S60Bdlx6Il2n9ie3ynyIvPQkWFg76CwTFEqYW9khLyOpyP2cGwegQe8P0eStUNRs8zoSLh3A31sXFrl9fNQ+ODUOgNJcVeQ2REREZFilvjMiCAJeeOGFYkfTKi/BwcEYOnQoWrZsCT8/PyxZsgQZGRkYNmwYAGDIkCFwd3dHaGgoAGDMmDH4+uuvMWHCBLz//vu4fv065s2bh/Hjx8v5MagS0uTnQqPON/hx94Xtfu4dkf8SRSD8WhLe9nd5/sallR4PoYhVd49txt3jv2jfa/JzkXb/Gm6G/e+xyRbv6j+ru2uL/w0/buPsCQvbarj80xRkPXkIq2puOtum3ruKrMS7aND7A73PR0RERKWnVwf2KVOmIDg4GK+//joaNGhg6EwlNmDAADx69AgzZsxAXFwcmjVrhrCwMG2n9tjYWJ27NR4eHti7dy8mTZqEpk2bwt3dHRMmTMAnn3wi10egSkiTn4vkmAvIz840+LHjb1+BQiFAoyl5QaIQgOS0LOTnGD6P+sk9WOTnQmFW8M6jq293OHq3176P3voFHBu2RfV/PXalsqsOc9uqyM1M1tlX1KiRl5UGc5uqJc5i5/7036rspAcFipH483th41IHtm4vFLYrERERSUSvYuTkyZOoXr06GjdujI4dO8LT0xNWVrpDbAqCgKVLlxokZHHGjRuHcePGFbru0KFDBZb5+/vj5MmTEqciKppGnY/87EwolGYQCvkhvSzsqziUqhABAI0I2FuZQRAM+5ilKGqgFgVo1PmFFiPmVnYwt/rf0MIKMxXMbarAqloNne3sazaEOjsD6Q+va4uF5NsXAFHUFhglkRH/9JExC9tqOsvVuVlIvHoMtTsNLfGxiIiIyDD0Kka+/vpr7e//3Wfj38qrGCGqqAQzC4P3T+jYvi0EQSjVo1qCAHSqb//0NwYkQAFRZV/m41g71kLVur64vusr1HvlPYgaNW7u/QZOL3aAyq46ACAnNRGXf5qK+q8Gw869AbKePMSjvw6hWr2WMLOyR0bCbdzetxr2tRrDxsVL5/iP/joCUaOGc5NOZc5KREREpaNXMfLvDuBEZDw83N0Q1LkD9h86VqJO7EoF0N3bAbWqSdNpO9/WMJMe1u/zEW6FfYPLP00FBAHVG7ZF3aDR2vWiRo2sx/egzns6QalCaYbk21F4cHob1LnZUNk7oXqjtvBo90aBY8df2IfqDdrAzJIj5REREZU3QSxtb9dKLjIyEr6+vjh37hxatGghdxyqgPJzMvHk+hkoVdaSjNwUeeEygvoPgVqtKfYOiQBAqRBwZFJDvFTb8D+Ii4ICyW2mo+qLnXTm9yAiIiJ6pkwPiZ88eRKhoaGYNGkSrl+/DgDIzMxEZGQk0tPTDRKQiEqnhU9jrP1qAZRKhc6cOv+mVDwtRH4eVleSQgQAcj1fhmjBuw1ERERUNL2KkdzcXPTt2xdt27bF1KlTsWzZMty9e/fpARUKdO3alf1FiGTUq1sg9v72Pbp0bAfhP31BBOHpo1lHJjVEH5+Sj0ZVGpoqtZFdr4ckxyYiIiLToVcxMn36dOzcuRPffPMNoqOjdR4FsbS0xOuvv45t27YZLCQRlV4Ln8b4+btluHB0Dxzsn45a5WClxI2Qpvhj1AuS3RERrZ2Q5fc+oDSX5PhERERkOvQqRn7++WeMGTMGo0aNQrVq1Qqsb9SoEW7dKvvMy0RUdh7ubrC2fjr0to2FQrLO6gCgqVILmW0/hWjpINk5iIiIyHToNZpWQkICmjRpUuR6pVKJzEzDT6BGRMYrz6MtchoPAsykK3aIiIjItOhVjHh4eODatWtFrj9+/Djq1aundygiqkCUFshuMhj5Hm2evy0RERHRv+j1mNagQYPw7bffIiIiQrvsWSfZ1atX45dffsGQIUMMk5CIjJbGxhmZ7aayECEiIiK96HVnZOrUqTh58iQ6dOiARo0aQRAETJo0CU+ePMG9e/fQvXt3TJo0ydBZiciIaBy8kOU3HqLKTu4oREREVEHpdWfEwsICYWFhWLduHerUqYOGDRsiJycHTZs2xfr167Fjx44i5zcgoopP4+CFzNbBLESIiIioTEp0ZyQ4OBhvvfUWmjdvDgCIjY2Fk5MTBg8ejMGDB0sakIiMi8bGGVl+4wFzK7mjEBERUQVXojsjS5YswdWrV7Xvvby8sGXLFslCEZFxEs1tkOU3gXdEiIiIyCBKVIy4uLjozBvy70kOiaiSMLNEVquJEG1d5E5CRGT01GqN3BHIgDRqtdwRTFaJHtPq0aMHPvvsM+zbtw8ODg4AgC+//BKbNm0qch9BEDgLO5GJEFX2yGo1EZoqteSOQkRUIeRlq6G00atrLhmhvJwcqKyt5Y5hkkpUjCxduhTOzs44ePAg/vrrLwiCgLt37+LJkydF7vNsqF8iqtg0Dl7IajkWolVVuaMQEVUYfIrEtIga3umSSomKERsbG8ybN0/7XqFQYMmSJRg0aJBkwYhIfnkebZHTZDCgNJc7ChFRhaJRsxgxJaLIYkQqJbp/2LdvXxw9elT7/uDBg+jSpYtkoYhIZoICOY0HIsfnbRYiRET6YC1iUthnRDolKka2bduG2NhY7fvOnTtj//79koUiIhkpLZD10jjkeb0M8HFLIiK98Ckt08JiRDolKkbc3d1x/vx57XtRFNknhMgUmVkis3Uw1C5N5U5CRERkNNT5+XJHMFkl6jPyxhtvYOHChfjll1+0o2l9+umnCA0NLXIfQRBw4cIFg4QkonKgVCGz1URoqtWTOwkRUYXH72xNS35OttwRTFaJ7oyEhoZi5cqVaNu2LZycnCAIAmxsbFC9evUiX9WqVZM6OwBg+fLl8PT0hKWlJVq1aoXTp0+XaL9NmzZBEAT06dNH2oBEFYGgQJbvaBYiREREhcjNzpI7gskq0Z0RpVKJUaNGYdSoUQCejqY1bdo02UfT2rx5M4KDg7Fy5Uq0atUKS5YsQVBQEKKjo+Hs7FzkfjExMfjwww/Rvn37ckxLZLxyGvXlo1lERIbEOyMmJTcrCxq1GgqlUu4oJkev2Xhu375tFHcUFi1ahJEjR2LYsGHw9vbGypUrYW1tjbVr1xa5j1qtxptvvolZs2ahTp065ZiWyDjluzZDXp0guWMQEZkWdmA3LaKIrLRUuVOYJL2Kkdq1a8Na5lkoc3Nzce7cOQQGBmqXKRQKBAYGIiIiosj9PvvsMzg7O+Odd94pj5hERk1U2SOn6VA+3ExEZGAaDasRU5OeVPRk36S/Ej2mpVAooFAokJmZCQsLCygUiueOpiUIAvIlHHkgMTERarUaLi4uOstdXFxw7dq1Qvc5duwY1qxZg6ioqBKfJycnBzk5Odr36enpeuUlMkY53gMgquzkjkFEZHLU+Zwkz9SkP0mEi1dduWOYnBIVIzNmzIAgCDAzM9N5X5GkpaXhrbfewurVq+Ho6Fji/UJDQzFr1iwJkxHJQ121LvLd/eSOQURkkvJzWYyYmrTERLkjmKQSFSMzZ84s9r0cHB0doVQqER8fr7M8Pj4erq6uBba/efMmYmJi0KtXL+0yjebpPxRmZmaIjo5G3boFq93JkycjODhY+z4qKgoBAQGG+hhEsslt1JePZxERSSQ3K0/uCGRgKY/in78RlZpefUaMgYWFBXx9fREeHq5dptFoEB4eDn9//wLbN2zYEJcuXUJUVJT29eqrr6JTp06IioqCh4dHoedRqVSwt7fXvmxtbSX7TETlRV21LtTVG8gdg4jIZGWlsRgxNclxD+SOYJJKdGfk33JycvDjjz9i3759uHnzJtLS0mBnZ4d69eqhW7duGDRoECwsLKTIWkBwcDCGDh2Kli1bws/PD0uWLEFGRgaGDRsGABgyZAjc3d0RGhoKS0tLNG7cWGf/ZxM4/nc5kanL8+wodwQiIpOWkZIrdwQysLTHicjNyoSFlbyDOJmaUhUjly5dQu/evXHnzh2IoogqVarA1tYWCQkJiIyMxK+//oq5c+di+/btaNSokVSZtQYMGIBHjx5hxowZiIuLQ7NmzRAWFqbt1B4bGwuFosLe/CGShtIc+a4t5E5BRGTScrPzkZOZB5W1udxRyIAS7txGzYYvyh3DpJS4GElPT8err76KhIQEzJ07F2+99Rbc3d216+/fv4/vv/8ec+bMQa9evXDhwgXY2NhIEvrfxo0bh3HjxhW67tChQ8Xuu379esMHIjJy+Y6NADOV3DGIiExeyqMsONdmMWJK4m78zWLEwEp822DdunWIjY3Frl278Omnn+oUIgDg7u6OyZMnY8eOHbh9+zZ/0CcyUmpHb7kjEBFVCkkPM+SOQAZ27+pfEEXOIWNIJS5Gdu3aha5du6Jjx47Fbte5c2d06dIFO3bsKGs2IpKAuhrHSCciKg+P77MYMTXpTxKR9JAd2Q2pxMXIpUuXnluIPNO5c2dcunRJ30xEJBVBgMauptwpiKgQooQTBZM8Ht1Ng8iZ2E1OzIVzckcwKSUuRp48eVLo/B2FcXFxwZMnT/QORUSG5ezkiBpODnBxsAaUfH6ZyChpOEmeqcnJzEdyQqbcMcjAbkWegUatljuGyShxB/acnByYm5fshxgzMzPk5nJIOyJjcXD7zzC7fxpm8VHIljsMERWOk5CapAfXk1HVVfoBfaj8ZKenIfbyBXj6cGRKQyjV0L4xMTGIjIx87na3b9/WOxARSUdj6yZ3BCIik9eyZUvcjbkPW5UDljv+Cu92NSCw2DQplw/9idpNmkHgFBJlVqpiZPr06Zg+ffpztxNFkRcdkRHS2LjIHYGIisIRekxGXFwcEh7HId9eg9TELCQ9zES1Grw7YkqS4x7g1vmzqOvrJ3eUCq/Exci6deukzEFE5UBj7SR3BCIqgqhWg1/jmaab5xNQrYaX3DHIwCJ3b4N7A29Y2trKHaVCK3ExMnToUClzEFE5EK2qyR2BiIogskOsyYr96zGaBNSEpS0HEDElOZkZiPj9Z3QcMoJPBJUBH3QjqiwEAaLKTu4URFQEMS9P7ggkEXW+iGsnH8odg/TUsmVL+Ad1x4z1PxdYd//aX7h67FD5hzIhLEaIKgnRzBIQeMkTGSsWI6btZmQCMlJy5I5BeoiLi0NcQgKSMwofpvn8nu1IiLlVzqlMB38yIaosBKXcCYioOJz00KSp80VcPHhP7hgkAVEUcfTnDchKT5M7SoXEYoSo0uBIPUTGjH1GTN/dK08QdztF7hgkgazUFBzbuIGTIeqBxQhRZaHhP5BExkzknZFK4dzuGORms61NUfztGziz/XeIHKa7VFiMEFUWokbuBERUDDE3V+4IVA4yUnJxLuwOf2A1UddPn8ClA3vljlGhlGrSw/+6cuUKbt26haSkpEIvqiFDhpTl8ERkSBx2kMioiVlZckegcnL3yhNUd7dB/Zdc5Y5CErj4ZxgUCiUad+oid5QKQa9i5ObNmxg8eDBOnz5dZGUvCAKLESJjoijTdw9EJDF1RobcEagcXfjzLuyqWcGtbhW5o5AEovbtQm52Fpp368U5SJ5Dr59ORo8ejUuXLmHJkiVo3749qlatauhcRGRgolIldwQiKoYmNVXuCFSORBGI2HIDHQc1RLUaNnLHIQlcOXIAmSkp8O//BpRmnPCyKHoVI8ePH8eUKVPw/vvvGzoPEUnFzEruBERUjPzHT+SOQOUsP1eDI5v/RqfBDVHFif9Gm6KYC+eQmZqMgMHvQGVtLXcco6RXB3ZHR0dUqcLbikQVicbOTe4IRFSM/EeP5I5AMsjNyseRTdFIT8qWOwpJJOH2Tez7dhkyU5LljmKU9CpG3n33Xfz4449QcyxlooqDs68TGbW8hw8gajjqXWWUlZaHQxtZkJiylIQ47F25FKmJCXJHMTp6PaZVv359qNVq+Pj4YPjw4fDw8IBSWXB25759+5Y5IBERUWUgZmUj78EDWNSsKXcUkkFmSi4O/ngNHd5owEe2TFRGchL2rlyGl4e/i2o1eJ0/o1cxMmDAAO3vP/zww0K3EQSBd06IiIhKIfvSJRYjlVhWWh4OfH8VbfrVg4unvdxxSAI5GenYv+prdHp7FJw968gdxyjoVYwcPHjQ0Dn0tnz5cnzxxReIi4uDj48PvvrqK/j5+RW67erVq/H999/j8uXLAABfX1/MmzevyO2JiIjKU8aJCNi/8orcMUhGeTlqHPk5Gj6BHnihpQuHhTVBeTnZCF+7Eh3fegduLzSQO47s9CpGAgICDJ1DL5s3b0ZwcDBWrlyJVq1aYcmSJQgKCkJ0dDScnZ0LbH/o0CEMHDgQbdq0gaWlJebPn4+uXbvir7/+gru7uwyfgIiI6H+yr1xB7t27sPDwkDsKyUgUgaj9d/H4XgZadveEuargo/BUsanzcnFwwyq0HzgUHi82lTuOrMrco/XKlSvYs2cP9uzZgytXrhgiU4ktWrQII0eOxLBhw+Dt7Y2VK1fC2toaa9euLXT7n376CWPHjkWzZs3QsGFDfPfdd9BoNAgPDy/X3EREREVJ2bJF7ghkJO5efYJ9a/7CkwecENMUadRqHPlpHW6cPSV3FFnpXYxs27YNdevWRZMmTdCzZ0/07NkTTZo0Qb169bB9+3ZDZixUbm4uzp07h8DAQO0yhUKBwMBARERElOgYmZmZyMvLQ7Vq1YrcJicnB6mpqdpXenp6mbMTEREVJf3YceQ/fix3DDISGck5OPDDVVw/Gw9RFOWOQwYmiiJO/v4z/jocXmnbV69iZPfu3ejXrx8AYN68ediyZQu2bNmCefPmQRRF9O3bF2FhYQYN+l+JiYlQq9VwcXHRWe7i4oK4uLgSHeOTTz5BjRo1dAqa/woNDUWVKlW0L2N5RI2IiEyUWo30I0flTkFGRKMWcX5fLE7vuA11Pod/NkXnw3bg/J7tlbIg0asYmT17Npo2bYqLFy/ik08+wauvvopXX30Vn3zyCS5evIgmTZpg1qxZhs5qUJ9//jk2bdqELVu2wNLSssjtJk+ejJSUFO3r8OHD5ZiSiIgqo6zIc3JHICN05/JjHPk5GrnZ+XJHqTRiY2ORkfH0MbmcvDwkpqRKdq4rRw/i9LbfKt18Q3p1YL948SLmzZsHGxubAutsbGzw9ttvY8qUKWUOVxxHR0colUrEx8frLI+Pj4erq2ux+y5cuBCff/45/vzzTzRtWnynIZVKBZVKpX1va2urf2giIqISyI7+G+r0DChtC/4/S5Xbo7vpOPRTNAIG1ofK2lzuOCbr9OnTmD17Nnbt2qW9W5GZnYPgb9ahWT0v9Gnrhzpuxf+8qY/rp45DoVSiZc/XDDaSWmZ6OnZt/B7RUZEQBAW8fV9C90FvQVXMl/FnDh3AxVMn8PBODHKyszHl629hZa3779GXH01E8uNEnWVd+v0fOvR4tVT59LozYmlpiSdPnhS5/smTJ8XebTAECwsL+Pr66nQ+f9YZ3d/fv8j9FixYgNmzZyMsLAwtW7aUNCMREZFe1GpkHDsmdwoyUsnxmTiy6W/eIZHIH3/8gbZt22LPnj0FHpsSAVy4GYPPfvgVZ6JvSHL+6BNH8PfJ0l3/a+bPQeSxI4Wu+23VCiTcv4ehH3yKwRM+QMzf17Btw5pij5eXm4sXGjd9bmHRuU8/fLz4a+2rdWDXUuUG9CxGOnfujKVLlxbaUfzUqVNYtmxZsf0wDCU4OBirV6/Ghg0bcPXqVYwZMwYZGRkYNmwYAGDIkCGYPHmydvv58+dj+vTpWLt2LTw9PREXF4e4uDh2SiciIqOT/Mfv0GRlyR2DjFRSXCZO/HETanXleqRHaqdPn8aAAQOgVquLnLxbI4pQazRYvm0Pbj0sWT/l0orcvR2ZKcllPk7Cg/u4fvki+rw9Ah5166F2/Qbo+eYQXD59EqlJSUXu16ZrN3To8So86tYr9vgqSyvYVXHQvixUpb8ZoVcxsmDBAlhaWqJdu3bw9/fH22+/jbfffhv+/v46c3hIbcCAAVi4cCFmzJiBZs2aISoqCmFhYdpO7bGxsXj48KF2+2+++Qa5ubno378/3NzctK+FCxdKnpWIiKg01I+f4NHXX1e658crOp0+BrlZSEyW5odVAEiISUXU/ljJjl8ZzZkzB6IolqgjuSiK2Hb8jCQ51Pl5uB1V9r5jd2/egKW1Ndy9/jfbex3vxhAEAfdulf3OztHdOzDv/XexfOZUHNuzs8gCrjh69Rnx8vLCxYsXERoaij179mDz5s0AgNq1a2PChAn49NNPC510UArjxo3DuHHjCl136NAhnfcxMTHSByIiIjKQzJOnkPj1cji+NxaCkhPfGbPC+hhkZKdh3MLeaNGgHfp2egf1anob/Lw3Ix/BuZY9PLyLnqaASiY2NhY7d+4s8YhWGlHE+Ru3kJiSCscq9gbP8+TBvTIfIz0lGTZ2utmUSiWsbGyRnppSpmO3DuyKGrU9YWVji9gb17H/981IS0nGK28MLtVx9CpGAMDZ2RmLFy/G4sWL9T0EERERAWjZsiXuX7sGR3NzbO/8ss669MOHocnIgFPwJCj+NaAKGY8//vgDAwYMKPQbdVEUcT76BKL+PoEJb8xDqxc7Gfz85/bGwNnTzmAd2rMzc3BkVyRuRz+AIAio610T7bs3h4Wq6ONfPnMTf1+8g0cPk5CXk4+RU16DyspCZ5udPx5FYlwysjKyobK0gEddF/h39YGtvVWp8uXl5UKTX/pv4J8nrJA+Is8jAvgr5i7aN2lk8Dw5mUVPdnl45zYc2fW/ef3ycnNx7+ZN7Pppg3bZ+3OkfUqpbVB37e9dPWpBaWaG7d+vRZd+A2BmXvK/i3oXI0RERGQYcXFxiMvIACwL/6Es8+xZxIXMhMuUyVDaG/4bWNLfv/sYFPWDrEZUA6KApZum4LPRawx+hyQ3S41rEXHwedmjxPv8seYAGjX3QqMWXgXW7fvtJDLTstF7aMengwP9cRoHt51F0P8VPUBQfl4+ar/ghtovuCFi/8VCt6lZxxktAxrB2s4KGalZOB4WhbBNx9F/VMn7Gefl5eLW1SvIkaA/1c3oa1AoFNCU4tFIQQDSMtKRnZVp8DzpaWnIy8uFublFgXUvdXwZjV9qpX3/26pv4N3yJXi3+N/gTHYOVWFbxQEZabrDEavVamRlpMPWvopB89asUxcatRpJiY/g5FajxPuVqBgZPnw4BEHAqlWroFQqMXz48OfuIwgC1qwpvqc+ERERlUzO9et4OHUqXKZNg/l/Jvwl+ZS8j4EIUQS2HFyLj94yfF/VmEuJaNKpJhSKsg0H+yQhFbHX4/D6u13g4v700a8OPVtgxw9H0LZbsyLvYjRr0wAAcO92QpHHfrYNANg72MC3fSPs+vkY1GoNlMqSdWPW5KuRk5UFMzMlzMwMO7SxQ5UqpSpEAEAUASsLFRSCXt2wizmuCDOV1dM7QIV8TGtbW1j/a7oJMwtz2NjZo7qL7nDDHnXrITszE/djbsPd82nhefvqFYiiiJp1iu+cXlpxsXcgCEKpi5wSFSMHDhzQVopKpRIHDhx47tjHhhobmYiIiJ7Ke/AQDz79FC4ffwzLRoZ/LIRKp/R9DNQ4F30UiclxcHQw7BwVOZn5SH2UBQcX6zIdJ+5uIlSW5tpCBAA86rhAEATE33sMW++aZY0K4OmjYNEX78DNw7HEhci/mZmZw9zAjy22b98OgiCU6lEtAUCjWu4QylgEFqABbBwdy3wY5xrueKFxU2xb/x1eHTIcarUaO3/agMZ+rWFftSoAIDXpCdZ9EYp+I95FzTp1AQBpKclIT0nB44Sn8/nF37sLlaUVqlSrDmvbp31E7t26Ca+GjaCytMLdm9exZ9NP8PFvC6tC5iEsTomKkf92/GZHcCIiInloUtPwMGQmqg97G3bduvHLvxLIz1OX+hvvktgbtq/0fQxEEZdunkHHFj0NnufJw/QyFyOZ6dmwstEdnlWhVMDSygKZ6dllOjYAnNh7ARdPXUd+nhouHtXRc3D7Mh/TUNxr1EDnjgE4dORoiUaFUggCmnjVQnV7w0+IrVAqUcWl5I86Faf/qLHY+dMGrPsiFIJCwIu+L6H7oCHa9Wq1GolxD5GXm6NdduZgOA5u36J9v+bzOQCA14aPQot2HWBmboZLpyNwcNsfyM/PQ1VHJ/h37Ya2XV8pdT69+ozExsbCyckJVlaF36rLysrCo0ePUKtWLX0OT0RERMVRq/H4uzXIvnoNjmPehaKI/4/paSFy71Y8cnPyDH7sOzfv6dHHQEBaeipysg2f52HMY9R6sTrMzAuOvHb28BWcO3JV+z4/T434e49xZFekdtmg97sZPNN/NW/XEI186yAtOQNnDv6FP38/hZ6D2xtNUT1uzLs4fPRYye6QCEBPv+aS5HD0rAuzUtz5eeeTaUWus7a1xf+Nfq/I9VUdnTB77Y86yzr36YfOffoVuU+N2l4YPW1WifMVR++hfX/44QcMGjSo0PXbt2/HoEGD9BprmIiIiEom4/hx5N6+BadJk6CqU+f5O1RCGo0GuTl5UJgpoTQz7HP99g769DEQYW1pY/jHekTxX3eAChYjjV+qi3qN/9fBff9vJ1HXuybq/OuxKxs7K1jbWiIrQ/cOiEatQXZWLqxtSz+h3X9Z2ahgZaNCVUc7VHOyx/qFOxB39zHcapX9kSRD8GnSBMu+XIjxH3wIURQL/VlWIQiAALzbPRBeroafysLM3AJevq1QuntuFZdexcjzKsW8vDwoFIa94ImIiKigvAcP8WDyZFT9v/9DlT59OB9JEZRmCpibG3YQ0YD2AXr0MRDgXccXhr4RIEKAmWXRP3tZWqtgaf2/b9qVZkpY2VjCobqdznauHo7Iyc5Dwv0ncP6n38i92wkQRREuNasbNvM/f27GNot8t65d8OvGH/H1Nytx4NBhnfYVADTxqoWefs0lKUQAoGHHLlDZ2iI7u+yPxVUEJb4qU1NTkZycrH3/+PFjxMYWnPUzOTkZmzZtgpubm0ECEhER0XPkq5G08Wdknj4Nx/ffh0VNw3QypuK5u9fEy5274OCh8BL2MVCgWf02cKxi2M7rz1hXKfvoUtWc7VHrBVcc3HYGHV9tCY1ag8M7z+GFxrW0I2mlp2Zi67pD6NKvlbZAyUjLQmZ6NlIepwEAHsenwFxlBrsq1rC0ViHu7mMk3H8Ct9qOUFlZIPVJOk6GX0KVarZw8zBskWMIPk2aYPWK5bj/4AF6vNYPqampsFZZIOTN/pL0EXmmbqt2cK5TD3k5Oc/f2ESUuBhZvHgxPvvsMwBPn3ecOHEiJk6cWOi2oihizpw5BglIREREJZNz4yYefPgRqr0zHPZdusgdp1KYMC4Yhw4fKMEdEgGCIKB3+7clyWFpY2aQYgQAuvZvjcM7I7F13aGnkx6++HTSw2c0ahHJiWnIy/tfAXb5zE2cOfiX9v0faw4AAF5+zQ+NWnjBzFyJm1fu4dSBy8jPy4e1rRVqv+CKlgO8oTQz3rt57jVqwNrKCqmpqVCZm0taiNTy8UUtnxaSHd9YlbgY6dq1K2xtbSGKIj7++GMMHDgQLVro/oEJggAbGxv4+vqiZcuWRRyJiIiIpCLm5eHxym+R/+ABqg4ZYjQdg01VM5/mWLFsFcaOH1VMHwMFBEHAuP6zUcddmiGZa75YpVRt3fedzkWus7RWFTvBoX1VG4ybPUBnWavOjdGqc+Mi93F0dcBrww0/+7ypqOXji7qt2lbK67XExYi/vz/8/Z/+xczIyEC/fv3QuHHRf+mIiIhIPinbd0CTk4vqI96BwH6cknqlWw9s+XUnln69COEH9v+nj4GAZvXboHf7tyUrRBxcrOBSzxb5OfmSHJ+k5dncD14vta6UhQigRwf2zMxMLFu2DNbW1ixGiIiIjFja3r0Q83Lh+O677NgusWY+zbFu9Q+4f/8euvbojNTUFFhb2mHuu+sl6yMCACorMzRq72LwDvFUPuq81AaeLV6SO4asSv1VibW1NczMzGBTytkViYiIqPylHziIhC8XQczNlTtKpeDuXhPW1k8nHlSZW0paiCiVCrzYyRUqG8OOEkblo65f20pfiAB6FCMA0K9fP/z222+lnnWUiIiIyl/mqVOImzcPmqwsuaOQgQiCgEYBLrB3KvvcH1T+vHxbo3Zz9q8G9Jxn5I033sDYsWPRqVMnjBw5Ep6enoXOxv7fDu5ERESkKzY2FhkZGQCAzPx83M/MhPs/36wbUvaly4ibOQsuU6dAaW9v8ONT+WrQxgmOHnxKpSKq3fwleLVsJXcMo6FXMdKxY0ft748ePVpgvSiKEASBM7ATEREV4fTp05g9ezZ27dqlfdIgNT8PHcL2oLOrG8Y1bAifatUMes6cGzfwcOpUuEybDnMXw03YlpuWhvNr1uDBuXMQBAHurVuj+bBhMCvki8pn1Lm5uLBhA+4ePw51fj5cfXzQYuRIWDo4AACSY2JwbcsWJF67hpy0NNg4OaFu1654oUcPg+WuqOq95AjXeiwoK6JaPr6o81LRI5VVRnoVI+vWrTN0DiIiokrjjz/+wIABAyCKYoFHnkUAh+LjcDg+Dsv8WqGbu7tBz5334CHiZs1CjXlzofznB/+SODRjBjw7dYJnp4LDs55auhRZycnoMH06RLUaZ5Yvx9lvv0XrIuYjA4Co9evxMDIS/h98AHNra0SuWYMTX3yBznPnAgCSbt6EqkoVtBo/HlaOjngcHY1zK1dCUChQ75VXSvuxTYanTzXU9HaQOwbpoXazlqjj16bSjppVFL2KkaFDhxo6BxERUaVw+vRpDBgwAGq1usi+l2pRhABg/OlT+DWgo8HvkOTHxyNlx05Ue2twmY+Veu8e4qKi8PLnn6NavXoAgObvvIOj8+bBZ8gQWBWSPS8jA7cPHEDrCRPg3KQJAOCl997D3gkT8Pjvv1G9fn14vfyyzj62Li54HB2Ne6dOVdpipGZDB9T2qSp3DNJD3VbtUMunBQuRQpR5+IX09HTcvXsXAODh4QFbW+lmpqTyERsbi/DwcKSlpcHOzg4vv/wyatWqJXcsIgKvT1MwZ86cQu+I/Jf4z2t59DWs8m9j8Bx5cQ8NcpzH0dEwt7HRFiIA4Ny0KQRBwJPr1+HequCz8Um3bkHMz4dz06baZfbu7rD+5w5I9fr1C8+cmQmLSvpzRo369qjrV50/zFYwCqUZGnXsApd6hf+dpjIUI2fOnMHHH3+MY8eOQaPRAAAUCgXat2+PBQsWcAb2Cui/zy8rFApoNBoIgoCePXti+vTpeOklDkFHJAden6YhNjYWO3fuLPFolGpRRPjDh5J0alcY6HjZyclQVamie2ylEha2tshOTi5yH4WZGSz+M02AysGhyH0Sr13D3RMn0G7yZEPErlBq1LfHC62dWIhUMBZW1mgS1AtVXKQb3tkU6FWMnDp1Ch07doSFhQVGjBiBRo2ezih69epV/Pzzz+jQoQMOHToEPz8/g4Yl6RT2/PKzIlMURezevRt79uzB5s2b0bdvXzmjElU6vD7Lnzo3FxoJBmHZt2dPqYfFFwGciI9H/9q1DZpFIz79nEoLi0LXX/39d1zdskX7Xp2bi8fXryNyzRrtsm6LFxs0U1FSYmNxfMECeL/+OlybNSuXcxoLD28H1GnJOyIVjU3V6vB5pTcs7ezkjmL09CpGpk6dCnd3dxw7dgyurrrV3syZM9G2bVtMnToV+/fvN0jI4ixfvhxffPEF4uLi4OPjg6+++qrYIujXX3/F9OnTERMTgxdeeAHz589H9+7dJc9pzEr0/LJaDUEQMGDAAJw4cYLfwBKVE16f5U+dm4uEy5eRl5lp8GPfv3oVCkGAphQFiQJASmamwfOkxdyG5vJlODduXGhBUrdrV3i0+d/jYaeWLoV769ao+a/HriyrVYOlgwNyUlJ09tWo1chNT9eOjPVflg4O0OTnIzcjQ+fuSE5ycoF9Uu/exeFZs1AnMBDe/fvr8UkrJkEQULdldXZWr4AcXN3RpFtPmKs4B0xJ6DXp4alTpzB69OgChQgAuLi4YNSoUTh58mSZwz3P5s2bERwcjJCQEERGRsLHxwdBQUFISEgodPsTJ05g4MCBeOedd3D+/Hn06dMHffr0weXLlyXPasxK/PzyP9vMmTOnnJIREa/P8qdRq5GXmQmFmRnMrKwM+rKvUqVUhQgAaADYmZtDUCgM+kJqGvIyM4u8A2RhZwdbNzftS2lhAcsqVXSWKZRKVG/QAHkZGUi6eVO7b8KlSxBFEdVeeKHQY1etUweCmRkSLl3SLku7fx+ZiYmo3qCBdlnK3bs4NHMmPDt2RJNBg0r151aRmVso0eRlNxYiFVC1mrXh0703C5FS0KsYUSgUyM/PL3K9Wq2GQqHXoUtl0aJFGDlyJIYNGwZvb2+sXLkS1tbWWLt2baHbL126FN26dcNHH32ERo0aYfbs2WjRogW+/vprybMaq2fPL5d0Thi1Wo0dO3YgNjZW4mRExOtTXgpzc5ipVAZ9BbRrV+rHbQQArR0dAUEw6EsTHwfxn8f9ysK+Zk24NmuGsytX4sn160i8dg3n16yBR9u22pG0sh4/Rtj48Xhy/ToAwNzGBl6dO+PC+vVIuHwZSTdv4szy5ahev76283pKbCwOh4TAxccH9Xv2RHZSErKTkgrchTE1tlVVaNGzJqq5G37iS5JWVfdaaBrUE0pzc7mjVCh6PabVpk0bLF++HIMGDULt/zzDGhsbixUrVqBt27YGCViU3NxcnDt3DpP/1ZFNoVAgMDAQERERhe4TERGB4OBgnWVBQUHYunVrkefJyclBTk6O9n16ejoAID8/H3l5eWX4BMZh7969pX9+WRSxb98+DvGsp/y8POTl5UOtyYSQV3RRX9GJ+bnQqJ9eJ6Ki4l8rcuD1KY+8vDzk5edDnZWFvGK+eNNHdXt7dG7bFgdPnND2+ymOAkAHJyc4WVggz8B9WMT8fAgJCU//LzN7/o8DGlFEvlpd6P99Ld57DxfXrcPhWbMAQUANPz80fftt7bY5OTlIe/AA2ZmZ2mUvvvkmRFHEiS++gOafkbV8hg/Xrr9z/DhyUlMRe+QIYo8c0Z7LytERQV99VeLPmZeXh7y8PKhFTbn9vy3+q09Xaf4OOdWyRt1W1SAq85GZWbq/e+p8DTT5T9tHkP77YNk8uz7F7Kxya89n16pGIyIvr/Dr0N7ZGfXadUJ2drZBzpmvzkf+P+2pKMH1aSjmchRSoh4iIyNFW1tb0dLSUhw4cKAYEhIihoSEiG+88YZoZWUl2tnZiVFRUfocusTu378vAhBPnDihs/yjjz4S/fz8Ct3H3Nxc3Lhxo86y5cuXi87OzkWeJyQk5NnoinzxxRdffPHFF1988WWyLznoVWo1b94cp06dwtSpU7F9+3Zk/tOpztraGt26dcOcOXPg7e2tz6GNzuTJk3XupkRFRSEgIACnTp1C8+bNZUxmGOvXr8eoUaNKvd/q1av5zWsZaP65a2DqFEozKMwKH6mHno/Xp3ykGk3rma3btmHIsGEQRbHQOyQKPH08a0nLl9ClRg1JMjgMGogqPXsWOZqWKcnPU5foTpSh1G/wAh48eICqdo746sNtxW4rCECzrh6o/WL1Mp9XoVDAzFxZ5uMYu7y8XGjypbs+/6tBw4Z48PAhHGys8eW7b+uss7CywsvDx8CuupPBz6swU8Lc3PSvT73v+3h7e2PLli3QaDR49OgRAMDJyalc+ooAgKOjI5RKJeLj43WWx8fHF9qxHgBcXV1LtT0AqFQqqFQq7ftnkzqamZnJcyvLwIKCgiAIQqkeBREEAV27djWJzy8b/tlRCfD6lI/Uf36D3noLLzRsiNmzZxeYd0QA0NnNDe81aGjwmdefqTpoEKr0fa3SDBdb3tfDsz9XQVDA3KzocwsC0Lp3XXh4S9POpqrc2/Ofn20FhQIWOucW0PmtEXDzqluueUxNmSsHQRB0XuXFwsICvr6+CA8P1y7TaDQIDw+Hv79/ofv4+/vrbA8A+/fvL3L7yqBWrVro2bMnlMqSfZOiVCrRq1cvzvhMVA54fZq2l156Cdu3b0dMTAwc/hnO1t7MHEe6vYJV/m2kKUSUSji+9x4c+vWtNIWIsRIEwK9XHRYiFZh3h06oUb+h3DEqPL2LkStXrqB///6wt7eHm5sb3NzcYG9vj/79+5fbULnBwcFYvXo1NmzYgKtXr2LMmDHIyMjAsGHDAABDhgzR6eA+YcIEhIWF4csvv8S1a9cwc+ZMnD17FuPGjSuXvMZq+vTpJSomn20zbdq0ckpGRLw+TV+tWrVg889cG9ZmZgafaf0ZZRV7uIbMgF3nTpIcn0rHJ9ADtRuX/dEskod1FQc0DXxF7hgmQa/HtI4ePYpXXnkFGo0GvXv3Rv1/huGLjo7G9u3bsWfPHoSFhaF9+/YGDftfAwYMwKNHjzBjxgzExcWhWbNmCAsLg4uLC4CnI3v9+7GxNm3aYOPGjZg2bRqmTJmCF154AVu3bkXjxo0lzWnsXnrpJWzevFk7w3Nhw4gqlUoIgoBffvmFE6oRlSNen2QIlk2bwGn8eJhVrSp3FALwQksX1H+p6EfEyfh5t+8EMz4OaxCCWJqHkf/RsmVLPHnyBIcPH4aHh4fOurt376JDhw5wdHTEmTNnDBbUWERGRsLX1xfnzp1DixYt5I5jUGfOnNF5flmhUECj0UAQBPTq1QvTpk3jDzpEMuH1adpq1qyJ+/fvw9XSCie6dzfYcQUzM1Qd/Cbse/TQPvdO0nvWntXsnfHNJzt11rl42aPDgPoQFHxMrqJ41p5V7Wyx7L13ICgU6D91DlQS3cWsbPS6M/LXX39h9uzZBQoRAPDw8MCYMWMwc+bMsmajcvbs+eXY2FgcOHAAqampsLe3R+fOnfkMOpHMeH1SaZm5usL5g2Co6tSROwr9w8rWHK1712EhUsG5eNVlIWJAehUjtWvX1pkI8L9yc3MLLVSoYqhVqxbefvttuWMQUSF4fVJJWLduBaexY6H4py8KGYeW3T2hsuajPRWd2wvstG5IehUjM2bMwKRJk9CjRw80a9ZMZ9358+fx1VdfYcmSJQaIR0RERCUlWFig2rC3YdelC0fLkpGrqyvystWwVTlol9Wo5wC3eg5F7kPGy9XVFeq8PFj986Sje8MX5Q1kYvQqRk6ePAkXFxf4+vqiTZs2qFevHgDg+vXriIiIQOPGjREREYGIiAjtPoIgYOnSpYZJTURERDpU9erCafx4mLu7yx2l0jt79izO7onBrfOPtMu820kzeSVJ7+zZs4iJOodjm3+ATdVqqOLsInckk6JXMfL1119rf3/8+HEcP35cZ/2lS5dw6dIlnWUsRoiIiKRRpXdvVB34BgSO7mOUqrvboFoNPjJnCjwaNeZdRwPTqxjRaDSGzkFERESlpLC1hdOECbBu0VzuKFSM2o0d5Y5ABlKjgbfcEUyOXsUIERERycvSuxGcJk6EWXVOnGfs3Os7yB2BDEChUMLZq67cMUxOmYqR27dvY8+ePbhz5w6Ap6NsvfLKK/Dy8jJIOCIiIvoPQYBD//5weL0/BKVS7jT0HFWcrWBlZyF3DDKAau41OdGhBPQuRj744AMsXbq0wCNbCoUCEydOxMKFC8scjoiIiP5HYW0Np0mT+FhWBeLkYSd3BDKQqjVqyh3BJOk1HeuXX36JxYsXo2/fvoiIiEBycjKSk5MRERGB/v37Y/HixVi8eLGhsxIREVVaCns7uH42i4VIBVO9pq3cEchAHFxc5Y5gkvS6M7J69Wq8+uqr+OWXX3SWt2rVCps2bUJ2dja+/fZbTJo0ySAhiYiIKjUzJVw+/RQqPgZd4VRz4yhapsK2GgcikIJed0ZiYmIQFBRU5PqgoCDExMTom4mIiIj+peqAN2DZoIHcMaiUzCwUsHVQyR2DDMSmioPcEUySXsWIs7MzLly4UOT6CxcuwMnJSe9QRERE9JSZmyuqvNpL7hikhypOVhAUnJPCVKhs+cidFPQqRl5//XV89913+Pzzz5GRkaFdnpGRgfnz5+O7777DgAEDDBaSiIiosqo6YAAEM47EXxFVcbKSOwIZiiBAZW0tdwqTpNe/brNnz0ZUVBSmTJmCGTNmoEaNGgCABw8eID8/H506dcJnn31m0KBERESVjYWnJ2zatpU7BunJ3pHFiKkwM7eAQsGhtKWgVzFibW2N8PBwbNu2TWeekW7duqF79+7o1asXBIG3JYmIiMqi+sgREBR6PcRARoDFiOkws+BcMVIpdTGSmZmJwYMHo1+/fnjzzTfRu3dvKXIRERFVanZdu8KyYUO5Y1AZ2FW3lDsCGYiSxYhkSv11i7W1Nf78809kZmZKkYeIiKjSU9jaouqbg+SOQWWgVCpgzZnXTYbSjDOvS0Wve7/t2rVDRESEobMQERERgCp9+kDJkXsqNOsqFhxJy4QozdhfRCp6FSNff/01jh49imnTpuHevXuGzkRERFSpuLq6wtXGBo6WKghWlrAP6ip3JCojSxt+k25KFEqOaCcVvf5kfXx8kJ+fj9DQUISGhsLMzAwqle6kPoIgICUlxSAhiYiITNnZs2dx7/3xyHvwALbt2kPBIUQrPAsr/vBqSpQcXlsyev3J9uvXj6NlERERScCmfTu5I5ABmKv4WI8pEZRsT6noVYysX7/ewDFK78mTJ3j//fexY8cOKBQK9OvXD0uXLoVtEc/YPnnyBCEhIdi3bx9iY2Ph5OSEPn36YPbs2ahSpUo5pyciIipIYWsLy0aN5I5BBmBmziGZTYmCQ2xLplTFSHZ2NrZt24bbt2/D0dERPXr0gJubm1TZivXmm2/i4cOH2L9/P/Ly8jBs2DCMGjUKGzduLHT7Bw8e4MGDB1i4cCG8vb1x584dvPvuu3jw4AF+++23ck5PRERUkFXTppxXxEQozPgEiWlhe0qlxMVIQkIC2rRpg9u3b0MURQBPh/ndunUrAgMDJQtYmKtXryIsLAxnzpxBy5YtAQBfffUVunfvjoULF2pnhP+3xo0b4/fff9e+r1u3LubOnYvBgwcjPz8fZnwWkIiIZGbZpLHcEchAlEoWlaaEI6NJp8RXyuzZsxETE4NJkyZh586dWLJkCaysrDB69Ggp8xUqIiICDg4O2kIEAAIDA6FQKHDq1KkSHyclJQX29vbFFiI5OTlITU3VvtLT08uUnYiIqCh8RMt08IdX0yLwzohkSnw7YN++fRgyZAgWLlyoXebi4oJBgwYhOjoaDRo0kCRgYeLi4uDs7KyzzMzMDNWqVUNcXFyJjpGYmIjZs2dj1KhRxW4XGhqKWbNm6Z2ViIioJASVCubu7nLHIANRsBgxKezALp0S3xmJjY1Fu3a6I3y0a9cOoigiPj7eIGE+/fRTCIJQ7OvatWtlPk9qaip69OgBb29vzJw5s9htJ0+ejJSUFO3r8OHDZT4/ERHRf5nXqMH+IqaEtYhJMTPnvDFSKfGdkZycHFhaWuose/Y+Pz/fIGE++OADvP3228VuU6dOHbi6uiIhIUFneX5+Pp48eQJXV9di909LS0O3bt1gZ2eHLVu2wPw5f7lUKpXOHCpFjdZFRERUFmauLnJHICIqd6XqtR0TE4PIyEjt+2eTGl6/fh0ODg4Ftm/RokWpwjg5OcHJyem52/n7+yM5ORnnzp2Dr68vAODAgQPQaDRo1apVkfulpqYiKCgIKpUK27dvL1BcERERycWsWjW5IxARlTtBfDY01nMoFIpCJzoURbHA8mfL1Gq1YVIW4pVXXkF8fDxWrlypHdq3ZcuW2qF979+/j5dffhnff/89/Pz8kJqaiq5duyIzMxNbtmyBjY2N9lhOTk5QlvBZwMjISPj6+uLcuXOlLraIiIiKknHiBGzatJE7BhlIblY+Z2EnKoESXyXr1q2TMkep/fTTTxg3bhxefvll7aSHy5Yt067Py8tDdHQ0MjMzATwtIp6NtFWvXj2dY92+fRuenp7llp2IiOi/FNbWckcgA2IhQlQyJb4zQk/xzggREUkh+8oVWHp7yx2DiKhccdgOIiIiIyBYWMgdgYio3LEYISIiMgacx4CIKiEWI0REREbAonZtuSMQEZU7FiNERERGgBMeElFlxH/5iIiIiIhIFixGiIiIiIhIFixGiIiIiIhIFixGiIiIiIhIFixGiIiIiIhIFixGiIiIiIhIFmZyByDj9fDhQzx8+FDuGGQgbm5ucHNzkzsGGQivTyKi8sP/Q6XDYqSU3NzcEBISYvJ/IXNycjBw4EAcPnxY7ihkIAEBAdi7dy9UKpXcUaiMeH0SEZUv/h8qHUEURVHuEGR8UlNTUaVKFRw+fBi2trZyx6EySk9PR0BAAFJSUmBvby93HCojXp+m59k1yjY1DWxP08L/Q6XFOyNUrGbNmvHCMwGpqalyRyAJ8Po0Hc+uUbapaWB7mhb+HyotdmAnIiIiIiJZsBghIiIiIiJZsBihQqlUKoSEhLCjlolge5oWtqfpYZuaFranaWF7Sosd2ImIiIiISBa8M0JERERERLJgMUJERERERLJgMUJERERERLJgMUJERERERLJgMUJkJARBKNHr0KFDZT5XZmYmZs6cWapjzZ07F6+++ipcXFwgCAJmzpxZ5hxEFYUxX5/Xrl3Dxx9/jGbNmsHOzg5ubm7o0aMHzp49W+YspsyY2/TBgwcYPHgwGjRoADs7Ozg4OMDPzw8bNmwAxx0qnDG353/99NNPEAQBtra2Zc5iCjgDO5GR+OGHH3Tef//999i/f3+B5Y0aNSrzuTIzMzFr1iwAQMeOHUu0z7Rp0+Dq6ormzZtj7969Zc5AVJEY8/X53XffYc2aNejXrx/Gjh2LlJQUfPvtt2jdujXCwsIQGBhY5kymyJjbNDExEffu3UP//v1Rq1Yt5OXlYf/+/Xj77bcRHR2NefPmlTmTqTHm9vy39PR0fPzxx7CxsSlzDlPBYoTISAwePFjn/cmTJ7F///4Cy+Vy+/ZteHp6IjExEU5OTnLHISpXxnx9Dhw4EDNnztT5lnX48OFo1KgRZs6cyWKkCMbcpk2bNi3wrfu4cePQq1cvLFu2DLNnz4ZSqZQnnJEy5vb8tzlz5sDOzg6dOnXC1q1b5Y5jFPiYFlEFotFosGTJErz44ouwtLSEi4sLRo8ejaSkJJ3tzp49i6CgIDg6OsLKygpeXl4YPvz/27v/mKjrPw7gz/PAAxQE9cCfHL8mwWj+oDQzu6/5q5DFT3/gUtRMTaezNKYWEw1nZv6aRgY5ZIgNSdGFBTbFMM2pS+fUTNM7bDVEFiCCCsLr+4fz7ASUn37ujudju8173+fz/rw/99z7xsvPr1kAAKPRaComVq1aZTp0/azTrry8vNpjl4hshlLzMzg4uN7pHj169MDIkSPx+++/t+1OdjBK/uY2xMvLC1VVVaiurm71vnVESud59epVbNq0CRs3boSdHY8HPMJvgsiKzJ07Fzt37sTMmTOxaNEiGAwGbNu2DWfPnsXx48dhb2+P4uJijBs3DlqtFsuWLYOrqyuMRiP27dsHANBqtfjqq6/w/vvvIyIiApGRkQAe/k8cEbWcpc3PoqIi9OzZs033saNROtO7d++isrISd+7cwc8//4zU1FQMHz4cjo6O7brftkrpPBcvXoxRo0YhJCQEe/bsadd9tSpCRBZpwYIF8t8peuzYMQEgGRkZZsvl5uaatWdnZwsAOX36dKN937p1SwDIypUrmz2u1qxLZCssdX4+UlBQICqVSuLj41vcR0djiZmuXbtWAJheo0ePlhs3bjSrj47K0vLMyckROzs7uXjxooiIxMbGSpcuXZqxR7aLp2kRWYmsrCx069YNY8eORUlJien16BSN/Px8AICrqysAICcnBzU1NQqOmKjjsKT5WVxcjKlTp8Lb2xtxcXHtso2OwBIyjYmJwU8//YTdu3dj6tSpAB4eLaHmUzLP6upqfPDBB5g3bx4CAwPbpE9bwmKEyEpcvXoV5eXlcHd3h1arNXvduXMHxcXFAAC9Xo+oqCisWrUKPXv2RFhYGFJTU3H//n2F94DIdlnK/KysrERoaCgqKipw4MAB3jq0FSwhU51OhzFjxiAmJgYZGRnw8fHBmDFjWJC0gJJ5btq0CSUlJaY7cJE5XjNCZCXq6urg7u6OjIyMBj9/dEGdSqXCd999h5MnT+L7779HXl4eZs2ahQ0bNuDkyZP844SoHVjC/KyurkZkZCTOnz+PvLw8BAUFtbgvsoxMnxQdHY2UlBQUFBRg/PjxbdZvR6BUnuXl5UhMTMT8+fNx+/Zt3L59G8DDW/yKCIxGI5ycnODu7t66HbRmSp8nRkQNe/J81/nz54tarZaqqqpm95WRkSEAJCUlRURESkpKeM0IUStY2vysra2VyZMni1qtlr179zZ7DGR5mTZk//79AkAyMzNb1U9HYCl5GgwGs+t+GnqFhYU1e0y2hKdpEVmJSZMmoba2Fp9++mm9zx48eICysjIAQGlpab0n9A4aNAgATIeZnZycAMC0DhG1jtLzc+HChcjMzERSUpLp7j7UOkpmeuvWrQbbd+zYAZVKhSFDhjSpH3pMqTzd3d2RnZ1d7zVq1Cg4ODggOzsby5cvb/mO2QCepkVkJfR6PebOnYu1a9fi3LlzGDduHOzt7XH16lVkZWVhy5YtiI6ORlpaGpKSkhAREQFfX19UVFQgJSUFLi4uCAkJAQA4OjoiMDAQmZmZGDBgALp3746goKCnntaRnp6OwsJCVFVVAQAKCgqQmJgIAJg2bRp0Ol37fwlEFkrJ+bl582YkJSVh+PDhcHJywq5du8w+j4iI4NOeW0DJTNesWYPjx4/jzTffhKenJ/7991/s3bsXp0+fxsKFC+Hn5/c8vwqboFSeTk5OCA8Pr9e+f/9+nDp1qsHPOhxlD8wQUWOePMT8SHJysgQHB4ujo6M4OzvLiy++KHFxcfLPP/+IiMhvv/0mMTEx4unpKRqNRtzd3SU0NFTOnDlj1s+JEyckODhYOnfu3KTDzXq9vtFDzPn5+W2120RWwZLmZ2xs7FNPATEYDG256zbLkjI9dOiQhIaGSp8+fcTe3l6cnZ1lxIgRkpqaKnV1dW2637bKkvJsCG/t+5hK5IljUURERERERM8BrxkhIiIiIiJFsBghIiIiIiJFsBghIiIiIiJFsBghIiIiIiJFsBghIiIiIiJFsBghIiIiIiJFsBghsgFGoxEqlQo7d+5UeihE1ADOUdvCPG0L81QWixEiIiIiIlIEH3pIZANEBPfv34e9vT3UarXSwyGiJ3CO2hbmaVuYp7JYjBARERERkSJ4mhaRhUhISIBKpcKVK1fwzjvvoFu3btBqtYiPj4eI4K+//kJYWBhcXFzQq1cvbNiwwbRuQ+e7zpgxA127dsXff/+N8PBwdO3aFVqtFkuXLkVtba1puaNHj0KlUuHo0aNm42moz6KiIsycORP9+vWDRqNB7969ERYWBqPR2E7fCpHl4By1LczTtjBP68VihMjCTJ48GXV1dfjss88wbNgwJCYmYvPmzRg7diz69u2LdevWwc/PD0uXLkVBQcFT+6qtrcX48ePRo0cPfPHFF9Dr9diwYQOSk5NbNLaoqChkZ2dj5syZSEpKwqJFi1BRUYEbN260qD8ia8Q5aluYp21hnlZIiMgirFy5UgDInDlzTG0PHjyQfv36iUqlks8++8zUXlpaKo6OjhIbGysiIgaDQQBIamqqaZnY2FgBIKtXrzbbzuDBgyU4ONj0Pj8/XwBIfn6+2XJP9llaWioAZP369W2zw0RWhnPUtjBP28I8rRePjBBZmNmzZ5v+rVar8dJLL0FE8O6775raXV1d4e/vj+vXrz+zv3nz5pm9HzlyZJPWe5KjoyM6d+6Mo0ePorS0tNnrE9kKzlHbwjxtC/O0PixGiCyMp6en2ftu3brBwcEBPXv2rNf+rB80BwcHaLVaszY3N7cW/RBqNBqsW7cOP/74Izw8PPD666/j888/R1FRUbP7IrJmnKO2hXnaFuZpfViMEFmYhm4r2NitBuUZN8Nryi0KVSpVg+3/vUDvkcWLF+PKlStYu3YtHBwcEB8fj4CAAJw9e/aZ2yGyFZyjtoV52hbmaX1YjBB1cG5ubgCAsrIys/bCwsIGl/f19cWSJUtw6NAhXLhwAdXV1WZ3JSGitsU5aluYp21hnq3HYoSog9PpdFCr1fXuKpKUlGT2vqqqCvfu3TNr8/X1hbOzM+7fv9/u4yTqqDhHbQvztC3Ms/XslB4AESmrW7dumDhxIrZu3QqVSgVfX1/k5OSguLjYbLkrV65g9OjRmDRpEgIDA2FnZ4fs7GzcvHkTU6ZMUWj0RLaPc9S2ME/bwjxbj8UIEWHr1q2oqanB9u3bodFoMGnSJKxfvx5BQUGmZfr374+YmBgcPnwY6enpsLOzwwsvvIA9e/YgKipKwdET2T7OUdvCPG0L82wdlTzr6h0iIiIiIqJ2wGtGiIiIiIhIESxGiIiIiIhIESxGiIiIiIhIESxGiIiIiIhIESxGiIiIiIhIESxGiKhZjEYjVCoVdu7cqfRQiKgBnKO2hXnaFuZZH4sRonZ07do1zJ07Fz4+PnBwcICLiwtGjBiBLVu24O7du+223UuXLiEhIQFGo7HdttEUa9aswdtvvw0PDw+oVCokJCQoOh6iJ3XkOXr58mXExcVh0KBBcHZ2Ru/evTFhwgScOXNGsTG1FvNknm2BeT5ffOghUTs5ePAgJk6cCI1Gg+nTpyMoKAjV1dX45Zdf8NFHH+HixYtITk5ul21funQJq1atwv/+9z94eXm1yzaa4pNPPkGvXr0wePBg5OXlKTYOooZ09Dn6zTffYMeOHYiKisL8+fNRXl6Or7/+Gq+88gpyc3MxZswYRcbVUsyTebYV5vl8sRghagcGgwFTpkyBTqfDkSNH0Lt3b9NnCxYswJ9//omDBw8qOMLHRAT37t2Do6Njm/dtMBjg5eWFkpISaLXaNu+fqKU4R4GYmBgkJCSga9euprZZs2YhICAACQkJVvXHDvNknkphnm1AiKjNzZs3TwDI8ePHm7R8TU2NrF69Wnx8fKRz586i0+lk+fLlcu/ePbPldDqdTJgwQY4dOyYvv/yyaDQa8fb2lrS0NNMyqampAqDeKz8/36yP3NxcCQ4OFo1GI5s2bRIRkWvXrkl0dLS4ubmJo6OjDBs2THJycszGYDAYBICkpqY2+fu4deuWAJCVK1c2eR2i9sQ52rjIyEjp3r17i9ZVCvNsHPN8jHlaJhYjRO2gb9++4uPj0+TlY2NjBYBER0fLl19+KdOnTxcAEh4ebracTqcTf39/8fDwkBUrVsi2bdtkyJAholKp5MKFCyLy8Mdw0aJFAkBWrFgh6enpkp6eLkVFRaY+/Pz8xM3NTZYtWybbt2+X/Px8KSoqEg8PD3F2dpaPP/5YNm7cKAMHDpROnTrJvn37TGNgMUK2gHO0ca+++qoMGDCgResqhXk2jnk+xjwtE4sRojZWXl4uACQsLKxJy587d04AyOzZs83aly5dKgDkyJEjpjadTicApKCgwNRWXFwsGo1GlixZYmrLysoy+5+c/3rUR25urln74sWLBYAcO3bM1FZRUSHe3t7i5eUltbW1IsJihKwf52jjCgoKRKVSSXx8fLPXVQrzbBzzZJ7WgHfTImpjt2/fBgA4Ozs3afkffvgBAPDhhx+atS9ZsgQA6p0XGxgYiJEjR5rea7Va+Pv74/r1600eo7e3N8aPH19vHEOHDsVrr71mauvatSvmzJkDo9GIS5cuNbl/IkvGOdqw4uJiTJ06Fd7e3oiLi2tVX88T82wY82Se1oLFCFEbc3FxAQBUVFQ0afnCwkJ06tQJfn5+Zu29evWCq6srCgsLzdo9PT3r9eHm5obS0tImj9Hb27vBcfj7+9drDwgIMH1OZAs4R+urrKxEaGgoKioqcODAAbOLZi0d86yPeTJPa8K7aRG1MRcXF/Tp0wcXLlxo1noqlapJy6nV6gbbRaTJ22qPO2cRWQvOUXPV1dWIjIzE+fPnkZeXh6CgoOe27bbAPM0xz6djnpaHR0aI2kFoaCiuXbuGX3/99ZnL6nQ61NXV4erVq2btN2/eRFlZGXQ6XbO339Qf5SfH8ccff9Rrv3z5sulzIlvBOfpQXV0dpk+fjsOHD2P37t3Q6/XN7sMSMM+HmOdjzNN6sBghagdxcXHo0qULZs+ejZs3b9b7/Nq1a9iyZQsAICQkBACwefNms2U2btwIAJgwYUKzt9+lSxcAQFlZWZPXCQkJwalTp8x+/CsrK5GcnAwvLy8EBgY2exxElopz9KGFCxciMzMTSUlJiIyMbPb6loJ5PsQ8H2Oe1oOnaRG1A19fX+zevRuTJ09GQECA2dNjT5w4gaysLMyYMQMAMHDgQMTGxiI5ORllZWXQ6/U4deoU0tLSEB4ejlGjRjV7+4MGDYJarca6detQXl4OjUaDN954A+7u7o2us2zZMnz77bd46623sGjRInTv3h1paWkwGAzYu3cvOnVq/v9dpKeno7CwEFVVVQCAgoICJCYmAgCmTZvGoy2kGM7Rh3+8JSUlYfjw4XBycsKuXbvMPo+IiDD9UWbpmCfzZJ5WTNmbeRHZtitXrsh7770nXl5e0rlzZ3F2dpYRI0bI1q1bzR7GVFNTI6tWrRJvb2+xt7eX/v37P/WBTU/S6/Wi1+vN2lJSUsTHx0fUanWDD2xqyKMHNrm6uoqDg4MMHTq0VQ9s0uv1DT48Co3cMpHoeevIc/TRsxkaexkMhqeub4mYJ/NkntZHJdKMK3aIiIiIiIjaCK8ZISIiIiIiRbAYISIiIiIiRbAYISIiIiIiRbAYISIiIiIiRbAYISIiIiIiRbAYISIiIiIiRbAYISIiIiIiRbAYISIiIiIiRbAYISIiIiIiRbAYISIiIiIiRbAYISIiIiIiRbAYISIiIiIiRbAYISIiIiIiRfwfEz1VhCP3yIAAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyMAAAInCAYAAACLNYZnAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAl65JREFUeJzs3XdUFNffBvBndpGlg0oVC9glFhSDYkMNirG3vEZjicYSjbGQakVjIRpjSzTGborRNLtBDXbFikQTldgQGyBK7+zO+4dxf9lQhGWHWZbnc84e3anPeh3luzP3XkEURRFERERERERlTCF3ACIiIiIiqphYjBARERERkSxYjBARERERkSxYjBARERERkSxYjBARERERkSxYjBARERERkSxYjBARERERkSxYjBARERERkSxYjBARERERkSxYjJTQo0ePMGfOHDx69EjuKERERERE5RqLkRJ69OgR5s6dy2KEiIiIiKiUWIwQEREREZEsWIwQEREREZEsWIwQEREREZEsynUxcvz4cfTq1QvVqlWDIAjYuXPnC/c5evQoWrRoAZVKhbp162Lz5s2S5yQiIiIiovzKdTGSnp6OZs2aYdWqVcXa/s6dO+jRowc6deqEyMhITJkyBaNHj8aBAwckTkpERERERP9lJneA0nj11Vfx6quvFnv7NWvWwNPTE59//jkAoFGjRjh58iSWLVuGwMBAqWISEREREVEBynUxUlLh4eEICAjQWRYYGIgpU6YUuk92djays7O179PS0qSKV6gJn29FYmpGmZ9XLpVtrbD6vSFyx5BM5IbJyElLlDtGmTG3qQzvt1bIHUMykzZMQmIFas/KNpWx8q2VcseQ1O8ffoispCS5Y5QZCwcHBCxeLHcMyWz/6iAy0rLkjlFmrGwsMGh8V7ljSOarubOQlpIkd4wyY2PngPHB8+SOIakKVYzExsbCxcVFZ5mLiwtSUlKQmZkJS0vLfPuEhIRg7ty5ZRWxQImpGUhILvsiiKSRk5aInNQncscgA0lMS8QTtqdJyUpKQubTp3LHIAPJSMtCekqm3DHIQNJSkpCSWHG+AKoIKlQxoo9p06YhKChI+z4yMhL+/v6yZFEIAqrYWcty7rLwNCUdGlGUO0bZERQwt6ksdwrJ5KQlAqJG7hhlRiEoUNmE2zMxLRGaCtSeAACFApYODnKnkExmUhKgqThtKggCrGwt5I4hmYzULIgV6P9QQRBga8LXZ2pSUoVpzwpVjLi6uiIuLk5nWVxcHOzs7Aq8KwIAKpUKKpVK+97GxkbSjEWpYmeNH+aMlu38Uhs8Z32FugNkblMZvpO/kTuGZM6tGF6h7gBVtqmMbyd/K3cMyQxbMazC3QGydHBAz7Vr5Y4hmb1jx1aoO0BWthYY+UFvuWNIZtNnuyvUHSBbBwd88PkXcseQzGfvvVth7gDJMpqWKIo4fPgwfvvtN6SmppbZef38/BAWFqaz7NChQ/Dz8yuzDERERERE9IzkxciMGTPQqVMn7XtRFNG1a1d06dIFPXr0QJMmTXDr1i29jp2WlobIyEhERkYCeDZ0b2RkJGJiYgA8e8Rq+PDh2u3ffvtt3L59Gx9++CGuX7+O1atX48cff8TUqVP1/4BERERERKQXyYuRX375Bb6+vtr3P//8M8LCwjB//nzs3bsXarUac+bM0evYFy5cQPPmzdG8eXMAQFBQEJo3b47Zs2cDAB49eqQtTADA09MT+/btw6FDh9CsWTN8/vnnWL9+PYf1JSIiIiKSgeR9Rh48eIC6detq3//666/w8vLCtGnTAADjx4/HV199pdexO3bsWGTnnoJmV+/YsSMuXbqk1/mIiIiIiMhwJL8zYmZmpp2nQxRFhIWFoVu3btr1Li4uSEhIkDoGEREREREZGcmLkcaNG+O7775DYmIiNm3ahCdPnqBHjx7a9Xfv3oWjo6PUMYiIiIiIyMhI/pjW7Nmz0atXL23B0bZtW50O7fv27cPLL78sdQwiIiIiIjIykhcjXbp0QUREBA4dOgQHBwcMGjRIuy4xMREdOnRAnz59pI5BRERERERGpkwmPfTy8oKXl1e+5ZUrV8ayZcvKIgIRERERERkZyYuR1NRUJCUloUaNGtplDx8+xJo1a5CdnY2BAwfyMS0iIiIiogpI8mJk7NixuHPnDs6cOQMASElJQevWrXH//n0oFAqsWLECoaGh6Nixo9RRiIiIiIjIiEg+mtbJkyfRs2dP7fvvvvsODx8+xOnTp5GYmIimTZti/vz5UscgIiIiIiIjI3kxkpCQAHd3d+373bt3o127dmjdujVsbW0xfPhw/PHHH1LHICIiIiIiIyN5MeLg4IDY2FgAQGZmJk6cOIGuXbtq15uZmSEjI0PqGEREREREZGQk7zPSpk0brF69Gg0bNkRoaCiysrJ0hvL9+++/de6cEBERERFRxSB5MbJo0SJ07doVAwYMAAC89957eOmllwAAarUaP/30E7p16yZ1DCIiIiIiMjKSFyN169ZFVFQUrl69Cnt7e3h4eGjXZWRk4Msvv0SzZs2kjkFEREREREamTCY9rFSpUoEFh62tLWdfJyIiIiKqoCTvwA48m1vk008/RWBgIJo3b45z584BAJ4+fYqlS5fi5s2bZRGDiIiIiIiMiOR3Ru7fvw9/f3/cu3cP9erVw/Xr15GWlgYAqFKlCr7++mvcvXsXK1askDoKEREREREZEcmLkQ8++ACpqamIjIyEs7MznJ2dddb37dsXe/fulToGEREREREZGckf0zp48CAmTZoELy8vCIKQb33t2rVx7949qWMQEREREZGRkbwYyczMhJOTU6HrU1NTpY5ARERERERGSPJixMvLC8ePHy90/c6dO9G8eXOpYxARERERkZGRvBiZMmUKtm3bhkWLFiE5ORkAoNFocPPmTQwbNgzh4eGYOnWq1DGIiIiIiMjISN6BfejQobh79y5mzpyJGTNmAAC6desGURShUCiwcOFC9O3bV+oYRERERERkZMpk0sMZM2Zg2LBh+OWXX3Dz5k1oNBrUqVMH/fv3R+3atcsiAhERERERGZkyKUYAoGbNmnwci4iIiIiItCTvMxIREYHVq1cXun716tWIjIyUOgYRERERERkZyYuRGTNm4Pfffy90/eHDhzFz5kypYxARERERkZGRvBi5ePEi2rdvX+j69u3b48KFC1LHICIiIiIiIyN5MZKamgozs8K7pigUCu2Qv/pYtWoVPDw8YGFhgVatWuHcuXNFbr98+XI0aNAAlpaWqFGjBqZOnYqsrCy9z09ERERERPqRvBipV68eDh48WOj60NBQvUfU2r59O4KCghAcHIyIiAg0a9YMgYGBiI+PL3D7rVu34uOPP0ZwcDCuXbuGDRs2YPv27Zg+fbpe5yciIiIiIv1JXoy89dZb2LdvH4KCgpCUlKRdnpSUhKlTpyI0NBRvvfWWXsdeunQpxowZg5EjR8LLywtr1qyBlZUVNm7cWOD2p0+fRtu2bTFkyBB4eHiga9euGDx48AvvphARERERkeFJXoxMmjQJI0aMwPLly+Ho6IiaNWuiZs2acHR0xIoVKzB06FC9hvzNycnBxYsXERAQoF2mUCgQEBCA8PDwAvdp06YNLl68qC0+bt++jf3796N79+76fTgiIiIiItKb5POMCIKATZs2Yfjw4fjll19w+/ZtAECfPn0wYMAAdOzYUa/jJiQkQK1Ww8XFRWe5i4sLrl+/XuA+Q4YMQUJCAtq1awdRFJGXl4e33367yMe0srOzkZ2drX2flpamV14iObVs2RKxsbFwdXXlgBFERERkNMps0sNOnTqhU6dOZXW6Ah09ehQLFy7E6tWr0apVK9y8eROTJ0/GvHnzMGvWrAL3CQkJwdy5c8s4KZFhxcbG4sGDB3LHICIiItIh+WNad+7cwZ49ewpdv2fPHkRHR5f4uI6OjlAqlYiLi9NZHhcXB1dX1wL3mTVrFoYNG4bRo0ejSZMm6NevHxYuXIiQkBBoNJoC95k2bRqSk5O1r2PHjpU4KxERERER5Sd5MfL+++9j5cqVha5ftWoVPv744xIf19zcHD4+PggLC9Mu02g0CAsLg5+fX4H7ZGRkQKHQ/chKpRIAIIpigfuoVCrY2dlpXzY2NiXOSkRERERE+UlejISHh6NLly6Frn/llVdw4sQJvY4dFBSEdevWYcuWLbh27RrGjx+P9PR0jBw5EgAwfPhwTJs2Tbt9r1698NVXX2Hbtm24c+cODh06hFmzZqFXr17aooSIiIiIiMqG5H1GEhMTYWtrW+h6GxsbPHnyRK9jDxo0CI8fP8bs2bMRGxsLb29vhIaGaju1x8TE6NwJmTlzJgRBwMyZM/HgwQM4OTmhV69eWLBggV7nJyIiIiIi/UlejNSsWROnTp3C+PHjC1x/4sQJVK9eXe/jT5w4ERMnTixw3dGjR3Xem5mZITg4GMHBwXqfj4iIiIiIDEPyx7QGDx6MH374AStXrtTpJK5Wq7FixQps374dQ4YMkToGEREREREZGcnvjEybNg0nT57ElClTsGDBAjRo0AAAEBUVhcePH6Njx46YMWOG1DGIiIiIiMjISH5nRKVS4eDBg9iwYQN8fX2RkJCAhIQE+Pr6YuPGjfj999+hUqmkjkFEREREREamTCY9VCgUGDlypHaUKyIiIiIiIsnvjBARERERERVE8jsjnTt3fuE2giDoTF5IRERERESmT/JiRKPRQBAEnWVqtRp3797FvXv3ULduXbi7u0sdg6hCc3V11fmViIiIyBhIXoz8d66Pf9u7dy/Gjh2LpUuXSh2DqEK7cOGC3BGIiIiI8imTDuyF6dmzJ4YOHYopU6bg2LFjckYhKlPJgj2Qlod9C0x7jh17uQMQERGRUZO9A3udOnVw/vx5uWMQEREREVEZk/XOSF5eHn788Uc4OjrKGYPI5E1ZfQCJaZmobGOJ5RMC5Y5DREREBKAMipFRo0YVuDwpKQlnzpxBbGws+4wQSSwxLRNPUjLljkFERESkQ/Ji5PDhw/lG0xIEAZUrV0a7du0wevRodO3aVeoYRERERERkZCQvRqKjo6U+BRERERERlUOyd2AnIiIiIqKKSZJiJCMjAzExMcjJycm3buPGjXjllVfg5eWF/v37cyQtIiIiIqIKSpJi5JNPPkHTpk3zFSPz58/HmDFjcOzYMTx+/Bg7d+5Ex44d8ccff0gRg4iIiIiIjJgkxciRI0fQs2dP2NjYaJelpKRg/vz5cHd3x40bN/D48WOcOXMG5ubm+PTTT6WIQURERERERkySYiQ6OhpNmzbVWbZ//37k5OTgo48+gqenJwDA19cXI0eOxIkTJ6SIQURERERERkySYiQ1NRVVq1bVWXb8+HEIgoDAQN0J17y8vPD48WMpYhARERERkRGTpBipVasWrl+/rrPs6NGjcHFxQd26dXWW5+TkwM7OTooYRERERERkxCQpRrp27YqNGzfi7NmzAIBvvvkG169fR79+/fJte/HiRXh4eEgRg4iIiIiIjJgkkx7OmjULO3fuRJs2baBUKpGXlwcnJyfMnj1bZ7uMjAzs2LEDY8eOlSIGEf2jso2lzq9ERERExkCSYsTR0RGRkZFYv349bt++jVq1amHUqFFwdnbW2e7PP//EG2+8gWHDhkkRg4j+sXxC4Is3IiIiIipjkhQjAFC5cmV88MEHRW7j6+sLX19fqSIQEREREZERk6TPCBERERER0YuwGCEiIiIiIlmwGCEiIiIiIlmU+2Jk1apV8PDwgIWFBVq1aoVz584VuX1SUhLeeecduLm5QaVSoX79+ti/f38ZpSUiIiIioucMXozs3r0bDx8+NPRhC7R9+3YEBQUhODgYERERaNasGQIDAxEfH1/g9jk5OejSpQuio6Px888/IyoqCuvWrYO7u3uZ5CUiIiIiov8xeDHSr18/HD16VPu+du3a2L17t6FPAwBYunQpxowZg5EjR8LLywtr1qyBlZUVNm7cWOD2GzduxNOnT7Fz5060bdsWHh4e8Pf3R7NmzSTJR0REREREhTN4MWJra4ukpCTt++joaKSlpRn6NMjJycHFixcREBCgXaZQKBAQEIDw8PAC99m9ezf8/PzwzjvvwMXFBY0bN8bChQuhVqsLPU92djZSUlK0Lyk+CxERERFRRWTweUZ8fX2xYMECxMXFwd7eHgCwf/9+xMbGFrqPIAiYOnVqic6TkJAAtVoNFxcXneUuLi64fv16gfvcvn0bhw8fxhtvvIH9+/fj5s2bmDBhAnJzcxEcHFzgPiEhIZg7d26JshERERER0YsZvBhZvXo1hg8fjnnz5gF4Vmhs3boVW7duLXQffYoRfWg0Gjg7O2Pt2rVQKpXw8fHBgwcP8NlnnxVajEybNg1BQUHa95GRkfD395c8KxERERGRqTN4MVK3bl2cPn0aWVlZiI+Ph4eHB5YvX44+ffoY9DyOjo5QKpWIi4vTWR4XFwdXV9cC93Fzc0OlSpWgVCq1yxo1aoTY2Fjk5OTA3Nw83z4qlQoqlUr73sbGxkCfgIiIiIioYjN4MfKchYUFatasieDgYHTu3Bm1atUy6PHNzc3h4+ODsLAw9O3bF8CzOx9hYWGYOHFigfu0bdsWW7duhUajgULxrLvM33//DTc3twILESIiIiIiko7k84wEBwejcePGAIC0tDRcu3YN165dM0hH8KCgIKxbtw5btmzBtWvXMH78eKSnp2PkyJEAgOHDh2PatGna7cePH4+nT59i8uTJ+Pvvv7Fv3z4sXLgQ77zzTqmzEBERERFRyUh2Z+Tfzp8/jw8//BAnT56ERqMB8Gzkq/bt22Px4sVo2bKlXscdNGgQHj9+jNmzZyM2Nhbe3t4IDQ3VdmqPiYnR3gEBgBo1auDAgQOYOnUqmjZtCnd3d0yePBkfffRR6T8kERERERGViOTFyNmzZ9GxY0eYm5tj9OjRaNSoEQDg2rVr+OGHH9ChQwccPXoUvr6+eh1/4sSJhT6W9e/5Tp7z8/PDmTNn9DoXEREREREZjuTFyIwZM+Du7o6TJ0/m61g+Z84ctG3bFjNmzMChQ4ekjkJEREREREZE8j4jZ8+exbhx4woc4crFxQVjx47lnQoiIiIiogpI8mJEoVAgLy+v0PVqtVqnXwcREREREVUMklcBbdq0wapVq3D37t1862JiYrB69Wq0bdtW6hhERERERGRkJO8zsnDhQnTo0AENGzZEv379UL9+fQBAVFQUdu3aBTMzM4SEhEgdg4iIiIiIjIzkxUjz5s1x9uxZzJgxA7t370ZGRgYAwMrKCt26dcP8+fPh5eUldQwiIiIiIjIyZTLPiJeXF3bs2AGNRoPHjx8DAJycnNhXhIiIiIioAiuTYuQ5hUKhnZCQiIiIiIgqNt6aICIiIiIiWbAYISIiIiIiWbAYISIiIiIiWbAYISIiIiIiWbAYISIiIiIiWZTZaFpXr17F7du3kZiYCFEU860fPnx4WUUhIiIiIiIjIHkxcuvWLQwdOhTnzp0rsAgBAEEQWIwQEREREVUwkhcj48aNw5UrV7B8+XK0b98elStXlvqURERERERUDkhejJw6dQrTp0/Hu+++K/WpiIiIiIioHJG8A7ujoyPs7e2lPg0REREREZUzkhcjb7/9Nr777juo1WqpT0VEREREROWI5I9p1a9fH2q1Gs2aNcOoUaNQo0YNKJXKfNv1799f6ihERERERGREJC9GBg0apP39+++/X+A2giDwzgkRERERUQUjeTFy5MgRqU9BRERERETlkOTFiL+/v9SnICIiIiKicqjMZmAHns3CfvfuXQBArVq14OXlVZanJyIiIiIiI1ImxciuXbsQFBSE6OhoneWenp5YunQpevfuXRYxiIiIiIjIiEg+tO/+/fsxYMAAAMDChQuxY8cO7NixAwsXLoQoiujfvz9CQ0OljkFEREREREZG8jsj8+bNQ9OmTXHixAlYW1trl/fu3RsTJ05Eu3btMHfuXHTr1k3qKEREREREZEQkvzNy+fJljBgxQqcQec7a2hpvvvkmLl++rPfxV61aBQ8PD1hYWKBVq1Y4d+5csfbbtm0bBEFA37599T43ERERERHpT/JixMLCAk+fPi10/dOnT2FhYaHXsbdv346goCAEBwcjIiICzZo1Q2BgIOLj44vcLzo6Gu+//z7at2+v13mJiIiIiKj0JC9GOnfujBUrViA8PDzfurNnz2LlypUICAjQ69hLly7FmDFjMHLkSHh5eWHNmjWwsrLCxo0bC91HrVbjjTfewNy5c1G7dm29zktERERERKUneZ+RxYsXw8/PD+3atYOvry8aNGgAAIiKisK5c+fg7OyMRYsWlfi4OTk5uHjxIqZNm6ZdplAoEBAQUGDh89wnn3wCZ2dnvPXWWzhx4sQLz5OdnY3s7Gzt+7S0tBJnJSIiIiKi/CS/M+Lp6YnLly9j0qRJSExMxPbt27F9+3YkJiZi8uTJ+OOPP+Dh4VHi4yYkJECtVsPFxUVnuYuLC2JjYwvc5+TJk9iwYQPWrVtX7POEhITA3t5e++IkjkREREREhlEm84w4Oztj2bJlWLZsWVmcrkCpqakYNmwY1q1bB0dHx2LvN23aNAQFBWnfR0ZGsiAhIiIiIjKAMp2B3ZAcHR2hVCoRFxenszwuLg6urq75tr916xaio6PRq1cv7TKNRgMAMDMzQ1RUFOrUqZNvP5VKBZVKpX1vY2NjqI9ARERERFShGbwYGTVqFARBwNq1a6FUKjFq1KgX7iMIAjZs2FCi85ibm8PHxwdhYWHa4Xk1Gg3CwsIwceLEfNs3bNgQV65c0Vk2c+ZMpKamYsWKFahRo0aJzk9ERERERKVj8GLk8OHDUCgU0Gg0UCqVOHz4MARBKHKfF60vTFBQEEaMGIGWLVvC19cXy5cvR3p6OkaOHAkAGD58ONzd3RESEgILCws0btxYZ38HBwcAyLeciIiIiAgAWrZsidjYWLi6uuLChQtyxzE5Bi9GoqOji3xvSIMGDcLjx48xe/ZsxMbGwtvbG6GhodpO7TExMVAoJO+jT0REREQmKjY2Fg8ePJA7hsmSvM9ITEwMnJycYGlpWeD6zMxMPH78GDVr1tTr+BMnTizwsSwAOHr0aJH7bt68Wa9zEhERERFR6ZXJ0L47duwodP3u3bvh6ekpdQwiIiIiIjIykhcjoigWuT43N5ePUhERERERVUCSPKaVkpKCpKQk7fsnT54gJiYm33ZJSUnYtm0b3NzcpIhBREREVObY4Zmo+CQpRpYtW4ZPPvkEwLORsqZMmYIpU6YUuK0oipg/f74UMYiIiIjKHDs8ExWfJMVI165dYWNjA1EU8eGHH2Lw4MFo0aKFzjaCIMDa2ho+Pj5o2bKlFDGIiIiIiMiISVKM+Pn5wc/PDwCQnp6OAQMGcC4PIiIiIiLSIenQvhkZGVi5ciWsrKxYjBARERERkQ5Jh7GysrKCmZkZrK2tpTwNERERERGVQ5KPqTtgwAD8/PPPLxzil4iIiIiIKhbJZ2B//fXXMWHCBHTq1AljxoyBh4dHgbOx/7eDOxERERERmTbJi5GOHTtqf3/ixIl860VRhCAIUKvVUkchIiIiIioRV1dXnV/JsCQvRjZt2iT1KYiIiIiIJMGJK6UleTEyYsQIqU9BRERERBVEnsIMT5NTMW30m3JHkZTkP6QbiTL9nGlpabh37x4AoEaNGrCxsSnL0xMRERERkRGRfDQtADh//jw6deqEypUro3HjxmjcuDEqV66Mzp0789YXERERERmtzbv2YtUPP2Hzrr1yRzFJkt8ZOXv2LDp27Ahzc3OMHj0ajRo1AgBcu3YNP/zwAzp06ICjR4/C19dX6ihEREREkmOHZ9OSnpGJ1IwMuWOYLMmLkRkzZsDd3R0nT57Md1HOmTMHbdu2xYwZM3Do0CGpoxARERFJjk99EBVfmdwZmT17doHfDri4uGDs2LGYN2+e1DGIiIioojLPQXpWDr6c963cSSRmLncAohKTvM+IQqFAXl5eoevVajUUijLpukJEREREREZE8jsjbdq0wapVqzBkyBDUqlVLZ11MTAxWr16Ntm3bSh2DiIiIqEwsXjMbqWnJsLWxx4dvfyJ3HCKjJnkxsnDhQnTo0AENGzZEv379UL9+fQBAVFQUdu3aBTMzM4SEhEgdg4iIiKhMpKYlIyklUe4YROWC5MVI8+bNcfbsWcyYMQO7d+9Gxj+jEVhZWaFbt26YP38+vLy8pI5BRERERERGpkwmPfTy8sKOHTug0Wjw+PFjAICTkxP7ihARERERVWBlOgO7IAgQBEH7eyIiIiIiqrjK5NbE1atXMXDgQNjZ2cHNzQ1ubm6ws7PDwIED8eeff5ZFBCIiIqPVsmVLVK9eHS1btpQ7ChFRmZL8zsiJEyfw6quvQqPRoE+fPjod2Hfv3o3ffvsNoaGhaN++vdRRiIiIjFJsbCwePHggdwwiojIneTEydepUODs749ixY6hRo4bOunv37qFDhw4ICgrC+fPnpY5CRERERERGRPLHtP766y9MmDAhXyECADVq1MD48ePx119/6X38VatWwcPDAxYWFmjVqhXOnTtX6Lbr1q1D+/btUblyZVSuXBkBAQFFbk9EREREFZu1lSVsraxgbWUpdxSTJPmdkVq1aiE7O7vQ9Tk5OQUWKsWxfft2BAUFYc2aNWjVqhWWL1+OwMBAREVFwdnZOd/2R48exeDBg9GmTRtYWFhg0aJF6Nq1K/766y+4u7vrlYGIiIiITNebfXrKHcGkSX5nZPbs2Vi5ciUiIyPzrbt06RK++OILzJkzR69jL126FGPGjMHIkSPh5eWFNWvWwMrKChs3bixw+++//x4TJkyAt7c3GjZsiPXr10Oj0SAsLEyv85sydqYkMl68PomIyFRIfmfkzJkzcHFxgY+PD9q0aYO6desCAG7cuIHw8HA0btwY4eHhCA8P1+4jCAJWrFhR5HFzcnJw8eJFTJs2TbtMoVAgICBA51hFycjIQG5uLqpUqVLoNtnZ2Tp3dtLS0op17PKOnSmJjBevTyIiMhWSFyNffvml9venTp3CqVOndNZfuXIFV65c0VlWnGIkISEBarUaLi4uOstdXFxw/fr1YmX76KOPUK1aNQQEBBS6TUhICObOnVus4xERERHZ2tjr/EpEhZO8GNFoNFKfQi+ffvoptm3bhqNHj8LCwqLQ7aZNm4agoCDt+8jISPj7+5dFRCIiIiqHPnz7E7kjEJUbZToDuyE5OjpCqVQiLi5OZ3lcXBxcXV2L3HfJkiX49NNP8fvvv6Np06ZFbqtSqaBSqbTvbWxs9A9NRERERERaZVaM3LlzB7/99hvu3r0L4NkoW6+++io8PT31Op65uTl8fHwQFhaGvn37AoC2M/rEiRML3W/x4sVYsGABDhw4wM6fRERkFJ5/ifaiL9OIiExNmRQj7733HlasWJHvkS2FQoEpU6ZgyZIleh03KCgII0aMQMuWLeHr64vly5cjPT0dI0eOBAAMHz4c7u7uCAkJAQAsWrQIs2fPxtatW+Hh4YHY2FgAz+528I4HERHJ5cKFC3JHICKSheTFyOeff45ly5Zh4MCBeO+999CoUSMAwLVr17Bs2TIsW7YM7u7umDp1aomPPWjQIDx+/BizZ89GbGwsvL29ERoaqu3UHhMTA4Xif6MXf/XVV8jJycHAgQN1jhMcHKz38MJERGR60q2tkZ6djc0jRsgdRVLWcgcgogpP8mJk3bp16N27N3788Ued5a1atcK2bduQlZWFr7/+Wq9iBAAmTpxY6GNZR48e1XkfHR2t1zmIiIiIiMjwJJ/0MDo6GoGBgYWuDwwMZJFAREQV2tx9+xD088+Yu2+f3FGIiMqU5HdGnJ2d8ccffxS6/o8//oCTk5PUMaiE2JmSyHjx+jQ9yZmZSMzIkDsGEVGZk7wYee2117BixQp4eHjg3XffhbX1sydU09PT8eWXX2L9+vWYMmWK1DGohNiZksh48fokIiJTIXkxMm/ePERGRmL69OmYPXs2qlWrBgB4+PAh8vLy0KlTJ3zyCScHehErMQMZSRnoM2Wh3FGkJVjJnYCoxFTZKqRlp6HfrH5yR5GW6sWbEBERlYTkxYiVlRXCwsKwa9cunXlGunXrhu7du6NXr14QBEHqGEREREREZGQkLUYyMjIwdOhQDBgwAG+88Qb69Okj5enIgI79sArZGWlQWdnAf/A7cschon85uuEostKyYGFjgY5vdZQ7DhERkd4kHU3LysoKv//+OzLYKa/cyc5IQ1ZaCrIz0uSOQkT/kZWWhazULGSlZckdhYiIqFQkH9q3Xbt2CA8Pl/o0RERERERUzkhejHz55Zc4ceIEZs6cifv370t9OiIiIiIiKickL0aaNWuG+/fvIyQkBLVq1YJKpYKdnZ3Oy97eXuoYRERERERkZCQfTWvAgAEcLYuIiIiIiPKRvBjZvHmz1KcgIiIq1+wtLXV+JSKqKCQrRrKysrBr1y7cuXMHjo6O6NGjB9zc3KQ6HRERUbkV3KOH3BGIiGQhSTESHx+PNm3a4M6dOxBFEcCzYX537tyJgIAAKU5JRERERETljCQd2OfNm4fo6GhMnToVe/fuxfLly2FpaYlx48ZJcToiIiIiIiqHJLkzcvDgQQwfPhxLlizRLnNxccGQIUMQFRWFBg0aSHFaMiCVlY3Or0RkPCxsLHR+JSIiKq8kKUZiYmLw0Ucf6Sxr164dRFFEXFwci5FywH/wO3JHIKJCdHyro9wRiIiIDEKSx7Sys7NhYaH7jd3z93l5eVKckoiIiIiIyhnJRtOKjo5GRESE9n1ycjIA4MaNG3BwcMi3fYsWLaSKQkRERERERkiyYmTWrFmYNWtWvuUTJkzQeS+KIgRBgFqtlioKEREREREZIUmKkU2bNklxWCIiIiIiMiGSFCMjRoyQ4rBERERERGRCJOnATkRERERE9CIsRoiIiIiISBYsRoiIiIiISBYsRoiIiIiISBYsRoiIiIiISBblvhhZtWoVPDw8YGFhgVatWuHcuXNFbv/TTz+hYcOGsLCwQJMmTbB///4ySkpERERERP9WrouR7du3IygoCMHBwYiIiECzZs0QGBiI+Pj4Arc/ffo0Bg8ejLfeeguXLl1C37590bdvX/z5559lnJyIiIiIiMp1MbJ06VKMGTMGI0eOhJeXF9asWQMrKyts3LixwO1XrFiBbt264YMPPkCjRo0wb948tGjRAl9++WUZJyciIiIionJbjOTk5ODixYsICAjQLlMoFAgICEB4eHiB+4SHh+tsDwCBgYGFbk9ERERERNKRZAb2spCQkAC1Wg0XFxed5S4uLrh+/XqB+8TGxha4fWxsbKHnyc7ORnZ2tvZ9WlpaKVKXL1npKchKTy3bcwoWUGRYISIiokzPW5au33uCxEx1mZ+3iq0lqthalvl5SRpZqVnISssq03PmmOcAVjDp6xMAbiYkICknR+4YZcIyMxMqjcak2/Tu/VvIzKkg/3fnVoJlisqk2/N+XDxS0jLK/Lw2VpawsbIq8/NWBOW2GCkrISEhmDt3rs4yf39/uLm5lVmGH+aMLrNzPZednY3AwEAcP3aszM8NAAfXzpflvKbM398fBw5sg0qlkjuKSfl28rdlfs7n1+cxma7P3z7/TZbzkoR27JA7ARnQ3JVyJzA9z/4PPcD/QyVQbosRR0dHKJVKxMXF6SyPi4uDq6trgfu4urqWaHsAmDZtGoKCgnSWqVQqk//LmJ2djWPHjuHYsWOwsbGROw6VUlpaGvz9/ZGdnW3yf3crAl6fpuf5Nco2NQ1sT9PC/0OlVW6LEXNzc/j4+CAsLAx9+/YFAGg0GoSFhWHixIkF7uPn54ewsDBMmTJFu+zQoUPw8/Mr9DwVofAoire3N+zs7OSOQaWUkpIidwSSAK9P0/H8GmWbmga2p2nh/6HSKrfFCAAEBQVhxIgRaNmyJXx9fbF8+XKkp6dj5MiRAIDhw4fD3d0dISEhAIDJkyfD398fn3/+OXr06IFt27bhwoULWLt2rZwfg4iIiIioQirXxcigQYPw+PFjzJ49G7GxsfD29kZoaKi2k3pMTAwUiv8NGNamTRts3boVM2fOxPTp01GvXj3s3LkTjRs3lusjEBERERFVWOW6GAGAiRMnFvpY1tGjR/Mte+211/Daa69JnKr8U6lUCA4OrtCPqJkStqdpYXuaHrapaWF7mha2p7QEURRFuUMQEREREVHFU24nPSQiIiIiovKNxQgREREREcmCxQgREREREcmCxQhJLjo6GoIgYPPmzXJHIaIC8BolIiK5sBgxMrdu3cK4ceNQu3ZtWFhYwM7ODm3btsWKFSuQmZkp2XmvXr2KOXPmIDo6WrJzFMeCBQvQu3dvuLi4QBAEzJkzR9Y8ZUkQhGK9CholrqQyMjIwZ86cEh2rIrfNv1Xka/T69ev48MMP4e3tDVtbW7i5uaFHjx64cOGCbJnKijFfnxW5XUrDmNv04cOHGDp0KBo0aABbW1s4ODjA19cXW7ZsAccdKpgxt+d/ff/99xAEATY2NqXOYgrK/dC+pmTfvn147bXXoFKpMHz4cDRu3Bg5OTk4efIkPvjgA/z111+STdB49epVzJ07Fx07doSHh4ck5yiOmTNnwtXVFc2bN8eBAwdkyyGHb7/9Vuf9N998g0OHDuVb3qhRo1KfKyMjA3PnzgUAdOzYsVj7VOS2ea6iX6Pr16/Hhg0bMGDAAEyYMAHJycn4+uuv0bp1a4SGhiIgIECWXGXBmK/PitwupWHMbZqQkID79+9j4MCBqFmzJnJzc3Ho0CG8+eabiIqKwsKFC0udydQYc3v+W1paGj788ENYW1uXOofJEMko3L59W7SxsREbNmwoPnz4MN/6GzduiMuXL5fs/D/99JMIQDxy5MgLt9VoNGJGRkaxj33nzh0RgLhp06ZibSuKovj48WMRgBgcHFzs85iad955R5TqEtXnz7eitw2vUVG8cOGCmJqaqrMsISFBdHJyEtu2bVvs85kCY7o+2S6GYUxtWpiePXuK1tbWYl5enmGCmTBjbc+PPvpIbNCggfjGG2+I1tbWhg9XDvExLSOxePFipKWlYcOGDXBzc8u3vm7dupg8ebL2fV5eHubNm4c6depApVLBw8MD06dPR3Z2ts5+Hh4e6NmzJ06ePAlfX19YWFigdu3a+Oabb7TbbN68WTsRZKdOnfLdynx+jAMHDqBly5awtLTE119/DQC4ffs2XnvtNVSpUgVWVlZo3bo19u3bp/efg5x3ZcoDjUaD5cuX46WXXoKFhQVcXFwwbtw4JCYm6mx34cIFBAYGwtHREZaWlvD09MSoUaMAPOsf4OTkBACYO3eutr1f9NhVRW8bXqOAj49PvscKqlativbt2+PatWt6HdOUyHV9sl2kI+e/uQXx8PBARkYGcnJySv3ZKiK52/PGjRtYtmwZli5dCjMzPpz0HP8kjMSePXtQu3ZttGnTpljbjx49Glu2bMHAgQPx3nvv4ezZswgJCcG1a9ewY8cOnW1v3ryJgQMH4q233sKIESOwceNGvPnmm/Dx8cFLL72EDh06YNKkSVi5ciWmT5+uvYX571uZUVFRGDx4MMaNG4cxY8agQYMGiIuLQ5s2bZCRkYFJkyahatWq2LJlC3r37o2ff/4Z/fr1M9wfEAEAxo0bh82bN2PkyJGYNGkS7ty5gy+//BKXLl3CqVOnUKlSJcTHx6Nr165wcnLCxx9/DAcHB0RHR+PXX38FADg5OeGrr77C+PHj0a9fP/Tv3x8A0LRpUzk/mtHjNVq42NhYODo6GuRY5ZmxXZ9sl9KTu00zMzORnp6OtLQ0HDt2DJs2bYKfnx8sLS0l/dymSu72nDJlCjp16oTu3bvjxx9/lPSzlity35ohUUxOThYBiH369CnW9pGRkSIAcfTo0TrL33//fRGAePjwYe2yWrVqiQDE48ePa5fFx8eLKpVKfO+997TLinoE5PkxQkNDdZZPmTJFBCCeOHFCuyw1NVX09PQUPTw8RLVaLYpiyR7Teq6iPgr0b/+9xXzixAkRgPj999/rbBcaGqqzfMeOHSIA8fz584UeuzR/vhWxbXiNFu748eOiIAjirFmzSrxveWas1+dzFbVdSsMY2zQkJEQEoH298sorYkxMTImOUVEZW3vu3btXNDMzE//66y9RFEVxxIgRfEzrH3xMywikpKQAAGxtbYu1/f79+wEAQUFBOsvfe+89AMj3CIaXlxfat2+vfe/k5IQGDRrg9u3bxc7o6emJwMDAfDl8fX3Rrl077TIbGxuMHTsW0dHRuHr1arGPTy/2008/wd7eHl26dEFCQoL29fwRjSNHjgAAHBwcAAB79+5Fbm6ujIlNB6/RgsXHx2PIkCHw9PTEhx9+WKpjlXfGdH2yXQzDGNp08ODBOHToELZu3YohQ4YAgKSj9pkyOdszJycHU6dOxdtvvw0vLy+DHNOUsBgxAnZ2dgCA1NTUYm1/9+5dKBQK1K1bV2e5q6srHBwccPfuXZ3lNWvWzHeMypUr53tGsiienp4F5mjQoEG+5c8fHflvDiqdGzduIDk5Gc7OznByctJ5paWlIT4+HgDg7++PAQMGYO7cuXB0dESfPn2wadOmfH0VqPh4jeaXnp6Onj17IjU1Fbt27arwQ1Qay/XJdjEcY2jTWrVqISAgAIMHD8b333+P2rVrIyAggAWJHuRsz2XLliEhIUE7AhfpYp8RI2BnZ4dq1arhzz//LNF+giAUazulUlngcrEEY5Xz+VT5aTQaODs74/vvvy9w/fMOdYIg4Oeff8aZM2ewZ88eHDhwAKNGjcLnn3+OM2fO8IcTPfAa1ZWTk4P+/fvj8uXLOHDgABo3blxm5zZWxnB9sl0Myxja9L8GDhyIdevW4fjx4/nuhFLR5GrP5ORkzJ8/HxMmTEBKSor2TntaWhpEUUR0dDSsrKzg7Oxcug9YjrEYMRI9e/bE2rVrER4eDj8/vyK3rVWrFjQaDW7cuKHTgTUuLg5JSUmoVatWic9f3B+a/psjKioq3/Lr169r15Ph1KlTB7///jvatm1brB88W7dujdatW2PBggXYunUr3njjDWzbtg2jR4/Wq70rOl6jz2g0GgwfPhxhYWH48ccf4e/vX+JjmCK5r0+2i+HJ3aYFeX5HJDk52SDHq0jkas/ExESkpaVh8eLFWLx4cb71np6e6NOnD3bu3FmSj2NS+JiWkXg+Ac7o0aMRFxeXb/2tW7ewYsUKAED37t0BAMuXL9fZZunSpQCAHj16lPj8zyffSUpKKvY+3bt3x7lz5xAeHq5dlp6ejrVr18LDw4PPRRrY//3f/0GtVmPevHn51uXl5WnbLjExMd836t7e3gCgvc1sZWUFoGTtXdHxGn3m3Xffxfbt27F69WrtKDIk//XJdjE8Odv08ePHBS7fsGEDBEFAixYtinUc+h+52tPZ2Rk7duzI9+rUqRMsLCywY8cOTJs2Tf8PZgJ4Z8RI1KlTB1u3bsWgQYPQqFEjndmdT58+jZ9++glvvvkmAKBZs2YYMWIE1q5di6SkJPj7++PcuXPYsmUL+vbti06dOpX4/N7e3lAqlVi0aBGSk5OhUqnQuXPnIm8bfvzxx/jhhx/w6quvYtKkSahSpQq2bNmCO3fu4JdffoFCUfJa99tvv8Xdu3eRkZEBADh+/Djmz58PABg2bFiFvtvi7++PcePGISQkBJGRkejatSsqVaqEGzdu4KeffsKKFSswcOBAbNmyBatXr0a/fv1Qp04dpKamYt26dbCzs9P+kGxpaQkvLy9s374d9evXR5UqVdC4ceMiH+uo6G3Da/RZcbV69Wr4+fnBysoK3333nc76fv36VdhZheW8Ptku0pCzTRcsWIBTp06hW7duqFmzJp4+fYpffvkF58+fx7vvvpuvPxq9mFztaWVlhb59++ZbvnPnTpw7d67AdRWOjCN5UQH+/vtvccyYMaKHh4dobm4u2traim3bthW/+OILMSsrS7tdbm6uOHfuXNHT01OsVKmSWKNGDXHatGk624jisyE/e/Toke88/v7+or+/v86ydevWibVr1xaVSqXOEKKFHUMURfHWrVviwIEDRQcHB9HCwkL09fUV9+7dq7NNSYYN9ff31xnG8N+v4sw8bUoKmz127dq1oo+Pj2hpaSna2tqKTZo0ET/88EPtrOARERHi4MGDxZo1a4oqlUp0dnYWe/bsKV64cEHnOKdPnxZ9fHxEc3PzYg1RyLZ5piJfoyNGjCj07wAA8c6dO0Xub0qM6fpkuxiGMbXpwYMHxZ49e4rVqlUTK1WqpP13ZtOmTaJGozHo5zZVxtSeBeHQvv8jiGIJekgSEREREREZCPuMEBERERGRLFiMEBERERGRLFiMEBERERGRLFiMEBERERGRLFiMEBERERGRLFiMlDOLFy9Gw4YNodFo5I5Saq+//jr+7//+T+4YsmJ7mh62qWlhe5oWtqdpYXuaCLnHFqbiS05OFqtUqSJu3LhRuwz/jCO/ZMmSfNtv2rRJBCCeP3/e4FkCAgJEAOI777xT4Pr169eLDRs2FFUqlVi3bl1x5cqV+baJiIgQFQqFGBkZafB85QHb0/SwTU0L29O0sD1NC9vTdPDOSDmyceNG5OXlYfDgwfnWffbZZ9qZsaX266+/Ijw8vND1X3/9NUaPHo2XXnoJX3zxBfz8/DBp0iQsWrRIZ7vmzZujZcuW+Pzzz6WObJTYnqaHbWpa2J6mhe1pWtieJkTuaoiKr2nTpuLQoUN1lgEQvb29RQDi559/rrNOim8BMjMzRQ8PD/GTTz4p8FuAjIwMsWrVqvlmg37jjTdEa2tr8enTpzrLlyxZIlpbW4upqakGy1hesD1ND9vUtLA9TQvb07SwPU0H74yUE3fu3MHly5cREBCQb13btm3RuXNnLF68GJmZmZLmWLx4MTQaDd5///0C1x85cgRPnjzBhAkTdJa/8847SE9Px759+3SWd+nSBenp6Th06JBkmY0R29P0sE1NC9vTtLA9TQvb07SwGCknTp8+DQBo0aJFgevnzJmDuLg4fPXVV0UeJzs7GwkJCcV6/VdMTAw+/fRTLFq0CJaWlgUe/9KlSwCAli1b6iz38fGBQqHQrn/Oy8sLlpaWOHXqVJG5TQ3b0/SwTU0L29O0sD1NC9vTtJjJHYCK5/r16wAAT0/PAte3b98enTp1wmeffYbx48cXemH88MMPGDlyZLHOKYqizvv33nsPzZs3x+uvv17oPo8ePYJSqYSzs7POcnNzc1StWhUPHz7UWW5mZoYaNWrg6tWrxcpkKtiepodtalrYnqaF7Wla2J6mhcVIOfHkyROYmZnBxsam0G3mzJkDf39/rFmzBlOnTi1wm8DAQL1u/x05cgS//PILzp49W+R2mZmZMDc3L3CdhYVFgbdMK1euXOC3DqaM7Wl62Kamhe1pWtiepoXtaVpYjJiQDh06oFOnTli8eDHefvvtArdxc3ODm5tbiY6bl5eHSZMmYdiwYXj55ZeL3NbS0hI5OTkFrsvKyirw2wlRFCEIQokyVQRsT9PDNjUtbE/TwvY0LWzP8oPFSDlRtWpV5OXlITU1Fba2toVuFxwcjI4dO+Lrr7+Gg4NDvvWZmZlITk4u1jldXV0BAN988w2ioqLw9ddfIzo6Wmeb1NRUREdHw9nZGVZWVnBzc4NarUZ8fLzObcmcnBw8efIE1apVy3eexMRE1KtXr1iZTAXb0/SwTU0L29O0sD1NC9vTtLADeznRsGFDAM9GkCiKv78/OnbsiEWLFhV4+2/79u3abwJe9HouJiYGubm5aNu2LTw9PbUv4NlF6enpiYMHDwIAvL29AQAXLlzQOe+FCxeg0Wi065/Ly8vDvXv30KhRoxL9eZR3bE/TwzY1LWxP08L2NC1sT9PCOyPlhJ+fH4Bnf4GbNm1a5LZz5sxBx44dsXbt2nzr9Hk+8vXXX893wQBAv3790L17d4wZMwatWrUCAHTu3BlVqlTBV199he7du2u3/eqrr2BlZYUePXroHOPq1avIyspCmzZtSpSpvGN7mh62qWlhe5oWtqdpYXuaGHmmNyF9NG7cWBw8eLDOMhQwyY4oiqK/v78IwOAT/BTn3KtWrRIBiAMHDhTXrVsnDh8+XAQgLliwIN+2S5YsEa2srMSUlBRJMhoztqfpYZuaFranaWF7mha2p+lgMVKOLF26VLSxsREzMjK0ywr7y3/kyBHZLjxRFMW1a9eKDRo0EM3NzcU6deqIy5YtEzUaTb7tWrVqlW8G1YqC7Wl62Kamhe1pWtiepoXtaTpYjJQjSUlJYpUqVcT169fLHcUgLl26JAqCIF66dEnuKLJge5oetqlpYXuaFranaWF7mg5BFP8ziwsZtUWLFmHTpk24evUqFIryPf7A66+/Do1Ggx9//FHuKLJhe5oetqlpYXuaFranaWF7mgYWI0REREREJIvyXUYSEREREVG5xWKEiIiIiIhkwWKEiIiIiIhkwWKEiIiIiIhkwWKEiIiIiIhkwWKEiIiIiIhkwWKEiIiIiIhkwWKEiIiIiIhkwWKEiIiIiIhkwWKEiIiIiIhkwWKEiIiIiIhkwWKEiIiIiIhkwWKEiIiIiIhkwWKkhB49eoQ5c+bg0aNHckchIiIiIirXWIyU0KNHjzB37lwWI0REREREpcRihIiIiIiIZMFihIiIiIiIZMFihIiIiIiIZMFihIiIiIiIZMFihIiIiIiIZMFihIiIiIiIZMFihIiIiIiIZMFihKiiyHgqdwIiIiIiHSxGiCqK9MdyJyAiIiLSwWKEqKLITpU7AREREZEOFiNEFUV2CqBRy52CiIiISKvUxcijR4/wxx9/ID093RB5SmzVqlXw8PCAhYUFWrVqhXPnzhW5/fLly9GgQQNYWlqiRo0amDp1KrKyssooLZGMRJH9RoiIiMio6F2M7Nq1Cw0bNkT16tXRokULnD17FgCQkJCA5s2bY+fOnYbKWKjt27cjKCgIwcHBiIiIQLNmzRAYGIj4+PgCt9+6dSs+/vhjBAcH49q1a9iwYQO2b9+O6dOnS56VyCikPpI7AREREZGWXsXInj170L9/fzg6OiI4OBiiKGrXOTo6wt3dHZs2bTJYyMIsXboUY8aMwciRI+Hl5YU1a9bAysoKGzduLHD706dPo23bthgyZAg8PDzQtWtXDB48+IV3U4hMRsoDuRMQERERaelVjHzyySfo0KEDTp48iXfeeSffej8/P1y6dKnU4YqSk5ODixcvIiAgQLtMoVAgICAA4eHhBe7Tpk0bXLx4UVt83L59G/v370f37t0LPU92djZSUlK0r7S0NMN+EKKylBQjdwIiIiIiLTN9dvrzzz+xdOnSQte7uLgU+qiUoSQkJECtVsPFxSXfua9fv17gPkOGDEFCQgLatWsHURSRl5eHt99+u8jHtEJCQjB37lyDZieSTWK03AmIiIiItPS6M2JlZVVkh/Xbt2+jatWqeoeSytGjR7Fw4UKsXr0aERER+PXXX7Fv3z7Mmzev0H2mTZuG5ORk7evYsWNlmJjIwJ7clDsBERERkZZexUinTp2wZcsW5OXl5VsXGxuLdevWoWvXrqUOVxRHR0colUrExcXpLI+Li4Orq2uB+8yaNQvDhg3D6NGj0aRJE/Tr1w8LFy5ESEgINBpNgfuoVCrY2dlpXzY2Ngb/LERlJi0eSE+QOwURERERAD2LkQULFuD+/ft4+eWX8fXXX0MQBBw4cAAzZ85EkyZNIIoigoODDZ1Vh7m5OXx8fBAWFqZdptFoEBYWBj8/vwL3ycjIgEKh+5GVSiUA6HTCJzJp9zhgAxERERkHvYqRBg0a4OTJk6hatSpmzZoFURTx2WefYeHChWjSpAlOnDgBDw8PA0fNLygoCOvWrcOWLVtw7do1jB8/Hunp6Rg5ciQAYPjw4Zg2bZp2+169euGrr77Ctm3bcOfOHRw6dAizZs1Cr169tEUJkcn7+ze5ExAREREB0LMDOwC89NJL+P3335GYmIibN29Co9Ggdu3acHJyMmS+Ig0aNAiPHz/G7NmzERsbC29vb4SGhmo7tcfExOjcCZk5cyYEQcDMmTPx4MEDODk5oVevXliwYEGZZSaS3aPLwMNIoJq33EmIiIioghNEPp9UIhEREfDx8cHFixfRokULueMQFd/NMCDsk2e/r+wB9F8HmJnLGomIiIgqNr0e01q5ciUCAwMLXf/qq6/iq6++0jsUEUksMRqI2CJ3CiIiIqrg9CpGNmzYAC8vr0LXe3l5Ye3atXqHIqIyEPn9s0e2iIiIiGSiVzFy69YtNGrUqND1DRs2xK1bt/QORURlQBSBoyFAbqbcSYiIiKiC0qsYMTc3R2xsbKHrHz16lG8IXSIyQikPgbNfy52CiIiIKii9KobWrVtj8+bNSE1NzbcuOTkZmzZtQuvWrUsdjojKwF87gJizcqcgIiKiCkivoX2Dg4Ph7+8Pb29vTJkyBS+99BIA4M8//8Ty5cvx6NEjbN261aBBiUh/LVu2ROz9u3BVZeHC9AJGgTs8D+i/FrCrVvbhiIiIqMLSqxhp1aoV9uzZg3HjxmHy5MkQBAHAs1nMPT09sXv37kJnQSeishcbG4sHcQmAQyFD+WanAvs/AHp/AVhVKdtwREREVGHpPelhly5dcPPmTVy6dEnbWb1OnTpo0aKFtjghonIk+T6wdyrQ43PA2lHuNERERFQB6F2MAIBCoYCPjw98fHwMlYeI5JQYDex6B3h1MVC5ltxpiIiIyMSVqhi5evUqbt++jcTERBQ0kfvw4cNLc3gikkNq7LOCpOt8oJq33GmIiIjIhOlVjNy6dQtDhw7FuXPnCixCAEAQBBYjROVVdiqw/32g03SgTme50xAREZGJ0qsYGTduHK5cuYLly5ejffv2qFy5sqFzEZHc1LlA2CdAZiLQeIDcaYiIiMgE6VWMnDp1CtOnT8e7775r6DxEZExEETi1EkhPAF4eA3AyUyIiIjIgvX6ycHR0hL29vaGzEJGxitwKHP4EyMuWOwkRERGZEL2Kkbfffhvfffcd1Gq1ofMQkbG6dQTY/S6Q9ljuJERERGQi9HpMq379+lCr1WjWrBlGjRqFGjVqQKlU5tuuf//+pQ5IREbkcRTw6xggYA5H2iIiIqJS06sYGTRokPb377//foHbCILAOydEpigz8dnkiK3GAU0HAZzklIiIiPSkVzFy5MgRQ+cgovJE1ABnvnp2p6Tjx4CZSu5EREREVA7pVYz4+/sbOgcRlUe3DgMZCUC3TwFza7nTEBERUTlTqnE6s7OzER4ejl27diEhIcFQmYioPHl0GTg4E1DnyZ2EiIiIyhm9i5GVK1fCzc0N7dq1Q//+/XH58mUAQEJCAhwdHbFx40aDhSQiI/cgAjj7ldwpiIiIqJzRqxjZtGkTpkyZgm7dumHDhg0QRVG7ztHREZ07d8a2bdsMFpKIyoErPwPRp+ROQUREROWIXsXI559/jj59+mDr1q3o1atXvvU+Pj7466+/Sh2uOFatWgUPDw9YWFigVatWOHfuXJHbJyUl4Z133oGbmxtUKhXq16+P/fv3l0lWIpN37FMg/YncKYiIiKic0KsYuXnzJl599dVC11epUgVPnkj/A8n27dsRFBSE4OBgREREoFmzZggMDER8fHyB2+fk5KBLly6Ijo7Gzz//jKioKKxbtw7u7u6SZyWqELJSgGOLgH/dLSUiIiIqjF7FiIODQ5Ed1q9evQpXV1e9QxXX0qVLMWbMGIwcORJeXl5Ys2YNrKysCu2vsnHjRjx9+hQ7d+5E27Zt4eHhAX9/fzRr1kzyrERyiYmJQXp6OgAgPVuNmKdZ0p7w3lng6k5pz0FEREQmQa+hfbt37461a9diwoQJ+db99ddfWLduHUaNGlXqcEXJycnBxYsXMW3aNO0yhUKBgIAAhIeHF7jP7t274efnh3feeQe7du2Ck5MThgwZgo8++qjAGeSBZyOGZWdna9+npaUZ9oMQSeTcuXOYN28e9u3bp+3XlZSphseMc+jZpApmda+Flz1spTn5mTVAdV/A3jB3HXMzU3E7dA2e3jgLCAo4NmyD2oHjoDS3LHSfy998jJSYKzrLXFu8irrdJwIA4v44hBt7lhe4r+/U72Fu7WCQ7ERERFQ4vYqR+fPno1WrVmjcuDF69eoFQRCwZcsWbNy4Eb/88gvc3Nwwe/ZsQ2fVkZCQALVaDRcXF53lLi4uuH79eoH73L59G4cPH8Ybb7yB/fv34+bNm5gwYQJyc3MRHBxc4D4hISGYO3euwfMTSenXX3/FoEGDIIqizgATwLMnqPb/+RS//ZmI7WMaoX9zR8MHyMsCzqwGAhcUe5fL33wMl2avwKVZl3zr/t75GXLSnqLxG/OhUatxY89y3Nz3BRr0+7DIY7o0D0Qt/6Ha94pKFtrfO3p1QOU6Prrn2b0MmrxcFiJERERlRK/HtKpVq4aLFy+iW7du2L59O0RRxLfffos9e/Zg8ODBOHPmDBwdJfgBp5Q0Gg2cnZ2xdu1a+Pj4YNCgQZgxYwbWrFlT6D7Tpk1DcnKy9nXs2LEyTExUcufOncOgQYOgVquhVqsL3EatAdQaEYPWXcP56FRpgkSfBFIelfowGQkxSLx1EXV7TIate0PY13wJdbqNw+O/jiM7tei+acpKFjC3qaJ9mams/rVOpbNOEJRIjr4MV++upc5MRERExVPiOyPZ2dk4cOAAPDw8sH79eqxfvx6PHz+GRqOBk5MTFIpSzaNYbI6OjlAqlYiLi9NZHhcXV2h/FTc3N1SqVEnnkaxGjRohNjYWOTk5MDc3z7ePSqWCSqXSvrexsTHQJyCSxvz58wu8I/JfIgARIubvv4tdExpLE+bBRcCuZ6kOkXL/OpQW1rCtVk+7zMGzOSAISH0QBVXDNoXuG//nEcRfOQJzm8qoUs8XNdq/DuW/7o78W9yVMCgqqVC1UdtS5SUiIqLiK3HlYG5ujtdeew2nT5/WLnNycoKLi0uZFSLPc/j4+CAsLEy7TKPRICwsDH5+fgXu07ZtW9y8eRMajUa77O+//4abm1uBhQhReRMTE4O9e/cWekfkv9QaYM+Vp9J1an96u9SHyE1LhLmVg84yQaFEJUtb5KYnFrqfc2N/NOjzPpoMC0H1Nq8h/sph/L1zSaHbx0UehFNjfygrqQrdhoiIiAyrxHdGBEFAvXr1ihxNq6wEBQVhxIgRaNmyJXx9fbF8+XKkp6dj5MiRAIDhw4fD3d0dISEhAIDx48fjyy+/xOTJk/Huu+/ixo0bWLhwISZNmiTnx6AKSKPOhagpXsFQEocOhr7wjsh/iSIQdj0Jb/q5vHjjkkqLg1DIqnsnt+PeqR+17zV5OUh9cB23Qv/32GSLt/Wf1d21xf+GH7d29oC5TRX8+f10ZD59BMsqbjrbpty/hsyEe2jQ5z29z0dEREQlp1cH9unTpyMoKAivvfYaGjRoYOhMxTZo0CA8fvwYs2fPRmxsLLy9vREaGqrt1B4TE6Nzt6ZGjRo4cOAApk6diqZNm8Ld3R2TJ0/GRx99JNdHoApIo85F6oO/oc7JNPix4+/+DYVCoXP370UUApCUlilJHnVyLCqpc6FQVsq3ztWnOxy92mvfR+38DI4N26Lqvx67UtlWRSWbysjJSNLZV9SokZuZikrWlYudxdb92b9VWYkP8xUjcZcOwNqlNmzc6hW0KxEREUlEr2LkzJkzqFq1Kho3boyOHTvCw8MDlpa6Q2wKgoAVK1YYJGRRJk6ciIkTJxa47ujRo/mW+fn54cyZMxKnIiqcqFFDnZMJhZlZgT+kl4a9g0OJChEA0IiAvaUZBAM/ZimKIjRQPLsDVMDnrGRpi0qW/xtaWGGmQiVre1hWqaaznV31hlBnpSPt0Q1tsZB05w9AFLUFRnGkxz17ZMzcporOcnVOJhKunUStTiOKfSwiIiIyDL2KkS+//FL7+3/32fi3sipGiMorhbISFGaG7avUqUN7CIJQoke1BAHoVN8eKPSBKv0IAiCq7Et9HCvHmqhcxwc39n2Buq++A1Gjxq0DX8HppQ5Q2VYFAGSnJODP72egfu8g2Lo3QObTR3j811FUqdsSZpZ2SI+/gzsH18GuZmNYu3jqHP/xX8chatRwbtKp1FmJiIioZPQqRkr6zSsRlY0a1auhW0AnHDx8rFid2JUKoPtLDqhZRZpO22q76gY5Tv2+H+B26Ff48/sZgCCgasO2qBM4Trte1KiR+eQ+1LnPJihVKM2QdCcSD8/tgjonCyo7J1Rt1BY12r2e79hxfxxE1QZtYGbBkfKIiIjKmiCWtLdrBRcREQEfHx9cvHgRLVq0kDsOlUPq3Cwk3/0TZipLg98ZAYCLkZcR0Pt1qNXqIu+QCACUCgEngrzwci3D/yAuCgqkdlwAu/p+hQ6nS0RERBVbqR4SP3PmDEJCQjB16lTcuHEDAJCRkYGIiAikpaUZJCARlYyPd1NsXrMMSqVSZ06df1MqnhUi20bVlaQQAYDcuoEQVbYv3pCIiIgqLL2KkZycHPTv3x9t27bFjBkzsHLlSty7d+/ZARUKdO3alf1FiGTUp3sgft+9DV07+0MQdPuCCMKzR7NOBHmhb7MqhRyhdDSVPZDboI8kxyYiIiLToVcxMmvWLOzduxdfffUVoqKidB4FsbCwwGuvvYZdu3YZLCQRlZyPd1P8uGUN/jp7BA72dgAAB0slbs3xxo6xDSS7IyJaOyHb770CR9AiIiIi+je9ipEffvgB48ePx9ixY1GlSv5vVhs1aoTbt0s/8zIRlV6N6tVgZfVs6G1rlUKyzuoAoHGohayOswFLB8nOQURERKZDr9G04uPj0aRJk0LXK5VKZGRk6B2KiMqfvFrtkes9AjCTrtghIiIi06JXMVKjRg1cv3690PWnTp1C3bp19Q5FROWImTlyvEdCXaud3EmIiIionNHrMa0hQ4bg66+/Rnh4uHbZ806y69atw48//ojhw4cbJiERGS3RxgVZHeeyECEiIiK96HVnZMaMGThz5gw6dOiARo0aQRAETJ06FU+fPsX9+/fRvXt3TJ061dBZiciIaKrUQXab9wAO30tERER60uvOiLm5OUJDQ7Fp0ybUrl0bDRs2RHZ2Npo2bYrNmzdjz549hc5vQETln6ZKbWS3+4iFCBEREZVKse6MBAUFYdiwYWjevDkAICYmBk5OThg6dCiGDh0qaUAiMi6ijQuy27wPVLKUOwoRERGVc8W6M7J8+XJcu3ZN+97T0xM7duyQLBQRGSfR3PpZIcI7IkRERGQAxSpGXFxcdOYN+fckh0RUQZhZIKftBxBtXeVOQkRk9NRqjdwRyIA0arXcEUxWsR7T6tGjBz755BMcPHgQDg4OAIDPP/8c27ZtK3QfQRA4CzuRiRAt7JHd9n2IDh5yRyEiKhdys9RQWuvVNZeMUG52NlRWVnLHMEnFKkZWrFgBZ2dnHDlyBH/99RcEQcC9e/fw9OnTQvd5PtQvEZVvmiq1kdN6MkTLKnJHISIqN/gUiWkRNbzTJZViFSPW1tZYuHCh9r1CocDy5csxZMgQyYIRkfzyPDog1/tNQFlJ7ihEROWKRs1ixJSIIosRqRTr/mH//v1x4sQJ7fsjR46gS5cukoUiIpkJAnKbDUNui9EsRIiI9MFaxKSwz4h0ilWM7Nq1CzExMdr3nTt3xqFDhyQLRUQyMjNHdpsg5NXtCvBxSyIivfApLdPCYkQ6xSpG3N3dcenSJe17URTZJ4TIFFWyRHa7j6Fx9ZY7CRERkdFQ5+XJHcFkFavPyOuvv44lS5bgxx9/1I6m9fHHHyMkJKTQfQRBwB9//GGQkERUBsxUyG77ATRV68mdhIio3ON3tqYlLztL7ggmq1h3RkJCQrBmzRq0bdsWTk5OEAQB1tbWqFq1aqGvKlXKZuSdVatWwcPDAxYWFmjVqhXOnTtXrP22bdsGQRDQt29faQMSlQeCgOxWE1mIEBERFSAnK1PuCCarWHdGlEolxo4di7FjxwJ4NprWzJkzZR9Na/v27QgKCsKaNWvQqlUrLF++HIGBgYiKioKzs3Oh+0VHR+P9999H+/btyzAtkfHKbTyIj2YRERkS74yYlJzMTGjUaiiUSrmjmBy9ZuO5c+eOUdxRWLp0KcaMGYORI0fCy8sLa9asgZWVFTZu3FjoPmq1Gm+88Qbmzp2L2rVrl2FaIuOkrtYCefW6yx2DiMi0sAO7aRFFZKamyJ3CJOlVjNSqVQtWMs9CmZOTg4sXLyIgIEC7TKFQICAgAOHh4YXu98knn8DZ2RlvvfVWWcQkMmqihR1yWozmw81ERAam0bAaMTVpiYVP9k36K9ZjWgqFAgqFAhkZGTA3N4dCoXjhaFqCICBPwpEHEhISoFar4eLiorPcxcUF169fL3CfkydPYsOGDYiMjCz2ebKzs5Gdna19n5aWpldeImOU2+QNQGUrdwwiIpOjzuMkeaYm7WkCXDzryB3D5BSrGJk9ezYEQYCZmZnO+/IkNTUVw4YNw7p16+Do6Fjs/UJCQjB37lwJkxHJQ1O1LtQ1/OSOQURkkvJyWIyYmtSEBLkjmKRiFSNz5swp8r0cHB0doVQqERcXp7M8Li4Orq6u+ba/desWoqOj0atXL+0yjebZPxRmZmaIiopCnTr5q91p06YhKChI+z4yMhL+/v6G+hhEssl9aRAfzyIikkhOZq7cEcjAkh/HvXgjKjG9+owYA3Nzc/j4+CAsLEy7TKPRICwsDH5++b/tbdiwIa5cuYLIyEjtq3fv3ujUqRMiIyNRo0aNAs+jUqlgZ2enfdnY2Ej2mYjKiqZqXWicGsodg4jIZGWmshgxNUmxD+WOYJKKdWfk37Kzs/Hdd9/h4MGDuHXrFlJTU2Fra4u6deuiW7duGDJkCMzNzaXImk9QUBBGjBiBli1bwtfXF8uXL0d6ejpGjhwJABg+fDjc3d0REhICCwsLNG7cWGf/5xM4/nc5kanLq/2K3BGIiExaenKO3BHIwFKfJCAnMwPmlvIO4mRqSlSMXLlyBX369MHdu3chiiLs7e1hY2OD+Ph4RERE4KeffsKCBQuwe/duNGrUSKrMWoMGDcLjx48xe/ZsxMbGwtvbG6GhodpO7TExMVAoyu3NHyJpKCtBXa2l3CmIiExaTlYesjNyobKqJHcUMqD4u3dQveFLcscwKcUuRtLS0tC7d2/Ex8djwYIFGDZsGNzd3bXrHzx4gG+++Qbz589Hr1698Mcff8Da2lqS0P82ceJETJw4scB1R48eLXLfzZs3Gz4QkZFTO78EmFnIHYOIyOQlP86Ecy0WI6Yk9ubfLEYMrNi3DTZt2oSYmBjs27cPH3/8sU4hAgDu7u6YNm0a9uzZgzt37vAHfSIjpXHmP6JERGUh8VG63BHIwO5f+wuiyDlkDKnYxci+ffvQtWtXdOzYscjtOnfujC5dumDPnj2lzUZEElBXrS93BCKiCuHJAxYjpibtaQISH7EjuyEVuxi5cuXKCwuR5zp37owrV67om4mIJCNAtCt45Dgikpco4UTBJI/H91IhciZ2kxP9x0W5I5iUYhcjT58+LXD+joK4uLjg6dOneociIsNycXJCNafKcHGwBpR8fpnIKGk4SZ6pyc7IQ1J8htwxyMBuR5yHRq2WO4bJKHYH9uzsbFSqVLwfYszMzJCTwyHtiIzF8dBfobx3BspHF8Erk8hIcRJSk/TwRhIqu0o/oA+Vnay0VMT8+Qc8mrWQO4pJKNHQvtHR0YiIiHjhdnfu3NE7EBFJR2Pr/uKNiIioVFq2bIl70Q9go3LAKsef4NWuGgQWmyblz6O/o1YTbwicQqLUSlSMzJo1C7NmzXrhdqIo8qIjMkKiTfEetSQiGXCEHpMRGxuL+CexyLPTICUhE4mPMlClGu+OmJKk2Ie4fekC6vj4yh2l3Ct2MbJp0yYpcxBRGRCtneSOQESFENVq8Gs803TrUjyqVPOUOwYZWMT+XXBv4AULGxu5o5RrxS5GRowYIWUOIioDGquqckcgokKI7BBrsmL+eoIm/tVhYcMBRExJdkY6wn/5AR2Hj+YTQaXAB92IKgoBgMpO7hREVAgxN1fuCCQRdZ6I62ceyR2D9NSyZUv4BXbH7M0/5Fv34PpfuHbyaNmHMiEsRogqCNHMEhB4yRMZKxYjpu1WRDzSk7PljkF6iI2NRWx8PJLSCx6m+dJvuxEffbuMU5kO/mRCVFEolHInIKKicNJDk6bOE3H5yH25Y5AERFHEiR+2IDMtVe4o5RKLEaKKggP1EBk19hkxffeuPkXsnWS5Y5AEMlOScXLrFk6GqAcWI0QVhchvXYmMmcg7IxXCxf3RyMliW5uiuDs3cX73LxA5THeJsBghqig0GrkTEFERxJwcuSNQGUhPzsHF0Lv8gdVE3Th3GlcOH5A7RrlSokkP/+vq1au4ffs2EhMTC7yohg8fXprDE5EhcdhBIqMmZmbKHYHKyL2rT1HV3Rr1X+ZEtKbo8u+hUCiUaNypi9xRygW9ipFbt25h6NChOHfuXKGVvSAILEaIjImC49sTGTN1errcEagM/fH7PdhWsYRbHXu5o5AEIg/uQ05WJpp368U5SF5Ar2Jk3LhxuHLlCpYvX4727dujcuXKhs5FRIZmppI7AREVQZOSIncEKkOiCITvuImOQxqiSjVrueOQBK4eP4yM5GT4DXwdSjN+IVgYvYqRU6dOYfr06Xj33XcNnYeIJCKaWcodgYiKkPfkqdwRqIzl5WhwfPvf6DS0Ieyd+G+0KYr+4yIyUpLgP/QtqKys5I5jlPTqwO7o6Ah7e95WJCpPRLtqckcgoiLkPX4sdwSSQU5mHo5vi0JaYpbcUUgi8Xdu4eDXK5GRnCR3FKOkVzHy9ttv47vvvoOaYykTlR+cfZ3IqOU+egiRo95VSJmpuTi6lQWJKUuOj8WBNSuQkhAvdxSjo9djWvXr14darUazZs0watQo1KhRA0pl/tmd+/fvX+qAREREFYGYmYXchw9hXr263FFIBhnJOTjy3XV0eL0BH9kyUelJiTiwZiVeGfU2qlTjdf6cXsXIoEGDtL9///33C9xGEATeOSEiIiqBrCtXWIxUYJmpuTj8zTW0GVAXLh52cschCWSnp+HQ2i/R6c2xcPaoLXcco6BXMXLkyBFD59DbqlWr8NlnnyE2NhbNmjXDF198AV9f3wK3XbduHb755hv8+eefAAAfHx8sXLiw0O2JiIjKUvrpcNi9+qrcMUhGudlqHP8hCs0CaqBeSxcOC2uCcrOzELZxDToOewtu9RrIHUd2ehUj/v7+hs6hl+3btyMoKAhr1qxBq1atsHz5cgQGBiIqKgrOzs75tj969CgGDx6MNm3awMLCAosWLULXrl3x119/wd3dXYZPQERE9D9ZV68i5949mNeoIXcUkpEoApGH7uHJ/XS07O6BSqr8j8JT+abOzcGRLWvRfvAI1HipqdxxZFXqHq1Xr17Fb7/9ht9++w1Xr141RKZiW7p0KcaMGYORI0fCy8sLa9asgZWVFTZu3Fjg9t9//z0mTJgAb29vNGzYEOvXr4dGo0FYWFiZ5iYiIipM8o4dckcgI3Hv2lMc3PAXnj7khJimSKNW4/j3m3Dzwlm5o8hK72Jk165dqFOnDpo0aYKePXuiZ8+eaNKkCerWrYvdu3cbMmOBcnJycPHiRQQEBGiXKRQKBAQEIDw8vFjHyMjIQG5uLqpUqVLoNtnZ2UhJSdG+0tLSSp2diIioMGknTyHvyRO5Y5CRSE/KxuFvr+HGhTiIoih3HDIwURRx5pcf8NexsArbvnoVI/v378eAAQMAAAsXLsSOHTuwY8cOLFy4EKIoon///ggNDTVo0P9KSEiAWq2Gi4uLznIXFxfExsYW6xgfffQRqlWrplPQ/FdISAjs7e21L2N5RI2IiEyUWo204yfkTkFGRKMWcelgDM7tuQN1Hod/NkWXQvfg0m+7K2RBolcxMm/ePDRt2hSXL1/GRx99hN69e6N379746KOPcPnyZTRp0gRz5841dFaD+vTTT7Ft2zbs2LEDFhYWhW43bdo0JCcna1/Hjh0rw5RERFQRZUZclDsCGaG7fz7B8R+ikJOVJ3eUCiMmJgbp6c8ek8vOzUVCcopk57p64gjO7fq5ws03pFcH9suXL2PhwoWwtrbOt87a2hpvvvkmpk+fXupwRXF0dIRSqURcXJzO8ri4OLi6uha575IlS/Dpp5/i999/R9OmRXcaUqlUUKlU2vc2Njb6hyYiIiqGrKi/oU5Lh9Im//+zVLE9vpeGo99HwX9wfaisKskdx2SdO3cO8+bNw759+7R3KzKyshH01SZ41/VE37a+qO1W9M+b+rhx9hQUSiVa9uxnsJHUMtLSsG/rN4iKjIAgKODl8zK6DxkGVRFfxp8/ehiXz57Go7vRyM7KwvQvv4alle6/R59/MAVJTxJ0lnUZ8H/o0KN3ifLpdWfEwsICT58+LXT906dPi7zbYAjm5ubw8fHR6Xz+vDO6n59fofstXrwY8+bNQ2hoKFq2bClpRiIiIr2o1Ug/eVLuFGSkkuIycHzb37xDIpFff/0Vbdu2xW+//ZbvsSkRwB+3ovHJtz/hfNRNSc4fdfo4/j5Tsut/w6L5iDh5vMB1P69djfgH9zHivY8xdPJ7iP77OnZt2VDk8XJzclCvcdMXFhad+w7Ah8u+1L5aB3QtUW5Az2Kkc+fOWLFiRYEdxc+ePYuVK1cW2Q/DUIKCgrBu3Tps2bIF165dw/jx45Geno6RI0cCAIYPH45p06Zpt1+0aBFmzZqFjRs3wsPDA7GxsYiNjWWndCIiMjpJv/4CTWam3DHISCXGZuD0r7egVlesR3qkdu7cOQwaNAhqtbrQybs1ogi1RoNVu37D7UfF66dcUhH7dyMjOanUx4l/+AA3/ryMvm+ORo06dVGrfgP0fGM4/jx3BimJiYXu16ZrN3To0Rs16tQt8vgqC0vY2jtoX+aqkt+M0KsYWbx4MSwsLNCuXTv4+fnhzTffxJtvvgk/Pz+dOTykNmjQICxZsgSzZ8+Gt7c3IiMjERoaqu3UHhMTg0ePHmm3/+qrr5CTk4OBAwfCzc1N+1qyZInkWYmIiEpC/eQpHn/5ZYV7fry80+ljkJOJhCRpflgFgPjoFEQeipHs+BXR/PnzIYpisTqSi6KIXafOS5JDnZeLO5Gl7zt279ZNWFhZwd3zf7O91/ZqDEEQcP926e/snNi/BwvffRur5szAyd/2FlrAFUWvPiOenp64fPkyQkJC8Ntvv2H79u0AgFq1amHy5Mn4+OOPC5x0UAoTJ07ExIkTC1x39OhRnffR0dHSByIiIjKQjDNnkfDlKji+MwGCkhPfGbOC+hikZ6Vi4pI+aNGgHfp3egt1q3sZ/Ly3Ih7DuaYdangVPk0BFU9MTAz27t1b7BGtNKKISzdvIyE5BY72dgbP8/Th/VIfIy05Cda2utmUSiUsrW2QlpJcqmO3DuiKarU8YGltg5ibN3Dol+1ITU7Cq68PLdFx9CpGAMDZ2RnLli3DsmXL9D0EERERAWjZsiUeXL8Ox0qVsLvzKzrr0o4dgyY9HU5BU6H414AqZDx+/fVXDBo0qMBv1EVRxKWo04j8+zQmv74QrV7qZPDzXzwQDWcPW4N1aM/KyMbxfRG4E/UQgiCgjld1tO/eHOaqwo//5/lb+PvyXTx+lIjc7DyMmd4PKktznW32fncCCbFJyEzPgsrCHDXquMCvazPY2FmWKF9eXh40enwD/yIHQkNLPLSuCOBq9D20b2L4QjM7I6PQdcf27sLxff+b1y83Jwf3b93Cvu+3aJe9O1/ap5TaBnbX/t61Rk0ozcyw+5uN6DJgEMwqFf/vot7FCBERERlGbGwsYtPTAYuCfyjLuHABscFz4DJ9GpR2hv8GlvT37z4Ghf0gqxHVgChgxbbp+GTcBoPfIcnJVON6eCyavVKj2Pv8uuEwGjX3RKMWnvnWHfz5DDJSs9BnRMdngwP9eg5Hdl1A4P8VPkBQXm4eatVzQ616bgg/dLnAbarXdkZL/0awsrVEekomToVGInTbKQwcW/x+xnl5eXhw+xays7KKvU9x3b11CwqFApoSPBopCEBqejqyswzfvysrMwN5eXkwM8v/4/rLHV9B45dbad//vPYreLV8GV4t/jc4k61DZdjYOyA9VXc4YrVajcz0NNjY2Rs0b/XadaBRq5GY8BhObtWKvV+xipFRo0ZBEASsXbsWSqUSo0aNeuE+giBgw4aie+oTERFR8WTfuIFHM2bAZeZMVPrPhL8kn+L3MRAhisCOIxvxwTDD91WNvpKAJp2qQ6Eo3XCwT+NTEHMjFq+93QUu7s8e/erQswX2fHscbbt5F3oXw7tNAwDA/TvxhR77+TYAYOdgDZ/2jbDvh5NQqzVQKovXjVmjViM7KwvKSmZQFvBDemnYV7YvUSECAKIIWKpUEBR6dcMu8sBmllbP7gAV8DmtbGxg9a/pJszMK8Ha1g5VXXSHG65Rpy6yMjLwIPoO3D2eFZ53rl2FKIqoXrvozuklFRtzF4IglLjIKVYrHj58WFspKpVKHD58+IVjHxtqbGQiIiJ6JvfhIzz8+GO4fPghLBo1kjtOhVfyPgZqXIw6gYSkWDg6GHaOiuyMPKQ8zoSDi1WpjhN7LwEqi0raQgQAatR2gSAIiLv/BDZe1UsbFcCzR8GiLt+FWw3HYhci/6Y0M0OlSuYv3rAE/Nt3gCAIJXpUSwDQqKa7wX/uFQHYOpb+Swfnau6o17gpdm1ej97DR0GtVmPv91vQ2Lc17CpXBgCkJD7Fps9CMGD026heuw4AIDU5CWnJyXgS/2w+v7j796CysIR9laqwsnnWR+T+7VvwbNgIKgtL3Lt1A79t+x7N/NrCsoB5CItSrGLkvx2/2RGciIhIHpqUVDwKnoOqI9+Ebbdu/PKvGNR5amg0JesLUBwHDxwseR8DUcSVW+fRsUVPg+dJjE0rdTGSkZYFS2vd4VkVSgUsLM2RkVb6R6NOH/gDl8/eQF6uGi41qqLn0PalPqahuLu7I6BzZxw+erRYo0IpBAFNPWuiqp2twbMolEo4VHM3yLEGjp2Avd9vwabPQiAoBLzk8zK6DxmuXa9Wq5EQ+wi5OdnaZeePhOHI7h3a9xs+nQ8A6DdqLFq06wCzSma4ci4cR3b9iry8XFR2dIJf125o2/XVEufT6/5WTEwMnJycYGlZ8K26zMxMPH78GDVr1tTn8ERERFQUtRpP1m9A1rXrcBz/NhSF/H9MzwqRuAdPkZNt+AkC7919pEcfAwFp6anIzTF8nvj7Saj5UlUozfKPvHbh2FVcPH5N+z4vV424+09wfF+EdtmQd7sZPNN/NW/XEI18aiM1KR3nj/yF3385i55D2xtNUT353Yk4cuxY8e6QCEDPVj6S5HCuUx+VSjBnx1sfzSx0nZWNDf5v3DuFrq/s6IR5G7/TWda57wB07jug0H2q1fLEuJlzi52vKHoP7fvtt99iyJAhBa7fvXs3hgwZotdYw0RERFQ86adOIefObThNnQpV7dov3qEC0mhE5GTnQalU6PU4UFEc7PXpYyDCysLa8I/1iCJyczXQaEQUNAh045froG7j/3VwP/TzGdTxqo7a/3rsytrWElY2FshM170DolFrkJWZAyubkk9o91+W1ipYWqtQ2dEWVZzssHnJHsTeewK3mo6lPrYheDdrhtVfrMSEdydBFMUCf5ZVCAIgAON7dIWnq+GnsjAzV6FO67YGP66x0qsYeVGlmJubC4WhO/IQERFRPrkPH+HhtGmo/H//B/u+fTkfSSGUSgXMKhn2z8bfv6MefQwEvOTpA8PfCBBgblH457OwUsHC6n9DQyvNlLC0toBDVd1HjFxrOCI7KxfxD57C+Z9+I/fvxEMURbhUr2rQxM//3IxtFvnu3bph588/YcUXX+L3w4d12lcA0NSzJnq28pGkEAGAxgHdYGFji5xMw48YZoyKXYykpKQgKSlJ+/7JkyeIick/62dSUhK2bdsGNzc3gwQkIiKiF8hTI3HrD8g4dw6O774L8+qG6WRMRavuXh1dAroi7PDvxexjoIB3/TYG77z+nFXl0s8zUsXZDjXrueLIrvPo2LslNGoNju29iHqNa2pH0kpLycDOTUfRZUArbYGSnpqJjLQsJD9JBQA8iUtGJZUZbO2tYGGlQuy9J4h/8BRutRyhsjRHytM0nAm7AvsqNnCrYdgixxC8mzXDpvXr8ODBA3Tp3gMpKSmwUpljztDXJOkj8lz9tv5wqdsAubk5kp3D2BS7GFm2bBk++eQTAM+ed5wyZQqmTJlS4LaiKGL+/PkGCUhERETFk33zFh6+/wGqvDUKdl26yB2nQgia/D4OHwkrxh0SAYIgoG+HNyXJYWFjBmsHw4wu1XVgaxzbG4Gdm44+m/TwpWeTHj6nUYtISkhFbu7/CrA/z9/C+SN/ad//uuEwAOCVfr5o1MITZpWUuHX1Ps4e/hN5uXmwsrFErXquaDnIq8A+LsbC3d0dVlZWSElJgapSJUkLEU8fX3i08JXs+Maq2MVI165dYWNjA1EU8eGHH2Lw4MFo0aKFzjaCIMDa2ho+Pj5o2bJlIUciIiIiqYi5uXiy5mvkPXyIysOHG03HYFPV3LsF1q5ej7ETRhfRx0ABQRDw7mvzUcfd8DN1A0CtJpVL1Nb93+pc6DoLK1WRExzaVbbGxHmDdJa16twYrTo3LnQfR1cH9Btl+NnnTYWnjy/qtfGvkNdrsYsRPz8/+Pk9+4uZnp6OAQMGoHHjwv/SERERkXySd++BJjsHVUe/ZfgJ2UhHj+69sHfnb1i6YgkO/X7wP30MBHjXb4O+Hd6UrBBxcLWCW307nTsVVH7UftkPdVu3q5CFCKBHB/aMjAysXLkSVlZWLEaIiIiMWOqBAxBzc+D49tvs2C6x5t4t8O2mrbj/4D46d+mA5JRkWFnYIuTtLZL1EQEAcyszNO7kWmF/kC3v6vm1R+2XC78LVRGU+KsSKysrmJmZwbqEsysSERFR2Us7fATxny+FmFNxOsTKqbp7dVhZPZt4UFXJQtJCRKFUoFlANVhYl77jOpW9em06VPhCBNCjGAGAAQMG4Oeffy7xrKNERERU9jLOnkXswoXQZGbKHYUMRRDQpLMb7J054WV5VLdVW9Ru2VruGEZBr3lGXn/9dUyYMAGdOnXCmDFj4OHhUeBs7P/t4E5ERES6YmJikJ6eDgDIyMvDg4wMuP/zzbohZV35E7Fz5sJlxnQo7ewMfnwqW17tXeBUy0buGKSH2i+3Rp1WFWdSwxfRqxjp2LGj9vcnTpzIt14URQiCwBnYiYiICnHu3DnMmzcP+/bt0z5pkJKXiw6hv6GzqxsmNmyIZlWqGPSc2Tdv4tGMGXCZOQuVXAw3YVtOaioubdiAhxcvQhAEuLdujeYjR8KsgC8qn1Pn5OCPLVtw79QpqPPy4NqsGVqMGQMLBwcAQFJ0NK7v2IGE69eRnZoKaycn1OnaFfV69DBY7vKqfmtnVKtvL3cM0oOnjy/qtm4vdwyjolcxsmnTJkPnICIiqjB+/fVXDBo0CKIo5nvkWQRwNC4Wx+JisdK3Fbq5uxv03LkPHyF27lxUW7gAyn9+8C+Oo7Nnw6NTJ3h0yj8869kVK5CZlIQOs2ZBVKtxftUqXPj6a7QuZD4yAIjcvBmPIiLg9957qGRlhYgNG3D6s8/QecECAEDirVtQ2duj1aRJsHR0xJOoKFxcswaCQoG6r75a0o9tMmq3qIqajSvLHYP04NmyFer5deBgA/+hVzEyYsQIQ+cgIiKqEM6dO4dBgwZBrVYX2vdSLYoQAEw6dxY/+Xc0+B2SvLg4JO/ZiyrDhpb6WCn37yM2MhKvfPopqtStCwBo/tZbOLFwIZoNHw7LArLnpqfjzuHDaD15MpybNAEAvPzOOzgweTKe/P03qtavD89XXtHZx8bFBU+ionD/7NkKW4zUeKkyPJsb32zl9GL12/rDo4UvC5EC6FWM/FtaWhru3bsHAKhRowZsbPj8YnkXExODsLAwpKamwtbWFq+88gpq1qwpdywiAq9PUzB//vwC74j8l/jPa1XUdaz1a2PwHLmxjwxynCdRUahkba0tRADAuWlTCIKApzduwL1Vq3z7JN6+DTEvD85Nm2qX2bm7w+qfOyBV69cvOHNGBswr6M8Z7g0dUL+1E3+YLWcUSjM07vIq3Oo3kjuK0dK7GDl//jw+/PBDnDx5EhqNBgCgUCjQvn17LF68mDOwl0P/fX5ZoVBAo9FAEAT07NkTs2bNwssvvyx3TKIKidenaYiJicHevXuLPRqlWhQR9uiRJJ3aFQY6XlZSElT2uv0XFEolzG1skJWUVOg+CjMzmP9nmgCVg0Oh+yRcv457p0+j3bRphohdrrg3dEDDts4sRMoZcytrNO/ZDw6u1eSOYtT0KkbOnj2Ljh07wtzcHKNHj0ajRs+qvWvXruGHH35Ahw4dcPToUfj6+ho0LEmnoOeXnxeZoihi//79+O2337B9+3b0799fzqhEFQ6vz7Knyc3V/hkb0sHQ0BIPiy8COB0fj4G1ahk0iygI0OTmQlGp4Dkqrv3yC67t2KF9r87JwZMbNxCxYYN2WbdlywyaqTDJMTE4tXgxvF57Da7e3mVyTmNRs0ll1PPlHZHyxqaqI1r0HghLW45c9yJ6FSMzZsyAu7s7Tp48CVdX3cl85syZg7Zt22LGjBk4dOiQQUIWZdWqVfjss88QGxuLZs2a4YsvviiyCPrpp58wa9YsREdHo169eli0aBG6d+8ueU5jVqznl9VqCIKAQYMG4fTp0/wGlqiM8Pose5rcXDy5eRN5WVkGP/ajmze1d7WKSwEgJSMDeQaeIyTt3j0IN2+iat26BRYkdbp2RY02/3s87OyKFXBv3RrV//XYlUWVKrBwcEB2crLOvhq1GjlpadqRsf7LwsEBmrw85KSn69wdyU5KyrdPyr17ODZ3LmoHBMBr4EA9Pmk5JQio38qJndXLocrVqqN5r/6opLKQO0q5oNekh2fPnsW4cePyFSIA4OLigrFjx+LMmTOlDvci27dvR1BQEIKDgxEREYFmzZohMDAQ8fHxBW5/+vRpDB48GG+99RYuXbqEvn37om/fvvjzzz8lz2rMiv388j/bzJ8/v4ySERGvz7Kn0WiQl5UFpZkZKllYGPRlb29f4jsuGgC25pUgKBQGfSElBXlZWYXmMbe1hY2bm/alNDeHhb29zjKFUomqDRogNz0dibduafeNv3IFoiiiSr16BR67cu3aEMzMEH/linZZ6oMHyEhIQNUGDbTLku/dw9E5c+DRsSOaDBlSoj+38sxMpUTzQHcWIuWQY00P+PR5jYVICehVjCgUCuTl5RW6Xq1WQ6HQ69AlsnTpUowZMwYjR46El5cX1qxZAysrK2zcuLHA7VesWIFu3brhgw8+QKNGjTBv3jy0aNECX375peRZjdXz55eLOyeMWq3Gnj17EBMTI3EyIuL1KS+FmRmU5uYGfXXqUPJhPQUArR2dAEEw6Ev98BFEAzyKZle9Oly9vXFhzRo8vXEDCdev49KGDajRtq12JK3MJ08QOmkSnt64AQCoZG0Nz86d8cfmzYj/808k3rqF86tWoWr9+trO68kxMTgWHAyXZs1Qv2dPZCUmIisxMd9dGFNjU0WFVn1qomp16xdvTEalao1a8O7ZH8pCHn2kgun1mFabNm2watUqDBkyBLX+8wxrTEwMVq9ejbZtpZ1ZMicnBxcvXsS0f3VkUygUCAgIQHh4eIH7hIeHIygoSGdZYGAgdu7cWeh5srOzkZ2drX2flpYGAMjLy0Nubm4pPoFxOHDgQMmfXxZFHDx4kEM860mdm4vc3DyoxQwolOX/71BhNOpcaPLUyM3NhQZKueOUS7w+5ZGXm/vs760oQmHgf+cd7e0R0L49wv41+EtRFAA6ODnDydwcuQaeSFjMy4NZXBxyGzSAWIwvEDWiiDy1usD/+1q88w4ub9qEY3PnAoKAar6+aPrmm9pts7OzkfrwIbIyMrTLXnrjDYiiiNOffQbNPyNrNRs1Srv+7qlTyE5JQczx44g5flx7LktHRwR+8UWxP2du7rP/rzUaNZS50n9RCjz7swKeXY+5RXx5+1/OHtZo0MYZMNMgM6Nkjwmq1Rqo1Zpnf35Cyf7dKE9yn1+fEMvs5zDxX330CmtPexc3NOgciOycbCAnu8BtSkKdlwf1P393hTL4gv+5SnIUUqIeIiIiRBsbG9HCwkIcPHiwGBwcLAYHB4uvv/66aGlpKdra2oqRkZH6HLrYHjx4IAIQT58+rbP8gw8+EH19fQvcp1KlSuLWrVt1lq1atUp0dnYu9DzBwcHPR1fkiy+++OKLL7744osvk33JQa87I82bN8fZs2cxY8YM7N69GxkZGQAAKysrdOvWDfPnz4eXl5c+hzY606ZN07mbEhkZCX9/f5w9exbNmzeXMZlhbN68GWPHji3xfuvWreM3r6WgUedC1Bj2W05jJCiUUCh5u1pfvD7lI9VoWs/t3LULw0aMgCiKBZ5HgWePZy1/+WV0qWbYGdifcxgyGA49exY6mpYpUeepodGIZXa+evXr4uHDh6hs64gv3t9V5LaCIKB51xqo1bj0kxkqFAKUZqZ/JzovLw8aA98pLEr9Bg3w8OFDOFhbYenbI3XWmVta4pW3JsDW0cng51UolTAzK/WUgEZP70/o5eWFHTt2QKPR4PHjxwAAJyenMukrAgCOjo5QKpWIi4vTWR4XF1dgx3oAcHV1LdH2AKBSqaBSqbTvn0/qaGZmJs+tLAMLDAyEIAglehREEAR07drVJD6/bPhnR8XA61NGEv/5DX7jDdStXx/z5s3LN++IAKCzmxveadDQ4DOvP1d5yBDY9+9XYYaLLevr4fmfqyAoUMms8HMLAtC6Tx3U8JKmnU2VbO2pUKBSpX//6Cyg07C34OrhWaZ5TE2pKwdBEHReZcXc3Bw+Pj4ICwvTLtNoNAgLC4Ofn1+B+/j5+elsDwCHDh0qdPuKoGbNmujZsyeUyuJ9k6JUKtGrVy/O+ExUBnh9mraXX34Zu3fvRnR0NBz+Gc7WzqwSjnd7FWv92khTiCiVcHznHTgM6F9hChFjJQiAb6/aLETKMa8OnVCtfkO5Y5R7ehcjV69excCBA2FnZwc3Nze4ubnBzs4OAwcOLLOhcoOCgrBu3Tps2bIF165dw/jx45Geno6RI5/dQhs+fLhOB/fJkycjNDQUn3/+Oa5fv445c+bgwoULmDhxYpnkNVazZs0qVjH5fJuZM2eWUTIi4vVp+mrWrAnrf+basDIzM/hM688p7e3gGjwbtp07SXJ8KplmAYZ5NIvkYWXvgKYBr8odwyTo9ZjWiRMn8Oqrr0Kj0aBPnz6o/88wfFFRUdi9ezd+++03hIaGon379gYN+1+DBg3C48ePMXv2bMTGxsLb2xuhoaFwcXEB8Gxkr38/NtamTRts3boVM2fOxPTp01GvXj3s3LkTjRs3ljSnsXv55Zexfft27QzPBQ0jqlQqIQgCfvzxR06oRlSGeH2SIVg0bQKnSZNgVpnzVhiDei1dUP/lwh8RJ+Pn1b4TzPg4rEEIYkkeRv5Hy5Yt8fTpUxw7dgw1atTQWXfv3j106NABjo6OOH/+vMGCGouIiAj4+Pjg4sWLaNGihdxxDOr8+fM6zy8/nyVYEAT06tULM2fO5A86RDLh9WnaqlevjgcPHsDVwhKnu3c32HEFMzNUHvoG7Hr0KNPhQSu65+1Zxc4ZX320V2edi6cdOgyqD0HBx+TKi+ftWdnWBivfeQuCQoGBM+ZDJdFdzIpGrzsjf/31F+bNm5evEAGAGjVqYPz48ZgzZ05ps1EZe/78ckxMDA4fPoyUlBTY2dmhc+fOfAadSGa8PqmkzFxd4fxeEFS1a8sdhf5haVMJrfvUZiFSzrl41mEhYkB6FSO1atXSmQjwv3JycgosVKh8qFmzJt588025YxBRAXh9UnFYtW4FpwkToLDmLN7GpGV3D6is+GhPeedWj53WDUmvYmT27NmYOnUqevToAW9vb511ly5dwhdffIHly5cbIB4REREVl2Bujioj34Rtly4cLUtGrq6uyM1Sw0bloF1Wra4D3Oo6FLoPGS9XV1eoc3Nh+c+Tju4NX5I3kInRqxg5c+YMXFxc4OPjgzZt2qBu3boAgBs3biA8PByNGzdGeHg4wsPDtfsIgoAVK1YYJjURERHpUNWtA6dJk1DJXZpJEqn4Lly4gAu/ReP2pcfaZV7tqsmYiErjwoULiI68iJPbv4V15Sqwd3aRO5JJ0asY+fLLL7W/P3XqFE6dOqWz/sqVK7hy5YrOMhYjRERE0rDv0weVB78OgaP7GKWq7taoUo2PzJmCGo0a866jgelVjGg0GkPnICIiohJS2NjAafJkWLVoLncUKkKtxo5yRyADqdbAS+4IJkevYoSIiIjkZeHVCE5TpsCsKifOM3bu9R3kjkAGoFAo4exZR+4YJqdUxcidO3fw22+/4e7duwCejbL16quvwtPT0yDhiIiI6D8EAQ4DB8LhtYEQlEq509AL2DtbwtLWXO4YZABV3KtzokMJ6F2MvPfee1ixYkW+R7YUCgWmTJmCJUuWlDocERER/Y/CygpOU6fysaxyxKmGrdwRyEAqV6sudwSTpNd0rJ9//jmWLVuG/v37Izw8HElJSUhKSkJ4eDgGDhyIZcuWYdmyZYbOSkREVGEp7Gzh+slcFiLlTNXqNnJHIANxcHGVO4JJ0uvOyLp169C7d2/8+OOPOstbtWqFbdu2ISsrC19//TWmTp1qkJBEREQVmpkSLh9/DBUfgy53qrhxFC1TYVOFAxFIQa87I9HR0QgMDCx0fWBgIKKjo/XNRERERP9SedDrsGjQQO4YVEJm5grYOKjkjkEGYm3vIHcEk6RXMeLs7Iw//vij0PV//PEHnJyc9A5FREREz5i5ucK+dy+5Y5Ae7J0sISg4J4WpUNnwkTsp6FWMvPbaa1i/fj0+/fRTpKena5enp6dj0aJFWL9+PQYNGmSwkERERBVV5UGDIJhxJP7yyN7JUu4IZCiCAJWVldwpTJJe/7rNmzcPkZGRmD59OmbPno1q1aoBAB4+fIi8vDx06tQJn3zyiUGDEhERVTTmHh6wbttW7hikJztHFiOmwqySORQKDqUtBb2KESsrK4SFhWHXrl0684x069YN3bt3R69evSAIvC1JRERUGlXHjIag0OshBjICLEZMh5k554qRSomLkYyMDAwdOhQDBgzAG2+8gT59+kiRi4iIqEKz7doVFg0byh2DSsG2qoXcEchAlCxGJFPir1usrKzw+++/IyMjQ4o8REREFZ7CxgaV3xgidwwqBaVSASvOvG4ylGaceV0qet37bdeuHcLDww2dhYiIiADY9+0LJUfuKdes7M05kpYJUZqxv4hU9CpGvvzyS5w4cQIzZ87E/fv3DZ2JiIioQnF1dYWrtTUcLVQQLC1gF9hV7khUShbW/CbdlCiUHNFOKnr9yTZr1gx5eXkICQlBSEgIzMzMoFLpTuojCAKSk5MNEpKIiMiUXbhwAfffnYTchw9h0649FBxCtNwzt+QPr6ZEyeG1JaPXn+yAAQM4WhYREZEErNu3kzsCGUAlFR/rMSWCku0pFb2Kkc2bNxs4Rsk9ffoU7777Lvbs2QOFQoEBAwZgxYoVsCnkGdunT58iODgYBw8eRExMDJycnNC3b1/MmzcP9vb2ZZyeiIgoP4WNDSwaNZI7BhmAWSUOyWxKFBxiWzIlKkaysrKwa9cu3LlzB46OjujRowfc3NykylakN954A48ePcKhQ4eQm5uLkSNHYuzYsdi6dWuB2z98+BAPHz7EkiVL4OXlhbt37+Ltt9/Gw4cP8fPPP5dxeiIiovwsmzblvCImQmHGJ0hMC9tTKsUuRuLj49GmTRvcuXMHoigCeDbM786dOxEQECBZwIJcu3YNoaGhOH/+PFq2bAkA+OKLL9C9e3csWbJEOyP8vzVu3Bi//PKL9n2dOnWwYMECDB06FHl5eTDjs4BERCQziyaN5Y5ABqJUsqg0JRwZTTrFvlLmzZuH6OhoTJ06FXv37sXy5cthaWmJcePGSZmvQOHh4XBwcNAWIgAQEBAAhUKBs2fPFvs4ycnJsLOzK7IQyc7ORkpKivaVlpZWquxERESF4SNapoM/vJoWgXdGJFPs2wEHDx7E8OHDsWTJEu0yFxcXDBkyBFFRUWjQoIEkAQsSGxsLZ2dnnWVmZmaoUqUKYmNji3WMhIQEzJs3D2PHji1yu5CQEMydO1fvrERERMUhqFSo5O4udwwyEAWLEZPCDuzSKfadkZiYGLRrpzvCR7t27SCKIuLi4gwS5uOPP4YgCEW+rl+/XurzpKSkoEePHvDy8sKcOXOK3HbatGlITk7Wvo4dO1bq8xMREf1XpWrV2F/ElLAWMSlmlThvjFSKfWckOzsbFhYWOsuev8/LyzNImPfeew9vvvlmkdvUrl0brq6uiI+P11mel5eHp0+fwtXVtcj9U1NT0a1bN9ja2mLHjh2o9IK/XCqVSmcOlcJG6yIiIioNM1cXuSMQEZW5EvXajo6ORkREhPb980kNb9y4AQcHh3zbt2jRokRhnJyc4OTk9MLt/Pz8kJSUhIsXL8LHxwcAcPjwYWg0GrRq1arQ/VJSUhAYGAiVSoXdu3fnK66IiIjkYlalitwRiIjKnCA+HxrrBRQKRYETHYqimG/582VqtdowKQvw6quvIi4uDmvWrNEO7duyZUvt0L4PHjzAK6+8gm+++Qa+vr5ISUlB165dkZGRgR07dsDa2lp7LCcnJyiL+SxgREQEfHx8cPHixRIXW0RERIVJP30a1m3ayB2DDCQnM4+zsBMVQ7Gvkk2bNkmZo8S+//57TJw4Ea+88op20sOVK1dq1+fm5iIqKgoZGRkAnhURz0faqlu3rs6x7ty5Aw8PjzLLTkRE9F8KKyu5I5ABsRAhKp5i3xmhZ3hnhIiIpJB19SosvLzkjkFEVKY4bAcREZEREMzN5Y5ARFTmWIwQEREZA85jQEQVEIsRIiIiI2Beq5bcEYiIyhyLESIiIiPACQ+JqCLiv3xERERERCQLFiNERERERCQLFiNERERERCQLFiNERERERCQLFiNERERERCQLFiNERERERCQLM7kDkPF69OgRHj16JHcMMhA3Nze4ubnJHYMMhNcnEVHZ4f+h0mExUkJubm4IDg42+b+Q2dnZGDx4MI4dOyZ3FDIQf39/HDhwACqVSu4oVEq8PomIyhb/D5WOIIqiKHcIMj4pKSmwt7fHsWPHYGNjI3ccKqW0tDT4+/sjOTkZdnZ2csehUuL1aXqeX6NsU9PA9jQt/D9UWrwzQkXy9vbmhWcCUlJS5I5AEuD1aTqeX6NsU9PA9jQt/D9UWuzATkREREREsmAxQkREREREsmAxQgVSqVQIDg5mRy0TwfY0LWxP08M2NS1sT9PC9pQWO7ATEREREZEseGeEiIiIiIhkwWKEiIiIiIhkwWKEiIiIiIhkwWKEiIiIiIhkwWKEyEgIglCs19GjR0t9royMDMyZM6dEx1qwYAF69+4NFxcXCIKAOXPmlDoHUXlhzNfn9evX8eGHH8Lb2xu2trZwc3NDjx49cOHChVJnMWXG3KYPHz7E0KFD0aBBA9ja2sLBwQG+vr7YsmULOO5QwYy5Pf/r+++/hyAIsLGxKXUWU8AZ2ImMxLfffqvz/ptvvsGhQ4fyLW/UqFGpz5WRkYG5c+cCADp27FisfWbOnAlXV1c0b94cBw4cKHUGovLEmK/P9evXY8OGDRgwYAAmTJiA5ORkfP3112jdujVCQ0MREBBQ6kymyJjbNCEhAffv38fAgQNRs2ZN5Obm4tChQ3jzzTcRFRWFhQsXljqTqTHm9vy3tLQ0fPjhh7C2ti51DlPBYoTISAwdOlTn/ZkzZ3Do0KF8y+Vy584deHh4ICEhAU5OTnLHISpTxnx9Dh48GHPmzNH5lnXUqFFo1KgR5syZw2KkEMbcpk2bNs33rfvEiRPRq1cvrFy5EvPmzYNSqZQnnJEy5vb8t/nz58PW1hadOnXCzp075Y5jFPiYFlE5otFosHz5crz00kuwsLCAi4sLxo0bh8TERJ3tLly4gMDAQDg6OsLS0hKenp4YNWoUACA6OlpbTMydO1d76/pFj115eHhI8ZGITIZc16ePj0++xz2qVq2K9u3b/3979x5TZf3HAfx95HIAuZqA98NtEozmhdLM7PzMWyGLqxdcipqp6WSWxtRiouHUzNs0MsghQ2xIii4ssCmGaU5dOqdmEB6w1RBZgAgqCJ/fH85jR0C5+pxzeL+2s3m+53m+z/c5733P+Pjc8Pvvv3fuTnYzSv7mNsfDwwO1tbWoq6vr8L51R0rnWVhYiK1bt2LLli2wtOTxgEf4TRCZkAULFmDPnj2YM2cOYmJioNPpsHPnTly4cAGnTp2ClZUVysrKMHHiRLi6umLFihVwdnZGcXExDh48CABwdXXFV199hQ8++ABhYWEIDw8H8PB/4oio/YxtfpaWlqJ3796duo/djdKZ3r17FzU1Nbhz5w5+/vlnpKSkYNSoUbC1te3S/TZXSue5dOlSjB07FkFBQdi/f3+X7qtJESIySosXL5b/TtGTJ08KAElPTzdYLicnx6A9KytLAMi5c+da7PvWrVsCQFavXt3mcXVkXSJzYazz85H8/HxRqVQSFxfX7j66G2PMdP369QJA/xo3bpzcuHGjTX10V8aWZ3Z2tlhaWsqVK1dERCQ6Olp69uzZhj0yXzxNi8hEZGZmwsnJCRMmTEB5ebn+9egUjby8PACAs7MzACA7Oxv19fUKjpio+zCm+VlWVoYZM2bA09MTsbGxXbKN7sAYMo2KisJPP/2Effv2YcaMGQAeHi2htlMyz7q6Onz44YdYuHAh/P39O6VPc8JihMhEFBYWoqqqCm5ubnB1dTV43blzB2VlZQAArVaLiIgIrFmzBr1790ZISAhSUlJw//59hfeAyHwZy/ysqalBcHAwqqurcfjwYd46tAOMIVONRoPx48cjKioK6enp8PLywvjx41mQtIOSeW7duhXl5eX6O3CRIV4zQmQiGhsb4ebmhvT09GY/f3RBnUqlwnfffYczZ87g+++/R25uLubOnYvNmzfjzJkz/OOEqAsYw/ysq6tDeHg4Ll26hNzcXAQEBLS7LzKOTJ8UGRmJ5ORk5OfnY9KkSZ3Wb3egVJ5VVVVISEjAokWLcPv2bdy+fRvAw1v8igiKi4thZ2cHNze3ju2gKVP6PDEiat6T57suWrRILCwspLa2ts19paenCwBJTk4WEZHy8nJeM0LUAcY2PxsaGmTatGliYWEhBw4caPMYyPgybc6hQ4cEgGRkZHSon+7AWPLU6XQG1/009woJCWnzmMwJT9MiMhFTp05FQ0MDPvvssyafPXjwAJWVlQCAioqKJk/oHTp0KADoDzPb2dkBgH4dIuoYpefnkiVLkJGRgcTERP3dfahjlMz01q1bzbbv3r0bKpUKw4cPb1U/9JhSebq5uSErK6vJa+zYsbCxsUFWVhZWrlzZ/h0zAzxNi8hEaLVaLFiwAOvXr8fFixcxceJEWFlZobCwEJmZmdi+fTsiIyORmpqKxMREhIWFwdvbG9XV1UhOToajoyOCgoIAALa2tvD390dGRgYGDx6MXr16ISAg4KmndaSlpaGkpAS1tbUAgPz8fCQkJAAAZs6cCY1G0/VfApGRUnJ+btu2DYmJiRg1ahTs7Oywd+9eg8/DwsL4tOd2UDLTdevW4dSpU3jrrbcwaNAg/Pvvvzhw4ADOnTuHJUuWwMfH53l+FWZBqTzt7OwQGhrapP3QoUM4e/Zss591O8oemCGiljx5iPmRpKQkCQwMFFtbW3FwcJCXXnpJYmNj5Z9//hERkd9++02ioqJk0KBBolarxc3NTYKDg+X8+fMG/Zw+fVoCAwPF2tq6VYebtVpti4eY8/LyOmu3iUyCMc3P6Ojop54CotPpOnPXzZYxZXr06FEJDg6Wfv36iZWVlTg4OMjo0aMlJSVFGhsbO3W/zZUx5dkc3tr3MZXIE8eiiIiIiIiIngNeM0JERERERIpgMUJERERERIpgMUJERERERIpgMUJERERERIpgMUJERERERIpgMUJERERERIpgMUJkBoqLi6FSqbBnzx6lh0JEzeAcNS/M07wwT2WxGCEiIiIiIkXwoYdEZkBEcP/+fVhZWcHCwkLp4RDREzhHzQvzNC/MU1ksRoiIiIiISBE8TYvISMTHx0OlUqGgoADvvvsunJyc4Orqiri4OIgI/vrrL4SEhMDR0RF9+vTB5s2b9es2d77r7NmzYW9vj7///huhoaGwt7eHq6srli9fjoaGBv1yJ06cgEqlwokTJwzG01yfpaWlmDNnDgYMGAC1Wo2+ffsiJCQExcXFXfStEBkPzlHzwjzNC/M0XSxGiIzMtGnT0NjYiA0bNmDkyJFISEjAtm3bMGHCBPTv3x8bN26Ej48Pli9fjvz8/Kf21dDQgEmTJuGFF17AF198Aa1Wi82bNyMpKaldY4uIiEBWVhbmzJmDxMRExMTEoLq6Gjdu3GhXf0SmiHPUvDBP88I8TZAQkVFYvXq1AJD58+fr2x48eCADBgwQlUolGzZs0LdXVFSIra2tREdHi4iITqcTAJKSkqJfJjo6WgDI2rVrDbYzbNgwCQwM1L/Py8sTAJKXl2ew3JN9VlRUCADZtGlT5+wwkYnhHDUvzNO8ME/TxSMjREZm3rx5+n9bWFjg5Zdfhojgvffe07c7OzvD19cX169ff2Z/CxcuNHg/ZsyYVq33JFtbW1hbW+PEiROoqKho8/pE5oJz1LwwT/PCPE0PixEiIzNo0CCD905OTrCxsUHv3r2btD/rB83Gxgaurq4GbS4uLu36IVSr1di4cSN+/PFHuLu744033sDnn3+O0tLSNvdFZMo4R80L8zQvzNP0sBghMjLN3VawpVsNyjNuhteaWxSqVKpm2/97gd4jS5cuRUFBAdavXw8bGxvExcXBz88PFy5ceOZ2iMwF56h5YZ7mhXmaHhYjRN2ci4sLAKCystKgvaSkpNnlvb29sWzZMhw9ehSXL19GXV2dwV1JiKhzcY6aF+ZpXphnx7EYIermNBoNLCwsmtxVJDEx0eB9bW0t7t27Z9Dm7e0NBwcH3L9/v8vHSdRdcY6aF+ZpXphnx1kqPQAiUpaTkxOmTJmCHTt2QKVSwdvbG9nZ2SgrKzNYrqCgAOPGjcPUqVPh7+8PS0tLZGVl4ebNm5g+fbpCoycyf5yj5oV5mhfm2XEsRogIO3bsQH19PXbt2gW1Wo2pU6di06ZNCAgI0C8zcOBAREVF4dixY0hLS4OlpSVefPFF7N+/HxEREQqOnsj8cY6aF+ZpXphnx6jkWVfvEBERERERdQFeM0JERERERIpgMUJERERERIpgMUJERERERIpgMUJERERERIpgMUJERERERIpgMUJEbVJcXAyVSoU9e/YoPRQiagbnqHlhnuaFeTbFYoSoCxUVFWHBggXw8vKCjY0NHB0dMXr0aGzfvh13797tsu1evXoV8fHxKC4u7rJttMa6devwzjvvwN3dHSqVCvHx8YqOh+hJ3XmOXrt2DbGxsRg6dCgcHBzQt29fTJ48GefPn1dsTB3FPJlnZ2CezxcfekjURY4cOYIpU6ZArVZj1qxZCAgIQF1dHX755Rd8/PHHuHLlCpKSkrpk21evXsWaNWvwv//9Dx4eHl2yjdb49NNP0adPHwwbNgy5ubmKjYOoOd19jn7zzTfYvXs3IiIisGjRIlRVVeHrr7/Gq6++ipycHIwfP16RcbUX82SenYV5Pl8sRoi6gE6nw/Tp06HRaHD8+HH07dtX/9nixYvx559/4siRIwqO8DERwb1792Bra9vpfet0Onh4eKC8vByurq6d3j9Re3GOAlFRUYiPj4e9vb2+be7cufDz80N8fLxJ/bHDPJmnUphnJxAi6nQLFy4UAHLq1KlWLV9fXy9r164VLy8vsba2Fo1GIytXrpR79+4ZLKfRaGTy5Mly8uRJeeWVV0StVounp6ekpqbql0lJSREATV55eXkGfeTk5EhgYKCo1WrZunWriIgUFRVJZGSkuLi4iK2trYwcOVKys7MNxqDT6QSApKSktPr7uHXrlgCQ1atXt3odoq7EOdqy8PBw6dWrV7vWVQrzbBnzfIx5GicWI0RdoH///uLl5dXq5aOjowWAREZGypdffimzZs0SABIaGmqwnEajEV9fX3F3d5dVq1bJzp07Zfjw4aJSqeTy5csi8vDHMCYmRgDIqlWrJC0tTdLS0qS0tFTfh4+Pj7i4uMiKFStk165dkpeXJ6WlpeLu7i4ODg7yySefyJYtW2TIkCHSo0cPOXjwoH4MLEbIHHCOtuy1116TwYMHt2tdpTDPljHPx5incWIxQtTJqqqqBICEhIS0avmLFy8KAJk3b55B+/LlywWAHD9+XN+m0WgEgOTn5+vbysrKRK1Wy7Jly/RtmZmZBv+T81+P+sjJyTFoX7p0qQCQkydP6tuqq6vF09NTPDw8pKGhQURYjJDp4xxtWX5+vqhUKomLi2vzukphni1jnszTFPBuWkSd7Pbt2wAABweHVi3/ww8/AAA++ugjg/Zly5YBQJPzYv39/TFmzBj9e1dXV/j6+uL69eutHqOnpycmTZrUZBwjRozA66+/rm+zt7fH/PnzUVxcjKtXr7a6fyJjxjnavLKyMsyYMQOenp6IjY3tUF/PE/NsHvNknqaCxQhRJ3N0dAQAVFdXt2r5kpIS9OjRAz4+Pgbtffr0gbOzM0pKSgzaBw0a1KQPFxcXVFRUtHqMnp6ezY7D19e3Sbufn5/+cyJzwDnaVE1NDYKDg1FdXY3Dhw8bXDRr7JhnU8yTeZoS3k2LqJM5OjqiX79+uHz5cpvWU6lUrVrOwsKi2XYRafW2uuLOWUSmgnPUUF1dHcLDw3Hp0iXk5uYiICDguW27MzBPQ8zz6Zin8eGREaIuEBwcjKKiIvz666/PXFaj0aCxsRGFhYUG7Tdv3kRlZSU0Gk2bt9/aH+Unx/HHH380ab927Zr+cyJzwTn6UGNjI2bNmoVjx45h37590Gq1be7DGDDPh5jnY8zTdLAYIeoCsbGx6NmzJ+bNm4ebN282+byoqAjbt28HAAQFBQEAtm3bZrDMli1bAACTJ09u8/Z79uwJAKisrGz1OkFBQTh79qzBj39NTQ2SkpLg4eEBf3//No+DyFhxjj60ZMkSZGRkIDExEeHh4W1e31gwz4eY52PM03TwNC2iLuDt7Y19+/Zh2rRp8PPzM3h67OnTp5GZmYnZs2cDAIYMGYLo6GgkJSWhsrISWq0WZ8+eRWpqKkJDQzF27Ng2b3/o0KGwsLDAxo0bUVVVBbVajTfffBNubm4trrNixQp8++23ePvttxETE4NevXohNTUVOp0OBw4cQI8ebf+/i7S0NJSUlKC2thYAkJ+fj4SEBADAzJkzebSFFMM5+vCPt8TERIwaNQp2dnbYu3evwedhYWH6P8qMHfNknszThCl7My8i81ZQUCDvv/++eHh4iLW1tTg4OMjo0aNlx44dBg9jqq+vlzVr1oinp6dYWVnJwIEDn/rApidptVrRarUGbcnJyeLl5SUWFhbNPrCpOY8e2OTs7Cw2NjYyYsSIDj2wSavVNvvwKLRwy0Si5607z9FHz2Zo6aXT6Z66vjFinsyTeZoelUgbrtghIiIiIiLqJLxmhIiIiIiIFMFihIiIiIiIFMFihIiIiIiIFMFihIiIiIiIFMFihIiIiIiIFMFihIiIiIiIFMFihIiIiIiIFMFihIiIiIiIFMFihIiIiIiIFMFihIiIiIiIFMFihIiIiIiIFMFihIiIiIiIFMFihIiIiIiIFPF/huhLZfRTV/kAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -951,7 +951,7 @@
"source": [
"For the paired version of the proportion plot, we adopt the style of a Sankey Diagram. The width of each bar in each xtick represents the proportion of the corresponding label in the group, and the strip denotes the paired relationship for each observation.\n",
"\n",
- "Starting from v2024.3.29, the paired version of the proportion plot receives a major upgrade. We introduce the ``sankey`` and ``flow`` parameters to control the plot. By default, both ``sankey`` and ``flow`` are set to True to cater the needs of repeated measures. When ``sankey`` is set to False, DABEST will generate a bar plot with a similar aesthetic to the paired proportion plot. When ``flow`` is set to False, each group of comparsion forms a Sankey diagram that does not connect to other groups of comparison.\n",
+ "Starting from **v2024.3.29**, the paired version of the proportion plot receives a major upgrade. We introduce the ``sankey`` and ``flow`` parameters to control the plot. By default, both ``sankey`` and ``flow`` are set to True to cater the needs of repeated measures. When ``sankey`` is set to False, DABEST will generate a bar plot with a similar aesthetic to the paired proportion plot. When ``flow`` is set to False, each group of comparsion forms a Sankey diagram that does not connect to other groups of comparison.\n",
"\n",
"Similar to the unpaired version, the ``.plot()`` method is used to produce an **estimation plot**.\n"
]
@@ -971,11 +971,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:58:09 2025.\n",
+ "The current time is Tue Mar 25 17:22:28 2025.\n",
"\n",
"Paired effect size(s) for repeated measures against baseline \n",
"with 95% confidence intervals will be computed for:\n",
@@ -1003,11 +1003,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:58:09 2025.\n",
+ "The current time is Tue Mar 25 17:22:28 2025.\n",
"\n",
"The paired mean difference for repeated measures against baseline \n",
"between Control 1 and Test 1 is 0.575 [95%CI 0.325, 0.725].\n",
@@ -1037,7 +1037,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAayBJREFUeJzt3XdYU2f7B/DvSSAJQwRk8yIgToqK4g+3gFWx7jrq1rrrqAPbukHroFoHzjrqqtZqrXVbR1UcFbUOWhXEBaIiCAqyCUnO7w9f8hqSYPaA+3NdufQ8Zzw3JubmPOcZDMuyLAghhBBikjjGDoAQQgghylGiJoQQQkwYJWpCCCHEhFGiJoQQQkwYJWpCCCHEhFGiJoQQQkwYJWpCCCHEhFGiJoQQQkwYJWpCCCHEhFX5RP3y5UvMnz8fL1++NHYohBCilFgsNmh99N1oOihRv3yJBQsW0IeREGLSjJGo6bvRNFT5RE0IIeaAlmWouihRE0IIISaMEjUhhJgBiURi7BCIkVCiJoQQM0BN31UXJWpCCDEDlKirLkrUhBBiBqjpu+qiRE0IIWaAEnXVZVKJ+uLFi+jevTs8PDzAMAwOHTr0wXNiY2PRtGlT8Pl81K5dGzt27NB7nIQQYmiUqKsuk0rUBQUFaNy4MdavX6/S8cnJyejatSvCwsIQHx+PqVOnYvTo0Th16pSeIyWEEMOiRF11WRg7gPd98skn+OSTT1Q+fuPGjfD19cWKFSsAAA0aNMDly5exatUqhIeH6ytMQggxOErUVZdJ3VGrKy4uDh06dJApCw8PR1xcnJEiIoQQ/TD0FKLEdJjUHbW60tPT4erqKlPm6uqK3NxcFBUVwcrKSu6ckpISlJSUSLfz8/P1HqemXr9+DaFQaLD6iouLYW9vb7D6iG5wuVyUlpYa9LPC4/FQo0YNg9VHKFFXZWadqDURHR2NBQsWGDuMD3r9+jXWr19v8LGToaGhsLW1NWidRDsikQinTp0y6GeFYRhMnDiRkrUBSSQSsCwLhmGMHQoxMLNu+nZzc0NGRoZMWUZGBuzs7BTeTQPArFmz8PbtW+nrwoULhghVbUKh0CgTHNBv7eZHJBIZ/LPCsqxB7+DJO/T/s2oy6zvqli1b4sSJEzJlZ86cQcuWLZWew+fzwefzpdvmcPdoiN+gadajyoE+K5WbSCSChYVZf20TDZjUHXV+fj7i4+MRHx8P4N3wq/j4eKSmpgJ4dzc8bNgw6fFffPEFnjx5gm+++Qb379/Hhg0b8Ouvv2LatGnGCJ8QQvRKJBIZOwRiBCaVqG/cuIEmTZqgSZMmAICIiAg0adIEkZGRAN4tZF6WtAHA19cXx48fx5kzZ9C4cWOsWLECP/74Iw3NIoRUSqWlpcYOgRiBSbWhhIaGVtispmjWsdDQUNy+fVuPURFCiGmgfgFVk0ndURNCCFHu/aGlpOqgRE0IIWaiuLjY2CEQI6BETQghZqKoqMjYIRAjoERNCCFmorCw0NghfND69evh4+MDgUCA5s2b4/r16xUeHxMTg3r16sHKygpeXl6YNm0atRyUQ4maEELMhKkn6n379iEiIgJRUVG4desWGjdujPDwcLx69Urh8Xv27MHMmTMRFRWFxMREbN26Ffv27cPs2bMNHLlpo0RNCCFmwpTXJgCAlStXYsyYMRgxYgT8/f2xceNGWFtbY9u2bQqPv3LlClq3bo1BgwbBx8cHnTp1wsCBAz94F17VUKImhBAzkZeXZ/A68/PzkZubK30p63kuFApx8+ZNmRUNORwOOnTooHRFw1atWuHmzZvSxPzkyROcOHECXbp00f0PYsYoURNCiJkoLCw0+KQnISEhqF69uvQVHR2t8LisrCyIxWKFKxqmp6crPGfQoEH49ttv0aZNG1haWsLPzw+hoaHU9F0OJWpCCDEjubm5Bq3vwoULMgsZzZo1S2fXjo2NxZIlS7BhwwbcunULv//+O44fP46FCxfqrI7KwKRmJiOEEFKxnJwcgy4vamtrCzs7uw8e5+TkBC6Xq3BFQzc3N4XnzJs3D0OHDsXo0aMBAA0bNkRBQQHGjh2LOXPmgMOhe0mA7qgJIcSsZGdnGzsEhXg8HoKCgnD27FlpmUQiwdmzZ5WuaFhYWCiXjLlcLgBape19dEdNCCFmxFQTNfBuIaXhw4ejWbNmCA4ORkxMDAoKCjBixAgAwLBhw+Dp6Sl9zt29e3esXLkSTZo0QfPmzfHo0SPMmzcP3bt3lyZsQomaEELMyuvXr40dglL9+/dHZmYmIiMjkZ6ejsDAQJw8eVLawSw1NVXmDnru3LlgGAZz587Fixcv4OzsjO7du2Px4sXG+hFMEiVqQggxI7m5uRAKheDxeMYORaFJkyZh0qRJCvfFxsbKbFtYWCAqKgpRUVEGiMx80TNqQggxM6Z8V010jxI1IYSYGWVTcpLKiRI1IYSYGWUTiJDKiRI1IYSYmfT0dBq+VIVQoiaEEDNTUlKCzMxMY4dBDIQSNSGEmKGnT58aOwRiIJSoCSHEDCUnJ1PzdxVBiZoQQsxQTk4O9f6uIihRE0KImbp//76xQyAGQImaEELM1KNHj1BUVGTsMIieUaImhBAzJRaLce/ePWOHQfSMEjUhhJixu3fvoqSkxNhhED2iRE0IIWZMKBTizp07xg6D6BElakIIMXFl6zsrW/7xzp079Ky6EqNETQghJi49PR3p6enIzc1VuL+0tBS3b982cFTEUChRE0JIJZCQkKA0kRPzRomaEEIqAYlEgr///tvYYRA9oERNCCGVxOPHj2mxjkqIEjUhhFQi165dM3YIRMcoURNCSCWSlpaGFy9eGDsMokOUqAkhpJK5fv06raxViVCiJoSQSiYzMxPPnj0zdhhERyhRE0JIJXTz5k26q64kKFETQkgllJmZibS0NGOHQXSAEjUhhFRSNFtZ5UCJmhBCKqm0tDS8fv3a2GEQLVGiJoSQSuzff/81dghES5SoCSGkEnvy5AmtrGXmdJaoWZbFuXPn8McffyAvL09XlyWEEKIFsViM+/fvGzsMogWNEvWcOXMQFhYm3WZZFp06dULHjh3RtWtXNGzYEI8fP9ZZkIQQQjR3//59GqplAC9fvsQ///yDgoICnV5Xo0R94MABBAcHS7d/++03nD17FosWLcKxY8cgFosxf/58jQJav349fHx8IBAI0Lx5c1y/fr3C42NiYlCvXj1YWVnBy8sL06ZNQ3FxsUZ1E0JIZZSXl4fnz58bO4xK6/Dhw6hfvz7+85//oGnTptL51rOystCkSRMcOnRIq+trlKhfvHiB2rVrS7d///13+Pv7Y9asWejSpQvGjx+P2NhYta+7b98+REREICoqCrdu3ULjxo0RHh6OV69eKTx+z549mDlzJqKiopCYmIitW7di3759mD17tiY/FiGEVFpJSUnGDqFSOnr0KHr37g0nJydERUXJtFw4OTnB09MT27dv16oOC41OsrBASUkJgHfN3mfPnsWwYcOk+11dXZGVlaX2dVeuXIkxY8ZgxIgRAICNGzfi+PHj2LZtG2bOnCl3/JUrV9C6dWsMGjQIAODj44OBAwfS6jFEIYZhwOFwpH++/3dFf5Z/cTgc6XXKv8rKFf1Z9ndWIoEoJxvivFywpUKd/Vx5OrwWqbxSUlJQXFwMgUBg7FAqlW+//Rbt2rXD+fPn8fr1a7nW5JYtW2LTpk1a1aFRog4ICMDu3bsxePBgHDx4EK9fv0bXrl2l+58+fQonJye1rikUCnHz5k3MmjVLWsbhcNChQwfExcUpPKdVq1bYvXs3rl+/juDgYDx58gQnTpzA0KFDldZTUlIi/SUDAPLz89WKs7LjcrmwsNDoYyHn/QTH5XKlr/f3v3+csr+XT5aKthX9qejvxsCyLIRpzyF8mgILYcmHT1CTRFiq82uSykcikeDRo0cICAgwdiiVyt27d7Fy5Uql+11dXZW2CqtKo2/kyMhIdO/eXZqMW7duLdO57Pjx4/i///s/ta6ZlZUFsVgMV1dXmXJXV1elPRYHDRqErKwstGnTBizLQiQS4Ysvvqiw6Ts6OhoLFixQK7aqRCwWQyQS6e36XC4XPB4PfD4fAoEAVlZWsLa2Bp/P11udxiQRClGUcBeinDfGDoUQPHz4kBK1jllbW1fYeezJkyeoUaOGVnVolKg7duyIW7du4cyZM7C3t0f//v2l+7Kzs9GuXTv07NlTq8BUERsbiyVLlmDDhg1o3rw5Hj16hClTpmDhwoWYN2+ewnNmzZqFiIgI6XZ8fDxCQkL0Hit5RywWo6ioCEVFRcjJyZGWW1hYwMbGBtWqVYOdnR2srKyMF6SOSIqKUBB/E5IS0+zcuGnTJuTn58PW1hbjxo0zdjjEADIzM5GdnQ0HBwdjh1JphIWFYefOnZg6darcvvT0dGzZsgXdunXTqg6N2zj9/f3h7+8vV+7g4IBVq1apfT0nJydwuVxkZGTIlGdkZMDNzU3hOfPmzcPQoUMxevRoAEDDhg1RUFCAsWPHYs6cOdJniu/j8/kyd2+2trZqx0p0TyQS4e3bt3j79i0AgMfjoXr16nBwcICtra3Rmq01ZepJGnj32Cc3N9fYYRADe/DgAZo3b27sMCqNxYsXo0WLFvi///s/9OvXDwzD4NSpUzh37hw2bdoElmURFRWlVR0a9frOy8uTW+s0LS0NkZGRmDFjBv7++2+1r8nj8RAUFISzZ89KyyQSCc6ePYuWLVsqPKewsFAuGZc9A6Uxg+ZNKBQiMzMTDx48wJ07d/D8+XOzmV2JFYlQeOcfk07SpOp69OgRfT/qUL169XD58mXUqFED8+bNA8uy+P7777FkyRI0bNgQly5dgo+Pj1Z1aHRHPXbsWCQnJ+Pq1asAgNzcXLRo0QLPnz8Hh8PB6tWrcfLkSYSGhqp13YiICAwfPhzNmjVDcHAwYmJiUFBQIO0FPmzYMHh6eiI6OhoA0L17d6xcuRJNmjSRNn3PmzcP3bt3l+m0RMxbaWkpMjIykJGRARsbGzg7O8PR0dFk77KL7idAXEidFIlpKigowPPnz+Hl5WXsUCqNjz76CH/++Seys7Px6NEjSCQS1KpVC87Ozjq5vkaJ+vLlyzLPtHbv3o20tDRcuXIFH330ET7++GMsWrRI7UTdv39/ZGZmIjIyEunp6QgMDMTJkyelHcxSU1Nl7qDnzp0LhmEwd+5cvHjxAs7OzujevTsWL16syY9FzEBBQYH0i8bFxQXOzs4666WuCyXPn6E0S7senoToW2JiIiVqPXBwcFC7I7UqNGr6zsrKgqenp3T7yJEjaNOmDVq0aIFq1aph2LBh+OeffzQKaNKkSXj69ClKSkpw7do1mWcpsbGx2LFjh3TbwsICUVFRePToEYqKipCamor169fD3t5eo7qJ+RCJREhLS8OdO3fw4sULvfZUV5WkqBAlTx4ZOwxCPujp06c6n+ayqlqzZg3Cw8OV7v/kk0/www8/aFWHRona3t4e6enpAICioiJcunQJnTp1ku63sLBAYWGhVoERogqJRIL09HTcuXMHaWlpEIvFRoul6H4iWInx6idEVSzLIjEx0dhhVApbt25V2LG6jL+/PzZv3qxVHRol6latWmHDhg04ePAgpk6diuLiYpnhWA8ePJC54yZE3yQSCV6+fIm7d+8iMzPT4J1lhOlpEL3NNmidRDtv3rzB4MGDYWdnB3t7e4waNeqDEyCFhobKTcLzxRdfSPfv2LFD4UQ9DMNoPemFriUmJhr1F9vK4vHjx2jQoIHS/fXr19d6kSqNEvXSpUthaWmJPn36YMuWLYiIiMBHH30E4N042f3799PYZGIUIpEIqampSExMNNisc6xYjJInTwxSF1FPaGiozOOy9w0ePBj37t3DmTNncOzYMVy8eBFjx4794DXHjBmDly9fSl/Lli2T7uvfv7/MvpcvXyI8PBwhISFwcXHR1Y+lE0VFRXhCn1ut8Xg8aQuzIi9fvlQ4VFgdGp1du3ZtJCUl4fbt23jy5Am+//576b7CwkKsW7cOc+bM0SowQrRRVFSEpKQkpKSk6P35dUlqCiRCGoplThITE3Hy5En8+OOPaN68Odq0aYO1a9di7969SEtLq/Bca2truLm5SV92dnbSfVZWVjL7uFwuzp07h1GjRun7R9LI3bt3dX5NdVdAzMnJwcSJE+Hu7g4+n4+6devixIkTOo9LX1q0aIEdO3YgLy9Pbt/bt2+xfft2tGjRQqs6NE7zlpaWaNy4sdz4sGrVqqFnz55ajxsjRBdev36Ne/fuITtbP83SEqEQwmeperk20Z+4uDjY29ujWbNm0rIOHTqAw+F8cFGfn3/+GU5OTggICMCsWbMq7I/z008/wdraGn379tVZ7LqUmZmJzMxMnV1P3RUQhUIhOnbsiJSUFPz2229ISkrCli1bzOrRaVRUFNLS0hAYGIi1a9fi3LlzOHfuHNasWYMmTZrg5cuXWk94ovG4ltzcXGzYsAHnz5/Hq1evsGnTJgQHB+PNmzfYsWMHevToIbMUJiHGIhKJ8OTJE9jb28PLyws8Hk9n1xamPqUOZGYoPT1drinawsICjo6OFTZjDho0CN7e3vDw8MC///6LGTNmICkpCb///rvC47du3YpBgwaZ9JS4CQkJOntUqe4KiNu2bcObN29w5coVWFpaAoDZ3eQ1b94cR48exbhx4zBlyhTp/A4sy8LX1xdHjhxROmmXqjRK1M+fP0dISAiePXuGOnXq4P79+9LngY6Ojti0aROePn2K1atXaxUcIbqUk5OD3NxceHh4wMXFResJUyRCIYRpz3UUHdGFJUuWYMmSJdLtoqIiXL16FZMmTZKWJSQkaHz9959hN2zYEO7u7vj444/x+PFj+Pn5yRwbFxeHxMRE7Nq1S+P6DCElJQVt2rRROklU+almy0/DXEaTFRDLktjEiRNx+PBhODs7Y9CgQZgxY4ZZTVrVsWNHPHr0CLdv35Z2HPPz80PTpk11MjGTRon666+/Rl5eHuLj4+Hi4iL3m2mvXr1w7NgxrYMjRNckEgmeP3+OrKwseHl5yTxfVJfwGd1Nm5ovvvgCn332mXR78ODB6NOnD3r37i0t8/DwgJubm1xzrEgkwps3b5SuLaBI2TwPjx49kkvUP/74IwIDAxEUFKTJjyKVmpoqHfNcUlKCN2/ewNHRUatrvq+kpARpaWlKJ0Apf7cdFRUlt+YyoNkKiE+ePMG5c+cwePBgnDhxAo8ePcKECRNQWlqqdXOxoXE4HAQFBWn9fiuiUaI+ffo0pk2bBn9/f7x+/Vpuf61ateTmAifElBQXF+Phw4ews7ODp6cnrK2t1TqfFYkgTHuhp+iIphwdHWWSmJWVFVxcXOQew7Vs2RI5OTm4efOm9Iv13LlzkEgkai1YER8fDwBwd3eXKc/Pz8evv/4qne5YE9evX8fChQtx/Phx6XDDoqIizJ49Gw0bNkTXrl111kycnp6uNFFfuHABgYGB0m1dLkkrkUjg4uKCzZs3g8vlIigoCC9evMD3339vdok6ISEBT548QXZ2tsLhocOGDdP42hol6qKiogrnMFXU+40QU5Sbm4vc3Fw4ODjA3d1d5WeJwpdpYMXGnw1NG2Urx1XFFeQaNGiAzp07Y8yYMdi4cSNKS0sxadIkDBgwAB4eHgCAFy9e4OOPP8ZPP/2E4OBgPH78GHv27EGXLl1Qo0YN/Pvvv5g2bRratWuHRo0ayVx/3759EIlEGDJkiEbx/f777+jfvz9YlpX70mdZFnfv3sXdu3cxZswYNG3aVLN/hPdUNMbb1tZWpZYnTVZAdHd3h6WlpUwzd4MGDZCeng6hUKjT/iT68vjxYwwZMgTXr19XOn8DwzCGT9T+/v64ePGi0jVsDx06hCZNmmgcFCGGlp2dLV2n19XVFTY2NkqPZVkWwhem2WKkzkQv7z9vrYqrKf3888+YNGkSPv74Y3A4HPTp0wdr1qyR7i8tLUVSUpK0VzePx8Off/4pXSzIy8sLffr0wdy5c+WuvXXrVvTu3Vuj6YyvX7+O/v37QywWK31fJBIJAGDLli2YMWOG1nfWulju9P0VEHv16gXgfysgvt9H4H2tW7fGnj17IJFIpGONHzx4AHd3d7NI0gAwbtw43LlzBzExMWjbtq1e1vrWKFFPnToVw4cPR6NGjdCvXz8A796QR48eYcGCBYiLi8OBAwd0GighhlCWsG1tbeHi4gJ7e3u5ziCirExIitVfcpNrYwtLNw9Y2NuD4emu+bA0OxvM1b8NmmwZhjGLL9LY2Fil+xwdHbFnzx6l+318fGT+Tb28vHDhwgWV6r1y5YrKMZa3aNEihXfSypw4cQITJkzQuD7gXVM9y7Jad3xSdwXE8ePHY926dZgyZQq+/PJLPHz4EEuWLMHkyZO1isOQ/vrrL8yePRtffvml3urQKFEPGTIET58+xdy5c6UTm3Tu3Bksy4LD4WDJkiXS36gIMUf5+fnIz8+HpaUlatSogRo1akAgEACA2nfTjCUPVnXqwdLF9cMHa8DJzQ0TJ06EUCjUy/UV4fF4qFGjhsHqqypSU1Nx7NgxlZO0RCLBv//+q3UHM5ZlIRaLtV6JTt0VEL28vHDq1ClMmzYNjRo1gqenJ6ZMmYIZM2ZoFYchOTk5oXr16nqtQ+N3Zc6cORg6dCgOHDggXX/Tz88PvXv3Rq1atXQZIyFGU1paivT0dKSnp8PGxgZ2AgEsszLBU/ELzcLeAVYNAsDRYQccRShpviMWi6XNwsYgEom0mj/7/Y5jqmJZFvfu3dN6rG5eXp5MfwVNZ/SbNGmS0qZuRS0cLVu2xNWrVzWqyxR88cUX2L17NyZOnKi3IWVa/fpUs2ZNTJs2TVexEGLSCgoKkJOSDNGb1xBYWqAanw8bPg82PB44CpoMLRydYB3QCIyW8/wS1S1cuBALFiwwdhgGt3v3buzevVura0ycOFFH0VQtdevWhVgsRuPGjTFy5Eh4eXkpTNjvDxFUl0aJ+tatW7h69arS5yIbNmxAq1atZLr0E2LuWJaF6O1bAEBxqQjFpSJk5heAYQCBpSWsLS0hsLSAwMISNs4ulKSNYN68eUZbZ6CkpAT//PMPLCwsNH5+f/jwYY1+0ejfvz+Cg4M1qhN499lu3rw5AgMDpcOvbt++rdZQtaqqf//+0r9/9dVXCo9hGEarlhaNEvWcOXNgZWWlNFGfO3cOJ06coElPSKUiyc8DFAzJYlmgSFiKImEpAIDh8cG3rwHLO3fA5/NhaWkpHYLC5XKlyx7qioWFBWyFJWBLDLcwCMMXgOfm/uEDDazs39gYJBIJLCwsYGNjo3GiDg0NxbfffqtW8zfDMGjQoIF0Ck5NWFhYSD+nZdfR9nl1VXH+/Hm916HRO1F+mrjy2rZtq9VAf0JMkUiVISwcDngenmC4XIhEIr2v3AUAFsXFsPlxnd7rKa9m9EqTTNbmzMPDA6Ghobh48aJKd2AcDgf+/v5az1RW1lGSqM8QSzpr1C6Xl5dX4W9bHA4Hb//bREhIZcCKRJAUfHh9a0sXV713HJMjMlxv7/cZ8g6+KpkwYYJarS7h4eFa11kVJ73RtZKSEsTFxeHw4cPIysrS6bU1StR16tTB6dOnle4/efIk9fwmlYo4P/ddG3cFODY2sKhub5iAlGEYlV+fHj2NNr8exqdHT6t1HtGvRo0aYdWqVRU243M4HHA4HIwYMQLe3t5a11mtWjWtr1GVrVmzBu7u7mjTpg169+6Nf//9F8C7+c+dnJywbds2ra6vUaIeNWoUjh8/joiICOTk5EjLc3JyMG3aNJw8edJkF0onRBPitx9o9uZwzK4ZOLOoCBmFRcgsUn/yFqJfnTp1wi+//IJ27drJ3VkzDAN/f39MmzYNjRs31kl9+phNq6rYvn07pk6dis6dO2Pr1q0y/QucnJzQvn177N27V6s6NHpGPXnyZMTHxyMmJgZr1qyRzo2blpYGiUSCoUOH0rAtUmmwQuEHZyKzdHQCY6F5Zx5CymvUqBE2btyItLQ09OzZE7m5ubCyssKMGTN0unqWlZUVrK2tpVOlEvWsWLECPXv2xJ49exQuUhUUFCQzNa0mNErUDMNg+/btGDZsGA4cOIAnT54AAHr27Ik+ffogNDRUq6AIMSXiDywyw1hagqvDL05C3ufh4QErKyvk5uaCx+PpNEmXXV+XoxCqmkePHlU45amjo6PCBK4Orfrfh4WFISwsTKsACDF14vyKm70tnV3oi46YLU9PT2OHYNbs7e0r7DyWkJCg1hrnimj0jDo5ORlHjx5Vuv/o0aNISUnRNCZCTMa7Zm/lvZs5AgG41T68BCAhpsjFxUXlpV2JYl26dMHmzZtl+muVuXfvHrZs2YIePXpoVYdGifqrr76qsM19/fr1mDlzpsZBEWIqPtTsbeHoZKBICNE9bZfHJO9WOxOLxQgICMDcuXPBMAx27tyJIUOGoFmzZnBxcUFkZKRWdWiUqOPi4tCxY0el+z/++GNcunRJ46AIMRUVNXu/u5umYS3EPDk4OFBvbx3w8PDAzZs30blzZ+zbtw8sy2LXrl04evQoBg4ciKtXr8LJSbtf6DV6Rp2dnV3huDtbW1utH54TYmxsaWmFzd50N03Mma+vr7FDMHslJSU4deoUfHx88OOPP+LHH39EZmYmJBIJnJ2dZZb01IZGV6lZsyb++usvpfsvXbqE//znPxoHRYgpEOcrb/ZmLHng0GxOxExVq1ZN67s88m5d9n79+uHKlSvSMmdnZ7i6uuosSQMaJuqBAwfil19+wZo1a2TWfhWLxVi9ejX27duHQYMG6SxIQoxBnK98ylALRwfq6U3MVq1atejzqwMMw6BOnTo6nzK0PI0S9axZsxAWFoapU6fC3d0d7dq1Q7t27eDh4YFp06YhJCTEaEvNEaILrFgMSZGSCSC4XHDt7A0aDyG6YmNjA1dXV2OHUWnMnj0b69atQ1JSkt7q0OgZNZ/Px+nTp7Fz5078/vvvePz4MQAgODgYffr0wbBhw3R620+IoUkK85XO7W1R3Z7WmSZmy9fXl+6mdejq1auoUaMGAgICEBoaCh8fH7khbwzDYPXq1RrXofGEJ2UTwo8YMULjygkxVRU2ext74Q1CNGRlZQV3d/Oak97UrVv3vyVmz549q/AYoyVqQiorlmUhLihQuI9jbQOGxzNwRITohq+vL7V26tj7/bT0RaNE3b59+w8ewzCM0t8uCDFlkuIiQCxWuM/C3t6wweiR83+b55xpZqoqgc/nSxdQIuZFo0QtkUjknnGIxWI8ffoUz549Q+3atWn+WGK2JErupsG1AMe28kxwcrBHuLFDIAZUq1YtpetbE+1dvXoV58+fx6tXrzBhwgTUqVMHhYWFuH//PurWrQtbLYZzapSoY2Njle47duwYxo4di5UrV2oaEyFGJSlQ/Hzawq46dcIhZonP59PNk54IhUIMGDAAhw8fBsuyYBgG3bt3R506dcDhcNCpUydMmzZNq5FQOn9Y0a1bNwwZMgRTp07V9aUJ0TtWJFI6Gxm3Oi2+QcwT3U3rz7x583Ds2DH88MMPSEpKAvveaBGBQIB+/frh8OHDWtWhl14Ffn5++Pvvv/VxaUL0SmknMj4fHL7AwNEQoj0ej0d303r0yy+/YPz48Rg7dqzCtcIbNGiAJ0+eaFWHzhO1SCTCr7/+StPTEbMkKVTc7M21q27gSAjRDR8fH7qb1qNXr16hYcOGSvdzuVwUFiqZPElFGj2jHjlypMLynJwcXL16Fenp6fSMmpglcYGi/1AMuHbU7E3MD4fDoXUX9MzLywv3799Xuv+vv/5C7dq1tapDo0R97tw5uU41DMPAwcEBbdq0wejRo9GpUyetAiPE0CQlJYBYJFfOsbYCY2FphIgI0Y6HhwcsLemzq0+DBg3CypUr0adPH9StWxcApPlxy5Yt+PXXX/Hdd99pVYdGiTolJUWrSgkxRcqGZXGr0d00MU90N61/c+bMwdWrV9GuXTs0aNAADMNg2rRpePPmDZ4/f44uXbpg2rRpWtVBU9QQ8l/iQkWJmgG3Eo2dJlWHjY0N7OiRjd7xeDycPHkS27dvR61atVC/fn2UlJSgUaNG2LFjB44ePap1HwGVE3VhYSFSU1MhFArl9m3btg0ff/wx/P390bt3b616fK9fvx4+Pj4QCARo3rw5rl+/XuHxOTk5mDhxItzd3cHn81G3bl2cOHFC4/pJ1cSyrMLVst41e9NMu8T8uLu707h/PYiIiMDt27el26mpqSguLsaQIUNw6NAh3Lt3D4mJiTh27BiGDRumk/dA5UT97bffolGjRnKJetGiRRgzZgwuXLiAzMxMHDp0CKGhofjnn3/UDmbfvn2IiIhAVFQUbt26hcaNGyM8PByvXr1SeLxQKETHjh2RkpKC3377DUlJSdiyZQsNRSBqkxQVAQrm7KVmb2Ku3NzcjB1CpRQTE4PExETptq+vLw4ePKjXOlVO1OfPn0e3bt1kpkHLzc3FokWL4OnpiYcPHyIzMxNXr14Fj8fT6OH5ypUrMWbMGIwYMQL+/v7YuHEjrK2tsW3bNoXHb9u2DW/evMGhQ4fQunVr+Pj4ICQkBI0bN1a7blK1KV57mpq9iXmys7ODjY2NscOolFxdXWXGRbNKlsPVJZXb9FJSUtCnTx+ZshMnTkAoFGLGjBnw9fUF8G5N6hEjRuDXX39VKxChUIibN29i1qxZ0jIOh4MOHTogLi5O4TlHjhxBy5YtMXHiRBw+fBjOzs4YNGgQZsyYofSZQElJCUpKSqTb+RUsZ0iqDomC59McK2r2JuaJlrLUn65du+Lbb7/F6dOnYf/fRXpWrFiBvXv3Kj2HYRitZidT+VsoLy8PNWrUkCm7ePEiGIZBeLjs5P7+/v7IzMxUK5CsrCyIxWK4urrKlLu6uiodo/bkyROcO3cOgwcPxokTJ/Do0SNMmDABpaWliIqKUnhOdHQ0FixYoFZspHJ793y6SK6cq8Uk+oQYC8MwtEqWHq1evRouLi44f/487t27B4Zh8OzZM7x580bpOdo+p1Y5UXt7e8slzNjYWLi6usoN5hYKhQbpbSiRSODi4oLNmzeDy+UiKCgIL168wPfff680Uc+aNQsRERHS7fj4eISEhOg9VmK6JEVFgILmK44NJWpiflxdXcGjNdP1xsbGBkuWLJFuczgcxMTEYNCgQXqrU+Vn1J06dcK2bdtw7do1AMBPP/2E+/fv49NPP5U79ubNm/Dx8VErECcnJ3C5XGRkZMiUZ2RkKO0U4e7ujrp168o0czdo0ADp6ekKe6cD71aRsbOzk760WXqMVA6Knk8zPD44fL4RoiFEO+p+9xL19O7dG5cuXZJunz9/Hh07dtRrnSon6nnz5sHW1hatWrUCj8fD559/DmdnZ0RGRsocV1hYiIMHD+Ljjz9WKxAej4egoCCcPXtWWiaRSHD27Fm0bNlS4TmtW7fGo0ePIHmvt+6DBw/g7u5Ov1ESlSl6Pk3N3sQc2dvbo3p1mpdenw4fPozU1FTpdvv27XHmzBm91qlyonZyckJ8fDy+++47jBo1CkuWLMGdO3fkninfvXsXgwcPxtChQ9UOJiIiAlu2bMHOnTuRmJiI8ePHo6CgACNGjAAADBs2TKaz2fjx4/HmzRtMmTIFDx48wPHjx7FkyRJMnDhR7bpJ1cSyrMJlLanZm5ijsk69RH88PT1lxlGXrUGtT2p1aXVwcMDXX39d4THBwcEIDg7WKJj+/fsjMzMTkZGRSE9PR2BgIE6ePCn9ZSA1NRUczv9+t/Dy8sKpU6cwbdo0NGrUCJ6enpgyZQpmzJihUf2k6lE4fprLBcfKyjgBEaIha2trODs7GzuMSm/AgAFYvnw5fv31V2mv75kzZyI6OlrpOQzDaDS3SBmTG3syadIkTJo0SeG+2NhYubKWLVvi6tWreo6KVFasot7e1jY0oxMxO97e3vS5VcLX11ftfxuGYfD48WO58ujoaNSuXRvnz5/Hq1evwDAMbGxs5EZF6ZLJJWpCDEmsaNpQmiiCmBkul0tDsioQEhIil6hv3LiBe/fuwd/fH/Xq1QMAJCUlISEhAQEBAQgKClJ4LS6Xi7Fjx2Ls2LEA3vX6njt3rl57fVOiJlWapFjBHTU9nyZmxs3NDRY0OY9SO3bskNk+dOgQDh06hDNnzsh1fD5z5gw+++wzLFy4UKVrJycn6/2RA62eRaqsd+tPi2XKOAIBzUZGzI4pzUSm7sJKZfbu3QuGYdCrVy/9BgggMjISX375pcLRSR07dsSkSZMwd+5cla7l7e0Na2trXYcoQ6VEfeTIEaSlpek1EEIMTfFqWXQ3TcyLhYUFHBwcjB0GAPUXViqTkpKCr776Cm3btjVInA8fPqzwmXKNGjUUPp8G3jV1W1hYSOfq4HA44HK5Fb60be1Q6exPP/0Uu3btkrbB16pVCzExMejRo4dWlRNiTAoTNT2fJmbG2dlZZjSMMb2/sBIAbNy4EcePH8e2bdswc+ZMheeIxWIMHjwYCxYswKVLl5CTk6P3OP38/LB9+3aMGjVKbtKrvLw8bNu2DbVq1VJ4bmRkJBiGkSbfsm19UilRV6tWTeYfLyUlhRazIGZPbn5vDoeGZRGz4+TkZOwQAGi2sBLwbgllFxcXjBo1SmbGL31atGgR+vbti/r16+Pzzz+XToP98OFD7Ny5ExkZGdi/f7/Cc+fPn1/htj6olKiDg4OxePFiZGRkSGe9OXHiBNLT05WewzAMpk2bppsoCdExViQCW1oqU8axsqLhLcTs6LvZOz8/H7m5udJtPp8PvoLpdTVZWOny5cvYunUr4uPjdRrzh/Tq1QsnTpzAjBkzZObtBoDAwEBs3bpVbrEpY1IpUW/YsAHDhg2T9oJjGAZ79uzBnj17lJ5DiZqYMoWrZVlTszcxLwKBAFZ6bgUqv2hRVFSUTu4i8/LyMHToUGzZssUorQKdOnVCp06dkJ6ejqdPnwJ41zFM2doSipSUlGD37t04ffo0Hj9+jLy8PFSrVg21a9dG586dMWjQIJ1MZ61Soq5duzauXLmC4uJivHr1Cj4+PoiJiUHPnj21DoAQY1CUqGnaUGJuymbG0qcLFy4gMDBQuq3obhpQf2Glx48fIyUlBd27d5eWla3bYGFhgaSkJPj5+engJ6iYm5ubWsm5zJ07d9CzZ088ffoULMuievXqsLW1xatXr3Dr1i3s378fixcvxpEjR9CgQQOtYlSrB4JAIEDNmjURFRWF9u3bw9vbu8IXIaZKbvw014JWyyJmxxALcNja2sqsOKgsUau7sFL9+vVx584dxMfHS189evRAWFgY4uPj4eXlpbefCXg3JfUXX3yBevXqwdHRERcvXgTwrgl/8uTJMvN5l5efn48ePXogIyMDixcvxrNnz5CdnS3z56JFi5CWlobu3bujoEB+4R91aNRn/P21nvPz8/Hs2TMA7+bepmUjial7txCHbKLm2uh3HCQh+mBqK2VFRERg+PDhaNasGYKDgxETEyO3sJKnpyeio6MhEAgQEBAgc35ZC0H5cl1LSEhA27ZtIZFI0Lx5czx69AgikQjAu5aBy5cvo6CgAFu3blV4/vbt25GamoqzZ88iNDRUbr+npydmzZqF5s2bo2PHjtixY4dWi0Vp3Kf/77//RlhYGBwcHBAQEICAgAA4ODigffv2uHHjhsYBEaJvbHExwLIyZRwrej5NzAvDMLCzszN2GDL69++P5cuXIzIyEoGBgYiPj5dbWOnly5dGjhL45ptvYG9vjwcPHmD37t1gy30fdO3atcIe6MePH0enTp0UJun3tW/fHh07dsTRo0e1ilejO+pr164hNDQUPB4Po0ePlra/JyYm4pdffkG7du0QGxur8SpahOiTomlDOXqeWYgQXbO1tQWXyzV2GHLUXVjpfeWn+tSXixcvIjIyEs7Oznj9+rXc/po1a+LFixdKz79z5w4mT56sUl3t27fH6tWrNY4V0DBRz5kzB56enrh8+bLcQ/j58+ejdevWmDNnjt4X0yZEE+UTNWNhCY4OemYSYkim1uxtTiQSSYXTfmZmZip9Fg8Ab968UbkDmqurK968eaN2jO/TqOn72rVrGDdunMJAXV1dMXbsWFp6kpis8j2+OdY0yQkxP4bo8V1ZNW3aFMePH1e4TyQSYe/evWjRooXS80tKSmBpaalSXe9PN6opje6oORyO9MG7ImKx2GSmtCPkfYonOqHn08T8UKLW3KxZs9CtWzeMHz8eAwYMAPBuGNmff/6JJUuWIDExEevWravwGikpKbh169YH60pOTtY6Xo0SdatWrbB+/XoMGjRIbhhWamoqNmzYgNatW2sdHCG6Jikuliuj59PE3FhYWOh9xabK7JNPPsGOHTswZcoUbN68GQAwZMgQsCwLOzs7/PTTT2jXrl2F15g3bx7mzZv3wbpYltV6xkONEvWSJUvQrl071K9fH59++inq1q0L4N2i24cPH4aFhQWio6O1CowQfZCUlH8+bUHPp4nZsbe3p+lutTR06FD07t0bZ86cwcOHDyGRSODn54fw8HBUq1atwnO3b99uoCjf0ShRN2nSBNeuXcOcOXNw5MgRFBa+W4XI2toanTt3xqJFi+Dv76/TQAnRBfnn03RXQswPNXtrrrCwEF5eXpg5cya+/vprjda/Hj58uO4Dq4DGi2T6+/vj4MGDkEgkyMzMBGBay60RooikuERmm1bLIuaIenxrztraGhYWFrAxoyVttc6qHA4Hrq6ucHV1pSRNTBorFAJi2U6QHCu6oybmhxK1dvr06YPffvtNbqITU6XxHTUh5qb882lwOGB4NL83MS/W1tYqDw0iig0YMAATJkxAWFgYxowZAx8fH4WrkDVt2tQI0cmjRE2qDEmRfLM3dcgh5uZDHZ3Ih70/9aeiqULLemqLxWIDRqUcJWpSZZSfkYyavYk5okStPUP32tYWJWpSZUhKZMdQU0cyYo4oUWvP0L22tUWJmlQJEqEQ+O+i9AAAhgFHQImamB9z6q1clSQkJODJkyfIzs5W2Elt2LBhGl9bq0Stz8AI0SW5Zm8+HwyNUiBmhmEYhZ2eSMVGjhwJhmGwefNmcLlcjBw58oPnMAyjdD3q9z1+/BhDhgzB9evXlfYiZxjG8InaEIERoktsufHTDH3ZETNFw2DVd+7cOXA4HEgkEnC5XJw7d+6DHUlV7Wg6btw43LlzBzExMWjbti0cHBx0EbIMjRK1IQIjRJfKD83iUqImZsTJyQkSiQS2trbGDsUspaSkVLitjb/++guzZ8/Gl19+qbNrlqdRojZEYIToUvnFODgC6vFNzMfvv/+OzMxMvHz50tihkHKcnJz0PgGNRm0ohgiMEF0p35GMsbAAQxNGEDPE59MEPabmiy++wO7du/U65lqjO+qywCZOnAgul6vrmAjRKbZcszf19ibmikcrvenMH3/8gZUrV+LWrVt4+/atwv5WqiTfunXrQiwWo3Hjxhg5ciS8vLwU5sXevXtrHKtGidoQgRGiK4pmJCPEHFGi1o0DBw7gs88+w0cffYQBAwbghx9+wKBBg8CyLA4fPow6deqovKpW//79pX//6quvFB6j7SxnGiVqQwRGiK6UH5rF0B01MVM0x7duREdHIzg4GJcvX0Z2djZ++OEHjBw5Eu3bt0dKSgpatGgBX19fla51/vx5PUerYaI2RGCE6ALLsrIzkjEMOAKB8QIiRAsWFjRHlS4kJCQgOjoaXC5X+m9aWloKAPDx8cGECROwdOlSlYYYh4SE6DVWQMNEbYjACNEFtlxHMg6PJjoh5ovuqHXD2tpa+hjB3t4efD5fpke9q6srkpOT1b5uQkICnj59CgDw9vaGv7+/TuLV+tczfQVGiC5Iiso3e9PdNDFf1HlXN+rVq4eEhATpdmBgIHbt2oUhQ4ZAJBJhz549qFmzpsrXO3z4MCIiIuTGZ/v6+mLlypXo0aOHVvFqfGtx+PBh+Pn5oWHDhujWrRu6deuGhg0bonbt2jhy5IhWQRGiK3JTh9LzaWLGKFHrRu/evXHkyBGUlLzraDpnzhzExsbC3t4ezs7OuHTpEmbOnKnStU6cOIE+ffoAAJYsWYKDBw/i4MGDWLJkCViWRe/evXHy5Emt4tXojrosMG9vbyxZsgQNGjQAACQmJmLz5s3o3bs3jh07hs6dO2sVHCHaYstPdEI9vokZo0StneLiYhw+fBilpaWYO3cu3rx5A3d3d3Tr1g2xsbH4/fffweVy0bVrV4SFhal0zYULF6JRo0a4dOmSzIIpPXr0wKRJk9CmTRssWLBAq3yoUaI2RGCEaIuVSCARvjc0i8MBQ8NbiBmjeb419+rVK7Rq1QrJyclgWVa6wMmhQ4fQoUMHtG3bFm3btlX7uv/++y+WLFmicFUzGxsbfP7555g9e7ZWsWv0rv/7778YPnx4hYH9+++/WgVGiLYkJcXAe5MYcPgClSfaJ8TUMAxDiVoLCxcuREpKCqZNm4Zjx45h1apVsLKywrhx47S6rkAgwJs3b5Tuf/PmDQRa9o3R6I7aEIERoi22iJ5Pk8qDfsnUzunTpzFs2DAsX75cWubq6opBgwYhKSkJ9erV0+i67du3x+rVq9G5c2e0bNlSZt+1a9ewZs0adOrUSavYNfr1rCywuLg4uX1lgXXo0EGrwAjRltxCHFY0TzIxX5SotZOamoo2bdrIlLVp0wYsyyIjI0Pj6y5btgwCgQBt2rRBy5Yt8fnnn+Pzzz9Hy5Yt0apVKwgEAixdulSr2DVK1PoObP369fDx8YFAIEDz5s1x/fp1lc7bu3cvGIZReeo3UrmVH5rF4dMdNTFflKi1U1JSItfSW7YtEok0vq6vry/+/fdfTJ48GdnZ2di3bx/27duH7OxsTJkyBf/88w98fHy0CV2zpu+ywKKjo/HHH39g3759AN6No54yZQpmzpwJFxcXjQLat28fIiIisHHjRjRv3hwxMTEIDw9HUlJShddMSUnBV199pVFnAFL5sKJSsKLS/xVQRzJi5ihRay8lJQW3bt2Sbr99+xYA8PDhQ9jb28sd37RpU5Wu6+LiglWrVmHVqlU6ibM8jSc80VdgK1euxJgxYzBixAgAwMaNG3H8+HFs27ZN6bg2sViMwYMHY8GCBbh06RJycnJ0GhMxP3J309Rngpg5StTamzdvHubNmydXPmHCBJntsl7hprJehUlNHCsUCnHz5k3MmjVLWsbhcNChQweFz8PLfPvtt3BxccGoUaNw6dIlQ4RKTJykqNzzaepIRkiVtn37dp1cZ+TIkWAYBps3bwaXy8XIkSM/eA7DMNi6davGdaqUqA0VWFZWFsRiMVxdXWXKXV1dcf/+fYXnXL58GVu3bkV8fLxKdZSUlEhnowGA/Px8tWIk5kF+RjLqSEZIVTZ8+HCdXOfcuXPgcDiQSCTgcrk4d+7cB1s7tG0NUSlRGyMwVeTl5WHo0KHYsmULnJycVDonOjoaCxYs0HNkxJhYlpVP1NSRjJg5avo2DeXn8y6/rQ8qJWpDBebk5AQulyvXVT4jIwNubm5yxz9+/BgpKSno3r27tEzy35WSLCwskJSUBD8/P5lzZs2ahYiICOl2fHw8rQZWyUiKi2QmOqGOZIQQfUlNTYWzszOslExPXFRUhMzMTLUW+ShPo+FZqampKCrXWad8YKmpqWpfl8fjISgoCGfPnpWWSSQSnD17Vm4gOQDUr18fd+7cQXx8vPTVo0cPhIWFIT4+Hl5eXnLn8Pl82NnZSV+2trZqx0lMm/xEJ9SRjJg/uqM2Tb6+vjh48KDS/UeOHIGvr69WdWiUqPUZWEREBLZs2YKdO3ciMTER48ePR0FBgbQX+LBhw6SdzQQCAQICAmRe9vb2qFatGgICAqTrjZKqRUwzkpFKiBK1aWLfb71ToLS0VOupXzXq9a3PwPr374/MzExERkYiPT0dgYGBOHnypLSDWWpqKs13SypEQ7MIIfqUm5srMwz49evXCluRc3JysHfvXri7u2tVn8qJ2pCBTZo0CZMmTVK4LzY2tsJzd+zYoXG9xPxJSkoAsewsQ3RHTSoDuqM2HatWrcK3334L4N37MnXqVEydOlXhsSzLYtGiRVrVp3KiNnRghGii/N00uBZgLC2NEwwhOkSJ2nR06tQJtra2YFkW33zzDQYOHCg3ixnDMLCxsUFQUBCaNWumVX0qJ2pDB0aIJiRFhTLb1OxNKgtK1KajZcuW0g7OBQUF6NOnDwICAvRWn8qJ2tCBEaIJuefTSoZMEGJuKFGbnsLCQqxZswbW1tZ6zYdq98oqC+yPP/7QRzyEaIwVlYItFcqU0R01qSzMJVGrs/rhli1b0LZtWzg4OMDBwQEdOnRQebVEU2BtbQ0LCwvY2NjotR61E7WhAiNEXeLCQrky6khGKgtzSNRlqx9GRUXh1q1baNy4McLDw/Hq1SuFx8fGxmLgwIE4f/484uLi4OXlhU6dOuHFixcGjlxzffr0wW+//fbB0VDa0GickyECI0RdknKJmrHkgeFyjRQNIbplDon6/dUP/f39sXHjRlhbW2Pbtm0Kj//5558xYcIEBAYGon79+vjxxx+lk1yZiwEDBuDVq1cICwvDzz//jL/++gu3bt2Se2lDo3HUAwYMwIQJExAWFoYxY8bAx8dH4fRpqq7lSYgulE/UHCtq9iaVh7ESdX5+PnJzc6XbfD4ffL78Ijearn74vsLCQpSWlsLR0VH7wA0kNDRU+ndFqzfqYslMjRK1IQIjRB0Kn09TRzJCtFZ+LYSoqCjMnz9f7jhNVj8sb8aMGfDw8ECHDh00jtfQdLV8ZkU0StSGCIwQddDzaVLZGeuO+sKFCwgMDJRuK7qb1oXvvvsOe/fuRWxsLARm1AlUV8tnVkSjRG2IwAhRR/lmb3A4YPjm85+dEFNla2sLOzu7Dx6n7uqH71u+fDm+++47/Pnnn2jUqJFW8RpTfn4+nj17BgDw8vLS2aJPWk+anZ+fj8TERCQmJiI/P18XMRGiNrnn03yBWXS+IaSyUHf1wzLLli3DwoULcfLkSbOdKOvvv/9GWFgYHBwcpAtEOTg4oH379rhx44bW19fojrossG+++QaXL1+WrgHN4XDQtm1bLFu2zGz/wYn5YYVCej5NiAmIiIjA8OHD0axZMwQHByMmJkZu9UNPT09ER0cDAJYuXYrIyEjs2bMHPj4+SE9PB/DuLt5cliC+du0aQkNDwePxMHr0aDRo0AAAkJiYiF9++QXt2rVDbGwsgoODNa5Do0RtiMAIURU9nybENKi7+uEPP/wAoVCIvn37ylxHWYc1UzRnzhx4enri8uXLck388+fPR+vWrTFnzhycOXNG4zo0StSGCIwQVUmKCuTK6I6aVDbm8ihHndUPU1JS9B+Qnl27dg2RkZEKn8O7urpi7NixWLhwoVZ1aPSM+tq1axg3blyFgV29elWrwAhRlbhAwUQnFho/1SGEEJVxOByIRCKl+8VisUwrgkZ1aHSSAQIjRBWSkmL59afpbppUQvSdappatWqF9evX4+nTp3L7UlNTsWHDBrRu3VqrOjS67SgLbNCgQfD29tZLYISoQlKgqNnb2giREEKqoiVLlqBdu3aoX78+Pv30U9StWxcAkJSUhMOHD8PCwkLaeU5TGiVqQwRGiCrEhfR8mhBiPE2aNMG1a9cwZ84cHDlyBIX/7dxqbW2Nzp07Y9GiRfD399eqDo0StSECI+RDWIlEfqITrgU4epo5iRBCFPH398fBgwchkUiQmZkJAHB2dtbZ4wqNe9zoOzBCPkRSWAiUW8GNS3fThBAjYRhG2jtfl730tc6qZYG9HyAhhiAukJ8Jj5q9CSGGlpCQgL59+8LOzg7u7u5wd3eHnZ0d+vbti7t372p9fY3vqBMSEhAZGYlTp07JNH2Hh4dj/vz5CAgI0Do4QioiUZCoGepIRggxoEuXLuGTTz6BRCJBz549ZfpsHTlyBH/88QdOnjyJtm3balyHRonaEIERUhFJSQnY0lLZQg4HHDNadYcQYv6mTZsGFxcXXLhwAV5eXjL7nj17hnbt2iEiIgJ///23xnVolKgNERghFVE8LMuKHr8QQgzq3r17WLhwoVwuBN6toDV+/Hitp0PV6Bn1vXv3MGHChAoDu3fvnlaBEVIRcX6eXBmXmr0JIQbm7e2NkpISpfuFQqHCXKkOjRK1IQIjRBlWLIakuEiunLGmRE0IMazIyEisWbMG8fHxcvtu376NtWvXan1HrVHTd2RkJKZNm4auXbsiMDBQYWAxMTFaBUaIMuL8fLlhWe+eT1OPb0KIYV29ehWurq4ICgpCq1atULt2bQDAw4cPERcXh4CAAMTFxSEuLk56DsMwWL16tcp1aJSoDREYIcoo6u1Nz6cJIcawbt066d//+usv/PXXXzL779y5gzt37siUGSRRGyIwQhRhWVbh+Gl6Pk0IMQaJRKL3OjRK1IYIjBBFJAUFgILPHz2fJoRUVrRoLzErinp70/NpQoixJScn448//pAud+nt7Y1PPvkEvr6+Wl9bq0Stz8AIKY9lWYWJmmNtQ8+nCSFGM336dKxevVqutZnD4WDq1KlYvny5VtfXOFHrOzBCypMUFABisVw5l5q9CSFGsmLFCqxatQp9+/bF9OnT0aBBAwBAYmIiVq1ahVWrVsHT0xPTpk3TuA6NxlGXBda7d2/ExcUhJycHOTk5iIuLQ9++faXBEaJLCpu98e6OmhBCjGHLli3o0aMHfv31VzRv3hx2dnaws7ND8+bNsXfvXnTv3h2bNm3Sqg6NErUhAiPkfcqavRkLS1p/mhBiNCkpKQgPD1e6Pzw8HCkpKVrVoVGiNkRghLxPUpCvsNmbQ83ehBAjcnFxwT///KN0/z///ANnZ2et6tAoURsiMELeJ87NVVjOsaFmb0KI8fTr1w8//vgjvvvuOxS8t1hQQUEBli5dih9//BH9+/fXqg6NOpP169cPq1evho+PD7788kvY/PfLsqCgAOvWrcOPP/6IqVOnahUYIWVYsVjJ82kGXHo+TQgxooULFyI+Ph6zZ89GZGQkPDw8AABpaWkQiUQICwvDt99+q1UdGiVqQwRGSBlxXp783N4AOAIBGAuaCoAQYjzW1tY4e/YsDh8+LDNcuXPnzujSpQu6d++u9fBRjb7lDBEYIWXEuW8VlnNs6W6aEGI8hYWFGDJkCPr06YPBgwejZ8+eeqlH7URtqMAIAQCJUAhJUaHCfRxrWwNHQwgh/2NtbY0///wTn3zyiV7rUbszWVlghYWKvzwJ0SVxTo7iHVwLcAQCg8ZCCCHltWnTRmalSH3QqNe3IQIjhGVZiJQ0e3NtaNpQQojxrVu3DpcuXcLcuXPx/PlzvdShUaI2RGCESPJzAbFI4T6uLTV7E0KMr3Hjxnj+/Dmio6Ph7e0NPp8vnQSs7FW9enWt6tCoM1njxo0hEokQHR2N6OhoWFhYgF9udiiGYfD2reK7oQ9Zv349vv/+e6Snp6Nx48ZYu3YtgoODFR67ZcsW/PTTT7h79y4AICgoCEuWLFF6PDEfouwcxTsYhqYNJYSYhD59+ui9dU+jRK3PwPbt24eIiAhs3LgRzZs3R0xMDMLDw5GUlAQXFxe542NjYzFw4EC0atUKAoEAS5cuRadOnXDv3j14enrqJUaif5Liogo6kVmD4XINHBEhhMjbsWOH3uvQKFHrM7CVK1dizJgxGDFiBABg48aNOH78OLZt24aZM2fKHf/zzz/LbP/44484cOAAzp49i2HDhuktTlO1adMm5Ofnw9bWFuPGjTN2OBoTZWcr3ce1rWbASAghRF5xcTEOHz6M5ORkODk5oWvXrnB3d9dLXWolan0HJhQKcfPmTcyaNUtaxuFw0KFDB5U7rxUWFqK0tBSOjo4K95eUlKCkpES6nZ+fr13QJiY/Px+5SqbbNBesSARxnvKfgZ5PE0KM6dWrV2jVqhWSk5PB/ncyJmtraxw6dAgdOnTQeX0qJ2pDBJaVlQWxWAxXV1eZcldXV9y/f1+la8yYMQMeHh5KY4qOjsaCBQu0jpXojyj7jcKZyICy2cgsDRwRIYT8z8KFC5GSkoJp06ahffv2ePToERYuXIhx48bh8ePHOq9P5URt6MA08d1332Hv3r2IjY2FQMkY21mzZiEiIkK6HR8fj5CQEEOFSD6AFYkgyqmg2buanQGjIYQQeadPn8awYcOwfPlyaZmrqysGDRqEpKQk1KtXT6f1qZyoDRGYk5MTuFwuMjIyZMozMjLg5uZW4bnLly/Hd999hz///BONGjVSehyfz5fpoW5LzagmRZT9BpBIlO6n59OEEGNLTU3FjBkzZMratGkDlmWRkZGh80St8jjq1NRUtGnTRmlgusDj8RAUFISzZ89KyyQSCc6ePYuWLVsqPW/ZsmVYuHAhTp48iWbNmukkFmJ4rFhc4d00RyAAw+MZMCJCCJFXUlIi12pbti0SKZ77QRsq31EbKrCIiAgMHz4czZo1Q3BwMGJiYlBQUCDtBT5s2DB4enoiOjoaALB06VJERkZiz5498PHxQXp6OoB3d8p0t2xeSl9nfeBumpq9CSGmISUlBbdu3ZJul80b8vDhQ9jb28sd37RpU43rUqvXtyEC69+/PzIzMxEZGYn09HQEBgbi5MmT0g5mqamp4HD+1xDwww8/QCgUom/fvjLXiYqKwvz589WunxiHRCiEuIK7aQDgVqNmb0KIaZg3bx7mzZsnVz5hwgSZbZZlwTAMxGKxxnWplagNFdikSZMwadIkhftiY2NltlNSUjSqg5iW0sxXSnt6AwBHYEXN3oQQk7B9+3aD1qdyojZ0YKTqEOfnQ5KfV+Ex3OrU7E0IMQ3Dhw83aH0qJ2pDB0aqBlYsRmnGy4oPYhh6Pk0IqbI0mkKUmK6yDnTm0pGu9FUG2A90RuTY2IKxoI8qIaRq0miZS2JYLMuq/Bo7diwiIiIwduxYtc4zBtHbHIiVrDf9Pgs7upsmxFysX78ePj4+EAgEaN68Oa5fv17h8fv370f9+vUhEAjQsGFDnDhxwkCRmg+6TTFRPB4PDMMYPIn6+fnBwcFBJ9diWRYSiQQSiQQikQgikQhCoRBCoRBFOTkoykj/8EW4FuDQJCeEmAV1Vz+8cuUKBg4ciOjoaHTr1g179uxBr169cOvWLQQEBBjhJzBNlKhNVI0aNTBx4kQIhUKD1cnj8VCjRg291yMpKkTB60yUujqjWCRCUWkpioSlKCgtRalIdqSAhV11va/1SgjRDXVXP1y9ejU6d+6Mr7/+GsC7qarPnDmDdevWYePGjQaN3ZRRojZhhkiahiYpKkRB/C1IhMXgcjiw4fFgw+MBNu/2C8ViFJQIkVdSgrySEnAVjM8nRBmxWAxJBZPm6FNpaSlEIhEKCgpQWlpqlBg0JRQKIRKJUFpaKp2nomwiq/Ir8pWfhvn9a6i7+mFcXJzM2gsAEB4ejkOHDmn7I1UqlKiJwYiy36Aw4S7YUuWtBDwuFzxrKzhYW4Fb3R7iWnWQnZ2NnJwcrSYMIFXDwoULaXU8HSu/aJGyyaQ0Wf0wPT1d4fFlM0ySdyhRE72TCIUoSU2B8PkzAKo/c+d7esGyenVUr14dEokEOTk5yMrKQl5exWOuSdU1b948zJkzx2j1i0Qis/2FksvlwuK90RW3b99G8+bNceHCBQQGBkrLFd1NE/2iRG3ChOkvwZYUG6w+SUkJLJ3lO3xofr1iiLKzIcp8BVai3pcXhy+AxXuxcDgcODo6wtHREcXFxcjMzERWVpbRmjmJaeJyueByuUar39Ky8qyVXpa0bW1tYafCyAtNVj90c3PTaLXEqoYStYkSpr9E6qyIDx+oSywLx0/7gVu9umHrVYD3Hy+lncgEAgG8vLzg4eGBzMxMZGRk6GXFGkKI6t5f/bBXr14A/rf6obIpoVu2bImzZ89i6tSp0rIzZ85UuFpiVUSJ2kQZ8k5apl4TSHgM1wI8d88PHsflcuHm5gYXFxdkZmYiPT2dEjYhRqTu6odTpkxBSEgIVqxYga5du2Lv3r24ceMGNm/ebMwfw+RQojYHagxP+vTIKWQWFcHZygoHe4SrXoeRJj1RxNLdQ62ZyDgcDlxdXeHk5ISMjAxkZGRQkzghRqDu6oetWrXCnj17MHfuXMyePRt16tTBoUOHaAx1OZSoK5nMoiJkFBYZOwyNMQwHfC9vjc7lcrnw8PCAs7MzXrx4gdevX+s4OkLIh6iz+iEA9OvXD/369dNzVOaNphAlJsXSwxMcLXuVWlpawsfHB/Xr14e1tbWOIiOEEOOgRE1MBsNwwK/po7Pr2djYoH79+vDy8pJpbiOEEHNC317EZPD+46X13XR5DMPAxcUFH330EaqbQG92QghRFyVqYhIYSx743r56uz6Px0Pt2rVRq1atSjXWlRBS+VFnMmISBL5+Bllz2sHBAdWrV0d6ejrS09ONtsQnIYSoiu6oidFxq9nB0t3DYPVxOBx4eHggICCgUi58QgipXChRE+NiOLCq52+UpSx5PB58fHzg7+8Pe1qlixBioqjpmxiVwMcXXFtbo8ZgZWUFPz8/FBUVIT09HdnZ2dQkTggxGXRHTYzGwt4BPB0Ox9KWlZUVfH19ERAQAFdXV6Mu7kAIIWXojrqScbaykvnTVHH4Alj5NzRKk/eH8Hg8/Oc//4GHhweys7ORlZWF/Px8Y4dFCKmiKFFXMmrN720kjIUlrBs2BofHM3YoFeJwOKhRowZq1KiBkpISvHnzBtnZ2SgqMt8pWgkh5ocSNTEoxsISNo2bgGtbzdihqIXP58Pd3R3u7u4oKSnB27dv8fbtW+Tn59MCIIQQvaJETQyGY20D648agmtj3M5j2uLz+XBxcYGLiwtYlkVBQYH0VVhYiJKSEmOHSAipRChRE/1jOOB5eEJQqzYYM+ygxUok75YBZdl3fwf+uywoC0hYWHM5sKpWDU62tgBYSMQSFJeUoERYAmFJCUpLRRCJRRCLxJBIJJBIJNBln3IO9VAnpFKjRE1kcRgwjG4GAzACK1hUrw5LV3dwBHywwhKwKMtxZcmFxbus9d9E+N+E+H6ZtPy/CfPdMRJAwpbblkiTqjS5lpW996fM36XHSmTrkUj+O0RL8yRo+d+XvkkKC0ELehJSeVGiJrIkLFhWN89c2aICCIsKIExP08n1CCGkKqJx1IQQQogJo0RNCCGEmDBK1IQQQogJo0RNCCGEmDBK1IQQQogJo0RNCCGEmDBK1IQQQogJo0RNCCGEmDBK1IQQQogJo0RNCCGEmDBK1IQQQogJo0RNCCGEmDBK1IQQQogJo0RNCCGEmDCTTNTr16+Hj48PBAIBmjdvjuvXr1d4/P79+1G/fn0IBAI0bNgQJ06cMFCkhBBCiH6ZXKLet28fIiIiEBUVhVu3bqFx48YIDw/Hq1evFB5/5coVDBw4EKNGjcLt27fRq1cv9OrVC3fv3jVw5IQQQojumVyiXrlyJcaMGYMRI0bA398fGzduhLW1NbZt26bw+NWrV6Nz5874+uuv0aBBAyxcuBBNmzbFunXrDBw5IYQQonsmlaiFQiFu3ryJDh06SMs4HA46dOiAuLg4hefExcXJHA8A4eHhSo8vKSlBbm6u9JWfn6+7H0BfWFb/L1I50GeFkErHwtgBvC8rKwtisRiurq4y5a6urrh//77Cc9LT0xUen56ervD46OhoLFiwQDcB6xHDFxilXttWbcFzczdK3UQzwvSXeL3/F4PXa6zPKCFVjUklakOYNWsWIiIipNvx8fEICQkxYkSK8dzcUTN6JdiSYoPVyfAFlKTNEN/dgz4rhFRiJpWonZycwOVykZGRIVOekZEBNzc3hee4ubmpdTyfzwefz5du29raahm1/tAXIVEVfVYIqbxM6hk1j8dDUFAQzp49Ky2TSCQ4e/YsWrZsqfCcli1byhwPAGfOnFF6PCGEEGJOTOqOGgAiIiIwfPhwNGvWDMHBwYiJiUFBQQFGjBgBABg2bBg8PT0RHR0NAJgyZQpCQkKwYsUKdO3aFXv37sWNGzewefNmY/4YhBBCiE6YXKLu378/MjMzERkZifT0dAQGBuLkyZPSDmOpqangcP7XENCqVSvs2bMHc+fOxezZs1GnTh0cOnQIAQEBxvoRCCGEEJ1hWLZqj7e4desWgoKCcPPmTTRt2tTY4RBCiEmg70bTYVLPqAkhhBAiixI1IYQQYsIoURNCCDG4N2/eYPDgwbCzs4O9vT1GjRpV4UyRb968wZdffol69erBysoKNWvWxOTJk/H27VsDRm0clKgJIYQY3ODBg3Hv3j2cOXMGx44dw8WLFzF27Filx6elpSEtLQ3Lly/H3bt3sWPHDpw8eRKjRo0yYNTGYXK9vgkhhFRuiYmJOHnyJP7++280a9YMALB27Vp06dIFy5cvh4eHh9w5AQEBOHDggHTbz88PixcvxpAhQyASiWBhUXnTGd1RE0IIMai4uDjY29tLkzQAdOjQARwOB9euXVP5Om/fvoWdnV2lTtIA3VFLJSYmGjsEQogC7u7ucHfX7RSpL1++xMuXL3V6zcqm7DsxPz8fubm50vLy0zBrIj09HS4uLjJlFhYWcHR0VLqgUnlZWVlYuHBhhc3llQZbxaWlpbEhISEsAHrRi14m+IqKitL5//uoqCij/1zm8PL29lbr/ZgxY8YHr5mYmMguXryYrVu3rtz5zs7O7IYNGz74/r19+5YNDg5mO3fuzAqFQm0+Cmahyk94AlSu367z8/MREhKCCxcumPSCI8T4zOWzQnfUxnuvHB0d4ejoKFNW0R11ZmYmXr9+XeE1a9Wqhd27d2P69OnIzs6WlotEIggEAuzfvx+ffvqp0vPz8vIQHh4Oa2trHDt2DAJB5V9ulRJ1JZObm4vq1atLn90Qogx9VsxHZXuvEhMT4e/vjxs3biAoKAgAcPr0aXTu3BnPnz9X2JkMePfvEB4eDj6fjxMnTsDa2tqQYRsNdSYjhBBiUA0aNEDnzp0xZswYXL9+HX/99RcmTZqEAQMGSJP0ixcvUL9+fVy/fh3AuyTdqVMnFBQUYOvWrcjNzUV6ejrS09MhFouN+ePoHXUmI4QQYnA///wzJk2ahI8//hgcDgd9+vTBmjVrpPtLS0uRlJSEwsJCAO/mHi/rEV67dm2ZayUnJ8PHx8dgsRsaJepKhs/nIyoqSutemaTyo8+K+aiM75WjoyP27NmjdL+Pjw/efzIbGhqKqvqklp5RE0IIISaMnlETQgghJowSNSGEEGLCKFETpVJSUsAwDHbs2GHsUAghpMqiRK0jjx8/xrhx41CrVi0IBALY2dmhdevWWL16NYqKivRWb0JCAubPn4+UlBS91aGKxYsXo0ePHnB1dQXDMJg/f75R46kMGIZR6RUbG6t1XYWFhZg/f75a16L3XBa9X0RfqNe3Dhw/fhz9+vUDn8/HsGHDEBAQAKFQiMuXL+Prr7/GvXv3sHnzZr3UnZCQgAULFiA0NNSowxPmzp0LNzc3NGnSBKdOnTJaHJXJrl27ZLZ/+uknnDlzRq68QYMGWtdVWFiIBQsWAHjXu1YV9J7LoveL6Aslai0lJydjwIAB8Pb2xrlz52SmOpw4cSIePXqE48ePGzHC/2FZFsXFxbCystL5tcvGMWZlZcHZ2Vnn16+KhgwZIrN99epVnDlzRq7cWOg9l0XvF9EXavrW0rJly5Cfn4+tW7cqnI+4du3amDJlinRbJBJh4cKF8PPzA5/Ph4+PD2bPno2SkhKZ83x8fNCtWzdcvnwZwcHBEAgEqFWrFn766SfpMTt27EC/fv0AAGFhYXJNa2XXOHXqFJo1awYrKyts2rQJAPDkyRP069cPjo6OsLa2RosWLbT6haIyTzZgyiQSCWJiYvDRRx9BIBDA1dUV48aNk5lDGQBu3LiB8PBwODk5wcrKCr6+vhg5ciSAd30Ryr64FyxYIP0cfahplN5z9dH7RTRBd9RaOnr0KGrVqoVWrVqpdPzo0aOxc+dO9O3bF9OnT8e1a9cQHR2NxMREHDx4UObYR48eoW/fvhg1ahSGDx+Obdu24fPPP0dQUBA++ugjtGvXDpMnT8aaNWswe/ZsaZPa+01rSUlJGDhwIMaNG4cxY8agXr16yMjIQKtWrVBYWIjJkyejRo0a2LlzJ3r06IHffvutwgnxiWkZN24cduzYgREjRmDy5MlITk7GunXrcPv2bfz111+wtLTEq1ev0KlTJzg7O2PmzJmwt7dHSkoKfv/9dwCAs7MzfvjhB4wfPx6ffvopevfuDQBo1KiRMX+0SoneL6IRo63bVQm8ffuWBcD27NlTpePj4+NZAOzo0aNlyr/66isWAHvu3DlpWdnychcvXpSWvXr1iuXz+ez06dOlZfv372cBsOfPn5err+waJ0+elCmfOnUqC4C9dOmStCwvL4/19fVlfXx8WLFYzLIsyyYnJ7MA2O3bt6v087Esy2ZmZuptacKqbuLEiez7/2UvXbrEAmB//vlnmeNOnjwpU37w4EEWAPv3338rvbY27xu954rR+0V0hZq+tVC2mHq1atVUOv7EiRMAgIiICJny6dOnA4Bc07O/vz/atm0r3XZ2dka9evXw5MkTlWP09fVFeHi4XBzBwcFo06aNtMzW1hZjx45FSkoKEhISVL4+MZ79+/ejevXq6NixI7KysqSvoKAg2Nra4vz58wAAe3t7AMCxY8dQWlpqxIirNnq/iKYoUWuhbLm5vLw8lY5/+vQpOByO3ITybm5usLe3x9OnT2XKa9asKXcNBwcHuedZFfH19VUYR7169eTKy5rMy8dBTNPDhw/x9u1buLi4wNnZWeaVn5+PV69eAQBCQkLQp08fLFiwAE5OTujZsye2b98u1y+C6Be9X0RT9IxaC3Z2dvDw8MDdu3fVOo9hGJWO43K5CstZNaZn10cPb2IaJBIJXFxc8PPPPyvcX9bhiGEY/Pbbb7h69SqOHj2KU6dOYeTIkVixYgWuXr0KW1tbQ4ZdZdH7RTRFiVpL3bp1w+bNmxEXF4eWLVtWeKy3tzckEgkePnwo0+ErIyMDOTk58Pb2Vrt+VZN++TiSkpLkyu/fvy/dT0yfn58f/vzzT7Ru3VqlX8hatGiBFi1aYPHixdizZw8GDx6MvXv3YvTo0Rp9joh66P0imqKmby198803sLGxwejRo5GRkSG3//Hjx1i9ejUAoEuXLgCAmJgYmWNWrlwJAOjatava9dvY2AAAcnJyVD6nS5cuuH79OuLi4qRlBQUF2Lx5M3x8fODv7692HMTwPvvsM4jFYixcuFBun0gkkn4msrOz5VphAgMDAUDanGptbQ1Avc8RUQ+9X0RTdEetJT8/P+zZswf9+/dHgwYNZGYmu3LlCvbv34/PP/8cANC4cWMMHz4cmzdvRk5ODkJCQnD9+nXs3LkTvXr1QlhYmNr1BwYGgsvlYunSpXj79i34fD7at28PFxcXpefMnDkTv/zyCz755BNMnjwZjo6O2LlzJ5KTk3HgwAFwOOr//rZr1y48ffpUusj7xYsXsWjRIgDA0KFD6S5dD0JCQjBu3DhER0cjPj4enTp1gqWlJR4+fIj9+/dj9erV6Nu3L3bu3IkNGzbg008/hZ+fH/Ly8rBlyxbY2dlJf3m0srKCv78/9u3bh7p168LR0REBAQEICAhQWj+95+qh94tozMi9ziuNBw8esGPGjGF9fHxYHo/HVqtWjW3dujW7du1atri4WHpcaWkpu2DBAtbX15e1tLRkvby82FmzZskcw7LvhlZ17dpVrp6QkBA2JCREpmzLli1srVq1WC6XKzNUS9k1WJZlHz9+zPbt25e1t7dnBQIBGxwczB47dkzmGHWGZ4WEhLAAFL4UDR0j6is/3KfM5s2b2aCgINbKyoqtVq0a27BhQ/abb75h09LSWJZl2Vu3brEDBw5ka9asyfL5fNbFxYXt1q0be+PGDZnrXLlyhQ0KCmJ5PJ5Kw3foPa8YvV9EVxiWVaNnEiGEEEIMip5RE0IIISaMEjUhhBBiwihRE0IIISaMEjUhhBBiwihRE0IIISaMEjUhhBBiwihRG8iyZctQv359SCQSY4eitQEDBuCzzz4zdhiVFn1Wqp6UlBQwDIMdO3YYOxRigihRG0Bubi6WLl2KGTNmSGf9YhgGDMNgxYoVcsfv2LEDDMPgxo0bOo+lY8eOYBgGkyZNUrh/69ataNCgAQQCAerUqYO1a9fKHTNjxgwcOHAA//zzj87jq+ros0IIKY8StQFs27YNIpEIAwcOlNv3/fffS6f007fff/9dZn7v8jZt2oTRo0fjo48+wtq1a9GyZUtMnjwZS5culTmuSZMmaNasmcLEQbRDn5WqydvbG0VFRRg6dKixQyGmyNhTo1UFjRo1YocMGSJTBoANDAxkAbArVqyQ2bd9+3YWAPv333/rLIaioiLWx8eH/fbbb1kA7MSJE2X2FxYWsjVq1JCbcnTw4MGsjY0N++bNG5ny5cuXszY2NmxeXp7OYiT0WSGEyKM7aj1LTk7Gv//+iw4dOsjta926Ndq3b49ly5ahqKhIr3EsW7YMEokEX331lcL958+fx+vXrzFhwgSZ8okTJ6KgoADHjx+XKe/YsSMKCgpw5swZvcVc1dBnxbzNnz8fDMPgwYMHGDJkCKpXrw5nZ2fMmzcPLMvi2bNn6NmzJ+zs7ODm5ibTyqDoGfXnn38OW1tbvHjxAr169YKtrS2cnZ3x1VdfQSwWS4+LjY0FwzCIjY2ViUfRNdPT0zFixAj85z//AZ/Ph7u7O3r27ImUlBQ9/asQXaBErWdXrlwBADRt2lTh/vnz5yMjIwM//PBDhdcpKSlBVlaWSq/yUlNT8d1332Hp0qVK18G9ffs2AKBZs2Yy5UFBQeBwONL9Zfz9/WFlZYW//vqrwriJ6uizUjn0798fEokE3333HZo3b45FixYhJiYGHTt2hKenJ5YuXYratWvjq6++wsWLFyu8llgsRnh4OGrUqIHly5cjJCQEK1aswObNmzWKrU+fPjh48CBGjBiBDRs2YPLkycjLy0NqaqpG1yOGQctc6tn9+/cBAL6+vgr3t23bFmFhYfj+++8xfvx4pV+Ov/zyC0aMGKFSnWy5dVamT5+OJk2aYMCAAUrPefnyJbhcrtzymDweDzVq1EBaWppMuYWFBby8vJCQkKBSTOTD6LNSOQQHB2PTpk0AgLFjx8LHxwfTp09HdHQ0ZsyYAQAYOHAgPDw8sG3bNrRr107ptYqLi9G/f3/MmzcPAPDFF1+gadOm2Lp1K8aPH69WXDk5Obhy5Qq+//57mdaSWbNmqfsjEgOjRK1nr1+/hoWFBWxtbZUeM3/+fISEhGDjxo2YNm2awmPCw8M1ajo8f/48Dhw4gGvXrlV4XFFREXg8nsJ9AoFAYXOrg4ODwrsyohn6rFQOo0ePlv6dy+WiWbNmeP78OUaNGiUtt7e3R7169fDkyZMPXu+LL76Q2W7bti127dqldlxWVlbg8XiIjY3FqFGj4ODgoPY1iHFQojYB7dq1Q1hYGJYtWyb3n7KMu7s73N3d1bquSCTC5MmTMXToUPzf//1fhcdaWVlBKBQq3FdcXKzw7o1lWTAMo1ZMRDv0WTF9NWvWlNmuXr06BAIBnJyc5Mpfv35d4bUEAgGcnZ1lyhwcHJCdna12XHw+H0uXLsX06dPh6uqKFi1aoFu3bhg2bBjc3NzUvh4xHErUelajRg2IRCLk5eWhWrVqSo+LiopCaGgoNm3aBHt7e7n9RUVFePv2rUp1lv2n++mnn5CUlIRNmzbJdRbJy8tDSkoKXFxcYG1tDXd3d4jFYrx69UqmSVMoFOL169fw8PCQqyc7Oxt16tRRKSbyYfRZqRy4XK5KZYD8owdVz3ufsl+A3u9wVmbq1Kno3r07Dh06hFOnTmHevHmIjo7GuXPn0KRJkw/WRYyDOpPpWf369QG869FbkZCQEISGhmLp0qUKmw737dsnvVP60KtMamoqSktL0bp1a/j6+kpfwLsvZl9fX5w+fRoAEBgYCAByE2fcuHEDEolEur+MSCTCs2fP0KBBA7X+PYhy9Fkhmihrws7JyZEpf/r0qcLj/fz8MH36dJw+fRp3796FUCikce4mju6o9axly5YA3n2JNWrUqMJj58+fj9DQUIU9OjV57jhgwAC5L00A+PTTT9GlSxeMGTMGzZs3BwC0b98ejo6O+OGHH9ClSxfpsT/88AOsra3RtWtXmWskJCSguLgYrVq1Uismohx9VogmvL29weVycfHiRfTq1UtavmHDBpnjCgsLweFwIBAIpGV+fn6oVq0aSkpKDBUu0QAlaj2rVasWAgIC8Oeff2LkyJEVHhsSEoKQkBBcuHBBbp8mzx3r168vvUsrz9fXV+Y/tZWVFRYuXIiJEyeiX79+CA8Px6VLl7B7924sXrwYjo6OMuefOXMG1tbW6Nixo1oxEeXos0I0Ub16dfTr1w9r164FwzDw8/PDsWPH8OrVK5njHjx4gI8//hifffYZ/P39YWFhgYMHDyIjI6PCXv7E+ChRG8DIkSMRGRmJoqIipUNqysyfPx9hYWEGikzWhAkTYGlpiRUrVuDIkSPw8vLCqlWrMGXKFLlj9+/fj969e1f4LJWojz4rRBNr165FaWkpNm7cCD6fj88++wzff/89AgICpMd4eXlh4MCBOHv2LHbt2gULCwvUr18fv/76K/r06WPE6MmHMOyHejMQrb19+xa1atXCsmXLZIZomKv4+Hg0bdoUt27dUthcSjRHnxVCSHmUqA1k6dKl2L59OxISEqSrIpmrAQMGQCKR4NdffzV2KJUSfVYIIe+jRE0IIYSYMPP+dZ0QQgip5ChRE0IIISaMEjUhhBBiwihRE0IIISaMEjUhhFQhKSkpYBgGO3bsMHYoREWUqAkhRInHjx9j3LhxqFWrFgQCAezs7NC6dWusXr1a4TzrupKQkID58+fLLZBiaIsXL0aPHj3g6uoKhmEwf/58o8ZTVdHMZIQQosDx48fRr18/8Pl8DBs2DAEBARAKhbh8+TK+/vpr3Lt3T+Fc67qQkJCABQsWIDQ0FD4+PnqpQxVz586Fm5sbmjRpglOnThktjqqOEjUhhJSTnJyMAQMGwNvbG+fOnZOZO33ixIl49OgRjh8/bsQI/4dlWaXrgGsrOTkZPj4+yMrKklsXmxgONX0TQkg5y5YtQ35+PrZu3apwgZPatWvLzGsuEomwcOFC+Pn5gc/nw8fHB7Nnz5ZblcrHxwfdunXD5cuXERwcDIFAgFq1auGnn36SHrNjxw7069cPABAWFgaGYcAwDGJjY2WucerUKTRr1gxWVlbYtGkTAODJkyfo168fHB0dYW1tjRYtWmj1C4Ux7+bJ/1CiJoSQco4ePYpatWqpvDTn6NGjERkZiaZNm2LVqlUICQlBdHS0wlWpHj16hL59+6Jjx45YsWIFHBwc8Pnnn+PevXsAgHbt2mHy5MkAgNmzZ2PXrl3YtWuXzHreSUlJGDhwIDp27IjVq1cjMDAQGRkZaNWqFU6dOoUJEyZg8eLFKC4uRo8ePXDw4EEd/KsQo2EJIYRIvX37lgXA9uzZU6Xj4+PjWQDs6NGjZcq/+uorFgB77tw5aZm3tzcLgL148aK07NWrVyyfz2enT58uLdu/fz8LgD1//rxcfWXXOHnypEz51KlTWQDspUuXpGV5eXmsr68v6+Pjw4rFYpZlWTY5OZkFwG7fvl2ln49lWTYzM5MFwEZFRal8DtEduqMmhJD35ObmAoDKy3KeOHECABARESFTPn36dACQa3r29/dH27ZtpdvOzs6oV68enjx5onKMvr6+CA8Pl4sjODgYbdq0kZbZ2tpi7NixSElJQUJCgsrXJ6aFEjUhhLzHzs4OAJCXl6fS8U+fPgWHw0Ht2rVlyt3c3GBvb4+nT5/KlNesWVPuGg4ODsjOzlY5Rl9fX4Vx1KtXT668rMm8fBzEfFCiJoSQ99jZ2cHDwwN3795V6zyGYVQ6jsvlKixn1VjIUB89vInpokRNCCHldOvWDY8fP0ZcXNwHj/X29oZEIsHDhw9lyjMyMpCTkwNvb2+161c16ZePIykpSa78/v370v3EPFGiJoSQcr755hvY2Nhg9OjRyMjIkNv/+PFjrF69GgDQpUsXAEBMTIzMMStXrgQAdO3aVe36bWxsAAA5OTkqn9OlSxdcv35d5peLgoICbN68GT4+PvD391c7DmIaaMITQggpx8/PD3v27EH//v3RoEEDmZnJrly5gv379+Pzzz8HADRu3BjDhw/H5s2bkZOTg5CQEFy/fh07d+5Er169EBYWpnb9gYGB4HK5WLp0Kd6+fQs+n4/27dvDxcVF6TkzZ87EL7/8gk8++QSTJ0+Go6Mjdu7cieTkZBw4cAAcjvr3Zbt27cLTp09RWFgIALh48SIWLVoEABg6dCjdpRuKsbudE0KIqXrw4AE7ZswY1sfHh+XxeGy1atXY1q1bs2vXrmWLi4ulx5WWlrILFixgfX19WUtLS9bLy4udNWuWzDEs+25oVdeuXeXqCQkJYUNCQmTKtmzZwtaqVYvlcrkyQ7WUXYNlWfbx48ds3759WXt7e1YgELDBwcHssWPHZI5RZ3hWSEgIC0DhS9HQMaIfDMuq0YOBEEIIIQZFz6gJIYQQE0aJmhBCCDFhlKgJIYQQE0aJmhBCCDFhlKgJIYQQE0aJmhBCCDFhlKgJIYQQE0aJmhBCCDFhlKgJIYQQE0aJmhBCCDFhlKgJIYQQE0aJmhBCCDFhlKgJIYQQE/b/8hv1kl+zlRQAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAazFJREFUeJzt3XdYU+fbB/DvSSAJQ2QPKQriRFQUf7hFrIp111G31l1HHdjWDVoH1Tpw1lFXtVZrrds6quJErYM6QFwgLpbslZDkvH9Y8hoSMDsB7s915arnOeO5CSl3znOewbAsy4IQQgghJolj7AAIIYQQUjpK1IQQQogJo0RNCCGEmDBK1IQQQogJo0RNCCGEmDBK1IQQQogJo0RNCCGEmDBK1IQQQogJo0RNCCGEmLBKn6jfvn2LBQsW4O3bt8YOhRBSQUkkEmOHoDb622g6KFG/fYuFCxfSh5EQojflNVHT30bTUOkTNSGE6BstqUC0QYmaEEIIMWGUqAkhRM+kUqmxQyDlGCVqQgjRM2r6JtqgRE0IIXpGiZpogxI1IYToGTV9E21QoiaEED2jRE20YVKJ+tKlS+jRoweqVasGhmFw+PDhj54TGRmJpk2bgs/no1atWti5c6fe4ySEEHVQoibaMKlEnZeXh8aNG2PDhg0qHR8fH49u3bohKCgI0dHRmDZtGsaMGYPTp0/rOVJCCFEdJWqiDTNjB/Chzz77DJ999pnKx2/atAleXl5YuXIlAKB+/fq4cuUKVq9ejeDgYH2FSQghaqFETbRhUnfU6oqKikLHjh3lyoKDgxEVFWWkiAghRFF5nEKUmA6TuqNWV1JSElxcXOTKXFxckJ2djYKCAlhYWCicIxQKIRQKZdu5ubl6j1NT7969g0gkMlh9hYWFsLW1NVh9RDe4XC6KiooM+lnh8XhwcHAwWH3lHSVqoo1ynag1ER4ejoULFxo7jI969+4dNmzYYPDxl+3bt4e1tbVB6yTaEYvFOH36tEE/KwzDYNKkSZSsVUSJmmijXDd9u7q6Ijk5Wa4sOTkZNjY2Su+mAWD27NnIysqSvS5evGiIUNUmEomMMkkC/UEpf8RiscE/KyzLGvQOvryj/6+INsr1HXXLli1x8uRJubKzZ8+iZcuWpZ7D5/PB5/Nl2+Xh7pFhGL3XQTMnVQz0WTFNYrHY2CGQcsyk7qhzc3MRHR2N6OhoAO+HX0VHRyMxMRHA+7vh4cOHy47/6quv8Pz5c3z33Xd49OgRNm7ciN9//x3Tp083RviEEKIUJWqiDZNK1Ldu3UKTJk3QpEkTAEBISAiaNGmC0NBQAO8XMi9O2gDg5eWFEydO4OzZs2jcuDFWrlyJn3/+mYZmEUJMCj0mINowqabv9u3bl9mspmzWsfbt2+Pu3bt6jIoQQrRTVFRk7BBIOWZSd9SEEFIRfTgklBB1UaImhBA9KywsNHYIpByjRE0IIXpWUFBg7BBIOUaJmhBC9EwoFFaasdQbNmyAp6cnBAIBmjdvjps3b5Z5fEREBOrWrQsLCwt4eHhg+vTp1AJRAiVqQggxgPz8fGOHoHf79+9HSEgIwsLCcOfOHTRu3BjBwcFISUlRevzevXsxa9YshIWFITY2Ftu2bcP+/fsxZ84cA0du2ihRE0KIAeTk5Bg7BL1btWoVxo4di5EjR8LHxwebNm2CpaUltm/frvT4a9euoXXr1hg8eDA8PT3RuXNnDBo06KN34ZUNJWpCCDGA8pqoc3NzkZ2dLXuV1oNdJBLh9u3bcisacjgcdOzYsdQVDVu1aoXbt2/LEvPz589x8uRJdO3aVfc/SDlGiZoQQgwgOzvb2CFoJDAwEFWrVpW9wsPDlR6XlpYGiUSidEXDpKQkpecMHjwY33//Pdq0aQNzc3N4e3ujffv21PRdAiVqQggxgKysLGOHoJGLFy/KLWQ0e/ZsnV07MjISS5cuxcaNG3Hnzh38+eefOHHiBBYtWqSzOioCk5qZjBBCKqrymqitra1hY2Pz0eMcHR3B5XKVrmjo6uqq9Jz58+dj2LBhGDNmDACgYcOGyMvLw7hx4zB37lxwOHQvCdAdNSGEGERmZmaFXnmMx+PB398f586dk5VJpVKcO3eu1BUN8/PzFZIxl8sFQKu0fYjuqAkhxAAkEgmysrJga2tr7FD0JiQkBCNGjECzZs0QEBCAiIgI5OXlYeTIkQCA4cOHw93dXfacu0ePHli1ahWaNGmC5s2b4+nTp5g/fz569OghS9iEEjUhhBhMenp6hU7UAwYMQGpqKkJDQ5GUlAQ/Pz+cOnVK1sEsMTFR7g563rx5YBgG8+bNw+vXr+Hk5IQePXpgyZIlxvoRTBIlakIIMZB3796hZs2axg5DryZPnozJkycr3RcZGSm3bWZmhrCwMISFhRkgsvKLnlETQoiBpKamGjsEUg5RoiaEEANJTU2lTlJEbZSoCSHEQIRCITIzM40dBilnKFETQogBvXnzxtghkHKGEjUhhBjQq1evjB0CKWcoURNCiAG9fv0aYrHY2GGQcoQSNSGEGJBYLMbLly+NHQYpRyhRE0KIgT1+/NjYIZByhBI1IYQYWGJiIvLy8owdBiknKFETQoiBsSyLhw8fGjsMUk5QoiaEECOIjY1FUVGRscMg5QAlakIIMQKhUIgHDx4YOwxSDlCiJoQQI7l37x5EIpGxwyAmjlbPIoQQPWrWrBni4+NhbW2NuXPnyu0TCoW4d+8emjVrZqToSHlAd9SEEKJHSUlJSE9PR3Z2ttL99+/fR0FBgYGjIuUJJWpCCDGioqIi3L5929hhEBNGiZoQQowsNjYWWVlZxg6DmChK1IQQYmQsy+LmzZvGDoOYKErUhBBiAuLj45GSkmLsMIgJokRNCCEm4ubNm2BZ1thhEBNDiZoQQkzEmzdv8ObNG2OHQUwMJWpCCDEht27dortqIocSNSGEmJDk5GS6qyZyKFETQoiJuXv3rrFDICaEEjUhhJiYN2/eUA9wIkOJmhBCTNC9e/eMHQIxEZSoCSHEBMXHxyMnJ8fYYRATQImaEEJMEMuyiImJMXYYxAToLFGzLIvz58/jr7/+om+BhBCiA3FxcZBIJMYOgxiZRol67ty5CAoKkm2zLIvOnTujU6dO6NatGxo2bIhnz57pLEhCCKmMCgsL8fz5c2OHQVT09u1b/Pvvv8jLy9PpdTVK1AcPHkRAQIBs+48//sC5c+ewePFiHD9+HBKJBAsWLNAooA0bNsDT0xMCgQDNmzf/6ET1ERERqFu3LiwsLODh4YHp06ejsLBQo7oJIcTUPHr0yNghkI84cuQI6tWrh08++QRNmzbFjRs3AABpaWlo0qQJDh8+rNX1NUrUr1+/Rq1atWTbf/75J3x8fDB79mx07doVEyZMQGRkpNrX3b9/P0JCQhAWFoY7d+6gcePGCA4OLnWYwt69ezFr1iyEhYUhNjYW27Ztw/79+zFnzhxNfixCCDE5b9++pSUwTdixY8fQp08fODo6IiwsTG5WOUdHR7i7u2PHjh1a1WGm0UlmZhAKhQDeN3ufO3cOw4cPl+13cXFBWlqa2tddtWoVxo4di5EjRwIANm3ahBMnTmD79u2YNWuWwvHXrl1D69atMXjwYACAp6cnBg0aJPs2Q8iHGIYBh8OR/ffDfyv7b8kXh8ORXafkq7hc2X+L/81KpRBnZkCSkw22SKSznytHh9cipikuLk6uFZOYju+//x7t2rXDhQsX8O7dO4XW5JYtW2Lz5s1a1aFRovb19cWePXswZMgQHDp0CO/evUO3bt1k+1+8eAFHR0e1rikSiXD79m3Mnj1bVsbhcNCxY0dERUUpPadVq1bYs2cPbt68iYCAADx//hwnT57EsGHDSq1HKBTKvmQAQG5urlpxVnRcLhdmZhp9LBR8mOC4XK7s9eH+D48r7d8lk6WybWX/VfZvY2BZFqI3ryB6kQAzkfDjJ6hJKirS+TWJaXny5An+97//Ge0zTEr34MEDrFq1qtT9Li4uWk9eo9Ff5NDQUPTo0UOWjFu3bi3XuezEiRP43//+p9Y109LSIJFI4OLiIlfu4uJS6jOawYMHIy0tDW3atAHLshCLxfjqq6/KbPoODw/HwoUL1YqtMpFIJBCLxXq7PpfLBY/HA5/Ph0AggIWFBSwtLcHn8/VWpzFJRSIUxDyAODPd2KGQciwvLw+vX7/GJ598YuxQSAmWlpZldh57/vw5HBwctKpDo0TdqVMn3LlzB2fPnoWtrS0GDBgg25eRkYF27dqhV69eWgWmisjISCxduhQbN25E8+bN8fTpU0ydOhWLFi3C/PnzlZ4ze/ZshISEyLajo6MRGBio91jJexKJBAUFBSgoKEBmZqas3MzMDFZWVqhSpQpsbGxgYWFhvCB1RFpQgLzo25AKTbNz4+bNm5Gbmwtra2uMHz/e2OGQj3jy5AklahMUFBSEXbt2Ydq0aQr7kpKSsHXrVnTv3l2rOjRu4/Tx8YGPj49CuZ2dHVavXq329RwdHcHlcpGcnCxXnpycDFdXV6XnzJ8/H8OGDcOYMWMAAA0bNkReXh7GjRuHuXPnyp4pfojP58vdvVlbW6sdK9E9sViMrKwsWacZHo+HqlWrws7ODtbW1uWuyc/UkzTw/rFPdna2scMgKoqPj0ebNm1gbm5u7FDIB5YsWYIWLVrgf//7H/r37w+GYXD69GmcP38emzdvBsuyCAsL06oOjXp95+Tk4OXLl3Jlb968QWhoKGbOnIl//vlH7WvyeDz4+/vj3LlzsjKpVIpz586hZcuWSs/Jz89XSMbFz0BpPdfyTSQSITU1FY8fP8b9+/fx6tUrFBQUGDsslbBiMfLv/2vSSZqUP2KxmMZUm6C6deviypUrcHBwwPz588GyLH788UcsXboUDRs2xOXLl+Hp6alVHRrdUY8bNw7x8fG4fv06ACA7OxstWrTAq1evwOFwsGbNGpw6dQrt27dX67ohISEYMWIEmjVrhoCAAERERCAvL0/WC3z48OFwd3dHeHg4AKBHjx5YtWoVmjRpImv6nj9/Pnr06CHXaYmUb0VFRUhOTkZycjKsrKzg5OQEe3t7k73LLngUA0k+dVIkuhcXF4e6desaOwxSQoMGDfD3338jIyMDT58+hVQqRc2aNeHk5KST62uUqK9cuSL3TGvPnj148+YNrl27hgYNGuDTTz/F4sWL1U7UAwYMQGpqKkJDQ5GUlAQ/Pz+cOnVK1sEsMTFR7g563rx5YBgG8+bNw+vXr+Hk5IQePXpgyZIlmvxYpBzIy8tDXl4eXr16BWdnZzg5Oemsl7ouCF+9RFEaLU9I9CMpKQmZmZmwtbU1dihECTs7O7U7UqtCo6bvtLQ0uLu7y7aPHj2KNm3aoEWLFqhSpQqGDx+Of//9V6OAJk+ejBcvXkAoFOLGjRto3ry5bF9kZCR27twp2zYzM0NYWBiePn2KgoICJCYmYsOGDfQhrgTEYjHevHmD+/fv4/Xr13rtqa4qaUE+hM+fGjsMUsHFxsYaOwTygbVr1yI4OLjU/Z999hl++uknrerQKFHb2toiKSkJAFBQUIDLly+jc+fOsv1mZmbIz8/XKjBCVCGVSpGUlIT79+/jzZs3Rl3AoOBRLFgpLaBA9Ovx48coKqKx86Zi27ZtSjtWF/Px8cGWLVu0qkOjRN2qVSts3LgRhw4dwrRp01BYWCg3HOvx48dyd9yE6JtUKsXbt2/x4MEDpKamGrwzoSjpDcRZGQatszJKT0/HkCFDYGNjA1tbW4wePfqjkxa1b99eYeKcr776SrZ/586dSifXYRhG64kq9EEoFOLpU2q5MRXPnj1D/fr1S91fr149rRep0ihRL1u2DObm5ujbty+2bt2KkJAQNGjQAMD7cbIHDhygscnEKMRiMRITExEbG2uwWedYiQRC6o2rM+3bt5d7xPWhIUOG4OHDhzh79iyOHz+OS5cuYdy4cR+95tixY/H27VvZa/ny5bJ9AwYMkNv39u1bBAcHIzAwEM7Ozrr6sXTqwYMHNLLFRPB4PFkLszJv375VOlRYHRqdXatWLcTFxeHu3bt4/vw5fvzxR9m+/Px8rF+/HnPnztUqMEK0UVBQgLi4OCQkJOj9+bUwMQFSEQ3F0rfY2FicOnUKP//8M5o3b442bdpg3bp12LdvH968eVPmuZaWlnB1dZW9bGxsZPssLCzk9nG5XJw/fx6jR4/W94+ksYyMDLx+/drYYSil7gqImZmZmDRpEtzc3MDn81GnTh2cPHnSQNFqr0WLFti5cydycnIU9mVlZWHHjh1o0aKFVnVonObNzc3RuHFjhfFhVapUQa9evbQeN0aILrx79w4PHz5ERoZ+mqWlIhFELxP1cm0iLyoqCra2tmjWrJmsrGPHjuBwOB9diOfXX3+Fo6MjfH19MXv27DL70Pzyyy+wtLREv379dBa7PsTExBg7BAXqroAoEonQqVMnJCQk4I8//kBcXBy2bt1arh6dhoWF4c2bN/Dz88O6detw/vx5nD9/HmvXrkWTJk3w9u1brSc80XhcS3Z2NjZu3IgLFy4gJSUFmzdvRkBAANLT07Fz50707NlTbilMQoyleKIIW1tbeHh4gMfj6ezaosQX1IHMQJKSkhSaos3MzGBvb19m0+PgwYNRo0YNVKtWDffu3cPMmTMRFxeHP//8U+nx27Ztw+DBg01+GtsXL14gLy8PVlZWxg5FRt0VELdv34709HRcu3ZNNuNaebvJa968OY4dO4bx48dj6tSpsvkdWJaFl5cXjh49WuqkXarSKFG/evUKgYGBePnyJWrXro1Hjx7Jngfa29tj8+bNePHiBdasWaNVcIToUmZmJrKzs1GtWjU4OztrPWGKVCSC6M0rHUVXeS1duhRLly6VbRcUFOD69euYPHmyrEybu8cPn2E3bNgQbm5u+PTTT/Hs2TN4e3vLHRsVFYXY2Fjs3r1b4/oMhWVZxMfHw9fXV6/1lJxqtuQ0zMU0WQGxOIlNmjQJR44cgZOTEwYPHoyZM2eWq0mrOnXqhKdPn+Lu3buyjmPe3t5o2rSpTiZm0ihRf/vtt8jJyUF0dDScnZ0VvuX27t0bx48f1zo4QnRNKpXi1atXSEtLg4eHh9yzSnWJXtLdtC589dVX+OKLL2TbQ4YMQd++fdGnTx9ZWbVq1eDq6qrQhCoWi5Genl7qegDKFM/N8PTpU4VE/fPPP8PPzw/+/v6a/CgKEhMTZSsrCYVCpKenw97eXifXBmCQRF2yY3BYWJjCmsuAZisgPn/+HOfPn8eQIUNw8uRJPH36FBMnTkRRUZHWzcWGxuFw4O/vr7PPzoc0StRnzpzB9OnT4ePjg3fv3insr1mzpsJc4ISYksLCQjx58gQ2NjZwd3eHpaWlWuezYjFEb0yzM095Y29vL5e8LCws4OzsrPDorGXLlsjMzMTt27dlfwzPnz8PqVQqNzHSx0RHRwMA3Nzc5Mpzc3Px+++/y6Yo1sbNmzexaNEinDhxQtY7u6CgAHPmzEHDhg3RrVs3nTTxpqSkQCKR6PXu8+LFi/Dz85Nt63JJWqlUCmdnZ2zZsgVcLhf+/v54/fo1fvzxx3KXqGNiYvD8+XNkZGQo7ZE/fPhwja+tUaIuKCgocw5TZb3fCDFF2dnZyM7Ohp2dHdzc3FR+Lil6+wasxPizoWmjeOW48rKCXP369dGlSxeMHTsWmzZtQlFRESZPnoyBAweiWrVqAIDXr1/j008/xS+//IKAgAA8e/YMe/fuRdeuXeHg4IB79+5h+vTpaNeuHRo1aiR3/f3790MsFmPo0KFaxfnnn39iwIABYFlW4Q82y7J48OABHjx4gLFjx6Jp06Za1SWRSPDu3Tu9DiOztrZWqeVJkxUQ3dzcYG5uLvdFo379+khKSoJIJNJpfxJ9efbsGYYOHYqbN2+WOmSOYRitErVGvb59fHxw6dKlUvcfPnwYTZo00TgoQgwtIyND9o24rEXggfd/bEWvTbPFqDg5qPIaN24cQkJCMG7cOLXOM6Zff/0V9erVw6effoquXbuiTZs2crM+FRUVIS4uTtarm8fj4e+//0bnzp1Rr149zJgxA3379sWxY8cUrr1t2zb06dNHqymIb968iQEDBkAikZQ6S55UKoVUKsXWrVuRkJCgcV3FTGWpUk1WQGzdurVsEYtijx8/hpubW7lI0gAwfvx43L9/HxEREbhz5w7i4+MVXtqueqbRHfW0adMwYsQINGrUCP379wfw/hfy9OlTLFy4EFFRUTh48KBWgRFiDBkZGcjIyIC1tTWcnZ1ha2ur0BlEnJYKaaH6S25yraxh7loNZra2YHi6az4sysgAc/0fgyZRhmH09oc0MjKy1H329vbYu3dvqfs9PT3l3gcPDw9cvHhRpXqvXbumcoylWbx4sVpfaE6ePImJEydqVefHvlgakrorIE6YMAHr16/H1KlT8fXXX+PJkydYunQppkyZYswfQy1Xr17FnDlz8PXXX+utDo0S9dChQ/HixQvMmzdPNrFJly5dwLIsOBwOli5dit69e+syTkIMKjc3F7m5uTA3N4eDgwMcHBwgEAgAQO27acacB4vadWHu7PLxgzXg6OqKSZMmQSQS6eX6yvB4PDg4OBisvvIgMTERx48fVzlJS6VS3Lt3T+sOZob8vX+Muisgenh44PTp05g+fToaNWoEd3d3TJ06FTNnzjTWj6A2R0dHVK1aVa91aDyOeu7cuRg2bBgOHjwoa7rw9vZGnz59ULNmTV3GSIjRFBUVISkpCUlJSbCysoKNQADztFTwVFxa08zWDhb1fcHRYQccZShpvieRSOSaUVUlEom0nsHu2LFjardqsCyLhw8fajVzVV5enl4W6dD0/Zg8ebLc0LoPKWstadmyJa5fv65RXabgq6++wp49ezBp0iS9derTaiHf6tWrY/r06bqKhRCTlpeXh8yEeIjT30FgboYqfD6s+DxY8XjgKBkraWbvCEvfRmC0nOeXqG7RokVYuHChscNQy549e7Bnzx5jh0E0VKdOHUgkEjRu3BijRo2Ch4eH0oT94XBDdWmUqO/cuYPr16+X+mxl48aNaNWqlVyXfkLKO5ZlIc7KAgAUFolRWCRGam4eGAYQmJvD0twcAnMzCMzMYeXkTEnaCObPn6/2OgP5+fm4fPkyeDyeVkOPTp48KbfYh6r69++P//3vfxrVybIsHB0d0bdvX7WHGH7M3bt31Rr2VlkNGDBA9u9vvvlG6TEMw2i1BK9GiXru3LmwsLAoNVGfP38eJ0+epElPSIUizc0BlAzJYlmgQFSEAtH75keGxwff1gHm9++Dz+fD3NxcNgSFy+XKllDUFTMzM1iLhGCFhlsYhOELwHN1+/iBBlb8HqvD3NwcZmZmsLKykvVD0ES7du3w448/qtX8zTAM6tevL5s+U11SqRQWFhayz5guman4eKeyu3Dhgt7r0Og3UXKauJLatm2rk0kDCDElYlWGwXA44FVzB8PlQiwW633lLgAwKyyE1c/r9V5PSdXDV5lksjYWV1dXtG3bFlevXlXp7onD4aB+/fqws7PTql5dJ2iiHkMs6axRu1xOTk6Z37Y4HA6y/msiJKQiYMViSPM+vr61ubOL3juOKRAbp9evIe/gy4vipTFVbTHp3Lmz1nVq0wpAdEcoFCIqKgpHjhxBWlqaTq+tUaKuXbs2zpw5U+r+U6dOUc9vUqFIcrPft3GXgWNlBbOqtoYJqDQMo/Lr82Nn0Ob3I/j82Bm1ziOla9CgAcLDw8HhcEptgudwOOBwOBgxYgSqV6+uVX08Ho+aqE3A2rVr4ebmhjZt2qBPnz64d+8egPfznzs6OmL79u1aXV+jRD169GicOHECISEhyMzMlJVnZmZi+vTpOHXqlEkvuk6IuiRZH2n25nDKXTNwakEBkvMLkFqg/uQtpHQdOnTA9u3b0bp1a4U76+Jn0lOnTlWYwlQT2iwqQ3Rjx44dmDZtGrp06YJt27bJ9VFwdHREhw4dsG/fPq3q0Oir2JQpUxAdHY2IiAisXbtWNs/umzdvIJVKMWzYMBq2RSoMViT66Exk5vaOYMzoWSF5r0GDBli1ahWSkpIwaNAg5OTkwMLCAt9++63Wz6Q/pM10p0Q3Vq5ciV69emHv3r1KF6ny9/fH2rVrtapDo0TNMAx27NiB4cOH4+DBg7J5THv16oW+ffuiffv2WgVFiCmRfGSRGcbcHFwdLl1IKg5XV1dYWFggJycHPB5Pp0may+XCzs7OpKYQrYyePn1a5pSn9vb2ShO4OrR6uBEUFISgoCCtAiDE1Elyy272Nndy1ulwK0JU4ezsLDcdJzEOW1vbMjuPxcTEqLVeujIa/Zbj4+OVrj5T7NixYzpZFYYQY3vf7F1672aOQABuFXpOSAyv+JEjMa6uXbtiy5Ytcv21ij18+BBbt25Fz549tapDo0T9zTfflNnmvmHDBsyaNUvjoAgxFR9r9jazdzRQJIT8P3t7e53PREY0s3jxYkgkEvj6+mLevHlgGAa7du3C0KFD0axZMzg7OyM0NFSrOjRK1FFRUejUqVOp+z/99FNcvnxZ46AIMRVlNXu/v5uuYsBoCHnPw8PD2CGQ/1SrVg23b99Gly5dsH//frAsi927d+PYsWMYNGgQrl+/DkdH7b7Qa/SMOiMjA1XK+ANlbW2t9cNzQoyNLSoqs9mb7qaJMdjY2NCwLBMhFApx+vRpeHp64ueff8bPP/+M1NRUSKVSODk56awPgUZXqV69Oq5evVrq/suXL+OTTz7ROChCTIEkt/Rmb8acB461tQGjIeQ9bSdJIbrD4/HQv39/XLt2TVbm5OQEFxcXnXb00+hKgwYNwm+//Ya1a9fKrf0qkUiwZs0a7N+/H4MHD9ZZkIQYgyS39ClDzeztqKc3MThra2saO21CGIZB7dq1dT5laEkaJerZs2cjKCgI06ZNg5ubG9q1a4d27dqhWrVqmD59OgIDA9Veao4QU8JKJJAW5CvfyeWCa2Nr0HgIAd4/m6YviKZlzpw5WL9+PeLi4vRWh0bPqPl8Ps6cOYNdu3bhzz//xLNnzwAAAQEB6Nu3L4YPH07j+0i5Js3PLXVub7OqtrTONDE4S0tLODg4GDsMUsL169fh4OAAX19ftG/fHp6enrCwsJA7hmEYrFmzRuM6NJ7whMPhYOTIkRg5cqTGlRNiqsps9jb2whukUvrkk0/obtoErV///0vMnjt3TukxRkvUhFRULMtCUsq0jBxLKzA8noEjIpWdQCCAs7OzscMgSnzYT0tfNErUHTp0+OgxDMOU+u2CEFMmLSwAJBKl+8wqUEcep/+a55xKNNMR00PPpis3jRK1VCpV+NBIJBK8ePECL1++RK1ateDu7q6TAAkxNGlpixxwzcCxrjgTnBzqGWzsEIgK6G66fLh+/TouXLiAlJQUTJw4EbVr10Z+fj4ePXqEOnXqwFqL4ZwaJerIyMhS9x0/fhzjxo3DqlWrNI2JEKOS5il/Pm1mU5XuaojBeXh4UOdcEyYSiTBw4EAcOXIELMuCYRj06NEDtWvXBofDQefOnTF9+nStRkLp/LffvXt3DB06FNOmTdP1pQnRO1YsLnU2Mm5Vmg2KGBbdTZu++fPn4/jx4/jpp58QFxcH9oPRIgKBAP3798eRI0e0qkMvX9O8vb3xzz//6OPShOhVqZ3I+Hxw+AIDR0Mqu08++YTupk3cb7/9hgkTJmDcuHGwV7Iuff369fH8+XOt6tD5J0AsFuP333/XehJyQoxBmq+82ZtrU9XAkZDKjsfjwcXFxdhhkI9ISUlBw4YNS93P5XKRn1/K5Ekq0ugZ9ahRo5SWZ2Zm4vr160hKSqJn1KRckuQp+x+KAZcWQSAG5ubmRnfT5YCHhwcePXpU6v6rV6+iVq1aWtWhUaI+f/68QqcahmFgZ2eHNm3aYMyYMejcubNWgRFiaFKhEJCIFco5lhZgzMyNEBGprBiGgaurq7HDICoYPHgwVq1ahb59+6JOnToAIMuPW7duxe+//44ffvhBqzo0StQJCQlaVUqIKSptWBa3Ct1NE8Oyt7cHjybWKRfmzp2L69evo127dqhfvz4YhsH06dORnp6OV69eoWvXrpg+fbpWdVC7CiH/keQrS9QMuBVo7DQpH6ind/nB4/Fw6tQp7NixAzVr1kS9evUgFArRqFEj7Ny5E8eOHQOXy9WqDpUTdX5+PhITEyESiRT2bd++HZ9++il8fHzQp08frXp8b9iwAZ6enhAIBGjevDlu3rxZ5vGZmZmYNGkS3NzcwOfzUadOHZw8eVLj+knlxLKs0tWy3jd700y7xHC4XK7S3sPENISEhODu3buy7cTERBQWFmLo0KE4fPgwHj58iNjYWBw/fhzDhw/XydwLKifq77//Ho0aNVJI1IsXL8bYsWNx8eJFpKam4vDhw2jfvj3+/fdftYPZv38/QkJCEBYWhjt37qBx48YIDg5GSkqK0uNFIhE6deqEhIQE/PHHH4iLi8PWrVtpVjSiNmlBAaBkzl5q9iaG5ujoSJ3ITFhERARiY2Nl215eXjh06JBe61T503DhwgV0795dbhq07OxsLF68GO7u7njy5AlSU1Nx/fp18Hg8jR6er1q1CmPHjsXIkSPh4+ODTZs2wdLSEtu3b1d6/Pbt25Geno7Dhw+jdevW8PT0RGBgIBo3bqx23aRyU772NDV7E8NzcnIydgikDC4uLnLjotlSlsPVJZXb9BISEtC3b1+5spMnT0IkEmHmzJnw8vIC8H5N6pEjR+L3339XKxCRSITbt29j9uzZsjIOh4OOHTsiKipK6TlHjx5Fy5YtMWnSJBw5cgROTk4YPHgwZs6cWeozAaFQCKFQKNvOLWM5Q1J5SJU8n+ZYULM3MSwejwfbCrTwS0XUrVs3fP/99zhz5ozsd7Vy5Urs27ev1HMYhtFqdjKV/wrl5OQoLFp+6dIlMAyD4GD5yf19fHyQmpqqViBpaWmQSCQKA/xdXFxKHaP2/PlznD9/HkOGDMHJkyfx9OlTTJw4EUVFRQgLC1N6Tnh4OBYuXKhWbKRie/98ukChnKvFJPqEaMLZ2Znmkzdxa9asgbOzMy5cuICHDx+CYRi8fPkS6enppZ6j7e9U5URdo0YNhYQZGRkJFxcXhcHcIpEINgaYIEIqlcLZ2RlbtmwBl8uFv78/Xr9+jR9//LHURD179myEhITItqOjoxEYGKj3WInpkhYUAEqarzhWlKiJYdHYadNnZWWFpUuXyrY5HA4iIiIwePBgvdWp8jPqzp07Y/v27bhx4wYA4JdffsGjR4/w+eefKxx7+/ZteHp6qhWIo6MjuFwukpOT5cqTk5NL/fC6ubmhTp06cs3c9evXR1JSktLe6QDA5/NhY2Mje2mz9BipGJQ9n2Z4fHD4fCNEQyorBwcHWNDa4CavT58+uHz5smz7woUL6NSpk17rVDlRz58/H9bW1mjVqhV4PB6+/PJLODk5ITQ0VO64/Px8HDp0CJ9++qlagfB4PPj7++PcuXOyMqlUinPnzqFly5ZKz2ndujWePn0K6Qe9dR8/fgw3NzeaLICoTNnzaWr2JoZGo1XKhyNHjiAxMVG23aFDB5w9e1avdaqcqB0dHREdHY0ffvgBo0ePxtKlS3H//n2FZ8oPHjzAkCFDMGzYMLWDCQkJwdatW7Fr1y7ExsZiwoQJyMvLw8iRIwEAw4cPl+tsNmHCBKSnp2Pq1Kl4/PgxTpw4gaVLl2LSpElq100qJ5ZllS5rSc3exJCqVKlikMeFRHvu7u5y46iL16DWJ7W6tNrZ2eHbb78t85iAgAAEBARoFMyAAQOQmpqK0NBQJCUlwc/PD6dOnZJ9GUhMTJQbX+jh4YHTp09j+vTpaNSoEdzd3TF16lTMnDlTo/pJ5aN0/DSXCw41QRID+uSTT6gTWTkxcOBArFixAr///rus1/esWbMQHh5e6jkMw2g0t0gxkxt7MnnyZEyePFnpvsjISIWyli1b4vr163qOilRUrLLe3pZW9EeTGAyfz1cYUUN0y8vLS+3/pxmGwbNnzxTKw8PDUatWLVy4cAEpKSlgGAZWVlZ6/R2aXKImxJAkyqYNtbIyQiSksnJ1daUvhnoWGBio8B7funULDx8+hI+PD+rWrQsAiIuLQ0xMDHx9feHv76/0WlwuF+PGjcO4ceMAvO/1PW/ePL32+qZETSo1aaGSO2p6Pk0MqGQ/H6J7O3fulNs+fPgwDh8+jLNnzyp0fD579iy++OILLFq0SKVrx8fH6302OZpQllRa79eflsiVcQQCmo2MGIytrS34FWwYoLoLKxXbt28fGIZB79699RsggNDQUHz99ddKRyd16tQJkydPxrx581S6Vo0aNWBpaanrEOWolKiPHj2KN2/e6DUQQgxN+WpZdDdNDKeiPZtWd2GlYgkJCfjmm2/Qtm1bg8T55MmTMt97BwcHpc+ngfdN3WZmZrK5OjgcDrhcbpkvMy2//Kt09ueff47du3fL2uBr1qyJiIgI9OzZU6vKCTEmpYmank8TA6poifrDhZUAYNOmTThx4gS2b9+OWbNmKT1HIpFgyJAhWLhwIS5fvozMzEy9x+nt7Y0dO3Zg9OjRCpNe5eTkYPv27ahZs6bSc0NDQ8EwjCz5Fm/rk0qJukqVKnJvXkJCAi1mQco9hfm9ORwalkUMxsLCokI1e2uysBLwfgllZ2dnjB49Wm7GL31avHgx+vXrh3r16uHLL7+UTYP95MkT7Nq1C8nJyThw4IDScxcsWFDmtj6olKgDAgKwZMkSJCcno2rVqgDer5yVlJRU6jkMw2D69Om6iZIQHWPFYrBFRXJlHAsL6n1LDKa8rJKVm5uL7Oxs2Tafz1f6BUOThZWuXLmCbdu2ITo6Wqcxf0zv3r1x8uRJzJw5U27ebgDw8/PDtm3bFBabMiaVEvXGjRsxfPhwWS84hmGwd+9e7N27t9RzKFETU6Z0tSxLavYmhlNeZiIruWhRWFiYTu4ic3JyMGzYMGzduhWOjo5aX09dnTt3RufOnZGUlIQXL14AeN8xTJ2FUYRCIfbs2YMzZ87g2bNnyMnJQZUqVVCrVi106dIFgwcP1sl01iol6lq1auHatWsoLCxESkoKPD09ERERgV69emkdACHGoCxR07ShxJDKS6K+ePEi/Pz8ZNulNderu7DSs2fPkJCQgB49esjKitdtMDMzQ1xcHLy9vXXwE5TN1dVVo1XL7t+/j169euHFixdgWRZVq1aFtbU1UlJScOfOHRw4cABLlizB0aNHUb9+fa1iVGt4lkAgQPXq1REWFoYOHTqgRo0aZb4IMVUK46e5ZrRaFjEYc3PzcvN82traWm7FwdLiVndhpXr16uH+/fuIjo6WvXr27ImgoCBER0fDw8NDbz8T8H5K6q+++gp169aFvb09Ll26BOB9E/6UKVPk5vMuKTc3Fz179kRycjKWLFmCly9fIiMjQ+6/ixcvxps3b9CjRw/k5Sku/KMOjfqMf7jWc25uLl6+fAng/dzbtGwkMXXvF+KQT9RcK/2OgyTkQ1WqVKmQ/SFCQkIwYsQINGvWDAEBAYiIiFBYWMnd3R3h4eEQCATw9fWVO7/4uX3Jcl2LiYlB27ZtIZVK0bx5czx9+hRisRjA+5aBK1euIC8vD9u2bVN6/o4dO5CYmIhz586hffv2Cvvd3d0xe/ZsNG/eHJ06dcLOnTu1WixK4wlP/vnnHwQFBcHOzg6+vr7w9fWFnZ0dOnTogFu3bmkcECH6xhYWAiwrV8axoOfTxHCqVKli7BD0YsCAAVixYgVCQ0Ph5+eH6OhohYWV3r59a+Qoge+++w62trZ4/Pgx9uzZA7bE34Nu3bqV2QP9xIkT6Ny5s9Ik/aEOHTqgU6dOOHbsmFbxanRHfePGDbRv3x48Hg9jxoyRtb/Hxsbit99+Q7t27RAZGanxKlqE6JOyaUM5ep5ZiJAPVeSWR3UXVvpQyak+9eXSpUsIDQ2Fk5MT3r17p7C/evXqeP36dann379/H1OmTFGprg4dOmDNmjUaxwpomKjnzp0Ld3d3XLlyReEh/IIFC9C6dWvMnTtX74tpE6KJkomaMTMHRwc9MwlRVUW9oy4vpFJpmdN+pqamltmHID09XeUOaC4uLkhPT1c7xg9p1PR948YNjB8/XmmgLi4uGDduHC09SUxWyR7fHEua5IQYjoWFBczNzY0dRqXWtGlTnDhxQuk+sViMffv2oUWLFqWeLxQKVf4dfjjdqKY0uqPmcDiyB+/KSCQScDi03gcxPconOqHn08Rw6G7a+GbPno3u3btjwoQJGDhwIID3w8j+/vtvLF26FLGxsVi/fn2Z10hISMCdO3c+Wld8fLzW8WqUqFu1aoUNGzZg8ODBCsOwEhMTsXHjRrRu3Vrr4AjRNWlhoUIZPZ8mhlRexk9XZJ999hl27tyJqVOnYsuWLQCAoUOHgmVZ2NjY4JdffkG7du3KvMb8+fMxf/78j9bFsqzWPfw1StRLly5Fu3btUK9ePXz++eeoU6cOgPeLbh85cgRmZmYIDw/XKjBC9EEqLPl82oyeTxODojtq0zBs2DD06dMHZ8+exZMnTyCVSuHt7Y3g4OCP/o527NhhoCjf0yhRN2nSBDdu3MDcuXNx9OhR5Oe/X4XI0tISXbp0weLFi+Hj46PTQAnRBcXn03Q3TQyHy+XCilZoM6r8/Hx4eHhg1qxZ+PbbbzVa/3rEiBG6D6wMGi+S6ePjg0OHDkEqlSI1NRUA4OTkRM+miUmTFgrltmm1LGJI1tbWFXKik/LE0tISZmZm5eoLk9ZZlcPhwMXFBS4uLpSkiUljRSJAIt8JkmNBd9TEcKjZ2zT07dsXf/zxh8JEJ6ZK4ztqQsqbks+nweGA4ZWP+ZZJxUCJ2jQMHDgQEydORFBQEMaOHQtPT09YKGlda9q0qRGiU0SJmlQa0gLFZm9qhiSGVJ6aWyuyD6f+VDZVaHFPbYlEYsCoSkeJmlQaJWcko2ZvYmgCgcDYIRAYvte2tihRk0pDKpQfQ00dyYghcTgcasExEYbuta0tStSkUpCKRMB/i9IDABgGHAElamI4lKQrtpiYGDx//hwZGRlKO6kNHz5c42trlaj1GRghuqTQ7M3ng6FRCsSAKFEbz6hRo8AwDLZs2QIul4tRo0Z99ByGYUpdj/pDz549w9ChQ3Hz5s1Se5EzDGP4RG2IwAjRJbbE+GmGmr0JqTTOnz8PDocDqVQKLpeL8+fPf/SLk6pfrMaPH4/79+8jIiICbdu2hZ2dnS5ClqNRojZEYIToUsmhWVxK1MRAHBwcIBKJ4ODgYOxQKq2EhIQyt7Vx9epVzJkzB19//bXOrlmSRonaEIERokslF+PgCKjHNzGM3bt3486dO2jQoIGxQyF64OjoiKpVq+q1Do0e0hkiMEJ0pWRHMsbMDAytB0wMjEeLv1RIX331Ffbs2aPXMdca3VEXBzZp0iRwuVxdx0SITrElmr2ptzcxNHNzc+pMZmL++usvrFq1Cnfu3EFWVpbS/laqJN86depAIpGgcePGGDVqFDw8PJTmxT59+mgcq0aJ2hCBEaIrymYkI8SQzKkFx6QcPHgQX3zxBRo0aICBAwfip59+wuDBg8GyLI4cOYLatWurvKrWgAEDZP/+5ptvlB6j7SxnGiVqQwRGiK6UHJrF0B01MTAzM5qywpSEh4cjICAAV65cQUZGBn766SeMGjUKHTp0QEJCAlq0aAEvLy+VrnXhwgU9R6thojZEYIToAsuy8jOSMQw4NI0jMTBK1KYlJiYG4eHh4HK5st9NUVERAMDT0xMTJ07EsmXLVBpiHBgYqNdYAQ0TtSECI0QX2BIdyTg8muiEGB715TEtlpaWss59tra24PP5ePv2rWy/i4sL4uPj1b5uTEwMXrx4AQCoUaMGfHx8dBKv1l/z9BUYIbogLSjZ7E1308TwKFGblrp16yImJka27efnh927d2Po0KEQi8XYu3cvqlevrvL1jhw5gpCQEIXx2V5eXli1ahV69uypVbwa31ocOXIE3t7eaNiwIbp3747u3bujYcOGqFWrFo4ePapVUIToisLUofR8mhgBJWrT0qdPHxw9ehRC4fuOpnPnzkVkZCRsbW3h5OSEy5cvY9asWSpd6+TJk+jbty8AYOnSpTh06BAOHTqEpUuXgmVZ9OnTB6dOndIqXo3uqIsDq1GjBpYuXYr69esDAGJjY7Flyxb06dMHx48fR5cuXbQKjhBtsSUnOqEe38QIOPS4xSQUFhbiyJEjKCoqwrx585Ceng43Nzd0794dkZGR+PPPP8HlctGtWzcEBQWpdM1FixahUaNGuHz5stx64z179sTkyZPRpk0bLFy4UKt8qFGiNkRghGiLlUohFX0wNIvDAUOTThAjoERtfCkpKWjVqhXi4+PBsiwYhoGFhQUOHz6Mjh07om3btmjbtq3a17137x6WLl0qlwuLWVlZ4csvv8ScOXO0il2jT8+9e/cwYsSIMgO7d++eVoERoi2psBD4YBIDDl9Ak04Qo6BEbXyLFi1CQkICpk+fjuPHj2P16tWwsLDA+PHjtbquQCBAenp6qfvT09Mh0LJvjEZ31IYIjBBtsQX0fJqYBvqCaHxnzpzB8OHDsWLFClmZi4sLBg8ejLi4ONStW1ej63bo0AFr1qxBly5d0LJlS7l9N27cwNq1a9G5c2etYtfoa15xYFFRUQr7igPr2LGjVoERoi2FhTgs+EaKhFR2lKiNLzExEW3atJEra9OmDViWRXJyssbXXb58OQQCAdq0aYOWLVviyy+/xJdffomWLVuiVatWEAgEWLZsmVaxa5So9R3Yhg0b4OnpCYFAgObNm+PmzZsqnbdv3z4wDKPy1G+kYis5NIvDpztqYhyUqI1PKBQqtPQWb4vFYo2v6+XlhXv37mHKlCnIyMjA/v37sX//fmRkZGDq1Kn4999/4enpqU3omjV9FwcWHh6Ov/76C/v37wfwfhz11KlTMWvWLDg7O2sU0P79+xESEoJNmzahefPmiIiIQHBwMOLi4sq8ZkJCAr755huNOgOQiocVF4EVF/1/AXUkI6TSS0hIwJ07d2TbWVlZAIAnT57A1tZW4fimTZuqdF1nZ2esXr0aq1ev1kmcJWk84Ym+Alu1ahXGjh2LkSNHAgA2bdqEEydOYPv27aWOa5NIJBgyZAgWLlyIy5cvIzMzU6cxkfJH4W6a+kwQI6I7atMwf/58zJ8/X6F84sSJctvFvcJNZb0Kk5qAViQS4fbt25g9e7asjMPhoGPHjkqfhxf7/vvv4ezsjNGjR+Py5cuGCJWYOGlBiefT1JGMkEptx44dOrnOqFGjwDAMtmzZAi6Xi1GjRn30HIZhsG3bNo3rVClRGyqwtLQ0SCQSuLi4yJW7uLjg0aNHSs+5cuUKtm3bhujoaJXqEAqFstloACA3N1etGEn5oDgjGXUkI6QyGzFihE6uc/78eXA4HEilUnC5XJw/f/6jLSbatqiolKiNEZgqcnJyMGzYMGzduhWOjo4qnRMeHo6FCxfqOTJiTCzLKiZq6khGjIiaviuOkvN5l9zWB5UStaECc3R0BJfLVegqn5ycDFdXV4Xjnz17hoSEBPTo0UNWJv1vpSQzMzPExcXB29tb7pzZs2cjJCREth0dHU2rgVUw0sICuYlOqCMZIURfEhMT4eTkBItSpicuKChAamqqWot8lKTR8KzExEQUlOisUzKwxMREta/L4/Hg7++Pc+fOycqkUinOnTunMJAcAOrVq4f79+8jOjpa9urZsyeCgoIQHR0NDw8PhXP4fD5sbGxkL2tra7XjJKZNcaIT6khGCNEPLy8vHDp0qNT9R48ehZeXl1Z1aJSo9RlYSEgItm7dil27diE2NhYTJkxAXl6erBf48OHDZZ3NBAIBfH195V62traoUqUKfH19ZeuNkspFQjOSERNDTd8VF/th650SRUVFWk8hq1Gvb30GNmDAAKSmpiI0NBRJSUnw8/PDqVOnZB3MEhMTad5cUiYamkVMDSXqiiU7O1tuGPC7d++UtiJnZmZi3759cHNz06o+lRO1IQObPHkyJk+erHRfZGRkmefu3LlT43pJ+ScVCgGJ/CxDdEdNjI0SdcWyevVqfP/99wDe/26nTZuGadOmKT2WZVksXrxYq/pUTtSGDowQTZS8mwbXDIy5uXGCIYRUSJ07d4a1tTVYlsV3332HQYMGKcxixjAMrKys4O/vj2bNmmlVn8qJ2tCBEaIJaUG+3DY1exNTQHfUFUvLli1lHZzz8vLQt29f+Pr66q0+lRO1oQMjRBMKz6dLGTJBiCFRoq6Y8vPzsXbtWlhaWuo1H6rdK6s4sL/++ksf8RCiMVZcBLZIJFdGd9TEFFSmRK3O6odbt25F27ZtYWdnBzs7O3Ts2FHl1RJNgaWlJczMzGBlZaXXetRO1IYKjBB1SfLzFcqoIxkxBZUlURevfhgWFoY7d+6gcePGCA4ORkpKitLjIyMjMWjQIFy4cAFRUVHw8PBA586d8fr1awNHrrm+ffvijz/++OhoKG1oNM7JEIERoi5piUTNmPPAcLlGioaQ/1dZEvWHqx/6+Phg06ZNsLS0xPbt25Ue/+uvv2LixInw8/NDvXr18PPPP8smuSovBg4ciJSUFAQFBeHXX3/F1atXcefOHYWXNjQaRz1w4EBMnDgRQUFBGDt2LDw9PZVOn6bqWp6E6ELJRM2xoGZvQrSVm5uL7Oxs2Tafzwefr7jIjaarH34oPz8fRUVFsLe31z5wA2nfvr3s38pWb9TFkpkaJWpDBEaIOpQ+n6aOZMRElOc76pJrIYSFhWHBggUKx2my+mFJM2fORLVq1dCxY0eN4zU0XS2fWRaNErUhAiNEHfR8mhD9uHjxIvz8/GTbyu6mdeGHH37Avn37EBkZCUE56gSqq+Uzy6JRojZEYISoo2SzNzgcMPzy8z87qdjK8x21tbU1bGxsPnqcuqsffmjFihX44Ycf8Pfff6NRo0ZaxWtMubm5ePnyJQDAw8NDZ4s+aT1pdm5uLmJjYxEbG4vc3FxdxESI2hSeT/MF5fqPIyHljbqrHxZbvnw5Fi1ahFOnTpXbibL++ecfBAUFwc7OTrZAlJ2dHTp06IBbt25pfX2N7qiLA/vuu+9w5coV2RrQHA4Hbdu2xfLly8vtG07KH1YkoufThJiAkJAQjBgxAs2aNUNAQAAiIiIUVj90d3dHeHg4AGDZsmUIDQ3F3r174enpiaSkJADv7+LLyxLEN27cQPv27cHj8TBmzBjUr18fABAbG4vffvsN7dq1Q2RkJAICAjSuQ6NEbYjACFEVPZ8mxDSou/rhTz/9BJFIhH79+sldp7QOa6Zo7ty5cHd3x5UrVxSa+BcsWIDWrVtj7ty5OHv2rMZ1aJSoDREYIaqSFuQplNEdNSHGoc7qhwkJCfoPSM9u3LiB0NBQpc/hXVxcMG7cOCxatEirOjR6Rn3jxg2MHz++zMCuX7+uVWCEqEqSp2SiEzONn+oQQojKOBwOxGJxqfslEolcK4JGdWh0kgECI0QVUmGh4vrTdDdNTAz9Pay4WrVqhQ0bNuDFixcK+xITE7Fx40a0bt1aqzo0uu0oDmzw4MGoUaOGXgIjRBXSPGXN3pZGiIQQUhktXboU7dq1Q7169fD555+jTp06AIC4uDgcOXIEZmZmss5zmtIoURsiMEJUIcmn59OEEONp0qQJbty4gblz5+Lo0aPI/69zq6WlJbp06YLFixfDx8dHqzo0StSGCIyQj2GlUsWJTrhm4Ohp5iRCCFHGx8cHhw4dglQqRWpqKgDAyclJZ488NO5xo+/ACPkYaX4+UGIFNy7dTRNCjIRhGNlES7qccEnrrFoc2IcBEmIIkjzFmfCo2ZsQYmgxMTHo168fbGxs4ObmBjc3N9jY2KBfv3548OCB1tfX+I46JiYGoaGhOH36tFzTd3BwMBYsWABfX1+tgyOkLFIliZqhjmSEEAO6fPkyPvvsM0ilUvTq1Uuuz9bRo0fx119/4dSpU2jbtq3GdWiUqA0RGCFlkQqFYIuK5As5HHDK0ao7hJDyb/r06XB2dsbFixfh4eEht+/ly5do164dQkJC8M8//2hch0aJ2hCBEVIW5cOyLOjxCyHEoB4+fIhFixYp5ELg/QpaEyZM0Ho6VI2eUT98+BATJ04sM7CHDx9qFRghZZHk5iiUcanZmxBiYDVq1IBQKCx1v0gkUpor1aFRojZEYISUhpVIIC0sUChnLClRE0IMKzQ0FGvXrkV0dLTCvrt372LdunVa31Fr1PQdGhqK6dOno1u3bvDz81MaWEREhFaBEVIaSW6uwrCs98+nqcc3IcSwrl+/DhcXF/j7+6NVq1aoVasWAODJkyeIioqCr68voqKiEBUVJTuHYRisWbNG5To0StSGCIyQ0ijr7U3PpwkhxrB+/XrZv69evYqrV6/K7b9//z7u378vV2aQRG2IwAhRhmVZpeOn6fk0IcQYpFKp3uvQKFEbIjBClJHm5QFKPn/0fJoQUlHRor2kXFHW25ueTxNCjC0+Ph5//fWXbLnLGjVq4LPPPoOXl5fW19YqUeszMEJKYllWaaLmWFrR82lCiNHMmDEDa9asUWht5nA4mDZtGlasWKHV9TVO1PoOjJCSpHl5gESiUM6lZm9CiJGsXLkSq1evRr9+/TBjxgzUr18fABAbG4vVq1dj9erVcHd3x/Tp0zWuQ6Nx1MWB9enTB1FRUcjMzERmZiaioqLQr18/WXCE6JLSZm+8v6MmhBBj2Lp1K3r27Inff/8dzZs3h42NDWxsbNC8eXPs27cPPXr0wObNm7WqQ6NEbYjACPlQac3ejJk5rT9NCDGahIQEBAcHl7o/ODgYCQkJWtWhUaI2RGCEfEial6u02ZtDzd6EECNydnbGv//+W+r+f//9F05OTlrVoVGiNkRghHxIkp2ttJxjRc3ehBDj6d+/P37++Wf88MMPyPtgsaC8vDwsW7YMP//8MwYMGKBVHRp1Juvfvz/WrFkDT09PfP3117D6749lXl4e1q9fj59//hnTpk3TKjBCirESSSnPpxlw6fk0IcSIFi1ahOjoaMyZMwehoaGoVq0aAODNmzcQi8UICgrC999/r1UdGiVqQwRGSDFJTo7i3N4AOAIBGDOaCoAQYjyWlpY4d+4cjhw5IjdcuUuXLujatSt69Oih9fBRjf7KGSIwQopJsrOUlnOs6W6aEGI8+fn5GDp0KPr27YshQ4agV69eeqlH7URtqMAIAQCpSARpQb7SfRxLawNHQwgh/8/S0hJ///03PvvsM73Wo3ZnsuLA8vOV//EkRJckmZnKd3DNwBEIDBoLIYSU1KZNG7mVIvVBo17fhgiMEJZlIS6l2ZtrRdOGEkKMb/369bh8+TLmzZuHV69e6aUOjRK1IQIjRJqbDUjESvdxranZmxBifI0bN8arV68QHh6OGjVqgM/nyyYBK35VrVpVqzo06kzWuHFjiMVihIeHIzw8HGZmZuCXmB2KYRhkZSm/G/qYDRs24Mcff0RSUhIaN26MdevWISAgQOmxW7duxS+//IIHDx4AAPz9/bF06dJSjyflhzgjU/kOhqFpQwkhJqFv3756b93TKFHrM7D9+/cjJCQEmzZtQvPmzREREYHg4GDExcXB2dlZ4fjIyEgMGjQIrVq1gkAgwLJly9C5c2c8fPgQ7u7ueomR6J+0sKCMTmSWYLhcA0dECCGKdu7cqfc6NErU+gxs1apVGDt2LEaOHAkA2LRpE06cOIHt27dj1qxZCsf/+uuvcts///wzDh48iHPnzmH48OF6i9NUbd68Gbm5ubC2tsb48eONHY7GxBkZpe7jWlcxYCSEEKKosLAQR44cQXx8PBwdHdGtWze4ubnppS61ErW+AxOJRLh9+zZmz54tK+NwOOjYsaPKndfy8/NRVFQEe3t7pfuFQiGEQqFsOzc3V7ugTUxubi6yS5lus7xgxWJIckr/Gej5NCHEmFJSUtCqVSvEx8eD/W8yJktLSxw+fBgdO3bUeX0qJ2pDBJaWlgaJRAIXFxe5chcXFzx69Eila8ycORPVqlUrNabw8HAsXLhQ61iJ/ogz0pXORAYUz0ZmbuCICCHk/y1atAgJCQmYPn06OnTogKdPn2LRokUYP348nj17pvP6VE7Uhg5MEz/88AP27duHyMhICEoZYzt79myEhITItqOjoxEYGGioEMlHsGIxxJllNHtXsTFgNIQQoujMmTMYPnw4VqxYIStzcXHB4MGDERcXh7p16+q0PpUTtSECc3R0BJfLRXJyslx5cnIyXF1dyzx3xYoV+OGHH/D333+jUaNGpR7H5/PleqhbUzOqSRFnpANSaan76fk0IcTYEhMTMXPmTLmyNm3agGVZJCcn6zxRqzyOOjExEW3atCk1MF3g8Xjw9/fHuXPnZGVSqRTnzp1Dy5YtSz1v+fLlWLRoEU6dOoVmzZrpJBZieKxEUubdNEcgAMPjGTAiQghRJBQKFVpti7fFYuVzP2hD5TtqQwUWEhKCESNGoFmzZggICEBERATy8vJkvcCHDx8Od3d3hIeHAwCWLVuG0NBQ7N27F56enkhKSgLw/k6Z7pbLl6J3aR+5m6Zmb0KIaUhISMCdO3dk28Xzhjx58gS2trYKxzdt2lTjutTq9W2IwAYMGIDU1FSEhoYiKSkJfn5+OHXqlKyDWWJiIjic/28I+OmnnyASidCvXz+564SFhWHBggVq10+MQyoSQVLG3TQAcKtQszchxDTMnz8f8+fPVyifOHGi3DbLsmAYBhKJROO61ErUhgps8uTJmDx5stJ9kZGRctsJCQka1UFMS1FqSqk9vQGAI7CgZm9CiEnYsWOHQetTOVEbOjBSeUhycyHNzSnzGG5VavYmhJiGESNGGLQ+lRO1oQMjlQMrkaAo+W3ZBzEMPZ8mhFRaGk0hSkxXcQe68tKRriglGexHOiNyrKzBmNFHlRBSOWm0zCUxLJZlVX6NGzcOISEhGDdunFrnGYM4KxOSUtab/pCZDd1NE1JebNiwAZ6enhAIBGjevDlu3rxZ5vEHDhxAvXr1IBAI0LBhQ5w8edJAkZYfdJtiong8HhiGMXgS9fb2hp2dnU6uxbIspFIppFIpxGIxxGIxRCIRRCIRCjIzUZCc9PGLcM3AoUlOCCkX1F398Nq1axg0aBDCw8PRvXt37N27F71798adO3fg6+trhJ/ANFGiNlEODg6YNGkSRCKRwerk8XhwcHDQez3SgnzkvUtFkYsTCsViFBQVoUBUhLyiIhSJ5UcKmNlU1ftar4QQ3VB39cM1a9agS5cu+PbbbwG8n6r67NmzWL9+PTZt2mTQ2E0ZJWoTZoikaWjSgnzkRd+BVFQILocDKx4PVjweYPV+v0giQZ5QhByhEDlCIbhKxucTUhqJRAJpGZPmKFNUVASxWIy8vDy9zCqlT0KhEGKxGEVFRSgqKtLptYvfi5Ir8pWchrmYJqsfRkVFya29AADBwcE4fPiwDn6CioMSNTEYcUY68mMegC0qvZWAx+WCZ2kBO0sLcKvaQlKzNjIyMpCZmanVhAGkcli0aBGtjqdjJRctKm0yKU1WP0xKSlJ6fPEMk+Q9StRE76QiEYSJCRC9eglA9WfufHcPmFetiqpVq0IqlSIzMxNpaWnIySl7zDWpvObPn4+5c+eqfZ5IJCp3d9PFzMzMwNPDZEB3795F8+bNcfHiRfj5+cnKld1NE/2iRG3CRElvwQoLDVafVCiEuZNihw/Nr1cIcUYGxKkpYKXq3Q1z+AKYfRALh8OBvb097O3tUVhYiNTUVKSlpandzEkqNi6XCy6Xq/Z55ua0xnlJZv8NibS2toaNCiMvNFn90NXVVaPVEisbStQmSpT0FomzQz5+oC6xLOw/7w9u1aqGrVcJ3icepXYiEwgE8PDwQLVq1ZCamork5ORyezdESEXx4eqHvXv3BvD/qx+WNiV0y5Ytce7cOUybNk1Wdvbs2TJXS6yMKFGbKEPeScvVawIJj+Gagefm/tHjuFwuXF1d4ezsjNTUVCQlJVHCJsSI1F39cOrUqQgMDMTKlSvRrVs37Nu3D7du3cKWLVuM+WOYHErU5YEaw5M+P3oaqQUFcLKwwKGewarXYaRJT5Qxd6um1kxkHA4HLi4ucHR0RHJyMpKTk6lJnBAjUHf1w1atWmHv3r2YN28e5syZg9q1a+Pw4cM0hroEStQVTGpBAZLzC4wdhsYYhgO+Rw2NzuVyuahWrRqcnJzw+vVrvHv3TsfREUI+Rp3VDwGgf//+6N+/v56jKt9oClFiUsyruYOjZa9Sc3NzeHp6ol69erC0tNRRZIQQYhyUqInJYBgO+NU9dXY9Kysr1KtXDx4eHnLNbYQQUp7QXy9iMnifeGh9N10SwzBwdnZGgwYNUNUEerMTQoi6KFETk8CY88Cv4aW36/N4PNSqVQs1a9akMbOEkHKFOpMRkyDw8jbImtN2dnaoWrUqkpKSkJSUZLQlPgkhRFV0R02MjlvFBuZu1QxWH4fDQbVq1eDr61shFz4hhFQslKiJcTEcWNT1McpSljweD56envDx8YEtrdJFCDFR1PRNjErg6QWutbVRY7CwsIC3tzcKCgqQlJSEjIwMahInhJgMuqMmRmNmaweeDodjacvCwgJeXl7w9fWFi4uLRos7EEKIrtEddQXjZGEh919TxeELYOHT0ChN3h/D4/HwySefoFq1asjIyEBaWhpyc3ONHRYhpJKiRF3BqDW/t5EwZuawbNgYHD2soatLHA4HDg4OcHBwgFAoRHp6OjIyMlBQUH6naCWElD+UqIlBMWbmsGrcBFzrKsYORS18Ph9ubm5wc3ODUChEVlYWsrKykJubSwuAEEL0ihI1MRiOpRUsGzQE18q4nce0xefz4ezsDGdnZ7Asi7y8PNkrPz8fQqHQ2CESQioQStRE/xgOeNXcIahZC0w57KDFSqXvlwFl2ff/Bv5bFpQFpCwsuRxYVKkCR2trACykEikKhUIIRUKIhEIUFYkhloghEUsglUohlUqhyz7lHOqhTkiFRomayOMwYBjdDAZgBBYwq1oV5i5u4Aj4YEVCsCjOccXJhcX7rPVfIvwvIX5YJiv/L2G+P0YKSNkS21JZUpUl1+KyD/4r92/ZsVL5eqTS/4ZoaZ4Ezf976Zs0Px+0oCchFRclaiJPyoJldfPMlS3Ig6ggD6KkNzq5HiGEVEY0jpoQQggxYZSoCSGEEBNGiZoQQggxYZSoCSGEEBNGiZoQQggxYZSoCSGEEBNGiZoQQggxYZSoCSGEEBNGiZoQQggxYZSoCSGEEBNGiZoQQggxYZSoCSGEEBNGiZoQQggxYZSoCSGEEBNmkol6w4YN8PT0hEAgQPPmzXHz5s0yjz9w4ADq1asHgUCAhg0b4uTJkwaKlBBCCNEvk0vU+/fvR0hICMLCwnDnzh00btwYwcHBSElJUXr8tWvXMGjQIIwePRp3795F79690bt3bzx48MDAkRNCCCG6Z3KJetWqVRg7dixGjhwJHx8fbNq0CZaWlti+fbvS49esWYMuXbrg22+/Rf369bFo0SI0bdoU69evN3DkhBBCiO6ZVKIWiUS4ffs2OnbsKCvjcDjo2LEjoqKilJ4TFRUldzwABAcHl3q8UChEdna27JWbm6u7H0BfWFb/L1Ix0GeFkArHzNgBfCgtLQ0SiQQuLi5y5S4uLnj06JHSc5KSkpQen5SUpPT48PBwLFy4UDcB6xHDFxilXutWbcFzdTNK3UQzoqS3eHfgN4PXa6zPKCGVjUklakOYPXs2QkJCZNvR0dEIDAw0YkTK8VzdUD18FVhhocHqZPgCStLlEN+tGn1WCKnATCpROzo6gsvlIjk5Wa48OTkZrq6uSs9xdXVV63g+nw8+ny/btra21jJq/aE/hERV9FkhpOIyqWfUPB4P/v7+OHfunKxMKpXi3LlzaNmypdJzWrZsKXc8AJw9e7bU4wkhhJDyxKTuqAEgJCQEI0aMQLNmzRAQEICIiAjk5eVh5MiRAIDhw4fD3d0d4eHhAICpU6ciMDAQK1euRLdu3bBv3z7cunULW7ZsMeaPQQghhOiEySXqAQMGIDU1FaGhoUhKSoKfnx9OnTol6zCWmJgIDuf/GwJatWqFvXv3Yt68eZgzZw5q166Nw4cPw9fX11g/AiGEEKIzDMtW7vEWd+7cgb+/P27fvo2mTZsaOxxCCDEJ9LfRdJjUM2pCCCGEyKNETQghhJgwStSEEEIMLj09HUOGDIGNjQ1sbW0xevToMmeKTE9Px9dff426devCwsIC1atXx5QpU5CVlWXAqI2DEjUhhBCDGzJkCB4+fIizZ8/i+PHjuHTpEsaNG1fq8W/evMGbN2+wYsUKPHjwADt37sSpU6cwevRoA0ZtHCbX65sQQkjFFhsbi1OnTuGff/5Bs2bNAADr1q1D165dsWLFClSrVk3hHF9fXxw8eFC27e3tjSVLlmDo0KEQi8UwM6u46YzuqAkhhBhUVFQUbG1tZUkaADp27AgOh4MbN26ofJ2srCzY2NhU6CQN0B21TGxsrLFDIIQo4ebmBjc33U6R+vbtW7x9+1an16xoiv8m5ubmIjs7W1ZechpmTSQlJcHZ2VmuzMzMDPb29qUuqFRSWloaFi1aVGZzeYXBVnJv3rxhAwMDWQD0ohe9TPAVFham8//vw8LCjP5zlYdXjRo11Pp9zJw586PXjI2NZZcsWcLWqVNH4XwnJyd248aNH/39ZWVlsQEBAWyXLl1YkUikzUehXKj0E54AFevbdW5uLgIDA3Hx4kWTXnCEGF95+ayU9zvq8vI+K2Nvbw97e3u5srLuqFNTU/Hu3bsyr1mzZk3s2bMHM2bMQEZGhqxcLBZDIBDgwIED+Pzzz0s9PycnB8HBwbC0tMTx48chEFT85VYpUVcw2dnZqFq1quzZDSGloc+KYdD7rCg2NhY+Pj64desW/P39AQBnzpxBly5d8OrVK6WdyYD372VwcDD4fD5OnjwJS0tLQ4ZtNNSZjBBCiEHVr18fXbp0wdixY3Hz5k1cvXoVkydPxsCBA2VJ+vXr16hXrx5u3rwJ4H2S7ty5M/Ly8rBt2zZkZ2cjKSkJSUlJkEgkxvxx9I46kxFCCDG4X3/9FZMnT8ann34KDoeDvn37Yu3atbL9RUVFiIuLQ35+PoD3c48X9wivVauW3LXi4+Ph6elpsNgNjRJ1BcPn8xEWFqZ1r0xS8dFnxTDofVbO3t4ee/fuLXW/p6cnPnwy2759e1TWJ7X0jJoQQggxYfSMmhBCCDFhlKgJIYQQE0aJmpQqISEBDMNg586dxg6FEEIqLUrUOvLs2TOMHz8eNWvWhEAggI2NDVq3bo01a9agoKBAb/XGxMRgwYIFSEhI0FsdqliyZAl69uwJFxcXMAyDBQsWGDWeioBhGJVekZGRWteVn5+PBQsWqHWtivI7p/eZmDrq9a0DJ06cQP/+/cHn8zF8+HD4+vpCJBLhypUr+Pbbb/Hw4UNs2bJFL3XHxMRg4cKFaN++vVGHJ8ybNw+urq5o0qQJTp8+bbQ4KpLdu3fLbf/yyy84e/asQnn9+vW1ris/Px8LFy4E8L53rSoqyu+c3mdi6ihRayk+Ph4DBw5EjRo1cP78ebmpDidNmoSnT5/ixIkTRozw/7Esi8LCQlhYWOj82sXjGNPS0uDk5KTz61dGQ4cOldu+fv06zp49q1BuLBXld07vMzF11PStpeXLlyM3Nxfbtm1TOh9xrVq1MHXqVNm2WCzGokWL4O3tDT6fD09PT8yZMwdCoVDuPE9PT3Tv3h1XrlxBQEAABAIBatasiV9++UV2zM6dO9G/f38AQFBQkEITXfE1Tp8+jWbNmsHCwgKbN28GADx//hz9+/eHvb09LC0t0aJFC62+UFTkyQZMmVQqRUREBBo0aACBQAAXFxeMHz9ebg5lALh16xaCg4Ph6OgICwsLeHl5YdSoUQDe90UoTgALFy6UfY4+1sRamX7n9D4TY6I7ai0dO3YMNWvWRKtWrVQ6fsyYMdi1axf69euHGTNm4MaNGwgPD0dsbCwOHTokd+zTp0/Rr18/jB49GiNGjMD27dvx5Zdfwt/fHw0aNEC7du0wZcoUrF27FnPmzJE1zX3YRBcXF4dBgwZh/PjxGDt2LOrWrYvk5GS0atUK+fn5mDJlChwcHLBr1y707NkTf/zxR5kT4hPTMn78eOzcuRMjR47ElClTEB8fj/Xr1+Pu3bu4evUqzM3NkZKSgs6dO8PJyQmzZs2Cra0tEhIS8OeffwIAnJyc8NNPP2HChAn4/PPP0adPHwBAo0aNjPmjmRR6n4lRGW3drgogKyuLBcD26tVLpeOjo6NZAOyYMWPkyr/55hsWAHv+/HlZWfHycpcuXZKVpaSksHw+n50xY4as7MCBAywA9sKFCwr1FV/j1KlTcuXTpk1jAbCXL1+WleXk5LBeXl6sp6cnK5FIWJZl2fj4eBYAu2PHDpV+PpZl2dTUVL0tTVjZTZo0if3wf9nLly+zANhff/1V7rhTp07JlR86dIgFwP7zzz+lXlub31tF+53T+0xMDTV9a6F4MfUqVaqodPzJkycBACEhIXLlM2bMAACFpmcfHx+0bdtWtu3k5IS6devi+fPnKsfo5eWF4OBghTgCAgLQpk0bWZm1tTXGjRuHhIQExMTEqHx9YjwHDhxA1apV0alTJ6Slpcle/v7+sLa2xoULFwAAtra2AIDjx4+jqKjIiBGXT/Q+E2OjRK2F4iXrcnJyVDr+xYsX4HA4ChPKu7q6wtbWFi9evJArr169usI17OzsFJ6LlcXLy0tpHHXr1lUoL24yLxkHMU1PnjxBVlYWnJ2d4eTkJPfKzc1FSkoKACAwMBB9+/bFwoUL4ejoiF69emHHjh0K/SKIcvQ+E2OjZ9RasLGxQbVq1fDgwQO1zmMYRqXjuFyu0nJWjenZ9dHDm5gGqVQKZ2dn/Prrr0r3F3dcYhgGf/zxB65fv45jx47h9OnTGDVqFFauXInr16/D2trakGGXO/Q+E2OjRK2l7t27Y8uWLYiKikLLli3LPLZGjRqQSqV48uSJXIev5ORkZGZmokaNGmrXr2rSLxlHXFycQvmjR49k+4np8/b2xt9//43WrVur9IWsRYsWaNGiBZYsWYK9e/diyJAh2LdvH8aMGaPR56iyoPeZGBs1fWvpu+++g5WVFcaMGYPk5GSF/c+ePcOaNWsAAF27dgUAREREyB2zatUqAEC3bt3Urt/KygoAkJmZqfI5Xbt2xc2bNxEVFSUry8vLw5YtW+Dp6QkfHx+14yCG98UXX0AikWDRokUK+8RisewzkZGRodAK4+fnBwCyZllLS0sA6n2OKgt6n4mx0R21lry9vbF3714MGDAA9evXl5uZ7Nq1azhw4AC+/PJLAEDjxo0xYsQIbNmyBZmZmQgMDMTNmzexa9cu9O7dG0FBQWrX7+fnBy6Xi2XLliErKwt8Ph8dOnSAs7NzqefMmjULv/32Gz777DNMmTIF9vb22LVrF+Lj43Hw4EFwOOp/f9u9ezdevHghW+T90qVLWLx4MQBg2LBhdJeuB4GBgRg/fjzCw8MRHR2Nzp07w9zcHE+ePMGBAwewZs0a9OvXD7t27cLGjRvx+eefw9vbGzk5Odi6dStsbGxkXx4tLCzg4+OD/fv3o06dOrC3t4evry98fX1Lrb+y/M7pfSZGZ+Re5xXG48eP2bFjx7Kenp4sj8djq1SpwrZu3Zpdt24dW1hYKDuuqKiIXbhwIevl5cWam5uzHh4e7OzZs+WOYdn3Q6u6deumUE9gYCAbGBgoV7Z161a2Zs2aLJfLlRuqVdo1WJZlnz17xvbr14+1tbVlBQIBGxAQwB4/flzuGHWGZwUGBrIAlL6UDR0j6is5bKjYli1bWH9/f9bCwoKtUqUK27BhQ/a7775j37x5w7Isy965c4cdNGgQW716dZbP57POzs5s9+7d2Vu3bsld59q1a6y/vz/L4/FUGgZUUX/n9D4TU8OwrBo9kwghhBBiUPSMmhBCCDFhlKgJIYQQE0aJmhBCCDFhlKgJIYQQE0aJmhBCCDFhlKgJIYQQE0aJ2kCWL1+OevXqQSqVGjsUrQ0cOBBffPGFscOosOizUr4kJCSAYRjs3LnT2KGQCooStQFkZ2dj2bJlmDlzpmzWL4ZhwDAMVq5cqXD8zp07wTAMbt26pfNYOnXqBIZhMHnyZKX7t23bhvr160MgEKB27dpYt26dwjEzZ87EwYMH8e+//+o8vsqOPiuEkJIoURvA9u3bIRaLMWjQIIV9P/74o2xqQH37888/5eb3Lmnz5s0YM2YMGjRogHXr1qFly5aYMmUKli1bJndckyZN0KxZM6WJg2iHPivlT40aNVBQUIBhw4YZOxRSURl7arTKoFGjRuzQoUPlygCwfn5+LAB25cqVcvt27NjBAmD/+ecfncVQUFDAenp6st9//z0LgJ00aZLc/vz8fNbBwUFhytEhQ4awVlZWbHp6ulz5ihUrWCsrKzYnJ0dnMRL6rBBCFNEdtZ7Fx8fj3r176Nixo8K+1q1bo0OHDli+fDkKCgr0Gsfy5cshlUrxzTffKN1/4cIFvHv3DhMnTpQrnzRpEvLy8nDixAm58k6dOiEvLw9nz57VW8yVDX1WjGfBggVgGAaPHz/G0KFDUbVqVTg5OWH+/PlgWRYvX75Er169YGNjA1dXV7kWAmXPqL/88ktYW1vj9evX6N27N6ytreHk5IRvvvkGEolEdlxkZCQYhkFkZKRcPMqumZSUhJEjR+KTTz4Bn8+Hm5sbevXqhYSEBD29K8RUUKLWs2vXrgEAmjZtqnT/ggULkJycjJ9++qnM6wiFQqSlpan0KikxMRE//PADli1bVup6unfv3gUANGvWTK7c398fHA5Htr+Yj48PLCwscPXq1TLjJqqjz4rxDRgwAFKpFD/88AOaN2+OxYsXIyIiAp06dYK7uzuWLVuGWrVq4ZtvvsGlS5fKvJZEIkFwcDAcHBywYsUKBAYGYuXKldiyZYtGsfXt2xeHDh3CyJEjsXHjRkyZMgU5OTlITEzU6Hqk/KBlLvXs0aNHAAAvLy+l+9u2bYugoCD8+OOPmDBhQql/HH/77TeMHDlSpTrZEuuszJgxA02aNMHAgQNLPeft27fgcrkKy2PyeDw4ODjgzZs3cuVmZmbw8PBATEyMSjGRj6PPivEFBARg8+bNAIBx48bB09MTM2bMQHh4OGbOnAkAGDRoEKpVq4bt27ejXbt2pV6rsLAQAwYMwPz58wEAX331FZo2bYpt27ZhwoQJasWVmZmJa9eu4ccff5Rr6Zg9e7a6PyIphyhR69m7d+9gZmYGa2vrUo9ZsGABAgMDsWnTJkyfPl3pMcHBwRo1HV64cAEHDx7EjRs3yjyuoKAAPB5P6T6BQKC0udXOzk7pXRnRDH1WjG/MmDGyf3O5XDRr1gyvXr3C6NGjZeW2traoW7cunj9//tHrffXVV3Lbbdu2xe7du9WOy8LCAjweD5GRkRg9ejTs7OzUvgYpvyhRm4B27dohKCgIy5cvV/gfu5ibmxvc3NzUuq5YLMaUKVMwbNgw/O9//yvzWAsLC4hEIqX7CgsLld69sSwLhmHUiolohz4r+lW9enW57apVq0IgEMDR0VGh/N27d2VeSyAQwMnJSa7Mzs4OGRkZasfF5/OxbNkyzJgxAy4uLmjRogW6d++O4cOHw9XVVe3rkfKFErWeOTg4QCwWIycnB1WqVCn1uLCwMLRv3x6bN2+Gra2twv6CggJkZWWpVGfx/7i//PIL4uLisHnzZoUOJzk5OUhISICzszMsLS3h5uYGiUSClJQUuSZNkUiEd+/eoVq1agr1ZGRkoHbt2irFRD6OPivGx+VyVSoDFB8bqHreh0r78vJhh7Ni06ZNQ48ePXD48GGcPn0a8+fPR3h4OM6fP48mTZp8tC5SflFnMj2rV68egPc9essSGBiI9u3bY9myZUqbDvfv3y+7U/rYq1hiYiKKiorQunVreHl5yV7A+z/MXl5eOHPmDADAz88PABQmzrh16xakUqlsfzGxWIyXL1+ifv36ar0fpHT0Wal8ipuwMzMz5cpfvHih9Hhvb2/MmDEDZ86cwYMHDyASiSr0GHXyHt1R61nLli0BvP8j1qhRozKPXbBgAdq3b6+0V6gmzx0HDhyo8EcTAD7//HN07doVY8eORfPmzQEAHTp0gL29PX766Sd07dpVduxPP/0ES0tLdOvWTe4aMTExKCwsRKtWrdSKiZSOPiuVT40aNcDlcnHp0iX07t1bVr5x40a54/Lz88HhcCAQCGRl3t7eqFKlCoRCoaHCJUZCiVrPatasCV9fX/z9998YNWpUmccGBgYiMDAQFy9eVNinyXPHevXqye7SSvLy8pL7w2BhYYFFixZh0qRJ6N+/P4KDg3H58mXs2bMHS5Ysgb29vdz5Z8+ehaWlJTp16qRWTKR09FmpfKpWrYr+/ftj3bp1YBgG3t7eOH78OFJSUuSOe/z4MT799FN88cUX8PHxgZmZGQ4dOoTk5OQye+iTioEStQGMGjUKoaGhKCgoKHVITbEFCxYgKCjIQJHJmzhxIszNzbFy5UocPXoUHh4eWL16NaZOnapw7IEDB9CnT58yn6US9dFnpfJZt24dioqKsGnTJvD5fHzxxRf48ccf4evrKzvGw8MDgwYNwrlz57B7926YmZmhXr16+P3339G3b18jRk8MgWE/1iOCaC0rKws1a9bE8uXL5YZ5lFfR0dFo2rQp7ty5o7S5lGiOPiuEkJIoURvIsmXLsGPHDsTExMhWRSqvBg4cCKlUit9//93YoVRI9FkhhHyIEjUhhBBiwsr313VCCCGkgqNETQghhJgwStSEEEKICaNETQghhJgwStSEEFJOJCQkgGEY7Ny509ihEAOiRE0IqZCePXuG8ePHo2bNmhAIBLCxsUHr1q2xZs0apXOk60pMTAwWLFigsLiJoS1ZsgQ9e/aEi4sLGIbBggULjBoP0RzNTEYIqXBOnDiB/v37g8/nY/jw4fD19YVIJMKVK1fw7bff4uHDh0rnSdeFmJgYLFy4EO3bt4enp6de6lDFvHnz4OrqiiZNmuD06dNGi4NojxI1IaRCiY+Px8CBA1GjRg2cP39ebt7zSZMm4enTpzhx4oQRI/x/LMuWuoa3tuLj4+Hp6Ym0tDSFdbFJ+UJN34SQCmX58uXIzc3Ftm3blC5OUqtWLbk5ycViMRYtWgRvb2/w+Xx4enpizpw5CqtSeXp6onv37rhy5QoCAgIgEAhQs2ZN/PLLL7Jjdu7cif79+wMAgoKCwDAMGIZBZGSk3DVOnz6NZs2awcLCAps3bwYAPH/+HP3794e9vT0sLS3RokULrb5QGPNunugWJWpCSIVy7Ngx1KxZU+VlNceMGYPQ0FA0bdoUq1evRmBgIMLDw5WuSvX06VP069cPnTp1wsqVK2FnZ4cvv/wSDx8+BAC0a9cOU6ZMAQDMmTMHu3fvxu7du+XW4o6Li8OgQYPQqVMnrFmzBn5+fkhOTkarVq1w+vRpTJw4EUuWLEFhYSF69uyJQ4cO6eBdIeUaSwghFURWVhYLgO3Vq5dKx0dHR7MA2DFjxsiVf/PNNywA9vz587KyGjVqsADYS5cuycpSUlJYPp/PzpgxQ1Z24MABFgB74cIFhfqKr3Hq1Cm58mnTprEA2MuXL8vKcnJyWC8vL9bT05OVSCQsy7JsfHw8C4DdsWOHSj8fy7JsamoqC4ANCwtT+RxiWuiOmhBSYWRnZwOAyktqnjx5EgAQEhIiVz5jxgwAUGh69vHxQdu2bWXbTk5OqFu3Lp4/f65yjF5eXggODlaIIyAgAG3atJGVWVtbY9y4cUhISEBMTIzK1ycVDyVqQkiFYWNjAwDIyclR6fgXL16Aw+GgVq1acuWurq6wtbXFixcv5MqrV6+ucA07OztkZGSoHKOXl5fSOOrWratQXtxkXjIOUrlQoiaEVBg2NjaoVq0aHjx4oNZ5DMOodByXy1VazqqxCKE+eniTio0SNSGkQunevTuePXuGqKiojx5bo0YNSKVSPHnyRK48OTkZmZmZqFGjhtr1q5r0S8YRFxenUP7o0SPZflJ5UaImhFQo3333HaysrDBmzBgkJycr7H/27BnWrFkDAOjatSsAICIiQu6YVatWAQC6deumdv1WVlYAgMzMTJXP6dq1K27evCn35SIvLw9btmyBp6cnfHx81I6DVBw04QkhpELx9vbG3r17MWDAANSvX19uZrJr167hwIED+PLLLwEAjRs3xogRI7BlyxZkZmYiMDAQN2/exK5du9C7d28EBQWpXb+fnx+4XC6WLVuGrKws8Pl8dOjQAc7OzqWeM2vWLPz222/47LPPMGXKFNjb22PXrl2Ij4/HwYMHweGof0+1e/duvHjxAvn5+QCAS5cuYfHixQCAYcOG0V16eWLsbueEEKIPjx8/ZseOHct6enqyPB6PrVKlCtu6dWt23bp1bGFhoey4oqIiduHChayXlxdrbm7Oenh4sLNnz5Y7hmXfD63q1q2bQj2BgYFsYGCgXNnWrVvZmjVrslwuV26oVmnXYFmWffbsGduvXz/W1taWFQgEbEBAAHv8+HG5Y9QZnhUYGMgCUPpSNnSMmC6GZdXoBUEIIYQQg6Jn1IQQQogJo0RNCCGEmDBK1IQQQogJo0RNCCGEmDBK1IQQQogJo0RNCCGEmDBK1IQQQogJo0RNCCGEmDBK1IQQQogJo0RNCCGEmDBK1IQQQogJo0RNCCGEmDBK1IQQQogJ+z/5bErT0AN//gAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -1064,7 +1064,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAInCAYAAACIkaKXAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAfeBJREFUeJzt3XdYU+fbB/BvEgh7bykCbhEVxYIbtQjuXVGrOOrWOqht3Vuptipu3Fpb62rdigN3Ra1SOkSpA8QqICh7JCQ57x/8OK8xAQkj5xDuz3Xl0vOcdQPh5slzniFgGIYBIYSQak/IdQCEEEIqByV0QgjREZTQCSFER1BCJ4QQHUEJnRBCdAQldEII0RGU0AkhREdQQieEEB1BCZ0QQnQEJfQqkJSUhMWLFyMpKYnrUAghNQgl9CqQlJSEJUuWUEInhGgVJXRCCNERlNAJIURHUEInhBAdofMJ/fr16+jduzdq1aoFgUCA48ePf/Ccq1evomXLljAwMEC9evWwd+/eKo+TEEIqSucTem5uLpo3b47NmzeX6fj4+Hj07NkTnTt3RkxMDGbMmIGxY8fi/PnzVRwpIYRUjB7XAVS17t27o3v37mU+Pjw8HO7u7lizZg0AoHHjxrh58ybWrVuHwMDAqgqTEEIqTOcTuqaioqLg7++vVBYYGIgZM2aUeI5EIoFEImG3c3Jyqiq8Cnvz5g2kUqlW7iWTySAQCGBtba2V+5HKIRKJkJOTo7X3iVgsho2NjVbupesoob8nOTkZDg4OSmUODg7IyspCfn4+jIyMVM4JDQ3FkiVLtBViub158wabN2+Gtlcd7NSpE0xNTbV6T1J+DMPg7NmzWnufCAQCTJkyhZJ6JdD5NnRtmDNnDjIzM9nXtWvXuA5JLalUqvVkDgByuVzr9yTlJ5PJtPo+YRhGa58GdB3V0N/j6OiIlJQUpbKUlBSYm5urrZ0DgIGBAQwMDNjt6lAbFQgEVX4PWn+8+qvq9wm9RyoXr2voDMPg8uXLOHfuHLKzs7VyzzZt2iAyMlKp7OLFi2jTpo1W7k8IIeXFm4Q+b948dO7cmd1mGAYBAQHo2rUrevbsiaZNm+Lp06caXzcnJwcxMTGIiYkBUNQtMSYmBomJiQCKmkuCg4PZ4ydOnIhnz57h66+/xqNHj7BlyxYcPnwYM2fOrNgXSAghVYw3Cf2XX36Bj48Pu3306FFERkZi+fLlOH36NORyORYvXqzxde/du4cWLVqgRYsWAICQkBC0aNECCxcuBFA0kVZxcgcAd3d3nDlzBhcvXkTz5s2xZs0a7Ny5k7osEkJ4jzdt6C9fvkS9evXY7V9//RUeHh6YM2cOAGDSpEnYunWrxtft1KlTqe106kaBdurUCX/88YfG9yKEEC7xpoaup6fH9uVmGAaRkZHo1q0bu9/BwQFpaWlchUcIIbzHm4Tu6emJH3/8Eenp6dizZw/evHmDnj17svufP38OW1tbDiMkhBB+402Ty8KFC9G7d282abdr107pIemZM2fw8ccfcxUeIYTwHm8SeteuXREdHY2LFy/C0tISQUFB7L709HR07NgRffv25TBCQgjhN94kdADw8PCAh4eHSrmVlRXWrVvHQUSEEFJ98CahZ2dnIyMjAy4uLmzZq1evEB4eDolEgkGDBlGTCyGElII3CX38+PGIj4/H7du3AQBZWVlo3bo1/vvvPwiFQqxfvx4RERHo1KkTt4ESQghP8aaXy82bN9GrVy92+8cff8SrV69w69YtpKeno1mzZli+fDmHERJCCL/xJqGnpaXB2dmZ3T558iTat2+P1q1bw8zMDMHBwfjzzz85jJAQQviNNwnd0tISycnJAID8/HzcuHEDAQEB7H49PT3k5eVxFR4hhPAeb9rQ27Ztiy1btqBRo0aIiIhAQUGBUjfFf//9V6kGTwghRBlvEvqqVasQEBCAgQMHAgC+/PJLNGnSBEDRAglHjhxRmgqAEEKIMt4k9Hr16iEuLg6xsbGwsLCAm5sbuy8vLw+bNm1C8+bNuQuQEEJ4jjcJHQD09fXVJm0zMzMaJUoIIR/Am4eiQFHf82+//RaBgYFo0aIF7t69CwB4+/Yt1q5diydPnnAcISGE8Bdvauj//fcf/Pz88OLFC9SvXx+PHj1CTk4OAMDa2hrbtm3D8+fPsX79eo4jJYQQfuJNQv/qq6+QnZ2NmJgY2Nvbw97eXml/v379cPr0aY6iI4QQ/uNNk8uFCxcwbdo0eHh4qF1pvE6dOnjx4gUHkRFCSPXAm4Sen58POzu7EvdnZ2drMRpCCKl+eJPQPTw8cP369RL3Hz9+nF3omRBCiCreJPQZM2bg4MGDWLVqFTIzMwEACoUCT548wYgRIxAVFYWZM2dyHCUhhPAXbx6KDh8+HM+fP8f8+fMxb948AEC3bt3AMAyEQiFWrlyJfv36cRskIYTwGG8SOgDMmzcPI0aMwC+//IInT55AoVCgbt26GDBgAOrUqcN1eIQQwmu8SugAULt2bWpaIYSQcuBNG3p0dDS2bNlS4v4tW7YgJiZGewERQkg1w5uEPm/ePFy6dKnE/ZcvX8b8+fPLde3NmzfDzc0NhoaG8PX1ZacUKElYWBgaNmwIIyMjuLi4YObMmSgoKCjXvQkhRFt4k9Dv37+PDh06lLi/Q4cOuHfvnsbXPXToEEJCQrBo0SJER0ejefPmCAwMxOvXr9Uef+DAAcyePRuLFi3Cw4cPsWvXLhw6dAhz587V+N6EEKJNvEno2dnZ0NMruUlfKBSy3Rk1sXbtWowbNw6jR4+Gh4cHwsPDYWxsjN27d6s9/tatW2jXrh2GDRsGNzc3BAQEYOjQoR+s1RNCCNd481C0fv36uHDhAr744gu1+yMiIjTu6SKVSnH//n3MmTOHLRMKhfD390dUVJTac9q2bYsff/wRd+/ehY+PD549e4azZ89ixIgRJd5HIpFAIpGw28WTipEiAoEAQmHl1R3evd7700S8u138/3f/Le3/mryEQmGp2++/1N1HXRzq/lX3dSryclH4OgWy9HQocnPAyGUV/bayshSVdimiZbxJ6J9//jlmzpyJkJAQLFy4EJaWlgCAjIwMLFmyBBEREfjuu+80umZaWhrkcjkcHByUyh0cHPDo0SO15wwbNgxpaWlo3749GIaBTCbDxIkTS21yCQ0NxZIlSzSKrSZhGAYKReVmCblcDqFQCD09Pejp6UFfXx/6+voQi8UQi8UwMDCAoaFhqZ/6qiN5dhYK4p9B9jaN61BUbNu2DTk5OTA1NcWECRO4DqdG4s27fdq0aYiJiUFYWBg2bNiAWrVqAQBevXoFhUKBESNGaKU749WrV7Fy5Ups2bIFvr6+ePLkCaZPn45ly5ZhwYIFas+ZM2cOQkJC2O2YmBj4+flVeaw1nUKhgFQqhVQqLfEYfX19GBkZwcjICCYmJjAxMYFYLNZilJWDUSggiX8KyYtEAAzX4aiVk5ODrKwsrsOo0XiT0AUCAfbs2YPg4GD88ssvePbsGQCgb9++GDhwIDp16qTxNW1tbSESiZCSkqJUnpKSAkdHR7XnLFiwACNGjMDYsWMBAE2bNkVubi7Gjx+PefPmqW06MDAwgIGBAbttamqqcaykahQWFqKwsFAp0ejr68PU1BRmZmYwMzODoaEhhxF+mEIiQd7ff0KeQ8mSlI43Cb1Y586d0blz50q5llgshre3NyIjI9lpAxQKBSIjIzF16lS15+Tl5akkbZFIBKCo6YBUf4WFhUhPT0d6ejqAoveJhYUFLCwsYG5urnb6Zq7Ic3KQ91cMFFLqNks+jDcJPT4+Hv/88w969+6tdv+pU6fQtGlTpcWjyyIkJAQjR45Eq1at4OPjg7CwMOTm5mL06NEAgODgYDg7OyM0NBQA0Lt3b6xduxYtWrRgm1wWLFiA3r17s4md6BapVIrU1FSkpqZCKBTC0tISVlZWsLCw4DS5y3NzkPtnNJjCkpuUCHkXbxL6rFmzkJWVVWJC37x5MywtLXHw4EGNrhsUFITU1FQsXLgQycnJ8PLyQkREBPugNDExUalGPn/+fAgEAsyfPx8vX76EnZ0devfujRUrVpT/iyPVhkKhwNu3b/H27VuIRCJYWVnBxsZG681oivw85MZQMiea4U1Cj4qKwowZM0rc/8knnyAsLKxc1546dWqJTSxXr15V2tbT08OiRYuwaNGict2L6A65XI60tDSkpaXB0NAQtra2sLGxqfKeM4xMhty//6RkTjTGm4Senp4OMzOzEvebmprizZs3WoyIkP9XUFCA//77Dy9fvoS1tTXs7e1hbGxc6fdhGAZ5//wFRV5upV+b6D7ejBStXbs2fvvttxL337hxAx999JEWIyJEFcMwePPmDR4+fIh///0X6enplfqwXPI8HrKMt5V2PVKz8CahDx06FD///DM2bNigNAhFLpdj/fr1OHToEIYNG8ZhhIQoy87OxrNnz/D333/j1atXSqOFy0OW/haShPhKio7URLxpcpkzZw5u3ryJGTNmYMWKFWjYsCEAIC4uDqmpqejUqRO7khEhfFJYWIikpCQkJSXBzMwM1tbWsLKy0qhXFCOTIf9RLPg6aIhUD7xJ6AYGBrhw4QL27duHX3/9FU+fPgUA+Pj4YODAgQgODq7U+UAIqQrZ2dnIzs5GYmIizM3N2e6PH3qQWvD0MRQS/vU116Q5ycTEBAzDsP8S7eNNQgeKJs4aPXo020eckOqKYRhkZmYiMzMTAoEApqamMDc3h4WFBYyMjJSOlaW/hTTppUbXFwiE0LOxgcjSGiITEwgqsedNYWYWBDdvaZyUyzt/i0AgqJbTMfARrxI6IbqIYRi25v7y5Uvo6emx0w4YGxlB/q/6ieLUEejpQ/xRbRh85FKpSfxdtmbmmDJlSqlz5FQmsVgMGxsbrdxL1/EmoXfp0uWDxwgEAkRGRmohGkKqjkwmY6cekL19A3laKgz19WCkrw9DfT0Y6ulBrKcHvfeaGPXtHWBYryGEWqjNUoKtnniT0BUKhcowa7lcjufPn+PFixeoV68enJ2dOYqOkMrHyGQofJMGMAzypIXIkxYq7RcJhRDriSAW6cHEvQ6Mre2Ql5UFkUgEPT09CIVCdh72yiQUCoG3b8BoqU1fYGAIsaOTVu6l63iT0N8fsfmu06dPY/z48Vi7dq32AiKkihWmpQKlzBMvVyiQLxdC7ugAqVyB9JeatbOXl6GsEAbh67Vyr2K1Q9dSUq8E1aLbSK9evTB8+PBSpwYgpDpRSCSQf2hJRZEeDFxqQ/TeQ9QqV1j44WPU6H/qPNofPoH+p85rfK62Pg3oumqR0AGgbt26+P3337kOg5BKIUtLRal9zoVCGLjUhvCdefY5IRCU+ZWaX4CUvHyk5heU/TxSqapFQpfJZDh8+DBsbW25DoWQClPk50Oek13yAQIBxM4fcZ/MSbXDmzb0MWPGqC3PyMjA7du3kZycTG3oRCcUvil9PVB9e0eIjE20FA3RJbxJ6JcvX1a7gruVlRXat2+PsWPHIiAggKPoCKkcioJ8KHJzStwvMreA3v8WSCdEU7xJ6AkJCVyHQEiVk5UyBbRAbAB9B/Vr3RJSFtWiDZ0QXaCQSEpuOxcIIK5VCwKar4hUAKfvnry8PCQmJqodYrx792588skn8PDwwIABA6iHC6n2ZOklz3OuZ20DoYGhFqMhuojThL506VI0a9ZMJaEvX74c48aNw7Vr15Camorjx4+jU6dO+PPPPzmKlJCKYWQyyLPU9zsXGhhAz4Z6cJGK4zShX7lyBb169VJagDcrKwvLly+Hs7MzHj9+jNTUVNy+fRtisRjffvsth9ESUn6y9HSghNkL9RwcK334PqmZOE3oCQkJaNasmVLZ2bNnIZVK8c0338Dd3R1A0Zzoo0ePxo0bN7gIk5AKYRgGsswMtftE5hYQGVX+2qSkZuK0l0t2drbKrG7Xr1+HQCBAYGCgUrmHhwdSU1O1GR4hlUKelQnIZao7hELo29lrP6AqYve/KQrstD1VAWFxmtBdXV3x6JHyXNBXr16Fg4MD6tWrp1QulUphbm6uzfAIqRTyjHS15frWtlU2pzkXjvUJ/PBBpEpx2uQSEBCA3bt3486dOwCAH374AY8ePUL//v1Vjr1//z7c3Ny0HCEhFSPPz4OiQHXiKYGePkRWVhxERHQZpwl9wYIFMDU1Rdu2bSEWizFq1CjY2dlh4cKFSsfl5eXh2LFj+OSTTziKlJDykWdkqC3Xs7GlPuek0nH6ec/W1hYxMTHYuXMnnj17BldXV4wZMwb29srtiv/88w8+++wzjBgxgqNICdEcI5erHUgkEBtAZGHBQURE13FeRbCyssJXX32FrVu3Yvbs2SrJHCjq5bJx40Y0adKkXPfYvHkz3NzcYGhoCF9fX9y9e7fU4zMyMjBlyhQ4OTnBwMAADRo0wNmzZ8t1b1JzybMz1S5goWdtQ90USZXQnScyJTh06BBCQkIQHh4OX19fhIWFITAwEHFxcWr/eEilUnTt2hX29vY4evQonJ2d8fz5c1jShElEQ+qaWwRiMUT0cJ9UEZ1P6GvXrsW4ceMwevRoAEB4eDjOnDmD3bt3Y/bs2SrH7969G2/fvsWtW7egr68PAPQwlmhMkZ8PhUSiUk61c1KVOG9yqUpSqRT379+Hv78/WyYUCuHv74+oqCi155w8eRJt2rTBlClT4ODgAE9PT6xcuRJyubzE+0gkEmRlZbGvnJySp0clNYNMzTB/gb4+RObUdk6qjk4n9LS0NMjlcjg4OCiVOzg4IDk5We05z549w9GjRyGXy3H27FksWLAAa9aswfLly0u8T2hoKCwsLNiXn59fpX4dpHphGAby7CyVcj1La6qdkyrFWUI/efIkXr16xdXtS6RQKGBvb4/t27fD29sbQUFBmDdvHsLDw0s8Z86cOcjMzGRf165d02LEhG8UOdnA+5/ohELq2UKqHGcJvX///rh69Sq7XadOHZw8ebJS72FrawuRSISUlBSl8pSUFDg6ql9IwMnJCQ0aNIBIJGLLGjdujOTkZLXT/AKAgYEBzM3N2de7k42RmkeWqdrcomdpBcE77ylCqgJnCd3MzAwZ7/QCSEhIqPS2Z7FYDG9vb0RGRrJlCoUCkZGRaNOmjdpz2rVrhydPnkDxTnezf//9F05OThCLxZUaH9E9jEwGRV6ucqFAAD0aFUq0gLNeLj4+PlixYgVSUlJg8b+PomfPni2xbRsoWmN05syZGt0nJCQEI0eORKtWreDj44OwsDDk5uayvV6Cg4Ph7OyM0NBQAMCkSZOwadMmTJ8+HV988QUeP36MlStXYtq0aeX8SklNIs/JUpkmV2RqBoGePkcRkZqEs4S+ZcsWBAcHY9myZQCKkvWBAwdw4MCBEs8pT0IPCgpCamoqFi5ciOTkZHh5eSEiIoJ9UJqYmAjhO0OwXVxccP78ecycORPNmjWDs7Mzpk+fjm+++aYcXyWpaeRZqiNDRZZUOyfawVlCr1evHm7duoWCggK8fv0abm5uCAsLQ9++fSv9XlOnTsXUqVPV7nu3Hb9YmzZtcPv27UqPg+g2prAQivw8pTKhgSFExjTfOdEOzgcWGRoaonbt2li0aBG6dOkCV1dXrkMipFzUdVWk2jnRJs4TerFFixax/8/JycGLFy8AFDWBUK8RUh2oJHShECIzM26CITUSrwYW/f777+jcuTOsrKzg6ekJT09PWFlZoUuXLrh37x7X4RFSIkYqVZn3XGRmTl0ViVbxpoZ+584ddOrUCWKxGGPHjkXjxo0BAA8fPsTPP/+Mjh074urVq/Dx8eE4UkJUybPVPAy1sNR+IKRG401CnzdvHpydnXHz5k2VQT+LFy9Gu3btMG/ePFy8eJGjCAkpmTxHublFaGAAEa2tSbSMN00ud+7cwYQJE9SO4HRwcMD48eOp5wnhJbXNLeaW3ARDajTeJHShUAiZTM3K6P8jl8uV+osTwhcqqxIJBDTnOeEEbzJk27ZtsXnzZjx//lxlX2JiIrZs2YJ27dpxEBkhpXu//VxoYgqBHm9aM0kNwpt33cqVK9GxY0c0atQI/fv3R4MGDQAAcXFxOHHiBPT09Njh+YTwBSOTQVGQr1SmR3OeE47wJqG3aNECd+7cwbx583Dy5Enk5RWNuDM2Nka3bt2wfPlyeHh4cBwlIcpUmltEIghp3AThCG8SOgB4eHjg2LFjUCgUSE1NBQDY2dlR2znhrfcTusjUjBaxIJzhVUIvJhQKVVYZIoRvGLkcijzluVvoYSjhElV9CSknRV6O0lS5Aj19CI1oIi7CHUrohJST/L0FWURm5tTcQjhFCZ2QcmAYBvJc5ZWJaCIuwjVK6ISUgyI/X2khaIG+PoQ01J9wjBI6IeWgyFVtbiGEa7zr5RIbG4tnz54hPT0dzHtrMwJFa4ASwjWV9nNTam4h3ONNQn/69CmGDx+Ou3fvqk3kQNGaopTQCdcYqRSMVMJuU3ML4QveJPQJEybg77//RlhYGDp06AArK1q6i/CTau2cmlsIP/Amof/222+YO3cuvvjiC65DIaRU748OFVLvFsITvHkoamtrCwsLmtSI8BsjkxX1cPkfgZ4eLWRBeIM3CX3ixIn48ccfIX+nKxghfCPPzQHw/894hCY0ERfhD940uTRo0AByuRzNmzfHmDFj4OLiApGaBXYHDBjAQXSEFFFQ7xbCY7xJ6EFBQez/Z82apfYYgUBANXjCGUahgDzvndGhQiGEJibcBUTIe3iT0K9cuVJl1968eTO+++47JCcno3nz5ti4cSN8fHw+eN7BgwcxdOhQ9O3bF8ePH6+y+Ej1oMjNBRQKdltkakpztxBe4U1C9/Pzq5LrHjp0CCEhIQgPD4evry/CwsIQGBiIuLg42Nvbl3heQkICZs2ahQ4dOlRJXKT6kedkKW1T+znhG948FH1XbGwszp07h3PnziE2NrZC11q7di3GjRuH0aNHw8PDA+Hh4TA2Nsbu3btLPEcul+Ozzz7DkiVLUKdOnQrdn+gGhmGU+58LBBBRQic8w6uEfuLECdStWxdNmzZFr1690KtXLzRt2hT16tXDyZMnNb6eVCrF/fv34e/vz5YJhUL4+/sjKiqqxPOWLl0Ke3t7fP7552W6j0QiQVZWFvvKee/BGan+FDk5Ss0tQkMjCNQ8tCeES7xpcjl79iwGDhwIV1dXrFy5Eo0bNwYAPHz4ENu3b8eAAQNw+vRpdOvWrczXTEtLg1wuV1n9yMHBAY8ePVJ7zs2bN7Fr1y7ExMSU+T6hoaFYsmRJmY8n1c/7zS0iWjeU8BBvEvqyZcvQrFkz3LhxAybv9Bzo06cPpk6divbt22PJkiUaJXRNZWdnY8SIEdixYwdsbW3LfN6cOXMQEhLCbsfExFTZMwGifSrNLaD2c8JPvEnof/31F1auXKmUzIuZmJhg1KhRmDt3rkbXtLW1hUgkQkpKilJ5SkoKHB0dVY5/+vQpEhIS0Lt3b7ZM8b+P2Xp6eoiLi0PdunVVzjMwMICBgQG7bUq1N53yfnOLQF8M4Ts/b0L4gjdt6IaGhnj79m2J+9++fQtDQ0ONrikWi+Ht7Y3IyEi2TKFQIDIyEm3atFE5vlGjRvj7778RExPDvvr06YPOnTsjJiYGLi4uGt2f6AZ5VqbStpD+YBOe4k0NvUuXLli/fj26deumkmzv3LmDDRs2ICAgQOPrhoSEYOTIkWjVqhV8fHwQFhaG3NxcjB49GkDR/OrOzs4IDQ2FoaEhPD09lc63tLQEAJVyUjMwcvn/hvv/PxodSviKNwl99erVaNOmDdq3bw8fHx80bNgQABAXF4e7d+/C3t4eq1at0vi6QUFBSE1NxcKFC5GcnAwvLy9ERESwD0oTExMhFPLmgwrhGXlONvDu/PwiPZr7nPAWbxK6u7s7/vrrL4SGhuLcuXM4dOgQAMDV1RXTp0/H7NmzSx0IVJqpU6di6tSpavddvXq11HP37t1brnsS3SDPVu3dQqNDCV/xJqEDgL29PdatW4d169ZxHQohRVPl5uYplVF3RcJn1NZASAmKHoa+09wiFFJ3RcJrnNXQx4wZA4FAgO3bt0MkEmHMmDEfPEcgEGDXrl1aiI4QQJ6p3LtFZELNLYTfOEvoly9fhlAohEKhgEgkwuXLlz/4y0K/TERbFPn5ULyzEDQAiGipOcJznCX0hISEUrcJ4ZIsW7l2Ts0tpDrgTRt6YmIi8t9Zq/F9+fn5SExM1GJEpKZiFArV5hZjEwioeyvhOd68Q93d3XHs2LES9588eRLu7u5ajIjUVPLsLKWh/gAgMqfmFsJ/vEnozLuDN9QoLCykAUBEK96vnRc1t1BCJ/zHaT/0rKwsZGRksNtv3rxR26ySkZGBgwcPwsnJSYvRkZpIIZFAka/a95yaW0h1wGlCX7duHZYuXQqgqAfLjBkzMGPGDLXHMgyD5cuXazE6UhPJMtNVykRm5hxEQojmOE3oAQEBMDU1BcMw+PrrrzF06FC0bNlS6RiBQAATExN4e3ujVatWHEVKagJGLldtbhGJqHcLqTY4Teht2rRhZ1bMzc3FwIEDaVZDwhl5dqbqw1BTMxr/QKoNXszlkpeXhw0bNsDY2JgSOuGMLD1DpUxkbqH9QAgpJ1486TE2Noaenp7a1YoI0QZ5Tg6Y90aGCvT1ITI25igiQjTHi4QOAAMHDsTRo0c/2H2RkKogS3+jUka1c1Ld8KLJBQCGDBmCyZMno3Pnzhg3bhzc3NxgpGYhgfcfmhJSUYqCfCjy8lTK9Sihk2qGNwm9U6dO7P9v3Lihsp9hGAgEAsjlci1GRWoCWbrqWrZCI2MIxGIOoiGk/HiT0Pfs2cN1CKQGYqRSyLOzVcpFFlQ7J9UPbxL6yJEjuQ6B1ECFb98orxkKAEIhDSYi1RJvEvq7cnJy8OLFCwCAi4sLTGnZL1IFGKn0f6sSKROZW9BQf1It8epd+/vvv6Nz586wsrKCp6cnPD09YWVlhS5duuDevXtch0d0jNraOQA9am4h1RRvauh37txBp06dIBaLMXbsWDRu3BgA8PDhQ/z888/o2LEjrl69Ch8fH44jJbpAUULtXGhoCKGhau8qQqoD3iT0efPmwdnZGTdv3oSjo6PSvsWLF6Ndu3aYN28eLl68yFGERJfIUl+rrZ2LLK04iIaQysGbJpc7d+5gwoQJKskcABwcHDB+/Hjcvn2bg8iIrpHn50Oeo9qzBSI9GkxEqjXeJHShUAiZTFbifrlcTgtckEohS32ttlzPwoIm4iLVGm8yZNu2bbF582Y8f/5cZV9iYiK2bNmCdu3acRAZ0SWyzAyVBSyKCKBHzS2kmuNNQl+5ciUyMzPRqFEjDBs2DIsXL8bixYsxdOhQNGrUCJmZmQgNDS3XtTdv3gw3NzcYGhrC19cXd+/eLfHYHTt2oEOHDrCysoKVlRX8/f1LPZ5UH4xcDllaqtp9InMzCPT1tRwRIZWLNw9FW7RogTt37mDevHk4efIk8v43t4axsTG6deuG5cuXw8PDQ+PrHjp0CCEhIQgPD4evry/CwsIQGBiIuLg42Nvbqxx/9epVDB06FG3btoWhoSFWrVqFgIAAPHjwAM7OzhX+Ogl3Ct+kgimhWU/PylrL0RBS+XiT0AHAw8MDx44dg0KhQGpqUU3Kzs6uQm3na9euxbhx4zB69GgAQHh4OM6cOYPdu3dj9uzZKsf/9NNPSts7d+7EL7/8gsjISAQHB5c7jups27ZtyMnJgampKSZMmMB1OOUiz8uDPF11eTkAEBobU1dFohN40+TyLoFAoPQqL6lUivv378Pf358tEwqF8Pf3R1RUVJmukZeXh8LCQlhbl1yDk0gkyMrKYl85OTnljpmPcnJyqvXXxSgUKExJKnG/npWNFqMhpOrwKqHHxsZi0KBBMDc3h5OTE5ycnGBubo5Bgwbhn3/+0fh6aWlpkMvlcHBwUCp3cHBAcnJyma7xzTffoFatWkp/FN4XGhoKCwsL9uXn56dxrKTqFL5OASOVqt0nNDSEiKaWIDqCN00uN27cQPfu3aFQKNC3b180aNAAABAXF4eTJ0/i3LlziIiIQIcOHbQW07fffouDBw/i6tWrMDQ0LPG4OXPmICQkhN2OiYmhpM4T8uxMyDMzStyvZ22rvWAIqWK8SegzZ86Evb09rl27BhcXF6V9L168QMeOHRESEoLff/+9zNe0tbWFSCRCSkqKUnlKSoraAUzv+v777/Htt9/i0qVLaNasWanHGhgYwMDAgN2mycT4QSGRQFrKJzGhgSFEZmZajIiQqsWbJpcHDx5g8uTJKskcKJpxcdKkSXjw4IFG1xSLxfD29kZkZCRbplAoEBkZiTZt2pR43urVq7Fs2TJERESgVatWGt2T8AMjk0H68gWgUJR4jJ4N1c6JbuFNDd3V1RUSiaTE/VKpVG2y/5CQkBCMHDkSrVq1go+PD8LCwpCbm8v2egkODoazszPbx33VqlVYuHAhDhw4ADc3N7at3dTUlGre1QQjl0P66iWYwsISjxEaGlHtnOgc3iT0hQsXYubMmejZsye8vLyU9v3xxx/YuHEjwsLCNL5uUFAQUlNTsXDhQiQnJ8PLywsRERHsg9LExESlbpFbt26FVCrFoEGDlK6zaNEiLF68WOP7E+1iFApIX/5XwmjQ/6dnpzoGgZDqjjcJ/fbt23BwcIC3tzfatm2LevXqAQAeP36MqKgoeHp6IioqSqm7oUAgwPr16z947alTp2Lq1Klq9129elVpOyEhodxfQ3XCqJlpsCQmJiZgGIb9l68YmQzSVy8/mMyFJqYQGRtrKSpCtIc3CX3Tpk3s/3/77Tf89ttvSvv//vtv/P3330plZU3opIhYLIZAINA4KVd0MFGDBg1K7cevCYZhoFAooFAoIJfLIZfLIZPJUJCVhZzH/0IgK4RUKIS8pLZzgQD6VDsnOoo3CV1RysMrUjlsbGwwZcoUSEvok10VxGIxbGyqduCO5EUiJCmvYG1qBJgWjfiUKxSQyGSQyOQokMmQX1iIgkIZBJZWEL7TI4kQXcKbhE60o6qTqzYVpr6GJCEe8lzVuc1FQiGMxWIYi/+/TCg2hF4zL+RJJMjJyUF2dnapD+IJqW54l9Dj4+Nx7tw5dhpdV1dXdO/eHe7u7hxHphukyUlgJAVauRcjkwEiEfTtS+/zX2YKBRR5uZBlZUKW+hoKDb8Ow/oNoG9qCiNTU/YPm1QqVZq2QS6XV06shHCAVwn9yy+/xPr161WaX4RCIWbMmIHvv/+eo8h0gzQ5CYlzQj58YGX5X1u9df9PIeJ44WV9e0e1bedisRi2trawtbUFwzDIzs5GRkYGMjIyUFhKt0dC+Ig3A4vWrFmDdevWYcCAAYiKimJ/qaKiojBo0CCsW7cO69at4zrMaq28NfP+p86j/eET6H/qfPnuW8pKVNog0BfDsF6DDx8nEMDc3By1a9dG06ZN0aBBA9jY2EAkEmkhSkIqjjc19B07dqBPnz44fPiwUrmvry8OHjyIgoICbNu2DTNnzuQoQh2jwSyWqfkFSMnL1/g8dYswa58Axo2bQCgWf/jQd88SCGBmZgYzMzMoFApkZGQgLS0N2dlq1iIlhCd4U0NPSEhAYGBgifsDAwNrTB9xUnkMartBz7piD4KFQiGsra3RoEEDNGnSBPb29lRrJ7zEmxq6vb09/vzzzxL3//nnn7Czs9NiRKS607OygYF7nUq9pqGhIVxcXFCrVi28efMGqampKCjQzkNmQj6ENzX0Tz/9FDt37sS3336L3Nxctjw3NxerVq3Czp07ERQUxGGEpDoRmZjCuEnTCi2QUur1RSLY29ujSZMm7MCpqroXIWXFmxr6smXLEBMTg7lz52LhwoWoVasWAODVq1eQyWTo3Lkzli5dynGUpDoQGhjCuKkXBHraeXsXt7XXrl0bb9++xdu3b6vt6k6keuNNQjc2NkZkZCROnDih1A+9W7du6NGjB3r37k01IPJBQgNDmHh5Q1jKgiRVRSQSwc7ODnZ2dpBKpcjIyEB6ejold6I1vEjoeXl5GD58OAYOHIjPPvsMffv25TokUg2JTMxg3LQ5J8n8fWKxGPb29rC3t4dMJkNmZiYyMzORnZ0NGcfdOInu4kVCNzY2xqVLl9C9e3euQyFq2BkZKf3LR/p2DjBq2FhrzSya0NPTg42NDTs6NS8vj516IDc3lwYwkUrDm3d/+/btERUVhXHjxnEdCnnPsT4ldyflWvGgIbFDJU0voAXGxsYwNjaGvX3RyFWpVIq8vDzk5eUhPz8f+fn5kEqlvJ6qmPATbxL6pk2bEBgYiPnz52PixIn46KOPuA6J8JhQbAix80cQO3/Ey1q5JsRiMfT19GBhbs4OxmIUCkgkEkilUkglEkgLC1FYWAiZTAaZTAb5/6YQVigURYm/EpO/EPSHpLrizW9C8+bNIZPJEBoaitDQUOjp6SktvAwUjd7LzMzkKEJSbnoiCPT1K34dgRBCIyOITM3Y5eMK016DzT/vJzWGAQOmaD+7jwEUDADmf0X/S4bsC2AYhVIZo7RfAUbx//8HwyhtM8z/X1/9+f8rY+P9cPIU/++lLYxUijQt3o9UHt4k9IEDB1IvFl0lk5e6vqcm5FIJ5JkZlXItQnQNbxL63r17uQ6BEEKqNc4TekFBAU6cOIH4+HjY2tqiZ8+ecHJy4josQgipdjhN6K9fv0bbtm0RHx/PPtE3NjbG8ePH4e/vz2VohBBS7XA6l8uyZcuQkJCAmTNn4vTp0wgLC4ORkVGFFyUmhJCaiNMa+oULFxAcHKy0EpGDgwOGDRuGuLg4NGzYkMPoCCGkeuG0hp6YmIj27dsrlbVv3x4MwyAlJYWjqAghpHriNKFLJBIYvjfvRvE2zXdBCCGa4Xw+9ISEBERHR7Ovv/76CwDw+PFjpfLiV3ls3rwZbm5uMDQ0hK+vL+7evVvq8UeOHEGjRo1gaGiIpk2b4uzZs+W6LyGEaBPn3RYXLFiABQsWqJRPnjxZaZthGAgEAsjlco2uf+jQIYSEhCA8PBy+vr4ICwtDYGAg4uLi2Lk03nXr1i0MHToUoaGh6NWrFw4cOIB+/fohOjoanp6emn1xhBCiRZwm9D179lT5PdauXYtx48Zh9OjRAIDw8HCcOXMGu3fvxuzZs1WOX79+Pbp164avvvoKQFFPnIsXL2LTpk0IDw+v8ngJIaS8OE3oI0eOrNLrS6VS3L9/H3PmzGHLhEIh/P39ERUVpfacqKgohISEKJUFBgbi+PHjJd5HIpFAIpGw29ViQQOayY+UBb1PqhXOm1yqUlpaGuRyORwcHJTKHRwc8OjRI7XnJCcnqz0+OTm5xPuEhoZiyZIlFQ+4igkMuFn4waBefejb0gLf1YU8M0vr9+TqvalrdDqha8ucOXOUavUxMTHw8/PjMCL1xI5OqB26FoxEe6vUCwwMIXakqRyqFWdo9X1C75HKo9MJ3dbWFiKRSKVPe0pKChwd1S+I4OjoqNHxAGBgYKA01a+pqWkFoq5a9ItDyoLeJ9UT590Wq5JYLIa3tzciIyPZMoVCgcjISLRp00btOW3atFE6HgAuXrxY4vGEEMIXOl1DB4CQkBCMHDkSrVq1go+PD8LCwpCbm8v2egkODoazszNCQ0MBANOnT4efnx/WrFmDnj174uDBg7h37x62b9/O5ZdBCCEfpPMJPSgoCKmpqVi4cCGSk5Ph5eWFiIgI9sFnYmIihML//6DStm1bHDhwAPPnz8fcuXNRv359HD9+nPqgE0J4T8DQSrSVLjo6Gt7e3rh//z5atmzJdTiEkBpCp9vQCSGkJqGETgghOkLn29BJ5UhKSkJSUhLXYRCec3JyoiUkOUQJvQo4OTlh0aJFOvPGlkgkGDp0KK5du8Z1KITn/Pz8cP78eaVxGUR76KEo+aCsrCxYWFjg2rVrvB40RbiVk5MDPz8/ZGZmwtzcnOtwaiSqoZMy8/Lyol9UUqKsLO3PAUOU0UNRQgjREZTQCSFER1BCJx9kYGCARYsW0YMuUip6n3CPHooSQoiOoBo6IYToCErohBCiIyihE0KIjqCETrQqISEBAoEAe/fu5ToUQnQOJXQee/r0KSZMmIA6derA0NAQ5ubmaNeuHdavX4/8/Pwqu29sbCwWL16MhISEKrtHWaxYsQJ9+vSBg4MDBAIBFi9ezGk81Z1AICjT6+rVqxW+V15eHhYvXqzRtejnXXE0UpSnzpw5g08//RQGBgYIDg6Gp6cnpFIpbt68ia+++goPHjyoslWUYmNjsWTJEnTq1Alubm5Vco+ymD9/PhwdHdGiRQucP3+eszh0xf79+5W2f/jhB1y8eFGlvHHjxhW+V15eHpYsWQIA6NSpU5nOoZ93xVFC56H4+HgMGTIErq6uuHz5stIkX1OmTMGTJ09w5swZDiP8fwzDoKCgAEZGRpV+7fj4eLi5uSEtLQ12dnaVfv2aZvjw4Urbt2/fxsWLF1XKuUI/74qjJhceWr16NXJycrBr1y61MzbWq1cP06dPZ7dlMhmWLVuGunXrwsDAAG5ubpg7dy4kEonSeW5ubujVqxdu3rwJHx8fGBoaok6dOvjhhx/YY/bu3YtPP/0UANC5c2eVj+HF1zh//jxatWoFIyMjbNu2DQDw7NkzfPrpp7C2toaxsTFat25doT88XH46qKkUCgXCwsLQpEkTGBoawsHBARMmTEB6errScffu3UNgYCBsbW1hZGQEd3d3jBkzBkDRc5LihLxkyRL2PfShJhT6eVcc1dB56NSpU6hTpw7atm1bpuPHjh2Lffv2YdCgQfjyyy9x584dhIaG4uHDhzh27JjSsU+ePMGgQYPw+eefY+TIkdi9ezdGjRoFb29vNGnSBB07dsS0adOwYcMGzJ07l/34/e7H8Li4OAwdOhQTJkzAuHHj0LBhQ6SkpKBt27bIy8vDtGnTYGNjg3379qFPnz44evQo+vfvX3nfIFJlJkyYgL1792L06NGYNm0a4uPjsWnTJvzxxx/47bffoK+vj9evXyMgIAB2dnaYPXs2LC0tkZCQgF9//RUAYGdnh61bt2LSpEno378/BgwYAABo1qwZl19azcAQXsnMzGQAMH379i3T8TExMQwAZuzYsUrls2bNYgAwly9fZstcXV0ZAMz169fZstevXzMGBgbMl19+yZYdOXKEAcBcuXJF5X7F14iIiFAqnzFjBgOAuXHjBluWnZ3NuLu7M25uboxcLmcYhmHi4+MZAMyePXvK9PUxDMOkpqYyAJhFixaV+RzyYVOmTGHeTQE3btxgADA//fST0nERERFK5ceOHWMAML///nuJ167Iz4x+3uVHTS48UzwFqZmZWZmOP3v2LAAgJCREqfzLL78EAJUmDw8PD3To0IHdtrOzQ8OGDfHs2bMyx+ju7o7AwECVOHx8fNC+fXu2zNTUFOPHj0dCQgJiY2PLfH3CjSNHjsDCwgJdu3ZFWloa+/L29oapqSmuXLkCALC0tAQAnD59GoWFhRxGTN5HCZ1niucbz87OLtPxz58/h1AoRL169ZTKHR0dYWlpiefPnyuV165dW+UaVlZWKm2kpXF3d1cbR8OGDVXKi5tq3o+D8M/jx4+RmZkJe3t72NnZKb1ycnLw+vVrAEWrEg0cOBBLliyBra0t+vbtiz179qg8syHaR23oPGNubo5atWrhn3/+0eg8gUBQpuNEIpHackaDOdqqokcL4Z5CoYC9vT1++ukntfuLH3QKBAIcPXoUt2/fxqlTp3D+/HmMGTMGa9aswe3bt2lVKw5RQuehXr16Yfv27YiKikKbNm1KPdbV1RUKhQKPHz9WenCZkpKCjIwMuLq6anz/sv5xeD+OuLg4lfJHjx6x+wm/1a1bF5cuXUK7du3K9Ee7devWaN26NVasWIEDBw7gs88+w8GDBzF27NhyvYdIxVGTCw99/fXXMDExwdixY5GSkqKy/+nTp1i/fj0AoEePHgCAsLAwpWPWrl0LAOjZs6fG9zcxMQEAZGRklPmcHj164O7du4iKimLLcnNzsX37dri5ucHDw0PjOIh2DR48GHK5HMuWLVPZJ5PJ2PdDenq6yic6Ly8vAGCbXYyNjQFo9h4iFUc1dB6qW7cuDhw4gKCgIDRu3FhppOitW7dw5MgRjBo1CgDQvHlzjBw5Etu3b0dGRgb8/Pxw9+5d7Nu3D/369UPnzp01vr+XlxdEIhFWrVqFzMxMGBgYoEuXLrC3ty/xnNmzZ+Pnn39G9+7dMW3aNFhbW2Pfvn2Ij4/HL7/8AqFQ87rD/v378fz5c+Tl5QEArl+/juXLlwMARowYQbX+Subn54cJEyYgNDQUMTExCAgIgL6+Ph4/fowjR45g/fr1GDRoEPbt24ctW7agf//+qFu3LrKzs7Fjxw6Ym5uzFQwjIyN4eHjg0KFDaNCgAaytreHp6QlPT88S708/70rAdTcbUrJ///2XGTduHOPm5saIxWLGzMyMadeuHbNx40amoKCAPa6wsJBZsmQJ4+7uzujr6zMuLi7MnDlzlI5hmKIuhz179lS5j5+fH+Pn56dUtmPHDqZOnTqMSCRS6sJY0jUYhmGePn3KDBo0iLG0tGQMDQ0ZHx8f5vTp00rHaNJt0c/PjwGg9qWuSyXRzPvdFott376d8fb2ZoyMjBgzMzOmadOmzNdff828evWKYRiGiY6OZoYOHcrUrl2bMTAwYOzt7ZlevXox9+7dU7rOrVu3GG9vb0YsFpepGyL9vCuOViwihBAdQW3ohBCiIyihE0KIjqCETgghOoISOiGE6AhK6IQQoiMooVdjq1evRqNGjaBQKLgOpcKGDBmCwYMHcx2GTqL3SQ3Cdb9JUj6ZmZmMtbU1s3v3brYM/+uz+/3336scv2fPng9OeVpe/v7+DABmypQpavfv3LmTadSoEWNgYMDUq1eP2bBhg8ox0dHRjFAoZGJiYio9vpqM3ic1C9XQq6ndu3dDJpNh6NChKvu+++47drRdVfv111+Vhvu/b9u2bRg7diyaNGmCjRs3ok2bNpg2bRpWrVqldFyLFi3QqlUrrFmzpqpDrlHofVLDcP0XhZRPs2bNmOHDhyuVAWC8vLwYAMyaNWuU9lVFzSs/P59xc3Njli5dqrbmlZeXx9jY2KiMLP3ss88YExMT5u3bt0rl33//PWNiYsJkZ2dXWow1Hb1PahaqoVdD8fHx+Ouvv+Dv76+yr127dujSpQtWr16N/Pz8Ko1j9erVUCgUmDVrltr9V65cwZs3bzB58mSl8ilTpiA3N1dl8Y2uXbsiNzcXFy9erLKYaxJ6n9Q8lNCroVu3bgEAWrZsqXb/4sWLkZKSgq1bt5Z6HYlEorQyTWmv9yUmJuLbb7/FqlWrSpxq9Y8//gAAtGrVSqnc29sbQqGQ3V/Mw8MDRkZG+O2330qNm5QNvU9qHpptsRoqnmNc3cpBANChQwd07twZ3333HSZNmlTiL9LPP/+M0aNHl+mezHtT/nz55Zdo0aIFhgwZUuI5SUlJEIlEKrM0isVi2NjY4NWrV0rlenp6cHFxoeXqKgm9T2oeSujV0Js3b6Cnp1fqyjCLFy+Gn58fwsPDMXPmTLXHBAYGlutj65UrV/DLL7/gzp07pR6Xn58PsVisdp+hoaHaj/pWVlZqa3pEc/Q+qXkooeuojh07onPnzli9ejUmTpyo9hgnJyc4OTlpdF2ZTIZp06ZhxIgR+Pjjj0s91sjICFKpVO2+goICtTVChmFotRstoveJbqGEXg3Z2NhAJpMhOzsbZmZmJR63aNEidOrUCdu2bWNXan9Xfn4+MjMzy3RPR0dHAMAPP/yAuLg4bNu2DQkJCUrHZGdnIyEhAfb29jA2NoaTkxPkcjlev36t9HFaKpXizZs3qFWrlsp90tPTUb9+/TLFREpH75Oahx6KVkONGjUCUNSLoTR+fn7o1KkTVq1apfZj66FDh9ja14dexRITE1FYWIh27drB3d2dfQFFv8Tu7u64cOECgP9fluzevXtK97137x4UCgW7v5hMJsOLFy+U1kYl5Ufvk5qHaujVUPHC0ffu3UOzZs1KPXbx4sXo1KkTtm/frrKvPG2jQ4YMUfkFA4D+/fujR48eGDduHHx9fQEAXbp0gbW1NbZu3couTQYAW7duhbGxscp6p7GxsSgoKEDbtm01iomoR++TGojbbvCkvDw9PZmhQ4cqlaGEYdXvLu1VFUO6S7v35s2bGQDMoEGDmB07djDBwcEMAGbFihUqx37//feMsbExk5WVVSUx1kT0PqlZKKFXU2vXrmVMTU2ZvLw8tqykX5YrV65w9ovKMEVrVDZs2JARi8VM3bp1mXXr1jEKhULlOF9fX5VRjaRi6H1Ss9CaotVUZmYm6tSpg9WrV+Pzzz/nOpwKi4mJQcuWLREdHa32ozopH3qf1CyU0KuxVatWYc+ePYiNjYVQWL2fbw8ZMgQKhQKHDx/mOhSdQ++TmoMSOiGE6Ijq/eeaEEIIixI6IYToCErohBCiIyihE0KIjqCETgghOoISOiGE6AhK6IQQoiMooRNCiI6ghE4IITqCEjohhOgISuiEEKIjKKETQoiOoIROCCE6ghJ6FUhKSsLixYuRlJTEdSiEkBqEEnoVSEpKwpIlSyihE0K0ihI6IYToCErohBCiIyihE0KIjqCETgghOoISOiGE6AhK6IQQoiMooRNCiI6ghE4IqTSFhYVch1CjUUInhFQamUzGdQg1GiV0QkilUSgUXIdQo1FCJ4RUGkro3OJlQk9KSsKff/6J3NxcrkMhhGiAEjq3eJXQT5w4gUaNGuGjjz5Cy5YtcefOHQBAWloaWrRogePHj3MbICGkVNSGzi3eJPRTp05hwIABsLW1xaJFi8AwDLvP1tYWzs7O2LNnD4cREkI+hBI6t3iT0JcuXYqOHTvi5s2bmDJlisr+Nm3a4I8//uAgMkJIWVFC5xZvEvo///yDwYMHl7jfwcEBr1+/1mJEhBBNUULnFm8SurGxcakPQZ89ewYbGxstRkQI0ZRUKuU6hBqNNwm9c+fO2Ldvn9q/8MnJydixYwcCAgI4iIwQUlaU0LnFm4S+YsUK/Pfff/j444+xbds2CAQCnD9/HvPnz0fTpk3BMAwWLVrEdZiEkFJQQucWbxJ6w4YNcfPmTdjY2GDBggVgGAbfffcdVq5ciaZNm+LGjRtwc3PjOkxCSCkKCgq4DqFG0+M6gHc1adIEly5dQnp6Op48eQKFQoE6derAzs6O69AIIWVACZ1bvEroxaysrPDxxx9zHQYhREM5OTlch1Cj8abJZcOGDQgMDCxxf/fu3bF161YtRkQI0VR2djbXIdRovEnou3btgoeHR4n7PTw8sH379nJde/PmzXBzc4OhoSF8fX1x9+7dUo8PCwtDw4YNYWRkBBcXF8ycOZM+ShJSBnl5eZBIJFyHUWPxJqE/ffoUjRs3LnF/o0aN8PTpU42ve+jQIYSEhGDRokWIjo5G8+bNERgYWOIgpQMHDmD27NlYtGgRHj58iF27duHQoUOYO3euxvcmpCZ68+YN1yHUWLxJ6GKxGMnJySXuT0pKglCoebhr167FuHHjMHr0aHh4eCA8PBzGxsbYvXu32uNv3bqFdu3aYdiwYXBzc0NAQACGDh36wVo9IaQIjejmDm8SeuvWrbF37161bXCZmZnYs2cPWrdurdE1pVIp7t+/D39/f7ZMKBTC398fUVFRas9p27Yt7t+/zybwZ8+e4ezZs+jRo0eJ95FIJMjKymJf9GCI1GRJSUlch1Bj8aaXy6JFi+Dn5wcvLy/MmDEDTZo0AVA0x0tYWBiSkpJw4MABja6ZlpYGuVwOBwcHpXIHBwc8evRI7TnDhg1DWloa2rdvD4ZhIJPJMHHixFKbXEJDQ7FkyRKNYiNEVyUlJUEul0MkEnEdSo3Dmxq6r68vTp06BYZhMH36dHTt2hVdu3bFjBkzIBAIcPLkSbRp06bK47h69SpWrlyJLVu2IDo6Gr/++ivOnDmDZcuWlXjOnDlzkJmZyb6uXbtW5XESwlcymQyvXr3iOowaiTc1dADo2rUrnjx5gj/++IN9AFq3bl20bNkSAoFA4+vZ2tpCJBIhJSVFqTwlJQWOjo5qz1mwYAFGjBiBsWPHAgCaNm2K3NxcjB8/HvPmzVPbjm9gYAADAwN229TUVONYCdElCQkJcHFx4TqMGoc3NfRiQqEQ3t7eGDx4MAYPHgxvb+9yJXOg6EGrt7c3IiMj2TKFQoHIyMgSa/t5eXkqSbv4o+O7i24QQkoWHx9Py9FxgFc1dACIjY3Fs2fPkJ6erjaBBgcHa3S9kJAQjBw5Eq1atYKPjw/CwsKQm5uL0aNHs9dzdnZGaGgoAKB3795Yu3YtWrRoAV9fXzx58gQLFixA7969qU2QkDIqKCjAixcv4OrqynUoNQpvEvrTp08xfPhw3L17t8SasEAg0DihBwUFITU1FQsXLkRycjK8vLwQERHBPihNTExUqpHPnz8fAoEA8+fPx8uXL2FnZ4fevXtjxYoV5f/iCKmBHj16RAldywQMT9oR/P39cfv2bYSGhqJDhw6wsrJSe1x1eINER0fD29sb9+/fR8uWLbkOhxCt2blzJ9vUIhAIMGTIEJiZmXEcVc3Bmxr6b7/9hrlz5+KLL77gOhRCSCVgGAZ//vkn2rdvz3UoNQZvHora2trCwsKC6zAIIZXo0aNHNGGXFvEmoU+cOBE//vgj5HI516EQQiqJQqHAb7/9Rj3EtIQ3TS4NGjSAXC5H8+bNMWbMGLi4uKjtVTJgwAAOoiOElFdiYiL+/fdfNGzYkOtQdB5vEnpQUBD7/1mzZqk9RiAQUA2ekGqoeHlJW1tbrkPRabxJ6FeuXOE6BEJIFZHL5YiIiEDfvn2p10sV4k1C9/Pz4zoEQkgVysvLw9mzZ9GrVy+YmJhwHY5O4s1D0WISiQRRUVE4ceIE0tLSuA6HEFJGrVq1wldffVXqILzMzEycPn0aubm5Woys5uBVQt+wYQOcnJzQvn17DBgwAH/99ReAomlwbW1tS1yUghDCveTkZGRkZCArK6vU4zIzM3Hy5MkPHkc0x5uEvmfPHsyYMQPdunXDrl27lLo52draokuXLjh48CCHERJCKkt2djZOnjyJt2/fch2KTuFNQl+zZg369u2LAwcOoHfv3ir7vb298eDBAw4iI4RUhby8PJw6dUplemtSfrxJ6E+ePEH37t1L3G9tbU2LzxKiYyQSCc6ePYv//vuP61B0Am8SuqWlZakPQWNjY0tclIIQUn0VFhYiIiICCQkJXIdS7fEmoffo0QPbt29HRkaGyr4HDx5gx44d6NOnj/YDI4RUOYVCgYsXL7IrlZHy4U1CX758OeRyOTw9Pdk5yfft24fhw4ejVatWsLe3x8KFC7kOkxBSRRiGweXLlympVwBvEnqtWrVw//59dOvWDYcOHQLDMNi/fz9OnTqFoUOH4vbt2zRsmBAdV5zUqfmlfHiR0CUSCU6ePInk5GTs3LkTb9++RUpKCpKSkpCeno7du3fD3t6e6zAJIVrAMAwiIyPx8uVLrkOpdniR0MViMT799FPcunWLLbOzs4ODg4PKgs2EEN0nl8tx8eJF6tmmIV5kS4FAgPr169NQf0IISyqVIiIiAnl5eVyHUm3wIqEDwNy5c7Fp0ybExcVxHQohhCdyc3Nx4cIFmja7jHgz2+Lt27dhY2MDT09PdOrUCW5ubjAyMlI6RiAQYP369RxFSAjhwuvXr3Hz5k107NgRAoGA63B4jTcJfdOmTez/IyMj1R5DCZ2QmikuLg4ODg5o1KgR16HwGm+aXBQKxQdf9LGLkJrrt99+o4ekH8CbhE4IIaWRy+W4dOkSCgsLuQ6Ft3iX0G/fvo3Q0FDMnDkTjx8/BlA0K1t0dDRycnI4jo4QwqXMzEzcvHmT6zB4izcJXSqVYsCAAWjXrh3mzZuHDRs24MWLFwAAoVCIgIAAaj8nhODx48dsZY8o401CX7BgAU6fPo2tW7ciLi5OaYELQ0NDfPrppzhx4gSHERJC+OLmzZtqJ/Kr6XiT0H/++WdMmjQJ48ePh7W1tcr+xo0b49mzZxxERgjhm8LCQly8eJHa09/Dm4T++vVrNG3atMT9IpGIRowRQljp6em4evWq0qf5mo43Cd3FxQWPHj0qcf9vv/2GevXqaTEiQgjfxcfH4/fff+c6DN7gTUIfNmwYtm3bhqioKLaseFTYjh07cPjwYQQHB5fr2ps3b4abmxsMDQ3h6+uLu3fvlnp8RkYGpkyZAicnJxgYGKBBgwY4e/Zsue5NCKlaMTExNGXI//BmpOi8efNw+/ZtdOzYEY0bN4ZAIMDMmTPx9u1b/Pfff+jRowdmzpyp8XUPHTqEkJAQhIeHw9fXF2FhYQgMDERcXJzaKXmlUim6du0Ke3t7HD16FM7Oznj+/DksLS0r4askhFSFGzduwNTUFM7OzlyHwine1NDFYjEiIiKwZ88e1KlTB40aNYJEIkGzZs2wd+9enDp1CiKRSOPrrl27FuPGjcPo0aPh4eGB8PBwGBsbY/fu3WqP3717N96+fYvjx4+jXbt2cHNzg5+fH5o3b17RL5EQnZWYmIjc3FwAResbvH37Vqv3VygUiIyMRHZ2tlbvyzecJfSQkBD88ccf7HZiYiIKCgowfPhwHD9+HA8ePMDDhw9x+vRpBAcHl2tSHqlUivv378Pf358tEwqF8Pf3V2raedfJkyfRpk0bTJkyBQ4ODvD09MTKlStLnXZAIpEgKyuLfdEAKFJT3L17F71794abmxvbjTA/Px9z587F5s2btbryUEFBAa5cuVLlD0nfvn2Lzz77DObm5rC0tMTnn3/+wd/5Tp06QSAQKL0mTpzI7t+7d6/K/uLX69evyxwbZwk9LCwMDx8+ZLfd3d1x7NixSr1HWloa5HI5HBwclModHByQnJys9pxnz57h6NGjkMvlOHv2LBYsWIA1a9Zg+fLlJd4nNDQUFhYW7MvPz69Svw5C+OjXX39Fu3btcO7cOZUkyjAM/vnnH6xatQrR0dFaiyk5ORn//vtvha/TqVMn7N27V+2+zz77DA8ePMDFixdx+vRpXL9+HePHj//gNceNG4ekpCT2tXr1anZfUFCQ0r6kpCQEBgbCz89Po9XaOEvoDg4OSv3K+dL1SKFQwN7eHtu3b4e3tzeCgoIwb948hIeHl3jOnDlzkJmZyb6uXbumxYgJ0b67d+8iKCgIcrm8xE+vxZPq7dixQ6s19b/++qvK8snDhw8RERGBnTt3wtfXF+3bt8fGjRtx8OBBvHr1qtRzjY2N4ejoyL7Mzc3ZfUZGRkr7RCIRLl++jM8//1yj+Dh7KNqzZ08sXboUFy5cYB84rlmzBgcPHizxHIFAoNFoUVtbW4hEIqSkpCiVp6SkwNHRUe05Tk5O0NfXV2qvb9y4MZKTkyGVSiEWi1XOMTAwgIGBAbttampa5hgJqY6WL18OhmHKnDjPnj2LyZMnV3FURdLT05GVlQULC4tKv3ZUVBQsLS3RqlUrtszf3x9CoRB37txB//79Szz3p59+wo8//ghHR0f07t0bCxYsgLGxsdpjf/jhBxgbG2PQoEEaxcdZQl+/fj3s7e1x5coVPHjwAAKBAC9evCj1YYqm7ehisRje3t6IjIxEv379APz/w5OpU6eqPaddu3Y4cOAAFAoFu57pv//+CycnJ7XJnJCaJjExEadPny5zMlcoFPjrr7/w9u1btaPAq8Lr16+rJKEnJyerNIHo6enB2tq6xGZcoKhbtqurK2rVqoW//voL33zzDeLi4vDrr7+qPX7Xrl0YNmyYyiI/H8JZQjcxMcHKlSvZbaFQiLCwMAwbNqxS7xMSEoKRI0eiVatW8PHxQVhYGHJzczF69GgAQHBwMJydnREaGgoAmDRpEjZt2oTp06fjiy++wOPHj7Fy5UpMmzatUuMipLLIZDKtrhUQERGhcZMGwzB4+PAh2rZtW0VRKSvucVNWK1euVMpH+fn5uH37tlLFLzY2ttzxvNvG3rRpUzg5OeGTTz7B06dPUbduXaVjo6Ki8PDhQ+zfv1/j+3CW0AcMGICZM2eiQ4cOAIArV67Aw8Oj0u8TFBSE1NRULFy4EMnJyfDy8kJERAT7oDQxMZGtiQNFI1bPnz+PmTNnolmzZnB2dsb06dPxzTffVHpshFSUTCZDbGws8vPztXbPR48eQSgUQqFQlPkcgUCArKwsrU3fkZSUBE9PT+jplS3FTZw4EYMHD2a3P/vsMwwcOBADBgxgy2rVqgVHR0eVXicymQxv374tsRlXHV9fXwDAkydPVBL6zp074eXlBW9v7zJfrxhnCf3EiRMYOHAgu92lSxfs37+/0mvoADB16tQSm1iuXr2qUtamTRvcvn270uMgpLLJ5XLk5+dDX19fa02CVlZWGiVzoKiGbmRkpFR5qirFbftyubzMCd3a2lqpOcjIyAj29vYq0420adMGGRkZuH//PptwL1++DIVCwSbpsoiJiQFQ9MzuXTk5OTh8+DDbYqApzhK6s7Mz/vjjD3z22WcAin4ItAAsIeUjFou1ltDbtGkDgUCgUbOLQCBAw4YNtZLQFQoFzMzMquTajRs3Rrdu3TBu3DiEh4ejsLAQU6dOxZAhQ1CrVi0AwMuXL/HJJ5/ghx9+gI+PD54+fYoDBw6gR48esLGxwV9//YWZM2eiY8eOaNasmdL1Dx06BJlMhuHDh5crPs4S+pAhQ/D999/j8OHDbC+X2bNnl/qXSSAQ4M8//9RShISQ9+Xk5ODGjRuoXbs2EhMTy5TUhUIhPDw8tPZA1MLCokr/uP3000+YOnUqPvnkEwiFQgwcOBAbNmxg9xcWFiIuLo5tXhKLxbh06RL7/M7FxQUDBw7E/PnzVa69a9cuDBgwoNxTjWiU0N3d3TWuRQsEAjx9+lSlPDQ0FPXq1cOVK1fw+vVrCAQCmJiYwMbGRqPrE0K04/Xr1zhx4gRyc3PRqlUrvHjxosy19MDAwCqO7v999NFHFb6GuqbYYtbW1jhw4ECJ+93c3JS+Ly4uLmUem3Lr1q0yx6iORgndz89PJaHfu3cPDx48gIeHBxo2bAgAiIuLQ2xsLDw9PUts2BeJRBg/fjz79FcoFGL+/PlV0oZOCKmYJ0+eICIiAjKZDABQr149LF++HAsXLmTbq99X3LwyevRouLq6aiVOCwsLODg41Ni1EzRK6O8PhT1+/DiOHz+Oixcv4pNPPlHad/HiRQwePBjLli0r07Xj4+NhZ2enSTiEkCrGMAzu37+vtDCzk5MTevfuDWNjY9SvXx9btmxRWWhCIBDAw8MDgYGBWkvmIpEITZs2rdHP4gRMBcbINmvWDP369cPSpUvV7l+wYAGOHz+Ov//+u9wBVkfR0dHw9vbG/fv30bJlS67DITpMIpEgJiYGJiYmld5uLJfLcfnyZTx48IAta9iwIbp27arSe+TVq1fo27cvsrKyYGRkhG+++UZrbebFWrRoAXt7e0ilUuTm5sLLy0tpBHdNUKGHoo8fPy61zdvGxkZt+zlQ9HFMKBQiLy8PYrEYQqHwg39ZBQIB+5GPEFJ1CgoKcPr0afz3339sWevWreHr66v297RWrVowMjJCVlYWxGKx1pO5h4eHRpNY6aoKJfS6detiz549+Pzzz1XmL8nOzsbu3btRp04dtecuXLgQAoGA/UtfvE0I4VZ6ejpOnDjBTocrEokQEBDAPiPjm3r16sHFxYXrMHihQgl9+fLlGDRoEBo1aoRRo0axnfAfP36Mffv2ISUlBUeOHFF77uLFi0vdJoRo34sXL3D69GlIJBIARTME9u7dW2UADF+4ubmVWGmsiSqU0Pv164ezZ8/im2++UZoHAQC8vLywa9curXZXIoSU34MHDxAZGcmOArWxsUGfPn2qZJKryuDi4oIGDRrQJ/t3VHhgUUBAAAICApCcnIznz58DAFxdXTWa10AikeDHH3/EhQsX8PTpU2RnZ8PMzAz16tVDt27dMGzYMJrpkJAqwjAMbt68ifv377Nlrq6u6NGjB28fKtaqVYtde5j8v0obKVo8Mbum/v77b/Tt2xfPnz8HwzCwsLCAqakpXr9+jejoaBw5cgQrVqzAyZMn0bhx48oKlxCColGNERERSp0XmjdvDj8/P60M0y8Pe3t7NGnShJK5GhX+iSUmJmLixIlo2LAhrK2tcf36dQBFy79NmzZNad3Q9+Xk5KBPnz5ISUnBihUr8OLFC6Snpyv9u3z5crx69Qq9e/fWeEpMQkjJcnJycOTIETaZCwQCdOrUCZ07d+ZtMre1tUXz5s15Gx/XKlRDj42NRYcOHdiZxp48ecJ2K7S1tcXNmzeRm5uLXbt2qT1/z549SExMRGRkJDp16qSy39nZGXPmzIGvry+6du2KvXv3YsqUKRUJmRCComH8J0+eZBc3FovF6NGjB9zc3LgNrBQ2Njbw8vKiZF6KCn1nvv76a1haWuLff//Fjz/+qDKvQ8+ePXHjxo0Szz9z5gwCAgLUJvN3denSBV27dsWpU6cqEi4hBMDTp09x+PBhNpmbmZlh8ODBvE/mLVq0UFoakqiqUEK/fv06Jk2aBDs7O7XtWbVr18bLly9LPP/vv//+YDIv1qVLlxo34pSQylQ8jP/UqVPsJ2lHR0cMGTIEtra2HEdXMmtra0rmZVShJheFQlHiIqcAkJqaWupTck1W+XBwcCh1vVFCSMnkcjmuXLmCf/75hy1r0KABAgICyrwIBBcsLS0pmWugQjX0li1b4syZM2r3yWQyHDx4EK1bty7xfIlEAn19/TLdS09PD1KptFxxElKTFRQU4Pjx40rJ3NfXF927d+d1MjcxMUHLli15HSPfVOg7NWfOHPTq1QuTJk3CkCFDAAApKSm4dOkSVq5ciYcPH2LTpk2lXiMhIQHR0dEfvFd8fHxFQiWkRsrIyMCJEyeQnp4OoGgYf9euXdGoUSOOIyudvr4+WrZsWeYKHylSoYTevXt37N27F9OnT8f27dsBAMOHDwfDMDA3N8cPP/yAjh07lnqNBQsWYMGCBR+8Fy1RR4hm/vvvP5w+fRoFBQUAitbJ7N27N7tUGp81bdq01OZcol6FP8uMGDECAwYMwMWLF/H48WMoFArUrVsXgYGBH1zXb8+ePRW9PSFEjdjYWFy6dIkdxm9tbY2+ffvydhj/u2rXrk1rI5RTuRN6Xl4eXFxcMHv2bHz11Vfo16+fxtcYOXJkeW9PCFGDYRjcunULv//+O1tWu3Zt9OzZk7fD+N9lbGyMBg0acB1GtVXuhG5sbAw9PT2YmJhUZjyEkHIqLCzE+fPn8eTJE7asWbNm6NSpU7UYjCMQCNCsWTPq0VIBFfopDxw4EEePHi3zQrGEkKqRm5uLo0ePssm8eBh/ly5dqkUyB4D69etXiyYhPqtQG/qQIUMwefJkdO7cGePGjYObmxuMjIxUjqNl2AipOm/fvsXly5fZuY709fXRo0cPuLu7cxxZ2Tk6OvJ6pGp1UaGE/u4oT3VD/It7pqhbEZwQUnH//PMPzp07x478NDMzQ9++fXk98vN9VlZW8PT0pF5slaBCCZ16qRDCDYZhcPnyZfz6669sk6ejoyN69+5drZ5rmZqa0kjQSlShhE69VAjRPrlcjkOHDuHmzZtsWd26dXk/8vN9hoaG8Pb2psFDlYh3P/3Y2Fg8e/YM6enpah+2BgcHcxAVIfyQl5eHnTt34tGjR2xZs2bN0K5du2qVzEUiEVq2bAlDQ0OuQ9EpGr0DxowZA4FAgO3bt0MkEmHMmDEfPEcgEJQ4H/q7nj59iuHDh+Pu3bsl9poRCATlSuibN2/Gd999h+TkZDRv3hwbN26Ej4/PB887ePAghg4dir59++L48eMa35eQypSamootW7YgJSUFQNH8RkFBQdDT06t27c+enp4fHHhINKdRQr98+TKEQiEUCgVEIhEuX778wTdSWd9oEyZMwN9//42wsDB06NABVlZWmoRWokOHDiEkJATh4eHw9fVFWFgYAgMDERcXB3t7+xLPS0hIwKxZs9ChQ4dKiYOQinjy5Am2bdvG9mQxNTXF+PHj4eLigpiYGG6D05Czs3O5lqskH6ZRQk9ISCh1uyJ+++03zJ07F1988UWlXRMA1q5di3HjxmH06NEAgPDwcJw5cwa7d+/G7Nmz1Z4jl8vx2WefYcmSJbhx4wYyMjIqNSZCNHH79m0cOHBAaQ7zyZMnw9bWFhKJhOPoNKOvr08jQasQb0Yc2NraVvqgAqlUivv378Pf358tEwqF8Pf3R1RUVInnLV26FPb29vj888/LdB+JRIKsrCz2VbwSDCEVoVAocPLkSfzwww9sMm/UqBFmzZpVrbolvqtu3boQi8Vch6GzeJPQJ06ciB9//LFS+6ynpaVBLpfDwcFBqdzBwQHJyclqz7l58yZ27dqFHTt2lPk+oaGhsLCwYF9+fn4VipsQqVSK3bt3IyIigi3r0KEDpkyZUm1nIRSLxfjoo4+4DkOnVfix+Llz57B27VpER0cjMzNT7QPNsiTpBg0aQC6Xo3nz5hgzZgxcXFzU9k0dMGBARUMuUXZ2NkaMGIEdO3ZoVAOaM2cOQkJC2O2YmBhK6qTcMjMzsW3bNrZJUyAQYODAgejcuXO1e/j5LldXV+pvXsUqlNB/+eUXDB48GE2aNMGQIUOwdetWDBs2DAzD4MSJE6hfv36ZZ2EMCgpi/z9r1iy1x2g66tTW1hYikYjtFVAsJSVF7UOZp0+fIiEhAb1792bLiqcf1dPTQ1xcHOrWratynoGBgdJMdqampmWOkZB3/ffff9i6dSu7IIWBgQHGjBmDpk2bchxZxQiFQri4uHAdhs6rUEIPDQ2Fj48Pbt68ifT0dGzduhVjxoxBly5dkJCQgNatW5d5PokrV65UJBS1xGIxvL29ERkZyf5hUSgUiIyMxNSpU1WOb9SokcpC1PPnz0d2djbWr19Pb0hSpf7++2/s3r2bfdBpZWWFSZMm6UQzhZOTEw0g0oIKJfTY2FiEhoZCJBKxgxoKCwsBAG5ubpg8eTJWrVpVpr7jVdVEERISgpEjR6JVq1bw8fFBWFgYcnNz2V4vwcHBcHZ2RmhoKAwNDeHp6al0vqWlJQColBNSWRiGwZUrV/DLL7+wTZaurq6YOHGizsw+WLt2ba5DqBEqlNCNjY3ZJ9aWlpYwMDBAUlISu9/BwaFca4HGxsbi+fPnAIre2B4eHuWOMSgoCKmpqVi4cCGSk5Ph5eWFiIgI9kFpYmJitZlelOgeuVyOw4cPK01u17JlSwQHB+tMbxALCwuYm5tzHUaNUKGE3rBhQ8TGxrLbXl5e2L9/P4YPHw6ZTIYDBw5o9Jf5xIkTCAkJUenf7u7ujrVr16JPnz7linPq1Klqm1gA4OrVq6Weu3fv3nLdk5APUTeMv1u3bujVq5dOVTJcXV25DqHGqNC7ZsCAATh58iTb5jdv3jxcvXoVlpaWsLOzw40bN0ocvPO+s2fPYuDAgQCAlStX4tixYzh27BhWrlwJhmEwYMAApS5chFRnaWlp+P7779lkLhKJEBwcjD59+uhUMjcwMFDpNkyqTrlq6AUFBThx4gQKCwsxf/58vH37Fk5OTujVqxeuXr2KX3/9FSKRCD179kTnzp3LdM1ly5ahWbNmuHHjhtL0n3369MHUqVPRvn17LFmyBN26dStPyITwxtOnT7Ft2zZ2AJqJiQkmTJiAevXqcRxZ5XN1ddWpP1B8p3FCf/36Ndq2bYv4+Hh2AQsjIyMcP34c/v7+6NChQ7nmP/nrr7+wcuVKtXM5m5iYYNSoUZg7d67G1yWET+7evYsff/yRHfnp4OCAyZMn6+Qq90KhUCd66FQnGv/pXLZsGRISEjBz5kycPn0a69atg5GRESZMmFChQAwNDfH27dsS9799+5am2iTVFsMwOHXqFPbu3csm84YNG+Krr77SyWQOALVq1aKuilqmcQ39woULCA4Oxvfff8+WOTg4YNiwYYiLi0PDhg3LFUiXLl2wfv16dOvWDW3atFHad+fOHWzYsAEBAQHlujYhXJJKpdi/fz/u37/PlrVv3x5BQUE6PXKSxm1on8YJPTExEd98841SWfv27cEwDFJSUsqd0FevXo02bdqgffv28PHxYa8TFxeHu3fvwt7eHqtWrSrXtQnhSlZWFsLDw5WG8Q8YMABdunSp1sP4P8TMzIy6KnJA4yYXiUSi0vRRvF38UbI83N3d8ddff2HatGlIT0/HoUOHcOjQIaSnp2P69On4888/aVVwUq28fPkSq1evZpO5gYEBJkyYgE8++USnkzlQNDKUaF+5erkkJCQgOjqa3c7MzAQAPH78mB1Z+a6WLVuW6br29vZYt24d1q1bV56wCOGNf/75B7t370ZBQQGAooF3kyZNqjHNENRVkRvlSugLFizAggULVMonT56stF3cC6Yyp8QlhO+uXLmCo0ePssP4a9eujUmTJunMMP4PEQqF1XaK3+pO44S+Z8+eSrlxVa5PSggX5HI5jh49imvXrrFlLVq0wMiRI3VmGH9Z6HpzEp9pnNBHjhxZKTeuyvVJCdG2/Px87Nq1S2kqjMDAQPTu3bvGDKwpXhKvuq6mpAsqvMBFeVXl+qSEaFNaWhq2bt3KTkwnEokwbNgwle63uu7XX3/FhQsX0Lp1a65DqbE4S+jvS0xMhJ2dHYyMjNTuz8/PR2pqKk3DSXjl2bNnCA8PVxrGP378eNSvX5/jyLghEAjUjvYm2sGbz4Lu7u44duxYiftPnjxZ5sUyCNGG33//HWFhYWwyt7e3x1dffVVjkzlQ1IVZlwdL8R1vaujq1iJ9V2FhYY1piyT8xjAMzpw5g7Nnz7JlDRs2xLhx42p87w6anoNbnCb0rKwsZGRksNtv3rxBYmKiynEZGRk4ePAgDVYgnCssLMT+/ftx7949tqxdu3YYMmQI1UwBpbV1ifZxmtDXrVuHpUuXAihqe5sxYwZmzJih9liGYbB8+XItRkeIsuzsbISHh7OrcAkEAvTv379GjPwsK0ro3OI0oQcEBMDU1BQMw+Drr7/G0KFDVUaVFj9k8fb2RqtWrTiKlNR0r169wtatW/HmzRsARQuQjx49Gs2bN+c4Mn6h2RW5xWlCb9OmDdu1Kzc3FwMHDqTFmAnvPHjwALt27aqxw/g1UbxYPOEGL777eXl52LBhA4yNjSmhE165du0aDh8+zD60d3FxwaRJk9TOWURAzxE4xouEbmxsDD09Peq/SnhDLpfjl19+UVpEvHnz5hg1ahS1E5eCeqJxizff/YEDBypNaEQIV/Lz8xEeHq6UzAMCAjBu3DhK5h9AD4e5xYsaOgAMGTIEkydPRufOnTFu3Di4ubmpHTVa1ql4CSmPN2/eYOvWrXj16hWAohrnsGHD0LZtW44jqx4ooXOLNwm9U6dO7P9v3Lihsp+m4iVVLT4+HuHh4cjOzgZQ1BQ4fvx4NGjQgOPIqg9K6NziTUKvrGl5CSmPe/fu4YcffmBX3bK3t8ekSZNooQYNUULnFm8SemVNy0uIJhiGwblz53D69Gm2rH79+hg/fjw9pC8HSujc4k1Cf1dOTg5evHgBoKibmKmpKccREV1UWFiIH3/8Eb///jtb1qZNGwwdOpT6U5cTJXRu8aaXC1A0e13nzp1hZWUFT09PeHp6wsrKCl26dFGaO4OQisrOzsb69evZZC4QCNCvXz8MHz6cknkFUELnFm/euXfu3EGnTp0gFosxduxYNG7cGADw8OFD/Pzzz+jYsSOuXr0KHx8fjiMl1V1SUhK2bNmiNIx/1KhR8PLy4jYwHUADi7jFm4Q+b948ODs74+bNm3B0dFTat3jxYrRr1w7z5s3DxYsXOYqQ6ILY2Fjs3LmTHcZvYWGBSZMm0cIplYRq6NziTZPLnTt3MGHCBJVkDgAODg4YP348bt++Xa5rb968GW5ubjA0NISvry/u3r1b4rE7duxAhw4dYGVlBSsrK/j7+5d6PKk+rl+/ji1btrDJ3MXFBd988w0l80pENXRu8SahC4VCtsuYOnK5vFzDig8dOoSQkBAsWrQI0dHRaN68OQIDA/H69Wu1x1+9ehVDhw7FlStXEBUVBRcXFwQEBODly5ca35vwg0KhwJEjR3Dw4EEoFAoAQLNmzTBz5kyak6WS0dB/bvHmu9+2bVts3rwZz58/V9mXmJiILVu2oF27dhpfd+3atRg3bhxGjx4NDw8PhIeHw9jYGLt371Z7/E8//YTJkyfDy8sLjRo1ws6dO6FQKBAZGanxvQn3CgoKEB4ejitXrrBl/v7+GD9+PK2uUwUooXOLN23oK1euRMeOHdGoUSP079+fHZ0XFxeHEydOQE9PD6GhoRpdUyqV4v79+5gzZw5bJhQK4e/vj6ioqDJdIy8vD4WFhbC2ti7xGIlEAolEwm4XrzFJuPX27Vts2bJFaRj/0KFDy1UxIGVDbejc4k1Cb9GiBe7cuYN58+bh5MmTyMvLA1A0/Lpbt25Yvnw5PDw8NLpmWloa5HK5ymg/BwcHPHr0qEzX+Oabb1CrVi34+/uXeExoaCiWLFmiUWykaiUkJCA8PBxZWVkAACMjI4wfPx4NGzbkODLdRgmdW7xJ6ADg4eGBY8eOQaFQIDU1FQBgZ2fH2ce4b7/9FgcPHsTVq1dL/Xg+Z84chISEsNsxMTHw8/PTRohEjfv37+OHH35AYWEhgKL30OTJk2kYvxZQQucWrxJ6MYFAwL4xKvIGsbW1hUgkQkpKilJ5SkqK2t407/r+++/x7bff4tKlS2jWrFmpxxoYGChNq0ojW7nBMAwiIiJw6tQptqxevXoYP348/UxIjcCrJxixsbEYNGgQzM3N4eTkBCcnJ5ibm2PQoEH4559/NL6eWCyGt7e30gPN4gecxUvfqbN69WosW7YMERERtI5pNVFYWIh9+/YpJfPWrVtj2rRplMy1iGro3OJNDf3GjRvo3r07FAoF+vbtq/RQ9OTJkzh37hwiIiLQoUMHja4bEhKCkSNHolWrVvDx8UFYWBhyc3MxevRoAEBwcDCcnZ3ZB66rVq3CwoULceDAAbi5uSE5ORlAUa2bEgM/5eTkYNu2bXj69Clb1rdvXwQEBFCCITUKbxL6zJkzYW9vj2vXrqksvvvixQt07NgRISEhShMplUVQUBBSU1OxcOFCJCcnw8vLCxEREWx7amJiolIb/datWyGVSjFo0CCl6yxatAiLFy8u3xdHqkxSUhK2bt2KtLQ0AEWrzo8aNQotWrTgOLKaif6Acos3Cf3BgwdYtmyZ2pXUixfmLW9CnTp1KqZOnap237vLjAFFvSNI9fDo0SPs2LED+fn5AIqG8U+cOBGurq4cR1ZzUT90bvEmobu6uir15X6fVCpVm+xJzXTjxg0cOnSIHfn50UcfYdKkSbCysuI4MkK4w5s/pwsXLsSGDRsQExOjsu+PP/7Axo0bqcmDQKFQ4OjRo/j555/ZZN60aVOEhIRQMic1Hm9q6Ldv34aDgwO8vb3Rtm1b1KtXDwDw+PFjREVFwdPTE1FRUUojPAUCAdavX89VyETLCgoKsHv3bqUeT5988gn69+9PH/UJASBgGIbhOgigfG1vfF00Ojo6Gt7e3rh//z5atmzJdTg64e3btwgPD8d///0HoOj9MmTIELRv357jyLglkUgQExMDExMTiMVirsPhBalUitzcXHh5eSmND6kJeFNDL/74TMj71A3jHzduHBo1asRxZITwC28SOiHqREdHY9++fUrD+CdNmvTBkb6E1ES8S+jx8fE4d+4cO42uq6srunfvDnd3d44jI9rEMAzOnz+PkydPsmU0jJ+Q0vEqoX/55ZdYv369SvOLUCjEjBkz8P3333MUGdGmwsJC/Pzzz0orVPn6+mLYsGHQ19fnMDJC+I03XQPWrFmDdevWYcCAAYiKikJGRgYyMjIQFRWFQYMGYd26dVi3bh3XYZIqlpOTg40bNyol8z59+iA4OJiSOSEfwJsa+o4dO9CnTx8cPnxYqdzX1xcHDx5EQUEBtm3bhpkzZ3IUIalqKSkp2LJlCzt1sr6+PkaOHEk9hQgpI97U0BMSEhAYGFji/sDAQBqWr8MePXqE1atXs8nc3NwcM2fOpGROiAZ4U0O3t7fHn3/+WeL+P//8E3Z2dlqMiGjLzZs3lRZwdnZ2xqRJk0pd9o8Qooo3Cf3TTz/F+vXr4ebmhi+++AImJiYAgNzcXGzatAk7d+7EjBkzuA2SVCqFQoFjx44pzVfv6emJMWPG0ALOhJQDbxL6smXLEBMTg7lz52LhwoWoVasWAODVq1eQyWTo3Lkzli5dynGUpLIUFBRg7969+Ouvv9iyLl26YMCAATSMn5By4k1CNzY2RmRkJE6cOKHUD71bt27o0aMHevfuTXMt64j09HRs3bpVaRj/4MGD0bFjR44jI6R640VCz8vLw/DhwzFw4EB89tln6Nu3L9chkSqSmJiIrVu3IjMzE0DRMP6xY8eicePGHEdGSPXHi8+2xsbGuHTpEvLy8rgOhVShP/74A2vWrGGTuY2NDWbNmkXJnJBKwouEDgDt27dXmhqX6I7iYfw7duxg52SpW7cuvv76azg5OXEcHSG6gzcJfdOmTbhx4wbmz5/Ptq2S6k8mk+HHH3/EiRMn2DIfHx9MmzYNZmZmHEZGiO7hRRs6ADRv3hwymQyhoaEIDQ2Fnp6eylzGAoGA/bhO+C8nJwc7duzA48eP2bLevXujW7du9ICbkCrAm4Q+cOBA+iXXISkpKdi6dStev34NoGgYf3BwMLy9vTmOjBDdxZuEvnfvXq5DIJUkLi4OO3bsYB9ym5ubY8KECTQFMiFVjPOEXlBQgBMnTiA+Ph62trbo2bMnPSirxm7duoUDBw6ww/hr1aqFSZMmwcbGhuPICNF9nCb0169fo23btoiPj0fx0qbGxsY4fvw4/P39uQyNaEihUOD48eO4dOkSW9akSROMGTMGRkZGHEZGSM3BaS+XZcuWISEhATNnzsTp06cRFhYGIyMjTJgwgcuwiIYkEgl27NihlMw7d+6MSZMmUTInRIs4raFfuHABwcHBSisROTg4YNiwYYiLi0PDhg05jI6URUZGBrZu3YoXL14AoGH8hHCJ0xp6YmIi2rdvr1TWvn17MAyDlJQUjqIiZZWYmIhVq1axydzQ0BCTJ0+mZE4IRzitoUskEpVpUou3ZTIZFyGR9yQmJiIyMhLZ2dkwMzPDJ598gtq1ayMmJgZ79+6FVCoFUDSMf/LkyfRAmxAOcd7LJSEhAdHR0ex28cChx48fw9LSUuV4WsFGO+7evYtly5bhzJkzYBgGQqEQCoUCAoEAvr6+cHZ2hr29PQCgTp06mDBhAo38JIRjAqa4ewkHhEKh2sFEDMOolBeXyeVyje+zefNmfPfdd0hOTkbz5s2xceNG+Pj4lHj8kSNHsGDBAiQkJKB+/fpYtWoVevToUeb7RUdHw9vbG/fv36+Wf4B+/fVXBAUFgWEYtd/v4p9NQEAAgoKCMHz4cFrAmSMSiQQxMTEwMTGBWCzmOhxekEqlyM3NhZeXl8poc13HaQ19z549VX6PQ4cOISQkBOHh4fD19UVYWBgCAwMRFxfH1jDfdevWLQwdOhShoaHo1asXDhw4gH79+iE6Ohqenp5VHi/X7t69i6CgIMjlcpT0t764/NKlS1i6dCklc0J4gtMaujb4+vri448/xqZNmwAU9Zd2cXHBF198gdmzZ6scHxQUhNzcXJw+fZota926Nby8vBAeHl6me1bnGnqfPn1w9uzZMn0SEolE6Nmzp9LEW0S7qIauqibX0Hkz22JVkEqluH//vtIgJaFQCH9//xKn6o2KilIZ1BQYGFgjpvZNTEzE6dOny9ysJZfLcerUKSQmJlZxZISQsuD8oWhVSktLg1wuh4ODg1K5g4MDHj16pPac5ORktccnJyeXeB+JRAKJRMJu5+TkACjqqVM8/3d1cP78+RKbWUrCMAwuXLiAkSNHVlFUpDSFhYWQyWTIzc2tVu+1qiSVStnfvdLWp9XFpkKdTujaEhoaiiVLlqiU+/r6chCN9o0bNw7jxo3jOgxCNKKLrc06ndBtbW0hEolUBimlpKTA0dFR7TmOjo4aHQ8Ac+bMQUhICLsdExMDPz8/3LlzBy1atKjAV6Bde/fuxfjx4zU+b8eOHVRD55BMJitX7y9dJhKJoKen0+lNLZ3+isViMby9vREZGYl+/foBKHooGhkZialTp6o9p02bNoiMjMSMGTPYsosXL6JNmzYl3sfAwEDp4YupqSkAQE9Pr1p9rAsMDIRAINCo5iIQCBAQEFCtvk5dQ997UkynH4oCQEhICHbs2IF9+/bh4cOHmDRpEnJzczF69GgAQHBwMObMmcMeP336dERERGDNmjV49OgRFi9ejHv37pX4B0CX1K5dG7169YJIJCrT8SKRCL1790bt2rWrODJCSFnodA0dKOqGmJqaioULFyI5ORleXl6IiIhgH3wmJiYqPThp27YtDhw4gPnz52Pu3LmoX78+jh8/XiP6oAPAggULcO7cuQ/W1AUCAQQCAebPn6/F6AghpdH5fuhcqM790IEPjxQViUQQCAQ4fPgw+vfvz0GEhBB1dL7JhWhuwIABuHXrFnr06MEO8y/+FCMQCNCzZ0/cunWLkjkhPKPzTS6kfD7++GOcPHkSiYmJuHz5MrKysmBubo4uXbpQmzkhPEUJnZSqdu3aGDVqFJKSkpCUlIS0tDSkpaVxHRbhKScnJ5pCmUOU0KuAk5MTFi1apDNvbIlEgqFDh+LatWtch0J4zs/PD+fPn69xc6jwBT0UJR+UlZUFCwsLXLt2je1jT8j7cnJy4Ofnh8zMTJibm3MdTo1ENXRSZl5eXvSLSkqUlZXFdQg1HvVyIYQQHUEJnRBCdAQldPJBBgYGWLRoET3oIqWi9wn36KEoIYToCKqhE0KIjqCETgghOoISOiGE6AhK6IQQoiMooRNSQxTPYf+h19WrVyt8r7y8PCxevFija61YsQJ9+vSBg4MDBAIBFi9eXOE4ahoaKUpIDbF//36l7R9++AEXL15UKW/cuHGF75WXl8cunN6pU6cynTN//nw4OjqiRYsWOH/+fIVjqIkooRNSQwwfPlxp+/bt27h48aJKOVfi4+Ph5uaGtLQ02NnZcR1OtURNLoQQlkKhQFhYGJo0aQJDQ0M4ODhgwoQJSE9PVzru3r17CAwMhK2tLYyMjODu7o4xY8YAABISEtiEvGTJErYp50NNKG5ublXxJdUoVEMnhLAmTJiAvXv3YvTo0Zg2bRri4+OxadMm/PHHH/jtt9+gr6+P169fIyAgAHZ2dpg9ezYsLS2RkJCAX3/9FQBgZ2eHrVu3YtKkSejfvz8GDBgAAGjWrBmXX1qNQAmdEAIAuHnzJnbu3ImffvoJw4YNY8s7d+6Mbt264ciRIxg2bBhu3bqF9PR0XLhwAa1atWKPW758OQDAxMQEgwYNwqRJk9CsWTPeNOnUBNTkQggBABw5cgQWFhbo2rUruzJVWloavL29YWpqiitXrgAALC0tAQCnT59GYWEhhxGT91FCJ4QAAB4/fozMzEzY29vDzs5O6ZWTk4PXr18DKFqVaODAgViyZAlsbW3Rt29f7NmzBxKJhOOvgFCTCyEEQNEDUXt7e/z0009q9xc/6BQIBDh69Chu376NU6dO4fz58xgzZgzWrFmD27dv06pWHKKETggBANStWxeXLl1Cu3btYGRk9MHjW7dujdatW2PFihU4cOAAPvvsMxw8eBBjx46FQCDQQsTkfdTkQggBAAwePBhyuRzLli1T2SeTyZCRkQEASE9Px/uzbnt5eQEA2+xibGwMAOw5RDuohk4IAVDUNj5hwgSEhoYiJiYGAQEB0NfXx+PHj3HkyBGsX78egwYNwr59+7Blyxb0798fdevWRXZ2Nnbs2AFzc3P06NEDAGBkZAQPDw8cOnQIDRo0gLW1NTw9PeHp6Vni/ffv34/nz58jLy8PAHD9+nW258yIESPg6upa9d+E6o4hhNRIU6ZMYdSlgO3btzPe3t6MkZERY2ZmxjRt2pT5+uuvmVevXjEMwzDR0dHM0KFDmdq1azMGBgaMvb0906tXL+bevXtK17l16xbj7e3NiMViBgCzaNGiUuPx8/NjAKh9XblypbK+bJ1GKxYRQoiOoDZ0QgjREZTQCSFER1BCJ4QQHUEJnRBCdAQldEII0RGU0AkhREdQQieElElCQgIEAgH27t3LdSikBJTQCSFER9DAIkJImTAMA4lEAn19fYhEIq7DIWpQQieEEB1BTS6E1CCLFy+GQCDAv//+i+HDh8PCwgJ2dnZYsGABGIbBixcv0LdvX5ibm8PR0RFr1qxhz1XXhj5q1CiYmpri5cuX6NevH0xNTWFnZ4dZs2ZBLpezx129ehUCgQBXr15VikfdNZOTkzF69Gh89NFHMDAwgJOTE/r27YuEhIQq+q7oDkrohNRAQUFBUCgU+Pbbb+Hr64vly5cjLCwMXbt2hbOzM1atWoV69eph1qxZuH79eqnXksvlCAwMhI2NDb7//nv4+flhzZo12L59e7liGzhwII4dO4bRo0djy5YtmDZtGrKzs5GYmFiu69Uo3M0LRgjRtkWLFjEAmPHjx7NlMpmM+eijjxiBQMB8++23bHl6ejpjZGTEjBw5kmEYhomPj2cAMHv27GGPGTlyJAOAWbp0qdJ9WrRowXh7e7PbV65cUTtr4vvXTE9PZwAw3333XeV8wTUM1dAJqYHGjh3L/l8kEqFVq1ZgGAaff/45W25paYmGDRvi2bNnH7zexIkTlbY7dOhQpvPeZ2RkBLFYjKtXryI9PV3j82s6SuiE1EC1a9dW2rawsIChoSFsbW1Vyj+UWA0NDdn1RotZWVmVKyEbGBhg1apVOHfuHBwcHNCxY0esXr0aycnJGl+rJqKETkgNpK7bYUldEZkPdIQrSxfGktYYfffBabEZM2bg33//RWhoKAwNDbFgwQI0btwYf/zxxwfvU9NRQieEVDkrKysAqmuMPn/+XO3xdevWxZdffokLFy7gn3/+gVQqVepxQ9SjhE4IqXKurq4QiUQqPWa2bNmitJ2Xl4eCggKlsrp168LMzIxdgJqUjBaJJoRUOQsLC3z66afYuHEjBAIB6tati9OnT+P169dKx/3777/45JNPMHjwYHh4eEBPTw/Hjh1DSkoKhgwZwlH01QcldEKIVmzcuBGFhYUIDw+HgYEBBg8ejO+++w6enp7sMS4uLhg6dCgiIyOxf/9+6OnpoVGjRjh8+DAGDhzIYfTVAw39J4QQHUFt6IQQoiMooRNCiI6ghE4IITqCEjohhOgISuiEEKIjKKETQniH1i8tH0rohFRzT58+xYQJE1CnTh0YGhrC3Nwc7dq1w/r165Gfn19l942NjcXixYs5X3hixYoV6NOnDxwcHCAQCLB48WJO4+ESDSwipBo7c+YMPv30UxgYGCA4OBienp6QSqW4efMmvvrqKzx48KDcC018SGxsLJYsWYJOnTrBzc2tSu5RFvPnz4ejoyNatGiB8+fPcxYHH1BCJ6Saio+Px5AhQ+Dq6orLly/DycmJ3TdlyhQ8efIEZ86c4TDC/8cwDAoKCmBkZFTp146Pj4ebmxvS0tJUpvGtaajJhZBqavXq1cjJycGuXbuUknmxevXqYfr06ey2TCbDsmXLULduXRgYGMDNzQ1z585VmfTKzc0NvXr1ws2bN+Hj4wNDQ0PUqVMHP/zwA3vM3r178emnnwIAOnfuDIFAoLRmaPE1zp8/j1atWsHIyAjbtm0DADx79gyffvoprK2tYWxsjNatW1foDw+Xnw74hhI6IdXUqVOnUKdOHbRt27ZMx48dOxYLFy5Ey5YtsW7dOvj5+SE0NFTtpFdPnjzBoEGD0LVrV6xZswZWVlYYNWoUHjx4AADo2LEjpk2bBgCYO3cu9u/fj/3796Nx48bsNeLi4jB06FB07doV69evh5eXF1JSUtC2bVucP38ekydPxooVK1BQUIA+ffrg2LFjlfBdqeE4XQCPEFIumZmZDACmb9++ZTo+JiaGAcCMHTtWqXzWrFkMAOby5ctsmaurKwOAuX79Olv2+vVrxsDAgPnyyy/ZsiNHjqhdJ/Tda0RERCiVz5gxgwHA3Lhxgy3Lzs5m3N3dGTc3N0YulzMMo3790g9JTU1lADCLFi0q8zm6hmrohFRDWVlZAAAzM7MyHX/27FkAQEhIiFL5l19+CQAqTR4eHh7o0KEDu21nZ1fm9UWLubu7IzAwUCUOHx8ftG/fni0zNTXF+PHjkZCQgNjY2DJfn6iihE5INWRubg4AyM7OLtPxz58/h1AoRL169ZTKHR0dYWlpqbJy0PtrjgKarxPq7u6uNo6GDRuqlBc31ZS0ghEpG0rohFRD5ubmqFWrFv755x+Nzitpbc/3lXd90XdVRY8WUjpK6IRUU7169cLTp08RFRX1wWNdXV2hUCjw+PFjpfKUlBRkZGTA1dVV4/uX9Y/D+3HExcWplD969IjdT8qPEjoh1dTXX38NExMTjB07FikpKSr7nz59ivXr1wMAevToAQAICwtTOmbt2rUAgJ49e2p8fxMTEwCqCz+XpkePHrh7967SH6Hc3Fxs374dbm5u8PDw0DgO8v9oYBEh1VTdunVx4MABBAUFoXHjxkojRW/duoUjR45g1KhRAIDmzZtj5MiR2L59OzIyMuDn54e7d+9i37596NevHzp37qzx/b28vCASibBq1SpkZmbCwMAAXbp0gb29fYnnzJ49Gz///DO6d++OadOmwdraGvv27UN8fDx++eUXCIWa1zH379+P58+fIy8vDwBw/fp1LF++HAAwYsSImlXr57qbDSGkYv79919m3LhxjJubGyMWixkzMzOmXbt2zMaNG5mCggL2uMLCQmbJkiWMu7s7o6+vz7i4uDBz5sxROoZhiroc9uzZU+U+fn5+jJ+fn1LZjh07mDp16jAikUipC2NJ12AYhnn69CkzaNAgxtLSkjE0NGR8fHyY06dPKx2jSbdFPz8/BoDal7oulbqM1hQlhBAdQW3ohBCiIyihE0KIjqCETgghOoISOiGE6AhK6IQQoiMooRNCiI6ghE4IITqCEjohhOgISuiEEKIjKKETQoiOoIROCCE6ghI6IYToCErohBCiI/4P87cM4/0WHb0AAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAInCAYAAACIkaKXAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAfbtJREFUeJzt3XdYU+fbB/BvEkjYe0pRUCuKqCj+QFyIRbDOOlrUKo66tQ5qW/eog2qr4sattbWu1q04cCtq1VJbBy4Qq4Cg7JGQ5Lx/UM9rTEDCyDmE+3NdufQ8Z91AuHnynGcIGIZhQAghpNoTch0AIYSQykEJnRBC9AQldEII0ROU0AkhRE9QQieEED1BCZ0QQvQEJXRCCNETlNAJIURPUEInhBA9QQm9CiQnJ2Pu3LlITk7mOhRCSA1CCb0KJCcnY968eZTQCSE6RQmdEEL0BCV0QgjRE5TQCSFET+h9Qr9w4QK6d++OWrVqQSAQ4MCBA+8959y5c2jRogUkEgnq16+Pbdu2VXmchBBSUXqf0PPy8tCsWTOsWbOmTMcnJCSga9euCAwMRFxcHCZNmoThw4fjxIkTVRwpIYRUjAHXAVS1jz/+GB9//HGZj4+KioK7uzuWLl0KAGjUqBEuXbqE5cuXIyQkpKrCJISQCtP7hK6t2NhYBAUFqZSFhIRg0qRJJZ4jlUohlUrZ7dzc3KoKr8JevXoFmUymk3vJ5XIIBALY2Njo5H6kcohEIuTm5ursfSIWi2Fra6uTe+k7SujvSElJgaOjo0qZo6MjsrOzUVBQAGNjY7VzIiIiMG/ePF2FWG6vXr3CmjVroOtVBzt06AAzMzOd3pOUH8MwOHbsmM7eJwKBAOPGjaOkXgn0vg1dF6ZNm4asrCz2df78ea5D0kgmk+k8mQOAQqHQ+T1J+cnlcp2+TxiG0dmnAX1HNfR3ODk5ITU1VaUsNTUVFhYWGmvnACCRSCCRSNjt6lAbFQgEVX4PWn+8+qvq9wm9RyoXr2voDMPgzJkzOH78OHJycnRyT39/f8TExKiUnTp1Cv7+/jq5PyGElBdvEvqMGTMQGBjIbjMMg+DgYHTq1Aldu3ZFkyZN8PjxY62vm5ubi7i4OMTFxQEo7pYYFxeHpKQkAMXNJWFhYezxo0ePxpMnT/DNN9/g/v37WLt2Lfbs2YPJkydX7AskhJAqxpuE/ttvv8HX15fd3rdvH2JiYrBgwQIcOXIECoUCc+fO1fq6N27cQPPmzdG8eXMAQHh4OJo3b47Zs2cDKJ5I601yBwB3d3ccPXoUp06dQrNmzbB06VJs2rSJuiwSQniPN23oz58/R/369dnt33//HZ6enpg2bRoAYMyYMVi3bp3W1+3QoUOp7XSaRoF26NABf/75p9b3IoQQLvGmhm5gYMD25WYYBjExMejcuTO739HREenp6VyFRwghvMebhO7l5YWff/4ZGRkZ2Lp1K169eoWuXbuy+58+fQo7OzsOIySEEH7jTZPL7Nmz0b17dzZpt2nTRuUh6dGjR/G///2Pq/AIIYT3eJPQO3XqhFu3buHUqVOwsrJCaGgouy8jIwPt27dHz549OYyQEEL4jTcJHQA8PT3h6empVm5tbY3ly5dzEBEhhFQfvEnoOTk5yMzMhKurK1v24sULREVFQSqVom/fvtTkQgghpeBNQh85ciQSEhJw9epVAEB2djZatWqFf//9F0KhECtWrEB0dDQ6dOjAbaCEEMJTvOnlcunSJXTr1o3d/vnnn/HixQtcuXIFGRkZaNq0KRYsWMBhhIQQwm+8Sejp6elwcXFhtw8dOoS2bduiVatWMDc3R1hYGP766y8OIySEEH7jTUK3srJCSkoKAKCgoAAXL15EcHAwu9/AwAD5+flchUcIIbzHmzb01q1bY+3atWjYsCGio6NRWFio0k3xwYMHKjV4QgghqniT0BcvXozg4GD06dMHAPDVV1+hcePGAIoXSNi7d6/KVACEEEJU8Sah169fH/Hx8bh79y4sLS3h5ubG7svPz8fq1avRrFkz7gIkhBCe401CBwBDQ0ONSdvc3JxGiRJCyHvw5qEoUNz3/Pvvv0dISAiaN2+O69evAwBev36NZcuW4dGjRxxHSAgh/MWbGvq///6LgIAAPHv2DB9++CHu37+P3NxcAICNjQ3Wr1+Pp0+fYsWKFRxHSggh/MSbhP71118jJycHcXFxcHBwgIODg8r+Tz75BEeOHOEoOkII4T/eNLmcPHkSEyZMgKenp8aVxuvWrYtnz55xEBkhhFQPvEnoBQUFsLe3L3F/Tk6ODqMhhJDqhzcJ3dPTExcuXChx/4EDB9iFngkhhKjjTUKfNGkSdu3ahcWLFyMrKwsAoFQq8ejRIwwaNAixsbGYPHkyx1ESQgh/8eah6MCBA/H06VPMnDkTM2bMAAB07twZDMNAKBRi0aJF+OSTT7gNkhBCeIw3CR0AZsyYgUGDBuG3337Do0ePoFQqUa9ePfTu3Rt169blOjxCCOE1XiV0AKhduzY1rRBCSDnwpg391q1bWLt2bYn7165di7i4ON0FRAgh1QxvEvqMGTNw+vTpEvefOXMGM2fOLNe116xZAzc3NxgZGcHPz4+dUqAkkZGR8PDwgLGxMVxdXTF58mQUFhaW696EEKIrvEnoN2/eRLt27Urc365dO9y4cUPr6+7evRvh4eGYM2cObt26hWbNmiEkJAQvX77UePzOnTsxdepUzJkzB/fu3cPmzZuxe/duTJ8+Xet7E0KILvEmoefk5MDAoOQmfaFQyHZn1MayZcswYsQIDB06FJ6enoiKioKJiQm2bNmi8fgrV66gTZs2GDBgANzc3BAcHIz+/fu/t1ZPCCFc481D0Q8//BAnT57El19+qXF/dHS01j1dZDIZbt68iWnTprFlQqEQQUFBiI2N1XhO69at8fPPP+P69evw9fXFkydPcOzYMQwaNKjE+0ilUkilUnb7zaRipJhAIIBQWHl1h7ev9+40EW9vv/n/2/+W9n9tXkKhsNTtd1+a7qMpDk3/avo6lfl5KHqZCnlGBpR5uWAU8op+W1nZykq7FNEx3iT0L774ApMnT0Z4eDhmz54NKysrAEBmZibmzZuH6Oho/PDDD1pdMz09HQqFAo6Ojirljo6OuH//vsZzBgwYgPT0dLRt2xYMw0Aul2P06NGlNrlERERg3rx5WsVWkzAMA6WycrOEQqGAUCiEgYEBDAwMYGhoCENDQ4jFYojFYkgkEhgZGZX6qa86UuRkozDhCeSv07kORc369euRm5sLMzMzjBo1iutwaiTevNsnTJiAuLg4REZGYuXKlahVqxYA4MWLF1AqlRg0aJBOujOeO3cOixYtwtq1a+Hn54dHjx5h4sSJmD9/PmbNmqXxnGnTpiE8PJzdjouLQ0BAQJXHWtMplUrIZDLIZLISjzE0NISxsTGMjY1hamoKU1NTiMViHUZZORilEtKEx5A+SwLAcB2ORrm5ucjOzuY6jBqNNwldIBBg69atCAsLw2+//YYnT54AAHr27Ik+ffqgQ4cOWl/Tzs4OIpEIqampKuWpqalwcnLSeM6sWbMwaNAgDB8+HADQpEkT5OXlYeTIkZgxY4bGpgOJRAKJRMJum5mZaR0rqRpFRUUoKipSSTSGhoYwMzODubk5zM3NYWRkxGGE76eUSpH/919Q5FKyJKXjTUJ/IzAwEIGBgZVyLbFYDB8fH8TExLDTBiiVSsTExGD8+PEaz8nPz1dL2iKRCEBx0wGp/oqKipCRkYGMjAwAxe8TS0tLWFpawsLCQuP0zVxR5OYi/3YclDLqNkvejzcJPSEhAf/88w+6d++ucf/hw4fRpEkTlcWjyyI8PByDBw9Gy5Yt4evri8jISOTl5WHo0KEAgLCwMLi4uCAiIgIA0L17dyxbtgzNmzdnm1xmzZqF7t27s4md6BeZTIa0tDSkpaVBKBTCysoK1tbWsLS05DS5K/JykffXLTBFJTcpEfI23iT0KVOmIDs7u8SEvmbNGlhZWWHXrl1aXTc0NBRpaWmYPXs2UlJS4O3tjejoaPZBaVJSkkqNfObMmRAIBJg5cyaeP38Oe3t7dO/eHQsXLiz/F0eqDaVSidevX+P169cQiUSwtraGra2tzpvRlAX5yIujZE60w5uEHhsbi0mTJpW4/6OPPkJkZGS5rj1+/PgSm1jOnTunsm1gYIA5c+Zgzpw55boX0R8KhQLp6elIT0+HkZER7OzsYGtrW+U9Zxi5HHl//0XJnGiNNwk9IyMD5ubmJe43MzPDq1evdBgRIf+vsLAQ//77L54/fw4bGxs4ODjAxMSk0u/DMAzy/7kNZX5epV+b6D/ejBStXbs2Ll++XOL+ixcv4oMPPtBhRISoYxgGr169wr179/DgwQNkZGRU6sNy6dMEyDNfV9r1SM3Cm4Tev39//Prrr1i5cqXKIBSFQoEVK1Zg9+7dGDBgAIcREqIqJycHT548wd9//40XL16ojBYuD3nGa0gTEyopOlIT8abJZdq0abh06RImTZqEhQsXwsPDAwAQHx+PtLQ0dOjQgV3JiBA+KSoqQnJyMpKTk2Fubg4bGxtYW1tr1SuKkctRcP8u+DpoiFQPvEnoEokEJ0+exPbt2/H777/j8ePHAABfX1/06dMHYWFhlTofCCFVIScnBzk5OUhKSoKFhQXb/fF9D1ILHz+EUsq/vubaNCeZmpqCYRj2X6J7vEnoQPHEWUOHDmX7iBNSXTEMg6ysLGRlZUEgEMDMzAwWFhawtLSEsbGxyrHyjNeQJT/X6voCgRAGtrYQWdlAZGoKQSX2vCnKyobg0hWtk3J5528RCATVcjoGPuJVQidEHzEMw9bcnz9/DgMDA3baARNjYygeaJ4oThOBgSHEH9SG5APXSk3ib7Mzt8C4ceNKnSOnMonFYtja2urkXvqONwm9Y8eO7z1GIBAgJiZGB9EQUnXkcjk79YD89Sso0tNgZGgAY0NDGBkawMjAAGIDAxi808Ro6OAIo/oeEOqgNksJtnriTUJXKpVqw6wVCgWePn2KZ8+eoX79+nBxceEoOkIqHyOXo+hVOsAwyJcVIV9WpLJfJBRCbCCCWGQAU/e6MLGxR352NkQiEQwMDCAUCtl52CuTUCgEXr8Co6M2fYHECGInZ53cS9/xJqG/O2LzbUeOHMHIkSOxbNky3QVESBUrSk8DSpknXqFUokAhhMLJETKFEhnPtWtnLy8jeREkUSt0cq83akcso6ReCapFt5Fu3bph4MCBpU4NQEh1opRKoXjfkooiA0hca0P0zkPUKldU9P5jNOh1+ATa7jmIXodPaH2urj4N6LtqkdABoF69evjjjz+4DoOQSiFPT0Opfc6FQkhca0P41jz7nBAIyvxKKyhEan4B0goKy34eqVTVIqHL5XLs2bMHdnZ2XIdCSIUpCwqgyM0p+QCBAGKXD7hP5qTa4U0b+rBhwzSWZ2Zm4urVq0hJSaE2dKIXil6Vvh6ooYMTRCamOoqG6BPeJPQzZ85oXMHd2toabdu2xfDhwxEcHMxRdIRUDmVhAZR5uSXuF1lYwuC/BdIJ0RZvEnpiYiLXIRBS5eSlTAEtEEtg6Kh5rVtCyqJatKETog+UUmnJbecCAcS1akFA8xWRCuD03ZOfn4+kpCSNQ4y3bNmCjz76CJ6enujduzf1cCHVnjyj5HnODWxsIZQY6TAaoo84TejfffcdmjZtqpbQFyxYgBEjRuD8+fNIS0vDgQMH0KFDB/z1118cRUpIxTByORTZmvudCyUSGNhSDy5ScZwm9LNnz6Jbt24qC/BmZ2djwYIFcHFxwcOHD5GWloarV69CLBbj+++/5zBaQspPnpEBlDB7oYGjU6UP3yc1E6cJPTExEU2bNlUpO3bsGGQyGb799lu4u7sDKJ4TfejQobh48SIXYRJSIQzDQJ6VqXGfyMISIuPKX5uU1Eyc9nLJyclRm9XtwoULEAgECAkJUSn39PREWlqaLsMjpFIosrMAhVx9h1AIQ3sH3QdURez/m6LAXtdTFRAWpwm9Tp06uH9fdS7oc+fOwdHREfXr11cpl8lksLCw0GV4hFQKRWaGxnJDG7sqm9OcC/t7hLz/IFKlOG1yCQ4OxpYtW3Dt2jUAwE8//YT79++jV69easfevHkTbm5uOo6QkIpRFORDWag+8ZTAwBAia2sOIiL6jNOEPmvWLJiZmaF169YQi8UYMmQI7O3tMXv2bJXj8vPzsX//fnz00UccRUpI+SgyMzWWG9jaUZ9zUuk4/bxnZ2eHuLg4bNq0CU+ePEGdOnUwbNgwODiotiv+888/+PzzzzFo0CCOIiVEe4xCoXEgkUAsgcjSkoOIiL7jvIpgbW2Nr7/+GuvWrcPUqVPVkjlQ3Mtl1apVaNy4cbnusWbNGri5ucHIyAh+fn64fv16qcdnZmZi3LhxcHZ2hkQiQYMGDXDs2LFy3ZvUXIqcLI0LWBjY2FI3RVIl9OeJTAl2796N8PBwREVFwc/PD5GRkQgJCUF8fLzGPx4ymQydOnWCg4MD9u3bBxcXFzx9+hRWNGES0ZKm5haBWAwRPdwnVUTvE/qyZcswYsQIDB06FAAQFRWFo0ePYsuWLZg6dara8Vu2bMHr169x5coVGBoaAgA9jCVaUxYUQCmVqpVT7ZxUJc6bXKqSTCbDzZs3ERQUxJYJhUIEBQUhNjZW4zmHDh2Cv78/xo0bB0dHR3h5eWHRokVQKBQl3kcqlSI7O5t95eaWPD0qqRnkGob5CwwNIbKgtnNSdfQ6oaenp0OhUMDR0VGl3NHRESkpKRrPefLkCfbt2weFQoFjx45h1qxZWLp0KRYsWFDifSIiImBpacm+AgICKvXrINULwzBQ5GSrlRtY2VDtnFQpzhL6oUOH8OLFC65uXyKlUgkHBwds2LABPj4+CA0NxYwZMxAVFVXiOdOmTUNWVhb7On/+vA4jJnyjzM0B3v1EJxRSzxZS5ThL6L169cK5c+fY7bp16+LQoUOVeg87OzuIRCKkpqaqlKempsLJSfNCAs7OzmjQoAFEIhFb1qhRI6SkpGic5hcAJBIJLCws2Nfbk42Rmkeepd7cYmBlDcFb7ylCqgJnCd3c3ByZb/UCSExMrPS2Z7FYDB8fH8TExLBlSqUSMTEx8Pf313hOmzZt8OjRIyjf6m724MEDODs7QywWV2p8RP8wcjmU+XmqhQIBDGhUKNEBznq5+Pr6YuHChUhNTYXlfx9Fjx07VmLbNlC8xujkyZO1uk94eDgGDx6Mli1bwtfXF5GRkcjLy2N7vYSFhcHFxQUREREAgDFjxmD16tWYOHEivvzySzx8+BCLFi3ChAkTyvmVkppEkZutNk2uyMwcAgNDjiIiNQlnCX3t2rUICwvD/PnzARQn6507d2Lnzp0lnlOehB4aGoq0tDTMnj0bKSkp8Pb2RnR0NPugNCkpCcK3hmC7urrixIkTmDx5Mpo2bQoXFxdMnDgR3377bTm+SlLTKLLVR4aKrKh2TnSDs4Rev359XLlyBYWFhXj58iXc3NwQGRmJnj17Vvq9xo8fj/Hjx2vc93Y7/hv+/v64evVqpcdB9BtTVARlQb5KmVBiBJEJzXdOdIPzgUVGRkaoXbs25syZg44dO6JOnTpch0RIuWjqqki1c6JLnCf0N+bMmcP+Pzc3F8+ePQNQ3ARCvUZIdaCW0IVCiMzNuQmG1Ei8Glj0xx9/IDAwENbW1vDy8oKXlxesra3RsWNH3Lhxg+vwCCkRI5OpzXsuMregropEp3hTQ7927Ro6dOgAsViM4cOHo1GjRgCAe/fu4ddff0X79u1x7tw5+Pr6chwpIeoUORoehlpa6T4QUqPxJqHPmDEDLi4uuHTpktqgn7lz56JNmzaYMWMGTp06xVGEhJRMkava3CKUSCCitTWJjvGmyeXatWsYNWqUxhGcjo6OGDlyJPU8IbyksbnFwoqbYEiNxpuELhQKIZdrWBn9PwqFQqW/OCF8obYqkUBAc54TTvAmQ7Zu3Rpr1qzB06dP1fYlJSVh7dq1aNOmDQeREVK6d9vPhaZmEBjwpjWT1CC8edctWrQI7du3R8OGDdGrVy80aNAAABAfH4+DBw/CwMCAHZ5PCF8wcjmUhQUqZQY05znhCG8SevPmzXHt2jXMmDEDhw4dQn5+8Yg7ExMTdO7cGQsWLICnpyfHURKiSq25RSSCkMZNEI7wJqEDgKenJ/bv3w+lUom0tDQAgL29PbWdE956N6GLzMxpEQvCGV4l9DeEQqHaKkOE8A2jUECZrzp3Cz0MJVyiqi8h5aTMz1WZKldgYAihMU3ERbhDCZ2QclK8syCLyNyCmlsIpyihE1IODMNAkae6MhFNxEW4RgmdkHJQFhSoLAQtMDSEkIb6E45RQiekHJR56s0thHCNd71c7t69iydPniAjIwPMO2szAsVrgBLCNbX2czNqbiHc401Cf/z4MQYOHIjr169rTORA8ZqilNAJ1xiZDIxMym5TcwvhC94k9FGjRuHvv/9GZGQk2rVrB2trWrqL8JN67ZyaWwg/8CahX758GdOnT8eXX37JdSiElOrd0aFC6t1CeII3D0Xt7OxgaUmTGhF+Y+Ty4h4u/xEYGNBCFoQ3eJPQR48ejZ9//hmKt7qCEcI3irxcAP//jEdoShNxEf7gTZNLgwYNoFAo0KxZMwwbNgyurq4QaVhgt3fv3hxER0gxJfVuITzGm4QeGhrK/n/KlCkajxEIBFSDJ5xhlEoo8t8aHSoUQmhqyl1AhLyDNwn97NmzVXbtNWvW4IcffkBKSgqaNWuGVatWwdfX973n7dq1C/3790fPnj1x4MCBKouPVA/KvDxAqWS3RWZmNHcL4RXeJPSAgIAque7u3bsRHh6OqKgo+Pn5ITIyEiEhIYiPj4eDg0OJ5yUmJmLKlClo165dlcRFqh9FbrbKNrWfE77hzUPRt929exfHjx/H8ePHcffu3Qpda9myZRgxYgSGDh0KT09PREVFwcTEBFu2bCnxHIVCgc8//xzz5s1D3bp1K3R/oh8YhlHtfy4QQEQJnfAMrxL6wYMHUa9ePTRp0gTdunVDt27d0KRJE9SvXx+HDh3S+noymQw3b95EUFAQWyYUChEUFITY2NgSz/vuu+/g4OCAL774okz3kUqlyM7OZl+57zw4I9WfMjdXpblFaGQMgYaH9oRwiTdNLseOHUOfPn1Qp04dLFq0CI0aNQIA3Lt3Dxs2bEDv3r1x5MgRdO7cuczXTE9Ph0KhUFv9yNHREffv39d4zqVLl7B582bExcWV+T4RERGYN29emY8n1c+7zS0iWjeU8BBvEvr8+fPRtGlTXLx4EaZv9Rzo0aMHxo8fj7Zt22LevHlaJXRt5eTkYNCgQdi4cSPs7OzKfN60adMQHh7ObsfFxVXZMwGie2rNLaD2c8JPvEnot2/fxqJFi1SS+RumpqYYMmQIpk+frtU17ezsIBKJkJqaqlKempoKJycnteMfP36MxMREdO/enS1T/vcx28DAAPHx8ahXr57aeRKJBBKJhN02o9qbXnm3uUVgKIbwrZ83IXzBmzZ0IyMjvH79usT9r1+/hpGRkVbXFIvF8PHxQUxMDFumVCoRExMDf39/teMbNmyIv//+G3FxceyrR48eCAwMRFxcHFxdXbW6P9EPiuwslW0h/cEmPMWbGnrHjh2xYsUKdO7cWS3ZXrt2DStXrkRwcLDW1w0PD8fgwYPRsmVL+Pr6IjIyEnl5eRg6dCiA4vnVXVxcEBERASMjI3h5eamcb2VlBQBq5aRmYBSK/4b7/z8aHUr4ijcJfcmSJfD390fbtm3h6+sLDw8PAEB8fDyuX78OBwcHLF68WOvrhoaGIi0tDbNnz0ZKSgq8vb0RHR3NPihNSkqCUMibDyqEZxS5OcDb8/OLDGjuc8JbvEno7u7uuH37NiIiInD8+HHs3r0bAFCnTh1MnDgRU6dOLXUgUGnGjx+P8ePHa9x37ty5Us/dtm1bue5J9IMiR713C40OJXzFm4QOAA4ODli+fDmWL1/OdSiEFE+Vm5evUkbdFQmfUVsDISUofhj6VnOLUEjdFQmvcVZDHzZsGAQCATZs2ACRSIRhw4a99xyBQIDNmzfrIDpCAEWWau8WkSk1txB+4yyhnzlzBkKhEEqlEiKRCGfOnHnvLwv9MhFdURYUQPnWQtAAIKKl5gjPcZbQExMTS90mhEvyHNXaOTW3kOqAN23oSUlJKHhrrcZ3FRQUICkpSYcRkZqKUSrVm1tMTCGg7q2E53jzDnV3d8f+/ftL3H/o0CG4u7vrMCJSUylyslWG+gOAyIKaWwj/8SahM28P3tCgqKiIBgARnXi3dl7c3EIJnfAfp/3Qs7OzkZmZyW6/evVKY7NKZmYmdu3aBWdnZx1GR2oipVQKZYF633NqbiHVAacJffny5fjuu+8AFPdgmTRpEiZNmqTxWIZhsGDBAh1GR2oieVaGWpnI3IKDSAjRHqcJPTg4GGZmZmAYBt988w369++PFi1aqBwjEAhgamoKHx8ftGzZkqNISU3AKBTqzS0iEfVuIdUGpwnd39+fnVkxLy8Pffr0oVkNCWcUOVnqD0PNzGn8A6k2eDGXS35+PlauXAkTExNK6IQz8oxMtTKRhaXuAyGknHjxpMfExAQGBgYaVysiRBcUublg3hkZKjA0hMjEhKOICNEeLxI6APTp0wf79u17b/dFQqqCPOOVWhnVzkl1w4smFwDo168fxo4di8DAQIwYMQJubm4w1rCQwLsPTQmpKGVhAZT5+WrlBpTQSTXDm4TeoUMH9v8XL15U288wDAQCARQKhQ6jIjWBPEN9LVuhsQkEYjEH0RBSfrxJ6Fu3buU6BFIDMTIZFDk5auUiS6qdk+qHNwl98ODBXIdAaqCi169U1wwFAKGQBhORaok3Cf1tubm5ePbsGQDA1dUVZrTsF6kCjEz236pEqkQWljTUn1RLvHrX/vHHHwgMDIS1tTW8vLzg5eUFa2trdOzYETdu3OA6PKJnNNbOARhQcwuppnhTQ7927Ro6dOgAsViM4cOHo1GjRgCAe/fu4ddff0X79u1x7tw5+Pr6chwp0QfKEmrnQiMjCI3Ue1cRUh3wJqHPmDEDLi4uuHTpEpycnFT2zZ07F23atMGMGTNw6tQpjiIk+kSe9lJj7VxkZc1BNIRUDt40uVy7dg2jRo1SS+YA4OjoiJEjR+Lq1ascREb0jaKgAIpc9Z4tEBnQYCJSrfEmoQuFQsjl8hL3KxQKWuCCVAp52kuN5QaWljQRF6nWeJMhW7dujTVr1uDp06dq+5KSkrB27Vq0adOGg8iIPpFnZaotYFFMAANqbiHVHG8S+qJFi5CVlYWGDRtiwIABmDt3LubOnYv+/fujYcOGyMrKQkRERLmuvWbNGri5ucHIyAh+fn64fv16icdu3LgR7dq1g7W1NaytrREUFFTq8aT6YBQKyNPTNO4TWZhDYGio44gIqVy8eSjavHlzXLt2DTNmzMChQ4eQ/9/cGiYmJujcuTMWLFgAT09Pra+7e/duhIeHIyoqCn5+foiMjERISAji4+Ph4OCgdvy5c+fQv39/tG7dGkZGRli8eDGCg4Nx584duLi4VPjrJNwpepUGpoRmPQNrGx1HQ0jl401CBwBPT0/s378fSqUSaWnFNSl7e/sKtZ0vW7YMI0aMwNChQwEAUVFROHr0KLZs2YKpU6eqHf/LL7+obG/atAm//fYbYmJiEBYWVu44qrP169cjNzcXZmZmGDVqFNfhlIsiPx+KDPXl5QBAaGJCXRWJXuBNk8vbBAKByqu8ZDIZbt68iaCgILZMKBQiKCgIsbGxZbpGfn4+ioqKYGNTcg1OKpUiOzubfeXm5pY7Zj7Kzc2t1l8Xo1SiKDW5xP0G1rY6jIaQqsOrhH737l307dsXFhYWcHZ2hrOzMywsLNC3b1/8888/Wl8vPT0dCoUCjo6OKuWOjo5ISUkp0zW+/fZb1KpVS+WPwrsiIiJgaWnJvgICArSOlVSdopepYGQyjfuERkYQ0dQSRE/wpsnl4sWL+Pjjj6FUKtGzZ080aNAAABAfH49Dhw7h+PHjiI6ORrt27XQW0/fff49du3bh3LlzMDIyKvG4adOmITw8nN2Oi4ujpM4TipwsKLIyS9xvYGOnu2AIqWK8SeiTJ0+Gg4MDzp8/D1dXV5V9z549Q/v27REeHo4//vijzNe0s7ODSCRCamqqSnlqaqrGAUxv+/HHH/H999/j9OnTaNq0aanHSiQSSCQSdpsmE+MHpVQKWSmfxIQSI4jMzXUYESFVizdNLnfu3MHYsWPVkjlQPOPimDFjcOfOHa2uKRaL4ePjg5iYGLZMqVQiJiYG/v7+JZ63ZMkSzJ8/H9HR0WjZsqVW9yT8wMjlkD1/BiiVJR5jYEu1c6JfeFNDr1OnDqRSaYn7ZTKZxmT/PuHh4Rg8eDBatmwJX19fREZGIi8vj+31EhYWBhcXF7aP++LFizF79mzs3LkTbm5ubFu7mZkZ1byrCUahgOzFczBFRSUeIzQypto50Tu8SeizZ8/G5MmT0bVrV3h7e6vs+/PPP7Fq1SpERkZqfd3Q0FCkpaVh9uzZSElJgbe3N6Kjo9kHpUlJSSrdItetWweZTIa+ffuqXGfOnDmYO3eu1vcnusUolZA9/7eE0aD/z8BefQwCIdUdbxL61atX4ejoCB8fH7Ru3Rr169cHADx8+BCxsbHw8vJCbGysSndDgUCAFStWvPfa48ePx/jx4zXuO3funMp2YmJiub+G6oTRMNNgSUxNTcEwDPsvXzFyOWQvnr83mQtNzSAyMdFRVIToDm8S+urVq9n/X758GZcvX1bZ//fff+Pvv/9WKStrQifFxGIxBAKB1km5ooOJGjRoUGo/fm0wDAOlUgmlUgmFQgGFQgG5XI7C7GzkPnwAgbwIMqEQipLazgUCGFLtnOgp3iR0ZSkPr0jlsLW1xbhx4yAroU92VRCLxbC1rdqBO9JnSZCmvoCNmTFgVjziU6FUQiqXQypXoFAuR0FREQqL5BBYWUP4Vo8kQvQJbxI60Y2qTq66VJT2EtLEBCjy1Oc2FwmFMBGLYSL+/zKh2AgGTb2RL5UiNzcXOTk5pT6IJ6S64V1CT0hIwPHjx9lpdOvUqYOPP/4Y7u7uHEemH2QpyWCkhTq5FyOXAyIRDB1K7/NfZkollPl5kGdnQZ72Ekotvw6jDxvA0MwMxmZm7B82mUymMm2DQqGonFgJ4QCvEvpXX32FFStWqDW/CIVCTJo0CT/++CNHkekHWUoykqaFv//AyvJfW71Nr08h4njhZUMHJ41t52KxGHZ2drCzswPDMMjJyUFmZiYyMzNRVEq3R0L4iDcDi5YuXYrly5ejd+/eiI2NZX+pYmNj0bdvXyxfvhzLly/nOsxqrbw1816HT6DtnoPodfhE+e5bykpUuiAwFMOofoP3HycQwMLCArVr10aTJk3QoEED2NraQiQS6SBKQiqONzX0jRs3okePHtizZ49KuZ+fH3bt2oXCwkKsX78ekydP5ihCPaPFLJZpBYVIzS/Q+jxNizDrngAmjRpDKBa//9C3zxIIYG5uDnNzcyiVSmRmZiI9PR05ORrWIiWEJ3hTQ09MTERISEiJ+0NCQmpMH3FSeSS13WBgU7EHwUKhEDY2NmjQoAEaN24MBwcHqrUTXuJNDd3BwQF//fVXifv/+usv2Nvb6zAiUt0ZWNtC4l63Uq9pZGQEV1dX1KpVC69evUJaWhoKC3XzkJmQ9+FNDf3TTz/Fpk2b8P333yMvL48tz8vLw+LFi7Fp0yaEhoZyGCGpTkSmZjBp3KRCC6SUen2RCA4ODmjcuDE7cKqq7kVIWfGmhj5//nzExcVh+vTpmD17NmrVqgUAePHiBeRyOQIDA/Hdd99xHCWpDoQSI5g08YbAQDdv7zdt7bVr18br16/x+vXraru6E6neeJPQTUxMEBMTg4MHD6r0Q+/cuTO6dOmC7t27Uw2IvJdQYgRTbx8IS1mQpKqIRCLY29vD3t4eMpkMmZmZyMjIoOROdIYXCT0/Px8DBw5Enz598Pnnn6Nnz55ch0SqIZGpOUyaNOMkmb9LLBbDwcEBDg4OkMvlyMrKQlZWFnJyciDnuBsn0V+8SOgmJiY4ffo0Pv74Y65DIRrYGxur/MtHhvaOMPZopLNmFm0YGBjA1taWHZ2an5/PTj2Ql5dHA5hIpeHNu79t27aIjY3FiBEjuA6FvGN/j5K7k3LtzaAhsWMlTS+gAyYmJjAxMYGDQ/HIVZlMhvz8fOTn56OgoAAFBQWQyWS8nqqY8BNvEvrq1asREhKCmTNnYvTo0fjggw+4DonwmFBsBLHLBxC7fMDLWrk2xGIxDA0MYGlhwQ7GYpRKSKVSyGQyyKRSyIqKUFRUBLlcDrlcDsV/UwgrlcrixF+JyV8I+kNSXfHmN6FZs2aQy+WIiIhAREQEDAwMVBZeBopH72VlZXEUISk3AxEEhoYVv45ACKGxMURm5uzycUXpL8Hmn3eTGsOAAVO8n93HAEoGAPNf0X/JkH0BDKNUKWNU9ivBKP///2AYlW2G+f/raz7/vzI23vcnT/F/L11hZDKk6/B+pPLwJqH36dOHerHoK7mi1PU9taGQSaHIyqyUaxGib3iT0Ldt28Z1CIQQUq1xntALCwtx8OBBJCQkwM7ODl27doWzszPXYRFCSLXDaUJ/+fIlWrdujYSEBPaJvomJCQ4cOICgoCAuQyOEkGqH07lc5s+fj8TEREyePBlHjhxBZGQkjI2NK7woMSGE1ESc1tBPnjyJsLAwlZWIHB0dMWDAAMTHx8PDw4PD6AghpHrhtIaelJSEtm3bqpS1bdsWDMMgNTWVo6gIIaR64jShS6VSGL0z78abbZrvghBCtMP5fOiJiYm4desW+7p9+zYA4OHDhyrlb17lsWbNGri5ucHIyAh+fn64fv16qcfv3bsXDRs2hJGREZo0aYJjx46V676EEKJLnHdbnDVrFmbNmqVWPnbsWJVthmEgEAigUCi0uv7u3bsRHh6OqKgo+Pn5ITIyEiEhIYiPj2fn0njblStX0L9/f0RERKBbt27YuXMnPvnkE9y6dQteXl7afXGEEKJDnCb0rVu3Vvk9li1bhhEjRmDo0KEAgKioKBw9ehRbtmzB1KlT1Y5fsWIFOnfujK+//hpAcU+cU6dOYfXq1YiKiqryeAkhpLw4TeiDBw+u0uvLZDLcvHkT06ZNY8uEQiGCgoIQGxur8ZzY2FiEh4erlIWEhODAgQMl3kcqlUIqlbLb1WJBA5rJj5QFvU+qFc6bXKpSeno6FAoFHB0dVcodHR1x//59jeekpKRoPD4lJaXE+0RERGDevHkVD7iKCSTcLPwgqf8hDO1oge/qQpGVrfN7cvXe1Dd6ndB1Zdq0aSq1+ri4OAQEBHAYkWZiJ2fUjlgGRqq7VeoFEiOInWgqh2rFBTp9n9B7pPLodUK3s7ODSCRS69OempoKJyfNCyI4OTlpdTwASCQSlal+zczMKhB11aJfHFIW9D6pnjjvtliVxGIxfHx8EBMTw5YplUrExMTA399f4zn+/v4qxwPAqVOnSjyeEEL4Qq9r6AAQHh6OwYMHo2XLlvD19UVkZCTy8vLYXi9hYWFwcXFBREQEAGDixIkICAjA0qVL0bVrV+zatQs3btzAhg0buPwyCCHkvfQ+oYeGhiItLQ2zZ89GSkoKvL29ER0dzT74TEpKglD4/x9UWrdujZ07d2LmzJmYPn06PvzwQxw4cID6oBNCeE/A0Eq0le7WrVvw8fHBzZs30aJFC67DIYTUEHrdhk4IITUJJXRCCNETet+GTipHcnIykpOTuQ6D8JyzszMtIckhSuhVwNnZGXPmzNGbN7ZUKkX//v1x/vx5rkMhPBcQEIATJ06ojMsgukMPRcl7ZWdnw9LSEufPn+f1oCnCrdzcXAQEBCArKwsWFhZch1MjUQ2dlJm3tzf9opISZWfrfg4YoooeihJCiJ6ghE4IIXqCEjp5L4lEgjlz5tCDLlIqep9wjx6KEkKInqAaOiGE6AlK6IQQoicooRNCiJ6ghE50KjExEQKBANu2beM6FEL0DiV0Hnv8+DFGjRqFunXrwsjICBYWFmjTpg1WrFiBgoKCKrvv3bt3MXfuXCQmJlbZPcpi4cKF6NGjBxwdHSEQCDB37lxO46nuBAJBmV7nzp2r8L3y8/Mxd+5cra5FP++Ko5GiPHX06FF8+umnkEgkCAsLg5eXF2QyGS5duoSvv/4ad+7cqbJVlO7evYt58+ahQ4cOcHNzq5J7lMXMmTPh5OSE5s2b48SJE5zFoS927Nihsv3TTz/h1KlTauWNGjWq8L3y8/Mxb948AECHDh3KdA79vCuOEjoPJSQkoF+/fqhTpw7OnDmjMsnXuHHj8OjRIxw9epTDCP8fwzAoLCyEsbFxpV87ISEBbm5uSE9Ph729faVfv6YZOHCgyvbVq1dx6tQptXKu0M+74qjJhYeWLFmC3NxcbN68WeOMjfXr18fEiRPZbblcjvnz56NevXqQSCRwc3PD9OnTIZVKVc5zc3NDt27dcOnSJfj6+sLIyAh169bFTz/9xB6zbds2fPrppwCAwMBAtY/hb65x4sQJtGzZEsbGxli/fj0A4MmTJ/j0009hY2MDExMTtGrVqkJ/eLj8dFBTKZVKREZGonHjxjAyMoKjoyNGjRqFjIwMleNu3LiBkJAQ2NnZwdjYGO7u7hg2bBiA4uckbxLyvHnz2PfQ+5pQ6OddcVRD56HDhw+jbt26aN26dZmOHz58OLZv346+ffviq6++wrVr1xAREYF79+5h//79Ksc+evQIffv2xRdffIHBgwdjy5YtGDJkCHx8fNC4cWO0b98eEyZMwMqVKzF9+nT24/fbH8Pj4+PRv39/jBo1CiNGjICHhwdSU1PRunVr5OfnY8KECbC1tcX27dvRo0cP7Nu3D7169aq8bxCpMqNGjcK2bdswdOhQTJgwAQkJCVi9ejX+/PNPXL58GYaGhnj58iWCg4Nhb2+PqVOnwsrKComJifj9998BAPb29li3bh3GjBmDXr16oXfv3gCApk2bcvml1QwM4ZWsrCwGANOzZ88yHR8XF8cAYIYPH65SPmXKFAYAc+bMGbasTp06DADmwoULbNnLly8ZiUTCfPXVV2zZ3r17GQDM2bNn1e735hrR0dEq5ZMmTWIAMBcvXmTLcnJyGHd3d8bNzY1RKBQMwzBMQkICA4DZunVrmb4+hmGYtLQ0BgAzZ86cMp9D3m/cuHHM2yng4sWLDADml19+UTkuOjpapXz//v0MAOaPP/4o8doV+ZnRz7v8qMmFZ95MQWpubl6m448dOwYACA8PVyn/6quvAECtycPT0xPt2rVjt+3t7eHh4YEnT56UOUZ3d3eEhISoxeHr64u2bduyZWZmZhg5ciQSExNx9+7dMl+fcGPv3r2wtLREp06dkJ6ezr58fHxgZmaGs2fPAgCsrKwAAEeOHEFRURGHEZN3UULnmTfzjefk5JTp+KdPn0IoFKJ+/foq5U5OTrCyssLTp09VymvXrq12DWtra7U20tK4u7trjMPDw0Ot/E1TzbtxEP55+PAhsrKy4ODgAHt7e5VXbm4uXr58CaB4VaI+ffpg3rx5sLOzQ8+ePbF161a1ZzZE96gNnWcsLCxQq1Yt/PPPP1qdJxAIynScSCTSWM5oMUdbVfRoIdxTKpVwcHDAL7/8onH/mwedAoEA+/btw9WrV3H48GGcOHECw4YNw9KlS3H16lVa1YpDlNB5qFu3btiwYQNiY2Ph7+9f6rF16tSBUqnEw4cPVR5cpqamIjMzE3Xq1NH6/mX94/BuHPHx8Wrl9+/fZ/cTfqtXrx5Onz6NNm3alOmPdqtWrdCqVSssXLgQO3fuxOeff45du3Zh+PDh5XoPkYqjJhce+uabb2Bqaorhw4cjNTVVbf/jx4+xYsUKAECXLl0AAJGRkSrHLFu2DADQtWtXre9vamoKAMjMzCzzOV26dMH169cRGxvLluXl5WHDhg1wc3ODp6en1nEQ3frss8+gUCgwf/58tX1yuZx9P2RkZKh9ovP29gYAttnFxMQEgHbvIVJxVEPnoXr16mHnzp0IDQ1Fo0aNVEaKXrlyBXv37sWQIUMAAM2aNcPgwYOxYcMGZGZmIiAgANevX8f27dvxySefIDAwUOv7e3t7QyQSYfHixcjKyoJEIkHHjh3h4OBQ4jlTp07Fr7/+io8//hgTJkyAjY0Ntm/fjoSEBPz2228QCrWvO+zYsQNPnz5Ffn4+AODChQtYsGABAGDQoEFU669kAQEBGDVqFCIiIhAXF4fg4GAYGhri4cOH2Lt3L1asWIG+ffti+/btWLt2LXr16oV69eohJycHGzduhIWFBVvBMDY2hqenJ3bv3o0GDRrAxsYGXl5e8PLyKvH+9POuBFx3syEle/DgATNixAjGzc2NEYvFjLm5OdOmTRtm1apVTGFhIXtcUVERM2/ePMbd3Z0xNDRkXF1dmWnTpqkcwzDFXQ67du2qdp+AgAAmICBApWzjxo1M3bp1GZFIpNKFsaRrMAzDPH78mOnbty9jZWXFGBkZMb6+vsyRI0dUjtGm22JAQAADQONLU5dKop13uy2+sWHDBsbHx4cxNjZmzM3NmSZNmjDffPMN8+LFC4ZhGObWrVtM//79mdq1azMSiYRxcHBgunXrxty4cUPlOleuXGF8fHwYsVhcpm6I9POuOFqxiBBC9AS1oRNCiJ6ghE4IIXqCEjohhOgJSuiEEKInKKETQoieoIRejS1ZsgQNGzaEUqnkOpQK69evHz777DOuw9BL9D6pQbjuN0nKJysri7GxsWG2bNnCluG/Prs//vij2vFbt25975Sn5RUUFMQAYMaNG6dx/6ZNm5iGDRsyEomEqV+/PrNy5Uq1Y27dusUIhUImLi6u0uOryeh9UrNQDb2a2rJlC+RyOfr376+274cffmBH21W133//XWW4/7vWr1+P4cOHo3Hjxli1ahX8/f0xYcIELF68WOW45s2bo2XLlli6dGlVh1yj0PukhuH6Lwopn6ZNmzIDBw5UKQPAeHt7MwCYpUuXquyrippXQUEB4+bmxnz33Xcaa175+fmMra2t2sjSzz//nDE1NWVev36tUv7jjz8ypqamTE5OTqXFWNPR+6RmoRp6NZSQkIDbt28jKChIbV+bNm3QsWNHLFmyBAUFBVUax5IlS6BUKjFlyhSN+8+ePYtXr15h7NixKuXjxo1DXl6e2uIbnTp1Ql5eHk6dOlVlMdck9D6peSihV0NXrlwBALRo0ULj/rlz5yI1NRXr1q0r9TpSqVRlZZrSXu9KSkrC999/j8WLF5c41eqff/4JAGjZsqVKuY+PD4RCIbv/DU9PTxgbG+Py5culxk3Kht4nNQ/NtlgNvZljXNPKQQDQrl07BAYG4ocffsCYMWNK/EX69ddfMXTo0DLdk3lnyp+vvvoKzZs3R79+/Uo8Jzk5GSKRSG2WRrFYDFtbW7x48UKl3MDAAK6urrRcXSWh90nNQwm9Gnr16hUMDAxKXRlm7ty5CAgIQFRUFCZPnqzxmJCQkHJ9bD179ix+++03XLt2rdTjCgoKIBaLNe4zMjLS+FHf2tpaY02PaI/eJzUPJXQ91b59ewQGBmLJkiUYPXq0xmOcnZ3h7Oys1XXlcjkmTJiAQYMG4X//+1+pxxobG0Mmk2ncV1hYqLFGyDAMrXajQ/Q+0S+U0KshW1tbyOVy5OTkwNzcvMTj5syZgw4dOmD9+vXsSu1vKygoQFZWVpnu6eTkBAD46aefEB8fj/Xr1yMxMVHlmJycHCQmJsLBwQEmJiZwdnaGQqHAy5cvVT5Oy2QyvHr1CrVq1VK7T0ZGBj788MMyxURKR++TmoceilZDDRs2BFDci6E0AQEB6NChAxYvXqzxY+vu3bvZ2tf7Xm8kJSWhqKgIbdq0gbu7O/sCin+J3d3dcfLkSQD/vyzZjRs3VO5748YNKJVKdv8bcrkcz549U1kblZQfvU9qHqqhV0NvFo6+ceMGmjZtWuqxc+fORYcOHbBhwwa1feVpG+3Xr5/aLxgA9OrVC126dMGIESPg5+cHAOjYsSNsbGywbt06dmkyAFi3bh1MTEzU1ju9e/cuCgsL0bp1a61iIprR+6QG4rYbPCkvLy8vpn///iplKGFY9dtLe1XFkO7S7r1mzRoGANO3b19m48aNTFhYGAOAWbhwodqxP/74I2NiYsJkZ2dXSYw1Eb1PahZK6NXUsmXLGDMzMyY/P58tK+mX5ezZs5z9ojJM8RqVHh4ejFgsZurVq8csX76cUSqVasf5+fmpjWokFUPvk5qF1hStprKyslC3bl0sWbIEX3zxBdfhVFhcXBxatGiBW7duafyoTsqH3ic1CyX0amzx4sXYunUr7t69C6Gwej/f7tevH5RKJfbs2cN1KHqH3ic1ByV0QgjRE9X7zzUhhBAWJXRCCNETlNAJIURPUEInhBA9QQmdEEL0BCV0QgjRE5TQCSFET1BCJ4QQPUEJnRBC9AQldEII0ROU0AkhRE9QQieEED1BCZ0QQvQEJfQqkJycjLlz5yI5OZnrUAghNQgl9CqQnJyMefPmUUInhOgUJXRCCNETlNAJIURPUEInhBA9QQmdEEL0BCV0QgjRE5TQCSFET1BCJ4QQPUEJnRBSaYqKirgOoUajhE4IqTRyuZzrEGo0SuiEkEqjVCq5DqFGo4ROCKk0lNC5xcuEnpycjL/++gt5eXlch0II0QIldG7xKqEfPHgQDRs2xAcffIAWLVrg2rVrAID09HQ0b94cBw4c4DZAQkipqA2dW7xJ6IcPH0bv3r1hZ2eHOXPmgGEYdp+dnR1cXFywdetWDiMkhLwPJXRu8Sahf/fdd2jfvj0uXbqEcePGqe339/fHn3/+yUFkhJCyooTOLd4k9H/++QefffZZifsdHR3x8uVLHUZECNEWJXRu8Sahm5iYlPoQ9MmTJ7C1tdVhRIQQbclkMq5DqNF4k9ADAwOxfft2jX/hU1JSsHHjRgQHB3MQGSGkrCihc4s3CX3hwoX4999/8b///Q/r16+HQCDAiRMnMHPmTDRp0gQMw2DOnDlch0kIKQUldG7xJqF7eHjg0qVLsLW1xaxZs8AwDH744QcsWrQITZo0wcWLF+Hm5sZ1mISQUhQWFnIdQo1mwHUAb2vcuDFOnz6NjIwMPHr0CEqlEnXr1oW9vT3XoRFCyoASOrd4ldDfsLa2xv/+9z+uwyCEaCk3N5frEGo03jS5rFy5EiEhISXu//jjj7Fu3TodRkQI0VZOTg7XIdRovEnomzdvhqenZ4n7PT09sWHDhnJde82aNXBzc4ORkRH8/Pxw/fr1Uo+PjIyEh4cHjI2N4erqismTJ9NHSULKID8/H1KplOswaizeJPTHjx+jUaNGJe5v2LAhHj9+rPV1d+/ejfDwcMyZMwe3bt1Cs2bNEBISUuIgpZ07d2Lq1KmYM2cO7t27h82bN2P37t2YPn261vcmpCZ69eoV1yHUWLxJ6GKxGCkpKSXuT05OhlCofbjLli3DiBEjMHToUHh6eiIqKgomJibYsmWLxuOvXLmCNm3aYMCAAXBzc0NwcDD69+//3lo9IaQYjejmDm8SeqtWrbBt2zaNbXBZWVnYunUrWrVqpdU1ZTIZbt68iaCgILZMKBQiKCgIsbGxGs9p3bo1bt68ySbwJ0+e4NixY+jSpUuJ95FKpcjOzmZf9GCI1GTJyclch1Bj8aaXy5w5cxAQEABvb29MmjQJjRs3BlA8x0tkZCSSk5Oxc+dOra6Znp4OhUIBR0dHlXJHR0fcv39f4zkDBgxAeno62rZtC4ZhIJfLMXr06FKbXCIiIjBv3jytYiNEXyUnJ0OhUEAkEnEdSo3Dmxq6n58fDh8+DIZhMHHiRHTq1AmdOnXCpEmTIBAIcOjQIfj7+1d5HOfOncOiRYuwdu1a3Lp1C7///juOHj2K+fPnl3jOtGnTkJWVxb7Onz9f5XESwldyuRwvXrzgOowaiTc1dADo1KkTHj16hD///JN9AFqvXj20aNECAoFA6+vZ2dlBJBIhNTVVpTw1NRVOTk4az5k1axYGDRqE4cOHAwCaNGmCvLw8jBw5EjNmzNDYji+RSCCRSNhtMzMzrWMlRJ8kJibC1dWV6zBqHN7U0N8QCoXw8fHBZ599hs8++ww+Pj7lSuZA8YNWHx8fxMTEsGVKpRIxMTEl1vbz8/PVkvabj45vL7pBCClZQkICLUfHAV7V0AHg7t27ePLkCTIyMjQm0LCwMK2uFx4ejsGDB6Nly5bw9fVFZGQk8vLyMHToUPZ6Li4uiIiIAAB0794dy5YtQ/PmzeHn54dHjx5h1qxZ6N69O7UJElJGhYWFePbsGerUqcN1KDUKbxL648ePMXDgQFy/fr3EmrBAINA6oYeGhiItLQ2zZ89GSkoKvL29ER0dzT4oTUpKUqmRz5w5EwKBADNnzsTz589hb2+P7t27Y+HCheX/4gipge7fv08JXccEDE/aEYKCgnD16lVERESgXbt2sLa21nhcdXiD3Lp1Cz4+Prh58yZatGjBdTiE6MymTZvYphaBQIB+/frB3Nyc46hqDt7U0C9fvozp06fjyy+/5DoUQkglYBgGf/31F9q2bct1KDUGbx6K2tnZwdLSkuswCCGV6P79+zRhlw7xJqGPHj0aP//8MxQKBdehEEIqiVKpxOXLl6mHmI7wpsmlQYMGUCgUaNasGYYNGwZXV1eNvUp69+7NQXSEkPJKSkrCgwcP4OHhwXUoeo83CT00NJT9/5QpUzQeIxAIqAZPSDX0ZnlJOzs7rkPRa7xJ6GfPnuU6BEJIFVEoFIiOjkbPnj2p10sV4k1CDwgI4DoEQkgVys/Px7Fjx9CtWzeYmppyHY5e4s1D0TekUiliY2Nx8OBBpKencx0OIaSMWrZsia+//rrUQXhZWVk4cuQI8vLydBhZzcGrhL5y5Uo4Ozujbdu26N27N27fvg2geBpcOzu7EhelIIRwLyUlBZmZmcjOzi71uKysLBw6dOi9xxHt8Sahb926FZMmTULnzp2xefNmlW5OdnZ26NixI3bt2sVhhISQypKTk4NDhw7h9evXXIeiV3iT0JcuXYqePXti586d6N69u9p+Hx8f3Llzh4PICCFVIT8/H4cPH1ab3pqUH28S+qNHj/Dxxx+XuN/GxoYWnyVEz0ilUhw7dgz//vsv16HoBd4kdCsrq1Ifgt69e7fERSkIIdVXUVERoqOjkZiYyHUo1R5vEnqXLl2wYcMGZGZmqu27c+cONm7ciB49eug+MEJIlVMqlTh16hS7UhkpH94k9AULFkChUMDLy4udk3z79u0YOHAgWrZsCQcHB8yePZvrMAkhVYRhGJw5c4aSegXwJqHXqlULN2/eROfOnbF7924wDIMdO3bg8OHD6N+/P65evUrDhgnRc2+SOjW/lA8vErpUKsWhQ4eQkpKCTZs24fXr10hNTUVycjIyMjKwZcsWODg4cB0mIUQHGIZBTEwMnj9/znUo1Q4vErpYLMann36KK1eusGX29vZwdHRUW7CZEKL/FAoFTp06RT3btMSLbCkQCPDhhx/SUH9CCEsmkyE6Ohr5+flch1Jt8CKhA8D06dOxevVqxMfHcx0KIYQn8vLycPLkSZo2u4x4M9vi1atXYWtrCy8vL3To0AFubm4wNjZWOUYgEGDFihUcRUgI4cLLly9x6dIltG/fHgKBgOtweI03CX316tXs/2NiYjQeQwmdkJopPj4ejo6OaNiwIdeh8BpvmlyUSuV7X/Sxi5Ca6/Lly/SQ9D14k9AJIaQ0CoUCp0+fRlFREdeh8BbvEvrVq1cRERGByZMn4+HDhwCKZ2W7desWcnNzOY6OEMKlrKwsXLp0iesweIs3CV0mk6F3795o06YNZsyYgZUrV+LZs2cAAKFQiODgYGo/J4Tg4cOHbGWPqOJNQp81axaOHDmCdevWIT4+XmWBCyMjI3z66ac4ePAghxESQvji0qVLGifyq+l4k9B//fVXjBkzBiNHjoSNjY3a/kaNGuHJkyccREYI4ZuioiKcOnWK2tPfwZuE/vLlSzRp0qTE/SKRiEaMEUJYGRkZOHfunMqn+ZqONwnd1dUV9+/fL3H/5cuXUb9+fR1GRAjhu4SEBPzxxx9ch8EbvEnoAwYMwPr16xEbG8uWvRkVtnHjRuzZswdhYWHluvaaNWvg5uYGIyMj+Pn54fr166Uen5mZiXHjxsHZ2RkSiQQNGjTAsWPHynVvQkjViouLoylD/sObkaIzZszA1atX0b59ezRq1AgCgQCTJ0/G69ev8e+//6JLly6YPHmy1tfdvXs3wsPDERUVBT8/P0RGRiIkJATx8fEap+SVyWTo1KkTHBwcsG/fPri4uODp06ewsrKqhK+SEFIVLl68CDMzM7i4uHAdCqd4U0MXi8WIjo7G1q1bUbduXTRs2BBSqRRNmzbFtm3bcPjwYYhEIq2vu2zZMowYMQJDhw6Fp6cnoqKiYGJigi1btmg8fsuWLXj9+jUOHDiANm3awM3NDQEBAWjWrFlFv0RC9FZSUhLy8vIAFK9v8Pr1a53eX6lUIiYmBjk5OTq9L99wltDDw8Px559/sttJSUkoLCzEwIEDceDAAdy5cwf37t3DkSNHEBYWVq5JeWQyGW7evImgoCC2TCgUIigoSKVp522HDh2Cv78/xo0bB0dHR3h5eWHRokWlTjsglUqRnZ3NvmgAFKkprl+/ju7du8PNzY3tRlhQUIDp06djzZo1Ol15qLCwEGfPnq3yh6SvX7/G559/DgsLC1hZWeGLL7547+98hw4dIBAIVF6jR49m92/btk1t/5vXy5cvyxwbZwk9MjIS9+7dY7fd3d2xf//+Sr1Heno6FAoFHB0dVcodHR2RkpKi8ZwnT55g3759UCgUOHbsGGbNmoWlS5diwYIFJd4nIiIClpaW7CsgIKBSvw5C+Oj3339HmzZtcPz4cbUkyjAM/vnnHyxevBi3bt3SWUwpKSl48OBBha/ToUMHbNu2TeO+zz//HHfu3MGpU6dw5MgRXLhwASNHjnzvNUeMGIHk5GT2tWTJEnZfaGioyr7k5GSEhIQgICBAq9XaOEvojo6OKv3K+dL1SKlUwsHBARs2bICPjw9CQ0MxY8YMREVFlXjOtGnTkJWVxb7Onz+vw4gJ0b3r168jNDQUCoWixE+vbybV27hxo05r6rdv366yfHLv3j1ER0dj06ZN8PPzQ9u2bbFq1Srs2rULL168KPVcExMTODk5sS8LCwt2n7Gxsco+kUiEM2fO4IsvvtAqPs4einbt2hXfffcdTp48yT5wXLp0KXbt2lXiOQKBQKvRonZ2dhCJREhNTVUpT01NhZOTk8ZznJ2dYWhoqNJe36hRI6SkpEAmk0EsFqudI5FIIJFI2G0zM7Myx0hIdbRgwQIwDFPmxHns2DGMHTu2iqMqlpGRgezsbFhaWlb6tWNjY2FlZYWWLVuyZUFBQRAKhbh27Rp69epV4rm//PILfv75Zzg5OaF79+6YNWsWTExMNB77008/wcTEBH379tUqPs4S+ooVK+Dg4ICzZ8/izp07EAgEePbsWakPU7RtRxeLxfDx8UFMTAw++eQTAP//8GT8+PEaz2nTpg127twJpVLJrmf64MEDODs7a0zmhNQ0SUlJOHLkSJmTuVKpxO3bt/H69WuNo8CrwsuXL6skoaekpKg1gRgYGMDGxqbEZlyguFt2nTp1UKtWLdy+fRvffvst4uPj8fvvv2s8fvPmzRgwYIDaIj/vw1lCNzU1xaJFi9htoVCIyMhIDBgwoFLvEx4ejsGDB6Nly5bw9fVFZGQk8vLyMHToUABAWFgYXFxcEBERAQAYM2YMVq9ejYkTJ+LLL7/Ew4cPsWjRIkyYMKFS4yKksshkMsjlcp3d79ixY1o3aTAMg3v37sHf37+KolKlbceERYsWqeSjgoICXL16VaXid/fu3XLH83Ybe5MmTeDs7IyPPvoIjx8/Rr169VSOjY2Nxb1797Bjxw6t78NZQu/duzcmT56Mdu3aAQDOnj0LT0/PSr9PaGgo0tLSMHv2bKSkpMDb2xvR0dHsg9KkpCS2Jg4Uj1g9ceIEJk+ejKZNm8LFxQUTJ07Et99+W+mxEVJRMpkM169f12nPqr/++gsCgUCrpC4QCJCVlaWzOJ88eYLGjRuX+VP16NGj8dlnn7Hbn3/+Ofr06YPevXuzZbVq1YKTk5NarxO5XI7Xr1+X2IyriZ+fHwDg0aNHagl906ZN8Pb2ho+PT5mv9wZnCf3gwYPo06cPu92xY0fs2LGj0mvoADB+/PgSm1jOnTunVubv74+rV69WehyEVDa5XI7c3FyIxWKV5zhVydraulw1dCMjI5XKU1VhGAYKhQJyubzMCd3GxkalOcjY2BgODg5q0434+/sjMzMTN2/eZBPumTNnoFQq2SRdFnFxcQCKn9m9LTc3F3v27GFbDLTFWUJ3cXHBn3/+ic8//xxA8Q+BFoAlpHwkEgmMjIx0ci9fX99y1dA9PDx0ktCVSqXWbc9l1ahRI3Tu3BkjRoxAVFQUioqKMH78ePTr1w+1atUCADx//hwfffQRfvrpJ/j6+uLx48fYuXMnunTpAltbW9y+fRuTJ09G+/bt0bRpU5Xr7969G3K5HAMHDixXfJwl9H79+uHHH3/Enj172F4uU6dOLfUvk0AgwF9//aWjCAkh78rLy8PNmzdRu3ZtJCUllSmpC4VCNGrUCNbW1jqIsLiXmaGhYZVd/5dffsH48ePx0UcfQSgUok+fPli5ciW7v6ioCPHx8ezssGKxGKdPn2af37m6uqJPnz6YOXOm2rU3b96M3r17l3uqEa0Suru7u9a1aIFAgMePH6uVR0REoH79+jh79ixevnwJgUAAU1NT2NraanV9QohupKen49SpU8jPz0fLli3x7NmzMtfSg4ODqzi6//fuQMLy0NQU+4aNjQ127txZ4n43NzeV74urq2uZx6ZcuXKlzDFqolVCDwgIUEvoN27cwJ07d+Dp6QkPDw8AQHx8PO7evQsvL68SG/ZFIhFGjhzJPv0VCoWYOXNmlbShE0IqJjExEefPn2d709StWxczZ87EwoULAUDj4KI3zSuDBw9G7dq1dRKnubk5bG1ta+z0G1ol9HeHwh44cAAHDhzAqVOn8NFHH6nsO3XqFD777DPMnz+/TNdOSEiAvb29NuEQQqoYwzD4+++/VeYcd3BwQFBQEIyNjVGvXj1s3rwZFy9eVKmVCgQCNGrUCMHBwTpL5iKRCB4eHjX6WVyF2tBnz56NL7/8Ui2ZA0CnTp0wfvx4zJw5Ez179nzvterUqVORUAghlUyhUODKlSsqc6PUq1cPbdu2hYFBcepo3Lgxli1bhpSUFPTv3x85OTkwNjbG119/rbM28zc8PDxgbGyMwsJCnd6XTyqU0B8+fFhqm7etra3G9nOg+OOYUChEfn4+xGIxhELhe/+yCgQCnQ6gIKSmkkqliImJQXJyMlvWokULeHt7a/w9dXJygrGxMXJyciAWi3WezOvXr0/P31DBhF6vXj1s3boVX3zxhdr8JTk5OdiyZQvq1q2r8dzZs2dDIBCwf+nfbBNCuJWVlYWTJ08iOzsbQHFTRrt27dQGwPBFnTp11Ppz11QVSugLFixA37590bBhQwwZMoTthP/w4UNs374dqamp2Lt3r8Zz586dW+o2IUT3kpOTcfr0achkMgCAkZERu4IXH33wwQdwdXXlOgzeqFBC/+STT3Ds2DF8++23KvMgAIC3tzc2b96MkJCQCgVICNGNBw8e4PLly1AqlQAAKysrBAcHw9zcnOPINHN2doabmxt9sn9LhQcWBQcHIzg4GCkpKXj69CmA4o9A2sxrIJVK8fPPP+PkyZN4/PgxcnJyYG5ujvr166Nz584YMGAAzXRISBVhGAZ//PEH/v77b7bsgw8+QGBgIG9/7xwcHFCvXj1K5u+otJGibyZm19bff/+Nnj174unTp2AYBpaWljAzM8PLly9x69Yt7N27FwsXLsShQ4fQqFGjygqXEILiUY3nz59nK2MA4OnpCT8/P50M0y8PW1tbNGjQgJK5BhX+iSUlJWH06NHw8PCAjY0NLly4AKB4VNmECRNU1g19V25uLnr06IHU1FQsXLgQz549Q0ZGhsq/CxYswIsXL9C9e3d2EVpCSMXl5eXh2LFjbDIXCATw9/eHv78/b5O5jY0NGjZsSMm8BBWqod+9exft2rVjZxp79OgR263Qzs4Oly5dQl5eHjZv3qzx/K1btyIpKQkxMTHo0KGD2n4XFxdMmzYNfn5+6NSpE7Zt24Zx48ZVJGRCCFSH8QOAoaEhOnbsiA8++IDjyEpmbW2NRo0a8faPDR9U6DvzzTffwMrKCg8ePMDPP/+sNq9D165dcfHixRLPP3r0KIKDgzUm87d17NgRnTp1wuHDhysSLiEEwNOnT3H06FE2mZuZmaFbt268TuZWVlaUzMugQt+dCxcuYMyYMbC3t9f4Eah27dp4/vx5ief//fff703mb3Ts2FHloQ0hRDtvhvGfPn2a/SRtb2+PHj166GxpuPKwsrKCp6enyjq/RLMKNbkolcoSFzkFgLS0tFIn3ddmlQ9HR8dS1xslhJRMqVTiypUriI+PZ8vq1q2Ldu3asYP7+MjCwoKSuRYqVENv0aIFjh49qnGfXC7Hrl270KpVqxLPl0qlZZ632MDAgB3sQAgpO6lUiujoaJVk3rx5c3To0IHXydzExASNGzemZK6FCv00p02bhm7dumHMmDHo168fACA1NRWnT5/GokWLcO/ePaxevbrUayQmJuLWrVvvvVdCQkJFQiWkRsrOzsbJkyeRlZUFoHgOpfbt2/N2GP8bhoaGaNy4Ma//4PBRhb5bH3/8MbZt24aJEydiw4YNAICBAweCYRhYWFjgp59+Qvv27Uu9xqxZszBr1qz33ouWqCNEO8nJyYiJiYFUKgVQPIw/KCioUhaAqGoNGjTQ2ZJ6+qTCf/4GDRqE3r1749SpU3j48CGUSiXq1auHkJCQ9w4Z3rp1a0VvTwjR4OHDh7h06VK1Gcb/tlq1avH6IS2flTuh5+fnw9XVFVOnTsXXX3+NTz75ROtrDB48uLy3J4RowDAMbt68qbL2rouLCzp27MjbYfxvMzY2hpubG9dhVFvlTugmJiYwMDCAqalpZcZDCCknuVyO8+fPIzExkS1r1KgRWrVqVS36bwsEAnh4eNBD0Aqo0E+5T58+2LdvX5kXiiWEVI2CggIcPXqUTeYCgQCtWrVC69atq0UyB4oXV64OTUJ8VqE29H79+mHs2LEIDAzEiBEj4ObmBmNjY7XjWrRoUZHbEEJKkZWVhT/++ENlGH9gYGC1mifc3t4eLi4uXIdR7VUoob89ylPTEP83PVM0rQhOCKm4O3fu4NKlS+zvmKmpKYKDg6vVQ0VLS0uaPbGSVCihUy8VQrjBMAzOnDmD33//nW3ytLe3R1BQUKmjt/nG1NQUnp6e1aZZiO8qlNCplwohuqdQKLB7925cunSJLatduzYCAwOr1UAciURCg4cqGe++k3fv3sWTJ0+QkZGh8WFrWFgYB1ERwg/5+fnYtGkT7t+/z5Y1aNAALVu2rFaJUSQSwdPTs9S5noj2tHoHDBs2DAKBABs2bIBIJMKwYcPee45AIChxPvS3PX78GAMHDsT169dL7DUjEAjKldDXrFmDH374ASkpKWjWrBlWrVoFX1/f9563a9cu9O/fHz179sSBAwe0vi8hlSktLQ1r165FamoqgOL5jT799FPk5eVVu/bnDz/8EGZmZlyHoXe0SuhnzpyBUCiEUqmESCTCmTNn3vtGKusbbdSoUfj7778RGRmJdu3awdraWpvQSrR7926Eh4cjKioKfn5+iIyMREhICOLj40tdyTwxMRFTpkxBu3btKiUOQiri0aNHWL9+Pbtql5mZGUaOHIlatWqxq4RVF46OjrC3t+c6DL2kVUJ/e8CCpu2KuHz5MqZPn44vv/yy0q4JAMuWLcOIESMwdOhQAEBUVBSOHj2KLVu2YOrUqRrPUSgU+PzzzzFv3jxcvHgRmZmZlRoTIdq4evUqdu7cyc5h7uTkhLFjx8LOzo7tqlhdGBgYwN3dnesw9BZvHi3b2dnB0tKyUq8pk8lw8+ZNBAUFsWVCoRBBQUGIjY0t8bzvvvsODg4O+OKLL8p0H6lUiuzsbPaVm5tb4dgJUSqVOHToEH766Sc2mTds2BBTpkyBnZ0dx9GVT+3atcs8ZTbRHm8S+ujRo/Hzzz9Xap/19PR0KBQKtdnlHB0dkZKSovGcS5cuYfPmzdi4cWOZ7xMREQFLS0v2FRAQUKG4CZHJZNiyZQuio6PZsnbt2mHcuHHVqlvi28RiMZydnbkOQ69V+LH48ePHsWzZMty6dQtZWVkaH2iWJUk3aNAACoUCzZo1w7Bhw+Dq6qpxTofevXtXNOQS5eTkYNCgQdi4caNWNaBp06YhPDyc3Y6Li6OkTsotKysL69evVxnG36dPHwQGBla7h59vq1WrFvU3r2IVSui//fYbPvvsMzRu3Bj9+vXDunXrMGDAADAMg4MHD+LDDz8s8yyMoaGh7P+nTJmi8RhtR53a2dlBJBKxvQLeSE1N1bj03ePHj5GYmIju3buzZW+mHzUwMEB8fLzGhQEkEolK9yt6ek/K699//8W6deuQkZEBoPi9NWzYMDRp0oTjyCpGKBSWeblJUn4VSugRERHw9fXFpUuXkJGRgXXr1mHYsGHo2LEjEhMT0apVqzI/ADl79mxFQtFILBbDx8cHMTEx7B8WpVKJmJgYjB8/Xu34hg0bqi1EPXPmTOTk5GDFihXVam4MUv38/fff2LJlC7sghbW1NcaMGYMPPviA48gqzt7entrOdaBCCf3u3buIiIiASCRiBzUUFRUBKJ45bezYsVi8eHGZ+o5XVRNFeHg4Bg8ejJYtW8LX1xeRkZHIy8tje72EhYXBxcUFERERMDIygpeXl8r5VlZWAKBWTkhlYRgGZ8+exW+//cY2WdapUwejR4+u9I4CXKlVqxbXIdQIFUroJiYm7KT5VlZWkEgkSE5OZvc7OjqWay3Qu3fv4unTpwCK39ienp7ljjE0NBRpaWmYPXs2UlJS4O3tjejoaPZBaVJSErXrEc4oFArs2bNHZXK7Fi1aICwsrFosSFEWFhYW1AypIxVK6B4eHrh79y677e3tjR07dmDgwIGQy+XYuXMnateuXebrHTx4EOHh4Wr9293d3bFs2TL06NGjXHGOHz9eYxMLAJw7d67Uc7dt21auexLyPpqG8Xfu3BndunXTq0oG1c51p0Lvmt69e+PQoUNsm9+MGTNw7tw5WFlZwd7eHhcvXixx8M67jh07hj59+gAAFi1ahP3792P//v1YtGgRGIZB7969VbpwEVKdpaen48cff2STuUgkQlhYGHr06KFXyVwsFsPW1pbrMGqMctXQCwsLcfDgQRQVFWHmzJl4/fo1nJ2d0a1bN5w7dw6///47RCIRunbtisDAwDJdc/78+WjatCkuXryosqxdjx49MH78eLRt2xbz5s1D586dyxMyIbzx+PFjrF+/nh2AZmpqilGjRqF+/focR1b5XFxc9OoPFN9pndBfvnyJ1q1bIyEhgV3AwtjYGAcOHEBQUBDatWtXrvlPbt++jUWLFmlco9TU1BRDhgzB9OnTtb4uIXxy/fp1/Pzzz+zIT0dHR4wdO1Yv5zYRCoVqg/pI1dL6T+f8+fORmJiIyZMn48iRI1i+fDmMjY0xatSoCgViZGSE169fl7j/9evXMDIyqtA9COEKwzA4fPgwtm3bxiZzDw8PfP3113qZzAHAwcGBuirqmNY19JMnTyIsLAw//vgjW+bo6IgBAwYgPj4eHh4e5QqkY8eOWLFiBTp37gx/f3+VfdeuXcPKlSsRHBxcrmsTwiWZTIYdO3bg5s2bbFnbtm0RGhqq1yvc0zB/3dM6oSclJeHbb79VKWvbti0YhkFqamq5E/qSJUvg7++Ptm3bwtfXl71OfHw8rl+/DgcHByxevLhc1yaEK9nZ2YiKilIZxt+7d2907NixWg/jfx9TU1PqqsgBrZtcpFKpWtPHm+03HyXLw93dHbdv38aECROQkZGB3bt3Y/fu3cjIyMDEiRPx119/wc3NrdzXJ0TXnj9/jiVLlrDJXCKRYNSoUfjoo4/0OpkDKHWtAVJ1ytXLJTExEbdu3WK3s7KyAAAPHz5kR1a+rUWLFmW6roODA5YvX47ly5eXJyxCeOOff/7Bli1bUFhYCKB44N2YMWNqzPQR1FWRG+VK6LNmzcKsWbPUyseOHauy/aYXTGVOiUsI3509exb79u1jh/HXrl0bY8aM0Zth/O/zpucb0T2tE/rWrVsr5cZVuT4pIVxQKBTYt28fzp8/z5Y1b94cgwcP1pth/GVB/c65o3VCHzx4cKXcuCrXJyVE1woKCrB582aVqTBCQkLQvXv3GpPgbG1tIZVKYWNjw3UoNVaFF7gor6pcn5QQXUpPT8e6devYielEIhEGDBig1v1W3+3YsQOXLl2Ct7c316HUWJwl9HclJSXB3t6+xLa3goICpKWlaTXZFyFV7cmTJ4iKilIZxj9y5Eh8+OGHHEfGDYFAUG2XyNMHvPks6O7ujv3795e4/9ChQ7RaOOGVP/74A5GRkWwyd3BwwNdff11jkzlQPBlXTWli4iPe1NA1rUX6tqKiInqjEF5gGAZHjx7FsWPH2DIPDw+MGDGixtdOaXoObnGa0LOzs5GZmcluv3r1CklJSWrHZWZmYteuXTSUmHCuqKgIO3bswI0bN9iyNm3aoF+/fno9jL+salJvHj7iNKEvX74c3333HYDitrdJkyZh0qRJGo9lGAYLFizQYXSEqMrJyUFUVBS7CpdAIECvXr1qxMjPsqLJuLjFaUIPDg6GmZkZGIbBN998g/79+6uNKhUIBDA1NYWPjw9atmzJUaSkpnvx4gXWrVuHV69eASiuiQ4dOhTNmjXjODJ+oYTOLU4Tur+/P9u1Ky8vD3369KHFmAnv3LlzB5s3b66xw/i1Qc1O3OLFQ9H8/HysXLkSJiYmlNAJr5w/fx579uxhH9q7urpizJgxGucsIpTQucaLhG5iYgIDAwONqxURwgWFQoHffvtNZRHxZs2aYciQIZBIJNwFxnPUE41bvPnu9+nTR2VCI0K4UlBQgKioKJVkHhwcjBEjRlAyfw96OMwtXtTQAaBfv34YO3YsAgMDMWLECLi5uWkcNVrWqXgJKY9Xr15h3bp1ePHiBYDiGueAAQPQunVrjiMj5P14k9A7dOjA/v/ixYtq+2kqXlLVEhISEBUVhZycHADFTYEjR45EgwYNOI6s+qAaOrd4k9Ara1peQsrjxo0b+Omnn9hVtxwcHDBmzBhatV5LlNC5xZuEXlnT8hKiDYZhcPz4cRw5coQt+/DDDzFy5Eh6SF8OlNC5xZuE/rbc3Fw8e/YMQHE3MVpsllSFoqIi/Pzzz/jjjz/YMn9/f/Tv3x8GBrz81eA9Sujc4k0vF6B49rrAwEBYW1vDy8sLXl5esLa2RseOHVXmziCkonJycrBixQo2mQsEAnzyyScYOHAgJfMKoITOLd68c69du4YOHTpALBZj+PDhaNSoEQDg3r17+PXXX9G+fXucO3cOvr6+HEdKqrvk5GSsXbtWZRj/kCFDaGGGSkD90LnFm4Q+Y8YMuLi44NKlS3ByclLZN3fuXLRp0wYzZszAqVOnOIqQ6IO7d+9i06ZN7DB+S0tLjBkzhhZOqSRUQ+cWb/6cXrt2DaNGjVJL5gDg6OiIkSNH4urVq+W69po1a+Dm5gYjIyP4+fnh+vXrJR67ceNGtGvXDtbW1rC2tkZQUFCpx5Pq48KFC1i7di2bzF1dXfHtt99SMq9EVEPnFm+++0KhkO0ypolCoSjXm2X37t0IDw/HnDlzcOvWLTRr1gwhISF4+fKlxuPPnTuH/v374+zZs4iNjYWrqyuCg4Px/Plzre9N+EGpVGLv3r3YtWsXlEolAKBp06aYPHkyzclSySihc4s33/3WrVtjzZo1ePr0qdq+pKQkrF27Fm3atNH6usuWLcOIESMwdOhQeHp6IioqCiYmJtiyZYvG43/55ReMHTsW3t7eaNiwITZt2gSlUomYmBit7024V1hYiKioKJw9e5YtCwoKwsiRI2l1nSpACZ1bvGlDX7RoEdq3b4+GDRuiV69e7Oi8+Ph4HDx4EAYGBoiIiNDqmjKZDDdv3sS0adPYMqFQiKCgIMTGxpbpGvn5+SgqKoKNjU2Jx0ilUkilUnb7zRqThFuvX7/G2rVrVYbx9+/fv1wVA1I21IbOLd4k9ObNm+PatWuYMWMGDh06hPz8fADFw687d+6MBQsWwNPTU6trpqenQ6FQqI32c3R0xP3798t0jW+//Ra1atVCUFBQicdERERg3rx5WsVGqlZiYiKioqKQnZ0NADA2NsbIkSPh4eHBcWT6jRI6t3iT0AHA09MT+/fvh1KpRFpaGgDA3t6es49x33//PXbt2oVz586V+vF82rRpCA8PZ7fj4uIQEBCgixCJBjdv3sRPP/2EoqIiAMXvobFjx9Iwfh2ghM4tXiX0NwQCAfvGqMgbxM7ODiKRCKmpqSrlqampGnvTvO3HH3/E999/j9OnT6Np06alHiuRSFSmVaWRrdxgGAbR0dE4fPgwW1a/fn2MHDmSfiakRuDVE4y7d++ib9++sLCwgLOzM5ydnWFhYYG+ffvin3/+0fp6YrEYPj4+Kg803zzgfLP0nSZLlizB/PnzER0dTeuYVhNFRUXYvn27SjJv1aoVJkyYQMmc1Bi8qaFfvHgRH3/8MZRKJXr27KnyUPTQoUM4fvw4oqOj0a5dO62uGx4ejsGDB6Nly5bw9fVFZGQk8vLyMHToUABAWFgYXFxc2AeuixcvxuzZs7Fz5064ubkhJSUFQHGtmxIDP+Xm5mL9+vV4/PgxW9azZ08EBwdTEwCpUXiT0CdPngwHBwecP39ebfHdZ8+eoX379ggPD1eZSKksQkNDkZaWhtmzZyMlJQXe3t6Ijo5m21OTkpJU2ujXrVsHmUyGvn37qlxnzpw5mDt3bvm+OFJlkpOTsW7dOqSnpwMoXnV+yJAhaN68OceR1Uz0B5RbvEnod+7cwfz58zWupP5mYd7yJtTx48dj/PjxGve9vcwYUNw7glQP9+/fx8aNG1FQUACgeBj/6NGjUadOHY4jq7moHzq3eJPQ69Spo9KX+10ymUxjsic108WLF7F792525OcHH3yAMWPGwNramuPICOEOb/6czp49GytXrkRcXJzavj///BOrVq2iJg8CpVKJffv24ddff2WTeZMmTRAeHk7JnNR4vKmhX716FY6OjvDx8UHr1q1Rv359AMDDhw8RGxsLLy8vxMbGqozwFAgEWLFiBVchEx0rLCzEli1bVHo8ffTRR+jVqxd91CcEgIBhGIbrIIDytb3xddHoW7duwcfHBzdv3kSLFi24DkcvvH79GlFRUfj3338BFL9f+vXrh7Zt23IcGbfy8/Nx4cIFmJub09w0/yksLEROTg7at28PExMTrsPRKd7U0N98fCbkXZqG8Y8YMQINGzbkODJC+IU3CZ0QTW7duoXt27erDOMfM2bMe0f6ElIT8S6hJyQk4Pjx4+w0unXq1MHHH38Md3d3jiMjusQwDE6cOIFDhw6xZTSMn5DS8Sqhf/XVV1ixYoVa84tQKMSkSZPw448/chQZ0aWioiL8+uuvKitU+fn5YcCAATA0NOQwMkL4jTddA5YuXYrly5ejd+/eiI2NRWZmJjIzMxEbG4u+ffti+fLlWL58OddhkiqWm5uLVatWqSTzHj16ICwsjJI5Ie/Bmxr6xo0b0aNHD+zZs0el3M/PD7t27UJhYSHWr1+PyZMncxQhqWqpqalYu3YtO3WyoaEhBg8eTD2FCCkj3tTQExMTERISUuL+kJAQGpavx+7fv48lS5awydzCwgKTJ0+mZE6IFnhTQ3dwcMBff/1V4v6//voL9vb2OoyI6MqlS5dUFnB2cXHBmDFjSl32jxCijjcJ/dNPP8WKFSvg5uaGL7/8EqampgCAvLw8rF69Gps2bcKkSZO4DZJUKqVSif3796vMV+/l5YVhw4bRIBlCyoE3CX3+/PmIi4vD9OnTMXv2bNSqVQsA8OLFC8jlcgQGBuK7777jOEpSWQoLC7Ft2zbcvn2bLevYsSN69+5Nw/gJKSfeJHQTExPExMTg4MGDKv3QO3fujC5duqB79+4017KeyMjIwLp161SG8X/22Wdo3749x5ERUr3xIqHn5+dj4MCB6NOnDz7//HP07NmT65BIFUlKSsK6deuQlZUFoHgY//Dhw9GoUSOOIyOk+uPFZ1sTExOcPn0a+fn5XIdCqtCff/6JpUuXssnc1tYWU6ZMoWROSCXhRUIHgLZt26pMjUv0x5th/Bs3bmTnZKlXrx6++eYbODs7cxwdIfqDNwl99erVuHjxImbOnMm2rZLqTy6X4+eff8bBgwfZMl9fX0yYMAHm5uYcRkaI/uFFGzoANGvWDHK5HBEREYiIiICBgQEkEonKMQKBgP24TvgvNzcXGzduxMOHD9my7t27o3PnzvSAm5AqwJuE3qdPH/ol1yOpqalYt24dXr58CaB4GH9YWBh8fHw4jowQ/cWbhL5t2zauQyCVJD4+Hhs3bmQfcltYWGDUqFE0BTIhVYzzhF5YWIiDBw8iISEBdnZ26Nq1Kz0oq8auXLmCnTt3ssP4a9WqhTFjxsDW1pbjyAjRf5wm9JcvX6J169ZISEjAm6VNTUxMcODAAQQFBXEZGtGSUqnEgQMHcPr0abascePGGDZsGIyNjTmMjJCag9NeLvPnz0diYiImT56MI0eOIDIyEsbGxhg1ahSXYREtSaVSbNy4USWZBwYGYsyYMZTMCdEhTmvoJ0+eRFhYmMpKRI6OjhgwYADi4+Ph4eHBYXSkLDIzM7Fu3To8e/YMAA3jJ4RLnNbQk5KS0LZtW5Wytm3bgmEYpKamchQVKaukpCQsXryYTeZGRkYYO3YsJXNCOMJpDV0qlapNk/pmWy6XcxESeUdSUhJiYmKQk5MDc3NzfPTRR6hduzbi4uKwbds2yGQyAMXD+MeOHUsPtAnhEOe9XBITE3Hr1i12+83AoYcPH8LKykrteFrBRjeuX7+O+fPn4+jRo2AYBkKhEEqlEgKBAH5+fnBxcYGDgwMAoG7duhg1ahSN/CSEYwLmTfcSDgiFQo2DiRiGUSt/U6ZQKLS+z5o1a/DDDz8gJSUFzZo1w6pVq+Dr61vi8Xv37sWsWbOQmJiIDz/8EIsXL0aXLl3KfL9bt27Bx8cHN2/erJZ/gH7//XeEhoaCYRiN3+83P5vg4GCEhoZi4MCBtIAzR/Lz83HhwgWYm5vToiD/KSwsRE5ODtq3bw8TExOuw9EpTmvoW7durfJ77N69G+Hh4YiKioKfnx8iIyMREhKC+Ph4tob5titXrqB///6IiIhAt27dsHPnTnzyySe4desWvLy8qjxerl2/fh2hoaFQKBQo6W/9m/LTp0/ju+++o2ROCE9wWkPXBT8/P/zvf//D6tWrART3l3Z1dcWXX36JqVOnqh0fGhqKvLw8HDlyhC1r1aoVvL29ERUVVaZ7Vucaeo8ePXDs2LEyfRISiUTo2rWrysRbRLeohq6uJtfQeTPbYlWQyWS4efOmyiAloVCIoKCgEqfqjY2NVRvUFBISUiOm9k1KSsKRI0fK3KylUChw+PBhJCUlVXFkhJCy4PyhaFVKT0+HQqGAo6OjSrmjoyPu37+v8ZyUlBSNx6ekpJR4H6lUCqlUym7n5uYCKO6p82b+7+rgxIkTJTazlIRhGJw8eRKDBw+uoqhIaYqKiiCXy5GXl0c9w/4jlUrZ373Sfv/0salQrxO6rkRERGDevHlq5X5+fhxEo3sjRozAiBEjuA6DEK3oY2uzXid0Ozs7iEQitUFKqampcHJy0niOk5OTVscDwLRp0xAeHs5ux8XFISAgANeuXUPz5s0r8BXo1rZt2zBy5Eitz9u4cSPV0Dkkk8modv4OAwMDiMVirsPQOb1O6GKxGD4+PoiJicEnn3wCoPihaExMDMaPH6/xHH9/f8TExGDSpEls2alTp+Dv71/ifSQSicpiHGZmZgCK31TV6WNdSEgIBAKBVjUXgUCA4ODgavV16hv63pM39PqhKACEh4dj48aN2L59O+7du4cxY8YgLy8PQ4cOBQCEhYVh2rRp7PETJ05EdHQ0li5divv372Pu3Lm4ceNGiX8A9Ent2rXRrVs3iESiMh0vEonQvXt31K5du4ojI4SUhV7X0IHibohpaWmYPXs2UlJS4O3tjejoaPbBZ1JSEoTC//+71rp1a+zcuRMzZ87E9OnT8eGHH+LAgQM1og86AMyaNQvHjx9/b01dIBBAIBBg5syZOoyOEFIave+HzoXq3A8deP9IUZFIBIFAgD179qBXr14cREgI0UTvm1yI9nr37o0rV66gS5cu7DD/N59iBAIBunbtiitXrlAyJ4Rn9L7JhZTP//73Pxw6dAhJSUk4c+YMsrOzYWFhgY4dO1KbOSE8RQmdlKp27doYMmQIkpOTkZycjPT0dKSnp3MdFuEpZ2dnmkKZQ5TQq4CzszPmzJmjN29sqVSK/v374/z581yHQnguICAAJ06cUOnGS3SHHoqS98rOzoalpSXOnz/P9rEn5F25ubkICAhAVlYWLCwsuA6nRqIaOikzb29v+kUlJcrOzuY6hBqPerkQQoieoIROCCF6ghI6eS+JRII5c+bQgy5SKnqfcI8eihJCiJ6gGjohhOgJSuiEEKInKKETQoieoIROCCF6ghI6ITXEmzns3/c6d+5che+Vn5+PuXPnanWthQsXokePHnB0dIRAIMDcuXMrHEdNQyNFCakhduzYobL9008/4dSpU2rljRo1qvC98vPz2YXTO3ToUKZzZs6cCScnJzRv3hwnTpyocAw1ESV0QmqIgQMHqmxfvXoVp06dUivnSkJCAtzc3JCeng57e3uuw6mWqMmFEMJSKpWIjIxE48aNYWRkBEdHR4waNQoZGRkqx924cQMhISGws7ODsbEx3N3dMWzYMABAYmIim5DnzZvHNuW8rwnFzc2tKr6kGoVq6IQQ1qhRo7Bt2zYMHToUEyZMQEJCAlavXo0///wTly9fhqGhIV6+fIng4GDY29tj6tSpsLKyQmJiIn7//XcAgL29PdatW4cxY8agV69e6N27NwCgadOmXH5pNQIldEIIAODSpUvYtGkTfvnlFwwYMIAtDwwMROfOnbF3714MGDAAV65cQUZGBk6ePImWLVuyxy1YsAAAYGpqir59+2LMmDFo2rQpb5p0agJqciGEAAD27t0LS0tLdOrUiV2ZKj09HT4+PjAzM8PZs2cBAFZWVgCAI0eOoKioiMOIybsooRNCAAAPHz5EVlYWHBwcYG9vr/LKzc3Fy5cvARSvStSnTx/MmzcPdnZ26NmzJ7Zu3QqpVMrxV0CoyYUQAqD4gaiDgwN++eUXjfvfPOgUCATYt28frl69isOHD+PEiRMYNmwYli5diqtXr9KqVhyihE4IAQDUq1cPp0+fRps2bWBsbPze41u1aoVWrVph4cKF2LlzJz7//HPs2rULw4cPh0Ag0EHE5F3U5EIIAQB89tlnUCgUmD9/vto+uVyOzMxMAEBGRgbenXXb29sbANhmFxMTEwBgzyG6QTV0QgiA4rbxUaNGISIiAnFxcQgODoahoSEePnyIvXv3YsWKFejbty+2b9+OtWvXolevXqhXrx5ycnKwceNGWFhYoEuXLgAAY2NjeHp6Yvfu3WjQoAFsbGzg5eUFLy+vEu+/Y8cOPH36FPn5+QCACxcusD1nBg0ahDp16lT9N6G6YwghNdK4ceMYTSlgw4YNjI+PD2NsbMyYm5szTZo0Yb755hvmxYsXDMMwzK1bt5j+/fsztWvXZiQSCePg4MB069aNuXHjhsp1rly5wvj4+DBisZgBwMyZM6fUeAICAhgAGl9nz56trC9br9GKRYQQoieoDZ0QQvQEJXRCCNETlNAJIURPUEInhBA9QQmdEEL0BCV0QgjRE5TQCSFlkpiYCIFAgG3btnEdCikBJXRCCNETNLCIEFImDMNAKpXC0NAQIpGI63CIBpTQCSFET1CTCyE1yNy5cyEQCPDgwQMMHDgQlpaWsLe3x6xZs8AwDJ49e4aePXvCwsICTk5OWLp0KXuupjb0IUOGwMzMDM+fP8cnn3wCMzMz2NvbY8qUKVAoFOxx586dg0AgwLlz51Ti0XTNlJQUDB06FB988AEkEgmcnZ3Rs2dPJCYmVtF3RX9QQiekBgoNDYVSqcT3338PPz8/LFiwAJGRkejUqRNcXFywePFi1K9fH1OmTMGFCxdKvZZCoUBISAhsbW3x448/IiAgAEuXLsWGDRvKFVufPn2wf/9+DB06FGvXrsWECROQk5ODpKSkcl2vRuFuXjBCiK7NmTOHAcCMHDmSLZPL5cwHH3zACAQC5vvvv2fLMzIyGGNjY2bw4MEMwzBMQkICA4DZunUre8zgwYMZAMx3332ncp/mzZszPj4+7PbZs2c1zpr47jUzMjIYAMwPP/xQOV9wDUM1dEJqoOHDh7P/F4lEaNmyJRiGwRdffMGWW1lZwcPDA0+ePHnv9UaPHq2y3a5duzKd9y5jY2OIxWKcO3cOGRkZWp9f01FCJ6QGql27tsq2paUljIyMYGdnp1b+vsRqZGTErjf6hrW1dbkSskQiweLFi3H8+HE4Ojqiffv2WLJkCVJSUrS+Vk1ECZ2QGkhTt8OSuiIy7+kIV5YujCWtMfr2g9M3Jk2ahAcPHiAiIgJGRkaYNWsWGjVqhD///PO996npKKETQqqctbU1APU1Rp8+farx+Hr16uGrr77CyZMn8c8//0Amk6n0uCGaUUInhFS5OnXqQCQSqfWYWbt2rcp2fn4+CgsLVcrq1asHc3NzdgFqUjJaJJoQUuUsLS3x6aefYtWqVRAIBKhXrx6OHDmCly9fqhz34MEDfPTRR/jss8/g6ekJAwMD7N+/H6mpqejXrx9H0VcflNAJITqxatUqFBUVISoqChKJBJ999hl++OEHeHl5sce4urqif//+iImJwY4dO2BgYICGDRtiz5496NOnD4fRVw809J8QQvQEtaETQoieoIROCCF6ghI6IYToCUrohBCiJyihE0KInqCETgjhHVq/tHwooRNSzT1+/BijRo1C3bp1YWRkBAsLC7Rp0wYrVqxAQUFBld337t27mDt3LucLTyxcuBA9evSAo6MjBAIB5s6dy2k8XKKBRYRUY0ePHsWnn34KiUSCsLAweHl5QSaT4dKlS/j6669x586dci808T53797FvHnz0KFDB7i5uVXJPcpi5syZcHJyQvPmzXHixAnO4uADSuiEVFMJCQno168f6tSpgzNnzsDZ2ZndN27cODx69AhHjx7lMML/xzAMCgsLYWxsXOnXTkhIgJubG9LT09Wm8a1pqMmFkGpqyZIlyM3NxebNm1WS+Rv169fHxIkT2W25XI758+ejXr16kEgkcHNzw/Tp09UmvXJzc0O3bt1w6dIl+Pr6wsjICHXr1sVPP/3EHrNt2zZ8+umnAIDAwEAIBAKVNUPfXOPEiRNo2bIljI2NsX79egDAkydP8Omnn8LGxgYmJiZo1apVhf7wcPnpgG8ooRNSTR0+fBh169ZF69aty3T88OHDMXv2bLRo0QLLly9HQEAAIiIiNE569ejRI/Tt2xedOnXC0qVLYW1tjSFDhuDOnTsAgPbt22PChAkAgOnTp2PHjh3YsWMHGjVqxF4jPj4e/fv3R6dOnbBixQp4e3sjNTUVrVu3xokTJzB27FgsXLgQhYWF6NGjB/bv318J35UajtMF8Agh5ZKVlcUAYHr27Fmm4+Pi4hgAzPDhw1XKp0yZwgBgzpw5w5bVqVOHAcBcuHCBLXv58iUjkUiYr776ii3bu3evxnVC375GdHS0SvmkSZMYAMzFixfZspycHMbd3Z1xc3NjFAoFwzCa1y99n7S0NAYAM2fOnDKfo2+ohk5INZSdnQ0AMDc3L9Pxx44dAwCEh4erlH/11VcAoNbk4enpiXbt2rHb9vb2ZV5f9A13d3eEhISoxeHr64u2bduyZWZmZhg5ciQSExNx9+7dMl+fqKOETkg1ZGFhAQDIyckp0/FPnz6FUChE/fr1VcqdnJxgZWWltnLQu2uOAtqvE+ru7q4xDg8PD7XyN001Ja1gRMqGEjoh1ZCFhQVq1aqFf/75R6vzSlrb813lXV/0bVXRo4WUjhI6IdVUt27d8PjxY8TGxr732Dp16kCpVOLhw4cq5ampqcjMzESdOnW0vn9Z/zi8G0d8fLxa+f3799n9pPwooRNSTX3zzTcwNTXF8OHDkZqaqrb/8ePHWLFiBQCgS5cuAIDIyEiVY5YtWwYA6Nq1q9b3NzU1BaC+8HNpunTpguvXr6v8EcrLy8OGDRvg5uYGT09PreMg/48GFhFSTdWrVw87d+5EaGgoGjVqpDJS9MqVK9i7dy+GDBkCAGjWrBkGDx6MDRs2IDMzEwEBAbh+/Tq2b9+OTz75BIGBgVrf39vbGyKRCIsXL0ZWVhYkEgk6duwIBweHEs+ZOnUqfv31V3z88ceYMGECbGxssH37diQkJOC3336DUKh9HXPHjh14+vQp8vPzAQAXLlzAggULAACDBg2qWbV+rrvZEEIq5sGDB8yIESMYNzc3RiwWM+bm5kybNm2YVatWMYWFhexxRUVFzLx58xh3d3fG0NCQcXV1ZaZNm6ZyDMMUdzns2rWr2n0CAgKYgIAAlbKNGzcydevWZUQikUoXxpKuwTAM8/jxY6Zv376MlZUVY2RkxPj6+jJHjhxROUabbosBAQEMAI0vTV0q9RmtKUoIIXqC2tAJIURPUEInhBA9QQmdEEL0BCV0QgjRE5TQCSFET1BCJ4QQPUEJnRBC9AQldEII0ROU0AkhRE9QQieEED1BCZ0QQvQEJXRCCNETlNAJIURP/B8TK/kJQogj5gAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -1093,11 +1093,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:58:09 2025.\n",
+ "The current time is Tue Mar 25 17:22:28 2025.\n",
"\n",
"Paired effect size(s) for repeated measures against baseline \n",
"with 95% confidence intervals will be computed for:\n",
@@ -1127,11 +1127,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:58:10 2025.\n",
+ "The current time is Tue Mar 25 17:22:29 2025.\n",
"\n",
"The paired mean difference for repeated measures against baseline \n",
"between Control 1 and Test 1 is 0.575 [95%CI 0.325, 0.725].\n",
@@ -1169,7 +1169,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzMAAAInCAYAAACsmwePAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAsCtJREFUeJzs3Xd4U2X7B/DvSdKs7t2ChQKVUTbFQhkyRMp0gIqgovATF7wKvA6GLFniYKgoggxfFcEJCAgiQ0WWgLiAyipltKW7TdMmTXJ+f1QioS10JD056fdzXbkgZ97l4Ulzn2cJoiiKICIiIiIikhmF1AEQERERERFVB5MZIiIiIiKSJSYzREREREQkS0xmiIiIiIhIlpjMEBERERGRLDGZISIiIiIiWWIyQ0REREREssRkhoiIiIiIZInJDBERERERyRKTGTeQmpqKmTNnIjU1VepQiIiIiIhkg8mMG0hNTcWsWbOYzBARERERVQGTGSIiIiIikiUmM0REREREJEtMZoiIiIiISJaYzFzjxx9/xODBg1GvXj0IgoANGzbc9Jw9e/agQ4cO0Gg0iImJwZo1a1weJxERERERMZlxUFhYiLZt22Lp0qWVOv7cuXMYOHAgevXqhWPHjmH8+PF4/PHHsX37dhdHSkREREREKqkDcCf9+/dH//79K338smXL0KhRI7z55psAgBYtWmDv3r1YtGgREhMTXRUmERERERGByUyN7N+/H3369HHYlpiYiPHjx9/wPJPJBJPJZH9vMBhcEV6VZGVlwWw2u+TaNpsNoigiKCjIJdeniqlUKhQUFLisbNVqNYKDg11ybbox1lnPxDrruVhnPZOXlxfy8/NZZyXEZKYG0tLSEB4e7rAtPDwc+fn5KCoqgk6nK/e8+fPnY9asWbURYqVkZWVh6dKlEEXRpffp2bMnfHx8XHoPcuTl5YUNGza4rGwFQcDYsWP5QVvLWGc9l0ajwVdffcU662FYZz2XTqfDF198wTorIY6ZkcDkyZORl5dnf/3www+SxmM2m13+AQsAVqvV5fcgRyUlJS4tW1EUXfY0iirGOuu5LBYL66wHYp31XPw9Kz22zNRAREQE0tPTHbalp6fDz8+vwlYZoPTJm0ajsb93p6cogiA4/Zq18QFON+fssmW5ugfWWc/FOuuZWGc9F+usNDymZUYURezatQvffvstCgoKauWeCQkJ2Llzp8O2HTt2ICEhoVbuT0RERERUl8kymZk6dSp69eplfy+KIvr27Ys777wTAwcOROvWrXHmzJkqX9dgMODYsWM4duwYgNKpl48dO4aUlBQApd3DRo4caT/+qaeewtmzZ/Hiiy/i5MmTePfdd/HZZ59hwoQJNfsBiYiIiIjopmSZzHz55ZeIj4+3v//iiy+wc+dOzJkzB5s3b4bVasXMmTOrfN3Dhw+jffv2aN++PQBg4sSJaN++PaZPnw4ASE1NtSc2ANCoUSNs2bIFO3bsQNu2bfHmm2/igw8+4LTMRERERES1QJZjZi5duoSYmBj7+6+++gqxsbGYPHkyAODpp5/Ge++9V+Xr9uzZ84b9E9esWVPuOb/++muV70VERERERDUjy5YZlUplX6dFFEXs3LkT/fr1s+8PDw9HZmamVOEREREREVEtkGUy06pVK3z88cfIycnB6tWrkZWVhYEDB9r3nz9/HiEhIRJGSEREREREribLbmbTp0/H4MGD7QlL165dHSYE2LJlC2677TapwiMiIiIiology2TmzjvvxNGjR7Fjxw4EBARg2LBh9n05OTm4/fbbcffdd0sYIRERERERuZoskxkAiI2NRWxsbJntgYGBWLRokQQRERERERFRbZJlMlNQUIDc3FxERUXZt12+fBnLli2DyWTCfffdx25mREREJEvvv/8+DAYDfHx88OSTT0odDpFbk2Uy88QTT+DcuXM4cOAAACA/Px+dO3fGxYsXoVAosGTJEmzbtg09e/aUNlAiIiKiKjIYDMjPz5c6DCJZkOVsZnv37sWgQYPs7z/++GNcvnwZ+/btQ05ODtq0aYM5c+ZIGCEREREREbmaLJOZzMxM1K9f3/5+06ZN6NatGzp37gxfX1+MHDkSv/32m4QREhERERGRq8mym1lAQADS0tIAAEVFRfjpp58wdepU+36VSgWj0ShVeERERES1TqVSwcvLq0bna7VaKBSOz7pFUbT/ef3fK3rZbLZy/07kbLJMZrp06YJ3330XzZs3x7Zt21BcXOwwFfPff//t0HJDRERE5OksFgtKSkqqfX5JSQmKi4vh7++PyMhI6PV6J0YHh+SmvNf1+65NhCpKjsp7XXsvABBtNohWK0TRBogiRJsI2BOrGiZYTNAkJ8tkZsGCBejbty+GDh0KAPjvf/+Lli1bAgCsVis+//xz9OvXT8oQiYiIiGRHFEXk5uYiNzcXISEhiIqKKtNSU12CIEAQhBpfTxRFiGYTbMXFEE0m2Eym0vclZoglZoglJRBLLBCtFogWCyDanBJ/eXJ9/F12baocWSYzMTExSEpKwvHjx+Hv74/o6Gj7PqPRiHfeeQdt27aVLkAiIiIimcvMzERhYSGaNGkCjUZT6/e3mc2wFRpgMxphNRbCVlQEW5ERtuJilyYoJC+yTGYAwMvLq9yExdfX16HLGREREZG7qMy4EW9vb4iiaP+zsjQaDXQ6XbVjM5vNsFqtDtuKioqQlJSEpk2bQqvVVvvaN2MtLITVUABbQQGshgJYCw0QS8wuux95DtkmM/n5+Xj33Xexe/duXLlyBe+//z7i4+ORnZ2NNWvW4K677kJMTIzUYRIREVEdp1arIQhCpROT6iyUKQgCmjdvjuDg4Cqfe63i4mJkZWUhIyPDntiUlJTg77//RvPmzaFWq2t0fQCwFRlhNRhgLciHtaAA1vw8iFZLja9LdZMsk5mLFy+iR48euHDhAm699VacPHkSBoMBABAUFIT3338f58+fx5IlSySOlIiIiOq64OBgjB07Fmaz61oa1Gp1jRMZANBqtahfvz7Cw8Nx6dIlZGZmAihNaE6dOoXmzZtDqVTe9DqiKJaOZzEWwmo0/tNdrBBWg4GJCzmVLJOZF154AQUFBTh27BjCwsIQFhbmsP+ee+7B5s2bJYqOiIiIyJFviRmiudhl1xcE515PpVKhYcOG8PPzQ3JyMmw2G4qLi3Hu3DnExMTAZv5noL35nwH4JhNspmLYiotKB+YXFZXOHkbkYrJMZr777jtMmDABsbGxyMrKKrO/cePGuHDhggSRERERETkyp6UiZfJE193gn+5r4c+Mh1dNWmdEQMQ/0xb/M52xxmZFfVMxzqalwWopQZHVBpw8jlAf507bTFRdskxmioqKEBoaWuH+goKCWoyGiIiIqGKiyXUtMtcyXzgPm9Hg9OtqADTUa3EuywhRFJFekA9fjRe0NVigk8hZnDNxeC2LjY3Fjz/+WOH+DRs2oH379rUYEREREVElCMJNX/d+8x26fbYR937zXaWOrw16tReiAgMAobTh5mJefpVmWiNyFVkmM+PHj8e6deuwYMEC5OXlAQBsNhtOnz6NRx55BPv378eECRMkjpKIiIio6jKKipBuLEJGUZHUoTjw02oQ4esLACgylyCz0ChxREQy7Wb28MMP4/z583j55ZcxdepUAEC/fv0giiIUCgXmzZuHe+65R9ogiYiIiDxMqI83Cs1mFBSbcMVgQKBOC1UlZjcjchVZJjMAMHXqVDzyyCP48ssvcfr0adhsNjRp0gRDhgxB48aNpQ6PiIiIyCPdEuCPv69kwmqzIbXAgKgAf6lDojpMtskMADRo0IDdyYiIiIhqkUqhQH1/P6Tk5CK3qAih3npOBkCSkeWYmaNHj+Ldd9+tcP+7776LY8eO1V5ARERERHWIv04LP60GEIG0AufPoEZUWbJMZqZOnYrvv/++wv27du3Cyy+/XO3rL126FNHR0dBqtejUqRMOHTp0w+MXL16MZs2aQafTISoqChMmTEBxce1Mw0hEREQkhUg/XwiCgIJiEwrNZqnDoTpKlsnMkSNH0L179wr3d+/eHYcPH67WtdevX4+JEydixowZOHr0KNq2bYvExERcuXKl3OPXrl2LSZMmYcaMGThx4gRWrlyJ9evXY8qUKdW6PxEREdVtoTodwvU6hOp0UodyQ2qVyr545hW2zpBEZDlmpqCgACpVxaErFAr7lM1VtXDhQowZMwajRo0CACxbtgxbtmzBqlWrMGnSpDLH79u3D127dsWIESMAANHR0Rg+fDgOHjxYrfsTERFR3fb1XYlSh1BpoT4+yDYWwWAyw2gugV7NsTNUu2SZzNx666347rvv8J///Kfc/du2bavWjGZmsxlHjhzB5MmT7dsUCgX69OmD/fv3l3tOly5d8PHHH+PQoUOIj4/H2bNnsXXrVjzyyCMV3sdkMsFkMtnfGwx142mGIAhQKGrWGCgIgsPr+n3XHlPetsq8FApFmb9f/+eNzqkozvLiu3Y7AIgmE8ypl2DJyoKt0ABRtNXo3ytbra3R+URERDeiEASE+fjgcl4+MgwGNAwKlDokqmNkmcz83//9HyZMmICJEydi+vTpCAgIAADk5uZi1qxZ2LZtG15//fUqXzczMxNWqxXh4eEO28PDw3Hy5MlyzxkxYgQyMzPRrVs3iKIIi8WCp5566obdzObPn49Zs2ZVOT65E0URNlvNvpxfpVAo4OXlBZVKBbVaDY1GA41GA51OB61WC6XM5rwXrVaYks/CdPECUMMEprref/99GAwG+Pj44Mknn5QkBiIikp8gvQ4ZhYXILzah2GKB9ga9Z4icTZb/25599lkcO3YMixcvxltvvYV69eoBAC5fvgybzYZHHnmk1qZs3rNnD+bNm4d3330XnTp1wunTp/Hcc89h9uzZmDZtWrnnTJ48GRMnTrS/P3bsGHr06FEr8XoKm81mb+EqLCwss1+r1UKv18PHxwe+vr7Qat23hcJqNKLoz99hNUrbQmcwGJCfny9pDEREJD+CICDMxxuXcvORVWhEfX8/qUOiOkSWyYwgCFi9ejVGjhyJL7/8EmfPngUA3H333Rg6dCh69uxZreuGhIRAqVQiPT3dYXt6ejoiIiLKPWfatGl45JFH8PjjjwMAWrdujcLCQjzxxBOYOnVqud2qrrYiXOXj41OteKlixcXFKC4uRnZ2NgDAy8sLfn5+8Pf3h5+fn9u03Fjz81H4+68QLSVSh0JERFRtgTodrhQUItdYhHBfH6hq2K2cqLJkmcxc1atXL/Tq1ctp11Or1YiLi8POnTtxzz33AChtAdi5cyfGjRtX7jlGo7FMwnL1i7Ioik6LjWqmpKQEWVlZyMrKgiAI8Pf3R2BgIAICAmo8jqe6rPn5KPztKESrRZL7ExEROYsgCAjx0SM1rwDZRiPC+KCWaoks0+Zz587hm2++qXD/N998g+Tk5Gpde+LEiVixYgU+/PBDnDhxAk8//TQKCwvts5uNHDnSYYKAwYMH47333sO6detw7tw57NixA9OmTcPgwYPd5uk/ORJFEbm5uTh37hx+++03nD9/vtyuaq5kKy6G8c/fmMgQEZHHCNLroVQokG0s4gNdqjWybJl5/vnnkZ+fj8GDB5e7f+nSpQgICMC6deuqfO1hw4YhIyMD06dPR1paGtq1a4dt27bZJwVISUlxeJL/8ssvQxAEvPzyy7h06RJCQ0MxePBgzJ07t3o/HNUqm82GzMxMZGZmQq/XIywsDIGBgS5trRGtVhj/OAab2XTzg4mIiGRCIQilkwEYCmEwmeGr1dz8JKIakmUys3//fowfP77C/XfccQcWL15c7euPGzeuwm5le/bscXivUqkwY8YMzJgxo9r3I/dgNBqRnJyMS5cuISwsDKGhoS5pXSs+cwrWwroxHTcREdUtwd56ZBYWIstoZDJDtUKW3cxycnLg6+tb4X4fHx9kZWXVYkTkSUpKSnDp0iX88ccfuHz5MqxWq/OunXEF5ssXnXY9IiIid+KlVMJfq0WByYQSJ/7+JKqILJOZBg0a4Oeff65w/08//YRbbrmlFiMiT2S1WpGamoo//vgDqampNU5qRIsFxaeSnBQdERGRewry1gMikFNUJHUoVAfIMpkZPnw4Pv30U7z11lsOizBarVYsWbIE69evx4gRIySMkDyJ1WrF5cuX8ccff+DixYswm83Vuk7xmVMcJ0NERB7PW62G1kuFXGOx1KFQHSDLMTOTJ0/G3r17MX78eMydOxfNmjUDACQlJSEjIwM9e/bE1KlTJY6SPI3VakV6ejquXLmCwMBAhIaGVnqNIGtBPsypl1wcIRERkXsI0utxOS8fhWYzvNVqqcMhDybLZEaj0eC7777Dhx9+iK+++gpnzpwBAMTHx2Po0KEYOXKkZGuHkOcTRRHZ2dnIzs6GVqtFSEgIgoKC4OXlVeE5xaf/rsUIy3ezaTK9vb0hiqL9TyIiouoK0GmRVlCAXGMRkxlyKVkmMwCgUCgwatQo+/ovRFIoLi7GxYsXcfHiRfj5+dkX4lSp/q1aJRlXYMnLrdwFBQW8goOhCgqBwtsbQg2TcnN+AQRBqFRy8uSTT1b5+oIgQM1fUkREdB2lQgE/rRZ5xSbUE0UIgiB1SOShZJvMELmb/Px85Ofn4/z58/Dx8YGfnx98fX1hO3u6Uud7hUVA2zgGCq3WaTGF+vph7Nix1R7nczNqtRrBwcEuuTYREclbkE6HXGMRCkwm+DnxdxvRtWSZzPTu3fumxwiCgJ07d9ZCNERlGQwGGAwGWPLyYL2SCr2XF/RqNXReKmi9vKC+Zv0aQamCrnksvELDXBILkw0iIpKCt0YNtUqJ3KJiJjPkMrJMZmw2W5nmSqvVivPnz+PChQuIiYlB/fr1JYqOqJQoirBkZ0K0iTCYzDCY/m0dUSgEaFQqaDVa+LZoiWIRUGVnQ6VSQalUQqFQOKVJXqlUQszKhGhyzYwygkYLdUSkS65NRETyF6jTIcNQCKvNBiXHM5MLyDKZ2bNnT4X7Nm/ejCeeeAILFy6svYCIymEz5EOsoHuXzSai2AaIIWEozssD8vJcEkMQRFjfedMl176qwfyFTGiIiKhc/jot0gsMKDCZEKDTSR0OeSCPS5EHDRqEhx9+GOPHj5c6FKrjLFnZFe9UKKC+JQqCqwfPV2Fdm3u/2Y5un23Evd9sr9ItXNXqQ0RE8qdRqaBTeyGviL8ryDU8LpkBgCZNmuCXX36ROgyqw6yFBthu8CVfHVkfCo2mFiMCIAg3fGUUFSPdWISMouKbHgvOSkNERJUUoNOiwGSG9ZqFzomcxeOSGYvFgs8++wwhISFSh0J1mCWn4lYZVVAwlJVcbJOIiEjuArRaiBBRYKp8bwGiypLlmJnRo0eXuz03NxcHDhxAWloax8yQZGwmE2yFheXuU2h1UIWE1nJERERE0lEplfBRq5FXxHEz5HyyTGZ27dpVZqYnQRAQGBiIbt264fHHH0ffvn0lio7qOkteTvk7BAFeEZFcOIyIiOocf60WqfkFsIkiFPw9SE4ky2QmOTlZ6hCIyiVarbBWMDOZKii49sfJEBERuQE/rQaX8vNhMJnhp+XvQnIejxszQyQla0EBUM4AR8HLC6pgjuMiIqK6SaVUwlutRn4xZzUj55JNMmM0GpGSkgJzOet2rFq1CnfccQdiY2MxZMgQzmRGkrFW0MXMKzSM3cuIiKhO89dqUWAyQRRFqUMhDyKbZOaVV15BmzZtyiQzc+bMwZgxY/DDDz8gIyMDGzZsQM+ePfHbb79JFCnVVTaTCbZynjgpdHooff0kiIiIiMh9+Gk1sFhtMJaUSB0KeRDZJDO7d+/GoEGD4HPNlLb5+fmYM2cO6tevj1OnTiEjIwMHDhyAWq3Gq6++KmG0VBdVNPBfFcrZy4iIiLyUSujUXigo5hTN5DyySWaSk5PRpk0bh21bt26F2WzGSy+9hEaNGgEA4uPjMWrUKPz0009ShEl1lCiKsOYXlNmu8PaGUqeXICIiIiL346fVcL0ZcirZJDMFBQUIDg522Pbjjz9CEAQkJiY6bI+NjUVGRkZthkd1nM1gAKyWMtu9guXTKhOq0yFcr0Mo1wAgIiIX8dNoUVxigdlqlToU8hCymZq5YcOGOHnypMO2PXv2IDw8HDExMQ7bzWYz/Pw4RoFqjzW/7HTMCm9vKGSUGHx9V+LNDyIiIqoBrZcKapUSBcUmBHuz5wLVnGxaZvr27YtVq1bh4MGDAID//e9/OHnyJO69994yxx45cgTR0dG1HCHVVaLVCmuhocx2VVBwOUcTERHVbX7/zGpG5AyySWamTZsGHx8fdOnSBWq1Go899hhCQ0Mxffp0h+OMRiO+/vpr3HHHHRJFSnWNtaAAuG6aSYVWB6XeW6KIiIiI3JevRo1Ckxk2TtFMTiCbbmYhISE4duwYPvjgA5w9exYNGzbE6NGjERYW5nDcn3/+iYceegiPPPKIRJFSXWMtyC+zTRUUJEEkRERE7s9brQYEwGg2w0ejkTockjnZtMwAQGBgIF544QW89957mDRpUplEBiidzeztt99Gy5Ytq32fpUuXIjo6GlqtFp06dcKhQ4dueHxubi7Gjh2LyMhIaDQaNG3aFFu3bq32/Uk+RIsFNqPRYZug8oLCx1eiiIiIiNybIAjwUWtQYCq7EDpRVcmmZaa2rF+/HhMnTsSyZcvQqVMnLF68GImJiUhKSio3eTKbzbjzzjsRFhaGL774AvXr18f58+cREBBQ+8FTrbMaCgA4NpOrAgIgCII0AREREcmAn1aDzMJCAHz4RzXDZOY6CxcuxJgxYzBq1CgAwLJly7BlyxasWrUKkyZNKnP8qlWrkJ2djX379sHLywsAOPlAHVKmi5kgQOkfIEksREREcuGjUeNibh5KrFZ4KZVSh0MyJqtuZq5mNptx5MgR9OnTx75NoVCgT58+2L9/f7nnbNq0CQkJCRg7dizCw8PRqlUrzJs3D9YbzJ9uMpmQn59vfxkMZWfCIvdX2sWsyGGb0tcXgorPCIiIiG7ES6mE1ksFA7uaUQ0xmblGZmYmrFYrwsPDHbaHh4cjLS2t3HPOnj2LL774AlarFVu3bsW0adPw5ptvYs6cORXeZ/78+fD397e/evTo4dSfg2qH1WDA9V3M2CpDRERUOT4aDQycoplqSBbJzKZNm3D58mWpwyiXzWZDWFgYli9fjri4OAwbNgxTp07FsmXLKjxn8uTJyMvLs79++OGHWoyYnKV0vMy/BC81p2MmIiKqJF+NGgYzW2aoZmSRzNx7773Ys2eP/X3jxo2xadMmp98nJCQESqUS6enpDtvT09MRERFR7jmRkZFo2rQplNf092zRogXS0tJgrqCCajQa+Pn52V8+Pj7O+yGoVohWK2zGQodtKrbKEBERVZq3Wg2bTURxSYnUoZCMySKZ8fX1RW5urv19cnKyS8aZqNVqxMXFYefOnfZtNpsNO3fuREJCQrnndO3aFadPn4bNZrNv+/vvvxEZGQm1Wu30GMk92IyG6xbKFKD095csHiIiIrkRBAHebJ2hGpLFSOX4+HjMnTsX6enp8P/nC+PWrVsrHMcClFaQCRMmVPleEydOxKOPPoqOHTsiPj4eixcvRmFhoX12s5EjR6J+/fqYP38+AODpp5/GO++8g+eeew7/+c9/cOrUKcybNw/PPvtsNX5Skgvrdcm0wlvPgf9ERERV5KNWw2AyI8Sb3bSpemTx7evdd9/FyJEjMXv2bAClicratWuxdu3aCs+pbjIzbNgwZGRkYPr06UhLS0O7du2wbds2+6QAKSkpUCj+bdCKiorC9u3bMWHCBLRp0wb169fHc889h5deeqnK9yZ5EEUR1kLHLmZKX7bKEBERVZWPRo10gwGiKHKNNqoWWSQzMTEx2LdvH4qLi3HlyhVER0dj8eLFuPvuu11yv3HjxmHcuHHl7rt27M5VCQkJOHDggEtiIfdjKyoCrp16W6GA0peLfhEREVWV1ssLCkGA0VwCbw2751PVySKZuUqr1aJBgwaYMWMGevfujYYNG0odEtVBtuu6mCl9fCEoZDH8jIiIyO34qNUoMJmYzFC1yCqZuWrGjBn2vxsMBly4cAFAaZcvzgxGrmYtvC6Z8fWTKBIiIiL589aokV1YdPMDicoh28fJv/zyC3r16oXAwEC0atUKrVq1QmBgIHr37o3Dhw9LHR55KNFshmi+ZoEvpRIKDlokIiKqNh+NBkUlJbBc24WbqJJk2TJz8OBB9OzZE2q1Go8//jhatGgBADhx4gQ+/fRT3H777dizZw/i4+MljpQ8jfW6tWWUPr4csEhERFQDaqUSGpUKBSYzAvU6qcMhmZFlMjN16lTUr18fe/fuLbOY5cyZM9G1a1dMnToVO3bskChC8lRlZzHjwH8iIqKa8tGUjpthMkNVJctuZgcPHsSTTz5ZJpEBgPDwcDzxxBOcXYycThRF2K5tmVEqodCzixkREVFN+Wo0MJjMEB0WpCa6OVkmMwqFAhaLpcL9VqvVYS0YImewFRkBm83+Xuntwy5mRERETuCtUcMmijCWlEgdCsmMLL/xd+nSBUuXLsX58+fL7EtJScG7776Lrl27ShAZeTLb9V3MfNjFjIiIyBkUggBvtRfyi003P5joGrIcMzNv3jzcfvvtaN68Oe699140bdoUAJCUlISNGzdCpVJh/vz5EkdJnsYhmVEoOIsZERGRE/lqNMguKkIk+LCQKk+WyUz79u1x8OBBTJ06FZs2bYLRaAQA6PV69OvXD3PmzEFsbKzEUZInES0W2EzF9vdKvTcXyiQiInIiX60GqfkFMFssUKtk+RWVJCDb/ymxsbH4+uuvYbPZkJGRAQAIDQ3lWBlyCVuRYxczBRdnJSIiciqNSgW1Son8YhNCfGT7FZVqmez/pygUCoSHh0sdBnk4a6HxmncClN5MZoiIiJzNV6P5J5lhV26qHDZjEFXCtVMyK3Q6CGz+JiIicjo/rQaFJWZYrpk9lOhGmMwQ3YTNbIZ4zVSRbJUhIiJyDW+1GgpBQAFnNaNKYjJDdBM2o9HhPcfLEBERuYYgCPDVaJBXXHzzg4nAZIbopq4d/C94eUGh0UgYDRERkWfz02pgMJlhZVczqgQmM0Q3cW3LjELPAYlERESu5KvRABBRYGJXM7o5WY9iPn78OM6ePYucnByIolhm/8iRIyWIijyJzWSCaLHY33O8DBERkWspFQp4q9XIKypGgE4ndTjk5mSZzJw5cwYPP/wwDh06VG4SA5T2uWQyQzVlK7pmvIwgQKHXSxcMERFRHeGn1SI1vwBWmw1KriFINyDLZObJJ5/EH3/8gcWLF6N79+4IDAyUOiTyULbC66ZkVioljIaIiKhu8NNqcDk/H/nFJgTq2TpDFZNlMvPzzz9jypQp+M9//iN1KOTBRFGE9Zr1ZdjFjIiIqHZ4KZXw9lIjt6iYyQzdkCzb7UJCQuDv7y91GOThbMXFwDUzqbCLGRERUe3x02lQaDZxAU26IVkmM0899RQ+/vhjWK1WqUMhD2a7plUGShUUWj4ZIiIiqi3+Wi1EEcgr4pozVDFZdjNr2rQprFYr2rZti9GjRyMqKgrKcsYyDBkyRILoyFNcO15G6c1WGSIiotrkpVTCW61GTlERgvl7mCogy2Rm2LBh9r8///zz5R4jCAJbbqjaRJsNtuIi+3uuL0NERFT7/HVaXM7LR7HFAq1Kll9bycVk+b9i9+7dLr3+0qVL8frrryMtLQ1t27bF22+/jfj4+Juet27dOgwfPhx33303NmzY4NIYybVsxkLgmmm/lUxmiIiIap2/TovU/HzkGIsQ6ecrdTjkhmSZzPTo0cNl116/fj0mTpyIZcuWoVOnTli8eDESExORlJSEsLCwCs9LTk7G888/j+7du7ssNqo91mu6mAleagheXhJGQ0REVDepFAr4aDTILSpChK8PBEGQOiRyM7KcAOBax48fx7fffotvv/0Wx48fr/H1Fi5ciDFjxmDUqFGIjY3FsmXLoNfrsWrVqgrPsVqteOihhzBr1iw0bty4xjGQ9GyFBvvfOYsZERGRdAJ0WlisNhSYTFKHQm5ItsnMxo0b0aRJE7Ru3RqDBg3CoEGD0Lp1a8TExGDTpk3VuqbZbMaRI0fQp08f+zaFQoE+ffpg//79FZ73yiuvICwsDP/3f/9XqfuYTCbk5+fbXwaD4eYnUa2xmUwQS0rs7zn4n4iISDp+Wi0UCgHZxqKbH0x1jiy7mW3duhVDhw5Fw4YNMW/ePLRo0QIAcOLECSxfvhxDhgzB5s2b0a9fvypdNzMzE1arFeHh4Q7bw8PDcfLkyXLP2bt3L1auXIljx45V+j7z58/HrFmzqhQb1R6HKZkBKHQcL0NERCQVhSAgQKtFdlERzFYr1OXMYEt1lyxbZmbPno02bdrg999/x0svvYS77roLd911F1566SX8/vvvaN26da0kCwUFBXjkkUewYsUKhISEVPq8yZMnIy8vz/764YcfXBglVZX12i5mag0Ezp5CREQkqUC9DhCB7EKj1KGQm5Hlt7Tff/8d8+bNg7d32Sfm3t7eeOyxxzBlypQqXzckJARKpRLp6ekO29PT0xEREVHm+DNnziA5ORmDBw+2b7P9s0qtSqVCUlISmjRpUuY8jUYDjUZjf+/j41PlWMk1RKsVNuO/H5QCu5gRERFJTq9WQ+OlQk5REcJ8faDgRAD0D1m2zGi1WmRnZ1e4Pzs7G1qttsrXVavViIuLw86dO+3bbDYbdu7ciYSEhDLHN2/eHH/88QeOHTtmf911113o1asXjh07hqioqCrHQNKyGY2OUzKzixkREZFbCNLpYLHakFvEsTP0L1m2zPTu3RtLlixBv379yiQZBw8exFtvvYW+fftW69oTJ07Eo48+io4dOyI+Ph6LFy9GYWEhRo0aBQAYOXIk6tevj/nz50Or1aJVq1YO5wcEBABAme0kD1ZDwTXvBM5kRkRE5CYC9DqkFxiQVWhEEH8/0z9kmcy89tprSEhIQLdu3RAfH49mzZoBAJKSknDo0CGEhYVhwYIF1br2sGHDkJGRgenTpyMtLQ3t2rXDtm3b7JMCpKSkQKGQZYMW3YQoig7ryyh0OggcZEhEROQWVAoF/HRa5BqLYDCZ4HNNl32qu2SZzDRq1Ai///475s+fj2+//Rbr168HADRs2BDPPfccJk2adMMFLm9m3LhxGDduXLn79uzZc8Nz16xZU+37krRsxUWA1WJ/z1YZIiIi9xKs1yHXWIQrhkImMwRApskMAISFhWHRokVYtGiR1KGQh7AVOK73o9BzvAwREZE70avV0Km9UGgyw2g2Q69WSx0SSYz9pYj+4TBeRqGAQqeTLhgiIiIqV+g/s9leMRTe5EiqC2TRMjN69GgIgoDly5dDqVRi9OjRNz1HEASsXLmyFqIjT2AzmSCWmO3vlXpvCJz2kYiIyO34aTXwUipRUGySVevM+++/D4PBAB8fHzz55JNSh+MxZJHM7Nq1CwqFAjabDUqlErt27brpF01+EaWqsBryHd4rvLn2DxERkTsSBAEh3nqk5hcgrcCAxsFBUodUKQaDAfn5+Tc/kKpEFslMcnLyDd8T1ZStoMDhvbKcBVmJiIjIPQR563HFUIhCkxkFJhN8ORlAnSXLMTMpKSkousGCSUVFRUhJSanFiEjObCYTbCaT/b1CrYHg5SVhRERERHQjin9aZwAgLb8A4jULXlPdIstkplGjRvj6668r3L9p0yY0atSoFiMiOWMXMyIiIvkJ9tZDqVCguMSCLKNR6nBIIrJMZm6WfZeUlHBhS6o0a75jFzOFD7uYERERuTulQoHQf35npxcYYLFaJY6IpCCLMTMAkJ+fj9zcXPv7rKyscruS5ebmYt26dYiMjKzF6EiubCYTRPO/XcxKp2TmYplERERyEOytR1ZhIUqsNlzKy0fDoECpQ6JaJptkZtGiRXjllVcAlM5iMX78eIwfP77cY0VRxJw5c2oxOpIra36ew3uljw9nwiMiIpIJhSAg3NcXF3PzkF9sQm5REQK4TlydIptkpm/fvvDx8YEoinjxxRcxfPhwdOjQweEYQRDg7e2NuLg4dOzYUaJISS5EUYQ1n+NliCoiCEKNknuFQgGFQgGVSgW1Wg0vLy/odDpotVpobjLzkDMeKrjiwYQoirAVGmAtKIDVWAhbcTFEkwmipQRwQheXXC1bhomqKlCvQ5bRiCJzCS7l5UPn5QWNSjZfcamGZFPSCQkJSEhIAAAUFhZi6NChaNWqlcRRkZzZioylX0CuEgQomcwQ2YmiWKMZgqxWK6xWK0pKSsrMQKlSqeDj4wM/Pz/4+/tD7caL3tnMZlgyM1CSlQlrbg5Eq8W+T/jn5SwKzshEVC31/HxxJjMbNpuICzl5aBwSBAV7WtQJsklmrjIajXjrrbeg1+uZzFCNWPMcu5gpdDoISqVE0RDVLRaLBbm5ufaxkHq9HkFBQQgKCoKXG0yNLtpssGRlwpx6CZbsbABMMojcmV6t/mf8jBFFJSW4mJuHBoEBUodFtUB2yYxer4dKpYI3FzWkGhCtVlgN1y2U6eMrUTREZDQaYTQacenSJQQEBCAsLAw+PrXfUiparTBfvgjzxQuwmYpr/f5EVH0Rfr4oMJlgtliRV1SMy4p81PP3q7X736wl29vbG6Io2v8k55BdMgMAQ4cOxRdffIGnn36ag7WpWqwFBYDN5rCNyQyR9ERRRE5ODnJycuDt7Y3IyEj4+/u7/r42G8yXLsCUch5iidnl9yMi51OqvNAgPAJns3MAhQK5SgVUXhpERUYCCiUEpQJQKCAICkAQnNJH1GwugSAIlUpOnnzyySpfXxAEt+6G6w5kmcw8+OCDeOaZZ9CrVy+MGTMG0dHR0JUzc8X1EwQQXWXNy3F4r9BqIbhB1xYi+ldhYSFOnz4Nb29v3HLLLS5rqSnJuILiM6dgKy66+cFEJBmFWlPaJVyrg0Knh0KrgUKjhaDRQqHRQFAq4QcAaWm4dOkSACAfwCVRQHRUAyhd0JU8FMDYsWNhNrvmIYharUZwcLBLru0pZJnM9OzZ0/73n376qcx+URQhCAKsXDyJymEzFcNW7Nh9ROlTe83QRFQ1hYWFSEpKQkBAAKKiopz2lNJmKkbR30mwZGU45XpE5ByClxpKbx8ofHxK//T2hlLvDaGSM5RFRETAaDQiJ6f0wWVubi6OHz+OqKgoBAQEOD1eJhvSkmUys3r1aqlDIBmzXLP46lUKX3YxI3J3ubm5yM/PR2RkJMLDw2vUzdicdhnFp/52mJmMiGqfoFBC6ecHpZ8/lL5+UPr6QaHV1vi60dHRKCkpgcFgAACYzWacOXMGer0eISEh8PX1hdYJ9wEAc1oqRBeNsRM0WqgjuBD8jcgymXn00UelDoFkSrRayyyUqdBqoWB/VCJZsNlsuHTpEnJycirsYnwjosWCoqQTKMlId1GERFQRQaGEwtsHSl9fKH18ofTzh8Lb2yXjnxUKBWJiYnDq1CkUFhbatxuNRqSkpJTG44T7hqmUKF70ao2vcyMN5i9kQnMDskxmrmUwGHDhwgUAQFRUlCSz35B8WPPyyg7892UXMyK5MRqNOHHiBOrXr4/w8PBKnWM1FMD45x+wFRtdHB1R3SaovKDQlY5rUXp7Q6H3htLHB4JWV6sTNymVSjRt2hRnz55F3nXLMQA3n32sMqrSInPvN9uRUVSMUJ0WXw9OdMk96iLZJjO//PILXnzxRezduxe2f76cKhQKdO/eHa+99ho6duwocYTkbkRRhOW6gf8AZzEjkitRFHHx4kUUFBQgOjoaqhv0pzenp6E46QREG8dSElWXoFBCUHlB8PKCoFZDUKuhUKvtA/AVWi0UWp1bTahztYUmPT0dly9ftn9ndImbJGoZRcVINxZV6lgAAKdvrhRZJjMHDx5Ez549oVar8fjjj6NFixYAgBMnTuDTTz/F7bffjj179iA+Pl7iSMmd2AwGiNfNNqLQ6iCwixmRrOXl5eHEiRNo0qQJ9Hp9mf3F587AdP6cBJER1TKVygmJhAAICkAhQFAoAYUCCqUCUKpKF5YWBPsXcUGhgGi1QiwywlZcBCH/6rmK0hYYhQKC4p9pkK/+3f6nsvRP5TXvlcp/9ztZeHg4AgMDkZqaiuzsbNcmNVSrZJnMTJ06FfXr18fevXsRERHhsG/mzJno2rUrpk6dih07dkgUIbkjS3ZWmW3KWlxMi4hcx2w24+TJk2jYsKF9ZiHRZisdH5OeKnF0rvH+++/DYDDAx8enWutXkAeyWCCWlDjtclfbBaT42i8olI5JkPBvMgRBgKD4J6kSrn2v+GftmNJ99i5t1/wZBiBEr4XRZEKx2VzjrmY6mw2mGl2BakqWyczBgwcxffr0MokMUJp5P/HEE5g9e7YEkZG7shqNZdeQEAROyUzkQURRRHJyMoqLi1EvIgLGP3+HJafsQwxPYTAYkJ+fL3UYRC5h7xJq/Tepcib1P6+aErw0TrgK1YQskxmFQgGLpeLpNK1WKxQuaKIk+bJkZ5bZpvD2qfSc9UQkH6mXLiHnz99Rz0sJJX8XEBF5NFl+ynfp0gVLly7F+fPny+xLSUnBu+++i65du0oQGbkjq9EI2zXTMl6l8vOXIBoiciXRaoX54gXkZmXhdGYWip3Y5YaIiNyPLJOZefPmIS8vD82bN8eIESMwc+ZMzJw5E8OHD0fz5s2Rl5eH+fPnV/v6S5cuRXR0NLRaLTp16oRDhw5VeOyKFSvQvXt3BAYGIjAwEH369Lnh8VT7yl3dW6mCgtN4E3kU0WKB+WKKvUup2WLFmcxsZBVyKmYiIk8lyz427du3x8GDBzF16lRs2rQJRmPpLyq9Xo9+/fphzpw5iI2Nrda1169fj4kTJ2LZsmXo1KkTFi9ejMTERCQlJSEsLKzM8Xv27MHw4cPRpUsXaLVaLFiwAH379sVff/2F+vXr1+jnpJqzFhpgM5b9IqPy86/Vue6JyLVESwnMFy7AZnYcimsTRVzOy0eByYRb/P2gUiolipCIiFxBlskMAMTGxuLrr7+GzWZDRkbpk/fQ0NAaj5VZuHAhxowZg1GjRgEAli1bhi1btmDVqlWYNGlSmeM/+eQTh/cffPABvvzyS+zcuRMjR46sUSzuSi4z6IiiCMuVK+XuU/qzixnVHXKps9VlM5lgvnThhrM4FRSb8Lc5C/X8fRGg09VidERE5EqyTWauEq6Zeq+mT9rNZjOOHDmCyZMn27cpFAr06dMH+/fvr9Q1jEYjSkpKEBQUVOExJpMJJtO/Tw8NBkP1g5aAXGbQsebllnlKCwAKnR4KDWcfobpDLnW2OqzGQpgvXQQqsWaE1WbDhZw85BiLUM/fDxpOAEJEJHuyHDMDAMePH8d9990HPz8/REZGIjIyEn5+frjvvvvw559/VuuamZmZsFqtCA8Pd9geHh6OtLS0Sl3jpZdeQr169dCnT58Kj5k/fz78/f3trx49elQrXqqYaLGgJLOcsTIAlAEBtRsMEbmEJTcb5osXKpXIXMtgMuNURiZS8wtg4cJ5RFRLQnU6hOt1CGXrsFPJ8rHUTz/9hP79+8Nms+Huu+9G06ZNAQBJSUnYtGkTvv32W2zbtg3du3ev1bheffVVrFu3Dnv27IFWq63wuMmTJ2PixIn298eOHWNC42QlGemA1Vpmu6BSQenLtWWI5Ey02VCSngZrfl71ryECmYZC5BiLEOKtR7C3XnbTOPv8M4mJDyczIZKFr+9KlDoEjyTLZGbChAkICwvDDz/8gKioKId9Fy5cwO23346JEyfil19+qdJ1Q0JCoFQqkZ6e7rA9PT293AU6r/XGG2/g1Vdfxffff482bdrc8FiNRgPNNd2c+IvIuawFBbBW0KVGGRDAgf9EMmYzmVBy+VK5XUirw2qzIb3AgMxCI4K9dQjS6+FVyUkCBEEBQaeDQq2GoPICnDC5gML6b0vRzVYmf+KJJyp9LBGRp5JlMvPXX39h9uzZZRIZAIiKisLTTz+NmTNnVvm6arUacXFx2LlzJ+655x4AgM1mw86dOzFu3LgKz3vttdcwd+5cbN++HR07dqzyfcl5xJISmNNTy98pCFD5B9ZuQETkNJbsbJRkXiltVnEyq82GKwWFyDAUwk+rRaBeBx+12uHhh9LHD6qAQCj9/aH08YGg1Tn94Yh3VhYEQXBZciIIAtRqZ6x7TkTkHmSZzDRs2NBhAP31zGZzuYlOZUycOBGPPvooOnbsiPj4eCxevBiFhYX22c1GjhyJ+vXr29exWbBgAaZPn461a9ciOjraPrbGx8eHLS61TBRFmFMvl9u9DACUfv4QOOCXSHZsJhNK0tNgK3L9ejGiCOQVFSOvqBgqpQKBIaEIjmqAgAYNobpB92FnCQ4OxtixY2E2m11yfbVajeDgYJdcm4hICrL8Zjd9+nRMmDABAwcORLt27Rz2/frrr3j77bexePHial172LBhyMjIwPTp05GWloZ27dph27Zt9kkBUlJSHKZ/fu+992A2m3Hfffc5XGfGjBnVah2i6itJS73Blx0BqsCKZ5gjIvcjWq2wZGfBkpPtktaYCilVUPn7Q+UfAINaDUOBASnHj8Pb2xs+Pj7Q6/XQ6XRQq9U1Xg6gPL4lZojmYqdfFwDYy5aIPI0sk5kDBw4gPDwccXFx6NKlC2JiYgAAp06dwv79+9GqVSvs37/fYTplQRCwZMmSSl1/3LhxFXYr27Nnj8P75OTkav0M7qoyXRu8vb0hiqL9T3dQkpFxw8HASh8fTsdMHkmudfZGRFGENTcHJVlZgNVSa/cVVF5QBQVB6R8A4bokRRRFGAyGMlPpe3l5QaVSQalUOiWx8S0xw/D6nBpf50YazF8IdUSkS+9BRFRbZJnMvPPOO/a///zzz/j5558d9v/xxx/4448/HLZVJZmpa9T/9Auv7Jec6i6617Rp0xuuv3MzoiiWfsmxWmG1WmGxWFBSUgLD+XMoNOQBSgUs1vKnWVWxWwV5ELnUWZvNBpvNZq+rZrMZxcXFKCoqQkk5C1yKViusebmw5ORAtFS8AKbTKZXwCgqGMjCoymNgSkpKyv1ZqktdhZ/73m+2I6OoGKE6Lb4eXPlZkkSTa1p9iIikIMtkxsZ1AZzK1X20Adf00xYtFhSdPA4fczEQUnptq82G4hILiiwlKDKXoLCkBDatHgot53QnzyHXOnutkpISGAwGFBQUICctFcaMDFgL8qu8ZkxNKf0D4BUS6p7j6W6SWGUUFSPdWFSpYwHUblc9IqJa4oaf3iQFuQ0ILcm4guLTf8N23RNGpUIBb40a3ho14F26Td2mA4yiiPz8fOTn58Niqb1uK0SuIrc6ey3RaoVgKIA2KxOqzEz4FxtRrFYiz1uH3KJimC3lT+LhTIJaA6+ICCh1epffi4iIXEfWycy5c+fw7bff4vz58wBKZznr378/GjVqJHFk8mNOS3VZ1wPRZgMEAV5hN16r56bXMRXDmp8Hc3oabMbCSp3jFR4JXVAQdCj98ieKIgoLC5GTk4OcnByndg8hqk1yqLOw2SBaLBDNJtiKi2ErMpauA1VoAETHFhitlxe0Xl4I9/WFwWRCtrEI+cXFLmlMUAUGQxUayjWniIg8gGyTmf/+979YsmRJmS5nCoUC48ePxxtvvCFRZPJjTktFyuSJrrvBP99Ggu69H0p/f9fd5zqCQglt4xjHbYJgnzb7lltugcFgQFZWFnJycth9kWTDU+vsVT4aDXw0GpitVmQaCpFjLILNGVmNUgV1vXpQ6r1rfi0iInILskxm3nzzTSxatAj33Xcf/vvf/6JFixYAgBMnTmDRokVYtGgR6tevjwkTJkgcqTxU9elutQed1nL3LnWD6BvOYCYIAnx9feHr64uoqChkZWUhIyMDxcUcHEvuzVPr7PXUSiXq+fshzMcbVwyFyDYWVXs2NoVOD3W9+u45NoaIiKpNlp/qK1aswF133YXPPvvMYXunTp2wbt06FBcX4/3332cyUx2V6HYhh0GnCr03NA0aVvp4pVKJsLAwhIWFIT8/H+np6cjPz3dhhERO4iF19kZU/yQ1Id56pBUYkFdUtWROGRgIr9BwdisjIvJAzl/tqxYkJycjMbHip4uJiYket/4LVY2uWYsy60RUlp+fH2699Va0aNECAQEBzg2MiKpNrVKhQWAAGgUHQlOZFhZBgFd4BNRhEUxkiIg8lCyTmbCwMPz2228V7v/tt98QGhpaixGRO9Hc0hAq/4AaX0ev16NJkyZMaojcjI9Gg5jQYIT5elfc0KRQQF3vFqgCAms1NiIiql2yTGbuv/9+fPDBB3j11VdRWPjvrFaFhYVYsGABPvjgAwwbNkzCCEkqSl8/aBo3ceo1ryY1sbGxCA4O5hNeIjegEASE+/qicXBw2VYapQrqWxpA6eMjTXC1JFSnQ7heh1Ad19EiorpLlmNmZs+ejWPHjmHKlCmYPn066tWrBwC4fPkyLBYLevXqhVdeeUXiKKm2CV5q6GNbVbt72c3odDpER0ejfv36yMzMREZGBqd2JpKYXu2FmNBgpOblI9tYBEFVmsjcaPIPT/H1XZWfzIGIyFPJMpnR6/XYuXMnNm7c6LDOTL9+/TBgwAAMHjyYT8/rGEFQQN+yDRS1sACel5cXIiMjERERgfz8fGRmZiIvL6/asywRUc0oBAH1A/zh4+uPTF9fiEpZ/mojIqJqkN0nvtFoxMMPP4yhQ4fioYcewt133y11SCQ1QQFdy9ZQ1fK4FkEQ4O/vD39/f1itVvtCnAUFBUxsiGqZ0tcPt7RuhzCbDadPn4bJZJI6JCIiqgWyS2b0ej2+//579O/fX+pQ6qyr/bPdoZ+2oFRBF9sKXsEhksahVCoREhKCkJAQWK1W5Ofn219ms1nS2Ijcqc66gldIGHQtWkJQKqEF0KJFCyQnJyM3N1fq0IiIyMVkl8wAQLdu3bB//36MGTNG6lDqJHfpp63U+0DXsjWU3u61mrdSqURgYCACA0tnUTKZTCgsLLS/ioqKYLPZJI6S6hJ3qbOuoGnYCNpGjpN+KJVKNGnSBOnp6bh06RJbSomIPJgsk5l33nkHiYmJePnll/HUU0/hlltukTokqkWClxqaqIZQ3xLlssH+zqRWq6H28kJgQEDpYoSiCJPJVPoqLoa5pARmsxklJSWwWq2w2myw2WylX8Bq+CWMI8fIUwlKFXQtWsIrpOJp+MPDw+Hr64tz586huLhqC20SEZE8yDKZadu2LSwWC+bPn4/58+dDpVJBc93MNYIgIC8vT6IIqVwqJQQvr2qeLEBQe0Hp4wulfwAEhQIlV9KAq9/1r/3SL4r/PokVRQAiYCv9s/StzZ5UQATEa96Ltuv/bis912HfP4mGTfznWo7XsJ9/9d43oPnn5UoZLr4+UW1T+gVA36IlFJXoNqfX69GiRQtcvnwZ6enptRAdERHVJlkmM0OHDuVsZXJksUKswVTGYokZtsJClKSnOTEoIpINQQFNw0bQNIyu0u8AhUKBW265BYGBgTh//jyKiopcGCQREdUmWSYza9askToEIiKqRUpfP+iatYDSx7fa1/D29kaLFi2QkZGBy5cvw2q1OjFCIiKSgqySmeLiYmzcuBHnzp1DSEgIBg4ciMjISKnDIiIiFxG81NBGN4ZXvfpOaZEXBAFhYWEICgpCamoqMjIyOEEAEZGMySaZuXLlCrp06YJz587Zf/Ho9Xps2LABffr0kTg6IiJyJkGhhPqWKGgaRENQOf9XlUqlQlRUFMLDw5Geno7MzEzOMkhEJEPuPxXUP2bPno3k5GRMmDABmzdvxuLFi6HT6fDkk09KHRoRETmJoFRB0yAaPp27Qts4xiWJzLXUajWioqLQunVr1KtXD17VnqSEiIikIJuWme+++w4jR47EG2+8Yd8WHh6OESNGICkpCc2aNZMwOiIiqgmljx/UkfXgFR7h8gSmPCqVCpGRkYiIiEBeXh6ys7ORm5vLLmhERG5ONslMSkoKXnrpJYdt3bp1gyiKSE9PZzJDRCQzSh8/qIKD4RUaDqWPj9ThACgdUxMQEICAgABYrVbk5+cjLy8P+fn5KKnBbIxEROQasklmTCYTtFqtw7ar7y0WixQhERFRZQgKKDRaKPS60rWifP2g9A+AQq2WOrIbUiqVCAwMRGBgIIDS30NGoxFGoxHFxcUwmUwwm82cFY2ISEKySWYAIDk5GUePHrW/v7oo5qlTpxAQEFDm+A4dOlTrPkuXLsXrr7+OtLQ0tG3bFm+//Tbi4+MrPP7zzz/HtGnTkJycjFtvvRULFizAgAEDqnVvIiK3oVAAyhr8mhAECEoFhH+uYSsuhq24GCWZ/yzlWpUuXFXq7VXBwdXtMnbNaSoAfv+8/r2sCOs/C+XWtFuaUiEgs0ZXICKqW2SVzEybNg3Tpk0rs/2ZZ55xeC+KIgRBqNbTsvXr12PixIlYtmwZOnXqhMWLFyMxMRFJSUkICwsrc/y+ffswfPhwzJ8/H4MGDcLatWtxzz334OjRo2jVqlWV709E5DZsNsBas5Zv0QKIMDkpIPfltNl0BFn9WiYikpxsPjVXr15dK/dZuHAhxowZg1GjRgEAli1bhi1btmDVqlWYNGlSmeOXLFmCfv364YUXXgBQOuvajh078M4772DZsmW1EjMRERERUV0km2Tm0Ucfdfk9zGYzjhw5gsmTJ9u3KRQK9OnTB/v37y/3nP3792PixIkO2xITE7Fhw4YK72MymWAy/fuk0mAw1CxwZ+LMPZ6LZeuZWK6ei2XrmViunotlKwnZJDO1ITMzE1arFeHh4Q7bw8PDcfLkyXLPSUtLK/f4tLS0Cu8zf/58zJo1q+YBO4mg0d78ICfQxNwKr5DQWrkXlbIVFrr8HrX1/4f+xTrruWxGo8vvwTpb+1hnPZetqMjl92CdvTEmMxKYPHmyQ2vOsWPH0KNHD8niUUdEosH8hRBNxS67h6DRQh0R6bLrU8VcWbYsV2mwzno21lnPwzrr2VhnpcVk5hohISFQKpVIT0932J6eno6IiIhyz4mIiKjS8QCg0Wig0Wjs733cYH0FVhTPxbL1TCxXz8Wy9UwsV8/FspWW0yZg8QRqtRpxcXHYuXOnfZvNZsPOnTuRkJBQ7jkJCQkOxwPAjh07KjyeiIiIiIicgy0z15k4cSIeffRRdOzYEfHx8Vi8eDEKCwvts5uNHDkS9evXx/z58wEAzz33HHr06IE333wTAwcOxLp163D48GEsX75cyh+DiIiIiMjjMZm5zrBhw5CRkYHp06cjLS0N7dq1w7Zt2+yD/FNSUqBQ/Nug1aVLF6xduxYvv/wypkyZgltvvRUbNmzgGjNERERERC4miDVdrphq7OjRo4iLi8ORI0fQoUMHqcMhIiIiIpIFjpkhIiIiIiJZYjJDRERERESyxDEzVC2pqalITU2VOgxyssjISERGcopJT8Q665lYZz0X66xnYp11PiYzbiAyMhIzZsyQzX9uk8mE4cOH44cffpA6FHKyHj16YPv27Q7rIJH8sc56LtZZz8Q667lYZ52PEwBQleXn58Pf3x8//PCDWyz4Sc5hMBjQo0cP5OXlwc/PT+pwyIlYZz0T66znYp31TKyzrsGWGaq2du3asTJ6kPz8fKlDIBdjnfUsrLOej3XWs7DOugYnACAiIiIiIlliMkNERERERLLEZIaqTKPRYMaMGRy85mFYrp6LZeuZWK6ei2XrmViursEJAIiIiIiISJbYMkNERERERLLEZIaIiIiIiGSJyQwREREREckSkxmSVHJyMgRBwJo1a6QOhYgqgXWWSF5YZ8nTMZmRkTNnzuDJJ59E48aNodVq4efnh65du2LJkiUoKipy2X2PHz+OmTNnIjk52WX3qIy5c+firrvuQnh4OARBwMyZMyWNRwqCIFTqtWfPnhrfy2g0YubMmVW6FsvIUV2usydPnsSLL76Idu3awdfXF5GRkRg4cCAOHz4sWUxScOc6yzIqqy7X2cuXL+Phhx9Gs2bN4Ovri4CAAMTHx+PDDz9EXZoryp3rLMuofCqpA6DK2bJlC+6//35oNBqMHDkSrVq1gtlsxt69e/HCCy/gr7/+wvLly11y7+PHj2PWrFno2bMnoqOjXXKPynj55ZcRERGB9u3bY/v27ZLFIaWPPvrI4f3//vc/7Nixo8z2Fi1a1PheRqMRs2bNAgD07NmzUuewjP5V1+vsBx98gJUrV2Lo0KF45plnkJeXh/fffx+dO3fGtm3b0KdPH0niqm3uXGdZRo7qep3NzMzExYsXcd9996FBgwYoKSnBjh078NhjjyEpKQnz5s2TJK7a5s51lmVUAZHc3tmzZ0UfHx+xefPm4uXLl8vsP3XqlLh48WKX3f/zzz8XAYi7d+++6bE2m000Go2Vvva5c+dEAOLq1asrdawoimJGRoYIQJwxY0al7+Opxo4dK7qqGlfn35llVIp1VhQPHz4sFhQUOGzLzMwUQ0NDxa5du1b6fp7Gneosy+hfrLMVGzRokOjt7S1aLJZqnS937lRnK1LXy4jdzGTgtddeg8FgwMqVKxEZGVlmf0xMDJ577jn7e4vFgtmzZ6NJkybQaDSIjo7GlClTYDKZHM6Ljo7GoEGDsHfvXsTHx0Or1aJx48b43//+Zz9mzZo1uP/++wEAvXr1KtO8evUa27dvR8eOHaHT6fD+++8DAM6ePYv7778fQUFB0Ov16Ny5M7Zs2VLtfwcpW4XkxGazYfHixWjZsiW0Wi3Cw8Px5JNPIicnx+G4w4cPIzExESEhIdDpdGjUqBFGjx4NoLSPdWhoKABg1qxZ9nK/WbcxllEp1lkgLi4OPj4+DtuCg4PRvXt3nDhxolrX9FRS1VmW0b9YZysWHR0No9EIs9ns1OvKmZS/Z8tT58tI6myKbq5+/fpi48aNK338o48+KgIQ77vvPnHp0qXiyJEjRQDiPffc43Bcw4YNxWbNmonh4eHilClTxHfeeUfs0KGDKAiC+Oeff4qiKIpnzpwRn332WRGAOGXKFPGjjz4SP/roIzEtLc1+jZiYGDEwMFCcNGmSuGzZMnH37t1iWlqaGB4eLvr6+opTp04VFy5cKLZt21ZUKBTiV199ZY+hOk+M6vpT/2uV98To8ccfF1UqlThmzBhx2bJl4ksvvSR6e3uLt912m2g2m0VRFMX09HQxMDBQbNq0qfj666+LK1asEKdOnSq2aNFCFEVRNBgM4nvvvScCEO+99157uf/222+ViquulxHrbMW6dOkiNm3atFrnegJ3rbPXqotlxDr7L6PRKGZkZIjnzp0T16xZI3p7e4tdunSp9L+Np3HHOssycsRkxs3l5eWJAMS77767UscfO3ZMBCA+/vjjDtuff/55EYC4a9cu+7aGDRuKAMQff/zRvu3KlSuiRqMR//vf/9q33aj5++o1tm3b5rB9/PjxIgDxp59+sm8rKCgQGzVqJEZHR4tWq1UURSYzNXX9h+xPP/0kAhA/+eQTh+O2bdvmsP3rr78WAYi//PJLhdeuyb9zXS4j1tmK/fjjj6IgCOK0adOqfK6ncNc6e1VdLCPWWUfz588XAdhfd9xxh5iSklKpcz2RO9ZZlpEjdjNzc/n5+QAAX1/fSh2/detWAMDEiRMdtv/3v/8FgDLNz7Gxsejevbv9fWhoKJo1a4azZ89WOsZGjRohMTGxTBzx8fHo1q2bfZuPjw+eeOIJJCcn4/jx45W+PlXe559/Dn9/f9x5553IzMy0v652J9m9ezcAICAgAACwefNmlJSUSBix52GdLd+VK1cwYsQINGrUCC+++GKNruVJ3KnO1tUyYp11NHz4cOzYsQNr167FiBEjAMClM7nJjTvUWZaRIyYzbs7Pzw8AUFBQUKnjz58/D4VCgZiYGIftERERCAgIwPnz5x22N2jQoMw1AgMDy/T7vJFGjRqVG0ezZs3KbL86+8f1cZBznDp1Cnl5eQgLC0NoaKjDy2Aw4MqVKwCAHj16YOjQoZg1axZCQkJw9913Y/Xq1WX6e1PVsc6WVVhYiEGDBqGgoAAbN24sM06jLnOXOluXy4h11lHDhg3Rp08fDB8+HJ988gkaN26MPn361Okvy9dyhzrLMnLEqZndnJ+fH+rVq4c///yzSucJglCp45RKZbnbxSrMV67T6Sp9LLmWzWZDWFgYPvnkk3L3Xx1sKAgCvvjiCxw4cADffPMNtm/fjtGjR+PNN9/EgQMH6tQXGWdjnXVkNpsxZMgQ/P7779i+fTtatWpVa/eWA3eos3W9jFhnb+y+++7DihUr8OOPP5ZpHaqL3KHOXq+ulxGTGRkYNGgQli9fjv379yMhIeGGxzZs2BA2mw2nTp1ymAM9PT0dubm5aNiwYZXvX9kP7OvjSEpKKrP95MmT9v3kfE2aNMH333+Prl27VuqXX+fOndG5c2fMnTsXa9euxUMPPYR169bh8ccfr1a5UynW2VI2mw0jR47Ezp078dlnn6FHjx5Vvoank7rOsoxKsc5W7OrT/ry8PKdcT+6krrPlqetlxG5mMvDiiy/C29sbjz/+ONLT08vsP3PmDJYsWQIAGDBgAABg8eLFDscsXLgQADBw4MAq39/b2xsAkJubW+lzBgwYgEOHDmH//v32bYWFhVi+fDmio6MRGxtb5Tjo5h544AFYrVbMnj27zD6LxWIvw5ycnDJPBdu1awcA9iZwvV4PoGrlTqVYZ0v95z//wfr16/Huu+9iyJAhVT6/LpC6zrKMSrHOAhkZGeVuX7lyJQRBQIcOHap0PU8lZZ1lGZWPLTMy0KRJE6xduxbDhg1DixYtHFYm3rdvHz7//HM89thjAIC2bdvi0UcfxfLly5Gbm4sePXrg0KFD+PDDD3HPPfegV69eVb5/u3btoFQqsWDBAuTl5UGj0aB3794ICwur8JxJkybh008/Rf/+/fHss88iKCgIH374Ic6dO4cvv/wSCkXV8+iPPvoI58+fh9FoBAD8+OOPmDNnDgDgkUceYWsPSvvoPvnkk5g/fz6OHTuGvn37wsvLC6dOncLnn3+OJUuW4L777sOHH36Id999F/feey+aNGmCgoICrFixAn5+fvZf1DqdDrGxsVi/fj2aNm2KoKAgtGrV6oZdUFhGpVhnS7/ovfvuu0hISIBer8fHH3/ssP/ee++1f4Gry6Sssyyjf7HOAnPnzsXPP/+Mfv36oUGDBsjOzsaXX36JX375Bf/5z3/KjBGqq6SssyyjCkg5lRpVzd9//y2OGTNGjI6OFtVqtejr6yt27dpVfPvtt8Xi4mL7cSUlJeKsWbPERo0aiV5eXmJUVJQ4efJkh2NEsXS6x4EDB5a5T48ePcQePXo4bFuxYoXYuHFjUalUOkwfWdE1RLF07vz77rtPDAgIELVarRgfHy9u3rzZ4ZiqTBnZo0cPh6kIr31VZtVkT1TRysTLly8X4+LiRJ1OJ/r6+oqtW7cWX3zxRfvK1kePHhWHDx8uNmjQQNRoNGJYWJg4aNAg8fDhww7X2bdvnxgXFyeq1epKTR/JMnJUl+vs1XU4KnqdO3fuhud7Kneqsyyjsupynf3uu+/EQYMGifXq1RO9vLzsP/vq1atFm812w3M9mTvVWZZR+QRRrMIINCIiIiIiIjfBMTNERERERCRLTGaIiIiIiEiWmMwQEREREZEsMZkhIiIiIiJZYjJDRERERESyxGTGg7z22mto3rw5bDab1KHU2IMPPogHHnhA6jDcBsvWM7FcPRfL1jOxXD0Xy1bGpJ4bmpwjLy9PDAoKEletWmXfhn/WCnjjjTfKHL969WoRgPjLL784PZY+ffqIAMSxY8eWu/+DDz4QmzdvLmo0GjEmJkZ86623yhxz9OhRUaFQiMeOHXN6fHLDsvVMLFfPxbL1TCxXz8WylTe2zHiIVatWwWKxYPjw4WX2vf766/YV2V3tq6++wv79+yvc//777+Pxxx9Hy5Yt8fbbbyMhIQHPPvssFixY4HBc+/bt0bFjR7z55puuDtntsWw9E8vVc7FsPRPL1XOxbGVO6myKnKNNmzbiww8/7LANgNiuXTsRgPjmm2867HPFU4WioiIxOjpafOWVV8p9qmA0GsXg4OAyKxk/9NBDore3t5idne2w/Y033hC9vb3FgoICp8UoRyxbz8Ry9VwsW8/EcvVcLFt5Y8uMBzh37hx+//139OnTp8y+rl27onfv3njttddQVFTk0jhee+012Gw2PP/88+Xu3717N7KysvDMM884bB87diwKCwuxZcsWh+133nknCgsLsWPHDpfF7O5Ytp6J5eq5WLaeieXquVi28sdkxgPs27cPANChQ4dy98+cORPp6el47733bngdk8mEzMzMSr2ul5KSgldffRULFiyATqcr9/q//vorAKBjx44O2+Pi4qBQKOz7r4qNjYVOp8PPP/98w7g9GcvWM7FcPRfL1jOxXD0Xy1b+VFIHQDV38uRJAECjRo3K3d+9e3f06tULr7/+Op5++ukKK8qnn36KUaNGVeqeoig6vP/vf/+L9u3b48EHH6zwnNTUVCiVSoSFhTlsV6vVCA4OxuXLlx22q1QqREVF4fjx45WKyROxbD0Ty9VzsWw9E8vVc7Fs5Y/JjAfIysqCSqWCj49PhcfMnDkTPXr0wLJlyzBhwoRyj0lMTKxWc+Tu3bvx5Zdf4uDBgzc8rqioCGq1utx9Wq223CbcwMDAcp9i1BUsW8/EcvVcLFvPxHL1XCxb+WMyU0fcfvvt6NWrF1577TU89dRT5R4TGRmJyMjIKl3XYrHg2WefxSOPPILbbrvthsfqdDqYzeZy9xUXF5f7tEMURQiCUKWY6hqWrWdiuXoulq1nYrl6Lpate2My4wGCg4NhsVhQUFAAX1/fCo+bMWMGevbsiffffx8BAQFl9hcVFSEvL69S94yIiAAA/O9//0NSUhLef/99JCcnOxxTUFCA5ORkhIWFQa/XIzIyElarFVeuXHFoJjWbzcjKykK9evXK3CcnJwe33nprpWLyRCxbz8Ry9VwsW8/EcvVcLFv54wQAHqB58+YASmfkuJEePXqgZ8+eWLBgQbnNkevXr7c/WbjZ66qUlBSUlJSga9euaNSokf0FlFbSRo0a4bvvvgMAtGvXDgBw+PBhh/sePnwYNpvNvv8qi8WCCxcuoEWLFlX69/AkLFvPxHL1XCxbz8Ry9VwsW/ljy4wHSEhIAFD6H7pNmzY3PHbmzJno2bMnli9fXmZfdfp7Pvjgg2UqEADce++9GDBgAMaMGYNOnToBAHr37o2goCC89957GDBggP3Y9957D3q9HgMHDnS4xvHjx1FcXIwuXbpUKSZPwrL1TCxXz8Wy9UwsV8/FsvUA0ixvQ87WqlUrcfjw4Q7bUM6iS6Ioij169BABOH3Bp8rce+nSpSIA8b777hNXrFghjhw5UgQgzp07t8yxb7zxhqjX68X8/HyXxCgXLFvPxHL1XCxbz8Ry9VwsW3ljMuMhFi5cKPr4+IhGo9G+raLKsHv3bskqoiiK4vLly8VmzZqJarVabNKkibho0SLRZrOVOa5Tp05lVuSti1i2nonl6rlYtp6J5eq5WLbyxmTGQ+Tm5opBQUHiBx98IHUoTvHrr7+KgiCIv/76q9ShSI5l65lYrp6LZeuZWK6ei2Urb4IoXrdyD8nWggULsHr1ahw/fhwKhbzndnjwwQdhs9nw2WefSR2KW2DZeiaWq+di2XomlqvnYtnKF5MZIiIiIiKSJXmnnkREREREVGcxmSEiIiIiIlliMkNERERERLLEZIaIiIiIiGSJyQwREREREckSkxkiIiIiIpIlJjNERERERCRLTGaIiIiIiEiWmMwQEREREZEsMZkhIiIiIiJZYjJDRERERESyxGSGiIiIiIhkickMERERERHJEpMZN5CamoqZM2ciNTVV6lCIiIiIiGSDyYwbSE1NxaxZs5jMEBERERFVAZMZIiIiIiKSJSYzREREREQkS0xmiIiIiIhIlpjMEBERERGRLDGZISIiIiIiWWIyQ0REREREssRkhoiIiIiIZInJDBHZ2Ww2WK1WqcMgIiIiqhQmM0RkJ4oiLBaL1GEQERERVQqTGSJywGSGiIiI5ILJDBE5MJvNUodAREREVClumcykpqbit99+Q2FhodShENU5xcXFUodAREREVClulcxs3LgRzZs3xy233IIOHTrg4MGDAIDMzEy0b98eGzZskDZAojqgqKhI6hCIiIiIKsVtkplvvvkGQ4YMQUhICGbMmAFRFO37QkJCUL9+faxevVrCCInqBoPBIHUIRERERJXiNsnMK6+8gttvvx179+7F2LFjy+xPSEjAr7/+KkFkRHVLTk6O1CEQERERVYrbJDN//vknHnjggQr3h4eH48qVK7UYEVHdlJaWJnUIRERERJXiNsmMXq+/4YD/s2fPIjg4uBYjIqqb8vLykJWVJXUYRERERDflNslMr1698OGHH5a7xkVaWhpWrFiBvn37ShAZUd3z559/Sh0CERER0U25TTIzd+5cXLx4Ebfddhvef/99CIKA7du34+WXX0br1q0hiiJmzJghdZhEdcKpU6eQl5cndRhEREREN+Q2yUyzZs2wd+9eBAcHY9q0aRBFEa+//jrmzZuH1q1b46effkJ0dLTUYRLVCTabDfv27XOYVZCIiIjI3aikDuBaLVu2xPfff4+cnBycPn0aNpsNjRs3RmhoqNShEdU5Fy5cQFJSEpo3by51KERERETlcqtk5qrAwEDcdtttUodBVOf9/PPPCAgIQEREhNShEBEREZXhNt3M3nrrLSQmJla4v3///njvvfdqMSIislqt+Pbbb5GSkiJ1KERERERluE0ys3LlSsTGxla4PzY2FsuXL6/FiIgIAEpKSrB9+3YcPHiw3NkGiYiIiKTiNsnMmTNn0KJFiwr3N2/eHGfOnKnFiIjqlo4dO6Jhw4aYO3dumX2iKOK3337DF198gfPnz3NiACIiInILbpPMqNXqG648npqaCoXCbcIl8jhpaWm4dOkS8vPzKzwmPz8f27dvx5YtW5CZmVmL0RERERGV5TbZQefOnbFmzRoUFBSU2ZeXl4fVq1ejc+fOEkRGRNe7fPkyvvrqK+zatavcOktERERUG9xmNrMZM2agR48eaNeuHcaPH4+WLVsCKF2JfPHixUhNTcXatWsljpKIrnX69GmcO3cOrVq1Qvv27aFWq6UOiYiIiOoQt0lmOnXqhG+++QZPPvkknnvuOQiCAKC0r36jRo2wadMmJCQkSBwlEV3ParXit99+w6lTp9C5c2c0adLEXn+JiIiIXMltkhkAuPPOO3H69Gn8+uuv9sH+TZo0QYcOHfjliMjNGY1G7Nq1C3///Tduv/12+Pj4SB0SEREReTi3SmYAQKFQIC4uDnFxcVKHQkTVcPHiRXz++efo1q0bbr31VqnDISIiIg/mdsnM8ePHcfbsWeTk5JQ7/evIkSMliIqIqqKkpAS7d+/GxYsX0a1bN3h5eUkdEhEREXkgt0lmzpw5g4cffhiHDh2qcA0LQRCYzBDJyKlTp5CVlYU777wT/v7+UodDREREHsZtkpknn3wSf/zxBxYvXozu3bsjMDBQ6pCI6oyUlBQUFhYCAEwmE7KzsxEUFOSUa2dnZ2PDhg3o3bs3oqKinHJNIiIiIgAQRDdZylun02HKlCmYNm2a1KHUuqNHjyIuLg5HjhxBhw4dpA6H6pBDhw5h9uzZ2LJli0OLqCAIaN26NQYOHIjo6Gin3EsQBHTs2BHt2rXjhB5ERETkFG6zaGZISAi7oRDVoq+++gpdu3bFt99+W6ZrpyiK+PPPP7FgwQIcPXrUKfcTRRG//PILvv32W3srkCtkZ2fjoYcegp+fHwICAvB///d/MBgMNzynZ8+eEATB4fXUU0/Z969Zs6bM/quvK1euuOxnISIiohtzm2Tmqaeewscffwyr1Sp1KEQe79ChQxg2bBisVmuFdc5ms8Fms2HFihVITk522r0vXryIL774wj79enX07NkTa9asKXffQw89hL/++gs7duzA5s2b8eOPP+KJJ5646TXHjBmD1NRU++u1116z7xs2bJjDvtTUVCQmJqJHjx4ICwur9s9BRERENeM2Y2aaNm0Kq9WKtm3bYvTo0YiKioJSqSxz3JAhQySIjsizzJkzB6IoVjjZxvW2bt2KZ555xmn3N5lM2LlzJy5cuIDu3buXW9er48SJE9i2bRt++eUXdOzYEQDw9ttvY8CAAXjjjTdQr169Cs/V6/WIiIgod59Op4NOp7O/z8jIwK5du7By5UqnxE1ERETV4zbJzLBhw+x/f/7558s9RhAEttwQ1VBKSgo2b95c6UTGZrPh999/d+qkAFf9/fffMBqN6N+/v1PG0ezfvx8BAQH2RAYA+vTpA4VCgYMHD+Lee++t8NxPPvkEH3/8MSIiIjB48GBMmzYNer2+3GP/97//Qa/X47777qtxzERERFR9bpPM7N69W+oQiNyKxWJxSfK+bdu2SicyV4miiBMnTqBLly5Oj+fChQtISkpC8+bNa3yttLS0Mt2+VCoVgoKCkJaWVuF5I0aMQMOGDVGvXj38/vvveOmll5CUlISvvvqq3ONXrlyJESNGOLTWEBERUe1zm2SmR48eUodA5DYsFguOHz+OoqIip1/75MmTUCgUsNlslT5HEATk5+fDaDQ6PR4A+OuvvxATEwOVqvyPpHnz5mHevHn290VFRThw4ADGjRtn33b8+PFq3//aMTWtW7dGZGQk7rjjDpw5cwZNmjRxOHb//v04ceIEPvroo2rfj4iIiJzDbZKZq0wmE44ePYorV66ga9euCAkJkTokolpntVpRVFQELy8vqNVqp147MDCwSokMUNoyo9PpoFA4f84QURShVCphtVorTGaeeuopPPDAA/b3Dz30EIYOHeowhq5evXqIiIgoM7uYxWJBdnZ2heNhytOpUycAwOnTp8skMx988AHatWuHuLi4Sl+PiIiIXMOtkpm33noLM2fORF5eHgBgx44d6N27NzIzM9G8eXO89tprGD16tMRREtUetVrt1GQmPT29Wq09giCgWbNmLklmVCoVQkNDb3hMUFCQw3gdnU6HsLAwxMTEOByXkJCA3NxcHDlyxJ5s7Nq1CzabzZ6gVMaxY8cAAJGRkQ7bDQYDPvvsM8yfP7/S1yIiIiLXcZupmVevXo3x48ejX79+WLlypUOf/pCQEPTu3Rvr1q2TMEIi+UpPT8fGjRvx6aefIjc3Fw0bNqz0gHuFQoGWLVs6ffA/UJqstWvXrsIWmapq0aIF+vXrhzFjxuDQoUP4+eefMW7cODz44IP2mcwuXbqE5s2b49ChQwCAM2fOYPbs2Thy5AiSk5OxadMmjBw5ErfffjvatGnjcP3169fDYrHg4Ycfdkq8REREVDNuk8y8+eabuPvuu7F27VoMHjy4zP64uDj89ddftRLL0qVLER0dDa1Wi06dOtm/9JSnvMX0tFptrcRJdDPXJjHnzp2zb+/evTsUCkWlE5rExESnxxYcHIyEhAT4+vo69bqffPIJmjdvjjvuuAMDBgxAt27dsHz5cvv+kpISJCUl2cf/qNVqfP/99+jbty+aN2+O//73vxg6dCi++eabMtdeuXIlhgwZgoCAAKfGTERERNXjNt3MTp8+jWeffbbC/UFBQcjKynJ5HOvXr8fEiROxbNkydOrUCYsXL0ZiYiKSkpIqXBzPz88PSUlJ9vfOmGKWqCbS0tJw8OBBhwQGAHx9fXHbbbchNjYWnTp1woQJEyCKYrmzpl3tUjZq1Cg0bNjQabGpVCo0a9YM9evXhyAIMJvNVb7Gnj17KtwXFBSEtWvXVrg/OjraoeU3KioKP/zwQ6Xuu2/fvkrHSERERK7nNslMQEAAMjMzK9x//PjxKg3gra6FCxdizJgxGDVqFABg2bJl2LJlC1atWoVJkyaVe44gCLUSG9HNVCaJudqlq2/fvvj000/x7rvvYs+ePQ5f8AVBQGxsLBITE52ayNSrVw/NmjVz+qQGREREVDe5TTIzYMAALF++vNxVxv/66y+sWLHC5YP/zWYzjhw5gsmTJ9u3KRQK9OnTB/v376/wPIPBgIYNG8Jms6FDhw6YN28eWrZsWeHxJpMJJpPJ4XyimqhKEnOtNm3aYNmyZbh8+TLuvvtu5OfnQ6fT4aWXXnLqGBlvb2/Exsa6ZNwNERER1V1uk8zMmTMHnTp1QqtWrTB48GAIgoAPP/wQq1atwpdffonIyEhMnz7dpTFkZmbCarUiPDzcYXt4eDhOnjxZ7jnNmjXDqlWr0KZNG+Tl5eGNN95Aly5d8Ndff+GWW24p95z58+dj1qxZTo+f6p60tDQcOHAAycnJDttvlsRcr169etDpdMjPz4darXZa0qFQKNCkSRNER0e7ZCY0IiIiqtvcJpmpV68ejhw5gilTpmD9+vUQRREfffQRfH19MXz4cLz66qtuueZMQkICEhIS7O+7dOmCFi1a4P3338fs2bPLPWfy5MmYOHGi/f2xY8e4aChVibOSGFcKDw9H8+bNOSEGERERuYxbJDMmkwnbt29HdHQ0PvjgA3zwwQfIyMiAzWZDaGhorT3RDQkJgVKpRHp6usP29PT0So+J8fLyQvv27XH69OkKj9FoNNBoNPb3Pj4+1QuY6pwbJTHx8fGIjY2FUqmUJrh/aDQatGzZ8qZrxxARERHVlFv0+1Cr1bj//vsdZgoKDQ1FeHh4rXZNUavViIuLw86dO+3bbDYbdu7c6dD6ciNWqxV//PFHmcX2iGoiNTUVGzZswLp16xwSGV9fX9xxxx147LHH0Lp1a8kTmZCQEHTt2pWJDBEREdUKt2iZEQQBt9566w1nM6stEydOxKOPPoqOHTsiPj4eixcvRmFhoX12s5EjR6J+/fr2FcBfeeUVdO7cGTExMcjNzcXrr7+O8+fP4/HHH5fyxyAPkZ6ebl/M8Vru1BJzVVRUFFq0aMGpyYmIiKjWuEUyAwBTpkzBxIkTcf/996NZs2aSxTFs2DBkZGRg+vTpSEtLQ7t27bBt2zb7pAApKSkOrUU5OTkYM2YM0tLSEBgYiLi4OOzbtw+xsbFS/QjkAZKTk/H999/j0qVLDtvdMYkRBAEtWrRAVFSU1KEQERFRHeM2ycyBAwcQHByMVq1aoWfPnoiOjoZOp3M4RhAELFmyxOWxjBs3DuPGjSt33/WL9S1atAiLFi1yeUxUN5w7dw5btmzB8ePHHba7YxIDlMbVqlUr+Pn5SR0KERER1UFuk8y888479r9fO2blWrWVzBDVNrklMYIgoEmTJmjUqBGnXCYiIiLJuE0yY7PZpA6BqNadPXsWW7duLZPEBAYGonnz5mjTpk2ZFkqp6XQ6tGvXjq0xREREJDm3SWaI6pKKkpjg4GD069cP7dq1w59//ulWrTEA4Ofnh7i4OKjVaqlDISIiInK/ZObAgQPYvXs3rly5gmeeeQa33norjEYjTp48iaZNm3JNFpK1myUxnTp1gkqlgslkkijCiun1eiYyRERE5FbcJpkxm8148MEHsXHjRoiiCEEQMHjwYNx6661QKBTo27cvJkyYgKlTp0odKlGVnT17Flu2bMGJEycctl9NYjp37ux2rTDXUigUaNeuHRMZIiIicituk8xMmzYNmzdvxnvvvYdevXo5TM+s1Wpx//33Y+PGjUxmSFbOnDmDrVu3yjaJuerWW2+Fr6+v1GEQEREROXCbZObTTz/F008/jSeeeAJZWVll9rdo0QKff/65BJERVZ2nJDEAEBISgoYNG0odBhEREVEZbpPMXLlyBa1bt65wv1KphNForMWIiKruzJkz2LJlC06ePOmwPTg4GP3790enTp1kk8QAgEajQevWrSEIgtShEBEREZXhNslMVFRUmS+A1/r5558RExNTixERVZ6nJTFXtWnThuNkiIiIyG25TTIzYsQILFy4EEOHDkXTpk0BwP40eMWKFfjss8/w6quvShkiURkVJTEhISHo378/4uPjZZnEAEB0dDSCgoKkDoOIiIioQm6TzEydOhUHDhzA7bffjhYtWkAQBEyYMAHZ2dm4ePEiBgwYgAkTJkgdJhEAz05iAECtVqNJkyZSh0FERER0Q26TzKjVamzbtg2ffPIJvvjiC1itVphMJrRp0wZz5szBI488wn77JLnTp09j69atHpvEXBUdHQ2Vym0+HoiIiIjKJdm3lYkTJ+KRRx5B+/btAQApKSkIDQ3Fww8/jIcffliqsIjKVReSmJCQEAClDxbq1asncTRERERENydZMrN48WJ07NjRnsw0atQIH330EUaMGCFVSERlnD59Glu2bEFSUpLDdk9KYq766quvYLPZcPDgQWg0GqnDISIiIropyZKZ8PBwnD171v5eFEWpQiEqo6IkJjQ0FP369fOoJOZ6/v7+UodARJVkMpkgiiK0Wq3UoRARSUKyZGbgwIF45ZVX8N133yEgIAAA8Oabb2LdunUVniMIAjZu3FhLEVJddKMkpn///rjttts8Nom5ytvbW+oQiKiSRFFEUVERkxkiqrMkS2aWLFmCsLAw7N69G3/99RcEQcCFCxeQnZ1d4TmcAIBchUnMv9jFjEheDAYDAgMDpQ6DiEgSkiUz3t7emDdvnv29QqHA4sWLOWaGatWpU6ewdetWJjHX4CxmRPKSk5ODqKgoqcMgIpKEZN9ahgwZggkTJqB79+4AgN27dyM2NlaqcKiOOXXqFLZs2YK///7bYXtdTmKuUigUUodARFVw5coVqUMgIpKMZMnMxo0bMXToUPv73r17czYzcjkmMTfH7pxE8pKVlSV1CEREkpEsmalfvz5+/fVXPPTQQwBKBzHySxS5yt9//42tW7cyiakE/jsQyUtBQQGsVivrLhHVSZIlMw8++CDeeOMNfPbZZ/bZzCZNmoT58+dXeI4gCPjtt99qKULyBH///Te2bNmCU6dOOWwPCwtD//790bFjR34BuA67mRHJi81mw5UrVxAZGSl1KEREta5KyUyjRo2q3HoiCALOnDlTZvv8+fMRExOD3bt348qVKxAEAd7e3ggODq7S9YnKwySm+jgBAJH8/Pbbb4iIiGAPByKqc6r0raVHjx5lPigPHz6Mv/76C7GxsWjWrBkAICkpCcePH0erVq0QFxdX7rWUSiWeeOIJPPHEEwBKnwa//PLLHDNDNcIkpub470MkPykpKTh58iRatGghdShERLWqSsnMmjVrHN5v2LABGzZswI4dO3DHHXc47NuxYwceeOABzJ49u1LXPnfuHEJDQ6sSDpEdkxjnYTczInn6+eefodfr0bBhQ6lDISKqNTXqTzJ9+nT85z//KZPIAMCdd96JcePG4eWXX8bdd99902vxw5eqg0mM87GbCpE82Ww27NixAz179kRMTIzU4RAR1YoaJTOnTp264RiX4ODgcsfLAKVPfxUKBYxGI9RqNRQKxU2/RAmCAIvFUpOQyUPcKIkZMGAAOnbsyBaGamIyQyQPHTt2RGpqKlQqFaZOnQqgNKHZtWsXCgoK0K5dO9ZnIvJ4NUpmmjRpgtWrV+P//u//4OPj47CvoKAAq1atQuPGjcs9d/r06RAEwT7Y+Op7ooqIomhPYk6fPu2wj0mMc7AOEslHWloaLl++bJ8R9Fq//PILDAYDunXrxnpNRB6tRsnMnDlzcN9996F58+Z47LHH7M3ap06dwocffoj09HR8/vnn5Z47c+bMG74nuopJTO3hlx4iz3HixAkYDAb06tULWq1W6nCIiFyiRsnMPffcg61bt+Kll17CvHnzHPa1a9cOK1euRGJiYo0CpLrrRklMeHg4BgwYgLi4OCYxREQVuHDhAr788kt0794dDRo0kDocIiKnq/GCEn379kXfvn2RlpaG8+fPAygdzB8REVHpa5hMJnz88cf47rvvcObMGRQUFMDX1xcxMTHo168fRowYAbVaXdNQSSaYxBAROU9hYSG2bduGhg0bIj4+HoGBgVKHRETkNE5bHS8iIqJKCcxVf/zxB+6++26cP38eoijC398fPj4+uHLlCo4ePYrPP/8cc+fOxaZNmzh/vodjEkNE5Drnz59HSkoKbr31VnTs2LHMWFciIjmq8bfClJQUPPXUU2jWrBmCgoLw448/AgAyMzPx7LPP4tdff63wXIPBgLvuugvp6emYO3cuLly4gJycHIc/58yZg8uXL2Pw4MEoLCysabjkhkRRxMmTJ7Fw4UIsWbLEIZEJDw/HqFGjMG3aNNx2221MZIiIauDqQ6P169fj119/hc1mkzokIqIaqVHLzPHjx9G9e3fYbDZ06tQJp0+ftk+dHBISgr1796KwsBArV64s9/zVq1cjJSUFO3fuRM+ePcvsr1+/PiZPnoxOnTrhzjvvxJo1azB27NiahExuRBRFJCUlYcuWLWWm8GZLDBGR61itVvzyyy84d+4cunfvzkWriUi2apTMvPjiiwgICMCBAwcgCALCwsIc9g8cOBDr16+v8PwtW7agb9++5SYy1+rduzfuvPNOfPPNN0xmPACTGCIi95CZmYkNGzagSZMmiIuLg7+/v9QhERFVSY2SmR9//BHTp09HaGgosrKyyuxv0KABLl26VOH5f/zxB5599tlK3at3795YsmRJtWMl6d0oiYmIiMCAAQPQoUMHJjFERDeRkpJi73ptMpmQnZ2NoKCgal1LFEWcPn0aZ86cQXR0NFq2bInIyEhO1U5EslCjb402mw16vb7C/RkZGdBoNBXuz87OrvSkAeHh4cjOzq5yjCS9a8fEvPXWWw6JTEREBEaPHo2XX36Za8UQEd3EoUOHMHjwYERHRyM3NxcAUFRUhClTpmDp0qVITk6u9rVFUcS5c+ewefNmfPbZZzh27BiMRqNzAr+B7OxsPPTQQ/Dz80NAQAD+7//+DwaD4YbnFBcXY+zYsQgODoaPjw+GDh2K9PR0+/6srCz069cP9erVg0ajQVRUFMaNG4f8/HxX/zhEVMtq1DLToUMHbNmyBc8880yZfRaLBevWrUPnzp0rPN9kMsHLy6tS91KpVDCbzdWOlWofW2KIiJznq6++wrBhwyCKIkRRdNgniiL+/PNP/PnnnxgzZgw6dOhQo3vl5eXh0KFDOHz4MBo1aoR27dohODi42tfr2bMnHnvsMTz22GNl9j300ENITU3Fjh07UFJSglGjRuGJJ57A2rVrK7zehAkTsGXLFnz++efw9/fHuHHjMGTIEPz8888AAIVCgbvvvhtz5sxBaGgoTp8+jbFjxyI7O/uG1yUi+alRMjN58mQMGjQITz/9NB588EEAQHp6Or7//nvMmzcPJ06cwDvvvHPDayQnJ+Po0aM3vde5c+dqEio5ydUJG66uBXTHHXeUWYjtakvMli1bcPbsWYd9TGKIaldl6iy5v0OHDmHYsGGwWq1lEpmrrs5MtmLFCrz00kuIjo6u8X1tNhvOnDmDM2fOoFGjRujUqRP8/PxqfN2rTpw4gW3btuGXX35Bx44dAQBvv/02BgwYgDfeeAP16tUrc05eXh5WrlyJtWvXonfv3gBKJxRq0aIFDhw4gM6dOyMwMBBPP/20/ZyGDRvimWeeweuvv+602F2FdZaoamqUzPTv3x9r1qzBc889h+XLlwMAHn74YYiiCD8/P/zvf//D7bfffsNrTJs2DdOmTbvpvURRZP9dCR06dAizZ8/Gli1bIIoiFAoFbDYbBEHAoEGDMG3aNHTs2LHCJCYyMhL9+/dnEkNUSypTZ2+77Tapw6RKmjNnTrktMhXZunVrub0mauLcuXNISUlBly5dnLbu2/79+xEQEGBPZACgT58+UCgUOHjwIO69994y5xw5cgQlJSXo06ePfVvz5s3RoEED7N+/v9weIZcvX8ZXX32FHj16OCVuV2CdJaqeGi+a+cgjj2DIkCHYsWMHTp06BZvNhiZNmiAxMRG+vr43PHf16tU1vb1LLF26FK+//jrS0tLQtm1bvP3224iPj6/w+M8//xzTpk1DcnIybr31VixYsAADBgyoxYhdq7yuDVefAIqiiK1bt+Lbb7/FiBEj4O3t7XBuZGQkBgwYgPbt2zOJIaolla2z69evx5AhQ6QMtc4RRRFWqxUWiwU2mw0WiwVWq9X+uvb91b9fvHgRmzdvrnQiY7PZ8Pvvv9doUoCKWK1W7N27FxEREQgMDKzx9dLS0srMhKpSqRAUFIS0tLQKz1Gr1QgICHDYHh4eXuac4cOHY+PGjSgqKsLgwYPxwQcf1DhmV2CdJaq+aiczRqMRUVFRmDRpEl544QXcc889Vb7Go48+Wt3bu8z69esxceJELFu2DJ06dcLixYuRmJiIpKSkMh+4ALBv3z4MHz4c8+fPx6BBg7B27Vrcc889OHr0KFq1aiXBT+BclenaYLVaAQAfffQRhgwZgrCwMCYxRBKpbJ0VBAHDhg3Dvn37ZPm0t7ykoCoJQmXe32zf9fe6GsO151x/bHUWqTx58mSlE5lr/31OnDiBLl26VPl+lbl2amrqDZOZefPmYd68efb3RUVFOHDgAMaNG2ffdvz4cafHdr1FixZhxowZ+PvvvzF58mRMnDgR7777rsvvWxV1pc4SuUq1kxm9Xg+VSlXmSbzcLVy4EGPGjMGoUaMAAMuWLcOWLVuwatUqTJo0qczxS5YsQb9+/fDCCy8AAGbPno0dO3bgnXfewbJly2o1dleoateGP//8E5988gmTGCKJVLbOXj1m9uzZ+PLLLyv88l0bCUJ5ScHNzq9LK9ebzWYIglClhEYQBOTn57tsNrK///4bTZs2hUpV/teIp556Cg888ID9/UMPPYShQ4c6tCrUq1cPERERuHLlisO5FovlhrOdRkREwGw2Izc316F1Jj09vcw5ERERiIiIQPPmzREUFITu3btj2rRpiIyMrOqP7DJVrbNz5szBxo0bayk6IvdXo25mQ4cOxRdffIGnn37aI8azmM1mHDlyBJMnT7ZvUygU6NOnD/bv31/uOfv378fEiRMdtiUmJmLDhg2uDLVWpKSkVKlrgyiK+PvvvxEaGspEhkgCVa2zVqsV33zzDUaPHn3TbsF0cwqFAgqFAkqlskp/v9m+4uJi+yxdlSWKInQ6nUs+i0VRRElJCaxWa4XJTFBQkEMXN51Oh7CwMMTExDgcl5CQgNzcXBw5cgRxcXEAgF27dsFms6FTp07lXjsuLg5eXl7YuXMnhg4dCgBISkpCSkoKEhISKoz7agJsMpkq/8O6WHXrbEpKCicFIPpHjZKZBx98EM888wx69eqFMWPGIDo6GjqdrsxxNZ0isrZkZmbCarUiPDzcYXt4eDhOnjxZ7jlpaWnlHl9RX1+g9IP02g/Tq/PpWywWlJSUVDd8p9u+fXu1ujZ89913btmFUE5KSkpgsVhQWFjoVv8nXMFsNtv/7zMJrpnq1FkAuHDhApo1a+aCiKpHpVJBqVRCqVRCpVJBoVA4bLu6/fq/X00EnH1+Redd+76kpAS///47VCoV1Gq1U/896tevX60xpk2aNLF3A3amq4lSVers1W6B13+excTEIDExEY8//jiWLl2KkpISjB07Fg888ABCQ0NRUlKCS5cuITExEatXr8Ztt90GvV6PUaNGYeLEifDz84Ofnx/Gjx+Pzp07Iy4uDiUlJfj2229x5coVxMXFwcfHB8ePH8ekSZPQpUsX1K9f320+V/l7VlpXW3rrgqufV1Ko7DIs1SbWgCAI9pdCoSjzurpdLi5duiQCEPft2+ew/YUXXhDj4+PLPcfLy0tcu3atw7alS5eKYWFhFd5nxowZIgC++OKLL7744osvvvjy6Jer1ShFc9fZyKorJCQESqXSYRVhoPx+uFdFRERU6XgA9kGIVx07dgw9evTAwYMH0b59+xr8BM61Zs0aPPHEE1U+b8WKFXxi5AR8YkRVxTorLVfW2SNHjuCOO+6o1PUFQcDzzz/vlHVmrgoLC0NsbCyioqIgCALrrJNUt84uWbLEYR0dqjqTyYTffvvNJa2p7uZqD4i2bdtCo9FIHY7T1eiTyNN++anVasTFxWHnzp322dlsNht27tzpMAPLtRISErBz506MHz/evm3Hjh037Ler0Wgc/jP5+PgAKO1a4fKmuCpITEys1qDTvn37utXPIVf8N6SqYp2Vliv/DXv06IHPPvvMPn1veUnN1S5fTzzxRJmxKdXVoEEDdOjQodzZPKnmqlNnAeDXX3/Fxo0bK7UMBpXPZrPZJ7Ly9GTGy8sLhYWF8PLy8sjPerd7rHL8+HGcPXsWOTk55VbukSNHuvT+EydOxKOPPoqOHTsiPj4eixcvRmFhoX12s5EjR6J+/fqYP38+AOC5555Djx498Oabb2LgwIFYt24dDh8+bF9EVM4aNGiAQYMGYevWrZV6GqhUKjFw4EAOSiSSCOusZxsyZAj27duH2bNnlxk0LggCWrdujQEDBjilRSYsLAwJCQllxoSSc1W1zgqCgIYNG0Kn02HXrl34+eef0bt3b9xxxx3Q6/W1EDGR+xHEKjwOGD16NARBwPLly6FUKjF69Oib30AQsHLlypsed+bMGTz88MM4dOhQhU8oBEGolW4377zzjn3RzHbt2uGtt96yz6rSs2dPREdHY82aNfbjP//8c7z88sv2RTNfe+21Ki2aefToUcTFxeHIkSNuN1nCL7/8gi5dutxw/nsA9m4HnP+eSFqss3VDSkoK2rZti9zcXOh0OkyfPt0pC2QqlUrEx8ejVatWHjFLqRxUtc7OnTsXly5dcpjEQK/X484770TPnj09shuRK5hMJhw7dqxOtMyYzWYUFhaiXbt2Hvn/o0rJTHR0NBQKBZKSkuDl5YXo6OibftgJgoCzZ8/e9Np9+vTBgQMHMH/+fHTv3r3CxbgaNmxY2XBlw52TGcBxZeLykkmlUglBEPDZZ5/h3nvvlSBCIroW62zdcMstt+DSpUsICAjAggULany9iIgI3H777Q5rt1DtqGqdzcvLw7Zt27B3716H4/38/JCYmIhu3bp5ZHciZ2Iy4zmqlMy4kk6nw5QpUzBt2jSpQ6l17p7MAKVPjq7t2qBQKGCz2SAIAgYPHoyXX36ZT3eJ3AjrrOdzVjKj1+tx2223oWnTpmyNkVB16mxWVha2bNmCgwcPOrTqBAUFoX///ujcuTOUSmVt/yiywGTGc7jNmJmQkBD4+/tLHQZV4LbbbsOmTZuQkpKCXbt2IT8/H35+fujduzf72xO5IdZZuhm1Wo3WrVujTZs2fIrvBqpTZ4ODgzFy5Ejceeed2LJlC44ePQoAyM7OxieffIIdO3Zg0KBB6NChA9fxIo/lNi0zc+fOxcaNG7F///469xRBDi0zRETkXqrbMhMQEIDY2Fg0a9aMSYyHuXDhAjZt2oS//vrLYXv9+vUxePBgtG7dmq1v/2DLjOeoccvMt99+i4ULF+Lo0aPIy8srd/BaZQbtN23aFFarFW3btsXo0aMRFRVVblIzZMiQmoZMRERU5zRo0ACtW7dGvXr1+IXWQ0VFRWHs2LE4c+YMNm3ahFOnTgEALl26hGXLlqFRo0a466670KxZM4kjJXKeGiUzX375JR544AG0bNkSDz74IN577z2MGDECoihi48aNuPXWW+3rtdzMsGHD7H9//vnnyz2mtmYzIyIi8hQRERFISEhAaGio1KFQLWnSpAnGjx+PkydPYtOmTTh//jwA4Ny5c1iyZAmaNWuGu+66C40aNZI4UqKaq1EyM3/+fMTHx2Pv3r3IycnBe++9h9GjR6N3795ITk5G586dK11Rdu/eXZNQiIiI6BoKhQKdOnXiNMt1lCAIaNGiBZo3b47ffvsNmzdvxuXLlwEASUlJeP3119G6dWsMHjwYt9xyi8TRElVfjZKZ48ePY/78+VAqlVCpSi91dd7z6OhoPPPMM1iwYEGlFrrs0aNHTUIhIiKif6hUKvTt25dfUgmCIKBdu3Zo06YNjhw5gs2bNyMjIwMA8Mcff+CPP/5Ax44dMXDgQC6SSrJUo2RGr9fbB00FBARAo9EgNTXVvj88PBznzp2r8nWPHz9ubxJt2LAhYmNjaxImERFRnaFSqdC/f39ERkZKHQq5EYVCgdtuuw0dOnTA/v37sXXrVuTm5gIADh8+jKNHj6JTp04YMGAAgoODpQ2WqApqNE9fs2bNcPz4cfv7du3a4aOPPoLFYkFxcTHWrl1bpSlAN27ciCZNmqB169YYNGgQBg0ahNatWyMmJgabNm2qSahEREQeT6lUIjExkYkMVUipVKJbt26YNWsW7rvvPvj4+AAAbDYb9u/fj1mzZuGzzz5DXl6exJESVU6NkpkhQ4Zg06ZNMJlMAICpU6diz549CAgIQGhoKH766SdMmjSpUtfaunUrhg4dCgCYN28evv76a3z99deYN28eRFHEkCFDsG3btpqES0RE5NF69OiB+vXrSx0GyYCXlxd69+6NV155BYMHD4ZOpwMAWCwW7NmzBzNmzMCGDRtQWFgocaREN1atdWaKi4uxceNGnDt3DsHBwRg0aJD9KdBPP/2Er776CkqlEgMHDkSvXr0qdc2EhASYTCb89NNP8Pb2dthXWFiIbt26QavVYv/+/VUN1+1xnRkiIqqqjh07IjU1FSqVClOnTkX79u3LrBBPVFlGoxE7duzA7t27YTab7du1Wi3uvPNO9OrVC1qtVsIInYvrzHiOKo+ZuXLlCrp06YJz585BFEUIggCdTocNGzagT58+6N69O7p3717lQH7//XfMmzevTCIDAN7e3njssccwZcqUKl+XiIjIEx0+fBjFxcX43//+h/DwcHTs2FHqkEjG9Ho97r77bvTq1Qvbt2/HTz/9ZB828M0332D37t1ITEzE7bffzsVWya1UuZvZ7NmzkZycjAkTJmDz5s1YtGgRdDodnnzyyRoFotVqkZ2dXeH+7Oxsj3oiQERE5CwdO3bk9MvkFH5+frj//vsxc+ZMdO3aFQpF6VdFg8GAL7/8EjNmzMBPP/3Edf/IbVS5Zea7777DyJEj8cYbb9i3hYeHY8SIEUhKSqr2qrK9e/fGkiVL0K9fPyQkJDjsO3jwIN566y307du3WtcmIiLyVDqdDvXq1ZM6DPIwQUFBeOihh3DnnXdi8+bNOHLkCERRRG5uLj799FPs2LEDAwcOxG233WZPeIikUOX/fSkpKejWrZvDtm7dukEURaSnp1c7kNdeew1arRbdunVDQkICHnvsMTz22GNISEhAly5doNVqsWDBgmpfn4iIyBOFhYWxVYZcJiwsDKNHj8bkyZPRpk0b+/bMzEx8+OGHmDt3Lo4dO4ZqDMEmcooqJzMmk6lMd6+r7y0WS7UDadSoEX7//Xc8++yzyMnJwfr167F+/Xrk5OTgueeew2+//Ybo6OhqX5+IiMgT+fv7Sx0C1QG33HILnnrqKbzwwgto3ry5fXtqaiqWL1+OBQsW4Pjx40xqqNZVa9HM5ORkHD161P7+6lzkp06dQkBAQJnjKztDV1hYGBYtWoRFixZVJywiIqI65+o6IUS1oVGjRnj22WeRlJSETZs22RdHT0lJwTvvvIOYmBjcddddiImJkThSqiuqPDWzQqEotzn76sxm5W3jILEb49TMRERUHcXFxUhNTUWjRo2kDoXqIFEU8eeff+Kbb77BxYsXHfa1bNkSgwcPrtLi6bWJUzN7jiq3zKxevdopNx49ejQEQcDy5cuhVCoxevTom54jCAJWrlzplPsTERF5Ar1eL3UIVEcJgoDWrVujZcuW+PXXX/HNN9/gypUrAIC//voLf/31F9q3b++wHiGRs1U5mXn00UedcuNdu3ZBoVDAZrNBqVRi165dNx3AyAGOREREjrhsAUlNoVAgLi4O7dq1w6FDh7Blyxb7chu//vorjh07hvj4eAwcOBAhISESR0ueplpjZpwhOTn5hu+JiIjo5jgtLrkLpVKJhIQEdOzYET///DO2bduG/Px8iKKIgwcP4vDhw+jSpQv69+9f7hhroupwm0/AlJQUFBUVVbi/qKgIKSkptRgREREREVWVl5cXevbsiVmzZuGee+6xd4W0Wq346aefMGPGDHz11VcwGAwSR0qewG2SmUaNGuHrr7+ucP+mTZs4wJGIiOg6bJkhd6XRaNC3b1/Mnj0bAwYMsA8+Lykpwffff4/p06dj8+bNN3yY7WnMZrPUIXgct/kEvNmkaiUlJfzAJiIiuo5KJVmPcaJK0el0GDRoEF555RXccccd8PLyAlA6G9/WrVsxffp0fPfdd3Xii77FYuFaPE4m6Sdgfn4+cnNz7e+zsrLK7UqWm5uLdevWcSYMIiKiawiCYP9iSOTufH19MXToUNxxxx349ttv8fPPP8Nms6GwsBAbNmzArl270L9/f3Tt2tWjk/TyljOh6qvyOjPONGvWLLzyyiuVOlYURcyZMwdTpkxxcVS1j+vMEBERUV2TmZmJzZs345dffnForQgKCsLAgQMRHx8PpVLpkntLtc6M0WiEl5dXrT6E4DozLtS3b1/4+PhAFEW8+OKLGD58eJkv84IgwNvbG3FxcejYsaNEkRIRERGRM4WEhOCxxx5DYmIiNm/ejF9//RUAkJ2djY8++gjfffcdBg0ahPbt23vUUIOSkhK2qDqRpMlMQkICEhISAACFhYUYOnQoWrVqJWVIRERERFSLIiMjMWbMGKSkpGDTpk04fvw4ACA9PR0rV67ELbfcgsGDB6NVq1Ye0T3LYrFIHYJHcYsOiUajEW+99Rb0ej2TGSIiIqI6qEGDBhg3bhxOnz6NTZs24fTp0wCAixcv4r333kPjxo1x1113oWnTphJHWjN1YaKD2uQWbXZ6vR4qlQre3t5Sh0JEREREEoqJicGECRMwbtw4NGjQwL797NmzWLx4Md566y1ZL7ZeXFwsdQgexS1aZgBg6P+3d+dRUdXvH8DfF5B9E2XTZDUFQgUxVFzGhVJRcwFL1MTKJS39avYz85uJotKulllZHjTTSjNzS8xdUjHEPRRcBkkNkCOggrJ+fn94mG8ToIAMd+7wfp0z5zifufdznxl8gId77/MJD8dPP/2EyZMnG8QpRCIiIiKqG0mS4OfnB19fX5w6dQrbtm1DZmYmAODChQu4cOEC2rdvj8GDB6Nly5YyR1s7XCy0fulNMTNy5EhMmTIFvXv3xoQJE+Dh4QELC4tK27HbFxEREVHjIEkSAgMD0aFDByQlJWHHjh3IyckBAJw5cwZnz55Fp06dMHDgQDg5Ockcbc3k5ubKHYJB0ZtiplevXpp/JyQkVHq9oid3WVlZA0ZFRERERHIzMjJC586dERQUhCNHjmDnzp3Iz8+HEAJJSUlITk5G165dMWDAADg4OMgd7kPdvn0bRUVFBtkmWQ56U8zExcXJHQIRERER6TETExP07NkTXbp0QUJCAuLj41FQUIDy8nIcPnwYx44dQ48ePdC/f3/Y2NjIHW61/v77b3h4eMgdhkHQm2ImKipK7hCIiIiISAFMTU3Rt29fdOvWDfv27cOePXtw//59lJaWYv/+/Thy5Ah69eqFZ555BpaWlnKHW0lGRgbc3NwMav0cuejlJ3j37l2cP38e58+f501SRERERFQlc3NzhIWFISYmBs8++6xmMcqioiLs2rULc+fORXx8vN51ELt37x6uXbsmdxgGQa+KmaSkJPTu3RtNmzaFv78//P390bRpU/Tp0wfHjx+XOzwiIiIi0kNWVlYYOnQoFixYAJVKBWNjYwAPioatW7di3rx52LdvH0pKSmSLcfjw4ejXrx8+/PBDAMDFixf1rshSIr25zOzYsWPo1asXTE1NMX78ePj6+gIAzp8/j++//x49e/bEgQMHEBwcLHOkRERERKSP7Ozs8MILLyA0NBS//vorEhMTIYTAnTt38NNPP2HPnj0ICwuTpTtuTk4OsrOzYWdnBwAoLS3FmTNn0KlTJ15u9hgkIYSQOwgACA0NRXp6On7//Xe4uLhovZaVlYVu3brB09MTu3fvlilC3Tlx4gSCgoKQnJzM1tNERERE9SQrKwvbt29HcnKy1njz5s3h6+sLf3//Busq1rNnT2RlZcHOzg4xMTGa8ZYtW+Kpp57S2TqLxcXFKCgoQEBAgEF2UNObMvDYsWOYNGlSpUIGAJydnTFx4kQkJibKEBkRERERKZGzszNeeeUVvP322/D399eM5+TkICEhAT/++CMuX74MOf+2f/36dVy4cEHWGJRMby4zMzIyQmlpabWvl5WV8RQcEREREdVaq1atMGXKFFy5cgVbt25FWloaAODWrVvYtm0bnJ2dERISAjc3N52dIXmYjIwMlJWVwc/Pj7/v1pLefFohISH4/PPPcfXq1UqvZWRkYMWKFejWrZtOY7h16xZGjx4NW1tb2Nvb45VXXnlkN7VevXpBkiStx6uvvqrTOImIiIio9ry8vDB9+nRMnjwZzZs314xnZWVh8+bN2LRpE27cuCFLbNevX8fJkydlbVKgRHpzZmbx4sXo2bMnfHx8MGzYMLRp0wYAkJqaii1btsDExASxsbE6jWH06NH4+++/sXv3bpSUlOCll17CxIkTsX79+ofuN2HCBCxYsEDzXB/7mRMRERHRA23atEFYWBhu3ryJpKQk5OTkAACuXbuGDRs2wNPTE127doWTk1ODxpWTk4Njx44hMDAQVlZWDXpspdKbYiYwMBDHjh3Df//7X2zduhWFhYUAHhQG/fv3x8KFC+Hn56ez458/fx7x8fFISkpCp06dAACfffYZwsLC8NFHH6FFixbV7mtpaVnlvT5EREREpJ8kSYKnpyfatGmD1NRUJCYmIi8vDwCgVquhVqvx5JNPomvXrnBwcGiwuAoKCpCYmIiAgAA0a9aswY6rVHpTzACAn58fNm/ejPLycty8eRMA4Ojo2CDXDh49ehT29vaaQgZ40GHNyMgIx44dw7Bhw6rdd926dfjuu+/g4uKCwYMHY+7cuQ89O1NUVISioiLNcy4MSkRERCQPSZLg4+ODNm3aICUlBceOHcOdO3cAPFgL5tKlS/D19UXnzp01bZV1rbS0FMePH4enpye8vb016+ZQZXpVzFSouPek4t8NITMzs9KpRBMTEzg4OCAzM7Pa/UaNGgV3d3e0aNECZ86cwVtvvYXU1FT8/PPP1e4TGxuL+fPn11vsRERERPR4jIyM4O/vDx8fH5w9exZJSUkoLCyEEAIpKSm4cOEC2rVrh+Dg4Aa7BEytViMzMxNPPvkkXFxcZGlOoO/0pgEAAKSkpCAiIgK2trZwdXWFq6srbG1tERERgXPnztVpztmzZ1e6Qf/fjwsXLtQ55okTJ6Jfv35o164dRo8ejW+//RabN2/G5cuXq93n7bffRn5+vuZx8ODBOh+fiIiIiOqPiYkJAgMDMW7cOISEhGjWZikvL8fp06cRFxeHhIQE3Lt3r0HiuXfvHs6cOYPDhw/jr7/+QllZWYMcVyn05sxMQkICBgwYgPLycgwZMkSrAcDWrVuxc+dOxMfHo0ePHrWad+bMmRg3btxDt/Hy8oKLiwuys7O1xktLS3Hr1q1a3Q/TuXNnAMClS5fg7e1d5TZmZmZaixZZW1vXeH4iIiIi0j1TU1MEBwejffv2OHHihKbTWGlpKZKTk3H27Fl07NgRgYGBDbIYZUFBAVJSUpCWloaWLVuiVatWbBIAPSpmZsyYAScnJxw8eBCtWrXSeu2vv/5Cz5498cYbbyApKalW8zo6OsLR0fGR23Xt2hV5eXlITk5GUFAQAGDfvn0oLy/XFCg1cerUKQCAq6trreIkIiIiIv1jbm6OkJAQBAQEICkpCWfOnEFZWRmKi4uRmJiIU6dO4emnn0aHDh1gYlL1r9Y3btzQnMkpLi7GrVu36txUoLS0FFevXsXVq1fh4OAAd3d3ODo6NtpL0PTmMrM///wTU6ZMqVTIAA8WOpo8eTL+/PNPnR3f19cX/fv3x4QJE/DHH3/g8OHDeP311zFy5EhNJ7Pr16/Dx8cHf/zxBwDg8uXLiImJQXJyMtLT07F161aMHTsWPXv2RPv27XUWKxERERE1LEtLS6hUKowbNw7+/v6a4uH+/ftISEhAXFwcTp8+rXUZ2JkzZzBp0iT06dMHt2/fBvDgsrH58+dj5cqVVa6vWBu3bt3CyZMnkZCQALVa3SjXqNGbYsbd3V2rw9e/FRcXV1no1Kd169bBx8cHffv2RVhYGLp3746VK1dqXi8pKUFqaqqmbbSpqSn27NmDZ599Fj4+Ppg5cybCw8Oxbds2ncZJRERERPKwsbFBaGgooqKi4OPjoxkvKCjA/v37sWbNGqSkpCA+Ph6RkZFISEiAEEJrjoqmAkuWLMHp06cfO6Z79+4hLS0NBw8eRFpaGoqLix97zgpCCLz77rtwdXWFhYUFQkNDcfHixUfud/36dYwZMwbNmjWDhYUF2rVrh+PHjz/2vP8miX9/ujJZv349ZsyYgV27diEgIEDrtZMnT6J///5YunQpIiMj5QlQh06cOIGgoCAkJyejY8eOcodDREREZNCKiopw6tQpWFlZwdTU9LHmysnJwdGjR7WaP2VlZeGXX35BeXn5I/c3MjLCjBkz4O7u/lhx/JOJiQmefPJJtGrVCiUlJSgoKEBAQECd7u15//33ERsbizVr1sDT0xNz587F2bNnkZKSAnNz8yr3yc3NRWBgIHr37o3JkyfD0dERFy9ehLe3t+ae8rrMWxW9KWamTZuGAwcO4M8//0RISAhat24N4EF/76NHj8Lf3x8qlUprH0mSsGzZMjnCrVcsZoiIiIgaTn0WMxUyMzNx5MgRZGRk4Ndff0VGRkalMzJVMTIygp+fHyZOnFgvcfyTg4MDfH19UVJSUqdiRgiBFi1aYObMmXjzzTcBAPn5+XB2dsbq1asxcuTIKvebPXs2Dh8+jISEhHqdtyp6U8zUZWFMSZIMoj0dixkiIiKihqOLYqZCcnIyRo0aVat9JEnCvHnz6twU4GGsra3h6+tbp65rV65cgbe3N06ePKl15ZRKpUJAQEC1JxX8/PzQr18/XLt2DQcPHkTLli0xZcoUTJgw4bHmrYredDOryWk4IiIiIqL6Up/3llS4dOlSrfcRQiA1NbVWHXRrqmJdw7qoWDje2dlZa9zZ2fmhi8pfuXIFX3zxBd544w3MmTMHSUlJmDZtGkxNTREVFVXneauiN8UMEREREVFDMDY2hoWFBe7du1fvHcByc3NhZGRUqz/US5KEe/fu6eyP+8XFxTA2Nn7kduvWrcOkSZM0z3fs2FGn45WXl6NTp05YvHgxACAwMBDnzp3Dl19+iaioqDrNWR29K2bUajV27typaVXn7u6OAQMGwNPTU+bIiIiIiMgQmJiYwM/PTye3K5w+fbrWRYkQAra2trC0tKz3eADA29u72jVw/um5557TOjtU0Wk4KytLaw3FrKysSg27/snV1RV+fn5aY76+vti0aRMAaBakr+28VdGrYmbmzJlYtmxZpf8ARkZGmD59Oj766COZIiMiIiIiQ2JiYlKjX/Brq3///pAkqUY3/1eQJAm+vr46W/iyYs3ER7GxsYGNjY3muRACLi4u2Lt3r6bIuH37No4dO4bJkydXO0+3bt2QmpqqNZaWlqbp2Obp6VmneauiN+vMfPzxx1iyZAmGDx+Oo0ePIi8vD3l5eTh69CgiIiKwZMkSLFmyRO4wiYiIiIiq5ebmhkGDBtXosi7gwR/t27dvr5Ob/wGgWbNmsLOzq9O+kiRh+vTpWLhwIbZu3YqzZ89i7NixaNGiBYYOHarZrm/fvli+fLnm+YwZM5CYmIjFixfj0qVLWL9+PVauXInXXnutVvPWhN6cmfn666/x3HPPYcOGDVrjnTt3xg8//ID79+/jq6++wowZM2SKkIiIiIjo0ebOnYudO3fW+AxNWFiYTuKQJAldu3Z9rDM+s2bNQkFBASZOnIi8vDx0794d8fHxWmvBXL58GTk5OZrnTz/9NDZv3oy3334bCxYsgKenJ5YuXYrRo0fXat4avUd9ac1sbm6OJUuWVHtq6YsvvsCMGTNw//79Bo5M99iamYiIiMiw/Pzzz3jhhRcghKjy3pyKZUkmTpyIwMDAej++JEno3r07fH19631ufaI3l5k5OTnh9OnT1b5++vRpODo6NmBERERERER1M3z4cBw5cgRhYWGVzoxIkoR27drhrbfe0kkh4+TkhCFDhhh8IQPo0WVmI0aMwLJly+Dh4YGpU6fCysoKAFBQUIDly5fjm2++wfTp0+UNkoiIiIiohp5++mls3boVGRkZ6NChA/Ly8mBhYYF3331XJ/fIODk5ITAwEG5ubjprJqBv9KaYiYmJwalTpzBnzhy8++67mq4LN27cQGlpKXr37o0FCxbIHCURERERUe24ubnBysoKeXl5MDMzq9dCRpIkuLm5oX379nBxcWk0RUwFvSlmLC0tsXfvXmzZskVrnZn+/fsjLCwMgwcPbnRfHCIiIiKiqpiZmcHHxwd+fn5a7ZQbG70oZgoLCzFmzBiEh4dj9OjRGDJkiNwhERERERHpHXt7e7Rr1w5PPvmkTtbJURq9+AQsLS2xZ88eDBgwQO5QiIiIiIj0joODAzp27AhPT09erfQPetPNrHv37jh69KjcYRARERER6Q1ra2v06dMH4eHh8PLyYiHzL3pTzCxfvhwJCQl45513cO3aNbnDISIiIiKSTUX75hEjRqB169YsYqqhF5eZAUCHDh1QWlqK2NhYxMbGwsTEBGZmZlrbSJKE/Px8mSIkIiIiItI9Kysr9O7dW9Pdl6qnN8VMeHg4K04iIiIiatSeeOIJ9O7dGxYWFnKHogh6U8ysXr1a7hCIiIiIiGRhbGyM4OBg+Pv78w/8tSB7MXP//n1s2bIFarUazZs3x8CBA+Hq6ip3WEREREREDcLZ2RkqlQr29vZyh6I4shYz2dnZCAkJgVqthhACwIM2zb/88gtCQ0PlDI2IiIiISOcCAwMRFBQEIyO96culKLJ+ajExMUhPT8eMGTOwfft2LF26FBYWFpg0aZKcYRERERER1SsXFxe0aNECtra2AB40turTpw+efvppFjKPQdYzM7/99hvGjh2Ljz76SDPm7OyMUaNGITU1FW3btpUxOiIiIiKi+nH8+HHcvn0bP/zwAwCgZ8+eaN26tcxRKZ+sZWBGRga6d++uNda9e3cIIZCVlSVTVEREREREuuPu7s4/2tcTWYuZoqIimJuba41VPC8tLZUjJCIiIiIinQoKCpI7BIMhezez9PR0nDhxQvO8YlHMixcvVtnRoWPHjg0VGhERERFRvWratCmaN28udxgGQxIVbcRkYGRkVGUfbSFEpfGKsbKysoYKr8GcOHECQUFBSE5OZrFGREREZKBu376Nc+fOISQkRO5QDIasZ2bi4uLkPDwRERERUYNydHSUOwSDImsxExUVJefhiYiIiIgaVNOmTeUOwaCwqTURERERUQOxsrKSOwSDwmKGiIiIiKiBmJmZyR2CQZG9mxkRERERUWNgY2NTZfMrqjuemSEiIiIiagAsZOofixkiIiIiIlIkFjNERERERKRILGaIiIiIiEiRWMwQEREREZEisZghIiIiIiJFYjFDRERERESKxHVmqE7+/vtv/P3333KHQfXM1dUVrq6ucodBOsCcNUzMWcPFnDVMzNn6x2JGD7i6umLevHmK+c9dVFSEyMhIHDx4UO5QqJ6pVCrs2rWLqxMbGOas4WLOGibmrOFiztY/SQgh5A6ClOX27duws7PDwYMHYW1tLXc4VE/u3r0LlUqF/Px82Nrayh0O1SPmrGFizhou5qxhYs7qBs/MUJ0FBAQwGQ3I7du35Q6BdIw5a1iYs4aPOWtYmLO6wQYARERERESkSCxmiIiIiIhIkVjMUK2ZmZlh3rx5vHnNwPDrarj4tTVM/LoaLn5tDRO/rrrBBgBERERERKRIPDNDRERERESKxGKGiIiIiIgUicUMEREREREpEosZIiIiIiJSJBYzRAoiSVKNHgcOHHjsYxUWFiI6OrpWcy1atAjPPfccnJ2dIUkSoqOjHzsOIiXT55y9cOECZs2ahYCAANjY2MDV1RUDBw7E8ePHHzsWIqXS55y9ceMGxowZg7Zt28LGxgb29vYIDg7GmjVr0Jj7eZnIHQAR1dzatWu1nn/77bfYvXt3pXFfX9/HPlZhYSHmz58PAOjVq1eN9nnnnXfg4uKCwMBA7Nq167FjIFI6fc7Zb775BqtWrUJ4eDimTJmC/Px8fPXVV+jSpQvi4+MRGhr62DERKY0+52xOTg6uXbuGiIgIuLm5oaSkBLt378a4ceOQmpqKxYsXP3ZMSsRihkhBxowZo/U8MTERu3fvrjQuF7VaDQ8PD+Tk5MDR0VHucIhkp885GxkZiejoaFhbW2vGXn75Zfj6+iI6OprFDDVK+pyz7du3r3QW5/XXX8fgwYPx6aefIiYmBsbGxvIEJyNeZkZkYMrLy7F06VI89dRTMDc3h7OzMyZNmoTc3Fyt7Y4fP45+/fqhefPmsLCwgKenJ15++WUAQHp6uqYYmT9/vua0+qMuG/Pw8NDFWyIyaHLlbFBQkFYhAwDNmjVDjx49cP78+fp9k0QGRM6fs1Xx8PBAYWEhiouLH/u9KRHPzBAZmEmTJmH16tV46aWXMG3aNKjVaixfvhwnT57E4cOH0aRJE2RnZ+PZZ5+Fo6MjZs+eDXt7e6Snp+Pnn38GADg6OuKLL77A5MmTMWzYMAwfPhzAg78KEVH90reczczMRPPmzev1PRIZErlz9t69eygoKMDdu3dx8OBBxMXFoWvXrrCwsNDp+9ZbgogU67XXXhP/TOOEhAQBQKxbt05ru/j4eK3xzZs3CwAiKSmp2rlv3rwpAIh58+bVOq7H2ZfIkOlrzlY4dOiQkCRJzJ07t85zEBkSfczZ2NhYAUDz6Nu3r8jIyKjVHIaEl5kRGZCNGzfCzs4OzzzzDHJycjSPistJ9u/fDwCwt7cHAGzfvh0lJSUyRkzUuOlTzmZnZ2PUqFHw9PTErFmzdHIMIqXTh5yNjIzE7t27sX79eowaNQrAg7M1jRWLGSIDcvHiReTn58PJyQmOjo5aj7t37yI7OxsAoFKpEB4ejvnz56N58+YYMmQI4uLiUFRUJPM7IGpc9CVnCwoKMGjQINy5cwdbtmypdC8NET2gDznr7u6O0NBQREZGYt26dfDy8kJoaGijLWh4zwyRASkvL4eTkxPWrVtX5esVNxtKkoSffvoJiYmJ2LZtG3bt2oWXX34ZH3/8MRITE/mLDFED0YecLS4uxvDhw3HmzBns2rUL/v7+dZ6LyNDpQ87+W0REBL7++mscOnQI/fr1q7d5lYLFDJEB8fb2xp49e9CtW7ca3QjYpUsXdOnSBYsWLcL69esxevRo/PDDDxg/fjwkSWqAiIkaN7lztry8HGPHjsXevXuxYcMGqFSqurwNokZD7pytSsUZmfz8/HqZT2l4mRmRAXn++edRVlaGmJiYSq+VlpYiLy8PAJCbm1tpteCAgAAA0JwCt7S0BADNPkRU/+TO2alTp+LHH3/EihUrNN2UiKh6cubszZs3qxxftWoVJElCx44dazSPoeGZGSIDolKpMGnSJMTGxuLUqVN49tln0aRJE1y8eBEbN27EsmXLEBERgTVr1mDFihUYNmwYvL29cefOHXz99dewtbVFWFgYAMDCwgJ+fn748ccf0aZNGzg4OMDf3/+hl6CsXbsWV69eRWFhIQDg0KFDWLhwIQDgxRdfhLu7u+4/BCIFkTNnly5dihUrVqBr166wtLTEd999p/X6sGHDYGVlpfPPgEhJ5MzZRYsW4fDhw+jfvz/c3Nxw69YtbNq0CUlJSZg6dSpat27dkB+F/pC5mxoRPYZ/t4yssHLlShEUFCQsLCyEjY2NaNeunZg1a5a4ceOGEEKIEydOiMjISOHm5ibMzMyEk5OTGDRokDh+/LjWPEeOHBFBQUHC1NS0Ru0jVSqVVrvIfz72799fX2+bSLH0KWejoqKqzVcAQq1W1+dbJ1IkfcrZ3377TQwaNEi0aNFCNGnSRNjY2Ihu3bqJuLg4UV5eXq/vW0kkIf51DoyIiIiIiEgBeM8MEREREREpEosZIiIiIiJSJBYzRERERESkSCxmiIiIiIhIkVjMEBERERGRIrGYISIiIiIiRWIxQ9SIpKenQ5IkrF69Wu5QiKgGmLNEysKcbXgsZoiIiIiISJG4aCZRIyKEQFFREZo0aQJjY2O5wyGiR2DOEikLc7bhsZghIiIiIiJF4mVmRAoTHR0NSZKQlpaGMWPGwM7ODo6Ojpg7dy6EEPjrr78wZMgQ2NrawsXFBR9//LFm36qu5R03bhysra1x/fp1DB06FNbW1nB0dMSbb76JsrIyzXYHDhyAJEk4cOCAVjxVzZmZmYmXXnoJTzzxBMzMzODq6oohQ4YgPT1dR58Kkf5izhIpC3NWWVjMECnUCy+8gPLycrz33nvo3LkzFi5ciKVLl+KZZ55By5Yt8f7776N169Z48803cejQoYfOVVZWhn79+qFZs2b46KOPoFKp8PHHH2PlypV1ii08PBybN2/GSy+9hBUrVmDatGm4c+cOMjIy6jQfkSFgzhIpC3NWIQQRKcq8efMEADFx4kTNWGlpqXjiiSeEJEnivffe04zn5uYKCwsLERUVJYQQQq1WCwAiLi5Os01UVJQAIBYsWKB1nMDAQBEUFKR5vn//fgFA7N+/X2u7f8+Zm5srAIgPP/ywft4wkcIxZ4mUhTmrLDwzQ6RQ48eP1/zb2NgYnTp1ghACr7zyimbc3t4ebdu2xZUrVx4536uvvqr1vEePHjXa798sLCxgamqKAwcOIDc3t9b7Exkq5iyRsjBnlYHFDJFCubm5aT23s7ODubk5mjdvXmn8Ud/szM3N4ejoqDXWtGnTOn2TNDMzw/vvv4+dO3fC2dkZPXv2xAcffIDMzMxaz0VkSJizRMrCnFUGFjNEClVVy8fq2kCKRzQtrEn7SEmSqhz/582LFaZPn460tDTExsbC3Nwcc+fOha+vL06ePPnI4xAZKuYskbIwZ5WBxQwR1UjTpk0BAHl5eVrjV69erXJ7b29vzJw5E7/99hvOnTuH4uJirY4vRKRbzFkiZWHO1g2LGSKqEXd3dxgbG1fq2LJixQqt54WFhbh//77WmLe3N2xsbFBUVKTzOInoAeYskbIwZ+vGRO4AiEgZ7OzsMGLECHz22WeQJAne3t7Yvn07srOztbZLS0tD37598fzzz8PPzw8mJibYvHkzsrKyMHLkSJmiJ2p8mLNEysKcrRsWM0RUY5999hlKSkrw5ZdfwszMDM8//zw+/PBD+Pv7a7Zp1aoVIiMjsXfvXqxduxYmJibw8fHBhg0bEB4eLmP0RI0Pc5ZIWZiztSeJR92xREREREREpId4zwwRERERESkSixkiIiIiIlIkFjNERERERKRILGaIiIiIiEiRWMwQEREREZEisZghIp1IT0+HJElYvXq13KEQUQ0wZ4mUg/n6PyxmiPTA5cuXMWnSJHh5ecHc3By2trbo1q0bli1bhnv37unsuCkpKYiOjkZ6errOjlETixYtwnPPPQdnZ2dIkoTo6GhZ4yF6lMacsxcuXMCsWbMQEBAAGxsbuLq6YuDAgTh+/LhsMRE9TGPO1xs3bmDMmDFo27YtbGxsYG9vj+DgYKxZswaGsjoLF80kktmOHTswYsQImJmZYezYsfD390dxcTF+//13/N///R/+/PNPrFy5UifHTklJwfz589GrVy94eHjo5Bg18c4778DFxQWBgYHYtWuXbHEQ1URjz9lvvvkGq1atQnh4OKZMmYL8/Hx89dVX6NKlC+Lj4xEaGipLXERVaez5mpOTg2vXriEiIgJubm4oKSnB7t27MW7cOKSmpmLx4sWyxFWfWMwQyUitVmPkyJFwd3fHvn374Orqqnnttddew6VLl7Bjxw4ZI/wfIQTu378PCwuLep9brVbDw8MDOTk5cHR0rPf5ieoLcxaIjIxEdHQ0rK2tNWMvv/wyfH19ER0dzWKG9AbzFWjfvj0OHDigNfb6669j8ODB+PTTTxETEwNjY+N6PWZD42VmRDL64IMPcPfuXaxatUrrm2yF1q1b4z//+Y/meWlpKWJiYuDt7Q0zMzN4eHhgzpw5KCoq0trPw8MDgwYNwu+//47g4GCYm5vDy8sL3377rWab1atXY8SIEQCA3r17Q5IkSJKk+aZXMceuXbvQqVMnWFhY4KuvvgIAXLlyBSNGjICDgwMsLS3RpUuXx/qBIOdZIaLaYM4CQUFBWoUMADRr1gw9evTA+fPn6zQnkS4wX6vn4eGBwsJCFBcX1+u8shBEJJuWLVsKLy+vGm8fFRUlAIiIiAjx+eefi7FjxwoAYujQoVrbubu7i7Zt2wpnZ2cxZ84csXz5ctGxY0chSZI4d+6cEEKIy5cvi2nTpgkAYs6cOWLt2rVi7dq1IjMzUzNH69atRdOmTcXs2bPFl19+Kfbv3y8yMzOFs7OzsLGxEf/973/FJ598Ijp06CCMjIzEzz//rIlBrVYLACIuLq7G7+/mzZsCgJg3b16N9yFqSMzZ6oWEhIg2bdrUaV8iXWC+/k9hYaG4efOmUKvVYvXq1cLKykqEhITU+LPRZyxmiGSSn58vAIghQ4bUaPtTp04JAGL8+PFa42+++aYAIPbt26cZc3d3FwDEoUOHNGPZ2dnCzMxMzJw5UzO2ceNGAUDs37+/0vEq5oiPj9canz59ugAgEhISNGN37twRnp6ewsPDQ5SVlQkhWMyQ4WHOVu/QoUNCkiQxd+7cWu9LpAvMV22xsbECgObRt29fkZGRUaN99R0vMyOSye3btwEANjY2Ndr+119/BQC88cYbWuMzZ84EgEqnoP38/NCjRw/Nc0dHR7Rt2xZXrlypcYyenp7o169fpTiCg4PRvXt3zZi1tTUmTpyI9PR0pKSk1Hh+IiVhzlYtOzsbo0aNgqenJ2bNmvVYcxHVF+artsjISOzevRvr16/HqFGjAECnndwaEosZIpnY2toCAO7cuVOj7a9evQojIyO0bt1aa9zFxQX29va4evWq1ribm1ulOZo2bYrc3Nwax+jp6VllHG3btq007uvrq3mdyBAxZysrKCjAoEGDcOfOHWzZsqXSvTREcmG+anN3d0doaCgiIyOxbt06eHl5ITQ01CAKGhYzRDKxtbVFixYtcO7cuVrtJ0lSjbarrjuJqEVfeV10LiNSKuastuLiYgwfPhxnzpzBli1b4O/v32DHJnoU5uvDRURE4K+//sKhQ4dki6G+sJghktGgQYNw+fJlHD169JHburu7o7y8HBcvXtQaz8rKQl5eHtzd3Wt9/Jp+0/53HKmpqZXGL1y4oHmdyFAxZx8oLy/H2LFjsXfvXqxfvx4qlarWcxDpGvO1ehVnZPLz8+tlPjmxmCGS0axZs2BlZYXx48cjKyur0uuXL1/GsmXLAABhYWEAgKVLl2pt88knnwAABg4cWOvjW1lZAQDy8vJqvE9YWBj++OMPrR8OBQUFWLlyJTw8PODn51frOIiUgjn7wNSpU/Hjjz9ixYoVGD58eK33J2oIzFfg5s2bVY6vWrUKkiShY8eOtZpPH3HRTCIZeXt7Y/369XjhhRfg6+urtTrxkSNHsHHjRowbNw4A0KFDB0RFRWHlypXIy8uDSqXCH3/8gTVr1mDo0KHo3bt3rY8fEBAAY2NjvP/++8jPz4eZmRn69OkDJyenaveZPXs2vv/+ewwYMADTpk2Dg4MD1qxZA7VajU2bNsHIqPZ/I1m7di2uXr2KwsJCAMChQ4ewcOFCAMCLL77Isz2kN5izD37ZW7FiBbp27QpLS0t89913Wq8PGzZM80sckZyYr8CiRYtw+PBh9O/fH25ubrh16xY2bdqEpKQkTJ06tdI9Qookczc1IhJCpKWliQkTJggPDw9hamoqbGxsRLdu3cRnn30m7t+/r9mupKREzJ8/X3h6eoomTZqIVq1aibfffltrGyEetHwcOHBgpeOoVCqhUqm0xr7++mvh5eUljI2NtVpIVjeHEA/650dERAh7e3thbm4ugoODxfbt27W2qU3bSJVKpdUy8p+PqlpaEsmtMedsxVoc1T3UavVD9ydqaI05X3/77TcxaNAg0aJFC9GkSRPNe4+LixPl5eUP3VcpJCFqcacSERERERGRnuA9M0REREREpEgsZoiIiIiISJFYzBARERERkSKxmCEiIiIiIkViMUNERERERIrEYoaIiIiIiBSJxQwRERERESkSixkiIiIiIlIkFjNERERERKRILGaIiIiIiEiRWMwQEREREZEisZghIiIiIiJFYjFDRERERESK9P9JE6vYtGE08AAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzMAAAInCAYAAACsmwePAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAsFRJREFUeJzs3Xd8U+X+B/DPSdKs7t1SRgtlFEFGEShDhkCZDlARVFR+4oKrgFcFkSXr4mCoKIIMr8oVJyAgiAwFWTIdQGWVMtrS3aZpkyY5vz8qkdAWOpKenPTzfr3yanPmtzw8bb7nWYIoiiKIiIiIiIhkRiF1AERERERERNXBZIaIiIiIiGSJyQwREREREckSkxkiIiIiIpIlJjNERERERCRLTGaIiIiIiEiWmMwQEREREZEsMZkhIiIiIiJZYjJDRERERESyxGTGDaSmpmLGjBlITU2VOhQiIiIiItlgMuMGUlNTMXPmTCYzRERERERVwGSGiIiIiIhkickMERERERHJEpMZIiIiIiKSJSYz1/n5558xZMgQ1KtXD4IgYN26dbc8Z9euXWjfvj00Gg1iY2OxevVql8dJRERERERMZhwUFhaiTZs2WLJkSaWOP3/+PAYNGoRevXrh2LFjGD9+PJ588kls3brVxZESEREREZFK6gDcyYABAzBgwIBKH7906VLExMTg7bffBgDExcVhz549WLhwIRITE10VJhERERERgclMjezbtw99+vRx2JaYmIjx48ff9DyTyQSTyWR/bzAYXBFelWRlZcFsNrvk2jabDaIoIigoyCXXp4qpVCoUFBS4rGzVajWCg4Ndcm26OdZZz8Q667lYZz2Tl5cX8vPzWWclxGSmBtLS0hAeHu6wLTw8HPn5+SgqKoJOpyv3vHnz5mHmzJm1EWKlZGVlYcmSJRBF0aX36dmzJ3x8fFx6D3Lk5eWFdevWuaxsBUHA2LFj+Yu2lrHOei6NRoNvvvmGddbDsM56Lp1Oh6+++op1VkIcMyOByZMnIy8vz/766aefJI3HbDa7/BcsAFitVpffgxyVlJS4tGxFUXTZ0yiqGOus57JYLKyzHoh11nPx76z02DJTAxEREUhPT3fYlp6eDj8/vwpbZYDSJ28ajcb+3p2eogiC4PRr1sYvcLo1Z5cty9U9sM56LtZZz8Q667lYZ6XhMS0zoihix44d+P7771FQUFAr90xISMD27dsdtm3btg0JCQm1cn8iIiIiorpMlsnMlClT0KtXL/t7URTRr18/9O3bF4MGDULr1q1x9uzZKl/XYDDg2LFjOHbsGIDSqZePHTuGlJQUAKXdw0aNGmU//plnnsG5c+fw8ssv49SpU3j//ffxxRdfYMKECTX7AYmIiIiI6JZkmcx8/fXX6Nixo/39V199he3bt2P27NnYuHEjrFYrZsyYUeXrHjp0CO3atUO7du0AABMnTkS7du0wbdo0AEBqaqo9sQGAmJgYbNq0Cdu2bUObNm3w9ttv46OPPuK0zEREREREtUCWY2YuX76M2NhY+/tvvvkGLVu2xOTJkwEAzz77LD744IMqX7dnz5437Z+4evXqcs85evRole9FREREREQ1I8uWGZVKZV+nRRRFbN++Hf3797fvDw8PR2ZmplThERERERFRLZBlMtOqVSt8+umnyMnJwapVq5CVlYVBgwbZ91+4cAEhISESRkhERERERK4my25m06ZNw5AhQ+wJS9euXR0mBNi0aRPuuOMOqcIjIiIiIqJaIMtkpm/fvjhy5Ai2bduGgIAADB8+3L4vJycHd955J+655x4JIyQiIiIiIleTZTIDAC1btkTLli3LbA8MDMTChQsliIiIiIiIiGqTLJOZgoIC5ObmokGDBvZtV65cwdKlS2EymXD//fezmxkRERHJ0ocffgiDwQAfHx88/fTTUodD5NZkmcw89dRTOH/+PPbv3w8AyM/PR+fOnXHp0iUoFAosXrwYW7ZsQc+ePaUNlIiIiKiKDAYD8vPzpQ6DSBZkOZvZnj17MHjwYPv7Tz/9FFeuXMHevXuRk5OD22+/HbNnz5YwQiIiIiIicjVZJjOZmZmIioqyv9+wYQO6deuGzp07w9fXF6NGjcLx48cljJCIiIiIiFxNlt3MAgICkJaWBgAoKirC7t27MWXKFPt+lUoFo9EoVXhEREREtU6lUsHLy6tG52u1WigUjs+6RVG0f73x+4peNput3O+JnE2WyUyXLl3w/vvvo0WLFtiyZQuKi4sdpmL+66+/HFpuiIiIiDydxWJBSUlJtc8vKSlBcXEx/P39ERkZCb1e78To4JDclPe6cd/1iVBFyVF5r+vvBQCizQbRaoUo2gBRhGgTAXtiVcMEiwma5GSZzMyfPx/9+vXDsGHDAAAvvvgibrvtNgCA1WrFl19+if79+0sZIhEREZHsiKKI3Nxc5ObmIiQkBA0aNCjTUlNdgiBAEIQaX08URYhmE2zFxRBNJthMptL3JWaIJWaIJSUQSywQrRaIFgsg2pwSf3lyffxddm2qHFkmM7GxsUhKSsKJEyfg7++P6Oho+z6j0Yj33nsPbdq0kS5AIiIiIpnLzMxEYWEhmjRpAo1GU+v3t5nNsBUaYDMaYTUWwlZUBFuREbbiYpcmKCQvskxmAMDLy6vchMXX19ehyxkRERGRu6jMuBFvb2+Iomj/WlkajQY6na7asZnNZlitVodtRUVFSEpKQrNmzaDVaqt97VuxFhbCaiiAraAAVkMBrIUGiCVml92PPIdsk5n8/Hy8//772LlzJ65evYoPP/wQHTt2RHZ2NlavXo27774bsbGxUodJREREdZxarYYgCJVOTKqzUKYgCGjRogWCg4OrfO71iouLkZWVhYyMDHtiU1JSgr/++gstWrSAWq2u0fUBwFZkhNVggLUgH9aCAljz8yBaLTW+LtVNskxmLl26hB49euDixYto2rQpTp06BYPBAAAICgrChx9+iAsXLmDx4sUSR0pERER1XXBwMMaOHQuz2XUtDWq1usaJDABotVpERUUhPDwcly9fRmZmJoDShOb06dNo0aIFlErlLa8jimLpeBZjIaxG49/dxQphNRiYuJBTyTKZeemll1BQUIBjx44hLCwMYWFhDvvvvfdebNy4UaLoiIiIiBz5lpghmotddn1BcO71VCoVGjVqBD8/PyQnJ8Nms6G4uBjnz59HbGwsbOa/B9qb/x6AbzLBZiqGrbiodGB+UVHp7GFELibLZOaHH37AhAkT0LJlS2RlZZXZ37hxY1y8eFGCyIiIiIgcmdNSkTJ5outu8Hf3tfDnxsOrJq0zIiDi72mL/57OWGOzIspUjHNpabBaSlBktQGnTiDUx7nTNhNVlyyTmaKiIoSGhla4v6CgoBajISIiIqqYaHJdi8z1zBcvwGY0OP26GgCN9FqczzJCFEWkF+TDV+MFbQ0W6CRyFudMHF7LWrZsiZ9//rnC/evWrUO7du1qMSIiIiKiShCEW77u++4HdPtiPe777odKHV8b9GovNAgMAITShptLeflVmmmNyFVkmcyMHz8en3/+OebPn4+8vDwAgM1mw5kzZ/Doo49i3759mDBhgsRREhEREVVdRlER0o1FyCgqkjoUB35aDSJ8fQEAReYSZBYaJY6ISKbdzB555BFcuHABr732GqZMmQIA6N+/P0RRhEKhwNy5c3HvvfdKGyQRERGRhwn18Uah2YyCYhOuGgwI1GmhqsTsZkSuIstkBgCmTJmCRx99FF9//TXOnDkDm82GJk2aYOjQoWjcuLHU4RERERF5pPoB/vjraiasNhtSCwxoEOAvdUhUh8k2mQGAhg0bsjsZERERUS1SKRSI8vdDSk4ucouKEOqt52QAJBlZjpk5cuQI3n///Qr3v//++zh27FjtBURERERUh/jrtPDTagARSCtw/gxqRJUly2RmypQp+PHHHyvcv2PHDrz22mvVvv6SJUsQHR0NrVaLTp064eDBgzc9ftGiRWjevDl0Oh0aNGiACRMmoLi4dqZhJCIiIpJCpJ8vBEFAQbEJhWaz1OFQHSXLZObw4cPo3r17hfu7d++OQ4cOVevaa9euxcSJEzF9+nQcOXIEbdq0QWJiIq5evVru8WvWrMGkSZMwffp0nDx5EitWrMDatWvx6quvVuv+REREVLeF6nQI1+sQqtNJHcpNqVUq++KZV9k6QxKR5ZiZgoICqFQVh65QKOxTNlfVggULMGbMGDzxxBMAgKVLl2LTpk1YuXIlJk2aVOb4vXv3omvXrhg5ciQAIDo6GiNGjMCBAweqdX8iIiKq2769O1HqECot1McH2cYiGExmGM0l0Ks5doZqlyyTmaZNm+KHH37Av/71r3L3b9mypVozmpnNZhw+fBiTJ0+2b1MoFOjTpw/27dtX7jldunTBp59+ioMHD6Jjx444d+4cNm/ejEcffbTC+5hMJphMJvt7g6FuPM0QBAEKRc0aAwVBcHjduO/6Y8rbVpmXQqEo8/2NX292TkVxlhff9dsBQDSZYE69DEtWFmyFBoiirUb/XtlqbY3OJyIiuhmFICDMxwdX8vKRYTCgUVCg1CFRHSPLZOb//u//MGHCBEycOBHTpk1DQEAAACA3NxczZ87Eli1b8Oabb1b5upmZmbBarQgPD3fYHh4ejlOnTpV7zsiRI5GZmYlu3bpBFEVYLBY888wzN+1mNm/ePMycObPK8cmdKIqw2Wr24fwahUIBLy8vqFQqqNVqaDQaaDQa6HQ6aLVaKGU2571otcKUfA6mSxeBGiYw1fXhhx/CYDDAx8cHTz/9tCQxEBGR/ATpdcgoLER+sQnFFgu0N+k9Q+Rssvzf9vzzz+PYsWNYtGgR3nnnHdSrVw8AcOXKFdhsNjz66KO1NmXzrl27MHfuXLz//vvo1KkTzpw5gxdeeAGzZs3C1KlTyz1n8uTJmDhxov39sWPH0KNHj1qJ11PYbDZ7C1dhYWGZ/VqtFnq9Hj4+PvD19YVW674tFFajEUV//AarUdoWOoPBgPz8fEljICIi+REEAWE+3ricm4+sQiOi/P2kDonqEFkmM4IgYNWqVRg1ahS+/vprnDt3DgBwzz33YNiwYejZs2e1rhsSEgKlUon09HSH7enp6YiIiCj3nKlTp+LRRx/Fk08+CQBo3bo1CgsL8dRTT2HKlCnldqu61opwjY+PT7XipYoVFxejuLgY2dnZAAAvLy/4+fnB398ffn5+btNyY83PR+FvRyFaSqQOhYiIqNoCdTpcLShErrEI4b4+UNWwWzlRZckymbmmV69e6NWrl9Oup1arER8fj+3bt+Pee+8FUNoCsH37dowbN67cc4xGY5mE5doHZVEUnRYb1UxJSQmysrKQlZUFQRDg7++PwMBABAQE1HgcT3VZ8/NRePwIRKtFkvsTERE5iyAICPHRIzWvANlGI8L4oJZqiSzT5vPnz+O7776rcP93332H5OTkal174sSJWL58OT7++GOcPHkSzz77LAoLC+2zm40aNcphgoAhQ4bggw8+wOeff47z589j27ZtmDp1KoYMGeI2T//JkSiKyM3Nxfnz53H8+HFcuHCh3K5qrmQrLobxj+NMZIiIyGME6fVQKhTINhbxgS7VGlm2zPz73/9Gfn4+hgwZUu7+JUuWICAgAJ9//nmVrz18+HBkZGRg2rRpSEtLQ9u2bbFlyxb7pAApKSkOT/Jfe+01CIKA1157DZcvX0ZoaCiGDBmCOXPmVO+Ho1pls9mQmZmJzMxM6PV6hIWFITAw0KWtNaLVCuPvx2Azm259MBERkUwoBKF0MgBDIQwmM3y1mlufRFRDskxm9u3bh/Hjx1e4/6677sKiRYuqff1x48ZV2K1s165dDu9VKhWmT5+O6dOnV/t+5B6MRiOSk5Nx+fJlhIWFITQ01CWta8VnT8NaWDem4yYiorol2FuPzMJCZBmNTGaoVsiym1lOTg58fX0r3O/j44OsrKxajIg8SUlJCS5fvozff/8dV65cgdVqdd61M67CfOWS065HRETkTryUSvhrtSgwmVDixL+fRBWRZTLTsGFD/PLLLxXu3717N+rXr1+LEZEnslqtSE1Nxe+//47U1NQaJzWixYLi00lOio6IiMg9BXnrARHIKSqSOhSqA2SZzIwYMQL/+9//8M477zgswmi1WrF48WKsXbsWI0eOlDBC8iRWqxVXrlzB77//jkuXLsFsNlfrOsVnT3OcDBEReTxvtRpaLxVyjcVSh0J1gCzHzEyePBl79uzB+PHjMWfOHDRv3hwAkJSUhIyMDPTs2RNTpkyROEryNFarFenp6bh69SoCAwMRGhpa6TWCrAX5MKdednGERERE7iFIr8eVvHwUms3wVqulDoc8mCyTGY1Ggx9++AEff/wxvvnmG5w9exYA0LFjRwwbNgyjRo2SbO0Q8nyiKCI7OxvZ2dnQarUICQlBUFAQvLy8Kjyn+MxftRhh+W41Taa3tzdEUbR/JSIiqq4AnRZpBQXINRYxmSGXkmUyAwAKhQJPPPGEff0XIikUFxfj0qVLuHTpEvz8/OwLcapU/1StkoyrsOTlVu6CggJewcFQBYVA4e0NoYZJuTm/AIIgVCo5efrpp6t8fUEQoOYfKSIiuoFSoYCfVou8YhPqiSIEQZA6JPJQsk1miNxNfn4+8vPzceHCBfj4+MDPzw++vr6wnTtTqfO9wiKgbRwLhVbrtJhCff0wduzYao/zuRW1Wo3g4GCXXJuIiOQtSKdDrrEIBSYT/Jz4t43oerJMZnr37n3LYwRBwPbt22shGqKyDAYDDAYDLHl5sF5Nhd7LC3q1GjovFbReXlBft36NoFRB16IlvELDXBILkw0iIpKCt0YNtUqJ3KJiJjPkMrJMZmw2W5nmSqvVigsXLuDixYuIjY1FVFSURNERlRJFEZbsTIg2EQaTGQbTP60jCoUAjUoFrUYL37jbUCwCquxsqFQqKJVKKBQKpzTJK5VKiFmZEE2umVFG0Gihjoh0ybWJiEj+AnU6ZBgKYbXZoOR4ZnIBWSYzu3btqnDfxo0b8dRTT2HBggW1FxBROWyGfIgVdO+y2UQU2wAxJAzFeXlAXp5LYgiCCOt7b7vk2tc0nLeACQ0REZXLX6dFeoEBBSYTAnQ6qcMhD+RxKfLgwYPxyCOPYPz48VKHQnWcJSu74p0KBdT1G0Bw9eD5Kqxrc993W9Hti/W477utVbqFq1p9iIhI/jQqFXRqL+QV8W8FuYbHJTMA0KRJE/z6669Sh0F1mLXQANtNPuSrI6Og0GhqMSIAgnDTV0ZRMdKNRcgoKr7lseCsNEREVEkBOi0KTGZYr1vonMhZPC6ZsVgs+OKLLxASEiJ1KFSHWXIqbpVRBQVDWcnFNomIiOQuQKuFCBEFpsr3FiCqLFmOmRk9enS523Nzc7F//36kpaVxzAxJxmYywVZYWO4+hVYHVUhoLUdEREQkHZVSCR+1GnlFHDdDzifLZGbHjh1lZnoSBAGBgYHo1q0bnnzySfTr10+i6Kius+TllL9DEOAVEcmFw4iIqM7x12qRml8AmyhCwb+D5ESyTGaSk5OlDoGoXKLVCmsFM5OpgoJrf5wMERGRG/DTanA5Px8Gkxl+Wv4tJOfxuDEzRFKyFhQA5QxwFLy8oArmOC4iIqqbVEolvNVq5BdzVjNyLtkkM0ajESkpKTCXs27HypUrcdddd6Fly5YYOnQoZzIjyVgr6GLmFRrG7mVERFSn+Wu1KDCZIIqi1KGQB5FNMvP666/j9ttvL5PMzJ49G2PGjMFPP/2EjIwMrFu3Dj179sTx48clipTqKpvJBFs5T5wUOj2Uvn4SREREROQ+/LQaWKw2GEtKpA6FPIhskpmdO3di8ODB8LluStv8/HzMnj0bUVFROH36NDIyMrB//36o1Wr85z//kTBaqosqGvivCuXsZURERF5KJXRqLxQUc4pmch7ZJDPJycm4/fbbHbZt3rwZZrMZr7zyCmJiYgAAHTt2xBNPPIHdu3dLESbVUaIowppfUGa7wtsbSp1egoiIiIjcj59Ww/VmyKlkk8wUFBQgODjYYdvPP/8MQRCQmJjosL1ly5bIyMiozfCojrMZDIDVUma7V7B8WmVCdTqE63UI5RoARETkIn4aLYpLLDBbrVKHQh5CNlMzN2rUCKdOnXLYtmvXLoSHhyM2NtZhu9lshp8fxyhQ7bHml52OWeHtDYWMEoNv70689UFEREQ1oPVSQa1SoqDYhGBv9lygmpNNy0y/fv2wcuVKHDhwAADw3//+F6dOncJ9991X5tjDhw8jOjq6liOkukq0WmEtNJTZrgoKLudoIiKius3v71nNiJxBNsnM1KlT4ePjgy5dukCtVuPxxx9HaGgopk2b5nCc0WjEt99+i7vuukuiSKmusRYUADdMM6nQ6qDUe0sUERERkfvy1ahRaDLDximayQlk080sJCQEx44dw0cffYRz586hUaNGGD16NMLCwhyO++OPP/Dwww/j0UcflShSqmusBflltqmCgiSIhIiIyP15q9WAABjNZvhoNFKHQzInm5YZAAgMDMRLL72EDz74AJMmTSqTyACls5m9++67uO2226p9nyVLliA6OhparRadOnXCwYMHb3p8bm4uxo4di8jISGg0GjRr1gybN2+u9v1JPkSLBTaj0WGboPKCwsdXooiIiIjcmyAI8FFrUGAquxA6UVXJpmWmtqxduxYTJ07E0qVL0alTJyxatAiJiYlISkoqN3kym83o27cvwsLC8NVXXyEqKgoXLlxAQEBA7QdPtc5qKADg2EyuCgiAIAjSBERERCQDfloNMgsLAfDhH9UMk5kbLFiwAGPGjMETTzwBAFi6dCk2bdqElStXYtKkSWWOX7lyJbKzs7F37154eXkBACcfqEPKdDETBCj9AySJhYiISC58NGpcys1DidUKL6VS6nBIxmTVzczVzGYzDh8+jD59+ti3KRQK9OnTB/v27Sv3nA0bNiAhIQFjx45FeHg4WrVqhblz58J6k/nTTSYT8vPz7S+DoexMWOT+SruYFTlsU/r6QlDxGQEREdHNeCmV0HqpYGBXM6ohJjPXyczMhNVqRXh4uMP28PBwpKWllXvOuXPn8NVXX8FqtWLz5s2YOnUq3n77bcyePbvC+8ybNw/+/v72V48ePZz6c1DtsBoMuLGLGVtliIiIKsdHo4GBUzRTDckimdmwYQOuXLkidRjlstlsCAsLw7JlyxAfH4/hw4djypQpWLp0aYXnTJ48GXl5efbXTz/9VIsRk7OUjpf5h+Cl5nTMREREleSrUcNgZssM1Ywskpn77rsPu3btsr9v3LgxNmzY4PT7hISEQKlUIj093WF7eno6IiIiyj0nMjISzZo1g/K6/p5xcXFIS0uDuYIKqtFo4OfnZ3/5+Pg474egWiFarbAZCx22qdgqQ0REVGneajVsNhHFJSVSh0IyJotkxtfXF7m5ufb3ycnJLhlnolarER8fj+3bt9u32Ww2bN++HQkJCeWe07VrV5w5cwY2m82+7a+//kJkZCTUarXTYyT3YDMablgoU4DS31+yeIiIiORGEAR4s3WGakgWI5U7duyIOXPmID09Hf5/f2DcvHlzheNYgNIKMmHChCrfa+LEiXjsscfQoUMHdOzYEYsWLUJhYaF9drNRo0YhKioK8+bNAwA8++yzeO+99/DCCy/gX//6F06fPo25c+fi+eefr8ZPSnJhvSGZVnjrOfCfiIioinzUahhMZoR4s5s2VY8sPn29//77GDVqFGbNmgWgNFFZs2YN1qxZU+E51U1mhg8fjoyMDEybNg1paWlo27YttmzZYp8UICUlBQrFPw1aDRo0wNatWzFhwgTcfvvtiIqKwgsvvIBXXnmlyvcmeRBFEdZCxy5mSl+2yhAREVWVj0aNdIMBoihyjTaqFlkkM7Gxsdi7dy+Ki4tx9epVREdHY9GiRbjnnntccr9x48Zh3Lhx5e67fuzONQkJCdi/f79LYiH3YysqAq6feluhgNKXi34RERFVldbLCwpBgNFcAm8Nu+dT1ckimblGq9WiYcOGmD59Onr37o1GjRpJHRLVQbYbupgpfXwhKGQx/IyIiMjt+KjVKDCZmMxQtcgqmblm+vTp9u8NBgMuXrwIoLTLF2cGI1ezFt6QzPj6SRQJERGR/Hlr1MguLLr1gUTlkO3j5F9//RW9evVCYGAgWrVqhVatWiEwMBC9e/fGoUOHpA6PPJRoNkM0X7fAl1IJBQctEhERVZuPRoOikhJYru/CTVRJsmyZOXDgAHr27Am1Wo0nn3wScXFxAICTJ0/if//7H+68807s2rULHTt2lDhS8jTWG9aWUfr4csAiERFRDaiVSmhUKhSYzAjU66QOh2RGlsnMlClTEBUVhT179pRZzHLGjBno2rUrpkyZgm3btkkUIXmqsrOYceA/ERFRTfloSsfNMJmhqpJlN7MDBw7g6aefLpPIAEB4eDieeuopzi5GTieKImzXt8wolVDo2cWMiIiopnw1GhhMZogOC1IT3ZoskxmFQgGLxVLhfqvV6rAWDJEz2IqMgM1mf6/09mEXMyIiIifw1qhhE0UYS0qkDoVkRpaf+Lt06YIlS5bgwoULZfalpKTg/fffR9euXSWIjDyZ7cYuZj7sYkZEROQMCkGAt9oL+cWmWx9MdB1ZjpmZO3cu7rzzTrRo0QL33XcfmjVrBgBISkrC+vXroVKpMG/ePImjJE/jkMwoFJzFjIiIyIl8NRpkFxUhEnxYSJUny2SmXbt2OHDgAKZMmYINGzbAaDQCAPR6Pfr374/Zs2ejZcuWEkdJnkS0WGAzFdvfK/XeXCiTiIjIiXy1GqTmF8BssUCtkuVHVJKAbP+ntGzZEt9++y1sNhsyMjIAAKGhoRwrQy5hK3LsYqbg4qxEREROpVGpoFYpkV9sQoiPbD+iUi2T/f8UhUKB8PBwqcMgD2ctNF73ToDSm8kMERGRs/lqNH8nM+zKTZXDZgyiSrh+SmaFTgeBzd9ERERO56fVoLDEDMt1s4cS3QyTGaJbsJnNEK+bKpKtMkRERK7hrVZDIQgo4KxmVElMZohuwWY0OrzneBkiIiLXEAQBvhoN8oqLb30wEZjMEN3S9YP/BS8vKDQaCaMhIiLybH5aDQwmM6zsakaVwGSG6Baub5lR6DkgkYiIyJV8NRoAIgpM7GpGtybrUcwnTpzAuXPnkJOTA1EUy+wfNWqUBFGRJ7GZTBAtFvt7jpchIiJyLaVCAW+1GnlFxQjQ6aQOh9ycLJOZs2fP4pFHHsHBgwfLTWKA0j6XTGaopmxF142XEQQo9HrpgiEiIqoj/LRapOYXwGqzQck1BOkmZJnMPP300/j999+xaNEidO/eHYGBgVKHRB7KVnjDlMxKpYTREBER1Q1+Wg2u5Ocjv9iEQD1bZ6hiskxmfvnlF7z66qv417/+JXUo5MFEUYT1uvVl2MWMiIiodngplfD2UiO3qJjJDN2ULNvtQkJC4O/vL3UY5OFsxcXAdTOpsIsZERFR7fHTaVBoNnEBTbopWSYzzzzzDD799FNYrVapQyEPZruuVQZKFRRaPhkiIiKqLf5aLUQRyCvimjNUMVl2M2vWrBmsVivatGmD0aNHo0GDBlCWM5Zh6NChEkRHnuL68TJKb7bKEBER1SYvpRLeajVyiooQzL/DVAFZJjPDhw+3f//vf/+73GMEQWDLDVWbaLPBVlxkf8/1ZYiIiGqfv06LK3n5KLZYoFXJ8mMruZgs/1fs3LnTpddfsmQJ3nzzTaSlpaFNmzZ499130bFjx1ue9/nnn2PEiBG45557sG7dOpfGSK5lMxYC1037rWQyQ0REVOv8dVqk5ucjx1iESD9fqcMhNyTLZKZHjx4uu/batWsxceJELF26FJ06dcKiRYuQmJiIpKQkhIWFVXhecnIy/v3vf6N79+4ui41qj/W6LmaClxqCl5eE0RAREdVNKoUCPhoNcouKEOHrA0EQpA6J3IwsJwC43okTJ/D999/j+++/x4kTJ2p8vQULFmDMmDF44okn0LJlSyxduhR6vR4rV66s8Byr1YqHH34YM2fOROPGjWscA0nPVmiwf89ZzIiIiKQToNPCYrWhwGSSOhRyQ7JNZtavX48mTZqgdevWGDx4MAYPHozWrVsjNjYWGzZsqNY1zWYzDh8+jD59+ti3KRQK9OnTB/v27avwvNdffx1hYWH4v//7v0rdx2QyIT8/3/4yGAy3Polqjc1kglhSYn/Pwf9ERETS8dNqoVAIyDYW3fpgqnNk2c1s8+bNGDZsGBo1aoS5c+ciLi4OAHDy5EksW7YMQ4cOxcaNG9G/f/8qXTczMxNWqxXh4eEO28PDw3Hq1Klyz9mzZw9WrFiBY8eOVfo+8+bNw8yZM6sUG9UehymZASh0HC9DREQkFYUgIECrRXZREcxWK9TlzGBLdZcsW2ZmzZqF22+/Hb/99hteeeUV3H333bj77rvxyiuv4LfffkPr1q1rJVkoKCjAo48+iuXLlyMkJKTS502ePBl5eXn2108//eTCKKmqrNd3MVNrIHD2FCIiIkkF6nWACGQXGqUOhdyMLD+l/fbbb5g7dy68vcs+Mff29sbjjz+OV199tcrXDQkJgVKpRHp6usP29PR0RERElDn+7NmzSE5OxpAhQ+zbbH+vUqtSqZCUlIQmTZqUOU+j0UCj0djf+/j4VDlWcg3RaoXN+M8vSoFdzIiIiCSnV6uh8VIhp6gIYb4+UHAiAPqbLFtmtFotsrOzK9yfnZ0NrVZb5euq1WrEx8dj+/bt9m02mw3bt29HQkJCmeNbtGiB33//HceOHbO/7r77bvTq1QvHjh1DgwYNqhwDSctmNDpOycwuZkRERG4hSKeDxWpDbhHHztA/ZNky07t3byxevBj9+/cvk2QcOHAA77zzDvr161eta0+cOBGPPfYYOnTogI4dO2LRokUoLCzEE088AQAYNWoUoqKiMG/ePGi1WrRq1crh/ICAAAAos53kwWoouO6dwJnMiIiI3ESAXof0AgOyCo0I4t9n+pssk5k33ngDCQkJ6NatGzp27IjmzZsDAJKSknDw4EGEhYVh/vz51br28OHDkZGRgWnTpiEtLQ1t27bFli1b7JMCpKSkQKGQZYMW3YIoig7ryyh0OggcZEhEROQWVAoF/HRa5BqLYDCZ4HNdl32qu2SZzMTExOC3337DvHnz8P3332Pt2rUAgEaNGuGFF17ApEmTbrrA5a2MGzcO48aNK3ffrl27bnru6tWrq31fkpatuAiwWuzv2SpDRETkXoL1OuQai3DVUMhkhgDINJkBgLCwMCxcuBALFy6UOhTyELYCx/V+FHqOlyEiInInerUaOrUXCk1mGM1m6NVqqUMiibG/FNHfHMbLKBRQ6HTSBUNERETlCv17NturhsJbHEl1gSxaZkaPHg1BELBs2TIolUqMHj36lucIgoAVK1bUQnTkCWwmE8QSs/29Uu8NgdM+EhERuR0/rQZeSiUKik2yap358MMPYTAY4OPjg6efflrqcDyGLJKZHTt2QKFQwGazQalUYseOHbf8oMkPolQVVkO+w3uFN9f+ISIickeCICDEW4/U/AKkFRjQODhI6pAqxWAwID8//9YHUpXIIplJTk6+6XuimrIVFDi8V5azICsRERG5hyBvPa4aClFoMqPAZIIvJwOos2Q5ZiYlJQVFN1kwqaioCCkpKbUYEcmZzWSCzWSyv1eoNRC8vCSMiIiIiG5G8XfrDACk5RdAvG7Ba6pbZJnMxMTE4Ntvv61w/4YNGxATE1OLEZGcsYsZERGR/AR766FUKFBcYkGW0Sh1OCQRWSYzt8q+S0pKuLAlVZo137GLmcKHXcyIiIjcnVKhQOjff7PTCwywWK0SR0RSkMWYGQDIz89Hbm6u/X1WVla5Xclyc3Px+eefIzIyshajI7mymUwQzf90MSudkpmLZRIREclBsLceWYWFKLHacDkvH42CAqUOiWqZbJKZhQsX4vXXXwdQOovF+PHjMX78+HKPFUURs2fPrsXoSK6s+XkO75U+PpwJj4iISCYUgoBwX19cys1DfrEJuUVFCOA6cXWKbJKZfv36wcfHB6Io4uWXX8aIESPQvn17h2MEQYC3tzfi4+PRoUMHiSIluRBFEdZ8jpchqoggCDVK7hUKBRQKBVQqFdRqNby8vKDT6aDVaqG5xcxDznio4IoHE6IowlZogLWgAFZjIWzFxRBNJoiWEsAJXVxytWwZJqqqQL0OWUYjiswluJyXD52XFzQq2XzEpRqSTUknJCQgISEBAFBYWIhhw4ahVatWEkdFcmYrMpZ+ALlGEKBkMkNkJ4pijWYIslqtsFqtKCkpKTMDpUqlgo+PD/z8/ODv7w+1Gy96ZzObYcnMQElWJqy5ORCtFvs+4e+Xsyg4IxNRtdTz88XZzGzYbCIu5uShcUgQFOxpUSfIJpm5xmg04p133oFer2cyQzVizXPsYqbQ6SAolRJFQ1S3WCwW5Obm2sdC6vV6BAUFISgoCF5uMDW6aLPBkpUJc+plWLKzATDJIHJnerX67/EzRhSVlOBSbh4aBgZIHRbVAtklM3q9HiqVCt5c1JBqQLRaYTXcsFCmj69E0RCR0WiE0WjE5cuXERAQgLCwMPj41H5LqWi1wnzlEsyXLsJmKq71+xNR9UX4+aLAZILZYkVeUTGuKPJRz9+v1u5/q5Zsb29viKJo/0rOIbtkBgCGDRuGr776Cs8++ywHa1O1WAsKAJvNYRuTGSLpiaKInJwc5OTkwNvbG5GRkfD393f9fW02mC9fhCnlAsQSs8vvR0TOp1R5oWF4BM5l5wAKBXKVCqi8NGgQGQkolBCUCkChgCAoAEFwSh9Rs7kEgiBUKjl5+umnq3x9QRDcuhuuO5BlMvPQQw/hueeeQ69evTBmzBhER0dDV87MFTdOEEB0jTUvx+G9QquF4AZdW4joH4WFhThz5gy8vb1Rv359l7XUlGRcRfHZ07AVF936YCKSjEKtKe0SrtVBodNDodVAodFC0Gih0GggKJXwA4C0NFy+fBkAkA/gsiggukFDKF3QlTwUwNixY2E2u+YhiFqtRnBwsEuu7Slkmcz07NnT/v3u3bvL7BdFEYIgwMrFk6gcNlMxbMWO3UeUPrXXDE1EVVNYWIikpCQEBASgQYMGTntKaTMVo+ivJFiyMpxyPSJyDsFLDaW3DxQ+PqVfvb2h1HtDqOQMZRERETAajcjJKX1wmZubixMnTqBBgwYICAhwerxMNqQly2Rm1apVUodAMma5bvHVaxS+7GJG5O5yc3ORn5+PyMhIhIeH16ibsTntCopP/+UwMxkR1T5BoYTSzw9KP38off2g9PWDQqut8XWjo6NRUlICg8EAADCbzTh79iz0ej1CQkLg6+sLrRPuAwDmtFSILhpjJ2i0UEdwIfibkWUy89hjj0kdAsmUaLWWWShTodVCwf6oRLJgs9lw+fJl5OTkVNjF+GZEiwVFSSdRkpHuogiJqCKCQgmFtw+Uvr5Q+vhC6ecPhbe3S8Y/KxQKxMbG4vTp0ygsLLRvNxqNSElJKY3HCfcNUylRvPA/Nb7OzTSct4AJzU3IMpm5nsFgwMWLFwEADRo0kGT2G5IPa15e2YH/vuxiRiQ3RqMRJ0+eRFRUFMLDwyt1jtVQAOMfv8NWbHRxdER1m6DygkJXOq5F6e0Nhd4bSh8fCFpdrU7cpFQq0axZM5w7dw55NyzHANx69rHKqEqLzH3fbUVGUTFCdVp8OyTRJfeoi2SbzPz66694+eWXsWfPHtj+/nCqUCjQvXt3vPHGG+jQoYPEEZK7EUURlhsG/gOcxYxIrkRRxKVLl1BQUIDo6GiobtKf3pyehuKkkxBtHEtJVF2CQglB5QXBywuCWg1BrYZCrbYPwFdotVBodW41oc61Fpr09HRcuXLF/pnRJW6RqGUUFSPdWFSpYwEAnL65UmSZzBw4cAA9e/aEWq3Gk08+ibi4OADAyZMn8b///Q933nkndu3ahY4dO0ocKbkTm8EA8YbZRhRaHQR2MSOStby8PJw8eRJNmjSBXq8vs7/4/FmYLpyXIDKiWqZSOSGREABBASgECAoloFBAoVQASlXpwtKCYP8gLigUEK1WiEVG2IqLIORfO1dR2gKjUEBQ/D0N8rXv7V+VpV+V171XKv/Z72Th4eEIDAxEamoqsrOzXZvUUK2SZTIzZcoUREVFYc+ePYiIiHDYN2PGDHTt2hVTpkzBtm3bJIqQ3JElO6vMNmUtLqZFRK5jNptx6tQpNGrUyD6zkGizlY6PSU+VODrX+PDDD2EwGODj41Ot9SvIA1ksEEtKnHa5a+0CUnzsFxRKxyRI+CcZgiBAUPydVAnXv1f8vXZM6T57l7brvoYBCNFrYTSZUGw217irmc5mg6lGV6CakmUyc+DAAUybNq1MIgOUZt5PPfUUZs2aJUFk5K6sRmPZNSQEgVMyE3kQURSRnJyM4uJi1IuIgPGP32DJKfsQw1MYDAbk5+dLHQaRS9i7hFr/SaqcSf33q6YEL40TrkI1IctkRqFQwGKpeDpNq9UKhQuaKEm+LNmZZbYpvH0qPWc9EclH6uXLyPnjN9TzUkLJvwVERB5Nlr/lu3TpgiVLluDChQtl9qWkpOD9999H165dJYiM3JHVaITtumkZr1H5+UsQDRG5kmi1wnzpInKzsnAmMwvFTuxyQ0RE7keWyczcuXORl5eHFi1aYOTIkZgxYwZmzJiBESNGoEWLFsjLy8O8efOqff0lS5YgOjoaWq0WnTp1wsGDBys8dvny5ejevTsCAwMRGBiIPn363PR4qn3lru6tVEHBabyJPIposcB8KcXepdRsseJsZjayCjkVMxGRp5JlH5t27drhwIEDmDJlCjZs2ACjsfQPlV6vR//+/TF79my0bNmyWtdeu3YtJk6ciKVLl6JTp05YtGgREhMTkZSUhLCwsDLH79q1CyNGjECXLl2g1Woxf/589OvXD3/++SeioqJq9HNSzVkLDbAZy36QUfn51+pc90TkWqKlBOaLF2EzOw7FtYkiruTlo8BkQn1/P6iUSokiJCIiV5BlMgMALVu2xLfffgubzYaMjNIn76GhoTUeK7NgwQKMGTMGTzzxBABg6dKl2LRpE1auXIlJkyaVOf6zzz5zeP/RRx/h66+/xvbt2zFq1KgaxeKu5DKDjiiKsFy9Wu4+pT+7mFHdIZc6W102kwnmyxdvOotTQbEJf5mzUM/fFwE6XS1GR0REriTbZOYa4bqp92r6pN1sNuPw4cOYPHmyfZtCoUCfPn2wb9++Sl3DaDSipKQEQUFBFR5jMplgMv3z9NBgMFQ/aAnIZQYda15umae0AKDQ6aHQcPYRqjvkUmerw2oshPnyJaASa0ZYbTZczMlDjrEI9fz9oOEEIEREsifLMTMAcOLECdx///3w8/NDZGQkIiMj4efnh/vvvx9//PFHta6ZmZkJq9WK8PBwh+3h4eFIS0ur1DVeeeUV1KtXD3369KnwmHnz5sHf39/+6tGjR7XipYqJFgtKMssZKwNAGRBQu8EQkUtYcrNhvnSxUonM9QwmM05nZCI1vwAWLpxHRLUkVKdDuF6HULYOO5UsH0vt3r0bAwYMgM1mwz333INmzZoBAJKSkrBhwwZ8//332LJlC7p3716rcf3nP//B559/jl27dkGr1VZ43OTJkzFx4kT7+2PHjjGhcbKSjHTAai2zXVCpoPTl2jJEcibabChJT4M1P6/61xCBTEMhcoxFCPHWI9hbL7tpnH3+nsTEh5OZEMnCt3cnSh2CR5JlMjNhwgSEhYXhp59+QoMGDRz2Xbx4EXfeeScmTpyIX3/9tUrXDQkJgVKpRHp6usP29PT0chfovN5bb72F//znP/jxxx9x++233/RYjUYDzXXdnPiHyLmsBQWwVtClRhkQwIH/RDJmM5lQcuVyuV1Iq8NqsyG9wIDMQiOCvXUI0uvhVclJAgRBAUGng0KthqDyApwwuYDC+k9L0a1WJn/qqacqfSwRkaeSZTLz559/YtasWWUSGQBo0KABnn32WcyYMaPK11Wr1YiPj8f27dtx7733AgBsNhu2b9+OcePGVXjeG2+8gTlz5mDr1q3o0KFDle9LziOWlMCcnlr+TkGAyj+wdgMiIqexZGejJPNqabOKk1ltNlwtKESGoRB+Wi0C9Tr4qNUODz+UPn5QBQRC6e8PpY8PBK3O6Q9HvLOyIAiCy5ITQRCgVjtj3XMiIvcgy2SmUaNGDgPob2Q2m8tNdCpj4sSJeOyxx9ChQwd07NgRixYtQmFhoX12s1GjRiEqKsq+js38+fMxbdo0rFmzBtHR0faxNT4+PmxxqWWiKMKceqXc7mUAoPTzh8ABv0SyYzOZUJKeBluR69eLEUUgr6gYeUXFUCkVCAwJRXCDhgho2Aiqm3Qfdpbg4GCMHTsWZrPZJddXq9UIDg52ybWJiKQgy09206ZNw4QJEzBo0CC0bdvWYd/Ro0fx7rvvYtGiRdW69vDhw5GRkYFp06YhLS0Nbdu2xZYtW+yTAqSkpDhM//zBBx/AbDbj/vvvd7jO9OnTq9U6RNVXkpZ6kw87AlSBFc8wR0TuR7RaYcnOgiUn2yWtMRVSqqDy94fKPwAGtRqGAgNSTpyAt7c3fHx8oNfrodPpoFara7wcQHl8S8wQzcVOvy4AsJctEXkaWSYz+/fvR3h4OOLj49GlSxfExsYCAE6fPo19+/ahVatW2Ldvn8N0yoIgYPHixZW6/rhx4yrsVrZr1y6H98nJydX6GdxVZbo2eHt7QxRF+1d3UJKRcdPBwEofH07HTB5JrnX2ZkRRhDU3ByVZWYDVUmv3FVReUAUFQekfAOGGJEUURRgMhjJT6Xt5eUGlUkGpVDolsfEtMcPw5uwaX+dmGs5bAHVEpEvvQURUW2SZzLz33nv273/55Rf88ssvDvt///13/P777w7bqpLM1DXqv/uFV/ZDTnUX3WvWrNlN19+5FVEUSz/kWK2wWq2wWCwoKSmB4cJ5FBryAKUCFmv506yq2K2CPIhc6qzNZoPNZrPXVbPZjOLiYhQVFaGknAUuRasV1rxcWHJyIFoqXgDT6ZRKeAUFQxkYVOUxMCUlJeX+LNWlrsLPfd93W5FRVIxQnRbfDqn8LEmiyTWtPkREUpBlMmPjugBO5eo+2oBr+mmLFguKTp2Aj7kYCCm9ttVmQ3GJBUWWEhSZS1BYUgKbVg+FlnO6k+eQa529XklJCQwGAwoKCpCTlgpjRgasBflVXjOmppT+AfAKCXXP8XS3SKwyioqRbiyq1LEAarerHhFRLXHD394kBbkNCC3JuIriM3/BdsMTRqVCAW+NGt4aNeBduk19e3sYRRH5+fnIz8+HxVJ73VaIXEVudfZ6otUKwVAAbVYmVJmZ8C82olitRJ63DrlFxTBbyp/Ew5kEtQZeERFQ6vQuvxcREbmOrJOZ8+fP4/vvv8eFCxcAlM5yNmDAAMTExEgcmfyY01Jd1vVAtNkAQYBX2M3X6rnldUzFsObnwZyeBpuxsFLneIVHQhcUBB1KP/yJoojCwkLk5OQgJyfHqd1DiGqTHOosbDaIFgtEswm24mLYioyl60AVGgDRsQVG6+UFrZcXwn19YTCZkG0sQn5xsUsaE1SBwVCFhnLNKSIiDyDbZObFF1/E4sWLy3Q5UygUGD9+PN566y2JIpMfc1oqUiZPdN0N/v40EnTfA1D6+7vuPjcQFEpoG8c6bhME+7TZ9evXh8FgQFZWFnJycth9kWTDU+vsNT4aDXw0GpitVmQaCpFjLILNGVmNUgV1vXpQ6r1rfi0iInILskxm3n77bSxcuBD3338/XnzxRcTFxQEATp48iYULF2LhwoWIiorChAkTJI5UHqr6dLfag05ruXuXumH0TWcwEwQBvr6+8PX1RYMGDZCVlYWMjAwUF3NwLLk3T62zN1Irlajn74cwH29cNRQi21hU7dnYFDo91PWi3HNsDBERVZssf6svX74cd999N7744guH7Z06dcLnn3+O4uJifPjhh0xmqqMS3S7kMOhUofeGpmGjSh+vVCoRFhaGsLAw5OfnIz09Hfn5+S6MkMhJPKTO3ozq76QmxFuPtAID8oqqlswpAwPhFRrObmVERB7I+at91YLk5GQkJlb8dDExMdHj1n+hqtE1jyuzTkRl+fn5oWnTpoiLi0NAQIBzAyOialOrVGgYGICY4EBoKtPCIgjwCo+AOiyCiQwRkYeSZTITFhaG48ePV7j/+PHjCA0NrcWIyJ1o6jeCyj+gxtfR6/Vo0qQJkxoiN+Oj0SA2NBhhvt4VNzQpFFDXqw9VQGCtxkZERLVLlsnMAw88gI8++gj/+c9/UFj4z6xWhYWFmD9/Pj766CMMHz5cwghJKkpfP2gaN3HqNa8lNS1btkRwcDCf8BK5AYUgINzXF42Dg8u20ihVUNdvCKWPjzTB1ZJQnQ7heh1CdVxHi4jqLlmOmZk1axaOHTuGV199FdOmTUO9evUAAFeuXIHFYkGvXr3w+uuvSxwl1TbBSw19y1bV7l52KzqdDtHR0YiKikJmZiYyMjI4tTORxPRqL8SGBiM1Lx/ZxiIIqtJE5maTf3iKb++u/GQORESeSpbJjF6vx/bt27F+/XqHdWb69++PgQMHYsiQIXx6XscIggL6226HohYWwPPy8kJkZCQiIiKQn5+PzMxM5OXlVXuWJSKqGYUgICrAHz6+/sj09YWolOWfNiIiqgbZ/cY3Go145JFHMGzYMDz88MO45557pA6JpCYooLutNVS1PK5FEAT4+/vD398fVqvVvhBnQUEBExuiWqb09UP91m0RZrPhzJkzMJlMUodERES1QHbJjF6vx48//ogBAwZIHUqdda1/tjv00xaUKuhatoJXcIikcSiVSoSEhCAkJARWqxX5+fn2l9lsljQ2Ineqs67gFRIGXdxtEJRKaAHExcUhOTkZubm5UodGREQuJrtkBgC6deuGffv2YcyYMVKHUie5Sz9tpd4HuttaQ+ntXqt5K5VKBAYGIjCwdBYlk8mEwsJC+6uoqAg2m03iKKkucZc66wqaRjHQxjhO+qFUKtGkSROkp6fj8uXLbCklIvJgskxm3nvvPSQmJuK1117DM888g/r160sdEtUiwUsNTYNGUNdv4LLB/s6kVquh9vJCYEBA6WKEogiTyVT6Ki6GuaQEZrMZJSUlsFqtsNpssNlspR/AavghjCPHyFMJShV0cbfBK6TiafjDw8Ph6+uL8+fPo7i4agttEhGRPMgymWnTpg0sFgvmzZuHefPmQaVSQXPDzDWCICAvL0+iCKlcKiUEL69qnixAUHtB6eMLpX8ABIUCJVfTgGuf9a//0C+K/zyJFUUAImAr/Vr61mZPKiAC4nXvRduN39tKz3XY93eiYRP/vpbjNeznX7v3TWj+frlShouvT1TblH4B0MfdBkUlus3p9XrExcXhypUrSE9Pr4XoiIioNskymRk2bBhnK5MjixViDaYyFkvMsBUWoiQ9zYlBEZFsCApoGsVA0yi6Sn8DFAoF6tevj8DAQFy4cAFFRUUuDJKIiGqTLJOZ1atXSx0CERHVIqWvH3TN46D08a32Nby9vREXF4eMjAxcuXIFVqvViRESEZEUZJXMFBcXY/369Th//jxCQkIwaNAgREZGSh0WERG5iOClhja6MbzqRTmlRV4QBISFhSEoKAipqanIyMjgBAFERDImm2Tm6tWr6NKlC86fP2//w6PX67Fu3Tr06dNH4uiIiMiZBIUS6voNoGkYDUHl/D9VKpUKDRo0QHh4ONLT05GZmclZBomIZMj9p4L626xZs5CcnIwJEyZg48aNWLRoEXQ6HZ5++mmpQyMiIicRlCpoGkbDp3NXaBvHuiSRuZ5arUaDBg3QunVr1KtXD17VnqSEiIikIJuWmR9++AGjRo3CW2+9Zd8WHh6OkSNHIikpCc2bN5cwOiIiqgmljx/UkfXgFR7h8gSmPCqVCpGRkYiIiEBeXh6ys7ORm5vLLmhERG5ONslMSkoKXnnlFYdt3bp1gyiKSE9PZzJDRCQzSh8/qIKD4RUaDqWPj9ThACgdUxMQEICAgABYrVbk5+cjLy8P+fn5KKnBbIxEROQasklmTCYTtFqtw7Zr7y0WixQhERFRZQgKKDRaKPS60rWifP2g9A+AQq2WOrKbUiqVCAwMRGBgIIDSv0NGoxFGoxHFxcUwmUwwm82cFY2ISEKySWYAIDk5GUeOHLG/v7Yo5unTpxEQEFDm+Pbt21frPkuWLMGbb76JtLQ0tGnTBu+++y46duxY4fFffvklpk6diuTkZDRt2hTz58/HwIEDq3VvIiK3oVAAyhr8mRAECEoFhL+vYSsuhq24GCWZfy/lWpUuXFXq7VXBwdXtMnbdaSoAfn+//rmsCOvfC+XWtFuaUiEgs0ZXICKqW2SVzEydOhVTp04ts/25555zeC+KIgRBqNbTsrVr12LixIlYunQpOnXqhEWLFiExMRFJSUkICwsrc/zevXsxYsQIzJs3D4MHD8aaNWtw77334siRI2jVqlWV709E5DZsNsBas5Zv0QKIMDkpIPfltNl0BFn9WSYikpxsfmuuWrWqVu6zYMECjBkzBk888QQAYOnSpdi0aRNWrlyJSZMmlTl+8eLF6N+/P1566SUApbOubdu2De+99x6WLl1aKzETEREREdVFsklmHnvsMZffw2w24/Dhw5g8ebJ9m0KhQJ8+fbBv375yz9m3bx8mTpzosC0xMRHr1q2r8D4mkwkm0z9PKg0GQ80CdybO3OO5WLaeieXquVi2nonl6rlYtpKQTTJTGzIzM2G1WhEeHu6wPTw8HKdOnSr3nLS0tHKPT0tLq/A+8+bNw8yZM2sesJMIGu2tD3ICTWxTeIWE1sq9qJStsNDl96it/z/0D9ZZz2UzGl1+D9bZ2sc667lsRUUuvwfr7M0xmZHA5MmTHVpzjh07hh49ekgWjzoiEg3nLYBoKnbZPQSNFuqISJddnyrmyrJluUqDddazsc56HtZZz8Y6Ky0mM9cJCQmBUqlEenq6w/b09HRERESUe05ERESVjgcAjUYDjUZjf+/jBusrsKJ4LpatZ2K5ei6WrWdiuXoulq20nDYBiydQq9WIj4/H9u3b7dtsNhu2b9+OhISEcs9JSEhwOB4Atm3bVuHxRERERETkHGyZucHEiRPx2GOPoUOHDujYsSMWLVqEwsJC++xmo0aNQlRUFObNmwcAeOGFF9CjRw+8/fbbGDRoED7//HMcOnQIy5Ytk/LHICIiIiLyeExmbjB8+HBkZGRg2rRpSEtLQ9u2bbFlyxb7IP+UlBQoFP80aHXp0gVr1qzBa6+9hldffRVNmzbFunXruMYMEREREZGLCWJNlyumGjty5Aji4+Nx+PBhtG/fXupwiIiIiIhkgWNmiIiIiIhIlpjMEBERERGRLHHMDFVLamoqUlNTpQ6DnCwyMhKRkZxi0hOxznom1lnPxTrrmVhnnY/JjBuIjIzE9OnTZfOf22QyYcSIEfjpp5+kDoWcrEePHti6davDOkgkf6yznot11jOxznou1lnn4wQAVGX5+fnw9/fHTz/95BYLfpJzGAwG9OjRA3l5efDz85M6HHIi1lnPxDrruVhnPRPrrGuwZYaqrW3btqyMHiQ/P1/qEMjFWGc9C+us52Od9Syss67BCQCIiIiIiEiWmMwQEREREZEsMZmhKtNoNJg+fToHr3kYlqvnYtl6Jpar52LZeiaWq2twAgAiIiIiIpIltswQEREREZEsMZkhIiIiIiJZYjJDRERERESyxGSGJJWcnAxBELB69WqpQyGiSmCdJZIX1lnydExmZOTs2bN4+umn0bhxY2i1Wvj5+aFr165YvHgxioqKXHbfEydOYMaMGUhOTnbZPSpjzpw5uPvuuxEeHg5BEDBjxgxJ45GCIAiVeu3atavG9zIajZgxY0aVrsUyclSX6+ypU6fw8ssvo23btvD19UVkZCQGDRqEQ4cOSRaTFNy5zrKMyqrLdfbKlSt45JFH0Lx5c/j6+iIgIAAdO3bExx9/jLo0V5Q711mWUflUUgdAlbNp0yY88MAD0Gg0GDVqFFq1agWz2Yw9e/bgpZdewp9//olly5a55N4nTpzAzJkz0bNnT0RHR7vkHpXx2muvISIiAu3atcPWrVsli0NKn3zyicP7//73v9i2bVuZ7XFxcTW+l9FoxMyZMwEAPXv2rNQ5LKN/1PU6+9FHH2HFihUYNmwYnnvuOeTl5eHDDz9E586dsWXLFvTp00eSuGqbO9dZlpGjul5nMzMzcenSJdx///1o2LAhSkpKsG3bNjz++ONISkrC3LlzJYmrtrlznWUZVUAkt3fu3DnRx8dHbNGihXjlypUy+0+fPi0uWrTIZff/8ssvRQDizp07b3mszWYTjUZjpa99/vx5EYC4atWqSh0riqKYkZEhAhCnT59e6ft4qrFjx4quqsbV+XdmGZVinRXFQ4cOiQUFBQ7bMjMzxdDQULFr166Vvp+ncac6yzL6B+tsxQYPHix6e3uLFoulWufLnTvV2YrU9TJiNzMZeOONN2AwGLBixQpERkaW2R8bG4sXXnjB/t5isWDWrFlo0qQJNBoNoqOj8eqrr8JkMjmcFx0djcGDB2PPnj3o2LEjtFotGjdujP/+97/2Y1avXo0HHngAANCrV68yzavXrrF161Z06NABOp0OH374IQDg3LlzeOCBBxAUFAS9Xo/OnTtj06ZN1f53kLJVSE5sNhsWLVqE2267DVqtFuHh4Xj66aeRk5PjcNyhQ4eQmJiIkJAQ6HQ6xMTEYPTo0QBK+1iHhoYCAGbOnGkv91t1G2MZlWKdBeLj4+Hj4+OwLTg4GN27d8fJkyerdU1PJVWdZRn9g3W2YtHR0TAajTCbzU69rpxJ+Xe2PHW+jKTOpujWoqKixMaNG1f6+Mcee0wEIN5///3ikiVLxFGjRokAxHvvvdfhuEaNGonNmzcXw8PDxVdffVV87733xPbt24uCIIh//PGHKIqiePbsWfH5558XAYivvvqq+Mknn4iffPKJmJaWZr9GbGysGBgYKE6aNElcunSpuHPnTjEtLU0MDw8XfX19xSlTpogLFiwQ27RpIyoUCvGbb76xx1CdJ0Z1/an/9cp7YvTkk0+KKpVKHDNmjLh06VLxlVdeEb29vcU77rhDNJvNoiiKYnp6uhgYGCg2a9ZMfPPNN8Xly5eLU6ZMEePi4kRRFEWDwSB+8MEHIgDxvvvus5f78ePHKxVXXS8j1tmKdenSRWzWrFm1zvUE7lpnr1cXy4h19h9Go1HMyMgQz58/L65evVr09vYWu3TpUul/G0/jjnWWZeSIyYyby8vLEwGI99xzT6WOP3bsmAhAfPLJJx22//vf/xYBiDt27LBva9SokQhA/Pnnn+3brl69Kmo0GvHFF1+0b7tZ8/e1a2zZssVh+/jx40UA4u7du+3bCgoKxJiYGDE6Olq0Wq2iKDKZqakbf8nu3r1bBCB+9tlnDsdt2bLFYfu3334rAhB//fXXCq9dk3/nulxGrLMV+/nnn0VBEMSpU6dW+VxP4a519pq6WEass47mzZsnArC/7rrrLjElJaVS53oid6yzLCNH7Gbm5vLz8wEAvr6+lTp+8+bNAICJEyc6bH/xxRcBoEzzc8uWLdG9e3f7+9DQUDRv3hznzp2rdIwxMTFITEwsE0fHjh3RrVs3+zYfHx889dRTSE5OxokTJyp9faq8L7/8Ev7+/ujbty8yMzPtr2vdSXbu3AkACAgIAABs3LgRJSUlEkbseVhny3f16lWMHDkSMTExePnll2t0LU/iTnW2rpYR66yjESNGYNu2bVizZg1GjhwJAC6dyU1u3KHOsowcMZlxc35+fgCAgoKCSh1/4cIFKBQKxMbGOmyPiIhAQEAALly44LC9YcOGZa4RGBhYpt/nzcTExJQbR/Pmzctsvzb7x41xkHOcPn0aeXl5CAsLQ2hoqMPLYDDg6tWrAIAePXpg2LBhmDlzJkJCQnDPPfdg1apVZfp7U9WxzpZVWFiIwYMHo6CgAOvXry8zTqMuc5c6W5fLiHXWUaNGjdCnTx+MGDECn332GRo3bow+ffrU6Q/L13OHOssycsSpmd2cn58f6tWrhz/++KNK5wmCUKnjlEpludvFKsxXrtPpKn0suZbNZkNYWBg+++yzcvdfG2woCAK++uor7N+/H9999x22bt2K0aNH4+2338b+/fvr1AcZZ2OddWQ2mzF06FD89ttv2Lp1K1q1alVr95YDd6izdb2MWGdv7v7778fy5cvx888/l2kdqovcoc7eqK6XEZMZGRg8eDCWLVuGffv2ISEh4abHNmrUCDabDadPn3aYAz09PR25ublo1KhRle9f2V/YN8aRlJRUZvupU6fs+8n5mjRpgh9//BFdu3at1B+/zp07o3PnzpgzZw7WrFmDhx9+GJ9//jmefPLJapU7lWKdLWWz2TBq1Chs374dX3zxBXr06FHla3g6qessy6gU62zFrj3tz8vLc8r15E7qOlueul5G7GYmAy+//DK8vb3x5JNPIj09vcz+s2fPYvHixQCAgQMHAgAWLVrkcMyCBQsAAIMGDary/b29vQEAubm5lT5n4MCBOHjwIPbt22ffVlhYiGXLliE6OhotW7aschx0aw8++CCsVitmzZpVZp/FYrGXYU5OTpmngm3btgUAexO4Xq8HULVyp1Kss6X+9a9/Ye3atXj//fcxdOjQKp9fF0hdZ1lGpVhngYyMjHK3r1ixAoIgoH379lW6nqeSss6yjMrHlhkZaNKkCdasWYPhw4cjLi7OYWXivXv34ssvv8Tjjz8OAGjTpg0ee+wxLFu2DLm5uejRowcOHjyIjz/+GPfeey969epV5fu3bdsWSqUS8+fPR15eHjQaDXr37o2wsLAKz5k0aRL+97//YcCAAXj++ecRFBSEjz/+GOfPn8fXX38NhaLqefQnn3yCCxcuwGg0AgB+/vlnzJ49GwDw6KOPsrUHpX10n376acybNw/Hjh1Dv3794OXlhdOnT+PLL7/E4sWLcf/99+Pjjz/G+++/j/vuuw9NmjRBQUEBli9fDj8/P/sfap1Oh5YtW2Lt2rVo1qwZgoKC0KpVq5t2QWEZlWKdLf2g9/777yMhIQF6vR6ffvqpw/777rvP/gGuLpOyzrKM/sE6C8yZMwe//PIL+vfvj4YNGyI7Oxtff/01fv31V/zrX/8qM0aorpKyzrKMKiDlVGpUNX/99Zc4ZswYMTo6WlSr1aKvr6/YtWtX8d133xWLi4vtx5WUlIgzZ84UY2JiRC8vL7FBgwbi5MmTHY4RxdLpHgcNGlTmPj169BB79OjhsG358uVi48aNRaVS6TB9ZEXXEMXSufPvv/9+MSAgQNRqtWLHjh3FjRs3OhxTlSkje/To4TAV4fWvyqya7IkqWpl42bJlYnx8vKjT6URfX1+xdevW4ssvv2xf2frIkSPiiBEjxIYNG4oajUYMCwsTBw8eLB46dMjhOnv37hXj4+NFtVpdqekjWUaO6nKdvbYOR0Wv8+fP3/R8T+VOdZZlVFZdrrM//PCDOHjwYLFevXqil5eX/WdftWqVaLPZbnquJ3OnOssyKp8gilUYgUZEREREROQmOGaGiIiIiIhkickMERERERHJEpMZIiIiIiKSJSYzREREREQkS0xmiIiIiIhIlpjMeJA33ngDLVq0gM1mkzqUGnvooYfw4IMPSh2G22DZeiaWq+di2XomlqvnYtnKmNRzQ5Nz5OXliUFBQeLKlSvt2/D3WgFvvfVWmeNXrVolAhB//fVXp8fSp08fEYA4duzYcvd/9NFHYosWLUSNRiPGxsaK77zzTpljjhw5IioUCvHYsWNOj09uWLaeieXquVi2nonl6rlYtvLGlhkPsXLlSlgsFowYMaLMvjfffNO+IrurffPNN9i3b1+F+z/88EM8+eSTuO222/Duu+8iISEBzz//PObPn+9wXLt27dChQwe8/fbbrg7Z7bFsPRPL1XOxbD0Ty9VzsWxlTupsipzj9ttvFx955BGHbQDEtm3bigDEt99+22GfK54qFBUVidHR0eLrr79e7lMFo9EoBgcHl1nJ+OGHHxa9vb3F7Oxsh+1vvfWW6O3tLRYUFDgtRjli2XomlqvnYtl6Jpar52LZyhtbZjzA+fPn8dtvv6FPnz5l9nXt2hW9e/fGG2+8gaKiIpfG8cYbb8Bms+Hf//53uft37tyJrKwsPPfccw7bx44di8LCQmzatMlhe9++fVFYWIht27a5LGZ3x7L1TCxXz8Wy9UwsV8/FspU/JjMeYO/evQCA9u3bl7t/xowZSE9PxwcffHDT65hMJmRmZlbqdaOUlBT85z//wfz586HT6cq9/tGjRwEAHTp0cNgeHx8PhUJh339Ny5YtodPp8Msvv9w0bk/GsvVMLFfPxbL1TCxXz8WylT+V1AFQzZ06dQoAEBMTU+7+7t27o1evXnjzzTfx7LPPVlhR/ve//+GJJ56o1D1FUXR4/+KLL6Jdu3Z46KGHKjwnNTUVSqUSYWFhDtvVajWCg4Nx5coVh+0qlQoNGjTAiRMnKhWTJ2LZeiaWq+di2XomlqvnYtnKH5MZD5CVlQWVSgUfH58Kj5kxYwZ69OiBpUuXYsKECeUek5iYWK3myJ07d+Lrr7/GgQMHbnpcUVER1Gp1ufu0Wm25TbiBgYHlPsWoK1i2nonl6rlYtp6J5eq5WLbyx2SmjrjzzjvRq1cvvPHGG3jmmWfKPSYyMhKRkZFVuq7FYsHzzz+PRx99FHfcccdNj9XpdDCbzeXuKy4uLvdphyiKEAShSjHVNSxbz8Ry9VwsW8/EcvVcLFv3xmTGAwQHB8NisaCgoAC+vr4VHjd9+nT07NkTH374IQICAsrsLyoqQl5eXqXuGRERAQD473//i6SkJHz44YdITk52OKagoADJyckICwuDXq9HZGQkrFYrrl696tBMajabkZWVhXr16pW5T05ODpo2bVqpmDwRy9YzsVw9F8vWM7FcPRfLVv44AYAHaNGiBYDSGTlupkePHujZsyfmz59fbnPk2rVr7U8WbvW6JiUlBSUlJejatStiYmLsL6C0ksbExOCHH34AALRt2xYAcOjQIYf7Hjp0CDabzb7/GovFgosXLyIuLq5K/x6ehGXrmViunotl65lYrp6LZSt/bJnxAAkJCQBK/0PffvvtNz12xowZ6NmzJ5YtW1ZmX3X6ez700ENlKhAA3HfffRg4cCDGjBmDTp06AQB69+6NoKAgfPDBBxg4cKD92A8++AB6vR6DBg1yuMaJEydQXFyMLl26VCkmT8Ky9UwsV8/FsvVMLFfPxbL1ANIsb0PO1qpVK3HEiBEO21DOokuiKIo9evQQATh9wafK3HvJkiUiAPH+++8Xly9fLo4aNUoEIM6ZM6fMsW+99Zao1+vF/Px8l8QoFyxbz8Ry9VwsW8/EcvVcLFt5YzLjIRYsWCD6+PiIRqPRvq2iyrBz507JKqIoiuKyZcvE5s2bi2q1WmzSpIm4cOFC0WazlTmuU6dOZVbkrYtYtp6J5eq5WLaeieXquVi28sZkxkPk5uaKQUFB4kcffSR1KE5x9OhRURAE8ejRo1KHIjmWrWdiuXoulq1nYrl6LpatvAmieMPKPSRb8+fPx6pVq3DixAkoFPKe2+Ghhx6CzWbDF198IXUoboFl65lYrp6LZeuZWK6ei2UrX0xmiIiIiIhIluSdehIRERERUZ3FZIaIiIiIiGSJyQwREREREckSkxkiIiIiIpIlJjNERERERCRLTGaIiIiIiEiWmMwQEREREZEsMZkhIiIiIiJZYjJDRERERESyxGSGiIiIiIhkickMERERERHJEpMZIiIiIiKSJSYzREREREQkS0xm3EBqaipmzJiB1NRUqUMhIiIiIpINJjNuIDU1FTNnzmQyQ0RERERUBUxmiIiIiIhIlpjMEBERERGRLDGZISIiIiIiWWIyQ0REREREssRkhoiIiIiIZInJDBERERERyRKTGSIiIiIikiUmM0RkZ7PZYLVapQ6DiIiIqFKYzBCRnSiKsFgsUodBREREVClMZojIAZMZIiIikgsmM0TkwGw2Sx0CERERUaW4ZTKTmpqK48ePo7CwUOpQiOqc4uJiqUMgIiIiqhS3SmbWr1+PFi1aoH79+mjfvj0OHDgAAMjMzES7du2wbt06aQMkqgOKioqkDoGIiIioUtwmmfnuu+8wdOhQhISEYPr06RBF0b4vJCQEUVFRWLVqlYQREtUNBoNB6hCIiIiIKsVtkpnXX38dd955J/bs2YOxY8eW2Z+QkICjR49KEBlR3ZKTkyN1CERERESV4jbJzB9//IEHH3ywwv3h4eG4evVqLUZEVDelpaVJHQIRERFRpbhNMqPX62864P/cuXMIDg6uxYiI6qa8vDxkZWVJHQYRERHRLblNMtOrVy98/PHH5a5xkZaWhuXLl6Nfv34SREZU9/zxxx9Sh0BERER0S26TzMyZMweXLl3CHXfcgQ8//BCCIGDr1q147bXX0Lp1a4iiiOnTp0sdJlGdcPr0aeTl5UkdBhEREdFNuU0y07x5c+zZswfBwcGYOnUqRFHEm2++iblz56J169bYvXs3oqOjpQ6TqE6w2WzYu3evw6yCRERERO5GJXUA17vtttvw448/IicnB2fOnIHNZkPjxo0RGhoqdWhEdc7FixeRlJSEFi1aSB0KERERUbncKpm5JjAwEHfccYfUYRDVeb/88gsCAgIQEREhdShEREREZbhNN7N33nkHiYmJFe4fMGAAPvjgg1qMiIisViu+//57pKSkSB0KERERURluk8ysWLECLVu2rHB/y5YtsWzZslqMiIgAoKSkBFu3bsWBAwfKnW2QiIiISCpuk8ycPXsWcXFxFe5v0aIFzp49W4sREdUtHTp0QKNGjTBnzpwy+0RRxPHjx/HVV1/hwoULnBiAiIiI3ILbJDNqtfqmK4+npqZCoXCbcIk8TlpaGi5fvoz8/PwKj8nPz8fWrVuxadMmZGZm1mJ0RERERGW5TXbQuXNnrF69GgUFBWX25eXlYdWqVejcubMEkRHRja5cuYJvvvkGO3bsKLfOEhEREdUGt5nNbPr06ejRowfatm2L8ePH47bbbgNQuhL5okWLkJqaijVr1kgcJRFd78yZMzh//jxatWqFdu3aQa1WSx0SERER1SFuk8x06tQJ3333HZ5++mm88MILEAQBQGlf/ZiYGGzYsAEJCQkSR0lEN7JarTh+/DhOnz6Nzp07o0mTJvb6S0RERORKbpPMAEDfvn1x5swZHD161D7Yv0mTJmjfvj0/HBG5OaPRiB07duCvv/7CnXfeCR8fH6lDIiIiIg/nVskMACgUCsTHxyM+Pl7qUIioGi5duoQvv/wS3bp1Q9OmTaUOh4iIiDyY2yUzJ06cwLlz55CTk1Pu9K+jRo2SICoiqoqSkhLs3LkTly5dQrdu3eDl5SV1SEREROSB3CaZOXv2LB555BEcPHiwwjUsBEFgMkMkI6dPn0ZWVhb69u0Lf39/qcMhIiIiD+M2yczTTz+N33//HYsWLUL37t0RGBgodUhEdUZKSgoKCwsBACaTCdnZ2QgKCnLKtbOzs7Fu3Tr07t0bDRo0cMo1iYiIiABAEN1kKW+dTodXX30VU6dOlTqUWnfkyBHEx8fj8OHDaN++vdThUB1y8OBBzJo1C5s2bXJoERUEAa1bt8agQYMQHR3tlHsJgoAOHTqgbdu2nNCDiIiInMJtFs0MCQlhNxSiWvTNN9+ga9eu+P7778t07RRFEX/88Qfmz5+PI0eOOOV+oiji119/xffff29vBXKF7OxsPPzww/Dz80NAQAD+7//+DwaD4abn9OzZE4IgOLyeeeYZ+/7Vq1eX2X/tdfXqVZf9LERERHRzbpPMPPPMM/j0009htVqlDoXI4x08eBDDhw+H1WqtsM7ZbDbYbDYsX74cycnJTrv3pUuX8NVXX9mnX6+Onj17YvXq1eXue/jhh/Hnn39i27Zt2LhxI37++Wc89dRTt7zmmDFjkJqaan+98cYb9n3Dhw932JeamorExET06NEDYWFh1f45iIiIqGbcZsxMs2bNYLVa0aZNG4wePRoNGjSAUqksc9zQoUMliI7Is8yePRuiKFY42caNNm/ejOeee85p9zeZTNi+fTsuXryI7t27l1vXq+PkyZPYsmULfv31V3To0AEA8O6772LgwIF46623UK9evQrP1ev1iIiIKHefTqeDTqezv8/IyMCOHTuwYsUKp8RNRERE1eM2yczw4cPt3//73/8u9xhBENhyQ1RDKSkp2LhxY6UTGZvNht9++82pkwJc89dff8FoNGLAgAFOGUezb98+BAQE2BMZAOjTpw8UCgUOHDiA++67r8JzP/vsM3z66aeIiIjAkCFDMHXqVOj1+nKP/e9//wu9Xo/777+/xjETERFR9blNMrNz506pQyByK2azGRaLxenX3bx5c6UTmWtEUcTJkyeRkJDg9HhSUlJw6tQpxMXF1fhaaWlpZbp9qVQqBAUFIS0trcLzRo4ciUaNGqFevXr47bff8MorryApKQnffPNNucevWLECI0eOdGitISIiotrnNslMjx49pA6ByG2YzWYcPHjwlgPXq+P48eMQBKFKCY0gCMjLy3NJPEDpjH5NmjSBWq0ud//cuXMxd+5c+/uioiLs378f48aNs287ceJEte9//Zia1q1bIzIyEnfddRfOnj2LJk2aOBy7b98+nDx5Ep988km170dERETO4TbJzDUmkwlHjhzB1atX0bVrV4SEhEgdElGts1gsMBgMUKvV0Gg0Tr12YGBgtVpmtFotFArnzxlyLRaLxVJhMvPMM8/gwQcftL9/+OGHMWzYMIcxdPXq1UNERESZ2cUsFguys7MrHA9Tnk6dOgEAzpw5UyaZ+eijj9C2bVvEx8dX+npERETkGm6VzLzzzjuYMWMG8vLyAADbtm1D7969kZmZiRYtWuCNN97A6NGjJY6SqPZoNBpotVqnXS8jI6Na484EQUDz5s1dkswolcpbTsseFBTkMF5Hp9MhLCwMsbGxDsclJCQgNzcXhw8fticbO3bsgM1msycolXHs2DEAQGRkpMN2g8GAL774AvPmzav0tYiIiMh13GZq5lWrVmH8+PHo378/VqxY4fDkOCQkBL1798bnn38uYYRE8pWRkYEffvgBGzZsQEFBARo1alTpAfcKhQItW7ZEYGCg0+Py8vJC8+bNoVI557lKXFwc+vfvjzFjxuDgwYP45ZdfMG7cODz00EP2mcwuX76MFi1a4ODBgwCAs2fPYtasWTh8+DCSk5OxYcMGjBo1CnfeeSduv/12h+uvXbsWFosFjzzyiFPiJSIioppxm2Tm7bffxj333IM1a9ZgyJAhZfbHx8fjzz//rJVYlixZgujoaGi1WnTq1Mn+oac85S2m58wn6UQ1cX0Sc/HiRfv2bt26QaFQVDqh6devn9NjCwgIQLt27eDt7e3U63722Wdo0aIF7rrrLgwcOBDdunXDsmXL7PtLSkqQlJQEo9EIAFCr1fjxxx/Rr18/tGjRAi+++CKGDRuG7777rsy1V6xYgaFDhyIgIMCpMRMREVH1uE03szNnzuD555+vcH9QUBCysrJcHsfatWsxceJELF26FJ06dcKiRYuQmJiIpKSkChfH8/PzQ1JSkv29M6aYJaqJjIwMHD161CGBAQBvb2+0adMGzZo1Q5s2bTB58mQAKLfr2bUuZY899hgaNmzotNhUKhViYmIQHh4OQRBQXFxc5Wvs2rWrwn1BQUFYs2ZNhfujo6MdWn4bNGiAn376qVL33bt3b6VjJCIiItdzm2QmICAAmZmZFe4/ceJElQbwVteCBQswZswYPPHEEwCApUuXYtOmTVi5ciUmTZpU7jmCINRKbES3Upkk5toClb1798bKlSuxYsUK7N692+EDviAIiIuLQ79+/ZyayISFhSEmJqbCgf5EREREVeE2yczAgQOxbNmyclcZ//PPP7F8+XKXD/43m804fPiw/Wk1UPp0uk+fPti3b1+F5xkMBjRq1Ag2mw3t27fH3Llzcdttt1V4vMlkgslkcjifqCaqksRc77bbbsOCBQuQlpaGESNGoKCgADqdDi+99JJTx8jo9XrExsbecqA/ERERUVW4TTIze/ZsdOrUCa1atcKQIUMgCAI+/vhjrFy5El9//TUiIyMxbdo0l8aQmZkJq9WK8PBwh+3h4eE4depUuec0b94cK1euxO233468vDy89dZb6NKlC/7880/Ur1+/3HPmzZuHmTNnOj1+qnsyMjJw5MgRXLp0yWG7t7c32rZti6ZNm5abxNwoIiICOp0OBQUFUKvVTktkFAoFGjZsiKioKJfMhEZERER1m9skM/Xq1cPhw4fx6quvYu3atRBFEZ988gl8fX0xYsQI/Oc//3HLNWcSEhIcVkXv0qUL4uLi8OGHH2LWrFnlnjN58mRMnDjR/v7YsWNcNJSqxFlJjCuFhISgcePGTl8nh4iIiOgat0hmTCYTtm7diujoaHz00Uf46KOPkJGRAZvNhtDQ0Fp7ohsSEgKlUon09HSH7enp6ZUeE+Pl5YV27drhzJkzFR6j0WgcPuD5+PhUL2Cqc+SQxKjVajRt2tRhXRgiIiIiV3CLfh9qtRoPPPCAw0xBoaGhCA8Pr9WuKWq1GvHx8di+fbt9m81mw/bt2x1aX27GarXi999/L7PYHlFNXL16FVu3bsWGDRscEhlvb2907doVDzzwAFq0aCF5IhMYGIj27dszkSEiIqJa4RYtM4IgoGnTpjedzay2TJw4EY899hg6dOiAjh07YtGiRSgsLLTPbjZq1ChERUXZVwB//fXX0blzZ8TGxiI3NxdvvvkmLly4gCeffFLKH4M8RGZmJv7880+3bom5JjIyEk2aNOHU5ERERFRr3CKZAYBXX30VEydOxAMPPIDmzZtLFsfw4cORkZGBadOmIS0tDW3btsWWLVvskwKkpKQ4tBbl5ORgzJgxSEtLQ2BgIOLj47F37160bNlSqh+BPMCFCxewf/9+XL161WG7j48P2rRp41ZJjCAIaNKkCVsjiYiIqNa5TTKzf/9+BAcHo1WrVujZsyeio6Oh0+kcjhEEAYsXL3Z5LOPGjcO4cePK3XfjYn0LFy7EwoULXR4T1Q3nz5/Hpk2bcOLECYft7pjEAKUtRM2aNeO4LyIiIpKE2yQz7733nv3768esXK+2khmi2lZREuOO3cmA0rrYsGFD1K9fn1MuExERkWTcJpmx2WxSh0BU686dO4fNmzeXSWICAwPRsGFDxMXFwdvbW6LoyqfVahEXF8fWGCIiIpKc2yQzRHVJRUlMcHAw+vfvj9atW2Pv3r1u1RoDlHZ3a9WqFby8vKQOhYiIiMj9kpn9+/dj586duHr1Kp577jk0bdoURqMRp06dYt98kr1bJTGdOnWCSqWC0WiUKMKKabVaJjJERETkVtwmmTGbzXjooYewfv16iKIIQRAwZMgQNG3aFAqFAv369cOECRMwZcoUqUMlqrJz585h06ZNOHnypMP2a0lM586d3a4V5noKhQJxcXFMZIiIiMituE0yM3XqVGzcuBEffPABevXq5TA9s1arxQMPPID169czmSFZOXv2LDZv3izbJOaa6OhotooSERGR23GbZOZ///sfnn32WTz11FPIysoqsz8uLg5ffvmlBJERVZ2nJDFA6WQE9erVkzoMIiIiojLcJpm5evUqWrduXeF+pVLpluMIiK539uxZbNq0CadOnXLYHhwcjAEDBqBTp06ySWIAQK1Wo1mzZhAEQepQiIiIiMpwm2SmQYMGZT4AXu+XX35BbGxsLUZEVHmelsRc06JFC6jVaqnDICIiIiqX2yQzI0eOxIIFCzBs2DA0a9YMAOxPg5cvX44vvvgC//nPf6QMkaiMipKYkJAQDBgwAB07dpRlEgMAUVFR8Pf3lzoMIiIiogq5TTIzZcoU7N+/H3feeSfi4uIgCAImTJiA7OxsXLp0CQMHDsSECROkDpMIgGcnMUBp97JGjRpJHQYRERHRTblNMqNWq7FlyxZ89tln+Oqrr2C1WmEymXD77bdj9uzZePTRR9lvnyR35swZbN682WOTmGuioqI84ucgIiIizyZZMjNx4kQ8+uijaNeuHQAgJSUFoaGheOSRR/DII49IFRZRuepCEhMcHAyg9MFCWFiYxNEQERER3ZpkycyiRYvQoUMHezITExODTz75BCNHjpQqJKIyzpw5g02bNiEpKclhuyclMdd88sknsNlsOH78OAf9ExERkSxIlsyEh4fj3Llz9veiKEoVClEZFSUxoaGh6N+/v0clMTfy9fWVOgQiqiSTyQRRFKHVaqUOhYhIEpIlM4MGDcLrr7+OH374AQEBAQCAt99+G59//nmF5wiCgPXr19dShFQX3SyJGTBgAO644w6PTWKu0ev1UodARJUkiiKKioqYzBBRnSVZMrN48WKEhYVh586d+PPPPyEIAi5evIjs7OwKz+EEAOQqTGL+wS5mRPJiMBgQGBgodRhERJKQLJnx9vbG3Llz7e8VCgUWLVrEMTNUq06fPo3NmzcziblOXft5ieQuJycHDRo0kDoMIiJJSJbMDB06FBMmTED37t0BADt37kTLli2lCofqmNOnT2PTpk3466+/HLbX5STmGoVCIXUIRFQFV69elToEIiLJSJbMrF+/HsOGDbO/7927N2czI5djEnNr7M5JJC9ZWVlSh0BEJBnJkpmoqCgcPXoUDz/8MIDSQYz8EEWu8tdff2Hz5s1MYiqBLTNE8lJQUACr1crfYURUJ0mWzDz00EN466238MUXX9hnM5s0aRLmzZtX4TmCIOD48eO1FCF5gr/++gubNm3C6dOnHbaHhYVhwIAB6NChAz8A3IDJDJG82Gw2XL16FZGRkVKHQkRU66qUzMTExFS59UQQBJw9e7bM9nnz5iE2NhY7d+7E1atXIQgCvL297auQE9UEk5jq478LkfwcP34cERER7OFARHVOlZKZHj16lPlFeejQIfz5559o2bIlmjdvDgBISkrCiRMn0KpVK8THx5d7LaVSiaeeegpPPfUUgNKnwa+99hrHzFCNMImpOf77EMlPSkoKTp06hbi4OKlDISKqVVVKZlavXu3wft26dVi3bh22bduGu+66y2Hftm3b8OCDD2LWrFmVuvb58+cRGhpalXCI7JjEOA+7mRHJ0y+//AK9Xo9GjRpJHQoRUa2p0ZiZadOm4V//+leZRAYA+vbti3HjxuG1117DPffcc8tr8ZcvVQeTGOdjNxUiebLZbNi2bRt69uyJ2NhYqcMhIqoVNUpmTp8+fdMxLsHBweWOlwFKn/4qFAoYjUao1WooFIpbfogSBAEWi6UmIZOHuFkSM3DgQHTo0IEtDETk0Tp06IDU1FSoVCpMmTIFQGlCs2PHDhQUFKBt27Z8OEFEHq9GyUyTJk2watUq/N///R98fHwc9hUUFGDlypVo3LhxuedOmzYNgiBApVI5vCeqiCiK9iTmzJkzDvuYxDgH6yCRfKSlpeHKlSv2GUGv9+uvv8JgMKBbt26s10Tk0WqUzMyePRv3338/WrRogccff9zerH369Gl8/PHHSE9Px5dfflnuuTNmzLjpe6JrmMTUHn7oIfIcJ0+ehMFgQK9evaDVaqUOh4jIJWqUzNx7773YvHkzXnnlFcydO9dhX9u2bbFixQokJibWKECqu26WxISHh2PgwIGIj49nEkNEVIGLFy/i66+/Rvfu3dGwYUOpwyEicroaL5rZr18/9OvXD2lpabhw4QKA0sH8ERERlb6GyWTCp59+ih9++AFnz55FQUEBfH19ERsbi/79+2PkyJFQq9U1DZVkgkkMEZHzFBYWYsuWLWjUqBE6duyIwMBAqUMiInKaGicz10RERFQpgbnm999/xz333IMLFy5AFEX4+/vDx8cHV69exZEjR/Dll19izpw52LBhA+fP93BMYoiIXOfChQtISUlB06ZN0aFDhzJjXYmI5KjGnwpTUlLwzDPPoHnz5ggKCsLPP/8MAMjMzMTzzz+Po0ePVniuwWDA3XffjfT0dMyZMwcXL15ETk6Ow9fZs2fjypUrGDJkCAoLC2saLrkhURRx6tQpLFiwAIsXL3ZIZMLDw/HEE09g6tSpuOOOO5jIEBHVwLWHRmvXrsXRo0dhs9mkDomIqEZq1DJz4sQJdO/eHTabDZ06dcKZM2fsUyeHhIRgz549KCwsxIoVK8o9f9WqVUhJScH27dvRs2fPMvujoqIwefJkdOrUCX379sXq1asxduzYmoRMbkQURSQlJWHTpk1lpvBmSwwRketYrVb8+uuvOH/+PLp3785Fq4lItmqUzLz88ssICAjA/v37IQgCwsLCHPYPGjQIa9eurfD8TZs2oV+/fuUmMtfr3bs3+vbti++++47JjAdgEkNE5B4yMzOxbt06NGnSBPHx8fD395c6JCKiKqlRMvPzzz9j2rRpCA0NRVZWVpn9DRs2xOXLlys8//fff8fzzz9fqXv17t0bixcvrnasJL2bJTEREREYOHAg2rdvzySGiOgWUlJS7F2vTSYTsrOzERQUVK1riaKIM2fO4OzZs4iOjsZtt92GyMhITtVORLJQo0+NNpsNer2+wv0ZGRnQaDQV7s/Ozq70pAHh4eHIzs6ucowkvevHxLzzzjsOiUxERARGjx6N1157jWvFEBHdwsGDBzFkyBBER0cjNzcXAFBUVIRXX30VS5YsQXJycrWvLYoizp8/j40bN+KLL77AsWPHYDQanRP4TWRnZ+Phhx+Gn58fAgIC8H//938wGAw3Pae4uBhjx45FcHAwfHx8MGzYMKSnp9v3Z2VloX///qhXrx40Gg0aNGiAcePGIT8/39U/DhHVshq1zLRv3x6bNm3Cc889V2afxWLB559/js6dO1d4vslkgpeXV6XupVKpYDabqx0r1T62xBAROc8333yD4cOHQxRFiKLosE8URfzxxx/4448/MGbMGLRv375G98rLy8PBgwdx6NAhxMTEoG3btggODq729Xr27InHH38cjz/+eJl9Dz/8MFJTU7Ft2zaUlJTgiSeewFNPPYU1a9ZUeL0JEyZg06ZN+PLLL+Hv749x48Zh6NCh+OWXXwAACoUC99xzD2bPno3Q0FCcOXMGY8eORXZ29k2vS0TyU6NkZvLkyRg8eDCeffZZPPTQQwCA9PR0/Pjjj5g7dy5OnjyJ995776bXSE5OxpEjR255r/Pnz9ckVHKSaxM2XFsL6K677iqzENu1lphNmzbh3LlzDvuYxBDVrsrUWXJ/Bw8exPDhw2G1WsskMtdcm5ls+fLleOWVVxAdHV3j+9psNpw9exZnz55FTEwMOnXqBD8/vxpf95qTJ09iy5Yt+PXXX9GhQwcAwLvvvouBAwfirbfeQr169cqck5eXhxUrVmDNmjXo3bs3gNIJheLi4rB//3507twZgYGBePbZZ+3nNGrUCM899xzefPNNp8XuKqyzRFVTo2RmwIABWL16NV544QUsW7YMAPDII49AFEX4+fnhv//9L+68886bXmPq1KmYOnXqLe8liiL770ro4MGDmDVrFjZt2gRRFKFQKGCz2SAIAgYPHoypU6eiQ4cOFSYxkZGRGDBgAJMYolpSmTp7xx13SB0mVdLs2bPLbZGpyObNm8vtNVET58+fR0pKCrp06eK0dd/27duHgIAAeyIDAH369IFCocCBAwdw3333lTnn8OHDKCkpQZ8+fezbWrRogYYNG2Lfvn3l9gi5cuUKvvnmG/To0cMpcbsC6yxR9dR40cxHH30UQ4cOxbZt23D69GnYbDY0adIEiYmJ8PX1vem5q1atquntXWLJkiV48803kZaWhjZt2uDdd99Fx44dKzz+yy+/xNSpU5GcnIymTZti/vz5GDhwYC1G7FrldW249gRQFEVs3rwZ33//PUaOHAlvb2+HcyMjIzFw4EC0a9eOSQxRLalsnV27di2GDh0qZah1jiiKsFqtsFgssNlssFgssFqt9tf17699f+nSJWzcuLHSiYzNZsNvv/1Wo0kBKmK1WrFnzx5EREQgMDCwxtdLS0srMxOqSqVCUFAQ0tLSKjxHrVYjICDAYXt4eHiZc0aMGIH169ejqKgIQ4YMwUcffVTjmF2BdZao+qqdzBiNRjRo0ACTJk3CSy+9hHvvvbfK13jssceqe3uXWbt2LSZOnIilS5eiU6dOWLRoERITE5GUlFTmFy4A7N27FyNGjMC8efMwePBgrFmzBvfeey+OHDmCVq1aSfATOFdlujZYrVYAwCeffIKhQ4ciLCyMSQyRRCpbZwVBwPDhw7F3715ZPu0tLymoSoJQmfe32nfjvSwWC0pKShzOufFVnUUqT506VelE5vp/n5MnTyIhIaHK96uMK1eu3DSZmTt3LubOnWt/X1RUhP3792PcuHH2bSdOnHBJbNdbuHAhpk+fjr/++guTJ0/GxIkT8f7777v8vlVRV+oskatUO5nR6/VQqVRlnsTL3YIFCzBmzBg88cQTAIClS5di06ZNWLlyJSZNmlTm+MWLF6N///546aWXAACzZs3Ctm3b8N5772Hp0qW1GrsrVLVrwx9//IHPPvuMSQyRRCpbZ68dM2vWLHz99ddlPrTXZoJQXlJwq/Pr0sr1ZrMZgiBUKaERBAF5eXm3nBWsun7//Xc0bdoUarW63P3PPPMMHnzwQfv7hx9+GMOGDXNoVahXrx4iIiJw9epVh3MtFstNZzuNiIiA2WxGbm6uQ+tMenp6mXMiIiIQERGBFi1aICgoCN27d8fUqVMRGRlZ1R/ZZapaZ2fPno3169fXUnRE7q9G3cyGDRuGr776Cs8++6xHjGcxm804fPgwJk+ebN+mUCjQp08f7Nu3r9xz9u3bh4kTJzpsS0xMxLp161wZaq1ISUmpUtcGURTx119/ITQ0lIkMkQSqWmetViu+++47jB49+pbdgunWFAoFBEGAUqmEQqGo8HXtmOu/KhQKh++vfxkMBvssXZUliiK0Wq1LfheLogiTyQSLxVJhMhMUFOTQxU2n0yEsLAyxsbEOxyUkJCA3NxeHDx9GfHw8AGDHjh2w2Wzo1KlTudeOj4+Hl5cXtm/fjmHDhgEAkpKSkJKSctOWqGsJsMlkqvwP62LVrbMpKSmcFIDobzVKZh566CE899xz6NWrF8aMGYPo6GjodLoyx9V0isjakpmZCavVivDwcIft4eHhOHXqVLnnpKWllXt8RX19gdJfpNf/Mr325OxaFwV3sXXr1mp1bfjhhx/csguhnJSUlMBisaCwsBAWi0XqcFzq2oeikpISt/r/L0fVqbMAcPHiRTRv3twFEVWPSqWCUqmEUqmESqWCQqFw2HZt+43fX0sInH1+Redd/764uBh79uyBWq2+6fpq1RESEoJPPvmkyuc1btzY3g3YmURRhFqtrlKdvdYt8MbjY2NjkZiYiCeffBJLlixBSUkJxo4diwcffBChoaEoKSnB5cuXkZiYiFWrVuGOO+6AXq/HE088gYkTJ8LPzw9+fn4YP348OnfujPj4eJSUlOD777/H1atXER8fDx8fH5w4cQKTJk1Cly5dEBUV5Ta/a/h3Vlpms9nj/8Zeo1KpKnz44GqVXYal2sQaEATB/lIoFGVe17bLxeXLl0UA4t69ex22v/TSS2LHjh3LPcfLy0tcs2aNw7YlS5aIYWFhFd5n+vTpIgC++OKLL7744osvvvjy6Jer1ahlxl1nI6uukJAQKJVKh1WEgfL74V4TERFRpeMB2AchXnPs2DH06NEDBw4cQLt27WrwEzjX6tWr8dRTT1X5vOXLl/OJkRPwiRFVFeustFxZZ48cOYK+fftWqqVFEAS8+OKLTlln5pqwsDDExcWhfv36EASBddZJqltnFy9e7LCODlWd0WjE7t27XdKa6m5MJhPMZjO6d+8OvV4vdThOV6NkxtP++KnVasTHx2P79u322dlsNhu2b9/uMAPL9RISErB9+3aMHz/evm3btm037ber0WgcKo6Pjw+A0g90Lm+Kq4LExMRqDTrt16+fW/0ccsV/Q6oq1llpufLfsFevXvjiiy/s0/eWl9RcGx/z1FNPoWnTpk65b8OGDdG+fftyZ/OkmqtOnQWAo0ePYv369ZVaBoPK5+XlZZ/ISqvVSh2OS6lUKthsNnh5eXnk7/oarzPjbCdOnMC5c+eQk5NTbuUeNWqUS+8/ceJEPPbYY+jQoQM6duyIRYsWobCw0D672ahRoxAVFYV58+YBAF544QX06NEDb7/9NgYNGoTPP/8chw4dsi8iKmcNGzbE4MGDsXnz5ko9DVQqlRg0aBAHJRJJhHXWsw0dOhR79+7FrFmzygwaFwQBrVu3xsCBA53SIhMWFoaEhIQyY0LJuapaZwVBQKNGjaDT6bBjxw788ssv6N27N+666y6PfOJOVBmCWIXHAaNHj4YgCFi2bBmUSiVGjx596xsIAlasWHHL486ePYtHHnkEBw8erPAJhSAILhnMeKP33nvPvmhm27Zt8c4779hnVenZsyeio6OxevVq+/FffvklXnvtNfuimW+88UaVFs08cuQI4uPjcfjwYbebLOHXX39Fly5dbjr/PQD7rDyc/55IWqyzdUNKSgratGmD3Nxc6HQ6TJs2zSkLZCqVSnTs2BGtWrXyiFlK5aCqdXbOnDm4fPmywyQGer0effv2Rc+ePT2+y5SzGI1G/Pzzz/D19fX4lpni4mIUFBTgzjvv9Mikt0rJTHR0NBQKBZKSkuDl5YXo6Ohb/rITBAHnzp275bX79OmD/fv3Y968eejevXuFi3E1atSosuHKhjsnM4DjysTlJZPXphP94osvcN9990kQIRFdj3W2bqhfvz4uX76MgIAAzJ8/v8bXi4iIwJ133umwdgvVjqrW2by8PGzZsgV79uxxON7Pzw+JiYno1q2bR3YnciYmM56jSsmMK+l0Orz66quYOnWq1KHUOndPZoDSJ0fXd21QKBSw2WwQBAFDhgzBa6+9xqe7RG6EddbzOSuZ0ev1uOOOO9CsWTO2xkioOnU2KysLmzZtwoEDBxxadYKCgjBgwAB07twZSqWytn8UWWAy4zncZsxMSEgI/P39pQ6DKnDHHXdgw4YNSElJwY4dO5Cfnw8/Pz/07t2b/e2J3BDrLN2KWq1G69atcfvtt/MpvhuoTp0NDg7GqFGj0LdvX2zatAlHjhwBAGRnZ+Ozzz7Dtm3bMHjwYLRv356LWZPHcpuWmTlz5mD9+vXYt29fnXuKIIeWGSIici/VbZkJCAhAy5Yt0bx5cyYxHubixYvYsGED/vzzT4ftUVFRGDJkCFq3bs3Wt7+xZcZz1Lhl5vvvv8eCBQtw5MgR5OXllTt4rTKD9ps1awar1Yo2bdpg9OjRaNCgQblJzdChQ2saMhERUZ3TsGFDtG7dGvXq1eMHWg/VoEEDjB07FmfPnsWGDRtw+vRpAMDly5exdOlSxMTE4O6770bz5s0ljpTIeWqUzHz99dd48MEHcdttt+Ghhx7CBx98gJEjR0IURaxfvx5Nmza1r9dyK8OHD7d//+9//7vcY2prNjMiIiJPERERgYSEBISGhkodCtWSJk2aYPz48Th16hQ2bNiACxcuAADOnz+PxYsXo3nz5rj77rsRExMjcaRENVejZGbevHno2LEj9uzZg5ycHHzwwQcYPXo0evfujeTkZHTu3LnSFWXnzp01CYWIiIiuo1Ao0KlTJ06zXEcJgoC4uDi0aNECx48fx8aNG3HlyhUAQFJSEt588020bt0aQ4YMQf369SWOlqj6apTMnDhxAvPmzYNSqYRKVXqpa/OeR0dH47nnnsP8+fMrtdBljx49ahIKERER/U2lUqFfv378kEoQBAFt27bF7bffjsOHD2Pjxo3IyMgAAPz+++/4/fff0aFDBwwaNIiLpJIs1SiZ0ev1UKvVAEoHFGo0GqSmptr3h4eH4/z581W+7okTJ+xNoo0aNULLli1rEiYREVGdoVKpMGDAAERGRkodCrkRhUKBO+64A+3bt8e+ffuwefNm5ObmAgAOHTqEI0eOoFOnThg4cCCCg4OlDZaoCmo0T1/z5s1x4sQJ+/u2bdvik08+gcViQXFxMdasWVOlKUDXr1+PJk2aoHXr1hg8eDAGDx6M1q1bIzY2Fhs2bKhJqERERB5PqVQiMTGRiQxVSKlUolu3bpg5cybuv/9++Pj4AABsNhv27duHmTNn4osvvkBeXp7EkRJVTo2SmaFDh2LDhg0wmUwAgClTpmDXrl0ICAhAaGgodu/ejUmTJlXqWps3b8awYcMAAHPnzsW3336Lb7/9FnPnzoUoihg6dCi2bNlSk3CJiIg8Wo8ePRAVFSV1GCQDXl5e6N27N15//XUMGTIEOp0OAGCxWLBr1y5Mnz4d69atQ2FhocSREt1ctdaZKS4uxvr163H+/HkEBwdj8ODB9qdAu3fvxjfffAOlUolBgwahV69elbpmQkICTCYTdu/eDW9vb4d9hYWF6NatG7RaLfbt21fVcN0e15khIqKq6tChA1JTU6FSqTBlyhS0a9euzArxRJVlNBqxbds27Ny5E2az2b5dq9Wib9++6NWrl0etx8J1ZjxHlcfMXL16FV26dMH58+chiiIEQYBOp8O6devQp08fdO/eHd27d69yIL/99hvmzp1bJpEBAG9vbzz++ON49dVXq3xdIiIiT3To0CEUFxfjv//9L8LDw9GhQwepQyIZ0+v1uOeee9CrVy9s3boVu3fvtg8b+O6777Bz504kJibizjvv5GKr5Faq3M1s1qxZSE5OxoQJE7Bx40YsXLgQOp0OTz/9dI0C0Wq1yM7OrnB/dna2x2fORERE1dGhQwdOv0xO4efnhwceeAAzZsxA165doVCUflQ0GAz4+uuvMX36dOzevZvr/pHbqHLLzA8//IBRo0bhrbfesm8LDw/HyJEjkZSUVO1VZXv37o3Fixejf//+SEhIcNh34MABvPPOO+jXr1+1rk1EROSpdDod6tWrJ3UY5GGCgoLw8MMPo2/fvti4cSMOHz4MURSRm5uL//3vf9i2bRsGDRqEO+64w57wEEmhyv/7UlJS0K1bN4dt3bp1gyiKSE9Pr3Ygb7zxBrRaLbp164aEhAQ8/vjjePzxx5GQkIAuXbpAq9Vi/vz51b4+ERGRJwoLC2OrDLlMWFgYRo8ejcmTJ+P222+3b8/MzMTHH3+MOXPm4NixY6jGEGwip6hyMmMymcp097r23mKxVDuQmJgY/Pbbb3j++eeRk5ODtWvXYu3atcjJycELL7yA48ePIzo6utrXJyIi8kT+/v5Sh0B1QP369fHMM8/gpZdeQosWLezbU1NTsWzZMsyfPx8nTpxgUkO1rlqLZiYnJ+PIkSP299fmIj99+jQCAgLKHF/ZGbrCwsKwcOFCLFy4sDphERER1TnX1gkhqg0xMTF4/vnnkZSUhA0bNtgXR09JScF7772H2NhY3H333YiNjZU4Uqorqjw1s0KhKLc5+9rMZuVt4yCxm+PUzEREVB3FxcVITU1FTEyM1KFQHSSKIv744w989913uHTpksO+2267DUOGDKnS4um1iVMze44qt8ysWrXKKTcePXo0BEHAsmXLoFQqMXr06FueIwgCVqxY4ZT7ExEReQJP/HBC8iAIAlq3bo3bbrsNR48exXfffYerV68CAP7880/8+eefaNeuncN6hETOVuVk5rHHHnPKjXfs2AGFQgGbzQalUokdO3bccgAjBzgSERE58vSnyuT+FAoF4uPj0bZtWxw8eBCbNm2yL7dx9OhRHDt2DB07dsSgQYMQEhIicbTkaao1ZsYZkpOTb/qeiIiIbo3T4pK7UCqVSEhIQIcOHfDLL79gy5YtyM/PhyiKOHDgAA4dOoQuXbpgwIAB5Y6xJqoOt/kNmJKSgqKiogr3FxUVISUlpRYjIiIiIqKq8vLyQs+ePTFz5kzce++99q6QVqsVu3fvxvTp0/HNN9/AYDBIHCl5ArdJZmJiYvDtt99WuH/Dhg0c4EhERHQDtsyQu9JoNOjXrx9mzZqFgQMHQqPRAABKSkrw448/Ytq0adi4ceNNH2Z7mpKSEqlD8Dhu8xvwVpOqlZSU8Bc2ERHRDVQqyXqME1WKTqfD4MGD8frrr+Ouu+6Cl5cXgNJZtjZv3oxp06bhhx9+gNlsljhS17NarVyLx8kk/Q2Yn5+P3Nxc+/usrKxyu5Ll5ubi888/50wYRERE1xEEwf7BkMjd+fr6YtiwYbjrrrvw/fff45dffoHNZkNhYSHWrVuHHTt2YMCAAejatavHJumiKJa7nAlVn6T/UxYuXIjXX38dQOkv5PHjx2P8+PHlHiuKImbPnl2L0REREbm3a912iOQkICAAI0aMQN++fbFx40b8+uuvEEUR+fn5WLt2LbZt24ZBgwahY8eOUCqVUofrdFarlb2NnEjSZKZfv37w8fGBKIp4+eWXMWLEiDKLRgqCAG9vb8THx6NDhw4SRUpEREREzhQSEoLHH38ciYmJ2LhxI44ePQoAyM7OxieffIIffvgBgwcPRrt27Tzqw7/VamWLqhNJmswkJCQgISEBAFBYWIhhw4ahVatWUoZERERERLUoMjISY8aMQUpKCjZs2IATJ04AANLT07FixQrUr18fQ4YMQatWrTyie5bFYpE6BI/iFh0SjUYj3nnnHej1eiYzRERERHVQw4YNMW7cOJw5cwYbNmzAmTNnAACXLl3CBx98gMaNG+Puu+9Gs2bNJI60ZjijmXO5RZudXq+HSqWCt7e31KEQERERkYRiY2MxYcIEjBs3Dg0bNrRvP3fuHBb9f3t3HlZVtf4B/LsBGWRGGVXmYggHxMgBQZNSUXMAS9TEcrpaejX7ecsbiaKS9+ZNy2tl+aCZ3srMNEucFXNkcBYQEXBkujKKzOv3h4/ndgKUeZ9z+H6e5zyPe5291373wRd4WXuvtWYNPv30U7VebL28vFzuEDSKSozMAEBwcDB+/PFHzJ49WyOGEImIiIioaSRJgqenJzw8PHD+/Hn88ssvyMrKAgAkJycjOTkZPXr0wKhRo9ClSxeZo22c0tJSuUPQKCpTzEyYMAFz5szB4MGDMWPGDDg6OsLAwKDWfn+eIICIiIiINJMkSfD29kbPnj0RFxeHX3/9FXl5eQCAixcv4tKlS+jTpw9GjBgBKysrmaNtmKKiIrlD0CgqU8wMGjRI8e/jx4/Xev/xnNzV1dVtGBURERERyU1LSwsvvPACfHx8cPLkSezduxeFhYUQQiAuLg4JCQno168fhg8fDgsLC7nDfaLi4mJUVFRAV1dX7lA0gsoUM9HR0XKHQEREREQqTEdHB/7+/ujbty+OHz+OmJgYPHjwADU1NThx4gTOnDmDgQMHYtiwYTA2NpY73Hrl5uaq3e1xqkplipmwsDC5QyAiIiIiNaCrq4shQ4ZgwIABOHz4MA4ePIiysjJUVVXhyJEjOHnyJAYNGoSXXnoJHTt2lDvcWu7evQtbW1uNWj9HLir5CZaUlCApKQlJSUkoKSmROxwiIiIiUkH6+voICgpCZGQkXn75ZcVilOXl5di3bx/Cw8MRExODsrIymSNVVlZWppjQgJpHpYqZuLg4DB48GObm5vDy8oKXlxfMzc3x4osvIj4+Xu7wiIiIiEgFGRoaYsyYMVi2bBkCAgKgra0NAHj48CF2796NJUuW4PDhw7Ku8fL6669j3LhxWL16NQAgMzOT0zS3AJW5zezMmTMYNGgQdHV1MX36dHh4eAAAkpKS8J///Af+/v44evQofH19ZY6UiIiIiFSRqakpXnvtNQQGBuK3337D6dOnIYRAcXExfvzxRxw8eBBBQUHo2bNnm8f23//+F7m5uTA1NQUAVFVVISUlBV5eXrzdrBkkIYSQOwgACAwMREZGBn7//XfY2NgovZednY0BAwbAyckJBw4ckCnC1pOYmAgfHx8kJCRw6mkiIiKiFpKdnY09e/YgISFBqb1z586wt7eHu7t7nUuBtIagoCDk5OTA1NQUERERinYbGxu4urq22jqLZWVlKC4uhr+/v0o+P9RcKlMGnjlzBrNmzapVyACAtbU1Zs6cidOnT8sQGRERERGpI2tra0ybNg3vv/8+vLy8FO15eXlITEzEb7/9hszMTMj5t/2srCzcuHFD1hjUmcrcZqalpYWqqqp636+uruYQHBERERE1Wrdu3TBnzhzcuHEDu3fvxrVr1wAABQUFOHjwICwtLeHj4wM7O7tWGyF5krt376K6uhrPPPOMLOdXZypTHfTv3x///ve/kZmZWeu9mzdvYv369RgwYECrxnD//n1MmjQJJiYmMDMzw7Rp0546m9qgQYMgSZLS6y9/+UurxklEREREjefs7Iz58+dj1qxZMDc3V7Tn5uYiJiYGe/fuRXZ2tiyxZWdn48qVK0/84z7VpjIjMytXroS/vz/c3d0xduxYPPvsswCAlJQU7Nq1Czo6OoiKimrVGCZNmoR79+7hwIEDqKysxBtvvIGZM2di27ZtTzxuxowZWLZsmWJbE+9HJCIiItIUzzzzDPz8/FBUVISLFy8iPz8fAHDv3j3s2bMH3bp1g4+PDzp16tSmceXn5+PChQvw9PRss2d51J3KFDPe3t44c+YM/v73v2P37t0oLS0F8KgwGDZsGJYvXw5PT89WO39SUhJiYmIQFxeHPn36AAA+++wzBAUF4eOPP4adnV29x3bs2LHOZ32IiIiISDVJkoSuXbvCxcUFN27cQGJiIoqKigAAt27dwq1bt+Dk5ITevXvDzMyszeIqLS3F+fPn4e7urjR6RHVTmWIGADw9PbFz507U1NQgNzcXAGBpadkmz8qcOnUKZmZmikIGeDTDmpaWFs6cOYOxY8fWe+zWrVvx7bffwsbGBqNGjUJ4ePgTR2fKy8uV5hXnwqBERERE8pAkCS4uLnByckJqairOnTuHBw8eAADS09ORkZEBV1dXeHt7w9jYuE1iqqqqwuXLl9G1a1c4ODjwufEnUKli5rHHz548/ndbyMrKgpWVlVKbjo4OLCwsnrhC68SJE+Hg4AA7OztcvHgRf/vb35CSkoKffvqp3mOioqKwdOnSFoudiIiIiJpHS0sLbm5ucHFxQUpKCs6fP4+ysjIIIZCamoq0tDS4ubmhV69ebfZIwe3bt5GXlwdHR0d07tyZkwPUQaXKvKtXryIkJAQmJiawtbWFra0tTExMEBISgsuXLzepz/fee6/WA/p/fiUnJzc55pkzZ2Lo0KHo3r07Jk2ahG+++QY7d+5EWlpavce8//77KCwsVLyOHTvW5PMTERERUcvR0dHBc889h1dffRV9+vSBrq4uAKCmpgZJSUn44YcfcPbsWZSVlbVJPGVlZUhOTkZCQgLu3buH6urqNjmvulCZkZnjx49j+PDhqKmpwejRo5UmANi9ezf27t2LmJgYDBw4sFH9Lly4EFOnTn3iPs7OzrCxsUFOTo5Se1VVFe7fv9+o52FeeOEFAMD169fh4uJS5z56enrQ09NTbBsZGTW4fyIiIiJqfR06dEDPnj3h7u6OS5cuKWYaq66uxqVLl5CcnIzu3bvjueeeUxQ8renhw4e4fv06MjIyYG1tDRsbG046BRUqZhYsWAArKyscO3YM3bp1U3rv1q1b8Pf3xzvvvIO4uLhG9WtpaQlLS8un7tevXz8UFBQgISEBPj4+AIDDhw+jpqZGUaA0xPnz5wEAtra2jYqTiIiIiFSPnp4e+vTpg+eeew4XLlxAcnIyqqurUVlZicTERFy5cgU9e/aEh4cHdHTq/tU6KysLDx8+BABUVFQgPz+/yQ/3V1VV4c6dO7hz5w7MzMxgZ2cHCwuLdnsLmsrcZnblyhXMmTOnViEDPFroaPbs2bhy5Uqrnd/DwwPDhg3DjBkzcPbsWZw4cQJvv/02JkyYoJjJ7M6dO3B3d8fZs2cBAGlpaYiMjERCQgIyMjKwe/duTJkyBf7+/ujRo0erxUpEREREbcvAwAB9+/ZFSEgI3NzcFMVDeXk5zp49i+3btyMpKUnpNrDLly9jwYIFGDVqFIqLiwE8GmGJjIzE119/jZs3bzYrpoKCAly9ehXx8fG4fft2u1yjRmWKGQcHB6UZvv6soqKizkKnJW3duhXu7u4YMmQIgoKC4Ofnhw0bNijer6ysREpKimLaaF1dXRw8eBAvv/wy3N3dsXDhQgQHB+OXX35p1TiJiIiISB5GRkbw8/NDSEiI0iMFpaWlOHnyJHbs2IHU1FQcOnQI06ZNw8mTJyGEUOpDCIGkpCSsXbsWFy9ebHZMZWVlSE9Px9mzZ5Geno7Kyspm9/mYEAIffvghbG1tYWBggMDAQKSmpj71uDt37mDy5Mno1KkTDAwM0L17d8THxze73z+TxJ8/XZls27YNCxYswL59+9CrVy+l986dO4dhw4ZhzZo1CA0NlSfAVpSYmAgfHx8kJCSgd+/ecodDREREpNFKS0sRGxsLY2Nj6OvrN6uv+/fvIzExEZmZmYq27Oxs/Pzzz6ipqXnq8VpaWvjrX/8Ke3v7ZsXxRzo6OnBwcICtrS3Ky8tRXFwMf3//Jj1js2rVKkRFRWHz5s1wcnJCeHg4Ll26hKtXr9b72eXn58Pb2xuDBw/G7NmzYWlpidTUVLi4uCgKwKb0W+e1NvqKWsnp06dhbW0NHx8f9O/fH66urgCA1NRUnDp1Cl5eXjh16hROnTqlOEaSJKxdu1aukImIiIionbOwsEBgYCByc3MRHx+Pu3fvIiEhodZozJPs378f06dPb7GYqqqqkJaWhv/+979wdHRscj9CCKxZswYffPABRo8eDQD45ptvYG1tjZ9//hkTJkyo87hVq1ahW7duiI6OVrQ5OTk1u9+6qMzITFMWA5IkSSOmp+PIDBEREVHbacmRmT+7cOECpk2b1qhjJElCeHh4kycFeBIDAwPY29sjICCg0SMzN27cgIuLC86dO6d051RAQAB69epV76CCp6cnhg4ditu3b+PYsWPo0qUL5syZgxkzZjSr37qozMhMQ4bhiIiIiIhaypOe126q69evN/oYIQRSUlLg6+vb4vGUlJSgpKSkScc+Xjje2tpaqd3a2vqJi8rfuHEDn3/+Od555x0sXrwYcXFxmDdvHnR1dREWFtbkfuuiMsUMEREREVFb0NHRgZGREUpKSlBRUdGifefn50OSpEbdZiZJEsrKylr1j/v1TRv9R1u3bsWsWbMU27/++muTzlVTU4M+ffpg5cqVAABvb29cvnwZX3zxBcLCwprUZ31UrphJT0/H3r17FQ9ROTg4YPjw4Ur32RERERERNZWuri58fX1bZSrjjIyMRhUywKORGVNT01ZbSN3T07NBC3u+8sorSusrPh65ys7OVlpDMTs7u9aEXX9ka2sLT09PpTYPDw/s2LEDABQL0je237qoVDGzcOFCrF27tlZVqqWlhfnz5+Pjjz+WKTIiIiIi0iS6uroN+gW/sYKCgpo0MuPh4dGkZ8gbokuXLg3az9jYGMbGxoptIQRsbGxw6NAhRZFRVFSEM2fOYPbs2fX2M2DAAKSkpCi1Xbt2DQ4ODgAeTQbQlH7rojLrzKxevRqffPIJxo0bh1OnTqGgoAAFBQU4deoUQkJC8Mknn+CTTz6RO0wiIiIionrZ29tj5MiR0NbWbtD+Wlpa6NGjBywsLFolnk6dOsHU1LRJx0qShPnz52P58uXYvXs3Ll26hClTpsDOzg5jxoxR7DdkyBCsW7dOsb1gwQKcPn0aK1euxPXr17Ft2zZs2LABb731VqP6bQiVGZn56quv8Morr+CHH35Qan/hhRfw3XffoaysDF9++SUWLFggU4RERERERE8XHh6OvXv3NniEJigoqFXikCQJ/fr1gyRJTe5j0aJFePDgAWbOnImCggL4+fkhJiZGaRa4tLQ05OXlKbaff/557Ny5E++//z6WLVsGJycnrFmzBpMmTWpUvw26RlWZmllfXx+ffPJJvUNLn3/+ORYsWICysrI2jqz1cWpmIiIiIs3y008/4bXXXoMQos6lRB7fUjZz5kx4e3u3+PklSYKfnx88PDxavG9VojK3mVlZWeHChQv1vn/hwgVYWlq2YURERERERE0zbtw4nDx5UvEMzR9JkoTu3bvjb3/7W6sUMlZWVhg9erTGFzKACt1mNn78eKxduxaOjo6YO3cuDA0NAQAPHjzAunXr8PXXX2P+/PnyBklERERE1EDPP/88du/ejZs3b6Jnz54oKCiAgYEBPvzww1Z5RsbKygre3t6wt7dv1q1l6kRlipnIyEicP38eixcvxocffgg7OzsAwN27d1FVVYXBgwdj2bJlMkdJRERERNQ49vb2MDQ0REFBAfT09Fq0kJEkCfb29ujRowdsbGzaTRHzmMoUMx07dsShQ4ewa9cupXVmhg0bhqCgIIwaNardfXGIiIiIiOqip6cHd3d3eHp6Kk2n3N6oRDFTWlqKyZMnIzg4GJMmTcLo0aPlDomIiIiISOWYmZmhe/fueOaZZ6CjoxK/ystKJT6Bjh074uDBgxg+fLjcoRARERERqRwLCwv07t0bTk5OvFvpD1RmNjM/Pz+cOnVK7jCIiIiIiFSGkZERXnzxRQQHB8PZ2ZmFzJ+oTDGzbt06HD9+HB988AFu374tdzhERERERLJ5PH3z+PHj4erqyiKmHipxmxkA9OzZE1VVVYiKikJUVBR0dHSgp6entI8kSSgsLJQpQiIiIiKi1mdoaIjBgwcrZvel+qlMMRMcHMyKk4iIiIjata5du2Lw4MEwMDCQOxS1oDLFzKZNm+QOgYiIiIhIFtra2vD19YWXlxf/wN8IshczZWVl2LVrF9LT09G5c2eMGDECtra2codFRERERNQmrK2tERAQADMzM7lDUTuyFjM5OTno378/0tPTIYQA8Gia5p9//hmBgYFyhkZERERE1Oq8vb3h4+MDLS2VmZdLrcj6qUVGRiIjIwMLFizAnj17sGbNGhgYGGDWrFlyhkVERERE1KJsbGxgZ2cHExMTAI8mtnrxxRfx/PPPs5BpBllHZvbv348pU6bg448/VrRZW1tj4sSJSElJgZubm4zRERERERG1jPj4eBQVFeG7774DAPj7+8PV1VXmqNSfrGXgzZs34efnp9Tm5+cHIQSys7NlioqIiIiIqPU4ODjwj/YtRNZipry8HPr6+kptj7erqqrkCImIiIiIqFX5+PjIHYLGkH02s4yMDCQmJiq2Hy+KmZqaWueMDr17926r0IiIiIiIWpS5uTk6d+4sdxgaQxKPpxGTgZaWVp3zaAsharU/bquurm6r8NpMYmIifHx8kJCQwGKNiIiISEMVFRXh8uXL6N+/v9yhaAxZR2aio6PlPD0RERERUZuytLSUOwSNImsxExYWJufpiYiIiIjalLm5udwhaBROak1ERERE1EYMDQ3lDkGjsJghIiIiImojenp6coegUWSfzYyIiIiIqD0wNjauc/IrajqOzBARERERtQEWMi2PxQwREREREaklFjNERERERKSWWMwQEREREZFaYjFDRERERERqicUMERERERGpJRYzRERERESklrjODDXJvXv3cO/ePbnDoBZma2sLW1tbucOgVsCc1UzMWc3FnNVMzNmWx2JGBdja2mLJkiVq85+7vLwcoaGhOHbsmNyhUAsLCAjAvn37uDqxhmHOai7mrGZizmou5mzLk4QQQu4gSL0UFRXB1NQUx44dg5GRkdzhUAspKSlBQEAACgsLYWJiInc41IKYs5qJOau5mLOaiTnbOjgyQ03Wq1cvJqMGKSoqkjsEamXMWc3CnNV8zFnNwpxtHZwAgIiIiIiI1BKLGSIiIiIiUkssZqjR9PT0sGTJEj68pmH4ddVc/NpqJn5dNRe/tpqJX9fWwQkAiIiIiIhILXFkhoiIiIiI1BKLGSIiIiIiUkssZoiIiIiISC2xmCEiIiIiIrXEYoZIjUiS1KDX0aNHm32u0tJSRERENKqvFStW4JVXXoG1tTUkSUJERESz4yBSZ6qcs8nJyVi0aBF69eoFY2Nj2NraYsSIEYiPj292LETqSpVz9u7du5g8eTLc3NxgbGwMMzMz+Pr6YvPmzWjP83npyB0AETXcli1blLa/+eYbHDhwoFa7h4dHs89VWlqKpUuXAgAGDRrUoGM++OAD2NjYwNvbG/v27Wt2DETqTpVz9uuvv8bGjRsRHByMOXPmoLCwEF9++SX69u2LmJgYBAYGNjsmInWjyjmbl5eH27dvIyQkBPb29qisrMSBAwcwdepUpKSkYOXKlc2OSR2xmCFSI5MnT1baPn36NA4cOFCrXS7p6elwdHREXl4eLC0t5Q6HSHaqnLOhoaGIiIiAkZGRou3NN9+Eh4cHIiIiWMxQu6TKOdujR49aozhvv/02Ro0ahU8//RSRkZHQ1taWJzgZ8TYzIg1TU1ODNWvW4LnnnoO+vj6sra0xa9Ys5OfnK+0XHx+PoUOHonPnzjAwMICTkxPefPNNAEBGRoaiGFm6dKliWP1pt405Ojq2xiURaTS5ctbHx0epkAGATp06YeDAgUhKSmrZiyTSIHL+nK2Lo6MjSktLUVFR0exrU0ccmSHSMLNmzcKmTZvwxhtvYN68eUhPT8e6detw7tw5nDhxAh06dEBOTg5efvllWFpa4r333oOZmRkyMjLw008/AQAsLS3x+eefY/bs2Rg7dizGjRsH4NFfhYioZalazmZlZaFz584teo1EmkTunH348CEePHiAkpISHDt2DNHR0ejXrx8MDAxa9bpVliAitfXWW2+JP6bx8ePHBQCxdetWpf1iYmKU2nfu3CkAiLi4uHr7zs3NFQDEkiVLGh1Xc44l0mSqmrOPxcbGCkmSRHh4eJP7INIkqpizUVFRAoDiNWTIEHHz5s1G9aFJeJsZkQbZvn07TE1N8dJLLyEvL0/xenw7yZEjRwAAZmZmAIA9e/agsrJSxoiJ2jdVytmcnBxMnDgRTk5OWLRoUaucg0jdqULOhoaG4sCBA9i2bRsmTpwI4NFoTXvFYoZIg6SmpqKwsBBWVlawtLRUepWUlCAnJwcAEBAQgODgYCxduhSdO3fG6NGjER0djfLycpmvgKh9UZWcffDgAUaOHIni4mLs2rWr1rM0RPSIKuSsg4MDAgMDERoaiq1bt8LZ2RmBgYHttqDhMzNEGqSmpgZWVlbYunVrne8/fthQkiT8+OOPOH36NH755Rfs27cPb775JlavXo3Tp0/zFxmiNqIKOVtRUYFx48bh4sWL2LdvH7y8vJrcF5GmU4Wc/bOQkBB89dVXiI2NxdChQ1usX3XBYoZIg7i4uODgwYMYMGBAgx4E7Nu3L/r27YsVK1Zg27ZtmDRpEr777jtMnz4dkiS1QcRE7ZvcOVtTU4MpU6bg0KFD+OGHHxAQENCUyyBqN+TO2bo8HpEpLCxskf7UDW8zI9Igr776KqqrqxEZGVnrvaqqKhQUFAAA8vPza60W3KtXLwBQDIF37NgRABTHEFHLkztn586di++//x7r169XzKZERPWTM2dzc3PrbN+4cSMkSULv3r0b1I+m4cgMkQYJCAjArFmzEBUVhfPnz+Pll19Ghw4dkJqaiu3bt2Pt2rUICQnB5s2bsX79eowdOxYuLi4oLi7GV199BRMTEwQFBQEADAwM4Onpie+//x7PPvssLCws4OXl9cRbULZs2YLMzEyUlpYCAGJjY7F8+XIAwOuvvw4HB4fW/xCI1IicObtmzRqsX78e/fr1Q8eOHfHtt98qvT927FgYGhq2+mdApE7kzNkVK1bgxIkTGDZsGOzt7XH//n3s2LEDcXFxmDt3LlxdXdvyo1AdMs+mRkTN8OcpIx/bsGGD8PHxEQYGBsLY2Fh0795dLFq0SNy9e1cIIURiYqIIDQ0V9vb2Qk9PT1hZWYmRI0eK+Ph4pX5OnjwpfHx8hK6uboOmjwwICFCaLvKPryNHjrTUZROpLVXK2bCwsHrzFYBIT09vyUsnUkuqlLP79+8XI0eOFHZ2dqJDhw7C2NhYDBgwQERHR4uampoWvW51IgnxpzEwIiIiIiIiNcBnZoiIiIiISC2xmCEiIiIiIrXEYoaIiIiIiNQSixkiIiIiIlJLLGaIiIiIiEgtsZghIiIiIiK1xGKGqB3JyMiAJEnYtGmT3KEQUQMwZ4nUC3O27bGYISIiIiIitcRFM4naESEEysvL0aFDB2hra8sdDhE9BXOWSL0wZ9seixkiIiIiIlJLvM2MSM1ERERAkiRcu3YNkydPhqmpKSwtLREeHg4hBG7duoXRo0fDxMQENjY2WL16teLYuu7lnTp1KoyMjHDnzh2MGTMGRkZGsLS0xLvvvovq6mrFfkePHoUkSTh69KhSPHX1mZWVhTfeeANdu3aFnp4ebG1tMXr0aGRkZLTSp0KkupizROqFOateWMwQqanXXnsNNTU1+Oijj/DCCy9g+fLlWLNmDV566SV06dIFq1atgqurK959913ExsY+sa/q6moMHToUnTp1wscff4yAgACsXr0aGzZsaFJswcHB2LlzJ9544w2sX78e8+bNQ3FxMW7evNmk/og0AXOWSL0wZ9WEICK1smTJEgFAzJw5U9FWVVUlunbtKiRJEh999JGiPT8/XxgYGIiwsDAhhBDp6ekCgIiOjlbsExYWJgCIZcuWKZ3H29tb+Pj4KLaPHDkiAIgjR44o7ffnPvPz8wUA8c9//rNlLphIzTFnidQLc1a9cGSGSE1Nnz5d8W9tbW306dMHQghMmzZN0W5mZgY3NzfcuHHjqf395S9/UdoeOHBgg477MwMDA+jq6uLo0aPIz89v9PFEmoo5S6RemLPqgcUMkZqyt7dX2jY1NYW+vj46d+5cq/1p3+z09fVhaWmp1GZubt6kb5J6enpYtWoV9u7dC2tra/j7++Mf//gHsrKyGt0XkSZhzhKpF+asemAxQ6Sm6prysb5pIMVTJi1syPSRkiTV2f7Hhxcfmz9/Pq5du4aoqCjo6+sjPDwcHh4eOHfu3FPPQ6SpmLNE6oU5qx5YzBBRg5ibmwMACgoKlNozMzPr3N/FxQULFy7E/v37cfnyZVRUVCjN+EJErYs5S6RemLNNw2KGiBrEwcEB2tratWZsWb9+vdJ2aWkpysrKlNpcXFxgbGyM8vLyVo+TiB5hzhKpF+Zs0+jIHQARqQdTU1OMHz8en332GSRJgouLC/bs2YOcnByl/a5du4YhQ4bg1VdfhaenJ3R0dLBz505kZ2djwoQJMkVP1P4wZ4nUC3O2aVjMEFGDffbZZ6isrMQXX3wBPT09vPrqq/jnP/8JLy8vxT7dunVDaGgoDh06hC1btkBHRwfu7u744YcfEBwcLGP0RO0Pc5ZIvTBnG08ST3tiiYiIiIiISAXxmRkiIiIiIlJLLGaIiIiIiEgtsZghIiIiIiK1xGKGiIiIiIjUEosZIiIiIiJSSyxmiKhVZGRkQJIkbNq0Se5QiKgBmLNE6oP5+j8sZohUQFpaGmbNmgVnZ2fo6+vDxMQEAwYMwNq1a/Hw4cNWO+/Vq1cRERGBjIyMVjtHQ6xYsQKvvPIKrK2tIUkSIiIiZI2H6Gnac84mJydj0aJF6NWrF4yNjWFra4sRI0YgPj5etpiInqQ95+vdu3cxefJkuLm5wdjYGGZmZvD19cXmzZuhKauzcNFMIpn9+uuvGD9+PPT09DBlyhR4eXmhoqICv//+O/7v//4PV65cwYYNG1rl3FevXsXSpUsxaNAgODo6tso5GuKDDz6AjY0NvL29sW/fPtniIGqI9p6zX3/9NTZu3Ijg4GDMmTMHhYWF+PLLL9G3b1/ExMQgMDBQlriI6tLe8zUvLw+3b99GSEgI7O3tUVlZiQMHDmDq1KlISUnBypUrZYmrJbGYIZJReno6JkyYAAcHBxw+fBi2traK99566y1cv34dv/76q4wR/o8QAmVlZTAwMGjxvtPT0+Ho6Ii8vDxYWlq2eP9ELYU5C4SGhiIiIgJGRkaKtjfffBMeHh6IiIhgMUMqg/kK9OjRA0ePHlVqe/vttzFq1Ch8+umniIyMhLa2doues63xNjMiGf3jH/9ASUkJNm7cqPRN9jFXV1f89a9/VWxXVVUhMjISLi4u0NPTg6OjIxYvXozy8nKl4xwdHTFy5Ej8/vvv8PX1hb6+PpydnfHNN98o9tm0aRPGjx8PABg8eDAkSYIkSYpveo/72LdvH/r06QMDAwN8+eWXAIAbN25g/PjxsLCwQMeOHdG3b99m/UCQc1SIqDGYs4CPj49SIQMAnTp1wsCBA5GUlNSkPolaA/O1fo6OjigtLUVFRUWL9isLQUSy6dKli3B2dm7w/mFhYQKACAkJEf/+97/FlClTBAAxZswYpf0cHByEm5ubsLa2FosXLxbr1q0TvXv3FpIkicuXLwshhEhLSxPz5s0TAMTixYvFli1bxJYtW0RWVpaiD1dXV2Fubi7ee+898cUXX4gjR46IrKwsYW1tLYyNjcXf//538a9//Uv07NlTaGlpiZ9++kkRQ3p6ugAgoqOjG3x9ubm5AoBYsmRJg48hakvM2fr1799fPPvss006lqg1MF//p7S0VOTm5or09HSxadMmYWhoKPr379/gz0aVsZghkklhYaEAIEaPHt2g/c+fPy8AiOnTpyu1v/vuuwKAOHz4sKLNwcFBABCxsbGKtpycHKGnpycWLlyoaNu+fbsAII4cOVLrfI/7iImJUWqfP3++ACCOHz+uaCsuLhZOTk7C0dFRVFdXCyFYzJDmYc7WLzY2VkiSJMLDwxt9LFFrYL4qi4qKEgAUryFDhoibN2826FhVx9vMiGRSVFQEADA2Nm7Q/r/99hsA4J133lFqX7hwIQDUGoL29PTEwIEDFduWlpZwc3PDjRs3Ghyjk5MThg4dWisOX19f+Pn5KdqMjIwwc+ZMZGRk4OrVqw3un0idMGfrlpOTg4kTJ8LJyQmLFi1qVl9ELYX5qiw0NBQHDhzAtm3bMHHiRABo1Znc2hKLGSKZmJiYAACKi4sbtH9mZia0tLTg6uqq1G5jYwMzMzNkZmYqtdvb29fqw9zcHPn5+Q2O0cnJqc443NzcarV7eHgo3ifSRMzZ2h48eICRI0eiuLgYu3btqvUsDZFcmK/KHBwcEBgYiNDQUGzduhXOzs4IDAzUiIKGxQyRTExMTGBnZ4fLly836jhJkhq0X32zk4hGzCvfGjOXEakr5qyyiooKjBs3DhcvXsSuXbvg5eXVZucmehrm65OFhITg1q1biI2NlS2GlsJihkhGI0eORFpaGk6dOvXUfR0cHFBTU4PU1FSl9uzsbBQUFMDBwaHR52/oN+0/x5GSklKrPTk5WfE+kaZizj5SU1ODKVOm4NChQ9i2bRsCAgIa3QdRa2O+1u/xiExhYWGL9CcnFjNEMlq0aBEMDQ0xffp0ZGdn13o/LS0Na9euBQAEBQUBANasWaO0z7/+9S8AwIgRIxp9fkNDQwBAQUFBg48JCgrC2bNnlX44PHjwABs2bICjoyM8PT0bHQeRumDOPjJ37lx8//33WL9+PcaNG9fo44naAvMVyM3NrbN948aNkCQJvXv3blR/qoiLZhLJyMXFBdu2bcNrr70GDw8PpdWJT548ie3bt2Pq1KkAgJ49eyIsLAwbNmxAQUEBAgICcPbsWWzevBljxozB4MGDG33+Xr16QVtbG6tWrUJhYSH09PTw4osvwsrKqt5j3nvvPfznP//B8OHDMW/ePFhYWGDz5s1IT0/Hjh07oKXV+L+RbNmyBZmZmSgtLQUAxMbGYvny5QCA119/naM9pDKYs49+2Vu/fj369euHjh074ttvv1V6f+zYsYpf4ojkxHwFVqxYgRMnTmDYsGGwt7fH/fv3sWPHDsTFxWHu3Lm1nhFSSzLPpkZEQohr166JGTNmCEdHR6GrqyuMjY3FgAEDxGeffSbKysoU+1VWVoqlS5cKJycn0aFDB9GtWzfx/vvvK+0jxKMpH0eMGFHrPAEBASIgIECp7auvvhLOzs5CW1tbaQrJ+voQ4tH8+SEhIcLMzEzo6+sLX19fsWfPHqV9GjNtZEBAgNKUkX981TWlJZHc2nPOPl6Lo75Xenr6E48namvtOV/3798vRo4cKezs7ESHDh0U1x4dHS1qamqeeKy6kIRoxJNKREREREREKoLPzBARERERkVpiMUNERERERGqJxQwREREREaklFjNERERERKSWWMwQEREREZFaYjFDRERERERqicUMERERERGpJRYzRERERESklljMEBERERGRWmIxQ0REREREaonFDBERERERqSUWM0REREREpJZYzBARERERkVr6f6ZnjwoxuGWCAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -1190,11 +1190,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:58:10 2025.\n",
+ "The current time is Tue Mar 25 17:22:29 2025.\n",
"\n",
"Paired effect size(s) for repeated measures against baseline \n",
"with 95% confidence intervals will be computed for:\n",
@@ -1225,11 +1225,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:58:11 2025.\n",
+ "The current time is Tue Mar 25 17:22:31 2025.\n",
"\n",
"The paired mean difference for repeated measures against baseline \n",
"between Control 1 and Test 1 is 0.575 [95%CI 0.325, 0.725].\n",
@@ -1271,7 +1271,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAInCAYAAACFua8hAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAyWBJREFUeJzs3Xd4VNXWBvD3TM+k94QIJHQwNEGQJqChKGDBgqCAoFixwPVTka5A1GtBryiCNK96QWygNDGCgjQFEaRJCwmQ3iczmXbO90fMmCGFtMmZmby/5xlhTl1xk2TNPmvvLUiSJIGIiIiIiAAACrkDICIiIiJyJ0yQiYiIiIjKYYJMRERERFQOE2QiIiIionKYIBMRERERlcMEmYiIiIioHCbIRERERETlMEEmIiIiIiqHCTIRERERUTlMkN1AWloa5s2bh7S0NLlDISIiImrymCC7gbS0NMyfP58JMhEREZEbYIJMRERERFQOE2QiIiIionKYIBMRERERlcMEuZyff/4Zo0aNQrNmzSAIAr755purnrNz505cd9110Gq1aNOmDVavXu3yOImIiIjIdZggl1NcXIyuXbtiyZIlNTr+/PnzGDFiBAYPHozDhw/j2WefxcMPP4xt27a5OFIiIiIichWV3AG4k1tuuQW33HJLjY9funQp4uLi8OabbwIAOnbsiN27d+Ptt9/GsGHDXBUmEREREbkQE+R62Lt3LxISEpy2DRs2DM8++2y155nNZpjNZsd7g8HgivBqLScnBxaLxSXXttvtAICQkBCXXJ+qp1AoUFxc7LL2FUURkiSxfWUiCAKMRqPL2hco/R5m+8rHaDTCarW67PqiKCI4ONhl16fqFRcXw2azuez6Go0GoaGhLru+N2KCXA/p6emIjIx02hYZGYnCwkKYTCb4+PhUel5iYiLmz5/fGCHWWE5ODpYsWQJJklx6n0GDBsHPz8+l96CKRFHEli1b2L5eymQy4ccff2T7eimDwYCffvqJ7eulGqN9BUHAk08+ySS5FliDLIMZM2agoKDA8frpp5/kDgkWi8XlP3yBf3qSqXHZbDa2rxdj+3o3u93O9vVijdG+kiS59AmTN2IPcj1ERUUhIyPDaVtGRgYCAgKq7D0GAK1WC61W63jvbp/YBUFo8Gs2xg93qhm2r3dj+3o3tq93Y/u6D6/pQZYkCT/++CO2bNmCoqKiRrlnnz59kJSU5LRt+/bt6NOnT6Pcn4iIiIgankcmyDNnzsTgwYMd7yVJwtChQzFkyBCMGDECnTt3xtmzZ2t9XYPBgMOHD+Pw4cMASqdxO3z4MFJSUgCUlkZMmDDBcfxjjz2Gc+fO4fnnn8fJkyfx/vvv4/PPP8e0adPq9wUSERERkWw8MkH+8ssv0atXL8f7L774AklJSViwYAG+++472O12zJs3r9bX/e2339C9e3d0794dADB9+nR0794dc+bMAQCkpaU5kmUAiIuLw6ZNm7B9+3Z07doVb775Jj766CNO8UZERETkwTyyBvnSpUto06aN4/1XX32FTp06YcaMGQCAxx9/HB988EGtrzto0KBqa3UqWyVv0KBB+P3332t9LyIiIiJyTx7Zg6xSqRzzCEuShKSkJAwfPtyxPzIyEtnZ2XKFR0REREQezCMT5Pj4eHzyySfIy8vDqlWrkJOTgxEjRjj2X7hwAWFhYTJGSERERESeyiNLLObMmYNRo0Y5kuB+/fo5DdrbtGkTrr/+ernCIyIiIiIP5pEJ8pAhQ3Do0CFs374dQUFBGDNmjGNfXl4ebrzxRtx+++0yRkhEREREnsojE2QA6NSpEzp16lRhe3BwMN5++20ZIiIiIiIib+CRCXJRURHy8/PRvHlzx7bLly9j6dKlMJvNuPvuu1liQURERER14pEJ8iOPPILz589j3759AIDCwkLccMMNuHjxIhQKBd555x1s3boVgwYNkjdQIiIiIvI4HjmLxe7duzFy5EjH+08++QSXL1/Gnj17kJeXhy5dumDBggUyRkhEREREnsojE+Ts7GzExMQ43m/cuBH9+/fHDTfcAH9/f0yYMAF//PGHjBESERERkafyyAQ5KCgI6enpAACTyYRdu3Zh6NChjv0qlQpGo1Gu8IiIiIjIg3lkDXLfvn3x/vvvo0OHDti6dStKSkqcpnX766+/nHqYiYiIiIhqyiMT5Ndeew1Dhw7FXXfdBQD417/+hWuvvRYAYLfbsX79eqelp4mIiIiIasojE+Q2bdrg1KlTOH78OAIDAxEbG+vYZzQa8d5776Fr167yBUhEREREHssjE2QAUKvVlSbB/v7+XEWPiIiIiOrMIwfpAaVzH7/66qsYNmwYunfvjgMHDgAAcnNz8dZbb+HMmTMyR0hEREREnsgje5AvXryIgQMHIjU1FW3btsXJkydhMBgAACEhIfjwww9x4cIFvPPOOzJHSkRERESexiMT5P/7v/9DUVERDh8+jIiICERERDjtv+OOO/Ddd9/JFB0REREReTKPLLH4/vvv8fTTT6NTp04QBKHC/latWiE1NVWGyIiIiIjI03lkgmwymRAeHl7l/qKiokaMhoiIiIi8iUcmyJ06dcLPP/9c5f5vvvkG3bt3b8SIiIiIiMhbeGSC/Oyzz2Lt2rV47bXXUFBQAAAQRRFnzpzB+PHjsXfvXkybNk3mKImIiIjIE3nkIL0HHngAFy5cwKxZszBz5kwAwPDhwyFJEhQKBRYtWoQ77rhD3iCJiIiIyCN5ZIIMADNnzsT48ePx5Zdf4syZMxBFEa1bt8bo0aPRqlUrucMjIiIiIg/lsQkyALRo0YKlFERERETUoDyyBvnQoUN4//33q9z//vvv4/Dhw40XEBERERF5DY9MkGfOnIkffvihyv0//vgjZs2aVefrL1myBLGxsdDpdOjdu7djGeuqLF68GO3bt4ePjw+aN2+OadOmoaSkpM73JyIiIiL5eGSCfPDgQQwYMKDK/QMGDMBvv/1Wp2uvW7cO06dPx9y5c3Ho0CF07doVw4YNQ2ZmZqXHf/bZZ3jxxRcxd+5cnDhxAitWrMC6devw0ksv1en+RERERCQvj0yQi4qKoFJVXT6tUCgc07/V1ltvvYUpU6Zg0qRJ6NSpE5YuXQq9Xo+VK1dWevyePXvQr18/jBs3DrGxsRg6dCjGjh171V5nIiIiInJPHjlIr23btvj+++/x1FNPVbp/69atdZrJwmKx4ODBg5gxY4Zjm0KhQEJCAvbu3VvpOX379sUnn3yCAwcOoFevXjh37hw2b96M8ePHV3kfs9kMs9nseG8wGGodq6cSBAEKRf0+lwmC4PS6ct+Vf17598rel8VV1bby+648rrLzqrtXZXFe+XfRWAxrWhpseTmwG42AJNbr/1l2/U4nIiJqUjwyQX7ooYcwbdo0TJ8+HXPmzEFQUBAAID8/H/Pnz8fWrVvx73//u9bXzc7Oht1uR2RkpNP2yMhInDx5stJzxo0bh+zsbPTv3x+SJMFms+Gxxx6rtsQiMTER8+fPr3V83kCSJIhiw2RrCoUCKpUKarUaGo0GGo0GWq0WOp0OPj4+1T5lcFeixYKSs6dhzUiTNY4FCxbAZrNBpVLVq56fiIjIE3leBgHg6aefxuHDh7F48WK8++67aNasGQDg8uXLEEUR48ePb7Tp33bu3IlFixbh/fffR+/evXHmzBk888wzeOWVVzB79uxKz5kxYwamT5/ueH/48GEMHDiwUeL1JqIowmKxwGKxoLi4uMJ+jUYDvV4PX19f+Pv7Q6/XV+hxdie2/DwYjx2FZLXIHQpsNpvjAx8REVFT45EJsiAIWLVqFSZMmIAvv/wS586dAwDcfvvtuOuuuzBo0KA6XTcsLAxKpRIZGRlO2zMyMhAVFVXpObNnz8b48ePx8MMPAwA6d+6M4uJiPPLII5g5c2al5QRarRZardbx3s/Pr07xUvXKkuf8/HwApT3O/v7+CAwMRGBgIDQajbwBlmPJSIfp5PF6l1IQERFR/Xlkglxm8ODBGDx4cINdT6PRoEePHkhKSnIsVS2KIpKSkjB16tRKzzEajRWSYKVSCaC0nIDchyiKKCgocAzg1Ov1CA4ORkhIiKzJsiU9rTQ5Bv+9EBERuQOPnMXi/Pnz+Pbbb6vc/+233yI5OblO154+fTqWL1+ONWvW4MSJE3j88cdRXFyMSZMmAQAmTJjgNIhv1KhR+OCDD7B27VqcP38e27dvx+zZszFq1ChHokzuyWg04tKlSzh69Cj++usv5ObmNlh9dE3Z8nJhOnUCTI6JiIjch0f2ID/33HMoLCzEqFGjKt2/ZMkSBAUFYe3atbW+9pgxY5CVlYU5c+YgPT0d3bp1w9atWx0D91JSUpx6jGfNmgVBEDBr1ixcunQJ4eHhGDVqFBYuXFi3L45kUVRUhKKiIiiVSoSFhSE8PNypDMYVRJMRxj+PsKyCiIjIzXhkgrx37148++yzVe6/+eabsXjx4jpff+rUqVWWVOzcudPpvUqlwty5czF37tw634/ch91uR0ZGBjIyMhAcHIzIyEj4+vo2+H0kUYTx2J+Q7BwER0RE5G48MkHOy8uDv79/lfv9/PyQk5PTiBGRN8rLy0NeXh4CAgIQHR3doIMpS86dgd1Q2GDXcxcKhaJepUVlU/eVzTZSVsdfvp5fkiSn7eVfV+4nIiKqC49MkFu0aIFffvkFjz/+eKX7d+3ahWuuuaaRoyJvVVhYiMLCQvj7+yM6OrraD2c1YSvIh+ViagNF515EUYTdbq/z+Xa7HXa7HYGBgQgLC0NAQECdr1U253b5BLrsffk/r/x7ZcdUdq3qXmX3vzLBd/wpikD5RL6eCb3SjacvJCLyRB6ZII8dOxavvPIKevXqhalTpzpqgu12O9577z2sW7cOM2fOlDlK8jZldcq+vr6IjIxEUFBQredVlkSRg/KuQhRFR++9n58fWrRoAR8fn1pfRxCERhkoK5rNEM0lkMxmiBYzJLMFktUCyWqFZLVBslkh2WyQ7HZIdrtLas6zTCUNfk0ioqbMIxPkGTNmYPfu3Xj22WexcOFCtG/fHgBw6tQpZGVlYdCgQUyQyWWKi4tx7tw5aDQahIeHIywsrMar9llSUyAaKy5qQpUzGAw4ceIErrnmGkRERMgWh2g2QzQWw24shmg0QjQZIZpMkEpKIHGQJRGR1/HIBFmr1eL777/HmjVr8NVXX+Hs2bMAgF69euGuu+7ChAkTKl2gg6ghWSwWXLp0CZcvX3YqCaiqV1k0m2FOSW7cICtRk/pclUrlWGpa7npeSZKQmpqKkpISNG/e3KWrIUqSBLG4GHZDIexFRRANBtiLDZBsVpfdk4iI3I9HJshA6WCeSZMmOeYnJpKLJEnIz89Hfn4+VCoVgoKCEBwcDH9/f6dkznz+bI1nrRAUSqjCwqEKDoHC17feSaGloBDC7j01Tnbr+gSmXbt2CAkJqdO5QGmZlNFoREFBAYqKipz2ZWVlQRRFxMbG1vn6VxJLSmAvKoS9sKD0VVQESax7DTUREXkHj02QidyRzWZDdnY2srOzoVQqHUtb6xUKWNPTrn4BQQFNsxjoYltBUKsbLK5w/wA8+eSTsFgsDXbNK2k0GoSGhtb7Ov7+/oiMjITZbMbly5eRm5vr2JeTkwOFQoEWLVrU6pqSKJaWSBgMEIsNsBsMsBuKIFld9/+DiIg8l0cmyDfddNNVjxEEAUlJSY0QDVHl7Ha7o2fZcvkSFEYD9BoNfNRq+KhV0KnVUJUrBVJoddBf2wXKeszcUJ2GSF4bk1arRVxcHEJDQ5GcnAyrtbTMISsrCzqdrkJNsmSzQSwpgWgugWgyOeqERaMRYokJHBhJREQ15ZEJsiiKFR452+12XLhwAampqWjTpg1iYmJkio7ImWj++zE+gAJTCQrKzTigUiqgUSrh4x8A/7i2KDGbocrLg0qlgkKhgEKhaJCaW4VCAeTmQDK7ZrYDSRQBQYA6IqqeFyqb9kwERAmSaIeP3Y424WE4l5yMYkMxJNGOcxnpQEQ4fJXK0pkjLBYuukJERA3GIxPkK1ezK++7777DI488grfeeqvxAiKqhq2aRWtsdhGiRgcxOBTG7GyXxeBrLoFq+Xsuu35ZYhty5z1QBga65BYxkoQLhXkwmEvLIs4VFaBteJhTLzwREVFD8LrfLCNHjsQDDzxQ7VLURI1FtFhgv2KwWXmCRgtNzDUQXD1fby1rjzv/dz3ar1mLzv9dX6vzJJvrenEVgoCWIcHw1WoAlH64uJhf4LL7ERFR0+V1CTIAtG7dGr/++qvcYRDBlpuDKmtflUpoGyM5vpIgXPVlEe0QJcAi2mt0fGNRCAJaBgdB+/e800UlZuSbTI12fyIiahq8LkG22Wz4/PPPERYWJnco1MRJNhvshVX3cGqioiFoNI0YkXdQKhRoGRIE5d+lFZcLimATuVgHERE1HI+sQZ48eXKl2/Pz87Fv3z6kp6ezBplkZyvI/2fQ2RWUwSFQ+vk3bkBeRKtSISYoACm5+bCLItILi3BNkGtqn4mIqOnxyAT5xx9/rDCyXxAEBAcHo3///nj44YcxdOhQmaIjKl08xJ6fV+k+QaOBOiy8kSPyPoE6HUJ89cgtNiLPZEKorx4+DTh3NBERNV0emSAnJyfLHQJRtexFhVUOWFNHRkPgzAsNIjrAHwazGRabHZcLCtE6zLPmeiYiIvfE39JELmDPz690uzIgEEq9vnGD8WIKQUBMYOnCKkaLFQUlrpnnmYiImhaPSZCNRiNSUlIqXSp35cqVuPnmm9GpUyeMHj2aM1iQrESzGaLJWHGHQgF1eETF7VQvflotgvU+AICMIgOkKuq+iYiIaspjEuSXX34ZXbp0qZAgL1iwAFOmTMFPP/2ErKwsfPPNNxg0aBD++OMPmSKlps5WkF/pdnVIGASVR1Y1ub0ofz8oFALMVhvyTexFJiKi+vGYBHnHjh0YOXIk/Pz8HNsKCwuxYMECxMTE4PTp08jKysK+ffug0Wjw6quvyhgtNVWSJMFeWFhhu6BSQxkSIkNETYNKqUTE3z8bMg3sRSYiovrxmAQ5OTkZXbp0cdq2efNmWCwWvPDCC4iLiwMA9OrVC5MmTcKuXbvkCJOaONFQBNgrDs5ThYZWmHmFGlaYrx5qlRIWm521yEREVC8ekyAXFRUhNNR5hPrPP/8MQRAwbNgwp+2dOnVCVlZWY4ZHBACwFVRcGERQq6EMDGr8YOpBo1BCIZT+6SkEQUDk373IWYZimaMhIiJP5jEFkS1btsTJkyedtu3cuRORkZFo06aN03aLxYKAgIDGDI8Iks0G0VgxMVOFhHlc7/HRCffKHUKdBPnokF1cjBKrDYUlZgTotHKHREREHshjepCHDh2KlStXYv/+/QCAjz/+GCdPnsSdd95Z4diDBw8iNja2kSOkps5eWFhh5TxBpYIykCu8NRZBEBy1yNnF7EUmIqK68ZgEefbs2fDz80Pfvn2h0Wjw4IMPIjw8HHPmzHE6zmg04uuvv8bNN98sU6TUVNmLKpZXqIJDPK732NMF+uigVatQbLbAZLXKHQ4REXkgjymxCAsLw+HDh/HRRx/h3LlzaNmyJSZPnoyICOd5Zf/880/cf//9GD9+vEyRUlMkWiwQrxwYplB4XO2xt4jw80VqXgGyi41oHsQefCIiqh2P6UEGgODgYPzf//0fPvjgA7z44osVkmOgdBaL//znP7j22mvrfJ8lS5YgNjYWOp0OvXv3xoEDB6o9Pj8/H08++SSio6Oh1WrRrl07bN68uc73J89jL6o4tZsyMAiC0nMGuXmTQJ0OGpUSBaYS2ERR7nCIiMjDeFSC3BjWrVuH6dOnY+7cuTh06BC6du2KYcOGITMzs9LjLRYLhgwZguTkZHzxxRc4deoUli9fjpiYmEaOnOQkVpj7WIA6KFiWWKi0FjnUVw9JkpBnNMkdDhEReRiPKbFoLG+99RamTJmCSZMmAQCWLl2KTZs2YeXKlXjxxRcrHL9y5Urk5uZiz549UKvVAMABgk2MaDZDtJidtin8/CBoNDJFRAAQ7OODjCIDcoxGhPnqWQtOREQ1xh7kciwWCw4ePIiEhATHNoVCgYSEBOzdu7fSczZu3Ig+ffrgySefRGRkJOLj47Fo0SLY7fYq72M2m1FYWOh4GQyGBv9aqPHYDRXLK1SsPZadUqFAiF4Pq80Og9ly9ROIiIj+xgS5nOzsbNjtdkRGRjptj4yMRHp6eqXnnDt3Dl988QXsdjs2b96M2bNn480338SCBQuqvE9iYiICAwMdr4EDBzbo10GNSywqcnovqNVQ+PrKFA2VF+qrBwQgl2UWRERUCx6RIG/cuBGXL1+WO4xKiaKIiIgILFu2DD169MCYMWMwc+ZMLF26tMpzZsyYgYKCAsfrp59+asSIqSGJFgtEs3N5hTIwiI/z3YRGqYS/VosiMwfrERFRzXlEgnznnXdi586djvetWrXCxo0bG/w+YWFhUCqVyMjIcNqekZGBqKioSs+Jjo5Gu3btoCw3W0HHjh2Rnp4Oi6Xyx7parRYBAQGOl9/fCxuQ57my9xiCwPIKN1M6WA8crEdERDXmEQmyv78/8vPzHe+Tk5NdUrer0WjQo0cPJCUlObaJooikpCT06dOn0nP69euHM2fOQCzXO/XXX38hOjoaGg7S8npX1h8r9L4QVBz76k78tVpoVErkmZggExFRzXjEb/JevXph4cKFyMjIQODfy/Zu3ry5yrpgoHSap2nTptX6XtOnT8fEiRPRs2dP9OrVC4sXL0ZxcbFjVosJEyYgJiYGiYmJAIDHH38c7733Hp555hk89dRTOH36NBYtWoSnn366Dl8peRLJZquwOIiKy0q7pWC9DzIKDTBZrfD5e7YZIiKiqnhEgvz+++9jwoQJeOWVVwCUJr+fffYZPvvssyrPqWuCPGbMGGRlZWHOnDlIT09Ht27dsHXrVsfAvZSUFCgU/3S8N2/eHNu2bcO0adPQpUsXxMTE4JlnnsELL7xQ63uTZ7Ff+RRDqYTCz1+eYKhaZVO+5RlN8AlkgkxERNXziAS5TZs22LNnD0pKSpCZmYnY2FgsXrwYt99+u0vuN3XqVEydOrXSfeVrocv06dMH+/btc0ks5L7sBuf6Y6V/AAfnuSn134P1CkpKEB3gz3YiIqJqeUSCXEan06FFixaYO3cubrrpJrRs2VLukKiJkkQRorHYaZvSP0CmaKgmgvU+KMo1w2C2wF+nlTscIiJyYx6VIJeZO3eu4+8GgwGpqakASssdOCMENQaxuBiQJMd7Qa2GUq+XMSK6mgCtFkqFAvklJUyQiYioWh4xi0Vlfv31VwwePBjBwcGIj49HfHw8goODcdNNN+G3336TOzzycvZi5/pj9h67P0EQEOSjQ2FJCcRyH26IiIiu5JE9yPv378egQYOg0Wjw8MMPo2PHjgCAEydO4H//+x9uvPFG7Ny5E7169ZI5UvJWYvGV5RUcnOcJgnx0yCk2oshsRqBOJ3c4RETkpjwyQZ45cyZiYmKwe/fuCgt4zJs3D/369cPMmTOxfft2mSIkbyaazZBsVsd7QaOBQucjY0RUU3qNBhqVEgWmEibIRERUJY8ssdi/fz8effTRSle3i4yMxCOPPMJZJchlxCumd1P6sbzCkwT7+KCoxMwyCyIiqpJHJsgKhQI2m63K/Xa73WmuYqKGVLH+mANDPUmAjw6iJKHIbJY7FCIiclMemUX27dsXS5YswYULFyrsS0lJwfvvv49+/frJEBl5O8luh1jyz5LFglrN8goPo1OpoFOrUGgqufrBRETUJHlkDfKiRYtw4403okOHDrjzzjvRrl07AMCpU6ewYcMGqFQqx1LQRA1JNBqdpndjeYVnCvTRIctQDEmSuGgIERFV4JEJcvfu3bF//37MnDkTGzduhNFoBADo9XoMHz4cCxYsQKdOnWSOkryR3eQ8e4WC5RUeKUinQ0ahgYuGEJWjUCjqVZ4oCEKDXKM+GvMDr2SzQbLbAVGs13U0DRQPNSyPTJABoFOnTvj6668hiiKysrIAAOHh4aw9Jpdymt5NqWJ5hYfSqFTwUatRyEVDiBxEUYRYz2TPbrdDEARoNBr4+PjA19cX/v7+0Ov1Hv20RrJaYcvLgS0vD/aiIojGYkiivUGurb1iXAu5B49NkMsoFApERkbKHQY1AZLFAslicbxX+vl59A/8pi5Ap0WO0YgYuQMh8jKSJMFsNsNsNiM/Px8AoFKpEBwcjNDQUPj6+sobYA1JkgRbdhYsaZdhy8sFpPp9eCDP4vEJMlFjsf9dylNG6cvyCk8W4KNDRpEBRosFeg0fchK5ks1mQ1ZWFrKysqDX6xEZGYng4GC37GSQRBHWtMswp15wGpRNTQsTZKIaEo3lyisUCig8pBeEKqdTqaBVq1BYYmaCTNSIjEYjzp8/j8uXLyMmJgbBwcFyh+RgzcpEydkzEEuMVz+YvBoTZKIaKt+DrND7QmC9u8cL1GlRWGJGFLhUOFFjM5vNOHfuHPz8/NCiRQv4+Mg3pkMsKYHpr5Ow5WbLFgO5F/6GJ6oB0WwG7P8sTqNk77FX8NfqUGK1wVLNwkNE5FoGgwEnTpzA5cuXIcmwwqUlPQ2GX/cxOSYnTJCJasBp9gqw/thb6DVqqJUKFJktVz+YiFxGkiSkpaXh5MmTMDfSKpeSKMJ08jhMJ49BsvNDMjnz6BKL48eP49y5c8jLy6v0U+eECRNkiIq8kd1UrrxCo4WgVssYDTUkf50ORWYzQn31codC1OQZjUacOHECsbGxCAoKctl9RLMZxj//gL2o0GX3IM/mkQny2bNn8cADD+DAgQNVPo4RBIEJMjUISZKcBugp/Nh77E0CtFqk5OVDlCQo3HBEPVFTY7fbcfbsWTRr1gzR0dENf32DAcYjhyFauNw8Vc0jE+RHH30UR48exeLFizFgwAC3GgFL3kcsKXFaKYmzV3gXP60GEACD2YIALhpC5DYuX76MkpISxMbGNth0cLb8fBiPHmZJBV2VRybIv/zyC1566SU89dRTcodCTUCF6d18+CjemwiCAD+NBgazmQkykZvJzc2FzWZD69at671Sri0vF8ajfzTYCnjk3TxykF5YWBgCAwPlDoOaiPID9BR6X7ec2J7qx//v6d6IyP0UFhbir7/+gt1e98TWlpcL45HDTI6pxjwyQX7sscfwySef1OubhagmJLvdaSUlJQdyeSV/rRZWux0mq1XuUIioEsXFxTh9+nSdfu+XllX8AYlLRVMteGSJRbt27WC329G1a1dMnjwZzZs3h1KprHDc6NGjZYiOvIloMgLlBoIq9Byg543USiV0ahWKSszw4QwlRG6pLElu27Ztpb/zK2M3GEprjtlzTLXkkQnymDFjHH9/7rnnKj1GEAT2MFO92cvVHwtqNRRckthr+WtLyywi/PkhiMhdFRcX4+zZs2jTps1Va5JFc0lpWQUH5FEdeGSCvGPHDpdef8mSJfj3v/+N9PR0dO3aFf/5z3/Qq1evq563du1ajB07Frfffju++eYbl8ZIjUM0ONcfk/fy12mRZSiG1W6Huoa9U0TU+IqKipCcnIxWrVpVeYxkt8N45A9O5UZ15pEJ8sCBA1127XXr1mH69OlYunQpevfujcWLF2PYsGE4deoUIiIiqjwvOTkZzz33HAYMGOCy2KhxiRYLJOs/K6xxeWnvpleroVIqUFjCRUOI3F1eXh5SU1PRvHnzSvebTvwJe3FRI0dF3sQjB+mVd/z4cWzZsgVbtmzB8ePH6329t956C1OmTMGkSZPQqVMnLF26FHq9HitXrqzyHLvdjvvvvx/z58+v9hMteRbRYHB6z+ndvJsgCPDXalFQwh4nIk+QmZmJrKysCttLks/Bml1xO1FteGyCvGHDBrRu3RqdO3fGyJEjMXLkSHTu3Blt2rTBxo0b63RNi8WCgwcPIiEhwbFNoVAgISEBe/furfK8l19+GREREXjooYdqdB+z2YzCwkLHy3BFIkbuwW78p10UWi0ElUc+cKFa8NdpUWyxwCZytDuRJ0hNTUVh4T/LRVtzsmFOPidjROQtPDJB3rx5M+666y4AwKJFi/D111/j66+/xqJFiyBJEkaPHo2tW7fW+rrZ2dmw2+2IjIx02h4ZGYn09PRKz9m9ezdWrFiB5cuX1/g+iYmJCAwMdLxcWTJCdSOJIkSj0fFeYP1xk+Cv1UIBAYXsRSbyCJIk4fz58zCbzRBLSmA6cUzukMhLeGSX2CuvvIIuXbpg165d8C1XF3rbbbdh6tSp6N+/P+bPn4/hw4e7NI6ioiKMHz8ey5cvR1hYWI3PmzFjBqZPn+54f/jwYSbJbkY0FjtN76bUs7yiKVAIAvy0GhSYzAhhmxN5BJvNhrNnzuAaowGSjXOZU8PwyAT5yJEjWLRokVNyXMbX1xcPPvggXnrppVpfNywsDEqlEhkZGU7bMzIyEBUVVeH4s2fPIjk5GaNGjXJsE/9+NKtSqXDq1Cm0bt26wnlarRZa7T9L2vr5cVopd2N3KnsRWH/chATodLhUUACbKEJVz6VtiahxFKamINlYjJYhQXKHQl7CI3/663Q65ObmVrk/NzcXOp2u1tfVaDTo0aMHkpKSHNtEUURSUhL69OlT4fgOHTrg6NGjOHz4sON12223YfDgwTh8+HCVo2vJ/ZVPkBU+PhA47VeTEaAr/fDKMgsiz2A3GmHLzUVhSQnSCzlzBTUMj+xBvummm/DOO+9g+PDhFRLX/fv3491338XQoUPrdO3p06dj4sSJ6NmzJ3r16oXFixejuLgYkyZNAgBMmDABMTExSExMhE6nQ3x8vNP5QUFBAFBhO3kOu8kElJtYXsEpv5oUpUIBX40GBaYSllkQuTnJZoM17TKA0pK4LEMxNEolQrz45/aHH34Ig8EAPz8/PProo3KH47U8MkF+/fXX0adPH/Tv3x+9evVC+/btAQCnTp3CgQMHEBERgddee61O1x4zZgyysrIwZ84cpKeno1u3bti6datj4F5KSspVV+8hzyYanHsgFD4coNfUBProcKmgEDa7HSo+PSByW5b0yxXqji8VFkKpVCCwDk+SPYHBYHCauYNcwyMT5Li4OBw5cgSJiYnYsmUL1q1bBwBo2bIlnnnmGbz44ovVLupxNVOnTsXUqVMr3bdz585qz129enWd70vuwWn+Y4UCCh8f+YIhWZTWIReigIuGELkta042xOLiijskIDWvAMoQAX7lxvsQ1YZHJsgAEBERgbfffhtvv/223KGQFxEtFogWs+O9Uu8LQRBkjIjkoFIo4KfRIM9kYoLswcp/71b195q8v9r2KokiJLvdaUacuvDYX9QuZDcYYMvOrnK/JEm4kJuP2JBg+Go1jRgZeQt+3xGVIxZdUV7B5aWbrEAfHS7lF8Jss0HLRWIajFKphEKhgEKhgEqlglqthlqtdszu4+PjA9Xf/7+rS0hrmtQ2BkkUYS/Ih62gAKKhEHajEZLJBElqmAVnfIq5mFR5otkMS9ollNUdV3mcJCE5N49JMtWJR/zUnzx5MgRBwLJly6BUKjF58uSrniMIAlasWNEI0ZE3sRuc67qUXCCkyQrQ6XBZKES+yYRIf3+5w/EadrsddrsdQOmqopVRq9XQ6/XQ6/Xw8/ODn5+f2439kEQRtuxMWDMzYcvNgSTa5Q7JYcGCBbDZbFCpVJg1a5bc4TQoyW6H5dJFoIarXZYlyS2Cg+CvY7kF1ZxHJMg//vgjFAoFRFGEUqnEjz/+eNXeAj4Wp9qSLBaI5ab2EjRaCBr2OjRVKoUCflot8kwlTJAbmdVqRUFBAQoKCgCU/jz39fV1rD7qI+O4ALGkBJaLqZUODnMXNpsNkiTBZrNd/WAPIkkSLJcuQrJaanWeKEm4kJeHmMBABOs5poRqxiMS5OTk5GrfEzUE+xWzVyh9uYBLUxfko0NqXgEMZjMH+8hIkiQYDAYYDAZcunQJWq0WwcHBCAkJabRkWTSZUJJ8DtbMDKCBSieo5iRJgvXyJYgmYx3PBy7mF8BqtyPCnz/b6eo8IkG+UkpKCsLDw6v8wWgymZCVlYUWLVo0cmTkyexFzuUVCj+WVzR1ATodFIpC5BlNTJDdiNlsRnp6OtLT0+Hj44OwsDCEhoZC6YIp+SSbDebk8zBfSmViLCNrRnqFToy6yCgyoMRmwzVBgVDwSTNVw72KumooLi4OX3/9dZX7N27ciLi4uEaMiDzdleUVpdO7cfaCpk4hCAjU6VBYYoa9hjWP1LhMJhNSU1Nx5MgRXLhwASaTqcGubc3MgOHAXpgvXmByLCNLZjrsBfkNdr0CUwnOZOWgxOpdJSjUsDyyB1m6ypQ5VqvV7QZ0kHuzFVUcnMc6dgJKyyzyjCbkm0o45ZsbE0UR2dnZyM7ORkBAAKKiouBfx9px0WJByelTsGZlNHCUVFuWjHTY8/Ma/Lpmmw1nsnMQFeCHMM5WRJXwmAS5sLAQ+fn5jvc5OTlISUmpcFx+fj7Wrl2L6OjoRoyOPJ1YobyCNWpUyk+rhVqlRK7RyATZQxQWFqKwsBB+fn5o1qxZrRJlW14uTCeOOc2HTo1PkiRY09NgLyxw6T3SCopQYCpBTFAgdJzOkcrxmH8Nb7/9Nl5++WUApSOan332WTz77LOVHitJEhYsWNCI0ZEnE80lEJ2mmxI4QI+chPj4IKPIgGKLBb6c2cRjGAwG/PXXX/D390dMTAx8r9JTaL5wHiXnz+Fq8+uSa0l2OyxplypfJc8FjBYrzmRlI0SvR4S/H1Q1fAItqDUQ1GoIQv2eWCts//x7u9oTcgDw9fWFJEmOP8k1PCZBHjp0KPz8/CBJEp5//nmMHTsW1113ndMxZVMB9ejRAz179pQpUvI0tgLnHgqFjw8E9iRQOcF6H2QYDMgtNjJB9kBFRUU4efIkgoKC0KxZswoDvCW7HaaTx1lS4QYkiwWWyxev6LRohPtKQE6xEXkmE8J8fRHqq3dKlAW1BqrgEKiCgqEMCIDCRw+hgQaFmnNyIOzZW+Nk99FHH631PQRBgIY/u2rFY7KAPn36oE+fPgCA4uJi3HXXXYiPj5c5KvJ0kiTBXnhF/THLK+gKaqUSfhotCkpKEG23Q+WC2RLI9fLz85Gfn4+goCBERUXB19cXosUC49HDFWaxocZnNxhgSb8M2OVbdEUUJWQWGZBtKEagXo+I5tcgOLYVlMEhLhuXEhoaiieffBIWS+3md64NjUaD0NBQl13fG3lMglzGaDTi3XffhV6vZ4JM9SYWFwN255HMCj8uCkEVhfj6wGA2I8do5MIhHq4sUdar1fDLzoS/IHFQrowkSYI1KxP2vFy5QymlUEARGAxTSAhSJAXSL11GULER/v7+8PPzcyyF3pD8rRZIlpKrH1hH/Oddex6XIOv1eqhUqqvWkhHVxJVTBym0Wij4GIoqEaDVQq1UIKfYhHA/P86h6uFEsxk5Z04jx26DWqlAsN4HwT4+0Lh5eVVNHsOrVCrHUtPuXqNqNxphzUiH5BaDIgUoAwOhDgt3KrOzWCzIzMxEZmYmgNKl0HU6HTQaDZRKZb0/XInZWbC883q9rlETLRLfgiaKExjUlHv/JKjCXXfdhS+++AKPP/44P/VTnUk2G+zFBqdtCvYMUhUEQUCIXo+MIgPyjSaEcEYLjyWWmGC+eNHx9MhqF5FZVIzMomL4ajQI8tEhwEdX48FaDoICSr0vFL56KHQ+pYO4lEpAUb/fU/4FBRB+P1LjZHfmzJl1uk+LFi0QHBxcp3OB0uRdFEVYrVaYzWaYTCaUlFTeKypZrbBmZ1YocZOLQquFKjIayhqszGi1WmG1Ntwy44qsDDTGbx7J7Loeam/kkQnyfffdhyeeeAKDBw/GlClTEBsbW+mqelcO4iMqz15QUDoyoxylX4BM0ZAnCNb7INNgQFZxMYL1PvyA7oFEcwnMF1OrrHMttlhQbLHgUmEhfNUa+Ou08NdqoVNX/utS6RcAVVgYVEEhUAYEQHDBHPxRUc08tkbVbrfDYDCgsLAQeXl5sBQXw5qXW/r0zi16twWoQkKgCgt3j+/nGsRw58ZtyDKZEO7jg69vG3b1a7rF/2fP45EJ8qBBgxx/37VrV4X9klRaT2aXsdCf3J/tivIKQaOFgssJUzXUSiUCdTrkm0pQUFKCoBr0NpH7EM1mmFOrTo6dSP8ky+kogkqpgK9GU/ry9YN/8+bQNYtptBU3PXWAlVKpRICfH/RmE0IgIr8wD7lmEwohyT+ZnlIFTXS0x03rmWUyIcPYcCtGUuU8MkFetWqV3CGQh7MbDJCszr0xSg7OoxoI8/NFvqkEWYZiJsgeRLJaYbmYWmFQbk3Z7CKKRAlGvR9y/QKgKCiCtuQ8fHx8oNVqodVqoVaroVaroVKpoFQqoVAoGqxX0pKe5tJH5IJW1yD1qZLNBtFshlhigr2oEPaCAtjz8yD9vVS3n1YDP60GFrsdWYZi5BmNsnRwKrQ6aGKugaBWN/7NySN4ZII8ceJEuUMgD2fLrzhaWhnA8gq6Oh+1Gr5aDYrNFhSYShDoo5M7JLoKyW6H+WIqJFvd6kYFtQbq8HAo/f/5GSFJEkpKSqqssXWc2wAJsiI/F37/XVHv61RLkhAyegyUgYH1vI5Yo8M0SiViAgMQ5lta119garz6WIWvHzTNYlxSDkPewyMT5PIMBgNSU1MBAM2bN4cf57ClqxAtlgorNCm0LK+gmgv39UWx2YKMIgMCdFr3qF2kSkmiCMuli3WbJUGhgDo0rF5z4DbELBJSLWuPO/93PSyiHRqFEkfH31Pz+1gtNU5wG4pWpUKL4CAU6c24XFAIi821pZHKwCCoI6P4PUtX5bEfn3799VcMHjwYwcHBiI+PR3x8PIKDg3HTTTfht99+kzs8cmOV9h77s/eYas5fp4WPWg2zzYb8Ruz5otqRJKl0VTaTsdbnKnx9oYttBVVIqHslU4Jw1ZdFtEOUAItor9Hx7sBfq0Xb8DCXzg6jDA6GJiravdqT3JZH9iDv378fgwYNgkajwcMPP4yOHTsCAE6cOIH//e9/uPHGG7Fz50706tVL5kjJ3Ug2W+nsFVdggky1Fe7ni5S8fGQUGRDoo+O8yG5GkiRYL1+q8LToqhQKqMMjoAqq+3RnVDcKQUBMYAD8tRpczC+EXWy43mxlcAg0EZENdj3yfh6ZIM+cORMxMTHYvXs3oqKinPbNmzcP/fr1w8yZM7F9+3aZIiR3ZcvPA674oavw0UPg4iBUS4E+OmgNKpitNmQbihHh7znlXQsWLHAsJDFr1iy5w2lwkiTBmnYZdkNRrc4TNFpomsWw3EpmATod2oSpcCEvHyXWug2qLE8ZFMzkmGrNI0ss9u/fj0cffbRCcgwAkZGReOSRR7Bv3z4ZIiN3JtntpQnyFZQB9RyUQk1W5N9jHrIMxbB40LSSNpsNkiTBZqt/8uFuynqO7UW1W4BC6R8AbYuWTI7dhEalQuuwUATo6jcIVhkQAE1kxVyB6Go8MkFWKBTV/mC32+1QcHQqXcGen19x/lNBgJKr51EdBfro4KNRQ5QkpBW4x4pgTZlkt8NyMbXWPceqsLDSWQ2UShdFRnWhEAS0CA5EaB3rkhV6X6ijmjVwVNRUeGQW2bdvXyxZsgQXLlyosC8lJQXvv/8++vXrJ0Nk5K4kux3WvJwK25X+/vylSPUS9XdpRWGJuVGnqiJnks0Gy8UUiMZa1BwLAtRRzaAODXddYFQvgiCgWWAAIgNqV8Kk+LtchgPyqK48MkFetGgRCgoK0KFDB4wbNw7z5s3DvHnzMHbsWHTo0AEFBQVITEys8/WXLFmC2NhY6HQ69O7dGwcOHKjy2OXLl2PAgAEIDg5GcHAwEhISqj2e5GHLz6109SyWV1B9+Wm1CNCVPpa/XFgIWwMOLKKaEc0lMKckQ7zKnMROFApoYq6Bqr7z/lKjiPDzQ7PAGg6mVqpKFwHx0s6PcB8fROp9EM6FilzKIwfpde/eHfv378fMmTOxceNGGI2lU/jo9XoMHz4cCxYsQKdOnep07XXr1mH69OlYunQpevfujcWLF2PYsGE4deoUIiIiKhy/c+dOjB07Fn379oVOp8Nrr72GoUOH4tixY4iJianX10kNQ7LZYMutOLWboFZ73BKj5J6iAvxRZLbAZhdxMb8AsSGcAaGx2IsKYElPrzD4tloKBTQxzaHUN84y0dQwykotLldXziQI0DRr5tUDr7++bZjcITQJHpkgA0CnTp3w9ddfQxRFZGVlAQDCw8PrXXv81ltvYcqUKZg0aRIAYOnSpdi0aRNWrlyJF198scLxn376qdP7jz76CF9++SWSkpIwYcKEesXizj788EMYDAb4+fnh0UcflTucalmzsyr95akKZBJDDUOrUiHMV48sQzGKSszILi5GmK+v3GF5NUmSYM3KgD2v4sDbaikU0FzTAkr2vnmkUF89JElCWmHldebqsAgo9fzeo/rzyBKL8gRBcHrVh8ViwcGDB5GQkODYplAokJCQgL1799boGkajEVarFSEhIVUeYzabUVhY6HgZDIZ6xS0Hg8HgEbGLJaZK5z2GINR/SVWiciL8/aBVlfY5pBcWwWCuw8ptVCOi2QzLhWQmx01UmJ8vIvwrJsFKP3+oqvndS1QbHpsgHz9+HHfffTcCAgIQHR2N6OhoBAQE4O6778aff/5Zp2tmZ2fDbrcjMtJ5vsTIyEikp6fX6BovvPACmjVr5pRkXykxMRGBgYGO18CBA+sUL1VPkiRYM9IBVFzqVenvD0HlsQ9QyA0pBAExQQGAAEgSkJJXALMXTqMmJ0mSYMvJhvnCeYjmWg6ILCuraALJsUahhEIo/dNbRfr7I0T/T1sKag3UUdEyRkTexiMzhF27duGWW26BKIq4/fbb0a5dOwDAqVOnsHHjRmzZsgVbt27FgAEDGjWuV199FWvXrsXOnTuhq2buxhkzZmD69OmO94cPH2aS7AL2vNwqB+0ouUoWuYCvRoNwX19kGYphF0Wcz8lFq9AQaNzsw5hKpXIsFOIp7MUGWDMzIVnq0DMvCNBExzSZmuOjE+6VO4RG0SwwAFZRRJHZAk10M68dlEfy8JyfjuVMmzYNERER+Omnn9C8eXOnfampqbjxxhsxffp0/Prrr7W6blhYGJRKJTIyMpy2Z2RkVLooSXlvvPEGXn31Vfzwww/o0qVLtcdqtVpoy01G7+fHgWINTTSbYc3JrnSfQqeD0qdp/KKkxhfp7weDxQKTxQqrBJwvKEJcVCR8dLrSX+AKBQSFAhAUgCCUvupJVW7QkiRVfGJypZkzZ9bq+DKBgYHVlo/VhCRJEEURdrsdNpsNVqsV9moWWRFNJlhzsmq/ZHQ56sgoKPlz1usIgoDmQYFIVWlhawJPBqhxeWSCfOzYMbzyyisVkmMAaN68OR5//HHMmzev1tfVaDTo0aMHkpKScMcddwAARFFEUlISpk6dWuV5r7/+OhYuXIht27ahZ8+etb4vNazSZWYvVTmqXRnMGjWqH0FQQPDxgUKrg0Kng6DVQaHVQtBooNBocK0EnDp71jHl2yWlEnFxcQh0Ud27f04OhO+31yrZrS1BEBAbG4vQ0NAGv7YoirBYLDCbzSgpKYHJZIIhMxNFaZdhL67fOAd1RCRUgUENEyi5HW14JDq064CTJ0965cqQJB+PTJBbtmwJczUDYCwWS6XJc01Mnz4dEydORM+ePdGrVy8sXrwYxcXFjlktJkyYgJiYGMc8y6+99hrmzJmDzz77DLGxsY5aZT8/P/YMy8SakQ6xin8fgloNpX8N59KkJk9Qa6D09YXC1w9KvS8Uej0UPnoIWm21g4KVANq0a4dTp05BkiTY7XacOXMGYWFhiImJafDShtDQUDz55JOwWCwNet3yNBqNS5JjoHQwtE6ng9puh9ZkhD49DcElRogBvjD5aGC0WGEwW2C0WCDW4kOAOiwCKn4g9loKnQ/0Ha+FoFKhVatWOH36tEs/JFLT4pEJ8pw5czBt2jSMGDEC3bp1c9r3+++/4z//+Q8WL15cp2uPGTMGWVlZmDNnDtLT09GtWzds3brVMXAvJSXFaSq5Dz74ABaLBXfffbfTdebOnVunXmyqH1tuDuwF+VXuV4WEcGUlqpRCq4PSP+Dvlz8Uvn5QlCuFqi1fX1+0bt0aZ8+edfzSzs7ORl5eHsLDwxEaGlrtWIXa8rdaIFlct5JfQ3/bSKII0WSC3VAEe2EBbDk5EEuMTscoBAG+Gk1pbbefL0RJgtFiQWGJGYUlZlirKc1Qh0VA5aKEnuQnKJTQx3d1DLb29/dHixYtKl1hl6guPDJB3rdvHyIjI9GjRw/07dsXbdq0AQCcPn0ae/fuRXx8PPbu3es0NZsgCHjnnXdqdP2pU6dWWVKxc+dOp/fJycl1+hrcWU0+gfv6+kKSJMef7sBWkA9rVmbVByhVUAYENVo85L4UGh0Ufn5Q+vs7kuL6JMNVCQwMRKtWrXDu3DnH94ndbkd6ejrS09OhVquh0+nq/aFNkZ8H6f23GyLkyv0de/ikR6AKrscAV6l04R7Jail9yiPVbtVBhSDAT6uFn1aLZoFAscWCAlMJ8k0lsJcrqVJHRLLn2Mv5dOhUoa48LCwMZrO5xrNOEVXHIxPk9957z/H3X375Bb/88ovT/qNHj+Lo0aNO22qTIDdFGo0GgiDUONmt6+Ig7dq1q9cgH0mSHI+sywb52Gw2GC9fQlFeDqBUVtmrpA4JKR0cRU2EAIVWC8XfpRFKvS8Uvr5Q+vpBUKsbLYqgoCC0a9cOZ8+erVAjabVaYbVa630PdV4uajPstPN/18Mi2qFRKHF0/D01Ps+WnVXrpNaVynqXowP8UVhiRq6pBOagEC4f7eV0ca2hjoisdF9MTAwsFgtyK1k9lag2PDJBFmuzpCjViKfWMEqiiJIzf8HXUIDw0NLEW5QklFhtKLFZYbJYYbRaYZY4OM+rCAoo1GoIak3pwDitFoJW+8+gOZ1P6Z9u8oHIz88PnTp1woULF1BQ2cI1DakGvdEW0Q5RKv2zRrUTbvKUqCqCICDIzw/NbugLu94XmZmZyM7O5u8KL6SJagZty7hqj4mNjYXdbnf99xp5NY9MkMk1XDUAx1VsuTkwnfkLotF5+ieFIECvUUOvUaOsW03Tqi0sgUGO1QtLqpgfmepHUKsgqDX1uIDg+FNQKP6ZEk2hhKBSQlCqIKhKX6VTpClKT/l7yjRJEkvnvjabYS9SlJYuOKZVEwCl0jHFmqBQ/PO+7BgXUqvVaNOmDQoKCpCWlobiekxbRs4UOj30nbtC6esLFUpnM2rWrBkyMzORmZnJ2Q28hCokDLp2Ha56nCAIaNWqFc6cOYOiosqXpCa6Go9OkM+fP48tW7Y4ivJbtmyJW265BXFx1X+6pMpZ0tMg1XZ1qhqS7HZAoYA6ovr5pK96HXMJ7EVFsGak1Xj6J4XeF7prmsNHoXBMs1VSUoKCggLk5eUxUWlAkrW0vrRBrtUgV6mFsqRZUS55Fson6QrnZLssiS/7u6AAFIJz4o6y96XXBwCdAMT5+8KsVcNQbEKJxVzvOn4BQFPtK1WFhELfMb5C2YxSqUR0dDQiIyORmZmJjIwMJsoeTBUYDP21nWv8QVahUKBNmzZMkqnOPDZB/te//oV33nmnwiM0hUKBZ599Fm+88YZMkXkmS3oaUmZMv/qBdfV3AhBy5z1QNnJ9oK512wo/VHU6HXQ6HSIjI2E2m5Gbm4ucnJxqpw8kLyeJkOwiYG+85Nz371d92YwG5DXAdTyKoIAuNu6qj9sVCgWioqIQHh6OrKwsJsoeSBkQBH3nrrVeKa8sST579iwKCwuvfgJROe5RoFdLb775Jt5++22MHj0ae/fuRX5+PvLz87F3717cfffdePvtt/H22y4c0e2FattzfOe329D/8w2489tttbtPI/9iUoWEQR0aVu0xWq0W0dHRiI+PR9u2bREcHMyp4IjcmELvC9/uPa6aHJenVCoRFRWFzp07o0WLFk6rmZL7UgUGwbdLN8d0brVVliQH12f2FWqSPLIHefny5bjtttvw+eefO23v3bs31q5di5KSEnz44YeYNm2aTBF6uBokh1mmEmQYTTU+Xo5BPoJSBZ8a1KuVFxAQgICAAFgsFmRlZSErK6vaZXCJqBEJCmibt4A2tlWda8YVCgXCw8MRHh6OgoICZGZmsnfRTalCQqG/tkute46vJAgC4uLioFarkZlZzVSgROV4ZIKcnJyMZ555psr9w4YNw9atWxsxInJH2rjWUNRxIQaNRoOYmBhERUXxsSyRG1CFhELXuh2Uvg1RlFIqMDAQgYGBsFgsyMnJYZmVG9FENYOuXYcGGzwrCAKaN28OnU6H1NRUt5m/n9yXRybIERER+OOPP6rc/8cffyA8PLwRIyJ3owoKgSbmmnpfp+yxbEREhCNRboh5a4moZlSBQdDGtnLpwh8ajQbR0dGIjo5GcXEx8vLykJ+fz2RZFgJ0rdpA26KlS64eHh4OHx8fnDt3jj/LqVoemSDfc889eOeddxAbG4unnnoKvn/3KBQXF+O9997DRx99hGeffVbeIEk2gloDn07xDVpHrFAoEBkZiYiICOTk5CAjI4NTxZHH0iiUjoVC3JKggDo0FJprWkIVFNSot/b19YWvry+uueYamEwmx9SQBoOB8yq7mKDWQN/xWqhCXDvlaNm85MnJyZwrmarkkQnyK6+8gsOHD+Oll17CnDlz0KxZMwDA5cuXYbPZMHjwYLz88ssyR0myEBTQd4qHQlOPuXiru7wgICwsDGFhYSgqKkJmZiYKCgr4uI48ytEJ98odQqWU/oFQR0RAHRHlkqW/a8vHxwc+Pj6IjIyEJEkwGo0oLi5GcXExTCYTSkpK+L3fQFRBIfDp2AkKbd3K4mp9P5UKbdq0QVZWFi5evMgPP1SBRybIer0eSUlJ2LBhg9M8yMOHD8ett96KUaNGcRaCJsqnfQeXPootz9/fH/7+/rBarY5p4kwmU6Pcm8jTCWoNlHo9FH7+UAUGQhkU4rIPtmUkSfpnwPAVf5fKb6/wZ+nffRQCdH5+CP37qaUkSTCbS2C2WGCxWB1Lh9vsdoh2O0RRhNgACbQA7/19JihV0LVq0yAlcXURHh6OwMBApKamIj8/X5YYyD15XIJsNBrxwAMP4K677sL999+P22+/Xe6QyE3o2rSHJqpZo99XrVYjMjISkZGRMJlMyMvLQ15eHkswyPsoFRCU6qsfV+01lKWrISoUkOwi7AUFsOfnAxcuwGkG6rL8FFcmrH//54pEVqou8S2X5LqCEoDP3y9XsBYXIN9F15aPAE1UdOlgapmfFmg0GrRu3RpFRUW4dOkSF48iAB6YIOv1evzwww+45ZZb5A6lSQv38XH6U1aCAj5t20PTLEbuSByPZJs1awaz2YyCggJH/SKniyOPZxch2es5sMluhdQwiy2SRxKgjoiAtmUclL5+cgfjxN/fHx06dEBhYSEyMjI4/V8T53EJMgD0798fe/fuxZQpU+QOpcn6+rZhcocAAFBodfDpFA9VYJDcoVSg1WoRERGBiIgISJIEk8kEg8EAo9EIo9HI+kUiajIUOh+oI6OgiY6p8/SbjaVsPvySkhLk5OQgNzcXFgs/1TU1Hpkgv/feexg2bBhmzZqFxx57DNdcI0/tEslHUKqguaY5tC1i6z2JfGMQBKG0d7nsF4MkQRJFmM1mlJjNsJSUwGK1wmKxwGaz/VPD+Pdx9eX+/4eIyJsoNFpHfbkqJBRK/wC5Q6o1nU6HmJgYxMTEwGQyoaioCAaDASaTCWazmR0cXs4jE+SuXbvCZrMhMTERiYmJUKlUFZYNFQSB07e4I5USgrquNYwCBI0aSl8/KIOCISgUsGZl/FNaWP6HlSSV1i5K+Kf+8O+/S2XvxX/+lKS/k1BRdCSvpbWMIiRRuuLvYum50t/nSSjdVnbtsoS2hvWPCgC6v1+uIpaUIMeF1yciL6BUAvWoMRcEAIrSn/GCQgHJaoU1OxvW7OxaXKUGSWdN89JqE9jaJ7f6v19lrHY77KJY70TZbjbBUK8rkCt4ZIJ81113cZYKT2WzQ6rH5OyS1QKxuBjWzIwGDIqIiGC3A/WoMS9NE62QLE1jgLLi71d9WW1csMQdeWSCvHr1arlDICIiIiIv5VEJcklJCTZs2IDz588jLCwMI0aMQHR0tNxhEREREZEX8ZgEOTMzE3379sX58+cd9T56vR7ffPMNEhISZI6OiIiIiLxFQ5TPNIpXXnkFycnJmDZtGr777jssXrwYPj4+ePTRR+UOjYiIiIi8iMf0IH///feYMGEC3njjDce2yMhIjBs3DqdOnUL79u1ljI6IiIiIvIXH9CCnpKSgf//+Ttv69+8PSZKQkcEZDYiIiIioYXhMgmw2m6G7YvWdsvc2m02OkIiIiIjIC3lMggwAycnJOHTokON15MgRAMDp06edtpe96mrJkiWIjY2FTqdD7969ceDAgWqPX79+PTp06ACdTofOnTtj8+bNdb43EREREcnLY2qQAWD27NmYPXt2he1PPPGE03tJkiAIAux2e63vsW7dOkyfPh1Lly5F7969sXjxYgwbNgynTp1CREREheP37NmDsWPHIjExESNHjsRnn32GO+64A4cOHUJ8fHyt709ERERE8vKYBHnVqlWNcp+33noLU6ZMwaRJkwAAS5cuxaZNm7By5Uq8+OKLFY5/5513MHz4cPzf//0fgNLZNrZv34733nsPS5cubZSYiYiIiKjheEyCPHHiRJffw2Kx4ODBg5gxY4Zjm0KhQEJCAvbu3VvpOXv37sX06dOdtg0bNgzffPNNlfcxm80wm82O9waDm63CXs915cnNsX29G9vXu7F9vRvb1214TILcGLKzs2G32xEZGem0PTIyEidPnqz0nPT09EqPT09Pr/I+iYmJmD9/fv0DbkCCVnf1gxqAtk1bqMPCG+Ve9A97QUGj3IftKw9bTk6j3IftKw9lcEij3IftK4/Gat/G+j3vLZggy2DGjBlOvc6HDx/GwIEDZYwI0ERFo0XiW5DMJS67h6DVQRPFpcFlEdOc7evFtGxfr8b29W5sX/fEBLmcsLAwKJXKCvMqZ2RkICoqqtJzoqKianU8AGi1Wmi1Wsd7Pz+/ekTdcPjN493Yvt6N7evd2L7eje3rfjxqmjdX02g06NGjB5KSkhzbRFFEUlIS+vTpU+k5ffr0cToeALZv317l8URERETk3tiDfIXp06dj4sSJ6NmzJ3r16oXFixejuLjYMavFhAkTEBMTg8TERADAM888g4EDB+LNN9/EiBEjsHbtWvz2229YtmyZnF8GEREREdURE+QrjBkzBllZWZgzZw7S09PRrVs3bN261TEQLyUlBQrFPx3vffv2xWeffYZZs2bhpZdeQtu2bfHNN99wDmQiIiIiDyVIEucUkduhQ4fQo0cPHDx4ENddd53c4RARERE1aaxBJiIiIiIqhwkyEREREVE5rEGmOktLS0NaWprcYRARETUp0dHRiI7m1HCuxATZDURHR2Pu3Lke9Y/dbDZj7Nix+Omnn+QOhYiIqEkZOHAgtm3b5rSmAjUsDtKjOiksLERgYCB++uknt1nohBqOwWDAwIED2b5eiu3r3di+3q2sfQsKChAQECB3OF6LCTLVSVmCzG9Q78T29W5sX+/G9vVubN/GwUF6RERERETlMEEmIiIiIiqHCTLViVarxdy5czlAwEuxfb0b29e7sX29G9u3cbAGmYiIiIioHPYgExERERGVwwSZiIiIiKgcJshEREREROUwQSbZJScnQxAErF69Wu5QiIiIiJgge5qzZ8/i0UcfRatWraDT6RAQEIB+/frhnXfegclkctl9jx8/jnnz5iE5Odll96iJhQsX4rbbbkNkZCQEQcC8efNkjUcugiDU6LVz585638toNGLevHm1uhbbqf7cuY1PnjyJ559/Ht26dYO/vz+io6MxYsQI/Pbbb/WOpalw5/a9fPkyHnjgAbRv3x7+/v4ICgpCr169sGbNGnBcf824c/te6dNPP4UgCFx18QoquQOgmtu0aRPuueceaLVaTJgwAfHx8bBYLNi9ezf+7//+D8eOHcOyZctccu/jx49j/vz5GDRoEGJjY11yj5qYNWsWoqKi0L17d2zbtk22OOT23//+1+n9xx9/jO3bt1fY3rFjx3rfy2g0Yv78+QCAQYMG1egctlP9uXMbf/TRR1ixYgXuuusuPPHEEygoKMCHH36IG264AVu3bkVCQkK9Y/J27ty+2dnZuHjxIu6++260aNECVqsV27dvx4MPPohTp05h0aJF9Y7J27lz+5ZnMBjw/PPPw9fXt95xeBsmyB7i/PnzuO+++9CyZUv8+OOPiI6Odux78skncebMGWzatEnGCP8hSRJKSkrg4+PT4Nc+f/48YmNjkZ2djfDw8Aa/vqd44IEHnN7v27cP27dvr7BdLmyn+nPnNh47dizmzZvn1OM0efJkdOzYEfPmzWOCXAPu3L5dunSp0Bs5depUjBo1Cu+++y5eeeUVKJVKeYLzEO7cvuUtWLAA/v7+GDx4ML755hu5w3ErLLHwEK+//joMBgNWrFjhlByXadOmDZ555hnHe5vNhldeeQWtW7eGVqtFbGwsXnrpJZjNZqfzYmNjMXLkSOzevRu9evWCTqdDq1at8PHHHzuOWb16Ne655x4AwODBgys8Giq7xrZt29CzZ0/4+Pjgww8/BACcO3cO99xzD0JCQqDX63HDDTfUK5GXs/fa04iiiMWLF+Paa6+FTqdDZGQkHn30UeTl5Tkd99tvv2HYsGEICwuDj48P4uLiMHnyZACl9eFlCe78+fMdbX+1kgm2U+OQq4179OhR4XFsaGgoBgwYgBMnTjTsF9mEyfk9XJnY2FgYjUZYLJZ6f20kf/uePn0ab7/9Nt566y2oVOwvvRL/j3iIb7/9Fq1atULfvn1rdPzDDz+MNWvW4O6778a//vUv7N+/H4mJiThx4gS+/vprp2PPnDmDu+++Gw899BAmTpyIlStX4sEHH0SPHj1w7bXX4sYbb8TTTz+Nd999Fy+99JLjkVD5R0OnTp3C2LFj8eijj2LKlClo3749MjIy0LdvXxiNRjz99NMIDQ3FmjVrcNttt+GLL77AnXfe2XD/g6iCRx99FKtXr8akSZPw9NNP4/z583jvvffw+++/45dffoFarUZmZiaGDh2K8PBwvPjiiwgKCkJycjK++uorAEB4eDg++OADPP7447jzzjsxevRoAKU9TCQ/d2vj9PR0hIWFNejX2JTJ3b4mkwnFxcUwGAz46aefsGrVKvTp08clTwebIrnb99lnn8XgwYNx66234vPPP3fp1+qRJHJ7BQUFEgDp9ttvr9Hxhw8flgBIDz/8sNP25557TgIg/fjjj45tLVu2lABIP//8s2NbZmampNVqpX/961+ObevXr5cASDt27Khwv7JrbN261Wn7s88+KwGQdu3a5dhWVFQkxcXFSbGxsZLdbpckSZLOnz8vAZBWrVpVo69PkiQpKytLAiDNnTu3xud4syeffFIq/+28a9cuCYD06aefOh23detWp+1ff/21BED69ddfq7x2ff5fs50ajru2cZmff/5ZEgRBmj17dp2v0ZS5Y/smJiZKAByvm2++WUpJSanVNaiUu7Xvd999J6lUKunYsWOSJEnSxIkTJV9f31p8Rd6PJRYeoLCwEADg7+9fo+M3b94MAJg+fbrT9n/9618AUKHEoVOnThgwYIDjfXh4ONq3b49z587VOMa4uDgMGzasQhy9evVC//79Hdv8/PzwyCOPIDk5GcePH6/x9al21q9fj8DAQAwZMgTZ2dmOV9mj8R07dgAAgoKCAADfffcdrFarjBFTbblTG2dmZmLcuHGIi4vD888/75J7NDXu0L5jx47F9u3b8dlnn2HcuHEA4NLZkpoSOdvXYrFg2rRpeOyxx9CpU6cGuaY3YoLsAQICAgAARUVFNTr+woULUCgUaNOmjdP2qKgoBAUF4cKFC07bW7RoUeEawcHBFeqgqhMXF1dpHO3bt6+wvaw048o4qOGcPn0aBQUFiIiIQHh4uNPLYDAgMzMTADBw4EDcddddmD9/PsLCwnD77bdj1apVFWrVyf24SxsXFxdj5MiRKCoqwoYNGzhVVANxh/Zt2bIlEhISMHbsWHz66ado1aoVEhISmCQ3ADnb9+2330Z2drZj5guqHGuQPUBAQACaNWuGP//8s1bnCYJQo+OqGo0s1WK+S9akuRdRFBEREYFPP/200v1lgzoEQcAXX3yBffv24dtvv8W2bdswefJkvPnmm9i3bx+THTfmDm1ssVgwevRoHDlyBNu2bUN8fHydr0XO3KF9r3T33Xdj+fLl+Pnnnys8MaTakat9CwoKsGDBAjzxxBMoLCx0PKE2GAyQJAnJycnQ6/WIiIio3xfoBZgge4iRI0di2bJl2Lt3L/r06VPtsS1btoQoijh9+rTTQLqMjAzk5+ejZcuWtb5/TZPtK+M4depUhe0nT5507CfXaN26NX744Qf069evRh9ebrjhBtxwww1YuHAhPvvsM9x///1Yu3YtHn744Tq1Pbme3G0siiImTJiApKQkfP755xg4cGBdvgyqgtztW5mynuOCgoIGuV5TJlf75uXlwWAw4PXXX8frr79eYX9cXBxuv/12TvkGllh4jLKJvB9++GFkZGRU2H/27Fm88847AIBbb70VALB48WKnY9566y0AwIgRI2p9/7JJxPPz82t8zq233ooDBw5g7969jm3FxcVYtmwZYmNjWfvkQvfeey/sdjteeeWVCvtsNpujHfPy8io8KejWrRsAOB7h6fV6ALVre3I9udv4qaeewrp16/D+++87Rs5Tw5GzfbOysirdvmLFCgiCgOuuu65G16GqydW+ERER+Prrryu8Bg8eDJ1Oh6+//hozZsyo+xfmRdiD7CFat26Nzz77DGPGjEHHjh2dVtLbs2cP1q9fjwcffBAA0LVrV0ycOBHLli1Dfn4+Bg4ciAMHDmDNmjW44447MHjw4Frfv1u3blAqlXjttddQUFAArVaLm266qdrHMC+++CL+97//4ZZbbsHTTz+NkJAQrFmzBufPn8eXX34JhaL2n8/++9//4sKFCzAajQCAn3/+GQsWLAAAjB8/nr3Sfxs4cCAeffRRJCYm4vDhwxg6dCjUajVOnz6N9evX45133sHdd9+NNWvW4P3338edd96J1q1bo6ioCMuXL0dAQIDjg5aPjw86deqEdevWoV27dggJCUF8fHy1j9PZTq4nZxsvXrwY77//Pvr06QO9Xo9PPvnEaf+dd97JlbnqSc72XbhwIX755RcMHz4cLVq0QG5uLr788kv8+uuveOqppyqMb6Hak6t99Xo97rjjjgrbv/nmGxw4cKDSfU2WnFNoUO399ddf0pQpU6TY2FhJo9FI/v7+Ur9+/aT//Oc/UklJieM4q9UqzZ8/X4qLi5PUarXUvHlzacaMGU7HSFLpFG0jRoyocJ+BAwdKAwcOdNq2fPlyqVWrVpJSqXSa8q2qa0iSJJ09e1a6++67paCgIEmn00m9evWSvvvuO6djajPN28CBA52mHSr/qmwKuqbiyimEyixbtkzq0aOH5OPjI/n7+0udO3eWnn/+eeny5cuSJEnSoUOHpLFjx0otWrSQtFqtFBERIY0cOVL67bffnK6zZ88eqUePHpJGo6nRdEJsp4bnTm08ceLEKtsXgHT+/PmG/NKbBHdq3++//14aOXKk1KxZM0mtVjt+z6xatUoSRbFBv+6mwp3atzKc5q0iQZJqMRKLiIiIiMjLsQaZiIiIiKgcJshEREREROUwQSYiIiIiKocJMhERERFROUyQiYiIiIjKYYLsZV5//XV06NABoijKHUq93Xfffbj33nvlDsOtsH29G9vXu7F9vR/b2IvIPc8cNZyCggIpJCREWrlypWMb/p6X9I033qhw/KpVqyQA0q+//trgsSQkJEgApCeffLLS/R999JHUoUMHSavVSm3atJHefffdCsccOnRIUigU0uHDhxs8Pk/E9vVubF/vxvb1fmxj78IeZC+ycuVK2Gw2jB07tsK+f//7345VzVztq6++clpe+koffvghHn74YVx77bX4z3/+gz59+uDpp5/Ga6+95nRc9+7d0bNnT7z55puuDtkjsH29G9vXu7F9vR/b2MvInaFTw+nSpYv0wAMPOG0DIHXr1k0CIL355ptO+1zx6dVkMkmxsbHSyy+/XOmnV6PRKIWGhlZYee/++++XfH19pdzcXKftb7zxhuTr6ysVFRU1WIyeiu3r3di+3o3t6/3Yxt6FPche4vz58zhy5AgSEhIq7OvXrx9uuukmvP766zCZTC6N4/XXX4coinjuuecq3b9jxw7k5OTgiSeecNr+5JNPori4GJs2bXLaPmTIEBQXF2P79u0ui9kTsH29G9vXu7F9vR/b2PswQfYSe/bsAQBcd911le6fN28eMjIy8MEHH1R7HbPZjOzs7Bq9rpSSkoJXX30Vr732Gnx8fCq9/u+//w4A6Nmzp9P2Hj16QKFQOPaX6dSpE3x8fPDLL79UG7e3Y/t6N7avd2P7ej+2sfdRyR0ANYyTJ08CAOLi4irdP2DAAAwePBj//ve/8fjjj1f5zfO///0PkyZNqtE9JUlyev+vf/0L3bt3x3333VflOWlpaVAqlYiIiHDartFoEBoaisuXLzttV6lUaN68OY4fP16jmLwV29e7sX29G9vX+7GNvQ8TZC+Rk5MDlUoFPz+/Ko+ZN28eBg4ciKVLl2LatGmVHjNs2LA6PUrZsWMHvvzyS+zfv7/a40wmEzQaTaX7dDpdpY+fgoODK/203JSwfb0b29e7sX29H9vY+zBBbkJuvPFGDB48GK+//joee+yxSo+Jjo5GdHR0ra5rs9nw9NNPY/z48bj++uurPdbHxwcWi6XSfSUlJZV+qpYkCYIg1Cqmpojt693Yvt6N7ev92MaehQmylwgNDYXNZkNRURH8/f2rPG7u3LkYNGgQPvzwQwQFBVXYbzKZUFBQUKN7RkVFAQA+/vhjnDp1Ch9++CGSk5OdjikqKkJycjIiIiKg1+sRHR0Nu92OzMxMp0c8FosFOTk5aNasWYX75OXloW3btjWKyVuxfb0b29e7sX29H9vY+3CQnpfo0KEDgNKRtNUZOHAgBg0ahNdee63SRynr1q1zfIK92qtMSkoKrFYr+vXrh7i4OMcLKP3GjYuLw/fffw8A6NatGwDgt99+c7rvb7/9BlEUHfvL2Gw2pKamomPHjrX6/+Ft2L7eje3r3di+3o9t7H3Yg+wl+vTpA6D0H3mXLl2qPXbevHkYNGgQli1bVmFfXeqf7rvvvgrfVABw55134tZbb8WUKVPQu3dvAMBNN92EkJAQfPDBB7j11lsdx37wwQfQ6/UYMWKE0zWOHz+OkpIS9O3bt1YxeRu2r3dj+3o3tq/3Yxt7IbkmYKaGFx8fL40dO9ZpG6pYanLgwIGOJTBdscxldfdesmSJBEC6++67peXLl0sTJkyQAEgLFy6scOwbb7wh6fV6qbCw0CUxehK2r3dj+3o3tq/3Yxt7FybIXuStt96S/Pz8JKPR6NhW1TfIjh07ZPvmlCRJWrZsmdS+fXtJo9FIrVu3lt5++21JFMUKx/Xu3bvCykRNFdvXu7F9vRvb1/uxjb0LE2Qvkp+fL4WEhEgfffSR3KE0iN9//10SBEH6/fff5Q7FLbB9vRvb17uxfb0f29i7CJJ0xUzT5NFee+01rFq1CsePH4dC4dljMO+77z6IoojPP/9c7lDcBtvXu7F9vRvb1/uxjb0HE2QiIiIionI8++MNEREREVEDY4JMRERERFQOE2QiIiIionKYIBMRERERlcMEmYiIiIioHCbIRERERETlMEEmIiIiIiqHCTIRERERUTlMkImIiIiIymGCTERERERUDhNkIiIiIqJymCATEREREZXDBJmIiIiIqBwmyG4gLS0N8+bNQ1pamtyhEBERETV5TJDdQFpaGubPn88EmYiIiMgNMEEmIiIiIiqHCTIRERERUTlMkImIiIiIymGCTERERERUDhNkIiIiIqJymCATEREREZXDBJmIiIiIqBwmyERUKZvNJncIREREsmCCTESVYoJMRERNFRNkIqqU3W6XOwQiIiJZMEEmokoxQSYioqbKLRPktLQ0/PHHHyguLpY7FKImiyUWRETUVLlVgrxhwwZ06NAB11xzDa677jrs378fAJCdnY3u3bvjm2++kTdAoiaECTIRETVVbpMgf/vttxg9ejTCwsIwd+5cSJLk2BcWFoaYmBisWrVKxgiJmhar1Sp3CERERLJwmwT55Zdfxo033ojdu3fjySefrLC/T58++P3332WIjKhpslgscodAREQkC7dJkP/880/ce++9Ve6PjIxEZmZmI0ZE1LSVlJTIHQIREZEs3CZB1uv11Q7KO3fuHEJDQxsxIqKmjQkyERE1VW6TIA8ePBhr1qypdGBQeno6li9fjqFDh8oQGVHTxFlkiIioqXKbBHnhwoW4ePEirr/+enz44YcQBAHbtm3DrFmz0LlzZ0iShLlz5zZKLEuWLEFsbCx0Oh169+6NAwcOVHv84sWL0b59e/j4+KB58+aYNm0ae9/I4xkMBs6FTERETZLbJMjt27fH7t27ERoaitmzZ0OSJPz73//GokWL0LlzZ+zatQuxsbEuj2PdunWYPn065s6di0OHDqFr164YNmxYlfXPn332GV588UXMnTsXJ06cwIoVK7Bu3Tq89NJLLo+VyJUkSUJubq7cYRARETU6ldwBlHfttdfihx9+QF5eHs6cOQNRFNGqVSuEh4c3WgxvvfUWpkyZgkmTJgEAli5dik2bNmHlypV48cUXKxy/Z88e9OvXD+PGjQMAxMbGYuzYsY45nIk8WUZGRqN+/xEREbkDt+lBLi84OBjXX389evfu3ai/nC0WCw4ePIiEhATHNoVCgYSEBOzdu7fSc/r27YuDBw86yjDOnTuHzZs349Zbb63yPmazGYWFhY6XwWBo2C+EqIFcvHhR7hCIiIgandskyO+++y6GDRtW5f5bbrkFH3zwgUtjyM7Oht1uR2RkpNP2yMhIpKenV3rOuHHj8PLLL6N///5Qq9Vo3bo1Bg0aVG2JRWJiIgIDAx2vgQMHNujXQdRQLl26xAVDiIioyXGbBHnFihXo1KlTlfs7deqEZcuWNWJENbNz504sWrQI77//Pg4dOoSvvvoKmzZtwiuvvFLlOTNmzEBBQYHj9dNPPzVixEQ1Z7fbkZycLHcYREREjcptEuSzZ8+iY8eOVe7v0KEDzp4969IYwsLCoFQqkZGR4bQ9IyMDUVFRlZ4ze/ZsjB8/Hg8//DA6d+6MO++8E4sWLUJiYiJEUaz0HK1Wi4CAAMfLz8+vwb8Wooby119/yR0CERFRo3KbBFmj0VRZxgAAaWlpUChcG65Go0GPHj2QlJTk2CaKIpKSktCnT59KzzEajRXiUiqVAEpnASDydJcuXUJeXp7cYRARETUat0mQb7jhBqxevRpFRUUV9hUUFGDVqlW44YYbXB7H9OnTsXz5cqxZswYnTpzA448/juLiYsesFhMmTMCMGTMcx48aNQoffPAB1q5di/Pnz2P79u2YPXs2Ro0a5UiUiTzdkSNH5A6BiIio0bjNNG9z587FwIED0a1bNzz77LO49tprAQB//vknFi9ejLS0NHz22Wcuj2PMmDHIysrCnDlzkJ6ejm7dumHr1q2OgXspKSlOPcazZs2CIAiYNWsWLl26hPDwcIwaNQoLFy50eaxEjeWvv/5C165dERQUJHcoRERELidIblQHsH37djz66KNITk6GIAgASssU4uLi8MEHH3jtUtOHDh1Cjx49cPDgQVx33XVyh0MEANiyZQtSU1Md72NiYnDrrbc6vjeJiIi8ldv0IAPAkCFDcObMGfz++++OAXmtW7fGddddx1/KRDK7dOkSjh49ii5dusgdChERkUu5VYIMlC7M0aNHD/To0UPuUIjoCvv370dAQECjLPtOREQkF7dLkI8fP45z584hLy+v0lkgJkyYIENURASUljwlJSXh5ptvZpJMRERey20S5LNnz+KBBx7AgQMHqpweTRAEJshEMrPb7di+fTv69+9f7dzlREREnsptEuRHH30UR48exeLFizFgwAAEBwfLHRJRk9WzZ08kJyfD19cXM2fOrLBfkiTs2rUL+fn56N27t8vnKCciImpMbpMg//LLL3jppZfw1FNPyR0KUZOXnp6OnJwc2O32ao87evQocnJykJCQAJ1O10jRERERuZbbdPuEhYUhMDBQ7jCIqJYuX76Mr7/+GtnZ2XKHQkRE1CDcJkF+7LHH8Mknn1y1x4qI3E9RURE2bNiAM2fOyB0KERFRvblNiUW7du1gt9vRtWtXTJ48Gc2bN690qebRo0fLEB0RXY3dbsePP/6I3NxcXH/99Zy7nIiIPJbbJMhjxoxx/P25556r9BhBENjDTOTmDh8+jMLCQgwePLjSD7lERETuzm0S5B07dsgdAhE1kHPnzqGkpATDhg2DWq2WOxwiIqJacZsEeeDAgXKHQEQN6PLly9i8eTNuueUWaDQaucMhIiKqMbcZpFfGbDZj79692LBhA0fFE3m4jIwMbNmyBRaLRe5QiIiIasytEuR3330X0dHR6N+/P0aPHo0jR44AALKzsxEWFoaVK1fKHCER1VZGRga2bdvG8QNEROQx3CZBXrVqFZ599lkMHz4cK1ascFpuOiwsDDfddBPWrl0rY4REVFdpaWlISkqqchl5IiIid+I2CfKbb76J22+/HZ999hlGjRpVYX+PHj1w7NgxGSIjooaQnJyMvXv3yh0GERHRVblNgnzmzBnccsstVe4PCQlBTk5OI0ZERA3tzz//xJ9//il3GERERNVymwQ5KCio2kF5x48fR1RUVCNGRESusHfvXqSkpMgdBhERUZXcJkG+9dZbsWzZMuTn51fYd+zYMSxfvhy33XZb4wdGRA1KkiQkJSVxlhoiInJbbpMgL1iwAHa7HfHx8Zg1axYEQcCaNWvwwAMPoGfPnoiIiMCcOXMaJZYlS5YgNjYWOp0OvXv3xoEDB6o9Pj8/H08++SSio6Oh1WrRrl07bN68uVFiJfJEVqsVW7ZsqfQDMRERkdzcJkFu1qwZDh48iOHDh2PdunWQJAn//e9/8e2332Ls2LHYt28fwsLCXB7HunXrMH36dMydOxeHDh1C165dMWzYMGRmZlZ6vMViwZAhQ5CcnIwvvvgCp06dwvLlyxETE+PyWIlcISUlBcXFxQBK5yXPzc11yX1MJhM2bdqEgoICl1yfiIiorgTJDeZdMpvN2LZtG2JjY9GlSxcAQFZWFkRRRHh4OBSKxsvje/fujeuvvx7vvfceAEAURTRv3hxPPfUUXnzxxQrHL126FP/+979x8uTJOi+pe+jQIfTo0QMHDx7EddddV6/4ierqwIEDeOWVV7Bp0yan6dgEQUDnzp0xYsQIxMbGNvh9fX19MXLkSAQGBjb4tYmIiOrCLXqQNRoN7rnnHuzZs8exLTw8HJGRkY2aHFssFhw8eBAJCQmObQqFAgkJCVVOT7Vx40b06dMHTz75JCIjIxEfH49FixZxUQTyKF999RX69euHLVu2VJirWJIk/Pnnn3jttddw6NChBr93cXExNm3aBIPB0ODXzs3Nxf3334+AgAAEBQXhoYceuup9Bg0aBEEQnF6PPfaYY//q1asr7C97VfWkiYiIPItbJMiCIKBt27ayD9rJzs6G3W5HZGSk0/bIyEikp6dXes65c+fwxRdfwG63Y/PmzZg9ezbefPNNLFiwoMr7mM1mFBYWOl6uSAyIaurAgQMYM2YM7HZ7lR/sRFGEKIpYvnw5kpOTGzwGg8GArVu3wmaz1frcQYMGYfXq1ZXuu//++3Hs2DFs374d3333HX7++Wc88sgjV73mlClTkJaW5ni9/vrrjn1jxoxx2peWloZhw4Zh4MCBiIiIqHX8RETkftwiQQaAl156Ce+99x5OnToldyi1IooiIiIisGzZMvTo0QNjxozBzJkzsXTp0irPSUxMRGBgoOM1cODARoyYyNmCBQsgSVKNV7lz1QDU3NxcHDx4sMGud+LECWzduhUfffQRevfujf79++M///kP1q5di8uXL1d7rl6vR1RUlOMVEBDg2Ofj4+O0T6lU4scff8RDDz3UYLETEZG8VHIHUGbfvn0IDQ1FfHw8Bg0ahNjYWPj4+DgdIwgC3nnnHZfFEBYWBqVSiYyMDKftGRkZVc7BHB0dDbVaDaVS6djWsWNHpKenw2KxQKPRVDhnxowZmD59uuP94cOHmSSTLFJSUvDdd9/VODkWRRFHjhxBbm4uQkJCGjye48ePo2fPnk7fT3W1d+9eBAUFoWfPno5tCQkJUCgU2L9/P+68884qz/3000/xySefICoqCqNGjcLs2bOh1+srPfbjjz+GXq/H3XffXe+YiYjIPbhNglw2KA4AkpKSKj3G1QmyRqNBjx49kJSUhDvuuANAaUKQlJSEqVOnVnpOv3798Nlnn0EURUe99F9//YXo6OhKk2MA0Gq10Gq1jvd+fn4N+4WQV7HZbC6rad+6dWuNk+MykiThxIkT6Nu3b4PHY7FYkJ6e3iCzwKSnp1coeVCpVAgJCamyZAoAxo0bh5YtW6JZs2Y4cuQIXnjhBZw6dQpfffVVpcevWLEC48aNq/CBnoiIPJfbJMiiKModAgBg+vTpmDhxInr27IlevXph8eLFKC4uxqRJkwAAEyZMQExMDBITEwEAjz/+ON577z0888wzeOqpp3D69GksWrQITz/9tJxfBnkJm82G48ePw2QyueT6J0+ehEKhqNX3nyAIKCwshNFodElMp06dQmRkJFSqyn88LVq0CIsWLXK8N5lM2Ldvn9OH2OPHj9f5/uVrlDt37ozo6GjcfPPNOHv2LFq3bu107N69e3HixAn897//rfP9iIjI/bhNguwuxowZg6ysLMyZMwfp6eno1q0btm7d6hi4l5KS4jSzRvPmzbFt2zZMmzYNXbp0QUxMDJ555hm88MILcn0J5EXsdjtMJhPUanWVTyTqIzg4uNYfTiVJgo+Pj0tmmJEkyTFYsKoE+bHHHsO9997reH///ffjrrvuwujRox3bmjVrhqioqAqzSthsNuTm5tZq2frevXsDAM6cOVMhQf7oo4/QrVs39OjRo8bXIyIi9+d2CfK+ffuwY8cOZGZm4oknnkDbtm1hNBpx8uRJtGvXrlHKEaZOnVplScXOnTsrbOvTpw/27dvn4qioKdNoNC5JkPv16wdBEGpVZiEIAtq3b++yKRh9fX2r3R8SEuJU/+zj44OIiAi0adPG6bg+ffogPz8fBw8edCSwP/74I0RRdCS9NXH48GEApeMNyjMYDPj8888dT5OIiMh7uM0sFhaLBaNHj0a/fv0wc+ZMvPvuu0hNTQVQOhfx0KFDXVp/TNTUGAwG7N+/Hy1atIAgCDU6pyw5DgoKcklMZbNCNISOHTti+PDhmDJlCg4cOIBffvkFU6dOxX333YdmzZoBAC5duoQOHTo4lpM/e/YsXnnlFRw8eBDJycnYuHEjJkyYgBtvvNGxiFGZdevWwWaz4YEHHmiQeImIyH24TYI8e/ZsfPfdd/jggw9w6tQppx4tnU6He+65Bxs2bJAxQiLvcf78eXz66adITU11muXhagRBQJ8+fZCTkwOLxdKgMalUKrRq1apBr/npp5+iQ4cOuPnmm3Hrrbeif//+WLZsmWO/1WrFqVOnHPXUGo0GP/zwA4YOHYoOHTrgX//6F+666y58++23Fa69YsUKjB492mUfFoiISD5uU2Lxv//9D48//jgeeeQR5OTkVNjfsWNHrF+/XobIiLyHzWbD7t27HWUDABAXF4c5c+Zg4cKFjhrgK5WVU4wePRrNmjWDKIrIy8uDXq+Hn59fjXugqyIIArp16watVlvrxUIqK3sqExISgs8++6zK/bGxsU4fxps3b46ffvqpRvctv/InERF5F7dJkDMzM9G5c+cq9yuVSpeNmidqCnJzc7FlyxZkZWU5trVq1QpDhgyBj48P4uPj8f7772Pnzp1OSaMgCOjUqROGDRuGmJgYFBYWwmq1AgCMRiMsFgsCAgKgVqvrFJcgCOjatStCQ0MbvFeaiIioLtwmQW7evDlOnjxZ5f5ffvmlwiAcIro6SZJw/Phx7Ny505HYKpVKDBgwAF27dnX0/nbp0gVLly7F5cuXcfvtt6OwsBA+Pj544YUXnAbFBQcHw2g0OpZIL5sZws/PD3q9vla9yQqFAt26dUN4eHgDfsVERET14zY1yOPGjcOHH36IvXv3OraV/aJdvnw5Pv/8c0yYMEGu8Ig8ktlsxtatW7F9+3ZHchwcHIz77rsP3bp1qzSZbdasmWPRC41GU2HFPEEQ4Ovri5CQEKep2AwGA/Lz82u8qIlKpcL111/P5JiIiNyO2/Qgz5w5E/v27cONN96Ijh07QhAETJs2Dbm5ubh48SJuvfVWTJs2Te4wiTxGeno6Nm/ejMLCQse2+Ph4DBw4sM7lEOWp1WqEhITAYDA4yp8sFgtycnLg7+8PnU5XZW+yTqdDjx49uIokERG5JbdJkDUaDbZu3YpPP/0UX3zxBex2O8xmM7p06YIFCxZg/Pjx9R4IRNQUSJKEgwcPYs+ePY5FQDQaDRISEtCuXbsGvZcgCPD394dWq0VBQQFEUYQkSSgsLITZbEZAQECF+ZJ9fX3Rs2dP6HS6Bo2FiIioociWIE+fPh3jx49H9+7dAZSuUBceHo4HHniA84oS1VFxcTG2bduGlJQUx7aoqCjccsstCAwMdNl9NRoNQkNDUVRUhJKSEgCl5R05OTkICAiAVqsFUFre0b179wbpwSYiInIV2WqQFy9ejBMnTjjex8XF4euvv5YrHCKPd/78eXzyySdOyfH111+Pe+65x6XJcRmFQoHAwEAEBgY6nvaIooj8/HwUFhYiIiICPXr0YHJMRERuT7Ye5MjISJw7d87xvjZL3RLRP2w2G/bs2YNDhw45tvn6+mL48OFo3rx5o8ej0+mgVqtRWFjomLYtNzcXR44cQbNmzRAZGdnoMREREdWGbAnyiBEj8PLLL+P77793rET15ptvYu3atVWeIwgCV9MjKicvLw9btmxBZmamY1tcXByGDBkCvV4vW1xKpRJBQUEwmUzIzMyEyWSCyWTCunXr0Lt3b1x//fUVapOJiIjchWwJ8jvvvIOIiAjs2LEDx44dgyAISE1NRW5ubpXncJAe0T+OHz+OHTt2OM1t3L9//yqnb2tsgiCgd+/e0Ol02Lp1KzIzMyGKIvbu3Yvk5GQMGzaMyzQTEZFbki1B9vX1xaJFixzvFQoFFi9ejHHjxskVEpFHsFgs+PHHH50W1gkODsYtt9yCiIgIGSNz1rFjRzRr1gwAMGbMGOzfvx+//vorJElCWloaPv30U9x4442Ij493i4SeiMhTFBcXw9fXV+4wvJpszzhHjx6NXbt2Od7v2LEDQ4YMkSscIo+QkZGBTz/91Ck57tSpE8aOHetWyXHz5s3RokULx3ulUom+ffs6DRi0Wq1ISkrCt99+i+LiYrlCJSLyOGVPDsl1ZEuQN2zY4DTa/qabbsL27dvlCofIrZXNbbxu3ToUFBQAKJ1abfjw4Rg6dCg0Go3MEf4jKCgIHTp0qHRfs2bNcP/99yM+Pt6x7dy5c/jkk09w9uzZxgqRiMijMUF2PdkS5JiYGPz++++O95Ik8TErUSVMJhO+++477Nq1y7HwR2RkJO6///4qE1G5+Pj4oFu3btUOwCtbtGTUqFGOJa1NJhO+/fZbp5pqIqo7zgzl3Ww2G+x2u9xheDXZapDvu+8+vPHGG/j8888dA3VefPFFJCYmVnmOIAj4448/GilCIvmdPHkSGzdudCy+AQA9e/ZEnz59oFQqZYysIq1Wi549ezoWBbma1q1bIzo6Gj/88INjyscTJ04gNTUVYWFhbpf8E3kSk8kk60w25HolJSWsQ3ahWiXIcXFxte7lFQSh0keniYmJaNOmDXbs2IHMzEwIggBfX1+EhobW6vpE3shms2Hjxo344YcfHNv0ej2GDRuGli1byhhZ5XQ6Ha6//vpa/0LW6/UYNWoUjh07hp9++glWqxUGgwH/+c9/MGzYMNx6661QqWT7HE/ksdiD7P04UM+1avWbZ+DAgRUS5N9++w3Hjh1Dp06d0L59ewDAqVOncPz4ccTHx6NHjx6VXkupVOKRRx7BI488AqB0FotZs2ZxFgtq8rKysrBy5UpcuHDBsa1FixYYPny4W/YI6fV69OzZ01EuUVuCICA+Ph7XXHMNtmzZgoyMDEiShK1bt+LYsWN48MEHER0d3cBRE3m3snIs8l4Gg8GtBmd7m1rVIK9evRqrVq1yvG6//XZcvHgR27dvx59//okvv/wSX375Jf78809s27YNqampuOOOO2p07fPnz9f4WFdbsmQJYmNjodPp0Lt3bxw4cKBG561duxaCILjN10Ge58CBA0hMTHQkx0qlEj179sSIESPcMjn28fHB9ddfX+fkuLygoCDceeed6N69u6OGOTU1Fa+++ip27NjBX/hEtcDvF+9XVFQkdwherV6D9ObMmYOnnnoKN998c4V9Q4YMwdSpUzFr1qwaXatly5ZukQCsW7cO06dPx9y5c3Ho0CF07doVw4YNc1qprDLJycl47rnnMGDAgEaKlLxJSUkJ1qxZg9WrVzvqjcPDw/HMM8/g2muvdcsBrGq1Gj179oROp2uwayoUCnTp0gXPPvusY0lqq9WK9evX47333kN+fn6D3YvImzFB9n5MkF2rXgny6dOnq60ZDg0NrXLqJoVCAZVKBYvF4nivVCqrfTVGLeJbb72FKVOmYNKkSejUqROWLl0KvV6PlStXVnmO3W7H/fffj/nz56NVq1Yuj5G8S0pKCl599VXs37/fse2GG27AjBkz0Lx5cxkjq17nzp1d9qG2efPmmDFjBgYNGuTYdvLkSSxYsAAHDx50yT2JvInNZpM7BHKxwsJCuUPwavXKOFu3bo1Vq1bhoYcegp+fn9O+oqIirFy5ssqEcc6cORAEwZH0lr2Xk8ViwcGDBzFjxgzHNoVCgYSEBOzdu7fK815++WVERETgoYceclr8pCpmsxlms9nx3mAw1C9w8kiiKGLHjh345ptvHNP1aLVajB07Fr169QIAp38n7iQmJgbh4eEuvYdGo8G9996L+Ph4/Pe//0VBQQGMRiNWrFiBI0eOYMyYMW7x1InIHZV1PpH34hM116pXgrxgwQLcfffd6NChAx588EG0adMGQGnP8po1a5CRkYH169dXeu68efOqfS+H7Oxs2O12x6PdMpGRkU4rl5W3e/durFixAocPH67xfRITEzF//vz6hEoerqioCB9//DGOHTvm2NaiRQtMnjzZ7QddKJVKtG3bttHu16lTJ8yaNQv/+9//cOjQIQDAr7/+itOnT2PixImOwcFE9I/yU0OSdzIYDCgpKWnQMjf6R70S5DvuuAObN2/GCy+8gEWLFjnt69atG1asWIFhw4bVK0B3VlRUhPHjx2P58uUICwur8XkzZszA9OnTHe8PHz6MgQMHuiJEckMnT57E6tWrnR6PJSQk4LbbbvOIKc1atGhR47mOG4qvry8eeughdOnSBevWrYPJZEJ+fj7eeecd3HzzzbjtttugVqsbNSYid2axWGC3291uvnRqWOnp6YiNjZU7DK9U79/GQ4cOxdChQ5Genu4Yed+yZUtERUXV+BpmsxmffPIJvv/+e5w9exZFRUXw9/dHmzZtMHz4cIwbN65RltINCwuDUqlERkaG0/aMjIxKv56zZ88iOTkZo0aNcmwrGxihUqlw6tQptG7dusJ5Wq3WKcG4sjyFvJPdbse3336L7du3O+Yo9ff3x8SJE9GpUyeZo6sZpVIp2w9jQRDQq1cvtGnTBh9//DH++usvAEBSUhKOHz+OSZMm4ZprrpElNiJ3ZDAYEBgYKHcY5EKpqalMkF2kwbqroqKiapUUlzl69Chuv/12XLhwAZIkITAwEH5+fsjMzMShQ4ewfv16LFy4EBs3bkTHjh0bKtxKaTQa9OjRA0lJSY6p2kRRRFJSEqZOnVrh+A4dOuDo0aNO22bNmoWioiK88847bj3AihpXdnY2Vq5cieTkZMe2jh07YuLEiQgICJAvsFq65pprGuXDanVCQkLw9NNPY8eOHdiwYQNsNhvS0tLw2muvYdSoUUhISKh2qWuipqKoqIgJspdLSUmBJEmyj+HyRvX+LZKSkoLHHnsM7du3R0hICH7++WcApQnB008/jd9//73Kcw0GA2677TZkZGRg4cKFSE1NRV5entOfCxYswOXLlzFq1CgUFxfXN9yrmj59OpYvX441a9bgxIkTePzxx1FcXIxJkyYBACZMmOAYxKfT6RAfH+/0CgoKgr+/P+Lj42VPJMg9/Pbbb1i0aJEjOVYoFLjzzjvx5JNPelRyrFAoEBcXJ3cYAEpjufnmm/HCCy8gJiYGQGkP/TfffIPFixcjJydH5giJ5MdBXN6vuLgY2dnZcofhlerVg3z8+HEMGDAAoiiid+/eOHPmjGNqmbCwMOzevRvFxcVYsWJFpeevWrUKKSkpSEpKcprOqUxMTAxmzJiB3r17Y8iQIVi9ejWefPLJ+oR8VWPGjEFWVhbmzJmD9PR0dOvWDVu3bnUM3EtJSWHvFNWI2WzG559/7jQDSnh4OCZNmuSRj8TkqD2+mpiYGDz//PP47rvv8MMPP0CSJJw5cwYLFy7Evffei969e7NnhZqsvLw8uUOgRnD+/HmXzyrUFNUrQX7++ecRFBSEffv2QRCECqPvR4wYgXXr1lV5/qZNmzB06NBKk+PybrrpJgwZMgTffvutyxNkAJg6dWqlJRUAsHPnzmrPXb16dcMHRB4nNTUVK1eudKpnv/7663Hfffc1yKpzjU2pVLpN7/GV1Go17rzzTsTHx2PNmjXIzc1FSUkJPv74Yxw5cgTjxo1jnT81Sbm5uXKHQI3gzJkzuP7669kZ0MDq1RX6888/4/HHH0d4eHilDdOiRQtcunSpyvOPHj161eS4zE033VSh3pfI3UiShB07duDf//63IznWarWYOHEiJk2a5JHJMVD6vezuJUNt27bFzJkzccMNNzi2HT58GAsWLHCaTo+oqcjNzXUMCCbvZTAYHJMkUMOpV4IsimK1E/VnZWVV+0g2Nze3xgP7IiMj+WmY3FpRURE++OADrF+/3lFqVLYiXO/evWWOru4UCgVatmwpdxg14uPjgwkTJmDKlCnw9fUFULra1JIlS/C///3PbRdeIXIFq9UKo9EodxjUCH7//Xd+GGpg9UqQr7vuOmzatKnSfTabDWvXrnXqzbmS2Wyu8dyl5ZelJnI3p06dwqJFi/Dnn386tt1888147rnn3H7hj6uJjo52u9rjq+nevTtmzZqFa6+91rFt165dSExMdJpJhMjbsQ65acjKysLp06flDsOr1KsGecaMGRg5ciQef/xx3HfffQBK5wz+4YcfsGjRIpw4cQLvvfdetddITk52rI5VnfPnz9cnVCKXsNvt+O677/D99987Pr37+flh4sSJTsmZJ/PUuYUDAwPxxBNPYNeuXfjyyy9htVqRmZmJN954A7fccguGDx/ORRTI62VlZXns9zBVrmfPnrh8+TLUajVmzpzp2L5v3z40b97cY0v53E29EuRbbrkFq1evxjPPPINly5YBAB544AFIkoSAgAB8/PHHuPHGG6u9xuzZszF79uyr3ovz/JG7ycnJwcqVK50+vHXo0AETJ070mrlHBUHw6K9FEATceOONaN++PVavXo0LFy5AFEVs2rQJx44dw8SJEyssLU/kTS5evIju3bvLHQY1oPT0dKSlpSEoKMhpe0lJCXbv3o2EhATmSw2g3guFjB8/HqNHj8b27dtx+vRpiKKI1q1bY9iwYfD396/23FWrVtX39kSyOHjwID777DOYTCYApXW6t912m9csUhEWFgar1Yrg4GCv+EEbGRmJ5557Dlu2bMHWrVshiiKSk5ORmJiI0aNHY8CAAV7xdRJdKS0tDQUFBR79QZdq7vz58zh16hQ6dOggdyger84JstFoRPPmzfHiiy/i//7v/xwrz9XGxIkT63p7IlmYzWZ88cUX+OWXXxzbQkNDMXnyZLedBq0uvvrqKxw8eBDR0dFyh9JglEolRo4ciWuvvRZr1qxBZmYmLBYL1q5di6NHj+KBBx5gEkFe6dChQxg8eLDcYVAj2bNnDyIiIhASEiJ3KB6tzl1der0eKpXKMVKcyNtdvHgRr776qlNy3LNnT7z00ktelRyX50kr/dVUXFwcZsyYgQEDBji2HTt2DAsWLMDhw4flC4zIRc6cOYOsrCy5w6BGYrPZsG3bNscTTqqbej0Lvuuuu/DFF19wahHyapIkYefOnXj99dcdcxtrNBqMHz/eo+c2vhpBEKqdxtGTabVajB07Fo8//rjjQ0BxcTGWLVuG//73v03iFwunvGs6JEnCnj17+Lu6CSkqKsKWLVs4+1c91CtBvu+++5CZmYnBgwfj008/xS+//IJDhw5VeBF5KoPBgA8//BCff/65Y27ja665BjNmzECfPn28um5Vp9N5RT11dTp37oyZM2eia9eujm179+7FokWLcObMGRkjc73yqzyS98vIyMDZs2flDoMaUXZ2Nr777rsm8YHfFeo1SK/8Kni7du2qsL9s5gm73V6f2xDJ4q+//sLq1auRn5/v2DZ48GDccccdNZ6/25PpdDq5Q2gU/v7+eOSRR7Bv3z6sX78eJSUlyMnJwdtvv40hQ4Zg5MiRUKnqPZ7Z7bAHuekpmwbM0+Y1p7rLzs7Ghg0bMHz48AqzXlD16vVTn7NQkDey2+3YvHkztm7d6jS38fjx49G5c2eZo2s87r60dEMSBAF9+vRB27ZtsWbNGpw9exaSJOH777/H8ePH8eCDD6JZs2Zyh9mgmCB7r549e+LixYvQarVO8+QajUbs2rULN998s1c//SJnhYWF+Oabb3DzzTejefPmcofjMeqVIHMWCvI2OTk5WL16tdOjyHbt2uHBBx9scp++vbHX9GrCwsIwbdo0/PDDD/j2229ht9sdgzNvv/12DB482GvKTkpKSji/vJdKT09HRkZGpT+zzp07h4CAAFx//fVs+ybEYrFg69atuOGGGxAfH8+2rwG3+w14/PhxnDt3Dnl5eZUOKJgwYYIMUVFT8Pvvv+OTTz5xmtt45MiRGDp0qNckRbXRFL9moPTrHjp0KDp27IjVq1cjLS0NNpsNX375Jf7880+MHz/eK6ZPslqtsFqtTepJAZU6fPgwLBYL+vbt22S/z5siSZKwd+9e5ObmYsCAAWz7q6hVgjx58mQIgoBly5ZBqVRi8uTJVz1HEASsWLHiqsedPXsWDzzwAA4cOFDlSFtBEJggU4OzWCz44osvsHv3bse2kJAQTJ48Ga1atZIxMnk19R+eZfO8b9iwAT/++CMA4NSpU1i4cCHuu+8+XH/99TJHWH9FRUUIDQ2VOwySwfHjx5GXl4ebb77Za2erocqdOnUKBoMBQ4YM4QfkatQqQf7xxx+hUCggiiKUSiV+/PHHq3bT17Qb/9FHH8XRo0exePFiDBgwAMHBwbUJjahOLl26hJUrVyItLc2x7brrrsO4ceOa/C8NPoID1Go17r77bsTHx+Pjjz9Gfn4+TCYTVq1ahaNHj+K+++7z6H8nTJCbtrS0NHz11VcYPHgwYmJi5A6HGtGlS5ewceNG3HLLLVzPogq1SpCTk5OrfV8fv/zyC1566SU89dRTDXZNoqpIkoRdu3bhyy+/hNVqBVCaDN17773o27cvk0Ny0qFDB8yaNQvr1q3Dr7/+CgD47bffcObMGUyYMMFjl3UtKCiQOwSSmdFoxObNm3Hdddfhuuuu48++JiQ3NxcbNmzAiBEjuIpoJdzmGWpYWBgbiBpF2YIQa9eudSTHMTExePHFF9GvXz/+gvhbUy+xuJJer8ekSZMwefJkx+Iw+fn5ePfdd7F+/XqPnJC//BSG1HRJkoSDBw9i69atnN2kiTEYDNi4cSOys7PlDsXtuM1vwMceewyffPIJ50wmlzp9+jQWLlyIP/74w7Ft0KBBeP755xEdHS1jZO6HCXLlevbsiVmzZqF9+/aObTt27MCrr76KlJQUGSOrvZycHLlDIDeSmpqKb775Bnl5eXKHQo3IZDLh22+/xeXLl+UOxa3U+zfgli1bMGTIEISGhkKlUkGpVFZ41US7du1gt9vRtWtXvPXWW1i/fj2++uqrCq/GsGTJEsTGxkKn06F37944cOBAlccuX77cUTMdHByMhISEao8nedjtdnz33XdYvHixo9fM19cXjz32GO69994msfBHbbEnvWrBwcF46qmncM899zj+7aSnp+P111/H1q1bIYqizBHWTE5ODnsMyUlBQQE2bNiAixcvyh0KNSKr1YotW7bg3LlzcofiNuo1zduXX36Je++9F9deey3uu+8+fPDBBxg3bhwkScKGDRvQtm1b3HHHHTW61pgxYxx/f+655yo9pjFW5Vu3bh2mT5+OpUuXonfv3li8eDGGDRuGU6dOISIiosLxO3fuxNixY9G3b1/odDq89tprGDp0KI4dO8ZBD24iNzcXq1evdlo6uG3btpg0aVKTm9u4Nmr64bapUigUGDx4MDp06IDVq1cjNTUVoihi48aNOHbsGCZOnIiwsDC5w6yWJElITk526g0nKpszd8CAAfy30YTY7XYkJSXBZDLh2muvlTsc2dUrQU5MTESvXr2we/du5OXl4YMPPsDkyZNx0003ITk5GTfccAPi4uJqdK0dO3bUJ5QG89Zbb2HKlCmYNGkSAGDp0qXYtGkTVq5ciRdffLHC8Z9++qnT+48++ghffvklkpKSOCWdGzh8+DA++eQTGI1GAKVJzYgRIzBs2DCWEFwF///UTHR0NP7v//4PmzZtwvfffw9JknD27FksXLgQ99xzD/r06ePWvfHHjx9Hu3bt3DpGanyiKOKnn36C0WhEt27d+O+jiZAkCb/88gtMJhN69OjRpNu9Xgny8ePHkZiYCKVS6Vh1q2zQU2xsLJ544gm89tprNUoUBw4cWJ9QGoTFYsHBgwcxY8YMxzaFQoGEhATs3bu3RtcwGo2wWq3VLiRgNpudHmsaDIa6B02Vslgs+PLLL7Fr1y7HtpCQEEyaNAmtW7eWMTLPwQS55lQqFW6//XbEx8dj9erVjtKFTz75BEeOHMH9998Pf39/ucOsVFZWFlJTU9GiRQu5QyE39Ouvv6KoqAj9+/fnz4Qm5NChQxBFEb169ZI7FNnUK0HW6/WOSaaDgoKg1Wqd5pONjIzE+fPna33d48eP48KFCwCAli1bolOnTvUJs8ays7Nht9sRGRnptD0yMhInT56s0TVeeOEFNGvWDAkJCVUek5iYiPnz59crVqra5cuXsXLlSqcBB927d8f999/v0XPWNjb+Mqy91q1bY+bMmfjiiy+wZ88eAMCRI0dw/vx5PPDAA+jcubPMEVZu//79uOaaa9jmVKmTJ0+iqKgICQkJ0P5/e/cd19T1/gH8cxMghA0KolWGUBHEBRbFBSqKBawDLXV8FXdrrXW0Wq1W/aqoLa1arbWOilpRaxUH1lW3FcVR68YF0qrgYG9Czu8Pf9wvkSEBwg03z/v1ui/Jyc3NEx4Tnpx77jkymdDhkFpy9epVGBsb6+xwi2p9Grq4uODWrVv87TZt2mDLli1QKBTIy8tDZGSkWr0Se/fuhZOTE1q2bImgoCAEBQWhZcuWcHZ2xr59+6oTaq1YsmQJtm/fjqioKBgaGpa738yZM5Gens5vp06dqsUoxYsxhrNnz2Lp0qV8cayvr48hQ4ZgzJgxVByrSZdPrVWHoaEhhg0bhnHjxsHExATAqwU5fvzxR0RGRiIvL0/gCEtLTU1V+Swn5HWPHz9GVFQUUlJShA5FpyUmJiI7OxvAq7PRms7H+fPndTbn1SqQBwwYgH379vHDBb788kucPHkSFhYWsLa2xpkzZ8oct1uW33//HcHBwQCAsLAwREVFISoqCmFhYWCMYcCAATh06FB1wn2j+vXrQyqVIjk5WaU9OTkZtra2FT42PDwcS5YswZEjR9CqVasK95XJZDAzM+O34j+ipOpycnKwfv16REZG8sN8GjVqhBkzZqBz585U7FUB/c6qp02bNpg9ezbc3d35trNnz2Lx4sVVOrOmaRcvXqThXqRCGRkZ2Lt3Lx48eCB0KDonNjYWffr0gYODAz8TU25uLmbNmoUffvihRhduK6moqAjnz5/XyLFTUlIwdOhQmJmZwcLCAqNHj37jZ9DatWvh6+sLMzMzcBxX5lzuDg4O4DhOZVuyZIna8XGMMabug/Ly8rB3717Ex8ejXr16CAoK4ueQPXPmDHbv3g2pVIrAwEB069atUsf09vZGfn4+zpw5U2rZw+zsbHTu3BmGhoaVHgtcVe3bt4eXlxdWrlwJ4NWFCnZ2dpg4cWK5xf7XX3+NRYsW4fDhw+jQoYPaz3nlyhV4enri8uXL8PDwqFb8uujBgwfYuHGjyrfcrl27YsCAAXV+nfn8/Hz+NFdtv5aioqJan8mioKAA2dnZaNOmjWhO5RZf9PLbb7/xi4lwHIfevXsjICBAkNlC2rVrh8TERMjlcnz55Zd8e6NGjRAYGEhfjuq4xo0b4/Hjx7CwsMDSpUs18hzu7u5o3749zXZTC3bv3o2QkBAwxsqcyat4aNTYsWM1VkP069evzJm83sTX1xehoaEIDQ0tdd+7776Lp0+f4qeffkJhYSFGjhyJd955B5GRkeUeb/ny5fxZuJkzZyI1NbXUbFQODg4YPXo0xo4dy7eZmpqqvaS22mOQnz17ho4dOyI+Ph6MMXAcB7lcjj179sDPzw9dunRBly5d1D0srl27hrCwsDJfgLGxMUJDQzFr1iy1j6uuqVOnYsSIEWjXrh28vLywfPlyZGdn87NaDB8+HG+99RYWL14MAFi6dCm++uorREZGwsHBAUlJSQAAExMT6hnWMKVSiUOHDuHAgQMo/p5nZGSEYcOGoU2bNsIGR8j/4zgOnTt3RrNmzbBp0yb+s/PgwYO4efMmRo4cWeq6B01LSkrC8+fPS/1hefLkCS5fvox27drVajyk7rlx4wZevHiBnj178itLkpoXGxuLkJAQFBUVobz+zOJ519etW4cZM2bAwcGhxuP466+/4O/vX2PHu337Ng4dOoSLFy/ynzcrV65EQEAAwsPD0ahRozIfN3nyZACvptitiKmp6RvP/L+J2kMsFixYgISEBEyZMgXR0dFYtmwZ5HI5xo8fX61ADA0NKxznkpKSUuG43poSEhKC8PBwfPXVV2jTpg2uXr2KQ4cO8X/AEhMTVS5E/PHHH1FQUICBAweiYcOG/BYeHq7xWHVZamoqVqxYgejoaP5Dw9nZGbNmzaLiuIZQz1DNsrGxwdSpUxEUFMT3+CQmJiIsLAynTp0q949fbbty5QqdQq/DanOMalJSEvbu3YvMzEyNPYeuW7hwIRhjlf58+P333zUSx6NHj0oNP62OmJgYWFhYqHwZ9/Pzg0QiwYULF6p9/CVLlqBevXpo27YtvvnmGygUCrWPoXaBfOTIEQwfPhzh4eEICAjApEmTsGrVKiQkJCAuLk7tAIp1794dK1asKHMIxYULF/D9999XODNETZo4cSIePXqE/Px8XLhwAe3bt+fvO3nyJCIiIvjbCQkJ/H/ektu8efNqJVZd9PfffyMsLAz37t0D8KqHLjAwEJMnT65wej1ChCaVShEQEIDPPvuM/9JdWFiIHTt24IcffihzPJ0QTp48iX/++UfoMIgahBqjmpGRgf3792tk/LomxqgmJCRg9OjRcHR0hFwuh5OTE+bOncsPfxJaUVER8vLykJWVhevXryM6OrrSC6QplUpcu3ZNY1+KLly4UGNf5JOSkkoN2dDT04OVlRV/Jr6qJk2ahO3bt+PEiRMYP348wsLCMH36dLWPo/YQi8TERMyYMUOlrXPnzmCMITk5ucqr7nz99dfw9vZG586d4eXlxR8nLi4OsbGxsLGx0dhYKlI3FBYWYvfu3SqzflhaWmLkyJFwdnYWMDJC1OPg4ICZM2ciKiqK//9869YtLFq0CIMHDxb8WoSioiIcOXIE/v7+aNy4saCxkDcrOUb19QKGMYYbN27gxo0bGhujmpWVhSNHjqBfv35qTxVY0RjVoUOH4unTpzh69Cg/RnXcuHEVjlHNyclB79690bt3b5U1DYrduXMHSqUSP/30E5ydnfnfS3Z2NsLDw8EYg0KhQGFhocpWsq3kz3l5eSgoKODbyvv39bby9iu5TP2dO3fULkgZY7h9+zY6duyo1uMq4+nTp2+cMz0sLAxhYWH87dzcXJw/fx4TJ07k2zQ9Y87UqVP5n1u1agUDAwOMHz8eixcvVuvaFrUL5Pz8/FJDHYpvV6ULu5ijoyOuXbuGxYsX4+DBg9ixYweAV/Mgf/rpp/jiiy+qNECciMPTp0/x888/4/Hjx3xb69atMWzYMLUH3hOiDQwMDBASEgJ3d3f88ssvSE9PR3Z2NtavXw8vLy+EhIQIOrazqKgIhw8fRs+ePWkRES2mLWNUX7x4gbi4OLi6ulbrOIwxKJVKXL9+HYcOHcIff/wBR0dHFBQUYPbs2XyRbGVlVWbB+vbbb6OwsBB///03AGDbtm2QyWQqxa6rqysuXbqEmJgYFBYWws3NDevXr+cLXW1RUFAAjuPUKpI5jkNGRga/emxNi4mJQaNGjfjF4V734Ycf4v333+dvDx06FMHBwRgwYADf1qhRI9ja2uLZs2cqj1UoFEhJSan22OHXtW/fHgqFAgkJCWp14lZpoZCEhARcuXKFv52eng4AuHfvXqmLPgBU+hurjY0Nli1bhmXLllUlLCJCjDGcO3cOv/76Kz99m76+PoKDg9GlSxe62p7UeS1atMCXX36Jbdu24a+//gLwqui5f/8+hg8fjmbNmgkWW3FPcrdu3WgFSi1VlTGqEyZMeON+ZQ0dfNN25swZJCQkqNUDm5CQgJ07d+LmzZt8W3EvqIGBAXbt2oVdu3YB+F+hv2TJEjRt2rTC+Is7Uy5duvTGXsOMjAwYGBjUanGsp6fHr0Jc8t+SP798+bJKPchyuVwji/4wxpCZmYmioqJyC2QrKyuVoY5yuRw2NjalzvJ6e3sjLS0Nly9fhqenJwDg+PHjUCqVKsNaa8LVq1chkUjU7mStUoE8Z84czJkzp1T762+64lkuKjt+hpCScnJyEBkZqfJlrGHDhhg9enS5V7gSUheZmJhgzJgxiI2NxY4dO5CXl4eUlBSsWLECPXr0QJ8+faCvry9IbEqlEseOHUNmZiZat25NX0q1SGJiosqFym+iVCrx999/Iy4uDubm5uUWulX1/PlzXL16Va3HFBYWIjc3l7+wsFhOTk6pMygSiQQymaxGekf19PSgr6+PrKws3Lx5E7169ULjxo2hr6/P31e8lbytp6cHAwMD6OnpgeM4JCUlQS6Xw9DQsFTBW14RLJFIKvU+at++PXbu3Kl2D7KLi4tGCmSlUlluYawuV1dX9O7dG2PHjsWaNWtQWFiIiRMn4oMPPuD/vj9+/Bg9evTA5s2b+SWvk5KSkJSUhPv37wMArl+/DlNTU9jZ2cHKygoxMTG4cOECunXrBlNTU8TExGDKlCkYNmwYLC0t1YpR7Ve6ceNGdR9SplGjRoHjOKxduxZSqRSjRo1642M4jsOGDRtq5PmJdnv48CF+/vlnlYsNOnfujIEDB9b5uY0JKQvHcWjfvj2cnZ2xefNm3Lt3D4wx/PHHH7h16xZCQ0MFHQ8cGxuL58+fo2vXrqKZo7o2KBSKGukkys3NRUpKClJSUvDy5UukpKTg999/r1JBe/fuXbRu3braMb2uMkXZ5cuX+U4PjuOgUCiQnJyMs2fP8kXj9OnTYW1tjYSEBHh4eKgUqFu3bkWLFi3w3nvvVVjEXr58Gfv27cPnn38Oa2trlfuLi9THjx/Dx8cHw4YNw/r169V+vZqep75Ro0bw9fXF6dOnK/V/SCKRwM3NTaMXq9erV6/GjrV161ZMnDgRPXr0gEQiQXBwML7//nv+/sLCQsTFxal8IVqzZg3mz5/P3+7atSuAV7VpaGgoZDIZtm/fjnnz5iE/Px+Ojo6YMmWKyrjkyqrSQiE1wcHBARKJBHFxcdDX1+dXPqkIx3F4+PBhLUVYe2ihkP9RKpU4cuQIoqOj+dNpcrkcw4YNQ9u2bQWOrvYJuVCIEMS4UEhVFPfa7t+/nz/tq6enhz59+vB/TKqjOgtJGBsbo2vXrmjSpEm1YtAFCoUCt27dQm5u7hv3LSwsRFZWVrlbWbMsXLt2DefOnVO7h7Fnz5545513+NvFf3tL/lvez29qa968OZydnSGTycosXjMzM5GRkcFPI1nWGFUHBwds3rwZ06ZNQ2pqqsrv09DQEDt37kT//v0rfJ0nT55Et27dylxIAng157evry86dOiAiIiIKr2nauPz+dq1axg8eHCFY8yLSSQSTJkyBfb29hqJRS6Xo0WLFvDw8NCJz+ea6SuvgtennNHUFDSk7khLS0NERATu3r3Ltzk5OSE0NLRGv7USou0kEgl69uwJV1dXRERE4MmTJ1AoFIiKisKNGzcwfPhwwd4T2dnZOHjwIJydndGhQwcYGRkJEkddUFRUhNzcXOjr64PjOGRmZvJbRkaGyr/Fq4Opw8DAoEpjVOvVqwdra2u1n68yx5bL5XyBXBYTExN+5V1AmDGqjx8/Rrdu3eDp6YmNGzdqZDhCTWnVqhWWLVuGKVOmvHElvZEjR2qsOJZIJGjRooVW/65qmmAF8usSExNhbW1d7lXbubm5eP78OV1NLVLXr1/H5s2b+XFoQi/FS4g2aNy4MWbMmIH9+/fj2LFjYIzh3r17WLRoEUJCQuDl5SXYmOD79+/j0aNH8PT0hLu7u0794SxLYWEhP/yheHv+/Dn++ecfZGdnV6oXuSwcx8HU1BTm5uYwMzNT2XJycnDy5EmtGqNaU4uGaGqM6uPHj+Hr6wt7e3uEh4fj+fPn/HPW9OwJNaVXr17Ytm0bVq9eXSrfHMfBzc0N/v7+GiuOAaBly5YwNTUtNVZczLSmQHZ0dMSWLVswZMiQMu/ft28fhgwZQhf8iUxhYSGioqJUlo20sLBAaGiooFfvE6It9PX1MWDAALi7u2Pz5s1ISUlBXl4eNm3axJ9+FWpZ+8LCQpw/fx5xcXHw9fXVSK+ktigqKkJqaipevHihUgQXb8WzOamL4ziYmJioFL4li2ETE5MKi1ltG6NalZ7w8mhijOrRo0dx//593L9/v9SYfm1ZzbIsrVq1wpo1a/DkyRP07dsXGRkZkMvlmDFjhsYXyGrevDlsbW21ZjGV2qI1BfKb/mMWFhbqfA+F2CQnJ2PDhg34999/+bZWrVph2LBhgv3BJ0RbNWvWDF9++SV27NiB2NhYAMBff/2Fhw8f4j//+Q/c3NwEiy01NRV79uxBp06dBI2jOoqKipCWllZm8fvy5UukpaVVuYAyNjYu1QNcfNvExKRaZ8kmTJiAM2fOVHq+XH9//yo/V2WoO3d3yc6R11lZWVW4KIiDg0Op1zxv3rwKV7Itb1GSuqJRo0aQy+X81HSaLo4dHR012jOtzQQtkDMyMlSWgXz58iUSExNL7ZeWlobt27erjFsidRdjDOfPn8eOHTv4b6R6enoIDg5G165daRopQsohl8sRGhqKVq1aYdu2bcjOzkZ6ejpWrVoFHx8f9O/fX7CLORljOHv2LPLy8rTyYmOlUon09PRyC+DU1FSVVczUYWZmBisrK9SvX1/lXzMzMyQmJsLMzExjedGWMarAqzHRxUuok7rP1tYWb7/9ttBhCEbQAnnZsmX473//C+DVaabJkydj8uTJZe7LGMPChQtrMTqiCbm5udi2bRsuXbrEt9na2mLUqFG0pC0hleTh4YGmTZvil19+4ZdtPXXqFO7cuYPQ0FBBe3wuXboEqVSqkWnEKsIYQ0ZGRoUFcFUXgjAxMYGVlRXq1avHb8VFcL169cotfvPz81VW/9QUbRijKpFI0LJlyxqbJ5cIy8LCAu7u7jrdYSXo/+RevXrBxMQEjDFMnz4dgwcPLtXzwHEcjI2N4enpiXbt2gkUKakJ8fHx+Pnnn/Hy5Uu+rVOnThg4cKBOTBlDSE2ysLDAxx9/jNOnT2P37t0oLCxEcnIyvvnmGwQEBMDf31+wC1wvXLgAqVQKd3f3GjsmYwxZWVnlFsApKSn8apvqksvlKgXv60WwoaFhjb0OTRFyjKpUKkXbtm117iIusTIyMkLbtm11/gJ5QQtkb29veHt7A3g1dVBwcHCNfqAS7aBUKnH06FHs379fZW7jIUOG8NP3EELUx3EcfHx84OLigoiICCQmJkKpVCI6Oho3b97EiBEjSi2vmpiYyBcx+fn5SElJ0UgBde7cOUilUri6ulZqf8YYcnJyKiyA8/PzqxSLTCYr1etbchPTVHW1PUZVLpfzxbGuXcQlRgYGBvDw8NCJefffRCvOheTk5OD777+HkZERFcgik56ejk2bNuHOnTt8m6OjI0aNGkVzGxNSQ2xtbfH555/j999/x6FDh8AYQ3x8PMLCwjBw4EB06tQJFy9exIIFC3DgwAH+FHxubi5mzZqFli1bIjAwEA4ODjUa15kzZwCAL5Jzc3PLLYBfvnyp9gwIeXl5OHv2LBISEvhezPHjx6NRo0YqBbGxsTF/qjgvLw/Tpk3D9u3bkZ+fD39/f6xevZofO/vy5UsMHToU165dw8uXL2FjY4O+ffsiLCwMZmZmNfjbqftsbGzg7u4u2DLopGbp6enB09MTxsbGQoeiFbSiQDYyMoKenh4lRWRu3ryJTZs2ISsrC8Cr3i5/f38EBgbq/KkbQmqaVCpFnz594O7ujoiICDx//hwFBQWIjIzE5s2bsXHjRjDGSl31zxjDjRs3cOPGDYwdO7ZaF9gxxqBQKFS2qKgo7N69G6mpqSrTcVXW3r174ebmhk6dOpW6CO6zzz6DoaEhTp8+DYVCgZEjR+Lw4cMVznwwZcoUHDhwADt37oS5uTkmTpyIAQMG4M8//wTwaixt3759sXDhQlhbW+P+/fv4+OOPkZKSUuFxdY2Liwvs7e11eoyqmEilUnh6etKXwBK0okAGgODgYPz222/46KOP6A1XxxUWFmLv3r04fvw432Zubo7Q0FC4uLgIGBkh4ufo6IiZM2di9+7dOHv2LJKTkxEVFVXhFGDFQ5/WrVuHGTNmlNuTXFwAFxUVlSqEFQpFhbNAVHT6XSqVwsrKqsyZIIrneh41apTKY27fvo1Tp07h4sWL/PUpK1euREBAAMLDw/nFJEpKT0/Hhg0bEBkZie7duwN4NT+uq6srzp8/jw4dOsDS0hIfffQR/xh7e3tMmDAB33zzTbnx6xJ9fX20adNG40M3SO0pLo7LWpJbl2lNgfzBBx9gwoQJ6NatG8aOHQsHB4cy51PUxumDdE1iYiKOHTuGzMxMmJqaokePHvwKh8nJyfj555/xzz//8Pu7u7tj+PDhNLcxIbXE0NAQQ4YMQcuWLdG/f3+1HhsdHY0xY8aoFL7FBXF1FmqytLSEhYWFytCH4n8tLCzKnedeT0+vzPtiYmJgYWGhcvG2n58fJBIJLly4UObrvnz5MgoLC+Hn58e3NW/eHHZ2doiJiUGHDh1KPebJkyfYvXs3fHx8qvKyRcXY2BgeHh6iGrOt66RSKTw8PGBpaSl0KFpHawpkX19f/uficWslMcbAcRytpCeg2NhYlTGMEokESqUSHMchKCgI/fr1w/Xr1/kLafT09NC/f3/4+vrSWQFCBGBubo6HDx9WeoELpVKJ69ev4969ezA3N1fruaRSKfT09FS2km0cx2H48OE1NmNNUlJSqQsQ9fT0YGVlhaSkpHIfY2BgUKqnrEGDBqUeM3jwYOzduxe5ubno06cP1q9fXyNx11VWVlZo06YNjTcWkeIxx9RzXDatKZA3btwodAikArt370ZISIjKGMbi06mMMRw4cADR0dHo1asXmjZtigYNGmDUqFFo0qSJkGETovWq2zNbkeIL9tSVkJBQah5jqVSqUvC+/nNFX4KLPzf++ecfODg4VDhXblhYGMLCwvjbubm5OH/+PCZOnMi3Fc/9rEnLli3D3LlzcffuXcycORNTp07F6tWrNf682sjOzg4uLi60mq2IGBoawtPTk87sVkBrCuQRI0YIHQLvhx9+wDfffIOkpCS0bt0aK1euhJeXV7n779y5E3PmzEFCQgLefvttLF26FAEBAbUYsWbFxsYiJCQERUVF5f6xLS6Wjxw5grlz5+KLL76guY0JeQOFQoFbt24hNzdXI8e/c+cOf6ansoqXLDY2NoZUKoVEIoFEIimzAFYqlWpN7RUbG4ucnBy4ubmVWyR/+OGHeP/99/nbQ4cORXBwMAYMGMC3NWrUCLa2tnj27JnKYxUKBVJSUmBra1vmsW1tbVFQUIC0tDSVXrPk5ORSj7G1tYWtrS2aN28OKysrdOnSBXPmzNGpFV0NDAzQokWLUj31pG4zMzND27Zt68T83kLSmgK5pKysLH4Ma5MmTWr1G86OHTswdepUrFmzBu3bt8fy5cvh7++PuLi4Mj8kzp07h8GDB2Px4sUICgpCZGQk+vXrhytXrohmyrqFCxeWefV7WSQSCa5cuULFMSGVUFRUhNzcXOjr62tk3lFLS0u1l09mjMHMzEwj40yLZ7IoKioqt0AuvlivmFwuh42NDZydnVX28/b2RlpaGi5fvszPp378+HEolUq0b9++zGN7enpCX18fx44dQ3BwMAAgLi4OiYmJ/Jz8ZSn+HVZ1Hua6qEmTJnj77bdpSIXIvPXWW3B1daWZpCpBq86XXLx4Ed26dYOlpSXc3d3h7u4OS0tLdO/eXWVpYk367rvvMHbsWIwcORJubm5Ys2YNjIyM8PPPP5e5/4oVK9C7d298/vnncHV1xYIFC+Dh4YFVq1bVSryalpiYiOjo6EqfAi4qKsL+/fuRmJio4cgIEQ8DAwONbF26dFF7/D/Hcfzp9JreFAoF0tPTa+R35urqit69e2Ps2LGIjY3Fn3/+iYkTJ+KDDz7gZ7B4/PgxmjdvjtjYWACvxmSPHj0aU6dOxYkTJ3D58mWMHDkS3t7e/AV6v//+OzZu3IgbN24gISEBBw4cwIcffohOnTrV+DzR2sjc3Bze3t5wc3Oj4lhEJBIJWrRoAXd3dyqOK0lrepAvXLgAX19fGBgYYMyYMfzE8rdv38a2bdvQtWtXnDx5ssKhDtVVUFCAy5cvY+bMmXybRCKBn58fYmJiynxMTEwMpk6dqtLm7++PPXv2lPs8+fn5Kj0RxfMEKxSKKi+VqimHDx9WewwjYwxHjhzRqmEzdVVhYSEUCgWys7O17v+GJhQUFPDvA10Y76jp/Jqbm6NLly44e/ZspXqSOY6Dm5sbTE1NNRIPYwzp6elq5ZcxhqKiojLjiYiIwKeffooePXpAIpGgf//+WLZsGb9vTk4O4uLikJGRwbd9/fXXAF5NLZqfn4+ePXti5cqV/P36+vpYu3YtpkyZgvz8fDRu3Bj9+vXD9OnT1f6dCPX+LXl9SGWfV09PD05OTmjYsCE4jqvSktH0/q0d6uZXLpfD3d0dJiYm1VoKvDbzqxVfzpiW6NGjB3NycmJPnz4tdV9SUhJzcnJifn5+Go3h8ePHDAA7d+6cSvvnn3/OvLy8ynyMvr4+i4yMVGn74YcfmI2NTbnPM3fuXAaANtpoo4022mijjbbXNm2gVT3IX331VZkXVzRo0ADjxo3DggULBIis5hVfEV3s6tWr8PHxwYULF9C2bVsBIystIiIC48aNU/tx69atox7kGqLJWQ60UfHsCLqiNvK7d+9ejBgxAoyxMnuSi4dhjB49WmOfQRzHwdvbGy4uLpRfDXNxccGTJ09gbm6uMiNIWczNzeHv719jF2zR+1fzKptfR0dHdOzYsUaHVOhSfrXmVRaPTytPUVGRxrv069evD6lUiuTkZJX2sq5wLmZra6vW/gAgk8lULmIrvghRT09PO04rlODv789f1V5ZHMehV69eWvda6ir6PYpbbeR36NChaNasGRYsWIDo6GiV9zPHcWjVqhUCAgI0NsbW2NgYfn5+aNCggUaOr82EeP8Wf+HhOK7CYsbAwAB9+vSh5YWrQVvz26xZM/j4+NAaBNWgNYOEOnbsiB9++AGPHj0qdV9iYiJWr16NTp06aTQGAwMDeHp64tixY3ybUqnEsWPHyr3C2dvbW2V/ADh69GiFV0TXJXZ2dggKCqr0N1CpVIo+ffrwK+sRQrTDO++8g3379iEhIYGf4kwulyMsLAwTJkzQWHHcpEkTBAcH62RxrO28vb2pOBYhe3t7Ko5rgNb0IIeFhaFr165o3rw5+vfvj2bNmgF4NQXP3r17oaenh8WLF2s8jqlTp2LEiBFo164dvLy8sHz5cmRnZ2PkyJEAgOHDh+Ott97iY/n000/h4+ODb7/9FoGBgdi+fTsuXbqEtWvXajzW2jJnzhwcPHjwjT3JHMeB4zjMnj27FqMjhKjDzs4OxsbGSEtLg0wmU5lSraZ5eHjA09OT/lBroaZNm/J/Z4l4FM/8Re+56tOaArlt27a4cOECvvzyS+zbtw85OTkAACMjI/Tu3RsLFy6Em5ubxuMICQnB8+fP8dVXXyEpKQlt2rTBoUOH+N6PxMRElaEeHTt2RGRkJGbPno1Zs2bh7bffxp49e0QzBzLwqudpx44d/Ep6ZY23Kl5J69dff8U777wjQJSEEG0hlUrh6+sLJycnoUMhZbC0tKQeRhGSSqXw8/OjYXk1RGsKZABwc3NDVFQUlEolnj9/DgCwtrau9eliJk6cqLKsaUknT54s1TZo0CAMGjRIw1EJa8CAATh37pzKGMbiFbo4jkNgYCBmz55NxTEhOs7AwAD+/v46teJcXSKXy9G7d28qokTIw8MDlpaWQochGlpVIBcrPlVf/DPRDsVjGBMTE3H8+HFkZGTAzMwM3bt3pzHHhBCYmJjA398f9erVEzoUUgapVIpevXrB1NRU6FBIDTM3N0erVq2EDkNUtKpAvnXrFr766iscPnxYZYiFv78/5s2bJ6phC3WZnZ0dQkNDhQ6DEKJFmjRpAl9fX8jlcqFDIeXo2LEjXSwpUu3bt6cV8mqY1hTIZ86cwbvvvgulUom+ffuqXKS3b98+HDx4EIcOHUKXLl0EjpQQQkgxAwMDdOjQAS4uLnTGT4s5ODigefPmQodBaoCtrS2USiU/TKZ+/fqwt7cXOCrx0ZoCecqUKbCxscGpU6fQpEkTlfv++ecfdO3aFVOnTsXFixcFipAQQkhJDg4O6NSpE4yNjYUOhVRAX18fnTp1oi8wInHp0iU8ffoU+/fvBwC0bt2acqsBWjMP8s2bNzFhwoRSxTHw6tTdRx99hJs3bwoQGSGEkJJkMhm6d++Onj17UnFcB7Ro0YLyJFJyuRyOjo5ChyFKWtODbG9vj/z8/HLvLygoKLN4JoQQUnuaNGkCHx8fGBkZCR0KKYetrS0UCgVkMhk4jkOLFi2EDoloiKOjY63P9KUrtKZA/uqrrzBlyhQEBgaiTZs2Kvf99ddfWLlyJZYvXy5IbIQQouv09PTg7e2N5s2b0+lcLXfp0iXcvn0bZ86cga2tLfUeixh1HGqO1hTI58+fR4MGDeDp6YmOHTvC2dkZAHDv3j3ExMTA3d0dMTExiImJ4R/DcRxWrFghVMiEEKITzM3N0bNnT42uukc0g6bgFDdbW1uhQxAtrSmQV61axf/8559/4s8//1S5//r167h+/bpKGxXIhBCiWW+99Rb8/Pwgk8mEDoVUQaNGjYQOgWiIsbExvS81SGsKZKVSKXQIhBBCSmjWrBm6du1KYxzrKAMDA9SvX1/oMIiGmJubCx2CqGlNgUwIIUR7tGzZEh06dKDxxnWYra0t5U/ETExMhA5B1LSuQI6Pj8fBgwfx6NEjAK9mt3j33XdpGhNCCKklrq6uVByLAK2aJ2508aVmaVWBPG3aNKxYsaLUcAuJRILJkycjPDxcoMgIIUQ3NG7cmBaVEAkaXiFuNNWiZmnNwLJvv/0Wy5Ytw4ABAxATE4O0tDSkpaUhJiYGAwcOxLJly7Bs2TKhwySEENEyMTFB9+7dacyxSFhaWgodAtEgKpA1S2t6kNetW4f33nsPv/76q0p7+/btsX37duTl5eGnn37ClClTBIqQEELEzdfXF4aGhkKHQWqARCKhU/AiRwWyZmlNN0FCQgL8/f3Lvd/f3x8JCQm1FxAhhOgQFxcXmhJMRAwNDWmYjMhRgaxZWlMg29jY4O+//y73/r///hvW1ta1GBEhhOgGmUyG9u3bCx0GqUE0P674UYGsWVpTIA8aNAjr16/HkiVLkJ2dzbdnZ2dj6dKlWL9+PUJCQgSMkBBCxMHW1hbW1tYwMzMDAHh6etLQCpHR09OaEZREA/T19SGVSoUOQ9Q4xhgTOggAyMnJQZ8+fXDixAno6enxp/qePHkChUKBbt26Yf/+/aL8xnTlyhV4enri8uXL8PDwEDocQogOiImJwfXr12Fqaor333+f/tiKTGpqKl2kJ2KZmZkwNTUVOgxR05oeZCMjIxw7dgxRUVEYNWoUXF1d4erqilGjRmHPnj34448/NF4cp6SkYOjQoTAzM4OFhQVGjx6NrKysCvf/5JNP4OLiArlcDjs7O0yaNAnp6ekajZMQQmqKu7s7FcciRDORiJu+vr7QIYieVpyDycnJwbBhwxAcHIyhQ4eib9++gsQxdOhQPH36FEePHkVhYSFGjhyJcePGITIyssz9nzx5gidPniA8PBxubm549OgRPvzwQzx58gS//fZbLUdPCCHq4TgOzs7OQodBNIAKZHGjL7WapxUFspGREf744w+8++67gsVw+/ZtHDp0CBcvXkS7du0AACtXrkRAQADCw8PLvLrb3d0du3bt4m87OTlh0aJFGDZsGBQKBY0BI4RoNSsrK8jlcqHDIBpABZS4UX41T2u+Ynbu3BkxMTGCPX9MTAwsLCz44hgA/Pz8IJFIcOHChUofJz09HWZmZhUWx/n5+cjIyOC3ioZxEEKIptDMQOJFBZS40RR+mqc1BfKqVatw5swZzJ49G//++2+tP39SUhJsbGxU2vT09GBlZYWkpKRKHePFixdYsGABxo0bV+F+ixcvhrm5Ob/5+PhUOW5CCKkqKysroUMgGkJDLAipHq15B7Vu3Rr//vsvFi9eDHt7e8hkMpiZmals5ubmah/3iy++AMdxFW537typdvwZGRkIDAyEm5sb5s2bV+G+M2fORHp6Or+dOnWq2s9PCCHqogJZvKiHUdwov5qnNYNkg4ODNZLwadOmITQ0tMJ9mjZtCltbWzx79kylXaFQICUlBba2thU+PjMzE71794apqSmioqLeeHWpTCZTmcTdxMSk4hdBCCEaUK9ePaFDIBpCBZS4McYoxxqmNQVyRESERo5rbW1dqXF23t7eSEtLw+XLl+Hp6QkAOH78OJRKZYUrTGVkZMDf3x8ymQz79u2jyfYJIXWCsbExrbYmYlqyxAEhdZbgBXJeXh727t2L+Ph41K9fH4GBgWjYsGGtx+Hq6orevXtj7NixWLNmDQoLCzFx4kR88MEH/AwWjx8/Ro8ePbB582Z4eXkhIyMDvXr1Qk5ODn755Rf+ojvgVWFOF0kQQrRV8Sp6RJyod5GQ6hG0QH727Bk6duyI+Ph4/tuukZER9uzZAz8/v1qPZ+vWrZg4cSJ69OgBiUSC4OBgfP/99/z9hYWFiIuLQ05ODoBXK+AVz3Dx+lyi8fHxcHBwqLXYCSFEHWJclZT8D3XQiBsNsdA8QZea/uSTT/Djjz9i8uTJ6N69O+7fv48FCxbAzMwMDx48ECqsWkdLTRNCaltaWhosLCyEDoMQUgVFRUX0JUjDBO1BPnLkCIYPH47w8HC+rUGDBhgyZAji4uLg4uIiYHSEECJe9MeVEELKJ+g0b4mJiejcubNKW+fOncEYQ3JyskBREUKI+NHpWULqLnr/ap6gBXJ+fn6pWR+KbysUCiFCIoQQnUB/YAmpu2ghGM0TfBaLhIQEXLlyhb+dnp4OALh3716Z4+NojC4hhFQfFciEEFI+QS/Sk0gkZX5Il3V1ZnFbUVFRbYVXa+giPUJIbcvJyaGZLAghpByC9iBv3LhRyKcnhBCdRT3IhBBSPkEL5BEjRgj59IQQorOoQCaEkPLRKG9CCNFBVCATQkj5qEAmhBAdRAUyIYSUjwpkQgjRQfr6+kKHQAghWosKZEII0UHUg0wIIeWjApkQQgghhJASqEAmhBBCCCGkBCqQCSGEEEIIKYEKZEIIIYQQQkqgApkQQgghhJASqEAmhBBCCCGkBEGXmiZ129OnT/H06VOhwyCEEEJ0SsOGDdGwYUOhwxA1KpC1QMOGDTF37tw69Z89Pz8fgwcPxqlTp4QOhRBCCNEpPj4+OHz4MGQymdChiBbHGGNCB0HqnoyMDJibm+PUqVMwMTEROhxSw7KysuDj40P5FSnKr7hRfsWtOL/p6ekwMzMTOhzRogKZVElxgUxvUHGi/Iob5VfcKL/iRvmtHXSRHiGEEEIIISVQgUwIIYQQQkgJVCCTKpHJZJg7dy5dICBSlF9xo/yKG+VX3Ci/tYPGIBNCCCGEEFIC9SATQgghhBBSAhXIhBBCCCGElEAFMiGEEEIIISVQgUwIIYQQQkgJVCATUgdxHFep7eTJk9V+rpycHMybN0+tYy1atAjvvfceGjRoAI7jMG/evGrHoWu0Ocd37tzB9OnT0aZNG5iamqJhw4YIDAzEpUuXqh2LrtDm/D558gTDhg2Di4sLTE1NYWFhAS8vL2zatAl0XX/laHN+X7d161ZwHEerLr5GT+gACCHq27Jli8rtzZs34+jRo6XaXV1dq/1cOTk5mD9/PgDA19e3Uo+ZPXs2bG1t0bZtWxw+fLjaMegibc7x+vXrsWHDBgQHB2PChAlIT0/HTz/9hA4dOuDQoUPw8/Ordkxip835ffHiBf79918MHDgQdnZ2KCwsxNGjRxEaGoq4uDiEhYVVOyax0+b8lpSVlYXp06fD2Ni42nGIDiOE1Hkff/wx09Tb+fnz5wwAmzt3bqUfEx8fX+XHkrJpU44vXbrEMjMzVdpevHjBrK2tWadOnTQQofhpU37LExQUxIyNjZlCoaiZwHSItuZ3xowZzMXFhQ0dOpQZGxvXfHB1GA2xIESklEolli9fjhYtWsDQ0BANGjTA+PHjkZqaqrLfpUuX4O/vj/r160Mul8PR0RGjRo0CACQkJMDa2hoAMH/+fP604JuGTDg4OGjiJZHXCJVjT0/PUqdj69Wrhy5duuD27ds1+yJ1mJDv4bI4ODggJycHBQUF1X5tRPj83rt3D8uWLcN3330HPT0aUPA6+o0QIlLjx49HREQERo4ciUmTJiE+Ph6rVq3CX3/9hT///BP6+vp49uwZevXqBWtra3zxxRewsLBAQkICdu/eDQCwtrbGjz/+iI8++gj9+/fHgAEDAACtWrUS8qWR/6dtOU5KSkL9+vVr9DXqMqHzm5ubi+zsbGRlZeHUqVPYuHEjvL29IZfLNfq6dYXQ+Z08eTK6deuGgIAA/Prrrxp9rXWS0F3YhJDqe/303ZkzZxgAtnXrVpX9Dh06pNIeFRXFALCLFy+We+zqnL6jIRY1R1tzXOz06dOM4zg2Z86cKh9Dl2ljfhcvXswA8FuPHj1YYmKiWscgr2hbfqOjo5menh67efMmY4yxESNG0BCL19AQC0JEaOfOnTA3N0fPnj3x4sULfis+NX7ixAkAgIWFBQAgOjoahYWFAkZM1KVNOX727BmGDBkCR0dHTJ8+XSPPoWu0Ib+DBw/G0aNHERkZiSFDhgB41atMqk/I/BYUFGDKlCn48MMP4ebmViPHFCMqkAkRoXv37iE9PR02NjawtrZW2bKysvDs2TMAgI+PD4KDgzF//nzUr18fffv2xcaNG5Gfny/wKyBvoi05zs7ORlBQEDIzM7F3716aKqqGaEN+7e3t4efnh8GDB2Pr1q1o2rQp/Pz8qEiuAULmd9myZXjx4gU/8wUpG41BJkSElEolbGxssHXr1jLvL76og+M4/Pbbbzh//jz279+Pw4cPY9SoUfj2229x/vx5Kna0mDbkuKCgAAMGDMC1a9dw+PBhuLu7V/lYRJU25Pd1AwcOxLp163D69Gn4+/vX2HF1kVD5TU9Px8KFCzFhwgRkZGQgIyMDwKvp3hhjSEhIgJGREWxsbKr3AsVA6DEehJDqe31824QJE5hUKmU5OTlqH2vr1q0MAFu3bh1j7NX0XaAxyILTthwXFRWxkJAQJpVK2a5du9SOgajStvyWZc+ePQwA27FjR7WOo4u0Jb/x8fEq48rL2vr27at2TGJEQywIEaH3338fRUVFWLBgQan7FAoF0tLSAACpqamlVsZq06YNAPCn8IyMjACAfwzRDkLn+JNPPsGOHTuwevVq/sp5UnOEzO/z58/LbN+wYQM4joOHh0eljkPKJ1R+bWxsEBUVVWrr1q0bDA0NERUVhZkzZ1b9hYkIDbEgRIR8fHwwfvx4LF68GFevXkWvXr2gr6+Pe/fuYefOnVixYgUGDhyITZs2YfXq1ejfvz+cnJyQmZmJdevWwczMDAEBAQAAuVwONzc37NixA82aNYOVlRXc3d0rPJ2+ZcsWPHr0CDk5OQCA06dPY+HChQCA//znP7C3t9f8L0HkhMzx8uXLsXr1anh7e8PIyAi//PKLyv39+/enlbmqScj8Llq0CH/++Sd69+4NOzs7pKSkYNeuXbh48SI++eQTODs71+avQpSEyq+RkRH69etXqn3Pnj2IjY0t8z6dJWwHNiGkJpS3StPatWuZp6cnk8vlzNTUlLVs2ZJNnz6dPXnyhDHG2JUrV9jgwYOZnZ0dk8lkzMbGhgUFBbFLly6pHOfcuXPM09OTGRgYVOpUno+PT7mn706cOFFTL1unaFOOR4wYUeEp2uKVFEnlaVN+jxw5woKCglijRo2Yvr4+MzU1ZZ06dWIbN25kSqWyRl+3rtCm/JaFpnkrjWPstb57QgghhBBCdBiNQSaEEEIIIaQEKpAJIYQQQggpgQpkQgghhBBCSqACmRBCCCGEkBKoQCaEEEIIIaQEKpAJIYQQQggpgQpkQnRQQkICOI5DRESE0KEQDaD8ihvlV9wov9qBCmRCCCGEEEJKoIVCCNFBjDHk5+dDX18fUqlU6HBIDaP8ihvlV9wov9qBCmRCCCGEEEJKoCEWhNRR8+bNA8dxuHv3LoYNGwZzc3NYW1tjzpw5YIzhn3/+Qd++fWFmZgZbW1t8++23/GPLGuMWGhoKExMTPH78GP369YOJiQmsra3x2WefoaioiN/v5MmT4DgOJ0+eVImnrGMmJSVh5MiRaNy4MWQyGRo2bIi+ffsiISFBQ78V8aD8ihvlV9wov3UfFciE1HEhISFQKpVYsmQJ2rdvj4ULF2L58uXo2bMn3nrrLSxduhTOzs747LPPcPr06QqPVVRUBH9/f9SrVw/h4eHw8fHBt99+i7Vr11YptuDgYERFRWHkyJFYvXo1Jk2ahMzMTCQmJlbpeLqI8itulF9xo/zWYYwQUifNnTuXAWDjxo3j2xQKBWvcuDHjOI4tWbKEb09NTWVyuZyNGDGCMcZYfHw8A8A2btzI7zNixAgGgP33v/9VeZ62bdsyT09P/vaJEycYAHbixAmV/V4/ZmpqKgPAvvnmm5p5wTqG8itulF9xo/zWfdSDTEgdN2bMGP5nqVSKdu3agTGG0aNH8+0WFhZwcXHBw4cP33i8Dz/8UOV2ly5dKvW418nlchgYGODkyZNITU1V+/HkFcqvuFF+xY3yW3dRgUxIHWdnZ6dy29zcHIaGhqhfv36p9jd9EBoaGsLa2lqlzdLSskofoDKZDEuXLsXBgwfRoEEDdO3aFV9//TWSkpLUPpYuo/yKG+VX3Ci/dRcVyITUcWVNA1Te1EDsDZPWVGZKIY7jymwveaFIscmTJ+Pu3btYvHgxDA0NMWfOHLi6uuKvv/564/OQVyi/4kb5FTfKb91FBTIhRC2WlpYAgLS0NJX2R48elbm/k5MTpk2bhiNHjuDGjRsoKChQuWKbaBfKr7hRfsWN8ltzqEAmhKjF3t4eUqm01BXXq1evVrmdk5ODvLw8lTYnJyeYmpoiPz9f43GSqqH8ihvlV9wovzVHT+gACCF1i7m5OQYNGoSVK1eC4zg4OTkhOjoaz549U9nv7t276NGjB95//324ublBT08PUVFRSE5OxgcffCBQ9ORNKL/iRvkVN8pvzaECmRCitpUrV6KwsBBr1qyBTCbD+++/j2+++Qbu7u78Pk2aNMHgwYNx7NgxbNmyBXp6emjevDl+/fVXBAcHCxg9eRPKr7hRfsWN8lszaKlpQgghhBBCSqAxyIQQQgghhJRABTIhhBBCCCElUIFMCCGEEEJICVQgE0IIIYQQUgIVyIQQQgghhJRABTIhRKMSEhLAcRwiIiKEDoVoAOVX3Ci/4kb5LR8VyIRokQcPHmD8+PFo2rQpDA0NYWZmhk6dOmHFihXIzc3V2PPeunUL8+bNQ0JCgsaeozIWLVqE9957Dw0aNADHcZg3b56g8dQ0yi/lVxMov7WD8ivu/L6OFgohREscOHAAgwYNgkwmw/Dhw+Hu7o6CggKcPXsWn3/+OW7evIm1a9dq5Llv3bqF+fPnw9fXFw4ODhp5jsqYPXs2bG1t0bZtWxw+fFiwODSB8kv5pfzWXZRfcee3LFQgE6IF4uPj8cEHH8De3h7Hjx9Hw4YN+fs+/vhj3L9/HwcOHBAwwv9hjCEvLw9yubzGjx0fHw8HBwe8ePEC1tbWNX58oVB+X6H8Co/yqz7K7ytizW95aIgFIVrg66+/RlZWFjZs2KDy4VvM2dkZn376KX9boVBgwYIFcHJygkwmg4ODA2bNmoX8/HyVxzk4OCAoKAhnz56Fl5cXDA0N0bRpU2zevJnfJyIiAoMGDQIAdOvWDRzHgeM4nDx5UuUYhw8fRrt27SCXy/HTTz8BAB4+fIhBgwbBysoKRkZG6NChQ7X+UAjZO6JJlN//xStGlN//xStGlN//xatTGCFEcG+99RZr2rRppfcfMWIEA8AGDhzIfvjhBzZ8+HAGgPXr109lP3t7e+bi4sIaNGjAZs2axVatWsU8PDwYx3Hsxo0bjDHGHjx4wCZNmsQAsFmzZrEtW7awLVu2sKSkJP4Yzs7OzNLSkn3xxRdszZo17MSJEywpKYk1aNCAmZqasi+//JJ99913rHXr1kwikbDdu3fzMcTHxzMAbOPGjZV+fc+fP2cA2Ny5cyv9GG1G+VVF+aX81iWUX1Viy295qEAmRGDp6ekMAOvbt2+l9r969SoDwMaMGaPS/tlnnzEA7Pjx43ybvb09A8BOnz7Ntz179ozJZDI2bdo0vm3nzp0MADtx4kSp5ys+xqFDh1TaJ0+ezACwM2fO8G2ZmZnM0dGROTg4sKKiIsYYfQBTfkuj/FJ+6wrKb2liym9FaIgFIQLLyMgAAJiamlZq/99//x0AMHXqVJX2adOmAUCpU2hubm7o0qULf9va2houLi54+PBhpWN0dHSEv79/qTi8vLzQuXNnvs3ExATjxo1DQkICbt26VenjixnlV9wov+JG+dVdVCATIjAzMzMAQGZmZqX2f/ToESQSCZydnVXabW1tYWFhgUePHqm029nZlTqGpaUlUlNTKx2jo6NjmXG4uLiUand1deXvJ5RfsaP8ihvlV3dRgUyIwMzMzNCoUSPcuHFDrcdxHFep/aRSaZntjLFKP5cmrojWFZRfcaP8ihvlV3dRgUyIFggKCsKDBw8QExPzxn3t7e2hVCpx7949lfbk5GSkpaXB3t5e7eev7If563HExcWVar9z5w5/P3mF8itulF9xo/zqJiqQCdEC06dPh7GxMcaMGYPk5ORS9z948AArVqwAAAQEBAAAli9frrLPd999BwAIDAxU+/mNjY0BAGlpaZV+TEBAAGJjY1X+aGRnZ2Pt2rVwcHCAm5ub2nGIFeVX3Ci/4kb51U20UAghWsDJyQmRkZEICQmBq6urykpN586dw86dOxEaGgoAaN26NUaMGIG1a9ciLS0NPj4+iI2NxaZNm9CvXz9069ZN7edv06YNpFIpli5divT0dMhkMnTv3h02NjblPuaLL77Atm3b8O6772LSpEmwsrLCpk2bEB8fj127dkEiUf/795YtW/Do0SPk5OQAAE6fPo2FCxcCAP7zn//U2V4Pyu8rlF/Kb11E+X1FrPktl7CTaBBCSrp79y4bO3Ysc3BwYAYGBszU1JR16tSJrVy5kuXl5fH7FRYWsvnz5zNHR0emr6/PmjRpwmbOnKmyD2OvpgAKDAws9Tw+Pj7Mx8dHpW3dunWsadOmTCqVqkwpVN4xGHs1R+fAgQOZhYUFMzQ0ZF5eXiw6OlplH3WmEfLx8WEAytzKmuKorqH8Un4Zo/zWVZRfcef3dRxjaowEJ4QQQgghRORoDDIhhBBCCCElUIFMCCGEEEJICVQgE0IIIYQQUgIVyIQQQgghhJRABTIhhBBCCCElUIFMCCGEEEJICVQgE0IIIYQQUgIVyIQQQgghhJRABTIhhBBCCCElUIFMCCGEEEJICVQgE0IIIYQQUgIVyIQQQgghhJRABTIhhBBCCCEl/B9JQCYtpVhIAQAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAInCAYAAACFua8hAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAySVJREFUeJzs3Xd4VNXWBvD3TM+k94QIhN5CEwQBEdAIKmDBgqCAoFixwPV6QbpS1KuIfqII0ixcEAugIIoRFAREwUhHWgglvU8v53x/xIwZUkg/M5P39zwjzKkrbpKs2WfvtQVJkiQQEREREREAQCF3AEREREREnoQJMhERERFRKUyQiYiIiIhKYYJMRERERFQKE2QiIiIiolKYIBMRERERlcIEmYiIiIioFCbIRERERESlMEEmIiIiIiqFCbIHSEtLw5w5c5CWliZ3KERERESNHhNkD5CWloa5c+cyQSYiIiLyAEyQiYiIiIhKYYJMRERERFQKE2QiIiIiolKYIJfy888/Y/jw4WjSpAkEQcDGjRuves7OnTtx7bXXQqvVonXr1li9enW9x0lERERE9YcJcilGoxFdu3bFkiVLqnT8uXPnMHToUAwaNAjJycl4/vnn8eijj+K7776r50iJiIiIqL6o5A7Ak9x222247bbbqnz80qVL0aJFC7z55psAgA4dOmD37t146623MGTIkPoKk4iIiIjqERPkWti7dy8SExPdtg0ZMgTPP/98pedZrVZYrVbXe4PBUB/hVVtOTg5sNlu9XNvpdAIAwsLC6uX6VDmFQgGj0Vhv7SuKIiRJYvvKRBAEmEymemtfoPh7mO0rH5PJBLvdXm/XF0URoaGh9XZ9qpzRaITD4ai362s0GoSHh9fb9X0RE+RaSE9PR3R0tNu26OhoFBYWwmw2w8/Pr9zzFi5ciLlz5zZEiFWWk5ODJUuWQJKker3PwIEDERAQUK/3oLJEUcS3337L9vVRZrMZP/74I9vXRxkMBvz0009sXx/VEO0rCAKefvppJsnVwDHIMpg2bRoKCgpcr59++knukGCz2er9hy/wT08yNSyHw8H29WFsX9/mdDrZvj6sIdpXkqR6fcLki9iDXAsxMTHIyMhw25aRkYGgoKAKe48BQKvVQqvVut572id2QRDq/JoN8cOdqobt69vYvr6N7evb2L6ew2d6kCVJwo8//ohvv/0WRUVFDXLPPn36ICkpyW3b9u3b0adPnwa5PxERERHVPa9MkKdPn45Bgwa53kuShMGDB+OWW27B0KFD0blzZ5w5c6ba1zUYDEhOTkZycjKA4jJuycnJSE1NBVA8NGLs2LGu45944gmcPXsWL774Ik6cOIH33nsPn332GSZPnly7L5CIiIiIZOOVCfIXX3yBXr16ud5//vnnSEpKwrx58/DNN9/A6XRizpw51b7u77//ju7du6N79+4AgClTpqB79+6YNWsWACAtLc2VLANAixYtsGXLFmzfvh1du3bFm2++iQ8//JAl3oiIiIi8mFeOQb506RJat27tev/ll1+iY8eOmDZtGgDgySefxPvvv1/t6w4cOLDSsTrlrZI3cOBA/PHHH9W+FxERERF5Jq/sQVapVK46wpIkISkpCbfeeqtrf3R0NLKzs+UKj4iIiIi8mFcmyAkJCfjkk0+Ql5eHVatWIScnB0OHDnXtP3/+PCIiImSMkIiIiIi8lVcOsZg1axaGDx/uSoL79evnNmlvy5YtuO666+QKj4iIiIi8mFcmyLfccgsOHjyI7du3IyQkBCNHjnTty8vLw4033og777xTxgiJiIiIyFt5ZYIMAB07dkTHjh3LbA8NDcVbb70lQ0RERERE5Au8MkEuKipCfn4+mjZt6tp2+fJlLF26FFarFffeey+HWBARERFRjXhlgvzYY4/h3Llz2LdvHwCgsLAQ119/PS5evAiFQoG3334b27Ztw8CBA+UNlIiIiIi8jldWsdi9ezeGDRvmev/JJ5/g8uXL2LNnD/Ly8tClSxfMmzdPxgiJiIiIyFt5ZYKcnZ2NuLg41/vNmzfjhhtuwPXXX4/AwECMHTsWf/75p4wREhEREZG38soEOSQkBOnp6QAAs9mMXbt2YfDgwa79KpUKJpNJrvCIiIiIyIt55Rjkvn374r333kP79u2xbds2WCwWt7Juf/31l1sPMxERERFRVXllgvzaa69h8ODBuOeeewAA//rXv9CpUycAgNPpxIYNG9yWniYiIiIiqiqvTJBbt26NkydP4tixYwgODkZ8fLxrn8lkwrvvvouuXbvKFyAREREReS2vTJABQK1Wl5sEBwYGchU9IiIiIqoxr5ykBxTXPn711VcxZMgQdO/eHfv37wcA5ObmYtGiRTh9+rTMERIRERGRN/LKHuSLFy9iwIABuHDhAtq0aYMTJ07AYDAAAMLCwvDBBx/g/PnzePvtt2WOlIiIiIi8jVcmyP/+979RVFSE5ORkREVFISoqym3/XXfdhW+++Uam6IiIiIjIm3nlEIvvv/8ezz77LDp27AhBEMrsb9myJS5cuCBDZERERETk7bwyQTabzYiMjKxwf1FRUQNGQ0RERES+xCsT5I4dO+Lnn3+ucP/GjRvRvXv3BoyIiIiIiHyFVybIzz//PNatW4fXXnsNBQUFAABRFHH69GmMGTMGe/fuxeTJk2WOkoiIiIi8kVdO0nvooYdw/vx5zJgxA9OnTwcA3HrrrZAkCQqFAgsWLMBdd90lb5BERERE5JW8MkEGgOnTp2PMmDH44osvcPr0aYiiiFatWmHEiBFo2bKl3OERERERkZfy2gQZAJo1a8ahFERERERUp7xyDPLBgwfx3nvvVbj/vffeQ3JycsMFREREREQ+wysT5OnTp+OHH36ocP+PP/6IGTNm1Pj6S5YsQXx8PHQ6HXr37u1axroiixcvRrt27eDn54emTZti8uTJsFgsNb4/EREREcnHKxPkAwcOoH///hXu79+/P37//fcaXXv9+vWYMmUKZs+ejYMHD6Jr164YMmQIMjMzyz1+7dq1mDp1KmbPno3jx49jxYoVWL9+PV566aUa3Z+IiIiI5OWVCXJRURFUqoqHTysUClf5t+patGgRJk6ciPHjx6Njx45YunQp9Ho9Vq5cWe7xe/bsQb9+/TB69GjEx8dj8ODBGDVq1FV7nYmIiIjIM3nlJL02bdrg+++/xzPPPFPu/m3bttWokoXNZsOBAwcwbdo01zaFQoHExETs3bu33HP69u2LTz75BPv370evXr1w9uxZbN26FWPGjKnwPlarFVar1fXeYDBUO1ZvJQgCFIrafS4TBMHtdeW+K/+88u/lvS+Jq6JtpfddeVx551V2r/LivPLvoskIe1oaHHk5cJpMgCTW6v9Zdu1OJyIialS8MkF+5JFHMHnyZEyZMgWzZs1CSEgIACA/Px9z587Ftm3b8N///rfa183OzobT6UR0dLTb9ujoaJw4caLcc0aPHo3s7GzccMMNkCQJDocDTzzxRKVDLBYuXIi5c+dWOz5fIEkSRLFusjWFQgGVSgW1Wg2NRgONRgOtVgudTgc/P79KnzJ4KtFmg+XMKdgz0mSNY968eXA4HFCpVLUaz09EROSNvC+DAPDss88iOTkZixcvxjvvvIMmTZoAAC5fvgxRFDFmzJgGK/+2c+dOLFiwAO+99x569+6N06dP47nnnsMrr7yCmTNnlnvOtGnTMGXKFNf75ORkDBgwoEHi9SWiKMJms8Fms8FoNJbZr9FooNfr4e/vj8DAQOj1+jI9zp7EkZ8H09HDkOw2uUOBw+FwfeAjIiJqbLwyQRYEAatWrcLYsWPxxRdf4OzZswCAO++8E/fccw8GDhxYo+tGRERAqVQiIyPDbXtGRgZiYmLKPWfmzJkYM2YMHn30UQBA586dYTQa8dhjj2H69OnlDifQarXQarWu9wEBATWKlypXkjzn5+cDKO5xDgwMRHBwMIKDg6HRaOQNsBRbRjrMJ47VeigFERER1Z5XJsglBg0ahEGDBtXZ9TQaDXr06IGkpCTXUtWiKCIpKQmTJk0q9xyTyVQmCVYqlQCKhxOQ5xBFEQUFBa4JnHq9HqGhoQgLC5M1WbalpxUnx+C/FyIiIk/glVUszp07h6+//rrC/V9//TVSUlJqdO0pU6Zg+fLlWLNmDY4fP44nn3wSRqMR48ePBwCMHTvWbRLf8OHD8f7772PdunU4d+4ctm/fjpkzZ2L48OGuRJk8k8lkwqVLl3D48GH89ddfyM3NrbPx0VXlyMuF+eRxMDkmIiLyHF7Zg/zCCy+gsLAQw4cPL3f/kiVLEBISgnXr1lX72iNHjkRWVhZmzZqF9PR0dOvWDdu2bXNN3EtNTXXrMZ4xYwYEQcCMGTNw6dIlREZGYvjw4Zg/f37NvjiSRVFREYqKiqBUKhEREYHIyEi3YTD1QTSbYDpyiMMqiIiIPIxXJsh79+7F888/X+H+m2++GYsXL67x9SdNmlThkIqdO3e6vVepVJg9ezZmz55d4/uR53A6ncjIyEBGRgZCQ0MRHR0Nf3//Or+PJIowHT0CyclJcERERJ7GKxPkvLw8BAYGVrg/ICAAOTk5DRgR+aK8vDzk5eUhKCgIsbGxdTqZ0nL2NJyGwjq7nqdQKBS1GlpUUrqvpNpIyTj+0uP5JUly2176deV+IiKimvDKBLlZs2b45Zdf8OSTT5a7f9euXbjmmmsaOCryVYWFhSgsLERgYCBiY2Mr/XBWFY6CfNguXqij6DyLKIpwOp01Pt/pdMLpdCI4OBgREREICgqq8bVKam6XTqBL3pf+88q/l3dMedeq7FVy/ysTfNefogiUTuRrmdArPbh8IRGRN/LKBHnUqFF45ZVX0KtXL0yaNMk1JtjpdOLdd9/F+vXrMX36dJmjJF9TMk7Z398f0dHRCAkJqXZdZUkUOSnvKkRRdPXeBwQEoFmzZvDz86v2dQRBaJCJsqLVCtFqgWS1QrRZIVltkOw2SHY7JLsDksMOyeGA5HRCcjrrZcx5ltlS59ckImrMvDJBnjZtGnbv3o3nn38e8+fPR7t27QAAJ0+eRFZWFgYOHMgEmeqN0WjE2bNnodFoEBkZiYiIiCqv2me7kArRVHZREyqfwWDA8ePHcc011yAqKkq2OESrFaLJCKfJCNFkgmg2QTSbIVkskDjJkojI53hlgqzVavH9999jzZo1+PLLL3HmzBkAQK9evXDPPfdg7Nix5S7QQVSXbDYbLl26hMuXL7sNCaioV1m0WmFNTWnYIMtRlfG5KpXKtdS03ON5JUnChQsXYLFY0LRp03pdDVGSJIhGI5yGQjiLiiAaDHAaDZAc9nq7JxEReR6vTJCB4sk848ePd9UnJpKLJEnIz89Hfn4+VCoVQkJCEBoaisDAQLdkznruTJWrVggKJVQRkVCFhkHh71/rpNBWUAhh954qJ7s1fQLTtm1bhIWF1ehcoHiYlMlkQkFBAYqKitz2ZWVlQRRFxMfH1/j6VxItFjiLCuEsLCh+FRVBEms+hpqIiHyD1ybIRJ7I4XAgOzsb2dnZUCqVrqWt9QoF7OlpV7+AoICmSRx08S0hqNV1FldkYBCefvpp2Gy2OrvmlTQaDcLDw2t9ncDAQERHR8NqteLy5cvIzc117cvJyYFCoUCzZs2qdU1JFIuHSBgMEI0GOA0GOA1FkOz19/+DiIi8l1cmyDfddNNVjxEEAUlJSQ0QDVH5nE6nq2fZdvkSFCYD9BoN/NRq+KlV0KnVUJUaCqTQ6qDv1AXKWlRuqExdJK8NSavVokWLFggPD0dKSgrs9uJhDllZWdDpdGXGJEsOB0SLBaLVAtFsdo0TFk0miBYzODGSiIiqyisTZFEUyzxydjqdOH/+PC5cuIDWrVsjLi5OpuiI3InWvx/jAygwW1BQquKASqmARqmEX2AQAlu0gcVqhSovDyqVCgqFAgqFok7G3CoUCiA3B5K1fqodSKIICALUUTG1vFBJ2TMRECVIohN+TidaR0bgbEoKjAYjJNGJsxnpQFQk/JXK4soRNhsXXSEiojrjlQnylavZlfbNN9/gsccew6JFixouIKJKOCpZtMbhFCFqdBBDw2HKzq63GPytFqiWv1tv1y9JbMPuvg/K4OB6uUWcJOF8YR4M1uJhEWeLCtAmMsKtF56IiKgu+NxvlmHDhuGhhx6qdClqooYi2mxwXjHZrDRBo4Um7hoI9V2vt5pjjzt/vAHt1qxD5483VOs8yVF/vbgKQUDzsFD4azUAij9cXMwvqLf7ERFR4+VzCTIAtGrVCr/99pvcYRDBkZuDCse+KpXQNkRyfCVBuOrLJjohSoBNdFbp+IaiEAQ0Dw2B9u+600UWK/LN5ga7PxERNQ4+lyA7HA589tlniIiIkDsUauQkhwPOwop7ODUxsRA0mgaMyDcoFQo0DwuB8u+hFZcLiuAQuVgHERHVHa8cgzxhwoRyt+fn52Pfvn1IT0/nGGSSnaMg/59JZ1dQhoZBGRDYsAH5EK1KhbiQIKTm5sMpikgvLMI1IfUz9pmIiBofr0yQf/zxxzIz+wVBQGhoKG644QY8+uijGDx4sEzRERUvHuLMzyt3n6DRQB0R2cAR+Z5gnQ5h/nrkGk3IM5sR7q+HXx3WjiYiosbLKxPklJQUuUMgqpSzqLDCCWvq6FgIrLxQJ2KDAmGwWmFzOHG5oBCtIryr1jMREXkm/pYmqgfO/PxytyuDgqHU6xs2GB+mEATEBRcvrGKy2VFgqZ86z0RE1Lh4TYJsMpmQmppa7lK5K1euxM0334yOHTtixIgRrGBBshKtVohmU9kdCgXUkVFlt1OtBGi1CNX7AQAyigyQKhj3TUREVFVekyC//PLL6NKlS5kEed68eZg4cSJ++uknZGVlYePGjRg4cCD+/PNPmSKlxs5RkF/udnVYBASVV45q8ngxgQFQKARY7Q7km9mLTEREteM1CfKOHTswbNgwBAQEuLYVFhZi3rx5iIuLw6lTp5CVlYV9+/ZBo9Hg1VdflTFaaqwkSYKzsLDMdkGlhjIsTIaIGgeVUomov382ZBrYi0xERLXjNQlySkoKunTp4rZt69atsNls+M9//oMWLVoAAHr16oXx48dj165dcoRJjZxoKAKcZSfnqcLDy1ReoboV4a+HWqWEzeHkWGQiIqoVr0mQi4qKEB7uPkP9559/hiAIGDJkiNv2jh07IisrqyHDIwIAOArKLgwiqNVQBoc0fDC1oFEooRCK//QWgiAg+u9e5CyDUeZoiIjIm3nNgMjmzZvjxIkTbtt27tyJ6OhotG7d2m27zWZDUFBQQ4ZHBMnhgGgqm5ipwiK8rvf48Nj75Q6hRkL8dMg2GmGxO1BosSJIp5U7JCIi8kJe04M8ePBgrFy5Er/++isA4KOPPsKJEydw9913lzn2wIEDiI+Pb+AIqbFzFhaWWTlPUKmgDOYKbw1FEATXWORsI3uRiYioZrwmQZ45cyYCAgLQt29faDQaPPzww4iMjMSsWbPcjjOZTPjqq69w8803yxQpNVbOorLDK1ShYV7Xe+ztgv100KpVMFptMNvtcodDREReyGuGWERERCA5ORkffvghzp49i+bNm2PChAmIinKvK3vkyBE8+OCDGDNmjEyRUmMk2mwQr5wYplB43dhjXxEV4I8LeQXINprQNIQ9+EREVD1e04MMAKGhofj3v/+N999/H1OnTi2THAPFVSz+7//+D506darxfZYsWYL4+HjodDr07t0b+/fvr/T4/Px8PP3004iNjYVWq0Xbtm2xdevWGt+fvI+zqGxpN2VwCASl90xy8yXBOh00KiUKzBY4RFHucIiIyMt4VYLcENavX48pU6Zg9uzZOHjwILp27YohQ4YgMzOz3ONtNhtuueUWpKSk4PPPP8fJkyexfPlyxMXFNXDkJCexTO1jAeqQUFlioeKxyOH+ekiShDyTWe5wiIjIy3jNEIuGsmjRIkycOBHjx48HACxduhRbtmzBypUrMXXq1DLHr1y5Erm5udizZw/UajUAcIJgIyNarRBtVrdtioAACBqNTBERAIT6+SGjyIAckwkR/nqOBScioipjD3IpNpsNBw4cQGJiomubQqFAYmIi9u7dW+45mzdvRp8+ffD0008jOjoaCQkJWLBgAZxOZ4X3sVqtKCwsdL0MBkOdfy3UcJyGssMrVBx7LDulQoEwvR52hxMGq+3qJxAREf2NCXIp2dnZcDqdiI6OdtseHR2N9PT0cs85e/YsPv/8czidTmzduhUzZ87Em2++iXnz5lV4n4ULFyI4ONj1GjBgQJ1+HdSwxKIit/eCWg2Fv79M0VBp4f56QAByOcyCiIiqwSsS5M2bN+Py5ctyh1EuURQRFRWFZcuWoUePHhg5ciSmT5+OpUuXVnjOtGnTUFBQ4Hr99NNPDRgx1SXRZoNodR9eoQwO4eN8D6FRKhGo1aLIysl6RERUdV6RIN99993YuXOn633Lli2xefPmOr9PREQElEolMjIy3LZnZGQgJiam3HNiY2PRtm1bKEtVK+jQoQPS09Nhs5X/WFer1SIoKMj1Cvh7YQPyPlf2HkMQOLzCwxRP1gMn6xERUZV5RYIcGBiI/Px81/uUlJR6Gber0WjQo0cPJCUlubaJooikpCT06dOn3HP69euH06dPQyzVO/XXX38hNjYWGk7S8nlXjj9W6P0hqDj31ZMEarXQqJTIMzNBJiKiqvGK3+S9evXC/PnzkZGRgeC/l+3dunVrheOCgeIyT5MnT672vaZMmYJx48ahZ8+e6NWrFxYvXgyj0eiqajF27FjExcVh4cKFAIAnn3wS7777Lp577jk888wzOHXqFBYsWIBnn322Bl8peRPJ4SizOIiKy0p7pFC9HzIKDTDb7fD7u9oMERFRRbwiQX7vvfcwduxYvPLKKwCKk9+1a9di7dq1FZ5T0wR55MiRyMrKwqxZs5Ceno5u3bph27Ztrol7qampUCj+6Xhv2rQpvvvuO0yePBldunRBXFwcnnvuOfznP/+p9r3JuzivfIqhVEIREChPMFSpkpJveSYz/IKZIBMRUeW8IkFu3bo19uzZA4vFgszMTMTHx2Px4sW488476+V+kyZNwqRJk8rdV3osdIk+ffpg37599RILeS6nwX38sTIwiJPzPJT678l6BRYLYoMC2U5ERFQpr0iQS+h0OjRr1gyzZ8/GTTfdhObNm8sdEjVSkihCNBndtikDg2SKhqoiVO+HolwrDFYbAnVaucMhIiIP5lUJconZs2e7/m4wGHDhwgUAxcMdWBGCGoJoNAKS5HovqNVQ6vUyRkRXE6TVQqlQIN9iYYJMRESV8ooqFuX57bffMGjQIISGhiIhIQEJCQkIDQ3FTTfdhN9//13u8MjHOY3u44/Ze+z5BEFAiJ8OhRYLxFIfboiIiK7klT3Iv/76KwYOHAiNRoNHH30UHTp0AAAcP34c//vf/3DjjTdi586d6NWrl8yRkq8SjVcOr+DkPG8Q4qdDjtGEIqsVwTqd3OEQEZGH8soEefr06YiLi8Pu3bvLLOAxZ84c9OvXD9OnT8f27dtlipB8mWi1QnLYXe8FjQYKnZ+MEVFV6TUaaFRKFJgtTJCJiKhCXjnE4tdff8Xjjz9e7up20dHReOyxx1hVguqNeEV5N2UAh1d4k1A/PxRZrBxmQUREFfLKBFmhUMDhcFS43+l0utUqJqpLZccfc2KoNwny00GUJBRZrXKHQkREHsors8i+fftiyZIlOH/+fJl9qampeO+999CvXz8ZIiNfJzmdEC3/LFksqNUcXuFldCoVdGoVCs2Wqx9MRESNkleOQV6wYAFuvPFGtG/fHnfffTfatm0LADh58iQ2bdoElUrlWgqaqC6JJpNbeTcOr/BOwX46ZBmMkCSJi4YQEVEZXpkgd+/eHb/++iumT5+OzZs3w2QyAQD0ej1uvfVWzJs3Dx07dpQ5SvJFTrN79QoFh1d4pRCdDhmFBi4aQlSKQqGo1fBEQRDq5Bq10ZAfeCWHA5LTCYhira6jqaN4qG55ZYIMAB07dsRXX30FURSRlZUFAIiMjOTYY6pXbuXdlCoOr/BSGpUKfmo1CrloCJGLKIoQa5nsOZ1OCIIAjUYDPz8/+Pv7IzAwEHq93quf1kh2Oxx5OXDk5cFZVATRZIQkOuvk2tor5rWQZ/DaBLmEQqFAdHS03GFQIyDZbJBsNtd7ZUCAV//Ab+yCdFrkmEyIkzsQIh8jSRKsViusVivy8/MBACqVCqGhoQgPD4e/v7+8AVaRJElwZGfBlnYZjrxcQKrdhwfyLl6fIBM1FOffQ3lKKP05vMKbBfnpkFFkgMlmg17Dh5xE9cnhcCArKwtZWVnQ6/WIjo5GaGioR3YySKIIe9plWC+cd5uUTY0LE2SiKhJNpYZXKBRQeEkvCJVPp1JBq1ah0GJlgkzUgEwmE86dO4fLly8jLi4OoaGhcofkYs/KhOXMaYgW09UPJp/GBJmoikr3ICv0/hA43t3rBeu0KLRYEQMuFU7U0KxWK86ePYuAgAA0a9YMfn7yzekQLRaY/zoBR262bDGQZ+FveKIqEK1WwPnP4jRK9h77hECtDha7A7ZKFh4iovplMBhw/PhxXL58GZIMK1za0tNg+G0fk2NywwSZqArcqleA4499hV6jhlqpQJHVdvWDiajeSJKEtLQ0nDhxAtYGWuVSEkWYTxyD+cRRSE5+SCZ3Xj3E4tixYzh79izy8vLK/dQ5duxYGaIiX+Q0lxpeodFCUKtljIbqUqBOhyKrFeH+erlDIWr0TCYTjh8/jvj4eISEhNTbfUSrFaYjf8JZVFhv9yDv5pUJ8pkzZ/DQQw9h//79FT6OEQSBCTLVCUmS3CboKQLYe+xLgrRapOblQ5QkKDxwRj1RY+N0OnHmzBk0adIEsbGxdX99gwGmQ8kQbVxunirmlQny448/jsOHD2Px4sXo37+/R82AJd8jWixuKyWxeoVvCdBqAAEwWG0I4qIhRB7j8uXLsFgsiI+Pr7NycI78fJgOJ3NIBV2VVybIv/zyC1566SU888wzcodCjUCZ8m5+fBTvSwRBQIBGA4PVygSZyMPk5ubC4XCgVatWtV4p15GXC9PhP+tsBTzybV45SS8iIgLBwcFyh0GNROkJegq9v0cWtqfaCfy73BsReZ7CwkL89ddfcDprntg68nJhOpTM5JiqzCsT5CeeeAKffPJJrb5ZiKpCcjrdVlJSciKXTwrUamF3OmG22+UOhYjKYTQacerUqRr93i8eVvEnJC4VTdXglUMs2rZtC6fTia5du2LChAlo2rQplEplmeNGjBghQ3TkS0SzCSg1EVSh5wQ9X6RWKqFTq1BkscKPFUqIPFJJktymTZtyf+eXx2kwFI85Zs8xVZNXJsgjR450/f2FF14o9xhBENjDTLXmLDX+WFCroeCSxD4rUFs8zCIqkB+CiDyV0WjEmTNn0Lp166uOSRatluJhFZyQRzXglQnyjh076vX6S5YswX//+1+kp6eja9eu+L//+z/06tXrquetW7cOo0aNwp133omNGzfWa4zUMESD+/hj8l2BOi2yDEbYnU6oq9g7RUQNr6ioCCkpKWjZsmWFx0hOJ0yH/mQpN6oxr0yQBwwYUG/XXr9+PaZMmYKlS5eid+/eWLx4MYYMGYKTJ08iKiqqwvNSUlLwwgsvoH///vUWGzUs0WaDZP9nhTUuL+3b9Go1VEoFCi1cNITI0+Xl5eHChQto2rRpufvNx4/AaSxq4KjIl3jlJL3Sjh07hm+//Rbffvstjh07VuvrLVq0CBMnTsT48ePRsWNHLF26FHq9HitXrqzwHKfTiQcffBBz586t9BMteRfRYHB7z/Juvk0QBARqtSiwsMeJyBtkZmYiKyurzHZLylnYs8tuJ6oOr02QN23ahFatWqFz584YNmwYhg0bhs6dO6N169bYvHlzja5ps9lw4MABJCYmurYpFAokJiZi7969FZ738ssvIyoqCo888kiV7mO1WlFYWOh6Ga5IxMgzOE3/tItCq4Wg8soHLlQNgTotjDYbHCJnuxN5gwsXLqCw8J/lou052bCmnJUxIvIVXpkgb926Fffccw8AYMGCBfjqq6/w1VdfYcGCBZAkCSNGjMC2bduqfd3s7Gw4nU5ER0e7bY+OjkZ6enq55+zevRsrVqzA8uXLq3yfhQsXIjg42PWqzyEjVDOSKEI0mVzvBY4/bhQCtVooIKCQvchEXkGSJJw7dw5WqxWixQLz8aNyh0Q+wiu7xF555RV06dIFu3btgn+pcaF33HEHJk2ahBtuuAFz587FrbfeWq9xFBUVYcyYMVi+fDkiIiKqfN60adMwZcoU1/vk5GQmyR5GNBndyrsp9Rxe0RgoBAEBWg0KzFaEsc2JvILD4cCZ06dxjckAycFa5lQ3vDJBPnToEBYsWOCWHJfw9/fHww8/jJdeeqna142IiIBSqURGRobb9oyMDMTExJQ5/syZM0hJScHw4cNd28S/H82qVCqcPHkSrVq1KnOeVquFVvvPkrYBASwr5WmcbsNeBI4/bkSCdDpcKiiAQxShquXStkTUMAovpCLFZETzsBC5QyEf4ZU//XU6HXJzcyvcn5ubC51OV+3rajQa9OjRA0lJSa5toigiKSkJffr0KXN8+/btcfjwYSQnJ7ted9xxBwYNGoTk5OQKZ9eS5yudICv8/CCw7FejEaQr/vDKYRZE3sFpMsGRm4tCiwXphaxcQXXDK3uQb7rpJrz99tu49dZbyySuv/76K9555x0MHjy4RteeMmUKxo0bh549e6JXr15YvHgxjEYjxo8fDwAYO3Ys4uLisHDhQuh0OiQkJLidHxISAgBltpP3cJrNQKnC8gqW/GpUlAoF/DUaFJgtHGZB5OEkhwP2tMsAiofEZRmM0CiVCPPhn9sffPABDAYDAgIC8Pjjj8sdjs/yygT59ddfR58+fXDDDTegV69eaNeuHQDg5MmT2L9/P6KiovDaa6/V6NojR45EVlYWZs2ahfT0dHTr1g3btm1zTdxLTU296uo95N1Eg3sPhMKPE/Qam2A/HS4VFMLhdELFpwdEHsuWfrnMuONLhYVQKhUIrsGTZG9gMBjcKndQ/fDKBLlFixY4dOgQFi5ciG+//Rbr168HADRv3hzPPfccpk6dWumiHlczadIkTJo0qdx9O3furPTc1atX1/i+5Bnc6h8rFFD4+ckXDMmieBxyIQq4aAiRx7LnZEM0GsvukIALeQVQhgkIKDXfh6g6vDJBBoCoqCi89dZbeOutt+QOhXyIaLNBtFld75V6fwiCIGNEJAeVQoEAjQZ5ZjMTZC9W+nu3or9X5f3VtldIFCE5nW4VcWrCa39R1yOnwQBHdnaF+yVJwvncfMSHhcJfq2nAyMhX8PuOqBSx6IrhFVxeutEK9tPhUn4hrA4HtFwkps4olUooFAooFAqoVCqo1Wqo1WpXdR8/Pz+o/v7/XVlCWtWktiFIoghnQT4cBQUQDYVwmkyQzGZIUt0sOONn5GJSpYlWK2xpl1Ay7rjC4yQJKbl5TJKpRrzip/6ECRMgCAKWLVsGpVKJCRMmXPUcQRCwYsWKBoiOfInT4D6uS8kFQhqtIJ0Ol4VC5JvNiA4MlDscn+F0OuF0OgEUrypaHrVaDb1eD71ej4CAAAQEBHjc3A9JFOHIzoQ9MxOO3BxIolPukFzmzZsHh8MBlUqFGTNmyB1OnZKcTtguXQSquNplSZLcLDQEgToOt6Cq84oE+ccff4RCoYAoilAqlfjxxx+v2lvAx+JUXZLNBrFUaS9Bo4WgYa9DY6VSKBCg1SLPbGGC3MDsdjsKCgpQUFAAoPjnub+/v2v1UT8Z5wWIFgtsFy+UOznMUzgcDkiSBIfDcfWDvYgkSbBdugjJbqvWeaIk4XxeHuKCgxGq55wSqhqvSJBTUlIqfU9UF5xXVK9Q+nMBl8YuxE+HC3kFMFitnOwjI0mSYDAYYDAYcOnSJWi1WoSGhiIsLKzBkmXRbIYl5SzsmRlAHQ2doKqTJAn2y5cgmk01PB+4mF8Au9OJqED+bKer84oE+UqpqamIjIys8Aej2WxGVlYWmjVr1sCRkTdzFrkPr1AEcHhFYxek00GhKESeycwE2YNYrVakp6cjPT0dfn5+iIiIQHh4OJT1UJJPcjhgTTkH66ULTIxlZM9IL9OJURMZRQZYHA5cExIMBZ80UyU8a1BXFbVo0QJfffVVhfs3b96MFi1aNGBE5O2uHF5RXN6N1QsaO4UgIFinQ6HFCmcVxzxSwzKbzbhw4QIOHTqE8+fPw2w219m17ZkZMOzfC+vF80yOZWTLTIezIL/OrldgtuB0Vg4sdt8agkJ1yyt7kKWrlMyx2+0eN6GDPJujqOzkPI5jJ6B4mEWeyYx8s4Ul3zyYKIrIzs5GdnY2goKCEBMTg8Aajh0XbTZYTp2EPSujjqOk6rJlpMOZn1fn17U6HDidnYOYoABEsFoRlcNrEuTCwkLk5+e73ufk5CA1NbXMcfn5+Vi3bh1iY2MbMDrydmKZ4RUco0bFArRaqFVK5JpMTJC9RGFhIQoLCxEQEIAmTZpUK1F25OXCfPyoWz10aniSJMGengZnYUG93iOtoAgFZgviQoKhYzlHKsVr/jW89dZbePnllwEUz2h+/vnn8fzzz5d7rCRJmDdvXgNGR95MtFogupWbEjhBj9yE+fkho8gAo80Gf1Y28RoGgwF//fUXAgMDERcXB/+r9BRaz5+D5dxZXK2+LtUvyemELe1S+avk1QOTzY7TWdkI0+sRFRgAVRWfQAtqDQS1GoJQuyfWCsc//96u9oQcAPz9/SFJkutPqh9ekyAPHjwYAQEBkCQJL774IkaNGoVrr73W7ZiSUkA9evRAz549ZYqUvI2jwL2HQuHnB4E9CVRKqN4PGQYDco0mJsheqKioCCdOnEBISAiaNGlSZoK35HTCfOIYh1R4AMlmg+3yxSs6LRrgvhKQYzQhz2xGhL8/wv31bomyoNZAFRoGVUgolEFBUPjpIdTRpFBrTg6EPXurnOw+/vjj1b6HIAjQ8GdXtXhNFtCnTx/06dMHAGA0GnHPPfcgISFB5qjI20mSBGfhFeOPObyCrqBWKhGg0aLAYkGs0wlVPVRLoPqXn5+P/Px8hISEICYmBv7+/hBtNpgOJ5epYkMNz2kwwJZ+GXDKt+iKKErILDIg22BEsF6PqKbXIDS+JZShYfU2LyU8PBxPP/00bLbq1XeuDo1Gg/Dw8Hq7vi/ymgS5hMlkwjvvvAO9Xs8EmWpNNBoBp/tMZkUAF4WgssL8/WCwWpFjMnHhEC9Xkijr1WoEZGciUJA4KVdGkiTBnpUJZ16u3KEUUyigCA6FOSwMqZIC6ZcuI8RoQmBgIAICAlxLodelQLsNks1y9QNriP+8q8/rEmS9Xg+VSnXVsWREVXFl6SCFVgsFH0NROYK0WqiVCuQYzYgMCGANVS8nWq3IOX0KOU4H1EoFQvV+CPXzg8bDh1dV5TG8SqVyLTXt6WNUnSYT7BnpkDxiUqQAZXAw1BGRbsPsbDYbMjMzkZmZCaB4KXSdTgeNRgOlUlnrD1didhZsb79eq2tURbOFi6CJYQGDqvLsnwQVuOeee/D555/jySef5Kd+qjHJ4YDTaHDbpmDPIFVAEASE6fXIKDIg32RGGCtaeC3RYob14kXX0yO7U0RmkRGZRUb4azQI8dMhyE9X5claLoICSr0/FP56KHR+xZO4lEpAUbvfU4EFBRD+OFTlZHf69Ok1uk+zZs0QGhpao3OB4uRdFEXY7XZYrVaYzWZYLOX3ikp2O+zZmWWGuMlFodVCFR0LZRVWZrTb7bDb626ZcUVWBhriN49krb8eal/klQnyAw88gKeeegqDBg3CxIkTER8fX+6qeldO4iMqzVlQUDwzoxRlQJBM0ZA3CNX7IdNgQJbRiFC9Hz+geyHRaoH14oUKx7kabTYYbTZcKiyEv1qDQJ0WgVotdOryf10qA4KgioiAKiQMyqAgCPVQgz8mponXjlF1Op0wGAwoLCxEXl4ebEYj7Hm5xU/vPKJ3W4AqLAyqiEjP+H6uQgx3b/4OWWYzIv388NUdQ65+TY/4/+x9vDJBHjhwoOvvu3btKrNfkorHkzllHOhPns9xxfAKQaOFgssJUyXUSiWCdTrkmy0osFgQUoXeJvIcotUK64WKk2M30j/JcjqKoFIq4K/RFL/8AxDYtCl0TeIabMVNb51gpVQqERQQAL3VjDCIyC/MQ67VjEJI8hfTU6qgiY31urKeWWYzMkx1t2Iklc8rE+RVq1bJHQJ5OafBAMnu3huj5OQ8qoKIAH/kmy3IMhiZIHsRyW6H7eKFMpNyq8rhFFEkSjDpA5AbEARFQRG0lnPw8/ODVquFVquFWq2GWq2GSqWCUqmEQqGos15JW3pavT4iF7S6OhmfKjkcEK1WiBYznEWFcBYUwJmfB+nvpboDtBoEaDWwOZ3IMhiRZzLJ0sGp0OqgibsGglrd8Dcnr+CVCfK4cePkDoG8nCO/7GxpZRCHV9DV+anV8NdqYLTaUGC2INhPJ3dIdBWS0wnrxQuQHDUbNyqoNVBHRkIZ+M/PCEmSYLFYKhxj6zq3DhJkRX4uAj5eUevrVEqSEDZiJJTBwbW8jlilwzRKJeKCgxDhXzyuv8DccONjFf4B0DSJq5fhMOQ7vDJBLs1gMODChQsAgKZNmyKANWzpKkSbrcwKTQoth1dQ1UX6+8NotSGjyIAgndYzxi5SuSRRhO3SxZpVSVAooA6PqFUN3LqoIiFVc+xx5483wCY6oVEocXjMfVW/j91W5QS3rmhVKjQLDUGR3orLBYWwOep3aKQyOATq6Bh+z9JVee3Hp99++w2DBg1CaGgoEhISkJCQgNDQUNx00034/fff5Q6PPFi5vceB7D2mqgvUaeGnVsPqcCC/AXu+qHokSSpelc1sqva5Cn9/6OJbQhUW7lnJlCBc9WUTnRAlwCY6q3S8JwjUatEmMqJeq8MoQ0OhiYn1rPYkj+WVPci//vorBg4cCI1Gg0cffRQdOnQAABw/fhz/+9//cOONN2Lnzp3o1auXzJGSp5EcjuLqFVdggkzVFRngj9S8fGQUGRDsp2NdZA8jSRLsly+VeVp0VQoF1JFRUIXUvNwZ1YxCEBAXHIRArQYX8wvhFOuuN1sZGgZNVHSdXY98n1cmyNOnT0dcXBx2796NmJgYt31z5sxBv379MH36dGzfvl2mCMlTOfLzgCt+6Cr89BC4OAhVU7CfDlqDCla7A9kGI6ICvWd417x581wLScyYMUPucOqcJEmwp12G01BUrfMEjRaaJnEcbiWzIJ0OrSNUOJ+XD4u9ZpMqS1OGhDI5pmrzyiEWv/76Kx5//PEyyTEAREdH47HHHsO+fftkiIw8meR0FifIV1AG1XJSCjVa0X/PecgyGGHzorKSDocDkiTB4ah98uFpSnqOnUXVW4BCGRgEbbPmTI49hEalQquIcATpajcJVhkUBE102VyB6Gq8MkFWKBSV/mB3Op1QcHYqXcGZn1+2/qkgQMnV86iGgv108NOoIUoS0go8Y0WwxkxyOmG7eKHaPceqiIjiqgZKZT1FRjWhEAQ0Cw1GeA3HJSv0/lDHNKnjqKix8Mossm/fvliyZAnOnz9fZl9qairee+899OvXT4bIyFNJTifseTlltisDA/lLkWol5u+hFYUWa4OWqiJ3ksMB28VUiKZqjDkWBKhjmkAdHll/gVGtCIKAJsFBiA6q3hAmxd/DZTghj2rKKxPkBQsWoKCgAO3bt8fo0aMxZ84czJkzB6NGjUL79u1RUFCAhQsX1vj6S5YsQXx8PHQ6HXr37o39+/dXeOzy5cvRv39/hIaGIjQ0FImJiZUeT/Jw5OeWu3oWh1dQbQVotQjSFT+Wv1xYCEcdTiyiqhGtFlhTUyBepSaxG4UCmrhroKpt3V9qEFEBAWgSXMXJ1EpV8SIgPtr5Eennh2i9HyK5UFG98spJet27d8evv/6K6dOnY/PmzTCZikv46PV63HrrrZg3bx46duxYo2uvX78eU6ZMwdKlS9G7d28sXrwYQ4YMwcmTJxEVFVXm+J07d2LUqFHo27cvdDodXnvtNQwePBhHjx5FXFxcrb5OqhuSwwFHbtnSboJa7XVLjJJnigkKRJHVBodTxMX8AsSHsQJCQ3EWFcCWnl5m8m2lFApo4ppCqW+YZaKpbpQMtbhc2XAmQYCmSROfnnj91R1D5A6hUfDKBBkAOnbsiK+++gqiKCIrKwsAEBkZWeuxx4sWLcLEiRMxfvx4AMDSpUuxZcsWrFy5ElOnTi1z/Keffur2/sMPP8QXX3yBpKQkjB07tlaxeLIPPvgABoMBAQEBePzxx+UOp1L27Kxyf3mqgpnEUN3QqlSI8Ncjy2BEkcWKbKMREf7+cofl0yRJgj0rA868shNvK6VQQHNNMyjZ++aVwv31kCQJaYXljzNXR0RBqef3HtWeVw6xKE0QBLdXbdhsNhw4cACJiYmubQqFAomJidi7d2+VrmEymWC32xEWFlbhMVarFYWFha6XwWCoVdxyMBgMXhG7aDGXW/cYglD7JVWJSokKDIBWVdznkF5YBIO1Biu3UZWIVits51OYHDdSEQH+iAosmwQrAwKhquR3L1F1eG2CfOzYMdx7770ICgpCbGwsYmNjERQUhHvvvRdHjhyp0TWzs7PhdDoRHe1eLzE6Ohrp6elVusZ//vMfNGnSxC3JvtLChQsRHBzseg0YMKBG8VLlJEmCPSMdQNmlXpWBgRBUXvsAhTyQQhAQFxIECIAkAal5BbD6YBk1OUmSBEdONqznz0G0VnNCZMmwikaQHGsUSiiE4j99VXRgIML0/7SloNZAHRMrY0Tka7wyQ9i1axduu+02iKKIO++8E23btgUAnDx5Eps3b8a3336Lbdu2oX///g0a16uvvop169Zh586d0FVSu3HatGmYMmWK631ycjKT5HrgzMutcNKOkqtkUT3w12gQ6e+PLIMRTlHEuZxctAwPg8bDPoypVCrXQiHewmk0wJ6ZCclWg555QYAmNq7RjDk+PPZ+uUNoEE2Cg2AXRRRZbdDENvHZSXkkD+/56VjK5MmTERUVhZ9++glNmzZ123fhwgXceOONmDJlCn777bdqXTciIgJKpRIZGRlu2zMyMspdlKS0N954A6+++ip++OEHdOnSpdJjtVottKWK0QcEcKJYXROtVthzssvdp9DpoPRrHL8oqeFFBwbAYLPBbLPDLgHnCorQIiYafjpd8S9whQKCQgEICkAQil+1pCo1aUmSyj4xudL06dOrdXyJ4ODgSoePVYUkSRBFEU6nEw6HA3a7Hc5KFlkRzWbYc7Kqv2R0KeroGCj5c9bnCIKApiHBuKDSwtEIngxQw/LKBPno0aN45ZVXyiTHANC0aVM8+eSTmDNnTrWvq9Fo0KNHDyQlJeGuu+4CAIiiiKSkJEyaNKnC815//XXMnz8f3333HXr27Fnt+1LdKl5m9lKFs9qVoRyjRrUjCAoIfn5QaHVQ6HQQtDootFoIGg0UGg06ScDJM2dcJd8uKZVo0aIFgutp3HtgTg6E77dXK9mtLkEQEB8fj/Dw8Dq/tiiKsNlssFqtsFgsMJvNMGRmoijtMpzG2s1zUEdFQxUcUjeBksfRRkajfdv2OHHihE+uDEny8coEuXnz5rBWMgHGZrOVmzxXxZQpUzBu3Dj07NkTvXr1wuLFi2E0Gl1VLcaOHYu4uDhXneXXXnsNs2bNwtq1axEfH+8aqxwQEMCeYZnYM9IhVvDvQ1CroQysYi1NavQEtQZKf38o/AOg1PtDoddD4aeHoNVWOilYCaB127Y4efIkJEmC0+nE6dOnERERgbi4uDof2hAeHo6nn34aNputTq9bmkajqZfkGCieDK3T6aB2OqE1m6BPT0OoxQQxyB9mPw1MNjsMVhtMNhvEanwIUEdEQcUPxD5LofODvkMnCCoVWrZsiVOnTtXrh0RqXLwyQZ41axYmT56MoUOHolu3bm77/vjjD/zf//0fFi9eXKNrjxw5EllZWZg1axbS09PRrVs3bNu2zTVxLzU11a2U3Pvvvw+bzYZ7773X7TqzZ8+uUS821Y4jNwfOgvwK96vCwriyEpVLodVBGRj09ysQCv8AKEoNhaouf39/tGrVCmfOnHH90s7OzkZeXh4iIyMRHh5e6VyF6gq02yDZ6m8lv7r+tpFEEaLZDKehCM7CAjhyciBaTG7HKAQB/hpN8djuAH+IkgSTzYZCixWFFivslQzNUEdEQVVPCT3JT1AooU/o6ppsHRgYiGbNmpW7wi5RTXhlgrxv3z5ER0ejR48e6Nu3L1q3bg0AOHXqFPbu3YuEhATs3bvXrTSbIAh4++23q3T9SZMmVTikYufOnW7vU1JSavQ1eLKqfAL39/eHJEmuPz2BoyAf9qzMig9QqqAMCmmweMhzKTQ6KAICoAwMdCXFtUmGKxIcHIyWLVvi7Nmzru8Tp9OJ9PR0pKenQ61WQ6fT1fpDmyI/D9J7b9VFyOX7O/bI8Y9BFVqLCa5S8cI9kt1W/JRHqt6qgwpBQIBWiwCtFk2CAaPNhgKzBflmC5ylhlSpo6LZc+zj/Np3LDOuPCIiAlartcpVp4gq45UJ8rvvvuv6+y+//IJffvnFbf/hw4dx+PBht23VSZAbI41GA0EQqpzs1nRxkLZt29Zqko8kSa5H1iWTfBwOB0yXL6EoLwdQKivsVVKHhRVPjqJGQoBCq4Xi76ERSr0/FP7+UPoHQFCrGyyKkJAQtG3bFmfOnCkzRtJut8Nut9f6Huq8XFRn2mnnjzfAJjqhUShxeMx9VT7PkZ1V7aS2PpX0LscGBaLQYkWu2QJrSBiXj/ZxuhatoI6KLndfXFwcbDYbcstZPZWoOrwyQRars6QoVYm3jmGURBGW03/B31CAyPDixFuUJFjsDlgcdphtdpjsdlglTs7zKYICCrUaglpTPDFOq4Wg1f4zaU7nV/ynh3wgCggIQMeOHXH+/HkUlLdwTV2qQm+0TXRClIr/rNLYCQ95SlQRQRAQEhCAJtf3hVPvj8zMTGRnZ/N3hQ/SxDSBtnmLSo+Jj4+H0+ms/+818mlemSBT/aivCTj1xZGbA/PpvyCa3Ms/KQQBeo0aeo0aJd1qmpZtYAsOca1eaKmgPjLVjqBWQVBranEBwfWnoFD8UxJNoYSgUkJQqiCoil/FJdIUxaf8XTJNksTi2tdWK5xFiuKhC66yagKgVLpKrAkKxT/vS46pR2q1Gq1bt0ZBQQHS0tJgrEXZMnKn0Omh79wVSn9/qFBczahJkybIzMxEZmYmqxv4CFVYBHRt21/1OEEQ0LJlS5w+fRpFReUvSU10NV6dIJ87dw7ffvuta1B+8+bNcdttt6FFi8o/XVL5bOlpkKq7OlUVSU4noFBAHVV5PemrXsdqgbOoCPaMtCqXf1Lo/aG7pin8FApXmS2LxYKCggLk5eUxUalDkr14fGmdXKtOrlINJUmzolTyLJRO0hXuyXZJEl/yd0EBKAT3xB0l74uvDwA6AWgR6A+rVg2D0QyLzVrrcfwCgMbaV6oKC4e+Q0KZYTNKpRKxsbGIjo5GZmYmMjIymCh7MVVwKPSdOlf5g6xCoUDr1q2ZJFONeW2C/K9//Qtvv/12mUdoCoUCzz//PN544w2ZIvNOtvQ0pE6bcvUDa+rvBCDs7vugbODxgbpWbcr8UNXpdNDpdIiOjobVakVubi5ycnIqLR9IPk4SITlFwNlwybn/36/acpgMyKuD63gVQQFdfIurPm5XKBSIiYlBZGQksrKymCh7IWVQCPSdu1Z7pbySJPnMmTMoLCy8+glEpXjGAL1qevPNN/HWW29hxIgR2Lt3L/Lz85Gfn4+9e/fi3nvvxVtvvYW33qrHGd0+qLo9x3d//R1u+GwT7v76u+rdp4F/ManCIqAOj6j0GK1Wi9jYWCQkJKBNmzYIDQ1lKTgiD6bQ+8O/e4+rJselKZVKxMTEoHPnzmjWrJnbaqbkuVTBIfDv0s1Vzq26SpLk0NpUX6FGySt7kJcvX4477rgDn332mdv23r17Y926dbBYLPjggw8wefJkmSL0clVIDrPMFmSYzFU+Xo5JPoJSBb8qjFcrLSgoCEFBQbDZbMjKykJWVlaly+ASUQMSFNA2bQZtfMsajxlXKBSIjIxEZGQkCgoKkJmZyd5FD6UKC4e+U5dq9xxfSRAEtGjRAmq1GpmZlZQCJSrFKxPklJQUPPfccxXuHzJkCLZt29aAEZEn0rZoBUUNF2LQaDSIi4tDTEwMH8sSeQBVWDh0rdpC6V8Xg1KKBQcHIzg4GDabDTk5ORxm5UE0MU2ga9u+zibPCoKApk2bQqfT4cKFCx5Tv588l1cmyFFRUfjzzz8r3P/nn38iMjKyASMiT6MKCYMm7ppaX6fksWxUVJQrUa6LurVEVDWq4BBo41vW68IfGo0GsbGxiI2NhdFoRF5eHvLz85ksy0KArmVraJs1r5erR0ZGws/PD2fPnuXPcqqUVybI9913H95++23Ex8fjmWeegf/fPQpGoxHvvvsuPvzwQzz//PPyBkmyEdQa+HVMqNNxxAqFAtHR0YiKikJOTg4yMjJYKo68lkahdC0U4pEEBdTh4dBc0xyqkJAGvbW/vz/8/f1xzTXXwGw2u0pDGgwG1lWuZ4JaA32HTlCF1W/J0ZK65CkpKayVTBXyygT5lVdeQXJyMl566SXMmjULTZo0AQBcvnwZDocDgwYNwssvvyxzlCQLQQF9xwQoNLWoxVvZ5QUBERERiIiIQFFRETIzM1FQUMDHdeRVDo+9X+4QyqUMDIY6KgrqqJh6Wfq7uvz8/ODn54fo6GhIkgSTyQSj0Qij0Qiz2QyLxcLv/TqiCgmDX4eOUGhrNiyu2vdTqdC6dWtkZWXh4sWL/PBDZXhlgqzX65GUlIRNmza51UG+9dZbcfvtt2P48OGsQtBI+bVrX6+PYksLDAxEYGAg7Ha7q0yc2WxukHsTeTtBrYFSr4ciIBCq4GAoQ8Lq7YNtCUmS/pkwfMXfpdLby/xZ/Hc/hQBdQADC/35qKUkSrFYLrDYbbDa7a+lwh9MJ0emEKIoQ6yCBFuC7v88EpQq6lq3rZEhcTURGRiI4OBgXLlxAfn6+LDGQZ/K6BNlkMuGhhx7CPffcgwcffBB33nmn3CGRh9C1bgdNTJMGv69arUZ0dDSio6NhNpuRl5eHvLw8DsEg36NUQFCqr35cpddQFq+GqFBAcopwFhTAmZ8PnD8PtwrUJfkprkxY//7PFYmsVFniWyrJrQ9KAH5/v+qD3ViA/Hq6tnwEaGJiiydTy/y0QKPRoFWrVigqKsKlS5e4eBQB8MIEWa/X44cffsBtt90mdyiNWqSfn9ufshIU8GvTDpomcXJH4nok26RJE1itVhQUFLjGL7JcHHk9pwjJWcuJTU47pLpZbJG8kgB1VBS0zVtA6R8gdzBuAgMD0b59exQWFiIjI4Pl/xo5r0uQAeCGG27A3r17MXHiRLlDabS+umOI3CEAABRaHfw6JkAVHCJ3KGVotVpERUUhKioKkiTBbDbDYDDAZDLBZDJx/CIRNRoKnR/U0THQxMbVuPxmQymph2+xWJCTk4Pc3FzYbPxU19h4ZYL87rvvYsiQIZgxYwaeeOIJXHONPGOXSD6CUgXNNU2hbRZf6yLyDUEQhOLe5ZJfDJIESRRhtVphsVphs1hgs9ths9ngcDj+GcP493G15fn/h4jIlyg0Wtf4clVYOJSBQXKHVG06nQ5xcXGIi4uD2WxGUVERDAYDzGYzrFYrOzh8nFcmyF27doXD4cDChQuxcOFCqFSqMsuGCoLA8i2eSKWEoK7pGEYBgkYNpX8AlCGhEBQK2LMy/hlaWPqHlSQVj12U8M/4w7//LpW8F//5U5L+TkJF0ZW8Fo9lFCGJ0hV/F4vPlf4+T0LxtpJrlyS0VRz/qACg+/tVX0SLBTn1eH0i8gFKJVCLMeaCAEBR/DNeUCgg2e2wZ2fDnp1djatUIemsal5aaQJb/eRW//erhN3phFMUa50oO61mGGp1BaoPXpkg33PPPaxS4a0cTki1KM4u2W0QjUbYMzPqMCgiIoLTCdRijHlxmmiHZGscE5QVf79qy+7ggiWeyCsT5NWrV8sdAhERERH5KK9KkC0WCzZt2oRz584hIiICQ4cORWxsrNxhEREREZEP8ZoEOTMzE3379sW5c+dc4330ej02btyIxMREmaMjIiIiIl9RF8NnGsQrr7yClJQUTJ48Gd988w0WL14MPz8/PP7443KHRkREREQ+xGt6kL///nuMHTsWb7zxhmtbdHQ0Ro8ejZMnT6Jdu3YyRkdEREREvsJrepBTU1Nxww03uG274YYbIEkSMjJY0YCIiIiI6obXJMhWqxW6K1bfKXnvcDjkCImIiIiIfJDXJMgAkJKSgoMHD7pehw4dAgCcOnXKbXvJq6aWLFmC+Ph46HQ69O7dG/v376/0+A0bNqB9+/bQ6XTo3Lkztm7dWuN7ExEREZG8vGYMMgDMnDkTM2fOLLP9qaeecnsvSRIEQYDT6az2PdavX48pU6Zg6dKl6N27NxYvXowhQ4bg5MmTiIqKKnP8nj17MGrUKCxcuBDDhg3D2rVrcdddd+HgwYNISEio9v2JiIiISF5ekyCvWrWqQe6zaNEiTJw4EePHjwcALF26FFu2bMHKlSsxderUMse//fbbuPXWW/Hvf/8bQHG1je3bt+Pdd9/F0qVLGyRmIiIiIqo7XpMgjxs3rt7vYbPZcODAAUybNs21TaFQIDExEXv37i33nL1792LKlClu24YMGYKNGzdWeB+r1Qqr1ep6bzB42CrstVxXnjwc29e3sX19G9vXt7F9PYbXJMgNITs7G06nE9HR0W7bo6OjceLEiXLPSU9PL/f49PT0Cu+zcOFCzJ07t/YB1yFBq7v6QXVA27oN1BGRDXIv+oezoKBB7sP2lYcjJ6dB7sP2lYcyNKxB7sP2lUdDtW9D/Z73FUyQZTBt2jS3Xufk5GQMGDBAxogATUwsmi1cBMlqqbd7CFodNDFcGlwWcU3Zvj5My/b1aWxf38b29UxMkEuJiIiAUqksU1c5IyMDMTEx5Z4TExNTreMBQKvVQqvVut4HBATUIuq6w28e38b29W1sX9/G9vVtbF/P41Vl3uqbRqNBjx49kJSU5NomiiKSkpLQp0+fcs/p06eP2/EAsH379gqPJyIiIiLPxh7kK0yZMgXjxo1Dz5490atXLyxevBhGo9FV1WLs2LGIi4vDwoULAQDPPfccBgwYgDfffBNDhw7FunXr8Pvvv2PZsmVyfhlEREREVENMkK8wcuRIZGVlYdasWUhPT0e3bt2wbds210S81NRUKBT/dLz37dsXa9euxYwZM/DSSy+hTZs22LhxI2sgExEREXkpQZJYU0RuBw8eRI8ePXDgwAFce+21codDRERE1KhxDDIRERERUSlMkImIiIiISuEYZKqxtLQ0pKWlyR0GERFRoxIbG4vYWJaGq09MkD1AbGwsZs+e7VX/2K1WK0aNGoWffvpJ7lCIiIgalQEDBuC7775zW1OB6hYn6VGNFBYWIjg4GD/99JPHLHRCdcdgMGDAgAFsXx/F9vVtbF/fVtK+BQUFCAoKkjscn8UEmWqkJEHmN6hvYvv6Nravb2P7+ja2b8PgJD0iIiIiolKYIBMRERERlcIEmWpEq9Vi9uzZnCDgo9i+vo3t69vYvr6N7dswOAaZiIiIiKgU9iATEREREZXCBJmIiIiIqBQmyEREREREpTBBJtmlpKRAEASsXr1a7lCIiIiImCB7mzNnzuDxxx9Hy5YtodPpEBQUhH79+uHtt9+G2Wyut/seO3YMc+bMQUpKSr3doyrmz5+PO+64A9HR0RAEAXPmzJE1HrkIglCl186dO2t9L5PJhDlz5lTrWmyn2vPkNj5x4gRefPFFdOvWDYGBgYiNjcXQoUPx+++/1zqWxsKT2/fy5ct46KGH0K5dOwQGBiIkJAS9evXCmjVrwHn9VePJ7XulTz/9FIIgcNXFK6jkDoCqbsuWLbjvvvug1WoxduxYJCQkwGazYffu3fj3v/+No0ePYtmyZfVy72PHjmHu3LkYOHAg4uPj6+UeVTFjxgzExMSge/fu+O6772SLQ24ff/yx2/uPPvoI27dvL7O9Q4cOtb6XyWTC3LlzAQADBw6s0jlsp9rz5Db+8MMPsWLFCtxzzz146qmnUFBQgA8++ADXX389tm3bhsTExFrH5Os8uX2zs7Nx8eJF3HvvvWjWrBnsdju2b9+Ohx9+GCdPnsSCBQtqHZOv8+T2Lc1gMODFF1+Ev79/rePwNUyQvcS5c+fwwAMPoHnz5vjxxx8RGxvr2vf000/j9OnT2LJli4wR/kOSJFgsFvj5+dX5tc+dO4f4+HhkZ2cjMjKyzq/vLR566CG39/v27cP27dvLbJcL26n2PLmNR40ahTlz5rj1OE2YMAEdOnTAnDlzmCBXgSe3b5cuXcr0Rk6aNAnDhw/HO++8g1deeQVKpVKe4LyEJ7dvafPmzUNgYCAGDRqEjRs3yh2OR+EQCy/x+uuvw2AwYMWKFW7JcYnWrVvjueeec713OBx45ZVX0KpVK2i1WsTHx+Oll16C1Wp1Oy8+Ph7Dhg3D7t270atXL+h0OrRs2RIfffSR65jVq1fjvvvuAwAMGjSozKOhkmt899136NmzJ/z8/PDBBx8AAM6ePYv77rsPYWFh0Ov1uP7662uVyMvZe+1tRFHE4sWL0alTJ+h0OkRHR+Pxxx9HXl6e23G///47hgwZgoiICPj5+aFFixaYMGECgOLx4SUJ7ty5c11tf7UhE2ynhiFXG/fo0aPM49jw8HD0798fx48fr9svshGT83u4PPHx8TCZTLDZbLX+2kj+9j116hTeeustLFq0CCoV+0uvxP8jXuLrr79Gy5Yt0bdv3yod/+ijj2LNmjW499578a9//Qu//vorFi5ciOPHj+Orr75yO/b06dO499578cgjj2DcuHFYuXIlHn74YfTo0QOdOnXCjTfeiGeffRbvvPMOXnrpJdcjodKPhk6ePIlRo0bh8ccfx8SJE9GuXTtkZGSgb9++MJlMePbZZxEeHo41a9bgjjvuwOeff46777677v4HURmPP/44Vq9ejfHjx+PZZ5/FuXPn8O677+KPP/7AL7/8ArVajczMTAwePBiRkZGYOnUqQkJCkJKSgi+//BIAEBkZiffffx9PPvkk7r77bowYMQJAcQ8Tyc/T2jg9PR0RERF1+jU2ZnK3r9lshtFohMFgwE8//YRVq1ahT58+9fJ0sDGSu32ff/55DBo0CLfffjs+++yzev1avZJEHq+goEACIN15551VOj45OVkCID366KNu21944QUJgPTjjz+6tjVv3lwCIP3888+ubZmZmZJWq5X+9a9/ubZt2LBBAiDt2LGjzP1KrrFt2za37c8//7wEQNq1a5drW1FRkdSiRQspPj5ecjqdkiRJ0rlz5yQA0qpVq6r09UmSJGVlZUkApNmzZ1f5HF/29NNPS6W/nXft2iUBkD799FO347Zt2+a2/auvvpIASL/99luF167N/2u2U93x1DYu8fPPP0uCIEgzZ86s8TUaM09s34ULF0oAXK+bb75ZSk1NrdY1qJinte8333wjqVQq6ejRo5IkSdK4ceMkf3//anxFvo9DLLxAYWEhACAwMLBKx2/duhUAMGXKFLft//rXvwCgzBCHjh07on///q73kZGRaNeuHc6ePVvlGFu0aIEhQ4aUiaNXr1644YYbXNsCAgLw2GOPISUlBceOHavy9al6NmzYgODgYNxyyy3Izs52vUoeje/YsQMAEBISAgD45ptvYLfbZYyYqsuT2jgzMxOjR49GixYt8OKLL9bLPRobT2jfUaNGYfv27Vi7di1Gjx4NAPVaLakxkbN9bTYbJk+ejCeeeAIdO3ask2v6IibIXiAoKAgAUFRUVKXjz58/D4VCgdatW7ttj4mJQUhICM6fP++2vVmzZmWuERoaWmYcVGVatGhRbhzt2rUrs71kaMaVcVDdOXXqFAoKChAVFYXIyEi3l8FgQGZmJgBgwIABuOeeezB37lxERETgzjvvxKpVq8qMVSfP4yltbDQaMWzYMBQVFWHTpk0sFVVHPKF9mzdvjsTERIwaNQqffvopWrZsicTERCbJdUDO9n3rrbeQnZ3tqnxB5eMYZC8QFBSEJk2a4MiRI9U6TxCEKh1X0WxkqRr1LjkmzbOIooioqCh8+umn5e4vmdQhCAI+//xz7Nu3D19//TW+++47TJgwAW+++Sb27dvHZMeDeUIb22w2jBgxAocOHcJ3332HhISEGl+L3HlC+17p3nvvxfLly/Hzzz+XeWJI1SNX+xYUFGDevHl46qmnUFhY6HpCbTAYIEkSUlJSoNfrERUVVbsv0AcwQfYSw4YNw7Jly7B371706dOn0mObN28OURRx6tQpt4l0GRkZyM/PR/Pmzat9/6om21fGcfLkyTLbT5w44dpP9aNVq1b44Ycf0K9fvyp9eLn++utx/fXXY/78+Vi7di0efPBBrFu3Do8++miN2p7qn9xtLIoixo4di6SkJHz22WcYMGBATb4MqoDc7Vuekp7jgoKCOrleYyZX++bl5cFgMOD111/H66+/XmZ/ixYtcOedd7LkGzjEwmuUFPJ+9NFHkZGRUWb/mTNn8PbbbwMAbr/9dgDA4sWL3Y5ZtGgRAGDo0KHVvn9JEfH8/Pwqn3P77bdj//792Lt3r2ub0WjEsmXLEB8fz7FP9ej++++H0+nEK6+8Umafw+FwtWNeXl6ZJwXdunUDANcjPL1eD6B6bU/1T+42fuaZZ7B+/Xq89957rpnzVHfkbN+srKxyt69YsQKCIODaa6+t0nWoYnK1b1RUFL766qsyr0GDBkGn0+Grr77CtGnTav6F+RD2IHuJVq1aYe3atRg5ciQ6dOjgtpLenj17sGHDBjz88MMAgK5du2LcuHFYtmwZ8vPzMWDAAOzfvx9r1qzBXXfdhUGDBlX7/t26dYNSqcRrr72GgoICaLVa3HTTTZU+hpk6dSr+97//4bbbbsOzzz6LsLAwrFmzBufOncMXX3wBhaL6n88+/vhjnD9/HiaTCQDw888/Y968eQCAMWPGsFf6bwMGDMDjjz+OhQsXIjk5GYMHD4ZarcapU6ewYcMGvP3227j33nuxZs0avPfee7j77rvRqlUrFBUVYfny5QgKCnJ90PLz80PHjh2xfv16tG3bFmFhYUhISKj0cTrbqf7J2caLFy/Ge++9hz59+kCv1+OTTz5x23/33XdzZa5akrN958+fj19++QW33normjVrhtzcXHzxxRf47bff8Mwzz5SZ30LVJ1f76vV63HXXXWW2b9y4Efv37y93X6MlZwkNqr6//vpLmjhxohQfHy9pNBopMDBQ6tevn/R///d/ksVicR1nt9uluXPnSi1atJDUarXUtGlTadq0aW7HSFJxibahQ4eWuc+AAQOkAQMGuG1bvny51LJlS0mpVLqVfKvoGpIkSWfOnJHuvfdeKSQkRNLpdFKvXr2kb775xu2Y6pR5GzBggFvZodKv8krQNRZXlhAqsWzZMqlHjx6Sn5+fFBgYKHXu3Fl68cUXpcuXL0uSJEkHDx6URo0aJTVr1kzSarVSVFSUNGzYMOn33393u86ePXukHj16SBqNpkrlhNhOdc+T2njcuHEVti8A6dy5c3X5pTcKntS+33//vTRs2DCpSZMmklqtdv2eWbVqlSSKYp1+3Y2FJ7VveVjmrSxBkqoxE4uIiIiIyMdxDDIRERERUSlMkImIiIiISmGCTERERERUChNkIiIiIqJSmCATEREREZXCBNnHvP7662jfvj1EUZQ7lFp74IEHcP/998sdhkdh+/o2tq9vY/v6PraxD5G7zhzVnYKCAiksLExauXKlaxv+rkv6xhtvlDl+1apVEgDpt99+q/NYEhMTJQDS008/Xe7+Dz/8UGrfvr2k1Wql1q1bS++8806ZYw4ePCgpFAopOTm5zuPzRmxf38b29W1sX9/HNvYt7EH2IStXroTD4cCoUaPK7Pvvf//rWtWsvn355Zduy0tf6YMPPsCjjz6KTp064f/+7//Qp08fPPvss3jttdfcjuvevTt69uyJN998s75D9gpsX9/G9vVtbF/fxzb2MXJn6FR3unTpIj300ENu2wBI3bp1kwBIb775ptu++vj0ajabpfj4eOnll18u99OryWSSwsPDy6y89+CDD0r+/v5Sbm6u2/Y33nhD8vf3l4qKiuosRm/F9vVtbF/fxvb1fWxj38IeZB9x7tw5HDp0CImJiWX29evXDzfddBNef/11mM3meo3j9ddfhyiKeOGFF8rdv2PHDuTk5OCpp55y2/7000/DaDRiy5YtbttvueUWGI1GbN++vd5i9gZsX9/G9vVtbF/fxzb2PUyQfcSePXsAANdee225++fMmYOMjAy8//77lV7HarUiOzu7Sq8rpaam4tVXX8Vrr70GPz+/cq//xx9/AAB69uzptr1Hjx5QKBSu/SU6duwIPz8//PLLL5XG7evYvr6N7evb2L6+j23se1RyB0B148SJEwCAFi1alLu/f//+GDRoEP773//iySefrPCb53//+x/Gjx9fpXtKkuT2/l//+he6d++OBx54oMJz0tLSoFQqERUV5bZdo9EgPDwcly9fdtuuUqnQtGlTHDt2rEox+Sq2r29j+/o2tq/vYxv7HibIPiInJwcqlQoBAQEVHjNnzhwMGDAAS5cuxeTJk8s9ZsiQITV6lLJjxw588cUX+PXXXys9zmw2Q6PRlLtPp9OV+/gpNDS03E/LjQnb17exfX0b29f3sY19DxPkRuTGG2/EoEGD8Prrr+OJJ54o95jY2FjExsZW67oOhwPPPvssxowZg+uuu67SY/38/GCz2crdZ7FYyv1ULUkSBEGoVkyNEdvXt7F9fRvb1/exjb0LE2QfER4eDofDgaKiIgQGBlZ43OzZszFw4EB88MEHCAkJKbPfbDajoKCgSveMiYkBAHz00Uc4efIkPvjgA6SkpLgdU1RUhJSUFERFRUGv1yM2NhZOpxOZmZluj3hsNhtycnLQpEmTMvfJy8tDmzZtqhSTr2L7+ja2r29j+/o+trHv4SQ9H9G+fXsAxTNpKzNgwAAMHDgQr732WrmPUtavX+/6BHu1V4nU1FTY7Xb069cPLVq0cL2A4m/cFi1a4PvvvwcAdOvWDQDw+++/u933999/hyiKrv0lHA4HLly4gA4dOlTr/4evYfv6Nravb2P7+j62se9hD7KP6NOnD4Dif+RdunSp9Ng5c+Zg4MCBWLZsWZl9NRn/9MADD5T5pgKAu+++G7fffjsmTpyI3r17AwBuuukmhIWF4f3338ftt9/uOvb999+HXq/H0KFD3a5x7NgxWCwW9O3bt1ox+Rq2r29j+/o2tq/vYxv7ILkKMFPdS0hIkEaNGuW2DRUsNTlgwADXEpj1scxlZfdesmSJBEC69957peXLl0tjx46VAEjz588vc+wbb7wh6fV6qbCwsF5i9CZsX9/G9vVtbF/fxzb2LUyQfciiRYukgIAAyWQyubZV9A2yY8cO2b45JUmSli1bJrVr107SaDRSq1atpLfeeksSRbHMcb179y6zMlFjxfb1bWxf38b29X1sY9/CBNmH5OfnS2FhYdKHH34odyh14o8//pAEQZD++OMPuUPxCGxf38b29W1sX9/HNvYtgiRdUWmavNprr72GVatW4dixY1AovHsO5gMPPABRFPHZZ5/JHYrHYPv6Nravb2P7+j62se9ggkxEREREVIp3f7whIiIiIqpjTJCJiIiIiEphgkxEREREVAoTZCIiIiKiUpggExERERGVwgSZiIiIiKgUJshERERERKUwQSYiIiIiKoUJMhERERFRKUyQiYiIiIhKYYJMRERERFQKE2QiIiIiolKYIBMRERERlcIE2QOkpaVhzpw5SEtLkzsUIiIiokaPCbIHSEtLw9y5c5kgExEREXkAJshERERERKUwQSYiIiIiKoUJMhERERFRKUyQiYiIiIhKYYJMRERERFQKE2QiIiIiolKYIBMRERERlcIEmYjK5XA45A6BiIhIFkyQiahcTJCJiKixYoJMROVyOp1yh0BERCQLJshEVC4myERE1Fh5ZIKclpaGP//8E0ajUe5QiBotDrEgIqLGyqMS5E2bNqF9+/a45pprcO211+LXX38FAGRnZ6N79+7YuHGjvAESNSJMkImIqLHymAT566+/xogRIxAREYHZs2dDkiTXvoiICMTFxWHVqlUyRkjUuNjtdrlDICIikoXHJMgvv/wybrzxRuzevRtPP/10mf19+vTBH3/8IUNkRI2TzWaTOwQiIiJZeEyCfOTIEdx///0V7o+OjkZmZmYDRkTUuFksFrlDICIikoXHJMh6vb7SSXlnz55FeHh4A0ZE1LgxQSYiosbKYxLkQYMGYc2aNeVODEpPT8fy5csxePBgGSIjapxYRYaIiBorj0mQ58+fj4sXL+K6667DBx98AEEQ8N1332HGjBno3LkzJEnC7NmzGySWJUuWID4+HjqdDr1798b+/fsrPX7x4sVo164d/Pz80LRpU0yePJm9b+T1DAYDayETEVGj5DEJcrt27bB7926Eh4dj5syZkCQJ//3vf7FgwQJ07twZu3btQnx8fL3HsX79ekyZMgWzZ8/GwYMH0bVrVwwZMqTC8c9r167F1KlTMXv2bBw/fhwrVqzA+vXr8dJLL9V7rET1SZIk5Obmyh0GERFRg1PJHUBpnTp1wg8//IC8vDycPn0aoiiiZcuWiIyMbLAYFi1ahIkTJ2L8+PEAgKVLl2LLli1YuXIlpk6dWub4PXv2oF+/fhg9ejQAID4+HqNGjXLVcCbyZhkZGQ36/UdEROQJPKYHubTQ0FBcd9116N27d4P+crbZbDhw4AASExNd2xQKBRITE7F3795yz+nbty8OHDjgGoZx9uxZbN26FbfffnuF97FarSgsLHS9DAZD3X4hRHXk4sWLcodARETU4DwmQX7nnXcwZMiQCvffdttteP/99+s1huzsbDidTkRHR7ttj46ORnp6ernnjB49Gi+//DJuuOEGqNVqtGrVCgMHDqx0iMXChQsRHBzseg0YMKBOvw6iunLp0iUuGEJERI2OxyTIK1asQMeOHSvc37FjRyxbtqwBI6qanTt3YsGCBXjvvfdw8OBBfPnll9iyZQteeeWVCs+ZNm0aCgoKXK+ffvqpASMmqjqn04mUlBS5wyAiImpQHpMgnzlzBh06dKhwf/v27XHmzJl6jSEiIgJKpRIZGRlu2zMyMhATE1PuOTNnzsSYMWPw6KOPonPnzrj77ruxYMECLFy4EKIolnuOVqtFUFCQ6xUQEFDnXwtRXfnrr7/kDoGIiKhBeUyCrNFoKhzGAABpaWlQKOo3XI1Ggx49eiApKcm1TRRFJCUloU+fPuWeYzKZysSlVCoBFFcBIPJ2ly5dQl5entxhEBERNRiPSZCvv/56rF69GkVFRWX2FRQUYNWqVbj++uvrPY4pU6Zg+fLlWLNmDY4fP44nn3wSRqPRVdVi7NixmDZtmuv44cOH4/3338e6detw7tw5bN++HTNnzsTw4cNdiTKRtzt06JDcIRARETUYjynzNnv2bAwYMADdunXD888/j06dOgEAjhw5gsWLFyMtLQ1r166t9zhGjhyJrKwszJo1C+np6ejWrRu2bdvmmriXmprq1mM8Y8YMCIKAGTNm4NKlS4iMjMTw4cMxf/78eo+VqKH89ddf6Nq1K0JCQuQOhYiIqN4JkgeNA9i+fTsef/xxpKSkQBAEAMXDFFq0aIH333/fZ5eaPnjwIHr06IEDBw7g2muvlTscIgDAt99+iwsXLrjex8XF4fbbb3d9bxIREfkqj+lBBoBbbrkFp0+fxh9//OGakNeqVStce+21/KVMJLNLly7h8OHD6NKli9yhEBER1SuPSpCB4oU5evTogR49esgdChFd4ddff0VQUFCDLPtOREQkF49LkI8dO4azZ88iLy+v3CoQY8eOlSEqIgKKhzwlJSXh5ptvZpJMREQ+y2MS5DNnzuChhx7C/v37KyyPJggCE2QimTmdTmzfvh033HBDpbXLiYiIvJXHJMiPP/44Dh8+jMWLF6N///4IDQ2VOySiRqtnz55ISUmBv78/pk+fXma/JEnYtWsX8vPz0bt373qvUU5ERNSQPCZB/uWXX/DSSy/hmWeekTsUokYvPT0dOTk5cDqdlR53+PBh5OTkIDExETqdroGiIyIiql8e0+0TERGB4OBgucMgomq6fPkyvvrqK2RnZ8sdChERUZ3wmAT5iSeewCeffHLVHisi8jxFRUXYtGkTTp8+LXcoREREteYxQyzatm0Lp9OJrl27YsKECWjatGm5SzWPGDFChuiI6GqcTid+/PFH5Obm4rrrrmPtciIi8loekyCPHDnS9fcXXnih3GMEQWAPM5GHS05ORmFhIQYNGlTuh1wiIiJP5zEJ8o4dO+QOgYjqyNmzZ2GxWDBkyBCo1Wq5wyEiIqoWj0mQBwwYIHcIRFSHLl++jK1bt+K2226DRqOROxwiIqIq85hJeiWsViv27t2LTZs2cVY8kZfLyMjAt99+C5vNJncoREREVeZRCfI777yD2NhY3HDDDRgxYgQOHToEAMjOzkZERARWrlwpc4REVF0ZGRn47rvvOH+AiIi8hsckyKtWrcLzzz+PW2+9FStWrHBbbjoiIgI33XQT1q1bJ2OERFRTaWlpSEpKqnAZeSIiIk/iMQnym2++iTvvvBNr167F8OHDy+zv0aMHjh49KkNkRFQXUlJSsHfvXrnDICIiuiqPSZBPnz6N2267rcL9YWFhyMnJacCIiKiuHTlyBEeOHJE7DCIiokp5TIIcEhJS6aS8Y8eOISYmpgEjIqL6sHfvXqSmpsodBhERUYU8JkG+/fbbsWzZMuTn55fZd/ToUSxfvhx33HFHwwdGRHVKkiQkJSWxSg0REXksj0mQ582bB6fTiYSEBMyYMQOCIGDNmjV46KGH0LNnT0RFRWHWrFkNEsuSJUsQHx8PnU6H3r17Y//+/ZUen5+fj6effhqxsbHQarVo27Yttm7d2iCxEnkju92Ob7/9ttwPxERERHLzmAS5SZMmOHDgAG699VasX78ekiTh448/xtdff41Ro0Zh3759iIiIqPc41q9fjylTpmD27Nk4ePAgunbtiiFDhiAzM7Pc4202G2655RakpKTg888/x8mTJ7F8+XLExcXVe6xE9SE1NRVGoxFAcV3y3NzcermP2WzGli1bUFBQUC/XJyIiqilB8oC6S1arFd999x3i4+PRpUsXAEBWVhZEUURkZCQUiobL43v37o3rrrsO7777LgBAFEU0bdoUzzzzDKZOnVrm+KVLl+K///0vTpw4UeMldQ8ePIgePXrgwIEDuPbaa2sVP1FN7d+/H6+88gq2bNniVo5NEAR07twZQ4cORXx8fJ3f19/fH8OGDUNwcHCdX5uIiKgmPKIHWaPR4L777sOePXtc2yIjIxEdHd2gybHNZsOBAweQmJjo2qZQKJCYmFhhearNmzejT58+ePrppxEdHY2EhAQsWLCAiyKQV/nyyy/Rr18/fPvtt2VqFUuShCNHjuC1117DwYMH6/zeRqMRW7ZsgcFgqPNr5+bm4sEHH0RQUBBCQkLwyCOPXPU+AwcOhCAIbq8nnnjCtX/16tVl9pe8KnrSRERE3sUjEmRBENCmTRvZJ+1kZ2fD6XQiOjrabXt0dDTS09PLPefs2bP4/PPP4XQ6sXXrVsycORNvvvkm5s2bV+F9rFYrCgsLXa/6SAyIqmr//v0YOXIknE5nhR/sRFGEKIpYvnw5UlJS6jwGg8GAbdu2weFwVPvcgQMHYvXq1eXue/DBB3H06FFs374d33zzDX7++Wc89thjV73mxIkTkZaW5nq9/vrrrn0jR45025eWloYhQ4ZgwIABiIqKqnb8RETkeTwiQQaAl156Ce+++y5OnjwpdyjVIooioqKisGzZMvTo0QMjR47E9OnTsXTp0grPWbhwIYKDg12vAQMGNGDERO7mzZsHSZKqvMpdfU1Azc3NxYEDB+rsesePH8e2bdvw4Ycfonfv3rjhhhvwf//3f1i3bh0uX75c6bl6vR4xMTGuV1BQkGufn5+f2z6lUokff/wRjzzySJ3FTkRE8lLJHUCJffv2ITw8HAkJCRg4cCDi4+Ph5+fndowgCHj77bfrLYaIiAgolUpkZGS4bc/IyKiwBnNsbCzUajWUSqVrW4cOHZCeng6bzQaNRlPmnGnTpmHKlCmu98nJyUySSRapqan45ptvqpwci6KIQ4cOITc3F2FhYXUez7Fjx9CzZ0+376ea2rt3L0JCQtCzZ0/XtsTERCgUCvz666+4++67Kzz3008/xSeffIKYmBgMHz4cM2fOhF6vL/fYjz76CHq9Hvfee2+tYyYiIs/gMQlyyaQ4AEhKSir3mPpOkDUaDXr06IGkpCTcddddAIoTgqSkJEyaNKncc/r164e1a9dCFEXXeOm//voLsbGx5SbHAKDVaqHVal3vAwIC6vYLIZ9is9lqNPSgKrZu3Vrl5LiEJEk4fvw4+vTpU+fxWK1WXL58GU2bNq31tdLT08sMeVCpVAgLC6twyBQAjB49Gs2bN0eTJk1w6NAh/Oc//8HJkyfx5Zdflnv8ihUrMHr06DIf6ImIyHt5TIIsiqLcIQAApkyZgnHjxqFnz57o1asXFi9eDKPRiPHjxwMAxo4di7i4OCxcuBAA8OSTT+Ldd9/Fc889h2eeeQanTp3CggUL8Oyzz8r5ZZCPsNls2L9/f72NU//zzz8hCEK1kmRBEFBQUFBvMSUnJyM6OrrCD5gLFizAggULXO/NZjP27dvn9iH22LFjNb5/6THKnTt3RmxsLG6++WacOXMGrVq1cjt27969OH78OD7++OMa34+IiDyPxyTInmLkyJHIysrCrFmzkJ6ejm7dumHbtm2uiXupqalulTWaNm2K7777DpMnT0aXLl0QFxeH5557Dv/5z3/k+hLIhzgcDhgMBmg0GrenDnUlNDS0Rj3IOp2uXirMSJLk6jGvKEF+4okncP/997veP/jgg7jnnnswYsQI17YmTZogJiamTFUJh8OB3Nzcai1b37t3bwDA6dOnyyTIH374Ibp164YePXpU+XpEROT5PC5B3rdvH3bs2IHMzEw89dRTaNOmDUwmE06cOIG2bds2yHCESZMmVTikYufOnWW29enTB/v27avnqKgx02q10Ol0dX7dPn361KgHuV27dvVWgvFqQxXCwsLcxj/7+fkhKioKrVu3djuuT58+yM/Px4EDB1wJ7I8//ghRFF1Jb1UkJycDKJ5vUJrBYMBnn33meppERES+w2OqWNhsNowYMQL9+vXD9OnT8c477+DChQsAimsRDx48uF7HHxM1NkajEcnJyWjWrBkEQajSOYIgoG3btggJCamXmMLDw+ss8e7QoQNuvfVWTJw4Efv378cvv/yCSZMm4YEHHkCTJk0AAJcuXUL79u1dy8mfOXMGr7zyCg4cOICUlBRs3rwZY8eOxY033uhaxKjE+vXr4XA48NBDD9VJvERE5Dk8JkGeOXMmvvnmG7z//vs4efKkW4+WTqfDfffdh02bNskYIZHvSE1NxcaNG5GWluZW5eFqBEFA3759kZeXB7vdXqcxqVQqXHPNNXV6zU8//RTt27fHzTffjNtvvx033HADli1b5tpvt9tx8uRJmEwmAMUTdX/44QcMHjwY7du3x7/+9S/cc889+Prrr8tce8WKFRgxYkS9fVggIiL5eMwQi//973948skn8dhjjyEnJ6fM/g4dOmDDhg0yREbkO5xOJ3777TccPXrUtS0+Ph5Tp051LYZR3mIhJb26I0aMQJMmTSCKIgoKCuDn5we9Xl/lHuiKCIKA9u3bQ6PRwGq1Vuvc8oY9lQgLC8PatWsr3B8fH+/2Ybxp06b46aefqnTf0it/EhGRb/GYBDkzMxOdO3eucL9SqXT18hBR9eXn52PHjh3Izc11bWvWrBn69+8PnU6H9u3bY8WKFdi1a5db0igIAjp06IDBgwcjLi4OBoPB1XtsNpths9kQGBgIlapmP05KkuPQ0FBYLJbafZFERER1wGMS5KZNm+LEiRMV7v/ll1/KTMIhoquTJAmnTp3C3r17XfWUlUolevXqhQ4dOrh6fzt16oRFixYhPT0do0aNQlFREfz8/PDvf/8boaGhrusFBQXBYrHAaDQCKO5xzs/Ph7+/f7VrASsUCnTo0KFeFh0hIiKqKY8Zgzx69Gh88MEH2Lt3r2tbyS/u5cuX47PPPsPYsWPlCo/IK9lsNuzcuRO7du1yJcfBwcEYPnw4OnbsWO7QiJiYGFeiq9Fo3JJjoPj70s/PDyEhIW4r3hmNRhQUFJQ7RKM8KpUKnTt3ZnJMREQex2N6kKdPn459+/bhxhtvdPVqTZ48Gbm5ubh48SJuv/12TJ48We4wibxGVlYWduzYgaKiIte2tm3b4vrrr4dara719VUqFUJCQmAymWA2mwEUT3rLz89HQEBApXWbtVotEhISKly+mYiISE4ekyBrNBps27YNn376KT7//HM4nU5YrVZ06dIF8+bNw5gxY2o9EYioMZAkCYcPH8bvv//uGkus0WjQr18/tGzZsk7vJQgC/P39odFoUFRUBFEUIUkSioqKYLPZ4O/vX6Zsm16vR0JCQr0sfEJERFQXZEuQp0yZgjFjxqB79+4AistORUZG4qGHHmJdUaIaMplM+Omnn3D58mXXtsjISAwaNAiBgYH1dl+1Wo2QkBAYjUZXFQqr1Qq73Y6AgADXqnjBwcHo0KFDnfRgExER1RfZxiAvXrwYx48fd71v0aIFvvrqK7nCIfJ6Fy5cwFdffeWWHHft2hXDhg2r1+S4hEKhQGBgIAIDA11Pe0RRRGFhIQwGA8LDw5GQkMDkmIiIPJ5sPcjR0dE4e/as6311lrolon84nU78/vvvOHLkiGubXq/HgAEDXCvGNSStVgu1Wo2ioiJXObi8vDwYjUZERUUhIiKiwWMiIiKqDtkS5KFDh+Lll1/G999/71qJ6s0338S6desqPEcQBK6mR1RKQUEBduzY4ba4TtOmTdG/f/9ql1yrSwqFAsHBwTCbzcjOzobZbIbZbMbmzZvRvXt3dO3atc6WlCYiIqprsiXIb7/9NqKiorBjxw4cPXoUgiDgwoULbosYXImT9Ij+cerUKezZs8dVvk2hUOC6665Dp06dPOZ7pWvXrtBqtdi5cydycnIgSRIOHjyIixcvYsCAAQgKCpI7RCIiojJkS5D9/f2xYMEC13uFQoHFixdj9OjRcoVE5BVsNhv27NmDM2fOuLYFBwdj4MCBHjV8oVWrVoiOjgYADB8+HH/88QcOHToESZKQmZmJr776Cr1790a7du08JqEnIvIGRqMR/v7+cofh02R7xjlixAjs2rXL9X7Hjh245ZZb5AqHyCtkZWVh48aNbslxmzZtcOedd3pUchwbG+s2/lmpVKJnz54YOnSoa8Kgw+HAL7/8gh9++MFVR5mIiK6uZH4H1R/ZEuRNmzYhNTXV9f6mm27C9u3b5QqHyKOV1Db++uuvXQt/qNVqDBw4EDfeeKNHVYYICgqqsN5ydHQ07r77brRt29a1LTU1FV9++SXOnz/fUCESEXk1Jsj1T7YEOS4uDn/88YfrvSRJfMxKVA6LxYIdO3Zg//79rmovkZGRuOuuu9CqVSuZo3On0+nQoUOHSifgqdVq9O/fH4mJidDpdACKv8YffvgB+/btc42pJqKaY2Uo3+ZwOOB0OuUOw6fJNgb5gQcewBtvvIHPPvvMVcVi6tSpWLhwYYXnCIKAP//8s4EiJJLfyZMnsXPnTthsNte2Ll26oEePHh5XBUKj0SAhIcG1KMjVNG/eHFFRUdi9e7fradKZM2eQlpaGli1bomPHjvUZLpFPM5vNXMrdx1ksFo5DrkfVSpBbtGhR7V5eQRDcxkuWWLhwIVq3bo0dO3YgMzPTtWRteHh4ta5P5IscDgc2b96MH374wbXNz88PAwYMQFxcnIyRlU+r1aJz587VLi3n5+eHxMRE/PXXX67eY5PJhCVLlmDIkCG4/fbboVLJ9jmeyGuxB9n3caJe/arWb54BAwaUSZB///13HD16FB07dkS7du0AFPd6HTt2DAkJCejRo0e511IqlXjsscfw2GOPASiuYjFjxgxWsaBGLysrCytXrnQbk9ukSRMMHDhQ1trGFfHz80Pnzp2h1WprdL4gCGjXrh1iY2OxY8cOZGdnQ5IkbNu2DUePHsXDDz+M2NjYOo6ayLeJoih3CFTPDAYDoqKi5A7DZ1XrGe3q1auxatUq1+vOO+/ExYsXsX37dhw5cgRffPEFvvjiCxw5cgTfffcdLly4gLvuuqtK1z537lyVj61vS5YsQXx8PHQ6HXr37o39+/dX6bx169ZBEASP+TrI++zfvx8LFy50JcdKpRKdOnXy2ORYp9PVKjkuLSgoCLfccgvat2/vGj5y4cIFvPrqq9ixYwd/4RNVA79ffF/JhG2qH7UaxDhr1iw888wzuPnmm8vsu+WWWzBp0iTMmDGjStdq3ry5R4yXWr9+PaZMmYLZs2fj4MGD6Nq1K4YMGYLMzMxKz0tJScELL7yA/v37N1Ck5EssFgvWrFmD1atXw2KxACieiPfMM8+gVatWHjmBVaVSISEhoU6S4xIKhQJt27bFs88+66qhbLfbsWHDBrz77rvIz8+vs3sR+TImyL6PCXL9qlWCfOrUqUrHDIeHh5c7/hgo/kWoUqlck48UCgWUSmWlr4YYi7ho0SJMnDgR48ePR8eOHbF06VLo9XqsXLmywnOcTicefPBBzJ07t8LyVkQVSU1Nxauvvopff/3Vte3666/HtGnTcM0118gYWeXatWtXb73a11xzDaZNm4aBAwe6tp04cQLz5s3DgQMH6uWeRL6E1WB8X2Fhodwh+LRaZZytWrXCqlWr8MgjjyAgIMBtX1FREVauXFlhwjhr1iwIguBKekvey8lms+HAgQOYNm2aa5tCoUBiYiL27t1b4Xkvv/wyoqKi8Mgjj7gtflIRq9UKq9Xqem8wGGoXOHklURSxY8cObNy40VWuR6vVYtSoUejVqxcAwGQyyRlihaKjoxEWFlav99BoNLj//vuRkJCAjz/+GAUFBTCZTFixYgUOHTqEkSNHesRTJyJPVLryDfkmPlGrX7VKkOfNm4d7770X7du3x8MPP4zWrVsDKO5ZXrNmDTIyMrBhw4Zyz50zZ06l7+WQnZ0Np9PperRbIjo6GidOnCj3nN27d2PFihVITk6u8n0WLlyIuXPn1iZU8nJFRUX46KOPcPToUde2Zs2aYcKECR4/6UKpVCI+Pr7B7texY0fMmDED//vf/3Dw4EEAwG+//YZTp05h3LhxrsnBRPSPkqFa5LsMBgMsFournjzVrVolyHfddRe2bt2K//znP1iwYIHbvm7dumHFihUYMmRIrQL0ZEVFRRgzZgyWL19erWV+p02bhilTprjeJycnY8CAAfURInmgEydOYPXq1W6PxxITE3HHHXd4RUmzJk2aVLnWcV3x9/fHI488gi5dumD9+vUwm83Iz8/H22+/jZtvvhl33HGHR60mSCQ3m80Gp9MJpVIpdyhUj9LT0xu0w6IxqfVv48GDB2Pw4MFIT093zbxv3rw5YmJiqnwNq9WKTz75BN9//z3OnDmDoqIiBAYGonXr1rj11lsxevToBvmFHBERAaVSiYyMDLftGRkZ5X49Z86cQUpKCoYPH+7aVjIxQqVS4eTJk+WudKbVat0mNl05PIV8k9PpxNdff43t27e7apQGBgZi3LhxXrMohlKplK0OsyAI6NWrF1q3bo2PPvoIf/31FwAgKSkJx44dw/jx4z16zDZRQzMYDAgODpY7DKpHFy5cYIJcT+qsuyomJqZaSXGJw4cP484778T58+chSRKCg4MREBCAzMxMHDx4EBs2bMD8+fOxefNmdOjQoa7CLZdGo0GPHj2QlJTkKtUmiiKSkpIwadKkMse3b98ehw8fdts2Y8YMFBUV4e2330bTpk3rNV7yHtnZ2Vi5ciVSUlJc2zp06IBx48YhKChIvsCqKSYmRvae2rCwMDz77LPYsWMHNm3aBIfDgbS0NLz22msYPnw4EhMTPW6VQSI5FBUVMUH2campqZAkSfY5XL6o1r9FUlNT8cQTT6Bdu3YICwvDzz//DKA4IXj22Wfxxx9/VHiuwWDAHXfcgYyMDMyfPx8XLlxAXl6e25/z5s3D5cuXMXz4cBiNxtqGe1VTpkzB8uXLsWbNGhw/fhxPPvkkjEYjxo8fDwAYO3asaxKfTqdDQkKC2yskJASBgYHVWnKXfNvvv/+OBQsWuJJjhUKBu+++G08//bRXJccKhcJjemgVCgVuvvlm/Oc//3H1aDudTmzcuBGLFy9GTk6OzBESyY+TuHyf0WhEdna23GH4pFr1IB87dgz9+/eHKIro3bs3Tp8+7SotExERgd27d8NoNGLFihXlnr9q1SqkpqYiKSnJrZxTibi4OEybNg29e/fGLbfcgtWrV+Ppp5+uTchXNXLkSGRlZWHWrFlIT09Ht27dsG3bNtfEvdTUVPZOUZVYrVZ89tlnbhVQIiMjMX78eK98JBYbG+txH/ri4uLw4osv4ptvvsEPP/wASZJw+vRpzJ8/H/fffz969+7NnhVqtPLy8uQOgRrAuXPnEBkZKXcYPqdWCfKLL76IkJAQ7Nu3D4IglJl9P3ToUKxfv77C87ds2YLBgweXmxyXdtNNN+GWW27B119/Xe8JMgBMmjSp3CEVALBz585Kz129enXdB0Re58KFC1i5cqXbePbrrrsODzzwgEeuiHc1SqXSY3qPr6RWq3H33XcjISEBa9asQW5uLiwWCz766CMcOnQIo0eP5jh/apRyc3PlDoEawOnTp3HdddexM6CO1aor9Oeff8aTTz6JyMjIchumWbNmuHTpUoXnHz58+KrJcYmbbrqpzHhfIk8jSRJ27NiB//73v67kWKvVYty4cRg/frxXJseAPJUrqqtNmzaYPn06rr/+ete25ORkzJs3z62cHlFjkZub65oQTL7LYDC4iiRQ3alVgiyKYqWF+rOysipdhjY3N7fKE/uio6P5aZg8WlFREd5//31s2LDBNdSoadOmrmFC3kqhUKBJkyZyh1Elfn5+GDt2LCZOnAh/f38AxatNLVmyBP/73//cFugh8nV2u91jFxuiuvXHH3/ww1Adq1WCfO2112LLli3l7nM4HFi3bp1bb86VrFZrlWfEl16WmsjTnDx5EgsWLMCRI0dc226++Wa88MILHr/wx9VERkZ6fO/xlbp3744ZM2agU6dOrm27du3CwoUL3SqJEPk6jkNuHLKysnDq1Cm5w/AptRqDPG3aNAwbNgxPPvkkHnjgAQDFNYN/+OEHLFiwAMePH8e7775b6TVSUlJcq2NV5ty5c7UJlaheOJ1OfPPNN/j+++9dn94DAgIwbtw4t+TMm9WkfKMnCA4OxlNPPYVdu3bhiy++gN1uR2ZmJt544w3cdtttuPXWW7mIAvm8rKwsj50/QDXTs2dPXL58GWq1GtOnT3dt37dvH5o2beq1Q/k8Ta0S5Ntuuw2rV6/Gc889h2XLlgEAHnroIUiShKCgIHz00Ue48cYbK73GzJkzMXPmzKvei3X+yNPk5ORg5cqVbh/e2rdvj3HjxvlM7VFBEBAYGCh3GDUmCAJuvPFGtGvXDqtXr8b58+chiiK2bNmCo0ePYty4cWWWlifyJRcvXkT37t3lDoPqUHp6OtLS0hASEuK23WKxYPfu3UhMTGS+VAdqvVDImDFjMGLECGzfvh2nTp2CKIpo1aoVhgwZctVfrKtWrart7YlkceDAAaxduxZmsxlA8TjdO+64w2cWqQgPD4fdbkdoaKhP/KCNjo7GCy+8gG+//Rbbtm2DKIpISUnBwoULMWLECPTv398nvk6iK6WlpaGgoMBnPrRT5c6dO4eTJ0+iffv2cofi9WqcIJtMJjRt2hRTp07Fv//9b9fKc9Uxbty4mt6eSBZWqxWff/45fvnlF9e28PBwTJgwAS1atJAxsrr18ccf48iRI14/fro0pVKJYcOGoVOnTlizZg0yMzNhs9mwbt06HD58GA899BCTCPJJBw8exKBBg+QOgxrInj17EBUVhbCwMLlD8Wo17urS6/VQqVSumeJEvu7ixYt49dVX3ZLjnj174qWXXvKp5Lg0X6wf3KJFC0ybNg39+/d3bTt69CjmzZuH5ORk+QIjqienT59GVlaW3GFQA3E4HPjuu+9cTzipZmr1LPiee+7B559/ztIi5NMkScLOnTvx+uuvu2obazQajBkzxqtrG1+NQqGATqeTO4x6odVqMWrUKDz55JOu5b6NRiOWLVuGjz/+uFH8YmHJu8ZDkiTs2bOHv6sbkaKiInz77bes/lULtUqQH3jgAWRmZmLQoEH49NNP8csvv+DgwYNlXkTeymAw4IMPPsBnn33mqm18zTXXYNq0aejTp49Pj1vVaDQ+MZ66Mp07d8b06dPRtWtX17a9e/diwYIFOH36tIyR1b/SqzyS78vIyMCZM2fkDoMaUHZ2Nr755ptG8YG/PtRqkl7pVfB27dpVZn9J5Qmn01mb2xDJ4q+//sLq1auRn5/v2jZo0CDcddddVa7f7c0qW+THlwQGBuKxxx7Dvn37sGHDBlgsFuTk5OCtt97CLbfcgmHDhkGlqvV8Zo/DHuTGp6QMWGP53qbiJHnTpk249dZby1S9oMrV6qc+q1CQL3I6ndi6dSu2bdvmVtt4zJgx6Ny5s8zRNZzG8CGghCAI6NOnD9q0aYM1a9bgzJkzkCQJ33//PY4dO4aHH37Ya1YTrComyL6rZ8+euHjxIrRarVudXJPJhF27duHmm2/26adf5K6wsBAbN27EzTffjKZNm8odjteoVYLMKhTka3JycrB69Wq3R5Ft27bFww8/3Og+fTfGRTQiIiIwefJk/PDDD/j666/hdDpdkzPvvPNODBo0yGeGnVgsFtaX91Hp6enIyMgo92fW2bNnERQUhOuuu45t34jYbDZs27YN119/PRISEtj2VeBxzw2PHTuGs2fPIi8vr9wJBWPHjpUhKmoM/vjjD3zyySdutY2HDRuGwYMH+0xSVB2N8WsGir/uwYMHo0OHDli9ejXS0tLgcDjwxRdf4MiRIxgzZoxPlE+y2+2w2+1et4w41V5ycjJsNhv69u3baL/PGyNJkrB3717k5uaif//+bPurqFaCPGHCBAiCgGXLlkGpVGLChAlXPUcQBKxYseKqx505cwYPPfQQ9u/fX+FMW0EQmCBTnbPZbPj888+xe/du17awsDBMmDABLVu2lDEyeTX2H54ldd43bdqEH3/8EQBw8uRJzJ8/Hw888ACuu+46mSOsvaKiIoSHh8sdBsng2LFjyMvLw8033wy9Xi93ONSATp48CYPBgFtuuYUfkCtRrQT5xx9/hEKhgCiKUCqV+PHHH6/aTV/VbvzHH38chw8fxuLFi9G/f3+EhoZWJzSiGrl06RJWrlyJtLQ017Zrr70Wo0eP5i8Nglqtxr333ouEhAR89NFHyM/Ph9lsxqpVq3D48GE88MADXv3vhAly45aWloYvv/wSgwYNQlxcnNzhUAO6dOkSNm/ejNtuu43rWVSgWglySkpKpe9r45dffsFLL72EZ555ps6uSVQRSZKwa9cufPHFF7Db7QCKk6H7778fffv25fgsVP3DbWPQvn17zJgxA+vXr8dvv/0GAPj9999x+vRpjB071muXdS0oKJA7BJKZyWTC1q1bce211+Laa6/l930jkpubi02bNmHo0KFcRbQcHvMMNSIigg1EDaJkQYh169a5kuO4uDhMnToV/fr14y+Iv/H/gzu9Xo/x48djwoQJrsVh8vPz8c4772DDhg1eWZC/dAlDarwkScKBAwewbds2VjdpZAwGAzZv3ozs7Gy5Q/E4HpMgP/HEE/jkk09YM5nq1alTpzB//nz8+eefrm0DBw7Eiy++iNjYWBkj8zyNfQxyRXr27IkZM2agXbt2rm07duzAq6++itTUVBkjq76cnBy5QyAPcuHCBWzcuBF5eXlyh0INyGw24+uvv8bly5flDsWj1Po34LfffotbbrkF4eHhUKlUUCqVZV5V0bZtWzidTnTt2hWLFi3Chg0b8OWXX5Z5NYQlS5YgPj4eOp0OvXv3xv79+ys8dvny5a4x06GhoUhMTKz0eJKH0+nEN998g8WLF7t6zfz9/fHEE0/g/vvvb1Q1f6uKPcgVCw0NxTPPPIP77rvP9W8nPT0dr7/+OrZt2wZRFGWOsGpycnLYY0huCgoKsGnTJly8eFHuUKgB2e12fPvttzh79qzcoXiMWpV5++KLL3D//fejU6dOeOCBB/D+++9j9OjRkCQJmzZtQps2bXDXXXdV6VojR450/f2FF14o95iGWJVv/fr1mDJlCpYuXYrevXtj8eLFGDJkCE6ePImoqKgyx+/cuROjRo1C3759odPp8Nprr2Hw4ME4evQoJz14iNzcXKxevdpt6eA2bdpg/Pjxja62cXU0xjrI1aFQKDBo0CC0b98eq1evxoULFyCKIjZv3oyjR49i3LhxiIiIkDvMSkmShJSUFLfecKKSmrn9+/fnv41GxOl0IikpCWazGZ06dZI7HNnVKkFeuHAhevXqhd27dyMvLw/vv/8+JkyYgJtuugkpKSm4/vrr0aJFiypda8eOHbUJpc4sWrQIEydOxPjx4wEAS5cuxZYtW7By5UpMnTq1zPGffvqp2/sPP/wQX3zxBZKSkliSzgMkJyfjk08+gclkAlCc1AwdOhRDhgzhEIKrYA9y1cTGxuLf//43tmzZgu+//x6SJOHMmTOYP38+7rvvPvTp08ej/18eO3YMbdu29egYqeGJooiffvoJJpMJ3bp147+PRkKSJPzyyy8wm83o0aNHo273WiXIx44dw8KFC6FUKqFSFV+qZNJTfHw8nnrqKbz22mtVShQHDBhQm1DqhM1mw4EDBzBt2jTXNoVCgcTEROzdu7dK1zCZTLDb7ZUuJGC1Wt0eaxoMhpoHTeWy2Wz44osvsGvXLte2sLAwjB8/Hq1atZIxMu/BDxBVp1KpcOeddyIhIQGrV692DV345JNPcOjQITz44IMIDAyUO8xyZWVl4cKFC2jWrJncoZAH+u2331BUVIQbbriBPxMakYMHD0IURfTq1UvuUGRTqwRZr9e7ikyHhIRAq9W61ZONjo7GuXPnqn3dY8eO4fz58wCA5s2bo2PHjrUJs8qys7PhdDoRHR3ttj06OhonTpyo0jX+85//oEmTJkhMTKzwmIULF2Lu3Lm1ipUqdvnyZaxcudJtwkH37t3x4IMPenXN2obGX4bV16pVK0yfPh2ff/459uzZAwA4dOgQzp07h4ceegidO3eWOcLy/frrr7jmmmvY5lSuEydOoKioCImJidBqtXKHQw0kOTkZ/v7+jXa4Ra1+GrZr1w7Hjh1zve/WrRs+/vhjOBwOWCwWrF27tlq9Eps2bUKrVq3QuXNnDBs2DMOGDUPnzp3RunVrbN68uTahNoj/b+/O46Kqv/+Bv+7MwDDsoMBoKiAkguSGoYiKKIqB5oJGLgnuZWZqZWma9lVRi1LTzFxyS9IsccE9dw3FpUVNcYmBUgGNfWeY9+8Pf9wPI4sMMNzhcp6Px33I3Llz5wzHYc7ce+77vWzZMuzcuRPR0dEwMTGpdLs5c+YgMzOTX86cOVOPUYoXYwznz5/H8uXL+eLYyMgIo0aNwsSJE6k41lFjPrVWGyYmJhgzZgwmT54Mc3NzAE8n5Pjmm28QFRWFgoICgSMsLz09XetvOSHPevDgAaKjo5GWliZ0KI1aUlIScnNzATw9G63vfFy8eLHR5rxWBfKwYcOwf/9+vl3g448/xunTp2FtbQ07OzucO3euwr7dihw6dAghISEAgIiICERHRyM6OhoRERFgjGHYsGE4cuRIbcJ9rqZNm0IqlSIlJUVrfUpKCpRKZZWPjYyMxLJly3Ds2DG0b9++ym3lcjksLS35pfRDlNRcXl4eNm7ciKioKL7Np3nz5vjwww/Ro0cPKvZIvevYsSPmzZsHT09Pft358+exdOnSGp1Z07fLly9TuxepUlZWFvbt24f79+8LHUqjExcXh0GDBsHJyYkfiSk/Px9z587F119/XacTt5VVUlKCixcv6mXfaWlpGD16NCwtLWFtbY0JEyY892/Q+vXr0bt3b1haWoLjuArHcndycgLHcVrLsmXLdI6PY4wxXR9UUFCAffv2ISEhAU2aNMHAgQP5MWTPnTuHPXv2QCqVIjg4GP7+/tXap4+PDwoLC3Hu3Lly0x7m5uaiR48eMDExqXYvcE117doV3t7eWL16NYCnFyq0atUK06ZNq7TY/+yzz7BkyRIcPXoU3bp10/k5r127Bi8vL1y9ehWdO3euVfyN0f3797F582atb7m9evXCsGHDGvw883l5eTh79iwsLCyqPCuhDyUlJfU+kkVBQQGys7PRq1cv0RzxL73o5aeffuInE+E4DgMGDEBQUJAgo4V06dIFSUlJUCgU+Pjjj/n1zZs3R3BwMH2hbOBatGiBBw8ewNraGsuXL9fLc3h6eqJr16402k092LNnD0JDQ8EYq3Akr9LWqEmTJumthhgyZEiFI3k9T+/evREeHo7w8PBy973yyit49OgRvv32WxQXF2PcuHF4+eWXERUVVen+Vq5cyZ+FmzNnDtLT08uNRuXk5IQJEyZg0qRJ/DoLCwudp9TWuQc5NTUV3bt3R0JCAhhj4DgOCoUCe/fuRUBAAHr27ImePXvqulv8+eefiIiIqPAFmJmZITw8HHPnztV5v7qaNWsWwsLC0KVLF3h7e2PlypXIzc3lR7UYO3YsXnjhBSxduhQAsHz5cnzyySeIioqCk5MTkpOTAQDm5uZ0ZFjPNBoNjhw5goMHD6L0e56pqSnGjBmDjh07ChucCFCRVDc4jkOPHj3Qpk0bbN26lf/befjwYdy8eRPjxo0rd92DviUnJ+Px48flPlgePnyIq1evokuXLvUaD2l4bty4gSdPnqBfv378zJKk7sXFxSE0NBQlJSWo7Hhm6bjrGzZswIcffggnJ6c6j+O3335DYGBgne3v1q1bOHLkCC5fvsz/vVm9ejWCgoIQGRmJ5s2bV/i4GTNmAHg6xG5VLCwsnnvm/3l0brFYtGgRVCoVZs6ciZiYGKxYsQIKhQJTpkypVSAmJiZV9rmkpaXVyxG00NBQREZG4pNPPkHHjh3x+++/48iRI/wHWFJSktaFiN988w2KioowfPhwNGvWjF8iIyP1Hmtjlp6ejlWrViEmJob/o+Hq6oq5c+dScVxH6IKtumVvb49Zs2Zh4MCB/O82KSkJEREROHPmTKUffvXt2rVrdAq9AavPHtXk5GTs27cP2dnZenuOxm7x4sVgjFX778OhQ4f0EkdiYmK59tPaiI2NhbW1tdaX8YCAAEgkEly6dKnW+1+2bBmaNGmCTp064fPPP4dardZ5Hzp/Ah47dgxjx45FZGQkgoKCMH36dKxZswYqlQrx8fE6B1CqT58+WLVqVYUtFJcuXcJXX31V5cgQdWnatGlITExEYWEhLl26hK5du/L3nT59Glu2bOFvq1Qq/j9v2WXhwoX1Emtj9McffyAiIgJ3794F8PQIXXBwMGbMmFHl8HqECE0qlSIoKAjvv/8+/6W7uLgYu3btwtdff11hP50QTp8+jX/++UfoMIgOhOpRzcrKwoEDB/TSv66PHlWVSoUJEybA2dkZCoUCLi4uWLBgAd/+JLSSkhIUFBQgJycH169fR0xMTLUnSNNoNPjzzz/19qXo0qVLdfZFPjk5uVzLhkwmg62tLX8mvqamT5+OnTt34tSpU5gyZQoiIiIwe/Zsnfejc4tFUlISPvzwQ611PXr0AGMMKSkpNZ5157PPPoOPjw969OgBb29vfj/x8fGIi4uDvb293nqpSMNQXFyMPXv2aI36YWNjg3HjxsHV1VXAyAjRjZOTE+bMmYPo6Gj+//Nff/2FJUuWYOTIkYJfi1BSUoJjx44hMDAQLVq0EDQW8nxle1SfLWAYY7hx4wZu3Lihtx7VnJwcHDt2DEOGDNH5zFNVPaqjR4/Go0ePcPz4cb5HdfLkyVX2qObl5WHAgAEYMGCA1pwGpW7fvg2NRoNvv/0Wrq6u/O8lNzcXkZGRYIxBrVajuLhYaym7ruzP+fn5KCwshFqt5tc/+3PZx1W2TenPZaepv337ts4FKWMMt27dgo+Pj06Pq46HDx8iMTGxyhaOiIgIRERE8Lfz8/Nx8eJFTJs2jV+n7xFzZs2axf/cvn17GBsbY8qUKVi6dKlOwxTqXCAXFhaWa3UovV2TQ9ilnJ2d8eeff2Lp0qU4fPgwdu3aBeDpOMjvvvsuPvrooxo1iBNxePToEb777js8ePCAX9ehQweMGTNG58Z7QgyBsbExQkND4enpie+//x6ZmZnIzc3Fxo0b4e3tjdDQUEF7O0tKSnD06FH069ePJhExYIbSo/rkyRPEx8fD3d29VvthjEGj0eD69es4cuQIfvnlFzg7O6OoqAjz5s3ji2RbW9sKC9YXX3wRxcXF+OOPPwAAP/zwA+RyuVax6+7ujitXriA2NhbFxcXw8PDAxo0bUVRUVKs6pq4VFRWB4zidimSO45CZmam3EWnOnj2L5s2bV3oB/JtvvonXXnuNvz169GiEhIRg2LBh/LrmzZtDqVQiNTVV67FqtRppaWm17h1+VteuXaFWq6FSqXQ6iFujiUJUKhWuXbvG387MzAQA3L17t9xFHwCq/Y3V3t4eK1aswIoVK2oSFhEhxhh+/fVX/Pjjj/zwbUZGRggJCUHPnj3pQjLS4LVr1w4ff/wxfvjhB/z2228AnhY99+7dw9ixY9GmTRvBYis9kuzv708zUBqomvSoTp069bnbVdQ6+Lzl3LlzUKlUOh2BValU2L17N27evMmvKz0KamxsjJ9//hk///wzgP8V+suWLUPr1q2rjL/0YMqVK1eee9QwKysLxsbG9VocS6XSKheJRILU1NQaHUE2MTHRyzUkjDFkZ2dDrVZXWiDb2tpqtToqFArY29uXO8vr4+ODjIwMXL16FV5eXgCAkydPQqPRaLW11oXff/8dEolE54OsNSqQ58+fj/nz55db/+ybrnSUi+r2zxBSVl5eHqKiorS+jDVr1gwTJkyo9ApXQhoic3NzTJw4EXFxcdi1axcKCgqQlpaGVatWoW/fvhg0aBCMjIwEiU2j0eDEiRPIzs5Ghw4d6EupAUlKStK6UPl5NBoN/vjjD8THx8PKyqrSQremHj9+jN9//12nx5S2KZReWFgqLy+v3BkUiUQCuVyOvLy8GsdYSiaTwcjICDk5Obh58yb69++PFi1awMjIiL+vdCl7WyaTwdjYGDKZDIwxJCQkwMzMDCYmJloFrkwmq7Dwlclk/Ni8z9OpUyfs2bNH5yPIbm5ueimQNRoNZLJaTcDMc3d3x4ABAzBp0iSsW7cOxcXFmDZtGl5//XX+8/3Bgwfo27cvtm3bxk95nZycjOTkZNy7dw8AcP36dVhYWKBVq1awtbVFbGwsLl26BH9/f1hYWCA2NhYzZ87EmDFjYGNjo1OMOr/SzZs36/qQCo0fPx4cx2H9+vWQSqUYP378cx/DcRw2bdpUJ89PDNvff/+N7777Tutigx49emD48OENfmxjQirCcRy6du0KV1dXbNu2DXfv3gVjDL/88gv++usvhIeHC9oPHBcXh8ePH6NXr1403bAO6uq0fX5+PtLS0pCeno60tDSkpaXh0KFDNSpo79y5gw4dOtQ6pmdVpyi7evUqf9CD4zio1WqkpKTg/PnzfNE4e/Zs2NnZQaVSoXPnzloF6o4dO9CuXTu8+uqrVRaxV69exf79+/HBBx/Azs5O6/7SI7QPHjyAn58fxowZg40bN+r8evPy8sAY09s49UqlEj179sSFCxeqdaBRIpHA3d1d50JQF5aWlnW2rx07dmDatGno27cvJBIJQkJC8NVXX/H3FxcXIz4+XusL0bp16/Dpp5/yt3v16gXgaW0aHh4OuVyOnTt3YuHChSgsLISzszNmzpyp1ZdcXToXyGFhYTo/SUVOnjwJiUQCjUYDqVSKkydPPvcbFR25ED+NRoNjx44hJiaGP52mUCgwZswYdOrUSeDoCNG/Jk2a4N1338WJEydw4MABqNVqPHz4EJ999hkGDRrEf5gIISEhAampqejVqxdatmwpSAwNSVFREeLi4qrVD6pWq5GXl1fhkp+fz7eYlaVSqWrUo1p2xIbSz9W6+vell16Cp6cnFApFhcVrdnY2srKy+AlGKupRdXJywrZt23DhwgVMnDhR63c0atQo9O/fHwMGDKjydZYOx6pUKits/Xz48CH8/f3RvXt3rF+/vupfmoAmTJiACxcuVDvP/fv311ssCoWiwt9lVaoar9jW1rbKCy6dnJzKveaFCxdWOUpY586d62zmv7o5Vl4Dzw45o68haEjDkZGRgS1btuDOnTv8OhcXF4SHh6NJkyYCRkZI/ZJIJOjXrx/c3d2xZcsWPHz4EGq1GtHR0bhx4wbGjh0r2HsiNzcXhw8fhqurK7p16yaaGQ/1Qa1WIycnB8bGxpBKpcjNzUVOTk6F/xYWFuq8f2Nj4xr1qNrY2OhlSEzGGIyNjeHi4lLp/wtzc3N+5l1AmB7VBw8ewN/fH15eXti8ebNBj/nerl07LF26lB+Ro6qZ9MLCwvR2Qa1EIoGrq2ujapkVrEB+VlJSEuzs7Cq9ajs/Px+PHz+mq6lF6vr169i2bRvfhyb0VLyEGIIWLVrgww8/xIEDB3DixAkwxnD37l0sWbIEoaGh8Pb2FuzM2r1795CYmAgvLy94enoadJFRH4qLi5GWlob//vuPX1JTU5GYmIj8/Hx+elxdcRzHz8xqYWGh9a+/vz9Onz5tUD2qz/YS15S+elQfPHiA3r17w9HREZGRkXj8+DH/nHU9ekJd6dOnD7777jts2rQJ586d08o3x3Fwd3dH//799Vofubm5wdTUtFFNCmMwBbKzszO2b9+OUaNGVXj//v37MWrUqEb17aUxKC4uRnR0tNZpGGtra4SHhwt69T4hhsLIyAjDhg2Dp6cntm3bhrS0NBQUFGDr1q34888/MXLkSMGmtS8uLsbFixcRHx+P3r17w87OTpA46kNJSQnS09Px5MkTrSK4dCkdzUlXHMfB1NQUFhYW5Qpgc3NzmJmZVVnMGlqPakWtIDWljx7V48eP4969e7h37165nn5Dmc2yIu3atcOXX36J5ORkjBw5EtnZ2VAoFPjggw/0mk/g6Zncpk2b1vhLXkNlMAXy8/5jFhcXN/ojFGKTkpKCTZs24d9//+XXtW/fHmPGjBHsA58QQ9WmTRt8/PHH2LVrF+Li4gAAv/32G/7++2+88cYb8PDwECy29PR07N27F76+voLGURslJSXIyMiosPj977//kJGRUeMCSqFQwNLSssKjwGZmZrU6S2ZIPaoAdL6Iur57VCublKShUCqVUCgUyM7OhrGxsd6L4xYtWjTaUaMELZCzsrK0poH877//kJSUVG67jIwM7Ny5U6tviTRcjDFcvHgRu3bt4i8WkclkCAkJQa9evehiTEIqoVAoEB4ejvbt2+OHH35Abm4uMjMzsWbNGvj5+WHo0KGCjfLCGMP58+dRUFAg+EyAFdFoNMjMzKy0AE5PT9eaxUwXlpaWsLW1RdOmTbX+NTMzw40bN2Btba2XUQ4Aw+lRBZ6e7dB3wUbqj52dnV4mlWkoBC2QV6xYgf/7v/8D8PQ004wZMzBjxowKt2WMYfHixfUYHdGH/Px8/PDDD7hy5Qq/TqlUYvz48TSlLSHV1LlzZ7Ru3Rrff/89P23rmTNncPv2bYSHh8PR0VGw2K5cuQKpVKqXYcSqwhhDVlZWlQVwTYdbMzc3h62tLZo0acIvpUVwkyZNKv1SkpeXVy/XUBhCj6pEIsGLL76ot/2T+mVpaYk2bdo06gNWghbI/fv3h7m5ORhjmD17NkaOHFnuyAPHcTAzM4OXlxe6dOkiUKSkLiQkJOC7777Df//9x6/z9fXF8OHDaVxVQnRkbW2Nt99+G2fPnsWePXtQXFyMlJQUfP755wgKCkJgYKBgF7heunQJUqkUnp6edbZPxhhycnIqLYDT0tJq3P+qUCi0Ct5ni2B9Hf2tS0L2qEqlUnh4eMDExKRRXcQlViYmJnB3d2/0ba2CFsg+Pj7w8fEB8HTooJCQkDr9g0oMg0ajwfHjx3HgwAGtsY1HjRrFD99DCNEdx3Hw8/ODm5sbtmzZgqSkJGg0GsTExODmzZsICwsrN71qUlISP9JAYWEh0tLS9DLk16+//gqpVAp3d/dqbc8YQ15eXpUFcE2GQgMAuVxe7qhv2UVMQ9XVd4+qiYkJPDw8YGZm1ugu4hIjIyMjeHp60oRcMJCL9PLy8vDVV1/B1NSUCmSRyczMxNatW3H79m1+nbOzM8aPH09jGxNSR5RKJT744AMcOnQIR44c4afAjYiIwPDhw+Hr64vLly9j0aJFOHjwIH8KPj8/H3PnzsVLL72E4ODgOu83PHfuHADwRXJ+fn6lBfB///2nc4FVUFCA8+fPQ6VSQSqVolOnTpgyZQqaN2+uVRCbmZnxp4oLCgrw3nvvYefOnSgsLERgYCDWrl0LBwcHAE+vhRk9ejT+/PNP/Pfff7C3t8fgwYMRERFRp7OIiUGTJk3w4osvCjYNOqlbpWd9Khtut7ExiALZ1NQUMpkMZmZmQodC6tDNmzexdetWfhYpjuMQGBiI4OBgGtuYkDomlUoxaNAgeHp6YsuWLXj8+DGKiooQFRWFbdu2YfPmzWCMlbvqnzGGGzdu4MaNG5g0aVKtLrBjjEGtVmst0dHR2LNnD9LT07WG46quffv2wcPDA76+vuUugnv//fdhYmKCs2fPQq1WY9y4cTh69GiVIx/MnDkTBw8exO7du2FlZYVp06Zh2LBhuHDhAoCnvbSDBw/G4sWLYWdnh3v37uHtt99GWlpalfttbJydnfHCCy806h5VMSktjmkEqf8xiAIZAEJCQvDTTz/hrbfeojdcA1dcXIx9+/bh5MmT/DorKyuEh4fDzc1NwMgIET9nZ2fMmTMHe/bswfnz55GSkoLo6OgqhwArbX3asGEDPvzww0qPJJcWwCUlJeUKYbVaXeUoEGWnN36WVCqFra1thSNBlI71PH78eK3H3Lp1C2fOnMHly5f561NWr16NoKAgREZGVjg0VWZmJjZt2oSoqCj06dMHwNPxcd3d3XHx4kV069YNNjY2eOutt/jHODo6YurUqfj8888rjb8xkclkcHd313nKYWK4pFIp2rVrR2dInmEwBfLrr7+OqVOnwt/fH5MmTYKTk1OFh/kNcfigxiYpKQknTpxAdnY2LCws0LdvX/7q6JSUFHz33Xf4559/+O09PT0xduxY+mZKSD0xMTHBqFGj8NJLL2Ho0KE6PTYmJgYTJ07UKnxLC+LaTNRkY2MDa2trrdaH0n+tra0rvSBIJpNVeF9sbCysra21Lt4OCAiARCLBpUuXKnzdV69eRXFxMQICAvh1bdu2RatWrRAbG4tu3bqVe8zDhw+xZ88e+Pn51eRli4pCoUC7du3oFLyIlBbHVlZWQodicAymQO7duzf/c2nfWlmMMXAcRzPpCSguLk6rh1EikUCj0YDjOAwcOBBDhgzB9evX+QtpZDIZhg4dit69e9NZAUIEYGVlhb///rvaE1xoNBpcv34dd+/e1fkDUyqVQiaTaS1l13Ech7Fjx9bZiDXJycnlLkCUyWSwtbVFcnJypY8xNjYud/TTwcGh3GNGjhyJffv2IT8/H4MGDcLGjRvrJO6GytraGm3btqV+YxGRyWR05LgKBlMgb968WegQSBX27NmD0NBQrR7G0tOpjDEcPHgQMTEx6N+/P1q3bg0HBweMHz8eLVu2FDJsQgxeUVFRjcfnfZ5Dhw7VaPY3lUpVbhxjqVTKF7wV/VvVl+DSvxWJiYlwcnKq8gr5iIgIRERE8Lfz8/Nx8eJFTJs2jV9XOvazPq1YsQILFizAnTt3MGfOHMyaNQtr167V+/MaoubNm8PZ2bnRD/slJnK5HO3ataNrv6pgMAVyWFiY0CHwvv76a3z++edITk5Ghw4dsHr1anh7e1e6/e7duzF//nyoVCq8+OKLWL58OYKCguoxYv2Ki4tDaGgoSkpKKv2wLf0APHbsGBYsWICPPvqIxjYm5DmKiooQFxfHX8ha1/74449qT0FciuM4aDQaKBQKSCQSfnm2AC57QV51nTt3DqmpqfD29q60SH7zzTfx2muv8bdHjx6NkJAQDBs2jF/XvHlzKJVKpKamaj1WrVYjLS0NSqWywn0rlUoUFRUhIyND6yhySkpKuccolUoolUq0bdsWtra26NmzJ+bPn9+oZnQ1NjaGq6srjTgkMhYWFnB3d6fP6OcwmAK5rJycHL6HtWXLlvXau7pr1y7MmjUL69atQ9euXbFy5UoEBgYiPj6+3Ok84OlYnyNHjsTSpUsxcOBAREVFYciQIbh27ZpohqxbvHhxhVe/V0QikeDatWv0xiOkGtRqNXJycmBsbKyX94yNjY3OR5AZY7CwsNBLn2lOTg6ys7OhVqsrLZBLL9YrpVAoYG9vD1dXV63tfHx8kJGRgatXr/LjqZ88eRIajQZdu3atcN9eXl4wMjLCiRMnEBISAgCIj49HUlISPyZ/RUoPANR0HOaGqFmzZnB0dKSWCpFRKpVwcXGhswHVYFC/ocuXL8Pf3x82Njbw9PSEp6cnbGxs0KdPH62pifXpyy+/xKRJkzBu3Dh4eHhg3bp1MDU1xXfffVfh9qtWrcKAAQPwwQcfwN3dHYsWLULnzp2xZs2aeolX35KSkhATE1Pt3u+SkhIcOHAASUlJeo6MEPGQy+UwMTGp88XX11fn/n+O4+Dm5qZ19LiulpKSEn6Sktpyd3fHgAEDMGnSJMTFxeHChQuYNm0aXn/9dX4EiwcPHqBt27aIi4sD8LQne8KECZg1axZOnTqFq1evYty4cfDx8eEv0Dt06BA2b96MGzduQKVS4eDBg3jzzTfh6+tb5+NEGyJLS0t06tQJrq6uVByLSOlU4C+++CIVx9VkMEeQL126hN69e8PY2BgTJ07kB5a/desWfvjhB/Tq1QunT5+ustWhtoqKinD16lXMmTOHXyeRSBAQEIDY2NgKHxMbG4tZs2ZprQsMDMTevXsrfZ7CwkKtIxGlp1fVanWNp0rVl6NHj9boCNSxY8cMqm2moSouLoZarUZubq7e+lQNSWFhIf8+MLT3gj7oO7/m5ubo1q0bLl68WK33McdxcHd3h7m5uV5+/4wxZGdn65RfxhhKSkoq3H7Lli1499130bdvX0gkEgwdOhQrVqzgt83Ly0N8fDyysrL4dZ999hmAp0OLFhYWol+/fli9ejV/v5GREdavX4+ZM2eisLAQLVq0wJAhQzB79mydfydCvX/LXh9S3ZilUilatmwJOzs7AKhR2w+9f+uHrvmVy+VwdXWFmZlZrdq56jO/BvHljBmIvn37MhcXF/bo0aNy9yUnJzMXFxcWEBCg1xgePHjAALBff/1Va/0HH3zAvL29K3yMkZERi4qK0lr39ddfM3t7+0qfZ8GCBQwALbTQQgsttNBCCy3PLIbAoI4gf/LJJxVeXOHg4IDJkydj0aJFAkRW90qviC71+++/w8/PD5cuXUKnTp0EjKy8LVu2YPLkyTo/bsOGDXQEuY7oc5QDQySTyaoc5UBs6iO/+/fvx7hx48AYq3Ayj9I2jAkTJqBjx456iUEikaBr165wc3Oj/OqZu7s7Hj16BCsrKyxZsqTKba2srNC/f/8664Gn96/+VTe/Tk5O8PHxqdOZaxtTfg2mQJZIJFX+JyspKdF730zTpk0hlUqRkpKitb6iK5xLKZVKnbYHnp7uKPvHqPQiRJlMZhinFcoIDAys0VXw/fv3N7jX0lDR71Hc6iO/b7zxBtq2bYtFixYhJiZG6/3McRzat2+PoKAgvfXYmpmZISAgAA4ODnrZvyET4v1b+lnJcVyVz29sbIxXX32VxsGtBUPNb5s2beDn50dzENSCwXRqd+/eHV9//TUSExPL3ZeUlIS1a9fC19dXrzEYGxvDy8sLJ06c4NdpNBqcOHGi0iucfXx8tLYHgOPHj1d5RXRD0qpVKwwcOLDa30ClUikGDRrEz6xHCDEML7/8Mvbv3w+VSsUPcaZQKBAREYGpU6fqrThu2bIlQkJCGmVxbOh8fHyoOBYhR0dHKo7rgMEcQY6IiECvXr3Qtm1bDB06FG3atAHwdAieffv2QSaTYenSpXqPY9asWQgLC0OXLl3g7e2NlStXIjc3F+PGjQMAjB07Fi+88AIfy7vvvgs/Pz988cUXCA4Oxs6dO3HlyhWsX79e77HWl/nz5+Pw4cPPPZLMcRw4jsO8efPqMTpCiC5atWoFMzMzZGRkQC6Xaw2pVtc6d+4MLy8v+qA2QK1bt+Y/Z4l4lI78Re+52jOYArlTp064dOkSPv74Y+zfvx95eXkAAFNTUwwYMACLFy+Gh4eH3uMIDQ3F48eP8cknnyA5ORkdO3bEkSNH+KMfSUlJWq0e3bt3R1RUFObNm4e5c+fixRdfxN69e0UzBjLw9MjTrl27+Jn0KhryrXQmrR9//BEvv/yyAFESQgyFVCpF79694eLiInQopAI2NjZ0hFGEpFIpAgICqC2vjhhMgQwAHh4eiI6OhkajwePHjwEAdnZ29T5m37Rp07SmNS3r9OnT5daNGDECI0aM0HNUwho2bBh+/fVXrR5GiUQCjUYDjuMQHByMefPmUXFMSCNnbGyMwMDARjXjXEOiUCgwYMAAKqJEqHPnzrCxsRE6DNEwqAK5VOmp+tKfiWEo7WFMSkrCyZMnkZWVBUtLS/Tp04d6jgkhMDc3R2BgIE1NbKCkUin69+8PCwsLoUMhdczKygrt27cXOgxRMagC+a+//sInn3yCo0eParVYBAYGYuHChaJqW2jIWrVqhfDwcKHDIIQYkJYtW6J37956maKa1I3u3bvTxZIi1bVr1zodzo0YUIF87tw5vPLKK9BoNBg8eLDWRXr79+/H4cOHceTIEfTs2VPgSAkhhJQyNjZGt27d4ObmRmf8DJiTkxPatm0rdBikDiiVSmg0Gr5NpmnTpnB0dBQ4KvExmAJ55syZsLe3x5kzZ9CyZUut+/755x/06tULs2bNwuXLlwWKkBBCSFlOTk7w9fWFmZmZ0KGQKhgZGcHX15e+wIjElStX8OjRIxw4cAAA0KFDB8qtHhjMOMg3b97E1KlTyxXHwNNTd2+99RZu3rwpQGSEEELKksvl6NOnD/r160fFcQPQrl07ypNIKRQKODs7Cx2GKBnMEWRHR0cUFhZWen9RUVGFxTMhhJD607JlS/j5+cHU1FToUEgllEol1Go15HI5OI5Du3bthA6J6Imzs3O9j/TVWBhMgfzJJ59g5syZCA4ORseOHbXu++2337B69WqsXLlSkNgIIaSxk8lk8PHxQdu2bel0roG7cuUKbt26hXPnzkGpVNLRYxGjA4f6YzAF8sWLF+Hg4AAvLy90794drq6uAIC7d+8iNjYWnp6eiI2NRWxsLP8YjuOwatUqoUImhJBGwcrKCv369dPrrHtEP2gITnFTKpVChyBaBlMgr1mzhv/5woULuHDhgtb9169fx/Xr17XWUYFMCCH69cILLyAgIAByuVzoUEgNNG/eXOgQiJ6YmZnR+1KPDKZA1mg0QodACCGkjDZt2qBXr17U49hAGRsbo2nTpkKHQfTEyspK6BBEzWAKZEIIIYbjpZdeQrdu3ajfuAFTKpWUPxEzNzcXOgRRM7gCOSEhAYcPH0ZiYiKAp6NbvPLKKzSMCSGE1BN3d3cqjkWAZs0TN7r4Ur8MqkB+7733sGrVqnLtFhKJBDNmzEBkZKRAkRFCSOPQokULmlRCJKi9QtxoqEX9MpjGsi+++AIrVqzAsGHDEBsbi4yMDGRkZCA2NhbDhw/HihUrsGLFCqHDJIQQ0TI3N0efPn2o51gkbGxshA6B6BEVyPplMEeQN2zYgFdffRU//vij1vquXbti586dKCgowLfffouZM2cKFCEhhIhb7969YWJiInQYpA5IJBI6BS9yVCDrl8EcJlCpVAgMDKz0/sDAQKhUqvoLiBBCGhE3NzcaEkxETExMqE1G5KhA1i+DKZDt7e3xxx9/VHr/H3/8ATs7u3qMiBBCGge5XI6uXbsKHQapQzQ+rvhRgaxfBlMgjxgxAhs3bsSyZcuQm5vLr8/NzcXy5cuxceNGhIaGChghIYSIg1KphJ2dHSwtLQEAXl5e1FohMjKZwXRQEj0wMjKCVCoVOgxR4xhjTOggACAvLw+DBg3CqVOnIJPJ+FN9Dx8+hFqthr+/Pw4cOCDKb0zXrl2Dl5cXrl69is6dOwsdDiGkEYiNjcX169dhYWGB1157jT5sRSY9PZ0u0hOx7OxsWFhYCB2GqBnMEWRTU1OcOHEC0dHRGD9+PNzd3eHu7o7x48dj7969+OWXX/ReHKelpWH06NGwtLSEtbU1JkyYgJycnCq3f+edd+Dm5gaFQoFWrVph+vTpyMzM1GuchBBSVzw9Pak4FiEaiUTcjIyMhA5B9AziHExeXh7GjBmDkJAQjB49GoMHDxYkjtGjR+PRo0c4fvw4iouLMW7cOEyePBlRUVEVbv/w4UM8fPgQkZGR8PDwQGJiIt588008fPgQP/30Uz1HTwghuuE4Dq6urkKHQfSACmRxoy+1+mcQBbKpqSl++eUXvPLKK4LFcOvWLRw5cgSXL19Gly5dAACrV69GUFAQIiMjK7y629PTEz///DN/28XFBUuWLMGYMWOgVqupB4wQYtBsbW2hUCiEDoPoARVQ4kb51T+D+YrZo0cPxMbGCvb8sbGxsLa25otjAAgICIBEIsGlS5eqvZ/MzExYWlpWWRwXFhYiKyuLX6pq4yCEEH2hkYHEiwoocaMh/PTPYArkNWvW4Ny5c5g3bx7+/fffen/+5ORk2Nvba62TyWSwtbVFcnJytfbx5MkTLFq0CJMnT65yu6VLl8LKyopf/Pz8ahw3IYTUlK2trdAhED2hFgtCasdg3kEdOnTAv//+i6VLl8LR0RFyuRyWlpZai5WVlc77/eijj8BxXJXL7du3ax1/VlYWgoOD4eHhgYULF1a57Zw5c5CZmckvZ86cqfXzE0KIrqhAFi86wihulF/9M5gm2ZCQEL0k/L333kN4eHiV27Ru3RpKpRKpqala69VqNdLS0qBUKqt8fHZ2NgYMGAALCwtER0c/9+pSuVyuNYi7ubl51S+CEEL0oEmTJkKHQPSECihxY4xRjvXMYArkLVu26GW/dnZ21eqz8/HxQUZGBq5evQovLy8AwMmTJ6HRaKqcYSorKwuBgYGQy+XYv38/DbZPCGkQzMzMaLY1ETOQKQ4IabAEL5ALCgqwb98+JCQkoGnTpggODkazZs3qPQ53d3cMGDAAkyZNwrp161BcXIxp06bh9ddf50ewePDgAfr27Ytt27bB29sbWVlZ6N+/P/Ly8vD999/zF90BTwtzukiCEGKoSmfRI+JERxcJqR1BC+TU1FR0794dCQkJ/LddU1NT7N27FwEBAfUez44dOzBt2jT07dsXEokEISEh+Oqrr/j7i4uLER8fj7y8PABPZ8ArHeHi2bFEExIS4OTkVG+xE0KILsQ4Kyn5HzpAI27UYqF/gk41/c477+Cbb77BjBkz0KdPH9y7dw+LFi2CpaUl7t+/L1RY9Y6mmiaE1LeMjAxYW1sLHQYhpAZKSkroS5CeCXoE+dixYxg7diwiIyP5dQ4ODhg1ahTi4+Ph5uYmYHSEECJe9OFKCCGVE3SYt6SkJPTo0UNrXY8ePcAYQ0pKikBREUKI+NHpWUIaLnr/6p+gBXJhYWG5UR9Kb6vVaiFCIoSQRoE+YAlpuGgiGP0TfBQLlUqFa9eu8bczMzMBAHfv3q2wP456dAkhpPaoQCaEkMoJepGeRCKp8I90RVdnlq4rKSmpr/DqDV2kRwipb3l5eTSSBSGEVELQI8ibN28W8ukJIaTRoiPIhBBSOUEL5LCwMCGfnhBCGi0qkAkhpHLU5U0IIY0QFciEEFI5KpAJIaQRogKZEEIqRwUyIYQ0QkZGRkKHQAghBosKZEIIaYToCDIhhFSOCmRCCCGEEELKoAKZEEIIIYSQMqhAJoQQQgghpAwqkAkhhBBCCCmDCmRCCCGEEELKoAKZEEIIIYSQMgSdapo0bI8ePcKjR4+EDoMQQghpVJo1a4ZmzZoJHYaoUYFsAJo1a4YFCxY0qP/shYWFGDlyJM6cOSN0KIQQQkij4ufnh6NHj0IulwsdimhxjDEmdBCk4cnKyoKVlRXOnDkDc3NzocMhdSwnJwd+fn6UX5Gi/Iob5VfcSvObmZkJS0tLocMRLSqQSY2UFsj0BhUnyq+4UX7FjfIrbpTf+kEX6RFCCCGEEFIGFciEEEIIIYSUQQUyqRG5XI4FCxbQBQIiRfkVN8qvuFF+xY3yWz+oB5kQQgghhJAy6AgyIYQQQgghZVCBTAghhBBCSBlUIBNCCCGEEFIGFciEEEIIIYSUQQUyIQ0Qx3HVWk6fPl3r58rLy8PChQt12teSJUvw6quvwsHBARzHYeHChbWOo7Ex5Bzfvn0bs2fPRseOHWFhYYFmzZohODgYV65cqXUsjYUh5/fhw4cYM2YM3NzcYGFhAWtra3h7e2Pr1q2g6/qrx5Dz+6wdO3aA4ziadfEZMqEDIITobvv27Vq3t23bhuPHj5db7+7uXuvnysvLw6effgoA6N27d7UeM2/ePCiVSnTq1AlHjx6tdQyNkSHneOPGjdi0aRNCQkIwdepUZGZm4ttvv0W3bt1w5MgRBAQE1DomsTPk/D558gT//vsvhg8fjlatWqG4uBjHjx9HeHg44uPjERERUeuYxM6Q81tWTk4OZs+eDTMzs1rHITqMENLgvf3220xfb+fHjx8zAGzBggXVfkxCQkKNH0sqZkg5vnLlCsvOztZa9+TJE2ZnZ8d8fX31EKH4GVJ+KzNw4EBmZmbG1Gp13QTWiBhqfj/88EPm5ubGRo8ezczMzOo+uAaMWiwIESmNRoOVK1eiXbt2MDExgYODA6ZMmYL09HSt7a5cuYLAwEA0bdoUCoUCzs7OGD9+PABApVLBzs4OAPDpp5/ypwWf1zLh5OSkj5dEniFUjr28vMqdjm3SpAl69uyJW7du1e2LbMSEfA9XxMnJCXl5eSgqKqr1ayPC5/fu3btYsWIFvvzyS8hk1FDwLPqNECJSU6ZMwZYtWzBu3DhMnz4dCQkJWLNmDX777TdcuHABRkZGSE1NRf/+/WFnZ4ePPvoI1tbWUKlU2LNnDwDAzs4O33zzDd566y0MHToUw4YNAwC0b99eyJdG/j9Dy3FycjKaNm1ap6+xMRM6v/n5+cjNzUVOTg7OnDmDzZs3w8fHBwqFQq+vu7EQOr8zZsyAv78/goKC8OOPP+r1tTZIQh/CJoTU3rOn786dO8cAsB07dmhtd+TIEa310dHRDAC7fPlypfuuzek7arGoO4aa41Jnz55lHMex+fPn13gfjZkh5nfp0qUMAL/07duXJSUl6bQP8pSh5TcmJobJZDJ28+ZNxhhjYWFh1GLxDGqxIESEdu/eDSsrK/Tr1w9Pnjzhl9JT46dOnQIAWFtbAwBiYmJQXFwsYMREV4aU49TUVIwaNQrOzs6YPXu2Xp6jsTGE/I4cORLHjx9HVFQURo0aBeDpUWVSe0Lmt6ioCDNnzsSbb74JDw+POtmnGFGBTIgI3b17F5mZmbC3t4ednZ3WkpOTg9TUVACAn58fQkJC8Omnn6Jp06YYPHgwNm/ejMLCQoFfAXkeQ8lxbm4uBg4ciOzsbOzbt4+GiqojhpBfR0dHBAQEYOTIkdixYwdat26NgIAAKpLrgJD5XbFiBZ48ecKPfEEqRj3IhIiQRqOBvb09duzYUeH9pRd1cByHn376CRcvXsSBAwdw9OhRjB8/Hl988QUuXrxIxY4BM4QcFxUVYdiwYfjzzz9x9OhReHp61nhfRJsh5PdZw4cPx4YNG3D27FkEBgbW2X4bI6Hym5mZicWLF2Pq1KnIyspCVlYWgKfDvTHGoFKpYGpqCnt7+9q9QDEQuseDEFJ7z/a3TZ06lUmlUpaXl6fzvnbs2MEAsA0bNjDGng7fBepBFpyh5bikpISFhoYyqVTKfv75Z51jINoMLb8V2bt3LwPAdu3aVav9NEaGkt+EhAStvvKKlsGDB+sckxhRiwUhIvTaa6+hpKQEixYtKnefWq1GRkYGACA9Pb3czFgdO3YEAP4UnqmpKQDwjyGGQegcv/POO9i1axfWrl3LXzlP6o6Q+X38+HGF6zdt2gSO49C5c+dq7YdUTqj82tvbIzo6utzi7+8PExMTREdHY86cOTV/YSJCLRaEiJCfnx+mTJmCpUuX4vfff0f//v1hZGSEu3fvYvfu3Vi1ahWGDx+OrVu3Yu3atRg6dChcXFyQnZ2NDRs2wNLSEkFBQQAAhUIBDw8P7Nq1C23atIGtrS08PT2rPJ2+fft2JCYmIi8vDwBw9uxZLF68GADwxhtvwNHRUf+/BJETMscrV67E2rVr4ePjA1NTU3z//fda9w8dOpRm5qolIfO7ZMkSXLhwAQMGDECrVq2QlpaGn3/+GZcvX8Y777wDV1fX+vxViJJQ+TU1NcWQIUPKrd+7dy/i4uIqvK/REvYANiGkLlQ2S9P69euZl5cXUygUzMLCgr300kts9uzZ7OHDh4wxxq5du8ZGjhzJWrVqxeRyObO3t2cDBw5kV65c0drPr7/+yry8vJixsXG1TuX5+flVevru1KlTdfWyGxVDynFYWFiVp2hLZ1Ik1WdI+T127BgbOHAga968OTMyMmIWFhbM19eXbd68mWk0mjp93Y2FIeW3IjTMW3kcY88cuyeEEEIIIaQRox5kQgghhBBCyqACmRBCCCGEkDKoQCaEEEIIIaQMKpAJIYQQQggpgwpkQgghhBBCyqACmRBCCCGEkDKoQCakEVKpVOA4Dlu2bBE6FKIHlF9xo/yKG+XXMFCBTAghhBBCSBk0UQghjRBjDIWFhTAyMoJUKhU6HFLHKL/iRvkVN8qvYaACmRBCCCGEkDKoxYKQBmrhwoXgOA537tzBmDFjYGVlBTs7O8yfPx+MMfzzzz8YPHgwLC0toVQq8cUXX/CPrajHLTw8HObm5njw4AGGDBkCc3Nz2NnZ4f3330dJSQm/3enTp8FxHE6fPq0VT0X7TE5Oxrhx49CiRQvI5XI0a9YMgwcPhkql0tNvRTwov+JG+RU3ym/DRwUyIQ1caGgoNBoNli1bhq5du2Lx4sVYuXIl+vXrhxdeeAHLly+Hq6sr3n//fZw9e7bKfZWUlCAwMBBNmjRBZGQk/Pz88MUXX2D9+vU1ii0kJATR0dEYN24c1q5di+nTpyM7OxtJSUk12l9jRPkVN8qvuFF+GzBGCGmQFixYwACwyZMn8+vUajVr0aIF4ziOLVu2jF+fnp7OFAoFCwsLY4wxlpCQwACwzZs389uEhYUxAOz//u//tJ6nU6dOzMvLi7996tQpBoCdOnVKa7tn95mens4AsM8//7xuXnAjQ/kVN8qvuFF+Gz46gkxIAzdx4kT+Z6lUii5duoAxhgkTJvDrra2t4ebmhr///vu5+3vzzTe1bvfs2bNaj3uWQqGAsbExTp8+jfT0dJ0fT56i/Iob5VfcKL8NFxXIhDRwrVq10rptZWUFExMTNG3atNz65/0hNDExgZ2dndY6GxubGv0BlcvlWL58OQ4fPgwHBwf06tULn332GZKTk3XeV2NG+RU3yq+4UX4bLiqQCWngKhoGqLKhgdhzBq2pzpBCHMdVuL7shSKlZsyYgTt37mDp0qUwMTHB/Pnz4e7ujt9+++25z0OeovyKG+VX3Ci/DRcVyIQQndjY2AAAMjIytNYnJiZWuL2Liwvee+89HDt2DDdu3EBRUZHWFdvEsFB+xY3yK26U37pDBTIhRCeOjo6QSqXlrrheu3at1u28vDwUFBRorXNxcYGFhQUKCwv1HiepGcqvuFF+xY3yW3dkQgdACGlYrKysMGLECKxevRocx8HFxQUxMTFITU3V2u7OnTvo27cvXnvtNXh4eEAmkyE6OhopKSl4/fXXBYqePA/lV9wov+JG+a07VCATQnS2evVqFBcXY926dZDL5Xjttdfw+eefw9PTk9+mZcuWGDlyJE6cOIHt27dDJpOhbdu2+PHHHxESEiJg9OR5KL/iRvkVN8pv3aCppgkhhBBCCCmDepAJIYQQQggpgwpkQgghhBBCyqACmRBCCCGEkDKoQCaEEEIIIaQMKpAJIYQQQggpgwpkQoheqVQqcByHLVu2CB0K0QPKr7hRfsWN8ls5KpAJMSD379/HlClT0Lp1a5iYmMDS0hK+vr5YtWoV8vPz9fa8f/31FxYuXAiVSqW356iOJUuW4NVXX4WDgwM4jsPChQsFjaeuUX4pv/pA+a0flF9x5/dZNFEIIQbi4MGDGDFiBORyOcaOHQtPT08UFRXh/Pnz+OCDD3Dz5k2sX79eL8/9119/4dNPP0Xv3r3h5OSkl+eojnnz5kGpVKJTp044evSoYHHoA+WX8kv5bbgov+LOb0WoQCbEACQkJOD111+Ho6MjTp48iWbNmvH3vf3227h37x4OHjwoYIT/wxhDQUEBFApFne87ISEBTk5OePLkCezs7Op8/0Kh/D5F+RUe5Vd3lN+nxJrfylCLBSEG4LPPPkNOTg42bdqk9ce3lKurK959913+tlqtxqJFi+Di4gK5XA4nJyfMnTsXhYWFWo9zcnLCwIEDcf78eXh7e8PExAStW7fGtm3b+G22bNmCESNGAAD8/f3BcRw4jsPp06e19nH06FF06dIFCoUC3377LQDg77//xogRI2BrawtTU1N069atVh8UQh4d0SfK7//iFSPK7//iFSPK7//ibVQYIURwL7zwAmvdunW1tw8LC2MA2PDhw9nXX3/Nxo4dywCwIUOGaG3n6OjI3NzcmIODA5s7dy5bs2YN69y5M+M4jt24cYMxxtj9+/fZ9OnTGQA2d+5ctn37drZ9+3aWnJzM78PV1ZXZ2Niwjz76iK1bt46dOnWKJScnMwcHB2ZhYcE+/vhj9uWXX7IOHTowiUTC9uzZw8eQkJDAALDNmzdX+/U9fvyYAWALFiyo9mMMGeVXG+WX8tuQUH61iS2/laECmRCBZWZmMgBs8ODB1dr+999/ZwDYxIkTtda///77DAA7efIkv87R0ZEBYGfPnuXXpaamMrlczt577z1+3e7duxkAdurUqXLPV7qPI0eOaK2fMWMGA8DOnTvHr8vOzmbOzs7MycmJlZSUMMboDzDltzzKL+W3oaD8liem/FaFWiwIEVhWVhYAwMLColrbHzp0CAAwa9YsrfXvvfceAJQ7hebh4YGePXvyt+3s7ODm5oa///672jE6OzsjMDCwXBze3t7o0aMHv87c3ByTJ0+GSqXCX3/9Ve39ixnlV9wov+JG+W28qEAmRGCWlpYAgOzs7Gptn5iYCIlEAldXV631SqUS1tbWSExM1FrfqlWrcvuwsbFBenp6tWN0dnauMA43N7dy693d3fn7CeVX7Ci/4kb5bbyoQCZEYJaWlmjevDlu3Lih0+M4jqvWdlKptML1jLFqP5c+rohuLCi/4kb5FTfKb+NFBTIhBmDgwIG4f/8+YmNjn7uto6MjNBoN7t69q7U+JSUFGRkZcHR01Pn5q/vH/Nk44uPjy62/ffs2fz95ivIrbpRfcaP8Nk5UIBNiAGbPng0zMzNMnDgRKSkp5e6/f/8+Vq1aBQAICgoCAKxcuVJrmy+//BIAEBwcrPPzm5mZAQAyMjKq/ZigoCDExcVpfWjk5uZi/fr1cHJygoeHh85xiBXlV9wov+JG+W2caKIQQgyAi4sLoqKiEBoaCnd3d62Zmn799Vfs3r0b4eHhAIAOHTogLCwM69evR0ZGBvz8/BAXF4etW7diyJAh8Pf31/n5O3bsCKlUiuXLlyMzMxNyuRx9+vSBvb19pY/56KOP8MMPP+CVV17B9OnTYWtri61btyIhIQE///wzJBLdv39v374diYmJyMvLAwCcPXsWixcvBgC88cYbDfaoB+X3Kcov5bchovw+Jdb8VkrYQTQIIWXduXOHTZo0iTk5OTFjY2NmYWHBfH192erVq1lBQQG/XXFxMfv000+Zs7MzMzIyYi1btmRz5szR2oaxp0MABQcHl3sePz8/5ufnp7Vuw4YNrHXr1kwqlWoNKVTZPhh7Okbn8OHDmbW1NTMxMWHe3t4sJiZGaxtdhhHy8/NjACpcKhriqKGh/FJ+GaP8NlSUX3Hn91kcYzp0ghNCCCGEECJy1INMCCGEEEJIGVQgE0IIIYQQUgYVyIQQQgghhJRBBTIhhBBCCCFlUIFMCCGEEEJIGVQgE0IIIYQQUgYVyIQQQgghhJRBBTIhhBBCCCFlUIFMCCGEEEJIGVQgE0IIIYQQUgYVyIQQQgghhJRBBTIhhBBCCCFlUIFMCCGEEEJIGf8PyTMQ64PFtMcAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -1292,11 +1292,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:58:11 2025.\n",
+ "The current time is Tue Mar 25 17:22:31 2025.\n",
"\n",
"Paired effect size(s) for the sequential design of repeated-measures experiment \n",
"with 95% confidence intervals will be computed for:\n",
@@ -1327,11 +1327,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:58:12 2025.\n",
+ "The current time is Tue Mar 25 17:22:32 2025.\n",
"\n",
"The paired mean difference for the sequential design of repeated-measures experiment \n",
"between Control 1 and Test 1 is 0.575 [95%CI 0.325, 0.725].\n",
@@ -1373,7 +1373,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAInCAYAAACFua8hAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAxxJJREFUeJzs3Xd4FNXXB/DvzPZN7wkxkNAJ3SBIMzQBqQooYkFRURBUQH8qohRBsANKk86rIigConQRpAVQiiAl0kICIT3ZbC8z8/4Rs2ZJIWU3s7s5n+dZYaeeeEly9s659zKCIAgghBBCCCGEAABYsQMghBBCCCHEnVCCTAghhBBCSAmUIBNCCCGEEFICJciEEEIIIYSUQAkyIYQQQgghJVCCTAghhBBCSAmUIBNCCCGEEFICJciEEEIIIYSUQAkyIYQQQgghJVCC7AZu376NmTNn4vbt22KHQgghhBBS51GC7AZu376NWbNmUYJMCCGEEOIGKEEmhBBCCCGkBEqQCSGEEEIIKYESZEIIIYQQQkqgBLmEgwcPYvDgwahXrx4YhsHWrVvves6BAwdw7733QqFQoHHjxli7dq3L4ySEEEIIIa5DCXIJer0ebdu2xeLFiyt1/PXr1zFw4ED07NkTZ86cwaRJk/DCCy9g9+7dLo6UEEIIIYS4ilTsANzJQw89hIceeqjSxy9btgxxcXH47LPPAAAtWrTA4cOHMX/+fPTr189VYRJCCCGEEBeiBLkGkpKS0KdPH4dt/fr1w6RJkyo8z2w2w2w229/rdDpXhFdlubm5sFgsLrk2x3EAgODgYJdcn1SMZVno9XqXtS/P8xAEgdpXJAzDwGAwuKx9gaLvYWpf8RgMBlitVpddn+d5BAUFuez6pGJ6vR42m81l15fL5QgJCXHZ9b0RJcg1kJGRgYiICIdtERERKCwshNFohEqlKvO8efPmYdasWbURYqXl5uZi8eLFEATBpffp0aMHfH19XXoPUhrP89i5cye1r5cyGo347bffqH29lE6nw++//07t66Vqo30ZhsGECRMoSa4CqkEWwdSpU6HRaOyv33//XeyQYLFYXP7DF/ivJ5nULpvNRu3rxah9vRvHcdS+Xqw22lcQBJc+YfJG1INcA5GRkcjMzHTYlpmZCX9//3J7jwFAoVBAoVDY37vbJ3aGYZx+zdr44U4qh9rXu1H7ejdqX+9G7es+vKYHWRAE/Pbbb9i5cye0Wm2t3LNz587Yt2+fw7a9e/eic+fOtXJ/QgghhBDifB6ZIE+bNg09e/a0vxcEAX379sWDDz6IgQMHonXr1rh69WqVr6vT6XDmzBmcOXMGQNE0bmfOnEFqaiqAotKI0aNH248fN24crl27hjfffBOXLl3CkiVL8P3332Py5Mk1+wIJIYQQQohoPDJB/vHHH9GxY0f7+02bNmHfvn2YM2cOfvnlF3Ach5kzZ1b5un/++Sfat2+P9u3bAwCmTJmC9u3bY/r06QCA27dv25NlAIiLi8P27duxd+9etG3bFp999hlWrlxJU7wRQgghhHgwj6xBvnXrFho3bmx/v3nzZsTHx2Pq1KkAgPHjx2Pp0qVVvm6PHj0qrNUpa5W8Hj164PTp01W+FyGEEEIIcU8e2YMslUrt8wgLgoB9+/ahf//+9v0RERHIyckRKzxCCCGEEOLBPDJBbtWqFb755hvk5+djzZo1yM3NxcCBA+37b9y4gdDQUBEjJIQQQgghnsojSyymT5+OwYMH25Pgrl27Ogza2759O+677z6xwiOEEEIIIR7MIxPkBx98EKdOncLevXsRGBiIkSNH2vfl5+fjgQcewNChQ0WMkBBCCCGEeCqPTJABID4+HvHx8aW2BwUFYf78+SJERAghhBBCvIFHJsharRYFBQWIiYmxb0tPT8eyZctgNpsxYsQIKrEghBBCCCHV4pEJ8osvvojr16/j2LFjAIDCwkLcf//9uHnzJliWxcKFC7Fr1y706NFD3EAJIYQQQojH8chZLA4fPoxBgwbZ33/zzTdIT0/H0aNHkZ+fjzZt2mDOnDkiRkgIIYQQQjyVRybIOTk5iI6Otr/ftm0bunXrhvvvvx9+fn4YPXo0/vrrLxEjJIQQQgghnsojE+TAwEBkZGQAAIxGIw4dOoS+ffva90ulUhgMBrHCI4QQQgghHswja5C7dOmCJUuWoHnz5ti1axdMJpPDtG7//POPQw8zIYQQQgghleWRCfJHH32Evn37Yvjw4QCA119/HS1btgQAcByHH374wWHpaUIIIYQQQirLIxPkxo0bIzk5GRcuXEBAQABiY2Pt+wwGAxYtWoS2bduKFyAhhBBCCPFYHpkgA4BMJiszCfbz86NV9AghhBBCSLV55CA9oGju4w8//BD9+vVD+/btceLECQBAXl4ePv/8c1y5ckXkCAkhhBBCiCfyyB7kmzdvIjExEWlpaWjSpAkuXboEnU4HAAgODsZXX32FGzduYOHChSJHSgghhBBCPI1HJsj/+9//oNVqcebMGYSHhyM8PNxh/8MPP4xffvlFpOgIIYQQQogn88gSiz179uDVV19FfHw8GIYptb9hw4ZIS0sTITJCCCGEEOLpPDJBNhqNCAsLK3e/VqutxWgIIYQQQog38cgEOT4+HgcPHix3/9atW9G+fftajIgQQgghhHgLj0yQJ02ahA0bNuCjjz6CRqMBAPA8jytXruDpp59GUlISJk+eLHKUhBBCCCHEE3nkIL2nnnoKN27cwLvvvotp06YBAPr37w9BEMCyLObOnYuHH35Y3CAJIYQQQohH8sgEGQCmTZuGp59+Gj/++COuXLkCnufRqFEjDBs2DA0bNhQ7PEIIIYQQ4qE8NkEGgPr161MpBSGEEEIIcSqPrEE+deoUlixZUu7+JUuW4MyZM7UXECGEEEII8RoemSBPmzYNv/76a7n7f/vtN7z77rvVvv7ixYsRGxsLpVKJTp062ZexLs+CBQvQrFkzqFQqxMTEYPLkyTCZTNW+PyGEEEIIEY9HJsgnT55E9+7dy93fvXt3/Pnnn9W69saNGzFlyhTMmDEDp06dQtu2bdGvXz9kZWWVefz69evx9ttvY8aMGbh48SJWrVqFjRs34p133qnW/QkhhBBCiLg8MkHWarWQSssvn2ZZ1j79W1V9/vnnGDt2LMaMGYP4+HgsW7YMarUaq1evLvP4o0ePomvXrnjiiScQGxuLvn37YtSoUXftdSaEEEIIIe7JIwfpNWnSBHv27MErr7xS5v5du3ZVayYLi8WCkydPYurUqfZtLMuiT58+SEpKKvOcLl264JtvvsGJEyfQsWNHXLt2DTt27MDTTz9d7n3MZjPMZrP9vU6nq3KsnophGLBszT6XMQzj8Lpz351/3vn3st4Xx1XetpL77jyurPMquldZcd75d96gh/X2bdjyc8EZDIDA1+j/WU7NTieEEELqFI9MkJ9//nlMnjwZU6ZMwfTp0xEYGAgAKCgowKxZs7Br1y588sknVb5uTk4OOI5DRESEw/aIiAhcunSpzHOeeOIJ5OTkoFu3bhAEATabDePGjauwxGLevHmYNWtWlePzBoIggOedk62xLAupVAqZTAa5XA65XA6FQgGlUgmVSlXhUwZ3xVssMF29DGvmbVHjmDNnDmw2G6RSaY3q+QkhhBBP5HkZBIBXX30VZ86cwYIFC/DFF1+gXr16AID09HTwPI+nn3661qZ/O3DgAObOnYslS5agU6dOuHLlCl577TXMnj0b7733XpnnTJ06FVOmTLG/P3PmDBITE2slXm/C8zwsFgssFgv0en2p/XK5HGq1Gj4+PvDz84NarS7V4+xObAX5MJw/B8FqETsU2Gw2+wc+QgghpK7xyASZYRisWbMGo0ePxo8//ohr164BAIYOHYrhw4ejR48e1bpuaGgoJBIJMjMzHbZnZmYiMjKyzHPee+89PP3003jhhRcAAK1bt4Zer8eLL76IadOmlVlOoFAooFAo7O99fX2rFS+pWHHyXFBQAKCox9nPzw8BAQEICAiAXC4XN8ASLJkZMF66UONSCkIIIYTUnEcmyMV69uyJnj17Ou16crkcCQkJ2Ldvn32pap7nsW/fPkycOLHMcwwGQ6kkWCKRACgqJyDug+d5aDQa+wBOtVqNoKAgBAcHi5osWzJuFyXHoH8vhBBCiDvwyFksrl+/jp9//rnc/T///DNSUlKqde0pU6ZgxYoVWLduHS5evIjx48dDr9djzJgxAIDRo0c7DOIbPHgwli5dig0bNuD69evYu3cv3nvvPQwePNieKBP3ZDAYcOvWLZw7dw7//PMP8vLynFYfXVm2/DwYky+CkmNCCCHEfXhkD/Ibb7yBwsJCDB48uMz9ixcvRmBgIDZs2FDla48cORLZ2dmYPn06MjIy0K5dO+zatcs+cC81NdWhx/jdd98FwzB49913cevWLYSFhWHw4MH44IMPqvfFEVFotVpotVpIJBKEhoYiLCzMoQzGFXijAYa/z1JZBSGEEOJmPDJBTkpKwqRJk8rd37t3byxYsKDa1584cWK5JRUHDhxweC+VSjFjxgzMmDGj2vcj7oPjOGRmZiIzMxNBQUGIiIiAj4+P0+8j8DwM5/+GwNEgOEIIIcTdeGSCnJ+fDz8/v3L3+/r6Ijc3txYjIt4oPz8f+fn58Pf3R1RUlFMHU5quXQGnK3Ta9dwFy7I1Ki0qnrqveLaR4jr+kvX8giA4bC/5unM/IYQQUh0emSDXr18fR44cwfjx48vcf+jQIdxzzz21HBXxVoWFhSgsLISfnx+ioqIq/HBWGTZNASw305wUnXvheR4cx1X7fI7jwHEcAgICEBoaCn9//2pfq3jO7ZIJdPH7kn/e+feyjinrWhW9iu9/Z4Jv/5PngZKJfA0TeokbT19ICCGeyCMT5FGjRmH27Nno2LEjJk6caK8J5jgOixYtwsaNGzFt2jSRoyTeprhO2cfHBxEREQgMDKzyvMoCz9OgvLvged7ee+/r64v69etDpVJV+ToMw9TKQFnebAZvNkEwm8FbzBDMFghWCwSrFYLVBsFmhWCzQeA4CBznkprzbKPJ6dckhJC6zCMT5KlTp+Lw4cOYNGkSPvjgAzRr1gwAkJycjOzsbPTo0YMSZOIyer0e165dg1wuR1hYGEJDQyu9ap8lLRW8ofSiJqRsOp0OFy9exD333IPw8HDR4uDNZvAGPTiDHrzBAN5oAG80QjCZINAgS0II8ToemSArFArs2bMH69atw+bNm3H16lUAQMeOHTF8+HCMHj26zAU6CHEmi8WCW7duIT093aEkoLxeZd5shjk1pXaDLENl6nOlUql9qWmx63kFQUBaWhpMJhNiYmJcuhqiIAjg9XpwukJwWi14nQ6cXgfBZnXZPQkhhLgfj0yQgaLBPGPGjLHPT0yIWARBQEFBAQoKCiCVShEYGIigoCD4+fk5JHPm61crPWsFw0ogDQ2DNCgYrI9PjZNCi6YQzOGjlU52q/sEpmnTpggODq7WuUBRmZTBYIBGo4FWq3XYl52dDZ7nERsbW+3r34k3mcBpC8EVaopeWi0Evvo11IQQQryDxybIhLgjm82GnJwc5OTkQCKR2Je2VrMsrBm3734BhoW8XjSUsQ3ByGROiyvMzx8TJkyAxWJx2jXvJJfLERISUuPr+Pn5ISIiAmazGenp6cjLy7Pvy83NBcuyqF+/fpWuKfB8UYmETgderwOn04HTaSFYXff/gxBCiOfyyAS5V69edz2GYRjs27evFqIhpGwcx9l7li3pt8AadFDL5VDJZFDJpFDKZJCWKAViFUqoW7aBpAYzN1TEGclrbVIoFIiLi0NISAhSUlJgtRaVOWRnZ0OpVJaqSRZsNvAmE3izCbzRaK8T5g0G8CYjaGAkIYSQyvLIBJnn+VKPnDmOw40bN5CWlobGjRsjOjpapOgIccSb/32MD0BjNEFTYsYBqYSFXCKBys8ffnFNYDKbIc3Ph1QqBcuyYFnWKTW3LMsCebkQzK6Z7UDgeYBhIAuPrOGFiqc94wFegMBzUHEcGoeF4lpKCvQ6PQSew7XMDCA8DD4SSdHMERYLLbpCCCHEaTwyQb5zNbuSfvnlF7z44ov4/PPPay8gQipgq2DRGhvHg5crwQeFwJCT47IYfMwmSFcsctn1ixPb4EcehSQgwCW3iBYE3CjMh85cVBZxTatBk7BQh154QgghxBm87jfLoEGD8NRTT1W4FDUhtYW3WMDdMdisJEaugDz6HjCunq+3irXHrb/+Ac3WbUDrr3+o0nmCzXW9uCzDoEFwEHwUcgBFHy5uFmhcdj9CCCF1l9clyADQqFEj/PHHH2KHQQhsebkot/ZVIoGiNpLjOzHMXV8WngMvABaeq9TxtYVlGDQICoTi33mntSYzCozGWrs/IYSQusHrEmSbzYbvv/8eoaGhYodC6jjBZgNXWH4PpzwyCoxcXosReQcJy6JBcCAk/5ZWpGu0sPG0WAchhBDn8cga5Oeee67M7QUFBTh27BgyMjKoBpmIzqYp+G/Q2R0kQcGQ+PrVbkBeRCGVIjrQH6l5BeB4HhmFWtwT6JraZ0IIIXWPRybIv/32W6mR/QzDICgoCN26dcMLL7yAvn37ihQdIUWLh3AF+WXuY+RyyELDajki7xOgVCLYR408vQH5RiNCfNRQOXHuaEIIIXWXRybIKSkpYodASIU4bWG5A9ZkEVFgaOYFp4jy94PObIbFxiFdU4hGoZ411zMhhBD3RL+lCXEBrqCgzO0S/wBI1OraDcaLsQyD6ICihVUMFis0JtfM80wIIaRu8ZgE2WAwIDU1tcylclevXo3evXsjPj4ew4YNoxksiKh4sxm80VB6B8tCFhZeejupEV+FAkFqFQAgU6uDUE7dNyGEEFJZHpMgv//++2jTpk2pBHnOnDkYO3Ysfv/9d2RnZ2Pr1q3o0aMH/vrrL5EiJXWdTVNQ5nZZcCgYqUdWNbm9SD9fsCwDs9WGAiP1IhNCCKkZj0mQ9+/fj0GDBsHX19e+rbCwEHPmzEF0dDQuX76M7OxsHDt2DHK5HB9++KGI0ZK6ShAEcIWFpbYzUhkkwcEiRFQ3SCUShP/7syFLR73IhBBCasZjEuSUlBS0adPGYduOHTtgsVjw1ltvIS4uDgDQsWNHjBkzBocOHRIjTFLH8TotwJUenCcNCSk18wpxrlAfNWRSCSw2jmqRCSGE1IjHJMharRYhIY4j1A8ePAiGYdCvXz+H7fHx8cjOzq7N8AgBANg0pRcGYWQySAICaz+YGpCzErBM0Z+egmEYRPzbi5yt04scDSGEEE/mMQWRDRo0wKVLlxy2HThwABEREWjcuLHDdovFAn9//9oMjxAINht4Q+nETBoc6nG9x+dGPyZ2CNUSqFIiR6+HyWpDockMf6VC7JAIIYR4II/pQe7bty9Wr16N48ePAwD+7//+D5cuXcIjjzxS6tiTJ08iNja2liMkdR1XWFhq5TxGKoUkgFZ4qy0Mw9hrkXP01ItMCCGkejwmQX7vvffg6+uLLl26QC6X49lnn0VYWBimT5/ucJzBYMCWLVvQu3dvkSIldRWnLV1eIQ0K9rjeY08XoFJCIZNCb7bAaLWKHQ4hhBAP5DElFqGhoThz5gxWrlyJa9euoUGDBnjuuecQHu44r+zff/+NJ598Ek8//bRIkZK6iLdYwN85MIxlPa722FuE+/ogLV+DHL0BMYHUg08IIaRqPKYHGQCCgoLwv//9D0uXLsXbb79dKjkGimax+PLLL9GyZctq32fx4sWIjY2FUqlEp06dcOLEiQqPLygowIQJExAVFQWFQoGmTZtix44d1b4/8TyctvTUbpKAQDASzxnk5k0ClErIpRJojCbYeF7scAghhHgYj0qQa8PGjRsxZcoUzJgxA6dOnULbtm3Rr18/ZGVllXm8xWLBgw8+iJSUFGzatAnJyclYsWIFoqOjazlyIia+1NzHDGSBQaLEQopqkUN81BAEAfkGo9jhEEII8TAeU2JRWz7//HOMHTsWY8aMAQAsW7YM27dvx+rVq/H222+XOn716tXIy8vD0aNHIZPJAIAGCNYxvNkM3mJ22Mb6+oKRy0WKiABAkEqFTK0OuQYDQn3UVAtOCCGk0qgHuQSLxYKTJ0+iT58+9m0sy6JPnz5ISkoq85xt27ahc+fOmDBhAiIiItCqVSvMnTsXHMeVex+z2YzCwkL7S6fTOf1rIbWH05Uur5BS7bHoJCyLYLUaVhsHndly9xMIIYSQf1GCXEJOTg44jkNERITD9oiICGRkZJR5zrVr17Bp0yZwHIcdO3bgvffew2effYY5c+aUe5958+YhICDA/kpMTHTq10FqF6/VOrxnZDKwPj4iRUNKCvFRAwyQR2UWhBBCqsAjEuRt27YhPT1d7DDKxPM8wsPDsXz5ciQkJGDkyJGYNm0ali1bVu45U6dOhUajsb9+//33WoyYOBNvsYA3O5ZXSAIC6XG+m5BLJPBTKKA102A9QgghlecRCfIjjzyCAwcO2N83bNgQ27Ztc/p9QkNDIZFIkJmZ6bA9MzMTkZGRZZ4TFRWFpk2bQlJitoIWLVogIyMDFkvZj3UVCgX8/f3tL99/FzYgnufO3mMwDJVXuJmiwXqgwXqEEEIqzSMSZD8/PxQUFNjfp6SkuKRuVy6XIyEhAfv27bNv43ke+/btQ+fOncs8p2vXrrhy5Qr4Er1T//zzD6KioiCnQVpe7876Y1btA0ZKY1/diZ9CAblUgnwjJciEEEIqxyN+k3fs2BEffPABMjMzEfDvsr07duwoty4YKJrmafLkyVW+15QpU/DMM8+gQ4cO6NixIxYsWAC9Xm+f1WL06NGIjo7GvHnzAADjx4/HokWL8Nprr+GVV17B5cuXMXfuXLz66qvV+EqJJxFstlKLg0hpWWm3FKRWIbNQB6PVCtW/s80QQggh5fGIBHnJkiUYPXo0Zs+eDaAo+V2/fj3Wr19f7jnVTZBHjhyJ7OxsTJ8+HRkZGWjXrh127dplH7iXmpoKlv2v4z0mJga7d+/G5MmT0aZNG0RHR+O1117DW2+9VeV7E8/C3fkUQyIB6+snTjCkQsVTvuUbjFAFUIJMCCGkYh6RIDdu3BhHjx6FyWRCVlYWYmNjsWDBAgwdOtQl95s4cSImTpxY5r6StdDFOnfujGPHjrkkFuK+OJ1j/bHEz58G57kp2b+D9TQmE6L8/aidCCGEVMgjEuRiSqUS9evXx4wZM9CrVy80aNBA7JBIHSXwPHiD3mGbxM9fpGhIZQSpVdDmmaEzW+CnVIgdDiGEEDfmUQlysRkzZtj/rtPpkJaWBqCo3IFmhCC1gdfrAUGwv2dkMkjUahEjInfjr1BAwrIoMJkoQSaEEFIhj5jFoix//PEHevbsiaCgILRq1QqtWrVCUFAQevXqhT///FPs8IiX4/SO9cfUe+z+GIZBoEqJQpMJfIkPN4QQQsidPLIH+fjx4+jRowfkcjleeOEFtGjRAgBw8eJFfPfdd3jggQdw4MABdOzYUeRIibfi9XeWV9DgPE8QqFIiV2+A1mxGgFIpdjiEEELclEcmyNOmTUN0dDQOHz5cagGPmTNnomvXrpg2bRr27t0rUoTEm/FmMwSb1f6ekcvBKlUiRkQqSy2XQy6VQGM0UYJMCCGkXB5ZYnH8+HG89NJLZa5uFxERgRdffJFmlSAuw98xvZvEl8orPEmQSgWtyUxlFoQQQsrlkQkyy7Kw2Wzl7uc4zmGuYkKcqXT9MQ0M9ST+KiV4QYDWbBY7FEIIIW7KI7PILl26YPHixbhx40apfampqViyZAm6du0qQmTE2wkcB97035LFjExG5RUeRimVQimTotBouvvBhBBC6iSPrEGeO3cuHnjgATRv3hyPPPIImjZtCgBITk7GTz/9BKlUal8KmhBn4g0Gh+ndqLzCMwWolMjW6SEIAi0aQgghpBSPTJDbt2+P48ePY9q0adi2bRsMBgMAQK1Wo3///pgzZw7i4+NFjpJ4I87oOHsFS+UVHilQqURmoY4WDSGkBJZla1SeyDCMU65RE7X5gVew2SBwHMDzNbqO3EnxEOfyyAQZAOLj47FlyxbwPI/s7GwAQFhYGNUeE5dymN5NIqXyCg8ll0qhkslQSIuGEGLH8zz4GiZ7HMeBYRjI5XKoVCr4+PjAz88ParXao5/WCFYrbPm5sOXng9NqwRv0EHjOKddW3DGuhbgHj02Qi7Esi4iICLHDIHWAYLFAsFjs7yW+vh79A7+u81cqkGswIFrsQAjxMoIgwGw2w2w2o6CgAAAglUoRFBSEkJAQ+Pj4iBtgJQmCAFtONiy302HLzwOEmn14IJ7F4xNkQmoL928pTzGJD5VXeDJ/lRKZWh0MFgvUcnrISYgr2Ww2ZGdnIzs7G2q1GhEREQgKCnLLTgaB52G9nQ5z2g2HQdmkbqEEmZBK4g0lyitYFqyH9IKQsimlUihkUhSazJQgE1KLDAYDrl+/jvT0dERHRyMoKEjskOys2VkwXb0C3mS4+8HEq1GCTEgllexBZtU+YKje3eMFKBUoNJkRCVoqnJDaZjabce3aNfj6+qJ+/fpQqcQb08GbTDD+cwm2vBzRYiDuhX7DE1IJvNkMcP8tTiOh3mOv4KdQwmS1wVLBwkOEENfS6XS4ePEi0tPTIYiwwqUl4zZ0fxyj5Jg4oASZkEpwmL0CVH/sLdRyGWQSFlqz5e4HE0JcRhAE3L59G5cuXYK5lla5FHgexksXYLx0HgJHH5KJI48usbhw4QKuXbuG/Pz8Mj91jh49WoSoiDfijCXKK+QKMDKZiNEQZ/JTKqE1mxHioxY7FELqPIPBgIsXLyI2NhaBgYEuuw9vNsPw91/gtIUuuwfxbB6ZIF+9ehVPPfUUTpw4Ue7jGIZhKEEmTiEIgsMAPdaXeo+9ib9CgdT8AvCCANYNR9QTUtdwHIerV6+iXr16iIqKcv71dToYzp4Bb6Hl5kn5PDJBfumll3Du3DksWLAA3bt3d6sRsMT78CaTw0pJNHuFd/FVyAEG0Jkt8KdFQwhxG+np6TCZTIiNjXXadHC2ggIYzp2hkgpyVx6ZIB85cgTvvPMOXnnlFbFDIXVAqendVPQo3pswDANfuRw6s5kSZELcTF5eHmw2Gxo1alTjlXJt+XkwnPvLaSvgEe/mkYP0QkNDERAQIHYYpI4oOUCPVfu45cT2pGb8/p3ujRDifgoLC/HPP/+A46qf2Nry82A4e4aSY1JpHpkgjxs3Dt98802NvlkIqQyB4xxWUpLQQC6v5KdQwMpxMFqtYodCCCmDXq/H5cuXq/V7v6is4i8ItFQ0qQKPLLFo2rQpOI5D27Zt8dxzzyEmJgYSiaTUccOGDRMhOuJNeKMBKDEQlFXTAD1vJJNIoJRJoTWZoaIZSghxS8VJcpMmTcr8nV8WTqcrqjmmnmNSRR6ZII8cOdL+9zfeeKPMYxiGoR5mUmNcifpjRiYDS0sSey0/RVGZRbgffQgixF3p9XpcvXoVjRs3vmtNMm82FZVV0IA8Ug0emSDv37/fpddfvHgxPvnkE2RkZKBt27b48ssv0bFjx7uet2HDBowaNQpDhw7F1q1bXRojqR28zrH+mHgvP6UC2To9rBwHWSV7pwghtU+r1SIlJQUNGzYs9xiB42A4+xdN5UaqzSMT5MTERJdde+PGjZgyZQqWLVuGTp06YcGCBejXrx+Sk5MRHh5e7nkpKSl444030L17d5fFRmoXb7FAsP63whotL+3d1DIZpBIWhSZaNIQQd5efn4+0tDTExMSUud948W9wem0tR0W8iUcO0ivpwoUL2LlzJ3bu3IkLFy7U+Hqff/45xo4dizFjxiA+Ph7Lli2DWq3G6tWryz2H4zg8+eSTmDVrVoWfaIln4XU6h/c0vZt3YxgGfgoFNCbqcSLEE2RlZSE7O7vUdlPKNVhzSm8npCo8NkH+6aef0KhRI7Ru3RqDBg3CoEGD0Lp1azRu3Bjbtm2r1jUtFgtOnjyJPn362LexLIs+ffogKSmp3PPef/99hIeH4/nnn6/UfcxmMwoLC+0v3R2JGHEPnOG/dmEVCjBSj3zgQqrAT6mA3mKBjafR7oR4grS0NBQW/rdctDU3B+aUayJGRLyFRybIO3bswPDhwwEAc+fOxZYtW7BlyxbMnTsXgiBg2LBh2LVrV5Wvm5OTA47jEBER4bA9IiICGRkZZZ5z+PBhrFq1CitWrKj0febNm4eAgAD7y5UlI6R6BJ4HbzDY3zNUf1wn+CkUYMGgkHqRCfEIgiDg+vXrMJvN4E0mGC+eFzsk4iU8skts9uzZaNOmDQ4dOgSfEnWhQ4YMwcSJE9GtWzfMmjUL/fv3d2kcWq0WTz/9NFasWIHQ0NBKnzd16lRMmTLF/v7MmTOUJLsZ3qB3mN5NoqbyirqAZRj4KuTQGM0IpjYnxCPYbDZcvXIF9xh0EGw0lzlxDo9MkM+ePYu5c+c6JMfFfHx88Oyzz+Kdd96p8nVDQ0MhkUiQmZnpsD0zMxORkZGljr969SpSUlIwePBg+zb+30ezUqkUycnJaNSoUanzFAoFFIr/lrT19aVppdwN51D2wlD9cR3ir1TilkYDG89DWsOlbQkhtaMwLRUpBj0aBAeKHQrxEh7501+pVCIvL6/c/Xl5eVAqlVW+rlwuR0JCAvbt22ffxvM89u3bh86dO5c6vnnz5jh37hzOnDljfw0ZMgQ9e/bEmTNnyh1dS9xfyQSZVanA0LRfdYa/sujDK5VZEOIZOIMBtrw8FJpMyCikmSuIc3hkD3KvXr2wcOFC9O/fv1Tievz4cXzxxRfo27dvta49ZcoUPPPMM+jQoQM6duyIBQsWQK/XY8yYMQCA0aNHIzo6GvPmzYNSqUSrVq0czg8MDASAUtuJ5+CMRqDExPIsTflVp0hYFj5yOTRGE5VZEOLmBJsN1tvpAIpK4rJ1esglEgR78c/tr776CjqdDr6+vnjppZfEDsdreWSC/PHHH6Nz587o1q0bOnbsiGbNmgEAkpOTceLECYSHh+Ojjz6q1rVHjhyJ7OxsTJ8+HRkZGWjXrh127dplH7iXmpp619V7iGfjdY49EKyKBujVNQEqJW5pCmHjOEjp6QEhbsuSkV6q7vhWYSEkEhYB1XiS7Al0Op3DzB3ENTwyQY6Li8PZs2cxb9487Ny5Exs3bgQANGjQAK+99hrefvvtChf1uJuJEydi4sSJZe47cOBAheeuXbu22vcl7sFh/mOWBatSiRcMEUVRHXIhNLRoCCFuy5qbA16vL71DANLyNZAEM/AtMd6HkKrwyAQZAMLDwzF//nzMnz9f7FCIF+EtFvAWs/29RO0DhmFEjIiIQcqy8JXLkW80UoLswUp+75b398q8v9v2cvE8BI5zmBGnOjz2F7ULcTodbDk55e4XBAE38goQGxwEH4W8FiMj3oK+7wgpgdfeUV5By0vXWQEqJW4VFMJss0FBi8Q4jUQiAcuyYFkWUqkUMpkMMpnMPruPSqWC9N//3xUlpJVNamuDwPPgNAWwaTTgdYXgDAYIRiMEwTkLzqj0tJhUSbzZDMvtWyiuOy73OEFASl4+JcmkWjzip/5zzz0HhmGwfPlySCQSPPfcc3c9h2EYrFq1qhaiI96E0znWdUlogZA6y1+pRDpTiAKjERF+fmKH4zU4jgPHcQCKVhUti0wmg1qthlqthq+vL3x9fd1u7IfA87DlZMGalQVbXi4EnhM7JLs5c+bAZrNBKpXi3XffFTscpxI4DpZbN4FKrnZZnCTXDwqEn5LKLUjleUSC/Ntvv4FlWfA8D4lEgt9+++2uvQX0WJxUlWCxgC8xtRcjV4CRU69DXSVlWfgqFMg3mihBrmVWqxUajQYajQZA0c9zHx8f++qjKhHHBfAmEyw308ocHOYubDYbBEGAzWa7+8EeRBAEWG7dhGC1VOk8XhBwIz8f0QEBCFLTmBJSOR6RIKekpFT4nhBn4O6YvULiQwu41HWBKiXS8jXQmc002EdEgiBAp9NBp9Ph1q1bUCgUCAoKQnBwcK0ly7zRCFPKNVizMgEnlU6QyhMEAdb0W+CNhmqeD9ws0MDKcQj3o5/t5O48IkG+U2pqKsLCwsr9wWg0GpGdnY369evXcmTEk3Fax/IK1pfKK+o6f6USLFuIfIOREmQ3YjabkZGRgYyMDKhUKoSGhiIkJAQSF0zJJ9hsMKdch/lWGiXGIrJmZpTqxKiOTK0OJpsN9wQGgKUnzaQC7lXUVUlxcXHYsmVLufu3bduGuLi4WoyIeLo7yyuKpnej2QvqOpZhEKBUotBkBlfJmkdSu4xGI9LS0nD27FncuHEDRqPRade2ZmVCdyIJ5ps3KDkWkSUrA5ymwGnX0xhNuJKdC5PVu0pQiHN5ZA+ycJcpc6xWq9sN6CDuzaYtPTiP6tgJUFRmkW8wosBooinf3BjP88jJyUFOTg78/f0RGRkJv2rWjvMWC0yXk2HNznRylKSqLJkZ4ArynX5ds82GKzm5iPT3RSjNVkTK4DEJcmFhIQoKCuzvc3NzkZqaWuq4goICbNiwAVFRUbUYHfF0fKnyCqpRI0V8FQrIpBLkGQyUIHuIwsJCFBYWwtfXF/Xq1atSomzLz4Px4nmH+dBJ7RMEAdaM2+AKNS69x22NFhqjCdGBAVDSdI6kBI/51zB//ny8//77AIpGNE+aNAmTJk0q81hBEDBnzpxajI54Mt5sAu8w3RRDA/SIg2CVCplaHfQWC3xoZhOPodPp8M8//8DPzw/R0dHwuUtPofnGdZiuX8Pd5tclriVwHCy3b5W9Sp4LGCxWXMnOQbBajXA/X0gr+QSakcnByGRgmJo9sWZt//17u9sTcgDw8fGBIAj2P4lreEyC3LdvX/j6+kIQBLz55psYNWoU7r33XodjiqcCSkhIQIcOHUSKlHgam8axh4JVqcBQTwIpIUitQqZOhzy9gRJkD6TVanHp0iUEBgaiXr16pQZ4CxwH46ULVFLhBgSLBZb0m3d0WtTCfQUgV29AvtGIUB8fhPioHRJlRiaHNCgY0sAgSPz9warUYJw0KNScmwvmaFKlk92XXnqpyvdgGAZy+tlVJR6TBXTu3BmdO3cGAOj1egwfPhytWrUSOSri6QRBAFd4R/0xlVeQO8gkEvjKFdCYTIjiOEhdMFsCcb2CggIUFBQgMDAQkZGR8PHxAW+xwHDuTKlZbEjt43Q6WDLSAU68RVd4XkCWVoccnR4BajXCY+5BUGxDSIKCXTYuJSQkBBMmTIDFUrX5natCLpcjJCTEZdf3Rh6TIBczGAz44osvoFarKUEmNcbr9QDnOJKZ9aVFIUhpwT4q6Mxm5BoMtHCIhytOlNUyGXxzsuDHCDQoV0SCIMCanQUuP0/sUIqwLNiAIBiDg5EqsMi4lY5AvQF+fn7w9fW1L4XuTH5WCwSL6e4HVhP98646j0uQ1Wo1pFLpXWvJCKmMO6cOYhUKsPQYipTBX6GATMIiV29EmK8vzaHq4XizGblXLiOXs0EmYRGkViFIpYLczcurKvMYXiqV2peadvcaVc5ggDUzA4JbDIpkIAkIgCw0zKHMzmKxICsrC1lZWQCKlkJXKpWQy+WQSCQ1/nDF52TDsvDjGl2jMurP+xzySJrAoLLc+ydBOYYPH45NmzZh/Pjx9KmfVJtgs4HT6xy2sdQzSMrBMAyC1WpkanUoMBgRTDNaeCzeZIT55k370yMrxyNLq0eWVg8fuRyBKiX8VcpKD9ayY1hI1D5gfdRglaqiQVwSCcDW7PeUn0YD5vTZSie706ZNq9Z96tevj6CgoGqdCxQl7zzPw2q1wmw2w2g0wmQqu1dUsFphzckqVeImFlahgDQiCpJKrMxotVphtTpvmXE2OxO18ZtHMLuuh9obeWSC/Pjjj+Pll19Gz549MXbsWMTGxpa5qt6dg/gIKYnTaIpGZpQg8fUXKRriCYLUKmTpdMjW6xGkVtEHdA/Em00w30wrt85Vb7FAb7HgVmEhfGRy+CkV8FMooJSV/etS4usPaWgopIHBkPj7g3HBHPyRkfU8tkaV4zjodDoUFhYiPz8fFr0e1vy8oqd3btG7zUAaHAxpaJh7fD9XIoZHtu1GttGIMJUKW4b0u/s13eL/s+fxyAS5R48e9r8fOnSo1H5BKKon40Qs9Cfuz3ZHeQUjV4Cl5YRJBWQSCQKUShQYTdCYTAisRG8TcR+82QxzWvnJsQPhv2Q5A1pIJSx85PKil48v/GJioKwXXWsrbnrqACuJRAJ/X1+ozUYEg0dBYT7yzEYUQhB/Mj2JFPKoKI+b1jPbaESmwXkrRpKyeWSCvGbNGrFDIB6O0+kgWB17YyQ0OI9UQqivDwqMJmTr9JQgexDBaoXlZlqpQbmVZeN4aHkBBrUv8nz9wWq0UJiuQ6VSQaFQQKFQQCaTQSaTQSqVQiKRgGVZp/VKWjJuu/QROaNQOqU+VbDZwJvN4E1GcNpCcBoNuIJ8CP8u1e2rkMNXIYeF45Ct0yPfYBClg5NVKCGPvgeMTFb7NycewSMT5GeeeUbsEIiHsxWUHi0t8afyCnJ3KpkMPgo59GYLNEYTAlRKsUMidyFwHMw30yDYqlc3ysjkkIWFQeL3388IQRBgMpnKrbG1n+uEBJktyIPv16tqfJ0KCQKCh42EJCCghtfhK3WYXCJBdIA/Qn2K6vo1xtqrj2V9fCGvF+2SchjiPTwyQS5Jp9MhLS0NABATEwNfmsOW3AVvsZRaoYlVUHkFqbwwHx/ozRZkanXwVyrco3aRlEngeVhu3azeLAksC1lIaI3mwHXGLBJCFWuPW3/9Ayw8BzkrwbmnH638fayWSie4zqKQSlE/KBBatRnpmkJYbK4tjZQEBEIWEUnfs+SuPPbj0x9//IGePXsiKCgIrVq1QqtWrRAUFIRevXrhzz//FDs84sbK7D32o95jUnl+SgVUMhnMNhsKarHni1SNIAhFq7IZDVU+l/XxgTK2IaTBIe6VTDHMXV8WngMvABaeq9Tx7sBPoUCTsFCXzg4jCQqCPDLKvdqTuC2P7EE+fvw4evToAblcjhdeeAEtWrQAAFy8eBHfffcdHnjgARw4cAAdO3YUOVLibgSbrWj2ijtQgkyqKszXB6n5BcjU6hCgUtK8yG5GEARY02+Velp0VywLWVg4pIHVn+6MVA/LMIgO8IefQo6bBYXgeOf1ZkuCgiEPj3Da9Yj388gEedq0aYiOjsbhw4cRGRnpsG/mzJno2rUrpk2bhr1794oUIXFXtoJ84I4fuqxKDYYWByFVFKBSQqGTwmy1IUenR7if55R3zZkzx76QxLvvvit2OE4nCAKst9PB6bRVOo+RKyCvF03lViLzVyrROFSKG/kFMFmrN6iyJElgECXHpMo8ssTi+PHjeOmll0olxwAQERGBF198EceOHRMhMuLOBI4rSpDvIPGv4aAUUmdF/DvmIVunh8WDppW02WwQBAE2W82TD3dT3HPMaau2AIXEzx+K+g0oOXYTcqkUjUJD4K+s2SBYib8/5BGlcwVC7sYjE2SWZSv8wc5xHFganUruwBUUlJ7/lGEgodXzSDUFqJRQyWXgBQG3Ne6xIlhdJnAcLDfTqtxzLA0NLZrVQCJxUWSkOliGQf2gAIRUsy6ZVftAFlnPyVGRusIjs8guXbpg8eLFuHHjRql9qampWLJkCbp27SpCZMRdCRwHa35uqe0SPz/6pUhqJPLf0opCk7lWp6oijgSbDZabqeANVag5ZhjIIutBFhLmusBIjTAMg3oB/ojwr1oJE/tvuQwNyCPV5ZEJ8ty5c6HRaNC8eXM88cQTmDlzJmbOnIlRo0ahefPm0Gg0mDdvXrWvv3jxYsTGxkKpVKJTp044ceJEuceuWLEC3bt3R1BQEIKCgtCnT58KjyfisBXklbl6FpVXkJryVSjgryx6LJ9eWAibEwcWkcrhzSaYU1PA32VOYgcsC3n0PZDWdN5fUivCfX1RL6CSg6kl0qJFQLy08yNMpUKEWoUwWqjIpTxykF779u1x/PhxTJs2Ddu2bYPBUDSFj1qtRv/+/TFnzhzEx8dX69obN27ElClTsGzZMnTq1AkLFixAv379kJycjPDw8FLHHzhwAKNGjUKXLl2gVCrx0UcfoW/fvjh//jyio6Nr9HUS5xBsNtjySk/txshkHrfEKHFPkf5+0JotsHE8bhZoEBtMMyDUFk6rgSUjo9Tg2wqxLOTRMZCoa2eZaOIcxaUW6RWVMzEM5PXqefXA6y1D+okdQp3gkQkyAMTHx2PLli3geR7Z2dkAgLCwsBrXHn/++ecYO3YsxowZAwBYtmwZtm/fjtWrV+Ptt98udfy3337r8H7lypX48ccfsW/fPowePbpGsbizr776CjqdDr6+vnjppZfEDqdC1pzsMn95SgMoiSHOoZBKEeqjRrZOD63JjBy9HqE+PmKH5dUEQYA1OxNcfumBtxViWcjvqQ8J9b55pBAfNQRBwO3CsuvMZaHhkKjpe4/UnEeWWJTEMIzDqyYsFgtOnjyJPn362LexLIs+ffogKSmpUtcwGAywWq0IDg4u9xiz2YzCwkL7S6fT1ShuMeh0Oo+InTcZy5z3GAxT8yVVCSkh3M8XCmlRn0NGoRY6czVWbiOVwpvNsNxIoeS4jgr19UG4X+kkWOLrB2kFv3sJqQqPTZAvXLiAESNGwN/fH1FRUYiKioK/vz9GjBiBv//+u1rXzMnJAcdxiIhwnC8xIiICGRkZlbrGW2+9hXr16jkk2XeaN28eAgIC7K/ExMRqxUsqJggCrJkZAEov9Srx8wMj9dgHKMQNsQyD6EB/gAEEAUjN18DshdOoiUkQBNhyc2C+cR28uYoDIovLKupAcixnJWCZoj+9VYSfH4LV/7UlI5NDFhklYkTE23hkhnDo0CE89NBD4HkeQ4cORdOmTQEAycnJ2LZtG3bu3Ildu3ahe/futRrXhx9+iA0bNuDAgQNQVjB349SpUzFlyhT7+zNnzlCS7AJcfl65g3YktEoWcQEfuRxhPj7I1unB8Tyu5+ahYUgw5G72YUwqldoXCvEUnF4Ha1YWBEs1euYZBvKo6DpTc3xu9GNih1Ar6gX4w8rz0JotkEfV89pBeUQcnvPTsYTJkycjPDwcv//+O2JiYhz2paWl4YEHHsCUKVPwxx9/VOm6oaGhkEgkyMzMdNiemZlZ5qIkJX366af48MMP8euvv6JNmzYVHqtQKKAoMRm9ry8NFHM23myGNTenzH2sUgmJqm78oiS1L8LPFzqLBUaLFVYBuK7RIi4yAiqlsugXOMuCYVmAYQGGKXrVkLTEoCVBKP3E5E7Tpk2r0vHFAgICKiwfqwxBEMDzPDiOg81mg9VqBVfBIiu80QhrbnbVl4wuQRYRCQn9nPU6DMMgJjAAaVIFbHXgyQCpXR6ZIJ8/fx6zZ88ulRwDQExMDMaPH4+ZM2dW+bpyuRwJCQnYt28fHn74YQAAz/PYt28fJk6cWO55H3/8MT744APs3r0bHTp0qPJ9iXMVLTN7q9xR7ZIgqlEjNcMwLBiVCqxCCVapBKNQglUowMjlYOVytBSA5KtX7VO+3ZJIEBcXhwAX1b375eaC2bO3SsluVTEMg9jYWISEhDj92jzPw2KxwGw2w2QywWg0QpeVBe3tdHD6mo1zkIVHQBoQ6JxAidtRhEWgedPmuHTpkleuDEnE45EJcoMGDWCuYACMxWIpM3mujClTpuCZZ55Bhw4d0LFjRyxYsAB6vd4+q8Xo0aMRHR1tn2f5o48+wvTp07F+/XrExsbaa5V9fX2pZ1gk1swM8OX8+2BkMkj8KjmXJqnzGJkcEh8fsD6+kKh9wKrVYFVqMApFhYOCJQAaN22K5ORkCIIAjuNw5coVhIaGIjo62umlDSEhIZgwYQIsFotTr1uSXC53SXIMFA2GViqVkHEcFEYD1Bm3EWQygPf3gVElh8Fihc5sgcFiAV+FDwGy0HBI6QOx12KVKqhbtAQjlaJhw4a4fPmySz8kkrrFIxPk6dOnY/LkyRg4cCDatWvnsO/06dP48ssvsWDBgmpde+TIkcjOzsb06dORkZGBdu3aYdeuXfaBe6mpqQ5TyS1duhQWiwUjRoxwuM6MGTOq1YtNasaWlwtOU1DufmlwMK2sRMrEKpSQ+Pn/+/ID6+MLtkQpVFX5+PigUaNGuHr1qv2Xdk5ODvLz8xEWFoaQkJAKxypUlZ/VAsHiupX8nP1tI/A8eKMRnE4LrlADW24ueJPB4RiWYeAjlxfVdvv6gBcEGCwWFJrMKDSZYa2gNEMWGg6pixJ6Ij6GlUDdqq19sLWfnx/q169f5gq7hFSHRybIx44dQ0REBBISEtClSxc0btwYAHD58mUkJSWhVatWSEpKcpiajWEYLFy4sFLXnzhxYrklFQcOHHB4n5KSUq2vwZ1V5hO4j48PBEGw/+kObJoCWLOzyj9AIoXEP7DW4iHui5Urwfr6QuLnZ0+Ka5IMlycgIAANGzbEtWvX7N8nHMchIyMDGRkZkMlkUCqVNf7QxhbkQ1gy3xkhl+3f2MPGvAhpUA0GuApFC/cIVkvRUx6haqsOsgwDX4UCvgoF6gUAeosFGqMJBUYTuBIlVbLwCOo59nKq5vGl6spDQ0NhNpsrPesUIRXxyAR50aJF9r8fOXIER44ccdh/7tw5nDt3zmFbVRLkukgul4NhmEonu9VdHKRp06Y1GuQjCIL9kXXxIB+bzQZD+i1o83MBiaTcXiVZcHDR4ChSRzBgFQqw/5ZGSNQ+YH18IPHxBSOT1VoUgYGBaNq0Ka5evVqqRtJqtcJqtdb4HrL8PFRl2Gnrr3+AhecgZyU49/SjlT7PlpNd5aTWlYp7l6P8/VBoMiPPaII5MJiWj/ZyyrhGkIVHlLkvOjoaFosFeWWsnkpIVXhkgsxXZUlRUimeWsMo8DxMV/6Bj06DsJCixJsXBJisNphsVhgtVhisVpgFGpznVRgWrEwGRiYvGhinUIBRKP4bNKdUFf3pJh+IfH19ER8fjxs3bkBT1sI1zlSJ3mgLz4EXiv6sVO2EmzwlKg/DMAj09UW9+7uAU/sgKysLOTk59LvCC8kj60HRIK7CY2JjY8FxnOu/14hX88gEmbiGqwbguIotLxfGK/+ANzhO/8QyDNRyGdRyGYq71eQNm8ASEGhfvdBUzvzIpGYYmRSMTF6DCzD2PxmW/W9KNFYCRioBI5GCkRa9iqZIY4tO+XfKNEHgi+a+NpvBadmi0gX7tGoMIJHYp1hjWPa/98XHuJBMJkPjxo2h0Whw+/Zt6GswbRlxxCrVULduC4mPD6Qoms2oXr16yMrKQlZWFs1u4CWkwaFQNm1+1+MYhkHDhg1x5coVaLVlL0lNyN14dIJ8/fp17Ny5016U36BBAzz00EOIi6v40yUpmyXjNoSqrk5VSQLHASwLWXjF80nf9TpmEzitFtbM25We/olV+0B5TwxULGufZstkMkGj0SA/P58SFScSrEX1pU65llOuUgXFSTNbInlmSibprGOyXZzEF/+dYQGWcUzcUfy+6PoAoGSAOD8fmBUy6PRGmCzmGtfxMwDqal+pNDgE6hatSpXNSCQSREVFISIiAllZWcjMzKRE2YNJA4Kgbtm60h9kWZZF48aNKUkm1eaxCfLrr7+OhQsXlnqExrIsJk2ahE8//VSkyDyTJeM2UqdOufuB1fVvAhD8yKOQ1HJ9oLJRk1I/VJVKJZRKJSIiImA2m5GXl4fc3NwKpw8kXk7gIXA8wNVecu7z76umbAYd8p1wHY/CsFDGxt31cTvLsoiMjERYWBiys7MpUfZAEv9AqFu3rfJKecVJ8tWrV1FYWHj3EwgpwT0K9Kros88+w/z58zFs2DAkJSWhoKAABQUFSEpKwogRIzB//nzMn+/CEd1eqKo9x4/8vBvdvv8Jj/y8u2r3qeVfTNLgUMhCQis8RqFQICoqCq1atUKTJk0QFBREU8ER4sZYtQ982ifcNTkuSSKRIDIyEq1bt0b9+vUdVjMl7ksaEAifNu3s07lVVXGSHFST2VdIneSRPcgrVqzAkCFD8P333zts79SpEzZs2ACTyYSvvvoKkydPFilCD1eJ5DDbaEKmwVjp48UY5MNIpFBVol6tJH9/f/j7+8NisSA7OxvZ2dkVLoNLCKlFDAtFTH0oYhtWu2acZVmEhYUhLCwMGo0GWVlZ1LvopqTBIVC3bFPlnuM7MQyDuLg4yGQyZGVVMBUoISV4ZIKckpKC1157rdz9/fr1w65du2oxIuKOFHGNwFZzIQa5XI7o6GhERkbSY1lC3IA0OATKRk0h8XFGUUqRgIAABAQEwGKxIDc3l8qs3Ig8sh6UTZs7bfAswzCIiYmBUqlEWlqa28zfT9yXRybI4eHh+Ouvv8rd/9dffyEsLKwWIyLuRhoYDHn0PTW+TvFj2fDwcHui7Ix5awkhlSMNCIQitqFLF/6Qy+WIiopCVFQU9Ho98vPzUVBQQMmyKBgoGzaGon4Dl1w9LCwMKpUK165do5/lpEIemSA/+uijWLhwIWJjY/HKK6/A598eBb1ej0WLFmHlypWYNGmSuEES0TAyOVTxrZxaR8yyLCIiIhAeHo7c3FxkZmbSVHHEY8lZiX2hELfEsJCFhEB+TwNIAwNr9dY+Pj7w8fHBPffcA6PRaJ8aUqfT0bzKLsbI5FC3aAlpsGunHC2elzwlJYXmSibl8sgEefbs2Thz5gzeeecdTJ8+HfXq1QMApKenw2azoWfPnnj//fdFjpKIgmGhjm8FVl6DuXgrujzDIDQ0FKGhodBqtcjKyoJGo6HHdcSjnBv9mNghlEniFwBZeDhk4ZEuWfq7qlQqFVQqFSIiIiAIAgwGA/R6PfR6PYxGI0wmE33vO4k0MBiqFvFgFdUri6vy/aRSNG7cGNnZ2bh58yZ9+CGleGSCrFarsW/fPvz0008O8yD3798fAwYMwODBg2kWgjpK1ay5Sx/FluTn5wc/Pz9YrVb7NHFGo7FW7k2Ip2NkckjUarC+fpAGBEASGOyyD7bFBEH4b8DwHX8XSm4v9WfR31UsA6WvL0L+fWopCALMZhPMFgssFqt96XAbx4HnOPA8D94JCTQD7/19xkikUDZs7JSSuOoICwtDQEAA0tLSUFBQIEoMxD15XIJsMBjw1FNPYfjw4XjyyScxdOhQsUMibkLZuBnkkfVq/b4ymQwRERGIiIiA0WhEfn4+8vPzqQSDeB8JC0Yiu/txFV5DUrQaIstC4HhwGg24ggLgxg04zEBdnJ/izoT13//ckcgKFSW+JZJcV5AAUP37cgWrXoMCF11bPAzkkVFFg6lFflogl8vRqFEjaLVa3Lp1ixaPIgA8MEFWq9X49ddf8dBDD4kdSp0WplI5/CkqhoWqSTPI60WLHYn9kWy9evVgNpuh0Wjs9Ys0XRzxeBwPgavhwCbOCsE5iy0Sj8RAFh4ORYM4SHx8xQ7GgZ+fH5o3b47CwkJkZmbS9H91nMclyADQrVs3JCUlYezYsWKHUmdtGdJP7BAAAKxCCVV8K0gDAsUOpRSFQoHw8HCEh4dDEAQYjUbodDoYDAYYDAaqXySE1BmsUgVZRCTkUdHVnn6zthTPh28ymZCbm4u8vDxYLPSprq7xyAR50aJF6NevH959912MGzcO99wjTu0SEQ8jkUJ+TwwU9WNrPIl8bWAYpqh3ufgXgyBA4HmYzWaYzGZYTCZYrFZYLBbYbLb/ahj/Pa6m3P//ECHEm7Byhb2+XBocAomfv9ghVZlSqUR0dDSio6NhNBqh1Wqh0+lgNBphNpupg8PLeWSC3LZtW9hsNsybNw/z5s2DVCottWwowzA0fYs7kkrAyKpbw8iAkcsg8fGFJDAIDMvCmp35X2lhyR9WglBUuyjgv/rDf/8uFL/n//tTEP5NQnnenrwW1TLyEHjhjr/zRecK/54noGhb8bWLE9pK1j+yAJT/vlyFN5mQ68LrE0K8gEQC1KDGnGEAsEU/4xmWhWC1wpqTA2tOThWuUomks7J5aYUJbNWTW/W/r2JWjgPH8zVOlDmzEboaXYG4gkcmyMOHD6dZKjyVjYNQg8nZBasFvF4Pa1amE4MihBACjgNqUGNelCZaIVjqxgBl9t9XTVlttGCJO/LIBHnt2rVih0AIIYQQQryURyXIJpMJP/30E65fv47Q0FAMHDgQUVFRYodFCCGEEEK8iMckyFlZWejSpQuuX79ur/dRq9XYunUr+vTpI3J0hBBCCCHEWzijfKZWzJ49GykpKZg8eTJ++eUXLFiwACqVCi+99JLYoRFCCCGEEC/iMT3Ie/bswejRo/Hpp5/at0VEROCJJ55AcnIymjVrJmJ0hBBCCCHEW3hMD3Jqaiq6devmsK1bt24QBAGZmTSjASGEEEIIcQ6PSZDNZjOUd6y+U/zeZrOJERIhhBBCCPFCHpMgA0BKSgpOnTplf509exYAcPnyZYftxa/qWrx4MWJjY6FUKtGpUyecOHGiwuN/+OEHNG/eHEqlEq1bt8aOHTuqfW9CCCGEECIuj6lBBoD33nsP7733XqntL7/8ssN7QRDAMAw4jqvyPTZu3IgpU6Zg2bJl6NSpExYsWIB+/fohOTkZ4eHhpY4/evQoRo0ahXnz5mHQoEFYv349Hn74YZw6dQqtWrWq8v0JIYQQQoi4PCZBXrNmTa3c5/PPP8fYsWMxZswYAMCyZcuwfft2rF69Gm+//Xap4xcuXIj+/fvjf//7H4Ci2Tb27t2LRYsWYdmyZbUSMyGEEEIIcR6PSZCfeeYZl9/DYrHg5MmTmDp1qn0by7Lo06cPkpKSyjwnKSkJU6ZMcdjWr18/bN26tdz7mM1mmM1m+3udzs1WYa/huvLEzVH7ejdqX+9G7evdqH3dhsckyLUhJycHHMchIiLCYXtERAQuXbpU5jkZGRllHp+RkVHufebNm4dZs2bVPGAnYhTKux/kBIrGTSALDauVe5H/cBpNrdyH2lccttzcWrkPta84JEHBtXIfal9x1Fb71tbveW9BCbIIpk6d6tDrfObMGSQmJooYESCPjEL9eZ9DMJtcdg9GoYQ8kpYGF0V0DLWvF1NQ+3o1al/vRu3rnihBLiE0NBQSiaTUvMqZmZmIjIws85zIyMgqHQ8ACoUCCoXC/t7X17cGUTsPffN4N2pf70bt692ofb0bta/78ahp3lxNLpcjISEB+/bts2/jeR779u1D586dyzync+fODscDwN69e8s9nhBCCCGEuDfqQb7DlClT8Mwzz6BDhw7o2LEjFixYAL1eb5/VYvTo0YiOjsa8efMAAK+99hoSExPx2WefYeDAgdiwYQP+/PNPLF++XMwvgxBCCCGEVBMlyHcYOXIksrOzMX36dGRkZKBdu3bYtWuXfSBeamoqWPa/jvcuXbpg/fr1ePfdd/HOO++gSZMm2Lp1K82BTAghhBDioRhBoDlFxHbq1CkkJCTg5MmTuPfee8UOhxBCCCGkTqMaZEIIIYQQQkqgBJkQQgghhJASqAaZVNvt27dx+/ZtscMghBBC6pSoqChERdHUcK5ECbIbiIqKwowZMzzqH7vZbMaoUaPw+++/ix0KIYQQUqckJiZi9+7dDmsqEOeiQXqkWgoLCxEQEIDff//dbRY6Ic6j0+mQmJhI7eulqH29G7WvdytuX41GA39/f7HD8VqUIJNqKU6Q6RvUO1H7ejdqX+9G7evdqH1rBw3SI4QQQgghpARKkAkhhBBCCCmBEmRSLQqFAjNmzKABAl6K2te7Uft6N2pf70btWzuoBpkQQgghhJASqAeZEEIIIYSQEihBJoQQQgghpARKkAkhhBBCCCmBEmQiupSUFDAMg7Vr14odCiGEEEIIJcie5urVq3jppZfQsGFDKJVK+Pv7o2vXrli4cCGMRqPL7nvhwgXMnDkTKSkpLrtHZXzwwQcYMmQIIiIiwDAMZs6cKWo8YmEYplKvAwcO1PheBoMBM2fOrNK1qJ1qzp3b+NKlS3jzzTfRrl07+Pn5ISoqCgMHDsSff/5Z41jqCndu3/T0dDz11FNo1qwZ/Pz8EBgYiI4dO2LdunWgcf2V487te6dvv/0WDMPQqot3kIodAKm87du349FHH4VCocDo0aPRqlUrWCwWHD58GP/73/9w/vx5LF++3CX3vnDhAmbNmoUePXogNjbWJfeojHfffReRkZFo3749du/eLVocYvv6668d3v/f//0f9u7dW2p7ixYtanwvg8GAWbNmAQB69OhRqXOonWrOndt45cqVWLVqFYYPH46XX34ZGo0GX331Fe6//37s2rULffr0qXFM3s6d2zcnJwc3b97EiBEjUL9+fVitVuzduxfPPvsskpOTMXfu3BrH5O3cuX1L0ul0ePPNN+Hj41PjOLwNJcge4vr163j88cfRoEED/Pbbb4iKirLvmzBhAq5cuYLt27eLGOF/BEGAyWSCSqVy+rWvX7+O2NhY5OTkICwszOnX9xRPPfWUw/tjx45h7969pbaLhdqp5ty5jUeNGoWZM2c69Dg999xzaNGiBWbOnEkJciW4c/u2adOmVG/kxIkTMXjwYHzxxReYPXs2JBKJOMF5CHdu35LmzJkDPz8/9OzZE1u3bhU7HLdCJRYe4uOPP4ZOp8OqVasckuNijRs3xmuvvWZ/b7PZMHv2bDRq1AgKhQKxsbF45513YDabHc6LjY3FoEGDcPjwYXTs2BFKpRINGzbE//3f/9mPWbt2LR599FEAQM+ePUs9Giq+xu7du9GhQweoVCp89dVXAIBr167h0UcfRXBwMNRqNe6///4aJfJi9l57Gp7nsWDBArRs2RJKpRIRERF46aWXkJ+f73Dcn3/+iX79+iE0NBQqlQpxcXF47rnnABTVhxcnuLNmzbK3/d1KJqidaodYbZyQkFDqcWxISAi6d++OixcvOveLrMPE/B4uS2xsLAwGAywWS42/NiJ++16+fBnz58/H559/DqmU+kvvRP9HPMTPP/+Mhg0bokuXLpU6/oUXXsC6deswYsQIvP766zh+/DjmzZuHixcvYsuWLQ7HXrlyBSNGjMDzzz+PZ555BqtXr8azzz6LhIQEtGzZEg888ABeffVVfPHFF3jnnXfsj4RKPhpKTk7GqFGj8NJLL2Hs2LFo1qwZMjMz0aVLFxgMBrz66qsICQnBunXrMGTIEGzatAmPPPKI8/4HkVJeeuklrF27FmPGjMGrr76K69evY9GiRTh9+jSOHDkCmUyGrKws9O3bF2FhYXj77bcRGBiIlJQUbN68GQAQFhaGpUuXYvz48XjkkUcwbNgwAEU9TER87tbGGRkZCA0NderXWJeJ3b5GoxF6vR46nQ6///471qxZg86dO7vk6WBdJHb7Tpo0CT179sSAAQPw/fffu/Rr9UgCcXsajUYAIAwdOrRSx585c0YAILzwwgsO29944w0BgPDbb7/ZtzVo0EAAIBw8eNC+LSsrS1AoFMLrr79u3/bDDz8IAIT9+/eXul/xNXbt2uWwfdKkSQIA4dChQ/ZtWq1WiIuLE2JjYwWO4wRBEITr168LAIQ1a9ZU6usTBEHIzs4WAAgzZsyo9DnebMKECULJb+dDhw4JAIRvv/3W4bhdu3Y5bN+yZYsAQPjjjz/KvXZN/l9TOzmPu7ZxsYMHDwoMwwjvvfdeta9Rl7lj+86bN08AYH/17t1bSE1NrdI1SBF3a99ffvlFkEqlwvnz5wVBEIRnnnlG8PHxqcJX5P2oxMIDFBYWAgD8/PwqdfyOHTsAAFOmTHHY/vrrrwNAqRKH+Ph4dO/e3f4+LCwMzZo1w7Vr1yodY1xcHPr161cqjo4dO6Jbt272bb6+vnjxxReRkpKCCxcuVPr6pGp++OEHBAQE4MEHH0ROTo79VfxofP/+/QCAwMBAAMAvv/wCq9UqYsSkqtypjbOysvDEE08gLi4Ob775pkvuUde4Q/uOGjUKe/fuxfr16/HEE08AgEtnS6pLxGxfi8WCyZMnY9y4cYiPj3fKNb0RJcgewN/fHwCg1WordfyNGzfAsiwaN27ssD0yMhKBgYG4ceOGw/b69euXukZQUFCpOqiKxMXFlRlHs2bNSm0vLs24Mw7iPJcvX4ZGo0F4eDjCwsIcXjqdDllZWQCAxMREDB8+HLNmzUJoaCiGDh2KNWvWlKpVJ+7HXdpYr9dj0KBB0Gq1+Omnn2iqKCdxh/Zt0KAB+vTpg1GjRuHbb79Fw4YN0adPH0qSnUDM9p0/fz5ycnLsM1+QslENsgfw9/dHvXr18Pfff1fpPIZhKnVceaORhSrMd0k1ae6F53mEh4fj22+/LXN/8aAOhmGwadMmHDt2DD///DN2796N5557Dp999hmOHTtGyY4bc4c2tlgsGDZsGM6ePYvdu3ejVatW1b4WceQO7XunESNGYMWKFTh48GCpJ4akasRqX41Ggzlz5uDll19GYWGh/Qm1TqeDIAhISUmBWq1GeHh4zb5AL0AJsocYNGgQli9fjqSkJHTu3LnCYxs0aACe53H58mWHgXSZmZkoKChAgwYNqnz/yibbd8aRnJxcavulS5fs+4lrNGrUCL/++iu6du1aqQ8v999/P+6//3588MEHWL9+PZ588kls2LABL7zwQrXanrie2G3M8zxGjx6Nffv24fvvv0diYmJ1vgxSDrHbtyzFPccajcYp16vLxGrf/Px86HQ6fPzxx/j4449L7Y+Li8PQoUNpyjdQiYXHKJ7I+4UXXkBmZmap/VevXsXChQsBAAMGDAAALFiwwOGYzz//HAAwcODAKt+/eBLxgoKCSp8zYMAAnDhxAklJSfZter0ey5cvR2xsLNU+udBjjz0GjuMwe/bsUvtsNpu9HfPz80s9KWjXrh0A2B/hqdVqAFVre+J6YrfxK6+8go0bN2LJkiX2kfPEecRs3+zs7DK3r1q1CgzD4N57763UdUj5xGrf8PBwbNmypdSrZ8+eUCqV2LJlC6ZOnVr9L8yLUA+yh2jUqBHWr1+PkSNHokWLFg4r6R09ehQ//PADnn32WQBA27Zt8cwzz2D58uUoKChAYmIiTpw4gXXr1uHhhx9Gz549q3z/du3aQSKR4KOPPoJGo4FCoUCvXr0qfAzz9ttv47vvvsNDDz2EV199FcHBwVi3bh2uX7+OH3/8ESxb9c9nX3/9NW7cuAGDwQAAOHjwIObMmQMAePrpp6lX+l+JiYl46aWXMG/ePJw5cwZ9+/aFTCbD5cuX8cMPP2DhwoUYMWIE1q1bhyVLluCRRx5Bo0aNoNVqsWLFCvj7+9s/aKlUKsTHx2Pjxo1o2rQpgoOD0apVqwofp1M7uZ6YbbxgwQIsWbIEnTt3hlqtxjfffOOw/5FHHqGVuWpIzPb94IMPcOTIEfTv3x/169dHXl4efvzxR/zxxx945ZVXSo1vIVUnVvuq1Wo8/PDDpbZv3boVJ06cKHNfnSXmFBqk6v755x9h7NixQmxsrCCXywU/Pz+ha9euwpdffimYTCb7cVarVZg1a5YQFxcnyGQyISYmRpg6darDMYJQNEXbwIEDS90nMTFRSExMdNi2YsUKoWHDhoJEInGY8q28awiCIFy9elUYMWKEEBgYKCiVSqFjx47CL7/84nBMVaZ5S0xMdJh2qOSrrCno6oo7pxAqtnz5ciEhIUFQqVSCn5+f0Lp1a+HNN98U0tPTBUEQhFOnTgmjRo0S6tevLygUCiE8PFwYNGiQ8Oeffzpc5+jRo0JCQoIgl8srNZ0QtZPzuVMbP/PMM+W2LwDh+vXrzvzS6wR3at89e/YIgwYNEurVqyfIZDL775k1a9YIPM879euuK9ypfctC07yVxghCFUZiEUIIIYQQ4uWoBpkQQgghhJASKEEmhBBCCCGkBEqQCSGEEEIIKYESZEIIIYQQQkqgBJkQQgghhJASKEH2Mh9//DGaN28OnufFDqXGHn/8cTz22GNih+FWqH29G7Wvd6P29X7Uxl5E7HnmiPNoNBohODhYWL16tX0b/p2X9NNPPy11/Jo1awQAwh9//OH0WPr06SMAECZMmFDm/pUrVwrNmzcXFAqF0LhxY+GLL74odcypU6cElmWFM2fOOD0+T0Tt692ofb0bta/3ozb2LtSD7EVWr14Nm82GUaNGldr3ySef2Fc1c7XNmzc7LC99p6+++govvPACWrZsiS+//BKdO3fGq6++io8++sjhuPbt26NDhw747LPPXB2yR6D29W7Uvt6N2tf7URt7GbEzdOI8bdq0EZ566imHbQCEdu3aCQCEzz77zGGfKz69Go1GITY2Vnj//ffL/PRqMBiEkJCQUivvPfnkk4KPj4+Ql5fnsP3TTz8VfHx8BK1W67QYPRW1r3ej9vVu1L7ej9rYu1APspe4fv06zp49iz59+pTa17VrV/Tq1Qsff/wxjEajS+P4+OOPwfM83njjjTL379+/H7m5uXj55Zcdtk+YMAF6vR7bt2932P7ggw9Cr9dj7969LovZE1D7ejdqX+9G7ev9qI29DyXIXuLo0aMAgHvvvbfM/TNnzkRmZiaWLl1a4XXMZjNycnIq9bpTamoqPvzwQ3z00UdQqVRlXv/06dMAgA4dOjhsT0hIAMuy9v3F4uPjoVKpcOTIkQrj9nbUvt6N2te7Uft6P2pj7yMVOwDiHJcuXQIAxMXFlbm/e/fu6NmzJz755BOMHz++3G+e7777DmPGjKnUPQVBcHj/+uuvo3379nj88cfLPef27duQSCQIDw932C6XyxESEoL09HSH7VKpFDExMbhw4UKlYvJW1L7ejdrXu1H7ej9qY+9DCbKXyM3NhVQqha+vb7nHzJw5E4mJiVi2bBkmT55c5jH9+vWr1qOU/fv348cff8Tx48crPM5oNEIul5e5T6lUlvn4KSgoqMxPy3UJta93o/b1btS+3o/a2PtQglyHPPDAA+jZsyc+/vhjjBs3rsxjoqKiEBUVVaXr2mw2vPrqq3j66adx3333VXisSqWCxWIpc5/JZCrzU7UgCGAYpkox1UXUvt6N2te7Uft6P2pjz0IJspcICQmBzWaDVquFn59fucfNmDEDPXr0wFdffYXAwMBS+41GIzQaTaXuGRkZCQD4v//7PyQnJ+Orr75CSkqKwzFarRYpKSkIDw+HWq1GVFQUOI5DVlaWwyMei8WC3Nxc1KtXr9R98vPz0aRJk0rF5K2ofb0bta93o/b1ftTG3ocG6XmJ5s2bAygaSVuRxMRE9OjRAx999FGZj1I2btxo/wR7t1ex1NRUWK1WdO3aFXFxcfYXUPSNGxcXhz179gAA2rVrBwD4888/He77559/gud5+/5iNpsNaWlpaNGiRZX+f3gbal/vRu3r3ah9vR+1sfehHmQv0blzZwBF/8jbtGlT4bEzZ85Ejx49sHz58lL7qlP/9Pjjj5f6pgKARx55BAMGDMDYsWPRqVMnAECvXr0QHByMpUuXYsCAAfZjly5dCrVajYEDBzpc48KFCzCZTOjSpUuVYvI21L7ejdrXu1H7ej9qYy8k1gTMxPlatWoljBo1ymEbyllqMjEx0b4EpiuWuazo3osXLxYACCNGjBBWrFghjB49WgAgfPDBB6WO/fTTTwW1Wi0UFha6JEZPQu3r3ah9vRu1r/ejNvYulCB7kc8//1zw9fUVDAaDfVt53yD79+8X7ZtTEARh+fLlQrNmzQS5XC40atRImD9/vsDzfKnjOnXqVGplorqK2te7Uft6N2pf70dt7F0oQfYiBQUFQnBwsLBy5UqxQ3GK06dPCwzDCKdPnxY7FLdA7evdqH29G7Wv96M29i6MINwx0zTxaB999BHWrFmDCxcugGU9ewzm448/Dp7n8f3334sditug9vVu1L7ejdrX+1Ebew9KkAkhhBBCCCnBsz/eEEIIIYQQ4mSUIBNCCCGEEFICJciEEEIIIYSUQAkyIYQQQgghJVCCTAghhBBCSAmUIBNCCCGEEFICJciEEEIIIYSUQAkyIYQQQgghJVCCTAghhBBCSAmUIBNCCCGEEFICJciEEEIIIYSUQAkyIYQQQgghJVCCTAghhBBCSAmUILuB27dvY+bMmbh9+7bYoRBCCCGE1HmUILuB27dvY9asWZQgE0IIIYS4AUqQCSGEEEIIKYESZEIIIYQQQkqgBJkQQgghhJASKEEmhBBCCCGkBEqQCSGEEEIIKYESZEIIIYQQQkqgBJkQQgghhJASKEEmhJTJZrOJHQIhhBAiCkqQCSFlslqtYodACCGEiIISZEJImShBJoQQUldRgkwIKRMlyIQQQuoqt0yQb9++jb/++gt6vV7sUAips0wmk9ghEEIIIaJwqwT5p59+QvPmzXHPPffg3nvvxfHjxwEAOTk5aN++PbZu3SpugITUIUajUewQCCGEEFG4TYL8888/Y9iwYQgNDcWMGTMgCIJ9X2hoKKKjo7FmzRoRIySkbqEnOIQQQuoqt0mQ33//fTzwwAM4fPgwJkyYUGp/586dcfr0aREiI6RuKigocPigSgghhNQVbpMg//3333jsscfK3R8REYGsrKxajIiQus1gMKCwsFDsMAghhJBa5zYJslqtrvCR7rVr1xASElKLERFCrl27JnYIhBBCSK1zmwS5Z8+eWLduXZmrd2VkZGDFihXo27evCJERUnddunQJPM+LHQYhhBBSq9wmQf7ggw9w8+ZN3Hffffjqq6/AMAx2796Nd999F61bt4YgCJgxY4bYYRJSp2i1Wly+fFnsMAghhJBa5TYJcrNmzXD48GGEhITgvffegyAI+OSTTzB37ly0bt0ahw4dQmxsrNhhElLn/PHHH7BYLGKHQQghhNQaqdgBlNSyZUv8+uuvyM/Px5UrV8DzPBo2bIiwsDCxQyOkzjIYDEhKSkJiYqLYoRBCCCG1wq0S5GJBQUG47777xA6DEPKv5ORkhIeHo0WLFmKHQgghhLic25RYfPHFF+jXr1+5+x966CEsXbq0FiMihJR0+PBhXLx4UewwCCGEEJdzmwR51apViI+PL3d/fHw8li9fXosREUJKEgQBhw4dwsGDB2G1WsUOhxBCCHEZt0mQr169WuHj2+bNm+Pq1au1GBEhdVeHDh3w9NNP44MPPii179KlS9i0aRNSUlJopT1CCCFeyW1qkOVyOTIyMsrdf/v2bbCs2+TzhHi1jIwM5ObmguO4MvdrtVrs2bMH0dHRuP/++2kRH0IIIV7FbTLO+++/H2vXroVWqy21T6PRYM2aNbj//vtFiIwQUp5bt25h8+bN2L9/P3Q6ndjhEEIIIU7hNj3IM2bMQGJiItq1a4dJkyahZcuWAIC///4bCxYswO3bt7F+/XqRoySE3EkQBFy+fBnXrl1Dq1at0L59e8jlcrHDIoQQQqrNbRLkTp064eeff8ZLL72E1157DQzDACj65RsXF4dt27ahc+fOIkdJCCkPx3H466+/8M8//6Bjx45o2rSp/fuYEEII8SRukyADwIMPPogrV67g9OnT9gF5jRo1wr333ku/aAnxEEajEb///jv++ecfdO/eHYGBgWKHRAghhFSJWyXIAMCyLBISEpCQkCB2KISQGrh9+zZ+/PFHdOzYEa1ataIPuYQQQjyG2yXIFy5cwLVr15Cfn1/mFFKjR48WISpCSHVwHIekpCSkpaWhZ8+eUKlUYodECCGE3JXbJMhXr17FU089hRMnTpQ7tyrDMJQgE+KBbt68ic2bN6NPnz6IiIgQOxxCCCGkQm6TIL/00ks4d+4cFixYgO7duyMoKEjskAghTqTX6/Hzzz+ja9euFS4KRAghhIjNbRLkI0eO4J133sErr7widiiE1GmpqanQ6/UAALPZjLy8PAQHBzvl2jzP49ChQ8jOzkbXrl0hkUiccl1CCCHEmdxmoZDQ0FAEBASIHQYhddaJEycwePBgxMbGoqCgAEDRjBTvvPMOFi9ejJSUFKfd69KlS9i2bRs0Go3TrlmWvLw8PPnkk/D390dgYCCef/75uy5o0qNHDzAM4/AaN26cff/atWtL7S9+ZWVlufTrIYQQUjvcJkEeN24cvvnmm3KXtiWEuM7mzZvRtWtX7Ny5s9QYAEEQ8Pfff+Ojjz7CqVOnnHbP7Oxs/Pjjj7h48WK54w4qo0ePHli7dm2Z+5588kmcP38ee/fuxS+//IKDBw/ixRdfvOs1x44di9u3b9tfH3/8sX3fyJEjHfbdvn0b/fr1Q2JiIsLDw6v9dRBCCHEfblNi0bRpU3Ach7Zt2+K5555DTExMmY9fhw0bJkJ0hHivEydOYOTIkeA4rtxEled5AMCKFSvw1ltvITY21in3ttlsOHToEFJSUtCjRw+nznJx8eJF7Nq1C3/88Qc6dOgAAPjyyy8xYMAAfPrpp6hXr16556rVakRGRpa5T6VSOcSZnZ2N3377DatWrXJa7IQQQsTlNgnyyJEj7X9/4403yjyGYRjqYSbEyebMmQNBECrdi7tjxw68/PLLTo0hLS0NW7ZswYABA5y2sEhSUhICAwPtyTEA9OnTByzL4vjx43jkkUfKPffbb7/FN998g8jISAwePBjvvfce1Gp1mcf+3//9H9RqNUaMGOGUuAkhhIjPbRLk/fv3ix0CIXVOamoqfvnll0onxzzP4+zZs04duFdMp9Nhz549GDFiBFi25tVfGRkZpUoepFIpgoODkZGRUe55TzzxBBo0aIB69erh7NmzeOutt5CcnIzNmzeXefyqVavwxBNP0BzPhBDiRdwmQU5MTBQ7BELcks1mc9mTk127dlW5/lcQBFy8eBFdunRxejz5+fm4desWYmJiyj1m7ty5mDt3rv290WjEsWPHMHHiRPu2CxcuVDuGkjXKrVu3RlRUFHr37o2rV6+iUaNGDscmJSXh4sWL+Prrr6t9P0IIIe7HbRLkYmazGadOnUJWVha6du2K0NBQsUMiRDQ2mw0XLlyA0Wh0yfUvXboEhmGqlCQzDIPCwkIYDAaXxHT16lVERUVBKi37x9O4cePw2GOP2d8/+eSTGD58uMP4hHr16iEyMrLUrBI2mw15eXnl1heXpVOnTgCAK1eulEqQV65ciXbt2iEhIaHS1yOEEOL+3CpB/uKLLzBz5kz71E979+5Fr169kJOTg+bNm+Pjjz/Gc889J3KUhNQejuNgNBohk8kgl8udem29Xo+cnJxq9SCrVCqnlEHcSSKRQC6Xg+O4chPk4OBgh/IOlUqF8PBwNG7c2OG4zp07o6CgACdPnrQnsL/99ht4nrcnvZVx5swZAEBUVJTDdp1Oh++//x7z5s2r9LUIIYR4BreZ5m3NmjWYNGkS+vfvj1WrVjn80g4NDUWvXr2wYcMGESMkRDxyudxpL6vViqNHj+Kbb76p1vRqDMOgWbNmYFnW6a/4+HinLR7SokUL9O/fH2PHjsWJEydw5MgRTJw4EY8//rh9Botbt26hefPmOHHiBICi3uvZs2fj5MmTSElJwbZt2zB69Gg88MADaNOmjcP1N27cCJvNhqeeesop8RJCCHEfbpMgf/bZZxg6dCjWr1+PwYMHl9qfkJCA8+fP10osixcvRmxsLJRKJTp16mT/5VmWshYNUCqVtRInIVWh1+tx4MABrF69GmfOnAHHcfDz80NcXFyle4MZhkHLli2dPkBPIpGgffv2Tp9H+Ntvv0Xz5s3Ru3dvDBgwAN26dcPy5cvt+61WK5KTk+3lInK5HL/++iv69u2L5s2b4/XXX8fw4cPx888/l7r2qlWrMGzYMKfNukEIIcR9uE2JxZUrV/Dqq6+Wuz84OBi5ubkuj2Pjxo2YMmUKli1bhk6dOmHBggXo168fkpOTy/3l7e/vj+TkZPt7hmFcHichlaXT6fDnn3/i3LlzDoP9pFIp2rZtiy5dumDMmDGVmuqNYRh0794dgiA47d95SEgIWrZsCZVKBYvFUuXzDxw4UO6+4OBgrF+/vtz9sbGxDl9zTEwMfv/990rd9+jRo5WOkRBCiGdxmwQ5MDAQOTk55e6/cOFClQbWVNfnn3+OsWPHYsyYMQCAZcuWYfv27Vi9ejXefvvtMs9hGKZWYiOkKu6WGCckJNjn9p0/fz4mT54MQRDKnDGjuIf5kUceQXBwMHQ6HXx9fWuUJMvlcjRv3hyRkZH0oZIQQohbcZsSiwEDBmD58uUoKCgote/8+fNYsWIFhgwZ4tIYLBYLTp48iT59+ti3sSyLPn36ICkpqdzzdDodGjRogJiYGAwdOrTWSkEIKYtOp8OBAwewZs0aeykFUJQYJyQk4LnnnkP37t0dFr7o27cvvvvuOzzwwAOlklWGYRAfH4/x48ejefPmAACDwQCtVlvtJaJjYmLQrVs3REVFUXJMCCHE7bhND/KcOXPQqVMntGrVCoMHDwbDMFi3bh1Wr16NH3/8EVFRUZg+fbpLY8jJyQHHcYiIiHDYHhERgUuXLpV5TrNmzbB69Wq0adMGGo0Gn376Kbp06YLz58/jnnvuKfMcs9kMs9lsf6/T6Zz3RZA6qyo9xmVp06YNli1bhvT0dAwdOhSFhYVQqVR466237DXHRqMRhYWF9r8DgJ+fX6WTXD8/P7Rs2RIBAQHV/TIJIYQQl3ObBLlevXo4efIk3nnnHWzcuBGCIODrr7+Gn58fRo0ahQ8//NAt50Tu3LkzOnfubH/fpUsXtGjRAl999RVmz55d5jnz5s3DrFmzaitE4uVqmhjfqV69elCpVCgsLIRcLi81pRoAhyRZEAT4+/tXmCRLpVI0adIEMTEx1GNMCCHE7blFgmw2m7F7927ExsZi5cqVWLlyJbKzs8HzPMLCwlwy32pZQkNDIZFIkJmZ6bA9MzOz0jXGMpkM7du3x5UrV8o9ZurUqZgyZYr9/ZkzZ2glQVJlzk6MK0ulUoFhGPt85SaTCQDKTZKjo6PRtGlTp8/jTAghhLiKWyTIcrkcjz76KBYuXGifazQsLEyUOBISErBv3z48/PDDAACe57Fv3z6HZWwrwnEczp07hwEDBpR7jEKhgEKhsL/39fWtUdykbtHpdPjjjz/w999/12piXFLxVIYlk2RBEBAQEGBPkuVyOVq3bu2WT34IIYSQirhFgswwDJo0aVLhLBa1ZcqUKXjmmWfQoUMHdOzYEQsWLIBer7fPajF69GhER0fbV896//33cf/996Nx48YoKCjAJ598ghs3buCFF14Q88sgXsgdEuOSlEolGIaxD6w1m83QaDQICAhAYGAg2rdv7/BBkBBCCPEUbpEgA8A777yDKVOm4NFHH0WzZs1Ei2PkyJHIzs7G9OnTkZGRgXbt2mHXrl32gXupqakOJR/5+fkYO3YsMjIyEBQUhISEBBw9ehTx8fFifQnEy+j1epw6dQoXLlxwSIxlMhnatm2Le++9t1YT45IUCgUCAwMdkmStVouePXtSckwIIcRjuU2CfOzYMYSEhKBVq1bo0aMHYmNj7QOCijEMg4ULF7o8lokTJ5ZbUnHnogTz58/H/PnzXR4TqXvy8/Oxc+dOHD16FDzP27e7Q2JcUskk2WAwIC8vDzt27MDgwYMhlbrNjxhCCCGk0tzmt9eiRYvsf9+3b1+Zx9RWgkyImPLz87Fnzx4cOXIENpvNvt3dEuOSQkND0bx5c+zduxcAcOPGDfz0008YMmQIZDKZyNERQgghVeM2CXLJHjJC6qLyEmOpVIrWrVujY8eOpZ6qiI1hGDRq1AhxcXFgWRY+Pj7YunUrrFYr0tLSsHXrVgwdOpRmsCCEEOJR3CZBJqSuysvLw549e3D06FGHxFihUKBbt24IDQ1FSEiI2yWZCoUC7dq1Q2BgoH1bdHQ0hg0bhi1btsBiseDWrVv2JJlqkgmpPWazmb7nCKkBt0uQjx07hv379yMrKwsvv/wymjRpAoPBgEuXLqFp06Y0JRrxGhUlxomJiejTpw9kMhnOnDkjXpDlUCqVuO+++8os9YiKisLw4cOxefNmmM1mpKenY8uWLXj44Yft08MRQlyrttYPIMRbuU2CbLFY8Pjjj+Onn36CIAhgGAaDBw9GkyZNwLIs+vbti8mTJ2PatGlih0pIjVSUGPfo0QO9e/e2fxAsuSS5u5BIJHetg46IiLAnySaTCRkZGdi8eTOGDRtGSTIhhBC35zYfMd977z388ssvWLp0KZKTkyEIgn2fUqnEo48+ip9++knECAmpmby8PHz33XeYOXMmDh48aE+OFQoF+vXrh9mzZ2Po0KFu/5QkPj4efn5+dz0uPDwcI0aMsNdNZ2VlYdOmTTAaja4OkZA6r+SUkISQqnObHuTvvvsO48ePx4svvojc3NxS+1u0aIEffvhBhMgIqZm8vDzs3r0bR48edfilVVaPsbuLjIxEVFRUpY8PDQ3FiBEj8OOPP8JgMCAnJwebNm3CsGHD4OPj48JICanbrFYrPa0hpAbcJkHOyspC69aty90vkUhgMBhqMSJCasabEmMAUKlUiI+Pty8lXVkhISF49NFH8eOPP0Kn0yE3NxebNm3CiBEjKEkmxEVKlm8R70ODMF3PbRLkmJgYXLp0qdz9R44cQePGjWsxIkKqx9sSY6BoOre2bdtWe07joKAge0+yVqtFfn4+fvjhBwwfPrxS5RqEkKqhBNm7mUwmSpBdzG0S5CeeeAKff/45hg8fjqZNmwKAvadqxYoV+P777/Hhhx+KGSIhFfLGxLhYkyZNEBAQUKNrBAYG2pPkwsJCFBQUYNOmTRg+fDj8/f2dFCkhBChKoIj3MplM8Pf3r/ITPVJ5bpMgT5s2DceOHcMDDzyAFi1agGEYTJ48GXl5ebh58yYGDBiAyZMnix0mIaVUlBj37NkTvXr18tjEGAACAgIQGxvrtGs9+uij2LRpEzQaDTQaDX744QeMGDGixgk4IeQ/er0eVquVVrL0UjzPo7CwkH5uupDbJMhyuRy7du3Ct99+i02bNoHjOJjNZrRp0wZz5szB008/TZ+UiFvJzc3F7t27kZSU5JWJcbHq1B1XxM/Pz16TnJ+fD61Way+3oJpkQpxDEARkZGQgJiZG7FCIi+Tm5lKC7EKiJchTpkzB008/jfbt2wMAUlNTERYWhqeeegpPPfWUWGERclflJcZKpRI9evTwmsQYKFpswBXlD76+vvZyi7y8POh0OmzatAlDhgxxuxUDCfFUmZmZlCB7sezsbDRs2FDsMLyWaAnyggUL0KFDB3uCHBcXh6+//hpPPPGEWCERUqGKEuPiHmNv6QENDQ2F1WpFaGioy+7h4+ODESNGYPPmzcjJyYFer8fWrVvx4IMPuuyehNQlBQUFYodAXCg7O1vsELyaaAlyREQErl27Zn9fcmEQQtxJXUqMi23evBknT55Eq1atXHoftVptX3EvOzsbRqMRu3fvRtOmTalnhJAa0mg0YodAXCg7Oxs8z9Oy4i4iWoI8cOBAvP/++9izZw8CAwMBAJ999hk2bNhQ7jkMw9BqeqTW1MXEuCSlUlkr0wipVCoMHz4cW7ZsQWZmJsxmM5YsWYJXX30V9evXd/n9CfFW+fn5NFDPi1mtVuTm5iIsLEzsULySaAnywoULER4ejv379+P8+fNgGAZpaWnIy8sr9xwapEdqQ11PjIvV5teoVCoxbNgwbN68GZmZmTAYDFi4cCEmTpyIuLi4WouDEG/C8zxSUlLQpEkTsUMhLnLr1i1KkF1EtATZx8cHc+fOtb9nWRYLFiygGmQimtzcXOzatQtJSUnged6+va4lxsVqexJ6hUKBwYMHY9u2bcjKyoLRaMSXX36JCRMmoFGjRrUaCyHe4vTp02jYsCEkEonYoRAXSE1NRbt27cQOwyuJVrgybNgwHDp0yP5+//79NDiHiCI3NxfffvstZsyYgSNHjtiTY6VSiYceegizZ8/G4MGD61RyDABSae1/fpbL5ejTp4991UyTyYRFixbhn3/+qfVYCPEGBQUFOHToEI3z8VKZmZnQ6/Vih+GVREuQf/rpJ6Smptrf9+rVC3v37hUrHFIHVZQYDxgwAHPmzKmTiXExsUqaZDIZxo4dixYtWgAAzGYzFi9eXOFS9ISQ8v3zzz+UJHspQRBw4cIFscPwSqIlyNHR0Th9+rT9vSAIVGNMakVOTs5dE+NBgwZBrVaLHKm4xBwZLZfLMW7cOLRs2RJA0WCUpUuX4vz586LFRIgnu3TpEn777TeH8jHiHf7++28YDAaxw/A6otUgP/744/j000/x/fff22exePvttzFv3rxyz2EYBn/99VctRUi8TU5Ojn3w3Z01xr169UKvXr3qfFJcktgfWGUyGV588UWsWrUKZ8+ehdVqxVdffYWxY8eidevWosZGiDvr0KEDbt68CYVCgWnTptm3X716FWazGb179671MQbEdaxWKw4dOoS+ffuK/nPbm1QpQY6Li6vy/3yGYXD16tVS2+fNm4fGjRtj//79yMrKAsMw8PHxQUhISJWuT8jdUGJcPWLUIN+puNxi9erVOH36NGw2G5YvX47nn3+eBqYQUo6MjAxkZmbaO59Kunnzpn1BnuDg4NoPjrjEjRs3cPHiRcTHx4sditeo0m/AxMTEUgnyn3/+ifPnzyM+Ph7NmjUDACQnJ+PChQto1aoVEhISyryWRCLBiy++iBdffBFA0ePcd999l2axIE5DiXHNuMuod4lEgueeew7r1q3Dn3/+CY7jsHLlSowZM6bcny+EkPJpNBps3boVXbt2RdOmTanX0UskJSUhIiKCOhqdpEoJ8tq1ax3eb926FVu3bsXevXvRu3dvh3179+7FY489htmzZ1fq2tevX6e5/IhT5OTkYNeuXTh27JhDYqxSqezTtVFifHfukiADRbE8++yzYFkWJ06cAM/zWL16NTiOQ8eOHcUOjxCPY7PZ8Pvvv+PatWvo3Llzmb3NxD116NAB6enpkMlkDiU0HMdhz549ePjhh6FSqUSM0DvU6Bnq9OnT8corr5RKjgHgwQcfxMSJE/Huu+9i6NChd71WgwYNahIKIZQYO5k7JchA0VOm0aNHQyqV4ujRoxAEAevWrQPP87j//vvFDo8Qj5SWloabN2+iadOmuPfee+Hn5yd2SOQuMjIycPv27TI/1Gi1WuzcuRMDBgyAUqms/eC8SI0S5MuXL1fYlR8SElJm/TFQ9MuOZVkYDAbI5XKwLHvXxzwMw8Bms9UkZOKFKkqMe/XqhZ49e1JiXA3u+NiVZVk88cQTkEgk9mmrvv76a9hsNnTr1k3s8AjxSIIgIDk5Gf/88w8aNWqEli1bIjw83C1/BpC7y8nJwbZt29CvXz8EBASIHY7HqlGC3KhRI6xZswbPP/88fH19HfZptVqsXr0aDRs2LPPc6dOng2EY+0Cg4veEVFZOTg527tyJ48ePU2Jch7Asi8cffxwSiQQHDhyAIAhYv349OI5DYmKi2OER4rEEQcCVK1dw5coVhISEoGXLlmjSpInbPU0id1dQUICtW7eiR48e9IS+mmqUIM+ZMwcjRoxA8+bN8eyzz9pXv7p8+TLWrVuHzMxM/PDDD2WeO3PmzArfE1IeSoxrh5jzIN8NwzB49NFHIZFIsG/fPgDAxo0bwXEcevXqJXJ0hIgnNTXVvrKa2WxGXl5etWaryM3NxcGDB3H69Gl06tSpWrNYEXGZzWbs3r0bLVu2RKdOndxiZiJPUqP/Ww8//DB27NiBt956C3PnznXY165dO6xatQr9+vWrUYCEFKsoMe7duzd69OhBibETufsvQ4ZhMGzYMEilUuzevRsAsGnTJnAcR8vWkzrnxIkTmD17NrZv325fMc9oNOKdd95B69atMXDgQMTGxlb5ulqtFr/++itiYmLQpUsXemTvgc6fP4/09HT06NGDJkOoghp/nOjbty/69u2LjIwM3LhxA0DRgLvIyMhKX8NsNuObb77Bnj17cPXqVWi1Wvj5+aFx48bo378/nnjiCcjl8pqGSjxUdnY2du3aRYkxKYVhGAwZMgQSiQQ7duwAAGzZsgU2mw0PPfSQyNERUjs2b96MkSNHQhCEUstJC4KAv//+G3///TfGjh2Le++9t1r3SEtLww8//IDmzZvj3nvvrZWfuXl5eXjllVfw888/g2VZDB8+HAsXLixV0lnS8uXLsX79epw6dQparRb5+fmlBrNV57qeLj8/H1u3bkWbNm2QkJBAvcmVwAgiL85+7tw5DB06FDdu3IAgCAgICICvry90Oh00Gg0YhkHDhg2xbds2tGjRQsxQXebUqVNISEjAyZMnq/3DyxtRYlz04fHMmTPw8fGpEx8SLRYL9Ho92rVrV+WVvnbu3Imff/7Z/n7AgAEYOHCg2/eEE1ITJ06cQNeuXcFxXKnk+E4sy+Ktt96qVk9ySRKJBC1atEDr1q1rPOtFjx498Oyzz+LZZ58tte+hhx7C7du38dVXX8FqtWLMmDG47777sH79+nKvt2DBAphMJgDA1KlTy0yQq3Ndd3LPPffg1q1bCAwMxEcffVTl8/38/NClSxfUr1+ffj5WoMZFhqmpqRg3bhyaNWuG4OBgHDx4EEDR4/BXX30Vp0+fLvdcnU6HIUOGIDMzEx988AHS0tKQn5/v8OecOXOQnp6OwYMH2+uqiHfLzs7G119/jVmzZjks8qFSqTBo0CDMmTMHAwYM8PrkmFTNQw89hEceecT+fseOHdi2bdtdkwZCPNmcOXPK7DkuT/GTlprgOA5///03NmzYgD179iA9Pd3p32cXL17Erl27sHLlSnTq1AndunXDl19+iQ0bNiA9Pb3c8yZNmoS333673Kkfq3tdb6LVarF7927s2LEDubm5YofjtmrUx37hwgV0794dPM+jU6dOuHLlin0attDQUBw+fBh6vR6rVq0q8/w1a9YgNTUV+/btQ48ePUrtj46OxtSpU9GpUyc8+OCDWLt2LSZMmFCTkIkby8rKwq5du+wLQRQr7jHu2bMnTX5OKvTggw9CIpFg06ZNAIDdu3fDZrNh2LBh1FNCvE5qaip++eWXSienPM/j7Nmz1R64dydBEJCSkoKUlBTcc889Tv0ZnZSUhMDAQHTo0MG+rU+fPmBZFsePH3f4MOwO1/VEt27dwo8//ohGjRqhQ4cOVF9+hxolyG+++SYCAwNx7NgxMAyD8PBwh/0DBw7Exo0byz1/+/bt6Nu3b5nJcUm9evXCgw8+iJ9//pkSZC9EiTFxpl69ekEikdh/9uzbtw8cx+HRRx+lJJnUOpvNBo7jXHLtXbt2VbnnVhAEnDp1Ch07drSvR3DnqzrfJ2lpadi2bRuGDBnilJ/XGRkZpXIKqVSK4OBgZGRkuN11PdnVq1dx7do1WizmDjVKkA8ePIjp06cjLCyszG76+vXr49atW+Wef+7cObz66quVulevXr2wcOHCasdK3E9FiXGfPn3Qo0cPSoxJtSQmJkIqlWL9+vUQBAEHDhwAx3EYOXKkW09fR7yLzWbDhQsXYDQaXXL9S5cugWVZh5+fd8MwDDQaDQoKCu56XHGyfOffy3rPMAz0ej127dqFwYMHlzsIbO7cuQ6zXhmNRhw7dgwTJ060b7tw4UKlvx7iHMWLxVy5cgUtW7ZE+/btqzwOxNvUKEHmeb7COtDs7OwK/wfn5eVVeraLiIgI5OXlVTlG4n7KS4zVarV98B0lxqSmunbtColEgq+//hqCIODQoUOw2Wx48sknKUkmtYLjOBiNRshkMpcMsg0KCqpScgwUJUKViUUQhGr1fKelpeHw4cNQq9WlXiqVCk2aNMHy5cuhVCqhUqkwdepUDB48GMOHD4dKpYJEIkG9evUQGRmJrKwsh2vbbLYq5Q1lcdV1a4uz5rkuD8dxOHv2LK5cuYJu3brVeECnJ6tRgnzvvfdi+/btePnll0vts9ls2LBhQ7mF8kBR48pkskrdSyqVwmKxVDtWIj5KjEltu//++yGRSLB27VoIgoCkpCRwHIfRo0dTkkxqjVwud3qCbLPZqlUzyjAM2rRpA39/fwiCAJ7n7YP8iv/O87zD9sqyWq0wm80AinqGKzMALDs7G0eOHLEfq1AooFKpoNPpUFBQgKlTp6J58+ZQq9W4ePEieJ6HVCrF2bNnHRJvtVoNuVx+1/KQzp07o6CgACdPnkRCQgIA4LfffrOPpXJXrprnujwGgwF79uxB27Zt0bFjxzpZnlajBHnq1KkYNGgQxo8fj8cffxwAkJmZiV9//RVz587FxYsXsWjRogqvkZKSglOnTt31XtevX69JqERElBgTMd13332QSCRYvXo1eJ63/zt85plnaAld4nGKl4M+dOgQCgsL0aBBA6SmplYqkWVZFvHx8VXqKS0reS7rT0EQoFaroVAowDAMjEYjDAZDlXu4zWazPcmOiYnBypUr8cADD4Dneezfvx+NGjXCzp07ARTNhPXzzz+jV69eiIiIgEQiAcdx4HkeOTk5AIAPP/wQAQEBiImJQUREBNRqNbp06YKnn34aH374ISQSCSZNmoSRI0eiXr16VYq1ttTGPNfl+euvvyAIQoWdndVVnfmoTSYTXn/9dWzYsAFmsxn9+vXDkiVLEBERAaBoBcgnn3wSZ8+eRW5uLsLDwzF06FDMnTsX/v7+VYqvxvMgf/3113jttdeg0WggCAIYhoEgCPD398fSpUsxatSocs+tymCA4mu7arCDmDxtHuTimUeKF3Tp3bs36tevX+q4rKws7Ny5EydOnHD4pqbEuPJoHmTnOXPmDFatWmX/GdK+fXs899xzlCQTl3H2929GRgYOHjzoMB1ZVlYWtmzZUqneXpZlMXnyZDRo0KDGsZQkl8vRoUMHKBQKh+9fQRBgNpthMBhgMBjsSXPJv7/11lvo3Lkz7r33Xof9BoMBWq0Whw4dwo0bN+xrInTr1s3+5LmwsBDffvsthgwZgujoaADAH3/8gT///LNUjD179kTz5s0BFCVZd163e/fu8PPzK1USUtbfyzrGVQtviDHPdVn69+9f5u/5u3H2PNfjx4/H9u3bsXbtWgQEBGDixIlgWRZHjhwBULQgyoYNG3DfffchLCwMV65cwYQJE3DvvfdWeZ5rpywUotfrsXfvXly+fBk8z6NRo0bo16/fXUdCrlu3rsr3euaZZ6obptvylAT5zkc8xYNDGIbBoEGD8N577+G+++6jxNiJKEF2rnPnzmHFihX26SjbtGmD559/vtKlXoRUhbO+f7VaLY4ePYqLFy86bI+JicEDDzyA06dPY/LkyeXWDReXE40ZMwZt27atdhxlUalUSEhIgI+Pj9O/f61Wqz1pvjN5rijpLv57bZLL5VVKqEv+vbjXvSxDhgzBjh07KtU5yLIsWrduXWbZa035+PhgxIgRVW7X8hLkixcvIj4+Hn/88Yd9yr1du3ZhwIABuHnzZpm9+RqNBmFhYVi/fj1GjBgBoGigaosWLZCUlFRuL/cXX3yBTz75BGlpaVWKvdofeQwGA2JiYvD222/jf//7Hx5++OEqX8Mbk11vVdYjnuJHZ4IgYMeOHdi5cyfGjRtnf+RWzMfHB71790ZiYiIlxkRUrVu3xrhx4+w9FmfPnsXy5cvx4osvUpJM3I7FYsHJkydx8uRJ+4c6oGhwXvfu3REXFweGYdC3b1989913WLJkCQ4cOODw85dhGMTHx6Nfv35O7TmWSqWoX78+4uLiXNZ7KpPJIJPJqvxoHCj6/WQymaqUVJd8VbU0xGKxwGKxQKPRVDlWlmXLTKQNBoOo81yXpNfrcfjwYfTq1csp9cjVmY/65MmTsFqt6NOnj31b8+bNUb9+/XIT5PT0dGzevBmJiYlVjrHa/6qLHyn4+PhU9xJua/Hixfjkk0+QkZGBtm3b4ssvv0THjh3LPf6HH37Ae++9h5SUFDRp0gQfffQRBgwYUIsRu9aJEycwcuTICh/xFH+6Xbx4MYYNG4bw8HBKjIlbio+Px8svv4ylS5fCYrHg/PnzWLp0KcaNG1cneumJ+xMEARcuXMDRo0cdVpBVKpW4//770bp161KlQW3atMGyZcuQnp6OoUOHorCwECqVCm+99ZZTkyVfX1/Ur18f9erVc+vypJJJZ1UJggCLxXLXJNpoNEKv10Ov19uTcaPRWOUJBXieh06ng06nc9h+6dKlas1zffHiRXTp0qVK51XGlStXUL9+fTRp0qTG16rOfNQZGRmQy+Wllg6PiIgodc6oUaPw008/wWg0YvDgwVi5cmWVY6zRx77hw4dj06ZNGD9+vNeMcNy4cSOmTJmCZcuWoVOnTliwYAH69euH5OTkUo0JAEePHsWoUaMwb948DBo0COvXr8fDDz+MU6dOoVWrViJ8Bc5X1aVMz5w5g0WLFlFiTNxWs2bNMGHCBCxZsgRmsxmXLl3CkiVLMH78+Do/9ycRV1paGg4ePIjs7Gz7NpZl0bZtW3Tq1AlKpbLC8+vVqweVSoXCwkLI5XKnJcdhYWFo0KABgoODveb3fXkYhoFCoYBCoUBQUFC5x5U3zzXHcfYe5eKX2Wwuta287cUsFot9XFdVYi8sLITBYKj6F14JSUlJFT41cJd5rufPn48ZM2bgn3/+wdSpUzFlyhQsWbKkSteoUYL8+OOP4+WXX0bPnj0xduxYxMbGlpkQuXNd7Z0+//xzjB07FmPGjAEALFu2DNu3b8fq1avx9ttvlzp+4cKF6N+/P/73v/8BAGbPno29e/di0aJFWLZsWa3G7gpVXcpUEARcu3YN8fHxlBwTt9akSRNMnDgRixcvhslkwj///IPFixfj5ZdfvmsSQoizFRQU4NChQ7h69arD9uIBZBUlaq4il8txzz33IDo6ulo9sd7OFfNcF/dem81mbN261T74rCrnq1Qql0xjWXKyhPIS5HHjxuGxxx6zv3/yyScxfPhwDBs2zL6tuvNcR0ZGwmKxoKCgwKEXOTMzs9Q5kZGRiIyMRPPmzREcHIzu3bvjvffeQ1RUVKW/3holyCWXiD506FCp/Z4280RxvdfUqVPt21iWRZ8+fZCUlFTmOUlJSZgyZYrDtn79+mHr1q3l3qfkNDYA7I9VbDYbrFZrDb4C59u9e3e1HvHs2bOHasydwGq1wmazQa/Xu92/DVewWCz274PamKe4fv36GD9+PBYvXgyj0Yjk5GQsWLAAL7/8cq19wHPlUsTuSCKRuKxm1d1U5vvXbDbj1KlTOHfunEPda2hoKLp06WIfrFSy1OJuSo4Pqc7PDX9/f8TExCA0NBQsy0IQhErdv7a/f8VW3L4AnNqrzrIsVCoVevbsiU8++aTK5zdq1MglP1OKF3GpqH39/PwcJmhQKpUICQlxqH8XBAEdOnRAQUEBjh8/bu9E3bt3L3ieL7dTNSEhATKZDPv27cPw4cMBAMnJyUhNTUXnzp3Ljbv4+6Fk3lUZNZrForKzUHhKopSeno7o6GgcPXrU4X/2m2++id9//x3Hjx8vdY5cLse6descprNbsmQJZs2ahczMzDLvM3PmTMyaNcv5XwAhhBBCiIcTBAG3bt1C79698X//93/2cWDjx4/Hjh07sHbtWvj7++OVV14BUFTuCgA7duxAZmYm7rvvPvj6+uL8+fP43//+h+DgYBw+fLhKMdToY7ynJL7uprgeptiZM2eQmJiI48ePo3379iJGVtratWvx4osvVvm8FStW0L8PJ6Eextpx8+ZNLFq0yP5EJyYmBhMmTKhw0vqaMpvN+OuvvyCVSuvEAMHiHsa2bdvWmVrvO79/iwfg/fLLLw6PmGUyGXr06IGePXvW+P9Ns2bNkJ6ejoCAAId60LJIJBI0a9YMzZs3d8q/9br0hABw/c/nkydPonfv3pW6B8MweOONN5w+D7JEIkHv3r0RGRlZ5fbt06cPRo8ejdGjR5fal5eXh9deew3bt28Hy7J45JFHMH/+fPu/Q6vViuTkZId66vnz59sXFSm5UEgxlUqFFStWYPLkyTCbzYiJicGwYcPKLJG9G7f7V3zhwgVcu3YN+fn5ZT7aL+t/srOEhoZC8v/t3XlYVPXbP/D3YdiRRXZMdpVUXFEUN8QNBRIFLDETM5OyNMx+Vn61NCu+raCWleajZlqmgqi55ooLJuKaikugGSKiLALKNuf3hw/zMILKMnAOw/t1XXNdzmfOcg+3DPec81kUiipXfqvr31LB3t6+VtsDUHX+r1Dxn0FXV1d2U035+/vXaZDAsGHDZPdemir+HBuHq6srZs6ciUWLFiE/Px8ZGRn49ttv8dZbbz11Tve6qlg2t7nMc62np4fCwkLV9F3NQeX3eePGDcTFxeHixYsAoJoFwtvbGyNHjtTYgLqK2/2CIDy2mNHR0UHHjh3RvXv3ZvNlpSE09P9jX19f/Pbbb6ppVp80z/WUKVPQpk0bjZ5fR0cH/v7+cHR0rNP+Bw4ceOxrdnZ2+PXXXx/7uouLS5Xaw9DQEN9++y2+/fbbavfx8/NTXU2ur1oVyJMmTYIgCFi6dCkUCgUmTZr01H0EQcDy5cufut3Vq1cxfvz4KotLPHqshiyQ9fX14eXlhT179qjmdVYqldizZ4/aCMzKfHx8sGfPHkRFRanadu/e/cT+ME2Jk5MTgoKCajxRuUKhQGBgYJ1W3CGSWqtWrRAVFYWFCxciLy8PGRkZiImJwVtvvQVzc3Opw6MmKi8vD1u3bsWRI0fU/r65u7sjNDS0QVY+exJLS0v4+fnBysqqUc9LdRMSEoIjR45gwYIFVQbNC4KATp06ISAgQOP/jwRBwMCBA+tcHDd1tSqQ9+7dq1o9TaFQYO/evU/tmF7TjuuRkZE4e/YsYmNjJRuxCwBvv/02IiIi0KNHD3h7eyM2NhaFhYWqWS0mTJiAZ555BtHR0QCAt956C76+vvjqq68QGBiIX3/9FcnJyVi6dKkk8TeEuXPnYvv27U+9kiwIAgRBwJw5cxoxOiLNsre3x4wZMxAbG4vc3FxkZmYiJiYGUVFRVebfJHqSkpIS7N27Fzt37lQbIGRlZYXRo0ejW7dujT5lmouLCwYNGtSsukFog549e2Lz5s24fv06unTpgtzcXBgZGeGDDz7Q+KIgwMO/5wMGDND4FemmpFa/Ienp6U98Xh+HDx/G7NmzVR2upfLCCy/g9u3b+OCDD5CZmYmuXbtix44dsLOzA/Bw2rPKozf79OmDtWvXYs6cOZg9ezbatm2LTZs2ac0cyMDDX8x169Y98RaPQqGAIAj47bff0LNnTwmiJNIcW1tbvP3224iNjcXdu3eRlZWlupLcEH+MSLuIoogTJ05g06ZNuHv3rqrd0NAQw4cPh5+fnyRdTNq2bQtfX99mMcOEtnJycoKJiQlyc3NhYGDQIJ9HxsbG8PPzwzPPPKPxYzclsvkKaW1tLZtbmG+++eZju1Ts37+/StuYMWMwZsyYBo5KWtXd4qm4myAIAgIDAzFnzhwWx6Q1rK2tMWPGDCxcuBDZ2dm4ffu2qki2traWOjySqbS0NGzYsAFpaWmqNkEQ0K9fPwQFBTVYf/an8fDwwIABA7R+kQ+qO0EQ0L59e/Ts2ZP90iGjAvm1117Dzz//jDfeeEPWy1c2Z5Vv8ezduxf5+fkwMzPDoEGD2OeYtJKVlZWqSM7KysKdO3dURXJ1K2tS83Xnzh0kJCQgOTlZrb1Dhw4ICQlRzWcsBTc3NxbH9EQuLi7o2bOnZN1b5ajeBfL27dvx9ddfIyUlBXl5edX2Ua3J4K527dqhvLwcXbp0waRJk+Do6FhtoVx5NRaShpOTEyZOnCh1GESNomXLlqo+ybdu3UJOTo6qT3JF1ytqvh48eICdO3diz549qkUjAMDBwQEhISHo2LGjhNE9XLjB19eXxTFVy8nJCV5eXrCxsZE6FNmpV4G8ceNGPP/88+jYsSPGjh2L7777DuPGjYMoikhISEDbtm1Vs0E8zQsvvKD69zvvvFPtNk1pVT4i0h7m5uaYMWMGFi1ahIyMDOTl5amuJNdm6VLSHkqlEkePHsWWLVuQn5+vam/RogWCgoLQt29fye6G2tvbo6ysDAYGBujZs2ezmVKPaq5Vq1bo2bMnv+Q/Qb0K5OjoaHh7e+PQoUPIycnBd999h0mTJmHQoEFIT09H79694erqWqNj7du3rz6hEBE1KDMzM0RFRWHRokW4ceMG8vPzERMTg+nTp6N169ZSh0eN6OLFi9iwYQMyMjJUbbq6uhg4cCCGDx8OY2NjCaMDkpOTceHCBSQnJ8PNzU3SWEheLCws0Lt3bzg6OvKuwlPUq0A+f/48oqOj1VZWqVj33cXFBVOnTsVnn31Wo7mLfX196xMKEVGDa9GiBd566y0sXrwY169fR0FBARYuXIhp06axH34zkJmZibi4OJw7d06tvVu3bhg1apTsblM7OTlxxgoC8HCmKS8vL3Tq1InjvGqoXgWysbGxavUnCwsLGBgY4ObNm6rX7ezs1Eby1tT58+dx7do1AICzszM6dOhQnzCJiDTGxMQE06dPxzfffIP09HQUFhaqiuTGXvCBGkdBQQG2bduGgwcPQqlUqtqdnJwQFhYm27li2f2HgIfTVg4cOJDzuNdSvb5aenh44Pz586rnXbt2xerVq1FWVoYHDx5g7dq1tbqqkpCQAHd3d3Tq1AlBQUEICgpCp06d0KZNG2zevLk+oRIRaYyxsTGmTZsGd3d3AMD9+/exaNEi/P333xJHRppUVlaGPXv24MMPP8T+/ftVxbGFhQUiIiIwa9Ys2RbHAGR3RZsaX5cuXTBy5EgWx3VQrwI5JCQEmzdvVq0Q9J///Af79++HhYUFbGxskJiYiPfee69Gx9q2bRtCQ0MBAJ9++ini4+MRHx+PTz/9FKIoIiQkBDt27KhPuEREGmNkZIQ33ngDbdu2BfBwNoPFixfjypUrEkdG9SWKIk6dOoUFCxZg48aNuH//PgBAX18fQUFBmDdvHnr16iXr7gs6OjqyWVuAGp+uri6GDh0q+/+nciaIT1o7+DEePHiAhIQEpKWlwcrKCkFBQapbOYmJiYiLi4NCoUBgYCD8/PxqdEwfHx8UFxcjMTERJiYmaq8VFhaiX79+MDQ0xNGjR2sbruylpKTAy8sLJ06cQPfu3aUOh4hqoaSkBN9//z0uXrwI4GER9frrr8PDw+Op+xYXF+PUqVMwMTFRdVfTZiUlJSgsLETXrl1luxDBP//8gw0bNuDy5cuqNkEQ0KtXryZ1Je7ff/9t9iuhaavWrVvj33//hYWFBT777LMqrxsYGGDEiBGcq72eat0HOSsrC3369EFaWhpEUYQgCDAyMsKmTZswZMgQ9O/fH/379691IGfOnMGnn35apTgGHvb5mzhxImbPnl3r4xIRNSR9fX289tprWLp0Kc6fP4+SkhIsWbIEkZGRsh4/UVZWphpcTUBubi42b96MY8eOqc3n37ZtW4SGhja5QZiGhoZSh0AS0NPTQ2BgIFf71IBaX3dfsGAB0tPTMWPGDGzduhUxMTEwMjJCZGRkvQIxNDRUW7P+UXfv3uUvPBHJkr6+PiIjI9GpUycAD2fz+f7776vMdkDyU1JSgm3btmH+/PlISkpSFcc2NjaYMmUKoqKimlxxDIBffpqpQYMGsTjWkFr/Bu3atQsTJkzAl19+qWqzs7PDuHHjkJqaWqPbitUZNGgQFi5ciOHDh8PHx0fttWPHjmHRokUYNmxYnY5NRNTQ9PT08Oqrr2L58uU4ffo0ysrK8MMPP2Dy5Mno0qWL1OHRI5RKJY4fP46EhATk5uaq2o2MjBAQEABfX98mXWSy32nz07FjRzg7O0sdhtao9W//9evX8e6776q19evXD6Io4tatW3UukD///HP4+PigX79+8Pb2Vh0nNTUVf/75J2xtbavta0NEJBe6urqYPHkyVqxYgZSUFJSXl2PZsmV45ZVX0K1bN6nDU9OcFwm4cuUKNm7cqJpOFHhYUA4YMAABAQFo0aKFhNFpBgvk5qVFixbw9vaWOgytUusCubi4uEpXh4rnldehry1XV1ecOXMG0dHR2L59O9atWwfg4TzIb731Ft577z12OCci2VMoFHj55ZehUChw/PhxKJVKLF++HBMnTkSPHj2kDk+lORbI2dnZiI+Px8mTJ9XaPT09ERISAnt7e4ki0zwuBtG89O3bl0uKa1id7h+lp6cjJSVF9TwvLw8AcPny5WpH+NZ0ZgZbW1vExMQgJiamLmEREcmCQqFAREQEFAoFkpKSoFQqsWLFCpSXl6NXr15Sh9fs3L9/H9u3b8f+/fvVLuS0atUKoaGhaN++vYTRNYzmMCsKPeTi4sKuFQ2gTgXy3LlzMXfu3CrtU6dOVXteMctFeXl53aIjImqidHR0MH78eCgUChw+fBiiKOKnn35CeXk5+vTpI3V4qMMMn01OeXk5Dh8+jK1bt6KgoEDVbmpqiueeew59+vTR2q4I2vq+CLC3t4dSqYSenh4UCkWVcVukGbUukFesWKGRE0+aNAmCIGDp0qVQKBSYNGnSU/cRBAHLly/XyPmJiBqajo4OwsPDoauriwMHDkAURfz8888oLy+v03SYVHN//fUX4uLicPPmTVWbrq4uBg8ejGHDhsHIyEjC6IjqLjk5GTdv3sSWLVvw7LPPwtTUVOqQtFKtC+SIiAiNnHjv3r3Q0dGBUqmEQqHA3r17n9onrjn2mSOipk1HRwfPP/+86nMOAH755ReUlZVJeiVZW68gZ2RkIC4uDufPn1dr79GjB4KDg2FlZSVRZESaV9eJEejpJJvDJj09/YnPiYi0hSAICA0NhUKhwO7duwEA69evR0lJiWQrs2lbgXzv3j1s3boVhw4dUntvLi4uCAsLg5ubm4TREWmevr4+v/A1INlM8nj9+nXY2Ng89rbX/fv3cfv27SY5YTsRkSAIGDVqFHR1dbF9+3YAQEJCArp3747evXs3ejxKpbLRz9kQSktLsX//fmzfvh0PHjxQtVtaWiI4OBg9evTg3UfSSpaWlvy/3YBkUyC7urpi9erVGDduXLWvb968GePGjeOAPyJqsgRBwHPPPQeFQoGtW7cCAFJSUqBQKNC3b99GjaWpf5aKooiTJ08iPj4ed+7cUbUbGBjA398fgwYN4kwOpNVatmwpdQhaTTYF8tNu95WWlnJULhFphYCAACgUCiQkJAAAjh8/DkEQ4OPj02hXhOozb73U0tPTsXHjRly9elXVJggC+vTpg6CgIJibm0sYHVHjsLS0lDoErSZpgZyfn6+2xOedO3dw/fr1Ktvl5ubi119/hYODQyNGR0TUcPz9/QFAVST/+eefKC8vR79+/RqlSC4tLW3wc2haTk4OEhIS8Oeff6q1e3h4IDQ0FK1bt5YoMqLGJ9X4heZC0gI5JiYGH330EYCH3/6joqIQFRVV7baiKOLjjz9uxOiIiBrWwIEDcfPmTVXBd+LECZSXl8PX17fBi+Ti4uIGPb4mPXjwALt378Yff/yhVtjb2dkhJCQEnp6e7ItJzQ7vlDQsSQvkYcOGoUWLFhBFEbNmzUJ4eHiVVfcEQYCJiQm8vLxktUwrEZEmtG/fHkZGRjhw4AAA4NSpU1AqlfDz82vQoq+wsBBKpVLWXdeUSiWOHTuGzZs3q1ZsBQATExMEBARgwIABXFKZmi1jY2OpQ9BqkhbIPj4+qhVgCgsLERoaCk9PTylDIiJqdB07doS+vr5qCrgzZ85AqVRi8ODBDVYkl5eXIy8vT7YDfS5duoSNGzfin3/+UbXp6Ohg4MCBGDFiBExMTCSMjkhaBgYGsv5yqw1kMUivqKgIixYtgrGxMQtkImqWOnbsCB0dHezatQuiKOLcuXMoLy/H0KFDG+wPYWZmpuwK5KysLMTHx+P06dNq7Z07d0ZISAhsbW0lioxIPjhDS8OTRYFsbGwMXV1dXhEgomatffv20NHRwY4dOyCKIi5cuAClUgl/f/8GKZIzMzPh4eEhiytRRUVF2LZtGw4cOKA2BV3r1q0RGhrKFcOIKuFS6Q1PFgUyAISGhmLDhg14/fXXOdiCiJotDw8PKBQKbNu2DUqlEqmpqVAqlRg+fLjG+9uWlJQgKysL9vb2Gj1ubZSXl+PgwYPYtm0bCgsLVe1mZmYIDg5Gr169ZFHAE8kJ+943PNkUyGPHjsXUqVPh5+eHV199FS4uLtV+Q3p0EB8RkbZp06YNgoKC8Pvvv6O8vByXL1+GUqlUzZ+sSdeuXYOdnV2jX5io6EYSFxeHW7duqdr19PQwZMgQDB06FIaGho0aExFRBdkUyAMHDlT9OzExscrroihCEIQmv/oTEVFNuLm5ISgoCFu3bkV5eTmuXr2KrVu3IjAwELq6mvvozs3Nxe3btxu1b29GRgY2b96M1NRUtXZvb2+MHDmSCyAQkeRkUyCvWLFC6hCIiGTF1dUVwcHB2Lx5M8rKypCWloYtW7bgueee02iRfP78eZibm8PAwEBjx6xOUVERjhw5gitXrqitnuru7o7Q0FC4uLg06PmJiGpKNgVyRESE1CEQEcmOk5OTqkguLS3FtWvXkJCQgJEjR0JPT08j5yguLkZKSgp69OihsWNWVlZWhpSUFBw/flxtoQ8rKyuMHj0a3bp149gTIpIV2RTIlRUUFKjmvnR0dESLFi0kjoiISDqOjo4YNWoUNm3ahNLSUvzzzz/YtGkTgoODNTbdU35+Po4dO4bu3btrbAECURSRmpqKw4cP4969e6p2Q0NDDB8+HH5+fg1SkBMR1ZeshgYfP34cfn5+aNmyJTw9PeHp6YmWLVti0KBBSE5Oljo8IiLJPPPMMwgJCVEVxP/++y/i4+PrtGR0SEgIJk2ahC+++EKtvbCwEElJScjJyal3vBkZGVi3bh127NihKo4FQUC7du0we/ZsDBs2jMUxEcmWbK4gHzt2DAMHDoS+vj4mT56M9u3bAwAuXLiAX375BQMGDMD+/fvh7e0tcaRERNJwcHBAaGgo4uLiUFxcjJs3byIuLg6jR4+u1YwP2dnZuHPnDsrKyqq8VlpaiuTkZHTr1g3W1ta1jjE/Px+HDh3CpUuX1NqdnZ3h4+MDAwMDmJqa1vq4RESNSTYF8n/+8x8888wzOHToUJU5OefNm4e+ffviP//5j2opViKi5sjOzk5VJD948AC3bt1CXFwcQkJCNDYtmlKpxMmTJ9G1a1fY2NjUaJ/i4mIkJycjJSVFbbYhS0tLDBgwAC4uLigpKVGb65iISK5k08Xi2LFjiIyMrHbCejs7O0yZMgVJSUkSREZEJC+2trYICwtTzRWflZWFDRs2oKioSGPnqCiS//nnH7UZJ6rb7uzZs1i1ahWOHz+uKo6NjIzg5+eH8ePHc3YKImpyZFMg6+joVHu7r0J5eTlXUyIi+l/W1tYICwtTDajLzs7Gxo0bNXqFVhRFnD9/HqdPn662r/P169exdu1a7NmzR1WcKxQKeHl5ISIiAl26dOHnNhE1SbL55OrTpw++/fZbXLt2rcpr169fx5IlS9C3b18JIiMikicrKyuMGTNGNdPPnTt3sGHDBhQUFGj0PLdu3UJiYiL+/vtvlJeX4+7du0hISEBcXByys7NV27Vt2xYvvfQS+vfvz1XwiKhJk00f5E8//RQDBgzAs88+i9GjR6Ndu3YAgNTUVCQkJEBXVxfR0dESR0lEJC8tW7ZEWFgYNm7ciHv37iEnJwcbNmxAaGioRgfDlZeXIzU1FSdPnsTt27fx4MED1Wt2dnYYMGAAnnnmGY2dj4hISrK5gtytWzccO3YMw4cPx+bNm/HRRx/ho48+wpYtWzB8+HAkJSWhS5cuDRrD3bt38eKLL8LMzAwWFhZ45ZVXnnolZuDAgRAEQe3x2muvNWicRESVWVhYICwsDGZmZgAeLh+9fv165OXlaeT4oiiisLAQ2dnZKCwshLGxMSwsLGBubo6hQ4di7NixLI6JSKvI5goyAHTo0AHx8fFQKpW4ffs2AMDGxqbR+rC9+OKLuHnzJnbv3o3S0lK8/PLLmDJlCtauXfvE/V599VV89NFHqueammSfiKimzM3NMWbMGGzYsAF5eXnIz8/Hhg0bEBYWBnNz8zodUxRFFBcXo6CgQG1mCkEQYGpqChMTE9y6dQumpqZo3bo1+xsTkdaQ5afZo1dkG8OFCxewY8cO/Pjjj+jVqxf69euHxYsX49dff0VGRsYT9zU2Noa9vb3qUXEVh4ioMZmammLMmDFo2bIlAODevXtYv3692sIfGRkZuH//PgCgpKQEd+/erfZYpaWlyM3NRV5enlpxbGhoCCsrK7Ro0QKCIKC0tBQXLlxAUlKSxvs+ExFJRVYF8vnz51W3CR0cHODg4AAzMzOEhYXh3LlzDXruo0ePwsLCAj169FC1DRkyBDo6Ojh27NgT912zZg2sra3h6emJ999//6lTLRUXFyM/P1/14B8VItKUFi1aICwsDJaWlgCAgoICbNiwAYmJiYiMjMSgQYOQn58PALh//z7mz5+PpUuXqgZIl5eXIy8vD3fv3kVJSYnquHp6erC0tIS5uTkUCkWV8967dw9JSUn4999/nzgtHBFRUyCbAjkxMRHe3t7Ytm0bgoKCMGfOHMyZMweBgYHYtm0bevXqhcTExAY7f2ZmJmxtbdXadHV1YWlpiczMzMfuN27cOPz888/Yt28f3n//faxevRrjx49/4rmio6Nhbm6uevj6+mrkPRARAYCJiQnCwsJUK+GdPXsWU6ZMwcGDB6sUrxVTucXExCApKQl37txRG4CnUChgbm6Oli1bPnVp6PLycpw7dw4nT55UXaXWJFEU8cEHH8DBwQFGRkYYMmQILl++/MR95s2bV+Wu5LPPPqu2DceSENGjZNMHecaMGbC1tcWBAwfg6Oio9to///yDAQMG4O2338bx48drddz33nsPn3322RO3uXDhQq3jrTBlyhTVvzt16gQHBwcMHjwYV69ehbu7e7X7vP/++3j77bdVz0+dOsUimYg0ytjYGKGhoVi8eDF27dr11MU+AODXX39FREQEWrVqBUEQYGJiAmNj41p3dbt9+zbu3LkDFxcXuLq6QldXM39qPv/8cyxatAirVq2Cq6sr5s6dC39/f5w/f/6J08p17NgRf/zxh+p5dfFwLAkRVSabAvmvv/7CggULqhTHAODo6IjXX38d8+bNq/VxZ86ciYkTJz5xGzc3N9jb2yMrK0utvaysDHfv3q12db/H6dWrFwDgypUrjy2QDQwMYGBgoHpeMYcpEZEmGRkZ4cqVKzXeXhRFHDp0CBMnToSJiUm9Bt0plUr8/fffuHHjBtq3b1+rz9HHxRYbG4s5c+YgODgYAPDTTz/Bzs4OmzZtwtixYx+7r66u7lPPXzGWhIgIkFEXC2dn52pXaqpQUlJSbfH8NDY2Nnj22Wef+NDX14ePjw9yc3Nx4sQJ1b579+6FUqlUFb01cerUKQCAg4NDrWMlItKkjIyMartVPI4oirhy5QpKS0s1NiNFSUkJTp8+Xe0iULWRlpaGzMxMDBkyRNVmbm6OXr164ejRo0/c9/Lly2jVqhXc3Nzw4osv4vr161W2qe1YEiLSbrK5gvzBBx9gxowZCAwMRNeuXdVeO3nyJBYvXozY2NgGO3/79u0xfPhwvPrqq/j+++9RWlqKN998E2PHjkWrVq0AAP/++y8GDx6Mn376Cd7e3rh69SrWrl2LgIAAWFlZ4cyZM5gxYwYGDBiAzp07N1isRKRdKg+G06TExMRaD5gTRRGpqam1ujBQE5cuXarzdHMAVGNB7Ozs1Nrt7OyeOE6kV69eWLlyJTw8PHDz5k3Mnz8f/fv3x7lz51QLqYwbNw7Ozs5o1aoVzpw5g3fffRepqamIi4urc7xE1LTJpkBOSkqCnZ0dvLy80KdPH7Rp0wbAw2/+R48ehaenJ44ePap2pUAQBCxcuFBjMaxZswZvvvkmBg8eDB0dHYSGhmLRokWq10tLS5Gamqq6sqCvr48//vgDsbGxKCwshKOjI0JDQzFnzhyNxURE2kuhUMDIyAj3799HaWmpxo+fk5MDHR0dVR/jmhAEAffv36/VPjVRUlKCjIwMuLm5VTsLxqPWrFmDyMhI1fPff/+9TucdMWKE6t+dO3dGr1694OzsjN9++w2vvPIKgLqNJSEi7SabAvmbb75R/fvw4cM4fPiw2utnz57F2bNn1do0XSBbWlo+cVEQFxcXtasxjo6OOHDggMbOT0TNi66uLjp06KA2z7AmnT59utaFriiKMDMza5BBanl5eWjbtm2NBu2NHDlS7Sp2RRe8W7duqXVhu3XrVpW7jk9iYWGBdu3aPbFvdk3GkhCRdpNNgazpqxVERE2Brq6uxmZ5eNTw4cMhCEKtulkIgoD27ds3yCJNxcXFSEtLQ4cOHZ66rampqaoLBPCwcLe3t8eePXtUBXF+fj6OHTuG119/vcYxFBQU4OrVq3jppZceuw3HkhCRbAbpERGRZjk5OSEoKKhGXRoAQEdHB507d1YtMqJpurq6qrmZa0sQBERFReHjjz/G5s2bcfbsWUyYMAGtWrXCqFGjVNsNHjxY7Y7kO++8gwMHDiA9PR1HjhzB6NGjoVAoEB4eDgC4evUqFixYgBMnTiA9PR2bN2/GhAkTOJaEqJmTzRXkCmlpadi+fbtqxLOzszNGjBgBV1dXiSMjImp65s6di+3bt9f4SnJAQECDxOHs7IzevXvXa6DerFmzUFhYiClTpiA3Nxf9+vXDjh071OZAvnr1KrKzs1XPb9y4gfDwcNy5cwc2Njbo168fkpKSYGNjA4BjSYioeoIoozVBZ86ciYULF1bpbqGjo4OoqCh8+eWXEkXWsFJSUuDl5YUTJ06ge/fuUodDRFomLi4OL7zwAkRRrLa/c8WUblOmTEG3bt00em5nZ2d0795dVZASETUFsuli8dVXXyEmJgYhISE4evQocnNzkZubi6NHjyIsLAwxMTGIiYmROkwioiYnJCQER44cQUBAQJW+xYIgoFOnTnj33Xc1Why7ubkhNDQU/v7+LI6JqMmRzRXkikU7Nm3aVO3ro0aNwsWLF3Hx4sXGDawR8AoyETWW69evo0uXLsjNzYWRkRE++OADjfY5dnR0hLe3N6ysrDR2TCKixiabK8jp6enw9/d/7Ov+/v5IT09vvICIiLSQk5MTTExMADxc9l5TxbGpqSn8/f0xYsQIFsdE1OTJZpCera0tTp8+/djXT58+zdt0REQyo1Ao0LlzZ3Tr1q3BpqsjImpssvk0GzNmDBYuXAgXFxdMmzZNdYWjsLAQ33zzDX788UdERUVJGyQREak4OTnBx8enXjNTEBHJkWwK5AULFuDUqVOYPXs2PvjgA7Rq1QoAkJGRgbKyMvj5+eGjjz6SOEoiInJ0dES3bt1gb28vdShERA1CNgWysbEx9uzZg4SEBLV5kIcPH46AgAA899xzDbKyExERPZ1CoUC7du3g6emJli1bSh0OEVGDkkWBXFRUhPHjxyM0NBQvvvgigoODpQ6JiIgA6OnpwdPTE56enjAyMpI6HCKiRiGLAtnY2Bh//PEHRowYIXUoRESEh4uHdOjQAd27d1dbqY6IqDmQzTRv/fr1w9GjR6UOg4io2bO2tkZISAj69OnD4piImiXZFMjffPMNEhMTMWfOHNy4cUPqcIiImqUOHTogODhYo4uHEBE1NbLoYgEAXbp0QVlZGaKjoxEdHQ1dXV0YGBiobSMIAvLy8iSKkIhIewmCgD59+qBjx45Sh0JEJDnZFMihoaGcpYKISCL9+/fHs88+K3UYRESyIJsCeeXKlVKHQETULHXq1InFMRFRJZIXyA8ePEBCQgLS0tJgbW2NwMBAODg4SB0WEZHWsre3R0lJCYyMjGBubg5vb2+pQyIikhVJC+SsrCz06dMHaWlpEEURwMMp3zZt2oQhQ4ZIGRoRkdZKTk7G0aNHcfbsWfTs2RMKhULqkIiIZEXSWSwWLFiA9PR0zJgxA1u3bkVsbCyMjIwQGRkpZVhERM2CiYkJXFxcpA6DiEh2JL2CvGvXLkyYMAFffvmlqs3Ozg7jxo1DamoqPDw8JIyOiEi7ubu7Q0dHNrN9EhHJhqSfjNevX0e/fv3U2vr16wdRFHHr1i2JoiIiah6cnJykDoGISJYkLZCLi4urrNJU8bysrEyKkIiImgWFQgE7OzupwyAikiXJZ7FIT09HSkqK6nnFQiCXL1+GhYVFle27d+/eWKEREWmtli1bcnAeEdFjCGLF9BES0NHRqXZxEFEUq7RXtJWXlzdWeI0mJSUFXl5eOHHiBL8AEFGjyMzMhL29vdRhEBHJkqRXkFesWCHl6YmImq1Hu7cREdH/kbRAjoiIkPL0RETNlq6u5D3siIhki/P7EBE1Q+x/TET0eCyQiYiaIc5/TET0ePyEJCJqhvT19aUOgYhItlggExE1Q9XNIERERA+xQCYiIiIiqoQFMhERERFRJSyQiYiIiIgqYYFMRERERFQJC2QiIiIiokpYIBMRERERVcK1RqnObt68iZs3b0odBhERUbPi4OAABwcHqcPQaiyQZcDBwQEffvhhk/rPXlxcjPDwcBw4cEDqUIiIiJoVX19f7Ny5EwYGBlKHorUEURRFqYOgpic/Px/m5uY4cOAAWrRoIXU4pGEFBQXw9fVlfrUU86vdmF/tVpHfvLw8mJmZSR2O1mKBTHVSUSDzF1Q7Mb/ajfnVbsyvdmN+GwcH6RERERERVcICmYiIiIioEhbIVCcGBgb48MMPOUBASzG/2o351W7Mr3ZjfhsH+yATEREREVXCK8hERERERJWwQCYiIiIiqoQFMhERERFRJSyQiYiIiIgqYYFM1AQJglCjx/79++t9rqKiIsybN69Wx/rkk08wcuRI2NnZQRAEzJs3r95xNDdyzvHFixcxa9YsdO3aFaampnBwcEBgYCCSk5PrHUtzIef8ZmRkYPz48fDw8ICpqSksLCzg7e2NVatWgeP6a0bO+X3UmjVrIAgCV118hK7UARBR7a1evVrt+U8//YTdu3dXaW/fvn29z1VUVIT58+cDAAYOHFijfebMmQN7e3t069YNO3furHcMzZGcc/zjjz9i+fLlCA0NxdSpU5GXl4cffvgBvXv3xo4dOzBkyJB6x6Tt5Jzf7Oxs3LhxA2FhYXByckJpaSl2796NiRMnIjU1FZ9++mm9Y9J2cs5vZQUFBZg1axZMTEzqHYfWEYmoyXvjjTfEhvp1vn37tghA/PDDD2u8T1paWp33perJKcfJycnivXv31Nqys7NFGxsbsW/fvg0QofaTU34fJygoSDQxMRHLyso0E1gzItf8vvvuu6KHh4f44osviiYmJpoPrgljFwsiLaVUKhEbG4uOHTvC0NAQdnZ2iIyMRE5Ojtp2ycnJ8Pf3h7W1NYyMjODq6opJkyYBANLT02FjYwMAmD9/vuq24NO6TLi4uDTEW6JHSJVjLy+vKrdjrays0L9/f1y4cEGzb7IZk/J3uDouLi4oKipCSUlJvd8bSZ/fy5cvIyYmBl9//TV0ddmh4FH8iRBpqcjISKxcuRIvv/wypk+fjrS0NHzzzTc4efIkDh8+DD09PWRlZWHYsGGwsbHBe++9BwsLC6SnpyMuLg4AYGNjg++++w6vv/46Ro8ejZCQEABA586dpXxr9L/kluPMzExYW1tr9D02Z1Ln9/79+ygsLERBQQEOHDiAFStWwMfHB0ZGRg36vpsLqfMbFRUFPz8/BAQE4LfffmvQ99okSX0Jm4jq79Hbd4mJiSIAcc2aNWrb7dixQ609Pj5eBCAeP378sceuz+07drHQHLnmuMLBgwdFQRDEuXPn1vkYzZkc8xsdHS0CUD0GDx4sXr9+vVbHoIfklt+tW7eKurq64l9//SWKoihGRESwi8Uj2MWCSAutX78e5ubmGDp0KLKzs1WPilvj+/btAwBYWFgAALZu3YrS0lIJI6baklOOs7KyMG7cOLi6umLWrFkNco7mRg75DQ8Px+7du7F27VqMGzcOwMOrylR/Uua3pKQEM2bMwGuvvYYOHTpo5JjaiAUykRa6fPky8vLyYGtrCxsbG7VHQUEBsrKyAAC+vr4IDQ3F/PnzYW1tjeDgYKxYsQLFxcUSvwN6GrnkuLCwEEFBQbh37x4SEhI4VZSGyCG/zs7OGDJkCMLDw7FmzRq4ublhyJAhLJI1QMr8xsTEIDs7WzXzBVWPfZCJtJBSqYStrS3WrFlT7esVgzoEQcCGDRuQlJSELVu2YOfOnZg0aRK++uorJCUlsdiRMTnkuKSkBCEhIThz5gx27twJT0/POh+L1Mkhv48KCwvDsmXLcPDgQfj7+2vsuM2RVPnNy8vDxx9/jKlTpyI/Px/5+fkAHk73Jooi0tPTYWxsDFtb2/q9QW0gdR8PIqq/R/u3TZ06VVQoFGJRUVGtj7VmzRoRgLhs2TJRFB9O3wX2QZac3HJcXl4uvvDCC6JCoRA3btxY6xhIndzyW51NmzaJAMR169bV6zjNkVzym5aWptavvLpHcHBwrWPSRuxiQaSFnn/+eZSXl2PBggVVXisrK0Nubi4AICcnp8rKWF27dgUA1S08Y2NjAFDtQ/IgdY6nTZuGdevWYcmSJaqR86Q5Uub39u3b1bYvX74cgiCge/fuNToOPZ5U+bW1tUV8fHyVh5+fHwwNDREfH4/333+/7m9Mi7CLBZEW8vX1RWRkJKKjo3Hq1CkMGzYMenp6uHz5MtavX4+FCxciLCwMq1atwpIlSzB69Gi4u7vj3r17WLZsGczMzBAQEAAAMDIyQocOHbBu3Tq0a9cOlpaW8PT0fOLt9NWrV+PatWsoKioCABw8eBAff/wxAOCll16Cs7Nzw/8QtJyUOY6NjcWSJUvg4+MDY2Nj/Pzzz2qvjx49mitz1ZOU+f3kk09w+PBhDB8+HE5OTrh79y42btyI48ePY9q0aWjTpk1j/ii0klT5NTY2xqhRo6q0b9q0CX/++We1rzVb0l7AJiJNeNwqTUuXLhW9vLxEIyMj0dTUVOzUqZM4a9YsMSMjQxRFUUxJSRHDw8NFJycn0cDAQLS1tRWDgoLE5ORkteMcOXJE9PLyEvX19Wt0K8/X1/ext+/27dunqbfdrMgpxxEREU+8RVuxkiLVnJzyu2vXLjEoKEhs1aqVqKenJ5qamop9+/YVV6xYISqVSo2+7+ZCTvmtDqd5q0oQxUeu3RMRERERNWPsg0xEREREVAkLZCIiIiKiSlggExERERFVwgKZiIiIiKgSFshERERERJWwQCYiIiIiqoQFMlEzlJ6eDkEQsHLlSqlDoQbA/Go35le7Mb/ywAKZiIiIiKgSLhRC1AyJooji4mLo6elBoVBIHQ5pGPOr3Zhf7cb8ygMLZCIiIiKiStjFgqiJmjdvHgRBwKVLlzB+/HiYm5vDxsYGc+fOhSiK+OeffxAcHAwzMzPY29vjq6++Uu1bXR+3iRMnokWLFvj3338xatQotGjRAjY2NnjnnXdQXl6u2m7//v0QBAH79+9Xi6e6Y2ZmZuLll19G69atYWBgAAcHBwQHByM9Pb2Bfirag/nVbsyvdmN+mz4WyERN3AsvvAClUon//ve/6NWrFz7++GPExsZi6NCheOaZZ/DZZ5+hTZs2eOedd3Dw4MEnHqu8vBz+/v6wsrLCl19+CV9fX3z11VdYunRpnWILDQ1FfHw8Xn75ZSxZsgTTp0/HvXv3cP369TodrzlifrUb86vdmN8mTCSiJunDDz8UAYhTpkxRtZWVlYmtW7cWBUEQ//vf/6rac3JyRCMjIzEiIkIURVFMS0sTAYgrVqxQbRMRESECED/66CO183Tr1k308vJSPd+3b58IQNy3b5/ado8eMycnRwQgfvHFF5p5w80M86vdmF/txvw2fbyCTNTETZ48WfVvhUKBHj16QBRFvPLKK6p2CwsLeHh44O+//37q8V577TW15/3796/Rfo8yMjKCvr4+9u/fj5ycnFrvTw8xv9qN+dVuzG/TxQKZqIlzcnJSe25ubg5DQ0NYW1tXaX/aB6GhoSFsbGzU2lq2bFmnD1ADAwN89tln2L59O+zs7DBgwAB8/vnnyMzMrPWxmjPmV7sxv9qN+W26WCATNXHVTQP0uKmBxKdMWlOTKYUEQai2vfJAkQpRUVG4dOkSoqOjYWhoiLlz56J9+/Y4efLkU89DDzG/2o351W7Mb9PFApmIaqVly5YAgNzcXLX2a9euVbu9u7s7Zs6ciV27duHcuXMoKSlRG7FN8sL8ajfmV7sxv5rDApmIasXZ2RkKhaLKiOslS5aoPS8qKsKDBw/U2tzd3WFqaori4uIGj5PqhvnVbsyvdmN+NUdX6gCIqGkxNzfHmDFjsHjxYgiCAHd3d2zduhVZWVlq2126dAmDBw/G888/jw4dOkBXVxfx8fG4desWxo4dK1H09DTMr3ZjfrUb86s5LJCJqNYWL16M0tJSfP/99zAwMMDzzz+PL774Ap6enqptHB0dER4ejj179mD16tXQ1dXFs88+i99++w2hoaESRk9Pw/xqN+ZXuzG/msGlpomIiIiIKmEfZCIiIiKiSlggExERERFVwgKZiIiIiKgSFshERERERJWwQCYiIiIiqoQFMhE1qPT0dAiCgJUrV0odChERUY2wQCaSkatXryIyMhJubm4wNDSEmZkZ+vbti4ULF+L+/fsNdt7z589j3rx5SE9Pb7Bz1MQnn3yCkSNHws7ODoIgYN68eZLGIyVBEGr02L9/f73PVVRUhHnz5tXqWMxV/cg5vxcvXsSsWbPQtWtXmJqawsHBAYGBgUhOTq53LM2FnPObkZGB8ePHw8PDA6amprCwsIC3tzdWrVoFzvz7f7hQCJFM/P777xgzZgwMDAwwYcIEeHp6oqSkBIcOHcL/+3//D3/99ReWLl3aIOc+f/485s+fj4EDB8LFxaVBzlETc+bMgb29Pbp164adO3dKFoccrF69Wu35Tz/9hN27d1dpb9++fb3PVVRUhPnz5wMABg4cWKN9mKv6kXN+f/zxRyxfvhyhoaGYOnUq8vLy8MMPP6B3797YsWMHhgwZUu+YtJ2c85udnY0bN24gLCwMTk5OKC0txe7duzFx4kSkpqbi008/rXdM2oAFMpEMpKWlYezYsXB2dsbevXvh4OCgeu2NN97AlStX8Pvvv0sY4f8RRREPHjyAkZGRxo+dlpYGFxcXZGdnw8bGRuPHb0rGjx+v9jwpKQm7d++u0i4V5qp+5Jzf8PBwzJs3Dy1atFC1TZo0Ce3bt8e8efNYINeAnPPbuXPnKleb33zzTTz33HNYtGgRFixYAIVCIU1wMsIuFkQy8Pnnn6OgoADLly9XK44rtGnTBm+99ZbqeVlZGRYsWAB3d3cYGBjAxcUFs2fPRnFxsdp+Li4uCAoKwqFDh+Dt7Q1DQ0O4ubnhp59+Um2zcuVKjBkzBgDg5+dX5dZfxTF27tyJHj16wMjICD/88AMA4O+//8aYMWNgaWkJY2Nj9O7du16FvJRXr5sipVKJ2NhYdOzYEYaGhrCzs0NkZCRycnLUtktOToa/vz+sra1hZGQEV1dXTJo0CcDDPuIVBe78+fNV+X9alwnmquFJlV8vLy+14hgArKys0L9/f1y4cEGzb7IZk/L3tzouLi4oKipCSUlJvd+bNuAVZCIZ2LJlC9zc3NCnT58abT958mSsWrUKYWFhmDlzJo4dO4bo6GhcuHAB8fHxatteuXIFYWFheOWVVxAREYH/+Z//wcSJE+Hl5YWOHTtiwIABmD59OhYtWoTZs2erbvlVvvWXmpqK8PBwREZG4tVXX4WHhwdu3bqFPn36oKioCNOnT4eVlRVWrVqFkSNHYsOGDRg9erTmfkBUrcjISKxcuRIvv/wypk+fjrS0NHzzzTc4efIkDh8+DD09PWRlZWHYsGGwsbHBe++9BwsLC6SnpyMuLg4AYGNjg++++w6vv/46Ro8ejZCQEAAPrzKRtOSW38zMTFhbW2v0PTZnUuf3/v37KCwsREFBAQ4cOIAVK1bAx8enQe4ONkkiEUkqLy9PBCAGBwfXaPtTp06JAMTJkyertb/zzjsiAHHv3r2qNmdnZxGAePDgQVVbVlaWaGBgIM6cOVPVtn79ehGAuG/fvirnqzjGjh071NqjoqJEAGJiYqKq7d69e6Krq6vo4uIilpeXi6IoimlpaSIAccWKFTV6f6Ioirdv3xYBiB9++GGN99F2b7zxhlj5IzsxMVEEIK5Zs0Ztux07dqi1x8fHiwDE48ePP/bY9fl5M1eaIdf8Vjh48KAoCII4d+7cOh+jOZNjfqOjo0UAqsfgwYPF69ev1+oY2oxdLIgklp+fDwAwNTWt0fbbtm0DALz99ttq7TNnzgSAKl0cOnTogP79+6ue29jYwMPDA3///XeNY3R1dYW/v3+VOLy9vdGvXz9VW4sWLTBlyhSkp6fj/PnzNT4+1d769ethbm6OoUOHIjs7W/WouD2+b98+AICFhQUAYOvWrSgtLZUwYqoNOeU3KysL48aNg6urK2bNmtUg52hu5JDf8PBw7N69G2vXrsW4ceMAoEFnS2pqWCATSczMzAwAcO/evRptf+3aNejo6KBNmzZq7fb29rCwsMC1a9fU2p2cnKoco2XLllX6uT2Jq6trtXF4eHhUaa/omvFoHKRZly9fRl5eHmxtbWFjY6P2KCgoQFZWFgDA19cXoaGhmD9/PqytrREcHIwVK1ZU6a9O8iKX/BYWFiIoKAj37t1DQkJClb7JVDdyyK+zszOGDBmC8PBwrFmzBm5ubhgyZAiL5P/FPshEEjMzM0OrVq1w7ty5Wu0nCEKNtnvcaGSxFvNdsk+a/CiVStja2mLNmjXVvl4xcEcQBGzYsAFJSUnYsmULdu7ciUmTJuGrr75CUlISCx6ZkkN+S0pKEBISgjNnzmDnzp3w9PSs87FInRzy+6iwsDAsW7YMBw8erHLHsDligUwkA0FBQVi6dCmOHj0KHx+fJ27r7OwMpVKJy5cvqw2ku3XrFnJzc+Hs7Fzr89e02H40jtTU1CrtFy9eVL1ODcfd3R1//PEH+vbtW6MvML1790bv3r3xySefYO3atXjxxRfx66+/YvLkyXXKPzUsqfOrVCoxYcIE7NmzB7/99ht8fX3r8jboMaTOb3Uqrhzn5eVp5HhNHbtYEMnArFmzYGJigsmTJ+PWrVtVXr969SoWLlwIAAgICAAAxMbGqm3z9ddfAwACAwNrfX4TExMAQG5ubo33CQgIwJ9//omjR4+q2goLC7F06VK4uLigQ4cOtY6Dau75559HeXk5FixYUOW1srIyVS5zcnKq3C3o2rUrAKhu0xobGwOoXf6pYUmd32nTpmHdunVYsmSJamYE0hwp83v79u1q25cvXw5BENC9e/caHUfb8QoykQy4u7tj7dq1eOGFF9C+fXu1lfSOHDmC9evXY+LEiQCALl26ICIiAkuXLkVubi58fX3x559/YtWqVRg1ahT8/Pxqff6uXbtCoVDgs88+Q15eHgwMDDBo0CDY2to+dp/33nsPv/zyC0aMGIHp06fD0tISq1atQlpaGjZu3Agdndp//169ejWuXbuGoqIiAMDBgwfx8ccfAwBeeuklXpWuxNfXF5GRkYiOjsapU6cwbNgw6Onp4fLly1i/fj0WLlyIsLAwrFq1CkuWLMHo0aPh7u6Oe/fuYdmyZTAzM1N92TIyMkKHDh2wbt06tGvXDpaWlvD09HziLXXmqmFJmd/Y2FgsWbIEPj4+MDY2xs8//6z2+ujRo1VfqqlupMzvJ598gsOHD2P48OFwcnLC3bt3sXHjRhw/fhzTpk2rMr6l2ZJ2Eg0iquzSpUviq6++Krq4uIj6+vqiqamp2LdvX3Hx4sXigwcPVNuVlpaK8+fPF11dXUU9PT3R0dFRfP/999W2EcWHU7QFBgZWOY+vr6/o6+ur1rZs2TLRzc1NVCgUalO+Pe4YoiiKV69eFcPCwkQLCwvR0NBQ9Pb2Frdu3aq2TW2mefP19VWbdqjyo7op6JqTR6eJqrB06VLRy8tLNDIyEk1NTcVOnTqJs2bNEjMyMkRRFMWUlBQxPDxcdHJyEg0MDERbW1sxKChITE5OVjvOkSNHRC8vL1FfX79GU0YxV5olp/xGREQ8NrcAxLS0NE2+9WZBTvndtWuXGBQUJLZq1UrU09NT/Z1ZsWKFqFQqNfq+mzJBFGsxUoeIiIiISMuxDzIRERERUSUskImIiIiIKmGBTERERERUCQtkIiIiIqJKWCATEREREVXCApmIiIiIqBIWyERERERElbBAJiIiIiKqhAUyEREREVElLJCJiIiIiCphgUxEREREVAkLZCIiIiKiSlggExERERFV8v8BuDc07JkNd0UAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAInCAYAAACFua8hAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAxsFJREFUeJzs3Xd8FFXXB/DfzPZNNr0SAwmdUATB0A0gAlJEAR/EgqKiIKiArwVRiiBYKUoTpD0qD1gRBQKIICABBESQEmoIkN4228vMvH/ErFlSSNnN7G7O9/NZZaeecEly9s659zKCIAgghBBCCCGEAABYsQMghBBCCCHEk1CCTAghhBBCSBmUIBNCCCGEEFIGJciEEEIIIYSUQQkyIYQQQgghZVCCTAghhBBCSBmUIBNCCCGEEFIGJciEEEIIIYSUQQkyIYQQQgghZVCC7AEyMzMxe/ZsZGZmih0KIYQQQkiDRwmyB8jMzMScOXMoQSaEEEII8QCUIBNCCCGEEFIGJciEEEIIIYSUQQkyIYQQQgghZVCCXMb+/fsxbNgwNGrUCAzDYMuWLbc9Z9++fbjrrrugUCjQvHlzrF+/3u1xEkIIIYQQ96EEuQyDwYA777wTy5Ytq9bxV69exZAhQ9C3b1+cPHkSU6ZMwbPPPoudO3e6OVJCCCGEEOIuUrED8CT3338/7r///mofv3LlSsTHx+Pjjz8GALRp0wYHDx7EokWLMHDgQHeFSQghhBBC3IgS5DpISUlB//79nbYNHDgQU6ZMqfI8i8UCi8XieK/X690RXo3l5+fDarW65docxwEAQkJC3HJ9UjWWZWEwGNzWvjzPQxAEal+RMAwDo9HotvYFSr6HqX3FYzQaYbPZ3HZ9nucRHBzstuuTqhkMBtjtdrddXy6XIzQ01G3X90WUINdBVlYWIiMjnbZFRkaiuLgYJpMJKpWqwvMWLFiAOXPm1EeI1Zafn49ly5ZBEAS33qdPnz7w9/d36z1IeTzPY8eOHdS+PspkMuHXX3+l9vVRer0ev/32G7Wvj6qP9mUYBpMmTaIkuQaoBlkE06dPh1ardbx+++03sUOC1Wp1+w9f4N+eZFK/7HY7ta8Po/b1bRzHUfv6sPpoX0EQ3PqEyRdRD3IdREVFITs722lbdnY2AgICKu09BgCFQgGFQuF472mf2BmGcfk16+OHO6keal/fRu3r26h9fRu1r+fwmR5kQRDw66+/YseOHdDpdPVyz+7du2PPnj1O23bv3o3u3bvXy/0JIYQQQojreWWCPGPGDPTt29fxXhAEDBgwAPfddx+GDBmC9u3b4/LlyzW+rl6vx8mTJ3Hy5EkAJdO4nTx5Eunp6QBKSiPGjh3rOH7ChAm4cuUKXnvtNZw/fx7Lly/H119/jalTp9btCySEEEIIIaLxygT5u+++Q2JiouP9t99+iz179mDevHn4+eefwXEcZs+eXePrHjt2DJ06dUKnTp0AANOmTUOnTp0wc+ZMAEBmZqYjWQaA+Ph4bNu2Dbt378add96Jjz/+GJ9//jlN8UYIIYQQ4sW8sgb55s2baN68ueP9999/j4SEBEyfPh0AMHHiRKxYsaLG1+3Tp0+VtToVrZLXp08f/PnnnzW+FyGEEEII8Uxe2YMslUod8wgLgoA9e/Zg0KBBjv2RkZHIy8sTKzxCCCGEEOLFvDJBbteuHb788ksUFhZi3bp1yM/Px5AhQxz7r127hrCwMBEjJIQQQggh3sorSyxmzpyJYcOGOZLgnj17Og3a27ZtG+6++26xwiOEEEIIIV7MKxPk++67DydOnMDu3bsRFBSE0aNHO/YVFhbinnvuwfDhw0WMkBBCCCGEeCuvTJABICEhAQkJCeW2BwcHY9GiRSJERAghhBBCfIFXJsg6nQ5FRUWIjY11bMvIyMDKlSthsVgwatQoKrEghBBCCCG14pUJ8nPPPYerV6/i8OHDAIDi4mJ069YNN27cAMuyWLJkCZKTk9GnTx9xAyWEEEIIIV7HK2exOHjwIIYOHep4/+WXXyIjIwOHDh1CYWEhOnTogHnz5okYISGEEEII8VZemSDn5eUhJibG8X7r1q3o1asXunXrBo1Gg7Fjx+Kvv/4SMUJCCCGEEOKtvDJBDgoKQlZWFgDAZDLhwIEDGDBggGO/VCqF0WgUKzxCCCGEEOLFvLIGuUePHli+fDlat26N5ORkmM1mp2ndLly44NTDTAghhBBCSHV5ZYL8/vvvY8CAARg5ciQA4JVXXkHbtm0BABzH4ZtvvnFaepoQQgghhJDq8soEuXnz5khNTcXZs2cRGBiIuLg4xz6j0YilS5fizjvvFC9AQgghhBDitbwyQQYAmUxWYRKs0WhoFT1CCCGEEFJrXjlIDyiZ+/i9997DwIED0alTJxw9ehQAUFBQgIULF+LSpUsiR0gIIYQQQryRV/Yg37hxA0lJSbh+/TpatGiB8+fPQ6/XAwBCQkLw2Wef4dq1a1iyZInIkRJCCCGEEG/jlQnyq6++Cp1Oh5MnTyIiIgIRERFO+x988EH8/PPPIkVHCCGEEEK8mVeWWOzatQsvvfQSEhISwDBMuf1NmzbF9evXRYiMEEIIIYR4O69MkE0mE8LDwyvdr9Pp6jEaQgghhBDiS7wyQU5ISMD+/fsr3b9lyxZ06tSpHiMihBBCCCG+wisT5ClTpmDTpk14//33odVqAQA8z+PSpUt44oknkJKSgqlTp4ocJSGEEEII8UZeOUjv8ccfx7Vr1/DWW29hxowZAIBBgwZBEASwLIv58+fjwQcfFDdIQgghhBDilbwyQQaAGTNm4IknnsB3332HS5cuged5NGvWDCNGjEDTpk3FDo8QQgghhHgpr02QAaBx48ZUSkEIIYQQQlzKK2uQT5w4geXLl1e6f/ny5Th58mT9BUQIIYQQQnyGVybIM2bMwC+//FLp/l9//RVvvfVWra+/bNkyxMXFQalUomvXro5lrCuzePFitGrVCiqVCrGxsZg6dSrMZnOt708IIYQQQsTjlQny8ePH0bt370r39+7dG8eOHavVtTdv3oxp06Zh1qxZOHHiBO68804MHDgQOTk5FR6/ceNGvPHGG5g1axbOnTuHNWvWYPPmzXjzzTdrdX9CCCGEECIur0yQdTodpNLKy6dZlnVM/1ZTCxcuxPjx4zFu3DgkJCRg5cqVUKvVWLt2bYXHHzp0CD179sSjjz6KuLg4DBgwAGPGjLltrzMhhBBCCPFMXjlIr0WLFti1axdefPHFCvcnJyfXaiYLq9WK48ePY/r06Y5tLMuif//+SElJqfCcHj164Msvv8TRo0eRmJiIK1euYPv27XjiiScqvY/FYoHFYnG81+v1NY7VWzEMA5at2+cyhmGcXrfuu/X/t/65ovelcVW2rey+W4+r6Lyq7lVRnLf+mTcaYMvMhL0wH5zRCAh8nf7O8up2OiGEENKgeGWC/Mwzz2Dq1KmYNm0aZs6ciaCgIABAUVER5syZg+TkZHz44Yc1vm5eXh44jkNkZKTT9sjISJw/f77Ccx599FHk5eWhV69eEAQBdrsdEyZMqLLEYsGCBZgzZ06N4/MFgiCA512TrbEsC6lUCplMBrlcDrlcDoVCAaVSCZVKVeVTBk/FW60wX74IW3amqHHMmzcPdrsdUqm0TvX8hBBCiDfyvgwCwEsvvYSTJ09i8eLF+OSTT9CoUSMAQEZGBniexxNPPFFv07/t27cP8+fPx/Lly9G1a1dcunQJL7/8MubOnYu33367wnOmT5+OadOmOd6fPHkSSUlJ9RKvL+F5HlarFVarFQaDodx+uVwOtVoNPz8/aDQaqNXqcj3OnsReVAjjmdMQbFaxQ4Hdbnd84COEEEIaGq9MkBmGwbp16zB27Fh89913uHLlCgBg+PDhGDlyJPr06VOr64aFhUEikSA7O9tpe3Z2NqKioio85+2338YTTzyBZ599FgDQvn17GAwGPPfcc5gxY0aF5QQKhQIKhcLx3t/fv1bxkqqVJs9FRUUASnqcNRoNAgMDERgYCLlcLm6AZVizs2A6f7bOpRSEEEIIqTuvTJBL9e3bF3379nXZ9eRyOTp37ow9e/Y4lqrmeR579uzB5MmTKzzHaDSWS4IlEgmAknIC4jl4nodWq3UM4FSr1QgODkZISIioybI1K7MkOQb9eyGEEEI8gVfOYnH16lX89NNPle7/6aefkJaWVqtrT5s2DatXr8aGDRtw7tw5TJw4EQaDAePGjQMAjB071mkQ37Bhw7BixQps2rQJV69exe7du/H2229j2LBhjkSZeCaj0YibN2/i9OnTuHDhAgoKClxWH11d9sICmFLPgZJjQgghxHN4ZQ/y//3f/6G4uBjDhg2rcP+yZcsQFBSETZs21fjao0ePRm5uLmbOnImsrCx07NgRycnJjoF76enpTj3Gb731FhiGwVtvvYWbN28iPDwcw4YNw7vvvlu7L46IQqfTQafTQSKRICwsDOHh4U5lMO7Am4ww/n2KyioIIYQQD+OVCXJKSgqmTJlS6f57770XixcvrvX1J0+eXGlJxb59+5zeS6VSzJo1C7Nmzar1/Yjn4DgO2dnZyM7ORnBwMCIjI+Hn5+fy+wg8D+OZvyFwNAiOEEII8TRemSAXFhZCo9FUut/f3x/5+fn1GBHxRYWFhSgsLERAQACio6NdOpjSfOUSOH2xy67nKViWrVNpUenUfaWzjZTW8Zet5xcEwWl72det+wkhhJDa8MoEuXHjxvj9998xceLECvcfOHAAd9xxRz1HRXxVcXExiouLodFoEB0dXeWHs+qwa4tgvXHdRdF5Fp7nwXFcrc/nOA4cxyEwMBBhYWEICAio9bVK59wum0CXvi/7/1v/XNExFV2rqlfp/W9N8B3/53mgbCJfx4Re4sHTFxJCiDfyygR5zJgxmDt3LhITEzF58mRHTTDHcVi6dCk2b96MGTNmiBwl8TWldcp+fn6IjIxEUFBQjedVFnieBuXdBs/zjt57f39/NG7cGCqVqsbXYRimXgbK8hYLeIsZgsUC3mqBYLFCsFkh2GwQbHYIdhsEux0Cx0HgOLfUnOeazC6/JiGENGRemSBPnz4dBw8exJQpU/Duu++iVatWAIDU1FTk5uaiT58+lCATtzEYDLhy5QrkcjnCw8MRFhZW7VX7rNfTwRvLL2pCKqbX63Hu3DnccccdiIiIEC0O3mIBbzSAMxrAG43gTUbwJhMEsxkCDbIkhBCf45UJskKhwK5du7BhwwZ8//33uHz5MgAgMTERI0eOxNixYytcoIMQV7Jarbh58yYyMjKcSgIq61XmLRZY0tPqN8gKVKc+VyqVOpaaFrueVxAEXL9+HWazGbGxsW5dDVEQBPAGAzh9MTidDrxeD86gh2C3ue2ehBBCPI9XJshAyWCecePGOeYnJkQsgiCgqKgIRUVFkEqlCAoKQnBwMDQajVMyZ7l6udqzVjCsBNKwcEiDQ8D6+dU5KbRqi8EcPFTtZLe2T2BatmyJkJCQWp0LlJRJGY1GaLVa6HQ6p325ubngeR5xcXG1vv6teLMZnK4YXLG25KXTQeBrX0NNCCHEN3htgkyIJ7Lb7cjLy0NeXh4kEoljaWs1y8KWlXn7CzAs5I1ioIxrCkYmc1lc4ZoATJo0CVar1WXXvJVcLkdoaGidr6PRaBAZGQmLxYKMjAwUFBQ49uXn54NlWTRu3LhG1xR4vqREQq8Hb9CD0+vB6XUQbO77+yCEEOK9vDJB7tev322PYRgGe/bsqYdoCKkYx3GOnmVrxk2wRj3UcjlUMhlUMimUMhmkZUqBWIUS6rYdIKnDzA1VcUXyWp8UCgXi4+MRGhqKtLQ02GwlZQ65ublQKpXlapIFux282QzeYgZvMjnqhHmjEbzZBBoYSQghpLq8MkHmeb7cI2eO43Dt2jVcv34dzZs3R0xMjEjREeKMt/zzGB+A1mSGtsyMA1IJC7lEApUmAJr4FjBbLJAWFkIqlYJlWbAs65KaW5ZlgYJ8CBb3zHYg8DzAMJBFRNXxQqXTnvEAL0DgOag4Ds3Dw3AlLQ0GvQECz+FKdhYQEQ4/iaRk5girlRZdIYQQ4jJemSDfuppdWT///DOee+45LFy4sP4CIqQK9ioWrbFzPHi5EnxwKIx5eW6Lwc9ihnT1UrddvzSxDXnoYUgCA91yixhBwLXiQugtJWURV3RatAgPc+qFJ4QQQlzB536zDB06FI8//niVS1ETUl94qxXcLYPNymLkCshj7gDj7vl6a1h73P6Lb9Bqwya0/+KbGp0n2N3Xi8syDJqEBMNPIQdQ8uHiRpHWbfcjhBDScPlcggwAzZo1wx9//CF2GITAXpCPSmtfJRIo6iM5vhXD3PZl5TnwAmDluWodX19YhkGT4CAo/pl3Wme2oMhkqrf7E0IIaRh8LkG22+34+uuvERYWJnYopIET7HZwxZX3cMqjosHI5fUYkW+QsCyahARB8k9pRYZWBztPi3UQQghxHa+sQX766acr3F5UVITDhw8jKyuLapCJ6Ozaon8Hnd1CEhwCib+mfgPyIQqpFDFBAUgvKALH88gq1uGOIPfUPhNCCGl4vDJB/vXXX8uN7GcYBsHBwejVqxeeffZZDBgwQKToCClZPIQrKqxwHyOXQxYWXs8R+Z5ApRIhfmoUGIwoNJkQ6qeGyoVzRxNCCGm4vDJBTktLEzsEQqrE6YorHbAmi4wGQzMvuER0gAZ6iwVWO4cMbTGahXnXXM+EEEI8E/2WJsQNuKKiCrdLAgIhUavrNxgfxjIMYgJLFlYxWm3Qmt0zzzMhhJCGxWsSZKPRiPT09AqXyl27di3uvfdeJCQkYMSIETSDBREVb7GANxnL72BZyMIjym8ndeKvUCBYrQIAZOv0ECqp+yaEEEKqy2sS5HfeeQcdOnQolyDPmzcP48ePx2+//Ybc3Fxs2bIFffr0wV9//SVSpKShs2uLKtwuCwkDI/XKqiaPF6XxB8sysNjsKDJRLzIhhJC68ZoEee/evRg6dCj8/f0d24qLizFv3jzExMTg4sWLyM3NxeHDhyGXy/Hee++JGC1pqARBAFdcXG47I5VBEhIiQkQNg1QiQcQ/Pxty9NSLTAghpG68JkFOS0tDhw4dnLZt374dVqsVr7/+OuLj4wEAiYmJGDduHA4cOCBGmKSB4/U6gCs/OE8aGlpu5hXiWmF+asikEljtHNUiE0IIqROvSZB1Oh1CQ51HqO/fvx8Mw2DgwIFO2xMSEpCbm1uf4RECALBryy8MwshkkAQG1X8wdSBnJWCZkv97C4ZhEPlPL3Ku3iByNIQQQryZ1xRENmnSBOfPn3fatm/fPkRGRqJ58+ZO261WKwICAuozPEIg2O3gjeUTM2lImNf1Hp8e+x+xQ6iVIJUSeQYDzDY7is0WBCgVYodECCHEC3lND/KAAQOwdu1aHDlyBADw3//+F+fPn8dDDz1U7tjjx48jLi6uniMkDR1XXFxu5TxGKoUkkFZ4qy8MwzhqkfMM1ItMCCGkdrwmQX777bfh7++PHj16QC6X46mnnkJ4eDhmzpzpdJzRaMQPP/yAe++9V6RISUPF6cqXV0iDQ7yu99jbBaqUUMikMFisMNlsYodDCCHEC3lNiUVYWBhOnjyJzz//HFeuXEGTJk3w9NNPIyLCeV7Zv//+G4899hieeOIJkSIlDRFvtYK/dWAYy3pd7bGviPD3w/VCLfIMRsQGUQ8+IYSQmvGaHmQACA4OxquvvooVK1bgjTfeKJccAyWzWHz66ado27Ztre+zbNkyxMXFQalUomvXrjh69GiVxxcVFWHSpEmIjo6GQqFAy5YtsX379lrfn3gfTld+ajdJYBAYifcMcvMlgUol5FIJtCYz7DwvdjiEEEK8jFclyPVh8+bNmDZtGmbNmoUTJ07gzjvvxMCBA5GTk1Ph8VarFffddx/S0tLw7bffIjU1FatXr0ZMTEw9R07ExJeb+5iBLChYlFhISS1yqJ8agiCg0GgSOxxCCCFexmtKLOrLwoULMX78eIwbNw4AsHLlSmzbtg1r167FG2+8Ue74tWvXoqCgAIcOHYJMJgMAGiDYwPAWC3irxWkb6+8PRi4XKSICAMEqFbJ1euQbjQjzU1MtOCGEkGqjHuQyrFYrjh8/jv79+zu2sSyL/v37IyUlpcJztm7diu7du2PSpEmIjIxEu3btMH/+fHAcV+l9LBYLiouLHS+9Xu/yr4XUH05fvrxCSrXHopOwLELUatjsHPQW6+1PIIQQQv5BCXIZeXl54DgOkZGRTtsjIyORlZVV4TlXrlzBt99+C47jsH37drz99tv4+OOPMW/evErvs2DBAgQGBjpeSUlJLv06SP3idTqn94xMBtbPT6RoSFmhfmqAAQqozIIQQkgNeEWCvHXrVmRkZIgdRoV4nkdERARWrVqFzp07Y/To0ZgxYwZWrlxZ6TnTp0+HVqt1vH777bd6jJi4Em+1grc4l1dIAoPocb6HkEsk0CgU0FlosB4hhJDq84oE+aGHHsK+ffsc75s2bYqtW7e6/D5hYWGQSCTIzs522p6dnY2oqKgKz4mOjkbLli0hKTNbQZs2bZCVlQWrteLHugqFAgEBAY6X/z8LGxDvc2vvMRiGyis8TMlgPdBgPUIIIdXmFQmyRqNBUVGR431aWppb6nblcjk6d+6MPXv2OLbxPI89e/age/fuFZ7Ts2dPXLp0CXyZ3qkLFy4gOjoachqk5fNurT9m1X5gpDT21ZNoFArIpRIUmihBJoQQUj1e8Zs8MTER7777LrKzsxH4z7K927dvr7QuGCiZ5mnq1Kk1vte0adPw5JNPokuXLkhMTMTixYthMBgcs1qMHTsWMTExWLBgAQBg4sSJWLp0KV5++WW8+OKLuHjxIubPn4+XXnqpFl8p8SaC3V5ucRApLSvtkYLVKmQX62Gy2aD6Z7YZQgghpDJekSAvX74cY8eOxdy5cwGUJL8bN27Exo0bKz2ntgny6NGjkZubi5kzZyIrKwsdO3ZEcnKyY+Beeno6WPbfjvfY2Fjs3LkTU6dORYcOHRATE4OXX34Zr7/+eo3vTbwLd+tTDIkErL9GnGBIlUqnfCs0mqAKpASZEEJI1bwiQW7evDkOHToEs9mMnJwcxMXFYfHixRg+fLhb7jd58mRMnjy5wn1la6FLde/eHYcPH3ZLLMRzcXrn+mOJJoAG53ko2T+D9bRmM6IDNNROhBBCquQVCXIppVKJxo0bY9asWejXrx+aNGkidkikgRJ4HrzR4LRNogkQKRpSHcFqFXQFFugtVmiUCrHDIYQQ4sG8KkEuNWvWLMef9Xo9rl+/DqCk3IFmhCD1gTcYAEFwvGdkMkjUahEjIrcToFBAwrIoMpspQSaEEFIlr5jFoiJ//PEH+vbti+DgYLRr1w7t2rVDcHAw+vXrh2PHjokdHvFxnMG5/ph6jz0fwzAIUilRbDaDL/PhhhBCCLmVV/YgHzlyBH369IFcLsezzz6LNm3aAADOnTuH//3vf7jnnnuwb98+JCYmihwp8VW84dbyChqc5w2CVErkG4zQWSwIVCrFDocQQoiH8soEecaMGYiJicHBgwfLLeAxe/Zs9OzZEzNmzMDu3btFipD4Mt5igWC3Od4zcjlYpUrEiEh1qeVyyKUSaE1mSpAJIYRUyitLLI4cOYLnn3++wtXtIiMj8dxzz9GsEsRt+Fumd5P4U3mFNwlWqaAzW6jMghBCSKW8MkFmWRZ2u73S/RzHOc1VTIgrla8/poGh3iRApQQvCNBZLGKHQgghxEN5ZRbZo0cPLFu2DNeuXSu3Lz09HcuXL0fPnj1FiIz4OoHjwJv/XbKYkcmovMLLKKVSKGVSFJvMtz+YEEJIg+SVNcjz58/HPffcg9atW+Ohhx5Cy5YtAQCpqan48ccfIZVKHUtBE+JKvNHoNL0blVd4p0CVErl6AwRBoEVDCCGElOOVCXKnTp1w5MgRzJgxA1u3boXRaAQAqNVqDBo0CPPmzUNCQoLIURJfxJmcZ69gqbzCKwUplcgu1tOiIYSUwbJsncoTGYZxyTXqoj4/8Ap2OwSOA3i+TteRuyge4lpemSADQEJCAn744QfwPI/c3FwAQHh4ONUeE7dymt5NIqXyCi8ll0qhkslQTIuGEOLA8zz4OiZ7HMeBYRjI5XKoVCr4+flBo9FArVZ79dMawWaDvTAf9sJCcDodeKMBAs+55NqKW8a1EM/gtQlyKZZlERkZKXYYpAEQrFYIVqvjvcTf36t/4Dd0AUoF8o1GxIgdCCE+RhAEWCwWWCwWFBUVAQCkUimCg4MRGhoKPz8/cQOsJkEQYM/LhTUzA/bCAkCo24cH4l28PkEmpL5w/5TylJL4UXmFNwtQKZGt08NotUItp4echLiT3W5Hbm4ucnNzoVarERkZieDgYI/sZBB4HrbMDFiuX3MalE0aFkqQCakm3limvIJlwXpJLwipmFIqhUImRbHZQgkyIfXIaDTi6tWryMjIQExMDIKDg8UOycGWmwPz5UvgzcbbH0x8GiXIhFRT2R5kVu0HhurdvV6gUoFiswVRoKXCCalvFosFV65cgb+/Pxo3bgyVSrwxHbzZDNOF87AX5IkWA/Es9BuekGrgLRaA+3dxGgn1HvsEjUIJs80OaxULDxFC3Euv1+PcuXPIyMiAIMIKl9asTOj/OEzJMXFCCTIh1eA0ewWo/thXqOUyyCQsdBbr7Q8mhLiNIAjIzMzE+fPnYamnVS4Fnofp/FmYzp+BwNGHZOLMq0sszp49iytXrqCwsLDCT51jx44VISriizhTmfIKuQKMTCZiNMSVNEoldBYLQv3UYodCSINnNBpx7tw5xMXFISgoyG334S0WGP/+C5yu2G33IN7NKxPky5cv4/HHH8fRo0crfRzDMAwlyMQlBEFwGqDH+lPvsS8JUCiQXlgEXhDAeuCIekIaGo7jcPnyZTRq1AjR0dGuv75eD+Opk+CttNw8qZxXJsjPP/88Tp8+jcWLF6N3794eNQKW+B7ebHZaKYlmr/At/go5wAB6ixUBtGgIIR4jIyMDZrMZcXFxLpsOzl5UBOPpk1RSQW7LKxPk33//HW+++SZefPFFsUMhDUC56d1U9CjelzAMA3+5HHqLhRJkQjxMQUEB7HY7mjVrVueVcu2FBTCe/stlK+AR3+aVg/TCwsIQGBgodhikgSg7QI9V+3nkxPakbjT/TPdGCPE8xcXFuHDhAjiu9omtvbAAxlMnKTkm1eaVCfKECRPw5Zdf1umbhZDqEDjOaSUlCQ3k8kkahQI2joPJZhM7FEJIBQwGAy5evFir3/slZRV/QaClokkNeGWJRcuWLcFxHO688048/fTTiI2NhUQiKXfciBEjRIiO+BLeZATKDARl1TRAzxfJJBIoZVLozBaoaIYSQjxSaZLcokWLCn/nV4TT60tqjqnnmNSQVybIo0ePdvz5//7v/yo8hmEY6mEmdcaVqT9mZDKwtCSxz9IoSsosIjT0IYgQT2UwGHD58mU0b978tjXJvMVcUlZBA/JILXhlgrx37163Xn/ZsmX48MMPkZWVhTvvvBOffvopEhMTb3vepk2bMGbMGAwfPhxbtmxxa4ykfvB65/pj4rs0SgVy9QbYOA6yavZOEULqn06nQ1paGpo2bVrpMQLHwXjqL5rKjdSaVybISUlJbrv25s2bMW3aNKxcuRJdu3bF4sWLMXDgQKSmpiIiIqLS89LS0vB///d/6N27t9tiI/WLt1oh2P5dYY2Wl/ZtapkMUgmLYjMtGkKIpyssLMT169cRGxtb4X7Tub/BGXT1HBXxJV45SK+ss2fPYseOHdixYwfOnj1b5+stXLgQ48ePx7hx45CQkICVK1dCrVZj7dq1lZ7DcRwee+wxzJkzp8pPtMS78Hq903ua3s23MQwDjUIBrZl6nAjxBjk5OcjNzS233Zx2Bba88tsJqQmvTZB//PFHNGvWDO3bt8fQoUMxdOhQtG/fHs2bN8fWrVtrdU2r1Yrjx4+jf//+jm0sy6J///5ISUmp9Lx33nkHEREReOaZZ6p1H4vFguLiYsdLf0siRjwDZ/y3XViFAozUKx+4kBrQKBUwWK2w8zTanRBvcP36dRQX/7tctC0/D5a0KyJGRHyFVybI27dvx8iRIwEA8+fPxw8//IAffvgB8+fPhyAIGDFiBJKTk2t83by8PHAch8jISKftkZGRyMrKqvCcgwcPYs2aNVi9enW177NgwQIEBgY6Xu4sGSG1I/A8eKPR8Z6h+uMGQaNQgAWDYupFJsQrCIKAq1evwmKxgDebYTp3RuyQiI/wyi6xuXPnokOHDjhw4AD8ytSFPvDAA5g8eTJ69eqFOXPmYNCgQW6NQ6fT4YknnsDq1asRFhZW7fOmT5+OadOmOd6fPHmSkmQPwxsNTtO7SdRUXtEQsAwDf4UcWpMFIdTmhHgFu92Oy5cu4Q6jHoKd5jInruGVCfKpU6cwf/58p+S4lJ+fH5566im8+eabNb5uWFgYJBIJsrOznbZnZ2cjKiqq3PGXL19GWloahg0b5tjG//NoViqVIjU1Fc2aNSt3nkKhgELx75K2/v40rZSn4ZzKXhiqP25AApRK3NRqYed5SOu4tC0hpH4UX09HmtGAJiFBYodCfIRX/vRXKpUoKCiodH9BQQGUSmWNryuXy9G5c2fs2bPHsY3neezZswfdu3cvd3zr1q1x+vRpnDx50vF64IEH0LdvX5w8ebLS0bXE85VNkFmVCgxN+9VgBChLPrxSmQUh3oEzGmEvKECx2YysYpq5griGV/Yg9+vXD0uWLMGgQYPKJa5HjhzBJ598ggEDBtTq2tOmTcOTTz6JLl26IDExEYsXL4bBYMC4ceMAAGPHjkVMTAwWLFgApVKJdu3aOZ0fFBQEAOW2E+/BmUxAmYnlWZryq0GRsCz85HJoTWYqsyDEwwl2O2yZGQBKSuJy9QbIJRKE+PDP7c8++wx6vR7+/v54/vnnxQ7HZ3llgvzBBx+ge/fu6NWrFxITE9GqVSsAQGpqKo4ePYqIiAi8//77tbr26NGjkZubi5kzZyIrKwsdO3ZEcnKyY+Beenr6bVfvId6N1zv3QLAqGqDX0ASqlLipLYad4yClpweEeCxrVka5uuObxcWQSFgE1uJJsjfQ6/VOM3cQ9/DKBDk+Ph6nTp3CggULsGPHDmzevBkA0KRJE7z88st44403qlzU43YmT56MyZMnV7hv3759VZ67fv36Wt+XeAan+Y9ZFqxKJV4wRBQldcjF0NKiIYR4LFt+HniDofwOAbheqIUkhIF/mfE+hNSEVybIABAREYFFixZh0aJFYodCfAhvtYK3WhzvJWo/MAwjYkREDFKWhb9cjkKTiRJkL1b2e7eyP1fn/e22V4rnIXCc04w4teG1v6jdiNPrYc/Lq3S/IAi4VlCEuJBg+Cnk9RgZ8RX0fUdIGbzulvIKWl66wQpUKXGzqBgWux0KWiTGZSQSCViWBcuykEqlkMlkkMlkjtl9VCoVpP/8fVeVkFY3qa0PAs+D0xbBrtWC1xeDMxohmEwQBNcsOKMy0GJSZfEWC6yZN1Fad1zpcYKAtIJCSpJJrXjFT/2nn34aDMNg1apVkEgkePrpp297DsMwWLNmTT1ER3wJp3eu65LQAiENVoBSiQymGEUmEyI1GrHD8Rkcx4HjOAAlq4pWRCaTQa1WQ61Ww9/fH/7+/h439kPgedjzcmDLyYG9IB8Cz4kdksO8efNgt9shlUrx1ltviR2OSwkcB+vNG0A1V7ssTZIbBwdBo6RyC1J9XpEg//rrr2BZFjzPQyKR4Ndff71tbwE9Fic1JVit4MtM7cXIFWDk1OvQUElZFv4KBQpNZkqQ65nNZoNWq4VWqwVQ8vPcz8/PsfqoSsRxAbzZDOuN6xUODvMUdrsdgiDAbrff/mAvIggCrDdvQLBZa3QeLwi4VliImMBABKtpTAmpHq9IkNPS0qp8T4grcLfMXiHxowVcGroglRLXC7XQWyw02EdEgiBAr9dDr9fj5s2bUCgUCA4ORkhISL0ly7zJBHPaFdhysgEXlU6Q6hMEAbaMm+BNxlqeD9wo0sLGcYjQ0M92cntekSDfKj09HeHh4ZX+YDSZTMjNzUXjxo3rOTLizTidc3kF60/lFQ1dgFIJli1GodFECbIHsVgsyMrKQlZWFlQqFcLCwhAaGgqJG6bkE+x2WNKuwnLzOiXGIrJlZ5XrxKiNbJ0eZrsddwQFgqUnzaQKnlXUVU3x8fH44YcfKt2/detWxMfH12NExNvdWl5RMr0bzV7Q0LEMg0ClEsVmC7hq1jyS+mUymXD9+nWcOnUK165dg8lkctm1bTnZ0B9NgeXGNUqORWTNyQKnLXLZ9bQmMy7l5sNs860SFOJaXtmDLNxmyhybzeZxAzqIZ7Pryg/Oozp2ApSUWRQaTSgymWnKNw/G8zzy8vKQl5eHgIAAREVFQVPL2nHeaoX5YipsudkujpLUlDU7C1xRocuva7HbcSkvH1EB/gij2YpIBbwmQS4uLkZRUZHjfX5+PtLT08sdV1RUhE2bNiE6OroeoyPeji9XXkE1aqSEv0IBmVSCAqOREmQvUVxcjOLiYvj7+6NRo0Y1SpTthQUwnTvjNB86qX+CIMCWlQmuWOvWe2RqddCazIgJCoSSpnMkZXjNv4ZFixbhnXfeAVAyonnKlCmYMmVKhccKgoB58+bVY3TEm/EWM3in6aYYGqBHnISoVMjW6WGwWuFHM5t4Db1ejwsXLkCj0SAmJgZ+t+kptFy7CvPVK7jd/LrEvQSOgzXzZsWr5LmB0WrDpdw8hKjViND4Q1rNJ9CMTA5GJgPD1O2JNWv/99/b7Z6QA4Cfnx8EQXD8n7iH1yTIAwYMgL+/PwRBwGuvvYYxY8bgrrvucjqmdCqgzp07o0uXLiJFSryNXevcQ8GqVGCoJ4GUEaxWIVuvR4HBSAmyF9LpdDh//jyCgoLQqFGjcgO8BY6D6fxZKqnwAILVCmvGjVs6LerhvgKQbzCi0GRCmJ8fQv3UTokyI5NDGhwCaVAwJAEBYFVqMC4aFGrJzwdzKKXaye7zzz9f43swDAM5/eyqEa/JArp3747u3bsDAAwGA0aOHIl27dqJHBXxdoIggCu+pf6YyivILWQSCfzlCmjNZkRzHKRumC2BuF9RURGKiooQFBSEqKgo+Pn5gbdaYTx9stwsNqT+cXo9rFkZACfeois8LyBHp0ee3oBAtRoRsXcgOK4pJMEhbhuXEhoaikmTJsFqrdn8zjUhl8sRGhrqtuv7Iq9JkEsZjUZ88sknUKvVlCCTOuMNBoBzHsnM+tOiEKS8ED8V9BYL8o1GWjjEy5UmymqZDP55OdAwAg3KFZEgCLDl5oArLBA7lBIsCzYwGKaQEKQLLLJuZiDIYIRGo4G/v79jKXRX0tisEKzm2x9YS/TPu+a8LkFWq9WQSqW3rSUjpDpunTqIVSjA0mMoUoEAhQIyCYt8gwnh/v40h6qX4y0W5F+6iHzODpmERbBahWCVCnIPL6+qzmN4qVTqWGra02tUOaMRtuwsCB4xKJKBJDAQsrBwpzI7q9WKnJwc5OTkAChZCl2pVEIul0MikdT5wxWflwvrkg/qdI3qaLxgIeRRNIFBdXn2T4JKjBw5Et9++y0mTpxIn/pJrQl2OziD3mkbSz2DpBIMwyBErUa2To8iowkhNKOF1+LNJlhu3HA8PbJxPHJ0BuToDPCTyxGkUiJApaz2YC0HhoVE7QfWTw1WqSoZxCWRAGzdfk9ptFowf56qdrI7Y8aMWt2ncePGCA4OrtW5QEnyzvM8bDYbLBYLTCYTzOaKe0UFmw22vJxyJW5iYRUKSCOjIanGyow2mw02m+uWGWdzs1Efv3kEi/t6qH2RVybIjzzyCF544QX07dsX48ePR1xcXIWr6t06iI+QsjittmRkRhkS/wCRoiHeIFitQo5ej1yDAcFqFX1A90K8xQzLjeuV1rkarFYYrFbcLC6Gn0wOjVIBjUIBpaziX5cS/wBIw8IgDQqBJCAAjBvm4I+KauS1Naocx0Gv16O4uBiFhYWwGgywFRaUPL3ziN5tBtKQEEjDwj3j+7kaMTy0dSdyTSaEq1T44YGBt7+mR/w9ex+vTJD79Onj+POBAwfK7ReEknoyTsRCf+L57LeUVzByBVhaTphUQSaRIFCpRJHJDK3ZjKBq9DYRz8FbLLBcrzw5diL8myxnQQephIWfXF7y8vOHJjYWykYx9bbiprcOsJJIJAjw94faYkIIeBQVF6LAYkIxBPEn05NIIY+O9rppPXNNJmQbXbdiJKmYVybI69atEzsE4uU4vR6Czbk3RkKD80g1hPn7ochkRq7eQAmyFxFsNlhvXC83KLe67BwPHS/AqPZHgX8AWK0OCvNVqFQqKBQKKBQKyGQyyGQySKVSSCQSsCzrsl5Ja1amWx+RMwqlS+pTBbsdvMUC3mwCpysGp9WCKyqE8M9S3f4KOfwVclg5Drl6AwqNRlE6OFmFEvKYO8DIZPV/c+IVvDJBfvLJJ8UOgXg5e1H50dKSACqvILenksngp5DDYLFCazIjUKUUOyRyGwLHwXLjOgR77epGGZkcsvBwSDT//owQBAFms7nSGlvHuS5IkNmiAvh/sabO16mSICBkxGhIAgPreB2+WofJJRLEBAYgzK+krl9rqr/6WNbPH/JGMW4phyG+wysT5LL0ej2uX78OAIiNjYU/zWFLboO3Wsut0MQqqLyCVF+4nx8MFiuydXoEKBWeUbtIKiTwPKw3b9RulgSWhSw0rE5z4LpiFgmhhrXH7b/4Blaeg5yV4PQTD1f/PjZrtRNcV1FIpWgcHASd2oIMbTGsdveWRkoCgyCLjKLvWXJbXvvx6Y8//kDfvn0RHByMdu3aoV27dggODka/fv1w7NgxscMjHqzC3mMN9R6T6tMoFVDJZLDY7Siqx54vUjOCIJSsymYy1vhc1s8PyrimkIaEelYyxTC3fVl5DrwAWHmuWsd7Ao1CgRbhYW6dHUYSHAx5VLRntSfxWF7Zg3zkyBH06dMHcrkczz77LNq0aQMAOHfuHP73v//hnnvuwb59+5CYmChypMTTCHZ7yewVt6AEmdRUuL8f0guLkK3TI1ClpHmRPYwgCLBl3Cz3tOi2WBay8AhIg2o/3RmpHZZhEBMYAI1CjhtFxeB41/VmS4JDII+IdNn1iO/zygR5xowZiImJwcGDBxEVFeW0b/bs2ejZsydmzJiB3bt3ixQh8VT2okLglh+6rEoNhhYHITUUqFJCoZfCYrMjT29AhMZ7yrvmzZvnWEjirbfeEjsclxMEAbbMDHB6XY3OY+QKyBvFULmVyAKUSjQPk+JaYRHMttoNqixLEhRMyTGpMa8ssThy5Aief/75cskxAERGRuK5557D4cOHRYiMeDKB40oS5FtIAuo4KIU0WJH/jHnI1Rtg9aJpJe12OwRBgN1e9+TD05T2HHO6mi1AIdEEQNG4CSXHHkIulaJZWCgClHUbBCsJCIA8snyuQMjteGWCzLJslT/YOY4DS6NTyS24oqLy858yDCS0eh6ppUCVEiq5DLwgIFPrGSuCNWQCx8F643qNe46lYWElsxpIJG6KjNQGyzBoHByI0FrWJbNqP8iiGrk4KtJQeGUW2aNHDyxbtgzXrl0rty89PR3Lly9Hz549RYiMeCqB42ArzC+3XaLR0C9FUidR/5RWFJst9TpVFXEm2O2w3kgHb6xBzTHDQBbVCLLQcPcFRuqEYRg0CgxAZEDNSpjYf8plaEAeqS2vTJDnz58PrVaL1q1b49FHH8Xs2bMxe/ZsjBkzBq1bt4ZWq8WCBQtqff1ly5YhLi4OSqUSXbt2xdGjRys9dvXq1ejduzeCg4MRHByM/v37V3k8EYe9qKDC1bOovILUlb9CgQBlyWP5jOJi2F04sIhUD28xw5KeBv42cxI7YVnIY+6AtK7z/pJ6EeHvj0aB1RxMLZGWLALio50f4SoVItUqhNNCRW7llYP0OnXqhCNHjmDGjBnYunUrjMaSKXzUajUGDRqEefPmISEhoVbX3rx5M6ZNm4aVK1eia9euWLx4MQYOHIjU1FRERESUO37fvn0YM2YMevToAaVSiffffx8DBgzAmTNnEBMTU6evk7iGYLfDXlB+ajdGJvO6JUaJZ4oK0EBnscLO8bhRpEVcCM2AUF84nRbWrKxyg2+rxLKQx8RCoq6fZaKJa5SWWmRUVc7EMJA3auTTA69/eGCg2CE0CF6ZIANAQkICfvjhB/A8j9zcXABAeHh4nWuPFy5ciPHjx2PcuHEAgJUrV2Lbtm1Yu3Yt3njjjXLHf/XVV07vP//8c3z33XfYs2cPxo4dW6dYPNlnn30GvV4Pf39/PP/882KHUyVbXm6FvzylgZTEENdQSKUI81MjV2+AzmxBnsGAMD8/scPyaYIgwJabDa6w/MDbKrEs5Hc0hoR637xSqJ8agiAgs7jiOnNZWAQkavreI3XnlSUWZTEM4/SqC6vViuPHj6N///6ObSzLon///khJSanWNYxGI2w2G0JCQio9xmKxoLi42PHS6/V1ilsMer3eK2LnzaYK5z0Gw9R9SVVCyojQ+EMhLelzyCrWQW+pxcptpFp4iwXWa2mUHDdQYf5+iNCUT4Il/hpIq/jdS0hNeG2CfPbsWYwaNQoBAQGIjo5GdHQ0AgICMGrUKPz999+1umZeXh44jkNkpPN8iZGRkcjKyqrWNV5//XU0atTIKcm+1YIFCxAYGOh4JSUl1SpeUjVBEGDLzgJQfqlXiUYDRuq1D1CIB2IZBjFBAQADCAKQXqiFxQenUROTIAiw5+fBcu0qeEsNB0SWllU0gORYzkrAMiX/91WRGg1C1P+2JSOTQxYVLWJExNd4ZYZw4MAB3H///eB5HsOHD0fLli0BAKmpqdi6dSt27NiB5ORk9O7du17jeu+997Bp0ybs27cPyirmbpw+fTqmTZvmeH/y5ElKkt2AKyyodNCOhFbJIm7gJ5cj3M8PuXoDOJ7H1fwCNA0NgdzDPoxJpVLHQiHegjPoYcvJgWCtRc88w0AeHdNgao5Pj/2P2CHUi0aBAbDxPHQWK+TRjXx2UB4Rh/f8dCxj6tSpiIiIwG+//YbY2FinfdevX8c999yDadOm4Y8//qjRdcPCwiCRSJCdne20PTs7u8JFScr66KOP8N577+GXX35Bhw4dqjxWoVBAUWYyen9/GijmarzFAlt+XoX7WKUSElXD+EVJ6l+kxh96qxUmqw02Abiq1SE+KhIqpbLkFzjLgmFZgGEBhil51ZG0zKAlQSj/xORWM2bMqNHxpQIDA6ssH6sOQRDA8zw4joPdbofNZgNXxSIrvMkEW35uzZeMLkMWGQUJ/Zz1OQzDIDYoENelCtgbwJMBUr+8MkE+c+YM5s6dWy45BoDY2FhMnDgRs2fPrvF15XI5OnfujD179uDBBx8EAPA8jz179mDy5MmVnvfBBx/g3Xffxc6dO9GlS5ca35e4VskyszcrHdUuCaYaNVI3DMOCUanAKpRglUowCiVYhQKMXA5WLkdbAUi9fNkx5dtNiQTx8fEIdFPduyY/H8yu3TVKdmuKYRjExcUhNDTU5dfmeR5WqxUWiwVmsxkmkwn6nBzoMjPAGeo2zkEWEQlpYJBrAiUeRxEeidYtW+P8+fM+uTIkEY9XJshNmjSBpYoBMFartcLkuTqmTZuGJ598El26dEFiYiIWL14Mg8HgmNVi7NixiImJccyz/P7772PmzJnYuHEj4uLiHLXK/v7+1DMsElt2FvhK/n0wMhkkmmrOpUkaPEYmh8TPD6yfPyRqP7BqNViVGoxCUeWgYAmA5i1bIjU1FYIggOM4XLp0CWFhYYiJiXF5aUNoaCgmTZoEq9Xq0uuWJZfL3ZIcAyWDoZVKJWQcB4XJCHVWJoLNRvABfjCp5DBabdBbrDBareBr8CFAFhYBKX0g9lmsUgV1m7ZgpFI0bdoUFy9edOuHRNKweGWCPHPmTEydOhVDhgxBx44dnfb9+eef+PTTT7F48eJaXXv06NHIzc3FzJkzkZWVhY4dOyI5OdkxcC89Pd1pKrkVK1bAarVi1KhRTteZNWtWrXqxSd3YC/LBaYsq3S8NCaGVlUiFWIUSEk3APy8NWD9/sGVKoWrKz88PzZo1w+XLlx2/tPPy8lBYWIjw8HCEhoZWOVahpjQ2KwSr+1byc/W3jcDz4E0mcHoduGIt7Pn54M1Gp2NYhoGfXF5S2+3vB14QYLRaUWy2oNhsga2K0gxZWASkbkroifgYVgJ1uzsdg601Gg0aN25c4Qq7hNSGVybIhw8fRmRkJDp37owePXqgefPmAICLFy8iJSUF7dq1Q0pKitPUbAzDYMmSJdW6/uTJkystqdi3b5/T+7S0tFp9DZ6sOp/A/fz8IAiC4/+ewK4tgi03p/IDJFJIAoLqLR7iuVi5Eqy/PyQajSMprksyXJnAwEA0bdoUV65ccXyfcByHrKwsZGVlQSaTQalU1vlDG1tUCGH5IleEXLF/Yg8f9xykwXUY4CqULNwj2KwlT3mEmq06yDIM/BUK+CsUaBQIGKxWaE1mFJnM4MqUVMkiIqnn2MepWieUqysPCwuDxWKp9qxThFTFKxPkpUuXOv78+++/4/fff3faf/r0aZw+fdppW00S5IZILpeDYZhqJ7u1XRykZcuWdRrkIwiC45F16SAfu90OY8ZN6ArzAYmk0l4lWUhIyeAo0kAwYBUKsP+URkjUfmD9/CDx8wcjk9VbFEFBQWjZsiUuX75crkbSZrPBZrPV+R6ywgLUZNhp+y++gZXnIGclOP3Ew9U+z56XW+Ok1p1Ke5ejAzQoNltQYDLDEhRCy0f7OGV8M8giIivcFxMTA6vVioIKVk8lpCa8MkHma7KkKKkWb61hFHge5ksX4KfXIjy0JPHmBQFmmx1muw0mqw1Gmw0WgQbn+RSGBSuTgZHJSwbGKRRgFIp/B80pVSX/95APRP7+/khISMC1a9egrWjhGleqRm+0lefACyX/r1bthIc8JaoMwzAI8vdHo249wKn9kJOTg7y8PPpd4YPkUY2gaBJf5TFxcXHgOM7932vEp3llgkzcw10DcNzFXpAP06UL4I3O0z+xDAO1XAa1XIbSbjV50xawBgY5Vi80VzI/MqkbRiYFI5PX4QKM4/8My/47JRorASOVgJFIwUhLXiVTpLElp/wzZZog8CVzX1ss4HRsSemCY1o1BpBIHFOsMSz77/vSY9xIJpOhefPm0Gq1yMzMhKEO05YRZ6xSDXX7OyHx84MUJbMZNWrUCDk5OcjJyaHZDXyENCQMypatb3scwzBo2rQpLl26BJ2u4iWpCbkdr06Qr169ih07djiK8ps0aYL7778f8fFVf7okFbNmZUKo6epU1SRwHMCykEVUPZ/0ba9jMYPT6WDLzqz29E+s2g/KO2KhYlnHNFtmsxlarRaFhYWUqLiQYCupL3XJtVxylRooTZrZMskzUzZJZ52T7dIkvvTPDAuwjHPijtL3JdcHACUDxGv8YFHIoDeYYLZa6lzHzwBoqH2l0pBQqNu0K1c2I5FIEB0djcjISOTk5CA7O5sSZS8mDQyGum37an+QZVkWzZs3pySZ1JrXJsivvPIKlixZUu4RGsuymDJlCj766CORIvNO1qxMpE+fdvsDa+ufBCDkoYchqef6QGWzFuV+qCqVSiiVSkRGRsJisaCgoAD5+flVTh9IfJzAQ+B4gKu/5Nzvn1dd2Y16FLrgOl6FYaGMi7/t43aWZREVFYXw8HDk5uZSouyFJAFBULe/s8Yr5ZUmyZcvX0ZxcfHtTyCkDM8o0Kuhjz/+GIsWLcKIESOQkpKCoqIiFBUVISUlBaNGjcKiRYuwaJEbR3T7oJr2HD/00070+vpHPPTTzprdp55/MUlDwiALDavyGIVCgejoaLRr1w4tWrRAcHAwTQVHiAdj1X7w69T5tslxWRKJBFFRUWjfvj0aN27stJop8VzSwCD4dejomM6tpkqT5OC6zL5CGiSv7EFevXo1HnjgAXz99ddO27t27YpNmzbBbDbjs88+w9SpU0WK0MtVIznMNZmRbTRV+3gxBvkwEilU1ahXKysgIAABAQGwWq3Izc1Fbm5ulcvgEkLqEcNCEdsYirimta4ZZ1kW4eHhCA8Ph1arRU5ODvUueihpSCjUbTvUuOf4VgzDID4+HjKZDDk5VUwFSkgZXpkgp6Wl4eWXX650/8CBA5GcnFyPERFPpIhvBraWCzHI5XLExMQgKiqKHssS4gGkIaFQNmsJiZ8rilJKBAYGIjAwEFarFfn5+VRm5UHkUY2gbNnaZYNnGYZBbGwslEolrl+/7jHz9xPP5ZUJckREBP76669K9//1118IDw+vx4iIp5EGhUAec0edr1P6WDYiIsKRKLti3lpCSPVIA4OgiGvq1oU/5HI5oqOjER0dDYPBgMLCQhQVFVGyLAoGyqbNoWjcxC1XDw8Ph0qlwpUrV+hnOamSVybIDz/8MJYsWYK4uDi8+OKL8PunR8FgMGDp0qX4/PPPMWXKFHGDJKJhZHKoEtq5tI6YZVlERkYiIiIC+fn5yM7OpqniiNeSsxLHQiEeiWEhCw2F/I4mkAYF1eut/fz84OfnhzvuuAMmk8kxNaRer6d5ld2MkcmhbtMW0hD3TjlaOi95WloazZVMKuWVCfLcuXNx8uRJvPnmm5g5cyYaNWoEAMjIyIDdbkffvn3xzjvviBwlEQXDQp3QDqy8DnPxVnV5hkFYWBjCwsKg0+mQk5MDrVZLj+uIVzk99j9ih1AhiSYQsogIyCKi3LL0d02pVCqoVCpERkZCEAQYjUYYDAYYDAaYTCaYzWb63ncRaVAIVG0SwCpqVxZX4/tJpWjevDlyc3Nx48YN+vBDyvHKBFmtVmPPnj348ccfneZBHjRoEAYPHoxhw4bRLAQNlKpVa7c+ii1Lo9FAo9HAZrM5pokzmUz1cm9CvB0jk0OiVoP110AaGAhJUIjbPtiWEgTh3wHDt/xZKLu93P9L/qxiGSj9/RH6z1NLQRBgsZhhsVphtdocS4fbOQ48x4HnefAuSKAZ+O7vM0YihbJpc5eUxNVGeHg4AgMDcf36dRQVFYkSA/FMXpcgG41GPP744xg5ciQee+wxDB8+XOyQiIdQNm8FeVSjer+vTCZDZGQkIiMjYTKZUFhYiMLCQirBIL5HwoKRyG5/XJXXkJSshsiyEDgenFYLrqgIuHYNTjNQl+anuDVh/ec/tySyQlWJb5kk1x0kAFT/vNzBZtCiyE3XFg8DeVR0yWBqkZ8WyOVyNGvWDDqdDjdv3qTFowgAL0yQ1Wo1fvnlF9x///1ih9KghatUTv8XFcNC1aIV5I1ixI7E8Ui2UaNGsFgs0Gq1jvpFmi6OeD2Oh8DVcWATZ4PgmsUWiVdiIIuIgKJJPCR+/mIH40Sj0aB169YoLi5GdnY2Tf/XwHldggwAvXr1QkpKCsaPHy92KA3WDw8MFDsEAACrUEKV0A7SwCCxQylHoVAgIiICEREREAQBJpMJer0eRqMRRqOR6hcJIQ0Gq1RBFhkFeXRMraffrC+l8+GbzWbk5+ejoKAAVit9qmtovDJBXrp0KQYOHIi33noLEyZMwB13iFO7RMTDSKSQ3xELReO4Ok8iXx8YhinpXS79xSAIEHgeFosFZosFVrMZVpsNVqsVdrv93xrGf46rK8//GyKE+BJWrnDUl0tDQiHRBIgdUo0plUrExMQgJiYGJpMJOp0Oer0eJpMJFouFOjh8nFcmyHfeeSfsdjsWLFiABQsWQCqVlls2lGEYmr7FE0klYGS1rWFkwMhlkPj5QxIUDIZlYcvN/re0sOwPK0EoqV0U8G/94T9/Fkrf8//+XxD+SUJ53pG8ltQy8hB44ZY/8yXnCv+cJ6BkW+m1SxPaatY/sgCU/7zchTebke/G6xNCfIBEAtShxpxhALAlP+MZloVgs8GWlwdbXl4NrlKNpLO6eWmVCWzNk1v1P69SNo4Dx/N1TpQ5iwn6Ol2BuINXJsgjR46kWSq8lZ2DUIfJ2QWbFbzBAFtOtguDIoQQAo4D6lBjXpIm2iBYG8YAZfafV13Z7LRgiSfyygR5/fr1YodACCGEEEJ8lFclyGazGT/++COuXr2KsLAwDBkyBNHR0WKHRQghhBBCfIjXJMg5OTno0aMHrl696qj3UavV2LJlC/r37y9ydIQQQgghxFe4onymXsydOxdpaWmYOnUqfv75ZyxevBgqlQrPP/+82KERQgghhBAf4jU9yLt27cLYsWPx0UcfObZFRkbi0UcfRWpqKlq1aiVidIQQQgghxFd4TQ9yeno6evXq5bStV69eEAQB2dk0owEhhBBCCHENr0mQLRYLlLesvlP63m63ixESIYQQQgjxQV6TIANAWloaTpw44XidOnUKAHDx4kWn7aWv2lq2bBni4uKgVCrRtWtXHD16tMrjv/nmG7Ru3RpKpRLt27fH9u3ba31vQgghhBAiLq+pQQaAt99+G2+//Xa57S+88ILTe0EQwDAMOI6r8T02b96MadOmYeXKlejatSsWL16MgQMHIjU1FREREeWOP3ToEMaMGYMFCxZg6NCh2LhxIx588EGcOHEC7dq1q/H9CSGEEEKIuLwmQV63bl293GfhwoUYP348xo0bBwBYuXIltm3bhrVr1+KNN94od/ySJUswaNAgvPrqqwBKZtvYvXs3li5dipUrV9ZLzIQQQgghxHW8JkF+8skn3X4Pq9WK48ePY/r06Y5tLMuif//+SElJqfCclJQUTJs2zWnbwIEDsWXLlkrvY7FYYLFYHO/1eg9bhb2O68oTD0ft69uofX0bta9vo/b1GF6TINeHvLw8cByHyMhIp+2RkZE4f/58hedkZWVVeHxWVlal91mwYAHmzJlT94BdiFEob3+QCyiat4AsLLxe7kX+xWm19XIfal9x2PPz6+U+1L7ikASH1Mt9qH3FUV/tW1+/530FJcgimD59ulOv88mTJ5GUlCRiRIA8KhqNFyyEYDG77R6MQgl5FC0NLoqYWGpfH6ag9vVp1L6+jdrXM1GCXEZYWBgkEkm5eZWzs7MRFRVV4TlRUVE1Oh4AFAoFFAqF472/v38donYd+ubxbdS+vo3a17dR+/o2al/P41XTvLmbXC5H586dsWfPHsc2nuexZ88edO/evcJzunfv7nQ8AOzevbvS4wkhhBBCiGejHuRbTJs2DU8++SS6dOmCxMRELF68GAaDwTGrxdixYxETE4MFCxYAAF5++WUkJSXh448/xpAhQ7Bp0yYcO3YMq1atEvPLIIQQQgghtUQJ8i1Gjx6N3NxczJw5E1lZWejYsSOSk5MdA/HS09PBsv92vPfo0QMbN27EW2+9hTfffBMtWrTAli1baA5kQgghhBAvxQgCzSkithMnTqBz5844fvw47rrrLrHDIYQQQghp0KgGmRBCCCGEkDIoQSaEEEIIIaQMqkEmtZaZmYnMzEyxwyCEEEIalOjoaERH09Rw7kQJsgeIjo7GrFmzvOofu8ViwZgxY/Dbb7+JHQohhBDSoCQlJWHnzp1OayoQ16JBeqRWiouLERgYiN9++81jFjohrqPX65GUlETt66OofX0bta9vK21frVaLgIAAscPxWZQgk1opTZDpG9Q3Ufv6Nmpf30bt69uofesHDdIjhBBCCCGkDEqQCSGEEEIIKYMSZFIrCoUCs2bNogECPora17dR+/o2al/fRu1bP6gGmRBCCCGEkDKoB5kQQgghhJAyKEEmhBBCCCGkDEqQCSGEEEIIKYMSZCK6tLQ0MAyD9evXix0KIYQQQgglyN7m8uXLeP7559G0aVMolUoEBASgZ8+eWLJkCUwmk9vue/bsWcyePRtpaWluu0d1vPvuu3jggQcQGRkJhmEwe/ZsUeMRC8Mw1Xrt27evzvcyGo2YPXt2ja5F7VR3ntzG58+fx2uvvYaOHTtCo9EgOjoaQ4YMwbFjx+ocS0Phye2bkZGBxx9/HK1atYJGo0FQUBASExOxYcMG0Lj+6vHk9r3VV199BYZhaNXFW0jFDoBU37Zt2/Dwww9DoVBg7NixaNeuHaxWKw4ePIhXX30VZ86cwapVq9xy77Nnz2LOnDno06cP4uLi3HKP6njrrbcQFRWFTp06YefOnaLFIbYvvvjC6f1///tf7N69u9z2Nm3a1PleRqMRc+bMAQD06dOnWudQO9WdJ7fx559/jjVr1mDkyJF44YUXoNVq8dlnn6Fbt25ITk5G//796xyTr/Pk9s3Ly8ONGzcwatQoNG7cGDabDbt378ZTTz2F1NRUzJ8/v84x+TpPbt+y9Ho9XnvtNfj5+dU5Dl9DCbKXuHr1Kh555BE0adIEv/76K6Kjox37Jk2ahEuXLmHbtm0iRvgvQRBgNpuhUqlcfu2rV68iLi4OeXl5CA8Pd/n1vcXjjz/u9P7w4cPYvXt3ue1ioXaqO09u4zFjxmD27NlOPU5PP/002rRpg9mzZ1OCXA2e3L4dOnQo1xs5efJkDBs2DJ988gnmzp0LiUQiTnBewpPbt6x58+ZBo9Ggb9++2LJli9jheBQqsfASH3zwAfR6PdasWeOUHJdq3rw5Xn75Zcd7u92OuXPnolmzZlAoFIiLi8Obb74Ji8XidF5cXByGDh2KgwcPIjExEUqlEk2bNsV///tfxzHr16/Hww8/DADo27dvuUdDpdfYuXMnunTpApVKhc8++wwAcOXKFTz88MMICQmBWq1Gt27d6pTIi9l77W14nsfixYvRtm1bKJVKREZG4vnnn0dhYaHTcceOHcPAgQMRFhYGlUqF+Ph4PP300wBK6sNLE9w5c+Y42v52JRPUTvVDrDbu3LlzucexoaGh6N27N86dO+faL7IBE/N7uCJxcXEwGo2wWq11/tqI+O178eJFLFq0CAsXLoRUSv2lt6K/ES/x008/oWnTpujRo0e1jn/22WexYcMGjBo1Cq+88gqOHDmCBQsW4Ny5c/jhhx+cjr106RJGjRqFZ555Bk8++STWrl2Lp556Cp07d0bbtm1xzz334KWXXsInn3yCN9980/FIqOyjodTUVIwZMwbPP/88xo8fj1atWiE7Oxs9evSA0WjESy+9hNDQUGzYsAEPPPAAvv32Wzz00EOu+wsi5Tz//PNYv349xo0bh5deeglXr17F0qVL8eeff+L333+HTCZDTk4OBgwYgPDwcLzxxhsICgpCWloavv/+ewBAeHg4VqxYgYkTJ+Khhx7CiBEjAJT0MBHxeVobZ2VlISwszKVfY0MmdvuaTCYYDAbo9Xr89ttvWLduHbp37+6Wp4MNkdjtO2XKFPTt2xeDBw/G119/7dav1SsJxONptVoBgDB8+PBqHX/y5EkBgPDss886bf+///s/AYDw66+/OrY1adJEACDs37/fsS0nJ0dQKBTCK6+84tj2zTffCACEvXv3lrtf6TWSk5Odtk+ZMkUAIBw4cMCxTafTCfHx8UJcXJzAcZwgCIJw9epVAYCwbt26an19giAIubm5AgBh1qxZ1T7Hl02aNEko++184MABAYDw1VdfOR2XnJzstP2HH34QAAh//PFHpdeuy981tZPreGobl9q/f7/AMIzw9ttv1/oaDZkntu+CBQsEAI7XvffeK6Snp9foGqSEp7Xvzz//LEilUuHMmTOCIAjCk08+Kfj5+dXgK/J9VGLhBYqLiwEAGo2mWsdv374dADBt2jSn7a+88goAlCtxSEhIQO/evR3vw8PD0apVK1y5cqXaMcbHx2PgwIHl4khMTESvXr0c2/z9/fHcc88hLS0NZ8+erfb1Sc188803CAwMxH333Ye8vDzHq/TR+N69ewEAQUFBAICff/4ZNptNxIhJTXlSG+fk5ODRRx9FfHw8XnvtNbfco6HxhPYdM2YMdu/ejY0bN+LRRx8FALfOltSQiNm+VqsVU6dOxYQJE5CQkOCSa/oiSpC9QEBAAABAp9NV6/hr166BZVk0b97caXtUVBSCgoJw7do1p+2NGzcud43g4OBydVBViY+PrzCOVq1aldteWppxaxzEdS5evAitVouIiAiEh4c7vfR6PXJycgAASUlJGDlyJObMmYOwsDAMHz4c69atK1erTjyPp7SxwWDA0KFDodPp8OOPP9JUUS7iCe3bpEkT9O/fH2PGjMFXX32Fpk2bon///pQku4CY7bto0SLk5eU5Zr4gFaMaZC8QEBCARo0a4e+//67ReQzDVOu4ykYjCzWY75Jq0jwLz/OIiIjAV199VeH+0kEdDMPg22+/xeHDh/HTTz9h586dePrpp/Hxxx/j8OHDlOx4ME9oY6vVihEjRuDUqVPYuXMn2rVrV+trEWee0L63GjVqFFavXo39+/eXe2JIakas9tVqtZg3bx5eeOEFFBcXO55Q6/V6CIKAtLQ0qNVqRERE1O0L9AGUIHuJoUOHYtWqVUhJSUH37t2rPLZJkybgeR4XL150GkiXnZ2NoqIiNGnSpMb3r26yfWscqamp5bafP3/esZ+4R7NmzfDLL7+gZ8+e1frw0q1bN3Tr1g3vvvsuNm7ciMceewybNm3Cs88+W6u2J+4ndhvzPI+xY8diz549+Prrr5GUlFSbL4NUQuz2rUhpz7FWq3XJ9Roysdq3sLAQer0eH3zwAT744INy++Pj4zF8+HCa8g1UYuE1SifyfvbZZ5GdnV1u/+XLl7FkyRIAwODBgwEAixcvdjpm4cKFAIAhQ4bU+P6lk4gXFRVV+5zBgwfj6NGjSElJcWwzGAxYtWoV4uLiqPbJjf7zn/+A4zjMnTu33D673e5ox8LCwnJPCjp27AgAjkd4arUaQM3anrif2G384osvYvPmzVi+fLlj5DxxHTHbNzc3t8Lta9asAcMwuOuuu6p1HVI5sdo3IiICP/zwQ7lX3759oVQq8cMPP2D69Om1/8J8CPUge4lmzZph48aNGD16NNq0aeO0kt6hQ4fwzTff4KmnngIA3HnnnXjyySexatUqFBUVISkpCUePHsWGDRvw4IMPom/fvjW+f8eOHSGRSPD+++9Dq9VCoVCgX79+VT6GeeONN/C///0P999/P1566SWEhIRgw4YNuHr1Kr777juwbM0/n33xxRe4du0ajEYjAGD//v2YN28eAOCJJ56gXul/JCUl4fnnn8eCBQtw8uRJDBgwADKZDBcvXsQ333yDJUuWYNSoUdiwYQOWL1+Ohx56CM2aNYNOp8Pq1asREBDg+KClUqmQkJCAzZs3o2XLlggJCUG7du2qfJxO7eR+Yrbx4sWLsXz5cnTv3h1qtRpffvml0/6HHnqIVuaqIzHb991338Xvv/+OQYMGoXHjxigoKMB3332HP/74Ay+++GK58S2k5sRqX7VajQcffLDc9i1btuDo0aMV7muwxJxCg9TchQsXhPHjxwtxcXGCXC4XNBqN0LNnT+HTTz8VzGaz4zibzSbMmTNHiI+PF2QymRAbGytMnz7d6RhBKJmibciQIeXuk5SUJCQlJTltW716tdC0aVNBIpE4TflW2TUEQRAuX74sjBo1SggKChKUSqWQmJgo/Pzzz07H1GSat6SkJKdph8q+KpqCrqG4dQqhUqtWrRI6d+4sqFQqQaPRCO3btxdee+01ISMjQxAEQThx4oQwZswYoXHjxoJCoRAiIiKEoUOHCseOHXO6zqFDh4TOnTsLcrm8WtMJUTu5nie18ZNPPllp+wIQrl696sovvUHwpPbdtWuXMHToUKFRo0aCTCZz/J5Zt26dwPO8S7/uhsKT2rciNM1beYwg1GAkFiGEEEIIIT6OapAJIYQQQggpgxJkQgghhBBCyqAEmRBCCCGEkDIoQSaEEEIIIaQMSpAJIYQQQggpgxJkH/PBBx+gdevW4Hle7FDq7JFHHsF//vMfscPwKNS+vo3a17dR+/o+amMfIvY8c8R1tFqtEBISIqxdu9axDf/MS/rRRx+VO37dunUCAOGPP/5weSz9+/cXAAiTJk2qcP/nn38utG7dWlAoFELz5s2FTz75pNwxJ06cEFiWFU6ePOny+LwRta9vo/b1bdS+vo/a2LdQD7IPWbt2Lex2O8aMGVNu34cffuhY1czdvv/+e6flpW/12Wef4dlnn0Xbtm3x6aefonv37njppZfw/vvvOx3XqVMndOnSBR9//LG7Q/YK1L6+jdrXt1H7+j5qYx8jdoZOXKdDhw7C448/7rQNgNCxY0cBgPDxxx877XPHp1eTySTExcUJ77zzToWfXo1GoxAaGlpu5b3HHntM8PPzEwoKCpy2f/TRR4Kfn5+g0+lcFqO3ovb1bdS+vo3a1/dRG/sW6kH2EVevXsWpU6fQv3//cvt69uyJfv364YMPPoDJZHJrHB988AF4nsf//d//Vbh/7969yM/PxwsvvOC0fdKkSTAYDNi2bZvT9vvuuw8GgwG7d+92W8zegNrXt1H7+jZqX99Hbex7KEH2EYcOHQIA3HXXXRXunz17NrKzs7FixYoqr2OxWJCXl1et163S09Px3nvv4f3334dKparw+n/++ScAoEuXLk7bO3fuDJZlHftLJSQkQKVS4ffff68ybl9H7evbqH19G7Wv76M29j1SsQMgrnH+/HkAQHx8fIX7e/fujb59++LDDz/ExIkTK/3m+d///odx48ZV656CIDi9f+WVV9CpUyc88sgjlZ6TmZkJiUSCiIgIp+1yuRyhoaHIyMhw2i6VShEbG4uzZ89WKyZfRe3r26h9fRu1r++jNvY9lCD7iPz8fEilUvj7+1d6zOzZs5GUlISVK1di6tSpFR4zcODAWj1K2bt3L7777jscOXKkyuNMJhPkcnmF+5RKZYWPn4KDgyv8tNyQUPv6Nmpf30bt6/uojX0PJcgNyD333IO+ffvigw8+wIQJEyo8Jjo6GtHR0TW6rt1ux0svvYQnnngCd999d5XHqlQqWK3WCveZzeYKP1ULggCGYWoUU0NE7evbqH19G7Wv76M29i6UIPuI0NBQ2O126HQ6aDSaSo+bNWsW+vTpg88++wxBQUHl9ptMJmi12mrdMyoqCgDw3//+F6mpqfjss8+QlpbmdIxOp0NaWhoiIiKgVqsRHR0NjuOQk5Pj9IjHarUiPz8fjRo1KnefwsJCtGjRolox+SpqX99G7evbqH19H7Wx76FBej6idevWAEpG0lYlKSkJffr0wfvvv1/ho5TNmzc7PsHe7lUqPT0dNpsNPXv2RHx8vOMFlHzjxsfHY9euXQCAjh07AgCOHTvmdN9jx46B53nH/lJ2ux3Xr19HmzZtavT34WuofX0bta9vo/b1fdTGvod6kH1E9+7dAZT8I+/QoUOVx86ePRt9+vTBqlWryu2rTf3TI488Uu6bCgAeeughDB48GOPHj0fXrl0BAP369UNISAhWrFiBwYMHO45dsWIF1Go1hgwZ4nSNs2fPwmw2o0ePHjWKyddQ+/o2al/fRu3r+6iNfZBYEzAT12vXrp0wZswYp22oZKnJpKQkxxKY7ljmsqp7L1u2TAAgjBo1Sli9erUwduxYAYDw7rvvljv2o48+EtRqtVBcXOyWGL0Jta9vo/b1bdS+vo/a2LdQguxDFi5cKPj7+wtGo9GxrbJvkL1794r2zSkIgrBq1SqhVatWglwuF5o1ayYsWrRI4Hm+3HFdu3YttzJRQ0Xt69uofX0bta/vozb2LZQg+5CioiIhJCRE+Pzzz8UOxSX+/PNPgWEY4c8//xQ7FI9A7evbqH19G7Wv76M29i2MINwy0zTxau+//z7WrVuHs2fPgmW9ewzmI488Ap7n8fXXX4sdiseg9vVt1L6+jdrX91Eb+w5KkAkhhBBCCCnDuz/eEEIIIYQQ4mKUIBNCCCGEEFIGJciEEEIIIYSUQQkyIYQQQgghZVCCTAghhBBCSBmUIBNCCCGEEFIGJciEEEIIIYSUQQkyIYQQQgghZVCCTAghhBBCSBmUIBNCCCGEEFIGJciEEEIIIYSUQQkyIYQQQgghZVCCTAghhBBCSBmUIHuAzMxMzJ49G5mZmWKHQgghhBDS4FGC7AEyMzMxZ84cSpAJIYQQQjwAJciEEEIIIYSUQQkyIYQQQgghZVCCTAghhBBCSBmUIBNCCCGEEFIGJciEEEIIIYSUQQkyIYQQQgghZVCCTAghhBBCSBmUIBNCKmS328UOgRBCCBEFJciEkArZbDaxQyCEEEJEQQkyIaRClCATQghpqChBJoRUiBJkQgghDZVHJsiZmZn466+/YDAYxA6FkAbLbDaLHQIhhBAiCo9KkH/88Ue0bt0ad9xxB+666y4cOXIEAJCXl4dOnTphy5Yt4gZISANiMpnEDoEQQggRhcckyD/99BNGjBiBsLAwzJo1C4IgOPaFhYUhJiYG69atEzFCQhoWeoJDCCGkofKYBPmdd97BPffcg4MHD2LSpEnl9nfv3h1//vmnCJER0jAVFRU5fVAlhBBCGgqPSZD//vtv/Oc//6l0f2RkJHJycuoxIkIaNqPRiOLiYrHDIIQQQuqdxyTIarW6yke6V65cQWhoaD1GRAi5cuWK2CEQQggh9c5jEuS+fftiw4YNFa7elZWVhdWrV2PAgAEiREZIw3X+/HnwPC92GIQQQki98pgE+d1338WNGzdw991347PPPgPDMNi5cyfeeusttG/fHoIgYNasWWKHSUiDotPpcPHiRbHDIIQQQuqVxyTIrVq1wsGDBxEaGoq3334bgiDgww8/xPz589G+fXscOHAAcXFxYodJSIPzxx9/wGq1ih0GIYQQUm+kYgdQVtu2bfHLL7+gsLAQly5dAs/zaNq0KcLDw8UOjZAGy2g0IiUlBUlJSWKHQgghhNQLj0qQSwUHB+Puu+8WOwxCyD9SU1MRERGBNm3aiB0KIYQQ4nYeU2LxySefYODAgZXuv//++7FixYp6jIgQUtbBgwdx7tw5scMghBBC3M5jEuQ1a9YgISGh0v0JCQlYtWpVPUZECClLEAQcOHAA+/fvh81mEzscQgghxG08JkG+fPlylY9vW7dujcuXL9djRIQ0XF26dMETTzyBd999t9y+8+fP49tvv0VaWhqttEcIIcQneUwNslwuR1ZWVqX7MzMzwbIek88T4tOysrKQn58PjuMq3K/T6bBr1y7ExMSgW7dutIgPIYQQn+IxGWe3bt2wfv166HS6cvu0Wi3WrVuHbt26iRAZIaQyN2/exPfff4+9e/dCr9eLHQ4hhBDiEh7Tgzxr1iwkJSWhY8eOmDJlCtq2bQsA+Pvvv7F48WJkZmZi48aNIkdJCLmVIAi4ePEirly5gnbt2qFTp06Qy+Vih0UIIYTUmsckyF27dsVPP/2E559/Hi+//DIYhgFQ8ss3Pj4eW7duRffu3UWOkhBSGY7j8Ndff+HChQtITExEy5YtHd/HhBBCiDfxmAQZAO677z5cunQJf/75p2NAXrNmzXDXXXfRL1pCvITJZMJvv/2GCxcuoHfv3ggKChI7JEIIIaRGPCpBBgCWZdG5c2d07txZ7FAIIXWQmZmJ7777DomJiWjXrh19yCWEEOI1PC5BPnv2LK5cuYLCwsIKp5AaO3asCFERQmqD4zikpKTg+vXr6Nu3L1QqldghEUIIIbflMQny5cuX8fjjj+Po0aOVzq3KMAwlyIR4oRs3buD7779H//79ERkZKXY4hBBCSJU8JkF+/vnncfr0aSxevBi9e/dGcHCw2CERQlzIYDDgp59+Qs+ePatcFIgQQggRm8ckyL///jvefPNNvPjii2KHQkiDlp6eDoPBAACwWCwoKChASEiIS67N8zwOHDiA3Nxc9OzZExKJxCXXJYQQQlzJYxYKCQsLQ2BgoNhhENJgHT16FMOGDUNcXByKiooAlMxI8eabb2LZsmVIS0tz2b3Onz+PrVu3QqvVuuyaFSkoKMBjjz2GgIAABAUF4ZlnnrntgiZ9+vQBwzBOrwkTJjj2r1+/vtz+0ldOTo5bvx5CCCH1w2MS5AkTJuDLL7+sdGlbQoj7fP/99+jZsyd27NhRbgyAIAj4+++/8f777+PEiRMuu2dubi6+++47nDt3rtJxB9XRp08frF+/vsJ9jz32GM6cOYPdu3fj559/xv79+/Hcc8/d9prjx49HZmam4/XBBx849o0ePdppX2ZmJgYOHIikpCRERETU+usghBDiOTymxKJly5bgOA533nknnn76acTGxlb4+HXEiBEiREeI7zp69ChGjx4NjuMqTVR5ngcArF69Gq+//jri4uJccm+73Y4DBw4gLS0Nffr0ceksF+fOnUNycjL++OMPdOnSBQDw6aefYvDgwfjoo4/QqFGjSs9Vq9WIioqqcJ9KpXKKMzc3F7/++ivWrFnjstgJIYSIy2MS5NGjRzv+/H//938VHsMwDPUwE+Ji8+bNgyAI1e7F3b59O1544QWXxnD9+nX88MMPGDx4sMsWFklJSUFQUJAjOQaA/v37g2VZHDlyBA899FCl53711Vf48ssvERUVhWHDhuHtt9+GWq2u8Nj//ve/UKvVGDVqlEviJoQQIj6PSZD37t0rdgiENDjp6en4+eefq50c8zyPU6dOuXTgXim9Xo9du3Zh1KhRYNm6V39lZWWVK3mQSqUICQlBVlZWpec9+uijaNKkCRo1aoRTp07h9ddfR2pqKr7//vsKj1+zZg0effRRmuOZEEJ8iMckyElJSWKHQIhHslqtsNvtbrn29u3ba1z/KwgCzp07h+7du7s8noKCAty4cQONGzeu9Jj58+dj/vz5jvcmkwmHDx/G5MmTHdvOnj1b6xjK1ii3b98e0dHRuPfee3H58mU0a9bM6diUlBScO3cOX3zxRa3vRwghxPN4TIJcymKx4MSJE8jJyUHPnj0RFhYmdkiEiMZqteLo0aO3nXmhtv766y8wDFOjJJlhGGi1WrfFdPr0aURFRUEul1e4f8KECfjPf/7jeP/YY49h5MiRTuMTGjVqhKioqHKzStjtdhQUFFRaX1yRrl27AgAuXbpULkH+/PPP0bFjR3Tu3Lna1yOEEOL5PCpB/uSTTzB79mzH1E+7d+9Gv379kJeXh9atW+ODDz7A008/LXKUhNQfu90OvV4PuVwOhULh0mubTCZotdpa9SArlUqXlEHcimVZMAwDu91eaYIcEhLiVN6hUqkQERGB5s2bOx3XvXt3FBUV4fjx444E9tdffwXP846ktzpOnjwJAIiOjnbartfr8fXXX2PBggXVvhYhhBDv4DHTvK1btw5TpkzBoEGDsGbNGqdf2mFhYejXrx82bdokYoSEiEehUECpVLrkxfM8Tp48iR9//LFWC3UwDINWrVqBZVmXv5o1a+ayxLtNmzYYNGgQxo8fj6NHj+L333/H5MmT8cgjjzhmsLh58yZat26No0ePAihZ8n7u3Lk4fvw40tLSsHXrVowdOxb33HMPOnTo4HT9zZs3w2634/HHH3dJvIQQQjyHxyTIH3/8MYYPH46NGzdi2LBh5fZ37twZZ86cqZdYli1bhri4OCiVSnTt2tXxy7MiFS0aoFQq6yVOQmrCaDTi8OHD+Prrr3HmzBlwHAeNRoO4uLhqJ6UMwyAhIcHlS8FLJBIkJCS4fODfV199hdatW+Pee+/F4MGD0atXL6xatcqx32azITU1FUajEQAgl8vxyy+/YMCAAWjdujVeeeUVjBw5Ej/99FO5a69ZswYjRoxw2awbhBBCPIfHlFhcunQJL730UqX7Q0JCkJ+f7/Y4Nm/ejGnTpmHlypXo2rUrFi9ejIEDByI1NbXSRQACAgKQmprqeM8wjNvjJKS6DAYDTp06hdTUVKdpEkuT0k6dOmHixInVqkVmGAa9e/d2aXzBwcFo3rw5lEolzGZzjc/ft29fpftCQkKwcePGSvfHxcU5fc2xsbH47bffqnXfQ4cOVTtGQggh3sVjEuSgoCDk5eVVuv/s2bM1GlhTWwsXLsT48eMxbtw4AMDKlSuxbds2rF27Fm+88UaF5zAMUy+xEVITt0uM27dv75iabMGCBZg+fToAVDjXeOnTkYceegihoaEwGAzw8/OrU3wymQzNmjVDWFgYfagkhBDiUTymxGLw4MFYtWoVioqKyu07c+YMVq9ejQceeMCtMVitVhw/fhz9+/d3bGNZFv3790dKSkql5+n1ejRp0gSxsbEYPnx4vZWCEFIRg8GAlJQUfPPNNzh79qwj4ZVKpWjfvj1Gjx6NxMREp3l7+/Xrh7Vr16Jnz57lktXSsooJEyagdevWAEoG+NVlFovo6Gh06dIF4eHhlBwTQgjxOB7Tgzxv3jx07doV7dq1w7Bhw8AwDDZs2IC1a9fiu+++Q3R0NGbOnOnWGPLy8sBxHCIjI522R0ZG4vz58xWe06pVK6xduxYdOnSAVqvFRx99hB49euDMmTO44447KjzHYrHAYrE43rtruizSsFTWYyyVStGmTRunHuOKtG3bFgsXLkRWVhbGjBkDnU4HlUqFV1991VFzbDabHf9eS8sh/P39qx2jn58fWrRoAY1GU5svkRBCCKkXHpMgN2rUCMePH8ebb76JzZs3QxAEfPHFF9BoNBgzZgzee+89j5wTuXv37k4LJvTo0QNt2rTBZ599hrlz51Z4zoIFCzBnzpz6CpH4uLomxreKioqCSqWCTqeDXC53GpCnVCrBMAx0Oh2AkiRZEAT4+/tX2RMslUrRpEkTREdHU48xIYQQj+cRCbLFYsHOnTsRFxeHzz//HJ9//jlyc3PB8zzCw8PdMt9qRcLCwiCRSJCdne20PTs7u9o1xjKZDJ06dcKlS5cqPWb69OmYNm2a4/3JkydpJUFSY65OjKurdD7m0iS59GlIZUlyZGQk4uPjIZPJXB4LIYQQ4g4ekSDL5XI8/PDDWLJkiWOu0fDwcFHi6Ny5M/bs2YMHH3wQAMDzPPbs2eO0jG1VOI7D6dOnMXjw4EqPUSgUTos+1OQRNSFiJcZlVSdJlsvlaNmypcunhCOEEELczSMSZIZh0KJFiypnsagv06ZNw5NPPokuXbogMTERixcvhsFgcMxqMXbsWMTExDhWz3rnnXfQrVs3NG/eHEVFRfjwww9x7do1PPvss2J+GcQHlSbG58+fB8/zju31mRiXpVAowDAMiouLAZQkyYIgQKPRIDAwEG3atKl0NTxCCCHEk3lEggwAb775JqZNm4aHH34YrVq1Ei2O0aNHIzc3FzNnzkRWVhY6duyI5ORkx8C99PR0p5KPwsJCjB8/HllZWQgODkbnzp1x6NAhJCQkiPUlEB9jMplw/vx5XLp0qVxinJCQgHbt2tVrYlyWXC5HQECAI0m2Wq3Q6/Xo1q0bJceEEEK8lsckyIcPH0ZoaCjatWuHPn36IC4urtwvfYZhsGTJErfHMnny5EpLKm5dlGDRokVYtGiR22MiDU9hYSG2bduGw4cPe1xiXFbZJNloNKKgoAB79+7FvffeC6nUY37EEEIIIdXmMb+9li5d6vjznj17KjymvhJkQsRUWFiIXbt24ffff4fdbnds97TEuKzg4GA0bdoU+/fvBwDcuHEDu3fvxn333UdJMiGEEK/jMb+5yvaQEdIQVZYYSyQStGrVCp06dYJSqRQxwvIYhkHjxo0RGxsLhmGgUqmwa9cu2Gw2ZGRkYOfOnRgwYADNYEEIIcSreEyCTEhDVVBQgF27duHQoUNOibFCoUDPnj0hk8kQFhbmccmxXC5HmzZtEBAQ4NgWFRWFQYMGITk5GTabDVlZWY4kmWqSCak/FovFabYkQkjNeFyCfPjwYezduxc5OTl44YUX0KJFCxiNRpw/fx4tW7akKdGIz6gqMU5KSkL//v3BsqyjbMGTKBQKdOjQocKkPSIiAvfffz+Sk5NhtVqRnZ2N5ORkDBw4kH5hE1JP6mv9AEJ8lcckyFarFY888gh+/PFHCIIAhmEwbNgwtGjRAizLYsCAAZg6dSpmzJghdqiE1ElViXGfPn1w7733Oj4IGo1GscKslEQiQdu2bavs0Q4PD3ckyRaLBbm5uUhOTsagQYMoSSaEEOLxPOYj5ttvv42ff/4ZK1asQGpqKgRBcOxTKpV4+OGH8eOPP4oYISF1U1BQgP/973+YPXs29u/f70iOFQoFBg4ciLlz52L48OEe/5SkWbNm8PPzu+1xYWFhGDx4sCORzsvLw/bt22E2m90dIiENXtlFhAghNecxPcj/+9//MHHiRDz33HPIz88vt79Nmzb45ptvRIiMkLopKCjAzp07cejQIadfWhX1GHu68PBwREREVPv4kJAQDB48GDt27IDJZEJBQQG2b9+O+++/3+Nm4iDEl9hsNo8bt0CIN/GYBDknJwft27evdL9EIvHIx82EVMaXEmOg5ElO8+bNHUtJV1dwcDCGDBmC7du3w2g0OuZ3Hjx4MNRqtZuiJaRhK1u+RXwPDcJ0P49JkGNjY3H+/PlK9//+++9o3rx5PUZESO34WmIMlEzn1rp161rPaRwYGOhIkg0GA7RarSNJrk65BiGkZihB9m1ms5kSZDfzmAT50UcfxcKFCzFy5Ei0bNkSABw9VatXr8bXX3+N9957T8wQCamSLybGpeLi4qDRaOp0jYCAAEeSrNfrUVxcjG3btuH++++v87UJIc6o1t+3mc1mBAQE1PiJHqk+j0mQZ8yYgcOHD+Oee+5BmzZtwDAMpk6dioKCAty4cQODBw/G1KlTxQ6TkHKqSoz79u2Lfv36eW1iDJQktjExMS65lkajcSTJOp0OOp3OUZNcdj5lQkjdGAwG2Gw2WqTHR/E8j+LiYgQGBoodis/ymARZLpcjOTkZX331Fb799ltwHAeLxYIOHTpg3rx5eOKJJ+iTEvEo+fn52LlzJ1JSUnwyMS7VrFkzl37v+fv7Y8iQIdixYwe0Wi30er0jSaZHhoS4hiAIyMrKQmxsrNihEDfJz8+nBNmNREuQp02bhieeeAKdOnUCAKSnpyM8PByPP/44Hn/8cbHCIuS2KkuMlUol+vTp4zOJMVCy2IA7vhY/Pz/H7BZFRUUwGAzYvn07+vXrRwscEOIi2dnZlCD7sNzcXDRt2lTsMHyWaAny4sWL0aVLF0eCHB8fjy+++AKPPvqoWCERUqWqEuPSHmNfGXAWGhoKm82G0NBQt91DrVZj8ODBSE5ORkFBAYxGI3755Rd069bNbfckpCEpKioSOwTiRrm5uWKH4NNES5AjIyNx5coVx/uyC4MQ4kkaUmJc6osvvsDff//tGDDrLiqVyrHiXn5+PsxmMw4dOoS77rqLZq0hpI60Wq3YIRA3ys3NBc/z9NTNTURLkIcMGYJ33nkHu3btQlBQEADg448/xqZNmyo9h2EYWk2P1JuGmBiXpVQqIZfL6+U+pUlyXl4erFYrVqxYgZdffhmNGzd2+/0J8VWFhYU0UM+H2Ww25OfnIzw8XOxQfJJoCfKSJUsQERGBvXv34syZM2AYBtevX0dBQUGl59AgPVIfGnpiXKo+V7pTKBS4//77sWPHDuTl5cFkMmHJkiWYPHky4uPj6y0OQnwJz/NIS0tDixYtxA6FuMnNmzcpQXYT0RJkPz8/zJ8/3/GeZVksXryYapCJaPLz85GcnIyUlBTwPO/Y3tAS41L10Xt86/369euHX375BQUFBTCZTPj0008xadIkNGvWrF5jIcRX/Pnnn2jatCkkEonYoRA3SE9PR8eOHcUOwyeJVrgyYsQIHDhwwPF+7969uO+++8QKhzRg+fn5+OqrrzBr1iz8/vvvjuS49NH/3LlzMWzYsAaVHAMQ5ReqTCZDt27dHAmx2WzG0qVLceHChXqPhRBfUFRUhAMHDtA4Hx+VnZ0Ng8Egdhg+SbQE+ccff0R6errjfb9+/bB7926xwiENUFWJ8eDBgzFv3rwGmRiXEqukSSqV4plnnkGbNm0AABaLBcuWLatyKXpCSOUuXLhASbKPEgQBZ8+eFTsMnyRaghwTE4M///zT8V4QBKoxJvUiLy/vtonx0KFDoVarRY5UXGJ+P8rlckyYMAFt27YFUDIYZcWKFThz5oxoMRHizc6fP49ff/3VqXyM+Ia///4bRqNR7DB8jmg1yI888gg++ugjfP31145ZLN544w0sWLCg0nMYhsFff/1VTxESX5OXl+cYfHdrjXG/fv3Qr1+/Bp8UlyX21EEymQzPPfcc1qxZg1OnTsFms+Gzzz7D+PHj0b59e1FjI8STdenSBTdu3IBCocCMGTMc2y9fvgyLxYJ7772XVq30ITabDQcOHMCAAQOoo9GFapQgx8fH1/gvn2EYXL58udz2BQsWoHnz5ti7dy9ycnLAMAz8/PzcujABaZgoMa4dsRNkoCRJHj9+PNauXYs///wTdrsdq1atwjPPPEMDUwipRFZWFrKzsx2dT2XduHEDW7ZswX333YeQkJD6D464xbVr13Du3DkkJCSIHYrPqFGCnJSUVC5BPnbsGM6cOYOEhAS0atUKAJCamoqzZ8+iXbt26Ny5c4XXkkgkeO655/Dcc88BKPll/NZbb9EsFsRlKDGuG08Z9S6RSPD0009jw4YNOHbsGDiOw+eff45x48ZV+vOFEFI5rVaLLVu2oGfPnmjZsiX1OvqIlJQUREZGUkeji9QoQV6/fr3T+y1btmDLli3YvXs37r33Xqd9u3fvxn/+8x/MnTu3Wte+evUqzeVHXCIvLw/Jyck4fPiwU2KsUqkc07VRYnx7npIgAyWxPPXUU2BZFkePHgXP81i7di04jkNiYqLY4RHidex2O3777TdcuXIF3bt3r7C3mXimLl26ICMjAzKZzKmEhuM47Nq1Cw8++GC9zmPvq+pUgzxz5ky8+OKL5ZJjALjvvvswefJkvPXWWxg+fPhtr9WkSZO6hEIIJcYu5kkJMlDylGns2LGQSqU4dOgQBEHAhg0bwPM8unXrJnZ4hHil69ev48aNG2jZsiXuuusuaDQasUMit5GVlYXMzMwKP9TodDrs2LEDgwcPhlKprP/gfEidEuSLFy9W2ZUfGhpaYf0xUPLLjmVZGI1GyOVysCx728c8DMPAbrfXJWTig6pKjPv164e+fftSYuwjWJbFo48+ColE4pi26osvvoDdbkevXr3EDo8QryQIAlJTU3HhwgU0a9YMbdu2RUREBJVeeKm8vDxs3boVAwcORGBgoNjheK06JcjNmjXDunXr8Mwzz8Df399pn06nw9q1a9G0adMKz505cyYYhoFUKnV6T0h15eXlYceOHThy5Aglxg0Iy7J45JFHIJFIsG/fPgiCgI0bN4LjOCQlJYkdHiFeSxAEXLp0CZcuXUJoaCjatm2LFi1aeNzTJHJ7RUVF2LJlC/r06UNP6GupTgnyvHnzMGrUKLRu3RpPPfUUmjdvDqCkZ3nDhg3Izs7GN998U+G5s2fPrvI9IZWhxLh+eMIsFpVhGAYPP/wwJBIJ9uzZAwDYvHkzOI5Dv379RI6OEPGkp6c7VlazWCwoKCio1WwV+fn52L9/P/7880907dq1VrNYEXFZLBbs3LkTbdu2RdeuXR0dkqR66vS39eCDD2L79u14/fXXMX/+fKd9HTt2xJo1azBw4MA6BUhIqaoS43vvvRd9+vShxNiFPP2XIcMwGDFiBKRSKXbu3AkA+Pbbb8FxHC1bTxqco0ePYu7cudi2bZtjxTyTyYQ333wT7du3x5AhQxAXF1fj6+p0Ovzyyy+IjY1Fjx496JG9Fzpz5gwyMjLQp08fmgyhBur8cWLAgAEYMGAAsrKycO3aNQAlA+6ioqKqfQ2LxYIvv/wSu3btwuXLl6HT6aDRaNC8eXMMGjQIjz76KORyeV1DJV4qNzcXycnJlBiTchiGwQMPPACJRILt27cDAH744QfY7Xbcf//9IkdHSP34/vvvMXr0aAiCUG45aUEQ8Pfff+Pvv//G+PHjcdddd9XqHtevX8c333yD1q1b46677qqXn7kFBQV48cUX8dNPP4FlWYwcORJLliwpV9JZ1qpVq7Bx40acOHECOp0OhYWF5Qaz1ea63q6wsBBbtmxBhw4d0LlzZ+pNrgZGEHlx9tOnT2P48OG4du0aBEFAYGAg/P39odfrodVqwTAMmjZtiq1bt6JNmzZihuo2J06cQOfOnXH8+PFa//DyRZQYA0ajEfv374dGo2kQI5LNZjN0Oh3uueeeGrftjh078NNPPzneDx48GEOGDPH4nnBC6uLo0aPo2bMnOI4rlxzfimVZvP7667XqSS5LIpGgTZs2aN++fZ1nvejTpw+eeuopPPXUU+X23X///cjMzMRnn30Gm82GcePG4e6778bGjRsrvd7ixYthNpsBANOnT68wQa7NdT3JHXfcgZs3byIoKAjvv/9+jc/XaDTo0aMHGjduTD8fq1DnIsP09HRMmDABrVq1QkhICPbv3w+g5HH4Sy+9hD///LPSc/V6PR544AFkZ2fj3XffxfXr11FYWOj0/3nz5iEjIwPDhg1z1FUR35abm4svvvgCc+bMcVrkQ6VSYejQoZg3bx4GDx7s88kxqZn7778fDz30kOP99u3bsXXr1tsmDYR4s3nz5lXYc1yZ0ictdcFxHP7++29s2rQJu3btQkZGhsu/z86dO4fk5GR8/vnn6Nq1K3r16oVPP/0UmzZtQkZGRqXnTZkyBW+88UalUz/W9rq+RKfTYefOndi+fTvy8/PFDsdj1amP/ezZs+jduzd4nkfXrl1x6dIlxzRsYWFhOHjwIAwGA9asWVPh+evWrUN6ejr27NmDPn36lNsfExOD6dOno2vXrrjvvvuwfv16TJo0qS4hEw+Wk5OD5ORkx0IQpUp7jPv27UuTn5Mq3XfffZBIJPj2228BADt37oTdbseIESOop4T4nPT0dPz888/VTk55nsepU6dqPXDvVoIgIC0tDWlpabjjjjtc+jM6JSUFQUFB6NKli2Nb//79wbIsjhw54vRh2BOu641u3ryJ7777Ds2aNUOXLl2ovvwWdUqQX3vtNQQFBeHw4cNgGAYRERFO+4cMGYLNmzdXev62bdswYMCACpPjsvr164f77rsPP/30EyXIPogSY+JK/fr1g0Qicfzs2bNnDziOw8MPP0xJMql3VqvVbfP3b9++vcY9t4Ig4MSJE0hMTHSsPyCRSMAwjGN9gtp8n6Snp+PHH3/EsGHD4OfnV+Pzb5WVlVUup5BKpQgJCUFWVpbHXdebXb58GVeuXKHFYm5RpwR5//79mDlzJsLDwyvspm/cuDFu3rxZ6fmnT5/GSy+9VK179evXD0uWLKl1rMTzVJUY9+/fH3369KHEmNRKUlISpFIpNm7cCEEQsG/fPnAch9GjR3v09HXEt1itVhw9ehR6vd4t1//rr7/AMEyNkmSGYaDValFUVHTb46r7Kv2e0ul02Lp1K0aOHFnpwPr58+c7zXplMplw+PBhTJ482bHt7Nmz1f56iGuULhZz6dIltG3bFp06dYJCoRA7LFHVKUHmeb7KOtDc3Nwq/4ILCgqqPdtFZGQkCgoKahwj8TyVJcZqtdox+I4SY1JXPXv2hEQiwRdffAFBEHDgwAHY7XY89thjlCSTemG326HX6yGXy92SbAQHB9eqB7k6s0LVpK65rIyMDBw7dgxqtbrcS6VSoUWLFli1ahWUSiVUKhWmT5+OYcOGYeTIkVCpVJBIJGjUqBGioqKQk5PjdG273V6jvKEi7rpufXHVPNeV4TgOp06dwqVLl9CrV686D+j0ZnVKkO+66y5s27YNL7zwQrl9drsdmzZtqrRQHihpXJlMVq17SaVSWK3WWsdKxEeJMalv3bp1g0Qiwfr16yEIAlJSUsBxHMaOHUtJMqk3CoXC5bPQcBxXq8SIYRi0a9cOGo0GPM87EmFBEBzvb91eXTabDRaLBUBJz3B1BoDl5ubi999/dxyrUCigUqmg1+tRVFSE6dOno3Xr1lCr1Th37hx4nodUKsWpU6ecEm+1Wg25XH7b8pDu3bujqKgIx48fR+fOnQEAv/76q2Mslady1zzXlTEajdi1axfuvPNOJCYmNsjytDolyNOnT8fQoUMxceJEPPLIIwCA7Oxs/PLLL5g/fz7OnTuHpUuXVnmNtLQ0nDhx4rb3unr1al1CJSKixJiI6e6774ZEIsHatWvB87zj3+GTTz5JS+gSr1M6MO6PP/6ATqdDkyZNkJ6eXq1ElmVZtGnTBpGRkTW6X0VJdEXv5XI5JBIJpFIpzGYzjEaj08/86rBYLI4kOzY2Fp9//jnuuece8DyPvXv3olmzZtixYweAkpmwfvrpJ/Tr1w+RkZGQSCTgOA48zyMvLw8A8N577yEwMBCxsbGIjIyEWq1Gjx498MQTT+C9996DRCLBlClTMHr0aDRq1KhGsdaX+pjnujJ//fUXBEGosrOztmozH7XZbMYrr7yCTZs2wWKxYODAgVi+fLnj33R+fj4ee+wxnDp1Cvn5+YiIiMDw4cMxf/58BAQE1Ci+Os+D/MUXX+Dll1+GVquFIAiOeqiAgACsWLECY8aMqfTcmgwGKL02x3F1Cdcjeds8yKUzj5Qu6HLvvfeicePG5Y7LycnBjh07cPToUadvakqMq4/mQXadkydPYs2aNY6fIZ06dcLTTz9NSTJxG1d//+bm5uLIkSPIzs52bMvJycEPP/xQrd5elmXx8ssvV/jzui7kcjnatWsHiUTi9P0rCAIsFguMRiOMRiNMJlO5P7/++uvo3r077rrrLqf9RqMROp0OBw4cwLVr1xxrIvTq1cvx5Lm4uBhfffUVHnjgAcTExAAA/vjjDxw7dqxcjH379kXr1q0BlPycufW6vXv3hkajKVcSUtGfKzrGXQtviDHPdUUGDRpUq383rp7neuLEidi2bRvWr1+PwMBATJ48GSzL4vfffwdQsiDKpk2bcPfddyM8PByXLl3CpEmTcNddd9V4nmuXLBRiMBiwe/duXLx4ETzPo1mzZhg4cOBtR0Ju2LChxvd68sknaxumx/KWBPnWRzwsy4LneTAMg6FDh+Ltt9/G3XffTYmxC1GC7FqnT5/G6tWrHbMKdOjQAc8880y1S70IqQlXff8aDAYcO3YMly5dctreqFEjJCYm4q+//sL06dMBoMJOpNJyoieffBIdOnSodRwVUSqVaNeuHVQqlcu/f202myNpvjV5rirpLv1zfZLL5TVKqMv+WaFQVNpZ+MADD2D79u3V6hxkWRbt27evsOy1rvz8/DBq1Kga19JXliCfO3cOCQkJ+OOPPxxT7iUnJ2Pw4MG4ceNGhb35Wq0W4eHh2LhxI0aNGgUAOH/+PNq0aYOUlJRKe7k/+eQTfPjhh7h+/XqNYq/1Rx6j0YjY2Fi88cYbePXVV/Hggw/W+Bq+mOz6qooe8ZQ+OhMEAdu3b8eOHTswYcIExyO3Un5+frj33nuRlJREiTERVfv27TFhwgRHj8WpU6ewatUqPPfcc5QkE49js9lw+vRpnDp1yilBCgwMRGJiImJjY8EwDPr164e1a9dizZo1OHDggNPPX4Zh0KZNGwwYMMClPcdSqRSNGjXCHXfc4banMDKZDDKZrMaPxoGS30+lZR7VTarLvmpaGmK1WmG1WqHVamscK8uyFSbSRqNR1HmuyzIYDDh48CD69evnknrk2sxHffz4cdhsNvTv39+xrXXr1mjcuHGlCXJGRga+//57JCUl1TjGWifIpY8UXDHfoadZtmwZPvzwQ2RlZeHOO+/Ep59+isTExEqP/+abb/D2228jLS0NLVq0wPvvv4/BgwfXY8TudfToUYwePbrKRzylP7yXLVuGESNGICIighJj4pESEhLwwgsvYMWKFbBarThz5gxWrFiBCRMmVGt0PyHuJggCLl68iOPHj8NoNDq2KxQKdOrUCW3atCk3yLRt27ZYuHAhsrKyMGbMGOh0OqhUKrz66qsIDg52WWxqtRqNGjVCRESER5cnlU06a0oQBFit1tsm0SaTCXq93vHn0uNsNluN7sfzPPR6fbnpAM+fP1+rWUrOnTuH7t271+i86rh48SJiY2PRsmXLOl+rNvNRZ2VlQS6Xl1s6PDIystw5Y8aMwY8//giTyYRhw4bh888/r3GMdSqaGTlyJL799ltMnDjRZ0Y4bt68GdOmTcPKlSvRtWtXLF68GAMHDkRqamq5xgSAQ4cOYcyYMViwYAGGDh2KjRs34sEHH8SJEyfQrl07Eb4C16vpUqYnT57E0qVLKTEmHqtVq1aYNGkSli9fDovFgvPnz2P58uWYOHFig5/7k4grMzMTR44ccZoBgmEYJCQkVGtu2qioKKhUKuh0OsjlcpclxyEhIWjUqBGCgoJ85vd9ZRiGgUKhgEKhqPLvr7J5rnmeh81mc3pZrdZy2yp7lb1+bee5dtfc2/v370dcXJzHz3O9aNEizJo1CxcuXMD06dMxbdo0LF++vEbXqFOC/Mgjj+CFF15A3759MX78eMTFxVWYEHlyXe2tFi5ciPHjx2PcuHEAgJUrV2Lbtm1Yu3Yt3njjjXLHL1myBIMGDcKrr74KAJg7dy52796NpUuXYuXKlfUauzvUdClTQRBw5coVJCQkUHJMPFqLFi0wefJkLFu2DGazGRcuXMCyZcvwwgsvNIh6b+JZiouLcfToUVy7ds1pe+PGjZGYmCjKMsAymQxRUVGIioqi74kKuGOea0EQHAm1TCZzDD6ryflKpdIt01iWdpTZ7fZKE+QJEybgP//5j+P9Y489hpEjR2LEiBGObbWd5zoqKgpWqxVFRUVOvcjZ2dnlzin9d9u6dWuEhISgd+/eePvttxEdHV3tr7dOCXLZJaIPHDhQbr+3zTxhtVpx/Phxx2AHoOQxTf/+/ZGSklLhOSkpKZg2bZrTtoEDB2LLli2V3qfsNDYAHJ/07HZ7jR/NuNvOnTtr9Yhn165dVGPuAjabDXa7HQaDwW3L1XoSi8Xi+D6oj++Fxo0bY+LEiVi2bBlMJhNSU1OxePFivPDCC/X2Ac+dSxF7IqlU2mBKWarz/WuxWHDmzBlcuHDBqe41ODgYnTp1cvzir0mPYNnxIbX5PvL390dkZCSCg4PBsqwjEbyd+v7+FVtp+7Is69JyE5ZloVQq0aNHD3zyySc1Pr9p06ZuybtYlkVoaGiV7avRaJwmaFAqlQgNDUWTJk0c2wRBQJcuXVBUVIQjR444OlF3794Nnucr7VTt3LkzZDIZ9uzZg5EjRwIAUlNTkZ6eXmVJSen3Q9m8qzrqNItFdWeh8JZEKSMjAzExMTh06JDTX/Zrr72G3377DUeOHCl3jlwux4YNG5yms1u+fDnmzJnjNBVPWbNnz8acOXNc/wUQQgghhHg5QRBw8+ZN3Hvvvfjvf//rGAc2ceJEbN++HevXr0dAQABefPFFACXlrgCwfft2ZGdn4+6774a/vz/OnDmDV199FSEhITh48GCNYqhTD7K3JL6eprQeptTJkyeRlJSEI0eOoFOnTiJGVt769evx3HPP1fi81atX078PF6Eexvpx48YNLF261NFTFhsbi0mTJlU5aX1dGY1GHDhwwG1LEXsai8UCq9WK3r17u2UaP0906/evIAg4f/48fv75Z+Tm5jq2y2Qy3HPPPejTp0+d/y20adMGmZmZCAwMxLvvvlvlsVKpFC1atECrVq1c8m+9IT0hANz/8/nEiRO47777qtUjzDAMXnnlFZfPgyyRSByLsdS0ffv374+xY8di7Nix5fYVFBTg5ZdfxrZt28CyLB566CEsWrTI8e/QZrMhNTXVaaDqokWLHIuKlF0opJRKpcLq1asxdepUWCwWxMbGYsSIERWWyN6Oe2a2roOzZ8/iypUrKCwsrPDRfkV/ya4SFhYGiURSrue3ovqWUlFRUTU6HoCj+L9U6T8GqVTqcVNNDRw4sFaDBAYMGOBxX4u3or/H+hEfH49XXnkFn3zyCYqLi5GRkYFly5bh5Zdfvu2c7rUlk8kcswE1hBpPqVQKnucd03c1BGW/zhs3bvx/e3ceFlXd/g/8fRj2XdlNWVUScUXBBUUURYFcACvMxMykLA2rn21amhVPPfmI2mOl+UUzLXPBfSMVNbckcwt3QUpFXNiRdc7vD77MlxFUlhnOYXi/rmuuy/nMWe7hluGecz4LNm7ciAsXLgCA6ra8r68vRo4cqbGpuar6nwqC8Mifs56eHjp37oyePXu2iC9n2qLt/8eBgYH45ZdfVNOsPm6e6ylTpqBDhw4aPb+enh6Cg4PRrl27Bu1/4MCBR77m4OCAn3/++ZGvu7q61qg9jI2N8d///hf//e9/a90nMDBQdTW5sepVIE+aNAmCIGDp0qVQKBSYNGnSE/cRBAHLly9/4nZXr17F+PHjaywu8fCxtFkgGxoawsfHB3v37lXN66xUKrF37161EZjV9e3bF3v37kVsbKyqLSkpSStTrEjB2dkZYWFhdZ6oXKFQIDQ0VOMrNRE1hTZt2iA2NhYLFy5Ebm4ubt68iQULFuDNN9+UZJAU6Ybc3Fxs27YNR44cUfv75uHhgYiICK2sfPY4rVu3RmBgIGxsbJr0vNQw4eHhOHLkCObNm1dj0LwgCOjSpQtCQkI0/v9IEAQMGjSowcVxc1evAnnfvn2q1dMUCgX27dv3xOle6jodTExMDM6ePYv4+HgMGDBAo/M21sdbb72F6Oho9OrVC76+voiPj0dhYaFqVosJEybgqaeeQlxcHADgzTffREBAAObPn4/Q0FD8/PPPSElJwdKlSyWJXxtmz56NnTt3PvFKsiAIEAQBs2bNasLoiDTL0dERM2bMQHx8PHJycpCZmYkFCxYgNja2xvybRI9TWlqKffv2Yffu3WoDhGxsbDBmzBj06NGjyadMc3V1xeDBg7W2NDJpR+/evbFlyxZkZGSgW7duyMnJgYmJCT766CONLwoCVP49HzhwINq3b6/xYzcX9foNSU9Pf+zzxjh8+DA++OADVYdrqTz33HO4c+cOPvroI2RmZqJ79+7YtWsXHBwcAFROe1Z9+pR+/fphzZo1mDVrFj744AN06NABmzZt0pk5kIHKX8y1a9c+9haPQqGAIAj45Zdf0Lt3bwmiJNIce3t7vPXWW4iPj8f9+/eRlZWlupKsjT9GpFtEUcQff/yBTZs24f79+6p2Y2NjDB8+HIGBgZJ0MenQoQMCAgK0MgUYNQ1nZ2eYmZkhJycHRkZGWvk8MjU1RWBgIJ566imNH7s5kc1XSFtbW9ncwnzjjTce2aUiOTm5RtvYsWMxduxYLUclrdpu8VTdTRAEAaGhoZg1axaLY9IZtra2mDFjBhYuXIi7d+/izp07qiLZ1tZW6vBIptLS0rB+/XqkpaWp2gRBgL+/P8LCwrTWn/1JPD09MXDgQJ1f5IMarmpZ8t69e7NfOmRUIL/66qv48ccf8frrr8t6+cqWrPotnn379iEvLw+WlpYYPHgw+xyTTrKxsVEVyVlZWbh3756qSK5tZU1que7du4fNmzcjJSVFrd3Lywvh4eFo06aNRJFVzovL4pgex9XVFb1795ase6scNbpA3rlzJ/7zn//g5MmTyM3NrbWPal0Gd3Xs2BEVFRXo1q0bJk2ahHbt2tVaKFdfjYWk4ezsjIkTJ0odBlGTaNWqlapP8u3bt5Gdna3qk1zV9YparuLiYuzevRt79+5Vm+7LyckJ4eHh6Ny5s4TRVS7cEBAQwOKYauXs7AwfHx/Y2dlJHYrsNKpA3rBhA5599ll07twZzz//PL755huMGzcOoihi8+bN6NChg2o2iCd57rnnVP9+5513at2mOa3KR0S6w8rKCjNmzMCiRYtw8+ZN5Obmqq4k12fpUtIdSqUSR48exdatW5GXl6dqNzc3R1hYGPr37y/Z3VBHR0eUl5fDyMgIvXv3bjFT6lHdtWnTBr179+aX/MdoVIEcFxcHX19f/Pbbb8jOzsY333yDSZMmYfDgwUhPT0efPn3g5uZWp2Pt37+/MaEQEWmVpaUlYmNjsWjRIvzzzz/Iy8vDggULMH36dLRt21bq8KgJXbhwAevXr8fNmzdVbfr6+hg0aBCGDx8u+SIoKSkpOH/+PFJSUuDu7i5pLCQv1tbW6NOnD9q1a8e7Ck/QqAI5NTUVcXFxUCgUqiljqtbndnV1xdSpU/HFF1/Uae7igICAxoRCRKR15ubmePPNN7F48WJkZGSgoKAACxcuxLRp09gPvwXIzMzExo0bce7cObX2Hj16YPTo0bK7Te3s7MwZKwhA5UxTPj4+6NKlC8d51VGjCmRTU1PVkoPW1tYwMjLCrVu3VK87ODiojeStq9TUVFy/fh0A4OLiAi8vr8aESUSkMWZmZpg+fTq+/vprpKeno7CwUFUkN/WCD9Q0CgoKsGPHDhw8eBBKpVLV7uzsjMjISNnOFcvuPwRUTls5aNAgzuNeT436aunp6YnU1FTV8+7du2PVqlUoLy9HcXEx1qxZU6+rKps3b4aHhwe6dOmCsLAwhIWFoUuXLmjfvj22bNnSmFCJiDTG1NQU06ZNg4eHBwDgwYMHWLRoEa5duyZxZKRJ5eXl2Lt3Lz7++GMkJyerimNra2tER0dj5syZsi2OAcjuijY1vW7dumHkyJEsjhugUQVyeHg4tmzZoloh6MMPP0RycjKsra1hZ2eHQ4cO4b333qvTsXbs2IGIiAgAwOeff47ExEQkJibi888/hyiKCA8Px65duxoTLhGRxpiYmOD1119Hhw4dAFTOZrB48WJcuXJF4siosURRxKlTpzBv3jxs2LABDx48AAAYGhoiLCwMc+bMgZ+fn6y7L+jp6clmbQFqevr6+hg6dKjs/5/KmSA+bu3gRyguLsbmzZuRlpYGGxsbhIWFqW7lHDp0CBs3boRCoUBoaCgCAwPrdMy+ffuipKQEhw4dgpmZmdprhYWF8Pf3h7GxMY4ePVrfcGXv5MmT8PHxwR9//IGePXtKHQ4R1UNpaSm+/fZbXLhwAUBlEfXaa6/B09PzifsWFRXh4MGDsLCwgLGxsbZDlVxxcTHy8/MxcOBAyQeyPcrff/+N9evX4/Lly6o2QRDg5+fXrK7E3bhxo8WvhKar2rZtixs3bsDa2hpffPFFjdeNjIwwYsQIztXeSPXug5yVlYV+/fohLS0NoihCEASYmJhg06ZNCAoKwoABAzBgwIB6B3LmzBl8/vnnNYpjoLLP38SJE/HBBx/U+7hERNpkaGiIV199FUuXLkVqaipKS0uxZMkSxMTEyHr8REVFBQfrVJOTk4MtW7bg+PHjavP5d+jQAREREc1uEGZL+MJFNRkYGCA0NJSrfWpAva+7z5s3D+np6ZgxYwa2bduGBQsWwMTEBDExMY0KxNjYWG3N+ofdv3+fv/BEJEuGhoaIiYlBly5dAFTO5vPtt9/WmO2A5Ke0tBQ7duzA3LlzcezYMVVxbGdnhylTpiA2NrbZFccAVDNLUcsyePBgFscaUu/foD179mDChAn46quvVG0ODg4YN24cLl68WKfbirUZPHgwFi5ciOHDh6Nv375qrx0/fhyLFi3CsGHDGnRsIiJtMzAwwCuvvILly5fj9OnTKC8vx3fffYfJkyejW7duUodHD1EqlThx4gQ2b96MnJwcVbuJiQlCQkIQEBDQrItM9jtteTp37gwXFxepw9AZ9f7tz8jIwLvvvqvW5u/vD1EUcfv27QYXyF9++SX69u0Lf39/+Pr6qo5z8eJF/P7777C3t6+1rw0RkVzo6+tj8uTJSEhIwMmTJ1FRUYFly5bh5ZdfRo8ePaQOj/7XlStXsGHDBtV0okBlQTlw4ECEhITA3Nxcwug0gwVyy2Jubg5fX1+pw9Ap9S6QS0pKanR1qHpefR36+nJzc8OZM2cQFxeHnTt3Yu3atQAq50F+88038d5777HDORHJnkKhwEsvvQSFQoETJ05AqVRi+fLlmDhxInr16iV1eCotcRWtu3fvIjExEX/++adau7e3N8LDw+Ho6ChRZJrH/uUtS//+/bmkuIY16P5Reno6Tp48qXqem5sLALh8+XKtI3zrOjODvb09FixYgAULFjQkLCIiWVAoFIiOjoZCocCxY8egVCqRkJCAiooK+Pn5SR1ei/PgwQPs3LkTycnJahdy2rRpg4iICHTq1EnC6LSjahEv0n2urq7sWqEFDSqQZ8+ejdmzZ9donzp1qtrzqlkuKioqGhYdEVEzpaenh/Hjx0OhUODw4cMQRRE//PADKioq0K9fP6nDaxEqKipw+PBhbNu2DQUFBap2CwsLPPPMM+jXr5/OdkXQ1fdFgKOjI5RKJQwMDKBQKGqM2yLNqHeBnJCQoJETT5o0CYIgYOnSpVAoFJg0adIT9xEEAcuXL9fI+YmItE1PTw9RUVHQ19fHgQMHIIoifvzxR1RUVDRoOkxNasAU+M3KX3/9hY0bN+LWrVuqNn19fQwZMgTDhg2DiYmJhNERNVxKSgpu3bqFrVu34umnn4aFhYXUIemkehfI0dHRGjnxvn37oKenB6VSCYVCgX379j2xT1xL7DNHRM2bnp4enn32WdXnHAD89NNPKC8vZ3cLLbh58yY2btyI1NRUtfZevXph1KhRsLGxkSgyIs1r6MQI9GSSzWGTnp7+2OdERLpCEARERERAoVAgKSkJALBu3ToUFxdL9sVf164g5+fnY9u2bfjtt9/U3purqysiIyPh7u4uYXREmmdoaMgvfFokm0keMzIyYGdn98jbXg8ePMCdO3ea5YTtRESCIGD06NHQ19fHzp07AQBbt25Fp06dJFliXqlUNvk5taGsrAzJycnYuXMniouLVe2tW7fGqFGj0KtXL959JJ3UunVr/t/WItkUyG5ubli1ahXGjRtX6+tbtmzBuHHjOOCPiJotQRDwzDPPQKFQYNu2bQCA8+fPw8DAAL17927SWJp7gSyKIv78808kJibi3r17qnYjIyMEBwdj8ODBnMmBdFqrVq2kDkGnyaZAftLtvrKyMo7KJSKdEBISAoVCgc2bNwMAzpw5Az09PfTs2bPJrgg1Zt56qaWnp2PDhg24evWqqk0QBPTr1w9hYWGwsrKSMDqiptG6dWupQ9BpkhbIeXl5akt83rt3DxkZGTW2y8nJwc8//wwnJ6cmjI6ISHuCg4OhVCqxdetWAMCpU6dQUVGB3r17N0mR3BwL5OzsbGzevBm///67WrunpyciIiLQtm1biSIjanq1rTtBmiNpgbxgwQJ88sknACq//cfGxiI2NrbWbUVRxKefftqE0RERaVdAQADS09Nx9uxZAMDZs2ehVCrh5+en9SK5pKREq8fXpOLiYiQlJeHXX39FWVmZqt3BwQHh4eHw9vZmX0xqcXinRLskLZCHDRsGc3NziKKImTNnIioqqsZgFUEQYGZmBh8fH1kt00pEpAlubm4wMTFRXRX966+/VIuJaLPoe/DggWoxJ7lSKpU4fvw4tmzZolqxFQDMzMwQEhKCgQMHckllarFMTU2lDkGnSVog9+3bV7UCTGFhISIiIuDt7S1lSERETa5Dhw4wMjLCoUOHAAAXLlyAUqmEv7+/1gpYpVKJ/Px8WFpaauX4jXXp0iVs2LABf//9t6pNT08PgwYNwogRI2BmZiZhdETSMjIy4rgsLZPFIL2ioiIsWrQIpqamLJCJqEXq2LEj9PT0cPDgQYiiiEuXLkEURfj7+2vtD+GdO3dkVyBnZWUhMTERp0+fVmvv2rUrwsPDYW9vL1FkRPLBGVq0TxYFsqmpKfT19XlFgIhatPbt20NPTw/JyckQRRGXL1+GUqnEwIEDtVIk37lzB25ubrK4ElVUVIQdO3bgwIEDatN5tm3bFhEREVwxjKgaLpWufbIokAEgIiIC69evx2uvvSbrPnFERNrk7u4OPT097Nu3D6Io4urVq1AqlRg0aJDGC9mysjLcv38ftra2Gj1ufVRUVODgwYPYsWMHCgsLVe2WlpYYNWoU/Pz8ZFHAE8kJ+95rn2wK5Oeffx5Tp05FYGAgXnnlFbi6utb6DUmKFaeIiJqSq6srgoKCsHfvXiiVSqSlpUGpVCIwMFDjfxhv3LgBGxubJr8wIYoizp07h40bN+L27duqdgMDAwQFBWHo0KEwNjZu0piIiKrIpkAeNGiQ6t9VA1WqqxptzZX0iKglcHZ2VhXJFRUVuH79Ovbu3YvBgwdDX19zH915eXm4f/8+bGxsNHbMJ7l58ya2b9+OixcvqrX7+vpi5MiRXACBiCQnmwI5ISFB6hCIiGSlXbt2GDp0KJKSklBRUYG///4bv/76K4KCgjRaJF+5cgUWFhZaH/jz4MEDnDp1Clu3blVbPdXDwwMRERFwdXXV6vmJiOpKNgVydHS01CEQEcnOU089heDgYOzZswfl5eW4ceMG9uzZg6FDh8LAwEAj5ygtLcVff/0Fb29vjR2zuvLycpw7dw6nT59WW8HPxsYGY8aMQY8ePTj2hIhkRTYFcnUFBQWquS/btWsHc3NziSMiIpKOk5OTqkguKyvDrVu3VEWypq76FhQU4MyZM+jcubPG+v6Koohr167hxIkTagPwjI2NMXz4cAQGBmqlICciaixZDQ0+ceIEAgMD0apVK3h7e8Pb2xutWrXC4MGDkZKSInV4RESScXR0xPDhw1UFZWZmJnbv3o3S0tJ6H+vFF1/Eq6++ivnz56u1FxUV4dSpU8jLy2t0vLdv38bWrVuRnJysKo4FQYCLiwveffddDBs2jMUxEcmWbK4gHz9+HIMGDYKhoSEmT56MTp06AQDOnz+Pn376CQMHDkRycjJ8fX0ljpSISBr29vYYMWIEdu3ahdLSUmRlZWHXrl0IDg6GkZFRnY9z79493L9/v9ZBz2VlZTh79iy8vLzQqlWreseYn5+PlJQUXLt2Ta39qaeeQvfu3aFQKGBhYVHv4xIRNSXZFMgffvghnnrqKfz2229wdHRUe23OnDno378/PvzwQyQlJUkUIRGR9Ozs7FRFcklJCe7cuYOdO3dixIgR9SqSH0epVCI1NRWdOnWq84wSpaWlOHPmDM6dO6dWeFtbW8PPzw9t27ZFcXEx8vPzNRIjEZE2yaaLxfHjxxETE1OjOAYABwcHTJkyBceOHZMgMiIiebG1tUVISIiqr/C9e/ewY8cOPHjwQGPnqCqSb926pTbjRG3bXbhwAevWrcPp06dVxbGxsTH69euHMWPGoG3bthqLi4ioKcimQNbT01Mb3fywiooKrqZERPS/WrdujZCQENWCSvfv39d4kSyKIq5cuYILFy7U2tf5xo0b2LRpEw4fPozi4mIAlZ/lXbp0QWRkJDp16sTPbSJqlmTzydWvXz/897//xfXr12u8lpGRgSVLlqB///4SREZEJE+tWrVCaGgoTE1NAQA5OTnYvn272owRmnD37l2kpKTg77//RkVFBXJycrBnzx7s2rUL2dnZqu1cXV0REREBX19fjXX3ICKSgmz6IH/++ecYOHAgnn76aYwZMwYdO3YEAFy8eBGbN2+Gvr4+4uLiJI6SiEherKysEBoaih07dqCwsBC5ubnYsWMHRowYodEpMisqKnDt2jWkpqbi7t27qivGQGWXDz8/v1q7yBERNUeyuYLco0cPHD9+HMOHD8eWLVvwySef4JNPPsHWrVsxfPhwHDt2DN26ddNqDPfv38cLL7wAS0tLWFtb4+WXX0ZBQcFj9xk0aBAEQVB7vPrqq1qNk4ioOktLS4SGhqoK4ry8POzYsUNjA+JEUcSDBw+QnZ2NoqIimJqawtraGpaWlvD398fIkSNZHBORTpHNFWQA8PLyQmJiIpRKJe7cuQOgcsR2U/Vhe+GFF3Dr1i0kJSWhrKwML730EqZMmYI1a9Y8dr9XXnkFn3zyiep51e1OIqKmYmFhobqSnJ+fj/z8fGzfvh0hISGwtLRs8HFLSkpQVFSkNjOFIAgwNzeHiYkJsrOzcevWLTg6OrK/MRHpDFl+mj18RbYpnD9/Hrt27cL3338PPz8/+Pv7Y/Hixfj5559x8+bNx+5ramoKR0dH1aMxf4yIiBrK3NwcoaGhsLKyAgAUFhZi+/btyM3NVW2TmZmpGshXWlqq1oe4uvLycuTm5iI/P1+tODYyMkKrVq1gamoKQRBQVlaGq1ev4vTp0ygqKtLiuyMiajqyKpBTU1MRGRkJS0tLODk5wcnJCZaWloiMjMS5c+e0eu6jR4/C2toavXr1UrUFBQVBT08Px48ff+y+q1evhq2tLby9vfH+++8/8Y9ESUkJ8vLyVI8ndeMgIqorMzMzhISEwNraGkDl6ng7duzAsWPHMGPGDDzzzDOqrhcPHjzAvHnz8P333yMjIwNA5bRt+fn5yMnJQVlZmeq4BgYGsLa2hoWFRa1XigsKCnDq1Cncvn37sdPCERE1B7IpkA8dOgRfX1/s2LEDYWFhmDVrFmbNmqW6Zejn54dDhw5p7fyZmZmwt7dXa9PX10fr1q2RmZn5yP3GjRuHH3/8Efv378f777+PVatWYfz48Y89V1xcHKysrFSPgIAAjbwHIiKg8q5WSEiIapGPc+fOYfr06Th8+HCN4lUURZw/fx4LFy7EiRMnkJ2djZKSEtXrVSvfWVlZQV//8b3yKioqcOnSJaSmpqodQ1NEUcRHH30EJycnmJiYICgoCJcvX37sPnPmzKlxV/Lpp59W24ZjSYjoYbLpgzxjxgzY29vjwIEDaNeundprf//9NwYOHIi33noLJ06cqNdx33vvPXzxxReP3eb8+fP1jrfKlClTVP/u0qULnJycMGTIEFy9ehUeHh617vP+++/jrbfeUj0/deoUi2Qi0igTExOMGDECy5cvx549e5642AcA/Pzzz4iOjkabNm0gCAJMTU1hbGxc765u9+/fR0pKCtq2bYu2bdtCoVA06r1U+fLLL7Fo0SKsXLkSbm5umD17NoKDg5GamqpaNKU2nTt3xq+//qp6Xluhz7EkRFSdbArkv/76C/PmzatRHANAu3bt8Nprr2HOnDn1Pu7bb7+NiRMnPnYbd3d3ODo6IisrS629vLwc9+/fr9fobD8/PwDAlStXHlkgGxkZqc0RqsmpmIiIqhgbG+PSpUt13l4URfz222+YMGECTE1NGzXoTqlUIiMjA5mZmXB3d4ednV2Dj1UVW3x8PGbNmoVRo0YBAH744Qc4ODhg06ZNeP755x+5r76+/hM/x6vGkhARATLqYuHi4vLYW3KlpaW1Fs9PYmdnh6effvqxD0NDQ/Tt2xc5OTn4448/VPvu27cPSqVSVfTWxalTpwAATk5O9Y6ViEiTMjMzceTIkTr3Ca5aOa+srExjM1KUlpbiwoULuHHjRqOOk5aWhszMTAQFBanarKys4Ofnh6NHjz5238uXL6NNmzZwd3fHCy+8oOpvXV19x5IQkW6TzRXkjz76CDNmzEBoaCi6d++u9tqff/6JxYsXIz4+Xmvn79SpE4YPH45XXnkF3377LcrKyvDGG2/g+eefR5s2bQBULqs6ZMgQ/PDDD/D19cXVq1exZs0ahISEwMbGBmfOnMGMGTMwcOBAdO3aVWuxEpFu0UZ/XQC19jl+ElEUcfHiRfj6+mo0lrS0NNWy2A1RNRbEwcFBrd3BweGx40T8/PywYsUKeHp64tatW5g7dy4GDBiAc+fOwcLCAkDlWBIXFxe0adMGZ86cwbvvvouLFy9i48aNDY6XiJo32RTIx44dg4ODA3x8fNCvXz+0b98eQOU3/6NHj8Lb2xtHjx5Vu1IgCAIWLlyosRhWr16NN954A0OGDIGenh4iIiKwaNEi1etlZWW4ePGi6sqCoaEhfv31V8THx6OwsBDt2rVDREQEZs2apbGYiEh36evrw9zcHAUFBSgtLdX48bOzsyEIQr2KZEEQUFxcrOqXrClKpRJZWVlwcXF54mA/oPLzOCYmRvV8+/btDTrviBEjVP/u2rUr/Pz84OLigl9++QUvv/wygIaNJSEi3SabAvnrr79W/fvw4cM4fPiw2utnz57F2bNn1do0XSC3bt36sYuCuLq6qv2hadeuHQ4cOKCx8xNRy2JoaAhfX1+Ul5dr5fjp6ekNuoJsZWWllbERZWVl6NGjBwwNDZ+47ciRI9W6t1VdZb99+7ZaF7bbt2/XuOv4ONbW1ujYsSOuXLnyyG3qMpaEiHSbbApkTV+tICJqDgwNDetUMDZESEhIg64gd+rUSSur4pWWluL69evw8vJ64rYWFhaqLhBAZeHu6OiIvXv3qgrivLw8HD9+HK+99lqdYygoKMDVq1fx4osvPnIbjiUhItkM0iMiIs1ydnZGWFhYnadZ09PTQ9euXVXzJ2uavr4+bG1tG7SvIAiIjY3Fp59+ii1btuDs2bOYMGEC2rRpg9GjR6u2GzJkiNodyXfeeQcHDhxAeno6jhw5gjFjxkChUCAqKgoAcPXqVcybNw9//PEH0tPTsWXLFkyYMIFjSYhaONlcQa6SlpaGnTt34vr16wAqZ7cYMWIE3NzcJI6MiKj5mT17Nnbu3FnnK8khISFaicPFxQV9+vRRLYPdEDNnzkRhYSGmTJmCnJwc+Pv7Y9euXWpzIF+9ehV3795VPf/nn38QFRWFe/fuwc7ODv7+/jh27Jhq2jmOJSGi2giijNYEffvtt7Fw4cIa3S309PQQGxuLr776SqLItOvkyZPw8fHBH3/8gZ49e0odDhHpmI0bN+K5556DKIqoqKio8XpVd4opU6agR48eGj23i4sLevbs2eh5kImImpJsuljMnz8fCxYsQHh4OI4ePYqcnBzk5OTg6NGjiIyMxIIFC7BgwQKpwyQianbCw8Nx5MgRVZ/k6gRBQJcuXfDuu+9qtDh2d3dHREQEgoODWRwTUbMjmyvIVYt2bNq0qdbXR48ejQsXLuDChQtNG1gT4BVkImoqGRkZ6NatG3JycmBiYoKPPvpIo32O27VrB19fX9jY2GjsmERETU02V5DT09MRHBz8yNeDg4ORnp7edAEREekgZ2dnmJmZAahc9l5TxbGFhQWCg4MxYsQIFsdE1OzJZpCevb09Tp8+/cjXT58+zdt0REQyo1Ao0LVrV/To0aNOC4AQETUHsvk0Gzt2LBYuXAhXV1dMmzZNdYWjsLAQX3/9Nb7//nvExsZKGyQREak4Ozujb9++jZqZgohIjmRTIM+bNw+nTp3CBx98gI8++ght2rQBANy8eRPl5eUIDAzEJ598InGURETUrl079OjRA46OjlKHQkSkFbIpkE1NTbF3715s3rxZbR7k4cOHIyQkBM8880yN0ddERNQ0FAoFOnbsCG9vb7Rq1UrqcIiItEoWBXJRURHGjx+PiIgIvPDCCxg1apTUIREREQADAwN4e3vD29sbJiYmUodDRNQkZFEgm5qa4tdff8WIESOkDoWIiFC5eIiXlxd69uyptlIdEVFLIJtp3vz9/XH06FGpwyAiavFsbW0RHh6Ofv36sTgmohZJNgXy119/jUOHDmHWrFn4559/pA6HiKhF8vLywqhRozS6eAgRUXMjiy4WANCtWzeUl5cjLi4OcXFx0NfXh5GRkdo2giAgNzdXogiJiHSXIAjo168fOnfuLHUoRESSk02BHBERwVkqiIgkMmDAADz99NNSh0FEJAuyKZBXrFghdQhERC1Sly5dWBwTEVUjeYFcXFyMzZs3Iy0tDba2tggNDYWTk5PUYRER6SxHR0eUlpbCxMQEVlZW8PX1lTokIiJZkbRAzsrKQr9+/ZCWlgZRFAFUTvm2adMmBAUFSRkaEZHOSklJwdGjR3H27Fn07t0bCoVC6pCIiGRF0lks5s2bh/T0dMyYMQPbtm1DfHw8TExMEBMTI2VYREQtgpmZGVxdXaUOg4hIdiS9grxnzx5MmDABX331larNwcEB48aNw8WLF+Hp6SlhdEREus3DwwN6erKZ7ZOISDYk/WTMyMiAv7+/Wpu/vz9EUcTt27clioqIqGVwdnaWOgQiIlmStEAuKSmpsUpT1fPy8nIpQiIiahEUCgUcHBykDoOISJYkn8UiPT0dJ0+eVD2vWgjk8uXLsLa2rrF9z549myo0IiKd1apVKw7OIyJ6BEGsmj5CAnp6erUuDiKKYo32qraKioqmCq/JnDx5Ej4+Pvjjjz/4BYCImkRmZiYcHR2lDoOISJYkvYKckJAg5emJiFqsh7u3ERHR/5G0QI6Ojpby9ERELZa+vuQ97IiIZIvz+xARtUDsf0xE9GgskImIWiDOf0xE9Gj8hCQiaoEMDQ2lDoGISLZYIBMRtUC1zSBERESVWCATEREREVXDApmIiIiIqBoWyERERERE1bBAJiIiIiKqhgUyEREREVE1LJCJiIiIiKrhWqPUYLdu3cKtW7ekDoOIiKhFcXJygpOTk9Rh6DQWyDLg5OSEjz/+uFn9Zy8pKUFUVBQOHDggdShEREQtSkBAAHbv3g0jIyOpQ9FZgiiKotRBUPOTl5cHKysrHDhwAObm5lKHQxpWUFCAgIAA5ldHMb+6jfnVbVX5zc3NhaWlpdTh6CwWyNQgVQUyf0F1E/Or25hf3cb86jbmt2lwkB4RERERUTUskImIiIiIqmGBTA1iZGSEjz/+mAMEdBTzq9uYX93G/Oo25rdpsA8yEREREVE1vIJMRERERFQNC2QiIiIiompYIBMRERERVcMCmYiIiIioGhbIRM2QIAh1eiQnJzf6XEVFRZgzZ069jvXZZ59h5MiRcHBwgCAImDNnTqPjaGnknOMLFy5g5syZ6N69OywsLODk5ITQ0FCkpKQ0OpaWQs75vXnzJsaPHw9PT09YWFjA2toavr6+WLlyJTiuv27knN+HrV69GoIgcNXFh+hLHQAR1d+qVavUnv/www9ISkqq0d6pU6dGn6uoqAhz584FAAwaNKhO+8yaNQuOjo7o0aMHdu/e3egYWiI55/j777/H8uXLERERgalTpyI3Nxffffcd+vTpg127diEoKKjRMek6Oef37t27+OeffxAZGQlnZ2eUlZUhKSkJEydOxMWLF/H55583OiZdJ+f8VldQUICZM2fCzMys0XHoHJGImr3XX39d1Nav8507d0QA4scff1znfdLS0hq8L9VOTjlOSUkR8/Pz1dru3r0r2tnZif3799dChLpPTvl9lLCwMNHMzEwsLy/XTGAtiFzz++6774qenp7iCy+8IJqZmWk+uGaMXSyIdJRSqUR8fDw6d+4MY2NjODg4ICYmBtnZ2WrbpaSkIDg4GLa2tjAxMYGbmxsmTZoEAEhPT4ednR0AYO7cuarbgk/qMuHq6qqNt0QPkSrHPj4+NW7H2tjYYMCAATh//rxm32QLJuXvcG1cXV1RVFSE0tLSRr83kj6/ly9fxoIFC/Cf//wH+vrsUPAw/kSIdFRMTAxWrFiBl156CdOnT0daWhq+/vpr/Pnnnzh8+DAMDAyQlZWFYcOGwc7ODu+99x6sra2Rnp6OjRs3AgDs7OzwzTff4LXXXsOYMWMQHh4OAOjatauUb43+l9xynJmZCVtbW42+x5ZM6vw+ePAAhYWFKCgowIEDB5CQkIC+ffvCxMREq++7pZA6v7GxsQgMDERISAh++eUXrb7XZknqS9hE1HgP3747dOiQCEBcvXq12na7du1Sa09MTBQBiCdOnHjksRtz+45dLDRHrjmucvDgQVEQBHH27NkNPkZLJsf8xsXFiQBUjyFDhogZGRn1OgZVklt+t23bJurr64t//fWXKIqiGB0dzS4WD2EXCyIdtG7dOlhZWWHo0KG4e/eu6lF1a3z//v0AAGtrawDAtm3bUFZWJmHEVF9yynFWVhbGjRsHNzc3zJw5UyvnaGnkkN+oqCgkJSVhzZo1GDduHIDKq8rUeFLmt7S0FDNmzMCrr74KLy8vjRxTF7FAJtJBly9fRm5uLuzt7WFnZ6f2KCgoQFZWFgAgICAAERERmDt3LmxtbTFq1CgkJCSgpKRE4ndATyKXHBcWFiIsLAz5+fnYvHkzp4rSEDnk18XFBUFBQYiKisLq1avh7u6OoKAgFskaIGV+FyxYgLt376pmvqDasQ8ykQ5SKpWwt7fH6tWra329alCHIAhYv349jh07hq1bt2L37t2YNGkS5s+fj2PHjrHYkTE55Li0tBTh4eE4c+YMdu/eDW9v7wYfi9TJIb8Pi4yMxLJly3Dw4EEEBwdr7LgtkVT5zc3NxaeffoqpU6ciLy8PeXl5ACqnexNFEenp6TA1NYW9vX3j3qAukLqPBxE13sP926ZOnSoqFAqxqKio3sdavXq1CEBctmyZKIqV03eBfZAlJ7ccV1RUiM8995yoUCjEDRs21DsGUie3/NZm06ZNIgBx7dq1jTpOSySX/Kalpan1K6/tMWrUqHrHpIvYxYJIBz377LOoqKjAvHnzarxWXl6OnJwcAEB2dnaNlbG6d+8OAKpbeKampgCg2ofkQeocT5s2DWvXrsWSJUtUI+dJc6TM7507d2ptX758OQRBQM+ePet0HHo0qfJrb2+PxMTEGo/AwEAYGxsjMTER77//fsPfmA5hFwsiHRQQEICYmBjExcXh1KlTGDZsGAwMDHD58mWsW7cOCxcuRGRkJFauXIklS5ZgzJgx8PDwQH5+PpYtWwZLS0uEhIQAAExMTODl5YW1a9eiY8eOaN26Nby9vR97O33VqlW4fv06ioqKAAAHDx7Ep59+CgB48cUX4eLiov0fgo6TMsfx8fFYsmQJ+vbtC1NTU/z4449qr48ZM4YrczWSlPn97LPPcPjwYQwfPhzOzs64f/8+NmzYgBMnTmDatGlo3759U/4odJJU+TU1NcXo0aNrtG/atAm///57ra+1WNJewCYiTXjUKk1Lly4VfXx8RBMTE9HCwkLs0qWLOHPmTPHmzZuiKIriyZMnxaioKNHZ2Vk0MjIS7e3txbCwMDElJUXtOEeOHBF9fHxEQ0PDOt3KCwgIeOTtu/3792vqbbcocspxdHT0Y2/RVq2kSHUnp/zu2bNHDAsLE9u0aSMaGBiIFhYWYv/+/cWEhARRqVRq9H23FHLKb204zVtNgig+dO2eiIiIiKgFYx9kIiIiIqJqWCATEREREVXDApmIiIiIqBoWyERERERE1bBAJiIiIiKqhgUyEREREVE1LJCJWqD09HQIgoAVK1ZIHQppAfOr25hf3cb8ygMLZCIiIiKiarhQCFELJIoiSkpKYGBgAIVCIXU4pGHMr25jfnUb8ysPLJCJiIiIiKphFwuiZmrOnDkQBAGXLl3C+PHjYWVlBTs7O8yePRuiKOLvv//GqFGjYGlpCUdHR8yfP1+1b2193CZOnAhzc3PcuHEDo0ePhrm5Oezs7PDOO++goqJCtV1ycjIEQUBycrJaPLUdMzMzEy+99BLatm0LIyMjODk5YdSoUUhPT9fST0V3ML+6jfnVbcxv88cCmaiZe+6556BUKvGvf/0Lfn5++PTTTxEfH4+hQ4fiqaeewhdffIH27dvjnXfewcGDBx97rIqKCgQHB8PGxgZfffUVAgICMH/+fCxdurRBsUVERCAxMREvvfQSlixZgunTpyM/Px8ZGRkNOl5LxPzqNuZXtzG/zZhIRM3Sxx9/LAIQp0yZomorLy8X27ZtKwqCIP7rX/9StWdnZ4smJiZidHS0KIqimJaWJgIQExISVNtER0eLAMRPPvlE7Tw9evQQfXx8VM/3798vAhD379+vtt3Dx8zOzhYBiP/+978184ZbGOZXtzG/uo35bf54BZmomZs8ebLq3wqFAr169YIoinj55ZdV7dbW1vD09MS1a9eeeLxXX31V7fmAAQPqtN/DTExMYGhoiOTkZGRnZ9d7f6rE/Oo25le3Mb/NFwtkombO2dlZ7bmVlRWMjY1ha2tbo/1JH4TGxsaws7NTa2vVqlWDPkCNjIzwxRdfYOfOnXBwcMDAgQPx5ZdfIjMzs97HasmYX93G/Oo25rf5YoFM1MzVNg3Qo6YGEp8waU1dphQSBKHW9uoDRarExsbi0qVLiIuLg7GxMWbPno1OnTrhzz//fOJ5qBLzq9uYX93G/DZfLJCJqF5atWoFAMjJyVFrv379eq3be3h44O2338aePXtw7tw5lJaWqo3YJnlhfnUb86vbmF/NYYFMRPXi4uIChUJRY8T1kiVL1J4XFRWhuLhYrc3DwwMWFhYoKSnRepzUMMyvbmN+dRvzqzn6UgdARM2LlZUVxo4di8WLF0MQBHh4eGDbtm3IyspS2+7SpUsYMmQInn32WXh5eUFfXx+JiYm4ffs2nn/+eYmipydhfnUb86vbmF/NYYFMRPW2ePFilJWV4dtvv4WRkRGeffZZ/Pvf/4a3t7dqm3bt2iEqKgp79+7FqlWroK+vj6effhq//PILIiIiJIyenoT51W3Mr25jfjWDS00TEREREVXDPshERERERNWwQCYiIiIiqoYFMhERERFRNSyQiYiIiIiqYYFMRERERFQNC2Qi0qr09HQIgoAVK1ZIHQoREVGdsEAmkpGrV68iJiYG7u7uMDY2hqWlJfr374+FCxfiwYMHWjtvamoq5syZg/T0dK2doy4+++wzjBw5Eg4ODhAEAXPmzJE0HikJglCnR3JycqPPVVRUhDlz5tTrWMxV48g5vxcuXMDMmTPRvXt3WFhYwMnJCaGhoUhJSWl0LC2FnPN78+ZNjB8/Hp6enrCwsIC1tTV8fX2xcuVKcObf/8OFQohkYvv27Rg7diyMjIwwYcIEeHt7o7S0FL/99hv+3//7f/jrr7+wdOlSrZw7NTUVc+fOxaBBg+Dq6qqVc9TFrFmz4OjoiB49emD37t2SxSEHq1atUnv+ww8/ICkpqUZ7p06dGn2uoqIizJ07FwAwaNCgOu3DXDWOnPP7/fffY/ny5YiIiMDUqVORm5uL7777Dn369MGuXbsQFBTU6Jh0nZzze/fuXfzzzz+IjIyEs7MzysrKkJSUhIkTJ+LixYv4/PPPGx2TLmCBTCQDaWlpeP755+Hi4oJ9+/bByclJ9drrr7+OK1euYPv27RJG+H9EUURxcTFMTEw0fuy0tDS4urri7t27sLOz0/jxm5Px48erPT927BiSkpJqtEuFuWocOec3KioKc+bMgbm5uapt0qRJ6NSpE+bMmcMCuQ7knN+uXbvWuNr8xhtv4JlnnsGiRYswb948KBQKaYKTEXaxIJKBL7/8EgUFBVi+fLlacVylffv2ePPNN1XPy8vLMW/ePHh4eMDIyAiurq744IMPUFJSorafq6srwsLC8Ntvv8HX1xfGxsZwd3fHDz/8oNpmxYoVGDt2LAAgMDCwxq2/qmPs3r0bvXr1gomJCb777jsAwLVr1zB27Fi0bt0apqam6NOnT6MKeSmvXjdHSqUS8fHx6Ny5M4yNjeHg4ICYmBhkZ2erbZeSkoLg4GDY2trCxMQEbm5umDRpEoDKPuJVBe7cuXNV+X9SlwnmSvukyq+Pj49acQwANjY2GDBgAM6fP6/ZN9mCSfn7WxtXV1cUFRWhtLS00e9NF/AKMpEMbN26Fe7u7ujXr1+dtp88eTJWrlyJyMhIvP322zh+/Dji4uJw/vx5JCYmqm175coVREZG4uWXX0Z0dDT+53/+BxMnToSPjw86d+6MgQMHYvr06Vi0aBE++OAD1S2/6rf+Ll68iKioKMTExOCVV16Bp6cnbt++jX79+qGoqAjTp0+HjY0NVq5ciZEjR2L9+vUYM2aM5n5AVKuYmBisWLECL730EqZPn460tDR8/fXX+PPPP3H48GEYGBggKysLw4YNg52dHd577z1YW1sjPT0dGzduBADY2dnhm2++wWuvvYYxY8YgPDwcQOVVJpKW3PKbmZkJW1tbjb7Hlkzq/D548ACFhYUoKCjAgQMHkJCQgL59+2rl7mCzJBKRpHJzc0UA4qhRo+q0/alTp0QA4uTJk9Xa33nnHRGAuG/fPlWbi4uLCEA8ePCgqi0rK0s0MjIS3377bVXbunXrRADi/v37a5yv6hi7du1Sa4+NjRUBiIcOHVK15efni25ubqKrq6tYUVEhiqIopqWliQDEhISEOr0/URTFO3fuiADEjz/+uM776LrXX39drP6RfejQIRGAuHr1arXtdu3apdaemJgoAhBPnDjxyGM35ufNXGmGXPNb5eDBg6IgCOLs2bMbfIyWTI75jYuLEwGoHkOGDBEzMjLqdQxdxi4WRBLLy8sDAFhYWNRp+x07dgAA3nrrLbX2t99+GwBqdHHw8vLCgAEDVM/t7Ozg6emJa9eu1TlGNzc3BAcH14jD19cX/v7+qjZzc3NMmTIF6enpSE1NrfPxqf7WrVsHKysrDB06FHfv3lU9qm6P79+/HwBgbW0NANi2bRvKysokjJjqQ075zcrKwrhx4+Dm5oaZM2dq5RwtjRzyGxUVhaSkJKxZswbjxo0DAK3OltTcsEAmkpilpSUAID8/v07bX79+HXp6emjfvr1au6OjI6ytrXH9+nW1dmdn5xrHaNWqVY1+bo/j5uZWaxyenp412qu6ZjwcB2nW5cuXkZubC3t7e9jZ2ak9CgoKkJWVBQAICAhAREQE5s6dC1tbW4waNQoJCQk1+quTvMglv4WFhQgLC0N+fj42b95co28yNYwc8uvi4oKgoCBERUVh9erVcHd3R1BQEIvk/8U+yEQSs7S0RJs2bXDu3Ll67ScIQp22e9RoZLEe812yT5r8KJVK2NvbY/Xq1bW+XjVwRxAErF+/HseOHcPWrVuxe/duTJo0CfPnz8exY8dY8MiUHPJbWlqK8PBwnDlzBrt374a3t3eDj0Xq5JDfh0VGRmLZsmU4ePBgjTuGLRELZCIZCAsLw9KlS3H06FH07dv3sdu6uLhAqVTi8uXLagPpbt++jZycHLi4uNT7/HUtth+O4+LFizXaL1y4oHqdtMfDwwO//vor+vfvX6cvMH369EGfPn3w2WefYc2aNXjhhRfw888/Y/LkyQ3KP2mX1PlVKpWYMGEC9u7di19++QUBAQENeRv0CFLntzZVV45zc3M1crzmjl0siGRg5syZMDMzw+TJk3H79u0ar1+9ehULFy4EAISEhAAA4uPj1bb5z3/+AwAIDQ2t9/nNzMwAADk5OXXeJyQkBL///juOHj2qaissLMTSpUvh6uoKLy+vesdBdffss8+ioqIC8+bNq/FaeXm5KpfZ2dk17hZ0794dAFS3aU1NTQHUL/+kXVLnd9q0aVi7di2WLFmimhmBNEfK/N65c6fW9uXLl0MQBPTs2bNOx9F1vIJMJAMeHh5Ys2YNnnvuOXTq1EltJb0jR45g3bp1mDhxIgCgW7duiI6OxtKlS5GTk4OAgAD8/vvvWLlyJUaPHo3AwMB6n7979+5QKBT44osvkJubCyMjIwwePBj29vaP3Oe9997DTz/9hBEjRmD69Olo3bo1Vq5cibS0NGzYsAF6evX//r1q1Spcv34dRUVFAICDBw/i008/BQC8+OKLvCpdTUBAAGJiYhAXF4dTp05h2LBhMDAwwOXLl7Fu3TosXLgQkZGRWLlyJZYsWYIxY8bAw8MD+fn5WLZsGSwtLVVftkxMTODl5YW1a9eiY8eOaN26Nby9vR97S5250i4p8xsfH48lS5agb9++MDU1xY8//qj2+pgxY1RfqqlhpMzvZ599hsOHD2P48OFwdnbG/fv3sWHDBpw4cQLTpk2rMb6lxZJ2Eg0iqu7SpUviK6+8Irq6uoqGhoaihYWF2L9/f3Hx4sVicXGxaruysjJx7ty5opubm2hgYCC2a9dOfP/999W2EcXKKdpCQ0NrnCcgIEAMCAhQa1u2bJno7u4uKhQKtSnfHnUMURTFq1evipGRkaK1tbVobGws+vr6itu2bVPbpj7TvAUEBKhNO1T9UdsUdC3Jw9NEVVm6dKno4+MjmpiYiBYWFmKXLl3EmTNnijdv3hRFURRPnjwpRkVFic7OzqKRkZFob28vhoWFiSkpKWrHOXLkiOjj4yMaGhrWacoo5kqz5JTf6OjoR+YWgJiWlqbJt94iyCm/e/bsEcPCwsQ2bdqIBgYGqr8zCQkJolKp1Oj7bs4EUazHSB0iIiIiIh3HPshERERERNWwQCYiIiIiqoYFMhERERFRNSyQiYiIiIiqYYFMRERERFQNC2QiIiIiompYIBMRERERVcMCmYiIiIioGhbIRERERETVsEAmIiIiIqqGBTIRERERUTUskImIiIiIqmGBTERERERUzf8HEvEkruKRUw8AAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -1394,11 +1394,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:58:12 2025.\n",
+ "The current time is Tue Mar 25 17:22:32 2025.\n",
"\n",
"Paired effect size(s) for repeated measures against baseline \n",
"with 95% confidence intervals will be computed for:\n",
@@ -1429,11 +1429,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:58:13 2025.\n",
+ "The current time is Tue Mar 25 17:22:33 2025.\n",
"\n",
"The paired mean difference for repeated measures against baseline \n",
"between Control 1 and Test 1 is 0.575 [95%CI 0.325, 0.725].\n",
@@ -1475,7 +1475,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAInCAYAAABKsszLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAxGBJREFUeJzs3Xd4U2X7B/DvSdKke09KoWXvLXsqUERQGe+LoKCoiAMH6E9FtiIVB9aBIshwIbgYAjJEQEQQBVGUPUoZbeluM5p1zu+PSl5iB13pyUm/n+vKBXnOusvDSXOfZwmSJEkgIiIiIiJSMJXcARAREREREVUXExsiIiIiIlI8JjZERERERKR4TGyIiIiIiEjxmNgQEREREZHiMbEhIiIiIiLFY2JDRERERESKx8SGiIiIiIgUj4kNEREREREpHhMbN5CWloa5c+ciLS1N7lCIiIiIiBSJiY0bSEtLw7x585jYEBERERFVERMbIiIiIiJSPCY2RERERESkeExsiIiIiIhI8ZjYXOfHH3/E8OHDUa9ePQiCgPXr19/wmN27d6NTp07Q6XRo0qQJVq1a5fI4iYiIiIjIGROb6xgMBrRv3x6LFy+u0P7nz5/HbbfdhgEDBuDIkSN46qmn8OCDD2Lbtm0ujpSIiIiIiK6nkTsAd3Lrrbfi1ltvrfD+S5YsQUJCAt544w0AQMuWLfHTTz/hzTffRGJioqvCJCIiIiKif2FiUw379+/HwIEDncoSExPx1FNPlXuc2WyG2Wx2vNfr9a4Ir1Kys7NhsVhccm5RFCFJEkJDQ11yfiqbRqNBYWGhy+pWq9UiLCzMJeem8vGe9UyuvmcBICgoyGXnprIZjUZYrVaXnJv3rHy8vLxQUFDA37NugolNNaSnpyMqKsqpLCoqCgUFBTCZTPDx8Sn1uKSkJMybN682QqyQ7OxsLF68GJIkufQ6/fv3h7+/v0uvQc68vLywfv16l9WtIAh47LHH+KFby3jPei6dTodvvvnGpXXLeq19er0ee/bs4T3rgXx8fPDVV1/x96yb4BgbGUyfPh35+fmO1549e2SNx2KxuPzDFgDsdrvLr0HOrFarS+tWkiSXPlmm0vGe9Vw2m83ldct6rX12u533rIfi71n3whabaoiOjkZGRoZTWUZGBgIDA8tsrQGKn8jpdDrHe3d6uiIIQo2fszY+zOnGarpuWa/ugfes5+I965l4z3ou3rPy85gWG0mS8MMPP+C7775DYWFhrVyzR48e2Llzp1PZjh070KNHj1q5PhERERERFVNkYjNjxgwMGDDA8V6SJAwePBiDBg3CbbfdhrZt2+Ls2bOVPq9er8eRI0dw5MgRAMXTOR85cgSpqakAiruQTZgwwbH/ww8/jHPnzuHZZ5/FiRMn8N577+GLL77A1KlTq/cDEhERERFRpSgysfn666/RtWtXx/uvvvoKO3fuxPz587Fp0ybY7XbMnTu30uf97bff0LFjR3Ts2BEAMG3aNHTs2BGzZ88GAKSlpTmSHABISEjA5s2bsWPHDrRv3x5vvPEGPvzwQ071TERERERUyxQ5xuby5cto0qSJ4/0333yDVq1aYfr06QCARx55BO+//36lz9u/f/9y+zOuWrWq1GN+//33Sl+LiIiIiIhqjiJbbDQajWMdGEmSsHPnTgwZMsSxPSoqCllZWXKFR0REREREtUyRiU2bNm3w6aefIjc3FytXrkR2djZuu+02x/YLFy4gPDxcxgiJiIiIiKg2KbIr2uzZszF8+HBH8tKrVy+nyQQ2b96Mm266Sa7wiIiIiIiolikysRk0aBAOHz6MHTt2IDg4GGPGjHFsy83NRd++fXHHHXfIGCEREREREdUmRSY2ANCqVSu0atWqRHlISAjefPNNGSIiIiIiIiK5KDKxKSwsRF5eHuLi4hxlV65cwZIlS2A2mzF69Gh2RSMiIiIiqkMUmdg89NBDOH/+PA4cOAAAKCgoQPfu3XHp0iWoVCq89dZb2Lp1K/r37y9voEREREREVCsUOSvaTz/9hGHDhjnef/rpp7hy5Qp+/vln5Obmol27dpg/f76MERIRERERUW1SZGKTlZWF2NhYx/uNGzeid+/e6N69OwICAjBhwgT88ccfMkZIRERERES1SZGJTXBwMNLT0wEAJpMJe/fuxeDBgx3bNRoNjEajXOEREREREVEtU+QYm549e+K9995DixYtsHXrVhQVFTlN73zq1CmnFh0iIiIiIvJsikxsFi5ciMGDB2PUqFEAgKeffhqtW7cGANjtdnz55ZcYMmSInCESEREREVEtUmRi06RJE5w8eRLHjh1DUFAQ4uPjHduMRiPeffddtG/fXr4AiYiIiIioVikysQEALy+vUpOXgIAAp25pRERERETk+RQ5eQBQvHbNK6+8gsTERHTs2BEHDx4EAOTk5GDRokU4c+aMzBESEREREVFtUWSLzaVLl9CvXz9cvHgRTZs2xYkTJ6DX6wEAoaGh+OCDD3DhwgW89dZbMkdKRERERES1QZGJzf/93/+hsLAQR44cQWRkJCIjI52233nnndi0aZNM0RERERERUW1TZFe07du344knnkCrVq0gCEKJ7Y0aNcLFixdliIyIiIiIiOSgyMTGZDIhIiKizO2FhYW1GA0REREREclNkYlNq1at8OOPP5a5ff369ejYsWMtRkRERERERHJSZGLz1FNPYc2aNVi4cCHy8/MBAKIo4syZMxg/fjz279+PqVOnyhwlERERERHVFkVOHnDPPffgwoULmDlzJmbMmAEAGDJkCCRJgkqlwoIFC3DnnXfKGyQREREREdUaRSY2ADBjxgyMHz8eX3/9Nc6cOQNRFNG4cWOMHDkSjRo1kjs8IiIiIiKqRYpNbACgQYMG7HJGRERERETKHGNz+PBhvPfee2Vuf++993DkyJHaC4iIiIiIiGSlyMRmxowZ+P7778vc/sMPP2DmzJlVPv/ixYsRHx8Pb29vdOvWDQcPHix3/+TkZDRv3hw+Pj6Ii4vD1KlTUVRUVOXrExERERFR5SgysTl06BD69OlT5vY+ffrgt99+q9K5165di2nTpmHOnDk4fPgw2rdvj8TERFy9erXU/VevXo3nn38ec+bMwfHjx7F8+XKsXbsWL7zwQpWuT0RERERElafIxKawsBAaTdnDg1QqlWMa6MpatGgRJk2ahIkTJ6JVq1ZYsmQJfH19sWLFilL3//nnn9GrVy+MGzcO8fHxGDx4MMaOHXvDVh4iIiIiIqo5ipw8oGnTpti+fTsef/zxUrdv3bq1SjOjWSwWHDp0CNOnT3eUqVQqDBw4EPv37y/1mJ49e+LTTz/FwYMH0bVrV5w7dw5btmzB+PHjy7yO2WyG2Wx2vNfr9ZWOVYkEQYBKVb1cWhAEp9e/t12/T2llFXmpVKoSf//3n+UdU1acpcV3fTkASGYzLGmXYcvOhmjQQ5LEav175Wi9q3U8ERERkVIoMrF54IEHMHXqVEybNg2zZ89GcHAwACAvLw/z5s3D1q1b8dprr1X6vFlZWbDb7YiKinIqj4qKwokTJ0o9Zty4ccjKykLv3r0hSRJsNhsefvjhcruiJSUlYd68eZWOT+kkSYIoVu+L+jUqlQpeXl7QaDTQarXQ6XTQ6XTw8fGBt7c31Gp1jVyntkh2O8wp52C+dBGoZjJTVR988AH0ej38/f0xefJkWWIgIiIiqipFJjZPPPEEjhw5guTkZLz99tuoV68eAODKlSsQRRHjx4+vtWmgd+/ejQULFuC9995Dt27dcObMGTz55JN46aWXMGvWrFKPmT59OqZNm+Z4f+TIEfTr169W4vUUoig6Wr4MBkOJ7d7e3vD19YW/vz8CAgLg7e2+LRd2oxGmv/6E3Shvy51er0dBQYGsMRARERFVlSITG0EQsHLlSkyYMAFff/01zp07BwC44447MGrUKPTv379K5w0PD4darUZGRoZTeUZGBqKjo0s9ZtasWRg/fjwefPBBAEDbtm1hMBjw0EMPYcaMGaV2vbrWunCNv79/leKlshUVFaGoqAg5OTkAAC8vLwQGBiIoKAiBgYFu06JjLyiA4c/fIdmscodCREREpGiKTGyuGTBgAAYMGFBj59NqtejcuTN27tyJO++8E0Bxy8DOnTsxZcqUUo8xGo0lkpdrX5olSaqx2Kh6rFYrsrOzkZ2dDUEQEBQUhJCQEAQHB1d73E9V2QsKYPjjMCS7TZbrExEREXkSRSY258+fx19//YXhw4eXuv3bb79F27ZtER8fX+lzT5s2Dffeey+6dOmCrl27Ijk5GQaDARMnTgQATJgwAbGxsUhKSgIADB8+HIsWLULHjh0dXdFmzZqF4cOHu02rADmTJAl5eXnIy8uDSqVCaGgowsPD4efnV2sxiEVFMP71B5MaIiIiohqiyMTmmWeeQUFBQZmJzeLFixEcHIw1a9ZU+txjxoxBZmYmZs+ejfT0dHTo0AFbt251TCiQmprq9IR/5syZEAQBM2fOxOXLlxEREYHhw4fj5ZdfrtoPR7VKFEVkZWUhKysLvr6+iIyMREhIiEtbcSS7HcajRyBazDfemYiIiIgqRJGJzf79+/HUU0+Vuf2WW25BcnJylc8/ZcqUMrue7d692+m9RqPBnDlzMGfOnCpfj9yD0WhESkoKLl++jMjISERERLik1a3o7GnYDXVjim8iIiKi2qLIxCY3NxcBAQFlbvf390d2dnYtRkSexGq14vLly0hPT0dkZCSioqJqLMGxZl6F5cqlGjkXEREREf2PPKOmq6lBgwbYt29fmdv37t2L+vXr12JE5InsdjvS0tJw9OhRpKWlwW63V+t8ks2GotMnayg6IiIiIrqeIhObsWPH4vPPP8fbb7/ttOCj3W7HW2+9hbVr12LcuHEyRkiexG6348qVKzh69CguXboEi8VSpfMUnT3NcTVERERELqLIrmjTp0/HTz/9hKeeegovv/wymjdvDgA4efIkMjMz0b9/f8yYMUPmKMnT2O12ZGRk4OrVqwgJCUFERESF1yCyFxbAknbZxRESERER1V2KTGx0Oh22b9+Ojz76CN988w3Onj0LAOjatStGjRqFCRMmyLY2CXk+SZKQk5ODnJwceHt7Izw8HKGhofDy8irzmKIzp2oxwtLdaF0lPz8/SJLk+JOIiIhISRSZ2ACASqXCxIkTHevLEMmhqKgIly5dwqVLlxAYGOhY9FOj+d+tZc28Clt+XsVOKKjgFRYGTWg4VH5+EKqZoFsKCiEIQoUSlcmTJ1f6/IIgQKvVViU0IiIiohql2MSGyN0UFBSgoKAAFy5cgL+/PwIDAxEQEADx3JkKHe8VGQ3vRk2g8vausZgiAgLx2GOPVXlc0I1otVqEhYW55NxERERElaHIxObmm2++4T6CIGDnzp21EA1RSXq9Hnq9Hrb8fNivpsHXywu+Wi18vDTw9vKC9rrpowW1Bj4tWsErItIlsTDxICIiorpAkYmNKIoQBMGpzG6348KFC7h48SKaNGmC2NhYmaIjKiZJEmw5WZBECXqzBXrz/1pNVCoBOo0G3jpvBLRsjSIJ0OTkQKPRQK1WQ6VSlfg/XhVqtRpSdhYkc1G1z1UaQecNbXSMS85NREREVBmKTGx2795d5rZNmzbhoYcewqJFi2ovIKJSiPoCSGV0ARNFCUUiIIVHoig/H8jPd0kMoZBgf/cNl5z7mgZJi5jcEBERkew8buqwYcOG4Z577sFTTz0ldyhUx9myc8reqFJBWz8OgqsH3ldi3ZwR325D7y82YMS32yp1CVe1BhERERFVhsclNgDQuHFj/Prrr3KHQXWY3aCHWM4Xfm1MLFQ6XS1GBEAQyn1lmoqQYTQh01R0w31RA93kiIiIiGqSxyU2NpsNX3zxBcLDw+UOheowW27ZrTWa0DCoK7iwJxERERFVjCLH2Nx///2llufl5eHAgQNIT0/nGBuSjWg2QzQYSt2m8vaBJjyiliMiIiIi8nyKTGx++OGHEjNGCYKAkJAQ9O7dGw8++CAGDx4sU3RU19nyc0vfIAjwio6pkdnOiIiIiMiZIhOblJQUuUMgKpVkt8NexgxnmtCw2h9XQ0RERFRHeNwYGyI52QsLAVEsUS54eUETxnFfRERERK6imMTGaDQiNTUVllLWBVmxYgVuueUWtGrVCiNHjuSMaCQbexnd0LwiItkFjYiIiMiFFJPYvPjii2jXrl2JxGb+/PmYNGkS9uzZg8zMTKxfvx79+/fHH3/8IVOkVFeJZjPEopJTPKt8fKEOCJQhIiIiIqK6QzGJza5duzBs2DD4XzdNbkFBAebPn4/Y2FicPn0amZmZOHDgALRaLV555RUZo6W6qKxJAzQRnAWNiIiIyNUUk9ikpKSgXbt2TmVbtmyBxWLBc889h4SEBABA165dMXHiROzdu1eOMKmOkiQJ9oLCEuUqPz+ofXxliIiIiIioblHMrGiFhYUICwtzKvvxxx8hCAISExOdylu1aoXMzMzaDI/qOFGvB+y2EuVeYcpprYnw8XH6k4iIiEhJFJPYNGzYECdOnHAq2717N6KiotCkSROncovFgsBAjmmg2mMvKDnFs8rPDyoFJQnrbk+88U5EREREbkoxXdEGDx6MFStW4JdffgEAfPzxxzhx4gRGjBhRYt9Dhw4hPj6+liOkukqy22E36EuUa0LDStmbiIiIiFxBMYnNrFmz4O/vj549e0Kr1eK+++5DREQEZs+e7bSf0WjEunXrcMstt8gUKdU19sJCQJKcylTePlD7+skUEREREVHdo5iuaOHh4Thy5Ag+/PBDnDt3Dg0bNsT999+PyMhIp/3++usv3H333Rg/frxMkVJdYy8sKFGmCQ2VIRIiIiKiuksxLTYAEBISgv/7v//D+++/j+eff75EUgMUz4r2zjvvoHXr1lW+zuLFixEfHw9vb29069YNBw8eLHf/vLw8PPbYY4iJiYFOp0OzZs2wZcuWKl+flEOy2SAajU5lgsYLKv8AmSIiIiIiqpsU02JTW9auXYtp06ZhyZIl6NatG5KTk5GYmIiTJ0+WmkhZLBYMGjQIkZGR+OqrrxAbG4sLFy4gODi49oOnWmfXFwJw7oamCQ6GIAjyBERERERURzGx+ZdFixZh0qRJmDhxIgBgyZIl2Lx5M1asWIHnn3++xP4rVqxATk4Ofv75Z3h5eQEAJy6oQ0p0QxMEqIOCZYmFiIiIqC5TVFc0V7NYLDh06BAGDhzoKFOpVBg4cCD2799f6jEbN25Ejx498NhjjyEqKgpt2rTBggULYLfby7yO2WxGQUGB46XXl5xRi9xfcTc0k1OZOiAAgobPC4iIiIhqGxOb62RlZcFutyMqKsqpPCoqCunp6aUec+7cOXz11Vew2+3YsmULZs2ahTfeeAPz588v8zpJSUkICgpyvPr161ejPwfVDrtej393Q2NrDREREZE8FJHYbNy4EVeuXJE7jFKJoojIyEgsXboUnTt3xpgxYzBjxgwsWbKkzGOmT5+O/Px8x2vPnj21GDHVlOLxNf8jeGk5xTMRERGRTBSR2IwYMQK7d+92vG/UqBE2btxY49cJDw+HWq1GRkaGU3lGRgaio6NLPSYmJgbNmjWDWq12lLVs2RLp6emwWCylHqPT6RAYGOh4+fv719wPQbVCstshGg1OZRq21hARERHJRhGJTUBAAPLy8hzvU1JSXDIuRavVonPnzti5c6ejTBRF7Ny5Ez169Cj1mF69euHMmTMQRdFRdurUKcTExECr1dZ4jOQeRKP+X4tyClAHBckWDxEREVFdp4hRzl27dsXLL7+MjIwMBP3z5XHLli1ljnsBAEEQMHXq1Epfa9q0abj33nvRpUsXdO3aFcnJyTAYDI5Z0iZMmIDY2FgkJSUBAB555BG8++67ePLJJ/H444/j9OnTWLBgAZ544okq/KSkFPZ/JdYqP19OGkBEREQkI0V8E3vvvfcwYcIEvPTSSwCKk5bVq1dj9erVZR5T1cRmzJgxyMzMxOzZs5Geno4OHTpg69atjgkFUlNToVL9r6ErLi4O27Ztw9SpU9GuXTvExsbiySefxHPPPVfpa5MySJIEu8G5G5o6gK01RERERHJSRGLTpEkT/PzzzygqKsLVq1cRHx+P5ORk3HHHHS653pQpUzBlypRSt10/1ueaHj164MCBAy6JhdyPaDIB10/nrVJBHRAgX0BEREREpIzE5hpvb280aNAAc+bMwc0334yGDRvKHRLVQeK/uqGp/QMgqBQxXI2IiIjIYykqsblmzpw5jr/r9XpcvHgRQHG3MM4wRq5mN/wrsQkIlCkSIiIiIrpGsY+Zf/31VwwYMAAhISFo06YN2rRpg5CQENx888347bff5A6PPJRksUCymP9XoFZD5ce1a4iIiIjkpsgWm19++QX9+/eHVqvFgw8+iJYtWwIAjh8/js8//xx9+/bF7t270bVrV5kjJU9j/9faNWr/AAiCIFM0RERERHSNIhObGTNmIDY2Fj/99FOJhTPnzp2LXr16YcaMGdixY4dMEZKnKjkbGicNICIiInIHiuyK9ssvv2Dy5MklkhoAiIqKwkMPPcRZyqjGSZIE8foWG7UaKl92QyMiIiJyB4pMbFQqFWw2W5nb7Xa701ozRDVBNBkBUXS8V/v5sxsaERERkZtQ5Lf/nj17YvHixbhw4UKJbampqXjvvffQq1cvGSIjTyb+uxuaP7uhEREREbkLRY6xWbBgAfr27YsWLVpgxIgRaNasGQDg5MmT2LBhAzQaDZKSkmSOkjyNU2KjUnE2NCIiIiI3osjEpmPHjvjll18wY8YMbNy4EUajEQDg6+uLIUOGYP78+WjVqpXMUZInkWw2iOYix3u1rx8X5SQiIreiUqmq1RVfEASo1eoqd7OubvfsWuveLUmQrFZIoh2Qqncqdkh3L4pMbACgVatWWLduHURRRGZmJgAgIiKCY2vIJUSTczc0FReCJSIiNyOKIsTrxoJWhd1uh0ajgY+PD3x9fREQEICAgABFf7+yG/Sw5WTDnp8He2Gh04PK6srzD6qxc1H1KTaxuUalUiEqKkruMMjD2Q3G694JUPsxsSEiIs9ks9lQWFiIwsJCZGRkQBAEBAUFISwsDEFBQYqYOEe0WGBNuwJLRprzjKbk0RSf2BDVhus/FFU+PhA0vHWIiKhukCQJeXl5yMvLg5eXFyIjIxEREQG1Wi13aCWIZjPMqSmwXrkMSape6xUpD7+dEd2AaLFAslod79laQ0REdZXVasXly5eRkZGB6OhoREZGukULjmS3w5yaAsvF1OKxM1QnMbEhugHRaHR6z/E1RERU19lsNly6dAmZmZlo2LAhAgLkWwLBlpsD08kTEIuMN96ZPBoTG6IbuH7iAMHLCyqdTsZoiIiI3IfZbMapU6cQHh6OuLi4Wp1kQBJFmM+dhflSyXUNqW5iYkN0A9e32Kh8uXYNERHRv2VlZaGwsBCNGjWCr6+vy68nmotg/Oso7IX5Lr8WKYeiE5tjx47h3LlzyM3NhSSVnIh8woQJMkRFnkQ0myHZbI73HF9DRERUOrPZjBMnTqBBgwYIDw932XVsBfkwHv0DktXismuQMikysTl79izuueceHDx4sNSEBihe5ImJDVWXaLquv64gQFULT6GIiIiUSpIkXLhwASaTCfXr16/xiQWsmVdhOvYXZzyjUikysZk8eTKOHj2K5ORk9OnTByEhIXKHRB5KNPxrmmc3nNqSiIjI3Vy9ehVmsxmNGjWqsXE3liuXYTp1AkDpD7WJFJnY7Nu3Dy+88AIef/xxuUMhDyZJEuzXrV/DbmhEREQVl5+fj1OnTqFp06bVXvPGcvkSTKdP1FBk5Klqb+qKGhQeHo6goCC5wyAPJxYVAeL/mrrZDY2IiKhyDAYDTp06Bdt141Uri0kNVZQiE5uHH34Yn376Kex2LsBEriNe11oDtQYqbx/5giEiIlIoo9FY5eTGkpHOpIYqTJFd0Zo1awa73Y727dvj/vvvR1xcXKlNnCNHjpQhOvIU14+vUfuxtYaIiKiqTCYTTp8+jWbNmlW4W5otJxumE8dcHBl5EkUmNmPGjHH8/Zlnnil1H0EQ2KJDVSaJIsQik+M9168hIiKqHqPRiLNnz6JJkyY3nFDAri+E8e+jAGc/o0pQZGKza9cul55/8eLFeO2115Ceno727dvjnXfeQdeuXW943Jo1azB27FjccccdWL9+vUtjJNcSjQbguqnE1UxsiIiIqq2wsBApKSlo1KhRmfuIZjOMf/4ByV71cTlUNykysenXr5/Lzr127VpMmzYNS5YsQbdu3ZCcnIzExEScPHkSkZGRZR6XkpKCZ555Bn369HFZbFR77Nd1QxO8tBC8vGSMhoiIyHPk5ubi0qVLqF+/foltkijC+PdRiJYiGSIjpVPk5AHXO3bsGL777jt89913OHas+v0wFy1ahEmTJmHixIlo1aoVlixZAl9fX6xYsaLMY+x2O+6++27Mmzev3CcQpByiQe/4O2dDIyIiqlkZGRnIysoqUV50+iTsBXm1HxB5BMUmNhs2bEDjxo3Rtm1bDBs2DMOGDUPbtm3RpEkTbNy4sUrntFgsOHToEAYOHOgoU6lUGDhwIPbv31/mcS+++CIiIyPxwAMPVOg6ZrMZBQUFjpder7/xQVRrRLMZktXqeM+JA4iIiGpeamqq03cgS/oVWNIuyxgRKZ0iE5stW7Zg1KhRAIAFCxZg3bp1WLduHRYsWABJkjBy5Ehs3bq10ufNysqC3W5HVFSUU3lUVBTS09NLPeann37C8uXLsWzZsgpfJykpCUFBQY6XK7vWUeU5TfMMQOXD8TVEREQ1TZIknDt3DlarFXaDHkWnTsodEimcIsfYvPTSS2jXrh327t0LP7//fem8/fbbMWXKFPTu3Rvz5s3DkCFDXBpHYWEhxo8fj2XLliE8PLzCx02fPh3Tpk1zvD9y5AiTGzdiv74bmlYHQaPI24SIiMjtWa1WnD1zBrEFeZBEzmZL1aPIb2x//vknFixY4JTUXOPn54f77rsPL7zwQqXPGx4eDrVajYyMDKfyjIwMREdHl9j/7NmzSElJwfDhwx1l4j8r1Ws0Gpw8eRKNGzcucZxOp4NOp3O89/f3r3Ss5BqS3Q7RaHS8F9gNjYiIyKVyz5+D3VKE+sFBcodCCqfIrmje3t7Iyckpc3tOTg68vb0rfV6tVovOnTtj586djjJRFLFz50706NGjxP4tWrTA0aNHceTIEcfr9ttvx4ABA3DkyBHExcVVOgaSl2g0Ok/zzG5oRERELmPX62HPy0Wu0YQsveHGBxCVQ5EtNjfffDPeeustDBkypETC8csvv+Dtt9/G4MGDq3TuadOm4d5770WXLl3QtWtXJCcnw2AwYOLEiQCACRMmIDY2FklJSfD29kabNm2cjg8ODgaAEuWkDHZ94XXvBM6IRkRE5CKSzQZLeprjfVphIbw0agRV4eG0EnzwwQfQ6/Xw9/fH5MmT5Q7HIykysXn11VfRo0cP9O7dG127dkXz5s0BACdPnsTBgwcRGRmJhQsXVuncY8aMQWZmJmbPno309HR06NABW7dudUwokJqaesPVckmZJElyWr9G5eMDQa2WMSIiIiLPJEkSLGlXgOsX4ZSAS7n50ISp4KfVyheci+j1ehQUFMgdhkdTZGKTkJCAP//8E0lJSfjuu++wdu1aAEDDhg3x5JNP4vnnny93Mc0bmTJlCqZMmVLqtt27d5d77KpVq6p8XZKXWGRy+oBlaw0REZFr2HKySsxCCgCiJOFCTh4ahYXAm4tjUyUpMrEBgMjISLz55pt488035Q6FPIRY6LyekMqX42uIiOQkCEKZ78v6e2XLyiWKxTN1idKN9y2HYr9suYhdr4etlMU5HdtFEedzcpEQFgpvzkxKlcD/LUT/cBpfo1JB5eMjXzBERG5MrVZDpVJBpVJBo9HAy8sLXl5e0Ol08Pb2hre3NzT/fCEtL5koL3GpbXa9Hrb8XNgLCiDq9RCLTJCu7yZVDT4GLsR9jWixwJJ+5Yb72ewizmfnoFFYKHRMbqiCFPE/5f7774cgCFi6dCnUajXuv//+Gx4jCAKWL19eC9GRJxDNZkhWi+O92tdP1l+wRETuzG63w24vXnPEbDaXuo+Xlxf8/Pzg5+cHf39/+Pm53+eqrSAf1ox02DIzIVqK5A7HYf78+bDZbNBoNJg5c6bc4dQYyW6H5fIlwF6x9WpsdhHnsnOQEMpuaVQxikhsfvjhB6hUKoiiCLVajR9++OGGH47u9uFJ7s2udx7Mp/Lj2kJERNVhtVqRl5eHvLw8AIBKpUJAQAACAwMRHBwMrUyDwyVRhDU9DZbLF50WZHYnNpsNkiTBZquZFiN3IEkSLFcuQbKUngiXpTi5yUXD0GCPnFCAapYiEpuUlJRy3xNVl1hY6PReXcrir0REVHWiKCI/Px/5+fm4ePEifH19ERoaipCQkFpJciRRhCXtMiwXUiBW8ss1VZ81Pc1pAezKsIsizmfnIi44CEE+njkVNNUMRSQ2/5aamoqIiAj4lDEGwmQyITMzEw0aNKjlyEiJRLMZ4nVdKVRaHQQ2eRMRuZTRaITRaMSlS5cQGBiI8PBwBAcHu6THhTUrE0VnTkMsqtoXa6oey9V02Avyq3UOSZKQmpuHKJs/IgPYq4JKp8gFWRISErBu3boyt2/cuBEJCQm1GBEpGbuhERHJq6CgAOfOncPRo0eRlpZWY12wRHMRDEf/gPGvP5jUyMSalQl7bm6NnS+jUI+UnFzYRLHGzkmeQ5EtNpJU/rSLVquVi2hShdkLnLuhqfzZDY2ISA5WqxVXrlxBeno6wsLCEB0dXeVuapaMdBSdOlFjM5tR5VmzMmHLLnta56oqLDLjTGYW6gcHwV+nq/Hzk3IpJrEpKChwDEAEgOzsbKSmppbYLy8vD2vWrEFMTEwtRkdKJZrNzgMZVSqofLgwJxGRnERRRGZmJrKyshAeHl6pBEey22E6dQLWjDQXR0nlsV69CltutuvOby8edxPq64PowACo+UCboKDE5s0338SLL74IoHjGs6eeegpPPfVUqftKkoT58+fXYnSkVP/u86v29+eMekREbkKSJEeCExkZiZiYGKjV6jL3F01GGP/6021nO6sLJEmCNT2t2mNqKirHaEKB2YyoAH+E+PhU6He4oFJD0GohqKv/Nfj6Mbk36lHk5+cHSZIcf1LNU0xiM3jwYPj7+0OSJDz77LMYO3YsOnXq5LSPIAjw8/ND586d0aVLF5kiJaWQJAn2Ao6vISqLIAjVSvSvX8BRq9XCy8sLPj4+8Pb2hu4G3Udq4gGDKx5SSJIE0aCHvbAQdqMBYlERJLMZks1a4bU5ypPnzRbj0kiShIyMDGRlZSEqKgqRkZElEhxbbg6Mf/3Jrmcykux2WK5cqvLsZ1Vls4u4nFeALL0RkQF+CPL2drr/1X4B0ISGQh0UDHVAAFS6mptZzZydDUEQKpSoTJ48udLnFwRBtqnRlUgxiU2PHj3Qo0cPAIDBYMCoUaPQpk0bmaMiJRNNxuIvI9cIAtRMbIgcJEmq1lPFa4s4Wq1WmEwmp20ajQb+/v4IDAxEUFCQW//iFi0W2LIyYc3Ogj0v1+mLs/DPq6ao+BS3XHa7HVeuXMHVq1cRGRmJiIgIaDQaWNKvwHTyBCBxQLlcxCITLFcuQ7Jab7yzi5htNlzMzUe6Ro/woCBENmoMv/pxLu1iHhYWhsceewwWi+XGO1eBVqtFWFiYS87tiRST2FxjNBrx9ttvw9fXl4kNVYs937mZXOXjA6GcLg5EVHNsNpvT4o3X1jQJDQ2FlxtMty6JImzZWbCkXYYtJwcAEw53YrPZHJMMBNpsCMjPhk6juK80HsOWkwNr1lXADRJzwUsLhIUhNzAIeQV6+KdeRFBQEAIDA+FTwa5qlRVgtUCyFNX4eQGAveMrR3GfAr6+vtBoNPDjAopUDZLdDrv+X4ty+gfIFA0RXVvT5PLlywgODkZkZCT8/Wu/BfVaVxrLpYsQza75okI1x5yRgbScLKQJgL9Wh1A/HwTqdG49VrIiraAajQY2mw0ajcatx2JIFgssGVVfeLNGqdXwCguHOjjEqf71ej30ej0uX74MQRAcXWE1Gk2547UqyrfIhJyXZ1f7POVpkLQI2mhOilURiktsAGDUqFH46quv8Mgjj7j1hxe5L3thIfCvOfCZ2BDJT5Ik5ObmIjc3F35+foiJiUFQUJDrryuKsFy+CHPqBUhW13QpoZplzbwKW84/s25JgN5sht5shkatQpC3N4J9vOFbhS6OKm9fqP39IHj7FC/YrNEAqup91wjIz4fw+58VTlJmzJhRpes0aNAAISEhVToWKJ6NzmazwWKxwGQywWQyQSxlvRjJboctJxu23By3aKVRBwbCKyKquK7KIUmS4+eqKZGi68d0SXzIUmGKTGzuuusuPProoxgwYAAmTZqE+Ph4+Pj4lNjv35MLEF1jz3deLEzl7e00swkRyc9gMODMmTPw8/ND/fr1XdaCY828iqKzpyEW1dyXHXItp6TmX2x2EdkGI7INRnip1Qjw1iFQp4OfTgtVKQ9DVVodNOER0ISEQhMc4pLfBdHR9Vw6DgNwzVgMSZJgNBodS24YCgthz8uDNTcHcIdJGlQqaKOjoQ5w/cOPCrnBw/YRG7ch02RChI8P1t2eeOPzuUHSqDSKTGz69+/v+PvevXtLbJckCYIgwF4DM9SQ5xHNRRCLnJ9+qP0DZYqGiG7EYDDg5MmTCA4ORlxcXI1NNCCai2A6dRK27MwaOR/VDlt2dplJzb9Z7XbkGIzIMRghCAJ8vbzgp/OCj1aHoHqx8K0fV6LrkqsocQD4tdlmdVYLgguAwsI8ZJv0yJXskHuaBpXOG9p6sRDceOKRf8s0mZBh5AMUV1JkYrNy5Uq5QyAFs1230Os1qgB2QyNyd3l5eSgoKEBMTAyioqKq9WXUkn4FRadPcWpghbHl5RUPUq8CSZJgsNlg9g+AJjgUVy02eF28BJ+sbMe4i2vTkl8bf6FWq2ss6bGkp7m0S5Gg8672OAxJFCFZLRBNJtj1etgL8mHLzXF0z9SpVagXFIioAH9kG4zIMhhhL6WrmqupAwLhFR0DgYty0r8oMrG599575Q6BFEqy20ssGqby9oZKQU98iOoyURRx+fJl5ObmltkNuTySzQbTyeOwZma4KEJyFbteD2tGetUOFgRogkOhCQ11GodhtVphtVpR8K81zUoeXr3kRpWXA/9PllfrHOX6p8tS6MgxUFdnTFoFp8tWq1SIDPBHqJ8vrhbqkWM01lqvKU1oGLwiImvnYqQ4ikxsrqfX63Hx4kUAQFxcnCyz6JBy2PPzS04aEMBuaERKYzQacfz4ccTGxiIqKqpCx9j1hTD+dRRikRvM4ESVIppMsKRdRlWm3Vb5+UEbGV2tLkvVnZlMquTYmraffAmLaIdWpcbR8f+p+HWsllpdy0ejKm7BCfH1weX8Apgsrl3DxisyCpqQUJdeg5RNsW14v/76KwYMGICQkBC0adMGbdq0QUhICG6++Wb89ttvcodHbkiSJNj+NWkAwNnQiJRKkiRcunQJZ86cgc1WfpcyS0Y6DId/Y1KjQKLZDPPlSyUeSt2QWg2v6HrQ1W/gXuMwBOGGL4tohygBFtFeof3l5uPlhcZhoYgK8HdZOF5RMUxq6IYU2WLzyy+/oH///tBqtXjwwQfRsmVLAMDx48fx+eefo2/fvti9eze6du0qc6TkTkS9vsRTM5W3j3v9wiOiSsvPz8fx48fRuHFj+PqWXGG86PxZmC+clyEyqi7JYoHl0sVKz8Cl8vWFNib2htP/Us0RBAGRAf7w02lxMTcf1hqcwMkrKgaa4OAaOx95LkXe8TNmzEBsbCx++uknREdHO22bO3cuevXqhRkzZmDHjh0yRUjuqLRZdNRB7IZG5AksFgtOnDiBhg0bOmafkkSxeDxNRprM0bnG/PnzHYs4zpw5U+5wapxktcJ8KRWSrTLdmwRowsOgCQ3nOncy8dNq0SQiDKk5eTDUwPTWXpFRTGqowhTZFe2XX37B5MmTSyQ1ABAVFYWHHnoIBw4ckCEycld2o7HkGhWCwGmeiTyIJElISUnB5cuXIdntMB79w2OTGgCw2WzFXWxv0A1PiSSLBeaLFyBZK5HUqFTQxtaHV1gEkxqZaVQqJISFIMS3cpN7lDhPaDi7n1GlKLLFRqVSlftBbrfboeIUgHQdW05WiTKVnz+7KRB5oLTLl5H715+o56WGmr8LFEc0m2G5lAqpEgmb4KWFNrY+VDqdCyOjyhAEAfWDg6BVq5FRqK/08erAIHhFRLggMvJkivzE79mzJxYvXowLFy6U2Jaamor33nsPvXr1kiEyckd2oxGiwVCiXBPoJisVE1GNkex2WC5dRF52Ns5kZaOoMk/8SXZ2o7G4paYSSY3K2xu6Bg2Z1LipyAB/1Ktkt2+Vjy+8qrkmD9VNikxsFixYgPz8fLRo0QLjxo3D3LlzMXfuXIwdOxYtWrRAfn4+kpKSqnz+xYsXIz4+Ht7e3ujWrRsOHjxY5r7Lli1Dnz59EBISgpCQEAwcOLDc/an2lbqquFoDFacGJ/Ioks0Gy6VUR7dTi82Os1k5yDZwJjQlsBXkw3IpFajEoHOVry+09Ruw9d3Nhfn5Ija4YsmN4OUFbb1Yj+xOGOHjgyhfH0RUcv0tqjhFfhJ07NgRv/zyC2bMmIGNGzfCaCz+peXr64shQ4Zg/vz5aNWqVZXOvXbtWkybNg1LlixBt27dkJycjMTERJw8eRKRkSUXhNq9ezfGjh2Lnj17wtvbGwsXLsTgwYPx999/IzY2tlo/J1Wf3aCHaCz5pUYTGOSRH5pEdZVks8Jy8SJEi9mpXJQkXMkvQKHZjPpBgdCo1TJFSGWRJAm2rMxSJ3gpj8rPD9rYOH6WK0ToPzMWXs4rZzHUf8ZJeWqiuu72RLlD8HiK/Z/TqlUrrFu3DqIoIjOz+Il8REREtcfWLFq0CJMmTcLEiRMBAEuWLMHmzZuxYsUKPP/88yX2/+yzz5zef/jhh/j666+xc+dOTJgwoVqxuKsPPvgAer0e/v7+mDx5stzhlEmSJNiuXi11W7VWZiZSGKXcs1Ulms2wXL5Y7kDzwiIzTlmyUS8oAMF8Wuo2JJsNlvQrpXYXLo/Kz7/4CzCTGkUJ9fWFKElIyy8sdbtXVDRUOu9ajoo8iWITm2sEQXB8sFX3A85iseDQoUOYPn26o0ylUmHgwIHYv39/hc5hNBphtVoRGlr2LB5msxlm8/+eKur1lR9UJye9Xo+CgnKeuLgJe35eiae3QHHfXfbFprpEKfdsVdiNBlgquHijXRRxMTcfuUYT6gUFQuehT4WVwq7Xw5qRVqnxNACg8vVjUqNg4X5+sIsirhY6J7PqoGCOfaVqU+QYGwA4duwYRo8ejcDAQMTExCAmJgaBgYEYPXo0/vrrryqdMysrC3a7HVFRUU7lUVFRSE9Pr9A5nnvuOdSrVw8DBw4sc5+kpCQEBQU5Xv369atSvFQ2yWaDNauUsTUA1JwPn8gj2PJyihdvrOSK9HqzBaczs5BWUAhbZVezp2qT7HZY0tOKW9kqm9T4+NaJpEarUkMlFP/piaICApymglbpdPCKKrmEB1FlKfJx1d69e3HrrbdCFEXccccdaNasGQDg5MmT2LhxI7777jts3boVffr0qdW4XnnlFaxZswa7d++Gt3fZTanTp0/HtGnTHO+PHDnC5KaGWTMzSh2AKmg0UAdw7RoiJZNEEdaMdNgL8qt+DgnI0huQazQh3M8XYX6+ipsaWqPROBboVApbfj5sWVcrndAAgKDVFSc1Cqunqjg64b9yh+BysUGBsNrt0Ftt8IrxzMkCqPYp59PwOlOnTkVkZCT27NmDuLg4p20XL15E3759MW3aNPz666+VOm94eDjUajUyMjKcyjMyMkpdDPR6r7/+Ol555RV8//33aNeuXbn76nQ66K7rCuXP2blqlL2wEPYyut2og4P54UmkYKLZDOuVy6V2M60Kuygio1CPLIMRYX4+CPX1hVcFJxgQBBUEHx+otFoIGi+gBiYmUNn/14IkSVK5+86YMaPC+14vKCio3O7SFSFJEkRRhN1uh81mg9Vqhb2c2czsBj1sWZkQi4qqdD1B4wVd/TgInPzBYwiCgAYhwbjo5Q0bu4dTDVFkYvP333/jpZdeKpHUAEBcXBweeeQRzJ07t9Ln1Wq16Ny5M3bu3Ik777wTACCKInbu3IkpU6aUedyrr76Kl19+Gdu2bUOXLl0qfV2qOZLVCktZK40LAjRBIbUbEBHVGFtODqxZV4ubW2rYtT7/mXoDAr29EeLrA3+t1ulBiNo/EJrgEKiDgqD294fg7VPjD0r8srMhCEKlEpXKEAQB8fHxCAsLq/Fzi6IIi8UCs9mMoqIiGI1GFGakQ5+WBtFUjSm31Rpo68dB8PKquWDJLXhHxaB546Y4ceJEuYkxUUUpMrFp2LCh0+D7f7NYLKUmPRUxbdo03HvvvejSpQu6du2K5ORkGAwGxyxpEyZMQGxsrGOdnIULF2L27NlYvXo14uPjHWNx/P392RJTyyRJgiXtSplrIKgDgzx2CkkiTyaazbBmpFfvy3EFSRKQbypCvqkIGrUKIeERCItrgOAGDaEpp4txTQkLC8Njjz0Gi8XikvNrtVqXJDVA8WQ73t7e8LLZoDPo4ZuehlBLEcTgABh9dTBYrDCYLTBaLRXPTVUq6OrX54QvHkjl7Quf5i0haDSIj4/H2bNn5Q6JPIAiv+XNnj0bU6dOxW233YYOHTo4bfv999/xzjvvIDk5uUrnHjNmDDIzMzF79mykp6ejQ4cO2Lp1q2NCgdTUVKcppd9//31YLBaMHj3a6Txz5sypUqsRVZ01vbynggI0IdXrekFEtUuy22HLyYYtN8clrTRlUmugCQqCJigYeq0W+kI9Uo8dg5+fH/z9/eHr6wsfHx9otdpqLzFQmgCrBZKlal22bqSme+JKogjRZIJdXwh7fh5sOTkQi5w/h1WCAH+dDv46HRBQ3DqmN1tQUFSEArMZolhG3apU0NVvAJU3p+f2NIJaA9+27RwPG4ODgxEbG4vLly/LHBkpnSITmwMHDiAqKgqdO3dGz5490aRJEwDA6dOnsX//frRp0wb79+93mqJZEAS89dZbFTr/lClTyux6tnv3bqf3KSkpVfoZ3FVFuj/4+flBkiTHn+7AmplZ7kBitb8/n/iRR1LqPVseSZJgz8uFNTsbsFd+kHlVCRovaEJDoQ4KLjFAXZIk6PX6EtPze3l5QaPRQK1W10iSE2C1QP/a/Gqfp0yShIiJD0ETUo1uuVLxzJOS1QLRbAakys0sp1apEOTjjSAfb0iShEKzBXkmEwqKzP/7/6nWFLfUMKnxSD7NW0Lt59yrJTo6GkVFRcjOrtxCrUTXU2Ri8+677zr+vm/fPuzbt89p+9GjR3H06FGnssokNnWN9p9+5BX9wlPVBf6aNWtWrQGrkiQVf+Gx250GrOovnIdBnw+oVbDZS/8Fq3FR1wsiOSjlnhVFEaIoOu5Vi8WCoqIimEwmWEtZTFOy24uf+ufmQrKVvdhmjVOr4RUaBnVIaKXHzFit1lJ/lqrSVuLnbvvJl7CIdmhVahwd/58KH2fLyqx0MuIqgiAg0FuHQG8dbKKIfFMRci1WiFExfBjloXTxjeEVGVXqtoYNG8JqtXrsulvkeopMbESuO1CjXN2nG3BNv27JZoPpxDH4W4qA8OJz20URRVYbTDYrTBYrDFYrRG9fPvUjj6LUe/Z6VqsVer0ehYWFyE1PgzEzE/bCgkqvSVNd6qBgeIVHuOf4uxskWRbRDlEq/rNCfczcvLVOo1IhMjIS8e06QG+24OrVq8jPr/qU3uR+vCKj4R2fUOZ2QRDQuHFjnDp1CgaDocz9iMrihp/kJAdXfoFxBWvmVRSdOQXR7NwPXa1SwU+nhZ9OC/gVl2nbdYJRklBQUICCggLYqrB+ApG7Udo9ez3JboegL4R3dhY0WVkIKjKiSKtGvp8P8kxFsNhcPzuSoNXBKzoaah9fl1+LKkYTGgbfVm0haDQI1HkjMDAQJpMJ6enpyMnJkTs8qiZNSBh8WrS64X4qlQpNmjTBqVOnYDKZaiEy8iSKTmzOnz+P7777DhcuXABQ3IR56623IiGh7KcBVDpLehoks2sGq0qiCAgCvCKrt6qwZC6CvSAflox0iMaKPcnxioqBT2gofFD8RVCSJBgMBuTm5iI3N7dGu5AQ1SYl3LMQxeKxGBYzxKIiiCZj8TpTBn2JrlDeXl7w9vJCVEAA9GYzcowmFBQVuaSRQRMSBk1EBNe0ciO6BvHQJTQuUSc+Pj5ISEhATEwM0tLSmOAolDogCL6t21Z4cVWNRoOmTZvi1KlTKKri2kdUNyk2sXn66afx1ltvleiWplKp8NRTT+H111+XKTLlsaSnIXX6NNdd4J9vJqEj/gN1UJDrrvMvgkoN70ZNnMsEwTEVd/369aHX65GdnY3c3Fx2cSTF8NR79pprM2hZ7HZk6Q3INZog1kSGo9ZAW68e1L5+1T8X1QhB4wWf5i3hFRFZ7n7e3t5ISEhAdHQ00tLSkJubW0sRUnWp/QLg165Dpbt7enl5oVmzZjh9+jRbbqjCFJnYvPHGG3jzzTcxevRoPP3002jZsiUA4Pjx43jzzTfx5ptvIjY2FlOnTpU5UmWo7FPfEd9uQ6apCBE+3lg3PLHi16nlLmDaBvHlDj4VBAEBAQEICAhAXFwcsrOzkZmZyadD5PY89Z79N61ajXpBgYj098NVvQE5RlOVZ3VT+fhCWy/WPcfS1FGa4BD4tGgNVSXWB/Lx8UGjRo1QVFSEjIwMZGdnK2Kmv7pK7R8I33Ydqry46rXk5syZMxxzQxWiyE/4ZcuW4fbbb8cXX3zhVN6tWzesWbMGRUVF+OCDD5jYVEUFumZkmoqQYTRVeH85BqyqfP2ga9Cwwvur1WpERkYiMjISBQUFyMjI4KwspAwecs+WR/NPghPu54v0Qj3yTZVL7NQhIfCKiGLXMzchqDXwbtQE2tj6VT6Ht7c3GjZsiNjYWGRmZiIzM5Ndi92MOiCouKWmiknNNRqNBs2aNcO5c+c4mQTdUM2vLFYLUlJSkJhY9lPHxMREj1tfhirHp3nLCvfl/bfAwEA0bdoULVu2RHBwcM0GRkRVptVo0CAkGAlhIdBVpOVFEOAVFQ1tZDSTGjfhFRUD/649qpXUXE+j0SAmJgZt27ZFkyZNEBwczLp2A5rQcPh16FTtpOYalUqFxo0bIzKy/C6LRIpssYmMjMQff/xR5vY//vgDERERtRgRuRNd/YbQBAVX+zy+vr5o3LgxjEYj0tLSkJeXV+1zElH1+et0aBKhRaZej0y9ofQGJpUK2phYqP39S9lItU0TGg7vhEZQBwS65PyCICAoKAhBQUGw2WzIy8tDbm4uCgsL2VWtlmlj4+DdpFmNJ5iCICAuLg4+Pj5ITU1lvVKpFJnY/Oc//8Fbb72F+Ph4PP744/DzKx4IajAY8O677+LDDz/EU089JW+QJAt1QCB0jRrX6DmvJTgmkwkZGRnIycnhByqRzFSCgKiAAATovHEpLx/m68cDqTXQxtaH2sez16/SqtSOBTrdkSCooImIhC6ugcsSmtJoNBqEh4cjPDwcdrsdBQUFyM/PR2FhoUvXfqrrBJUa3s2aQxtdz6XXCQ8Ph6+vL86fP88xsVSCIhObl156CUeOHMELL7yA2bNno1694pvoypUrsNlsGDBgAF588UWZo6TaJnhp4duqTZW7oN2Ij48P4uPjERsbi6ysLPbpJnIDvlovNIkIQ1p+AXKMJggaDbT1G9SJVeuPTviv3CGUQoAmKAiaiCh4RUZBpdXKGo1arUZISAhCQkIAABaLBXq9HgaDAUajESaTCXa769dN8nRqP3/4tGxTay2kvr6+aNmyJS5duoTMzMxauSYpgyITG19fX+zcuRMbNmxwWsdmyJAhGDp0KIYPH84+tnWMIKjg27odVLWw2J6XlxdiYmIQHR2NgoICZGVlIT8/n604RDJRCQJig4PgHxCErIAASGpF/mpTJMFLC7WvL1T+AdAEBUMdHOLyZEaSpOIJLq69rpVfP2W/JAGQAAnX7SNBAyDI2xtB3t5AaCiA4mTHbDHDYrbAYrXCarXCZrfDbrdDtNv/OUX1Pt8FeOh3EkEFXVwD6OIbueyhYllUKhUaNGiA0NBQpKamckpoAqDAxMZoNOKee+7BqFGjcPfdd+OOO+6QOySSm6CCT+u20NTyQP/r+3Tb7XbHop/s001U+9QBgajftgMiRRFnzpyB2WyWOyT3pVZBUFdzULdaBUHjBUGlgmQXYc/Phz0vD7iQguJs4h/StT+u/UW6bvN1ick/fzo+O68lKf8kL5JjH9d8tgoAdP+8XMFqyEeei84tF01wKLybNJN9HJu/vz9atmyJrKwspKWlsSdFHae4xMbX1xfff/89br31VrlDqbMi/um3HuEG/dcFtQY+rdrAKyxc1jjUanWJPt3XXuzTTXJzp3vWFbzCI+HTsjUEtRreAFq2bImUlBRO+FEWuwjJXs0vf3ZAsjB5rIs0QcHQNUyAJjRM7lAcBEFAREQEwsLCkJWVhatXr/LhRh2luMQGAHr37o39+/dj0qRJcodSJ627veIL/LmS2tcfPq3bQu3nXquI/7tPt9lshsFgcLxMJhPE67tMELmYu9yzrqBrmADvBOcJQ9RqNRo3boyMjAxcvnyZLahE1SSoNfCKiIS2Xn2oA2tvIojKUqlUiIyMREREBAoKCpCdnY38/Hz+zq1DFJnYvPvuu0hMTMTMmTPx8MMPo379mpkPn5RB8NJCF9cQ2vpxtd6ntyq0Wi20Xl4ICQ52dKswm83Fr6IiWKxWWCwWWK1W2O122EURoij+rx95NXhor26i4tbalq3hFV721P5RUVEICAjg7ElElSSoNVD5+UMTGAR1SAg0IaGK+H17zfVdxUVRhF6vR2FhIQwGA4qKithdzYMpMrFp3749bDYbkpKSkJSUBI1GA92/ZsARBIEr1Lobjboai3UJELReUPsHQB0UDEGlgvVq+v+6W1+fAEjS/57QXuuTLRb/WfxWvG7gKSBd914S//13sfhYp23/JB2i9M+5nM/hOL4C/cFd2af7Gs4XQ55GHRgM35atoapA17prsydduXIFGRkZtRAdkYzUaqAa46cElQqCRg1B4wVIEmz5ebDl58Gccr6CZ6jAw7iKPq8r98Fe5R76qQAE/fMCAFEUYRNF2GugJUejVoOd3tyHIhObUaNGcdYzJbLZIVXjKYlktUA0GGDNSK/BoIhIMQQVdA0ToGsYX6nfASqVCvXr10dISAguXLjA2ZPIc9ntQDXGT0l2QKojjRnqf17VJbj88SRVhiITm1WrVskdAhER1SJ1QCB8mreE2j+gyufw8/NDy5YtkZmZiStXrnD9EiIiD6OoxKaoqAgbNmzA+fPnER4ejttuuw0xMTFyh0VERC4ieGnhHd8IXvVia6SlXhAEREZGIjQ0FGlpacjMzOTkAkREHkIxic3Vq1fRs2dPnD9/3vFLyNfXF+vXr8fAgQNljo6IiGqSoFJDWz8OugbxEDQ1/6tKo9EgLi4OUVFRyMjIQFZWFmdOIiJSOMVMcfHSSy8hJSUFU6dOxaZNm5CcnAwfHx9MnjxZ7tCIiKiGCGoNdA3i4d+9F7wbNXFJUnM9rVaLuLg4tG3bFvXq1YNXlSc4ISIiuSmmxWb79u2YMGECXn/9dUdZVFQUxo0bh5MnT6J58+YyRkdERNWh9g+ENqYevKKiXZ7MlEaj0SAmJgbR0dHIz89HTk4O8vLy2E2NiEhBFJPYpKam4rnnnnMq6927NyRJQkZGBhMbIiKFUfsHQhMWBq+IKKj9/eUOB0DxGJzg4GAEBwfDbrejoKAA+fn5KCgo4NoXRERuTjGJjdlshre3t1PZtfc2m02OkIiIqCIEFVQ6b6h8fYrXogoIhDooGCqtVu7IyqVWqxESEoKQkBAAxb+HjEYjjEYjioqKYDabYbFYOLsaEZGbUExiAwApKSk4fPiw4/21BThPnz6N4ODgEvt36tSpStdZvHgxXnvtNaSnp6N9+/Z455130LVr1zL3//LLLzFr1iykpKSgadOmWLhwIYYOHVqlaxMRuQ2VClBX49eEIEBQqyD8cw6xqAhiURGsWf8sG1uZbl6V6hFWxs5V7VZ23WEaAIH/vP53Wgn2fxblrW7XNbVKQFa1zkBEVHcpKrGZNWsWZs2aVaL80UcfdXovSRIEQajSU7S1a9di2rRpWLJkCbp164bk5GQkJibi5MmTiIyMLLH/zz//jLFjxyIpKQnDhg3D6tWrceedd+Lw4cNo06ZNpa9PROQ2RBGwV69FXLIBUh1Yl7vGZuIRFPVrmYjIrSjmE3TlypW1cp1FixZh0qRJmDhxIgBgyZIl2Lx5M1asWIHnn3++xP5vvfUWhgwZgv/7v/8DUDx7244dO/Duu+9iyZIltRIzEREREVFdp5jE5t5773X5NSwWCw4dOoTp06c7ylQqFQYOHIj9+/eXesz+/fsxbdo0p7LExESsX7++zOuYzWaYzf97gqnX66sXeE3iDECei3XrmVivnot165lYr56LdSs7xSQ2tSErKwt2ux1RUVFO5VFRUThx4kSpx6Snp5e6f3p6epnXSUpKwrx586ofcA0RdN433qkG6Jo0hVd4RK1ci4qJBoPLr1Fb/3/of3jPei7RaHT5NVivtU8dElor12Hd1j7RZHL5Nfh7tuKY2Mhg+vTpTq08R44cQb9+/WSLRxsdgwZJiyCZi1x2DUHnDW10jMvOT2VzZd2yXuXBe9az8Z71PLrYON6zHoz3rPtgYnOd8PBwqNVqZGRkOJVnZGQgOjq61GOio6MrtT8A6HQ66HQ6x3t/N1i/gTeN52LdeibWq+di3Xom1qvnYt26jxqbyMUTaLVadO7cGTt37nSUiaKInTt3okePHqUe06NHD6f9AWDHjh1l7k9ERERERDWPLTb/Mm3aNNx7773o0qULunbtiuTkZBgMBscsaRMmTEBsbCySkpIAAE8++ST69euHN954A7fddhvWrFmD3377DUuXLpXzxyAiIiIiqlOY2PzLmDFjkJmZidmzZyM9PR0dOnTA1q1bHRMEpKamQqX6X0NXz549sXr1asycORMvvPACmjZtivXr13MNGyIiIiKiWiRI1V0mmart8OHD6Ny5Mw4dOoROnTrJHQ4RERERkeJwjA0RERERESkeExsiIiIiIlI8jrGhKklLS0NaWprcYVANi4mJQUwMp630RLxniYjkx9+zrsXExg3ExMRgzpw5ivmPbjabMXbsWOzZs0fuUKiG9evXD9u2bXNaZ4mUj/csEZF74O9Z1+LkAVRpBQUFCAoKwp49e9xicVGqGXq9Hv369UN+fj4CAwPlDodqEO9Zz3TtnmW9eh7WrWfi71nXY4sNVVmHDh14Y3qQgoICuUMgF+M961mu3bOsV8/DuvVM/D3repw8gIiIiIiIFI+JDRERERERKR4TG6o0nU6HOXPmcOCbh2G9ei7WrWdivXou1q1nYr26HicPICIiIiIixWOLDRERERERKR4TGyIiIiIiUjwmNkREREREpHhMbEhWKSkpEAQBq1atkjsUIqoA3rNEROSumNgoyNmzZzF58mQ0atQI3t7eCAwMRK9evfDWW2/BZDK57LrHjh3D3LlzkZKS4rJrVMTLL7+M22+/HVFRURAEAXPnzpU1HjkIglCh1+7du6t9LaPRiLlz51bqXKwjZ3X5nj1x4gSeffZZdOjQAQEBAYiJicFtt92G3377TbaY5ODO9yzrqHrcuW6vXLmCe+65B82bN0dAQACCg4PRtWtXfPTRR+CcUeVz53r9t88++wyCIMDf37/asXgKjdwBUMVs3rwZ//nPf6DT6TBhwgS0adMGFosFP/30E/7v//4Pf//9N5YuXeqSax87dgzz5s1D//79ER8f75JrVMTMmTMRHR2Njh07Ytu2bbLFIadPPvnE6f3HH3+MHTt2lChv2bJlta9lNBoxb948AED//v0rdAzr6H/q+j374YcfYvny5Rg1ahQeffRR5Ofn44MPPkD37t2xdetWDBw4UJa4aps737Oso+px57rNysrCpUuXMHr0aDRo0ABWqxU7duzAfffdh5MnT2LBggXVjslTuXO9Xk+v1+PZZ5+Fn59ftePwKBK5vXPnzkn+/v5SixYtpCtXrpTYfvr0aSk5Odll1//yyy8lANKuXbtuuK8oipLRaKzwuc+fPy8BkFauXFmhfSVJkjIzMyUA0pw5cyp8HU/12GOPSa66javy78w6KsZ7VpJ+++03qbCw0KksKytLioiIkHr16lXh63kad7pnWUc1y53qtizDhg2T/Pz8JJvNVjOB1QHuWq/PPfec1Lx5c+nuu++W/Pz8aj44hWJXNAV49dVXodfrsXz5csTExJTY3qRJEzz55JOO9zabDS+99BIaN24MnU6H+Ph4vPDCCzCbzU7HxcfHY9iwYfjpp5/QtWtXeHt7o1GjRvj4448d+6xatQr/+c9/AAADBgwo0QR77Rzbtm1Dly5d4OPjgw8++AAAcO7cOfznP/9BaGgofH190b17d2zevLnK/w5ythYpiSiKSE5ORuvWreHt7Y2oqChMnjwZubm5Tvv99ttvSExMRHh4OHx8fJCQkID7778fQPE4ioiICADAvHnzHPV+o65lrKNivGeBzp07l+geERYWhj59+uD48eNVOqenkuueZR25npyfx6WJj4+H0WiExWKp9s9Wl8ldr6dPn8abb76JRYsWQaNh56vr8V9DAb799ls0atQIPXv2rND+Dz74ID766COMHj0aTz/9NH755RckJSXh+PHjWLdundO+Z86cwejRo/HAAw/g3nvvxYoVK3Dfffehc+fOaN26Nfr27YsnnngCb7/9Nl544QVH0+v1TbAnT57E2LFjMXnyZEyaNAnNmzdHRkYGevbsCaPRiCeeeAJhYWH46KOPcPvtt+Orr77CiBEjau4fiJxMnjwZq1atwsSJE/HEE0/g/PnzePfdd/H7779j37598PLywtWrVzF48GBERETg+eefR3BwMFJSUvDNN98AACIiIvD+++/jkUcewYgRIzBy5EgAQLt27eT80RSD92zZ0tPTER4eXiPn8hTuds+yjmqO3HVrMplgMBig1+uxZ88erFy5Ej169ICPj49Lf25PJ3e9PvXUUxgwYACGDh2KL774wqU/q+LI3WRE5cvPz5cASHfccUeF9j9y5IgEQHrwwQedyp955hkJgPTDDz84yho2bCgBkH788UdH2dWrVyWdTic9/fTTjrLyurVcO8fWrVudyp966ikJgLR3715HWWFhoZSQkCDFx8dLdrtdkqTKdUW7pq53c7rev5vI9+7dKwGQPvvsM6f9tm7d6lS+bt06CYD066+/lnnu6vw71+U64j1bth9//FESBEGaNWtWpY/1FO56z17DOqo6d6zbpKQkCYDjdcstt0ipqamVOkdd5271umnTJkmj0Uh///23JEmSdO+997Ir2nXYFc3NFRQUAAACAgIqtP+WLVsAANOmTXMqf/rppwGgRLeSVq1aoU+fPo73ERERaN68Oc6dO1fhGBMSEpCYmFgijq5du6J3796OMn9/fzz00ENISUnBsWPHKnx+qrgvv/wSQUFBGDRoELKyshyva11Odu3aBQAIDg4GAGzatAlWq1XGiD0P79nSXb16FePGjUNCQgKeffbZap3Lk7jTPcs6qlnuULdjx47Fjh07sHr1aowbNw4AXDojY10gZ71aLBZMnToVDz/8MFq1alUj5/Q0TGzcXGBgIACgsLCwQvtfuHABKpUKTZo0cSqPjo5GcHAwLly44FTeoEGDEucICQkp0U+0PAkJCaXG0bx58xLl17rD/DsOqhmnT59Gfn4+IiMjERER4fTS6/W4evUqAKBfv34YNWoU5s2bh/DwcNxxxx1YuXJliTEdVHm8Z0syGAwYNmwYCgsLsWHDBk5Neh13uWdZRzXPHeq2YcOGGDhwIMaOHYvPPvsMjRo1wsCBA5ncVIOc9frmm28iKyvLMZMalcQxNm4uMDAQ9erVw19//VWp4wRBqNB+arW61HKpEvPcs6+u+xBFEZGRkfjss89K3X5toKIgCPjqq69w4MABfPvtt9i2bRvuv/9+vPHGGzhw4AC/1FQD71lnFosFI0eOxJ9//olt27ahTZs2tXZtJXCHe5Z15BruULf/Nnr0aCxbtgw//vhjiVZbqhi56jU/Px/z58/Ho48+ioKCAkfvAL1eD0mSkJKSAl9fX0RGRlbvB1Q4JjYKMGzYMCxduhT79+9Hjx49yt23YcOGEEURp0+fdhosnJGRgby8PDRs2LDS16/oF65/x3Hy5MkS5SdOnHBsp5rXuHFjfP/99+jVq1eFvrx2794d3bt3x8svv4zVq1fj7rvvxpo1a/Dggw9Wqd6pGO/ZYqIoYsKECdi5cye++OIL9OvXr9Ln8HRy37OsI9eRu25Lc62lJj8/v0bOVxfJVa+5ubnQ6/V49dVX8eqrr5bYnpCQgDvuuAPr16+vzI/jcdgVTQGuLcD04IMPIiMjo8T2s2fP4q233gIADB06FACQnJzstM+iRYsAALfddlulr39t8ae8vLwKHzN06FAcPHgQ+/fvd5QZDAYsXboU8fHx7BvqIv/9739ht9vx0ksvldhms9kcdZibm1viCX+HDh0AwNFM7uvrC6By9U7FeM8We/zxx7F27Vq89957jhl/yJnc9yzryHXkrNvMzMxSy5cvXw5BENCpU6cKnYdKkqteIyMjsW7duhKvAQMGwNvbG+vWrcP06dOr/oN5CLbYKEDjxo2xevVqjBkzBi1btnRaxfznn3/Gl19+ifvuuw8A0L59e9x7771YunQp8vLy0K9fPxw8eBAfffQR7rzzTgwYMKDS1+/QoQPUajUWLlyI/Px86HQ63HzzzeU2dz7//PP4/PPPceutt+KJJ55AaGgoPvroI5w/fx5ff/01VKrK59SffPIJLly4AKPRCAD48ccfMX/+fADA+PHj2QqE4j69kydPRlJSEo4cOYLBgwfDy8sLp0+fxpdffom33noLo0ePxkcffYT33nsPI0aMQOPGjVFYWIhly5YhMDDQ8UXbx8cHrVq1wtq1a9GsWTOEhoaiTZs25XZTYR0V4z1bnKi999576NGjB3x9ffHpp586bR8xYgRXzIa89yzryLXkrNuXX34Z+/btw5AhQ9CgQQPk5OTg66+/xq+//orHH3+8xJg+qji56tXX1xd33nlnifL169fj4MGDpW6rk2SckY0q6dSpU9KkSZOk+Ph4SavVSgEBAVKvXr2kd955RyoqKnLsZ7VapXnz5kkJCQmSl5eXFBcXJ02fPt1pH0kqnvb1tttuK3Gdfv36Sf369XMqW7ZsmdSoUSNJrVY7TSNb1jkkSZLOnj0rjR49WgoODpa8vb2lrl27Sps2bXLapzJTx/br189p2srrXxVZYd0TlbUi8tKlS6XOnTtLPj4+UkBAgNS2bVvp2Wefla5cuSJJkiQdPnxYGjt2rNSgQQNJp9NJkZGR0rBhw6TffvvN6Tw///yz1LlzZ0mr1VZoSkrWkbO6fM/ee++9Zf5fACCdP3++3OM9lTvds6yjmuVOdbt9+3Zp2LBhUr169SQvLy/HZ8/KlSslURRr9Of2dO5Ur6XhdM/OBEmqxIhTIiIiIiIiN8QxNkREREREpHhMbIiIiIiISPGY2BARERERkeIxsSEiIiIiIsVjYkNERERERIrHxMaDvPrqq2jRogVEUZQ7lGq766678N///lfuMNwG69YzsV49F+vWM7FePRfr1kPIPd801Yz8/HwpNDRUWrFihaMM/6xF8Prrr5fYf+XKlRIA6ddff63xWAYOHCgBkB577LFSt3/44YdSixYtJJ1OJzVp0kR6++23S+xz+PBhSaVSSUeOHKnx+JSGdeuZWK+ei3XrmVivnot16znYYuMhVqxYAZvNhrFjx5bY9tprrzlWgne1b775Bvv37y9z+wcffIAHH3wQrVu3xjvvvIMePXrgiSeewMKFC53269ixI7p06YI33njD1SG7PdatZ2K9ei7WrWdivXou1q0HkTuzoprRrl076Z577nEqAyB16NBBAiC98cYbTttc8bTBZDJJ8fHx0osvvljq0waj0SiFhYWVWPX87rvvlvz8/KScnByn8tdff13y8/OTCgsLayxGJWLdeibWq+di3Xom1qvnYt16DrbYeIDz58/jzz//xMCBA0ts69WrF26++Wa8+uqrMJlMLo3j1VdfhSiKeOaZZ0rdvmvXLmRnZ+PRRx91Kn/sscdgMBiwefNmp/JBgwbBYDBgx44dLovZ3bFuPRPr1XOxbj0T69VzsW49CxMbD/Dzzz8DADp16lTq9rlz5yIjIwPvv/9+uecxm83Iysqq0OvfUlNT8corr2DhwoXw8fEp9fy///47AKBLly5O5Z07d4ZKpXJsv6ZVq1bw8fHBvn37yo3bk7FuPRPr1XOxbj0T69VzsW49i0buAKj6Tpw4AQBISEgodXufPn0wYMAAvPbaa3jkkUfKvGk+//xzTJw4sULXlCTJ6f3TTz+Njh074q677irzmLS0NKjVakRGRjqVa7VahIWF4cqVK07lGo0GcXFxOHbsWIVi8kSsW8/EevVcrFvPxHr1XKxbz8LExgNkZ2dDo9HA39+/zH3mzp2Lfv36YcmSJZg6dWqp+yQmJlapyXLXrl34+uuv8csvv5S7n8lkglarLXWbt7d3qc28ISEhpT7dqCtYt56J9eq5WLeeifXquVi3noWJTR3Rt29fDBgwAK+++ioefvjhUveJiYlBTExMpc5rs9nwxBNPYPz48bjpppvK3dfHxwcWi6XUbUVFRaU+BZEkCYIgVCqmuoZ165lYr56LdeuZWK+ei3WrHExsPEBYWBhsNhsKCwsREBBQ5n5z5sxB//798cEHHyA4OLjEdpPJhPz8/ApdMzo6GgDw8ccf4+TJk/jggw+QkpLitE9hYSFSUlIQGRkJX19fxMTEwG634+rVq05NqRaLBdnZ2ahXr16J6+Tm5qJp06YViskTsW49E+vVc7FuPRPr1XOxbj0LJw/wAC1atABQPLNHefr164f+/ftj4cKFpTZZrl271vHE4Uava1JTU2G1WtGrVy8kJCQ4XkDxDZuQkIDt27cDADp06AAA+O2335yu+9tvv0EURcf2a2w2Gy5evIiWLVtW6t/Dk7BuPRPr1XOxbj0T69VzsW49C1tsPECPHj0AFP/nbteuXbn7zp07F/3798fSpUtLbKtK/9C77rqrxM0EACNGjMDQoUMxadIkdOvWDQBw8803IzQ0FO+//z6GDh3q2Pf999+Hr68vbrvtNqdzHDt2DEVFRejZs2elYvIkrFvPxHr1XKxbz8R69VysWw8jz/I5VNPatGkjjR071qkMpSzwJEmS1K9fPwlAjS8uVZFrL168WAIgjR49Wlq2bJk0YcIECYD08ssvl9j39ddfl3x9faWCggKXxKgUrFvPxHr1XKxbz8R69VysW8/BxMZDLFq0SPL395eMRqOjrKwbY9euXbLdlJIkSUuXLpWaN28uabVaqXHjxtKbb74piaJYYr9u3bqVWAm4LmLdeibWq+di3Xom1qvnYt16DiY2HiIvL08KDQ2VPvzwQ7lDqRG///67JAiC9Pvvv8sdiuxYt56J9eq5WLeeifXquVi3nkOQpH+tEkSKtXDhQqxcuRLHjh2DSqXseSHuuusuiKKIL774Qu5Q3ALr1jOxXj0X69YzsV49F+vWMzCxISIiIiIixVN2SkpERERERAQmNkRERERE5AGY2BARERERkeIxsSEiIiIiIsVjYkNERERERIrHxIaIiIiIiBSPiQ0RERERESkeExsiIiIiIlI8JjZERERERKR4TGyIiIiIiEjxmNgQEREREZHiMbEhIiIiIiLFY2JDRERERESKx8TGDaSlpWHu3LlIS0uTOxQiIiIiIkViYuMG0tLSMG/ePCY2RERERERVxMSGiIiIiIgUj4kNEREREREpHhMbIiIiIiJSPCY2RERERESkeExsiIiIiIhI8ZjYEBERERGR4jGxISIiIiIixWNiQ0QOoijCbrfLHQYRERFRpTGxISIHSZKY2BAREZEiMbEhIieiKModAhEREVGlMbEhIidssSEiIiIlcsvEJi0tDX/88QcMBoPcoRDVOTabTe4QiIiIiCrNrRKbDRs2oEWLFqhfvz46deqEX375BQCQlZWFjh07Yv369fIGSFQHMLEhIiIiJXKbxObbb7/FyJEjER4ejjlz5kCSJMe28PBwxMbGYuXKlTJGSFQ3WCwWuUMgIiIiqjS3SWxefPFF9O3bFz/99BMee+yxEtt79OiB33//XYbIiOoWJjZERESkRG6T2Pz111/473//W+b2qKgoXL16tRYjIqqbzGaz3CEQERERVZrbJDa+vr7lThZw7tw5hIWF1WJERHVTUVGR3CEQERERVZrbJDYDBgzARx99VOrA5fT0dCxbtgyDBw+WITKiuoWzERIREZESuU1i8/LLL+PSpUu46aab8MEHH0AQBGzbtg0zZ85E27ZtIUkS5syZUyuxLF68GPHx8fD29ka3bt1w8ODBcvdPTk5G8+bN4ePjg7i4OEydOpVPvUmxCgoK5A6BiIiIqNLcJrFp3rw5fvrpJ4SFhWHWrFmQJAmvvfYaFixYgLZt22Lv3r2Ij493eRxr167FtGnTMGfOHBw+fBjt27dHYmJimeN7Vq9ejeeffx5z5szB8ePHsXz5cqxduxYvvPCCy2MlcoWcnBy5QyAiIiKqNI3cAVyvdevW+P7775Gbm4szZ85AFEU0atQIERERtRbDokWLMGnSJEycOBEAsGTJEmzevBkrVqzA888/X2L/n3/+Gb169cK4ceMAAPHx8Rg7dqxjDR4ipSksLITBYICfn5/coRARERFVmNu02FwvJCQEN910E7p161arSY3FYsGhQ4cwcOBAR5lKpcLAgQOxf//+Uo/p2bMnDh065Oiudu7cOWzZsgVDhw4t8zpmsxkFBQWOl16vr9kfhKiaLl++LHcIRERERJXiNonN22+/jcTExDK333rrrXj//fddGkNWVhbsdjuioqKcyqOiopCenl7qMePGjcOLL76I3r17w8vLC40bN0b//v3L7YqWlJSEoKAgx6tfv341+nMQVdeFCxfkDoGIiIioUtwmsVm+fDlatWpV5vZWrVph6dKltRhRxezevRsLFizAe++9h8OHD+Obb77B5s2b8dJLL5V5zPTp05Gfn+947dmzpxYjJrqxixcvwmq1yh0GERERUYW5TWJz9uxZtGzZssztLVq0wNmzZ10aQ3h4ONRqNTIyMpzKMzIyEB0dXeoxs2bNwvjx4/Hggw+ibdu2GDFiBBYsWICkpCSIoljqMTqdDoGBgY6Xv79/jf8sRNVhs9lcfr8RERER1SS3SWy0Wm2Z3b0AIC0tDSqVa8PVarXo3Lkzdu7c6SgTRRE7d+5Ejx49Sj3GaDSWiEutVgMAJElyXbBELnbs2DH+HyYiIiLFcJvEpnv37li1ahUKCwtLbMvPz8fKlSvRvXt3l8cxbdo0LFu2DB999BGOHz+ORx55BAaDwTFL2oQJEzB9+nTH/sOHD8f777+PNWvW4Pz589ixYwdmzZqF4cOHOxIcIiXKyspCWlqa3GEQERERVYjbTPc8Z84c9OvXDx06dMBTTz2F1q1bAwD++usvJCcnIy0tDatXr3Z5HGPGjEFmZiZmz56N9PR0dOjQAVu3bnVMKJCamurUQjNz5kwIgoCZM2fi8uXLiIiIwPDhw/Hyyy+7PFYiV/v1119x++23QxAEuUMhIiIiKpcguVFfkx07dmDy5MlISUlxfJGSJAkJCQl4//33MXjwYJkjdI3Dhw+jc+fOOHToEDp16iR3OFSH2e12LF++3KlswIABaNq0qUwREREREVWM27TYAMCgQYNw5swZ/P77746By40bN0anTp34xJhIJvv27UN0dDQCAgLkDoWIiIioTG6V2ADFC2J27twZnTt3ljsUIkLxwrVbt27F7bffDp1OJ3c4RERERKVyu8Tm2LFjOHfuHHJzc0udkWnChAkyREVUt+Xm5mLLli0YOnQokxsiIiJyS26T2Jw9exb33HMPDh48WOYUs4IgMLEhkklmZiY2btyIIUOGsFsaERERuR23SWwmT56Mo0ePIjk5GX369EFISIjcIRHVKV26dEF6ejrUajVmzJhR6j65ublYv349Bg8e7JgpkIiIiMgduE1is2/fPrzwwgt4/PHH5Q6FqE5KT0/H5cuXERwcXO5+JpMJmzZtQu/evdG8efPaCY6IiIjoBtxmgc7w8HAEBQXJHQYRVYDdbseePXuwb98+iKIodzhERERE7pPYPPzww/j0009ht9vlDoWIKujvv//G5s2bUVRUJHcoREREVMe5TVe0Zs2awW63o3379rj//vsRFxcHtVpdYr+RI0fKEB0RlSUtLQ3r16/HkCFDbtiNjYiIiMhV3CaxGTNmjOPvzzzzTKn7CILAFh0iN1RQUIANGzYgMTER0dHRcodDREREdZDbJDa7du2SOwQiqgaz2YwtW7Zg0KBBiIuLkzscIiIiqmPcJrHp16+f3CEQUTXZbDZs374dAwcORMOGDeUOh4iIiOoQt5k84Bqz2Yz9+/djw4YNyMrKkjscIqoku92O77//HhcvXpQ7FCIiIqpD3CqxefvttxETE4PevXtj5MiR+PPPPwEAWVlZCA8Px4oVK2SOkIgqwm63Y8eOHUhPT5c7FCIiIqoj3CaxWblyJZ566ikMGTIEy5cvhyRJjm3h4eG4+eabsWbNGhkjJKLKsNls2LZtG/Ly8uQOhYiIiOoAt0ls3njjDdxxxx1YvXo1hg8fXmJ7586d8ffff8sQGRFVldlsxnfffQeTySR3KEREROTh3CaxOXPmDG699dYyt4eGhiI7O7sWIyKimlBYWIjt27dzqnYiIiJyKbdJbIKDg8udLODYsWNcH4NIoTIyMvDjjz86dTElIiIiqkluk9gMHToUS5cuLbU//t9//41ly5bh9ttvr/3AiKhGnD59GocPH5Y7DCIiIvJQbpPYzJ8/H3a7HW3atMHMmTMhCAI++ugj3HPPPejSpQsiIyMxe/bsWoll8eLFiI+Ph7e3N7p164aDBw+Wu39eXh4ee+wxxMTEQKfToVmzZtiyZUutxEqkJIcOHcKxY8fkDoOIiIg8kNskNvXq1cOhQ4cwZMgQrF27FpIk4ZNPPsG3336LsWPH4sCBAwgPD3d5HGvXrsW0adMwZ84cHD58GO3bt0diYiKuXr1a6v4WiwWDBg1CSkoKvvrqK5w8eRLLli1DbGysy2MlqimpqakwGAwAigf85+TkuOxa+/btw6lTp1x2fiIiIqqbBMkNOr2bzWZs27YN8fHxaNeuHQAgMzMToigiIiICKlXt5V/dunXDTTfdhHfffRcAIIoi4uLi8Pjjj+P5558vsf+SJUvw2muv4cSJE/Dy8qrSNQ8fPozOnTvj0KFD6NSpU7XiJ6qMgwcP4qWXXsLmzZudxr8IgoC2bdvitttuQ3x8fI1fVxAE9O/fH02bNq3xcxMREVHd5BYtNlqtFv/5z3/w888/O8oiIiIQFRVVq0mNxWLBoUOHMHDgQEeZSqXCwIEDsX///lKP2bhxI3r06IHHHnsMUVFRaNOmDRYsWMAZoMjtffPNN+jVqxe+++67EoP6JUnCX3/9hYULF7pkXIwkSdi9ezdSUlJq/Nw5OTm4++67ERgYiODgYDzwwAPQ6/XlHtO/f38IguD0evjhhx3bV61aVWL7tVdZrblERERUu9wisREEAU2bNi13VrTakJWVBbvdjqioKKfyqKioMldQP3fuHL766ivY7XZs2bIFs2bNwhtvvIH58+eXeR2z2YyCggLH60Zfuohq2sGDBzFmzBjY7fYyk3BRFCGKIpYtW+aSBESSJOzcubNK07j3798fq1atKnXb3Xffjb///hs7duzApk2b8OOPP+Khhx664TknTZqEtLQ0x+vVV191bBszZozTtrS0NCQmJqJfv36IjIysdPxERERU89wisQGAF154Ae+++y5OnjwpdyiVIooiIiMjsXTpUnTu3BljxozBjBkzsGTJkjKPSUpKQlBQkOPVr1+/WoyYqHiyDkmSKjz9sqsmw7Db7dizZ0+NTQN9/PhxbN26FR9++CG6deuG3r1745133sGaNWtw5cqVco/19fVFdHS04xUYGOjY5uPj47RNrVbjhx9+wAMPPFAjcRMREVH1aeQO4JoDBw4gLCwMbdq0Qf/+/REfHw8fHx+nfQRBwFtvveWyGMLDw6FWq5GRkeFUnpGRUeYaOjExMfDy8oJarXaUtWzZEunp6bBYLNBqtSWOmT59OqZNm+Z4f+TIESY3VGtSU1OxadOmCicToijizz//RE5ODkJDQ2s8nqysLKSlpaFevXrVPtf+/fsRHByMLl26OMoGDhwIlUqFX375BSNGjCjz2M8++wyffvopoqOjMXz4cMyaNQu+vr6l7vvxxx/D19cXo0ePrnbMREREVDPcJrG5NlgfAHbu3FnqPq5ObLRaLTp37oydO3fizjvvBFD8pW7nzp2YMmVKqcf06tULq1evhiiKjvFAp06dQkxMTKlJDQDodDrodDrHe39//5r9Qcgj2Gw2l4zV2rp1a6VbSCRJwvHjx9GzZ88ajwcALl26VCOJTXp6eomuYRqNBqGhoWV2JwWAcePGoWHDhqhXrx7+/PNPPPfcczh58iS++eabUvdfvnw5xo0bV+LhCxEREcnHbRIbURTlDgEAMG3aNNx7773o0qULunbtiuTkZBgMBkycOBEAMGHCBMTGxiIpKQkA8Mgjj+Ddd9/Fk08+iccffxynT5/GggUL8MQTT8j5Y5DC2Ww2HDt2DCaTqcbPfeLECahUqkrdc4IgoKCgAEajscbjAYpbkTp16gSNpvSPpAULFmDBggWO9yaTCQcOHHB64FCd9XGuH4PTtm1bxMTE4JZbbsHZs2fRuHFjp33379+P48eP45NPPqny9YiIiKjmuU1i4y7GjBmDzMxMzJ49G+np6ejQoQO2bt3qmFAgNTXVaaa2uLg4bNu2DVOnTkW7du0QGxuLJ598Es8995xcPwJ5ALvdDpPJBC8vrzJb/qoqJCSk0g8SJEmCj4+PS2YpvNZ6ZLfby0xsHn74Yfz3v/91vL/77rsxatQojBw50lFWr149REdHl5ilzGazIScnp8zupKXp1q0bAODMmTMlEpsPP/wQHTp0QOfOnSt8PiIiInI9t0tsDhw4gF27duHq1at49NFH0bRpUxiNRpw4cQLNmjWrlW5bU6ZMKbPr2e7du0uU9ejRAwcOHHBxVFQXabXaGk9s+vTpA0EQKtUdTRAENG/e3CWJjSiKCAgIKHef0NBQp/E9Pj4+iIyMRJMmTZz269GjB/Ly8nDo0CFH4vHDDz9AFEVHslIRR44cAVA8hu56er0eX3zxhaPFloiIiNyH28yKZrFYMHLkSPTq1QszZszA22+/jYsXLwIoXktm8ODBLh1fQ1RXqFQqNG7cGIIgVHj/1q1bu2TiAKA4SQkKCqqRc7Vs2RJDhgzBpEmTcPDgQezbtw9TpkzBXXfd5RjDc/nyZbRo0QIHDx4EAJw9exYvvfQSDh06hJSUFGzcuBETJkxA3759HQsGX7N27VrYbDbcc889NRIvERER1Ry3SWxmzZqFTZs24f3338fJkyedniZ7e3vjP//5DzZs2CBjhETKJkkSDh8+jC+++ALt27ev1LGJiYkuigpo2rRphZOsivjss8/QokUL3HLLLRg6dCh69+6NpUuXOrZbrVacPHnSMV5Iq9Xi+++/x+DBg9GiRQs8/fTTGDVqFL799tsS516+fDlGjhyJ4ODgGouXiIiIaobbdEX7/PPP8cgjj+Chhx4qdcG+li1b4ssvv5QhMiLlM5lM2L59O86fPw8AiIyMxH//+1989dVXAFDq7GvXup1NnDgRDRs2dElcCQkJiIiIgMFgqNRxpXUJvSY0NBSrV68uc3t8fLzTg5O4uDjs2bOnQtf9+eefKxwjERER1S63SWyuXr2Ktm3blrldrVa7bEYmIk926dIlbN26FXq93lHWpUsX9OjRA6NHj8Z7772H3bt3O33ZFwQBrVq1QmJiosuSmvr166Np06awWq0uOT8RERHVLW6T2MTFxeHEiRNlbt+3b1+JgcJEVDZRFHHw4EH88ssvjqTFx8cHiYmJiI+PBwC0a9cOS5YswZUrV3DHHXegoKAAPj4+eO6551w2pgYAGjZsiObNm9doFzQiIiKq29xmjM24cePwwQcfYP/+/Y6ya196li1bhi+++AITJkyQKzwiRTEYDPjmm29w4MABR1JTv3593H333Y6k5nr16tVzLDap1WpdmtQ0adKESQ0RERHVOLdpsZkxYwYOHDiAvn37omXLlhAEAVOnTkVOTg4uXbqEoUOHYurUqXKHSeT2UlJSsG3bNsfinoIgoHv37rjppptcMl1zZbRq1QpxcXGyxkBERESeyW0SG61Wi61bt+Kzzz7DV199BbvdDrPZjHbt2mH+/PkYP348n/ASlcNut+Pnn3/GoUOHHGX+/v4YMmQI6tevL2NkxclVu3btKrVIJhEREVFlyJbYTJs2DePHj0fHjh0BAKmpqYiIiMA999zDNSKIKik/Px/fffcd0tPTHWUJCQkYPHiwo4uZXNRqNTp27IiwsDBZ4yAiIiLPJlu/lOTkZBw/ftzxPiEhAevWrZMrHCLFOnPmDFavXu1IalQqFfr27Yvbb79d9qRGp9Oha9euTGqIiIjI5WRrsYmKisK5c+cc76+fapaIbsxms+HHH3/En3/+6SgLCgrCrbfe6hZdvvz9/dGpUyfZkysiIiKqG2RLbG677Ta8+OKL2L59u2MV7zfeeANr1qwp8xhBELBhw4ZaipDIfeXk5GDLli3IyspylDVr1gy33HILdDqdjJEVCw4ORqdOneDl5SV3KERERFRHyJbYvPXWW4iMjMSuXbvw999/QxAEXLx4ETk5OWUew8kDiIBjx45h165djoUt1Wo1+vfvjzZt2rjFPRISEoJOnTpBo3GbuUmIiIioDpDtm4efnx8WLFjgeK9SqZCcnIxx48bJFRKRW7NYLNi1a5fT2LTQ0FAMHToU4eHhMkb2P9e6nzGpISKqHqPRCF9fX7nDIFIU2SYPGDlyJPbu3et4v2vXLgwaNEiucIjcWmZmJj7//HOnpKZ169YYO3as2yQ1Go0GHTt2ZFJDRFQD7Ha73CEQKY5sic2GDRuQmprqeH/zzTdjx44dcoVD5JYkScIff/yBNWvWIDc3FwDg5eWFIUOGYNCgQW41hqV9+/Z8ukhEVENEUZQ7BCLFkS2xiY2Nxe+//+54L0mSW4wPIHIXFosF27Ztw65duxxP7iIjIzFu3Di0aNFC5uicNWvWzG1ajoiIPAETG8/EWYBdS7Y+I3fddRdef/11fPHFF45Z0Z5//nkkJSWVeYwgCPjjjz9qKUIi+Vy4cAHffvst9Hq9o6xDhw7o3bu323X1io+PR0JCgtxhEBF5FCY2nslkMrF3gwtV6htSQkJCpVtVBEHA2bNnS5QnJSWhSZMm2LVrF65evQpBEODn58eF/KhOE0URO3fuxIYNGxy/1HQ6HQYPHozGjRvLHF1JCQkJaNq0qdxhEBF5HD7Z90ysV9eqVGLTr1+/EonNb7/9hr///hutWrVC8+bNAQAnT57EsWPH0KZNG3Tu3LnUc6nVajz00EN46KGHABTPijZz5kzOikZ1VmFhIT7++GP8/fffjrLo6GgMHToUgYGBMkZWusaNG6Nx48bsQkpE5AKcPMAziaLI4RcuVKnEZtWqVU7v169fj/Xr12PHjh245ZZbnLbt2LED//3vf/HSSy9V6Nznz59HREREZcJxmcWLF+O1115Deno62rdvj3feeQddu3a94XFr1qzB2LFjcccdd2D9+vWuD5Q8xsmTJ7Fq1Srk5+cDKG7pbNOmDXr16gVvb2+ZoyupUaNGaNKkidxhEBF5LHZF80ySJMFut7tdt3JPUa3JA2bPno3HH3+8RFIDAIMGDcKUKVMwc+bMCp2rYcOGbtHncO3atZg2bRrmzJmDw4cPo3379khMTMTVq1fLPS4lJQXPPPMM+vTpU0uRkicQRRGbNm3C22+/7UhqAgMDMXnyZHTq1AkqlWzze5SpXr16TGqIiFzMZrPJHQK5iMVikTsEj1Wtb02nT58ud0xMWFhYqeNrgOKuZxqNxlG5KpUKarW63FdtZLeLFi3CpEmTMHHiRLRq1QpLliyBr68vVqxYUeYxdrsdd999N+bNm4dGjRq5PEbyDHl5eUhOTsaWLVscfW5btGiB6dOnO7p1uht/f3+0atWKTehERC5mtVrlDoFcxGg0yh2Cx6pWptC4cWOsXLkSDzzwAPz9/Z22FRYWYsWKFWV+0Z89ezYEQXAkK9fey8liseDQoUOYPn26o0ylUmHgwIHYv39/mce9+OKLiIyMxAMPPOC06GhZzGYzzGaz4/31M19R3XD06FF8/PHHMBgMAIr/nw0bNgyDBw+GSqVy+v/hTtq0aQO1Wi13GEREHq+oqEjuEMhFmNi4TrUSm/nz52P06NFo0aIF7rvvPkf3lNOnT+Ojjz5CRkYGvvzyy1KPnTt3brnv5ZCVlQW73Y6oqCin8qioKJw4caLUY3766ScsX74cR44cqfB1kpKSMG/evOqESgpls9mwYcMG7Ny501EWEhKC+++/3y1nPbtevXr1EBQUJHcYRER1wrUHX+R5WLeuU63E5s4778SWLVvw3HPPYcGCBU7bOnTogOXLlyMxMbFaAbqzwsJCjB8/HsuWLavU4oTTp0/HtGnTHO+PHDmCfv36uSJEciNZWVlYvnw5Lly44Chr164dxo8fDz8/Pxkjqxh3T7yIiDyJ0WiE1WqFl5eX3KFQDWOLjetUe9DK4MGDMXjwYKSnpzu+sDVs2BDR0dEVPofZbMann36K7du34+zZsygsLERAQACaNGmCIUOGYNy4cdBqtdUN9YbCw8OhVquRkZHhVJ6RkVHqz3P27FmkpKRg+PDhjrJrs5hoNBqcPHmy1C+DOp0OOp3O8f7f3fjI8xw6dAifffaZo2uBRqPBiBEj0L9/f9m7YFZETEyMW0zuQURUl+Tm5iIyMlLuMKiGMbFxnRobjR8dHV2pZOaao0eP4o477sCFCxcgSRKCgoLg7++Pq1ev4vDhw/jyyy/x8ssvY+PGjWjZsmVNhVsqrVaLzp07Y+fOnbjzzjsB/G/BxClTppTYv0WLFjh69KhT2cyZM1FYWIi33noLcXFxLo2X3J/FYsFXX32Fn376yVEWERGBBx54AA0aNJAxssrhpBhERLWPiY1nYmLjOtWeSzY1NRUPP/wwmjdvjtDQUPz4448AirvdPPHEE/j999/LPFav1+P2229HRkYGXn75ZVy8eBG5ublOf86fPx9XrlzB8OHDa6VP4rRp07Bs2TJ89NFHOH78OB555BEYDAZMnDgRADBhwgTH5ALe3t5o06aN0ys4OBgBAQFo06ZNrbQykftKS0vDq6++6pTU3HTTTZg+fbqikpqoqCi2KhIRySAvL0/uEMgFTCaT3CF4rGq12Bw7dgx9+vSBKIro1q0bzpw545h3PTw8HD/99BMMBgOWL19e6vErV65Eamoqdu7cif79+5fYHhsbi+nTp6Nbt24YNGgQVq1ahccee6w6Id/QmDFjkJmZidmzZyM9PR0dOnTA1q1bHRMKpKamuuXaIuQ+JEnCgQMHsHbtWsd05l5eXhgzZgx69OihiK5n1+PYGiIieTCx8UycPMB1qpXYPPvsswgODsaBAwcgCEKJ5tLbbrsNa9euLfP4zZs3Y/DgwaUmNde7+eabMWjQIHz77bcuT2wAYMqUKaV2PQOA3bt3l3vsqlWraj4gUoyioiJ8/vnn+PXXXx1l9erVwwMPPICYmBgZI6uaqKgoBAQEyB0GEVGddG3hZvIsBoMBFouFPXtcoFpNDz/++CMeeeQRRERElPoUukGDBrh8+XKZxx89evSGSc01N998c4nxLETu5OLFi3jllVeckprevXvj2WefVWRSA7C1hohITvn5+Vyo00OlpaXJHYJHqlaLjSiK5c6UlJmZ6TT717/l5ORUeMKBqKgo5OTkVDpGIleTJAm7d+/GunXrHF0xvb29MW7cOHTp0kXm6KouIiKCrTVERDKSJAkZGRmoX7++3KFQDTt16hQaNmwodxgep1otNp06dcLmzZtL3Waz2bBmzRp07969zOPNZnOF52fXaDSO8QpE7sJgMGDp0qX48ssvHUlNgwYN8MILLyg6qQHAD1wiIjeQkpIidwjkAufPn0dWVpbcYXicarXYTJ8+HcOGDcMjjzyCu+66C0Dxmi/ff/89FixYgOPHj+Pdd98t9xwpKSk4fPjwDa91/vz56oRKVOPOnj2LlStXOrUk3nzzzbjzzjuh0dTYTOqy8PHxQWhoqNxhEBHVeWfPnkX37t0V/3uFStq7dy/uvPNOxU0q5M6qdZfceuutWLVqFZ588kksXboUAHDPPfdAkiQEBgbi448/Rt++fcs9x6xZszBr1qwbXkuSJFY8uQVRFLFjxw58++23jgVZ/fz8MGHCBLRt21bm6GpGVFQU7zciIjdgNptx8uRJtG7dWu5QqIZlZmbir7/+8pjvDu6g2un/+PHjMXLkSOzYsQOnT5+GKIpo3LgxEhMTb9g/f+XKldW9PFGtKigowKpVq3DixAlHWZMmTTBx4kSEhITIGFn1hYeHAyheqPba34mISH5HjhxB8+bN2WrjgX777Tc0atQIfn5+cofiEap8hxiNRsTFxeH555/H//3f/+HOO++s9Dnuvffeql6eqNadOHECq1atQkFBAQBAEAQMGTIEQ4cOhVqtljm66vvmm28crVHBwcFyh0NERP8wGAz4448/0LlzZ7lDoRpmtVpx4MAB3HLLLXKH4hGqnNj4+vpCo9EwwySPZ7fbsXnzZmzbtg2SJAEAAgMDMXHiRDRv3lzm6Gqen5+fRyRqRERK1aVLF1y4cAG+vr6YMWMGgOJWm8aNG/PBk4J16dIFaWlp0Gg0jnoFisdRNWvWDHFxcTJG5xmqNSvaqFGj8NVXXzm+7BF5mpycHCQnJ2Pr1q2O/+etWrXCjBkzPDKpAcCHFUQKYrfbHWP9yHOkp6cjKyvL0UMAKK7rPXv28DuXgqWnp+PKlStO9XrNjz/+iKKiIhmi8izV6qx511134dFHH8WAAQMwadIkxMfHw8fHp8R+nTp1qs5liGTx559/4pNPPoHBYAAAqFQq3H777Rg4cCBUqmo9E3Brpd3DROSerFYr7HY7H0jUERkZGTh8+DC7pHkgg8GAXbt2YciQIZy8pxqqldj079/f8fe9e/eW2H5tJjO73V6dyxDVKqvVivXr12PXrl2OstDQUDzwwANISEiQMbLa4e3tLXcIRFQJ19bQorrh8OHDiImJQb169eQOhWrYxYsXsX//fvTo0YPJTRVVK7HhrGbkaa5evYrly5fj4sWLjrIOHTrgnnvuga+vr4yR1R6tVit3CERUCWazWe4QqBZJkoSdO3dixIgR8Pf3lzscqmF//fUXvL292dupiqqV2HBWM/Ikv/76Kz7//HNHH1eNRoNRo0ahb9++derJCacTJVIWk8kkdwhUy0wmE7Zv347hw4fDy8tL7nCohv3222/Q6XRcu6gK3O4bzLFjx3Du3Dnk5uaWOkBuwoQJMkRFnsxiseCLL77Azz//7CiLjIzEAw88UCdnKPHk8UNEnqiwsFDuEEgGWVlZ+OGHHzBo0CB+bnugffv2wcvLC82aNZM7FEWpVGJz//33QxAELF26FGq1Gvfff/8NjxEEAcuXL7/hfmfPnsU999yDgwcPljnjhyAITGyoRl25cgXLly9HWlqao6xr166466676uxYE/6CJFKW0mZYorrhwoUL2LNnD/r371+nehbUFddmwfPUWVhdoVKJzQ8//ACVSgVRFKFWq/HDDz/c8Eaq6I02efJkHD16FMnJyejTp4/iV3En9yZJEvbt24cvv/wSVqsVQPHYkrvuugvdu3eXOToioorLz8+XOwSS0enTpwEA/fr144MpDyNJEvbs2QOj0YgOHTowea2ASiU2KSkp5b6vjn379uGFF17A448/XmPnJCqNyWTC6tWrcejQIUdZbGwsHnjgAURHR8sYmXvgByeRsuj1erlDIJmdPn0aZrMZt9xyC8fceKBff/0V2dnZ6Nu3Lyf4uQG3GWMTHh6OoKAgucMgD3fhwgUsX74cWVlZjrI+ffpg1KhR/LD4B5/4ESnLtbW2qG5LTU3Fxo0bkZiYyNnSPNC5c+eQlZWFfv36ISYmRu5w3JbbfIN5+OGH8emnn3LNG3IJSZLwww8/4PXXX3ckNT4+Ppg0aRLGjh3LpOY6bLEhUhaLxeLoUkt1W3Z2NtatW+c0bpQ8R0FBATZt2oSffvqJ07yXodqJzXfffYdBgwYhLCwMGo0GarW6xKsimjVrBrvdjvbt22PRokX48ssv8c0335R41YbFixcjPj4e3t7e6NatGw4ePFjmvsuWLXOMCQoJCcHAgQPL3Z9qn16vx5IlS/DVV185Euf4+HhMnz4dHTt2lDk698MWGyLlycnJkTsEchMmkwmbN2/G8ePH5Q6FXECSJBw7dgxffPEFzp49W+aEW3VVtbqiff311/jvf/+L1q1b46677sL777+PcePGQZIkbNiwAU2bNsWdd95ZoXONGTPG8fdnnnmm1H0EQXB5i87atWsxbdo0LFmyBN26dUNycjISExNx8uRJREZGlth/9+7dGDt2LHr27Alvb28sXLgQgwcPxt9//43Y2FiXxko3dubMGaxYsQJ5eXmOsoEDB+KOO+6ocNJd1zCxIVKey5cvIyoqSu4wyE2Iooi9e/eioKAAXbt2ZUu8BzKZTNi5cyfOnDmDvn37wsfHR+6Q3EK1EpukpCR07doVP/30E3Jzc/H+++/j/vvvx80334yUlBR0794dCQkJFTrXrl27qhNKjVm0aBEmTZqEiRMnAgCWLFmCzZs3Y8WKFXj++edL7P/ZZ585vf/www/x9ddfY+fOnZyaWkaiKGLbtm3YtGmT42mGv78/7r33Xi54dQNM+IiU59SpU+jYsSO/wJKTP/74AyaTCX379uVDKw914cIFfPXVV+jbty8aNmwodziyq1Zic+zYMSQlJUGtVjtWK7/Wzzc+Ph6PPvooFi5cWKEv+P369atOKDXCYrHg0KFDmD59uqNMpVJh4MCB2L9/f4XOYTQaYbVaERoaWuY+ZrPZqW8kZ7SpWfn5+Vi1ahVOnjzpKGvatCkmTpyI4OBg+QJTCP7yI1KegoICnDlzBk2bNpU7FHIzp06dgtVqxc0338wHVx7KZDJh27ZtaN26Nbp3716n67laiY2vr69j0HVwcDB0Op3TgLWoqCicP3++0uc9duwYLly4AABo2LAhWrVqVZ0wKywrKwt2u71Ec35UVBROnDhRoXM899xzqFevHgYOHFjmPklJSZg3b161YqXSHTt2DB999JFjJW5BEHDbbbdhyJAh/MJeQfx3IlKmgwcPIj4+ntP9Ugnnz5/Htm3bMGjQIP7/8GB///03srKyMGTIEOh0OrnDkUW1vsE0b94cx44dc7zv0KEDPvnkE9hsNhQVFWH16tVo0KBBhc+3YcMGNG7cGG3btsWwYcMwbNgwtG3bFk2aNMHGjRurE2qteOWVV7BmzRqsW7eu3FXrp0+fjvz8fMdrz549tRilZ7Lb7Vi/fj3effddR1ITFBSEJ598EkOHDuWX9UpgVxYiZTIYDDhw4IDcYZCbunTpErZs2YKioiK5Q6mTUlNTHVOzm81ml034kZGRga1bt9bZWYar9W1v5MiR2Lhxo6Nb1YwZM7B7924EBwcjIiICe/fuLXVcSmm2bNmCUaNGAQAWLFiAdevWYd26dViwYAEkScLIkSOxdevW6oR7Q+Hh4VCr1cjIyHAqz8jIuOHCja+//jpeeeUVbN++He3atSt3X51Oh8DAQMeL881XT3Z2NhYtWoTt27c7ylq3bo0XXngBzZo1kzEyZWJiQ6Rcx48fr1JPCaobMjIysGHDBhQUFMgdSp1x8OBBDB8+HPHx8Y6JjEwmE1544QUsXry4Rhe7vyYjIwO//PJLjZ/3mpycHNx9990IDAxEcHAwHnjggRsOq1i6dCn69++PwMBACILgNKnTNfHx8RAEwen1yiuvVCo2QarCPHFFRUXYsGEDzp8/j7CwMAwbNsyxWNDevXvxzTffQK1W47bbbsOAAQMqdM4ePXrAbDZj79698PPzc9pmMBjQu3dveHt7V3isS1V169YNXbt2xTvvvAOgeBB6gwYNMGXKlDKTtFdffRUvv/wytm3bhu7du1f6mocPH0bnzp1x6NAhdOrUqVrx1zVHjhzBJ598ApPJBKC4G9WIESMwYMAARbfSmM1mHDlyBH5+frW6xo4oio4Pk9pisVhgMBjQoUOHOtt0TlQVXbp0QVpaGjQaDWbMmOEo12q1GDFiBBe9VrD69evj8uXLCA4OxsKFC2v8/D4+Phg8eDBn0nOxb775BmPGjIEkSaW2oFz7njJp0iSXfP+79dZbERcXV6Vj+/fvj/vuuw/33XdfqedNS0vDBx98AKvViokTJ+Kmm27C6tWryzxfcnKyo7Vw+vTpyM3NLTHuOT4+Hg888AAmTZrkKAsICCiRF5Sn0mNsrl69ip49e+L8+fOQJAmCIMDHxwfr16/HwIED0adPH/Tp06eyp8Wff/6JBQsWlBq8n58f7rvvPrzwwguVPm9lTZs2Dffeey+6dOmCrl27Ijk5GQaDwTFL2oQJExAbG4ukpCQAwMKFCzF79mysXr0a8fHxSE9PB1A8AxdbYlzHarXim2++cerGFxYWhgceeADx8fHyBUZEVEvS09Nx5cqVEl8OLBYLtm/fjjvvvJPjKahUJpMJmzZtwi233MLfmS5y8OBBjBkzBna7vcy1ZkRRBFC8JuJzzz1X43Wxe/dujB49ukangj5+/Di2bt2KX3/9FV26dAEAvPPOOxg6dChef/111KtXr9TjnnrqKUdM5QkICLhhL6nyVPqR9ksvvYSUlP9v787joqr+/4G/7gwwgAybrC5sLgS544Ybmgtu5YK5l0upZbZoZVaamKYtFpplpvk1NU1Tc8k1c09xb1NzqUBKREVkERQG5vz+4DfzYWSRgRnuzPB6Ph73IXPm3jvv4XiGed97lkRMnjwZ27dvR1xcHJycnDBhwoQKBwEAjo6OZfY3TEtLK3PciqkMGTIE8+fPxzvvvINmzZrh119/xe7du/VXNZKSkgwmSPjiiy+Ql5eHQYMGwd/fX7/Nnz/f7LFWVzdu3MBHH31kkNS0aNECb731Fj+gK0mhULArGpENuHPnDo4ePSp3GFQBVTUWo6CgAHv37sWVK1fMcv7qbs6cORBClHsBzZ07d5o8hnv37uHQoUMmXcQzPj4e7u7u+qQGKFwfUKFQmKT72/vvv4+aNWuiefPm+Oijj5Cfn2/U8Ubfsfnxxx/x9NNPG3xx9/X1xfDhw3Hp0iWEhoYae0oAwGOPPYaFCxeiZ8+eiIyMNHjuxIkT+PTTT9GjR48KndtYkyZNwqRJk0p87sFM0xx9I6l0J06cwLp16/Tjuuzt7TFo0CB06NCBX8iJiIq4fPkyfHx8qmxmUaqckydPYvbs2dixY4f+i6huLEbjxo3Rp08fk1+8E0Lg4MGDUCgUqFevnknPnZaWhhdffBE//PADFAoFYmJisHDhwjJ7syxduhRr167F2bNnkZWVVay7UmJiImbPno39+/cjJSUFtWrVwsiRI/H2229Xabftkmi1WuTn50Oj0eCff/4xWEevPMf+/vvvSEtLK3O5kIpISkrCxYsXERYWZpLzpaSkFFuw3s7ODp6envpeSxX10ksvoUWLFvD09MSxY8fw5ptv4vr16/jkk0/KfQ6jE5ukpCS88cYbBmUdOnSAEAI3btyocGLz4YcfIjIyEh06dEDr1q3157l06RJOnjwJHx8fs/QzJeuQm5uL9evXG8z44+vri2effRa1a9eWMTIiIst19OhRuLi4GDVDKVW9omMxHvwyLITAuXPncO7cObOMxRBC4MCBA3BxcTF6zE1Z4zBGjBiB69evY+/evfpxGOPHjy9zHEZOTg569uyJnj17GqwpqHPx4kVotVp8+eWXqF+/vv53kp2djfnz50Or1UKj0UCj0SA/Px95eXn6ZKPopivTrSuoKyt6jG6foseXVVZ0DM3FixeNvksihMCff/6Jdu3aGXVceRw7dgx16tSBWq0udZ+5c+di7ty5+sf37t3D8ePHDS70F50J2RymTJmi/7lJkyZwcHDAhAkTMG/evHKPwTU6scnNzS3WJUz32NjbRUUFBwfj999/x7x587Br1y6sX78eQOE6Ni+//DKmTZtWLEOk6uG///7D8uXLDWari4yMxODBgznYnIioDEII7N27Fz169KjwIGIyL0sYi6HVarFv3z4MHjxYv+B6RRUUFOCPP/7A7t278dNPPyE4OBgajQbTp0/XJzeenp4lJhsNGjSARqPBr7/+CgD49ttv4eDgYLBfWFgYTp06hWPHjukfL1u2DPfv39f/nuSWl5cHSZKMSm4kSUJmZiZycnLMEtPPP/+M7t27l1q/zz33HAYPHqx/PGLECMTExGDgwIH6slq1asHPzw83b940ODY/Px9paWmVGhtTkjZt2iA/Px+JiYnlvnFSof+9iYmJOHv2rP5xRkYGAODKlSslruxe3qsLPj4+iIuLQ1xcXEXCIhsjhMCRI0ewceNGfdKsUqkwdOhQtGnTRuboiIisQ0FBAfbs2YOOHTtWuFcFmU9FxmJMnDjxofvpvuTrzv2wLSsrC+vWrYO7u3uxuxEPJiC6uxqJiYnYuHEjLly4oH9eq9Xizz//hIODAzZt2oRNmzYZxPP+++8jJCSkzNivXbsGADh9+vRDL2BmZWVBpVJVWVKjVCphZ2cHpVKp33SPdf+mpqZW6I6Nk5OTWWZ0FUIgPz8fBQUFpSY2np6eBt3gnJyc4OPjg/r16xvsFxkZifT0dJw5cwYREREAgP3790Or1Zr8u9mvv/4KhUJh1I2NCiU2M2bMwIwZM4qVP9jQdLOmVddFgqjicnJysGbNGvzyyy/6srp162Ls2LGcnpKIyEharRaHDh1Camoq2rZtC6VSKXdIhMLu/caOxfjtt99w6dIluLm5lZqkVNStW7eMWuNGo9EgJyen2BomOTk5xWbiUigUUKlUJrkjYW9vD3t7e9y9exfnz59HdHQ06tatqy+3s7ODg4MD7Ozs9GVFn7O3t4ckSbh+/TqcnZ3h6OhYLEF5MFnR/Vue8bxt27bFxo0bjb5jExoaaralKjw8PExynrCwMPTs2RPjxo3DkiVLoNFoMGnSJAwdOlQ/I9q1a9fQtWtXrFq1Cq1btwZQODYnJSUFf/31FwDgjz/+gFqtRkBAADw9PREfH48TJ06gS5cuUKvViI+Px+TJkzFy5EijYjc6sVmxYoWxh5Ro7NixkCQJS5cuhVKpxNixYx96jCRJWL58uUlenyxXYmIili9fjtu3b+vLOnfujAEDBnDqUiKiSjh//jxu3bqF7t27G7U2RHWmu9JdWTk5Obh9+zbS0tKQlpaG27dvY+fOnRVKRC5fvoymTZtWOqYHPawb2pkzZ/Q9diRJQn5+Pm7cuIGff/5Z/4X/9ddfh7e3NxITE9G8eXODpGLNmjV49NFH8cQTT5SYbOi2M2fOYNu2bZg6dSq8vLwM9rOzs4MkSbh27RqioqIwcuRIfPXVV0a/V3OuF1erVi107twZhw8fLtf/HYVCgfDwcJNPHKDj7e1t0u9Pa9aswaRJk9C1a1f9xBCffvqp/nmNRoNLly4ZJLFLlizBrFmz9I87deoEoDCvGD16NFQqFdatW4fY2Fjk5uYiODgYkydPNhh3Ux5GJzajRo0y9pAS7d+/HwqFAlqtFkqlEvv3739oFsxZr2ybVqvF/v37sWXLFv0tZScnJzz11FNo1qyZvMEREdmImzdvYsuWLejVq5fZvkjZivz8fFy4cEG/CHRZNBoN7t69a7BlZWXpf9ZoNMWOuXr1aoXGYuTl5el/fvDf8vxcWplCoUBkZCRCQkLg6OhY7G5HZmYm7t69q18aoKRxGEFBQVi1ahWOHj1qsNBifn4+hg8fjh49eqBnz55lvsfk5GQAhZMElTTEITk5GV26dEG7du2wdOnScv/uqtLEiRNx5MiRctdvdHS02WKpyCRLZa034+npWeYkEEFBQcXec2xsLGJjY0s9pkWLFgYTRFVU5UaIVcKD0yRz2uTqLSsrC6tWrcL58+f1ZSEhIRgzZgxq1qwpY2RERLYnOzsbP/zwA3r37g1vb2+5w7FYBQUFuHfvHuzt7aFUKnH37l1kZmbqt6ysLP2/5Ul+HuTg4FChsRg1a9Y0S725ubnBy8sLISEhJY5teXBWLTnGYVy7dg1dunRBREQEVqxYYbauW5XVpEkTxMXFYfLkyRBClHjnRhf7mDFjEBgYaJY4atSoAXd3d7NNSmBpZEtsHpSUlARvb+9SV0e9d+8ebt26xSkrbdDly5exYsUK/SQUQOGVi759+7IfOBGRmeTm5mLHjh2Ijo6Gv7+/3OHITqvVIj09Hbdv38bt27eRmpqKmzdv4t9//0V2djays7Mr1G1MoVBArVbD1dUVbm5ucHV11f+cnZ2NgwcPWsxYDFN9xzLXOIxr166hc+fOCAwMxPz583Hr1i39a5p6Ri5T6NGjB7799lssXry4WD1LkoTw8HBER0ebLakBCmcXrk49niwmsQkODsbq1asxfPjwEp/ftm0bhg8fzokIbIhWq8WuXbsM+hir1WqMGjWKC8oREVWBvLw87Ny5Ex06dLD5GdOEELh79y5SU1P1iYsuidGNfanodwwXF5diiYvusYuLS5lJiKWMxfDy8oK3t7fJruybYxzG3r178ddff+Gvv/5CnTp1DF6vMpMmmFOTJk2wZMkSJCcno1+/fsjMzISTkxPeeOMNs3cFVavVqF27dqWWY7E2FpPYPOw/pEajsdjbjWS89PR0rFixAleuXNGXhYaGYvTo0XBzc5MxMiKi6qWgoACHDh1CcnIy2rdvL/sK7pVx7949g4Sl6M9paWnIzc2t0HkdHR31ScuDd13UanWl1n6xhLEYTk5OaNy4sdHHVfU4jNIWA7UGtWrVgpOTEzIzM+Hg4GD2pMbV1RURERHV7ruzrIlNZmYm0tPT9Y9v376NpKSkYvulp6dj3bp1vFVuI86fP4+VK1fqp4eUJAl9+/ZFdHR0tWuARESW4sqVK0hOTka7du0QFBRkkd1X8vLyDO6ypKamIi0tTZ/AVPRug6OjI2rWrGmweXl5Qa1W49q1a3B3dzdbwif3WAwHBwdERETAwcFBPykBWS9JkhASEoLg4OBq2Z1f1sQmLi4O7777LoDCinjllVfwyiuvlLivEAJz5sypwujI1PLz87Ft2zb89NNP+jJ3d3eMHTu22MBDIiKqetnZ2di7dy9q1aqFyMjIKp+8paCgAHfu3CnWTUz32Jg1Voqys7MrMXHR/VyjRo0SE7nc3Nxiq6ybg1xjMZRKJSIiIjj1t43w8PBAeHg4XFxc5A5FNrImNj169ICLiwuEEJg6dSqGDRuGFi1aGOwjSRJq1KiBiIgItGzZUqZIqbJSU1Pxf//3fwaz3zVu3BhPPfVUtW6ARESWKDk5Gd9//z3CwsLQqlWrh67+Xl5arRaZmZmlJi7p6ekVWkFekiR4eHgUS1h0P7u6ulp8jwA5xmI0adIErq6uZjk3VR2lUonQ0FDUqVPHIu+0ViVZE5vIyEhERkYCKLxKFBMTg0aNGskZEpnB2bNnsWbNGv1UmEqlEgMGDECXLl2qfQMkIqqIpKQkZGdnAyi8q5CWlmbyL79CCFy4cAGJiYmIiopC3bp1y3VMdnZ2scSlaLexig5kdnV1LTVx8fDwsJluN1U1FqN27drw8fExy7mp6nh4eKBx48alzipc3VjE5AE5OTn49NNP4ezszMTGhuTl5WHTpk04cuSIvszb2xvPPPMMp+0mIqqAkydPYvbs2dixY4e+u9K9e/fw1ltvoXHjxujTpw+CgoJM+po5OTnYtWsXmjdvjpYtWyI3N7fUxOX27dtGD9C/f/8+fv75Z1y9ehUKhQIRERF4/vnnUadOHX3i4unpaTDG5f79+3j11Vexbt065ObmIjo6GosXL4avry+AwjG7I0aMwO+//47bt2/Dx8cH/fr1w9y5c3mHAoVjdho0aCB3GFRJ9evXR0hICC8SF2ERiY2zszPs7OzYx9OGpKSkYPny5bh27Zq+rGXLlhg2bBivKhARVcD333+PIUOGQAhRbDYpIQTOnTuHc+fOYdy4ccW6dRtDN4A9Pz/fYNu1axe2bNmCO3fuGH3OrVu34tFHH0XHjh2L3XWZPHkyHB0dcfjwYWg0GowZMwY7duwoc0atyZMnY8eOHdiwYQPc3NwwadIkDBw4EEePHgVQ+MW9X79+mDNnDry9vfHXX3/hhRdeQFpaWpnnrS78/f1N1r2Qqp6DgwOaNGnCBcxLYBGJDQDExMRg48aNeP7555l5Wrnjx49j3bp1+tlV7O3tMXjwYLRr1451S0RUASdPnsSQIUNQUFBQ6pTAurEpy5YtwxtvvFHmnZv8/PwSkxddeWl041513eCKUiqV8PT0LJa41KxZE3/88QeGDRuGMWPGGBzz559/4uDBgzh16pR+HO2iRYvQu3dvzJ8/X7+YY1EZGRlYvnw51q5di8ceewxA4TonYWFhOH78ONq2bQsPDw88//zz+mMCAwMxceJEfPTRR6W+t+pCN2sWWScPDw80adIEjo6OcodikSwmsRk6dCgmTpyILl26YNy4cQgKCirxyn5lrkJR5SUlJWHfvn3IysqCWq1G165d9d3K7t+/j3Xr1uHkyZP6/f39/fHMM8+U+MeJiMyvrDZL1mPOnDkl3qkpzY4dO/Dss88aJCtFk5eKUiqVcHV1RVhYGHx9fQ2SF3d391IH6CuVyhIvbMXHx8Pd3d1gcqBu3bpBoVDgxIkTGDBgQLFjzpw5A41Gg27duunLHnnkEQQEBCA+Ph5t27YtdoxuMoSoqKiKvG2bEhISAmdnZ7nDICMpFArUr1/fYqditxQWk9h07txZ/3PRMRk6QghIklThVYGpch7s161QKKDVavVr0IwfPx6nT582mBazffv2ePLJJ616sTcia/WwNjtjxgy0atVK7jCpDAUFBdBoNPjnn3+wffv2cic1Wq0Wv//+Oy5fvmz0gscKhQJ2dnYlbkWTk65du5pk6uGUlJRiA9jt7Ozg6emJlJSUUo9xcHCAu7u7Qbmvr2+xY4YNG4atW7fi3r17ePzxx/HVV19VOmZr5uXlxbs1VsjDwwOPPvooh2yUg8UkNitWrJA7BCpFSf26dV0ehBDYsWMHduzYge7duyMkJASOjo4YPnw4p+cmksnD2uzOnTuxa9curF+/HgMHDpQzVIsmhIBWq0VeXh7y8/Oh0WiKbUXLc3NzkZuba1Cm+7msstL20dXZxYsXy53UFJWYmIimTZsalEmSVCxZKfrzw6ZE1sXxsPVk5s6di7lz5+of37t3D8ePH8ekSZP0ZRcuXDD2LRktLi4OM2fOxOXLl/Hmm29iypQpWLx4sdlf1xLVrFkTzZo1s/hpr+l/FAoFGjZsiICAAN6lKSeLSWxGjRoldwh6n3/+OT766COkpKSgadOmWLRoEVq3bl3q/hs2bMCMGTOQmJiIBg0a4IMPPkDv3r2rMGLzMaZf948//ojnn38e06ZN4xSSRDIpT5stKCiAJEkYMmQIjh07ZtF3bnQD2R9MJkpLNsqTgJRWVtI+FUkoTC0vLw+SJBkViyRJ0Gq1cHZ21icspXUHE0Lo3295/fPPPwgLC4OdXclfI5577jkMHjxY/3jEiBGIiYkxSKRr1aoFPz+/Ygtg5ufnIy0tDX5+fiWe28/PD3l5eUhPTze4a3Pjxo1ix/j5+cHPzw+PPPIIPD090bFjR8yYMQP+/v7lfq+2oHbt2ggLC7OZKbGrAycnJzRv3hxqtVruUKyKxSQ2Rd29exf//vsvAKBu3bpVuoDj+vXrMWXKFCxZsgRt2rTBggULEB0djUuXLpX4Zf3YsWMYNmwY5s2bh759+2Lt2rXo378/zp49axNTVxvTr1uSJCQlJTGpIZJRedusbp85c+Zg69atD923pDsOD0s2jE1ASiuzhOTCnIreOVEqlQY/29nZ4datW0b/DoQQcHNzM0vXFSEEcnNzUVBQUGpi4+npabD+ipOTE3x8fFC/fn2D/SIjI5Geno4zZ84gIiICALB//35otVq0adOmxHNHRETA3t4e+/btQ0xMDADg0qVLSEpK0q+NVxLdRThjp6O2ZgqFAo888ggXbrQy7u7uaNGiBezt7eUOxepYVGJz6tQpTJ06FT///LP+A0ihUKBjx4748MMPq6Rr0yeffIJx48bpZ25ZsmQJduzYgf/7v//DtGnTiu2/cOFC9OzZE6+//joAYPbs2di7dy8+++wzLFmyxOzxmlNSUpLR/bp37NiBpKQkDk4mkoGxbbagoAA//PADZs6cCRcXlzKTDVsmSRIcHBxgZ2cHe3t7/Vb0sZ2dXYn76J6TJAkpKSmoUaMGVCpVseSktJ8VCsVDv3C2a9cOmzZtMvqOTWhoqFm6HenGaplCWFgYevbsiXHjxmHJkiXQaDSYNGkShg4dqp905tq1a+jatStWrVqF1q1bw83NDc888wymTJkCT09PuLq64sUXX0RkZKR+4oCdO3fixo0baNWqFVxcXHD+/Hm8/vrraN++vcnX+bFULi4uaNKkCa/4W5maNWuiefPmvLtWQRaT2Jw4cQKdO3eGg4MDnn32WYSFhQEonAry22+/RadOnXDw4MEyu4RVVl5eHs6cOYM333xTX6ZQKNCtWzfEx8eXeEx8fDymTJliUBYdHY0tW7aU+jq6ftg6d+/eBQCL+wKxZ8+eCl0l/PHHHy2qa6E10n2hzM7Otqj/E+ZQ9Io++35XTkXb7KFDhxAaGmqmqMpHoVCUmUToypRKZYmJRUllZSUqRbfyJBcPk5ubi99++00fZ1l0d8DKOzuZm5sbOnbsaHDRryySJCE8PBxqtdosnx9CCDg4OBjVZot2KXzQ119/jZdffhldu3aFQqHAgAEDEBcXp983JycHly5dQmZmpr7sww8/BFC4VERubi66d++ORYsW6Z+3t7fH0qVLMXnyZOTm5qJOnTro378/pk6datTvRK7P4qJj4ox9XUmSULduXQQHB0OhUJQ4NXdpqtPnsRx1+7B6dXNzQ8OGDXH//n2Tvq7c9Vqld56EhejatauoV6+euH79erHnUlJSRL169US3bt3MGsO1a9cEAHHs2DGD8tdff120bt26xGPs7e3F2rVrDco+//xz4ePjU+rrzJw5UwDgxo0bN27cuHHjxs2mt6pkUXds3nnnnRIHC/r6+mL8+PGYPXu2DJGZnm5mFp1ff/0VUVFROHHiBJo3by5jZIa+/vprjB8/3ujjli1bxjs2JvCwhfJsia5bDlVORdvsF198gTFjxtj8FVpzM3eb3bp1K0aNGqWfre1BurtOzzzzjNn+ljRo0ACtWrWCSqWqNm1Wjs/i0NBQJCcnw83NzWB2ubIEBAQgMjISKpWqUq9dnT6Pq7puS6tXpVKJPn36FJvC3JSqS71azDtUKBRl3pYvKCgw+x9dLy8vKJVK3Lhxw6C8pJlWdPz8/IzaHwBUKpXBB49ucgRdNwlLER0dXaGZeHr06GFR78Na8XdIxqpom+3du3elvwyR+dvsiBEj0LBhQ8yePbvYWCpJktCkSRP07t3bLGNIatSogU6dOqFu3bomP7elk+OzWJek6qbnfti+bdu2RaNGjThBgJGqum5Lq9fu3bujTp06VRqLrbKYy3Pt2rXD559/jqtXrxZ7LikpCYsXL0b79u3NGoODgwMiIiKwb98+fZlWq8W+fftKnWklMjLSYH8A2Lt3b5kzs1iLgIAA9O3bt9wD2JRKJR5//HFOHEAkE7ZZ29eqVSts27YNiYmJ+qu7Tk5OmDt3LiZOnGiWpKZhw4Z48sknq2VSY+lUKhV69+6Nxo0bM6mxUg0aNEBwcLDcYdgMi7ljM3fuXHTq1AmPPPIIBgwYgIYNGwIonMJx69atsLOzw7x588wex5QpUzBq1Ci0bNkSrVu3xoIFC5Cdna2fJe3pp59G7dq19bG8/PLLiIqKwscff4w+ffpg3bp1OH36NJYuXWr2WKvCjBkzsGvXrodeBZYkCZIkYfr06VUYHRE9iG22eggICECNGjWQnp4OlUplMLWyqdjb26Njx47Fpmgmy+Dk5ITevXujZs2acodCFaRUKs06KVZ1ZDGJTfPmzXHixAm8/fbb2LZtG3JycgAAzs7O6NmzJ+bMmYPw8HCzxzFkyBDcunUL77zzDlJSUtCsWTPs3r0bvr6+AArvHhXtEteuXTusXbsW06dPx1tvvYUGDRpgy5YtNrGGDVB4dXD9+vX6VcxL6ouqW/Ttu+++s+iF/oiqA7ZZMgW1Wo2ePXvCw8ND7lCoBCqVCn379mX9WBk/Pz8IIfTd0EJCQsyy1lR1JgljOmNXEa1Wi1u3bgEAvL29bX5A69mzZxEREYEzZ86gRYsWcodTolOnThn061YoFPq1DB5//HFMnz6dX5CILAjbrO2rU6cOrl27Bnd3d3zwwQcmO6+npyf69OkDJycnk52TjFNW3SoUCvTt27fMsbxkuTIzM7Fu3ToAQK9evdjF08Qs5o5NUbouErqfSX66ft1JSUnYv38/MjMz4erqiscee4z984ksENssVYSHhweTGgvXunVrJjU2wN7eXr8ILZmORSU2Fy5cwDvvvIM9e/YYdEWLjo5GbGyszXTvsmYBAQEYPXq03GEQUTmxzVJ51axZE7169WJSY8G8vb3RuHFjucMgEwgICCj3RC9UfhaT2Bw5cgS9evWCVqtFv379DCYP2LZtG3bt2oXdu3ejY8eOMkdKRERkW/z9/dGjRw9O+23hIiMj2ZPFRphjBkOyoMRm8uTJ8PHxwaFDh4r1N/z333/RqVMnTJkyBadOnZIpQiIiItvToEEDdOrUiVePLVytWrXYBc1GKBQKdgk2E4sZlX/+/HlMnDixxEFUdevWxfPPP4/z58/LEBkREZHtUSgUiIyMROfOnZnUWIGmTZvKHQKZiK+vLxfhNhOLuWMTGBiI3NzcUp/Py8vjzBFEREQm4OXlhaioKK6BYqH8/PyQm5sLZ2dnAICbmxtXprchPj4+codgsywmsXnnnXcwefJk9OnTB82aNTN47pdffsGiRYuwYMECWWIjIiKyBfb29mjVqhXCw8NtfikFa3b69GkcOnQIly5dAgCEh4dzbI0NMceCulTIYhKb48ePw9fXFxEREWjXrp1+peMrV64gPj4ejRo1Qnx8POLj4/XHSJKEhQsXyhUyERGR1ahbty46duwIFxcXuUMhIyiVSjRo0EDuMMiE1Gq13CHYLItJbD777DP9z0ePHsXRo0cNnv/jjz/wxx9/GJQxsSEiIiqbJElo27YtGjVqxKv+Vqhu3bpwdHSUOwwyIV0XQzI9i0lstFqt3CEQERHZFKVSie7du3MGJitWr149uUMgE2Oiaj7sYEtERGSDJElCt27dmNRYMUmSOHGSDeKMaOZjMXdsdBISErBr1y5cvXoVQOFsab169UJwcLDMkREREVmPli1bIjAwUO4wqBJ8fHzg4OAgdxhkQnZ2duwSakYWldi8+uqrWLhwYbFuaQqFAq+88grmz58vU2RERETWw9/fv9gMo2R9OC2w7eGaUeZlMV3RPv74Y8TFxWHgwIGIj49Heno60tPTER8fj0GDBiEuLg5xcXFyh0lERGTR7O3t0blzZ14VtgFeXl5yh0AmxmnWzcti7tgsW7YMTzzxBL777juD8jZt2mDdunW4f/8+vvzyS0yePFmmCImIiCxf69atOZ2sjXB3d5c7BDIxJjbmZTG/3cTERERHR5f6fHR0NBITE6suICIiIivj7e2N8PBwucMgE3F1dZU7BDIx3kk1L4tJbHx8fPDbb7+V+vxvv/0Gb2/vKoyIiIjIurRr145fnGyESqWCSqWSOwwiq2Ixic2TTz6Jr776Cu+//z6ys7P15dnZ2fjggw/w1VdfYciQITJGSEREZDn8/PxQq1Yt/VX9evXqwdfXV+aoyFRcXFzkDoHI6khCCCF3EACQk5ODxx9/HAcOHICdnR1q1aoFAEhOTkZ+fj66dOmCH374wSZXaz179iwiIiJw5swZtGjRQu5wiIjISty/fx+rVq2CJEkYPHgw3Nzc5A6JTCQhIYFLXdiggoICzoxmRhZzx8bZ2Rn79u3D5s2bMXbsWISFhSEsLAxjx47Fli1b8NNPP5k9qUlLS8OIESPg6uoKd3d3PPPMM7h7926Z+7/44osIDQ2Fk5MTAgIC8NJLLyEjI8OscRIRERUVFBTEpMbGODk5yR0CkdWxiFnRcnJyMHLkSMTExGDEiBHo16+fLHGMGDEC169fx969e6HRaDBmzBiMHz8ea9euLXH/5ORkJCcnY/78+QgPD8fVq1fx3HPPITk5GRs3bqzi6ImIqLqqX7++3CGQiXF8DZHxLCKxcXZ2xk8//YRevXrJFsOff/6J3bt349SpU2jZsiUAYNGiRejduzfmz5+v7xpXVKNGjbBp0yb943r16uG9997DyJEjkZ+fDzs7i/j1EhGRjSvpbxRZNwcHB7lDILI6FtMVrUOHDoiPj5ft9ePj4+Hu7q5PagCgW7duUCgUOHHiRLnPk5GRAVdX1zKTmtzcXGRmZuq3srq7ERERlcXV1ZVX920QL47aJs5aaF4Wk9h89tlnOHLkCKZPn47//vuvyl8/JSUFPj4+BmV2dnbw9PRESkpKuc6RmpqK2bNnY/z48WXuN2/ePLi5uem3qKioCsdNRETVG8fW2CYOMCcynsUkNk2bNsV///2HefPmITAwECqVCq6urgZbRT68p02bBkmSytwuXrxY6fgzMzPRp08fhIeHIzY2tsx933zzTWRkZOi3Q4cOVfr1iYioeqpRo4bcIZAZcIV6IuNZzH3OmJgYs9yee/XVVzF69Ogy9wkJCYGfnx9u3rxpUJ6fn4+0tDT4+fmVeXxWVhZ69uwJtVqNzZs3w97evsz9H1x0i3PVExFRRXH2LNvELku2yUJWWbFZFpPYfP3112Y5r7e3N7y9vR+6X2RkJNLT03HmzBlEREQAAPbv3w+tVos2bdqUelxmZiaio6OhUqmwbds2ODo6mix2IiKih+HfHSKiQrInNvfv38fWrVuRkJAALy8v9OnTB/7+/lUeR1hYGHr27Ilx48ZhyZIl0Gg0mDRpEoYOHaqfbebatWvo2rUrVq1ahdatWyMzMxM9evRATk4OvvnmG/1kAEBhQsX+sUREZG6cOIDIevBOnHnJmtjcvHkT7dq1Q0JCgv7WnLOzM7Zs2YJu3bpVeTxr1qzBpEmT0LVrVygUCsTExODTTz/VP6/RaHDp0iXk5OQAAM6ePaufMe3BNQQSEhIQFBRUZbETEVH1xMTGNgkh+CXYBnHslHnJmtjMnj0biYmJmDx5Mh577DH89ddfmD17NiZMmIC///67yuPx9PQsdTFOoHBl56J9Izt37sy+kkREJCsmNraJ3y+IjCdrYvPjjz/i6aefxvz58/Vlvr6+GD58OC5duoTQ0FAZoyMiIrJ8XMiRiKiQrPfDkpKS0KFDB4OyDh06QAiBGzduyBQVERGR9eBCjraJ3dCIjCdrYpObm1tsNhfd4/z8fDlCIiIisir8AmybOBaDyHiyX+ZJTEzE2bNn9Y8zMjIAAFeuXIG7u3ux/Vu0aFFVoREREVk8JjZERIUkIePoNIVCUeIHckkzgejKCgoKqiq8KnP27FlERETgzJkzTNyIiKjc7t+/D41GA7VaLXcoRESyk/WOzYoVK+R8eSIiIqvHLktERIVkTWxGjRol58sTERFZPSY2RESF+GlIRERkxTgrGhFRISY2REREVoyJDRFRISY2REREVkqlUnFWNCKi/4+JDRERkZViUkNE9D9MbIiIiIiIyOoxsSEiIiIiIqvHxIaIiIiIiKweExsiIiIiIrJ6TGyIiIiIiMjqMbEhIiIiIiKrx1W9qEKuX7+O69evyx0GmZi/vz/8/f3lDoPMgG2WiEh+/DtrXkxsLIC/vz9mzpxpNf/Rc3NzMWzYMBw6dEjuUMjEoqKisGfPHqhUKrlDIRNimyUisgz8O2tekhBCyB0EWZfMzEy4ubnh0KFDcHFxkTscMpG7d+8iKioKGRkZcHV1lTscMiG2Wduka7OsV9vDurVN/DtrfrxjQxXWrFkzNkwbkpmZKXcIZGZss7ZF12ZZr7aHdWub+HfW/Dh5ABERERERWT0mNkREREREZPWY2JDRVCoVZs6cyYFvNob1artYt7aJ9Wq7WLe2ifVqfpw8gIiIiIiIrB7v2BARERERkdVjYkNERERERFaPiQ0REREREVk9JjZERERERGT1mNgQWRFJksq1HTx4sNKvlZOTg9jYWKPO9d577+GJJ56Ar68vJElCbGxspeMgsmaW3GYvXryIqVOnolmzZlCr1fD390efPn1w+vTpSsdSHVhy3SYnJ2PkyJEIDQ2FWq2Gu7s7WrdujZUrV4JzRpXNkuv1QWvWrIEkSXBxcal0LLbCTu4AiKj8Vq9ebfB41apV2Lt3b7HysLCwSr9WTk4OZs2aBQDo3LlzuY6ZPn06/Pz80Lx5c+zZs6fSMRBZO0tus1999RWWL1+OmJgYTJw4ERkZGfjyyy/Rtm1b7N69G926dat0TLbMkus2NTUV//33HwYNGoSAgABoNBrs3bsXo0ePxqVLlzB37txKx2SrLLlei7p79y6mTp2KGjVqVDoOW8LEhsiKjBw50uDx8ePHsXfv3mLlcklISEBQUBBSU1Ph7e0tdzhEsrPkNjts2DDExsYaXO0dO3YswsLCEBsby8TmISy5bps0aVLsLsCkSZPw+OOP49NPP8Xs2bOhVCrlCc7CWXK9FjVnzhyo1Wp06dIFW7ZskTsci8GuaEQ2RqvVYsGCBXj00Ufh6OgIX19fTJgwAXfu3DHY7/Tp04iOjoaXlxecnJwQHByMsWPHAgASExP1icmsWbP0t94f1rUsKCjIHG+JyKbJ1WYjIiKKdWGpWbMmOnbsiD///NO0b7KakvPzuCRBQUHIyclBXl5epd9bdSZ3vV65cgVxcXH45JNPYGfHexRF8bdBZGMmTJiAr7/+GmPGjMFLL72EhIQEfPbZZ/jll19w9OhR2Nvb4+bNm+jRowe8vb0xbdo0uLu7IzExEd9//z0AwNvbG1988QWef/55DBgwAAMHDgRQeBWQiEzL0tpsSkoKvLy8TPoeqyu56/bevXvIzs7G3bt3cejQIaxYsQKRkZFwcnIy6/u2dXLX6yuvvIIuXbqgd+/e+O6778z6Xq2OICKr9cILL4iizfjIkSMCgFizZo3Bfrt37zYo37x5swAgTp06Veq5b926JQCImTNnGh1XZY4lsmWW2mZ1Dh8+LCRJEjNmzKjwOaorS6zbefPmCQD6rWvXriIpKcmoc1R3llav27dvF3Z2duL8+fNCCCFGjRolatSoYcQ7sm3sikZkQzZs2AA3Nzd0794dqamp+k3X5eTAgQMAAHd3dwDA9u3bodFoZIyYqHqzpDZ78+ZNDB8+HMHBwZg6dapZXqM6sYS6HTZsGPbu3Yu1a9di+PDhAArv4lDFyVmveXl5mDx5Mp577jmEh4eb5Jy2hokNkQ25cuUKMjIy4OPjA29vb4Pt7t27uHnzJgAgKioKMTExmDVrFry8vNCvXz+sWLECubm5Mr8DourFUtpsdnY2+vbti6ysLGzdupXTx5qAJdRtYGAgunXrhmHDhmHNmjUICQlBt27dmNxUgpz1GhcXh9TUVP1MalQcx9gQ2RCtVgsfHx+sWbOmxOd1AxUlScLGjRtx/Phx/PDDD9izZw/Gjh2Ljz/+GMePH+eXGqIqYgltNi8vDwMHDsTvv/+OPXv2oFGjRhU+F/2PJdTtgwYNGoRly5bh8OHDiI6ONtl5qxO56jUjIwNz5szBxIkTkZmZiczMTACF0z4LIZCYmAhnZ2f4+PhU7g1aO7n7whFRxT3Y93fixIlCqVSKnJwco8+1Zs0aAUAsW7ZMCCFEamoqx9gQmZiltdmCggIxZMgQoVQqxaZNm4yOgf7H0uq2JFu2bBEAxPr16yt1nurEUuo1ISHBYLxUSVu/fv2MjsnWsCsakQ0ZPHgwCgoKMHv27GLP5efnIz09HQBw586dYqtPN2vWDAD0t8mdnZ0BQH8MEZme3G32xRdfxPr167F48WL9rExkGnLW7a1bt0osX758OSRJQosWLcp1HipOrnr18fHB5s2bi21dunSBo6MjNm/ejDfffLPib8xGsCsakQ2JiorChAkTMG/ePPz666/o0aMH7O3tceXKFWzYsAELFy7EoEGDsHLlSixevBgDBgxAvXr1kJWVhWXLlsHV1RW9e/cGADg5OSE8PBzr169Hw4YN4enpiUaNGpXZTWX16tW4evUqcnJyAACHDx/GnDlzAABPPfUUAgMDzf9LILIicrbZBQsWYPHixYiMjISzszO++eYbg+cHDBjAVc0rQc66fe+993D06FH07NkTAQEBSEtLw6ZNm3Dq1Cm8+OKLqF+/flX+KmyKXPXq7OyM/v37FyvfsmULTp48WeJz1ZK8N4yIqDIevEWus3TpUhERESGcnJyEWq0WjRs3FlOnThXJyclCCCHOnj0rhg0bJgICAoRKpRI+Pj6ib9++4vTp0wbnOXbsmIiIiBAODg7lul0eFRVV6i3yAwcOmOptE1ktS2qzo0aNKrNbS0JCginfus2zpLr98ccfRd++fUWtWrWEvb29UKvVon379mLFihVCq9Wa9H3bOkuq15JwumdDkhAP3CcjIiIiIiKyMhxjQ0REREREVo+JDRERERERWT0mNkREREREZPWY2BARERERkdVjYkNERERERFaPiQ0REREREVk9JjZE1UhiYiIkScLXX38tdyhEVA5ss7aJ9Wq7WLfyYmJDRERERERWjwt0ElUjQgjk5ubC3t4eSqVS7nCI6CHYZm0T69V2sW7lxcSGiIiIiIisHruiEVmZ2NhYSJKEy5cvY+TIkXBzc4O3tzdmzJgBIQT+/fdf9OvXD66urvDz88PHH3+sP7akvr+jR4+Gi4sLrl27hv79+8PFxQXe3t547bXXUFBQoN/v4MGDkCQJBw8eNIinpHOmpKRgzJgxqFOnDlQqFfz9/dGvXz8kJiaa6bdCZLnYZm0T69V2sW6tFxMbIis1ZMgQaLVavP/++2jTpg3mzJmDBQsWoHv37qhduzY++OAD1K9fH6+99hoOHz5c5rkKCgoQHR2NmjVrYv78+YiKisLHH3+MpUuXVii2mJgYbN68GWPGjMHixYvx0ksvISsrC0lJSRU6H5EtYJu1TaxX28W6tUKCiKzKzJkzBQAxfvx4fVl+fr6oU6eOkCRJvP/++/ryO3fuCCcnJzFq1CghhBAJCQkCgFixYoV+n1GjRgkA4t133zV4nebNm4uIiAj94wMHDggA4sCBAwb7PXjOO3fuCADio48+Ms0bJrJybLO2ifVqu1i31ot3bIis1LPPPqv/WalUomXLlhBC4JlnntGXu7u7IzQ0FP/8889Dz/fcc88ZPO7YsWO5jnuQk5MTHBwccPDgQdy5c8fo44lsFdusbWK92i7WrfVhYkNkpQICAgweu7m5wdHREV5eXsXKH/bB5+joCG9vb4MyDw+PCn1gqlQqfPDBB9i1axd8fX3RqVMnfPjhh0hJSTH6XES2hG3WNrFebRfr1vowsSGyUiVNI1na1JLiIZMflmdKSkmSSiwvOvBR55VXXsHly5cxb948ODo6YsaMGQgLC8Mvv/zy0NchslVss7aJ9Wq7WLfWh4kNEZWLh4cHACA9Pd2g/OrVqyXuX69ePbz66qv48ccfce7cOeTl5RnMHENE5sU2a5tYr7aLdVt5TGyIqFwCAwOhVCqLzfyyePFig8c5OTm4f/++QVm9evWgVquRm5tr9jiJqBDbrG1ivdou1m3l2ckdABFZBzc3Nzz55JNYtGgRJElCvXr1sH37dty8edNgv8uXL6Nr164YPHgwwsPDYWdnh82bN+PGjRsYOnSoTNETVT9ss7aJ9Wq7WLeVx8SGiMpt0aJF0Gg0WLJkCVQqFQYPHoyPPvoIjRo10u9Tt25dDBs2DPv27cPq1athZ2eHRx55BN999x1iYmJkjJ6o+mGbtU2sV9vFuq0cSTxstBMREREREZGF4xgbIiIiIiKyekxsiIiIiIjI6jGxISIiIiIiq8fEhoiIiIiIrB4TGyIiIiIisnpMbIjILBITEyFJEr7++mu5QyGicmCbtU2sV9vEei0ZExsiC/D3339jwoQJCAkJgaOjI1xdXdG+fXssXLgQ9+7dM9vrXrhwAbGxsUhMTDTba5THe++9hyeeeAK+vr6QJAmxsbGyxkP0MNW5zV68eBFTp05Fs2bNoFar4e/vjz59+uD06dOyxWQqrFfWqymxXqseF+gkktmOHTvw5JNPQqVS4emnn0ajRo2Ql5eHn3/+Ga+//jrOnz+PpUuXmuW1L1y4gFmzZqFz584ICgoyy2uUx/Tp0+Hn54fmzZtjz549ssVBVB7Vvc1+9dVXWL58OWJiYjBx4kRkZGTgyy+/RNu2bbF7925069ZNlrgqi/XKejU11mvVY2JDJKOEhAQMHToUgYGB2L9/P/z9/fXPvfDCC/jrr7+wY8cOGSP8HyEE7t+/DycnJ5OfOyEhAUFBQUhNTYW3t7fJz09kKmyzwLBhwxAbGwsXFxd92dixYxEWFobY2Fir/KLEemW9yo31aiKCiGTz3HPPCQDi6NGj5dpfo9GId999V4SEhAgHBwcRGBgo3nzzTXH//n2D/QIDA0WfPn3EkSNHRKtWrYRKpRLBwcFi5cqV+n1WrFghABTbDhw4YHCO3bt3i4iICKFSqURcXJwQQoi///5bDBo0SHh4eAgnJyfRpk0bsX37doMYEhISBACxYsWKcv8+bt26JQCImTNnlvsYoqrENlu6gQMHCk9PzwodKzfWa+lYr6xXa8LEhkhGtWvXFiEhIeXef9SoUQKAGDRokPj888/F008/LQCI/v37G+wXGBgoQkNDha+vr3jrrbfEZ599Jlq0aCEkSRLnzp0TQhR+cL700ksCgHjrrbfE6tWrxerVq0VKSor+HPXr1xceHh5i2rRpYsmSJeLAgQMiJSVF+Pr6CrVaLd5++23xySefiKZNmwqFQiG+//57fQxMbMgWsc2Wrl27dqJhw4YVOlZurNfSsV5Zr9aEiQ2RTDIyMgQA0a9fv3Lt/+uvvwoA4tlnnzUof+211wQAsX//fn1ZYGCgACAOHz6sL7t586ZQqVTi1Vdf1Zdt2LDB4ApSUbpz7N6926D8lVdeEQDEkSNH9GVZWVkiODhYBAUFiYKCAiEEExuyPWyzpTt8+LCQJEnMmDHD6GPlxnotHeuV9WptOCsakUwyMzMBAGq1ulz779y5EwAwZcoUg/JXX30VAIr1Ew4PD0fHjh31j729vREaGop//vmn3DEGBwcjOjq6WBytW7dGhw4d9GUuLi4YP348EhMTceHChXKfn8iasM2W7ObNmxg+fDiCg4MxderUSp1LDqzXkrFeC7FerQsTGyKZuLq6AgCysrLKtf/Vq1ehUChQv359g3I/Pz+4u7vj6tWrBuUBAQHFzuHh4YE7d+6UO8bg4OAS4wgNDS1WHhYWpn+eyBaxzRaXnZ2Nvn37IisrC1u3bjUYoGwtWK/FsV7/h/VqXTgrGpFMXF1dUatWLZw7d86o4yRJKtd+SqWyxHIhRLlfyxwzoBFZK7ZZQ3l5eRg4cCB+//137NmzB40aNaqy1zYl1qsh1ivr1Zrxjg2RjPr27Yu///4b8fHxD903MDAQWq0WV65cMSi/ceMG0tPTERgYaPTrl/cD/ME4Ll26VKz84sWL+ueJbBXbbCGtVounn34a+/btw9q1axEVFWX0OSwJ67UQ65X1au2Y2BDJaOrUqahRowaeffZZ3Lhxo9jzf//9NxYuXAgA6N27NwBgwYIFBvt88sknAIA+ffoY/fo1atQAAKSnp5f7mN69e+PkyZMGfyiys7OxdOlSBAUFITw83Og4iKwF22yhF198EevXr8fixYsxcOBAo4+3NKzXQqxX1qu1Y1c0IhnVq1cPa9euxZAhQxAWFmawKvKxY8ewYcMGjB49GgDQtGlTjBo1CkuXLkV6ejqioqJw8uRJrFy5Ev3790eXLl2Mfv1mzZpBqVTigw8+QEZGBlQqFR577DH4+PiUesy0adPw7bffolevXnjppZfg6emJlStXIiEhAZs2bYJCYfz1ktWrV+Pq1avIyckBABw+fBhz5swBADz11FO8C0QWg2228Ivf4sWLERkZCWdnZ3zzzTcGzw8YMED/hc5asF5Zr6xXGyHvpGxEJIQQly9fFuPGjRNBQUHCwcFBqNVq0b59e7Fo0SKDhcE0Go2YNWuWCA4OFvb29qJu3bplLh72oKioKBEVFWVQtmzZMhESEiKUSmWJi4eVRLd4mLu7u3B0dBStW7eu1OJhUVFRJS5khlKmySSSW3Vus7q1PkrbEhISyjzekrFeWa+sV+smCWHEKCciIiIiIiILxDE2RERERERk9ZjYEBERERGR1WNiQ0REREREVo+JDRERERERWT0mNkREREREZPWY2BARERERkdVjYkNERERERFaPiQ0REREREVk9JjZERERERGT1mNgQEREREZHVY2JDRERERERWj4kNERERERFZPSY2RERERERk9f4fv8Gm6ejYODEAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAInCAYAAABKsszLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAxCtJREFUeJzs3Xd4U2X7B/DvSdIkTfduKYWyoWzhZchGlgrKel8EBURFHDhAfyqyRJGKA+tAEWS4UFwMAUFEQEQQAVGUPUoZbelu07RZ5/z+qERiBx1JT076/VxXLshz1l0eTpr7PEuQJEkCERERERGRgqnkDoCIiIiIiKimmNgQEREREZHiMbEhIiIiIiLFY2JDRERERESKx8SGiIiIiIgUj4kNEREREREpHhMbIiIiIiJSPCY2RERERESkeExsiIiIiIhI8ZjYeIDU1FQ899xzSE1NlTsUIiIiIiJFYmLjAVJTUzFv3jwmNkRERERE1cTEhoiIiIiIFI+JDRERERERKR4TGyIiIiIiUjwmNtf48ccfMWzYMNSrVw+CIGDdunXXPWbnzp244YYboNPp0LRpU6xatcrtcRIRERERkTMmNtcoLCxE+/btsXjx4krtf+7cOdx6663o168fDh8+jMcffxz33Xcftm7d6uZIiYiIiIjoWhq5A/AkN998M26++eZK779kyRI0atQIr732GgCgVatW+Omnn/D6669j8ODB7gqTiIiIiIj+hYlNDezduxcDBgxwKhs8eDAef/zxCo8zm80wm82O90aj0R3hVUlWVhYsFotbzi2KIiRJQmhoqFvOT+XTaDQoKChwW91qtVqEhYW55dxUMd6z3snd9ywABAUFue3cVD6TyQSr1eqWc/OelY+Pjw/y8/P5e9ZDMLGpgbS0NERFRTmVRUVFIT8/H0VFRfD19S3zuMTERMybN682QqyUrKwsLF68GJIkufU6ffv2hb+/v1uvQc58fHywbt06t9WtIAh4+OGH+aFby3jPei+dToevv/7arXXLeq19RqMRu3bt4j3rhXx9ffHll1/y96yH4BgbGcyYMQN5eXmO165du2SNx2KxuP3DFgDsdrvbr0HOrFarW+tWkiS3PlmmsvGe9V42m83tdct6rX12u533rJfi71nPwhabGoiOjkZ6erpTWXp6OgIDA8ttrQFKnsjpdDrHe096uiIIgsvPWRsf5nR9rq5b1qtn4D3rvXjPeifes96L96z8vKbFRpIk/PDDD/j2229RUFBQK9fs3r07tm/f7lS2bds2dO/evVauT0REREREJRSZ2MycORP9+vVzvJckCYMGDcLAgQNx6623om3btjhz5kyVz2s0GnH48GEcPnwYQMl0zocPH0ZKSgqAki5kEyZMcOz/wAMP4OzZs3jqqadw/PhxvPPOO/j8888xbdq0mv2ARERERERUJYpMbL766it06dLF8f7LL7/E9u3bMX/+fGzcuBF2ux3PPfdclc974MABdOzYER07dgQATJ8+HR07dsScOXMAAKmpqY4kBwAaNWqETZs2Ydu2bWjfvj1ee+01vP/++5zqmYiIiIiolilyjM2lS5fQtGlTx/uvv/4aCQkJmDFjBgDgwQcfxLvvvlvl8/bt27fC/oyrVq0q85jffvutytciIiIiIiLXUWSLjUajcawDI0kStm/fjiFDhji2R0VFITMzU67wiIiIiIiolikysWnTpg0+/vhj5OTkYOXKlcjKysKtt97q2H7+/HmEh4fLGCEREREREdUmRXZFmzNnDoYNG+ZIXnr06OE0mcCmTZvwn//8R67wiIiIiIiolikysRk4cCAOHTqEbdu2ITg4GGPGjHFsy8nJQe/evXH77bfLGCEREREREdUmRSY2AJCQkICEhIRS5SEhIXj99ddliIiIiIiIiOSiyMSmoKAAubm5iIuLc5RdvnwZS5YsgdlsxujRo9kVjYiIiIioDlFkYnP//ffj3Llz2LdvHwAgPz8f3bp1w8WLF6FSqfDGG29gy5Yt6Nu3r7yBEhERERFRrVDkrGg//fQThg4d6nj/8ccf4/Lly/j555+Rk5ODdu3aYf78+TJGSEREREREtUmRiU1mZiZiY2Md7zds2ICePXuiW7duCAgIwIQJE/D777/LGCEREREREdUmRSY2wcHBSEtLAwAUFRVh9+7dGDRokGO7RqOByWSSKzwiIiIiIqplihxjc+ONN+Kdd95By5YtsWXLFhQXFztN73zy5EmnFh0iIiIiIvJuikxsFi5ciEGDBmHUqFEAgCeeeAKtW7cGANjtdnzxxRcYMmSInCESEREREVEtUmRi07RpU5w4cQJHjx5FUFAQ4uPjHdtMJhPefvtttG/fXr4AiYiIiIioVikysQEAHx+fMpOXgIAAp25pRERERETk/RQ5eQBQsnbNSy+9hMGDB6Njx47Yv38/ACA7OxuLFi3C6dOnZY6QiIiIiIhqiyJbbC5evIg+ffrgwoULaNasGY4fPw6j0QgACA0NxXvvvYfz58/jjTfekDlSIiIiIiKqDYpMbP7v//4PBQUFOHz4MCIjIxEZGem0ffjw4di4caNM0RERERERUW1TZFe07777Do8++igSEhIgCEKp7Y0bN8aFCxdkiIyIiIiIiOSgyMSmqKgIERER5W4vKCioxWiIiIiIiEhuikxsEhIS8OOPP5a7fd26dejYsWMtRkRERERERHJSZGLz+OOP47PPPsPChQuRl5cHABBFEadPn8b48eOxd+9eTJs2TeYoiYiIiIiotihy8oC77roL58+fx6xZszBz5kwAwJAhQyBJElQqFRYsWIDhw4fLGyQREREREdUaRSY2ADBz5kyMHz8eX331FU6fPg1RFNGkSROMHDkSjRs3ljs8IiIiIiKqRYpNbACgQYMG7HJGRERERETKHGNz6NAhvPPOO+Vuf+edd3D48OHaC4iIiIiIiGSlyMRm5syZ+P7778vd/sMPP2DWrFnVPv/ixYsRHx8PvV6Prl27Yv/+/RXun5SUhBYtWsDX1xdxcXGYNm0aiouLq319IiIiIiKqGkUmNgcPHkSvXr3K3d6rVy8cOHCgWudes2YNpk+fjrlz5+LQoUNo3749Bg8ejCtXrpS5/+rVq/HMM89g7ty5OHbsGJYvX441a9bg2Wefrdb1iYiIiIio6hSZ2BQUFECjKX94kEqlckwDXVWLFi3C5MmTMWnSJCQkJGDJkiUwGAxYsWJFmfv//PPP6NGjB8aNG4f4+HgMGjQIY8eOvW4rDxERERERuY4iJw9o1qwZvvvuOzzyyCNlbt+yZUu1ZkazWCw4ePAgZsyY4ShTqVQYMGAA9u7dW+YxN954Iz7++GPs378fXbp0wdmzZ7F582aMHz++3OuYzWaYzWbHe6PRWOVYlUgQBKhUNculBUFwev1727X7lFVWmZdKpSr193//WdEx5cVZVnzXlgOAZDbDknoJtqwsiIVGSJJYo3+vbK2+RscTERERKYUiE5t7770X06ZNw/Tp0zFnzhwEBwcDAHJzczFv3jxs2bIFr7zySpXPm5mZCbvdjqioKKfyqKgoHD9+vMxjxo0bh8zMTPTs2ROSJMFms+GBBx6osCtaYmIi5s2bV+X4lE6SJIhizb6oX6VSqeDj4wONRgOtVgudTgedTgdfX1/o9Xqo1WqXXKe2SHY7zMlnYb54AahhMlNd7733HoxGI/z9/TFlyhRZYiAiIiKqLkUmNo8++igOHz6MpKQkvPnmm6hXrx4A4PLlyxBFEePHj6+1aaB37tyJBQsW4J133kHXrl1x+vRpPPbYY3jhhRcwe/bsMo+ZMWMGpk+f7nh/+PBh9OnTp1bi9RaiKDpavgoLC0tt1+v1MBgM8Pf3R0BAAPR6z225sJtMKPrzD9hN8rbcGY1G5OfnyxoDERERUXUpMrERBAErV67EhAkT8NVXX+Hs2bMAgNtvvx2jRo1C3759q3Xe8PBwqNVqpKenO5Wnp6cjOjq6zGNmz56N8ePH47777gMAtG3bFoWFhbj//vsxc+bMMrteXW1duMrf379a8VL5iouLUVxcjOzsbACAj48PAgMDERQUhMDAQI9p0bHn56Pwj98g2axyh0JERESkaIpMbK7q168f+vXr57LzabVadOrUCdu3b8fw4cMBlLQMbN++HVOnTi3zGJPJVCp5ufqlWZIkl8VGNWO1WpGVlYWsrCwIgoCgoCCEhIQgODi4xuN+qsuen4/C3w9BsttkuT4RERGRN1FkYnPu3Dn8+eefGDZsWJnbv/nmG7Rt2xbx8fFVPvf06dMxceJEdO7cGV26dEFSUhIKCwsxadIkAMCECRMQGxuLxMREAMCwYcOwaNEidOzY0dEVbfbs2Rg2bJjHtAqQM0mSkJubi9zcXKhUKoSGhiI8PBx+fn61FoNYXAzTn78zqSEiIiJyEUUmNk8++STy8/PLTWwWL16M4OBgfPbZZ1U+95gxY5CRkYE5c+YgLS0NHTp0wJYtWxwTCqSkpDg94Z81axYEQcCsWbNw6dIlREREYNiwYXjxxRer98NRrRJFEZmZmcjMzITBYEBkZCRCQkLc2ooj2e0wHTkM0WK+/s5EREREVCmKTGz27t2Lxx9/vNztN910E5KSkqp9/qlTp5bb9Wznzp1O7zUaDebOnYu5c+dW+3rkGUwmE5KTk3Hp0iVERkYiIiLCLa1uxWdOwV5YN6b4JiIiIqotikxscnJyEBAQUO52f39/ZGVl1WJE5E2sVisuXbqEtLQ0REZGIioqymUJjjXjCiyXL7rkXERERET0D3lGTddQgwYNsGfPnnK37969G/Xr16/FiMgb2e12pKam4siRI0hNTYXdbq/R+SSbDcWnTrgoOiIiIiK6liITm7Fjx+LTTz/Fm2++6bTgo91uxxtvvIE1a9Zg3LhxMkZI3sRut+Py5cs4cuQILl68CIvFUq3zFJ85xXE1RERERG6iyK5oM2bMwE8//YTHH38cL774Ilq0aAEAOHHiBDIyMtC3b1/MnDlT5ijJ29jtdqSnp+PKlSsICQlBREREpdcgshfkw5J6yc0REhEREdVdikxsdDodvvvuO3zwwQf4+uuvcebMGQBAly5dMGrUKEyYMEG2tUnI+0mShOzsbGRnZ0Ov1yM8PByhoaHw8fEp95ji0ydrMcKyXW9dJT8/P0iS5PiTiIiISEkUmdgAgEqlwqRJkxzryxDJobi4GBcvXsTFixcRGBjoWPRTo/nn1rJmXIEtL7dyJxRU8AkLgyY0HCo/Pwg1TNAt+QUQBKFSicqUKVOqfH5BEKDVaqsTGhEREZFLKTaxIfI0+fn5yM/Px/nz5+Hv74/AwEAEBARAPHu6Usf7REZD37gpVHq9y2KKCAjEww8/XO1xQdej1WoRFhbmlnMTERERVYUiE5v+/ftfdx9BELB9+/ZaiIaoNKPRCKPRCFteHuxXUmHw8YFBq4WvjwZ6Hx9or5k+WlBr4NsyAT4RkW6JhYkHERER1QWKTGxEUYQgCE5ldrsd58+fx4ULF9C0aVPExsbKFB1RCUmSYMvOhCRKMJotMJr/aTVRqQToNBrodXoEtGqNYgnQZGdDo9FArVZDpVKV+j9eHWq1GlJWJiRzcY3PVRZBp4c2OsYt5yYiIiKqCkUmNjt37ix328aNG3H//fdj0aJFtRcQURlEYz6kcrqAiaKEYhGQwiNRnJcH5OW5JYZQSLC//Zpbzn1Vg8RFTG6IiIhIdl43ddjQoUNx11134fHHH5c7FKrjbFnZ5W9UqaCtHwfB3QPvq7BuzohvtqLn5+sx4putVbqEu1qDiIiIiKrC6xIbAGjSpAl+/fVXucOgOsxeaIRYwRd+bUwsVDpdLUYEQBAqfGUUFSPdVISMouLr7gsXdJMjIiIiciWvS2xsNhs+//xzhIeHyx0K1WG2nPJbazShYVBXcmFPIiIiIqocRY6xueeee8osz83Nxb59+5CWlsYxNiQb0WyGWFhY5jaV3hea8IhajoiIiIjI+ykysfnhhx9KzRglCAJCQkLQs2dP3HfffRg0aJBM0VFdZ8vLKXuDIMAnOsYls50RERERkTNFJjbJyclyh0BUJsluh72cGc40oWG1P66GiIiIqI7wujE2RHKyFxQAoliqXPDxgSaM476IiIiI3EUxiY3JZEJKSgosZawLsmLFCtx0001ISEjAyJEjOSMaycZeTjc0n4hIdkEjIiIiciPFJDbPP/882rVrVyqxmT9/PiZPnoxdu3YhIyMD69atQ9++ffH777/LFCnVVaLZDLG49BTPKl8D1AGBMkREREREVHcoJrHZsWMHhg4dCv9rpsnNz8/H/PnzERsbi1OnTiEjIwP79u2DVqvFSy+9JGO0VBeVN2mAJoKzoBERERG5m2ISm+TkZLRr186pbPPmzbBYLHj66afRqFEjAECXLl0wadIk7N69W44wqY6SJAn2/IJS5So/P6h9DTJERERERFS3KGZWtIKCAoSFhTmV/fjjjxAEAYMHD3YqT0hIQEZGRm2GR3WcaDQCdlupcp8w5bTWRPj6Ov1JREREpCSKSWwaNmyI48ePO5Xt3LkTUVFRaNq0qVO5xWJBYCDHNFDtseeXnuJZ5ecHlYKShLW3Db7+TkREREQeSjFd0QYNGoQVK1bgl19+AQB8+OGHOH78OEaMGFFq34MHDyI+Pr6WI6S6SrLbYS80lirXhIaVsTcRERERuYNiEpvZs2fD398fN954I7RaLe6++25ERERgzpw5TvuZTCasXbsWN910k0yRUl1jLygAJMmpTKX3hdrgJ1NERERERHWPYrqihYeH4/Dhw3j//fdx9uxZNGzYEPfccw8iIyOd9vvzzz9x5513Yvz48TJFSnWNvSC/VJkmNFSGSIiIiIjqLsW02ABASEgI/u///g/vvvsunnnmmVJJDVAyK9pbb72F1q1bV/s6ixcvRnx8PPR6Pbp27Yr9+/dXuH9ubi4efvhhxMTEQKfToXnz5ti8eXO1r0/KIdlsEE0mpzJB4wOVf4BMERERERHVTYppsakta9aswfTp07FkyRJ07doVSUlJGDx4ME6cOFFmImWxWDBw4EBERkbiyy+/RGxsLM6fP4/g4ODaD55qnd1YAMC5G5omOBiCIMgTEBEREVEdxcTmXxYtWoTJkydj0qRJAIAlS5Zg06ZNWLFiBZ555plS+69YsQLZ2dn4+eef4ePjAwCcuKAOKdUNTRCgDgqWJRYiIiKiukxRXdHczWKx4ODBgxgwYICjTKVSYcCAAdi7d2+Zx2zYsAHdu3fHww8/jKioKLRp0wYLFiyA3W4v9zpmsxn5+fmOl9FYekYt8nwl3dCKnMrUAQEQNHxeQERERFTbmNhcIzMzE3a7HVFRUU7lUVFRSEtLK/OYs2fP4ssvv4TdbsfmzZsxe/ZsvPbaa5g/f36510lMTERQUJDj1adPH5f+HFQ77EYj/t0Nja01RERERPJQRGKzYcMGXL58We4wyiSKIiIjI7F06VJ06tQJY8aMwcyZM7FkyZJyj5kxYwby8vIcr127dtVixOQqJeNr/iH4aDnFMxEREZFMFJHYjBgxAjt37nS8b9y4MTZs2ODy64SHh0OtViM9Pd2pPD09HdHR0WUeExMTg+bNm0OtVjvKWrVqhbS0NFgsljKP0el0CAwMdLz8/f1d90NQrZDsdoimQqcyDVtriIiIiGSjiMQmICAAubm5jvfJycluGZei1WrRqVMnbN++3VEmiiK2b9+O7t27l3lMjx49cPr0aYii6Cg7efIkYmJioNVqXR4jeQbRZPzXopwC1EFBssVDREREVNcpYpRzly5d8OKLLyI9PR1Bf3953Lx5c7njXgBAEARMmzatyteaPn06Jk6ciM6dO6NLly5ISkpCYWGhY5a0CRMmIDY2FomJiQCABx98EG+//TYee+wxPPLIIzh16hQWLFiARx99tBo/KSmF/V+JtcrPwEkDiIiIiGSkiG9i77zzDiZMmIAXXngBQEnSsnr1aqxevbrcY6qb2IwZMwYZGRmYM2cO0tLS0KFDB2zZssUxoUBKSgpUqn8auuLi4rB161ZMmzYN7dq1Q2xsLB577DE8/fTTVb42KYMkSbAXOndDUwewtYaIiIhITopIbJo2bYqff/4ZxcXFuHLlCuLj45GUlITbb7/dLdebOnUqpk6dWua2a8f6XNW9e3fs27fPLbGQ5xGLioBrp/NWqaAOCJAvICIiIiJSRmJzlV6vR4MGDTB37lz0798fDRs2lDskqoPEf3VDU/sHQFApYrgaERERkddSVGJz1dy5cx1/NxqNuHDhAoCSbmGcYYzczV74r8QmIFCmSIiIiIjoKsU+Zv7111/Rr18/hISEoE2bNmjTpg1CQkLQv39/HDhwQO7wyEtJFgski/mfArUaKj+uXUNEREQkN0W22Pzyyy/o27cvtFot7rvvPrRq1QoAcOzYMXz66afo3bs3du7ciS5dusgcKXkb+7/WrlH7B0AQBJmiISIiIqKrFJnYzJw5E7Gxsfjpp59KLZz53HPPoUePHpg5cya2bdsmU4TkrUrPhsZJA4iIiIg8gSK7ov3yyy+YMmVKqaQGAKKionD//fdzljJyOUmSIF7bYqNWQ2VgNzQiIiIiT6DIxEalUsFms5W73W63O601Q+QKYpEJEEXHe7WfP7uhEREREXkIRX77v/HGG7F48WKcP3++1LaUlBS888476NGjhwyRkTcT/90NzZ/d0IiIiIg8hSLH2CxYsAC9e/dGy5YtMWLECDRv3hwAcOLECaxfvx4ajQaJiYkyR0neximxUak4GxoRERGRB1FkYtOxY0f88ssvmDlzJjZs2ACTyQQAMBgMGDJkCObPn4+EhASZoyRvItlsEM3Fjvdqgx8X5SQiIo+iUqlq1BVfEASo1epqd7OuaffsWuveLUmQrFZIoh2QanYqdkj3LIpMbAAgISEBa9euhSiKyMjIAABERERwbA25hVjk3A1NxYVgiYjIw4iiCPGasaDVYbfbodFo4OvrC4PBgICAAAQEBCj6+5W90AhbdhbsebmwFxQ4PaisqVz/IJedi2pOsYnNVSqVClFRUXKHQV7OXmi65p0AtR8TGyIi8k42mw0FBQUoKChAeno6BEFAUFAQwsLCEBQUpIiJc0SLBdbUy7CkpzrPaEpeTfGJDVFtuPZDUeXrC0HDW4eIiOoGSZKQm5uL3Nxc+Pj4IDIyEhEREVCr1XKHVopoNsOckgzr5UuQpJq1XpHy8NsZ0XWIFgskq9Xxnq01RERUV1mtVly6dAnp6emIjo5GZGSkR7TgSHY7zCnJsFxIKRk7Q3USExui6xBNJqf3HF9DRER1nc1mw8WLF5GRkYGGDRsiIEC+JRBsOdkoOnEcYrHp+juTV2NiQ3Qd104cIPj4QKXTyRgNERGR5zCbzTh58iTCw8MRFxdXq5MMSKII89kzMF8sva4h1U1MbIiu49oWG5WBa9cQERH9W2ZmJgoKCtC4cWMYDAa3X080F8P05xHYC/Lcfi1SDkUnNkePHsXZs2eRk5MDSSo9EfmECRNkiIq8iWg2Q7LZHO85voaIiKhsZrMZx48fR4MGDRAeHu6269jy82A68jskq8Vt1yBlUmRic+bMGdx1113Yv39/mQkNULLIExMbqimx6Jr+uoIAVS08hSIiIlIqSZJw/vx5FBUVoX79+i6fWMCacQVFR//kjGdUJkUmNlOmTMGRI0eQlJSEXr16ISQkRO6QyEuJhf+a5tkDp7YkIiLyNFeuXIHZbEbjxo1dNu7GcvkSik4eB1D2Q20iRSY2e/bswbPPPotHHnlE7lDIi0mSBPs169ewGxoREVHl5eXl4eTJk2jWrFmN17yxXLqIolPHXRQZeavam7rChcLDwxEUFCR3GOTlxOJiQPynqZvd0IiIiKqmsLAQJ0+ehO2a8apVxaSGKkuRic0DDzyAjz/+GHY7F2Ai9xGvaa2BWgOV3le+YIiIiBTKZDJVO7mxpKcxqaFKU2RXtObNm8Nut6N9+/a45557EBcXV2YT58iRI2WIjrzFteNr1H5srSEiIqquoqIinDp1Cs2bN690tzRbdhaKjh91c2TkTRSZ2IwZM8bx9yeffLLMfQRBYIsOVZskihCLixzvuX4NERFRzZhMJpw5cwZNmza97oQCdmMBTH8dATj7GVWBIhObHTt2uPX8ixcvxiuvvIK0tDS0b98eb731Frp06XLd4z777DOMHTsWt99+O9atW+fWGMm9RFMhcM1U4momNkRERDVWUFCA5ORkNG7cuNx9RLMZpj9+h2Sv/rgcqpsUmdj06dPHbedes2YNpk+fjiVLlqBr165ISkrC4MGDceLECURGRpZ7XHJyMp588kn06tXLbbFR7bFf0w1N8NFC8PGRMRoiIiLvkZOTg4sXL6J+/fqltkmiCNNfRyBaimWIjJROkZMHXOvo0aP49ttv8e233+Lo0Zr3w1y0aBEmT56MSZMmISEhAUuWLIHBYMCKFSvKPcZut+POO+/EvHnzKnwCQcohFhodf+dsaERERK6Vnp6OzMzMUuXFp07Anp9b+wGRV1BsYrN+/Xo0adIEbdu2xdChQzF06FC0bdsWTZs2xYYNG6p1TovFgoMHD2LAgAGOMpVKhQEDBmDv3r3lHvf8888jMjIS9957b6WuYzabkZ+f73gZjcbrH0S1RjSbIVmtjvecOICIiMj1UlJSnL4DWdIuw5J6ScaISOkUmdhs3rwZo0aNAgAsWLAAa9euxdq1a7FgwQJIkoSRI0diy5YtVT5vZmYm7HY7oqKinMqjoqKQlpZW5jE//fQTli9fjmXLllX6OomJiQgKCnK83Nm1jqrOaZpnACpfjq8hIiJyNUmScPbsWVitVtgLjSg+eULukEjhFDnG5oUXXkC7du2we/du+Pn986Xztttuw9SpU9GzZ0/MmzcPQ4YMcWscBQUFGD9+PJYtW4bw8PBKHzdjxgxMnz7d8f7w4cNMbjyI/dpuaFodBI0ibxMiIiKPZ7Vaceb0acTm50ISOZst1Ywiv7H98ccfWLBggVNSc5Wfnx/uvvtuPPvss1U+b3h4ONRqNdLT053K09PTER0dXWr/M2fOIDk5GcOGDXOUiX+vVK/RaHDixAk0adKk1HE6nQ46nc7x3t/fv8qxkntIdjtEk8nxXmA3NCIiIrfKOXcWdksx6gcHyR0KKZwiu6Lp9XpkZ2eXuz07Oxt6vb7K59VqtejUqRO2b9/uKBNFEdu3b0f37t1L7d+yZUscOXIEhw8fdrxuu+029OvXD4cPH0ZcXFyVYyB5iSaT8zTP7IZGRETkNnajEfbcHOSYipBpLLz+AUQVUGSLTf/+/fHGG29gyJAhpRKOX375BW+++SYGDRpUrXNPnz4dEydOROfOndGlSxckJSWhsLAQkyZNAgBMmDABsbGxSExMhF6vR5s2bZyODw4OBoBS5aQMdmPBNe8EzohGRETkJpLNBktaquN9akEBfDRqBFXj4bQSvPfeezAajfD398eUKVPkDscrKTKxefnll9G9e3f07NkTXbp0QYsWLQAAJ06cwP79+xEZGYmFCxdW69xjxoxBRkYG5syZg7S0NHTo0AFbtmxxTCiQkpJy3dVySZkkSXJav0bl6wtBrZYxIiIiIu8kSRIsqZeBaxfhlICLOXnQhKngp9XKF5ybGI1G5Ofnyx2GV1NkYtOoUSP88ccfSExMxLfffos1a9YAABo2bIjHHnsMzzzzTIWLaV7P1KlTMXXq1DK37dy5s8JjV61aVe3rkrzE4iKnD1i21hAREbmHLTuz1CykACBKEs5n56JxWAj0XBybqkiRiQ0AREZG4vXXX8frr78udyjkJcQC5/WEVAaOryEikpMgCOW+L+/vVS2rkCiWzNQlStfftwKK/bLlJnajEbYyFud0bBdFnMvOQaOwUOg5MylVAf+3EP3NaXyNSgWVr698wRAReTC1Wg2VSgWVSgWNRgMfHx/4+PhAp9NBr9dDr9dD8/cX0oqSiYoSl9pmNxphy8uBPT8fotEIsbgI0rXdpGrAt5ALcV8lWiywpF2+7n42u4hzWdloHBYKHZMbqiRF/E+55557IAgCli5dCrVajXvuuee6xwiCgOXLl9dCdOQNRLMZktXieK82+Mn6C5aIyJPZ7XbY7SVrjpjN5jL38fHxgZ+fH/z8/ODv7w8/P8/7XLXl58GangZbRgZES7Hc4TjMnz8fNpsNGo0Gs2bNkjscl5HsdlguXQTslVuvxmYXcTYrG41C2S2NKkcRic0PP/wAlUoFURShVqvxww8/XPfD0dM+PMmz2Y3Og/lUflxbiIioJqxWK3Jzc5GbmwsAUKlUCAgIQGBgIIKDg6GVaXC4JIqwpqXCcumC04LMnsRms0GSJNhsrmkx8gSSJMFy+SIkS9mJcHlKkpscNAwN9soJBci1FJHYJCcnV/ieqKbEggKn9+oyFn8lIqLqE0UReXl5yMvLw4ULF2AwGBAaGoqQkJBaSXIkUYQl9RIs55MhVvHLNdWcNS3VaQHsqrCLIs5l5SAuOAhBvt45FTS5hiISm39LSUlBREQEfMsZA1FUVISMjAw0aNCgliMjJRLNZojXdKVQaXUQ2ORNRORWJpMJJpMJFy9eRGBgIMLDwxEcHOyWHhfWzAwUnz4Fsbh6X6ypZixX0mDPz6vROSRJQkpOLqJs/ogMYK8KKpsiF2Rp1KgR1q5dW+72DRs2oFGjRrUYESkZu6EREckrPz8fZ8+exZEjR5CamuqyLliiuRiFR36H6c/fmdTIxJqZAXtOjsvOl15gRHJ2Dmyi6LJzkvdQZIuNJFU87aLVauUimlRp9nznbmgqf3ZDIyKSg9VqxeXLl5GWloawsDBER0dXu5uaJT0NxSePu2xmM6o6a2YGbFnlT+tcXQXFZpzOyET94CD463QuPz8pl2ISm/z8fMcARADIyspCSkpKqf1yc3Px2WefISYmphajI6USzWbngYwqFVS+XJiTiEhOoigiIyMDmZmZCA8Pr1KCI9ntKDp5HNb0VDdHSRWxXrkCW06W+85vLxl3E2rwRXRgANR8oE1QUGLz+uuv4/nnnwdQMuPZ448/jscff7zMfSVJwvz582sxOlKqf/f5Vfv7c0Y9IiIPIUmSI8GJjIxETEwM1Gp1ufuLRSaY/vzDY2c7qwskSYI1LbXGY2oqK9tUhHyzGVEB/gjx9a3U73BBpYag1UJQ1/xr8LVjcq/Xo8jPzw+SJDn+JNdTTGIzaNAg+Pv7Q5IkPPXUUxg7dixuuOEGp30EQYCfnx86deqEzp07yxQpKYUkSbDnc3wNUXkEQahRon/tAo5arRY+Pj7w9fWFXq+H7jrdR1zxgMEdDykkSYJYaIS9oAB2UyHE4mJIZjMkm7XSa3NUJFfPFuOySJKE9PR0ZGZmIioqCpGRkaUSHFtONkx//sGuZzKS7HZYLl+s9uxn1WWzi7iUm49MowmRAX4I0uud7n+1XwA0oaFQBwVDHRAAlc51M6uZs7IgCEKlEpUpU6ZU+fyCIMg2NboSKSax6d69O7p37w4AKCwsxKhRo9CmTRuZoyIlE4tMJV9GrhIEqJnYEDlIklSjp4pXF3G0Wq0oKipy2qbRaODv74/AwEAEBQV59C9u0WKBLTMD1qxM2HNznL44C3+/XEXFp7gVstvtuHz5Mq5cuYLIyEhERERAo9HAknYZRSeOAxIHlMtFLC6C5fIlSFbr9Xd2E7PNhgs5eUjTGBEeFITIxk3gVz/OrV3Mw8LC8PDDD8NisVx/52rQarUICwtzy7m9kWISm6tMJhPefPNNGAwGJjZUI/Y852Zyla8vhAq6OBCR69hsNqfFG6+uaRIaGgofD5huXRJF2LIyYUm9BFt2NgAmHJ7EZrM5JhkItNkQkJcFnUZxX2m8hi07G9bMK4AHJOaCjxYIC0NOYBBy843wT7mAoKAgBAYGwreSXdWqKsBqgWQpdvl5AYC946tGcZ8CBoMBGo0GflxAkWpAstthN/5rUU7/AJmiIaKra5pcunQJwcHBiIyMhL9/7begXu1KY7l4AaLZPV9UyHXM6elIzc5EqgD4a3UI9fNFoE7n0WMlK9MKqtFoYLPZoNFoPHoshmSxwJJe/YU3XUqthk9YONTBIU71bzQaYTQacenSJQiC4OgKq9FoKhyvVVmG4iJkvzinxuepSIPERdBGc1KsylBcYgMAo0aNwpdffokHH3zQoz+8yHPZCwqAf82Bz8SGSH6SJCEnJwc5OTnw8/NDTEwMgoKC3H9dUYTl0gWYU85DsrqnSwm5ljXjCmzZf8+6JQFGsxlGsxkatQpBej2CffUwVKOLo0pvgNrfD4Let2TBZo0GUNXsu0ZAXh6E3/6odJIyc+bMal2nQYMGCAkJqdaxQMlsdDabDRaLBUVFRSgqKoJYxnoxkt0OW3YWbDnZHtFKow4MhE9EVEldVUCSJMfP5SqRovvHdEl8yFJpikxs7rjjDjz00EPo168fJk+ejPj4ePj6+pba79+TCxBdZc9zXixMpdc7zWxCRPIrLCzE6dOn4efnh/r167utBceacQXFZ05BLHbdlx1yL6ek5l9sdhFZhSZkFZrgo1YjQK9DoE4HP50WqjIehqq0OmjCI6AJCYUmOMQtvwuio+u5dRwG4J6xGJIkwWQyOZbcKCwogD03F9acbMATJmlQqaCNjoY6wP0PPyrlOg/bR2zYioyiIkT4+mLtbYOvfz4PSBqVRpGJTd++fR1/3717d6ntkiRBEATYXTBDDXkf0VwMsdj56YfaP1CmaIjoegoLC3HixAkEBwcjLi7OZRMNiOZiFJ08AVtWhkvOR7XDlpVVblLzb1a7HdmFJmQXmiAIAgw+PvDT+cBXq0NQvVgY6seV6rrkLkocAH51tlmd1YLgfKCgIBdZRUbkSHbIPU2DSqeHtl4sBA+eeOTfMoqKkG7iAxR3UmRis3LlSrlDIAWzXbPQ61WqAHZDI/J0ubm5yM/PR0xMDKKiomr0ZdSSdhnFp05yamCFseXmlgxSrwZJklBos8HsHwBNcCiuWGzwuXARvplZjnEXV6clvzr+Qq1WuyzpsaSlurVLkaDT13gchiSKkKwWiEVFsBuNsOfnwZaT7eieqVOrUC8oEFEB/sgqNCGz0AR7GV3V3E0dEAif6BgIXJST/kWRic3EiRPlDoEUSrLbSy0aptLroVLQEx+iukwURVy6dAk5OTnldkOuiGSzoejEMVgz0t0UIbmL3WiENT2tegcLAjTBodCEhjqNw7BarbBarcj/15pmpQ+vWXKjys2G/0fLa3SOCv3dZSl05BioazImrZLTZatVKkQG+CPUz4ArBUZkm0y11mtKExoGn4jI2rkYKY4iE5trGY1GXLhwAQAQFxcnyyw6pBz2vLzSkwYEsBsakdKYTCYcO3YMsbGxiIqKqtQxdmMBTH8egVjsATM4UZWIRUWwpF5CdabdVvn5QRsZXaMuSzWdmUyq4tiath99AYtoh1alxpHx/638dayWWl3LR6MqacEJMfjiUl4+iizuXcPGJzIKmpBQt16DlE2xbXi//vor+vXrh5CQELRp0wZt2rRBSEgI+vfvjwMHDsgdHnkgSZJg+9ekAQBnQyNSKkmScPHiRZw+fRo2W8VdyizpaSg8dIBJjQKJZjPMly6Weih1XWo1fKLrQVe/gWeNwxCE674soh2iBFhEe6X2l5uvjw+ahIUiKsDfbeH4RMUwqaHrUmSLzS+//IK+fftCq9XivvvuQ6tWrQAAx44dw6efforevXtj586d6NKli8yRkicRjcZST81Uel/P+oVHRFWWl5eHY8eOoUmTJjAYSq8wXnzuDMznz8kQGdWUZLHAcvFClWfgUhkM0MbEXnf6X3IdQRAQGeAPP50WF3LyYHXhBE4+UTHQBAe77HzkvRR5x8+cOROxsbH46aefEB0d7bTtueeeQ48ePTBz5kxs27ZNpgjJE5U1i446iN3QiLyBxWLB8ePH0bBhQ8fsU5IoloynSU+VOTr3mD9/vmMRx1mzZskdjstJVivMF1Mg2arSvUmAJjwMmtBwrnMnEz+tFk0jwpCSnYtCF0xv7RMZxaSGKk2RXdF++eUXTJkypVRSAwBRUVG4//77sW/fPhkiI09lN5lKr1EhCJzmmciLSJKE5ORkXLp0CZLdDtOR3702qQEAm81W0sX2Ot3wlEiyWGC+cB6StQpJjUoFbWx9+IRFMKmRmUalQqOwEIQYqja5R6nzhIaz+xlViSJbbFQqVYUf5Ha7HSpOAUjXsGVnlipT+fmzmwKRF0q9dAk5f/6Bej5qqPm7QHFEsxmWiymQqpCwCT5aaGPrQ6XTuTEyqgpBEFA/OAhatRrpBcYqH68ODIJPRIQbIiNvpshP/BtvvBGLFy/G+fPnS21LSUnBO++8gx49esgQGXkiu8kEsbCwVLkm0ENWKiYil5HsdlguXkBuVhZOZ2ahuCpP/El2dpOppKWmCkmNSq+HrkFDJjUeKjLAH/Wq2O1b5WuATw3X5KG6SZGJzYIFC5CXl4eWLVti3LhxeO655/Dcc89h7NixaNmyJfLy8pCYmFjt8y9evBjx8fHQ6/Xo2rUr9u/fX+6+y5YtQ69evRASEoKQkBAMGDCgwv2p9pW5qrhaAxWnBifyKpLNBsvFFEe3U4vNjjOZ2cgq5ExoSmDLz4PlYgpQhUHnKoMB2voN2Pru4cL8DIgNrlxyI/j4QFsv1iu7E0b4+iLK4IuIKq6/RZWnyE+Cjh074pdffsHMmTOxYcMGmEwlv7QMBgOGDBmC+fPnIyEhoVrnXrNmDaZPn44lS5aga9euSEpKwuDBg3HixAlERpZeEGrnzp0YO3YsbrzxRuj1eixcuBCDBg3CX3/9hdjY2Br9nFRz9kIjRFPpLzWawCCv/NAkqqskmxWWCxcgWsxO5aIk4XJePgrMZtQPCoRGrZYpQiqPJEmwZWaUOcFLRVR+ftDGxvGzXCFC/56x8FJuBYuh/j1OylsT1bW3DZY7BK+n2P85CQkJWLt2LURRREZGyRP5iIiIGo+tWbRoESZPnoxJkyYBAJYsWYJNmzZhxYoVeOaZZ0rt/8knnzi9f//99/HVV19h+/btmDBhQo1i8VTvvfcejEYj/P39MWXKFLnDKZckSbBduVLmthqtzEykMEq5Z6tLNJthuXShwoHmBcVmnLRkoV5QAIL5tNRjSDYbLGmXy+wuXBGVn3/JF2AmNYoSajBAlCSk5hWUud0nKhoqnb6WoyJvotjE5ipBEBwfbDX9gLNYLDh48CBmzJjhKFOpVBgwYAD27t1bqXOYTCZYrVaEhpY/i4fZbIbZ/M9TRaOx6oPq5GQ0GpGfX8ETFw9hz8st9fQWKOm7y77YVJco5Z6tDrupEJZKLt5oF0VcyMlDjqkI9YICofPSp8JKYTcaYU1PrdJ4GgBQGfyY1ChYuJ8f7KKIKwXOyaw6KJhjX6nGFDnGBgCOHj2K0aNHIzAwEDExMYiJiUFgYCBGjx6NP//8s1rnzMzMhN1uR1RUlFN5VFQU0tLSKnWOp59+GvXq1cOAAQPK3ScxMRFBQUGOV58+faoVL5VPstlgzSxjbA0ANefDJ/IKttzsksUbq7givdFswamMTKTmF8BW1dXsqcYkux2WtNSSVraqJjW+hjqR1GhVaqiEkj+9UVRAgNNU0CqdDj5RpZfwIKoqRT6u2r17N26++WaIoojbb78dzZs3BwCcOHECGzZswLfffostW7agV69etRrXSy+9hM8++ww7d+6EXl9+U+qMGTMwffp0x/vDhw8zuXExa0Z6mQNQBY0G6gCuXUOkZJIowpqeBnt+XvXPIQGZxkLkmIoQ7mdAmJ9BcVNDazQaxwKdSmHLy4Mt80qVExoAELS6kqRGYfVUHUcm/E/uENwuNigQVrsdRqsNPjHeOVkA1T7lfBpeY9q0aYiMjMSuXbsQFxfntO3ChQvo3bs3pk+fjl9//bVK5w0PD4darUZ6erpTeXp6epmLgV7r1VdfxUsvvYTvv/8e7dq1q3BfnU4H3TVdofw5O5dL2QsKYC+n2406OJgfnkQKJprNsF6+VGY30+qwiyLSC4zILDQhzM8XoQYDfCo5wYAgqCD4+kKl1ULQ+AAumJhAZf+nBUmSpAr3nTlzZqX3vVZQUFCF3aUrQ5IkiKIIu90Om80Gq9UKewWzmdkLjbBlZkAsLq7W9QSND3T14yBw8gevIQgCGoQE44KPHjZ2DycXUWRi89dff+GFF14oldQAQFxcHB588EE899xzVT6vVqtFp06dsH37dgwfPhwAIIoitm/fjqlTp5Z73Msvv4wXX3wRW7duRefOnat8XXIdyWqFpbyVxgUBmqCQ2g2IiFzGlp0Na+aVkuYWF7va5z/DWIhAvR4hBl/4a7VOD0LU/oHQBIdAHRQEtb8/BL2vyx+U+GVlQRCEKiUqVSEIAuLj4xEWFubyc4uiCIvFArPZjOLiYphMJhSkp8GYmgqxqAZTbqs10NaPg+Dj47pgySPoo2LQokkzHD9+vMLEmKiyFJnYNGzY0Gnw/b9ZLJYyk57KmD59OiZOnIjOnTujS5cuSEpKQmFhoWOWtAkTJiA2NtaxTs7ChQsxZ84crF69GvHx8Y6xOP7+/myJqWWSJMGSerncNRDUgUFeO4UkkTcTzWZY09Nq9uW4kiQJyCsqRl5RMTRqFULCIxAW1wDBDRpCU0EXY1cJCwvDww8/DIvF4pbza7VatyQ1QMlkO3q9Hj42G3SFRhjSUhFqKYYYHACTQYdCixWFZgtMVkvlc1OVCrr69TnhixdS6Q3wbdEKgkaD+Ph4nDlzRu6QyAso8lvenDlzMG3aNNx6663o0KGD07bffvsNb731FpKSkqp17jFjxiAjIwNz5sxBWloaOnTogC1btjgmFEhJSXGaUvrdd9+FxWLB6NGjnc4zd+7carUaUfVZ0yp6KihAE1KzrhdEVLskux227CzYcrLd0kpTLrUGmqAgaIKCYdRqYSwwIuXoUfj5+cHf3x8GgwG+vr7QarU1XmKgLAFWCyRL9bpsXY+re+JKogixqAh2YwHsebmwZWdDLHb+HFYJAvx1OvjrdEBASeuY0WxBfnEx8s1miGI5datSQVe/AVR6Ts/tbQS1Boa27RwPG4ODgxEbG4tLly7JHBkpnSITm3379iEqKgqdOnXCjTfeiKZNmwIATp06hb1796JNmzbYu3ev0xTNgiDgjTfeqNT5p06dWm7Xs507dzq9T05OrtbP4Kkq0/3Bz88PkiQ5/vQE1oyMCgcSq/39+cSPvJJS79mKSJIEe24OrFlZgL3qg8yrS9D4QBMaCnVQcKkB6pIkwWg0lpqe38fHBxqNBmq12iVJToDVAuMr82t8nnJJEiIm3Q9NSA265UolM09KVgtEsxmQqjaznFqlQpCvHkG+ekiShAKzBblFRcgvNv/z/1OtKWmpYVLjlXxbtILaz7lXS3R0NIqLi5GVVbWFWomupcjE5u2333b8fc+ePdizZ4/T9iNHjuDIkSNOZVVJbOoa7d/9yCv7hae6C/w1b968RgNWJUkq+cJjtzsNWDWeP4dCYx6gVsFmL/sXrMZNXS+I5KCUe1YURYii6LhXLRYLiouLUVRUBGsZi2lKdnvJU/+cHEi28hfbdDm1Gj6hYVCHhFZ5zIzVai3zZ6kubRV+7rYffQGLaIdWpcaR8f+t9HG2zIwqJyPuIggCAvU6BOp1sIki8oqKkWOxQoyK4cMoL6WLbwKfyKgytzVs2BBWq9Vr190i91NkYiNy3QGXcnefbsA9/bolmw1Fx4/C31IMhJec2y6KKLbaUGSzoshiRaHVClFv4FM/8ipKvWevZbVaYTQaUVBQgJy0VJgyMmAvyK/ymjQ1pQ4Khk94hGeOv7tOkmUR7RClkj8r1cfMw1vrNCoVIiMjEd+uA4xmC65cuYK8vOpP6U2exycyGvr4RuVuFwQBTZo0wcmTJ1FYWFjufkTl8cBPcpKDO7/AuIM14wqKT5+EaHbuh65WqeCn08JPpwX8Ssq07W6ASZKQn5+P/Px82KqxfgKRp1HaPXstyW6HYCyAPisTmsxMBBWbUKxVI8/PF7lFxbDY3D87kqDVwSc6Gmpfg9uvRZWjCQ2DIaEtBI0GgTo9AgMDUVRUhLS0NGRnZ8sdHtWQJiQMvi0TrrufSqVC06ZNcfLkSRQVFdVCZORNFJ3YnDt3Dt9++y3Onz8PoKQJ8+abb0ajRuU/DaCyWdJSIZndM1hVEkVAEOATWbNVhSVzMez5ebCkp0E0Ve5Jjk9UDHxDQ+GLki+CkiShsLAQOTk5yMnJcWkXEqLapIR7FqJYMhbDYoZYXAyxyFSyzlShsVRXKL2PD/Q+PogKCIDRbEa2qQj5xcVuaWTQhIRBExHBNa08iK5BPHSNmpSqE19fXzRq1AgxMTFITU1lgqNQ6oAgGFq3rfTiqhqNBs2aNcPJkydRXM21j6huUmxi88QTT+CNN94o1S1NpVLh8ccfx6uvvipTZMpjSUtFyozp7rvA399MQkf8F+qgIPdd518ElRr6xk2dywTBMRV3/fr1YTQakZWVhZycHHZxJMXw1nv2qqszaFnsdmQaC5FjKoLoigxHrYG2Xj2oDX41Pxe5hKDxgW+LVvCJiKxwP71ej0aNGiE6OhqpqanIycmppQipptR+AfBr16HK3T19fHzQvHlznDp1ii03VGmKTGxee+01vP766xg9ejSeeOIJtGrVCgBw7NgxvP7663j99dcRGxuLadOmyRypMlT1qe+Ib7Yio6gYEb56rB02uPLXqeUuYNoG8RUOPhUEAQEBAQgICEBcXByysrKQkZHBp0Pk8bz1nv03rVqNekGBiPT3wxVjIbJNRdWe1U3la4C2XqxnjqWpozTBIfBt2RqqKqwP5Ovri8aNG6O4uBjp6enIyspSxEx/dZXaPxCGdh2qvbjq1eTm9OnTHHNDlaLIT/hly5bhtttuw+eff+5U3rVrV3z22WcoLi7Ge++9x8SmOirRNSOjqBjppqJK7y/HgFWVwQ+6Bg0rvb9arUZkZCQiIyORn5+P9PR0zspCyuAl92xFNH8nOOF+BqQVGJFXVLXETh0SAp+IKHY98xCCWgN946bQxtav9jn0ej0aNmyI2NhYZGRkICMjg12LPYw6IKikpaaaSc1VGo0GzZs3x9mzZzmZBF2X61cWqwXJyckYPLj8p46DBw/2uvVlqGp8W7SqdF/efwsMDESzZs3QqlUrBAcHuzYwIqo2rUaDBiHBaBQWAl1lWl4EAT5R0dBGRjOp8RA+UTHw79K9RknNtTQaDWJiYtC2bVs0bdoUwcHBrGsPoAkNh1+HG2qc1FylUqnQpEkTREZW3GWRSJEtNpGRkfj999/L3f77778jIiKiFiMiT6Kr3xCaoOAan8dgMKBJkyYwmUxITU1Fbm5ujc9JRDXnr9OhaYQWGUYjMoyFZTcwqVTQxsRC7e9fxkaqbZrQcOgbNYY6INAt5xcEAUFBQQgKCoLNZkNubi5ycnJQUFDArmq1TBsbB33T5i5PMAVBQFxcHHx9fZGSksJ6pTIpMrH573//izfeeAPx8fF45JFH4OdXMhC0sLAQb7/9Nt5//308/vjj8gZJslAHBELXuIlLz3k1wSkqKkJ6ejqys7P5gUokM5UgICogAAE6PS7m5sF87XggtQba2PpQ+3r3+lValdqxQKcnEgQVNBGR0MU1cFtCUxaNRoPw8HCEh4fDbrcjPz8feXl5KCgocOvaT3WdoFJD37wFtNH13Hqd8PBwGAwGnDt3jmNiqRRFJjYvvPACDh8+jGeffRZz5sxBvXolN9Hly5dhs9nQr18/PP/88zJHSbVN8NHCkNCm2l3QrsfX1xfx8fGIjY1FZmYm+3QTeQCD1gdNI8KQmpePbFMRBI0G2voN6sSq9Ucm/E/uEMogQBMUBE1EFHwio6DSamWNRq1WIyQkBCEhIQAAi8UCo9GIwsJCmEwmFBUVwW53/7pJ3k7t5w/fVm1qrYXUYDCgVatWuHjxIjIyMmrlmqQMikxsDAYDtm/fjvXr1zutYzNkyBDccsstGDZsGPvY1jGCoIKhdTuoamGxPR8fH8TExCA6Ohr5+fnIzMxEXl4eW3GIZKISBMQGB8E/IAiZAQGQ1Ir81aZIgo8WaoMBKv8AaIKCoQ4OcXsyI0lSyQQXV19Xy6+dsl+SAEiAhGv2kaABEKTXI0ivB0JDAZQkO2aLGRazBRarFVarFTa7HXa7HaLd/vcpavb5LsBLv5MIKujiGkAX39htDxXLo1Kp0KBBA4SGhiIlJYVTQhMABSY2JpMJd911F0aNGoU777wTt99+u9whkdwEFXxbt4Wmlgf6X9un2263Oxb9ZJ9uotqnDghE/bYdECmKOH36NMxms9wheS61CoK6hoO61SoIGh8IKhUkuwh7Xh7subnA+WSUZBN/k67+cfUv0jWbr0lM/v7T8dl5NUn5O3mRHPu457NVAKD7++UO1sI85Lrp3HLRBIdC37S57OPY/P390apVK2RmZiI1NZU9Keo4xSU2BoMB33//PW6++Wa5Q6mzIv7utx7hAf3XBbUGvglt4BMWLmscarW6VJ/uqy/26Sa5edI96w4+4ZHwbdUagloNPYBWrVohOTmZE36Uxy5Cstfwy58dkCxMHusiTVAwdA0bQRMaJncoDoIgICIiAmFhYcjMzMSVK1f4cKOOUlxiAwA9e/bE3r17MXnyZLlDqZPW3lb5Bf7cSW3wh2/rtlD7edYq4v/u0202m1FYWOh4FRUVQby2ywSRm3nKPesOuoaNoG/kPGGIWq1GkyZNkJ6ejkuXLrEFlaiGBLUGPhGR0NarD3Vg7U0EUVUqlQqRkZGIiIhAfn4+srKykJeXx9+5dYgiE5u3334bgwcPxqxZs/DAAw+gfn3XzIdPyiD4aKGLawht/bha79NbHVqtFlofH4QEBzu6VZjN5pJXcTEsVissFgusVivsdjvsoghRFP/pR14DXtqrm6iktbZVa/iElz+1f1RUFAICAjh7ElEVCWoNVH7+0AQGQR0SAk1IqCJ+3151bVdxURRhNBpRUFCAwsJCFBcXs7uaF1NkYtO+fXvYbDYkJiYiMTERGo0Gun/NgCMIAleo9TQadQ0W6xIgaH2g9g+AOigYgkoF65W0f7pbX5sASNI/T2iv9skWS/4seSteM/AUkK55L4n//rtYcqzTtr+TDlH6+1zO53AcX4n+4O7s030V54shb6MODIahVWuoKtG17ursSZcvX0Z6enotREckI7UaqMH4KUGlgqBRQ9D4AJIEW14ubHm5MCefq+QZKvEwrrLP6yp8sFe1h34qAEF/vwBAFEXYRBF2F7TkaNRqsNOb51BkYjNq1CjOeqZENjukGjwlkawWiIWFsKanuTAoIlIMQQVdw0bQNYyv0u8AlUqF+vXrIyQkBOfPn+fsSeS97HagBuOnJDsg1ZHGDPXfr5oS3P54kqpCkYnNqlWr5A6BiIhqkTogEL4tWkHtH1Dtc/j5+aFVq1bIyMjA5cuXuX4JEZGXUVRiU1xcjPXr1+PcuXMIDw/HrbfeipiYGLnDIiIiNxF8tNDHN4ZPvViXtNQLgoDIyEiEhoYiNTUVGRkZnFyAiMhLKCaxuXLlCm688UacO3fO8UvIYDBg3bp1GDBggMzRERGRKwkqNbT146BrEA9B4/pfVRqNBnFxcYiKikJ6ejoyMzM5cxIRkcIpZoqLF154AcnJyZg2bRo2btyIpKQk+Pr6YsqUKXKHRkRELiKoNdA1iId/tx7QN27qlqTmWlqtFnFxcWjbti3q1asHn2pPcEJERHJTTIvNd999hwkTJuDVV191lEVFRWHcuHE4ceIEWrRoIWN0RERUE2r/QGhj6sEnKtrtyUxZNBoNYmJiEB0djby8PGRnZyM3N5fd1IiIFEQxiU1KSgqefvppp7KePXtCkiSkp6czsSEiUhi1fyA0YWHwiYiC2t9f7nAAlIzBCQ4ORnBwMOx2O/Lz85GXl4f8/HyufUFE5OEUk9iYzWbo9XqnsqvvbTabHCEREVFlCCqodHqoDL4la1EFBEIdFAyVVit3ZBVSq9UICQlBSEgIgJLfQyaTCSaTCcXFxTCbzbBYLJxdjYjIQygmsQGA5ORkHDp0yPH+6gKcp06dQnBwcKn9b7jhhmpdZ/HixXjllVeQlpaG9u3b46233kKXLl3K3f+LL77A7NmzkZycjGbNmmHhwoW45ZZbqnVtIiKPoVIB6hr8mhAECGoVhL/PIRYXQywuhjXz72Vjq9LNq0o9wsrZubrdyq45TAMg8O/XP6eVYP97Ud6adl1TqwRk1ugMRER1l6ISm9mzZ2P27Nmlyh966CGn95IkQRCEaj1FW7NmDaZPn44lS5aga9euSEpKwuDBg3HixAlERkaW2v/nn3/G2LFjkZiYiKFDh2L16tUYPnw4Dh06hDZt2lT5+kREHkMUAXvNWsQlGyDVgXW5XTYTj6CoX8tERB5FMZ+gK1eurJXrLFq0CJMnT8akSZMAAEuWLMGmTZuwYsUKPPPMM6X2f+ONNzBkyBD83//9H4CS2du2bduGt99+G0uWLKmVmImIiIiI6jrFJDYTJ050+zUsFgsOHjyIGTNmOMpUKhUGDBiAvXv3lnnM3r17MX36dKeywYMHY926deVex2w2w2z+5wmm0WisWeCuxBmAvBfr1juxXr0X69Y7sV69F+tWdopJbGpDZmYm7HY7oqKinMqjoqJw/PjxMo9JS0src/+0tLRyr5OYmIh58+bVPGAXEXT66+/kArqmzeATHlEr16ISYmGh269RW/9/6B+8Z72XaDK5/Rqs19qnDgmtleuwbmufWFTk9mvw92zlMbGRwYwZM5xaeQ4fPow+ffrIFo82OgYNEhdBMhe77RqCTg9tdIzbzk/lc2fdsl7lwXvWu/Ge9T662Djes16M96znYGJzjfDwcKjVaqSnpzuVp6enIzo6usxjoqOjq7Q/AOh0Ouh0Osd7fw9Yv4E3jfdi3Xon1qv3Yt16J9ar92Ldeg6XTeTiDbRaLTp16oTt27c7ykRRxPbt29G9e/cyj+nevbvT/gCwbdu2cvcnIiIiIiLXY4vNv0yfPh0TJ05E586d0aVLFyQlJaGwsNAxS9qECRMQGxuLxMREAMBjjz2GPn364LXXXsOtt96Kzz77DAcOHMDSpUvl/DGIiIiIiOoUJjb/MmbMGGRkZGDOnDlIS0tDhw4dsGXLFscEASkpKVCp/mnouvHGG7F69WrMmjULzz77LJo1a4Z169ZxDRsiIiIiolokSDVdJplq7NChQ+jUqRMOHjyIG264Qe5wiIiIiIgUh2NsiIiIiIhI8ZjYEBERERGR4nGMDVVLamoqUlNT5Q6DXCwmJgYxMZy20hvxniUikh9/z7oXExsPEBMTg7lz5yrmP7rZbMbYsWOxa9cuuUMhF+vTpw+2bt3qtM4SKR/vWSIiz8Dfs+7FyQOoyvLz8xEUFIRdu3Z5xOKi5BpGoxF9+vRBXl4eAgMD5Q6HXIj3rHe6es+yXr0P69Y78fes+7HFhqqtQ4cOvDG9SH5+vtwhkJvxnvUuV+9Z1qv3Yd16J/6edT9OHkBERERERIrHxIaIiIiIiBSPiQ1VmU6nw9y5cznwzcuwXr0X69Y7sV69F+vWO7Fe3Y+TBxARERERkeKxxYaIiIiIiBSPiQ0RERERESkeExsiIiIiIlI8JjYkq+TkZAiCgFWrVskdChFVAu9ZIiLyVExsFOTMmTOYMmUKGjduDL1ej8DAQPTo0QNvvPEGioqK3Hbdo0eP4rnnnkNycrLbrlEZL774Im677TZERUVBEAQ899xzssYjB0EQKvXauXNnja9lMpnw3HPPVelcrCNndfmePX78OJ566il06NABAQEBiImJwa233ooDBw7IFpMcPPmeZR3VjCfX7eXLl3HXXXehRYsWCAgIQHBwMLp06YIPPvgAnDOqYp5cr//2ySefQBAE+Pv71zgWb6GROwCqnE2bNuG///0vdDodJkyYgDZt2sBiseCnn37C//3f/+Gvv/7C0qVL3XLto0ePYt68eejbty/i4+Pdco3KmDVrFqKjo9GxY0ds3bpVtjjk9NFHHzm9//DDD7Ft27ZS5a1atarxtUwmE+bNmwcA6Nu3b6WOYR39o67fs++//z6WL1+OUaNG4aGHHkJeXh7ee+89dOvWDVu2bMGAAQNkiau2efI9yzqqGU+u28zMTFy8eBGjR49GgwYNYLVasW3bNtx99904ceIEFixYUOOYvJUn1+u1jEYjnnrqKfj5+dU4Dq8ikcc7e/as5O/vL7Vs2VK6fPlyqe2nTp2SkpKS3Hb9L774QgIg7dix47r7iqIomUymSp/73LlzEgBp5cqVldpXkiQpIyNDAiDNnTu30tfxVg8//LDkrtu4Ov/OrKMSvGcl6cCBA1JBQYFTWWZmphQRESH16NGj0tfzNp50z7KOXMuT6rY8Q4cOlfz8/CSbzeaawOoAT63Xp59+WmrRooV05513Sn5+fq4PTqHYFU0BXn75ZRiNRixfvhwxMTGltjdt2hSPPfaY473NZsMLL7yAJk2aQKfTIT4+Hs8++yzMZrPTcfHx8Rg6dCh++ukndOnSBXq9Ho0bN8aHH37o2GfVqlX473//CwDo169fqSbYq+fYunUrOnfuDF9fX7z33nsAgLNnz+K///0vQkNDYTAY0K1bN2zatKna/w5ythYpiSiKSEpKQuvWraHX6xEVFYUpU6YgJyfHab8DBw5g8ODBCA8Ph6+vLxo1aoR77rkHQMk4ioiICADAvHnzHPV+va5lrKMSvGeBTp06leoeERYWhl69euHYsWPVOqe3kuueZR25n5yfx2WJj4+HyWSCxWKp8c9Wl8ldr6dOncLrr7+ORYsWQaNh56tr8V9DAb755hs0btwYN954Y6X2v++++/DBBx9g9OjReOKJJ/DLL78gMTERx44dw9q1a532PX36NEaPHo17770XEydOxIoVK3D33XejU6dOaN26NXr37o1HH30Ub775Jp599llH0+u1TbAnTpzA2LFjMWXKFEyePBktWrRAeno6brzxRphMJjz66KMICwvDBx98gNtuuw1ffvklRowY4bp/IHIyZcoUrFq1CpMmTcKjjz6Kc+fO4e2338Zvv/2GPXv2wMfHB1euXMGgQYMQERGBZ555BsHBwUhOTsbXX38NAIiIiMC7776LBx98ECNGjMDIkSMBAO3atZPzR1MM3rPlS0tLQ3h4uEvO5S087Z5lHbmO3HVbVFSEwsJCGI1G7Nq1CytXrkT37t3h6+vr1p/b28ldr48//jj69euHW265BZ9//rlbf1bFkbvJiCqWl5cnAZBuv/32Su1/+PBhCYB03333OZU/+eSTEgDphx9+cJQ1bNhQAiD9+OOPjrIrV65IOp1OeuKJJxxlFXVruXqOLVu2OJU//vjjEgBp9+7djrKCggKpUaNGUnx8vGS32yVJqlpXtKvqejena/27iXz37t0SAOmTTz5x2m/Lli1O5WvXrpUASL/++mu5567Jv3NdriPes+X78ccfJUEQpNmzZ1f5WG/hqffsVayj6vPEuk1MTJQAOF433XSTlJKSUqVz1HWeVq8bN26UNBqN9Ndff0mSJEkTJ05kV7RrsCuah8vPzwcABAQEVGr/zZs3AwCmT5/uVP7EE08AQKluJQkJCejVq5fjfUREBFq0aIGzZ89WOsZGjRph8ODBpeLo0qULevbs6Sjz9/fH/fffj+TkZBw9erTS56fK++KLLxAUFISBAwciMzPT8bra5WTHjh0AgODgYADAxo0bYbVaZYzY+/CeLduVK1cwbtw4NGrUCE899VSNzuVNPOmeZR25lifU7dixY7Ft2zasXr0a48aNAwC3zshYF8hZrxaLBdOmTcMDDzyAhIQEl5zT2zCx8XCBgYEAgIKCgkrtf/78eahUKjRt2tSpPDo6GsHBwTh//rxTeYMGDUqdIyQkpFQ/0Yo0atSozDhatGhRqvxqd5h/x0GucerUKeTl5SEyMhIRERFOL6PRiCtXrgAA+vTpg1GjRmHevHkIDw/H7bffjpUrV5Ya00FVx3u2tMLCQgwdOhQFBQVYv349pya9hqfcs6wj1/OEum3YsCEGDBiAsWPH4pNPPkHjxo0xYMAAJjc1IGe9vv7668jMzHTMpEalcYyNhwsMDES9evXw559/Vuk4QRAqtZ9arS6zXKrCPPfsq+s5RFFEZGQkPvnkkzK3Xx2oKAgCvvzyS+zbtw/ffPMNtm7dinvuuQevvfYa9u3bxy81NcB71pnFYsHIkSPxxx9/YOvWrWjTpk2tXVsJPOGeZR25hyfU7b+NHj0ay5Ytw48//liq1ZYqR656zcvLw/z58/HQQw8hPz/f0TvAaDRCkiQkJyfDYDAgMjKyZj+gwjGxUYChQ4di6dKl2Lt3L7p3717hvg0bNoQoijh16pTTYOH09HTk5uaiYcOGVb5+Zb9w/TuOEydOlCo/fvy4Yzu5XpMmTfD999+jR48elfry2q1bN3Tr1g0vvvgiVq9ejTvvvBOfffYZ7rvvvmrVO5XgPVtCFEVMmDAB27dvx+eff44+ffpU+RzeTu57lnXkPnLXbVmuttTk5eW55Hx1kVz1mpOTA6PRiJdffhkvv/xyqe2NGjXC7bffjnXr1lXlx/E67IqmAFcXYLrvvvuQnp5eavuZM2fwxhtvAABuueUWAEBSUpLTPosWLQIA3HrrrVW+/tXFn3Jzcyt9zC233IL9+/dj7969jrLCwkIsXboU8fHx7BvqJv/73/9gt9vxwgsvlNpms9kcdZiTk1PqCX+HDh0AwNFMbjAYAFSt3qkE79kSjzzyCNasWYN33nnHMeMPOZP7nmUduY+cdZuRkVFm+fLlyyEIAm644YZKnYdKk6teIyMjsXbt2lKvfv36Qa/XY+3atZgxY0b1fzAvwRYbBWjSpAlWr16NMWPGoFWrVk6rmP/888/44osvcPfddwMA2rdvj4kTJ2Lp0qXIzc1Fnz59sH//fnzwwQcYPnw4+vXrV+Xrd+jQAWq1GgsXLkReXh50Oh369+9fYXPnM888g08//RQ333wzHn30UYSGhuKDDz7AuXPn8NVXX0GlqnpO/dFHH+H8+fMwmUwAgB9//BHz588HAIwfP56tQCjp0ztlyhQkJibi8OHDGDRoEHx8fHDq1Cl88cUXeOONNzB69Gh88MEHeOeddzBixAg0adIEBQUFWLZsGQIDAx1ftH19fZGQkIA1a9agefPmCA0NRZs2bSrspsI6KsF7tiRRe+edd9C9e3cYDAZ8/PHHTttHjBjBFbMh7z3LOnIvOev2xRdfxJ49ezBkyBA0aNAA2dnZ+Oqrr/Drr7/ikUceKTWmjypPrno1GAwYPnx4qfJ169Zh//79ZW6rk2SckY2q6OTJk9LkyZOl+Ph4SavVSgEBAVKPHj2kt956SyouLnbsZ7VapXnz5kmNGjWSfHx8pLi4OGnGjBlO+0hSybSvt956a6nr9OnTR+rTp49T2bJly6TGjRtLarXaaRrZ8s4hSZJ05swZafTo0VJwcLCk1+ulLl26SBs3bnTapypTx/bp08dp2sprX5VZYd0blbci8tKlS6VOnTpJvr6+UkBAgNS2bVvpqaeeki5fvixJkiQdOnRIGjt2rNSgQQNJp9NJkZGR0tChQ6UDBw44nefnn3+WOnXqJGm12kpNSck6claX79mJEyeW+38BgHTu3LkKj/dWnnTPso5cy5Pq9rvvvpOGDh0q1atXT/Lx8XF89qxcuVISRdGlP7e386R6LQune3YmSFIVRpwSERERERF5II6xISIiIiIixWNiQ0REREREisfEhoiIiIiIFI+JDRERERERKR4TGyIiIiIiUjwmNl7k5ZdfRsuWLSGKotyh1Ngdd9yB//3vf3KH4TFYt96J9eq9WLfeifXqvVi3XkLu+abJNfLy8qTQ0FBpxYoVjjL8vRbBq6++Wmr/lStXSgCkX3/91eWxDBgwQAIgPfzww2Vuf//996WWLVtKOp1Oatq0qfTmm2+W2ufQoUOSSqWSDh8+7PL4lIZ1651Yr96LdeudWK/ei3XrPdhi4yVWrFgBm82GsWPHltr2yiuvOFaCd7evv/4ae/fuLXf7e++9h/vuuw+tW7fGW2+9he7du+PRRx/FwoULnfbr2LEjOnfujNdee83dIXs81q13Yr16L9atd2K9ei/WrReRO7Mi12jXrp101113OZUBkDp06CABkF577TWnbe542lBUVCTFx8dLzz//fJlPG0wmkxQWFlZq1fM777xT8vPzk7Kzs53KX331VcnPz08qKChwWYxKxLr1TqxX78W69U6sV+/FuvUebLHxAufOncMff/yBAQMGlNrWo0cP9O/fHy+//DKKiorcGsfLL78MURTx5JNPlrl9x44dyMrKwkMPPeRU/vDDD6OwsBCbNm1yKh84cCAKCwuxbds2t8Xs6Vi33on16r1Yt96J9eq9WLfehYmNF/j5558BADfccEOZ25977jmkp6fj3XffrfA8ZrMZmZmZlXr9W0pKCl566SUsXLgQvr6+ZZ7/t99+AwB07tzZqbxTp05QqVSO7VclJCTA19cXe/bsqTBub8a69U6sV+/FuvVOrFfvxbr1Lhq5A6CaO378OACgUaNGZW7v1asX+vXrh1deeQUPPvhguTfNp59+ikmTJlXqmpIkOb1/4okn0LFjR9xxxx3lHpOamgq1Wo3IyEincq1Wi7CwMFy+fNmpXKPRIC4uDkePHq1UTN6IdeudWK/ei3XrnViv3ot1612Y2HiBrKwsaDQa+Pv7l7vPc889hz59+mDJkiWYNm1amfsMHjy4Wk2WO3bswFdffYVffvmlwv2Kioqg1WrL3KbX68ts5g0JCSnz6UZdwbr1TqxX78W69U6sV+/FuvUuTGzqiN69e6Nfv354+eWX8cADD5S5T0xMDGJiYqp0XpvNhkcffRTjx4/Hf/7znwr39fX1hcViKXNbcXFxmU9BJEmCIAhViqmuYd16J9ar92LdeifWq/di3SoHExsvEBYWBpvNhoKCAgQEBJS739y5c9G3b1+89957CA4OLrW9qKgIeXl5lbpmdHQ0AODDDz/EiRMn8N577yE5Odlpn4KCAiQnJyMyMhIGgwExMTGw2+24cuWKU1OqxWJBVlYW6tWrV+o6OTk5aNasWaVi8kasW+/EevVerFvvxHr1Xqxb78LJA7xAy5YtAZTM7FGRPn36oG/fvli4cGGZTZZr1qxxPHG43uuqlJQUWK1W9OjRA40aNXK8gJIbtlGjRvjuu+8AAB06dAAAHDhwwOm6Bw4cgCiKju1X2Ww2XLhwAa1atarSv4c3Yd16J9ar92LdeifWq/di3XoXtth4ge7duwMo+c/drl27Cvd97rnn0LdvXyxdurTUtur0D73jjjtK3UwAMGLECNxyyy2YPHkyunbtCgDo378/QkND8e677+KWW25x7Pvuu+/CYDDg1ltvdTrH0aNHUVxcjBtvvLFKMXkT1q13Yr16L9atd2K9ei/WrZeRZ/kccrU2bdpIY8eOdSpDGQs8SZIk9enTRwLg8sWlKnPtxYsXSwCk0aNHS8uWLZMmTJggAZBefPHFUvu++uqrksFgkPLz890So1Kwbr0T69V7sW69E+vVe7FuvQcTGy+xaNEiyd/fXzKZTI6y8m6MHTt2yHZTSpIkLV26VGrRooWk1WqlJk2aSK+//rokimKp/bp27VpqJeC6iHXrnViv3ot1651Yr96Ldes9mNh4idzcXCk0NFR6//335Q7FJX777TdJEATpt99+kzsU2bFuvRPr1Xuxbr0T69V7sW69hyBJ/1oliBRr4cKFWLlyJY4ePQqVStnzQtxxxx0QRRGff/653KF4BNatd2K9ei/WrXdivXov1q13YGJDRERERESKp+yUlIiIiIiICExsiIiIiIjICzCxISIiIiIixWNiQ0REREREisfEhoiIiIiIFI+JDRERERERKR4TGyIiIiIiUjwmNkREREREpHhMbIiIiIiISPGY2BARERERkeIxsSEiIiIiIsVjYkNERERERIrHxIaIiIiIiBSPiY0HSE1NxXPPPYfU1FS5QyEiIiIiUiQmNh4gNTUV8+bNY2JDRERERFRNTGyIiIiIiEjxmNgQEREREZHiMbEhIiIiIiLFY2JDRERERESKx8SGiIiIiIgUj4kNEREREREpHhMbIiIiIiJSPCY2ROQgiiLsdrvcYRARERFVGRMbInKQJImJDRERESkSExsiciKKotwhEBEREVUZExsicsIWGyIiIlIij0xsUlNT8fvvv6OwsFDuUIjqHJvNJncIRERERFXmUYnN+vXr0bJlS9SvXx833HADfvnlFwBAZmYmOnbsiHXr1skbIFEdwMSGiIiIlMhjEptvvvkGI0eORHh4OObOnQtJkhzbwsPDERsbi5UrV8oYIVHdYLFY5A6BiIiIqMo8JrF5/vnn0bt3b/z00094+OGHS23v3r07fvvtNxkiI6pbmNgQERGREnlMYvPnn3/if//7X7nbo6KicOXKlVqMiKhuMpvNcodAREREVGUek9gYDIYKJws4e/YswsLCajEiorqpuLhY7hCIiIiIqsxjEpt+/frhgw8+KHPgclpaGpYtW4ZBgwbJEBlR3cLZCImIiEiJPCaxefHFF3Hx4kX85z//wXvvvQdBELB161bMmjULbdu2hSRJmDt3bq3EsnjxYsTHx0Ov16Nr167Yv39/hfsnJSWhRYsW8PX1RVxcHKZNm8an3qRY+fn5codAREREVGUek9i0aNECP/30E8LCwjB79mxIkoRXXnkFCxYsQNu2bbF7927Ex8e7PY41a9Zg+vTpmDt3Lg4dOoT27dtj8ODB5Y7vWb16NZ555hnMnTsXx44dw/Lly7FmzRo8++yzbo+VyB2ys7PlDoGIiIioyjRyB3Ct1q1b4/vvv0dOTg5Onz4NURTRuHFjRERE1FoMixYtwuTJkzFp0iQAwJIlS7Bp0yasWLECzzzzTKn9f/75Z/To0QPjxo0DAMTHx2Ps2LGONXiIlKagoACFhYXw8/OTOxQiIiKiSvOYFptrhYSE4D//+Q+6du1aq0mNxWLBwYMHMWDAAEeZSqXCgAEDsHfv3jKPufHGG3Hw4EFHd7WzZ89i8+bNuOWWW8q9jtlsRn5+vuNlNBpd+4MQ1dClS5fkDoGIiIioSjwmsXnzzTcxePDgcrfffPPNePfdd90aQ2ZmJux2O6KiopzKo6KikJaWVuYx48aNw/PPP4+ePXvCx8cHTZo0Qd++fSvsipaYmIigoCDHq0+fPi79OYhq6vz583KHQERERFQlHpPYLF++HAkJCeVuT0hIwNKlS2sxosrZuXMnFixYgHfeeQeHDh3C119/jU2bNuGFF14o95gZM2YgLy/P8dq1a1ctRkx0fRcuXIDVapU7DCIiIqJK85jE5syZM2jVqlW521u2bIkzZ864NYbw8HCo1Wqkp6c7laenpyM6OrrMY2bPno3x48fjvvvuQ9u2bTFixAgsWLAAiYmJEEWxzGN0Oh0CAwMdL39/f5f/LEQ1YbPZ3H6/EREREbmSxyQ2Wq223O5eAJCamgqVyr3harVadOrUCdu3b3eUiaKI7du3o3v37mUeYzKZSsWlVqsBAJIkuS9YIjc7evQo/w8TERGRYnhMYtOtWzesWrUKBQUFpbbl5eVh5cqV6Natm9vjmD59OpYtW4YPPvgAx44dw4MPPojCwkLHLGkTJkzAjBkzHPsPGzYM7777Lj777DOcO3cO27Ztw+zZszFs2DBHgkOkRJmZmUhNTZU7DCIiIqJK8ZjpnufOnYs+ffqgQ4cOePzxx9G6dWsAwJ9//omkpCSkpqZi9erVbo9jzJgxyMjIwJw5c5CWloYOHTpgy5YtjgkFUlJSnFpoZs2aBUEQMGvWLFy6dAkREREYNmwYXnzxRbfHSuRuv/76K2677TYIgiB3KEREREQVEiQP6muybds2TJkyBcnJyY4vUpIkoVGjRnj33XcxaNAgmSN0j0OHDqFTp044ePAgbrjhBrnDoTrMbrdj+fLlTmX9+vVDs2bNZIqIiIiIqHI8psUGAAYOHIjTp0/jt99+cwxcbtKkCW644QY+MSaSyZ49exAdHY2AgAC5QyEiIiIql0clNkDJgpidOnVCp06d5A6FiFCycO2WLVtw2223QafTyR0OERERUZk8LrE5evQozp49i5ycnDJnZJowYYIMURHVbTk5Odi8eTNuueUWJjdERETkkTwmsTlz5gzuuusu7N+/v9wpZgVBYGJDJJOMjAxs2LABQ4YMYbc0IiIi8jgek9hMmTIFR44cQVJSEnr16oWQkBC5QyKqUzp37oy0tDSo1WrMnDmzzH1ycnKwbt06DBo0yDFTIBEREZEn8JjEZs+ePXj22WfxyCOPyB0KUZ2UlpaGS5cuITg4uML9ioqKsHHjRvTs2RMtWrSoneCIiIiIrsNjFugMDw9HUFCQ3GEQUSXY7Xbs2rULe/bsgSiKcodDRERE5DmJzQMPPICPP/4Ydrtd7lCIqJL++usvbNq0CcXFxXKHQkRERHWcx3RFa968Oex2O9q3b4977rkHcXFxUKvVpfYbOXKkDNERUXlSU1Oxbt06DBky5Lrd2IiIiIjcxWMSmzFjxjj+/uSTT5a5jyAIbNEh8kD5+flYv349Bg8ejOjoaLnDISIiojrIYxKbHTt2yB0CEdWA2WzG5s2bMXDgQMTFxckdDhEREdUxHpPY9OnTR+4QiKiGbDYbvvvuOwwYMAANGzaUOxwiIiKqQzxm8oCrzGYz9u7di/Xr1yMzM1PucIioiux2O77//ntcuHBB7lCIiIioDvGoxObNN99ETEwMevbsiZEjR+KPP/4AAGRmZiI8PBwrVqyQOUIiqgy73Y5t27YhLS1N7lCIiIiojvCYxGblypV4/PHHMWTIECxfvhySJDm2hYeHo3///vjss89kjJCIqsJms2Hr1q3Izc2VOxQiIiKqAzwmsXnttddw++23Y/Xq1Rg2bFip7Z06dcJff/0lQ2REVF1msxnffvstioqK5A6FiIiIvJzHJDanT5/GzTffXO720NBQZGVl1WJEROQKBQUF+O677zhVOxEREbmVxyQ2wcHBFU4WcPToUa6PQaRQ6enp+PHHH526mBIRERG5ksckNrfccguWLl1aZn/8v/76C8uWLcNtt91W+4ERkUucOnUKhw4dkjsMIiIi8lIek9jMnz8fdrsdbdq0waxZsyAIAj744APcdddd6Ny5MyIjIzFnzpxaiWXx4sWIj4+HXq9H165dsX///gr3z83NxcMPP4yYmBjodDo0b94cmzdvrpVYiZTk4MGDOHr0qNxhEBERkRfymMSmXr16OHjwIIYMGYI1a9ZAkiR89NFH+OabbzB27Fjs27cP4eHhbo9jzZo1mD59OubOnYtDhw6hffv2GDx4MK5cuVLm/haLBQMHDkRycjK+/PJLnDhxAsuWLUNsbKzbYyVylZSUFBQWFgIoGfCfnZ3ttmvt2bMHJ0+edNv5iYiIqG4SJA/o9G42m7F161bEx8ejXbt2AICMjAyIooiIiAioVLWXf3Xt2hX/+c9/8PbbbwMARFFEXFwcHnnkETzzzDOl9l+yZAleeeUVHD9+HD4+PtW65qFDh9CpUyccPHgQN9xwQ43iJ6qK/fv344UXXsCmTZucxr8IgoC2bdvi1ltvRXx8vMuvKwgC+vbti2bNmrn83ERERFQ3eUSLjVarxX//+1/8/PPPjrKIiAhERUXValJjsVhw8OBBDBgwwFGmUqkwYMAA7N27t8xjNmzYgO7du+Phhx9GVFQU2rRpgwULFnAGKPJ4X3/9NXr06IFvv/221KB+SZLw559/YuHChW4ZFyNJEnbu3Ink5GSXnzs7Oxt33nknAgMDERwcjHvvvRdGo7HCY/r27QtBEJxeDzzwgGP7qlWrSm2/+iqvNZeIiIhql0ckNoIgoFmzZhXOilYbMjMzYbfbERUV5VQeFRVV7grqZ8+exZdffgm73Y7Nmzdj9uzZeO211zB//vxyr2M2m5Gfn+94Xe9LF5Gr7d+/H2PGjIHdbi83CRdFEaIoYtmyZW5JQCRJwvbt26s1jXvfvn2xatWqMrfdeeed+Ouvv7Bt2zZs3LgRP/74I+6///7rnnPy5MlITU11vF5++WXHtjFjxjhtS01NxeDBg9GnTx9ERkZWOX4iIiJyPY9IbADg2Wefxdtvv40TJ07IHUqViKKIyMhILF26FJ06dcKYMWMwc+ZMLFmypNxjEhMTERQU5Hj16dOnFiMmKpmsQ5KkSk+/7K7JMOx2O3bt2uWyaaCPHTuGLVu24P3330fXrl3Rs2dPvPXWW/jss89w+fLlCo81GAyIjo52vAIDAx3bfH19nbap1Wr88MMPuPfee10SNxEREdWcRu4Artq3bx/CwsLQpk0b9O3bF/Hx8fD19XXaRxAEvPHGG26LITw8HGq1Gunp6U7l6enp5a6hExMTAx8fH6jVakdZq1atkJaWBovFAq1WW+qYGTNmYPr06Y73hw8fZnJDtSYlJQUbN26sdDIhiiL++OMPZGdnIzQ01OXxZGZmIjU1FfXq1avxufbu3Yvg4GB07tzZUTZgwACoVCr88ssvGDFiRLnHfvLJJ/j4448RHR2NYcOGYfbs2TAYDGXu++GHH8JgMGD06NE1jpmIiIhcw2MSm6uD9QFg+/btZe7j7sRGq9WiU6dO2L59O4YPHw6g5Evd9u3bMXXq1DKP6dGjB1avXg1RFB3jgU6ePImYmJgykxoA0Ol00Ol0jvf+/v6u/UHIK1gsFthsNpefd/PmzVVuIZEkCceOHUP37t1dHg8AXLhwwSWJTVpaWqmuYRqNBqGhoeV2JwWAcePGoWHDhqhXrx7++OMPPP300zhx4gS+/vrrMvdfvnw5xo0bV+rhCxEREcnHYxIbURTlDgEAMH36dEycOBGdO3dGly5dkJSUhMLCQkyaNAkAMGHCBMTGxiIxMREA8OCDD+Ltt9/GY489hkceeQSnTp3CggUL8Oijj8r5Y5DCWSwW7N+/3y3jr37//XcIglCl5EYQBOTl5bltPNjp06fRsWPHch8GLFiwAAsWLHC8Lyoqwr59+5weONRkfZxrx+C0bdsWMTExuOmmm3DmzBk0adLEad+9e/fi2LFj+Oijj6p9PSIiInI9j0lsPMWYMWOQkZGBOXPmIC0tDR06dMCWLVscEwqkpKQ4zdQWFxeHrVu3Ytq0aWjXrh1iY2Px2GOP4emnn5brRyAvYLPZYDQaodVqnVr3XCEkJKRaLTZ6vd4tsxRKkgS73Q6bzVZuYvPAAw/gf//7n+P9nXfeiVGjRmHkyJGOsnr16iE6OrrULGU2mw3Z2dnldictS9euXQGUJFz/Tmzef/99dOjQAZ06dar0+YiIiMj9PC6x2bdvH3bs2IErV67goYceQrNmzWAymXD8+HE0b968VrptTZ06tdyuZzt37ixV1r17d+zbt8/NUVFdpNPpoNfrXXrOHj16VKvFpkWLFm5JbERRLHcsy1WhoaFO43t8fX0RGRmJpk2bOu3XvXt35Obm4uDBg47E44cffoAoio5kpTIOHz4MoGQM3bWMRiM+//xzR4stEREReQ6PmRXNYrFg5MiR6NGjB2bOnIk333wTFy5cAFCylsygQYPcOr6GqK5Qq9Vo3LgxBEGo1P4qlQoJCQkICQlxSzw6nQ5+fn4uOVerVq0wZMgQTJ48Gfv378eePXswdepU3HHHHY4xPJcuXULLli2xf/9+AMCZM2fwwgsv4ODBg0hOTsaGDRswYcIE9O7d27Fg8FVr1qyBzWbDXXfd5ZJ4iYiIyHU8JrGZPXs2Nm7ciHfffRcnTpxwepqs1+vx3//+F+vXr5cxQiJlkyQJR44cwcaNG9GhQ4cqHTto0CD3BAWgYcOGlU6yKuOTTz5By5YtcdNNN+GWW25Bz549sXTpUsd2q9WKEydOwGQyASiZNOT777/HoEGD0LJlSzzxxBMYNWoUvvnmm1LnXr58OUaOHIng4GCXxUtERESu4TFd0T799FM8+OCDuP/++8tcsK9Vq1b44osvZIiMSPmKi4vx448/OlpBIyMjMXr0aMesX2Ut0nm129nEiRPRoEEDt8RVv359hISEoKCgoErHldUl9KrQ0FCsXr263O3x8fFOD07i4uKwa9euSl33559/rnSMREREVLs8JrG5cuUK2rZtW+52tVrteMJKRJWXmpqKnTt3Ot0/7dq1Q6dOnTB06FAsX74cu3fvdvqyLwgCWrVqhUGDBrktqYmJiUF8fDzMZrNbzk9ERER1i8ckNnFxcTh+/Hi52/fs2VNqoDARlU8URfz+++/47bffHEmLXq9Hnz59UL9+fQBA69atsWjRIqSlpWHs2LEoKCiAr68v/u///s9tY2oAIDY2Fo0aNXJpFzQiIiKq2zxmjM24cePw3nvvYe/evY6yq196li1bhs8//xwTJkyQKzwiRTGZTNiyZQsOHTrkSGpiYmIwfPhwR1JzrejoaMdik1qt1q1JTcOGDZnUEBERkct5TIvNzJkzsW/fPvTu3RutWrWCIAiYNm0asrOzcfHiRdxyyy2YNm2a3GESebyLFy9i165dKC4uBlDygKBjx45o3769W6ZrroqmTZuWmkKZiIiIyBU8JrHRarXYsmULPvnkE3z55Zew2+0wm81o164d5s+fj/Hjx/MJL1EFRFHEgQMHcOTIEUeZwWBA3759ZU8mBEFAy5YtER4eLmscRERE5L1kS2ymT5+O8ePHo2PHjgCAlJQURERE4K677uIaEURVVFBQgB07diAjI8NRFhcXh969e7t8gc+qUqvVSEhI4BTJRERE5Fay9UtJSkrCsWPHHO8bNWqEtWvXyhUOkWIlJydj3bp1jqRGpVKha9euGDhwoOxJjVarRbt27ZjUEBERkdvJ1mITFRWFs2fPOt5fO9UsEV2fzWbD/v37nR4QBAQEoF+/foiIiJAxshIGgwFt2rSBTqeTOxQiIiKqA2RLbG699VY8//zz+O677xxPc1977TV89tln5R4jCALWr19fSxESea7c3Fzs2LED2dnZjrJGjRqhZ8+e0Gq1MkZWIjAwEAkJCfDx8ZE7FCIiIqojZEts3njjDURGRmLHjh3466+/IAgCLly44PRF7d84eQARcOrUKfz888+w2WwASsawdOvWDS1atPCIeyQoKAitW7eGWq2WOxQiIiKqQ2RLbPz8/LBgwQLHe5VKhaSkJIwbN06ukIg8mtVqxc8//4zTp087yoKDg9GvXz+EhobKGNk//Pz8kJCQwKSGiKiGTCYTDAaD3GEQKYpskweMHDkSu3fvdrzfsWMHBg4cKFc4RB4tKysL69evd0pqmjdvjttuu81jkhqNRoOEhARoNB4zizwRkWLZ7Xa5QyBSHNkSm/Xr1yMlJcXxvn///ti2bZtc4RB5JEmScPToUXzzzTfIy8sDAPj4+KBv377o1auXR41hadmypeyzsBEReQtRFOUOgUhxZEtsYmNj8dtvvzneS5LkEeMDiDyF1WrF7t27sXfvXseTu7CwMNx+++1o0qSJzNE5a9SoEUJCQuQOg4jIazCx8U6cBdi9ZOszcscdd+DVV1/F559/7pgV7ZlnnkFiYmK5xwiCgN9//72WIiSSz/nz57Fr1y6YTCZHWUJCArp06eJx41fq16+P+vXryx0GEZFXYWLjnYqKijh2yo2qlNg0atSoyq0qgiDgzJkzpcoTExPRtGlT7NixA1euXIEgCPDz80NYWFiVzk/kTURRxPbt27F+/XrHLzWtVovevXujYcOGMkdXWv369REfHy93GEREXodP9r0T69W9qpTY9OnTp1Ric+DAAfz1119ISEhAixYtAAAnTpzA0aNH0aZNG3Tq1KnMc6nVatx///24//77AZTMijZr1izOikZ1VkFBAT788EP89ddfjrKIiAj0798f/v7+MkZWtgYNGqBBgwbsQkpE5AacPMA7iaLI4RduVKXEZtWqVU7v161bh3Xr1mHbtm246aabnLZt27YN//vf//DCCy9U6tznzp3ziNXSAWDx4sV45ZVXkJaWhvbt2+Ott95Cly5drnvcZ599hrFjx+L222/HunXr3B8oeY0TJ05g1apVjgkCBEFA06ZN0blzZ49sso6Li/PIFiQiIm/BrmjeSZIk2O12ziDqJjWaPGDOnDl45JFHSiU1ADBw4EBMnToVs2bNqtS5GjZs6BFf4NasWYPp06dj7ty5OHToENq3b4/BgwfjypUrFR6XnJyMJ598Er169aqlSMkbiKKIjRs34s0333QkNYGBgZg8eTJatWoFlUq2+T3KFRUVxaSGiMjNri7CTN7HYrHIHYLXqtG3plOnTlU4JiYsLKzM8TVASdczjUbjqFyVSgW1Wl3hqzay20WLFmHy5MmYNGkSEhISsGTJEhgMBqxYsaLcY+x2O+68807MmzcPjRs3dnuM5B1yc3ORlJSEzZs3O/rctmzZEjNmzEDz5s1ljq5sfn5+aNq0KZvQiYjczGq1yh0Cucm1EwORa9UoU2jSpAlWrlyJe++9t9QYgIKCAqxYsaLcL/pz5syBIAiOZOXqezlZLBYcPHgQM2bMcJSpVCoMGDAAe/fuLfe4559/HpGRkbj33nudFh0tj9lshtlsdrw3Go01C5wU58iRI/jwww9RWFgIoOT/2dChQzFo0CCoVCqP/dBr1qyZR7YiERF5m+LiYrlDIDfx1N/x3qBGic38+fMxevRotGzZEnfffTeaNm0KoKQl54MPPkB6ejq++OKLMo997rnnKnwvh8zMTNjtdkRFRTmVR0VF4fjx42Ue89NPP2H58uU4fPhwpa+TmJiIefPm1SRUUiibzYb169dj+/btjrKQkBDcc889Hrc2zb9FRkYiICBA7jCIiOqEqw++yPuwbt2nRonN8OHDsXnzZjz99NNYsGCB07YOHTpg+fLlGDx4cI0C9GQFBQUYP348li1bhvDw8EofN2PGDEyfPt3x/vDhw+jTp487QiQPkpmZieXLl+P8+fOOsnbt2mH8+PHw8/OTMbLKadCggdwhEBHVGSaTCVarFT4+PnKHQi7GFhv3qfGglUGDBmHQoEFIS0tzfGFr2LAhoqOjK30Os9mMjz/+GN999x3OnDmDgoICBAQEoGnTphgyZAjGjRsHrVZb01CvKzw8HGq1Gunp6U7l6enpZf48Z86cQXJyMoYNG+YouzqLiUajwYkTJ8p8Cq/T6aDT6RzvPXEqX3KtgwcP4pNPPnF0LdBoNBgxYgT69u0rexfMyoiMjISvr6/cYRAR1Sk5OTmIjIyUOwxyMSY27uOy0fjR0dFVSmauOnLkCG6//XacP38ekiQhKCgI/v7+uHLlCg4dOoQvvvgCL774IjZs2IBWrVq5KtwyabVadOrUCdu3b8fw4cMB/LNg4tSpU0vt37JlSxw5csSpbNasWSgoKMAbb7yBuLg4t8ZLns9iseDLL7/ETz/95CiLiIjAvffeq6gWkPr168sdAhFRncPExjsxsXGfGo8CTklJwQMPPIAWLVogNDQUP/74I4CSbjePPvoofvvtt3KPNRqNuO2225Ceno4XX3wRFy5cQE5OjtOf8+fPx+XLlzFs2LBa6ZM4ffp0LFu2DB988AGOHTuGBx98EIWFhZg0aRIAYMKECY7JBfR6Pdq0aeP0Cg4ORkBAANq0aVMrrUzkuVJTU/Hyyy87JTX/+c9/MGPGDEUlNeHh4YroKkdE5G1yc3PlDoHcoKioSO4QvFaNWmyOHj2KXr16QRRFdO3aFadPn3bMux4eHo6ffvoJhYWFWL58eZnHr1y5EikpKdi+fTv69u1bantsbCxmzJiBrl27YuDAgVi1ahUefvjhmoR8XWPGjEFGRgbmzJmDtLQ0dOjQAVu2bHFMKJCSksJZoahCkiRh3759WLNmjWM6cx8fH4wZMwbdu3dXRNezaykpCSMi8iZMbLwTJw9wnxolNk899RSCg4Oxb98+CIJQqrn01ltvxZo1a8o9ftOmTRg0aFCZSc21+vfvj4EDB+Kbb75xe2IDAFOnTi2z6xkA7Ny5s8JjV61a5fqASDGKi4vx6aef4tdff3WU1atXD/feey9iYmJkjKx62FpDRCSfqws3k3cpLCyExWJhzx43qFHTw48//ogHH3wQERERZT6FbtCgAS5dulTu8UeOHLluUnNV//79S41nIfIkFy5cwEsvveSU1PTs2RNPPfWUIpMagK01RERyysvL40KdXio1NVXuELxSjVpsRFGEwWAod3tGRobT7F//lp2dXekJB6KiopCdnV3lGIncTZIk7Ny5E2vXrnV0xdTr9Rg3bhw6d+4sc3TVFxoaytYaIiIZSZKE9PR0TuDihU6ePImGDRvKHYbXqVGLzQ033IBNmzaVuc1ms+Gzzz5Dt27dyj3ebDZXen52jUbjGK9A5CkKCwuxdOlSfPHFF46kpkGDBnj22WcVndQAJWPciIhIXsnJyXKHQG5w7tw5ZGZmyh2G16lRi82MGTMwdOhQPPjgg7jjjjsAlKz58v3332PBggU4duwY3n777QrPkZycjEOHDl33WufOnatJqEQud+bMGaxcudKpJbF///4YPnw4NBqXzaQuC71ej6CgILnDICKq886cOYNu3bop/vcKlbZ7924MHz5ccZMKebIa3SU333wzVq1ahcceewxLly4FANx1112QJAmBgYH48MMP0bt37wrPMXv2bMyePfu615IkiRVPHkEURWzbtg3ffPONY0FWPz8/TJgwAW3btpU5OtcIDw/n/UZE5AHMZjNOnDiB1q1byx0KuVhGRgb+/PNPr/nu4AlqnP6PHz8eI0eOxLZt23Dq1CmIoogmTZpg8ODBCAgIqPDYlStX1vTyRLUqPz8fq1atwvHjxx1lTZs2xaRJkxASEiJjZDUXFhYGoGShWqX/LERE3uTw4cNo0aIFW2280IEDB9C4cWOOaXWRat8hJpMJcXFxeOaZZ/B///d/GD58eJXPMXHixOpenqjWHT9+HKtWrUJ+fj4AQBAEDBkyBLfccgvUarXM0dXcRx99BFEUsWfPnus+lCAiotpTWFiI33//HZ06dZI7FHIxq9WKffv24aabbpI7FK9Q7cTGYDBAo9EwwySvZ7fbsWnTJmzduhWSJAEAAgMDMWnSJLRo0ULm6FzPYDB4RaJGRKRUnTt3xvnz52EwGDBz5kwAJa02TZo0QXBwsLzBUbV17twZqamp0Gg0jnoFSsZRNW/eHHFxcTJG5x1qNCvaqFGj8OWXXzq+7BF5m+zsbCQlJWHLli2O/+cJCQmYOXOmVyY1AODr6yt3CERUSXa73THWj7xHWloaMjMzHT0EgJK63rVrF79zKVhaWhouX77sVK9X/fjjjyguLpYhKu9So86ad9xxBx566CH069cPkydPRnx8fJlfim644YaaXIZIFn/88Qc++ugjFBYWAgBUKhVuu+02DBgwACpVjZ4JeDS9Xi93CERUSVarFXa7nb0n6oj09HQcOnSIXdK8UGFhIXbs2IEhQ4Zw8p4aqFFi07dvX8ffd+/eXWr71ZnM7HZ7TS5DVKusVivWrVuHHTt2OMpCQ0Nx7733olGjRjJGVjsqWlSXiDzP1TW0qG44dOgQYmJiUK9ePblDIRe7cOEC9u7di+7duzO5qaYaJTac1Yy8zZUrV7B8+XJcuHDBUdahQwfcddddMBgMMkZWezjrDpGymM1muUOgWiRJErZv344RI0bA399f7nDIxf7880/o9Xr2dqqmGn2D4axm5E1+/fVXfPrpp44+rhqNBqNGjULv3r3r1JMTJjZEylJUVCR3CFTLioqK8N1332HYsGHw8fGROxxysQMHDkCn03HtomrwuG8wR48exdmzZ5GTk1PmALkJEybIEBV5M4vFgs8//xw///yzoywyMhL33ntvnZyhxJvHDxF5o4KCArlDIBlkZmbihx9+wMCBA/m57YX27NkDHx8fNG/eXO5QFKVKic0999wDQRCwdOlSqNVq3HPPPdc9RhAELF++/Lr7nTlzBnfddRf2799f7owfgiAwsSGXunz5MpYvX47U1FRHWZcuXXDHHXfU2UH0dal1isgblDXDEtUN58+fx65du9C3b19+dnuhq7PgeessrO5QpcTmhx9+gEqlgiiKUKvV+OGHH657I1X2RpsyZQqOHDmCpKQk9OrViyufk1tJkoQ9e/bgiy++gNVqBQBotVrccccd6Natm8zRyYu/HImUJS8vT+4QSEanTp0CAPTp04ctN15GkiTs2rULJpMJHTp04O/nSqhSYpOcnFzh+5rYs2cPnn32WTzyyCMuOydRWYqKirB69WocPHjQURYbG4t7770X0dHRMkbmGfjBSaQsRqNR7hBIZqdOnYLZbMZNN93EMTde6Ndff0VWVhZ69+4NrVYrdzgezWPG2ISHhyMoKEjuMMjLnT9/HsuXL0dmZqajrFevXhg1ahQ/LP7GxIZIWa6utUV1W0pKCjZs2IDBgwdztjQvdPbsWWRmZqJPnz6IiYmROxyP5TFtlg888AA+/vhjrnlDbiFJEn744Qe8+uqrjqTG19cXkydPxtixY5nUXIOJDZGyWCwWR5daqtuysrKwdu1ap3Gj5D3y8/OxceNG/PTTT5zmvRw1Tmy+/fZbDBw4EGFhYdBoNFCr1aVeldG8eXPY7Xa0b98eixYtwhdffIGvv/661Ks2LF68GPHx8dDr9ejatSv2799f7r7Lli1zjAkKCQnBgAEDKtyfap/RaMSSJUvw5ZdfOhLn+Ph4zJgxAx07dpQ5Os/DPtpEypOdnS13COQhioqKsGnTJhw7dkzuUMgNJEnC0aNH8fnnn+PMmTPlTrhVV9WoK9pXX32F//3vf2jdujXuuOMOvPvuuxg3bhwkScL69evRrFkzDB8+vFLnGjNmjOPvTz75ZJn7CILg9hadNWvWYPr06ViyZAm6du2KpKQkDB48GCdOnEBkZGSp/Xfu3ImxY8fixhtvhF6vx8KFCzFo0CD89ddfiI2NdWusdH2nT5/GihUrkJub6ygbMGAAbr/99kon3XUNExsi5bl06RKioqLkDoM8hCiK2L17N/Lz89GlSxe2xHuhoqIibN++HadPn0bv3r3h6+srd0geoUaJTWJiIrp06YKffvoJOTk5ePfdd3HPPfegf//+SE5ORrdu3dCoUaNKnWvHjh01CcVlFi1ahMmTJ2PSpEkAgCVLlmDTpk1YsWIFnnnmmVL7f/LJJ07v33//fXz11VfYvn07p6aWkSiK2Lp1KzZu3Oh4muHv74+JEydywavrYGJDpDwnT55Ex44d+QWWnPz+++8oKipC7969+dnupc6fP48vv/wSvXv3RsOGDeUOR3Y1SmyOHj2KxMREqNVqx2rlV/v5xsfH46GHHsLChQsr9QW/T58+NQnFJSwWCw4ePIgZM2Y4ylQqFQYMGIC9e/dW6hwmkwlWqxWhoaHl7mM2m536RnJGG9fKy8vDqlWrcOLECUdZs2bNMGnSJAQHB8sXmELwlx+R8uTn5+P06dNo1qyZ3KGQhzl58iSsViv69+/PngpeqqioCFu3bkXr1q3RrVu3Ol3PNUpsDAaDY9B1cHAwdDqd04C1qKgonDt3rsrnPXr0KM6fPw8AaNiwIRISEmoSZqVlZmbCbreXas6PiorC8ePHK3WOp59+GvXq1cOAAQPK3ScxMRHz5s2rUaxUtqNHj+KDDz5wrMQtCAJuvfVWDBkyhF/YK4lPfImUaf/+/YiPj+d0v1TKuXPnsHXrVgwcOJD/P7zYX3/9hczMTAwZMgQ6nU7ucGRRo296LVq0wNGjRx3vO3TogI8++gg2mw3FxcVYvXo1GjRoUOnzrV+/Hk2aNEHbtm0xdOhQDB06FG3btkXTpk2xYcOGmoRaK1566SV89tlnWLt2bYWr1s+YMQN5eXmO165du2oxSu9kt9uxbt06vP32246kJigoCI899hhuueUWJjVVwMSGSJkKCwuxb98+ucMgD3Xx4kVs3rwZxcXFcodSJ6WkpDimZjebzW6b8CM9PR1btmyps7MM1+jb3siRI7FhwwZHt6qZM2di586dCA4ORkREBHbv3l3muJSybN68GaNGjQIALFiwAGvXrsXatWuxYMECSJKEkSNHYsuWLTUJ97rCw8OhVquRnp7uVJ6enn7dhRtfffVVvPTSS/juu+/Qrl27CvfV6XQIDAx0vDjffM1kZWVh0aJF+O677xxlrVu3xrPPPovmzZvLGJkyMbEhUq5jx45Vq6cE1Q3p6elYv3498vPz5Q6lzti/fz+GDRuG+Ph4x0RGRUVFePbZZ7F48WKXLnZ/VXp6On755ReXn/eq7Oxs3HnnnQgMDERwcDDuvffe6w6rWLp0Kfr27YvAwEAIguA0qdNV8fHxEATB6fXSSy9VKTZBqsY8ccXFxVi/fj3OnTuHsLAwDB061LFY0O7du/H1119DrVbj1ltvRb9+/Sp1zu7du8NsNmP37t3w8/Nz2lZYWIiePXtCr9dXeqxLdXXt2hVdunTBW2+9BaBkEHqDBg0wderUcpO0l19+GS+++CK2bt2Kbt26Vfmahw4dQqdOnXDw4EHccMMNNYq/rjl8+DA++ugjFBUVASgZHzJixAj069dP0a00JpMJP/74IwICAips/XM1URQdHya1pbi4GAUFBejduzcMBkOtXZdI6Tp37ozU1FRoNBrMnDnTUa7VajFixAgueq1g9evXx6VLlxAcHIyFCxe6/Py+vr4YNGgQZ9Jzs6+//hpjxoyBJElltqBc/Z4yefJkt3z/u/nmmxEXF1etY/v27Yu7774bd999d5nnTU1NxXvvvQer1YpJkybhP//5D1avXl3u+ZKSkhythTNmzEBOTk6pcc/x8fG49957MXnyZEdZQEBAqbygIlUeY3PlyhXceOONOHfuHCRJgiAI8PX1xbp16zBgwAD06tULvXr1qupp8ccff2DBggVlBu/n54e7774bzz77bJXPW1XTp0/HxIkT0blzZ3Tp0gVJSUkoLCx0zJI2YcIExMbGIjExEQCwcOFCzJkzB6tXr0Z8fDzS0tIAlMzAxZYY97Farfj666+duvGFhYXh3nvvRXx8vHyBERHVkrS0NFy+fLnUlwOLxYLvvvsOw4cP53gKKlNRURE2btyIm266ib8z3WT//v0YM2YM7HZ7uWvNiKIIoGRNxKefftrldbFz506MHj3apVNBHzt2DFu2bMGvv/6Kzp07AwDeeust3HLLLXj11VdRr169Mo97/PHHHTFVJCDg/9u77/imqv9/4K+btE33gi6kC5DSAjKKQFlll6WMIlBAWQKCgILKFxWkCIIICogigoiCIIjIUGTJFspWkY3aUgXKKh003Tm/P/pLPg0dNG3Sm6Sv5+NxHzQn996808NJ8773DJfH9pIqjcGXtGfPno2EhARMnjwZP/30ExYtWgQHBweMHTu23EEAgL29fan9DZOTkyvlyvXAgQOxcOFCvPPOO2jcuDF+//137Nq1S3dVIzExUW+ChM8++ww5OTno378//Pz8dNvChQtNHmtVdfv2bSxYsEAvqWnatCneeustfkBXkEKhYFc0Iivw4MEDHD16VO4wqBwqayxGfn4+9u7di2vXrpnk/FXdnDlzIIQo8wKaP//8s9FjyMzMxKFDh4y6iGdcXBzc3d11SQ1QsD6gQqEwSve3999/H9WqVUOTJk2wYMEC5OXlGXS8wXds9uzZgxdeeEHvi7uPjw8GDx6MK1euICQkxNBTAgA6duyIJUuWoFu3boiIiNB77sSJE/j444/RtWvXcp3bUBMmTMCECROKfe7RTNMUfSOpZCdOnMCGDRt047psbW3Rv39/tGnThl/IiYgKuXr1Kry9vSttZlGqmJMnT2L27NnYsWOH7ouodixGw4YN0bNnT6NfvBNC4ODBg1AoFKhdu7ZRz52cnIyJEyfixx9/hEKhQHR0NJYsWVJqb5YVK1Zg/fr1OHv2LNLT04t0V0pISMDs2bOxf/9+JCUloUaNGhg6dCjefvtt3Sy9ctFoNMjLy0Nubi7++ecfvXX0ynLsuXPnkJycXOpyIeWRmJiIy5cvIzQ01CjnS0pKKrJgvY2NDTw9PXW9lspr0qRJaNq0KTw9PXHs2DG8+eabuHXrFj766KMyn8PgxCYxMRH/93//p1fWpk0bCCFw+/btcic2H3zwASIiItCmTRs0b95cd54rV67g5MmT8Pb2Nkk/U7IM2dnZ2Lhxo96MPz4+PnjxxRfxxBNPyBgZEZH5Onr0KJydnQ2aoZQqX+GxGI9+GRZC4Pz58zh//rxJxmIIIXDgwAE4OzsbPOamtHEYQ4YMwa1bt7B3717dOIwxY8aUOg5DrVajW7du6Natm96aglqXL1+GRqPB559/jjp16uh+JxkZGVi4cCE0Gg1yc3ORm5uLvLw85OTk6JKNwpu2LCsrC1lZWbrHxf1b+PjSHhceQ3P58mWD75IIIXDp0qUiF/eN4dixY6hRo0ap4+7mzp2LuXPn6h5nZmbi+PHjehf6C8+EbApTpkzR/fzUU0/Bzs4OY8eOxbx588o8fbXBiU12dnaRLmHax4beLiosODgY586dw7x587Bz505s3LgRQME6Nq+88gqmTZtWJEOkquG///7DqlWr9Gari4iIwIABA6rsPO1ERGUhhMDevXvRtWvXcg8iJtMyh7EYGo0G+/btw4ABA3QLrpdXfn4+/vzzT+zatQu//PILgoODkZubi+nTp+uSG09Pz2KTjSeffBK5ubn4/fffAQDffvst7Ozs9PYLDQ3FqVOncOzYMd3jlStXIisrS/d7kltOTg4kSTIouZEkCampqSZbtP2XX37BM888U+KdrZdeegkDBgzQPR4yZAiio6PRr18/XVmNGjXg6+uLO3fu6B2bl5eH5OTkCo2NKU6LFi2Ql5eHhISEMt84Kdf/3oSEBJw9e1b3ODU1FQBw7dq1Yld2L+vVBW9vbyxatAiLFi0qT1hkZYQQOHLkCL7//ntd0qxSqTBo0CC0aNFC5uiIiCxDfn4+du/ejbZt25a7VwWZTnnGYowfP/6x+2m/5GvP/bgtPT0dGzZsgLu7e5E7G48mINo7IQkJCfj+++9x8eJF3fMajQaXLl2CnZ0dNm/ejM2bN+vF8/7776NWrVqlxn7jxg0AwOnTpx97ATM9PR0qlarSkhqFQgEbGxsoFAoolcpitzt37pTrjo29vb1JZnQVQujqrKTExtPTU68bnIODA7y9vVGnTh29/SIiIpCSkoIzZ84gPDwcALB//35oNBqjfzf7/fffoVAoDLqxUa7EZsaMGZgxY0aR8kcbmnbWtKq6SBCVn1qtxrp16/Dbb7/pyvz9/TFy5EhOT0lEZCCNRoNDhw7h3r17aNmyJZRKpdwhEQq69xs6FuOPP/7AlStX4ObmVmKSUl537941aI2b3NxcqNXqIncZ1Gp1kZm4FAoFVCoV1Gp1uePTsrW1ha2tLR4+fIgLFy4gKioK/v7+unIbGxvY2dnBxsZGV1b4OVtbWwghEB8fD0dHRzg4OBRJTmxsbIpNWsoynrdJkyb44YcfDL5jExISYrKlKlxcXIxyntDQUHTr1g2jR4/G8uXLkZubiwkTJmDQoEG6GdFu3LiBTp06Yc2aNWjevDmAgrE5SUlJ+OuvvwAAf/75J1xcXBAQEABPT0/ExcXhxIkT6NChA1xcXBAXF4fJkydj6NCh8PDwKHN8Bic2q1evNvSQYo0cORKSJGHFihVQKpUYOXLkY4+RJAmrVq0yyuuT+UpISMCqVatw//59XVn79u3Rt29fTl1KRFQBFy5cwN27d9GlSxeD1oaoyrRXuitKrVYjOTlZb/v555/LlYhcvXoVjRo1qnBMj3pcN7QzZ87oeuxIkoS8vDzcvn0bv/76q+4L/xtvvAEvLy8kJCSgSZMmeknFunXrUL9+fTz77LPFJhva7cyZM9i+fTumTp2K6tWr6+1nY2MDSZJw48YNREZGYujQofjiiy8Mfq9qtRr5+fkmWS/O19cXbdu2xdGjR8t0cV+hUCA0NNSgL/CG8PDwqHAXw8LWrVuHCRMmoFOnTrqJIT7++GPd87m5ubhy5YpeErt8+XLMmjVL97hdu3YACvKK4cOHQ6VSYcOGDYiNjUV2djaCg4MxefJkvXE3ZWHwuxw2bJihhxRr//79UCgU0Gg0UCqV2L9//2OzYM56Zd00Gg3279+PrVu36m4pOzg44Pnnn0fjxo3lDY6IyErcuXMHW7duRffu3Y0+A5O1ycnJwcmTJ8s07iEvLw9qtbrErbjkKDExsVxjMXJycvQel/Rvac+V9O9TTz2FBg0awMHBocjdjrS0NDx8+FC3NEBx4zCCgoKwZs0aHD16VG+hxby8PAwePBhdu3ZFt27dSn2PN2/eBFAwSVBxQxxu3ryJDh06oFWrVlixYkVZfm2VbtSoUTh69GiZ69eUM/+WZ4x6aevNeHp6ljoJRFBQUJH3HBsbi9jY2BKPadq0qd4EUeVlvPTNQI9Ok8xpk6u29PR0rFmzBhcuXNCV1apVCyNGjEC1atVkjIyIyPpkZGTgxx9/RI8ePeDl5SV3OGYrLy8PDx8+1HVr0na70m4ZGRm6f7WrqhvCzs6uXGMxPDw8TJKUOjk5wdXVFUFBQXB0dCzy/KPdmeQYh3Hjxg106NAB4eHhWL16tcm6blVU/fr1MW/ePN3sbsXdudHGPmzYMJPNXOjo6AgXFxeTTUpgbmRLbB6VmJgILy+vEldHzczMxN27dzllpRW6evUqVq9erZuEAgCioqLQq1cv9gMnIjKR7Oxs7NixA1FRUfDz85M7HNlpNBqkpKTg/v37uH//Pu7du4fbt28jISEBmZmZyMzMLFe3MUmS4OzsDBcXF92/2q1jx444ePCg2YzFKGnVeEOZahzGjRs30L59ewQGBmLhwoW4e/eu7jWNPSOXMXTs2BFffvklVq1ahSNHjujVsyRJCA0NRdeuXU363bZGjRpVqseT2SQ2wcHBWLt2LQYPHlzs89u3b8fgwYM5EYEV0Wg02Llzp14fYxcXFwwbNowLyhERVYKcnBz8/PPPaNOmjdXPmCaEwMOHD3Hv3j1d4qJNYu7fv4/k5ORyf8fQXhXXboUTGScnp1KTEHMZi+Hh4QEPDw+jXdk3xTiMvXv34q+//sJff/2FmjVr6r1eRSZNMKX69evjo48+QlJSEmJiYpCeng4HBwe88cYbJhtTo+Xs7AxfX1/douZVgdkkNo/7D5mbm2u2txvJcCkpKVi9ejWuXbumKwsJCcHw4cNLXUCKiIiMKz8/H4cOHcLNmzfRunVr2Vdwr4jMzEy9hKXwz8nJyeX+gqdSqYpNXLQ/V6R3gTmMxbC3t0fdunUNnjK5ssdhlLQYqCXw9fWFg4MD0tPTYWdnVylJTf369avU3RpA5sQmLS0NKSkpusf3799HYmJikf1SUlKwYcMG3iq3EhcuXMDXX3+tuyokSRJ69eqFqKgoJq9ERDK5du0abt68iVatWiEoKMgsvxDl5OTo3WW5d+8ekpOTdQlMeacStre3R7Vq1fS26tWrw8nJCZcuXYKHh4fRZ87Sknsshq2tLRo0aAA7O7tyjRMi8yJJEvz9/eHv718lv1PJmtgsWrQI7777LoCCinj11Vfx6quvFruvEAJz5sypxOjI2PLy8rB9+3b88ssvujJ3d3eMHDmyyMBDIiKqfBkZGdi7dy9q1KiBiIiISp+8JT8/Hw8ePCjSTUz72JA1VgqzsbEpNnHR/uzk5FRsIqdWq/V6FpiKXGMxlEqlbgY0snyurq6oU6dOlZ7KXdbEpmvXrnB2doYQAlOnTkVMTAyaNm2qt48kSXByckJ4eDiaNWsmU6RUUffu3cOXX36pN/tdw4YN8fzzz8PZ2Vm+wIiIqIibN2/ihx9+QGhoKJ5++unHrv5eVhqNBmlpaSUmLikpKeVaQV6SJHh4eBRJWLQ/u7q6mv3VaznGYoSEhPBvsBVQKpUIDg6Gr6+vWd5prUyyJjYRERGIiIgAUHCVKDo6Gg0aNJAzJDKBs2fPYt26dcjMzARQ0AD79u2LDh06VPkGSERUHomJicjIyABQMLtZcnKy0af/FULg4sWLSEhIQGRkJPz9/ct0TEZGRpHEpXC3sfIudunq6lpi4uLh4WE1s2hW1lgMHx8fLqdgBdzc3FC3bl2TdZW0NGYxeYBarcbHH38MR0dHJjZWJCcnB5s3b8aRI0d0ZV5eXhg1ahSn7SYiKoeTJ09i9uzZ2LFjh667UmZmJt566y00bNgQPXv2RFBQkFFfU61WY+fOnWjSpAmaNWuG7OzsEhOX+/fvGzxAPysrC7/++iuuX78OhUKB8PBwjBs3DjVr1tQlLp6ennqTGmRlZeG1117Dhg0bkJ2djaioKCxbtgw+Pj4ACsbsDhkyBOfOncP9+/fh7e2N3r17Y+7cuXB1dTXq78cSKRQKo/8/ocoXGBgIf39/XiQuxCwSG0dHR9jY2FTpPoHWJikpCatWrcKNGzd0Zc2aNUNMTAz78hIRlcMPP/yAgQMHQghRZDYpIQTOnz+P8+fPY/To0UW6dRtCCIH8/Hzk5eXpbTt37sTWrVvx4MEDg8+5bds21K9fH23bti1y12Xy5Mmwt7fH4cOHkZubixEjRmDHjh2lzqg1efJk7NixA5s2bYKbmxsmTJiAfv364ejRowAKvrj37t0bc+bMgZeXF/766y+8/PLLSE5OLvW8VYW3t7dFz35X1dna2qJevXpwd3eXOxSzYxaJDQBER0fj+++/x7hx45h5Wrjjx49jw4YNyMnJAVDQAAcMGIBWrVqxbomIyuHkyZMYOHAg8vPzS5wSWDs2ZeXKlfi///u/Uq/I5+XlFZu8aMtLoh33qu0GV5hSqYSnp2eRxKVatWr4888/ERMTgxEjRugdc+nSJRw8eBCnTp3SjaNdunQpevTogYULFxa7YGRqaipWrVqF9evXo2PHjgAK1jkJDQ3F8ePH0bJlS3h4eGDcuHG6YwIDAzF+/HgsWLCgxPdWVUiSVGQNGLIcbm5uCAkJMdq4N2tjNonNoEGDMH78eHTo0AGjR49GUFBQsVf2K3IViiouMTER+/btQ3p6OlxcXNCpUyddt7KsrCxs2LABJ0+e1O3v5+eHUaNGGW01YyIyTGltlizHnDlzir1TU5IdO3bgxRdf1EtWCicv5aVUKuHq6orQ0FDdGA3t5u7uXuIAfaVSWeyFrbi4OLi7u+tNDtS5c2coFAqcOHECffv2LXLMmTNnkJubi86dO+vK6tWrh4CAAMTFxaFly5ZFjtFOhhAZGVmet21V/P392XPCAikUCgQGBuKJJ57gReJSmE1i0759e93PhcdkaAkhIElSuVcFpop5tF+3QqGARqPRrUEzZswYnD59Gnfu3NEd07p1azz33HO83U0kg8e12RkzZuDpp5+WO0wqRX5+PnJzc/HPP//gp59+KnNSo9FocO7cOVy9etXgBY8VCgVsbGyK3QonJ506dUJgYKDB7+lRSUlJ8Pb21iuzsbGBp6cnkpKSSjzGzs6uSDccHx+fIsfExMRg27ZtyMzMxDPPPIMvvviiwjFbMg8PD17YsECurq6oW7cuE9IyMJvEZvXq1XKHQCUorl+3tsuDEAI7duzAjh070KVLF9SqVQv29vYYPHgwp+cmksnj2uzPP/+MnTt3YuPGjejXr5+coZo1IQQ0Gg1ycnKQl5eH3NzcIlvh8szMTGRnZ+vuihTepzyPtXV2+fLlMic1hSUkJKBRo0Z6ZZIk6SUqj/5c2pXgwv+fUlJSSk1s5s6di7lz5+oeZ2Zm4vjx45gwYYKu7OLFiwa/J0MtWrQIM2fOxNWrV/Hmm29iypQpWLZsmclf1xy5u7sjNDSUV/stiHaShxo1arDeyshsEpthw4bJHYLOp59+igULFiApKQmNGjXC0qVL0bx58xL337RpE2bMmIGEhAQ8+eSTmD9/Pnr06FGJEZuOIf269+zZg3HjxmHatGlFrsARUeUoS5vNz8+HJEkYOHAgjh07ZtZ3brQD2R9NJkpKNsqSgJRUVtw+5UkojC0nJweSJBkUi7aHg729PRQKhd72KG0iZchsZpcuXUJoaGiJd+RfeuklDBgwQPd4yJAhiI6O1kuka9SoAV9fX707/dp4kpOT4evrW+y5fX19kZOTg5SUFL27Nrdv3y5yjK+vL3x9fVGvXj14enqibdu2mDFjBvz8/Mr8Xq2Bj48P6tSpY/Zr+dD/2NvbIzQ0lOsMGchsEpvCHj58iH///RdAQV/QyqzUjRs3YsqUKVi+fDlatGiBxYsXIyoqCleuXCn2y/qxY8cQExODefPmoVevXli/fj369OmDs2fPWsXU1Yb065YkCYmJiUxqiGRU1jar3WfOnDnYtm3bY/d99I5CcUnCo8mGoQlISWXmkFyYklKpLHVLSkoy+HcghICrqyscHR2NHq8QAllZWcjLyysxsfH09NRbV8fBwQHe3t6oU6eO3n4RERFISUnBmTNnEB4eDgDYv38/NBoNWrRoUey5w8PDYWtri3379iE6OhoAcOXKFSQmJurWxiuO9iKcodNRWzKFQoFatWpx4UYL4+rqirCwMNja2sodisUxq8Tm1KlTmDp1Kn799VfdB5BCoUDbtm3xwQcfVErXpo8++gijR4/WzdyyfPly7NixA19++SWmTZtWZP8lS5agW7dueOONNwAAs2fPxt69e/HJJ59g+fLlJo/XlBITEw3u171jxw4kJiayDy+RDAxts/n5+fjxxx8xc+ZMODs7l5psWDNJkmBnZwcbGxvY2trqtsKPbWxsit1H+xwAxMfHw8nJCfb29rquXcUlKoXLFQrFY79whoeHY+vWrQbfsQkJCTHJFXrtWC1jCA0NRbdu3TB69GgsX74cubm5mDBhAgYNGqSbdObGjRvo1KkT1qxZg+bNm8PNzQ2jRo3ClClT4OnpCVdXV0ycOBERERG6iQN+/vln3L59G08//TScnZ1x4cIFvPHGG2jdunWVWb/FyckJISEhXErDwri7uyMsLMxqFpytbGaT2Jw4cQLt27eHnZ0dXnzxRYSGhgIouN397bffol27djh48GCpXcIqKicnB2fOnMGbb76pK1MoFOjcuTPi4uKKPSYuLg5TpkzRK4uKisLWrVtLfJ3s7Gy9K0YPHz4EALP7ArF79+5yXSXcs2ePWXUttETaL5QZGRkVmsHIEmjHJGi/SFP5lbfNHjp0CCEhISaKqmwUCkWpSYS2TKlUFptYFFdWWqJSeCtLcvE4arVadwfjcdOw5ufnGzQRjrOzM1q2bInjx4+X+e65tguLKdqUEAI2NjYGtdnCXQof9dVXX+GVV15Bp06doFAo0LdvXyxatEi3r1qtxpUrV5CWlqYr++CDDwAULBWRnZ2NLl26YOnSpbrnbW1tsWLFCkyePBnZ2dmoWbMm+vTpg6lTpxr0O5Hrs7jwmDhD61CSJPj4+KBmzZoQQui+Y5RFVfo8lqNuH1evzs7OCAgIQGZmplFfV+56rdQ7T8JMdOrUSdSuXVvcunWryHNJSUmidu3aonPnziaN4caNGwKAOHbsmF75G2+8IZo3b17sMba2tmL9+vV6ZZ9++qnw9vYu8XVmzpwpAHDjxo0bN27cuHHjZtVbZTKrOzbvvPNOsYMFfXx8MGbMGMyePVuGyIxPOzOL1u+//47IyEicOHECTZo0kTEyfV999RXGjBlj8HErV67kHRsj0I5NqAq0V+OpYsrbZj/77DOMGDGCA4sryNRtdvv27RgxYoRutrZHae86jRo1Co0bNzZJDHXq1EGzZs1gb29fZdqsHJ/FoaGhuHXrFtzc3PDee++V6Rh/f3+0bNmywgs3VqXP48qu25Lq1cbGBt27dzd4enZDVJV6NZvERqFQlPqfKz8/3+R/dKtXrw6lUonbt2/rlRc304qWr6+vQfsDgEql0vvg0U6OoO0mYS6ioqLKNRNP165dzep9WCr+DslQ5W2zPXr04CrWRmDqNvv888+jXr16mD17dpGxVJIk4amnnkKPHj1MMobEyckJ7dq1g7+/v9HPbe7k+CzWft+RJOmxry9JElq2bIkGDRpwggADVXbdllSvXbp04dhkIzGby3OtWrXCp59+iuvXrxd5LjExEcuWLUPr1q1NGoOdnR3Cw8Oxb98+XZlGo8G+fftKnGklIiJCb38A2Lt3b6kzs1iKgIAA9OrVq8wD2JRKJZ555hk2TiKZsM1av6effhrbt29HQkKCbqpjBwcHzJ07F+PHjzdJUlO3bl0899xzVTKpMXcqlQo9evRAw4YNmdRYqCeffBLBwcFyh2E1zOaOzdy5c9GuXTvUq1cPffv2Rd26dQEUTOG4bds22NjYYN68eSaPY8qUKRg2bBiaNWuG5s2bY/HixcjIyNDNkvbCCy/giSee0MXyyiuvIDIyEh9++CF69uyJDRs24PTp01ixYoXJY60MM2bMwM6dOx97FViSJEiShOnTp1didET0KLbZqiEgIABOTk5ISUmBSqXSm1rZWGxtbdG2bdsiUzSTeXBwcECPHj1QrVo1uUOhclIqlSadFKsqMpvEpkmTJjhx4gTefvttbN++HWq1GgDg6OiIbt26Yc6cOQgLCzN5HAMHDsTdu3fxzjvvICkpCY0bN8auXbvg4+MDoODuUeEuca1atcL69esxffp0vPXWW3jyySexdetWq1jDBii4Orhx40bdKubFzeSjVCohSRK+++47s17oj6gqYJslY3BxcUG3bt3g4eEhdyhUDJVKhV69erF+LIyvr69uVkEAqFWrFqfjNjJJGNIZu5JoNBrcvXsXAODl5WX1A1rPnj2L8PBwnDlzBk2bNpU7nGKdOnVKr1+3QqHQrWXwzDPPYPr06fyCRGRG2GatX82aNXHjxg24u7tj/vz5Rjuvp6cnevbsCQcHB6OdkwxTWt0qFAr06tWr1LG8ZL7S0tKwYcMGAED37t3ZxdPIzOaOTWHaLhLan0l+2n7diYmJ2L9/P9LS0uDq6oqOHTuyfz6RGWKbpfLw8PBgUmPmmjdvzqTGCtja2uoWoSXjMavE5uLFi3jnnXewe/duva5oUVFRiI2NtZruXZYsICAAw4cPlzsMIiojtlkqq2rVqqF79+5MasyYl5cXGjZsKHcYZAQBAQFlnuiFys5sEpsjR46ge/fu0Gg06N27t97kAdu3b8fOnTuxa9cutG3bVuZIiYiIrIufnx+6du3Kab/NXEREBHuyWAlTzGBIZpTYTJ48Gd7e3jh06FCR/ob//vsv2rVrhylTpuDUqVMyRUhERGR9nnzySbRr145Xj81cjRo12AXNSigUCnYJNhGzGZV/4cIFjB8/vthBVP7+/hg3bhwuXLggQ2RERETWR6FQICIiAu3bt2dSYwEaNWokdwhkJD4+PlyE20TM5o5NYGAgsrOzS3w+JyeHM0cQEREZQfXq1REZGck1UMyUr68vsrOz4ejoCABwc3NDzZo1ZY6KjMXb21vuEKyW2SQ277zzDiZPnoyePXuicePGes/99ttvWLp0KRYvXixLbERERNbA1tYWTz/9NMLCwqx+KQVLdvr0aRw6dAhXrlwBAISFhXFsjRUxxYK6VMBsEpvjx4/Dx8cH4eHhaNWqlW6l42vXriEuLg4NGjRAXFwc4uLidMdIkoQlS5bIFTIREZHF8Pf3R9u2beHs7Cx3KGQApVKJJ598Uu4wyIhcXFzkDsFqmU1i88knn+h+Pnr0KI4ePar3/J9//ok///xTr4yJDRERUekkSULLli3RoEEDXvW3QP7+/rC3t5c7DDIibRdDMj6zSWw0Go3cIRAREVkVpVKJLl26cAYmC1a7dm25QyAjY6JqOuxgS0REZIUkSULnzp2Z1FgwSZI4cZIV4oxopmM2d2y04uPjsXPnTly/fh1AwWxp3bt3R3BwsMyRERERWY5mzZohMDBQ7jCoAry9vWFnZyd3GGRENjY27BJqQmaV2Lz22mtYsmRJkW5pCoUCr776KhYuXChTZERERJbDz8+vyAyjZHk4LbD14ZpRpmU2XdE+/PBDLFq0CP369UNcXBxSUlKQkpKCuLg49O/fH4sWLcKiRYvkDpOIiMis2draon379rwqbAWqV68udwhkZJxm3bTM5o7NypUr8eyzz+K7777TK2/RogU2bNiArKwsfP7555g8ebJMERIREZm/5s2bczpZK+Hu7i53CGRkTGxMy2x+uwkJCYiKiirx+aioKCQkJFReQERERBbGy8sLYWFhcodBRuLq6ip3CGRkvJNqWmaT2Hh7e+OPP/4o8fk//vgDXl5elRgRERGRZWnVqhW/OFkJlUoFlUoldxhEFsVsEpvnnnsOX3zxBd5//31kZGToyjMyMjB//nx88cUXGDhwoIwREhERmQ9fX1/UqFFDd1W/du3a8PHxkTkqMhZnZ2e5QyCyOJIQQsgdBACo1Wo888wzOHDgAGxsbFCjRg0AwM2bN5GXl4cOHTrgxx9/tMrVWs+ePYvw8HCcOXMGTZs2lTscIiKyEFlZWVizZg0kScKAAQPg5uYmd0hkJPHx8Vzqwgrl5+dzZjQTMps7No6Ojti3bx+2bNmCkSNHIjQ0FKGhoRg5ciS2bt2KX375xeRJTXJyMoYMGQJXV1e4u7tj1KhRePjwYan7T5w4ESEhIXBwcEBAQAAmTZqE1NRUk8ZJRERUWFBQEJMaK+Pg4CB3CEQWxyxmRVOr1Rg6dCiio6MxZMgQ9O7dW5Y4hgwZglu3bmHv3r3Izc3FiBEjMGbMGKxfv77Y/W/evImbN29i4cKFCAsLw/Xr1/HSSy/h5s2b+P777ys5eiIiqqrq1KkjdwhkZBxfQ2Q4s0hsHB0d8csvv6B79+6yxXDp0iXs2rULp06dQrNmzQAAS5cuRY8ePbBw4UJd17jCGjRogM2bN+se165dG++99x6GDh2KvLw82NiYxa+XiIisXHF/o8iy2dnZyR0CkcUxm65obdq0QVxcnGyvHxcXB3d3d11SAwCdO3eGQqHAiRMnynye1NRUuLq6lprUZGdnIy0tTbeV1t2NiIioNK6urry6b4V4cdQ6cdZC0zKbxOaTTz7BkSNHMH36dPz333+V/vpJSUnw9vbWK7OxsYGnpyeSkpLKdI579+5h9uzZGDNmTKn7zZs3D25ubrotMjKy3HETEVHVxrE11okDzIkMZzaJTaNGjfDff/9h3rx5CAwMhEqlgqurq95Wng/vadOmQZKkUrfLly9XOP60tDT07NkTYWFhiI2NLXXfN998E6mpqbrt0KFDFX59IiKqmpycnOQOgUyAK9QTGc5s7nNGR0eb5Pbca6+9huHDh5e6T61ateDr64s7d+7olefl5SE5ORm+vr6lHp+eno5u3brBxcUFW7Zsga2tban7P7roFueqJyKi8uLsWdaJXZask5mssmK1zCax+eqrr0xyXi8vL3h5eT12v4iICKSkpODMmTMIDw8HAOzfvx8ajQYtWrQo8bi0tDRERUVBpVJh+/btsLe3N1rsREREj8O/O0REBWRPbLKysrBt2zbEx8ejevXq6NmzJ/z8/Co9jtDQUHTr1g2jR4/G8uXLkZubiwkTJmDQoEG62WZu3LiBTp06Yc2aNWjevDnS0tLQtWtXqNVqfPPNN7rJAICChIr9Y4mIyNQ4cQCR5eCdONOSNbG5c+cOWrVqhfj4eN2tOUdHR2zduhWdO3eu9HjWrVuHCRMmoFOnTlAoFIiOjsbHH3+sez43NxdXrlyBWq0GAJw9e1Y3Y9qjawjEx8cjKCio0mInIqKqiYmNdRJC8EuwFeLYKdOSNbGZPXs2EhISMHnyZHTs2BF//fUXZs+ejbFjx+Lvv/+u9Hg8PT1LXIwTKFjZuXDfyPbt27OvJBERyYqJjXXi9wsiw8ma2OzZswcvvPACFi5cqCvz8fHB4MGDceXKFYSEhMgYHRERkfnjQo5ERAVkvR+WmJiINm3a6JW1adMGQgjcvn1bpqiIiIgsBxdytE7shkZkOFkTm+zs7CKzuWgf5+XlyRESERGRReEXYOvEsRhEhpP9Mk9CQgLOnj2re5yamgoAuHbtGtzd3Yvs37Rp08oKjYiIyOwxsSEiKiAJGUenKRSKYj+Qi5sJRFuWn59fWeFVmrNnzyI8PBxnzpxh4kZERGWWlZWF3NxcuLi4yB0KEZHsZL1js3r1ajlfnoiIyOKxyxIRUQFZE5thw4bJ+fJEREQWj4kNEVEBfhoSERFZMM6KRkRUgIkNERGRBWNiQ0RUgIkNERGRhVKpVJwVjYjo/2NiQ0REZKGY1BAR/Q8TGyIiIiIisnhMbIiIiIiIyOIxsSEiIiIiIovHxIaIiIiIiCweExsiIiIiIrJ4TGyIiIiIiMjicVUvKpdbt27h1q1bcodBRubn5wc/Pz+5wyATYJslIpIf/86aFhMbM+Dn54eZM2dazH/07OxsxMTE4NChQ3KHQkYWGRmJ3bt3Q6VSyR0KGRHbLBGReeDfWdOShBBC7iDIsqSlpcHNzQ2HDh2Cs7Oz3OGQkTx8+BCRkZFITU2Fq6ur3OGQEbHNWidtm2W9Wh/WrXXi31nT4x0bKrfGjRuzYVqRtLQ0uUMgE2ObtS7aNst6tT6sW+vEv7Omx8kDiIiIiIjI4jGxISIiIiIii8fEhgymUqkwc+ZMDnyzMqxX68W6tU6sV+vFurVOrFfT4+QBRERERERk8XjHhoiIiIiILB4TGyIiIiIisnhMbIiIiIiIyOIxsSEiIiIiIovHxIbIgkiSVKbt4MGDFX4ttVqN2NhYg8713nvv4dlnn4WPjw8kSUJsbGyF4yCyZObcZi9fvoypU6eicePGcHFxgZ+fH3r27InTp09XOJaqwJzr9ubNmxg6dChCQkLg4uICd3d3NG/eHF9//TU4Z1TpzLleH7Vu3TpIkgRnZ+cKx2ItbOQOgIjKbu3atXqP16xZg7179xYpDw0NrfBrqdVqzJo1CwDQvn37Mh0zffp0+Pr6okmTJti9e3eFYyCydObcZr/44gusWrUK0dHRGD9+PFJTU/H555+jZcuW2LVrFzp37lzhmKyZOdftvXv38N9//6F///4ICAhAbm4u9u7di+HDh+PKlSuYO3duhWOyVuZcr4U9fPgQU6dOhZOTU4XjsCZMbIgsyNChQ/UeHz9+HHv37i1SLpf4+HgEBQXh3r178PLykjscItmZc5uNiYlBbGys3tXekSNHIjQ0FLGxsUxsHsOc6/app54qchdgwoQJeOaZZ/Dxxx9j9uzZUCqV8gRn5sy5XgubM2cOXFxc0KFDB2zdulXucMwGu6IRWRmNRoPFixejfv36sLe3h4+PD8aOHYsHDx7o7Xf69GlERUWhevXqcHBwQHBwMEaOHAkASEhI0CUms2bN0t16f1zXsqCgIFO8JSKrJlebDQ8PL9KFpVq1amjbti0uXbpk3DdZRcn5eVycoKAgqNVq5OTkVPi9VWVy1+u1a9ewaNEifPTRR7Cx4T2KwvjbILIyY8eOxVdffYURI0Zg0qRJiI+PxyeffILffvsNR48eha2tLe7cuYOuXbvCy8sL06ZNg7u7OxISEvDDDz8AALy8vPDZZ59h3Lhx6Nu3L/r16weg4CogERmXubXZpKQkVK9e3ajvsaqSu24zMzORkZGBhw8f4tChQ1i9ejUiIiLg4OBg0vdt7eSu11dffRUdOnRAjx498N1335n0vVocQUQW6+WXXxaFm/GRI0cEALFu3Tq9/Xbt2qVXvmXLFgFAnDp1qsRz3717VwAQM2fONDiuihxLZM3Mtc1qHT58WEiSJGbMmFHuc1RV5li38+bNEwB0W6dOnURiYqJB56jqzK1ef/rpJ2FjYyMuXLgghBBi2LBhwsnJyYB3ZN3YFY3IimzatAlubm7o0qUL7t27p9u0XU4OHDgAAHB3dwcA/PTTT8jNzZUxYqKqzZza7J07dzB48GAEBwdj6tSpJnmNqsQc6jYmJgZ79+7F+vXrMXjwYAAFd3Go/OSs15ycHEyePBkvvfQSwsLCjHJOa8PEhsiKXLt2DampqfD29oaXl5fe9vDhQ9y5cwcAEBkZiejoaMyaNQvVq1dH7969sXr1amRnZ8v8DoiqFnNpsxkZGejVqxfS09Oxbds2Th9rBOZQt4GBgejcuTNiYmKwbt061KpVC507d2ZyUwFy1uuiRYtw79493UxqVBTH2BBZEY1GA29vb6xbt67Y57UDFSVJwvfff4/jx4/jxx9/xO7duzFy5Eh8+OGHOH78OL/UEFUSc2izOTk56NevH86dO4fdu3ejQYMG5T4X/Y851O2j+vfvj5UrV+Lw4cOIiooy2nmrErnqNTU1FXPmzMH48eORlpaGtLQ0AAXTPgshkJCQAEdHR3h7e1fsDVo6ufvCEVH5Pdr3d/z48UKpVAq1Wm3wudatWycAiJUrVwohhLh37x7H2BAZmbm12fz8fDFw4EChVCrF5s2bDY6B/sfc6rY4W7duFQDExo0bK3SeqsRc6jU+Pl5vvFRxW+/evQ2OydqwKxqRFRkwYADy8/Mxe/bsIs/l5eUhJSUFAPDgwYMiq083btwYAHS3yR0dHQFAdwwRGZ/cbXbixInYuHEjli1bppuViYxDzrq9e/duseWrVq2CJElo2rRpmc5DRclVr97e3tiyZUuRrUOHDrC3t8eWLVvw5ptvlv+NWQl2RSOyIpGRkRg7dizmzZuH33//HV27doWtrS2uXbuGTZs2YcmSJejfvz++/vprLFu2DH379kXt2rWRnp6OlStXwtXVFT169AAAODg4ICwsDBs3bkTdunXh6emJBg0alNpNZe3atbh+/TrUajUA4PDhw5gzZw4A4Pnnn0dgYKDpfwlEFkTONrt48WIsW7YMERERcHR0xDfffKP3fN++fbmqeQXIWbfvvfcejh49im7duiEgIADJycnYvHkzTp06hYkTJ6JOnTqV+auwKnLVq6OjI/r06VOkfOvWrTh58mSxz1VJ8t4wIqKKePQWudaKFStEeHi4cHBwEC4uLqJhw4Zi6tSp4ubNm0IIIc6ePStiYmJEQECAUKlUwtvbW/Tq1UucPn1a7zzHjh0T4eHhws7Orky3yyMjI0u8RX7gwAFjvW0ii2VObXbYsGGldmuJj4835lu3euZUt3v27BG9evUSNWrUELa2tsLFxUW0bt1arF69Wmg0GqO+b2tnTvVaHE73rE8S4pH7ZERERERERBaGY2yIiIiIiMjiMbEhIiIiIiKLx8SGiIiIiIgsHhMbIiIiIiKyeExsiIiIiIjI4jGxISIiIiIii8fEhqgKSUhIgCRJ+Oqrr+QOhYjKgG3WOrFerRfrVl5MbIiIiIiIyOJxgU6iKkQIgezsbNja2kKpVModDhE9BtusdWK9Wi/WrbyY2BARERERkcVjVzQiCxMbGwtJknD16lUMHToUbm5u8PLywowZMyCEwL///ovevXvD1dUVvr6++PDDD3XHFtf3d/jw4XB2dsaNGzfQp08fODs7w8vLC6+//jry8/N1+x08eBCSJOHgwYN68RR3zqSkJIwYMQI1a9aESqWCn58fevfujYSEBBP9VojMF9usdWK9Wi/WreViYkNkoQYOHAiNRoP3338fLVq0wJw5c7B48WJ06dIFTzzxBObPn486derg9ddfx+HDh0s9V35+PqKiolCtWjUsXLgQkZGR+PDDD7FixYpyxRYdHY0tW7ZgxIgRWLZsGSZNmoT09HQkJiaW63xE1oBt1jqxXq0X69YCCSKyKDNnzhQAxJgxY3RleXl5ombNmkKSJPH+++/ryh88eCAcHBzEsGHDhBBCxMfHCwBi9erVun2GDRsmAIh3331X73WaNGkiwsPDdY8PHDggAIgDBw7o7ffoOR88eCAAiAULFhjnDRNZOLZZ68R6tV6sW8vFOzZEFurFF1/U/axUKtGsWTMIITBq1Chdubu7O0JCQvDPP/889nwvvfSS3uO2bduW6bhHOTg4wM7ODgcPHsSDBw8MPp7IWrHNWifWq/Vi3VoeJjZEFiogIEDvsZubG+zt7VG9evUi5Y/74LO3t4eXl5demYeHR7k+MFUqFebPn4+dO3fCx8cH7dq1wwcffICkpCSDz0VkTdhmrRPr1Xqxbi0PExsiC1XcNJIlTS0pHjP5YVmmpJQkqdjywgMftV599VVcvXoV8+bNg729PWbMmIHQ0FD89ttvj30dImvFNmudWK/Wi3VreZjYEFGZeHh4AABSUlL0yq9fv17s/rVr18Zrr72GPXv24Pz588jJydGbOYaITItt1jqxXq0X67bimNgQUZkEBgZCqVQWmfll2bJleo/VajWysrL0ymrXrg0XFxdkZ2ebPE4iKsA2a51Yr9aLdVtxNnIHQESWwc3NDc899xyWLl0KSZJQu3Zt/PTTT7hz547eflevXkWnTp0wYMAAhIWFwcbGBlu2bMHt27cxaNAgmaInqnrYZq0T69V6sW4rjokNEZXZ0qVLkZubi+XLl0OlUmHAgAFYsGABGjRooNvH398fMTEx2LdvH9auXQsbGxvUq1cP3333HaKjo2WMnqjqYZu1TqxX68W6rRhJPG60ExERERERkZnjGBsiIiIiIrJ4TGyIiIiIiMjiMbEhIiIiIiKLx8SGiIiIiIgsHhMbIiIiIiKyeExsiMgkEhISIEkSvvrqK7lDIaIyYJu1TqxX68R6LR4TGyIz8Pfff2Ps2LGoVasW7O3t4erqitatW2PJkiXIzMw02etevHgRsbGxSEhIMNlrlMV7772HZ599Fj4+PpAkCbGxsbLGQ/Q4VbnNXr58GVOnTkXjxo3h4uICPz8/9OzZE6dPn5YtJmNhvbJejYn1Wvm4QCeRzHbs2IHnnnsOKpUKL7zwAho0aICcnBz8+uuveOONN3DhwgWsWLHCJK998eJFzJo1C+3bt0dQUJBJXqMspk+fDl9fXzRp0gS7d++WLQ6isqjqbfaLL77AqlWrEB0djfHjxyM1NRWff/45WrZsiV27dqFz586yxFVRrFfWq7GxXisfExsiGcXHx2PQoEEIDAzE/v374efnp3vu5Zdfxl9//YUdO3bIGOH/CCGQlZUFBwcHo587Pj4eQUFBuHfvHry8vIx+fiJjYZsFYmJiEBsbC2dnZ13ZyJEjERoaitjYWIv8osR6Zb3KjfVqJIKIZPPSSy8JAOLo0aNl2j83N1e8++67olatWsLOzk4EBgaKN998U2RlZentFxgYKHr27CmOHDkinn76aaFSqURwcLD4+uuvdfusXr1aACiyHThwQO8cu3btEuHh4UKlUolFixYJIYT4+++/Rf/+/YWHh4dwcHAQLVq0ED/99JNeDPHx8QKAWL16dZl/H3fv3hUAxMyZM8t8DFFlYpstWb9+/YSnp2e5jpUb67VkrFfWqyVhYkMkoyeeeELUqlWrzPsPGzZMABD9+/cXn376qXjhhRcEANGnTx+9/QIDA0VISIjw8fERb731lvjkk09E06ZNhSRJ4vz580KIgg/OSZMmCQDirbfeEmvXrhVr164VSUlJunPUqVNHeHh4iGnTponly5eLAwcOiKSkJOHj4yNcXFzE22+/LT766CPRqFEjoVAoxA8//KCLgYkNWSO22ZK1atVK1K1bt1zHyo31WjLWK+vVkjCxIZJJamqqACB69+5dpv1///13AUC8+OKLeuWvv/66ACD279+vKwsMDBQAxOHDh3Vld+7cESqVSrz22mu6sk2bNuldQSpMe45du3bplb/66qsCgDhy5IiuLD09XQQHB4ugoCCRn58vhGBiQ9aHbbZkhw8fFpIkiRkzZhh8rNxYryVjvbJeLQ1nRSOSSVpaGgDAxcWlTPv//PPPAIApU6bolb/22msAUKSfcFhYGNq2bat77OXlhZCQEPzzzz9ljjE4OBhRUVFF4mjevDnatGmjK3N2dsaYMWOQkJCAixcvlvn8RJaEbbZ4d+7cweDBgxEcHIypU6dW6FxyYL0Wj/VagPVqWZjYEMnE1dUVAJCenl6m/a9fvw6FQoE6derolfv6+sLd3R3Xr1/XKw8ICChyDg8PDzx48KDMMQYHBxcbR0hISJHy0NBQ3fNE1ohttqiMjAz06tUL6enp2LZtm94AZUvBei2K9fo/rFfLwlnRiGTi6uqKGjVq4Pz58wYdJ0lSmfZTKpXFlgshyvxappgBjchSsc3qy8nJQb9+/XDu3Dns3r0bDRo0qLTXNibWqz7WK+vVkvGODZGMevXqhb///htxcXGP3TcwMBAajQbXrl3TK799+zZSUlIQGBho8OuX9QP80TiuXLlSpPzy5cu654msFdtsAY1GgxdeeAH79u3D+vXrERkZafA5zAnrtQDrlfVq6ZjYEMlo6tSpcHJywosvvojbt28Xef7vv//GkiVLAAA9evQAACxevFhvn48++ggA0LNnT4Nf38nJCQCQkpJS5mN69OiBkydP6v2hyMjIwIoVKxAUFISwsDCD4yCyFGyzBSZOnIiNGzdi2bJl6Nevn8HHmxvWawHWK+vV0rErGpGMateujfXr12PgwIEIDQ3VWxX52LFj2LRpE4YPHw4AaNSoEYYNG4YVK1YgJSUFkZGROHnyJL7++mv06dMHHTp0MPj1GzduDKVSifnz5yM1NRUqlQodO3aEt7d3icdMmzYN3377Lbp3745JkybB09MTX3/9NeLj47F582YoFIZfL1m7di2uX78OtVoNADh8+DDmzJkDAHj++ed5F4jMBttswRe/ZcuWISIiAo6Ojvjmm2/0nu/bt6/uC52lYL2yXlmvVkLeSdmISAghrl69KkaPHi2CgoKEnZ2dcHFxEa1btxZLly7VWxgsNzdXzJo1SwQHBwtbW1vh7+9f6uJhj4qMjBSRkZF6ZStXrhS1atUSSqWy2MXDiqNdPMzd3V3Y29uL5s2bV2jxsMjIyGIXMkMJ02QSya0qt1ntWh8lbfHx8aUeb85Yr6xX1qtlk4QwYJQTERERERGRGeIYGyIiIiIisnhMbIiIiIiIyOIxsSEiIiIiIovHxIaIiIiIiCweExsiIiIiIrJ4TGyIiIiIiMjiMbEhIiIiIiKLx8SGiIiIiIgsHhMbIiIiIiKyeExsiIiIiIjI4jGxISIiIiIii8fEhoiIiIiILB4TGyIiIiIisnj/DzQLrXyroGmwAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -1503,7 +1503,7 @@
"source": [
"### Bar Width\n",
"\n",
- "You can modify the width of the bar plot bars (unpaired data) by setting the parameter ``bar_width`` in the ``plot()`` method. "
+ "You can modify the width of the bar plot bars (unpaired data) by setting the parameter ``bar_width`` in the ``.plot()`` method. "
]
},
{
@@ -1513,7 +1513,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWUtJREFUeJzt3XdUFNffBvBnl46IohSRIGBFQgTFQBQV8adi7IkaSyyxxxIVNLEDxkLUqBi7JqgpRmMSu7FExV5iIbGiIogaAVGRppTdef/wZePKgtt3gedzzp64M3fmPusYvszszL0iQRAEEBERkVESGzoAERERlYyFmoiIyIixUBMRERkxFmoiIiIjxkJNRERkxFioiYiIjBgLNRERkRFjoSYiIjJiLNRERERGrMIX6ocPHyIyMhIPHz40dBQiInoFfz6/xEL98CFmzZpV4f8hEBEZG/58fqnCF2oiIiJjxkJNRERkxFioiYiIjBgLNRERkRFjoSYiIjJiLNRERERGjIWaiIjIiLFQExERGTGjKtTHjh1Dly5dULNmTYhEImzfvv2N28TGxqJJkyawsLBA3bp1sWHDBp3nJCIi0hejKtQ5OTnw8fHBihUrlGqfmJiITp06ITg4GHFxcZgwYQKGDRuG/fv36zgpERGRfpgaOsCr3n//fbz//vtKt1+9ejU8PDywaNEiAEDDhg1x4sQJLFmyBCEhIbqKSUREpDdGVahVdfr0abRt21ZuWUhICCZMmFDiNnl5ecjLy5O9z87O1lU8nRm9aBOeZuUaOkap7CpbY+XEfoaOUW7FfTce+dlPDR2jROY2dvAdutTQMYjKhTJdqFNSUuDk5CS3zMnJCZmZmXj+/DmsrKyKbRMVFYVZs2bpK6JOPM3KRfqzsvcLBmlPfvZT5Gc9NnQMMkaSAkBsCohEhk5CWlKmC7U6pk6dirCwMNn7uLg4BAUFGTCR+sQiEarZVjJ0DDlPMnMgFQRDx6g4RGKY29gZOoVMfvZTQJAaOkbFlpMOVHIATCrcj/dyq0wfyRo1aiA1NVVuWWpqKmxtbRWeTQOAhYUFLCwsZO9tbGx0mlGXqtlWws+RwwwdQ07fyG95tq9H5jZ28B//vaFjyJxbOpBn+sZAks9CXY4Y1V3fqmrWrBkOHTokt+zgwYNo1qyZgRIRERkBSb6hE5AWGVWhzs7ORlxcHOLi4gC8fPwqLi4OycnJAF5eth44cKCs/aeffoo7d+7giy++wI0bN7By5Ur88ssvCA0NNUR8IiLjUJj35jZUZhhVoT5//jwaN26Mxo0bAwDCwsLQuHFjhIeHAwAePnwoK9oA4OHhgT179uDgwYPw8fHBokWL8O233/LRLCKq2ApfGDoBaZFRfYnRunVrCKXciKRo1LHWrVvj0qVLOkxFRFTGFDw3dALSIqM6oyYiIi0oyDF0AtIiFmoiovIm37gHRCLVsFATEZU3eVmGTkBaxEJNRFTe5GUaOoHBrFixAu7u7rC0tERAQADOnTtXavvo6Gg0aNAAVlZWcHV1RWhoKF68MK6b8VioiYjKmxfPDJ3AILZs2YKwsDBERETg4sWL8PHxQUhICNLS0hS237RpE6ZMmYKIiAhcv34d3333HbZs2YJp06bpOXnpWKiJiMqbClqoFy9ejOHDh2Pw4MHw8vLC6tWrYW1tjZiYGIXtT506hcDAQPTr1w/u7u5o3749+vbt+8azcH1joSYiKm+eZxg6gd7l5+fjwoULcjMqisVitG3bFqdPn1a4TfPmzXHhwgVZYb5z5w727t2Ljh076iWzsozqOWoiItKCFxmGTqBV2dnZyMz873v31+dsAID09HRIJBKFMyreuHFD4X779euH9PR0tGjRAoIgoLCwEJ9++ikvfRMRkY7lPjF0Aq0KCgpClSpVZK+oqCit7Dc2Nhbz5s3DypUrcfHiRfz+++/Ys2cPZs+erZX9awvPqImIypvcx4AglJs5qY8ePQpfX1/Z+9fPpgHA3t4eJiYmCmdUrFGjhsL9zpw5EwMGDMCwYS9nIXznnXeQk5ODESNGYPr06RCLjeNc1jhSEBGR9kjyy9Wz1DY2NrC1tZW9FBVqc3Nz+Pn5yc2oKJVKcejQoRJnVMzNzS1WjE1MTACg1OGs9Y1n1ERE5VF2KmBpa+gUehUWFoZBgwahadOm8Pf3R3R0NHJycjB48GAAwMCBA+Hi4iK7dN6lSxcsXrwYjRs3RkBAAG7fvo2ZM2eiS5cusoJtDFioiYjKo2f3APt6hk6hV71798ajR48QHh6OlJQU+Pr6Yt++fbIbzJKTk+XOoGfMmAGRSIQZM2bgwYMHcHBwQJcuXTB37lxDfQSFWKiJiMqjp0mGTmAQY8eOxdixYxWui42NlXtvamqKiIgIRERE6CGZ+vgdNRFReZR+y9AJSEtYqImIyqOUy4BUaugUpAUs1ERE5VFeFpB+09ApSAtYqImIyqu7Jw2dgLSAhZqIqLy6E/ty4BMq01ioiYjKq4xk4PFtQ6cgDbFQExGVZ7f/NHQC0hALNRFReXb7T979XcaxUBMRlWc56cDDOEOnIA2wUBMRlXcJh97chowWCzURUXl35yggKTR0ClITCzURUXmXlwXc/8vQKUhNLNRERBXBrQOGTkBqYqEmIqoIkk4ALzINnYLUwEJNRFRONG3aFG819EPTeReLr5TkAzf36z8UaYyFmoionEhJScGDfx8iJTNfcYMrvwFSiX5DkcZYqImIKoqsh0DCYUOnIBWxUBMRVSQXNvCsuoxhoSYiqkie3Qeu7zJ0ClIBCzURUUVzPubls9VUJrBQExFVNC+evbwETmUCCzURUUV05XfgSaKhU5ASWKiJiCoiQQqcWgYIgqGT0BuwUBMRVVQPLgB3Txo6Bb0BCzURUUV2ZhUgKTB0CioFCzURUUX27D5wdZuhU1ApWKiJiCq6CxuB3CeGTkEl0FqhFgQBhw8fxh9//IGsLD6fR0RUZuRnA399a+gUVAK1CvX06dMRHBwsey8IAtq3b4927dqhU6dOeOedd5CQkKC1kEREpGM39gCpVw2dokx7+PAh/v77b+Tk5Gh1v2oV6t9++w3+/v6y97/++isOHTqEOXPmYPfu3ZBIJIiMjNRWRiIi0ofjiwBJoaFTlDk7duyAp6cn3nrrLTRp0gRnz54FAKSnp6Nx48bYvn27RvtXq1A/ePAAdevWlb3//fff4eXlhalTp6Jjx44YNWoUYmNjNQpGRER69jgBuLzV0CnKlF27duHDDz+Evb09IiIiILzyXLq9vT1cXFywfv16jfpQq1CbmpoiLy8PwMvL3ocOHUKHDh1k652cnJCenq5RMCIiMoDzMUDGPUOnKDO+/PJLtGrVCidOnMCYMWOKrW/WrBkuXbqkUR9qFWpvb2/8+OOPePr0KdavX4/Hjx+jU6dOsvV3796Fvb29WoFWrFgBd3d3WFpaIiAgAOfOnSu1fXR0NBo0aAArKyu4uroiNDQUL168UKtvIqIKT5IPHFsISKWGTlImXLlyBR999FGJ652cnJCWlqZRH6bqbBQeHo4uXbrIinFgYKDczWV79uzBu+++q/J+t2zZgrCwMKxevRoBAQGIjo5GSEgI4uPj4ejoWKz9pk2bMGXKFMTExKB58+a4efMmPvnkE4hEIixevFidj0ZERA//Bq5tB7w/NHQSo2dtbV3qzWN37txB9erVNepDrTPqdu3a4eLFi1i8eDFiYmJw4MAB2bqnT5+iVatWGDdunMr7Xbx4MYYPH47BgwfDy8sLq1evhrW1NWJiYhS2P3XqFAIDA9GvXz+4u7ujffv26Nu37xvPwomI6A3OrQOyNTsTrAiCg4OxceNGFBYWvwkvJSUF69atQ/v27TXqQ+3nqL28vDB+/HgMGjQIlpaWsuV2dnZYsmQJWrdurdL+8vPzceHCBbRt2/a/cGIx2rZti9OnTyvcpnnz5rhw4YKsMN+5cwd79+5Fx44dVf9ARET0n4Jc4ORSQ6cwenPnzsX9+/fx7rvvYs2aNRCJRNi/fz9mzJiBd955B4IgICIiQqM+1Lr0nZWVhYyMDLi6usqW/fvvv1i9ejXy8vLQs2dPlS99p6enQyKRwMnJSW65k5MTbty4oXCbfv36IT09HS1atIAgCCgsLMSnn36KadOmldhPXl6e7EY4AMjOzlYpJxFRhZF04uXEHS5+hk5itBo0aIATJ05g/PjxmDlzJgRBwMKFCwEArVu3lt13pQm1CvWIESOQmJiIM2fOAAAyMzPx3nvv4f79+xCLxVi6dCn27dun8lm1qmJjYzFv3jysXLkSAQEBuH37NsaPH4/Zs2dj5syZCreJiorCrFmzdJqLqCxp2rQpUlJSUKNGDZw/f97QccjYnFsHdG8CiESGTmK03n77bfz55594+vQpbt++DalUitq1a8PBwUEr+1fr0veJEyfQuXNn2fsff/wR//77L06dOoWnT5+iUaNGmDNnjkr7tLe3h4mJCVJTU+WWp6amokaNGgq3mTlzJgYMGIBhw4bhnXfewQcffIB58+YhKioK0hLuWJw6dSqePXsmex09elSlnETlTUpKCh48eICUlBRDRyFjlHYd+PeioVOUCXZ2dnj33XcREBCgtSINqFmo09PT4eLiInu/c+dOtGjRAu+99x4qV66MgQMH4u+//1Zpn+bm5vDz88OhQ4dky6RSKQ4dOoRmzZop3CY3NxdisfxHMDExAQC5h85fZWFhAVtbW9nLxsZGpZxERBUOZ9cq0TfffIOQkJAS17///vtYtWqVRn2oVairVq0q++37+fPnOH78uNxdbaampsjNzVV5v2FhYVi3bh02btyI69evY9SoUcjJycHgwYMBAAMHDsTUqVNl7bt06YJVq1Zh8+bNSExMxMGDBzFz5kx06dJFVrCJiEhDSSeBnMeGTmGUvvvuO3h5eZW43svLC2vXrtWoD7W+o27evDlWrlwJT09P7Nu3Dy9evEC3bt1k62/evCl3xq2s3r1749GjRwgPD0dKSgp8fX2xb98+2Q1mycnJcmfQM2bMgEgkwowZM/DgwQM4ODigS5cumDt3rjofi4iIFBGkwO2DgE8fQycxOgkJCQpHJCvi6emJdevWadSHWoV6/vz5aN++PXr06AEAmDhxIt5++20AgEQiwdatW+WGFFXF2LFjMXbsWIXrXh8/3NTUFBERERrf+k5ERG8Q/wfQqDdvKnuNubl5qfd3PHz4sNhXtKpSq1DXrVsX8fHxuHbtGqpUqSJ363lubi6WL18OHx8fjYIREZEReZoEPL4N2NczdBKj8t5772HDhg0IDQ1F5cqV5dY9e/YM69evx3vvvadRH2oVagAwMzNTWIwrV64sdxmciIjKiVsHWKhfExERgaCgIPj6+mLChAmyq8tXrlxBdHQ0Hj58iE2bNmnUh9qFOjMzEytXrsSRI0eQlpaGNWvWwN/fH0+ePMGGDRvQtWtXuakwiYjKioLnWbizbzWe3DoLiMSw92yO2iEjYWJuVeI2/3w/BZnJl+WW1WjyPup2fPlVXurfB3FrV7TCbf1Df4J5paraiq87tw8BAaMADS/llicBAQHYtWsXRo4cifHjx0P0/18NCIIADw8P7Ny5s8Qnl5SlVqG+f/8+goKCcO/ePdSrVw83btyQjfBVrVo1rFmzBnfv3sXSpRx+joiM0z/fT4GTz//g5NOu2Lqb2xciP/sJvD+eA6lEglu7onF7zzI0+OCLUvfp1DgEbkH9Ze/FZv8Nr2zv1Qp2deRH+Lq5cwmkhQVlo0gDQO5j4N9LwFvGO1LZihUrsHDhQqSkpMDHxwfLli2Dv79/ie0zMjIwffp0/P7773jy5Anc3NwQHR2t0lDU7dq1w+3bt3Hp0iUkJCQAAOrUqYMmTZrICrcm1CrUn3/+ObKyshAXFwdHR8diM1t1794du3fv1jgcEZG+5aYn42nCBfgMiUblmi8v89bpMBJXf46Ee9uhsKhc8kxIJmaWMLepVsI6C5iYWcjeF+Q8w7Okf1Cv83jtfgBdu3XAaAu1qjMw5ufno127dnB0dMSvv/4KFxcX3L17F1WrVlW5b7FYDD8/P/j5af/vRq1CfeDAAYSGhsLLywuPHxd/tq527dq4d48TjxNR2ZN5/wZMLCvJijQAVPVoDIhEyHoQDwvP5iVum3blCNIuH4G5jR2q1fOHa8s+MHnlrPpVqZcPQWxmgeoNA7X+GXQq6ThQOBEwNTd0kmJenYERAFavXo09e/YgJiYGU6ZMKdY+JiYGT548walTp2BmZgYAao/Lfe3aNdy5cwdPnz5VOODWwIED1dovoGahfv78eanDo2VlZakdiIjIkAqyn8LcuqrcMpHYBGZWlVGQ87TE7Ry9g2BRxRHmlasjJzURSYfX4/nj+2jYa4bC9qlxB+DgHSR3ll0m5OcA988B7i0MnURO0QyMrw6K9aYZGIu+Px4zZgx27NgBBwcH9OvXD5MnT1Z60KyEhAT0798f586dK3FETJFIpP9C7eXlhWPHjmHkyJEK12/fvh2NGzdWOxQRkbbdO7EF907+InsvLcxH1oMbSNi3WrasyafqD/VYo8n7sj9XcnSHuU01XPlpGp4/eQiras5ybTPvX8fz9Hto0G2i2v0Z1N3Tei3U2dnZyMzMlL23sLCAhYX8LzjqzMB4584dHD58GB9//DH27t2L27dvY/To0SgoKFB6fI6RI0fi8uXLiI6ORsuWLWFnZ6fip3sztQr1hAkTMGjQIDRq1Ai9evUC8HJc7tu3b2PWrFk4ffo0fvvtN60GJSLSRA2/jrD3ail7H799Iew9A1H9lUvZFpWrw8zGDvm5GXLbClIJCp5nwayS8j+EK7s0AAC8ePpvsUKdemk/KjnVho2z9h51Sk5ORk5ODgAgJ0+C5CcvUKua4svuGnsYp5v9liAoKEjufUREBCIjIzXer1QqhaOjI9auXQsTExP4+fnhwYMHWLhwodKF+uTJk5g2bRo+++wzjfOURK1C3b9/f9y9exczZszA9OnTAQAdOnSAIAgQi8WYN28eunfvrs2cREQaMbOqDDOr/wakEJtawKxSFVhVqynXzvYtT0he5CD74S1ZIc1I/BsQBFnxVUZO6h0AKHZzmST/OdKvn4Bb8CB1P4qcc+fOYfbs2dizZ4/s0mvGcwncp59D53eqYWZHN7zrXvkNe1HRs/svL4GbV9Lufktw9OhR+Pr6yt6/fjYNqDcDo7OzM8zMzOQuczds2BApKSnIz8+Hufmbv4e3t7dHlSpVlPwk6lH7Ybjp06cjISEBCxcuxKhRozB8+HDMnz8f8fHxmDx5sjYzEhHpjbV9LdjV8cOtPcuQ9SAemfeuIWH/Kji83Up2x3deZjourBqJrAfxAIDnTx4i+fjPyH54Cy8yUvH45hnc3LEItrW8UcnJQ27/j64egyCVwPGdYI2z/v777wgMDMQff/xR7PtRQQD2XnmC5gvi8PuldI37KibzX+3vswQ2NjZysx4qKtTqzMAYGBgomz+6yM2bN+Hs7KxUkQaATz/9FD/++CMkEomKn0p5ag94AgC1atVCaGiotrIQERmF+t0/x519q3Dlp+mASITqnoGoE/LfPTmCVILnj+9DUpAHABCbmCIjMQ7/ntsBSf4LWNg6oHrDQLi2KD6JRerfB1C9QXOYWmo2xe65c+fQu3dvSCSSEm9ikkgBEQT0Xncdp77w1e6ZdXaq0Y1SFhYWhkGDBqFp06bw9/dHdHR0sRkYXVxcEBUVBQAYNWoUli9fjvHjx+Ozzz7DrVu3MG/ePIwbN07pPuvXrw+JRAIfHx8MGTIErq6uCm9E+/DDD9X+XGoV6osXL+LMmTMYPXq0wvUrV65E8+bN5S5VEJFxKrosWNLlwfKq0cCvSlxnZlW51MFNLKs6ocWMPbL3FlUc0GjgfKX69flkkfIhSzFnzhwIglBikS4iABAgYM7eu9gx2lsrfQMAnmdob19aouoMjK6urti/fz9CQ0PRqFEjuLi4YPz48SpdFe7du7fsz5MmTVLYRiQSaXTGrVahnj59OqysrEos1IcPH8bevXs56AlRGXD+/HlDRyAVJScnY/fu3W8s0kUkUmDX5SfavcEszzgfw1VlBkYAaNasGc6cOaN2f0eOHFF7W2WpVahff1btdS1btpRdWiAi4yeRSOS+p1NXoUSKQokUYokUBQUFWkhWvkgL8yGVFGq8n717dildpIsIArD/2hMMeq/4CF3qEHKeQqzjY1xYqPnfla69fke6LqhVqLOysmBqWvKmYrEYz549UzsUEb3ZM1EVILsQe+b203hfPx26jJ+PXNFCqldM/Em7+yONjfjxNkb8eFtLezsFYIyW9lX25eXl4eLFi0hLS0NgYCDs7e21tm+1CnW9evVw4MCBEp8b27dvH2rXrq1RMCLSnz7Bb6N367e1sq8qwjOYV66Odz9br5X9lReFebl4cus8xCamEGk4/ObmbbsROmOeytut7uOGgf4lj1WuLEEQ8MK1FazenwVTC2uN91eSS5cuISAgQGf715ZvvvkGkZGRshPUgwcPok2bNkhPT4enpycWLFiAIUOGqL1/tQr10KFDERoairCwMISHh8sGMM/IyMCsWbOwb98+LFy4UO1QRKRfJlqcttBUEMPURCwbO5leEknNYGZmChMLa42HDf1f61YQiaJUuvwtEgHtPKvAzFS5oTFLJQiQmJnDzMwMpjo8zqVduTUW69evx4QJE9CnTx+0b99eriDb29ujTZs22Lx5s/4L9bhx4xAXF4fo6Gh88803qFnz5YAB//77L6RSKQYMGMDHtoiIdMTVxRkhbVrhYOwJpe4mNhEDHb2qolY17Y0rLoiNv4jqw6JFi9CtWzds2rRJ4SRVfn5++OabbzTqQ62/aZFIhPXr12PgwIH47bffcOfOyxF4unXrhh49eqB169YahSIi/Zmwcj+eZj+HnY0VokeHGDoOKenzz0bgz6MnIBKJSj2zFgEQQYSpIc4ltlGHYKqj4UnLmNu3b5f63HW1atUUFnBVaPQrUXBwMIKDNR9dh4gM52n2czzOfG7oGKSiJj7eiFm2AEM++wKCAIVn1ibil0X658F18K6bZgOsvE4w08/wocauatWqSE8veeS3a9euaTxGgVpfTCUmJmLXrl0lrt+1axeSkpLUzUREREro0qEt9v/6Pdq1bgGRSCS3TiR6ebn7WKgnuvtof0YnqYVux7cuKzp27Ii1a9ciIyOj2LqrV69i3bp16Nq1q0Z9qHVGPWnSJGRmZqJLly4K169YsQJVq1bF5s2bNQpHRESla+LjjZ+//Qb3HjxEq469kJGZhapWJrgw+W2tfif9Okklpzc3qgDmzJmDgIAAeHt7o0uXLhCJRNi4cSNiYmLw22+/wdnZGeHh4Rr1odYZ9enTp9GuXbsS1//vf//D8ePH1Q5FRESqcXVxhrW1FQCgkrlYp0VaamELwcJWZ/svS2rWrIkLFy6gQ4cO2LJlCwRBwA8//IBdu3ahb9++OHPmjMbPVKt1Rv306VNUrlzy4O42NjYaf3lORETGqdBBO8/cl3V5eXnYv38/3N3d8e233+Lbb7/Fo0ePIJVK4eDgIDeuuCbU2kutWrVw8uTJEtcfP34cb731ltqhiIjIeBU4+hg6glEwNzdHr169cOrUKdkyBwcHODk5aa1IA2oW6r59++Lnn3/GN998Izc+sEQiwdKlS7Flyxb066f5sIZERGRcBAtbnlH/P5FIhHr16pV617c2qFWop06diuDgYEyYMAHOzs5o1aoVWrVqhZo1ayI0NBRBQUGYPn26trMSEZGBFdRqBYi1MLpZOTFt2jQsX74c8fHxOutDre+oLSwscODAAWzcuBG///47EhISAAD+/v7o0aMHBg4cqNXTfiIiMgImZijw+J+hUxiVM2fOoHr16vD29kbr1q3h7u4OKysruTYikQhLly5Vuw+1BzwRi8UYPHgwBg8erHbnRERUduTX6QDBojJQkGfoKEZj+fLlsj8fOnRIYRuDFWoiIqo4BEs75NfpYOgYRkcb87i/iVqFuk2bNm9sIxKJSvztgoiIypYXPgMBU909m00lU6tQS6XSYsPVSSQS3L17F/fu3UPdunXh4uKilYBERGRYBbVaQOL4jqFjGLUzZ87gyJEjSEtLw+jRo1GvXj3k5ubixo0bqF+/Pmxs1B9rXa1CHRsbW+K63bt3Y8SIEVi8eLG6mYiIyEgI1vbIe7uPoWMYrfz8fPTp0wc7duyAIAgQiUTo0qUL6tWrB7FYjPbt2yM0NFSjJ6G0fmt2586d0b9/f0yYMEHbuyYiIj174TsY4JSWJZo5cyZ2796NVatWIT4+Xm7KUUtLS/Tq1Qs7duzQqA+dPENVp04d/PXXX7rYNRER6UmBW2tIqjcwdAyj9vPPP2PUqFEYMWIEqlWrVmx9w4YNcefOHY360Ppd34WFhfjll180HoSciPTDzsZK7r9EACCYV0Ke5weGjmH00tLS8M47JX9/b2JigtzcXI36UKtQDxkyROHyjIwMnDlzBikpKfyOmqiMiB4dYugIZITy63cFzCsZOobRc3V1xY0bN0pcf/LkSdStW1ejPtQq1IcPH1YwSbkIdnZ2aNGiBYYNG4b27dtrFIyIiAxDsLR7OVQovVG/fv2wePFi9OjRA/Xr1wcAWX1ct24dfvnlF3z11Vca9aFWoU5KStKoUyIiMl75ddoDJmaGjlEmTJ8+HWfOnEGrVq3QsGFDiEQihIaG4smTJ7h//z46duyI0NBQjfrggNxERPQfU0sU1Gpp6BRlhrm5Ofbt24f169ejdu3a8PT0RF5eHho1aoQNGzZg165dMDHRbBITpc+oc3NzkZ6ejho1asDc3FxuXUxMDH766Sc8fPgQnp6emDp1Kt59912NghERkf4V1GrFx7FKERYWhgEDBqBx48YAgOTkZDg4OKB///7o37+/TvpU+oz6yy+/RKNGjZCfny+3fM6cORg+fDiOHj2KR48eYfv27WjdujX+/vtvrYclIiIdEomR7/HmIaIrsujoaFy/fl323sPDA9u2bdNpn0oX6iNHjqBz585yw6BlZmZizpw5cHFxwa1bt/Do0SOcOXMG5ubmGn95TkRE+lXo4g/Bmo/WlsbJyUnuuehXBzjRFaUvfSclJaFHjx5yy/bu3Yv8/HxMnjwZHh4eAF7OST148GD88ssv2k1KRES6IxIjr15nQ6cwep06dcKXX36JAwcOoGrVqgCARYsWYfPmzSVuIxKJNBqdTOlCnZWVherVq8stO3bsGEQiEUJC5J/D9PLywqNHj9QORURE+lXgHgzBpoahYxi9pUuXwtHREUeOHMHVq1chEolw7949PHnypMRtXn+cWVVKX/p2c3Mr9lB3bGwsnJycij3MnZ+fD1tbW7UCrVixAu7u7rC0tERAQADOnTtXavuMjAyMGTMGzs7OsLCwQP369bF37161+iYiqogEC1vk1e9q6BhlQqVKlTBv3jycPn0aCQkJEAQB0dHRSExMLPGl6RCiShfq9u3bIyYmBmfPngUAfP/997hx4wY++KD4EHMXLlyAu7u7ymG2bNmCsLAwRERE4OLFi/Dx8UFISAjS0tIUts/Pz0e7du2QlJSEX3/9FfHx8Vi3bh2n2CQiUkHe2304CpmSPvzwQxw/flz2/siRI2jXrp1O+1S6UM+cORM2NjZo3rw5zM3N8cknn8DBwQHh4eFy7XJzc7Ft2zb873//UznM4sWLMXz4cAwePBheXl5YvXo1rK2tERMTo7B9TEwMnjx5gu3btyMwMBDu7u4ICgqCj4+Pyn0TEVVEhU4+KKzJx2mVtWPHDiQnJ8vet2nTBgcPHtRpn0oXant7e8TFxeGrr77C0KFDMW/ePFy+fBlOTk5y7a5cuYKPP/4YAwYMUClIfn4+Lly4gLZt2/4XTixG27Ztcfr0aYXb7Ny5E82aNcOYMWPg5OQEb29vzJs3DxKJRKW+iYgqJFNL5L3TH9DwO9SKxMXFBZcuXZK9L5qDWpdUGkLUzs4On3/+ealt/P394e/vr3KQ9PR0SCSSYoXfycmpxAHP79y5g8OHD+Pjjz/G3r17cfv2bYwePRoFBQWIiIhQuE1eXh7y8vJk77Ozs1XOSkRUHuR5fgDBys7QMcqUPn364Ouvv8Yvv/wiu+t7ypQpiIqKKnEbkUik0dgiWp/mUp+kUikcHR2xdu1amJiYwM/PDw8ePMDChQtLLNRRUVGYNWuWnpMSERkXaZVaKHAPNnSMMicqKgp169bFkSNHkJaWBpFIhEqVKhV7KkqbjKZQ29vbw8TEBKmpqXLLU1NTUaOG4kcGnJ2dYWZmJjeOasOGDZGSkoL8/PxiQ50CwNSpUxEWFiZ7HxcXh6CgIC19CiKisuGFdz9AxOkeVGViYoIRI0ZgxIgRAF5+RTtjxgz069dPZ30azVEyNzeHn58fDh06JFsmlUpx6NAhNGvWTOE2gYGBuH37NqRSqWzZzZs34ezsrLBIA4CFhQVsbW1lr1dHWiMiqggKnZtCWk2zOZLppcTERHTv3l2nfRhNoQZeDna+bt06bNy4EdevX8eoUaOQk5ODwYMHAwAGDhyIqVOnytqPGjUKT548wfjx43Hz5k3s2bMH8+bNw5gxYwz1EYiIjJtIjDzP4o/Vknrc3NxgbW2t0z6UuvS9c+dONG3aFDVr1tRpmN69e+PRo0cIDw9HSkoKfH19sW/fPtkNZsnJyRCL//vdwtXVFfv370doaCgaNWoEFxcXjB8/HpMnT9ZpTiKisqrgrWYQbJze3JAUEovFEIvFyM3Nhbm5OcRi8Rvv+haJRCgsLFS7T6UK9QcffIAffvhBdg2+du3aiI6ORteu2h/JZuzYsRg7dqzCdbGxscWWNWvWDGfOnNF6DiKi8keE/LodDR2iTAsPD4dIJIKpqance11SqlBXrlwZGRkZsvdJSUl8rImIqIwprOHLs2kNRUZGlvpeF5Qq1P7+/pg7dy5SU1NRpUoVAC9nzkpJSSlxG5FIhNDQUO2kJCIijRV4tH1zIzI6ShXqlStXYuDAgZg9ezaAl0V406ZN2LRpU4nbsFATERkPqY0zJNXrGzpGuZKXl4cff/wRBw4cQEJCArKyslC5cmXUrVsXHTp0QL9+/Up8AkkVShXqunXr4tSpU3jx4gXS0tLg7u6O6OhodOvWTeMARESkewVurThUqBZdvnwZ3bp1w927dyEIAqpUqQIbGxukpaXh4sWL2Lp1K+bOnYudO3eiYcOGGvWl0uNZlpaWqFWrFiIiItCmTRu4ubmV+iIiIiMgEqPQ5T1Dp9ALVadKLrJ582aIRCKlnonOzs5G165dkZqairlz5+LevXt4+vSp3H/nzJmDf//9F126dEFOTo5Gn0mt56gjIiLg7e0tC3z9+nVcv36dN5gRERkhiYM3BIvKho6hc6pOlVwkKSkJkyZNQsuWLZXqZ/369UhOTsaePXswZcqUYlMru7i4YOrUqdi1axcSExOxYcMGdT8SAA0GPPnrr78QHBwMOzs7eHt7w9vbG3Z2dmjTpg3Onz+vUSgiItKeApeKMY2lqlMlA4BEIsHHH3+MWbNmoXbt2kr1s2fPHrRv3x6tW7cutV2bNm3Qrl077Nq1S5WPUYxahfrs2bNo1aoVLl68iGHDhmHJkiVYsmQJhg0bhosXL6JVq1ZKX24gIiIdEolR6NjI0Ck0kp2djczMTNnr1RkQi6gzVTIAfPnll3B0dMTQoUOVznP58uU3Fukibdq0weXLl5XetyJqTcoxffp0uLi44MSJE8UmzIiMjERgYCCmT5+u88m0iYiodJLq9QHzSoaOoZHXJ06KiIgo9vyyOlMlnzhxAt999x3i4uJUyvPkyZMSJ4t6nZOTE548eaLS/l+nVqE+e/YswsPDFQZ1cnLCiBEjZI9yERGR4RQ6ehs6gsaOHj0KX19f2XsLCwuN95mVlYUBAwZg3bp1sLe3V2nbvLw8mJmZKdXW1NQU+fn56kT8bx/qbCQWi0sdt1QikciNyU1ERIYhcXjb0BE0ZmNjA1tb21LbqDpVckJCApKSktClSxfZsqKZGE1NTREfH486deqU2F9SUhIuXrz4xuyJiYlvbPMmahXq5s2bY8WKFejXr1+xx7CSk5OxcuVKBAYGahyOiIjUJ5hXgrSyy5sblgOvTpVc9IhV0VTJiuaP8PT0LPbd8YwZM5CVlYWlS5fC1dW11P5mzpyJmTNnvjGXIAgajwWuVqGeN28eWrVqBU9PT3zwwQeoX//laDfx8fHYsWMHTE1NERUVpVEwIiLSjKRaPUBUca5uhoWFYdCgQWjatCn8/f0RHR1dbKpkFxcXREVFwdLSUvaYcZGqVasCQLHlr1u/fr1O8pdErULduHFjnD17FtOnT8fOnTuRm5sLALC2tkaHDh0wZ84ceHl5aTUoERGpRmJX19AR9ErVqZLVNWjQII33oQq1CjUAeHl5Ydu2bZBKpXj06BEAwMHBgd9NExEZCWnVijdCpKpTJb9K04FJdEXtQl1ELBYXux2eiIgMT2Jby9ARSAt4+ktEVA4JFlXK/PPT9BILNRFROSSt7GzoCKQlLNREROWQtJKjoSOQlrBQExGVQ1JrB0NHIC3R+GYyIiIyPoJVdUNHqFCuXbuGO3fu4OnTpxAEodj6gQMHqr1vjQq1LoMREZH6pFbVDB2hQkhISED//v1x7tw5hXUQAEQikf4LtT6CERGR+gTLqoaOUCGMHDkSly9fRnR0NFq2bAk7Ozut96FWodZHMCIiUo2jgz0gSOFknvvy8SzSuZMnT2LatGn47LPPdNaHWoVaH8GIiEg1R3b+DFFuOqyPzUaOiXLTMJJm7O3tUaWKbn8pUuuub30EIyIi9QgWlQ0docL49NNP8eOPP0IikeisD7XOqIuCjRkzBiYmJtrOREREGhAsSp+7mbSnfv36kEgk8PHxwZAhQ+Dq6qqwLn744Ydq96FWodZHMCIiUo9gbmPoCBVG7969ZX+eNGmSwjYikUijM261CrU+ghERkXpYqPXnyJEjOu9DrUKtj2BERKQewZzfUetLUFCQzvtQq1DrIxgREalHMLM2dIQK6dq1a7h79y4AwM3NDV5eXlrZr8ZDiOoqGBERqUcw4/SW+rRjxw6EhYUhKSlJbrmHhwcWL16Mrl27arR/tQu1roMREZGaeEatN3v37kWPHj3g5uaGefPmoWHDhgCA69evY+3atfjwww+xe/dudOjQQe0+1CrU+ghGRETqEcysDB2hwpg9ezYaNWqE48ePo1Kl/65kdO3aFWPHjkWLFi0wa9Ys/RdqfQQjIiL1CKaWho5QYfzzzz+YN2+eXC0sUqlSJXzyySeYNm2aRn2oNTLZP//8g0GDBpUa7J9//tEoGBERqcnEwtAJKgxLS0s8efKkxPVPnjyBpaVmvzipVaj1EYyIiNQjiDW+T5iU1KZNGyxduhSnT58utu7s2bP45ptv0LZtW436UOtoFgXr0KEDmjVrpjBY+/btNQpGRERqYqHWmwULFqBZs2Zo0aIF/P390aBBAwBAfHw8zp07B0dHR8yfP1+jPtQ6mvoIRkRE6hIZOkCF4eHhgX/++QdRUVH4448/sGXLFgAvH1ceP348pkyZAkdHR436UKtQ6yMYERFRWeDo6IglS5ZgyZIlOtm/2tdHdB2MiIjUJEgNnYC0iF9kEBGVO4KhA5RbQ4YMgUgkwtq1a2FiYoIhQ4a8cRuRSITvvvtO7T6VKtSGCEZERGriGbXOHD58GGKxGFKpFCYmJjh8+DBEotLvCXjT+jdRqlAbIhgREalJ4Bm1rrw+bPbr73VBqUJtiGBERETGLjk5GQ4ODrCyUjxs6/Pnz/Ho0SPUqlVL7T7UGvAkOTkZz58/L3H98+fPkZycrHYoIiLSAC9o6o2Hhwe2bdtW4vqdO3fCw8NDoz7UKtT6CEZERGoSmRg6QYUhvOFrhoKCAojFapVaGbW21nWwFStWwN3dHZaWlggICMC5c+eU2m7z5s0QiUTo3r272n0TEZV5LNQ6lZmZieTkZNmV48ePH8vev/r6559/sHnzZjg7O2vUn9KPZ2VmZiIjI0P2vijY6zIyMjQKtmXLFoSFhWH16tUICAhAdHQ0QkJCEB8fX+ogKklJSZg0aRJatmypVr9EROWGmIVal5YsWYIvv/wSwMsbpydMmIAJEyYobCsIAubMmaNRf0oXan0FW7x4MYYPH47BgwcDAFavXo09e/YgJiYGU6ZMUbiNRCLBxx9/jFmzZuH48eNyv1AQEVU0nJRDt9q3bw8bGxsIgoAvvvgCffv2RZMmTeTaiEQiVKpUCX5+fmjatKlG/Sl9NPURLD8/HxcuXMDUqVNly8RiMdq2batwZpIiX375JRwdHTF06FAcP3681D7y8vKQl5cne5+dna1yTiIioyY2M3SCcq1Zs2ayCalycnLQo0cPeHt766w/pQu1PoKlp6dDIpHAyclJbrmTkxNu3LihcJsTJ07gu+++Q1xcnFJ9REVFYdasWZpGJSIyTiYWvPStJ7m5ufjmm29gbW2t00Kt8h1fRcH++OMPXeRRSVZWFgYMGIB169bB3t5eqW2mTp2KZ8+eyV5Hjx7VcUoiIv0RLCoDIs3uMiblWFtbw9TUFJUqVdJpPyp/kaHLYPb29jAxMUFqaqrc8tTUVNSoUaNY+4SEBCQlJaFLly6yZVLpy6HzTE1NER8fjzp16shtY2FhAQsLC9l7GxsbbX4EIiKqQHr06IFff/0Vo0aN0tmInGr92lUU7E2PaanK3Nwcfn5+OHTokGyZVCrFoUOHZJfdX+Xp6YnLly8jLi5O9uratSuCg4MRFxcHV1dXreYjIiJ6VZ8+fZCWlobg4GD89NNPOHnyJC5evFjspQm1bg3s06cPRo8ejeDgYAwfPhzu7u4Kh097/WYzZYSFhWHQoEFo2rQp/P39ER0djZycHNld4AMHDoSLiwuioqJgaWlZ7HuBqlWrAoBOvy8gIiICgNatW8v+rOhmZkEQIBKJIJFI1O5DrUKty2C9e/fGo0ePEB4ejpSUFPj6+mLfvn2yG8ySk5M1HuWFiIhIG9avX6/zPtQq1LoONnbsWIwdO1bhutjY2FK33bBhg/YDERERKTBo0CCd96FWodZHMCIiorIkOzsb9+7dAwC4urpq7WZlja8hZ2dn4/r167h+/ToHDyEiogrnr7/+QnBwMOzs7ODt7Q1vb2/Y2dmhTZs2OH/+vMb7V3ucub/++gtffPEFTpw4IXskSiwWo2XLlliwYIHGQ6YREREZu7Nnz6J169YwNzfHsGHD0LBhQwDA9evX8fPPP6NVq1aIjY2Fv7+/2n2oVaj1EYyIiEhVK1aswMKFC5GSkgIfHx8sW7asxFq0bt06fP/997hy5QoAwM/PD/PmzVOpdk2fPh0uLi44ceJEsfE+IiMjERgYiOnTp+PgwYNqfya1Ln0XBYuPj8eqVaswbtw4jBs3DqtWrUJ8fDxq1qyJ6dOnqx2KiIhIVUWzL0ZERODixYvw8fFBSEgI0tLSFLaPjY1F3759ceTIEZw+fRqurq5o3749Hjx4oHSfZ8+exciRIxUOyuXk5IQRI0bgzJkzan8mQM1CrY9gREREqnh19kUvLy+sXr0a1tbWiImJUdj+p59+wujRo+Hr6wtPT098++23skG2lCUWi1FYWFjieolEovEjxWptrY9gREREwMubljMzM2WvV2dALFI0+2Lbtm1ly5SZffFVubm5KCgoQLVq1ZTO1rx5c6xYsQJ3794tti45ORkrV65EYGCg0vtTRK3vqIuC9evXD25ubjoJRkREBABBQUFy7yMiIhAZGSm3TJ3ZF183efJk1KxZU67Yv8m8efPQqlUreHp64oMPPkD9+vUBAPHx8dixYwdMTU0RFRWl9P4UUatQ6yMYERERABw9ehS+vr6y969OrKQtX331FTZv3ozY2FhYWloqvV3jxo1x9uxZTJ8+HTt37kRubi6AlxNYdejQAXPmzIGXl5dG2dQq1PoIRkREBLyc5dDW1rbUNqrOvviqr7/+Gl999RX+/PNPNGrUSOV8Xl5e2LZtG6RSKR49egQAcHBw0NpXwGo/R63rYERERMp6dfbF7t27A/hv9sWShqQGgAULFmDu3LnYv3+/xuN/iEQi2VSX2pzyUuOqWhTs1YBERET6FhYWhnXr1mHjxo24fv06Ro0aVWz2xalTp8raz58/HzNnzkRMTAzc3d2RkpKClJQUlUfZvHbtGnr27AlbW1s4OzvD2dkZtra26Nmzp+wZbU2ofUZ97do1hIeHY//+/XKXvkNCQhAZGclpJomISK9UnX1x1apVyM/PR8+ePeX2o+hmtZIcP34c77//PqRSKbp16yZ3z9bOnTvxxx9/YN++fWjZsqXan0utQq2PYERERKpSZfbFpKQkjfsLDQ2Fo6Mjjh49CldXV7l19+7dQ6tWrRAWFoa//vpL7T7UKtT6CEZERGTsrl69itmzZxerhcDLGbRGjRql9Nl5SdT6jvrq1asYPXp0qcGuXr2qUTAiIiJj5+bmpnAAliL5+fkKa6Uq1CrU+ghGRERk7MLDw/HNN98gLi6u2LpLly5h2bJlGp9Rq3XpOzw8HKGhoejUqZPcQ+ivBouOjtYoGBERkbE7c+YMnJyc4Ofnh+bNm6Nu3boAgFu3buH06dPw9vbG6dOn5YYxFYlEWLp0qdJ9qFWo9RGMiIjI2C1fvlz255MnT+LkyZNy6y9fvozLly/LLdNLodZHMCIiImMnlUp13odahVofwYiIiEiDAU+IiIjopcTERPzxxx+y6S7d3Nzw/vvvw8PDQ+N9a1SodRmMiIioLJg4cSKWLl1a7GqzWCzGhAkT8PXXX2u0f7ULta6DERERGbtFixZhyZIl6NmzJyZOnIiGDRsCAK5fv44lS5ZgyZIlcHFxQWhoqNp9qPUcdVGwDz/8EKdPn0ZGRgYyMjJw+vRp9OzZUxaOiIioPFu3bh26du2KX375BQEBAbC1tYWtrS0CAgKwefNmdOnSBWvWrNGoD7UKtT6CERERGbukpCSEhISUuD4kJETjMcXVKtT6CEZERGTsHB0d8ffff5e4/u+//4aDg4NGfahVqPURjIiIyNj16tUL3377Lb766ivk5OTIlufk5GD+/Pn49ttv0bt3b436UOtmsl69emHp0qVwd3fHZ599hkqVKsmCLV++HN9++y0mTJigUTAiIiJjN3v2bMTFxWHatGkIDw9HzZo1AQD//vsvCgsLERwcjC+//FKjPtQq1PoIRkREZOysra1x6NAh7NixQ+5x5Q4dOqBjx47o0qULRCKRRn2oVaj1EYyIiMiY5ebmon///ujRowc+/vhjdOvWTSf9qFyo9RWMiIjImFlbW+PPP//E+++/r9N+VL6ZrChYbm6uLvIQERGVGS1atJCbKVIX1LrrWx/BiIiIjN3y5ctx/PhxzJgxA/fv39dJH2oVan0EIyIiMnY+Pj64f/8+oqKi4ObmBgsLC9kgYEWvKlWqaNSHWjeT+fj4oLCwEFFRUYiKioKpqSksLCzk2ohEIjx79kyjcERERMasR48eOr95Wq1CrY9gRERExm7Dhg0670OtQq2PYERERMbqxYsX2LFjBxITE2Fvb49OnTrB2dlZJ32pVKj1GYyIiMgYpaWloXnz5khMTIQgCABePhG1fft2tG3bVuv9KV2o9R2MiIjIGM2ePRtJSUkIDQ1FmzZtcPv2bcyePRsjR45EQkKC1vtTulDrOxgREZExOnDgAAYOHIivv/5atszJyQn9+vVDfHw8GjRooNX+lC7U+g5GRERkjJKTkzF58mS5ZS1atIAgCEhNTdV6PVT6Oerk5GS0aNGixGBEREQVQV5eHiwtLeWWFb0vLCzUen9Kn1HrOxgREZGxSkpKwsWLF2Xvi8YNuXXrFqpWrVqsfZMmTdTuS6W7vvUZjIiIyFjNnDkTM2fOLLZ89OjRcu8FQYBIJIJEIlG7L5UKtT6DERERGaP169frtT+lC7U+g61YsQILFy5ESkoKfHx8sGzZMvj7+ytsu27dOnz//fe4cuUKAMDPzw/z5s0rsT0REZEmBg0apNf+lC7U+gq2ZcsWhIWFYfXq1QgICEB0dDRCQkIQHx8PR0fHYu1jY2PRt29fNG/eHJaWlpg/fz7at2+Pq1evwsXFRS+ZiYiIdEWt2bN0afHixRg+fDgGDx4MLy8vrF69GtbW1oiJiVHY/qeffsLo0aPh6+sLT09PfPvtt5BKpTh06JCek5dNTZs2xVtvvYWmTZsaOgoRESmg1ljfupKfn48LFy5g6tSpsmVisRht27ZVev7r3NxcFBQUoFq1agrX5+XlIS8vT/Y+Oztbs9BlXEpKCh48eGDoGEREVAKjOqNOT0+HRCKBk5OT3HInJyekpKQotY/JkyejZs2aJQ5rGhUVhSpVqsheQUFBGucmIiLSFaMq1Jr66quvsHnzZmzbtq3YM99Fpk6dimfPnsleR48e1XNKIiIi5RnVpW97e3uYmJgUG+ksNTUVNWrUKHXbr7/+Gl999RX+/PNPNGrUqMR2FhYWsLCwkL23sbHRLDQREZEOGdUZtbm5Ofz8/ORuBCu6MaxZs2YlbrdgwQLMnj0b+/bt401RRERUrhjVGTUAhIWFYdCgQWjatCn8/f0RHR2NnJwcDB48GAAwcOBAuLi4ICoqCgAwf/58hIeHY9OmTXB3d5d9l21jY8OzZSIiKvOMrlD37t0bjx49Qnh4OFJSUuDr64t9+/bJbjBLTk6GWPzfhYBVq1YhPz8fPXv2lNtPREQEIiMj9RmdiIhI64yuUAPA2LFjMXbsWIXrYmNj5d4nJSXpPhAREZGBGNV31ERERCSPhZqIiMiIsVATEREZMRZqIiIqN1asWAF3d3dYWloiICAA586dK7X91q1b4enpCUtLS7zzzjvYu3evnpIqj4W6gqtRowZcXFzeOKAMEZGxK5p9MSIiAhcvXoSPjw9CQkKQlpamsP2pU6fQt29fDB06FJcuXUL37t3RvXt32bTJxoKFuoI7f/487t+/j/Pnzxs6ChGRRlSdfXHp0qXo0KEDPv/8czRs2BCzZ89GkyZNsHz5cj0nLx0LNRERlXlFsy++OiHTm2ZfPH36dLEJnEJCQpSerVFfjPI5atIviUQCqVSqlX1JJYWQSiSQSgpRUFCglX1ScYUSKQol2jlm2lYoSCGWSHn8X1NYUICCgkJIpLkQFRQaOo5GhMJ82f/jglh3x7mw8OXfU3Z2NjIzM2XLX5+zASh99sUbN24o3H9KSopGszXqCwt1GWUt5CI3IxfdJszTeF83zhzCzbOHtZBK3i9zRml9n1SGTPzJ0AmonHh9OuKKNvIkCzWhgX8w6r/bWmv7yxVZw75KJfwYPlRr+yR5fy0bjEfZxnlWVkV4BvPK1fHuZ+sNHcXoSP//TLQ8EJuYQmxqrtM+Ll26hICAABw9ehS+vr6y5a+fTQPqzb5Yo0YNtWZr1DcWaoJILIZIi/sTi0wgNjGFmZmZFvdKrzI1EcPUxDhvMTEVXmbj8VeAfycqMTV9WaJsbGxga2tbattXZ1/s3r07gP9mXyxpSOpmzZrh0KFDmDBhgmzZwYMHS52t0RBYqCu4oz+vQF5uNiysbRDUd4yh4xARqU3V2RfHjx+PoKAgLFq0CJ06dcLmzZtx/vx5rF271pAfoxgW6gouLzcbL7Iz39yQiMjIqTr7YvPmzbFp0ybMmDED06ZNQ7169bB9+3Z4e3sb6iMoxEJNRETlhiqzLwJAr1690KtXLx2n0oxxfslFREREAFioiYiIjBoLNRERkRFjoSYiIjJiLNRERERGjIWaiIjIiLFQExERGTEWaiIiIiPGQk1ERGTEWKiJiIiMGAs1ERGREeNY3xWchbWN3H+JiMi4sFBXcJzakojIuPHSNxERkRFjoSYiIjJiLNRERERGjIWaiIjIiLFQExERGTEWaiIiIiPGQk1ERGTEWKiJiIiMGAs1ERGREWOhJiIiMmIs1EREREaMhZqIiMiIsVATEREZMRZqIiIiI8ZCTUREZMRYqImIiIwYCzUREZERY6EmIiIyYizURERERswoC/WKFSvg7u4OS0tLBAQE4Ny5c6W237p1Kzw9PWFpaYl33nkHe/fu1VNSIiIi3TK6Qr1lyxaEhYUhIiICFy9ehI+PD0JCQpCWlqaw/alTp9C3b18MHToUly5dQvfu3dG9e3dcuXJFz8mJiIi0z+gK9eLFizF8+HAMHjwYXl5eWL16NaytrRETE6Ow/dKlS9GhQwd8/vnnaNiwIWbPno0mTZpg+fLlek5ORESkfUZVqPPz83HhwgW0bdtWtkwsFqNt27Y4ffq0wm1Onz4t1x4AQkJCSmxPRERUlpgaOsCr0tPTIZFI4OTkJLfcyckJN27cULhNSkqKwvYpKSkK2+fl5SEvL0/2Pjs7GwBw/fp1TaLr1ZOHd/Ei64mhY5TohcgS4lxrXLx40dBRyq0b9x7j6XOJoWMoZCNkw8waMNXC8Xd2doazs7MWUunfw4cP8fDhQ0PHKNPK0s9lXTKqQq0PUVFRmDVrltwyNzc39O/f30CJyq8Da+cYOgIZ0iLNb+qMiIhAZGSk5lkMYM2aNcV+1pDqgoKCyuwva9piVIXa3t4eJiYmSE1NlVuempqKGjVqKNymRo0aKrWfOnUqwsLC5JY9efIET54Y7xmqLmVnZyMoKAhHjx6FjY2NoeOQARjzv4Gy/AN65MiR6Nq1q177NOZjqa6yfFVFW0SCIAiGDvGqgIAA+Pv7Y9myZQAAqVSKWrVqYezYsZgyZUqx9r1790Zubi527dolW9a8eXM0atQIq1ev1lvusiozMxNVqlTBs2fPYGtra+g4ZAD8N1B+8FiWT0Z1Rg0AYWFhGDRoEJo2bQp/f39ER0cjJycHgwcPBgAMHDgQLi4uiIqKAgCMHz8eQUFBWLRoETp16oTNmzfj/PnzWLt2rSE/BhERkVYYXaHu3bs3Hj16hPDwcKSkpMDX1xf79u2T3TCWnJwMsfi/m9WbN2+OTZs2YcaMGZg2bRrq1auH7du3w9vb21AfgYiISGuM7tI36VdeXh6ioqIwdepUWFhYGDoOGQD/DZQfPJblEws1ERGRETOqAU+IiIhIHgs1ERGREWOhJq1KSkqCSCTChg0bDB2FiKhcYKE2oISEBIwcORK1a9eGpaUlbG1tERgYiKVLl+L58+c66/fatWuIjIxEUlKSzvpQxty5c9G1a1c4OTlBJBKV2RGodE0kEin1io2N1biv3NxcREZGqrQvHkfV8HiSqozu8ayKYs+ePejVqxcsLCwwcOBAeHt7Iz8/HydOnMDnn3+Oq1ev6uxZ8GvXrmHWrFlo3bo13N3dddKHMmbMmIEaNWqgcePG2L9/v8FyGLsffvhB7v3333+PgwcPFlvesGFDjfvKzc2VDXvZunVrpbbhcVQNjyepioXaABITE9GnTx+4ubnh8OHDcsPjjRkzBrdv38aePXsMmPA/giDgxYsXsLKy0vq+ExMT4e7ujvT0dDg4OGh9/+XF6+PQnzlzBgcPHjSa8el5HFXD40mq4qVvA1iwYAGys7Px3XffKRzDtm7duhg/frzsfWFhIWbPno06derAwsIC7u7umDZtmtwsYADg7u6Ozp0748SJE/D394elpSVq166N77//XtZmw4YN6NWrFwAgODi42GW2on3s378fTZs2hZWVFdasWQMAuHPnDnr16oVq1arB2toa7733nka/UBjybL68kUqliI6Oxttvvw1LS0s4OTlh5MiRePr0qVy78+fPIyQkBPb29rCysoKHhweGDBkC4OX9BUU/mGfNmiX7t/GmS588jtrH40mv4hm1AezatQu1a9dG8+bNlWo/bNgwbNy4ET179sTEiRNx9uxZREVF4fr169i2bZtc29u3b6Nnz54YOnQoBg0ahJiYGHzyySfw8/PD22+/jVatWmHcuHH45ptvMG3aNNnltVcvs8XHx6Nv374YOXIkhg8fjgYNGiA1NRXNmzdHbm4uxo0bh+rVq2Pjxo3o2rUrfv31V3zwwQfa+wsilY0cORIbNmzA4MGDMW7cOCQmJmL58uW4dOkSTp48CTMzM6SlpaF9+/ZwcHDAlClTULVqVSQlJeH3338HADg4OGDVqlUYNWoUPvjgA3z44YcAgEaNGhnyo1VIPJ4kRyC9evbsmQBA6Natm1Lt4+LiBADCsGHD5JZPmjRJACAcPnxYtszNzU0AIBw7dky2LC0tTbCwsBAmTpwoW7Z161YBgHDkyJFi/RXtY9++fXLLJ0yYIAAQjh8/LluWlZUleHh4CO7u7oJEIhEEQRASExMFAML69euV+nyCIAiPHj0SAAgRERFKb1ORjRkzRnj1f93jx48LAISffvpJrt2+ffvklm/btk0AIPz1118l7luTY8HjqB4eT3oTXvrWs8zMTABA5cqVlWq/d+/LOX1fn5pz4sSJAFDs0rOXlxdatmwpe+/g4IAGDRrgzp07Smf08PBASEhIsRz+/v5o0aKFbJmNjQ1GjBiBpKQkXLt2Ten9k3Zt3boVVapUQbt27ZCeni57+fn5wcbGBkeOHAEAVK1aFQCwe/duFBQUGDAxlYbHk17HQq1nRVPPZWVlKdX+7t27EIvFqFu3rtzyGjVqoGrVqrh7967c8lq1ahXbh52dXbHvtkrj4eGhMEeDBg2KLS+6ZP56DtKfW7du4dmzZ3B0dISDg4PcKzs7G2lpaQCAoKAg9OjRA7NmzYK9vT26deuG9evXF7vXgQyLx5Nex++o9czW1hY1a9bElStXVNpOJBIp1c7ExEThckGFId11cYc36Y5UKoWjoyN++uknheuLbigSiUT49ddfcebMGezatQv79+/HkCFDsGjRIpw5cwY2Njb6jE0l4PGk17FQG0Dnzp2xdu1anD59Gs2aNSu1rZubG6RSKW7duiV3w1dqaioyMjLg5uamcv/KFv3Xc8THxxdbfuPGDdl6Mow6dergzz//RGBgoFK/ZL333nt47733MHfuXGzatAkff/wxNm/ejGHDhqn1b4O0i8eTXsdL3wbwxRdfoFKlShg2bBhSU1OLrU9ISMDSpUsBAB07dgQAREdHy7VZvHgxAKBTp04q91+pUiUAQEZGhtLbdOzYEefOncPp06dly3JycrB27Vq4u7vDy8tL5RykHR999BEkEglmz55dbF1hYaHsOD99+rTYlRVfX18AkF0utba2BqDavw3SLh5Peh3PqA2gTp062LRpE3r37o2GDRvKjUx26tQpbN26FZ988gkAwMfHB4MGDcLatWuRkZGBoKAgnDt3Dhs3bkT37t0RHByscv++vr4wMTHB/Pnz8ezZM1hYWKBNmzZwdHQscZspU6bg559/xvvvv49x48ahWrVq2LhxIxITE/Hbb79BLFb9d74ffvgBd+/eRW5uLgDg2LFjmDNnDgBgwIABPEtXUlBQEEaOHImoqCjExcWhffv2MDMzw61bt7B161YsXboUPXv2xMaNG7Fy5Up88MEHqFOnDrKysrBu3TrY2trKfiG0srKCl5cXtmzZgvr166NatWrw9vaGt7d3if3zOGoXjycVY+C7ziu0mzdvCsOHDxfc3d0Fc3NzoXLlykJgYKCwbNky4cWLF7J2BQUFwqxZswQPDw/BzMxMcHV1FaZOnSrXRhBePlrVqVOnYv0EBQUJQUFBcsvWrVsn1K5dWzAxMZF7VKukfQiCICQkJAg9e/YUqlatKlhaWgr+/v7C7t275dqo8nhWUFCQAEDhS9GjY/TS64/zFFm7dq3g5+cnWFlZCZUrVxbeeecd4YsvvhD+/fdfQRAE4eLFi0Lfvn2FWrVqCRYWFoKjo6PQuXNn4fz583L7OXXqlODn5yeYm5sr9XgOj6NmeDzpTUSCoMJdRkRERKRX/I6aiIjIiLFQExERGTEWaiIiIiPGQk1ERGTEWKiJiIiMGAs1ERGREWOhNmILFiyAp6cnpFKpoaNorE+fPvjoo48MHaNM4fEnRZKSkiASibBhwwZDRyE9YaE2UpmZmZg/fz4mT54sG/VLJBJBJBJh0aJFxdpv2LABIpEI58+f13qWdu3aQSQSYezYsQrXf/fdd2jYsCEsLS1Rr149LFu2rFibyZMn47fffsPff/+t9XzlEY8/ERVhoTZSMTExKCwsRN++fYutW7hwoWx4P137/fff5cb3ft2aNWswbNgwvP3221i2bBmaNWuGcePGYf78+XLtGjdujKZNmyosMlQcjz+VxM3NDc+fP8eAAQMMHYX0xdBDo5FijRo1Evr37y+3DIDg6+srABAWLVokt279+vUCAOGvv/7SWobnz58L7u7uwpdffikAEMaMGSO3Pjc3V6hevXqxIUc//vhjoVKlSsKTJ0/kln/99ddCpUqVhKysLK1lLK94/ImoCM+ojVBiYiL++ecftG3btti6wMBAtGnTBgsWLMDz5891mmPBggWQSqWYNGmSwvVHjhzB48ePMXr0aLnlY8aMQU5ODvbs2SO3vF27dsjJycHBgwd1lrk84PEv/yIjIyESiXDz5k30798fVapUgYODA2bOnAlBEHDv3j1069YNtra2qFGjhtyVCEXfUX/yySewsbHBgwcP0L17d9jY2MDBwQGTJk2CRCKRtYuNjYVIJEJsbKxcHkX7TElJweDBg/HWW2/BwsICzs7O6NatG5KSknT0t0IlYaE2QqdOnQIANGnSROH6yMhIpKamYtWqVaXuJy8vD+np6Uq9XpecnIyvvvoK8+fPL3FO3EuXLgEAmjZtKrfcz88PYrFYtr6Il5cXrKyscPLkyVJzV3Q8/hVH7969IZVK8dVXXyEgIABz5sxBdHQ02rVrBxcXF8yfPx9169bFpEmTcOzYsVL3JZFIEBISgurVq+Prr79GUFAQFi1ahLVr16qVrUePHti2bRsGDx6MlStXYty4ccjKykJycrJa+yP1cZpLI3Tjxg0AgIeHh8L1LVu2RHBwMBYuXIhRo0aV+IP0559/xuDBg5XqU3htbpaJEyeicePG6NOnT4nbPHz4ECYmJsWmxzQ3N0f16tXx77//yi03NTWFq6srrl27plSmiorHv+Lw9/fHmjVrAAAjRoyAu7s7Jk6ciKioKEyePBkA0LdvX9SsWRMxMTFo1apVift68eIFevfujZkzZwIAPv30UzRp0gTfffcdRo0apVKujIwMnDp1CgsXLpS7ojJ16lRVPyJpAQu1EXr8+DFMTU1hY2NTYpvIyEgEBQVh9erVCA0NVdgmJCRErcuMR44cwW+//YazZ8+W2u758+cwNzdXuM7S0lLhpVk7OzuFZ3D0Hx7/imPYsGGyP5uYmKBp06a4f/8+hg4dKltetWpVNGjQAHfu3Hnj/j799FO59y1btsQPP/ygci4rKyuYm5sjNjYWQ4cOhZ2dncr7IO1hoS6jWrVqheDgYCxYsKDY/5xFnJ2d4ezsrNJ+CwsLMW7cOAwYMADvvvtuqW2trKyQn5+vcN2LFy8UnukJggCRSKRSJiqOx798qFWrltz7KlWqwNLSEvb29sWWP378uNR9WVpawsHBQW6ZnZ0dnj59qnIuCwsLzJ8/HxMnToSTkxPee+89dO7cGQMHDkSNGjVU3h9phoXaCFWvXh2FhYXIyspC5cqVS2wXERGB1q1bY82aNahatWqx9c+fP8ezZ8+U6rPof77vv/8e8fHxWLNmTbGbRrKyspCUlARHR0dYW1vD2dkZEokEaWlpcpc/8/Pz8fjxY9SsWbNYP0+fPkW9evWUylRR8fhXHCYmJkotA4p/PaHsdq8q6ZekV284KzJhwgR06dIF27dvx/79+zFz5kxERUXh8OHDaNy48Rv7Iu3hzWRGyNPTE8DLu39LExQUhNatW2P+/PkKLzNu2bJFdlb1pleR5ORkFBQUIDAwEB4eHrIX8PKHuIeHBw4cOAAA8PX1BYBig2ycP38eUqlUtr5IYWEh7t27h4YNG6r091HR8PiTrhRdws7IyJBbfvfuXYXt69Spg4kTJ+LAgQO4cuUK8vPz+Sy8AfCM2gg1a9YMwMsfeI0aNSq1bWRkJFq3bq3wzk51vqPs06dPsR+wAPDBBx+gY8eOGD58OAICAgAAbdq0QbVq1bBq1Sp07NhR1nbVqlWwtrZGp06d5PZx7do1vHjxAs2bN1cpU0XD40+64ubmBhMTExw7dgzdu3eXLV+5cqVcu9zcXIjFYlhaWsqW1alTB5UrV0ZeXp6+4tL/Y6E2QrVr14a3tzf+/PNPDBkypNS2QUFBCAoKwtGjR4utU+c7Sk9PT9kZ3es8PDzk/ue2srLC7NmzMWbMGPTq1QshISE4fvw4fvzxR8ydOxfVqlWT2/7gwYOwtrZGu3btVMpU0fD4k65UqVIFvXr1wrJlyyASiVCnTh3s3r0baWlpcu1u3ryJ//3vf/joo4/g5eUFU1NTbNu2DampqaU+CUC6wUJtpIYMGYLw8HA8f/68xMdvikRGRiI4OFhPyeSNHj0aZmZmWLRoEXbu3AlXV1csWbIE48ePL9Z269at+PDDD0v93pVe4vEnXVm2bBkKCgqwevVqWFhY4KOPPsLChQvh7e0ta+Pq6oq+ffvi0KFD+OGHH2BqagpPT0/88ssv6NGjhwHTV0wi4U13KJBBPHv2DLVr18aCBQvkHtUoq+Li4tCkSRNcvHhR4aVVksfjT0RFWKiN2Pz587F+/Xpcu3ZNNoNSWdWnTx9IpVL88ssvho5SZvD4ExHAQk1ERGTUyvav6UREROUcCzUREZERY6EmIiIyYizURERERoyFmoiIiklKSoJIJMKGDRsMHaXCY6EmItJQQkICRo4cidq1a8PS0hK2trYIDAzE0qVLFY7Dri3Xrl1DZGRksQlU9G3u3Lno2rUrnJycIBKJEBkZadA85Q1HJiMi0sCePXvQq1cvWFhYYODAgfD29kZ+fj5OnDiBzz//HFevXlU4Frs2XLt2DbNmzULr1q3h7u6ukz6UMWPGDNSoUQONGzfG/v37DZajvGKhJiJSU2JiIvr06QM3NzccPnxYbmz1MWPG4Pbt29izZ48BE/5HEIQS5wnXVGJiItzd3ZGenl5sTmzSHC99ExGpacGCBcjOzsZ3332ncAKUunXryo17XlhYiNmzZ6NOnTqwsLCAu7s7pk2bVmxGKnd3d3Tu3BknTpyAv78/LC0tUbt2bXz//feyNhs2bECvXr0AAMHBwRCJRBCJRIiNjZXbx/79+9G0aVNYWVlhzZo1AIA7d+6gV69eqFatGqytrfHee+9p9AuFIc/mKwIWaiIiNe3atQu1a9dWeurOYcOGITw8HE2aNMGSJUsQFBSEqKgohTNS3b59Gz179kS7du2waNEi2NnZ4ZNPPsHVq1cBAK1atcK4ceMAANOmTcMPP/yAH374QW6+7/j4ePTt2xft2rXD0qVL4evri9TUVDRv3hz79+/H6NGjMXfuXLx48QJdu3bFtm3btPC3QlonEBGRyp49eyYAELp166ZU+7i4OAGAMGzYMLnlkyZNEgAIhw8fli1zc3MTAAjHjh2TLUtLSxMsLCyEiRMnypZt3bpVACAcOXKkWH9F+9i3b5/c8gkTJggAhOPHj8uWZWVlCR4eHoK7u7sgkUgEQRCExMREAYCwfv16pT6fIAjCo0ePBABCRESE0tvQm/GMmohIDZmZmQCg9LSde/fuBQCEhYXJLZ84cSIAFLv07OXlhZYtW8reOzg4oEGDBrhz547SGT08PBASElIsh7+/P1q0aCFbZmNjgxEjRiApKQnXrl1Tev+kHyzURERqsLW1BQBkZWUp1f7u3bsQi8WoW7eu3PIaNWqgatWquHv3rtzyWrVqFduHnZ0dnj59qnRGDw8PhTkaNGhQbHnRJfPXc5DhsVATEanB1tYWNWvWxJUrV1TaTiQSKdXOxMRE4XJBhQkPdXGHN+kfCzURkZo6d+6MhIQEnD59+o1t3dzcIJVKcevWLbnlqampyMjIgJubm8r9K1v0X88RHx9fbPmNGzdk68m4sFATEanpiy++QKVKlTBs2DCkpqYWW5+QkIClS5cCADp27AgAiI6OlmuzePFiAECnTp1U7r9SpUoAgIyMDKW36dixI86dOyf3y0VOTg7Wrl0Ld3d3eHl5qZyDdIsDnhARqalOnTrYtGkTevfujYYNG8qNTHbq1Cls3boVn3zyCQDAx8cHgwYNwtq1a5GRkYGgoCCcO3cOGzduRPfu3REcHKxy/76+vjAxMcH8+fPx7NkzWFhYoE2bNnB0dCxxmylTpuDnn3/G+++/j3HjxqFatWrYuHEjEhMT8dtvv0EsVv387YcffsDdu3eRm5sLADh27BjmzJkDABgwYADP0jVl6NvOiYjKups3bwrDhw8X3N3dBXNzc6Fy5cpCYGCgsGzZMuHFixeydgUFBcKsWbMEDw8PwczMTHB1dRWmTp0q10YQXj5a1alTp2L9BAUFCUFBQXLL1q1bJ9SuXVswMTGRe1SrpH0IgiAkJCQIPXv2FKpWrSpYWloK/v7+wu7du+XaqPJ4VlBQkABA4UvRo2OkGpEgqHBnAhEREekVv6MmIiIyYizURERERoyFmoiIyIixUBMRERkxFmoiIiIjxkJNRERkxFioiYiIjBgLNRERkRFjoSYiIjJiLNRERERGjIWaiIjIiLFQExERGTEWaiIiIiP2f0cMcwaQyUyeAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWTZJREFUeJzt3XdYFNf7NvB7F6SJCEpTgoAVCREUAxFUxJ+KsRs1llhij+WrgiZ2wFiIGhVj1wQ1xWhMYjeWqNhLLCRWVARRIyAq0pSyO+8fvmxcWXT7LnB/rmuvuDNn5tzrGB5mduYckSAIAoiIiMgoiQ0dgIiIiErHQk1ERGTEWKiJiIiMGAs1ERGREWOhJiIiMmIs1EREREaMhZqIiMiIsVATEREZMRZqIiIiI1bhC/XDhw8RFRWFhw8fGjoKERG9gj+fX2KhfvgQs2bNqvD/EIiIjA1/Pr9U4Qs1ERGRMWOhJiIiMmIs1EREREaMhZqIiMiIsVATEREZMRZqIiIiI8ZCTUREZMRYqImIiIyYURXqY8eOoXPnzqhZsyZEIhG2b9/+1m3i4uLQpEkTmJubo27dutiwYYPOcxIREemLURXq3Nxc+Pj4YMWKFUq1T0pKQseOHRESEoL4+HhMmDABw4YNw/79+3WclIiISD9MDR3gVR9++CE+/PBDpduvXr0aHh4eWLRoEQCgYcOGOHHiBJYsWYLQ0FBdxSQiItIboyrUqjp9+jTatGkjtyw0NBQTJkwodZv8/Hzk5+fL3ufk5Ogqns6MXrQJT7PzDB3jjeyqWGHlxH6GjlFuxX83HgU5Tw0do1Rm1nbwHbrU0DGIyoUyXahTU1Ph5OQkt8zJyQlZWVl4/vw5LC0tS2wTHR2NWbNm6SuiTjzNzkPGs7L3CwZpT0HOUxRkPzZ0DDJGkkJAbAqIRIZOQlpSpgu1OqZOnYrw8HDZ+/j4eAQHBxswkfrEIhGq2VQ2dAw5T7JyIRUEQ8eoOERimFnbGTqFTEHOU0CQGjpGxZabAVR2AEwq3I/3cqtMH0lnZ2ekpaXJLUtLS4ONjY3Cs2kAMDc3h7m5uey9tbW1TjPqUjWbyvg5apihY8jpG/Utz/b1yMzaDv7jvzd0DJlzSwfyTN8YSApYqMsRo7rrW1XNmjXDoUOH5JYdPHgQzZo1M1AiIiIjICkwdALSIqMq1Dk5OYiPj0d8fDyAl49fxcfHIyUlBcDLy9YDBw6Utf/ss89w584dfPHFF7hx4wZWrlyJX375BWFhYYaIT0RkHIry396GygyjKtTnz59H48aN0bhxYwBAeHg4GjdujIiICADAw4cPZUUbADw8PLBnzx4cPHgQPj4+WLRoEb799ls+mkVEFVvRC0MnIC0yqi8xWrVqBeENNyIpGnWsVatWuHTpkg5TERGVMYXPDZ2AtMiozqiJiEgLCnMNnYC0iIWaiKi8KTDuAZFINSzURETlTX62oROQFrFQExGVN/lZhk5gMCtWrIC7uzssLCwQEBCAc+fOvbF9TEwMGjRoAEtLS7i6uiIsLAwvXhjXzXgs1ERE5c2LZ4ZOYBBbtmxBeHg4IiMjcfHiRfj4+CA0NBTp6ekK22/atAlTpkxBZGQkrl+/ju+++w5btmzBtGnT9Jz8zVioiYjKmwpaqBcvXozhw4dj8ODB8PLywurVq2FlZYXY2FiF7U+dOoWgoCD069cP7u7uaNeuHfr27fvWs3B9Y6EmIipvnmcaOoHeFRQU4MKFC3IzKorFYrRp0wanT59WuE1gYCAuXLggK8x37tzB3r170aFDB71kVpZRPUdNRERa8CLT0Am0KicnB1lZ/33v/vqcDQCQkZEBiUSicEbFGzduKNxvv379kJGRgebNm0MQBBQVFeGzzz7jpW8iItKxvCeGTqBVwcHBqFq1quwVHR2tlf3GxcVh3rx5WLlyJS5evIjff/8de/bswezZs7Wyf23hGTURUXmT9xgQhHIzJ/XRo0fh6+sre//62TQA2Nvbw8TEROGMis7Ozgr3O3PmTAwYMADDhr2chfC9995Dbm4uRowYgenTp0MsNo5zWeNIQURE2iMpKFfPUltbW8PGxkb2UlSozczM4OfnJzejolQqxaFDh0qdUTEvL69EMTYxMQGANw5nrW88oyYiKo9y0gALG0On0Kvw8HAMGjQITZs2hb+/P2JiYpCbm4vBgwcDAAYOHAgXFxfZpfPOnTtj8eLFaNy4MQICAnD79m3MnDkTnTt3lhVsY8BCTURUHj27B9jXM3QKverduzcePXqEiIgIpKamwtfXF/v27ZPdYJaSkiJ3Bj1jxgyIRCLMmDEDDx48gIODAzp37oy5c+ca6iMoxEJNRFQePU02dAKDGDt2LMaOHatwXVxcnNx7U1NTREZGIjIyUg/J1MfvqImIyqOMW4ZOQFrCQk1EVB6lXgakUkOnIC1goSYiKo/ys4GMm4ZOQVrAQk1EVF7dPWnoBKQFLNREROXVnbiXA59QmcZCTURUXmWmAI9vGzoFaYiFmoioPLv9p6ETkIZYqImIyrPbf/Lu7zKOhZqIqDzLzQAexhs6BWmAhZqIqLxLPPT2NmS0WKiJiMq7O0cBSZGhU5CaWKiJiMq7/Gzg/l+GTkFqYqEmIqoIbh0wdAJSEws1EVFFkHwCeJFl6BSkBhZqIqJyomnTpninoR+azrtYcqWkALi5X/+hSGMs1ERE5URqaioe/PsQqVkFihtc+Q2QSvQbijTGQk1EVFFkPwQSDxs6BamIhZqIqCK5sIFn1WUMCzURUUXy7D5wfZehU5AKWKiJiCqa87Evn62mMoGFmoioonnx7OUlcCoTWKiJiCqiK78DT5IMnYKUwEJNRFQRCVLg1DJAEAydhN6ChZqIqKJ6cAG4e9LQKegtWKiJiCqyM6sASaGhU9AbsFATEVVkz+4DV7cZOgW9AQs1EVFFd2EjkPfE0CmoFFor1IIg4PDhw/jjjz+Qnc3n84iIyoyCHOCvbw2dgkqhVqGePn06QkJCZO8FQUC7du3Qtm1bdOzYEe+99x4SExO1FpKIiHTsxh4g7aqhU5RpDx8+xN9//43c3Fyt7letQv3bb7/B399f9v7XX3/FoUOHMGfOHOzevRsSiQRRUVHaykhERPpwfBEgKTJ0ijJnx44d8PT0xDvvvIMmTZrg7NmzAICMjAw0btwY27dv12j/ahXqBw8eoG7durL3v//+O7y8vDB16lR06NABo0aNQlxcnEbBiIhIzx4nApe3GjpFmbJr1y589NFHsLe3R2RkJIRXnku3t7eHi4sL1q9fr1EfahVqU1NT5OfnA3h52fvQoUNo3769bL2TkxMyMjI0CkZERAZwPhbIvGfoFGXGl19+iZYtW+LEiRMYM2ZMifXNmjXDpUuXNOpDrULt7e2NH3/8EU+fPsX69evx+PFjdOzYUbb+7t27sLe3VyvQihUr4O7uDgsLCwQEBODcuXNvbB8TE4MGDRrA0tISrq6uCAsLw4sXL9Tqm4iowpMUAMcWAlKpoZOUCVeuXMHHH39c6nonJyekp6dr1IepOhtFRESgc+fOsmIcFBQkd3PZnj178P7776u83y1btiA8PByrV69GQEAAYmJiEBoaioSEBDg6OpZov2nTJkyZMgWxsbEIDAzEzZs38emnn0IkEmHx4sXqfDQiInr4N3BtO+D9kaGTGD0rK6s33jx2584dVK9eXaM+1Dqjbtu2LS5evIjFixcjNjYWBw4ckK17+vQpWrZsiXHjxqm838WLF2P48OEYPHgwvLy8sHr1alhZWSE2NlZh+1OnTiEoKAj9+vWDu7s72rVrh759+771LJyIiN7i3DogR7MzwYogJCQEGzduRFFRyZvwUlNTsW7dOrRr106jPtR+jtrLywvjx4/HoEGDYGFhIVtuZ2eHJUuWoFWrVirtr6CgABcuXECbNm3+CycWo02bNjh9+rTCbQIDA3HhwgVZYb5z5w727t2LDh06qP6BiIjoP4V5wMmlhk5h9ObOnYv79+/j/fffx5o1ayASibB//37MmDED7733HgRBQGRkpEZ9qHXpOzs7G5mZmXB1dZUt+/fff7F69Wrk5+ejZ8+eKl/6zsjIgEQigZOTk9xyJycn3LhxQ+E2/fr1Q0ZGBpo3bw5BEFBUVITPPvsM06ZNK7Wf/Px82Y1wAJCTk6NSTiKiCiP5xMuJO1z8DJ3EaDVo0AAnTpzA+PHjMXPmTAiCgIULFwIAWrVqJbvvShNqFeoRI0YgKSkJZ86cAQBkZWXhgw8+wP379yEWi7F06VLs27dP5bNqVcXFxWHevHlYuXIlAgICcPv2bYwfPx6zZ8/GzJkzFW4THR2NWbNm6TQXUVnStGlTpKamwtnZGefPnzd0HDI259YB3ZoAIpGhkxitd999F3/++SeePn2K27dvQyqVonbt2nBwcNDK/tW69H3ixAl06tRJ9v7HH3/Ev//+i1OnTuHp06do1KgR5syZo9I+7e3tYWJigrS0NLnlaWlpcHZ2VrjNzJkzMWDAAAwbNgzvvfceunfvjnnz5iE6OhrSUu5YnDp1Kp49eyZ7HT16VKWcROVNamoqHjx4gNTUVENHIWOUfh3496KhU5QJdnZ2eP/99xEQEKC1Ig2oWagzMjLg4uIie79z5040b94cH3zwAapUqYKBAwfi77//VmmfZmZm8PPzw6FDh2TLpFIpDh06hGbNmincJi8vD2Kx/EcwMTEBALmHzl9lbm4OGxsb2cva2lqlnEREFQ5n1yrVN998g9DQ0FLXf/jhh1i1apVGfahVqG1tbWW/fT9//hzHjx+Xu6vN1NQUeXl5Ku83PDwc69atw8aNG3H9+nWMGjUKubm5GDx4MABg4MCBmDp1qqx9586dsWrVKmzevBlJSUk4ePAgZs6cic6dO8sKNhERaSj5JJD72NApjNJ3330HLy+vUtd7eXlh7dq1GvWh1nfUgYGBWLlyJTw9PbFv3z68ePECXbt2la2/efOm3Bm3snr37o1Hjx4hIiICqamp8PX1xb59+2Q3mKWkpMidQc+YMQMikQgzZszAgwcP4ODggM6dO2Pu3LnqfCwiIlJEkAK3DwI+fQydxOgkJiYqHJGsmKenJ9atW6dRH2oV6vnz56Ndu3bo0aMHAGDixIl49913AQASiQRbt26VG1JUFWPHjsXYsWMVrnt9/HBTU1NERkZqfOs7ERG9RcIfQKPevKnsNWZmZm+8v+Phw4clvqJVlVqFum7dukhISMC1a9dQtWpVuVvP8/LysHz5cvj4+GgUjIiIjMjTZODxbcC+nqGTGJUPPvgAGzZsQFhYGKpUqSK37tmzZ1i/fj0++OADjfpQq1ADQKVKlRQW4ypVqshdBicionLi1gEW6tdERkYiODgYvr6+mDBhguzq8pUrVxATE4OHDx9i06ZNGvWhdqHOysrCypUrceTIEaSnp2PNmjXw9/fHkydPsGHDBnTp0kVuKkwiImNX+Dwbd/atxpNbZwGRGPaegagdOhImZpalbvPP91OQlXJZbplzkw9Rt8PLr/DS/j6IW7tiFG7rH/YTzCrbaiu+7t0+BASMAjS8lFueBAQEYNeuXRg5ciTGjx8P0f//akAQBHh4eGDnzp2lPrmkLLUK9f379xEcHIx79+6hXr16uHHjhmyEr2rVqmHNmjW4e/culi7l8HNEZFz++X4KnHz+D04+bUusu7l9IQpynsD7kzmQSiS4tSsGt/csQ4PuX7xxn06NQ+EW3F/2Xlzpv2GV7b1awq6O/MheN3cugbSosGwVaQDIewz8ewl4x3hHKluxYgUWLlyI1NRU+Pj4YNmyZfD39y+1fWZmJqZPn47ff/8dT548gZubG2JiYlQairpt27a4ffs2Ll26hMTERABAnTp10KRJE1nh1oRahfrzzz9HdnY24uPj4ejoWGJmq27dumH37t0ahyMi0pe8jBQ8TbwAnyExqFLz5eXdOu1H4urPUXBvMxTmVUqfAcmkkgXMrKuVss4cJpXMZe8Lc5/hWfI/qNdpvHY/gL7cOmC0hVrVGRgLCgrQtm1bODo64tdff4WLiwvu3r0LW1tblfsWi8Xw8/ODn5/2/27UKtQHDhxAWFgYvLy88PhxyWfrateujXv3OPE4EZUdWfdvwMSisqxIA4CtR2NAJEL2gwSYewaWum36lSNIv3wEZtZ2qFbPH64t+sDklbPqV6VdPgRxJXNUbxik9c+gF8nHgaKJgKmZoZOU8OoMjACwevVq7NmzB7GxsZgyZUqJ9rGxsXjy5AlOnTqFSpUqAYDa43Jfu3YNd+7cwdOnTxUOuDVw4EC19guoWaifP3/+xuHRsrOz1Q5ERGQIhTlPYWZlK7dMJDZBJcsqKMx9Wup2jt7BMK/qCLMq1ZGbloTkw+vx/PF9NOw1Q2H7tPgDcPAOljvLLlMKcoH75wD35oZOIqd4BsZXB8V62wyMxd8fjxkzBjt27ICDgwP69euHyZMnKz1oVmJiIvr3749z586VOiKmSCTSf6H28vLCsWPHMHLkSIXrt2/fjsaNG6sdiohIW+6d2IJ7J3+RvZcWFSD7wQ0k7lstW9bkM/WHeHRu8qHsz5Ud3WFmXQ1XfpqG508ewrJaDbm2Wfev43nGPTToOlHt/ozC3dN6LdQ5OTnIysqSvTc3N4e5ufwvOurMwHjnzh0cPnwYn3zyCfbu3Yvbt29j9OjRKCwsVHp8jpEjR+Ly5cuIiYlBixYtYGdnp+Knezu1CvWECRMwaNAgNGrUCL169QLwclzu27dvY9asWTh9+jR+++03rQYlIlKHs18H2Hu1kL1P2L4Q9p5BqP7KpWzzKtVRydoOBXmZctsKUgkKn2ejUmXlf/hWcWkAAHjx9N8ShTrt0n5UdqoN6xraf8QpJSUFubm5AIDcfAlSnrxArWqKL79r7GG8bvZbiuDgYLn3kZGRiIqK0ni/UqkUjo6OWLt2LUxMTODn54cHDx5g4cKFShfqkydPYtq0afjf//6ncZ7SqFWo+/fvj7t372LGjBmYPn06AKB9+/YQBAFisRjz5s1Dt27dtJmTiEgtlSyroJLlfwNRiE3NUalyVVhWqynXzuYdT0he5CLn4S1ZIc1M+hsQBFnxVUZu2h0AKHFzmaTgOTKun4BbyCB1P4pC586dw+zZs7Fnzx7ZpdfM5xK4Tz+HTu9Vw8wObnjfvcpb9qKiZ/dfXgI3q6zd/Zbi6NGj8PX1lb1//WwaUG8Gxho1aqBSpUpyl7kbNmyI1NRUFBQUwMzs7d/D29vbo2rVqkp+EvWo/TDc9OnTkZiYiIULF2LUqFEYPnw45s+fj4SEBEyePFmbGYmIdM7Kvhbs6vjh1p5lyH6QgKx715C4fxUc3m0pu+M7PysDF1aNRPaDBADA8ycPkXL8Z+Q8vIUXmWl4fPMMbu5YBJta3qjs5CG3/0dXj0GQSuD4XojWMv/+++8ICgrCH3/8UeL7UUEA9l55gsAF8fj9UobW+pTJ+lf7+yyFtbW13KyHigq1OjMwBgUFyeaPLnbz5k3UqFFDqSINAJ999hl+/PFHSCQSFT+V8tQe8AQAatWqhbCwMG1lISIyqPrdPsedfatw5afpgEiE6p5BqBP63704glSC54/vQ1KYDwAQm5giMyke/57bAUnBC5jbOKB6wyC4Ni85eUXa3wdQvUEgTC20M7XuuXPn0Lt3b0gkklJvYpJIAREE9F53Hae+8NXumXVOmtGNUhYeHo5BgwahadOm8Pf3R0xMTIkZGF1cXBAdHQ0AGDVqFJYvX47x48fjf//7H27duoV58+Zh3LhxSvdZv359SCQS+Pj4YMiQIXB1dVV4I9pHH32k9udSq1BfvHgRZ86cwejRoxWuX7lyJQIDA+UuVRCRcSq+LFja5cHyptHAr0pdV8myyhsHN7GwdULzGXtk782rOqDRwPlK9evz6SLlQyphzpw5EASh1CJdTAAgQMCcvXexY7S39gI8z9TevrRE1RkYXV1dsX//foSFhaFRo0ZwcXHB+PHjVboq3Lt3b9mfJ02apLCNSCTS6IxbrUI9ffp0WFpallqoDx8+jL1793LQE6Iy4Pz584aOQCpKSUnB7t2731qki0mkwK7LT7R7g1m+cT6Gq8oMjADQrFkznDlzRu3+jhw5ova2ylKrUL/+rNrrWrRoIbu0QETGTyKRyH1Pp64iiRRFEinEEikKCwu1kKx8kUoKIUg1/y7zj717lC7SxQQB2H/tKQZ9UHKELnUIuU8h1vExLioq0un+teH1O9J1Qa1CnZ2dDVPT0jcVi8V49uyZ2qGI6O2eiaoCOUXYM7efxvv66dBl/HzkihZSvWLiT9rdH2lsxI+3MOLHW1ra20kAY7S0r7IvPz8fFy9eRHp6OoKCgmBvb6+1fatVqOvVq4cDBw6U+tzYvn37ULt2bY2CEZH+9Al5F71bvauVfVUVnsGsSnW8/7/1WtlfeSEpfIFnd69CbGoCsUkljfa16dcdGDc5SuXt1vR1x8AAzQuIIAjId28Ni3YzSx0qVRsuXbqEgIAAne1fW7755htERUXJTlAPHjyI1q1bIyMjA56enliwYAGGDBmi9v7VKtRDhw5FWFgYwsPDERERIRvAPDMzE7NmzcK+ffuwcOFCtUMRkX6ZaHHaQlNBDFMTsWzsZHpJDAkqVTKFqbklxBqOk90mpBVEIpFKl79FIqCtpy0qKTk05psJkFYye/kMsg6P85uu3BqL9evXY8KECejTpw/atWsnV5Dt7e3RunVrbN68Wf+Fety4cYiPj0dMTAy++eYb1Kz5cuCAf//9F1KpFAMGDOBjW0REOuL6Tk20bxOCA4ePKnU3sYkY6PCuLWpV0+L44mL+IgYAixYtQteuXbFp0yaFk1T5+fnhm2++0agPtQq1SCTC+vXrMXDgQPz222+4c+flSDxdu3ZFjx490KpVK41CEZH+TFi5H09znsPO2hIxo0MNHYeUNDlsNA4eOfbWM2sRABFEmBbqotX+BVPdXfIuS27fvv3G566rVaumsICrQqPrCiEhIQgJ0d4oO0Skf09znuNx1nNDxyAV+fk2wobVS/DpZ2EQBEHhmbWJ+GWR3jykLt53085AK8UEM+3ur6yytbVFRkbpI79du3ZN4zEK1PpiKikpCbt27Sp1/a5du5CcnKxuJiIiUkLXDqH4c+dmtGsdDJFIJLdOJHp5uft4uBe6+VQrZQ/qk5rrdnzrsqJDhw5Yu3YtMjMzS6y7evUq1q1bhy5dumjUh1pn1JMmTUJWVhY6d+6scP2KFStga2uLzZs3axSOiIjezM+3EX7ZuBr37v+LwLZdkPksC7aWJrg45T3tfif9Gql1jbc3qgDmzJmDgIAAeHt7o3PnzhCJRNi4cSNiY2Px22+/oUaNGoiIiNCoD7XOqE+fPo22bduWuv7//u//cPz4cbVDERGRalzfqQkrK0sAQGVzsU6LtGBeFYIFz6gBoGbNmrhw4QLat2+PLVu2QBAE/PDDD9i1axf69u2LM2fOaPxMtVpn1E+fPkWVKqUP7m5tba3xl+dERGScipzeM3QEo5Cfn4/9+/fD3d0d3377Lb799ls8evQIUqkUDg4OcuOKa0KtvdSqVQsnT54sdf3x48fxzjvvqB2KiIiMl8S5saEjGAUzMzP06tULp06dki1zcHCAk5OT1oo0oGah7tu3L37++Wd88803cuMDSyQSLF26FFu2bEG/fpoPa0hERMZFsLCBhGfUAF4+qlyvXr033vWtDWoV6qlTpyIkJAQTJkxAjRo10LJlS7Rs2RI1a9ZEWFgYgoODMX36dG1nJSIiAyvyCAHExj9imL5MmzYNy5cvR0JCgs76UOtv29zcHAcOHMDGjRvx+++/IzExEQDg7++PHj16YODAgVo97SciIiNgUglFddoZOoVROXPmDKpXrw5vb2+0atUK7u7usLS0lGsjEomwdOlStftQ+9cisViMwYMHY/DgwWp3TkREZUdh/Y6AuQ1QVGDoKEZj+fLlsj8fOnRIYRuDFWoiIqo4BEs7FNXvaOgYRkcb87i/jVqFunXr1m9tIxKJSv3tgoiIypaCJkMBju9tEGoVaqlUWmK4OolEgrt37+LevXuoW7cuXFy0OwA8EREZRpF7MKTOPoaOYdTOnDmDI0eOID09HaNHj0a9evWQl5eHGzduoH79+rC2Vn9sdLUKdVxcXKnrdu/ejREjRmDx4sXqZiIiIiMhVLZHYaP+ho5htAoKCtCnTx/s2LEDgiBAJBKhc+fOqFevHsRiMdq1a4ewsDCNnoTS+q3ZnTp1Qv/+/TFhwgRt75qIiPSswG8kUImXvEszc+ZM7N69G6tWrUJCQoLclKMWFhbo1asXduzYoVEfOnmGqk6dOvjrr790sWsiItKTotr/B6mDp6FjGLWff/4Zo0aNwogRI1CtWslZyho2bIg7d+5o1IfW7/ouKirCL7/8ovEg5ESkH3bWlnL/JQJezjdd+G5PQ8cweunp6XjvvdJHajMxMUFeXp5GfahVqIcMGaJweWZmJs6cOYPU1FR+R01URsSMDjV0BDJCRQ27A2bq3wBVUbi6uuLGjRulrj958iTq1q2rUR9qFerDhw8rmKRcBDs7OzRv3hzDhg1Du3YcvYaIqCwSLO1eDhVKb9WvXz8sXrwYPXr0QP369QFAVh/XrVuHX375BV999ZVGfahVqJOTkzXqlIiIjFdRvQ6ASSVDxygTpk+fjjNnzqBly5Zo2LAhRCIRwsLC8OTJE9y/fx8dOnRAWFiYRn1wQG4iIvpPJUsUubcydIoyw8zMDPv27cP69etRu3ZteHp6Ij8/H40aNcKGDRuwa9cumJiYaNSH0mfUeXl5yMjIgLOzM8zMzOTWxcbG4qeffsLDhw/h6emJqVOn4v3339coGBER6V+Reys+jvUG4eHhGDBgABo3fjknd0pKChwcHNC/f3/076+b582VPqP+8ssv0ahRIxQUyA/GPmfOHAwfPhxHjx7Fo0ePsH37drRq1Qp///231sMSEZEOiUQoqtPW0CmMWkxMDK5fvy577+HhgW3btum0T6UL9ZEjR9CpUye5YdCysrIwZ84cuLi44NatW3j06BHOnDkDMzMzjb88JyIi/ZK4BkKo7GDoGEbNyclJ7rnoVwc40RWlL30nJyejR48ecsv27t2LgoICTJ48GR4eHgBezkk9ePBg/PLLL9pNSkREuiMSodCzq6FTGL2OHTviyy+/xIEDB2BrawsAWLRoETZv3lzqNiKRSKPRyZQu1NnZ2ahevbrcsmPHjkEkEiE0VP45TC8vLzx69EjtUEREpF9FddpCqFLD0DGM3tKlS+Ho6IgjR47g6tWrEIlEuHfvHp48eVLqNq8/zqwqpS99u7m5lXioOy4uDk5OTiUe5i4oKICNjY1agVasWAF3d3dYWFggICAA586de2P7zMxMjBkzBjVq1IC5uTnq16+PvXv3qtU3EVFFJFjYoLBhd0PHKBMqV66MefPm4fTp00hMTIQgCIiJiUFSUlKpL02HEFW6ULdr1w6xsbE4e/YsAOD777/HjRs30L17yYN74cIFuLu7qxxmy5YtCA8PR2RkJC5evAgfHx+EhoYiPT1dYfuCggK0bdsWycnJ+PXXX5GQkIB169Zxik0iIhUUNhrAUciU9NFHH+H48eOy90eOHEHbtrq9AU/pQj1z5kxYW1sjMDAQZmZm+PTTT+Hg4ICIiAi5dnl5edi2bRv+7//+T+UwixcvxvDhwzF48GB4eXlh9erVsLKyQmxsrML2sbGxePLkCbZv346goCC4u7sjODgYPj6cN5WISBmSGo0heSfA0DHKjB07diAlJUX2vnXr1jh48KBO+1S6UNvb2yM+Ph5fffUVhg4dinnz5uHy5ctwcnKSa3flyhV88sknGDBggEpBCgoKcOHCBbRp0+a/cGIx2rRpg9OnTyvcZufOnWjWrBnGjBkDJycneHt7Y968eZBIJCr1TURUIZlaoLDxp4CG36FWJC4uLrh06ZLsffEc1Lqk0hCidnZ2+Pzzz9/Yxt/fH/7+/ioHycjIgEQiKVH4nZycSh3w/M6dOzh8+DA++eQT7N27F7dv38bo0aNRWFiIyMhIhdvk5+cjPz9f9j4nJ0flrERE5UHhu70gWJacmpFK16dPH3z99df45ZdfZHd9T5kyBdHR0aVuIxKJNBpbROvTXOqTVCqFo6Mj1q5dCxMTE/j5+eHBgwdYuHBhqYU6Ojoas2bN0nNSIiLjIrV1Q1GdNm9vSHKio6NRt25dHDlyBOnp6RCJRKhcuXKJp6K0yWgKtb29PUxMTJCWlia3PC0tDc7Ozgq3qVGjBipVqiQ3jmrDhg2RmpqKgoKCEkOdAsDUqVMRHh4uex8fH4/g4GAtfQoiorKh0HcgIOJ0D6oyMTHBiBEjMGLECAAvv6KdMWMG+vXrp7M+jeYomZmZwc/PD4cOHZItk0qlOHToEJo1a6Zwm6CgINy+fRtSqVS27ObNm6hRo4bCIg0A5ubmsLGxkb1eHWmNiKgikLzjD2n1+oaOUS4kJSWhW7duOu3DaAo18HKw83Xr1mHjxo24fv06Ro0ahdzcXAwePBgAMHDgQEydOlXWftSoUXjy5AnGjx+PmzdvYs+ePZg3bx7GjBljqI9ARGTcRCIUevUydIpyw83NDVZWVjrtQ6lL3zt37kTTpk1Rs2ZNnYbp3bs3Hj16hIiICKSmpsLX1xf79u2T3WCWkpICsfi/3y1cXV2xf/9+hIWFoVGjRnBxccH48eMxefJkneYkIiqrimo1h1BF8deJ9HZisRhisRh5eXkwMzODWCx+613fIpEIRUVFavepVKHu3r07fvjhB9k1+Nq1ayMmJgZdunRRu+PSjB07FmPHjlW4Li4ursSyZs2a4cyZM1rPQURU7ohEKGqg/Z/bFUlERAREIhFMTU3l3uuSUoW6SpUqyMzMlL1PTk7mY01ERGWMpEYTnk1rKCoq6o3vdUGpQu3v74+5c+ciLS0NVatWBfBy5qzU1NRStxGJRAgLC9NOSiIi0lhR3dC3NyKjo1ShXrlyJQYOHIjZs2cDeFmEN23ahE2bNpW6DQs1EZHxEGxqQmrvaegY5Up+fj5+/PFHHDhwAImJicjOzkaVKlVQt25dtG/fHv369Sv1CSRVKFWo69ati1OnTuHFixdIT0+Hu7s7YmJi0LUr5y4lIioLitxDOFSoFl2+fBldu3bF3bt3IQgCqlatCmtra6Snp+PixYvYunUr5s6di507d6Jhw4Ya9aXS41kWFhaoVasWIiMj0bp1a7i5ub3xRURERkAsRlGtQEOn0AtVp0outnnzZohEIqWeic7JyUGXLl2QlpaGuXPn4t69e3j69Kncf+fMmYN///0XnTt3Rm5urkafSa3nqCMjI+Ht7S0LfP36dVy/fp03mBERGSGJYyPA3MbQMXRO1amSiyUnJ2PSpElo0aKFUv2sX78eKSkp2LNnD6ZMmVJiamUXFxdMnToVu3btQlJSEjZs2KDuRwKgwYAnf/31F0JCQmBnZwdvb294e3vDzs4OrVu3xvnz5zUKRURE2iNxrRjTWKo6VTIASCQSfPLJJ5g1axZq166tVD979uxBu3bt0KpVqze2a926Ndq2bYtdu3ap8jFKUKtQnz17Fi1btsTFixcxbNgwLFmyBEuWLMGwYcNw8eJFtGzZUunLDUREpENiMSTOvoZOoZGcnBxkZWXJXq/OgFhMnamSAeDLL7+Eo6Mjhg4dqnSey5cvv7VIF2vdujUuX76s9L4VUWtSjunTp8PFxQUnTpwoMWFGVFQUgoKCMH36dJ1Ppk1ERG8mtfcEzMr2nAavT5wUGRlZ4vlldaZKPnHiBL777jvEx8erlOfJkyelThb1OicnJzx58kSl/b9OrUJ99uxZREREKAzq5OSEESNGyB7lIiIiw5E4NTJ0BI0dPXoUvr6+svfm5uYa7zM7OxsDBgzAunXrYG9vr9K2+fn5qFSpklJtTU1NUVBQoE7E//ahzkZisfiN45ZKJBK5MbmJiMgwJE7vGTqCxqytrWFj8+ab4VSdKjkxMRHJycno3LmzbFnxTIympqZISEhAnTp1Su0vOTkZFy9efGv2pKSkt7Z5G7UKdWBgIFasWIF+/fqVeAwrJSUFK1euRFBQkMbhiIhIfYKZNQSbdwwdQy9enSq5+BGr4qmSFc0f4enpWeK74xkzZiA7OxtLly6Fq6vrG/ubOXMmZs6c+dZcgiBoPBa4WoV63rx5aNmyJTw9PdG9e3fUr/9yXtOEhATs2LEDpqamiI6O1igYERFpRmpfHxBVnKub4eHhGDRoEJo2bQp/f3/ExMSUmCrZxcUF0dHRsLCwkD1mXMzW1hYASix/3fr163WSvzRqFerGjRvj7NmzmD59Onbu3Im8vDwAgJWVFdq3b485c+bAy8tLq0GJiEg10ur1DB1Br1SdKlldgwYN0ngfqlCrUAOAl5cXtm3bBqlUikePHgEAHBwc+N00EZGRkNp6GDqC3qk6VfKrNB2YRFfULtTFxGJxidvhiYjI8KS2HMq5PODpLxFROSRY2Jb556fpJRZqIqJySLCpaegIpCUs1ERE5ZC0Mr+SLC9YqImIyiGhsqOhI5CWaHwzGRERGR/BSrVhMUkz165dw507d/D06VMIglBi/cCBA9Xet0aFWpfBiIhIfYJVdUNHqBASExPRv39/nDt3TmEdBACRSKT/Qq2PYEREpD7BwtbQESqEkSNH4vLly4iJiUGLFi1gZ2en9T7UKtT6CEZERKpxcnAApFI4m+WxUOvJyZMnMW3aNPzvf//TWR9qFWp9BCMiItUc2/c7RLmPYH54Jl6YKDcNI2nG3t4eVatW1Wkfat31rY9gRESkJvM3TwlJ2vPZZ5/hxx9/hEQi0Vkfap1RFwcbM2YMTExMtJ2JiIg0IJjzREpf6tevD4lEAh8fHwwZMgSurq4K6+JHH32kdh9qFWp9BCMiIvUI5hw6VF969+4t+/OkSZMUthGJRBqdcatVqPURjIiI1COYVTF0hArjyJEjOu9DrUKtj2BERKQewZyFWl+Cg4N13odahVofwYiISE2VKhs6QYV07do13L17FwDg5uYGLy8vrexX4yFEdRWMiIjUI5ixUOvTjh07EB4ejuTkZLnlHh4eWLx4Mbp06aLR/tUu1LoORkREauIZtd7s3bsXPXr0gJubG+bNm4eGDRsCAK5fv461a9fio48+wu7du9G+fXu1+1CrUOsjGBERqUeoZGnoCBXG7Nmz0ahRIxw/fhyVK//3C1KXLl0wduxYNG/eHLNmzdJ/odZHMCIiUg8Ltf78888/mDdvnlwtLFa5cmV8+umnmDZtmkZ9qDUy2T///INBgwa9Mdg///yjUTAiIlKTiZmhE1QYFhYWePLkSanrnzx5AgsLC436UKtQ6yMYERGpScxxvvWldevWWLp0KU6fPl1i3dmzZ/HNN9+gTZs2GvWh1qXv4mDt27dHs2bNFAZr166dRsGIiEhNYo0f6CElLViwAM2aNUPz5s3h7++PBg0aAAASEhJw7tw5ODo6Yv78+Rr1odbR1EcwIiJSk0hk6AQVhoeHB/755x9ER0fjjz/+wJYtWwC8fFx5/PjxmDJlChwdHTXqQ61CrY9gREREZYGjoyOWLFmCJUuW6GT/al8f0XUwIiJSkyA1dALSIn6RQURU3giCoROUW0OGDIFIJMLatWthYmKCIUOGvHUbkUiE7777Tu0+lSrUhghGRERq4hm1zhw+fBhisRhSqRQmJiY4fPgwRG+5J+Bt699GqUJtiGBERKQmnlHrzOvDZr/+XheUKtSGCEZERGTsUlJS4ODgAEtLxaPBPX/+HI8ePUKtWrXU7kOtAU9SUlLw/PnzUtc/f/4cKSkpaociIiIN8IKm3nh4eGDbtm2lrt+5cyc8PDw06kOtQq2PYEREpCaRiaETVBjCW75mKCwshFisVqmVUWtrXQdbsWIF3N3dYWFhgYCAAJw7d06p7TZv3gyRSIRu3bqp3TcRUZknZqHWpaysLKSkpMiuHD9+/Fj2/tXXP//8g82bN6NGjRoa9af041lZWVnIzMyUvS8O9rrMzEyNgm3ZsgXh4eFYvXo1AgICEBMTg9DQUCQkJLxxEJXk5GRMmjQJLVq0UKtfIqLyQuAZtU4tWbIEX375JYCXN05PmDABEyZMUNhWEATMmTNHo/6ULtT6CrZ48WIMHz4cgwcPBgCsXr0ae/bsQWxsLKZMmaJwG4lEgk8++QSzZs3C8ePH5X6hICKqcEw4KYcutWvXDtbW1hAEAV988QX69u2LJk2ayLURiUSoXLky/Pz80LRpU436U7pQ6yNYQUEBLly4gKlTp8qWicVitGnTRuHMJMW+/PJLODo6YujQoTh+/Pgb+8jPz0d+fr7sfU5Ojso5iYiMGmfP0qlmzZrJJqTKzc1Fjx494O3trbP+lC7U+giWkZEBiUQCJycnueVOTk64ceOGwm1OnDiB7777DvHx8Ur1ER0djVmzZmkalYjIKAmm5vyOWk/y8vLwzTffwMrKSqeFWuU7voqD/fHHH7rIo5Ls7GwMGDAA69atg729vVLbTJ06Fc+ePZO9jh49quOURER6ZG4DiDS7y5iUY2VlBVNTU1SuXFmn/ag81rcug9nb28PExARpaWlyy9PS0uDs7FyifWJiIpKTk9G5c2fZMqn05dB5pqamSEhIQJ06deS2MTc3h7m5uey9tbW1Nj8CERFVID169MCvv/6KUaNG6WxETrV+7SoO9rbHtFRlZmYGPz8/HDp0SLZMKpXi0KFDssvur/L09MTly5cRHx8ve3Xp0gUhISGIj4+Hq6urVvMRERG9qk+fPkhPT0dISAh++uknnDx5EhcvXizx0oRas2f16dMHo0ePRkhICIYPHw53d3eFw6e9frOZMsLDwzFo0CA0bdoU/v7+iImJQW5uruwu8IEDB8LFxQXR0dGwsLAo8b2Ara0tAOj0+wIiIiIAaNWqlezPim5mFgQBIpEIEolE7T7UKtS6DNa7d288evQIERERSE1Nha+vL/bt2ye7wSwlJUXjUV6IiIi0Yf369TrvQ61CretgY8eOxdixYxWui4uLe+O2GzZs0H4gIiIiBQYNGqTzPtQq1PoIRkREVJbk5OTg3r17AABXV1et3ays8TXknJwcXL9+HdevX+fgIUREVOH89ddfCAkJgZ2dHby9veHt7Q07Ozu0bt0a58+f13j/ap1RFwf74osvcOLECdkjUWKxGC1atMCCBQs0HjKNiIjI2J09exatWrWCmZkZhg0bhoYNGwIArl+/jp9//hktW7ZEXFwc/P391e5DrUKtj2BERESqWrFiBRYuXIjU1FT4+Phg2bJlpdaidevW4fvvv8eVK1cAAH5+fpg3b55KtWv69OlwcXHBiRMnSoz3ERUVhaCgIEyfPh0HDx5U+zOpdem7OFhCQgJWrVqFcePGYdy4cVi1ahUSEhJQs2ZNTJ8+Xe1QREREqiqefTEyMhIXL16Ej48PQkNDkZ6errB9XFwc+vbtiyNHjuD06dNwdXVFu3bt8ODBA6X7PHv2LEaOHKlwUC4nJyeMGDECZ86cUfszAWoWan0EIyIiUsWrsy96eXlh9erVsLKyQmxsrML2P/30E0aPHg1fX194enri22+/lQ2ypSyxWIyioqJS10skEo0fKVZra30EIyIiAl7etJyVlSV7vToDYrHi2RfbtGkjW6bM7IuvysvLQ2FhIapVq6Z0tsDAQKxYsQJ3794tsS4lJQUrV65EUFCQ0vtTRK3vqIuD9evXD25ubjoJRkREBADBwcFy7yMjIxEVFSW3TJ3ZF183efJk1KxZU67Yv828efPQsmVLeHp6onv37qhfvz4AICEhATt27ICpqSmio6OV3p8iahVqfQQjIiICgKNHj8LX11f2/tWJlbTlq6++wubNmxEXFwcLCwult2vcuDHOnj2L6dOnY+fOncjLywPwcgKr9u3bY86cOfDy8tIom1qFWh/BiIiIgJezHNrY2LyxjaqzL77q66+/xldffYU///wTjRo1Ujmfl5cXtm3bBqlUikePHgEAHBwctPYVsNrPUes6GBERkbJenX2xW7duAP6bfbG0IakBYMGCBZg7dy7279+v8fgfIpFINtWlNqe81LiqFgd7NSAREZG+hYeHY926ddi4cSOuX7+OUaNGlZh9cerUqbL28+fPx8yZMxEbGwt3d3ekpqYiNTVV5VE2r127hp49e8LGxgY1atRAjRo1YGNjg549e8qe0daE2mfU165dQ0REBPbv3y936Ts0NBRRUVGcZpKIiPRK1dkXV61ahYKCAvTs2VNuP4puVivN8ePH8eGHH0IqlaJr165y92zt3LkTf/zxB/bt24cWLVqo/bnUKtT6CEZERKQqVWZfTE5O1ri/sLAwODo64ujRo3B1dZVbd+/ePbRs2RLh4eH466+/1O5DrUKtj2BERETG7urVq5g9e3aJWgi8nEFr1KhRSp+dl0at76ivXr2K0aNHvzHY1atXNQpGRERk7Nzc3BQOwFKsoKBAYa1UhVqFWh/BiIiIjF1ERAS++eYbxMfHl1h36dIlLFu2TOMzarUufUdERCAsLAwdO3aUewj91WAxMTEaBSMiIjJ2Z86cgZOTE/z8/BAYGIi6desCAG7duoXTp0/D29sbp0+flhvGVCQSYenSpUr3oVah1kcwIiIiY7d8+XLZn0+ePImTJ0/Krb98+TIuX74st0wvhVofwYiIiIydVCrVeR9qFWp9BCMiIiINBjwhIiKil5KSkvDHH3/Iprt0c3PDhx9+CA8PD433rVGh1mUwIiKismDixIlYunRpiavNYrEYEyZMwNdff63R/tUu1LoORkREZOwWLVqEJUuWoGfPnpg4cSIaNmwIALh+/TqWLFmCJUuWwMXFBWFhYWr3odZz1MXBPvroI5w+fRqZmZnIzMzE6dOn0bNnT1k4IiKi8mzdunXo0qULfvnlFwQEBMDGxgY2NjYICAjA5s2b0blzZ6xZs0ajPtQq1PoIRkREZOySk5MRGhpa6vrQ0FCNxxRXq1DrIxgREZGxc3R0xN9//13q+r///hsODg4a9aFWodZHMCIiImPXq1cvfPvtt/jqq6+Qm5srW56bm4v58+fj22+/Re/evTXqQ62byXr16oWlS5fC3d0d//vf/1C5cmVZsOXLl+Pbb7/FhAkTNApGRERk7GbPno34+HhMmzYNERERqFmzJgDg33//RVFREUJCQvDll19q1IdahVofwYiIiIydlZUVDh06hB07dsg9rty+fXt06NABnTt3hkgk0qgPtQq1PoIREREZs7y8PPTv3x89evTAJ598gq5du+qkH5ULtb6CERERGTMrKyv8+eef+PDDD3Xaj8o3kxUHy8vL00UeIiKiMqN58+ZyM0Xqglp3fesjGBERkbFbvnw5jh8/jhkzZuD+/fs66UOtQq2PYERERMbOx8cH9+/fR3R0NNzc3GBubi4bBKz4VbVqVY36UOtmMh8fHxQVFSE6OhrR0dEwNTWFubm5XBuRSIRnz55pFI6IiMiY9ejRQ+c3T6tVqPURjIiIyNht2LBB532oVaj1EYyIiMhYvXjxAjt27EBSUhLs7e3RsWNH1KhRQyd9qVSo9RmMiIjIGKWnpyMwMBBJSUkQBAHAyyeitm/fjjZt2mi9P6ULtb6DERERGaPZs2cjOTkZYWFhaN26NW7fvo3Zs2dj5MiRSExM1Hp/ShdqfQcjIiIyRgcOHMDAgQPx9ddfy5Y5OTmhX79+SEhIQIMGDbTan9KFWt/BiIiIjFFKSgomT54st6x58+YQBAFpaWlar4dKP0edkpKC5s2blxqMiIioIsjPz4eFhYXcsuL3RUVFWu9P6TNqfQcjIiIyVsnJybh48aLsffG4Ibdu3YKtrW2J9k2aNFG7L5Xu+tZnMCIiImM1c+ZMzJw5s8Ty0aNHy70XBAEikQgSiUTtvlQq1PoMRkREZIzWr1+v1/6ULtT6DLZixQosXLgQqamp8PHxwbJly+Dv76+w7bp16/D999/jypUrAAA/Pz/Mmzev1PZERESaGDRokF77U7pQ6yvYli1bEB4ejtWrVyMgIAAxMTEIDQ1FQkICHB0dS7SPi4tD3759ERgYCAsLC8yfPx/t2rXD1atX4eLiopfMREREuqLW7Fm6tHjxYgwfPhyDBw+Gl5cXVq9eDSsrK8TGxips/9NPP2H06NHw9fWFp6cnvv32W0ilUhw6dEjPycumpk2b4p133kHTpk0NHYWIiBRQa6xvXSkoKMCFCxcwdepU2TKxWIw2bdooPf91Xl4eCgsLUa1aNYXr8/PzkZ+fL3ufk5OjWegyLjU1FQ8ePDB0DCIiKoVRnVFnZGRAIpHAyclJbrmTkxNSU1OV2sfkyZNRs2bNUoc1jY6ORtWqVWWv4OBgjXMTERHpilEVak199dVX2Lx5M7Zt21bime9iU6dOxbNnz2Svo0eP6jklERGR8ozq0re9vT1MTExKjHSWlpYGZ2fnN2779ddf46uvvsKff/6JRo0aldrO3Nwc5ubmsvfW1taahSYiItIhozqjNjMzg5+fn9yNYMU3hjVr1qzU7RYsWIDZs2dj3759vCmKiIjKFaM6owaA8PBwDBo0CE2bNoW/vz9iYmKQm5uLwYMHAwAGDhwIFxcXREdHAwDmz5+PiIgIbNq0Ce7u7rLvsq2trXm2TEREZZ7RFerevXvj0aNHiIiIQGpqKnx9fbFv3z7ZDWYpKSkQi/+7ELBq1SoUFBSgZ8+ecvuJjIxEVFSUPqMTERFpndEVagAYO3Ysxo4dq3BdXFyc3Pvk5GTdByIiIjIQo/qOmoiIiOSxUBMRERkxFmoiIiIjxkJNRETlxooVK+Du7g4LCwsEBATg3Llzb2y/detWeHp6wsLCAu+99x727t2rp6TKY6Gu4JydneHi4vLWAWWIiIxd8eyLkZGRuHjxInx8fBAaGor09HSF7U+dOoW+ffti6NChuHTpErp164Zu3brJpk02FizUFdz58+dx//59nD9/3tBRiIg0oursi0uXLkX79u3x+eefo2HDhpg9ezaaNGmC5cuX6zn5m7FQExFRmVc8++KrEzK9bfbF06dPl5jAKTQ0VOnZGvXFKJ+jJv2SSCSQSqVa2ZdUUgSpRAKppAiFhYVa2SeVVCSRokiinWOmbUWCFGKJlMf/NZLCQhQWFkEi5EFsUrb/bqSSQkiLJCgsLIQUJjrrp6ioCMDL6YizsrJky1+fswF48+yLN27cULj/1NRUjWZr1BcW6jLKSshDXmYeuk6Yp/G+bpw5hJtnD2shlbxf5ozS+j6pDJn4k6ETUDnx+nTEFW3kSRZqQgP/ENR/v5XW9pcnsoJ91cr4MWKo1vZJ8v5aNhiPcooMHUOhqsIzmFWpjvf/t97QUYyOVFIIQSoxdAytEIlNIDappNM+Ll26hICAABw9ehS+vr6y5a+fTQPqzb7o7Oys1myN+sZCTRCJxRBpcX9ikQnEJqaoVEm3/xNXZKYmYpiaGOctJqbCy2w8/grw70QlpqYvS5S1tTVsbGze2PbV2Re7desG4L/ZF0sbkrpZs2Y4dOgQJkyYIFt28ODBN87WaAgs1BXc0Z9XID8vB+ZW1gjuO8bQcYiI1Kbq7Ivjx49HcHAwFi1ahI4dO2Lz5s04f/481q5da8iPUQILdQWXn5eDFzlZb29IRGTkVJ19MTAwEJs2bcKMGTMwbdo01KtXD9u3b4e3t7ehPoJCLNRERFRuqDL7IgD06tULvXr10nEqzRjnl1xEREQEgIWaiIjIqLFQExERGTEWaiIiIiPGQk1ERGTEWKiJiIiMGAs1ERGREWOhJiIiMmIs1EREREaMhZqIiMiIsVATEREZMY71XcGZW1nL/ZeIiIwLC3UFx6ktiYiMGy99ExERGTEWaiIiIiPGQk1ERGTEWKiJiIiMGAs1ERGREWOhJiIiMmIs1EREREaMhZqIiMiIsVATEREZMRZqIiIiI8ZCTUREZMRYqImIiIwYCzUREZERY6EmIiIyYizURERERoyFmoiIyIixUBMRERkxFmoiIiIjxkJNRERkxIyyUK9YsQLu7u6wsLBAQEAAzp0798b2W7duhaenJywsLPDee+9h7969ekpKRESkW0ZXqLds2YLw8HBERkbi4sWL8PHxQWhoKNLT0xW2P3XqFPr27YuhQ4fi0qVL6NatG7p164YrV67oOTkREZH2GV2hXrx4MYYPH47BgwfDy8sLq1evhpWVFWJjYxW2X7p0Kdq3b4/PP/8cDRs2xOzZs9GkSRMsX75cz8mJiIi0z6gKdUFBAS5cuIA2bdrIlonFYrRp0wanT59WuM3p06fl2gNAaGhoqe2JiIjKElNDB3hVRkYGJBIJnJyc5JY7OTnhxo0bCrdJTU1V2D41NVVh+/z8fOTn58ve5+TkAACuX7+uSXS9evLwLl5kPzF0jFK9EFlAnGeFixcvGjpKuXXj3mM8fS4xdAyFrIUcVLICTLVw/GvUqIEaNWpoIZX+PXz4EA8fPjR0jDKtLP1c1iWjKtT6EB0djVmzZsktc3NzQ//+/Q2UqPw6sHaOoSOQIS3S/KbOyMhIREVFaZ7FANasWVPiZw2pLjg4uMz+sqYtRlWo7e3tYWJigrS0NLnlaWlpcHZ2VriNs7OzSu2nTp2K8PBwuWVPnjzBkyfGe4aqSzk5OQgODsbRo0dhbW1t6DhkAMb8b6As/4AeOXIkunTpotc+jflYqqssX1XRFpEgCIKhQ7wqICAA/v7+WLZsGQBAKpWiVq1aGDt2LKZMmVKife/evZGXl4ddu3bJlgUGBqJRo0ZYvXq13nKXVVlZWahatSqePXsGGxsbQ8chA+C/gfKDx7J8MqozagAIDw/HoEGD0LRpU/j7+yMmJga5ubkYPHgwAGDgwIFwcXFBdHQ0AGD8+PEIDg7GokWL0LFjR2zevBnnz5/H2rVrDfkxiIiItMLoCnXv3r3x6NEjREREIDU1Fb6+vti3b5/shrGUlBSIxf/drB4YGIhNmzZhxowZmDZtGurVq4ft27fD29vbUB+BiIhIa4zu0jfpV35+PqKjozF16lSYm5sbOg4ZAP8NlB88luUTCzUREZERM6oBT4iIiEgeCzUREZERY6EmrUpOToZIJMKGDRsMHYWIqFxgoTagxMREjBw5ErVr14aFhQVsbGwQFBSEpUuX4vnz5zrr99q1a4iKikJycrLO+lDG3Llz0aVLFzg5OUEkEpXZEah0TSQSKfWKi4vTuK+8vDxERUWptC8eR9XweJKqjO7xrIpiz5496NWrF8zNzTFw4EB4e3ujoKAAJ06cwOeff46rV6/q7Fnwa9euYdasWWjVqhXc3d110ocyZsyYAWdnZzRu3Bj79+83WA5j98MPP8i9//7773Hw4MESyxs2bKhxX3l5ebJhL1u1aqXUNjyOquHxJFWxUBtAUlIS+vTpAzc3Nxw+fFhueLwxY8bg9u3b2LNnjwET/kcQBLx48QKWlpZa33dSUhLc3d2RkZEBBwcHre+/vHh9HPozZ87g4MGDRjM+PY+jang8SVW89G0ACxYsQE5ODr777juFY9jWrVsX48ePl70vKirC7NmzUadOHZibm8Pd3R3Tpk2TmwUMANzd3dGpUyecOHEC/v7+sLCwQO3atfH999/L2mzYsAG9evUCAISEhJS4zFa8j/3796Np06awtLTEmjVrAAB37txBr169UK1aNVhZWeGDDz7Q6BcKQ57NlzdSqRQxMTF49913YWFhAScnJ4wcORJPnz6Va3f+/HmEhobC3t4elpaW8PDwwJAhQwC8vL+g+AfzrFmzZP823nbpk8dR+3g86VU8ozaAXbt2oXbt2ggMDFSq/bBhw7Bx40b07NkTEydOxNmzZxEdHY3r169j27Ztcm1v376Nnj17YujQoRg0aBBiY2Px6aefws/PD++++y5atmyJcePG4ZtvvsG0adNkl9devcyWkJCAvn37YuTIkRg+fDgaNGiAtLQ0BAYGIi8vD+PGjUP16tWxceNGdOnSBb/++iu6d++uvb8gUtnIkSOxYcMGDB48GOPGjUNSUhKWL1+OS5cu4eTJk6hUqRLS09PRrl07ODg4YMqUKbC1tUVycjJ+//13AICDgwNWrVqFUaNGoXv37vjoo48AAI0aNTLkR6uQeDxJjkB69ezZMwGA0LVrV6Xax8fHCwCEYcOGyS2fNGmSAEA4fPiwbJmbm5sAQDh27JhsWXp6umBubi5MnDhRtmzr1q0CAOHIkSMl+ivex759++SWT5gwQQAgHD9+XLYsOztb8PDwENzd3QWJRCIIgiAkJSUJAIT169cr9fkEQRAePXokABAiIyOV3qYiGzNmjPDq/7rHjx8XAAg//fSTXLt9+/bJLd+2bZsAQPjrr79K3bcmx4LHUT08nvQ2vPStZ1lZWQCAKlWqKNV+796Xc/q+PjXnxIkTAaDEpWcvLy+0aNFC9t7BwQENGjTAnTt3lM7o4eGB0NDQEjn8/f3RvHlz2TJra2uMGDECycnJuHbtmtL7J+3aunUrqlatirZt2yIjI0P28vPzg7W1NY4cOQIAsLW1BQDs3r0bhYWFBkxMb8LjSa9jodaz4qnnsrOzlWp/9+5diMVi1K1bV265s7MzbG1tcffuXbnltWrVKrEPOzu7Et9tvYmHh4fCHA0aNCixvPiS+es5SH9u3bqFZ8+ewdHREQ4ODnKvnJwcpKenAwCCg4PRo0cPzJo1C/b29ujatSvWr19f4l4HMiweT3odv6PWMxsbG9SsWRNXrlxRaTuRSKRUOxMTE4XLBRWGdNfFHd6kO1KpFI6Ojvjpp58Uri++oUgkEuHXX3/FmTNnsGvXLuzfvx9DhgzBokWLcObMGVhbW+szNpWCx5Nex0JtAJ06dcLatWtx+vRpNGvW7I1t3dzcIJVKcevWLbkbvtLS0pCZmQk3NzeV+1e26L+eIyEhocTyGzduyNaTYdSpUwd//vkngoKClPol64MPPsAHH3yAuXPnYtOmTfjkk0+wefNmDBs2TK1/G6RdPJ70Ol76NoAvvvgClStXxrBhw5CWllZifWJiIpYuXQoA6NChAwAgJiZGrs3ixYsBAB07dlS5/8qVKwMAMjMzld6mQ4cOOHfuHE6fPi1blpubi7Vr18Ld3R1eXl4q5yDt+PjjjyGRSDB79uwS64qKimTH+enTpyWurPj6+gKA7HKplZUVANX+bZB28XjS63hGbQB16tTBpk2b0Lt3bzRs2FBuZLJTp05h69at+PTTTwEAPj4+GDRoENauXYvMzEwEBwfj3Llz2LhxI7p164aQkBCV+/f19YWJiQnmz5+PZ8+ewdzcHK1bt4ajo2Op20yZMgU///wzPvzwQ4wbNw7VqlXDxo0bkZSUhN9++w1iseq/8/3www+4e/cu8vLyAADHjh3DnDlzAAADBgzgWbqSgoODMXLkSERHRyM+Ph7t2rVDpUqVcOvWLWzduhVLly5Fz549sXHjRqxcuRLdu3dHnTp1kJ2djXXr1sHGxkb2C6GlpSW8vLywZcsW1K9fH9WqVYO3tze8vb1L7Z/HUbt4PKkEA991XqHdvHlTGD58uODu7i6YmZkJVapUEYKCgoRly5YJL168kLUrLCwUZs2aJXh4eAiVKlUSXF1dhalTp8q1EYSXj1Z17NixRD/BwcFCcHCw3LJ169YJtWvXFkxMTOQe1SptH4IgCImJiULPnj0FW1tbwcLCQvD39xd2794t10aVx7OCg4MFAApfih4do5def5yn2Nq1awU/Pz/B0tJSqFKlivDee+8JX3zxhfDvv/8KgiAIFy9eFPr27SvUqlVLMDc3FxwdHYVOnToJ58+fl9vPqVOnBD8/P8HMzEypx3N4HDXD40lvIxIEFe4yIiIiIr3id9RERERGjIWaiIjIiLFQExERGTEWaiIiIiPGQk1ERGTEWKiJiIiMGAu1EVuwYAE8PT0hlUoNHUVjffr0wccff2zoGGUKjz8pkpycDJFIhA0bNhg6CukJC7WRysrKwvz58zF58mTZqF8ikQgikQiLFi0q0X7Dhg0QiUQ4f/681rO0bdsWIpEIY8eOVbj+u+++Q8OGDWFhYYF69eph2bJlJdpMnjwZv/32G/7++2+t5yuPePyJqBgLtZGKjY1FUVER+vbtW2LdwoULZcP76drvv/8uN77369asWYNhw4bh3XffxbJly9CsWTOMGzcO8+fPl2vXuHFjNG3aVGGRoZJ4/Kk0bm5ueP78OQYMGGDoKKQvhh4ajRRr1KiR0L9/f7llAARfX18BgLBo0SK5devXrxcACH/99ZfWMjx//lxwd3cXvvzySwGAMGbMGLn1eXl5QvXq1UsMOfrJJ58IlStXFp48eSK3/OuvvxYqV64sZGdnay1jecXjT0TFeEZthJKSkvDPP/+gTZs2JdYFBQWhdevWWLBgAZ4/f67THAsWLIBUKsWkSZMUrj9y5AgeP36M0aNHyy0fM2YMcnNzsWfPHrnlbdu2RW5uLg4ePKizzOUBj3/5FxUVBZFIhJs3b6J///6oWrUqHBwcMHPmTAiCgHv37qFr166wsbGBs7Oz3JUIRd9Rf/rpp7C2tsaDBw/QrVs3WFtbw8HBAZMmTYJEIpG1i4uLg0gkQlxcnFweRftMTU3F4MGD8c4778Dc3Bw1atRA165dkZycrKO/FSoNC7UROnXqFACgSZMmCtdHRUUhLS0Nq1ateuN+8vPzkZGRodTrdSkpKfjqq68wf/78UufEvXTpEgCgadOmcsv9/PwgFotl64t5eXnB0tISJ0+efGPuio7Hv+Lo3bs3pFIpvvrqKwQEBGDOnDmIiYlB27Zt4eLigvnz56Nu3bqYNGkSjh079sZ9SSQShIaGonr16vj6668RHByMRYsWYe3atWpl69GjB7Zt24bBgwdj5cqVGDduHLKzs5GSkqLW/kh9nObSCN24cQMA4OHhoXB9ixYtEBISgoULF2LUqFGl/iD9+eefMXjwYKX6FF6bm2XixIlo3Lgx+vTpU+o2Dx8+hImJSYnpMc3MzFC9enX8+++/cstNTU3h6uqKa9euKZWpouLxrzj8/f2xZs0aAMCIESPg7u6OiRMnIjo6GpMnTwYA9O3bFzVr1kRsbCxatmxZ6r5evHiB3r17Y+bMmQCAzz77DE2aNMF3332HUaNGqZQrMzMTp06dwsKFC+WuqEydOlXVj0hawEJthB4/fgxTU1NYW1uX2iYqKgrBwcFYvXo1wsLCFLYJDQ1V6zLjkSNH8Ntvv+Hs2bNvbPf8+XOYmZkpXGdhYaHw0qydnZ3CMzj6D49/xTFs2DDZn01MTNC0aVPcv38fQ4cOlS23tbVFgwYNcOfOnbfu77PPPpN736JFC/zwww8q57K0tISZmRni4uIwdOhQ2NnZqbwP0h4W6jKqZcuWCAkJwYIFC0r8z1msRo0aqFGjhkr7LSoqwrhx4zBgwAC8//77b2xraWmJgoIChetevHih8ExPEASIRCKVMlFJPP7lQ61ateTeV61aFRYWFrC3ty+x/PHjx2/cl4WFBRwcHOSW2dnZ4enTpyrnMjc3x/z58zFx4kQ4OTnhgw8+QKdOnTBw4EA4OzurvD/SDAu1EapevTqKioqQnZ2NKlWqlNouMjISrVq1wpo1a2Bra1ti/fPnz/Hs2TOl+iz+n+/7779HQkIC1qxZU+KmkezsbCQnJ8PR0RFWVlaoUaMGJBIJ0tPT5S5/FhQU4PHjx6hZs2aJfp4+fYp69eoplami4vGvOExMTJRaBpT8ekLZ7V5V2i9Jr95wVmzChAno3Lkztm/fjv3792PmzJmIjo7G4cOH0bhx47f2RdrDm8mMkKenJ4CXd/++SXBwMFq1aoX58+crvMy4ZcsW2VnV217FUlJSUFhYiKCgIHh4eMhewMsf4h4eHjhw4AAAwNfXFwBKDLJx/vx5SKVS2fpiRUVFuHfvHho2bKjS30dFw+NPulJ8CTszM1Nu+d27dxW2r1OnDiZOnIgDBw7gypUrKCgo4LPwBsAzaiPUrFkzAC9/4DVq1OiNbaOiotCqVSuFd3aq8x1lnz59SvyABYDu3bujQ4cOGD58OAICAgAArVu3RrVq1bBq1Sp06NBB1nbVqlWwsrJCx44d5fZx7do1vHjxAoGBgSplqmh4/ElX3NzcYGJigmPHjqFbt26y5StXrpRrl5eXB7FYDAsLC9myOnXqoEqVKsjPz9dXXPr/WKiNUO3ateHt7Y0///wTQ4YMeWPb4OBgBAcH4+jRoyXWqfMdpaenp+yM7nUeHh5y/3NbWlpi9uzZGDNmDHr16oXQ0FAcP34cP/74I+bOnYtq1arJbX/w4EFYWVmhbdu2KmWqaHj8SVeqVq2KXr16YdmyZRCJRKhTpw52796N9PR0uXY3b97E//3f/+Hjjz+Gl5cXTE1NsW3bNqSlpb3xSQDSDRZqIzVkyBBERETg+fPnpT5+UywqKgohISF6SiZv9OjRqFSpEhYtWoSdO3fC1dUVS5Yswfjx40u03bp1Kz766KM3fu9KL/H4k64sW7YMhYWFWL16NczNzfHxxx9j4cKF8Pb2lrVxdXVF3759cejQIfzwww8wNTWFp6cnfvnlF/To0cOA6SsmkfC2OxTIIJ49e4batWtjwYIFco9qlFXx8fFo0qQJLl68qPDSKsnj8SeiYizURmz+/PlYv349rl27JptBqazq06cPpFIpfvnlF0NHKTN4/IkIYKEmIiIyamX713QiIqJyjoWaiIjIiLFQExERGTEWaiIiIiPGQk1ERCUkJydDJBJhw4YNho5S4bFQExFpKDExESNHjkTt2rVhYWEBGxsbBAUFYenSpQrHYdeWa9euISoqqsQEKvo2d+5cdOnSBU5OThCJRIiKijJonvKGI5MREWlgz5496NWrF8zNzTFw4EB4e3ujoKAAJ06cwOeff46rV68qHItdG65du4ZZs2ahVatWcHd310kfypgxYwacnZ3RuHFj7N+/32A5yisWaiIiNSUlJaFPnz5wc3PD4cOH5cZWHzNmDG7fvo09e/YYMOF/BEEodZ5wTSUlJcHd3R0ZGRkl5sQmzfHSNxGRmhYsWICcnBx89913CidAqVu3rty450VFRZg9ezbq1KkDc3NzuLu7Y9q0aSVmpHJ3d0enTp1w4sQJ+Pv7w8LCArVr18b3338va7Nhwwb06tULABASEgKRSASRSIS4uDi5fezfvx9NmzaFpaUl1qxZAwC4c+cOevXqhWrVqsHKygoffPCBRr9QGPJsviJgoSYiUtOuXbtQu3ZtpafuHDZsGCIiItCkSRMsWbIEwcHBiI6OVjgj1e3bt9GzZ0+0bdsWixYtgp2dHT799FNcvXoVANCyZUuMGzcOADBt2jT88MMP+OGHH+Tm+05ISEDfvn3Rtm1bLF26FL6+vkhLS0NgYCD279+P0aNHY+7cuXjx4gW6dOmCbdu2aeFvhbROICIilT179kwAIHTt2lWp9vHx8QIAYdiwYXLLJ02aJAAQDh8+LFvm5uYmABCOHTsmW5aeni6Ym5sLEydOlC3bunWrAEA4cuRIif6K97Fv3z655RMmTBAACMePH5cty87OFjw8PAR3d3dBIpEIgiAISUlJAgBh/fr1Sn0+QRCER48eCQCEyMhIpbeht+MZNRGRGrKysgBA6Wk79+7dCwAIDw+XWz5x4kQAKHHp2cvLCy1atJC9d3BwQIMGDXDnzh2lM3p4eCA0NLREDn9/fzRv3ly2zNraGiNGjEBycjKuXbum9P5JP1ioiYjUYGNjAwDIzs5Wqv3du3chFotRt25dueXOzs6wtbXF3bt35ZbXqlWrxD7s7Ozw9OlTpTN6eHgozNGgQYMSy4svmb+egwyPhZqISA02NjaoWbMmrly5otJ2IpFIqXYmJiYKlwsqTHioizu8Sf9YqImI1NSpUyckJibi9OnTb23r5uYGqVSKW7duyS1PS0tDZmYm3NzcVO5f2aL/eo6EhIQSy2/cuCFbT8aFhZqISE1ffPEFKleujGHDhiEtLa3E+sTERCxduhQA0KFDBwBATEyMXJvFixcDADp27Khy/5UrVwYAZGZmKr1Nhw4dcO7cOblfLnJzc7F27Vq4u7vDy8tL5RykWxzwhIhITXXq1MGmTZvQu3dvNGzYUG5kslOnTmHr1q349NNPAQA+Pj4YNGgQ1q5di8zMTAQHB+PcuXPYuHEjunXrhpCQEJX79/X1hYmJCebPn49nz57B3NwcrVu3hqOjY6nbTJkyBT///DM+/PBDjBs3DtWqVcPGjRuRlJSE3377DWKx6udvP/zwA+7evYu8vDwAwLFjxzBnzhwAwIABA3iWrilD33ZORFTW3bx5Uxg+fLjg7u4umJmZCVWqVBGCgoKEZcuWCS9evJC1KywsFGbNmiV4eHgIlSpVElxdXYWpU6fKtRGEl49WdezYsUQ/wcHBQnBwsNyydevWCbVr1xZMTEzkHtUqbR+CIAiJiYlCz549BVtbW8HCwkLw9/cXdu/eLddGlcezgoODBQAKX4oeHSPViARBhTsTiIiISK/4HTUREZERY6EmIiIyYizURERERoyFmoiIyIixUBMRERkxFmoiIiIjxkJNRERkxFioiYiIjBgLNRERkRFjoSYiIjJiLNRERERGjIWaiIjIiLFQExERGbH/B+zLbXE/5Pp9AAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -1532,7 +1532,7 @@
"source": [
"### Bar desaturation\n",
"\n",
- "The ``bar_desat`` is used to control the amount of desaturation applied to the bar plot bar colors (specific to unpaired data). A value of 0.0 means full desaturation (i.e., grayscale), \n",
+ "The ``raw_desat`` is used to control the amount of desaturation applied to the bar plot bar colors (specific to unpaired data). A value of 0.0 means full desaturation (i.e., grayscale), \n",
"while a value of 1.0 means no desaturation (i.e., full color saturation). The default one is 0.8.\n"
]
},
@@ -1543,7 +1543,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWThJREFUeJzt3Xl8DPf/B/DXbu6IuHKINJI4KtKQEE0QRHwRdSvqqKPUUUeR0LqTqCNFEXXTBj2UautWRxFnUEdaZxCJuJIIIhc5duf3h1+2VjbsvZvk9Xw89tHuzGfm81pD3pnZmc9HJAiCACIiIjJKYkMHICIiopKxUBMRERkxFmoiIiIjxkJNRERkxFioiYiIjBgLNRERkRFjoSYiIjJiLNRERERGjIWaiIjIiJX7Qv3w4UNERETg4cOHho5CRESv4M/nl1ioHz7ErFmzyv1fBCIiY8Ofzy+V+0JNRERkzFioiYiIjBgLNRERkRFjoSYiIjJiLNRERERGjIWaiIjIiLFQExERGTEWaiIiIiNmVIX62LFj6NKlC2rUqAGRSITt27e/dZuYmBg0btwYFhYWqFOnDjZs2KDznERERPpiVIU6JycH3t7eWLFihVLtExMT0alTJwQFBSEuLg4TJkzAsGHDsH//fh0nJSIi0g9TQwd41QcffIAPPvhA6farV6+Gu7s7Fi1aBACoX78+Tpw4gSVLliA4OFhXMYmIiPTGqAq1qmJjY9G2bVu5ZcHBwZgwYUKJ2+Tl5SEvL0/2Pjs7W1fxlNJl2Qk8ysp7e8NywL6iBXZ93sLQMfRvTSCQnWboFIZn4wCMPGroFERGp1QX6pSUFDg6Osotc3R0RGZmJp4/fw4rK6ti20RGRmLWrFn6ivhWj7LykJL5wtAxyJCy04CsB4ZOQWWFpAAQmwIikaGTkJaU6kKtjqlTpyI0NFT2Pi4uDoGBgQZM9JJYBDhUtDR0DINIy3oBqWDoFEZAJAZsqhs6hf5lpwCC1NApyo6cdKCCPWBS7n68l1ml+khWr14dqampcstSU1Nha2ur8GwaACwsLGBhYSF7b2Njo9OMynKoaInT0/5n6BgG0XTeIV5VAF4W6YnXDJ1C/xbV5xUFbZPks1CXIUZ117eqmjVrhkOHDsktO3jwIJo1a2agRERERkCSb+gEpEVGVaizs7MRFxeHuLg4AC8fv4qLi0NycjKAl5etBw0aJGv/2Wef4fbt2/jyyy9x/fp1rFy5Er/++itCQkIMEZ+IyDgU8gbVssSoCvW5c+fQqFEjNGrUCAAQGhqKRo0aISwsDADw8OFDWdEGAHd3d+zZswcHDx6Et7c3Fi1ahO+++46PZhFR+VbIr5LKEqP6EqN169YQhJLvKlI06ljr1q1x8eJFHaYiIiplCp4bOgFpkVGdURMRkRYU5Bg6AWkRCzURUVmTn2voBKRFLNRERGVNXpahE5AWsVATEZU1eZmGTmAwK1asgJubGywtLeHv74+zZ8++sX1UVBTq1asHKysruLi4ICQkBC9eGNfNeCzURERlzYtnhk5gEFu2bEFoaCjCw8Nx4cIFeHt7Izg4GGlpisfS37RpE6ZMmYLw8HBcu3YN33//PbZs2YJp06bpOfmbsVATEZU15bRQL168GMOHD8eQIUPg6emJ1atXw9raGtHR0Qrbnzp1CgEBAejfvz/c3NzQvn179OvX761n4frGQk1EVNY8zzB0Ar3Lz8/H+fPn5WZUFIvFaNu2LWJjYxVu07x5c5w/f15WmG/fvo29e/eiY8eOesmsLKN6jpqIiLTgRYahE2hVdnY2MjP/+9799TkbACA9PR0SiUThjIrXr19XuN/+/fsjPT0dLVq0gCAIKCwsxGeffcZL30REpGO5TwydQKsCAwNRqVIl2SsyMlIr+42JicG8efOwcuVKXLhwAX/88Qf27NmD2bNna2X/2sIzaiKisib3MSAIZWZO6qNHj8LHx0f2/vWzaQCws7ODiYmJwhkVq1dXPH3szJkzMXDgQAwbNgwA0KBBA+Tk5GDEiBGYPn06xGLjOJc1jhRERKQ9kvwy9Sy1jY0NbG1tZS9Fhdrc3By+vr5yMypKpVIcOnSoxBkVc3NzixVjExMTAHjjcNb6xjNqIqKyKDsVsLQ1dAq9Cg0NxeDBg9GkSRP4+fkhKioKOTk5GDJkCABg0KBBcHZ2ll0679KlCxYvXoxGjRrB398ft27dwsyZM9GlSxdZwTYGLNRERGXRs7uAXV1Dp9CrPn364NGjRwgLC0NKSgp8fHywb98+2Q1mycnJcmfQM2bMgEgkwowZM3D//n3Y29ujS5cumDt3rqE+gkIs1EREZdHTJEMnMIixY8di7NixCtfFxMTIvTc1NUV4eDjCw8P1kEx9/I6aiKgsSr9p6ASkJSzURERlUcolQCo1dArSAhZqIqKyKC8LSL9h6BSkBSzURERl1Z2Thk5AWsBCTURUVt2OeTnwCZVqLNRERGVVRjLw+JahU5CGWKiJiMqyW38ZOgFpiIWaiKgsu/UX7/4u5VioiYjKspx04GGcoVOQBlioiYjKuoRDb29DRouFmoiorLt9FJAUGjoFqYmFmoiorMvLAu79begUpCYWaiKi8uDmAUMnIDWxUBMRlQdJJ4AXmYZOQWpgoSYiKiOaNGmCd+r7osm8C8VXSvKBG/v1H4o0xkJNRFRGpKSk4P6Dh0jJzFfc4PLvgFSi31CkMRZqIqLyIushkHDY0ClIRSzURETlyfkNPKsuZVioiYjKk2f3gGu7DJ2CVMBCTURU3pyLfvlsNZUKLNREROXNi2cvL4FTqcBCTURUHl3+A3iSaOgUpAQWaiKi8kiQAqeWAYJg6CT0FizURETl1f3zwJ2Thk5Bb8FCTURUnp1eBUgKDJ2C3oCFmoioPHt2D7iyzdAp6A1YqImIyrvzG4HcJ4ZOQSXQWqEWBAGHDx/Gn3/+iawsPp9HRFRq5GcDf39n6BRUArUK9fTp0xEUFCR7LwgC2rdvj3bt2qFTp05o0KABEhIStBaSiIh07PoeIPWKoVOUag8fPsQ///yDnJwcre5XrUL9+++/w8/PT/b+t99+w6FDhzBnzhzs3r0bEokEERER2spIRET6cHwRICk0dIpSZ8eOHfDw8MA777yDxo0b48yZMwCA9PR0NGrUCNu3b9do/2oV6vv376NOnTqy93/88Qc8PT0xdepUdOzYEaNGjUJMTIxGwYiISM8eJwCXtho6Ramya9cufPjhh7Czs0N4eDiEV55Lt7Ozg7OzM9avX69RH2oValNTU+Tl5QF4edn70KFD6NChg2y9o6Mj0tPTNQpGREQGcC4ayLhr6BSlxldffYVWrVrhxIkTGDNmTLH1zZo1w8WLFzXqQ61C7eXlhZ9++glPnz7F+vXr8fjxY3Tq1Em2/s6dO7Czs1Mr0IoVK+Dm5gZLS0v4+/vj7Nmzb2wfFRWFevXqwcrKCi4uLggJCcGLFy/U6puIqNyT5APHFgJSqaGTlAqXL1/GRx99VOJ6R0dHpKWladSHqTobhYWFoUuXLrJiHBAQIHdz2Z49e/D++++rvN8tW7YgNDQUq1evhr+/P6KiohAcHIz4+Hg4ODgUa79p0yZMmTIF0dHRaN68OW7cuIFPPvkEIpEIixcvVuejERHRw3+Aq9sBrw8NncToWVtbv/Hmsdu3b6NatWoa9aHWGXW7du1w4cIFLF68GNHR0Thw4IBs3dOnT9GqVSuMGzdO5f0uXrwYw4cPx5AhQ+Dp6YnVq1fD2toa0dHRCtufOnUKAQEB6N+/P9zc3NC+fXv069fvrWfhRET0FmfXAdmanQmWB0FBQdi4cSMKC4vfhJeSkoJ169ahffv2GvWh9nPUnp6eGD9+PAYPHgxLS0vZ8ipVqmDJkiVo3bq1SvvLz8/H+fPn0bZt2//CicVo27YtYmNjFW7TvHlznD9/XlaYb9++jb1796Jjx46qfyAiIvpPQS5wcqmhUxi9uXPn4t69e3j//fexZs0aiEQi7N+/HzNmzECDBg0gCALCw8M16kOtS99ZWVnIyMiAi4uLbNmDBw+wevVq5OXloVevXipf+k5PT4dEIoGjo6PcckdHR1y/fl3hNv3790d6ejpatGgBQRBQWFiIzz77DNOmTSuxn7y8PNmNcACQnZ2tUk4ionIj6cTLiTucfQ2dxGjVq1cPJ06cwPjx4zFz5kwIgoCFCxcCAFq3bi2770oTahXqESNGIDExEadPnwYAZGZmomnTprh37x7EYjGWLl2Kffv2qXxWraqYmBjMmzcPK1euhL+/P27duoXx48dj9uzZmDlzpsJtIiMjMWvWLJ3mIipNmjRpgpSUFFSvXh3nzp0zdBwyNmfXAd0bAyKRoZMYrffeew9//fUXnj59ilu3bkEqlaJWrVqwt7fXyv7VuvR94sQJdO7cWfb+p59+woMHD3Dq1Ck8ffoUDRs2xJw5c1Tap52dHUxMTJCamiq3PDU1FdWrV1e4zcyZMzFw4EAMGzYMDRo0QI8ePTBv3jxERkZCWsIdi1OnTsWzZ89kr6NHj6qUk6isSUlJwf3795GSkmLoKGSM0q4BDy4YOkWpUKVKFbz//vvw9/fXWpEG1CzU6enpcHZ2lr3fuXMnWrRogaZNm6JixYoYNGgQ/vnnH5X2aW5uDl9fXxw6dEi2TCqV4tChQ2jWrJnCbXJzcyEWy38EExMTAJB76PxVFhYWsLW1lb1sbGxUyklEVO5wdq0SffvttwgODi5x/QcffIBVq1Zp1Idahbpy5cqy376fP3+O48ePy93VZmpqitzcXJX3GxoainXr1mHjxo24du0aRo0ahZycHAwZMgQAMGjQIEydOlXWvkuXLli1ahU2b96MxMREHDx4EDNnzkSXLl1kBZuIiDSUdBLIeWzoFEbp+++/h6enZ4nrPT09sXbtWo36UOs76ubNm2PlypXw8PDAvn378OLFC3Tr1k22/saNG3Jn3Mrq06cPHj16hLCwMKSkpMDHxwf79u2T3WCWnJwsdwY9Y8YMiEQizJgxA/fv34e9vT26dOmCuXPnqvOxiIhIEUEK3DoIePc1dBKjk5CQoHBEsiIeHh5Yt26dRn2oVajnz5+P9u3bo2fPngCAiRMn4r333gMASCQSbN26VW5IUVWMHTsWY8eOVbju9fHDTU1NER4ervGt70RE9BbxfwIN+/CmsteYm5u/8f6Ohw8fFvuKVlVqFeo6deogPj4eV69eRaVKleRuPc/NzcXy5cvh7e2tUTAiIjIiT5OAx7cAu7qGTmJUmjZtig0bNiAkJAQVK1aUW/fs2TOsX78eTZs21agPtQo1AJiZmSksxhUrVpS7DE5ERGXEzQMs1K8JDw9HYGAgfHx8MGHCBNnV5cuXLyMqKgoPHz7Epk2bNOpD7UKdmZmJlStX4siRI0hLS8OaNWvg5+eHJ0+eYMOGDejatavcVJhERKVFwfMs3N63Gk9ungFEYth5NEet4JEwMbcqcZt/f5iCzORLcsuqN/4AdTq+/Cov9Z+DuLkrSuG2fiE/w7xCZW3F151bhwD/UYCGl3LLEn9/f+zatQsjR47E+PHjIfr/rwYEQYC7uzt27txZ4pNLylKrUN+7dw+BgYG4e/cu6tati+vXr8tG+KpatSrWrFmDO3fuYOlSDj9HRMbp3x+mwNH7f3D0blds3Y3tC5Gf/QReH8+BVCLBzV1RuLVnGer1+PKN+3RsFAzXwAGy92Kz/4ZXtvNshSq15Uf4urFzCaSFBaWjSANA7mPgwUXgHeMdqWzFihVYuHAhUlJS4O3tjWXLlsHPz6/E9hkZGZg+fTr++OMPPHnyBK6uroiKilJpKOp27drh1q1buHjxIhISEgAAtWvXRuPGjWWFWxNqFeovvvgCWVlZiIuLg4ODQ7GZrbp3747du3drHI6ISN9y05PxNOE8vIdGoWKNl5d5a3cYiSu/RMCt7aewqFjyTEgmZpYwt6lawjoLmJhZyN4X5DzDs6R/UbfzeO1+AF27ecBoC7WqMzDm5+ejXbt2cHBwwG+//QZnZ2fcuXMHlStXVrlvsVgMX19f+Ppq/89GrUJ94MABhISEwNPTE48fF3+2rlatWrh7lxOPE1Hpk3nvOkwsK8iKNABUdm8EiETIuh8PC4/mJW6bdvkI0i4dgblNFVSt6weXln1h8spZ9atSLx2C2MwC1eoHaP0z6FTScaBwImBqbugkxbw6AyMArF69Gnv27EF0dDSmTJlSrH10dDSePHmCU6dOwczMDADUHpf76tWruH37Np4+fapwwK1BgwaptV9AzUL9/PnzNw6PlpWVpXYgIiJDKsh+CnPrynLLRGITmFlVREHO0xK3c/AKhEUlB5hXrIac1EQkHV6P54/voX7vGQrbp8YdgL1XoNxZdqmQnwPcOwu4tTB0EjlFMzC+OijW22ZgLPr+eMyYMdixYwfs7e3Rv39/TJ48WelBsxISEjBgwACcPXu2xBExRSKR/gu1p6cnjh07hpEjRypcv337djRq1EjtUERE2nb3xBbcPfmr7L20MB9Z968jYd9q2bLGn6k/1GP1xh/I/r+CgxvMbari8s/T8PzJQ1hVdZJrm3nvGp6n30W9bhPV7s+g7sTqtVBnZ2cjMzNT9t7CwgIWFvK/4KgzA+Pt27dx+PBhfPzxx9i7dy9u3bqF0aNHo6CgQOnxOUaOHIlLly4hKioKLVu2RJUqVVT8dG+nVqGeMGECBg8ejIYNG6J3794AXo7LfevWLcyaNQuxsbH4/ffftRqUiEgT1X07ws6zpex9/PaFsPMIQLVXLmVbVKwGM5sqyM/NkNtWkEpQ8DwLZhWU/yFc0bkeAODF0wfFCnXqxf2o4FgLNk7ae9QpOTkZOTk5AICcPAmSn7xAzaqKL7tr7GGcbvZbgsDAQLn34eHhiIiI0Hi/UqkUDg4OWLt2LUxMTODr64v79+9j4cKFShfqkydPYtq0afj88881zlMStQr1gAEDcOfOHcyYMQPTp08HAHTo0AGCIEAsFmPevHno3r27NnMSEWnEzKoizKz+G5BCbGoBswqVYFW1hlw723c8IHmRg+yHN2WFNCPxH0AQZMVXGTmptwGg2M1lkvznSL92Aq5Bg9X9KHLOnj2L2bNnY8+ePbJLrxnPJXCbfhadG1TFzI6ueN+t4lv2oqJn915eAjevoN39luDo0aPw8fGRvX/9bBpQbwZGJycnmJmZyV3mrl+/PlJSUpCfnw9z87d/D29nZ4dKlSop+UnUo/bDcNOnT0dCQgIWLlyIUaNGYfjw4Zg/fz7i4+MxefJkbWYkItIba7uaqFLbFzf3LEPW/Xhk3r2KhP2rYP9eK9kd33mZ6Ti/aiSy7scDAJ4/eYjk478g++FNvMhIxeMbp3FjxyLY1vRCBUd3uf0/unIMglQChwZBGmf9448/EBAQgD///LPY96OCAOy9/ATNF8Thj4vpGvdVTOYD7e+zBDY2NnKzHioq1OrMwBgQECCbP7rIjRs34OTkpFSRBoDPPvsMP/30EyQSiYqfSnlqD3gCADVr1kRISIi2shARGYV3u3+B2/tW4fLP0wGRCNU8AlA7+L97cgSpBM8f34OkIA8AIDYxRUZiHB6c3QFJ/gtY2NqjWv0AuLQoPolF6j8HUK1ec5haajbF7tmzZ9GnTx9IJJISb2KSSAERBPRZdw2nvvTR7pl1dqrRjVIWGhqKwYMHo0mTJvDz80NUVFSxGRidnZ0RGRkJABg1ahSWL1+O8ePH4/PPP8fNmzcxb948jBs3Tuk+3333XUgkEnh7e2Po0KFwcXFReCPahx9+qPbnUqtQX7hwAadPn8bo0aMVrl+5ciWaN28ud6mCiIxT0WXBki4PllUNB31d4jozq4pvHNzEsrIjWszYI3tvUckeDQfNV6pf708WKR/yDebMmQNBEEos0kUEAAIEzNl7BztGe2mlbwDA8wzt7UtLVJ2B0cXFBfv370dISAgaNmwIZ2dnjB8/XqWrwn369JH9/6RJkxS2EYlEGp1xq1Wop0+fDisrqxIL9eHDh7F3714OekJUCpw7d87QEUhFycnJ2L1791uLdBGJFNh16Yl2bzDLM87HcFWZgREAmjVrhtOnT6vd35EjR9TeVllqFerXn1V7XcuWLWWXFojI+EkkErnv6fTbufDfq6DAMBn0RFqYD6mkUOP97N2zS+kiXUQQgP1Xn2Bw0+IjdKlDyHkKsY6PV2Gh5n9Wuvb6Hem6oFahzsrKgqlpyZuKxWI8e/ZM7VBE5U2yuCaQA+CrBgbpf8mRVETFPDJI3/+JByYb32hXZcmIn25hxE+3tLS3UwDGaGlfpV9eXh4uXLiAtLQ0BAQEwM7OTmv7VqtQ161bFwcOHCjxubF9+/ahVq1aGgUjIv0ZF+iAsa20c6aljprSZKBiDSDk0tsbl1KFebl4cvMcxCamEGk4/ObmbbsRMmOeytut7uuKQX4lj1WuLEEQ8MKlFaw+mAVTC2uN91eSixcvwt/fX2f715Zvv/0WERERshPUgwcPok2bNkhPT4eHhwcWLFiAoUOHqr1/tQr1p59+ipCQEISGhiIsLEw2gHlGRgZmzZqFffv2YeHChWqHIiL9MhGLoNyAibphJhIBJiLg/8dbLotEUjOYmZnCxMJa42FD/9e6FUSiSJUuf4tEQDuPSjAz1cKRFgRIzMxhZmYGUx0eszdduTUW69evx4QJE9C3b1+0b99eriDb2dmhTZs22Lx5s/4L9bhx4xAXF4eoqCh8++23qFHj5YABDx48gFQqxcCBA/nYFhGRjrg4OyG4TSscjDmh1N3EJmKgo2dl1KyqvXHFBbHxF1F9WLRoEbp164ZNmzYpnKTK19cX3377rUZ9qPUnLRKJsH79egwaNAi///47bt9+OQJPt27d0LNnT7Ru3VqjUESkP53X3MKj7ELY25hi98g6ho5DSvri8xH46+gJiESiN55ZiwCIIMLUYKcS26hDMNXR8KSlzK1bt9743HXVqlUVFnBVaPQrUVBQEIKCNB9dh4gM51F2IVIyjf/uWpLX2NsL0csWYOjnX0IQoPDM2kT8skj/MqQ23nfVbICV1wlm+hk+1NhVrlwZ6eklj/x29epVjccoUGsI0cTEROzatavE9bt27UJSUpK6mYiISAldOrTF/t9+QLvWLSASieTWiUQvL3cfC/FAd2/tz+gktdDt+NalRceOHbF27VpkZGQUW3flyhWsW7cOXbt21agPtc6oJ02ahMzMTHTp0kXh+hUrVqBy5crYvHmzRuGIiOjNGnt74ZfvvsXd+w/RqmNvZGRmobKVCc5Pfk+r30m/TlLB8e2NyoE5c+bA398fXl5e6NKlC0QiETZu3Ijo6Gj8/vvvcHJyQlhYmEZ9qHVGHRsbi3bt2pW4/n//+x+OHz+udigiIlKNi7MTrK2tAAAVzMU6LdJSC1sIFrY6239pUqNGDZw/fx4dOnTAli1bIAgCfvzxR+zatQv9+vXD6dOnNX6mWq0z6qdPn6JixZIHd7exsdH4y3MiIjJOhfbvGTqCUcjLy8P+/fvh5uaG7777Dt999x0ePXoEqVQKe3t7uXHFNaHWXmrWrImTJ0+WuP748eN455131A5FRETGq8DB29ARjIK5uTl69+6NU6dOyZbZ29vD0dFRa0UaULNQ9+vXD7/88gu+/fZbufGBJRIJli5dii1btqB///5aC0lERMZBsLDlGfX/E4lEqFu37hvv+tYGtQr11KlTERQUhAkTJsDJyQmtWrVCq1atUKNGDYSEhCAwMBDTp0/XdlYiIjKwgpqtALEhx7EzLtOmTcPy5csRHx+vsz7U+o7awsICBw4cwMaNG/HHH38gISEBAODn54eePXti0KBBWj3tJyIiI2BihgL3/xk6hVE5ffo0qlWrBi8vL7Ru3Rpubm6wsrKSayMSibB06VK1+1B7wBOxWIwhQ4ZgyJAhandORESlR37tDhAsKgIFeYaOYjSWL18u+/9Dhw4pbGOwQk1EROWHYFkF+bU7GDqG0dHHPO5qFeo2bdq8tY1IJCrxtwsiIipdXngPAkx192w2lUytQi2VSosNVyeRSHDnzh3cvXsXderUgbOzs1YCEhGRYRXUbAGJQwNDxzBqp0+fxpEjR5CWlobRo0ejbt26yM3NxfXr1/Huu+/Cxkb9sdbVKtQxMTElrtu9ezdGjBiBxYsXq5uJiIiMhGBth7z3+ho6htHKz89H3759sWPHDgiCAJFIhC5duqBu3boQi8Vo3749QkJCNHoSSuu3Znfu3BkDBgzAhAkTtL1rIiLSsxc+QwBOaVmimTNnYvfu3Vi1ahXi4+Plphy1tLRE7969sWPHDo360MkzVLVr18bff/+ti10TEZGeFLi2hqRaPUPHMGq//PILRo0ahREjRqBq1arF1tevXx+3b9/WqA+t3/VdWFiIX3/9VeNByIlIP+xtTOX+SwQAgnkF5Hn0MHQMo5eWloYGDUr+/t7ExAS5ubka9aHWv8yhQ4cqXJ6RkYHTp08jJSWF31ETlRK7R9YxdAQyQvnvdgXMKxg6htFzcXHB9evXS1x/8uRJ1Kmj2b8xtQr14cOHFUxSLkKVKlXQokULDBs2DO3bt9coGBERGYZgWeXlUKH0Vv3798fixYvRs2dPvPvuuwAgq4/r1q3Dr7/+iq+//lqjPtQq1ElJSRp1SkRExiu/dnvAxMzQMUqF6dOn4/Tp02jVqhXq168PkUiEkJAQPHnyBPfu3UPHjh0REhKiUR8ckJuIiP5jaomCmi0NnaLUMDc3x759+7B+/XrUqlULHh4eyMvLQ8OGDbFhwwbs2rULJiaaTWKi9Bl1bm4u0tPTUb16dZibm8uti46Oxs8//4yHDx/Cw8MDU6dOxfvvv69RMCIi0r+Cmq34ONYbhIaGYuDAgWjUqBEAIDk5Gfb29hgwYAAGDBigkz6VPqP+6quv0LBhQ+Tn58stnzNnDoYPH46jR4/i0aNH2L59O1q3bo1//vlH62GJiEiHRGLku799iOjyLCoqCteuXZO9d3d3x7Zt23Tap9KF+siRI+jcubPcMGiZmZmYM2cOnJ2dcfPmTTx69AinT5+Gubm5xl+eExGRfhU6+0Gw5qO1b+Lo6Cj3XPSrA5zoitKXvpOSktCzZ0+5ZXv37kV+fj4mT54Md3d3AC/npB4yZAh+/fVX7SYlIiLdEYmRV7ezoVMYvU6dOuGrr77CgQMHULlyZQDAokWLsHnz5hK3EYlEGo1OpnShzsrKQrVq1eSWHTt2DCKRCMHBwXLLPT098ejRI7VDERGRfhW4BUGwqW7oGEZv6dKlcHBwwJEjR3DlyhWIRCLcvXsXT548KXGb1x9nVpXSl75dXV2LPdQdExMDR0fHYg9z5+fnw9bWVq1AK1asgJubGywtLeHv74+zZ8++sX1GRgbGjBkDJycnWFhY4N1338XevXvV6puIqDwSLGyR925XQ8coFSpUqIB58+YhNjYWCQkJEAQBUVFRSExMLPGl6RCiShfq9u3bIzo6GmfOnAEA/PDDD7h+/Tp69Cg+xNz58+fh5uamcpgtW7YgNDQU4eHhuHDhAry9vREcHIy0tDSF7fPz89GuXTskJSXht99+Q3x8PNatW8cpNomIVJD3Xl+OQqakDz/8EMePH5e9P3LkCNq1a6fTPpUu1DNnzoSNjQ2aN28Oc3NzfPLJJ7C3t0dYWJhcu9zcXGzbtg3/+9//VA6zePFiDB8+HEOGDIGnpydWr14Na2trREdHK2wfHR2NJ0+eYPv27QgICICbmxsCAwPh7e2tct9EROVRoaM3CmvwcVpl7dixA8nJybL3bdq0wcGDB3Xap9KF2s7ODnFxcfj666/x6aefYt68ebh06RIcHR3l2l2+fBkff/wxBg4cqFKQ/Px8nD9/Hm3btv0vnFiMtm3bIjY2VuE2O3fuRLNmzTBmzBg4OjrCy8sL8+bNg0QiUalvIqJyydQSeQ0GABp+h1qeODs74+LFi7L3RXNQ65JKQ4hWqVIFX3zxxRvb+Pn5wc/PT+Ug6enpkEgkxQq/o6NjiQOe3759G4cPH8bHH3+MvXv34tatWxg9ejQKCgoQHh6ucJu8vDzk5eXJ3mdnZ6uclYioLMjz6AHBqoqhY5Qqffv2xTfffINff/1Vdtf3lClTEBkZWeI2IpFIo7FFSvW8dlKpFA4ODli7di1MTEzg6+uL+/fvY+HChSUW6sjISMyaNUvPSYmIjIu0Uk0UuAUZOkapExkZiTp16uDIkSNIS0uDSCRChQoVij0VpU1GU6jt7OxgYmKC1NRUueWpqamoXl3xIwNOTk4wMzOTG0e1fv36SElJQX5+frGhTgFg6tSpCA0Nlb2Pi4tDYGCglj4FEVHp8MKrPyDidA+qMjExwYgRIzBixAgAL7+inTFjBvr376+zPo3mKJmbm8PX1xeHDh2SLZNKpTh06BCaNWumcJuAgADcunULUqlUtuzGjRtwcnJSWKQBwMLCAra2trLXqyOtERGVB4VOTSCtynnItSExMRHdu3fXaR9GU6iBl4Odr1u3Dhs3bsS1a9cwatQo5OTkYMiQIQCAQYMGYerUqbL2o0aNwpMnTzB+/HjcuHEDe/bswbx58zBmzBhDfQQiIuMmEiPPo/hjtaQeV1dXWFtb67QPpS5979y5E02aNEGNGjV0GqZPnz549OgRwsLCkJKSAh8fH+zbt092g1lycjLE4v9+t3BxccH+/fsREhKChg0bwtnZGePHj8fkyZN1mpOIqLQqeKcZBBvHtzckhcRiMcRiMXJzc2Fubg6xWPzWu75FIhEKCwvV7lOpQt2jRw/8+OOPsmvwtWrVQlRUFLp21f5INmPHjsXYsWMVrouJiSm2rFmzZjh9+rTWcxARlT0i5NfpaOgQpVpYWBhEIhFMTU3l3uuSUoW6YsWKyMjIkL1PSkriY01ERKVMYXUfnk1rKCIi4o3vdUGpQu3n54e5c+ciNTUVlSpVAvBy5qyUlJQStxGJRAgJCdFOSiIi0liBe9u3NyKjo1ShXrlyJQYNGoTZs2cDeFmEN23ahE2bNpW4DQs1EZHxkNo4QVLtXUPHKFPy8vLw008/4cCBA0hISEBWVhYqVqyIOnXqoEOHDujfv3+JTyCpQqlCXadOHZw6dQovXrxAWloa3NzcEBUVhW7dumkcgIiIdK/AtRWHCtWiS5cuoVu3brhz5w4EQUClSpVgY2ODtLQ0XLhwAVu3bsXcuXOxc+dO1K9fX6O+VHo8y9LSEjVr1kR4eDjatGkDV1fXN76IiMgIiMQodG5q6BR6oepUyUU2b94MkUik1DPR2dnZ6Nq1K1JTUzF37lzcvXsXT58+lfvvnDlz8ODBA3Tp0gU5OTkafSa1nqMODw+Hl5eXLPC1a9dw7do13mBGRGSEJPZeECwqGjqGzqk6VXKRpKQkTJo0CS1btlSqn/Xr1yM5ORl79uzBlClTik2t7OzsjKlTp2LXrl1ITEzEhg0b1P1IADQY8OTvv/9GUFAQqlSpAi8vL3h5eaFKlSpo06YNzp07p1EoIiLSngLn8jGNpapTJQOARCLBxx9/jFmzZqFWrVpK9bNnzx60b98erVu3fmO7Nm3aoF27dti1a5cqH6MYtQr1mTNn0KpVK1y4cAHDhg3DkiVLsGTJEgwbNgwXLlxAq1atlL7cQEREOiQSo9ChoaFTaCQ7OxuZmZmy16szIBZRZ6pkAPjqq6/g4OCATz/9VOk8ly5demuRLtKmTRtcunRJ6X0rotakHNOnT4ezszNOnDhRbMKMiIgIBAQEYPr06TqfTJuIiN5MUu1dwLyCoWNo5PWJk8LDw4s9v6zOVMknTpzA999/j7i4OJXyPHnypMTJol7n6OiIJ0+eqLT/16lVqM+cOYOwsDCFQR0dHTFixAjZo1xERGQ4hQ5eho6gsaNHj8LHx0f23sLCQuN9ZmVlYeDAgVi3bh3s7OxU2jYvLw9mZmZKtTU1NUV+fr46Ef/bhzobicXiN45bKpFI5MbkJiIiw5DYv2foCBqzsbGBra3tG9uoOlVyQkICkpKS0KVLF9myopkYTU1NER8fj9q1a5fYX1JSEi5cuPDW7ImJiW9t8zZqFermzZtjxYoV6N+/f7HHsJKTk7Fy5UoEBARoHI6IiNQnmFeAtKLz2xuWAa9OlVz0iFXRVMmK5o/w8PAo9t3xjBkzkJWVhaVLl8LFxeWN/c2cORMzZ858ay5BEDQeC1ytQj1v3jy0atUKHh4e6NGjB9599+VoN/Hx8dixYwdMTU0RGRmpUTAiItKMpGpdQFR+rm6GhoZi8ODBaNKkCfz8/BAVFVVsqmRnZ2dERkbC0tJS9phxkcqVKwNAseWvW79+vU7yl0StQt2oUSOcOXMG06dPx86dO5GbmwsAsLa2RocOHTBnzhx4enpqNSgREalGUqWOoSPolapTJatr8ODBGu9DFWoVagDw9PTEtm3bIJVK8ejRIwCAvb09v5smIjIS0srlb4RIVadKfpWmA5PoitqFuohYLC52OzwRERmexLamoSOQFvD0l4ioDBIsKpX656fpJRZqIqIySFrRydARSEtYqImIyiBpBQdDRyAtYaEmIiqDpNb2ho5AWqLxzWRERGR8BKtqho5Qrly9ehW3b9/G06dPIQhCsfWDBg1Se98aFWpdBiMiIvVJraoaOkK5kJCQgAEDBuDs2bMK6yAAiEQi/RdqfQQjIiL1CZaVDR2hXBg5ciQuXbqEqKgotGzZElWqVNF6H2oVan0EIyIi1TjY2wGCFI7muS8fzyKdO3nyJKZNm4bPP/9cZ32oVaj1EYyIiFRzZOcvEOWmw/rYbOSYKDcNI2nGzs4OlSrp9pcite761kcwIiJSj2BR0dARyo3PPvsMP/30EyQSic76UOuMuijYmDFjYGJiou1MRESkAcHizXM3k/a8++67kEgk8Pb2xtChQ+Hi4qKwLn744Ydq96FWodZHMCIiUo9gbmPoCOVGnz59ZP8/adIkhW1EIpFGZ9xqFWp9BCMiIvWwUOvPkSNHdN6HWoVaH8GIiEg9gjm/o9aXwMBAnfehVqHWRzAiIlKPYGZt6Ajl0tWrV3Hnzh0AgKurKzw9PbWyX42HENVVMCIiUo9gxukt9WnHjh0IDQ1FUlKS3HJ3d3csXrwYXbt21Wj/ahdqXQcjIiI18Yxab/bu3YuePXvC1dUV8+bNQ/369QEA165dw9q1a/Hhhx9i9+7d6NChg9p9qFWo9RGMiIjUI5hZGTpCuTF79mw0bNgQx48fR4UK/13J6Nq1K8aOHYsWLVpg1qxZ+i/U+ghGRETqEUwtDR2h3Pj3338xb948uVpYpEKFCvjkk08wbdo0jfpQa2Syf//9F4MHD35jsH///VejYEREpCYTC0MnKDcsLS3x5MmTEtc/efIElpaa/eKkVqHWRzAiIlKPINb4PmFSUps2bbB06VLExsYWW3fmzBl8++23aNu2rUZ9qHU0i4J16NABzZo1Uxisffv2GgUjIiI1sVDrzYIFC9CsWTO0aNECfn5+qFevHgAgPj4eZ8+ehYODA+bPn69RH2odTX0EIyIidYkMHaDccHd3x7///ovIyEj8+eef2LJlC4CXjyuPHz8eU6ZMgYODg0Z9qFWo9RGMiIioNHBwcMCSJUuwZMkSnexf7esjug5GRERqEqSGTkBaxC8yiIjKHMHQAcqsoUOHQiQSYe3atTAxMcHQoUPfuo1IJML333+vdp9KFWpDBCMiIjXxjFpnDh8+DLFYDKlUChMTExw+fBgi0ZvvCXjb+rdRqlAbIhgREalJ4Bm1rrw+bPbr73VBqUJtiGBERETGLjk5Gfb29rCyUjxs6/Pnz/Ho0SPUrFlT7T7UGvAkOTkZz58/L3H98+fPkZycrHYoIiLSAC9o6o27uzu2bdtW4vqdO3fC3d1doz7UKtT6CEZERGoSmRg6QbkhvOVrhoKCAojFapVaGbW21nWwFStWwM3NDZaWlvD398fZs2eV2m7z5s0QiUTo3r272n0TEZV6LNQ6lZmZieTkZNmV48ePH8vev/r6999/sXnzZjg5OWnUn9KPZ2VmZiIjI0P2vijY6zIyMjQKtmXLFoSGhmL16tXw9/dHVFQUgoODER8f/8ZBVJKSkjBp0iS0bNlSrX6JiMoMMQu1Li1ZsgRfffUVgJc3Tk+YMAETJkxQ2FYQBMyZM0ej/pQu1PoKtnjxYgwfPhxDhgwBAKxevRp79uxBdHQ0pkyZonAbiUSCjz/+GLNmzcLx48flfqEgIipvOCmHbrVv3x42NjYQBAFffvkl+vXrh8aNG8u1EYlEqFChAnx9fdGkSRON+lP6aOojWH5+Ps6fP4+pU6fKlonFYrRt21bhzCRFvvrqKzg4OODTTz/F8ePH39hHXl4e8vLyZO+zs7NVzklEZNTEZoZOUKY1a9ZMNiFVTk4OevbsCS8vL531p3Sh1kew9PR0SCQSODo6yi13dHTE9evXFW5z4sQJfP/994iLi1Oqj8jISMyaNUvTqERExsnEgpe+9SQ3NxfffvstrK2tdVqoVb7jqyjYn3/+qYs8KsnKysLAgQOxbt062NnZKbXN1KlT8ezZM9nr6NGjOk5JRKQ/gkVFQKTZXcakHGtra5iamqJChQo67UflLzJ0GczOzg4mJiZITU2VW56amorq1asXa5+QkICkpCR06dJFtkwqfTl0nqmpKeLj41G7dm25bSwsLGBhYSF7b2Njo82PQERE5UjPnj3x22+/YdSoUTobkVOtX7uKgr3tMS1VmZubw9fXF4cOHZItk0qlOHTokOyy+6s8PDxw6dIlxMXFyV5du3ZFUFAQ4uLi4OLiotV8REREr+rbty/S0tIQFBSEn3/+GSdPnsSFCxeKvTSh1q2Bffv2xejRoxEUFIThw4fDzc1N4fBpr99spozQ0FAMHjwYTZo0gZ+fH6KiopCTkyO7C3zQoEFwdnZGZGQkLC0ti30vULlyZQDQ6fcFREREANC6dWvZ/yu6mVkQBIhEIkgkErX7UKtQ6zJYnz598OjRI4SFhSElJQU+Pj7Yt2+f7Aaz5ORkjUd5ISIi0ob169frvA+1CrWug40dOxZjx45VuC4mJuaN227YsEH7gYiIiBQYPHiwzvtQq1DrIxgREVFpkp2djbt37wIAXFxctHazssbXkLOzs3Ht2jVcu3aNg4cQEVG58/fffyMoKAhVqlSBl5cXvLy8UKVKFbRp0wbnzp3TeP9qjzP3999/48svv8SJEydkj0SJxWK0bNkSCxYs0HjINCIiImN35swZtG7dGubm5hg2bBjq168PALh27Rp++eUXtGrVCjExMfDz81O7D7UKtT6CERERqWrFihVYuHAhUlJS4O3tjWXLlpVYi9atW4cffvgBly9fBgD4+vpi3rx5KtWu6dOnw9nZGSdOnCg23kdERAQCAgIwffp0HDx4UO3PpNal76Jg8fHxWLVqFcaNG4dx48Zh1apViI+PR40aNTB9+nS1QxEREamqaPbF8PBwXLhwAd7e3ggODkZaWprC9jExMejXrx+OHDmC2NhYuLi4oH379rh//77SfZ45cwYjR45UOCiXo6MjRowYgdOnT6v9mQA1C7U+ghEREani1dkXPT09sXr1alhbWyM6Olph+59//hmjR4+Gj48PPDw88N1338kG2VKWWCxGYWFhieslEonGjxSrtbU+ghEREQEvb1rOzMyUvV6dAbFI0eyLbdu2lS1TZvbFV+Xm5qKgoABVq1ZVOlvz5s2xYsUK3Llzp9i65ORkrFy5EgEBAUrvTxG1vqMuCta/f3+4urrqJBgREREABAYGyr0PDw9HRESE3DJ1Zl983eTJk1GjRg25Yv828+bNQ6tWreDh4YEePXrg3XffBQDEx8djx44dMDU1RWRkpNL7U0StQq2PYERERABw9OhR+Pj4yN6/OrGStnz99dfYvHkzYmJiYGlpqfR2jRo1wpkzZzB9+nTs3LkTubm5AF5OYNWhQwfMmTMHnp6eGmVTq1DrIxgRERHwcpZDW1vbN7ZRdfbFV33zzTf4+uuv8ddff6Fhw4Yq5/P09MS2bdsglUrx6NEjAIC9vb3WvgJW+zlqXQcjIiJS1quzL3bv3h3Af7MvljQkNQAsWLAAc+fOxf79+zUe/0MkEsmmutTmlJcaV9WiYK8GJCIi0rfQ0FCsW7cOGzduxLVr1zBq1Khisy9OnTpV1n7+/PmYOXMmoqOj4ebmhpSUFKSkpKg8yubVq1fRq1cv2NrawsnJCU5OTrC1tUWvXr1kz2hrQu0z6qtXryIsLAz79++Xu/QdHByMiIgITjNJRER6persi6tWrUJ+fj569eoltx9FN6uV5Pjx4/jggw8glUrRrVs3uXu2du7ciT///BP79u1Dy5Yt1f5cahVqfQQjIiJSlSqzLyYlJWncX0hICBwcHHD06FG4uLjIrbt79y5atWqF0NBQ/P3332r3oVah1kcwIiIiY3flyhXMnj27WC0EXs6gNWrUKKXPzkui1nfUV65cwejRo98Y7MqVKxoFIyIiMnaurq4KB2Apkp+fr7BWqkKtQq2PYERERMYuLCwM3377LeLi4oqtu3jxIpYtW6bxGbVal77DwsIQEhKCTp06yT2E/mqwqKgojYIREREZu9OnT8PR0RG+vr5o3rw56tSpAwC4efMmYmNj4eXlhdjYWLlhTEUiEZYuXap0H2oVan0EIyIiMnbLly+X/f/Jkydx8uRJufWXLl3CpUuX5JbppVDrIxgREZGxk0qlOu9DrUKtj2BERESkwYAnRERE9FJiYiL+/PNP2XSXrq6u+OCDD+Du7q7xvjUq1LoMRkREVBpMnDgRS5cuLXa1WSwWY8KECfjmm2802r/ahVrXwYiIiIzdokWLsGTJEvTq1QsTJ05E/fr1AQDXrl3DkiVLsGTJEjg7OyMkJETtPtR6jroo2IcffojY2FhkZGQgIyMDsbGx6NWrlywcERFRWbZu3Tp07doVv/76K/z9/WFrawtbW1v4+/tj8+bN6NKlC9asWaNRH2oVan0EIyIiMnZJSUkIDg4ucX1wcLDGY4qrVaj1EYyIiMjYOTg44J9//ilx/T///AN7e3uN+lCrUOsjGBERkbHr3bs3vvvuO3z99dfIycmRLc/JycH8+fPx3XffoU+fPhr1odbNZL1798bSpUvh5uaGzz//HBUqVJAFW758Ob777jtMmDBBo2BERETGbvbs2YiLi8O0adMQFhaGGjVqAAAePHiAwsJCBAUF4auvvtKoD7UKtT6CERERGTtra2scOnQIO3bskHtcuUOHDujYsSO6dOkCkUikUR9qFWp9BCMiIjJmubm5GDBgAHr27ImPP/4Y3bp100k/KhdqfQUjIiIyZtbW1vjrr7/wwQcf6LQflW8mKwqWm5urizxERESlRosWLeRmitQFte761kcwIiIiY7d8+XIcP34cM2bMwL1793TSh1qFWh/BiIiIjJ23tzfu3buHyMhIuLq6wsLCQjYIWNGrUqVKGvWh1s1k3t7eKCwsRGRkJCIjI2FqagoLCwu5NiKRCM+ePdMoHBERkTHr2bOnzm+eVqtQ6yMYERGRsduwYYPO+1CrUOsjGBERkbF68eIFduzYgcTERNjZ2aFTp05wcnLSSV8qFWp9BiMiIjJGaWlpaN68ORITEyEIAoCXT0Rt374dbdu21Xp/ShdqfQcjIiIyRrNnz0ZSUhJCQkLQpk0b3Lp1C7Nnz8bIkSORkJCg9f6ULtT6DkZERGSMDhw4gEGDBuGbb76RLXN0dET//v0RHx+PevXqabU/pQu1voMREREZo+TkZEyePFluWYsWLSAIAlJTU7VeD5V+jjo5ORktWrQoMRgREVF5kJeXB0tLS7llRe8LCwu13p/SZ9T6DkZERGSskpKScOHCBdn7onFDbt68icqVKxdr37hxY7X7Uumub30GIyIiMlYzZ87EzJkziy0fPXq03HtBECASiSCRSNTuS6VCrc9gRERExmj9+vV67U/pQq3PYCtWrMDChQuRkpICb29vLFu2DH5+fgrbrlu3Dj/88AMuX74MAPD19cW8efNKbE9ERKSJwYMH67U/pQu1voJt2bIFoaGhWL16Nfz9/REVFYXg4GDEx8fDwcGhWPuYmBj069cPzZs3h6WlJebPn4/27dvjypUrcHZ21ktmIiIiXVFr9ixdWrx4MYYPH44hQ4bA09MTq1evhrW1NaKjoxW2//nnnzF69Gj4+PjAw8MD3333HaRSKQ4dOqTn5KVTkyZN8M4776BJkyaGjkJERAqoNda3ruTn5+P8+fOYOnWqbJlYLEbbtm2Vnv86NzcXBQUFqFq1qsL1eXl5yMvLk73Pzs7WLHQpl5KSgvv37xs6BhERlcCozqjT09MhkUjg6Ogot9zR0REpKSlK7WPy5MmoUaNGicOaRkZGolKlSrJXYGCgxrmJiIh0xagKtaa+/vprbN68Gdu2bSv2zHeRqVOn4tmzZ7LX0aNH9ZySiIhIeUZ16dvOzg4mJibFRjpLTU1F9erV37jtN998g6+//hp//fUXGjZsWGI7CwsLWFhYyN7b2NhoFpqIiEiHjOqM2tzcHL6+vnI3ghXdGNasWbMSt1uwYAFmz56Nffv28aYoIiIqU4zqjBoAQkNDMXjwYDRp0gR+fn6IiopCTk4OhgwZAgAYNGgQnJ2dERkZCQCYP38+wsLCsGnTJri5ucm+y7axseHZMhERlXpGV6j79OmDR48eISwsDCkpKfDx8cG+fftkN5glJydDLP7vQsCqVauQn5+PXr16ye0nPDwcERER+oxORESkdUZXqAFg7NixGDt2rMJ1MTExcu+TkpJ0H4iIiMhAjOo7aiIiIpLHQk1ERGTEWKiJiIiMGAs1ERGVGStWrICbmxssLS3h7++Ps2fPvrH91q1b4eHhAUtLSzRo0AB79+7VU1LlsVCXc9WrV4ezs/NbB5QhIjJ2RbMvhoeH48KFC/D29kZwcDDS0tIUtj916hT69euHTz/9FBcvXkT37t3RvXt32bTJxoKFupw7d+4c7t27h3Pnzhk6ChGRRlSdfXHp0qXo0KEDvvjiC9SvXx+zZ89G48aNsXz5cj0nfzMWaiIiKvWKZl98dUKmt82+GBsbW2wCp+DgYKVna9QXo3yOmvRLIpFAKpUarH+ppBCCpBBSSSEKCgoMlsNgJAIKJIKhUxhUgVQAJAJQho9/YUEBCgoKIZHmQlRQaOg4GhEK82X/XgWx7o5ZYeHLP6fs7GxkZmbKlr8+ZwPw5tkXr1+/rnD/KSkpGs3WqC8s1EagmuQxCp4Cvl/8YJD+H5zchpTY7Qbp+1XJAMzDDJ2CDCcemGxu6BBkhF6fjri8jTzJQk1watYNTk27GDTDY5NqcLS1xMkpbQyawyCWNEByTvn+p1hTmgxUrAGEXDJ0FJ2S/v+ZaFkgNjGF2FS3v1hdvHgR/v7+OHr0KHx8fGTLXz+bBtSbfbF69epqzdaob+X7pwMBAERiMQx9u4LIxBRiE1OYmZkZNIdBmIhgZiIydAqDMhOJABMRUNaPf1n/fFpmavqyRNnY2MDW1vaNbV+dfbF79+4A/pt9saQhqZs1a4ZDhw5hwoQJsmUHDx5842yNhsBCXc5d/zEcBTnPYFahEjwGzjJ0HCIitak6++L48eMRGBiIRYsWoVOnTti8eTPOnTuHtWvXGvJjFMNCXc4V5DxDQfZTQ8cgItKYqrMvNm/eHJs2bcKMGTMwbdo01K1bF9u3b4eXl5ehPoJCLNRERFRmqDL7IgD07t0bvXv31nEqzfA5aiIiIiPGQk1ERGTEWKiJiIiMGAs1ERGREWOhJiIiMmIs1EREREaMhZqIiMiIsVATEREZMRZqIiIiI8ZCTUREZMRYqImIiIwYx/ou58wqVJL7LxERGRcW6nKOU1sSERk3XvomIiIyYizURERERoyFmoiIyIixUBMRERkxFmoiIiIjxkJNRERkxFioiYiIjBgLNRERkRFjoSYiIjJiLNRERERGjIWaiIjIiLFQExERGTEWaiIiIiPGQk1ERGTEWKiJiIiMGAs1ERGREWOhJiIiMmIs1EREREaMhZqIiMiIGWWhXrFiBdzc3GBpaQl/f3+cPXv2je23bt0KDw8PWFpaokGDBti7d6+ekhIREemW0RXqLVu2IDQ0FOHh4bhw4QK8vb0RHByMtLQ0he1PnTqFfv364dNPP8XFixfRvXt3dO/eHZcvX9ZzciIiIu0zukK9ePFiDB8+HEOGDIGnpydWr14Na2trREdHK2y/dOlSdOjQAV988QXq16+P2bNno3Hjxli+fLmekxMREWmfURXq/Px8nD9/Hm3btpUtE4vFaNu2LWJjYxVuExsbK9ceAIKDg0tsT0REVJqYGjrAq9LT0yGRSODo6Ci33NHREdevX1e4TUpKisL2KSkpCtvn5eUhLy9P9j47OxsAcO3aNU2iqy3n/k0UZim+rF+e5ImfIifLAhcuVDF0FP279wIPn5sYOoVBpQsS4NkL4MIFueVOTk5wcnIyUCrNPHz4EA8fPjR0jFLNUD+XjY1RFWp9iIyMxKxZs+SWubq6YsCAAQZKREVSAPiuNHQKMpwcIMpXbkl4eDgiIiIME0dDa9asKfazhlQXGBhYan9Z0xajKtR2dnYwMTFBamqq3PLU1FRUr15d4TbVq1dXqf3UqVMRGhoqt+zJkyd48uSJBslLr+zsbAQGBuLo0aOwsbExdBwyAGP+O1Caf0CPHDkSXbt21Wufxnws1VWar6poi0gQBMHQIV7l7+8PPz8/LFu2DAAglUpRs2ZNjB07FlOmTCnWvk+fPsjNzcWuXbtky5o3b46GDRti9erVestdWmVmZqJSpUp49uwZbG1tDR2HDIB/B8oOHsuyyajOqAEgNDQUgwcPRpMmTeDn54eoqCjk5ORgyJAhAIBBgwbB2dkZkZGRAIDx48cjMDAQixYtQqdOnbB582acO3cOa9euNeTHICIi0gqjK9R9+vTBo0ePEBYWhpSUFPj4+GDfvn2yG8aSk5MhFv93s3rz5s2xadMmzJgxA9OmTUPdunWxfft2eHl5GeojEBERaY3RXfom/crLy0NkZCSmTp0KCwsLQ8chA+DfgbKDx7JsYqEmIiIyYkY14AkRERHJY6EmIiIyYizUpFVJSUkQiUTYsGGDoaMQEZUJLNQGlJCQgJEjR6JWrVqwtLSEra0tAgICsHTpUjx//lxn/V69ehURERFISkrSWR/KmDt3Lrp27QpHR0eIRKJSOwKVrolEIqVeMTExGveVm5uLiIgIlfbF46gaHk9SldE9nlVe7NmzB71794aFhQUGDRoELy8v5Ofn48SJE/jiiy9w5coVnT0LfvXqVcyaNQutW7eGm5ubTvpQxowZM1C9enU0atQI+/fvN1gOY/fjjz/Kvf/hhx9w8ODBYsvr16+vcV+5ubmyYS9bt26t1DY8jqrh8SRVsVAbQGJiIvr27QtXV1ccPnxYbni8MWPG4NatW9izZ48BE/5HEAS8ePECVlZWWt93YmIi3NzckJ6eDnt7e63vv6x4fRz606dP4+DBg0YzPj2Po2p4PElVvPRtAAsWLEB2dja+//57hWPY1qlTB+PHj5e9LywsxOzZs1G7dm1YWFjAzc0N06ZNk5sFDADc3NzQuXNnnDhxAn5+frC0tEStWrXwww8/yNps2LABvXv3BgAEBQUVu8xWtI/9+/ejSZMmsLKywpo1awAAt2/fRu/evVG1alVYW1ujadOmGv1CYciz+bJGKpUiKioK7733HiwtLeHo6IiRI0fi6dOncu3OnTuH4OBg2NnZwcrKCu7u7hg6dCiAl/cXFP1gnjVrluzvxtsuffI4ah+PJ72KZ9QGsGvXLtSqVQvNmzdXqv2wYcOwceNG9OrVCxMnTsSZM2cQGRmJa9euYdu2bXJtb926hV69euHTTz/F4MGDER0djU8++QS+vr5477330KpVK4wbNw7ffvstpk2bJru89upltvj4ePTr1w8jR47E8OHDUa9ePaSmpqJ58+bIzc3FuHHjUK1aNWzcuBFdu3bFb7/9hh49emjvD4hUNnLkSGzYsAFDhgzBuHHjkJiYiOXLl+PixYs4efIkzMzMkJaWhvbt28Pe3h5TpkxB5cqVkZSUhD/++AMAYG9vj1WrVmHUqFHo0aMHPvzwQwBAw4YNDfnRyiUeT5IjkF49e/ZMACB069ZNqfZxcXECAGHYsGFyyydNmiQAEA4fPixb5urqKgAQjh07JluWlpYmWFhYCBMnTpQt27p1qwBAOHLkSLH+ivaxb98+ueUTJkwQAAjHjx+XLcvKyhLc3d0FNzc3QSKRCIIgCImJiQIAYf369Up9PkEQhEePHgkAhPDwcKW3Kc/GjBkjvPpP9/jx4wIA4eeff5Zrt2/fPrnl27ZtEwAIf//9d4n71uRY8Diqh8eT3oaXvvUsMzMTAFCxYkWl2u/duxcAik3NOXHiRAAodunZ09MTLVu2lL23t7dHvXr1cPv2baUzuru7Izg4uFgOPz8/tGjRQrbMxsYGI0aMQFJSEq5evar0/km7tm7dikqVKqFdu3ZIT0+XvXx9fWFjY4MjR44AACpXrgwA2L17NwoKCgyYmN6Ex5Nex0KtZ0VTz2VlZSnV/s6dOxCLxahTp47c8urVq6Ny5cq4c+eO3PKaNWsW20eVKlWKfbf1Ju7u7gpz1KtXr9jyokvmr+cg/bl58yaePXsGBwcH2Nvby72ys7ORlpYGAAgMDETPnj0xa9Ys2NnZoVu3bli/fn2xex3IsHg86XX8jlrPbG1tUaNGDVy+fFml7UQikVLtTExMFC4XVBjSXRd3eJPuSKVSODg44Oeff1a4vuiGIpFIhN9++w2nT5/Grl27sH//fgwdOhSLFi3C6dOnYWNjo8/YVAIeT3odC7UBdO7cGWvXrkVsbCyaNWv2xraurq6QSqW4efOm3A1fqampyMjIgKurq8r9K1v0X88RHx9fbPn169dl68kwateujb/++gsBAQFK/ZLVtGlTNG3aFHPnzsWmTZvw8ccfY/PmzRg2bJhafzdIu3g86XW89G0AX375JSpUqIBhw4YhNTW12PqEhAQsXboUANCxY0cAQFRUlFybxYsXAwA6deqkcv8VKlQAAGRkZCi9TceOHXH27FnExsbKluXk5GDt2rVwc3ODp6enyjlIOz766CNIJBLMnj272LrCwkLZcX769GmxKys+Pj4AILtcam1tDUC1vxukXTye9DqeURtA7dq1sWnTJvTp0wf169eXG5ns1KlT2Lp1Kz755BMAgLe3NwYPHoy1a9ciIyMDgYGBOHv2LDZu3Iju3bsjKChI5f59fHxgYmKC+fPn49mzZ7CwsECbNm3g4OBQ4jZTpkzBL7/8gg8++ADjxo1D1apVsXHjRiQmJuL333+HWKz673w//vgj7ty5g9zcXADAsWPHMGfOHADAwIEDeZaupMDAQIwcORKRkZGIi4tD+/btYWZmhps3b2Lr1q1YunQpevXqhY0bN2LlypXo0aMHateujaysLKxbtw62trayXwitrKzg6emJLVu24N1330XVqlXh5eUFLy+vEvvncdQuHk8qxsB3nZdrN27cEIYPHy64ubkJ5ubmQsWKFYWAgABh2bJlwosXL2TtCgoKhFmzZgnu7u6CmZmZ4OLiIkydOlWujSC8fLSqU6dOxfoJDAwUAgMD5ZatW7dOqFWrlmBiYiL3qFZJ+xAEQUhISBB69eolVK5cWbC0tBT8/PyE3bt3y7VR5fGswMBAAYDCl6JHx+il1x/nKbJ27VrB19dXsLKyEipWrCg0aNBA+PLLL4UHDx4IgiAIFy5cEPr16yfUrFlTsLCwEBwcHITOnTsL586dk9vPqVOnBF9fX8Hc3Fypx3N4HDXD40lvIxIEFe4yIiIiIr3id9RERERGjIWaiIjIiLFQExERGTEWaiIiIiPGQk1ERGTEWKiJiIiMGAu1EVuwYAE8PDwglUoNHUVjffv2xUcffWToGKUKjz8pkpSUBJFIhA0bNhg6CukJC7WRyszMxPz58zF58mTZqF8ikQgikQiLFi0q1n7Dhg0QiUQ4d+6c1rO0a9cOIpEIY8eOVbj++++/R/369WFpaYm6deti2bJlxdpMnjwZv//+O/755x+t5yuLePyJqAgLtZGKjo5GYWEh+vXrV2zdwoULZcP76doff/whN77369asWYNhw4bhvffew7Jly9CsWTOMGzcO8+fPl2vXqFEjNGnSRGGRoeJ4/Kkkrq6ueP78OQYOHGjoKKQvhh4ajRRr2LChMGDAALllAAQfHx8BgLBo0SK5devXrxcACH///bfWMjx//lxwc3MTvvrqKwGAMGbMGLn1ubm5QrVq1YoNOfrxxx8LFSpUEJ48eSK3/JtvvhEqVKggZGVlaS1jWcXjT0RFeEZthBITE/Hvv/+ibdu2xdYFBASgTZs2WLBgAZ4/f67THAsWLIBUKsWkSZMUrj9y5AgeP36M0aNHyy0fM2YMcnJysGfPHrnl7dq1Q05ODg4ePKizzGUBj3/ZFxERAZFIhBs3bmDAgAGoVKkS7O3tMXPmTAiCgLt376Jbt26wtbVF9erV5a5EKPqO+pNPPoGNjQ3u37+P7t27w8bGBvb29pg0aRIkEomsXUxMDEQiEWJiYuTyKNpnSkoKhgwZgnfeeQcWFhZwcnJCt27dkJSUpKM/FSoJC7UROnXqFACgcePGCtdHREQgNTUVq1ateuN+8vLykJ6ertTrdcnJyfj6668xf/78EufEvXjxIgCgSZMmcst9fX0hFotl64t4enrCysoKJ0+efGPu8o7Hv/zo06cPpFIpvv76a/j7+2POnDmIiopCu3bt4OzsjPnz56NOnTqYNGkSjh079sZ9SSQSBAcHo1q1avjmm28QGBiIRYsWYe3atWpl69mzJ7Zt24YhQ4Zg5cqVGDduHLKyspCcnKzW/kh9nObSCF2/fh0A4O7urnB9y5YtERQUhIULF2LUqFEl/iD95ZdfMGTIEKX6FF6bm2XixIlo1KgR+vbtW+I2Dx8+hImJSbHpMc3NzVGtWjU8ePBAbrmpqSlcXFxw9epVpTKVVzz+5Yefnx/WrFkDABgxYgTc3NwwceJEREZGYvLkyQCAfv36oUaNGoiOjkarVq1K3NeLFy/Qp08fzJw5EwDw2WefoXHjxvj+++8xatQolXJlZGTg1KlTWLhwodwVlalTp6r6EUkLWKiN0OPHj2FqagobG5sS20RERCAwMBCrV69GSEiIwjbBwcFqXWY8cuQIfv/9d5w5c+aN7Z4/fw5zc3OF6ywtLRVemq1SpYrCMzj6D49/+TFs2DDZ/5uYmKBJkya4d+8ePv30U9nyypUro169erh9+/Zb9/fZZ5/JvW/ZsiV+/PFHlXNZWVnB3NwcMTEx+PTTT1GlShWV90Haw0JdSrVq1QpBQUFYsGBBsX+cRZycnODk5KTSfgsLCzFu3DgMHDgQ77///hvbWllZIT8/X+G6Fy9eKDzTEwQBIpFIpUxUHI9/2VCzZk2595UqVYKlpSXs7OyKLX/8+PEb92VpaQl7e3u5ZVWqVMHTp09VzmVhYYH58+dj4sSJcHR0RNOmTdG5c2cMGjQI1atXV3l/pBkWaiNUrVo1FBYWIisrCxUrViyxXXh4OFq3bo01a9agcuXKxdY/f/4cz549U6rPon98P/zwA+Lj47FmzZpiN41kZWUhKSkJDg4OsLa2hpOTEyQSCdLS0uQuf+bn5+Px48eoUaNGsX6ePn2KunXrKpWpvOLxLz9MTEyUWgYU/3pC2e1eVdIvSa/ecFZkwoQJ6NKlC7Zv3479+/dj5syZiIyMxOHDh9GoUaO39kXaw5vJjJCHhweAl3f/vklgYCBat26N+fPnK7zMuGXLFtlZ1dteRZKTk1FQUICAgAC4u7vLXsDLH+Lu7u44cOAAAMDHxwcAig2yce7cOUilUtn6IoWFhbh79y7q16+v0p9HecPjT7pSdAk7IyNDbvmdO3cUtq9duzYmTpyIAwcO4PLly8jPz+ez8AbAM2oj1KxZMwAvf+A1bNjwjW0jIiLQunVrhXd2qvMdZd++fYv9gAWAHj16oGPHjhg+fDj8/f0BAG3atEHVqlWxatUqdOzYUdZ21apVsLa2RqdOneT2cfXqVbx48QLNmzdXKVN5w+NPuuLq6goTExMcO3YM3bt3ly1fuXKlXLvc3FyIxWJYWlrKltWuXRsVK1ZEXl6evuLS/2OhNkK1atWCl5cX/vrrLwwdOvSNbQMDAxEYGIijR48WW6fOd5QeHh6yM7rXubu7y/3jtrKywuzZszFmzBj07t0bwcHBOH78OH766SfMnTsXVatWldv+4MGDsLa2Rrt27VTKVN7w+JOuVKpUCb1798ayZcsgEolQu3Zt7N69G2lpaXLtbty4gf/973/46KOP4OnpCVNTU2zbtg2pqalvfBKAdIOF2kgNHToUYWFheP78eYmP3xSJiIhAUFCQnpLJGz16NMzMzLBo0SLs3LkTLi4uWLJkCcaPH1+s7datW/Hhhx++8XtXeonHn3Rl2bJlKCgowOrVq2FhYYGPPvoICxcuhJeXl6yNi4sL+vXrh0OHDuHHH3+EqakpPDw88Ouvv6Jnz54GTF8+iYS33aFABvHs2TPUqlULCxYskHtUo7SKi4tD48aNceHCBYWXVkkejz8RFWGhNmLz58/H+vXrcfXqVdkMSqVV3759IZVK8euvvxo6SqnB409EAAs1ERGRUSvdv6YTERGVcSzURERERoyFmoiIyIixUBMRERkxFmoiIiomKSkJIpEIGzZsMHSUco+FmohIQwkJCRg5ciRq1aoFS0tL2NraIiAgAEuXLlU4Dru2XL16FREREcUmUNG3uXPnomvXrnB0dIRIJEJERIRB85Q1HJmMiEgDe/bsQe/evWFhYYFBgwbBy8sL+fn5OHHiBL744gtcuXJF4Vjs2nD16lXMmjULrVu3hpubm076UMaMGTNQvXp1NGrUCPv37zdYjrKKhZqISE2JiYno27cvXF1dcfjwYbmx1ceMGYNbt25hz549Bkz4H0EQSpwnXFOJiYlwc3NDenp6sTmxSXO89E1EpKYFCxYgOzsb33//vcIJUOrUqSM37nlhYSFmz56N2rVrw8LCAm5ubpg2bVqxGanc3NzQuXNnnDhxAn5+frC0tEStWrXwww8/yNps2LABvXv3BgAEBQVBJBJBJBIhJiZGbh/79+9HkyZNYGVlhTVr1gAAbt++jd69e6Nq1aqwtrZG06ZNNfqFwpBn8+UBCzURkZp27dqFWrVqKT1157BhwxAWFobGjRtjyZIlCAwMRGRkpMIZqW7duoVevXqhXbt2WLRoEapUqYJPPvkEV65cAQC0atUK48aNAwBMmzYNP/74I3788Ue5+b7j4+PRr18/tGvXDkuXLoWPjw9SU1PRvHlz7N+/H6NHj8bcuXPx4sULdO3aFdu2bdPCnwppnUBERCp79uyZAEDo1q2bUu3j4uIEAMKwYcPklk+aNEkAIBw+fFi2zNXVVQAgHDt2TLYsLS1NsLCwECZOnChbtnXrVgGAcOTIkWL9Fe1j3759cssnTJggABCOHz8uW5aVlSW4u7sLbm5ugkQiEQRBEBITEwUAwvr165X6fIIgCI8ePRIACOHh4UpvQ2/HM2oiIjVkZmYCgNLTdu7duxcAEBoaKrd84sSJAFDs0rOnpydatmwpe29vb4969erh9u3bSmd0d3dHcHBwsRx+fn5o0aKFbJmNjQ1GjBiBpKQkXL16Ven9k36wUBMRqcHW1hYAkJWVpVT7O3fuQCwWo06dOnLLq1evjsqVK+POnTtyy2vWrFlsH1WqVMHTp0+Vzuju7q4wR7169YotL7pk/noOMjwWaiIiNdja2qJGjRq4fPmyStuJRCKl2pmYmChcLqgw4aEu7vAm/WOhJiJSU+fOnZGQkIDY2Ni3tnV1dYVUKsXNmzfllqempiIjIwOurq4q969s0X89R3x8fLHl169fl60n48JCTUSkpi+//BIVKlTAsGHDkJqaWmx9QkICli5dCgDo2LEjACAqKkquzeLFiwEAnTp1Urn/ChUqAAAyMjKU3qZjx444e/as3C8XOTk5WLt2Ldzc3ODp6alyDtItDnhCRKSm2rVrY9OmTejTpw/q168vNzLZqVOnsHXrVnzyyScAAG9vbwwePBhr165FRkYGAgMDcfbsWWzcuBHdu3dHUFCQyv37+PjAxMQE8+fPx7Nnz2BhYYE2bdrAwcGhxG2mTJmCX375BR988AHGjRuHqlWrYuPGjUhMTMTvv/8OsVj187cff/wRd+7cQW5uLgDg2LFjmDNnDgBg4MCBPEvXlKFvOyciKu1u3LghDB8+XHBzcxPMzc2FihUrCgEBAcKyZcuEFy9eyNoVFBQIs2bNEtzd3QUzMzPBxcVFmDp1qlwbQXj5aFWnTp2K9RMYGCgEBgbKLVu3bp1Qq1YtwcTERO5RrZL2IQiCkJCQIPTq1UuoXLmyYGlpKfj5+Qm7d++Wa6PK41mBgYECAIUvRY+OkWpEgqDCnQlERESkV/yOmoiIyIixUBMRERkxFmoiIiIjxkJNRERkxFioiYiIjBgLNRERkRFjoSYiIjJiLNRERERGjIWaiIjIiLFQExERGTEWaiIiIiPGQk1ERGTEWKiJiIiM2P8BTBhh4ug/nAEAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWEdJREFUeJzt3XlcTfn/B/DXrbRJtlZNKsugiaKmEJIvMvZ1LGOZjGUsg2KGLJWxZBlk7MyEMWMYM2M3lkHWMKQZa0gJoxKihdLt/P7o1x1Xt9z93ur1fDzuY9xzPud8XtcxvTvnnvP5iARBEEBERER6yUDXAYiIiKhkLNRERER6jIWaiIhIj7FQExER6TEWaiIiIj3GQk1ERKTHWKiJiIj0GAs1ERGRHmOhJiIi0mMVvlA/evQI4eHhePToka6jEBHRG/jzuRAL9aNHmD17doX/h0BEpG/487lQhS/URERE+oyFmoiISI+xUBMREekxFmoiIiI9xkJNRESkx1ioiYiI9BgLNRERkR5joSYiItJjelWoT548iW7duqFWrVoQiUTYtWvXO7eJjo5Gs2bNYGJignr16mHTpk0az0lERKQtelWos7Oz4e7ujlWrVsnVPjExEV26dIG/vz/i4uIwadIkjBgxAocOHdJwUiIiIu0w0nWAN3300Uf46KOP5G6/du1auLi4YMmSJQCARo0a4fTp01i2bBkCAgI0FZOIiEhr9KpQKyomJgbt27eXWhYQEIBJkyaVuE1ubi5yc3Ml77OysjQVTy7dVpzG48zcdzesAKyrmGDvF610HUP71vkBWWm6TqF7FjbA6BO6TkGkd8p0oU5JSYGtra3UMltbW7x48QIvX76EmZlZsW0iIiIwe/ZsbUV8p8eZuUh58UrXMUiXstKAzH91nYLKC/FrwMAIEIl0nYTUpEwXamWEhIQgODhY8j4uLg5+fn46TFTIQATYVDHVdQydSMt8hQJB1yn0gMgAsLDTdQrty0oBhAJdpyg/stOBytaAYYX78V5ulekjaWdnh9TUVKllqampsLS0lHk2DQAmJiYwMTGRvLewsNBoRnnZVDHFuen/03UMnWg+/yivKgCFRXryDV2n0L4ljXhFQd3EeSzU5Yhe3fWtqBYtWuDo0aNSy44cOYIWLVroKBERkR4Q5+k6AamRXhXqrKwsxMXFIS4uDkDh41dxcXFITk4GUHjZeujQoZL2n3/+Oe7evYuvvvoKN2/exOrVq/HLL78gKChIF/GJiPRDPm9QLU/0qlBfvHgRTZs2RdOmTQEAwcHBaNq0KUJDQwEAjx49khRtAHBxccH+/ftx5MgRuLu7Y8mSJfjuu+/4aBYRVWz5/CqpPNGrLzHatm0LQSj5riJZo461bdsWly9f1mAqIqIy5vVLXScgNdKrM2oiIlKD19m6TkBqxEJNRFTe5OXoOgGpEQs1EVF5k5up6wSkRizURETlTe4LXSfQmVWrVsHZ2Rmmpqbw8fHBhQsXSm0fGRmJBg0awMzMDI6OjggKCsKrV/p1Mx4LNRFRefPqua4T6MT27dsRHByMsLAwxMbGwt3dHQEBAUhLkz2W/tatWzFt2jSEhYXhxo0b+P7777F9+3ZMnz5dy8lLx0JNRFTeVNBCvXTpUowcORKBgYFwdXXF2rVrYW5ujqioKJntz549C19fXwwaNAjOzs7o2LEjBg4c+M6zcG1joSYiKm9eZug6gdbl5eXh0qVLUjMqGhgYoH379oiJiZG5TcuWLXHp0iVJYb579y4OHDiAzp07ayWzvPTqOWoiIlKDVxm6TqBWWVlZePHiv+/d356zAQDS09MhFotlzqh48+ZNmfsdNGgQ0tPT0apVKwiCgPz8fHz++ee89E1ERBqW81TXCdTKz88PVatWlbwiIiLUst/o6GjMnz8fq1evRmxsLH7//Xfs378fc+bMUcv+1YVn1ERE5U3OE0AQys2c1CdOnICHh4fk/dtn0wBgZWUFQ0NDmTMq2tnJnj521qxZGDJkCEaMGAEAaNy4MbKzszFq1CjMmDEDBgb6cS6rHymIiEh9xHnl6llqCwsLWFpaSl6yCrWxsTE8PT2lZlQsKCjA0aNHS5xRMScnp1gxNjQ0BIBSh7PWNp5RExGVR1mpgKmlrlNoVXBwMIYNGwYvLy94e3sjMjIS2dnZCAwMBAAMHToUDg4Okkvn3bp1w9KlS9G0aVP4+Pjgzp07mDVrFrp16yYp2PqAhZqIqDx6fh+wqq/rFFrVv39/PH78GKGhoUhJSYGHhwcOHjwoucEsOTlZ6gx65syZEIlEmDlzJh4+fAhra2t069YN8+bN09VHkImFmoioPHqWpOsEOjF+/HiMHz9e5rro6Gip90ZGRggLC0NYWJgWkimP31ETEZVH6bd1nYDUhIWaiKg8SrkCFBToOgWpAQs1EVF5lJsJpN/SdQpSAxZqIqLy6t4ZXScgNWChJiIqr+5GFw58QmUaCzURUXmVkQw8uaPrFKQiFmoiovLszp+6TkAqYqEmIirP7vzJu7/LOBZqIqLyLDsdeBSn6xSkAhZqIqLyLuHou9uQ3mKhJiIq7+6eAMT5uk5BSmKhJiIq73IzgQd/6ToFKYmFmoioIrh9WNcJSEks1EREFUHSaeDVC12nICWwUBMRlRNeXl54r5EnvObHFl8pzgNuHdJ+KFIZCzURUTmRkpKCh/8+QsqLPNkNrv4GFIi1G4pUxkJNRFRRZD4CEo7pOgUpiIWaiKgiubSJZ9VlDAs1EVFF8vwBcGOvrlOQAlioiYgqmotRhc9WU5nAQk1EVNG8el54CZzKBBZqIqKK6OrvwNNEXacgObBQExFVREIBcHYFIAi6TkLvwEJNRFRRPbwE3Duj6xT0DizUREQV2bk1gPi1rlNQKVioiYgqsucPgGs7dZ2CSsFCTURU0V3aDOQ81XUKKoHaCrUgCDh27Bj++OMPZGby+TwiojIjLwv46ztdp6ASKFWoZ8yYAX9/f8l7QRDQsWNHdOjQAV26dEHjxo2RkJCgtpBERKRhN/cDqdd0naJMe/ToEf7++29kZ2erdb9KFerffvsN3t7ekve//vorjh49irlz52Lfvn0Qi8UIDw9XV0YiItKGU0sAcb6uU5Q5u3fvRsOGDfHee++hWbNmOH/+PAAgPT0dTZs2xa5du1Tav1KF+uHDh6hXr57k/e+//w5XV1eEhISgc+fOGDNmDKKjo1UKRkREWvYkAbiyQ9cpypS9e/eid+/esLKyQlhYGIQ3nku3srKCg4MDNm7cqFIfShVqIyMj5ObmAii87H306FF06tRJst7W1hbp6ekqBSMiIh24GAVk3Nd1ijLj66+/Rps2bXD69GmMGzeu2PoWLVrg8uXLKvWhVKF2c3PDjz/+iGfPnmHjxo148uQJunTpIll/7949WFlZKRVo1apVcHZ2hqmpKXx8fHDhwoVS20dGRqJBgwYwMzODo6MjgoKC8OrVK6X6JiKq8MR5wMnFQEGBrpOUCVevXsXHH39c4npbW1ukpaWp1IeRMhuFhoaiW7dukmLs6+srdXPZ/v378eGHHyq83+3btyM4OBhr166Fj48PIiMjERAQgPj4eNjY2BRrv3XrVkybNg1RUVFo2bIlbt26hU8//RQikQhLly5V5qMREdGjv4HruwC33rpOovfMzc1LvXns7t27qFmzpkp9KHVG3aFDB8TGxmLp0qWIiorC4cOHJeuePXuGNm3aYMKECQrvd+nSpRg5ciQCAwPh6uqKtWvXwtzcHFFRUTLbnz17Fr6+vhg0aBCcnZ3RsWNHDBw48J1n4URE9A4XNgBZqp0JVgT+/v7YvHkz8vOL34SXkpKCDRs2oGPHjir1ofRz1K6urpg4cSKGDRsGU1NTyfLq1atj2bJlaNu2rUL7y8vLw6VLl9C+ffv/whkYoH379oiJiZG5TcuWLXHp0iVJYb579y4OHDiAzp07K/6BiIjoP69zgDPLdZ1C782bNw8PHjzAhx9+iHXr1kEkEuHQoUOYOXMmGjduDEEQEBYWplIfSl36zszMREZGBhwdHSXL/v33X6xduxa5ubno27evwpe+09PTIRaLYWtrK7Xc1tYWN2/elLnNoEGDkJ6ejlatWkEQBOTn5+Pzzz/H9OnTS+wnNzdXciMcAGRlZSmUk4iowkg6XThxh4OnrpPorQYNGuD06dOYOHEiZs2aBUEQsHjxYgBA27ZtJfddqUKpQj1q1CgkJibi3LlzAIAXL16gefPmePDgAQwMDLB8+XIcPHhQ4bNqRUVHR2P+/PlYvXo1fHx8cOfOHUycOBFz5szBrFmzZG4TERGB2bNnazQXUVni5eWFlJQU2NnZ4eLFi7qOQ/rmwgagZzNAJNJ1Er31wQcf4M8//8SzZ89w584dFBQUoE6dOrC2tlbL/pW69H369Gl07dpV8v7HH3/Ev//+i7Nnz+LZs2do0qQJ5s6dq9A+raysYGhoiNTUVKnlqampsLOzk7nNrFmzMGTIEIwYMQKNGzdGr169MH/+fERERKCghDsWQ0JC8Pz5c8nrxIkTCuUkKm9SUlLw8OFDpKSk6DoK6aO0G8C/sbpOUSZUr14dH374IXx8fNRWpAElC3V6ejocHBwk7/fs2YNWrVqhefPmqFKlCoYOHYq///5boX0aGxvD09MTR48elSwrKCjA0aNH0aJFC5nb5OTkwMBA+iMYGhoCgNRD528yMTGBpaWl5GVhYaFQTiKiCoeza5Xo22+/RUBAQInrP/roI6xZs0alPpQq1NWqVZP89v3y5UucOnVK6q42IyMj5OTkKLzf4OBgbNiwAZs3b8aNGzcwZswYZGdnIzAwEAAwdOhQhISESNp369YNa9aswbZt25CYmIgjR45g1qxZ6Natm6RgExGRipLOANlPdJ1CL33//fdwdXUtcb2rqyvWr1+vUh9KfUfdsmVLrF69Gg0bNsTBgwfx6tUr9OjRQ7L+1q1bUmfc8urfvz8eP36M0NBQpKSkwMPDAwcPHpTcYJacnCx1Bj1z5kyIRCLMnDkTDx8+hLW1Nbp164Z58+Yp87GIiEgWoQC4cwRwH6DrJHonISFB5ohkRRo2bIgNGzao1IdShXrhwoXo2LEj+vTpAwCYPHkyPvjgAwCAWCzGjh07pIYUVcT48eMxfvx4meveHj/cyMgIYWFhKt/6TkRE7xD/B9CkP28qe4uxsXGp93c8evSo2Fe0ilKqUNerVw/x8fG4fv06qlatKnXreU5ODlauXAl3d3eVghERkR55lgQ8uQNY1dd1Er3SvHlzbNq0CUFBQahSpYrUuufPn2Pjxo1o3ry5Sn0oVagBoFKlSjKLcZUqVaQugxMRUTlx+zAL9VvCwsLg5+cHDw8PTJo0SXJ1+erVq4iMjMSjR4+wdetWlfpQulC/ePECq1evxvHjx5GWloZ169bB29sbT58+xaZNm9C9e3epqTCJiPRezlPgj6+A+IOAyABw7QZ0WgiYlPJ0yMYuwL3T0ss8A4FukYV/vvwTsHus7G2n3AEs1PcYj8bdOQr4jAFUvJRbnvj4+GDv3r0YPXo0Jk6cCNH/fzUgCAJcXFywZ8+eEp9ckpdShfrBgwfw8/PD/fv3Ub9+fdy8eVMywleNGjWwbt063Lt3D8uXc/g5ItIzG7sAHoOApp8UX/f7SCAzFRi6CxC/LiyweycCfb8vfZ/NhgH+M/57X8nsvz+79QbqtZduv2sMkJ9btoo0AOQ8Af69DLynvyOVrVq1CosXL0ZKSgrc3d2xYsUKeHt7l9g+IyMDM2bMwO+//46nT5/CyckJkZGRCg1F3aFDB9y5cweXL19GQkICAKBu3bpo1qyZpHCrQqlC/eWXXyIzMxNxcXGwsbEpNrNVz549sW/fPpXDERFpzeN44M6fwMjjgEOzwmUfLQZ+6gt0nAtY2pe8bSVzoIptCevMpAt3djqQeBLosVJ92bXp9mG9LdSKzsCYl5eHDh06wMbGBr/++iscHBxw7949VKtWTeG+DQwM4OnpCU9P9f/dKFWoDx8+jKCgILi6uuLJk+LP1tWpUwf373PicSIqQ+5fAEyr/lekAaBO28JL4A8vApbdSt72yi/AP9sBC1ugQSegzVeAsbnstn//XFjYXcvovTxJp4D8yYCRsa6TFPPmDIwAsHbtWuzfvx9RUVGYNm1asfZRUVF4+vQpzp49i0qVKgGA0uNyX79+HXfv3sWzZ89kDrg1dOhQpfYLKFmoX758WerwaJmZmUoHIiLSiaxUoPJbP9cMjQCz6oXrStK4L1DNEahiD6ReA46EAem3gQE/yW4fu6VwmzfPssuSvGzgwQXAuZWuk0gpmoHxzUGx3jUDY9H3x+PGjcPu3bthbW2NQYMGYerUqXIPmpWQkIDBgwfjwoULJY6IKRKJtF+oXV1dcfLkSYwePVrm+l27dqFp06ZKhyIiUpuT3wCnlv73Pv8l8OAv4MCX/y0bd175/XsF/vdn2w8Kz6p/6A48vQvUqCPd9v4FID0e6L1O+f70wb0YrRbqrKwsvHjxQvLexMQEJiYmUm2UmYHx7t27OHbsGD755BMcOHAAd+7cwdixY/H69Wu5x+cYPXo0rly5gsjISLRu3RrVq1dX8NO9m1KFetKkSRg2bBiaNGmCfv36ASgcl/vOnTuYPXs2YmJi8Ntvv6k1KBGRUryGAx/0+u/97yOBRt2BRm9cyq5iX1hgsx9LbyvOB14+K1wnr/e8Cv8rq1DHbgbsGgO11H8ik5ycjOzsbABAdq4YyU9foXYNU7X3AwB4FKeZ/ZbAz89P6n1YWBjCw8NV3m9BQQFsbGywfv16GBoawtPTEw8fPsTixYvlLtRnzpzB9OnT8cUXX6icpyRKFerBgwfj3r17mDlzJmbMKLzTsVOnThAEAQYGBpg/fz569uypzpxERMoxr1H4KmJkVniJu2Zd6XaO3sCr54V3NRcV0sQThcNnOnjJ31/KlcL/Wrw1619uFnBtF/A/9Y6keOHCBcyZMwf79++XXHrNeCmG84wL6Nq4BmZ1dsKHzlXesRcFPX9QeAncuLJ691uCEydOwMPDQ/L+7bNpQLkZGO3t7VGpUiWpy9yNGjVCSkoK8vLyYGz87u/hraysULVqVTk/iXKUfhhuxowZSEhIwOLFizFmzBiMHDkSCxcuRHx8PKZOnarOjEREmmfdoPAxqj0TgAeXgORzhZfH3fr8d8f3i3+BFV6F64HCs+YTiwqL+7N7wM0DwM7RgJMvYOcmvf9rvwMF+UCTj9UW+ffff4evry/++OOPYt+PCgJw4OpTtFwUh98vp6utT4kX/6p/nyWwsLCQmvVQVqFWZgZGX19fyfzRRW7dugV7e3u5ijQAfP755/jxxx8hFosV/FTyU3rAEwCoXbs2goKC1JWFiEi3em8oLM4/dC+827tRd+Cjhf+tF78GntwGXv//7ICGxsDdaODcaiAvB6jqULhNmy+L7zt2S+HldrNqaol64cIF9O/fH2KxuMSbmMQFgAgC+m+4gbNfeaj3zDorVe9GKQsODsawYcPg5eUFb29vREZGFpuB0cHBAREREQCAMWPGYOXKlZg4cSK++OIL3L59G/Pnz8eECRPk7vP999+HWCyGu7s7hg8fDkdHR5k3ovXu3Vvpz6VUoY6NjcW5c+cwdqzs0XZWr16Nli1bSl2qICL9VHRZsKTLg+VO4P6S15nXKH1wk+pOQPjz/95XfQ8IPCBfvyOOyNdOTnPnzoUgCCUW6SICAAEC5h64h91j3Uptq5CXGerbl5ooOgOjo6MjDh06hKCgIDRp0gQODg6YOHGiQleF+/fvL/nzlClTZLYRiUQqnXErVahnzJgBMzOzEgv1sWPHcODAAQ56QlQGXLx4UdcRSEHJycnYt2/fO4t0EXEBsPfKU/XeYJarn4/hKjIDIwC0aNEC586dU7q/48ePK72tvJQq1G8/q/a21q1bSy4tEJH+E4vFUt/Tabdz4b/X69e6yaAt+XmF31Or6ND+vXIX6SKCABy+/hTDmhcfoUsp2c80frzy81X/u9K0t+9I1wSlCnVmZiaMjEre1MDAAM+fPy9xPRFJSzaoDWQD+LqxTvpfdjwVkdGP391Qo+KBqfo32lV5MvLHOxj54x017e0sgHFq2lfZl5ubi9jYWKSlpcHX1xdWVlZq27dShbp+/fo4fPhwic+NHTx4EHXq1JG5joj0zwQ/G4xvo6YzLSXULkgGqtQCgq7oLIPG5eUA984W3oCm4vCbm37dj1HTFr674Vs2DKyNYd7qKCBC4Z3tHeeWPFSqGly+fBk+Pj4a27+6fPvttwgPD5ecoB45cgTt2rVDeno6GjZsiEWLFmH48OFK71+pQv3ZZ58hKCgIwcHBCA0NlQxgnpGRgdmzZ+PgwYNYvHix0qGISLsMDUSQb8BEzagkEgGGIuD/x1sul4RKQCUjwMQcMFLte+KAdm0gEi1S6PK3SAR0bFgVlYzUMEWlIBQeq6KXhpR25VZfbNy4EZMmTcKAAQPQsWNHqYJsZWWFdu3aYdu2bdov1BMmTEBcXBwiIyPx7bffolatWgCAf//9FwUFBRgyZAgf2yIi0pDaDvbo2r41Dhw7I9fdxIYGQJcPqqJ2jeLPHyvNUP+LqDYsWbIEPXr0wNatW2VOUuXp6Ylvv/1WpT6U+psWiUTYuHEjhg4dit9++w13794FAPTo0QN9+vRB27ZtVQpFRNrTdd0dPM7Kh7WFEfaNrqfrOCSnWZNG4o/jZyASiUo9sxb9/2tmQC31BjDU0PCkZcydO3dKfe66Ro0aMgu4IlT6lcjf3x/+/v4qBSAi3XqclY+UF/p/dy1J+9DjA2xfswD9x0yDIEDmmbWhQWGR/mV4XXzopObhPrU0fKi+q1atGtLTSx757fr16yqPUaDUlxWJiYnYu3dviev37t2LpKQkZTMREZEcenf+H87u3oTO7XwhEomk1olEhZe7zwY3Qi939c/oBFNL9e+zDOrcuTPWr1+PjIyMYuuuXbuGDRs2oHv37ir1odQZ9ZQpU/DixQt06yZ7IvVVq1ahWrVq2LZtm0rhiIiodB96fIA9myKR/PAR3NsPQMaLTFQzM8Tf01zV+5302yrr7ikBfTJ37lz4+PjAzc0N3bp1g0gkwubNmxEVFYXffvsN9vb2CA0NVakPpc6oY2Ji0KFDhxLX/+9//8OpU6eUDkVERIqp7WCPyuZmAIDKJgaaLdKmljyj/n+1atXCpUuX0KlTJ2zfvh2CIGDLli3Yu3cvBg4ciHPnzqn8TLVSZ9TPnj1DlSolD+5uYWGh8pfnRESkp2xcdZ1AL+Tm5uLQoUNwdnbGd999h++++w6PHz9GQUEBrK2tpcYVV4VSe6lduzbOnDlT4vpTp07hvffeUzoUERHpMfsmuk6gF4yNjdGvXz+cPXtWssza2hq2trZqK9KAkoV64MCB+Pnnn/Htt99KjQ8sFouxfPlybN++HYMGDVJbSCIi0hMmljyj/n8ikQj169cv9a5vdVCqUIeEhMDf3x+TJk2Cvb092rRpgzZt2qBWrVoICgqCn58fZsyYoe6sRESkay6tAQNdjmOnX6ZPn46VK1ciPj5eY30o9R21iYkJDh8+jM2bN+P3339HQkICAMDb2xt9+vTB0KFD1XraT0REesDQGKjbTtcp9Mq5c+dQs2ZNuLm5oW3btnB2doaZmZlUG5FIhOXLlyvdh9IDnhgYGCAwMBCBgYFKd05ERGVI/Y6ASRUg/5Wuk+iNlStXSv589OhRmW10VqiJiKgCMasOvB+g6xR6RxvzuCtVqNu1e/elD5FIVOJvF0REVMY0HQIYafDZbCqRUoW6oKCg2HB1YrEY9+7dw/3791GvXj04ODioJSAREemYcyvAzk3XKfTauXPncPz4caSlpWHs2LGoX78+cnJycPPmTbz//vuwsLBQet9KFero6OgS1+3btw+jRo3C0qVLlc1ERET6wtwKaPKxrlPorby8PAwYMAC7d++GIAgQiUTo1q0b6tevDwMDA3Ts2BFBQUEqPQml9luzu3btisGDB2PSpEnq3jUREWmb16eAEae0LMmsWbOwb98+rFmzBvHx8VJTjpqamqJfv37YvXu3Sn1o5BmqunXr4q+//tLEromISFvq+AFW7+s6hV77+eefMWbMGIwaNQo1atQotr5Ro0a4e/euSn2o/a7v/Px8/PLLLyoPQk5E2mFtYST1XyIAgLEF4NpT1yn0XlpaGho3blziekNDQ+Tk5KjUh1L/Zw4fPlzm8oyMDJw7dw4pKSn8jpqojNg3up6uI5A+atQVMK6s6xR6z9HRETdv3ixx/ZkzZ1Cvnmr/jylVqI8dOyZjknIRqlevjlatWmHEiBHo2LGjSsGIiEhHzKoDzq11naJMGDRoEJYuXYo+ffrg/fcLvyYoqo8bNmzAL7/8ggULFqjUh1KFOikpSaVOiYhIj9XvABhW0nWKMmHGjBk4d+4c2rRpg0aNGkEkEiEoKAhPnz7FgwcP0LlzZwQFBanUBwfkJiKi/1QyK3xumuRibGyMgwcPYuPGjahTpw4aNmyI3NxcNGnSBJs2bcLevXthaKjaJCZyn1Hn5OQgPT0ddnZ2MDY2lloXFRWFn376CY8ePULDhg0REhKCDz/8UKVgRESkA86t+DhWKYKDgzFkyBA0bdoUAJCcnAxra2sMHjwYgwcP1kifcp9Rf/3112jSpAny8vKkls+dOxcjR47EiRMn8PjxY+zatQtt27bF33//rfawRESkQSIDoI6/rlPotcjISNy4cUPy3sXFBTt37tRon3IX6uPHj6Nr165Sw6C9ePECc+fOhYODA27fvo3Hjx/j3LlzMDY2VvnLcyIi0jJHb6AyH60tja2trdRz0W8OcKIpcl/6TkpKQp8+faSWHThwAHl5eZg6dSpcXFwAFM5JHRgYiF9++UW9SYmISHNEBkCDzrpOofe6dOmCr7/+GocPH0a1atUAAEuWLMG2bdtK3EYkEqk0OpnchTozMxM1a9aUWnby5EmIRCIEBEhPfebq6orHjx8rHYqIiLSsTlugip2uU+i95cuXw8bGBsePH8e1a9cgEolw//59PH36tMRt3n6cWVFyX/p2cnIq9lB3dHQ0bG1tiz3MnZeXB0tLS6UCrVq1Cs7OzjA1NYWPjw8uXLhQavuMjAyMGzcO9vb2MDExwfvvv48DBw4o1TcRUYVkYgk06qbrFGVC5cqVMX/+fMTExCAhIQGCICAyMhKJiYklvlQdQlTuQt2xY0dERUXh/PnzAIAffvgBN2/eRK9evYq1vXTpEpydnRUOs337dgQHByMsLAyxsbFwd3dHQEAA0tLSZLbPy8tDhw4dkJSUhF9//RXx8fHYsGEDp9gkIlKEe3+OQian3r1749SpU5L3x48fR4cOHTTap9yFetasWbCwsEDLli1hbGyMTz/9FNbW1ggNDZVql5OTg507d+J///ufwmGWLl2KkSNHIjAwEK6urli7di3Mzc0RFRUls31UVBSePn2KXbt2wdfXF87OzvDz84O7u7vCfRMRVUj27oCDl65TlBm7d+9GcnKy5H27du1w5MgRjfYpd6G2srJCXFwcFixYgM8++wzz58/HlStXYGtrK9Xu6tWr+OSTTzBkyBCFguTl5eHSpUto3779f+EMDNC+fXvExMTI3GbPnj1o0aIFxo0bB1tbW7i5uWH+/PkQi8UK9U1EVCEZmQIegwAVv0OtSBwcHHD58mXJ+6I5qDVJoSFEq1evji+//LLUNt7e3vD29lY4SHp6OsRicbHCb2trW+KA53fv3sWxY8fwySef4MCBA7hz5w7Gjh2L169fIywsTOY2ubm5yM3NlbzPyspSOCsRUbnwQc/Ccb1JbgMGDMA333yDX375RXLX97Rp0xAREVHiNiKRSKWxRcr0vHYFBQWwsbHB+vXrYWhoCE9PTzx8+BCLFy8usVBHRERg9uzZWk5KRKRnqtUuvNObFBIREYF69erh+PHjSEtLg0gkQuXKlYs9FaVOelOoraysYGhoiNTUVKnlqampsLOT/ciAvb09KlWqJDWOaqNGjZCSkoK8vLxiQ50CQEhICIKDgyXv4+Li4Ofnp6ZPQURURrgPKHx2mhRiaGiIUaNGYdSoUQAKv6KdOXMmBg0apLE+9eYoGRsbw9PTE0ePHpUsKygowNGjR9GiRQuZ2/j6+uLOnTsoKCiQLLt16xbs7e1lFmkAMDExgaWlpeT15khrREQVgoMnUJPzkKtDYmIievbsqdE+9KZQA4WDnW/YsAGbN2/GjRs3MGbMGGRnZyMwMBAAMHToUISEhEjajxkzBk+fPsXEiRNx69Yt7N+/H/Pnz8e4ceN09RGIiPSbyKDwu2lSCycnJ5ibm2u0D7kufe/ZswdeXl6oVauWRsP0798fjx8/RmhoKFJSUuDh4YGDBw9KbjBLTk6GgcF/v1s4Ojri0KFDCAoKQpMmTeDg4ICJEydi6tSpGs1JRFRm1W4OWNi+ux3JZGBgAAMDA+Tk5MDY2BgGBgbvvOtbJBIhPz9f6T7lKtS9evXCli1bJNfg69Spg8jISHTv3l3pjksyfvx4jB8/Xua66OjoYstatGiBc+fOqT0HEVG5IxIBDT7SdYoyLTQ0FCKRCEZGRlLvNUmuQl2lShVkZGRI3iclJfGxJiKissbenWfTKgoPDy/1vSbIVai9vb0xb948pKamomrVqgAKZ85KSUkpcRuRSISgoCD1pCQiItXVVXzESNI9uQr16tWrMXToUMyZMwdAYRHeunUrtm7dWuI2LNRERHqkij1g9b6uU5Qrubm5+PHHH3H48GEkJCQgMzMTVapUQb169dCpUycMGjSoxCeQFCFXoa5Xrx7Onj2LV69eIS0tDc7OzoiMjESPHj1UDkBERFrg0ppDharRlStX0KNHD9y7dw+CIKBq1aqwsLBAWloaYmNjsWPHDsybNw979uxBo0aNVOpLocezTE1NUbt2bYSFhaFdu3ZwcnIq9UVERHpAZAg4+ug6hVYoOlVykW3btkEkEsn1THRWVha6d++O1NRUzJs3D/fv38ezZ8+k/jt37lz8+++/6NatG7Kzs1X6TEo9Rx0WFgY3NzdJ4Bs3buDGjRu8wYyISB/ZugImVXSdQuMUnSq5SFJSEqZMmYLWrVvL1c/GjRuRnJyM/fv3Y9q0acWmVnZwcEBISAj27t2LxMREbNq0SdmPBECFAU/++usv+Pv7o3r16nBzc4ObmxuqV6+Odu3a4eLFiyqFIiIiNXrvQ10n0ApFp0oGALFYjE8++QSzZ89GnTp15Opn//796NixI9q2bVtqu3bt2qFDhw7Yu3evIh+jGKUK9fnz59GmTRvExsZixIgRWLZsGZYtW4YRI0YgNjYWbdq0kftyAxERaZDIELBrrOsUKsnKysKLFy8krzdnQCyizFTJAPD111/DxsYGn332mdx5rly58s4iXaRdu3a4cuWK3PuWRalJOWbMmAEHBwecPn262IQZ4eHh8PX1xYwZMzQ+mTYREb2DVX3AuLKuU6jk7YmTwsLCij2/rMxUyadPn8b333+PuLg4hfI8ffq0xMmi3mZra4unT58qtP+3KVWoz58/j9DQUJlBbW1tMWrUKMmjXEREpEO2brpOoLITJ07Aw8ND8t7ExETlfWZmZmLIkCHYsGEDrKysFNo2NzcXlSpVkqutkZER8vLylIn43z6U2cjAwKDUcUvFYrHUmNxERKQjtq66TqAyCwsLWFpaltpG0amSExISkJSUhG7dukmWFc3EaGRkhPj4eNStW7fE/pKSkhAbG/vO7ImJie9s8y5KFeqWLVti1apVGDRoULHHsJKTk7F69Wr4+vqqHI6IiFRgbAFYanYyJX3x5lTJRY9YFU2VLGv+iIYNGxb77njmzJnIzMzE8uXL4ejoWGp/s2bNwqxZs96ZSxAElccCV6pQz58/H23atEHDhg3Rq1cvvP9+4Wg38fHx2L17N4yMjBAREaFSMCIiUlHNeoXTWlYQwcHBGDZsGLy8vODt7Y3IyMhiUyU7ODggIiICpqamkseMi1SrVg0Aii1/28aNGzWSvyRKFeqmTZvi/PnzmDFjBvbs2YOcnBwAgLm5OTp16oS5c+fC1bXsX24hIirTapZ86bY8UnSqZGUNGzZM5X0oQqlCDQCurq7YuXMnCgoK8PjxYwCAtbU1v5smItIX1SreCJGKTpX8JlUHJtEUpQt1EQMDg2K3wxMRkR6oVvr3rFQ28PSXiKg8Mq1a5p+fpkIs1ERE5VEVe10nIDVhoSYiKo8sbHSdgNSEhZqIqDyqrNhoW6S/VL6ZjIiI9JB5TV0nqFCuX7+Ou3fv4tmzZxAEodj6oUOHKr1vlQq1JoMREZEKzGroOkGFkJCQgMGDB+PChQsy6yAAiEQi7RdqbQQjIiIVmFbVdYIKYfTo0bhy5QoiIyPRunVrVK9eXe19KFWotRGMiIgUY2dTExAKYGecw0KtJWfOnMH06dPxxRdfaKwPpQq1NoIREZFiLv7xE5CdDhyfBxjKNw0jqcbKygpVq2r2lyKl7vrWRjAiIlKSSRVdJ6gwPv/8c/z4448Qi8Ua60OpM+qiYOPGjYOhoaG6MxERkSpMSp+7mdTn/fffh1gshru7O4YPHw5HR0eZdbF3795K96FUodZGMCIiUpKxha4TVBj9+/eX/HnKlCky24hEIpXOuJUq1NoIRkRESjJhodaW48ePa7wPpQq1NoIREZGSeEatNX5+fhrvQ6lCrY1gRESkJGNzXSeokK5fv4579+4BAJycnODq6qqW/ao8hKimghERkZIqcXpLbdq9ezeCg4ORlJQktdzFxQVLly5F9+7dVdq/0oVa08GIiEhJPKPWmgMHDqBPnz5wcnLC/Pnz0ahRIwDAjRs3sH79evTu3Rv79u1Dp06dlO5DqUKtjWBERKQkIzNdJ6gw5syZgyZNmuDUqVOoXPm/Kxndu3fH+PHj0apVK8yePVv7hVobwYiISEmVTHWdoML4559/MH/+fKlaWKRy5cr49NNPMX36dJX6UGpksn/++QfDhg0rNdg///yjUjAiIlKSobGuE1QYpqamePr0aYnrnz59ClNT1X5xUqpQayMYEREpyUDl+4RJTu3atcPy5csRExNTbN358+fx7bffon379ir1odTRLArWqVMntGjRQmawjh07qhSMiIiUxEKtNYsWLUKLFi3QqlUreHt7o0GDBgCA+Ph4XLhwATY2Nli4cKFKfSh1NLURjIiIlCQS6TpBheHi4oJ//vkHERER+OOPP7B9+3YAhY8rT5w4EdOmTYONjY1KfShVqLURjIiIqCywsbHBsmXLsGzZMo3sX+nrI5oORkREShIKdJ2A1IhfZBARlTeCoOsE5dbw4cMhEomwfv16GBoaYvjw4e/cRiQS4fvvv1e6T7kKtS6CERGRknhGrTHHjh2DgYEBCgoKYGhoiGPHjkH0jnsC3rX+XeQq1LoIRkREyuIZtaa8PWz22+81Qa5CrYtgRERE+i45ORnW1tYwM5M9bOvLly/x+PFj1K5dW+k+lBrwJDk5GS9fvixx/cuXL5GcnKx0KCIiUgWvaGqLi4sLdu7cWeL6PXv2wMXFRaU+lCrU2ghGRERKEin1o52UILzjxr3Xr1/DwEC146HU1poOtmrVKjg7O8PU1BQ+Pj64cOGCXNtt27YNIpEIPXv2VLpvIqIyz8BQ1wnKtRcvXiA5OVly5fjJkyeS92++/vnnH2zbtg329vYq9Sf341kvXrxARkaG5H1RsLdlZGSoFGz79u0IDg7G2rVr4ePjg8jISAQEBCA+Pr7UQVSSkpIwZcoUtG7dWql+iYjKDRELtSYtW7YMX3/9NYDCG6cnTZqESZMmyWwrCALmzp2rUn9yF2ptBVu6dClGjhyJwMBAAMDatWuxf/9+REVFYdq0aTK3EYvF+OSTTzB79mycOnVK6hcKIqIKx5BDZGhSx44dYWFhAUEQ8NVXX2HgwIFo1qyZVBuRSITKlSvD09MTXl5eKvUn99HURrC8vDxcunQJISEhkmUGBgZo3769zJlJinz99dewsbHBZ599hlOnTpXaR25uLnJzcyXvs7KyFM5JRKTXDCrpOkG51qJFC8mEVNnZ2ejTpw/c3Nw01p/chVobwdLT0yEWi2Frayu13NbWFjdv3pS5zenTp/H9998jLi5Orj4iIiIwe/ZsVaMSEeknIxN+R60lOTk5+Pbbb2Fubq7RQq3wHV9Fwf744w9N5FFIZmYmhgwZgg0bNsDKykqubUJCQvD8+XPJ68SJExpOSUSkRSZVeNe3lpibm8PIyAiVK1fWaD8Kf5GhyWBWVlYwNDREamqq1PLU1FTY2dkVa5+QkICkpCR069ZNsqygoHDoPCMjI8THx6Nu3bpS25iYmMDExETy3sLCQp0fgYiIKpA+ffrg119/xZgxYzQ2IqdSv3YVBXvXY1qKMjY2hqenJ44ePSpZVlBQgKNHj0ouu7+pYcOGuHLlCuLi4iSv7t27w9/fH3FxcXB0dFRrPiIiojcNGDAAaWlp8Pf3x08//YQzZ84gNja22EsVSt0aOGDAAIwdOxb+/v4YOXIknJ2dZQ6f9vbNZvIIDg7GsGHD4OXlBW9vb0RGRiI7O1tyF/jQoUPh4OCAiIgImJqaFvteoFq1agCg0e8LiIiIAKBt27aSP8u6mVkQBIhEIojFYqX7UKpQazJY//798fjxY4SGhiIlJQUeHh44ePCg5Aaz5ORklUd5ISIiUoeNGzdqvA+lCrWmg40fPx7jx4+XuS46OrrUbTdt2qT+QERERDIMGzZM430oVai1EYyIiKgsycrKwv379wEAjo6OartZWeVryFlZWbhx4wZu3LjBwUOIiKjC+euvv+Dv74/q1avDzc0Nbm5uqF69Otq1a4eLFy+qvH+lx5n766+/8NVXX+H06dOSR6IMDAzQunVrLFq0SOUh04iIiPTd+fPn0bZtWxgbG2PEiBFo1KgRAODGjRv4+eef0aZNG0RHR8Pb21vpPpQq1NoIRkREpKhVq1Zh8eLFSElJgbu7O1asWFFiLdqwYQN++OEHXL16FQDg6emJ+fPnK1S7ZsyYAQcHB5w+fbrYeB/h4eHw9fXFjBkzcOTIEaU/k1KXvouCxcfHY82aNZgwYQImTJiANWvWID4+HrVq1cKMGTOUDkVERKSootkXw8LCEBsbC3d3dwQEBCAtLU1m++joaAwcOBDHjx9HTEwMHB0d0bFjRzx8+FDuPs+fP4/Ro0fLHJTL1tYWo0aNwrlz55T+TICShVobwYiIiBTx5uyLrq6uWLt2LczNzREVFSWz/U8//YSxY8fCw8MDDRs2xHfffScZZEteBgYGyM/PL3G9WCxW+ZFipbbWRjAiIiKg8KblFy9eSF5vzoBYpGj2xfbt20uWyTP74ptycnLw+vVr1KhRQ+5sLVu2xKpVq3Dv3r1i65KTk7F69Wr4+vrKvT9ZlPqOuijYoEGD4OTkpJFgREREAODn5yf1PiwsDOHh4VLLlJl98W1Tp05FrVq1pIr9u8yfPx9t2rRBw4YN0atXL7z//vsAgPj4eOzevRtGRkaIiIiQe3+yKFWotRGMiIgIAE6cOAEPDw/J+zcnVlKXBQsWYNu2bYiOjoapqanc2zVt2hTnz5/HjBkzsGfPHuTk5AAonMCqU6dOmDt3LlxdXVXKplSh1kYwIiIioHCWQ0tLy1LbKDr74pu++eYbLFiwAH/++SeaNGmicD5XV1fs3LkTBQUFePz4MQDA2tpabV8BK/0ctaaDERERyevN2Rd79uwJ4L/ZF0sakhoAFi1ahHnz5uHQoUMqj/8hEokkU12qc8pLlatqUbA3AxIREWlbcHAwNmzYgM2bN+PGjRsYM2ZMsdkXQ0JCJO0XLlyIWbNmISoqCs7OzkhJSUFKSorCo2xev34dffv2haWlJezt7WFvbw9LS0v07dtX8oy2KpQ+o75+/TpCQ0Nx6NAhqUvfAQEBCA8P5zSTRESkVYrOvrhmzRrk5eWhb9++UvuRdbNaSU6dOoWPPvoIBQUF6NGjh9Q9W3v27MEff/yBgwcPonXr1kp/LqUKtTaCERERKUqR2ReTkpJU7i8oKAg2NjY4ceIEHB0dpdbdv38fbdq0QXBwMP766y+l+1CqUGsjGBERkb67du0a5syZU6wWAoUzaI0ZM0bus/OSKPUd9bVr1zB27NhSg127dk2lYERERPrOyclJ5gAsRfLy8mTWSkUoVai1EYyIiEjfhYaG4ttvv0VcXFyxdZcvX8aKFStUPqNW6tJ3aGgogoKC0KVLF6mH0N8MFhkZqVIwIiIifXfu3DnY2trC09MTLVu2RL169QAAt2/fRkxMDNzc3BATEyM1jKlIJMLy5cvl7kOpQq2NYERERPpu5cqVkj+fOXMGZ86ckVp/5coVXLlyRWqZVgq1NoIRERHpu4KCAo33oVSh1kYwIiIiUmHAEyIiIiqUmJiIP/74QzLdpZOTEz766CO4uLiovG+VCrUmgxEREZUFkydPxvLly4tdbTYwMMCkSZPwzTffqLR/pQu1poMRERHpuyVLlmDZsmXo27cvJk+ejEaNGgEAbty4gWXLlmHZsmVwcHBAUFCQ0n0o9Rx1UbDevXsjJiYGGRkZyMjIQExMDPr27SsJR0REVJ5t2LAB3bt3xy+//AIfHx9YWlrC0tISPj4+2LZtG7p164Z169ap1IdShVobwYiIiPRdUlISAgICSlwfEBCg8pjiShVqbQQjIiLSdzY2Nvj7779LXP/333/D2tpapT6UKtTaCEZERKTv+vXrh++++w4LFixAdna2ZHl2djYWLlyI7777Dv3791epD6VuJuvXrx+WL18OZ2dnfPHFF6hcubIk2MqVK/Hdd99h0qRJKgUjIiLSd3PmzEFcXBymT5+O0NBQ1KpVCwDw77//Ij8/H/7+/vj6669V6kOpQq2NYERERPrO3NwcR48exe7du6UeV+7UqRM6d+6Mbt26QSQSqdSHUoVaG8GIiIj0WU5ODgYPHow+ffrgk08+QY8ePTTSj8KFWlvBiIiI9Jm5uTn+/PNPfPTRRxrtR+GbyYqC5eTkaCIPERFRmdGqVSupmSI1Qam7vrURjIiISN+tXLkSp06dwsyZM/HgwQON9KFUodZGMCIiIn3n7u6OBw8eICIiAk5OTjAxMZEMAlb0qlq1qkp9KHUzmbu7O/Lz8xEREYGIiAgYGRnBxMREqo1IJMLz589VCkdERKTP+vTpo/Gbp5Uq1NoIRkREpO82bdqk8T6UKtTaCEZERKSvXr16hd27dyMxMRFWVlbo0qUL7O3tNdKXQoVam8GIiIj0UVpaGlq2bInExEQIggCg8ImoXbt2oX379mrvT+5Cre1gRERE+mjOnDlISkpCUFAQ2rVrhzt37mDOnDkYPXo0EhIS1N6f3IVa28GIiIj00eHDhzF06FB88803kmW2trYYNGgQ4uPj0aBBA7X2J3eh1nYwIiIifZScnIypU6dKLWvVqhUEQUBqaqra66Hcz1EnJyejVatWJQYjIiKqCHJzc2Fqaiq1rOh9fn6+2vuT+4xa28GIiIj0VVJSEmJjYyXvi8YNuX37NqpVq1asfbNmzZTuS6G7vrUZjIiISF/NmjULs2bNKrZ87NixUu8FQYBIJIJYLFa6L4UKtTaDERER6aONGzdqtT+5C7U2g61atQqLFy9GSkoK3N3dsWLFCnh7e8tsu2HDBvzwww+4evUqAMDT0xPz588vsT0REZEqhg0bptX+5C7U2gq2fft2BAcHY+3atfDx8UFkZCQCAgIQHx8PGxubYu2jo6MxcOBAtGzZEqampli4cCE6duyIa9euwcHBQSuZiYiINEWp2bM0aenSpRg5ciQCAwPh6uqKtWvXwtzcHFFRUTLb//TTTxg7diw8PDzQsGFDfPfddygoKMDRo0e1nLxs8vLywnvvvQcvLy9dRyEiIhmUGutbU/Ly8nDp0iWEhIRIlhkYGKB9+/Zyz3+dk5OD169fo0aNGjLX5+bmIjc3V/I+KytLtdBlXEpKCh4+fKjrGEREVAK9OqNOT0+HWCyGra2t1HJbW1ukpKTItY+pU6eiVq1aJQ5rGhERgapVq0pefn5+KucmIiLSFL0q1KpasGABtm3bhp07dxZ75rtISEgInj9/LnmdOHFCyymJiIjkp1eXvq2srGBoaFhspLPU1FTY2dmVuu0333yDBQsW4M8//0STJk1KbGdiYgITExPJewsLC9VCExERaZBenVEbGxvD09NT6kawohvDWrRoUeJ2ixYtwpw5c3Dw4EHeFEVEROWKXp1RA0BwcDCGDRsGLy8veHt7IzIyEtnZ2QgMDAQADB06FA4ODoiIiAAALFy4EKGhodi6dSucnZ0l32VbWFjwbJmIiMo8vSvU/fv3x+PHjxEaGoqUlBR4eHjg4MGDkhvMkpOTYWDw34WANWvWIC8vD3379pXaT1hYGMLDw7UZnYiISO30rlADwPjx4zF+/HiZ66Kjo6XeJyUlaT4QERGRjujVd9REREQkjYWaiIhIj7FQExER6TEWaiIiKjdWrVoFZ2dnmJqawsfHBxcuXCi1/Y4dO9CwYUOYmpqicePGOHDggJaSyo+FuoKzs7ODg4PDOweUISLSd0WzL4aFhSE2Nhbu7u4ICAhAWlqazPZnz57FwIED8dlnn+Hy5cvo2bMnevbsKZk2WV+wUFdwFy9exIMHD3Dx4kVdRyEiUomisy8uX74cnTp1wpdffolGjRphzpw5aNasGVauXKnl5KVjoSYiojKvaPbFNydketfsizExMcUmcAoICJB7tkZt0cvnqEm7xGIxCgoKdNZ/gTgfgjgfBeJ8vH79Wmc5dEYs4LVY0HUKnXpdIABiASjPx//1a+B1PlCQAxjl6zqNavLzAHF+4WcSae6Y5ecX/j1lZWXhxYsXkuVvz9kAlD774s2bN2XuPyUlRaXZGrWFhVoP1BQ/wetngOeXP+ik/3/P7ERKzC6d9P2mZADGobpOQboTD0w11nUI0kNvT0dc0UaeZKEm2LfoAfvm3XSa4YlhTdhamuLMtHY6zaETyxojObti/69YuyAZqFILCLqi6yialZ8HFJTxs+kiBkaAkWZ/sbp8+TJ8fHxw4sQJeHh4SJa/fTYNKDf7op2dnVKzNWpbxf7pQAAAkYEBdH27gsjQCAaGRqhUqZJOc+iEoQiVDEW6TqFTlUQiwFAElPfjX94/n5oZGRWWKAsLC1haWpba9s3ZF3v27Angv9kXSxqSukWLFjh69CgmTZokWXbkyJFSZ2vUBRbqCu7mljC8zn6OSpWrouGQ2bqOQ0SkNEVnX5w4cSL8/PywZMkSdOnSBdu2bcPFixexfv16XX6MYlioK7jX2c/xOuuZrmMQEalM0dkXW7Zsia1bt2LmzJmYPn066tevj127dsHNzU1XH0EmFmoiIio3FJl9EQD69euHfv36aTiVavgcNRERkR5joSYiItJjLNRERER6jIWaiIhIj7FQExER6TEWaiIiIj3GQk1ERKTHWKiJiIj0GAs1ERGRHmOhJiIi0mMs1ERERHqMY31XcJUqV5X6LxER6RcW6gqOU1sSEek3XvomIiLSYyzUREREeoyFmoiISI+xUBMREekxFmoiIiI9xkJNRESkx1ioiYiI9BgLNRERkR5joSYiItJjLNRERER6jIWaiIhIj7FQExER6TEWaiIiIj3GQk1ERKTHWKiJiIj0GAs1ERGRHmOhJiIi0mMs1ERERHqMhZqIiEiP6WWhXrVqFZydnWFqagofHx9cuHCh1PY7duxAw4YNYWpqisaNG+PAgQNaSkpERKRZeleot2/fjuDgYISFhSE2Nhbu7u4ICAhAWlqazPZnz57FwIED8dlnn+Hy5cvo2bMnevbsiatXr2o5ORERkfrpXaFeunQpRo4cicDAQLi6umLt2rUwNzdHVFSUzPbLly9Hp06d8OWXX6JRo0aYM2cOmjVrhpUrV2o5ORERkfrpVaHOy8vDpUuX0L59e8kyAwMDtG/fHjExMTK3iYmJkWoPAAEBASW2JyIiKkuMdB3gTenp6RCLxbC1tZVabmtri5s3b8rcJiUlRWb7lJQUme1zc3ORm5sreZ+VlQUAuHHjhirRlZb98DbyM2Vf1q9Icg2eITvTBLGx1XUdRfsevMKjl4a6TqFT6YIYeP4KiI2VWm5vbw97e3sdpVLNo0eP8OjRI13HKNN09XNZ3+hVodaGiIgIzJ49W2qZk5MTBg8erKNEVCQFgOdqXacg3ckGIj2lloSFhSE8PFw3cVS0bt26Yj9rSHF+fn5l9pc1ddGrQm1lZQVDQ0OkpqZKLU9NTYWdnZ3Mbezs7BRqHxISguDgYKllT58+xdOnT1VIXnZlZWXBz88PJ06cgIWFha7jkA7o87+BsvwDevTo0ejevbtW+9TnY6mssnxVRV1EgiAIug7xJh8fH3h7e2PFihUAgIKCAtSuXRvjx4/HtGnTirXv378/cnJysHfvXsmyli1bokmTJli7dq3WcpdVL168QNWqVfH8+XNYWlrqOg7pAP8NlB88luWTXp1RA0BwcDCGDRsGLy8veHt7IzIyEtnZ2QgMDAQADB06FA4ODoiIiAAATJw4EX5+fliyZAm6dOmCbdu24eLFi1i/fr0uPwYREZFa6F2h7t+/Px4/fozQ0FCkpKTAw8MDBw8elNwwlpycDAOD/25Wb9myJbZu3YqZM2di+vTpqF+/Pnbt2gU3NzddfQQiIiK10btL36Rdubm5iIiIQEhICExMTHQdh3SA/wbKDx7L8omFmoiISI/p1YAnREREJI2FmoiISI+xUJNaJSUlQSQSYdOmTbqOQkRULrBQ61BCQgJGjx6NOnXqwNTUFJaWlvD19cXy5cvx8uVLjfV7/fp1hIeHIykpSWN9yGPevHno3r07bG1tIRKJyuwIVJomEonkekVHR6vcV05ODsLDwxXaF4+jYng8SVF693hWRbF//37069cPJiYmGDp0KNzc3JCXl4fTp0/jyy+/xLVr1zT2LPj169cxe/ZstG3bFs7OzhrpQx4zZ86EnZ0dmjZtikOHDuksh77bsmWL1PsffvgBR44cKba8UaNGKveVk5MjGfaybdu2cm3D46gYHk9SFAu1DiQmJmLAgAFwcnLCsWPHpIbHGzduHO7cuYP9+/frMOF/BEHAq1evYGZmpvZ9JyYmwtnZGenp6bC2tlb7/suLt8ehP3fuHI4cOaI349PzOCqGx5MUxUvfOrBo0SJkZWXh+++/lzmGbb169TBx4kTJ+/z8fMyZMwd169aFiYkJnJ2dMX36dKlZwADA2dkZXbt2xenTp+Ht7Q1TU1PUqVMHP/zwg6TNpk2b0K9fPwCAv79/sctsRfs4dOgQvLy8YGZmhnXr1gEA7t69i379+qFGjRowNzdH8+bNVfqFQpdn8+VNQUEBIiMj8cEHH8DU1BS2trYYPXo0nj17JtXu4sWLCAgIgJWVFczMzODi4oLhw4cDKLy/oOgH8+zZsyX/Nt516ZPHUf14POlNPKPWgb1796JOnTpo2bKlXO1HjBiBzZs3o2/fvpg8eTLOnz+PiIgI3LhxAzt37pRqe+fOHfTt2xefffYZhg0bhqioKHz66afw9PTEBx98gDZt2mDChAn49ttvMX36dMnltTcvs8XHx2PgwIEYPXo0Ro4ciQYNGiA1NRUtW7ZETk4OJkyYgJo1a2Lz5s3o3r07fv31V/Tq1Ut9f0GksNGjR2PTpk0IDAzEhAkTkJiYiJUrV+Ly5cs4c+YMKlWqhLS0NHTs2BHW1taYNm0aqlWrhqSkJPz+++8AAGtra6xZswZjxoxBr1690Lt3bwBAkyZNdPnRKiQeT5IikFY9f/5cACD06NFDrvZxcXECAGHEiBFSy6dMmSIAEI4dOyZZ5uTkJAAQTp48KVmWlpYmmJiYCJMnT5Ys27FjhwBAOH78eLH+ivZx8OBBqeWTJk0SAAinTp2SLMvMzBRcXFwEZ2dnQSwWC4IgCImJiQIAYePGjXJ9PkEQhMePHwsAhLCwMLm3qcjGjRsnvPm/7qlTpwQAwk8//STV7uDBg1LLd+7cKQAQ/vrrrxL3rcqx4HFUDo8nvQsvfWvZixcvAABVqlSRq/2BAwcAoNjUnJMnTwaAYpeeXV1d0bp1a8l7a2trNGjQAHfv3pU7o4uLCwICAorl8Pb2RqtWrSTLLCwsMGrUKCQlJeH69ety75/Ua8eOHahatSo6dOiA9PR0ycvT0xMWFhY4fvw4AKBatWoAgH379uH169c6TEyl4fGkt7FQa1nR1HOZmZlytb937x4MDAxQr149qeV2dnaoVq0a7t27J7W8du3axfZRvXr1Yt9tlcbFxUVmjgYNGhRbXnTJ/O0cpD23b9/G8+fPYWNjA2tra6lXVlYW0tLSAAB+fn7o06cPZs+eDSsrK/To0QMbN24sdq8D6RaPJ72N31FrmaWlJWrVqoWrV68qtJ1IJJKrnaGhoczlggJDumviDm/SnIKCAtjY2OCnn36Sub7ohiKRSIRff/0V586dw969e3Ho0CEMHz4cS5Yswblz52BhYaHN2FQCHk96Gwu1DnTt2hXr169HTEwMWrRoUWpbJycnFBQU4Pbt21I3fKWmpiIjIwNOTk4K9y9v0X87R3x8fLHlN2/elKwn3ahbty7+/PNP+Pr6yvVLVvPmzdG8eXPMmzcPW7duxSeffIJt27ZhxIgRSv3bIPXi8aS38dK3Dnz11VeoXLkyRowYgdTU1GLrExISsHz5cgBA586dAQCRkZFSbZYuXQoA6NKli8L9V65cGQCQkZEh9zadO3fGhQsXEBMTI1mWnZ2N9evXw9nZGa6urgrnIPX4+OOPIRaLMWfOnGLr8vPzJcf52bNnxa6seHh4AIDkcqm5uTkAxf5tkHrxeNLbeEatA3Xr1sXWrVvRv39/NGrUSGpksrNnz2LHjh349NNPAQDu7u4YNmwY1q9fj4yMDPj5+eHChQvYvHkzevbsCX9/f4X79/DwgKGhIRYuXIjnz5/DxMQE7dq1g42NTYnbTJs2DT///DM++ugjTJgwATVq1MDmzZuRmJiI3377DQYGiv/Ot2XLFty7dw85OTkAgJMnT2Lu3LkAgCFDhvAsXU5+fn4YPXo0IiIiEBcXh44dO6JSpUq4ffs2duzYgeXLl6Nv377YvHkzVq9ejV69eqFu3brIzMzEhg0bYGlpKfmF0MzMDK6urti+fTvef/991KhRA25ubnBzcyuxfx5H9eLxpGJ0fNd5hXbr1i1h5MiRgrOzs2BsbCxUqVJF8PX1FVasWCG8evVK0u7169fC7NmzBRcXF6FSpUqCo6OjEBISItVGEAofrerSpUuxfvz8/AQ/Pz+pZRs2bBDq1KkjGBoaSj2qVdI+BEEQEhIShL59+wrVqlUTTE1NBW9vb2Hfvn1SbRR5PMvPz08AIPMl69ExKvT24zxF1q9fL3h6egpmZmZClSpVhMaNGwtfffWV8O+//wqCIAixsbHCwIEDhdq1awsmJiaCjY2N0LVrV+HixYtS+zl79qzg6ekpGBsby/V4Do+jang86V1EgqDAXUZERESkVfyOmoiISI+xUBMREekxFmoiIiI9xkJNRESkx1ioiYiI9BgLNRERkR5jodZjixYtQsOGDVFQUKDrKCobMGAAPv74Y13HKFN4/EmWpKQkiEQibNq0SddRSEtYqPXUixcvsHDhQkydOlUy6pdIJIJIJMKSJUuKtd+0aRNEIhEuXryo9iwdOnSASCTC+PHjZa7//vvv0ahRI5iamqJ+/fpYsWJFsTZTp07Fb7/9hr///lvt+cojHn8iKsJCraeioqKQn5+PgQMHFlu3ePFiyfB+mvb7779Lje/9tnXr1mHEiBH44IMPsGLFCrRo0QITJkzAwoULpdo1bdoUXl5eMosMFcfjTyVxcnLCy5cvMWTIEF1HIW3R9dBoJFuTJk2EwYMHSy0DIHh4eAgAhCVLlkit27hxowBA+Ouvv9SW4eXLl4Kzs7Pw9ddfCwCEcePGSa3PyckRatasWWzI0U8++USoXLmy8PTpU6nl33zzjVC5cmUhMzNTbRnLKx5/IirCM2o9lJiYiH/++Qft27cvts7X1xft2rXDokWL8PLlS43mWLRoEQoKCjBlyhSZ648fP44nT55g7NixUsvHjRuH7Oxs7N+/X2p5hw4dkJ2djSNHjmgsc3nA41/+hYeHQyQS4datWxg8eDCqVq0Ka2trzJo1C4Ig4P79++jRowcsLS1hZ2cndSVC1nfUn376KSwsLPDw4UP07NkTFhYWsLa2xpQpUyAWiyXtoqOjIRKJEB0dLZVH1j5TUlIQGBiI9957DyYmJrC3t0ePHj2QlJSkob8VKgkLtR46e/YsAKBZs2Yy14eHhyM1NRVr1qwpdT+5ublIT0+X6/W25ORkLFiwAAsXLixxTtzLly8DALy8vKSWe3p6wsDAQLK+iKurK8zMzHDmzJlSc1d0PP4VR//+/VFQUIAFCxbAx8cHc+fORWRkJDp06AAHBwcsXLgQ9erVw5QpU3Dy5MlS9yUWixEQEICaNWvim2++gZ+fH5YsWYL169crla1Pnz7YuXMnAgMDsXr1akyYMAGZmZlITk5Wan+kPE5zqYdu3rwJAHBxcZG5vnXr1vD398fixYsxZsyYEn+Q/vzzzwgMDJSrT+GtuVkmT56Mpk2bYsCAASVu8+jRIxgaGhabHtPY2Bg1a9bEv//+K7XcyMgIjo6OuH79ulyZKioe/4rD29sb69atAwCMGjUKzs7OmDx5MiIiIjB16lQAwMCBA1GrVi1ERUWhTZs2Je7r1atX6N+/P2bNmgUA+Pzzz9GsWTN8//33GDNmjEK5MjIycPbsWSxevFjqikpISIiiH5HUgIVaDz158gRGRkawsLAosU14eDj8/Pywdu1aBAUFyWwTEBCg1GXG48eP47fffsP58+dLbffy5UsYGxvLXGdqairz0mz16tVlnsHRf3j8K44RI0ZI/mxoaAgvLy88ePAAn332mWR5tWrV0KBBA9y9e/ed+/v888+l3rdu3RpbtmxROJeZmRmMjY0RHR2Nzz77DNWrV1d4H6Q+LNRlVJs2beDv749FixYV+5+ziL29Pezt7RXab35+PiZMmIAhQ4bgww8/LLWtmZkZ8vLyZK579eqVzDM9QRAgEokUykTF8fiXD7Vr15Z6X7VqVZiamsLKyqrY8idPnpS6L1NTU1hbW0stq169Op49e6ZwLhMTEyxcuBCTJ0+Gra0tmjdvjq5du2Lo0KGws7NTeH+kGhZqPVSzZk3k5+cjMzMTVapUKbFdWFgY2rZti3Xr1qFatWrF1r98+RLPnz+Xq8+i//l++OEHxMfHY926dcVuGsnMzERSUhJsbGxgbm4Oe3t7iMVipKWlSV3+zMvLw5MnT1CrVq1i/Tx79gz169eXK1NFxeNfcRgaGsq1DCj+9YS8272ppF+S3rzhrMikSZPQrVs37Nq1C4cOHcKsWbMQERGBY8eOoWnTpu/si9SHN5PpoYYNGwIovPu3NH5+fmjbti0WLlwo8zLj9u3bJWdV73oVSU5OxuvXr+Hr6wsXFxfJCyj8Ie7i4oLDhw8DADw8PACg2CAbFy9eREFBgWR9kfz8fNy/fx+NGjVS6O+jouHxJ00puoSdkZEhtfzevXsy29etWxeTJ0/G4cOHcfXqVeTl5fFZeB3gGbUeatGiBYDCH3hNmjQptW14eDjatm0r885OZb6jHDBgQLEfsADQq1cvdO7cGSNHjoSPjw8AoF27dqhRowbWrFmDzp07S9quWbMG5ubm6NKli9Q+rl+/jlevXqFly5YKZapoePxJU5ycnGBoaIiTJ0+iZ8+ekuWrV6+WapeTkwMDAwOYmppKltWtWxdVqlRBbm6utuLS/2Oh1kN16tSBm5sb/vzzTwwfPrzUtn5+fvDz88OJEyeKrVPmO8qGDRtKzuje5uLiIvU/t5mZGebMmYNx48ahX79+CAgIwKlTp/Djjz9i3rx5qFGjhtT2R44cgbm5OTp06KBQpoqGx580pWrVqujXrx9WrFgBkUiEunXrYt++fUhLS5Nqd+vWLfzvf//Dxx9/DFdXVxgZGWHnzp1ITU0t9UkA0gwWaj01fPhwhIaG4uXLlyU+flMkPDwc/v7+WkombezYsahUqRKWLFmCPXv2wNHREcuWLcPEiROLtd2xYwd69+5d6veuVIjHnzRlxYoVeP36NdauXQsTExN8/PHHWLx4Mdzc3CRtHB0dMXDgQBw9ehRbtmyBkZERGjZsiF9++QV9+vTRYfqKSSS86w4F0onnz5+jTp06WLRokdSjGmVVXFwcmjVrhtjYWJmXVkkajz8RFWGh1mMLFy7Exo0bcf36dckMSmXVgAEDUFBQgF9++UXXUcoMHn8iAlioiYiI9FrZ/jWdiIionGOhJiIi0mMs1ERERHqMhZqIiEiPsVATEVExSUlJEIlE2LRpk66jVHgs1EREKkpISMDo0aNRp04dmJqawtLSEr6+vli+fLnMcdjV5fr16wgPDy82gYq2zZs3D927d4etrS1EIhHCw8N1mqe84chkREQq2L9/P/r16wcTExMMHToUbm5uyMvLw+nTp/Hll1/i2rVrMsdiV4fr169j9uzZaNu2LZydnTXShzxmzpwJOzs7NG3aFIcOHdJZjvKKhZqISEmJiYkYMGAAnJyccOzYMamx1ceNG4c7d+5g//79Okz4H0EQSpwnXFWJiYlwdnZGenp6sTmxSXW89E1EpKRFixYhKysL33//vcwJUOrVqyc17nl+fj7mzJmDunXrwsTEBM7Ozpg+fXqxGamcnZ3RtWtXnD59Gt7e3jA1NUWdOnXwww8/SNps2rQJ/fr1AwD4+/tDJBJBJBIhOjpaah+HDh2Cl5cXzMzMsG7dOgDA3bt30a9fP9SoUQPm5uZo3ry5Sr9Q6PJsviJgoSYiUtLevXtRp04duafuHDFiBEJDQ9GsWTMsW7YMfn5+iIiIkDkj1Z07d9C3b1906NABS5YsQfXq1fHpp5/i2rVrAIA2bdpgwoQJAIDp06djy5Yt2LJli9R83/Hx8Rg4cCA6dOiA5cuXw8PDA6mpqWjZsiUOHTqEsWPHYt68eXj16hW6d++OnTt3quFvhdROICIihT1//lwAIPTo0UOu9nFxcQIAYcSIEVLLp0yZIgAQjh07Jlnm5OQkABBOnjwpWZaWliaYmJgIkydPlizbsWOHAEA4fvx4sf6K9nHw4EGp5ZMmTRIACKdOnZIsy8zMFFxcXARnZ2dBLBYLgiAIiYmJAgBh48aNcn0+QRCEx48fCwCEsLAwubehd+MZNRGREl68eAEAck/beeDAAQBAcHCw1PLJkycDQLFLz66urmjdurXkvbW1NRo0aIC7d+/KndHFxQUBAQHFcnh7e6NVq1aSZRYWFhg1ahSSkpJw/fp1ufdP2sFCTUSkBEtLSwBAZmamXO3v3bsHAwMD1KtXT2q5nZ0dqlWrhnv37kktr127drF9VK9eHc+ePZM7o4uLi8wcDRo0KLa86JL52zlI91ioiYiUYGlpiVq1auHq1asKbScSieRqZ2hoKHO5oMCEh5q4w5u0j4WaiEhJXbt2RUJCAmJiYt7Z1snJCQUFBbh9+7bU8tTUVGRkZMDJyUnh/uUt+m/niI+PL7b85s2bkvWkX1ioiYiU9NVXX6Fy5coYMWIEUlNTi61PSEjA8uXLAQCdO3cGAERGRkq1Wbp0KQCgS5cuCvdfuXJlAEBGRobc23Tu3BkXLlyQ+uUiOzsb69evh7OzM1xdXRXOQZrFAU+IiJRUt25dbN26Ff3790ejRo2kRiY7e/YsduzYgU8//RQA4O7ujmHDhmH9+vXIyMiAn58fLly4gM2bN6Nnz57w9/dXuH8PDw8YGhpi4cKFeP78OUxMTNCuXTvY2NiUuM20adPw888/46OPPsKECRNQo0YNbN68GYmJifjtt99gYKD4+duWLVtw79495OTkAABOnjyJuXPnAgCGDBnCs3RV6fq2cyKisu7WrVvCyJEjBWdnZ8HY2FioUqWK4OvrK6xYsUJ49eqVpN3r16+F2bNnCy4uLkKlSpUER0dHISQkRKqNIBQ+WtWlS5di/fj5+Ql+fn5SyzZs2CDUqVNHMDQ0lHpUq6R9CIIgJCQkCH379hWqVasmmJqaCt7e3sK+ffuk2ijyeJafn58AQOZL1qNjpBiRIChwZwIRERFpFb+jJiIi0mMs1ERERHqMhZqIiEiPsVATERHpMRZqIiIiPcZCTUREpMdYqImIiPQYCzUREZEeY6EmIiLSYyzUREREeoyFmoiISI+xUBMREekxFmoiIiI99n+fCqO3t8F5WgAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -1553,15 +1553,15 @@
}
],
"source": [
- "two_groups_unpaired.mean_diff.plot(bar_desat=1.0);"
+ "two_groups_unpaired.mean_diff.plot(raw_desat=1.0);"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "### Bar Label and Contrast Label\n",
- "The parameters ``bar_label`` and ``contrast_label`` can be used to set labels for the y-axis of the bar plot and the contrast plot."
+ "### Raw Label and Contrast Label\n",
+ "The parameters ``raw_label`` and ``contrast_label`` can be used to set labels for the y-axis of the bar plot and the contrast plot."
]
},
{
@@ -1571,7 +1571,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAATJ9JREFUeJzt3XlcVOX+B/DPzAADiCDKpoaAaCiigBLmiphKueSeWqmRmqVeF9QUNzAXUtMw01yuW5ZpZnpzubjjkpi50M1cEXFLQFT2feb8/vDn5MiAzDBwDvB5v17zunee85znfIdjfDhnzjmPTBAEAURERCRJcrELICIiouIxqImIiCSMQU1ERCRhDGoiIiIJY1ATERFJGIOaiIhIwhjUREREEsagJiIikjAGNRERkYRV+6B+8OABwsPD8eDBA7FLISKi5/D381MM6gcPMHfu3Gr/D4GISGr4+/mpah/UREREUsagJiIikjAGNRERkYQxqImIiCSMQU1ERCRhDGoiIiIJY1ATERFJGIOaiIhIwiQV1CdOnECvXr1Qr149yGQy7N69+6XrREdHo2XLllAqlWjUqBE2bdpU7nUSERFVFEkFdVZWFry9vbFy5cpS9b916xZ69OiBwMBAxMbGYuLEiRg5ciQOHDhQzpUSERFVDBOxC3jeW2+9hbfeeqvU/VevXg03NzcsXboUANC0aVOcOnUKX375JYKCgsqrTCIiogojqaDWV0xMDLp06aLVFhQUhIkTJxa7Tl5eHvLy8jTvMzMzy6u8UhmzdCueZGSLWoNU2Na0xKrJ74pdRoWLXT8B+ZlPxC5DdGZWtvAZsVzsMogkp1IHdWJiIhwdHbXaHB0dkZ6ejpycHFhYWBRZJyIiAnPnzq2oEl/qSUY2UtLE/WOBxJWf+QT5GY/ELoOqClUBIDcBZDKxKyEjqdRBbYjQ0FCEhIRo3sfGxiIgIEDEip6Sy2SobV1D7DJE8Tg9C2pBELsM8cnkMLOyFbuKCpef+QQQ1GKXUXVkpQA17AFFtfv1XmVV6j3p5OSEpKQkrbakpCRYW1vrPJoGAKVSCaVSqXlvZWVVrjWWVm3rGvghfKTYZYhiSPi/eVYBT0/9+k/4VuwyKtzZ5cN4RsHYVPkM6ipEUld966tNmzY4cuSIVtuhQ4fQpk0bkSoiIpIAVb7YFZARSSqoMzMzERsbi9jYWABPb7+KjY3FnTt3ADw9bT1s2DBN/48//hjx8fH49NNPcfXqVaxatQo//vgjJk2aJEb5RETSUJj38j5UaUgqqM+dOwdfX1/4+voCAEJCQuDr64s5c+YAAB48eKAJbQBwc3PDvn37cOjQIXh7e2Pp0qX497//zVuziKh6K8wVuwIyIkl9idGpUycIJVxUpOupY506dcLFixfLsSoiokqmIEfsCsiIJHVETURERlCQJXYFZEQMaiKiqiafD1GqShjURERVTV6G2BWQETGoiYiqmrx0sSsQzcqVK+Hq6gpzc3O0bt0aZ8+eLbF/ZGQkPDw8YGFhAWdnZ0yaNAm5udK6GI9BTURU1eSmiV2BKLZv346QkBCEhYXhwoUL8Pb2RlBQEJKTk3X237p1K6ZPn46wsDBcuXIF69evx/bt2zFjxowKrrxkDGoioqqmmgb1smXLMGrUKAQHB8PT0xOrV6+GpaUlNmzYoLP/6dOn0a5dO7z77rtwdXVFt27dMGTIkJcehVc0BjURUVWTkyp2BRUuPz8f58+f15pRUS6Xo0uXLoiJidG5Ttu2bXH+/HlNMMfHx2P//v3o3r17hdRcWpK6j5qIiIwgN1XsCowqMzMT6en/fO/+4pwNAJCSkgKVSqVzRsWrV6/qHPfdd99FSkoK2rdvD0EQUFhYiI8//pinvomIqJxlPxa7AqMKCAiAjY2N5hUREWGUcaOjo7Fw4UKsWrUKFy5cwM8//4x9+/Zh3rx5RhnfWHhETURU1WQ/AgShysxJffz4cfj4+Gjev3g0DQB2dnZQKBQ6Z1R0cnLSOe7s2bMxdOhQjBz5dObC5s2bIysrCx999BFmzpwJuVwax7LSqIKIiIxHlV+l7qW2srKCtbW15qUrqM3MzNCqVSutGRXVajWOHDlS7IyK2dnZRcJYoVAAQImPs65oPKImIqqKMpMAc2uxq6hQISEhGD58OPz8/ODv74/IyEhkZWUhODgYADBs2DDUr19fc+q8V69eWLZsGXx9fdG6dWvExcVh9uzZ6NWrlyawpYBBTURUFaXdBewai11FhRo0aBAePnyIOXPmIDExET4+PoiKitJcYHbnzh2tI+hZs2ZBJpNh1qxZuH//Puzt7dGrVy8sWLBArI+gE4OaiKgqepIgdgWiGDduHMaNG6dzWXR0tNZ7ExMThIWFISwsrAIqMxy/oyYiqopSbohdARkJg5qIqCpK/BNQq8WugoyAQU1EVBXlZQAp18WugoyAQU1EVFXd/lXsCsgIGNRERFVVfPTTB59QpcagJiKqqlLvAI/ixK6CyohBTURUlcUdFrsCKiMGNRFRVRZ3mFd/V3IMaiKiqiwrBXgQK3YVVAYMaiKiqu7mkZf3IcliUBMRVXXxxwFVodhVkIEY1EREVV1eBnDvd7GrIAMxqImIqoMbB8WugAzEoCYiqg4STgG56WJXQQZgUBMRVRF+fn54pWkr+C28UHShKh+4fqDii6IyY1ATEVURiYmJuP/3AySm5+vucGknoFZVbFFUZgxqIqLqIuMBcPOo2FWQnhjURETVyflNPKquZBjURETVSdo94MoesasgPTCoiYiqm3Mbnt5bTZUCg5qIqLrJTXt6CpwqBQY1EVF1dOln4PEtsaugUmBQExFVR4IaOL0CEASxK6GXYFATEVVX988Dt38Vuwp6CQY1EVF1duYbQFUgdhVUAgY1EVF1lnYP+GuX2FVQCRjURETV3fnNQPZjsaugYjCoiYiqu/xM4Pd/i10FFYNBTUREwNV9QNJfYldBOjCoiYjoqZNLAVWh2FXQCxjURET01KObwJ87xK6CXsCgJiKif5zbAKTeFbsKeo7kgnrlypVwdXWFubk5WrdujbNnz5bYPzIyEh4eHrCwsICzszMmTZqE3NzcCqqWiKiKUeUDJ5YAarXYldD/k1RQb9++HSEhIQgLC8OFCxfg7e2NoKAgJCcn6+y/detWTJ8+HWFhYbhy5QrWr1+P7du3Y8aMGRVcORFRFfLgD+DybrGroP8nqaBetmwZRo0aheDgYHh6emL16tWwtLTEhg0bdPY/ffo02rVrh3fffReurq7o1q0bhgwZ8tKjcCIieomz64BM3QdJVLEkE9T5+fk4f/48unTpommTy+Xo0qULYmJidK7Ttm1bnD9/XhPM8fHx2L9/P7p3714hNRMRVVkF2cCvy8WuggCYiF3AMykpKVCpVHB0dNRqd3R0xNWrV3Wu8+677yIlJQXt27eHIAgoLCzExx9/XOKp77y8POTl5WneZ2ZmGucDEBFVNQmnnk7cUb+V2JVUa5I5ojZEdHQ0Fi5ciFWrVuHChQv4+eefsW/fPsybN6/YdSIiImBjY6N5BQQEVGDFRNLj5+eHV155BX5+fmKXQlJ0dh2nwhSZZILazs4OCoUCSUlJWu1JSUlwcnLSuc7s2bMxdOhQjBw5Es2bN0ffvn2xcOFCREREQF3MFYuhoaFIS0vTvI4fP270z0JUmSQmJuL+/ftITEwUuxSSouQrwN8XxK6iWpNMUJuZmaFVq1Y4cuSIpk2tVuPIkSNo06aNznWys7Mhl2t/BIVCAQAQivkLUKlUwtraWvOysrIy0icgIqqiOLuWqCTzHTUAhISEYPjw4fDz84O/vz8iIyORlZWF4OBgAMCwYcNQv359REREAAB69eqFZcuWwdfXF61bt0ZcXBxmz56NXr16aQKbiIjKKOFXIOsRUKOO2JVUS5IK6kGDBuHhw4eYM2cOEhMT4ePjg6ioKM0FZnfu3NE6gp41axZkMhlmzZqF+/fvw97eHr169cKCBQvE+ghERFWPoAbiDgHeg8WupFqSVFADwLhx4zBu3Didy6Kjo7Xem5iYICwsDGFhYRVQGRFRNXbtv0CLQYBMJnYl1Y5kvqMmIiIJe5IAPIoTu4pqiUFNRESlc+Og2BVUS5I79U1EJLaCnAzER63G4xu/ATI57Jq0RcOg0VCYWRS7zv++nY70O39qtTm1fAuNuj/9Ki/pj0O4sSdS57r+k76HWY1axiq//MQdAVp/Ash5jFeRGNREVC3979vpcPR+A47eXYssu757CfIzH8PrvflQq1S4sScScftWwKPvpyWO6egbBJeA9zXv5abmmv9v59kRtu7aT/i6/suXUBcWVI6QBoDsR8DfF4FXpPukspUrV2LJkiVITEyEt7c3VqxYAX9//2L7p6amYubMmfj555/x+PFjuLi4IDIyUlKPouafRUREz8lOuYMnN8+jUY8JqFm/CWwaNIP7m6Px8K8TyMt4VOK6ClNzmFnV1rxMlJbPLVNqLZPJFEhL+B+cfLqV90cyLgmf/tZ3Bsb8/Hx07doVCQkJ+Omnn3Dt2jWsW7cO9evXr+DKS8YjaiKi56TfuwqFeQ3UrNdY01bLzReQyZBx/xqUTdoWu27ypWNI/vMYzKxsUbuxP5w7DIbiuaPq5yX9eQRyUyXqNG1n9M9QrhJOAoWTARMzsSsp4vkZGAFg9erV2LdvHzZs2IDp06cX6b9hwwY8fvwYp0+fhqmpKQDA1dW1IksuFR5RExE9pyDzCcwsa2m1yeQKmFrUREHWk2LXc/AKgEfvKWg+NAKvtB2I5D+P4vruL4rtnxR7EPZeAVCYKo1VesXIzwLuSW8qYUNmYPzll1/Qpk0bjB07Fo6OjvDy8sLChQuhUqkqquxS4RE1EVULd09tx91ff9S8VxfmI+P+VdyMWq1pa/nxNwaP79TyLc3/r+HgCjOr2rj0/QzkPH4Ai9p1tfqm37uCnJS78Og92eDtiep2DODavsI2l5mZifT0dM17pVIJpVL7DxxDZmCMj4/H0aNH8d5772H//v2Ii4vDmDFjUFBQIKnnczCoiahacGrVHXaeHTTvr+1eArsm7VDnuVPZypp1YGpli/zsVK11BbUKBTkZMK1hW+rt1azvAQDIffJ3kaBOungANRwbwqpuY12rGuTOnTvIysoCAGTlqXDncS4a1NZ92r3MHsSWz7jFeHGWw7CwMISHh5d5XLVaDQcHB6xduxYKhQKtWrXC/fv3sWTJEgY1EVFFM7WoCVOLmpr3chMlTGvYwKJ2Pa1+1q80gSo3C5kPbmiCNPXWH4AgaMK3NLKS4gEAZla1tdpV+TlIuXIKLoHDDf0oWs6ePYt58+Zh3759msmIUnNUcJ15Fj2b18bs7i54zbXmS0bRU9q9p6fAzWoYd9xiHD9+HD4+Ppr3Lx5NA4bNwFi3bl2YmppqzQ3RtGlTJCYmIj8/H2Zm0vgent9RExE9x9KuAWzdW+HGvhXIuH8N6Xcv4+aBb2DfrCOUNZ9OSpGXnoLz34xGxv1rAICcxw9w5+QPyHxwA7mpSXh0/Qyu/2cprBt4oYajm9b4D/86AUGtgkPzwDLX+vPPP6Ndu3b473//W2TGQEEA9l96jLaLY/HzxZQyb6uI9L+NP2YxrKystGY91BXUhszA2K5dO8TFxWlNi3z9+nXUrVtXMiEN8IiaiKiIV/tMRXzUN7j0/UxAJkOdJu3gHjRas1xQq5Dz6B5UBXkAALnCBKm3YvH32f9AlZ8LpbU96jRtB+f2RSexSPrjIOp4tIWJedmm2D179iwGDRoElUpV7LS+KjUgg4BB667g9Kc+xj2yzkwC7Ix36t4Y9J2B8ZNPPsHXX3+NCRMm4F//+hdu3LiBhQsXYvz48WJ+jCIY1ETV3LPTgsWdHqyqWgz7vNhlphY1S3y4iXktR7SftU/zXmljjxbDFpVqu94fLC19kSWYP38+BEEoNqSfEQAIEDB//238Z4yXUbYNAMhJNd5YRqLvDIzOzs44cOAAJk2ahBYtWqB+/fqYMGECpk2bJtZH0IlBTVTNnTt3TuwSSE937tzB3r17XxrSz6jUwJ4/Hxv3ArO8DOOMY2T6zMAIAG3atMGZM2fKuaqyYVATEVQqldb3dBWpUKVGoUoNuUqNgoICUWqoKOrCfKhVhWUeZ/++PaUO6WcEAThw+TGGv+5Q5u0DgJD1BPJy3l+FhWX/WVUFDGoiCUiT2QCZhdi34F1Rtv/9kT/xw7FLomxby+Tvxa6gSvvouzh89J2xpqo8DWCskcaikjCoiQiDA5thUKdmom3fRkiDWc06eO1fG0WrobwV5mXj8Y1zkCtMICvj4ze37dqLSbMW6r3e6sEuGOZfp0zbBgBBEJDr3BEWb83Vep65sV28eBGtW7cut/ErCwY1EUEh8rSFJoIcJgq55nnLVZFMbQpTUxMolJZlfmzoG506QiaL0Ov0t0wGdG1iA1MTxcs7v4wgQGVqBlNTU5iU4z4zMWFEAbyPmoio0nGuXxdBnTtqPaijJAo50LNZLTSobbznigtyhmhF4U+aqJqbuOoAnmTmwNbKApFjgsQuh0pp6r8+wuHjpyCTyUo8spYBkEGG0KC6xfYxhGBSTo8npSJ4RE1UzT3JzMGj9Bw8ycwRuxTSQ0tvL2xYsRgKhbzYI2uFHFDIZfgh2B2vuZTtASsvEkwr5vGhxKAmIqq0er3ZBQd++hZdO7WHTCbTWiaTAd09a+HEpCbo4136yURKS620MfqYpBtPfRMRVWItvb3ww7+/wt37D9Cx+0CkpmegloUC56c1M+p30i9S1XB8eScyCh5RExFVAc7168LS0gIAUMNMXq4hrVZaQ1Bal9v4pI1BTUREeim0F++e++qIQU1ERHopcPAWu4RqhUFNRESlJiiteURdwRjURERUagUNOgJyIzzdjEqNQU1ERKWjMEWB2xtiV1HtMKiJiKhU8t3fhKCsKXYZ1Q6DmoiIXkowt0W++5til1EtMaiJiOilcr2HASbld282FY9BTUREJSpo0B4qh+Zil1FtMaiJiKhYgqUd8poNFrsMyUtPT8fnn3+OoKAg+Pr64uzZswCAx48fY9myZYiLizN4bD7rm4iIipXrEwxwSssS3bt3DwEBAbh79y4aN26Mq1evIjMzEwBQu3ZtrFmzBrdv38by5csNGp9BTUREOhW4dIKqjofYZUje1KlTkZGRgdjYWDg4OMDBwUFreZ8+fbB3716Dx+epb6JqztbKAnWsLWBrZSF2KSQhglkN5DXpK3YZlcLBgwcxfvx4eHp6FpluFAAaNmyIu3fvGjw+j6iJqrnIMUFil0ASlP/q24BZDbHLqBRycnJgb29f7PKMjIwyjc8jaiIi0iKY2z59VCiViqenJ06cOFHs8t27d8PX19fg8RnURESkJd+9G6AwFbuMSmPixInYtm0bFi1ahLS0NACAWq1GXFwchg4dipiYGEyaNMng8Xnqm4iI/mFijoIGHcSuolJ5//33cfv2bcyaNQszZ84EALz55psQBAFyuRwLFy5Enz59DB6fQU1ERBoFDTrydiwDzJw5E0OHDsXOnTsRFxcHtVoNd3d39OvXDw0bNizT2EYNakEQcOzYMeTl5aF9+/aoWZMPbyciqjRkcuS7dRa7ikqrQYMGZTrFXRyDv6OeOXMmAgMDNe8FQUC3bt3QtWtX9OjRA82bN8fNmzeNUiQREZW/wvr+ECztxC6j0rlw4QJWrVpV7PJVq1YhNjbW4PENDuqdO3fC399f8/6nn37CkSNHMH/+fOzduxcqlQrh4eEGF0ZERBVIJkde455iV1EpzZw5E4cPHy52+dGjRzFr1iyDxzc4qO/fv49GjRpp3v/888/w9PREaGgounfvjk8++QTR0dEGF0ZERBWnwDUQgpWT2GVUSufPn0eHDsVfgNehQwecO3fO4PENDmoTExPk5eUBeHra+8iRI3jzzX/mKnV0dERKSore465cuRKurq4wNzdH69atNQ82L05qairGjh2LunXrQqlU4tVXX8X+/fv13i4RUXUlKK2R9+rbYpdRaWVkZMDEpPhLvuRyuea2LUMYHNReXl747rvv8OTJE2zcuBGPHj1Cjx49NMtv374NOzv9vuvYvn07QkJCEBYWhgsXLsDb2xtBQUFITk7W2T8/Px9du3ZFQkICfvrpJ1y7dg3r1q1D/fr1Df1YRETVTl6zwXwKWRk0btwYBw8eLHZ5VFRUma78Njio58yZg9jYWNjZ2WHUqFFo166d1sVl+/btw2uvvabXmMuWLcOoUaMQHBwMT09PrF69GpaWltiwYYPO/hs2bMDjx4+xe/dutGvXDq6urggICIC3t7ehH4uIqFopdPRGYT39fleTthEjRmDfvn0ICQlBamqqpj01NRWTJk1CVFQURowYYfD4Bt+e1bVrV1y4cAGHDh1CrVq1MGjQIM2yJ0+eoGPHjujdu3epx8vPz8f58+cRGhqqaZPL5ejSpQtiYmJ0rvPLL7+gTZs2GDt2LP7zn//A3t4e7777LqZNmwaFQmHoRyMiqh5MzJHX/H1Ax0QSVHrjx49HbGwsIiMj8dVXX6FevXoAgL///htqtRpDhw4V78lknp6e8PT0LNJua2uLL7/8Uq+xUlJSoFKp4OjoqNXu6OiIq1ev6lwnPj4eR48exXvvvYf9+/cjLi4OY8aMQUFBAcLCwnSuk5eXp/luHYBmzlAiouomr0lfCBa2YpdR6clkMmzcuBHDhg3Dzp07ER8fDwDo3bs3+vfvj06dOpVpfIODOiMjA6mpqXB2dta0/f3331i9ejXy8vIwYMAAvU9960utVsPBwQFr166FQqFAq1atcP/+fSxZsqTYoI6IiMDcuXPLtS4iIqlT2zRAgWvgyztSqQUGBmp9BWwsBn9H/dFHH2HgwIGa9+np6Xj99dcxf/58LF26FB06dNDr9iw7OzsoFAokJSVptSclJcHJSfctA3Xr1sWrr76qdZq7adOmSExMRH5+vs51QkNDkZaWpnkdP3681DUSEVUVuV7vAjLOy1QZGLyXTp06hZ49/7k5/rvvvsPff/+N06dP48mTJ2jRogXmz59f6vHMzMzQqlUrHDlyRNOmVqtx5MgRtGnTRuc67dq10zxT9Znr16+jbt26MDMz07mOUqmEtbW15mVlZVXqGomIqoLCun5Q12708o5UKoIgYM2aNfD399ccdL74Kun2rZcxeM2UlBSt26B++eUXtG/fHq+//joAYNiwYXqfYg4JCcHw4cPh5+cHf39/REZGIisrC8HBwZox69evj4iICADAJ598gq+//hoTJkzAv/71L9y4cQMLFy7E+PHjDf1YRERVm0yOvCZ9xa6iSvn000+xbNky+Pj44P3334etrXG/9zc4qGvVqoXExEQAQE5ODk6ePKmZ3gt4+kCU7OxsvcYcNGgQHj58iDlz5iAxMRE+Pj6IiorSXGB2584dyOX/nARwdnbGgQMHMGnSJLRo0QL169fHhAkTMG3aNEM/FhFRlVbwShsIVo4v70iltnnzZvTv3x8//vhjuYxvcFC3bdsWq1atQpMmTRAVFYXc3Fyt27GuX79u0INHxo0bh3Hjxulcpus77zZt2uDMmTN6b4eIqPqRIb9Rd7GLqHJycnLQpUuXchvf4O+oFy1aBFNTU/Tv3x/r1q1DSEgImjVrBgBQqVTYsWMHAgICjFYoERGVTaGTD4+my8Ebb7yB33//vdzGN/iIulGjRrh27RouX74MGxsbuLq6apZlZ2fj66+/5hPCiIgkpMCt/I76qrNVq1YhKCgICxcuxOjRo1GnTh2jjl+mB56YmprqDOOaNWvq9VQyIiIqX2qrulDVeVXsMqokDw8PqNVqzJ49G7Nnz4a5uXmRp2PKZDKDJ+YoU1Cnp6dj1apVOHbsGJKTkzWXpz9+/BibNm3C22+/rTUVJhERiaPApSMfFVpO+vfvD1k5/mwNDup79+4hICAAd+/eRePGjXH16lXN4zhr166NNWvW4Pbt21i+fLnRiiUiIgPI5Cis/7rYVVSIlStXYsmSJUhMTIS3tzdWrFgBf3//l663bds2DBkyBL1798bu3bv12uamTZsMK7aUDL6YbOrUqcjIyEBsbCyOHz8OQRC0lvfp0weHDx8uc4FERFQ2KnsvCMqaYpdR7vSdKvmZhIQETJkyBR06dKigSvVjcFAfPHgQ48ePh6enp85D/oYNG+Lu3btlKo6IiMquoH71mMZS36mSgad3Kb333nuYO3dumeaMvnPnDj7++GN4eHjA1tYWJ06cAPD04WDjx4/HxYsXDR7b4KDOycmBvb19scszMjIMHZqIiIxFJkehQwuxqyiTzMxMpKena17Pz4D4zLOpkp+/n/llUyUDwGeffQYHB4cyzRd9+fJl+Pr6Yvv27XBzc0N6ejoKCwsBPJ3H4tSpU/j6668NHt/goPb09NT8xaDL7t274evra+jwRERkBKo6rwJmNcQuo0wCAgJgY2OjeT17jPTzSpoq+dlTNF906tQprF+/HuvWrStTfZ9++ilq1aqF69ev47vvvivyVXCPHj1w8uRJg8c3+GKyiRMnYvjw4WjRooVmFi21Wo24uDjMnTsXMTEx2Llzp8GFERFR2RU6eIldQpkdP34cPj4+mvdKpbLMY2ZkZGDo0KFYt24d7OzsyjTWiRMnMGfOHNjb2+PRo0dFljdo0AD37983eHyDg/r999/H7du3MWvWLM0zvt98800IggC5XI6FCxeiT58+BhdGRERlp7JvJnYJZWZlZQVra+sS++g7VfLNmzeRkJCAXr16adqezcRoYmKCa9euwd3dvVT1qdVqWFpaFrv84cOHZfrjokz3Uc+cORNDhw7Fzp07NdNNuru7o1+/fmX6Up6IiMpOMKsBdU3951yojJ6fKvnZQeKzqZJ1zR/RpEkT/Pnnn1pts2bNQkZGBpYvXw5nZ+dSb7tly5bYt28fxowZU2RZYWEhtm3bpplZ0hBlCmrg6SH9pEmTyjoMEREZmap2Y0Bm8KVIlY4+UyWbm5vDy0v7a4FatWoBQJH2lwkNDUXPnj3xySefYPDgwQCeHskfPnwYCxcuxJUrV8p0MZnBQX3hwgWcOXNG518QwNNnn7Zt21brewUiIqo4Ktvq9WRIfadKNpa33noLmzZtwoQJE7B27VoAT78eFgQB1tbW+Pbbb9GxY0eDxzc4qGfOnAkLC4tig/ro0aPYv38/9u7da3BxRERkOHUtF7FLqHD6TpX8vLI8YWzo0KHo168fDh06hBs3bmi+Cg4KCkLNmmV72IzBQX3+/HmEhoYWu7xDhw46L6EnIqKKobJuIHYJVV52djacnZ0xffp0TJ06tVwuojb4HEBGRgZMTIrPeblcbvBMIUREVDaC0qbS3z9dGVhaWsLExAQ1apTfz9rgoG7cuDEOHjxY7PKoqChe+U1EJBJ1zbpil1Bt9O/fHz/99FORB50Yi8FBPWLECOzbtw8hISFITU3VtKempmLSpEmIiooq0yPZiIjIcOoaDmKXUG0MHjwYycnJCAwMxPfff49ff/0VFy5cKPIylMHfUY8fPx6xsbGIjIzEV199hXr16gEA/v77b6jVagwdOpS3bRERiURtWfxcDGRcnTp10vx/XY8KFQQBMpkMKpXKoPENDmqZTIaNGzdi2LBh2LlzJ+Lj4wEAvXv3Rv/+/bUKJyKiiiVY1BG7hGpj48aN5Tp+mR94EhgYiMDAQGPUQkRERqK2qC12CdXG8OHDy3V8g7+jvnXrFvbs2VPs8j179iAhIcHQ4YmIqAwE81pil1AtPXjwAH/88QeysrKMNqbBQT1lyhR89dVXxS5fuXIlpk+fbujwRESkJwd7O9RztIOjtenT27OowvznP/9BkyZN8Morr6Bly5b47bffADydftPX1xe7du0yeGyDgzomJgZdu3Ytdvkbb7xRpvk3iYhIP8d++QGXj27HmRn+gMJU7HKqjT179qBfv36ws7NDWFiY1m1adnZ2qF+/fpmeemZwUD958qTEx6JZWVnpnJeTiIjKl6As2yMrST+fffYZOnbsiFOnTmHs2LFFlrdp0wYXL140eHyDg7pBgwb49ddfi11+8uRJvPLKK4YOT0REBhKUJc/dTMZ16dIlvPPOO8Uud3R0RHJyssHjGxzUQ4YMwQ8//ICvvvpKM9k2AKhUKixfvhzbt2/Hu+++a3BhRERkGMHMSuwSqhVLS8sSLx6Lj49HnTqG3y5ncFCHhoYiMDAQEydORN26ddGxY0d07NgR9erVw6RJkxAQEICZM2caXBgRERmGQV2xAgMDsXnzZhQWFhZZlpiYiHXr1qFbt24Gj29wUCuVShw8eBDr16+Hv78/UlJSkJKSAn9/f2zYsAGHDx+GUqk0uDAiIjKMYMbvqCvSggULcO/ePbz22mtYs2YNZDIZDhw4gFmzZqF58+YQBAFhYWEGj1+mB57I5XIEBwcjODi4LMMQEZERCaaWYpdQrXh4eODUqVOYMGECZs+eDUEQsGTJEgBPHy+6cuVKuLq6Gjx+mZ9MRkRE0iKYcnrL8vS///0PLi4usLH55171Zs2a4fDhw3jy5Ani4uKgVqvRsGFD2NuX/ZnrBgd1586dX9pHJpPhyJEjhm6CiIgMwSPqcuXr64stW7ZoLpju3LkzZs6ciTfeeAO2trZ47bXXjLo9g7+jVqvVEARB61VYWIibN28iOjoa9+7d07oanIiIKoZgaiF2CVWahYUFsrOzNe+jo6ORlJRUbtsz+Ig6Ojq62GV79+7FRx99hGXLlhk6PBERGUgwMRe7hCrN29sby5Ytg0Kh0Jz+/v3332FuXvLPvV+/fgZtr1y+o+7Zsyfef/99TJw4EcePHy+PTRARUXEUvOOmPEVGRmLgwIEYMWIEgKdf8y5fvhzLly8vdh1R5qN+GXd3d3z99dflNTwRERVDkPM64fL02muvIS4uDjdv3kRSUhI6deqEGTNmlDj/RVmUy94sLCzEjz/+CDs7u/IYnoiISsKgLle//PIL/Pz84OHhAQ8PDwwfPhy9evVC69aty2V7Bu/NDz/8UGd7amoqzpw5g8TERH5HTUQkCpnYBVRpffv21brq+/jx4+jbt2+5bc/goD569ChkMu1/DDKZDLa2tmjfvj1GjhxZpkemERERSVHNmjWRmpqqeZ+QkIDMzMxy257BQZ2QkGDEMoiIyGgE3hpbnvz9/bFgwQIkJSVprvrev38/EhMTi11HJpNh0qRJBm3P4KCOjY3FlStXMGTIEE3bgQMHsGDBAuTl5eHdd9/FhAkTDB2eiIgMJohdQJW2atUqDBs2DPPmzQPwNIS3bt2KrVu3FruOKEH96aefwtLSUhPUt27dQt++fVGnTh3Uq1cPISEhsLCwwEcffWToJoiIyBA8oi5XjRo1wunTp5Gbm4vk5GS4uroiMjISvXv3LpftGRzUf/zxB6ZOnap5/+2330KhUODixYuws7PDoEGDsHr1agY1EVFFE3hEXRHMzc3RoEEDhIWFoXPnznBxcSmX7Rgc1GlpaVoTYe/fvx9du3bV3JLVtWtX/Pe//y17hURERBJWliksS8PgoK5bty6uXLkCAHjw4AHOnz+vNd1lZmYm5HKDHyVORESG4t1Z5erDDz+ETCbD2rVroVAoir1d+XkymQzr1683aHsGB3Xv3r2xYsUK5Obm4rfffoNSqdS6j+yPP/5Aw4YNDR2eiIgMJVOIXUGVdvToUcjlcqjVaigUCp23K7/oZctLYvAh7/z589GvXz9s2bIFycnJ2LRpExwdHQEA6enp+Omnnwy+j/rZJNvm5uZo3bo1zp49W6r1tm3bBplMhj59+hi0XSKiKoFBXa4SEhIQHx8PU1NTzftbt26V+IqPjzd4ewYfUVtZWeH7778vdtm9e/dgaan/nKjbt29HSEgIVq9ejdatWyMyMhJBQUG4du0aHBwcil0vISEBU6ZMQYcOHfTeJhFRlSJnUFcl5fIlslwuh42NjeavDX0sW7YMo0aNQnBwMDw9PbF69WpYWlpiw4YNxa6jUqnw3nvvYe7cuTzdTkTVHiflKF9yuRwKhULvl6EktTfz8/Nx/vx5hIaGatrkcjm6dOmCmJiYYtf77LPP4ODggBEjRuDkyZMlbiMvLw95eXma9+X52DciIlHI9T9IotKbM2dOke+cd+3ahb/++gtBQUHw8PAAAFy9ehUHDx6El5dXmb6SlVRQp6SkQKVSab7rfsbR0RFXr17Vuc6pU6ewfv16xMbGlmobERERmDt3bllLJSKSJoWSp77LWXh4uNb7tWvXIjk5GZcuXdKE9DNXrlxB586dUa9ePYO3V6nvn8rIyMDQoUOxbt26Uk+pGRoairS0NM3r+PHj5VwlEVHFEZQ1AVml/tVe6SxZsgTjxo0rEtIA0LRpU4wbNw6LFy82eHxJHVHb2dlBoVAgKSlJqz0pKQlOTk5F+t+8eRMJCQno1auXpk2tfvroPBMTE1y7dg3u7u5a6yiVSiiVSs17KysrY34EIiKqZu7du1fiNVmmpqa4d++eweNL6s8uMzMztGrVCkeOHNG0qdVqHDlyBG3atCnSv0mTJvjzzz8RGxureb399tsIDAxEbGwsnJ2dK7J8IiKqhry8vLBq1Srcv3+/yLJ79+5h1apVaN68ucHjS+qIGgBCQkIwfPhw+Pn5wd/fH5GRkcjKytI89WzYsGGoX78+IiIiYG5uDi8vL631a9WqBQBF2omIiMrDl19+iaCgILz66qvo27cvGjVqBAC4ceMGdu/eDUEQ8N133xk8vuSCetCgQXj48CHmzJmDxMRE+Pj4ICoqSnOB2Z07d/hoUiIikoz27dvjt99+w+zZs7Fr1y7k5OQAACwsLBAUFIS5c+dWrSNqABg3bhzGjRunc1l0dHSJ627atMn4BREREZXAy8sLu3btglqtxsOHDwEA9vb2RjmwlGRQExERVUZyubzILcZlHtOooxEREZFRMaiJiIgkjEFNRERVhj6zL65btw4dOnSAra0tbG1t0aVLl1LP1liRGNRERFQlPJt9MSwsDBcuXIC3tzeCgoKQnJyss390dDSGDBmCY8eOISYmBs7OzujWrZvO+6HFxKAmIqIqQd/ZF7///nuMGTMGPj4+aNKkCf79739rHrIlJQxqIiKStMzMTKSnp2tez8+A+Myz2Re7dOmiaSvN7IvPy87ORkFBAWrXrm202o2BQU1ERJIWEBAAGxsbzSsiIqJIn5JmX0xMTCzVdqZNm4Z69epphb0U8D5qIiKStOPHj8PHx0fz/vmJlYzl888/x7Zt2xAdHQ1zc3Ojj18WDGoiIpI0KysrWFtbl9hH39kXn/fFF1/g888/x+HDh9GiRYsy12tsPPVNRESVnr6zLz6zePFizJs3D1FRUfDz86uIUvXGI2oiIqoS9Jl9EQAWLVqEOXPmYOvWrXB1ddV8l21lZQUrKyvRPseLGNRERFQl6Dv74jfffIP8/HwMGDBAa5ywsDCEh4dXZOklYlATEVGVoc/siwkJCeVfkBHwO2oiIiIJY1ATERFJGIOaiIhIwhjUREREEsagJiIikjAGNRERkYQxqImIiCSMQU1ERCRhDGoiIiIJY1ATERFJGIOaiIhIwhjUREREEsagJiIikjAGNRERkYQxqImIiCSMQU1ERCRhDGoiIiIJY1ATERFJGIOaiIhIwhjUREREEsagJiIikjAGNRERkYQxqImIiCSMQU1ERCRhDGoiIiIJY1ATERFJGIOaiIhIwhjUREREEsagJiIikjAGNRERkYQxqImIiCSMQU1ERCRhkgzqlStXwtXVFebm5mjdujXOnj1bbN9169ahQ4cOsLW1ha2tLbp06VJifyIiospEckG9fft2hISEICwsDBcuXIC3tzeCgoKQnJyss390dDSGDBmCY8eOISYmBs7OzujWrRvu379fwZUTEREZn+SCetmyZRg1ahSCg4Ph6emJ1atXw9LSEhs2bNDZ//vvv8eYMWPg4+ODJk2a4N///jfUajWOHDlSwZVXTn5+fnjllVfg5+cndilERKSDidgFPC8/Px/nz59HaGiopk0ul6NLly6IiYkp1RjZ2dkoKChA7dq1dS7Py8tDXl6e5n1mZmbZiq7kEhMTefaBiEjCJHVEnZKSApVKBUdHR612R0dHJCYmlmqMadOmoV69eujSpYvO5REREbCxsdG8AgICylw3ERFReZFUUJfV559/jm3btmHXrl0wNzfX2Sc0NBRpaWma1/Hjxyu4SiIiotKT1KlvOzs7KBQKJCUlabUnJSXBycmpxHW/+OILfP755zh8+DBatGhRbD+lUgmlUql5b2VlVbaiiYiIypGkjqjNzMzQqlUrrQvBnl0Y1qZNm2LXW7x4MebNm4eoqCheFEVERFWKpI6oASAkJATDhw+Hn58f/P39ERkZiaysLAQHBwMAhg0bhvr16yMiIgIAsGjRIsyZMwdbt26Fq6ur5rtsKysrHi0TEVGlJ7mgHjRoEB4+fIg5c+YgMTERPj4+iIqK0lxgdufOHcjl/5wI+Oabb5Cfn48BAwZojRMWFobw8PCKLJ2IiMjoJBfUADBu3DiMGzdO57Lo6Git9wkJCeVfEBERkUgk9R01ERERaWNQExERSRiDmoiISMIY1EREVGXoM/siAOzYsQNNmjSBubk5mjdvjv3791dQpaXHoK7mnJycUL9+/Zc+UIaISOr0nX3x9OnTGDJkCEaMGIGLFy+iT58+6NOnDy5dulTBlZeMQV3NnTt3Dvfu3cO5c+fELoWIqEz0nX1x+fLlePPNNzF16lQ0bdoU8+bNQ8uWLfH1119XcOUlY1ATEVGl92z2xecnZHrZ7IsxMTFFJnAKCgoq9WyNFUWS91FTxVKpVFCr1aJtX60qhFqlglpViIKCAtHqEEuhSo1ClXg/fykoFNSQq9RVev8XFhSgoKAQKnU2ZAWFYpdTJkJhvua/V0FefvussPDpzykzMxPp6ema9hfnbABKnn3x6tWrOsdPTEws02yNFYVBLQGWQjayU7PRe+JCUbZ/9cwRXP/tqCjbftGP8z8RuwQS0+Tvxa6AJOjF6Yir25MnGdQED/9AvPpaJ1FryJZZws6mBr6bM0LUOsTw+4pgPMys3EdYZWUjpMGsZh289q+NYpdSrtT/fyRaFcgVJpCbmJXrNi5evIjWrVvj+PHj8PHx0bS/eDQNGDb7opOTk0GzNVY0BjVBJpdDJnINcpkCcoUJTE1NRa6k4pko5DBRVO/LRUyEpz+DKr//q/rnMzITk6cRZWVlBWtr6xL7Pj/7Yp8+fQD8M/ticY+kbtOmDY4cOYKJEydq2g4dOlTibI1iYFBXc8d/WIm87EwoLa0QMGSs2OUQERlM39kXJ0yYgICAACxduhQ9evTAtm3bcO7cOaxdu1bMj1EEg7qay8vORG5m+ss7EhFJnL6zL7Zt2xZbt27FrFmzMGPGDDRu3Bi7d++Gl5eXWB9BJwY1ERFVGfrMvggAAwcOxMCBA8u5qrKp3l+MERERSRyDmoiISMIY1ERERBLGoCYiIpIwBjUREZGEMaiJiIgkjEFNREQkYQxqIiIiCWNQExERSRiDmoiISMIY1ERERBLGZ31Xc0pLK63/JSIiaWFQV3Oc2pKISNp46puIiEjCGNREREQSxqAmIiKSMAY1ERGRhDGoiYiIJIxBTUREJGEMaiIiIgljUBMREUkYg5qIiEjCGNREREQSxqAmIiKSMAY1ERGRhDGoiYiIJIxBTUREJGEMaiIiIgljUBMREUkYg5qIiEjCGNREREQSxqAmIiKSMEkG9cqVK+Hq6gpzc3O0bt0aZ8+eLbH/jh070KRJE5ibm6N58+bYv39/BVVKRERUviQX1Nu3b0dISAjCwsJw4cIFeHt7IygoCMnJyTr7nz59GkOGDMGIESNw8eJF9OnTB3369MGlS5cquHIiIiLjk1xQL1u2DKNGjUJwcDA8PT2xevVqWFpaYsOGDTr7L1++HG+++SamTp2Kpk2bYt68eWjZsiW+/vrrCq6ciIjI+CQV1Pn5+Th//jy6dOmiaZPL5ejSpQtiYmJ0rhMTE6PVHwCCgoKK7U9ERFSZmIhdwPNSUlKgUqng6Oio1e7o6IirV6/qXCcxMVFn/8TERJ398/LykJeXp3mfmZkJALhy5UpZSjfY4we3kZvxWJRtS0muzBzybEtcuHBB7FIq3NW7j/AkRyV2GaKyEjJhagmYvLD/69ati7p164pUVdk8ePAADx48ELuMSk2s38tSI6mgrggRERGYO3euVpuLiwvef/99kSqi5x1cO1/sEkhMS7UvBA0LC0N4eLg4tZTRmjVrivyuIf0FBARU2j/WjEVSQW1nZweFQoGkpCSt9qSkJDg5Oelcx8nJSa/+oaGhCAkJ0Wp7/PgxHj+unke1mZmZCAgIwPHjx2FlZSV2OSQCKf8bqMy/oEePHo233367Qrcp5X1pqMp8VsVYZIIgCGIX8bzWrVvD398fK1asAACo1Wo0aNAA48aNw/Tp04v0HzRoELKzs7Fnzx5NW9u2bdGiRQusXr26wuqurNLT02FjY4O0tDRYW1uLXQ6JgP8Gqg7uy6pJUkfUABASEoLhw4fDz88P/v7+iIyMRFZWFoKDgwEAw4YNQ/369REREQEAmDBhAgICArB06VL06NED27Ztw7lz57B27VoxPwYREZFRSC6oBw0ahIcPH2LOnDlITEyEj48PoqKiNBeM3blzB3L5Pxert23bFlu3bsWsWbMwY8YMNG7cGLt374aXl5dYH4GIiMhoJHfqmypWXl4eIiIiEBoaCqVSKXY5JAL+G6g6uC+rJgY1ERGRhEnqgSdERESkjUFNREQkYQxqMqqEhATIZDJs2rRJ7FKIiKoEBrWIbt68idGjR6Nhw4YwNzeHtbU12rVrh+XLlyMnJ6fctnv58mWEh4cjISGh3LZRGgsWLMDbb78NR0dHyGSySvsEqvImk8lK9YqOji7ztrKzsxEeHq7XWNyP+uH+JH1J7vas6mLfvn0YOHAglEolhg0bBi8vL+Tn5+PUqVOYOnUq/vrrr3K7F/zy5cuYO3cuOnXqBFdX13LZRmnMmjULTk5O8PX1xYEDB0SrQ+q2bNmi9f7bb7/FoUOHirQ3bdq0zNvKzs7WPPayU6dOpVqH+1E/3J+kLwa1CG7duoXBgwfDxcUFR48e1Xo83tixYxEXF4d9+/aJWOE/BEFAbm4uLCwsjD72rVu34OrqipSUFNjb2xt9/KrixefQnzlzBocOHZLM8+m5H/XD/Un64qlvESxevBiZmZlYv369zmfYNmrUCBMmTNC8LywsxLx58+Du7g6lUglXV1fMmDFDaxYwAHB1dUXPnj1x6tQp+Pv7w9zcHA0bNsS3336r6bNp0yYMHDgQABAYGFjkNNuzMQ4cOAA/Pz9YWFhgzZo1AID4+HgMHDgQtWvXhqWlJV5//fUy/UEh5tF8VaNWqxEZGYlmzZrB3Nwcjo6OGD16NJ48eaLV79y5cwgKCoKdnR0sLCzg5uaGDz/8EMDT6wue/WKeO3eu5t/Gy059cj8aH/cnPY9H1CLYs2cPGjZsiLZt25aq/8iRI7F582YMGDAAkydPxm+//YaIiAhcuXIFu3bt0uobFxeHAQMGYMSIERg+fDg2bNiADz74AK1atUKzZs3QsWNHjB8/Hl999RVmzJihOb32/Gm2a9euYciQIRg9ejRGjRoFDw8PJCUloW3btsjOzsb48eNRp04dbN68GW+//TZ++ukn9O3b13g/INLb6NGjsWnTJgQHB2P8+PG4desWvv76a1y8eBG//vorTE1NkZycjG7dusHe3h7Tp09HrVq1kJCQgJ9//hkAYG9vj2+++QaffPIJ+vbti379+gEAWrRoIeZHq5a4P0mLQBUqLS1NACD07t27VP1jY2MFAMLIkSO12qdMmSIAEI4ePappc3FxEQAIJ06c0LQlJycLSqVSmDx5sqZtx44dAgDh2LFjRbb3bIyoqCit9okTJwoAhJMnT2raMjIyBDc3N8HV1VVQqVSCIAjCrVu3BADCxo0bS/X5BEEQHj58KAAQwsLCSr1OdTZ27Fjh+f90T548KQAQvv/+e61+UVFRWu27du0SAAi///57sWOXZV9wPxqG+5Nehqe+K1h6ejoAoGbNmqXqv3//0/l5X5yac/LkyQBQ5NSzp6cnOnTooHlvb28PDw8PxMfHl7pGNzc3BAUFFanD398f7du317RZWVnho48+QkJCAi5fvlzq8cm4duzYARsbG3Tt2hUpKSmaV6tWrWBlZYVjx44BAGrVqgUA2Lt3LwoKCkSsmErC/UkvYlBXsGdTz2VkZJSq/+3btyGXy9GoUSOtdicnJ9SqVQu3b9/Wam/QoEGRMWxtbYt8t1USNzc3nXV4eHgUaX92yvzFOqji3LhxA2lpaXBwcIC9vb3WKzMzE8nJyQCAgIAA9O/fH3PnzoWdnR169+6NjRs3FrnWgcTF/Ukv4nfUFcza2hr16tXDpUuX9FpPJpOVqp9CodDZLujxSPfyuMKbyo9arYaDgwO+//57ncufXVAkk8nw008/4cyZM9izZw8OHDiADz/8EEuXLsWZM2dgZWVVkWVTMbg/6UUMahH07NkTa9euRUxMDNq0aVNiXxcXF6jVaty4cUPrgq+kpCSkpqbCxcVF7+2XNvRfrOPatWtF2q9evapZTuJwd3fH4cOH0a5du1L9kfX666/j9ddfx4IFC7B161a899572LZtG0aOHGnQvw0yLu5PehFPfYvg008/RY0aNTBy5EgkJSUVWX7z5k0sX74cANC9e3cAQGRkpFafZcuWAQB69Oih9/Zr1KgBAEhNTS31Ot27d8fZs2cRExOjacvKysLatWvh6uoKT09Pvesg43jnnXegUqkwb968IssKCws1+/nJkydFzqz4+PgAgOZ0qaWlJQD9/m2QcXF/0ot4RC0Cd3d3bN26FYMGDULTpk21nkx2+vRp7NixAx988AEAwNvbG8OHD8fatWuRmpqKgIAAnD17Fps3b0afPn0QGBio9/Z9fHygUCiwaNEipKWlQalUonPnznBwcCh2nenTp+OHH37AW2+9hfHjx6N27drYvHkzbt26hZ07d0Iu1/9vvi1btuD27dvIzs4GAJw4cQLz588HAAwdOpRH6aUUEBCA0aNHIyIiArGxsejWrRtMTU1x48YN7NixA8uXL8eAAQOwefNmrFq1Cn379oW7uzsyMjKwbt06WFtba/4gtLCwgKenJ7Zv345XX30VtWvXhpeXF7y8vIrdPvejcXF/UhEiX3VerV2/fl0YNWqU4OrqKpiZmQk1a9YU2rVrJ6xYsULIzc3V9CsoKBDmzp0ruLm5CaampoKzs7MQGhqq1UcQnt5a1aNHjyLbCQgIEAICArTa1q1bJzRs2FBQKBRat2oVN4YgCMLNmzeFAQMGCLVq1RLMzc0Ff39/Ye/evVp99Lk9KyAgQACg86Xr1jF66sXbeZ5Zu3at0KpVK8HCwkKoWbOm0Lx5c+HTTz8V/v77b0EQBOHChQvCkCFDhAYNGghKpVJwcHAQevbsKZw7d05rnNOnTwutWrUSzMzMSnV7Dvdj2XB/0svIBEGPq4yIiIioQvE7aiIiIgljUBMREUkYg5qIiEjCGNREREQSxqAmIiKSMAY1ERGRhDGoJWzx4sVo0qQJ1Gq12KWU2eDBg/HOO++IXUalwv1PuiQkJEAmk2HTpk1il0IVhEEtUenp6Vi0aBGmTZumeeqXTCaDTCbD0qVLi/TftGkTZDIZzp07Z/RaunbtCplMhnHjxulcvn79ejRt2hTm5uZo3LgxVqxYUaTPtGnTsHPnTvzxxx9Gr68q4v4nomcY1BK1YcMGFBYWYsiQIUWWLVmyRPN4v/L2888/az3f+0Vr1qzByJEj0axZM6xYsQJt2rTB+PHjsWjRIq1+vr6+8PPz0xkyVBT3PxXHxcUFOTk5GDp0qNilUEUR+9FopFuLFi2E999/X6sNgODj4yMAEJYuXaq1bOPGjQIA4ffffzdaDTk5OYKrq6vw2WefCQCEsWPHai3Pzs4W6tSpU+SRo++9955Qo0YN4fHjx1rtX3zxhVCjRg0hIyPDaDVWVdz/RPQMj6gl6NatW/jf//6HLl26FFnWrl07dO7cGYsXL0ZOTk651rF48WKo1WpMmTJF5/Jjx47h0aNHGDNmjFb72LFjkZWVhX379mm1d+3aFVlZWTh06FC51VwVcP9XfeHh4ZDJZLh+/Tref/992NjYwN7eHrNnz4YgCLh79y569+4Na2trODk5aZ2J0PUd9QcffAArKyvcv38fffr0gZWVFezt7TFlyhSoVCpNv+joaMhkMkRHR2vVo2vMxMREBAcH45VXXoFSqUTdunXRu3dvJCQklNNPhYrDoJag06dPAwBatmypc3l4eDiSkpLwzTfflDhOXl4eUlJSSvV60Z07d/D5559j0aJFxc6Je/HiRQCAn5+fVnurVq0gl8s1y5/x9PSEhYUFfv311xLrru64/6uPQYMGQa1W4/PPP0fr1q0xf/58REZGomvXrqhfvz4WLVqERo0aYcqUKThx4kSJY6lUKgQFBaFOnTr44osvEBAQgKVLl2Lt2rUG1da/f3/s2rULwcHBWLVqFcaPH4+MjAzcuXPHoPHIcJzmUoKuXr0KAHBzc9O5vEOHDggMDMSSJUvwySefFPuL9IcffkBwcHCptim8MDfL5MmT4evri8GDBxe7zoMHD6BQKIpMj2lmZoY6derg77//1mo3MTGBs7MzLl++XKqaqivu/+rD398fa9asAQB89NFHcHV1xeTJkxEREYFp06YBAIYMGYJ69ephw4YN6NixY7Fj5ebmYtCgQZg9ezYA4OOPP0bLli2xfv16fPLJJ3rVlZqaitOnT2PJkiVaZ1RCQ0P1/YhkBAxqCXr06BFMTExgZWVVbJ/w8HAEBARg9erVmDRpks4+QUFBBp1mPHbsGHbu3InffvutxH45OTkwMzPTuczc3FznqVlbW1udR3D0D+7/6mPkyJGa/69QKODn54d79+5hxIgRmvZatWrBw8MD8fHxLx3v448/1nrfoUMHbNmyRe+6LCwsYGZmhujoaIwYMQK2trZ6j0HGw6CupDp27IjAwEAsXry4yH+cz9StWxd169bVa9zCwkKMHz8eQ4cOxWuvvVZiXwsLC+Tn5+tclpubq/NITxAEyGQyvWqiorj/q4YGDRpovbexsYG5uTns7OyKtD969KjEsczNzWFvb6/VZmtriydPnuhdl1KpxKJFizB58mQ4Ojri9ddfR8+ePTFs2DA4OTnpPR6VDYNagurUqYPCwkJkZGSgZs2axfYLCwtDp06dsGbNGtSqVavI8pycHKSlpZVqm8/+4/v2229x7do1rFmzpshFIxkZGUhISICDgwMsLS1Rt25dqFQqJCcna53+zM/Px6NHj1CvXr0i23ny5AkaN25cqpqqK+7/6kOhUJSqDSj69URp13tecX8kPX/B2TMTJ05Er169sHv3bhw4cACzZ89GREQEjh49Cl9f35dui4yHF5NJUJMmTQA8vfq3JAEBAejUqRMWLVqk8zTj9u3bNUdVL3s9c+fOHRQUFKBdu3Zwc3PTvICnv8Td3Nxw8OBBAICPjw8AFHnIxrlz56BWqzXLnyksLMTdu3fRtGlTvX4e1Q33P5WXZ6ewU1NTtdpv376ts7+7uzsmT56MgwcP4tKlS8jPz+e98CLgEbUEtWnTBsDTX3gtWrQosW94eDg6deqk88pOQ76jHDx4cJFfsADQt29fdO/eHaNGjULr1q0BAJ07d0bt2rXxzTffoHv37pq+33zzDSwtLdGjRw+tMS5fvozc3Fy0bdtWr5qqG+5/Ki8uLi5QKBQ4ceIE+vTpo2lftWqVVr/s7GzI5XKYm5tr2tzd3VGzZk3k5eVVVLn0/xjUEtSwYUN4eXnh8OHD+PDDD0vsGxAQgICAABw/frzIMkO+o2zSpInmiO5Fbm5uWv9xW1hYYN68eRg7diwGDhyIoKAgnDx5Et999x0WLFiA2rVra61/6NAhWFpaomvXrnrVVN1w/1N5sbGxwcCBA7FixQrIZDK4u7tj7969SE5O1up3/fp1vPHGG3jnnXfg6ekJExMT7Nq1C0lJSSXeCUDlg0EtUR9++CHmzJmDnJycYm+/eSY8PByBgYEVVJm2MWPGwNTUFEuXLsUvv/wCZ2dnfPnll5gwYUKRvjt27EC/fv1K/N6VnuL+p/KyYsUKFBQUYPXq1VAqlXjnnXewZMkSeHl5afo4OztjyJAhOHLkCLZs2QITExM0adIEP/74I/r37y9i9dWTTHjZFQokirS0NDRs2BCLFy/WulWjsoqNjUXLli1x4cIFnadWSRv3PxE9w6CWsEWLFmHjxo24fPmyZgalymrw4MFQq9X48ccfxS6l0uD+JyKAQU1ERCRplfvPdCIioiqOQU1ERCRhDGoiIiIJY1ATERFJGIOaiIiKSEhIgEwmw6ZNm8QupdpjUBMRldHNmzcxevRoNGzYEObm5rC2tka7du2wfPlync9hN5bLly8jPDy8yAQqFW3BggV4++234ejoCJlMhvDwcFHrqWr4ZDIiojLYt28fBg4cCKVSiWHDhsHLywv5+fk4deoUpk6dir/++kvns9iN4fLly5g7dy46deoEV1fXctlGacyaNQtOTk7w9fXFgQMHRKujqmJQExEZ6NatWxg8eDBcXFxw9OhRrWerjx07FnFxcdi3b5+IFf5DEIRi5wkvq1u3bsHV1RUpKSlF5sSmsuOpbyIiAy1evBiZmZlYv369zglQGjVqpPXc88LCQsybNw/u7u5QKpVwdXXFjBkzisxI5erqip49e+LUqVPw9/eHubk5GjZsiG+//VbTZ9OmTRg4cCAAIDAwEDKZDDKZDNHR0VpjHDhwAH5+frCwsMCaNWsAAPHx8Rg4cCBq164NS0tLvP7662X6g0LMo/nqgEFNRGSgPXv2oGHDhqWeunPkyJGYM2cOWrZsiS+//BIBAQGIiIjQOSNVXFwcBgwYgK5du2Lp0qWwtbXFBx98gL/++gsA0LFjR4wfPx4AMGPGDGzZsgVbtmzRmu/72rVrGDJkCLp27Yrly5fDx8cHSUlJaNu2LQ4cOIAxY8ZgwYIFyM3Nxdtvv41du3YZ4adCRicQEZHe0tLSBABC7969S9U/NjZWACCMHDlSq33KlCkCAOHo0aOaNhcXFwGAcOLECU1bcnKyoFQqhcmTJ2vaduzYIQAQjh07VmR7z8aIiorSap84caIAQDh58qSmLSMjQ3BzcxNcXV0FlUolCIIg3Lp1SwAgbNy4sVSfTxAE4eHDhwIAISwsrNTr0MvxiJqIyADp6ekAUOppO/fv3w8ACAkJ0WqfPHkyABQ59ezp6YkOHTpo3tvb28PDwwPx8fGlrtHNzQ1BQUFF6vD390f79u01bVZWVvjoo4+QkJCAy5cvl3p8qhgMaiIiA1hbWwMAMjIyStX/9u3bkMvlaNSokVa7k5MTatWqhdu3b2u1N2jQoMgYtra2ePLkSalrdHNz01mHh4dHkfZnp8xfrIPEx6AmIjKAtbU16tWrh0uXLum1nkwmK1U/hUKhs13QY8LD8rjCmyoeg5qIyEA9e/bEzZs3ERMT89K+Li4uUKvVuHHjhlZ7UlISUlNT4eLiovf2Sxv6L9Zx7dq1Iu1Xr17VLCdpYVATERno008/RY0aNTBy5EgkJSUVWX7z5k0sX74cANC9e3cAQGRkpFafZcuWAQB69Oih9/Zr1KgBAEhNTS31Ot27d8fZs2e1/rjIysrC2rVr4erqCk9PT73roPLFB54QERnI3d0dW7duxaBBg9C0aVOtJ5OdPn0aO3bswAcffAAA8Pb2xvDhw7F27VqkpqYiICAAZ8+exebNm9GnTx8EBgbqvX0fHx8oFAosWrQIaWlpUCqV6Ny5MxwcHIpdZ/r06fjhhx/w1ltvYfz48ahduzY2b96MW7duYefOnZDL9T9+27JlC27fvo3s7GwAwIkTJzB//nwAwNChQ3mUXlZiX3ZORFTZXb9+XRg1apTg6uoqmJmZCTVr1hTatWsnrFixQsjNzdX0KygoEObOnSu4ubkJpqamgrOzsxAaGqrVRxCe3lrVo0ePItsJCAgQAgICtNrWrVsnNGzYUFAoFFq3ahU3hiAIws2bN4UBAwYItWrVEszNzQV/f39h7969Wn30uT0rICBAAKDzpevWMdKPTBD0uDKBiIiIKhS/oyYiIpIwBjUREZGEMaiJiIgkjEFNREQkYQxqIiIiCWNQExERSRiDmoiISMIY1ERERBLGoCYiIpIwBjUREZGEMaiJiIgkjEFNREQkYQxqIiIiCfs/2ORGhBe9m2EAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAATJFJREFUeJzt3XlYVGX/P/D3zAADiAgKgho6iIYSKihBriOmUi6pqamVGqlZ6hcVNcUNfFxITcNMc3ncskwz0yeXB3dcEjMXejJXRNwBUdn3mfP7w5+TIwPCMHAO8H5d11w197nPfT7jUd6cM+ecWyYIggAiIiKSJLnYBRAREVHRGNREREQSxqAmIiKSMAY1ERGRhDGoiYiIJIxBTUREJGEMaiIiIgljUBMREUkYg5qIiEjCqn1QP3jwAGFhYXjw4IHYpRAR0XP48/kpBvWDB5gzZ061/4tARCQ1/Pn8VLUPaiIiIiljUBMREUkYg5qIiEjCGNREREQSxqAmIiKSMAY1ERGRhDGoiYiIJIxBTUREJGGSCurjx4+jd+/eqF+/PmQyGXbt2vXSdaKiotC6dWsolUo0adIEGzduLPc6iYiIKoqkgjozMxOtWrXCihUrStT/5s2b6NmzJ/z9/RETE4MJEyZg5MiR2L9/fzlXSkREVDHMxC7geW+//TbefvvtEvdftWoVXF1dsWTJEgBA8+bNcfLkSXz11VcICAgorzKJiIgqjKSCurSio6PRtWtXvbaAgABMmDChyHVyc3ORm5ure5+RkVFe5ZXImCVb8CQ9S9QapMK+pjVWTnpf7DIqXMy68cjLeCJ2GaKzsLGH14hlYpdBJDmVOqgTEhLg5OSk1+bk5IS0tDRkZ2fDysqq0Drh4eGYM2dORZX4Uk/Ss5CcKu4vCySuvIwnyEt/JHYZVFVo8gG5GSCTiV0JmUilDmpjhISEIDg4WPc+JiYGarVaxIqekstkqG1bQ+wyRPE4LRNaQRC7DPHJ5LCwsRe7igqXl/EEELRil1F1ZCYDNRwBRbX78V5lVeo96ezsjMTERL22xMRE2NraGjyaBgClUgmlUql7b2NjU641llRt2xr4MWyk2GWIYkjYv3lWAU9P/fqO/07sMircmWXDeEbB1DR5DOoqRFJXfZdW27ZtcfjwYb22gwcPom3btiJVREQkAZo8sSsgE5JUUGdkZCAmJgYxMTEAnt5+FRMTg9u3bwN4etp62LBhuv6ffvop4uLi8Pnnn+PKlStYuXIlfvrpJ0ycOFGM8omIpKEg9+V9qNKQVFCfPXsW3t7e8Pb2BgAEBwfD29sbs2fPBgA8ePBAF9oA4Orqir179+LgwYNo1aoVlixZgn//+9+8NYuIqreCHLErIBOS1JcYnTt3hlDMRUWGnjrWuXNnXLhwoRyrIiKqZPKzxa6ATEhSR9RERGQC+ZliV0AmxKAmIqpq8vgQpaqEQU1EVNXkpotdAZkQg5qIqKrJTRO7AtGsWLECKpUKlpaW8PPzw5kzZ4rtHxERAXd3d1hZWcHFxQUTJ05ETo60LsZjUBMRVTU5qWJXIIpt27YhODgYoaGhOH/+PFq1aoWAgAAkJSUZ7L9lyxZMmzYNoaGhuHz5MtatW4dt27Zh+vTpFVx58RjURERVTTUN6qVLl2LUqFEIDAyEh4cHVq1aBWtra6xfv95g/1OnTqF9+/Z4//33oVKp0L17dwwZMuSlR+EVjUFNRFTVZKeIXUGFy8vLw7lz5/RmVJTL5ejatSuio6MNrtOuXTucO3dOF8xxcXHYt28fevToUSE1l5Sk7qMmIiITyEkRuwKTysjIQFraP9+7vzhnAwAkJydDo9EYnFHxypUrBsd9//33kZycjA4dOkAQBBQUFODTTz/lqW8iIipnWY/FrsCk1Go1atWqpXuFh4ebZNyoqCgsWLAAK1euxPnz5/HLL79g7969mDt3rknGNxUeURMRVTVZjwBBqDJzUh87dgxeXl669y8eTQOAg4MDFAqFwRkVnZ2dDY47a9YsDB06FCNHPp25sEWLFsjMzMQnn3yCGTNmQC6XxrGsNKogIiLT0eRVqXupbWxsYGtrq3sZCmoLCwu0adNGb0ZFrVaLw4cPFzmjYlZWVqEwVigUAFDs46wrGo+oiYiqooxEwNJW7CoqVHBwMIYPHw4fHx/4+voiIiICmZmZCAwMBAAMGzYMDRo00J067927N5YuXQpvb2/4+fkhNjYWs2bNQu/evXWBLQUMaiKiqij1DuDQVOwqKtSgQYPw8OFDzJ49GwkJCfDy8kJkZKTuArPbt2/rHUHPnDkTMpkMM2fOxL179+Do6IjevXtj/vz5Yn0EgxjURERV0ZN4sSsQxbhx4zBu3DiDy6KiovTem5mZITQ0FKGhoRVQmfH4HTURUVWUfF3sCshEGNRERFVRwl+AVit2FWQCDGoioqooNx1IviZ2FWQCDGoioqrq1m9iV0AmwKAmIqqq4qKePviEKjUGNRFRVZVyG3gUK3YVVEYMaiKiqiz2kNgVUBkxqImIqrLYQ7z6u5JjUBMRVWWZycCDGLGroDJgUBMRVXU3Dr+8D0kWg5qIqKqLOwZoCsSugozEoCYiqupy04G7f4hdBRmJQU1EVB1cPyB2BWQkBjURUXUQfxLISRO7CjICg5qIqIrw8fHBK83bwGfB+cILNXnAtf0VXxSVGYOaiKiKSEhIwL37D5CQlme4w8UdgFZTsUVRmTGoiYiqi/QHwI0jYldBpcSgJiKqTs5t5FF1JcOgJiKqTlLvApd3i10FlQKDmoioujm7/um91VQpMKiJiKqbnNSnp8CpUmBQExFVRxd/AR7fFLsKKgEGNRFRdSRogVPLAUEQuxJ6CQY1EVF1de8ccOs3saugl2BQExFVZ6e/BTT5YldBxWBQExFVZ6l3gb93il0FFYNBTURU3Z3bBGQ9FrsKKgKDmoiousvLAP74t9hVUBEY1EREBFzZCyT+LXYVZACDmoiInjqxBNAUiF0FvYBBTURETz26Afy1Xewq6AUMaiIi+sfZ9UDKHbGroOdILqhXrFgBlUoFS0tL+Pn54cyZM8X2j4iIgLu7O6ysrODi4oKJEyciJyengqolIqpiNHnA8cWAVit2JfT/SSqot23bhuDgYISGhuL8+fNo1aoVAgICkJSUZLD/li1bMG3aNISGhuLy5ctYt24dtm3bhunTp1dw5UREVciDP4FLu8Sugv4/SQX10qVLMWrUKAQGBsLDwwOrVq2CtbU11q9fb7D/qVOn0L59e7z//vtQqVTo3r07hgwZ8tKjcCIieokza4EMwwdJVLEkE9R5eXk4d+4cunbtqmuTy+Xo2rUroqOjDa7Trl07nDt3ThfMcXFx2LdvH3r06FEhNRMRVVn5WcBvy8SuggCYiV3AM8nJydBoNHByctJrd3JywpUrVwyu8/777yM5ORkdOnSAIAgoKCjAp59+Wuyp79zcXOTm5ureZ2RkmOYDEBFVNfEnn07c0aCN2JVUa5I5ojZGVFQUFixYgJUrV+L8+fP45ZdfsHfvXsydO7fIdcLDw1GrVi3dS61WV2DFRNLj4+ODV155BT4+PmKXQlJ0Zi2nwhSZZILawcEBCoUCiYmJeu2JiYlwdnY2uM6sWbMwdOhQjBw5Ei1atEC/fv2wYMEChIeHQ1vEFYshISFITU3VvY4dO2byz0JUmSQkJODevXtISEgQuxSSoqTLwP3zYldRrUkmqC0sLNCmTRscPnxY16bVanH48GG0bdvW4DpZWVmQy/U/gkKhAAAIRfwGqFQqYWtrq3vZ2NiY6BMQEVVRnF1LVJL5jhoAgoODMXz4cPj4+MDX1xcRERHIzMxEYGAgAGDYsGFo0KABwsPDAQC9e/fG0qVL4e3tDT8/P8TGxmLWrFno3bu3LrCJiKiM4n8DMh8BNeqIXUm1JKmgHjRoEB4+fIjZs2cjISEBXl5eiIyM1F1gdvv2bb0j6JkzZ0Imk2HmzJm4d+8eHB0d0bt3b8yfP1+sj0BEVPUIWiD2INBqsNiVVEuSCmoAGDduHMaNG2dwWVRUlN57MzMzhIaGIjQ0tAIqIyKqxq7+F2g5CJDJxK6k2pHMd9RERCRhT+KBR7FiV1EtMaiJiKhkrh8Qu4JqSXKnvomIxJKfnY64yFV4fP13QCaHQ7N2aBwwGgoLqyLX+d9305B2+y+9NufWb6NJj6df4SX+eRDXd0cYXNd34g+wqGFnqvLLX+xhwO8zQM5jvIrEoCaiauV/302DU6s34dSqW6Fl13YtRl7GY3h+MA9ajQbXd0cgdu9yuPf7vNgxnbwD0Ej9oe693NxS9/8OHp1g76b/ZK9rv34FbUF+5QppAMh6BNy/ALwi3SeVrVixAosXL0ZCQgJatWqF5cuXw9fXt8j+KSkpmDFjBn755Rc8fvwYjRo1QkREhKQeRc1fi4iIAGQl38aTG+fQpOd41GzQDLUavga3t0bj4d/HkZv+qNh1FeaWsLCprXuZKa2fW6bUWyaTKZAa/z84e3Uv749UPiR8+ru0MzDm5eWhW7duiI+Px88//4yrV69i7dq1aNCgQQVXXjweURMRAUi7ewUKyxqoWb+prs3O1RuQyZB+7yqUzdoVuW7SxaNI+usoLGzsUbupL1w6DobiuaPq5yX+dRhycyXqNG9v8s9QIeJPAAWTADMLsSsp5PkZGAFg1apV2Lt3L9avX49p06YV6r9+/Xo8fvwYp06dgrm5OQBApVJVZMklwiNqIiIA+RlPYGFtp9cmkytgblUT+ZlPilyvrqca7n0mo8XQcLzSbiCS/jqCa7u+LLJ/YswBOHqqoTBXmqr0ipWXCdyV3lTCxszA+Ouvv6Jt27YYO3YsnJyc4OnpiQULFkCj0VRU2SXCI2oiqtLunNyGO7/9pHuvLchD+r0ruBG5StfW+tNvjR7fufXbuv+vUVcFC5vauPjDdGQ/fgCr2vX0+qbdvYzs5Dtw7zPJ6O1Jwq1oQNWhwjaXkZGBtLQ03XulUgmlUv8XHWNmYIyLi8ORI0fwwQcfYN++fYiNjcWYMWOQn58vqedzMKiJqEpzbtMDDh4dde+v7loMh2btUee5U9nKmnVgbmOPvKwUvXUFrQb52ekwr2Ff4u3VbOAOAMh5cr9QUCde2I8aTo1hU6+poVXL5Pbt28jMzAQAZOZqcPtxDhrWNnz6vcwexJTPuEV4cZbD0NBQhIWFlXlcrVaLunXrYs2aNVAoFGjTpg3u3buHxYsXM6iJiCqKuVVNmFvV1L2XmylhXqMWrGrX1+tn+0ozaHIykfHgui5IU27+CQiCLnxLIjMxDgBgYVNbr12Tl43kyyfRyH+4sR/FoDNnzmDu3LnYu3evbjKilGwNVDPOoFeL2pjVoxFeV9V8ySillHr36SlwixqmHbcIx44dg5eXl+79i0fTgHEzMNarVw/m5uZ6c0M0b94cCQkJyMvLg4WFNL6H53fUREQArB0awt6tDa7vXY70e1eRducSbuz/Fo6vdYKy5tPJKHLTknHu29FIv3cVAJD9+AFun/gRGQ+uIyclEY+unca1/yyBbUNP1HBy1Rv/4d/HIWg1qNvC32Q1//LLL2jfvj3++9//FpoxUBCAfRcfo92iGPxyIdlk29RJu2/6MYtgY2OjN+uhoaA2ZgbG9u3bIzY2Vm9a5GvXrqFevXqSCWmAR9RERDqv9p2CuMhvcfGHGYBMhjrN2sMtYLRuuaDVIPvRXWjycwEAcoUZUm7G4P6Z/0CTlwOlrSPqNG8Plw6FJ69I/PMA6ri3g5mlaabWPXPmDAYNGgSNRlPktL4aLSCDgEFrL+PU516mPbLOSAQcTH8KvyxKOwPjZ599hm+++Qbjx4/H//3f/+H69etYsGABgoKCxPwYhTCoiaq5Z6cFizo9WNW0HPZFkcvMrWoW+3ATSzsndJi5V/deWcsRLYctLNF2W320pORFlsC8efMgCEKRIf2MAECAgHn7buE/YzxNV0B2iunGMpHSzsDo4uKC/fv3Y+LEiWjZsiUaNGiA8ePHY+rUqWJ9BIMY1ETV3NmzZ8UugUrp9u3b2LNnz0tD+hmNFtj912PTXmCWm26acUysNDMwAkDbtm1x+vTpcq6qbBjURASNRqP3PV1FKtBoUaDRQq7RIj8/X5QaKopWkw9BW/Z7dP+7b2+JQ/oZQQD2X3qC4W/ULfP2AUDIfAJ5Oe+vgoKCch2/smBQE0lAqqwWkFGAvfPfF2X7Pxz+Cz8evSjKtvVM+kHsCqq0T76/jk++v26i0X4DMNZEY1FxGNREhMH+r2FQ59dE234tIRUWNevg9f/bIFoN5U2Tn4PUW39DbqaAXGFeprG2/PwfBE0NK/V6q4eoMMzPoUzbBgBBEJCr6gLL7rOKfFSqKVy4cAF+fn7lNn5lwaAmIihEnrbQTJDDTCHXPW+5KpJDA3NzM5gprSAv43Oyu/p3hkwmK9Xpb5kM6NbMDubP3TNsPAFac4un9yCX4z4zM2NEAbyPmoio0nF5pT7e6uqv96CO4ijkQC9POzSsbcLni8ur7i9VUsNfV4iquQkr9+NJRjbsbawQMSZA7HKohKZOHIODR4+/9MhaBkAGGaYHmHbqRsGs/E55kz4eURNVc08ysvEoLRtPMrLFLoVKoY1XS2xc9RUUCkWRR9YKOaCQy7D14yZ4vZFpHrTyjGBh2vGoaAxqIqJKqk+PABz6dSu6d1FDJpPpLZPJgB6v2eFEsAf6tqpdxAjG0yprmXxMMoynvomIKrE2Xi3x06ZVuHP3Ptp1ewcpqWmws1Lg/LQWpv1O+gVam3ov70QmwSNqIqIqwOWV+rC2tgIA1FDKyzWkBWUtCJY8oq4oDGoiIiqVAqcWYpdQrTCoiYioVDTO3mKXUK0wqImIqMQES1toeERdoRjURERUYgWu/oCc1yFXJAY1ERGVjMIcBW7dxa6i2mFQExFRieS/2hNQ2opdRrXDoCYiopcSrOxR8GpPscuolhjURET0UnmtRwB8vrcoGNRERFSsApUaWudWYpdRbTGoiYioSEINB+S3/FDsMiQvLS0NX3zxBQICAuDt7Y0zZ84AAB4/foylS5ciNjbW6LF5jT0RERUpr81owJynvItz9+5dqNVq3LlzB02bNsWVK1eQkZEBAKhduzZWr16NW7duYdmyZUaNz6AmIiKDChq/Ca1jM7HLkLwpU6YgPT0dMTExqFu3LurWrau3vG/fvtizZ4/R4/PUN1E1Z29jhTq2VrC3sRK7FJIQwcIG+a8NELuMSuHAgQMICgqCh4dHoelGAaBx48a4c+eO0ePziJqomosYEyB2CSRBBc37ARY2YpdRKWRnZ8PR0bHI5enp6WUan0fURESkR7Cyf/qoUCoRDw8PHD9+vMjlu3btgre38ROZMKiJiEhPQdMegMJc7DIqjQkTJmDr1q1YuHAhUlNTAQBarRaxsbEYOnQooqOjMXHiRKPH56lvIiL6h7kVClSdxa6iUvnwww9x69YtzJw5EzNmzAAAvPXWWxAEAXK5HAsWLEDfvn2NHp9BTUREOgWqzrwdywgzZszA0KFDsWPHDsTGxkKr1cLNzQ3vvvsuGjduXKaxTRrUgiDg6NGjyM3NRYcOHVCzZk1TDk9EROVJJkOBWzexq6i0GjZsWKZT3EUx+jvqGTNmwN//n4sNBEFA9+7d0a1bN/Ts2RMtWrTAjRs3TFIkERGVP41LOwg1ir56mQw7f/48Vq5cWeTylStXIiYmxujxjQ7qHTt2wNfXV/f+559/xuHDhzFv3jzs2bMHGo0GYWFhRhdGREQVSCZDfrM+YldRKc2YMQOHDh0qcvmRI0cwc+ZMo8c3Oqjv3buHJk2a6N7/8ssv8PDwQEhICHr06IHPPvsMUVFRRhdGREQVp8CtG4Sa9cQuo1I6d+4cOnbsWOTyjh074uzZs0aPb3RQm5mZITc3F8DT096HDx/GW2+9pVvu5OSE5OTkUo+7YsUKqFQqWFpaws/PT/dg86KkpKRg7NixqFevHpRKJV599VXs27ev1NslIqquBEtb5DfvJ3YZlVZ6ejrMzIq+5Esul+tu2zKG0UHt6emJ77//Hk+ePMGGDRvw6NEj9Oz5z6Tit27dgoODQ6nG3LZtG4KDgxEaGorz58+jVatWCAgIQFJSksH+eXl56NatG+Lj4/Hzzz/j6tWrWLt2LRo0aGDsxyIiqnbyWw7lU8jKoGnTpjhw4ECRyyMjI8t05bfRQT179mzExMTAwcEBo0aNQvv27fUuLtu7dy9ef/31Uo25dOlSjBo1CoGBgfDw8MCqVatgbW2N9evXG+y/fv16PH78GLt27UL79u2hUqmgVqvRqhXnTSUiKglNPW9oXvETu4xKbcSIEdi7dy+Cg4ORkpKia09JScHEiRMRGRmJESNGGD2+0bdndevWDefPn8fBgwdhZ2eHQYMG6ZY9efIEnTp1Qp8+Jb8wIS8vD+fOnUNISIiuTS6Xo2vXroiOjja4zq+//oq2bdti7Nix+M9//gNHR0e8//77mDp1KhQKhbEfjYioejCzRL73R4CBiSSo5IKCghATE4OIiAh8/fXXqF+/PgDg/v370Gq1GDp0qHhPJvPw8ICHh0ehdnt7e3z11VelGis5ORkajQZOTk567U5OTrhy5YrBdeLi4nDkyBF88MEH2LdvH2JjYzFmzBjk5+cjNDTU4Dq5ubm679YB6OYMJSKqbvJfGwjBqrbYZVR6MpkMGzZswLBhw7Bjxw7ExcUBAPr06YP+/fujc+fOZRrf6KBOT09HSkoKXFxcdG3379/HqlWrkJubiwEDBpT61HdpabVa1K1bF2vWrIFCoUCbNm1w7949LF68uMigDg8Px5w5c8q1LiIiqdPaNUKBW1exy6hS/P399b4CNhWjv6P+5JNPMHDgQN37tLQ0vPHGG5g3bx6WLFmCjh07lur2LAcHBygUCiQmJuq1JyYmwtnZ2eA69erVw6uvvqp3mrt58+ZISEhAXl6ewXVCQkKQmpqqex07dqzENRIRVRX5XsMAGedlqgyM3ksnT55Er169dO+///573L9/H6dOncKTJ0/QsmVLzJs3r8TjWVhYoE2bNjh8+LCuTavV4vDhw2jbtq3Bddq3b697puoz165dQ7169WBhYWFwHaVSCVtbW93LxoZXOhJR9aJ5xRfaOq+KXUaVIQgCVq9eDV9fX91B54uv4m7fehmj10xOTta7DerXX39Fhw4d8MYbbwAAhg0bVupTzMHBwRg+fDh8fHzg6+uLiIgIZGZmIjAwUDdmgwYNEB4eDgD47LPP8M0332D8+PH4v//7P1y/fh0LFixAUFCQsR+LiKhqk8mQ7zHw5f2oxD7//HMsXboUXl5e+PDDD2Fvb2/S8Y0Oajs7OyQkJAAAsrOzceLECd30XsDTB6JkZWWVasxBgwbh4cOHmD17NhISEuDl5YXIyEjdBWa3b9+GXP7PSQAXFxfs378fEydORMuWLdGgQQOMHz8eU6dONfZjERFVaQUNO0CoafjrRDLOpk2b0L9/f/z000/lMr7RQd2uXTusXLkSzZo1Q2RkJHJycvRux7p27ZpRDx4ZN24cxo0bZ3CZoe+827Zti9OnT5d6O0RE1Y5MhgL3d8SuosrJzs5G167ld2Ge0d9RL1y4EObm5ujfvz/Wrl2L4OBgvPbaawAAjUaD7du3Q61Wm6xQIiIqG0291jyaLgdvvvkm/vjjj3Ib3+gj6iZNmuDq1au4dOkSatWqBZVKpVuWlZWFb775hk8IIyKSkIImAWKXUCWtXLkSAQEBWLBgAUaPHo06deqYdPwyPfDE3NzcYBjXrFmzVE8lIyKi8iXY1ofWoZnYZVRJ7u7u0Gq1mDVrFmbNmgVLS8tCT8eUyWRGT8xRpqBOS0vDypUrcfToUSQlJekuT3/8+DE2btyId955R28qTCIiEkeByp+PCi0n/fv3h6wc/2yNDuq7d+9CrVbjzp07aNq0Ka5cuaJ7HGft2rWxevVq3Lp1C8uWLTNZsUREZAS5HAUN24ldRYVYsWIFFi9ejISEBLRq1QrLly+Hr6/vS9fbunUrhgwZgj59+mDXrl2l2ubGjRuNK7aEjL6YbMqUKUhPT0dMTAyOHTsGQRD0lvft2xeHDh0qc4FERFQ2mrotAaWt2GWUu9JOlfxMfHw8Jk+ejI4dO1ZQpaVjdFAfOHAAQUFB8PDwMHjI37hxY9y5c6dMxRERUdlpXKrHNJalnSoZeHqX0gcffIA5c+aUac7o27dv49NPP4W7uzvs7e1x/PhxAE8fDhYUFIQLFy4YPbbRQZ2dnQ1HR8cil6enpxs7NBERmYpcDo2zl9hVlElGRgbS0tJ0r+dnQHzm2VTJz9/P/LKpkgHgX//6F+rWrVum+aIvXboEb29vbNu2Da6urkhLS0NBQQGAp/NYnDx5Et98843R4xsd1B4eHrrfGAzZtWsXvL29jR2eiIhMQOvQDLCo3HMaqNVq1KpVS/d69hjp5xU3VfKzp2i+6OTJk1i3bh3Wrl1bpvo+//xz2NnZ4dq1a/j+++8LfRXcs2dPnDhxwujxjb6YbMKECRg+fDhatmypm0VLq9UiNjYWc+bMQXR0NHbs2GF0YUREVHYap5Zil1Bmx44dg5eXl+69Uqks85jp6ekYOnQo1q5dCwcHhzKNdfz4ccyePRuOjo549OhRoeUNGzbEvXv3jB7f6KD+8MMPcevWLcycOVP3jO+33noLgiBALpdjwYIF6Nu3r9GFERFR2WmcWohdQpnZ2NjA1rb4i+FKO1XyjRs3EB8fj969e+vans3EaGZmhqtXr8LNza1E9Wm1WlhbWxe5/OHDh2X65aJM91HPmDEDQ4cOxY4dO3TTTbq5ueHdd98t05fyRERUdoKFDQTbV8Quo0I8P1Xys4PEZ1MlG5o/olmzZvjrr7/02mbOnIn09HQsW7YMLi4uJd5269atsXfvXowZM6bQsoKCAmzdulU3s6QxyhTUwNND+okTJ5Z1GCIiMjGtw6uAzOhLkSqd0kyVbGlpCU9PT7317ezsAKBQ+8uEhISgV69e+OyzzzB48GAAT4/kDx06hAULFuDy5ctlupjM6KA+f/48Tp8+bfA3CODps0/btWun970CERFVHG2dpmKXUKFKO1Wyqbz99tvYuHEjxo8fjzVr1gB4+vWwIAiwtbXFd999h06dOhk9vtFBPWPGDFhZWRUZ1EeOHMG+ffuwZ88eo4sjIiLjae1cxS6hwpV2quTnleUJY0OHDsW7776LgwcP4vr167qvggMCAlCzZk2jxwXKENTnzp1DSEhIkcs7duxo8BJ6IiKqGFq7RmKXUOVlZWXBxcUF06ZNw5QpU8rlImqjzwGkp6fDzKzonJfL5UbPFEJERGUjWNpV+vunKwNra2uYmZmhRo0a5bYNo4O6adOmOHDgQJHLIyMjeeU3EZFIBNv6YpdQbfTv3x8///xzoQedmIrRQT1ixAjs3bsXwcHBSElJ0bWnpKRg4sSJiIyMLNMj2YiIyHjaGk4v70QmMXjwYCQlJcHf3x8//PADfvvtN5w/f77Qy1hGf0cdFBSEmJgYRERE4Ouvv0b9+k9/e7t//z60Wi2GDh3K27aIiEQi1KgrdgnVRufOnXX/b+hRoYIgQCaTQaPRGDW+0UEtk8mwYcMGDBs2DDt27EBcXBwAoE+fPujfv79e4UREVLEE67I9FpNKbsOGDeU6fpkfeOLv7w9/f39T1EJERCYiWNcRu4RqY/jw4eU6vtHfUd+8eRO7d+8ucvnu3bsRHx9v7PBERFQGgqWd2CVUSw8ePMCff/6JzMxMk41pdFBPnjwZX3/9dZHLV6xYgWnTphk7PBERlZKToyPqOznCuaYFg7qC/ec//0GzZs3wyiuvoHXr1vj9998BPJ1+09vbGzt37jR6bKODOjo6Gt26dSty+Ztvvlmm+TeJiKh0jkf+gmsnd+H0TD9AYS52OdXG7t278e6778LBwQGhoaF6t2k5ODigQYMGZXrqmdFB/eTJk2Ifi2ZjY2NwXk4iIipnyuKnhCTT+te//oVOnTrh5MmTGDt2bKHlbdu2xYULF4we3+igbtiwIX777bcil584cQKvvFI9plcjIpISQVlL7BKqlYsXL+K9994rcrmTkxOSkpKMHt/ooB4yZAh+/PFHfP3117rJtgFAo9Fg2bJl2LZtG95//32jCyMiIuMISj46tCJZW1sXe/FYXFwc6tQx/ip8o4M6JCQE/v7+mDBhAurVq4dOnTqhU6dOqF+/PiZOnAi1Wo0ZM2YYXRgRERlHsCjbbE1UOv7+/ti0aRMKCgoKLUtISMDatWvRvXt3o8c3OqiVSiUOHDiAdevWwdfXF8nJyUhOToavry/Wr1+PQ4cOQalUGl0YEREZR1AyqCvS/PnzcffuXbz++utYvXo1ZDIZ9u/fj5kzZ6JFixYQBAGhoaFGj1+mB57I5XIEBgYiMDCwLMMQEZEpmZffTE5UmLu7O06ePInx48dj1qxZEAQBixcvBvD08aIrVqyASqUyevwyP5mMiIikRbBgUJen//3vf2jUqBFq1frnor3XXnsNhw4dwpMnTxAbGwutVovGjRvD0dGxzNszOqi7dOny0j4ymQyHDx82dhNERGQMHlGXK29vb2zevFl3wXSXLl0wY8YMvPnmm7C3t8frr79u0u0Z/R21VquFIAh6r4KCAty4cQNRUVG4e/eu3tXgRERUMQRzK7FLqNKsrKyQlZWlex8VFYXExMRy257RR9RRUVFFLtuzZw8++eQTLF261NjhiYjISAzq8tWqVSssXboUCoVCd/r7jz/+gKWlZbHrvfvuu0Ztr1y+o+7Vqxc+/PBDTJgwAceOHSuPTRARUVEUFmJXUKVFRERg4MCBGDFiBICnX/MuW7YMy5YtK3IdUeajfhk3Nzd888035TU8EREVRc7nfJen119/HbGxsbhx4wYSExPRuXNnTJ8+vdj5L8qiXIK6oKAAP/30ExwcOHE5EVGFk/OGnvL066+/wsfHB+7u7nB3d8fw4cPRu3dv+Pn5lcv2jN6bH3/8scH2lJQUnD59GgkJCfyOmohIDDKZ2BVUaf369dO76vvYsWPo169fuW3P6KA+cuQIZC/8ZZDJZLC3t0eHDh0wcuTIMj0yjYiISIpq1qyJlJQU3fv4+HhkZGSU2/aMDur4+HgTlkFERCYj8NbY8uTr64v58+cjMTFRd9X3vn37kJCQUOQ6MpkMEydONGp7Rgd1TEwMLl++jCFDhuja9u/fj/nz5yM3Nxfvv/8+xo8fb+zwRERkLEEQu4IqbeXKlRg2bBjmzp0L4GkIb9myBVu2bClyHVGC+vPPP4e1tbUuqG/evIl+/fqhTp06qF+/PoKDg2FlZYVPPvnE2E0QEZExeERdrpo0aYJTp04hJycHSUlJUKlUiIiIQJ8+fcple0YH9Z9//okpU6bo3n/33XdQKBS4cOECHBwcMGjQIKxatYpBTURU0XhEXSEsLS3RsGFDhIaGokuXLmjUqFG5bMfooE5NTdWbCHvfvn3o1q2b7pasbt264b///W/ZKyQiIpKwskxhWRJGB3W9evVw+fJlAMCDBw9w7tw5vekuMzIyIJcb/ShxIiIyFu/OKlcff/wxZDIZ1qxZA4VCUeTtys+TyWRYt26dUdszOqj79OmD5cuXIycnB7///juUSqXefWR//vknGjdubOzwRERkLJlC7AqqtCNHjkAul0Or1UKhUBi8XflFL1teHKMPeefNm4d3330XmzdvRlJSEjZu3AgnJycAQFpaGn7++Wej76N+Nsm2paUl/Pz8cObMmRKtt3XrVshkMvTt29eo7RIRVQlyBnV5io+PR1xcHMzNzXXvb968WewrLi7O6O0ZfURtY2ODH374ochld+/ehbW1danH3bZtG4KDg7Fq1Sr4+fkhIiICAQEBuHr1KurWrVvkevHx8Zg8eTI6duxY6m0SEVUlAo+oq5Ry+RJZLpejVq1aut82SmPp0qUYNWoUAgMD4eHhgVWrVsHa2hrr168vch2NRoMPPvgAc+bM4el2IiIFJ+UoT3K5HAqFotQvY0nqye15eXk4d+4cQkJCdG1yuRxdu3ZFdHR0kev961//Qt26dTFixAicOHGi2G3k5uYiNzdX9748H/tGRCQKzp5VrmbPnl3oO+edO3fi77//RkBAANzd3QEAV65cwYEDB+Dp6Vmmr2QlFdTJycnQaDS677qfcXJywpUrVwyuc/LkSaxbtw4xMTEl2kZ4eDjmzJlT1lKJiCRJMFPyO+pyFhYWpvd+zZo1SEpKwsWLF3Uh/czly5fRpUsX1K9f3+jtVer7p9LT0zF06FCsXbu2xFNqhoSEIDU1Vfc6duxYOVdJRFSBlLaArFL/aK90Fi9ejHHjxhUKaQBo3rw5xo0bh0WLFhk9vqSOqB0cHKBQKJCYmKjXnpiYCGdn50L9b9y4gfj4ePTu3VvXptU+fXSemZkZrl69Cjc3N711lEollEql7r2NjY0pPwIREVUzd+/eLfaaLHNzc9y9e9fo8SX1a5eFhQXatGmDw4cP69q0Wi0OHz6Mtm3bFurfrFkz/PXXX4iJidG93nnnHfj7+yMmJgYuLi4VWT4REVVDnp6eWLlyJe7du1do2d27d7Fy5Uq0aNHC6PEldUQNAMHBwRg+fDh8fHzg6+uLiIgIZGZm6p56NmzYMDRo0ADh4eGwtLSEp6en3vp2dnYAUKidiIioPHz11VcICAjAq6++in79+qFJkyYAgOvXr2PXrl0QBAHff/+90eNLLqgHDRqEhw8fYvbs2UhISICXlxciIyN1F5jdvn2bjyYlIiLJ6NChA37//XfMmjULO3fuRHZ2NgDAysoKAQEBmDNnTtU6ogaAcePGYdy4cQaXRUVFFbvuxo0bTV8QERFRMTw9PbFz505otVo8fPgQAODo6GiSA0tJBjUREVFlJJfLC91iXOYxTToaERERmRSDmoiISMIY1EREVGWUZvbFtWvXomPHjrC3t4e9vT26du1a4tkaKxKDmoiIqoRnsy+Ghobi/PnzaNWqFQICApCUlGSwf1RUFIYMGYKjR48iOjoaLi4u6N69u8H7ocXEoCYioiqhtLMv/vDDDxgzZgy8vLzQrFkz/Pvf/9Y9ZEtKGNRERCRpGRkZSEtL072enwHxmWezL3bt2lXXVpLZF5+XlZWF/Px81K5d22S1mwKDmoiIJE2tVqNWrVq6V3h4eKE+xc2+mJCQUKLtTJ06FfXr19cLeyngfdRERCRpx44dg5eXl+798xMrmcoXX3yBrVu3IioqCpaWliYfvywY1EREJGk2NjawtbUttk9pZ1983pdffokvvvgChw4dQsuWLctcr6nx1DcREVV6pZ198ZlFixZh7ty5iIyMhI+PT0WUWmo8oiYioiqhNLMvAsDChQsxe/ZsbNmyBSqVSvddto2NDWxsbET7HC9iUBMRUZVQ2tkXv/32W+Tl5WHAgAF644SGhiIsLKwiSy8Wg5qIiKqM0sy+GB8fX/4FmQC/oyYiIpIwBjUREZGEMaiJiIgkjEFNREQkYQxqIiIiCWNQExERSRiDmoiISMIY1ERERBLGoCYiIpIwBjUREZGEMaiJiIgkjEFNREQkYQxqIiIiCWNQExERSRiDmoiISMIY1ERERBLGoCYiIpIwBjUREZGEMaiJiIgkjEFNREQkYQxqIiIiCWNQExERSRiDmoiISMIY1ERERBLGoCYiIpIwBjUREZGEMaiJiIgkjEFNREQkYQxqIiIiCWNQExERSRiDmoiISMIY1ERERBImyaBesWIFVCoVLC0t4efnhzNnzhTZd+3atejYsSPs7e1hb2+Prl27FtufiIioMpFcUG/btg3BwcEIDQ3F+fPn0apVKwQEBCApKclg/6ioKAwZMgRHjx5FdHQ0XFxc0L17d9y7d6+CKyciIjI9yQX10qVLMWrUKAQGBsLDwwOrVq2CtbU11q9fb7D/Dz/8gDFjxsDLywvNmjXDv//9b2i1Whw+fLiCK6+cfHx88Morr8DHx0fsUoiIyAAzsQt4Xl5eHs6dO4eQkBBdm1wuR9euXREdHV2iMbKyspCfn4/atWsbXJ6bm4vc3Fzd+4yMjLIVXcklJCTw7AMRkYRJ6og6OTkZGo0GTk5Oeu1OTk5ISEgo0RhTp05F/fr10bVrV4PLw8PDUatWLd1LrVaXuW4iIqLyIqmgLqsvvvgCW7duxc6dO2FpaWmwT0hICFJTU3WvY8eOVXCVREREJSepU98ODg5QKBRITEzUa09MTISzs3Ox63755Zf44osvcOjQIbRs2bLIfkqlEkqlUvfexsambEUTERGVI0kdUVtYWKBNmzZ6F4I9uzCsbdu2Ra63aNEizJ07F5GRkbwoioiIqhRJHVEDQHBwMIYPHw4fHx/4+voiIiICmZmZCAwMBAAMGzYMDRo0QHh4OABg4cKFmD17NrZs2QKVSqX7LtvGxoZHy0REVOlJLqgHDRqEhw8fYvbs2UhISICXlxciIyN1F5jdvn0bcvk/JwK+/fZb5OXlYcCAAXrjhIaGIiwsrCJLJyIiMjnJBTUAjBs3DuPGjTO4LCoqSu99fHx8+RdEREQkEkl9R01ERET6GNREREQSxqAmIiKSMAY1ERFVGaWZfREAtm/fjmbNmsHS0hItWrTAvn37KqjSkmNQV3POzs5o0KDBSx8oQ0QkdaWdffHUqVMYMmQIRowYgQsXLqBv377o27cvLl68WMGVF49BXc2dPXsWd+/exdmzZ8UuhYioTEo7++KyZcvw1ltvYcqUKWjevDnmzp2L1q1b45tvvqngyovHoCYiokrv2eyLz0/I9LLZF6OjowtN4BQQEFDi2RoriiTvo6aKpdFooNVqRdu+VlMArUYDraYA+fn5otUhlgKNFgUa8f78paBA0EKu0Vbp/a/Jz0d+fgE0Qhbkisr9ObWafGgLNMjPz4cWinLbTkFBAYCn0xGnpaXp2l+cswEofvbFK1euGBw/ISGhTLM1VhQGtQRYC1nISslCnwkLRNn+ldOHce33I6Js+0U/zftM7BJITJN+ELsCkqAXpyOubk+eZFAT3H398errnUWtIUtmDYdaNfD97BGi1iGGP5YH4mFGgdhliKqWkAqLmnXw+v9tELuUcqXV5EPQasQuwyRkcgXkCvNy3caFCxfg5+eHY8eOwcvLS9f+4tE0YNzsi87OzkbN1ljRGNQEmVwOmcg1yGUKyBVmMDcv33/4UmSmkMNMUb0vFzETnv4ZVPn9X9U/n4mZmT2NKBsbG9ja2hbb9/nZF/v27Qvgn9kXi3okddu2bXH48GFMmDBB13bw4MFiZ2sUA4O6mjv24wrkZmVAaW0D9ZCxYpdDRGS00s6+OH78eKjVaixZsgQ9e/bE1q1bcfbsWaxZs0bMj1EIg7qay83KQE5G2ss7EhFJXGlnX2zXrh22bNmCmTNnYvr06WjatCl27doFT09PsT6CQQxqIiKqMkoz+yIADBw4EAMHDiznqsqmen8xRkREJHEMaiIiIgljUBMREUkYg5qIiEjCGNREREQSxqAmIiKSMAY1ERGRhDGoiYiIJIxBTUREJGEMaiIiIgljUBMREUkYn/VdzSmtbfT+S0RE0sKgruY4tSURkbTx1DcREZGEMaiJiIgkjEFNREQkYQxqIiIiCWNQExERSRiDmoiISMIY1ERERBLGoCYiIpIwBjUREZGEMaiJiIgkjEFNREQkYQxqIiIiCWNQExERSRiDmoiISMIY1ERERBLGoCYiIpIwBjUREZGEMaiJiIgkjEFNREQkYZIM6hUrVkClUsHS0hJ+fn44c+ZMsf23b9+OZs2awdLSEi1atMC+ffsqqFIiIqLyJbmg3rZtG4KDgxEaGorz58+jVatWCAgIQFJSksH+p06dwpAhQzBixAhcuHABffv2Rd++fXHx4sUKrpyIiMj0JBfUS5cuxahRoxAYGAgPDw+sWrUK1tbWWL9+vcH+y5Ytw1tvvYUpU6agefPmmDt3Llq3bo1vvvmmgisnIiIyPUkFdV5eHs6dO4euXbvq2uRyObp27Yro6GiD60RHR+v1B4CAgIAi+xMREVUmZmIX8Lzk5GRoNBo4OTnptTs5OeHKlSsG10lISDDYPyEhwWD/3Nxc5Obm6t5nZGQAAC5fvlyW0o32+MEt5KQ/FmXbUpIjs4Q8yxrnz58Xu5QKd+XOIzzJ1ohdhqhshAyYWwNmL+z/evXqoV69eiJVVTYPHjzAgwcPxC6jUhPr57LUSCqoK0J4eDjmzJmj19aoUSN8+OGHIlVEzzuwZp7YJZCYluhfCBoaGoqwsDBxaimj1atXF/pZQ6WnVqsr7S9rpiKpoHZwcIBCoUBiYqJee2JiIpydnQ2u4+zsXKr+ISEhCA4O1mt7/PgxHj+unke1GRkZUKvVOHbsGGxsbMQuh0Qg5b8DlfkH9OjRo/HOO+9U6DalvC+NVZnPqpiKTBAEQewinufn5wdfX18sX74cAKDVatGwYUOMGzcO06ZNK9R/0KBByMrKwu7du3Vt7dq1Q8uWLbFq1aoKq7uySktLQ61atZCamgpbW1uxyyER8O9A1cF9WTVJ6ogaAIKDgzF8+HD4+PjA19cXERERyMzMRGBgIABg2LBhaNCgAcLDwwEA48ePh1qtxpIlS9CzZ09s3boVZ8+exZo1a8T8GERERCYhuaAeNGgQHj58iNmzZyMhIQFeXl6IjIzUXTB2+/ZtyOX/XKzerl07bNmyBTNnzsT06dPRtGlT7Nq1C56enmJ9BCIiIpOR3Klvqli5ubkIDw9HSEgIlEql2OWQCPh3oOrgvqyaGNREREQSJqkHnhAREZE+BjUREZGEMajJpOLj4yGTybBx40axSyEiqhIY1CK6ceMGRo8ejcaNG8PS0hK2trZo3749li1bhuzs7HLb7qVLlxAWFob4+Phy20ZJzJ8/H++88w6cnJwgk8kq7ROoyptMJivRKyoqqszbysrKQlhYWKnG4n4sHe5PKi3J3Z5VXezduxcDBw6EUqnEsGHD4Onpiby8PJw8eRJTpkzB33//XW73gl+6dAlz5sxB586doVKpymUbJTFz5kw4OzvD29sb+/fvF60Oqdu8ebPe+++++w4HDx4s1N68efMybysrK0v32MvOnTuXaB3ux9Lh/qTSYlCL4ObNmxg8eDAaNWqEI0eO6D0eb+zYsYiNjcXevXtFrPAfgiAgJycHVlZWJh/75s2bUKlUSE5OhqOjo8nHrypefA796dOncfDgQck8n577sXS4P6m0eOpbBIsWLUJGRgbWrVtn8Bm2TZo0wfjx43XvCwoKMHfuXLi5uUGpVEKlUmH69Ol6s4ABgEqlQq9evXDy5En4+vrC0tISjRs3xnfffafrs3HjRgwcOBAA4O/vX+g027Mx9u/fDx8fH1hZWWH16tUAgLi4OAwcOBC1a9eGtbU13njjjTL9QiHm0XxVo9VqERERgddeew2WlpZwcnLC6NGj8eTJE71+Z8+eRUBAABwcHGBlZQVXV1d8/PHHAJ5eX/DsB/OcOXN0fzdeduqT+9H0uD/peTyiFsHu3bvRuHFjtGvXrkT9R44ciU2bNmHAgAGYNGkSfv/9d4SHh+Py5cvYuXOnXt/Y2FgMGDAAI0aMwPDhw7F+/Xp89NFHaNOmDV577TV06tQJQUFB+PrrrzF9+nTd6bXnT7NdvXoVQ4YMwejRozFq1Ci4u7sjMTER7dq1Q1ZWFoKCglCnTh1s2rQJ77zzDn7++Wf069fPdH9AVGqjR4/Gxo0bERgYiKCgINy8eRPffPMNLly4gN9++w3m5uZISkpC9+7d4ejoiGnTpsHOzg7x8fH45ZdfAACOjo749ttv8dlnn6Ffv3549913AQAtW7YU86NVS9yfpEegCpWamioAEPr06VOi/jExMQIAYeTIkXrtkydPFgAIR44c0bU1atRIACAcP35c15aUlCQolUph0qRJurbt27cLAISjR48W2t6zMSIjI/XaJ0yYIAAQTpw4oWtLT08XXF1dBZVKJWg0GkEQBOHmzZsCAGHDhg0l+nyCIAgPHz4UAAihoaElXqc6Gzt2rPD8P90TJ04IAIQffvhBr19kZKRe+86dOwUAwh9//FHk2GXZF9yPxuH+pJfhqe8KlpaWBgCoWbNmifrv2/d0ft4Xp+acNGkSABQ69ezh4YGOHTvq3js6OsLd3R1xcXElrtHV1RUBAQGF6vD19UWHDh10bTY2Nvjkk08QHx+PS5culXh8Mq3t27ejVq1a6NatG5KTk3WvNm3awMbGBkePHgUA2NnZAQD27NmD/Px8ESum4nB/0osY1BXs2dRz6enpJep/69YtyOVyNGnSRK/d2dkZdnZ2uHXrll57w4YNC41hb29f6Lut4ri6uhqsw93dvVD7s1PmL9ZBFef69etITU1F3bp14ejoqPfKyMhAUlISAECtVqN///6YM2cOHBwc0KdPH2zYsKHQtQ4kLu5PehG/o65gtra2qF+/Pi5evFiq9WQyWYn6KRQKg+1CKR7pXh5XeFP50Wq1qFu3Ln744QeDy59dUCSTyfDzzz/j9OnT2L17N/bv34+PP/4YS5YswenTp2FjY1ORZVMRuD/pRQxqEfTq1Qtr1qxBdHQ02rZtW2zfRo0aQavV4vr163oXfCUmJiIlJQWNGjUq9fZLGvov1nH16tVC7VeuXNEtJ3G4ubnh0KFDaN++fYl+yXrjjTfwxhtvYP78+diyZQs++OADbN26FSNHjjTq7waZFvcnvYinvkXw+eefo0aNGhg5ciQSExMLLb9x4waWLVsGAOjRowcAICIiQq/P0qVLAQA9e/Ys9fZr1KgBAEhJSSnxOj169MCZM2cQHR2ta8vMzMSaNWugUqng4eFR6jrINN577z1oNBrMnTu30LKCggLdfn7y5EmhMyteXl4AoDtdam1tDaB0fzfItLg/6UU8ohaBm5sbtmzZgkGDBqF58+Z6TyY7deoUtm/fjo8++ggA0KpVKwwfPhxr1qxBSkoK1Go1zpw5g02bNqFv377w9/cv9fa9vLygUCiwcOFCpKamQqlUokuXLqhbt26R60ybNg0//vgj3n77bQQFBaF27drYtGkTbt68iR07dkAuL/3vfJs3b8atW7eQlZUFADh+/DjmzZsHABg6dCiP0ktIrVZj9OjRCA8PR0xMDLp37w5zc3Ncv34d27dvx7JlyzBgwABs2rQJK1euRL9+/eDm5ob09HSsXbsWtra2ul8Irays4OHhgW3btuHVV19F7dq14enpCU9PzyK3z/1oWtyfVIjIV51Xa9euXRNGjRolqFQqwcLCQqhZs6bQvn17Yfny5UJOTo6uX35+vjBnzhzB1dVVMDc3F1xcXISQkBC9PoLw9Naqnj17FtqOWq0W1Gq1XtvatWuFxo0bCwqFQu9WraLGEARBuHHjhjBgwADBzs5OsLS0FHx9fYU9e/bo9SnN7VlqtVoAYPBl6NYxeurF23meWbNmjdCmTRvByspKqFmzptCiRQvh888/F+7fvy8IgiCcP39eGDJkiNCwYUNBqVQKdevWFXr16iWcPXtWb5xTp04Jbdq0ESwsLEp0ew73Y9lwf9LLyAShFFcZERERUYXid9REREQSxqAmIiKSMAY1ERGRhDGoiYiIJIxBTUREJGEMaiIiIgljUEvYokWL0KxZM2i1WrFLKbPBgwfjvffeE7uMSoX7nwyJj4+HTCbDxo0bxS6FKgiDWqLS0tKwcOFCTJ06VffUL5lMBplMhiVLlhTqv3HjRshkMpw9e9bktXTr1g0ymQzjxo0zuHzdunVo3rw5LC0t0bRpUyxfvrxQn6lTp2LHjh34888/TV5fVcT9T0TPMKglav369SgoKMCQIUMKLVu8eLHu8X7l7ZdfftF7vveLVq9ejZEjR+K1117D8uXL0bZtWwQFBWHhwoV6/by9veHj42MwZKgw7n8qSqNGjZCdnY2hQ4eKXQpVFLEfjUaGtWzZUvjwww/12gAIXl5eAgBhyZIless2bNggABD++OMPk9WQnZ0tqFQq4V//+pcAQBg7dqze8qysLKFOnTqFHjn6wQcfCDVq1BAeP36s1/7ll18KNWrUENLT001WY1XF/U9Ez/CIWoJu3ryJ//3vf+jatWuhZe3bt0eXLl2waNEiZGdnl2sdixYtglarxeTJkw0uP3r0KB49eoQxY8botY8dOxaZmZnYu3evXnu3bt2QmZmJgwcPllvNVQH3f9UXFhYGmUyGa9eu4cMPP0StWrXg6OiIWbNmQRAE3LlzB3369IGtrS2cnZ31zkQY+o76o48+go2NDe7du4e+ffvCxsYGjo6OmDx5MjQaja5fVFQUZDIZoqKi9OoxNGZCQgICAwPxyiuvQKlUol69eujTpw/i4+PL6U+FisKglqBTp04BAFq3bm1weVhYGBITE/Htt98WO05ubi6Sk5NL9HrR7du38cUXX2DhwoVFzol74cIFAICPj49ee5s2bSCXy3XLn/Hw8ICVlRV+++23Yuuu7rj/q49BgwZBq9Xiiy++gJ+fH+bNm4eIiAh069YNDRo0wMKFC9GkSRNMnjwZx48fL3YsjUaDgIAA1KlTB19++SXUajWWLFmCNWvWGFVb//79sXPnTgQGBmLlypUICgpCeno6bt++bdR4ZDxOcylBV65cAQC4uroaXN6xY0f4+/tj8eLF+Oyzz4r8Qfrjjz8iMDCwRNsUXpibZdKkSfD29sbgwYOLXOfBgwdQKBSFpse0sLBAnTp1cP/+fb12MzMzuLi44NKlSyWqqbri/q8+fH19sXr1agDAJ598ApVKhUmTJiE8PBxTp04FAAwZMgT169fH+vXr0alTpyLHysnJwaBBgzBr1iwAwKefforWrVtj3bp1+Oyzz0pVV0pKCk6dOoXFixfrnVEJCQkp7UckE2BQS9CjR49gZmYGGxubIvuEhYVBrVZj1apVmDhxosE+AQEBRp1mPHr0KHbs2IHff/+92H7Z2dmwsLAwuMzS0tLgqVl7e3uDR3D0D+7/6mPkyJG6/1coFPDx8cHdu3cxYsQIXbudnR3c3d0RFxf30vE+/fRTvfcdO3bE5s2bS12XlZUVLCwsEBUVhREjRsDe3r7UY5DpMKgrqU6dOsHf3x+LFi0q9I/zmXr16qFevXqlGregoABBQUEYOnQoXn/99WL7WllZIS8vz+CynJwcg0d6giBAJpOVqiYqjPu/amjYsKHe+1q1asHS0hIODg6F2h89elTsWJaWlnB0dNRrs7e3x5MnT0pdl1KpxMKFCzFp0iQ4OTnhjTfeQK9evTBs2DA4OzuXejwqGwa1BNWpUwcFBQVIT09HzZo1i+wXGhqKzp07Y/Xq1bCzsyu0PDs7G6mpqSXa5rN/fN999x2uXr2K1atXF7poJD09HfHx8ahbty6sra1Rr149aDQaJCUl6Z3+zMvLw6NHj1C/fv1C23ny5AmaNm1aopqqK+7/6kOhUJSoDSj89URJ13teUb8kPX/B2TMTJkxA7969sWvXLuzfvx+zZs1CeHg4jhw5Am9v75dui0yHF5NJULNmzQA8vfq3OGq1Gp07d8bChQsNnmbctm2b7qjqZa9nbt++jfz8fLRv3x6urq66F/D0h7irqysOHDgAAPDy8gKAQg/ZOHv2LLRarW75MwUFBbhz5w6aN29eqj+P6ob7n8rLs1PYKSkpeu23bt0y2N/NzQ2TJk3CgQMHcPHiReTl5fFeeBHwiFqC2rZtC+DpD7yWLVsW2zcsLAydO3c2eGWnMd9RDh48uNAPWADo168fevTogVGjRsHPzw8A0KVLF9SuXRvffvstevTooev77bffwtraGj179tQb49KlS8jJyUG7du1KVVN1w/1P5aVRo0ZQKBQ4fvw4+vbtq2tfuXKlXr+srCzI5XJYWlrq2tzc3FCzZk3k5uZWVLn0/zGoJahx48bw9PTEoUOH8PHHHxfbV61WQ61W49ixY4WWGfMdZbNmzXRHdC9ydXXV+8dtZWWFuXPnYuzYsRg4cCACAgJw4sQJfP/995g/fz5q166tt/7BgwdhbW2Nbt26laqm6ob7n8pLrVq1MHDgQCxfvhwymQxubm7Ys2cPkpKS9Ppdu3YNb775Jt577z14eHjAzMwMO3fuRGJiYrF3AlD5YFBL1Mcff4zZs2cjOzu7yNtvngkLC4O/v38FVaZvzJgxMDc3x5IlS/Drr7/CxcUFX331FcaPH1+o7/bt2/Huu+8W+70rPcX9T+Vl+fLlyM/Px6pVq6BUKvHee+9h8eLF8PT01PVxcXHBkCFDcPjwYWzevBlmZmZo1qwZfvrpJ/Tv31/E6qsnmfCyKxRIFKmpqWjcuDEWLVqkd6tGZRUTE4PWrVvj/PnzBk+tkj7ufyJ6hkEtYQsXLsSGDRtw6dIl3QxKldXgwYOh1Wrx008/iV1KpcH9T0QAg5qIiEjSKvev6URERFUcg5qIiEjCGNREREQSxqAmIiKSMAY1EREVEh8fD5lMho0bN4pdSrXHoCYiKqMbN25g9OjRaNy4MSwtLWFra4v27dtj2bJlBp/DbiqXLl1CWFhYoQlUKtr8+fPxzjvvwMnJCTKZDGFhYaLWU9XwyWRERGWwd+9eDBw4EEqlEsOGDYOnpyfy8vJw8uRJTJkyBX///bfBZ7GbwqVLlzBnzhx07twZKpWqXLZREjNnzoSzszO8vb2xf/9+0eqoqhjURERGunnzJgYPHoxGjRrhyJEjes9WHzt2LGJjY7F3714RK/yHIAhFzhNeVjdv3oRKpUJycnKhObGp7Hjqm4jISIsWLUJGRgbWrVtncAKUJk2a6D33vKCgAHPnzoWbmxuUSiVUKhWmT59eaEYqlUqFXr164eTJk/D19YWlpSUaN26M7777Ttdn48aNGDhwIADA398fMpkMMpkMUVFRemPs378fPj4+sLKywurVqwEAcXFxGDhwIGrXrg1ra2u88cYbZfqFQsyj+eqAQU1EZKTdu3ejcePGJZ66c+TIkZg9ezZat26Nr776Cmq1GuHh4QZnpIqNjcWAAQPQrVs3LFmyBPb29vjoo4/w999/AwA6deqEoKAgAMD06dOxefNmbN68WW++76tXr2LIkCHo1q0bli1bBi8vLyQmJqJdu3bYv38/xowZg/nz5yMnJwfvvPMOdu7caYI/FTI5gYiISi01NVUAIPTp06dE/WNiYgQAwsiRI/XaJ0+eLAAQjhw5omtr1KiRAEA4fvy4ri0pKUlQKpXCpEmTdG3bt28XAAhHjx4ttL1nY0RGRuq1T5gwQQAgnDhxQteWnp4uuLq6CiqVStBoNIIgCMLNmzcFAMKGDRtK9PkEQRAePnwoABBCQ0NLvA69HI+oiYiMkJaWBgAlnrZz3759AIDg4GC99kmTJgFAoVPPHh4e6Nixo+69o6Mj3N3dERcXV+IaXV1dERAQUKgOX19fdOjQQddmY2ODTz75BPHx8bh06VKJx6eKwaAmIjKCra0tACA9Pb1E/W/dugW5XI4mTZrotTs7O8POzg63bt3Sa2/YsGGhMezt7fHkyZMS1+jq6mqwDnd390Ltz06Zv1gHiY9BTURkBFtbW9SvXx8XL14s1XoymaxE/RQKhcF2oRQTHpbHFd5U8RjURERG6tWrF27cuIHo6OiX9m3UqBG0Wi2uX7+u156YmIiUlBQ0atSo1Nsvaei/WMfVq1cLtV+5ckW3nKSFQU1EZKTPP/8cNWrUwMiRI5GYmFho+Y0bN7Bs2TIAQI8ePQAAERERen2WLl0KAOjZs2ept1+jRg0AQEpKSonX6dGjB86cOaP3y0VmZibWrFkDlUoFDw+PUtdB5YsPPCEiMpKbmxu2bNmCQYMGoXnz5npPJjt16hS2b9+Ojz76CADQqlUrDB8+HGvWrEFKSgrUajXOnDmDTZs2oW/fvvD39y/19r28vKBQKLBw4UKkpqZCqVSiS5cuqFu3bpHrTJs2DT/++CPefvttBAUFoXbt2ti0aRNu3ryJHTt2QC4v/fHb5s2bcevWLWRlZQEAjh8/jnnz5gEAhg4dyqP0shL7snMiosru2rVrwqhRowSVSiVYWFgINWvWFNq3by8sX75cyMnJ0fXLz88X5syZI7i6ugrm5uaCi4uLEBISotdHEJ7eWtWzZ89C21Gr1YJardZrW7t2rdC4cWNBoVDo3apV1BiCIAg3btwQBgwYINjZ2QmWlpaCr6+vsGfPHr0+pbk9S61WCwAMvgzdOkalIxOEUlyZQERERBWK31ETERFJGIOaiIhIwhjUREREEsagJiIikjAGNRERkYQxqImIiCSMQU1ERCRhDGoiIiIJY1ATERFJGIOaiIhIwhjUREREEsagJiIikjAGNRERkYT9PypjQCO78drAAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -1581,7 +1581,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAW+dJREFUeJzt3Xl8TNf/P/DXzCSZSUz2PT4hQYs0iKVRtYQWUUtpUbRF1dKFjyXa2oUqitKo0qBUN6W0fFv8LKW2SquWtEUsQexJRPY9M3N/f/hkasxMZCaTWV/Px2Me7Zx777nvyYx5zzn33HNEgiAIICIiIqsktnQAREREpB8TNRERkRVjoiYiIrJiTNRERERWjImaiIjIijFRExERWTEmaiIiIivGRE1ERGTFmKiJiIismMMn6jt37mDOnDm4c+eOpUMhIjILpVJpkfPy+9Y4TNR37mDu3Ln84BCRw7Bkoub3reEcPlETETkaLvFgW5ioiYgcDBO1bWGiJiJyMEzUtoWJmojIwahUKkuHQAZgoiYicjBsUdsWJmoiIgfDFrVtYaImInIwTNS2xaoS9eHDh9GnTx+EhIRAJBJh+/btjzzm4MGDaNWqFaRSKRo1aoQNGzbUepxERLaMidq2WFWiLioqQosWLbBy5cpq7X/16lX06tULXbp0QXJyMiZOnIhRo0Zhz549tRwpEZHtstSEJ2QcJ0sH8KDnnnsOzz33XLX3T0xMRHh4OJYuXQoAaNq0KY4ePYqPP/4YsbGxtRUmEZFNY4vatlhVi9pQSUlJ6Nq1q0ZZbGwskpKSLBQREZH1Y4vatlhVi9pQ6enpCAwM1CgLDAxEfn4+SkpK4OrqqnVMWVkZysrK1M8LCwtrPU5TuHfvHsrLy816zvLycnh4eJj1nFT7lEolKioqzH5eFxcX+Pr6mv28pI2J2rbYdKI2xsKFCzF37lxLh2GQe/fuYeXKlRa597Fz586Qy+VmPy/VjsLCQhw8eNAi5xaJRBg7diyTtRVgorYtNt31HRQUhIyMDI2yjIwMeHh46GxNA8C0adOQl5enfhw6dMgcodZIeXm5xSYo4D9o+2LJ91MQBLP3CpFuSqWSk57YEJtuUbdr1w67du3SKNu3bx/atWun9xipVAqpVKp+bmutRZFIZJbz8B+x/TPXZwng58kaKRQKODs7WzoMqgaralEXFhYiOTkZycnJAO7ffpWcnIzr168DuN8aHjZsmHr/N998E1euXMF7772H8+fPY9WqVfj+++8xadIkS4RPRGQzFAqFpUOgarKqRH3ixAm0bNkSLVu2BADExcWhZcuWmD17NoD7i45XJm0ACA8Px86dO7Fv3z60aNECS5cuxeeff85bs4iIHsESAwrJOFbV9d25c+cqu8h0zTrWuXNnnD59uhajIiKyPw/e/ULWzapa1EREZB5M1LaDiZqIyAGVlpZaOgSqJiZqIiIHVFJSYukQqJqYqImIHFBRUZGlQ6i2lStXIiwsDDKZDG3btsXx48er3D8hIQGNGzeGq6srQkNDMWnSJJvuQWCiJiJyQLaSqDdv3oy4uDjEx8fj1KlTaNGiBWJjY5GZmalz/40bN2Lq1KmIj49HSkoK1q1bh82bN2P69Olmjtx0mKiJiBxQQUGBpUOolmXLlmH06NEYMWIEIiIikJiYCDc3N6xfv17n/seOHUP79u3x8ssvIywsDN27d8eQIUMe2Qq3ZkzUREQOKD8/32LnLiwsRH5+vvqhbwR6eXk5Tp48qbFKolgsRteuXfWukvj000/j5MmT6sR85coV7Nq1Cz179jT9CzETJmoiIgdUWlpqsVu0YmJi4OnpqX4sXLhQ535ZWVlQKpU6V0lMT0/XeczLL7+M999/Hx06dICzszMaNmyIzp07s+ubiIhsT25urkXOe+jQIY3FkaZNm2ayug8ePIgFCxZg1apVOHXqFH788Ufs3LkT8+bNM9k5zM2qZiYjIiLzycnJ0WqtmoNcLq/WWvd+fn6QSCQ6V0kMCgrSecysWbMwdOhQjBo1CgDQrFkzFBUVYcyYMZgxYwbEYttrn9pexEREZBLZ2dmWDqFKLi4uaN26Nfbv368uU6lU2L9/v95VEouLi7WSsUQiAWC7q7ixRU1E5KCsPVED9xdnGj58ONq0aYPo6GgkJCSgqKgII0aMAAAMGzYMdevWVV/n7tOnD5YtW4aWLVuibdu2SE1NxaxZs9CnTx91wrY1TNRERA7q3r17EATBrGuTG2rQoEG4e/cuZs+ejfT0dERFRWH37t3qLvvr169rtKBnzpwJkUiEmTNn4tatW/D390efPn0wf/58S72EGmOiJiJyUGVlZSgoKKjW9WJLGjduHMaNG6dz28GDBzWeOzk5IT4+HvHx8WaIzDx4jZqIyIHpm+GLrAcTNRGRA3t4RDVZHyZqIiIHdufOHUuHQI/ARE1E5MCys7NRXFxs6TCoCkzUREQO7saNG5YOgarARE1E5OCuXr1q6RCoCkzUREQO7ubNmygtLbV0GKQHEzURkYNTqVS4ePGipcMgPZioiYgIKSkpNjsXtr1joiYiIuTl5fFatZVioiYiIgDA6dOn2aq2QkzUREQE4P4iHVeuXLF0GPQQJmoiIlL7888/oVQqLR0GPYCJmojIgbRp0wbt27fXu+xjfn4+zp07Z+aoqCpM1EREDiQ9PR0ZGRnIz8/Xu8+pU6d4X7UVYaImIiINZWVlOHHihKXDoP9hoiYiIi0pKSm4d++epcMgMFETEZEOgiAgKSmJt2tZASZqIiLS6fbt20hLS7N0GA6PiZqIiPT6448/eLuWhTFRExGRXrxdy/KYqImIqEqnT59GeXm5pcNwWEzURERUpdLSUvz999+WDsNhMVETEdEjnTlzBmVlZZYOwyExURMR0SOVl5fjn3/+sXQYDomJmoiIquXs2bO8Vm0BTNRERFQtZWVlSElJsXQYDoeJmoiIqu3MmTO8r9rMmKiJiKjaioqKcOXKFUuH4VCYqImIyCBnz561dAgOxeoS9cqVKxEWFgaZTIa2bdvi+PHjVe6fkJCAxo0bw9XVFaGhoZg0aRLXUSUiqkWZmZnIzMy0dBgOw6oS9ebNmxEXF4f4+HicOnUKLVq0QGxsrN4PxMaNGzF16lTEx8cjJSUF69atw+bNmzF9+nQzR05E5Fg4raj5OFk6gActW7YMo0ePxogRIwAAiYmJ2LlzJ9avX4+pU6dq7X/s2DG0b98eL7/8MgAgLCwMQ4YMwR9//GHWuMk+iEQiiMVi9X8f/H+RSKT1/7qeVz4q69P1vPL/Hzzvg/8VFAoo8nKgLCiAoKgw6Wt0rSgDBAF44PxExrh8+TLatWsHqVRq6VDsntUk6vLycpw8eRLTpk1Tl4nFYnTt2hVJSUk6j3n66afxzTff4Pjx44iOjsaVK1ewa9cuDB06VO95ysrKNGbXKSwsNN2LsEMSiQROTqb9mDycDJ2cnCAW/9u583Di0pf8HvXQlWB1/ffB/SxJqKhA2bU0lN+5BSelolbOoSwthhiAqlZqJ0eiVCpx6dIlREZGWjoUu2c1iTorKwtKpRKBgYEa5YGBgTh//rzOY15++WVkZWWhQ4cOEAQBCoUCb775ZpVd3wsXLsTcuXNNGrs9UyqVUChqJ2k8yMnJCS4uLpBKpZBKpZDJZHBzc4NUKrV4AjUHRU42SlLOQlXOKRrJdpw/fx5PPPGEQ/wbtSSrSdTGOHjwIBYsWIBVq1ahbdu2SE1NxYQJEzBv3jzMmjVL5zHTpk1DXFyc+nlycjJiYmLMFTLpoVAooFAoUFxcrFEuFotRp04d1KlTB+7u7pDL5Rqtb3tQdvMGSlMvWDqMR1q9ejUKCwshl8vxxhtvWDocsgLZ2dm4e/cuAgICLB2KXbOaRO3n5weJRIKMjAyN8oyMDAQFBek8ZtasWRg6dChGjRoFAGjWrBmKioowZswYzJgxQ+cXemWLrZJcLjfhqyBTU6lUKCgoQEFBAdLT0yESieDu7g5PT094eXnBxcXF0iHWSGnaVZSlXbZ0GNVSWFiI/Px8S4dBVub8+fNM1LXMapomLi4uaN26Nfbv368uU6lU2L9/P9q1a6fzmOLiYq1kLJFIAACCINResGQxgiAgPz8fN27cwD///IPz588jIyMDFRWmHXRlDmW3bthMkibS5/Lly5z/u5ZZTYsaAOLi4jB8+HC0adMG0dHRSEhIQFFRkXoU+LBhw1C3bl0sXLgQANCnTx8sW7YMLVu2VHd9z5o1C3369FEnbLJvRUVFKCoqws2bN+Hp6Qk/Pz94enpa/TWzintZKL100dJhENVYRUUFUlNTERERYelQ7JZVJepBgwbh7t27mD17NtLT0xEVFYXdu3erB5hdv35dowU9c+ZMiEQizJw5E7du3YK/vz/69OmD+fPnW+olkAXl5eUhLy8Pzs7O8Pf3h7+/v8lHrJuCqqQEJefOAGCvD9mHs2fPomnTplb/A9lWWd232Lhx4zBu3Did2w4ePKjx3MnJCfHx8YiPjzdDZGQrKioqcPv2baSnp8PX1xeBgYFWc6+nIAgoOX8WQi3dfkVkCTk5Obh9+zbq1q1r6VDsktVcoyYyNZVKhbt37+Ls2bNIS0vTuH/eUsqvp0GRl2vpMIhM7p9//rF0CHaLiZrsniAIuHfvHs6ePYtr165ZbOCLsqgIpWlXLXJuqh3Z2dl45ZVX4OHhAS8vL4wcOfKRkyh17txZa3KeN998U719w4YNeifxseb5ta9fv46cnBxLh2GXmKjJYQiCgKysLJw9exa3bt0y+5q6pZcuAALnBLM1nTt3xoYNG3Rue+WVV3D27Fns27cPO3bswOHDhzFmzJhH1jl69GjcuXNH/Vi8eLF626BBgzS23blzB7GxsYiJibH626D+/vtvS4dgl5ioyeGoVCqkp6fj7NmzuHfvnlnOWZGZAUVutlnOReaRkpKC3bt34/PPP0fbtm3RoUMHrFixAps2bcLt27erPNbNzQ1BQUHqh4eHh3qbq6urxjaJRIIDBw5g5MiRtf2SauzSpUsoKioyeb2GrqqYm5uLsWPHIjg4GFKpFI8//jh27dpl8rjMhYmaHFZFRQXS0tJw4cIFlJSU1Np5BJUKpZcv1Vr9ZBlJSUnw8vJCmzZt1GVdu3aFWCx+5MJA3377Lfz8/BAZGYlp06Zpzcj3oK+++gpubm4YMGCAyWKvLSqVyuSrahm6qmJ5eTm6deuGtLQ0bN26FRcuXMDatWtteqCb1Y36JjK3wsJCpKSkICAgAMHBwSa/B7/81g2oyrhGur1JT0/X6op2cnKCj48P0tPT9R738ssvo379+ggJCcHff/+NKVOm4MKFC/jxxx917r9u3Tq8/PLLcHV1NWn8tSUlJQWtWrUy2b8jQ1dVXL9+PbKzs3Hs2DE4OzsDuL+yoi1ji5oI969fZ2Rk4OzZs8jKyjLZzHaCQoGy69dMUheZx4IFCyCXy9WPI0eO4M0339Qou379utH1jxkzBrGxsWjWrBleeeUVfPXVV9i2bRsuX9aepS4pKQkpKSk20e1dqbS0FDdu3Khyn8rpaCsf+u7IqFxVsWvXruqyR62q+NNPP6Fdu3YYO3YsAgMDERkZiQULFph9TIopMVETPaCiogLXrl1DSkoK8vLyalxf2c3rECo4vaItefPNN5GcnKx+tGnTBu+//75GWUhICIKCgrS6XxUKBbKzs/WuT6BL27ZtAQCpqala2z7//HNERUWhdevWNXtR/3P9+nX1NeSysjJkZ9fOuAldPzoeFBMTA09PT/WjcrbJh1W1qqK+XosrV65g69atUCqV2LVrF2bNmoWlS5figw8+MO7FWAF2fRPpUFJSgtTUVMjlcoSEhMDd3d3gOgSFAuU3jG95kWX4+PjAx8dH/dzV1RUBAQFo1KiRxn7t2rVDbm4uTp48qU6kBw4cgEqlUiff6khOTgYABAcHa5QXFhbi+++/15vEDHH8+HHMmzcPO3fuVPcWlZSUYPr06WjWrBl69epl0u7h27dvQxAEvTOVHTp0CFFRUernppyQSKVSISAgAGvWrIFEIkHr1q1x69YtLFmyxGYnx2KiJqpCYWEhLl68CLlcjqCgIHh6elb72PLbt+xqBrLKlea44tx9TZs2RY8ePTB69GgkJiaioqIC48aNw+DBgxESEgIAuHXrFp599ll89dVXiI6OxuXLl7Fx40b07NkTvr6++PvvvzFp0iR06tQJzZs316h/8+bNUCgUePXVV2sU548//ohBgwZBEAStSzqCIODMmTM4c+YMRo8ejVatWtXoXJVKSkqQn5+v99+LXC7XGOmujzGrKgYHB8PZ2VnjGnnTpk2Rnp6O8vJym1xxj13fRNVQWFiI1NRUnDt3DllZWVCpqr4fWlCpUH7TulvTlV/c1X2MGTMGcXFxGDNmjMHH2qtvv/0WTZo0wbPPPouePXuiQ4cOWLNmjXp7RUUFLly4oB7V7eLigl9++QXdu3dHkyZNMHnyZPTv3x8///yzVt3r1q3Diy++CC8vL6PjO378OAYNGgSlUqn3Gq1KpYJKpcLatWuRlpZm9LkeZopLR8asqti+fXukpqZq/Bu9ePEigoODbTJJA2xRExmkpKQE165dw61bt+Dr6ws/Pz/IZDKt/SrS70BVbtyUpU5ePnD2D4DE0wui/41aNZWK7GwIf50FLJA8RSKRTX5RPrzGwIN8fHywceNGvdvDwsI0fqiEhobi0KFD1TrvsWPHqh2jPh988IFBP5Z27dqFt99+u8bnBfDIGdqqy9BVFd966y18+umnmDBhAv773//i0qVLWLBgAcaPH2+SeCyBiZrICAqFAhkZGcjIyIBcLoevry+8vLzUq3WVGdGadvL0gqzh45BUo0vQWH7BwRg7dqxFplF1cXGBr6+v2c/rqK5fv44dO3ZUO0mrVCr8/fffyM7O1rhGbyxTrRFv6KqKoaGh2LNnDyZNmoTmzZujbt26mDBhAqZMmWKSeCyBiZqohgoLC1FYWIjr16/D3d0dcpEIzgX5cK72faQiyMIbwKVemFmWCWSy1E+pVD7yskZtUygUJrmV6MGBY9UlCALOnj2rt1vZEEVFRVrJWqEwbsyGIasqAvcH+v3+++9GncsaMVETmYggCMjPz8fdWzehKiyAzNkJcqkUdVxcUMfFGRKxjiEhIjHcIiLh7G/dczg7innz5mHu3LmWDsOivvnmG3zzzTeWDoMewERNZEJCRQVU/7s2V1qhQGmFAlm4f9+q1MkJrs5OkDk7Q+bsBKmTC7yimsPZ18+SIdMDZs2ahRkzZljs/GVlZfjrr7/g5ORU4+v5//d//2fUj45BgwYhOjq6RucWBAH169dHjx49NG69On36tEG3rtF9TNREJqTIzQGgu7uxTKFAmUIBlNyfTtQ5KATO167D5U46XFxc1LeUODk5QSwWq5c2NDVPpQIwcqBbTYikMrgEBT96RwuSSCQmn0LWECqVCk5OTqhTp06NE3Xnzp3x/vvvG9T9LRKJ0LRpU/XUm8ZSqVRwc3ODs7OzRl2VYzjIMPyrEZmIIAhQ5lfvlhQnXz84eXpCEASUlZXpnULR1BR5efD6ei0slYrqLVxm9cnaXoSEhKBz5844fPhwta55i8ViREREmGQgGWDaSUwcHe+jJjIRVVEhhGoMlhG71YGzn78ZItJBYZqRuMYSuDiJWb399tsG9czExsaa5LwikQhubm4mqYuYqIlMRlGdCR4kTnAJDqn9YKpDJDLo8cLPe9Hh+//DCz/vNfhYsozmzZvj448/rrJLXywWQywWY8SIEahfv75JziuXyzVumaKa4V+SyAQEhQKqokdP8OASGAiRjV6nu1tSgoziEtytxbW7yfS6d++O7777Dp06ddJqWYtEIkRERGDSpElo0aKFyc7JWwBNyza/MYisjDI/75GzfYnryCFxr73JTIj0ad68ORITE3H79m307dsX+fn5cHV1xZQpU0x2TfpB/v4WurRjp9iiJjIBZX5+1TuIxXAJCKx6H6JaFhISAldXVwD3Z4qrjSQtl8uNWm2O9GOiJqohVVkZVI8YJOXk4wuRDc5zTWSo0NBQs8yw50iYqIlq6FGtaZGTM5y8Td9yIbI2zs7OqFu3rqXDsDtM1EQ1pCyoerS3k68fRBwBSw4gLCzMohPG2Ct+exDVgLKkBEIVqwSJXFwg8fQ0Y0REluHs7Ix69epZOgy7xERNVAPKgqq7vZ39/Hi9jhxCWFgYpwitJUzURDWgKizQu03k4gKxnLdjkf1ja7p2MVETGelR3d5O3r5sTZNDCA8PZ2u6FjFRExmpyta0kzOvTZNDcHFxYWu6ljFRExlJWaA/UTt5e7M1TQ4hPDycI71rGRM1kRFUZaUQKsp1bxSLIfH0Mms8RJYglUoRGhpq6TDsHhM1kRGUVXR7S9w9IGILgxxAw4YN2Zo2A179JzKCqlD/Sln2OguZ///miK78Lzk2V1dXzkJmJkzURAYSFBVQleqe21vs5gaxVGrmiMxj2/Oxlg6BrEijRo245rSZ8K9MZCBlVa1pL28zRkJkGXK5HMHBwZYOw6rk5+fjww8/RGxsLFq2bInjx48DALKzs7Fs2TKkpqYaXTdb1EQG0nt9WuIEsZzL+5H9e/zxx3lXwwNu3ryJmJgY3LhxA4899hjOnz+Pwv/9oPfx8cHq1atx7do1LF++3Kj6maiJDCCoVFAVF+vcJvFw55cX2T1PT0/4+flZOgyr8u6776KgoADJyckICAhAQECAxvZ+/fphx44dRtfPrm8iA6iKiwBB0LnNyZPd3mT/GjVqxB+kD9m7dy/Gjx+PiIgInX+bBg0a4MaNG0bXz0RNZABlUZHOcrFMZreDyIgqubu7w9fX19JhWJ2SkhL4+/vr3V5QxeRI1cFETWQAVZHugWScLpQcQVhYGFvTOkRERODw4cN6t2/fvh0tW7Y0un4maqJqUpWV6V6EQySChKtkkZ1zdnZGYGCgpcOwShMnTsSmTZuwaNEi5OXlAQBUKhVSU1MxdOhQJCUlYdKkSUbXz8FkRNWk0tft7eYGEVcOIjsXEhLCWcj0ePXVV3Ht2jXMnDkTM2bMAAD06NEDgiBALBZjwYIF6Nevn9H1W12LeuXKlQgLC4NMJkPbtm3V96Lpk5ubi7FjxyI4OBhSqRSPP/44du3aZaZoyZEoi/V0e3uw25vsH2chq9qMGTNw+fJlLFmyBG+99RZGjx6NRYsW4cKFC5gyZUqN6jZpM0AQBPz6668oKytDhw4d4O5u2D2lmzdvRlxcHBITE9G2bVskJCQgNjYWFy5c0BruDgDl5eXo1q0bAgICsHXrVtStWxfXrl2Dl5eXiV4R0X16b8sSiyHhvdNk5+RyucHf546oXr16Neri1sfoFvWMGTPQpUsX9XNBENC9e3d069YNvXr1QrNmzXD58mWD6ly2bBlGjx6NESNGICIiAomJiXBzc8P69et17r9+/XpkZ2dj+/btaN++PcLCwhATE4MWLVoY+7KIdFKVFOu8LUsil0PEaRTJzrE1XbVTp05h1apVerevWrUKycnJRtdv9DfMDz/8gOjoaPXzrVu3Yv/+/fjggw+wY8cOKJVKzJkzp9r1lZeX4+TJk+jateu/wYnF6Nq1K5KSknQe89NPP6Fdu3YYO3YsAgMDERkZiQULFkCpVOo9T1lZGfLz89WPwiqmgySqpCrSM8kJB5GRnROJRJwu9BFmzJiBX375Re/2AwcOYObMmUbXb3SivnXrFho1aqR+/uOPPyIiIgLTpk1Dz5498dZbb+HgwYPVri8rKwtKpVJrVGFgYCDS09N1HnPlyhVs3boVSqUSu3btwqxZs7B06VJ88MEHes+zcOFCeHp6qh8xMTHVjpEcl6pYx0AysRjiOnXMHwyRGQUGBkLKOQKqdPLkSXTs2FHv9o4dO+LEiRNG1290onZyckJZWRmA+93e+/fvR48ePdTbAwMDkZWVZXRg1aFSqRAQEIA1a9agdevWGDRoEGbMmIHExES9x0ybNg15eXnqx6FDh2o1RrJ9gkIBVZn2almSOuz2JvtXr149S4dg9QoKCuBUxZ0fYrFYfduWMYz+lomMjMQ333yDnJwcfPHFF7h37x569eql3n7t2jWD5oP18/ODRCJBRkaGRnlGRgaCgoJ0HhMcHIzHH39c45aBpk2bIj09HeXl5TqPkUql8PDwUD/kcnm1YyTHpCrR0+3NwTVk57y9veHtzalxH+Wxxx7D3r179W7fvXs3GjRoYHT9Rifq2bNnIzk5GX5+fhg9ejTat2+vMbhs586dePLJJ6tdn4uLC1q3bo39+/ery1QqFfbv34927drpPKZ9+/ZITU2FSqVSl128eBHBwcFwcXEx4lURadM5bahYDLEbu73JvoWHh1s6BJswcuRI7Ny5E3FxccjNzVWX5+bmYtKkSdi9ezdGjhxpdP1G357VrVs3nDp1Cvv27YOXlxcGDRqk3paTk4NOnTqhb9++BtUZFxeH4cOHo02bNoiOjkZCQgKKioowYsQIAMCwYcNQt25dLFy4EADw1ltv4dNPP8WECRPw3//+F5cuXcKCBQswfvx4Y18WkRZd16clbnUg4uQPZMc8PDy4SlY1jR8/HsnJyUhISMAnn3yCkJAQAMDt27ehUqkwdOhQy81MFhERgYiICK1yb29vfPzxxwbXN2jQINy9exezZ89Geno6oqKisHv3bvUAs+vXr0P8wDXB0NBQ7NmzB5MmTULz5s1Rt25dTJgwocY3lxNVEsrLdU4bKuYlE7JzDRo04Lze1SQSifDFF19g2LBh+OGHH3DlyhUAQN++fdG/f3907ty5RvUbnagLCgqQm5uL0NBQddnt27eRmJiIsrIyDBgwwKCu70rjxo3DuHHjdG7TNYq8Xbt2+P333w0+D1F1KHVenxZBUoeJmuyXm5ubzkmmqGpdunTRuARsKkYn6jFjxuDq1avqJJmfn4+nnnoKN2/ehFgsxvLly7F79+4a/5IgsiRds5GJXV05tzfZNa6SZV2MHkx29OhR9O7dW/38m2++we3bt3Hs2DHk5OSgefPmVd7PTGQLdI34Zmua7JlEIuEEJwYSBAGrV69GdHS0+g6mhx9V3b71KEYfmZWVpTGt3E8//YQOHTrgqaeeAnB/4NfcuXONDozI0nh9mhxRUFBQjZJKbVi5ciWWLFmC9PR0tGjRAitWrNCYGVOfTZs2YciQIejbty+2b99ea/G99957WLZsGaKiovDqq6+a/JY2o98NLy8v9YxhJSUlOHLkiHp5L+D+hCjFuhYxILIRuq5Pi5xdIOYsTWTH9M1bYSmGLtZUKS0tDe+8806VM4aZypdffon+/fvj+++/r5X6je76fvrpp7Fq1Sps27YNEydORGlpqcbtWBcvXuRE7mTTdF6flvPeabJfTk5O8PHxsXQYGgxdrAkAlEolXnnlFcydO7dGE41UV0lJicY6FaZmdKJetGgRnJ2d0b9/f6xduxZxcXF44oknANz/I23ZsoXzaJNN03l92o3d3mS/fH19NW6BtTRjFmsCgPfffx8BAQE1mmTEEM8++yz+/PPPWqvf6K7vRo0a4cKFCzh37hw8PT0RFham3lZcXIxPP/2Uy02SzRIqKrSvT4tEELu5WSYgIjPw9fU1y3kKCwuRn5+vfi6VSnUu/FHVYk3nz5/XWffRo0exbt26Gi0raahVq1YhNjYWCxYswBtvvGHyv2ONfjo5OzujRYsWGkkaANzd3dG3b1+tciJboev6tNjNjYtwkF0zV7d3TEyMxiqGlbNN1lRBQQGGDh2KtWvXmnVWtcaNG+PKlSuYNWsWAgICUKdOHY01JTw8PODp6Wl0/TUa2pefn49Vq1bh119/RWZmpnp4enZ2NjZs2IDnn39eYylMIluhKinRKmO3N9kzFxcXuJmpx+jQoUOIiopSP9e3jKahizVdvnwZaWlp6NOnj7qsci0IJycnXLhwAQ0bNjTBK9DUv3//Wr3v3OhEffPmTcTExODGjRt47LHHcP78eRQWFgK4/6ts9erVuHbtGpYvX26yYInMRdDVouba02THvLy8zDbJiVwuh4eHxyP3e3Cxpn79+gH4d7EmXTNYNmnSBP/8849G2cyZM1FQUIDly5drzKRpShs2bKiVeisZnajfffddFBQUIDk5GQEBAVrD5Pv164cdO3bUOEAicxOUSqj+t9Z6JZGzM2/LIrvm5eVl6RB0MmSxJplMhsjISI3jK1/Xw+W2xOgLbnv37sX48eMRERGh81dYgwYNcOPGjRoFR2QJurq9uaQl2TtrTdSDBg3CRx99hNmzZyMqKgrJyclaizXduXPHwlHej+PNN99E48aN4e3tjcOHDwO4PyBu/PjxOH36tNF1G92iLikpgb+/v97tBQUFxlZNZFG6pw3laG+yXyKRqFpd0ZZi6GJND6rtbmkAOHfuHDp27AiVSoW2bdsiNTUVCoUCwP3r7EePHkVRURHWrVtnVP1Gt6gjIiLUvxh02b59O1q2bGls9UQWo7NF7coWNdkvDw8PSLi+utHee+89eHl54eLFi/jmm28gCILG9l69euHIkSNG1290op44cSI2bdqERYsWIS8vD8D9i/ypqakYOnQokpKSarRQNpElCIIAValmohZLZVwti+yatXZ724rDhw/jrbfegr+/v85LwfXq1cOtW7eMrt/ob59XX30V165dw8yZM9VzfPfo0QOCIEAsFmPBggXqUXpEtkJVWgo89GuY16fJ3pl6EQlHo1Kpqry17e7du3pvQauOGjUTZsyYgaFDh+KHH35AamoqVCoVGjZsiBdffNEs86sSmZqgq9ub16fJzrFFXTOtWrXCzp078fbbb2ttUygU2LRpk3plSWPUuD+vXr167OImu/FwtzdEIohdmajJfrm5udWotUfAtGnT0Lt3b7z11lsYPHgwgPuTsvzyyy9YsGABUlJS8Omnnxpdv9HXqE+dOoVVq1bp3b5q1SqzzrVKZAoPDyQTy1w5bSjZNXZ719xzzz2HDRs2YPPmzXjmmWcA3L883L17d5w6dQpfffUVOnXqZHT9RreoZ8yYAVdXV51NfQA4cOAAdu3axUlPyGYIigoICs2FOLgIB9k7JmrTGDp0KF588UXs27cPly5dUl8Kjo2Nhbu7e43qNjpRnzx5EtOmTdO7vWPHjiabaJ3IHHRPdMJETfaN16drpri4GKGhoZg6dSrefffdWhlEbXSfXkFBAZyquGVFLBarb9sisgXKhxO1SASxzNUywRCZgZOTk9kW4rBXbm5ucHJyQp1aXAvA6ET92GOPYe/evXq37969myO/yaY8POKb16fJ3nl6epptIQ571r9/f2zdulVrohNTMfpbaOTIkdi5cyfi4uKQm5urLs/NzcWkSZOwe/dujBw50hQxEtU6QRCgKivVKGO3N9k7a5421JYMHjwYmZmZ6NKlC7799lv89ttvOHXqlNbDWEZfox4/fjySk5ORkJCATz75BCEhIQCA27dvQ6VSYejQobxti2yG7olOmKjJvtV0kBPd17lzZ/X/65oqVBAEiEQiKJVKo+o3OlGLRCJ88cUXGDZsGH744QdcuXIFANC3b1/0799fI3AiayeU8fo0OR65XG7pEOzCF198Uav113jCky5duqBLly6miIXIYlQlD3V78/o0OQAOJDON4cOH12r9Rn8TXb16FT///LPe7T///DPS0tKMrZ7IrFSlDyVqV7amyb6JRCKumFUL7ty5g7/++gtFRUUmq9PoRP3OO+/gk08+0bt95cqVmDp1qrHVE5mNoFRCKC/TKOO0oWSv/Pz84Ofnx4lOTOz//u//0KRJE/znP/9Bq1at8McffwAAsrKy0LJlS2zbts3ouo1O1ElJSejWrZve7c8++2yN1t8kMhet+b3BFjXZrx9//BFbt27F4sWLLR2K3fj555/x4osvws/PD/Hx8Rq3afn5+aFu3brYsGGD0fUbnahzcnKqHDEol8tx7949Y6snMhvh4W5vqRQidgmSnZPJZJYOwW68//776NSpE44ePYqxY8dqbW/Xrh1Onz5tdP1GJ+p69erht99+07v9yJEj+M9//mNs9URmo3woUYvY7U0OwMXFxdIh2I0zZ87gpZde0rs9MDAQmZmZRtdvdKIeMmQIvvvuO3zyySdQqVTqcqVSieXLl2Pz5s14+eWXjQ6MyFy0Vsxitzc5ACZq03Fzc6ty8NiVK1fg6+trdP1GJ+pp06ahS5cumDhxIoKDg9GpUyd06tQJISEhmDRpEmJiYjBjxgyjAyMyB6G8HFAqNMokbFGTA2CiNp0uXbrgyy+/hEKh0NqWnp6OtWvXonv37kbXb3Silkql2Lt3L9atW4fo6GhkZWUhKysL0dHRWL9+PX755RcuRk5WT/nQQDKRkzNEzs4WiobIfJz5OTeZ+fPn4+bNm3jyySexevVqiEQi7NmzBzNnzkSzZs0gCALi4+ONrr9GE56IxWKMGDECI0aMqEk1RBbz8IhvdnuTo6hq9UMyTOPGjXH06FFMmDABs2bNgiAIWLJkCYD704uuXLkSYWFhRtfPd4ocmq4Vs4gcASc7Md7ff/+N+vXrw9PTU132xBNP4JdffkFOTg5SU1OhUqnQoEED+Pv71/h8RifqZ5555pH7iEQi7N+/39hTENUqQaWCqkxzohMRW9TkINiiNl7Lli3x9ddfqwdMP/PMM5gxYwaeffZZeHt748knnzTp+Yy+Rq1SqSAIgsZDoVDg8uXLOHjwIG7evKkxGpzI2mitmCUSQcx7S8lBsEVtPFdXVxQXF6ufHzx4EBkZGbV2PqN/Uh08eFDvth07dmDMmDFYtmyZsdUT1Tpd3d4ikchC0RCZj0gk4me9Blq0aIFly5ZBIpGou7///PPPR04i8+KLLxp1vlrp++jduzdeffVVTJw4EYcOHaqNUxDV2MMjvnl9mhwFW9M1k5CQgIEDB2LkyJEA7v/wWb58OZYvX673GIusR/0oDRs2xKefflpb1RPVGCc6IUfF1nTNPPnkk0hNTcXly5eRkZGBzp07Y/r06VWuf1ETtZKoFQoFvv/+e/j5+dVG9UQ1pior05rohImaHAUTdc389NNPaNOmDRo3bozGjRtj+PDh6NOnD9q2bVsr5zM6Ub/++us6y3Nzc/H7778jPT3d6GvUK1euxJIlS5Ceno4WLVpgxYoViI6OfuRxmzZtwpAhQ9C3b19s377dqHOTY3i4NS1ycoaIo2DJQTBR18wLL7ygMer70KFDeOGFF2rtfEZ/Mx04cEDrzRaJRPD29kaHDh0watQoo6ZM27x5M+Li4pCYmIi2bdsiISEBsbGxuHDhAgICAvQel5aWhnfeeQcdO3Y0+JzkeFQlxRrPOdqbHAkTdc24u7sjNzdX/TwtLQ2FhYW1dj6jE3VaWpoJw/jXsmXLMHr0aPVsZ4mJidi5cyfWr1+PqVOn6jxGqVTilVdewdy5c3HkyBGNPyCRLlqJmt3eRFRN0dHRmD9/PjIyMtSjvnft2oX09HS9x4hEIkyaNMmo8xmdqJOTk5GSkoIhQ4aoy/bs2YP58+ejrKwML7/8MiZMmGBQneXl5Th58iSmTZumLhOLxejatSuSkpL0Hvf+++8jICAAI0eOxJEjRwx/MeRQBIUCQkWFRpmII77JgbBFXTOrVq3CsGHDMG/ePAD3/54bN27Exo0b9R5jkUT93nvvwc3NTZ2or169ihdeeAG+vr4ICQlBXFwcXF1dMWbMmGrXmZWVBaVSicDAQI3ywMBAnD9/XucxR48exbp165CcnFytc5SVlaHsgdmoarO7gqzTw61pgBOdkGNhoq6ZRo0a4dixYygtLUVmZibCwsKQkJCAvn371sr5jE7Uf/31F959913186+++goSiQSnT5+Gn58fBg0ahMTERIMStaEKCgowdOhQrF27ttojzBcuXIi5c+fWWkxk/ZQPd3tLXSASGz1JHxE5KJlMhnr16iE+Ph7PPPMM6tevXyvnMTpR5+XlaSyEvWvXLnTr1k2dMLt164b/9//+n0F1+vn5QSKRaE3FlpGRgaCgIK39L1++jLS0NPTp00ddVjltqZOTEy5cuICGDRtqHDNt2jTExcWpnycnJyMmJsagOMm2CcWaiZrd3kRUEzVZwrI6jE7UwcHBSElJAQDcuXMHJ0+e1FjusrCwEGIDWykuLi5o3bo19u/fj379+gG4n3j379+PcePGae3fpEkT/PPPPxplM2fOREFBAZYvX47Q0FCtY6RSqcY62XK53KAYybYJSqXWQhyckYwcDbu+a+b111+HSCTCmjVrIJFI9N6u/CCRSIR169YZdT6jE3Xfvn2xYsUKlJaW4o8//oBUKtW4j+yvv/5CgwYNDK43Li4Ow4cPR5s2bRAdHY2EhAQUFRWpfwQMGzYMdevWxcKFCyGTyRAZGalxvJeXFwBolRMBgKr44evTgNiV16fJsTBR18yBAwcgFouhUqkgkUh03q78sJr8zY1O1B988AHu3r2Lr7/+Gl5eXtiwYYN6EFh+fj62bt2KsWPHGlzvoEGDcPfuXcyePRvp6emIiorC7t271XVfv37d4JY6USVlSZFmgVgMkYtU985EdoqJumYevj25tm5XrmR0opbL5fj222/1brt58ybc3NyMqnvcuHE6u7qBqlftAoANGzYYdU5yDELxwwtxyPilRURWrVbmTBSLxeqbwImshc7r067G/ZgksmX8cVozYrHYqL+h1a2eRWRt7l+fFjTKOJCMHBETdc3Mnj1b62+4bds2nD17FrGxsWjcuDEA4Pz589i7dy8iIyPVA6SNwURNDuPh+6cBTh1KjomJumbmzJmj8XzNmjXIzMzEmTNn1Em6UkpKCp555hmEhIQYfT6OyiKHIRRrDiQTuUghkkgsFA2R5djagNyVK1ciLCwMMpkMbdu2xfHjx/Xuu3btWnTs2BHe3t7w9vZG165dq9zfFJYsWYJx48ZpJWkAaNq0KcaNG4fFixcbXb9tvVtERhIUCh33T/O2LHJMttSirlxRMT4+HqdOnUKLFi0QGxuLzMxMnfsfPHgQQ4YMwa+//oqkpCSEhoaie/fuuHXrVq3FePPmTTg7O+vd7uzsjJs3bxpdPxM1OQTlQ61pgAPJyHHZUqJ+cEXFiIgIJCYmws3NDevXr9e5/7fffou3334bUVFRaNKkCT7//HP1xFm1JTIyEqtWrdL5Y+DmzZtYtWoVmjVrZnT9vEZNDkH3RCe8Pk1kCYWFhcjPz1c/f3jGyErGrqj4oOLiYlRUVMDHx6fmgevx8ccfIzY2Fo8//jheeOEFNGrUCABw6dIlbN++HYIg4JtvvjG6fiZqcgiqh1vUEgnEOr4YiByBpVvUD6+vEB8frzVACzBuRcWHTZkyBSEhIejatavR8T5Khw4d8Mcff2DWrFnYtm0bSkruz9fg6uqK2NhYzJ07ly1qoqqoysu11p9mtzeR5Rw6dAhRUVHq57pa06bw4YcfYtOmTTh48CBktTwmJTIyEtu2bYNKpcLdu3cBAP7+/iYZuMdETXZPqzUNQMJub3Jglm5Ry+VyeHh4PHI/Q1dUfNBHH32EDz/8EL/88guaN29eo3gNIRaLtXoAalynSWsjskKqIu1ELWKiJrJ6D66oWKlyYFi7du30Hrd48WLMmzcPu3fvRps2bcwRaq1ii5rsmiAI2iO+xWLOSEZkIwxZUREAFi1ahNmzZ2Pjxo0ICwtDeno6gPuteFtd1piJmuyaqqQEUKk0ysRSLsRBZCsMXVHxs88+Q3l5OQYMGKBRj74Ba7aAiZrsmqqoUKuMA8mIbIshKyrW9pKTlsBr1GTXdF2fFrux25scG3uUbAsTNdmt+9OGlmoWikRsUZPDs7W5vh0d3y2yW0pd3d5SGUT8kiIiG8JvLLJbqkIdidqNrWkisi1M1GSXdN6WBSZqIrI9TNRkl1TFRVq3ZfH6NBHZIiZqsku8Pk1E9oLfWmSXeH2aiOwFEzXZHVVZqdZqWQATNRHZJiZqsjtKHa1piEQQu9UxfzBERDXERE12R1WQr1UmdnXlbExEZJOYqMmuqMrLoSor0yqXuNnmqjlEREzUZFdUBQU6y3l9mohsFRM12RVloXa3NyQSiGQy8wdDRGQCTNRkN4TycqhKS7XKJa5uvD5NRDaLiZrshrJQT7d3HY72JiLbxURNdkOZr6PbG4CkDgeSEZHtYqImu6AqK9NeexqAyEUKkbOzBSIiIjINJmqyC/pa0+z2JiJbx0RNdkGpY5ITAJAwURORjWOiJpunLCmGUFGuvUEs5rShRGTzmKjJ5inz8nSWi3lbFhHZASZqsmmCSqW/21vO1jQR2T4marJpyoJ8QKXSuU1Sx93M0RARmR4TNdk0vd3eUhlvyyIiu8BETTZLVV4OVUmxzm1iOSc5ISL7wERNNkuRm6N3G2cjIyJ7wURNNklQqaDMy9W5TeTkDLGrq3kDIiKqJUzUZJOU+Xl6B5Gx25uI7AkTNdkkZU4V3d5M1ERkR6wyUa9cuRJhYWGQyWRo27Ytjh8/rnfftWvXomPHjvD29oa3tze6du1a5f5k+5TFRVCVl+neKHHibGREZFesLlFv3rwZcXFxiI+Px6lTp9CiRQvExsYiMzNT5/4HDx7EkCFD8OuvvyIpKQmhoaHo3r07bt26ZebIyVwU97L0bpPI5ZyNjIjsitUl6mXLlmH06NEYMWIEIiIikJiYCDc3N6xfv17n/t9++y3efvttREVFoUmTJvj888+hUqmwf/9+M0dunVavXo2lS5di9erVlg7FJFQlJVAV674lCwAkck5yQkT2xaoSdXl5OU6ePImuXbuqy8RiMbp27YqkpKRq1VFcXIyKigr4+Pjo3F5WVob8/Hz1o7Cw0CSxW6vCwkK7ep2K7Hv6N4rFXNaSiOyOVSXqrKwsKJVKBAYGapQHBgYiPT29WnVMmTIFISEhGsn+QQsXLoSnp6f6ERMTU+O4yTxUZWVQVvGDQyJ3Z7c3Edkdq0rUNfXhhx9i06ZN2LZtG2Qymc59pk2bhry8PPXj0KFDZo6SjKXIugtA0Ltd4uFhvmCIiMzEydIBPMjPzw8SiQQZGRka5RkZGQgKCqry2I8++ggffvghfvnlFzRv3lzvflKpFFKpVP1czlt5bIKypATKwgL9O3C0NxHZKatqUbu4uKB169YaA8EqB4a1a9dO73GLFy/GvHnzsHv3brRp08YcoZKZKbJ0j/qvJPFgtzcR2SeralEDQFxcHIYPH442bdogOjoaCQkJKCoqwogRIwAAw4YNQ926dbFw4UIAwKJFizB79mxs3LgRYWFh6mvZcrmcrWU7oSwoqHKkNwBI3D3NFA0RkXlZXaIeNGgQ7t69i9mzZyM9PR1RUVHYvXu3eoDZ9evXIRb/2xHw2Wefoby8HAMGDNCoJz4+HnPmzDFn6FQLBJUKFXczqtxH5OwCCef2JiI7ZXWJGgDGjRuHcePG6dx28OBBjedpaWm1HxBZjOJeFoSKiir3kXiyNU1E9suqrlETPUhVVgpFTvYj9hLBiYmaiOwYEzVZJUGlQvnt24Cg/3YsABDXcYPIydlMURERmZ9Vdn2T6VQOqLO1gXUVWZkQ9C288QAnT6/aD4aIyILYorYxgiAY9BgzZgzi4uIwZswYg46zJEVebpXLWKpJnCDm3N5Eds+QFRUBYMuWLWjSpAlkMhmaNWuGXbt2mSnS2sEWtQ1wcXGBSCSySAJt2LAhvL29TVZf5Q8BlUoFpVIJpVKJiooKVFRUoLy8HCU52ajIqN50sU6enrx3msjOVa6omJiYiLZt2yIhIQGxsbG4cOECAgICtPY/duwYhgwZgoULF6J3797YuHEj+vXrh1OnTiEyMtICr6DmmKhtgK+vL8aOHYvy8nKzntfFxQW+vr5mO58yPx9FWRlQBPqjTKFAaYUCxRUVKKmoQKlC8dDsoSI4eZnuBwQRWacHV1QEgMTEROzcuRPr16/H1KlTtfZfvnw5evTogXfffRcAMG/ePOzbtw+ffvopEhMTzRq7qTBR2whzJkxLUOTmoPifvyAoFZCIxXBzcYGbiwsq10BTqlQoLq9AYXk5CsvKUCF1hciZg8jItJRKJVQqlcXOX1FRAYVCgaKiIlQ84rZEa1ZeXg6FQoGKigqNeS8UCgWAf1f1q/Tw1M4P1nPy5ElMmzZNXfaoFRWTkpIQFxenURYbG4vt27fX5CVZFBM1WVzZjWsou3IZgqD/C1IiFsNdJoW7TArAHc5NI1EoEiM3NxcFBVXMAU5kgHnz5mHu3LmWDsPuPbxqob4JqqpaUfH8+fM6605PT6/RCozWiImaLEaRl4uyq5ehyK3GwLEHSOrI4RYYBDcAAQEBqKioQHZ2NrKzs1H8iKlGiaoya9YszJgxw6IxKBQKKJVKi8ZgChKJBE5Ominm9OnTaNu2LQ4dOoSoqCh1ua7WNP2LidpGlKffgVBWatZzqhQKOPuYtstdUKmgLMiHIjsbyvxco+pwqRem8dzZ2RmBgYEIDAxEcXExsrKycO/ePYt2YZJtkkgkkEgkFo3B2Y4v6VQmbrlcDo9qLEtrzIqKQUFBRq3AaM2YqG1AefodXJ8W9+gdTU0Q4PPCQKuaolMsc4VzQKDe7W5ubqhXrx7q1q2LrKwsZGZmmn0QHhGZxoMrKvbr1w/Avysq6ptmul27dti/fz8mTpyoLtu3b1+VKzBaOyZqG2DulrTGuf83+MNaSEPrV+uWLIlEgsDAQAQEBCAnJwd37txBaanl/o5EZBxDV1ScMGECYmJisHTpUvTq1QubNm3CiRMnsGbNGku+jBphorY1Bt43/MJPe3C3pAT+rq7Y9nxs9Q+08KQnuohdpHAODjHoGJFIBB8fH/j4+CAnJwe3b99mwiayIYauqPj0009j48aNmDlzJqZPn47HHnsM27dvt9l7qAEmart3t6QEGcUllg7DJKT1wyESGz+Znre3N7y8vJCdnY3bt2+zS5zIRhiyoiIADBw4EAMHDqzlqMyHiZpsgljmZnBrWheRSARfX194e3sjMzMTd+7c4aAzIrJqnOubbII0vEGNWtMPE4vFCAoKQmRkJHx8fB59ABGRhTBRk9WTuHvCJbB2bq1wdnZGeHg4Hn/8cchkslo5BxFRTTBRk5UTwfXxxrV+Fnd3d0RERCA0NNTi99ESET2I16jJqrnU/Q8k7o+eGMEURCIRAgIC4Ovrizt37iAzM9PiS34SEbFFTVZLLJVBFt7Q7OeVSCT4z3/+g2bNmsHf359LaRKRRTFRk5USwbXpExA5Wa7Tx9nZGfXq1UNkZCQCAgI07tUkIjIXdn2TVZLWq2816027uLggNDQUwcHBuHv3LjIzM9XL9RER1TYmarI6Tl7ekIY1sHQYWpycnBAcHIygoCDk5OTg7t27KCwstHRYRGTnmKjtnL+rq8Z/rZ3YrQ7cnmhu0numTe3BaUlLS0tx7949ZGdnc6YzIqoVTNR2zqD5vS1MLJWhTrMWENnQMn8ymQx169ZF3bp1UVhYiJycHOTl5aGsrMzSoRGRnWCiJqsgdnVDnRatILbhSUfkcjnkcjlCQ0NRUlKC/Px8FBQUoLCwEEql0tLhEZGNYqImi3Py9Ydr46YQu7hYOhSTcXV1haurKwIDAyEIAkpKSlBUVITi4mIUFxejtLSUc4wTUbUwUZPFiKUySOuHwyWkrqVDqRFBEO4vC/q/h1CZgAUBgACoBMhEgLROHfi4ud0vA1BeXoGysjKUl5ejoqIcFRUVUCiUUKlUUCqVEAQBpp5upUIkQCQIBi+XSkSWw0RNVROLIBKZcGCXRAKJ3B1O3j5w8vOHSCyCqqQYQGVeq0xNwv/yWWUCBIT/Jb1/y4R/Zw5Tqf59Lqju7/fQc0EQ7u+nUkEQ/vff/x2n8/8r61Sp7tchPFDHg3XXgAiA9H8Pc1Dk5yHHTOciItNgoqaqqYT7Sc1UFCoocrOhyM0Grqaarl4iIjtlvffAEBERERM1ERGRNWOiJiIismJM1ERERFaMiZqIiMiKMVETERFZMSZqIiIiK8ZETUREZMWYqImIiKwYEzUREZEVY6ImIiKyYkzUREREVoyJmoiIyIoxURMREVkxq0zUK1euRFhYGGQyGdq2bYvjx49Xuf+WLVvQpEkTyGQyNGvWDLt27TJTpERERLXL6hL15s2bERcXh/j4eJw6dQotWrRAbGwsMjMzde5/7NgxDBkyBCNHjsTp06fRr18/9OvXD2fOnDFz5ERERKZndYl62bJlGD16NEaMGIGIiAgkJibCzc0N69ev17n/8uXL0aNHD7z77rto2rQp5s2bh1atWuHTTz81c+RERESmZ1WJury8HCdPnkTXrl3VZWKxGF27dkVSUpLOY5KSkjT2B4DY2Fi9+5eVlSE/P1/9KCwsNN0LMAdBMM+D7J+5Pkv8PBHViJOlA3hQVlYWlEolAgMDNcoDAwNx/vx5ncekp6fr3D89PV3n/gsXLsTcuXNNE7CZiKQyi51b/nRHuAQFW+z8ZFrl6XeQs2O7xc5vyc8yka2yqkRtDtOmTUNcXJz6eXJyMmJiYiwY0aO5BAWj3sJlEMpKzXpekVTGJG1npMEhFvksAfw8ERnLqhK1n58fJBIJMjIyNMozMjIQFBSk85igoCCD9pdKpZBKperncrm8hlGbB7/gyFT4WSKyLVZ1jdrFxQWtW7fG/v371WUqlQr79+9Hu3btdB7Trl07jf0BYN++fXr3JyIisiVW1aIGgLi4OAwfPhxt2rRBdHQ0EhISUFRUhBEjRgAAhg0bhrp162LhwoUAgAkTJiAmJgZLly5Fr169sGnTJpw4cQJr1qyx5MsgIiIyCatL1IMGDcLdu3cxe/ZspKenIyoqCrt371YPGLt+/TrE4n87Ap5++mls3LgRM2fOxPTp0/HYY49h+/btiIyMtNRLICIiMhmRIDj2vROnTp1C69atcfLkSbRq1crS4RAR2S1+3xrHqq5RExERkSYmaiIiIivGRE1ERDYvOzsbr7zyCjw8PODl5YWRI0dWOfNkdnY2/vvf/6Jx48ZwdXVFvXr1MH78eOTl5Zkx6uphoiYiIpv3yiuv4OzZs9i3bx927NiBw4cPY8yYMXr3v337Nm7fvo2PPvoIZ86cwYYNG7B7926MHDnSjFFXj9WN+iYiIjJESkoKdu/ejT///BNt2rQBAKxYsQI9e/bERx99hJCQEK1jIiMj8cMPP6ifN2zYEPPnz8err74KhUIBJyfrSY9sURMRkU1LSkqCl5eXOkkDQNeuXSEWi/HHH39Uu568vDx4eHhYVZIG2KJWS0lJsXQIRGRiwcHBCA42/ZSpd+7cwZ07d0xer72r/J4tLCxEfn6+uvzhqZ0NlZ6ejoCAAI0yJycn+Pj46F2g6WFZWVmYN29eld3lFiM4uNu3bwsxMTECAD744MPOHvHx8bXyvREfH2/x12arj/r161f7fZoyZcoj60tJSRHmz58vPP7441rH+/v7C6tWrXrk+5mXlydER0cLPXr0EMrLy2v68TA5h5/wBLDvX8eFhYWIiYnBoUOHbGYBErJOtvhZYotam6XfRx8fH/j4+GiU6WtR3717F/fu3auyvgYNGuCbb77B5MmTkZOToy5XKBSQyWTYsmULXnjhBb3HFxQUIDY2Fm5ubtixYwdkMutbipWJ2s7l5+fD09NTfe2FyFj8LNkHe3wfU1JSEBERgRMnTqB169YAgL1796JHjx64efOmzsFkwP2/RWxsLKRSKXbt2gU3Nzdzhl1tHExGREQ2rWnTpujRowdGjx6N48eP47fffsO4ceMwePBgdZK+desWmjRpguPHjwO4n6S7d++OoqIirFu3Dvn5+UhPT0d6ejqUSqUlX44WDiYjIiKb9+2332LcuHF49tlnIRaL0b9/f3zyySfq7RUVFbhw4QKKi4sB3J93vHJEeKNGjTTqunr1KsLCwswW+6MwUds5qVSK+Pj4Go2oJAL4WbIX9vo++vj4YOPGjXq3h4WF4cErvZ07d4atXPnlNWoiIiIrxmvUREREVoyJmoiIyIoxUVO1paWlQSQSYcOGDZYOhYjIYTBR15LLly/jjTfeQIMGDSCTyeDh4YH27dtj+fLlKCkpqbXznjt3DnPmzEFaWlqtnaM65s+fj+effx6BgYEQiUSYM2eOReNxBCKRqFqPgwcP1vhcxcXFmDNnjkF18TNRfXwv6UEc9V0Ldu7ciYEDB0IqlWLYsGGIjIxEeXk5jh49infffRdnz57FmjVrauXc586dw9y5c9G5c2eL3l4wc+ZMBAUFoWXLltizZ4/F4nAkX3/9tcbzr776Cvv27dMqb9q0aY3PVVxcjLlz5wK4P3q2OviZqD6+l/QgJmoTu3r1KgYPHoz69evjwIEDGtMXjh07Fqmpqdi5c6cFI/yXIAgoLS2Fq6uryeuuvA8xKysL/v7+Jq+ftL366qsaz3///Xfs27dPq9xS+JmoPr6X9CB2fZvY4sWLUVhYiHXr1umcY7hRo0aYMGGC+rlCocC8efPQsGFDSKVShIWFYfr06SgrK9M4LiwsDL1798bRo0cRHR0NmUyGBg0a4KuvvlLvs2HDBgwcOBAA0KVLF63usco69uzZgzZt2sDV1RWrV68GAFy5cgUDBw6Ej48P3Nzc8NRTT9XoB4U1TRZA/1KpVEhISMATTzwBmUyGwMBAvPHGGxpzJAPAiRMnEBsbCz8/P7i6uiI8PByvv/46gPtjFSq/nOfOnav+nD2q+5OfCdPie+k42KI2sZ9//hkNGjTA008/Xa39R40ahS+//BIDBgzA5MmT8ccff2DhwoVISUnBtm3bNPZNTU3FgAEDMHLkSAwfPhzr16/Ha6+9htatW+OJJ55Ap06dMH78eHzyySeYPn26ulvswe6xCxcuYMiQIXjjjTcwevRoNG7cGBkZGXj66adRXFyM8ePHw9fXF19++SWef/55bN26tcoJ7cm2vPHGG9iwYQNGjBiB8ePH4+rVq/j0009x+vRp/Pbbb3B2dkZmZia6d+8Of39/TJ06FV5eXkhLS8OPP/4IAPD398dnn32Gt956Cy+88AJefPFFAEDz5s0t+dIcDt9LB2KxdbvsUF5engBA6Nu3b7X2T05OFgAIo0aN0ih/5513BADCgQMH1GWVS8MdPnxYXZaZmSlIpVJh8uTJ6rItW7YIAIRff/1V63yVdezevVujfOLEiQIA4ciRI+qygoICITw8XAgLCxOUSqUgCIJw9epVAYDwxRdfVOv1CYIg3L17t1aXGyT9xo4dKzz4T/zIkSMCAOHbb7/V2G/37t0a5du2bRMACH/++afeumvyvvIzYTi+l46NXd8mVLkQuru7e7X237VrFwAgLi5Oo3zy5MkAoNX1HBERgY4dO6qf+/v7o3Hjxrhy5Uq1YwwPD0dsbKxWHNHR0ejQoYO6TC6XY8yYMUhLS8O5c+eqXT9Zry1btsDT0xPdunVDVlaW+tG6dWvI5XL8+uuvAAAvLy8AwI4dO1BRUWHBiEkfvpeOhYnahCqXjCsoKKjW/teuXYNYLNaaED4oKAheXl64du2aRnm9evW06vD29ta6JlWV8PBwnXE0btxYq7yyy/zhOMg2Xbp0CXl5eQgICIC/v7/Go7CwEJmZmQCAmJgY9O/fH3PnzoWfnx/69u2LL774QmvcBFkO30vHwmvUJuTh4YGQkBCcOXPGoONEIlG19pNIJDrLBQOma6+NEd5kG1QqFQICAvDtt9/q3F45qEgkEmHr1q34/fff8fPPP2PPnj14/fXXsXTpUvz++++Qy+XmDJt04HvpWJioTax3795Ys2YNkpKS0K5duyr3rV+/PlQqFS5duqQx4CsjIwO5ubmoX7++weevbtJ/OI4LFy5olZ8/f169nWxfw4YN8csvv6B9+/bV+sH21FNP4amnnsL8+fOxceNGvPLKK9i0aRNGjRpl1OeMTIfvpWNh17eJvffee6hTpw5GjRqFjIwMre2XL1/G8uXLAQA9e/YEACQkJGjss2zZMgBAr169DD5/nTp1AAC5ubnVPqZnz544fvw4kpKS1GVFRUVYs2YNwsLCEBERYXAcZH1eeuklKJVKzJs3T2ubQqFQf2ZycnK0emmioqIAQN1l6ubmBsCwzxmZDt9Lx8IWtYk1bNgQGzduxKBBg9C0aVONmcmOHTuGLVu24LXXXgMAtGjRAsOHD8eaNWuQm5uLmJgYHD9+HF9++SX69euHLl26GHz+qKgoSCQSLFq0CHl5eZBKpXjmmWcQEBCg95ipU6fiu+++w3PPPYfx48fDx8cHX375Ja5evYoffvgBYrHhv+e+/vprXLt2Tb1I++HDh/HBBx8AAIYOHcpWugXExMTgjTfewMKFC5GcnIzu3bvD2dkZly5dwpYtW7B8+XIMGDAAX375JVatWoUXXngBDRs2REFBAdauXQsPDw/1j0tXV1dERERg8+bNePzxx+Hj44PIyEhERkbqPT8/E6bD99LBWHjUud26ePGiMHr0aCEsLExwcXER3N3dhfbt2wsrVqwQSktL1ftVVFQIc+fOFcLDwwVnZ2chNDRUmDZtmsY+gnD/1qpevXppnScmJkaIiYnRKFu7dq3QoEEDQSKRaNyqpa8OQRCEy5cvCwMGDBC8vLwEmUwmREdHCzt27NDYx5Dbs2JiYgQAOh+6bh0j03v4lp5Ka9asEVq3bi24uroK7u7uQrNmzYT33ntPuH37tiAIgnDq1ClhyJAhQr169QSpVCoEBAQIvXv3Fk6cOKFRz7Fjx4TWrVsLLi4u1bpFh58J4/G9dGwiQTBgJBIRERGZFa9RExERWTEmaiIiIivGRE1ERGTFmKiJiIisGBM1ERGRFWOiJiIismJM1BayePFiNGnSBCqVytKh1NjgwYPx0ksvWToMh8XPEj0oLS0NIpEIGzZssHQoZCJM1BaQn5+PRYsWYcqUKepZv0QiEUQiEZYuXaq1/4YNGyASiXDixAmTx9KtWzeIRCKMGzdO5/Z169ahadOmkMlkeOyxx7BixQqtfaZMmYIffvgBf/31l8njo6rxs0Rk/5ioLWD9+vVQKBQYMmSI1rYlS5aop+WrbT/++KPG/N4PW716NUaNGoUnnngCK1asQLt27TB+/HgsWrRIY7+WLVuiTZs2OhMD1S5+luhh9evXR0lJCYYOHWrpUMhULD01miNq3ry58Oqrr2qUARCioqIEAMLSpUs1tn3xxRcCAOHPP/80WQwlJSVCWFiY8P777wsAhLFjx2psLy4uFnx9fbWmHH3llVeEOnXqCNnZ2RrlH330kVCnTh2hoKDAZDHSo/GzRGT/2KI2s6tXr+Lvv/9G165dtba1b98ezzzzDBYvXoySkpJajWPx4sVQqVR45513dG7/9ddfce/ePbz99tsa5WPHjkVRURF27typUd6tWzcUFRVh3759tRYzaeJnyX7NmTMHIpEIFy9exKuvvgpPT0/4+/tj1qxZEAQBN27cQN++feHh4YGgoCCNHghd16hfe+01yOVy3Lp1C/369YNcLoe/vz/eeecdKJVK9X4HDx6ESCTCwYMHNeLRVWd6ejpGjBiB//znP5BKpQgODkbfvn2RlpZWS38Vx8VEbWbHjh0DALRq1Urn9jlz5iAjIwOfffZZlfWUlZUhKyurWo+HXb9+HR9++CEWLVqkdy3b06dPAwDatGmjUd66dWuIxWL19koRERFwdXXFb7/9VmXcZDr8LNm/QYMGQaVS4cMPP0Tbtm3xwQcfICEhAd26dUPdunWxaNEiNGrUCO+88w4OHz5cZV1KpRKxsbHw9fXFRx99hJiYGCxduhRr1qwxKrb+/ftj27ZtGDFiBFatWoXx48ejoKAA169fN6o+0o/LXJrZ+fPnAQDh4eE6t3fs2BFdunTBkiVL8NZbb+n98vvuu+8wYsSIap1TeGjdlcmTJ6Nly5YYPHiw3mPu3LkDiUSitTymi4sLfH19cfv2bY1yJycnhIaG4ty5c9WKiWqOnyX7Fx0djdWrVwMAxowZg7CwMEyePBkLFy7ElClTAABDhgxBSEgI1q9fj06dOumtq7S0FIMGDcKsWbMAAG+++SZatWqFdevW4a233jIortzcXBw7dgxLlizR6EmZNm2aoS+RqoGJ2szu3bsHJycnyOVyvfvMmTMHMTExSExMxKRJk3TuExsba1TX4K+//ooffvgBf/zxR5X7lZSUwMXFRec2mUymszvV29tbZ6uLagc/S/Zv1KhR6v+XSCRo06YNbt68iZEjR6rLvby80LhxY1y5cuWR9b355psazzt27Iivv/7a4LhcXV3h4uKCgwcPYuTIkfD29ja4Dqo+Jmor1KlTJ3Tp0gWLFy/W+odVKTg4GMHBwQbVq1AoMH78eAwdOhRPPvlklfu6urqivLxc57bS0lKdrTNBECASiQyKiWoXP0u2rV69ehrPPT09IZPJ4Ofnp1V+7969KuuSyWTw9/fXKPP29kZOTo7BcUmlUixatAiTJ09GYGAgnnrqKfTu3RvDhg1DUFCQwfVR1ZiozczX1xcKhQIFBQVwd3fXu198fDw6d+6M1atXw8vLS2t7SUkJ8vLyqnXOyn84X331FS5cuIDVq1drDfgoKChAWloaAgIC4ObmhuDgYCiVSmRmZmp0WZaXl+PevXsICQnROk9OTg4ee+yxasVENcfPkv2TSCTVKgO0L0tU97gH6ftx9OCAs0oTJ05Enz59sH37duzZswezZs3CwoULceDAAbRs2fKR56Lq42AyM2vSpAmA+yN2qxITE4POnTtj0aJFOrsGN2/erG4JPepR6fr166ioqED79u0RHh6ufgD3v3jDw8Oxd+9eAEBUVBQAaE2MceLECahUKvX2SgqFAjdu3EDTpk0N+nuQ8fhZIlOr7MLOzc3VKL927ZrO/Rs2bIjJkydj7969OHPmDMrLy3kPfC1gi9rM2rVrB+D+l1Tz5s2r3HfOnDno3LmzzlGZxlxXHDx4sNaXIgC88MIL6NmzJ0aPHo22bdsCAJ555hn4+Pjgs88+Q8+ePdX7fvbZZ3Bzc0OvXr006jh37hxKS0vx9NNPGxQTGY+fJTK1+vXrQyKR4PDhw+jXr5+6fNWqVRr7FRcXQywWQyaTqcsaNmwId3d3lJWVmStch8FEbWYNGjRAZGQkfvnlF7z++utV7hsTE4OYmBgcOnRIa5sx1xWbNGmiboU9LDw8XOMfpqurK+bNm4exY8di4MCBiI2NxZEjR/DNN99g/vz58PHx0Th+3759cHNzQ7du3QyKiYzHzxKZmqenJwYOHIgVK1ZAJBKhYcOG2LFjBzIzMzX2u3jxIp599lm89NJLiIiIgJOTE7Zt24aMjIwq7wAg4zBRW8Drr7+O2bNno6SkRO8tM5XmzJmDLl26mCkyTW+//TacnZ2xdOlS/PTTTwgNDcXHH3+MCRMmaO27ZcsWvPjii1VeKyXT42eJTG3FihWoqKhAYmIipFIpXnrpJSxZsgSRkZHqfUJDQzFkyBDs378fX3/9NZycnNCkSRN8//336N+/vwWjt08i4VEjEMjk8vLy0KBBAyxevFjjNgtblZycjFatWuHUqVM6u0Op9vCzRGT/mKgtZNGiRfjiiy9w7tw59apHtmrw4MFQqVT4/vvvLR2KQ+Jnici+MVETERFZMdv++U1ERGTnmKiJiIisGBM1ERGRFWOiJiIismJM1EREZJS0tDSIRCJs2LDB0qHYNSZqIiIzuHz5Mt544w00aNAAMpkMHh4eaN++PZYvX65zDnZTOXfuHObMmaO1eIq5zZ8/H88//zwCAwMhEokwZ84ci8ZjSzgzGRFRLdu5cycGDhwIqVSKYcOGITIyEuXl5Th69CjeffddnD17Vuc87KZw7tw5zJ07F507d0ZYWFitnKM6Zs6ciaCgILRs2RJ79uyxWBy2iImaiKgWXb16FYMHD0b9+vVx4MABjXnVx44di9TUVOzcudOCEf5LEAS9a4TX1NWrVxEWFoasrCytdbGpauz6JiKqRYsXL0ZhYSHWrVunc/GTRo0aacx5rlAoMG/ePDRs2BBSqRRhYWGYPn261qpUYWFh6N27N44ePYro6GjIZDI0aNAAX331lXqfDRs2YODAgQCALl26QCQSQSQS4eDBgxp17NmzB23atIGrqytWr14NALhy5QoGDhwIHx8fuLm54amnnqrRDwpLtuZtHRM1EVEt+vnnn9GgQYNqL9s5atQozJ49G61atcLHH3+MmJgYLFy4UOeqVKmpqRgwYAC6deuGpUuXwtvbG6+99hrOnj0LAOjUqRPGjx8PAJg+fTq+/vprfP311xprfV+4cAFDhgxBt27dsHz5ckRFRSEjIwNPP/009uzZg7fffhvz589HaWkpnn/+eWzbts0EfxUyiEBERLUiLy9PACD07du3WvsnJycLAIRRo0ZplL/zzjsCAOHAgQPqsvr16wsAhMOHD6vLMjMzBalUKkyePFldtmXLFgGA8Ouvv2qdr7KO3bt3a5RPnDhRACAcOXJEXVZQUCCEh4cLYWFhglKpFARBEK5evSoAEL744otqvT5BEIS7d+8KAIT4+PhqH+Po2KImIqol+fn5AFDtJTt37doFAIiLi9Monzx5MgBodT1HRESgY8eO6uf+/v5o3Lgxrly5Uu0Yw8PDERsbqxVHdHQ0OnTooC6Ty+UYM2YM0tLScO7cuWrXTzXHRE1EVEs8PDwAAAUFBdXa/9q1axCLxWjUqJFGeVBQELy8vHDt2jWN8nr16mnV4e3tjZycnGrHGB4erjOOxo0ba5VXdpk/HAfVLiZqIqJa4uHhgZCQEJw5c8ag40QiUbX2k0gkOssFAxZFrI0R3mRaTNRERLWod+/euHz5MpKSkh65b/369aFSqXDp0iWN8oyMDOTm5qJ+/foGn7+6Sf/hOC5cuKBVfv78efV2Mh8maiKiWvTee++hTp06GDVqFDIyMrS2X758GcuXLwcA9OzZEwCQkJCgsc+yZcsAAL169TL4/HXq1AEA5ObmVvuYnj174vjx4xo/LoqKirBmzRqEhYUhIiLC4DjIeJzwhIioFjVs2BAbN27EoEGD0LRpU42ZyY4dO4YtW7bgtddeAwC0aNECw4cPx5o1a5Cbm4uYmBgcP34cX375Jfr164cuXboYfP6oqChIJBIsWrQIeXl5kEqleOaZZxAQEKD3mKlTp+K7777Dc889h/Hjx8PHxwdffvklrl69ih9++AFiseFtvK+//hrXrl1DcXExAODw4cP44IMPAABDhw5lK70qlh52TkTkCC5evCiMHj1aCAsLE1xcXAR3d3ehffv2wooVK4TS0lL1fhUVFcLcuXOF8PBwwdnZWQgNDRWmTZumsY8g3L+1qlevXlrniYmJEWJiYjTK1q5dKzRo0ECQSCQat2rpq0MQBOHy5cvCgAEDBC8vL0EmkwnR0dHCjh07NPYx5PasmJgYAYDOh65bx+hfIkEwYNQBERERmRWvURMREVkxJmoiIiIrxkRNRERkxZioiYiIrBgTNRERkRVjoiYiIrJiTNRERERWjImaiIjIijFRExERWTEmaiIiIivGRE1ERGTFmKiJiIisGBM1ERGRFfv/Fuap9XszLZ0AAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAW8RJREFUeJzt3Xl8TNf/P/DXzCSZyb5vFLG0SIMoTaqWoEhrKYqiLaqWLnws0cUeqqQojSq1lGqpD9WWX4tvUBpLpdUin37sgtizyb5OZub+/vDJ1MhMZCaTmTuT1/PxmAdz7r3nvmeMec8599xzJIIgCCAiIiJRklo7ACIiIjKMiZqIiEjEmKiJiIhEjImaiIhIxJioiYiIRIyJmoiISMSYqImIiESMiZqIiEjEmKiJiIhErM4n6rt372LevHm4e/eutUMhIqqSWq22dgg1wu9b0zBR372L+fPn84NDRKJnD4ma37fGq/OJmojIVnBphrqJiZqIyEYwUddNTNRERDaCibpuYqImIrIRGo3G2iGQFTBRExHZCLao6yYmaiIiG8EWdd3ERE1EZCOYqOsmUSXqI0eOoF+/fqhXrx4kEgl27dr1yGMSExPx1FNPQS6Xo1mzZti0aVOtx0lEZA1M1HWTqBJ1UVER2rRpg1WrVlVr/2vXrqFPnz7o1q0bkpOTMWXKFIwdOxb79u2r5UiJiCzP1ic8IdM4WDuAB73wwgt44YUXqr3/mjVr0LhxYyxbtgwA0LJlSxw7dgyffvopoqOjaytMIiKrYIu6bhJVi9pYSUlJ6NGjh05ZdHQ0kpKSrBQREVHtYYu6bhJVi9pYaWlpCAwM1CkLDAxEfn4+SkpK4OzsXOmYsrIylJWVaZ8XFhbWepzmcO/ePSiVSoueU6lUwsPDw6LnpNqnVqtRXl5u8fM6OTnB19fX4ue1J0zUdZNNJ2pTxMXFYf78+dYOwyj37t3DqlWrrHIPZdeuXeHm5mbx81LtKCwsRGJiolXOLZFIMGHCBCbrGmCirptsuus7KCgI6enpOmXp6enw8PDQ25oGgBkzZiAvL0/7OHz4sCVCrRGlUmm1iQ74xWBfrPnvKQiCxXuF7I1KpbJ2CGQFNt2i7tChA/bu3atTduDAAXTo0MHgMXK5HHK5XPvc1lqLEonEIufhDEj2z1KfJYCfJ3Nhoq6bRNWiLiwsRHJyMpKTkwHcv/0qOTkZN27cAHC/NTxy5Ejt/m+99RauXr2K999/HxcuXMDq1avx3XffYerUqdYIn4ioVjFR102iStR//fUX2rZti7Zt2wIAYmJi0LZtW8ydOxfA/UXHK5I2ADRu3Bh79uzBgQMH0KZNGyxbtgxffvklb80iIrtkjUGAZH2i6vru2rVrlV1k+mYd69q1K06fPl2LURERicODd6xQ3SGqFjURERnGRF03MVETEdmI0tJSa4dAVsBETURkI0pKSqwdAlkBEzURkY0oKiqydghWsWrVKoSEhEChUCAyMhInTpyocv/4+Hg0b94czs7OaNCgAaZOnWrTvRFM1ERENqKkpKTOTUK0fft2xMTEIDY2FqdOnUKbNm0QHR2NjIwMvftv3boV06dPR2xsLM6fP48NGzZg+/btmDlzpoUjNx8maiIiGyEIgs2sT2Auy5cvx7hx4zB69GiEhoZizZo1cHFxwcaNG/Xuf/z4cXTs2BGvvPIKQkJC0KtXLwwfPvyRrXAxY6ImIrIh+fn51g6hxgoLC5Gfn699GBrNrlQqcfLkSZ1VEqVSKXr06GFwlcRnn30WJ0+e1Cbmq1evYu/evejdu7f5X4iFMFETEdmQvLw8a4dQY1FRUfD09NQ+4uLi9O6XlZUFtVqtd5XEtLQ0vce88sor+PDDD9GpUyc4OjqiadOm6Nq1K7u+iYjIMnJzc60dQo0dPnxYZ3GkGTNmmK3uxMRELFq0CKtXr8apU6fw448/Ys+ePViwYIHZzmFpopqZjIiIqpaTk2PtEGrMzc2tWmvd+/n5QSaT6V0lMSgoSO8xc+bMwYgRIzB27FgAQKtWrVBUVITx48dj1qxZkEptr31qexETEdVhOTk5dWY1MicnJ7Rr1w4HDx7Ulmk0Ghw8eNDgKonFxcWVkrFMJgNgu6u4sUVNRGRDSktLUVxcDFdXV2uHYhExMTEYNWoU2rdvj4iICMTHx6OoqAijR48GAIwcORL169fXXufu168fli9fjrZt2yIyMhIpKSmYM2cO+vXrp03YtoaJmojIxmRlZdWZRD106FBkZmZi7ty5SEtLQ3h4OBISErQDzG7cuKHTgp49ezYkEglmz56N27dvw9/fH/369cPChQut9RJqjImaiMjGZGVloVGjRtYOw2ImTpyIiRMn6t2WmJio89zBwQGxsbGIjY21QGSWwWvUREQ2xtCsXGSfmKiJiGxMenq6zQ6MIuMxURMR2RilUons7Gxrh0EWwkRNRGSDbt26Ze0QyEKYqImIbNDNmzetHQJZCBM1EZENunv3LkpKSqwdBlkAEzURkQ0SBAHXrl2zdhhkAUzUREQ26vz58xz9XQcwURMR2ah79+7xnuo6gImaiMiGJScnWzsEqmVM1ERENuz69eu4d++etcOgWsRETURk4/78809rh0C1iImaiMjG3bhxA3fv3rV2GFRLmKiJiGxA+/bt8f777xtcrvH333/nCHA7xURNRGQD0tLSkJubi/z8fL3bMzMzcfnyZQtHRZbARE1EZCdOnDiB8vJya4dBZsZETURkJ4qLi3H69Glrh0FmxkRNRGRH/vvf/xrsHifbxERNRGRH1Go1fv/9d2uHQWbERE1EZGdSU1N5u5YdYaImIrJDvF3LfjBRExHZoczMTC6DaSeYqImI7NSff/4JjUZj7TCohpioiYjsVF5eHlJSUqwdBtUQEzURkR07ffo0W9U2jomaiMiO5eXl8Vq1jWOiJiKyc6dPn+YIcBvGRE1EZOeys7Nx+/Zta4dBJmKiJiKqA/7++29rh0AmYqImIqoDbt26hdzcXGuHQSYQXaJetWoVQkJCoFAoEBkZiRMnTlS5f3x8PJo3bw5nZ2c0aNAAU6dORWlpqYWiJSKyHWfPnrV2CGQCUSXq7du3IyYmBrGxsTh16hTatGmD6OhoZGRk6N1/69atmD59OmJjY3H+/Hls2LAB27dvx8yZMy0cORGR+F2+fJnrVdsgB2sH8KDly5dj3LhxGD16NABgzZo12LNnDzZu3Ijp06dX2v/48ePo2LEjXnnlFQBASEgIhg8fjj/++MOicZN9kEgkkEql2j8f/LtEIqn0d33PKx4V9el7XvH3B8/74J+CSgVVXg7UBQUQVOb9UnUuLwMEAXjg/FR3KJVKXLlyBS1atLB2KGQE0SRqpVKJkydPYsaMGdoyqVSKHj16ICkpSe8xzz77LLZs2YITJ04gIiICV69exd69ezFixAiD5ykrK0NZWZn2eWFhoflehB2SyWRwcDDvx+ThZOjg4ACp9J/OnYcTl6Hk96iHvgSr788H97MmobwcZddTobx7Gw5qVa2cQ11aDCkATn9Rd50/f56J2saIJlFnZWVBrVYjMDBQpzwwMBAXLlzQe8wrr7yCrKwsdOrUCYIgQKVS4a233qqy6zsuLg7z5883a+z2TK1WQ6WqnaTxIAcHBzg5OUEul0Mul0OhUMDFxQVyudzqCdQSVDnZKDl/Fhpl2aN3JqqBzMxM3Lt3D76+vtYOhapJNInaFImJiVi0aBFWr16NyMhIpKSkYPLkyViwYAHmzJmj95gZM2YgJiZG+zw5ORlRUVGWCpkMUKlUUKlUKC4u1imXSqVwdXWFq6sr3N3d4ebmptP6tgdlt26iNOWitcN4pLVr16KwsBBubm548803rR0O1cCFCxfQsWNHa4dB1SSaRO3n5weZTIb09HSd8vT0dAQFBek9Zs6cORgxYgTGjh0LAGjVqhWKioowfvx4zJo1S+8XekWLrYKbm5sZXwWZm0ajQUFBAQoKCpCWlgaJRAJ3d3d4enrCy8sLTk5O1g6xRkpTr6Es9Yq1w6iWwsJC5OfnWzsMMoOUlBRERkaa/bIW1Q7RNE2cnJzQrl07HDx4UFum0Whw8OBBdOjQQe8xxcXFlZKxTCYDAE6XZ6cEQUB+fj5u3ryJ//73v7hw4QLS09NtciRr2e2bNpOkyb6UlZVx/m8bIqqfUzExMRg1ahTat2+PiIgIxMfHo6ioSDsKfOTIkahfvz7i4uIAAP369cPy5cvRtm1bbdf3nDlz0K9fP23CJvtWVFSEoqIi3Lp1C56envDz84Onp6for2uX38tC6eVL1g6D6rBz587h8ccft3YYVA2iStRDhw5FZmYm5s6di7S0NISHhyMhIUE7wOzGjRs6LejZs2dDIpFg9uzZuH37Nvz9/dGvXz8sXLjQWi+BrCgvLw95eXlwdHSEv78//P39Rdm1pykpQcm5MwDY60PWk56ezkFlNkJ032ITJ07ExIkT9W5LTEzUee7g4IDY2FjExsZaIDKyFeXl5bhz5w7S0tLg6+uLwMBAnXEJ1iQIAkounIVQS7dfERnjzJkzHExrA0RzjZrI3DQaDTIzM3H27Fmkpqbq3D9vLcobqVDl5Vo7DCIA9weVPXynBYkPEzXZPUEQcO/ePZw9exbXr1+HUqm0ShzqoiKUpnIAj7VkZ2fj1VdfhYeHB7y8vDBmzJhHTnjUtWvXShPpvPXWW9rtmzZtMjjhjqGpj8VErVZz/m8bwERNdYYgCMjKysLZs2dx+/ZtqNVqi56/9PJFQOCcYLWpa9eu2LRpk95tr776Ks6ePYsDBw5g9+7dOHLkCMaPH//IOseNG4e7d+9qH0uWLNFuGzp0qM62u3fvIjo6GlFRUQgICDDXy6pV586ds8m7JuoSJmqqczQaDdLS0nD27Fncu3fPIucsz0iHKjfbIueiys6fP4+EhAR8+eWXiIyMRKdOnbBy5Ups27YNd+7cqfJYFxcXBAUFaR8eHh7abc7OzjrbZDIZDh06hDFjxtT2SzKbsrIyg7M/ioWxqyrm5uZiwoQJCA4OhlwuxxNPPIG9e/daKFrzY6KmOqu8vBypqam4ePEiSkpKau08gkaD0iuXa61+erSkpCR4eXmhffv22rIePXpAKpU+chGfb7/9Fn5+fggLC8OMGTOqvKb7zTffwMXFBYMHDzZb7JZw5swZ0c49YeyqikqlEj179kRqaiq+//57XLx4EevXr0f9+vUtHLn5iG7UN5GlFRYW4vz58wgICEBwcLDZ78FX3r4JTRnXSLemtLS0Sl3RDg4O8PHxQVpamsHjXnnlFTRq1Aj16tXD33//jQ8++AAXL17Ejz/+qHf/DRs24JVXXoGzs7NZ469tBQUFuHHjBho1amTtUCoxdlXFjRs3Ijs7G8ePH4ejoyOA+ysr2jK2qIlw//p1eno6zp49i6ysLLO1LgSVCmU3rpulLqps0aJFcHNz0z6OHj2Kt956S6fsxo0bJtc/fvx4REdHo1WrVnj11VfxzTffYOfOnbhypfKMcklJSTh//rxNdXs/6NIly03AUzEdbcXD0B0ZFasq9ujRQ1v2qFUVf/rpJ3To0AETJkxAYGAgwsLCsGjRIouPSTEnJmqiB5SXl+P69es4f/488vLyalxf2a0bEMqtM8q8LnjrrbeQnJysfbRv3x4ffvihTlm9evUQFBRUqatUpVIhOzvb4FoC+kRGRgK4f1vTw7788kuEh4ejXbt2NXtRety4cQNFRUUA7l9Tzs42/3iHGzduWGxQWVRUFDw9PbWPitkmH1bVqoqGekKuXr2K77//Hmq1Gnv37sWcOXOwbNkyfPTRR2Z/HZbCrm8iPUpKSpCSkgI3NzfUq1cP7u7uRtchqFRQ3jS9NUeP5uPjAx8fH+1zZ2dnBAQEoFmzZjr7dejQAbm5uTh58qQ2kR46dAgajUabfKsjOTkZABAcHKxTXlhYiO+++85gwjHViRMnsGDBAuzZs0fby1NSUoKZM2eiVatW6NOnj9m6ddVqNdLT0/HYY4+Zpb6qHD58GOHh4drn5pyQSKPRICAgAOvWrYNMJkO7du1w+/ZtLF261GYnx2KLmqgKhYWFuHTpEi5evGh0C1t557ZdzUDm5uYGDw8Pm1xxrmXLlnj++ecxbtw4nDhxAr/99hsmTpyIYcOGoV69egCA27dvo0WLFtoRxVeuXMGCBQtw8uRJpKam4qeffsLIkSPRpUsXtG7dWqf+7du3Q6VS4bXXXjNbzD/++CM6duyI//u//6t0KUYQBJw5cwaLFy/GqVOnzHbOh1cvrC0Vn6WKh6FEbcqqisHBwXjiiSd0xpq0bNkSaWlpVptDoaaYqImqobCwECkpKTh37hyysrKg0VR9P7Sg0UB5S9ytaUEQjHqMHz8eMTExGD9+vNHHisG3336LFi1a4LnnnkPv3r3RqVMnrFu3Tru9vLwcFy9e1I7qdnJywi+//IJevXqhRYsWmDZtGgYNGoSff/65Ut0bNmzASy+9BC8vL7PEeuLECQwdOhRqtdrgtVWNRgONRoP169cjNTXVLOfNzc01Sz3mYsqqih07dkRKSorO/9FLly4hODjYZpfFZdc3kRFKSkpw/fp13L59G76+vvDz84NCoai0X3naXWiUpk1Z6uDlA0f/AMg8vSD536hVcynPzobwn7OAFZKnRCKp9S/Kh9cDeJCPjw+2bt1qcHtISIjOj4oGDRrg8OHD1Trv8ePHqx1jdXz00UdG/cjZu3cv3nnnnRqf91EztVmDsasqvv322/j8888xefJk/Otf/8Lly5exaNEiTJo0yZovo0aYqIlMoFKpkJ6ejvT0dLi5ucHX1xdeXl7a1brKTGhNO3h6QdH0CcgemFDD3PyCgzFhwgSrdAE6OTlxpaZquHHjBnbv3l3tJK3RaPD3338jOztb53q9KcQ4Q5mxqyo2aNAA+/btw9SpU9G6dWvUr18fkydPxgcffGCtl1BjTNRENVRYWIjCwkLcuHED7u7ucJNI4FiQD8dq348tgaJxEzg1DLHIOtpMloap1epHXtYwRKlUQqWq+ZiEn3/+2ejLBYIg4OzZs3jmmWdqdO6SkpJaTdamvj/GrKoI3B88+Pvvv5t0LjFioiYyE0EQkJ+fj8zbt6ApLIDC0QFucjlcnZzg6uQImVTPkBCJFC6hYXD0t415oe3dggULMH/+fGuHYZItW7Zgy5YtNa5n5MiRZoiGzImJmsiMhPJyaP53na+0XIXSchWycP/+V7mDA5wdHaBwdITC0QFyByd4hbeGo6+fNUOmB8yZMwezZs0y+rji4mIcPXoUTk5ONb7VaO/evToLf1TXkCFD8PTTT5t8XkEQoFAoMGrUKLi4uJhcT1VOnz5t1O1wdB8TNZEZqXJzAOjvtixTqVCmUgEl96cTdQyqB8frN+B0Nw1OTk5wdHSETCaDg4MDpFKpdrlEc/NUqwATB7rVhESugFNQ8KN3tCKZTGbSFLKOjo5wcHCAq6ur3sGFxujSpQuWLl1qVPe3RCJBy5YttVNmmkKj0UAul8PR0bFG9VSlYgwHGYfvGpGZCIIAdX717rV28PWDg6cnBEFAWVmZwSkUzU2Vlwevzeth3tnMq69h3HLRJ2trCwoKQufOnfHbb79Va9pLqVSKli1bwtvbu8bnttXbl+wd76MmMhNNUSGEagyWkbq4wtHP3wIR6aGy7qhegYuTVEvFfOHV7VHp1auXWc5b094Aqh1M1ERmoqrOzGUyBzgF16v9YKpDIjHqMfDn/ej03f/DwJ/3G30sGefJJ59EXFwcpFKpwa54qVQKqVSKUaNGoWHDhmY5r62t+lVXMFETmYGgUkFT9OjJIpwCAyGx0et0mSUlSC8uQWYtrt1N/+jevTs2btyIjh07VmpZV1yTnjx5cqXpTE0ll8vNOuc2mY9tfmMQiYw6P++Rs31JXd0gc6+9yUzI/jz55JNYvnw50tLSMHz4cBQUFMDZ2RnvvfeeWa5JP8jLy8si9/GT8diiJjIDdX5+1TtIpXAKCKx6HyIDgoKCtN3STk5OZk/SAODvb6VxE/RITNRENaQpK4PmEYOkHHx8IeGIWhIpDw8PuLq6WjsMMoCJmqiGHtWaljg4wsG7ZnMwE9UmS6xBTaZjoiaqIXVB1aO9HXz9INE3fSiRCLi4uNR4MQ+qXfz2IKoBdUkJhCoWMZA4OUHm6WnBiIiM07BhQw4iEzkmaqIaUBdU3e3t6OfHL0ESLRcXF/j5ca55sWOiJqoBTWGBwW0SJydI3Xg7FolXo0aN+EPSBjBRE5noUd3eDt6+/BIk0XJ1deXa5DaCiZrIRFW2ph0ceW2aRI2tadvBRE1kInWB4UTt4O3NL0ESLTc3N470tiFM1EQm0JSVQihX6t8olULm6WXReIiMwda0bWGiJjKBuopub5m7ByQGVjwisjYPD49amYKUag8X5SAygabQ8EpZ9joLmf//5pr251KINi0kJIStaRvDRE1kJEFVDk2p/rm9pS4ukNrpUoE7X4y2dghUQ97e3vDkIEebw65vIiOpq2pNe7FLkcQrJCTE2iHYrfz8fHz88ceIjo5G27ZtceLECQBAdnY2li9fjpSUFJPrZouayEgGr0/LHCB1c7dsMETV5O/vDzc3N2uHYZdu3bqFqKgo3Lx5E48//jguXLiAwv/9oPfx8cHatWtx/fp1rFixwqT6maiJjCBoNNAUF+vdJvNw57U/Eq2GDRtaOwS79d5776GgoADJyckICAhAQECAzvYBAwZg9+7dJtfPrm8iI2iKiwBB0LvNwZPd3iROAQEBcHFxsXYYdmv//v2YNGkSQkND9f5Yb9KkCW7evGly/UzUREZQFxXpLZcqFHY7iIxsH9ebrl0lJSXw9/c3uL2gismRqoOJmsgImiL9A8k4XSiJlbe3N1xdXa0dhl0LDQ3FkSNHDG7ftWsX2rZta3L9TNRE1aQpK9O/CIdEAhlXySKRCg4OtnYIdm/KlCnYtm0bFi9ejLy8PACARqNBSkoKRowYgaSkJEydOtXk+jmYjKiaNIa6vV1cIHHgfyUSHycnJ87pbQGvvfYarl+/jtmzZ2PWrFkAgOeffx6CIEAqlWLRokUYMGCAyfWLrkW9atUqhISEQKFQIDIyUnsvmiG5ubmYMGECgoODIZfL8cQTT2Dv3r0WipbqEnWxgW5vD3Z7kzgFBATwTgQLmTVrFq5cuYKlS5fi7bffxrhx47B48WJcvHgRH3zwQY3qNmszQBAE/PrrrygrK0OnTp3g7m7cPaXbt29HTEwM1qxZg8jISMTHxyM6OhoXL16sNNwdAJRKJXr27ImAgAB8//33qF+/Pq5fvw4vLy8zvSKi+wzeliWVQsZ7p0mkqhrgRObXsGHDGnVxG2Jyi3rWrFno1q2b9rkgCOjVqxd69uyJPn36oFWrVrhy5YpRdS5fvhzjxo3D6NGjERoaijVr1sDFxQUbN27Uu//GjRuRnZ2NXbt2oWPHjggJCUFUVBTatGlj6ssi0ktTUqz3tiyZmxskUtF1TBHB1dWVE5xYyKlTp7B69WqD21evXo3k5GST6zf5G+aHH35ARESE9vn333+PgwcP4qOPPsLu3buhVqsxb968atenVCpx8uRJ9OjR45/gpFL06NEDSUlJeo/56aef0KFDB0yYMAGBgYEICwvDokWLoFarDZ6nrKwM+fn52kdhFdNBElXQFBmY5ISDyEikAgMDrR1CnTFr1iz88ssvBrcfOnQIs2fPNrl+kxP17du30axZM+3zH3/8EaGhoZgxYwZ69+6Nt99+G4mJidWuLysrC2q1utKHKzAwEGlpaXqPuXr1Kr7//nuo1Wrs3bsXc+bMwbJly/DRRx8ZPE9cXBw8PT21j6ioqGrHSHWXpljPQDKpFFLe9kIiJJPJmKgt6OTJk+jcubPB7Z07d8Zff/1lcv0mJ2oHBweUlZUBuN/tffDgQTz//PPa7YGBgcjKyjI5sOrQaDQICAjAunXr0K5dOwwdOhSzZs3CmjVrDB4zY8YM5OXlaR+HDx+u1RjJ9gkqFTRllVfLkrmy25vEKSAgAA68E8FiCgoKqny/pVKp9rYtU5j8LRMWFoYtW7YgJycHX331Fe7du4c+ffpot1+/fh1+fn7Vrs/Pzw8ymQzp6ek65enp6QgKCtJ7THBwMJ544gnIZDJtWcuWLZGWlgalUqn3GLlcDg8PD+2D13DoUTQlBrq9jRwsSWQp9evXt3YIdcrjjz+O/fv3G9yekJCAJk2amFy/yYl67ty5SE5Ohp+fH8aNG4eOHTvqDC7bs2cPnn766WrX5+TkhHbt2uHgwYPaMo1Gg4MHD6JDhw56j+nYsSNSUlKg0Wi0ZZcuXUJwcDCcnJxMeFVElemdNlQqhdSF3d4kPv7+/nB2drZ2GHXKmDFjsGfPHsTExCA3N1dbnpubi6lTpyIhIQFjxowxuX6T+0Z69uyJU6dO4cCBA/Dy8sLQoUO123JyctClSxf079/fqDpjYmIwatQotG/fHhEREYiPj0dRURFGjx4NABg5ciTq16+PuLg4AMDbb7+Nzz//HJMnT8a//vUvXL58GYsWLcKkSZNMfVlElei7Pi1zcYXkgZ4cIrFo0KCBtUOocyZNmoTk5GTEx8fjs88+Q7169QAAd+7cgUajwYgRI6w3M1loaChCQ0MrlXt7e+PTTz81ur6hQ4ciMzMTc+fORVpaGsLDw5GQkKAdFHHjxg1IH7gm2KBBA+zbtw9Tp05F69atUb9+fUyePLnGN5cTVRCUSr3Thkp5yYREyNfXl/N6W4FEIsFXX32FkSNH4ocffsDVq1cBAP3798egQYPQtWvXGtVvcqIuKChAbm6uzq+3O3fuYM2aNSgrK8PgwYON6vquMHHiREycOFHvNn2jyDt06IDff//d6PMQVYda7/VpCWSuTNQkPlwly7q6deumcwnYXExO1OPHj8e1a9e0STI/Px/PPPMMbt26BalUihUrViAhIaHGvySIrEnfbGRSZ2fO7U2iUzFAluyPyYPJjh07hr59+2qfb9myBXfu3MHx48eRk5OD1q1bV3k/M5Et0Dfim61pEiNDd8dQ7RMEAWvXrkVERIT2DqaHHzW5Xc7kI7OysnRuAfjpp5/QqVMnPPPMMwDuD/yaP3++yYERWRuvT5OtkMlkRt0Oa2tWrVqFpUuXIi0tDW3atMHKlSt1ZsY0ZNu2bRg+fDj69++PXbt21Vp877//PpYvX47w8HC89tpr8Pb2Nmv9JidqLy8v7YxhJSUlOHr0qHZ5L+D+hCjF+hYxILIR+q5PSxydIJXLrRANkWG+vr4680nYE2MXa6qQmpqKd999t8oZw8zl66+/xqBBg/Ddd9/VSv0md30/++yzWL16NXbu3IkpU6agtLRU53asS5cu8aZ7sml6r0+7cUQtiY+vr6+1Q6g1xi7WBABqtRqvvvoq5s+fX6OJRqqrpKREZ50KczM5US9evBiOjo4YNGgQ1q9fj5iYGDz55JMA7r9JO3bs4DzaZNP0Xp92Ybc3iYtEIjF7V6tYmLJYEwB8+OGHCAgIqNEkI8Z47rnn8Oeff9Za/SZ3fTdr1gwXL17EuXPn4OnpiZCQEO224uJifP7551xukmyWUF5e+fq0RAKpi4t1AiIywN3d3ea6vQsLC5Gfn699LpfLIddzSamqxZouXLigt+5jx45hw4YNNVpW0lirV69GdHQ0Fi1ahDfffNPsPRw1WlHA0dERbdq00UnSwP0PTv/+/SuVE9kKfdenpS4uXISDRMfLy8vaIRgtKipKZxXDitkma6qgoAAjRozA+vXrLTq4rnnz5rh69SrmzJmDgIAAuLq66qwp4eHhAU9PT5Prr9HNoPn5+Vi9ejV+/fVXZGRkaIenZ2dnY9OmTXjxxRd1lsIkshWakpJKZez2JjGyxXunDx8+jPDwcO1zfa1pwPjFmq5cuYLU1FT069dPW1axFoSDgwMuXryIpk2bmuEV6Bo0aBAkEonZ661gcqK+desWoqKicPPmTTz++OO4cOECCgsLAQA+Pj5Yu3Ytrl+/jhUrVpgtWCJLEfS1qDk1I4mQuw2u4ubm5latHxgPLtY0YMAAAP8s1qRvBssWLVrgv//9r07Z7NmzUVBQgBUrVtTaPOibNm2qlXormJyo33vvPRQUFCA5ORkBAQGVhskPGDAAu3fvrnGARJYmqNXQ/G+t9QoSR0felkWi4+rqavfrThuzWJNCoUBYWJjO8RWXBh4utyUmX3Dbv38/Jk2ahNDQUL1N/iZNmuDmzZs1Co7IGvR1e3NJSxIjW+z2NtbQoUPxySefYO7cuQgPD0dycnKlxZru3r1r5Sjvx/HWW2+hefPm8Pb2xpEjRwDcHxA3adIknD592uS6Tf4pVlJSAn9/f4PbCwoKTK2ayKr0TxvK0d4kPrbY7W0KYxdrelBtd0sDwLlz59C5c2doNBpERkYiJSUFKpUKwP3r7MeOHUNRURE2bNhgUv0mt6hDQ0O1vxj02bVrF9q2bWtq9URWo7dF7cwWNYlPXWhR24L3338fXl5euHTpErZs2QJBEHS29+nTB0ePHjW5fpMT9ZQpU7Bt2zYsXrwYeXl5AO5f5E9JScGIESOQlJRUo4WyiaxBEARoSnUTtVSu4GpZJDqOjo5QKBTWDoMAHDlyBG+//Tb8/f31Xgpu2LAhbt++bXL9Jn/7vPbaa7h+/Tpmz56tneP7+eefhyAIkEqlWLRokXaUHpGt0JSWAg/9Gub1aRIjDw+PWr0liKpPo9HApYrJkDIzMw3eglYdNWomzJo1CyNGjMAPP/yAlJQUaDQaNG3aFC+99JJF5lclMjdBX7c3r0+TCNVkAg0yr6eeegp79uzBO++8U2mbSqXCtm3btCtLmqLG/XkNGzZkFzfZjYe7vSGRQOrMRE3iw+vT4jFjxgz07dsXb7/9NoYNGwbg/qQsv/zyCxYtWoTz58/j888/N7l+k69Rnzp1CqtXrza4ffXq1Rada5XIHB4eSCZVOHPaUBIdmUwGN66LLhovvPACNm3ahO3bt6N79+4A7l8e7tWrF06dOoVvvvkGXbp0Mbl+k1vUs2bNgrOzs96mPgAcOnQIe/fu5aQnZDMEVTkEle5CHFyEg8TI3d2d16dFZsSIEXjppZdw4MABXL58WXspODo6usa30ZmcqE+ePIkZM2YY3N65c2ezTbROZAn6JzphoibxYbe3eBQXF6NBgwaYPn063nvvvVoZRG1yn15BQUGVU9dJpVLtbVtEtkD9cKKWSCBVOFsnGKIq1JWJTmyBi4sLHBwc4FqLawGYnKgff/xx7N+/3+D2hIQEjvwmm/LwiG9enyax4vVpcRk0aBC+//77ShOdmIvJ30JjxozBnj17EBMTg9zcXG15bm4upk6dioSEBIwZM8YcMRLVOkEQoCkr1SljtzeJkUQigZOTk7XDoAcMGzYMGRkZ6NatG7799lv89ttvOHXqVKWHqUy+Rj1p0iQkJycjPj4en332GerVqwcAuHPnDjQaDUaMGMHbtshm6J/ohImaxIeDyMSna9eu2r/rmypUEARIJBKo1WqT6jc5UUskEnz11VcYOXIkfvjhB1y9ehUA0L9/fwwaNEgncCKxE8p4fZpsAxO1+Hz11Ve1Wn+NJzzp1q0bunXrZo5YiKxGU/JQtzevT5NIMVGLz6hRo2q1fpO/ia5du4aff/7Z4Paff/4ZqampplZPZFGa0ocStTNb0yROTNTidvfuXfznP/9BUVGR2eo0OVG/++67+OyzzwxuX7VqFaZPn25q9UQWI6jVEJRlOmWcNpTExtfXF56envD19bV2KKTH//t//w8tWrTAY489hqeeegp//PEHACArKwtt27bFzp07Ta7b5ESdlJSEnj17Gtz+3HPP1Wj9TSJLqTS/N9iiJvHZvHkzPvzwQ2zZssXaodBDfv75Z7z00kvw8/NDbGyszm1afn5+qF+/PjZt2mRy/SYn6pycnCpvundzc8O9e/dMrZ7IYoSHu73lckhkMitFQ2SYo6Mju75F6MMPP0SXLl1w7NgxTJgwodL2Dh064PTp0ybXb3KibtiwIX777TeD248ePYrHHnvM1OqJLEb9UKKWsNubRIr3T4vTmTNn8PLLLxvcHhgYiIyMDJPrNzlRDx8+HP/+97/x2WefQaPRaMvVajVWrFiB7du345VXXjE5MCJLqbRiFru9SaQcHR2tHQLp4eLiUuXgsatXr9ZobIHJiXrGjBno1q0bpkyZguDgYHTp0gVdunRBvXr1MHXqVERFRWHWrFkmB0ZkCYJSCahVOmUytqhJpJioxalbt274+uuvoVKpKm1LS0vD+vXr0atXL5PrNzlRy+Vy7N+/Hxs2bEBERASysrKQlZWFiIgIbNy4Eb/88gvkcrnJgRFZgvqhgWQSB0dI+GVIIlXVQkhkPQsXLsStW7fw9NNPY+3atZBIJNi3bx9mz56NVq1aQRAExMbGmlx/jf7VpVIpRo8ejdGjR9ekGiKreXjEN7u9ScxkHOQoSs2bN8exY8cwefJkzJkzB4IgYOnSpQDuTy+6atUqhISEmFw/f55RnaZvxSwisWKiFoe///4bjRo1gqenp7bsySefxC+//IKcnBykpKRAo9GgSZMm8Pf3r/H5TE7U3bt3f+Q+EokEBw8eNPUURLVK0GigKdOd6ETCFjWJGBO1OLRt2xabN2/WDpju3r07Zs2aheeeew7e3t54+umnzXo+k69RazQaCIKg81CpVLhy5QoSExNx69YtndHgRGJTacUsiQRShcJ6ARE9AhO1ODg7O6O4uFj7PDExEenp6bV2PpNb1ImJiQa37d69G+PHj8fy5ctNrZ6o1unr9uZkEiRmUi4UIwpt2rTB8uXLIZPJtN3ff/75JxSP+KH/0ksvmXS+WrlG3bdvX7z22muYMmUKDh8+XBunIKqxh0d88/o0iR0TtTjEx8djyJAhGDNmDID7l3lXrFiBFStWGDzGKutRP0rTpk3x+eef11b1RDXGiU7I1rDHRxyefvpppKSk4MqVK0hPT0fXrl0xc+bMKte/qIlaSdQqlQrfffcd/Pz8aqN6ohrTlJVVmuiEiZrEjolaHH766Se0b98ezZs3R/PmzTFq1Cj069cPkZGRtXI+kxP1G2+8obc8NzcXv//+O9LS0ky+Rr1q1SosXboUaWlpaNOmDVauXImIiIhHHrdt2zYMHz4c/fv3x65du0w6N9UND7emJQ6OkHAyCRI5JmpxGDhwoM6o78OHD2PgwIG1dj6Tv5kOHTpU6UMjkUjg7e2NTp06YezYsSZNmbZ9+3bExMRgzZo1iIyMRHx8PKKjo3Hx4kUEBAQYPC41NRXvvvsuOnfubPQ5qe7RlBTrPOdobyKqLnd3d+Tm5mqfp6amorCwsNbOZ3KiTk1NNWMY/1i+fDnGjRunne1szZo12LNnDzZu3Ijp06frPUatVuPVV1/F/PnzcfToUZ03kEifSoma3d5kA9iiFoeIiAgsXLgQ6enp2lHfe/fuRVpamsFjJBIJpk6datL5TE7UycnJOH/+PIYPH64t27dvHxYuXIiysjK88sormDx5slF1KpVKnDx5EjNmzNCWSaVS9OjRA0lJSQaP+/DDDxEQEIAxY8bg6NGjxr8YqlMElQpCeblOmYQjvomomlavXo2RI0diwYIFAO4n4a1bt2Lr1q0Gj7FKon7//ffh4uKiTdTXrl3DwIED4evri3r16iEmJgbOzs4YP358tevMysqCWq1GYGCgTnlgYCAuXLig95hjx45hw4YNSE5OrtY5ysrKUPbAbFS12V1B4vRwaxrgRCdEVH3NmjXD8ePHUVpaioyMDISEhCA+Ph79+/evlfOZnKj/85//4L333tM+/+abbyCTyXD69Gn4+flh6NChWLNmjVGJ2lgFBQUYMWIE1q9fX+0R5nFxcZg/f36txUTip36421vuBAnvTyUbwK5vcVEoFGjYsCFiY2PRvXt3NGrUqFbOY3KizsvL01kIe+/evejZs6c2Yfbs2RP/93//Z1Sdfn5+kMlklaZiS09PR1BQUKX9r1y5gtTUVPTr109bVjFtqYODAy5evIimTZvqHDNjxgzExMRonycnJyMqKsqoOMm2CcW6iZrd3kRUEzVZwrI6TE7UwcHBOH/+PADg7t27OHnypM5yl4WFhUbPouPk5IR27drh4MGDGDBgAID7iffgwYOYOHFipf1btGiB//73vzpls2fPRkFBAVasWIEGDRpUOkYul+usk+3m5mZUjGTbBLW60kIcnJGMbAVb1OLwxhtvQCKRYN26dZDJZAZvV36QRCLBhg0bTDqfyYm6f//+WLlyJUpLS/HHH39ALpfr3Ef2n//8B02aNDG63piYGIwaNQrt27dHREQE4uPjUVRUpP0RMHLkSNSvXx9xcXFQKBQICwvTOd7LywsAKpUTAYCm+OHr04DUmdeniaj6Dh06BKlUCo1GA5lMpvd25YfV5EeWyYn6o48+QmZmJjZv3gwvLy9s2rRJOwgsPz8f33//PSZMmGB0vUOHDkVmZibmzp2LtLQ0hIeHIyEhQVv3jRs3ON8tmUxdUqRbIJVC4iTXvzORyLBFLQ4P355cW7crVzA5Ubu5ueHbb781uO3WrVtwcXExqe6JEyfq7eoGql61CwA2bdpk0jmpbhCKH16IQ8EvP7IZ/KzWTbUyZ6JUKtXeBE4kFnqvTzub9mOSyBqYqMVBKpWa9G8hutWziMTm/vVpQaeMA8nIljBRi8PcuXMr/Vvs3LkTZ8+eRXR0NJo3bw4AuHDhAvbv34+wsDDtAGlTMFFTnfHw/dMApw4l28JELQ7z5s3Teb5u3TpkZGTgzJkz2iRd4fz58+jevTvq1atn8vk4KovqDKFYdyCZxEkOiUxmpWiIjFdXE/WqVasQEhIChUKByMhInDhxwuC+69evR+fOneHt7Q1vb2/06NGjyv3NYenSpZg4cWKlJA0ALVu2xMSJE7FkyRKT62eipjpBUKn03D/N27KIxK5iRcXY2FicOnUKbdq0QXR0NDIyMvTun5iYiOHDh+PXX39FUlISGjRogF69euH27du1FuOtW7fg6OhocLujoyNu3bplcv1M1FQnqB9qTQMcSEa2py62qB9cUTE0NBRr1qyBi4sLNm7cqHf/b7/9Fu+88w7Cw8PRokULfPnll9qJs2pLWFgYVq9erffHwK1bt7B69Wq0atXK5Pp5jZrqBP0TnfD6NNkWe0nUhYWFyM/P1z5/eMbICqauqPig4uJilJeXw8fHp+aBG/Dpp58iOjoaTzzxBAYOHIhmzZoBAC5fvoxdu3ZBEARs2bLF5PqZqKlO0DzcopbJINXzxUAkZvaSqB9eXyE2NrbSAC3AtBUVH/bBBx+gXr166NGjh8nxPkqnTp3wxx9/YM6cOdi5cydKSu7P1+Ds7Izo6GjMnz+fLWqiqmiUykrrT7Pbm8h6Dh8+jPDwcO1zfa1pc/j444+xbds2JCYmQlHLY1LCwsKwc+dOaDQaZGZmAgD8/f3NMpMmEzXZvUqtaQAydnsTWY2bmxs8PDweuZ+xKyo+6JNPPsHHH3+MX375Ba1bt65RvMaQSqWVegBqXKdZayMSIU1R5UQtYaImG2QvXd/V9eCKihUqBoZ16NDB4HFLlizBggULkJCQgPbt21si1FrFFjXZNUEQKo/4lko5IxmRjTBmRUUAWLx4MebOnYutW7ciJCQEaWlpAO634m11WWMmarJrmpISQKPRKZPKuRAHka0wdkXFL774AkqlEoMHD9apx9CANVvARE12TVNUWKmMA8mIbIsxKyrW9pKT1sBr1GTX9F2flrqw25uIbAcTNdmt+9OGluoWSiRsUZPNMsetPmR7+K9Odkutr9tbroCEX3ZEZEP4jUV2S1OoJ1G7sDVNRLaFiZrskt7bssBETUS2h4ma7JKmuKjSbVm8Pk1EtoiJmuwSr08Tkb3gtxbZJV6fJiJ7wURNdkdTVlpptSyAiZqIbBMTNdkdtZ7WNCQSSF1cLR8MEVENMVGT3dEU5Fcqkzo7c35vIrJJTNRkVzRKJTRlZZXKZS62uWoOERETNdkVTUGB3nJenyYiW8VETXZFXVi52xsyGSQKheWDISIyAyZqshuCUglNaWmlcpmzC69PE5HNYqImu6EuNNDt7crR3kRku5ioyW6o8/V0ewOQuXIgGRHZLiZqsguasrLKa08DkDjJIXF0tEJERETmwURNdsFQa5rd3kRk65ioyS6o9UxyAgAyJmoisnFM1GTz1CXFEMqVlTdIpZw2lIhsHhM12Tx1Xp7ecilvyyIiO8BETTZN0GgMd3u7sTVNRLaPiZpsmrogH9Bo9G6TubpbOBoiIvNjoiabZrDbW67gbVlEZBeYqMlmaZRKaEqK9W6TunGSEyKyD0zUZLNUuTkGt3E2MiKyF0zUZJMEjQbqvFy92yQOjpA6O1s2ICKiWsJETTZJnZ9ncBAZu72JyJ4wUZNNUudU0e3NRE1EdkSUiXrVqlUICQmBQqFAZGQkTpw4YXDf9evXo3PnzvD29oa3tzd69OhR5f5k+9TFRdAoy/RvlDlwNjIisiuiS9Tbt29HTEwMYmNjcerUKbRp0wbR0dHIyMjQu39iYiKGDx+OX3/9FUlJSWjQoAF69eqF27dvWzhyshTVvSyD22RubpyNjIjsiugS9fLlyzFu3DiMHj0aoaGhWLNmDVxcXLBx40a9+3/77bd45513EB4ejhYtWuDLL7+ERqPBwYMHLRy5OK1duxbLli3D2rVrrR2KWWhKSqAp1n9LFgDI3DjJCRHZF1ElaqVSiZMnT6JHjx7aMqlUih49eiApKaladRQXF6O8vBw+Pj56t5eVlSE/P1/7KCwsNEvsYlVYWGhXr1OVfc/wRqmUy1oSkd0RVaLOysqCWq1GYGCgTnlgYCDS0tKqVccHH3yAevXq6ST7B8XFxcHT01P7iIqKqnHcZBmasjKoq/jBIXNzZ7c3EdkdUSXqmvr444+xbds27Ny5EwqFQu8+M2bMQF5envZx+PBhC0dJplJlZQIQDG6XeXhYLhgiIgtxsHYAD/Lz84NMJkN6erpOeXp6OoKCgqo89pNPPsHHH3+MX375Ba1btza4n1wuh1wu1z534608NkFdUgJ1YYHhHTjam4jslKha1E5OTmjXrp3OQLCKgWEdOnQweNySJUuwYMECJCQkoH379pYIlSxMlaV/1H8FmQe7vYnIPomqRQ0AMTExGDVqFNq3b4+IiAjEx8ejqKgIo0ePBgCMHDkS9evXR1xcHABg8eLFmDt3LrZu3YqQkBDttWw3Nze2lu2EuqCgypHeACBz97RQNEREliW6RD106FBkZmZi7ty5SEtLQ3h4OBISErQDzG7cuAGp9J+OgC+++AJKpRKDBw/WqSc2Nhbz5s2zZOhUCwSNBuWZ6VXuI3F0goxzexORnRJdogaAiRMnYuLEiXq3JSYm6jxPTU2t/YDIalT3siCUl1e5j8yTrWkisl+iukZN9CBNWSlUOdmP2EsCByZqIrJjTNQkSoJGA+WdO4Bg+HYsAJC6ukDi4GihqIiILE+UXd9kPhUD6mxtYF15VgYEQwtvPMDB06v2gyEisiK2qG2MIAhGPcaPH4+YmBiMHz/eqOOsSZWXW+UylloyB0g5tzeR3TNmRUUA2LFjB1q0aAGFQoFWrVph7969Foq0drBFbQOcnJwgkUiskkCbNm0Kb29vs9VX8UNAo9FArVZDrVajvLwc5eXlUCqVKMnJRnl69aaLdfD05L3TRHauYkXFNWvWIDIyEvHx8YiOjsbFixcREBBQaf/jx49j+PDhiIuLQ9++fbF161YMGDAAp06dQlhYmBVeQc0xUdsAX19fTJgwAUql0qLndXJygq+vr8XOp87PR1FWOlSB/ihTqVBarkJxeTlKystRqlI9NHuoBA5e5vsBQUTi9OCKigCwZs0a7NmzBxs3bsT06dMr7b9ixQo8//zzeO+99wAACxYswIEDB/D5559jzZo1Fo3dXJiobYQlE6Y1qHJzUPzf/0BQqyCTSuHi5AQXJydUrIGm1mhQrCxHoVKJwrIylMudIXHkIDIyL7VaDY1GY/Rx5eXlUKlUKCoqgkqlqoXIal9ZWRlUKpW2h6s2VLw3Fav6VXh4aucKFSsqzpgxQ1v2qBUVk5KSEBMTo1MWHR2NXbt2meEVWAcTNVld2c3rKLt6BYJg+AtSJpXCXSGHu0IOwB2OLcNQKJEiNzcXBQVVzAFOZIQFCxZg/vz51g7D7j28aqGhCaqqWlHxwoULeutOS0ur0QqMYsRETVajystF2bUrUOVWY+DYA2SubnAJDIILgICAAJSXlyM7OxvZ2dkofsRUo0RVmTNnDmbNmmXSsUql0mZb0xUcHBzg5ORUa/WfPn0akZGROHz4MMLDw7Xl+lrT9A8mahuhTLsLoazUoufUqFRw9DFvl7ug0UBdkA9VdjbU+bkm1eHUMETnuaOjIwIDAxEYGIji4mJkZWXh3r17JnVhUt0mk8kgk8lMOtaRl2IeycHhfspxc3ODRzWWpTVlRcWgoCCTVmAUMyZqG6BMu4sbM2IevaO5CQJ8Bg4R1RSdUoUzHAMCDW53cXFBw4YNUb9+fWRlZSEjI8Pig/CIyDweXFFxwIABAP5ZUdHQNNMdOnTAwYMHMWXKFG3ZgQMHqlyBUeyYqG2ApVvSOucWWVeevEGjat2SJZPJEBgYiICAAOTk5ODu3bsoLbXe+0hEpjF2RcXJkycjKioKy5YtQ58+fbBt2zb89ddfWLdunTVfRo0wUdsaI+8bHvjTPmSWlMDf2Rk7X4yu/oFWnvREH6mTHI7B9Yw6RiKRwMfHBz4+PsjJycGdO3eYsIlsiLErKj777LPYunUrZs+ejZkzZ+Lxxx/Hrl27bPYeaoCJ2u5llpQgvbjE2mGYhbxRY0ikpk+m5+3tDS8vL2RnZ+POnTvsEieyEcasqAgAQ4YMwZAhQ2o5KsthoiabIFW4GN2a1kcikcDX1xfe3t7IyMjA3bt3OeiMiESNc32TTZA3blKj1vTDpFIpgoKCEBYWBh8fn0cfQERkJUzUJHoyd084BdbOrRWOjo5o3LgxnnjiCSgUilo5BxFRTTBRk8hJ4PxE81o/i7u7O0JDQ9GgQQOT76MlIqoNvEZNouZU/zHI3B89MYI5SCQSBAQEwNfXF3fv3kVGRobVl/wkImKLmkRLKldA0bipxc8rk8nw2GOPoVWrVvD39+dSmkRkVUzUJFISOLd8EhIH63X6ODo6omHDhggLC0NAQIDOvZpERJbCrm8SJXnDRqJZb9rJyQkNGjRAcHAwMjMzkZGRYfOLLxCR7WCiJtFx8PKGPKSJtcOoxMHBAcHBwQgKCkJOTg4yMzNRWFho7bCIyM4xUds5f2dnnT/FTuriCpcnW5v1nmlze3Ba0tLSUty7dw/Z2dmc6YyIagUTtZ0zan5vK5PKFXBt1QYSG1ouUKFQoH79+qhfvz4KCwuRk5ODvLw8lJWVWTs0IrITTNQkClJnF7i2eQpSG550xM3NDW5ubmjQoAFKSkqQn5+PgoICFBYWQq1WWzs8IrJRTNRkdQ6+/nBu3hJSJydrh2I2zs7OcHZ2RmBgIARBQElJCYqKilBcXIzi4mKUlpZyjnEiqhYmarIaqVwBeaPGcKpX39qh1IggCPeXBf3fQ6hIwIIAQAA0AhQSQO7qCh8Xl/tlAJTKcpSVlUGpVKK8XIny8nKoVGpoNBqo1WoIggBzT7dSLhEgEQSjl0slIuthoqaqSSWQSMw4sEsmg8zNHQ7ePnDw84dEKoGmpBhARV6rSE3C//JZRQIEhP8lvX/KhH9mDtNo/nkuaO7v99BzQRDu76fRQBD+9+f/jtP794o6NZr7dQgP1PFg3TUgASD/38MSVPl5yLHQuYjIPJioqWoa4X5SMxeVBqrcbKhys4FrKearl4jITon3HhgiIiJioiYiIhIzJmoiIiIRY6ImIiISMSZqIiIiEWOiJiIiEjEmaiIiIhFjoiYiIhIxJmoiIiIRY6ImIiISMSZqIiIiEWOiJiIiEjEmaiIiIhFjoiYiIhIxUSbqVatWISQkBAqFApGRkThx4kSV++/YsQMtWrSAQqFAq1atsHfvXgtFSkREVLtEl6i3b9+OmJgYxMbG4tSpU2jTpg2io6ORkZGhd//jx49j+PDhGDNmDE6fPo0BAwZgwIABOHPmjIUjJyIiMj/RJerly5dj3LhxGD16NEJDQ7FmzRq4uLhg48aNevdfsWIFnn/+ebz33nto2bIlFixYgKeeegqff/65hSMnIiIyP1ElaqVSiZMnT6JHjx7aMqlUih49eiApKUnvMUlJSTr7A0B0dLTB/cvKypCfn699FBYWmu8FWIIgWOZB9s9SnyV+nohqxMHaATwoKysLarUagYGBOuWBgYG4cOGC3mPS0tL07p+WlqZ3/7i4OMyfP988AVuIRK6w2rndnu0Mp6Bgq52fzEuZdhc5u3dZ7fzW/CwT2SpRJWpLmDFjBmJiYrTPk5OTERUVZcWIHs0pKBgN45ZDKCu16HklcgWTtJ2RB9ezymcJ4OeJyFSiStR+fn6QyWRIT0/XKU9PT0dQUJDeY4KCgozaXy6XQy6Xa5+7ubnVMGrL4BccmQs/S0S2RVTXqJ2cnNCuXTscPHhQW6bRaHDw4EF06NBB7zEdOnTQ2R8ADhw4YHB/IiIiWyKqFjUAxMTEYNSoUWjfvj0iIiIQHx+PoqIijB49GgAwcuRI1K9fH3FxcQCAyZMnIyoqCsuWLUOfPn2wbds2/PXXX1i3bp01XwYREZFZiC5RDx06FJmZmZg7dy7S0tIQHh6OhIQE7YCxGzduQCr9pyPg2WefxdatWzF79mzMnDkTjz/+OHbt2oWwsDBrvQQiIiKzkQhC3b534tSpU2jXrh1OnjyJp556ytrhEBHZLX7fmkZU16iJiIhIFxM1ERGRiDFRExGRzcvOzsarr74KDw8PeHl5YcyYMVXOPJmdnY1//etfaN68OZydndGwYUNMmjQJeXl5Foy6epioiYjI5r366qs4e/YsDhw4gN27d+PIkSMYP368wf3v3LmDO3fu4JNPPsGZM2ewadMmJCQkYMyYMRaMunpEN+qbiIjIGOfPn0dCQgL+/PNPtG/fHgCwcuVK9O7dG5988gnq1atX6ZiwsDD88MMP2udNmzbFwoUL8dprr0GlUsHBQTzpkS1qIiKyaUlJSfDy8tImaQDo0aMHpFIp/vjjj2rXk5eXBw8PD1ElaYAtaq3z589bOwQiMrPg4GAEB5t/ytS7d+/i7t27Zq/X3lV8zxYWFiI/P19b/vDUzsZKS0tDQECATpmDgwN8fHwMLtD0sKysLCxYsKDK7nKrEeq4O3fuCFFRUQIAPvjgw84esbGxtfK9ERsba/XXZquPRo0aVfvf6YMPPnhkfefPnxcWLlwoPPHEE5WO9/f3F1avXv3If8+8vDwhIiJCeP755wWlUlnTj4fZ1fkJTwD7/nVcWFiIqKgoHD582GYWICFxssXPkj21qG3x/dfHx8cHPj4+OmWGWtSZmZm4d+9elfU1adIEW7ZswbRp05CTk6MtV6lUUCgU2LFjBwYOHGjw+IKCAkRHR8PFxQW7d++GQiG+pViZqO1cfn4+PD09tddeiEzFz5J18f037Pz58wgNDcVff/2Fdu3aAQD279+P559/Hrdu3dI7mAy4/55GR0dDLpdj7969cHFxsWTY1cbBZEREZNNatmyJ559/HuPGjcOJEyfw22+/YeLEiRg2bJg2Sd++fRstWrTAiRMnANxP0r169UJRURE2bNiA/Px8pKWlIS0tDWq12povpxIOJiMiIpv37bffYuLEiXjuuecglUoxaNAgfPbZZ9rt5eXluHjxIoqLiwHcn3e8YkR4s2bNdOq6du0aQkJCLBb7ozBR2zm5XI7Y2NgajagkAvhZsja+/1Xz8fHB1q1bDW4PCQnBg1d6u3btClu58str1ERERCLGa9REREQixkRNREQkYkzUVG2pqamQSCTYtGmTtUMhIqozmKhryZUrV/Dmm2+iSZMmUCgU8PDwQMeOHbFixQqUlJTU2nnPnTuHefPmITU1tdbOUR0LFy7Eiy++iMDAQEgkEsybN8+q8dQFEomkWo/ExMQan6u4uBjz5s0zqi57/0zw/afawlHftWDPnj0YMmQI5HI5Ro4cibCwMCiVShw7dgzvvfcezp49i3Xr1tXKuc+dO4f58+eja9euVr29YPbs2QgKCkLbtm2xb98+q8VRl2zevFnn+TfffIMDBw5UKm/ZsmWNz1VcXIz58+cDuD96tjrs/TPB959qCxO1mV27dg3Dhg1Do0aNcOjQIZ3pCydMmICUlBTs2bPHihH+QxAElJaWwtnZ2ex1V9yHmJWVBX9/f7PXT5W99tprOs9///13HDhwoFK5tdj7Z4LvP9UWdn2b2ZIlS1BYWIgNGzbonWO4WbNmmDx5sva5SqXCggUL0LRpU8jlcoSEhGDmzJkoKyvTOS4kJAR9+/bFsWPHEBERAYVCgSZNmuCbb77R7rNp0yYMGTIEANCtW7dKXW0Vdezbtw/t27eHs7Mz1q5dCwC4evUqhgwZAh8fH7i4uOCZZ56p0Q8KMU0WQP/QaDSIj4/Hk08+CYVCgcDAQLz55ps6cyQDwF9//YXo6Gj4+fnB2dkZjRs3xhtvvAHg/liFii/6+fPnaz9nj+pK5WeC7z+Zhi1qM/v555/RpEkTPPvss9Xaf+zYsfj6668xePBgTJs2DX/88Qfi4uJw/vx57Ny5U2fflJQUDB48GGPGjMGoUaOwceNGvP7662jXrh2efPJJdOnSBZMmTcJnn32GmTNnarvYHuxqu3jxIoYPH44333wT48aNQ/PmzZGeno5nn30WxcXFmDRpEnx9ffH111/jxRdfxPfff1/lhPZkW958801s2rQJo0ePxqRJk3Dt2jV8/vnnOH36NH777Tc4OjoiIyMDvXr1gr+/P6ZPnw4vLy+kpqbixx9/BAD4+/vjiy++wNtvv42BAwfipZdeAgC0bt3ami/NJvD9J5NYbd0uO5SXlycAEPr371+t/ZOTkwUAwtixY3XK3333XQGAcOjQIW1ZxdJwR44c0ZZlZGQIcrlcmDZtmrZsx44dAgDh119/rXS+ijoSEhJ0yqdMmSIAEI4ePaotKygoEBo3biyEhIQIarVaEARBuHbtmgBA+Oqrr6r1+gRBEDIzM2t1uUEybMKECcKD/8WPHj0qABC+/fZbnf0SEhJ0ynfu3CkAEP7880+Dddfk37WufCb4/pO5sOvbjCoWQnd3d6/W/nv37gUAxMTE6JRPmzYNACp1PYeGhqJz587a5/7+/mjevDmuXr1a7RgbN26M6OjoSnFERESgU6dO2jI3NzeMHz8eqampOHfuXLXrJ/HasWMHPD090bNnT2RlZWkf7dq1g5ubG3799VcAgJeXFwBg9+7dKC8vt2LE9oXvP5mKidqMKpaeKygoqNb+169fh1QqrTQhfFBQELy8vHD9+nWd8oYNG1aqw9vbu9L1rao0btxYbxzNmzevVF7RZf5wHGSbLl++jLy8PAQEBMDf31/nUVhYiIyMDABAVFQUBg0ahPnz58PPzw/9+/fHV199VWncBBmH7z+ZiteozcjDwwP16tXDmTNnjDpOIpFUaz+ZTKa3XDBiuvbaGOFNtkGj0SAgIADffvut3u0VA5QkEgm+//57/P777/j555+xb98+vPHGG1i2bBl+//13uLm5WTJsu8H3n0zFRG1mffv2xbp165CUlIQOHTpUuW+jRo2g0Whw+fJlnQFf6enpyM3NRaNGjYw+f3WT/sNxXLx4sVL5hQsXtNvJ9jVt2hS//PILOnbsWK0fbM888wyeeeYZLFy4EFu3bsWrr76Kbdu2YezYsSZ9zuo6vv9kKnZ9m9n7778PV1dXjB07Funp6ZW2X7lyBStWrAAA9O7dGwAQHx+vs8/y5csBAH369DH6/K6urgCA3Nzcah/Tu3dvnDhxAklJSdqyoqIirFu3DiEhIQgNDTU6DhKfl19+GWq1GgsWLKi0TaVSaT8zOTk5lXppwsPDAUDb/eri4gLAuM9ZXcf3n0zFFrWZNW3aFFu3bsXQoUPRsmVLnZnJjh8/jh07duD1118HALRp0wajRo3CunXrkJubi6ioKJw4cQJff/01BgwYgG7duhl9/vDwcMhkMixevBh5eXmQy+Xo3r07AgICDB4zffp0/Pvf/8YLL7yASZMmwcfHB19//TWuXbuGH374AVKp8b/nNm/ejOvXr2sXaT9y5Ag++ugjAMCIESPYSreCqKgovPnmm4iLi0NycjJ69eoFR0dHXL58GTt27MCKFSswePBgfP3111i9ejUGDhyIpk2boqCgAOvXr4eHh4f2x6WzszNCQ0Oxfft2PPHEE/Dx8UFYWBjCwsIMnr+ufyb4/pPJrDzq3G5dunRJGDdunBASEiI4OTkJ7u7uQseOHYWVK1cKpaWl2v3Ky8uF+fPnC40bNxYcHR2FBg0aCDNmzNDZRxDu31rVp0+fSueJiooSoqKidMrWr18vNGnSRJDJZDq3ahmqQxAE4cqVK8LgwYMFLy8vQaFQCBEREcLu3bt19jHm9qyoqCgBgN6HvlvHyPwevj2owrp164R27doJzs7Ogru7u9CqVSvh/fffF+7cuSMIgiCcOnVKGD58uNCwYUNBLpcLAQEBQt++fYW//vpLp57jx48L7dq1E5ycnKp1u09d+0zw/SdzkQiCESORiIiIyKJ4jZqIiEjEmKiJiIhEjImaiIhIxJioiYiIRIyJmoiISMSYqImIiESMidpKlixZghYtWkCj0Vg7lBobNmwYXn75ZWuHUWfxs2QfUlNTIZFIsGnTJmuHQiLDRG0F+fn5WLx4MT744APtrF8SiQQSiQTLli2rtP+mTZsgkUjw119/mT2Wnj17QiKRYOLEiXq3b9iwAS1btoRCocDjjz+OlStXVtrngw8+wA8//ID//Oc/Zo+PqsbPEpH9Y6K2go0bN0KlUmH48OGVti1dulQ7xV9t+/HHH3Xm937Y2rVrMXbsWDz55JNYuXIlOnTogEmTJmHx4sU6+7Vt2xbt27fXmxiodvGzZD8aNWqEkpISjBgxwtqhkNhYe2q0uqh169bCa6+9plMGQAgPDxcACMuWLdPZ9tVXXwkAhD///NNsMZSUlAghISHChx9+KAAQJkyYoLO9uLhY8PX1rTTl6Kuvviq4uroK2dnZOuWffPKJ4OrqKhQUFJgtRno0fpaI7B9b1BZ27do1/P333+jRo0elbR07dkT37t2xZMkSlJSU1GocS5YsgUajwbvvvqt3+6+//op79+7hnXfe0SmfMGECioqKsGfPHp3ynj17oqioCAcOHKi1mEkXP0viM2/ePEgkEly6dAmvvfYaPD094e/vjzlz5kAQBNy8eRP9+/eHh4cHgoKCdHoO9F2jfv311+Hm5obbt29jwIABcHNzg7+/P959912o1WrtfomJiZBIJEhMTNSJR1+daWlpGD16NB577DHI5XIEBwejf//+SE1NraV3hWqKidrCjh8/DgB46qmn9G6fN28e0tPT8cUXX1RZT1lZGbKysqr1eNiNGzfw8ccfY/HixQbXxT19+jQAoH379jrl7dq1g1Qq1W6vEBoaCmdnZ/z2229Vxk3mw8+SeA0dOhQajQYff/wxIiMj8dFHHyE+Ph49e/ZE/fr1sXjxYjRr1gzvvvsujhw5UmVdarUa0dHR8PX1xSeffIKoqCgsW7YM69atMym2QYMGYefOnRg9ejRWr16NSZMmoaCgADdu3DCpPqp9XObSwi5cuAAAaNy4sd7tnTt3Rrdu3bB06VK8/fbbBr/8/v3vf2P06NHVOqfw0Lor06ZNQ9u2bTFs2DCDx9y9excymazS8phOTk7w9fXFnTt3dModHBzQoEEDnDt3rloxUc3xsyReERERWLt2LQBg/PjxCAkJwbRp0xAXF4cPPvgAADB8+HDUq1cPGzduRJcuXQzWVVpaiqFDh2LOnDkAgLfeegtPPfUUNmzYgLffftuouHJzc3H8+HEsXbpUpwdkxowZxr5EsiAmagu7d+8eHBwc4ObmZnCfefPmISoqCmvWrMHUqVP17hMdHW1S1+Cvv/6KH374AX/88UeV+5WUlMDJyUnvNoVCobc71dvbW2+ri2oHP0viNXbsWO3fZTIZ2rdvj1u3bmHMmDHaci8vLzRv3hxXr159ZH1vvfWWzvPOnTtj8+bNRsfl7OwMJycnJCYmYsyYMfD29ja6DrI8JmoR6tKlC7p164YlS5ZU+g9aITg4GMHBwUbVq1KpMGnSJIwYMQJPP/10lfs6OztDqVTq3VZaWqq3dSYIAiQSiVExUe3iZ8k6GjZsqPPc09MTCoUCfn5+lcrv3btXZV0KhQL+/v46Zd7e3sjJyTE6LrlcjsWLF2PatGkIDAzEM888g759+2LkyJEICgoyuj6yDCZqC/P19YVKpUJBQQHc3d0N7hcbG4uuXbti7dq18PLyqrS9pKQEeXl51TpnxX/Ab775BhcvXsTatWsrDRwpKChAamoqAgIC4OLiguDgYKjVamRkZOh0WSqVSty7dw/16tWrdJ6cnBw8/vjj1YqJao6fJfGSyWTVKgMqX06o7nEPMvSj5sEBZxWmTJmCfv36YdeuXdi3bx/mzJmDuLg4HDp0CG3btn3kucjyOJjMwlq0aAHg/ojdqkRFRaFr165YvHix3q7B7du3a1tCj3pUuHHjBsrLy9GxY0c0btxY+wDuf/E2btwY+/fvBwCEh4cDQKWJMf766y9oNBrt9goqlQo3b95Ey5YtjXo/yHT8LFGFii7s3NxcnfLr16/r3b9p06aYNm0a9u/fjzNnzkCpVNbJe9dtBVvUFtahQwcA97+kWrduXeW+8+bNQ9euXfWO7jTluuKwYcMqfSkCwMCBA9G7d2+MGzcOkZGRAIDu3bvDx8cHX3zxBXr37q3d94svvoCLiwv69OmjU8e5c+dQWlqKZ5991qiYyHT8LFGFRo0aQSaT4ciRIxgwYIC2fPXq1Tr7FRcXQyqVQqFQaMuaNm0Kd3d3lJWVWSpcMhITtYU1adIEYWFh+OWXX/DGG29UuW9UVBSioqJw+PDhSttMua7YokULbSvsYY0bN9b5D+7s7IwFCxZgwoQJGDJkCKKjo3H06FFs2bIFCxcuhI+Pj87xBw4cgIuLC3r27GlUTGQ6fpaogqenJ4YMGYKVK1dCIpGgadOm2L17NzIyMnT2u3TpEp577jm8/PLLCA0NhYODA3bu3In09PQqR+6TdTFRW8Ebb7yBuXPnoqSkxOAtMxXmzZuHbt26WSgyXe+88w4cHR2xbNky/PTTT2jQoAE+/fRTTJ48udK+O3bswEsvvVTltVIyP36WqMLKlStRXl6ONWvWQC6X4+WXX8bSpUsRFham3adBgwYYPnw4Dh48iM2bN8PBwQEtWrTAd999h0GDBlkxeqqKRHjUSAYyu7y8PDRp0gRLlizRuV3DViUnJ+Opp57CqVOn9HaHUu3hZ4nI/jFRW8nixYvx1Vdf4dy5c9pVj2zVsGHDoNFo8N1331k7lDqJnyUi+8ZETUREJGK2/fObiIjIzjFRExERiRgTNRERkYgxURMREYkYEzURUR2TmpoKiUSCTZs2WTsUqgYmaiKiKly5cgVvvvkmmjRpAoVCAQ8PD3Ts2BErVqzQO3e6uZw7dw7z5s2rtOiJpS1cuBAvvvgiAgMDIZFIMG/ePKvGUxdxZjIiIgP27NmDIUOGQC6XY+TIkQgLC4NSqcSxY8fw3nvv4ezZs3rnTzeHc+fOYf78+ejatStCQkJq5RzVMXv2bAQFBaFt27bYt2+f1eKoy5ioiYj0uHbtGoYNG4ZGjRrh0KFDOvOhT5gwASkpKdizZ48VI/yHIAgG1/auqWvXriEkJARZWVmV1sUmy2DXNxGRHkuWLEFhYSE2bNigd9GSZs2a6cxVrlKpsGDBAjRt2hRyuRwhISGYOXNmpVWpQkJC0LdvXxw7dgwRERFQKBRo0qQJvvnmG+0+mzZtwpAhQwAA3bp1g0QigUQiQWJiok4d+/btQ/v27eHs7Iy1a9cCAK5evYohQ4bAx8cHLi4ueOaZZ2r0g8KarXm6j4maiEiPn3/+GU2aNKn2cptjx47F3Llz8dRTT+HTTz9FVFQU4uLi9K5KlZKSgsGDB6Nnz55YtmwZvL298frrr+Ps2bMAgC5dumDSpEkAgJkzZ2Lz5s3YvHmzzhrdFy9exPDhw9GzZ0+sWLEC4eHhSE9Px7PPPot9+/bhnXfewcKFC1FaWooXX3wRO3fuNMO7QlYhEBGRjry8PAGA0L9//2rtn5ycLAAQxo4dq1P+7rvvCgCEQ4cOacsaNWokABCOHDmiLcvIyBDkcrkwbdo0bdmOHTsEAMKvv/5a6XwVdSQkJOiUT5kyRQAgHD16VFtWUFAgNG7cWAgJCRHUarUgCIJw7do1AYDw1VdfVev1CYIgZGZmCgCE2NjYah9D5sEWNRHRQ/Lz8wGg2ktt7t27FwAQExOjUz5t2jQAqNT1HBoais6dO2uf+/v7o3nz5rh69Wq1Y2zcuDGio6MrxREREYFOnTppy9zc3DB+/Hikpqbi3Llz1a6fxIOJmojoIR4eHgCAgoKCau1//fp1SKVSNGvWTKc8KCgIXl5euH79uk55w4YNK9Xh7e2NnJycasfYuHFjvXE0b968UnlFl/nDcZBtYKImInqIh4cH6tWrhzNnzhh1nEQiqdZ+MplMb7lgxGKGtTHCm8SJiZqISI++ffviypUrSEpKeuS+jRo1gkajweXLl3XK09PTkZubi0aNGhl9/uom/YfjuHjxYqXyCxcuaLeT7WGiJiLS4/3334erqyvGjh2L9PT0StuvXLmCFStWAAB69+4NAIiPj9fZZ/ny5QCAPn36GH1+V1dXAEBubm61j+nduzdOnDih8+OiqKgI69atQ0hICEJDQ42Og6yPE54QEenRtGlTbN26FUOHDkXLli11ZiY7fvw4duzYgddffx0A0KZNG4waNQrr1q1Dbm4uoqKicOLECXz99dcYMGAAunXrZvT5w8PDIZPJsHjxYuTl5UEul6N79+4ICAgweMz06dPx73//Gy+88AImTZoEHx8ffP3117h27Rp++OEHSKXGt802b96M69evo7i4GABw5MgRfPTRRwCAESNGsJVuCdYedk5EJGaXLl0Sxo0bJ4SEhAhOTk6Cu7u70LFjR2HlypVCaWmpdr/y8nJh/vz5QuPGjQVHR0ehQYMGwowZM3T2EYT7t1b16dOn0nmioqKEqKgonbL169cLTZo0EWQymc6tWobqEARBuHLlijB48GDBy8tLUCgUQkREhLB7926dfYy5PSsqKkoAoPeh79YxMj+JIBgxeoGIiIgsiteoiYiIRIyJmoiISMSYqImIiESMiZqIiEjEmKiJiIhEjImaiIhIxJioiYiIRIyJmoiISMSYqImIiESMiZqIiEjEmKiJiIhEjImaiIhIxJioiYiIROz/A2k7rl5FsomgAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -1591,8 +1591,8 @@
}
],
"source": [
- "two_groups_unpaired.mean_diff.plot(bar_label=\"success\",contrast_label=\"difference\");\n",
- "two_groups_paired.mean_diff.plot(bar_label=\"success\",contrast_label=\"difference\");"
+ "two_groups_unpaired.mean_diff.plot(raw_label=\"success\",contrast_label=\"difference\");\n",
+ "two_groups_paired.mean_diff.plot(raw_label=\"success\",contrast_label=\"difference\");"
]
},
{
@@ -1610,7 +1610,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWdZJREFUeJzt3XdYFFfbBvB7l46IoBSRKGCJSIigGFBREV8VY0/U1xJLNJZYXhU0sQPGQtSoGLsmqClGYxK7sUTFXmIhsaIiiBoBEZGmlN35/vBj48qC23eB+3dde8WdOTPn3ozyMLMz54gEQRBARERERkls6ABERERUOhZqIiIiI8ZCTUREZMRYqImIiIwYCzUREZERY6EmIiIyYizURERERoyFmoiIyIixUBMRERmxSl+oHz16hMjISDx69MjQUYiI6BX8+fwSC/WjR5g9e3al/4tARGRs+PP5pUpfqImIiIwZCzUREZERY6EmIiIyYizURERERoyFmoiIyIixUBMRERkxFmoiIiIjxkJNRERkxIyqUB8/fhzdunVDrVq1IBKJsGPHjjduExsbi6ZNm8LCwgL169fHxo0bdZ6TiIhIX4yqUOfm5sLHxwcrV65Uqn1iYiK6dOmC4OBgxMXFYeLEiRg+fDgOHDig46RERET6YWroAK96//338f777yvdfs2aNfDw8MDixYsBAI0aNcLJkyexdOlShISE6ComERGR3hhVoVbVmTNn0L59e7llISEhmDhxYqnb5OfnIz8/X/Y+JydHV/GUMmbxZjzNzjNoBmNhX9UaqyYNMHQMvYv7dgIKcp4aOobBmdvYw/eTZYaOQWR0ynWhTklJgbOzs9wyZ2dnZGVl4fnz57CysiqxTVRUFGbPnq2viG/0NDsP6c8M+8sCGVZBzlMUZD8xdAyqKCSFgNgUEIkMnYS0pFwXanVMmzYNYWFhsvdxcXEICgoyYKKXxCIRqttWMXQMg8jIyoVUEAwdw/BEYpjb2Bs6hd4V5DwFBKmhY1QcuelAFUfApNL9eK+wyvWRrFmzJlJTU+WWpaamwtbWVuHZNABYWFjAwsJC9t7GxkanGZVV3bYKfoocbugYBtE/8hteVcDLS7/+E74zdAy9O79sMK8oaJukgIW6AjGqu75V1aJFCxw+fFhu2aFDh9CiRQsDJSIiMgKSAkMnIC0yqkKdk5ODuLg4xMXFAXj5+FVcXBySk5MBvLxsPXjwYFn7Tz/9FHfv3sXnn3+OmzdvYtWqVfj5558RGhpqiPhERMahKP/NbajcMKpCfeHCBTRp0gRNmjQBAISFhaFJkyYIDw8HADx69EhWtAHAw8MDe/fuxaFDh+Dj44PFixfjm2++4aNZRFS5Fb0wdALSIqP6EqNt27YQyripSNGoY23btsXly5d1mIqIqJwpfG7oBKRFRnVGTUREWlCYa+gEpEUs1EREFU0BB1GqSFioiYgqmvxsQycgLWKhJiKqaPKzDJ3AYFauXAl3d3dYWloiICAA58+fL7N9dHQ0GjZsCCsrK9SuXRuhoaF48cK4bsZjoSYiqmhePDN0AoPYunUrwsLCEBERgUuXLsHHxwchISFIS0tT2H7z5s2YOnUqIiIicOPGDXz77bfYunUrpk+frufkZWOhJiKqaCppoV6yZAlGjBiBoUOHwsvLC2vWrIG1tTViYmIUtj99+jQCAwMxYMAAuLu7o2PHjujfv/8bz8L1jYWaiKiieZ5p6AR6V1BQgIsXL8rNqCgWi9G+fXucOXNG4TYtW7bExYsXZYX57t272LdvHzp37qyXzMoyqueoiYhIC15kGjqBVuXk5CAr69/v3V+fswEA0tPTIZFIFM6oePPmTYX7HTBgANLT09GqVSsIgoCioiJ8+umnvPRNREQ6lpdh6ARaFRQUhGrVqsleUVFRWtlvbGws5s+fj1WrVuHSpUv47bffsHfvXsyZM0cr+9cWnlETEVU0eU8AQagwc1IfO3YMvr6+svevn00DgIODA0xMTBTOqFizZk2F+501axYGDRqE4cNfzlz47rvvIjc3FyNHjsSMGTMgFhvHuaxxpCAiIu2RFFSoZ6ltbGxga2sreykq1Obm5vDz85ObUVEqleLw4cOlzqiYl5dXohibmJgAQJnDWesbz6iJiCqinFTA0tbQKfQqLCwMQ4YMQbNmzeDv74/o6Gjk5uZi6NChAIDBgwfD1dVVdum8W7duWLJkCZo0aYKAgADcuXMHs2bNQrdu3WQF2xiwUBMRVUTP7gMODQydQq/69u2Lx48fIzw8HCkpKfD19cX+/ftlN5glJyfLnUHPnDkTIpEIM2fOxMOHD+Ho6Ihu3bph3rx5hvoICrFQExFVRE+TDJ3AIMaNG4dx48YpXBcbGyv33tTUFBEREYiIiNBDMvXxO2oioooo/bahE5CWsFATEVVEKVcAqdTQKUgLWKiJiCqi/Gwg/ZahU5AWsFATEVVU904ZOgFpAQs1EVFFdTf25cAnVK6xUBMRVVSZycCTO4ZOQRpioSYiqsju/GHoBKQhFmoioorszh+8+7ucY6EmIqrIctOBR3GGTkEaYKEmIqroEg6/uQ0ZLRZqIqKK7u4xQFJk6BSkJhZqIqKKLj8bePCnoVOQmlioiYgqg9sHDZ2A1MRCTURUGSSdBF5kGToFqYGFmoiogmjWrBneauSHZvMvlVwpKQBuHdB/KNIYCzURUQWRkpKCh/88QkpWgeIGV38FpBL9hiKNsVATEVUW2Y+AhCOGTkEqYqEmIqpMLm7kWXU5w0JNRFSZPHsA3Nht6BSkAhZqIqLK5kLMy2erqVxgoSYiqmxePHt5CZzKBRZqIqLK6OpvQEaioVOQElioiYgqI0EKnF4OCIKhk9AbsFATEVVWDy8C904ZOgW9AQs1EVFldnY1ICk0dAoqAws1EVFl9uwBcG27oVNQGVioiYgqu4ubgLwMQ6egUmitUAuCgCNHjuD3339HdjafzyMiKjcKcoA/vzF0CiqFWoV6xowZCA4Olr0XBAEdO3ZEhw4d0KVLF7z77rtISEjQWkgiItKxm3uB1GuGTlGuPXr0CH/99Rdyc3O1ul+1CvWvv/4Kf39/2ftffvkFhw8fxty5c7Fnzx5IJBJERkZqKyMREenDicWApMjQKcqdnTt3wtPTE2+99RaaNm2Kc+fOAQDS09PRpEkT7NixQ6P9q1WoHz58iPr168ve//bbb/Dy8sK0adPQuXNnjB49GrGxsRoFIyIiPXuSAFzZZugU5cru3bvx4YcfwsHBARERERBeeS7dwcEBrq6u2LBhg0Z9qFWoTU1NkZ+fD+DlZe/Dhw+jU6dOsvXOzs5IT0/XKBgRERnAhRgg876hU5QbX3zxBdq0aYOTJ09i7NixJda3aNECly9f1qgPtQq1t7c3fvjhBzx9+hQbNmzAkydP0KVLF9n6e/fuwcHBQa1AK1euhLu7OywtLREQEIDz58+X2T46OhoNGzaElZUVateujdDQULx48UKtvomIKj1JAXB8ESCVGjpJuXD16lX897//LXW9s7Mz0tLSNOrDVJ2NwsPD0a1bN1kxDgwMlLu5bO/evXjvvfdU3u/WrVsRFhaGNWvWICAgANHR0QgJCUF8fDycnJxKtN+8eTOmTp2KmJgYtGzZErdu3cLHH38MkUiEJUuWqPPRiIjo0V/A9R2A94eGTmL0rK2ty7x57O7du6hRo4ZGfah1Rt2hQwdcunQJS5YsQUxMDA4ePChb9/TpU7Rp0wbjx49Xeb9LlizBiBEjMHToUHh5eWHNmjWwtrZGTEyMwvanT59GYGAgBgwYAHd3d3Ts2BH9+/d/41k4ERG9wfn1QI5mZ4KVQXBwMDZt2oSiopI34aWkpGD9+vXo2LGjRn2o/Ry1l5cXJkyYgCFDhsDS0lK23N7eHkuXLkXbtm1V2l9BQQEuXryI9u3b/xtOLEb79u1x5swZhdu0bNkSFy9elBXmu3fvYt++fejcubPqH4iIiP5VmAecWmboFEZv3rx5ePDgAd577z2sXbsWIpEIBw4cwMyZM/Huu+9CEARERERo1Idal76zs7ORmZmJ2rVry5b9888/WLNmDfLz89G7d2+VL32np6dDIpHA2dlZbrmzszNu3rypcJsBAwYgPT0drVq1giAIKCoqwqefforp06eX2k9+fr7sRjgAyMnJUSknEVGlkXTy5cQdrn6GTmK0GjZsiJMnT2LChAmYNWsWBEHAokWLAABt27aV3XelCbUK9ciRI5GYmIizZ88CALKystC8eXM8ePAAYrEYy5Ytw/79+1U+q1ZVbGws5s+fj1WrViEgIAB37tzBhAkTMGfOHMyaNUvhNlFRUZg9e7ZOcxGVJ82aNUNKSgpq1qyJCxcuGDoOGZvz64GeTQGRyNBJjNY777yDP/74A0+fPsWdO3cglUpRt25dODo6amX/al36PnnyJLp27Sp7/8MPP+Cff/7B6dOn8fTpUzRu3Bhz585VaZ8ODg4wMTFBamqq3PLU1FTUrFlT4TazZs3CoEGDMHz4cLz77rv44IMPMH/+fERFRUFayh2L06ZNw7Nnz2SvY8eOqZSTqKJJSUnBw4cPkZKSYugoZIzSbgD/XDJ0inLB3t4e7733HgICArRWpAE1C3V6ejpcXV1l73ft2oVWrVqhefPmqFq1KgYPHoy//vpLpX2am5vDz88Phw8fli2TSqU4fPgwWrRooXCbvLw8iMXyH8HExAQA5B46f5WFhQVsbW1lLxsbG5VyEhFVOpxdq1Rff/01QkJCSl3//vvvY/Xq1Rr1oVahtrOzk/32/fz5c5w4cULurjZTU1Pk5eWpvN+wsDCsX78emzZtwo0bNzB69Gjk5uZi6NChAIDBgwdj2rRpsvbdunXD6tWrsWXLFiQmJuLQoUOYNWsWunXrJivYRESkoaRTQO4TQ6cwSt9++y28vLxKXe/l5YV169Zp1Ida31G3bNkSq1atgqenJ/bv348XL16gR48esvW3bt2SO+NWVt++ffH48WOEh4cjJSUFvr6+2L9/v+wGs+TkZLkz6JkzZ0IkEmHmzJl4+PAhHB0d0a1bN8ybN0+dj0VERIoIUuDOIcCnn6GTGJ2EhASFI5IV8/T0xPr16zXqQ61CvWDBAnTs2BG9evUCAEyaNAnvvPMOAEAikWDbtm1yQ4qqYty4cRg3bpzCda+PH25qaoqIiAiNb30nIqI3iP8daNyXN5W9xtzcvMz7Ox49elTiK1pVqVWo69evj/j4eFy/fh3VqlWTu/U8Ly8PK1asgI+Pj0bBiIjIiDxNAp7cARwaGDqJUWnevDk2btyI0NBQVK1aVW7ds2fPsGHDBjRv3lyjPtQq1ABgZmamsBhXrVpV7jI4ERFVELcPslC/JiIiAkFBQfD19cXEiRNlV5evXr2K6OhoPHr0CJs3b9aoD7ULdVZWFlatWoWjR48iLS0Na9euhb+/PzIyMrBx40Z0795dbipMIqLyovB5Nu7uX4OM2+cAkRgOni1RN2QUTMytSt3m7++mIiv5ityymk3fR/3OL7/KS/3rEG7vjla4rX/ojzCvYqet+Lpz5zAQMBrQ8FJuRRIQEIDdu3dj1KhRmDBhAkT//9WAIAjw8PDArl27Sn1ySVlqFeoHDx4gKCgI9+/fR4MGDXDz5k3ZCF/Vq1fH2rVrce/ePSxbxuHniMg4/f3dVDj7/AfOPh1KrLu1YxEKcjLg/dFcSCUS3N4djTt7l6PhB5+XuU/nJiFwCxooey82+3d4ZQevNrCvJz/C161dSyEtKiwfRRoA8p4A/1wG3jLekcpWrlyJRYsWISUlBT4+Pli+fDn8/f1LbZ+ZmYkZM2bgt99+Q0ZGBtzc3BAdHa3SUNQdOnTAnTt3cPnyZSQkJAAA6tWrh6ZNm8oKtybUKtSfffYZsrOzERcXBycnpxIzW/Xs2RN79uzROBwRkb7lpSfjacJF+AyLRtVaLy/z1us0Ctd+ioR7+09gUbX0mZBMzCxhblO9lHUWMDGzkL0vzH2GZ0l/o0HXCdr9ALp2+6DRFmpVZ2AsKChAhw4d4OTkhF9++QWurq64d+8e7OzsVO5bLBbDz88Pfn7a/3+jVqE+ePAgQkND4eXlhSdPSj5bV7duXdy/z4nHiaj8yXpwEyaWVWRFGgDsPJoAIhGyH8bDwrNlqdumXT2KtCtHYW5jj+oN/FG7dT+YvHJW/arUK4chNrNAjUaBWv8MOpV0AiiaBJiaGzpJCa/OwAgAa9aswd69exETE4OpU6eWaB8TE4OMjAycPn0aZmZmAKD2uNzXr1/H3bt38fTpU4UDbg0ePFit/QJqFurnz5+XOTxadna22oGIiAypMOcpzK3t5JaJxCYws6qKwtynpW7n5B0Ei2pOMK9aA7mpiUg6sgHPnzxAoz4zFbZPjTsIR+8gubPscqEgF3hwHnBvZegkcopnYHx1UKw3zcBY/P3x2LFjsXPnTjg6OmLAgAGYMmWK0oNmJSQkYODAgTh//nypI2KKRCL9F2ovLy8cP34co0aNUrh+x44daNKkidqhiIi07f7Jrbh/6mfZe2lRAbIf3kTC/jWyZU0/VX+ox5pN35f9uYqTO8xtquPqj9PxPOMRrKq7yLXNenADz9Pvo2GPSWr3Z1D3zui1UOfk5CArK0v23sLCAhYW8r/gqDMD4927d3HkyBF89NFH2LdvH+7cuYMxY8agsLBQ6fE5Ro0ahStXriA6OhqtW7eGvb29ip/uzdQq1BMnTsSQIUPQuHFj9OnTB8DLcbnv3LmD2bNn48yZM/j111+1GpSISBM1/TrDwau17H38jkVw8AxEjVcuZVtUrQEzG3sU5GXKbStIJSh8ng2zKsr/EK7q2hAA8OLpPyUKderlA6jiXBc2Ltp71Ck5ORm5ubkAgNx8CZIzXqBOdcWX3TX2KE43+y1FUFCQ3PuIiAhERkZqvF+pVAonJyesW7cOJiYm8PPzw8OHD7Fo0SKlC/WpU6cwffp0/O9//9M4T2nUKtQDBw7EvXv3MHPmTMyYMQMA0KlTJwiCALFYjPnz56Nnz57azElEpBEzq6ows/p3QAqxqQXMqlSDVfVacu1s3/KE5EUuch7dlhXSzMS/AEGQFV9l5KbeBYASN5dJCp4j/cZJuAUPUfejyDl//jzmzJmDvXv3yi69Zj6XwH3GeXR9tzpmdXbDe+5V37AXFT178PISuHkV7e63FMeOHYOvr6/s/etn04B6MzC6uLjAzMxM7jJ3o0aNkJKSgoKCApibv/l7eAcHB1SrVk3JT6IetR+GmzFjBhISErBo0SKMHj0aI0aMwIIFCxAfH48pU6ZoMyMRkd5YO9SBfT0/3N67HNkP45F1/zoSDqyG4zttZHd852el4+LqUch+GA8AeJ7xCMknfkLOo9t4kZmKJ7fO4tbOxbCt440qzh5y+3987TgEqQRO7wZrnPW3335DYGAgfv/99xLfjwoCsO9qBloujMNvl9M17quErH+0v89S2NjYyM16qKhQqzMDY2BgoGz+6GK3bt2Ci4uLUkUaAD799FP88MMPkEgkKn4q5ak94AkA1KlTB6GhodrKQkRkFN7u+Rnu7l+Nqz/OAEQi1PAMRL2Qf+/JEaQSPH/yAJLCfACA2MQUmYlx+Of8TkgKXsDC1hE1GgWidquSk1ik/nUQNRq2hKmlZlPsnj9/Hn379oVEIin1JiaJFBBBQN/1N3D6c1/tnlnnpBrdKGVhYWEYMmQImjVrBn9/f0RHR5eYgdHV1RVRUVEAgNGjR2PFihWYMGEC/ve//+H27duYP38+xo8fr3Sfb7/9NiQSCXx8fDBs2DDUrl1b4Y1oH374odqfS61CfenSJZw9exZjxoxRuH7VqlVo2bKl3KUKIjJOxZcFS7s8WFE1HvxlqevMrKqWObiJpZ0zWs3cK3tvUc0RjQcvUKpfn48XKx+yDHPnzoUgCKUW6WICAAEC5u67h51jvLXSNwDgeab29qUlqs7AWLt2bRw4cAChoaFo3LgxXF1dMWHCBJWuCvft21f258mTJytsIxKJNDrjVqtQz5gxA1ZWVqUW6iNHjmDfvn0c9ISoHLhw4YKhI5CKkpOTsWfPnjcW6WISKbD7SoZ2bzDLN87HcFWZgREAWrRogbNnz6rd39GjR9XeVllqFerXn1V7XevWrWWXFoiobI6nb0HIegZTi1RAssQgGSRSKaRK/tDXthonrqEoPxci28coHFNokAz6Ii0qgFRSpPF+9u3drXSRLiYIwIHrGRjSvOQIXeoQcp9CXKjb41VUpPn/K117/Y50XVCrUGdnZ8PUtPRNxWIxnj17pnYoosrEJL8IQr4EkBQgLznBIBnmnT2P+eeM4Mz6F+Mb7aoiGfnDHYz84Y6W9nYawFgt7av8y8/Px6VLl5CWlobAwEA4ODhobd9qFeoGDRrg4MGDpT43tn//ftStW1ejYESViQARpAKQU5hjkP7HNfHEGF9Pg/SdezsOIkk+xLZVUedX9S9BGrui/Dxk3L4AsYkpRBoOv7ll+x6Ezpyv8nZr+rlhsH/pY5UrSxAEvKjdBlbvz4aphbXG+yvN5cuXERAQoLP9a8vXX3+NyMhI2QnqoUOH0K5dO6Snp8PT0xMLFy7EsGHD1N6/WoX6k08+QWhoKMLCwhAeHi4bwDwzMxOzZ8/G/v37sWjRIrVDEVVGEgtTZPbtZugYeideeA2meQUQi0Wy8ZYrIpHUDGZmpjCxsNZ42ND/tG0DkShKpcvfIhHQwbMazEyVGxqzTIIAiZk5zMzMYKrDY1bWlVtjsWHDBkycOBH9+vVDx44d5Qqyg4MD2rVrhy1btui/UI8fPx5xcXGIjo7G119/jVq1Xg4Y8M8//0AqlWLQoEF8bIuISEdqu7ogpF0bHIo9qdTdxCZioLOXHepU19644oLY+IuoPixevBg9evTA5s2bFU5S5efnh6+//lqjPtT6Py0SibBhwwYMHjwYv/76K+7efTkCT48ePdCrVy+0bdtWo1BEpD8fjpyC9IxMOFS3w2/rlHvEiAzvs/+NxB/HTkIkEpV5Zi0CIIII00JcSm2jDsFUR8OTljN37twp87nr6tWrKyzgqtDoV6Lg4GAEB2s+ug4RGU56RiZSH2cYOgapqKmPN2KWL8Sw/30OQYDCM2sT8csi/dPQenjPTbMBVl4nmOln+FBjZ2dnh/T00kd+u379usZjFKg1hGhiYiJ2795d6vrdu3cjKSlJ3UxERKSEbp3a48Av36FD21YQiURy60Sil5e7j4d6oqeP9md0klrodnzr8qJz585Yt24dMjMzS6y7du0a1q9fj+7du2vUh1pn1JMnT0ZWVha6dVN848vKlSthZ2eHLVu2aBSOiIjK1tTHGz998zXuP3yENp37IDMrG3ZWJrg45R2tfif9OkkV5zc3qgTmzp2LgIAAeHt7o1u3bhCJRNi0aRNiYmLw66+/wsXFBeHh4Rr1odYZ9ZkzZ9ChQ4dS1//nP//BiRMn1A5FRESqqe3qAmtrKwBAFXOxTou01MIWgoWtzvZfntSqVQsXL15Ep06dsHXrVgiCgO+//x67d+9G//79cfbsWY2fqVbrjPrp06eoWrX0wd1tbGw0/vKciIiMU5HjO4aOYBTy8/Nx4MABuLu745tvvsE333yDx48fQyqVwtHRUW5ccU2otZc6derg1KlTpa4/ceIE3nrrLbVDERGR8Sp08jF0BKNgbm6OPn364PTp07Jljo6OcHZ21lqRBtQs1P3798dPP/2Er7/+Wm4eT4lEgmXLlmHr1q0YMGCA1kISEZFxECxseUb9/0QiERo0aFDmXd/aoFahnjZtGoKDgzFx4kS4uLigTZs2aNOmDWrVqoXQ0FAEBQVhxowZ2s5KREQGVlinDSDWwuhmFcT06dOxYsUKxMfH66wPtb6jtrCwwMGDB7Fp0yb89ttvSEh4OZGAv78/evXqhcGDB2v1tJ+IiIyAiRkKPf5j6BRG5ezZs6hRowa8vb3Rtm1buLu7w8rKSq6NSCTCsmXL1O5D7QFPxGIxhg4diqFDh6rdORERlR8F9TpBsKgKFOYbOorRWLFihezPhw8fVtjGYIWaiIgqD8HSHgX1Ohk6htF59T4tXVGrULdr1+6NbUQiUam/XRARUfnywmcwYKq7Z7OpdGoVaqlUWmK4OolEgnv37uH+/fuoX78+XF1dtRKQiIgMq7BOK0ic3jV0DKN29uxZHD16FGlpaRgzZgwaNGiAvLw83Lx5E2+//TZsbNQfa12tQh0bG1vquj179mDkyJFYsmSJupmIiMhICNYOyH+nn6FjGK2CggL069cPO3fuhCAIEIlE6NatGxo0aACxWIyOHTsiNDRUoyehtH5rdteuXTFw4EBMnDhR27smIiI9e+E7FOCUlqWaNWsW9uzZg9WrVyM+Pl5uylFLS0v06dMHO3fu1KgPnTxDVa9ePfz555+62DUREelJoVtbSGo0NHQMo/bTTz9h9OjRGDlyJKpXr15ifaNGjXD37l2N+tD6Xd9FRUX4+eefNR6EnIj0w6G6ndx/iQBAMK+CfM8PDB3D6KWlpeHdd0v//t7ExAR5eXka9aFWoR42bJjC5ZmZmTh79ixSUlL4HTVROfHbugWGjkBGqODt7oB5FUPHMHq1a9fGzZs3S11/6tQp1K9fX6M+1CrUR44cUTBJuQj29vZo1aoVhg8fjo4dO2oUjIiIDEOwtH85VCi90YABA7BkyRL06tULb7/9NgDI6uP69evx888/48svv9SoD7UKdVJSkkadEhGR8Sqo1xEwMTN0jHJhxowZOHv2LNq0aYNGjRpBJBIhNDQUGRkZePDgATp37ozQ0FCN+uCA3ERE9C9TSxTWaW3oFOWGubk59u/fjw0bNqBu3brw9PREfn4+GjdujI0bN2L37t0wMdFsEhOlz6jz8vKQnp6OmjVrwtzcXG5dTEwMfvzxRzx69Aienp6YNm0a3nvvPY2CERGR/hXWacPHscoQFhaGQYMGoUmTJgCA5ORkODo6YuDAgRg4cKBO+lT6jPqLL75A48aNUVBQILd87ty5GDFiBI4dO4bHjx9jx44daNu2Lf766y+thyUiIh0SiVHg8eYhoiuz6Oho3LhxQ/bew8MD27dv12mfShfqo0ePomvXrnLDoGVlZWHu3LlwdXXF7du38fjxY5w9exbm5uYaf3lORET6VeTqD8Gaj9aWxdnZWe656FcHONEVpS99JyUloVevXnLL9u3bh4KCAkyZMgUeHh4AXs5JPXToUPz888/aTUpERLojEiO/QVdDpzB6Xbp0wRdffIGDBw/Czs4OALB48WJs2bKl1G1EIpFGo5MpXaizs7NRo0YNuWXHjx+HSCRCSEiI3HIvLy88fvxY7VBERKRfhe7BEGxqGjqG0Vu2bBmcnJxw9OhRXLt2DSKRCPfv30dGRkap27z+OLOqlL707ebmVuKh7tjYWDg7O5d4mLugoAC2trZqBVq5ciXc3d1haWmJgIAAnD9/vsz2mZmZGDt2LFxcXGBhYYG3334b+/btU6tvIqLKSLCwRf7b3Q0do1yoUqUK5s+fjzNnziAhIQGCICA6OhqJiYmlvjQdQlTpQt2xY0fExMTg3LlzAIDvvvsON2/exAcflBxi7uLFi3B3d1c5zNatWxEWFoaIiAhcunQJPj4+CAkJQVpamsL2BQUF6NChA5KSkvDLL78gPj4e69ev5xSbREQqyH+nH0chU9KHH36IEydOyN4fPXoUHTp00GmfShfqWbNmwcbGBi1btoS5uTk+/vhjODo6Ijw8XK5dXl4etm/fjv/85z8qh1myZAlGjBiBoUOHwsvLC2vWrIG1tTViYmIUto+JiUFGRgZ27NiBwMBAuLu7IygoCD4+Pir3TURUGRU5+6CoFh+nVdbOnTuRnJwse9+uXTscOnRIp30qXagdHBwQFxeHL7/8Ep988gnmz5+PK1euwNnZWa7d1atX8dFHH2HQoEEqBSkoKMDFixfRvn37f8OJxWjfvj3OnDmjcJtdu3ahRYsWGDt2LJydneHt7Y358+dDIpGo1DcRUaVkaon8dwcCGn6HWpm4urri8uXLsvfFc1DrkkpDiNrb2+Ozzz4rs42/vz/8/f1VDpKeng6JRFKi8Ds7O5c64Pndu3dx5MgRfPTRR9i3bx/u3LmDMWPGoLCwEBEREQq3yc/PR35+vux9Tk6OylmJiCqCfM8PIFjZGzpGudKvXz989dVX+Pnnn2V3fU+dOhVRUVGlbiMSiTQaW0Tr01zqk1QqhZOTE9atWwcTExP4+fnh4cOHWLRoUamFOioqCrNnz9ZzUiIi4yKtVgeF7sGGjlHuREVFoX79+jh69CjS0tIgEolQpUqVEk9FaZPRFGoHBweYmJggNTVVbnlqaipq1lT8yICLiwvMzMzkxlFt1KgRUlJSUFBQUGKoUwCYNm0awsLCZO/j4uIQFBSkpU9BRFQ+vPAeAIg43YOqTExMMHLkSIwcORLAy69oZ86ciQEDBuisT6M5Subm5vDz88Phw4dly6RSKQ4fPowWLVoo3CYwMBB37tyBVCqVLbt16xZcXFwUFmkAsLCwgK2trez16khrRESVQZFLM0irazZHMr2UmJiInj176rQPoynUwMvBztevX49Nmzbhxo0bGD16NHJzczF06FAAwODBgzFt2jRZ+9GjRyMjIwMTJkzArVu3sHfvXsyfPx9jx4411EcgIjJuIjHyPUs+VkvqcXNzg7W1tU77UOrS965du9CsWTPUqlVLp2H69u2Lx48fIzw8HCkpKfD19cX+/ftlN5glJydDLP73d4vatWvjwIEDCA0NRePGjeHq6ooJEyZgypQpOs1JRFReFb7VAoKN85sbkkJisRhisRh5eXkwNzeHWCx+413fIpEIRUVFavepVKH+4IMP8P3338uuwdetWxfR0dHo3l37I9mMGzcO48aNU7guNja2xLIWLVrg7NmzWs9BRFTxiFBQv7OhQ5Rr4eHhEIlEMDU1lXuvS0oV6qpVqyIzM1P2PikpiY81ERGVM0U1fXk2raHIyMgy3+uCUoXa398f8+bNQ2pqKqpVqwbg5cxZKSkppW4jEokQGhqqnZRERKSxQo/2b25ERkepQr1q1SoMHjwYc+bMAfCyCG/evBmbN28udRsWaiIi4yG1cYGkxtuGjlGh5Ofn44cffsDBgweRkJCA7OxsVK1aFfXr10enTp0wYMCAUp9AUoVShbp+/fo4ffo0Xrx4gbS0NLi7uyM6Oho9evTQOAAREeleoVsbDhWqRVeuXEGPHj1w7949CIKAatWqwcbGBmlpabh06RK2bduGefPmYdeuXWjUqJFGfan0eJalpSXq1KmDiIgItGvXDm5ubmW+iIjICIjEKHJtbugUeqHqVMnFtmzZApFIpNQz0Tk5OejevTtSU1Mxb9483L9/H0+fPpX779y5c/HPP/+gW7duyM3N1egzqfUcdUREBLy9vWWBb9y4gRs3bvAGMyIiIyRx9IZgUdXQMXRO1amSiyUlJWHy5Mlo3bq1Uv1s2LABycnJ2Lt3L6ZOnVpiamVXV1dMmzYNu3fvRmJiIjZu3KjuRwKgwYAnf/75J4KDg2Fvbw9vb294e3vD3t4e7dq1w4ULFzQKRURE2lPoWjmmsVR1qmQAkEgk+OijjzB79mzUrVtXqX727t2Ljh07om3btmW2a9euHTp06IDdu3er8jFKUKtQnzt3Dm3atMGlS5cwfPhwLF26FEuXLsXw4cNx6dIltGnTRunLDUREpEMiMYqcGhs6hUZycnKQlZUle706A2IxdaZKBoAvvvgCTk5O+OSTT5TOc+XKlTcW6WLt2rXDlStXlN63ImpNyjFjxgy4urri5MmTJSbMiIyMRGBgIGbMmKHzybSJiKhskhpvA+ZVDB1DI69PnBQREVHi+WV1pko+efIkvv32W8TFxamUJyMjo9TJol7n7OyMjIwMlfb/OrUK9blz5xAeHq4wqLOzM0aOHCl7lIuIiAynyMnb0BE0duzYMfj6+sreW1hYaLzP7OxsDBo0COvXr4eDg4NK2+bn58PMzEyptqampigoKFAn4r/7UGcjsVhc5rilEolEbkxuIiIyDInjO4aOoDEbGxvY2tqW2UbVqZITEhKQlJSEbt26yZYVz8RoamqK+Ph41KtXr9T+kpKScOnSpTdmT0xMfGObN1GrULds2RIrV67EgAEDSjyGlZycjFWrViEwMFDjcEREpD7BvAqkVV3f3LACeHWq5OJHrIqnSlY0f4Snp2eJ745nzpyJ7OxsLFu2DLVr1y6zv1mzZmHWrFlvzCUIgsZjgatVqOfPn482bdrA09MTH3zwAd5+++VoN/Hx8di5cydMTU0RFRWlUTAiItKMpHoDQFR5rm6GhYVhyJAhaNasGfz9/REdHV1iqmRXV1dERUXB0tJS9phxMTs7OwAosfx1GzZs0En+0qhVqJs0aYJz585hxowZ2LVrF/Ly8gAA1tbW6NSpE+bOnQsvLy+tBiUiItVI7OsbOoJeqTpVsrqGDBmi8T5UoVahBgAvLy9s374dUqkUjx8/BgA4Ojryu2kiIiMhtat8I0SqOlXyqzQdmERX1C7UxcRicYnb4YmIyPAktnUMHYG0gKe/REQVkGBRrdw/P00vsVATEVVA0qouho5AWsJCTURUAUmrOBk6AmkJCzURUQUktXY0dATSEo1vJiMiIuMjWNUwdIRK5fr167h79y6ePn0KQRBKrB88eLDa+9aoUOsyGBERqU9qVd3QESqFhIQEDBw4EOfPn1dYBwFAJBLpv1DrIxgREalPsLQzdIRKYdSoUbhy5Qqio6PRunVr2Nvba70PtQq1PoIREZFqnBwdAEEKZ/O8l49nkc6dOnUK06dPx//+9z+d9aFWodZHMCIiUs3RXT9BlJcO6+NzkGui3DSMpBkHBwdUq6bbX4rUuutbH8GIiEg9gkVVQ0eoND799FP88MMPkEgkOutDrTPq4mBjx46FiYmJtjMREZEGBIuy524m7Xn77bchkUjg4+ODYcOGoXbt2grr4ocffqh2H2oVan0EIyIi9QjmNoaOUGn07dtX9ufJkycrbCMSiTQ641arUOsjGBERqYeFWn+OHj2q8z7UKtT6CEZEROoRzPkdtb4EBQXpvA+1CrU+ghERkXoEM2tDR6iUrl+/jnv37gEA3Nzc4OXlpZX9ajyEqK6CERGRegQzTm+pTzt37kRYWBiSkpLklnt4eGDJkiXo3r27RvtXu1DrOhgREamJZ9R6s2/fPvTq1Qtubm6YP38+GjVqBAC4ceMG1q1bhw8//BB79uxBp06d1O5DrUKtj2BERKQewczK0BEqjTlz5qBx48Y4ceIEqlT590pG9+7dMW7cOLRq1QqzZ8/Wf6HWRzAiIlKPYGpp6AiVxt9//4358+fL1cJiVapUwccff4zp06dr1IdaI5P9/fffGDJkSJnB/v77b42CERGRmkwsDJ2g0rC0tERGRkap6zMyMmBpqdkvTmoVan0EIyIi9Qhije8TJiW1a9cOy5Ytw5kzZ0qsO3fuHL7++mu0b99eoz7UOprFwTp16oQWLVooDNaxY0eNghERkZpYqPVm4cKFaNGiBVq1agV/f380bNgQABAfH4/z58/DyckJCxYs0KgPtY6mPoIREZG6RIYOUGl4eHjg77//RlRUFH7//Xds3boVwMvHlSdMmICpU6fCyclJoz7UKtT6CEZERFQeODk5YenSpVi6dKlO9q/29RFdByMiIjUJUkMnIC3iFxlERBWOYOgAFdawYcMgEomwbt06mJiYYNiwYW/cRiQS4dtvv1W7T6UKtSGCERGRmnhGrTNHjhyBWCyGVCqFiYkJjhw5ApGo7HsC3rT+TZQq1IYIRkREahJ4Rq0rrw+b/fp7XVCqUBsiGBERkbFLTk6Go6MjrKwUD9v6/PlzPH78GHXq1FG7D7UGPElOTsbz589LXf/8+XMkJyerHYqIiDTAC5p64+Hhge3bt5e6fteuXfDw8NCoD7UKtT6CERGRmkQmhk5QaQhv+JqhsLAQYrFapVZGra11HWzlypVwd3eHpaUlAgICcP78eaW227JlC0QiEXr27Kl230RE5R4LtU5lZWUhOTlZduX4yZMnsvevvv7++29s2bIFLi4uGvWn9ONZWVlZyMzMlL0vDva6zMxMjYJt3boVYWFhWLNmDQICAhAdHY2QkBDEx8eXOYhKUlISJk+ejNatW6vVLxFRhSFmodalpUuX4osvvgDw8sbpiRMnYuLEiQrbCoKAuXPnatSf0oVaX8GWLFmCESNGYOjQoQCANWvWYO/evYiJicHUqVMVbiORSPDRRx9h9uzZOHHihNwvFERElQ0n5dCtjh07wsbGBoIg4PPPP0f//v3RtGlTuTYikQhVqlSBn58fmjVrplF/Sh9NfQQrKCjAxYsXMW3aNNkysViM9u3bK5yZpNgXX3wBJycnfPLJJzhx4kSZfeTn5yM/P1/2PicnR+WcRERGTWxm6AQVWosWLWQTUuXm5qJXr17w9vbWWX9KF2p9BEtPT4dEIoGzs7PccmdnZ9y8eVPhNidPnsS3336LuLg4pfqIiorC7NmzNY1KRGScTCx46VtP8vLy8PXXX8Pa2lqnhVrlO76Kg/3++++6yKOS7OxsDBo0COvXr4eDg4NS20ybNg3Pnj2TvY4dO6bjlERE+iNYVAVEmt1lTMqxtraGqakpqlSpotN+VP4iQ5fBHBwcYGJigtTUVLnlqampqFmzZon2CQkJSEpKQrdu3WTLpNKXQ+eZmpoiPj4e9erVk9vGwsICFhYWsvc2Njba/AhERFSJ9OrVC7/88gtGjx6tsxE51fq1qzjYmx7TUpW5uTn8/Pxw+PBh2TKpVIrDhw/LLru/ytPTE1euXEFcXJzs1b17dwQHByMuLg61a9fWaj4iIqJX9evXD2lpaQgODsaPP/6IU6dO4dKlSyVemlDr1sB+/fphzJgxCA4OxogRI+Du7q5w+LTXbzZTRlhYGIYMGYJmzZrB398f0dHRyM3Nld0FPnjwYLi6uiIqKgqWlpYlvhews7MDAJ1+X0BERAQAbdu2lf1Z0c3MgiBAJBJBIpGo3YdahVqXwfr27YvHjx8jPDwcKSkp8PX1xf79+2U3mCUnJ2s8ygsREZE2bNiwQed9qFWodR1s3LhxGDdunMJ1sbGxZW67ceNG7QciIiJSYMiQITrvQ61CrY9gRERE5UlOTg7u378PAKhdu7bWblbW+BpyTk4Obty4gRs3bnDwECIiqnT+/PNPBAcHw97eHt7e3vD29oa9vT3atWuHCxcuaLx/tceZ+/PPP/H555/j5MmTskeixGIxWrdujYULF2o8ZBoREZGxO3fuHNq2bQtzc3MMHz4cjRo1AgDcuHEDP/30E9q0aYPY2Fj4+/ur3YdahVofwYiIiFS1cuVKLFq0CCkpKfDx8cHy5ctLrUXr16/Hd999h6tXrwIA/Pz8MH/+fJVq14wZM+Dq6oqTJ0+WGO8jMjISgYGBmDFjBg4dOqT2Z1Lr0ndxsPj4eKxevRrjx4/H+PHjsXr1asTHx6NWrVqYMWOG2qGIiIhUVTz7YkREBC5dugQfHx+EhIQgLS1NYfvY2Fj0798fR48exZkzZ1C7dm107NgRDx8+VLrPc+fOYdSoUQoH5XJ2dsbIkSNx9uxZtT8ToGah1kcwIiIiVbw6+6KXlxfWrFkDa2trxMTEKGz/448/YsyYMfD19YWnpye++eYb2SBbyhKLxSgqKip1vUQi0fiRYrW21kcwIiIi4OVNy1lZWbLXqzMgFiuefbF9+/ayZcrMvviqvLw8FBYWonr16kpna9myJVauXIl79+6VWJecnIxVq1YhMDBQ6f0potZ31MXBBgwYADc3N50EIyIiAoCgoCC59xEREYiMjJRbps7si6+bMmUKatWqJVfs32T+/Plo06YNPD098cEHH+Dtt98GAMTHx2Pnzp0wNTVFVFSU0vtTRK1CrY9gREREAHDs2DH4+vrK3r86sZK2fPnll9iyZQtiY2NhaWmp9HZNmjTBuXPnMGPGDOzatQt5eXkAXk5g1alTJ8ydOxdeXl4aZVOrUOsjGBEREfBylkNbW9sy26g6++KrvvrqK3z55Zf4448/0LhxY5XzeXl5Yfv27ZBKpXj8+DEAwNHRUWtfAav9HLWugxERESnr1dkXe/bsCeDf2RdLG5IaABYuXIh58+bhwIEDGo//IRKJZFNdanPKS42ranGwVwMSERHpW1hYGNavX49Nmzbhxo0bGD16dInZF6dNmyZrv2DBAsyaNQsxMTFwd3dHSkoKUlJSVB5l8/r16+jduzdsbW3h4uICFxcX2Nraonfv3rJntDWh9hn19evXER4ejgMHDshd+g4JCUFkZCSnmSQiIr1SdfbF1atXo6CgAL1795bbj6Kb1Upz4sQJvP/++5BKpejRo4fcPVu7du3C77//jv3796N169Zqfy61CrU+ghEREalKldkXk5KSNO4vNDQUTk5OOHbsGGrXri237v79+2jTpg3CwsLw559/qt2HWoVaH8GIiIiM3bVr1zBnzpwStRB4OYPW6NGjlT47L41a31Ffu3YNY8aMKTPYtWvXNApGRERk7Nzc3BQOwFKsoKBAYa1UhVqFWh/BiIiIjF14eDi+/vprxMXFlVh3+fJlLF++XOMzarUufYeHhyM0NBRdunSRewj91WDR0dEaBSMiIjJ2Z8+ehbOzM/z8/NCyZUvUr18fAHD79m2cOXMG3t7eOHPmjNwwpiKRCMuWLVO6D7UKtT6CERERGbsVK1bI/nzq1CmcOnVKbv2VK1dw5coVuWV6KdT6CEZERGTspFKpzvtQq1DrIxgRERFpMOAJERERvZSYmIjff/9dNt2lm5sb3n//fXh4eGi8b40KtS6DERERlQeTJk3CsmXLSlxtFovFmDhxIr766iuN9q92odZ1MCIiImO3ePFiLF26FL1798akSZPQqFEjAMCNGzewdOlSLF26FK6urggNDVW7D7Weoy4O9uGHH+LMmTPIzMxEZmYmzpw5g969e8vCERERVWTr169H9+7d8fPPPyMgIAC2trawtbVFQEAAtmzZgm7dumHt2rUa9aFWodZHMCIiImOXlJSEkJCQUteHhIRoPKa4WoVaH8GIiIiMnZOTE/76669S1//1119wdHTUqA+1CrU+ghERERm7Pn364JtvvsGXX36J3Nxc2fLc3FwsWLAA33zzDfr27atRH2rdTNanTx8sW7YM7u7u+N///ocqVarIgq1YsQLffPMNJk6cqFEwIiIiYzdnzhzExcVh+vTpCA8PR61atQAA//zzD4qKihAcHIwvvvhCoz7UKtT6CEZERGTsrK2tcfjwYezcuVPuceVOnTqhc+fO6NatG0QikUZ9qFWo9RGMiIjImOXl5WHgwIHo1asXPvroI/To0UMn/ahcqPUVjIiIyJhZW1vjjz/+wPvvv6/TflS+maw4WF5eni7yEBERlRutWrWSmylSF9S661sfwYiIiIzdihUrcOLECcycORMPHjzQSR9qFWp9BCMiIjJ2Pj4+ePDgAaKiouDm5gYLCwvZIGDFr2rVqmnUh1o3k/n4+KCoqAhRUVGIioqCqakpLCws5NqIRCI8e/ZMo3BERETGrFevXjq/eVqtQq2PYERERMZu48aNOu9DrUKtj2BERETG6sWLF9i5cycSExPh4OCALl26wMXFRSd9qVSo9RmMiIjIGKWlpaFly5ZITEyEIAgAXj4RtWPHDrRv317r/SldqPUdjIiIyBjNmTMHSUlJCA0NRbt27XDnzh3MmTMHo0aNQkJCgtb7U7pQ6zsYERGRMTp48CAGDx6Mr776SrbM2dkZAwYMQHx8PBo2bKjV/pQu1PoORkREZIySk5MxZcoUuWWtWrWCIAhITU3Vej1U+jnq5ORktGrVqtRgRERElUF+fj4sLS3llhW/Lyoq0np/Sp9R6zsYERGRsUpKSsKlS5dk74vHDbl9+zbs7OxKtG/atKnafal017c+gxERERmrWbNmYdasWSWWjxkzRu69IAgQiUSQSCRq96VSodZnMCIiImO0YcMGvfandKHWZ7CVK1di0aJFSElJgY+PD5YvXw5/f3+FbdevX4/vvvsOV69eBQD4+flh/vz5pbYnIiLSxJAhQ/Tan9KFWl/Btm7dirCwMKxZswYBAQGIjo5GSEgI4uPj4eTkVKJ9bGws+vfvj5YtW8LS0hILFixAx44dce3aNbi6uuolMxERka6oNXuWLi1ZsgQjRozA0KFD4eXlhTVr1sDa2hoxMTEK2//4448YM2YMfH194enpiW+++QZSqRSHDx/Wc/LyqVmzZnjrrbfQrFkzQ0chIiIF1BrrW1cKCgpw8eJFTJs2TbZMLBajffv2Ss9/nZeXh8LCQlSvXl3h+vz8fOTn58ve5+TkaBa6nEtJScHDhw8NHYOIiEphVGfU6enpkEgkcHZ2llvu7OyMlJQUpfYxZcoU1KpVq9RhTaOiolCtWjXZKygoSOPcREREumJUhVpTX375JbZs2YLt27eXeOa72LRp0/Ds2TPZ69ixY3pOSUREpDyjuvTt4OAAExOTEiOdpaamombNmmVu+9VXX+HLL7/EH3/8gcaNG5fazsLCAhYWFrL3NjY2moUmIiLSIaM6ozY3N4efn5/cjWDFN4a1aNGi1O0WLlyIOXPmYP/+/bwpioiIKhSjOqMGgLCwMAwZMgTNmjWDv78/oqOjkZubi6FDhwIABg8eDFdXV0RFRQEAFixYgPDwcGzevBnu7u6y77JtbGx4tkxEROWe0RXqvn374vHjxwgPD0dKSgp8fX2xf/9+2Q1mycnJEIv/vRCwevVqFBQUoHfv3nL7iYiIQGRkpD6jExERaZ3RFWoAGDduHMaNG6dwXWxsrNz7pKQk3QciIiIyEKP6jpqIiIjksVATEREZMRZqIiIiI8ZCTUREFcbKlSvh7u4OS0tLBAQE4Pz582W237ZtGzw9PWFpaYl3330X+/bt01NS5bFQV3I1a9aEq6vrGweUISIydsWzL0ZERODSpUvw8fFBSEgI0tLSFLY/ffo0+vfvj08++QSXL19Gz5490bNnT9m0ycaChbqSu3DhAh48eIALFy4YOgoRkUZUnX1x2bJl6NSpEz777DM0atQIc+bMQdOmTbFixQo9Jy8bCzUREZV7xbMvvjoh05tmXzxz5kyJCZxCQkKUnq1RX4zyOerKpN3F45BkZaGKpTmwJMsgGSRSKaSCYJC+AaDjqXPIe1EAsa0tCguHGCyHoRRKBUilAoqkAqRFRYaOo3diqQBBKkAsFVBYWGjoODpTVFiIwsIiSKR5EBWW7+MsFBVAKilCYWEhBLHujlnR//97yMnJQVbWvz8fX5+zASh79sWbN28q3H9KSopGszXqCwu1gVkWvADyn8NSWojUxGSDZFh07iwW/3nOIH2/boz5j4aOYFi/9zd0AsMyNzd0AjJCr09HXNlGnmShNgoCJIIED18Y5myi77tN0OddX4P0DQC3b9xFYZEUqGaHgft+MlgOQ0nu1RzSrGwUWVeBdPIUQ8fRO/FXC2CalwuxbVXU+fWsoePolPT/z0QrArGJKcSmuv3F6vLlywgICMCxY8fg6+srW/762TSg3uyLNWvWVGu2Rn1joTYSL8wtEf9hX0PHMIiiRUtgmpcHiMUwMzMzdBy9MxOLIBWLIBKLIDWtfP8kxWIRTMUiiMWiin/8K/rn0zLT///3YGNjA1tb2zLbvjr7Ys+ePQH8O/tiaUNSt2jRAocPH8bEiRNlyw4dOlTmbI2GUPl+KpCcGeNH4tnTDFSzr455X68zdBwiIrWpOvvihAkTEBQUhMWLF6NLly7YsmULLly4gHXrjOtnIQt1JffsaQYynjw2dAwiIo2pOvtiy5YtsXnzZsycORPTp09HgwYNsGPHDnh7exvqIyjEQk1ERBWGKrMvAkCfPn3Qp08fHafSDJ+jJiIiMmIs1EREREaMhZqIiMiIsVATEREZMRZqIiIiI8ZCTUREZMRYqImIiIwYCzUREZERY6EmIiIyYizURERERoyFmoiIyIhxrO9Krpp9dbn/EhGRcWGhruQ4tSURkXHjpW8iIiIjxkJNRERkxFioiYiIjBgLNRERkRFjoSYiIjJiLNRERERGjIWaiIjIiLFQExERGTEWaiIiIiPGQk1ERGTEWKiJiIiMGAs1ERGREWOhJiIiMmIs1EREREaMhZqIiMiIsVATEREZMRZqIiIiI8ZCTUREZMRYqImIiIyYURbqlStXwt3dHZaWlggICMD58+fLbL9t2zZ4enrC0tIS7777Lvbt26enpERERLpldIV669atCAsLQ0REBC5dugQfHx+EhIQgLS1NYfvTp0+jf//++OSTT3D58mX07NkTPXv2xNWrV/WcnIiISPuMrlAvWbIEI0aMwNChQ+Hl5YU1a9bA2toaMTExCtsvW7YMnTp1wmeffYZGjRphzpw5aNq0KVasWKHn5ERERNpnVIW6oKAAFy9eRPv27WXLxGIx2rdvjzNnzijc5syZM3LtASAkJKTU9kREROWJqaEDvCo9PR0SiQTOzs5yy52dnXHz5k2F26SkpChsn5KSorB9fn4+8vPzZe9zcnIAADdu3NAkutqSsp4CudkQ5WahKDzcIBkMzfTFCwgAIBJw6dIlQ8fRu0eZeRByX0CSUwDMmGnoOPqXnw8TQQqR1ATprx1/FxcXuLi4GCiYZh49eoRHjx4ZOka5Zqify8bGqAq1PkRFRWH27Nlyy9zc3DBw4EADJaJXhfv5GToCGdJrxz8iIgKRkZGGyaKhtWvXlvhZQ6oLCgoqt7+saYtRFWoHBweYmJggNTVVbnlqaipq1qypcJuaNWuq1H7atGkICwuTW5aRkYGMjAwNkpdfOTk5CAoKwrFjx2BjY2PoOGQAxvx3oDz/gB41ahS6d++u1z6N+ViqqzxfVdEWkSAIgqFDvCogIAD+/v5Yvnw5AEAqlaJOnToYN24cpk6dWqJ93759kZeXh927d8uWtWzZEo0bN8aaNWv0lru8ysrKQrVq1fDs2TPY2toaOg4ZAP8OVBw8lhWTUZ1RA0BYWBiGDBmCZs2awd/fH9HR0cjNzcXQoUMBAIMHD4arqyuioqIAABMmTEBQUBAWL16MLl26YMuWLbhw4QLWrVtnyI9BRESkFUZXqPv27YvHjx8jPDwcKSkp8PX1xf79+2U3jCUnJ0Ms/vdm9ZYtW2Lz5s2YOXMmpk+fjgYNGmDHjh3w9vY21EcgIiLSGqO79E36lZ+fj6ioKEybNg0WFhaGjkMGwL8DFQePZcXEQk1ERGTEjGrAEyIiIpLHQk1ERGTEWKhJq5KSkiASibBx40ZDRyEiqhBYqA0oISEBo0aNQt26dWFpaQlbW1sEBgZi2bJleP78uc76vX79OiIjI5GUlKSzPpQxb948dO/eHc7OzhCJROV2BCpdE4lESr1iY2M17isvLw+RkZEq7YvHUTU8nqQqo3s8q7LYu3cv+vTpAwsLCwwePBje3t4oKCjAyZMn8dlnn+HatWs6exb8+vXrmD17Ntq2bQt3d3ed9KGMmTNnombNmmjSpAkOHDhgsBzG7vvvv5d7/9133+HQoUMlljdq1EjjvvLy8mTDXrZt21apbXgcVcPjSapioTaAxMRE9OvXD25ubjhy5Ijc8Hhjx47FnTt3sHfvXgMm/JcgCHjx4gWsrKy0vu/ExES4u7sjPT0djo6OWt9/RfH6OPRnz57FoUOHjGZ8eh5H1fB4kqp46dsAFi5ciJycHHz77bcKx7CtX78+JkyYIHtfVFSEOXPmoF69erCwsIC7uzumT58uNwsYALi7u6Nr1644efIk/P39YWlpibp16+K7776Ttdm4cSP69OkDAAgODi5xma14HwcOHECzZs1gZWWFtWvXAgDu3r2LPn36oHr16rC2tkbz5s01+oXCkGfzFY1UKkV0dDTeeecdWFpawtnZGaNGjcLTp0/l2l24cAEhISFwcHCAlZUVPDw8MGzYMAAv7y8o/sE8e/Zs2d+NN1365HHUPh5PehXPqA1g9+7dqFu3Llq2bKlU++HDh2PTpk3o3bs3Jk2ahHPnziEqKgo3btzA9u3b5dreuXMHvXv3xieffIIhQ4YgJiYGH3/8Mfz8/PDOO++gTZs2GD9+PL7++mtMnz5ddnnt1cts8fHx6N+/P0aNGoURI0agYcOGSE1NRcuWLZGXl4fx48ejRo0a2LRpE7p3745ffvkFH3zwgfb+B5HKRo0ahY0bN2Lo0KEYP348EhMTsWLFCly+fBmnTp2CmZkZ0tLS0LFjRzg6OmLq1Kmws7NDUlISfvvtNwCAo6MjVq9ejdGjR+ODDz7Ahx9+CABo3LixIT9apcTjSXIE0qtnz54JAIQePXoo1T4uLk4AIAwfPlxu+eTJkwUAwpEjR2TL3NzcBADC8ePHZcvS0tIECwsLYdKkSbJl27ZtEwAIR48eLdFf8T72798vt3zixIkCAOHEiROyZdnZ2YKHh4fg7u4uSCQSQRAEITExUQAgbNiwQanPJwiC8PjxYwGAEBERofQ2ldnYsWOFV//pnjhxQgAg/Pjjj3Lt9u/fL7d8+/btAgDhzz//LHXfmhwLHkf18HjSm/DSt55lZWUBAKpWrapU+3379gFAiak5J02aBAAlLj17eXmhdevWsveOjo5o2LAh7t69q3RGDw8PhISElMjh7++PVq1ayZbZ2Nhg5MiRSEpKwvXr15XeP2nXtm3bUK1aNXTo0AHp6emyl5+fH2xsbHD06FEAgJ2dHQBgz549KCwsNGBiKguPJ72OhVrPiqeey87OVqr9vXv3IBaLUb9+fbnlNWvWhJ2dHe7duye3vE6dOiX2YW9vX+K7rbJ4eHgozNGwYcMSy4svmb+eg/Tn9u3bePbsGZycnODo6Cj3ysnJQVpaGgAgKCgIvXr1wuzZs+Hg4IAePXpgw4YNJe51IMPi8aTX8TtqPbO1tUWtWrVw9epVlbYTiURKtTMxMVG4XFBhSHdd3OFNuiOVSuHk5IQff/xR4friG4pEIhF++eUXnD17Frt378aBAwcwbNgwLF68GGfPnoWNjY0+Y1MpeDzpdSzUBtC1a1esW7cOZ86cQYsWLcps6+bmBqlUitu3b8vd8JWamorMzEy4ubmp3L+yRf/1HPHx8SWW37x5U7aeDKNevXr4448/EBgYqNQvWc2bN0fz5s0xb948bN68GR999BG2bNmC4cOHq/V3g7SLx5Nex0vfBvD555+jSpUqGD58OFJTU0usT0hIwLJlywAAnTt3BgBER0fLtVmyZAkAoEuXLir3X6VKFQBAZmam0tt07twZ58+fx5kzZ2TLcnNzsW7dOri7u8PLy0vlHKQd//3vfyGRSDBnzpwS64qKimTH+enTpyWurPj6+gKA7HKptbU1ANX+bpB28XjS63hGbQD16tXD5s2b0bdvXzRq1EhuZLLTp09j27Zt+PjjjwEAPj4+GDJkCNatW4fMzEwEBQXh/Pnz2LRpE3r27Ing4GCV+/f19YWJiQkWLFiAZ8+ewcLCAu3atYOTk1Op20ydOhU//fQT3n//fYwfPx7Vq1fHpk2bkJiYiF9//RViseq/833//fe4d+8e8vLyAADHjx/H3LlzAQCDBg3iWbqSgoKCMGrUKERFRSEuLg4dO3aEmZkZbt++jW3btmHZsmXo3bs3Nm3ahFWrVuGDDz5AvXr1kJ2djfXr18PW1lb2C6GVlRW8vLywdetWvP3226hevTq8vb3h7e1dav88jtrF40klGPiu80rt1q1bwogRIwR3d3fB3NxcqFq1qhAYGCgsX75cePHihaxdYWGhMHv2bMHDw0MwMzMTateuLUybNk2ujSC8fLSqS5cuJfoJCgoSgoKC5JatX79eqFu3rmBiYiL3qFZp+xAEQUhISBB69+4t2NnZCZaWloK/v7+wZ88euTaqPJ4VFBQkAFD4UvToGL30+uM8xdatWyf4+fkJVlZWQtWqVYV3331X+Pzzz4V//vlHEARBuHTpktC/f3+hTp06goWFheDk5CR07dpVuHDhgtx+Tp8+Lfj5+Qnm5uZKPZ7D46gZHk96E5EgqHCXEREREekVv6MmIiIyYizURERERoyFmoiIyIixUBMRERkxFmoiIiIjxkJNRERkxFiojdjChQvh6ekJqVRq6Cga69evH/773/8aOka5wuNPiiQlJUEkEmHjxo2GjkJ6wkJtpLKysrBgwQJMmTJFNuqXSCSCSCTC4sWLS7TfuHEjRCIRLly4oPUsHTp0gEgkwrhx4xSu//bbb9GoUSNYWlqiQYMGWL58eYk2U6ZMwa+//oq//vpL6/kqIh5/IirGQm2kYmJiUFRUhP79+5dYt2jRItnwfrr222+/yY3v/bq1a9di+PDheOedd7B8+XK0aNEC48ePx4IFC+TaNWnSBM2aNVNYZKgkHn8qjZubG54/f45BgwYZOgrpi6GHRiPFGjduLAwcOFBuGQDB19dXACAsXrxYbt2GDRsEAMKff/6ptQzPnz8X3N3dhS+++EIAIIwdO1ZufV5enlCjRo0SQ45+9NFHQpUqVYSMjAy55V999ZVQpUoVITs7W2sZKyoefyIqxjNqI5SYmIi///4b7du3L7EuMDAQ7dq1w8KFC/H8+XOd5li4cCGkUikmT56scP3Ro0fx5MkTjBkzRm752LFjkZubi71798ot79ChA3Jzc3Ho0CGdZa4IePwrvsjISIhEIty6dQsDBw5EtWrV4OjoiFmzZkEQBNy/fx89evSAra0tatasKXclQtF31B9//DFsbGzw8OFD9OzZEzY2NnB0dMTkyZMhkUhk7WJjYyESiRAbGyuXR9E+U1JSMHToULz11luwsLCAi4sLevTogaSkJB39X6HSsFAbodOnTwMAmjZtqnB9ZGQkUlNTsXr16jL3k5+fj/T0dKVer0tOTsaXX36JBQsWlDon7uXLlwEAzZo1k1vu5+cHsVgsW1/My8sLVlZWOHXqVJm5Kzse/8qjb9++kEql+PLLLxEQEIC5c+ciOjoaHTp0gKurKxYsWID69etj8uTJOH78eJn7kkgkCAkJQY0aNfDVV18hKCgIixcvxrp169TK1qtXL2zfvh1Dhw7FqlWrMH78eGRnZyM5OVmt/ZH6OM2lEbp58yYAwMPDQ+H61q1bIzg4GIsWLcLo0aNL/UH6008/YejQoUr1Kbw2N8ukSZPQpEkT9OvXr9RtHj16BBMTkxLTY5qbm6NGjRr4559/5Jabmpqidu3auH79ulKZKise/8rD398fa9euBQCMHDkS7u7umDRpEqKiojBlyhQAQP/+/VGrVi3ExMSgTZs2pe7rxYsX6Nu3L2bNmgUA+PTTT9G0aVN8++23GD16tEq5MjMzcfr0aSxatEjuisq0adNU/YikBSzURujJkycwNTWFjY1NqW0iIyMRFBSENWvWIDQ0VGGbkJAQtS4zHj16FL/++ivOnTtXZrvnz5/D3Nxc4TpLS0uFl2bt7e0VnsHRv3j8K4/hw4fL/mxiYoJmzZrhwYMH+OSTT2TL7ezs0LBhQ9y9e/eN+/v000/l3rdu3Rrff/+9yrmsrKxgbm6O2NhYfPLJJ7C3t1d5H6Q9LNTlVJs2bRAcHIyFCxeW+MdZzMXFBS4uLirtt6ioCOPHj8egQYPw3nvvldnWysoKBQUFCte9ePFC4ZmeIAgQiUQqZaKSePwrhjp16si9r1atGiwtLeHg4FBi+ZMnT8rcl6WlJRwdHeWW2dvb4+nTpyrnsrCwwIIFCzBp0iQ4OzujefPm6Nq1KwYPHoyaNWuqvD/SDAu1EapRowaKioqQnZ2NqlWrltouIiICbdu2xdq1a2FnZ1di/fPnz/Hs2TOl+iz+x/fdd98hPj4ea9euLXHTSHZ2NpKSkuDk5ARra2u4uLhAIpEgLS1N7vJnQUEBnjx5glq1apXo5+nTp2jQoIFSmSorHv/Kw8TERKllQMmvJ5Td7lWl/ZL06g1nxSZOnIhu3bphx44dOHDgAGbNmoWoqCgcOXIETZo0eWNfpD28mcwIeXp6Anh5929ZgoKC0LZtWyxYsEDhZcatW7fKzqre9CqWnJyMwsJCBAYGwsPDQ/YCXv4Q9/DwwMGDBwEAvr6+AFBikI0LFy5AKpXK1hcrKirC/fv30ahRI5X+f1Q2PP6kK8WXsDMzM+WW37t3T2H7evXqYdKkSTh48CCuXr2KgoICPgtvADyjNkItWrQA8PIHXuPGjctsGxkZibZt2yq8s1Od7yj79etX4gcsAHzwwQfo3LkzRowYgYCAAABAu3btUL16daxevRqdO3eWtV29ejWsra3RpUsXuX1cv34dL168QMuWLVXKVNnw+JOuuLm5wcTEBMePH0fPnj1ly1etWiXXLi8vD2KxGJaWlrJl9erVQ9WqVZGfn6+vuPT/WKiNUN26deHt7Y0//vgDw4YNK7NtUFAQgoKCcOzYsRLr1PmO0tPTU3ZG9zoPDw+5f9xWVlaYM2cOxo4diz59+iAkJAQnTpzADz/8gHnz5qF69epy2x86dAjW1tbo0KGDSpkqGx5/0pVq1aqhT58+WL58OUQiEerVq4c9e/YgLS1Nrt2tW7fwn//8B//973/h5eUFU1NTbN++HampqWU+CUC6wUJtpIYNG4bw8HA8f/681MdvikVGRiI4OFhPyeSNGTMGZmZmWLx4MXbt2oXatWtj6dKlmDBhQom227Ztw4cffljm9670Eo8/6cry5ctRWFiINWvWwMLCAv/973+xaNEieHt7y9rUrl0b/fv3x+HDh/H999/D1NQUnp6e+Pnnn9GrVy8Dpq+cRMKb7lAgg3j27Bnq1q2LhQsXyj2qUV7FxcWhadOmuHTpksJLqySPx5+IirFQG7EFCxZgw4YNuH79umwGpfKqX79+kEql+Pnnnw0dpdzg8ScigIWaiIjIqJXvX9OJiIgqOBZqIiIiI8ZCTUREZMRYqImIiIwYCzUREZWQlJQEkUiEjRs3GjpKpcdCTUSkoYSEBIwaNQp169aFpaUlbG1tERgYiGXLlikch11brl+/jsjIyBITqOjbvHnz0L17dzg7O0MkEiEyMtKgeSoajkxGRKSBvXv3ok+fPrCwsMDgwYPh7e2NgoICnDx5Ep999hmuXbumcCx2bbh+/Tpmz56Ntm3bwt3dXSd9KGPmzJmoWbMmmjRpggMHDhgsR0XFQk1EpKbExET069cPbm5uOHLkiNzY6mPHjsWdO3ewd+9eAyb8lyAIpc4TrqnExES4u7sjPT29xJzYpDle+iYiUtPChQuRk5ODb7/9VuEEKPXr15cb97yoqAhz5sxBvXr1YGFhAXd3d0yfPr3EjFTu7u7o2rUrTp48CX9/f1haWqJu3br47rvvZG02btyIPn36AACCg4MhEokgEokQGxsrt48DBw6gWbNmsLKywtq1awEAd+/eRZ8+fVC9enVYW1ujefPmGv1CYciz+cqAhZqISE27d+9G3bp1lZ66c/jw4QgPD0fTpk2xdOlSBAUFISoqSuGMVHfu3EHv3r3RoUMHLF68GPb29vj4449x7do1AECbNm0wfvx4AMD06dPx/fff4/vvv5eb7zs+Ph79+/dHhw4dsGzZMvj6+iI1NRUtW7bEgQMHMGbMGMybNw8vXrxA9+7dsX37di38XyGtE4iISGXPnj0TAAg9evRQqn1cXJwAQBg+fLjc8smTJwsAhCNHjsiWubm5CQCE48ePy5alpaUJFhYWwqRJk2TLtm3bJgAQjh49WqK/4n3s379fbvnEiRMFAMKJEydky7KzswUPDw/B3d1dkEgkgiAIQmJiogBA2LBhg1KfTxAE4fHjxwIAISIiQult6M14Rk1EpIasrCwAUHrazn379gEAwsLC5JZPmjQJAEpcevby8kLr1q1l7x0dHdGwYUPcvXtX6YweHh4ICQkpkcPf3x+tWrWSLbOxscHIkSORlJSE69evK71/0g8WaiIiNdja2gIAsrOzlWp/7949iMVi1K9fX255zZo1YWdnh3v37sktr1OnTol92Nvb4+nTp0pn9PDwUJijYcOGJZYXXzJ/PQcZHgs1EZEabG1tUatWLVy9elWl7UQikVLtTExMFC4XVJjwUBd3eJP+sVATEampa9euSEhIwJkzZ97Y1s3NDVKpFLdv35ZbnpqaiszMTLi5uancv7JF//Uc8fHxJZbfvHlTtp6MCws1EZGaPv/8c1SpUgXDhw9HampqifUJCQlYtmwZAKBz584AgOjoaLk2S5YsAQB06dJF5f6rVKkCAMjMzFR6m86dO+P8+fNyv1zk5uZi3bp1cHd3h5eXl8o5SLc44AkRkZrq1auHzZs3o2/fvmjUqJHcyGSnT5/Gtm3b8PHHHwMAfHx8MGTIEKxbtw6ZmZkICgrC+fPnsWnTJvTs2RPBwcEq9+/r6wsTExMsWLAAz549g4WFBdq1awcnJ6dSt5k6dSp++uknvP/++xg/fjyqV6+OTZs2ITExEb/++ivEYtXP377//nvcu3cPeXl5AIDjx49j7ty5AIBBgwbxLF1Thr7tnIiovLt165YwYsQIwd3dXTA3NxeqVq0qBAYGCsuXLxdevHgha1dYWCjMnj1b8PDwEMzMzITatWsL06ZNk2sjCC8frerSpUuJfoKCgoSgoCC5ZevXrxfq1q0rmJiYyD2qVdo+BEEQEhIShN69ewt2dnaCpaWl4O/vL+zZs0eujSqPZwUFBQkAFL4UPTpGqhEJggp3JhAREZFe8TtqIiIiI8ZCTUREZMRYqImIiIwYCzUREZERY6EmIiIyYizURERERoyFmoiIyIixUBMRERkxFmoiIiIjxkJNRERkxFioiYiIjBgLNRERkRFjoSYiIjJi/wfgZbexssmrmwAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWZxJREFUeJzt3XdYFNf7NvB7F6SLoBSVIGCJSIigGFBQEX8qllgSNZZYYo/lq4ImdsBYiBoVe4uoKUZjEruxxN6NhcSKiiCaCIhKV8ruvH/4snFl0e27wP25rr3izJyZc29WeZjZmXNEgiAIICIiIqMkNnQAIiIiKh0LNRERkRFjoSYiIjJiLNRERERGjIWaiIjIiLFQExERGTEWaiIiIiPGQk1ERGTEWKiJiIiMWIUv1I8ePUJUVBQePXpk6ChERPQK/nx+iYX60SPMnDmzwv9FICIyNvz5/FKFL9RERETGjIWaiIjIiLFQExERGTEWaiIiIiPGQk1ERGTEWKiJiIiMGAs1ERGREWOhJiIiMmJGVahPnDiBzp07o2bNmhCJRNixY8db9zl27BgaN24Mc3Nz1K1bFxs3btR5TiIiIn0xqkKdm5sLHx8frFixQqn2iYmJ6NSpE0JCQhAXF4fx48dj6NChOHDggI6TEhER6YepoQO8qkOHDujQoYPS7VevXg0PDw8sXLgQANCgQQOcOnUKixcvRmhoqK5iEhER6Y1RFWpVnT17Fm3atJFbFxoaivHjx5e6T35+PvLz82XLOTk5uoqnlFELN+NZdp5BMxgL+8pWWDmhr6Fj6F3c+nEoyHlm6BgGZ2ZjD98hSwwdg8jolOlCnZKSAmdnZ7l1zs7OyMrKwvPnz2FpaVlin+joaMycOVNfEd/qWXYe0jMN+8sCGVZBzjMUZD8xdAwqLySFgNgUEIkMnYS0pEwXanVMmTIF4eHhsuW4uDgEBwcbMNFLYpEIVW2tDR3DIJ5m5UIqCIaOYXgiMcxs7A2dQu8Kcp4BgtTQMcqP3HTA2hEwqXA/3sutMv1JVq9eHampqXLrUlNTYWtrq/BsGgDMzc1hbm4uW7axsdFpRmVVtbXGT1FDDR3DIPpEfcurCnh56dd/3HeGjqF3F5YM4BUFbZMUsFCXI0Z117eqmjVrhsOHD8utO3ToEJo1a2agRERERkBSYOgEpEVGVahzcnIQFxeHuLg4AC8fv4qLi0NycjKAl5etBwwYIGv/+eef4969e/jyyy9x69YtrFy5Ej///DPCwsIMEZ+IyDgU5b+9DZUZRlWoL168iEaNGqFRo0YAgPDwcDRq1AgREREAgEePHsmKNgB4eHhg7969OHToEHx8fLBw4UJ8++23fDSLiCq2oheGTkBaZFRfYrRq1QrCG24qUjTqWKtWrXDlyhUdpiIiKmMKnxs6AWmRUZ1RExGRFhTmGjoBaRELNRFReVPAQZTKExZqIqLyJj/b0AlIi1ioiYjKm/wsQycwmBUrVsDd3R0WFhYICAjAhQsX3tg+JiYG9evXh6WlJVxdXREWFoYXL4zrZjwWaiKi8uZFpqETGMTWrVsRHh6OyMhIXL58GT4+PggNDUVaWprC9ps3b8bkyZMRGRmJmzdvYv369di6dSumTp2q5+RvxkJNRFTeVNBCvWjRIgwbNgyDBg2Cl5cXVq9eDSsrK8TGxipsf+bMGQQFBaFv375wd3dHu3bt0KdPn7eehesbCzURUXnzPMPQCfSuoKAAly5dkptRUSwWo02bNjh79qzCfQIDA3Hp0iVZYb537x727duHjh076iWzsozqOWoiItKCFxmGTqBVOTk5yMr673v31+dsAID09HRIJBKFMyreunVL4XH79u2L9PR0NG/eHIIgoKioCJ9//jkvfRMRkY7lPTV0Aq0KDg5GlSpVZK/o6GitHPfYsWOYO3cuVq5cicuXL+O3337D3r17MWvWLK0cX1t4Rk1EVN7kPQEEodzMSX38+HH4+vrKll8/mwYABwcHmJiYKJxRsXr16gqPO2PGDPTv3x9Dh76cufD9999Hbm4uhg8fjmnTpkEsNo5zWeNIQURE2iMpKFfPUtvY2MDW1lb2UlSozczM4OfnJzejolQqxeHDh0udUTEvL69EMTYxMQGANw5nrW88oyYiKo9yUgELW0On0Kvw8HAMHDgQTZo0gb+/P2JiYpCbm4tBgwYBAAYMGAAXFxfZpfPOnTtj0aJFaNSoEQICAnD37l3MmDEDnTt3lhVsY8BCTURUHmU+ABzqGTqFXvXq1QuPHz9GREQEUlJS4Ovri/3798tuMEtOTpY7g54+fTpEIhGmT5+Of/75B46OjujcuTPmzJljqLegEAs1EVF59CzJ0AkMYsyYMRgzZozCbceOHZNbNjU1RWRkJCIjI/WQTH38jpqIqDxKv2PoBKQlLNREROVRylVAKjV0CtICFmoiovIoPxtIv23oFKQFLNREROXV/dOGTkBawEJNRFRe3Tv2cuATKtNYqImIyquMZODJXUOnIA2xUBMRlWd3/zB0AtIQCzURUXl29w/e/V3GsVATEZVnuenAozhDpyANsFATEZV3CYff3oaMFgs1EVF5d+84ICkydApSEws1EVF5l58NPPzT0ClITSzUREQVwZ2Dhk5AamKhJiKqCJJOAS+yDJ2C1MBCTURUTjRp0gTvNPBDk7mXS26UFAC3D+g/FGmMhZqIqJxISUnBP/8+QkpWgeIG134FpBL9hiKNsVATEVUU2Y+AhCOGTkEqYqEmIqpILm3kWXUZw0JNRFSRZD4Ebu42dApSAQs1EVFFczH25bPVVCawUBMRVTQvMl9eAqcygYWaiKgiuvYb8DTR0ClICSzUREQVkSAFziwDBMHQSegtWKiJiCqqfy4B908bOgW9BQs1EVFFdm4VICk0dAp6AxZqIqKKLPMhcH27oVPQG7BQExFVdJc2AXlPDZ2CSqG1Qi0IAo4cOYLff/8d2dl8Po+IqMwoyAH+/NbQKagUahXqadOmISQkRLYsCALatWuHtm3bolOnTnj//feRkJCgtZBERKRjt/YCqdcNnaJMe/ToEf766y/k5uZq9bhqFepff/0V/v7+suVffvkFhw8fxuzZs7Fnzx5IJBJERUVpKyMREenDyYWApMjQKcqcnTt3wtPTE++88w4aN26M8+fPAwDS09PRqFEj7NixQ6Pjq1Wo//nnH9StW1e2/Ntvv8HLywtTpkxBx44dMXLkSBw7dkyjYEREpGdPEoCr2wydokzZvXs3Pv74Yzg4OCAyMhLCK8+lOzg4wMXFBRs2bNCoD7UKtampKfLz8wG8vOx9+PBhtG/fXrbd2dkZ6enpGgUjIiIDuBgLZDwwdIoy46uvvkLLli1x6tQpjB49usT2Zs2a4cqVKxr1oVah9vb2xg8//IBnz55hw4YNePLkCTp16iTbfv/+fTg4OKgVaMWKFXB3d4eFhQUCAgJw4cKFN7aPiYlB/fr1YWlpCVdXV4SFheHFixdq9U1EVOFJCoATCwCp1NBJyoRr167hk08+KXW7s7Mz0tLSNOrDVJ2dIiIi0LlzZ1kxDgoKkru5bO/evfjggw9UPu7WrVsRHh6O1atXIyAgADExMQgNDUV8fDycnJxKtN+8eTMmT56M2NhYBAYG4vbt2/jss88gEomwaNEidd4aERE9+gu4sQPw/tjQSYyelZXVG28eu3fvHqpVq6ZRH2qdUbdt2xaXL1/GokWLEBsbi4MHD8q2PXv2DC1btsTYsWNVPu6iRYswbNgwDBo0CF5eXli9ejWsrKwQGxursP2ZM2cQFBSEvn37wt3dHe3atUOfPn3eehZORERvcWEdkKPZmWBFEBISgk2bNqGoqORNeCkpKVi3bh3atWunUR9qP0ft5eWFcePGYeDAgbCwsJCtt7e3x+LFi9GqVSuVjldQUIBLly6hTZs2/4UTi9GmTRucPXtW4T6BgYG4dOmSrDDfu3cP+/btQ8eOHVV/Q0RE9J/CPOD0EkOnMHpz5szBw4cP8cEHH2DNmjUQiUQ4cOAApk+fjvfffx+CICAyMlKjPtS69J2dnY2MjAy4urrK1v37779YvXo18vPz0aNHD5Uvfaenp0MikcDZ2VluvbOzM27duqVwn759+yI9PR3NmzeHIAgoKirC559/jqlTp5baT35+vuxGOADIyclRKScRUYWRdOrlxB0ufoZOYrTq16+PU6dOYdy4cZgxYwYEQcCCBQsAAK1atZLdd6UJtQr18OHDkZiYiHPnzgEAsrKy0LRpUzx8+BBisRhLlizB/v37VT6rVtWxY8cwd+5crFy5EgEBAbh79y7GjRuHWbNmYcaMGQr3iY6OxsyZM3Wai4io3LiwDujWGBCJDJ3EaL333nv4448/8OzZM9y9exdSqRS1a9eGo6OjVo6v1qXvU6dO4cMPP5Qt//DDD/j3339x5swZPHv2DA0bNsTs2bNVOqaDgwNMTEyQmpoqtz41NRXVq1dXuM+MGTPQv39/DB06FO+//z4++ugjzJ07F9HR0ZCWcsfilClTkJmZKXsdP35cpZxERBVK2k3g38uGTlEm2Nvb44MPPkBAQIDWijSgZqFOT0+Hi4uLbHnXrl1o3rw5mjZtisqVK2PAgAH466+/VDqmmZkZ/Pz8cPjwYdk6qVSKw4cPo1mzZgr3ycvLg1gs/xZMTEwAQO6h81eZm5vD1tZW9rKxsVEpJxFRhcPZtUq1dOlShIaGlrq9Q4cOWLVqlUZ9qFWo7ezskJKSAgB4/vw5Tp48KXdXm6mpKfLy8lQ+bnh4ONatW4dNmzbh5s2bGDlyJHJzczFo0CAAwIABAzBlyhRZ+86dO2PVqlXYsmULEhMTcejQIcyYMQOdO3eWFWwiItJQ0mkg94mhUxil9evXw8vLq9TtXl5eWLt2rUZ9qPUddWBgIFauXAlPT0/s378fL168QNeuXWXbb9++LXfGraxevXrh8ePHiIiIQEpKCnx9fbF//37ZDWbJyclyZ9DTp0+HSCTC9OnT8c8//8DR0RGdO3fGnDlz1HlbRESkiCAF7h4CfHobOonRSUhIUDgiWTFPT0+sW7dOoz7UKtTz5s1Du3bt0L17dwDAhAkT8N577wEAJBIJtm3bJjekqCrGjBmDMWPGKNz2+vjhpqamiIyM1PjWdyIieov434GGvXhT2WvMzMxkV5gVefToUYmvaFWlVqGuW7cu4uPjcePGDVSpUkXu1vO8vDwsX74cPj4+GgUjIt0TBAGZmZmy5SpVqkDEH8SkyLMk4MldwKGeoZMYlaZNm2Ljxo0ICwtD5cqV5bZlZmZiw4YNaNq0qUZ9qFWoAaBSpUoKi3HlypXlLoMTkfHKzMyEvb29bPnZs2ews7MzXCAybncOslC/JjIyEsHBwfD19cX48eNlV5evXbuGmJgYPHr0CJs3b9aoD7ULdVZWFlauXImjR48iLS0Na9asgb+/P54+fYqNGzeiS5cuclNhEhEZu8Ln2bi3fzWe3jkPiMRw8AxE7dARMDGzLHWfv7+bjKzkq3LrqjfugLodX36Fl/rXIdzZHaNwX/+wH2Fmbaet+Lp39zAQMBLQ8FJueRIQEIDdu3djxIgRGDdunOyKlCAI8PDwwK5du0p9cklZahXqhw8fIjg4GA8ePEC9evVw69Yt2QhfVatWxZo1a3D//n0sWcLh54jIuPz93WQ4+/wfnH3alth2e8cCFOQ8hfensyGVSHBndwzu7l2G+h99+cZjOjcKhVtwP9myuNJ/wyo7eLWEfR35kb1u71oMaVFh2SrSAJD3BPj3CvCO8Y5UtmLFCixYsAApKSnw8fHBsmXL4O/vX2r7jIwMTJs2Db/99huePn0KNzc3xMTEqDQUddu2bXH37l1cuXIFCQkJAIA6deqgcePGWvkqSa1C/cUXXyA7OxtxcXFwcnIqMbNVt27dsGfPHo3DERHpS156Mp4lXILP4BhUrvny8m6d9iNw/acouLcZAvPKpc+AZFLJAmY2VUvZZg6TSuay5cLcTGQm/Y16H47T7hvQlzsHjbZQqzoDY0FBAdq2bQsnJyf88ssvcHFxwf3799X6+kcsFsPPzw9+ftr/f6NWoT548CDCwsLg5eWFJ09KPltXu3ZtPHjAiceJqOzIengLJhbWsiINAHYejQCRCNn/xMPcM7DUfdOuHUXa1aMws7FH1Xr+cG3RGyavnFW/KvXqYYgrmaNagyCtvwe9SDoJFE0ATM0MnaSEV2dgBIDVq1dj7969iI2NxeTJk0u0j42NxdOnT3HmzBlUqlQJANQel/vGjRu4d+8enj17pnDArQEDBqh1XEDNQv38+fM3Do+WnZ2tdiAiIkMozHkGMys7uXUisQkqWVZGYe6zUvdz8g6GeRUnmFWuhtzURCQd2YDnTx6iQc/pCtunxh2Eo3ew3Fl2mVKQCzy8ALg3N3QSOcUzML46KNbbZmAs/v549OjR2LlzJxwdHdG3b19MmjRJ6UGzEhIS0K9fP1y4cKHUETFFIpH+C7WXlxdOnDiBESNGKNy+Y8cONGrUSO1QRETa8uDUVjw4/bNsWVpUgOx/biFh/2rZusafqz/EY/XGHWR/tnZyh5lNVVz7cSqeP30Ey6o15NpmPbyJ5+kPUL/rBLX7Mwr3z+q1UOfk5CArK0u2bG5uDnNz+V901JmB8d69ezhy5Ag+/fRT7Nu3D3fv3sWoUaNQWFio9PgcI0aMwNWrVxETE4MWLVrIPUWhLWoV6vHjx2PgwIFo2LAhevbsCeDluNx3797FzJkzcfbsWfz6669aDUpEpI7qfh3h4NVCthy/YwEcPINQ7ZVL2eaVq6GSjT0K8jLk9hWkEhQ+z0Yla+V/+FZ2qQ8AePHs3xKFOvXKAVg714ZNDe0/4pScnIzc3FwAQG6+BMlPX6BWVcWX3zX2KE43xy1FcHCw3HJkZCSioqI0Pq5UKoWTkxPWrl0LExMT+Pn54Z9//sGCBQuULtSnT5/G1KlT8b///U/jPKVRq1D369cP9+/fx/Tp0zFt2jQAQPv27SEIAsRiMebOnYtu3bppMycRkVoqWVZGJcv/BqIQm5qjknUVWFatKdfO9h1PSF7kIufRHVkhzUj8CxAEWfFVRm7qPQAocXOZpOA50m+eglvIQHXfikIXLlzArFmzsHfvXtml14znErhPu4AP36+KGR3d8IF75bccRUWZD19eAjez1u5xS3H8+HH4+vrKll8/mwbUm4GxRo0aqFSpktxl7gYNGiAlJQUFBQUwM3v79/AODg6oUqWKku9EPWo/DDdt2jQkJCRgwYIFGDlyJIYNG4Z58+YhPj4ekyZN0mZGIiKds3KoBfs6frizdxmy/4lH1oMbSDiwCo7vtZTd8Z2flY5Lq0Yg+594AMDzp4+QfPIn5Dy6gxcZqXhy+xxu71wI21resHb2kDv+4+snIEglcHo/RGuZf/vtNwQFBeH3338v8f2oIAD7rj1F4Pw4/HYlXWt9ymT9q/1jlsLGxkZu1kNFhVqdGRiDgoJk80cXu337NmrUqKFUkQaAzz//HD/88AMkEomK70p5ag94AgC1atVCWFiYtrIQERnUu92+wL39q3Dtx2mASIRqnkGoE/rfvTiCVILnTx5CUpgPABCbmCIjMQ7/XtgJScELmNs6olqDILg2Lzl5RepfB1GtfiBMLbQzte6FCxfQq1cvSCSSUm9ikkgBEQT0WncTZ7701e6ZdU6q0Y1SFh4ejoEDB6JJkybw9/dHTExMiRkYXVxcEB0dDQAYOXIkli9fjnHjxuF///sf7ty5g7lz52Ls2LFK9/nuu+9CIpHAx8cHgwcPhqurq8Ib0T7++GO135dahfry5cs4d+4cRo0apXD7ypUrERgYKHepgojIGDQc8HWp2ypZVn7j4CYWds5oPn2vbNm8iiMaDpinVL8+ny1UPqQSZs+eDUEQSi3SxQQAAgTM3ncfO0d5ay/A8wztHUtLVJ2B0dXVFQcOHEBYWBgaNmwIFxcXjBs3TqWrwr169ZL9eeLEiQrbiEQijc641SrU06ZNg6WlZamF+siRI9i3bx8HPSEi0oHk5GTs2bPnrUW6mEQK7L76VLs3mOUb52O4qszACADNmjXDuXPn1O7v6NGjau+rLLUK9evPqr2uRYsWsksLRPRmjmduQ8jKhKl5KiBZpN/Onz+XWyxcuhSFlqWPa60L1U5eR1F+LkS2j1E4qlCvfeubVFIIQar5d5m/79urdJEuJgjAgRvPMLBpyRG61CHkPoO4ULefV1FRkU6Prw2v35GuC2oV6uzsbJialr6rWCyWmzqPiEpnkl8EIV8CSAqQl5yg177z8vPllp0MPbf7L8Y32lV5MvyHOxj+wx0tHe00gNFaOlbZl5+fj8uXLyMtLQ1BQUFwcHDQ2rHVKtT16tXDwYMHS31ubP/+/ahdu7ZGwYgqEgEiSAUgpzBHr/3mFhbILV8f9AmqKHm3q9Yy3ImDSJIPsW1l1PpV/UuQxk5S+AKZ969DbGoCsUkljY61+ZedGDspSuX91vRxx4AAzQuIIAjId28Ni3YzSh0qVRuuXLmCgIAAnR1fW5YuXYqoqCjZCeqhQ4fQunVrpKenw9PTE/Pnz8fgwYPVPr5ahXrIkCEICwtDeHg4IiIiZAOYZ2RkYObMmdi/fz8WLFigdiiiikhiboqMXp312mdWdi6wfotsOa97R5hW1s+zscXE86/DNK8AYrFINt5yeSSGBJUqmcLU3BJiDcfJbhPSCiKRSKXL3yIR0NbTDpWUHBrzzQRIK5m9fAZZh5/Zm67cGosNGzZg/Pjx6N27N9q1aydXkB0cHNC6dWts2bJF/4V67NixiIuLQ0xMDJYuXYqaNV8OHPDvv/9CKpWif//+fGyLiEhHXN+pifZtQnDwyHGl7iY2EQMd37NDrapaHF9cXH5/qVLFwoUL0bVrV2zevFnhJFV+fn5YunSpRn2oNeCJSCTChg0bcPjwYXz++efw9vaGt7c3Ro4ciSNHjmDTpk1amYOTiIgUmxQ2CiKR6K0/a0UARBBhaqiLVvsXTHV3ybssuXv3Ljp06FDq9qpVqyos4KrQ6LpCSEgIQkK0N8oOEREpx8+3ITauXozPPg+DIAgKz6xNxC+L9JbBdfGBm3YGWikmmGn3eGWVnZ0d0tNLH/ntxo0bpQ5hqiy1zqgTExOxe/fuUrfv3r0bSUlJ6mYiIiIldO0Yij92bUG71sElzqxFopeXu0+Ge6GbT9VSjqA+qblux7cuKzp27Ii1a9ciIyOjxLbr169j3bp16NKli0Z9qHVGPXHiRGRlZaFzZ8U3vqxYsQJ2dnbYsmWLwu1ERKQdfr4N8fOm1Xjw8F8Etu2CjMws2Fma4PLk97X7nfRrpDY13t6oApg9ezYCAgLg7e2Nzp07QyQSYdOmTYiNjcWvv/6KGjVqICIiQqM+1DqjPnv2LNq2bVvq9v/7v//DyZMn1Q5FRESqcX2nJqysXg5WY20u1mmRFsyrQLDgGTUA1KxZE5cuXUL79u2xdetWCIKA77//Hrt370afPn1w7tw5jZ+pVuuM+tmzZ6hcufTB3W1sbDT+8pyIiIxTkfP7ho5gFPLz83HgwAG4u7vj22+/xbfffovHjx9DKpXC0dFRblxxTah1lFq1auH06dOlbj958iTeeecdtUMREZHxklRvZOgIRsHMzAw9e/bEmTNnZOscHR3h7OystSINqFmo+/Tpg59++glLly6Vm8dTIpFgyZIl2Lp1K/r27au1kEREZBwEC1tIeEYN4OWjyvXq1XvjXd/aoFahnjJlCkJCQjB+/HjUqFEDLVu2RMuWLVGzZk2EhYUhODgY06ZN03ZWIiIysCKPEEBs/COG6cvUqVOxfPlyxMfH66wPtf5vm5ub4+DBg9i0aRN+++03JCS8nEjA398f3bt3x4ABA7R62k9EREbApBKK6rQzdAqjcu7cOVSrVg3e3t5o1aoV3N3dYfnaDHQikQhLlixRuw+1fy0Si8UYNGgQBg0apHbnRERUdhS+2wkwtwWKCt7euIJYvny57M+HDx9W2MZghZqIyr7KNlb4c89GuWUiRQRLexS928nQMYzOq/dp6Ypahbp169ZvbSMSiUr97YKIjINIJIKtnmfLorKpoPEQgON7G4RahVoqlZYYrk4ikeD+/ft48OAB6tatCxcX7Q4AT0REhlHkHgxpdR9DxzBq586dw9GjR5GWloZRo0ahXr16yMvLw61bt/Duu+/Cxkb9sdHVKtTHjh0rdduePXswfPhwLFq0SN1MRERkJARrBxQ27GfoGEaroKAAvXv3xs6dOyEIAkQiETp37ox69epBLBajXbt2CAsL0+hJKK3fmv3hhx+iX79+GD9+vLYPTUREelbgNwKoxEvepZkxYwb27NmDVatWIT4+HoIgyLZZWFigZ8+e2Llzp0Z96OQZqjp16uDPP//UxaGJiEhPimr/H6SOnoaOYdR++uknjBw5EsOHD0fVqiVnKWvQoAHu3bunUR9aL9RFRUX4+eefNR6EnIiIDEcws0Hhez0MHcPopaWl4f33Sx+pzcTEBHl5eRr1odZ31IMHD1a4PiMjA+fOnUNKSgq/oyYiKsOKGnwEmKl/A1RF4erqilu3bpW6/fTp06hbt65GfahVqI8cOaJgknIR7O3t0bx5cwwdOhTt2nH0GiKiskiwtH85VCi9Vd++fbFo0SJ0794d7777LgDI6uO6devw888/4+uvv9aoD7UKdVJSkkadEhGR8Sqq1xEwqWToGGXCtGnTcO7cObRs2RINGjSASCRCWFgYnj59iocPH6Jjx44ICwvTqA8OyE1ERP+pZIki91aGTlFmmJmZYf/+/diwYQNq164NT09P5Ofno2HDhti4cSN2794NExMTjfpQ+ow6Ly8P6enpqF69OszMzOS2xcbG4scff8SjR4/g6emJKVOm4IMPPtAoGBER6V+Reys+jvUG4eHh6N+/Pxo1ejknd3JyMhwdHdGvXz/066eb582VPqP+6quv0LBhQxQUyA/GPnv2bAwbNgzHjx/H48ePsWPHDrRq1Qp//fWX1sMSEZEOiUQoqtPW0CmMWkxMDG7evClb9vDwwPbt23Xap9KF+ujRo/jwww/lhkHLysrC7Nmz4eLigjt37uDx48c4d+4czMzMNP7ynIiI9EviGgjB2tHQMYyas7Oz3HPRrw5woitKX/pOSkpC9+7d5dbt27cPBQUFmDRpEjw8PAC8nJN60KBB+Pnnn7WblIiIdEckQqFnV0OnMHqdOnXCV199hYMHD8LOzg4AsHDhQmzZsqXUfUQikUajkyldqLOzs1GtWjW5dSdOnIBIJEJoaKjcei8vLzx+/FjtUEREpF9FddpCqFzD0DGM3pIlS+Dk5ISjR4/i+vXrEIlEePDgAZ4+fVrqPq8/zqwqpS99u7m5lXio+9ixY3B2di7xMHdBQQFsbW3VCrRixQq4u7vDwsICAQEBuHDhwhvbZ2RkYPTo0ahRowbMzc3x7rvvYt++fWr1TURUEQkWtihs8JGhY5QJ1tbWmDt3Ls6ePYuEhAQIgoCYmBgkJiaW+tLbEKLt2rVDbGwszp8/DwD47rvvcOvWLXz0UckP99KlS3B3d1c5zNatWxEeHo7IyEhcvnwZPj4+CA0NRVpamsL2BQUFaNu2LZKSkvDLL78gPj4e69at4xSbREQqKGzYn6OQKenjjz/GyZMnZctHjx5F27a6vQFP6UI9Y8YM2NjYIDAwEGZmZvjss8/g6OiIiIgIuXZ5eXnYvn07/u///k/lMIsWLcKwYcMwaNAgeHl5YfXq1bCyskJsbKzC9rGxsXj69Cl27NiBoKAguLu7Izg4GD4+nDeViEgZkhqNIHknwNAxyoydO3ciOTlZtty6dWscOnRIp30qXagdHBwQFxeHr7/+GkOGDMHcuXNx9epVODs7y7W7du0aPv30U/Tv31+lIAUFBbh06RLatGnzXzixGG3atMHZs2cV7rNr1y40a9YMo0ePhrOzM7y9vTF37lxIJBKV+iYiqpBMLVDY6DNAw+9QKxIXFxdcuXJFtlw8B7UuqTSEqL29Pb744os3tvH394e/v7/KQdLT0yGRSEoUfmdn51IHPL937x6OHDmCTz/9FPv27cPdu3cxatQoFBYWIjIyUuE++fn5yM/Ply3n5OSonJWIqDwofK8nBMuSUzNS6Xr37o1vvvkGP//8s+yu78mTJyM6OrrUfUQikUZji6g11rexkEqlcHJywtq1a2FiYgI/Pz/8888/WLBgQamFOjo6GjNnztRzUiIi4yK1c0NRnTZvb0hyoqOjUbduXRw9ehRpaWkQiUSwtrYu8VSUNhlNoXZwcICJiQlSU1Pl1qempqJ69eoK96lRowYqVaokN45qgwYNkJKSgoKCghJDnQLAlClTEB4eLluOi4tDcHCwlt4FEVHZUOg7ABBxugdVmZiYYPjw4Rg+fDiAl1/RTp8+HX379tVZn0bzKZmZmcHPzw+HDx+WrZNKpTh8+DCaNWumcJ+goCDcvXsXUqlUtu727duoUaOGwiINAObm5rC1tZW9Xh1pjYioIpC84w9ptXcNHaNcSExMRLdu3XTah9EUauDlYOfr1q3Dpk2bcPPmTYwcORK5ubkYNGgQAGDAgAGYMmWKrP3IkSPx9OlTjBs3Drdv38bevXsxd+5cjB492lBvgYjIuIlEKPTqaegU5YabmxusrKx02odSl7537dqFJk2aoGbNmjoN06tXLzx+/BgRERFISUmBr68v9u/fL7vBLDk5GWLxf79buLq64sCBAwgLC0PDhg3h4uKCcePGYdKkSTrNSURUVhXVag6hsuKvE+ntxGIxxGIx8vLyYGZmBrFY/Na7vkUiEYqKitTuU6lC/dFHH+H777+XXYOvXbs2YmJi0KVLF7U7Ls2YMWMwZswYhduOHTtWYl2zZs1w7tw5recgIip3RCIU1df+z+2KJCIiAiKRCKampnLLuqRUoa5cuTIyMjJky0lJSXysiYiojJHUaMyzaQ1FRUW9cVkXlCrU/v7+mDNnDlJTU1GlShUAL2fOSklJKXUfkUiEsLAw7aQkIiKNFdUNfXsjMjpKFeqVK1diwIABmDVrFoCXRXjz5s3YvHlzqfuwUBMRGQ/BtiakDp6GjlGu5Ofn44cffsDBgweRkJCA7OxsVK5cGXXr1kX79u3Rt2/fUp9AUoVShbpu3bo4c+YMXrx4gbS0NLi7uyMmJgZdu3LuUiKisqDIPYRDhWrR1atX0bVrV9y/fx+CIKBKlSqwsbFBWloaLl++jG3btmHOnDnYtWsXGjRooFFfKj2eZWFhgVq1aiEyMhKtW7eGm5vbG19ERGQExGIU1Qo0dAq9UHWq5GJbtmyBSCRS6pnonJwcdOnSBampqZgzZw4ePHiAZ8+eyf139uzZ+Pfff9G5c2fk5uZq9J7Ueo46MjIS3t7essA3b97EzZs3eYMZEZERkjg1BMxtDR1D51SdKrlYUlISJk6ciBYtWijVz4YNG5CcnIy9e/di8uTJJaZWdnFxwZQpU7B7924kJiZi48aN6r4lABoMePLnn38iJCQE9vb28Pb2hre3N+zt7dG6dWtcvHhRo1BERKQ9EteKMY2lqlMlA4BEIsGnn36KmTNnonbt2kr1s3fvXrRr1w6tWrV6Y7vWrVujbdu22L17typvowS1CvX58+fRsmVLXL58GUOHDsXixYuxePFiDB06FJcvX0bLli2VvtxAREQ6JBZDUt3X0Ck0kpOTg6ysLNnr1RkQi6kzVTIAfPXVV3BycsKQIUOUznP16tW3FulirVu3xtWrV5U+tiJqTcoxbdo0uLi44NSpUyUmzIiKikJQUBCmTZum88m0iYjozaQOnoBZ2Z7T4PWJkyIjI0s8v6zOVMmnTp3C+vXrERcXp1Kep0+fljpZ1OucnZ3x9OlTlY7/OrUK9fnz5xEREaEwqLOzM4YPHy57lIuIiAxH4tzQ0BE0dvz4cfj6+sqWzc3NNT5mdnY2+vfvj3Xr1sHBwUGlffPz81GpUiWl2pqamqKgoECdiP8dQ52dxGLxG8ctlUgkcmNyExGRYUic3zd0BI3Z2NjA1vbNN8OpOlVyQkICkpKS0LlzZ9m64pkYTU1NER8fjzp16pTaX1JSEi5fvvzW7ImJiW9t8zZqFerAwECsWLECffv2LfEYVnJyMlauXImgoCCNwxERkfoEMxsItu8YOoZevDpVcvEjVsVTJSuaP8LT07PEd8fTp09HdnY2lixZAldX1zf2N2PGDMyYMeOtuQRB0HgscLUK9dy5c9GyZUt4enrio48+wrvvvpzXND4+Hjt37oSpqSmio6M1CkZERJqROrwLiCrO1c3w8HAMHDgQTZo0gb+/P2JiYkpMlezi4oLo6GhYWFjIHjMuZmdnBwAl1r9uw4YNOslfGrUKdaNGjXD+/HlMmzYNu3btQl5eHgDAysoK7du3x+zZs+Hl5aXVoEREpBpptXqGjqBXqk6VrK6BAwdqfAxVqFWoAcDLywvbt2+HVCrF48ePAQCOjo78bpqIyEhI7TwMHUHvVJ0q+VWaDkyiK2oX6mJisbjE7fBERGR4UjsO5Vwe8PSXiKgcEizsyvzz0/QSCzURUTkk2NY0dATSEhZqIqJySGrNryTLCxZqIqJySLB2MnQE0hKNbyYjIiLjI1ipNiwmaebGjRu4d+8enj17BkEQSmwfMGCA2sfWqFDrMhgREalPsKpm6AgVQkJCAvr164cLFy4orIMAIBKJ9F+o9RGMiIjUJ1jYGTpChTBixAhcvXoVMTExaNGiBezt7bXeh1qFWh/BiIhINc6OjoBUiupmeSzUenL69GlMnToV//vf/3TWh1qFWh/BiIhINSf2/wZR7mOYH5mBFybKTcNImnFwcECVKlV02odad33rIxgREanJ/M1TQpL2fP755/jhhx8gkUh01odaZ9TFwUaPHg0TExNtZyIiIg0I5jyR0pd3330XEokEPj4+GDx4MFxdXRXWxY8//ljtPtQq1PoIRkRE6hHMOXSovvTq1Uv254kTJypsIxKJNDrjVqtQ6yMYERGpRzCrbOgIFcbRo0d13odahVofwYiISD2COQu1vgQHB+u8D7UKtT6CERGRmipZGzpBhXTjxg3cv38fAODm5gYvLy+tHFfjIUR1FYyIiNQjmLFQ69POnTsRHh6OpKQkufUeHh5YtGgRunTpotHx1S7Uug5GRERq4hm13uzbtw/du3eHm5sb5s6diwYNGgAAbt68ibVr1+Ljjz/Gnj170L59e7X7UKtQ6yMYERGpR6hkaegIFcasWbPQsGFDnDx5EtbW//2C1KVLF4wZMwbNmzfHzJkz9V+o9RGMiIjUw0KtP3///Tfmzp0rVwuLWVtb47PPPsPUqVM16kOtkcn+/vtvDBw48I3B/v77b42CERGRmkzMDJ2gwrCwsMDTp09L3f706VNYWFho1IdahVofwYiISE1ijvOtL61bt8aSJUtw9uzZEtvOnz+PpUuXok2bNhr1odal7+Jg7du3R7NmzRQGa9eunUbBiIhITWKNH+ghJc2fPx/NmjVD8+bN4e/vj/r16wMA4uPjceHCBTg5OWHevHka9aHWp6mPYEREpCaRyNAJKgwPDw/8/fffiI6Oxu+//46tW7cCePm48rhx4zB58mQ4OTlp1IdahVofwYiIiMoCJycnLF68GIsXL9bJ8dW+PqLrYEREpCZBaugEpEX8IoOIqLwRBEMnKLcGDx4MkUiEtWvXwsTEBIMHD37rPiKRCOvXr1e7T6UKtSGCERGRmnhGrTNHjhyBWCyGVCqFiYkJjhw5AtFb7gl42/a3UapQGyIYERGpiWfUOvP6sNmvL+uCUoXaEMGIiIiMXXJyMhwdHWFpqXg0uOfPn+Px48eoVauW2n2oNeBJcnIynj9/Xur258+fIzk5We1QRESkAV7Q1BsPDw9s37691O27du2Ch4eHRn2oVaj1EYyIiNQkMjF0ggpDeMvXDIWFhRCL1Sq1MmrtretgK1asgLu7OywsLBAQEIALFy4otd+WLVsgEonQrVs3tfsmIirzxCzUupSVlYXk5GTZleMnT57Ill99/f3339iyZQtq1KihUX9KP56VlZWFjIwM2XJxsNdlZGRoFGzr1q0IDw/H6tWrERAQgJiYGISGhiI+Pv6Ng6gkJSVh4sSJaNGihVr9EhGVFwLPqHVq8eLF+OqrrwC8vHF6/PjxGD9+vMK2giBg9uzZGvWndKHWV7BFixZh2LBhGDRoEABg9erV2Lt3L2JjYzF58mSF+0gkEnz66aeYOXMmTp48KfcLBRFRhWPCSTl0qV27drCxsYEgCPjyyy/Rp08fNG7cWK6NSCSCtbU1/Pz80KRJE436U7pQ6yNYQUEBLl26hClTpsjWicVitGnTRuHMJMW++uorODk5YciQITh58uQb+8jPz0d+fr5sOScnR+WcRERGjbNn6VSzZs1kE1Ll5uaie/fu8Pb21ll/ShdqfQRLT0+HRCKBs7Oz3HpnZ2fcunVL4T6nTp3C+vXrERcXp1Qf0dHRmDlzpqZRiYiMkmBqzu+o9SQvLw9Lly6FlZWVTgu1ynd8FQf7/fffdZFHJdnZ2ejfvz/WrVsHBwcHpfaZMmUKMjMzZa/jx4/rOCURkR6Z2wIize4yJuVYWVnB1NQU1tbWOu1H5bG+dRnMwcEBJiYmSE1NlVufmpqK6tWrl2ifkJCApKQkdO7cWbZOKn05dJ6pqSni4+NRp04duX3Mzc1hbm4uW7axsdHmWyAiogqke/fu+OWXXzBy5Eidjcip1q9dxcHe9piWqszMzODn54fDhw/L1kmlUhw+fFh22f1Vnp6euHr1KuLi4mSvLl26ICQkBHFxcXB1ddVqPiIiolf17t0baWlpCAkJwY8//ojTp0/j8uXLJV6aUGv2rN69e2PUqFEICQnBsGHD4O7urnD4tNdvNlNGeHg4Bg4ciCZNmsDf3x8xMTHIzc2V3QU+YMAAuLi4IDo6GhYWFiW+F7CzswMAnX5fQEREBACtWrWS/VnRzcyCIEAkEkEikajdh1qFWpfBevXqhcePHyMiIgIpKSnw9fXF/v37ZTeYJScnazzKCxERkTZs2LBB532oVah1HWzMmDEYM2aMwm3Hjh17474bN27UfiAiIiIFBg4cqPM+1CrU+ghGRERUluTk5ODBgwcAAFdXV63drKzxNeScnBzcvHkTN2/e5OAhRERU4fz5558ICQmBvb09vL294e3tDXt7e7Ru3RoXL17U+PhqnVEXB/vyyy9x6tQp2SNRYrEYLVq0wPz58zUeMo2IiMjYnT9/Hq1atYKZmRmGDh2KBg0aAABu3ryJn376CS1btsSxY8fg7++vdh9qFWp9BCMiIlLVihUrsGDBAqSkpMDHxwfLli0rtRatW7cO3333Ha5duwYA8PPzw9y5c1WqXdOmTYOLiwtOnTpVYryPqKgoBAUFYdq0aTh06JDa70mtS9/FweLj47Fq1SqMHTsWY8eOxapVqxAfH4+aNWti2rRpaociIiJSVfHsi5GRkbh8+TJ8fHwQGhqKtLQ0he2PHTuGPn364OjRozh79ixcXV3Rrl07/PPPP0r3ef78eYwYMULhoFzOzs4YPnw4zp07p/Z7AtQs1PoIRkREpIpXZ1/08vLC6tWrYWVlhdjYWIXtf/zxR4waNQq+vr7w9PTEt99+KxtkS1lisRhFRUWlbpdIJBo/UqzW3voIRkREBLy8aTkrK0v2enUGxGLFsy+2adNGtk6Z2RdflZeXh8LCQlStWlXpbIGBgVixYgXu379fYltycjJWrlyJoKAgpY+niFrfURcH69u3L9zc3HQSjIiICACCg4PlliMjIxEVFSW3Tp3ZF183adIk1KxZU67Yv83cuXPRsmVLeHp64qOPPsK7774LAIiPj8fOnTthamqK6OhopY+niFqFWh/BiIiIAOD48ePw9fWVLb86sZK2fP3119iyZQuOHTsGCwsLpfdr1KgRzp8/j2nTpmHXrl3Iy8sD8HICq/bt22P27Nnw8vLSKJtahVofwYiIiICXsxza2tq+sY2qsy++6ptvvsHXX3+NP/74Aw0bNlQ5n5eXF7Zv3w6pVIrHjx8DABwdHbX2FbDaz1HrOhgREZGyXp19sVu3bgD+m32xtCGpAWD+/PmYM2cODhw4oPH4HyKRSDbVpTanvNS4qhYHezUgERGRvoWHh2PdunXYtGkTbt68iZEjR5aYfXHKlCmy9vPmzcOMGTMQGxsLd3d3pKSkICUlReVRNm/cuIEePXrA1tYWNWrUQI0aNWBra4sePXrIntHWhNpn1Ddu3EBERAQOHDggd+k7NDQUUVFRnGaSiIj0StXZF1etWoWCggL06NFD7jiKblYrzcmTJ9GhQwdIpVJ07dpV7p6tXbt24ffff8f+/fvRokULtd+XWoVaH8GIiIhUpcrsi0lJSRr3FxYWBicnJxw/fhyurq5y2x48eICWLVsiPDwcf/75p9p9qFWo9RGMiIjI2F2/fh2zZs0qUQuBlzNojRw5Uumz89Ko9R319evXMWrUqDcGu379ukbBiIiIjJ2bm5vCAViKFRQUKKyVqlCrUOsjGBERkbGLiIjA0qVLERcXV2LblStXsGzZMo3PqNW69B0REYGwsDB06tRJ7iH0V4PFxMRoFIyIiMjYnTt3Ds7OzvDz80NgYCDq1q0LALhz5w7Onj0Lb29vnD17Vm4YU5FIhCVLlijdh1qFWh/BiIiIjN3y5ctlfz59+jROnz4tt/3q1au4evWq3Dq9FGp9BCMiIjJ2UqlU532oVaj1EYyIiIg0GPCEiIiIXkpMTMTvv/8um+7Szc0NHTp0gIeHh8bH1qhQ6zIYERFRWTBhwgQsWbKkxNVmsViM8ePH45tvvtHo+GoXal0HIyIiMnYLFy7E4sWL0aNHD0yYMAENGjQAANy8eROLFy/G4sWL4eLigrCwMLX7UOs56uJgH3/8Mc6ePYuMjAxkZGTg7Nmz6NGjhywcERFRebZu3Tp06dIFP//8MwICAmBrawtbW1sEBARgy5Yt6Ny5M9asWaNRH2oVan0EIyIiMnZJSUkIDQ0tdXtoaKjGY4qrVaj1EYyIiMjYOTk54a+//ip1+19//QVHR0eN+lCrUOsjGBERkbHr2bMnvv32W3z99dfIzc2Vrc/NzcW8efPw7bffolevXhr1odbNZD179sSSJUvg7u6O//3vf7C2tpYFW758Ob799luMHz9eo2BERETGbtasWYiLi8PUqVMRERGBmjVrAgD+/fdfFBUVISQkBF999ZVGfahVqPURjIiIyNhZWVnh8OHD2Llzp9zjyu3bt0fHjh3RuXNniEQijfpQq1DrIxgREZExy8vLQ79+/dC9e3d8+umn6Nq1q076UblQ6ysYERGRMbOyssIff/yBDh066LQflW8mKw6Wl5enizxERERlRvPmzeVmitQFte761kcwIiIiY7d8+XKcPHkS06dPx8OHD3XSh1qFWh/BiIiIjJ2Pjw8ePnyI6OhouLm5wdzcXDYIWPGrSpUqGvWh1s1kPj4+KCoqQnR0NKKjo2Fqagpzc3O5NiKRCJmZmRqFIyIiMmbdu3fX+c3TahVqfQQjIiIydhs3btR5H2oVan0EIyIiMlYvXrzAzp07kZiYCAcHB3Tq1Ak1atTQSV8qFWp9BiMiIjJGaWlpCAwMRGJiIgRBAPDyiagdO3agTZs2Wu9P6UKt72BERETGaNasWUhKSkJYWBhat26Nu3fvYtasWRgxYgQSEhK03p/ShVrfwYiIiIzRwYMHMWDAAHzzzTeydc7Ozujbty/i4+NRv359rfandKHWdzAiIiJjlJycjEmTJsmta968OQRBQGpqqtbrodLPUScnJ6N58+alBiMiIqoI8vPzYWFhIbeueLmoqEjr/Sl9Rq3vYERERMYqKSkJly9fli0Xjxty584d2NnZlWjfuHFjtftS6a5vfQYjIiIyVjNmzMCMGTNKrB81apTcsiAIEIlEkEgkavelUqHWZzAiIiJjtGHDBr32p3Sh1mewFStWYMGCBUhJSYGPjw+WLVsGf39/hW3XrVuH7777DteuXQMA+Pn5Ye7cuaW2JyIi0sTAgQP12p/ShVpfwbZu3Yrw8HCsXr0aAQEBiImJQWhoKOLj4+Hk5FSi/bFjx9CnTx8EBgbCwsIC8+bNQ7t27XD9+nW4uLjoJTMREZGuqDV7li4tWrQIw4YNw6BBg+Dl5YXVq1fDysoKsbGxCtv/+OOPGDVqFHx9feHp6Ylvv/0WUqkUhw8f1nNyIiIi7TOqQl1QUIBLly7JjXQmFovRpk0bpee/zsvLQ2FhIapWrapwe35+PrKysmSvnJwcrWQnIiLSBaMq1Onp6ZBIJHB2dpZb7+zsjJSUFKWOMWnSJNSsWbPUYU2jo6NRpUoV2Ss4OFjj3ERERLpiVIVaU19//TW2bNmC7du3l3jmu9iUKVOQmZkpex0/flzPKYmIiJSn1jSXuuLg4AATE5MSI52lpqaievXqb9z3m2++wddff40//vgDDRs2LLWdubk5zM3NZcs2NjaahS7DBEGQPQsPAFWqVOE840RERsaozqjNzMzg5+cndyNY8Y1hzZo1K3W/+fPnY9asWdi/fz+aNGmij6jlQmZmJuzt7WWvV4s2EREZB6M6owaA8PBwDBw4EE2aNIG/vz9iYmKQm5uLQYMGAQAGDBgAFxcXREdHAwDmzZuHiIgIbN68Ge7u7rLvsm1sbCr02TIREZUPRleoe/XqhcePHyMiIgIpKSnw9fXF/v37ZTeYJScnQyz+70LAqlWrUFBQgB49esgdJzIyElFRUfqMTkREpHVGV6gBYMyYMRgzZozCbceOHZNbTkpK0n0gIiIiAzGq76iJiIhIHgs1ERGREWOhJiIiMmIs1EREVG6sWLEC7u7usLCwQEBAAC5cuPDG9tu2bYOnpycsLCzw/vvvY9++fXpKqjwWaiIiKheKZ1+MjIzE5cuX4ePjg9DQUKSlpSlsf+bMGfTp0wdDhgzBlStX0K1bN3Tr1k02bbKxYKEmIqJyQdXZF5csWYL27dvjiy++QIMGDTBr1iw0btwYy5cv13PyN2OhJiKiMk+d2RfPnj1bYgKn0NBQpWdr1BejfI66Iml96QQkWVmwtjADFmXpt/Pnz+UWC5cuRaGlpX4zAGh3+jzyXhRAbGuLwsKBeu/f0AqlAqRSAUVSAdKiIkPH0TuxVIAgFSCWCigsLDR0HJ2RFBaisLAIEiEPYpOy/T6lkkJIiyQoLCyEFCY666fo//97yMnJQVbWfz8fX5+zAXjz7Iu3bt1SePyUlBSNZmvUFxZqA7MoeAHkP4eFtBCpicl67TszP19u2SkyUq/9KzLK7EdDRzCs3/sYOoFhmZkZOgEZodenI65oI0+yUBsFARJBgn9e6Pe37Ox8+f7++HQQbMz1/4Pyzs17KCySAlXs0G/fT3rv39CSuzeFNCsbRVbWkE6cZOg4eif+Zh5M83Ihtq2MWr+eM3QcnZJKCiFIJYaOoRUisQnEJpV02seVK1cQEBCA48ePw9fXV7b+9bNpQL3ZF6tXr67WbI36xkJtJF6YWSD+41567TM3Jxv4fr1sObFrd1jbVNZrBgAoWrAIpnl5gFiMSpV0+w/fGFUSiyAViyASiyA1rXj/JMViEUzFIojFovL/+Zf396dlpv//34ONjQ1sbW3f2PbV2Re7desG4L/ZF0sbkrpZs2Y4fPgwxo8fL1t36NChN87WaAgV76cCERGVS6rOvjhu3DgEBwdj4cKF6NSpE7Zs2YKLFy9i7dq1hnwbJbBQExFRuaDq7IuBgYHYvHkzpk+fjqlTp6JevXrYsWMHvL29DfUWFGKhJiKickOV2RcBoGfPnujZs6eOU2mGz1ETEREZMRZqIiIiI8ZCTUREZMRYqImIiIwYCzUREZERY6EmIiIyYnw8qwKzsrbBup/3yC0TEZFxYaGuwEQikUGGDCUiIuXx0jcREZERY6EmIiIyYizURERERoyFmoiIyIixUBMRERkxFmoiIiIjxkJNRERkxFioiYiIjBgLNRERkRFjoSYiIjJiLNRERERGjIWaiIjIiLFQExERGTEWaiIiIiPGQk1ERGTEWKiJiIiMGAs1ERGREWOhJiIiMmIs1EREREaMhZqIiMiIsVATEREZMRZqIiIiI8ZCTUREZMRYqImIiIyYURbqFStWwN3dHRYWFggICMCFCxfe2H7btm3w9PSEhYUF3n//fezbt09PSYmIiHTL6Ar11q1bER4ejsjISFy+fBk+Pj4IDQ1FWlqawvZnzpxBnz59MGTIEFy5cgXdunVDt27dcO3aNT0nJyIi0j6jK9SLFi3CsGHDMGjQIHh5eWH16tWwsrJCbGyswvZLlixB+/bt8cUXX6BBgwaYNWsWGjdujOXLl+s5ORERkfYZVaEuKCjApUuX0KZNG9k6sViMNm3a4OzZswr3OXv2rFx7AAgNDS21PRERUVliaugAr0pPT4dEIoGzs7PcemdnZ9y6dUvhPikpKQrbp6SkKGyfn5+P/Px82XJOTg4A4ObNm5pEV1tS1jMgNxui3CwURUQYJIOhmb54AQEARAIuX75s6Dh69ygjD0LuC0hyCoBp0w0dR//y82EiSCGSmiD9tc+/Ro0aqFGjhoGCaebRo0d49OiRoWOUaYb6uWxsjKpQ60N0dDRmzpwpt87NzQ39+vUzUCJ6VYSfn6EjkCG99vlHRkYiKirKMFk0tGbNmhI/a0h1wcHBZfaXNW0xqkLt4OAAExMTpKamyq1PTU1F9erVFe5TvXp1ldpPmTIF4eHhcuuePn2Kp0+fapC87MrJyUFwcDCOHz8OGxsbQ8chAzDmvwNl+Qf0iBEj0KVLF732acyfpbrK8lUVbREJgiAYOsSrAgIC4O/vj2XLlgEApFIpatWqhTFjxmDy5Mkl2vfq1Qt5eXnYvXu3bF1gYCAaNmyI1atX6y13WZWVlYUqVaogMzMTtra2ho5DBsC/A+UHP8vyyajOqAEgPDwcAwcORJMmTeDv74+YmBjk5uZi0KBBAIABAwbAxcUF0dHRAIBx48YhODgYCxcuRKdOnbBlyxZcvHgRa9euNeTbICIi0gqjK9S9evXC48ePERERgZSUFPj6+mL//v2yG8aSk5MhFv93s3pgYCA2b96M6dOnY+rUqahXrx527NgBb29vQ70FIiIirTG6S9+kX/n5+YiOjsaUKVNgbm5u6DhkAPw7UH7wsyyfWKiJiIiMmFENeEJERETyWKiJiIiMGAs1aVVSUhJEIhE2btxo6ChEROUCC7UBJSQkYMSIEahduzYsLCxga2uLoKAgLFmyBM+fP9dZvzdu3EBUVBSSkpJ01ocy5syZgy5dusDZ2RkikajMjkClayKRSKnXsWPHNO4rLy8PUVFRKh2Ln6Nq+HmSqozu8ayKYu/evejZsyfMzc0xYMAAeHt7o6CgAKdOncIXX3yB69ev6+xZ8Bs3bmDmzJlo1aoV3N3dddKHMqZPn47q1aujUaNGOHDggMFyGLvvv/9ebvm7777DoUOHSqxv0KCBxn3l5eXJhr1s1aqVUvvwc1QNP09SFQu1ASQmJqJ3795wc3PDkSNH5IbHGz16NO7evYu9e/caMOF/BEHAixcvYGlpqfVjJyYmwt3dHenp6XB0dNT68cuL18ehP3fuHA4dOmQ049Pzc1QNP09SFS99G8D8+fORk5OD9evXKxzDtm7duhg3bpxsuaioCLNmzUKdOnVgbm4Od3d3TJ06VW4WMABwd3fHhx9+iFOnTsHf3x8WFhaoXbs2vvvuO1mbjRs3omfPngCAkJCQEpfZio9x4MABNGnSBJaWllizZg0A4N69e+jZsyeqVq0KKysrNG3aVKNfKAx5Nl/eSKVSxMTE4L333oOFhQWcnZ0xYsQIPHv2TK7dxYsXERoaCgcHB1haWsLDwwODBw8G8PL+guIfzDNnzpT93XjbpU9+jtrHz5NexTNqA9i9ezdq166NwMBApdoPHToUmzZtQo8ePTBhwgScP38e0dHRuHnzJrZv3y7X9u7du+jRoweGDBmCgQMHIjY2Fp999hn8/Pzw3nvvoWXLlhg7diyWLl2KqVOnyi6vvXqZLT4+Hn369MGIESMwbNgw1K9fH6mpqQgMDEReXh7Gjh2LatWqYdOmTejSpQt++eUXfPTRR9r7H0QqGzFiBDZu3IhBgwZh7NixSExMxPLly3HlyhWcPn0alSpVQlpaGtq1awdHR0dMnjwZdnZ2SEpKwm+//QYAcHR0xKpVqzBy5Eh89NFH+PjjjwEADRs2NORbq5D4eZIcgfQqMzNTACB07dpVqfZxcXECAGHo0KFy6ydOnCgAEI4cOSJb5+bmJgAQTpw4IVuXlpYmmJubCxMmTJCt27ZtmwBAOHr0aIn+io+xf/9+ufXjx48XAAgnT56UrcvOzhY8PDwEd3d3QSKRCIIgCImJiQIAYcOGDUq9P0EQhMePHwsAhMjISKX3qchGjx4tvPpP9+TJkwIA4ccff5Rrt3//frn127dvFwAIf/75Z6nH1uSz4OeoHn6e9Da89K1nWVlZAIDKlSsr1X7fvn0AUGJqzgkTJgBAiUvPXl5eaNGihWzZ0dER9evXx71795TO6OHhgdDQ0BI5/P390bx5c9k6GxsbDB8+HElJSbhx44bSxyft2rZtG6pUqYK2bdsiPT1d9vLz84ONjQ2OHj0KALCzswMA7NmzB4WFhQZMTG/Cz5Nex0KtZ8VTz2VnZyvV/v79+xCLxahbt67c+urVq8POzg7379+XW1+rVq0Sx7C3ty/x3dabeHh4KMxRv379EuuLL5m/noP0586dO8jMzISTkxMcHR3lXjk5OUhLSwMABAcHo3v37pg5cyYcHBzQtWtXbNiwocS9DmRY/DzpdfyOWs9sbW1Rs2ZNXLt2TaX9RCKRUu1MTEwUrhdUGNJdF3d4k+5IpVI4OTnhxx9/VLi9+IYikUiEX375BefOncPu3btx4MABDB48GAsXLsS5c+dgY2Ojz9hUCn6e9DoWagP48MMPsXbtWpw9exbNmjV7Y1s3NzdIpVLcuXNH7oav1NRUZGRkwM3NTeX+lS36r+eIj48vsf7WrVuy7WQYderUwR9//IGgoCClfslq2rQpmjZtijlz5mDz5s349NNPsWXLFgwdOlStvxukXfw86XW89G0AX375JaytrTF06FCkpqaW2J6QkIAlS5YAADp27AgAiImJkWuzaNEiAECnTp1U7t/a2hoAkJGRofQ+HTt2xIULF3D27FnZutzcXKxduxbu7u7w8vJSOQdpxyeffAKJRIJZs2aV2FZUVCT7nJ89e1biyoqvry8AyC6XWllZAVDt7wZpFz9Peh3PqA2gTp062Lx5M3r16oUGDRrIjUx25swZbNu2DZ999hkAwMfHBwMHDsTatWuRkZGB4OBgXLhwAZs2bUK3bt0QEhKicv++vr4wMTHBvHnzkJmZCXNzc7Ru3RpOTk6l7jN58mT89NNP6NChA8aOHYuqVati06ZNSExMxK+//gqxWPXf+b7//nvcv38feXl5AIATJ05g9uzZAID+/fvzLF1JwcHBGDFiBKKjoxEXF4d27dqhUqVKuHPnDrZt24YlS5agR48e2LRpE1auXImPPvoIderUQXZ2NtatWwdbW1vZL4SWlpbw8vLC1q1b8e6776Jq1arw9vaGt7d3qf3zc9Qufp5UgoHvOq/Qbt++LQwbNkxwd3cXzMzMhMqVKwtBQUHCsmXLhBcvXsjaFRYWCjNnzhQ8PDyESpUqCa6ursKUKVPk2gjCy0erOnXqVKKf4OBgITg4WG7dunXrhNq1awsmJiZyj2qVdgxBEISEhAShR48egp2dnWBhYSH4+/sLe/bskWujyuNZwcHBAgCFL0WPjtFLrz/OU2zt2rWCn5+fYGlpKVSuXFl4//33hS+//FL4999/BUEQhMuXLwt9+vQRatWqJZibmwtOTk7Chx9+KFy8eFHuOGfOnBH8/PwEMzMzpR7P4eeoGX6e9DYiQVDhLiMiIiLSK35HTUREZMRYqImIiIwYCzUREZERY6EmIiIyYizURERERoyFmoiIyIixUBux+fPnw9PTE1Kp1NBRNNa7d2988sknho5RpvDzJ0WSkpIgEomwceNGQ0chPWGhNlJZWVmYN28eJk2aJBv1SyQSQSQSYeHChSXab9y4ESKRCBcvXtR6lrZt20IkEmHMmDEKt69fvx4NGjSAhYUF6tWrh2XLlpVoM2nSJPz666/466+/tJ6vPOLnT0TFWKiNVGxsLIqKitCnT58S2xYsWCAb3k/XfvvtN7nxvV+3Zs0aDB06FO+99x6WLVuGZs2aYezYsZg3b55cu0aNGqFJkyYKiwyVxM+fSuPm5obnz5+jf//+ho5C+mLoodFIsYYNGwr9+vWTWwdA8PX1FQAICxculNu2YcMGAYDw559/ai3D8+fPBXd3d+Grr74SAAijR4+W256XlydUq1atxJCjn376qWBtbS08ffpUbv0333wjWFtbC9nZ2VrLWF7x8yeiYjyjNkKJiYn4+++/0aZNmxLbgoKC0Lp1a8yfPx/Pnz/XaY758+dDKpVi4sSJCrcfPXoUT548wahRo+TWjx49Grm5udi7d6/c+rZt2yI3NxeHDh3SWebygJ9/+RcVFQWRSITbt2+jX79+qFKlChwdHTFjxgwIgoAHDx6ga9eusLW1RfXq1eWuRCj6jvqzzz6DjY0N/vnnH3Tr1g02NjZwdHTExIkTIZFIZO2OHTsGkUiEY8eOyeVRdMyUlBQMGjQI77zzDszNzVGjRg107doVSUlJOvq/QqVhoTZCZ86cAQA0btxY4faoqCikpqZi1apVbzxOfn4+0tPTlXq9Ljk5GV9//TXmzZtX6py4V65cAQA0adJEbr2fnx/EYrFsezEvLy9YWlri9OnTb8xd0fHzrzh69eoFqVSKr7/+GgEBAZg9ezZiYmLQtm1buLi4YN68eahbty4mTpyIEydOvPFYEokEoaGhqFatGr755hsEBwdj4cKFWLt2rVrZunfvju3bt2PQoEFYuXIlxo4di+zsbCQnJ6t1PFIfp7k0Qrdu3QIAeHh4KNzeokULhISEYMGCBRg5cmSpP0h/+uknDBo0SKk+hdfmZpkwYQIaNWqE3r17l7rPo0ePYGJiUmJ6TDMzM1SrVg3//vuv3HpTU1O4urrixo0bSmWqqPj5Vxz+/v5Ys2YNAGD48OFwd3fHhAkTEB0djUmTJgEA+vTpg5o1ayI2NhYtW7Ys9VgvXrxAr169MGPGDADA559/jsaNG2P9+vUYOXKkSrkyMjJw5swZLFiwQO6KypQpU1R9i6QFLNRG6MmTJzA1NYWNjU2pbaKiohAcHIzVq1cjLCxMYZvQ0FC1LjMePXoUv/76K86fP//Gds+fP4eZmZnCbRYWFgovzdrb2ys8g6P/8POvOIYOHSr7s4mJCZo0aYKHDx9iyJAhsvV2dnaoX78+7t2799bjff7553LLLVq0wPfff69yLktLS5iZmeHYsWMYMmQI7O3tVT4GaQ8LdRnVsmVLhISEYP78+SX+cRarUaMGatSoodJxi4qKMHbsWPTv3x8ffPDBG9taWlqioKBA4bYXL14oPNMTBAEikUilTFQSP//yoVatWnLLVapUgYWFBRwcHEqsf/LkyRuPZWFhAUdHR7l19vb2ePbsmcq5zM3NMW/ePEyYMAHOzs5o2rQpPvzwQwwYMADVq1dX+XikGRZqI1StWjUUFRUhOzsblStXLrVdZGQkWrVqhTVr1sDOzq7E9ufPnyMzM1OpPov/8X333XeIj4/HmjVrStw0kp2djaSkJDg5OcHKygo1atSARCJBWlqa3OXPgoICPHnyBDVr1izRz7Nnz1CvXj2lMlVU/PwrDhMTE6XWASW/nlB2v1eV9kvSqzecFRs/fjw6d+6MHTt24MCBA5gxYwaio6Nx5MgRNGrU6K19kfbwZjIj5OnpCeDl3b9vEhwcjFatWmHevHkKLzNu3bpVdlb1tlex5ORkFBYWIigoCB4eHrIX8PKHuIeHBw4ePAgA8PX1BYASg2xcvHgRUqlUtr1YUVERHjx4gAYNGqj0/6Oi4edPulJ8CTsjI0Nu/f379xW2r1OnDiZMmICDBw/i2rVrKCgo4LPwBsAzaiPUrFkzAC9/4DVs2PCNbaOiotCqVSuFd3aq8x1l7969S/yABYCPPvoIHTt2xLBhwxAQEAAAaN26NapWrYpVq1ahY8eOsrarVq2ClZUVOnXqJHeMGzdu4MWLFwgMDFQpU0XDz590xc3NDSYmJjhx4gS6desmW79y5Uq5dnl5eRCLxbCwsJCtq1OnDipXroz8/Hx9xaX/j4XaCNWuXRve3t74448/MHjw4De2DQ4ORnBwMI4fP15imzrfUXp6esrO6F7n4eEh94/b0tISs2bNwujRo9GzZ0+Ehobi5MmT+OGHHzBnzhxUrVpVbv9Dhw7BysoKbdu2VSlTRcPPn3SlSpUq6NmzJ5YtWwaRSIQ6depgz549SEtLk2t3+/Zt/N///R8++eQTeHl5wdTUFNu3b0dqauobnwQg3WChNlKDBw9GREQEnj9/XurjN8WioqIQEhKip2TyRo0ahUqVKmHhwoXYtWsXXF1dsXjxYowbN65E223btuHjjz9+4/eu9BI/f9KVZcuWobCwEKtXr4a5uTk++eQTLFiwAN7e3rI2rq6u6NOnDw4fPozvv/8epqam8PT0xM8//4zu3bsbMH3FJBLedocCGURmZiZq166N+fPnyz2qUVbFxcWhcePGuHz5ssJLqySPnz8RFWOhNmLz5s3Dhg0bcOPGDdkMSmVV7969IZVK8fPPPxs6SpnBz5+IABZqIiIio1a2f00nIiIq51ioiYiIjBgLNRERkRFjoSYiIjJiLNRERFRCUlISRCIRNm7caOgoFR4LNRGRhhISEjBixAjUrl0bFhYWsLW1RVBQEJYsWaJwHHZtuXHjBqKiokpMoKJvc+bMQZcuXeDs7AyRSISoqCiD5ilvODIZEZEG9u7di549e8Lc3BwDBgyAt7c3CgoKcOrUKXzxxRe4fv26wrHYteHGjRuYOXMmWrVqBXd3d530oYzp06ejevXqaNSoEQ4cOGCwHOUVCzURkZoSExPRu3dvuLm54ciRI3Jjq48ePRp3797F3r17DZjwP4IglDpPuKYSExPh7u6O9PT0EnNik+Z46ZuISE3z589HTk4O1q9fr3AClLp168qNe15UVIRZs2ahTp06MDc3h7u7O6ZOnVpiRip3d3d8+OGHOHXqFPz9/WFhYYHatWvju+++k7XZuHEjevbsCQAICQmBSCSCSCTCsWPH5I5x4MABNGnSBJaWllizZg0A4N69e+jZsyeqVq0KKysrNG3aVKNfKAx5Nl8RsFATEalp9+7dqF27ttJTdw4dOhQRERFo3LgxFi9ejODgYERHRyuckeru3bvo0aMH2rZti4ULF8Le3h6fffYZrl+/DgBo2bIlxo4dCwCYOnUqvv/+e3z//fdy833Hx8ejT58+aNu2LZYsWQJfX1+kpqYiMDAQBw4cwKhRozBnzhy8ePECXbp0wfbt27Xwf4W0TiAiIpVlZmYKAISuXbsq1T4uLk4AIAwdOlRu/cSJEwUAwpEjR2Tr3NzcBADCiRMnZOvS0tIEc3NzYcKECbJ127ZtEwAIR48eLdFf8TH2798vt378+PECAOHkyZOyddnZ2YKHh4fg7u4uSCQSQRAEITExUQAgbNiwQan3JwiC8PjxYwGAEBkZqfQ+9HY8oyYiUkNWVhYAKD1t5759+wAA4eHhcusnTJgAACUuPXt5eaFFixayZUdHR9SvXx/37t1TOqOHhwdCQ0NL5PD390fz5s1l62xsbDB8+HAkJSXhxo0bSh+f9IOFmohIDba2tgCA7Oxspdrfv38fYrEYdevWlVtfvXp12NnZ4f79+3Lra9WqVeIY9vb2ePbsmdIZPTw8FOaoX79+ifXFl8xfz0GGx0JNRKQGW1tb1KxZE9euXVNpP5FIpFQ7ExMThesFFSY81MUd3qR/LNRERGr68MMPkZCQgLNnz761rZubG6RSKe7cuSO3PjU1FRkZGXBzc1O5f2WL/us54uPjS6y/deuWbDsZFxZqIiI1ffnll7C2tsbQoUORmppaYntCQgKWLFkCAOjYsSMAICYmRq7NokWLAACdOnVSuX9ra2sAQEZGhtL7dOzYERcuXJD75SI3Nxdr166Fu7s7vLy8VM5BusUBT4iI1FSnTh1s3rwZvXr1QoMGDeRGJjtz5gy2bduGzz77DADg4+ODgQMHYu3atcjIyEBwcDAuXLiATZs2oVu3bggJCVG5f19fX5iYmGDevHnIzMyEubk5WrduDScnp1L3mTx5Mn766Sd06NABY8eORdWqVbFp0yYkJibi119/hVis+vnb999/j/v37yMvLw8AcOLECcyePRsA0L9/f56la8rQt50TEZV1t2/fFoYNGya4u7sLZmZmQuXKlYWgoCBh2bJlwosXL2TtCgsLhZkzZwoeHh5CpUqVBFdXV2HKlClybQTh5aNVnTp1KtFPcHCwEBwcLLdu3bp1Qu3atQUTExO5R7VKO4YgCEJCQoLQo0cPwc7OTrCwsBD8/f2FPXv2yLVR5fGs4OBgAYDCl6JHx0g1IkFQ4c4EIiIi0it+R01ERGTEWKiJiIiMGAs1ERGREWOhJiIiMmIs1EREREaMhZqIiMiIsVATEREZMRZqIiIiI8ZCTUREZMRYqImIiIwYCzUREZERY6EmIiIyYizURERERuz/AZWho7c+MT2GAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -1620,7 +1620,7 @@
}
],
"source": [
- "two_groups_unpaired.mean_diff.plot(barplot_kwargs={\"alpha\":0.5, \"edgecolor\":\"red\", \"linewidth\":2});"
+ "two_groups_unpaired.mean_diff.plot(barplot_kwargs={\"alpha\":0.5, \"edgecolor\":\"red\", \"linewidth\":2, 'errorbar': ('sd', 0.1)});"
]
},
{
@@ -1639,7 +1639,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6EAAAInCAYAAABpxV9bAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAyQlJREFUeJzs3Xd4U+XbB/DvSdKkTfcuRaAFZJRNkb1FWtlLkVVERVQQAX1VRAEV4edgqSCgDAcoKHtvRLaABVmVXaCDlu6mTZrkvH/URkJb6Eh6kvT7ua5cbZ5zznPu8pCmd54liKIogoiIiIiIiKgCyKQOgIiIiIiIiCoPJqFERERERERUYZiEEhERERERUYVhEkpEREREREQVhkkoERERERERVRgmoURERERERFRhmIQSERERERFRhWESSkRERERERBWGSSgRERERERFVGCahNiA+Ph7Tp09HfHy81KEQERERERFZFZNQGxAfH48PP/yQSSgRERERETk8JqFERERERERUYZiEEhERERERUYVhEkpEREREREQVhknofQ4ePIjevXsjODgYgiBgw4YNj7zmwIEDaN68OVQqFWrXro0VK1ZYPU4iIiIiIiJ7xST0PtnZ2WjSpAkWLFhQovOvX7+Onj17okuXLoiOjsaECRPw0ksvYefOnVaOlIiIiIiIyD4ppA7Aljz99NN4+umnS3z+okWLEBoaitmzZwMA6tevj0OHDmHu3LmIiIiwVphERERERER2i0loORw9ehTdunUzK4uIiMCECRMeep1Wq4VWqzU9z8rKskZ4pXLv3j3odDqr1e/p6Wm1uqloGo0GeXl5VqtfqVTC19fXavVTYdZ8nYqiCKPRCB8fH6vUT0WTy+XIysqyWrvydSoNa75WBUGAh4eHVeqm4snSUiHkWen3r8EAURShDAi0Sv1UNMFJidTsbP7+lQiT0HJISEhAYKD5L4zAwEBkZGQgJycHLi4uRV43a9YsfPjhhxURYoncu3cPCxYsgCiKVrtH586d4ebmZrX6yVxWVhZ+//13q7apIAgYO3Ysf8FWkIp4nQJ8rUph69atVmtXvk4rHt9THY8sLRXuPy213g3+/b/i0/8ZyPmhfYXJcnXH0u07+ftXIpwTKoHJkycjPT3d9Pj9998ljUen01n9D1uDwWDV+smc4d9PVa1JFEWr9p6TuYp4nQJ8rVY0vV5v1Xbl67Ti8T3VAVmpB/RBol5fIfehfHn8/Ssp9oSWQ1BQEBITE83KEhMT4eHhUWwvKACoVCqoVCrTc1v6NFMQBIvWVxF/NNPDWbpNAbar1Nimjom/fx0P29QBWeH3L9iukuNrteI5TE+oKIrYt28ftm/fjszMzAq5Z5s2bbB3716zst27d6NNmzYVcn8iIiIiIiJ7Y5dJ6JQpU9ClSxfTc1EU0b17dzz11FPo2bMnGjVqhKtXr5a63qysLERHRyM6OhpA/hYs0dHRiI2NBZA/jDYqKsp0/iuvvIJr167h7bffxqVLl7Bw4UKsWbMGEydOLN8PSERERERE5KDsMgldu3YtWrZsaXr+22+/Ye/evZgxYwa2bNkCg8GA6dOnl7rekydPolmzZmjWrBkAYNKkSWjWrBmmTp0KAIiPjzclpAAQGhqKrVu3Yvfu3WjSpAlmz56N7777jtuzEBERERERFcMu54TeuXMHtWvXNj1ft24dwsLCMHnyZADAq6++im+++abU9Xbu3PmhY7hXrFhR5DV//fVXqe9FRERERERUGdllT6hCoTDtsymKIvbu3YvIyEjT8cDAQCQnJ0sVHhERERERERXDLpPQhg0b4qeffkJqaiqWL1+Oe/fuoWfPnqbjN2/ehJ+fn4QREhERERERUVHscjju1KlT0bt3b1Oi2a5dO7OFirZu3YonnnhCqvCIiIiIiIioGHaZhD711FM4ffo0du/eDS8vLwwePNh0LDU1FR07dkTfvn0ljJCIiIiIiIiKYpdJKACEhYUhLCysULm3tzfmzp0rQURERERERET0KHaZhGZmZiItLQ3VqlUzlcXFxWHRokXQarUYNGgQh+MSERERERHZILtMQl9++WVcv34dx44dAwBkZGSgdevWuH37NmQyGebPn48dO3agc+fO0gZKREREREREZuxyddxDhw6hV69epuc//fQT4uLicOTIEaSmpqJx48aYMWOGhBESERERERFRUewyCU1OTkbVqlVNzzdt2oT27dujdevWcHd3R1RUFM6cOSNhhERERERERFQUu0xCvby8kJCQAADIycnBH3/8ge7du5uOKxQKaDQaqcIjIiIiIiKiYtjlnNC2bdti4cKFqFevHnbs2IHc3FyzLVn++ecfs55SIiIiIiIisg12mYR++umn6N69OwYOHAgAePPNN9GgQQMAgMFgwK+//orIyEgpQyQiIiIiIqIi2GUSWrt2bcTExODChQvw9PRESEiI6ZhGo8HXX3+NJk2aSBcgERERERERFckuk1AAcHJyKjLRdHd3NxuaS0RERERERLbDLhcmAvL3Bv3f//6HiIgINGvWDCdOnAAApKSkYM6cObhy5YrEERIREREREdGD7LIn9Pbt2+jUqRNu3bqFxx9/HJcuXUJWVhYAwMfHB4sXL8bNmzcxf/58iSMlIiIiIiKi+9llEvp///d/yMzMRHR0NAICAhAQEGB2vF+/ftiyZYtE0REREREREVFx7HI47q5duzB+/HiEhYVBEIRCx2vWrIlbt25JEBkRERERERE9jF0moTk5OfD39y/2eGZmZgVGQ0RERERERCVll0loWFgYDh48WOzxDRs2oFmzZhUYEREREREREZWEXSahEyZMwC+//IJPP/0U6enpAACj0YgrV65gxIgROHr0KCZOnChxlERERERERPQgu1yYaPjw4bh58ybef/99TJkyBQAQGRkJURQhk8kwc+ZM9OvXT9ogiYiIiIiIqBC7TEIBYMqUKRgxYgTWrl2LK1euwGg0olatWhgwYABq1qwpdXhERERERERUBLtNQgGgevXqHHZLRERERERkR+xyTujp06excOHCYo8vXLgQ0dHRFRcQERERERERlYhdJqFTpkzBnj17ij2+b98+vP/++2Wuf8GCBQgJCYGzszNatWqFEydOPPT8efPmoW7dunBxcUG1atUwceJE5Obmlvn+REREREREjsouk9BTp06hQ4cOxR7v0KEDTp48Waa6V69ejUmTJmHatGk4ffo0mjRpgoiICNy9e7fI81etWoV3330X06ZNw8WLF7F06VKsXr0a7733XpnuT0RERERE5MjsMgnNzMyEQlH8dFaZTGbauqW05syZg9GjR2PUqFEICwvDokWLoFarsWzZsiLPP3LkCNq1a4ehQ4ciJCQE3bt3x5AhQx7Ze0pERERERFQZ2eXCRI8//jh27dqF119/vcjjO3bsKNMKuTqdDqdOncLkyZNNZTKZDN26dcPRo0eLvKZt27b46aefcOLECbRs2RLXrl3Dtm3bMGLEiGLvo9VqodVqTc+zsrJKHau9EQQBMln5PvMQBMH0KHh+/7EHvz74fUkeMpms0PcPfi3q3KJiKy7eouIGAENGOvLi46BPS4MxV1Ouf6u72Y7/f4qIiIiI7JNdJqEvvvgiJk6ciEmTJmHq1Knw8vICAKSlpeHDDz/Ejh078Pnnn5e63uTkZBgMBgQGBpqVBwYG4tKlS0VeM3ToUCQnJ6N9+/YQRRF6vR6vvPLKQ4fjzpo1Cx9++GGp47NnoijCaDRapC6ZTAaFQgGFQgGlUgmVSgWVSgVnZ2e4uLg8tJfcFhlzNMi5HAN9yj3JYli8eDGysrLg5uaGMWPGSBYHERERETk++/pr/V/jx49HdHQ05s2bhy+//BLBwcEAgLi4OBiNRowYMaLCtm45cOAAZs6ciYULF6JVq1a4cuUK3njjDXz88cf44IMPirxm8uTJmDRpkul5dHQ0OnXqVCHxOgKj0QidTgedTgeNpnCPoVKphKurK1xdXeHu7g61Wi1BlCWTl3QXOZcuQDToJY0jKysLGRkZksZARERERJWDXSahgiBg+fLliIqKwtq1a3Ht2jUAQN++fTFw4EB07ty5TPX6+flBLpcjMTHRrDwxMRFBQUFFXvPBBx9gxIgReOmllwAAjRo1QnZ2Nl5++WVMmTKlyCGoBT13Bdzc3MoULxWtIEFNTU0FACgUCnh4eMDT0xOenp6Qy+USR5hPd+c2ci4X3cNOREREROSo7DIJLdClSxd06dLFYvUplUqEh4dj79696NevH4D8Xre9e/di3LhxRV6j0WgKJZoFSY4oihaLjcpOr9cjJSUFKSkpEAQB7u7u8PHxgZeXl2QJqS7uDhNQIiIiIqqU7DIJvX79Os6dO4fevXsXeXzz5s1o1KgRQkJCSl33pEmTMHLkSLRo0QItW7bEvHnzkJ2djVGjRgEAoqKiULVqVcyaNQsA0Lt3b8yZMwfNmjUzDcf94IMP0Lt3b5vpcaP/iKKIjIwMZGRkQCaTwdvbG35+fhXaG61PuYecf5iAEhEREVHlZJdJ6FtvvYWMjIxik9AFCxbAy8sLv/zyS6nrHjx4MJKSkjB16lQkJCSgadOm2LFjh2mxotjYWLOez/fffx+CIOD999/HnTt34O/vj969e+OTTz4p2w9HFcZoNOLevXu4d+8eXFxcEBAQAB8fn3Kv4vvQe+ZooDn/NwD2khMRERFR5WSXSejRo0cxYcKEYo8/+eSTmDdvXpnrHzduXLHDbw8cOGD2XKFQYNq0aZg2bVqZ70fSy8nJwc2bN3Hnzh0EBgbC39/f4j3ZotEIzYVzki9CREREREQkJbtMQlNTU+Hu7l7scTc3N9y7J912F2S/9Ho97ty5g4SEBAQGBiIgIMBiyaj2xjUYMrkCLRERERFVbtYbd2hF1atXx+HDh4s9/scff+Cxxx6rwIjI0RgMBsTFxeHcuXNISEiAwWAoX31ZmdDeirVQdERERERE9ssuk9AhQ4bg559/xpdffgmj0WgqNxgMmD9/PlavXo2hQ4dKGCE5ioKe0b///htxcXHQ60s/lFYUReTEXARE46NPJiIiIiJycHY5HHfy5Mk4dOgQJkyYgE8++QR169YFAMTExCApKQmdO3fGlClTJI6SHInBYEB8fDwSEhLg4+ODgIAAqNXqEl2bFx/HYbhERERERP+yyyRUpVJh165d+P7777Fu3TpcvXoVANCyZUsMHDgQUVFRVl3hlCovURRNK+qq1Wr4+fnBx8en2Hmjol6P3OtXKzjKB2IowX61rq6uEEXR9JWIiIiIyFrsMgkFAJlMhlGjRpn27ySqaBqNBrGxsbh16xY8PT3h7e0NT09Ps4RUe+smxDxdieoTFE5wCgyCwtMLMmcXQCh7bLrUVAh/nS1xQjlmzJhS30MQBCiVylJfR0RERESVm90moUS2QhRFpKWlIS0tDYIgwN3dHZ6ennBVqWC4feuR1wsyOVQ1QqCsVgOChXrw/d09MHbsWOh0JUuAy0KpVMLX19dq9RMRERGRY7LLJLRr166PPEcQBOzdu7cCoiH6jyiKyMjIQEZGBvKS7gLpqVA7KaFWOsHFSQFnJyco7ks05Wo3uDRsDHkJ55eWBhNEIiIiIrJFdpmEGo1GCIL5WEWDwYCbN2/i1q1bqF27NqpWrSpRdET5c0H1aamA0YgMQy4ycnNNxxRyGVRyBZy9POFRpSpysrOh0GqhUCggl8shCEKh/99lIaSmADptuesptn6VM5RBVaxWPxERERE5JrtMQg8cOFDssS1btuDll1/GnDlzKi4gogfoU/MT0CKPGYwwqhQwePpAc/euVe4vS0uF+09LrVL3/arPmsNElIiIiIhKxeGWkO3VqxeGDx+OCRMmSB0KVVKi0Qh9emqxx2VKFZTBj1ls/meRSrgYUoH+m3ei/ZqN6L95Z6muE7W5jz6JiIiIiOg+DpeEAkCtWrXw559/Sh0GVVKG9DTAYCj6oFwBZdXHIBSzpYtVCMIjH0k5uUjU5CApJ7dE5xMRERERlZXDJaF6vR5r1qyBn5+f1KFQJSSKIvSpKcUeVwYGQeC2JkRERERUidnlnNAXXnihyPK0tDQcO3YMCQkJnBNKkjBmZ0HMyyvymNzLG3J39wqOiIiIiIjItthlErpv375Cq4cKggBvb2+0b98eL730Erp37y5RdFSZ6dOKngsqODnByc+/gqMhIiIiIrI9dpmE3rhxQ+oQiAox6nQwZmcXecwpIKhi54ESEREREdkoh5sTSiQVQ3pakeUyN3fI3dwqNhgiIiIiIhtlN0moRqNBbGwsdLrCW08sW7YMTz75JMLCwjBgwACujEsVThRF6NPTCx8QBDj5B1R8QERERERENspuktCPPvoIjRs3LpSEzpgxA6NHj8bvv/+OpKQkbNiwAZ07d8aZM2ckipQqI2NWFmDQFyqXe3lBxtVwiYiIiIhM7CYJ3b9/P3r16gW3+4Y1ZmRkYMaMGahatSouX76MpKQkHDt2DEqlEv/73/8kjJYqG31RQ3FlMjj5cKsgIiIiInu2ePFizJ49G4sXL5Y6FIdhN0nojRs30LhxY7Oybdu2QafT4Z133kFoaCgAoGXLlhg1ahT++OMPKcKkSkjU62HUFF6QSOHlDUFhl2t/EREREdG/srKykJGRgaysLKlDcRh28xdyZmYmfH19zcoOHjwIQRAQERFhVh4WFoakpKSKDI8qMUNmBiCK5oUyGRTePtIEVAb+Li5mX4mIiIiIrMVuktAaNWrg0qVLZmUHDhxAYGAgateubVau0+ng4eFRkeFRJWbIKLwgkcLTvnpB1/eJePRJREREREQWYDfDcbt3745ly5bh+PHjAIAffvgBly5dQv/+/Qude+rUKYSEhFRwhFQZGbVaGHNzzQsFAQofb2kCIiIiIiKycXaThH7wwQdwc3ND27ZtoVQq8fzzz8Pf3x9Tp041O0+j0WD9+vV48sknJYqUKhNDVkahMrm7BwSFkwTREBERERHZPrsZL+jn54fo6Gh89913uHbtGmrUqIEXXngBAQHmezCeO3cOw4YNw4gRIySKlCoTY0ZmoTKFj28RZxIREREREWBHPaEA4O3tjf/7v//DN998g3fffbdQAgrkr4771VdfoUGDBmW+z4IFCxASEgJnZ2e0atUKJ06ceOj5aWlpGDt2LKpUqQKVSoU6depg27ZtZb4/2QejVgujTmtWJnNRQ6ZSSRQREREREZHts5ue0IqyevVqTJo0CYsWLUKrVq0wb948REREICYmpsikV6fT4amnnkJAQAB+++03VK1aFTdv3oSXl1fFB08VypBZeCiuwptzQYmIiIiIHoZJ6APmzJmD0aNHY9SoUQCARYsWYevWrVi2bBnefffdQucvW7YMKSkpOHLkCJyc8ucBclGkysGQaT4UV1A4QebmLlE0RERERET2wa6G41qbTqfDqVOn0K1bN1OZTCZDt27dcPTo0SKv2bRpE9q0aYOxY8ciMDAQDRs2xMyZM2EwGIq9j1arRUZGhunBjW/tj1GrhfjAUFy5pycEQZAoIiIiIiIi+8Ak9D7JyckwGAwIDAw0Kw8MDERCQkKR11y7dg2//fYbDAYDtm3bhg8++ACzZ8/GjBkzir3PrFmz4OnpaXp06tTJoj8HWZ8x68EFiQQoPL2kCIWIiIiIyK7YRRK6adMmxMXFSR1GkYxGIwICArBkyRKEh4dj8ODBmDJlChYtWlTsNZMnT0Z6errp8fvvv1dgxGQJhgeSUJmrGoITt2UhIiIicjRubm7w8PCAm5ub1KE4DLuYE9q/f3/8+OOPGDp0KACgZs2amDdvHvr06WPR+/j5+UEulyMxMdGsPDExEUFBQUVeU6VKFTg5OUEul5vK6tevj4SEBOh0OiiVykLXqFQqqO5bQZX/oe2LmJcHY26uWRl7QYmIiIgeQpBBkMkgyOWATAbIZBBk+d8LgpBfJggQZAIgyAAh/xoA+ccLpjxZaOqTTJdn+l4UxYee+/LLL5f4XCoZu0hC3d3dkZaWZnp+48YNq8yjVCqVCA8Px969e9GvXz8A+T2de/fuxbhx44q8pl27dli1ahWMRiNksvwXyj///IMqVaoUmYCS/TNkPzAUVybjgkRERETkUARBBigU/yaOCkAuhyCXQ1DIAbkCguK+h1zxX/m/3+cnm3JT0inIbGsApuu9exAEwWpJpSAIzAUewi6S0JYtW+KTTz5BYmIiPD09AQDbtm0rdp4mkN/wEydOLPW9Jk2ahJEjR6JFixZo2bIl5s2bh+zsbNNquVFRUahatSpmzZoFAHj11Vfx9ddf44033sDrr7+Oy5cvY+bMmRg/fnwZflKyB4YHPgCRu3twQSIiIiIqF0GhgOBUzqTlvh7D/KRPAGRC/vcFieC/yaFMJgPkCkAhh0yuyE84FQoITk75K/4r/ksiBYVdpAyl4uvri7Fjx0Kn01mlfqVSCV9fX6vU7Qjs4n/UwoULERUVhY8//hhAfoK5atUqrFq1qthrypqEDh48GElJSZg6dSoSEhLQtGlT7Nixw7RYUWxsrKnHEwCqVauGnTt3YuLEiWjcuDGqVq2KN954A++8806p7022TzQYYNRozMrkHp4SRUNERESOQtTrIeZZLiGydP+eIFfk92r+m5SaklP5Az2iBecUHC/oSZXJIMjvG4J731Q2qbjn6SDqch99Yhmwf+Lh7CIJrV27No4cOYLc3FzcvXsXISEhmDdvHvr27WuV+40bN67Y4bcHDhwoVNamTRscO3bMKrGQbTFqNMB9wzYEJyfI1WoJIyIiIiKyPtGgh2jQW7ROQZD9Nz+0oBe3YG6ocN/cUAj/llnu3qIIJHw123IVFqH6rDlQBlWx6j3slV0koQWcnZ1RvXp1TJs2DV27dkWNGjWkDokqGUN24aG4RERERFR6omgEDEbAYPme20creUbbf/NOJOXkwt/FGet7R5T4OlFrnV5WR2BXSWiBadOmmb7PysrCrVu3AOQPjeVKs2RNxgeTUA8moURERER27RFdrEk5uUjU5JToXABmo+aoaLa1TFUp/Pnnn+jSpQu8vb3RsGFDNGzYEN7e3ujatStOnjwpdXjkgIy5ORD1/w1DEZRKyFTOEkZERERERGR/7LIn9Pjx4+jcuTOUSiVeeukl1K9fHwBw8eJF/Pzzz+jYsSMOHDiAli1bShwpORJj9gMLErmxF5SIiIiIqLTsMgmdMmUKqlatikOHDiEoKMjs2PTp09GuXTtMmTIFu3fvlihCckSF5oNyKC4RERERUanZ5XDc48ePY8yYMYUSUAAIDAzEyy+/zNVqyaJEgwHG3BzTc8FJCZlKJWFERERERET2yS6TUJlMBr2++CWiDQaD2V6eROX14NYscnd3CaMhIiIiIrJfdpmptW3bFgsWLMDNmzcLHYuNjcXChQvRrl07CSIjR2XQZJs9l3EVZiIiIiKiMrHLOaEzZ85Ex44dUa9ePfTv3x916tQBAMTExGDjxo1QKBSYNWuWxFGSIzFm/5eECgoF5C5qCaMhIiIiIrJfdpmENmvWDMePH8eUKVOwadMmaDT5q5aq1WpERkZixowZCAsLkzhKchRiXh7EPJ3pucyVvaBERERERGVll0koAISFhWH9+vUwGo1ISkoCAPj7+3MuKFmcIdt8KK7cjfNBiYiIiIjKym6T0AIymQyBgYFSh0EOzJhzXxIqk0Hm6ipdMEREREREdo7dhkSPYMjWmL6XqV0hCIKE0RARERER2Te77wklsiajVgsY/tsOSM75oERERESVir+Li9lXKj8moUQPYdQ8OB+UQ3GJiIiIKpP1fSKkDsHhcDgu0UMYNfcNxVWpICicJIyGiIiIiMj+MQkleghDzn1JKIfiEhERERGVm10Px71w4QKuXbuG1NRUiKJY6HhUVJQEUZGjMGpzAYPB9Jyr4hIRERERlZ9dJqFXr17F8OHDceLEiSKTTwAQBIFJKJXL/UNxIZNB5qKWLhgiIiIiIgdhl0nomDFj8Pfff2PevHno0KEDvL29pQ6JHJBBw61ZiIiIiIgszS6T0MOHD+O9997D66+/LnUo5KBEUTRbGVfOobhERERERBZhlwsT+fn5wdPTU+owyIEZc3MAo9H0XKZmEkpEREREZAl2mYS+8sor+Omnn2C4b9EYIku6vxdUcHKCTKmUMBoiIiIiIsdhl8Nx69SpA4PBgCZNmuCFF15AtWrVIJfLC503YMAACaIjR2DMNp8PSkRERERElmGXSejgwYNN37/11ltFniMIAntKqUxEgyF/OO6/ZGquiktEREREZCl2mYTu37/fqvUvWLAAn3/+ORISEtCkSRN89dVXaNmy5SOv++WXXzBkyBD07dsXGzZssGqMZD3GHA1w39Y/cvaEEhERERFZjF0moZ06dbJa3atXr8akSZOwaNEitGrVCvPmzUNERARiYmIQEBBQ7HU3btzAW2+9hQ4dOlgtNqoYhuz/5oPKVCoICrt8mRARERER2SS7XJjofhcuXMD27duxfft2XLhwodz1zZkzB6NHj8aoUaMQFhaGRYsWQa1WY9myZcVeYzAYMGzYMHz44YeoWbNmuWMgaRnvS0IFDsUlIiIiIrIou01CN27ciFq1aqFRo0bo1asXevXqhUaNGqF27drYtGlTmerU6XQ4deoUunXrZiqTyWTo1q0bjh49Wux1H330EQICAvDiiy+W6D5arRYZGRmmR1ZWVpniJcsz6nQQ83Sm53IXDsUlIiIiIrIkuxxnuG3bNgwcOBA1atTAzJkzUb9+fQDAxYsXsWTJEgwYMABbtmxBZGRkqepNTk6GwWBAYGCgWXlgYCAuXbpU5DWHDh3C0qVLER0dXeL7zJo1Cx9++GGpYqOKYcw2/0CAixIREREREVmWXSahH3/8MRo3bow//vgDrq7/9VT16dMH48aNQ/v27fHhhx+WOgktrczMTIwYMQLffvst/Pz8Snzd5MmTMWnSJNPz6Ohoq85zpZIznw/qDKGIrX+IiIiIiKjs7DIJPXv2LGbOnGmWgBZwdXXF888/j/fee6/U9fr5+UEulyMxMdGsPDExEUFBQYXOv3r1Km7cuIHevXubyoxGIwBAoVAgJiYGtWrVKnSdSqWCSqUyPXdzcyt1rGR5otEIo4bzQYmIiIiIrMku54Q6OzsjJSWl2OMpKSlwdnYudb1KpRLh4eHYu3evqcxoNGLv3r1o06ZNofPr1auHv//+G9HR0aZHnz590KVLF0RHR6NatWqljoGkY9Rkc2sWIiIiIiIrs8ue0K5du2L+/PmIjIwslBweP34cX375Jbp3716muidNmoSRI0eiRYsWaNmyJebNm4fs7GyMGjUKABAVFYWqVati1qxZcHZ2RsOGDc2u9/LyAoBC5WT7DPcvECUIkLm4SBcMERFVCosXL0ZWVhbc3NwwZswYqcMhIqoQdpmEfvbZZ2jTpg3at2+Pli1bom7dugCAmJgYnDhxAgEBAfj000/LVPfgwYORlJSEqVOnIiEhAU2bNsWOHTtMixXFxsZCJrPLDmR6hPsXJZI5u3A+KBERWV1WVhYyMjKkDoOIqELZZRIaGhqKs2fPYtasWdi+fTtWr14NAKhRowbeeOMNvPvuuwgICChz/ePGjcO4ceOKPHbgwIGHXrtixYoy35ekY8zNgajXm57LXDkflIiIiIjIGuwyCQWAgIAAzJ07F3PnzpU6FHIAhgf2apVxf1AimyYIQrHPi/u+tGUPZTRCNBjM5pGXhVjO64mIiOyR3SahRJZkzMz874lMxvmgRGUkCALkcjlkMhnkcjmcnJzg5OQEpVIJZ2dnODs7m60OXlzy97Aks6IZMjOgT0uDITMdxuxsGHNyIBoNFqn7nsC3YSIiqnzs4t3vhRdegCAIWLJkCeRyOV544YVHXiMIApYuXVoB0ZG9M+p0MOq0pudytaukf/AS2TNRFKG/b2h7Tk5OoXNkMhnUajVcXV3h5uYGNzc3KBS29XakT0tDXmI88pKTIObppA4HABewISIix2Fb7/rF2LdvH2QyGYxGI+RyOfbt2/fIJIFJBJWUMSvT7LnMlfu2ElmT0WhEVlYWsrKyTPsyq9VqeHp6wtPTs8g9oCuCaDQiLz4O2ju3zPYMthVcwIaIiByFXSShN27ceOhzovIwZJonoXKJ/gAmqsw0Gg00Gg3i4+OhVCrh7e0NHx8fqNXWXyRMNBqhi7sDXewNs1ERREREZB12kYQ+KDY2Fv7+/nApZt5eTk4OkpKSUL169QqOjOyNmJcHY+5/wwUFpQqCk5OEERGRTqdDYmIiEhMT4eLiAj8/P/j6+kJuhW2T8pKTkHvlMoy5GovXTUREREWzyw0vQ0NDsX79+mKPb9q0CaGhoRUYEdkrQ6b50DYZe0GJbEpOTg5u3bqFs2fPIjY2FlqtZXoqjVotNOfOQHPuDBNQIiKiCmaXPaGPWtI+Ly8PMpld5tdUwR5MQjkUl8g2GY1GJCUlISkpCd7e3ggKCirzUN28u4nI+ecSRH2ehaMkIiKikrCbJDQjIwNpaWmm5/fu3UNsbGyh89LS0vDLL7+gSpUqFRgd2SNRp4MxN/e/ApkMMjWTUCJbl5qaitTUVHh5eSE4OLjYqRkPEo1G5F6OgS7+jpUjJCIiooexmyR07ty5+OijjwDkr3w7YcIETJgwochzRVHEjBkzKjA6skeFekG5NQuRXUlLS0NaWhp8fX0RHBwMpVJZ7LnG3Fxozp2FIYury1LFedTILQBwdXWFKIqmryWhUqlK/OFLSRTc9/6v9z+MRmOJYyMiKgm7SUK7d+8ONzc3iKKIt99+G0OGDEHz5s3NzhEEAa6urggPD0eLFi0kipTshf6BrQ5kbtyahcge3bt3DykpKQgICEBQUFChPUf1GenQ/H3GZvb7JMemVCohCEKJk7bS7vkqCALq1asHX1/fsoRXLvcnpEajsdiHwWAwfX3w+wcfRqOxwn8OIpKe3SShbdq0QZs2bQAA2dnZGDhwIBo2bChxVGSvjLk5EM22YhAg5/6gRHZLFEUkJiYiKSkJ/v7+CAwMhJOTE/KS7iLn4nmIRoPUIVIl4evri7Fjx0Kns86HHkqlUpIEFMhPgK2xSvX9iatZMqvXw6jXw6DXQzQY8r+KRhgNBogGI4xGAyCKMBpF02tcNIoQxfzENv9zADH/Ua6OXPYCE1ma3SShBTQaDb788kuo1WomoVRmhXpBnZ0hKOzu5UBEDzAajUhMTMTdu3fhARHu95Lh7GT5P5qJHsY9TwdRl/voE8vAlmeNiAYDRIMBMOQnjaLeANGgz3+uN0DU6/MfhvyvpnKDATAa/rveaIRoMECACDkAqV/BedmZSJM4BiJHY3d/davVaigUCrhyFVMqI1EUYXggCZW7u0sUDRFZQ17qPSQkJiIBgKtKCV+1Gh7OKpue9/2o4ZtlmTtIFU+XEI/YyZOsdwNRROBrE+BU3t5QseCLWNBlmP/134coioBoBIwiRKMxv9xozP/eaMzveSx4bjBwtAERlYrdJaEAMHDgQPz222949dVXbfoPCrJNxqwswKA3K5O7MQklchT61BTk3U00Pc/W6pCt1UEuk8HTxRleLs5wfcgiRkUTIFOrIVe7QubsAkGlhCBXALLyvQe5aXJKPH+wtHMHgfzhkw9bsIksT9Rapwf0frpbN2HUZFn9PkRE1mKXSehzzz2H1157DV26dMHo0aMREhJS5CpxDy5cRAQA+vQ0s+cylQoC/0gjcgj6tDSzBPR+BqMRKdkapGRr4CSXwd3ZGR4qFVxVSsiK+EBTpnKGws8fCh9fKDy9rDJkPwBw2PmDhBKNne2/aSeScnLg7+KC9X0iHn4ye8CJyEHYZRLauXNn0/d//PFHoeOiKEIQBBgMHBpC5kR9HozZ2WZlMvaCEjkEQ2Y68hLjS3RunuG/hFQQBKidnOCqcoKr0hnuVatC/Vh1KLy8rBvwv5gkVm5JOTlI1ORIHQYRUYWyyyR0+fLlUodAdiq/F9T8k2TOByWyf4bsLOjiS5aAPkgURWTr9dC6eyDDyxsJ2jwob92Cc1ISnJ2doVKpoFQq4eTkBCcnJ8jlcshkMotNB9ElxFttCKegcoYyqIpV6iYiIioru0xCR44cKXUIZIdEUYQhLc2sTFAqIVM5SxMQEVmEUauFLu5O2YYqCgIUXj5Q+PpCuG/rCZ1OB51Oh4wHFjEzv7T8SaiHXgd8M7/c9TxM9VlzmIgSEZFNscsk9H5ZWVm4desWAKBatWpwc+Nej1Q0Y1ZG/pLw95G7e0gUDRFZgpiXB93tW0AZNryXqV3hFBgEWRnnhFtihVpRq0VJU9n+m3ciKScX/i7OWN/7EXMHze5h/YVyiIiISkMmdQBl9eeff6JLly7w9vZGw4YN0bBhQ3h7e6Nr1644efKk1OGRDdKnphUqYxJKZL9EvR7a27cg6vNKd6FMBqegKlBVq17mBNQqBOGhj6ScXCRqcpCUk/vIc216M0kiIqr07LIn9Pjx4+jcuTOUSiVeeukl1K9fHwBw8eJF/Pzzz+jYsSMOHDiAli1bShwp2QpDTg6MORqzMkGpgkylkigiIioP0WCA7s4tiDptqa6TuaihrBIMwcnJSpERERHRo9hlEjplyhRUrVoVhw4dQlBQkNmx6dOno127dpgyZQp2794tUYRkawypKYXKFB7sBSXHtXjxYmRlZcHNza1M+0vaMtFohO7ObRhzSzfMVOHjC4WfP/eXJiIikphdDsc9fvw4xowZUygBBYDAwEC8/PLLOHbsmASRkS0SdToYMjMLlXMoLjmyrKwsZGRkICvLsTa0Fw0G6G7fKjSy4aFkMiiDq8LJP4AJKBERkQ2wy55QmUwG/QMLzNzPYDBAJrPL/JqsIC/lHh7clkXmooZgS3PBiOiRRL3+3x7Qku+pKCgUUAY/BpmLixUjIyIiotKwy0ytbdu2WLBgAW7evFnoWGxsLBYuXIh27dpJEBnZGlGngyEjvVC53MNTgmiIqKxEfR50t2JLl4AqlVBVq8EElIiIyMbYZRI6c+ZMpKeno169ehg6dCimT5+O6dOnY8iQIahXrx7S09Mxa9asMte/YMEChISEwNnZGa1atcKJEyeKPffbb79Fhw4d4O3tDW9vb3Tr1u2h51PFyku5V3jvQJkMcnd3aQIiolIz5uZAe/MGjKVYhEimcoaqWg2OeCCb5+/igkC1C/z5YQkRVSJ2ORy3WbNmOH78OKZMmYJNmzZBo8mfG6RWqxEZGYkZM2YgLCysTHWvXr0akyZNwqJFi9CqVSvMmzcPERERiImJQUBAQKHzDxw4gCFDhqBt27ZwdnbGp59+iu7du+P8+fOoWrVquX5OKh+jVlt0L6ibu9mm9ERkuwyZGdAlxJdqH1CZszOUj1Xn65zswvo+Jd/zlYjIUdhlEgoAYWFhWL9+PYxGI5KSkgAA/v7+5Z4LOmfOHIwePRqjRo0CACxatAhbt27FsmXL8O677xY6f+XKlWbPv/vuO6xduxZ79+5FVFRUuWKxVfay6mZe0t3CvaAA5J5eFR8MEZWKKIrQJyVBn3qvVNcxASUiIrJ9dpuEFhAEwbTaYXlXPdTpdDh16hQmT55sKpPJZOjWrRuOHj1aojo0Gg3y8vLg4+NT7DlarRZa7X/Dyuxt9cqCVTdtmUGTDWN24X9XQamEXK2WICIiKilRp4MuPq5U8z8BQKZSMQElIiKyA3Y5JxQALly4gEGDBsHDwwNVqlRBlSpV4OHhgUGDBuHcuXNlqjM5ORkGgwGBgYFm5YGBgUhISChRHe+88w6Cg4PRrVu3Ys+ZNWsWPD09TY9OnTqVKV4qmiiKyEtMLPKYwtO7gqMhotLQp6Ui9+b1UieggpPS4RNQzh0kIiJHYZc9oX/88QeefvppGI1G9O3bF3Xq1AEAxMTEYNOmTdi+fTt27NiBDh06VGhc//vf//DLL7/gwIEDcHZ2Lva8yZMnY9KkSabn0dHRTEQtSJ+SDLGoBUxkMsg9uSouVQ5ubm5mX22dMTcHeXfvlm7/zwJyBVSPVYOgsMu3tBLj3EEiInIUdvmOPXHiRAQEBOD3339HtWrVzI7dunULHTt2xKRJk/Dnn3+Wql4/Pz/I5XIkPtCLlpiYiKCgoIde+8UXX+B///sf9uzZg8aNGz/0XJVKBZVKZXpuL38k2gOjVgv9vaLnkMndPRy6l4QqD7GIuc4Pevnll0t1fgFPT8+HTicoCaPRCIPBAIPBgLy8POj1+mJjEHU65N1LhiEjAw/u51siMhmUVR/jKrhERER2xC6T0PPnz+Pjjz8ulIACQLVq1fDqq69i+vTppa5XqVQiPDwce/fuRb9+/QDk/zG1d+9ejBs3rtjrPvvsM3zyySfYuXMnWrRoUer7kmWIRiPy4u4UuRgRACi8y/eHNZGUlEolBEEoVUJZWoIgICQkBL6+vhatVxRF5OXlQavVIjc3F7m5uchKTUHm7dvQpacV+5otQcBQBleFnMNTiYiI7IpdJqE1atQwW9jnQTqdrsgEtSQmTZqEkSNHokWLFmjZsiXmzZuH7Oxs02q5UVFRqFq1qmkf0k8//RRTp07FqlWrEBISYpo76ubmxh7OCpZ3N7HYfQRlrq6Q3df7TGRvfH19MXbsWOh0OqvdQ6lUWjwBBfKTW6VSCSdBgCozA+rkRHikp0F0UULr5INsXR6ytDpk63QwlHQrFkGAskow5K78PUtERGRv7DIJnTp1KiZOnIiePXuiadOmZsf++usvfPXVV5g3b16Z6h48eDCSkpIwdepUJCQkoGnTptixY4dpsaLY2FizbWC++eYb6HQ6DBo0yKyeadOmlak3lspGn5ICQ3pasccVPpb/w5qoornn6SDqcq1WfzkXGC/EqNPBmJ0FfXo6DKkp0GekA+J/SaYgCHB2coKzkxN8XdUQRRGavDxk5GqRkZsLnd5QXKRQVqkCubuHZQMmIiKiCmGXSeixY8cQGBiI8PBwtG3bFrVr1wYAXL58GUePHkXDhg1x9OhRs21VBEHA/PnzS1T/uHHjih1+e+DAAbPnN27cKNPPYKtKMtTP1dUVoiiavkrNkJmRvydoMWTOzpCrXSswIiLL0yXEI3bypEefWFb/vpb9R70MhXc5VpE2GCHq82DMzYVo0JfqUkEQ4KpUwlWpRBUPd2h0OqTl5CItJ/e/HtKCHlAmoERERHbLLpPQr7/+2vT94cOHcfjwYbPjf//9N/7++2+zstIkoZVNaeeajRkzptT3qFOnTrkWOxFFEaIomhY80ev1yMvLQ87dBGSm3IMolyHPUHSvicLHr8z3JbIVorZ0PaD9N+9EUk4u/F2csb53yVdV1ScnmfVWSkmtVEL9b0KakatFSk4udL7+kHOqAxERkV2zyyTUWNI5Q1Qi1p5rZo15ZqIoQnvjGrRpKfDz8QIAGEURuXl5yM3TQ5OXB40uD3kKBeTu7ha9N5HkSjBuNiknF4manBKfX+bFgSqAIAjwcndHcNv2yFOqkJiYiJSUFJsYiUFERESlZ5dJKFmeNRYjsRZDZgZyLv8DQ0aaWblMEEw9JwV9rsr6DZGrVCE9PR0ZGRnIy8ur8HiJqHxkLmqoGzWFXK2GAkBISAiCg4ORmJiI5ORkfjBJRERkZ+w6Cb1+/Tq2b9+OmzdvAshfNffpp59GaGioxJHZH11CfKmH+5WUKMjg5Odfvkr0+vy5n3cToU9PLdElCk8vuAQGwQWA979z3LKzs5GWloaUlBSrrjJKRJah8PGFun5DCE5OZuVKpRLVqlVDUFAQEhISkJSUxJ5RIiIiO2G3Seibb76J+fPnF/oEXCaTYcKECfjiiy8kisz+VMSCJz79n4Hc09N69yiCc606hcpcXV3h6uqKqlWrIisrC/fu3UNKSgp7UohsjgBVSChUNUIhPGQ4sZOTE6pVq4bAwEDEx8fj3r17TEaJiIhsnOzRp9ie2bNnY+7cuRgwYACOHj2KtLQ0pKWl4ejRoxg0aBDmzp2LuXPnSh2m3SjLgift12xE/807S34PfelWySwvp8AqkHs8fPVMNzc31KhRA40bN0b16tXh7OxcQdER0cPIVM5wbdocziE1H5qA3k+pVKJGjRpo2LAhAgICzLbSIiIiIttilz2h3377Lfr06YM1a9aYlbdq1Qq//PILcnNzsXjxYkycOFGiCO2YpRc8kaBHQlA4wbnW4yU+Xy6Xw9/fH/7+/sjIyEBiYiIyMjKsGCERFUdZpSqcaz0OQVG2t6eCYbrBwcFITk5GUlIStFqthaMkIiKi8rDLJPTGjRt44403ij0eERGBHTt2VGBEZEucaz0OmVJZpms9PDzg4eEBjUaD+Ph4pKWlWTY4IiqS3N0DzrXrQOHpZZn65HIEBgYiMDAQGRkZSE5ORlpaGofqEhER2QC7TEIDAgJw5syZYo+fOXMG/v7lXAiH7JLCxxfKKsHlrketVqNWrVrIzs5GfHw80tPTLRAdET1I5qKGKqQmlIFBVrtHwYdLBoMBaWlpSE1NRUZGBhNSIiIiidhlEvrMM89g/vz5CAkJweuvvw5XV1cA+Suffv311/juu+8wYcIEaYOkCidTquBSr4FF63R1dUXt2rWh0WiQmJiI1NRU/uFKdsHfxcXsq62Ru3tCVa0aFP6BJZ73We57yuXw9fWFr68vDAYDMjIyTA+ulk1ERFRx7DIJ/fjjjxEdHY333nsPU6dORXBwfs9XXFwc9Ho9unTpgo8++kjiKKlCCTK41G9Q5mG4j6JWqxEaGoqqVasiKSkJycnJ0FfwYktEpbG+T4TUIRQiUznDyT8QTkFBkLu5SxqLXC6Ht7e3afsmrVaLrKwsZGdnQ6PRICcnh6tmExERWYldJqFqtRp79+7Fxo0bzfYJjYyMRI8ePdC7d+8K+2SdbIPL43Wh8Pax+n2USiWqVq2K4OBgpKWlITk5mYsYERVFkEHuoobMzRVyDy8ovLwhd3Oz6i1FUfxvMbT7vhfvTyZFEYAIiLhv4TQRTgC8XFzg5eJiKtfptMjVaqHT6pCn1yMvLw96vR4GgwFGoxFGC4yKUIiAody1EBER2Re7S0I1Gg2GDx+OgQMHYtiwYejbt6/UIZHEnENrQRlctULvKQiCqRclLy8PqampSE1NRVZWVoXGQWRxchkEuVPZr5cJEORyCIr8OoyaHBizNciLj0N+5vevglwR9yWNpvIHkkngv2HwBcnl/eUFiaUVyAA4//uwBjFPj2Qr1U1ERGSr7C4JVavV2LNnD55++mmpQ6m0bGeumQDnWrWhqlZD0iicnJwQEBCAgIAA6PV6pKenIz09HZmZmRyyS/bHYIRoyCvH9YCYBwA5loqIiIiIHIzdJaEA0L59exw9ehSjR4+WOpRKyRbmmgkKJ7jUbwAnXz+pQzGjUChMC58AQE5Ojtk8s9zcXC5sRERERESVml0moV9//TUiIiLw/vvv45VXXsFjjz0mdUhUQQRBBqcqwVCF1LTaIkSW5OzsDGeVCn6+voAoQjQaodVqkZubC61WC51OB51OZ5pnZjAaIRqN5U5UZRaKn4iIiIjI0uwyCW3SpAn0ej1mzZqFWbNmQaFQQKVSmZ0jCAL3drQlCjkEp7LPMxMUCsjUrlB4+0BQKKBPSf5vCtj9CZso5s8xMy06IgLG/K/5T433zSkDxPuei8YHvzfmXysaIRoLrvk3Qfy3HKL435y0gmtLMEdNBsDl34c15GVnIM1KdRMRERERlYddJqEDBw7k6rf2Rm+AmFf2eWZiXh6MOTnQ3+MSHkRERERE9swuk9AVK1ZIHQIRERERERGVgV0lobm5udi4cSOuX78OPz8/9OzZE1WqVJE6LCIiIiIiIiohu0lC7969i7Zt2+L69eumRVvUajU2bNiAbt26SRwdERERERERlYTdLKL58ccf48aNG5g4cSK2bNmCefPmwcXFBWPGjJE6NCIiIiIiIiohu+kJ3bVrF6KiovDFF1+YygIDAzF06FDExMSgbt26EkZHREREREREJWE3PaGxsbFo3769WVn79u0hiiISExMlioqIiIiIiIhKw26SUK1WC2dnZ7Oygud6vV6KkIiIiIiIiKiU7CYJBYAbN27g9OnTpsfZs2cBAJcvXzYrL3iU1YIFCxASEgJnZ2e0atUKJ06ceOj5v/76K+rVqwdnZ2c0atQI27ZtK/O9iYiIiIiIHJndzAkFgA8++AAffPBBofLXXnvN7LkoihAEAQaDodT3WL16NSZNmoRFixahVatWmDdvHiIiIhATE4OAgIBC5x85cgRDhgzBrFmz0KtXL6xatQr9+vXD6dOn0bBhw1Lfn4iIiIiIyJHZTRK6fPnyCrnPnDlzMHr0aIwaNQoAsGjRImzduhXLli3Du+++W+j8+fPnIzIyEv/3f/8HIH8V3927d+Prr7/GokWLKiRmIiIiIiIie2E3SejIkSOtfg+dTodTp05h8uTJpjKZTIZu3brh6NGjRV5z9OhRTJo0yawsIiICGzZsKPY+Wq0WWq3W9DwrK6t8gVvSv3uwkgNhmzoetqljYrs6Hrap42GbOia2a4WzmyS0IiQnJ8NgMCAwMNCsPDAwEJcuXSrymoSEhCLPT0hIKPY+s2bNwocfflj+gC1EUDk/+qRyUtV+HE5+/la/D+WTe/tUyH0q4v8O5auof2u+ViuWISPD6vfg67Ri8T3V8VTUeyrbtWIZs7Otfg/+/i0ek1AJTJ482az3NDo6Gp06dZIsHmVQFVSfNQeiNtcq9QsqZyiDqlilbiqaqmo1q7YpwHataNZ+nQJsU0lUBX//Ohi+pzoevqc6Lr5WpcMk9D5+fn6Qy+WF9h1NTExEUFBQkdcEBQWV6nwAUKlUUKlUpudubm7liNoy+CJxPGxTx8M2dUxsV8fDNnU8bFPHxHaVjl1t0WJtSqUS4eHh2Lt3r6nMaDRi7969aNOmTZHXtGnTxux8ANi9e3ex5xMREREREVVm7Al9wKRJkzBy5Ei0aNECLVu2xLx585CdnW1aLTcqKgpVq1bFrFmzAABvvPEGOnXqhNmzZ6Nnz5745ZdfcPLkSSxZskTKH4OIiIiIiMgmMQl9wODBg5GUlISpU6ciISEBTZs2xY4dO0yLD8XGxkIm+68DuW3btli1ahXef/99vPfee3j88cexYcMG7hFKRERERERUBEEUuSax1E6fPo3w8HCcOnUKzZs3lzocIiIiIiIiq+GcUCIiIiIiIqowTEKJiIiIiIiownBOKJVJfHw84uPjpQ6DLKhKlSqoUoVLlTsSvk4dD1+njomvVSLbx9+/lsUk1AZUqVIF06ZNs5v/2FqtFkOGDMHvv/8udShkQZ06dcLOnTvN9rAl+8XXqWPi69Tx8LVKZB/4+9eyuDARlVpGRgY8PT3x+++/w83NTepwyAKysrLQqVMnpKenw8PDQ+pwyAL4OnU8fJ06Jr5WHU/Ba5Vt6jj4+9fy2BNKZda0aVO+EB1ERkaG1CGQlfB16jj4OnVsfK06joLXKtvUcfD3r+VxYSIiIiIiIiKqMExCiYiIiIiIqMIwCaVSU6lUmDZtGidmOxC2qeNhmzoetqljYrs6Hrap42GbWh4XJiIiIiIiIqIKw55QIiIiIiIiqjBMQomIiIiIiKjCMAklIiIiIiKiCsMklCR148YNCIKAFStWSB0KERERERFVACahduTq1asYM2YMatasCWdnZ3h4eKBdu3aYP38+cnJyrHbfCxcuYPr06bhx44bV7lESn3zyCfr06YPAwEAIgoDp06dLGk9FEgShRI8DBw6U+14ajQbTp08vVV2VuW3Kw5bb9dKlS3j77bfRtGlTuLu7o0qVKujZsydOnjxZ7lgcmS23aVxcHIYPH466devC3d0dXl5eaNmyJb7//ntwjcLi2XKbPmjlypUQBAFubm7ljsXR2XK7Tp8+/aExHT58uNwxOSJbbtMCV69exdChQxEQEAAXFxc8/vjjmDJlSrnjsUcKqQOgktm6dSueeeYZqFQqREVFoWHDhtDpdDh06BD+7//+D+fPn8eSJUuscu8LFy7gww8/ROfOnRESEmKVe5TE+++/j6CgIDRr1gw7d+6ULA4p/Pjjj2bPf/jhB+zevbtQef369ct9L41Ggw8//BAA0Llz5xJdU5nbpjxsuV2/++47LF26FAMHDsRrr72G9PR0LF68GK1bt8aOHTvQrVu3csfkiGy5TZOTk3H79m0MGjQI1atXR15eHnbv3o3nn38eMTExmDlzZrljckS23Kb3y8rKwttvvw1XV9dyx1EZ2HK7DhgwALVr1y5U/t577yErKwtPPPFEuWNyRLbcpgAQHR2Nzp07o2rVqnjzzTfh6+uL2NhY3Lp1q9zx2CWRbN61a9dENzc3sV69emJcXFyh45cvXxbnzZtntfv/+uuvIgBx//79jzzXaDSKGo2mxHVfv35dBCAuX768ROeKoigmJSWJAMRp06aV+D6OZuzYsaK1Xr5l+fdl21iGLbXryZMnxczMTLOy5ORk0d/fX2zXrp0VInRMttSmxenVq5fo6uoq6vV6ywTm4Gy1Td955x2xbt264rBhw0RXV1fLB+fgbLVdC8TGxoqCIIijR4+2XGAOzpba1GAwiA0bNhRbtWpVqr+THRmH49qBzz77DFlZWVi6dCmqVKlS6Hjt2rXxxhtvmJ7r9Xp8/PHHqFWrFlQqFUJCQvDee+9Bq9WaXRcSEoJevXrh0KFDaNmyJZydnVGzZk388MMPpnNWrFiBZ555BgDQpUuXQkMZCurYuXMnWrRoARcXFyxevBgAcO3aNTzzzDPw8fGBWq1G69atsXXr1jL/O0jZC2sPjEYj5s2bhwYNGsDZ2RmBgYEYM2YMUlNTzc47efIkIiIi4OfnBxcXF4SGhuKFF14AkD9H19/fHwDw4Ycfmtr7UcNr2TbWI1W7hoeHFxrS5+vriw4dOuDixYuW/SErGSlfq0UJCQmBRqOBTqcr989WWUndppcvX8bcuXMxZ84cKBQc5GYpUrfr/X7++WeIoohhw4ZZ5GerrKRq0127duHcuXOYNm0aXFxcoNFoYDAYrPZz2gP+prIDmzdvRs2aNdG2bdsSnf/SSy/h+++/x6BBg/Dmm2/i+PHjmDVrFi5evIj169ebnXvlyhUMGjQIL774IkaOHIlly5bh+eefR3h4OBo0aICOHTti/Pjx+PLLL/Hee++ZhjDcP5QhJiYGQ4YMwZgxYzB69GjUrVsXiYmJaNu2LTQaDcaPHw9fX198//336NOnD3777Tf079/fcv9ABAAYM2YMVqxYgVGjRmH8+PG4fv06vv76a/z11184fPgwnJyccPfuXXTv3h3+/v5499134eXlhRs3bmDdunUAAH9/f3zzzTd49dVX0b9/fwwYMAAA0LhxYyl/tErN1to1ISEBfn5+Fv0ZKxup2zQnJwfZ2dnIysrC77//juXLl6NNmzZwcXGx6s/tyKRu0wkTJqBLly7o0aMH1qxZY9WftTKRul3vt3LlSlSrVg0dO3a0+M9ZmUjVpnv27AEAqFQqtGjRAqdOnYJSqUT//v2xcOFC+Pj4WP+HtzVSd8XSw6Wnp4sAxL59+5bo/OjoaBGA+NJLL5mVv/XWWyIAcd++faayGjVqiADEgwcPmsru3r0rqlQq8c033zSVPWw4bkEdO3bsMCufMGGCCED8448/TGWZmZliaGioGBISIhoMBlEUSzcctwCHfBYeYvLHH3+IAMSVK1eanbdjxw6z8vXr14sAxD///LPYusvz78u2KR9bbdcCBw8eFAVBED/44IMy11HZ2GKbzpo1SwRgejz55JNibGxsqeqozGytTbds2SIqFArx/PnzoiiK4siRIzkctwxsrV3vd+7cORGA+Pbbb5fp+srKltq0T58+IgDR19dXHDZsmPjbb7+JH3zwgahQKMS2bduKRqOx9D+gneNwXBuXkZEBAHB3dy/R+du2bQMATJo0yaz8zTffBIBCw2HDwsLQoUMH03N/f3/UrVsX165dK3GMoaGhiIiIKBRHy5Yt0b59e1OZm5sbXn75Zdy4cQMXLlwocf30aL/++is8PT3x1FNPITk52fQoGFK5f/9+AICXlxcAYMuWLcjLy5MwYioJW2rXu3fvYujQoQgNDcXbb79tlXtUBrbQpkOGDMHu3buxatUqDB06FACsusK6o5OyTXU6HSZOnIhXXnkFYWFhFqmT8tnCa7XAypUrAYBDcctJyjbNysoCADzxxBP46aefMHDgQHz00Uf4+OOPceTIEezdu9ci97EnTEJtnIeHBwAgMzOzROffvHkTMpms0KpqQUFB8PLyws2bN83Kq1evXqgOb2/vQmPjHyY0NLTIOOrWrVuovGAY74NxUPlcvnwZ6enpCAgIgL+/v9kjKysLd+/eBQB06tQJAwcOxIcffgg/Pz/07dsXy5cvLzRfmGyDrbRrdnY2evXqhczMTGzcuJHbP5SDLbRpjRo10K1bNwwZMgQrV65EzZo10a1bNyaiZSRlm86dOxfJycmmVTrJcmzhtQoAoihi1apVaNiwIafGlJOUbVow3WHIkCFm5QUfBB45cqTMddsrzgm1cR4eHggODsa5c+dKdZ0gCCU6Ty6XF1kulmLPOM4jkp7RaERAQIDp09IHFUygFwQBv/32G44dO4bNmzdj586deOGFFzB79mwcO3aMyYWNsYV21el0GDBgAM6ePYudO3eiYcOGZa6LbKNNHzRo0CB8++23OHjwYKFRLfRoUrVpeno6ZsyYgddeew0ZGRmmkVNZWVkQRRE3btyAWq1GQEBA+X7ASspWXquHDx/GzZs3MWvWrHLVQ9K2aXBwMAAgMDDQrLzg9Vmazh9HwSTUDvTq1QtLlizB0aNH0aZNm4eeW6NGDRiNRly+fNls8aDExESkpaWhRo0apb5/SRPaB+OIiYkpVH7p0iXTcbKcWrVqYc+ePWjXrl2JPhRo3bo1WrdujU8++QSrVq3CsGHD8Msvv+Cll14qU3uTdUjdrkajEVFRUdi7dy/WrFmDTp06leXHoPtI3aZFKegBTU9Pt0h9lY1UbZqamoqsrCx89tln+OyzzwodDw0NRd++fbFhw4bS/Dj0L1t5ra5cuRKCIJh6zKjspGzT8PBwfPvtt7hz545ZeVxcHID/EuDKhMNx7UDB5tMvvfQSEhMTCx2/evUq5s+fDwDo0aMHAGDevHlm58yZMwcA0LNnz1Lfv2Dj67S0tBJf06NHD5w4cQJHjx41lWVnZ2PJkiUICQnh3BULe/bZZ2EwGPDxxx8XOqbX601tl5qaWqiXu2nTpgBgGmaiVqsBlK69yTqkbtfXX38dq1evxsKFC02r/1H5SNmmSUlJRZYvXboUgiCgefPmJaqHzEnVpgEBAVi/fn2hR5cuXeDs7Iz169dj8uTJZf/BKjmpf/8CQF5eHn799Ve0b9++yOlTVDpStmnfvn2hUqmwfPlyGI1GU/l3330HAHjqqadK86M4BPaE2oFatWph1apVGDx4MOrXr4+oqCg0bNgQOp0OR44cwa+//ornn38eANCkSROMHDkSS5YsQVpaGjp16oQTJ07g+++/R79+/dClS5dS379p06aQy+X49NNPkZ6eDpVKha5duz50iM+7776Ln3/+GU8//TTGjx8PHx8ffP/997h+/TrWrl0Lmaz0n3/8+OOPuHnzJjQaDQDg4MGDmDFjBgBgxIgRlbp3tVOnThgzZgxmzZqF6OhodO/eHU5OTrh8+TJ+/fVXzJ8/H4MGDcL333+PhQsXon///qhVqxYyMzPx7bffwsPDw/QBhouLC8LCwrB69WrUqVMHPj4+aNiw4UOHYbJtrEPKdp03bx4WLlyINm3aQK1W46effjI73r9/f9MHVFRyUrbpJ598gsOHDyMyMhLVq1dHSkoK1q5diz///BOvv/56obUEqGSkalO1Wo1+/foVKt+wYQNOnDhR5DEqOanfVwFg586duHfvHhckshAp2zQoKAhTpkzB1KlTERkZiX79+uHMmTP49ttvMWTIEDzxxBMV+U9hGyRbl5dK7Z9//hFHjx4thoSEiEqlUnR3dxfbtWsnfvXVV2Jubq7pvLy8PPHDDz8UQ0NDRScnJ7FatWri5MmTzc4RxfztVXr27FnoPp06dRI7depkVvbtt9+KNWvWFOVyudl2LcXVIYqiePXqVXHQoEGil5eX6OzsLLZs2VLcsmWL2Tml2aKlU6dOZtsK3P8oavsYR/bgsuMFlixZIoaHh4suLi6iu7u72KhRI/Htt98W4+LiRFEUxdOnT4tDhgwRq1evLqpUKjEgIEDs1auXePLkSbN6jhw5IoaHh4tKpbJES5CzbSzDltp15MiRxbYpAPH69euW/NEdli216a5du8RevXqJwcHBopOTk+k9ZPny5ZVye4CysqU2LQq3aCkbW2zX5557TnRychLv3btnkZ+xsrG1NjUajeJXX30l1qlTx/T3+fvvvy/qdDqL/cz2RBDFUqxAQ0RERERERFQOnBNKREREREREFYZJKBEREREREVUYJqFERERERERUYZiEEhERERERUYVhEkpEREREREQVhkmoA/nss89Qr149s01w7dVzzz2HZ599VuowJMc2dTxsU8fEdnU8bFPHwzZ1TGxXOyX1HjFkGenp6aKPj4+4bNkyUxn+3c/viy++KHT+8uXLRQDin3/+afFYunXrJgIQx44dW+Tx7777TqxXr56oUqnE2rVri19++WWhc06fPi3KZDIxOjra4vHZC7ap42GbOia2q+NhmzoetqljYrvaL/aEOohly5ZBr9djyJAhhY59/vnn0Gg0FRLHunXrcPTo0WKPL168GC+99BIaNGiAr776Cm3atMH48ePx6aefmp3XrFkztGjRArNnz7Z2yDaLbep42KaOie3qeNimjodt6pjYrnZM6iyYLKNx48bi8OHDzcoAiE2bNhUBiLNnzzY7Zo1PgnJycsSQkBDxo48+KvKTII1GI/r6+oo9e/Y0Kx82bJjo6uoqpqSkmJV/8cUXoqurq5iZmWmxGO0J29TxsE0dE9vV8bBNHQ/b1DGxXe0Xe0IdwPXr13H27Fl069at0LF27dqha9eu+Oyzz5CTk2PVOD777DMYjUa89dZbRR7fv38/7t27h9dee82sfOzYscjOzsbWrVvNyp966ilkZ2dj9+7dVovZVrFNHQ/b1DGxXR0P29TxsE0dE9vVvjEJdQBHjhwBADRv3rzI49OnT0diYiK++eabh9aj1WqRnJxcoseDYmNj8b///Q+ffvopXFxciqz/r7/+AgC0aNHCrDw8PBwymcx0vEBYWBhcXFxw+PDhh8btiNimjodt6pjYro6Hbep42KaOie1q3xRSB0Dld+nSJQBAaGhokcc7dOiALl264PPPP8err75a7Ivk559/xqhRo0p0T1EUzZ6/+eabaNasGZ577rlir4mPj4dcLkdAQIBZuVKphK+vL+Li4szKFQoFqlWrhgsXLpQoJkfCNnU8bFPHxHZ1PGxTx8M2dUxsV/vGJNQB3Lt3DwqFAm5ubsWeM336dHTq1AmLFi3CxIkTizwnIiKiTF3/+/fvx9q1a3H8+PGHnpeTkwOlUlnkMWdn5yKHS3h7exf5yZOjY5s6HrapY2K7Oh62qeNhmzomtqt9YxJaSXTs2BFdunTBZ599hldeeaXIc6pUqYIqVaqUql69Xo/x48djxIgReOKJJx56rouLC3Q6XZHHcnNzi/yEShRFCIJQqpgqC7ap42GbOia2q+NhmzoetqljYrvaLiahDsDX1xd6vR6ZmZlwd3cv9rxp06ahc+fOWLx4Mby8vAodz8nJQXp6eonuGRQUBAD44YcfEBMTg8WLF+PGjRtm52RmZuLGjRsICAiAWq1GlSpVYDAYcPfuXbMhCTqdDvfu3UNwcHCh+6SmpuLxxx8vUUyOhG3qeNimjont6njYpo6HbeqY2K72jQsTOYB69eoByF8l7GE6deqEzp0749NPPy2y63/16tWmT4Me9SgQGxuLvLw8tGvXDqGhoaYHkP8CDQ0Nxa5duwAATZs2BQCcPHnS7L4nT56E0Wg0HS+g1+tx69Yt1K9fv1T/Ho6Abep42KaOie3qeNimjodt6pjYrvaNPaEOoE2bNgDy/zM3btz4oedOnz4dnTt3xpIlSwodK8uY+Oeee67QiwcA+vfvjx49emD06NFo1aoVAKBr167w8fHBN998gx49epjO/eabb6BWq9GzZ0+zOi5cuIDc3Fy0bdu2VDE5Arap42GbOia2q+NhmzoetqljYrvaOSk2JyXLa9iwoThkyBCzMhSxYa4oimKnTp1EABbfrLck916wYIEIQBw0aJD47bffilFRUSIA8ZNPPil07hdffCGq1WoxIyPDKjHaOrap42GbOia2q+NhmzoetqljYrvaLyahDmLOnDmim5ubqNFoTGXFvRD2798v2YtQFEVxyZIlYt26dUWlUinWqlVLnDt3rmg0Ggud16pVK3H48OFWic8esE0dD9vUMbFdHQ/b1PGwTR0T29V+MQl1EGlpaaKPj4/43XffSR2KRfz111+iIAjiX3/9JXUokmGbOh62qWNiuzoetqnjYZs6Jrar/RJE8YFdV8luffrpp1i+fDkuXLgAmcy+15x67rnnYDQasWbNGqlDkRTb1PGwTR0T29XxsE0dD9vUMbFd7ROTUCIiIiIiIqow9v1xAREREREREdkVJqFERERERERUYZiEEhERERERUYVhEkpEREREREQVhkkoERERERERVRgmoURERERERFRhmIQSERERERFRhWESSkRERERERBWGSSgRERERERFVGCah9zl48CB69+6N4OBgCIKADRs2PPKaAwcOoHnz5lCpVKhduzZWrFhh9TiJiIiIiIjsFZPQ+2RnZ6NJkyZYsGBBic6/fv06evbsiS5duiA6OhoTJkzASy+9hJ07d1o5UiIiIiIiIvskiKIoSh2ELRIEAevXr0e/fv2KPeedd97B1q1bce7cOVPZc889h7S0NOzYsaMCoiQiIiIiIrIv7Akth6NHj6Jbt25mZRERETh69KhEEREREREREdk2JqHlkJCQgMDAQLOywMBAZGRkICcnp9jrtFotMjIyTI9//vkH77//PuLj460dMhERERERkaSYhEpg1qxZ8PT0ND3q1q2LTz75hEkoERERERE5PCah5RAUFITExESzssTERHh4eMDFxaXY6yZPnoz09HTT4/fff7d2qERERERERDZBIXUA9qxNmzbYtm2bWdnu3bvRpk2bh16nUqmgUqlMz93c3KwSHxERERERka1hT+h9srKyEB0djejoaAD5W7BER0cjNjYWQH4PZlRUlOn8V155BdeuXcPbb7+NS5cuYeHChVizZg0mTpwoRfhEREREREQ2j0nofU6ePIlmzZqhWbNmAIBJkyahWbNmmDp1KgAgPj7elJACQGhoKLZu3Yrdu3ejSZMmmD17Nr777jtERERIEj8REREREZGt4z6hNuD06dMIDw/HqVOn0Lx5c6nDISIiIiIishr2hBIREREREVGFYRJKREREREREFYZJKBERERGRBeXk5EgdApFNYxJKRERERGRBKSkpUodAZNOYhBIRERERWVB6ejq49idR8ZiEEhEAIC8vT+oQiIiIHIJer4dGo5E6DCKbZZNJaHx8PM6cOYPs7GypQyGqNJiEEhERWU5WVpbUIRDZLJtKQjdu3Ih69erhscceQ/PmzXH8+HEAQHJyMpo1a4YNGzZIGyCRAzMYDFKHQERE5DDu3r0rdQhENstmktDNmzdjwIAB8PPzw7Rp08zG0fv5+aFq1apYvny5hBESOTadTid1CERERA7jwoUL/ICXqBg2k4R+9NFH6NixIw4dOoSxY8cWOt6mTRv89ddfEkRGVDkwCSUiIrKc9PR0HDx4kAsUERXBZpLQc+fO4dlnny32eGBgIIc1EFlRbm6u1CEQERE5lMuXL+PIkSNMRIkeYDNJqFqtfuhCRNeuXYOvr28FRkRUuXAVPyIiIss7f/48jh07xkSU6D42k4R26dIF33//PfR6faFjCQkJ+Pbbb9G9e3cJIiOqHDIzM6UOgYiIyCH9/fff2LVrF0cdEf3LZpLQTz75BLdv38YTTzyBxYsXQxAE7Ny5E++//z4aNWoEURQxbdo0qcMkclg5OTnsDSUiIrKSmzdv4rfffsOtW7ekDoVIcjaThNatWxeHDh2Cr68vPvjgA4iiiM8//xwzZ85Eo0aN8McffyAkJETqMIkcWlxcnNQhEBEROSyNRoPt27dj7969HIFElZpC6gDu16BBA+zZswepqam4cuUKjEYjatasCX9/f6lDI6oUrl69itq1a0sdBhERkd1q0aIFbt26BWdnZ0yZMqXIc65evYrr16+jVq1aaNy4Mdc9oUrHppLQAt7e3njiiSekDoOo0omNjUVWVhbc3NykDoWIiMguJSQk4O7du/Dy8nroeUajEZcvX8bly5dRvXp1tGzZEj4+PhUTJJHEbGY47pdffomIiIhijz/99NP45ptvKjAiospHFEWcOXNG6jCIiIgqldjYWKxduxa///470tPTpQ6HyOpsJgldunQpwsLCij0eFhaGJUuWVGBERJXTxYsXkZGRIXUYRERElYooioiJicGaNWuwc+dOxMfHc1sXclg2k4RevXoV9evXL/Z4vXr1cPXq1QqMiKhyMhqNOHToEN/4iIiIJCCKIm7evInNmzdj69atSEtLkzokIouzmSRUqVQiISGh2OPx8fGQyWwmXCKHdvv2bZw9e1bqMIiIiOxKbGwssrOzAQBarRYpKSnlqi8uLg5r167FqVOnkJeXZ4kQiWyCzWR1rVu3xooVK4pcrjo9PR3Lly9H69atJYiMqHI6ceIE/vnnH6nDICIisnknTpxA7969ERISYuq5zMnJwXvvvYcFCxbgxo0bZa7bYDDg1KlTWLlyJU6cOIGcnBzLBE0kIZtJQqdNm4a4uDg0bdoUX331Ffbt24d9+/bhyy+/RLNmzRAfH49p06ZJHSZRpSGKIg4cOIBTp05xaC4REVEx1q1bh3bt2mH79u2F3i9FUcS5c+fw6aef4vTp0+W6j06nQ3R0NH755RecPXsWRqOxXPU9TEpKCoYNGwYPDw94eXnhxRdfRFZWVrHn37hxA4IgFPn49ddfTefFxsaiZ8+eUKvVCAgIwP/93/9Br9db7ecg2yWINvTX5e7duzFmzBjTf2Qg/8UbGhqKb775Bt27d5c4Qus4ffo0wsPDcerUKTRv3lzqcKgSatGiBW7evAm1Wl3knmZVqlRBp06d4OHhIUF0REREtunEiRNo164dDAbDIz+wlclkeOeddxASEmKRe3t7e6Np06aoWbMm5HJ5qa/v3Lkznn/+eTz//POFjj399NOIj4/H4sWLkZeXh1GjRuGJJ57AqlWriqzLYDAgKSnJrGzJkiX4/PPPER8fDzc3NxgMBjRt2hRBQUGm8qioKIwePRozZ84sdfxk32wqCQXyF0X566+/TIsQ1apVC82bNzclpY6ISShJ7bHHHsOdO3fg5eWFTz/9tMhzFAoFwsPD0ahRI87PJiIiAtCnTx9s27YNBoPhkefKZDI0atQIr732mkVjcHV1RdOmTREWFlaqv5eLS0IvXryIsLAw/Pnnn2jRogUAYMeOHejRowdu376N4ODgEtXfrFkzNG/eHEuXLgUAbN++Hb169UJcXBwCAwMBAIsWLcI777yDpKQkKJXKEsdO9s/m/pKUyWQIDw/Hs88+i2effRbh4eEOnYAS2Qu9Xo/jx49j7dq1iIuLkzocIiIiScXGxmLLli0lSkCB/I6Ws2fPlnuxogdlZ2fj8OHDuH79ukXqO3r0KLy8vEwJKAB069YNMpkMx48fL1Edp06dQnR0NF588UWzehs1amRKQAEgIiICGRkZOH/+vEViJ/uhkDqAB124cAHXrl1DampqkcMaoqKiJIiKiAqkpqZiy5YtqF27Nlq3bg21Wi11SERERMXS6/UlThRLY8eOHaVeM0EURVy8eBFt27a1eDxxcXGoWbNmuetJSEhAQECAWZlCoYCPj89Dd7K439KlS1G/fn2znzMhIcEsAQVgel7Seslx2EwSevXqVQwfPhwnTpwo9gUtCAKTUCIbceXKFcTGxqJVq1aoV68eRywQEZHN0ev1uHDhglVWlL106RJkMlmpFggSBAEZGRnQaDQWj+fy5cto3bo1FIqi/7yfOXOm2dzLnJwcHDt2DOPGjTOVXbhwodxx5OTkYNWqVfjggw/KXRc5LptJQseMGYO///4b8+bNQ4cOHeDt7S11SET0CDqdDn/88QeuXr2Kzp07w83NTeqQiIiITAwGA3JycuDk5GTxOYfe3t6lXqFWFEW4uLhYdG0FQRAQEBCAqlWrwmAwFJuEvvLKK3j22WdNz4cNG4aBAwdiwIABprLg4GAEBQXh7t27Ztfq9XqkpKQgKCjokfH89ttv0Gg0hTqOgoKCcOLECbOyxMRE0zGqXGwmCT18+DDee+89vP7661KHQkSlFBcXh99++w0dO3a0yFAgIiIiS1IqlRZPQps1awZBEEo1JFcQBNStW9diSaiLiwuaNm0KZ2dnZGdnP/RcHx8f+Pj4mF0bEBCA2rVrm53Xpk0bpKWl4dSpUwgPDwcA7Nu3D0ajEa1atXpkTEuXLkWfPn3g7+9fqN5PPvkEd+/eNQ333b17Nzw8PBAWFlain5cch80sTOTn5wdPT0+pwyCiMtLpdNizZw8OHz5s1b3LiIiIpFSw9+eePXtQvXr1Ek9HkclkaNCggVkiWB6+vr5o3bq1xbdPq1+/PiIjIzF69GicOHEChw8fxrhx4/Dcc8+ZVsa9c+cO6tWrV6hn88qVKzh48CBeeumlQvV2794dYWFhGDFiBM6cOYOdO3fi/fffx9ixY6FSqSz6M5Dts5kk9JVXXsFPP/1klYnjRFRxzp8/j61btyI3N1fqUIiIiCwqMzMTGzZswJ49e6DT6dCiRYtSrYlgiT3vVSoVmjRpgvDwcKtta7Jy5UrUq1cPTz75JHr06IH27dtjyZIlpuN5eXmIiYkpNLd12bJleOyxx4r8OeVyObZs2QK5XI42bdpg+PDhiIqKwkcffWSVn4Fsm83sE/rrr7/if//7H7RaLV544QVUq1atyI137x+37ii4TyhJrST7hJaWp6cnIiMjOcKBiIgko9VqER0dDVdX13IlbKIo4sKFC/j999+h0+lM5Q0aNIBOp8Pbb78NURSL7EwRBAGCIKB///5o1KgRvLy8yjwc19vbG82aNYOTk5NZuU6nQ3Z2Npo2bcpeRbILNjMndPDgwabv33rrrSLPEQSBPaVEdiI9PR0bN25EZGRkoaXeiYiI7EVWVhb27NmDGzdumMpcXV3RrVs3hIaGAgCqVauGhQsX4sCBA2ZzRAVBQFhYGFq3bo2goCDk5eUhPT0dXl5epepBVSgUCAkJQUhISJGdNET2xmaS0P3790sdAlGlFBsba1rMQKvVIiUlxWLzVXJzc7FlyxZ07doVISEhFqmTiIioIoiiiEuXLuHAgQPQarWm8vr166NTp05wdnY2lTVu3BiLFi1CXFwc+vbti4yMDLi4uOCdd96Bj4+PaXVZURSh0+mQnp4OT0/PRyaibm5uqF69OqpUqVLsqrdE9shm/jd36tRJ6hCIKpUTJ07g448/xtatW02f2ubk5OC9995Do0aN0LNnT4skjnq9Hrt378YTTzyBJk2acD9RIiKyednZ2di7dy+uXbtmKlOr1ejWrdtDV4EPDg6Gi4sLMjIyoFQqTR/qKhQKeHl5IS0tDaIoQqvVIiMjAx4eHkW+L6rVatSpUwcBAQF83ySHZDMLExXQarU4evQoNm7ciOTkZKnDIXJI69atQ7t27bB9+/ZCS8sXrPr36aef4vTp0xa5nyiKOHHiBHbv3m32abIlpaSkYNiwYfDw8ICXlxdefPFFZGVlPfSazp07m+bqFDxeeeUV0/EVK1YUOl7weHAPNSIisn8FvZ8//PCDWQJar149REVFlWsbMqVSabZOQm5uLrKysszehxUKBerUqYO2bdsiMDCQCSg5LJtKQr/88ktUqVIF7du3x4ABA3D27FkAQHJyMvz8/LBs2TKJIySyfydOnMDgwYNhMBiKnWNtNBphNBrx7bffms2BKa8bN25g3bp1uHfvXpmu79y5M1asWFHksWHDhuH8+fPYvXs3tmzZgoMHD+Lll19+ZJ2jR49GfHy86fHZZ5+Zjg0ePNjsWHx8PCIiItCpUyfOcyUicjDZ2dnYsmULduzYYfrAVK1Wo3fv3oiMjDQbfltWKpXKLBHVaDSmFWZr1KiBjh07IjQ0lPM+yeHZTBK6fPlyTJgwAZGRkVi6dKnZp0J+fn7o2rUrfvnlFwkjJHIMM2bMgCiKJd5ce9u2bRa9f2ZmJjZu3Ig7d+5YrM6LFy9ix44d+O6779CqVSu0b98eX331FX755RfExcU99Fq1Wo2goCDT4/791lxcXMyOyeVy7Nu3Dy+++KLFYiciImmJooiYmBj8+OOPuHr1qqm8bt26GDFiBGrVqmXR+zk7O5u912RkZMDLywv16tUrtOotkaOymSR09uzZ6Nu3L1atWoXevXsXOh4eHo7z589LEBmR44iNjcWWLVtKvMq00WjE2bNnkZKSYtE49Ho9du3ahczMTIvUd/ToUXh5eaFFixamsm7dukEmk+H48eMPvXblypXw8/NDw4YNMXny5EJ7nt3vhx9+gFqtxqBBgywSNxERSUuj0WDr1q3Yvn27aX9rFxcX9OzZE08//TRcXFyscl8XFxe4u7sjJycHaWlpOHr0KC5dumSVexHZIptZmOjKlSsYP358scd9fHzKPISPyN7o9XqrbEe0Y8eOEveAFhBFERcvXkTbtm0tGotOp8P58+fRunXrcteVkJBQaHisQqGAj48PEhISir1u6NChqFGjBoKDg3H27Fm88847iImJwbp164o8f+nSpRg6dKjV/ighIqKK888//2D//v3IyckxlT3++OPo0qUL1Gq1Ve8dFBSEOnXq4NSpUzh58iQAYNeuXVCpVKZtX4gcmc0koV5eXg9diOjChQsICgqqwIiIpKHX63HhwgWzN0VLuXTpEmQyGYxGY4mvEQQBGRkZD+0hLKvr16+jRYsWxS47P3PmTMycOdP0PCcnB8eOHcO4ceNMZRcuXCjz/e+fM9qoUSNUqVIFTz75JK5evVpo+NXRo0dx8eJF/Pjjj2W+HxERSS8nJwf79u3D5cuXTWXOzs7o2rUr6tSpY9V7y+VyNGjQAFWqVAEAtGvXDrm5uTh37hyMRiO2bt2K/v37o2rVqlaNg0hqNpOE9ujRA0uWLMFrr71W6Nj58+fx7bff4oUXXpAgMqKKZTAYkJOTAycnJyiVSovW7e3tXaoEFMjvCXVxcYFMZtnR+6IoQqFQwGAwFJuEvvLKK3j22WdNz4cNG4aBAwdiwIABprLg4GAEBQUVWq22YE+20nx41apVKwD5IzMeTEK/++47NG3aFOHh4SWuj4iIbMuVK1ewb98+sw9Wa9eujS5dusDV1dWq93ZxcUGzZs3g7u5uKhMEAV27doVWq8Xly5eh1+uxceNGPPPMM/D397dqPERSspkkdMaMGWjVqhUaNmyI3r17QxAEfP/991i2bBnWrl2LKlWqYOrUqVKHSVRhlEqlRZPQ2NjYMg1pFwQBdevWtXgSCuCRK8z6+PiY9lgD8t/AAwICULt2bbPz2rRpg7S0NJw6dcqUJO7btw9Go9GUWJZEdHQ0AJg+oS6QlZWFNWvWYNasWSWui4iIbEdubi727t2LmJgYU5mzszO6dOmCOnXqWH0rFLVajZYtW0KlUhU6JpPJEBkZCa1Wi9jYWOh0Oqxfvx7PPPMMvL29rRoXkVRsZmGi4OBgnDp1CpGRkVi9ejVEUcSPP/6IzZs3Y8iQITh27Bj8/PykDpPI7iQnJ2P9+vVYt24ddDodatSoUeI3W5lMhgYNGpglgpZSv359iyx3X1BXZGQkRo8ejRMnTuDw4cMYN24cnnvuOQQHBwMA7ty5g3r16uHEiRMAgKtXr+Ljjz/GqVOncOPGDWzatAlRUVHo2LEjGjdubFb/6tWrodfrMXz4cIvES0REFSc2NhY///yzWQJas2ZNjBgxAnXr1rV6AiqTydCsWbMiE9ACcrkcvXv3Nn0IqtFosG7dukfud01kr2wiCdVqtdi0aRMSEhLw3XffISUlBYmJiYiPj0dqaiqWLVvGPfmISikrKwu7d+/GypUrcfPmTVN5waqxJX3TjYiIsGhccrkczZo1s/gc75UrV6JevXp48skn0aNHD7Rv3x5LliwxHc/Ly0NMTIxpCJZSqcSePXvQvXt31KtXD2+++SYGDhyIzZs3F6p76dKlGDBgALy8vCwaMxERWY9Go8HKlSvNFh9SqVSIjIxE7969rT78tsDjjz8ONze3R57n5OSEvn37mjpdMjMzsW7dOqusEUEkNZsYjqtUKvHMM89g/vz5ph4IKcfBL1iwAJ9//jkSEhLQpEkTfPXVV2jZsmWR565YsQKjRo0yK1OpVKZlvokqmk6nw8mTJ3H69Gno9XpTubu7O9q2bYt69eqhadOmmDhxIkRRLHIV3oKht6NGjUKNGjUsFpunpycaN24MtVoNnU5X6usPHDhQ7DEfHx+sWrWq2OMhISFmKwNXq1YNv//+e4nue+TIkRLHSERE0vv777+xatUqpKenm8pCQ0Px5JNPlightBRXV9dSvY86Ozujf//+WLNmDdLT05GSkoINGzZg4MCBFl8ngkhKNpGECoKAxx9//KGr41aU1atXY9KkSVi0aBFatWqFefPmISIiAjExMcX2xnp4eJgN8bD2sA6iohgMBpw7dw7Hjx83W3BBqVSiZcuWaNq0qWkBoO7du+Pnn3/GwoULceDAAbPkTBAEhIWFISIiwmIJqCAIqF27NkJDQ/n6ICIiq9FoNPjtt99w7NgxU5mTkxM6dOiARo0aVfh7UGmmwBRwdXXFgAEDsGbNGmRnZyMxMRGbN29G3759i13Ij8je2Mz/5Pfeew+TJk3CM888g7p160oWx5w5czB69GhT7+aiRYuwdetWLFu2DO+++26R1wiCwO1jSDKiKOLatWs4dOgQUlNTTeUymQyNGzdGq1atitzXsnHjxli0aBHi4uLQt29fZGRkwMXFBe+8845F54C6u7ujUaNGZqsBEhERWdr58+excuVKpKWlmcrq16+PBg0aICAgoMIT0PL8fejp6Yn+/fvj119/hVarxa1bt7Bjxw706NHDKgsFElU0m0lCjx07Bl9fXzRs2BCdO3dGSEhIoT+cBUHA/PnzrRaDTqfDqVOnMHnyZFOZTCZDt27dcPTo0WKvy8rKQo0aNWA0GtG8eXPMnDkTDRo0KPZ8rVYLrVZrdj1RWSQkJOCPP/7AnTt3zMoff/xxtGvXrkRzGIODg+Hi4oKMjAwolUqLJqA1a9ZErVq1+IZJRERWk5OTg7Vr15pNnXB2dsYzzzyDZs2a4cyZM5LEJQgCnJycyny9n58f+vbti3Xr1kGv1+PKlSvYu3cvunXrxlFFZPdsJgn9+uuvTd/v3bu3yHOsnYQmJyfDYDAgMDDQrDwwMBCXLl0q8pq6deti2bJlaNy4MdLT0/HFF1+gbdu2OH/+PB577LEir5k1axY+/PBDi8dPlUd6ejoOHz6Mf/75x6w8ODgYHTp0KLTFSEVzc3NDw4YN4enpKWkcRETk2C5cuICffvqpUO/nsGHD4OPjY/ahf0WzxAewwcHB6N27NzZu3Aij0Yjz589DpVKhQ4cOTETJrtlMEmo0GqUOoUzatGmDNm3amJ63bdsW9evXx+LFi/Hxxx8Xec3kyZMxadIk0/Po6Gh06tTJ6rGS/cvNzcXx48dx5swZs9eMl5cX2rdvj1q1akn+plSrVi3UrFmTvZ9ERGQ1OTk5WLduHQ4fPmwqc3Z2xsCBA9G2bVtJ3wv9/PxgMBgstrVgjRo1EBkZiW3btgEATp8+DWdn52IXzSSyBzaThNoCPz8/yOVyJCYmmpUnJiaWeEy/k5MTmjVrhitXrhR7jkqlMtsrqiJXaSP7pNfrcebMGZw4ccLsU10XFxe0bt0aDRs2hFwulzDC/Df/Jk2acBsTIiKyqkuXLuGnn35CSkqKqaxu3boYPnw4fH19JYws37p163Djxg1UrVrVYnXWqVMHWq3WNFrwyJEjcHZ2LrSvNZG9sLkk9NixY9i/fz/u3r2L1157DY8//jg0Gg0uXbqEOnXqWDVhUyqVCA8Px969e9GvXz8A+T20e/fuxbhx40pUh8FgwN9//40ePXpYLU6qPERRRExMDA4fPozMzExTuVwuR/PmzdGiRYuHbn5dUTw8PNC8eXObiIWIiBxTbm4u1q9fjz/++MNUplKp0L9/f5sbniqXy8s1H7QojRo1Qm5urqn3d9++fVCpVJIu6ElUVjaThOp0Ojz33HPYuHEjRFGEIAjo3bs3Hn/8cchkMnTv3h0TJ07ElClTrBrHpEmTMHLkSLRo0QItW7bEvHnzkJ2dbVotNyoqClWrVsWsWbMAAB999BFat26N2rVrIy0tDZ9//jlu3ryJl156yapxkuO7c+cOjh07Vqhnvn79+mjbtq3NrDbr7e2N5s2bc9l4IiKympiYGPz000+4d++eqaxOnToYPny4xYa9WpKlE9ACTzzxBHJzc3Hq1CkAwM6dO6FSqRAcHGyV+xFZi8381fjBBx9gy5Yt+Oabb9ClSxezT3UKVjjbuHGj1ZPQwYMHIykpCVOnTkVCQgKaNm2KHTt2mBYrio2NNZvrlpqaitGjRyMhIQHe3t4IDw/HkSNHEBYWZtU4yXElJCRg7969uH37tll59erV0aFDB/j7+0sUWWEBAQFo3Lix5EOBiYjIMWm1WmzYsAG///67qUypVJp6P211/QFrjgxq3749tFotzp07B6PRiC1btqB3797w8PCw2j2JLM1mktCff/4Zr776Kl5++WWzT7kK1K9fH7/++muFxDJu3Lhih98eOHDA7PncuXMxd+7cCoiKHF16ejq2bt2Kw4cPQxRFU7mfnx/at2+PkJAQ6YIrwuOPP47Q0FCbGv5ERESO4/Lly/jxxx+RnJxsKqtduzaioqJssvfzft7e3larWxAEdO3aFVqtFpcvX4Zer8e2bdvQvXt3q92TyNJsJgm9e/cuGjVqVOxxuVwOjUZTgRERVYyChQZ2795ttuiQq6urabVlW/qk18XFBY0aNbLqGywREVVeOp0OGzduxP79+01lTk5O6NevHzp16mRT74lSkclkiIiIgFarRWxsLLRaLXbv3o3GjRtbdEEkImuxmSS0WrVqxe7FCQCHDx9G7dq1KzAiIusyGAw4evQotmzZgoyMDFO5SqVCWFgYWrRoAVdXVwkjLMzf3x+NGjWy2lwXIno4o9EIQRA4AoEc1pUrV/Djjz8iKSnJVFarVi2MGDECAQEBEkZmexQKBXr16oV169YhISEBubm5+Oabb/DWW29xpXqyeTaThA4dOhRz5szBwIEDUadOHQAwvcl+++23WLNmDf73v/9JGSKRRYiiiHPnzmHDhg2Ij483lctkMrRv3x7dunXD1atXbS7Re+yxxxAWFsY/fokkZDAYIJfL+Tokh6PT6bB582bs27fPNCXFyckJffv2RefOndn7WQylUol+/fphzZo1SElJQUpKCr766itMmjTJ5j7IJrqfzSShU6ZMwbFjx9CxY0fUr18fgiBg4sSJSElJwe3bt9GjRw9MnDhR6jCJyiU2Nhbr1q3DP//8Y1bepEkT9OvXD4GBgWZDcm1FUFAQE1AiG8HXITmaa9eu4YcffsDdu3dNZaGhoYiKijItDEnFc3Z2Ru/evbF27VpkZWUhPj4eCxcuxOuvvw5nZ2epwyMqks0koUqlEjt27MDKlSvx22+/wWAwQKvVonHjxpgxYwZGjBjBN16yW/fu3cPmzZtx4sQJs/KQkBAMGDDApoeaq9VqNGjQgK8/IiKyqLy8PGzevBl79+419X4qFAr07t0bTz75JHs/S8HV1RVPPfUU9uzZg8zMTFy/fh1LlizBq6++anMjq4gACZPQSZMmYcSIEWjWrBmA/B4if39/DB8+HMOHD5cqLCKL0mg02LFjBw4cOAC9Xm8q9/PzQ9++fdG8eXObT+4aNmzIPUCJbIjBYOBrkuze9evX8cMPP5jthR0SEoKoqCgEBQVJGJn98vDwwCuvvIKvv/4aOTk5uHTpElasWIEXX3yRCT3ZHMnexebNm4cWLVqYktDQ0FD8+OOPGDp0qFQhEVmMXq/HwYMHsX37dmRnZ5vKXV1d8fTTT6NDhw528clktWrVuAoukY3Jy8tjEkp2Ky8vD1u3bsXu3bvNej979eqFJ598kvtOl1NwcDBee+01fPnll8jLy8Nff/2Fn3/+GUOHDrX5D72pcpHsXSwwMBDXrl0zPb9/X0QieyWKIv766y9s3LjRbGU/hUKBzp07IzIyEmq1WsIIS87Z2dm0SBgR2Q6DwSB1CERlcuPGDfz4449mi/JVr14dUVFRCA4OljAyx1KrVi28/PLLWLRoEQwGAw4fPgxXV1f069dP6tCITCRLQnv27ImPPvoIu3btMi0jPXv2bPzyyy/FXiMIAjZu3FhBERKVztWrV7Fu3Tpcv37drPyJJ55Anz594OvrK1FkZcNhuES2iUko2Zu8vDxs374du3btgtFoBJC//3vPnj3x1FNPsffTCho0aICRI0di+fLlEEURu3btglqtRvfu3aUOjQiAhEno/PnzERAQgP379+P8+fMQBAG3bt1CSkpKsddwGAHZosTERGzYsAFnzpwxK69Tpw4GDBiA6tWrSxRZ2VWrVs3ukmaiykKn00kdAlGJxcbG4ocffkBcXJyprFq1aoiKikLVqlUljMzxtWjRAhqNxtTBs2HDBqjVarRv317iyIgkTEJdXV0xc+ZM03OZTIZ58+ZxTijZjczMTGzbtg1//PGH6ZNdAKhSpQr69euHhg0b2uUHJ0qlksNwiWxYRkYG/P39pQ6D6KH0ej127NiBHTt2mN4jZTIZevTogYiICPZ+VpCOHTtCo9Fg06ZNAICff/4ZarUazZs3lzgyquwkS0IHDBiAiRMnokOHDgCA/fv3IywsTKpwiEpMp9Nh37592LVrF3Jzc03lHh4e6NWrF9q0aWPXb661a9fmMFwiG5acnIxatWpJHQZRsW7fvo0ffvgBt2/fNpU99thjiIqKwmOPPSZhZJVTREQEsrOzTVvhLF++HM7Ozvy7myQl2V+aGzduxMCBA03Pu3btytVxyaYZjUYcP34cmzdvRlpamqlcpVKhW7duePLJJ+1+U2hBEDg8isjG3b+lBZEtMRgM2LlzJ7Zt22bW+xkZGYnIyEh+wCkRQRAwYMAAaDQaHD16FAaDAUuWLMH48eNRs2ZNqcOjSkqy3wZVq1bFX3/9hWHDhgHIX1XUHocuUuVw4cIFrF+/Hnfu3DGVCYKAdu3aoWfPnvD09JQwuvLz8/NDXl4evL29uZcYkY27/0MwIltx584d/PDDD7h165apLDg4GCNHjkS1atUkjIyA/L9Zhg4dCo1GgzNnzkCn02HhwoWYNGkSVyYmSUiWhD733HP44osvsGbNGtPquO+++y5mzZpV7DWCIBRa/IXImm7fvo3169fj4sWLZuUNGzZEv379HOYX97p163D27FmH+XmIHFlubi50Oh2USqXUoRDBYDBg165d2LZtm2nlZplMhoiICDz99NPs/bQhcrkcL7zwAhYuXIiYmBhoNBp89dVXePPNN+Hn5yd1eFTJlOo3Q2hoaKl7KwVBwNWrVwuVz5o1C7Vr18b+/ftx9+5dCIIAV1dXrshJNiE1NRWbN2/G8ePHzfawrV69Ovr374+6detKGJ312HuPLlFlkZaWhoCAAKnDoEouLi4OP/zwA2JjY01lVapUQVRUFGrUqCFhZFQcJycnjBkzBvPnz8fNmzeRnp6OL7/8Em+++Sb/BqAKVaoktFOnToWS0JMnT+L8+fMICwsz/WEeExODCxcuoGHDhggPDy+yLrlcjpdffhkvv/wygPxPzd5//33OCSVJ5eTkYNeuXdi3bx/y8vJM5T4+Pujbty/Cw8Mddriqs7MznJycpA6DiEogMTGRSShJxmAwYM+ePdi6dSv0ej2A/E6H7t27o0ePHnwvsXHOzs4YO3Ys5s6di/j4eCQnJ+Orr77CpEmToFarpQ6PKolSJaErVqwwe75hwwZs2LABu3fvxpNPPml2bPfu3Xj22Wfx8ccfl6ju69evc8l5kozBYMChQ4ewdetWZGVlmcpdXFwQGRmJzp07O/ybqouLi9QhEFEJXbt2DY0aNZI6DKqE4uPj8eOPP+LGjRumsqCgIERFRSEkJESyuKh03Nzc8Prrr+OLL75ASkoK4uLisGDBAowfPx4qlUrq8KgSKNdA/alTp+L1118vlIACwFNPPYVx48bh/fffR9++fR9ZF4dtkBREUcSZM2ewYcMG3L1711Qul8vRqVMnREZGws3NTcIIK46jJ9lEjiQxMRG3bt3igi9UYYxGI/bu3YvNmzeb9X5269YNvXr14nuIHfLy8sL48eMxe/ZsZGZm4vr16/j222/xyiuvcC4vWV25/oddvnz5oXM4fX19i5wPCuQPv5XJZNBoNFAqlZDJZI+cbyoIgukXH1F5Xb9+HevWrSv0fzQ8PBx9+/atdJP07XlvU6LK6ODBg+jXrx9cXV2lDoUcXGJiIn744Qdcv37dVBYYGIioqCiEhoZKGBmVV0BAAMaNG4e5c+ciNzcXFy5cwIoVK/DCCy847PQjsg3lSkJr1aqF5cuX48UXXyzUW5SZmYlly5YVu//Q1KlTIQiC6ZOWgudE1paUlISNGzfi9OnTZuW1atXCgAEDKu0bKt9siOxLdnY2tm3bht69e9v9HsVkm4xGI/bv349NmzaZ1kkQBAFdu3ZF7969uUKzg6hWrRpee+01fPXVV8jLy8Pp06ehVqsxZMgQ/m1OVlOuJHTGjBkYNGgQ6tWrh+effx61a9cGkN9D+v333yMxMRG//vprkddOnz79oc+JLC0rKwvbt2/HwYMHTcvIA/mfAvbr1w9NmjSp1L9sK/PPTmSvUlNTsW3bNvTs2ZPzuMii7t69ix9//NFstJC/vz+ioqJQq1YtCSMja6hduzZGjx6NRYsWwWg04tChQ3B1dS3RlDqisihXEtqvXz9s27YN77zzDmbOnGl2rGnTpli6dCkiIiLKFSBReeXl5WH//v3YuXMncnJyTOVubm7o2bMn2rdvz6GoYBJKZK+Sk5Oxbds2PP300+wRpXIzGo04cOAANm7caNb72aVLF/Tp04e9nw6sYcOGGDlyJFasWAFRFLFz506o1Wo89dRTUodGDqjcs467d++O7t27IyEhATdv3gSQv8hQUFBQievQarX46aefsGvXLly9ehWZmZlwd3dH7dq1ERkZiaFDh/KXHpWa0WjEyZMnsWnTJqSkpJjKnZyc8OSTT+Kpp57iirD3YSJOZNtatGiBhIQEyOVyTJkyxexYUlISNm3ahMjISHh4eEgUIdm7pKQk/Pjjj7hy5YqpzN/fHyNGjDCNdiPH9sQTT0Cj0WD16tUAgPXr18PV1RVt27aVODJyNBZb+iooKKhUiWeBv//+G3379sXNmzchiiI8PT3h5uaGu3fv4vTp0/j111/xySefYNOmTahfv76lwiUHFxMTg3Xr1uHWrVumMkEQ0Lp1a/Tu3RteXl7SBWejmIQS2baEhATcuXOn2N9faWlp2LhxI7p3747AwMCKDY7smtFoxMGDB7FhwwbodDpTeefOndG3b18O9a5kOnXqBI1Gg82bNwMAVq5cCRcXFzRr1kziyMiRlHslktjYWLzyyiuoW7cufHx8cPDgQQD5w4PGjx+Pv/76q9hrs7Ky0KdPHyQmJuKTTz7BrVu3kJqaavZ1xowZiIuLQ+/evZGdnV3ecMnBxcXFYeHChZg/f75ZAhoWFobJkydjxIgRTECLweXYiexfTk4ONm/ejDNnzsBoNEodDtmB5ORkzJ8/H2vWrDEloL6+vpgwYQKeffZZJqCVVGRkJLp27Qogfzu75cuX49KlSxJHRY6kXH91XrhwAR06dIDRaESrVq1w5coV0xYqfn5+OHToELKzs7F06dIir1++fDliY2Oxd+9edO7cudDxqlWrYvLkyWjVqhWeeuoprFixAmPHji1PyOSg0tPTsWXLFhw5cgSiKJrKH3vsMfTv35+96CXA1XGJHIPRaMTx48dx9epVtGvXjr2iVKSCxWfWr18PrVZrKu/YsSP69evH+cWVnCAIGDBgADQaDY4dOwa9Xo/Fixdj/PjxlXYXAbKsciWhb7/9Nry8vHDs2DEIgoCAgACz4z179jSNKS/K1q1b0b179yIT0Pt17doVTz31FDZv3swklMzk5uZiz5492LNnj9kQIi8vL/Tp0wctW7ZkclVCXJiIyLEkJydj48aNCA0NRYsWLeDt7S11SGQj7t27h59++gkxMTGmMh8fHwwfPhz16tWTMDKyJTKZDMOGDYNGo8HZs2eh1WqxcOFCTJw4EcHBwVKHR3auXEnowYMHMXXqVPj7++PevXuFjlevXh137twp9vq///4b48ePL9G9unbtivnz55c5VnIsBoMBR48exZYtW5CRkWEqd3Z2Rvfu3dG1a1cuZlVKTEKJHNP169dx/fp11KhRA40bN0ZQUBBf75WUKIo4fPgw1q5da9b72b59e/Tv35+L9VEhcrkcL774IhYsWIB//vkH2dnZ+Oqrr/DWW2/B19dX6vDIjpUrCTUajVCr1cUeT0pKeuhcgpSUlBIvZhQYGGi2wilVTqIo4ty5c1i/fj0SEhJM5TKZDB06dECPHj3g7u4uYYT2i3+UEjm2mzdv4ubNmwgMDESrVq3KtJgg2a+UlBT89NNPZvP6vL29MWzYMISFhUkYGdk6JycnjBkzBvPnz0dsbCzS09Px5Zdf4s033+Rq3FRm5UpCmzdvjq1bt+K1114rdEyv1+OXX35B69ati71eq9XCycmpRPdSKBRmwy2p8omNjcXatWtx+fJls/KmTZuib9++nPdUThy2TFQ5JCYmmlacb926dYnfh8k+iaKII0eOYO3atcjNzTWVt2vXDgMGDGDvJ5WIi4sLxo4dizlz5iAxMRFJSUn4+uuvMWHChId2SBEVp1xJ6OTJk9GrVy+8+uqreO655wDkv7nt2bMHM2fOxMWLF/H1118/tI4bN27g9OnTj7zX9evXyxMq2bF79+5h06ZN+PPPP83KQ0NDMWDAANSqVUuiyIiIKkZsbKxphXitVouUlBT4+PiUq86LFy/izp07aN++PR577DFLhEk2JjU1FStXrsSFCxdMZV5eXhg2bBgaNGggYWRkj9zd3fH6669j9uzZSE1Nxe3bt/HNN9/g9ddf5xQoKjVBvH8p0TL48ccf8cYbbyA9PR2iKEIQBIiiCA8PD3zzzTcYMmRIsdfKZLISDwEsqNtgMJQnXJt0+vRphIeH49SpU2jevLnU4dgMjUaDHTt24MCBA6ZVl4H8jbP79u2LZs2aOeQQUq1Wi+joaLi6ujr0L3WdTofs7Gw0bdqUWwAQFePEiRP4+OOPsXXrVrOVvwVBQKNGjdCzZ0+EhISU+z4hISFo3bq11YfWpaSk4PXXX8fmzZshk8kwcOBAzJ8/H25ubsVes2TJEqxatQqnT59GZmYmUlNTC221VZZ6HZkoijh27Bh+++035OTkmMpbt26NQYMGVaqeK76nWl5iYiJmz56NrKwsAECDBg0wZswYbvVGpVLu/y0jRozAgAEDsHv3bly+fBlGoxG1atVCRETEI+fmLV++vLy3JweUl5eHgwcPYvv27dBoNKZyV1dX9OjRAx06dOAvOiJyeOvWrcPgwYMhiiIe/Ly4YH78uXPnMHr06HJ/gHnjxg3ExsYiLCwMTZo0gaura5nr6ty5M55//nk8//zzhY4NGzYM8fHx2L17N/Ly8jBq1Ci8/PLLWLVqVbH1aTQaREZGIjIyEpMnTy7ynLLU66jS0tKwatUqnDt3zlTm6emJoUOHolGjRhJGRo4iMDAQ48aNw7x585Cbm4vz58/jhx9+wPPPP8+pPVRiZe4J1Wg0qFatGt5991383//9n6XjqlTYE5pPFEWcOnUKGzduNFttWaFQoGvXrujevXul+PSWn9oS0YkTJ9CuXTsYDIZCCeiDZDIZ3nnnHYv0iBbU9/jjj6Np06bw9PQs9fXFJaEXL15EWFgY/vzzT7Ro0QIAsGPHDvTo0QO3b99+5JYPBw4cQJcuXQr1hJa3XkchiiJOnDiBNWvWmPV+tmrVCs8880yleP8sCt9Treeff/7BggULkJeXByB/j9nBgwc75Cg1srwydyep1WooFIpyfVpKVODKlStYt24dbty4YVbesmVL9OnTp9xzn4iI7MmMGTOK7AEtzrZt24pcJLAsjEYjYmJicPnyZbRo0QJNmjSxyB+VR48ehZeXlylRBIBu3bpBJpPh+PHj6N+/v03Va0/S09Px888/4+zZs6YyDw8PDB06FI0bN5YwMnJkderUwYsvvoglS5bAaDTi4MGDcHV1Re/evaUOjexAucY0Dhw4EL/99hteffVVfupBZZKYmIj169ebvXECQN26dTFgwABUq1ZNosiIiCqe0WjEpUuXsGXLlhInoEajEWfPnrXIYkUP1nvixAnI5XKLDONM+P/27jssimv/H/h76EuXDkaKDSWoGGwoERUVolgoFtTEclVS1FjyNYklwYuRaGKslxhNrhqD0WjE3juxl6hR1FjARhQLHaTt/P7wx15XUBdYmN3l/XqefWTOzp75jMPZ5bPnzDn378PBwUGpzMDAADY2NkpLbmlKvdpAFEWcPn0av/32m2LiKgBo3bo1+vXrV2vviaWa07x5c7z77rtYuXIlAGDHjh0wNTVFYGCgxJGRpqtSEjpw4EB8+OGH6Ny5M0aNGgV3d/dyp/quzUNMqXzZ2dnYunUrjhw5Arlcrih3cXFBaGgovLy8+MUGEWm04uJilSfLKyoqQnZ2NrKyshSP8razs7ORlJSkcgJaShRFXL58Ge3bt6/MqbzS8ePH8cYbb6BOnTrlPj9r1izMmjVLsZ2fn4/jx49jzJgxirLnZ2cl9cjKysKvv/6K8+fPK8osLCwQGRkJHx8f6QKjWqdt27bIy8vDunXrAAC///47TE1N4efnJ3FkpMmqlIR26tRJ8XNiYmKZ53V5RluqnMLCQuzbtw+7d+9GQUGBotzKygohISHw8/PjTe1EpPGKi4tx6dIlZGZmIi8vD0+fPkVeXh7y8/PLfVRknevCwkLFTPOqEgQBWVlZSpO5qVNSUhLatm1b7qRw77//Pvr376/YHjx4MMLDwxEWFqYoc3FxgZOTE9LS0pReW1xcjCdPnsDJyanSsVVXvZrs9OnTWLt2rVLvZ6tWrdC/f3/2fpIkOnfujLy8PGzbtg0A8Msvv0Amk/ELEXqpKiWhnN2WVCWXy3H8+HFs2bIFmZmZinJjY2N069YNgYGBnJyGiDRCcXGxUg9lZmam0r+lP2dmZiqN5KgKQRAgk8lgamoKJyenSvWEymSyavkSz97eHgYGBigpKSk3CbWxsVEaBiyTyeDg4ICGDRsq7efn54eMjAycOXMGvr6+AID9+/dDLpejbdu2lY6vuurVRNnZ2VizZg3+/PNPRZm5uTkGDhzIUWckuR49eiA3NxcHDx6EKIr473//i48++gienp5Sh0YaqEpJ6NChQ9UVB+koURSRlJSEhIQEpKamKsr19PTQoUMH9OzZs9rXpSMiEkURT58+LZNQvphYZmVlKfUuVVXpBH7PP0xNTZX+NTMzU0ogU1NTsWHDhgr3hHp6eqo9CTUwMICnp6fSWs2V1bRpUwQHB2PUqFFYsmQJioqKMGbMGAwcOFAxg+29e/cQGBiIn3/+GW3atAHw7J7P+/fv4/r16wCAv/76CxYWFnB1dYWNjY1K9eqCs2fPYs2aNYq1GQGgZcuWGDhw4GuXxCOqCYIgICIiAnl5eTh58iSKi4uxZMkSfPzxx2qbvZt0h8YttpiUlISbN28iPT293A/g9957T4KoqDLu3LmDhIQEXLlyRam8WbNm6Nu3L5ydnSWKjIh0RUlJieLeyvISyufLSpcRqCpBEGBmZgZDQ0OYm5vD3Ny83CSzsktCuLi4oFOnTjh8+LBKt7Po6enBy8tL7bOIC4KA5s2bw9jYWC1JKADEx8djzJgxCAwMhJ6eHsLDw7Fw4ULF80VFRbh69arSsOIlS5ZgxowZiu2OHTsCeDYaq3QZmNfVq81ycnKwdu1anDlzRlFmZmaGgQMHKnp+iTSFnp4e3n33XeTn5+Ovv/5CQUEB/vOf/2DixIn8u4+UVGid0BEjRkAQBCxduhT6+voYMWLE6w8gCPjpp59eu9+NGzcwZMgQnDx58qXf/urq/aXatE7o7du3sW/fPmRnZ8PCwgKBgYFwdXVV2ufJkyfYsmVLmWvp6uqKsLAwNG7cuKbD1ipc04yqSpV2qumePn36yoSydDsnJ6fCQ1dfxsDAAFZWVrC0tISlpaXi5xf/tbCwQHFxcbW20wsXLiAyMlLldUInTJgANzc3tcbg4+MDR0dHttVq9Lq2eu7cOfz666/Izs5WlLVo0QKRkZEcRaQifqZKF8/ixYsVIxisra0xadIk2NraShwZaYoK9YTu378fenp6kMvl0NfXx/79+187g6mqM5xGRUXhr7/+wvz58/H222+/dBY+ksbJkycRExODbdu2QRRFxe+BIAgICQnB9OnT4e3tjV27duHAgQNKPQ62trbo3bs3fH19OekQUTVSpZ22bt1asvjkcjlycnJeOxw2KytLaeKyqjIzM1NKIl/2s0wmU/kzS109gy/TvHlzzJs3DxMmTIAoiuV+AVv6fjp8+HC1JqAGBgbw9vaGo6Oj2uokZa9rq5MmTcLNmzdx6tQpxWtMTU0xYMAAtGrVirPHk8YzMjLCBx98gPnz5+POnTvIyMjAokWLMGnSJA4fJwAV7AmtTjKZDFOmTMH06dOlDqXGaXpP6IYNGzBgwICX/iGkr68PAAgJCVG6/8bU1BTvvPMOOnbsCENDwxqLV9vxW1uqDFXaqSAIWLt2rdKspepQWFio0nDY7OxstU3ko6+vXyaZLN1+vszCwqJa3n9qqp1euHABcXFxiok+SgmCgDfffBNBQUFqS0D19PRQr149eHh4KLVJtlX1UqWtiqKIbt26oX79+gCefSkRGRkJKyurmg5X6/EzVVrZ2dmYO3euYgbrN954AxMmTCh3SUeqXTTmnlA7OzuNeXP9z3/+g2+++Qb3799HixYtsGjRIsUECeVZt24dpk+fjpSUFDRq1AizZ89Gjx49ajDi6nPy5EkMGDDglUPCSj9EN2/ejLCwMLi4uCAgIADBwcEwMzOryXCJaiVV26kgCBgwYACOHj362h5RURSRm5v72l7LzMxMPH36VG3nIpPJyh0C++LPZmZmtaI3qHnz5liyZAlSU1PRp08fZGVlQSaT4dNPP1XbPaAGBgZwdXWFm5ubTv+Rrgkq8pm6e/duREZGYty4cWjTpk2t+H0n3WNhYYFx48bh22+/RUZGBu7evYvvv/8eY8aM4ftNLacxSej777+PX375BR999JGiZ00Ka9euxcSJE7FkyRK0bdsW8+fPR1BQEK5evQoHB4cy+x89ehSRkZGIjY1FSEgIVq9ejb59++Ls2bPw9vaW4AzUa+bMmRBFUeV7rm7cuIElS5bAzs6umiMjolKqttPSfb744gvExcWVe49l6b/Z2dlquwdfT0+vTG9lefddWlhY8I+Sl3BxcYFMJkNWVhaMjIzUkoAaGRnB1dUVrq6uHK1SQyrymSoIAtLT03VumRmqfWxsbDBu3Dh89913yMnJwfXr1/Hjjz8iKipK0r/5SVpVHo67Y8cOfPfddzh79iwyMzPLfWNV5Q+ZdevW4euvv0ZBQQFGjBiBevXqlfuLqe5hZC9q27YtWrdujcWLFwN4dg9TvXr1MHbsWHz22Wdl9h8wYAByc3OxdetWRVm7du3g4+ODJUuWqHRMTR2Oe/v2bbi7u1d4mYCUlBStmwRFk3DoEFVEZdopAAwZMqTK9+WYmJiUm1y+mGSamZnp3P3gUrTTjh074sGDB7CyskJMTEyl6zE3N4ebmxucnZ1V+gOQbVU9+JkqDX6mao7bt29j/vz5itEzrVu3xtChQ3Xu84FUU6We0N9//x39+/fHm2++iYEDB+L777/HoEGDIIoiNm3ahEaNGqFv374q1TVgwADFz5988km5+1T37LiFhYU4c+YMPv/8c0WZnp4eunbtimPHjpX7mmPHjmHixIlKZUFBQdi4ceNLj1NQUKA06Ubpml/FxcVqW0JAHXbt2lWpBdN3797NNWSroKioCMXFxcjNzdWo3wd1KywsVPzO8wOo8irTToFnSyiVt4C4IAiwsLBQ6p18PtF8PslU9Q+dkpISnZvZXIp2Wno/rSiKlTqmlZUV3N3dUadOHQiCoPIwarZV9eBnqjT4mao5nJ2d8a9//QtxcXEoLi7G8ePHYWRkhH79+lV4uHlxcbHOfa68jL6+PgwMNGbwqtpGzlSpJ7RVq1YwNDTEH3/8gfT0dDg4OGDv3r3o0qULUlJS0K5dO8yZM0eltT0PHTqk0jEDAgIqG+5rpaamom7dujh69Cj8/PwU5ZMnT8ahQ4dw4sSJMq8xMjLCypUrERkZqSiLi4vDjBkz8ODBg3KPEx0drbTmGRERERERkaZT27JoVXlxUlISYmNjlTL00m+Z3N3d8eGHH2L27NkqJaHVmVxqms8//1yp9/TcuXMICAjAiRMn0LJlSwkjU7ZixQqMHj26wq9btmwZv7WtotryDZ+mfbunjdhOpVPT7dTT0xOpqamwsrLCrFmzXru/s7MzmjVrBicnpyofm2216thWpcPPVM1z4sQJrFq1SrEdERGBTp06qfTagoICnD9/HgYGBjo9xBr4Xw93ixYtNHaYdWVV6TfV1NRUcfGtra1hbGyMf/75R/G8o6MjkpOTK1xvUlISbt26BQBwc3ODl5dXVcJUmZ2dHfT19cv0YD548OClH+JOTk4V2h8AjI2NlX6RzM3NATyboVCTJocICgqCIAgVvn+le/fuGnUe2oj/f6QqtlPp1PT/X+lwNUEQXvmHpo2NDTp06ABnZ+eaCo1UwLYqHf7/aR5/f38UFhZi/fr1AICEhARYWlqqNBGXXC6HgYGBzt/nCzz73c3NzYWhoaHO/R5XadC4p6cnkpKSFNs+Pj5YtWoViouL8fTpU6xevbpCN9Nv2rQJDRo0QLNmzRASEoKQkBA0a9YMDRs2xObNm6sSqkqMjIzg6+uLffv2Kcrkcjn27dunNDz3eX5+fkr7A8CePXteur82cXV1RUhIiMozl+nr66NXr16cQIGoBrGd0vNatGiB0NBQJqAaiG2VSFmXLl3wzjvvKLZXrVqFCxcuSBgR1aQqJaFhYWHYvHmzYpKdqVOn4uDBg7C2toa9vT0SExPLnVG2PNu3b0d4eDgAYNasWUhISEBCQgJmzZoFURQRFhaGnTt3ViVclUycOBHLli3DypUrcfnyZXzwwQfIzc3F8OHDAQDvvfee0sRFH3/8MXbu3Im5c+fiypUriI6OxunTpzFmzJhqj7UmTJ8+HYIgvPaG8dJ9pk2bVkOREVEptlPS19dH165d0bZtWy55oMHYVomUhYSEKG7Jk8vl+PHHH/H3339LHBXVhEpNTPT06VNs2rQJycnJsLW1RUhIiOJb18TERGzYsAH6+vro2bMnOnfurFKdfn5+KCgoQGJiIszMzJSey83Nhb+/P0xMTF46S606LV68GN988w3u378PHx8fLFy4UDE8oFOnTnB3d8eKFSsU+69btw7Tpk1DSkoKGjVqhDlz5qBHjx4qH09Tl2gptWHDBgwYMACiKJZ7T4W+vj4EQcBvv/2G0NBQCSIkIrZT3ffGG2/g3r17sLa2xuzZsxXlpUM23dzcJIyOVMW2SqRMLpdj5cqVOHXqFIBny3+NHz/+paMAasuyO4B2LL1TWRVOQtPS0tC+fXskJydDFEUIggCZTIaNGzeia9eulQ7EzMwMs2bNwscff1zu8wsWLMCUKVOQm5tb6WNoKk1PQgHg1KlTiImJwdatWyGKIvT09CCXyyEIAnr16oVp06ahdevWUodJVKuxneq2lyWhnTt3RqNGjSSMjCqKbZVIWUlJCX744QdcvHgRwLP5UiZOnFjuHCtMQnVDhScmiomJQUpKCiZMmIAuXbrg+vXriImJQVRUFG7cuFHpQExMTPDkyZOXPv/kyROYmJhUun6qmtatW2Pz5s24ffs29u/fj6ysLFhaWqJLly68X4VIQ7Cd1j5+fn5MQLUQ2yqRMn19fYwcORKLFi3CjRs3kJOTg0WLFmHSpEmwsbGROjyqBhXuCfX09ESHDh3w3//+V1G2du1aDBo0CElJSeUufq6Kfv36Yc+ePdixY0eZSX1OnDiB4OBgdO/eHWvXrq1U/ZpMG3pCiYhIWi/2hDZs2BBdunSROiwiIrXJy8vD/PnzcffuXQDPVtqYOHEiLCwsFPuwJ1Q3VHhiotu3b8Pf31+pzN/fH6IollmqpCLmzJkDExMT+Pv7w8/PD8OGDcOwYcPg5+eH9u3bw8TERGn4ERERUW3i5OSEunXrwtLSEoaGhjoxCzsR0fNMTU0xZswY2NvbA3i27OHixYuRn58vcWSkbhVOQgsKCsoMiy3dLi4urnQgHh4euHDhAsaNG4f09HSsXbsWa9euRXp6Oj7++GOcP38e7u7ula6fiIhIm50+fRrJycmYOnUqmjZtCplMJnVIRERqZ2lpiXHjxsHa2hoAcOfOHSxZsgSFhYXSBkZqVeF7QgEgJSUFZ8+eVWxnZmYCAK5du6b4hXmeqkNMHRwcMG/ePMybN68yYREREdUKDRs2lDoEIqJqY2tri7Fjx+K7775Dbm4url27hp9++gmjR4+WOjRSkwrfE6qnp1fu+lalM+WWV1beFOT0P7wnlIiIVFFUVIQ1a9ZgyJAhr11rkohI26WkpGDBggUoKCgAALRp0wYDBgzAhQsXeE+olqtwT+jy5cvVcuARI0ZAEAQsXboU+vr6GDFixGtfIwgCfvrpJ7Ucn4iISBs5ODgwASWiWsHd3R1RUVGIi4tDcXExTp48CWNjY3h4eEgdGlVRhZPQoUOHquXA+/fvV6yLpa+vj/3797/2Q5UfukREVNtxuQIiqk2aNGmCESNGYNmyZRBFEYmJicjOzkb79u2lDo2qoFL3hKpDSkrKK7eJiIiorPLmXiAi0mU+Pj4YMmQIVq1aBQA4d+4cLCws4OvrK3FkVFkVnh23uty+ffuV0y/n5+fj9u3bNRgRERGR5nl+vTwiotrCz88P4eHhiu3ExERcuXJFwoioKjQmCfXw8EBCQsJLn9+8eTPHfxMRUa3HpVmIqLYKDAxEt27dFNu7du3CzZs3a+TYRUVFNXKc2kJjktDXTdJbVFQEPT2NCZeIiEgSBgaS3UlDRCS5d955B40bNwbwLH/Ytm0b7t69W+3H5Wof6iXpJ1lWVhYyMjIU248fPy53yG1GRgbWrFkDZ2fnGoyOiIhI8/ALWSKqzQRBQNu2bSGXy3H9+nWUlJRg8+bNiIiIgIODQ7Udt6SkpNwlKalyJP0kmzdvHjw8PODh4QFBEDB+/HjF9vOPli1bYvv27Xj//felDJeIiEhy/AOIiGo7PT09BAYGws3NDcCz9TQTEhKQnp5ercctLi6u1vprE0l7Qrt37w5zc3OIoojJkycjMjISb731ltI+giDAzMwMvr6+aNWqlUSREhERaQZ9fX2pQyAikpy+vj5CQkKQkJCA1NRU5OfnY8OGDejfv3+1TeBWVFQEQ0PDaqm7tpE0CfXz84Ofnx8AIDc3F+Hh4fD29pYyJCIiIo0lCAKH4xIR/X+Ghobo3bs31q9fj0ePHiE7O1uRiFbHJG75+fkwNTVVe721kUZ8kuXl5WHhwoXYsWOH1KEQERFpLAMDAyahRETPMTExQWhoKKysrAAA6enp2LhxIwoLC9V+rOzsbLXXWVtpxCeZqakpDAwMYGZmJnUoRERERESkRczMzBAWFqbIJR48eIDNmzer/R7OJ0+eqLW+2kwjklAACA8Px/r161+7VAsREREREdHzrKysEBYWBhMTEwDA3bt3sWPHDsjlcrUd4/Hjx1yqRU00JgkdOHAg0tLS0LlzZ8THx+PIkSM4e/ZsmQcREREREdGLbG1t0adPH8XkQTdu3MDevXvV1skll8vx+PFjtdRV22nMitedOnVS/JyYmFjm+dJ1efjtAxERERERlcfZ2Rm9evXCpk2bUFJSgqSkJBgbG6Njx45qWeLqzp071boeaW2hMUno8uXLpQ6BiIiIiIi0nKurK4KDg7F9+3aIoog///wTMpkMbdq0qXLdjx49wuPHj2Fra6uGSGsvjUlChw4dKnUIRERERESkAxo1aoTAwEDs3bsXAHD06FEYGxujRYsWVa77r7/+gp+fH4yNjatcV22lMfeEPi8nJweXL1/G5cuXkZOTI3U4RERERESkZby9veHv76/YPnDgAK5cuVLlegsKCnDmzBm1z75bm2hUEnrq1Cl07twZderUgbe3N7y9vVGnTh106dIFp0+fljo8IiIiIiLSIq1atUKrVq0U27t370ZycnKV683OzsaFCxe4skclacxw3BMnTqBTp04wMjLCyJEj0bRpUwDA5cuX8euvv6Jjx444ePCgWsZyExERERFR7dChQwc8ffoUFy9ehFwux7Zt2xAaGoq6detWqd6HDx/i5s2baNCggZoirT00JgmdOnUq6tatiz/++ANOTk5Kz0VHR6NDhw6YOnUq9uzZI1GERERERESkbQRBQJcuXVBQUIBr166huLgYmzZtQr9+/WBvb//a14eFheHhw4cwNjbG//3f/yk9d/36dejp6cHd3V0ts+/WFhozHPfEiROIiooqk4ACgKOjI0aPHo3jx49LEBkREREREWkzPT09BAcHw9XVFQBQWFiIhIQEpKenv/a1jx49QlpaGrKyssp9/u+//8aFCxdQWFio1ph1mcYkoXp6eq+8ubekpAR6ehoTLhERERERaRF9fX306tULzs7OAIC8vDxs2LBBLROh3r9/H4mJibh58yYnLFKBxmR17du3x3/+8x/cunWrzHO3b99GXFwcOnToIEFkRERERESkCwwNDdGnTx/FOp/Z2dnYsGED8vPzq1x3cXExrl27hkOHDuH69esoKiqqcp26SmPuCZ01axY6duyIJk2aIDQ0FI0bNwYAXL16FZs2bYKBgQFiY2MljpKIiIiIiLSZiYkJwsLC8NtvvyEzMxNPnjzBxo0bER4eDiMjoyrXX1xcjBs3biAlJQWurq5wc3PjmqIv0JgktGXLljhx4gSmTp2KzZs3Iy8vDwBgamqK4OBgzJw5E15eXhJHSURERERE2s7MzAxhYWFYu3Yt8vLy8ODBA2zZsgV9+vSBgYF6UqSSkhIkJyfj1q1bcHZ2hru7O8zNzdVSt7bTmCQUALy8vJCQkAC5XI6HDx8CAOzt7XkvKBERERERqZWVlRXCwsKwbt06FBQU4M6dO9i5cyd69Oih1vxDLpfj3r17uHfvHuzt7dGoUSNYWFiorX5tpJHZnSAISg8iIiIiIiJ1s7OzU+r9vH79Ovbt2wdRFKvleA8fPsTRo0dx5coVlJSUVMsxtIFGJaFJSUmIiIiApaUlnJ2d4ezsDEtLS0RERODixYtSh0dERERERDrGxcUFvXr1UvR+Xrp0CX/88QdEUURqaqpi0qLCwkI8efJELce8desWjhw5gkePHqmlPm2jMUloYmIi2rRpg+3btyMkJATTpk3DtGnT0LNnT2zfvh1t27ZFYmKi1GESEREREZGOcXNzQ3BwsGJ7+/btiIyMRJcuXRTrg+bn52PGjBlYunRpuSt6VFR+fj7OnDmDixcvVsuyLqIo4osvvoCzszNkMhm6du2Ka9euqfz6r7/+GoIgYPz48YqyJ0+eYOzYsfD09IRMJoOrqyvGjRuHzMzMCsWmMfeETpgwAQ4ODjh06BDq1aun9NydO3fQsWNHTJw4EadOnZIoQiIiIiIi0lWNGzdGQUEBli1bht27dwNAmWG5oigiKSkJSUlJGD58OFq0aFHl4967dw+ZmZnw8fGBmZlZlesrNWfOHCxcuBArV66Eh4cHpk+fjqCgICQlJcHExOSVrz116hR++OEHNG/eXKk8NTUVqamp+Pbbb+Hl5YVbt27h/fffR2pqKtavX69ybBrTE3rp0iV8+OGHZRJQAKhXrx4++OADXLp0SYLIiIiIiIioNhBFEXv37oUoii+9L1Qul0Mul2P58uVq6REFgJycHBw9ehS3bt1Sy/2ooihi/vz5mDZtGvr06YPmzZvj559/RmpqKjZu3PjaWAYPHoxly5ahTp06Ss95e3vj999/R69evdCgQQN06dIFX331FbZs2VKh3lyNSULd3NxQUFDw0ucLCwvLTVCJiIiIiIjUIS4urkL779q1S23HlsvluHLlCs6cOYOioqIq1ZWcnIz79++ja9euijIrKyu0bdsWx44de+VrP/roI/Ts2VPpta+SmZkJS0vLCi1tozFJ6BdffIGFCxfi3LlzZZ77888/sWjRIkRHR9d4XEREREREpPtSU1Nx8OBBlWetlcvluHTpktomKyr1+PFjnDp1CoWFhZWu4/79+wAAR0dHpXJHR0fFc+VZs2YNzp49i9jYWJWO8+jRI8TExGD06NEVik9j7gk9fvw4HB0d4evri/bt26Nhw4YAgGvXruHYsWPw9vbGsWPHlDJ3QRCwYMECqUImIiIiIiIJVCVBe5nExMQKD4UVRRFXr15F27Zt1RpLZmYmTp8+DW9vb5X2j4+PR1RUlGJ727ZtFT7mnTt38PHHH2PPnj2vvWcUALKystCzZ094eXlVuLNQY5LQxYsXK34+cuQIjhw5ovT8X3/9hb/++kupjEkoEREREVHtoa+vD5lMhvz8/CoPWX1Reno69PT0IJfLVX6NIAjIz8+v0GtUlZ+fD0NDQ+jr67923969eyslwqW3OT548ADOzs6K8gcPHsDHx6fcOs6cOYO0tDS89dZbirKSkhIcPnwYixcvRkFBgSKW7OxsBAcHw8LCAgkJCTA0NKzQuWlMElodF46IiIiIiHSHgYEBvLy8VB4yWxHnz5+vcE4iiiIsLS1hamqq1lj09fXRuXNnuLm5qXSvpYWFBSwsLJTicnJywr59+xRJZ1ZWFk6cOIEPPvig3DoCAwPLdPoNHz4cTZo0waeffqpIQLOyshAUFARjY2Ns3rxZpV7TF2lMEkpERERERPQ6BgYGFZoER1XBwcEQBKFCQ3IFQUDTpk0hCILa4jAyMkJQUJBSD2ZFla7vOXPmTDRq1EixRIuLiwv69u2r2C8wMBChoaEYM2YMLCwsygz/NTMzg62traI8KysL3bt3R15eHn755RdkZWUp1lG1t7dXqdcW0MAkNDk5GTt27FBMd+zm5oZ33nkHHh4eEkdGRERERES6ytXVFSEhIdi+fbtKPa16enpo1qwZbGxs1BaDi4sLAgIClHo1K2vy5MnIzc3F6NGjkZGRAX9/f+zcuVOp5/LGjRt49OiRynWePXsWJ06cAADFHD6lkpOT4e7urlI9gqiOhWjUZNKkSViwYEGZbnA9PT2MHz8e3377bbUe/8mTJxg7diy2bNkCPT09hIeHY8GCBTA3N3/pazp16oRDhw4plUVFRWHJkiUqH/fs2bPw9fXFmTNnlMZgExERERFRzTl16hTat2+PkpKS1/aI6unp4dNPP1U58XoVIyMj+Pn5oXHjxmrtVdVUGrNEy9y5czFv3jyEhYXh2LFjyMjIQEZGBo4dO4aIiAjMmzcP8+bNq9YYBg8ejEuXLmHPnj3YunUrDh8+rNJ0w6NGjcI///yjeMyZM6da4yQiIiIiIvVr3bo11q5dC319/ZcOLdXT04Oenh5Gjx6tlgTUzc0NERER8PT0rBUJKKBBPaFNmjRBkyZNsHHjxnKf79u3L65cuYIrV65Uy/EvX74MLy8vnDp1Cq1atQIA7Ny5Ez169MDdu3fh4uJS7us6deoEHx8fzJ8/v9LHZk8oEREREZHmOHXqFGJiYrB161alHlFBENC8eXP06NGjygmoq6srfHx84OTkVMVotY/G9ISmpKQgKCjopc8HBQUhJSWl2o5/7NgxWFtbKxJQAOjatSv09PQU455fJj4+HnZ2dvD29sbnn3+OvLy8V+5fUFCguIk3KysLOTk5ajkHIiIiIiKqutatW2Pz5s1ISUmBtbU1AEAmk2HWrFn48MMPq5SAenh4ICIiAsHBwbUyAQU0aGIiBwcHnD9//qXPnz9/Hvb29tV2/Pv378PBwUGpzMDAADY2Nrh///5LXzdo0CC4ubnBxcUFFy5cwKeffoqrV69iw4YNL31NbGwsZsyYobbYiYiIiIhI/VxdXWFmZoaMjAwYGxtXaRIiOzs7dOjQAY6OjmqMUDtpTBLar18/LFiwAO7u7hg7dizMzMwAALm5uVi8eDF+/PFHjB8/vsL1fvbZZ5g9e/Yr97l8+XJlQgYApXtGmzVrBmdnZwQGBuLGjRto0KBBua/5/PPPMXHiRMX2uXPnEBAQUOkYiIiIiIhIMxkaGqJNmzbw8vKqNfd8vo7GJKExMTE4d+4cpkyZgi+++EJxD2ZqaiqKi4vRuXNn/Pvf/65wvZMmTcKwYcNeuU/9+vXh5OSEtLQ0pfLi4mI8efKkQt3kbdu2BQBcv379pUmosbExjI2NFduvmn2XiIiIiIi0k52dHQIDA2FlZSV1KBpFY5JQU1NT7Nu3D5s2bVJaJzQ4OBg9evRAr169KvXNgb29vUrDeP38/JCRkYEzZ87A19cXALB//37I5XJFYqmKc+fOAUCVFpclIiIiIiLtJQgCvL290aZNm5fOslubaUQSmpeXhyFDhiA8PByDBw9Gnz59ajyGpk2bIjg4GKNGjcKSJUtQVFSEMWPGYODAgYpe2Xv37iEwMBA///wz2rRpgxs3bmD16tXo0aMHbG1tceHCBUyYMAEdO3ZE8+bNa/wciIiIiIhIWvb29vD396/W+Wy0nUbMjmtqaoq9e/e+dlbZ6hYfH48mTZogMDAQPXr0gL+/P5YuXap4vqioCFevXlXEaWRkhL1796J79+5o0qQJJk2ahPDwcGzZskWqUyAiIiIiIgkYGBigffv26Nu3LxPQ19CInlAA8Pf3x7FjxzBq1CjJYrCxscHq1atf+ry7u7vSOkH16tXDoUOHaiI0IiIiIiLSUC4uLujYsSMsLS2lDkUraERPKAAsXrwYiYmJmDZtGu7evSt1OERERERERK9kYGAAf39/9OzZkwloBWhMT2iLFi1QXFyM2NhYxMbGwsDAQGkGWeDZDb6ZmZkSRUhERERERPSMmZkZ3nnnnSqtHVpbaUwSGh4eznVziIiIiIhI4xkYGDABrQKNSUJXrFghdQhERERERESv9dZbbzEBrQLJk9CnT59i06ZNSE5Ohp2dHXr27Mk1NomIiIiISCPJZDK8+eabUoeh1SRNQtPS0tC+fXskJycrZp01NTXFxo0b0bVrVylDIyIiIiIigpOTE0RRhIHBs9TJ19cXhoaGEkel3SSdHTcmJgYpKSmYMGECtm7divnz50MmkyEqKkrKsIiIiIiIiAAAp0+fxqVLlzB16lTY2dmhadOmUoek9STtCd29ezfee+89fPvtt4oyR0dHDBo0CFevXoWnp6eE0REREREREf2Pr68vJ1NVA0l7Qm/fvg1/f3+lMn9/f4iiiAcPHkgUFRERERERkTKZTAZXV1epw9AJkiahBQUFMDExUSor3S4uLpYiJCIiIiIiojLq1q3LXlA1kXx23JSUFJw9e1axnZmZCQC4du0arK2ty+z/1ltv1VRoREREREREAABbW1upQ9AZglg6La0E9PT0yv02QRTFMuWlZSUlJTUVXo05e/YsfH19cebMGSbZREREREQaJiMjA+np6fDw8JA6FJ0gaU/o8uXLpTw8ERERERGRSkxNTaUOQWdImoQOHTpUysMTERERERGpRCaTSR2CzpB0YiIiIiIiIiJtwCRUfZiEEhERERERvYKBgQEMDQ2lDkNnMAklIiIiIiJ6BTMzM6lD0ClMQomIiIiIiF6B64OqF5NQIiIiIiIiqjFMQomIiIiIiKjGMAklIiIiIiKiGsMklIiIiIiIiGoMk1AiIiIiIiKqMUxCiYiIiIiIqMYYSB0Aaad//vkH//zzj9RhkBo5OzvD2dlZ6jBIjdhOdQ/bqW5iWyXSfHz/VS8moRrA2dkZX375pdb8YhcUFCAyMhKHDh2SOhRSo4CAAOzatQvGxsZSh0JqwHaqm9hOdQ/bKpF24PuvegmiKIpSB0HaJSsrC1ZWVjh06BDMzc2lDofUICcnBwEBAcjMzISlpaXU4ZAasJ3qHrZT3cS2qntK2yqvqe7g+6/6sSeUKs3Hx4cNUUdkZWVJHQJVE7ZT3cF2qtvYVnVHaVvlNdUdfP9VP05MRERERERERDWGSSgRERERERHVGCahVGHGxsb48ssveWO2DuE11T28prqH11Q38brqHl5T3cNrqn6cmIiIiIiIiIhqDHtCiYiIiIiIqMYwCSUiIiIiIqIawySUiIiIiIiIagyTUCIiIiIiIqoxTEKJtIAgCCo9Dh48WOVj5eXlITo6ukJ1ffXVV+jduzccHR0hCAKio6OrHAeRNtLktpqamoohQ4bA09MTFhYWsLa2Rps2bbBy5UpwjkKqbTS5rUZHR78ypiNHjlQ5Jl2kyde01I0bNzBo0CA4ODhAJpOhUaNGmDp1apXj0UYGUgdARK+3atUqpe2ff/4Ze/bsKVPetGnTKh8rLy8PM2bMAAB06tRJpddMmzYNTk5OaNmyJXbt2lXlGIi0lSa31UePHuHu3buIiIiAq6srioqKsGfPHgwbNgxXr17FrFmzqhwTkbbQ5LYaFhaGhg0blimfMmUKcnJy0Lp16yrHpIs0+ZoCwLlz59CpUyfUrVsXkyZNgq2tLW7fvo07d+5UOR5txCSUSAsMGTJEafv48ePYs2dPmXKpJCcnw93dHY8ePYK9vb3U4RBJRpPbavPmzct8az9mzBj06tULCxcuRExMDPT19aUJjqiGaXpbbd68uVLZnTt3cPfuXYwcORJGRkYSRabZNPmayuVyvPvuu2jSpAkOHDgAmUwmdUiS43BcIh0hl8sxf/58vPnmmzAxMYGjoyOioqKQnp6utN/p06cRFBQEOzs7yGQyeHh4YMSIEQCAlJQURRI5Y8YMxdCV1w2vdXd3r45TItJJUrbV8ri7uyMvLw+FhYVVPjciXaJJbfXXX3+FKIoYPHiwWs6ttpLqmu7evRsXL17El19+CZlMhry8PJSUlFTbeWoD9oQS6YioqCisWLECw4cPx7hx45CcnIzFixfjzz//xJEjR2BoaIi0tDR0794d9vb2+Oyzz2BtbY2UlBRs2LABAGBvb4/vv/8eH3zwAUJDQxEWFgYAZb6RJaLKk7qt5ufnIzc3Fzk5OTh06BCWL18OPz8/fjNP9AKp2+rz4uPjUa9ePXTs2FHt51mbSHVN9+7dCwAwNjZGq1atcObMGRgZGSE0NBRxcXGwsbGp/pPXNCIRaZ2PPvpIfL75JiYmigDE+Ph4pf127typVJ6QkCACEE+dOvXSuh8+fCgCEL/88ssKx1WV1xLpIk1sq7GxsSIAxSMwMFC8fft2heog0jWa2FZLXbx4UQQgTp48uVKvr6006Zr27t1bBCDa2tqKgwcPFtevXy9Onz5dNDAwENu3by/K5fKKn6CW43BcIh2wbt06WFlZoVu3bnj06JHi4evrC3Nzcxw4cAAAYG1tDQDYunUrioqKJIyYqHbShLYaGRmJPXv2YPXq1Rg0aBCAZ72jRPQ/mtBWS8XHxwMAh+JWkZTXNCcnBwDQunVr/PLLLwgPD8e///1vxMTE4OjRo9i3b59ajqNNmIQS6YBr164hMzMTDg4OsLe3V3rk5OQgLS0NABAQEIDw8HDMmDEDdnZ26NOnD5YvX46CggKJz4CodtCEturm5oauXbsiMjIS8fHxqF+/Prp27cpElOg5mtBWAUAURaxevRre3t68NaaKpLympbc7REZGKpWXfhF49OjRStetrXhPKJEOkMvlcHBwUHxb+qLSG+gFQcD69etx/PhxbNmyBbt27cKIESMwd+5cHD9+HObm5jUZNlGto4ltNSIiAsuWLcPhw4cRFBSktnqJtJmmtNUjR47g1q1biI2NrVI9JO01dXFxAQA4OjoqlTs4OABAmYmRagMmoUQ6oEGDBti7dy86dOig0uQi7dq1Q7t27fDVV19h9erVGDx4MNasWYORI0dCEIQaiJiodtLEtlraA5qZmamW+oh0gaa01fj4eAiCoOgxo8qT8pr6+vpi2bJluHfvnlJ5amoqgP8lwLUJh+MS6YD+/fujpKQEMTExZZ4rLi5GRkYGgGfftImiqPS8j48PACiGmZiamgKA4jVEpD5SttWHDx+WW/7TTz9BEAS89dZbKtVDVBtowudqUVER1q1bB39/f7i6ulbsBKgMKa9pnz59YGxsjOXLl0MulyvKf/zxRwBAt27dKnIqOoE9oUQ6ICAgAFFRUYiNjcW5c+fQvXt3GBoa4tq1a1i3bh0WLFiAiIgIrFy5EnFxcQgNDUWDBg2QnZ2NZcuWwdLSEj169ADw7L4FLy8vrF27Fo0bN4aNjQ28vb3h7e390uOvWrUKt27dQl5eHgDg8OHDmDlzJgDg3XffhZubW/X/JxBpASnb6ldffYUjR44gODgYrq6uePLkCX7//XecOnUKY8eORcOGDWvyv4JIo0n9uQoAu3btwuPHjzkhkZpIeU2dnJwwdepUfPHFFwgODkbfvn1x/vx5LFu2DJGRkWjdunVN/ldoBknn5iWiSnlx2vFSS5cuFX19fUWZTCZaWFiIzZo1EydPniympqaKoiiKZ8+eFSMjI0VXV1fR2NhYdHBwEENCQsTTp08r1XP06FHR19dXNDIyUmkK8oCAAKUlH55/HDhwQF2nTaR1NKmt7t69WwwJCRFdXFxEQ0ND0cLCQuzQoYO4fPnyWrk8ANHzNKmtlho4cKBoaGgoPn78WC3nWNto2jWVy+XiokWLxMaNG4uGhoZivXr1xGnTpomFhYVqO2dtIojiC/3NRERERERERNWE94QSERERERFRjWESSkRERERERDWGSSgRERERERHVGCahREREREREVGOYhBIREREREVGNYRJKRERERERENYZJKFEtkJKSAkEQsGLFCqlDIaJXYFsl0nxsp7qJ17VmMQklIiIiIiKiGiOIoihKHQQRVS9RFFFQUABDQ0Po6+tLHQ4RvQTbKpHmYzvVTbyuNYtJKBEREREREdUYDscl0hLR0dEQBAF///03hgwZAisrK9jb22P69OkQRRF37txBnz59YGlpCScnJ8ydO1fx2vLucxg2bBjMzc1x79499O3bF+bm5rC3t8cnn3yCkpISxX4HDx6EIAg4ePCgUjzl1Xn//n0MHz4cb7zxBoyNjeHs7Iw+ffogJSWlmv5XiDQP2yqR5mM71U28rtqDSSiRlhkwYADkcjm+/vprtG3bFjNnzsT8+fPRrVs31K1bF7Nnz0bDhg3xySef4PDhw6+sq6SkBEFBQbC1tcW3336LgIAAzJ07F0uXLq1UbOHh4UhISMDw4cMRFxeHcePGITs7G7dv365UfUTajG2VSPOxneomXlctIBKRVvjyyy9FAOLo0aMVZcXFxeIbb7whCoIgfv3114ry9PR0USaTiUOHDhVFURSTk5NFAOLy5csV+wwdOlQEIP773/9WOk7Lli1FX19fxfaBAwdEAOKBAweU9nuxzvT0dBGA+M0336jnhIm0FNsqkeZjO9VNvK7agz2hRFpm5MiRip/19fXRqlUriKKIf/3rX4pya2treHp64ubNm6+t7/3331fafvvtt1V63YtkMhmMjIxw8OBBpKenV/j1RLqGbZVI87Gd6iZeV83HJJRIy7i6uiptW1lZwcTEBHZ2dmXKX/cGZ2JiAnt7e6WyOnXqVOqN0djYGLNnz8aOHTvg6OiIjh07Ys6cObh//36F6yLSBWyrRJqP7VQ38bpqPiahRFqmvGnDXzaVuPiaya9VmYJcEIRyy5+/Ib/U+PHj8ffffyM2NhYmJiaYPn06mjZtij///PO1xyHSNWyrRJqP7VQ38bpqPiahRPRKderUAQBkZGQold+6davc/Rs0aIBJkyZh9+7duHjxIgoLC5VmnyOi6sG2SqT52E51E69rxTEJJaJXcnNzg76+fpnZ4+Li4pS28/Ly8PTpU6WyBg0awMLCAgUFBdUeJ1Ftx7ZKpPnYTnUTr2vFGUgdABFpNisrK/Tr1w+LFi2CIAho0KABtm7dirS0NKX9/v77bwQGBqJ///7w8vKCgYEBEhIS8ODBAwwcOFCi6IlqD7ZVIs3HdqqbeF0rjkkoEb3WokWLUFRUhCVLlsDY2Bj9+/fHN998A29vb8U+9erVQ2RkJPbt24dVq1bBwMAATZo0wW+//Ybw8HAJoyeqPdhWiTQf26lu4nWtGEF83d24RERERERERGrCe0KJiIiIiIioxjAJJSIiIiIiohrDJJSIiIiIiIhqDJNQIiIiIiIiqjFMQomIiIiIiKjGMAklIrVKSUmBIAhYsWKF1KEQERERkQZiEkokoRs3biAqKgr169eHiYkJLC0t0aFDByxYsAD5+fnVdtykpCRER0cjJSWl2o6hiq+++gq9e/eGo6MjBEFAdHS0pPEQVZUgCCo9Dh48WOVj5eXlITo6WuW6rly5gsmTJ8PHxwcWFhZwdnZGz549cfr06SrHQqRtNLmtvig+Ph6CIMDc3LzKsegyTb6m0dHRr4zpyJEjVY5J2xhIHQBRbbVt2zb069cPxsbGeO+99+Dt7Y3CwkL88ccf+L//+z9cunQJS5curZZjJyUlYcaMGejUqRPc3d2r5RiqmDZtGpycnNCyZUvs2rVLsjiI1GXVqlVK2z///DP27NlTprxp06ZVPlZeXh5mzJgBAOjUqdNr9//xxx/x008/ITw8HB9++CEyMzPxww8/oF27dti5cye6du1a5ZiItIUmt9Xn5eTkYPLkyTAzM6tyHLpOk69pWFgYGjZsWKZ8ypQpyMnJQevWrasck7ZhEkokgeTkZAwcOBBubm7Yv38/nJ2dFc999NFHuH79OrZt2yZhhP8jiiKePn0KmUym9rqTk5Ph7u6OR48ewd7eXu31E9W0IUOGKG0fP34ce/bsKVMuhcjISERHRyv1powYMQJNmzZFdHQ0k1CqVTS5rT5v5syZsLCwQOfOnbFx40apw9FomnxNmzdvjubNmyuV3blzB3fv3sXIkSNhZGQkUWTS4XBcIgnMmTMHOTk5+Omnn5QS0FINGzbExx9/rNguLi5GTEwMGjRoAGNjY7i7u2PKlCkoKChQep27uztCQkLwxx9/oE2bNjAxMUH9+vXx888/K/ZZsWIF+vXrBwDo3LlzmeEppXXs2rULrVq1gkwmww8//AAAuHnzJvr16wcbGxuYmpqiXbt2VUqWpeyFJZKKXC7H/Pnz8eabb8LExASOjo6IiopCenq60n6nT59GUFAQ7OzsIJPJ4OHhgREjRgB4du916Rc3M2bMULTjVw1p9/X1LTOcz9bWFm+//TYuX76s3pMk0gFStdVS165dw7x58/Ddd9/BwID9Ruog9TV93q+//gpRFDF48GC1nJu24W80kQS2bNmC+vXro3379irtP3LkSKxcuRIRERGYNGkSTpw4gdjYWFy+fBkJCQlK+16/fh0RERH417/+haFDh+K///0vhg0bBl9fX7z55pvo2LEjxo0bh4ULF2LKlCmKYSnPD0+5evUqIiMjERUVhVGjRsHT0xMPHjxA+/btkZeXh3HjxsHW1hYrV65E7969sX79eoSGhqrvP4hIh0VFRWHFihUYPnw4xo0bh+TkZCxevBh//vknjhw5AkNDQ6SlpaF79+6wt7fHZ599Bmtra6SkpGDDhg0AAHt7e3z//ff44IMPEBoairCwMAAo8027Ku7fvw87Ozu1niORLpC6rY4fPx6dO3dGjx498Ntvv1XrudYWUl/T58XHx6NevXro2LGj2s9TK4hEVKMyMzNFAGKfPn1U2v/cuXMiAHHkyJFK5Z988okIQNy/f7+izM3NTQQgHj58WFGWlpYmGhsbi5MmTVKUrVu3TgQgHjhwoMzxSuvYuXOnUvn48eNFAGJiYqKiLDs7W/Tw8BDd3d3FkpISURRFMTk5WQQgLl++XKXzE0VRfPjwoQhA/PLLL1V+DZE2+Oijj8TnP2oTExNFAGJ8fLzSfjt37lQqT0hIEAGIp06demnd6mg3hw8fFgVBEKdPn17pOoh0gaa11a1bt4oGBgbipUuXRFEUxaFDh4pmZmYVOCPStGv6vIsXL4oAxMmTJ1fq9bqAw3GJalhWVhYAwMLCQqX9t2/fDgCYOHGiUvmkSZMAoMxwWC8vL7z99tuKbXt7e3h6euLmzZsqx+jh4YGgoKAycbRp0wb+/v6KMnNzc4wePRopKSlISkpSuX6i2mrdunWwsrJCt27d8OjRI8WjdKjsgQMHAADW1tYAgK1bt6KoqKhaYklLS8OgQYPg4eGByZMnV8sxiLSVlG21sLAQEyZMwPvvvw8vLy+11Ema9f4bHx8PALV2KC7Ae0KJapylpSUAIDs7W6X9b926BT09vTKzqjk5OcHa2hq3bt1SKnd1dS1TR506dcrc7/AqHh4e5cbh6elZprx0GO+LcRBRWdeuXUNmZiYcHBxgb2+v9MjJyUFaWhoAICAgAOHh4ZgxYwbs7OzQp08fLF++vMx94JWVm5uLkJAQZGdnY9OmTVz6gegFUrbVefPm4dGjR4rZV0k9NOX9VxRFrF69Gt7e3pW6hUJX8J5QohpmaWkJFxcXXLx4sUKvEwRBpf309fXLLRdFUeVjVcdMuET0bFIMBwcHxbfgLyqd7EIQBKxfvx7Hjx/Hli1bsGvXLowYMQJz587F8ePHq5Q0FhYWIiwsDBcuXMCuXbvg7e1d6bqIdJVUbTUzMxMzZ87Ehx9+iKysLMXoqZycHIiiiJSUFJiamsLBwaFqJ1gLacL7LwAcOXIEt27dQmxsbJXq0XZMQokkEBISgqVLl+LYsWPw8/N75b5ubm6Qy+W4du2a0uRBDx48QEZGBtzc3Cp8fFUT2hfjuHr1apnyK1euKJ4noldr0KAB9u7diw4dOqj0ZU+7du3Qrl07fPXVV1i9ejUGDx6MNWvWYOTIkZVqx3K5HO+99x727duH3377DQEBAZU5DSKdJ1VbTU9PR05ODubMmYM5c+aUed7DwwN9+vThci2VIPX7b6n4+HgIgoBBgwZVug5dwOG4RBIoXXh65MiRePDgQZnnb9y4gQULFgAAevToAQCYP3++0j7fffcdAKBnz54VPn7potcZGRkqv6ZHjx44efIkjh07pijLzc3F0qVL4e7uzvtWiFTQv39/lJSUICYmpsxzxcXFijaZnp5eZvSCj48PACiGhJmamgKoWDseO3Ys1q5di7i4OMWMjkRUllRt1cHBAQkJCWUenTt3homJCRISEvD5559X/sRqManffwGgqKgI69atg7+/f7m3T9Um7AklkkCDBg2wevVqDBgwAE2bNsV7770Hb29vFBYW4ujRo1i3bh2GDRsGAGjRogWGDh2KpUuXIiMjAwEBATh58iRWrlyJvn37onPnzhU+vo+PD/T19TF79mxkZmbC2NgYXbp0eeXwns8++wy//vor3nnnHYwbNw42NjZYuXIlkpOT8fvvv0NPr+Lfaa1atQq3bt1CXl4eAODw4cOYOXMmAODdd99l7yrpnICAAERFRSE2Nhbnzp1D9+7dYWhoiGvXrmHdunVYsGABIiIisHLlSsTFxSE0NBQNGjRAdnY2li1bBktLS8UXUzKZDF5eXli7di0aN24MGxsbeHt7v3R47fz58xEXFwc/Pz+Ympril19+UXo+NDRU8QUVUW0nVVs1NTVF3759y5Rv3LgRJ0+eLPc5Uo2U77+ldu3ahcePH9fqCYkUpJyal6i2+/vvv8VRo0aJ7u7uopGRkWhhYSF26NBBXLRokfj06VPFfkVFReKMGTNEDw8P0dDQUKxXr574+eefK+0jis+WV+nZs2eZ4wQEBIgBAQFKZcuWLRPr168v6uvrKy3X8rI6RFEUb9y4IUZERIjW1taiiYmJ2KZNG3Hr1q1K+1RkiZaAgAARQLmP8paPIdI2Ly4RUGrp0qWir6+vKJPJRAsLC7FZs2bi5MmTxdTUVFEURfHs2bNiZGSk6OrqKhobG4sODg5iSEiIePr0aaV6jh49Kvr6+opGRkavXS5g6NChL21vAMTk5GR1njqRVtGktloeLtFScZp4TQcOHCgaGhqKjx8/Vss5ajNBFCswWwkRERERERFRFfCeUCIiIiIiIqoxTEKJiIiIiIioxjAJJSIiIiIiohrDJJSIiIiIiIhqDJNQIiIiIiIiqjFMQomIiIiIiKjGMAklIiIiIiKiGsMklIiIiIiIiGoMk1AiIiIiIiKqMUxCiYiIiIiIqMYwCSUiIiIiIqIawySUiIiIiIiIagyTUCIiIiIiIqox/w9x/Z6iS4UKLQAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6EAAAInCAYAAABpxV9bAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAySZJREFUeJzs3Xd4U+XbB/DvSdKkey92y6ayyyp7WSp7KbKKC1FBBPSnIgqoCK+DJYIMGYqgqOwNsncFLJvKKmW0pdDdtEmTnPePSiS0hY6kJ0m/n+vK1eY55zznLg9peudZgiiKIoiIiIiIiIjKgEzqAIiIiIiIiKj8YBJKREREREREZYZJKBEREREREZUZJqFERERERERUZpiEEhERERERUZlhEkpERERERERlhkkoERERERERlRkmoURERERERFRmmIQSERERERFRmWESagXi4+MxdepUxMfHSx0KERERERGRRTEJtQLx8fH49NNPmYQSEREREZHdYxJKREREREREZYZJKBEREREREZUZJqFERERERERUZpiEPuLgwYPo1asXKlasCEEQsGHDhqdes3//fjRt2hQqlQo1a9bEihUrLB4nERERERGRrWIS+oisrCw0atQI8+fPL9L5N27cQI8ePdCpUydER0dj3LhxeO2117Bz504LR0pERERERGSbFFIHYE2ee+45PPfcc0U+f+HChQgODsbMmTMBAPXq1cPhw4cxe/ZsdOvWzVJhEhERERER2SwmoaVw7NgxdO3a1aSsW7duGDdu3BOv02g00Gg0xueZmZmWCK9YHjx4AK1Wa7H6PTw8LFY3FUytViM3N9di9SuVSvj4+FisfsrPkq9TURRhMBjg7e1tkfqpYHK5HJmZmRZrV75OpWHJ16ogCHB3d7dI3VQ4WWoKhFwL/f7V6yGKIpT+ARapnwomOCiRkpXF378SYRJaCgkJCQgIMP2FERAQgPT0dGRnZ8PJyanA62bMmIFPP/20LEIskgcPHmD+/PkQRdFi9+jYsSNcXV0tVj+ZyszMxIEDByzapoIgYPTo0fwFW0bK4nUK8LUqha1bt1qsXfk6LXt8T7U/stQUuP281HI3+Pf/ine/5yHnh/ZlJtPFDUu37+TvX4lwTqgEJk6ciLS0NOPjwIEDksaj1Wot/oetXq+3aP1kSv/vp6qWJIqiRXvPyVRZvE4BvlbLmk6ns2i78nVa9vieaocs1AP6OFGnK5P7UJ5c/v6VFHtCSyEwMBCJiYkmZYmJiXB3dy+0FxQAVCoVVCqV8bk1fZopCIJZ6yuLP5rpyczdpgDbVWpsU/vE37/2h21qhyzw+xdsV8nxtVr27KYnVBRF7N27F9u3b0dGRkaZ3DMsLAx79uwxKdu9ezfCwsLK5P5ERERERES2xiaT0EmTJqFTp07G56IoIjw8HM8++yx69OiBBg0a4Nq1a8WuNzMzE9HR0YiOjgaQtwVLdHQ04uLiAOQNo42MjDSe/8Ybb+D69et4//33cfnyZSxYsAC//fYbxo8fX7ofkIiIiIiIyE7ZZBK6du1atGjRwvj8jz/+wJ49ezBt2jRs2bIFer0eU6dOLXa9J0+eRJMmTdCkSRMAwIQJE9CkSRNMnjwZABAfH29MSAEgODgYW7duxe7du9GoUSPMnDkTP/zwA7dnISIiIiIiKoRNzgm9c+cOatasaXy+bt06hISEYOLEiQCAN998E99//32x6+3YseMTx3CvWLGiwGv+/vvvYt+LiIiIiIioPLLJnlCFQmHcZ1MURezZswcRERHG4wEBAbh//75U4REREREREVEhbDIJrV+/Pn7++WekpKRg+fLlePDgAXr06GE8fvPmTfj6+koYIRERERERERXEJofjTp48Gb169TImmm3atDFZqGjr1q1o3ry5VOERERERERFRIWwyCX322Wdx+vRp7N69G56enhg0aJDxWEpKCtq3b48+ffpIGCEREREREREVxCaTUAAICQlBSEhIvnIvLy/Mnj1bgoiIiIiIiIjoaWwyCc3IyEBqaiqqVKliLLt79y4WLlwIjUaDgQMHcjguERERERGRFbLJJPT111/HjRs3cPz4cQBAeno6WrVqhdu3b0Mmk2Hu3LnYsWMHOnbsKG2gREREREREZMImV8c9fPgwevbsaXz+888/4+7duzh69ChSUlLQsGFDTJs2TcIIiYiIiIiIqCA2mYTev38flSpVMj7ftGkT2rZti1atWsHNzQ2RkZE4c+aMhBESERERERFRQWwyCfX09ERCQgIAIDs7G4cOHUJ4eLjxuEKhgFqtlio8IiIiIiIiKoRNzglt3bo1FixYgLp162LHjh3Iyckx2ZLln3/+MekpJSIiIiIiIutgk0nol19+ifDwcAwYMAAA8O677+KZZ54BAOj1evz++++IiIiQMkQiIiIiIiIqgE0moTVr1kRMTAwuXrwIDw8PBAUFGY+p1Wp89913aNSokXQBEhERERERUYFsMgkFAAcHhwITTTc3N5OhuURERERERGQ9bHJhIiBvb9D/+7//Q7du3dCkSRNERUUBAJKTkzFr1ixcvXpV4giJiIiIiIjocTbZE3r79m106NABt27dQq1atXD58mVkZmYCALy9vbFo0SLcvHkTc+fOlThSIiIiIiIiepRNJqH/+9//kJGRgejoaPj7+8Pf39/keN++fbFlyxaJoiMiIiIiIqLC2ORw3F27dmHs2LEICQmBIAj5jlevXh23bt2SIDIiIiIiIiJ6EptMQrOzs+Hn51fo8YyMjDKMhoiIiIiIiIrKJpPQkJAQHDx4sNDjGzZsQJMmTcowIiIiIiIiIioKm0xCx40bh19//RVffvkl0tLSAAAGgwFXr17F8OHDcezYMYwfP17iKImIiIiIiOhxNrkw0bBhw3Dz5k18/PHHmDRpEgAgIiICoihCJpNh+vTp6Nu3r7RBEhERERERUT42mYQCwKRJkzB8+HCsXbsWV69ehcFgQI0aNdC/f39Ur15d6vCIiIiIiIioADabhAJA1apVOeyWiIiIiIjIhtjknNDTp09jwYIFhR5fsGABoqOjyy4gIiIiIiIiKhKbTEInTZqEP//8s9Dje/fuxccff1zi+ufPn4+goCA4OjqiZcuWiIqKeuL5c+bMQZ06deDk5IQqVapg/PjxyMnJKfH9iYiIiIiI7JVNJqGnTp1Cu3btCj3erl07nDx5skR1r1mzBhMmTMCUKVNw+vRpNGrUCN26dcO9e/cKPH/16tX48MMPMWXKFFy6dAlLly7FmjVr8NFHH5Xo/kRERERERPbMJpPQjIwMKBSFT2eVyWTGrVuKa9asWRg5ciRefvllhISEYOHChXB2dsayZcsKPP/o0aNo06YNhgwZgqCgIISHh2Pw4MFP7T0lIiIiIiIqj2xyYaJatWph165dePvttws8vmPHjhKtkKvVanHq1ClMnDjRWCaTydC1a1ccO3aswGtat26Nn3/+GVFRUWjRogWuX7+Obdu2Yfjw4YXeR6PRQKPRGJ9nZmYWO1ZbIwgCZLLSfeYhCILx8fD5o8ce//r490V5yGSyfN8//rWgcwuKrbB4C4obAPTpaciNvwtdaioMOepS/Vvdy7L//1NEREREZJtsMgl99dVXMX78eEyYMAGTJ0+Gp6cnACA1NRWffvopduzYga+//rrY9d6/fx96vR4BAQEm5QEBAbh8+XKB1wwZMgT3799H27ZtIYoidDod3njjjScOx50xYwY+/fTTYsdny0RRhMFgMEtdMpkMCoUCCoUCSqUSKpUKKpUKjo6OcHJyemIvuTUyZKuRfSUGuuQHksWwaNEiZGZmwtXVFaNGjZIsDiIiIiKyf7b11/q/xo4di+joaMyZMwfffvstKlasCAC4e/cuDAYDhg8fXmZbt+zfvx/Tp0/HggUL0LJlS1y9ehXvvPMOPv/8c3zyyScFXjNx4kRMmDDB+Dw6OhodOnQok3jtgcFggFarhVarhVqdv8dQqVTCxcUFLi4ucHNzg7OzswRRFk1u0j1kX74IUa+TNI7MzEykp6dLGgMRERERlQ82mYQKgoDly5cjMjISa9euxfXr1wEAffr0wYABA9CxY8cS1evr6wu5XI7ExEST8sTERAQGBhZ4zSeffILhw4fjtddeAwA0aNAAWVlZeP311zFp0qQCh6A+7Ll7yNXVtUTxUsEeJqgpKSkAAIVCAXd3d3h4eMDDwwNyuVziCPNo79xG9pWCe9iJiIiIiOyVTSahD3Xq1AmdOnUyW31KpRKhoaHYs2cP+vbtCyCv123Pnj0YM2ZMgdeo1ep8iebDJEcURbPFRiWn0+mQnJyM5ORkCIIANzc3eHt7w9PTU7KEVHv3DhNQIiIiIiqXbDIJvXHjBs6fP49evXoVeHzz5s1o0KABgoKCil33hAkTMGLECDRr1gwtWrTAnDlzkJWVhZdffhkAEBkZiUqVKmHGjBkAgF69emHWrFlo0qSJcTjuJ598gl69ellNjxv9RxRFpKenIz09HTKZDF5eXvD19S3T3mhd8gNk/8MElIiIiIjKJ5tMQt977z2kp6cXmoTOnz8fnp6e+PXXX4td96BBg5CUlITJkycjISEBjRs3xo4dO4yLFcXFxZn0fH788ccQBAEff/wx7ty5Az8/P/Tq1QtffPFFyX44KjMGgwEPHjzAgwcP4OTkBH9/f3h7e5d6Fd8n3jNbDfWFcwDYS05ERERE5ZNNJqHHjh3DuHHjCj3epUsXzJkzp8T1jxkzptDht/v37zd5rlAoMGXKFEyZMqXE9yPpZWdn4+bNm7hz5w4CAgLg5+dn9p5s0WCA+uJ5yRchIiIiIiKSkk0moSkpKXBzcyv0uKurKx48kG67C7JdOp0Od+7cQUJCAgICAuDv72+2ZFQTex36DK5AS0RERETlm+XGHVpQ1apVceTIkUKPHzp0CJUrVy7DiMje6PV63L17F+fPn0dCQgL0en3p6svMgOZWnJmiIyIiIiKyXTaZhA4ePBi//PILvv32WxgMBmO5Xq/H3LlzsWbNGgwZMkTCCMlePOwZPXfuHO7evQudrvhDaUVRRHbMJUA0PP1kIiIiIiI7Z5PDcSdOnIjDhw9j3Lhx+OKLL1CnTh0AQExMDJKSktCxY0dMmjRJ4ijJnuj1esTHxyMhIQHe3t7w9/eHs7Nzka7Njb/LYbhERERERP+yySRUpVJh165d+PHHH7Fu3Tpcu3YNANCiRQsMGDAAkZGRFl3hlMovURSNK+o6OzvD19cX3t7ehc4bFXU65Ny4VsZRPhZDEfardXFxgSiKxq9ERERERJZik0koAMhkMrz88svG/TuJypparUZcXBxu3boFDw8PeHl5wcPDwyQh1dy6CTFXW6T6BIUDHAICofDwhMzRCRBKHps2JQXC32eLnFCOGjWq2PcQBAFKpbLY1xERERFR+WazSSiRtRBFEampqUhNTYUgCHBzc4OHhwdcVCrob9966vWCTA5VtSAoq1SDYKYefD83d4wePRpabdES4JJQKpXw8fGxWP1EREREZJ9sMgnt3LnzU88RBAF79uwpg2iI/iOKItLT05Geno7cpHtAWgqcHZRwVjrAyUEBRwcHKB5JNOXOrnCq3xDyIs4vLQ4miERERERkjWwyCTUYDBAE07GKer0eN2/exK1bt1CzZk1UqlRJouiI8uaC6lJTAIMB6focpOfkGI8p5DKo5Ao4enrAvUIlZGdlQaHRQKFQQC6XQxCEfP+/S0JISQa0mlLXU2j9KkcoAytYrH4iIiIisk82mYTu37+/0GNbtmzB66+/jlmzZpVdQESP0aXkJaAFHtMbYFApoPfwhvrePYvcX5aaArefl1qk7kdVnTGLiSgRERERFYvdLSHbs2dPDBs2DOPGjZM6FCqnRIMBurSUQo/LlCooK1Y22/zPAhVxMaSH+m3eiba/bUS/zTuLdZ2oyXn6SUREREREj7C7JBQAatSogb/++kvqMKic0qelAnp9wQflCigrVYZQyJYuFiEIT30kZecgUZ2NpOycIp1PRERERFRSdpeE6nQ6/Pbbb/D19ZU6FCqHRFGELiW50OPKgEAI3NaEiIiIiMoxm5wT+sorrxRYnpqaiuPHjyMhIYFzQkkShqxMiLm5BR6Te3pB7uZWxhEREREREVkXm0xC9+7dm2/1UEEQ4OXlhbZt2+K1115DeHi4RNFReaZLLXguqODgAAdfvzKOhoiIiIjI+thkEhobGyt1CET5GLRaGLKyCjzm4B9YtvNAiYiIiIislN3NCSWSij4ttcBymasb5K6uZRsMEREREZGVspkkVK1WIy4uDlpt/q0nli1bhi5duiAkJAT9+/fnyrhU5kRRhC4tLf8BQYCDn3/ZB0REREREZKVsJgn97LPP0LBhw3xJ6LRp0zBy5EgcOHAASUlJ2LBhAzp27IgzZ85IFCmVR4bMTECvy1cu9/SEjKvhEhEREREZ2UwSum/fPvTs2ROujwxrTE9Px7Rp01CpUiVcuXIFSUlJOH78OJRKJf7v//5PwmipvNEVNBRXJoODN7cKIiIiIrJlixYtwsyZM7Fo0SKpQ7EbNpOExsbGomHDhiZl27Ztg1arxQcffIDg4GAAQIsWLfDyyy/j0KFDUoRJ5ZCo08Ggzr8gkcLTC4LCJtf+IiIiIqJ/ZWZmIj09HZmZmVKHYjds5i/kjIwM+Pj4mJQdPHgQgiCgW7duJuUhISFISkoqy/CoHNNnpAOiaFook0Hh5S1NQCXg5+Rk8pWIiIiIyFJsJgmtVq0aLl++bFK2f/9+BAQEoGbNmiblWq0W7u7uZRkelWP69PwLEik8bKsXdH3vbk8/iYiIiIjIDGxmOG54eDiWLVuGEydOAAB++uknXL58Gf369ct37qlTpxAUFFTGEVJ5ZNBoYMjJMS0UBCi8vaQJiIiIiIjIytlMEvrJJ5/A1dUVrVu3hlKpxEsvvQQ/Pz9MnjzZ5Dy1Wo3169ejS5cuEkVK5Yk+Mz1fmdzNHYLCQYJoiIiIiIisn82MF/T19UV0dDR++OEHXL9+HdWqVcMrr7wCf3/TPRjPnz+PoUOHYvjw4RJFSuWJIT0jX5nC26eAM4mIiIiICLChnlAA8PLywv/+9z98//33+PDDD/MloEDe6rjz5s3DM888U+L7zJ8/H0FBQXB0dETLli0RFRX1xPNTU1MxevRoVKhQASqVCrVr18a2bdtKfH+yDQaNBgatxqRM5uQMmUolUURERERERNbPZnpCy8qaNWswYcIELFy4EC1btsScOXPQrVs3xMTEFJj0arVaPPvss/D398cff/yBSpUq4ebNm/D09Cz74KlM6TPyD8VVeHEuKBERERHRkzAJfcysWbMwcuRIvPzyywCAhQsXYuvWrVi2bBk+/PDDfOcvW7YMycnJOHr0KBwc8uYBclGk8kGfYToUV1A4QObqJlE0RERERES2waaG41qaVqvFqVOn0LVrV2OZTCZD165dcezYsQKv2bRpE8LCwjB69GgEBASgfv36mD59OvR6faH30Wg0SE9PNz648a3tMWg0EB8biiv38IAgCBJFRERERERkG5iEPuL+/fvQ6/UICAgwKQ8ICEBCQkKB11y/fh1//PEH9Ho9tm3bhk8++QQzZ87EtGnTCr3PjBkz4OHhYXx06NDBrD8HWZ4h8/EFiQQoPDylCIWIiIiIyKbYRBK6adMm3L17V+owCmQwGODv74/FixcjNDQUgwYNwqRJk7Bw4cJCr5k4cSLS0tKMjwMHDpRhxGQO+seSUJmLMwQHbstCREREZG9cXV3h7u4OV1dXqUOxGzYxJ7Rfv35YuXIlhgwZAgCoXr065syZg969e5v1Pr6+vpDL5UhMTDQpT0xMRGBgYIHXVKhQAQ4ODpDL5cayevXqISEhAVqtFkqlMt81KpUKqkdWUOV/aNsi5ubCkJNjUsZeUCIiIqInEGQQZDIIcjkgkwEyGQRZ3veCIOSVCQIEmQAIMkDIuwZA3vGHU57MNPVJps01fi+K4hPPff3114t8LhWNTSShbm5uSE1NNT6PjY21yDxKpVKJ0NBQ7NmzB3379gWQ19O5Z88ejBkzpsBr2rRpg9WrV8NgMEAmy3uh/PPPP6hQoUKBCSjZPn3WY0NxZTIuSERERER2RRBkgELxb+KoAORyCHI5BIUckCsgKB55yBX/lf/7fV6yKTcmnYLMugZgujx4AEEQLJZUCoLAXOAJbCIJbdGiBb744gskJibCw8MDALBt27ZC52kCeQ0/fvz4Yt9rwoQJGDFiBJo1a4YWLVpgzpw5yMrKMq6WGxkZiUqVKmHGjBkAgDfffBPfffcd3nnnHbz99tu4cuUKpk+fjrFjx5bgJyVboH/sAxC5mzsXJCIiIqJSERQKCA6lTFoe6THMS/oEQCbkff8wEfw3OZTJZIBcASjkkMkVeQmnQgHBwSFvxX/Ff0mkoLCJlKFYfHx8MHr0aGi1WovUr1Qq4ePjY5G67YFN/I9asGABIiMj8fnnnwPISzBXr16N1atXF3pNSZPQQYMGISkpCZMnT0ZCQgIaN26MHTt2GBcriouLM/Z4AkCVKlWwc+dOjB8/Hg0bNkSlSpXwzjvv4IMPPij2vcn6iXo9DGq1SZnc3UOiaIiIiMheiDodxFzzJUTm7t8T5Iq8Xs1/k1Jjcip/rEf04TkPjz/sSZXJIMgfGYL7yFQ2qbjlaiFqc55+Ygmwf+LJbCIJrVmzJo4ePYqcnBzcu3cPQUFBmDNnDvr06WOR+40ZM6bQ4bf79+/PVxYWFobjx49bJBayLga1Gnhk2Ibg4AC5s7OEERERERFZnqjXQdTrzFqnIMj+mx/6sBf34dxQ4ZG5oRD+LTPfvUURSJg303wVFqDqjFlQBlaw6D1slU0koQ85OjqiatWqmDJlCjp37oxq1apJHRKVM/qs/ENxiYiIiKj4RNEA6A2A3vw9t09X9Iy23+adSMrOgZ+TI9b36lbk60SNZXpZ7YFNJaEPTZkyxfh9ZmYmbt26BSBvaCxXmiVLMjyehLozCSUiIiKyaU/pYk3KzkGiOrtI5wIwGTVHBbOuZaqK4a+//kKnTp3g5eWF+vXro379+vDy8kLnzp1x8uRJqcMjO2TIyYao+28YiqBUQqZylDAiIiIiIiLbY5M9oSdOnEDHjh2hVCrx2muvoV69egCAS5cu4ZdffkH79u2xf/9+tGjRQuJIyZ4Ysh5bkMiVvaBERERERMVlk0nopEmTUKlSJRw+fBiBgYEmx6ZOnYo2bdpg0qRJ2L17t0QRkj3KNx+UQ3GJiIiIiIrNJofjnjhxAqNGjcqXgAJAQEAAXn/9da5WS2Yl6vUw5GQbnwsOSshUKgkjIiIiIiKyTTaZhMpkMuh0hS8RrdfrTfbyJCqtx7dmkbu5SRgNEREREZHtsslMrXXr1pg/fz5u3ryZ71hcXBwWLFiANm3aSBAZ2Su9OsvkuYyrMBMRERERlYhNzgmdPn062rdvj7p166Jfv36oXbs2ACAmJgYbN26EQqHAjBkzJI6S7Ikh678kVFAoIHdyljAaIiIiIiLbZZNJaJMmTXDixAlMmjQJmzZtglqdt2qps7MzIiIiMG3aNISEhEgcJdkLMTcXYq7W+Fzmwl5QIiIiIqKSsskkFABCQkKwfv16GAwGJCUlAQD8/Pw4F5TMTp9lOhRX7sr5oEREREREJWWzSehDMpkMAQEBUodBdsyQ/UgSKpNB5uIiXTBERERERDaO3YZET6HPUhu/lzm7QBAECaMhIiIiIrJtNt8TSmRJBo0G0P+3HZCc80GJiIiIyhU/JyeTr1R6TEKJnsCgfnw+KIfiEhEREZUn63t3kzoEu8PhuERPYFA/MhRXpYKgcJAwGiIiIiIi28cklOgJ9NmPJKEciktEREREVGo2PRz34sWLuH79OlJSUiCKYr7jkZGREkRF9sKgyQH0euNzropLRERERFR6NpmEXrt2DcOGDUNUVFSByScACILAJJRK5dGhuJDJIHNyli4YIiIiIiI7YZNJ6KhRo3Du3DnMmTMH7dq1g5eXl9QhkR3Sq7k1CxERERGRudlkEnrkyBF89NFHePvtt6UOheyUKIomK+PKORSXiIiIiMgsbHJhIl9fX3h4eEgdBtkxQ042YDAYn8ucmYQSEREREZmDTSahb7zxBn7++WfoH1k0hsicHu0FFRwcIFMqJYyGiIiIiMh+2ORw3Nq1a0Ov16NRo0Z45ZVXUKVKFcjl8nzn9e/fX4LoyB4YskzngxIRERERkXnYZBI6aNAg4/fvvfdegecIgsCeUioRUa/PG477L5kzV8UlIiIiIjIXm0xC9+3bZ9H658+fj6+//hoJCQlo1KgR5s2bhxYtWjz1ul9//RWDBw9Gnz59sGHDBovGSJZjyFYDj2z9I2dPKBERERGR2dhkEtqhQweL1b1mzRpMmDABCxcuRMuWLTFnzhx069YNMTEx8Pf3L/S62NhYvPfee2jXrp3FYqOyoc/6bz6oTKWCoLDJlwkRERERkVWyyYWJHnXx4kVs374d27dvx8WLF0td36xZszBy5Ei8/PLLCAkJwcKFC+Hs7Ixly5YVeo1er8fQoUPx6aefonr16qWOgaRleCQJFTgUl4iIiIjIrGw2Cd24cSNq1KiBBg0aoGfPnujZsycaNGiAmjVrYtOmTSWqU6vV4tSpU+jatauxTCaToWvXrjh27Fih13322Wfw9/fHq6++WqT7aDQapKenGx+ZmZklipfMz6DVQszVGp/LnTgUl4iIiIjInGxynOG2bdswYMAAVKtWDdOnT0e9evUAAJcuXcLixYvRv39/bNmyBREREcWq9/79+9Dr9QgICDApDwgIwOXLlwu85vDhw1i6dCmio6OLfJ8ZM2bg008/LVZsVDYMWaYfCHBRIiIiIiIi87LJJPTzzz9Hw4YNcejQIbi4/NdT1bt3b4wZMwZt27bFp59+WuwktLgyMjIwfPhwLFmyBL6+vkW+buLEiZgwYYLxeXR0tEXnuVLRmc4HdYRQwNY/RERERERUcjaZhJ49exbTp083SUAfcnFxwUsvvYSPPvqo2PX6+vpCLpcjMTHRpDwxMRGBgYH5zr927RpiY2PRq1cvY5nBYAAAKBQKxMTEoEaNGvmuU6lUUKlUxueurq7FjpXMTzQYYFBzPigRERERkSXZ5JxQR0dHJCcnF3o8OTkZjo6Oxa5XqVQiNDQUe/bsMZYZDAbs2bMHYWFh+c6vW7cuzp07h+joaOOjd+/e6NSpE6Kjo1GlSpVix0DSMaizuDULEREREZGF2WRPaOfOnTF37lxERETkSw5PnDiBb7/9FuHh4SWqe8KECRgxYgSaNWuGFi1aYM6cOcjKysLLL78MAIiMjESlSpUwY8YMODo6on79+ibXe3p6AkC+crJ++kcXiBIEyJycpAuGiIjKhUWLFiEzMxOurq4YNWqU1OEQEZUJm0xCv/rqK4SFhaFt27Zo0aIF6tSpAwCIiYlBVFQU/P398eWXX5ao7kGDBiEpKQmTJ09GQkICGjdujB07dhgXK4qLi4NMZpMdyPQUjy5KJHN04nxQIiKyuMzMTKSnp0sdBhFRmbLJJDQ4OBhnz57FjBkzsH37dqxZswYAUK1aNbzzzjv48MMP4e/vX+L6x4wZgzFjxhR4bP/+/U+8dsWKFSW+L0nHkJMNUaczPpe5cD4oEREREZEl2GQSCgD+/v6YPXs2Zs+eLXUoZAf0j+3VKuP+oERWTRCEQp8X9n1xy57IYICo15vMIy8JsZTXExER2SKbTUKJzMmQkfHfE5mM80GJSkgQBMjlcshkMsjlcjg4OMDBwQFKpRKOjo5wdHQ0WR28sOTvSUlmWdNnpEOXmgp9RhoMWVkwZGdDNOjNUvcDgW/DRERU/tjEu98rr7wCQRCwePFiyOVyvPLKK0+9RhAELF26tAyiI1tn0Gph0GqMz+XOLpL+wUtky0RRhO6Roe3Z2dn5zpHJZHB2doaLiwtcXV3h6uoKhcK63o50qanITYxH7v0kiLlaqcMBwAVsiIjIfljXu34h9u7dC5lMBoPBALlcjr179z41SWASQUVlyMwweS5z4b6tRJZkMBiQmZmJzMxM477Mzs7O8PDwgIeHR4F7QJcF0WBAbvxdaO7cMtkz2FpwARsiIrIXNpGExsbGPvE5UWnoM0yTULlEfwATlWdqtRpqtRrx8fFQKpXw8vKCt7c3nJ0tv0iYaDBAe/cOtHGxJqMiiIiIyDJsIgl9XFxcHPz8/OBUyLy97OxsJCUloWrVqmUcGdkaMTcXhpz/hgsKShUEBwcJIyIirVaLxMREJCYmwsnJCb6+vvDx8YHcAtsm5d5PQs7VKzDkqM1eNxERERXMJje8DA4Oxvr16ws9vmnTJgQHB5dhRGSr9BmmQ9tk7AUlsirZ2dm4desWzp49i7i4OGg05umpNGg0UJ8/A/X5M0xAiYiIyphN9oQ+bUn73NxcyGQ2mV9TGXs8CeVQXCLrZDAYkJSUhKSkJHh5eSEwMLDEQ3Vz7yUi+5/LEHW5Zo6SiIiIisJmktD09HSkpqYanz948ABxcXH5zktNTcWvv/6KChUqlGF0ZItErRaGnJz/CmQyyJyZhBJZu5SUFKSkpMDT0xMVK1YsdGrG40SDATlXYqCNv2PhCImIiOhJbCYJnT17Nj777DMAeSvfjhs3DuPGjSvwXFEUMW3atDKMjmxRvl5Qbs1CZFNSU1ORmpoKHx8fVKxYEUqlstBzDTk5UJ8/C30mV5elsvO0kVsA4OLiAlEUjV+LQqVSFfnDl6J4eN9Hvz76MBgMRY6NiKgobCYJDQ8Ph6urK0RRxPvvv4/BgwejadOmJucIggAXFxeEhoaiWbNmEkVKtkL32FYHMlduzUJkix48eIDk5GT4+/sjMDAw356juvQ0qM+dsZr9Psm+KZVKCIJQ5KStuHu+CoKAunXrwsfHpyThlcqjCanBYCj0odfrjV8f//7xh8FgKPOfg4ikZzNJaFhYGMLCwgAAWVlZGDBgAOrXry9xVGSrDDnZEE22YhAg5/6gRDZLFEUkJiYiKSkJfn5+CAgIgIODA3KT7iH70gWIBr3UIVI54ePjg9GjR0OrtcyHHkqlUpIEFMhLgC2xSvWjiatJMqvTwaDTQa/TQdTr876KBhj0eoh6AwwGPSCKMBhE42tcNIgQxbzENu9zADHvUaqOXPYCE5mbzSShD6nVanz77bdwdnZmEkollq8X1NERgsLmXg5E9BiDwYDExETcu3cP7hDh9uA+HB3M/0cz0ZO45WohanOefmIJWPOsEVGvh6jXA/q8pFHU6SHqdXnPdXqIOl3eQ5/31Viu1wMG/X/XGwwQ9XoIECEHIPUrODcrA6kSx0Bkb2zur25nZ2coFAq4cBVTKiFRFKF/LAmVu7lJFA0RWUJuygMkJCYiAYCLSgkfZ2e4O6qset7304ZvlmTuIJU9bUI84iZOsNwNRBEBb42DQ2l7Q8WHX8SHXYZ5X/99iKIIiAbAIEI0GPLKDYa87w2GvJ7Hh8/1eo42IKJisbkkFAAGDBiAP/74A2+++aZV/0FB1smQmQnodSZlclcmoUT2QpeSjNx7icbnWRotsjRayGUyeDg5wtPJES5PWMSoYAJkzs6QO7tA5ugEQaWEIFcAstK9B7mqs4s8f7C4cweBvOGTT1qwicxP1FimB/RR2ls3YVBnWvw+RESWYpNJ6Isvvoi33noLnTp1wsiRIxEUFFTgKnGPL1xEBAC6tFST5zKVCgL/SCOyC7rUVJME9FF6gwHJWWokZ6nhIJfBzdER7ioVXFRKyAr4QFOmcoTC1w8Kbx8oPDwtMmTfH7Db+YOEIo2d7bdpJ5Kys+Hn5IT1vbs9+WT2gBORnbDJJLRjx47G7w8dOpTvuCiKEAQBej2HhpApUZcLQ1aWSZmMvaBEdkGfkYbcxPginZur/y8hFQQBzg4OcFE5wEXpCLdKleBcuSoUnp6WDfhfTBLLt6TsbCSqs6UOg4ioTNlkErp8+XKpQyAbldcLavpJMueDEtk+fVYmtPFFS0AfJ4oisnQ6aNzcke7phQRNLpS3bsExKQmOjo5QqVRQKpVwcHCAg4MD5HI5ZDKZ2aaDaBPiLTaEU1A5QhlYwSJ1ExERlZRNJqEjRoyQOgSyQaIoQp+aalImKJWQqRylCYiIzMKg0UB7907JhioKAhSe3lD4+EB4ZOsJrVYLrVaL9McWMTO9tPRJqLtOC3w/t9T1PEnVGbOYiBIRkVWxyST0UZmZmbh16xYAoEqVKnB15V6PVDBDZnrekvCPkLu5SxQNEZmDmJsL7e1bQAk2vJc5u8AhIBCyEs4JN8cKtaJGg6Kmsv0270RSdg78nByxvtdT5g6a3MPyC+UQEREVh0zqAErqr7/+QqdOneDl5YX69eujfv368PLyQufOnXHy5EmpwyMrpEtJzVfGJJTIdok6HTS3b0HU5RbvQpkMDoEVoKpStcQJqEUIwhMfSdk5SFRnIyk756nnWvVmkkREVO7ZZE/oiRMn0LFjRyiVSrz22muoV68eAODSpUv45Zdf0L59e+zfvx8tWrSQOFKyFvrsbBiy1SZlglIFmUolUUREVBqiXg/tnVsQtZpiXSdzcoayQkUIDg4WioyIiIiexiaT0EmTJqFSpUo4fPgwAgMDTY5NnToVbdq0waRJk7B7926JIiRro09JzlemcGcvKNmvRYsWITMzE66uriXaX9KaiQYDtHduw5BTvGGmCm8fKHz9uL80ERGRxGxyOO6JEycwatSofAkoAAQEBOD111/H8ePHJYiMrJGo1UKfkZGvnENxyZ5lZmYiPT0dmZn2taG9qNdDe/tWvpENTySTQVmxEhz8/JmAEhERWQGb7AmVyWTQPbbAzKP0ej1kMpvMr8kCcpMf4PFtWWROzhCsaS4YET2VqNP92wNa9D0VBYUCyoqVIXNysmBkREREVBw2mam1bt0a8+fPx82bN/Mdi4uLw4IFC9CmTRsJIiNrI2q10Ken5SuXu3tIEA0RlZSoy4X2VlzxElClEqoq1ZiAEhERWRmbTEKnT5+OtLQ01K1bF0OGDMHUqVMxdepUDB48GHXr1kVaWhpmzJhR4vrnz5+PoKAgODo6omXLloiKiir03CVLlqBdu3bw8vKCl5cXunbt+sTzqWzlJj/Iv3egTAa5m5s0ARFRsRlysqG5GQtDMRYhkqkcoapSjSMeyOr5OTkhwNkJfvywhIjKEZscjtukSROcOHECkyZNwqZNm6BW580NcnZ2RkREBKZNm4aQkJAS1b1mzRpMmDABCxcuRMuWLTFnzhx069YNMTEx8Pf3z3f+/v37MXjwYLRu3RqOjo748ssvER4ejgsXLqBSpUql+jmpdAwaTcG9oK5uJpvSE5H10mekQ5sQX6x9QGWOjlBWrsrXOdmE9b2LvucrEZG9sMkkFABCQkKwfv16GAwGJCUlAQD8/PxKPRd01qxZGDlyJF5++WUAwMKFC7F161YsW7YMH374Yb7zV61aZfL8hx9+wNq1a7Fnzx5ERkaWKhZrZSurbuYm3cvfCwpA7uFZ9sEQUbGIoghdUhJ0KQ+KdR0TUCIiIutns0noQ4IgGFc7LO2qh1qtFqdOncLEiRONZTKZDF27dsWxY8eKVIdarUZubi68vb0LPUej0UCj+W9Yma2tXvlw1U1rpldnwZCV/99VUCohd3aWICIiKipRq4U2/m6x5n8CgEylYgJKRERkA2xyTigAXLx4EQMHDoS7uzsqVKiAChUqwN3dHQMHDsT58+dLVOf9+/eh1+sREBBgUh4QEICEhIQi1fHBBx+gYsWK6Nq1a6HnzJgxAx4eHsZHhw4dShQvFUwUReQmJhZ4TOHhVcbREFFx6FJTkHPzRrETUMFBafcJKOcOEhGRvbDJntBDhw7hueeeg8FgQJ8+fVC7dm0AQExMDDZt2oTt27djx44daNeuXZnG9X//93/49ddfsX//fjg6OhZ63sSJEzFhwgTj8+joaCaiZqRLvg+xoAVMZDLIPbgqLpUPrq6uJl+tnSEnG7n37hVv/8+H5AqoKleBoLDJt7Qi49xBIiKyFzb5jj1+/Hj4+/vjwIEDqFKlismxW7duoX379pgwYQL++uuvYtXr6+sLuVyOxMd60RITExEYGPjEa7/55hv83//9H/788080bNjwieeqVCqoVCrjc1v5I9EWGDQa6B4UPIdM7uZu170kVH6IBcx1ftzrr79erPMf8vDweOJ0gqIwGAzQ6/XQ6/XIzc2FTqcrNAZRq0Xug/vQp6fj8f18i0Qmg7JSZa6CS0REZENsMgm9cOECPv/883wJKABUqVIFb775JqZOnVrsepVKJUJDQ7Fnzx707dsXQN4fU3v27MGYMWMKve6rr77CF198gZ07d6JZs2bFvi+Zh2gwIPfunQIXIwIAhVfp/rAmkpJSqYQgCMVKKItLEAQEBQXBx8fHrPWKoojc3FxoNBrk5OQgJycHmSnJyLh9G9q01EJfs0UIGMqKlSDn8FQiIiKbYpNJaLVq1UwW9nmcVqstMEEtigkTJmDEiBFo1qwZWrRogTlz5iArK8u4Wm5kZCQqVapk3If0yy+/xOTJk7F69WoEBQUZ5466urqyh7OM5d5LLHQfQZmLC2SP9D4T2RofHx+MHj0aWq3WYvdQKpVmT0CBvORWqVTCQRCgykiH8/1EuKelQnRSQuPgjSxtLjI1WmRptdAXdSsWQYCyQkXIXfh7loiIyNbYZBI6efJkjB8/Hj169EDjxo1Njv3999+YN28e5syZU6K6Bw0ahKSkJEyePBkJCQlo3LgxduzYYVysKC4uzmQbmO+//x5arRYDBw40qWfKlCkl6o2lktElJ0OfllrocYW3+f+wJiprbrlaiNoci9VfygXG8zFotTBkZUKXlgZ9SjJ06WmA+F+SKQgCHB0c4OjgAB8XZ4iiCHVuLtJzNEjPyYFWpy8sUigrVIDczd28ARMREVGZsMkk9Pjx4wgICEBoaChat26NmjVrAgCuXLmCY8eOoX79+jh27JjJtiqCIGDu3LlFqn/MmDGFDr/dv3+/yfPY2NgS/QzWqihD/VxcXCCKovGr1PQZ6Xl7ghZC5ugIubNLGUZEZH7ahHjETZzw9BNL6t/Xst/Lr0PhVYpVpPUGiLpcGHJyIOp1xbpUEAS4KJVwUSpRwd0Naq0Wqdk5SM3O+a+H9GEPKBNQIiIim2WTSeh3331n/P7IkSM4cuSIyfFz587h3LlzJmXFSULLm+LONRs1alSx71G7du1SLXYiiiJEUTQueKLT6ZCbm4vsewnISH4AUS5Drr7gXhOFt2+J70tkLURN8XpA+23eiaTsHPg5OWJ9r6Kvqqq7n2TSWyklZ6USzv8mpOk5GiRn50Dr4wc5pzoQERHZNJtMQg1FnTNERWLpuWaWmGcmiiI0sdehSU2Gr7cnAMAgisjJzUVOrg7q3FyotbnIVSggd3Mz672JJFeEcbNJ2TlIVGcX+fwSLw5UBgRBgKebGyq2botcpQqJiYlITk62ipEYREREVHw2mYSS+VliMRJL0WekI/vKP9Cnp5qUywTB2HPysM9VWa8+cpQqpKWlIT09Hbm5uWUeLxGVjszJGc4NGkPu7AwFgKCgIFSsWBGJiYm4f/8+P5gkIiKyMTadhN64cQPbt2/HzZs3AeStmvvcc88hODhY4shsjzYhvtjD/YpKFGRw8PUrXSU6Xd7cz3uJ0KWlFOkShYcnnAIC4QTA6985bllZWUhNTUVycrJFVxklIvNQePvAuV59CA4OJuVKpRJVqlRBYGAgEhISkJSUxJ5RIiIiG2GzSei7776LuXPn5vsEXCaTYdy4cfjmm28kisz2lMWCJ979nofcw8Ny9yiAY43a+cpcXFzg4uKCSpUqITMzEw8ePEBycjJ7UoisjgBVUDBU1YIhPGE4sYODA6pUqYKAgADEx8fjwYMHTEaJiIisnOzpp1ifmTNnYvbs2ejfvz+OHTuG1NRUpKam4tixYxg4cCBmz56N2bNnSx2mzSjJgidtf9uIfpt3Fv0euuKtkllaDgEVIHd/8uqZrq6uqFatGho2bIiqVavC0dGxjKIjoieRqRzh0rgpHIOqPzEBfZRSqUS1atVQv359+Pv7m2ylRURERNbFJntClyxZgt69e+O3334zKW/ZsiV+/fVX5OTkYNGiRRg/frxEEdowcy94IkGPhKBwgGONWkU+Xy6Xw8/PD35+fkhPT0diYiLS09MtGCERFUZZoRIca9SCoCjZ29PDYboVK1bE/fv3kZSUBI1GY+YoiYiIqDRsMgmNjY3FO++8U+jxbt26YceOHWUYEVkTxxq1IFMqS3Stu7s73N3doVarER8fj9TUVPMGR0QFkru5w7FmbSg8PM1Tn1yOgIAABAQEID09Hffv30dqaiqH6hIREVkBm0xC/f39cebMmUKPnzlzBn5+pVwIh2ySwtsHygoVS12Ps7MzatSogaysLMTHxyMtLc0M0RHR42ROzlAFVYcyINBi93j44ZJer0dqaipSUlKQnp7OhJSIiEgiNpmEPv/885g7dy6CgoLw9ttvw8XFBUDeyqffffcdfvjhB4wbN07aIKnMyZQqONV9xqx1uri4oGbNmlCr1UhMTERKSgr/cCWb4OfkZPLV2sjdPKCqUgUKv4Aiz/ss9T3lcvj4+MDHxwd6vR7p6enGB1fLJiIiKjs2mYR+/vnniI6OxkcffYTJkyejYsW8nq+7d+9Cp9OhU6dO+OyzzySOksqUIINTvWdKPAz3aZydnREcHIxKlSohKSkJ9+/fh66MF1siKo71vbtJHUI+MpUjHPwC4BAYCLmrm6SxyOVyeHl5Gbdv0mg0yMzMRFZWFtRqNbKzs7lqNhERkYXYZBLq7OyMPXv2YOPGjSb7hEZERKB79+7o1atXmX2yTtbBqVYdKLy8LX4fpVKJSpUqoWLFikhNTcX9+/e5iBFRQQQZ5E7OkLm6QO7uCYWnF+Surha9pSiK/y2G9sj34qPJpCgCEAERjyycJsIBgKeTEzydnIzlWq0GORoNtBotcnU65ObmQqfTQa/Xw2AwwGCGUREKEdCXuhYiIiLbYnNJqFqtxrBhwzBgwAAMHToUffr0kTokkphjcA0oK1Yq03sKgmDsRcnNzUVKSgpSUlKQmZlZpnEQmZ1cBkHuUPLrZQIEuRyCIq8Ogzobhiw1cuPvIi/z+9fDXBGPJI3G8seSSeC/YfAPk8tHyx8mlhYgA+D478MSxFwd7luobiIiImtlc0mos7Mz/vzzTzz33HNSh1JuWc9cMwGONWpCVaWapFE4ODjA398f/v7+0Ol0SEtLQ1paGjIyMjhkl2yP3gBRn1uK6wExFwCyzRURERER2RmbS0IBoG3btjh27BhGjhwpdSjlkjXMNRMUDnCq9wwcfHylDsWEQqEwLnwCANnZ2SbzzHJycriwERERERGVazaZhH733Xfo1q0bPv74Y7zxxhuoXLmy1CFRGREEGRwqVIQqqLrFFiEyJ0dHRziqVPD18QFEEaLBAI1Gg5ycHGg0Gmi1Wmi1WuM8M73BANFgKHWiKjNT/ERERERE5maTSWijRo2g0+kwY8YMzJgxAwqFAiqVyuQcQRC4t6M1UcghOJR8npmgUEDm7AKFlzcEhQK65Pv/TQF7NGETxbw5ZsZFR0TAkPc176nhkTllgPjIc9Hw+PeGvGtFA0TDw2v+TRD/LYco/jcn7eG1RZijJgPg9O/DEnKz0pFqobqJiIiIiErDJpPQAQMGcPVbW6PTQ8wt+TwzMTcXhuxs6B5wCQ8iIiIiIltmk0noihUrpA6BiIiIiIiISsCmktCcnBxs3LgRN27cgK+vL3r06IEKFSpIHRYREREREREVkc0koffu3UPr1q1x48YN46Itzs7O2LBhA7p27SpxdERERERERFQUNrOI5ueff47Y2FiMHz8eW7ZswZw5c+Dk5IRRo0ZJHRoREREREREVkc30hO7atQuRkZH45ptvjGUBAQEYMmQIYmJiUKdOHQmjIyIiIiIioqKwmZ7QuLg4tG3b1qSsbdu2EEURiYmJEkVFRERERERExWEzSahGo4Gjo6NJ2cPnOp1OipCIiIiIiIiomGwmCQWA2NhYnD592vg4e/YsAODKlSsm5Q8fJTV//nwEBQXB0dERLVu2RFRU1BPP//3331G3bl04OjqiQYMG2LZtW4nvTUREREREZM9sZk4oAHzyySf45JNP8pW/9dZbJs9FUYQgCNDr9cW+x5o1azBhwgQsXLgQLVu2xJw5c9CtWzfExMTA398/3/lHjx7F4MGDMWPGDPTs2ROrV69G3759cfr0adSvX7/Y9yciIiIiIrJnNpOELl++vEzuM2vWLIwcORIvv/wyAGDhwoXYunUrli1bhg8//DDf+XPnzkVERAT+97//AchbxXf37t347rvvsHDhwjKJmYiIiIiIyFbYTBI6YsQIi99Dq9Xi1KlTmDhxorFMJpOha9euOHbsWIHXHDt2DBMmTDAp69atGzZs2FDofTQaDTQajfF5ZmZm6QI3p3/3YCU7wja1P2xT+8R2tT9sU/vDNrVPbNcyZzNJaFm4f/8+9Ho9AgICTMoDAgJw+fLlAq9JSEgo8PyEhIRC7zNjxgx8+umnpQ/YTASV49NPKiVVzVpw8PWz+H0oj9zLu0zuUxb/dyhPWf1b87VatvTp6Ra/B1+nZYvvqfanrN5T2a5ly5CVZfF78Pdv4ZiESmDixIkmvafR0dHo0KGDZPEoAyug6oxZEDU5FqlfUDlCGVjBInVTwVSVqli0TQG2a1mz9OsUYJtKohL4+9fO8D3V/vA91X7xtSodJqGP8PX1hVwuz7fvaGJiIgIDAwu8JjAwsFjnA4BKpYJKpTI+d3V1LUXU5sEXif1hm9oftql9YrvaH7ap/WGb2ie2q3RsaosWS1MqlQgNDcWePXuMZQaDAXv27EFYWFiB14SFhZmcDwC7d+8u9HwiIiIiIqLyjD2hj5kwYQJGjBiBZs2aoUWLFpgzZw6ysrKMq+VGRkaiUqVKmDFjBgDgnXfeQYcOHTBz5kz06NEDv/76K06ePInFixdL+WMQERERERFZJSahjxk0aBCSkpIwefJkJCQkoHHjxtixY4dx8aG4uDjIZP91ILdu3RqrV6/Gxx9/jI8++gi1atXChg0buEcoERERERFRAQRR5JrEUjt9+jRCQ0Nx6tQpNG3aVOpwiIiIiIiILIZzQomIiIiIiKjMMAklIiIiIiKiMsM5oVQi8fHxiI+PlzoMMqMKFSqgQgUuVW5P+Dq1P3yd2ie+VomsH3//mheTUCtQoUIFTJkyxWb+Y2s0GgwePBgHDhyQOhQyow4dOmDnzp0me9iS7eLr1D7xdWp/+Folsg38/WteXJiIii09PR0eHh44cOAAXF1dpQ6HzCAzMxMdOnRAWloa3N3dpQ6HzICvU/vD16l94mvV/jx8rbJN7Qd//5ofe0KpxBo3bswXop1IT0+XOgSyEL5O7Qdfp/aNr1X78fC1yja1H/z9a35cmIiIiIiIiIjKDJNQIiIiIiIiKjNMQqnYVCoVpkyZwonZdoRtan/YpvaHbWqf2K72h21qf9im5seFiYiIiIiIiKjMsCeUiIiIiIiIygyTUCIiIiIiIiozTEKJiIiIiIiozDAJJUnFxsZCEASsWLFC6lCIiIiIiKgMMAm1IdeuXcOoUaNQvXp1ODo6wt3dHW3atMHcuXORnZ1tsftevHgRU6dORWxsrMXuURRffPEFevfujYCAAAiCgKlTp0oaT1kSBKFIj/3795f6Xmq1GlOnTi1WXeW5bUrDmtv18uXLeP/999G4cWO4ubmhQoUK6NGjB06ePFnqWOyZNbfp3bt3MWzYMNSpUwdubm7w9PREixYt8OOPP4JrFBbOmtv0catWrYIgCHB1dS11LPbOmtt16tSpT4zpyJEjpY7JHllzmz507do1DBkyBP7+/nByckKtWrUwadKkUsdjixRSB0BFs3XrVjz//PNQqVSIjIxE/fr1odVqcfjwYfzvf//DhQsXsHjxYovc++LFi/j000/RsWNHBAUFWeQeRfHxxx8jMDAQTZo0wc6dOyWLQworV640ef7TTz9h9+7d+crr1atX6nup1Wp8+umnAICOHTsW6Zry3DalYc3t+sMPP2Dp0qUYMGAA3nrrLaSlpWHRokVo1aoVduzYga5du5Y6JntkzW16//593L59GwMHDkTVqlWRm5uL3bt346WXXkJMTAymT59e6pjskTW36aMyMzPx/vvvw8XFpdRxlAfW3K79+/dHzZo185V/9NFHyMzMRPPmzUsdkz2y5jYFgOjoaHTs2BGVKlXCu+++Cx8fH8TFxeHWrVuljscmiWT1rl+/Lrq6uop169YV7969m+/4lStXxDlz5ljs/r///rsIQNy3b99TzzUYDKJarS5y3Tdu3BABiMuXLy/SuaIoiklJSSIAccqUKUW+j70ZPXq0aKmXb0n+fdk25mFN7Xry5EkxIyPDpOz+/fuin5+f2KZNGwtEaJ+sqU0L07NnT9HFxUXU6XTmCczOWWubfvDBB2KdOnXEoUOHii4uLuYPzs5Za7s+FBcXJwqCII4cOdJ8gdk5a2pTvV4v1q9fX2zZsmWx/k62ZxyOawO++uorZGZmYunSpahQoUK+4zVr1sQ777xjfK7T6fD555+jRo0aUKlUCAoKwkcffQSNRmNyXVBQEHr27InDhw+jRYsWcHR0RPXq1fHTTz8Zz1mxYgWef/55AECnTp3yDWV4WMfOnTvRrFkzODk5YdGiRQCA69ev4/nnn4e3tzecnZ3RqlUrbN26tcT/DlL2wtoCg8GAOXPm4JlnnoGjoyMCAgIwatQopKSkmJx38uRJdOvWDb6+vnByckJwcDBeeeUVAHlzdP38/AAAn376qbG9nza8lm1jOVK1a2hoaL4hfT4+PmjXrh0uXbpk3h+ynJHytVqQoKAgqNVqaLXaUv9s5ZXUbXrlyhXMnj0bs2bNgkLBQW7mInW7PuqXX36BKIoYOnSoWX628kqqNt21axfOnz+PKVOmwMnJCWq1Gnq93mI/py3gbyobsHnzZlSvXh2tW7cu0vmvvfYafvzxRwwcOBDvvvsuTpw4gRkzZuDSpUtYv369yblXr17FwIED8eqrr2LEiBFYtmwZXnrpJYSGhuKZZ55B+/btMXbsWHz77bf46KOPjEMYHh3KEBMTg8GDB2PUqFEYOXIk6tSpg8TERLRu3RpqtRpjx46Fj48PfvzxR/Tu3Rt//PEH+vXrZ75/IAIAjBo1CitWrMDLL7+MsWPH4saNG/juu+/w999/48iRI3BwcMC9e/cQHh4OPz8/fPjhh/D09ERsbCzWrVsHAPDz88P333+PN998E/369UP//v0BAA0bNpTyRyvXrK1dExIS4Ovra9afsbyRuk2zs7ORlZWFzMxMHDhwAMuXL0dYWBicnJws+nPbM6nbdNy4cejUqRO6d++O3377zaI/a3kidbs+atWqVahSpQrat29v9p+zPJGqTf/8808AgEqlQrNmzXDq1CkolUr069cPCxYsgLe3t+V/eGsjdVcsPVlaWpoIQOzTp0+Rzo+OjhYBiK+99ppJ+XvvvScCEPfu3Wssq1atmghAPHjwoLHs3r17okqlEt99911j2ZOG4z6sY8eOHSbl48aNEwGIhw4dMpZlZGSIwcHBYlBQkKjX60VRLN5w3Ic45DP/EJNDhw6JAMRVq1aZnLdjxw6T8vXr14sAxL/++qvQukvz78u2KR1rbdeHDh48KAqCIH7yySclrqO8scY2nTFjhgjA+OjSpYsYFxdXrDrKM2tr0y1btogKhUK8cOGCKIqiOGLECA7HLQFra9dHnT9/XgQgvv/++yW6vryypjbt3bu3CED08fERhw4dKv7xxx/iJ598IioUCrF169aiwWAo/g9o4zgc18qlp6cDANzc3Ip0/rZt2wAAEyZMMCl/9913ASDfcNiQkBC0a9fO+NzPzw916tTB9evXixxjcHAwunXrli+OFi1aoG3btsYyV1dXvP7664iNjcXFixeLXD893e+//w4PDw88++yzuH//vvHxcEjlvn37AACenp4AgC1btiA3N1fCiKkorKld7927hyFDhiA4OBjvv/++Re5RHlhDmw4ePBi7d+/G6tWrMWTIEACw6Arr9k7KNtVqtRg/fjzeeOMNhISEmKVOymMNr9WHVq1aBQAciltKUrZpZmYmAKB58+b4+eefMWDAAHz22Wf4/PPPcfToUezZs8cs97ElTEKtnLu7OwAgIyOjSOffvHkTMpks36pqgYGB8PT0xM2bN03Kq1atmq8OLy+vfGPjnyQ4OLjAOOrUqZOv/OEw3sfjoNK5cuUK0tLS4O/vDz8/P5NHZmYm7t27BwDo0KEDBgwYgE8//RS+vr7o06cPli9fnm++MFkHa2nXrKws9OzZExkZGdi4cSO3fygFa2jTatWqoWvXrhg8eDBWrVqF6tWro2vXrkxES0jKNp09ezbu379vXKWTzMcaXqsAIIoiVq9ejfr163NqTClJ2aYPpzsMHjzYpPzhB4FHjx4tcd22inNCrZy7uzsqVqyI8+fPF+s6QRCKdJ5cLi+wXCzGnnGcRyQ9g8EAf39/46elj3s4gV4QBPzxxx84fvw4Nm/ejJ07d+KVV17BzJkzcfz4cSYXVsYa2lWr1aJ///44e/Ysdu7cifr165e4LrKONn3cwIEDsWTJEhw8eDDfqBZ6OqnaNC0tDdOmTcNbb72F9PR048ipzMxMiKKI2NhYODs7w9/fv3Q/YDllLa/VI0eO4ObNm5gxY0ap6iFp27RixYoAgICAAJPyh6/P4nT+2AsmoTagZ8+eWLx4MY4dO4awsLAnnlutWjUYDAZcuXLFZPGgxMREpKamolq1asW+f1ET2sfjiImJyVd++fJl43Eynxo1auDPP/9EmzZtivShQKtWrdCqVSt88cUXWL16NYYOHYpff/0Vr732WonamyxD6nY1GAyIjIzEnj178Ntvv6FDhw4l+THoEVK3aUEe9oCmpaWZpb7yRqo2TUlJQWZmJr766it89dVX+Y4HBwejT58+2LBhQ3F+HPqXtbxWV61aBUEQjD1mVHJStmloaCiWLFmCO3fumJTfvXsXwH8JcHnC4bg24OHm06+99hoSExPzHb927Rrmzp0LAOjevTsAYM6cOSbnzJo1CwDQo0ePYt//4cbXqampRb6me/fuiIqKwrFjx4xlWVlZWLx4MYKCgjh3xcxeeOEF6PV6fP755/mO6XQ6Y9ulpKTk6+Vu3LgxABiHmTg7OwMoXnuTZUjdrm+//TbWrFmDBQsWGFf/o9KRsk2TkpIKLF+6dCkEQUDTpk2LVA+ZkqpN/f39sX79+nyPTp06wdHREevXr8fEiRNL/oOVc1L//gWA3Nxc/P7772jbtm2B06eoeKRs0z59+kClUmH58uUwGAzG8h9++AEA8OyzzxbnR7EL7Am1ATVq1MDq1asxaNAg1KtXD5GRkahfvz60Wi2OHj2K33//HS+99BIAoFGjRhgxYgQWL16M1NRUdOjQAVFRUfjxxx/Rt29fdOrUqdj3b9y4MeRyOb788kukpaVBpVKhc+fOTxzi8+GHH+KXX37Bc889h7Fjx8Lb2xs//vgjbty4gbVr10ImK/7nHytXrsTNmzehVqsBAAcPHsS0adMAAMOHDy/XvasdOnTAqFGjMGPGDERHRyM8PBwODg64cuUKfv/9d8ydOxcDBw7Ejz/+iAULFqBfv36oUaMGMjIysGTJEri7uxs/wHByckJISAjWrFmD2rVrw9vbG/Xr13/iMEy2jWVI2a5z5szBggULEBYWBmdnZ/z8888mx/v162f8gIqKTso2/eKLL3DkyBFERESgatWqSE5Oxtq1a/HXX3/h7bffzreWABWNVG3q7OyMvn375ivfsGEDoqKiCjxGRSf1+yoA7Ny5Ew8ePOCCRGYiZZsGBgZi0qRJmDx5MiIiItC3b1+cOXMGS5YsweDBg9G8efOy/KewDpKty0vF9s8//4gjR44Ug4KCRKVSKbq5uYlt2rQR582bJ+bk5BjPy83NFT/99FMxODhYdHBwEKtUqSJOnDjR5BxRzNtepUePHvnu06FDB7FDhw4mZUuWLBGrV68uyuVyk+1aCqtDFEXx2rVr4sCBA0VPT0/R0dFRbNGihbhlyxaTc4qzRUuHDh1MthV49FHQ9jH27PFlxx9avHixGBoaKjo5OYlubm5igwYNxPfff1+8e/euKIqiePr0aXHw4MFi1apVRZVKJfr7+4s9e/YUT548aVLP0aNHxdDQUFGpVBZpCXK2jXlYU7uOGDGi0DYFIN64ccOcP7rdsqY23bVrl9izZ0+xYsWKooODg/E9ZPny5eVye4CSsqY2LQi3aCkZa2zXF198UXRwcBAfPHhglp+xvLG2NjUYDOK8efPE2rVrG/8+//jjj0WtVmu2n9mWCKJYjBVoiIiIiIiIiEqBc0KJiIiIiIiozDAJJSIiIiIiojLDJJSIiIiIiIjKDJNQIiIiIiIiKjNMQomIiIiIiKjMMAm1I1999RXq1q1rsgmurXrxxRfxwgsvSB2G5Nim9odtap/YrvaHbWp/2Kb2ie1qo6TeI4bMIy0tTfT29haXLVtmLMO/+/l98803+c5fvny5CED866+/zB5L165dRQDi6NGjCzz+ww8/iHXr1hVVKpVYs2ZN8dtvv813zunTp0WZTCZGR0ebPT5bwTa1P2xT+8R2tT9sU/vDNrVPbFfbxZ5QO7Fs2TLodDoMHjw437Gvv/4aarW6TOJYt24djh07VujxRYsW4bXXXsMzzzyDefPmISwsDGPHjsWXX35pcl6TJk3QrFkzzJw509IhWy22qf1hm9ontqv9YZvaH7apfWK72jCps2Ayj4YNG4rDhg0zKQMgNm7cWAQgzpw50+SYJT4Jys7OFoOCgsTPPvuswE+C1Gq16OPjI/bo0cOkfOjQoaKLi4uYnJxsUv7NN9+ILi4uYkZGhtlitCVsU/vDNrVPbFf7wza1P2xT+8R2tV3sCbUDN27cwNmzZ9G1a9d8x9q0aYPOnTvjq6++QnZ2tkXj+Oqrr2AwGPDee+8VeHzfvn148OAB3nrrLZPy0aNHIysrC1u3bjUpf/bZZ5GVlYXdu3dbLGZrxTa1P2xT+8R2tT9sU/vDNrVPbFfbxiTUDhw9ehQA0LRp0wKPT506FYmJifj++++fWI9Go8H9+/eL9HhcXFwc/u///g9ffvklnJycCqz/77//BgA0a9bMpDw0NBQymcx4/KGQkBA4OTnhyJEjT4zbHrFN7Q/b1D6xXe0P29T+sE3tE9vVtimkDoBK7/LlywCA4ODgAo+3a9cOnTp1wtdff40333yz0BfJL7/8gpdffrlI9xRF0eT5u+++iyZNmuDFF18s9Jr4+HjI5XL4+/ublCuVSvj4+ODu3bsm5QqFAlWqVMHFixeLFJM9YZvaH7apfWK72h+2qf1hm9ontqttYxJqBx48eACFQgFXV9dCz5k6dSo6dOiAhQsXYvz48QWe061btxJ1/e/btw9r167FiRMnnnhednY2lEplgcccHR0LHC7h5eVV4CdP9o5tan/YpvaJ7Wp/2Kb2h21qn9iuto1JaDnRvn17dOrUCV999RXeeOONAs+pUKECKlSoUKx6dTodxo4di+HDh6N58+ZPPNfJyQlarbbAYzk5OQV+QiWKIgRBKFZM5QXb1P6wTe0T29X+sE3tD9vUPrFdrReTUDvg4+MDnU6HjIwMuLm5FXrelClT0LFjRyxatAienp75jmdnZyMtLa1I9wwMDAQA/PTTT4iJicGiRYsQGxtrck5GRgZiY2Ph7+8PZ2dnVKhQAXq9Hvfu3TMZkqDVavHgwQNUrFgx331SUlJQq1atIsVkT9im9odtap/YrvaHbWp/2Kb2ie1q27gwkR2oW7cugLxVwp6kQ4cO6NixI7788ssCu/7XrFlj/DToaY+H4uLikJubizZt2iA4ONj4APJeoMHBwdi1axcAoHHjxgCAkydPmtz35MmTMBgMxuMP6XQ63Lp1C/Xq1SvWv4c9YJvaH7apfWK72h+2qf1hm9ontqttY0+oHQgLCwOQ95+5YcOGTzx36tSp6NixIxYvXpzvWEnGxL/44ov5XjwA0K9fP3Tv3h0jR45Ey5YtAQCdO3eGt7c3vv/+e3Tv3t147vfffw9nZ2f06NHDpI6LFy8iJycHrVu3LlZM9oBtan/YpvaJ7Wp/2Kb2h21qn9iuNk6KzUnJ/OrXry8OHjzYpAwFbJgriqLYoUMHEYDZN+styr3nz58vAhAHDhwoLlmyRIyMjBQBiF988UW+c7/55hvR2dlZTE9Pt0iM1o5tan/YpvaJ7Wp/2Kb2h21qn9iutotJqJ2YNWuW6OrqKqrVamNZYS+Effv2SfYiFEVRXLx4sVinTh1RqVSKNWrUEGfPni0aDIZ857Vs2VIcNmyYReKzBWxT+8M2tU9sV/vDNrU/bFP7xHa1XUxC7URqaqro7e0t/vDDD1KHYhZ///23KAiC+Pfff0sdimTYpvaHbWqf2K72h21qf9im9ontarsEUXxs11WyWV9++SWWL1+OixcvQiaz7TWnXnzxRRgMBvz2229ShyIptqn9YZvaJ7ar/WGb2h+2qX1iu9omJqFERERERERUZmz74wIiIiIiIiKyKUxCiYiIiIiIqMwwCSUiIiIiIqIywySUiIiIiIiIygyTUCIiIiIiIiozTEKJiIiIiIiozDAJJSIiIiIiojLDJJSIiIiIiIjKDJNQIiIiIiIiKjNMQh9x8OBB9OrVCxUrVoQgCNiwYcNTr9m/fz+aNm0KlUqFmjVrYsWKFRaPk4iIiIiIyFYxCX1EVlYWGjVqhPnz5xfp/Bs3bqBHjx7o1KkToqOjMW7cOLz22mvYuXOnhSMlIiIiIiKyTYIoiqLUQVgjQRCwfv169O3bt9BzPvjgA2zduhXnz583lr344otITU3Fjh07yiBKIiIiIiIi28Ke0FI4duwYunbtalLWrVs3HDt2TKKIiIiIiIiIrBuT0FJISEhAQECASVlAQADS09ORnZ1d6HUajQbp6enGxz///IOPP/4Y8fHxlg6ZiIiIiIhIUkxCJTBjxgx4eHgYH3Xq1MEXX3zBJJSIiIiIiOwek9BSCAwMRGJioklZYmIi3N3d4eTkVOh1EydORFpamvFx4MABS4dKRERERERkFRRSB2DLwsLCsG3bNpOy3bt3Iyws7InXqVQqqFQq43NXV1eLxEdERERERGRt2BP6iMzMTERHRyM6OhpA3hYs0dHRiIuLA5DXgxkZGWk8/4033sD169fx/vvv4/Lly1iwYAF+++03jB8/XorwiYiIiIiIrB6T0EecPHkSTZo0QZMmTQAAEyZMQJMmTTB58mQAQHx8vDEhBYDg4GBs3boVu3fvRqNGjTBz5kz88MMP6NatmyTxExERERERWTvuE2oFTp8+jdDQUJw6dQpNmzaVOhwiIiIiIiKLYU8oERERERERlRkmoURERERERFRmmIQSEREREZlRdna21CEQWTUmoUREREREZpScnCx1CERWjUkoEREREZEZpaWlgWt/EhWOSSgRAQByc3OlDoGIiMgu6HQ6qNVqqcMgslpWmYTGx8fjzJkzyMrKkjoUonKDSSgREZH5ZGZmSh0CkdWyqiR048aNqFu3LipXroymTZvixIkTAID79++jSZMm2LBhg7QBEtkxvV4vdQhERER24969e1KHQGS1rCYJ3bx5M/r37w9fX19MmTLFZBy9r68vKlWqhOXLl0sYIZF902q1UodARERkNy5evMgPeIkKYTVJ6GeffYb27dvj8OHDGD16dL7jYWFh+PvvvyWIjKh8YBJKRERkPmlpaTh48CAXKCIqgNUkoefPn8cLL7xQ6PGAgAAOayCyoJycHKlDICIisitXrlzB0aNHmYgSPcZqklBnZ+cnLkR0/fp1+Pj4lGFEROULV/EjIiIyvwsXLuD48eNMRIkeYTVJaKdOnfDjjz9Cp9PlO5aQkIAlS5YgPDxcgsiIyoeMjAypQyAiIrJL586dw65duzjqiOhfVpOEfvHFF7h9+zaaN2+ORYsWQRAE7Ny5Ex9//DEaNGgAURQxZcoUqcMkslvZ2dnsDSUiIrKQmzdv4o8//sCtW7ekDoVIclaThNapUweHDx+Gj48PPvnkE4iiiK+//hrTp09HgwYNcOjQIQQFBUkdJpFdu3v3rtQhEBER2S21Wo3t27djz549HIFE5ZpC6gAe9cwzz+DPP/9ESkoKrl69CoPBgOrVq8PPz0/q0IjKhWvXrqFmzZpSh0FERGSzmjVrhlu3bsHR0RGTJk0q8Jxr167hxo0bqFGjBho2bMh1T6jcsaok9CEvLy80b95c6jCIyp24uDhkZmbC1dVV6lCIiIhsUkJCAu7duwdPT88nnmcwGHDlyhVcuXIFVatWRYsWLeDt7V02QRJJzGqG43777bfo1q1bocefe+45fP/992UYEVH5I4oizpw5I3UYRERE5UpcXBzWrl2LAwcOIC0tTepwiCzOapLQpUuXIiQkpNDjISEhWLx4cRlGRFQ+Xbp0Cenp6VKHQUREVK6IooiYmBj89ttv2LlzJ+Lj47mtC9ktq0lCr127hnr16hV6vG7durh27VoZRkRUPhkMBhw+fJhvfERERBIQRRE3b97E5s2bsXXrVqSmpkodEpHZWU0SqlQqkZCQUOjx+Ph4yGRWEy6RXbt9+zbOnj0rdRhEREQ2JS4uDllZWQAAjUaD5OTkUtV39+5drF27FqdOnUJubq45QiSyClaT1bVq1QorVqwocLnqtLQ0LF++HK1atZIgMqLyKSoqCv/884/UYRAREVm9qKgo9OrVC0FBQcaey+zsbHz00UeYP38+YmNjS1y3Xq/HqVOnsGrVKkRFRSE7O9s8QRNJyGqS0ClTpuDu3bto3Lgx5s2bh71792Lv3r349ttv0aRJE8THx2PKlClSh0lUboiiiP379+PUqVMcmktERFSIdevWoU2bNti+fXu+90tRFHH+/Hl8+eWXOH36dKnuo9VqER0djV9//RVnz56FwWAoVX1PkpycjKFDh8Ld3R2enp549dVXkZmZWej5sbGxEAShwMfvv/9uPC8uLg49evSAs7Mz/P398b///Q86nc5iPwdZL0G0or8ud+/ejVGjRhn/IwN5L97g4GB8//33CA8PlzhCyzh9+jRCQ0Nx6tQpNG3aVOpwqBxq1qwZbt68CWdn5wL3NKtQoQI6dOgAd3d3CaIjIiKyTlFRUWjTpg30ev1TP7CVyWT44IMPEBQUZJZ7e3l5oXHjxqhevTrkcnmxr+/YsSNeeuklvPTSS/mOPffcc4iPj8eiRYuQm5uLl19+Gc2bN8fq1asLrEuv1yMpKcmkbPHixfj6668RHx8PV1dX6PV6NG7cGIGBgcbyyMhIjBw5EtOnTy92/GTbrCoJBfIWRfn777+NixDVqFEDTZs2NSal9ohJKEmtcuXKuHPnDjw9PfHll18WeI5CoUBoaCgaNGjA+dlEREQAevfujW3btkGv1z/1XJlMhgYNGuCtt94yawwuLi5o3LgxQkJCivX3cmFJ6KVLlxASEoK//voLzZo1AwDs2LED3bt3x+3bt1GxYsUi1d+kSRM0bdoUS5cuBQBs374dPXv2xN27dxEQEAAAWLhwIT744AMkJSVBqVQWOXayfVb3l6RMJkNoaCheeOEFvPDCCwgNDbXrBJTIVuh0Opw4cQJr167F3bt3pQ6HiIhIUnFxcdiyZUuRElAgr6Pl7NmzpV6s6HFZWVk4cuQIbty4YZb6jh07Bk9PT2MCCgBdu3aFTCbDiRMnilTHqVOnEB0djVdffdWk3gYNGhgTUADo1q0b0tPTceHCBbPETrZDIXUAj7t48SKuX7+OlJSUAoc1REZGShAVET2UkpKCLVu2oGbNmmjVqhWcnZ2lDomIiKhQWq3WIvMOt23bVuw1E0RRxKVLlxAWFmb2eO7cuYPq1auXup6EhAT4+/ublCkUCnh7ez9xJ4tHLV26FPXq1UPr1q1N6n00AQVgfF7Uesl+WE0Seu3aNQwbNgxRUVGFvqAFQWASSmQlrl69iri4OLRs2RJ169bliAUiIrI6Wq0WUVFRT1xUp6TOnDkDQRCKlYgKgoC0tDSLxHPp0iW0bNmy0GGt06dPN5l7mZ2djePHj2PMmDHGsosXL5Y6juzsbKxevRqffPJJqesi+2U1SeioUaNw7tw5zJkzB+3atYOXl5fUIRHRU2i1Whw6dAjXrl1Dx44d4erqKnVIRERERjqdDpmZmVAqlVCpVGat28vLq0Q9oY6OjmZdW0EQBHh6esLPzw86na7QJPSNN97ACy+8YHw+dOhQDBgwAP379zeWVaxYEYGBgbh3757JtTqdDsnJyQgMDHxqPH/88QfUanW+jqPAwEBERUWZlCUmJhqPUfliNUnokSNH8NFHH+Htt9+WOhQiKqa7d+/ijz/+QPv27c0yFIiIiMicVCoVHB0dzVpn48aNi32NIAioU6eO2ZJQR0dH1KtXDwqFAhkZGU8819vbG97e3sbnTk5O8Pf3R82aNU3OCwsLQ2pqKk6dOoXQ0FAAwN69e2EwGNCyZcunxrR06VL07t0bfn5++er94osvcO/ePeNw3927d8Pd3R0hISFF+nnJfljNwkS+vr7w8PCQOgwiKiGtVos///wTR44csejeZURERFISRRExMTE4cuQIqlWrVuTpKDKZDCEhIWYb7efp6YnGjRubfRRSvXr1EBERgZEjRyIqKgpHjhzBmDFj8OKLLxpXxr1z5w7q1q2br2fz6tWrOHjwIF577bV89YaHhyMkJATDhw/HmTNnsHPnTnz88ccYPXq02XupyfpZTRL6xhtv4Oeffy7yCmNEZJ0uXLiArVu3IicnR+pQiIiIzCorKwu7du3C4cOHkZubi2bNmhVrTYSuXbuWOgalUol69eqhfv36cHBwKHV9BVm1ahXq1q2LLl26oHv37mjbti0WL15sPJ6bm4uYmBio1WqT65YtW4bKlSsjPDw8X51yuRxbtmyBXC5HWFgYhg0bhsjISHz22WcW+RnIulnNcNzatWtDr9ejUaNGeOWVV1ClSpUCN959dNw6EVmn+Ph4bNy4ERERERzhQERENk8URVy5cgUnTpyAVqs1lrdt2xahoaHGRXgK6kwRBAGCIKBfv37w9PSEKIolXszPw8MD9erVM0vyuX///kKPeXt7Y/Xq1YUeDwoKKnA+7OOLHz2uWrVq2LZtW7HiJPtkNUnooEGDjN+/9957BZ4jCAJ7SolsRFpamjERfXypdyIiIluRlZWFw4cP4/bt28YyZ2dntG3bFlWqVAEAVKpUCUuXLsWhQ4dMkjNBEFCvXj2EhYUhMDAQOp0O6enpcHd3L1YiqlAoUKlSJVSuXNmsixoRScVqktB9+/ZJHQJRuRQXF4esrCwAgEajQXJyssnCBaWRk5ODLVu2oHPnzggKCjJLnURERGVBFEVcvXoVx48fN+n9rFWrFlq2bGkyj/GZZ57BrFmzkJCQgMGDByMjIwNOTk743//+By8vL+h0OqSlpUEUReTm5iIjIwNubm5PTURdXFxQoUIF+Pv7FzhCkMhWWU0S2qFDB6lDICpXoqKi8Pnnn2Pr1q3GT22zs7Px0UcfoUGDBujRo4dZEkedTofdu3ejefPmaNSoEfcTJSIiq6dWq3HkyBHExcUZy5ycnNC2bVtUrVq10OsCAwPh5OSEjIwMKJVK4yJECoUC7u7uSE9PhyiK0Gq1yMzMhJubW4H1ODo6Ijg4GD4+PnzfJLtkdf35Go0Gx44dw8aNG3H//n2pwyGyS+vWrUObNm2wffv2fHM6RFHE+fPn8eWXX+L06dNmuZ8oioiKisLu3buh0WjMUufjkpOTMXToULi7u8PT0xOvvvrqUzcD79ixo3GuzsPHG2+8YTy+YsWKfMcfPh7fQ42IiGzfw97PtWvXmiSgNWrUwIABA56YgD6Ng4ODSdKp0WiMI5EeUigUCA4ORmhoKHx9fZmAkt2yqiT022+/RYUKFdC2bVv0798fZ8+eBQDcv38fvr6+WLZsmcQREtm+qKgoDBo0CHq9vtA51gaDAQaDAUuWLEFsbKzZ7h0bG4t169bhwYMHJbq+Y8eOWLFiRYHHhg4digsXLmD37t3YsmULDh48iNdff/2pdY4cORLx8fHGx1dffWU8NmjQIJNj8fHx6NatGzp06MB5rkREdiY7Oxt79uzBgQMHjMNvnZyc0LVrV3Ts2NEs24golUqTRDQ7O9u4wmylSpXQvHlzzvukcsFq/ocvX74c48aNQ0REBJYuXWrSO+Pr64vOnTvj119/lTBCIvswbdo0iKJY4Kp2BTH3KnYZGRnYuHEj7ty5Y7Y6L126hB07duCHH35Ay5Yt0bZtW8ybNw+//vor7t69+8RrnZ2dERgYaHy4u7sbjzk5OZkck8vl2Lt3L1599VWzxU5ERNISRRHXr1/H2rVrcfPmTWN59erV0b9/f1SrVs2s91OpVCZ7ez4cllu9enUoFFYzU47IoqwmCZ05cyb69OmD1atXo1evXvmOh4aG4sKFCxJERmQ/4uLisGXLliKvMm0wGHD27FkkJyebNQ6dToddu3YhIyPDLPUdO3YMnp6eaNasmbGsa9eukMlkOHHixBOvXbVqFXx9fVG/fn1MnDgx355nj/rpp5/g7OyMgQMHmiVuIiKSVnZ2Nvbu3Yt9+/YZp4s4Ojqic+fO6NSpExwdHS1yX0dHR7i6uiI7Oxupqak4deoUrl27ZpF7EVkjq/m45erVqxg7dmyhx729vUs8hI/I1mi1Wuh0OrPXu23btiL3gD4kiiIuXbqEsLAws8ai0Whw/vx5s9SbkJCQb3isQqGAt7c3EhISCr1uyJAhqFatGipWrIizZ8/igw8+QExMDNatW1fg+UuXLsWQIUPg5ORU6piJiEhaN27cwNGjR5GTk2MsCw4ORlhYmMV/z/v5+SEoKAjnzp0zTj87cOAAlEqlcdsXIntmNUmop6fnExciunjxIgIDA8swIiJpaLVaREVFPXVRnZI4c+YMBEEoViIqCALS0tIsEk9MTAxCQ0OhVCoLPP74ptfZ2dk4fvw4xowZYyy7ePFiie//6JzRBg0aoEKFCujSpQuuXbuGGjVqmJx77NgxXLp0CStXrizx/YiISHo5OTk4evQobty4YSxTqVRo3bo1qlevbtF7y+Vy1KpVC35+fgCAZs2aQaPRICYmBqIoYs+ePYiIiODfvGT3rCYJ7d69OxYvXoy33nor37ELFy5gyZIleOWVVySIjKhs6XQ6ZGZmQqlUmmURhEd5enqWqCfU0dHR7IskiKIIQRCg0+kKTULfeOMNvPDCC8bnQ4cOxYABA9C/f39jWcWKFREYGJhvtVqdTofk5ORivZG3bNkSQN7IjMeT0B9++AGNGzdGaGhokesjIiLrEhsbiyNHjpj0fgYFBaF169YW7/10dHRESEgIXFxcjGWCIKB169bQarW4ceMG9Ho9du/eje7du8PHx8ei8RBJyWqS0GnTpqFly5aoX78+evXqBUEQ8OOPP2LZsmVYu3YtKlSogMmTJ0sdJlGZUalUZp2LcufOnRL1ZgqCgDp16lhkpb6H+6cVxtvbG97e3sbnTk5O8Pf3R82aNU3OCwsLM86peZgk7t27FwaDwZhYFkV0dDQAoEKFCiblmZmZ+O233zBjxowi10VERNbj4RaA169fN5apVCqEhYWhevXqFt8KxcnJCQ0bNizwQ1eZTIYOHTpAq9Xizp070Gq12LlzJ3r06AEPDw+LxkUkFatZmKhixYo4deoUIiIisGbNGoiiiJUrV2Lz5s0YPHgwjh8/Dl9fX6nDJLI5ycnJ2LlzJ3bs2AG9Xo9q1aoV+c1WJpMhJCTkqcliSQQHBxfaA1pc9erVQ0REBEaOHImoqCgcOXIEY8aMwYsvvoiKFSsCyEvC69ati6ioKADAtWvX8Pnnn+PUqVOIjY3Fpk2bEBkZifbt26Nhw4Ym9a9ZswY6nQ7Dhg0zS7xERFR24uPjsWXLFpMEtGrVqujfvz9q1Khh8QRUJpOhXr16T3zPk8vl6NKli3F9g+zsbOzYsSPfPqJE9sIqklCNRoNNmzYhISEBP/zwA5KTk5GYmIj4+HikpKRg2bJl3JOPqJiysrJw6NAhbNiwAbdv3zaWd+nSBTKZrMhvuuHh4WaNSy6XIyQkxOwfKq1atQp169ZFly5d0L17d7Rt2xaLFy82Hs/NzUVMTIxx9VulUok///wT4eHhqFu3Lt59910MGDAAmzdvzlf30qVL0b9/f3h6epo1ZiIishy1Wo1ffvkFf/31l3H4rVKpRIcOHdC1a1c4OzuXSRxBQUEmQ3AL4+DggPDwcOMHv5mZmdixY4fJ0GEie2EVw3GVSiWef/55zJ0719gD8XDCthTmz5+Pr7/+GgkJCWjUqBHmzZuHFi1aFHjuihUr8PLLL5uUqVQq/sIgyWi1Wpw7dw7nzp0z2YrFxcUFzZo1Q40aNVC3bl1MnDgRAArcruXh0NsRI0agatWqZovN3d0dtWvXhpOTU4leI/v37y/0mLe3N1avXl3o8aCgIJP5sFWqVMGBAweKdN+jR48WOUYiIpLeuXPnsHr1aqSlpRnLqlSpgjZt2hQpITQXZ2dn44icolCpVIiIiMCWLVuQkZGB1NRU7Nq1CxEREWYbPURkDawiCRUEAbVq1Xri6rhlZc2aNZgwYQIWLlyIli1bYs6cOejWrRtiYmIK7Y11d3dHTEyM8bmlh3UQFcRgMCAmJganT582SfCUSiUaNWqEkJAQ4ybYnTt3xrJly7B06VIcOnTIJDkTBAH16tVDeHi42RJQQRBQrVo1VK5cma8PIiKyGLVajT/++APHjx83likUCjRv3hz16tUr8/egihUrFvuezs7OiIiIwNatW6FWq5GUlIQ9e/YgPDwccrncQpESlS2rSEIB4KOPPsKECRPw/PPPo06dOpLFMWvWLIwcOdLYu7lw4UJs3boVy5Ytw4cffljgNYIgcCltkowoioiLi8Nff/1l8onvwzkojRs3LnCBo2eeeQazZs1CQkICBg8ejIyMDDg5OeF///ufWeeAuri4oHbt2nB1dTVbnURERI+7cOECVq1ahdTUVGNZ3bp1UaVKFfj7+0vyIWhJR/a5u7ujW7du2Lp1K7RaLe7evYv9+/ejU6dOFlkokKisWU0Sevz4cfj4+KB+/fro2LEjgoKC8i2VLQgC5s6da7EYtFotTp06ZRymCOT9Id+1a1ccO3as0OsyMzNRrVo1GAwGNG3aFNOnT8czzzxT6PkajQYajcbkeqKSSEpKwokTJ5CYmGhSHhwcjGbNmsHd3f2pdQQGBsLJyQkZGRlQKpVmTUCrVKmCqlWr8g2TiIgsJjs7G2vXrjWZOuHo6Ijnn38eDRs2xKFDhySJSyaTGUcglYS3tzfCw8OxY8cO6HQ64/Yybdu25agisnlWk4R+9913xu/37NlT4DmWTkLv378PvV6PgIAAk/KAgABcvny5wGvq1KmDZcuWoWHDhkhLS8M333yD1q1b48KFC6hcuXKB18yYMQOffvqp2eOn8iM9PR0nT5402WgbyPu/2qJFC8kX8nJxcUGtWrXg5uYmaRxERGTfLl68iJ9//tmk97NevXoYOnQovL29jYvRScEciWJAQAC6dOmC3bt3w2Aw4J9//oFSqUSLFi2YiJJNs5ok1GAwSB1CiYSFhSEsLMz4vHXr1qhXrx4WLVqEzz//vMBrJk6ciAkTJhifR0dHo0OHDhaPlWyfRqPB33//jUuXLpm8Ztzd3dG8efNibb9iKVWrVkWVKlXY+0lERBaTnZ2NdevW4ciRI8YyR0dHDBgwAK1bt5b0vdDHxwd6vR4+Pj5mqa9y5cro2LEj9u7dCwA4f/48HB0d0ahRI7PUTyQFq0lCrYGvry/kcnm+oY2JiYlFnvPp4OCAJk2a4OrVq4Weo1KpoFKpjM85V46eRqfT4dKlS4iOjoZWqzWWOzo6okmTJqhbt67kSZ9KpULdunWLNASYiIiopC5fvoyff/4ZycnJxrI6depg2LBhZkv8SmPlypW4ffu2WdcLCQ4ORps2bYxJ98mTJ43vu0S2yOqS0OPHj2Pfvn24d+8e3nrrLdSqVQtqtRqXL1+2+OImSqUSoaGh2LNnD/r27Qsgr4d2z549GDNmTJHq0Ov1OHfuHLp3726xOKn8EEUR169fx8mTJ03mDsvlctSvXx8NGza0iiXb3dzcEBISYhWxEBGRfcrJycH69etN5niqVCr069cP7dq1k3wk0KPkcnmp5oMWpG7dutBoNDh58iQA4MiRI1AqlahevbpZ70NUFqwmCdVqtXjxxRexceNGiKIIQRDQq1cv1KpVCzKZDOHh4Rg/fjwmTZpk0TgmTJiAESNGoFmzZmjRogXmzJmDrKws42q5kZGRqFSpEmbMmAEA+Oyzz9CqVSvUrFkTqamp+Prrr3Hz5k289tprFo2T7F9iYiKio6PzbV1Uq1YtNG3a1Gp60D08PPDMM89w2XgiIrKYmJgY/Pzzz3jw4IGxrHbt2hg2bBh8fX0ljKxgDg4OFqm3UaNG0Gg0OHfuHADgwIEDUCqVVvlvQPQkVpOEfvLJJ9iyZQu+//57dOrUyWSblocrnG3cuNHiSeigQYOQlJSEyZMnIyEhAY0bN8aOHTuMixXFxcWZDHtMSUnByJEjkZCQAC8vL4SGhuLo0aMICQmxaJxkvxISEgpc8bZixYpo0aKFVQw1esjHxwd16tRhAkpERBah0WiwYcMGHDhwwFimVCqNvZ9ST0UpjKWSUABo3rw5NBoN/vnnHxgMBvz555/o0qVLgduxEVkrq0lCf/nlF7z55pt4/fXXTT7leqhevXr4/fffyySWMWPGFDr8dv/+/SbPZ8+ejdmzZ5dBVGTv0tLSsHXrVhw5cgSiKBrLvby80KJFi0JXW5ZKUFAQKleubFXDn4iIyH5cuXIFK1euNBkRVLNmTURGRlp9z5+Hh4fF6hYEAW3atIFWq0VsbCz0ej32799vslAmkbWzmiT03r17aNCgQaHH5XK5pMtsE1mKRqPBnj17sHv3bpP9Y52cnNCsWTPUrFnTqj7pdXR0RJ06dbgAERERWYRWq8XGjRuxb98+Y5mDgwP69u2LDh06WNV7olRkMhk6duyIXbt24e7du9BqtTh+/DjCwsJQtWpVqcMjeiqrSUKrVKlS6F6cQN7k65o1a5ZhRESWpdfrcezYMWzZsgXp6enGcpVKheDgYDRq1Mhq5n0+5O3tjTp16ph9sQUiKhqDwQBBEDgCgezW1atXsXLlSiQlJRnLatSogeHDh0u+B7a1kcvl6Nq1K7Zv346kpCRoNBosXrwY7733Hjw9PaUOj+iJrOYvySFDhmDWrFkYMGAAateuDeC/TX6XLFmC3377Df/3f/8nZYhEZiGKIs6fP48NGzYgPj7eWC6TydC2bVt06tQJf//9t9UleoGBgahZsyb/+CWSkF6vh1wu5+uQ7I5Wq8XmzZuxd+9e45QUBwcH9OnTBx07dmTvZyEcHBzQrVs3bN68GWlpaUhOTsa8efMwYcIEuLi4SB0eUaGs5q/cSZMm4fjx42jfvj3q1asHQRAwfvx4JCcn4/bt2+jevTvGjx8vdZhEpRIXF4d169bhn3/+MSlv1KgR+vbti4CAAKscdu7n58cElMhK8HVI9ub69ev46aefcO/ePWNZcHAwIiMjjQtDUuFUKhU6d+6MnTt3Qq1WIz4+HgsWLMDbb7/NxYrIallNEqpUKrFjxw6sWrUKf/zxB/R6PTQaDRo2bIhp06Zh+PDhfOMlm/XgwQNs3rwZUVFRJuVBQUHo37+/VQ81d3JyQq1atfj6IyIis8rNzcXmzZuxZ88eY++nQqFAr1690KVLF/Z+FoOzszNatWqFv/76CxkZGbhx4wYWL16MN99806Ir9RKVlGRJ6IQJEzB8+HA0adIEQF4PkZ+fH4YNG4Zhw4ZJFRaRWanVauzYsQP79++HTqczlvv6+qJPnz5o2rSp1Sd3tWvX5hYsRFZEr9db3XB9ouK6ceMGfvrpJ5PtyIKCghAZGYnAwEAJI7Ndrq6uGDlyJL7//ntkZ2fj8uXLWLFiBV599VUm9GR1JHsXmzNnDpo1a2ZMQoODg7Fy5UoMGTJEqpCIzEan0+HgwYPYvn07srKyjOUuLi547rnn0K5dO5v4ZLJChQpcBZfIyuTm5jIJJZuVm5uLrVu3Yvfu3Sa9nz179kSXLl34oWcpVaxYEW+99Ra+/fZb5Obm4u+//8Yvv/yCIUOGWP2H3lS+SPYuFhAQgOvXrxufP7ovIpGtEkURf//9NzZu3Giysp9CoUDHjh0REREBZ2dnCSMsuoer9BKRddHr9VKHQFQisbGxWLlypcmifFWrVkVkZCQqVqwoYWT2pUaNGnj99dexcOFC6PV6HDlyBC4uLujbt6/UoREZSZaE9ujRA5999hl27dplXEZ65syZ+PXXXwu9RhAEbNy4sYwiJCqea9euYd26dbhx44ZJefPmzdG7d2/4+PhIFFnJcBgukXViEkq2Jjc3F9u3b8euXbtgMBgA5G0v0qNHDzz77LN8r7GAZ555BiNGjMDy5cshiiJ27doFZ2dnhIeHSx0aEQAJk9C5c+fC398f+/btw4ULFyAIAm7duoXk5ORCr+EwArJGiYmJ2LBhA86cOWNSXrt2bfTv398mN42uUKEC9xgjslJarVbqEIiKLC4uDj/99BPu3r1rLKtSpQoiIyNRqVIlCSOzf82aNYNarTZ28GzYsAHOzs5o27atxJERSZiEuri4YPr06cbnMpkMc+bM4ZxQshkZGRnYtm0bDh06ZPxkF8hL4Pr27Yv69evb5AcnSqWSw3CJrFh6ejr8/PykDoPoiXQ6HXbs2IEdO3YY3yNlMhm6d++Obt26sfezjLRv3x5qtRqbNm0CAPzyyy9wdnZG06ZNJY6MyjvJktD+/ftj/PjxaNeuHQBg3759CAkJkSocoiLTarXYu3cvdu3ahZycHGO5u7s7evbsibCwMJt+c61atapNx09k7+7fv48aNWpIHQZRoW7fvo2ffvoJt2/fNpZVrlwZkZGRqFy5soSRlU/dunVDVlaWcSuc5cuXw9HRkX93k6QkS0I3btyIAQMGGJ937tyZq+OSVTMYDDhx4gQ2b96M1NRUY7lKpULXrl3RpUsXm98UWhAEbgxOZOUe3dKCyJro9Xrs3LkT27ZtM+n9jIiIQEREBFd1loggCOjfvz/UajWOHTsGvV6PxYsXY+zYsahevbrU4VE5Jdlvg0qVKuHvv//G0KFDAeStKmqLQxepfLh48SLWr1+PO3fuGMsEQUCbNm3Qo0cPeHh4SBhd6fn4+CA3NxdeXl7cS4zIyj36IRiRtbhz5w5++ukn3Lp1y1hWsWJFjBgxAlWqVJEwMgLy/mYZMmQI1Go1zpw5A61WiwULFmDChAlcmZgkIVkS+uKLL+Kbb77Bb7/9ZlwA5cMPP8SMGTMKvUYQhHyLvxBZ0u3bt7F+/XpcunTJpLx+/fro27ev3fziXrlyJWJiYuDv7y91KET0FDk5OdBqtVAqlVKHQgS9Xo9du3Zh27ZtxpWbZTIZunXrhueee469n1ZELpfjlVdewYIFCxATEwO1Wo158+bh3Xffha+vr9ThUTlTrN8MwcHBxe6tFAQB165dy1c+Y8YM1KxZE/v27cO9e/cgCAJcXFxsbhsLsk8pKSnYvHkzTpw4YbKHbdWqVdGvXz/UqVNHwugsx83NTeoQiKgIUlNT+aERSe7u3bv46aefEBcXZyyrUKECIiMjUa1aNQkjo8I4ODhg1KhRmDt3Lm7evIm0tDR8++23ePfdd21+VBfZlmIloR06dMiXhJ48eRIXLlxASEiI8Q/zmJgYXLx4EfXr10doaGiBdcnlcrz++ut4/fXXAeR9avbxxx9zTihJKjs7G7t27cLevXuRm5trLPf29kafPn0QGhpqt8NVVSoVP7EmshGJiYlMQkkyer0ef/75J7Zu3QqdTgcgr9MhPDwc3bt3h4ODg8QR0pM4Ojpi9OjRmD17NuLj43H//n3MmzcPEyZMgLOzs9ThUTlRrL84V6xYYfJ8w4YN2LBhA3bv3o0uXbqYHNu9ezdeeOEFfP7550Wq+8aNG1xyniSj1+tx+PBhbN26FZmZmcZyJycnREREoGPHjnb/pqpSqaQOgYiK6Pr162jQoIHUYVA5FB8fj5UrVyI2NtZYFhgYiMjISAQFBUkWFxWPq6sr3n77bXzzzTdITk7G3bt3MX/+fIwdO5Z/D1CZKFW3x+TJk/H222/nS0AB4Nlnn8WYMWPw8ccfo0+fPk+ti8M2SAqiKOLMmTPYsGED7t27ZyyXy+Xo0KEDIiIi4OrqKmGEZcfek2wie5KYmIhbt25xwRcqMwaDAXv27MHmzZtNej+7du2Knj178j3EBnl6emLs2LGYOXMmMjIycOPGDSxZsgRvvPEGR0aRxZXqf9iVK1eeOIfTx8enwPmgQN7wW5lMBrVaDaVSCZlM9tT5poIgGH/xEZXWjRs3sG7dunz/R0NDQ9GnT59yN0nfXocZE9mrgwcPom/fvnBxcZE6FLJziYmJ+Omnn3Djxg1jWUBAACIjIxEcHCxhZFRa/v7+GDNmDGbPno2cnBxcvHgRK1aswCuvvMK/C8iiSpWE1qhRA8uXL8err76ar7coIyMDy5YtK3T/ocmTJ0MQBOMnLQ+fE1laUlISNm7ciNOnT5uU16hRA/379y+3b6h8/RHZlqysLGzbtg29evWy+T2KyToZDAbs27cPmzZtMq6TIAgCOnfujF69enGFZjtRpUoVvPXWW5g3bx5yc3Nx+vRpODs7Y/DgwfzbgCymVEnotGnTMHDgQNStWxcvvfQSatasCSCvh/THH39EYmIifv/99wKvnTp16hOfE5lbZmYmtm/fjoMHDxqXkQfyPgXs27cvGjVqVK5/2fITTyLbk5KSgm3btqFHjx6cx0Vmde/ePaxcudJktJCfnx8iIyNRo0YNCSMjS6hZsyZGjhyJhQsXwmAw4PDhw3BxcSnSlDqikihVEtq3b19s27YNH3zwAaZPn25yrHHjxli6dCm6detWqgCJSis3Nxf79u3Dzp07kZ2dbSx3dXVFjx490LZtW8jlcgkjtA7lOQEnsmX379/Htm3b8Nxzz7FHlErNYDBg//792Lhxo0nvZ6dOndC7d2/2ftqx+vXrY8SIEVixYgVEUcTOnTvh7OyMZ599VurQyA6VetZxeHg4wsPDkZCQgJs3bwLIW2QoMDCwyHVoNBr8/PPP2LVrF65du4aMjAy4ubmhZs2aiIiIwJAhQ/hLj4rNYDDg5MmT2LRpE5KTk43lDg4O6NKlC5599lk4OTlJGKF1YU8okXVr1qwZEhISIJfLMWnSJJNjSUlJ2LRpEyIiIuDu7i5RhGTrkpKSsHLlSly9etVY5ufnh+HDhxtHu5F9a968OdRqNdasWQMAWL9+PVxcXNC6dWuJIyN7Y7alrwIDA4uVeD507tw59OnTBzdv3oQoivDw8ICrqyvu3buH06dP4/fff8cXX3yBTZs2oV69euYKl+xcTEwM1q1bh1u3bhnLBEFAq1at0KtXL3h6ekoXnJVibzCRdUtISMCdO3cK/f2VmpqKjRs3Ijw8HAEBAWUbHNk0g8GAgwcPYsOGDdBqtcbyjh07ok+fPhzqXc506NABarUamzdvBgCsWrUKTk5OaNKkicSRkT0pdddHXFwc3njjDdSpUwfe3t44ePAggLzhQWPHjsXff/9d6LWZmZno3bs3EhMT8cUXX+DWrVtISUkx+Tpt2jTcvXsXvXr1QlZWVmnDJTt39+5dLFiwAHPnzjVJQENCQjBx4kQMHz6cCWghmIQS2b7s7Gxs3rwZZ86cgcFgkDocsgH379/H3Llz8dtvvxkTUB8fH4wbNw4vvPACE9ByKiIiAp07dwaQt53d8uXLcfnyZYmjIntSqp7Qixcvol27djAYDGjZsiWuXr1q3ELF19cXhw8fRlZWFpYuXVrg9cuXL0dcXBz27NmDjh075jteqVIlTJw4ES1btsSzzz6LFStWYPTo0aUJmexUWloatmzZgqNHj0IURWN55cqV0a9fP/aiFwGH4xLZB4PBgBMnTuDatWto06YNe0WpQA8Xn1m/fj00Go2xvH379ujbty/nF5dzgiCgf//+UKvVOH78OHQ6HRYtWoSxY8eW210EyLxKlYS+//778PT0xPHjxyEIAvz9/U2O9+jRwzimvCBbt25FeHh4gQnoozp37oxnn30WmzdvZhJKJnJycvDnn3/izz//NBlC5Onpid69e6NFixZMroqICxMR2Zf79+9j48aNCA4ORrNmzeDl5SV1SGQlHjx4gJ9//hkxMTHGMm9vbwwbNgx169aVMDKyJjKZDEOHDoVarcbZs2eh0WiwYMECjB8/HhUrVpQ6PLJxpUpCDx48iMmTJ8PPzw8PHjzId7xq1aq4c+dOodefO3cOY8eOLdK9OnfujLlz55Y4VrIver0ex44dw5YtW5Cenm4sd3R0RHh4ODp37szFrIiIANy4cQM3btxAtWrV0LBhQwQGBvJDp3JKFEUcOXIEa9euNen9bNu2Lfr168fF+igfuVyOV199FfPnz8c///yDrKwszJs3D++99x58fHykDo9sWKmSUIPBAGdn50KPJyUlPXEuQXJycpEXMwoICDBZ4ZTKJ1EUcf78eaxfvx4JCQnGcplMhnbt2qF79+5wc3OTMELbxT9KiezbzZs3cfPmTQQEBKBly5YlWkyQbFdycjJ+/vlnk3l9Xl5eGDp0KEJCQiSMjKydg4MDRo0ahblz5yIuLg5paWn49ttv8e6773I1biqxUiWhTZs2xdatW/HWW2/lO6bT6fDrr7+iVatWhV6v0Wjg4OBQpHspFAqT4ZZU/sTFxWHt2rW4cuWKSXnjxo3Rp08fznsqJQ5bJiofEhMTjSvOt2rVqsjvw2SbRFHE0aNHsXbtWuTk5BjL27Rpg/79+7P3k4rEyckJo0ePxqxZs5CYmIikpCR89913GDdu3BM7pIgKU6okdOLEiejZsyfefPNNvPjiiwDy3tz+/PNPTJ8+HZcuXcJ33333xDpiY2Nx+vTpp97rxo0bpQmVbNiDBw+wadMm/PXXXyblwcHB6N+/P2rUqCFRZEREZSMuLs64QrxGo0FycjK8vb1LVeelS5dw584dtG3bFpUrVzZHmGRlUlJSsGrVKly8eNFY5unpiaFDh+KZZ56RMDKyRW5ubnj77bcxc+ZMpKSk4Pbt2/j+++/x9ttvcwoUFZsgPrqUaAmsXLkS77zzDtLS0iCKIgRBgCiKcHd3x/fff4/BgwcXeq1MJivyEMCHdev1+tKEa5VOnz6N0NBQnDp1Ck2bNpU6HKuhVquxY8cO7N+/37jqMpC3cXafPn3QpEkTuxxCqlarcfDgQbi5udn16oQ5OTnIyMhA+/bt+SkqUSGioqLw+eefY+vWrSYrfwuCgAYNGqBHjx4ICgoq9X2CgoLQqlUriw+tS05Oxttvv43NmzdDJpNhwIABmDt3LlxdXQu9ZvHixVi9ejVOnz6NjIwMpKSk5NtqqyT12jNRFHH8+HH88ccfyM7ONpa3atUKAwcOLFe/c/mean6JiYmYOXMmMjMzAQDPPPMMRo0aBYWiVH1bVM6U+n/L8OHD0b9/f+zevRtXrlyBwWBAjRo10K1bt6fOzVu+fHlpb092KDc3FwcPHsT27duhVquN5S4uLujevTvatWvHX3REZPfWrVuHQYMGQRRFPP558cP58efPn8fIkSNL/QFmbGws4uLiEBISgkaNGsHFxaXEdXXs2BEvvfQSXnrppXzHhg4divj4eOzevRu5ubl4+eWX8frrr2P16tWF1qdWqxEREYGIiAhMnDixwHNKUq+9Sk1NxerVq3H+/HljmYeHB4YMGYIGDRpIGBnZi4CAAIwZMwZz5sxBTk4OLly4gJ9++gkvvfQSp/ZQkZX4L3m1Wo0qVargww8/xP/+9z/07du32HWMGDGipLcnOySKIk6dOoWNGzearLasUCjQuXNnhIeHl6tPb4mo/IqKisKgQYOg1+vzJaAPGQwGAMCSJUvwwQcflLpH1GAw4Pz587h48SJq1aqFxo0bw8PDo1R1PurSpUvYsWMH/vrrLzRr1gwAMG/ePHTv3h3ffPNNoVs+jBs3DgCwf/9+s9Zrb0RRRFRUFH777TeT3s+WLVvi+eef5/snmVXVqlXxxhtvYP78+cjNzcXJkyfh7OyMQYMG2eUoNTK/Eiehzs7OUCgUpfq0lOihq1evYt26dYiNjTUpb9GiBXr37l3quU9ERLZk2rRpBfaAFmbbtm0FLhJYEgaDATExMbhy5QqaNWuGRo0ameWPymPHjsHT09OYKAJA165dIZPJcOLECfTr18+q6rUlaWlp+OWXX3D27Fljmbu7O4YMGYKGDRtKGBnZs9q1a+PVV1/F4sWLYTAYcPDgQbi4uKBXr15Sh0Y2oFRjGgcMGIA//vgDb775Jj/1oBJJTEzE+vXrTd44AaBOnTro378/qlSpIlFkRERlz2Aw4PLly9iyZUuRE1CDwYCzZ8+aZbGix+uNioqCXC43yzDOhIQE+Pv7m5Qp/r+9+w6L4tr/B/4e+tJFuhFBjQpiCzbUiIqFIFawoEaNVyWWqNFck9iCQeXqtes1RmNswcRogrFEEHtXFI2xYaPYS6Qjdef3hz/26wrqAsvOsrxfz8Mje3b2zGeYPbt+5pw5x8AANjY2SktuaUu9lYEoijh37hx+/fVXxcRVANCiRQv069evyt4TS5rTuHFjfPzxx9i4cSMAYO/evTA1NYWvr6/EkZG2K1cSOnDgQIwdOxYdO3bEqFGj4OrqWuJU35xsh16XkZGB3bt348SJE4ohZQDg7OyMPn36wMPDgxc2iEir5eXlKU2a9jb5+fnIyMhAenq60r+v/56RkYGrV6+qnIAWEUUR165dg7e3d1kO5a1OnToFZ2fnNy5MP2/ePMybN0/x+MWLFzh9+jTGjx+vKHt1dlZSj/T0dPz888/466+/FGUWFhYIDg5G06ZNpQuMqpxWrVohOzsb27ZtAwD89ttvMDU1rZDPI9Id5UpCO3TooPj92LFjxZ7X5RltqWzy8vJw4MAB7Nu3D7m5uYpyKysrBAQEwNvbmze1E5HWy8vLw5kzZ5CSkoKcnBzk5uYW+/fV3/Pz80tVd9FM86oSBAFpaWmK2SrV7fz58+jQoUOJyzB8+umn6N+/v+Lx4MGDERgYiL59+yrKnJ2d4ejoiCdPnii9tqCgAM+fP4ejo2OZY6uoerXZuXPnsHXrVqXez+bNm6N///7s/SRJdOzYEdnZ2dizZw8A4KeffoJMJuMFEXqjciWhnN2WVCWXy3H69Gns2rULaWlpinJjY2N06dIFvr6+MDY2ljBCIqKXCgoKkJ6ervhJS0tT+jc9PR2pqalIT09XGslRHoIgwMTEBCYmJrC3ty9TT6iJiUmFXMSztraGXC5HQUFBiUmojY2N0jBgmUwGe3t71K1bV2k7b29vpKam4vz58/Dy8gIAHDx4EHK5HK1atSpzfBVVrzbKyMjAL7/8ggsXLijKzM3NMXDgQI46I8n5+/sjKysLhw8fhiiK+PHHHzFu3DjUr19f6tBIC5UrCeXstvQuoiji6tWriIyMxIMHDxTlenp6aNu2Lbp3717h69IREYmiiJycnGIJ5auJZdHvr/YulZeBgQFkMhlMTU3f+u+rCeSjR4+wY8eOUveE1q9fX+1JqL6+Ptzc3JRGrpSVu7s7/Pz8MGrUKKxevRr5+fkYP348Bg4cqJjB9v79+/D19cWmTZvQsmVLAC//Ho8ePcKtW7cAAH///TcsLCzg4uICGxsblerVBXFxcfjll1+UerubNWuGgQMHvnNJPCJNEAQBQUFByM7OxtmzZ1FQUIDVq1dj4sSJalnPmHSL1i22ePXqVdy5cwcpKSklfgEPHTpUgqioLO7evYvIyEhcv35dqbxRo0bo3bs3nJycJIqMiHRFYWGh4r7KkhLKV8tKMyT2bQRBgJmZGfT09GBmZgZzc3PIZLISk8uSeg7fxdHRER9++CFOnDih0u0senp6cHd3R7Vq1cpyOG8kCAIaNGgAIyMjtSShABAREYHx48fD19cXenp6CAwMxPLlyxXP5+fnIz4+XmmN6NWrV2P27NmKx+3btwfwcjRW0Vqk76q3MsvMzMTWrVtx/vx5RZmZmRkGDhyo6Pkl0hZ6enr4+OOP8eLFC/z999/Izc3F//73P0yePJn/7yMlgliKS60jRoyAIAhYs2YN9PX1MWLEiHfvQBCwbt26d253+/ZtDBkyBGfPnn3j1V9dvb80Li4OXl5eOH/+vNYPp0lOTsaBAweQkZEBCwsL+Pr6wsXFRWmb58+fY9euXcXOpYuLC/r27Yt69eppOuxKJTs7G0ePHoWFhQVMTEykDqfC5OTkICMjA+3bt+f6dWqmSjvVdjk5OW9NKIseZ2Zmlnro6psYGBjAysoKlpaWsLS0VPz++r8WFhbIzc2t0HZ65coVjBgxAnK5/J3Hp6enh4kTJ6r9HLu7u8PW1pZttQK9q61evHgRP//8MzIyMhRlTZo0QXBwMEcRqYjfqdLIy8vDypUrFSMYrK2tMWXKlDdOcEZVT6l6Qg8ePAg9PT3I5XLo6+vj4MGD75zBVNUZTkNCQvD3339j6dKl+PDDD9V+RZfK5+zZswgLC8OePXsgiqLifSAIAgICAjBz5kx4enoiOjoahw4dUupxqF69Onr27AkvLy9OOkRUgVRppy1atJAsPrlcjszMzHcOh01PT1dbzxvwstfo1STyTb/LZDKtmZW7YcOGCA8Px9dffw0AJV6ALfo8HTZsmFoTUAMDA7z//vuwtbVVW52k7F1tdcqUKbhz5w5iY2MVrzE1NcWAAQPQvHlzrXmfEr2JkZERxowZg6VLl+Lu3btITU3FihUrMGXKFA4fJwCl7AmtSDKZDNOmTcPMmTOlDkXjtL0n9Pfff8eAAQMgimKJ/xHS19cHAAQEBCjdf2NqaoqPPvoI7du3h6Ghocbirex41ZbKQpV2KggCtm7dqjRrqTrk5eWpNBw2IyNDbRP56OvrF0smix6/WmZhYVEhnz+aaqdXrlzBunXrcOzYMaUeUUEQ4OHhga5du6otAdXT04OTkxPee+89pWHEbKvqpUpbFUURXbp0Qe3atQG8XIsxODgYVlZWmg630uN3qrQyMjKwaNEixQzW7733Hj7//PMSl3SkqkVr7gm1tbXVmg/X//3vf/jvf/+LR48eoUmTJlixYoVigoSSbNu2DTNnzkRiYiLef/99zJ8/H/7+/hqMuOKcPXsWAwYMQGFh4RuHhBV9ie7cuRN9+/aFs7MzfHx84OfnBzMzM02GS1QlqdpOBUHAgAEDcPLkyXf2iIqiiKysrHf2WqalpSEnJ0dtxyKTyUocAvv672ZmZlWiN6hhw4ZYvHgxHj16hODgYGRkZEAmk+Hf//632kYMGRgYwNnZGU5OTmW6h5VUV5rv1H379iE4OBgTJkxAy5Ytq8T7nXSPhYUFJkyYgIULFyI1NRX37t3Dd999h/Hjx/PzporTmiT0008/xU8//YRx48YpetaksHXrVkyePBmrV69Gq1atsHTpUnTr1g3x8fGwt7cvtv3JkycRHByM8PBwBAQEYMuWLejduzfi4uLg6ekpwRGo15w5cyCKosr3XN2+fRurV6/mMC4iDVK1nRZtM2vWLKxatarEeyyL/s3IyFDbPfh6enrFeitLuu/SwsKC/yl5A0dHR8hkMmRkZMDIyEgtCaihoSGcnZ3h7OwMAwOt+e+ATivNd6ogCEhJSdG5ZWao6rGxscGECROwePFiZGZm4tatW/jhhx8QEhIi6f/5SVrl/tbZu3cvFi9ejLi4OKSlpZX4warKf2Tq1auHwsJCNGnSBCNGjEDNmjVLfGOqexjZ6xYvXoxRo0bhk08+AfByVr49e/bgxx9/xFdffVVs+2XLlsHPzw///ve/AQBhYWGIiYnBypUrsXr16gqNtaIlJydj9+7dKiegoijir7/+UprVkIgqVmnbaWFhIaKiojBr1qxy35djYmJSYnL5epJZNJMsaQczMzM4OzvD3t6e50WDSttW5XI5oqKikJycXOkmFiN6naOjI8aPH4+lS5ciJycHly9fxqZNmzBs2DB+DlVR5UpCf/vtN/Tv3x8NGzbEwIED8d1332HQoEEQRRF//PEH3n//ffTu3VulugYMGKD4/Ysvvihxm4qeHTcvLw/nz59XTAQBvLyC37lzZ5w6darE15w6dQqTJ09WKuvWrRt27Njxxv3k5uYqTbpRtOZXQUGB2pYQUIfo6OgyLZi+b98+riFbDvn5+SgoKEBWVhYKCgqkDqfC5ObmKt7z2vS+r2zK0k6Bl0solbSAuCAIsLCwUOqdfDXRfDXJNDY2VmlfhYWFOjezuRTttOh+WlEUy9RmzM3N4ezsDCsrKwiCoPIFQ7ZV9eB3qjT4nao9nJyc8K9//QurVq1CQUEBTp8+DSMjI/Tr16/Uw83z8vJ0+ny+ysDAQKtGCalrnoVyTUzUvHlzGBoa4vjx40hJSYG9vT3279+PTp06ITExEa1bt8aCBQtUWtvzyJEjKu3Tx8enrOG+04MHD1CjRg2cPHkS3t7eivKpU6fiyJEjOHPmTLHXGBkZYePGjQgODlaUrVq1CrNnz8bjx49L3E9oaKjSmmdERERERETaTm3LopXnxVevXkV4eDj09fUV95MUXX1xdXXF2LFjMX/+fJWS0IpMLrXN119/rdR7evHiRfj4+ODMmTNo1qyZhJEp27BhA0aPHl3q161du5ZXbcupqlzh07are5UR26l0NN1O3d3d8fDhQ1hZWWHu3Lnv3N7R0RGNGjWCg4NDuffNtlp+bKvS4Xeq9jlz5gw2b96seBwUFIQOHTqo9Nrs7GwcO3YMRkZGKo/Iqaxyc3ORl5eHDz/8UKtmPVaHciWhpqamije7tbU1jI2N8fDhQ8XzDg4OSEhIKHW9V69eRVJSEgCgVq1a8PDwKE+YKrO1tYW+vn6xHszHjx/D0dGxxNc4OjqWansAMDY2Vmo05ubmAF5+eGjTUibdunWDIAiluuIhCAK6du2qVcdRGfHvR6piO5WOpv9+RfdNCYLw1n3b2Nigbdu2cHJy0lRopAK2Venw76d92rVrh7y8PGzfvh0AEBkZCUtLS5Um4jI0NISBgQHMzMx0etkd4GVuIJfLYWhoqHPv43LdCVy/fn1cvXpV8bhp06bYvHkzCgoKkJOTgy1btpTqZvo//vgDderUQaNGjRAQEICAgAA0atQIdevWxc6dO8sTqkqMjIzg5eWFAwcOKMrkcjkOHDigNDz3Vd7e3krbA0BMTMwbt69MXFxcEBAQoPLMZfr6+ujRowcnUCDSILZTelWTJk3Qp08fJqBaiG2VSFmnTp3w0UcfKR5v3rwZly5dkjAi0qRyJaF9+/bFzp07FZPsTJ8+HYcPH4a1tTXs7Oxw7NixEmeULcmff/6JwMBAAMC8efMQGRmJyMhIzJs3D6Ioom/fvoiKiipPuCqZPHky1q5di40bN+LatWsYM2YMsrKyFLPlDh06VGniookTJyIqKgqLFi3C9evXERoainPnzmH8+PEVHqsmzJw5E4IgvPOG8aJtZsyYoaHIiKgI2ynp6+ujc+fOaNWqFZc80GJsq0TKAgICFLfkyeVy/PDDD7hx44bEUZEmlCkJzcnJwdatW5Gfn48ZM2bg+fPnAF6+kQ4fPoxRo0YhJCQEBw4cwPDhw1WqMywsDI0bN8alS5fw5ZdfomfPnujZsye+/PJLXLp0CY0aNdLIZD4DBgzAwoULMWvWLDRt2hQXL15EVFSU4p6a5ORkpSHHbdq0wZYtW7BmzRo0adIE27dvx44dO3RijVAAaNGiBbZu3Qp9ff03/sem6Llff/0VLVq00HCERMR2WrUJgoDOnTujdu3aUodC78C2SqRMEAT069dP8V4vKCjA6tWrkZycLHFkVNFKPTvukydP0KZNGyQkJEAURQiCAJlMhh07dqBz585lDsTMzAzz5s3DxIkTS3x+2bJlmDZtGrKyssq8D20VFxcHLy8vnD9/Hh988IHU4ZQoNjYWYWFhijXO9PT0IJfLIQgCevTogRkzZvDLkkhibKe67b333sP9+/dhbW2N+fPnK8o7duyI999/X8LIqLTYVomUFRYW4vvvv8fly5cBvJwvZfLkySXOsZKdnY2jR4/CwsJC5+8JzcnJQUZGBtq3b8+JicLCwpCYmIjPP/8cnTp1wq1btxAWFoaQkBDcvn27zIGYmJgoelRL8vz5c51/o2mzFi1aYOfOnUhOTsbBgweRnp4OS0tLdOrUiferEGkJttOqx9vbmwloJcS2SqRMX18fI0eOxIoVK3D79m1kZmZixYoVmDJlCmxsbKQOjypAqZPQffv2YejQoVi4cKGizMHBAYMGDUJ8fHyJi5+rolOnTli2bBn8/PyKTepz5swZLF++HF27di1T3aQ+Li4uKg+xJiJpsJ1WDXXr1kWjRo2kDoPKgW2V6P8YGRlhzJgxWLp0Ke7du4eUlBSsWLECkydPhoWFhdThkZqV+p7Q5ORktGvXTqmsXbt2EEWx2FIlpbFgwQKYmJigXbt28Pb2xvDhwzF8+HB4e3ujTZs2MDExURp+REREVJU4OjqiRo0asLS0hKGhoU7Mwk5E9CpTU1OMHz8ednZ2AF4ue7hy5Uq8ePFC4shI3UqdhObm5hYbFlv0uDwLAbu5ueHSpUuYMGECUlJSsHXrVmzduhUpKSmYOHEi/vrrL7i6upa5fiIiosrs3LlzSEhIwPTp0+Hu7g6ZTCZ1SEREamdpaYkJEybA2toaAHD37l2sXr0aeXl50gZGalXq4bgAkJiYiLi4OMXjtLQ0AMDNmzcVb5hXqTrZjr29PZYsWYIlS5aUJSwiIqIqoW7dulKHQERUYapXr47PPvsMixcvRlZWFm7evIl169Zh9OjRUodGalKmJHTmzJmYOXNmsfKxY8cqPS6aPbewsLBs0REREZESmUyG6tWrSx0GEVGFcnJywrhx47Bs2TLk5ubi77//xubNmxEUFCR1aKQGpU5C169fr5YdjxgxAoIgYM2aNdDX18eIESPe+RpBELBu3Tq17J+IiKgysre3hyAIUodBRFThXF1dERISglWrVqGgoABnz56FkZERqlWrJnVoVE6lTkKHDRumlh0fPHhQsS6Wvr4+Dh48+M4vVX7pEhFRVcflCoioKmnQoAFGjBiBtWvXQhRFHD9+HPXr10fz5s2lDo3KoUzDcdUhMTHxrY+JiIiouJLmXiAi0mVNmzbFkCFDsHnzZgBAfHw8LCws0KRJE4kjo7Iq9ey4FSU5Ofmt0y+/ePECycnJGoyIiIhI+3C9PCKqiry9vREYGKh4fO7cOdy6dUvCiKg8tCYJdXNzQ2Rk5Buf37lzJ9zc3DQYERERkfbh0ixEVFX5+vrC19dX8fjo0aMa66Qqz1KUVJzWJKGiKL71+fz8fOjpaU24REREkjAwkOxOGiIiyfn5+aFWrVoAXuYPBw8exMOHDyt8v1ztQ70k/SZLT09Hamqq4vE///xT4tWM1NRU/PLLL3ByctJgdERERNqHF2SJqCoTBAGNGzcGACQlJaGwsBAxMTHw9/eHra1the1XLpcrlp+k8pM0CV2yZAm+/fZbAC/fUJMmTcKkSZNK3FYURcyZM0eD0REREWkf/geIiKo6QRDg7e2NwsJC3Lt3D/n5+YiOjkZAQACsrKwqZJ+iKKKgoACGhoYVUn9VI2kS2rVrV5ibm0MURUydOhXBwcH44IMPlLYRBAFmZmbw8vLiVMxERFTl6evrSx0CEZHk9PX14evri6ioKDx+/Bg5OTnYu3cvevToATMzswrZJ5NQ9ZE0CfX29oa3tzcAICsrC4GBgfD09JQyJCIiIq0lCAKH4xIR/X8GBgbo0qUL/vzzTzx//hxZWVnYu3cvAgICYGJiovb95ebmcnI4NdGKb7Ls7GwsX74ce/fulToUIiIirWVgYMAklIjoFcbGxujWrZti+aq0tDRER0cjLy9P7fvKyspSe51VlVZ8k5mamsLAwKDCus6JiIiIiEg3mZqa4qOPPoKpqSkA4NmzZ9i/f7/al1V5dUJVKh+tSEIBIDAwENu3b3/nUi1ERERERESvsrCwgJ+fH4yNjQEADx8+xOHDhyGXy9W2j9TUVC7VoiZak4QOHDgQT548QceOHREREYETJ04gLi6u2A8REREREdHrqlWrhq5duyrWU05KSsLx48fV1skll8vZG6omWrPidYcOHRS/Hzt2rNjzRevy8OoDERERERGVxN7eHp07d8a+ffsgl8tx8+ZNGBkZoVWrVmpZ4urhw4eoXr26GiKt2rQmCV2/fr3UIRARERERUSVXo0YNdOjQAYcOHYIoirhy5QpMTEzQtGnTctedkpKC1NRUWFtbl7uuqkxrktBhw4ZJHQIREREREekANzc35OXl4fjx4wCA8+fPw9jYGO7u7uWuOz4+Hs2aNYORkVG566qqtOae0FdlZmbi2rVruHbtGjIzM6UOh4iIiIiIKpn69eujRYsWiscnT57E7du3y11vXl4eLl++zNsEy0GrktDY2Fh07NgR1apVg6enJzw9PVGtWjV06tQJ586dkzo8IiIiIiKqRBo3bozGjRsrHh85cgR3794td71ZWVm4fv06V/YoI60ZjnvmzBl06NABRkZGGDlypKKr/Nq1a/j555/Rvn17HD58GC1btpQ4UiIiIiIiqiyaN2+O3NxcxMfHQxRFHDhwAH5+fnB0dCxXvc+fP8fdu3fh4uKipkirDq1JQqdPn44aNWrg+PHjxd4QoaGhaNu2LaZPn46YmBiJIiQiIiIiospGEAS0adMGeXl5SEhIQGFhIWJiYuDv76/STLcff/wxnj17BmNjY0yZMkXpuaSkJOjp6aFGjRpqmX23qtCa4bhnzpxBSEhIiVckHBwcMHr0aJw+fVqCyIiIiIiIqDLT09ODj48PatSoAeDlfZ3R0dFIS0t752v/+ecfPH36FBkZGSU+n5CQgPj4eOTn56s1Zl2mNUmonp4eCgoK3vh8YWEh9PS0JlwiIiIiIqpE9PX14evrC3t7ewDAixcvEBUVhaysrHLX/fTpU8TGxuLu3btvzWnoJa3J6tq0aYP//e9/SEpKKvZccnIyVq1ahbZt20oQGRERERER6QJDQ0N07doV1apVA/ByVY6oqCjk5OSUu+7CwkIkJiYiNjYWSUlJ7Bl9C625J3TevHlo3749GjRogD59+qBevXoAXq7D88cff8DAwADh4eESR0lERERERJWZsbEx/Pz8sHv3bmRkZCA1NRX79u2Dn5+fWtb+LCgoQHJyMu7fvw8nJyfUqFGDa4q+RmuS0GbNmuHMmTOYPn06du7ciezsbACAqakp/Pz8MGfOHHh4eEgcJRERERERVXZFOcbu3bvx4sULPH36FAcOHEDXrl2hr6+vln0UFhbi3r17ePDgAezs7FCjRg2YmZmppe7KTmuSUADw8PBAZGQk5HI5nj59CgCws7PjvaBERERERKRWlpaW8PPzw549e5CXl4cHDx7g8OHD6Nixo1rzD7lcjsePH+Px48ewsbFBrVq1YG5urrb6KyOtzO4EQVD6ISIiIiIiUjcbGxt07doVBgYv++YSExNx4sQJiKJYIft7/vw5Lly4gDt37qCwsLBC9lEZaFUSevXqVQQFBcHS0hJOTk5wcnKCpaUlgoKCcPnyZanDIyIiIiIiHePg4ABfX19F7+eNGzcQGxsLURTx6NEjvHjxAsDLZV1SUlLUss/79+8jLi5ObfVVNlqThB47dgwtW7bEn3/+iYCAAMyYMQMzZsxA9+7d8eeff6JVq1Y4duyY1GESEREREZGOee+999ChQwfF4/3792PkyJHo0aOHYn3QFy9eICwsDD/88AOSk5PLvc+cnBxcvnwZN27cqJBeUVEUMWvWLDg5OUEmk6Fz5864efOmyq//z3/+A0EQMGnSJEXZ8+fP8dlnn6F+/fqQyWRwcXHBhAkTVFpv9VVac0/o559/Dnt7exw5cgQ1a9ZUeu7u3bto3749Jk+ejNjYWIkiJCIiIiIiXeXm5oa2bdti8+bN2LdvHwAUG5YriiKuXbuGa9euYdiwYWjcuHG59/v48WNkZmaiQYMGMDU1LXd9RRYsWIDly5dj48aNcHNzw8yZM9GtWzdcvXoVJiYmb31tbGwsvv/++2LH9+DBAzx48AALFy6Eh4cHkpKS8Omnn+LBgwfYvn27yrFpTU/olStXMHbs2GIJKADUrFkTY8aMwZUrVySIjIiIiIiIqoKCggLExMRAFMU33hcql8shl8uxceNGtfSIAkBWVhYuXLiA+/fvq+V+VFEUsXTpUsyYMQO9evVC48aNsWnTJjx48AA7dux462szMzMxePBgrF27VrGeahFPT0/89ttv6NGjB+rUqYNOnTph7ty52LVrFwoKClSOT2uS0Fq1aiE3N/eNz+fl5ZWYoBIREREREanDjz/+WKqJUYt6TNVBLpfjzp07uHz5cqkSupIkJCTg0aNH6Ny5s6LMysoKrVq1wqlTp9762nHjxqF79+5Kr32btLQ0WFpaKiZ3UoXWJKGzZs3C8uXLcfHixWLPXbhwAStWrEBoaKjG4yIiIiIiIt336NEjHDt2TOX7M+VyOa5evar2yYVSU1Nx6dIl5Ofnl7mOR48eAXg56dKrHBwcFM+V5JdffkFcXBzCw8NV2s+zZ88QFhaG0aNHlyo+rbkn9PTp03BwcICXlxfatGmDunXrAgBu3ryJU6dOwdPTE6dOnVLK3AVBwLJly6QKmYiIiIiIJPC2EZRlVZalWURRRHx8PFq2bKnWWDIyMnD58mW4ubmptH1ERARCQkIUj/fs2VPqfd69excTJ05ETEzMO+8ZBYD09HR0794dHh4epe4s1JokdOXKlYrfT5w4gRMnTig9//fff+Pvv/9WKmMSSkRERERUdRgYGMDc3ByZmZnIy8tTa90pKSkQBKFUiaggCMjJyYFcLldrLMDLRFsmk6k0zLVnz55o1aqV0muBl5MeOTk5KcofP36Mpk2blljH+fPn8eTJE3zwwQeKssLCQhw9ehQrV65Ebm4u9PX1AbxMkv38/GBhYYHIyEgYGhqW6ti0JgmtiBNHRERERES6w8jICC1btiz3PZMlSUxMLFNPqJWVFczNzdUai76+Pnx8fODq6gojI6N3bm9hYQELCwuluBwdHXHgwAFF0pmeno4zZ85gzJgxJdbh6+tbrNPvk08+QYMGDfDll18qEtD09HR069YNxsbG2Llzp0q9pq/TmiSUiIiIiIjoXYyMjFRKzErL39+/TD2h7u7u0NNT31Q7RkZG6Natm1IPZmkVre85Z84cvP/++4olWpydndG7d2/Fdr6+vujTpw/Gjx8PCwsLeHp6KtVjZmaG6tWrK8rT09PRtWtXZGdn46effkJ6ejrS09MBAHZ2dopE9V20LglNSEjA3r17kZSUBODlrLkfffSRyuOhiYiIiIiISsvFxQUBAQH4888/VZqcSE9PD40aNYKNjY3aYnB2doaPj49Sr2ZZTZ06FVlZWRg9ejRSU1PRrl07REVFKfVc3r59G8+ePVO5zri4OJw5cwYAFHP4FElISICrq6tK9QiiOhaiUZMpU6Zg2bJlxYbm6unpYdKkSVi4cGGF7v/58+f47LPPsGvXLujp6SEwMBDLli17a/d6hw4dcOTIEaWykJAQrF69WuX9xsXFwcvLC+fPn1cag01ERERERJoTGxuLNm3aoLCw8J09onp6evjyyy9VTrzexsjICN7e3qhXr16ploiprLRmiZZFixZhyZIl6Nu3L06dOoXU1FSkpqbi1KlTCAoKwpIlS7BkyZIKjWHw4MG4cuUKYmJisHv3bhw9elSl6YZHjRqFhw8fKn4WLFhQoXESEREREZH6tWjRAlu3boW+vv4bh5bq6elBT08Po0ePVksCWqtWLQQFBaF+/fpVIgEFtKgntEGDBmjQoAF27NhR4vO9e/fG9evXcf369QrZ/7Vr1+Dh4YHY2Fg0b94cABAVFQV/f3/cu3cPzs7OJb6uQ4cOaNq0KZYuXVrmfbMnlIiIiIhIe8TGxiIsLAy7d+9W6hEVBAGNGzeGv79/uRNQFxcXNG3aFI6OjuWMtvLRmp7QxMREdOvW7Y3Pd+vWDYmJiRW2/1OnTsHa2lqRgAJA586doaenpxj3/CYRERGwtbWFp6cnvv76a2RnZ791+9zcXMVNvOnp6cjMzFTLMRARERERUfm1aNECO3fuRGJiIqytrQEAMpkM8+bNw9ixY8uVgLq5uSEoKAh+fn5VMgEFtGhiInt7e/z1119vfP6vv/6CnZ1dhe3/0aNHsLe3VyozMDCAjY0NHj169MbXDRo0CLVq1YKzszMuXbqEL7/8EvHx8fj999/f+Jrw8HDMnj1bbbETEREREZH6ubi4wMzMDKmpqTA2Ni7XJES2trZo27YtHBwc1Bhh5aQ1SWi/fv2wbNkyuLq64rPPPoOZmRkAICsrCytXrsQPP/yASZMmlbrer776CvPnz3/rNteuXStLyACgdM9oo0aN4OTkBF9fX9y+fRt16tQp8TVff/01Jk+erHh88eJF+Pj4lDkGIiIiIiLSToaGhmjZsiU8PDyqzD2f76I1SWhYWBguXryIadOmYdasWYp7MB88eICCggJ07NgR3377banrnTJlCoYPH/7WbWrXrg1HR0c8efJEqbygoADPnz8vVTd5q1atAAC3bt16YxJqbGwMY2NjxWN1L25LRERERETSs7W1ha+vL6ysrKQORatoTRJqamqKAwcO4I8//lBaJ9TPzw/+/v7o0aNHma4c2NnZqTSM19vbG6mpqTh//jy8vLwAAAcPHoRcLlcklqq4ePEiAJRrcVkiIiIiIqq8BEGAp6cnWrZs+cZZdqsyrUhCs7OzMWTIEAQGBmLw4MHo1auXxmNwd3eHn58fRo0ahdWrVyM/Px/jx4/HwIEDFb2y9+/fh6+vLzZt2oSWLVvi9u3b2LJlC/z9/VG9enVcunQJn3/+Odq3b4/GjRtr/BiIiIiIiEhadnZ2aNeuXYXOZ1PZacXsuKampti/f/87Z5WtaBEREWjQoAF8fX3h7++Pdu3aYc2aNYrn8/PzER8fr4jTyMgI+/fvR9euXdGgQQNMmTIFgYGB2LVrl1SHQEREREREEjAwMECbNm3Qu3dvJqDvoBU9oQDQrl07nDp1CqNGjZIsBhsbG2zZsuWNz7u6uiqtE1SzZk0cOXJEE6EREREREZGWcnZ2Rvv27WFpaSl1KJWCVvSEAsDKlStx7NgxzJgxA/fu3ZM6HCIiIiIiorcyMDBAu3bt0L17dyagpaA1PaFNmjRBQUEBwsPDER4eDgMDA6UZZIGXN/impaVJFCEREREREdFLZmZm+Oijj8q1dmhVpTVJaGBgINfNISIiIiIirWdgYMAEtBy0JgndsGGD1CEQERERERG90wcffMAEtBwkT0JzcnLwxx9/ICEhAba2tujevTvX2CQiIiIiIq0kk8nQsGFDqcOo1CRNQp88eYI2bdogISFBMeusqakpduzYgc6dO0sZGhERERERERwdHSGKIgwMXqZOXl5eMDQ0lDiqyk3S2XHDwsKQmJiIzz//HLt378bSpUshk8kQEhIiZVhEREREREQAgHPnzuHKlSuYPn06bG1t4e7uLnVIlZ6kPaH79u3D0KFDsXDhQkWZg4MDBg0ahPj4eNSvX1/C6IiIiIiIiP6Pl5cXJ1NVA0l7QpOTk9GuXTulsnbt2kEURTx+/FiiqIiIiIiIiJTJZDK4uLhIHYZOkDQJzc3NhYmJiVJZ0eOCggIpQiIiIiIiIiqmRo0a7AVVE8lnx01MTERcXJzicVpaGgDg5s2bsLa2Lrb9Bx98oKnQiIiIiIiIAADVq1eXOgSdIYhF09JKQE9Pr8SrCaIoFisvKissLNRUeBoTFxcHLy8vnD9/nkk2EREREZGWSU1NRUpKCtzc3KQORSdI2hO6fv16KXdPRERERESkElNTU6lD0BmSJqHDhg2TcvdEREREREQqkclkUoegMySdmIiIiIiIiKgyYBKqPkxCiYiIiIiI3sLAwACGhoZSh6EzmIQSERERERG9hZmZmdQh6BQmoURERERERG/B9UHVi0koERERERERaQyTUCIiIiIiItIYJqFERERERESkMUxCiYiIiIiISGOYhBIREREREZHGMAklIiIiIiIijTGQOgCqnB4+fIiHDx9KHQapkZOTE5ycnKQOg9SI7VT3sJ3qJrZVIu3Hz1/1YhKqBZycnPDNN99Umjd2bm4ugoODceTIEalDITXy8fFBdHQ0jI2NpQ6F1IDtVDexneoetlWiyoGfv+oliKIoSh0EVS7p6emwsrLCkSNHYG5uLnU4pAaZmZnw8fFBWloaLC0tpQ6H1IDtVPewneomtlXdU9RWeU51Bz9/1Y89oVRmTZs2ZUPUEenp6VKHQBWE7VR3sJ3qNrZV3VHUVnlOdQc/f9WPExMRERERERGRxjAJJSIiIiIiIo1hEkqlZmxsjG+++YY3ZusQnlPdw3Oqe3hOdRPPq+7hOdU9PKfqx4mJiIiIiIiISGPYE0pEREREREQawySUiIiIiIiINIZJKBEREREREWkMk1AiIiIiIiLSGCahRJWAIAgq/Rw+fLjc+8rOzkZoaGip6po7dy569uwJBwcHCIKA0NDQcsdBVBlpc1t98OABhgwZgvr168PCwgLW1tZo2bIlNm7cCM5RSFWNNrfV0NDQt8Z04sSJcseki7T5nBa5ffs2Bg0aBHt7e8hkMrz//vuYPn16ueOpjAykDoCI3m3z5s1Kjzdt2oSYmJhi5e7u7uXeV3Z2NmbPng0A6NChg0qvmTFjBhwdHdGsWTNER0eXOwaiykqb2+qzZ89w7949BAUFwcXFBfn5+YiJicHw4cMRHx+PefPmlTsmospCm9tq3759Ubdu3WLl06ZNQ2ZmJlq0aFHumHSRNp9TALh48SI6dOiAGjVqYMqUKahevTqSk5Nx9+7dcsdTGTEJJaoEhgwZovT49OnTiImJKVYulYSEBLi6uuLZs2ews7OTOhwiyWhzW23cuHGxq/bjx49Hjx49sHz5coSFhUFfX1+a4Ig0TNvbauPGjZXK7t69i3v37mHkyJEwMjKSKDLtps3nVC6X4+OPP0aDBg1w6NAhyGQyqUOSHIfjEukIuVyOpUuXomHDhjAxMYGDgwNCQkKQkpKitN25c+fQrVs32NraQiaTwc3NDSNGjAAAJCYmKpLI2bNnK4auvGt4raura0UcEpFOkrKtlsTV1RXZ2dnIy8sr97ER6RJtaqs///wzRFHE4MGD1XJsVZVU53Tfvn24fPkyvvnmG8hkMmRnZ6OwsLDCjrMyYE8okY4ICQnBhg0b8Mknn2DChAlISEjAypUrceHCBZw4cQKGhoZ48uQJunbtCjs7O3z11VewtrZGYmIifv/9dwCAnZ0dvvvuO4wZMwZ9+vRB3759AaDYFVkiKjup2+qLFy+QlZWFzMxMHDlyBOvXr4e3tzevzBO9Ruq2+qqIiAjUrFkT7du3V/txViVSndP9+/cDAIyNjdG8eXOcP38eRkZG6NOnD1atWgUbG5uKP3htIxJRpTNu3Djx1eZ77NgxEYAYERGhtF1UVJRSeWRkpAhAjI2NfWPdT58+FQGI33zzTanjKs9riXSRNrbV8PBwEYDix9fXV0xOTi5VHUS6RhvbapHLly+LAMSpU6eW6fVVlTad0549e4oAxOrVq4uDBw8Wt2/fLs6cOVM0MDAQ27RpI8rl8tIfYCXH4bhEOmDbtm2wsrJCly5d8OzZM8WPl5cXzM3NcejQIQCAtbU1AGD37t3Iz8+XMGKiqkkb2mpwcDBiYmKwZcsWDBo0CMDL3lEi+j/a0FaLREREAACH4paTlOc0MzMTANCiRQv89NNPCAwMxLfffouwsDCcPHkSBw4cUMt+KhMmoUQ64ObNm0hLS4O9vT3s7OyUfjIzM/HkyRMAgI+PDwIDAzF79mzY2tqiV69eWL9+PXJzcyU+AqKqQRvaaq1atdC5c2cEBwcjIiICtWvXRufOnZmIEr1CG9oqAIiiiC1btsDT05O3xpSTlOe06HaH4OBgpfKiC4EnT54sc92VFe8JJdIBcrkc9vb2iqulryu6gV4QBGzfvh2nT5/Grl27EB0djREjRmDRokU4ffo0zM3NNRk2UZWjjW01KCgIa9euxdGjR9GtWze11UtUmWlLWz1x4gSSkpIQHh5ernpI2nPq7OwMAHBwcFAqt7e3B4BiEyNVBUxCiXRAnTp1sH//frRt21alyUVat26N1q1bY+7cudiyZQsGDx6MX375BSNHjoQgCBqImKhq0sa2WtQDmpaWppb6iHSBtrTViIgICIKg6DGjspPynHp5eWHt2rW4f/++UvmDBw8A/F8CXJVwOC6RDujfvz8KCwsRFhZW7LmCggKkpqYCeHmlTRRFpeebNm0KAIphJqampgCgeA0RqY+UbfXp06cllq9btw6CIOCDDz5QqR6iqkAbvlfz8/Oxbds2tGvXDi4uLqU7ACpGynPaq1cvGBsbY/369ZDL5YryH374AQDQpUuX0hyKTmBPKJEO8PHxQUhICMLDw3Hx4kV07doVhoaGuHnzJrZt24Zly5YhKCgIGzduxKpVq9CnTx/UqVMHGRkZWLt2LSwtLeHv7w/g5X0LHh4e2Lp1K+rVqwcbGxt4enrC09PzjfvfvHkzkpKSkJ2dDQA4evQo5syZAwD4+OOPUatWrYr/IxBVAlK21blz5+LEiRPw8/ODi4sLnj9/jt9++w2xsbH47LPPULduXU3+KYi0mtTfqwAQHR2Nf/75hxMSqYmU59TR0RHTp0/HrFmz4Ofnh969e+Ovv/7C2rVrERwcjBYtWmjyT6EdJJ2bl4jK5PVpx4usWbNG9PLyEmUymWhhYSE2atRInDp1qvjgwQNRFEUxLi5ODA4OFl1cXERjY2PR3t5eDAgIEM+dO6dUz8mTJ0UvLy/RyMhIpSnIfXx8lJZ8ePXn0KFD6jpsokpHm9rqvn37xICAANHZ2Vk0NDQULSwsxLZt24rr16+vkssDEL1Km9pqkYEDB4qGhobiP//8o5ZjrGq07ZzK5XJxxYoVYr169URDQ0OxZs2a4owZM8S8vDy1HXNlIojia/3NRERERERERBWE94QSERERERGRxjAJJSIiIiIiIo1hEkpEREREREQawySUiIiIiIiINIZJKBEREREREWkMk1AiIiIiIiLSGCahRFVAYmIiBEHAhg0bpA6FiN6CbZVI+7Gd6iaeV81iEkpEREREREQaI4iiKEodBBFVLFEUkZubC0NDQ+jr60sdDhG9AdsqkfZjO9VNPK+axSSUiIiIiIiINIbDcYkqidDQUAiCgBs3bmDIkCGwsrKCnZ0dZs6cCVEUcffuXfTq1QuWlpZwdHTEokWLFK8t6T6H4cOHw9zcHPfv30fv3r1hbm4OOzs7fPHFFygsLFRsd/jwYQiCgMOHDyvFU1Kdjx49wieffIL33nsPxsbGcHJyQq9evZCYmFhBfxUi7cO2SqT92E51E89r5cEklKiSGTBgAORyOf7zn/+gVatWmDNnDpYuXYouXbqgRo0amD9/PurWrYsvvvgCR48efWtdhYWF6NatG6pXr46FCxfCx8cHixYtwpo1a8oUW2BgICIjI/HJJ59g1apVmDBhAjIyMpCcnFym+ogqM7ZVIu3HdqqbeF4rAZGIKoVvvvlGBCCOHj1aUVZQUCC+9957oiAI4n/+8x9FeUpKiiiTycRhw4aJoiiKCQkJIgBx/fr1im2GDRsmAhC//fZbpf00a9ZM9PLyUjw+dOiQCEA8dOiQ0nav15mSkiICEP/73/+q54CJKim2VSLtx3aqm3heKw/2hBJVMiNHjlT8rq+vj+bNm0MURfzrX/9SlFtbW6N+/fq4c+fOO+v79NNPlR5/+OGHKr3udTKZDEZGRjh8+DBSUlJK/XoiXcO2SqT92E51E8+r9mMSSlTJuLi4KD22srKCiYkJbG1ti5W/6wPOxMQEdnZ2SmXVqlUr0wejsbEx5s+fj71798LBwQHt27fHggUL8OjRo1LXRaQL2FaJtB/bqW7iedV+TEKJKpmSpg1/01Ti4jsmv1ZlCnJBEEosf/WG/CKTJk3CjRs3EB4eDhMTE8ycORPu7u64cOHCO/dDpGvYVom0H9upbuJ51X5MQonorapVqwYASE1NVSpPSkoqcfs6depgypQp2LdvHy5fvoy8vDyl2eeIqGKwrRJpP7ZT3cTzWnpMQonorWrVqgV9ff1is8etWrVK6XF2djZycnKUyurUqQMLCwvk5uZWeJxEVR3bKpH2YzvVTTyvpWcgdQBEpN2srKzQr18/rFixAoIgoE6dOti9ezeePHmitN2NGzfg6+uL/v37w8PDAwYGBoiMjMTjx48xcOBAiaInqjrYVom0H9upbuJ5LT0moUT0TitWrEB+fj5Wr14NY2Nj9O/fH//973/h6emp2KZmzZoIDg7GgQMHsHnzZhgYGKBBgwb49ddfERgYKGH0RFUH2yqR9mM71U08r6UjiO+6G5eIiIiIiIhITXhPKBEREREREWkMk1AiIiIiIiLSGCahREREREREpDFMQomIiIiIiEhjmIQSERERERGRxjAJJSK1SkxMhCAI2LBhg9ShEBEREZEWYhJKJKHbt28jJCQEtWvXhomJCSwtLdG2bVssW7YML168qLD9Xr16FaGhoUhMTKywfahi7ty56NmzJxwcHCAIAkJDQyWNh6i8BEFQ6efw4cPl3ld2djZCQ0NVruv69euYOnUqmjZtCgsLCzg5OaF79+44d+5cuWMhqmy0ua2+LiIiAoIgwNzcvNyx6DJtPqehoaFvjenEiRPljqmyMZA6AKKqas+ePejXrx+MjY0xdOhQeHp6Ii8vD8ePH8e///1vXLlyBWvWrKmQfV+9ehWzZ89Ghw4d4OrqWiH7UMWMGTPg6OiIZs2aITo6WrI4iNRl8+bNSo83bdqEmJiYYuXu7u7l3ld2djZmz54NAOjQocM7t//hhx+wbt06BAYGYuzYsUhLS8P333+P1q1bIyoqCp07dy53TESVhTa31VdlZmZi6tSpMDMzK3ccuk6bz2nfvn1Rt27dYuXTpk1DZmYmWrRoUe6YKhsmoUQSSEhIwMCBA1GrVi0cPHgQTk5OiufGjRuHW7duYc+ePRJG+H9EUUROTg5kMpna605ISICrqyuePXsGOzs7tddPpGlDhgxRenz69GnExMQUK5dCcHAwQkNDlXpTRowYAXd3d4SGhjIJpSpFm9vqq+bMmQMLCwt07NgRO3bskDocrabN57Rx48Zo3LixUtndu3dx7949jBw5EkZGRhJFJh0OxyWSwIIFC5CZmYl169YpJaBF6tati4kTJyoeFxQUICwsDHXq1IGxsTFcXV0xbdo05ObmKr3O1dUVAQEBOH78OFq2bAkTExPUrl0bmzZtUmyzYcMG9OvXDwDQsWPHYsNTiuqIjo5G8+bNIZPJ8P333wMA7ty5g379+sHGxgampqZo3bp1uZJlKXthiaQil8uxdOlSNGzYECYmJnBwcEBISAhSUlKUtjt37hy6desGW1tbyGQyuLm5YcSIEQBe3ntddOFm9uzZinb8tiHtXl5exYbzVa9eHR9++CGuXbum3oMk0gFStdUiN2/exJIlS7B48WIYGLDfSB2kPqev+vnnnyGKIgYPHqyWY6ts+I4mksCuXbtQu3ZttGnTRqXtR44ciY0bNyIoKAhTpkzBmTNnEB4ejmvXriEyMlJp21u3biEoKAj/+te/MGzYMPz4448YPnw4vLy80LBhQ7Rv3x4TJkzA8uXLMW3aNMWwlFeHp8THxyM4OBghISEYNWoU6tevj8ePH6NNmzbIzs7GhAkTUL16dWzcuBE9e/bE9u3b0adPH/X9gYh0WEhICDZs2IBPPvkEEyZMQEJCAlauXIkLFy7gxIkTMDQ0xJMnT9C1a1fY2dnhq6++grW1NRITE/H7778DAOzs7PDdd99hzJgx6NOnD/r27QsAxa60q+LRo0ewtbVV6zES6QKp2+qkSZPQsWNH+Pv749dff63QY60qpD6nr4qIiEDNmjXRvn17tR9npSASkUalpaWJAMRevXqptP3FixdFAOLIkSOVyr/44gsRgHjw4EFFWa1atUQA4tGjRxVlT548EY2NjcUpU6YoyrZt2yYCEA8dOlRsf0V1REVFKZVPmjRJBCAeO3ZMUZaRkSG6ubmJrq6uYmFhoSiKopiQkCACENevX6/S8YmiKD59+lQEIH7zzTcqv4aoMhg3bpz46lftsWPHRABiRESE0nZRUVFK5ZGRkSIAMTY29o11q6PdHD16VBQEQZw5c2aZ6yDSBdrWVnfv3i0aGBiIV65cEUVRFIcNGyaamZmV4ohI287pqy5fviwCEKdOnVqm1+sCDscl0rD09HQAgIWFhUrb//nnnwCAyZMnK5VPmTIFAIoNh/Xw8MCHH36oeGxnZ4f69evjzp07Ksfo5uaGbt26FYujZcuWaNeunaLM3Nwco0ePRmJiIq5evapy/URV1bZt22BlZYUuXbrg2bNnip+iobKHDh0CAFhbWwMAdu/ejfz8/AqJ5cmTJxg0aBDc3NwwderUCtkHUWUlZVvNy8vD559/jk8//RQeHh5qqZO06/M3IiICAKrsUFyA94QSaZylpSUAICMjQ6Xtk5KSoKenV2xWNUdHR1hbWyMpKUmp3MXFpVgd1apVK3a/w9u4ubmVGEf9+vWLlRcN4309DiIq7ubNm0hLS4O9vT3s7OyUfjIzM/HkyRMAgI+PDwIDAzF79mzY2tqiV69eWL9+fbH7wMsqKysLAQEByMjIwB9//MGlH4heI2VbXbJkCZ49e6aYfZXUQ1s+f0VRxJYtW+Dp6VmmWyh0Be8JJdIwS0tLODs74/Lly6V6nSAIKm2nr69fYrkoiirvqyJmwiWil5Ni2NvbK66Cv65osgtBELB9+3acPn0au3btQnR0NEaMGIFFixbh9OnT5Uoa8/Ly0LdvX1y6dAnR0dHw9PQsc11EukqqtpqWloY5c+Zg7NixSE9PV4yeyszMhCiKSExMhKmpKezt7ct3gFWQNnz+AsCJEyeQlJSE8PDwctVT2TEJJZJAQEAA1qxZg1OnTsHb2/ut29aqVQtyuRw3b95Umjzo8ePHSE1NRa1atUq9f1UT2tfjiI+PL1Z+/fp1xfNE9HZ16tTB/v370bZtW5Uu9rRu3RqtW7fG3LlzsWXLFgwePBi//PILRo4cWaZ2LJfLMXToUBw4cAC//vorfHx8ynIYRDpPqraakpKCzMxMLFiwAAsWLCj2vJubG3r16sXlWspA6s/fIhERERAEAYMGDSpzHbqAw3GJJFC08PTIkSPx+PHjYs/fvn0by5YtAwD4+/sDAJYuXaq0zeLFiwEA3bt3L/X+ixa9Tk1NVfk1/v7+OHv2LE6dOqUoy8rKwpo1a+Dq6sr7VohU0L9/fxQWFiIsLKzYcwUFBYo2mZKSUmz0QtOmTQFAMSTM1NQUQOna8WeffYatW7di1apVihkdiag4qdqqvb09IiMji/107NgRJiYmiIyMxNdff132A6vCpP78BYD8/Hxs27YN7dq1K/H2qaqEPaFEEqhTpw62bNmCAQMGwN3dHUOHDoWnpyfy8vJw8uRJbNu2DcOHDwcANGnSBMOGDcOaNWuQmpoKHx8fnD17Fhs3bkTv3r3RsWPHUu+/adOm0NfXx/z585GWlgZjY2N06tTprcN7vvrqK/z888/46KOPMGHCBNjY2GDjxo1ISEjAb7/9Bj290l/T2rx5M5KSkpCdnQ0AOHr0KObMmQMA+Pjjj9m7SjrHx8cHISEhCA8Px8WLF9G1a1cYGhri5s2b2LZtG5YtW4agoCBs3LgRq1atQp8+fVCnTh1kZGRg7dq1sLS0VFyYkslk8PDwwNatW1GvXj3Y2NjA09PzjcNrly5dilWrVsHb2xumpqb46aeflJ7v06eP4gIVUVUnVVs1NTVF7969i5Xv2LEDZ8+eLfE5Uo2Un79FoqOj8c8//1TpCYkUpJyal6iqu3Hjhjhq1CjR1dVVNDIyEi0sLMS2bduKK1asEHNychTb5efni7Nnzxbd3NxEQ0NDsWbNmuLXX3+ttI0ovlxepXv37sX24+PjI/r4+CiVrV27Vqxdu7aor6+vtFzLm+oQRVG8ffu2GBQUJFpbW4smJiZiy5Ytxd27dyttU5olWnx8fEQAJf6UtHwMUWXz+hIBRdasWSN6eXmJMplMtLCwEBs1aiROnTpVfPDggSiKohgXFycGBweLLi4uorGxsWhvby8GBASI586dU6rn5MmTopeXl2hkZPTO5QKGDRv2xvYGQExISFDnoRNVKtrUVkvCJVpKTxvP6cCBA0VDQ0Pxn3/+UcsxVmaCKJZithIiIiIiIiKicuA9oURERERERKQxTEKJiIiIiIhIY5iEEhERERERkcYwCSUiIiIiIiKNYRJKREREREREGsMklIiIiIiIiDSGSSgRERERERFpDJNQIiIiIiIi0hgmoURERERERKQxTEKJiIiIiIhIY5iEEhERERERkcYwCSUiIiIiIiKNYRJKREREREREGvP/AFj6BQOGkfOVAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -1649,7 +1649,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6EAAAInCAYAAABpxV9bAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAtS5JREFUeJzs3Xl8TNf/P/DXTCK7iOyhSIgtghBEbAlCUrvQ2qPU0pYq0U9btbaUaouoIvat9n0PETshRUMJqSURRGKJ7Mskmfv7w898TZOQZSZ3ZvJ6Ph7zkDn33nPf4+Rm5j3n3HMkgiAIICIiIiIiIioHUrEDICIiIiIiooqDSSgRERERERGVGyahREREREREVG6YhBIREREREVG5YRJKRERERERE5YZJKBEREREREZUbJqFERERERERUbpiEEhERERERUblhEkpERERERETlhkmoBnj69ClmzZqFp0+fih0KERERERGRWjEJ1QBPnz7FDz/8wCSUiIiIiIh0HpNQIiIiIiIiKjdMQomIiIiIiKjcMAklIiIiIiKicsMk9C1nz55Fz549Ua1aNUgkEuzbt++9x5w+fRrNmzeHoaEhnJ2dsX79erXHSUREREREpK2YhL4lIyMDTZs2xdKlS4u1f0xMDLp3746OHTsiMjISEydOxKhRo3Ds2DE1R0pERERERKSd9MUOQJN8+OGH+PDDD4u9f3BwMJycnLBgwQIAQMOGDXH+/HksWrQIvr6+6gqTiIiIiIhIazEJLYPw8HD4+Pgolfn6+mLixInvPC4nJwc5OTmK5+np6eoIr0RevnwJmUymlroNDAxgZWWllrqpaOpsU4DtKga2qW7i31/dwzbVPbKEpxBystVWv8TQCAb2DmqrnwrHa1U8TELLICEhAXZ2dkpldnZ2SE1NRVZWFoyNjQs9bt68efjhhx/KI8RiefnyJZYuXQpBENRSv0Qiwbhx43ghliN1tynAdi1vbFPdxL+/uodtqntkCU8RNyVQ7eepOW8hE9FyxGtVXLwnVARTpkxBSkqK4nHmzBlR45HJZGr9YCsIglp7b6ggdbcpwHYtb2xT3cS/v7qHbap71NkDKsZ56DVeq+JiT2gZ2NvbIzExUaksMTER5ubmRfaCAoChoSEMDQ0Vz83MzNQWY0lJJBKV1qfuD830fqpuU4DtKja2qW7i31/dwzbVQWr4+wu2q+h4rZY/nekJFQQBJ0+exNGjR5GWllYu5/T09ERYWJhSWWhoKDw9Pcvl/ERERERERNpGK5PQqVOnomPHjorngiCga9eu6NKlC7p3747GjRvj/v37Ja43PT0dkZGRiIyMBPB6CZbIyEjExcUBeD2MNiAgQLH/Z599hgcPHuCbb77BnTt3sGzZMuzYsQOTJk0q2wskIiIiIiLSUVqZhO7evRutWrVSPN+1axfCwsIwZ84cHDp0CPn5+Zg1a1aJ671y5QqaNWuGZs2aAQACAwPRrFkzzJgxAwDw9OlTRUIKAE5OTjh8+DBCQ0PRtGlTLFiwAKtXr+byLEREREREREXQyntCnzx5AmdnZ8XzPXv2wMXFBVOmTAEAfP7551i+fHmJ6/X29n7nGO7169cXeszff/9d4nMRERERERFVRFrZE6qvr69YZ1MQBISFhcHPz0+x3c7ODi9evBArPCIiIiIiIiqCViahrq6u+PPPP/Hq1SusW7cOL1++RPfu3RXbHz58CGtraxEjJCIiIiIiosJo5XDcGTNmoGfPnopEs23btkoTFR0+fBgtW7YUKzwiIiIiIiIqglYmoV26dMG1a9cQGhoKCwsLDBgwQLHt1atX6NChA3r37i1ihERERERERFQYrUxCAcDFxQUuLi4FyqtWrYpFixaJEBERERERERG9j1YmoWlpaUhOTkaNGjUUZfHx8QgODkZOTg769+/P4bhEREREREQaSCuT0DFjxiAmJgaXLl0CAKSmpqJ169Z4/PgxpFIpFi9ejJCQEHh7e4sbKBERERERESnRytlxz58/jx49eiie//nnn4iPj8fFixfx6tUrNGnSBHPmzBExQiIiIiIiIiqMViahL168QPXq1RXPDxw4gHbt2qF169aoXLkyAgICcP36dREjJCIiIiIiosJoZRJqYWGBhIQEAEBWVhbOnTuHrl27Krbr6+sjMzNTrPCIiIiIiIioCFp5T2ibNm2wbNkyNGjQACEhIcjOzlZakuXff/9V6iklIiIiIiIizaCVSej8+fPRtWtX9OvXDwAwefJkNGrUCACQn5+PnTt3ws/PT8wQiYiIiIiIqBBamYQ6OzsjOjoaUVFRqFKlChwdHRXbMjMz8ccff6Bp06biBUhERERERESF0sokFAAqVapUaKJZuXJlpaG5REREREREpDm0cmIi4PXaoD///DN8fX3RrFkzREREAACSkpKwcOFC3Lt3T+QIiYiIiIiI6L+0sif08ePH8PLywqNHj1C3bl3cuXMH6enpAABLS0usWLECDx8+xOLFi0WOlIiIiIiIiN6mlUno//73P6SlpSEyMhK2trawtbVV2t6nTx8cOnRIpOiIiIiIiIioKFo5HPf48eOYMGECXFxcIJFICmyvXbs2Hj16JEJkRERERERE9C5amYRmZWXBxsamyO1paWnlGA0REREREREVl1YmoS4uLjh79myR2/ft24dmzZqVY0RERERERERUHFqZhE6cOBHbtm3D/PnzkZKSAgCQy+W4d+8ehg0bhvDwcEyaNEnkKImIiIiIiOi/tHJioqFDh+Lhw4eYNm0apk6dCgDw8/ODIAiQSqWYO3cu+vTpI26QREREREREVIBWJqEAMHXqVAwbNgy7d+/GvXv3IJfLUadOHfj7+6N27dpih0dERERERESF0NokFABq1qzJYbdERERERERaRCvvCb127RqWLVtW5PZly5YhMjKy/AIiIiIiIiKiYtHKJHTq1Kk4ceJEkdtPnjyJadOmlbr+pUuXwtHREUZGRvDw8EBERMQ79w8KCkL9+vVhbGyMGjVqYNKkScjOzi71+YmIiIiIiHSVViahV69eRfv27Yvc3r59e1y5cqVUdW/fvh2BgYGYOXMmrl27hqZNm8LX1xfPnj0rdP8tW7bgu+++w8yZM3H79m2sWbMG27dvx/fff1+q8xMREREREekyrUxC09LSoK9f9O2sUqlUsXRLSS1cuBCjR4/GiBEj4OLiguDgYJiYmGDt2rWF7n/x4kW0bdsWgwcPhqOjI7p27YpBgwa9t/eUiIiIiIioItLKJLRu3bo4fvx4kdtDQkJKNUOuTCbD1atX4ePjoyiTSqXw8fFBeHh4oce0adMGV69eVSSdDx48wJEjR9CtW7ciz5OTk4PU1FTFIz09vcSxEhERERERaSOtTEI//fRTHD58GIGBgUhOTlaUJycnY9KkSQgJCcGnn35a4npfvHiB/Px82NnZKZXb2dkhISGh0GMGDx6MH3/8Ee3atUOlSpVQp04deHt7v3M47rx581ClShXFw8vLq8SxEqnSihUrsGDBAqxYsULsUIiIiIhIx2llEjphwgQMHz4cQUFBsLa2Rs2aNVGzZk1YW1tj8eLFGDp0aLkt3XL69GnMnTsXy5Ytw7Vr17Bnzx4cPnwYs2fPLvKYKVOmICUlRfE4c+ZMucRKVJT09HT2yhMRERFRudDKdUIlEgnWrVuHgIAA7N69Gw8ePAAA9O7dG/369YO3t3ep6rW2toaenh4SExOVyhMTE2Fvb1/oMdOnT8ewYcMwatQoAEDjxo2RkZGBMWPGYOrUqZBKC+b5hoaGMDQ0VDw3MzMrVbxERERERETaRiuT0Dc6duyIjh07qqw+AwMDuLu7IywsDH369AEAyOVyhIWFYfz48YUek5mZWSDR1NPTAwAIgqCy2IiIiIiIiHSBVg7HjYmJwcGDB4vcfvDgQcTGxpaq7sDAQKxatQobNmzA7du38fnnnyMjIwMjRowAAAQEBGDKlCmK/Xv27Inly5dj27ZtiImJQWhoKKZPn46ePXsqklEiIiIiIiJ6TSt7Qr/++mukpqaiZ8+ehW5funQpLCwssG3bthLXPWDAADx//hwzZsxAQkIC3NzcEBISopisKC4uTqnnc9q0aZBIJJg2bRqePHkCGxsb9OzZEz/99FPpXhwREREREZEO08okNDw8HBMnTixye+fOnREUFFTq+sePH1/k8NvTp08rPdfX18fMmTMxc+bMUp+PiIiIiIiootDK4bivXr1C5cqVi9xuZmaGly9flmNEREREREREVBxamYTWrFkTFy5cKHL7uXPn8MEHH5RjRERERERERFQcWpmEDho0CFu3bsXvv/8OuVyuKM/Pz8fixYuxfft2DB48WMQIiYiIiIiIqDBaeU/olClTcP78eUycOBE//fQT6tevDwCIjo7G8+fP4e3tjalTp4ocJREREREREf2XViahhoaGOH78ODZs2IA9e/bg/v37AIBWrVqhX79+CAgIKLB2J1FFVZz1ak1NTSEIguJfIiIiIiJ10cokFACkUilGjBihWL+TiP6PgYEBJBJJsRPKsWPHlvgcEokEBgYGJT6OiIiIiCo2rU1CiahoVlZWGDduHGQymdrOYWBgACsrK7XVT0RERES6SSuT0E6dOr13H4lEgrCwsHKIhkgzMUEkIiIiIk2klUmoXC6HRCJRKsvPz8fDhw/x6NEjODs7o3r16iJFR6QZZAlPIeRkq61+iaERDOwd1FY/EREREekmrUxCT58+XeS2Q4cOYcyYMVi4cGH5BUSkYWQJTxE3JVDt56k5byETUSIiIiIqEZ2bQrZHjx4YOnQoJk6cKHYoRKIpaQ9o34PH0G7HfvQ9eEyt5yEiIiIi0rkkFADq1KmDv/76S+wwiDSDRPLex/OsbCRmZuF5Vnax9iciIiIiKi2dS0Lz8vKwY8cOWFtbix0KERERERER/YdW3hM6cuTIQsuTk5Nx6dIlJCQk8J5QIiIiIiIiDaSVSejJkycLzI4rkUhQtWpVtGvXDqNGjULXrl1Fio6IiIiIiIiKopVJaGxsrNghEBERERERUSno3D2hREREREREpLm0JgnNzMxEXFwcZDJZgW1r165F586d4eLiAn9/f86MS0REREREpKG0Jgn98ccf0aRJkwJJ6Jw5czB69GicOXMGz58/x759++Dt7Y3r16+LFCkREREREREVRWuS0FOnTqFHjx4wMzNTlKWmpmLOnDmoXr067t69i+fPn+PSpUswMDDAzz//LGK0RERERESkC1asWIEFCxZgxYoVYoeiM7QmCY2NjUWTJk2Uyo4cOQKZTIZvv/0WTk5OAIBWrVphxIgROHfunBhhEhERERGRDklPT0dqairS09PFDkVnaM3suGlpabCyslIqO3v2LCQSCXx9fZXKXVxc8Pz58/IMj0ir2RgbK/1LRERERKQuWpOE1qpVC3fu3FEqO336NOzs7ODs7KxULpPJYG5uXp7hEWm1vb18378TEREREZEKaM1w3K5du2Lt2rW4fPkyAGDjxo24c+cO+vbtW2Dfq1evwtHRsZwjJCIiIiIiovfRmiR0+vTpMDMzQ5s2bWBgYIBPPvkENjY2mDFjhtJ+mZmZ2Lt3Lzp37ixSpERERERERFQUrRmOa21tjcjISKxevRoPHjxArVq1MHLkSNja2irtd/PmTQwZMgTDhg0TKVIiIiIiIiIqitb0hAJA1apV8b///Q/Lly/Hd999VyABBV7PjrtkyRI0atSo1OdZunQpHB0dYWRkBA8PD0RERLxz/+TkZIwbNw4ODg4wNDREvXr1cOTIkVKfn4iIiIiISFdpTU9oedm+fTsCAwMRHBwMDw8PBAUFwdfXF9HR0YUmvTKZDF26dIGtrS127dqF6tWr4+HDh7CwsCj/4ImIiIiIiDQck9D/WLhwIUaPHo0RI0YAAIKDg3H48GGsXbsW3333XYH9165di6SkJFy8eBGVKlUCAE6KREREREREVAStGo6rbjKZDFevXoWPj4+iTCqVwsfHB+Hh4YUec+DAAXh6emLcuHGws7ODq6sr5s6di/z8/CLPk5OTg9TUVMWDC98SEREREVFFwST0LS9evEB+fj7s7OyUyu3s7JCQkFDoMQ8ePMCuXbuQn5+PI0eOYPr06ViwYAHmzJlT5HnmzZuHKlWqKB5eXl4qfR1ERERERESaSiuS0AMHDiA+Pl7sMAoll8tha2uLlStXwt3dHQMGDMDUqVMRHBxc5DFTpkxBSkqK4nHmzJlyjJiIiIiIiIrLzMwM5ubmMDMzEzsUnaEV94T27dsXmzZtwuDBgwEAtWvXRlBQEHr16qXS81hbW0NPTw+JiYlK5YmJibC3ty/0GAcHB1SqVAl6enqKsoYNGyIhIQEymQwGBgYFjjE0NIShoaHiOX+hiYiIiIjEIQjCO7ePGTOm2PtS8WhFT2jlypWRnJyseB4bG6uW+ygNDAzg7u6OsLAwRZlcLkdYWBg8PT0LPaZt27a4d+8e5HK5ouzff/+Fg4NDoQkoERERERGJy8DAABKJRG31SyQS5gLvoBU9oa1atcJPP/2ExMREVKlSBQBw5MiRIu/TBF43/KRJk0p8rsDAQAwfPhwtWrRAq1atEBQUhIyMDMVsuQEBAahevTrmzZsHAPj888/xxx9/4KuvvsKXX36Ju3fvYu7cuZgwYUIpXikREREREamblZUVxo0bB5lMppb6DQwMYGVlpZa6dYFWJKHLli1DQEAAZs+eDeB1grllyxZs2bKlyGNKm4QOGDAAz58/x4wZM5CQkAA3NzeEhIQoJiuKi4uDVPp/Hcg1atTAsWPHMGnSJDRp0gTVq1fHV199hW+//bbE5yYiIiIiovJROVcGQZatlrrV2MmqE7QiCXV2dsbFixeRnZ2NZ8+ewdHREUFBQejdu7dazjd+/HiMHz++0G2nT58uUObp6YlLly6pJRYiIiIiIlItWcJTxE0JVOs5as5bCAN7B7WeQ1tpRRL6hpGREWrWrImZM2eiU6dOqFWrltghERERERGRlhFyit8D2vfgMTzPyoaNsRH29vRVyzkqGq1KQt+YOXOm4uf09HQ8evQIwOuhsZxploiIiIiIiu09Y2efZ2UjMTOrWPsCADiD7ntpxey4hfnrr7/QsWNHVK1aFa6urnB1dUXVqlXRqVMnXLlyRezwiIiIiIiIqBBa2RN6+fJleHt7w8DAAKNGjULDhg0BALdv38bWrVvRoUMHnD59Gq1atRI5UiIiIiIiInqbViahU6dORfXq1XH+/HnY29srbZs1axbatm2LqVOnIjQ0VKQIiYiIiIiIqDBaORz38uXLGDt2bIEEFADs7OwwZswYzlZLRERERESkgbQyCZVKpcjLyytye35+vtJankRERERERKQZtDJTa9OmDZYuXYqHDx8W2BYXF4dly5ahbdu2IkRGRERERERE76KV94TOnTsXHTp0QIMGDdC3b1/Uq1cPABAdHY39+/dDX18f8+bNEzlKIiIiIiIi+i+tTEKbNWuGy5cvY+rUqThw4AAyMzMBACYmJvDz88OcOXPg4uIicpRERERERET0X1qZhAKAi4sL9u7dC7lcjufPnwMAbGxseC8oERERERGRBtPaJPQNqVQKOzs7scMgIiIiIiKiYmC3IREREREREZUbre8JJSIiIiIiUhcbY2Olf6nsmIQSEREREREVYW8vX7FD0DkcjktERERERETlhkkoERERERERlRutHo4bFRWFBw8e4NWrVxAEocD2gIAAEaIiIiIiIiKiomhlEnr//n0MHToUERERhSafACCRSJiEEhERERERaRitTELHjh2Lf/75B0FBQWjfvj2qVq0qdkhERERERERUDFqZhF64cAHff/89vvzyS7FDISIiIiIiohLQyomJrK2tUaVKFbHDICIiIiIiohLSyiT0s88+w59//on8/HyxQyEiIiIiIqIS0MrhuPXq1UN+fj6aNm2KkSNHokaNGtDT0yuwn7+/vwjRERERERERUVG0MgkdMGCA4uevv/660H0kEgl7SomIiIiIiDSMViahp06dUmv9S5cuxa+//oqEhAQ0bdoUS5YsQatWrd573LZt2zBo0CD07t0b+/btU2uMRERERERE2kgrk1AvLy+11b19+3YEBgYiODgYHh4eCAoKgq+vL6Kjo2Fra1vkcbGxsfj666/Rvn17tcVGRERERESk7bRyYqK3RUVF4ejRozh69CiioqLKXN/ChQsxevRojBgxAi4uLggODoaJiQnWrl1b5DH5+fkYMmQIfvjhB9SuXbvMMRAREREREekqrU1C9+/fjzp16qBx48bo0aMHevTogcaNG8PZ2RkHDhwoVZ0ymQxXr16Fj4+PokwqlcLHxwfh4eFFHvfjjz/C1tYWn376abHOk5OTg9TUVMUjPT29VPESERERERFpG60cjnvkyBH069cPtWrVwty5c9GwYUMAwO3bt7Fy5Ur4+/vj0KFD8PPzK1G9L168QH5+Puzs7JTK7ezscOfOnUKPOX/+PNasWYPIyMhin2fevHn44YcfShQbERERERGRLtDKJHT27Nlo0qQJzp07B1NTU0V5r169MH78eLRr1w4//PBDiZPQkkpLS8OwYcOwatUqWFtbF/u4KVOmIDAwUPE8MjJSrfe5EhERERERaQqtTEJv3LiBuXPnKiWgb5iamuKTTz7B999/X+J6ra2toaenh8TERKXyxMRE2NvbF9j//v37iI2NRc+ePRVlcrkcAKCvr4/o6GjUqVOnwHGGhoYwNDRUPDczMytxrERERERERNpIK+8JNTIyQlJSUpHbk5KSYGRkVOJ6DQwM4O7ujrCwMEWZXC5HWFgYPD09C+zfoEED/PPPP4iMjFQ8evXqhY4dOyIyMhI1atQocQxERERERES6TCt7Qjt16oTFixfDz8+vQHJ4+fJl/P777+jatWup6g4MDMTw4cPRokULtGrVCkFBQcjIyMCIESMAAAEBAahevTrmzZsHIyMjuLq6Kh1vYWEBAAXKiYiIiP5rxYoVSE9Ph5mZGcaOHSt2OERE5UIrk9BffvkFnp6eaNeuHVq1aoX69esDAKKjoxEREQFbW1vMnz+/VHUPGDAAz58/x4wZM5CQkAA3NzeEhIQoJiuKi4uDVKqVHchERESkYdLT05Gamip2GERE5Uork1AnJyfcuHED8+bNw9GjR7F9+3YAQK1atfDVV1/hu+++g62tbanrHz9+PMaPH1/ottOnT7/z2PXr15f6vERERERERLpOK5NQALC1tcWiRYuwaNEisUMhIiIiIiKiYuK4UiIiIiIiIio3WtETOnLkSEgkEqxcuRJ6enoYOXLke4+RSCRYs2ZNOURHRESkfpzAhoiIdIVWJKEnT56EVCqFXC6Hnp4eTp48CYlE8s5j3rediIhIm3ACGyIi0hVakYTGxsa+8zkRERERERFpB628JzQuLg5ZWVlFbs/KykJcXFw5RkRERERERETFoZVJqJOTE/bu3Vvk9gMHDsDJyakcIyIiIiIiIqLi0MokVBCEd27Pzc2FVKqVL42IiIiIiEinacU9oQCQmpqK5ORkxfOXL18WOuQ2OTkZ27Ztg4ODQzlGR0RERERERMWhNUnookWL8OOPPwJ4PfPtxIkTMXHixEL3FQQBc+bMKcfoiIiIiJS9b+QWAJiamkIQBMW/REQVgdYkoV27doWZmRkEQcA333yDQYMGoXnz5kr7SCQSmJqawt3dHS1atBApUiIiIqqoDAwMIJFIip1QlnTNV4lEAgMDg9KERkSkMbQmCfX09ISnpycAICMjA/369YOrq6vIURERERH9HysrK4wbNw4ymUwt9RsYGMDKykotdRMRlRetSULfyMzMxO+//w4TExMmoURERKRxKufKIMiy1VK3RKKWaomIypXWJaEmJibQ19eHqamp2KEQERGpzPuGb/LeQe0gS3iKuCmBaj1HzXkLYWDPCRiJSHtpXRIKAP369cOuXbvw+eefQ8KvBImISEuV5P7Bkt47CPD+QTEIOerpAS3vcxARqZNWJqEDBw7EF198gY4dO2L06NFwdHSEsbFxgf3+O3ERERGRJuH9gzquGF+U9z1wDM+zsmBjbIy9vXzfvTN7wIlIR2hlEurt7a34+dy5cwW2C4IAiUSC/Pz8coyKiIio5JgkVmzPs7KQmJkldhhEROVKK5PQdevWiR0CERGRSsgSnqpteKXE0Ij3DhIRkcbRyiR0+PDhYodARERUZpzEhoiIKiKtTELflp6ejkePHgEAatSoATMzM5EjIiIiKp6S9ID2PXgMz7OyYWNshL0933PvYCnPQUREVB6kYgdQWn/99Rc6duyIqlWrwtXVFa6urqhatSo6deqEK1euiB0eERFRyUgk73w8z8pGYmYWnmdlv3dfLiZJRESaTCt7Qi9fvgxvb28YGBhg1KhRaNiwIQDg9u3b2Lp1Kzp06IDTp0+jVatWIkdKREREREREb9PKJHTq1KmoXr06zp8/D3t7e6Vts2bNQtu2bTF16lSEhoaKFCERkbhWrFiB9PR0mJmZlWp9SSIiIiJ10crhuJcvX8bYsWMLJKAAYGdnhzFjxuDSpUsiREZEpBnS09ORmpqK9PR0sUMhIiIiUqKVSahUKkVeXl6R2/Pz8yGVauVLIyIiIiIi0mlamam1adMGS5cuxcOHDwtsi4uLw7Jly9C2bVsRIiMiIiIiIqJ30cokdO7cuUhJSUGDBg0wePBgzJo1C7NmzcKgQYPQoEEDpKSkYN68eaWuf+nSpXB0dISRkRE8PDwQERFR5L6rVq1C+/btUbVqVVStWhU+Pj7v3J+IiIjoDRtjY9iZGMPG2FjsUIiIyo1WTkzUrFkzXL58GVOnTsWBAweQmZkJADAxMYGfnx/mzJkDFxeXUtW9fft2BAYGIjg4GB4eHggKCoKvry+io6Nha2tbYP/Tp09j0KBBaNOmDYyMjDB//nx07doVt27dQvXq1cv0OomIiEi37e1V/DVfiYh0hVYmoQDg4uKCvXv3Qi6X4/nz5wAAGxubMt8LunDhQowePRojRowAAAQHB+Pw4cNYu3YtvvvuuwL7b968Wen56tWrsXv3boSFhSEgIKBMsWgqzrpJRERERESlpZXDcd8mkUiUHmUhk8lw9epV+Pj4KMqkUil8fHwQHh5erDoyMzORm5sLS0vLIvfJyclBamqq4qFts1dy1k0iIiIiIiotrU1Co6Ki0L9/f5ibm8PBwQEODg4wNzdH//79cfPmzVLV+eLFC+Tn58POzk6p3M7ODgkJCcWq49tvv0W1atWUEtn/mjdvHqpUqaJ4eHl5lSpeIiKqOHjvIBER6QqtHI577tw5fPjhh5DL5ejduzfq1asHAIiOjsaBAwdw9OhRhISEoH379uUa188//4xt27bh9OnTMDIyKnK/KVOmIDAwUPE8MjKSiSgRqZSZmZnSv6T9eO8gERHpCq1MQidNmgRbW1ucOXMGNWrUUNr26NEjdOjQAYGBgfjrr79KVK+1tTX09PSQmJioVJ6YmAh7e/t3Hvvbb7/h559/xokTJ9CkSZN37mtoaAhDQ0PFc35IJKKSEAThvfuMGTOmRPsTERERlRetHI5769YtfPHFFwUSUACoUaMGPv/8c9y6davE9RoYGMDd3R1hYWGKMrlcjrCwMHh6ehZ53C+//ILZs2cjJCQELVq0KPF5iYjex8DAoMz3vb+PRCKBgYGBWs9BREREpJU9obVq1UJOTk6R22UyWaEJanEEBgZi+PDhaNGiBVq1aoWgoCBkZGQoZssNCAhA9erVFeuQzp8/HzNmzMCWLVvg6OiouHfUzMyMPZxEpDJWVlYYN24cZDKZ2s5hYGAAKysrtdVPREREBGhpEjpjxgxMmjQJ3bt3h5ubm9K2v//+G0uWLEFQUFCp6h4wYACeP3+OGTNmICEhAW5ubggJCVFMVhQXF6e0DMzy5cshk8nQv39/pXpmzpyJWbNmlSoGIqLCVM6VQZBlq61+NXe0EhEREQHQ0iT00qVLsLOzg7u7O9q0aQNnZ2cAwN27dxEeHg5XV1eEh4crLasikUiwePHiYtU/fvx4jB8/vtBtp0+fVnoeGxtbqtegqYpz75ipqSkEQVD8S0TqJ0t4irgpge/fsYxqzlsIA3sHtZ+HiIiIKi6tTEL/+OMPxc8XLlzAhQsXlLb/888/+Oeff5TKSpKEVjRv7jUrbkI5duzYEtXP+8yIyk7IKVkPaN+Dx/A8Kxs2xkbY27P4s6qW9DxEREREJaWVSahcLhc7BJ2i7nvNeJ8ZkYoVY9zs86xsJGZmFXt/cFQDERERlROtTEJJ9ZgkEhERERFRedDqJDQmJgZHjx7Fw4cPAbyeNffDDz+Ek5OTyJFpH1nCU7UNw5MYGvEeMyIiIiIiAqDFSejkyZOxePHiAkNzpVIpJk6ciN9++02kyLRPeUx4wslOiIiIiIgIAKTv30XzLFiwAIsWLYK/vz/Cw8ORnJyM5ORkhIeHo3///li0aBEWLVokdphaozQTnrTbsR99Dx5T2zmIiIiIiEg3aWVP6KpVq9CrVy/s2LFDqdzDwwPbtm1DdnY2VqxYgUmTJokUoRZT9YQnnOyEiIiIiIjeopU9obGxsfD1LXrJAV9fX51bv5OIiIiIiEgXaGUSamtri+vXrxe5/fr167CxsSnHiIiIiIiIiKg4tDIJ/eijj7B69Wr8/PPPyMjIUJRnZGRg/vz5WL16NQYMGCBihERE4rIxNoadiTFsjI3FDoWIiIhIiVbeEzp79mxERkbi+++/x4wZM1CtWjUAQHx8PPLy8tCxY0f8+OOPIkdJRCSevb2KvmWBiIiISExamYSamJggLCwM+/fvV1on1M/PD926dUPPnj0hKcYEO0RERERERFS+tC4JzczMxNChQ9GvXz8MGTIEvXv3FjskIiIiIiIiKiatuyfUxMQEJ06cQGZmptihVFi814yIiIiIiEpL63pCAaBdu3YIDw/H6NGjxQ6lQuK9ZkREREREVFpa1xMKAH/88QfOnTuHadOm4fHjx2KHQ0RERERERMWklUlo06ZN8fjxY8ybNw+1atWCoaEhzM3NlR5VqlQRO0wiIiIiIiL6D60cjtuvXz/OfktERERERKSFtDIJXb9+vdghEBERERERUSloVRKanZ2N/fv3IyYmBtbW1ujevTscHBzEDouIiIiIiIiKSWuS0GfPnqFNmzaIiYmBIAgAXi/Xsm/fPvj4+IgcHRERERERERWH1kxMNHv2bMTGxmLSpEk4dOgQgoKCYGxsjLFjx4odGhERERERERWT1vSEHj9+HAEBAfjtt98UZXZ2dhg8eDCio6NRv359EaMjIiIiIiKi4tCantC4uDi0a9dOqaxdu3YQBAGJiYkiRUVEREREREQloTVJaE5ODoyMjJTK3jzPy8sTIyQiIiIiIiIqIa1JQgEgNjYW165dUzxu3LgBALh7965S+ZtHaS1duhSOjo4wMjKCh4cHIiIi3rn/zp070aBBAxgZGaFx48Y4cuRIqc9NRERERESky7TmnlAAmD59OqZPn16g/IsvvlB6LggCJBIJ8vPzS3yO7du3IzAwEMHBwfDw8EBQUBB8fX0RHR0NW1vbAvtfvHgRgwYNwrx589CjRw9s2bIFffr0wbVr1+Dq6lri8xMREREREekyrUlC161bVy7nWbhwIUaPHo0RI0YAAIKDg3H48GGsXbsW3333XYH9Fy9eDD8/P/zvf/8D8HoW39DQUPzxxx8IDg4ul5iJiIiIiIi0hdYkocOHD1f7OWQyGa5evYopU6YoyqRSKXx8fBAeHl7oMeHh4QgMDFQq8/X1xb59+4o8T05ODnJychTP09PTyxa4Kv3/NVhJh7BNdQ/bVDexXXUP21T3sE11E9u13GnVPaHq9uLFC+Tn58POzk6p3M7ODgkJCYUek5CQUKL9AWDevHmoUqWK4uHl5VX24MtAYmj0/p204Bz0f8rr/5vtWn7YprqJf391D9tU9/Dvr27itSourekJ1SVTpkxR6j2NjIwUNRE1sHdAzXkLIeRkq6V+iaERDOwd1FI3FU7dbQqwXcsb21Q38e+v7mGb6h7+/dVNvFbFxST0LdbW1tDT0yuw7mhiYiLs7e0LPcbe3r5E+wOAoaEhDA0NFc/NzMzKELVq8CLRPWxT3cM21U1sV93DNtU9bFPdxHYVD4fjvsXAwADu7u4ICwtTlMnlcoSFhcHT07PQYzw9PZX2B4DQ0NAi9yciIiIiIqrI2BP6H4GBgRg+fDhatGiBVq1aISgoCBkZGYrZcgMCAlC9enXMmzcPAPDVV1/By8sLCxYsQPfu3bFt2zZcuXIFK1euFPNlEBERERERaSQmof8xYMAAPH/+HDNmzEBCQgLc3NwQEhKimHwoLi4OUun/dSC3adMGW7ZswbRp0/D999+jbt262LdvH9cIJSIiIiIiKoREEDgnsdiuXbsGd3d3XL16Fc2bNxc7HCIiIiIiIrXhPaFERERERERUbpiEEhERERERUbnhPaFUKk+fPsXTp0/FDoNUyMHBAQ4OnKpcl/A61T28TnUTr1Uizce/v6rFJFQDODg4YObMmVrzi52Tk4NBgwbhzJkzYodCKuTl5YVjx44prWFL2ovXqW7idap7eK0SaQf+/VUtTkxEJZaamooqVargzJkzMDMzEzscUoH09HR4eXkhJSUF5ubmYodDKsDrVPfwOtVNvFZ1z5trlW2qO/j3V/XYE0ql5ubmxgtRR6SmpoodAqkJr1PdwetUt/Fa1R1vrlW2qe7g31/V48REREREREREVG6YhBIREREREVG5YRJKJWZoaIiZM2fyxmwdwjbVPWxT3cM21U1sV93DNtU9bFPV48REREREREREVG7YE0pERERERETlhkkoERERERERlRsmoURERERERFRumISSqGJjYyGRSLB+/XqxQyEiIiIionLAJFSL3L9/H2PHjkXt2rVhZGQEc3NztG3bFosXL0ZWVpbazhsVFYVZs2YhNjZWbecojp9++gm9evWCnZ0dJBIJZs2aJWo85UkikRTrcfr06TKfKzMzE7NmzSpRXRW5bcpCk9v1zp07+Oabb+Dm5obKlSvDwcEB3bt3x5UrV8ociy7T5DaNj4/H0KFDUb9+fVSuXBkWFhZo1aoVNmzYAM5RWDRNbtP/2rx5MyQSCczMzMoci67T5HadNWvWO2O6cOFCmWPSRZrcpm/cv38fgwcPhq2tLYyNjVG3bl1MnTq1zPFoI32xA6DiOXz4MD766CMYGhoiICAArq6ukMlkOH/+PP73v//h1q1bWLlypVrOHRUVhR9++AHe3t5wdHRUyzmKY9q0abC3t0ezZs1w7Ngx0eIQw6ZNm5Seb9y4EaGhoQXKGzZsWOZzZWZm4ocffgAAeHt7F+uYitw2ZaHJ7bp69WqsWbMG/fr1wxdffIGUlBSsWLECrVu3RkhICHx8fMocky7S5DZ98eIFHj9+jP79+6NmzZrIzc1FaGgoPvnkE0RHR2Pu3LlljkkXaXKbvi09PR3ffPMNTE1NyxxHRaDJ7erv7w9nZ+cC5d9//z3S09PRsmXLMsekizS5TQEgMjIS3t7eqF69OiZPngwrKyvExcXh0aNHZY5HKwmk8R48eCCYmZkJDRo0EOLj4wtsv3v3rhAUFKS28+/cuVMAIJw6deq9+8rlciEzM7PYdcfExAgAhHXr1hVrX0EQhOfPnwsAhJkzZxb7PLpm3Lhxgrou39L8/7JtVEOT2vXKlStCWlqaUtmLFy8EGxsboW3btmqIUDdpUpsWpUePHoKpqamQl5enmsB0nKa26bfffivUr19fGDJkiGBqaqr64HScprbrG3FxcYJEIhFGjx6tusB0nCa1aX5+vuDq6ip4eHiU6HOyLuNwXC3wyy+/ID09HWvWrIGDg0OB7c7Ozvjqq68Uz/Py8jB79mzUqVMHhoaGcHR0xPfff4+cnByl4xwdHdGjRw+cP38erVq1gpGREWrXro2NGzcq9lm/fj0++ugjAEDHjh0LDGV4U8exY8fQokULGBsbY8WKFQCABw8e4KOPPoKlpSVMTEzQunVrHD58uNT/D2L2wmoDuVyOoKAgNGrUCEZGRrCzs8PYsWPx6tUrpf2uXLkCX19fWFtbw9jYGE5OThg5ciSA1/fo2tjYAAB++OEHRXu/b3gt20Z9xGpXd3f3AkP6rKys0L59e9y+fVu1L7KCEfNaLYyjoyMyMzMhk8nK/NoqKrHb9O7du1i0aBEWLlwIfX0OclMVsdv1bVu3boUgCBgyZIhKXltFJVabHj9+HDdv3sTMmTNhbGyMzMxM5Ofnq+11agP+pdICBw8eRO3atdGmTZti7T9q1Chs2LAB/fv3x+TJk3H58mXMmzcPt2/fxt69e5X2vXfvHvr3749PP/0Uw4cPx9q1a/HJJ5/A3d0djRo1QocOHTBhwgT8/vvv+P777xVDGN4eyhAdHY1BgwZh7NixGD16NOrXr4/ExES0adMGmZmZmDBhAqysrLBhwwb06tULu3btQt++fVX3H0QAgLFjx2L9+vUYMWIEJkyYgJiYGPzxxx/4+++/ceHCBVSqVAnPnj1D165dYWNjg++++w4WFhaIjY3Fnj17AAA2NjZYvnw5Pv/8c/Tt2xf+/v4AgCZNmoj50io0TWvXhIQEWFtbq/Q1VjRit2lWVhYyMjKQnp6OM2fOYN26dfD09ISxsbFaX7cuE7tNJ06ciI4dO6Jbt27YsWOHWl9rRSJ2u75t8+bNqFGjBjp06KDy11mRiNWmJ06cAAAYGhqiRYsWuHr1KgwMDNC3b18sW7YMlpaW6n/xmkbsrlh6t5SUFAGA0Lt372LtHxkZKQAQRo0apVT+9ddfCwCEkydPKspq1aolABDOnj2rKHv27JlgaGgoTJ48WVH2ruG4b+oICQlRKp84caIAQDh37pyiLC0tTXBychIcHR2F/Px8QRBKNhz3DQ75LDjE5Ny5cwIAYfPmzUr7hYSEKJXv3btXACD89ddfRdZdlv9ftk3ZaGq7vnH27FlBIpEI06dPL3UdFY0mtum8efMEAIpH586dhbi4uBLVUZFpWpseOnRI0NfXF27duiUIgiAMHz6cw3FLQdPa9W03b94UAAjffPNNqY6vqDSpTXv16iUAEKysrIQhQ4YIu3btEqZPny7o6+sLbdq0EeRyeclfoJbjcFwNl5qaCgCoXLlysfY/cuQIACAwMFCpfPLkyQBQYDisi4sL2rdvr3huY2OD+vXr48GDB8WO0cnJCb6+vgXiaNWqFdq1a6coMzMzw5gxYxAbG4uoqKhi10/vt3PnTlSpUgVdunTBixcvFI83QypPnToFALCwsAAAHDp0CLm5uSJGTMWhSe367NkzDB48GE5OTvjmm2/Uco6KQBPadNCgQQgNDcWWLVswePBgAFDrDOu6Tsw2lclkmDRpEj777DO4uLiopE56TROu1Tc2b94MAByKW0Zitml6ejoAoGXLlvjzzz/Rr18//Pjjj5g9ezYuXryIsLAwlZxHmzAJ1XDm5uYAgLS0tGLt//DhQ0il0gKzqtnb28PCwgIPHz5UKq9Zs2aBOqpWrVpgbPy7ODk5FRpH/fr1C5S/Gcb73ziobO7evYuUlBTY2trCxsZG6ZGeno5nz54BALy8vNCvXz/88MMPsLa2Ru/evbFu3boC9wuTZtCUds3IyECPHj2QlpaG/fv3c/mHMtCENq1VqxZ8fHwwaNAgbN68GbVr14aPjw8T0VISs00XLVqEFy9eKGbpJNXRhGsVAARBwJYtW+Dq6spbY8pIzDZ9c7vDoEGDlMrffBF48eLFUtetrXhPqIYzNzdHtWrVcPPmzRIdJ5FIirWfnp5eoeVCCdaM431E4pPL5bC1tVV8W/pfb26gl0gk2LVrFy5duoSDBw/i2LFjGDlyJBYsWIBLly4xudAwmtCuMpkM/v7+uHHjBo4dOwZXV9dS10Wa0ab/1b9/f6xatQpnz54tMKqF3k+sNk1JScGcOXPwxRdfIDU1VTFyKj09HYIgIDY2FiYmJrC1tS3bC6ygNOVavXDhAh4+fIh58+aVqR4St02rVasGALCzs1Mqf3N9lqTzR1cwCdUCPXr0wMqVKxEeHg5PT8937lurVi3I5XLcvXtXafKgxMREJCcno1atWiU+f3ET2v/GER0dXaD8zp07iu2kOnXq1MGJEyfQtm3bYn0p0Lp1a7Ru3Ro//fQTtmzZgiFDhmDbtm0YNWpUqdqb1EPsdpXL5QgICEBYWBh27NgBLy+v0rwMeovYbVqYNz2gKSkpKqmvohGrTV+9eoX09HT88ssv+OWXXwpsd3JyQu/evbFv376SvBz6/zTlWt28eTMkEomix4xKT8w2dXd3x6pVq/DkyROl8vj4eAD/lwBXJByOqwXeLD49atQoJCYmFth+//59LF68GADQrVs3AEBQUJDSPgsXLgQAdO/evcTnf7PwdXJycrGP6datGyIiIhAeHq4oy8jIwMqVK+Ho6Mh7V1Ts448/Rn5+PmbPnl1gW15enqLtXr16VaCX283NDQAUw0xMTEwAlKy9ST3Ebtcvv/wS27dvx7JlyxSz/1HZiNmmz58/L7R8zZo1kEgkaN68ebHqIWVitamtrS327t1b4NGxY0cYGRlh7969mDJlSulfWAUn9t9fAMjNzcXOnTvRrl27Qm+fopIRs0179+4NQ0NDrFu3DnK5XFG+evVqAECXLl1K8lJ0AntCtUCdOnWwZcsWDBgwAA0bNkRAQABcXV0hk8lw8eJF7Ny5E5988gkAoGnTphg+fDhWrlyJ5ORkeHl5ISIiAhs2bECfPn3QsWPHEp/fzc0Nenp6mD9/PlJSUmBoaIhOnTq9c4jPd999h61bt+LDDz/EhAkTYGlpiQ0bNiAmJga7d++GVFry7z82bdqEhw8fIjMzEwBw9uxZzJkzBwAwbNiwCt276uXlhbFjx2LevHmIjIxE165dUalSJdy9exc7d+7E4sWL0b9/f2zYsAHLli1D3759UadOHaSlpWHVqlUwNzdXfIFhbGwMFxcXbN++HfXq1YOlpSVcXV3fOQyTbaMeYrZrUFAQli1bBk9PT5iYmODPP/9U2t63b1/FF1RUfGK26U8//YQLFy7Az88PNWvWRFJSEnbv3o2//voLX375ZYG5BKh4xGpTExMT9OnTp0D5vn37EBERUeg2Kj6x31cB4NixY3j58iUnJFIRMdvU3t4eU6dOxYwZM+Dn54c+ffrg+vXrWLVqFQYNGoSWLVuW53+FZhBtXl4qsX///VcYPXq04OjoKBgYGAiVK1cW2rZtKyxZskTIzs5W7Jebmyv88MMPgpOTk1CpUiWhRo0awpQpU5T2EYTXy6t07969wHm8vLwELy8vpbJVq1YJtWvXFvT09JSWaymqDkEQhPv37wv9+/cXLCwsBCMjI6FVq1bCoUOHlPYpyRItXl5eSssKvP0obPkYXfbfacffWLlypeDu7i4YGxsLlStXFho3bix88803Qnx8vCAIgnDt2jVh0KBBQs2aNQVDQ0PB1tZW6NGjh3DlyhWlei5evCi4u7sLBgYGxZqCnG2jGprUrsOHDy+yTQEIMTExqnzpOkuT2vT48eNCjx49hGrVqgmVKlVSvIesW7euQi4PUFqa1KaF4RItpaOJ7Tpw4EChUqVKwsuXL1XyGisaTWtTuVwuLFmyRKhXr57i8/m0adMEmUymstesTSSCUIIZaIiIiIiIiIjKgPeEEhERERERUblhEkpERERERETlhkkoERERERERlRsmoURERERERFRumIQSERERERFRuWESqkN++eUXNGjQQGkRXG01cOBAfPzxx2KHITq2qe5hm+omtqvuYZvqHrapbmK7aimx14gh1UhJSREsLS2FtWvXKsrw/9fz++233wrsv27dOgGA8Ndff6k8Fh8fHwGAMG7cuEK3r169WmjQoIFgaGgoODs7C7///nuBfa5duyZIpVIhMjJS5fFpC7ap7mGb6ia2q+5hm+oetqluYrtqL/aE6oi1a9ciLy8PgwYNKrDt119/RWZmZrnEsWfPHoSHhxe5fcWKFRg1ahQaNWqEJUuWwNPTExMmTMD8+fOV9mvWrBlatGiBBQsWqDtkjcU21T1sU93EdtU9bFPdwzbVTWxXLSZ2Fkyq0aRJE2Ho0KFKZQAENzc3AYCwYMECpW3q+CYoKytLcHR0FH788cdCvwnKzMwUrKyshO7duyuVDxkyRDA1NRWSkpKUyn/77TfB1NRUSEtLU1mM2oRtqnvYprqJ7ap72Ka6h22qm9iu2os9oTogJiYGN27cgI+PT4Ftbdu2RadOnfDLL78gKytLrXH88ssvkMvl+PrrrwvdfurUKbx8+RJffPGFUvm4ceOQkZGBw4cPK5V36dIFGRkZCA0NVVvMmoptqnvYprqJ7ap72Ka6h22qm9iu2o1JqA64ePEiAKB58+aFbp81axYSExOxfPnyd9aTk5ODFy9eFOvxX3Fxcfj5558xf/58GBsbF1r/33//DQBo0aKFUrm7uzukUqli+xsuLi4wNjbGhQsX3hm3LmKb6h62qW5iu+oetqnuYZvqJrardtMXOwAquzt37gAAnJycCt3evn17dOzYEb/++is+//zzIi+SrVu3YsSIEcU6pyAISs8nT56MZs2aYeDAgUUe8/TpU+jp6cHW1lap3MDAAFZWVoiPj1cq19fXR40aNRAVFVWsmHQJ21T3sE11E9tV97BNdQ/bVDexXbUbk1Ad8PLlS+jr68PMzKzIfWbNmgUvLy8EBwdj0qRJhe7j6+tbqq7/U6dOYffu3bh8+fI798vKyoKBgUGh24yMjAodLlG1atVCv3nSdWxT3cM21U1sV93DNtU9bFPdxHbVbkxCK4gOHTqgY8eO+OWXX/DZZ58Vuo+DgwMcHBxKVG9eXh4mTJiAYcOGoWXLlu/c19jYGDKZrNBt2dnZhX5DJQgCJBJJiWKqKNimuodtqpvYrrqHbap72Ka6ie2quZiE6gArKyvk5eUhLS0NlStXLnK/mTNnwtvbGytWrICFhUWB7VlZWUhJSSnWOe3t7QEAGzduRHR0NFasWIHY2FilfdLS0hAbGwtbW1uYmJjAwcEB+fn5ePbsmdKQBJlMhpcvX6JatWoFzvPq1SvUrVu3WDHpErap7mGb6ia2q+5hm+oetqluYrtqN05MpAMaNGgA4PUsYe/i5eUFb29vzJ8/v9Cu/+3btyu+DXrf4424uDjk5uaibdu2cHJyUjyA1xeok5MTjh8/DgBwc3MDAFy5ckXpvFeuXIFcLldsfyMvLw+PHj1Cw4YNS/T/oQvYprqHbaqb2K66h22qe9imuontqt3YE6oDPD09Abz+ZW7SpMk79501axa8vb2xcuXKAttKMyZ+4MCBBS4eAOjbty+6deuG0aNHw8PDAwDQqVMnWFpaYvny5ejWrZti3+XLl8PExATdu3dXqiMqKgrZ2dlo06ZNiWLSBWxT3cM21U1sV93DNtU9bFPdxHbVcmIsTkqq5+rqKgwaNEipDIUsmCsIguDl5SUAUPlivcU599KlSwUAQv/+/YVVq1YJAQEBAgDhp59+KrDvb7/9JpiYmAipqalqiVHTsU11D9tUN7FddQ/bVPewTXUT21V7MQnVEQsXLhTMzMyEzMxMRVlRF8KpU6dEuwgFQRBWrlwp1K9fXzAwMBDq1KkjLFq0SJDL5QX28/DwEIYOHaqW+LQB21T3sE11E9tV97BNdQ/bVDexXbUXk1AdkZycLFhaWgqrV68WOxSV+PvvvwWJRCL8/fffYociGrap7mGb6ia2q+5hm+oetqluYrtqL4kg/GfVVdJa8+fPx7p16xAVFQWpVLvnnBo4cCDkcjl27NghdiiiYpvqHrapbmK76h62qe5hm+omtqt2YhJKRERERERE5Ua7vy4gIiIiIiIircIklIiIiIiIiMoNk1AiIiIiIiIqN0xCiYiIiIiIqNwwCSUiIiIiIqJywySUiIiIiIiIyg2TUCIiIiIiIio3TEKJiIiIiIio3DAJJSIiIiIionLDJPQtZ8+eRc+ePVGtWjVIJBLs27fvvcecPn0azZs3h6GhIZydnbF+/Xq1x0lERERERKStmIS+JSMjA02bNsXSpUuLtX9MTAy6d++Ojh07IjIyEhMnTsSoUaNw7NgxNUdKRERERESknSSCIAhiB6GJJBIJ9u7diz59+hS5z7fffovDhw/j5s2birKBAwciOTkZISEh5RAlERERERGRdmFPaBmEh4fDx8dHqczX1xfh4eEiRURERERERKTZmISWQUJCAuzs7JTK7OzskJqaiqysrCKPy8nJQWpqquLx77//Ytq0aXj69Km6QyYiIiIiIhIVk1ARzJs3D1WqVFE86tevj59++olJKBERERER6TwmoWVgb2+PxMREpbLExESYm5vD2Ni4yOOmTJmClJQUxePMmTPqDpWIiIiIiEgj6IsdgDbz9PTEkSNHlMpCQ0Ph6en5zuMMDQ1haGioeG5mZqaW+IiIiIiIiDQNe0Lfkp6ejsjISERGRgJ4vQRLZGQk4uLiALzuwQwICFDs/9lnn+HBgwf45ptvcOfOHSxbtgw7duzApEmTxAifiIiIiIhI4zEJfcuVK1fQrFkzNGvWDAAQGBiIZs2aYcaMGQCAp0+fKhJSAHBycsLhw4cRGhqKpk2bYsGCBVi9ejV8fX1FiZ+IiIiIiEjTcZ1QDXDt2jW4u7vj6tWraN68udjhEBERERERqQ17QomIiIiIiKjcMAklIiIiIiKicsMklIiIiIhIhbKyssQOgUijMQklIiIiIlKhpKQksUMg0mhMQomIiIiIVCglJQWc+5OoaExCiQgAkJubK3YIREREOiEvLw+ZmZlih0GksTQyCX369CmuX7+OjIwMsUMhqjCYhBIREalOenq62CEQaSyNSkL379+PBg0a4IMPPkDz5s1x+fJlAMCLFy/QrFkz7Nu3T9wAiXRYfn6+2CEQERHpjGfPnokdApHG0pgk9ODBg/D394e1tTVmzpypNI7e2toa1atXx7p160SMkEi3yWQysUMgIiLSGVFRUfyCl6gIGpOE/vjjj+jQoQPOnz+PcePGFdju6emJv//+W4TIiCoGJqFERESqk5KSgrNnz3KCIqJCaEwSevPmTXz88cdFbrezs+OwBiI1ys7OFjsEIiIinXL37l1cvHiRiSjRf2hMEmpiYvLOiYgePHgAKyurcoyIqGLhLH5ERESqd+vWLVy6dImJKNFbNCYJ7dixIzZs2IC8vLwC2xISErBq1Sp07dpVhMiIKoa0tDSxQyAiItJJ//zzD44fP85RR0T/n8YkoT/99BMeP36Mli1bYsWKFZBIJDh27BimTZuGxo0bQxAEzJw5U+wwiXRWVlYWe0OJiIjU5OHDh9i1axcePXokdihEotOYJLR+/fo4f/48rKysMH36dAiCgF9//RVz585F48aNce7cOTg6OoodJpFOi4+PFzsEIiIinZWZmYmjR48iLCyMI5CoQtMXO4C3NWrUCCdOnMCrV69w7949yOVy1K5dGzY2NmKHRlQh3L9/H87OzmKHQUREpLVatGiBR48ewcjICFOnTi10n/v37yMmJgZ16tRBkyZNOO8JVTgalYS+UbVqVbRs2VLsMIgqnLi4OKSnp8PMzEzsUIiIiLRSQkICnj17BgsLi3fuJ5fLcffuXdy9exc1a9ZEq1atYGlpWT5BEolMY4bj/v777/D19S1y+4cffojly5eXY0REFY8gCLh+/brYYRAREVUocXFx2L17N86cOYOUlBSxwyFSO41JQtesWQMXF5cit7u4uGDlypXlGBFRxXT79m2kpqaKHQYREVGFIggCoqOjsWPHDhw7dgxPnz7lsi6kszQmCb1//z4aNmxY5PYGDRrg/v375RgRUcUkl8tx/vx5vvERERGJQBAEPHz4EAcPHsThw4eRnJwsdkhEKqcxSaiBgQESEhKK3P706VNIpRoTLpFOe/z4MW7cuCF2GERERFolLi4OGRkZAICcnBwkJSWVqb74+Hjs3r0bV69eRW5uripCJNIIGpPVtW7dGuvXry90uuqUlBSsW7cOrVu3FiEyooopIiIC//77r9hhEBERabyIiAj07NkTjo6Oip7LrKwsfP/991i6dCliY2NLXXd+fj6uXr2KzZs3IyIiAllZWaoJmkhEGpOEzpw5E/Hx8XBzc8OSJUtw8uRJnDx5Er///juaNWuGp0+fYubMmWKHSVRhCIKA06dP4+rVqxyaS0REVIQ9e/agbdu2OHr0aIH3S0EQcPPmTcyfPx/Xrl0r03lkMhkiIyOxbds23LhxA3K5vEz1vUtSUhKGDBkCc3NzWFhY4NNPP0V6enqR+8fGxkIikRT62Llzp2K/uLg4dO/eHSYmJrC1tcX//vc/5OXlqe11kOaSCBr06TI0NBRjx45V/CIDry9eJycnLF++HF27dhU5QvW4du0a3N3dcfXqVTRv3lzscKgCatGiBR4+fAgTE5NC1zRzcHCAl5cXzM3NRYiOiIhIM0VERKBt27bIz89/7xe2UqkU3377LRwdHVVy7qpVq8LNzQ21a9eGnp5eiY/39vbGJ598gk8++aTAtg8//BBPnz7FihUrkJubixEjRqBly5bYsmVLoXXl5+fj+fPnSmUrV67Er7/+iqdPn8LMzAz5+flwc3ODvb29ojwgIACjR4/G3LlzSxw/aTeNSkKB15Oi/P3334pJiOrUqYPmzZsrklJdxCSUxPbBBx/gyZMnsLCwwPz58wvdR19fH+7u7mjcuDHvzyYiIgLQq1cvHDlyBPn5+e/dVyqVonHjxvjiiy9UGoOpqSnc3Nzg4uJSos/LRSWht2/fhouLC/766y+0aNECABASEoJu3brh8ePHqFatWrHqb9asGZo3b441a9YAAI4ePYoePXogPj4ednZ2AIDg4GB8++23eP78OQwMDIodO2k/jfskKZVK4e7ujo8//hgff/wx3N3ddToBJdIWeXl5uHz5Mnbv3o34+HixwyEiIhJVXFwcDh06VKwEFHjd0XLjxo0yT1b0XxkZGbhw4QJiYmJUUl94eDgsLCwUCSgA+Pj4QCqV4vLly8Wq4+rVq4iMjMSnn36qVG/jxo0VCSgA+Pr6IjU1Fbdu3VJJ7KQ99MUO4L+ioqLw4MEDvHr1qtBhDQEBASJERURvvHr1CocOHYKzszNat24NExMTsUMiIiIqUl5eXrETxZIICQkp8ZwJgiDg9u3baNOmjcrjiY+PR+3atctcT0JCAmxtbZXK9PX1YWlp+c6VLN62Zs0aNGzYUOl1JiQkKCWgABTPi1sv6Q6NSULv37+PoUOHIiIiosgLWiKRMAkl0hD37t1DXFwcPDw80KBBA45YICIijZOXl4eoqCi1zCh7584dSKXSEk0QJJFIkJqaiszMTJXHc/fuXbRu3Rr6+oV/vJ87d67SvZdZWVm4dOkSxo8fryiLiooqcxxZWVnYsmULpk+fXua6SHdpTBI6duxY/PPPPwgKCkL79u1RtWpVsUMioveQyWQ4d+4c7t+/D29vb5iZmYkdEhERkUJ+fj6ysrJQqVIlld9zWLVq1RLPUCsIAoyNjVU6t4JEIoGtrS2qV6+O/Pz8IpPQzz77DB9//LHi+ZAhQ9CvXz/4+/sryqpVqwZ7e3s8e/ZM6di8vDwkJSXB3t7+vfHs2rULmZmZBTqO7O3tERERoVSWmJio2EYVi8YkoRcuXMD333+PL7/8UuxQiKiE4uPjsWvXLnTo0EElQ4GIiIhUycDAQOVJaLNmzSCRSEo0JFcikaB+/foqS0KNjY3h5uYGIyMjZGRkvHNfS0tLWFpaKh1ra2sLZ2dnpf08PT2RnJyMq1evwt3dHQBw8uRJyOVyeHh4vDemNWvWoFevXrCxsSlQ708//YRnz54phvuGhobC3NwcLi4uxXq9pDs0ZmIia2trVKlSRewwiKiUZDIZTpw4gQsXLqh17TIiIiIxvVn788SJE6hZs2axb0eRSqVo1KiRUiJYFlZWVmjdurXKl09r2LAh/Pz8MHr0aERERODChQsYP348Bg4cqJgZ98mTJ2jQoEGBns179+7h7NmzGDVqVIF6u3btChcXFwwbNgzXr1/HsWPHMG3aNIwbNw6GhoYqfQ2k+TQmCf3ss8/w559/quXGcSIqP7du3cLhw4eRnZ0tdihEREQqlZaWhn379uHEiROQyWRo0aJFieZEUMWa94aGhmjatCnc3d3VtqzJ5s2b0aBBA3Tu3BndunVDu3btsHLlSsX23NxcREdHF7i3de3atfjggw8KfZ16eno4dOgQ9PT04OnpiaFDhyIgIAA//vijWl4DaTaNWSd0586d+Pnnn5GTk4ORI0eiRo0ahS68+/a4dV3BdUJJbMVZJ7SkqlSpAj8/P45wICIi0eTk5CAyMhKmpqZlStgEQUBUVBTOnDkDmUymKG/UqBFkMhm++eYbCIJQaGeKRCKBRCJB37590bhxY1hYWJR6OG7VqlXRrFkzVKpUSalcJpMhIyMDbm5u7FUkraAx94QOGDBA8fPXX39d6D4SiYQ9pURaIiUlBfv374efn1+Bqd6JiIi0RXp6Ok6cOIHY2FhFmampKXx8fODk5AQAqFGjBpYtW4bTp08r3SMqkUjg4uKC1q1bw97eHrm5uUhJSYGFhUWJelD19fXh6OgIR0fHQjtpiLSNxiShp06dEjsEogopLi5OMZlBTk4OkpKSVHa/SnZ2Ng4dOoROnTrB0dFRJXUSERGVB0EQcOfOHZw+fRo5OTmK8oYNG8LLywtGRkaKsiZNmiA4OBjx8fHo3bs3UlNTYWxsjG+//RaWlpaK2WUFQYBMJkNKSgqqVKny3kTUzMwMNWvWhIODQ5Gz3hJpI435bfby8hI7BKIKJSIiArNnz8bhw4cV39pmZWXh+++/R+PGjdG9e3eVJI55eXkIDQ1Fy5Yt0bRpU64nSkREGi8jIwNhYWF48OCBoszExAQ+Pj7vnAW+WrVqMDY2RmpqKgwMDBRf6urr68PCwgLJyckQBAE5OTlITU2Fubl5oe+LJiYmqFevHmxtbfm+STpJYyYmeiMnJwfh4eHYv38/Xrx4IXY4RDppz549aNu2LY4ePVpgavk3s/7Nnz8f165dU8n5BEFAREQEQkNDlb5NVqWkpCQMGTIE5ubmsLCwwKeffor09PR3HuPt7a24V+fN47PPPlNsX79+fYHtbx7/XUONiIi035vez40bNyoloA0aNEBAQECZliEzMDBQmichOzsb6enpSu/D+vr6qFevHtq0aQM7OzsmoKSzNCoJ/f333+Hg4IB27drB398fN27cAAC8ePEC1tbWWLt2rcgREmm/iIgIDBgwAPn5+UXeYy2XyyGXy7Fq1Sqle2DKKjY2Fnv27MHLly9Ldby3tzfWr19f6LYhQ4bg1q1bCA0NxaFDh3D27FmMGTPmvXWOHj0aT58+VTx++eUXxbYBAwYobXv69Cl8fX3h5eXF+1yJiHRMRkYGDh06hJCQEMUXpiYmJujZsyf8/PyUht+WlqGhoVIimpmZqZhhtlatWujQoQOcnJx43yfpPI1JQtetW4eJEyfCz88Pa9asUfpWyNraGp06dcK2bdtEjJBIN8yZMweCIBR7ce0jR46o9PxpaWnYv38/njx5orI6b9++jZCQEKxevRoeHh5o164dlixZgm3btiE+Pv6dx5qYmMDe3l7xeHu9NWNjY6Vtenp6OHnyJD799FOVxU5EROISBAHR0dHYtGkT7t+/ryivX78+hg0bhjp16qj0fEZGRkrvNampqbCwsECDBg0KzHpLpKs0JgldsGABevfujS1btqBnz54Ftru7u+PWrVsiREakO+Li4nDo0KFizzItl8tx48YNJCUlqTSOvLw8HD9+HGlpaSqpLzw8HBYWFmjRooWizMfHB1KpFJcvX37nsZs3b4a1tTVcXV0xZcqUAmuevW3jxo0wMTFB//79VRI3ERGJKzMzE4cPH8bRo0cV61sbGxuje/fu+PDDD2FsbKyW8xobG6Ny5crIyspCcnIywsPDcefOHbWci0gTaczERPfu3cOECROK3G5paVnqIXxE2iYvL08tyxGFhIQUuwf0DUEQcPv2bbRp00alschkMty6dQutW7cuc10JCQkFhsfq6+vD0tISCQkJRR43ePBg1KpVC9WqVcONGzfw7bffIjo6Gnv27Cl0/zVr1mDw4MFq+1BCRETl599//8WpU6eQlZWlKKtbty46duwIExMTtZ7b3t4e9erVw9WrV3HlyhUAwPHjx2FoaKhY9oVIl2lMEmphYfHOiYiioqJgb29fjhERiSMvLw9RUVFKb4qqcufOHUilUsjl8mIfI5FIkJqa+s4ewtKKiYlBixYtipx2fu7cuZg7d67ieVZWFi5duoTx48cryqKiokp9/rfvGW3cuDEcHBzQuXNn3L9/v8Dwq/DwcNy+fRubNm0q9fmIiEh8WVlZOHnyJO7evasoMzIyQqdOnVCvXj21nltPTw+NGjWCg4MDAKBt27bIzs7GzZs3IZfLcfjwYfTt2xfVq1dXaxxEYtOYJLRbt25YuXIlvvjiiwLbbt26hVWrVmHkyJEiREZUvvLz85GVlYVKlSrBwMBApXVXrVq1RAko8Lon1NjYGFKpakfvC4IAfX195OfnF5mEfvbZZ/j4448Vz4cMGYJ+/frB399fUVatWjXY29sXmK32zZpsJfnyysPDA8DrkRn/TUJXr14NNzc3uLu7F7s+IiLSLPfu3cPJkyeVvlh1dnZGx44dYWpqqtZzGxsbo1mzZqhcubKiTCKRoFOnTsjJycHdu3eRl5eH/fv346OPPoKNjY1a4yESk8YkoXPmzIGHhwdcXV3Rs2dPSCQSbNiwAWvXrsXu3bvh4OCAGTNmiB0mUbkxMDBQaRIaFxdXqiHtEokE9evXV3kSCuC9M8xaWloq1lgDXr+B29rawtnZWWk/T09PJCcn4+rVq4ok8eTJk5DL5YrEsjgiIyMBQPEN9Rvp6enYsWMH5s2bV+y6iIhIc2RnZyMsLAzR0dGKMiMjI3Ts2BH16tVT+1IoJiYmaNWqFQwNDQtsk0ql8PPzQ05ODuLi4iCTybB371589NFHqFq1qlrjIhKLxkxMVK1aNVy9ehV+fn7Yvn07BEHApk2bcPDgQQwaNAiXLl2CtbW12GESaZ0XL15g79692LNnD2QyGWrVqlXsN1upVIpGjRopJYKq0rBhQ5VMd/+mLj8/P4wePRoRERG4cOECxo8fj4EDB6JatWoAgCdPnqBBgwaIiIgAANy/fx+zZ8/G1atXERsbiwMHDiAgIAAdOnRAkyZNlOrfvn078vLyMHToUJXES0RE5ScuLg5bt25VSkBr166NYcOGoX79+mpPQKVSKZo1a1ZoAvqGnp4eevbsqfgSNDMzE3v27HnvetdE2kojktCcnBwcOHAACQkJWL16NZKSkpCYmIinT5/i1atXWLt2LdfkIyqh9PR0hIaGYvPmzXj48KGi/M2sscV90/X19VVpXHp6emjWrJnK7/HevHkzGjRogM6dO6Nbt25o164dVq5cqdiem5uL6OhoxRAsAwMDnDhxAl27dkWDBg0wefJk9OvXDwcPHixQ95o1a+Dv7w8LCwuVxkxEROqTmZmJzZs3K00+ZGhoCD8/P/Ts2VPtw2/fqFu3LszMzN67X6VKldC7d29Fp0taWhr27NmjljkiiMSmEcNxDQwM8NFHH2Hx4sWKHggxx8EvXboUv/76KxISEtC0aVMsWbIErVq1KnTf9evXY8SIEUplhoaGimm+icqbTCbDlStXcO3aNeTl5SnKK1eujDZt2qBBgwZwc3PDpEmTIAhCobPwvhl6O2LECNSqVUtlsVWpUgVNmjSBiYkJZDJZiY8/ffp0kdssLS2xZcuWIrc7OjoqzQxco0YNnDlzpljnvXjxYrFjJCIi8f3zzz/YsmULUlJSFGVOTk7o3LlzsRJCVTE1NS3R+6iRkRH69u2LHTt2ICUlBUlJSdi3bx/69eun8nkiiMSkEUmoRCJB3bp13zk7bnnZvn07AgMDERwcDA8PDwQFBcHX1xfR0dFF9saam5srDfFQ97AOosLk5+fj5s2buHz5stKECwYGBmjVqhXc3NwUEwB17doVW7duxbJly3D69Gml5EwikcDFxQW+vr4qS0AlEgmcnZ3h5OTE64OIiNQmMzMTu3btwqVLlxRllSpVQvv27dG4ceNyfw8qyS0wb5iamsLf3x87duxARkYGEhMTcfDgQfTu3bvIifyItI3G/CZ///33CAwMxEcffYT69euLFsfChQsxevRoRe9mcHAwDh8+jLVr1+K7774r9BiJRMLlY0g0giDgwYMHOH/+PF69eqUol0qlaNKkCTw8PApd17JJkyYIDg5GfHw8evfujdTUVBgbG+Pbb79V6T2glStXRuPGjZVmAyQiIlK1W7duYfPmzUhOTlaUNWzYEI0aNYKtrW25J6Bl+XxYpUoV9O3bFzt37kROTg4ePXqEkJAQdOvWTS0TBRKVN41JQi9dugQrKyu4urrC29sbjo6OBT44SyQSLF68WG0xyGQyXL16FVOmTFGUSaVS+Pj4IDw8vMjj0tPTUatWLcjlcjRv3hxz585Fo0aNitw/JycHOTk5SscTlUZCQgLOnTuHJ0+eKJXXrVsXbdu2LdY9jNWqVYOxsTFSU1NhYGCg0gS0du3aqFOnDt8wiYhIbbKysrB7926lWyeMjIzw0UcfoVmzZrh+/boocUkkElSqVKnUx1tbW6N3797Ys2cP8vLycO/ePYSFhcHHx4ejikjraUwS+scffyh+DgsLK3QfdSehL168QH5+Puzs7JTK7ezscOfOnUKPqV+/PtauXYsmTZogJSUFv/32G9q0aYNbt27hgw8+KPSYefPm4YcfflB5/FRxpKSk4MKFC/j333+VyqtVq4b27dsXWGKkvJmZmcHV1RVVqlQRNQ4iItJtUVFR+PPPPwv0fg4ZMgSWlpZKX/qXN1V8AVutWjX07NkT+/fvh1wux61bt2BoaIj27dszESWtpjFJqFwuFzuEUvH09ISnp6fieZs2bdCwYUOsWLECs2fPLvSYKVOmIDAwUPE8MjISXl5eao+VtF92djYuX76M69evK10zFhYWaNeuHerUqSP6m1KdOnVQu3Zt9n4SEZHaZGVlYc+ePbhw4YKizMjICP369UObNm1EfS+0trZGfn6+ypYWrFWrFvz8/HDkyBEAwLVr12BkZFTkpJlE2kBjklBNYG1tDT09PSQmJiqVJyYmFntMf6VKldCsWTPcu3evyH0MDQ2V1ooqz1naSDvl5eXh+vXriIiIUPpW19jYGK1bt4arqyv09PREjPD1m3/Tpk25jAkREanVnTt38OeffyIpKUlRVr9+fQwdOhRWVlYiRvbanj17EBsbi+rVq6usznr16iEnJ0cxWvDixYswMjIqsK41kbbQuCT00qVLOHXqFJ49e4YvvvgCdevWRWZmJu7cuYN69eqpNWEzMDCAu7s7wsLC0KdPHwCve2jDwsIwfvz4YtWRn5+Pf/75B926dVNbnFRxCIKA6OhoXLhwAWlpaYpyPT09NG/eHC1atHjn4tflxdzcHM2bN9eIWIiISDdlZ2dj7969OHfunKLM0NAQffv21bjhqXp6emW6H7QwjRs3RnZ2tqL39+TJkzA0NBR1Qk+i0tKYJFQmk2HgwIHYv38/BEGARCJBz549UbduXUilUnTt2hWTJk3C1KlT1RpHYGAghg8fjhYtWqBVq1YICgpCRkaGYrbcgIAAVK9eHfPmzQMA/Pjjj2jdujWcnZ2RnJyMX3/9FQ8fPsSoUaPUGifpvidPnuDSpUsFeuYbNmyINm3aaMxss1WrVkXz5s05bTwREalNdHQ0/vzzT7x8+VJRVq9ePQwdOlRlw15VSdUJ6BstW7ZEdnY2rl69CgA4duwYDA0NUa1aNbWcj0hdNOZT4/Tp03Ho0CEsX74cHTt2VPpW580MZ/v371d7EjpgwAA8f/4cM2bMQEJCAtzc3BASEqKYrCguLk7pXrdXr15h9OjRSEhIQNWqVeHu7o6LFy/CxcVFrXGS7kpISEBYWBgeP36sVF6zZk20b98eNjY2IkVWkK2tLZo0aSL6UGAiItJNOTk52LdvH86cOaMoMzAwUPR+aur8A+ocGdSuXTvk5OTg5s2bkMvlOHToEHr27Alzc3O1nZNI1TQmCd26dSs+//xzjBkzRulbrjcaNmyInTt3lkss48ePL3L47enTp5WeL1q0CIsWLSqHqEjXpaSk4PDhw7hw4QIEQVCUW1tbo127dnB0dBQvuELUrVsXTk5OGjX8iYiIdMfdu3exadMmvHjxQlHm7OyMgIAAjez9fFvVqlXVVrdEIkGnTp2Qk5ODu3fvIi8vD0eOHEHXrl3Vdk4iVdOYJPTZs2do3Lhxkdv19PSQmZlZjhERlY83Ew2EhoYqTTpkamqqmG1Zk77pNTY2RuPGjdX6BktERBWXTCbD/v37cerUKUVZpUqV0KdPH3h5eWnUe6JYpFIpfH19kZOTg7i4OOTk5CA0NBRNmjRR6YRIROqiMUlojRo1ilyLEwAuXLgAZ2fncoyISL3y8/MRHh6OQ4cOITU1VVFuaGgIFxcXtGjRAqampiJGWJCNjQ0aN26stntdiOjd5HI5JBIJRyCQzrp37x42bdqE58+fK8rq1KmDYcOGwdbWVsTINI++vj569OiBPXv2ICEhAdnZ2Vi+fDm+/vprzlRPGk9jktDBgwdj4cKF6NevH+rVqwcAijfZVatWYceOHfj555/FDJFIJQRBwM2bN7Fv3z48ffpUUS6VStGuXTv4+Pjg/v37GpfoffDBB3BxceGHXyIR5efnQ09Pj9ch6RyZTIaDBw/i5MmTiltSKlWqhN69e8Pb25u9n0UwMDBAnz59sGPHDiQlJSEpKQlLlixBYGCgxn2RTfQ2jUlCp06dikuXLqFDhw5o2LAhJBIJJk2ahKSkJDx+/BjdunXDpEmTxA6TqEzi4uKwZ88e/Pvvv0rlTZs2RZ8+fWBnZ6c0JFdT2NvbMwEl0hC8DknXPHjwABs3bsSzZ88UZU5OTggICFBMDElFMzIyQs+ePbF7926kp6fj6dOnWLZsGb788ksYGRmJHR5RoTQmCTUwMEBISAg2b96MXbt2IT8/Hzk5OWjSpAnmzJmDYcOG8Y2XtNbLly9x8OBBREREKJU7OjrC399fo4eam5iYoFGjRrz+iIhIpXJzc3Hw4EGEhYUpej/19fXRs2dPdO7cmb2fJWBqaoouXbrgxIkTSEtLQ0xMDFauXInPP/9c40ZWEQEiJqGBgYEYNmwYmjVrBuB1D5GNjQ2GDh2KoUOHihUWkUplZmYiJCQEp0+fRl5enqLc2toavXv3RvPmzTU+uXN1deUaoEQaJD8/n9ckab2YmBhs3LhRaS1sR0dHBAQEwN7eXsTItJe5uTk+++wz/PHHH8jKysKdO3ewfv16fPrpp0zoSeOI9i4WFBSEFi1aKJJQJycnbNq0CYMHDxYrJCKVycvLw9mzZ3H06FFkZGQoyk1NTfHhhx+iffv2WvHNZI0aNTgLLpGGyc3NZRJKWis3NxeHDx9GaGioUu9njx490LlzZ647XUbVqlXDF198gd9//x25ubn4+++/sXXrVgwePFjjv/SmikW0dzE7Ozs8ePBA8fztdRGJtJUgCPj777+xf/9+pZn99PX14e3tDT8/P5iYmIgYYfEZGRkpJgkjIs2Rn58vdghEpRIbG4tNmzYpTcpXs2ZNBAQEoFq1aiJGplvq1KmDMWPGIDg4GPn5+bhw4QJMTU3Rp08fsUMjUhAtCe3evTt+/PFHHD9+XDGN9IIFC7Bt27Yij5FIJNi/f385RUhUMvfv38eePXsQExOjVN6yZUv06tULVlZWIkVWOhyGS6SZmISStsnNzcXRo0dx/PhxyOVyAK/Xf+/evTu6dOnC3k81aNSoEYYPH45169ZBEAQcP34cJiYm6Nq1q9ihEQEQMQldvHgxbG1tcerUKdy6dQsSiQSPHj1CUlJSkcdwGAFposTEROzbtw/Xr19XKq9Xrx78/f1Rs2ZNkSIrvRo1amhd0kxUUchkMrFDICq2uLg4bNy4EfHx8YqyGjVqICAgANWrVxcxMt3XokULZGZmKjp49u3bBxMTE7Rr107kyIhETEJNTU0xd+5cxXOpVIqgoCDeE0paIy0tDUeOHMG5c+cU3+wCgIODA/r06QNXV1et/OLEwMCAw3CJNFhqaipsbGzEDoPonfLy8hASEoKQkBDFe6RUKkW3bt3g6+vL3s9y0qFDB2RmZuLAgQMAgK1bt8LExATNmzcXOTKq6ERLQv39/TFp0iS0b98eAHDq1Cm4uLiIFQ5RsclkMpw8eRLHjx9Hdna2otzc3Bw9evSAp6enVr+5Ojs7cxgukQZ78eIF6tSpI3YYREV6/PgxNm7ciMePHyvKPvjgAwQEBOCDDz4QMbKKydfXFxkZGYqlcNatWwcjIyN+7iZRifZJc//+/ejXr5/ieadOnTg7Lmk0uVyOy5cv4+DBg0hOTlaUGxoawsfHB507d9b6RaElEgmHRxFpuLeXtCDSJPn5+Th27BiOHDmi1Pvp5+cHPz8/fsEpEolEAn9/f2RmZiI8PBz5+flYuXIlJkyYgNq1a4sdHlVQov01qF69Ov7++28MGTIEwOtZRbVx6CJVDFFRUdi7dy+ePHmiKJNIJGjbti26d++OKlWqiBhd2VlbWyM3NxdVq1blWmJEGu7tL8GINMWTJ0+wceNGPHr0SFFWrVo1DB8+HDVq1BAxMgJef2YZPHgwMjMzcf36dchkMixbtgyBgYGcmZhEIVoSOnDgQPz222/YsWOHYnbc7777DvPmzSvyGIlEUmDyFyJ1evz4Mfbu3Yvbt28rlbu6uqJPnz4684d7z549uHHjhs68HiJdlp2dDZlMBgMDA7FDIUJ+fj6OHz+OI0eOKGZulkql8PX1xYcffsjeTw2ip6eHkSNHYtmyZYiOjkZmZiaWLFmCyZMnw9raWuzwqIIp0V8GJyenEvdWSiQS3L9/v0D5vHnz4OzsjFOnTuHZs2eQSCQwNTXljJykEV69eoWDBw/i8uXLSmvY1qxZE3379kX9+vVFjE59tL1Hl6iiSE5Ohq2trdhhUAUXHx+PjRs3Ii4uTlHm4OCAgIAA1KpVS8TIqCiVKlXC2LFjsXjxYjx8+BApKSn4/fffMXnyZH4GoHJVoiTUy8urQBJ65coV3Lp1Cy4uLooP5tHR0YiKioKrqyvc3d0LrUtPTw9jxozBmDFjALz+1mzatGm8J5RElZWVhePHj+PkyZPIzc1VlFtaWqJ3795wd3fX2eGqRkZGqFSpkthhEFExJCYmMgkl0eTn5+PEiRM4fPgw8vLyALzudOjatSu6devG9xINZ2RkhHHjxmHRokV4+vQpXrx4gSVLliAwMBAmJiZih0cVRImS0PXr1ys937dvH/bt24fQ0FB07txZaVtoaCg+/vhjzJ49u1h1x8TEcMp5Ek1+fj7Onz+Pw4cPIz09XVFubGwMPz8/eHt76/ybqrGxsdghEFExPXjwAI0bNxY7DKqAnj59ik2bNiE2NlZRZm9vj4CAADg6OooWF5WMmZkZvvzyS/z2229ISkpCfHw8li5digkTJsDQ0FDs8KgCKNNA/RkzZuDLL78skIACQJcuXTB+/HhMmzYNvXv3fm9dHLZBYhAEAdevX8e+ffvw7NkzRbmenh68vLzg5+cHMzMzESMsP7qeZBPpksTERDx69IgTvlC5kcvlCAsLw8GDB5V6P318fNCjRw++h2ghCwsLTJgwAQsWLEBaWhpiYmKwatUqfPbZZ7yXl9SuTL9hd+/efec9nFZWVoXeDwq8Hn4rlUqRmZkJAwMDSKXS995vKpFIFH/4iMoqJiYGe/bsKfA76u7ujt69e1e4m/S1eW1Tooro7Nmz6NOnD0xNTcUOhXRcYmIiNm7ciJiYGEWZnZ0dAgIC4OTkJGJkVFa2trYYP348Fi1ahOzsbERFRWH9+vUYOXKkzt5+RJqhTElonTp1sG7dOnz66acFeovS0tKwdu3aItcfmjFjBiQSieKbljfPidTt+fPn2L9/P65du6ZUXqdOHfj7+1fYN1S+2RBpl4yMDBw5cgQ9e/bU+jWKSTPJ5XKcOnUKBw4cUMyTIJFI0KlTJ/Ts2ZMzNOuIGjVq4IsvvsCSJUuQm5uLa9euwcTEBIMGDeJnc1KbMiWhc+bMQf/+/dGgQQN88skncHZ2BvC6h3TDhg1ITEzEzp07Cz121qxZ73xOpGrp6ek4evQozp49q5hGHnj9LWCfPn3QtGnTCv3HtiK/diJt9erVKxw5cgTdu3fnfVykUs+ePcOmTZuURgvZ2NggICAAderUETEyUgdnZ2eMHj0awcHBkMvlOH/+PExNTYt1Sx1RaZQpCe3Tpw+OHDmCb7/9FnPnzlXa5ubmhjVr1sDX17dMARKVVW5uLk6dOoVjx44hKytLUW5mZobu3bujXbt2HIoKJqFE2urFixc4cuQIPvzwQ/aIUpnJ5XKcPn0a+/fvV+r97NixI3r16sXeTx3m6uqK4cOHY/369RAEAceOHYOJiQm6dOkidmikg8p813HXrl3RtWtXJCQk4OHDhwBeTzJkb29f7DpycnLw559/4vjx47h//z7S0tJQuXJlODs7w8/PD4MHD+YfPSoxuVyOK1eu4MCBA0hKSlKUV6pUCZ07d0aXLl04I+xbmIgTabYWLVogISEBenp6mDp1qtK258+f48CBA/Dz84O5ublIEZK2e/78OTZt2oR79+4pymxsbDBs2DDFaDfSbS1btkRmZia2b98OANi7dy9MTU3Rpk0bkSMjXaOyqa/s7e1LlHi+8c8//6B37954+PAhBEFAlSpVYGZmhmfPnuHatWvYuXMnfvrpJxw4cAANGzZUVbik46Kjo7Fnzx48evRIUSaRSNC6dWv07NkTFhYW4gWnoZiEEmm2hIQEPHnypMi/X8nJydi/fz+6du0KOzu78g2OtJpcLsfZs2exb98+yGQyRbm3tzd69+7Nod4VjJeXFzIzM3Hw4EEAwObNm2FsbIxmzZqJHBnpkjLPRBIXF4fPPvsM9evXh6WlJc6ePQvg9fCgCRMm4O+//y7y2PT0dPTq1QuJiYn46aef8OjRI7x69Urp3zlz5iA+Ph49e/ZERkZGWcMlHRcfH49ly5Zh8eLFSgmoi4sLpkyZgmHDhjEBLQKnYyfSfllZWTh48CCuX78OuVwudjikBV68eIHFixdjx44digTUysoKEydOxMcff8wEtILy8/NDp06dALxezm7dunW4c+eOyFGRLinTp86oqCi0b98ecrkcHh4euHfvnmIJFWtra5w/fx4ZGRlYs2ZNocevW7cOcXFxCAsLg7e3d4Ht1atXx5QpU+Dh4YEuXbpg/fr1GDduXFlCJh2VkpKCQ4cO4eLFixAEQVH+wQcfoG/fvuxFLwbOjkukG+RyOS5fvoz79++jbdu27BWlQr2ZfGbv3r3IyclRlHfo0AF9+vTh/cUVnEQigb+/PzIzM3Hp0iXk5eVhxYoVmDBhQoVdRYBUq0xJ6DfffAMLCwtcunQJEokEtra2Stu7d++uGFNemMOHD6Nr166FJqBv69SpE7p06YKDBw8yCSUl2dnZOHHiBE6cOKE0hMjCwgK9evVCq1atmFwVEycmItItL168wP79++Hk5IQWLVqgatWqYodEGuLly5f4888/ER0drSiztLTE0KFD0aBBAxEjI00ilUoxZMgQZGZm4saNG8jJycGyZcswadIkVKtWTezwSMuVKQk9e/YsZsyYARsbG7x8+bLA9po1a+LJkydFHv/PP/9gwoQJxTpXp06dsHjx4lLHSrolPz8f4eHhOHToEFJTUxXlRkZG6Nq1Kzp16sTJrEqISSiRboqJiUFMTAxq1aqFJk2awN7entd7BSUIAi5cuIDdu3cr9X62a9cOffv25WR9VICenh4+/fRTLF26FP/++y8yMjKwZMkSfP3117CyshI7PNJiZUpC5XI5TExMitz+/Pnzd95LkJSUVOzJjOzs7JRmOKWKSRAE3Lx5E3v37kVCQoKiXCqVon379ujWrRsqV64sYoTaix9KiXTbw4cP8fDhQ9jZ2cHDw6NUkwmS9kpKSsKff/6pdF9f1apVMWTIELi4uIgYGWm6SpUqYezYsVi8eDHi4uKQkpKC33//HZMnT+Zs3FRqZUpCmzdvjsOHD+OLL74osC0vLw/btm1D69atizw+JycHlSpVKta59PX1lYZbUsUTFxeH3bt34+7du0rlbm5u6N27N+97KiMOWyaqGBITExUzzrdu3brY78OknQRBwMWLF7F7925kZ2crytu2bQt/f3/2flKxGBsbY9y4cVi4cCESExPx/Plz/PHHH5g4ceI7O6SIilKmJHTKlCno0aMHPv/8cwwcOBDA6ze3EydOYO7cubh9+zb++OOPd9YRGxuLa9euvfdcMTExZQmVtNjLly9x4MAB/PXXX0rlTk5O8Pf3R506dUSKjIiofMTFxSlmiM/JyUFSUhIsLS3LVOft27fx5MkTtGvXDh988IEqwiQN8+rVK2zevBlRUVGKMgsLCwwZMgSNGjUSMTLSRpUrV8aXX36JBQsW4NWrV3j8+DGWL1+OL7/8krdAUYlJhLenEi2FTZs24auvvkJKSgoEQYBEIoEgCDA3N8fy5csxaNCgIo+VSqXFHgL4pu78/PyyhKuRrl27Bnd3d1y9ehXNmzcXOxyNkZmZiZCQEJw+fVox6zLweuHs3r17o1mzZjo5hDQnJweRkZEwNTXV6T/qMpkMGRkZcHNz4xIAREWIiIjA7NmzcfjwYaWZvyUSCRo3bozu3bvD0dGxzOdxdHRE69at1T60LikpCV9++SUOHjwIqVSKfv36YfHixTAzMyvymJUrV2LLli24du0a0tLS8OrVqwJLbZWmXl0mCAIuXbqEXbt2ISsrS1HeunVr9O/fv0L1XPE9VfUSExOxYMECpKenAwAaNWqEsWPHcqk3KpEy/7YMGzYM/v7+CA0Nxd27dyGXy1GnTh34+vq+9968devWlfX0pINyc3Nx9uxZHD16FJmZmYpyU1NTdOvWDe3bt+cfOiLSeXv27MGAAQMgCAL++33xm/vjb968idGjR5f5C8zY2FjExcXBxcUFTZs2hampaanr8vb2xieffIJPPvmkwLYhQ4bg6dOnCA0NRW5uLkaMGIExY8Zgy5YtRdaXmZkJPz8/+Pn5YcqUKYXuU5p6dVVycjK2bNmCmzdvKsqqVKmCwYMHo3HjxiJGRrrCzs4O48ePR1BQELKzs3Hr1i1s3LgRn3zyCW/toWIrdU9oZmYmatSoge+++w7/+9//VB1XhcKe0NcEQcDVq1exf/9+pdmW9fX10alTJ3Tt2rVCfHvLb22JKCIiAm3btkV+fn6BBPS/pFIpvv32W5X0iL6pr27dunBzc0OVKlVKfHxRSejt27fh4uKCv/76Cy1atAAAhISEoFu3bnj8+PF7l3w4ffo0OnbsWKAntKz16gpBEBAREYEdO3Yo9X56eHjgo48+qhDvn4Xhe6r6/Pvvv1i6dClyc3MBvF5jdsCAATo5So1Ur9TdSSYmJtDX1y/Tt6VEb9y7dw979uxBbGysUnmrVq3Qq1evMt/7RESkTebMmVNoD2hRjhw5UugkgaUhl8sRHR2Nu3fvokWLFmjatKlKPlSGh4fDwsJCkSgCgI+PD6RSKS5fvoy+fftqVL3aJCUlBVu3bsWNGzcUZebm5hg8eDCaNGkiYmSky+rVq4dPP/0UK1euhFwux9mzZ2FqaoqePXuKHRppgTKNaezXrx927dqFzz//nN96UKkkJiZi7969Sm+cAFC/fn34+/ujRo0aIkVGRFT+5HI57ty5g0OHDhU7AZXL5bhx44ZKJiv6b70RERHQ09NTyTDOhIQE2NraKpXp6+vD0tJSacktTalXGwiCgCtXrmDHjh2KiasAoGXLlvjoo48q7D2xVH6aNGmCYcOGYcOGDQCAo0ePwsTEBJ07dxY5MtJ0ZUpCBw4ciC+++AIdO3bE6NGj4ejoWOhU3xV5iCkVLi0tDYcOHcKFCxcgl8sV5dWqVUPfvn3h4uLCLzaISKPl5eUVe7K83NxcpKWlITU1VfEo7HlaWhqioqKKnYC+IQgCbt++jTZt2pTmpbzTpUuX8MEHH6Bq1aqFbp87dy7mzp2reJ6VlYVLly5h/PjxirK3Z2cl1UhNTcXWrVtx/fp1RVnlypUxaNAguLm5iRcYVTgeHh7IzMzEzp07AQC7d++GiYkJPD09RY6MNFmZklBvb2/Fz+fOnSuwXZdntKXSkclkCAsLw/Hjx5GTk6Mor1KlCnr06AFPT0/e1E5EGi8vLw+3bt1CSkoKMjMzkZ2djczMTGRlZRX6KMk61zKZTDHTfHFJJBKkpqYqTeamSlFRUfDw8Ch0UrjPPvsMH3/8seL5kCFD0K9fP/j7+yvKqlWrBnt7ezx79kzp2Ly8PCQlJcHe3r7UsamrXk125coVbN++Xan3s0WLFvj444/Z+0mi6NixIzIzM3H48GEAwJ9//gljY2N+IUJFKlMSytltqbjkcjkuXbqEgwcPIiUlRVFuaGiILl26oHPnzpychog0Ql5enlIPZUpKitK/b35OSUlRGslRFhKJBMbGxjAxMYG9vX2pekKNjY3V8iWejY0N9PX1kZ+fX2gSamlpqTQM2NjYGLa2tnB2dlbaz9PTE8nJybh69Src3d0BACdPnoRcLoeHh0ep41NXvZooLS0N27Ztw99//60oMzMzw8CBAznqjETXrVs3ZGRk4PTp0xAEAWvXrsW4ceNQv359sUMjDVSmJHT48OGqioN0lCAIiIqKwt69exEfH68ol0qlaNu2Lbp37672demIiARBQHZ2doGE8r+JZWpqqlLvUlm9mcDv7YeJiYnSv6ampkoJZHx8PPbs2VPintD69eurPAnV19dH/fr1ldZqLq2GDRvCz88Po0ePRnBwMHJzczF+/HgMHDhQMYPtkydP0LlzZ2zcuBGtWrUC8Pqez4SEBNy7dw8A8M8//6By5cqoWbMmLC0ti1WvLrh27Rq2bdumWJsRAJo1a4aBAwe+d0k8ovIgkUjQv39/ZGZmIiIiAnl5eQgODsZXX32lstm7SXdo3GKLUVFRePDgAV69elXoG3BAQIAIUVFpPHr0CHv37sWdO3eUyhs3bow+ffrAwcFBpMiISFfk5+cr7q0sLKF8u+zNMgJlJZFIYGpqikqVKsHMzAxmZmaFJpmlXRKiWrVq8Pb2xtmzZ4t1O4tUKoWLi4vKZxGXSCRo0qQJDA0NVZKEAsDmzZsxfvx4dO7cGVKpFP369cPvv/+u2J6bm4vo6GilYcXBwcH44YcfFM87dOgA4PVorDfLwLyvXm2Wnp6O7du34+rVq4oyU1NTDBw4UNHzS6QppFIphg0bhqysLPzzzz/IycnB0qVLERgYyM99pKRE64SOHDkSEokEK1euhJ6eHkaOHPn+E0gkWLNmzXv3u3//PoYOHYqIiIgiv/3V1ftLtWmd0Li4OISFhSEtLQ2VK1dG586dUbNmTaV9kpKScPDgwQJtWbNmTfj7+6NevXrlHbZW4ZpmVFbFuU41XXZ29jsTyjfP09PTSzx0tSj6+vqoUqUKzM3NYW5urvj5v/9WrlwZeXl5ar1Ob9y4gUGDBhV7ndBJkyahVq1aKo3Bzc0NdnZ2vFbV6H3XamRkJLZu3Yq0tDRFWdOmTTFo0CCOIiomvqeKF88ff/yhGMFgYWGByZMnw8rKSuTISFOUqCf05MmTkEqlkMvl0NPTw8mTJ987g2lxZzgdO3Ys/vnnHwQFBaF9+/ZFzsJH4oiIiMDs2bNx+PBhCIKg+D2QSCTo0aMHpk+fDldXVxw7dgynTp1S6nGwsrJCr1694O7uzkmHiNSoONdpy5YtRYtPLpcjPT39vcNhU1NTlSYuKytTU1OlJLKon42NjYv9nqWqnsGiNGnSBIsWLcKkSZMgCEKhX8C++Xs6YsQIlSag+vr6cHV1hZ2dncrqJGXvu1YnT56MBw8e4K+//lIcY2JiggEDBqBFixacPZ40noGBAT7//HMEBQXh0aNHSE5OxpIlSzB58mQOHycAJewJVSdjY2N8//33mD59utihlDtN7wnds2cPBgwYUOQHIT09PQBAjx49lO6/MTExwYcffogOHTqgUqVK5RavtuO3tlQaxblOJRIJtm/frjRrqSrIZLJiDYdNS0tT2UQ+enp6BZLJN8/fLqtcubJa/v6U13V648YNLFu2TDHRxxsSiQSNGjWCr6+vyhJQqVSKGjVqwMnJSema5LWqWsW5VgVBQJcuXVC7dm0Ar7+UGDRoEKpUqVLe4Wo9vqeKKy0tDQsWLFDMYP3BBx9g0qRJhS7pSBWLxtwTam1trTF/XJcuXYpff/0VCQkJaNq0KZYsWaKYIKEwO3fuxPTp0xEbG4u6deti/vz56NatWzlGrD4REREYMGDAO4eEvXkTPXDgAPz9/VGtWjV4eXnBz88Ppqam5RkuUYVU3OtUIpFgwIABuHjx4nt7RAVBQEZGxnt7LVNSUpCdna2y12JsbFzoENj//mxqaloheoOaNGmC4OBgxMfHo3fv3khNTYWxsTG+/fZbld0Dqq+vj5o1a6JWrVo6/SFdE5TkPfX48eMYNGgQJkyYgFatWlWI33fSPZUrV8aECRPw22+/ITk5GY8fP8by5csxfvx4/r2p4DQmCf3ss8/w559/Yty4cYqeNTFs374dgYGBCA4OhoeHB4KCguDr64vo6GjY2toW2P/ixYsYNGgQ5s2bhx49emDLli3o06cPrl27BldXVxFegWrNmTMHgiAU+56r+/fvIzg4GNbW1mqOjIjeKO51+mafGTNmYNmyZYXeY/nm37S0NJXdgy+VSgv0VhZ232XlypX5oaQI1apVg7GxMVJTU2FgYKCSBNTAwAA1a9ZEzZo1OVqlnJTkPVUikeDVq1c6t8wMVTyWlpaYMGECFi5ciPT0dNy7dw+rV6/G2LFjRf3MT+Iq83Dco0ePYuHChbh27RpSUlIK/cNanA8yO3fuxM8//4ycnByMHDkSNWrUKPQXU9XDyP7Lw8MDLVu2xB9//AHg9T1MNWrUwJdffonvvvuuwP4DBgxARkYGDh06pChr3bo13NzcEBwcXKxzaupw3Li4ODg6OpZ4mYDY2FitmwRFk3DoEJVEaa5TABg6dGiZ78sxMjIqNLn8b5Jpamqqc/eDi3GddujQAYmJiahSpQpmz55d6nrMzMxQq1YtODg4FOsDIK9V1eB7qjj4nqo54uLiEBQUpBg907JlSwwfPlzn3h+oeMrUE7p79258/PHHaNSoEQYOHIjly5dj8ODBEAQB+/fvR926ddGnT59i1TVgwADFz19//XWh+6h7dlyZTIarV69iypQpijKpVAofHx+Eh4cXekx4eDgCAwOVynx9fbFv374iz5OTk6M06cabNb/y8vJUtoSAKhw7dqxUC6YfP36ca8iWQW5uLvLy8pCRkaFRvw+qJpPJFL/zfAMqvdJcp8DrJZQKW0BcIpGgcuXKSr2TbyeabyeZxf2gk5+fr3Mzm4txnb65n1YQhFKds0qVKnB0dETVqlUhkUiKPYya16pq8D1VHHxP1RwODg749NNPsWzZMuTl5eHSpUswMDDARx99VOLh5nl5eTr3vlIUPT096OtrzOBVlY2cKVNPaIsWLVCpUiWcP38er169gq2tLU6cOIFOnTohNjYWrVu3xi+//FKstT3PnDlTrHN6eXmVNtz3io+PR/Xq1XHx4kV4enoqyr/55hucOXMGly9fLnCMgYEBNmzYgEGDBinKli1bhh9++AGJiYmFnmfWrFlKa54RERERERFpOpUti1aWg6OiojBv3jylDP3Nt0yOjo744osvMH/+/GIloepMLjXNlClTlHpPIyMj4eXlhcuXL6NZs2YiRqZs/fr1GDNmTImPW7VqFb+1LaOK8g2fpn27p414nYqnvK/T+vXrIz4+HlWqVMHcuXPfu7+DgwMaN24Me3v7Mp+b12rZ8VoVD99TNc/ly5exadMmxfP+/fvD29u7WMfm5OTg+vXr0NfX1+kh1sD/9XA3bdpUY4dZl1aZflNNTEwUjW9hYQFDQ0M8ffpUsd3Ozg4xMTElrjcqKgoPHz4EANSqVQsuLi5lCbPYrK2toaenV6AHMzExscg3cXt7+xLtDwCGhoZKv0hmZmYAXs9QqEmTQ/j6+kIikZT4/pWuXbtq1OvQRvz/o+LidSqe8v7/ezNcTSKRvPODpqWlJdq2bQsHB4fyCo2KgdeqePj/p3natWsHmUyGXbt2AQD27t0Lc3PzYk3EJZfLoa+vr/P3+QKvf3czMjJQqVIlnfs9LtOg8fr16yMqKkrx3M3NDZs2bUJeXh6ys7OxZcuWEt1Mv3//ftSpUweNGzdGjx490KNHDzRu3BjOzs44cOBAWUItFgMDA7i7uyMsLExRJpfLERYWpjQ8922enp5K+wNAaGhokftrk5o1a6JHjx7FnrlMT08PPXv25AQKROWI1ym9rWnTpujbty8TUA3Ea5VIWadOnfDhhx8qnm/atAk3btwQMSIqT2VKQv39/XHgwAHFJDtTp07F6dOnYWFhARsbG5w7d67QGWULc+TIEfTr1w8AMHfuXOzduxd79+7F3LlzIQgC/P39ERISUpZwiyUwMBCrVq3Chg0bcPv2bXz++efIyMjAiBEjAAABAQFKExd99dVXCAkJwYIFC3Dnzh3MmjULV65cwfjx49Uea3mYPn06JBLJe28Yf7PPtGnTyikyInqD1ynp6enBx8cHHh4eXPJAg/FaJVLWo0cPxS15crkcq1evxr///ityVFQeSjUxUXZ2Nvbv34+YmBhYWVmhR48eim9dz507hz179kBPTw/du3dHx44di1Wnp6cncnJycO7cOZiamipty8jIQLt27WBkZFTkLLWq9Mcff+DXX39FQkIC3Nzc8PvvvyuGB3h7e8PR0RHr169X7L9z505MmzYNsbGxqFu3Ln755Rd069at2OfT1CVa3tizZw8GDBgAQRAKvadCT08PEokEO3bsQN++fUWIkIh4neq+Dz74AE+ePIGFhQXmz5+vKH8zZLNWrVoiRkfFxWuVSJlcLseGDRvw119/AXi9/NfEiROLHAVQUZbdAbRj6Z3SKnES+uzZM7Rp0wYxMTEQBAESiQTGxsbYt28ffHx8Sh2Iqakp5s6di6+++qrQ7YsXL8b333+PjIyMUp9DU2l6EgoAf/31F2bPno1Dhw5BEARIpVLI5XJIJBL07NkT06ZNQ8uWLcUOk6hC43Wq24pKQjt27Ii6deuKGBmVFK9VImX5+flYsWIFbt68CeD1fCmBgYGFzrHCJFQ3lHhiotmzZyM2NhaTJk1Cp06dcO/ePcyePRtjx47F/fv3Sx2IkZERkpKSityelJQEIyOjUtdPZdOyZUscOHAAcXFxOHnyJFJTU2Fubo5OnTrxfhUiDcHrtOLx9PRkAqqFeK0SKdPT08OoUaOwZMkS3L9/H+np6ViyZAkmT54MS0tLscMjNShxT2j9+vXRtm1brF27VlG2fft2DB48GFFRUYUufl4cH330EUJDQ3H06NECk/pcvnwZfn5+6Nq1K7Zv316q+jWZNvSEEhGRuP7bE+rs7IxOnTqJHRYRkcpkZmYiKCgIjx8/BvB6pY3AwEBUrlxZsQ97QnVDiScmiouLQ7t27ZTK2rVrB0EQCixVUhK//PILjIyM0K5dO3h6euKTTz7BJ598Ak9PT7Rp0wZGRkZKw4+IiIgqEnt7e1SvXh3m5uaoVKmSTszCTkT0NhMTE4wfPx42NjYAXi97+McffyArK0vkyEjVSpyE5uTkFBgW++Z5Xl5eqQNxcnLCjRs3MGHCBLx69Qrbt2/H9u3b8erVK3z11Ve4fv06HB0dS10/ERGRNrty5QpiYmIwdepUNGzYEMbGxmKHRESkcubm5pgwYQIsLCwAAI8ePUJwcDBkMpm4gZFKlfieUACIjY3FtWvXFM9TUlIAAHfv3lX8wrytuENMbW1tsWjRIixatKg0YREREVUIzs7OYodARKQ2VlZW+PLLL7Fw4UJkZGTg7t27WLNmDcaMGSN2aKQiJb4nVCqVFrq+1ZuZcgsrK2wKcvo/vCeUiIiKIzc3F9u2bcPQoUPfu9YkEZG2i42NxeLFi5GTkwMAaNWqFQYMGIAbN27wnlAtV+Ke0HXr1qnkxCNHjoREIsHKlSuhp6eHkSNHvvcYiUSCNWvWqOT8RERE2sjW1pYJKBFVCI6Ojhg7diyWLVuGvLw8REREwNDQEE5OTmKHRmVU4iR0+PDhKjnxyZMnFeti6enp4eTJk+99U+WbLhERVXRcroCIKpIGDRpg5MiRWLVqFQRBwLlz55CWloY2bdqIHRqVQanuCVWF2NjYdz4nIiKiggqbe4GISJe5ublh6NCh2LRpEwAgMjISlStXhru7u8iRUWmVeHZcdYmLi3vn9MtZWVmIi4srx4iIiIg0z9vr5dH/a+++w6K49v+Bv5e2LF3peqWIsRBiVOwSUVEhNqToFTWxXJU0vSbmmkRNhKgh8cZr/XoTTb62YGI0Yo9YYiFYgi3GjgpYiCJKFaTt+f2RH/t1xQKy7Mwu79fz7PNkzsyc8xnnnuV+9sycQ0T1RZcuXRAREaHZTkpKwoULFySMiGpDNkmot7c3EhISnrh/y5YtfP6biIjqPS7NQkT1VVBQEPr06aPZTkxMxNWrV/XSdllZmV7aqS9kk4Q+a5LesrIymJjIJlwiIiJJmJlJ9iYNEZHkXn31VTRv3hzAX/nD9u3bcePGjTpvl6t96Jakf8ny8/ORm5ur2b579+5jH7nNzc3FDz/8AHd3dz1GR0REJD/8QZaI6jOFQoFOnTpBrVbj8uXLqKiowJYtWxAZGQkXF5c6a7eiouKxS1LS85H0L9n8+fPh7e0Nb29vKBQKTJ48WbP98Kdt27bYsWMH3njjDSnDJSIikhz/DxAR1XcmJiYICgqCp6cngL/W00xISEBOTk6dtlteXl6n9dcnko6E9u3bFzY2NhBCYOrUqYiKikK7du20jlEoFLC2toa/vz/at28vUaRERETyYGpqKnUIRESSMzU1xYABA5CQkIDMzEwUFxdj48aNGDp0aJ1N4FZWVgZzc/M6qbu+kTQJ7dKlC7p06QIAuH//PiIiIuDn5ydlSERERLKlUCj4OC4R0f9nbm6OQYMGYcOGDcjOzkZBQYEmEa2LSdyKi4thZWWl83rrI1n8JSsqKsKiRYvw888/Sx0KERGRbJmZmTEJJSJ6iKWlJcLCwmBvbw8AyMnJwaZNm1BaWqrztgoKCnReZ30li79kVlZWMDMzg7W1tdShEBERERGRAbG2tkZ4eLgml7h9+za2bNmi83c47927p9P66jNZJKEAEBERgQ0bNjxzqRYiIiIiIqKH2dvbIzw8HJaWlgCAGzdu4Oeff4ZardZZG3fv3uVSLToimyR02LBhyMrKQs+ePREfH4/k5GScOHGiyoeIiIiIiOhRjo6OCA0N1UwedOXKFezZs0dng1xqtRp3797VSV31nWxWvO7Ro4fmv5OSkqrsr1yXh78+EBERERHR47i7u2PgwIHYvHkzKioqcO7cOSiVSnTv3l0nS1xdv369TtcjrS9kk4SuWLFC6hCIiIiIiMjAeXh4ICQkBDt27IAQAidPnoRKpULHjh1rXXd2djbu3r0LR0dHHURaf8kmCR01apTUIRARERERkRF44YUXEBQUhD179gAADh06BKVSiZdffrnWdf/xxx/o0qULlEplreuqr2TzTujDCgsLcf78eZw/fx6FhYVSh0NERERERAbGz88PAQEBmu19+/bhwoULta63pKQEx48f1/nsu/WJrJLQlJQU9OzZEw0aNICfnx/8/PzQoEED9OrVC8eOHZM6PCIiIiIiMiDt27dH+/btNdu7du1CWlparestKCjA6dOnubLHc5LN47hHjx5Fjx49YGFhgXHjxqFVq1YAgPPnz+P7779H9+7dsX//fp08y01ERERERPVDt27d8ODBA5w5cwZqtRrbt29HWFgYGjduXKt679y5g6tXr8LHx0dHkdYfsklCp0+fjsaNG+PXX3+Fm5ub1r6YmBh069YN06dPx+7duyWKkIiIiIiIDI1CoUCvXr1QUlKC1NRUlJeXY/PmzRgyZAicnZ2feX54eDju3LkDpVKJf/3rX1r7Ll++DBMTE3h5eelk9t36QjaP4x49ehTR0dFVElAAcHV1xYQJE3DkyBEJIiMiIiIiIkNmYmKCkJAQeHh4AABKS0uRkJCAnJycZ56bnZ2NrKws5OfnP3b/pUuXcPr0aZSWluo0ZmMmmyTUxMTkqS/3VlRUwMRENuESEREREZEBMTU1xcCBA+Hu7g4AKCoqwsaNG3UyEeqtW7eQlJSEq1evcsKiapBNVte1a1f8z//8DzIyMqrsu3btGpYuXYpu3bpJEBkRERERERkDc3NzhIaGatb5LCgowMaNG1FcXFzrusvLy5GamooDBw7g8uXLKCsrq3Wdxko274R+9tln6N69O1q2bImwsDA0b94cAHDx4kVs3rwZZmZmiIuLkzhKIiIiIiIyZJaWlggPD8ePP/6IvLw83Lt3D5s2bUJERAQsLCxqXX95eTmuXLmC9PR0eHh4wNPTk2uKPkI2SWjbtm1x9OhRTJ8+HVu2bEFRUREAwMrKCiEhIZg9ezZ8fX0ljpKIiIiIiAydtbU1wsPDsW7dOhQVFeH27dvYunUrQkNDYWammxSpoqICaWlpyMjIgLu7O7y8vGBjY6OTug2dbJJQAPD19UVCQgLUajXu3LkDAHB2dua7oEREREREpFP29vYIDw/H+vXrUVJSguvXr2Pnzp3o16+fTvMPtVqNmzdv4ubNm3B2dsYLL7wAW1tbndVviGSZ3SkUCq0PERERERGRrjk5OWmNfl6+fBl79+6FEKJO2rtz5w4OHTqECxcuoKKiok7aMASySkLPnTuHyMhI2NnZwd3dHe7u7rCzs0NkZCTOnDkjdXhERERERGRkGjVqhIEDB2pGP8+ePYtff/0VQghkZmZqJi0qLS3FvXv3dNJmRkYGkpOTkZ2drZP6DI1sktCkpCR07NgRO3bswIABAzBjxgzMmDED/fv3x44dO9CpUyckJSVJHSYRERERERkZT09PhISEaLZ37NiBqKgo9OrVS7M+aHFxMWJjY7Fs2bLHruhRU8XFxTh+/DjOnDlTJ8u6CCHwySefwN3dHSqVCr1790Zqamq1z//888+hUCgwefJkTdm9e/cwceJEtGjRAiqVCh4eHpg0aRLy8vJqFJts3gl999134eLiggMHDqBJkyZa+65fv47u3bvjvffeQ0pKikQREhERERGRsWrevDlKSkqwfPly7Nq1CwCqPJYrhMC5c+dw7tw5jBkzBi+//HKt27158yby8vLQpk0bWFtb17q+SnPnzsWiRYuwatUqeHt74+OPP0ZwcDDOnTsHS0vLp56bkpKCr7/+Gq1bt9Yqz8zMRGZmJr788kv4+voiIyMDb7zxBjIzM7Fhw4ZqxyabkdCzZ8/irbfeqpKAAkCTJk3w5ptv4uzZsxJERkRERERE9YEQAnv27IEQ4onvharVaqjVaqxYsUInI6IAUFhYiEOHDiEjI0Mn76MKIbBgwQLMmDEDoaGhaN26NVavXo3MzExs2rTpmbGMGDECy5cvR4MGDbT2+fn54aeffsLAgQPh4+ODXr16Yc6cOdi6dWuNRnNlk4R6enqipKTkiftLS0sfm6ASERERERHpwtKlS2t0fGJios7aVqvVuHDhAo4fP46ysrJa1ZWWloZbt26hd+/emjJ7e3t06tQJhw8ffuq5b7/9Nvr376917tPk5eXBzs6uRkvbyCYJ/eSTT7Bo0SKcOnWqyr6TJ09i8eLFiImJ0XtcRERERERk/DIzM7F///5qz1qrVqtx9uxZnU1WVOnu3btISUlBaWnpc9dx69YtAICrq6tWuaurq2bf4/zwww84ceIE4uLiqtVOdnY2Zs2ahQkTJtQoPtm8E3rkyBG4urrC398fXbt2RbNmzQAAqampOHz4MPz8/HD48GGtzF2hUGDhwoVShUxERERERBKoTYL2JElJSTV+FFYIgYsXL6JTp046jSUvLw/Hjh2Dn59ftY6Pj49HdHS0Znv79u01bvP69ev45z//id27dz/znVEAyM/PR//+/eHr61vjwULZJKFLlizR/HdycjKSk5O19v/xxx/4448/tMqYhBIRERER1R+mpqZQqVQoLi6u9SOrj8rJyYGJiQnUanW1z1EoFCguLq7ROdVVXFwMc3NzmJqaPvPYQYMGaSXCla853r59G+7u7pry27dvo02bNo+t4/jx48jKykK7du00ZRUVFTh48CCWLFmCkpISTSwFBQUICQmBra0tEhISYG5uXqNrk00SWhc3joiIiIiIjIeZmRl8fX2r/chsTfz+++81zkmEELCzs4OVlZVOYzE1NUXPnj3h6elZrXctbW1tYWtrqxWXm5sb9u7dq0k68/PzcfToUbz55puPrSMoKKjKoN+YMWPQsmVLfPDBB5oEND8/H8HBwVAqldiyZUu1Rk0fJZsklIiIiIiI6FnMzMxqNAlOdYWEhEChUNTokVyFQoFWrVpBoVDoLA4LCwsEBwdrjWDWVOX6nrNnz8YLL7ygWaKlUaNGGDx4sOa4oKAghIWF4Z133oGtrW2Vx3+tra3h6OioKc/Pz0ffvn1RVFSE7777Dvn5+Zp1VJ2dnas1agvIMAlNS0vDzz//rJnu2NPTE6+++iq8vb0ljoyIiIiIiIyVh4cHBgwYgB07dlRrpNXExAQvvfQSGjZsqLMYGjVqhMDAQK1Rzec1depU3L9/HxMmTEBubi4CAgKwc+dOrZHLK1euIDs7u9p1njhxAkePHgUAzRw+ldLS0uDl5VWtehRCFwvR6MiUKVOwcOHCKsPgJiYmmDx5Mr788ss6bf/evXuYOHEitm7dChMTE0RERGDhwoWwsbF54jk9evTAgQMHtMqio6Px1VdfVbvdEydOwN/fH8ePH9d6BpuIiIiIiPQnJSUFXbt2RUVFxTNHRE1MTPDBBx9UO/F6GgsLC3Tp0gXNmzfX6aiqXMlmiZZ58+Zh/vz5CA8Px+HDh5Gbm4vc3FwcPnwYkZGRmD9/PubPn1+nMYwYMQJnz57F7t27sW3bNhw8eLBa0w2PHz8ef/75p+Yzd+7cOo2TiIiIiIh0r0OHDli3bh1MTU2f+GipiYkJTExMMGHCBJ0koJ6enoiMjESLFi3qRQIKyGgktGXLlmjZsiU2bdr02P2DBw/GhQsXcOHChTpp//z58/D19UVKSgrat28PANi5cyf69euHGzduoFGjRo89r0ePHmjTpg0WLFjw3G1zJJSIiIiISD5SUlIwa9YsbNu2TWtEVKFQoHXr1ujXr1+tE1APDw+0adMGbm5utYzW8MhmJDQ9PR3BwcFP3B8cHIz09PQ6a//w4cNwcHDQJKAA0Lt3b5iYmGiee36S+Ph4ODk5wc/PDx999BGKioqeenxJSYnmJd78/HwUFhbq5BqIiIiIiKj2OnTogC1btiA9PR0ODg4AAJVKhc8++wxvvfVWrRJQb29vREZGIiQkpF4moICMJiZycXHB77///sT9v//+O5ydneus/Vu3bsHFxUWrzMzMDA0bNsStW7eeeN7w4cPh6emJRo0a4fTp0/jggw9w8eJFbNy48YnnxMXFITY2VmexExERERGR7nl4eMDa2hq5ublQKpW1moTIyckJ3bp1g6urqw4jNEyySUKHDBmChQsXwsvLCxMnToS1tTUA4P79+1iyZAm++eYbTJ48ucb1fvjhh/jiiy+eesz58+efJ2QA0Hpn9KWXXoK7uzuCgoJw5coV+Pj4PPacjz76CO+9955m+9SpUwgMDHzuGIiIiIiISJ7Mzc3RsWNH+Pr61pt3Pp9FNknorFmzcOrUKUybNg2ffPKJ5h3MzMxMlJeXo2fPnvj0009rXO+UKVMwevTopx7TtGlTuLm5ISsrS6u8vLwc9+7dq9EweadOnQAAly9ffmISqlQqoVQqNdtPm32XiIiIiIgMk5OTE4KCgmBvby91KLIimyTUysoKe/fuxebNm7XWCQ0JCUG/fv0wcODA5/rlwNnZuVqP8Xbp0gW5ubk4fvw4/P39AQC//PIL1Gq1JrGsjlOnTgFArRaXJSIiIiIiw6VQKODn54eOHTs+cZbd+kwWSWhRURFGjhyJiIgIjBgxAqGhoXqPoVWrVggJCcH48ePx1VdfoaysDO+88w6GDRumGZW9efMmgoKCsHr1anTs2BFXrlzB2rVr0a9fPzg6OuL06dN499130b17d7Ru3Vrv10BERERERNJydnZGQEBAnc5nY+hkMTuulZUV9uzZ88xZZetafHw8WrZsiaCgIPTr1w8BAQFYtmyZZn9ZWRkuXryoidPCwgJ79uxB37590bJlS0yZMgURERHYunWrVJdAREREREQSMDMzQ9euXTF48GAmoM8gi5FQAAgICMDhw4cxfvx4yWJo2LAh1q5d+8T9Xl5eWusENWnSBAcOHNBHaEREREREJFONGjVC9+7dYWdnJ3UoBkEWI6EAsGTJEiQlJWHGjBm4ceOG1OEQERERERE9lZmZGQICAtC/f38moDUgm5HQl19+GeXl5YiLi0NcXBzMzMy0ZpAF/nrBNy8vT6IIiYiIiIiI/mJtbY1XX321VmuH1leySUIjIiK4bg4REREREcmemZkZE9BakE0SunLlSqlDICIiIiIieqZ27doxAa0FyZPQBw8eYPPmzUhLS4OTkxP69+/PNTaJiIiIiEiWVCoVXnzxRanDMGiSJqFZWVno2rUr0tLSNLPOWllZYdOmTejdu7eUoREREREREcHNzQ1CCJiZ/ZU6+fv7w9zcXOKoDJuks+POmjUL6enpePfdd7Ft2zYsWLAAKpUK0dHRUoZFREREREQEADh27BjOnj2L6dOnw8nJCa1atZI6JIMn6Ujorl278Prrr+PLL7/UlLm6umL48OG4ePEiWrRoIWF0RERERERE/8ff35+TqeqApCOh165dQ0BAgFZZQEAAhBC4ffu2RFERERERERFpU6lU8PDwkDoMoyBpElpSUgJLS0utssrt8vJyKUIiIiIiIiKqonHjxhwF1RHJZ8dNT0/HiRMnNNt5eXkAgNTUVDg4OFQ5vl27dvoKjYiIiIiICADg6OgodQhGQyEqp6WVgImJyWN/TRBCVCmvLKuoqNBXeHpz4sQJ+Pv74/jx40yyiYiIiIhkJjc3Fzk5OfD29pY6FKMg6UjoihUrpGyeiIiIiIioWqysrKQOwWhImoSOGjVKyuaJiIiIiIiqRaVSSR2C0ZB0YiIiIiIiIiJDwCRUd5iEEhERERERPYWZmRnMzc2lDsNoMAklIiIiIiJ6Cmtra6lDMCpMQomIiIiIiJ6C64PqFpNQIiIiIiIi0hsmoURERERERKQ3TEKJiIiIiIhIb5iEEhERERERkd4wCSUiIiIiIiK9YRJKREREREREemMmdQBkmP7880/8+eefUodBOuTu7g53d3epwyAdYj81Puynxol9lUj++P2rW0xCZcDd3R0zZ840mP9hl5SUICoqCgcOHJA6FNKhwMBAJCYmQqlUSh0K6QD7qXFiPzU+7KtEhoHfv7qlEEIIqYMgw5Kfnw97e3scOHAANjY2UodDOlBYWIjAwEDk5eXBzs5O6nBIB9hPjQ/7qXFiXzU+lX2V99R48PtX9zgSSs+tTZs27IhGIj8/X+oQqI6wnxoP9lPjxr5qPCr7Ku+p8eD3r+5xYiIiIiIiIiLSGyahREREREREpDdMQqnGlEolZs6cyRezjQjvqfHhPTU+vKfGiffV+PCeGh/eU93jxERERERERESkNxwJJSIiIiIiIr1hEkpERERERER6wySUiIiIiIiI9IZJKBEREREREekNk1AiA6BQKKr12b9/f63bKioqQkxMTI3qmjNnDgYNGgRXV1coFArExMTUOg4iQyTnvpqZmYmRI0eiRYsWsLW1hYODAzp27IhVq1aBcxRSfSPnvhoTE/PUmJKTk2sdkzGS8z2tdOXKFQwfPhwuLi5QqVR44YUXMH369FrHY4jMpA6AiJ5tzZo1WturV6/G7t27q5S3atWq1m0VFRUhNjYWANCjR49qnTNjxgy4ubmhbdu2SExMrHUMRIZKzn01OzsbN27cQGRkJDw8PFBWVobdu3dj9OjRuHjxIj777LNax0RkKOTcV8PDw9GsWbMq5dOmTUNhYSE6dOhQ65iMkZzvKQCcOnUKPXr0QOPGjTFlyhQ4Ojri2rVruH79eq3jMURMQokMwMiRI7W2jxw5gt27d1cpl0paWhq8vLyQnZ0NZ2dnqcMhkoyc+2rr1q2r/Gr/zjvvYODAgVi0aBFmzZoFU1NTaYIj0jO599XWrVtrlV2/fh03btzAuHHjYGFhIVFk8ibne6pWq/Haa6+hZcuW2LdvH1QqldQhSY6P4xIZCbVajQULFuDFF1+EpaUlXF1dER0djZycHK3jjh07huDgYDg5OUGlUsHb2xtjx44FAKSnp2uSyNjYWM2jK896vNbLy6suLonIKEnZVx/Hy8sLRUVFKC0trfW1ERkTOfXV77//HkIIjBgxQifXVl9JdU937dqFM2fOYObMmVCpVCgqKkJFRUWdXach4EgokZGIjo7GypUrMWbMGEyaNAlpaWlYsmQJTp48ieTkZJibmyMrKwt9+/aFs7MzPvzwQzg4OCA9PR0bN24EADg7O+O///0v3nzzTYSFhSE8PBwAqvwiS0TPT+q+WlxcjPv376OwsBAHDhzAihUr0KVLF/4yT/QIqfvqw+Lj49GkSRN0795d59dZn0h1T/fs2QMAUCqVaN++PY4fPw4LCwuEhYVh6dKlaNiwYd1fvNwIIjI4b7/9tni4+yYlJQkAIj4+Xuu4nTt3apUnJCQIACIlJeWJdd+5c0cAEDNnzqxxXLU5l8gYybGvxsXFCQCaT1BQkLh27VqN6iAyNnLsq5XOnDkjAIipU6c+1/n1lZzu6aBBgwQA4ejoKEaMGCE2bNggPv74Y2FmZia6du0q1Gp1zS/QwPFxXCIjsH79etjb26NPnz7Izs7WfPz9/WFjY4N9+/YBABwcHAAA27ZtQ1lZmYQRE9VPcuirUVFR2L17N9auXYvhw4cD+Gt0lIj+jxz6aqX4+HgA4KO4tSTlPS0sLAQAdOjQAd999x0iIiLw6aefYtasWTh06BD27t2rk3YMCZNQIiOQmpqKvLw8uLi4wNnZWetTWFiIrKwsAEBgYCAiIiIQGxsLJycnhIaGYsWKFSgpKZH4CojqBzn0VU9PT/Tu3RtRUVGIj49H06ZN0bt3byaiRA+RQ18FACEE1q5dCz8/P74aU0tS3tPK1x2ioqK0yit/CDx06NBz122o+E4okRFQq9VwcXHR/Fr6qMoX6BUKBTZs2IAjR45g69atSExMxNixYzFv3jwcOXIENjY2+gybqN6RY1+NjIzE8uXLcfDgQQQHB+usXiJDJpe+mpycjIyMDMTFxdWqHpL2njZq1AgA4OrqqlXu4uICAFUmRqoPmIQSGQEfHx/s2bMH3bp1q9bkIp07d0bnzp0xZ84crF27FiNGjMAPP/yAcePGQaFQ6CFiovpJjn21cgQ0Ly9PJ/URGQO59NX4+HgoFArNiBk9Pynvqb+/P5YvX46bN29qlWdmZgL4vwS4PuHjuERGYOjQoaioqMCsWbOq7CsvL0dubi6Av35pE0Jo7W/Tpg0AaB4zsbKyAgDNOUSkO1L21Tt37jy2/Ntvv4VCoUC7du2qVQ9RfSCHv6tlZWVYv349AgIC4OHhUbMLoCqkvKehoaFQKpVYsWIF1Gq1pvybb74BAPTp06cml2IUOBJKZAQCAwMRHR2NuLg4nDp1Cn379oW5uTlSU1Oxfv16LFy4EJGRkVi1ahWWLl2KsLAw+Pj4oKCgAMuXL4ednR369esH4K/3Fnx9fbFu3To0b94cDRs2hJ+fH/z8/J7Y/po1a5CRkYGioiIAwMGDBzF79mwAwGuvvQZPT8+6/0cgMgBS9tU5c+YgOTkZISEh8PDwwL179/DTTz8hJSUFEydORLNmzfT5T0Eka1L/XQWAxMRE3L17lxMS6YiU99TNzQ3Tp0/HJ598gpCQEAwePBi///47li9fjqioKHTo0EGf/xTyIOncvET0XB6ddrzSsmXLhL+/v1CpVMLW1la89NJLYurUqSIzM1MIIcSJEydEVFSU8PDwEEqlUri4uIgBAwaIY8eOadVz6NAh4e/vLywsLKo1BXlgYKDWkg8Pf/bt26eryyYyOHLqq7t27RIDBgwQjRo1Eubm5sLW1lZ069ZNrFixol4uD0D0MDn11UrDhg0T5ubm4u7duzq5xvpGbvdUrVaLxYsXi+bNmwtzc3PRpEkTMWPGDFFaWqqzazYkCiEeGW8mIiIiIiIiqiN8J5SIiIiIiIj0hkkoERERERER6Q2TUCIiIiIiItIbJqFERERERESkN0xCiYiIiIiISG+YhBIREREREZHeMAklqgfS09OhUCiwcuVKqUMhoqdgXyWSP/ZT48T7ql9MQomIiIiIiEhvFEIIIXUQRFS3hBAoKSmBubk5TE1NpQ6HiJ6AfZVI/thPjRPvq34xCSUiIiIiIiK94eO4RAYiJiYGCoUCly5dwsiRI2Fvbw9nZ2d8/PHHEELg+vXrCA0NhZ2dHdzc3DBv3jzNuY97z2H06NGwsbHBzZs3MXjwYNjY2MDZ2Rnvv/8+KioqNMft378fCoUC+/fv14rncXXeunULY8aMwd/+9jcolUq4u7sjNDQU6enpdfSvQiQ/7KtE8sd+apx4Xw0Hk1AiA/P3v/8darUan3/+OTp16oTZs2djwYIF6NOnDxo3bowvvvgCzZo1w/vvv4+DBw8+ta6KigoEBwfD0dERX375JQIDAzFv3jwsW7bsuWKLiIhAQkICxowZg6VLl2LSpEkoKCjAtWvXnqs+IkPGvkokf+ynxon31QAIIjIIM2fOFADEhAkTNGXl5eXib3/7m1AoFOLzzz/XlOfk5AiVSiVGjRolhBAiLS1NABArVqzQHDNq1CgBQHz66ada7bRt21b4+/trtvft2ycAiH379mkd92idOTk5AoD497//rZsLJjJQ7KtE8sd+apx4Xw0HR0KJDMy4ceM0/21qaor27dtDCIF//OMfmnIHBwe0aNECV69efWZ9b7zxhtb2K6+8Uq3zHqVSqWBhYYH9+/cjJyenxucTGRv2VSL5Yz81Tryv8scklMjAeHh4aG3b29vD0tISTk5OVcqf9QVnaWkJZ2dnrbIGDRo81xejUqnEF198gZ9//hmurq7o3r075s6di1u3btW4LiJjwL5KJH/sp8aJ91X+mIQSGZjHTRv+pKnExTMmv67OFOQKheKx5Q+/kF9p8uTJuHTpEuLi4mBpaYmPP/4YrVq1wsmTJ5/ZDpGxYV8lkj/2U+PE+yp/TEKJ6KkaNGgAAMjNzdUqz8jIeOzxPj4+mDJlCnbt2oUzZ86gtLRUa/Y5Iqob7KtE8sd+apx4X2uOSSgRPZWnpydMTU2rzB63dOlSre2ioiI8ePBAq8zHxwe2trYoKSmp8ziJ6jv2VSL5Yz81TryvNWcmdQBEJG/29vYYMmQIFi9eDIVCAR8fH2zbtg1ZWVlax126dAlBQUEYOnQofH19YWZmhoSEBNy+fRvDhg2TKHqi+oN9lUj+2E+NE+9rzTEJJaJnWrx4McrKyvDVV19BqVRi6NCh+Pe//w0/Pz/NMU2aNEFUVBT27t2LNWvWwMzMDC1btsSPP/6IiIgICaMnqj/YV4nkj/3UOPG+1oxCPOttXCIiIiIiIiId4TuhREREREREpDdMQomIiIiIiEhvmIQSERERERGR3jAJJSIiIiIiIr1hEkpERERERER6wySUiHQqPT0dCoUCK1eulDoUIiIiIpIhJqFEErpy5Qqio6PRtGlTWFpaws7ODt26dcPChQtRXFxcZ+2eO3cOMTExSE9Pr7M2qmPOnDkYNGgQXF1doVAoEBMTI2k8RLWlUCiq9dm/f3+t2yoqKkJMTEy167pw4QKmTp2KNm3awNbWFu7u7ujfvz+OHTtW61iIDI2c++qj4uPjoVAoYGNjU+tYjJmc72lMTMxTY0pOTq51TIbGTOoAiOqr7du3Y8iQIVAqlXj99dfh5+eH0tJS/Prrr/jXv/6Fs2fPYtmyZXXS9rlz5xAbG4sePXrAy8urTtqojhkzZsDNzQ1t27ZFYmKiZHEQ6cqaNWu0tlevXo3du3dXKW/VqlWt2yoqKkJsbCwAoEePHs88/ptvvsG3336LiIgIvPXWW8jLy8PXX3+Nzp07Y+fOnejdu3etYyIyFHLuqw8rLCzE1KlTYW1tXes4jJ2c72l4eDiaNWtWpXzatGkoLCxEhw4dah2ToWESSiSBtLQ0DBs2DJ6envjll1/g7u6u2ff222/j8uXL2L59u4QR/h8hBB48eACVSqXzutPS0uDl5YXs7Gw4OzvrvH4ifRs5cqTW9pEjR7B79+4q5VKIiopCTEyM1mjK2LFj0apVK8TExDAJpXpFzn31YbNnz4atrS169uyJTZs2SR2OrMn5nrZu3RqtW7fWKrt+/Tpu3LiBcePGwcLCQqLIpMPHcYkkMHfuXBQWFuLbb7/VSkArNWvWDP/85z812+Xl5Zg1axZ8fHygVCrh5eWFadOmoaSkROs8Ly8vDBgwAL/++is6duwIS0tLNG3aFKtXr9Ycs3LlSgwZMgQA0LNnzyqPp1TWkZiYiPbt20OlUuHrr78GAFy9ehVDhgxBw4YNYWVlhc6dO9cqWZZyFJZIKmq1GgsWLMCLL74IS0tLuLq6Ijo6Gjk5OVrHHTt2DMHBwXBycoJKpYK3tzfGjh0L4K93ryt/uImNjdX046c90u7v71/lcT5HR0e88sorOH/+vG4vksgISNVXK6WmpmL+/Pn4z3/+AzMzjhvpgtT39GHff/89hBAYMWKETq7N0PB/0UQS2Lp1K5o2bYquXbtW6/hx48Zh1apViIyMxJQpU3D06FHExcXh/PnzSEhI0Dr28uXLiIyMxD/+8Q+MGjUK//u//4vRo0fD398fL774Irp3745JkyZh0aJFmDZtmuaxlIcfT7l48SKioqIQHR2N8ePHo0WLFrh9+za6du2KoqIiTJo0CY6Ojli1ahUGDRqEDRs2ICwsTHf/QERGLDo6GitXrsSYMWMwadIkpKWlYcmSJTh58iSSk5Nhbm6OrKws9O3bF87Ozvjwww/h4OCA9PR0bNy4EQDg7OyM//73v3jzzTcRFhaG8PBwAKjyS3t13Lp1C05OTjq9RiJjIHVfnTx5Mnr27Il+/frhxx9/rNNrrS+kvqcPi4+PR5MmTdC9e3edX6dBEESkV3l5eQKACA0Nrdbxp06dEgDEuHHjtMrff/99AUD88ssvmjJPT08BQBw8eFBTlpWVJZRKpZgyZYqmbP369QKA2LdvX5X2KuvYuXOnVvnkyZMFAJGUlKQpKygoEN7e3sLLy0tUVFQIIYRIS0sTAMSKFSuqdX1CCHHnzh0BQMycObPa5xAZgrfffls8/Kc2KSlJABDx8fFax+3cuVOrPCEhQQAQKSkpT6xbF/3m4MGDQqFQiI8//vi56yAyBnLrq9u2bRNmZmbi7NmzQgghRo0aJaytrWtwRSS3e/qwM2fOCABi6tSpz3W+MeDjuER6lp+fDwCwtbWt1vE7duwAALz33nta5VOmTAGAKo/D+vr64pVXXtFsOzs7o0WLFrh69Wq1Y/T29kZwcHCVODp27IiAgABNmY2NDSZMmID09HScO3eu2vUT1Vfr16+Hvb09+vTpg+zsbM2n8lHZffv2AQAcHBwAANu2bUNZWVmdxJKVlYXhw4fD29sbU6dOrZM2iAyVlH21tLQU7777Lt544w34+vrqpE6S1/dvfHw8ANTbR3EBvhNKpHd2dnYAgIKCgmodn5GRARMTkyqzqrm5ucHBwQEZGRla5R4eHlXqaNCgQZX3HZ7G29v7sXG0aNGiSnnlY7yPxkFEVaWmpiIvLw8uLi5wdnbW+hQWFiIrKwsAEBgYiIiICMTGxsLJyQmhoaFYsWJFlffAn9f9+/cxYMAAFBQUYPPmzVz6gegRUvbV+fPnIzs7WzP7KumGXL5/hRBYu3Yt/Pz8nusVCmPBd0KJ9MzOzg6NGjXCmTNnanSeQqGo1nGmpqaPLRdCVLutupgJl4j+mhTDxcVF8yv4oyonu1AoFNiwYQOOHDmCrVu3IjExEWPHjsW8efNw5MiRWiWNpaWlCA8Px+nTp5GYmAg/P7/nrovIWEnVV/Py8jB79my89dZbyM/P1zw9VVhYCCEE0tPTYWVlBRcXl9pdYD0kh+9fAEhOTkZGRgbi4uJqVY+hYxJKJIEBAwZg2bJlOHz4MLp06fLUYz09PaFWq5Gamqo1edDt27eRm5sLT0/PGrdf3YT20TguXrxYpfzChQua/UT0dD4+PtizZw+6detWrR97OnfujM6dO2POnDlYu3YtRowYgR9++AHjxo17rn6sVqvx+uuvY+/evfjxxx8RGBj4PJdBZPSk6qs5OTkoLCzE3LlzMXfu3Cr7vb29ERoayuVanoPU37+V4uPjoVAoMHz48OeuwxjwcVwiCVQuPD1u3Djcvn27yv4rV65g4cKFAIB+/foBABYsWKB1zH/+8x8AQP/+/WvcfuWi17m5udU+p1+/fvjtt99w+PBhTdn9+/exbNkyeHl58b0VomoYOnQoKioqMGvWrCr7ysvLNX0yJyenytMLbdq0AQDNI2FWVlYAataPJ06ciHXr1mHp0qWaGR2JqCqp+qqLiwsSEhKqfHr27AlLS0skJCTgo48+ev4Lq8ek/v4FgLKyMqxfvx4BAQGPfX2qPuFIKJEEfHx8sHbtWvz9739Hq1at8Prrr8PPzw+lpaU4dOgQ1q9fj9GjRwMAXn75ZYwaNQrLli1Dbm4uAgMD8dtvv2HVqlUYPHgwevbsWeP227RpA1NTU3zxxRfIy8uDUqlEr169nvp4z4cffojvv/8er776KiZNmoSGDRti1apVSEtLw08//QQTk5r/prVmzRpkZGSgqKgIAHDw4EHMnj0bAPDaa69xdJWMTmBgIKKjoxEXF4dTp06hb9++MDc3R2pqKtavX4+FCxciMjISq1atwtKlSxEWFgYfHx8UFBRg+fLlsLOz0/wwpVKp4Ovri3Xr1qF58+Zo2LAh/Pz8nvh47YIFC7B06VJ06dIFVlZW+O6777T2h4WFaX6gIqrvpOqrVlZWGDx4cJXyTZs24bfffnvsPqoeKb9/KyUmJuLu3bv1ekIiDSmn5iWq7y5duiTGjx8vvLy8hIWFhbC1tRXdunUTixcvFg8ePNAcV1ZWJmJjY4W3t7cwNzcXTZo0ER999JHWMUL8tbxK//79q7QTGBgoAgMDtcqWL18umjZtKkxNTbWWa3lSHUIIceXKFREZGSkcHByEpaWl6Nixo9i2bZvWMTVZoiUwMFAAeOznccvHEBmaR5cIqLRs2TLh7+8vVCqVsLW1FS+99JKYOnWqyMzMFEIIceLECREVFSU8PDyEUqkULi4uYsCAAeLYsWNa9Rw6dEj4+/sLCwuLZy4XMGrUqCf2NwAiLS1Nl5dOZFDk1Fcfh0u01Jwc7+mwYcOEubm5uHv3rk6u0ZAphKjBbCVEREREREREtcB3QomIiIiIiEhvmIQSERERERGR3jAJJSIiIiIiIr1hEkpERERERER6wySUiIiIiIiI9IZJKBEREREREekNk1AiIiIiIiLSGyahREREREREpDdMQomIiIiIiEhvmIQSERERERGR3jAJJSIiIiIiIr1hEkpERERERER6wySUiIiIiIiI9Ob/Ab4jQ7c5Jn8QAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6EAAAInCAYAAABpxV9bAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAtT5JREFUeJzs3XdYFNf7NvB7AZeOCEizgWIBu2DBBioCsYsmdowmaqLGKKYZa6KRr0lUjLHXaDRq7BUl2BVFUWwosYBYAAvSywI77x++7s8NoLRldpf7c117yZ6ZOfOsh9nl2XPmHIkgCAKIiIiIiIiIKoCO2AEQERERERFR5cEklIiIiIiIiCoMk1AiIiIiIiKqMExCiYiIiIiIqMIwCSUiIiIiIqIKwySUiIiIiIiIKgyTUCIiIiIiIqowTEKJiIiIiIiowjAJJSIiIiIiogrDJFQNxMfHY86cOYiPjxc7FCIiIiIiIpViEqoG4uPj8cMPPzAJJSIiIiIirccklIiIiIiIiCoMk1AiIiIiIiKqMExCiYiIiIiIqMIwCX3L6dOn0bt3b9jb20MikWDv3r3vPebkyZNo1aoV9PX14eTkhI0bN6o8TiIiIiIiIk3FJPQtGRkZaN68OZYtW1as/WNiYtCzZ0906dIFkZGRmDx5Mj799FMcPXpUxZESERERERFpJj2xA1AnH3zwAT744INi779y5Uo4Ojpi4cKFAABnZ2ecPXsWixcvho+Pj6rCJCIiIiIi0lhMQssgLCwMXl5eSmU+Pj6YPHnyO4/LyclBTk6O4nl6eroqwiuRly9fQiaTqaRuqVQKS0tLldRNRVNlmwJsVzGwTbUT33+1D9tU+8gS4iHkZKusfom+AaS2diqrnwrHa1U8TELLICEhATY2NkplNjY2SE1NRVZWFgwNDQs9LjAwED/88ENFhFgsL1++xLJlyyAIgkrql0gkmDBhAi/ECqTqNgXYrhWNbaqd+P6rfdim2keWEI+4aQEqP0/twEVMRCsQr1Vx8Z5QEUybNg0pKSmKx6lTp0SNRyaTqfQPW0EQVNp7QwWpuk0BtmtFY5tqJ77/ah+2qfZRZQ+oGOeh13itios9oWVga2uLxMREpbLExESYmZkV2QsKAPr6+tDX11c8NzExUVmMJSWRSMq1PlX/0UzvV95tCrBdxcY21U58/9U+bFMtpIL3X7BdRcdrteJpTU+oIAg4fvw4jhw5grS0tAo5p7u7O0JDQ5XKQkJC4O7uXiHnJyIiIiIi0jQamYROnz4dXbp0UTwXBAHe3t7o3r07evbsiaZNm+L+/fslrjc9PR2RkZGIjIwE8HoJlsjISMTFxQF4PYzW399fsf9nn32GBw8e4JtvvsGdO3ewfPly7NixA1OmTCnbCyQiIiIiItJSGpmE7tq1C23atFE837lzJ0JDQzFv3jwcPHgQ+fn5mDNnTonrvXz5Mlq2bImWLVsCAAICAtCyZUvMmjULABAfH69ISAHA0dERhw4dQkhICJo3b46FCxdi7dq1XJ6FiIiIiIioCBp5T+iTJ0/g5OSkeL579264uLhg2rRpAIDPP/8cK1asKHG9np6e7xzDvXHjxkKPuXr1aonPRUREREREVBlpZE+onp6eYp1NQRAQGhoKX19fxXYbGxu8ePFCrPCIiIiIiIioCBqZhDZp0gR//vknXr16hQ0bNuDly5fo2bOnYvvDhw9hZWUlYoRERERERERUGI0cjjtr1iz07t1bkWh26NBBaaKiQ4cOoXXr1mKFR0REREREREXQyCS0e/fuuHLlCkJCQmBubo5BgwYptr169QqdO3dG3759RYyQiIiIiIiICqORSSgAuLi4wMXFpUB5tWrVsHjxYhEiIiIiIiIiovfRyCQ0LS0NycnJqFWrlqLs6dOnWLlyJXJycjBw4EAOxyUiIiIiIlJDGpmEjh07FjExMbhw4QIAIDU1Fe3atcPjx4+ho6ODJUuWIDg4GJ6enuIGSkREREREREo0cnbcs2fPolevXornf/75J54+fYrz58/j1atXaNasGebNmydihERERERERFQYjUxCX7x4gRo1aiie79+/Hx07dkS7du1gamoKf39/XLt2TcQIiYiIiIiIqDAamYSam5sjISEBAJCVlYUzZ87A29tbsV1PTw+ZmZlihUdERERERERF0Mh7Qtu3b4/ly5ejUaNGCA4ORnZ2ttKSLP/++69STykRERERERGpB41MQhcsWABvb28MGDAAADB16lQ0btwYAJCfn4+///4bvr6+YoZIREREREREhdDIJNTJyQnR0dGIiopC1apV4eDgoNiWmZmJ33//Hc2bNxcvQCIiIiIiIiqURiahAFClSpVCE01TU1OloblERERERESkPjRyYiLg9dqg//vf/+Dj44OWLVsiPDwcAJCUlIRFixbh3r17IkdIRERERERE/6WRPaGPHz+Gh4cHHj16hPr16+POnTtIT08HAFhYWGDVqlV4+PAhlixZInKkRERERERE9DaNTEK//vprpKWlITIyEtbW1rC2tlba3q9fPxw8eFCk6IiIiIiIiKgoGjkc99ixY5g0aRJcXFwgkUgKbK9bty4ePXokQmRERERERET0LhqZhGZlZaF69epFbk9LS6vAaIiIiIiIiKi4NDIJdXFxwenTp4vcvnfvXrRs2bICIyIiIiIiIqLi0MgkdPLkydi2bRsWLFiAlJQUAIBcLse9e/cwYsQIhIWFYcqUKSJHSURERERERP+lkRMTDR8+HA8fPsSMGTMwffp0AICvry8EQYCOjg7mz5+Pfv36iRskERERERERFaCRSSgATJ8+HSNGjMCuXbtw7949yOVy1KtXD35+fqhbt67Y4REREREREVEhNDYJBYDatWtz2C0REREREZEG0ch7Qq9cuYLly5cXuX358uWIjIysuICIiIiIiIioWDQyCZ0+fTr++eefIrcfP34cM2bMKHX9y5Ytg4ODAwwMDNC2bVuEh4e/c/+goCA0bNgQhoaGqFWrFqZMmYLs7OxSn5+IiIiIiEhbaWQSGhERgU6dOhW5vVOnTrh8+XKp6t6+fTsCAgIwe/ZsXLlyBc2bN4ePjw+ePXtW6P5bt27Fd999h9mzZ+P27dtYt24dtm/fju+//75U5yciIiIiItJmGpmEpqWlQU+v6NtZdXR0FEu3lNSiRYswZswYjBo1Ci4uLli5ciWMjIywfv36Qvc/f/48OnTogKFDh8LBwQHe3t4YMmTIe3tPiYiIiIiIKiONTELr16+PY8eOFbk9ODi4VDPkymQyREREwMvLS1Gmo6MDLy8vhIWFFXpM+/btERERoUg6Hzx4gMOHD6NHjx5FnicnJwepqamKR3p6eoljJSIiIiIi0kQamYR+8sknOHToEAICApCcnKwoT05OxpQpUxAcHIxPPvmkxPW+ePEC+fn5sLGxUSq3sbFBQkJCoccMHToUP/74Izp27IgqVaqgXr168PT0fOdw3MDAQFStWlXx8PDwKHGsROVp1apVWLhwIVatWiV2KERERESk5TQyCZ00aRJGjhyJoKAgWFlZoXbt2qhduzasrKywZMkSDB8+vMKWbjl58iTmz5+P5cuX48qVK9i9ezcOHTqEuXPnFnnMtGnTkJKSonicOnWqQmIlKkp6ejp75YmIiIioQmjkOqESiQQbNmyAv78/du3ahQcPHgAA+vbtiwEDBsDT07NU9VpZWUFXVxeJiYlK5YmJibC1tS30mJkzZ2LEiBH49NNPAQBNmzZFRkYGxo4di+nTp0NHp2Cer6+vD319fcVzExOTUsVLRERERESkaTQyCX2jS5cu6NKlS7nVJ5VK4erqitDQUPTr1w8AIJfLERoaiokTJxZ6TGZmZoFEU1dXFwAgCEK5xUZERERERKQNNHI4bkxMDA4cOFDk9gMHDiA2NrZUdQcEBGDNmjX4448/cPv2bXz++efIyMjAqFGjAAD+/v6YNm2aYv/evXtjxYoV2LZtG2JiYhASEoKZM2eid+/eimSUiIiIiIiIXtPIntCvvvoKqamp6N27d6Hbly1bBnNzc2zbtq3EdQ8aNAjPnz/HrFmzkJCQgBYtWiA4OFgxWVFcXJxSz+eMGTMgkUgwY8YMPHnyBNWrV0fv3r3x008/le7FERERERERaTGNTELDwsIwefLkIrd369YNQUFBpa5/4sSJRQ6/PXnypNJzPT09zJ49G7Nnzy71+YiIiIiIiCoLjRyO++rVK5iamha53cTEBC9fvqzAiIiIiIiIiKg4NDIJrV27Ns6dO1fk9jNnzqBmzZoVGBEREREREREVh0YmoUOGDMFff/2F3377DXK5XFGen5+PJUuWYPv27Rg6dKiIERIREREREVFhNPKe0GnTpuHs2bOYPHkyfvrpJzRs2BAAEB0djefPn8PT0xPTp08XOUoiIiIiIiL6L41MQvX19XHs2DH88ccf2L17N+7fvw8AaNOmDQYMGAB/f/8Ca3cSVVbFWa/W2NgYgiAo/iUiIiIiUhWNTEIBQEdHB6NGjVKs30lE/0cqlUIikRQ7oRw3blyJzyGRSCCVSkt8HBERERFVbhqbhBJR0SwtLTFhwgTIZDKVnUMqlcLS0lJl9RMRERGRdtLIJLRr167v3UcikSA0NLQCoiFST0wQiYiIiEgdaWQSKpfLIZFIlMry8/Px8OFDPHr0CE5OTqhRo4ZI0RGpB1lCPIScbJXVL9E3gNTWTmX1ExEREZF20sgk9OTJk0VuO3jwIMaOHYtFixZVXEBEakaWEI+4aQEqP0/twEVMRImIiIioRLRuCtlevXph+PDhmDx5stihEImmpD2g/Q8cRccd+9D/wFGVnoeIiIiISOuSUACoV68eLl26JHYYROpBInnv43lWNhIzs/A8K7tY+xMRERERlZbWJaF5eXnYsWMHrKysxA6FiIiIiIiI/kMj7wkdPXp0oeXJycm4cOECEhISeE8oERERERGRGtLIJPT48eMFZseVSCSoVq0aOnbsiE8//RTe3t4iRUdERERERERF0cgkNDY2VuwQiIiIiIiIqBS07p5QIiIiIiIiUl8ak4RmZmYiLi4OMpmswLb169ejW7ducHFxgZ+fH2fGJSIiIiIiUlMak4T++OOPaNasWYEkdN68eRgzZgxOnTqF58+fY+/evfD09MS1a9dEipSIiIiIiIiKojFJ6IkTJ9CrVy+YmJgoylJTUzFv3jzUqFEDd+/exfPnz3HhwgVIpVL873//EzFaIiIiIiLSBqtWrcLChQuxatUqsUPRGhqThMbGxqJZs2ZKZYcPH4ZMJsO3334LR0dHAECbNm0watQonDlzRowwiYiIiIhIi6SnpyM1NRXp6elih6I1NGZ23LS0NFhaWiqVnT59GhKJBD4+PkrlLi4ueP78eUWGR6TRqhsaKv1LRERERKQqGpOE1qlTB3fu3FEqO3nyJGxsbODk5KRULpPJYGZmVpHhEWm0PX183r8TEREREVE50JjhuN7e3li/fj0uXrwIANi0aRPu3LmD/v37F9g3IiICDg4OFRwhERERERERvY/GJKEzZ86EiYkJ2rdvD6lUio8//hjVq1fHrFmzlPbLzMzEnj170K1bN5EiJSIiIiIioqJozHBcKysrREZGYu3atXjw4AHq1KmD0aNHw9raWmm/mzdvYtiwYRgxYoRIkRIREREREVFRNKYnFACqVauGr7/+GitWrMB3331XIAEFXs+Ou3TpUjRu3LjU51m2bBkcHBxgYGCAtm3bIjw8/J37JycnY8KECbCzs4O+vj4aNGiAw4cPl/r8RERERERE2kpjekIryvbt2xEQEICVK1eibdu2CAoKgo+PD6KjowtNemUyGbp37w5ra2vs3LkTNWrUwMOHD2Fubl7xwRMREREREak5JqH/sWjRIowZMwajRo0CAKxcuRKHDh3C+vXr8d133xXYf/369UhKSsL58+dRpUoVAOCkSEREREREREXQqOG4qiaTyRAREQEvLy9FmY6ODry8vBAWFlboMfv374e7uzsmTJgAGxsbNGnSBPPnz0d+fn6R58nJyUFqaqriwYVviYiIiIiosmAS+pYXL14gPz8fNjY2SuU2NjZISEgo9JgHDx5g586dyM/Px+HDhzFz5kwsXLgQ8+bNK/I8gYGBqFq1quLh4eFRrq+DiIiIiIhIXWlEErp//348ffpU7DAKJZfLYW1tjdWrV8PV1RWDBg3C9OnTsXLlyiKPmTZtGlJSUhSPU6dOVWDERERERERUXCYmJjAzM4OJiYnYoWgNjbgntH///ti8eTOGDh0KAKhbty6CgoLQp0+fcj2PlZUVdHV1kZiYqFSemJgIW1vbQo+xs7NDlSpVoKurqyhzdnZGQkICZDIZpFJpgWP09fWhr6+veM5faCIiIiIicQiC8M7tY8eOLfa+VDwa0RNqamqK5ORkxfPY2FiV3EcplUrh6uqK0NBQRZlcLkdoaCjc3d0LPaZDhw64d+8e5HK5ouzff/+FnZ1doQkoERERERGJSyqVQiKRqKx+iUTCXOAdNKIntE2bNvjpp5+QmJiIqlWrAgAOHz5c5H2awOuGnzJlSonPFRAQgJEjR8LNzQ1t2rRBUFAQMjIyFLPl+vv7o0aNGggMDAQAfP755/j999/x5Zdf4osvvsDdu3cxf/58TJo0qRSvlIiIiIiIVM3S0hITJkyATCZTSf1SqRSWlpYqqVsbaEQSunz5cvj7+2Pu3LkAXieYW7duxdatW4s8prRJ6KBBg/D8+XPMmjULCQkJaNGiBYKDgxWTFcXFxUFH5/86kGvVqoWjR49iypQpaNasGWrUqIEvv/wS3377bYnPTUREREREFcM0VwZBlq2SulXYyaoVNCIJdXJywvnz55GdnY1nz57BwcEBQUFB6Nu3r0rON3HiREycOLHQbSdPnixQ5u7ujgsXLqgkFiIiIiIiKl+yhHjETQtQ6TlqBy6C1NZOpefQVBqRhL5hYGCA2rVrY/bs2ejatSvq1KkjdkhERERERKRhhJzi94D2P3AUz7OyUd3QAHt6+6jkHJWNRiWhb8yePVvxc3p6Oh49egTg9dBYzjRLRERERETF9p6xs8+zspGYmVWsfQEAnEH3vTRidtzCXLp0CV26dEG1atXQpEkTNGnSBNWqVUPXrl1x+fJlscMjIiIiIiKiQmhkT+jFixfh6ekJqVSKTz/9FM7OzgCA27dv46+//kLnzp1x8uRJtGnTRuRIiYiIiIiI6G0amYROnz4dNWrUwNmzZ2Fra6u0bc6cOejQoQOmT5+OkJAQkSIkIiIiIiKiwmjkcNyLFy9i3LhxBRJQALCxscHYsWM5Wy0REREREZEa0sgkVEdHB3l5eUVuz8/PV1rLk4iIiIiIiNSDRmZq7du3x7Jly/Dw4cMC2+Li4rB8+XJ06NBBhMiIiIiIiIjoXTTyntD58+ejc+fOaNSoEfr3748GDRoAAKKjo7Fv3z7o6ekhMDBQ5CiJiIiIiIjovzQyCW3ZsiUuXryI6dOnY//+/cjMzAQAGBkZwdfXF/PmzYOLi4vIURIREREREdF/aWQSCgAuLi7Ys2cP5HI5nj9/DgCoXr067wUlIiIiIiJSYxqbhL6ho6MDGxsbscMgIiIiIiKiYmC3IREREREREVUYje8JJSIiIiIiUpXqhoZK/1LZMQklIiIiIiIqwp4+PmKHoHU4HJeIiIiIiIgqDJNQIiIiIiIiqjAaPRw3KioKDx48wKtXryAIQoHt/v7+IkRFRERERERERdHIJPT+/fsYPnw4wsPDC00+AUAikTAJJSIiIiIiUjMamYSOGzcON27cQFBQEDp16oRq1aqJHRIREREREREVg0YmoefOncP333+PL774QuxQiIiIiIiIqAQ0cmIiKysrVK1aVewwiIiIiIiIqIQ0Mgn97LPP8OeffyI/P1/sUIiIiIiIiKgENHI4boMGDZCfn4/mzZtj9OjRqFWrFnR1dQvs5+fnJ0J0REREREREVBSNTEIHDRqk+Pmrr74qdB+JRMKeUiIiIiIiIjWjkUnoiRMnVFr/smXL8MsvvyAhIQHNmzfH0qVL0aZNm/cet23bNgwZMgR9+/bF3r17VRojERERERGRJtLIJNTDw0NldW/fvh0BAQFYuXIl2rZti6CgIPj4+CA6OhrW1tZFHhcbG4uvvvoKnTp1UllsREREREREmk4jJyZ6W1RUFI4cOYIjR44gKiqqzPUtWrQIY8aMwahRo+Di4oKVK1fCyMgI69evL/KY/Px8DBs2DD/88APq1q1b5hiIiIiIiIi0lcYmofv27UO9evXQtGlT9OrVC7169ULTpk3h5OSE/fv3l6pOmUyGiIgIeHl5Kcp0dHTg5eWFsLCwIo/78ccfYW1tjU8++aRY58nJyUFqaqrikZ6eXqp4iYiIiIiINI1GDsc9fPgwBgwYgDp16mD+/PlwdnYGANy+fRurV6+Gn58fDh48CF9f3xLV++LFC+Tn58PGxkap3MbGBnfu3Cn0mLNnz2LdunWIjIws9nkCAwPxww8/lCg2IiIiIiIibaCRSejcuXPRrFkznDlzBsbGxoryPn36YOLEiejYsSN++OGHEiehJZWWloYRI0ZgzZo1sLKyKvZx06ZNQ0BAgOJ5ZGSkSu9zJSIiIiIiUhcamYRev34d8+fPV0pA3zA2NsbHH3+M77//vsT1WllZQVdXF4mJiUrliYmJsLW1LbD//fv3ERsbi969eyvK5HI5AEBPTw/R0dGoV69egeP09fWhr6+veG5iYlLiWImIiIiIiDSRRt4TamBggKSkpCK3JyUlwcDAoMT1SqVSuLq6IjQ0VFEml8sRGhoKd3f3Avs3atQIN27cQGRkpOLRp08fdOnSBZGRkahVq1aJYyAiIiIiItJmGtkT2rVrVyxZsgS+vr4FksOLFy/it99+g7e3d6nqDggIwMiRI+Hm5oY2bdogKCgIGRkZGDVqFADA398fNWrUQGBgIAwMDNCkSROl483NzQGgQDkRERHRf61atQrp6ekwMTHBuHHjxA6HiKhCaGQS+vPPP8Pd3R0dO3ZEmzZt0LBhQwBAdHQ0wsPDYW1tjQULFpSq7kGDBuH58+eYNWsWEhIS0KJFCwQHBysmK4qLi4OOjkZ2IBMREZGaSU9PR2pqqthhEBFVKI1MQh0dHXH9+nUEBgbiyJEj2L59OwCgTp06+PLLL/Hdd9/B2tq61PVPnDgREydOLHTbyZMn33nsxo0bS31eIiIiIiIibaeRSSgAWFtbY/HixVi8eLHYoRAREREREVExcVwpERERERERVRiN6AkdPXo0JBIJVq9eDV1dXYwePfq9x0gkEqxbt64CoiMiIlI9TmBDRETaQiOS0OPHj0NHRwdyuRy6uro4fvw4JBLJO49533YiIiJNwglsiIhIW2hEEhobG/vO50RERERERKQZNPKe0Li4OGRlZRW5PSsrC3FxcRUYERERERERERWHRiahjo6O2LNnT5Hb9+/fD0dHxwqMiIiIiIiIiIpDI5NQQRDeuT03Nxc6Ohr50oiIiIiIiLSaRtwTCgCpqalITk5WPH/58mWhQ26Tk5Oxbds22NnZVWB0REREREREVBwak4QuXrwYP/74I4DXM99OnjwZkydPLnRfQRAwb968CoyOiIiISNn7Rm4BgLGxMQRBUPxLRFQZaEwS6u3tDRMTEwiCgG+++QZDhgxBq1atlPaRSCQwNjaGq6sr3NzcRIqUiIiIKiupVAqJRFLshLKka75KJBJIpdLShEZEpDY0Jgl1d3eHu7s7ACAjIwMDBgxAkyZNRI6KiIiI6P9YWlpiwoQJkMlkKqlfKpXC0tJSJXUTEVUUjUlC38jMzMRvv/0GIyMjJqFERESkdkxzZRBk2SqpWyJRSbVERBVK45JQIyMj6OnpwdjYWOxQiIiIys37hm/y3kHNIEuIR9y0AJWeo3bgIkhtOQEjEWkujUtCAWDAgAHYuXMnPv/8c0j4lSAREWmoktw/WNJ7BwHePygGIUc1PaAVfQ4iIlXSyCR08ODBGD9+PLp06YIxY8bAwcEBhoaGBfb778RFRERE6oT3D2q5YnxR3n//UTzPykJ1Q0Ps6ePz7p3ZA05EWkIjk1BPT0/Fz2fOnCmwXRAESCQS5OfnV2BUREREJccksXJ7npWFxMwsscMgIqpQGpmEbtiwQewQiIiIyoUsIV5lwysl+ga8d5CIiNSORiahI0eOFDsEIiKiMuMkNkREVBlpZBL6tvT0dDx69AgAUKtWLZiYmIgcERERUfGUpAe0/4GjeJ6VjeqGBtjT+z33DpbyHERERBVBR+wASuvSpUvo0qULqlWrhiZNmqBJkyaoVq0aunbtisuXL4sdHhERUclIJO98PM/KRmJmFp5nZb93Xy4mSURE6kwje0IvXrwIT09PSKVSfPrpp3B2dgYA3L59G3/99Rc6d+6MkydPok2bNiJHSkRERERERG/TyCR0+vTpqFGjBs6ePQtbW1ulbXPmzEGHDh0wffp0hISEiBQhEZG4Vq1ahfT0dJiYmJRqfUkiIiIiVdHI4bgXL17EuHHjCiSgAGBjY4OxY8fiwoULIkRGRKQe0tPTkZqaivT0dLFDISIiIlKikUmojo4O8vLyityen58PHR2NfGlERERERERaTSMztfbt22PZsmV4+PBhgW1xcXFYvnw5OnToIEJkRERERERE9C4amYTOnz8fKSkpaNSoEYYOHYo5c+Zgzpw5GDJkCBo1aoSUlBQEBgaWuv5ly5bBwcEBBgYGaNu2LcLDw4vcd82aNejUqROqVauGatWqwcvL6537ExEREb1R3dAQNkaGqG5oKHYoREQVRiMnJmrZsiUuXryI6dOnY//+/cjMzAQAGBkZwdfXF/PmzYOLi0up6t6+fTsCAgKwcuVKtG3bFkFBQfDx8UF0dDSsra0L7H/y5EkMGTIE7du3h4GBARYsWABvb2/cunULNWrUKNPrJCIiIu22p0/x13wlItIWGpmEAoCLiwv27NkDuVyO58+fAwCqV69e5ntBFy1ahDFjxmDUqFEAgJUrV+LQoUNYv349vvvuuwL7b9myRen52rVrsWvXLoSGhsLf379MsagrzrpJRERERESlpZHDcd8mkUiUHmUhk8kQEREBLy8vRZmOjg68vLwQFhZWrDoyMzORm5sLCwuLIvfJyclBamqq4qFps1dy1k0iIiIiIiotjU1Co6KiMHDgQJiZmcHOzg52dnYwMzPDwIEDcfPmzVLV+eLFC+Tn58PGxkap3MbGBgkJCcWq49tvv4W9vb1SIvtfgYGBqFq1quLh4eFRqniJiKjy4L2DRESkLTRyOO6ZM2fwwQcfQC6Xo2/fvmjQoAEAIDo6Gvv378eRI0cQHByMTp06VWhc//vf/7Bt2zacPHkSBgYGRe43bdo0BAQEKJ5HRkYyESWicmViYqL0L2k+3jtIRETaQiOT0ClTpsDa2hqnTp1CrVq1lLY9evQInTt3RkBAAC5dulSieq2srKCrq4vExESl8sTERNja2r7z2F9//RX/+9//8M8//6BZs2bv3FdfXx/6+vqK5/wjkYhKQhCE9+4zduzYEu1PREREVFE0cjjurVu3MH78+AIJKADUqlULn3/+OW7dulXieqVSKVxdXREaGqook8vlCA0Nhbu7e5HH/fzzz5g7dy6Cg4Ph5uZW4vMSEb2PVCot833v7yORSCCVSlV6DiIiIiKN7AmtU6cOcnJyitwuk8kKTVCLIyAgACNHjoSbmxvatGmDoKAgZGRkKGbL9ff3R40aNRTrkC5YsACzZs3C1q1b4eDgoLh31MTEhD2cRFRuLC0tMWHCBMhkMpWdQyqVwtLSUmX1ExEREQEamoTOmjULU6ZMQc+ePdGiRQulbVevXsXSpUsRFBRUqroHDRqE58+fY9asWUhISECLFi0QHBysmKwoLi5OaRmYFStWQCaTYeDAgUr1zJ49G3PmzClVDEREhTHNlUGQZausfhV3tBIREREB0NAk9MKFC7CxsYGrqyvat28PJycnAMDdu3cRFhaGJk2aICwsTGlZFYlEgiVLlhSr/okTJ2LixImFbjt58qTS89jY2FK9BnVVnHvHjI2NIQiC4l8iUj1ZQjzipgW8f8cyqh24CFJbO5Wfh4iIiCovjUxCf//9d8XP586dw7lz55S237hxAzdu3FAqK0kSWtm8udesuAnluHHjSlQ/7zMjKjshp2Q9oP0PHMXzrGxUNzTAnt7Fn1W1pOchIiIiKimNTELlcrnYIWgVVd9rxvvMiMpZMcbNPs/KRmJmVrH3B0c1EBERUQXRyCSUyh+TRCIiIiIiqgganYTGxMTgyJEjePjwIYDXs+Z+8MEHcHR0FDkyzSNLiFfZMDyJvgHvMSMiIiIiIgAanIROnToVS5YsKTA0V0dHB5MnT8avv/4qUmSapyImPOFkJ0REREREBAA6799F/SxcuBCLFy+Gn58fwsLCkJycjOTkZISFhWHgwIFYvHgxFi9eLHaYGqM0E5503LEP/Q8cVdk5iIiIiIhIO2lkT+iaNWvQp08f7NixQ6m8bdu22LZtG7Kzs7Fq1SpMmTJFpAg1WHlPeMLJToiIiIiI6C0a2RMaGxsLH5+ilxzw8fHRuvU7iYiIiIiItIFGJqHW1ta4du1akduvXbuG6tWrV2BEREREREREVBwamYR++OGHWLt2Lf73v/8hIyNDUZ6RkYEFCxZg7dq1GDRokIgREhGJq7qhIWyMDFHd0FDsUIiIiIiUaOQ9oXPnzkVkZCS+//57zJo1C/b29gCAp0+fIi8vD126dMGPP/4ocpREROLZ06foWxaIiIiIxKSRSaiRkRFCQ0Oxb98+pXVCfX190aNHD/Tu3RuSYkywQ0RERERERBVL45LQzMxMDB8+HAMGDMCwYcPQt29fsUMiIiIiIiKiYtK4e0KNjIzwzz//IDMzU+xQKi3ea0ZERERERKWlcT2hANCxY0eEhYVhzJgxYodSKfFeMyIiIiIiKi2N6wkFgN9//x1nzpzBjBkz8PjxY7HDISIiIiIiomLSyCS0efPmePz4MQIDA1GnTh3o6+vDzMxM6VG1alWxwyQiIiIiIqL/0MjhuAMGDODst0RERERERBpII5PQjRs3ih0CERERERERlYJGJaHZ2dnYt28fYmJiYGVlhZ49e8LOzk7ssIiIiIiIiKiYNCYJffbsGdq3b4+YmBgIggDg9XIte/fuhZeXl8jRERERERERUXFozMREc+fORWxsLKZMmYKDBw8iKCgIhoaGGDdunNihERERERERUTFpTE/osWPH4O/vj19//VVRZmNjg6FDhyI6OhoNGzYUMToiIiIiIiIqDo3pCY2Li0PHjh2Vyjp27AhBEJCYmChSVERERERERFQSGpOE5uTkwMDAQKnszfO8vDwxQiIiIiIiIqIS0pgkFABiY2Nx5coVxeP69esAgLt37yqVv3mU1rJly+Dg4AADAwO0bdsW4eHh79z/77//RqNGjWBgYICmTZvi8OHDpT43ERERERGRNtOYe0IBYObMmZg5c2aB8vHjxys9FwQBEokE+fn5JT7H9u3bERAQgJUrV6Jt27YICgqCj48PoqOjYW1tXWD/8+fPY8iQIQgMDESvXr2wdetW9OvXD1euXEGTJk1KfH4iIiIiIiJtpjFJ6IYNGyrkPIsWLcKYMWMwatQoAMDKlStx6NAhrF+/Ht99912B/ZcsWQJfX198/fXXAF7P4hsSEoLff/8dK1eurJCYiYiIiIiINIXGJKEjR45U+TlkMhkiIiIwbdo0RZmOjg68vLwQFhZW6DFhYWEICAhQKvPx8cHevXuLPE9OTg5ycnIUz9PT08sWeHn6/2uwkhZhm2oftql2YrtqH7ap9mGbaie2a4XTqHtCVe3FixfIz8+HjY2NUrmNjQ0SEhIKPSYhIaFE+wNAYGAgqlatqnh4eHiUPfgykOgbvH8nDTgH/Z+K+v9mu1Yctql24vuv9mGbah++/2onXqvi0pieUG0ybdo0pd7TyMhIURNRqa0dagcugpCTrZL6JfoGkNraqaRuKpyq2xRgu1Y0tql24vuv9mGbah++/2onXqviYhL6FisrK+jq6hZYdzQxMRG2traFHmNra1ui/QFAX18f+vr6iucmJiZliLp88CLRPmxT7cM21U5sV+3DNtU+bFPtxHYVD4fjvkUqlcLV1RWhoaGKMrlcjtDQULi7uxd6jLu7u9L+ABASElLk/kRERERERJUZe0L/IyAgACNHjoSbmxvatGmDoKAgZGRkKGbL9ff3R40aNRAYGAgA+PLLL+Hh4YGFCxeiZ8+e2LZtGy5fvozVq1eL+TKIiIiIiIjUEpPQ/xg0aBCeP3+OWbNmISEhAS1atEBwcLBi8qG4uDjo6PxfB3L79u2xdetWzJgxA99//z3q16+PvXv3co1QIiIiIiKiQkgEgXMSi+3KlStwdXVFREQEWrVqJXY4REREREREKsN7QomIiIiIiKjCMAklIiIiIiKiCsN7QqlU4uPjER8fL3YYVI7s7OxgZ8epyrUJr1Ptw+tUO/FaJVJ/fP8tX0xC1YCdnR1mz56tMb/YOTk5GDJkCE6dOiV2KFSOPDw8cPToUaU1bElz8TrVTrxOtQ+vVSLNwPff8sWJiajEUlNTUbVqVZw6dQomJiZih0PlID09HR4eHkhJSYGZmZnY4VA54HWqfXidaideq9rnzbXKNtUefP8tf+wJpVJr0aIFL0QtkZqaKnYIpCK8TrUHr1PtxmtVe7y5Vtmm2oPvv+WPExMRERERERFRhWESSkRERERERBWGSSiVmL6+PmbPns0bs7UI21T7sE21D9tUO7FdtQ/bVPuwTcsfJyYiIiIiIiKiCsOeUCIiIiIiIqowTEKJiIiIiIiowjAJJSIiIiIiogrDJJREFRsbC4lEgo0bN4odChERERERVQAmoRrk/v37GDduHOrWrQsDAwOYmZmhQ4cOWLJkCbKyslR23qioKMyZMwexsbEqO0dx/PTTT+jTpw9sbGwgkUgwZ84cUeOpSBKJpFiPkydPlvlcmZmZmDNnTonqqsxtUxbq3K537tzBN998gxYtWsDU1BR2dnbo2bMnLl++XOZYtJk6t+nTp08xfPhwNGzYEKampjA3N0ebNm3wxx9/gHMUFk2d2/S/tmzZAolEAhMTkzLHou3UuV3nzJnzzpjOnTtX5pi0kTq36Rv379/H0KFDYW1tDUNDQ9SvXx/Tp08vczyaSE/sAKh4Dh06hA8//BD6+vrw9/dHkyZNIJPJcPbsWXz99de4desWVq9erZJzR0VF4YcffoCnpyccHBxUco7imDFjBmxtbdGyZUscPXpUtDjEsHnzZqXnmzZtQkhISIFyZ2fnMp8rMzMTP/zwAwDA09OzWMdU5rYpC3Vu17Vr12LdunUYMGAAxo8fj5SUFKxatQrt2rVDcHAwvLy8yhyTNlLnNn3x4gUeP36MgQMHonbt2sjNzUVISAg+/vhjREdHY/78+WWOSRupc5u+LT09Hd988w2MjY3LHEdloM7t6ufnBycnpwLl33//PdLT09G6desyx6SN1LlNASAyMhKenp6oUaMGpk6dCktLS8TFxeHRo0dljkcjCaT2Hjx4IJiYmAiNGjUSnj59WmD73bt3haCgIJWd/++//xYACCdOnHjvvnK5XMjMzCx23TExMQIAYcOGDcXaVxAE4fnz5wIAYfbs2cU+j7aZMGGCoKrLtzT/v2yb8qFO7Xr58mUhLS1NqezFixdC9erVhQ4dOqggQu2kTm1alF69egnGxsZCXl5e+QSm5dS1Tb/99luhYcOGwrBhwwRjY+PyD07LqWu7vhEXFydIJBJhzJgx5ReYllOnNs3PzxeaNGkitG3btkR/J2szDsfVAD///DPS09Oxbt062NnZFdju5OSEL7/8UvE8Ly8Pc+fORb169aCvrw8HBwd8//33yMnJUTrOwcEBvXr1wtmzZ9GmTRsYGBigbt262LRpk2KfjRs34sMPPwQAdOnSpcBQhjd1HD16FG5ubjA0NMSqVasAAA8ePMCHH34ICwsLGBkZoV27djh06FCp/x/E7IXVBHK5HEFBQWjcuDEMDAxgY2ODcePG4dWrV0r7Xb58GT4+PrCysoKhoSEcHR0xevRoAK/v0a1evToA4IcfflC09/uG17JtVEesdnV1dS0wpM/S0hKdOnXC7du3y/dFVjJiXquFcXBwQGZmJmQyWZlfW2UldpvevXsXixcvxqJFi6Cnx0Fu5UXsdn3bX3/9BUEQMGzYsHJ5bZWVWG167Ngx3Lx5E7Nnz4ahoSEyMzORn5+vstepCfhOpQEOHDiAunXron379sXa/9NPP8Uff/yBgQMHYurUqbh48SICAwNx+/Zt7NmzR2nfe/fuYeDAgfjkk08wcuRIrF+/Hh9//DFcXV3RuHFjdO7cGZMmTcJvv/2G77//XjGE4e2hDNHR0RgyZAjGjRuHMWPGoGHDhkhMTET79u2RmZmJSZMmwdLSEn/88Qf69OmDnTt3on///uX3H0QAgHHjxmHjxo0YNWoUJk2ahJiYGPz++++4evUqzp07hypVquDZs2fw9vZG9erV8d1338Hc3ByxsbHYvXs3AKB69epYsWIFPv/8c/Tv3x9+fn4AgGbNmon50io1dWvXhIQEWFlZletrrGzEbtOsrCxkZGQgPT0dp06dwoYNG+Du7g5DQ0OVvm5tJnabTp48GV26dEGPHj2wY8cOlb7WykTsdn3bli1bUKtWLXTu3LncX2dlIlab/vPPPwAAfX19uLm5ISIiAlKpFP3798fy5cthYWGh+hevbsTuiqV3S0lJEQAIffv2Ldb+kZGRAgDh008/VSr/6quvBADC8ePHFWV16tQRAAinT59WlD179kzQ19cXpk6dqih713DcN3UEBwcrlU+ePFkAIJw5c0ZRlpaWJjg6OgoODg5Cfn6+IAglG477Bod8FhxicubMGQGAsGXLFqX9goODlcr37NkjABAuXbpUZN1l+f9l25SNurbrG6dPnxYkEokwc+bMUtdR2ahjmwYGBgoAFI9u3boJcXFxJaqjMlO3Nj148KCgp6cn3Lp1SxAEQRg5ciSH45aCurXr227evCkAEL755ptSHV9ZqVOb9unTRwAgWFpaCsOGDRN27twpzJw5U9DT0xPat28vyOXykr9ADcfhuGouNTUVAGBqalqs/Q8fPgwACAgIUCqfOnUqABQYDuvi4oJOnTopnlevXh0NGzbEgwcPih2jo6MjfHx8CsTRpk0bdOzYUVFmYmKCsWPHIjY2FlFRUcWun97v77//RtWqVdG9e3e8ePFC8XgzpPLEiRMAAHNzcwDAwYMHkZubK2LEVBzq1K7Pnj3D0KFD4ejoiG+++UYl56gM1KFNhwwZgpCQEGzduhVDhw4FAJXOsK7txGxTmUyGKVOm4LPPPoOLi0u51EmvqcO1+saWLVsAgENxy0jMNk1PTwcAtG7dGn/++ScGDBiAH3/8EXPnzsX58+cRGhpaLufRJExC1ZyZmRkAIC0trVj7P3z4EDo6OgVmVbO1tYW5uTkePnyoVF67du0CdVSrVq3A2Ph3cXR0LDSOhg0bFih/M4z3v3FQ2dy9excpKSmwtrZG9erVlR7p6el49uwZAMDDwwMDBgzADz/8ACsrK/Tt2xcbNmwocL8wqQd1adeMjAz06tULaWlp2LdvH5d/KAN1aNM6derAy8sLQ4YMwZYtW1C3bl14eXkxES0lMdt08eLFePHihWKWTio/6nCtAoAgCNi6dSuaNGnCW2PKSMw2fXO7w5AhQ5TK33wReP78+VLXral4T6iaMzMzg729PW7evFmi4yQSSbH209XVLbRcKMGacbyPSHxyuRzW1taKb0v/680N9BKJBDt37sSFCxdw4MABHD16FKNHj8bChQtx4cIFJhdqRh3aVSaTwc/PD9evX8fRo0fRpEmTUtdF6tGm/zVw4ECsWbMGp0+fLjCqhd5PrDZNSUnBvHnzMH78eKSmpipGTqWnp0MQBMTGxsLIyAjW1tZle4GVlLpcq+fOncPDhw8RGBhYpnpI3Da1t7cHANjY2CiVv7k+S9L5oy2YhGqAXr16YfXq1QgLC4O7u/s7961Tpw7kcjnu3r2rNHlQYmIikpOTUadOnRKfv7gJ7X/jiI6OLlB+584dxXYqP/Xq1cM///yDDh06FOtLgXbt2qFdu3b46aefsHXrVgwbNgzbtm3Dp59+Wqr2JtUQu13lcjn8/f0RGhqKHTt2wMPDozQvg94idpsW5k0PaEpKSrnUV9mI1aavXr1Ceno6fv75Z/z8888Ftjs6OqJv377Yu3dvSV4O/X/qcq1u2bIFEolE0WNGpSdmm7q6umLNmjV48uSJUvnTp08B/F8CXJlwOK4GeLP49KefforExMQC2+/fv48lS5YAAHr06AEACAoKUtpn0aJFAICePXuW+PxvFr5OTk4u9jE9evRAeHg4wsLCFGUZGRlYvXo1HBwceO9KOfvoo4+Qn5+PuXPnFtiWl5enaLtXr14V6OVu0aIFACiGmRgZGQEoWXuTaojdrl988QW2b9+O5cuXK2b/o7IRs02fP39eaPm6desgkUjQqlWrYtVDysRqU2tra+zZs6fAo0uXLjAwMMCePXswbdq00r+wSk7s918AyM3Nxd9//42OHTsWevsUlYyYbdq3b1/o6+tjw4YNkMvlivK1a9cCALp3716Sl6IV2BOqAerVq4etW7di0KBBcHZ2hr+/P5o0aQKZTIbz58/j77//xscffwwAaN68OUaOHInVq1cjOTkZHh4eCA8Pxx9//IF+/fqhS5cuJT5/ixYtoKuriwULFiAlJQX6+vro2rXrO4f4fPfdd/jrr7/wwQcfYNKkSbCwsMAff/yBmJgY7Nq1Czo6Jf/+Y/PmzXj48CEyMzMBAKdPn8a8efMAACNGjKjUvaseHh4YN24cAgMDERkZCW9vb1SpUgV3797F33//jSVLlmDgwIH4448/sHz5cvTv3x/16tVDWloa1qxZAzMzM8UXGIaGhnBxccH27dvRoEEDWFhYoEmTJu8chsm2UQ0x2zUoKAjLly+Hu7s7jIyM8Oeffypt79+/v+ILKio+Mdv0p59+wrlz5+Dr64vatWsjKSkJu3btwqVLl/DFF18UmEuAikesNjUyMkK/fv0KlO/duxfh4eGFbqPiE/tzFQCOHj2Kly9fckKiciJmm9ra2mL69OmYNWsWfH190a9fP1y7dg1r1qzBkCFD0Lp164r8r1APos3LSyX277//CmPGjBEcHBwEqVQqmJqaCh06dBCWLl0qZGdnK/bLzc0VfvjhB8HR0VGoUqWKUKtWLWHatGlK+wjC6+VVevbsWeA8Hh4egoeHh1LZmjVrhLp16wq6urpKy7UUVYcgCML9+/eFgQMHCubm5oKBgYHQpk0b4eDBg0r7lGSJFg8PD6VlBd5+FLZ8jDb777Tjb6xevVpwdXUVDA0NBVNTU6Fp06bCN998Izx9+lQQBEG4cuWKMGTIEKF27dqCvr6+YG1tLfTq1Uu4fPmyUj3nz58XXF1dBalUWqwpyNk25UOd2nXkyJFFtikAISYmpjxfutZSpzY9duyY0KtXL8He3l6oUqWK4jNkw4YNlXJ5gNJSpzYtDJdoKR11bNfBgwcLVapUEV6+fFkur7GyUbc2lcvlwtKlS4UGDRoo/j6fMWOGIJPJyu01axKJIJRgBhoiIiIiIiKiMuA9oURERERERFRhmIQSERERERFRhWESSkRERERERBWGSSgRERERERFVGCahREREREREVGGYhGqRn3/+GY0aNVJaBFdTDR48GB999JHYYYiObap92Kbaie2qfdim2odtqp3YrhpK7DViqHykpKQIFhYWwvr16xVl+P/r+f36668F9t+wYYMAQLh06VK5x+Ll5SUAECZMmFDo9rVr1wqNGjUS9PX1BScnJ+G3334rsM+VK1cEHR0dITIystzj0xRsU+3DNtVObFftwzbVPmxT7cR21VzsCdUS69evR15eHoYMGVJg2y+//ILMzMwKiWP37t0ICwsrcvuqVavw6aefonHjxli6dCnc3d0xadIkLFiwQGm/li1bws3NDQsXLlR1yGqLbap92Kbaie2qfdim2odtqp3YrhpM7CyYykezZs2E4cOHK5UBEFq0aCEAEBYuXKi0TRXfBGVlZQkODg7Cjz/+WOg3QZmZmYKlpaXQs2dPpfJhw4YJxsbGQlJSklL5r7/+KhgbGwtpaWnlFqMmYZtqH7apdmK7ah+2qfZhm2ontqvmYk+oFoiJicH169fh5eVVYFuHDh3QtWtX/Pzzz8jKylJpHD///DPkcjm++uqrQrefOHECL1++xPjx45XKJ0yYgIyMDBw6dEipvHv37sjIyEBISIjKYlZXbFPtwzbVTmxX7cM21T5sU+3EdtVsTEK1wPnz5wEArVq1KnT7nDlzkJiYiBUrVryznpycHLx48aJYj/+Ki4vD//73PyxYsACGhoaF1n/16lUAgJubm1K5q6srdHR0FNvfcHFxgaGhIc6dO/fOuLUR21T7sE21E9tV+7BNtQ/bVDuxXTWbntgBUNnduXMHAODo6Fjo9k6dOqFLly745Zdf8Pnnnxd5kfz1118YNWpUsc4pCILS86lTp6Jly5YYPHhwkcfEx8dDV1cX1tbWSuVSqRSWlpZ4+vSpUrmenh5q1aqFqKioYsWkTdim2odtqp3YrtqHbap92Kbaie2q2ZiEaoGXL19CT08PJiYmRe4zZ84ceHh4YOXKlZgyZUqh+/j4+JSq6//EiRPYtWsXLl68+M79srKyIJVKC91mYGBQ6HCJatWqFfrNk7Zjm2oftql2YrtqH7ap9mGbaie2q2ZjElpJdO7cGV26dMHPP/+Mzz77rNB97OzsYGdnV6J68/LyMGnSJIwYMQKtW7d+576GhoaQyWSFbsvOzi70GypBECCRSEoUU2XBNtU+bFPtxHbVPmxT7cM21U5sV/XFJFQLWFpaIi8vD2lpaTA1NS1yv9mzZ8PT0xOrVq2Cubl5ge1ZWVlISUkp1jltbW0BAJs2bUJ0dDRWrVqF2NhYpX3S0tIQGxsLa2trGBkZwc7ODvn5+Xj27JnSkASZTIaXL1/C3t6+wHlevXqF+vXrFysmbcI21T5sU+3EdtU+bFPtwzbVTmxXzcaJibRAo0aNALyeJexdPDw84OnpiQULFhTa9b99+3bFt0Hve7wRFxeH3NxcdOjQAY6OjooH8PoCdXR0xLFjxwAALVq0AABcvnxZ6byXL1+GXC5XbH8jLy8Pjx49grOzc4n+P7QB21T7sE21E9tV+7BNtQ/bVDuxXTUbe0K1gLu7O4DXv8zNmjV7575z5syBp6cnVq9eXWBbacbEDx48uMDFAwD9+/dHjx49MGbMGLRt2xYA0LVrV1hYWGDFihXo0aOHYt8VK1bAyMgIPXv2VKojKioK2dnZaN++fYli0gZsU+3DNtVObFftwzbVPmxT7cR21XBiLE5K5a9JkybCkCFDlMpQyIK5giAIHh4eAoByX6y3OOdetmyZAEAYOHCgsGbNGsHf318AIPz0008F9v31118FIyMjITU1VSUxqju2qfZhm2ontqv2YZtqH7apdmK7ai4moVpi0aJFgomJiZCZmakoK+pCOHHihGgXoSAIwurVq4WGDRsKUqlUqFevnrB48WJBLpcX2K9t27bC8OHDVRKfJmCbah+2qXZiu2oftqn2YZtqJ7ar5mISqiWSk5MFCwsLYe3atWKHUi6uXr0qSCQS4erVq2KHIhq2qfZhm2ontqv2YZtqH7apdmK7ai6JIPxn1VXSWAsWLMCGDRsQFRUFHR3NnnNq8ODBkMvl2LFjh9ihiIptqn3YptqJ7ap92Kbah22qndiumolJKBEREREREVUYzf66gIiIiIiIiDQKk1AiIiIiIiKqMExCiYiIiIiIqMIwCSUiIiIiIqIKwySUiIiIiIiIKgyTUCIiIiIiIqowTEKJiIiIiIiowjAJJSIiIiIiogrDJJSIiIiIiIgqDJPQt5w+fRq9e/eGvb09JBIJ9u7d+95jTp48iVatWkFfXx9OTk7YuHGjyuMkIiIiIiLSVExC35KRkYHmzZtj2bJlxdo/JiYGPXv2RJcuXRAZGYnJkyfj008/xdGjR1UcKRERERERkWaSCIIgiB2EOpJIJNizZw/69etX5D7ffvstDh06hJs3byrKBg8ejOTkZAQHB1dAlERERERERJqFPaFlEBYWBi8vL6UyHx8fhIWFiRQRERERERGRemMSWgYJCQmwsbFRKrOxsUFqaiqysrKKPC4nJwepqamKx7///osZM2YgPj5e1SETERERERGJikmoCAIDA1G1alXFo2HDhvjpp5+YhBIRERERkdZjEloGtra2SExMVCpLTEyEmZkZDA0Nizxu2rRpSElJUTxOnTql6lCJiIiIiIjUgp7YAWgyd3d3HD58WKksJCQE7u7u7zxOX18f+vr6iucmJiYqiY+IiIiIiEjdsCf0Lenp6YiMjERkZCSA10uwREZGIi4uDsDrHkx/f3/F/p999hkePHiAb775Bnfu3MHy5cuxY8cOTJkyRYzwiYiIiIiI1B6T0LdcvnwZLVu2RMuWLQEAAQEBaNmyJWbNmgUAiI+PVySkAODo6IhDhw4hJCQEzZs3x8KFC7F27Vr4+PiIEj8REREREZG64zqhauDKlStwdXVFREQEWrVqJXY4REREREREKsOeUCIiIiIiIqowTEKJiIiIiIiowjAJJSIiIiIqR1lZWWKHQKTWmIQSEREREZWjpKQksUMgUmtMQomIiIiIylFKSgo49ydR0ZiEEhEAIDc3V+wQiIiItEJeXh4yMzPFDoNIballEhofH49r164hIyND7FCIKg0moUREROUnPT1d7BCI1JZaJaH79u1Do0aNULNmTbRq1QoXL14EALx48QItW7bE3r17xQ2QSIvl5+eLHQIREZHWePbsmdghEKkttUlCDxw4AD8/P1hZWWH27NlK4+itrKxQo0YNbNiwQcQIibSbTCYTOwQiIiKtERUVxS94iYqgNknojz/+iM6dO+Ps2bOYMGFCge3u7u64evWqCJERVQ5MQomIiMpPSkoKTp8+zQmKiAqhNknozZs38dFHHxW53cbGhsMaiFQoOztb7BCIiIi0yt27d3H+/HkmokT/oTZJqJGR0TsnInrw4AEsLS0rMCKiyoWz+BEREZW/W7du4cKFC0xEid6iNkloly5d8McffyAvL6/AtoSEBKxZswbe3t4iREZUOaSlpYkdAhERkVa6ceMGjh07xlFHRP+f2iShP/30Ex4/fozWrVtj1apVkEgkOHr0KGbMmIGmTZtCEATMnj1b7DCJtFZWVhZ7Q4mIiFTk4cOH2LlzJx49eiR2KESiU5sktGHDhjh79iwsLS0xc+ZMCIKAX375BfPnz0fTpk1x5swZODg4iB0mkVZ7+vSp2CEQERFprczMTBw5cgShoaEcgUSVmp7YAbytcePG+Oeff/Dq1Svcu3cPcrkcdevWRfXq1cUOjahSuH//PpycnMQOg4iISGO5ubnh0aNHMDAwwPTp0wvd5/79+4iJiUG9evXQrFkzzntClY5aJaFvVKtWDa1btxY7DKJKJy4uDunp6TAxMRE7FCIiIo2UkJCAZ8+ewdzc/J37yeVy3L17F3fv3kXt2rXRpk0bWFhYVEyQRCJTm+G4v/32G3x8fIrc/sEHH2DFihUVGBFR5SMIAq5duyZ2GERERJVKXFwcdu3ahVOnTiElJUXscIhUTm2S0HXr1sHFxaXI7S4uLli9enUFRkRUOd2+fRupqalih0FERFSpCIKA6Oho7NixA0ePHkV8fDyXdSGtpTZJ6P379+Hs7Fzk9kaNGuH+/fsVGBFR5SSXy3H27Fl+8BEREYlAEAQ8fPgQBw4cwKFDh5CcnCx2SETlTm2SUKlUioSEhCK3x8fHQ0dHbcIl0mqPHz/G9evXxQ6DiIhIo8TFxSEjIwMAkJOTg6SkpDLV9/TpU+zatQsRERHIzc0tjxCJ1ILaZHXt2rXDxo0bC52uOiUlBRs2bEC7du1EiIyocgoPD8e///4rdhhERERqLzw8HL1794aDg4Oi5zIrKwvff/89li1bhtjY2FLXnZ+fj4iICGzZsgXh4eHIysoqn6CJRKQ2Sejs2bPx9OlTtGjRAkuXLsXx48dx/Phx/Pbbb2jZsiXi4+Mxe/ZsscMkqjQEQcDJkycRERHBoblERERF2L17Nzp06IAjR44U+LwUBAE3b97EggULcOXKlTKdRyaTITIyEtu2bcP169chl8vLVN+7JCUlYdiwYTAzM4O5uTk++eQTpKenF7l/bGwsJBJJoY+///5bsV9cXBx69uwJIyMjWFtb4+uvv0ZeXp7KXgepL4mgRn9dhoSEYNy4cYpfZOD1xevo6IgVK1bA29tb5AhV48qVK3B1dUVERARatWoldjhUCbm5ueHhw4cwMjIqdE0zOzs7eHh4wMzMTIToiIiI1FN4eDg6dOiA/Pz8935hq6Ojg2+//RYODg7lcu5q1aqhRYsWqFu3LnR1dUt8vKenJz7++GN8/PHHBbZ98MEHiI+Px6pVq5Cbm4tRo0ahdevW2Lp1a6F15efn4/nz50plq1evxi+//IL4+HiYmJggPz8fLVq0gK2traLc398fY8aMwfz580scP2k2tUpCgdeToly9elUxCVG9evXQqlUrRVKqjZiEkthq1qyJJ0+ewNzcHAsWLCh0Hz09Pbi6uqJp06a8P5uIiAhAnz59cPjwYeTn5793Xx0dHTRt2hTjx48v1xiMjY3RokULuLi4lOjv5aKS0Nu3b8PFxQWXLl2Cm5sbACA4OBg9evTA48ePYW9vX6z6W7ZsiVatWmHdunUAgCNHjqBXr154+vQpbGxsAAArV67Et99+i+fPn0MqlRY7dtJ8aveXpI6ODlxdXfHRRx/ho48+gqurq1YnoESaIi8vDxcvXsSuXbvw9OlTscMhIiISVVxcHA4ePFisBBR43dFy/fr1Mk9W9F8ZGRk4d+4cYmJiyqW+sLAwmJubKxJQAPDy8oKOjg4uXrxYrDoiIiIQGRmJTz75RKnepk2bKhJQAPDx8UFqaipu3bpVLrGT5tATO4D/ioqKwoMHD/Dq1atChzX4+/uLEBURvfHq1SscPHgQTk5OaNeuHYyMjMQOiYiIqEgymUwl9x0ePny4xHMmCIKA27dvw93dvdzjefLkCerWrVvmehISEmBtba1UpqenBwsLi3euZPG2devWwdnZGe3bt1eq9+0EFIDieXHrJe2hNkno/fv3MXz4cISHhxd5QUskEiahRGri3r17iIuLQ9u2bdGoUSOOWCAiIrUjk8kQHh7+zkl1SuvatWuQSCQlSkQlEglSUlJUEs/t27fRtm3bIoe1zp8/X+ney6ysLFy4cAETJ05UlEVFRZU5jqysLGzduhUzZ84sc12kvdQmCR03bhxu3LiBoKAgdOrUCdWqVRM7JCJ6D5lMhjNnzuD+/fvw9PSEiYmJ2CEREREp5OXlIT09HVKpFPr6+uVad7Vq1UrVE2pgYFCucytIJBKYm5ujevXqyMvLKzIJ/eyzz/DRRx8png8bNgwDBgyAn5+fosze3h62trZ49uyZ0rF5eXlISkqCra3te+PZuXMnMjMzC3Qc2draIjw8XKksMTFRsY0qF7VJQs+dO4fvv/8eX3zxhdihEFEJPX36FDt37kTnzp3LZSgQERFRedLX14eBgUG51tmiRYsSHyORSNCwYcNyS0INDAzg7OwMPT09pKWlvXNfCwsLWFhYKJ4bGhrC2toaTk5OSvu5u7sjOTkZERERcHV1BQAcP34ccrkcbdu2fW9M69atQ58+fVC9evUC9f7000949uyZYrhvSEgIzMzM4OLiUqzXS9pDbSYmsrKyQtWqVcUOg4hKSSaT4Z9//sG5c+dUunYZERGRmARBQHR0NM6dO4c6deoU+3YUHR0duLi4lNtoP3Nzc7Ro0aLcRyE5OzvD19cXY8aMQXh4OM6dO4eJEydi8ODBiplxnzx5gkaNGhXo2bx37x5Onz6NTz/9tEC93t7ecHFxwYgRI3Dt2jUcPXoUM2bMwIQJE8q9l5rUn9okoZ999hn+/PPPYs8wRkTq6datWzh06BCys7PFDoWIiKhcZWRk4NixYzh79ixyc3Ph5uZWojkRvLy8yhyDVCqFs7MzmjRpgipVqpS5vsJs2bIFjRo1Qrdu3dCjRw907NgRq1evVmzPzc1FdHQ0MjMzlY5bv349atasCW9v7wJ16urq4uDBg9DV1YW7uzuGDx8Of39//Pjjjyp5DaTe1GY4boMGDZCfn4/mzZtj9OjRqFWrVqEL7749bp2I1FN8fDz27dsHX19fjnAgIiKNJwgC7t69i4sXL0ImkynKO3bsCFdXV8UkPIV1pkgkEkgkEvTv3x/m5uYQBKHUk/lVrVoVzs7O5ZJ8njx5sshtFhYW2Lp1a5HbHRwcCr0f9r+TH/1XnTp1cPjw4RLFSdpJbZLQQYMGKX7+6quvCt1HIpGwp5RIQ6SkpCgS0f9O9U5ERKQpMjIycPbsWTx+/FhRZmRkhI4dO6JWrVoAgBo1amDdunU4c+aMUnImkUjg7OwMd3d32NraIi8vD6mpqTAzMytRIqqnp4caNWqgZs2a5TqpEZFY1CYJPXHihNghEFVKcXFxyMjIAADk5OQgKSlJaeKCssjOzsbBgwfRtWtXODg4lEudREREFUEQBNy7dw8XLlxQ6v2sX78+2rZtq3QfY+PGjbFo0SIkJCRgyJAhSEtLg6GhIb7++mtUq1YNeXl5SElJgSAIyM3NRVpaGkxNTd+biBobG8POzg7W1taFjhAk0lRqk4R6eHiIHQJRpRIeHo65c+fi0KFDim9ts7Ky8P3336Np06bo2bNnuSSOeXl5CAkJQevWrdG8eXOuJ0pERGovMzMT586dQ1xcnKLM0NAQHTt2RO3atYs8ztbWFoaGhkhLS4NUKlVMQqSnpwczMzOkpqZCEATIZDKkp6fD1NS00HoMDAzg6OgIS0tLfm6SVlK7/vycnByEhYVh3759ePHihdjhEGml3bt3o0OHDjhy5EiBezoEQcDNmzexYMECXLlypVzOJwgCwsPDERISgpycnHKp87+SkpIwbNgwmJmZwdzcHJ988sl7FwP39PRU3Kvz5vHZZ58ptm/cuLHA9jeP/66hRkREmu9N7+euXbuUEtB69ephwIAB70xA36dKlSpKSWdOTo5iJNIbenp6cHR0hKurK6ysrJiAktZSqyT0t99+g52dHTp27Ag/Pz9cv34dAPDixQtYWVlh/fr1IkdIpPnCw8MxaNAg5OfnF3mPtVwuh1wux5o1axAbG1tu546NjcXu3bvx8uXLUh3v6emJjRs3Frpt2LBhuHXrFkJCQnDw4EGcPn0aY8eOfW+dY8aMQXx8vOLx888/K7YNGjRIaVt8fDx8fHzg4eHB+1yJiLRMVlYWQkNDcerUKcXwW0NDQ3h5ecHT07NclhGRSqVKiWhWVpZihtkaNWqgdevWvO+TKgW1+Q3fsGEDJk+eDF9fX6xbt06pd8bKygpdu3bFtm3bRIyQSDvMmzcPgiAUOqtdYcp7Fru0tDTs27cPT548Kbc6b9++jeDgYKxduxZt27ZFx44dsXTpUmzbtg1Pnz5957FGRkawtbVVPMzMzBTbDA0Nlbbp6uri+PHj+OSTT8otdiIiEpcgCHjw4AF27dqFhw8fKsrr1q0LPz8/1KlTp1zPp6+vr7S255thuXXr1oWentrcKUekUmqThC5cuBB9+/bF1q1b0bt37wLbXV1dcevWLREiI9IecXFxOHjwYLFnmZbL5bh+/TqSkpLKNY68vDwcO3YMaWlp5VJfWFgYzM3N4ebmpijz8vKCjo4OLl68+M5jt2zZAisrKzRp0gTTpk0rsObZ2zZt2gQjIyMMHDiwXOImIiJxZWVl4fjx4zhx4oTidhEDAwN07doVXbp0gYGBgUrOa2BgABMTE2RlZSE5ORkRERG4f/++Ss5FpI7U5uuWe/fuYdKkSUVut7CwKPUQPiJNI5PJkJeXV+71Hj58uNg9oG8IgoDbt2/D3d29XGPJycnBzZs3y6XehISEAsNj9fT0YGFhgYSEhCKPGzp0KOrUqQN7e3tcv34d3377LaKjo7F79+5C91+3bh2GDh0KQ0PDMsdMRETiiomJwfnz55Gdna0oc3R0hLu7u8rf56tXrw4HBwfcuHFDcfvZqVOnIJVKFcu+EGkztUlCzc3N3zkRUVRUFGxtbSswIiJxyGQyhIeHv3dSndK4du0aJBJJiRJRiUSClJQUlcQTHR0NV1dXSKXSQrf/d9HrrKwsXLhwARMnTlSURUVFlfr8b98z2rRpU9jZ2aFbt264f/8+6tWrp7RvWFgYbt++jc2bN5f6fEREJL7s7GycP38eMTExijJ9fX20b98edevWVem5dXV1Ub9+fVSvXh0A4ObmhpycHERHR0MQBISGhsLX15d/85LWU5sktEePHli9ejXGjx9fYNutW7ewZs0ajB49WoTIiCpWXl4e0tPTIZVKy2UShLeZm5uXqifUwMCg3CdJEAQBEokEeXl5RSahn332GT766CPF82HDhmHAgAHw8/NTlNnb28PW1rbAbLV5eXlISkoq0Qd527ZtAbwemfHfJHTt2rVo0aIFXF1di10fERGpl9jYWJw7d06p99PBwQHt27dXee+ngYEBXFxcYGxsrCiTSCRo3749ZDIZYmJikJ+fj5CQEPTo0QOWlpYqjYdITGqThM6bNw9t27ZFkyZN0Lt3b0gkEvzxxx9Yv349du3aBTs7O8yaNUvsMIkqjL6+frnei/LkyZNS9WZKJBI0bNhQJTP1vVk/rSgWFhawsLBQPDc0NIS1tTWcnJyU9nN3d1fcU/MmSTx+/DjkcrkisSyOyMhIAICdnZ1SeXp6Onbs2IHAwMBi10VEROrjzRKADx48UJTp6+vD3d0ddevWVflSKIaGhmjWrFmhX7rq6OjAw8MDMpkMT548gUwmw9GjR9GzZ09UrVpVpXERiUVtJiayt7dHREQEfH19sX37dgiCgM2bN+PAgQMYMmQILly4ACsrK7HDJNI4SUlJOHr0KIKDg5Gfn486deoU+8NWR0cHLi4u700WS8PR0bHIHtCScnZ2hq+vL8aMGYPw8HCcO3cOEydOxODBg2Fvbw/gdRLeqFEjhIeHAwDu37+PuXPnIiIiArGxsdi/fz/8/f3RuXNnNGvWTKn+7du3Iy8vD8OHDy+XeImIqOLEx8fj4MGDSglo7dq14efnh3r16qk8AdXR0YGzs/M7P/N0dXXRrVs3xfwGWVlZCA4OLrCOKJG2UIskNCcnB/v370dCQgLWrl2LpKQkJCYmIj4+Hq9evcL69eu5Jh9RCWVkZODMmTPYu3cvHj9+rCjv1q0bdHR0iv2h6+3tXa5x6erqwsXFpdy/VNqyZQsaNWqEbt26oUePHujYsSNWr16t2J6bm4vo6GjF7LdSqRT//PMPvL290ahRI0ydOhUDBgzAgQMHCtS9bt06+Pn5wdzcvFxjJiIi1cnMzMRff/2FS5cuKYbfSqVSeHh4wMvLC0ZGRhUSh4ODg9IQ3KJUqVIF3t7eii9+09PTERwcrDR0mEhbqMVwXKlUig8//BBLlixR9EC8uWFbDMuWLcMvv/yChIQENG/eHEuXLkWbNm0K3Xfjxo0YNWqUUpm+vj7fMEg0MpkMN27cwI0bN5SWYjE2Noabmxvq1auHRo0aYdq0aQBQ6HItb4bejhw5ErVr1y632MzMzNCgQQMYGhqW6ho5efJkkdssLCywdevWIrc7ODgo3Q9bq1YtnDp1qljnPX/+fLFjJCIi8d24cQNbt25FSkqKoqxWrVro0KFDsRLC8mJkZKQYkVMc+vr68PX1xcGDB5GWlobk5GQcO3YMvr6+5TZ6iEgdqEUSKpFIUL9+/XfOjltRtm/fjoCAAKxcuRJt27ZFUFAQfHx8EB0dXWRvrJmZGaKjoxXPVT2sg6gwcrkc0dHRuHLlilKCJ5VK0bx5c7i4uCgWwe7atSvWr1+PdevW4cyZM0rJmUQigbOzM7y9vcstAZVIJKhTpw5q1qzJ64OIiFQmMzMTO3fuxIULFxRlenp6aN26NZydnSv8M8je3r7E5zQyMoKvry8OHTqEzMxMPH/+HKGhofD29oaurq6KIiWqWGqRhALA999/j4CAAHz44Ydo2LChaHEsWrQIY8aMUfRurly5EocOHcL69evx3XffFXqMRCLhVNokGkEQEBcXh0uXLil94/vmHpQWLVoUOsFR48aNsWjRIiQkJGDIkCFIS0uDoaEhvv7663K9B9TY2BgNGjSAiYlJudVJRET0X7du3cKWLVuQnJysKGvUqBFq1aoFa2trUb4ELe3IPjMzM/j4+ODQoUOQyWR4+vQpTp48iS5duqhkokCiiqY2SeiFCxdgaWmJJk2awNPTEw4ODgWmypZIJFiyZInKYpDJZIiIiFAMUwRe/yHv5eWFsLCwIo9LT09HnTp1IJfL0apVK8yfPx+NGzcucv+cnBzk5OQoHU9UGs+fP8fFixeRmJioVO7o6Ag3NzeYmZm9tw5bW1sYGhoiLS0NUqm0XBPQWrVqoXbt2vzAJCIilcnKysKuXbuUbp0wMDDAhx9+iGbNmuHMmTOixKWjo6MYgVQaFhYW8Pb2RnBwMPLy8hTLy3Ts2JGjikjjqU0S+vvvvyt+Dg0NLXQfVSehL168QH5+PmxsbJTKbWxscOfOnUKPadiwIdavX49mzZohJSUFv/76K9q3b49bt26hZs2ahR4TGBiIH374odzjp8ojNTUVly9fVlpoG3j9u9qmTRvRJ/IyNjZG/fr1YWpqKmocRESk3aKiovDnn38q9X46Oztj2LBhsLCwUExGJ4bySBRtbGzQrVs3hISEQC6X499//4VUKkWbNm2YiJJGU5skVC6Xix1Cqbi7u8Pd3V3xvH379nB2dsaqVaswd+7cQo+ZNm0aAgICFM8jIyPh4eGh8lhJ8+Xk5ODq1au4ffu20jVjZmaG1q1bl2j5FVWpXbs2atWqxd5PIiJSmaysLOzevRvnzp1TlBkYGGDAgAFo3769qJ+FlpaWyM/Ph6WlZbnUV7NmTXh6euL48eMAgJs3b8LAwADNmzcvl/qJxKA2Sag6sLKygq6uboGhjYmJicW+57NKlSpo2bIl7t27V+Q++vr60NfXVzznvXL0Pnl5ebh9+zYiIyMhk8kU5QYGBmjZsiUaNWoketKnr6+PRo0aFWsIMBERUWnduXMHf/75J5KSkhRlDRs2xPDhw8st8SuLzZs34/Hjx+U6X4ijoyM6dOigSLovX76s+Nwl0kRql4ReuHABJ06cwLNnzzB+/HjUr18fmZmZuHPnjsonN5FKpXB1dUVoaCj69esH4HUPbWhoKCZOnFisOvLz83Hjxg306NFDZXFS5SEIAh48eIDLly8r3Tusq6uLJk2aoFmzZmoxZbupqSlcXFzUIhYiItJO2dnZ2LNnj9I9nvr6+ujfvz86deok+kigt+nq6pbpftDCNGrUCDk5Obh8+TIA4Ny5c5BKpahbt265noeoIqhNEiqTyTB48GDs27cPgiBAIpGgd+/eqF+/PnR0dODt7Y0pU6Zg+vTpKo0jICAAI0eOhJubG9q0aYOgoCBkZGQoZsv19/dHjRo1EBgYCAD48ccf0a5dOzg5OSE5ORm//PILHj58iE8//VSlcZL2S0xMRGRkZIGli+rXr49WrVqpTQ961apV0bhxY04bT0REKhMdHY0///wTL1++VJQ1aNAAw4cPh5WVlYiRFa5KlSoqqbd58+bIycnBjRs3AACnTp2CVCpVy/8DondRmyR05syZOHjwIFasWIEuXbooLdPyZoazffv2qTwJHTRoEJ4/f45Zs2YhISEBLVq0QHBwsGKyori4OKVhj69evcKYMWOQkJCAatWqwdXVFefPn4eLi4tK4yTtlZCQUOiMt/b29mjTpo1aDDV6w9LSEg0bNmQCSkREKpGTk4O9e/fi1KlTijKpVKro/RT7VpSiqCoJBYDWrVsjJycH//77L+RyOf755x9069at0OXYiNSV2iShf/31Fz7//HOMHTtW6VuuN5ydnfH3339XSCwTJ04scvjtyZMnlZ4vXrwYixcvroCoSNulpKTg0KFDOHfuHARBUJRXq1YNbdq0KXK2ZbE4ODigZs2aajX8iYiItMfdu3exefNmpRFBTk5O8Pf3V/uev6pVq6qsbolEgg4dOkAmkyE2Nhb5+fk4efKk0kSZROpObZLQZ8+eoWnTpkVu19XVFXWabSJVycnJQWhoKEJCQpTWjzU0NISbmxucnJzU6pteAwMDNGzYkBMQERGRSshkMuzbtw8nTpxQlFWpUgX9+vWDh4eHWn0mikVHRweenp44duwYnj59CplMhgsXLsDd3R21a9cWOzyi91KbJLRWrVpFrsUJvL752snJqQIjIlKt/Px8hIWF4eDBg0hNTVWU6+vrw9HREc2bN1eb+z7fsLCwQMOGDct9sgUiKh65XA6JRMIRCKS17t27h82bN+P58+eKsnr16mHEiBGir4GtbnR1deHl5YUjR47g+fPnyMnJwerVq/HVV1/B3Nxc7PCI3klt/pIcOnQoFi1ahAEDBqBBgwYA/m+R3zVr1mDHjh343//+J2aIROVCEATcvHkTe/fuRXx8vKJcR0cHHTt2RJcuXXD16lW1S/RsbW3h5OTEP36JRJSfnw9dXV1eh6R1ZDIZDhw4gOPHjytuSalSpQr69u0LT09P9n4WoUqVKvDx8cGBAweQkpKCpKQkLF26FAEBATA2NhY7PKIiqc1fudOnT8eFCxfQuXNnODs7QyKRYMqUKUhKSsLjx4/Ro0cPTJkyRewwicokLi4Ou3fvxr///qtU3rx5c/Tr1w82NjZqOey8evXqTECJ1ASvQ9I2Dx48wKZNm/Ds2TNFmaOjI/z9/RUTQ1LR9PX10bVrVxw9ehSZmZmIj4/H8uXL8cUXX3CyIlJbapOESqVSBAcHY8uWLdi5cyfy8/ORk5ODZs2aYd68eRgxYgQ/eEljvXz5EgcOHEB4eLhSuYODA/z8/NR6qLmhoSHq16/P64+IiMpVbm4uDhw4gNDQUEXvp56eHnr37o1u3bqx97MEjIyM0K5dO1y6dAlpaWmIiYnB6tWr8fnnn6t0pl6i0hItCQ0ICMCIESPQsmVLAK97iKpXr47hw4dj+PDhYoVFVK4yMzMRHByMkydPIi8vT1FuZWWFvn37olWrVmqf3DVo0IBLsBCpkfz8fLUbrk9UUjExMdi0aZPScmQODg7w9/eHra2tiJFpLhMTE4wZMwYrVqxAVlYW7ty5g40bN+KTTz5hQk9qR7RPsaCgILi5uSmSUEdHR2zevBlDhw4VKySicpOXl4fTp0/jyJEjyMjIUJQbGxvjgw8+QKdOnTTim0k7OzvOgkukZnJzc5mEksbKzc3FoUOHEBISotT72atXL3Tr1o1fepaRvb09xo8fj99++w25ubm4evUq/vrrLwwdOlTtv/SmykW0TzEbGxs8ePBA8fztdRGJNJUgCLh69Sr27dunNLOfnp4ePD094evrCyMjIxEjLL43s/QSkXrJz88XOwSiUomNjcXmzZuVJuWrXbs2/P39YW9vL2Jk2qVevXoYO3YsVq5cifz8fJw7dw7Gxsbo16+f2KERKYiWhPbs2RM//vgjjh07pphGeuHChdi2bVuRx0gkEuzbt6+CIiQqmfv372P37t2IiYlRKm/dujX69OkDS0tLkSIrHQ7DJVJPTEJJ0+Tm5uLIkSM4duwY5HI5gNfLi/Ts2RPdu3fnZ40KNG7cGCNHjsSGDRsgCAKOHTsGIyMjeHt7ix0aEQARk9AlS5bA2toaJ06cwK1btyCRSPDo0SMkJSUVeQyHEZA6SkxMxN69e3Ht2jWl8gYNGsDPz08jF422s7PjGmNEakomk4kdAlGxxcXFYdOmTXj69KmirFatWvD390eNGjVEjEz7ubm5ITMzU9HBs3fvXhgZGaFjx44iR0YkYhJqbGyM+fPnK57r6OggKCiI94SSxkhLS8Phw4dx5swZxTe7wOsErl+/fmjSpIlGfnEilUo5DJdIjaWmpqJ69epih0H0Tnl5eQgODkZwcLDiM1JHRwc9evSAj48Pez8rSOfOnZGZmYn9+/cDAP766y8YGRmhVatWIkdGlZ1oSaifnx+mTJmCTp06AQBOnDgBFxcXscIhKjaZTIbjx4/j2LFjyM7OVpSbmZmhV69ecHd31+gP19q1a2t0/ETa7sWLF6hXr57YYRAV6fHjx9i0aRMeP36sKKtZsyb8/f1Rs2ZNESOrnHx8fJCRkaFYCmfDhg0wMDDg390kKtGS0H379mHAgAGK5127duXsuKTW5HI5Ll68iAMHDiA5OVlRrq+vDy8vL3Tr1k3jF4WWSCRcGJxIzb29pAWROsnPz8fRo0dx+PBhpd5PX19f+Pr6clZnkUgkEvj5+SEzMxNhYWHIz8/H6tWrMWnSJNStW1fs8KiSEu3doEaNGrh69SqGDRsG4PWsopo4dJEqh6ioKOzZswdPnjxRlEkkEnTo0AE9e/ZE1apVRYyu7CwtLZGbm4tq1apxLTEiNff2l2BE6uLJkyfYtGkTHj16pCizt7fHyJEjUatWLREjI+D13yxDhw5FZmYmrl27BplMhuXLlyMgIIAzE5MoREtCBw8ejF9//RU7duxQTIDy3XffITAwsMhjJBJJgclfiFTp8ePH2LNnD27fvq1U3qRJE/Tr109r3rg3b96M6OhoWFtbix0KEb1HdnY2ZDIZpFKp2KEQIT8/H8eOHcPhw4cVMzfr6OjAx8cHH3zwAXs/1Yiuri5Gjx6N5cuXIzo6GpmZmVi6dCmmTp0KKysrscOjSqZE7wyOjo4l7q2USCS4f/9+gfLAwEA4OTnhxIkTePbsGSQSCYyNjTVuGQvSTq9evcKBAwdw8eJFpTVsa9eujf79+6Nhw4YiRqc6pqamYodARMWQnJzML41IdE+fPsWmTZsQFxenKLOzs4O/vz/q1KkjYmRUlCpVqmDcuHFYsmQJHj58iJSUFPz222+YOnWqxo/qIs1SoiTUw8OjQBJ6+fJl3Lp1Cy4uLoo/zKOjoxEVFYUmTZrA1dW10Lp0dXUxduxYjB07FsDrb81mzJjBe0JJVFlZWTh27BiOHz+O3NxcRbmFhQX69u0LV1dXrR2uqq+vz2+siTREYmIik1ASTX5+Pv755x8cOnQIeXl5AF53Onh7e6NHjx6oUqWKyBHSuxgYGGDChAlYvHgx4uPj8eLFCyxduhQBAQEwMjISOzyqJEr0F+fGjRuVnu/duxd79+5FSEgIunXrprQtJCQEH330EebOnVusumNiYjjlPIkmPz8fZ8+exaFDh5Cenq4oNzQ0hK+vLzw9PbX+Q1VfX1/sEIiomB48eICmTZuKHQZVQvHx8di8eTNiY2MVZba2tvD394eDg4NocVHJmJiY4IsvvsCvv/6KpKQkPH36FMuWLcOkSZP49wBViDJ1e8yaNQtffPFFgQQUALp3746JEydixowZ6Nu373vr4rANEoMgCLh27Rr27t2LZ8+eKcp1dXXh4eEBX19fmJiYiBhhxdH2JJtImyQmJuLRo0ec8IUqjFwuR2hoKA4cOKDU++nl5YVevXrxM0QDmZubY9KkSVi4cCHS0tIQExODNWvW4LPPPuPIKFK5Mv2G3b179533cFpaWhZ6Pyjwevitjo4OMjMzIZVKoaOj8977TSUSieKNj6isYmJisHv37gK/o66urujbt2+lu0lfW4cZE2mr06dPo1+/fjA2NhY7FNJyiYmJ2LRpE2JiYhRlNjY28Pf3h6Ojo4iRUVlZW1tj4sSJWLx4MbKzsxEVFYWNGzdi9OjR/LuAVKpMSWi9evWwYcMGfPLJJwV6i9LS0rB+/foi1x+aNWsWJBKJ4puWN8+JVO358+fYt28frly5olRer149+Pn5VdoPVF5/RJolIyMDhw8fRu/evTV+jWJST3K5HCdOnMD+/fsV8yRIJBJ07doVvXv35gzNWqJWrVoYP348li5ditzcXFy5cgVGRkYYMmQI/zYglSlTEjpv3jwMHDgQjRo1wscffwwnJycAr3tI//jjDyQmJuLvv/8u9Ng5c+a88zlReUtPT8eRI0dw+vRpxTTywOtvAfv164fmzZtX6jdbfuNJpHlevXqFw4cPo2fPnryPi8rVs2fPsHnzZqXRQtWrV4e/vz/q1asnYmSkCk5OThgzZgxWrlwJuVyOs2fPwtjYuFi31BGVRpmS0H79+uHw4cP49ttvMX/+fKVtLVq0wLp16+Dj41OmAInKKjc3FydOnMDRo0eRlZWlKDcxMUHPnj3RsWNH6OrqihiheqjMCTiRJnvx4gUOHz6MDz74gD2iVGZyuRwnT57Evn37lHo/u3Tpgj59+rD3U4s1adIEI0eOxMaNGyEIAo4ePQojIyN0795d7NBIC5X5rmNvb294e3sjISEBDx8+BPB6kiFbW9ti15GTk4M///wTx44dw/3795GWlgZTU1M4OTnB19cXQ4cO5ZselZhcLsfly5exf/9+JCUlKcqrVKmCbt26oXv37jA0NBQxQvXCnlAi9ebm5oaEhATo6upi+vTpStueP3+O/fv3w9fXF2ZmZiJFSJru+fPn2Lx5M+7du6coq169OkaMGKEY7UbarXXr1sjMzMT27dsBAHv27IGxsTHat28vcmSkbcpt6itbW9sSJZ5v3LhxA3379sXDhw8hCAKqVq0KExMTPHv2DFeuXMHff/+Nn376Cfv374ezs3N5hUtaLjo6Grt378ajR48UZRKJBO3atUPv3r1hbm4uXnBqir3BROotISEBT548KfL9Kzk5Gfv27YO3tzdsbGwqNjjSaHK5HKdPn8bevXshk8kU5Z6enujbty+HelcyHh4eyMzMxIEDBwAAW7ZsgaGhIVq2bClyZKRNytz1ERcXh88++wwNGzaEhYUFTp8+DeD18KBJkybh6tWrRR6bnp6OPn36IDExET/99BMePXqEV69eKf07b948PH36FL1790ZGRkZZwyUt9/TpUyxfvhxLlixRSkBdXFwwbdo0jBgxggloEZiEEmm+rKwsHDhwANeuXYNcLhc7HNIAL168wJIlS7Bjxw5FAmppaYnJkyfjo48+YgJaSfn6+qJr164AXi9nt2HDBty5c0fkqEiblKknNCoqCp06dYJcLkfbtm1x7949xRIqVlZWOHv2LDIyMrBu3bpCj9+wYQPi4uIQGhoKT0/PAttr1KiBadOmoW3btujevTs2btyICRMmlCVk0lIpKSk4ePAgzp8/D0EQFOU1a9ZE//792YteDByOS6Qd5HI5Ll68iPv376NDhw7sFaVCvZl8Zs+ePcjJyVGUd+7cGf369eP9xZWcRCKBn58fMjMzceHCBeTl5WHVqlWYNGlSpV1FgMpXmZLQb775Bubm5rhw4QIkEgmsra2Vtvfs2VMxprwwhw4dgre3d6EJ6Nu6du2K7t2748CBA0xCSUl2djb++ecf/PPPP0pDiMzNzdGnTx+0adOGyVUxcWIiIu3y4sUL7Nu3D46OjnBzc0O1atXEDonUxMuXL/Hnn38iOjpaUWZhYYHhw4ejUaNGIkZG6kRHRwfDhg1DZmYmrl+/jpycHCxfvhxTpkyBvb292OGRhitTEnr69GnMmjUL1atXx8uXLwtsr127Np48eVLk8Tdu3MCkSZOKda6uXbtiyZIlpY6VtEt+fj7CwsJw8OBBpKamKsoNDAzg7e2Nrl27cjIrIiIAMTExiImJQZ06ddCsWTPY2tryS6dKShAEnDt3Drt27VLq/ezYsSP69+/PyfqoAF1dXXzyySdYtmwZ/v33X2RkZGDp0qX46quvYGlpKXZ4pMHKlITK5XIYGRkVuf358+fvvJcgKSmp2JMZ2djYKM1wSpWTIAi4efMm9uzZg4SEBEW5jo4OOnXqhB49esDU1FTECDUX/ygl0m4PHz7Ew4cPYWNjg7Zt25ZqMkHSXElJSfjzzz+V7uurVq0ahg0bBhcXFxEjI3VXpUoVjBs3DkuWLEFcXBxSUlLw22+/YerUqZyNm0qtTEloq1atcOjQIYwfP77Atry8PGzbtg3t2rUr8vicnBxUqVKlWOfS09NTGm5JlU9cXBx27dqFu3fvKpW3aNECffv25X1PZcRhy0SVQ2JiomLG+Xbt2hX7c5g0kyAIOH/+PHbt2oXs7GxFeYcOHeDn58feTyoWQ0NDTJgwAYsWLUJiYiKeP3+O33//HZMnT35nhxRRUcqUhE6bNg29evXC559/jsGDBwN4/eH2zz//YP78+bh9+zZ+//33d9YRGxuLK1euvPdcMTExZQmVNNjLly+xf/9+XLp0Sanc0dERfn5+qFevnkiRERFVjLi4OMUM8Tk5OUhKSoKFhUWZ6rx9+zaePHmCjh07ombNmuURJqmZV69eYcuWLYiKilKUmZubY9iwYWjcuLGIkZEmMjU1xRdffIGFCxfi1atXePz4MVasWIEvvviCt0BRiUmEt6cSLYXNmzfjyy+/REpKCgRBgEQigSAIMDMzw4oVKzBkyJAij9XR0Sn2EMA3defn55clXLV05coVuLq6IiIiAq1atRI7HLWRmZmJ4OBgnDx5UjHrMvB64ey+ffuiZcuWWjmENDMzE6dPn4apqalWz06YnZ2NtLQ0dO7cmd+iEhUhPDwcc+fOxaFDh5Rm/pZIJGjatCl69uwJBweHMp/HwcEB7dq1U/nQuqSkJHzxxRc4cOAAdHR0MGDAACxZsgQmJiZFHrN69Wps3boVV65cQVpaGl69elVgqa3S1KvNBEHAhQsXsHPnTmRlZSnK27Vrh4EDB1aq91x+ppa/xMRELFy4EOnp6QCAxo0bY9y4cdDTK1PfFlUyZf5tGTFiBPz8/BASEoK7d+9CLpejXr168PHxee+9eRs2bCjr6UkL5ebm4vTp0zhy5AgyMzMV5cbGxujRowc6derENzoi0nq7d+/GoEGDIAgC/vt98Zv742/evIkxY8aU+QvM2NhYxMXFwcXFBc2bN4exsXGp6/L09MTHH3+Mjz/+uMC2YcOGIT4+HiEhIcjNzcWoUaMwduxYbN26tcj6MjMz4evrC19fX0ybNq3QfUpTr7ZKTk7G1q1bcfPmTUVZ1apVMXToUDRt2lTEyEhb2NjYYOLEiQgKCkJ2djZu3bqFTZs24eOPP+atPVRspf5LPjMzE7Vq1cJ3332Hr7/+Gv369StxHSNHjizt6UkLCYKAiIgI7Nu3T2m2ZT09PXTt2hXe3t6V6ttbIqq8wsPDMWjQIOTn5xdIQN+Qy+UAgDVr1uDbb78tc4+oXC7HzZs3ERUVhfr166NFixaoWrVqmep82+3btxEcHIxLly7Bzc0NALB06VL06NEDv/76a5FLPkyePBkAcPLkyXKtV9sIgoDw8HDs2LFDqfezbdu2+PDDD/n5SeWqdu3a+Oyzz7Bs2TLk5ubi8uXLMDIywqBBg7RylBqVv1InoUZGRtDT0yvTt6VEb9y7dw+7d+9GbGysUnmbNm3Qp0+fMt/7RESkSebNm1doD2hRDh8+XOgkgaUhl8sRHR2Nu3fvws3NDc2bNy+XPyrDwsJgbm6uSBQBwMvLCzo6Orh48SL69++vVvVqkpSUFPz111+4fv26oszMzAxDhw5Fs2bNRIyMtFmDBg3wySefYPXq1ZDL5Th9+jSMjY3Ru3dvsUMjDVCmMY0DBgzAzp078fnnn/NbDyqVxMRE7NmzR+mDEwAaNmwIPz8/1KpVS6TIiIgqnlwux507d3Dw4MFiJ6ByuRzXr18vl8mK/ltveHg4dHV1y2UYZ0JCAqytrZXK9PT0YGFhobTklrrUqwkEQcDly5exY8cOxcRVANC6dWt8+OGHlfaeWKo4zZo1w4gRI/DHH38AAI4cOQIjIyN069ZN5MhI3ZUpCR08eDDGjx+PLl26YMyYMXBwcCh0qm9OtkP/lZaWhoMHD+LcuXOKIWUAYG9vj/79+8PFxYVfbBCRWpPJZEqTpr1Lbm4u0tLSkJqaqvTvf39OS0tDVFRUsRPQNwRBwO3bt+Hu7l6al/JOYWFhsLe3L3Jh+vnz52P+/PmK51lZWbhw4QImTpyoKHt7dlYqH6mpqfjrr79w7do1RZmpqSmGDBmCFi1aiBcYVTpt27ZFZmYm/v77bwDArl27YGRkpJL3I9IeZUpCPT09FT+fOXOmwHZtntGWSkcmkyE0NBTHjh1DTk6Oorxq1aro1asX3N3deVM7Eak9mUyGixcv4tWrV8jOzkZOTk6Bf9/+OTc3t0R1v5lpvrgkEglSUlIUs1WWt4iICHh6eha6DMNnn32Gjz76SPF82LBhGDBgAPz8/BRl9vb2sLW1xbNnz5SOzcvLQ1JSEmxtbUsdm6rqVWeXL1/G9u3blXo/3dzc8NFHH7H3k0TRpUsXZGZm4tChQwCAP//8E4aGhvxChIpUpiSUs9tSccnlcly4cAEHDhxASkqKolxfXx/du3dHt27doK+vL2KERESv5eXlITU1VfFISUlR+jc1NRXJyclITU1VGslRFhKJBAYGBjAwMIC1tXWpekINDAxU8iWeubk55HI58vLyCk1CLSwslIYBGxoawtraGk5OTkr7ubu7Izk5GREREXB1dQUAHD9+HHK5HG3bti11fKqqVx2lpaVh27ZtuHr1qqLMxMQEgwcP5qgzEl2PHj2QkZGBkydPQhAErF+/HhMmTEDDhg3FDo3UUJmSUM5uS+8jCAKioqKwZ88ePH36VFGuo6ODDh06oGfPnipfl46ISBAEZGdnF0go304s3/z8du9SWenp6cHQ0BBGRkbv/PftBDIhIQF79+4tcU9ow4YNyz0J1dXVhaOjo9LIldJydnaGr68vxowZg5UrVyI3NxcTJ07E4MGDFTPYPnnyBN26dcOmTZvQpk0bAK//PxISEnDv3j0AwI0bN2BqaoratWvDwsKiWPVqgytXrmDbtm1Kvd0tW7bE4MGD37skHlFFkEgkGDhwIDIzMxEeHo68vDysXLkSX375ZbmsZ0zaRe0WW4yKisKDBw/w6tWrQj+A/f39RYiKSuPRo0fYs2cP7ty5o1TetGlT9OvXD3Z2diJFRkTaIj8/X3FfZWEJ5dtlJRkS+y4SiQTGxsbQ0dGBsbExTExMYGhoWGhyWVjP4fvY2tqiU6dOOHfuXLFuZ9HR0YGzszOqVatWmpdTJIlEgkaNGkEqlZZLEgoAW7ZswcSJE9GtWzfo6OhgwIAB+O233xTbc3NzER0drbRG9MqVK/HDDz8onnfu3BnA69FYb9YifV+9miw9PR3bt29HRESEoszY2BiDBw9W9PwSqQsdHR2MGDECWVlZuHHjBnJycrBs2TIEBATw7z5SIhFK8FXr6NGjIZFIsHr1aujq6mL06NHvP4FEgnXr1r13v/v372P48OEIDw8v8ttfbb2/9MqVK3B1dUVERITaD6eJi4tDaGgo0tLSYGpqim7duqF27dpK+yQlJeHAgQMF2rJ27drw8/NDgwYNKjpsjZKZmYnTp0/D1NQUBgYGYoejMtnZ2UhLS0Pnzp25fl05K851qu6ys7PfmVC+eZ6enl7ioatF0dPTQ9WqVWFmZgYzMzPFz//919TUFDk5OSq9Tm/duoXRo0dDLpe/9/Xp6Ojgyy+/LPc2dnZ2hpWVFa9VFXrftRoZGYm//voLaWlpirLmzZtjyJAhHEVUTPxMFYdMJsPvv/+uGMFgbm6OqVOnFjnBGVU+JeoJPX78OHR0dCCXy6Grq4vjx4+/dwbT4s5wOm7cONy4cQNBQUHo1KlTuX+jS2UTHh6OuXPn4tChQxAEQfF7IJFI0KtXL8ycORNNmjTB0aNHceLECaUeB0tLS/Tp0weurq6cdIhIhYpznbZu3Vq0+ORyOdLT0987HDY1NbXcet6A171GbyeRRf1saGioNrNyN27cGIGBgZg2bRoAFPoF7Jv305EjR5ZrAqqnp4f69evDysqq3OokZe+7VqdOnYoHDx7g0qVLimOMjIwwaNAguLm5qc3vKVFRpFIpPv/8cwQFBeHRo0dITk7G0qVLMXXqVA4fJwAl7AlVJUNDQ3z//feYOXOm2KFUOHXvCd29ezcGDRoEQRAK/UNIV1cXANCrVy+l+2+MjIzwwQcfoHPnzqhSpUqFxavp+K0tlUZxrlOJRILt27crzVpaHmQyWbGGw6alpZXbRD66uroFksk3z98uMzU1Vcn7T0Vdp7du3cK6detw5swZpR5RiUQCFxcXeHt7l1sCqqOjAzs7O9SsWVNpGDGv1fJVnGtVEAR0794ddevWBfB6LcYhQ4agatWqFR2uxuNnqrjS0tKwcOFCxQzWNWvWxJQpUwpd0pEqF7W5J9TKykpt3lyXLVuGX375BQkJCWjevDmWLl2qmCChMH///TdmzpyJ2NhY1K9fHwsWLECPHj0qMGLVCQ8Px6BBg5Cfn1/kkLA3H6L79++Hn58f7O3t4eHhAV9fXxgbG1dkuESVUnGvU4lEgkGDBuH8+fPv7REVBAEZGRnv7bVMSUlBdnZ2ub0WQ0PDQofA/vdnY2PjStEb1LhxYyxatAgJCQkYMmQI0tLSYGhoiK+//rrcRgzp6enB3t4ednZ2pbqHlYqvJJ+px44dw5AhQzBp0iS0adOmUvy+k/YxNTXFpEmT8OuvvyI5ORmPHz/GihUrMHHiRL7fVHJqk4R+9tln+PPPPzFhwgRFz5oYtm/fjoCAAKxcuRJt27ZFUFAQfHx8EB0dDWtr6wL7nz9/HkOGDEFgYCB69eqFrVu3ol+/frhy5QqaNGkiwisoX/PmzYMgCMW+5+r+/ftYuXIlh3ERVaDiXqdv9pk1axaWL19e6D2Wb/5NS0srt3vwdXR0CvRWFnbfpampKf8oKYKtrS0MDQ2RlpYGqVRaLglolSpVYG9vD3t7e+jpqc2fA1qtJJ+pEokEr1690rplZqjysbCwwKRJk7Bo0SKkp6fj3r17WLt2LcaNGyfq3/wkrjJ/6hw5cgSLFi3ClStXkJKSUugba3H+kGnQoAHy8/PRvHlzjB49GrVq1Sr0F7O8h5H916JFizBmzBiMGjUKwOtZ+Q4dOoT169fju+++K7D/kiVL4Ovri6+//hoAMHfuXISEhOD333/HypUrVRqrqsXFxeHgwYPFTkAFQcC1a9eUZjUkItUq6XWan5+P4OBgzJo1q8z35RgYGBSaXP43yXwzkyypB2NjY9jb28Pa2prtUoFKeq3K5XIEBwcjLi5O4yYWI/ovW1tbTJw4EUFBQcjOzsbNmzexadMmjBw5ku9DlVSZktBdu3bho48+QuPGjTF48GCsWLECQ4cOhSAI2LdvH+rXr49+/foVq65BgwYpfv7qq68K3UfVs+PKZDJEREQoJoIAXn+D7+XlhbCwsEKPCQsLQ0BAgFKZj48P9u7dW+R5cnJylCbdeLPmV15eXrktIVAejh49WqoF048dO8Y1ZMsgNzcXeXl5yMjIQF5entjhqExOTo7id16dfu81TWmuU+D1EkqFLSAukUhgamqq1Dv5dqL5dpKpr69frHPl5+dr3czmYlynb+6nFQShVNeMiYkJ7O3tUbVqVUgkkmJ/YchrtXzwM1Uc/ExVH3Z2dvjkk0+wfPly5OXl4cKFC5BKpfjwww9LPNxcJpNpdXu+TU9PT61GCZXXPAtlmpjIzc0NVapUwdmzZ/Hq1StYW1vjn3/+QdeuXREbG4t27drh559/LtbanqdOnSrWOT08PEob7ns9ffoUNWrUwPnz5+Hu7q4o/+abb3Dq1ClcvHixwDFSqRR//PEHhgwZoihbvnw5fvjhByQmJhZ6njlz5iiteUZERERERKTuym1ZtLIcHBUVhcDAQOjq6iruJ3nz7YuDgwPGjx+PBQsWFCsJVWVyqW6mTZum1HsaGRkJDw8PXLx4ES1bthQxMmUbN27E2LFjS3zcmjVr+K1tGVWWb/jU7ds9TcTrVDwVfZ06OzsjPj4eVatWxU8//fTe/W1tbdG0aVPY2NiU+dy8VsuO16p4+Jmqfi5evIjNmzcrng8cOBCenp7FOjYzMxNnzpyBVCot9ogcTZWTkwOZTIZOnTqp1azH5aFMSaiRkZHil93c3Bz6+vqIj49XbLexsUFMTEyJ642KisLDhw8BAHXq1IGLi0tZwiw2Kysr6OrqFujBTExMhK2tbaHH2Nralmh/ANDX11e6aExMTAC8fvNQp6VMfHx8IJFISvSNh0Qigbe3t1q9Dk3E/z8qLl6n4qno/783901JJJJ3ntvCwgIdOnSAnZ1dRYVGxcBrVTz8/1M/HTt2hEwmw86dOwEAe/bsgZmZWbEm4qpSpQr09PRgbGys1cvuAK9zA7lcjipVqmjd73GZ7gRu2LAhoqKiFM9btGiBzZs3Iy8vD9nZ2di6dWuJbqbft28f6tWrh6ZNm6JXr17o1asXmjZtCicnJ+zfv78soRaLVCqFq6srQkNDFWVyuRyhoaFKw3Pf5u7urrQ/AISEhBS5vyapXbs2evXqVeyZy3R1ddG7d29OoEBUgXid0tuaN2+O/v37MwFVQ7xWiZR17doVH3zwgeL55s2bcf36dREjoopUpiTUz88P+/fvV0yyM336dJw8eRLm5uaoXr06zpw5U+iMsoU5fPgwBgwYAACYP38+9uzZgz179mD+/PkQBAF+fn4IDg4uS7jFEhAQgDVr1uCPP/7A7du38fnnnyMjI0MxW66/v7/SxEVffvklgoODsXDhQty5cwdz5szB5cuXMXHiRJXHWhFmzpwJiUTy3hvG3+wzY8aMCoqMiN7gdUq6urrw8vJC27ZtueSBGuO1SqSsV69eilvy5HI51q5di3///VfkqKgilCoJzc7Oxvbt25Gbm4sZM2YgKSkJwOtfpJMnT2LMmDEYN24cQkND8fHHHxerzrlz56JZs2a4fv06vv32W/Tp0wd9+vTBt99+i+vXr6Np06YVMpnPoEGD8Ouvv2LWrFlo0aIFIiMjERwcrLinJi4uTmnIcfv27bF161asXr0azZs3x86dO7F3716tWCMUAFq3bo3t27dDV1e3yD9s3mzbsWMHWrduXcEREhGv08pNIpHAy8sLdevWFTsUeg9eq0TKJBIJPvzwQ8Xvel5eHlauXIm4uDiRIyNVK/HsuM+ePUP79u0RExMDQRAgkUhgaGiIvXv3wsvLq9SBGBsbY/78+fjyyy8L3b5kyRJ8//33yMjIKPU51NWVK1fg6uqKiIgItGrVSuxwCnXp0iXMnTtXscaZjo4O5HI5JBIJevfujRkzZvDDkkhkvE61W82aNfHkyROYm5tjwYIFivIuXbqgfv36IkZGJcVrlUhZfn4+Vq1ahZs3bwJ4PV9KQEBAoXOsZGZm4vTp0zA1NdX6e0Kzs7ORlpaGzp07c2KiuXPnIjY2FlOmTEHXrl1x7949zJ07F+PGjcP9+/dLHYiBgYGiR7UwSUlJWv+Lps5at26N/fv3Iy4uDsePH0dqairMzMzQtWtX3q9CpCZ4nVY+7u7uTEA1EK9VImW6urr49NNPsXTpUty/fx/p6elYunQppk6dCgsLC7HDIxUocRJ67Ngx+Pv749dff1WU2djYYOjQoYiOji508fPi6Nq1K5YsWQJfX98Ck/pcvHgRv/32G7y9vUtVN5Wf2rVrF3uINRGJg9dp5eDk5ISmTZuKHQaVAa9Vov8jlUrx+eefIygoCI8fP8arV6+wdOlSBAQEwNTUVOzwqJyV+J7QuLg4dOzYUamsY8eOEAShwFIlJfHzzz/DwMAAHTt2hLu7Oz7++GN8/PHHcHd3R/v27WFgYKA0/IiIiKgysbW1RY0aNWBmZoYqVapoxSzsRERvMzIywsSJE1G9enUAr5c9/P3335GVlSVyZFTeSpyE5uTkFBgW++Z5WRYCdnR0xPXr1zFp0iS8evUK27dvx/bt2/Hq1St8+eWXuHbtGhwcHEpdPxERkSa7fPkyYmJiMH36dDg7O8PQ0FDskIiIyp2ZmRkmTZoEc3NzAMCjR4+wcuVKyGQycQOjclXi4bgAEBsbiytXriiep6SkAADu3r2r+IV5W3En27G2tsbixYuxePHi0oRFRERUKTg5OYkdAhGRylhaWuKLL77AokWLkJGRgbt372LdunUYO3as2KFROSlVEjpz5kzMnDmzQPn48eOVnr+ZPTc/P7900REREZESQ0NDWFpaih0GEZFK2dnZYcKECViyZAlycnJw48YNbN68GQMHDhQ7NCoHJU5CN2zYUC4nHj16NCQSCVavXg1dXV2MHj36vcdIJBKsW7euXM5PRESkiaytrSGRSMQOg4hI5RwcHDBu3DgsX74ceXl5CA8Ph1QqRbVq1cQOjcqoxEnoyJEjy+XEx48fV6yLpauri+P/r737Dovqyv8H/h7aANJEimikiGshhKAo1ggGBYJYwayoiWVR0nRNzNcklohRQ+LGta6baLK2YIommkhURGPFEmzJYkGjgAUVUYqA0ub8/vDHrCOIlGHuneH9ep55ntxz7z3nc7keyGfOvef8+utT/6jyjy4RETV1XK6AiJqSjh07YsKECVi9ejWEEDh06BA6dOiArl27Sh0aNUC9HsfVhoyMjBq3iYiIqKrq5l4gIjJkvr6+GDNmDDZs2AAASEtLg7W1NZ5//nmJI6P6qvPsuI3lypUrNU6/fP/+fVy5ckWHEREREckP18sjoqaoZ8+eiIiIUG8fP34cf/75p4QRUUPIJgn18PDAli1bnrj/559/hoeHhw4jIiIikh8uzUJETVVQUBCCgoLU2wcOHNDZIFVDlqKkqmSThAohatxfVlYGIyPZhEtERCQJExPJ3qQhIpJcaGgo3NzcADzMH3799VfcuHGj0dvlah/aJelfsoKCAuTl5am379y5U+23GXl5efj222/h4uKiw+iIiIjkh1/IElFTplAo4OPjAwDIzMxERUUFkpKSEBYWBgcHh0ZrV6VSqZefpIaTNAldvHgxPvroIwAP/0FNnToVU6dOrfZYIQTmz5+vw+iIiIjkh/8DRERNnUKhQM+ePVFRUYFr166hrKwMiYmJCA8Ph62tbaO0KYRAeXk5TE1NG6X+pkbSJDQ4OBhWVlYQQmD69OmIiopCly5dNI5RKBRo1qwZ/Pz8OBUzERE1ecbGxlKHQEQkOWNjYwQFBWHnzp24desWHjx4gB07dmDQoEFo1qxZo7TJJFR7JE1Ce/bsiZ49ewIAioqKEBERAW9vbylDIiIiki2FQsHHcYmI/j8TExMMGDAA27dvx927d1FUVIQdO3YgPDwc5ubmWm+vpKSEk8NpiSz+khUXF2PZsmXYsWOH1KEQERHJlomJCZNQIqJHKJVKhISEqJevys/PR2JiIkpLS7XeVlFRkdbrbKpk8ZfM0tISJiYmjTZ0TkREREREhsnS0hIvvfQSLC0tAQA5OTnYvXu31pdVeXRCVWoYWSShABAREYHNmzc/dakWIiIiIiKiR1lbWyM0NBRKpRIAcOPGDezbtw8qlUprbeTl5XGpFi2RTRI6cuRIZGdno1+/foiPj0dycjJOnjxZ5UNERERERPS45s2bIzg4WL2ecmZmJg4dOqS1QS6VSsXRUC2RzYrXgYGB6v8+ePBglf2V6/Lw2wciIiIiIqqOk5MT+vfvj127dkGlUuHixYswMzND9+7dtbLE1Y0bN9CiRQstRNq0ySYJXbNmjdQhEBERERGRnmvdujUCAwOxd+9eCCFw5swZmJubw9fXt8F15+bmIi8vD3Z2dg2uqymTTRI6duxYqUMgIiIiIiID4OHhgdLSUhw6dAgAcOLECSiVSnTq1KnBdaelpaFz584wMzNrcF1NlWzeCX1UYWEhzp07h3PnzqGwsFDqcIiIiIiISM906NAB3bp1U28fPnwYly5danC9paWlSE1N5WuCDSCrJDQlJQX9+vVD8+bN4e3tDW9vbzRv3hwvvvgijh8/LnV4RERERESkR3x8fODj46Pe3r9/P65evdrgeouKinD+/Hmu7FFPsnkc99ixYwgMDISZmRmio6PVQ+Xnzp3DN998g759+2Lfvn3w9/eXOFIiIiIiItIXXbt2RUlJCdLS0iCEwJ49exAaGoqWLVs2qN67d+/i6tWrcHV11VKkTYdsktCZM2eidevWOHToUJV/ELGxsejduzdmzpyJpKQkiSIkIiIiIiJ9o1Ao0KtXL5SWliI9PR0VFRVISkpCWFhYrWa6feWVV5CTkwOlUolp06Zp7MvMzISRkRFat26tldl3mwrZPI577NgxxMTEVPuNhLOzMyZNmoSjR49KEBkREREREekzIyMjBAQEoHXr1gAevteZmJiI/Pz8p557584d3L59G/fu3at2f3p6OtLS0lBWVqbVmA2ZbJJQIyMjlJeXP3F/RUUFjIxkEy4REREREekRY2NjBAUFwcnJCQBw//597Ny5E0VFRQ2u+/bt20hJScHVq1drzGnoIdlkdb169cK//vUvZGZmVtl35coVrFy5Er1795YgMiIiIiIiMgSmpqYIDg5G8+bNATxclWPnzp148OBBg+uuqKhARkYGUlJSkJmZyZHRGsjmndCPP/4Yffv2RceOHTFs2DC0b98ewMN1eH766SeYmJggLi5O4iiJiIiIiEifKZVKhIaGIiEhAffu3UNeXh527dqF0NBQraz9WV5ejitXruD69etwcXFB69atuaboY2SThHbu3BnHjh3DzJkz8fPPP6O4uBgAYGlpidDQUMyfPx9eXl4SR0lERERERPquMsdISEjA/fv3cfv2bezZswfBwcEwNjbWShsVFRW4du0asrKy4OjoiNatW6NZs2ZaqVvfySYJBQAvLy9s2bIFKpUKt2/fBgA4OjryXVAiIiIiItIqGxsbhIaG4pdffkFpaSmysrKwb98+9OvXT6v5h0qlwq1bt3Dr1i3Y29vDzc0NVlZWWqtfH8kyu1MoFBofIiIiIiIibbO3t0dwcDBMTB6OzWVkZCA5ORlCiEZp7+7duzh16hQuX76MioqKRmlDH8gqCT179iwiIyNhY2MDFxcXuLi4wMbGBpGRkUhNTZU6PCIiIiIiMjDOzs4ICgpSj35euHABKSkpEELg5s2buH//PoCHy7rk5uZqpc3r16/j5MmTWqtP38gmCT148CD8/f2xfft2hIeHY9asWZg1axYGDhyI7du3o3v37jh48KDUYRIRERERkYF55plnEBgYqN7evXs3oqOjMWjQIPX6oPfv38e8efPw5Zdf4sqVKw1u88GDB0hNTcWFCxcaZVRUCIEPP/wQLi4usLCwQP/+/XHx4sVan//JJ59AoVBg6tSp6rK7d+9i8uTJ6NChAywsLODq6oopU6bUar3VR8nmndC3334bTk5O2L9/P9q0aaOx7+rVq+jbty/eeecdpKSkSBQhEREREREZKg8PD/Tu3RsbNmzArl27AKDKY7lCCJw7dw7nzp3D2LFj4ePj0+B2b926hcLCQnTs2BGWlpYNrq/SwoULsWzZMqxbtw4eHh6YPXs2QkJCcPbsWZibm9d4bkpKCr744osq15eVlYWsrCx89tln8PLyQmZmJl577TVkZWVh8+bNtY5NNiOhZ86cwRtvvFElAQWANm3a4PXXX8eZM2ckiIyIiIiIiJqC8vJyJCUlQQjxxPdCVSoVVCoV1q1bp5URUQAoKirCqVOncP36da28jyqEwJIlSzBr1iwMGTIEPj4+WL9+PbKysrB169Yazy0sLMTo0aOxevVq9Xqqlby9vfHDDz9g0KBB8PT0xIsvvogFCxZg27ZtKC8vr3V8sklC3dzcUFJS8sT9paWl1SaoRERERERE2vCf//ynThOjVo6YaoNKpcLly5eRmppap4SuOunp6bh58yb69++vLrO1tUX37t1x5MiRGs998803MXDgQI1za5Kfnw8bGxv15E61IZsk9MMPP8SyZctw+vTpKvtOnTqF5cuXIzY2VudxERERERGR4bt58yYOHjxY6/czVSoVzp49q/XJhfLy8vDHH3+grKys3nXcvHkTwMNJlx7l7Oys3ledb7/9FidPnkRcXFyt2snJycG8efMwadKkOsUnm3dCjx49CmdnZ/j5+aFXr15o164dAODixYs4cuQIvL29ceTIEY3MXaFQYOnSpVKFTEREREREEqjpCcr6qs/SLEIIpKWlwd/fX6ux3Lt3D6mpqfDw8KjV8fHx8YiJiVFv//LLL3Vu8+rVq/j73/+OpKSkp74zCgAFBQUYOHAgvLy86jxYKJskdMWKFer/Tk5ORnJyssb+//73v/jvf/+rUcYklIiIiIio6TAxMYGVlRUKCwtRWlqq1bpzc3OhUCjqlIgqFAo8ePAAKpVKq7EADxNtCwuLWj3mOnjwYHTv3l3jXODhpEcuLi7q8lu3bsHX17faOk6cOIHs7Gx06dJFXVZRUYEDBw5gxYoVKCkpgbGxMYCHSXJoaCisra2xZcsWmJqa1unaZJOENsaNIyIiIiIiw2FmZgZ/f/8GvzNZnYyMjHqNhNra2sLKykqrsRgbGyMgIADu7u4wMzN76vHW1tawtrbWiKtly5bYs2ePOuksKCjAsWPH8Prrr1dbR1BQUJVBv/Hjx6Njx45477331AloQUEBQkJCoFQq8fPPP9dq1PRxsklCiYiIiIiInsbMzKxWiVldhYWF1WsktFOnTjAy0t5UO2ZmZggJCdEYwayryvU958+fj7/85S/qJVpatWqFoUOHqo8LCgrCsGHD8NZbb8Ha2hre3t4a9TRr1gwtWrRQlxcUFCA4OBjFxcX4+uuvUVBQgIKCAgCAo6OjOlF9Gtkloenp6dixYwcyMzMBPJw196WXXqr189BERERERER15erqivDwcGzfvr1WkxMZGRnhueeeg729vdZiaNWqFQICAjRGNetr+vTpKCoqwqRJk5CXl4c+ffpg586dGiOXly5dQk5OTq3rPHnyJI4dOwYA6jl8KqWnp8Pd3b1W9SiENhai0ZJp06Zh6dKlVR7NNTIywtSpU/HZZ581avt3797F5MmTsW3bNhgZGSEiIgJLly6tcXg9MDAQ+/fv1yiLiYnB559/Xut2T548CT8/P5w4cULjGWwiIiIiItKdlJQU9OrVCxUVFU8dETUyMsJ7771X68SrJmZmZujZsyfat29fpyVi9JVslmhZtGgRFi9ejOHDh+PIkSPIy8tDXl4ejhw5gsjISCxevBiLFy9u1BhGjx6NM2fOICkpCQkJCThw4ECtphueOHEibty4of4sXLiwUeMkIiIiIiLt69atG7777jsYGxs/8dFSIyMjGBkZYdKkSVpJQN3c3BAZGYkOHTo0iQQUkNFIaMeOHdGxY0ds3bq12v1Dhw7F+fPncf78+UZp/9y5c/Dy8kJKSgq6du0KANi5cyfCwsJw7do1tGrVqtrzAgMD4evriyVLltS7bY6EEhERERHJR0pKCubNm4eEhASNEVGFQgEfHx+EhYU1OAF1dXWFr68vWrZs2cBo9Y9sRkIzMjIQEhLyxP0hISHIyMhotPaPHDkCOzs7dQIKAP3794eRkZH6uecniY+Ph4ODA7y9vfHBBx+guLi4xuNLSkrUL/EWFBSgsLBQK9dAREREREQN161bN/z888/IyMiAnZ0dAMDCwgIff/wx3njjjQYloB4eHoiMjERoaGiTTEABGU1M5OTkhN9///2J+3///Xc4Ojo2Wvs3b96Ek5OTRpmJiQns7e1x8+bNJ543atQouLm5oVWrVvjjjz/w3nvvIS0tDT/++OMTz4mLi8PcuXO1FjsREREREWmfq6srmjVrhry8PCiVygZNQuTg4IDevXvD2dlZixHqJ9kkoSNGjMDSpUvh7u6OyZMno1mzZgCAoqIirFixAl9++SWmTp1a53rff/99fPrppzUec+7cufqEDAAa74w+99xzcHFxQVBQEC5dugRPT89qz/nggw/wzjvvqLdPnz6NgICAesdARERERETyZGpqCn9/f3h5eTWZdz6fRjZJ6Lx583D69GnMmDEDH374ofodzKysLJSXl6Nfv3746KOP6lzvtGnTMG7cuBqPadu2LVq2bIns7GyN8vLycty9e7dOw+Tdu3cHAPz5559PTEKVSiWUSqV6W9uL2xIRERERkfQcHBwQFBQEW1tbqUORFdkkoZaWltizZw9++uknjXVCQ0NDERYWhkGDBtXrmwNHR8daPcbbs2dP5OXl4cSJE/Dz8wMA/Prrr1CpVOrEsjZOnz4NAA1aXJaIiIiIiPSXQqGAt7c3/P39nzjLblMmiyS0uLgYY8aMQUREBEaPHo0hQ4boPIZOnTohNDQUEydOxOeff46ysjK89dZbGDlypHpU9vr16wgKCsL69evh7++PS5cuYePGjQgLC0OLFi3wxx9/4O2330bfvn3h4+Oj82sgIiIiIiJpOTo6ok+fPo06n42+k8XsuJaWlti9e/dTZ5VtbPHx8ejYsSOCgoIQFhaGPn36YNWqVer9ZWVlSEtLU8dpZmaG3bt3Izg4GB07dsS0adMQERGBbdu2SXUJREREREQkARMTE/Tq1QtDhw5lAvoUshgJBYA+ffrgyJEjmDhxomQx2NvbY+PGjU/c7+7urrFOUJs2bbB//35dhEZERERERDLVqlUr9O3bFzY2NlKHohdkMRIKACtWrMDBgwcxa9YsXLt2TepwiIiIiIiIamRiYoI+ffpg4MCBTEDrQDYjoc8//zzKy8sRFxeHuLg4mJiYaMwgCzx8wTc/P1+iCImIiIiIiB5q1qwZXnrppQatHdpUySYJjYiI4Lo5REREREQkeyYmJkxAG0A2SejatWulDoGIiIiIiOipunTpwgS0ASRPQh88eICffvoJ6enpcHBwwMCBA7nGJhERERERyZKFhQWeffZZqcPQa5ImodnZ2ejVqxfS09PVs85aWlpi69at6N+/v5ShERERERERoWXLlhBCwMTkYerk5+cHU1NTiaPSb5LOjjtv3jxkZGTg7bffRkJCApYsWQILCwvExMRIGRYREREREREA4Pjx4zhz5gxmzpwJBwcHdOrUSeqQ9J6kI6G7du3Cq6++is8++0xd5uzsjFGjRiEtLQ0dOnSQMDoiIiIiIqL/8fPz42SqWiDpSOiVK1fQp08fjbI+ffpACIFbt25JFBUREREREZEmCwsLuLq6Sh2GQZA0CS0pKYG5ublGWeV2eXm5FCERERERERFV0bp1a46Caonks+NmZGTg5MmT6u38/HwAwMWLF2FnZ1fl+C5duugqNCIiIiIiIgBAixYtpA7BYChE5bS0EjAyMqr22wQhRJXyyrKKigpdhaczJ0+ehJ+fH06cOMEkm4iIiIhIZvLy8pCbmwsPDw+pQzEIko6ErlmzRsrmiYiIiIiIasXS0lLqEAyGpEno2LFjpWyeiIiIiIioViwsLKQOwWBIOjERERERERGRPmASqj1MQomIiIiIiGpgYmICU1NTqcMwGExCiYiIiIiIatCsWTOpQzAoTEKJiIiIiIhqwPVBtYtJKBEREREREekMk1AiIiIiIiLSGSahREREREREpDNMQomIiIiIiEhnmIQSERERERGRzjAJJSIiIiIiIp0xkToA0k83btzAjRs3pA6DtMjFxQUuLi5Sh0FaxH5qeNhPDRP7KpH88fevdjEJlQEXFxfMmTNHb/5hl5SUICoqCvv375c6FNKigIAAJCYmQqlUSh0KaQH7qWFiPzU87KtE+oG/f7VLIYQQUgdB+qWgoAC2trbYv38/rKyspA6HtKCwsBABAQHIz8+HjY2N1OGQFrCfGh72U8PEvmp4Kvsq76nh4O9f7eNIKNWbr68vO6KBKCgokDoEaiTsp4aD/dSwsa8ajsq+yntqOPj7V/s4MRERERERERHpDJNQIiIiIiIi0hkmoVRnSqUSc+bM4YvZBoT31PDwnhoe3lPDxPtqeHhPDQ/vqfZxYiIiIiIiIiLSGY6EEhERERERkc4wCSUiIiIiIiKdYRJKREREREREOsMklIiIiIiIiHSGSSiRHlAoFLX67Nu3r8FtFRcXIzY2tk51LViwAIMHD4azszMUCgViY2MbHAeRPpJzX83KysKYMWPQoUMHWFtbw87ODv7+/li3bh04RyE1NXLuq7GxsTXGlJyc3OCYDJGc72mlS5cuYdSoUXBycoKFhQX+8pe/YObMmQ2ORx+ZSB0AET3dhg0bNLbXr1+PpKSkKuWdOnVqcFvFxcWYO3cuACAwMLBW58yaNQstW7ZE586dkZiY2OAYiPSVnPtqTk4Orl27hsjISLi6uqKsrAxJSUkYN24c0tLS8PHHHzc4JiJ9Iee+Onz4cLRr165K+YwZM1BYWIhu3bo1OCZDJOd7CgCnT59GYGAgWrdujWnTpqFFixa4cuUKrl692uB49BGTUCI9MGbMGI3to0ePIikpqUq5VNLT0+Hu7o6cnBw4OjpKHQ6RZOTcV318fKp8a//WW29h0KBBWLZsGebNmwdjY2NpgiPSMbn3VR8fH42yq1ev4tq1a4iOjoaZmZlEkcmbnO+pSqXCK6+8go4dO2Lv3r2wsLCQOiTJ8XFcIgOhUqmwZMkSPPvsszA3N4ezszNiYmKQm5urcdzx48cREhICBwcHWFhYwMPDAxMmTAAAZGRkqJPIuXPnqh9dedrjte7u7o1xSUQGScq+Wh13d3cUFxejtLS0wddGZEjk1Fe/+eYbCCEwevRorVxbUyXVPd21axdSU1MxZ84cWFhYoLi4GBUVFY12nfqAI6FEBiImJgZr167F+PHjMWXKFKSnp2PFihU4deoUkpOTYWpqiuzsbAQHB8PR0RHvv/8+7OzskJGRgR9//BEA4OjoiH//+994/fXXMWzYMAwfPhwAqnwjS0T1J3VfvX//PoqKilBYWIj9+/djzZo16NmzJ7+ZJ3qM1H31UfHx8WjTpg369u2r9etsSqS6p7t37wYAKJVKdO3aFSdOnICZmRmGDRuGlStXwt7evvEvXm4EEemdN998UzzafQ8ePCgAiPj4eI3jdu7cqVG+ZcsWAUCkpKQ8se7bt28LAGLOnDl1jqsh5xIZIjn21bi4OAFA/QkKChJXrlypUx1EhkaOfbVSamqqACCmT59er/ObKjnd08GDBwsAokWLFmL06NFi8+bNYvbs2cLExET06tVLqFSqul+gnuPjuEQGYNOmTbC1tcWAAQOQk5Oj/vj5+cHKygp79+4FANjZ2QEAEhISUFZWJmHERE2THPpqVFQUkpKSsHHjRowaNQrAw9FRIvofOfTVSvHx8QDAR3EbSMp7WlhYCADo1q0bvv76a0REROCjjz7CvHnzcPjwYezZs0cr7egTJqFEBuDixYvIz8+Hk5MTHB0dNT6FhYXIzs4GAAQEBCAiIgJz586Fg4MDhgwZgjVr1qCkpETiKyBqGuTQV93c3NC/f39ERUUhPj4ebdu2Rf/+/ZmIEj1CDn0VAIQQ2LhxI7y9vflqTANJeU8rX3eIiorSKK/8IvDw4cP1rltf8Z1QIgOgUqng5OSk/rb0cZUv0CsUCmzevBlHjx7Ftm3bkJiYiAkTJmDRokU4evQorKysdBk2UZMjx74aGRmJ1atX48CBAwgJCdFavUT6TC59NTk5GZmZmYiLi2tQPSTtPW3VqhUAwNnZWaPcyckJAKpMjNQUMAklMgCenp7YvXs3evfuXavJRXr06IEePXpgwYIF2LhxI0aPHo1vv/0W0dHRUCgUOoiYqGmSY1+tHAHNz8/XSn1EhkAufTU+Ph4KhUI9Ykb1J+U99fPzw+rVq3H9+nWN8qysLAD/S4CbEj6OS2QAXn75ZVRUVGDevHlV9pWXlyMvLw/Aw2/ahBAa+319fQFA/ZiJpaUlAKjPISLtkbKv3r59u9ryr776CgqFAl26dKlVPURNgRz+rpaVlWHTpk3o06cPXF1d63YBVIWU93TIkCFQKpVYs2YNVCqVuvzLL78EAAwYMKAul2IQOBJKZAACAgIQExODuLg4nD59GsHBwTA1NcXFixexadMmLF26FJGRkVi3bh1WrlyJYcOGwdPTE/fu3cPq1athY2ODsLAwAA/fW/Dy8sJ3332H9u3bw97eHt7e3vD29n5i+xs2bEBmZiaKi4sBAAcOHMD8+fMBAK+88grc3Nwa/4dApAek7KsLFixAcnIyQkND4erqirt37+KHH35ASkoKJk+ejHbt2unyR0Eka1L/XQWAxMRE3LlzhxMSaYmU97Rly5aYOXMmPvzwQ4SGhmLo0KH4/fffsXr1akRFRaFbt266/FHIg6Rz8xJRvTw+7XilVatWCT8/P2FhYSGsra3Fc889J6ZPny6ysrKEEEKcPHlSREVFCVdXV6FUKoWTk5MIDw8Xx48f16jn8OHDws/PT5iZmdVqCvKAgACNJR8e/ezdu1dbl02kd+TUV3ft2iXCw8NFq1athKmpqbC2tha9e/cWa9asaZLLAxA9Sk59tdLIkSOFqampuHPnjlausamR2z1VqVRi+fLlon379sLU1FS0adNGzJo1S5SWlmrtmvWJQojHxpuJiIiIiIiIGgnfCSUiIiIiIiKdYRJKREREREREOsMklIiIiIiIiHSGSSgRERERERHpDJNQIiIiIiIi0hkmoURERERERKQzTEKJmoCMjAwoFAqsXbtW6lCIqAbsq0Tyx35qmHhfdYtJKBEREREREemMQgghpA6CiBqXEAIlJSUwNTWFsbGx1OEQ0ROwrxLJH/upYeJ91S0moURERERERKQzfByXSE/ExsZCoVDgwoULGDNmDGxtbeHo6IjZs2dDCIGrV69iyJAhsLGxQcuWLbFo0SL1udW95zBu3DhYWVnh+vXrGDp0KKysrODo6Ih3330XFRUV6uP27dsHhUKBffv2acRTXZ03b97E+PHj8cwzz0CpVMLFxQVDhgxBRkZGI/1UiOSHfZVI/thPDRPvq/5gEkqkZ/76179CpVLhk08+Qffu3TF//nwsWbIEAwYMQOvWrfHpp5+iXbt2ePfdd3HgwIEa66qoqEBISAhatGiBzz77DAEBAVi0aBFWrVpVr9giIiKwZcsWjB8/HitXrsSUKVNw7949XLlypV71Eekz9lUi+WM/NUy8r3pAEJFemDNnjgAgJk2apC4rLy8XzzzzjFAoFOKTTz5Rl+fm5goLCwsxduxYIYQQ6enpAoBYs2aN+pixY8cKAOKjjz7SaKdz587Cz89Pvb13714BQOzdu1fjuMfrzM3NFQDEP/7xD+1cMJGeYl8lkj/2U8PE+6o/OBJKpGeio6PV/21sbIyuXbtCCIG//e1v6nI7Ozt06NABly9ffmp9r732msb2Cy+8UKvzHmdhYQEzMzPs27cPubm5dT6fyNCwrxLJH/upYeJ9lT8moUR6xtXVVWPb1tYW5ubmcHBwqFL+tF9w5ubmcHR01Chr3rx5vX4xKpVKfPrpp9ixYwecnZ3Rt29fLFy4EDdv3qxzXUSGgH2VSP7YTw0T76v8MQkl0jPVTRv+pKnExVMmv67NFOQKhaLa8kdfyK80depUXLhwAXFxcTA3N8fs2bPRqVMnnDp16qntEBka9lUi+WM/NUy8r/LHJJSIatS8eXMAQF5enkZ5ZmZmtcd7enpi2rRp2LVrF1JTU1FaWqox+xwRNQ72VSL5Yz81TLyvdccklIhq5ObmBmNj4yqzx61cuVJju7i4GA8ePNAo8/T0hLW1NUpKSho9TqKmjn2VSP7YTw0T72vdmUgdABHJm62tLUaMGIHly5dDoVDA09MTCQkJyM7O1jjuwoULCAoKwssvvwwvLy+YmJhgy5YtuHXrFkaOHClR9ERNB/sqkfyxnxom3te6YxJKRE+1fPlylJWV4fPPP4dSqcTLL7+Mf/zjH/D29lYf06ZNG0RFRWHPnj3YsGEDTExM0LFjR3z//feIiIiQMHqipoN9lUj+2E8NE+9r3SjE097GJSIiIiIiItISvhNKREREREREOsMklIiIiIiIiHSGSSgRERERERHpDJNQIiIiIiIi0hkmoURERERERKQzTEKJSKsyMjKgUCiwdu1aqUMhIiIiIhliEkokoUuXLiEmJgZt27aFubk5bGxs0Lt3byxduhT3799vtHbPnj2L2NhYZGRkNFobtbFgwQIMHjwYzs7OUCgUiI2NlTQeooZSKBS1+uzbt6/BbRUXFyM2NrbWdZ0/fx7Tp0+Hr68vrK2t4eLigoEDB+L48eMNjoVI38i5rz4uPj4eCoUCVlZWDY7FkMn5nsbGxtYYU3JycoNj0jcmUgdA1FT98ssvGDFiBJRKJV599VV4e3ujtLQUhw4dwv/93//hzJkzWLVqVaO0ffbsWcydOxeBgYFwd3dvlDZqY9asWWjZsiU6d+6MxMREyeIg0pYNGzZobK9fvx5JSUlVyjt16tTgtoqLizF37lwAQGBg4FOP//LLL/HVV18hIiICb7zxBvLz8/HFF1+gR48e2LlzJ/r379/gmIj0hZz76qMKCwsxffp0NGvWrMFxGDo539Phw4ejXbt2VcpnzJiBwsJCdOvWrcEx6RsmoUQSSE9Px8iRI+Hm5oZff/0VLi4u6n1vvvkm/vzzT/zyyy8SRvg/Qgg8ePAAFhYWWq87PT0d7u7uyMnJgaOjo9brJ9K1MWPGaGwfPXoUSUlJVcqlEBUVhdjYWI3RlAkTJqBTp06IjY1lEkpNipz76qPmz58Pa2tr9OvXD1u3bpU6HFmT8z318fGBj4+PRtnVq1dx7do1REdHw8zMTKLIpMPHcYkksHDhQhQWFuKrr77SSEArtWvXDn//+9/V2+Xl5Zg3bx48PT2hVCrh7u6OGTNmoKSkROM8d3d3hIeH49ChQ/D394e5uTnatm2L9evXq49Zu3YtRowYAQDo169flcdTKutITExE165dYWFhgS+++AIAcPnyZYwYMQL29vawtLREjx49GpQsSzkKSyQVlUqFJUuW4Nlnn4W5uTmcnZ0RExOD3NxcjeOOHz+OkJAQODg4wMLCAh4eHpgwYQKAh+9eV35xM3fuXHU/rumRdj8/vyqP87Vo0QIvvPACzp07p92LJDIAUvXVShcvXsTixYvxz3/+EyYmHDfSBqnv6aO++eYbCCEwevRorVybvuG/aCIJbNu2DW3btkWvXr1qdXx0dDTWrVuHyMhITJs2DceOHUNcXBzOnTuHLVu2aBz7559/IjIyEn/7298wduxY/Oc//8G4cePg5+eHZ599Fn379sWUKVOwbNkyzJgxQ/1YyqOPp6SlpSEqKgoxMTGYOHEiOnTogFu3bqFXr14oLi7GlClT0KJFC6xbtw6DBw/G5s2bMWzYMO39gIgMWExMDNauXYvx48djypQpSE9Px4oVK3Dq1CkkJyfD1NQU2dnZCA4OhqOjI95//33Y2dkhIyMDP/74IwDA0dER//73v/H6669j2LBhGD58OABU+aa9Nm7evAkHBwetXiORIZC6r06dOhX9+vVDWFgYvv/++0a91qZC6nv6qPj4eLRp0wZ9+/bV+nXqBUFEOpWfny8AiCFDhtTq+NOnTwsAIjo6WqP83XffFQDEr7/+qi5zc3MTAMSBAwfUZdnZ2UKpVIpp06apyzZt2iQAiL1791Zpr7KOnTt3apRPnTpVABAHDx5Ul927d094eHgId3d3UVFRIYQQIj09XQAQa9asqdX1CSHE7du3BQAxZ86cWp9DpA/efPNN8eif2oMHDwoAIj4+XuO4nTt3apRv2bJFABApKSlPrFsb/ebAgQNCoVCI2bNn17sOIkMgt76akJAgTExMxJkzZ4QQQowdO1Y0a9asDldEcrunj0pNTRUAxPTp0+t1viHg47hEOlZQUAAAsLa2rtXx27dvBwC88847GuXTpk0DgCqPw3p5eeGFF15Qbzs6OqJDhw64fPlyrWP08PBASEhIlTj8/f3Rp08fdZmVlRUmTZqEjIwMnD17ttb1EzVVmzZtgq2tLQYMGICcnBz1p/JR2b179wIA7OzsAAAJCQkoKytrlFiys7MxatQoeHh4YPr06Y3SBpG+krKvlpaW4u2338Zrr70GLy8vrdRJ8vr9Gx8fDwBN9lFcgO+EEumcjY0NAODevXu1Oj4zMxNGRkZVZlVr2bIl7OzskJmZqVHu6upapY7mzZtXed+hJh4eHtXG0aFDhyrllY/xPh4HEVV18eJF5Ofnw8nJCY6OjhqfwsJCZGdnAwACAgIQERGBuXPnwsHBAUOGDMGaNWuqvAdeX0VFRQgPD8e9e/fw008/cekHosdI2VcXL16MnJwc9eyrpB1y+f0rhMDGjRvh7e1dr1coDAXfCSXSMRsbG7Rq1Qqpqal1Ok+hUNTqOGNj42rLhRC1bqsxZsIlooeTYjg5Oam/BX9c5WQXCoUCmzdvxtGjR7Ft2zYkJiZiwoQJWLRoEY4ePdqgpLG0tBTDhw/HH3/8gcTERHh7e9e7LiJDJVVfzc/Px/z58/HGG2+goKBA/fRUYWEhhBDIyMiApaUlnJycGnaBTZAcfv8CQHJyMjIzMxEXF9egevQdk1AiCYSHh2PVqlU4cuQIevbsWeOxbm5uUKlUuHjxosbkQbdu3UJeXh7c3Nzq3H5tE9rH40hLS6tSfv78efV+IqqZp6cndu/ejd69e9fqy54ePXqgR48eWLBgATZu3IjRo0fj22+/RXR0dL36sUqlwquvvoo9e/bg+++/R0BAQH0ug8jgSdVXc3NzUVhYiIULF2LhwoVV9nt4eGDIkCFcrqUepP79Wyk+Ph4KhQKjRo2qdx2GgI/jEkmgcuHp6Oho3Lp1q8r+S5cuYenSpQCAsLAwAMCSJUs0jvnnP/8JABg4cGCd269c9DovL6/W54SFheG3337DkSNH1GVFRUVYtWoV3N3d+d4KUS28/PLLqKiowLx586rsKy8vV/fJ3NzcKk8v+Pr6AoD6kTBLS0sAdevHkydPxnfffYeVK1eqZ3Qkoqqk6qtOTk7YsmVLlU+/fv1gbm6OLVu24IMPPqj/hTVhUv/+BYCysjJs2rQJffr0qfb1qaaEI6FEEvD09MTGjRvx17/+FZ06dcKrr74Kb29vlJaW4vDhw9i0aRPGjRsHAHj++ecxduxYrFq1Cnl5eQgICMBvv/2GdevWYejQoejXr1+d2/f19YWxsTE+/fRT5OfnQ6lU4sUXX6zx8Z73338f33zzDV566SVMmTIF9vb2WLduHdLT0/HDDz/AyKju32lt2LABmZmZKC4uBgAcOHAA8+fPBwC88sorHF0lgxMQEICYmBjExcXh9OnTCA4OhqmpKS5evIhNmzZh6dKliIyMxLp167By5UoMGzYMnp6euHfvHlavXg0bGxv1F1MWFhbw8vLCd999h/bt28Pe3h7e3t5PfLx2yZIlWLlyJXr27AlLS0t8/fXXGvuHDRum/oKKqKmTqq9aWlpi6NChVcq3bt2K3377rdp9VDtS/v6tlJiYiDt37jTpCYnUpJyal6ipu3Dhgpg4caJwd3cXZmZmwtraWvTu3VssX75cPHjwQH1cWVmZmDt3rvDw8BCmpqaiTZs24oMPPtA4RoiHy6sMHDiwSjsBAQEiICBAo2z16tWibdu2wtjYWGO5lifVIYQQly5dEpGRkcLOzk6Ym5sLf39/kZCQoHFMXZZoCQgIEACq/VS3fAyRvnl8iYBKq1atEn5+fsLCwkJYW1uL5557TkyfPl1kZWUJIYQ4efKkiIqKEq6urkKpVAonJycRHh4ujh8/rlHP4cOHhZ+fnzAzM3vqcgFjx459Yn8DINLT07V56UR6RU59tTpcoqXu5HhPR44cKUxNTcWdO3e0co36TCFEHWYrISIiIiIiImoAvhNKREREREREOsMklIiIiIiIiHSGSSgRERERERHpDJNQIiIiIiIi0hkmoURERERERKQzTEKJiIiIiIhIZ5iEEhERERERkc4wCSUiIiIiIiKdYRJKREREREREOsMklIiIiIiIiHSGSSgRERERERHpDJNQIiIiIiIi0hkmoURERERERKQz/w+lIKoJNScOFgAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -1659,7 +1659,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAAInCAYAAACst8XKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAtvVJREFUeJzs3Xdc1PUfB/DX9w6OvTcIguLCLaa5sUwszV3OLM1RaqX2a5jlyEE2HJXmyNHQMitzppGjHLi1VNBciAMQlL2Ou/v+/jAuT4aMu/veF17Px+Me8l2f7/uQD8f7+1mCKIoiiIiIiIiIiGRKIXUARERERERERFXBxJaIiIiIiIhkjYktERERERERyRoTWyIiIiIiIpI1JrZEREREREQka0xsiYiIiIiISNaY2BIREREREZGsMbElIiIiIiIiWWNiS0RERERERLLGxNYCJCYmYubMmUhMTJQ6FCIiIiIiItlhYmsBEhMTMWvWLCa2RERERERElcDEloiIiIiIiGSNiS0RERERERHJGhNbIiIiIiIikjUmtvf5888/8fTTT8Pf3x+CIOCXX3556DX79u1Dq1atYGNjg9DQUKxdu9bkcRIREREREdF/mNjeJycnB82bN8eSJUvKdf7Vq1fRs2dPdO3aFadPn8akSZMwevRo7Nq1y8SREhERERERURErqQOwJE8++SSefPLJcp+/bNkyhISE4JNPPgEANGrUCAcOHMDChQsRGRlpqjCJiIiIiIjoPkxsqyAmJgbdunUz2BcZGYlJkyaVeV1BQQEKCgr029nZ2aYIr0x37tyBWq2uUhlarRYA4O7uboyQqoWcnBxoNJoqlaFSqeDh4WGkiMjcqlq3dDodRFFkvbpPdna2/vdNZbFeyVtV65UoitDpdKxX97t7B0pt1T6vAECwsYXK188IAZG5qZMSIRbkV6kMnVYLlZe3kSKSP0GlQlp2TpX/xuZnVuUwsa2CpKQk+Pj4GOzz8fFBZmYm8vLyYGdnV+J1UVFRmDVrljlCLNGdO3ewZMkSiKJolPIiIiLg6OholLLkLDs7G/v27atyOYIgYMKECfyFJkPGrFusV/ewXhHrlfFpMjKg/P4ruBZW7Y/vIkFRC5jcyow6KREJU6dUvSBRhHu/Z6B0cal6WdVAvqMzlu/YWeXfV/zMqhyOsZXA1KlTkZGRoX/98ccfZr2/Wq02WlILoMotKdWFsb4PoihW+UkfScOYdYv16h7WK2K9MgFNoVGLq2qrH5mfMf/PxCr2VKtOCgsLjfL7ip9ZlcMW2yrw9fVFcnKywb7k5GQ4OzuX2loLADY2NrCxsdFvS/n0WBCESl9rzOS4uqns95Xf0+qDPwPGx+8p8WfABKrwdwD4fa0eKvszwP//MvH3lflVmxZbURSxZ88e/Prrr8jKyjLLPdu1a4fdu3cb7IuOjka7du3Mcn8iIiIiIiKSaWI7bdo0dO3aVb8tiiK6d++OJ554Aj179kTTpk1x+fLlCpebnZ2N06dP4/Tp0wDuLedz+vRpJCQkALjXhXjEiBH681966SVcuXIFb775Js6fP4+lS5fihx9+wOTJk6v2BomIiIiIiKjcZJnY/vTTT2jTpo1++8cff8Tu3bsxZ84cbNu2DVqtFjNnzqxwucePH0fLli3RsmVLAMCUKVPQsmVLTJ8+HQCQmJioT3IBICQkBNu3b0d0dDSaN2+OTz75BF9++SWX+iEiIiIiIjIjWY6xvXnzJkJDQ/XbP//8M8LCwjB16lQAwMsvv4wvvviiwuVGRESU2a997dq1JV5z6tSpCt+LiIiIiIiIjEOWLbZWVlb6dWBFUcTu3bvRo0cP/XEfHx+kpqZKFR4RERERERGZkSwT2yZNmuDbb79FWloa1qxZgzt37qBnz57649euXYOnp6eEERIREREREZG5yLIr8vTp0/H000/rk9cOHToYTCa1fft2PPLII1KFR0RERERERGYky8T2iSeewMmTJxEdHQ1XV1cMGjRIfywtLQ2dO3dGnz59JIyQiIiIiIiIzEWWiS0AhIWFISwsrNh+Nzc3LFy4UIKIiIiIiIiISAqyTGyzsrKQnp6OwMBA/b5bt25h2bJlKCgowMCBA9kVmYiIiIiIqIaQZWI7duxYXL16FYcPHwYAZGZm4tFHH8WNGzegUCiwePFi7Ny5ExEREdIGSkRERERERCYny1mRDxw4gF69eum3v/32W9y6dQuHDh1CWloamjVrhjlz5kgYIREREREREZmLLBPb1NRUBAQE6Le3bNmCjh074tFHH4WTkxNGjBiBv/76S8IIiYiIiIiIyFxkmdi6uroiKSkJAJCXl4f9+/eje/fu+uNWVlbIzc2VKjwiIiIiIiIyI1mOsW3fvj2WLl2Khg0bYufOncjPzzdY3ueff/4xaNElIiIiIiKi6kuWie38+fPRvXt3DBgwAADw+uuvo3HjxgAArVaLjRs3okePHlKGSERERERERGYiy8Q2NDQUFy5cQGxsLFxcXBAcHKw/lpubi88//xzNmzeXLkAiIiIiIiIyG1kmtgBgbW1dYvLq5ORk0C2ZiIiIiIiIqjdZTh4F3Fu79oMPPkBkZCRatmyJo0ePAgDu3r2LBQsW4NKlSxJHSEREREREROYgyxbbGzduoEuXLrh+/Trq1auH8+fPIzs7GwDg7u6O5cuX49q1a1i8eLHEkRIREREREZGpyTKxfeONN5CVlYXTp0/D29sb3t7eBsf79u2Lbdu2SRQdERERERERmZMsuyL/9ttvePXVVxEWFgZBEIodr1OnDq5fvy5BZERERERERGRuskxs8/Ly4OXlVerxrKwsM0ZDREREREREUpJlYhsWFoY///yz1OO//PILWrZsacaIiIiIiIiISCqyTGwnTZqE77//HvPnz0dGRgYAQKfT4dKlS3juuecQExODyZMnSxwlERERERERmYMsJ48aPnw4rl27hnfffRfTpk0DAPTo0QOiKEKhUGDevHno27evtEESERERERGRWcgysQWAadOm4bnnnsNPP/2ES5cuQafToW7duujfvz/q1KkjdXhERERERERkJrJNbAEgKCiIXY6JiIiIiIhqOFmOsT158iSWLl1a6vGlS5fi9OnT5guIiIiIiIiIJCPLxHbatGn4/fffSz2+Z88evPvuu5Uuf8mSJQgODoatrS3atm2Lo0ePlnn+okWL0KBBA9jZ2SEwMBCTJ09Gfn5+pe9PRERERERE5SfLxPbEiRPo1KlTqcc7deqE48ePV6rsDRs2YMqUKZgxYwZOnjyJ5s2bIzIyErdv3y7x/PXr1+Ptt9/GjBkzEBcXh1WrVmHDhg145513KnV/IiIiIiIiqhhZJrZZWVmwsip9eLBCodAvA1RRCxYswJgxYzBy5EiEhYVh2bJlsLe3x+rVq0s8/9ChQ+jQoQOGDh2K4OBgdO/eHUOGDHloKy8REREREREZhywnj6pXrx5+++03vPLKKyUe37lzZ6VmRlar1Thx4gSmTp2q36dQKNCtWzfExMSUeE379u3x7bff4ujRo2jTpg2uXLmCHTt24Lnnniv1PgUFBSgoKNBvZ2dnVzhWSyIIAhSK8j8jKTpfEAT9dtG/D35ddN79X9//b2mvks4v6b4P3hMARLUaBdeuojDlNsRCdbnfV0ZWBg7rtChUKMt9DRERERERVZ0sE9sXX3wRkydPxpQpUzB9+nS4uroCANLT0zFr1izs3LkTH330UYXLTU1NhVarhY+Pj8F+Hx8fnD9/vsRrhg4ditTUVHTs2BGiKEKj0eCll14qsytyVFQUZs2aVeH4LJUoitDpdBW+RqVSwdbWFnZ2drC3t4ejo2OZLfHmoEm7i9zYsxVKaCti+fLlyM7OhqOjI8aNG2eSexARERER1TSy7Ir86quv4vnnn8eiRYvg6emJoKAgBAUFwdPTE4sXL8bw4cPNtgzQvn37MG/ePCxduhQnT57Ezz//jO3bt2P27NmlXjN16lRkZGToX3/88YdZYrUkOp0O+fn5SE9PR2JiIi5fvoy//voLcXFxuHXrliSTb2nS05F75i+TJbXAvdb5zMxM2bfSExERERFZElm22AqCgDVr1mDEiBH46aefcOXKFQBAnz59MGDAAERERFSqXE9PTyiVSiQnJxvsT05Ohq+vb4nXvPfee3juuecwevRoAEDTpk2Rk5ODsWPHYtq0aSV20bWxsYGNjY1+29HRsVLxVke5ubnIzc1FYmIi7O3t4eXlBXd39wp1da4MXX4+cs/+BVGnNel9iIiIiIjI+GSZ2Bbp2rUrunbtarTyVCoVwsPDsXv3bvTt2xfAvZbF3bt3Y+LEiSVek5ubWyzpUirvjbEURdFosdVEubm5uHbtGm7cuAFvb294e3ubrKtyXtxZiJpCk5RNRERERESmJcuuyFevXsXWrVtLPb5161bEx8dXquwpU6Zg5cqV+OqrrxAXF4eXX34ZOTk5GDlyJABgxIgRBpNLPf300/jiiy/w/fff4+rVq4iOjsZ7772Hp59+Wp/gUtVotVokJibi7NmzSExMrPB43odR37oJTUa6UcskIiIiIiLzkWWL7f/+9z9kZmbi6aefLvH4kiVL4Orqiu+//77CZQ8aNAgpKSmYPn06kpKS0KJFC+zcuVM/oVRCQoJBC+27774LQRDw7rvv4ubNm/Dy8sLTTz+NuXPnVu7NUam0Wi1u3bqFlJQU1KpVC+7u7lUuUywsRP6VS0aIjoiIiIiIpCLLxDYmJgaTJk0q9fjjjz+ORYsWVbr8iRMnltr1eN++fQbbVlZWmDFjBmbMmFHp+1HFFBYW4urVq7hz5w6CgoIMxitXVMH1a+yCTEREREQkc7LsipyWlgYnJ6dSjzs6OuLOnTtmjIikkJmZidjYWKSmplbqep1aDfWN60aOioiIiIiIzE2WiW1QUBAOHjxY6vH9+/ejVq1aZoyIpKLT6XDt2jVcunQJhYUVa3lV30jgLMhERERERNWALBPbIUOG4LvvvsOnn35qMJGQVqvF4sWLsWHDBgwdOlTCCMncMjIycO7cuXK31IsaDdQ3b5g4KiIiIiIiMgdZjrGdOnUqDhw4gEmTJmHu3Llo0KABAODChQtISUlBREQEpk2bJnGUZG5arRbx8fFITU1FYGAg7O3tSz1XnZwIUasxY3RERERERGQqsmyxtbGxwW+//YZVq1ahTZs2SE1NRWpqKtq0aYPVq1fj999/r9KEQiRv2dnZiIuLw9WrV1FQUFDiOYU3b5o0BlEUS3w5ODjAyckJDg4OJR4nIiIiIqKKk2WLLQAoFAqMHDlSv74s0YPu3r2LtLQ0uLm5wdfXF3Z2dgAATXo6tLnZpV8oKKDy9YOVpxcUKlW576e+mwbt6bNlnjNu3LiHliMIAlQVuC8RERERUU0n28SWqDxEUcTdu3dx9+5dODo6wtPTE7bJiaWer7C1g32TZlA6lj7rdmm8nJwxfuJEqNXqqoQMlUoFDw+PKpVBRERERFSTyDKxfeyxxx56jiAI2L17txmiIbnIzs5GVmYm1FcuwdHaCk62NnC0sYFKqQRwL6l1aNkaiip0Y2dCSkRERERkfrJMbHU6HQRBMNin1Wpx7do1XL9+HaGhoQgICJAoOrJk2uws6LRaZGq1yMy/N/7WWqmAvY0tXJuGoCArC6qCAlhZWUGhqPgQdCHtLqAueVxvucuwsYXK169KZRARERER1SSyTGz37dtX6rFt27Zh7NixWLBggfkCItnQZmUV21eo1SHX2RXq9HQgPb3SZWsyMuD07SqoRN3DT36IoKgFTG6JiIiIiMpJlrMil6VXr14YPnw4Jk2aJHUoZGFErRa6nOKTRikcHGHl4lL1G2gKH3pKv6270PGHzei3dVeZ54kF+VWPh4iIiIiohqh2iS0A1K1bF8eOHZM6DLIw2uws4MEldQQBKm8f499MEEp8peTlIzk3Dyl5+SWfQ0REREREFVbtEluNRoMffvgBnp6eUodCFkabXby1VunqBoFL6xARERERyZosx9iOGjWqxP3p6ek4fPgwkpKSOMaWDIg6HXS5OYY7FQpYu3MWYyIiIiIiuZNlYrtnz55isyILggA3Nzd07NgRo0ePRvfu3SWKjiyRLjcH0BlO6mTl4gbBSpZVgIiIiIiI7iPLv+rj4+OlDoFkplg3ZEGAlbubNMEQEREREZFRVbsxtkQleXA2ZKWTEwQra4miISIiIiIiY5JNYpubm4uEhASo1epix1avXo3HH38cYWFh6N+/P2dEJgO6gnyIGo3BPqULW2uJiIiIiKoL2SS277//Ppo1a1YssZ0zZw7GjBmDP/74AykpKfjll18QERGBv/76S6JIydLosg0njVLY2EBpby9RNEREREREZGyySWz37t2LXr16wdHRUb8vMzMTc+bMQUBAAC5evIiUlBQcPnwYKpUKH3zwgYTRkiXRPtgN2dlVmkCIiIiIqMZavnw5PvnkEyxfvlzqUKol2SS28fHxaNasmcG+HTt2QK1W46233kJISAgAoE2bNhg5ciT2798vRZhkYUSdDrr8vP92CAKUzs7SBURERERENVJ2djYyMzOR/eCkpmQUspkVOSsrCx4ehmuO/vnnnxAEAZGRkQb7w8LCkJKSYs7wyELpcnMBUdRvK+wdJF3ix8vOzuBfIiIiIiKqOtkktrVr18b58+cN9u3btw8+Pj4IDQ012K9Wq+HMVjnCv4ntfaRurd3UO/LhJxERERERUYXIpity9+7dsXr1ahw5cgQA8PXXX+P8+fPo169fsXNPnDiB4OBgM0dIlkiXe9/EUQoFlA6OpZ9MRERERESyJJvE9r333oOjoyPat28PlUqFF154AV5eXpg+fbrBebm5udi0aRMef/xxiSIlSyFqtdAV5Ou3lfYOEJRKCSMiIiIiIiJTkE1XZE9PT5w+fRpffvklrly5gtq1a2PUqFHw9vY2OO/s2bMYNmwYnnvuOYkiJUtRvBuyk0SREBERERGRKcmmxRYA3Nzc8MYbb+CLL77A22+/XSypBe7NivzZZ5+hcePGlb7PkiVLEBwcDFtbW7Rt2xZHjx4t8/z09HRMmDABfn5+sLGxQf369bFjx45K35+MQ5t3X2IrCFDYsxsyEREREVF1JJsWW3PZsGEDpkyZgmXLlqFt27ZYtGgRIiMjceHChRITabVajSeeeALe3t748ccfERAQgGvXrsHV1dX8wZMB8b7EVmFnz27IRERERETVFBPbByxYsABjxozByJEjAQDLli3D9u3bsXr1arz99tvFzl+9ejXu3r2LQ4cOwdraGgA4cZUFELVa6PIL9NtKJ7bWEhERERFVV7LqimxqarUaJ06cQLdu3fT7FAoFunXrhpiYmBKv2bJlC9q1a4cJEybAx8cHTZo0wbx586DVaku9T0FBATIzM/UvLtJsfLq8PAD/rV+rZDdkIiIiIqJqi4ntfVJTU6HVauHj42Ow38fHB0lJSSVec+XKFfz444/QarXYsWMH3nvvPXzyySeYM2dOqfeJioqCi4uL/tWlSxejvg8CdPl5+q8FlQ0ElUrCaIiIiIiIyJRkkdhu2bIFt27dkjqMEul0Onh7e2PFihUIDw/HoEGDMG3aNCxbtqzUa6ZOnYqMjAz9648//jBjxDWD7v7xtQ4OEkZCRERERAQ4OjrC2dkZjo7sSWgKshhj269fP3zzzTcYOnQoAKBOnTpYtGgRevfubdT7eHp6QqlUIjk52WB/cnIyfH19S7zGz88P1tbWUN43MVGjRo2QlJQEtVoNVQkthTY2NrCxsdFv84fbuERRhC7/vvVrmdgSERER1ViCQgkolRCUVhCUCkCh/PdfBQSFAhDufX3v3H/b/QSh4vdRF+q/FkWx2PGxY8eWeZyqRhaJrZOTE9LT0/Xb8fHxJhmXqlKpEB4ejt27d6Nv374A7rXI7t69GxMnTizxmg4dOmD9+vXQ6XRQ/FsR/vnnH/j5+ZWY1JLpiQX5gE53b0MQoLBnYktEREQkZ4KgAKysIFhZQbCyhmBd9K81BGsVFNZFX1v/d46V1b1rKpGkVobtnTsQBKHKSasgCMwjKkEWiW2bNm0wd+5cJCcnw8XFBQCwY8eOUse9Avd+ICZPnlzhe02ZMgXPP/88WrdujTZt2mDRokXIycnRz5I8YsQIBAQEICoqCgDw8ssv4/PPP8drr72GV155BRcvXsS8efPw6quvVuKdkjHcP75WYWdntl9mRERERDWNYGUFwboCSZgg6F+CoLiv5VQJWCmhUFrfS0aLklSVCop/X1D+m9gqLHM0pYeHByZMmAC1Wl2lclQqFTw8PIwUVc0hi8R26dKlGDFiBGbPng3gXtK6fv16rF+/vtRrKpvYDho0CCkpKZg+fTqSkpLQokUL7Ny5Uz+hVEJCgr5lFgACAwOxa9cuTJ48Gc2aNUNAQABee+01vPXWWxW+NxmHLu++bshsrSUiIiIyGVGjgVhYuUSusu2agkL5b8tsUfJ7r9W2KMkWihLjokRY+W9XZDMkxU6Faojq/IefWAa2yVSOLBLb0NBQHDp0CPn5+bh9+zaCg4OxaNEi9OnTxyT3mzhxYqldj/ft21dsX7t27XD48GGTxEIVZzAjMhNbIiIiompF1GkhFmiBgsokkMK9RLdofO3942wFAIKi0omlKAhIWvxx5S5+QFDUAqh8/YxSVk0hi8S2iK2tLYKCgjBjxgw89thjqF27ttQhkYURtVqIRd0/FAoobG2lDYiIiIiILIgIUasBtJVvMS6NcN9ksiXpt3UXUvLy4WVni01PR5Z5rlippL1mk1ViW2TGjBn6r7Ozs3H9+nUA97oFc4bhmk2Xd//4WnuOryUiIiIi8yvhb9CUvHwk5+aVehwAwNmSK80yR16Xw7Fjx9C1a1e4ubmhSZMmaNKkCdzc3PDYY4/h+PHjUodHEtEV3D++1l7CSIiIiIiIyFxk2WJ75MgRREREQKVSYfTo0WjUqBEAIC4uDt999x06d+6Mffv2oU2bNhJHSuZ2f4utYMfEloiIiIioJpBlYjtt2jQEBATgwIED8PX1NTg2c+ZMdOjQAdOmTUN0dLREEZJU9OMROL6WiIiIiKjGkGVX5CNHjmDcuHHFkloA8PHxwdixYzlLcQ0kagohajQAAIUt168lIiIiIqopZJnYKhQKaP5NYEqi1WoN1pqlmuH+9WsV9nYSRkJEREREROYky+yvffv2WLJkCa5du1bsWEJCApYuXYoOHTpIEBlJ6f6JoxS2TGyJiIiIiGoKWY6xnTdvHjp37oyGDRuiX79+qF+/PgDgwoUL2Lx5M6ysrBAVFSVxlGRuuvyixFZgYktEREREVIPIMrFt2bIljhw5gmnTpmHLli3Izc0FANjb26NHjx6YM2cOwsLCJI6SzK1o4iiFjc1DF8gmIiIiIqLqQ5aJLQCEhYVh06ZN0Ol0SElJAQB4eXlxbG0NJWo0+omjBDu21hIRERER1SSyTWyLKBQK+Pj4SB0GSey/bsjgMj9ERERERDUMmzepWhA5cRQRERERUY0l+xZbIgDQFRTc+0KhgMLGRtpgiIiIiIge4PXvcDkvDpszCSa2VC0UdUVW8BcFEREREVmgTb0jpQ6hWmNXZJI9UauFWKgGwG7IREREREQ1ERNbkj2dukD/tcKGE0cREREREdU0su6KHBsbiytXriAtLQ2iKBY7PmLECAmiInMTC+5LbNkVmYiIiIioxpFlYnv58mUMHz4cR48eLTGhBQBBEJjY1hBF42sFKysIVrL8kSYiIiIioiqQZRYwbtw4nDlzBosWLUKnTp3g5uYmdUgkoaIWW46vJSIiIiKqmWSZ2B48eBDvvPMOXnnlFalDIYmJoqgfYyvYcnwtEREREVFNJMvJozw9PeHi4iJ1GGQBRLUa0OkAcOIoIiIiIqKaSpaJ7UsvvYRvv/0WWq1W6lBIYrr8PP3XCrbYEhERERHVSLLsily/fn1otVo0b94co0aNQmBgIJRKZbHz+vfvL0F0ZE66Ak4cRURERERU08kyExg0aJD+6//9738lniMIAlt0awAx/9/xtTY2EkdCRERERERSkWViu3fvXpOWv2TJEnz00UdISkpC8+bN8dlnn6FNmzYPve7777/HkCFD0KdPH/zyyy8mjZH+nTjq3xZbhQ1nRCYiIiIiqqlkmdh26dLFZGVv2LABU6ZMwbJly9C2bVssWrQIkZGRuHDhAry9vUu9Lj4+Hv/73//QqVMnk8VGhgwmjrJliy0RERERUU0ly8mj7hcbG4tff/0Vv/76K2JjY6tc3oIFCzBmzBiMHDkSYWFhWLZsGezt7bF69epSr9FqtRg2bBhmzZqFOnXqVDkGKh+DiaM4IzIRERERUY0l28R28+bNqFu3Lpo2bYpevXqhV69eaNq0KUJDQ7Fly5ZKlalWq3HixAl069ZNv0+hUKBbt26IiYkp9br3338f3t7eePHFF8t1n4KCAmRmZupf2dnZlYq3pivqhgyFAoJKJW0wREREREQkGVl2Rd6xYwcGDBiA2rVrY968eWjUqBEAIC4uDitWrED//v2xbds29OjRo0LlpqamQqvVwsfHx2C/j48Pzp8/X+I1Bw4cwKpVq3D69Oly3ycqKgqzZs2qUGxUXNHEUWytJSIiIiKq2WSZ2M6ePRvNmjXD/v374eDgoN/fu3dvTJw4ER07dsSsWbMqnNhWVFZWFp577jmsXLkSnp6e5b5u6tSpmDJlin779OnTJh03XB3dP3EUZ0QmIiIiIqrZZJnY/v3335g3b55BUlvEwcEBL7zwAt55550Kl+vp6QmlUonk5GSD/cnJyfD19S12/uXLlxEfH4+nn35av0/372RGVlZWuHDhAurWrVvsOhsbG9jcl4w5OjpWONaaTizI/2/iKLbYEhERERHVaLIcY2tra4u7d++Wevzu3buwta14sqNSqRAeHo7du3fr9+l0OuzevRvt2rUrdn7Dhg1x5swZnD59Wv/q3bs3unbtitOnTyMwMLDCMVD53D9xFFtsiYiIiIhqNlm22D722GNYvHgxevToUSzhPHLkCD799FN07969UmVPmTIFzz//PFq3bo02bdpg0aJFyMnJwciRIwEAI0aMQEBAAKKiomBra4smTZoYXO/q6goAxfaTceny/p04ShCgqMRDDCIiqh6WL1+O7OxsODo6Yty4cVKHQ0REEpFlYvvhhx+iXbt26NixI9q0aYMGDRoAAC5cuICjR4/C29sb8+fPr1TZgwYNQkpKCqZPn46kpCS0aNECO3fu1E8olZCQAIVClg3d1UpRi61CpYIgCBJHQ0REUsnOzkZmZqbUYRARkcRkmdiGhITg77//RlRUFH799Vds2LABAFC7dm289tprePvtt+Ht7V3p8idOnIiJEyeWeGzfvn1lXrt27dpK35fKR9RoIKrVAACB42uJiIiIiGo8WSa2AODt7Y2FCxdi4cKFUodCZnb/+Fp2QyYyvqJeEA/+W9bXJW0XI4oQtVr9xG/lYfXvdWDPDCIiIiqDbBNbqrl0efdPHMXElkgQBCiVSiiVSqhUKtja2sLOzg4ODg76GdjLSkJN2Z1fk3YXhakp0KanQZubC4jlT2oBwDUrA/ZaDXKtrE0UIREREVUHskhsR40aBUEQsGLFCiiVSowaNeqh1wiCgFWrVpkhOjK3/xJbThxFBNxb11mj0UCj0aCgoABZWVn6YyqVCs7OznBzc4OTk5NZxqSLOh3UiTehvn4duvxck9+PkwcRERGRLBLbPXv2QKFQQKfTQalUYs+ePQ/944wTClVPoigaThzFibyIyqRWq5GamorU1FRYWVnBw8MDXl5eBmtpG1PhnVTkX/zHLAltEU4eRERERLJIbOPj48vcpppDl593b7wdAIGttUQVotFokJycjOTkZLi6usLPzw/29vZGKVvUaJB38QIKkxONUh4RERFRRciyuSshIQF5942zfFBeXh4SEhLMGBGZi5h738RRdkxsiSorPT0dcXFxuHLlCgoKCqpUljYnB9knjzGpJSIiIsnIMrENCQnBpk2bSj2+ZcsWhISEmDEiMhdtXo7+a8HGTsJIiKqHtLQ0nDt3Djdv3oSuArMVF9GkpyHn1HHocnMefjIRERGRicgysRX/7YpamsLCQig49rLaEUXxv4mjBE4cRWQsoigiKSkJ586dM5h46mEK76Qi969TEDWFJoyOiIiI6OFkMcYWADIzM5Genq7fvnPnTondjdPT0/H999/Dz8/PjNGROYj5+fr1LxU2tpwgjMjI1Go1/vnnH3h7eyMgIKDMB4SFd1KRe/bvCi/fQ0RERGQKsklsFy5ciPfffx/AvRmPJ02ahEmTJpV4riiKmDNnjhmjI3PQ5f43y6rA8bVEJnP79m1kZWWhTp06sC2hZ4QmIx15584wqSWzK6nHloODA0RR1P9bFhsbG9jZVXwYiyiKxV46nU7/NRERSU82iW337t3h6OgIURTx5ptvYsiQIWjVqpXBOYIgwMHBAeHh4WjdurVEkZKp3D++VmHL8bVEppSXl4e4uDgEBgbC09NTv1+bm4vcM39B1GkljI5qEpVKBUEQSk0gy7t2sSAIaNiwITw8PIwZnj7J1el00Gq1+n+1Wi00Gk2xfx98MTEmIjIO2SS27dq1Q7t27QAAOTk5GDBgAJo0aSJxVGQuBuNrASiZ2BKZnE6nw7Vr15CRkYGgoCBYCQJyz5zmmFoyKw8PD0yYMAFqtbpK5ahUKqMntcC9hFmpVEKpVMLa2rrC19+fCOuT4MJCaAsLodMUQqvRQKfVQqfVQvw3cRaLXqL47wp44r1XOXPkQlEHjZYPp4ioepFNYlskNzcXn376Kezt7ZnY1iC6vFz9+FoorSCoVNIGRFSDpKenIzMzE+45WXApLOD4djI7p0I1RHV+lcow94+tqNFA1GogFmogagohFha91NAV3ret0QCaf8/RagGtBkoAShPGpsnORJpWY/5vChGRCckusbW3t4eVlRUcHBykDoXMSJfzXzdkZSXGRxFR1RSk3Mb11BSkWFvB19kJTjY2Zo+htC6bFRljSfKjTkpEwtQpVSvk358Ln/GTYF2RVlsRECHeu/7fl6jT3ftap733tVZ3r2u+VncvkdVo7iWo5W0+JSIio5BdYgsAAwYMwI8//oiXX36ZLQc1xP2JrYKJLZFZaXNzoUlNBQDkF2oQfycNDioVvJ0c4FiOBFewVsHKxRUKBwcoVDaAsvzLsRWkp0N96kyZ55RnjKUgCFCxp4csiQVVa6m9n/r6Nehys41WHhERWQ5ZJraDBw/G+PHj0bVrV4wZMwbBwcElznL44ORSJE+iRgPdfX/YCHb2EkZDVLOIWi0Kk27hwdanHLUaV++oYWttBQ8He7jY2kJ53/JAgqCAta8frH39YOXiWun7e/v646VXXrHY8ZVkZiU8zO63ZRdS8vLgZWeHTb0jS76OLflERNWeLBPbiIgI/df79+8vdlwURQiCAC0nRqgWtDn3PV0XBChKWH6EiEyjMOU2xMLSJ4vKL9TgZnomEoUsONnawMXODu7BIbCvEwqFkVpImZBSWVLy8pCcm/fwE4mIqFqTZWK7Zs0aqUMgMzLohmxrx+7nRGaizc6GNiO9XOfqRBFZIpDv7IaUnDzYX74MBwcH2Nvbw8bGBiqVCtbW1lAoyt8NuYg6KbHK3VEFG1uofP2qVAYRERFZLlkmts8//7zUIZCZiKJo0GKrsGc3ZCJzEHU6FN5OKvf5Vu4esPL00j94ys3NRW5ubonnVuThlCYjA7brVsNeqyn3NaUJilrA5JaIiKiakmVie7/s7Gxcv34dABAYGAhHR0eJIyJj0uXk/LfMD5jYEplLYWrZXZD1BAEqP38onZzLXXZFZi4WC9UPnVu239ZdSMnLh5edLTY9XcoYSxh3EiIiIiKyLBXvE2Yhjh07hq5du8LNzQ1NmjRBkyZN4ObmhsceewzHjx+XOjwyEm121n8bggCFLWdEJjI1bW4utGlpDz9RoYCqVlCFktoqEYQSXyl5+UjOzUNKXn7J5xAREVG1J8sW2yNHjiAiIgIqlQqjR49Go0aNAABxcXH47rvv0LlzZ+zbtw9t2rSROFKqClEUoc2+rxuyrR2ESozPI6LyuzcLcuLDT1QqYVMrkA+biIiIyCLIMrGdNm0aAgICcODAAfj6+hocmzlzJjp06IBp06YhOjpaogjJGHR5ucB94+rYDZnkbvny5cjOzoajo2O51l6Vwr1ZkB+ytI5CwaSWiIiILIosm7+OHDmCcePGFUtqAcDHxwdjx47F4cOHJYiMjEmblWWwrbB3kCgSIuPIzs5GZmYmsu/riWBJNJkZD58FWRCgCqjFpJaIiIgsiiwTW4VCAY2m9BkytVptpZaUIMshiqJhYqtQQGHHP6SJTEVXUIDC5IfPgmzt4wclHzIRERGRhZFl9te+fXssWbIE165dK3YsISEBS5cuRYcOHSSIjIxFl51t2A3ZjuvXEpmKqNVCfeumwQzkJbFy94CVi4uZoiIiIiIqP1kmtvPmzUNGRgYaNmyIoUOHYubMmZg5cyaGDBmChg0bIiMjA1FRUZUuf8mSJQgODoatrS3atm2Lo0ePlnruypUr0alTJ7i5ucHNzQ3dunUr83wqH21mhsG20oHLOBGZgiiKUCfehKguKPM8hYMDrDy9zBQVUfl52dnBx94OXuzVQ0RUo8ly8qiWLVviyJEjmDZtGrZs2YLc3FwAgL29PXr06IE5c+YgLCysUmVv2LABU6ZMwbJly9C2bVssWrQIkZGRuHDhAry9vYudv2/fPgwZMgTt27eHra0t5s+fj+7du+PcuXMICAio0vusqUSNBtocwzGIHF9LZBqFyUn31osug2BlBZWvP3tNkEXa1Lv0tYuJiKjmkGViCwBhYWHYtGkTdDodUlJSAABeXl5VHlu7YMECjBkzBiNHjgQALFu2DNu3b8fq1avx9ttvFzt/3bp1BttffvklfvrpJ+zevRsjRoyoUixSknL2Vm1GBiCK+m3B2hoKGxuzxkBUExTevv3wyaIAWPv5Q7CS7ccFERER1QCy7Ip8P0EQDF5VoVarceLECXTr1k2/T6FQoFu3boiJiSlXGbm5uSgsLIS7u3up5xQUFCAzM1P/ssQZUqWavVUURWgy0gz2KdgNmcjoClNuQ5N256HnWbl5cLIoIiIisniyTWxjY2MxcOBAODs7w8/PD35+fnB2dsbAgQNx9uzZSpWZmpoKrVYLHx8fg/0+Pj5ISnr4bKEA8NZbb8Hf398gOX5QVFQUXFxc9K8uXbpUKt7qSJedDbGw0GAfx9cSGY8oilAnJ0Fz9+FJraCygZWX5Y+r5RhLIiIikmXfsv379+PJJ5+ETqdDnz59UL9+fQDAhQsXsGXLFvz666/YuXMnOnXqZNa4PvjgA3z//ffYt28fbG1tSz1v6tSpmDJlin779OnTTG7/VeyPbYUCCge2FlH14OjoaPCvuYlaLdSJt6DLKU9PDAHWvn6yGFfLMZZEREQky8R28uTJ8Pb2xh9//IHAwECDY9evX0fnzp0xZcoUHDt2rELlenp6QqlUIjk52WB/cnIyfH19y7z2448/xgcffIDff/8dzZo1K/NcGxsb2Nw3ZlSqP3ItjTY3B7r8PIN9SgdHWfxhTfQg8b5x4kXGjh1b5vH7ubi4lDmk4UFarRYajQaFhYVQq9XFjuvy8qBOugWxhGMlUbq5QskWUCIiIpIJWSa2586dw+zZs4sltQAQGBiIl19+GTNnzqxwuSqVCuHh4di9ezf69u0LANDpdNi9ezcmTpxY6nUffvgh5s6di127dqF169YVvi/do/l3ErD7cXwtyYlKpYIgCA9NWh9GEAQEBwfDw8OjUtfrdDrk5+cjJycHWRkZuBt/FQUptw0mZSvz/ioVrD2LzwJPREREZKlkmdjWrl0bBQWlr7moVqtLTHrLY8qUKXj++efRunVrtGnTBosWLUJOTo5+luQRI0YgICBAv07u/PnzMX36dKxfvx7BwcH6sbiOjo5sia0AbVZWsdZaCAKU/B6SjHh4eGDChAkltphWhEqlqnRSC9yb9M7O1hZW6WmwvZ0EDysBuR5uyMgvQHpeHjRaXekXCwKsff0hVHGGeSIiIiJzkmViO336dEyePBk9e/ZEixYtDI6dOnUKn332GRYtWlSpsgcNGoSUlBRMnz4dSUlJaNGiBXbu3KmfUCohIcFgSaEvvvgCarUaAwcONChnxowZlWo1rolEnQ6FKcnF9iscHCEolRJERFR5ToVqiOr8KpVR2d73olYLbWYGClNTUHg7GWLhfwm2vUoFe5UKvk6OyCwowJ2cXOQUFE/ArTw82QWZiIiIZEeWie3hw4fh4+OD8PBwtG/fHqGhoQCAixcvIiYmBk2aNEFMTIzBEj2CIGDx4sXlKn/ixImldj3et2+fwXZ8fHyl3oOlKK3LpIODA0RR1P9rSoWpt4vNhAwASicnk96XyNjUSYlImDrl4SeW5d/65jVyLKzc3Mp3jU4HnVoNXV4eIJbRGot7vwtdbG3hYmuLXLUat7NzkJV/rweMwt4BVu6VbykmIiIikoosE9vPP/9c//XBgwdx8OBBg+NnzpzBmTNnDPZVJLGt7sozDnDcuHHlLq9+/frlnuRGFEWDSW6ykxKRkZONfEGA7v54FAou80OyIxaU3VLbb+supOTlw8vOFpueLnsmX01qykOT1KqyV6kQ7K5CjlqN5NwCaP38OVkbERERyZIsE1udzrR/7FV3xhoHCFRtLKAmMwN2GWnw9PSAKIrIKyxEdoEamQUFUNvasxsyyVsJCWJKXj6Sc/NKPQ6g3BM8GZOjjS18Hu2INLUaN2/ehEajMXsMRERERFUhy8SWqq4qE9MYQ+GdVOTFnoWo0wK416JeNAbQ28kR1o2aIFMEUlNTy5wojIiqzq5RYyidneEJwNXVFQkJCUhLS5M6LCIiIqJyk3Vie/XqVfz666+4du0agHuzJT/55JMICQmRODLLp05KfGi3yYcRNRpAqYS1d9lr/N5Pl5eLwsRbKEy9Xeo5Clt72Pv4wh6Ar68vMjIykJycjKysrCrFS0TF2datD2tvH/22lZUV6tSpg7t37yIhIQFarVbC6IiIiIjKR7aJ7euvv47FixcX65asUCgwadIkfPzxxxJFZvmMMsENoO8y6d7vGShdXKpe3r9U/gEG2y4uLnBxcUF2djZu3brFBJfISGyC68AmMKjEY+7u7nB0dER8fDzrHBEREVk8WS5U+Mknn2DhwoXo378/YmJikJ6ejvT0dMTExGDgwIFYuHAhFi5cKHWYFqs8LbX9tu5Cxx82o9/WXQ8vz4jj8QRBAWtfvxKPOTo6on79+ggNDYWtra3R7klUE9kE14FtcJ0yz1GpVKhfvz6CgoKg5Jh3IiIismCybLFduXIlevfujR9++MFgf9u2bfH9998jPz8fy5cvx+TJkyWKUEZKmcBGqklurH39oFCpyjzHxcUFzs7OSE5Oxq1bt0y+HBFR9SLAtl592AQElvsKLy8vuLq64ubNm7hz544JYyMiIiKqHFm22MbHxyMysvSlMiIjI2W/vmzNJMAmqHb5zhQE+Pr6IiwsDA4ODiaOi6h6EJRWsG/avEJJbRFra2sEBwejUaNGcHZ2NkF0RERERJUny8TW29sbf/31V6nH//rrL3h5eZkxIjIGa28fKOzsK3SNra0tGjRoAH9/rr9JVBalkwscW7eBtYdnlcqxt7dHvXr10LBhQ7i6uhonOCIiIqIqkmVX5GeeeQaLFy9GcHAwXnnlFX2LXU5ODj7//HN8+eWXmDRpkrRBUsUICtiGlD3er9RLBQF+fn5wdXXFtWvXkJOTY+TgiIzDy87O4F9zEJRWsAmuA1WtQKM+/HFwcEDdunWhVquRmpqKO3fuGGVtbCIiIqLKkGViO3v2bJw+fRrvvPMOpk+fDn9/fwDArVu3oNFo0LVrV7z//vsSR0kVoQqoVeHW2gfZ2dmhYcOGSE1Nxa1bt1BYWGik6IiMY1Pv0odQGJugtILKPwCqwNoPHbdeFSqVCv7+/vD390dOTg7S09ORmZmJ3Nxck92TiIiI6EGyTGzt7e2xe/dubN682WAd2x49euCpp57C008/zW6pMqJQ2Tx0dtaK8PT0hJubG27fvo3k5GSuw0k1hkJlA6WLK6w8vWDt6QXBCDMZi0VLqomi/iUWfQ0REKH/2k4hwNbNDb6urtBqtcjNy0V+Xj7yCwpQWFgIjVYLnU5XoQnfFAAUou6h5xEREVHNJrvENjc3F8OHD8eAAQMwbNgw9OnTR+qQqIpsGzSCYGXcH0WlUgk/Pz94e3vj9u3bSElJYQsuyYtSAUFpXb5zBQGCtRUEpRV0eXlQJ1yDOuEa7mWd+Df/LPq6KBn9L2HVJ5q6B/ZVMaEUANj9+6osTVY60rTa0mdnJyIiIoIME1t7e3v8/vvvePLJJ6UOpVoz11hAm6DgKk9mU5aiBNfX1xdpaWm4c+cOMjMzTXY/IqPR6iBqy/8wRtRwfCsRERHVXLJLbAGgY8eOiImJwZgxY6QOpdoyx1hAax8/2NYJNfl9gHsTTLm7u8Pd3R2FhYX6cYBZWVnsqkxEREREJHOyTGw///xzREZG4t1338VLL72EWrVqSR0SVYSggE3tENgGh0hye2tra3h6eMDTwwOiVov8/Hzk5uYiLy8P+fn5KNRooNFooNPp/h07WD4iAKEC5xMRERERkXHIMrFt3rw5NBoNoqKiEBUVBSsrK9jY2BicIwgCMjIyJIqwhrFSQrAuz1hAAQpbW1h5eEJhawN10q37Jp5B8UlpdPeN8xOLtnWATndvQpv7v9bpIGr//VfUATrxv6/Fe1//N5awePJp/e/LuQrfBk1WOtJEHccCEhERERGZmSwT2wEDBnDWY0ui0UIs58RM2kI1tFkc40pERERERMYjy8R27dq1UodAREREREREFkJWiW1+fj42b96Mq1evwtPTEz179oSfn5/UYREREREREZGEZJPY3r59G+3bt8fVq1f1ay7a29vjl19+Qbdu3SSOjoiIiIiIiKSikDqA8po9ezbi4+MxefJkbNu2DYsWLYKdnR3GjRsndWhEREREREQkIdm02P72228YMWIEPv74Y/0+Hx8fDB06FBcuXECDBg0kjI6IiIiIiIikIpsW24SEBHTs2NFgX8eOHSGKIpKTkyWKioiIiIiIiKQmm8S2oKAAtra2BvuKtjUajRQhERERERERkQWQTWILAPHx8Th58qT+9ffffwMALl68aLC/6FVZS5YsQXBwMGxtbdG2bVscPXq0zPM3btyIhg0bwtbWFk2bNsWOHTsqfW8iIiIiIiKqGNmMsQWA9957D++9916x/ePHjzfYFkURgiBAq9VW+B4bNmzAlClTsGzZMrRt2xaLFi1CZGQkLly4AG9v72LnHzp0CEOGDEFUVBR69eqF9evXo2/fvjh58iSaNGlS4fsTERERERFRxcgmsV2zZo1Z7rNgwQKMGTMGI0eOBAAsW7YM27dvx+rVq/H2228XO3/x4sXo0aMH3njjDQD3Zm+Ojo7G559/jmXLlpklZiIiIiIioppMNont888/b/J7qNVqnDhxAlOnTtXvUygU6NatG2JiYkq8JiYmBlOmTDHYFxkZiV9++aXU+xQUFKCgoEC/nZ2dXbXAq+LfNYHJyPh9Jf4MGB+/p8SfAePj95T4M2Aa/L6anWwSW3NITU2FVquFj4+PwX4fHx+cP3++xGuSkpJKPD8pKanU+0RFRWHWrFlVD7iSBBvbh59UATah9WDt6WXUMuWo0C3FaGUZ+/+IzMOY/2+sV/ewXhHrlfEZs14BrFtyxHplGrrcXKOVxXpVcUxsJTB16lSDVt7Tp0+jS5cuZru/ytcPQVELIBbkV7kswcYWKl8/I0QlfzYBgQj6YGGVv6/8nsqXseoWfwb+w3pFrFfGZ6x6BfD7KlesV6bD76t0mNjex9PTE0qlsti6uMnJyfD19S3xGl9f3wqdDwA2NjawsbHRbzs6OlYh6sphZTENfl+JPwPGx+8p8WfA+Pg9Jf4MmAa/r9KR1XI/pqZSqRAeHo7du3fr9+l0OuzevRvt2rUr8Zp27doZnA8A0dHRpZ5PRERERERExsUW2wdMmTIFzz//PFq3bo02bdpg0aJFyMnJ0c+SPGLECAQEBCAqKgoA8Nprr6FLly745JNP0LNnT3z//fc4fvw4VqxYIeXbICIiIiIiqjGY2D5g0KBBSElJwfTp05GUlIQWLVpg586d+gmiEhISoFD819Ddvn17rF+/Hu+++y7eeecd1KtXD7/88gvXsCUiIiIiIjITQRQ5F7XUTp48ifDwcJw4cQKtWrWSOhwiIiIiIiJZ4RhbIiIiIiIikjUmtkRERERERCRrHGNLREREZCaJiYlITEyUOgyiasXPzw9+flxmp6ZjYmsB/Pz8MGPGDFbISiooKEBUVBSmTp1qsD4wEVUe6xWR8RUUFGDIkCH4448/pA6FqFrp0qULdu3axc+rGo6TR5HsZWZmwsXFBRkZGXB2dpY6HKJqgfWKyPiK6tUff/wBR0dHqcMhqhays7PRpUsXfl4RW2yJiIiIzKlFixb8A5zISDIzM6UOgSwEJ48iIiIiIiIiWWNiS0RERERERLLGxJZkz8bGBjNmzOCEAURGxHpFZHysV0TGx3pFRTh5FBEREREREckaW2yJiIiIiIhI1pjYEhERERERkawxsSUiIiIiIiJZY2JLdJ/4+HgIgoC1a9dKHQoREREREZUTE1uqtMuXL2PcuHGoU6cObG1t4ezsjA4dOmDx4sXIy8sz2X1jY2Mxc+ZMxMfHm+we5TF37lz07t0bPj4+EAQBM2fOlDQeqnkEQSjXa9++fVW+V25uLmbOnFnuss6fP48333wTLVq0gJOTE/z8/NCzZ08cP368yrEQmZIl16sHrVu3DoIgwNHRscqxEJmSJdermTNnlhnTwYMHqxwTmYeV1AGQPG3fvh3PPPMMbGxsMGLECDRp0gRqtRoHDhzAG2+8gXPnzmHFihUmuXdsbCxmzZqFiIgIBAcHm+Qe5fHuu+/C19cXLVu2xK5duySLg2qub775xmD766+/RnR0dLH9jRo1qvK9cnNzMWvWLABARETEQ8//8ssvsWrVKgwYMADjx49HRkYGli9fjkcffRQ7d+5Et27dqhwTkSlYcr26X3Z2Nt588004ODhUOQ4iU7PketW/f3+EhoYW2//OO+8gOzsbjzzySJVjIvNgYksVdvXqVQwePBi1a9fGnj174Ofnpz82YcIEXLp0Cdu3b5cwwv+Iooj8/HzY2dkZveyrV68iODgYqamp8PLyMnr5RA8zfPhwg+3Dhw8jOjq62H4pDBkyBDNnzjRoSRo1ahQaNWqEmTNnMrEli2XJ9ep+c+bMgZOTE7p27YpffvlF6nCIymTJ9apZs2Zo1qyZwb7r16/jxo0bGD16NFQqlUSRUUWxKzJV2Icffojs7GysWrXKIKktEhoaitdee02/rdFoMHv2bNStWxc2NjYIDg7GO++8g4KCAoPrgoOD0atXLxw4cABt2rSBra0t6tSpg6+//lp/ztq1a/HMM88AALp27Vqs60pRGbt27ULr1q1hZ2eH5cuXAwCuXLmCZ555Bu7u7rC3t8ejjz5apQRcytZiovLS6XRYtGgRGjduDFtbW/j4+GDcuHFIS0szOO/48eOIjIyEp6cn7OzsEBISglGjRgG4N/a86OHNrFmz9PWurO734eHhxbpHenh4oFOnToiLizPumyQyM6nqVZGLFy9i4cKFWLBgAays2EZB1YPU9ep+3333HURRxLBhw4zy3sg8+NuQKmzr1q2oU6cO2rdvX67zR48eja+++goDBw7E66+/jiNHjiAqKgpxcXHYtGmTwbmXLl3CwIED8eKLL+L555/H6tWr8cILLyA8PByNGzdG586d8eqrr+LTTz/FO++8o++ycn/XlQsXLmDIkCEYN24cxowZgwYNGiA5ORnt27dHbm4uXn31VXh4eOCrr75C79698eOPP6Jfv37G+wYRWZBx48Zh7dq1GDlyJF599VVcvXoVn3/+OU6dOoWDBw/C2toat2/fRvfu3eHl5YW3334brq6uiI+Px88//wwA8PLywhdffIGXX34Z/fr1Q//+/QGg2BPu8khKSoKnp6dR3yORuUldryZNmoSuXbviqaeewg8//GDS90pkLlLXq/utW7cOgYGB6Ny5s9HfJ5mQSFQBGRkZIgCxT58+5Tr/9OnTIgBx9OjRBvv/97//iQDEPXv26PfVrl1bBCD++eef+n23b98WbWxsxNdff12/b+PGjSIAce/evcXuV1TGzp07DfZPmjRJBCDu379fvy8rK0sMCQkRg4ODRa1WK4qiKF69elUEIK5Zs6Zc708URTElJUUEIM6YMaPc1xCZwoQJE8T7f63v379fBCCuW7fO4LydO3ca7N+0aZMIQDx27FipZRvj5/zPP/8UBUEQ33vvvUqXQWRullavtm3bJlpZWYnnzp0TRVEUn3/+edHBwaEC74hIepZWr+539uxZEYD45ptvVup6kg67IlOFZGZmAgCcnJzKdf6OHTsAAFOmTDHY//rrrwNAsa7AYWFh6NSpk37by8sLDRo0wJUrV8odY0hICCIjI4vF0aZNG3Ts2FG/z9HREWPHjkV8fDxiY2PLXT6RXGzcuBEuLi544oknkJqaqn8VdRPeu3cvAMDV1RUAsG3bNhQWFpokltu3b2Po0KEICQnBm2++aZJ7EJmDlPVKrVZj8uTJeOmllxAWFmaUMoksgSV9Xq1btw4A2A1ZhpjYUoU4OzsDALKyssp1/rVr16BQKIrNNufr6wtXV1dcu3bNYH9QUFCxMtzc3IqNryhLSEhIiXE0aNCg2P6iLswPxkFUHVy8eBEZGRnw9vaGl5eXwSs7Oxu3b98GAHTp0gUDBgzArFmz4OnpiT59+mDNmjXFxsFXVk5ODnr16oWsrCxs3ryZS5OQrElZrxYuXIjU1FT9jK9E1YWlfF6Jooj169ejSZMmlRpuQ9LiGFuqEGdnZ/j7++Ps2bMVuk4QhHKdp1QqS9wvimK572WKGZCJ5Ein08Hb21v/9PlBRRNsCIKAH3/8EYcPH8bWrVuxa9cujBo1Cp988gkOHz5cpURUrVajf//++Pvvv7Fr1y40adKk0mURWQKp6lVGRgbmzJmD8ePHIzMzU9+DKjs7G6IoIj4+Hvb29vD29q7aGySSgCV8XgHAwYMHce3aNURFRVWpHJIGE1uqsF69emHFihWIiYlBu3btyjy3du3a0Ol0uHjxosEET8nJyUhPT0ft2rUrfP/yJskPxnHhwoVi+8+fP68/TlTd1K1bF7///js6dOhQrgc+jz76KB599FHMnTsX69evx7Bhw/D9999j9OjRlap3Op0OI0aMwO7du/HDDz+gS5culXkbRBZFqnqVlpaG7OxsfPjhh/jwww+LHQ8JCUGfPn249A/JktSfV0XWrVsHQRAwdOjQSpdB0mFXZKqwogXhR48ejeTk5GLHL1++jMWLFwMAnnrqKQDAokWLDM5ZsGABAKBnz54Vvn/RYvTp6enlvuapp57C0aNHERMTo9+Xk5ODFStWIDg4mGOVqFp69tlnodVqMXv27GLHNBqNvg6lpaUV6xXRokULANB377K3twdQsXr3yiuvYMOGDVi6dKl+ZkoiuZOqXnl7e2PTpk3FXl27doWtrS02bdqEqVOnVv6NEUlI6s8rACgsLMTGjRvRsWPHEofGkeVjiy1VWN26dbF+/XoMGjQIjRo1wogRI9CkSROo1WocOnQIGzduxAsvvAAAaN68OZ5//nmsWLEC6enp6NKlC44ePYqvvvoKffv2RdeuXSt8/xYtWkCpVGL+/PnIyMiAjY0NHnvssTK7X7399tv47rvv8OSTT+LVV1+Fu7s7vvrqK1y9ehU//fQTFIqKP+P55ptvcO3aNeTm5gIA/vzzT8yZMwcA8Nxzz7EVmCTXpUsXjBs3DlFRUTh9+jS6d+8Oa2trXLx4ERs3bsTixYsxcOBAfPXVV1i6dCn69euHunXrIisrCytXroSzs7P+4ZSdnR3CwsKwYcMG1K9fH+7u7mjSpEmpXYsXLVqEpUuXol27drC3t8e3335rcLxfv376h1REciJVvbK3t0ffvn2L7f/ll19w9OjREo8RyYWUn1dFdu3ahTt37nDSKDmTckpmkrd//vlHHDNmjBgcHCyqVCrRyclJ7NChg/jZZ5+J+fn5+vMKCwvFWbNmiSEhIaK1tbUYGBgoTp061eAcUby3VE/Pnj2L3adLly5ily5dDPatXLlSrFOnjqhUKg2W/imtDFEUxcuXL4sDBw4UXV1dRVtbW7FNmzbitm3bDM6pyHI/Xbp0EQGU+CppKSIiU3tw+YQiK1asEMPDw0U7OzvRyclJbNq0qfjmm2+Kt27dEkVRFE+ePCkOGTJEDAoKEm1sbERvb2+xV69e4vHjxw3KOXTokBgeHi6qVKqHLqXw/PPPl1o/AIhXr1415lsnMhlLqlcl4XI/JEeWWK8GDx4sWltbi3fu3DHKeyTzE0SxArPyEBEREREREVkYjrElIiIiIiIiWWNiS0RERERERLLGxJaIiIiIiIhkjYktERERERERyRoTWyIiIiIiIpI1JrZEREREREQka0xsiYiIiIiISNaY2BIREREREZGsMbElIiIiIiIiWWNiSxYpOTkZVlZWmDVrVrFjFy5cgCAI+Pzzz0u8trCwELNmzUK9evVga2sLDw8PdOzYEdHR0aYOm8iisV4RmQbrFpHxsV5RRTGxJYvk4+ODLl264Icffih2bMOGDVAqlXjmmWdKvHbmzJmYNWsWunbtis8//xzTpk1DUFAQTp48aeqwiSwa6xWRabBuERkf6xVVlCCKoih1EEQlWbFiBcaNG4czZ86gSZMm+v2NGzeGr68vdu/eXeJ1LVq0QK1atbBt2zZzhUokG6xXRKbBukVkfKxXVBFssSWL1b9/f1hZWWHDhg36fWfPnkVsbCwGDRpU6nWurq44d+4cLl68aI4wiWSF9YrINFi3iIyP9YoqgoktWSxPT088/vjjBl1QNmzYACsrK/Tv37/U695//32kp6ejfv36aNq0Kd544w38/fff5giZyOKxXhGZBusWkfGxXlFFMLElizZ48GD8888/OH36NADghx9+wOOPPw5PT89Sr+ncuTMuX76M1atXo0mTJvjyyy/RqlUrfPnll2aKmsiysV4RmQbrFpHxsV5ReXGMLVm09PR0+Pj4YMqUKRg0aBBatmyJNWvW4IUXXih3GdnZ2ejcuTNu376NGzdumC5YIplgvSIyDdYtIuNjvaLyspI6AKKyuLq6IjIyEj/88ANEUYRKpULfvn31xzMyMpCYmAg/Pz+4uLgAAO7cuQMPDw/9OY6OjggNDcX169fLvI6opmC9IjIN1i0i42O9ovJiV2SyeIMGDcKVK1ewdOlSREZGwtXVVX9s06ZNaNSoETZt2qTfFxYWhkGDBuHDDz/El19+iZdeegk//vgjhgwZUuZ1RDUJ6xWRabBuERkf6xWVB1tsyeL17t0bdnZ2yMrKKnMGvCKvvvoqtmzZgt9++w0FBQWoXbs25syZgzfeeMMM0RLJA+sVkWmwbhEZH+sVlQfH2BIREREREZGssSsyERERERERyRoTWyIiIiIiIpI1JrZEREREREQka0xsiYiIiIiISNaY2BIREREREZGsMbElIiIiIiIiWWNiS0RERERERLLGxJbMQhCEcr327dtX5Xvl5uZi5syZFSpr7ty56N27N3x8fCAIAmbOnFnlOIhMzZLr1a1btzB8+HA0aNAATk5OcHV1RZs2bfDVV1+By6eTJbPkejVz5swyYzp48GCVYyIyBUuuV0UuX76MoUOHwtvbG3Z2dqhXrx6mTZtW5XjIfKykDoBqhm+++cZg++uvv0Z0dHSx/Y0aNaryvXJzczFr1iwAQERERLmueffdd+Hr64uWLVti165dVY6ByBwsuV6lpqbixo0bGDhwIIKCglBYWIjo6Gi88MILuHDhAubNm1flmIhMwZLrVf/+/REaGlps/zvvvIPs7Gw88sgjVY6JyBQsuV4BwOnTpxEREYGAgAC8/vrr8PDwQEJCAq5fv17leMh8mNiSWQwfPtxg+/Dhw4iOji62XypXr15FcHAwUlNT4eXlJXU4ROViyfWqWbNmxZ6WT5w4EU8//TQ+/fRTzJ49G0qlUprgiMpg6fWqWbNmBvuuX7+OGzduYPTo0VCpVBJFRlQ2S65XOp0Ozz33HBo2bIi9e/fCzs5O6pCoktgVmSyGTqfDokWL0LhxY9ja2sLHxwfjxo1DWlqawXnHjx9HZGQkPD09YWdnh5CQEIwaNQoAEB8fr09MZ82ape/a8rCuxcHBwaZ4S0SSk7JelSQ4OBi5ublQq9VVfm9EUrGkevXdd99BFEUMGzbMKO+NSCpS1avffvsNZ8+exYwZM2BnZ4fc3FxotVqTvU8yHbbY3ufPP//ERx99hBMnTiAxMRGbNm1C3759y7xm3759mDJlCs6dO4fAwEC8++67eOGFF8wSb3Uzbtw4rF27FiNHjsSrr76Kq1ev4vPPP8epU6dw8OBBWFtb4/bt2+jevTu8vLzw9ttvw9XVFfHx8fj5558BAF5eXvjiiy/w8ssvo1+/fujfvz8AFHvCTVRTSF2v8vLykJOTg+zsbPzxxx9Ys2YN2rVrxyfiJGtS16v7rVu3DoGBgejcubPR3yeROUlVr37//XcAgI2NDVq3bo0TJ05ApVKhX79+WLp0Kdzd3U3/5sk4RNLbsWOHOG3aNPHnn38WAYibNm0q8/wrV66I9vb24pQpU8TY2Fjxs88+E5VKpbhz507zBCxjEyZMEO//8du/f78IQFy3bp3BeTt37jTYv2nTJhGAeOzYsVLLTklJEQGIM2bMqHBcVbmWSGqWWK+ioqJEAPrX448/LiYkJFSoDCIpWWK9KnL27FkRgPjmm29W6noiqVhSverdu7cIQPTw8BCHDRsm/vjjj+J7770nWllZie3btxd1Ol3F3yBJgl2R7/Pkk09izpw56NevX7nOX7ZsGUJCQvDJJ5+gUaNGmDhxIgYOHIiFCxeaONLqZ+PGjXBxccETTzyB1NRU/Ss8PByOjo7Yu3cvAMDV1RUAsG3bNhQWFkoYMZHls4R6NWTIEERHR2P9+vUYOnQogHutuERyZQn1qsi6desAgN2QSfakrFfZ2dkAgEceeQTffvstBgwYgPfffx+zZ8/GoUOHsHv3bqPch0yPiW0VxMTEoFu3bgb7IiMjERMTI1FE8nXx4kVkZGTA29sbXl5eBq/s7Gzcvn0bANClSxcMGDAAs2bNgqenJ/r06YM1a9agoKBA4ndAZHksoV7Vrl0b3bp1w5AhQ7Bu3TrUqVMH3bp1Y3JLsmUJ9QoARFHE+vXr0aRJEw63IdmTsl4VDY0ZMmSIwf6ih7GHDh2qdNlkXhxjWwVJSUnw8fEx2Ofj44PMzEzk5eWVOoasoKDAoAImJSXh66+/xoQJE+Dn52fSmC2VTqeDt7e3/unzg4omAhAEAT/++CMOHz6MrVu3YteuXRg1ahQ++eQTHD58GI6OjuYMm8iiWWK9GjhwIFauXIk///wTkZGRRiuXyFwspV4dPHgQ165dQ1RUVJXKIbIEUtYrf39/ACj2N723tzcAFJu8iiwXE1sJREVF6dfXul///v1rbGJbt25d/P777+jQoUO5JpV59NFH8eijj2Lu3LlYv349hg0bhu+//x6jR4+GIAhmiJjI8llivSpqqc3IyDBKeUTmZin1at26dRAEQd+qRCRnUtar8PBwrFy5Ejdv3jTYf+vWLQD/JdVk+dgVuQp8fX2RnJxssC85ORnOzs5lVsqpU6ciIyND//rjjz9MHarFe/bZZ6HVajF79uxixzQaDdLT0wHce2omiqLB8RYtWgCAvhXc3t4eAPTXENVUUtarlJSUEvevWrUKgiCgVatW5SqHyNJYwudVYWEhNm7ciI4dOyIoKKhib4DIAklZr/r06QMbGxusWbMGOp1Ov//LL78EADzxxBMVeSskIbbYVkG7du2wY8cOg33R0dFo165dmdfZ2NjAxsZGv83us/fGTIwbNw5RUVE4ffo0unfvDmtra1y8eBEbN27E4sWLMXDgQHz11VdYunQp+vXrh7p16yIrKwsrV66Es7MznnrqKQD3xkqEhYVhw4YNqF+/Ptzd3dGkSRM0adKk1Pt/8803uHbtGnJzcwHcW/ppzpw5AIDnnnsOtWvXNv03gcjIpKxXc+fOxcGDB9GjRw8EBQXh7t27+Omnn3Ds2DG88sorCA0NNee3gshopP68AoBdu3bhzp07nDSKqg0p65Wvry+mTZuG6dOno0ePHujbty/++usvrFy5EkOGDMEjjzxizm8FVYWkczJbmKysLPHUqVPiqVOnRADiggULxFOnTonXrl0TRVEU3377bfG5557Tn1+03M8bb7whxsXFiUuWLKnUcj8nTpwQAYgnTpww6vuxZA9O815kxYoVYnh4uGhnZyc6OTmJTZs2Fd98803x1q1boiiK4smTJ8UhQ4aIQUFBoo2Njejt7S326tVLPH78uEE5hw4dEsPDw0WVSlWuKd+7dOlisCTJ/a+9e/ca620TmZQl1avffvtN7NWrl+jv7y9aW1uLTk5OYocOHcQ1a9Zw6QSSFUuqV0UGDx4sWltbi3fu3DHKeyQyN0urVzqdTvzss8/E+vXri9bW1mJgYKD47rvvimq12mjvmUxPEMUH2vNrsH379qFr167F9j///PNYu3YtXnjhBcTHx2Pfvn0G10yePBmxsbGoVasW3nvvPbzwwgsVuu/JkycRHh6OEydOsHseERERERFRBTGxtQBMbImIiIiIiCqPk0cRERERERGRrDGxJSIiIiIiIlljYktERERkJiUtV0JERFXHxJaIiIjITNLT05GZmSl1GERE1Q4TWyIiIiIzSkhIkDoEIqJqh4ktmcyHH36Ihg0bQqfTmfxeubm5Ji1/8ODBePbZZ016D6LyMGe9MjXWK7IU5q5XSUlJJiub9YosCT+zyJwsMrFNTEzEX3/9hZycHKlDoUrKzMzE/Pnz8dZbb0GhuPdjJggCBEHAJ598Uuz8tWvXQhAEHD9+vFL3y8/PL/XYE088AUEQMHHixBKPr1q1Co0aNYKtrS3q1auHzz77rNg5b731Fn766Sf89ddflYqPyBjMXa/KwnpF1YUU9er27dsljrNlvaLqhJ9ZZG4Wldhu3rwZDRs2RK1atdCqVSscOXIEAJCamoqWLVvil19+kTZAKrfVq1dDo9FgyJAhxY599NFHRm9hVavVJe7/+eefERMTU+p1y5cvx+jRo9G4cWN89tlnaNeuHV599VXMnz/f4LyWLVuidevWJf4iJjIXc9er0rBeUXUiRb3KycnB9evXDfaxXlF1w88sMjvRQmzZskVUKBRihw4dxFmzZomCIIi7d+/WH+/Zs6fYu3dvCSM0nRMnTogAxBMnTkgditE0a9ZMHD58uME+AGKLFi1EAOInn3xicGzNmjUiAPHYsWOVut/ly5eL7cvLyxODg4PF999/XwQgTpgwweB4bm6u6OHhIfbs2dNg/7Bhw0QHBwfx7t27Bvs//vhj0cHBQczKyqpUjERVZe56VRLWK6puzF2vrly5Ii5fvlz8+uuvxdTUVFEUWa+oeuJnFpmbxbTYvv/+++jcuTMOHDiACRMmFDverl07nDp1SoLIqKKuXr2Kv//+G926dSt2rEOHDnjsscfw4YcfIi8vz2j3zM7OLrbvww8/hE6nw//+978Sr9m7dy/u3LmD8ePHG+yfMGECcnJysH37doP9TzzxBHJychAdHW20uInKS4p6VRLWK6pOpKxXeXl5+OWXX3Dy5EnMnz+f9YqqFX5mkRQsJrE9e/ZsmQOyfXx8cPv2bTNGRJV16NAhAECrVq1KPD5z5kwkJyfjiy++KLOcgoICpKamluuVmZlpMF4pISEBH3zwAebPnw87O7sSyy96UNK6dWuD/eHh4VAoFMUepISFhcHOzg4HDx4s+xtAZAJS1KsHsV5RdSN1vdJqtTh06BAuXbqE6dOnw9bWtsTyWa9IbqSuWwA/s2oii0ls7e3ty5ws6sqVK/Dw8DBjRFRZ58+fBwCEhISUeLxTp07o2rUrPvroozKf1H333Xfw8vIq10ur1RqsC/j666+jZcuWGDx4cKnlJyYmQqlUwtvb22C/SqWCh4cHbt26ZbDfysoKgYGBiI2Nfej3gMjYpKhXD2K9ourGEurVjRs39J9jW7duha+vb7FzWK9IbiyhbvEzq+axkjqAIl27dsVXX32FSZMmFTuWlJSElStXolevXuYPjCrszp07sLKygqOjY6nnzJw5E126dMGyZcswefLkEs+JjIysUFePpKQkuLi4YO/evfjpp5/0k4+VJi8vDyqVqsRjtra2Jf6idXNzK/GpIJGpSVWvirBeUXUkdb3KyspCWloaGjZsCODe51jv3r3h5OSEf/75ByEhIbC2tma9ItmRum7xM6tmspjEdu7cuXj00UfxyCOP4JlnnoEgCNi1axf27NmD5cuXQxRFzJgxQ+owyUg6d+6Mrl274sMPP8RLL71U4jl+fn7w8/MrV3l//PEHLl++jLp16+LVV1/Fc889h0ceeaTMa+zs7EqdTTk/P7/EbiuiKEIQhHLFRGRuxq5XRTQaDesV1VjGrldXr14FcO/nPiEhAR4eHnBwcDA4R6lUYt++fTh48CDq1q0LR0dH1iuqdviZRcZmMYltgwYNcODAAbz22mt47733IIoiPvroIwBAREQElixZguDgYGmDpHLx8PCARqNBVlYWnJycSj1vxowZiIiIwPLly+Hq6lrseF5eHjIyMsp93xs3bmDVqlW4cOECli9fjvj4eIPjWVlZiI+Ph7e3N+zt7eHn5wetVovbt28bdEFRq9W4c+cO/P39i90jLS0N9erVK3dMRMYiRb0q6hL59ddfs15RtSTV5xVwr0WroKAAtWvXLvaHtU6ng1qthk6nw/nz5+Hu7o5nn30W0dHRaNKkCby9vaFUKlmvyGLxM4ukYDFjbAGgcePG+P3335GamoojR44gJiYGycnJ2LNnDxo1aiR1eFRORV2qip5Kl6ZLly6IiIjA/PnzS+zqsWHDBv2Tuoe9iiQmJkKr1aJDhw4ICQnRv4B7v+hCQkLw22+/AQBatGgBAMUWAj9+/Dh0Op3+eBGNRoPr16/zZ5EkIWW9SkhIQGFhIesVVTtS1Kv27dtj7ty5UKvVEEURFy5cwJkzZ/Qv4F7Se+bMGf3cEfb29nBycsLp06exdetWfP3119ixYwe2bNkCLy8vNG/e3CAe1iuSGj+zSAoW02J7Pzc3t4d2HSDL1a5dOwD3fik0a9aszHNnzpyJiIgIrFixotixyoyrcHd3x7Jly4pNItCvXz889dRTGDNmDNq2bQsAeOyxx+Du7o4vvvgCTz31lP7cL774Avb29ujZs6dBGbGxscjPz0f79u0rFBORMUhZrwYPHlzswx1gvSL5M3e9GjJkCJKSkuDq6gp3d3fY29sXO+fy5ctwcXGBp6envouyk5MTlEolUlJS4OLigsLCQty4cQNXr15Fv379UFBQgF27diEwMBC1a9fG5cuXWa9IUvzMIilYTGL76aefYvv27di1a1eJx5988kn07t0bL7/8spkjo4qqU6cOmjRpgt9//x2jRo0q89wuXbqgS5cu+OOPP4odq+gYW+DeQH9RFFGvXj00btzY4JyQkBD07dtXv21nZ4fZs2djwoQJeOaZZxAZGYn9+/fj22+/xdy5c+Hu7m5wfXR0NOzt7fHEE0+UKyYiY5KiXhVp2LCh/un7g1ivSM7MXa9sbGz0X9va2pa6vI9KpTLolqlQKBAQEICEhARcuXIFzs7OyM7Oxt27dxEQEABRFHHt2jVcu3YNBw4cQEpKCtq3b49mzZpBq9VCqVQ+NDYiY+JnFknBYroir1q1CmFhYaUeDwsLK/FJDlmmUaNGYevWreVaeHvmzJlGv//BgwfLNRX7+PHjsWLFCpw5cwYTJkzAwYMHsXDhQkydOrXYuRs3bkT//v3LHCtCZEpS16vyYr0iOZFLvfLy8kLt2rWRm5uLhIQEZGdnIzAwsMTlge7cuYPOnTtjz549WLt2LbZu3Ypjx47h+vXrKCwslCB6qonkUrf4mVV9CKIoilIHAQCOjo5YsGABxo4dW+LxlStX4vXXXzdYq7S6OHnyJMLDw3HixIlSF7KWm4yMDNSpUwcffvghXnzxRZPf748//sCFCxeK7W/ZsiVat25d5dnrTp8+jVatWuHkyZMldm8hMgdz1ytTY70iS2DOelWrVi3cvHkTrq6umD9/vknukZubi7i4ODRq1KjErs4KhQJ+fn6oU6cO6tSpY9CKTGRM/Mwic7OYFluVSoWkpKRSjycmJkKhsJhw6SFcXFzw5ptv4qOPPoJOp5MsjlOnTmHHjh3Izs6uUjkffPABBg4cyF9kJClLqVfGwnpFlsBc9SohIQE5OTkAgIKCAty9e9ck90lKSoKbm1uJSS1wb8blmzdv6rtb/vbbb/jnn3+Qm5trknio5uJnFpmbxbTYPvXUUzh//jz++uuvYs37GRkZaNGiBRo0aICdO3dKFKHpVMcWW3MrrcW2iJWVFZo3b46mTZuWuhA3ERGRsR09ehSzZ8/G9u3bcf+fXIIgoGnTpujZs6fFLGfo6uoKf39/+Pv7IyAggK25RCQrFtMEOmPGDNy6dQstWrTAZ599hj179mDPnj349NNP0bJlSyQmJmLGjBlSh0kypdFocOLECaxfvx5HjhxBVlaW1CEREVE19/PPP6NDhw749ddf8WA7giiKOHv2LObPn4+TJ09KFKGh9PR0xMbG4vfff8fXX3+NrVu3IjY2tlxjJC3d3bt3MWzYMDg7O8PV1RUvvvhimb254uPjIQhCia+NGzfqz0tISEDPnj1hb28Pb29vvPHGG9BoNOZ4S0T0AItpsQXuzTQ2btw4/S8T4N4v/pCQEHzxxRfo3r27xBGaBltsq6Z169a4du0a7O3tMW3atHJdIwgCAgICUK9ePQQHB8Pa2trEURIRUU1y9OhRdOjQAVqttlhS+yCFQoG33nrLYlpuHyQIAry9vfWTVXl7e8PKymIW1tCLiIjACy+8gBdeeKHYsSeffBKJiYlYvnw5CgsLMXLkSDzyyCNYv359iWVptVqkpKQY7FuxYgU++ugjJCYmwtHREVqtFi1atICvr69+/4gRIzBmzBjMmzfPFG+RiMpgUb+VnnjiCVy6dAmnTp3C5cuXAQB169ZFq1atqjz5D1VfSUlJSE1NNVga4WFEUcSNGzdw48YNWFlZoXbt2qhbty4CAwO5LAIREVXZnDlzIIriQ5PaIjt27MD48eNNHFXliKKI5ORkJCcnA7iXiHt7e+sfEDs7O0scYdni4uKwc+dOHDt2DK1btwYAfPbZZ3jqqafw8ccfw9/fv9g1SqWy2IzTmzZtwrPPPgtHR0cAwG+//aZv4fbx8UGLFi0we/ZsvPXWW5g5cyaHPhGZmUUltsC9X5bh4eEIDw+XOhSqITQaDS5fvozLly/D2toaQUFBqFOnDgIDAy3yiTQREVm2hIQEbNu2rdxJrU6nw99//427d+8WWzfTEul0OiQlJSEpKQknT55E79694ePjI3VYpYqJiYGrq6s+qQWAbt26QaFQ4MiRI+jXr99Dyzhx4gROnz6NJUuWGJTbtGlTg/ceGRmJl19+GefOnUPLli2N+0aIqEwW91d7bGwsrly5grS0tBI/EEaMGCFBVFRTFBYWGiS5gYGBqFOnDoKCgpjkEhGZmUajgVarlTqMCtu5c2e5k9oioigiLi4O7du3N1FUpiGKIv7++29ERERY7LCepKQkeHt7G+yzsrKCu7t7mSty3G/VqlVo1KiRwf9PUlJSsYS+aLu85RKR8VjMX+qXL1/G8OHDcfTo0VI/DARBYGJLZlNYWIgrV67gypUrsLa2Ru3atREaGopatWpx6SkiIhPTaDSynbjo/PnzUCgUFVriRBAEZGZmynLZnbi4OLi5uaFFixZmfQg8b948g7GseXl5OHz4MCZOnKjfFxsbW+X75OXlYf369XjvvfeqXBYRmY7FJLbjxo3DmTNnsGjRInTq1Alubm5Sh0SkV1hYiEuXLuHSpUuwtbVFaGgoGjRoAA8PD6lDIyKqlrRaLfLy8mBtbS27sYpubm4VXrdTFEXY2dnJ5sFpUYunh4cHXF1dodVqodVqzZrYvvTSS3j22Wf128OGDcOAAQPQv39//T5/f3/4+vri9u3bBtdqNBrcvXu32Djakvz444/Izc0t1rji6+uLo0ePGuwrGodcnnKJyLgsJrE9ePAg3nnnHbzyyitSh0JUpvz8fJw9exZnz56Fp6cnGjVqhNDQUIvtgkVEJGcqlUp2iW2nTp0gCEKFuiMLgoAGDRpYfGLr4eGBoKAgeHh46CdbVKvVyMnJMXss7u7uBmOS7ezs4O3tjdDQUIPz2rVrh/T0dJw4cUI/h8uePXug0+nQtm3bh95n1apV6N27N7y8vIqVO3fuXNy+fVvf1Tk6OhrOzs4ICwur6tsjogqymN+enp6ecHFxkToMogpJTU3F/v37sW7dOhw6dAgZGRlSh0RERBLz9/dHREREuWfZVygUaNy4scVOHKVUKuHv74927dqhdevW8Pb2ltUKAo0aNUKPHj0wZswYHD16FAcPHsTEiRMxePBg/YzIN2/eRMOGDYu1wF66dAl//vknRo8eXazc7t27IywsDM899xz++usv7Nq1C++++y4mTJgAGxsbs7w3IvqPxSS2L730Er799ltZThJBpFarcfbsWfzwww/YtWsXJ40gIqrhxo8fD0EQyr1cYWRkpIkjqhilUomAgAC0bNkSXbt2RdOmTS1+WZ+yrFu3Dg0bNsTjjz+Op556Ch07dsSKFSv0xwsLC3HhwoViY5xXr16NWrVqoXv37sXKVCqV2LZtG5RKJdq1a4fhw4djxIgReP/9903+foioOEGs6LR9JrJx40Z88MEHKCgowKhRo0pdT/T+cRPVxcmTJxEeHo4TJ06gVatWUocjO7Vq1cLNmzfh6uqK+fPnSx2Ono+PD1q2bInAwECuw0xEVEEFBQU4ffo0HBwcZNcVuchvv/2GyZMnQxTFEh/cF3U7HjlyJJo3b27u8Epka2uLkJAQBAQElLtVtqgrcosWLdhSSUSSsZgxtoMGDdJ//b///a/EcwRBYIsuyUZycjJ27twJT09PtGzZEsHBwUxwiYhqkO7du+O7777D0qVLsW/fPoMxt4IgICwsDJGRkahdu7aEUd5LZt3d3eHj4wNPT0+LH+dLRFQSi0ls9+7dK3UIJEMJCQn6CSsKCgoscnH71NRUREdH65dCqFu3Lv9oICKqIZo1a4Zly5bh1q1b6NOnDzIzM2FnZ4e33npLss8rJycnuLm5wdXVFa6urrCzs5MkDiIiY7KYxLZLly5Sh0AycvToUcyePRvbt2/XPwHPy8vDO++8g6ZNm6Jnz54IDg6WNsgHpKWlYe/evTh27BiaNGmCBg0asMsWEVEN4e/vDzs7O2RmZkKlUpk1qVUqlfDy8oK3tzc8PDxk27WbiKgsFtdsVFBQgJiYGGzevBmpqalSh0MW6Oeff0aHDh3w66+/FltKQRRFnD17FvPnz8fJkyclirBs2dnZOHz4MNatW4f9+/fjzp07UodUaXfv3sWwYcPg7OwMV1dXvPjii8jOzi7zmoiICP2EKkWvl156SX987dq1xY4XvR5ch5CIiEpma2uLWrVqoVWrVujatSuaN28OPz8/JrVEVG1ZVGL76aefws/PDx07dkT//v3x999/A7jXldPT0xOrV6+WOEKS2tGjRzFo0CD9QvAl0el00Ol0WLlyJeLj480bYAVoNBrExcXhp59+wubNm3H58mXodDqpwyomIiICa9euLfHYsGHDcO7cOURHR2Pbtm34888/MXbs2IeWOWbMGCQmJupfH374of7YoEGDDI4lJiYiMjISXbp00a8TSERExTk6OiI0NBTt27dH586d0bhxY3h5eclqaR4iosqymK7Ia9aswaRJkzB48GB0794do0aN0h/z9PTEY489hu+//95gP9U8c+bMgSiK5V70fseOHRg/fryJo6q65ORkJCcnw8nJCeHh4ahXr57FTzQVFxeHnTt34tixY2jdujUA4LPPPsNTTz2Fjz/+WL82YEns7e3h6+tb4jE7OzuD8V4pKSnYs2cPVq1aZdw3QERUDSiVSvj5+SEwMFDWy/EQEVWVxbTYfvLJJ+jTpw/Wr1+Pp59+utjx8PBwnDt3ToLIyFIkJCRg27Zt5Z4ZW6fT4e+//8bdu3dNHJnxZGVlYd++ffj111+hVqulDqdMMTExcHV11Se1ANCtWzcoFAocOXKkzGvXrVsHT09PNGnSBFOnTi22buD9vv76a9jb22PgwIFGi52ISM6srKzg6+uL5s2bIyIiAo0bN2ZSS0Q1nsW02F66dAmvvvpqqcfd3d1lPRbRUmg0GtkumbRz585yt9QWEUURcXFxaN++vYmiMo3r16/jwIEDeOyxx6QOpVRJSUnFugZbWVnB3d0dSUlJpV43dOhQ1K5dG/7+/vj777/x1ltv4cKFC/j5559LPH/VqlUYOnQoZ+0kohrN1tYWPj4+8Pb2hqurK2fXJyJ6gMUktq6urmVOFhUbG1tq10UqH41Gg9jYWOTl5UkdSqWcP38eCoWiQuNQBUFAZmZmmS2ClurixYvo3LkzrKzMW03nzZuHefPm6bfz8vJw+PBhTJw4Ub8vNja20uXfPwa3adOm8PPzw+OPP47Lly+jbt26BufGxMQgLi4O33zzTaXvR0QkZ15eXggKCoKHh4fFD1EhIpKSxSS2Tz31FFasWFHieMhz585h5cqVHF9bRVqtFnl5ebC2tpblrIhubm4VnlxJFEXY2dnJ7sm2KIpwcnKCVqs1e2L70ksv4dlnn9VvDxs2DAMGDED//v31+/z9/eHr61tslmKNRoO7d+9W6CFU27ZtAdzrtfFgYvvll1+iRYsWCA8Pr8xbISKSJYVCAX9/fwQHB8PBwUHqcIiIZMFiEts5c+agbdu2aNKkCZ5++mkIgoCvvvoKq1evxk8//QQ/Pz9Mnz5d6jCrBZVKJcvEtlOnThAEoULdkQVBQIMGDWSX2Do5OaF27dqS3Nvd3d1gfUU7Ozt4e3sjNDTU4Lx27dohPT0dJ06c0Ceee/bsgU6n0yer5XH69GkAgJ+fn8H+7Oxs/PDDD4iKiqrkOyEikp9atWohNDSU65wTEVWQxfy17+/vjxMnTqBHjx7YsGEDRFHEN998g61bt2LIkCE4fPgwPD09pQ6TJOTv74+IiIhyL1ugUCjQuHFjgyTN0imVSoSGhqJVq1Zmb6mtqEaNGqFHjx4YM2YMjh49ioMHD2LixIkYPHiwfkbkmzdvomHDhjh69CgA4PLly5g9ezZOnDiB+Ph4bNmyBSNGjEDnzp3RrFkzg/I3bNgAjUaD4cOHm/29ERGZm7W1NcLDw9G4cWMmtURElWARfzkXFBRg165dCA4Oxpdffokvv/wSKSkp0Ol08PLykl1rG5nO+PHjsX///nK33EZGRpohqqqzsbFBrVq1EBQUBJVKZfEzIhdZt24dJk6ciMcffxwKhQIDBgzAp59+qj9eWFiICxcu6Mc4q1Qq/P7771i0aBFycnIQGBiIAQMG4N133y1W9qpVq9C/f3+4urqa6+0QEUnCyckJLVu25CR5RERVYBGJrUqlwjPPPIPFixfrW228vLwki2fJkiX46KOPkJSUhObNm+Ozzz5DmzZtSjx37dq1GDlypME+Gxsb5OfnmyPUGqdZs2ZYuHAhJk+eDFEUS5zhuehByMiRIyXrzlteXl5eCAgIsOgHOPv27Sv1mLu7O9avX1/q8eDgYIMHEIGBgfjjjz/Kdd9Dhw6VO0YiIrlycnJCmzZtLL6XDhGRpbOI36KCIKBevXplzopsLhs2bMCUKVOwbNkytG3bFosWLUJkZCQuXLhQbGmTIs7Ozrhw4YJ+m7MWmlb37t3x3XffYenSpdi3b59B4iQIAsLCwhAZGWmxSa2DgwMCAgLg7+/P7mZERDWYlZUVWrZsyaSWiMgILOY36TvvvIMpU6bgmWeeQYMGDSSLY8GCBRgzZoy+FXbZsmXYvn07Vq9ejbfffrvEawRB4FJEZtasWTMsW7YMt27dQp8+fZCZmQk7Ozu89dZbFjmm1srKCn5+fggICICzszMffhARERo2bMjux0RERmIxie3hw4fh4eGBJk2aICIiAsHBwcV+2QuCgMWLF5ssBrVajRMnTmDq1Kn6fQqFAt26dUNMTEyp12VnZ6N27drQ6XRo1aoV5s2bh8aNG5d6fkFBAQoKCgyup8rx9/eHnZ0dMjMzoVKpLCqpFQQBnp6e8Pf3h5eXV7knvSIiourPyclJP9EeERFVncUktp9//rn+6927d5d4jqkT29TUVGi1Wvj4+Bjs9/Hxwfnz50u8pkGDBli9ejWaNWuGjIwMfPzxx2jfvj3OnTuHWrVqlXhNVFQUZs2aZfT4yTK4uLjo13mV47JKRERkesHBwey9Q0RkRBaT2Op0OqlDqJR27dqhXbt2+u327dujUaNGWL58OWbPnl3iNVOnTsWUKVP026dPn0aXLl1MHiuZjp2dHfz9/eHv7w97e3upwyEiIgvk6ekJnU4HOzu7Yg/RiYioaiwmsbUEnp6eUCqVSE5ONtifnJxc7jG01tbWaNmyJS5dulTqOTY2NgaTBjk6OlYuYJKct7c3goKC4O7uzifvRERUpp9//hlJSUm4c+cOh6cQERmZxa0vcvjwYURFRWHy5Mm4ePEiACA3NxcnT540+VhUlUqF8PBwg67QOp0Ou3fvNmiVLYtWq8WZM2fg5+dnqjBJYoIgoFatWujUqRNatmwJDw8PJrVERFRuzs7OUodARFTtWEyLrVqtxuDBg7F582aIoghBEPD000+jXr16UCgU6N69OyZPnoxp06aZNI4pU6bg+eefR+vWrdGmTRssWrQIOTk5+lmSR4wYgYCAAERFRQEA3n//fTz66KMIDQ1Feno6PvroI1y7dg2jR482aZwkDX9/f9StW5fdjYmIqNI4EzIRkfFZTGL73nvvYdu2bfjiiy/QtWtXgyV/bG1t8cwzz2Dz5s0mT2wHDRqElJQUTJ8+HUlJSWjRogV27typHwuTkJAAheK/hu60tDSMGTMGSUlJcHNzQ3h4OA4dOoSwsDCTxknmIwgC/Pz8UKdOHTg4OEgdDhERyZi1tTXXMCciMgGLSWy/++47vPzyyxg7dizu3LlT7HijRo2wceNGs8QyceJETJw4scRj+/btM9heuHAhFi5caIaoyNxsbW0REBCAwMBA/hFCRERG4eHhIXUIRETVksUktrdv30bTpk1LPa5UKpGbm2vGiKim8vb2Rq1ateDp6cmxs0REREREMmAxiW1gYGCpa8UCwMGDBxEaGmrGiKgmsba2RmBgIAIDA2Frayt1OEQWobCwENbW1lKHQURERPRQFjMr8tChQ7F8+XLExMTo9xW1lq1cuRI//PADRowYIVV4VE1ZWVmhfv366Ny5M+rVq8eklug+arVa6hCIiIiIysViWmynTZuGw4cPo3PnzmjUqBEEQcDkyZNx9+5d3LhxA0899RQmT54sdZhUjfj5+aFhw4ZQqVRSh0JkkbjOJhEREcmFxbTYqlQq7Ny5E2vWrEGdOnXQsGFDFBQUoFmzZli7di22bt3KP7LIKBQKBZo1a4ZmzZoxqSUqgyiKUodAREREVC6StdhOmTIFzz33HFq2bAng3jI6Xl5eGD58OIYPHy5VWFTN2djYoFWrVnB2dpY6FCKLp1arud4mERERyYJkLbaLFi1CXFycfjskJASbNm2SKhyqAZycnPDoo48yqSUqp/z8fKlDICIiIioXyVpsfXx8cOXKFf02u7yRKfn4+KBp06bszk5UAUxsiYiISC4kS2x79uyJ999/H7/99htcXV0BAJ988gm+//77Uq8RBAGbN282U4RUXYSGhqJOnTpck5aoggoLC6UOgYiIiKhcJEtsFy9eDG9vb+zduxfnzp2DIAi4fv067t69W+o1TEyoIpRKJZo1awZvb2+pQyGSpdzcXOh0OigUFjPPIBEREVGJJEtsHRwcMG/ePP22QqHAokWLMHToUKlCompEpVIhPDyc42mJqkCr1SI1NZUPh4iIiMjiSfYYvn///ti/f79+e+/evXjiiSekCoeqESsrKzzyyCNMaomM4MKFC1KHQERERPRQkiW2mzdvRkJCgn77scceQ3R0tFThUDXSsmVLODo6Sh0GUbVw6dIljrUlIiIiiydZYhsQEIBTp07pt0VR5BhaqhRPT0+4u7vD2dkZQUFBcHd3lzokomqjsLAQiYmJUodBREREVCbJxtgOHjwYH3/8MX744Qf9rMhvv/02oqKiSr1GEAT89ddfZoqQ5OLnn3/G2bNnkZiYiLp160odDlG1k5iYiKCgIKnDICIiIipVhRLbkJCQCreqCoKAy5cvF9sfFRWF0NBQ7N27F7dv34YgCHBwcICHh0eFyicq4uPjA5VKJXUYRNXOjRs30LZtW6nDICIiIipVhRLbLl26FEtsjx8/jnPnziEsLAwNGjQAcG+ykdjYWDRp0gTh4eEllqVUKjF27FiMHTsWwL1Zkd99913OikyV5uXlJXUIRNXSnTt3kJycDB8fH6lDISIiIipRhRLbtWvXGmz/8ssv+OWXXxAdHY3HH3/c4Fh0dDSeffZZzJ49u1xlX716lYkJVUlRl3YiMr4DBw6gT58+sLKSbAQLERERUamqNHnU9OnT8corrxRLagHgiSeewMSJE/Huu++Wq6zatWvD3t6+KuFQDSYIAmxtbaUOg6jaunPnDqKjozlDMhEREVmkKiW2Fy9eLHNMrIeHR4nja4F7XY+trKygVqv120qlsswXWwqoNCqVirNqE5nY9evXsWnTJiQlJUkdChEREZGBKmWKdevWxZo1a/Diiy8WWzc0KysLq1evRp06dUq8dvr06RAEQZ+sFm0TVYZCIdnKVUQ1Snp6OrZs2YJ69eqhTZs2cHBwkDokIiIioqoltnPmzMHAgQPRsGFDvPDCCwgNDQVwryX3q6++QnJyMjZu3FjitTNnzixzm6gimNgSmdfFixdx9epVtGjRAs2aNWOPGiIiIpJUlf4S6du3L3bs2IG33noL8+bNMzjWokULrFq1CpGRkVUKkKg8+Ec1kflpNBocP34ccXFxaNWqFerXrw+lUil1WERERFQDVTkb6N69O7p3746kpCRcu3YNwL2JoHx9fctdRkFBAb799lv89ttvuHz5MrKysuDk5ITQ0FD06NEDQ4cO5fqkVCYmtkTG1bp1a1y/fh22traYNm1amefm5ORg//79OHXqFJo1a4aGDRuyThIREZFZGe0vD19f3wols0XOnDmDPn364Nq1axBFES4uLnB0dMTt27dx8uRJbNy4EXPnzsWWLVvQqFEjY4VL1QwffBAZV1JSEm7fvl2hZbSys7Nx6NAhnDp1Ck2aNEGjRo04WzkRERGZRZUHJiYkJOCll15CgwYN4O7ujj///BMAkJqaildffRWnTp0q9drs7Gz07t0bycnJmDt3Lq5fv460tDSDf+fMmYNbt27h6aefRk5OTlXDpWqKiS2R5cjLy8OxY8ewbt067N27F7du3YIoilKHRURERNVYlVpsY2Nj0alTJ+h0OrRt2xaXLl2CRqMBAHh6euLAgQPIycnBqlWrSrx+zZo1SEhIwO7duxEREVHseEBAAKZOnYq2bdviiSeewNq1azFhwoSqhEzVFLs9ElkerVaLixcv4uLFi7C3t0dISAiCg4Ph5+fHCd+IiIjIqKqUDbz55ptwdXXF4cOHIQgCvL29DY737NkTGzZsKPX67du3o3v37iUmtfd77LHH8MQTT2Dr1q1MbKlEnLCGyLLl5ubi3LlzOHfuHGxsbFCrVi0EBgaiVq1asLe3lzo8IiIikrkqJbZ//vknpk+fDi8vL9y5c6fY8aCgINy8ebPU68+cOYNXX321XPd67LHHsHjx4krHStUb10Amko+CggJcvnwZly9fBgC4urrCz88P/v7+8PPzY6JLREREFValxFan05X5B0hKSgpsbGxKPX737t1yTzjl4+ODu3fvVjhGqhmY2BLJV3p6OtLT0xEXFwcAcHNzQ61atRAcHAwfHx92WyYiIqKHqlJi26pVK2zfvh3jx48vdkyj0eD777/Ho48+Wur1BQUFsLa2Lte9rKysoFarKx0rVW8cY0tUfaSlpSEtLQ1nzpyBnZ0d6tWrh/r168Pd3V3q0IiIiMhCVSkbmDp1Knr16oWXX34ZgwcPBgAkJyfj999/x7x58xAXF4fPP/+8zDLi4+Nx8uTJh97r6tWrVQmViIjKKSEhQT8LfUFBAe7evStZUpmXl4e///4bf//9Nzw9PREaGoqQkBA4OTlJEg8RERFZJkGs4hoM33zzDV577TVkZGRAFEUIggBRFOHs7IwvvvgCQ4YMKfVahUJR7i6kRWVrtdqqhGuRTp48ifDwcJw4cQKtWrUy2X0KCgpw+vRpODg4cHkcC6dWq5GTk4MWLVqU2Z2fyJiOHj2K2bNnY/v27QbL8wiCgKZNm6Jnz54IDg6WLsD7eHl5ITg4GMHBwXB1da1WwxHu3r2LV155BVu3boVCocCAAQOwePFiODo6lnrNihUrsH79epw8eRJZWVlIS0srtgZxZcqVEj+z5IOfWURkCarcf/O5555D//79ER0djYsXL0Kn06Fu3bqIjIx86BP1NWvWVPX2RERkBD///DMGDRoEURSLrTkriiLOnj2Ls2fPYsyYMSZ9AFdeKSkpSElJwbFjx+Ds7IygoCDUqlULvr6+skiCIiIi8MILL+CFF14odmzYsGFITExEdHQ0CgsLMXLkSIwdOxbr168vtbzc3Fz06NEDPXr0wNSpU0s8pzLlEhERyUWlE9vc3FwEBgbi7bffxhtvvIG+fftWuIznn3++srcnIiIjOXr0KAYNGgStVlssqS2i0+kAACtXrsRbb71lMS23AJCZmalPvAVBgJeXFwICAhAQEAAfHx9ZLQcWFxeHnTt34tixY2jdujUA4LPPPsNTTz2Fjz/+GP7+/iVeN2nSJADAvn37jFouERGRXFR6qkl7e3tYWVnBwcHBmPEQEZGZzZkzp8SW2tLs2LHDxBFVniiKuH37Nk6dOoVt27bhm2++wf79+5GWliZ1aOUSExMDV1dXffIJAN26dYNCocCRI0csrlwiIiJLUaU1FAYMGIAff/yx3H8MERGRZUlISMC2bdvKPX+BTqfD33//LZvl19RqNeLi4vDjjz/i2LFj+pZnS5WUlARvb2+DfVZWVnB3d0dSUpLFlUtERGQpqjTGdvDgwRg/fjy6du2KMWPGIDg4GHZ2dsXOs4TxWEREpqLRaGQ7sd3OnTsr/HBSFEXExcWhffv2JorK+ERRxMmTJ5GUlITIyEizj8OdN28e5s2bp9/Oy8vD4cOHMXHiRP2+2NhYs8ZERERUnVQpsY2IiNB/vX///mLHq/NMxkREwL2kNjY2Fnl5eVKHUinnz5+HQqGoUEumIAjIzMxEbm6uCSMzjevXryMuLg6NGzc26/rXL730Ep599ln99rBhwzBgwAD0799fv8/f3x++vr64ffu2wbUajQZ3796Fr69vpe9vqnKJiIgsRZU+1TmrMRHVdFqtFnl5ebC2tpbFbLwPcnNzq3D3XFEUYWdnB4WiSqNZzM7Z2RkNGzZEfn4+tFqtWRNbd3d3g7WA7ezs4O3tjdDQUIPz2rVrh/T0dJw4cQLh4eEAgD179kCn06Ft27aVvr+pyiUiIrIUVfpU56zGRET3qFQqWSa2nTp10q8/Xl6CIKBBgwaySmzd3d3RsmVL6HQ65OTkSB1OqRo1aoQePXpgzJgxWLZsGQoLCzFx4kQMHjxYP3PxzZs38fjjj+Prr79GmzZtANwbQ5uUlIRLly4BAM6cOQMnJycEBQXB3d29XOUSERHJmfkeV5dTbGwsrly5grS0tBL/0BoxYoQEURERVU/+/v6IiIjAn3/+Wa5hIwqFAmFhYQatj5bMysoKdevWRe3atSEIAtRqtdQhPdS6deswceJEPP7441AoFBgwYAA+/fRT/fHCwkJcuHDBoCv4smXLMGvWLP12586dAdzrWVW0Vu7DyiUiIpKzCiW2o0aNgiAIWLFiBZRKJUaNGvXQawRBwKpVqx563uXLlzF8+HAcPXq01JYDQRCY2BIRGdn48eOxf//+crfcRkZGmiGqqgsKCkJoaCisra2lDqWY0tabBe61Lq9fv77U48HBwcX+n2bOnImZM2eWec+HlUtERCRnFUps9+zZo59kRKlUYs+ePRAEocxrHna8yLhx43DmzBksWrQInTp1gpubW0VCIyKiSmrWrBkWLlyIyZMnQxTFEltui7odjxw5ErVr1zZ3iOWmVCrh6+uLkJAQrrNORERUg1QosY2Pjy9zuyoOHjyId955B6+88orRyiQiovLp3r07vvvuOyxduhT79u0zaBEUBAFhYWGIjIy0yKTWwcEBnp6e8PDwgLu7O5RKpdQhERERkZlZzMwfnp6ecHFxkToMAMCSJUsQHBwMW1tbtG3bFkePHi3z/I0bN6Jhw4awtbVF06ZNsWPHDjNFSkRkPM2aNcOyZcuwZ88eODs7A7g3e++MGTMwduxYi0lq7ezsUKtWLTRr1gwRERHo2LEjGjZsCC8vLya1RERENZTFJLYvvfQSvv32W8nXvN2wYQOmTJmCGTNm4OTJk2jevDkiIyOLrf9X5NChQxgyZAhefPFFnDp1Cn379kXfvn1x9uxZM0dORGQc/v7+sLOzA3BvtmepJ4pSqVTw9fVFWFgYOnXqhM6dO6Nx48bw8/ODjY2NpLERERGRZajyrMi//vorFixYgJMnTyIjI6PEiUfKk6zWr18fWq0WzZs3x6hRoxAYGFjik/f7F7M3hQULFmDMmDEYOXIkgHszTW7fvh2rV6/G22+/Xez8xYsXo0ePHnjjjTcAALNnz0Z0dDQ+//xzLFu2zKSxEhFVR7a2tnBzc9O/HBwcyj1fAxEREdVMVUpsf/rpJzz77LNo3LgxBg8ejC+++AJDhw6FKIrYvHkz6tWrh759+5arrEGDBum//t///lfiOYIgmLRFV61W48SJE5g6dap+n0KhQLdu3RATE1PiNTExMZgyZYrBvsjISPzyyy+l3qegoAAFBQX67ezsbACARqNBYWFhFd5B2QoLC6HRaJCTk2PS+1DVqdVq/c+DnNYKrYmqa73S6XQAAFEUTf6+VCqVQSJrY2NjkMjev6xNVbFuyUd1rVvVEeuVvGg0Gsl7SFL5KJVKWFlZ1uqslrjSQJEqfaeioqLQpk0bHDhwAGlpafjiiy8watQoPPbYY4iPj8ejjz6KkJCQcpW1d+/eqoRiFKmpqdBqtfDx8THY7+Pjg/Pnz5d4TVJSUonnJyUllXqfqKgog/UGi7Rt27YSURMRmU5mZiZef/11qcMgIiIiC1CeZQGlUqXENjY2FlFRUQZPE4qeqgYHB2P8+PGYP39+udae7dKlS1VCkZWpU6catPKePn0aXbp0wZEjR9CyZUuT3ptP6eTDEp/SUcmqY71q0KABbt26BRcXF8ybN6/K5bm7u8Pf3x++vr7w9vaW9GebdUs+qmPdqq5Yr+ShoKAAf/31F6ysrKBSqaQOh8pQ1BOiefPmnE+inKr0G8je3l5fKVxdXWFjY4PExET9cR8fH1y9erXC5cbGxuLatWsAgNq1ayMsLKwqYZabp6cnlEolkpOTDfYnJyfD19e3xGt8fX0rdD4A2NjYGPyAOjo6AgCsrKxM3rxvyd0HiOSqOtaroq7AgiBU6o9VhUKBgIAA1KlTB0FBQfrJqIgqojrWLSIp6XQ6WFlZwcHBgYmthbO2tkZOTg6sra35u7CcqjQQokGDBoiNjdVvt2jRAt988w00Gg3y8/Oxfv16BAUFlbu8zZs3o27dumjatCl69eqFXr16oWnTpggNDcWWLVuqEmq5qFQqhIeHY/fu3fp9Op0Ou3fvRrt27Uq8pl27dgbnA0B0dHSp5xMRVWcuLi549NFHMWzYMDz55JNo0KABk1oiIiIyuSq12Pbv3x+ffvopPv74Y9jY2GDatGno06cPXF1dIQgCcnJysHr16nKVtWPHDgwYMAC1a9fGvHnz0KhRIwBAXFwcVqxYgf79+2Pbtm3o0aNHVUJ+qCn/b+++w6q41raB30PbbLp0NDTBRrBil4hdo8aGJqLGdlQSY405xlghaIgePdbXk2jyYglGowkaTSL2EjuWeCwhSEBUFFQERJC6vj/ysj93QKVtZjbev+va1+WsmVnzDOFh55lZs+bDDzFq1Ci0bNkSrVu3xooVK/DkyRPNLMkjR45EnTp1EB4eDgCYOnUqAgICsGzZMvTp0wdbt25FTEwM1q1bp9M4iYiUxN7eHi1atIC7uztnMCYiIqJqV6HC9unTp9i1axfy8/Mxd+5cpKWlwcXFBX379sWRI0fwww8/wNDQEH369EHnzp3L1GdYWBiaNGmC48ePw9zcXNPer18/TJo0Cf7+/ggNDdV5YfvOO+/g/v37mD9/Pu7du4dmzZph7969mgmikpKStGb8a9++PbZs2YK5c+di9uzZqFevHnbu3AlfX1+dxklEpATm5uZo06YNvLy8WNASERGRbMpd2KampqJ9+/ZISEiAEAKSJEGtVmPnzp3o1q0b3njjDbzxxhvlDuTy5cv47LPPtIraYubm5hg9ejRmz55d7n4rYtKkSZg0aVKp644cOVKibciQIRgyZIiOoyIiUg4DAwM0btwYLVq04LM/REREJLtyF7ZhYWFITEzE9OnT0aVLF9y4cQNhYWEIDg5GfHx8hQMxNTVFWlrac9enpaXB1NS0wv0TEVHVqFOnDvz9/WFtbS13KEREREQAKlDY7tu3DyNHjsTSpUs1bU5OThg2bBhiY2PRoEGDCgXSpUsXrFy5Er169Sox8dKZM2ewatUq9OjRo0J9ExFR5UmShDZt2qBx48YcdkxERESKUu7CNikpCR9//LFWm7+/P4QQSElJqXBhu2TJErRr1w7+/v5o3bq1pp/Y2FicPXsWjo6OWLx4cYX6JiKi8nF2dkZ+fr5mpIwkSejWrRs8PT1ljoyIiIiopHIXtrm5uSWGBBcvFxQUVDgQT09PXL58GeHh4fjll1+wbds2AH+9x3bq1KmYNWsWHB0dK9w/ERGVXUxMDC5evIhz584BANq2bcuiloiIiBSrQrMiJyYm4sKFC5rljIwMAEBcXBxsbGxKbN+iRYsy9evo6Ijly5dj+fLlFQmLiIh0wMnJiTO9ExERkaJVqLCdN28e5s2bV6J94sSJWsvFsyYXFhZWLDoiIpJdixYt+EwtERERKVq5C9uIiIgqOfDYsWMhSRLWrVsHQ0NDjB079qX7SJKEr7/+ukqOT0REL2dpaYnXXntN7jCIiIiIXqjche2oUaOq5MCHDh2CgYEBioqKYGhoiEOHDr30jgDvGBARVS8PDw/+7SUiIiLFq9BQ5KqQmJj4wmUiIpKfm5ub3CEQERERvZSB3AEUS0pKQk5OznPX5+TkICkpqRojIiJ6tRkYGMDJyUnuMIiIiIheSjGFraenJ6Kiop67/scff+SrJoiIqpGFhQWMjGQb2ENERFQmT58+lTsEUgDFFLZCiBeuz8/Ph4GBYsIlIqrxVCqV3CEQERG9VH5+PoqKiuQOg2Qm66X4zMxMpKena5YfPnxY6nDj9PR0bN26FS4uLtUYHRHRq83Q0FDuEIiIiF5KCIG8vDyYmprKHQrJSNbCdvny5fj0008B/DXj8bRp0zBt2rRStxVCYOHChdUYHRHRq42FLRER6Yvc3FwWtq84WQvbHj16wMLCAkIIzJw5E0FBQWjRooXWNpIkwdzcHH5+fmjZsqVMkRIRvXqMjY3lDoGIiKhMsrOzYW1tLXcYJCNZC9t27dqhXbt2AIAnT54gMDAQvr6+coZERET/x8TERO4QiIiIyiQjI4OPLb7iFDEbU3Z2NlatWoVffvlF7lCIiOj/mJubyx0CERFRmaSkpLx0Mlqq2RRR2JqZmcHIyIj/E0VEREREROX29OlT3L17V+4wSEaKKGwBIDAwEDt27OCVFiIiIiIiKrcbN26gsLBQ7jBIJrI+Y/usoUOHYuLEiejcuTPGjx8PDw8PqNXqEtv9fXIpIiIiIiKinJwcJCYmwsvLS+5QSAaKKWw7deqk+ffx48dLrBdCQJIkXoUhIiIiIqJSxcfHo1atWrC1tZU7FKpmiilsIyIi5A6BiIiIiIj0mBACFy5cQPPmzWFnZyd3OFSNFFPYjho1Su4QiIiIiIhIzxUWFiImJgZ169ZF3bp1YWhoKHdIVA0UU9g+KysrC7du3QIAuLq6wsLCQuaIiIiIiIhIn/z555+4e/cufHx8YG9vL3c4pGOKmRUZAM6dO4fOnTujVq1a8PX1ha+vL2rVqoUuXbogJiZG7vCIiIiIiEiP5OTk4Pz587hy5QoKCgrkDod0SDF3bM+cOYNOnTrBxMQE48aNQ6NGjQAA169fx7fffouOHTviyJEjaN26tcyREhERERGRPrlz5w7S0tLw+uuv89nbGkoxhe2cOXNQp04d/Prrr3B2dtZaFxISgg4dOmDOnDnYv3+/TBESEREREZGSDBo0CPfv34dKpcI///nPF26bk5ODmJgYODo6wsvLC1ZWVtUUJVUHxQxFPnPmDIKDg0sUtQDg5OSECRMm4PTp0zJERkRERERESvTgwQOkpqYiMzOzzPukpqbi1KlTOHPmDG7fvo38/HwdRkjVRTF3bA0MDF447r2wsBAGBoqpw4mIiIiISI+lp6cjPT0dV69eha2tLezt7WFnZwdLS0tIkiR3eFROiils27dvj//5n//BsGHD4O7urrUuKSkJa9euRYcOHWSKjoiIiIiIaqq0tDSkpaUBAIyNjWFraws7OzvY2dnBzMxM5uioLBRT2H722Wfo2LEjGjZsiIEDB6J+/foAgNjYWOzatQtGRkYIDw+XOUoiIiIiIqrJ8vPzkZKSgpSUFACAWq3WFLm2trYwMTGROUIqjWIK2+bNm+PMmTOYM2cOfvzxR2RnZwMAzMzM0KtXLyxcuBA+Pj4yR0lERERERK+SnJwc3L59G7dv3wYAmJubw9bWFrVq1YKtrS1UKpXMERKgoMIWAHx8fBAVFYWioiLcv38fAODg4MBna4mIiIiISBGePHmCJ0+e4NatWwD+KnTt7Ow0z+iydpGHogrbYpIkaR7Y5oPbRERERESkVMWFblJSEoyMjODk5AQXFxfY2tqylqlGirqccO3aNQwePBhWVlZwcXGBi4sLrKysMHjwYFy5ckXu8IiIiIiISCGSk5ORk5MDAMjLy9NM/iSngoIC3LlzBzExMTh69CiuX7+O9PR0CCHkDq3GU0xhe/z4cbRu3Ro///wz+vbti7lz52Lu3Lno06cPfv75Z7Rp0wbHjx+XO0wiIiIiIpLR5cuXERwcjC5dumjeX5uTk4PQ0FCsW7cON2/elDnCv+Tm5iIpKQlnzpzB8ePHER8fj6dPn8odVqUIITB//ny4uLhArVajW7duiIuLK/P+n3/+OSRJwrRp0zRtaWlpmDx5Mho0aAC1Wg03NzdMmTIFGRkZ5YpNMUORp0+fDkdHRxw9ehSurq5a627duoWOHTviww8/xLlz52SKkIiIiIiI5LRv3z5Mnz4dQogSd0GFELh27RquXbuGMWPGoGnTpjJFWVJOTg5u3LiB+Ph4ODs7w9XVFTY2Nno3VHnJkiVYtWoVNm7cCE9PT8ybNw89e/bEtWvXYGpq+sJ9z507hy+//BJNmjTRak9OTkZycjKWLl0KHx8f3Lx5E++99x6Sk5OxY8eOMsemmDu2V69excSJE0sUtQDg6uqK999/H1evXpUhMiIiIiIiktvly5cxffp0FBYWorCwsNRtioqKUFRUhIiICMXcuX2WEAJ3797F2bNn8euvvyI+Pl7zNhilE0JgxYoVmDt3Lvr3748mTZpg06ZNSE5Oxs6dO1+4b1ZWFoYPH47169ejVq1aWut8fX3x/fff46233oKXlxe6dOmCRYsWYffu3SgoKChzfIopbN3d3ZGbm/vc9Xl5eaUWvUREREREVPOtXbu21Du1zxMdHa3jiConOzsbN27cwPHjxxETE4MHDx4o+lnchIQE3Lt3D926ddO0WVtbo02bNjh16tQL9/3ggw/Qp08frX1fJCMjA1ZWVjAyKvsAY8UMRZ4/fz6mT5+OPn36oFmzZlrrLl68iNWrV2PFihWyxEZERERERPJJTk7GkSNHylz4FRUV4erVq0hLS4Otra2Oo6u8hw8f4uHDh7C2tka9evVgYWEhd0gl3Lt3DwDg5OSk1e7k5KRZV5qtW7fiwoULZX6k9MGDBwgLC8OECRPKFZ9iCtvTp0/DyckJfn5+aN++Pby9vQEAcXFxOHXqFHx9fXHq1CmtqwGSJGHlypVyhUxEREREpHfy8vLkDqHcjh8/Xu67mUIIxMbGok2bNjqKquo9evQIZ8+ehbW1Nby8vGSNJTIyEsHBwZrln376qdx93Lp1C1OnTsX+/ftf+gwuAGRmZqJPnz7w8fFBSEhIuY6lmMJ2zZo1mn+fOHECJ06c0Fr/3//+F//973+12ljYEhERERGVjaGhIdRqNXJycpCfny93OOXy6NEjGBgYoKioqMz7SJKEnJyccu2jFJmZmZAkCYaGhrLF0K9fP62LAsWPjaakpMDFxUXTnpKSUmLEbbHz588jNTUVLVq00LQVFhbi2LFjWLNmDXJzczXn+PjxY/Tq1QuWlpaIioqCsbFxueJVTGGrj79wRERERET6wsjICD4+Ps+deEnJfvvtt3LXC0IIWFlZwczMTEdRVT1JklC/fn00adKk3M+YVjVLS0tYWlpqloUQcHZ2xsGDBzWFbGZmJs6cOYP333+/1D66du1a4ubkmDFj0LBhQ3z88ceaojYzMxM9e/aESqXCjz/+WKa7u3+nmMKWiIiIiIh0y8jISNZiqaJ69eoFSZLKNRxZkiQ0atRIL16pY2BggPr166NZs2awsrKSO5xSFb9/duHChahXr57mdT+1a9fGgAEDNNt17doVAwcOxKRJk2BpaQlfX1+tfszNzWFnZ6dpz8zMRI8ePZCdnY1vvvkGmZmZmvcTOzg4lPmuteJ+qxMSEvDLL79opud2d3fHm2++CU9PT5kjIyIiIiIiObi5uaFv3774+eefy3TH2cDAAI0bN1b8xFEODg7w9vaGt7c31Gq13OG81MyZM/HkyRNMmDAB6enp8Pf3x969e7XusMbHx+PBgwdl7vPChQs4c+YMAGjmWSqWkJAADw+PMvUjCQXNKT1jxgysXLmyxDADAwMDTJs2DUuXLtXp8dPS0jB58mTs3r0bBgYGCAwMxMqVK184K1mnTp1w9OhRrbbg4GB88cUXZT7uhQsX4Ofnh/Pnz2uNPyciIiIior+cO3cO7du3R2Fh4Uvv3BoYGODjjz8uc1FUnaysrFCvXj14e3vD2tpa7nBqDMXcsV22bBmWL1+OwYMHY8aMGWjUqBEA4Pr161i+fDmWL1+OOnXqYPr06TqLYfjw4bh79y7279+P/Px8jBkzBhMmTMCWLVteuN/48ePx6aefapb1aRw/EREREZE+aNWqFbZt24Z33nkHQohS79waGBgAACZMmKCootbc3Bzu7u7w9vaGk5OTXgyP1jeKuWPbsGFDNGzYEDt37ix1/YABA/D777/j999/18nxr1+/Dh8fH5w7dw4tW7YEAOzduxe9e/fG7du3Ubt27VL369SpE5o1a1apd+zyji0RERERUdmcO3cOYWFh2LNnj9adW0mS0KRJE/Tu3Vv2otbY2BjOzs6oU6cO6tSpA1tbWxazOqaYO7aJiYmYOnXqc9f37NkTe/fu1dnxT506BRsbG01RCwDdunWDgYEBzpw5g4EDBz5338jISHzzzTdwdnbGW2+9hXnz5r3wrm1ubq5mumwAyMrKqpqTICIiIiKq4Vq1aoUff/wRSUlJaNq0KdLT06FWqzF//nzZnqmVJAmOjo5wdXVFnTp14ODgoLl7TNVDMYWto6Mjfvvtt+eu/+233+Dg4KCz49+7dw+Ojo5abUZGRrC1tcW9e/eeu9+wYcPg7u6O2rVr4/Lly/j4448RGxuLH3744bn7hIeHIzQ0tMpiJyIiIiJ61bi5ucHc3Bzp6elQqVTVXtQaGBigTp068PT0hLu7u15M/lSTKaawHTJkCFauXAkPDw9MnjwZ5ubmAIAnT55gzZo1+OqrrzBt2rRy9ztr1iwsXrz4hdtcv369IiED+Gv8frHGjRvDxcUFXbt2RXx8PLy8vErd55NPPsGHH36oWb506RICAgIqHAMREREREemeJEmoXbs2vL294eHhAZVKJXdI9H8UU9iGhYXh0qVLmD17NubPn695pjU5ORkFBQXo3Lmz1gRNZTVjxgyMHj36hdvUrVsXzs7OSE1N1WovKChAWloanJ2dy3y8Nm3aAABu3Ljx3MJWpVJpJcGLZl0mIiIiIiJ5qdVqzZxAlpaWcodDpVBMYWtmZoaDBw9i165dWu+x7dWrF3r37o233nqrQg9cOzg4lGkIc7t27ZCeno7z58/Dz88PAHDo0CEUFRVpitWyuHTpEgDAxcWl3LESEREREZEyFA81btCgAdzd3WFoaCh3SPQCiihss7OzMWLECAQGBmL48OHo379/tcfQqFEj9OrVC+PHj8cXX3yB/Px8TJo0CUOHDtXcPb5z5w66du2KTZs2oXXr1oiPj8eWLVvQu3dv2NnZ4fLly5g+fTo6duyIJk2aVPs5EBERERFRxRkYGKB27drw9PSEp6cnTE1N5Q6JykgRha2ZmRkOHDiAN998U9Y4IiMjMWnSJHTt2hUGBgYIDAzEqlWrNOvz8/MRGxuL7OxsAICJiQkOHDiAFStW4MmTJ3B1dUVgYCDmzp0r1ykQEREREVE5OTs7w9vbG3Xr1mUxq6cUUdgCgL+/P06dOoXx48fLFoOtrS22bNny3PUeHh5a78pydXXF0aNHqyM0IiIiIiKqQtbW1qhXrx68vb1hZWUldzhUSYopbNesWYOePXti7ty5eO+99/Daa6/JHRIREREREdUgKpUK3t7eqF+/Puzt7Ss0hw8pk2IK26ZNm6KgoADh4eEIDw+HkZFRiemzJUlCRkaGTBESEREREZE+Mjc3R/PmzVG/fn0YGSmmBKIqpJj/qoGBgbxiQkREREREVcrHxwdt2rSBsbGx3KGQDimmsN2wYYPcIRARERERUQ3Svn17+Pr6yh0GVQPZC9unT59i165dSEhIgL29Pfr06cN3wBIRERERUaW0bNmSRe0rRNbCNjU1Fe3bt0dCQoJmtmEzMzPs3LkT3bp1kzM0IiIiIiJSOGdnZxQVFZUYZtyyZUs0b95cpqhIDrIWtmFhYUhMTMT06dPRpUsX3LhxA2FhYQgODkZ8fLycoRERERERkcLFxMTg4cOH+P777zVt/v7+8PHxkTEqkoOshe2+ffswcuRILF26VNPm5OSEYcOGITY2Fg0aNJAxOiIiIiIi0ietW7dmUfuKMpDz4ElJSfD399dq8/f3hxACKSkpMkVFRERERET6xtnZGU2bNpU7DJKJrIVtbm4uTE1NtdqKlwsKCuQIiYiIiIiI9JCfnx9fH/oKk31W5MTERFy4cEGznJGRAQCIi4uDjY1Nie1btGhRXaEREREREZEeUKvVqF27ttxhkIwkUTwdsQwMDAxKvaoihCjRXtxWWFhYXeFVmwsXLsDPzw/nz59n4U5EREREVA4PHz7EhQsX0L17d7lDIRnJesc2IiJCzsMTEREREVENYGtrK3cIJDNZC9tRo0bJeXgiIiIiIqoBSnuEkV4tsk4eRUREREREVFm1atWSOwSSGQtbIiIiIiLSa9bW1nKHQDKTfVZkIiIiIiKiirK1teVrfoh3bImIiIiISH+xqCWAhS0RERERERHpORa2REREREREpNdY2BIREREREZFeY2FLREREREREeo2FLREREREREek1FrZERERERESk1/geWyIiIqJqcvfuXdy9e1fuMIhqFBcXF7i4uMgdBsmMha0CuLi4YMGCBUzICsrNzUV4eDg++eQTqFQqucMhqhGYV0RVLzc3F0FBQTh69KjcoRDVKAEBAYiOjub31StOEkIIuYMgqozMzExYW1sjIyMDVlZWcodDVCMwr4iqXnFeHT16FBYWFnKHQ1QjZGVlISAggN9XxDu2RERERNWpWbNm/B9woiqSmZkpdwikEJw8ioiIiIiIiPQaC1siIiIiIiLSayxsSe+pVCosWLCAEwYQVSHmFVHVY14RVT3mFRXj5FFERERERESk13jHloiIiIiIiPQaC1siIiIiIiLSayxsiYiIiIiISK+xsCUiIiIiIiK9xsKWqoUkSWX6HDlypNLHys7ORkhISLn6WrRoEfr16wcnJydIkoSQkJBKx0Gka0rOq+TkZIwYMQINGjSApaUlbGxs0Lp1a2zcuBGcs5CUTMl5FRIS8sKYTpw4UemYiHRByXlVLD4+HsOGDYOjoyPUajXq1auHOXPmVDoeqj5GcgdAr4bNmzdrLW/atAn79+8v0d6oUaNKHys7OxuhoaEAgE6dOpVpn7lz58LZ2RnNmzdHdHR0pWMgqg5KzqsHDx7g9u3bGDx4MNzc3JCfn4/9+/dj9OjRiI2NxWeffVbpmIh0Qcl5NWjQIHh7e5donz17NrKystCqVatKx0SkC0rOKwC4dOkSOnXqhDp16mDGjBmws7NDUlISbt26Vel4qPqwsKVqMWLECK3l06dPY//+/SXa5ZKQkAAPDw88ePAADg4OcodDVCZKzqsmTZqUuFo+adIkvPXWW1i1ahXCwsJgaGgoT3BEL6D0vGrSpIlW261bt3D79m2MGzcOJiYmMkVG9GJKzquioiK8++67aNiwIQ4fPgy1Wi13SFRBHIpMilFUVIQVK1bg9ddfh6mpKZycnBAcHIxHjx5pbRcTE4OePXvC3t4earUanp6eGDt2LAAgMTFRU5iGhoZqhra8bGixh4eHLk6JSHZy5lVpPDw8kJ2djby8vEqfG5FclJRX3377LYQQGD58eJWcG5Fc5Mqrffv24cqVK1iwYAHUajWys7NRWFios/Mk3eEdW1KM4OBgbNiwAWPGjMGUKVOQkJCANWvW4OLFizhx4gSMjY2RmpqKHj16wMHBAbNmzYKNjQ0SExPxww8/AAAcHBzwn//8B++//z4GDhyIQYMGAUCJK9xErwq58yonJwdPnjxBVlYWjh49ioiICLRr145XxEmvyZ1Xz4qMjISrqys6duxY5edJVJ3kyqsDBw4AAFQqFVq2bInz58/DxMQEAwcOxNq1a2Fra6v7k6eqIYhk8MEHH4hnf/2OHz8uAIjIyEit7fbu3avVHhUVJQCIc+fOPbfv+/fvCwBiwYIF5Y6rMvsSyU2JeRUeHi4AaD5du3YVSUlJ5eqDSE5KzKtiV65cEQDEzJkzK7Q/kVyUlFf9+vUTAISdnZ0YPny42LFjh5g3b54wMjIS7du3F0VFReU/QZIFhyKTImzfvh3W1tbo3r07Hjx4oPn4+fnBwsIChw8fBgDY2NgAAPbs2YP8/HwZIyZSPiXkVVBQEPbv348tW7Zg2LBhAP66i0ukr5SQV8UiIyMBgMOQSe/JmVdZWVkAgFatWuGbb75BYGAgPv30U4SFheHkyZM4ePBglRyHdI+FLSlCXFwcMjIy4OjoCAcHB61PVlYWUlNTAQABAQEIDAxEaGgo7O3t0b9/f0RERCA3N1fmMyBSHiXklbu7O7p164agoCBERkaibt266NatG4tb0ltKyCsAEEJgy5Yt8PX15eM2pPfkzKviR2OCgoK02osvxp48ebLCfVP14jO2pAhFRUVwdHTUXH3+u+KJACRJwo4dO3D69Gns3r0b0dHRGDt2LJYtW4bTp0/DwsKiOsMmUjQl5tXgwYOxfv16HDt2DD179qyyfomqi1Ly6sSJE7h58ybCw8Mr1Q+REsiZV7Vr1wYAODk5abU7OjoCQInJq0i5WNiSInh5eeHAgQPo0KFDmSaVadu2Ldq2bYtFixZhy5YtGD58OLZu3Ypx48ZBkqRqiJhI+ZSYV8V3ajMyMqqkP6LqppS8ioyMhCRJmrtKRPpMzrzy8/PD+vXrcefOHa325ORkAP+/qCbl41BkUoS3334bhYWFCAsLK7GuoKAA6enpAP66aiaE0FrfrFkzANAMQzEzMwMAzT5Eryo58+r+/fultn/99deQJAktWrQoUz9ESqOE76v8/Hxs374d/v7+cHNzK98JECmQnHnVv39/qFQqREREoKioSNP+1VdfAQC6d+9enlMhGfGOLSlCQEAAgoODER4ejkuXLqFHjx4wNjZGXFwctm/fjpUrV2Lw4MHYuHEj1q5di4EDB8LLywuPHz/G+vXrYWVlhd69ewP461kJHx8fbNu2DfXr14etrS18fX3h6+v73ONv3rwZN2/eRHZ2NgDg2LFjWLhwIQDg3Xffhbu7u+5/CERVTM68WrRoEU6cOIFevXrBzc0NaWlp+P7773Hu3DlMnjwZ3t7e1fmjIKoycn9fAUB0dDQePnzISaOoxpAzr5ydnTFnzhzMnz8fvXr1woABA/Dbb79h/fr1CAoKQqtWrarzR0GVIeuczPTK+vs078XWrVsn/Pz8hFqtFpaWlqJx48Zi5syZIjk5WQghxIULF0RQUJBwc3MTKpVKODo6ir59+4qYmBitfk6ePCn8/PyEiYlJmaZ8DwgI0HolybOfw4cPV9VpE+mUkvJq3759om/fvqJ27drC2NhYWFpaig4dOoiIiAi+OoH0ipLyqtjQoUOFsbGxePjwYZWcI1F1U1peFRUVidWrV4v69esLY2Nj4erqKubOnSvy8vKq7JxJ9yQh/nY/n4iIiIiIiEiP8BlbIiIiIiIi0mssbImIiIiIiEivsbAlIiIiIiIivcbCloiIiIiIiPQaC1siIiIiIiLSayxsiYiIiIiISK+xsCXFS0xMhCRJ2LBhg9yhENUYzCuiqse8ItIN5haVBQtbIiIiIiIi0muSEELIHQTRiwghkJubC2NjYxgaGsodDlGNwLwiqnrMKyLdYG5RWbCwJSIiIiIiIr3GochULUJCQiBJEv744w+MGDEC1tbWcHBwwLx58yCEwK1bt9C/f39YWVnB2dkZy5Yt0+xb2nMVo0ePhoWFBe7cuYMBAwbAwsICDg4O+Oijj1BYWKjZ7siRI5AkCUeOHNGKp7Q+7927hzFjxuC1116DSqWCi4sL+vfvj8TERB39VIgqh3lFVPWYV0S6wdwiXWNhS9XqnXfeQVFRET7//HO0adMGCxcuxIoVK9C9e3fUqVMHixcvhre3Nz766CMcO3bshX0VFhaiZ8+esLOzw9KlSxEQEIBly5Zh3bp1FYotMDAQUVFRGDNmDNauXYspU6bg8ePHSEpKqlB/RNWFeUVU9ZhXRLrB3CKdEUTVYMGCBQKAmDBhgqatoKBAvPbaa0KSJPH5559r2h89eiTUarUYNWqUEEKIhIQEAUBERERothk1apQAID799FOt4zRv3lz4+flplg8fPiwAiMOHD2tt9/c+Hz16JACIf/3rX1VzwkTVgHlFVPWYV0S6wdwiXeMdW6pW48aN0/zb0NAQLVu2hBAC//jHPzTtNjY2aNCgAf7888+X9vfee+9pLb/xxhtl2u/v1Go1TExMcOTIETx69Kjc+xPJiXlFVPWYV0S6wdwiXWFhS9XKzc1Na9na2hqmpqawt7cv0f6yPyqmpqZwcHDQaqtVq1aF/hipVCosXrwYv/zyC5ycnNCxY0csWbIE9+7dK3dfRNWNeUVU9ZhXRLrB3CJdYWFL1aq0KdqfN227eMmE3WWZ7l2SpFLbn51UoNi0adPwxx9/IDw8HKamppg3bx4aNWqEixcvvvQ4RHJiXhFVPeYVkW4wt0hXWNhSjVarVi0AQHp6ulb7zZs3S93ey8sLM2bMwL59+3DlyhXk5eVpzcpHRMwrIl1gXhHpBnPr1cHClmo0d3d3GBoalphVb+3atVrL2dnZePr0qVabl5cXLC0tkZubq/M4ifQJ84qo6jGviHSDufXqMJI7ACJdsra2xpAhQ7B69WpIkgQvLy/s2bMHqampWtv98ccf6Nq1K95++234+PjAyMgIUVFRSElJwdChQ2WKnkiZmFdEVY95RaQbzK1XBwtbqvFWr16N/Px8fPHFF1CpVHj77bfxr3/9C76+vpptXF1dERQUhIMHD2Lz5s0wMjJCw4YN8d133yEwMFDG6ImUiXlFVPWYV0S6wdx6NUjiZU9lExERERERESkYn7ElIiIiIiIivcbCloiIiIiIiPQaC1siIiIiIiLSayxsiYiIiIiISK+xsCUiIiIiIiK9xsKW6BmJiYmQJAkbNmyQOxQiIiIiIiojFrZUYfHx8QgODkbdunVhamoKKysrdOjQAStXrkROTo7Ojnvt2jWEhIQgMTFRZ8coi0WLFqFfv35wcnKCJEkICQmRNR569UiSVKbPkSNHKn2s7OxshISElLmv33//HTNnzkSzZs1gaWkJFxcX9OnTBzExMZWOhUiXlJxXfxcZGQlJkmBhYVHpWIh0Scl5FRIS8sKYTpw4UemYqHoYyR0A6aeffvoJQ4YMgUqlwsiRI+Hr64u8vDz8+uuv+Oc//4mrV69i3bp1Ojn2tWvXEBoaik6dOsHDw0MnxyiLuXPnwtnZGc2bN0d0dLRscdCra/PmzVrLmzZtwv79+0u0N2rUqNLHys7ORmhoKACgU6dOL93+q6++wtdff43AwEBMnDgRGRkZ+PLLL9G2bVvs3bsX3bp1q3RMRLqg5Lx6VlZWFmbOnAlzc/NKx0Gka0rOq0GDBsHb27tE++zZs5GVlYVWrVpVOiaqHixsqdwSEhIwdOhQuLu749ChQ3BxcdGs++CDD3Djxg389NNPMkb4/wkh8PTpU6jV6irvOyEhAR4eHnjw4AEcHByqvH+ilxkxYoTW8unTp7F///4S7XIICgpCSEiI1p2ksWPHolGjRggJCWFhS4ql5Lx61sKFC2FpaYnOnTtj586dcodD9EJKzqsmTZqgSZMmWm23bt3C7du3MW7cOJiYmMgUGZUXhyJTuS1ZsgRZWVn4+uuvtYraYt7e3pg6dapmuaCgAGFhYfDy8oJKpYKHhwdmz56N3Nxcrf08PDzQt29f/Prrr2jdujVMTU1Rt25dbNq0SbPNhg0bMGTIEABA586dSwxdKe4jOjoaLVu2hFqtxpdffgkA+PPPPzFkyBDY2trCzMwMbdu2rVQBLufdYqKyKioqwooVK/D666/D1NQUTk5OCA4OxqNHj7S2i4mJQc+ePWFvbw+1Wg1PT0+MHTsWwF/PnhdfvAkNDdXk3YuG3/v5+ZUYHmlnZ4c33ngD169fr9qTJKpmcuVVsbi4OCxfvhz//ve/YWTEexRUM8idV8/69ttvIYTA8OHDq+TcqHrwryGV2+7du1G3bl20b9++TNuPGzcOGzduxODBgzFjxgycOXMG4eHhuH79OqKiorS2vXHjBgYPHox//OMfGDVqFP73f/8Xo0ePhp+fH15//XV07NgRU6ZMwapVqzB79mzNkJVnh67ExsYiKCgIwcHBGD9+PBo0aICUlBS0b98e2dnZmDJlCuzs7LBx40b069cPO3bswMCBA6vuB0SkIMHBwdiwYQPGjBmDKVOmICEhAWvWrMHFixdx4sQJGBsbIzU1FT169ICDgwNmzZoFGxsbJCYm4ocffgAAODg44D//+Q/ef/99DBw4EIMGDQKAEle4y+LevXuwt7ev0nMkqm5y59W0adPQuXNn9O7dG999951Oz5WousidV8+KjIyEq6srOnbsWOXnSTokiMohIyNDABD9+/cv0/aXLl0SAMS4ceO02j/66CMBQBw6dEjT5u7uLgCIY8eOadpSU1OFSqUSM2bM0LRt375dABCHDx8ucbziPvbu3avVPm3aNAFAHD9+XNP2+PFj4enpKTw8PERhYaEQQoiEhAQBQERERJTp/IQQ4v79+wKAWLBgQZn3IdKFDz74QDz7Z/348eMCgIiMjNTabu/evVrtUVFRAoA4d+7cc/uuit/zY8eOCUmSxLx58yrcB1F1U1pe7dmzRxgZGYmrV68KIYQYNWqUMDc3L8cZEclPaXn1rCtXrggAYubMmRXan+TDochULpmZmQAAS0vLMm3/888/AwA+/PBDrfYZM2YAQImhwD4+PnjjjTc0yw4ODmjQoAH+/PPPMsfo6emJnj17loijdevW8Pf317RZWFhgwoQJSExMxLVr18rcP5G+2L59O6ytrdG9e3c8ePBA8ykeJnz48GEAgI2NDQBgz549yM/P10ksqampGDZsGDw9PTFz5kydHIOoOsiZV3l5eZg+fTree+89+Pj4VEmfREqgpO+ryMhIAOAwZD3EwpbKxcrKCgDw+PHjMm1/8+ZNGBgYlJhtztnZGTY2Nrh586ZWu5ubW4k+atWqVeL5ihfx9PQsNY4GDRqUaC8ewvz3OIhqgri4OGRkZMDR0REODg5an6ysLKSmpgIAAgICEBgYiNDQUNjb26N///6IiIgo8Rx8RT158gR9+/bF48ePsWvXLr6ahPSanHm1fPlyPHjwQDPjK1FNoZTvKyEEtmzZAl9f3wo9bkPy4jO2VC5WVlaoXbs2rly5Uq79JEkq03aGhoaltgshynwsXcyATKSPioqK4OjoqLn6/HfFE2xIkoQdO3bg9OnT2L17N6KjozF27FgsW7YMp0+frlQhmpeXh0GDBuHy5cuIjo6Gr69vhfsiUgK58iojIwMLFy7ExIkTkZmZqRlBlZWVBSEEEhMTYWZmBkdHx8qdIJEMlPB9BQAnTpzAzZs3ER4eXql+SB4sbKnc+vbti3Xr1uHUqVNo167dC7d1d3dHUVER4uLitCZ4SklJQXp6Otzd3ct9/LIWyX+PIzY2tkT777//rllPVNN4eXnhwIED6NChQ5ku+LRt2xZt27bFokWLsGXLFgwfPhxbt27FuHHjKpR3RUVFGDlyJA4ePIjvvvsOAQEBFTkNIkWRK68ePXqErKwsLFmyBEuWLCmx3tPTE/379+erf0gvyf19VSwyMhKSJGHYsGEV7oPkw6HIVG7FL4QfN24cUlJSSqyPj4/HypUrAQC9e/cGAKxYsUJrm3//+98AgD59+pT7+MUvo09PTy/zPr1798bZs2dx6tQpTduTJ0+wbt06eHh48FklqpHefvttFBYWIiwsrMS6goICTQ49evSoxKiIZs2aAYBmeJeZmRmA8uXd5MmTsW3bNqxdu1YzMyWRvpMrrxwdHREVFVXi07lzZ5iamiIqKgqffPJJxU+MSEZyf18BQH5+PrZv3w5/f/9SH40j5eMdWyo3Ly8vbNmyBe+88w4aNWqEkSNHwtfXF3l5eTh58iS2b9+O0aNHAwCaNm2KUaNGYd26dUhPT0dAQADOnj2LjRs3YsCAAejcuXO5j9+sWTMYGhpi8eLFyMjIgEqlQpcuXV44/GrWrFn49ttv8eabb2LKlCmwtbXFxo0bkZCQgO+//x4GBuW/xrN582bcvHkT2dnZAIBjx45h4cKFAIB3332Xd4FJdgEBAQgODkZ4eDguXbqEHj16wNjYGHFxcdi+fTtWrlyJwYMHY+PGjVi7di0GDhwILy8vPH78GOvXr4eVlZXm4pRarYaPjw+2bduG+vXrw9bWFr6+vs8dWrxixQqsXbsW7dq1g5mZGb755hut9QMHDtRcpCLSJ3LllZmZGQYMGFCifefOnTh79myp64j0hZzfV8Wio6Px8OFDThqlz+Sckpn02x9//CHGjx8vPDw8hImJibC0tBQdOnQQq1evFk+fPtVsl5+fL0JDQ4Wnp6cwNjYWrq6u4pNPPtHaRoi/XtXTp0+fEscJCAgQAQEBWm3r168XdevWFYaGhlqv/nleH0IIER8fLwYPHixsbGyEqampaN26tdizZ4/WNuV53U9AQIAAUOqntFcREena31+fUGzdunXCz89PqNVqYWlpKRo3bixmzpwpkpOThRBCXLhwQQQFBQk3NzehUqmEo6Oj6Nu3r4iJidHq5+TJk8LPz0+YmJi89FUKo0aNem5+ABAJCQlVeepEOqOkvCoNX/dD+kiJeTV06FBhbGwsHj58WCXnSNVPEqIcs/IQERERERERKQyfsSUiIiIiIiK9xsKWiIiIiIiI9BoLWyIiIiIiItJrLGyJiIiIiIhIr7GwJSIiIiIiIr3GwpaIiIiIiIj0GgtbIiIiIiIi0mssbImIiIiIiEivsbAlIiIiIiIivcbCloiIiIiIiPQaC1siIiIiIiLSayxsiYiIiIiISK+xsCUiIiIiIiK99v8AcopjMsaWc6YAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAAInCAYAAACst8XKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAtqpJREFUeJzs3Xd4U2X7B/DvSdqke0+gC8poKQgWQWYBkaIgW5mCIIgK+gK+DkQZMvrDwVBRhgwHKKIiU7AyFKEMWbJltWW0pYXulSY5vz9q8xI66Ehyctrv57pykbOec6f0aXLnWYIoiiKIiIiIiIiIZEohdQBERERERERENcHEloiIiIiIiGSNiS0RERERERHJGhNbIiIiIiIikjUmtkRERERERCRrTGyJiIiIiIhI1pjYEhERERERkawxsSUiIiIiIiJZY2JLREREREREssbE1gokJSVh1qxZSEpKkjoUIiIiIiIi2WFiawWSkpIwe/ZsJrZERERERETVwMSWiIiIiIiIZI2JLREREREREckaE1siIiIiIiKSNSa29/jjjz/w1FNPoV69ehAEAT///PMDr9m3bx8efvhhqNVqhIaGYu3atWaPk4iIiIiIiP6Hie09cnNz8dBDD2Hp0qWVOv/atWvo3bs3unXrhpMnT2Ly5MkYN24cdu3aZeZIiYiIiIiIqISN1AFYkyeeeAJPPPFEpc9ftmwZQkJC8NFHHwEAwsLC8Oeff2LRokWIjo42V5hERERERER0Dya2NRAXF4cePXoY7YuOjsbkyZMrvK6wsBCFhYWG7ZycHHOEV6E7d+5Ao9HUqAydTgcA8PDwMEVItUJubi60Wm2NylCpVPD09DRRRGRpNa1ber0eoiiyXt0jJyfH8Pemuliv5K2m9UoURej1etare929A6WuZu9XACCo7aDy8zdBQGRpmuQkiIUFNSpDr9NB5e1joojkT1CpkJ6TW+PP2HzPqh4mtjWQnJwMX19fo32+vr7IyspCfn4+7O3ty7wuJiYGs2fPtkSIZbpz5w6WLl0KURRNUl7Xrl3h5ORkkrLkLCcnB/v27atxOYIgYOLEifyDJkOmrFusV8VYr4j1yvS0mZlQfvcl3Ipq9uG7RGDMQia3MqNJTkLitKk1L0gU4THgaShdXWteVi1Q4OSC5Tt21vjvFd+zqodjbCUwbdo0ZGZmGh6///67Re+v0WhMltQCqHFLSm1hqp+DKIo1/qaPpGHKusV6VYz1ilivzEBbZNLiatrqR5Znyv8zsYY91WqToqIik/y94ntW9bDFtgb8/PyQkpJitC8lJQUuLi7lttYCgFqthlqtNmxL+e2xIAjVvtaUyXFtU92fK3+mtQd/B0yPP1Pi74AZ1OBzAPhzrR2q+zvA//8K8e+V5dWaFltRFLFnzx788ssvyM7Otsg927dvj927dxvti42NRfv27S1yfyIiIiIiIpJpYjt9+nR069bNsC2KInr27InHH38cvXv3RosWLXDlypUql5uTk4OTJ0/i5MmTAIqX8zl58iQSExMBFHchHjVqlOH8F198EVevXsUbb7yBCxcu4LPPPsP333+PKVOm1OwFEhERERERUaXJMrH98ccf0bZtW8P2Dz/8gN27d2Pu3LnYtm0bdDodZs2aVeVy//rrL7Ru3RqtW7cGAEydOhWtW7fGjBkzAABJSUmGJBcAQkJCsH37dsTGxuKhhx7CRx99hC+++IJL/RAREREREVmQLMfY3rx5E6GhoYbtn376CeHh4Zg2bRoA4KWXXsLnn39e5XK7du1aYb/2tWvXlnnNiRMnqnwvIiIiIiIiMg1Zttja2NgY1oEVRRG7d+9Gr169DMd9fX2RlpYmVXhERERERERkQbJMbCMiIvDNN98gPT0da9aswZ07d9C7d2/D8YSEBHh5eUkYIREREREREVmKLLsiz5gxA0899ZQhee3YsaPRZFLbt2/HI488IlV4REREREREZEGyTGwff/xxHD9+HLGxsXBzc8OQIUMMx9LT09GlSxf069dPwgiJiIiIiIjIUmSZ2AJAeHg4wsPDS+13d3fHokWLJIiIiIiIiIiIpCDLxDY7OxsZGRkICAgw7Lt16xaWLVuGwsJCDB48mF2RiYiIiIiI6ghZJrYvvPACrl27hkOHDgEAsrKy8Oijj+LGjRtQKBRYsmQJdu7cia5du0obKBEREREREZmdLGdF/vPPP9GnTx/D9jfffINbt27h4MGDSE9PR8uWLTF37lwJIyQiIiIiIiJLkWVim5aWhvr16xu2t2zZgk6dOuHRRx+Fs7MzRo0ahVOnTkkYIREREREREVmKLBNbNzc3JCcnAwDy8/Oxf/9+9OzZ03DcxsYGeXl5UoVHREREREREFiTLMbYdOnTAZ599hmbNmmHnzp0oKCgwWt7nn3/+MWrRJSIiIiIiotpLlontggUL0LNnTwwaNAgA8Nprr6F58+YAAJ1Oh40bN6JXr15ShkhEREREREQWIsvENjQ0FBcvXsS5c+fg6uqK4OBgw7G8vDx8+umneOihh6QLkIiIiIiIiCxGloktANja2paZvDo7Oxt1SyYiIiIiIqLaTZaTRwHFa9f+3//9H6Kjo9G6dWscOXIEAHD37l0sXLgQly9fljhCIiIiIiIisgRZttjeuHEDUVFRuH79Oho3bowLFy4gJycHAODh4YHly5cjISEBS5YskThSIiIiIiIiMjdZJravv/46srOzcfLkSfj4+MDHx8foeP/+/bFt2zaJoiMiIiIiIiJLkmVX5F9//RWvvvoqwsPDIQhCqeMNGzbE9evXJYiMiIiIiIiILE2WiW1+fj68vb3LPZ6dnW3BaIiIiIiIiEhKskxsw8PD8ccff5R7/Oeff0br1q0tGBERERERERFJRZaJ7eTJk/Hdd99hwYIFyMzMBADo9XpcvnwZzz77LOLi4jBlyhSJoyQiIiIiIiJLkOXkUSNHjkRCQgLeeecdTJ8+HQDQq1cviKIIhUKB+fPno3///tIGSURERERERBYhy8QWAKZPn45nn30WP/74Iy5fvgy9Xo9GjRph4MCBaNiwodThERERERERkYXINrEFgMDAQHY5JiIiIiIiquNkOcb2+PHj+Oyzz8o9/tlnn+HkyZOWC4iIiIiIiIgkI8vEdvr06fjtt9/KPb5nzx6888471S5/6dKlCA4Ohp2dHdq1a4cjR45UeP7ixYvRtGlT2NvbIyAgAFOmTEFBQUG1709ERERERESVJ8vE9tixY+jcuXO5xzt37oy//vqrWmVv2LABU6dOxcyZM3H8+HE89NBDiI6Oxu3bt8s8f/369Xjrrbcwc+ZMnD9/HqtWrcKGDRvw9ttvV+v+REREREREVDWyTGyzs7NhY1P+8GCFQmFYBqiqFi5ciPHjx2PMmDEIDw/HsmXL4ODggNWrV5d5/sGDB9GxY0cMHz4cwcHB6NmzJ4YNG/bAVl4iIiIiIiIyDVlOHtW4cWP8+uuveOWVV8o8vnPnzmrNjKzRaHDs2DFMmzbNsE+hUKBHjx6Ii4sr85oOHTrgm2++wZEjR9C2bVtcvXoVO3bswLPPPlvufQoLC1FYWGjYzsnJqXKs1kQQBCgUlf+OpOR8QRAM2yX/3v+85Lx7n9/7b3mPss4v67733xMARI0GhQnXUJR6G2KRptKvKzM7E4f0OhQplJW+hoiIiIiIak6Wie3zzz+PKVOmYOrUqZgxYwbc3NwAABkZGZg9ezZ27tyJDz74oMrlpqWlQafTwdfX12i/r68vLly4UOY1w4cPR1paGjp16gRRFKHVavHiiy9W2BU5JiYGs2fPrnJ81koURej1+ipfo1KpYGdnB3t7ezg4OMDJyanClnhL0KbfRd65M1VKaKti+fLlyMnJgZOTEyZMmGCWexARERER1TWy7Ir86quvYvTo0Vi8eDG8vLwQGBiIwMBAeHl5YcmSJRg5cqTFlgHat28f5s+fj88++wzHjx/HTz/9hO3bt2POnDnlXjNt2jRkZmYaHr///rtFYrUmer0eBQUFyMjIQFJSEq5cuYJTp07h/PnzuHXrliSTb2kzMpB3+pTZklqguHU+KytL9q30RERERETWRJYttoIgYM2aNRg1ahR+/PFHXL16FQDQr18/DBo0CF27dq1WuV5eXlAqlUhJSTHan5KSAj8/vzKveffdd/Hss89i3LhxAIAWLVogNzcXL7zwAqZPn15mF121Wg21Wm3YdnJyqla8tVFeXh7y8vKQlJQEBwcHeHt7w8PDo0pdnatDX1CAvDOnIOp1Zr0PERERERGZniwT2xLdunVDt27dTFaeSqVCZGQkdu/ejf79+wMoblncvXs3Jk2aVOY1eXl5pZIupbJ4jKUoiiaLrS7Ky8tDQkICbty4AR8fH/j4+Jitq3L++TMQtUVmKZuIiIiIiMxLll2Rr127hq1bt5Z7fOvWrYiPj69W2VOnTsXKlSvx5Zdf4vz583jppZeQm5uLMWPGAABGjRplNLnUU089hc8//xzfffcdrl27htjYWLz77rt46qmnDAku1YxOp0NSUhLOnDmDpKSkKo/nfRDNrZvQZmaYtEwiIiIiIrIcWbbY/ve//0VWVhaeeuqpMo8vXboUbm5u+O6776pc9pAhQ5CamooZM2YgOTkZrVq1ws6dOw0TSiUmJhq10L7zzjsQBAHvvPMObt68CW9vbzz11FOYN29e9V4clUun0+HWrVtITU1FgwYN4OHhUeMyxaIiFFy9bILoiIiIiIhIKrJMbOPi4jB58uRyjz/22GNYvHhxtcufNGlSuV2P9+3bZ7RtY2ODmTNnYubMmdW+H1VNUVERrl27hjt37iAwMNBovHJVFV5PYBdkIiIiIiKZk2VX5PT0dDg7O5d73MnJCXfu3LFgRCSFrKwsnDt3DmlpadW6Xq/RQHPjuomjIiIiIiIiS5NlYhsYGIgDBw6Ue3z//v1o0KCBBSMiqej1eiQkJODy5csoKqpay6vmRiJnQSYiIiIiqgVkmdgOGzYM3377LT7++GOjiYR0Oh2WLFmCDRs2YPjw4RJGSJaWmZmJs2fPVrqlXtRqobl5w8xRERERERGRJchyjO20adPw559/YvLkyZg3bx6aNm0KALh48SJSU1PRtWtXTJ8+XeIoydJ0Oh3i4+ORlpaGgIAAODg4lHuuJiUJok5rweiIiIiIiMhcZNliq1ar8euvv2LVqlVo27Yt0tLSkJaWhrZt22L16tX47bffajShEMlbTk4Ozp8/j2vXrqGwsLDMc4pu3jRrDKIolvlwdHSEs7MzHB0dyzxORERERERVJ8sWWwBQKBQYM2aMYX1ZovvdvXsX6enpcHd3h5+fH+zt7QEA2owM6PJyyr9QUEDl5w8bL28oVKpK309zNx26k2cqPGfChAkPLEcQBKiqcF8iIiIiorpOtoktUWWIooi7d+/i7t27cHJygpeXF+xSkso9X2FnD4eIllA6lT/rdnm8nV3w8qRJ0Gg0NQkZKpUKnp6eNSqDiIiIiKgukWVi27179weeIwgCdu/ebYFoSC5ycnKQnZUFzdXLcLK1gbOdGk5qNVRKJYDipNaxdRsoatCNnQkpEREREZHlyTKx1ev1EATBaJ9Op0NCQgKuX7+O0NBQ1K9fX6LoyJrpcrKh1+mQpdMhq6B4/K2tUgEHtR3cWoSgMDsbqsJC2NjYQKGo+hB0If0uoCl7XG+ly1DbQeXnX6MyiIiIiIjqElkmtvv27Sv32LZt2/DCCy9g4cKFlguIZEOXnV1qX5FOjzwXN2gyMoCMjGqXrc3MhPM3q6AS9Q8++QECYxYyuSUiIiIiqiRZzopckT59+mDkyJGYPHmy1KGQlRF1OuhzS08apXB0go2ra81voC164CkDtu5Cp+83Y8DWXRWeJxYW1DweIiIiIqI6otYltgDQqFEjHD16VOowyMrocrKB+5fUEQSofHxNfzNBKPORml+AlLx8pOYXlH0OERERERFVWa1LbLVaLb7//nt4eXlJHQpZGV1O6dZapZs7BC6tQ0REREQka7IcYzt27Ngy92dkZODQoUNITk7mGFsyIur10OflGu9UKGDrwVmMiYiIiIjkTpaJ7Z49e0rNiiwIAtzd3dGpUyeMGzcOPXv2lCg6skb6vFxAbzypk42rOwQbWVYBIiIiIiK6hyw/1cfHx0sdAslMqW7IggAbD3dpgiEiIiIiIpOqdWNsicpy/2zISmdnCDa2EkVDRERERESmJJvENi8vD4mJidBoNKWOrV69Go899hjCw8MxcOBAzohMRvSFBRC1WqN9Sle21hIRERER1RaySWzfe+89tGzZslRiO3fuXIwfPx6///47UlNT8fPPP6Nr1644deqURJGStdHnGE8apVCroXRwkCgaIiIiIiIyNdkktnv37kWfPn3g5ORk2JeVlYW5c+eifv36uHTpElJTU3Ho0CGoVCr83//9n4TRkjXR3d8N2cVNmkCIiIiIqM5avnw5PvroIyxfvlzqUGol2SS28fHxaNmypdG+HTt2QKPR4M0330RISAgAoG3bthgzZgz2798vRZhkZUS9HvqC/P/tEAQoXVykC4iIiIiI6qScnBxkZWUh5/5JTckkZDMrcnZ2Njw9jdcc/eOPPyAIAqKjo432h4eHIzU11ZLhkZXS5+UBomjYVjg4SrrEj7e9vdG/RERERERUc7JJbIOCgnDhwgWjffv27YOvry9CQ0ON9ms0GriwVY7wb2J7D6lbazf1jX7wSUREREREVCWy6Yrcs2dPrF69GocPHwYAfPXVV7hw4QIGDBhQ6txjx44hODjYwhGSNdLn3TNxlEIBpaNT+ScTEREREZEsySaxfffdd+Hk5IQOHTpApVLhueeeg7e3N2bMmGF0Xl5eHjZt2oTHHntMokjJWog6HfSFBYZtpYMjBKVSwoiIiIiIiMgcZNMV2cvLCydPnsQXX3yBq1evIigoCGPHjoWPj4/ReWfOnMGIESPw7LPPShQpWYvS3ZCdJYqEiIiIiIjMSTYttgDg7u6O119/HZ9//jneeuutUkktUDwr8ieffILmzZtX+z5Lly5FcHAw7Ozs0K5dOxw5cqTC8zMyMjBx4kT4+/tDrVajSZMm2LFjR7XvT6ahy78nsRUEKBzYDZmIiIiIqDaSTYutpWzYsAFTp07FsmXL0K5dOyxevBjR0dG4ePFimYm0RqPB448/Dh8fH/zwww+oX78+EhIS4ObmZvngyYh4T2KrsHdgN2QiIiIiolqKie19Fi5ciPHjx2PMmDEAgGXLlmH79u1YvXo13nrrrVLnr169Gnfv3sXBgwdha2sLAJy4ygqIOh30BYWGbaUzW2uJiIiIiGorWXVFNjeNRoNjx46hR48ehn0KhQI9evRAXFxcmdds2bIF7du3x8SJE+Hr64uIiAjMnz8fOp2u3PsUFhYiKyvL8OAizaanz88H8L/1a5XshkxEREREVGsxsb1HWloadDodfH19jfb7+voiOTm5zGuuXr2KH374ATqdDjt27MC7776Ljz76CHPnzi33PjExMXB1dTU8oqKiTPo6CNAX5BueCyo1BJVKwmiIiIiIiMicZJHYbtmyBbdu3ZI6jDLp9Xr4+PhgxYoViIyMxJAhQzB9+nQsW7as3GumTZuGzMxMw+P333+3YMR1g/7e8bWOjhJGQkREREQEODk5wcXFBU5O7EloDrIYYztgwAB8/fXXGD58OACgYcOGWLx4Mfr27WvS+3h5eUGpVCIlJcVof0pKCvz8/Mq8xt/fH7a2tlDeMzFRWFgYkpOTodFooCqjpVCtVkOtVhu2+cttWqIoQl9wz/q1TGyJiIiI6ixBoQSUSghKGwhKBaBQ/vuvAoJCAQjFz4vP/bfdTxCqfh9NkeG5KIqljr/wwgsVHqeakUVi6+zsjIyMDMN2fHy8WcalqlQqREZGYvfu3ejfvz+A4hbZ3bt3Y9KkSWVe07FjR6xfvx56vR6KfyvCP//8A39//zKTWjI/sbAA0OuLNwQBCgcmtkRERERyJggKwMYGgo0NBBtbCLYl/9pCsFVBYVvy3PZ/59jYFF9TjSS1Ouzu3IEgCDVOWgVBYB5RDbJIbNu2bYt58+YhJSUFrq6uAIAdO3aUO+4VKP6FmDJlSpXvNXXqVIwePRpt2rRB27ZtsXjxYuTm5hpmSR41ahTq16+PmJgYAMBLL72ETz/9FP/5z3/wyiuv4NKlS5g/fz5effXVarxSMoV7x9cq7O0t9seMiIiIqK4RbGwg2FYhCRMEw0MQFPe0nCoBGyUUStviZLQkSVWpoPj3AeW/ia3COkdTenp6YuLEidBoNDUqR6VSwdPT00RR1R2ySGw/++wzjBo1CnPmzAFQnLSuX78e69evL/ea6ia2Q4YMQWpqKmbMmIHk5GS0atUKO3fuNEwolZiYaGiZBYCAgADs2rULU6ZMQcuWLVG/fn385z//wZtvvlnle5Np6PPv6YbM1loiIiIisxG1WohF1UvkqtuuKSiU/7bMliS/xa22JUm2UJIYlyTCyn+7IlsgKXYu0kDUFDz4xAqwTaZ6ZJHYhoaG4uDBgygoKMDt27cRHByMxYsXo1+/fma536RJk8rterxv375S+9q3b49Dhw6ZJRaqOqMZkZnYEhEREdUqol4HsVAHFFYngRSKE92S8bX3jrMVAAiKaieWoiAgecmH1bv4PoExC6Hy8zdJWXWFLBLbEnZ2dggMDMTMmTPRvXt3BAUFSR0SWRlRp4NY0v1DoYDCzk7agIiIiIjIiogQdVpAV/0W4/II90wmW5YBW3chNb8A3vZ22PRUdIXnitVK2us2WSW2JWbOnGl4npOTg+vXrwMo7hbMGYbrNn3+veNrHTi+loiIiIgsr4zPoKn5BUjJyy/3OACAsyVXm3WOvK6Eo0ePolu3bnB3d0dERAQiIiLg7u6O7t2746+//pI6PJKIvvDe8bUOEkZCRERERESWIssW28OHD6Nr165QqVQYN24cwsLCAADnz5/Ht99+iy5dumDfvn1o27atxJGSpd3bYivYM7ElIiIiIqoLZJnYTp8+HfXr18eff/4JPz8/o2OzZs1Cx44dMX36dMTGxkoUIUnFMB6B42uJiIiIiOoMWXZFPnz4MCZMmFAqqQUAX19fvPDCC5yluA4StUUQtVoAgMKO69cSEREREdUVskxsFQoFtP8mMGXR6XRGa81S3XDv+rUKB3sJIyEiIiIiIkuSZfbXoUMHLF26FAkJCaWOJSYm4rPPPkPHjh0liIykdO/EUQo7JrZERERERHWFLMfYzp8/H126dEGzZs0wYMAANGnSBABw8eJFbN68GTY2NoiJiZE4SrI0fUFJYiswsSUiIiIiqkNkmdi2bt0ahw8fxvTp07Flyxbk5eUBABwcHNCrVy/MnTsX4eHhEkdJllYycZRCrX7gAtlERERERFR7yDKxBYDw8HBs2rQJer0eqampAABvb2+Ora2jRK3WMHGUYM/WWiIiIiKiukS2iW0JhUIBX19fqcMgif2vGzK4zA8RERERUR3D5k2qFUROHEVEREREVGfJvsWWCAD0hYXFTxQKKNRqaYMhIiIiIrqP97/D5bw5bM4smNhSrVDSFVnBPxREREREZIU29Y2WOoRajV2RSfZEnQ5ikQYAuyETEREREdVFTGxJ9vSaQsNzhZoTRxERERER1TWy7op87tw5XL16Fenp6RBFsdTxUaNGSRAVWZpYeE9iy67IRERERER1jiwT2ytXrmDkyJE4cuRImQktAAiCwMS2jigZXyvY2ECwkeWvNBERERER1YAss4AJEybg9OnTWLx4MTp37gx3d3epQyIJlbTYcnwtEREREVHdJMvE9sCBA3j77bfxyiuvSB0KSUwURcMYW8GO42uJiIiIiOoiWU4e5eXlBVdXV6nDICsgajSAXg+AE0cREREREdVVskxsX3zxRXzzzTfQ6XRSh0IS0xfkG54r2GJLRERERFQnybIrcpMmTaDT6fDQQw9h7NixCAgIgFKpLHXewIEDJYiOLElfyImjiIiIiIjqOllmAkOGDDE8/+9//1vmOYIgsEW3DhAL/h1fq1ZLHAkREREREUlFlont3r17zVr+0qVL8cEHHyA5ORkPPfQQPvnkE7Rt2/aB13333XcYNmwY+vXrh59//tmsMdK/E0f922KrUHNGZCIiIiKiukqWiW1UVJTZyt6wYQOmTp2KZcuWoV27dli8eDGio6Nx8eJF+Pj4lHtdfHw8/vvf/6Jz585mi42MGU0cZccWWyIiIiKiukqWk0fd69y5c/jll1/wyy+/4Ny5czUub+HChRg/fjzGjBmD8PBwLFu2DA4ODli9enW51+h0OowYMQKzZ89Gw4YNaxwDVY7RxFGcEZmIiIiIqM6SbWK7efNmNGrUCC1atECfPn3Qp08ftGjRAqGhodiyZUu1ytRoNDh27Bh69Ohh2KdQKNCjRw/ExcWVe917770HHx8fPP/885W6T2FhIbKysgyPnJycasVb15V0Q4ZCAUGlkjYYIiIiIiKSjCy7Iu/YsQODBg1CUFAQ5s+fj7CwMADA+fPnsWLFCgwcOBDbtm1Dr169qlRuWloadDodfH19jfb7+vriwoULZV7z559/YtWqVTh58mSl7xMTE4PZs2dXKTYqrWTiKLbWEhERERHVbbJMbOfMmYOWLVti//79cHR0NOzv27cvJk2ahE6dOmH27NlVTmyrKjs7G88++yxWrlwJLy+vSl83bdo0TJ061bB98uRJs44bro3unTiKMyITEREREdVtskxs//77b8yfP98oqS3h6OiI5557Dm+//XaVy/Xy8oJSqURKSorR/pSUFPj5+ZU6/8qVK4iPj8dTTz1l2Kf/dzIjGxsbXLx4EY0aNSp1nVqthvqeZMzJyanKsdZ1YmHB/yaOYostEREREVGdJssxtnZ2drh79265x+/evQs7u6onOyqVCpGRkdi9e7dhn16vx+7du9G+fftS5zdr1gynT5/GyZMnDY++ffuiW7duOHnyJAICAqocA1XOvRNHscWWiIiIiKhuk2WLbffu3bFkyRL06tWrVMJ5+PBhfPzxx+jZs2e1yp46dSpGjx6NNm3aoG3btli8eDFyc3MxZswYAMCoUaNQv359xMTEwM7ODhEREUbXu7m5AUCp/WRa+vx/J44SBCiq8SUGERHVDsuXL0dOTg6cnJwwYcIEqcMhIiKJyDKxff/999G+fXt06tQJbdu2RdOmTQEAFy9exJEjR+Dj44MFCxZUq+whQ4YgNTUVM2bMQHJyMlq1aoWdO3caJpRKTEyEQiHLhu5apaTFVqFSQRAEiaMhIiKp5OTkICsrS+owiIhIYrJMbENCQvD3338jJiYGv/zyCzZs2AAACAoKwn/+8x+89dZb8PHxqXb5kyZNwqRJk8o8tm/fvgqvXbt2bbXvS5UjarUQNRoAgMDxtUREREREdZ4sE1sA8PHxwaJFi7Bo0SKpQyELu3d8LbshE5leSS+I+/+t6HlZ26WIIkSdzjDxW2XY/Hsd2DODiIiIKiDbxJbqLn3+vRNHMbElEgQBSqUSSqUSKpUKdnZ2sLe3h6Ojo2EG9oqSUHN259em30VRWip0GenQ5eUBYuWTWgBwy86Eg06LPBtbM0VIREREtYEsEtuxY8dCEASsWLECSqUSY8eOfeA1giBg1apVFoiOLO1/iS0njiICitd11mq10Gq1KCwsRHZ2tuGYSqWCi4sL3N3d4ezsbJEx6aJeD03STWiuX4e+IM/s9+PkQURERCSLxHbPnj1QKBTQ6/VQKpXYs2fPAz+ccUKh2kkUReOJoziRF1GFNBoN0tLSkJaWBhsbG3h6esLb29toLW1TKrqThoJL/1gkoS3ByYOIiIhIFoltfHx8hdtUd+gL8ovH2wEQ2FpLVCVarRYpKSlISUmBm5sb/P394eDgYJKyRa0W+ZcuoiglySTlEREREVWFLJu7EhMTkX/POMv75efnIzEx0YIRkaWIefdMHGXPxJaoujIyMnD+/HlcvXoVhYWFNSpLl5uLnONHmdQSERGRZGSZ2IaEhGDTpk3lHt+yZQtCQkIsGBFZii4/1/BcUNtLGAlR7ZCeno6zZ8/i5s2b0FdhtuIS2ox05J74C/q83AefTERERGQmskxsxX+7opanqKgICo69rHVEUfzfxFECJ44iMhVRFJGcnIyzZ88aTTz1IEV30pB36gREbZEZoyMiIiJ6MFmMsQWArKwsZGRkGLbv3LlTZnfjjIwMfPfdd/D397dgdGQJYkGBYf1LhdqOE4QRmZhGo8E///wDHx8f1K9fv8IvCIvupCHvzN9VXr6HiIiIyBxkk9guWrQI7733HoDiGY8nT56MyZMnl3muKIqYO3euBaMjS9Dn/W+WVYHja4nM5vbt28jOzkbDhg1hV0bPCG1mBvLPnmZSSxZXVo8tR0dHiKJo+LciarUa9vZVH8YiimKph16vNzwnIiLpySax7dmzJ5ycnCCKIt544w0MGzYMDz/8sNE5giDA0dERkZGRaNOmjUSRkrncO75WYcfxtUTmlJ+fj/PnzyMgIABeXl6G/bq8POSdPgVRr5MwOqpLVCoVBEEoN4Gs7NrFgiCgWbNm8PT0NGV4hiRXr9dDp9MZ/tXpdNBqtaX+vf/BxJiIyDRkk9i2b98e7du3BwDk5uZi0KBBiIiIkDgqshSj8bUAlExsicxOr9cjISEBmZmZCAwMhI0gIO/0SY6pJYvy9PTExIkTodFoalSOSqUyeVILFCfMSqUSSqUStra2Vb7+3kTYkAQXFUFXVAS9tgg6rRZ6nQ56nQ7iv4mzWPIQxX9XwBOLH5XMkYtEPbQ6fjlFRLWLbBLbEnl5efj444/h4ODAxLYO0efnGcbXQmkDQaWSNiCiOiQjIwNZWVnwyM2Ga1Ehx7eTxTkXaSBqCmpUhqV/bUWtFqJOC7FIC1FbBLGo5KGBvuieba0W0P57jk4H6LRQAlCaMTZtThbSdVrL/1CIiMxIdomtg4MDbGxs4OjoKHUoZEH63P91Q1ZWY3wUEdVMYeptXE9LRaqtDfxcnOGsVls8hvK6bFZljCXJjyY5CYnTptaskH9/L3xfngzbqrTaioAIsfj6fx+iXl/8XK8rfq7TF3fN1+mLE1mttjhBrWzzKRERmYTsElsAGDRoEH744Qe89NJLbDmoI+5NbBVMbIksSpeXB21aGgCgoEiL+DvpcFSp4OPsCKdKJLiCrQo2rm5QODpCoVIDysovx1aYkQHNidMVnlOZMZaCIEDFnh6yJBbWrKX2XprrCdDn5ZisPCIish6yTGyHDh2Kl19+Gd26dcP48eMRHBxc5iyH908uRfIkarXQ3/PBRrB3kDAaorpF1OlQlHwL97c+5Wo0uHZHAztbG3g6OsDVzg7Ke5YHEgQFbP38YevnDxtXt2rf38evHl585RWrHV9JFlbGl9kDtuxCan4+vO3tsalvdNnXsSWfiKjWk2Vi27VrV8Pz/fv3lzouiiIEQYCOEyPUCrrce75dFwQoylh+hIjMoyj1NsSi8ieLKijS4mZGFpKEbDjbqeFqbw+P4BA4NAyFwkQtpExIqSKp+flIyct/8IlERFSryTKxXbNmjdQhkAUZdUO2s2f3cyIL0eXkQJeZUalz9aKIbBEocHFHam4+HK5cgaOjIxwcHKBWq6FSqWBrawuFovLdkEtokpNq3B1VUNtB5edfozKIiIjIeskysR09erTUIZCFiKJo1GKrcGA3ZCJLEPV6FN1OrvT5Nh6esPHyNnzxlJeXh7y8vDLPrcqXU9rMTNitWw0HnbbS15QnMGYhk1siIqJaSpaJ7b1ycnJw/fp1AEBAQACcnJwkjohMSZ+b+79lfsDElshSitIq7oJsIAhQ+deD0tml0mVXZeZisUjzwLllB2zdhdT8Anjb22HTU+WMsYRpJyEiIiIi61L1PmFW4ujRo+jWrRvc3d0RERGBiIgIuLu7o3v37vjrr7+kDo9MRJeT/b8NQYDCjjMiE5mbLi8PuvT0B5+oUEDVILBKSW2NCEKZj9T8AqTk5SM1v6Dsc4iIiKjWk2WL7eHDh9G1a1eoVCqMGzcOYWFhAIDz58/j22+/RZcuXbBv3z60bdtW4kipJkRRhC7nnm7IdvYQqjE+j4gqr3gW5KQHn6hUQt0ggF82ERERkVWQZWI7ffp01K9fH3/++Sf8/PyMjs2aNQsdO3bE9OnTERsbK1GEZAr6/DzgnnF17IZMcrd8+XLk5OTAycmpUmuvSqF4FuQHLK2jUDCpJSIiIqsiy+avw4cPY8KECaWSWgDw9fXFCy+8gEOHDkkQGZmSLjvbaFvh4ChRJESmkZOTg6ysLOTc0xPBmmizMh88C7IgQFW/AZNaIiIisiqyTGwVCgW02vJnyNTpdNVaUoKshyiKxomtQgGFPT9IE5mLvrAQRSkPngXZ1tcfSn7JRERERFZGltlfhw4dsHTpUiQkJJQ6lpiYiM8++wwdO3aUIDIyFX1OjnE3ZHuuX0tkLqJOB82tm0YzkJfFxsMTNq6uFoqKiIiIqPJkmdjOnz8fmZmZaNasGYYPH45Zs2Zh1qxZGDZsGJo1a4bMzEzExMRUu/ylS5ciODgYdnZ2aNeuHY4cOVLuuStXrkTnzp3h7u4Od3d39OjRo8LzqXJ0WZlG20pHLuNEZA6iKEKTdBOiprDC8xSOjrDx8rZQVESV521vD18He3izVw8RUZ0my8mjWrdujcOHD2P69OnYsmUL8vLyAAAODg7o1asX5s6di/Dw8GqVvWHDBkydOhXLli1Du3btsHjxYkRHR+PixYvw8fEpdf6+ffswbNgwdOjQAXZ2dliwYAF69uyJs2fPon79+jV6nXWVqNVCl2s8BpHja4nMoygluXi96AoINjZQ+dVjrwmySpv6lr92MRER1R2yTGwBIDw8HJs2bYJer0dqaioAwNvbu8ZjaxcuXIjx48djzJgxAIBly5Zh+/btWL16Nd56661S569bt85o+4svvsCPP/6I3bt3Y9SoUTWKRUpSzt6qy8wERNGwLdjaQqFWWzQGorqg6PbtB08WBcDWvx4EG9m+XRAREVEdIMuuyPcSBMHoURMajQbHjh1Djx49DPsUCgV69OiBuLi4SpWRl5eHoqIieHh4lHtOYWEhsrKyDA9rnCFVqtlbRVGENjPdaJ+C3ZCJTK4o9Ta06XceeJ6NuycniyIiIiKrJ9vE9ty5cxg8eDBcXFzg7+8Pf39/uLi4YPDgwThz5ky1ykxLS4NOp4Ovr6/Rfl9fXyQnP3i2UAB48803Ua9ePaPk+H4xMTFwdXU1PKKioqoVb22kz8mBWFRktI/ja4lMRxRFaFKSob374KRWUKlh423942o5xpKIiIhk2bds//79eOKJJ6DX69GvXz80adIEAHDx4kVs2bIFv/zyC3bu3InOnTtbNK7/+7//w3fffYd9+/bBzs6u3POmTZuGqVOnGrZPnjzJ5PZfpT5sKxRQOLK1iGoHJycno38tTdTpoEm6BX1uZXpiCLD185fFuFqOsSQiIiJZJrZTpkyBj48Pfv/9dwQEBBgdu379Orp06YKpU6fi6NGjVSrXy8sLSqUSKSkpRvtTUlLg5+dX4bUffvgh/u///g+//fYbWrZsWeG5arUa6nvGjEr1Idfa6PJyoS/IN9qndHSSxQdrovuJ94wTL/HCCy9UePxerq6uFQ5puJ9Op4NWq0VRURE0Gk2p4/r8fGiSb0Es41hZlO5uULIFlIiIiGRClont2bNnMWfOnFJJLQAEBATgpZdewqxZs6pcrkqlQmRkJHbv3o3+/fsDAPR6PXbv3o1JkyaVe93777+PefPmYdeuXWjTpk2V70vFtP9OAnYvjq8lOVGpVBAE4YFJ64MIgoDg4GB4enpW63q9Xo+CggLk5uYiOzMTd+OvoTD1ttGkbBXeX6WCrVfpWeCJiIiIrJUsE9ugoCAUFpa/5qJGoykz6a2MqVOnYvTo0WjTpg3atm2LxYsXIzc31zBL8qhRo1C/fn3DOrkLFizAjBkzsH79egQHBxvG4jo5ObEltgp02dmlWmshCFDyZ0gy4unpiYkTJ5bZYloVKpWq2kktUDzpnb2dHWwy0mF3OxmeNgLyPN2RWVCIjPx8aHX68i8WBNj61YNQwxnmiYiIiCxJlontjBkzMGXKFPTu3RutWrUyOnbixAl88sknWLx4cbXKHjJkCFJTUzFjxgwkJyejVatW2Llzp2FCqcTERKMlhT7//HNoNBoMHjzYqJyZM2dWq9W4LhL1ehSlppTar3B0gqBUShARUfU5F2kgagpqVEZ1e9+LOh10WZkoSktF0e0UiEX/S7AdVCo4qFTwc3ZCVmEh7uTmIbewdAJu4+nFLshEREQkO7JMbA8dOgRfX19ERkaiQ4cOCA0NBQBcunQJcXFxiIiIQFxcnNESPYIgYMmSJZUqf9KkSeV2Pd63b5/Rdnx8fLVeg7Uor8uko6MjRFE0/GtORWm3S82EDABKZ2ez3pfI1DTJSUicNvXBJ1bk3/rmPeYF2Li7V+4avR56jQb6/HxArKA1FsV/C13t7OBqZ4c8jQa3c3KRXVDcA0bh4Agbj+q3FBMRERFJRZaJ7aeffmp4fuDAARw4cMDo+OnTp3H69GmjfVVJbGu7yowDnDBhQqXLa9KkSaUnuRFF0WiSm5zkJGTm5qBAEKC/Nx6Fgsv8kOyIhRW31A7Yugup+QXwtrfDpqcqnslXm5b6wCS1phxUKgR7qJCr0SAlrxA6/3qcrI2IiIhkSZaJrV5v3g97tZ2pxgECNRsLqM3KhH1mOry8PCGKIvKLipBTqEFWYSE0dg7shkzyVkaCmJpfgJS8/HKPA6j0BE+m5KS2g++jnZCu0eDmzZvQarUWj4GIiIioJmSZ2FLN1WRiGlMoupOG/HNnIOp1AIpb1EvGAPo4O8E2LAJZIpCWllbhRGFEVHP2Yc2hdHGBFwA3NzckJiYiPT1d6rCIiIiIKk3Wie21a9fwyy+/ICEhAUDxbMlPPPEEQkJCJI7M+mmSkx7YbfJBRK0WUCph61PxGr/30ufnoSjpForSbpd7jsLOAQ6+fnAA4Ofnh8zMTKSkpCA7O7tG8RJRaXaNmsDWx9ewbWNjg4YNG+Lu3btITEyETqeTMDoiIiKiypFtYvvaa69hyZIlpbolKxQKTJ48GR9++KFEkVk/k0xwAxi6THoMeBpKV9eal/cvVb36Rtuurq5wdXVFTk4Obt26xQSXyETUwQ2hDggs85iHhwecnJwQHx/POkdERERWT5YLFX700UdYtGgRBg4ciLi4OGRkZCAjIwNxcXEYPHgwFi1ahEWLFkkdptWqTEvtgK270On7zRiwddeDyzPheDxBUMDWz7/MY05OTmjSpAlCQ0NhZ2dnsnsS1UXq4IawC25Y4TkqlQpNmjRBYGAglBzzTkRERFZMli22K1euRN++ffH9998b7W/Xrh2+++47FBQUYPny5ZgyZYpEEcpIORPYSDXJja2fPxQqVYXnuLq6wsXFBSkpKbh165bZlyMiql0E2DVuAnX9gEpf4e3tDTc3N9y8eRN37twxY2xERERE1SPLFtv4+HhER5e/VEZ0dLTs15etmwSoA4Mqd6YgwM/PD+Hh4XB0dDRzXES1g6C0gUOLh6qU1JawtbVFcHAwwsLC4OLiYoboiIiIiKpPlomtj48PTp06Ve7xU6dOwdvb24IRkSnY+vhCYe9QpWvs7OzQtGlT1KvH9TeJKqJ0doVTm7aw9fSqUTkODg5o3LgxmjVrBjc3N9MER0RERFRDsuyK/PTTT2PJkiUIDg7GK6+8Ymixy83NxaeffoovvvgCkydPljZIqhpBAbuQisf7lXupIMDf3x9ubm5ISEhAbm6uiYMjMg1ve3ujfy1BUNpAHdwQqgYBJv3yx9HREY0aNYJGo0FaWhru3LljkrWxiYiIiKpDlontnDlzcPLkSbz99tuYMWMG6tWrBwC4desWtFotunXrhvfee0/iKKkqVPUbVLm19n729vZo1qwZ0tLScOvWLRQVFZkoOiLT2NS3/CEUpiYobaCqVx+qgKAHjluvCZVKhXr16qFevXrIzc1FRkYGsrKykJeXZ7Z7EhEREd1Plomtg4MDdu/ejc2bNxutY9urVy88+eSTeOqpp9gtVUYUKvUDZ2etCi8vL7i7u+P27dtISUnhOpxUZyhUaihd3WDj5Q1bL28IJpjJWCxZUk0UDQ+x5DlEQIThub1CgJ27O/zc3KDT6ZCXn4eC/AIUFBaiqKgIWp0Oer2+ShO+KQAoRP0DzyMiIqK6TXaJbV5eHkaOHIlBgwZhxIgR6Nevn9QhUQ3ZNQ2DYGPaX0WlUgl/f3/4+Pjg9u3bSE1NZQsuyYtSAUFpW7lzBQGCrQ0EpQ30+fnQJCZAk5iA4qwT/+afJc9LktH/JayGRFN/374aJpQCAPt/H9Wlzc5Auk5X/uzsRERERJBhYuvg4IDffvsNTzzxhNSh1GqWGguoDgyu8WQ2FSlJcP38/JCeno47d+4gKyvLbPcjMhmdHqKu8l/GiFqObyUiIqK6S3aJLQB06tQJcXFxGD9+vNSh1FqWGAto6+sPu4ahZr8PUDzBlIeHBzw8PFBUVGQYB5idnc2uykREREREMifLxPbTTz9FdHQ03nnnHbz44oto0KCB1CFRVQgKqINCYBccIsntbW1t4eXpCS9PT4g6HQoKCpCXl4f8/HwUFBSgSKuFVquFXq//d+xg5YgAhCqcT0REREREpiHLxPahhx6CVqtFTEwMYmJiYGNjA7VabXSOIAjIzMyUKMI6xkYJwbYyYwEFKOzsYOPpBYWdGprkW/dMPIPSk9Lo7xnnJ5Zs6wG9vnhCm3uf6/UQdf/+K+oBvfi/52Lx8/+NJSydfNr++3CpwY9Bm52BdFHPsYBERERERBYmy8R20KBBnPXYmmh1ECs5MZOuSANdNse4EhERERGR6cgysV27dq3UIRAREREREZGVkFViW1BQgM2bN+PatWvw8vJC79694e/vL3VYREREREREJCHZJLa3b99Ghw4dcO3aNcOaiw4ODvj555/Ro0cPiaMjIiIiIiIiqSikDqCy5syZg/j4eEyZMgXbtm3D4sWLYW9vjwkTJkgdGhEREREREUlINi22v/76K0aNGoUPP/zQsM/X1xfDhw/HxYsX0bRpUwmjIyIiIiIiIqnIpsU2MTERnTp1MtrXqVMniKKIlJQUiaIiIiIiIiIiqckmsS0sLISdnZ3RvpJtrVYrRUhERERERERkBWST2AJAfHw8jh8/bnj8/fffAIBLly4Z7S95VNfSpUsRHBwMOzs7tGvXDkeOHKnw/I0bN6JZs2aws7NDixYtsGPHjmrfm4iIiIiIiKpGNmNsAeDdd9/Fu+++W2r/yy+/bLQtiiIEQYBOp6vyPTZs2ICpU6di2bJlaNeuHRYvXozo6GhcvHgRPj4+pc4/ePAghg0bhpiYGPTp0wfr169H//79cfz4cURERFT5/kRERERERFQ1skls16xZY5H7LFy4EOPHj8eYMWMAAMuWLcP27duxevVqvPXWW6XOX7JkCXr16oXXX38dQPHszbGxsfj000+xbNkyi8RMRERERERUl8kmsR09erTZ76HRaHDs2DFMmzbNsE+hUKBHjx6Ii4sr85q4uDhMnTrVaF90dDR+/vnncu9TWFiIwsJCw3ZOTk7NAq+Jf9cEJhPjz5X4O2B6/JkSfwdMjz9T4u+AefDnanGySWwtIS0tDTqdDr6+vkb7fX19ceHChTKvSU5OLvP85OTkcu8TExOD2bNn1zzgahLUdg8+qQrUoY1h6+Vt0jLlqMg91WRlmfr/iCzDlP9vrFfFWK+I9cr0TFmvANYtOWK9Mg99Xp7JymK9qjomthKYNm2aUSvvyZMnERUVZbH7q/z8ERizEGJhQY3LEtR2UPn5myAq+VPXD0Dg/y2q8c+VP1P5MlXd4u/A/7BeEeuV6ZmqXgH8ucoV65X58OcqHSa29/Dy8oJSqSy1Lm5KSgr8/PzKvMbPz69K5wOAWq2GWq02bDs5OdUg6uphZTEP/lyJvwOmx58p8XfA9PgzJf4OmAd/rtKR1XI/5qZSqRAZGYndu3cb9un1euzevRvt27cv85r27dsbnQ8AsbGx5Z5PREREREREpsUW2/tMnToVo0ePRps2bdC2bVssXrwYubm5hlmSR40ahfr16yMmJgYA8J///AdRUVH46KOP0Lt3b3z33Xf466+/sGLFCilfBhERERERUZ3BxPY+Q4YMQWpqKmbMmIHk5GS0atUKO3fuNEwQlZiYCIXifw3dHTp0wPr16/HOO+/g7bffRuPGjfHzzz9zDVsiIiIiIiILEUSRc1FL7fjx44iMjMSxY8fw8MMPSx0OERERERGRrHCMLREREREREckaE1siIiIiIiKSNY6xJSIiIrKQpKQkJCUlSR0GUa3i7+8Pf38us1PXMbG1Av7+/pg5cyYrZDUVFhYiJiYG06ZNM1ofmIiqj/WKyPQKCwsxbNgw/P7771KHQlSrREVFYdeuXXy/quM4eRTJXlZWFlxdXZGZmQkXFxepwyGqFViviEyvpF79/vvvcHJykjocolohJycHUVFRfL8ittgSERERWVKrVq34AZzIRLKysqQOgawEJ48iIiIiIiIiWWNiS0RERERERLLGxJZkT61WY+bMmZwwgMiEWK+ITI/1isj0WK+oBCePIiIiIiIiIlljiy0RERERERHJGhNbIiIiIiIikjUmtkRERERERCRrTGyJ7hEfHw9BELB27VqpQyEiIiIiokpiYkvVduXKFUyYMAENGzaEnZ0dXFxc0LFjRyxZsgT5+flmu++5c+cwa9YsxMfHm+0elTFv3jz07dsXvr6+EAQBs2bNkjQeqnsEQajUY9++fTW+V15eHmbNmlXpsi5cuIA33ngDrVq1grOzM/z9/dG7d2/89ddfNY6FyJysuV7db926dRAEAU5OTjWOhcicrLlezZo1q8KYDhw4UOOYyDJspA6A5Gn79u14+umnoVarMWrUKERERECj0eDPP//E66+/jrNnz2LFihVmufe5c+cwe/ZsdO3aFcHBwWa5R2W888478PPzQ+vWrbFr1y7J4qC66+uvvzba/uqrrxAbG1tqf1hYWI3vlZeXh9mzZwMAunbt+sDzv/jiC6xatQqDBg3Cyy+/jMzMTCxfvhyPPvoodu7ciR49etQ4JiJzsOZ6da+cnBy88cYbcHR0rHEcROZmzfVq4MCBCA0NLbX/7bffRk5ODh555JEax0SWwcSWquzatWsYOnQogoKCsGfPHvj7+xuOTZw4EZcvX8b27dsljPB/RFFEQUEB7O3tTV72tWvXEBwcjLS0NHh7e5u8fKIHGTlypNH2oUOHEBsbW2q/FIYNG4ZZs2YZtSSNHTsWYWFhmDVrFhNbslrWXK/uNXfuXDg7O6Nbt274+eefpQ6HqELWXK9atmyJli1bGu27fv06bty4gXHjxkGlUkkUGVUVuyJTlb3//vvIycnBqlWrjJLaEqGhofjPf/5j2NZqtZgzZw4aNWoEtVqN4OBgvP322ygsLDS6Ljg4GH369MGff/6Jtm3bws7ODg0bNsRXX31lOGft2rV4+umnAQDdunUr1XWlpIxdu3ahTZs2sLe3x/LlywEAV69exdNPPw0PDw84ODjg0UcfrVECLmVrMVFl6fV6LF68GM2bN4ednR18fX0xYcIEpKenG533119/ITo6Gl5eXrC3t0dISAjGjh0LoHjsecmXN7NnzzbUu4q630dGRpbqHunp6YnOnTvj/Pnzpn2RRBYmVb0qcenSJSxatAgLFy6EjQ3bKKh2kLpe3evbb7+FKIoYMWKESV4bWQb/GlKVbd26FQ0bNkSHDh0qdf64cePw5ZdfYvDgwXjttddw+PBhxMTE4Pz589i0aZPRuZcvX8bgwYPx/PPPY/To0Vi9ejWee+45REZGonnz5ujSpQteffVVfPzxx3j77bcNXVbu7bpy8eJFDBs2DBMmTMD48ePRtGlTpKSkoEOHDsjLy8Orr74KT09PfPnll+jbty9++OEHDBgwwHQ/ICIrMmHCBKxduxZjxozBq6++imvXruHTTz/FiRMncODAAdja2uL27dvo2bMnvL298dZbb8HNzQ3x8fH46aefAADe3t74/PPP8dJLL2HAgAEYOHAgAJT6hrsykpOT4eXlZdLXSGRpUteryZMno1u3bnjyySfx/fffm/W1ElmK1PXqXuvWrUNAQAC6dOli8tdJZiQSVUFmZqYIQOzXr1+lzj958qQIQBw3bpzR/v/+978iAHHPnj2GfUFBQSIA8Y8//jDsu337tqhWq8XXXnvNsG/jxo0iAHHv3r2l7ldSxs6dO432T548WQQg7t+/37AvOztbDAkJEYODg0WdTieKoiheu3ZNBCCuWbOmUq9PFEUxNTVVBCDOnDmz0tcQmcPEiRPFe/+s79+/XwQgrlu3zui8nTt3Gu3ftGmTCEA8evRouWWb4vf8jz/+EAVBEN99991ql0FkadZWr7Zt2yba2NiIZ8+eFUVRFEePHi06OjpW4RURSc/a6tW9zpw5IwIQ33jjjWpdT9JhV2SqkqysLACAs7Nzpc7fsWMHAGDq1KlG+1977TUAKNUVODw8HJ07dzZse3t7o2nTprh69WqlYwwJCUF0dHSpONq2bYtOnToZ9jk5OeGFF15AfHw8zp07V+nyieRi48aNcHV1xeOPP460tDTDo6Sb8N69ewEAbm5uAIBt27ahqKjILLHcvn0bw4cPR0hICN544w2z3IPIEqSsVxqNBlOmTMGLL76I8PBwk5RJZA2s6f1q3bp1AMBuyDLExJaqxMXFBQCQnZ1dqfMTEhKgUChKzTbn5+cHNzc3JCQkGO0PDAwsVYa7u3up8RUVCQkJKTOOpk2bltpf0oX5/jiIaoNLly4hMzMTPj4+8Pb2Nnrk5OTg9u3bAICoqCgMGjQIs2fPhpeXF/r164c1a9aUGgdfXbm5uejTpw+ys7OxefNmLk1CsiZlvVq0aBHS0tIMM74S1RbW8n4liiLWr1+PiIiIag23IWlxjC1ViYuLC+rVq4czZ85U6TpBECp1nlKpLHO/KIqVvpc5ZkAmkiO9Xg8fHx/Dt8/3K5lgQxAE/PDDDzh06BC2bt2KXbt2YezYsfjoo49w6NChGiWiGo0GAwcOxN9//41du3YhIiKi2mURWQOp6lVmZibmzp2Ll19+GVlZWYYeVDk5ORBFEfHx8XBwcICPj0/NXiCRBKzh/QoADhw4gISEBMTExNSoHJIGE1uqsj59+mDFihWIi4tD+/btKzw3KCgIer0ely5dMprgKSUlBRkZGQgKCqry/SubJN8fx8WLF0vtv3DhguE4UW3TqFEj/Pbbb+jYsWOlvvB59NFH8eijj2LevHlYv349RowYge+++w7jxo2rVr3T6/UYNWoUdu/eje+//x5RUVHVeRlEVkWqepWeno6cnBy8//77eP/990sdDwkJQb9+/bj0D8mS1O9XJdatWwdBEDB8+PBql0HSYVdkqrKSBeHHjRuHlJSUUsevXLmCJUuWAACefPJJAMDixYuNzlm4cCEAoHfv3lW+f8li9BkZGZW+5sknn8SRI0cQFxdn2Jebm4sVK1YgODiYY5WoVnrmmWeg0+kwZ86cUse0Wq2hDqWnp5fqFdGqVSsAMHTvcnBwAFC1evfKK69gw4YN+OyzzwwzUxLJnVT1ysfHB5s2bSr16NatG+zs7LBp0yZMmzat+i+MSEJSv18BQFFRETZu3IhOnTqVOTSOrB9bbKnKGjVqhPXr12PIkCEICwvDqFGjEBERAY1Gg4MHD2Ljxo147rnnAAAPPfQQRo8ejRUrViAjIwNRUVE4cuQIvvzyS/Tv3x/dunWr8v1btWoFpVKJBQsWIDMzE2q1Gt27d6+w+9Vbb72Fb7/9Fk888QReffVVeHh44Msvv8S1a9fw448/QqGo+nc8X3/9NRISEpCXlwcA+OOPPzB37lwAwLPPPstWYJJcVFQUJkyYgJiYGJw8eRI9e/aEra0tLl26hI0bN2LJkiUYPHgwvvzyS3z22WcYMGAAGjVqhOzsbKxcuRIuLi6GL6fs7e0RHh6ODRs2oEmTJvDw8EBERES5XYsXL16Mzz77DO3bt4eDgwO++eYbo+MDBgwwfElFJCdS1SsHBwf079+/1P6ff/4ZR44cKfMYkVxI+X5VYteuXbhz5w4njZIzKadkJnn7559/xPHjx4vBwcGiSqUSnZ2dxY4dO4qffPKJWFBQYDivqKhInD17thgSEiLa2tqKAQEB4rRp04zOEcXipXp69+5d6j5RUVFiVFSU0b6VK1eKDRs2FJVKpdHSP+WVIYqieOXKFXHw4MGim5ubaGdnJ7Zt21bctm2b0TlVWe4nKipKBFDmo6yliIjM7f7lE0qsWLFCjIyMFO3t7UVnZ2exRYsW4htvvCHeunVLFEVRPH78uDhs2DAxMDBQVKvVoo+Pj9inTx/xr7/+Mirn4MGDYmRkpKhSqR64lMLo0aPLrR8AxGvXrpnypROZjTXVq7JwuR+SI2usV0OHDhVtbW3FO3fumOQ1kuUJoliFWXmIiIiIiIiIrAzH2BIREREREZGsMbElIiIiIiIiWWNiS0RERERERLLGxJaIiIiIiIhkjYktERERERERyRoTWyIiIiIiIpI1JrZEREREREQka0xsiYiIiIiISNaY2BIREREREZGsMbElq5SSkgIbGxvMnj271LGLFy9CEAR8+umnZV5bVFSE2bNno3HjxrCzs4Onpyc6deqE2NhYc4dNZNVYr4jMg3WLyPRYr6iqmNiSVfL19UVUVBS+//77Usc2bNgApVKJp59+usxrZ82ahdmzZ6Nbt2749NNPMX36dAQGBuL48ePmDpvIqrFeEZkH6xaR6bFeUVUJoiiKUgdBVJYVK1ZgwoQJOH36NCIiIgz7mzdvDj8/P+zevbvM61q1aoUGDRpg27ZtlgqVSDZYr4jMg3WLyPRYr6gq2GJLVmvgwIGwsbHBhg0bDPvOnDmDc+fOYciQIeVe5+bmhrNnz+LSpUuWCJNIVliviMyDdYvI9FivqCqY2JLV8vLywmOPPWbUBWXDhg2wsbHBwIEDy73uvffeQ0ZGBpo0aYIWLVrg9ddfx99//22JkImsHusVkXmwbhGZHusVVQUTW7JqQ4cOxT///IOTJ08CAL7//ns89thj8PLyKveaLl264MqVK1i9ejUiIiLwxRdf4OGHH8YXX3xhoaiJrBvrFZF5sG4RmR7rFVUWx9iSVcvIyICvry+mTp2KIUOGoHXr1lizZg2ee+65SpeRk5ODLl264Pbt27hx44b5giWSCdYrIvNg3SIyPdYrqiwbqQMgqoibmxuio6Px/fffQxRFqFQq9O/f33A8MzMTSUlJ8Pf3h6urKwDgzp078PT0NJzj5OSE0NBQXL9+vcLriOoK1isi82DdIjI91iuqLHZFJqs3ZMgQXL16FZ999hmio6Ph5uZmOLZp0yaEhYVh06ZNhn3h4eEYMmQI3n//fXzxxRd48cUX8cMPP2DYsGEVXkdUl7BeEZkH6xaR6bFeUWWwxZasXt++fWFvb4/s7OwKZ8Ar8eqrr2LLli349ddfUVhYiKCgIMydOxevv/66BaIlkgfWKyLzYN0iMj3WK6oMjrElIiIiIiIiWWNXZCIiIiIiIpI1JrZEREREREQka0xsiYiIiIiISNaY2BIREREREZGsMbElIiIiIiIiWWNiS0RERERERLLGxJaIiIiIiIhkjYktWYQgCJV67Nu3r8b3ysvLw6xZs6pU1rx589C3b1/4+vpCEATMmjWrxnEQmZs116tbt25h5MiRaNq0KZydneHm5oa2bdviyy+/BJdPJ2tmzfVq1qxZFcZ04MCBGsdEZA7WXK9KXLlyBcOHD4ePjw/s7e3RuHFjTJ8+vcbxkOXYSB0A1Q1ff/210fZXX32F2NjYUvvDwsJqfK+8vDzMnj0bANC1a9dKXfPOO+/Az88PrVu3xq5du2ocA5ElWHO9SktLw40bNzB48GAEBgaiqKgIsbGxeO6553Dx4kXMnz+/xjERmYM116uBAwciNDS01P63334bOTk5eOSRR2ocE5E5WHO9AoCTJ0+ia9euqF+/Pl577TV4enoiMTER169fr3E8ZDlMbMkiRo4cabR96NAhxMbGltovlWvXriE4OBhpaWnw9vaWOhyiSrHmetWyZctS35ZPmjQJTz31FD7++GPMmTMHSqVSmuCIKmDt9aply5ZG+65fv44bN25g3LhxUKlUEkVGVDFrrld6vR7PPvssmjVrhr1798Le3l7qkKia2BWZrIZer8fixYvRvHlz2NnZwdfXFxMmTEB6errReX/99Reio6Ph5eUFe3t7hISEYOzYsQCA+Ph4Q2I6e/ZsQ9eWB3UtDg4ONsdLIpKclPWqLMHBwcjLy4NGo6nxayOSijXVq2+//RaiKGLEiBEmeW1EUpGqXv366684c+YMZs6cCXt7e+Tl5UGn05ntdZL5sMX2Hn/88Qc++OADHDt2DElJSdi0aRP69+9f4TX79u3D1KlTcfbsWQQEBOCdd97Bc889Z5F4a5sJEyZg7dq1GDNmDF599VVcu3YNn376KU6cOIEDBw7A1tYWt2/fRs+ePeHt7Y233noLbm5uiI+Px08//QQA8Pb2xueff46XXnoJAwYMwMCBAwGg1DfcRHWF1PUqPz8fubm5yMnJwe+//441a9agffv2/EacZE3qenWvdevWISAgAF26dDH56ySyJKnq1W+//QYAUKvVaNOmDY4dOwaVSoUBAwbgs88+g4eHh/lfPJmGSAY7duwQp0+fLv70008iAHHTpk0Vnn/16lXRwcFBnDp1qnju3Dnxk08+EZVKpbhz507LBCxjEydOFO/99du/f78IQFy3bp3ReTt37jTav2nTJhGAePTo0XLLTk1NFQGIM2fOrHJcNbmWSGrWWK9iYmJEAIbHY489JiYmJlapDCIpWWO9KnHmzBkRgPjGG29U63oiqVhTverbt68IQPT09BRHjBgh/vDDD+K7774r2tjYiB06dBD1en3VXyBJgl2R7/HEE09g7ty5GDBgQKXOX7ZsGUJCQvDRRx8hLCwMkyZNwuDBg7Fo0SIzR1r7bNy4Ea6urnj88ceRlpZmeERGRsLJyQl79+4FALi5uQEAtm3bhqKiIgkjJrJ+1lCvhg0bhtjYWKxfvx7Dhw8HUNyKSyRX1lCvSqxbtw4A2A2ZZE/KepWTkwMAeOSRR/DNN99g0KBBeO+99zBnzhwcPHgQu3fvNsl9yPyY2NZAXFwcevToYbQvOjoacXFxEkUkX5cuXUJmZiZ8fHzg7e1t9MjJycHt27cBAFFRURg0aBBmz54NLy8v9OvXD2vWrEFhYaHEr4DI+lhDvQoKCkKPHj0wbNgwrFu3Dg0bNkSPHj2Y3JJsWUO9AgBRFLF+/XpERERwuA3JnpT1qmRozLBhw4z2l3wZe/DgwWqXTZbFMbY1kJycDF9fX6N9vr6+yMrKQn5+frljyAoLC40qYHJyMr766itMnDgR/v7+Zo3ZWun1evj4+Bi+fb5fyUQAgiDghx9+wKFDh7B161bs2rULY8eOxUcffYRDhw7BycnJkmETWTVrrFeDBw/GypUr8ccffyA6Otpk5RJZirXUqwMHDiAhIQExMTE1KofIGkhZr+rVqwcApT7T+/j4AECpyavIejGxlUBMTIxhfa17DRw4sM4mto0aNcJvv/2Gjh07VmpSmUcffRSPPvoo5s2bh/Xr12PEiBH47rvvMG7cOAiCYIGIiayfNdarkpbazMxMk5RHZGnWUq/WrVsHQRAMrUpEciZlvYqMjMTKlStx8+ZNo/23bt0C8L+kmqwfuyLXgJ+fH1JSUoz2paSkwMXFpcJKOW3aNGRmZhoev//+u7lDtXrPPPMMdDod5syZU+qYVqtFRkYGgOJvzURRNDreqlUrADC0gjs4OACA4RqiukrKepWamlrm/lWrVkEQBDz88MOVKofI2ljD+1VRURE2btyITp06ITAwsGovgMgKSVmv+vXrB7VajTVr1kCv1xv2f/HFFwCAxx9/vCovhSTEFtsaaN++PXbs2GG0LzY2Fu3bt6/wOrVaDbVabdhm99niMRMTJkxATEwMTp48iZ49e8LW1haXLl3Cxo0bsWTJEgwePBhffvklPvvsMwwYMACNGjVCdnY2Vq5cCRcXFzz55JMAisdKhIeHY8OGDWjSpAk8PDwQERGBiIiIcu//9ddfIyEhAXl5eQCKl36aO3cuAODZZ59FUFCQ+X8IRCYmZb2aN28eDhw4gF69eiEwMBB3797Fjz/+iKNHj+KVV15BaGioJX8URCYj9fsVAOzatQt37tzhpFFUa0hZr/z8/DB9+nTMmDEDvXr1Qv/+/XHq1CmsXLkSw4YNwyOPPGLJHwXVhKRzMluZ7Oxs8cSJE+KJEydEAOLChQvFEydOiAkJCaIoiuJbb70lPvvss4bzS5b7ef3118Xz58+LS5curdZyP8eOHRMBiMeOHTPp67Fm90/zXmLFihViZGSkaG9vLzo7O4stWrQQ33jjDfHWrVuiKIri8ePHxWHDhomBgYGiWq0WfXx8xD59+oh//fWXUTkHDx4UIyMjRZVKVakp36OiooyWJLn3sXfvXlO9bCKzsqZ69euvv4p9+vQR69WrJ9ra2orOzs5ix44dxTVr1nDpBJIVa6pXJYYOHSra2tqKd+7cMclrJLI0a6tXer1e/OSTT8QmTZqItra2YkBAgPjOO++IGo3GZK+ZzE8Qxfva8+uwffv2oVu3bqX2jx49GmvXrsVzzz2H+Ph47Nu3z+iaKVOm4Ny5c2jQoAHeffddPPfcc1W67/HjxxEZGYljx46xex4REREREVEVMbG1AkxsiYiIiIiIqo+TRxEREREREZGsMbElIiIiIiIiWWNiS0RERGQhZS1XQkRENcfEloiIiMhCMjIykJWVJXUYRES1DhNbIiIiIgtKTEyUOgQiolqHiS2Zzfvvv49mzZpBr9eb/V55eXlmLX/o0KF45plnzHoPosqwZL0yN9YrshaWrlfJyclmK5v1iqwJ37PIkqwysU1KSsKpU6eQm5srdShUTVlZWViwYAHefPNNKBTFv2aCIEAQBHz00Uelzl+7di0EQcBff/1VrfsVFBSUe+zxxx+HIAiYNGlSmcdXrVqFsLAw2NnZoXHjxvjkk09KnfPmm2/ixx9/xKlTp6oVH5EpWLpeVYT1imoLKerV7du3yxxny3pFtQnfs8jSrCqx3bx5M5o1a4YGDRrg4YcfxuHDhwEAaWlpaN26NX7++WdpA6RKW716NbRaLYYNG1bq2AcffGDyFlaNRlPm/p9++glxcXHlXrd8+XKMGzcOzZs3xyeffIL27dvj1VdfxYIFC4zOa926Ndq0aVPmH2IiS7F0vSoP6xXVJlLUq9zcXFy/ft1oH+sV1TZ8zyKLE63Eli1bRIVCIXbs2FGcPXu2KAiCuHv3bsPx3r17i3379pUwQvM5duyYCEA8duyY1KGYTMuWLcWRI0ca7QMgtmrVSgQgfvTRR0bH1qxZIwIQjx49Wq37XblypdS+/Px8MTg4WHzvvfdEAOLEiRONjufl5Ymenp5i7969jfaPGDFCdHR0FO/evWu0/8MPPxQdHR3F7OzsasVIVFOWrldlYb2i2sbS9erq1avi8uXLxa+++kpMS0sTRZH1imonvmeRpVlNi+17772HLl264M8//8TEiRNLHW/fvj1OnDghQWRUVdeuXcPff/+NHj16lDrWsWNHdO/eHe+//z7y8/NNds+cnJxS+95//33o9Xr897//LfOavXv34s6dO3j55ZeN9k+cOBG5ubnYvn270f7HH38cubm5iI2NNVncRJUlRb0qC+sV1SZS1qv8/Hz8/PPPOH78OBYsWMB6RbUK37NIClaT2J45c6bCAdm+vr64ffu2BSOi6jp48CAA4OGHHy7z+KxZs5CSkoLPP/+8wnIKCwuRlpZWqUdWVpbReKXExET83//9HxYsWAB7e/syyy/5oqRNmzZG+yMjI6FQKEp9kRIeHg57e3scOHCg4h8AkRlIUa/ux3pFtY3U9Uqn0+HgwYO4fPkyZsyYATs7uzLLZ70iuZG6bgF8z6qLrCaxdXBwqHCyqKtXr8LT09OCEVF1XbhwAQAQEhJS5vHOnTujW7du+OCDDyr8pu7bb7+Ft7d3pR46nc5oXcDXXnsNrVu3xtChQ8stPykpCUqlEj4+Pkb7VSoVPD09cevWLaP9NjY2CAgIwLlz5x74MyAyNSnq1f1Yr6i2sYZ6dePGDcP72NatW+Hn51fqHNYrkhtrqFt8z6p7bKQOoES3bt3w5ZdfYvLkyaWOJScnY+XKlejTp4/lA6Mqu3PnDmxsbODk5FTuObNmzUJUVBSWLVuGKVOmlHlOdHR0lbp6JCcnw9XVFXv37sWPP/5omHysPPn5+VCpVGUes7OzK/MPrbu7e5nfChKZm1T1qgTrFdVGUter7OxspKeno1mzZgCK38f69u0LZ2dn/PPPPwgJCYGtrS3rFcmO1HWL71l1k9UktvPmzcOjjz6KRx55BE8//TQEQcCuXbuwZ88eLF++HKIoYubMmVKHSSbSpUsXdOvWDe+//z5efPHFMs/x9/eHv79/pcr7/fffceXKFTRq1Aivvvoqnn32WTzyyCMVXmNvb1/ubMoFBQVldlsRRRGCIFQqJiJLM3W9KqHValmvqM4ydb26du0agOLf+8TERHh6esLR0dHoHKVSiX379uHAgQNo1KgRnJycWK+o1uF7Fpma1SS2TZs2xZ9//on//Oc/ePfddyGKIj744AMAQNeuXbF06VIEBwdLGyRViqenJ7RaLbKzs+Hs7FzueTNnzkTXrl2xfPlyuLm5lTqen5+PzMzMSt/3xo0bWLVqFS5evIjly5cjPj7e6Hh2djbi4+Ph4+MDBwcH+Pv7Q6fT4fbt20ZdUDQaDe7cuYN69eqVukd6ejoaN25c6ZiITEWKelXSJfKrr75ivaJaSar3K6C4RauwsBBBQUGlPljr9XpoNBro9XpcuHABHh4eeOaZZxAbG4uIiAj4+PhAqVSyXpHV4nsWScFqxtgCQPPmzfHbb78hLS0Nhw8fRlxcHFJSUrBnzx6EhYVJHR5VUkmXqpJvpcsTFRWFrl27YsGCBWV29diwYYPhm7oHPUokJSVBp9OhY8eOCAkJMTyA4j90ISEh+PXXXwEArVq1AoBSC4H/9ddf0Ov1huMltFotrl+/zt9FkoSU9SoxMRFFRUWsV1TrSFGvOnTogHnz5kGj0UAURVy8eBGnT582PIDipPf06dOGuSMcHBzg7OyMkydPYuvWrfjqq6+wY8cObNmyBd7e3njooYeM4mG9IqnxPYukYDUttvdyd3d/YNcBsl7t27cHUPxHoWXLlhWeO2vWLHTt2hUrVqwodaw64yo8PDywbNmyUpMIDBgwAE8++STGjx+Pdu3aAQC6d+8ODw8PfP7553jyyScN537++edwcHBA7969jco4d+4cCgoK0KFDhyrFRGQKUtaroUOHlnpzB1ivSP4sXa+GDRuG5ORkuLm5wcPDAw4ODqXOuXLlClxdXeHl5WXoouzs7AylUonU1FS4urqiqKgIN27cwLVr1zBgwAAUFhZi165dCAgIQFBQEK5cucJ6RZLiexZJwWoS248//hjbt2/Hrl27yjz+xBNPoG/fvnjppZcsHBlVVcOGDREREYHffvsNY8eOrfDcqKgoREVF4ffffy91rKpjbIHigf6iKKJx48Zo3ry50TkhISHo37+/Ydve3h5z5szBxIkT8fTTTyM6Ohr79+/HN998g3nz5sHDw8Po+tjYWDg4OODxxx+vVExEpiRFvSrRrFkzw7fv92O9IjmzdL1Sq9WG53Z2duUu76NSqYy6ZSoUCtSvXx+JiYm4evUqXFxckJOTg7t376J+/foQRREJCQlISEjAn3/+idTUVHTo0AEtW7aETqeDUql8YGxEpsT3LJKC1XRFXrVqFcLDw8s9Hh4eXuY3OWSdxo4di61bt1Zq4e1Zs2aZ/P4HDhyo1FTsL7/8MlasWIHTp09j4sSJOHDgABYtWoRp06aVOnfjxo0YOHBghWNFiMxJ6npVWaxXJCdyqVfe3t4ICgpCXl4eEhMTkZOTg4CAgDKXB7pz5w66dOmCPXv2YO3atdi6dSuOHj2K69evo6ioSILoqS6SS93ie1btIYiiKEodBAA4OTlh4cKFeOGFF8o8vnLlSrz22mtGa5XWFsePH0dkZCSOHTtW7kLWcpOZmYmGDRvi/fffx/PPP2/2+/3++++4ePFiqf2tW7dGmzZtajx73cmTJ/Hwww/j+PHjZXZvIbIES9crc2O9ImtgyXrVoEED3Lx5E25ubliwYIFZ7pGXl4fz588jLCyszK7OCoUC/v7+aNiwIRo2bGjUikxkSnzPIkuzmhZblUqF5OTkco8nJSVBobCacOkBXF1d8cYbb+CDDz6AXq+XLI4TJ05gx44dyMnJqVE5//d//4fBgwfzDxlJylrqlamwXpE1sFS9SkxMRG5uLgCgsLAQd+/eNct9kpOT4e7uXmZSCxTPuHzz5k1Dd8tff/0V//zzD/Ly8swSD9VdfM8iS7OaFtsnn3wSFy5cwKlTp0o172dmZqJVq1Zo2rQpdu7cKVGE5lMbW2wtrbwW2xI2NjZ46KGH0KJFi3IX4iYiIjK1I0eOYM6cOdi+fTvu/cglCAJatGiB3r17W81yhm5ubqhXrx7q1auH+vXrszWXiGTFappAZ86ciVu3bqFVq1b45JNPsGfPHuzZswcff/wxWrdujaSkJMycOVPqMEmmtFotjh07hvXr1+Pw4cPIzs6WOiQiIqrlfvrpJ3Ts2BG//PIL7m9HEEURZ86cwYIFC3D8+HGJIjSWkZGBc+fO4bfffsNXX32FrVu34ty5c5UaI2nt7t69ixEjRsDFxQVubm54/vnnK+zNFR8fD0EQynxs3LjRcF5iYiJ69+4NBwcH+Pj44PXXX4dWq7XESyKi+1hNiy1QPNPYhAkTDH9MgOI//CEhIfj888/Rs2dPiSM0D7bY1kybNm2QkJAABwcHTJ8+vVLXCIKA+vXro3HjxggODoatra2ZoyQiorrkyJEj6NixI3Q6Xamk9n4KhQJvvvmm1bTc3k8QBPj4+Bgmq/Lx8YGNjdUsrGHQtWtXPPfcc3juuedKHXviiSeQlJSE5cuXo6ioCGPGjMEjjzyC9evXl1mWTqdDamqq0b4VK1bggw8+QFJSEpycnKDT6dCqVSv4+fkZ9o8aNQrjx4/H/PnzzfESiagCVvVX6fHHH8fly5dx4sQJXLlyBQDQqFEjPPzwwzWe/Idqr+TkZKSlpRktjfAgoijixo0buHHjBmxsbBAUFIRGjRohICCAyyIQEVGNzZ07F6IoPjCpLbFjxw68/PLLZo6qekRRREpKClJSUgAUJ+I+Pj6GL4hdXFwkjrBi58+fx86dO3H06FG0adMGAPDJJ5/gySefxIcffoh69eqVukapVJaacXrTpk145pln4OTkBAD49ddfDS3cvr6+aNWqFebMmYM333wTs2bN4tAnIguzqsQWKP5jGRkZicjISKlDoTpCq9XiypUruHLlCmxtbREYGIiGDRsiICDAKr+RJiIi65aYmIht27ZVOqnV6/X4+++/cffu3VLrZlojvV6P5ORkJCcn4/jx4+jbty98fX2lDqtccXFxcHNzMyS1ANCjRw8oFAocPnwYAwYMeGAZx44dw8mTJ7F06VKjclu0aGH02qOjo/HSSy/h7NmzaN26tWlfCBFVyOo+tZ87dw5Xr15Fenp6mW8Io0aNkiAqqiuKioqMktyAgAA0bNgQgYGBTHKJiCxMo9HIcrzijh07Kp3UlhBFEefPn0f79u3NFJX5nDp1ClFRUVY72VRycjJ8fHyM9tnY2MDDw6PCFTnutWrVKoSFhaFDhw5G5d6f0JdsV7ZcIjIdq/mkfuXKFYwcORJHjhwp981AEAQmtmQxRUVFuHr1Kq5evQpbW1sEBQUhNDQUDRo04NJTRERmptFocOTIkRov1yaFU6dOQRCEKiW3giAgMzNTlq/3zJkzsLW1RceOHS3a/Xb+/PlGY1nz8/Nx6NAhTJo0ybDv3LlzNb5Pfn4+1q9fj3fffbfGZRGR+VhNYjthwgScPn0aixcvRufOneHu7i51SEQGRUVFuHz5Mi5fvgw7OzuEhoaiadOm8PT0lDo0IqJaSavVIicnByqVympbAsvj7u5erRZbOzs72XxxqlQq4erqCjc3Nzg6OqKwsBBardaiie2LL76IZ555xrA9YsQIDBo0CAMHDjTsq1evHvz8/HD79m2ja7VaLe7evVtqHG1ZfvjhB+Tl5ZVqXPHz88ORI0eM9pWMQ65MuURkWlaT2B44cABvv/02XnnlFalDIapQQUEBzpw5gzNnzsDLywthYWEIDQ3lzMpERGagVqthZ2cndRhV0rFjx2q12DZt2tTqE9uStW7d3d0NsRYUFEiyjJ6Hh4fRmGR7e3v4+PggNDTU6Lz27dsjIyMDx44dM8zhsmfPHuj1erRr1+6B91m1ahX69u0Lb2/vUuXOmzcPt2/fNnR1jo2NhYuLC8LDw2v68oioiqzmr6eXlxdcXV2lDoOoStLS0rB//36sW7cOBw8eRGZmptQhERGRxPz8/NC5c+dKz7KvUCgQHh5utb3VlEolfHx80Lp1a7Ro0QKenp5Wn4DfKywsDL169cL48eNx5MgRHDhwAJMmTcLQoUMNMyLfvHkTzZo1K9UCe/nyZfzxxx8YN25cqXJ79uyJ8PBwPPvsszh16hR27dqFd955BxMnTpRdLwOi2sBq/iq9+OKL+Oabb6DT6aQOhajKNBoNzpw5g++//x67du3ipBFERHXc888/DwCVXq6wZ8+e5gynypRKJXx9fREeHo527dqhadOmhmVu5GjdunVo1qwZHnvsMTz55JPo1KkTVqxYYTheVFSEixcvIi8vz+i61atXo0GDBmX+/yiVSmzbtg1KpRLt27fHyJEjMWrUKLz33ntmfz1EVJrVdEVu0qQJdDodHnroIYwdO7bc9UTvHTdBZG1EUURCQgISEhLg6+uL1q1bIyAggOswExHVMc2bN0dMTAymTZsGAGV+cV/S6jl69GgEBgZaNL7yqNVqNGjQAL6+vrJb133fvn3lHvPw8MD69evLPR4cHFxm1/H7J6i6X1BQEHbs2FGlOInIPKwmsR0yZIjh+X//+98yzxEEgS26JBspKSnYuXMnvLy80Lp1awQHBzPBJSKqQ7p3747Vq1dj1apV2L9/v1HiJAgCwsLC0LNnT8mTWrVaDTc3N3h6ehqNnSUikhOrSWz37t0rdQgkQ4mJicjNzQUAFBYWWuXi9mlpaYiNjYW7uztatWqFRo0a8UMDEVEd0bx5cyxcuBDJyckYNmwYsrOzYW9vj9dff12yMbVOTk5wcXGBs7MzXF1dOR6UiGoFq0lso6KipA6BZOTIkSOYM2cOtm/fbvgGPD8/H2+//TZatGiB3r17Izg4WNog75Oeno69e/fi6NGjiIiIQNOmTflhgoiojvDz84O9vT2ys7OhUqksmtQqlUp4eHjA09MTbm5unMWfiGolq2s2KiwsRFxcHDZv3oy0tDSpwyEr9NNPP6Fjx4745ZdfSo2HEUURZ86cwYIFC3D8+HGJIqxYTk4ODh06hHXr1mH//v24c+eO1CFV2927dzFixAi4uLjAzc0Nzz//PHJyciq8pmvXrhAEwejx4osvGo6vXbu21PGSx/3rEBIRUdnUajX8/f3RvHlzPProo2jWrBm8vb2Z1BJRrWVVie3HH38Mf39/dOrUCQMHDsTff/8NoLgrp5eXF1avXi1xhCS1I0eOYMiQIdDpdOWOt9br9dDr9Vi5ciXi4+MtG2AVaLVanD9/Hj/++CM2b96MK1euQK/XSx1WKV27dsXatWvLPDZixAicPXsWsbGx2LZtG/744w+88MILDyxz/PjxSEpKMjzef/99w7EhQ4YYHUtKSkJ0dDSioqIM6wQSEVFpjo6OCAoKwsMPP4xHHnkEoaGh8PDw4PAXIqoTrKYr8po1azB58mQMHToUPXv2xNixYw3HvLy80L17d3z33XdG+6numTt3LkRRrPSi9zt27MDLL79s5qhqLiUlBSkpKXB2dkZkZCQaN25s9RNNnT9/Hjt37sTRo0fRpk0bAMAnn3yCJ598Eh9++KFhbcCyODg4wM/Pr8xj9vb2sLe3N2ynpqZiz549WLVqlWlfABFRLaBUKuHt7Q1/f39ZL8dDRFRTVvMV3kcffYR+/fph/fr1eOqpp0odj4yMxNmzZyWIjKxFYmIitm3bVumZsfV6Pf7++2/cvXvXzJGZTnZ2Nvbt24dffvkFGo1G6nAqFBcXBzc3N0NSCwA9evSAQqHA4cOHK7x23bp18PLyQkREBKZNm1Zq3cB7ffXVV3BwcMDgwYNNFjsRkZzZ2NjA29sbYWFhaNeuHRo3bsyklojqPKtpsb18+TJeffXVco97eHjIeiyitdBoNNBqtVKHUS07duyodEttCVEUcf78ebRv395MUZlHYmIi9u/fj8cee0zqUMqVnJxcqmuwjY0NPDw8kJycXO51w4cPR1BQEOrVq4e///4bb775Ji5evIiffvqpzPNXrVqF4cOHG7XiEhHVNWq1Gl5eXvD09ISLi4vV9+ohIrI0q0ls3dzcKpws6ty5c+V2XaTK0Wg0OHLkyAMn97FWp06dgiAIVUpuBUFAZmamLF/zhQsX0LlzZ6hUKove9/7F6PPz83Ho0CFMmjTJsO/cuXPVLv/eMbgtWrSAv78/HnvsMVy5cgWNGjUyOjcuLg7nz5/H119/Xe37ERHJmYeHB+rVqwc3Nzcms0REFbCaxPbJJ5/EihUryhwPefbsWaxcuZLja2tIq9UiJycHKpVKlsvMuLu7V6vF1s7OTnYTZ5TErdVqLZ7Yvvjii3jmmWcM2yNGjMCgQYMwcOBAw7569erBz8+v1CzFWq0Wd+/erdKXUO3atQNQ3Gvj/sT2iy++QKtWrRAZGVmdl0JEJEsKhQK+vr6oX78+e6sQEVWS1SS2c+fORbt27RAREYGnnnoKgiDgyy+/xOrVq/Hjjz/C398fM2bMkDrMWkGtVsPOzk7qMKqsY8eO1Wqxbdq0qewS24omVzI3Dw8PeHh4GLbt7e3h4+OD0NBQo/Pat2+PjIwMHDt2zJB47tmzB3q93pCsVsbJkycBAP7+/kb7c3Jy8P333yMmJqaar4SISH78/PwQFBRk8S81iYjkzmo+7derVw/Hjh1Dr169sGHDBoiiiK+//hpbt27FsGHDcOjQIXh5eUkdJknIz88PnTt3hlKprNT5CoUC4eHhcHd3N3NkpqNUKhEUFISwsLBKv06phIWFoVevXhg/fjyOHDmCAwcOYNKkSRg6dKhhRuSbN2+iWbNmOHLkCADgypUrmDNnDo4dO4b4+Hhs2bIFo0aNQpcuXdCyZUuj8jds2ACtVouRI0da/LUREVmara0tIiIi0LhxYya1RETVYBUttoWFhdi1axeCg4PxxRdf4IsvvkBqair0ej28vb1l19pG5vP888/jwIEDlW657dmzpwWiqjmVSgU/Pz/Uq1cPtra2KCgokDqkSlm3bh0mTZqExx57DAqFAoMGDcLHH39sOF5UVISLFy8aZj1WqVT47bffsHjxYuTm5iIgIACDBg3CO++8U6rsVatWYeDAgXBzc7PUyyEikoSjoyPCw8Nl2ZuKiMhaWEViq1Kp8PTTT2PJkiWGVhtvb2/J4lm6dCk++OADJCcn46GHHsInn3yCtm3blnnu2rVrMWbMGKN9arVaNomJ3DRv3hwxMTGYNm0aAJS59E/JFyGjR49GYGCgReOrKg8PD/j6+sLT09NqJwXZt29fucc8PDywfv36co8HBwcbfQEREBCA33//vVL3PXjwYKVjJCKSKycnJ7Ro0QI2NlbxkYyISLas4q+oIAho3LhxhbMiW8qGDRswdepULFu2DO3atcPixYsRHR2NixcvllrapISLiwsuXrxo2LbWBKW26N69O1avXo1Vq1Zh//79RomTIAgICwtDz549rTapdXBwgK+vL3x8fNjdjIioDlMqlQgLC2NSS0RkAlbzl/Ttt9/G1KlT8fTTT6Np06aSxbFw4UKMHz/e0Aq7bNkybN++HatXr8Zbb71V5jWCIHApIgtr3rw5Fi5ciOTkZAwbNgzZ2dmwt7fH66+/bpVjam1sbODt7Q1fX184OTnxyw8iIkKjRo3Y/ZiIyESsJrE9dOgQPD09ERERga5duyI4OLjUFPeCIGDJkiVmi0Gj0eDYsWOGbq5AcbfWHj16IC4urtzrcnJyEBQUBL1ej4cffhjz589H8+bNyz2/sLAQhYWFRtdT9fj5+cHe3h7Z2dlQqVRWldQKggB3d3f4+vrCw8ODY8WJiMjA0dGx3J5gRERUdVaT2H766aeG57t37y7zHHMntmlpadDpdPD19TXa7+vriwsXLpR5TdOmTbF69Wq0bNkSmZmZ+PDDD9GhQwecPXsWDRo0KPOamJgYzJ492+Txk3VwdnaGj48PvL29YWtrK3U4RERkherXr8/eO0REJmQ1ia1er5c6hGpp37492rdvb9ju0KEDwsLCsHz5csyZM6fMa6ZNm4apU6catk+ePImoqCizx0rmY2dnBx8fH/j4+JTqaUBERAQAnp6e0Ov1sLe3l3SSTCKi2shqEltr4OXlBaVSiZSUFKP9KSkplR5Da2tri9atW+Py5cvlnqNWq6FWqw3bTk5O1QuYJOfp6Ql/f3+4ubnxm3ciIqrQ119/jbS0NKSnp3N4ChGRiVndX9VDhw4hJiYGU6ZMwaVLlwAAeXl5OH78uNnHoqpUKkRGRhp1hdbr9di9e7dRq2xFdDodTp8+DX9/f3OFSRITBAH+/v545JFHEB4eDnd3dya1RERUafxCm4jI9KymxVaj0WDo0KHYvHkzRFGEIAh46qmn0LhxYygUCvTs2RNTpkzB9OnTzRrH1KlTMXr0aLRp0wZt27bF4sWLkZuba5gledSoUahfvz5iYmIAAO+99x4effRRhIaGIiMjAx988AESEhIwbtw4s8ZJ0vD19UVgYCBnsSQiomrjewgRkelZTWL77rvvYtu2bfj888/RrVs3oyV/7Ozs8PTTT2Pz5s1mT2yHDBmC1NRUzJgxA8nJyWjVqhV27txpmFAqMTHRqPtQeno6xo8fj+TkZLi7uyMyMhIHDx5EeHi4WeMkyxEEAT4+PggICOD4WSIiqhGlUsk1zImIzMBqEttvv/0WL730El544QXcuXOn1PGwsDBs3LjRIrFMmjQJkyZNKvPYvn37jLYXLVqERYsWWSAqsjS1Wg1fX1/4+/vzQwgREZmENS1LR0RUm1hNYnv79m20aNGi3ONKpRJ5eXkWjIjqKk9PT/j5+XHsLBERERGRTFhNYhsQEFDuWrEAcODAAYSGhlowIqpLbG1t4e/vDz8/P6MZq4nqsqKiIq7FTERERLJgNbMiDx8+HMuXL0dcXJxhX0lr2cqVK/H9999j1KhRUoVHtZSNjQ1CQkLwyCOPICgoiEkt0T00Go3UIRARERFVitW02E6fPh2HDh1Cly5dEBYWBkEQMGXKFNy9exc3btzAk08+iSlTpkgdJtUiPj4+aNiwIVukiMqhVCqlDoGIiIioUqymxValUmHnzp1Ys2YNGjZsiGbNmqGwsBAtW7bE2rVrsXXrVn7IIpNQKBRo2rQpmjZtyqSWqAKiKEodAhEREVGlSNZiO3XqVDz77LNo3bo1gOJldLy9vTFy5EiMHDlSqrCollOpVGjevDmcnJykDoXI6mk0Gi5xRURERLIgWYvt4sWLcf78ecN2SEgINm3aJFU4VAc4OTmhVatWTGqJKqmgoEDqEIiIiIgqRbIWW19fX1y9etWwzS5vZE5eXl5o0qQJu7MTVQETWyIiIpILyRLb3r1747333sOvv/4KNzc3AMBHH32E7777rtxrBEHA5s2bLRQh1RZBQUEICAjgmrREVVRUVCR1CERERESVIlliu2TJEvj4+GDv3r04e/YsBEHA9evXcffu3XKvYWJCVaFUKtG0aVN4enpKHQqRLOXl5UGv10OhsJp5BomIiIjKJFli6+joiPnz5xu2FQoFFi9ejOHDh0sVEtUitra2iIiI4HhaohrQ6XRIS0uDj4+P1KEQERERVUiyr+EHDhyI/fv3G7b37t2Lxx9/XKpwqBaxsbFBixYtmNQSmcDFixelDoGIiIjogSRLbDdv3ozExETDdvfu3REbGytVOFSLhIWFwdHRUeowiGqFy5cvc6wtERERWT3JEtv69evjxIkThm1RFDmGlqrF09MTHh4ecHZ2Rr169QyTkRFRzRUVFSEpKUnqMIiIiIgqJNkY26FDh+LDDz/E999/b0hE3nrrLcTExJR7jSAIOHXqlIUiJLn4+uuv8c8//yA1NRWBgYFSh0NU6yQlJbFuERERkVWrUmIbEhJS5VZVQRBw5cqVUvtjYmIQGhqKvXv34vbt2xAEAY6OjpzBlqrNy8sLtra2UodBVOvcuHED7dq1kzoMIiIionJVKbGNiooqldj+9ddfOHv2LMLDw9G0aVMAxZONnDt3DhEREYiMjCyzLKVSiRdeeAEvvPACgOJZkd955x3OikzV5uHhIXUIRLXSnTt3kJKSAl9fX6lDISIiIipTlRLbtWvXGm3//PPP+PnnnxEbG4vHHnvM6FhsbCyeeeYZzJkzp1JlX7t2Dd7e3lUJh8iIs7Oz1CEQ1Vp//vkn+vXrBxsbyUawEBEREZWrRpNHzZgxA6+88kqppBYAHn/8cUyaNAnvvPNOpcoKCgqCg4NDTcKhOkyhUECtVksdBlGtdefOHcTGxnKGZCIiIrJKNUpsL126VOGYWE9PzzLH1wLFiYiNjQ00Go1hW6lUVvhgSwGVx8bGhrNqE5nZ9evXsWnTJiQnJ0sdChEREZGRGmWKjRo1wpo1a/D888/DycnJ6Fh2djZWr16Nhg0blnntjBkzIAiCIVkt2SaqDoVCspWriOqUjIwMbNmyBY0bN0bbtm25ZjQRERFZhRoltnPnzsXgwYPRrFkzPPfccwgNDQVQ3JL75ZdfIiUlBRs3bizz2lmzZlW4TVQVTGyJLOvSpUu4du0aWrVqhZYtW7JHDREREUmqRp9E+vfvjx07duDNN9/E/PnzjY61atUKq1atQnR0dI0CJKoMpVIpdQhEdY5Wq8Vff/2F8+fP4+GHH0aTJk1YF4mIiEgSNf6KvWfPnujZsyeSk5ORkJAAoHgiKD8/v0qXUVhYiG+++Qa//vorrly5guzsbDg7OyM0NBS9evXC8OHDoVKpahoq1WJsLSIyrTZt2uD69euws7PD9OnTKzw3NzcX+/fvx4kTJ9CyZUs0a9aMdZKIiIgsymSfPPz8/KqUzJY4ffo0+vXrh4SEBIiiCFdXVzg5OeH27ds4fvw4Nm7ciHnz5mHLli0ICwszVbhUy9ja2kodAlGtkpycjNu3b8PNza3S1+Tk5ODgwYM4ceIEIiIiEBYWBjs7O/MFSURERPSvGg9MTExMxIsvvoimTZvCw8MDf/zxBwAgLS0Nr776Kk6cOFHutTk5Oejbty9SUlIwb948XL9+Henp6Ub/zp07F7du3cJTTz2F3NzcmoZLtRRbh4isR35+Po4ePYp169Zh7969uHXrFkRRlDosIiIiqsVqlA2cO3cOnTt3hl6vR7t27XD58mVotVoAgJeXF/7880/k5uZi1apVZV6/Zs0aJCYmYvfu3ejatWup4/Xr18e0adPQrl07PP7441i7di0mTpxYk5CplmKLLZH10el0uHTpEi5dugQHBweEhIQgODgY/v7+nPCNiIiITKpGie0bb7wBNzc3HDp0CIIgwMfHx+h47969sWHDhnKv3759O3r27FlmUnuv7t274/HHH8fWrVuZ2FKZ+CGZyLrl5eXh7NmzOHv2LNRqNRo0aICAgAA0aNAADg4OUodHREREMlejxPaPP/7AjBkz4O3tjTt37pQ6HhgYiJs3b5Z7/enTp/Hqq69W6l7du3fHkiVLqh0rERFZh8LCQly5cgVXrlwBALi5ucHf3x/16tWDv78/E10iIiKqsholtnq9vsIPIKmpqVCr1eUev3v3bqUnnPL19cXdu3erHCPVDWyxJZKvjIwMZGRk4Pz58wAAd3d3NGjQAMHBwfD19WX9JiIiogeqUWL78MMPY/v27Xj55ZdLHdNqtfjuu+/w6KOPlnt9YWFhpcdG2tjYQKPRVDtWqt24diZR7ZGeno709HScPn0a9vb2aNy4MZo0aQIPDw+pQyMiIiIrVaPEdtq0aejTpw9eeuklDB06FACQkpKC3377DfPnz8f58+fx6aefVlhGfHw8jh8//sB7Xbt2rSahEhFRJSUmJhpmoS8sLMTdu3clSyrz8/Px999/4++//4aXlxdCQ0MREhICZ2dnSeIhIiIi6ySINVyD4euvv8Z//vMfZGZmQhRFCIIAURTh4uKCzz//HMOGDSv3WoVCAUEQKnWfkrJ1Ol1NwrVKx48fR2RkJI4dO4aHH37YbPfJy8vDH3/8AWdnZ64taeUKCgqQnZ2NLl26cLwhWcyRI0cwZ84cbN++3Wh5HkEQ0KJFC/Tu3RvBwcHSBXgPb29vBAcHIzg4GG5ubpV+L5GDu3fv4pVXXsHWrVuhUCgwaNAgLFmyBE5OTuVes2LFCqxfvx7Hjx9HdnY20tPTS61BXJ1ypcT3LPngexYRWYMaL/757LPPYuDAgYiNjcWlS5eg1+vRqFEjREdHP/Ab9TVr1tT09kREZAI//fQThgwZAlEUS605K4oizpw5gzNnzmD8+PFm/QKuslJTU5GamoqjR4/CxcUFgYGBaNCgAfz8/KBSqaQO74G6du2K5557Ds8991ypYyNGjEBSUhJiY2NRVFSEMWPG4IUXXsD69evLLS8vLw+9evVCr169MG3atDLPqU65REREclHtxDYvLw8BAQF466238Prrr6N///5VLmP06NHVvT0REZnIkSNHMGTIEOh0ulJJbQm9Xg8AWLlyJd58802rabkFgKysLEPiLQgCvL29Ub9+fdSvXx++vr6yGoN//vx57Ny5E0ePHkWbNm0AAJ988gmefPJJfPjhh6hXr16Z102ePBkAsG/fPpOWS0REJBfVnmrSwcEBNjY2cHR0NGU8RERkYXPnzi2zpbY8O3bsMHNE1SeKIm7fvo0TJ05g27Zt+Prrr7F//36kp6dLHVqlxMXFwc3NzZB8AkCPHj2gUChw+PBhqyuXiIjIWtRoDYVBgwbhhx9+qPSHISIisi6JiYnYtm1bpecv0Ov1+Pvvv2Wz/JpGo8H58+fxww8/4OjRo4aWZ2uVnJwMHx8fo302Njbw8PBAcnKy1ZVLRERkLWo0xnbo0KF4+eWX0a1bN4wfPx7BwcGwt7cvdZ41jMciIjIXjUYDrVYrdRjVsmPHjip/OSmKIs6fP4/27dubKSrzOHbsGJKSktCzZ0+LT0Y0f/58zJ8/37Cdn5+PQ4cOYdKkSYZ9586ds2hMREREtUmNEtuuXbsanu/fv7/U8do8kzEREVCc1B45cgQ5OTlSh1Itp06dMsxmX1mCICAzM1OWr/natWs4evQo2rVrZ9FJpl588UU888wzhu0RI0Zg0KBBGDhwoGFfvXr14Ofnh9u3bxtdq9VqcffuXfj5+VX7/uYql4iIyFrUKLHlrMZEVNdptVrk5ORApVJBrVZLHU6Vubu7V6vF1s7ODgpFjUazWJyjoyOCgoKQm5sLrVZr0cTWw8PDaC1ge3t7+Pj4IDQ01Oi89u3bIyMjA8eOHUNkZCQAYM+ePdDr9WjXrl2172+ucomIiKxFjRJbzmpMRFRMrVbLcq3Njh07VqvFtmnTprJKbN3c3BAeHo6ioiJkZ2dLHU65wsLC0KtXL4wfPx7Lli1DUVERJk2ahKFDhxpmLr558yYee+wxfPXVV2jbti2A4jG0ycnJuHz5MgDg9OnTcHZ2RmBgIDw8PCpVLhERkZzVeB1bUzt37hyuXr2K9PT0Mj9ojRo1SoKoiIhqJz8/P3Tu3BkHDhyo1LARhUKBsLAwuLu7WyC6mrOxsUFgYCDq1asHQRBQVFQkdUgPtG7dOkyaNAmPPfYYFAoFBg0ahI8//thwvKioCBcvXkReXp5h37JlyzB79mzDdpcuXQAU96wqWSv3QeUSERHJWZUS27Fjx0IQBKxYsQJKpRJjx4594DWCIGDVqlUPPO/KlSsYOXIkjhw5Um7LgSAITGyJiEzs+eefx4EDByrdctuzZ08LRFVz9erVQ2BgIGxtbaUOpZTy1psFirstr1+/vtzjwcHBpf6fZs2ahVmzZlV4zweVS0REJGdVSmz37NkDhUIBvV4PpVKJPXv2QBCECq950PESEyZMwOnTp7F48WJ07txZNq0BRERy17x5c8TExGDatGkAUGbLbUm349GjRyMwMNCi8VWFUqmEl5cXAgICypyln4iIiGqnKiW28fHxFW7XxIEDB/D222/jlVdeMVmZRERUOd27d8fq1auxatUq7N+/36hFUBAEhIWFoWfPnlaZ1Do4OMDd3R1ubm5wc3OT1dhfIiIiMg2reff38vKCq6ur1GEAAJYuXYrg4GDY2dmhXbt2OHLkSIXnb9y4Ec2aNYOdnR1atGiBHTt2WChSIiLTad68ORYuXIitW7fC2dkZQPHsve+++y7GjRtnNUmtnZ0d/Pz80KxZM7Rr1w6RkZFo2LAhPDw8mNQSERHVUVbzCeDFF1/EN998I/matxs2bMDUqVMxc+ZMHD9+HA899BCio6NLrf9X4uDBgxg2bBief/55nDhxAv3790f//v1x5swZC0dORGQafn5+hm68KpVK8qEhtra28Pb2RmhoKNq0aYNHHnkEjRs3hre3t0WX7CEiIiLrVeNZkX/55RcsXLgQx48fR2ZmZpkTj1QmWW3SpAl0Oh0eeughjB07FgEBAVAqlaXOu3cxe3NYuHAhxo8fjzFjxgAonmly+/btWL16Nd56661S5y9ZsgS9evXC66+/DgCYM2cOYmNj8emnn2LZsmVmjZWIqDZSq9VwdXWFi4sLXF1dYW9vX+n5GoiIiKhuqlFi++OPP+KZZ55B8+bNMXToUHz++ecYPnw4RFHE5s2b0bhxY/Tv379SZQ0ZMsTw/L///W+Z5wiCYNYWXY1Gg2PHjhkmUAGKJ0zp0aMH4uLiyrwmLi4OU6dONdoXHR2Nn3/+udz7FBYWorCw0LCdk5MDANBqtWZdiqKoqAharRa5ubnQarVmuw/VXGFhoeH3QQ7Lk9RltbVe6fV6AIAoimb/HbS1tYWzs7MhmVWpVIZEVq/XIzc312T3Yt2Sj9pat2oj1it50Wg0rFMyYWNjY3U9k6xxpYESNUpsY2Ji0LZtW/z5559IT0/H559/jrFjx6J79+6Ij4/Ho48+ipCQkEqVtXfv3pqEYhJpaWnQ6XTw9fU12u/r64sLFy6UeU1ycnKZ5ycnJ5d7n5iYGKP1Bku0a9euGlETEZlPVlYW3njjDanDICIiIitQmWUBpVKjxPbcuXOIiYmBUqmEjU1xUSXf1AUHB+Pll1/GggULKrX2bFRUVE1CkZVp06YZtfKePHkSUVFROHz4MFq3bm3We/NbOvmwxm/pqGy1sV6FhYUhKSkJrq6umDdvXo3Lc3d3R7169eDn5wdvb2/De4YUWLfkozbWrdqK9Uoe8vLysH//fqhUKqjVaqnDoQoUFhZCo9Ggc+fOcHBwkDocWajRJwsHBwfDHzE3Nzeo1WokJSUZjvv6+uLatWtVLvfcuXNISEgAAAQFBSE8PLwmYVaal5cXlEolUlJSjPanpKTAz8+vzGv8/PyqdD5QPH7s3j8mTk5OAIrfFMzdvG/N3QeI5Ko21quS2YUFQajW61MoFKhfvz4aNmyIwMBArilL1VIb6xaRlGxtbWFjYwNHR0fY2dlJHQ5VwMbGBnq9Hra2tvxbWEk1mhW5adOmOHfunGG7VatW+Prrr6HValFQUID169dXaXmIzZs3o1GjRmjRogX69OmDPn36oEWLFggNDcWWLVtqEmqlqFQqREZGYvfu3YZ9er0eu3fvRvv27cu8pn379kbnA0BsbGy55xMR1Waurq549NFHMWLECDzxxBNo2rQpk1oiIiIyuxq12A4cOBAff/wxPvzwQ6jVakyfPh39+vWDm5sbBEFAbm4uVq9eXamyduzYgUGDBiEoKAjz589HWFgYAOD8+fNYsWIFBg4ciG3btqFXr141CfmBpk6d+v/t3Xl4DWffB/DvZD/ZhWw0m8SWhiLEFmKndkIrqOBBWrVWX7WLhqY8PNbX09I+tkYpLUpb+9rYEvtWQrPQNCJkEZH13O8ffXJepwmyncyc+H6u61yXuWfmnt+EX47fzD33IDg4GM2aNYOfnx+WL1+Op0+famZJHj58OGrVqoXw8HAAwKRJkxAQEIClS5eiZ8+e2Lp1K6Kjo7F27VqdxklEpCQ1atRA06ZN4ebmxhmMiYiIqNKVqbDNzs7G7t27kZeXh9mzZ+Px48dwdnZGr169cOzYMfzwww8wNDREz5490aFDhxL1GRYWhkaNGuHkyZOwsLDQtPfp0wfjx4+Hv78/5s+fr/PC9t1338XDhw8xd+5cJCUloXHjxti3b59mgqiEhATNED0AaN26NbZs2YLZs2dj5syZqFOnDnbt2gUfHx+dxklEpAQWFhZo0aIFPD09WdASERGRbEpd2CYnJ6N169aIjY2FEAKSJEGlUmHXrl3o3Lkz2rZti7Zt25Y6kCtXruCzzz7TKmoLWVhYYMSIEZg5c2ap+y2L8ePHY/z48cWuO3bsWJG2QYMGYdCgQTqOiohIOQwMDNCwYUM0bdqUz/4QERGR7Epd2IaFhSEuLg5TpkxBx44dcefOHYSFhSEkJAR3794tcyBmZmZ4/PjxC9c/fvyYD7kTESlArVq14O/vDxsbG7lDISIiIgJQhsL2wIEDGD58OJYsWaJpc3R0xJAhQ3Dr1i3Uq1evTIF07NgRK1asQPfu3YtMvHT27FmsXLkSXbt2LVPfRERUfpIkoUWLFmjYsCGHHRMREZGilLqwTUhIwCeffKLV5u/vDyEEHjx4UObCdvHixWjVqhX8/f3h5+en6efWrVs4d+4cHBwcsGjRojL1TUREpePk5IS8vDzNSBlJktC5c2d4eHjIHBkRERFRUaUubHNycooMCS5cLs9L1D08PHDlyhWEh4fjl19+wbZt2wD89R7bSZMmYfr06XBwcChz/0REVHLR0dG4ePEioqKiAAAtW7ZkUUtERESKVaZZkePi4nDhwgXNcnp6OgAgJiYGtra2RbZv2rRpifp1cHDAsmXLsGzZsrKERUREOuDo6MiZ3omIiEjRylTYzpkzB3PmzCnSPm7cOK3lwlmTCwoKyhYdERHJrmnTpnymloiIiBSt1IXt+vXrK+TAo0aNgiRJWLt2LQwNDTFq1KhX7iNJEr7++usKOT4REb2alZUV3njjDbnDICIiInqpUhe2wcHBFXLgI0eOwMDAAGq1GoaGhjhy5Mgr7wjwjgERUeVyd3fn714iIiJSvDINRa4IcXFxL10mIiL5ubq6yh0CERER0SsZyB1AoYSEBDx79uyF6589e4aEhIRKjIiI6PVmYGAAR0dHucMgIiIieiXFFLYeHh7YuXPnC9f/+OOPfNUEEVElsrS0hJGRbAN7iIiISiQnJ0fuEEgBFFPYCiFeuj4vLw8GBooJl4ioyjM1NZU7BCIiolfKy8uDWq2WOwySmayX4jMyMpCWlqZZfvToUbHDjdPS0rB161Y4OztXYnRERK83Q0NDuUMgIiIqkby8PF6Qfc3JWtguW7YMn376KYC/ZjyePHkyJk+eXOy2QggsWLCgEqMjInq9sbAlIiJ9kZuby8L2NSdrYdu1a1dYWlpCCIFp06YhKCgITZs21dpGkiRYWFjA19cXzZo1kylSIqLXj7GxsdwhEBERlUh2djasrKzkDoNkJGth26pVK7Rq1QoA8PTpUwQGBsLHx0fOkIiI6L9MTEzkDoGIiKhEnjx5Ant7e7nDIBkpYjamrKwsrFy5Er/88ovcoRAR0X9ZWFjIHQIREVGJpKSkvHIyWqraFFHYmpubw8jIiP+JIiIiIiKiUsvJyUFycrLcYZCMFFHYAkBgYCB27NjBKy1ERERERFRqCQkJfO3Pa0zWZ2yfN3jwYIwbNw4dOnTAmDFj4O7uDpVKVWS7v08uRURERERElJ2djfv378PV1VXuUEgGiils27dvr/nzyZMni6wXQkCSJBQUFFRiVEREREREpC8SEhJgY2MDGxsbuUOhSqaYwnb9+vVyh0BERERERHpMCIHr16/D29sbtra2codDlUgxhW1wcLDcIRARERERkZ4rKCjA1atX4eLiAldXVxgYKGZaIdIhxRS2z8vMzMS9e/cAAC4uLrC0tJQ5IiIiIiIi0if37t3Dw4cP4eXlhWrVqskdDumYoi5fREVFoUOHDqhWrRp8fHzg4+ODatWqoWPHjoiOjpY7PCIiIiIi0iPZ2dm4du0abt++zbl6qjjF3LE9e/Ys2rdvDxMTE4wePRoNGjQAANy8eRPffvst2rVrh2PHjsHPz0/mSImIiIiISJ88ePAA6enpqFOnDp+9raIUU9jOmjULtWrVwq+//gonJyetdaGhoWjTpg1mzZqFgwcPyhQhEREREREpyXvvvYeHDx/CzMwMU6dOfem22dnZuHr1KqpXrw5XV1c+7ljFKGYo8tmzZxESElKkqAUAR0dHjB07FmfOnJEhMiIiIiIiUqJHjx4hJSUFT548KdU+Fy9exOXLl5GUlIS8vDwdRkiVRTF3bA0MDJCfn//C9QUFBZzRjIiIiIiIKkRGRgYyMjIQExMDW1tbVKtWDba2trCwsIAkSXKHR6WkmMK2devW+N///V8MGTIEbm5uWusSEhKwZs0atGnTRqboiIiIiIioqkpLS0NaWhoAwNjYGDY2Nppi18zMTN7gqEQUU9h+9tlnaNeuHerXr4/+/fujbt26AIBbt25h9+7dMDIyQnh4uMxREhERERFRVZaXl4eUlBSkpKQAAMzMzGBra6v5GBsbyxwhFUcxhW2TJk1w9uxZzJo1Cz/++COysrIAAObm5ujevTsWLFgAb29vmaMkIiIiIqLXSXZ2NpKSkpCUlATgr/rExsZG8zExMZE5QgIUVNgCgLe3N3bu3Am1Wo2HDx8CAOzt7flsLRERERERKUJWVhaysrLw559/AgBUKhWqVaumeUaXtYs8FFXYFpIkSfPANh/cJiIiIiIipXr27BmePXuGxMREGBkZoXr16nBwcICNjQ1rmUqkqMsJN27cwMCBA2FtbQ1nZ2c4OzvD2toaAwcOxLVr1+QOj4iIiIiIFCIpKQnPnj0DAOTm5iI1NVXmiID8/Hw8ePAAV69exblz53D37l1kZGRACCF3aFWeYgrbkydPws/PDz///DN69eqF2bNnY/bs2ejZsyd+/vlntGjRAidPnpQ7TCIiIiIiktG1a9cwZcoU9O7dW/P+2mfPniEsLAxfffUVEhISZI7wL7m5uUhMTMTly5cRHR2NhIQE5OTkyB1WuQghMHfuXDg7O0OlUqFz586IiYkp8f6ff/45JEnC5MmTNW2PHz/GhAkTUK9ePahUKri6umLixIlIT08vVWyKGYo8ZcoUODg44Pjx43BxcdFad+/ePbRr1w4fffQRoqKiZIqQiIiIiIjkdOTIEcyYMQMAitwFFULg5s2buHnzJoKDg9GoUSM5QixWdnY24uPjkZCQAHt7ezg7O8PKykrvhiovXrwYK1euxMaNG+Hh4YE5c+agW7duuHHjxitfixQVFYUvv/yyyN9LYmIiEhMTsWTJEnh7eyM+Ph7vv/8+EhMTsWPHjhLHppg7ttevX8e4ceOKFLUA4OLigg8++ADXr1+XITIiIiIiIpLbtWvXMGPGDKjVahQUFBS7jVqthlqtxsaNGxVz5/Z5QggkJyfj8uXLOH/+PBISEpCdnS13WCUihMDy5csxe/Zs9O3bF40aNcKmTZuQmJiIXbt2vXTfzMxMDB06FOvWrUO1atW01vn4+OD7779H79694enpiY4dO2LhwoXYs2cP8vPzSxyfYgpbNze3l96az83NLbboJSIiIiKiqu8///kPgKJ3al/kwIEDugyn3J49e4b4+HhERUXh6tWrSE1NVfSzuLGxsUhKSkLnzp01bTY2NmjRogVOnz790n0//PBD9OzZU2vfl0lPT4e1tTWMjEo+wFgxQ5Hnzp2LKVOmoGfPnmjcuLHWuosXL2LVqlVYvny5LLEREREREZF8kpKScPLkyRIXfmq1Gjdu3EBqamqRO4RKlJaWhrS0NFhbW8PV1fWVw3rlUPgeX0dHR612R0dHzbribN26FRcuXCjxI6UpKSkICwvD2LFjSxWfYgrbM2fOwNHREb6+vmjdujW8vLwAADExMTh9+jR8fHxw+vRprasBkiRhxYoVcoVMRERERKR39HECo8jIyFLfzRRC4NatW/Dz89NRVBWvsMC1tLSEs7OzrLFEREQgJCREs/zTTz+Vuo979+5h0qRJOHjwYImK9YyMDPTs2RPe3t4IDQ0t1bEUU9iuXr1a8+fIyEhERkZqrb969SquXr2q1cbCloiIiIioZIyMjGBpaYnMzEzk5ubKHU6ppKamQpKkUhW3kiQhOzsbarVah5HpRmZmJoyNjUs1FLei9enTBy1atNAsF14QefDggVbR/eDBgyIjbgudP38eycnJaNq0qaatoKAAJ06cwOrVq5GTkwNDQ0MAwJMnT9C9e3dYWVlh586dMDY2LlW8iils9fEfHBERERGRvjAxMYGfn1+pJuRRiri4uDLdsbWxsYGlpaWOoqp4BgYGqFOnDnx8fGBjYwMTExPZYrGysoKVlZVmWQgBJycnHD58WFPIZmRk4OzZs/jggw+K7aNTp05Fbk6OHDkS9evXxyeffKIpajMyMtCtWzeYmprixx9/LNNQbMUUtkREREREpFsmJiayFktl1aNHjzLdsW3QoAEMDBQzX+4LGRgYoG7dumjcuDGsra3lDqdYhe+fXbBgAerUqaN53U/NmjXRr18/zXadOnVC//79MX78eFhZWcHHx0erHwsLC1SvXl3TnpGRga5duyIrKwvffPMNMjIykJGRAQCwt7fXFL+vorjCNjY2Fr/88gvi4+MB/DVb8ttvvw0PDw+ZIyMiIiIiIjm4urqiV69e+Pnnn1/4qp/nGRgYoGHDhrCzs6uE6MrO3t4eXl5e8PLygkqlkjucV5o2bRqePn2KsWPHIi0tDf7+/ti3b5/WHda7d+8iJSWlxH1euHABZ8+eBQDNPEuFYmNj4e7uXqJ+JKGgOaWnTp2KFStWFBmWbGBggMmTJ2PJkiU6Pf7jx48xYcIE7NmzBwYGBggMDMSKFSteOnyhffv2OH78uFZbSEgIvvjiixIf98KFC/D19cX58+e1xp8TEREREdFfoqKi0Lp1axQUFLzyzq2BgQE++eSTEhdFlcna2hp16tSBl5cXbGxs5A6nylDMHdulS5di2bJlGDhwIKZOnYoGDRoAAG7evIlly5Zh2bJlqFWrFqZMmaKzGIYOHYo///wTBw8eRF5eHkaOHImxY8diy5YtL91vzJgx+PTTTzXL5ubmOouRiIiIiOh11Lx5c2zbtg3vvvsuhBDF3rktHHY8duxYRRW1FhYWcHNzg5eXFxwdHSFJktwhVTmKuWNbv3591K9fH7t27Sp2fb9+/fDbb7/ht99+08nxb968CW9vb0RFRaFZs2YAgH379qFHjx64f/8+atasWex+7du3R+PGjcv1jl3esSUiIiIiKpmoqCiEhYVh7969WnduJUlCo0aN0KNHD9mLWmNjYzg5OaFWrVqoVasW7OzsWMzqmGLu2MbFxWHSpEkvXN+tWzfs27dPZ8c/ffo0bG1tNUUtAHTu3BkGBgY4e/Ys+vfv/8J9IyIi8M0338DJyQm9e/fGnDlzXnrXNicnR+v9YZmZmRVzEkREREREVVzz5s3x448/IiEhAW+99RbS0tKgUqkwd+5c2Z6plSQJDg4OcHFxQa1atWBvb68Xk1ZVJYopbB0cHHD58uUXrr98+TLs7e11dvykpCQ4ODhotRkZGcHOzg5JSUkv3G/IkCFwc3NDzZo1ceXKFXzyySe4desWfvjhhxfuEx4ejvnz51dY7ERERERErxtXV1dYWFggLS0NpqamlV7UGhgYoFatWvDw8ICbm5teTP5UlSmmsB00aBBWrFgBd3d3TJgwARYWFgCAp0+fYvXq1fjqq68wefLkUvc7ffp0LFq06KXb3Lx5sywhA/hr/H6hhg0bwtnZGZ06dcLdu3fh6elZ7D4zZszARx99pFm+dOkSAgICyhwDERERERHpniRJqFmzJry8vODu7g5TU1O5Q6L/UkxhGxYWhkuXLmHmzJmYO3eu5pnWxMRE5Ofno0OHDloTNJXU1KlTMWLEiJduU7t2bTg5OSE5OVmrPT8/H48fP4aTk1OJj9eiRQsAwJ07d15Y2JqammolgT69NJqIiIiI6HWjUqk0cwJZWVnJHQ4VQzGFrbm5OQ4fPozdu3drvce2e/fu6NGjB3r37l2mB67t7e1LNIS5VatWSEtLw/nz5+Hr6wsAOHLkCNRqtaZYLYlLly4BAJydnUsdKxERERERKUPhUON69erBzc0NhoaGcodEL6GIwjYrKwvDhg1DYGAghg4dir59+1Z6DA0aNED37t0xZswYfPHFF8jLy8P48eMxePBgzd3jP/74A506dcKmTZvg5+eHu3fvYsuWLejRoweqV6+OK1euYMqUKWjXrh0aNWpU6edARERERERlZ2BggJo1a8LDwwMeHh4wMzOTOyQqIUUUtubm5jh06BDefvttWeOIiIjA+PHj0alTJxgYGCAwMBArV67UrM/Ly8OtW7eQlZUFADAxMcGhQ4ewfPlyPH36FC4uLggMDMTs2bPlOgUiIiIiIiolJycneHl5oXbt2ixm9ZQiClsA8Pf3x+nTpzFmzBjZYrCzs8OWLVteuN7d3V3rXVkuLi44fvx4ZYRGREREREQVyMbGBnXq1IGXlxesra3lDofKSTGF7erVq9GtWzfMnj0b77//Pt544w25QyIiIiIioirE1NQUXl5eqFu3LmrUqFGmOXxImRRT2L711lvIz89HeHg4wsPDYWRkVGT6bEmSkJ6eLlOERERERESkjywsLNCkSRPUrVsXRkaKKYGoAinmbzUwMJBXTIiIiIiIqEJ5e3ujRYsWMDY2ljsU0iHFFLYbNmyQOwQiIiIiIqpCWrduDR8fH7nDoEoge2GbnZ2N3bt3IzY2FjVq1EDPnj35DlgiIiIiIiqXZs2asah9jcha2CYnJ6N169aIjY3VzDZsbm6OXbt2oXPnznKGRkRERERECufk5AS1Wl1kmHGzZs3QpEkTmaIiOcha2IaFhSEuLg5TpkxBx44dcefOHYSFhSEkJAR3796VMzQiIiIiIlK46OhoPHr0CN9//72mzd/fH97e3jJGRXKQtbA9cOAAhg8fjiVLlmjaHB0dMWTIENy6dQv16tWTMToiIiIiItInfn5+LGpfUwZyHjwhIQH+/v5abf7+/hBC4MGDBzJFRURERERE+sbJyQlvvfWW3GGQTGQtbHNycmBmZqbVVricn58vR0hERERERKSHfH19+frQ15jssyLHxcXhwoULmuX09HQAQExMDGxtbYts37Rp08oKjYiIiIiI9IBKpULNmjXlDoNkJInC6YhlYGBgUOxVFSFEkfbCtoKCgsoKr9JcuHABvr6+OH/+PAt3IiIiIqJSePToES5cuIAuXbrIHQrJSNY7tuvXr5fz8EREREREVAXY2dnJHQLJTNbCNjg4WM7DExERERFRFVDcI4z0epF18igiIiIiIqLyqlatmtwhkMxY2BIRERERkV6zsbGROwSSmeyzIhMREREREZWVnZ0dX/NDvGNLRERERET6i0UtASxsiYiIiIiISM+xsCUiIiIiIiK9xsKWiIiIiIiI9BoLWyIiIiIiItJrLGyJiIiIiIhIr7GwJSIiIiIiIr3G99gSERERVZI///wTf/75p9xhEFUpzs7OcHZ2ljsMkhkLWwVwdnbGvHnzmJBllJOTg/DwcMyYMQOmpqZyh0NUJTCviCpeTk4OgoKCcPz4cblDIapSAgICsH//fn5fveYkIYSQOwii8sjIyICNjQ3S09NhbW0tdzhEVQLziqjiFebV8ePHYWlpKXc4RFVCZmYmAgIC+H1FvGNLREREVJkaN27M/4ATVZCMjAy5QyCF4ORRREREREREpNdY2BIREREREZFeY2FLes/U1BTz5s3jhAFEFYh5RVTxmFdEFY95RYU4eRQRERERERHpNd6xJSIiIiIiIr3GwpaIiIiIiIj0GgtbIiIiIiIi0mssbImIiIiIiEivsbClSiFJUok+x44dK/exsrKyEBoaWqq+Fi5ciD59+sDR0RGSJCE0NLTccRDpmpLzKjExEcOGDUO9evVgZWUFW1tb+Pn5YePGjeCchaRkSs6r0NDQl8YUGRlZ7piIdEHJeVXo7t27GDJkCBwcHKBSqVCnTh3MmjWr3PFQ5TGSOwB6PWzevFlredOmTTh48GCR9gYNGpT7WFlZWZg/fz4AoH379iXaZ/bs2XByckKTJk2wf//+csdAVBmUnFcpKSm4f/8+Bg4cCFdXV+Tl5eHgwYMYMWIEbt26hc8++6zcMRHpgpLzasCAAfDy8irSPnPmTGRmZqJ58+bljolIF5ScVwBw6dIltG/fHrVq1cLUqVNRvXp1JCQk4N69e+WOhyoPC1uqFMOGDdNaPnPmDA4ePFikXS6xsbFwd3dHSkoK7O3t5Q6HqESUnFeNGjUqcrV8/Pjx6N27N1auXImwsDAYGhrKExzRSyg9rxo1aqTVdu/ePdy/fx+jR4+GiYmJTJERvZyS80qtVuO9995D/fr1cfToUahUKrlDojLiUGRSDLVajeXLl+PNN9+EmZkZHB0dERISgtTUVK3toqOj0a1bN9SoUQMqlQoeHh4YNWoUACAuLk5TmM6fP18ztOVVQ4vd3d11cUpEspMzr4rj7u6OrKws5ObmlvvciOSipLz69ttvIYTA0KFDK+TciOQiV14dOHAA165dw7x586BSqZCVlYWCggKdnSfpDu/YkmKEhIRgw4YNGDlyJCZOnIjY2FisXr0aFy9eRGRkJIyNjZGcnIyuXbvC3t4e06dPh62tLeLi4vDDDz8AAOzt7fHvf/8bH3zwAfr3748BAwYAQJEr3ESvC7nz6tmzZ3j69CkyMzNx/PhxrF+/Hq1ateIVcdJrcufV8yIiIuDi4oJ27dpV+HkSVSa58urQoUMAAFNTUzRr1gznz5+HiYkJ+vfvjzVr1sDOzk73J08VQxDJ4MMPPxTP//M7efKkACAiIiK0ttu3b59W+86dOwUAERUV9cK+Hz58KACIefPmlTqu8uxLJDcl5lV4eLgAoPl06tRJJCQklKoPIjkpMa8KXbt2TQAQ06ZNK9P+RHJRUl716dNHABDVq1cXQ4cOFTt27BBz5swRRkZGonXr1kKtVpf+BEkWHIpMirB9+3bY2NigS5cuSElJ0Xx8fX1haWmJo0ePAgBsbW0BAHv37kVeXp6MERMpnxLyKigoCAcPHsSWLVswZMgQAH/dxSXSV0rIq0IREREAwGHIpPfkzKvMzEwAQPPmzfHNN98gMDAQn376KcLCwnDq1CkcPny4Qo5DusfClhQhJiYG6enpcHBwgL29vdYnMzMTycnJAICAgAAEBgZi/vz5qFGjBvr27Yv169cjJydH5jMgUh4l5JWbmxs6d+6MoKAgREREoHbt2ujcuTOLW9JbSsgrABBCYMuWLfDx8eHjNqT35MyrwkdjgoKCtNoLL8aeOnWqzH1T5eIztqQIarUaDg4OmqvPf1c4EYAkSdixYwfOnDmDPXv2YP/+/Rg1ahSWLl2KM2fOwNLSsjLDJlI0JebVwIEDsW7dOpw4cQLdunWrsH6JKotS8ioyMhLx8fEIDw8vVz9ESiBnXtWsWRMA4OjoqNXu4OAAAEUmryLlYmFLiuDp6YlDhw6hTZs2JZpUpmXLlmjZsiUWLlyILVu2YOjQodi6dStGjx4NSZIqIWIi5VNiXhXeqU1PT6+Q/ogqm1LyKiIiApIkae4qEekzOfPK19cX69atwx9//KHVnpiYCOD/i2pSPg5FJkV45513UFBQgLCwsCLr8vPzkZaWBuCvq2ZCCK31jRs3BgDNMBRzc3MA0OxD9LqSM68ePnxYbPvXX38NSZLQtGnTEvVDpDRK+L7Ky8vD9u3b4e/vD1dX19KdAJECyZlXffv2hampKdavXw+1Wq1p/+qrrwAAXbp0Kc2pkIx4x5YUISAgACEhIQgPD8elS5fQtWtXGBsbIyYmBtu3b8eKFSswcOBAbNy4EWvWrEH//v3h6emJJ0+eYN26dbC2tkaPHj0A/PWshLe3N7Zt24a6devCzs4OPj4+8PHxeeHxN2/ejPj4eGRlZQEATpw4gQULFgAA3nvvPbi5uen+h0BUweTMq4ULFyIyMhLdu3eHq6srHj9+jO+//x5RUVGYMGECvLy8KvNHQVRh5P6+AoD9+/fj0aNHnDSKqgw588rJyQmzZs3C3Llz0b17d/Tr1w+XL1/GunXrEBQUhObNm1fmj4LKQ9Y5mem19fdp3gutXbtW+Pr6CpVKJaysrETDhg3FtGnTRGJiohBCiAsXLoigoCDh6uoqTE1NhYODg+jVq5eIjo7W6ufUqVPC19dXmJiYlGjK94CAAK1Xkjz/OXr0aEWdNpFOKSmvDhw4IHr16iVq1qwpjI2NhZWVlWjTpo1Yv349X51AekVJeVVo8ODBwtjYWDx69KhCzpGosiktr9RqtVi1apWoW7euMDY2Fi4uLmL27NkiNze3ws6ZdE8S4m/384mIiIiIiIj0CJ+xJSIiIiIiIr3GwpaIiIiIiIj0GgtbIiIiIiIi0mssbImIiIiIiEivsbAlIiIiIiIivcbCloiIiIiIiPQaC1tSvLi4OEiShA0bNsgdClGVwbwiqnjMKyLdYG5RSbCwJSIiIiIiIr0mCSGE3EEQvYwQAjk5OTA2NoahoaHc4RBVCcwroorHvCLSDeYWlQQLWyIiIiIiItJrHIpMlSI0NBSSJOH27dsYNmwYbGxsYG9vjzlz5kAIgXv37qFv376wtraGk5MTli5dqtm3uOcqRowYAUtLS/zxxx/o168fLC0tYW9vj48//hgFBQWa7Y4dOwZJknDs2DGteIrrMykpCSNHjsQbb7wBU1NTODs7o2/fvoiLi9PRT4WofJhXRBWPeUWkG8wt0jUWtlSp3n33XajVanz++edo0aIFFixYgOXLl6NLly6oVasWFi1aBC8vL3z88cc4ceLES/sqKChAt27dUL16dSxZsgQBAQFYunQp1q5dW6bYAgMDsXPnTowcORJr1qzBxIkT8eTJEyQkJJSpP6LKwrwiqnjMKyLdYG6RzgiiSjBv3jwBQIwdO1bTlp+fL9544w0hSZL4/PPPNe2pqalCpVKJ4OBgIYQQsbGxAoBYv369Zpvg4GABQHz66adax2nSpInw9fXVLB89elQAEEePHtXa7u99pqamCgDin//8Z8WcMFElYF4RVTzmFZFuMLdI13jHlirV6NGjNX82NDREs2bNIITAP/7xD027ra0t6tWrh99///2V/b3//vtay23bti3Rfn+nUqlgYmKCY8eOITU1tdT7E8mJeUVU8ZhXRLrB3CJdYWFLlcrV1VVr2cbGBmZmZqhRo0aR9lf9UjEzM4O9vb1WW7Vq1cr0y8jU1BSLFi3CL7/8AkdHR7Rr1w6LFy9GUlJSqfsiqmzMK6KKx7wi0g3mFukKC1uqVMVN0f6iadvFKybsLsl075IkFdv+/KQChSZPnozbt28jPDwcZmZmmDNnDho0aICLFy++8jhEcmJeEVU85hWRbjC3SFdY2FKVVq1aNQBAWlqaVnt8fHyx23t6emLq1Kk4cOAArl27htzcXK1Z+YiIeUWkC8wrIt1gbr0+WNhSlebm5gZDQ8Mis+qtWbNGazkrKwvZ2dlabZ6enrCyskJOTo7O4yTSJ8wroorHvCLSDebW68NI7gCIdMnGxgaDBg3CqlWrIEkSPD09sXfvXiQnJ2ttd/v2bXTq1AnvvPMOvL29YWRkhJ07d+LBgwcYPHiwTNETKRPziqjiMa+IdIO59fpgYUtV3qpVq5CXl4cvvvgCpqameOedd/DPf/4TPj4+mm1cXFwQFBSEw4cPY/PmzTAyMkL9+vXx3XffITAwUMboiZSJeUVU8ZhXRLrB3Ho9SOJVT2UTERERERERKRifsSUiIiIiIiK9xsKWiIiIiIiI9BoLWyIiIiIiItJrLGyJiIiIiIhIr7GwJSIiIiIiIr3GwpboOXFxcZAkCRs2bJA7FCIiIiIiKiEWtlRmd+/eRUhICGrXrg0zMzNYW1ujTZs2WLFiBZ49e6az4964cQOhoaGIi4vT2TFKYuHChejTpw8cHR0hSRJCQ0NljYdeP5Iklehz7Nixch8rKysLoaGhJe7rt99+w7Rp09C4cWNYWVnB2dkZPXv2RHR0dLljIdIlJefV30VERECSJFhaWpY7FiJdUnJehYaGvjSmyMjIcsdElcNI7gBIP/30008YNGgQTE1NMXz4cPj4+CA3Nxe//vor/ud//gfXr1/H2rVrdXLsGzduYP78+Wjfvj3c3d11coySmD17NpycnNCkSRPs379ftjjo9bV582at5U2bNuHgwYNF2hs0aFDuY2VlZWH+/PkAgPbt279y+6+++gpff/01AgMDMW7cOKSnp+PLL79Ey5YtsW/fPnTu3LncMRHpgpLz6nmZmZmYNm0aLCwsyh0Hka4pOa8GDBgALy+vIu0zZ85EZmYmmjdvXu6YqHKwsKVSi42NxeDBg+Hm5oYjR47A2dlZs+7DDz/EnTt38NNPP8kY4f8TQiA7OxsqlarC+46NjYW7uztSUlJgb29f4f0TvcqwYcO0ls+cOYODBw8WaZdDUFAQQkNDte4kjRo1Cg0aNEBoaCgLW1IsJefV8xYsWAArKyt06NABu3btkjscopdScl41atQIjRo10mq7d+8e7t+/j9GjR8PExESmyKi0OBSZSm3x4sXIzMzE119/rVXUFvLy8sKkSZM0y/n5+QgLC4OnpydMTU3h7u6OmTNnIicnR2s/d3d39OrVC7/++iv8/PxgZmaG2rVrY9OmTZptNmzYgEGDBgEAOnToUGToSmEf+/fvR7NmzaBSqfDll18CAH7//XcMGjQIdnZ2MDc3R8uWLctVgMt5t5iopNRqNZYvX44333wTZmZmcHR0REhICFJTU7W2i46ORrdu3VCjRg2oVCp4eHhg1KhRAP569rzw4s38+fM1efey4fe+vr5FhkdWr14dbdu2xc2bNyv2JIkqmVx5VSgmJgbLli3Dv/71LxgZ8R4FVQ1y59Xzvv32WwghMHTo0Ao5N6oc/G1IpbZnzx7Url0brVu3LtH2o0ePxsaNGzFw4EBMnToVZ8+eRXh4OG7evImdO3dqbXvnzh0MHDgQ//jHPxAcHIz//Oc/GDFiBHx9ffHmm2+iXbt2mDhxIlauXImZM2dqhqw8P3Tl1q1bCAoKQkhICMaMGYN69erhwYMHaN26NbKysjBx4kRUr14dGzduRJ8+fbBjxw7079+/4n5ARAoSEhKCDRs2YOTIkZg4cSJiY2OxevVqXLx4EZGRkTA2NkZycjK6du0Ke3t7TJ8+Hba2toiLi8MPP/wAALC3t8e///1vfPDBB+jfvz8GDBgAAEWucJdEUlISatSoUaHnSFTZ5M6ryZMno0OHDujRowe+++47nZ4rUWWRO6+eFxERARcXF7Rr167Cz5N0SBCVQnp6ugAg+vbtW6LtL126JACI0aNHa7V//PHHAoA4cuSIps3NzU0AECdOnNC0JScnC1NTUzF16lRN2/bt2wUAcfTo0SLHK+xj3759Wu2TJ08WAMTJkyc1bU+ePBEeHh7C3d1dFBQUCCGEiI2NFQDE+vXrS3R+Qgjx8OFDAUDMmzevxPsQ6cKHH34onv+1fvLkSQFAREREaG23b98+rfadO3cKACIqKuqFfVfEv/MTJ04ISZLEnDlzytwHUWVTWl7t3btXGBkZievXrwshhAgODhYWFhalOCMi+Sktr5537do1AUBMmzatTPuTfDgUmUolIyMDAGBlZVWi7X/++WcAwEcffaTVPnXqVAAoMhTY29sbbdu21Szb29ujXr16+P3330sco4eHB7p161YkDj8/P/j7+2vaLC0tMXbsWMTFxeHGjRsl7p9IX2zfvh02Njbo0qULUlJSNJ/CYcJHjx4FANja2gIA9u7di7y8PJ3EkpycjCFDhsDDwwPTpk3TyTGIKoOceZWbm4spU6bg/fffh7e3d4X0SaQESvq+ioiIAAAOQ9ZDLGypVKytrQEAT548KdH28fHxMDAwKDLbnJOTE2xtbREfH6/V7urqWqSPatWqFXm+4mU8PDyKjaNevXpF2guHMP89DqKqICYmBunp6XBwcIC9vb3WJzMzE8nJyQCAgIAABAYGYv78+ahRowb69u2L9evXF3kOvqyePn2KXr164cmTJ9i9ezdfTUJ6Tc68WrZsGVJSUjQzvhJVFUr5vhJCYMuWLfDx8SnT4zYkLz5jS6VibW2NmjVr4tq1a6XaT5KkEm1naGhYbLsQosTH0sUMyET6SK1Ww8HBQXP1+e8KJ9iQJAk7duzAmTNnsGfPHuzfvx+jRo3C0qVLcebMmXIVorm5uRgwYACuXLmC/fv3w8fHp8x9ESmBXHmVnp6OBQsWYNy4ccjIyNCMoMrMzIQQAnFxcTA3N4eDg0P5TpBIBkr4vgKAyMhIxMfHIzw8vFz9kDxY2FKp9erVC2vXrsXp06fRqlWrl27r5uYGtVqNmJgYrQmeHjx4gLS0NLi5uZX6+CUtkv8ex61bt4q0//bbb5r1RFWNp6cnDh06hDZt2pTogk/Lli3RsmVLLFy4EFu2bMHQoUOxdetWjB49ukx5p1arMXz4cBw+fBjfffcdAgICynIaRIoiV16lpqYiMzMTixcvxuLFi4us9/DwQN++ffnqH9JLcn9fFYqIiIAkSRgyZEiZ+yD5cCgylVrhC+FHjx6NBw8eFFl/9+5drFixAgDQo0cPAMDy5cu1tvnXv/4FAOjZs2epj1/4Mvq0tLQS79OjRw+cO3cOp0+f1rQ9ffoUa9euhbu7O59VoirpnXfeQUFBAcLCwoqsy8/P1+RQampqkVERjRs3BgDN8C5zc3MApcu7CRMmYNu2bVizZo1mZkoifSdXXjk4OGDnzp1FPh06dICZmRl27tyJGTNmlP3EiGQk9/cVAOTl5WH79u3w9/cv9tE4Uj7esaVS8/T0xJYtW/Duu++iQYMGGD58OHx8fJCbm4tTp05h+/btGDFiBADgrbfeQnBwMNauXYu0tDQEBATg3Llz2LhxI/r164cOHTqU+viNGzeGoaEhFi1ahPT0dJiamqJjx44vHX41ffp0fPvtt3j77bcxceJE2NnZYePGjYiNjcX3338PA4PSX+PZvHkz4uPjkZWVBQA4ceIEFixYAAB47733eBeYZBcQEICQkBCEh4fj0qVL6Nq1K4yNjRETE4Pt27djxYoVGDhwIDZu3Ig1a9agf//+8PT0xJMnT7Bu3TpYW1trLk6pVCp4e3tj27ZtqFu3Luzs7ODj4/PCocXLly/HmjVr0KpVK5ibm+Obb77RWt+/f3/NRSoifSJXXpmbm6Nfv35F2nft2oVz584Vu45IX8j5fVVo//79ePToESeN0mdyTslM+u327dtizJgxwt3dXZiYmAgrKyvRpk0bsWrVKpGdna3ZLi8vT8yfP194eHgIY2Nj4eLiImbMmKG1jRB/vaqnZ8+eRY4TEBAgAgICtNrWrVsnateuLQwNDbVe/fOiPoQQ4u7du2LgwIHC1tZWmJmZCT8/P7F3716tbUrzup+AgAABoNhPca8iItK1v78+odDatWuFr6+vUKlUwsrKSjRs2FBMmzZNJCYmCiGEuHDhgggKChKurq7C1NRUODg4iF69eono6Gitfk6dOiV8fX2FiYnJK1+lEBwc/ML8ACBiY2Mr8tSJdEZJeVUcvu6H9JES82rw4MHC2NhYPHr0qELOkSqfJEQpZuUhIiIiIiIiUhg+Y0tERERERER6jYUtERERERER6TUWtkRERERERKTXWNgSERERERGRXmNhS0RERERERHqNhS0RERERERHpNRa2REREREREpNdY2BIREREREZFeY2FLREREREREeo2FLREREREREek1FrZERERERESk11jYEhERERERkV5jYUtERERERER67f8AcPBDOnMhoNgAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -1684,7 +1684,7 @@
"metadata": {},
"source": [
"### Sankey kwargs\n",
- "Several exclusive parameters can be provided to the ``plot()`` method to customize the Sankey plots for paired proportions.\n",
+ "Several exclusive parameters can be provided to the ``.plot()`` method to customize the Sankey plots for paired proportions.\n",
"By modifying the sankey_kwargs parameter, you can customize the Sankey plot. The following parameters are supported:\n",
"\n",
"- **align**: The alignment of each Sankey bar. Default is \"center\".\n",
@@ -1699,7 +1699,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAInCAYAAACFua8hAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAwhZJREFUeJzs3Xd4FFXbBvB7tqf3hCIQBKUYmjRpAhoIUiyIIkgRFLFgIa+fgiBFgYgVVARBmoUXREWQEsQICkpREEFKXikhKCSkJ5tsn/n+CFmzpJBNstmdzf27rr1gZ2ZnnnDI7rNnznmOIEmSBCIiIiIiAgAo3B0AEREREZEnYYJMRERERFQKE2QiIiIiolKYIBMRERERlcIEmYiIiIioFCbIRERERESlMEEmIiIiIiqFCTIRERERUSlMkImIiIiISmGC7AEuX76MOXPm4PLly+4OhYiIiKjeY4LsAS5fvoy5c+cyQSYiIiLyAEyQiYiIiIhKYYJMRERERFQKE2QiIiIiolKYIJfy008/YdiwYWjUqBEEQcA333xz3dfs2bMHt956K7RaLVq2bIk1a9a4PE4iIiIich0myKUUFhaiQ4cOWLJkSZWOP3/+PIYMGYL+/fvj6NGjeP755/HYY49h586dLo6UiIiIiFxF5e4APMldd92Fu+66q8rHL1u2DM2bN8fbb78NAGjTpg327duHd999F3Fxca4Kk4iIiIhciAlyDezfvx+xsbEO2+Li4vD8889X+jqTyQSTyWR/rtfrXREesrKyYDabXXJuVxNFEUqlEmFhYe4OxSMJgoC8vDzZtq8kSVAoFGzfSuTn58u2fYHi/6Ns34rl5eXBYrG4O4xqUygUCA0NdXcYHkvu7avRaOr97y8T5BpIS0tDVFSUw7aoqCjk5+fDYDDAx8en3NclJCRg7ty5Lo0tKysLS5YsgSRJLr2Oqz344IMICgpydxgep6ioCOvWrWP7eqmCggJs2LCB7eul8vLysHHjRravl/KG9hUEAU8//XS9TpI5BtkNpk+fjry8PPvjxx9/rPVrmM1mWf9ylpDzN3BXslgsbF8vxvb1bmxf7+YN7StJkqzvYNUG9iDXQIMGDZCenu6wLT09HYGBgRX2HgOAVquFVqu1P/f393dZjEDxN0G5kfubS11i+3o3tq93Y/t6N7avfHlND7IkSfjhhx+wY8cOFBQU1Mk1e/TogaSkJIdtu3btQo8ePerk+kRERERU+2SZIM+YMQP9+/e3P5ckCQMHDsSAAQMwZMgQtGvXDmfPnnX6vHq9HkePHsXRo0cBFJdxO3r0KFJTUwEUD40YN26c/fgnnngC586dw4svvojTp0/jww8/xBdffIGpU6fW7AckIiIiIreRZYL81VdfoVu3bvbnX375JZKSkjBv3jxs3boVNpsNc+bMcfq8v/32Gzp16oROnToBAOLj49GpUyfMmjULAHD58mV7sgwAzZs3x7Zt27Br1y506NABb7/9Nj7++GOWeCMiIiKSMVmOQf7nn3/QsmVL+/Ovv/4abdu2xfTp0wEATz75JJYuXer0efv161fp2JvyVsnr168ffv/9d6evRURERESeSZY9yCqVyl5HWJIkJCUlYdCgQfb9UVFRyMzMdFd4RERERCRjskyQY2Ji8NlnnyEnJwerV69GVlYWhgwZYt9/4cIFhIeHuzFCIiIiIpIrWQ6xmDVrFoYNG2ZPgnv16uUwaW/btm3o2rWru8IjIiIiIhmTZYI8YMAAHDlyBLt27UJwcDBGjhxp35eTk4Pbb78d99xzjxsjJCIiIiK5kmWCDABt27ZF27Zty2wPCQnBu+++64aIiIiIiMgbyDJBLigoQG5uLpo0aWLfdunSJSxbtgwmkwkjRozgEAsiIiIiqhZZJsiPP/44zp8/jwMHDgAA8vPzcdttt+Hvv/+GQqHA4sWLkZiYiH79+rk3UCIiIiKSHVlWsdi3bx+GDh1qf/7ZZ5/h0qVL+OWXX5CTk4P27dtj3rx5boyQiIiIiORKlglyZmYmGjdubH++ZcsW9O7dG7fddhsCAgIwbtw4/PHHH26MkIiIiIjkSpYJcnBwMNLS0gAABoMBe/fuxcCBA+37VSoVioqK3BUeEREREcmYLMcg9+zZEx9++CFat26NxMREGI1Gh7Ju//vf/xx6mImIiIiIqkqWCfLChQsxcOBA3H///QCA//znP7jlllsAADabDRs3bnRYepqIiIiIqKpkmSC3bNkSycnJOHnyJIKCghAdHW3fV1RUhA8++AAdOnRwX4BEREREJFuyTJABQK1Wl5sEBwQEcBU9IiIiIqo2WU7SA4prH7/++uuIi4tDp06dcOjQIQBAdnY23nnnHZw5c8bNERIRERGRHMmyB/nvv/9G3759cfHiRdx00004ffo09Ho9ACA0NBQfffQRLly4gMWLF7s5UiIiIiKSG1kmyP/3f/+HgoICHD16FJGRkYiMjHTYf++992Lr1q1uio6IiIiI5EyWQyy+++47PPvss2jbti0EQSiz/8Ybb8TFixfdEBkRERERyZ0sE2SDwYCIiIgK9xcUFNRhNERERETkTWSZILdt2xY//fRThfu/+eYbdOrUqQ4jIiIiIiJvIcsE+fnnn8f69euxcOFC5OXlAQBEUcSZM2cwduxY7N+/H1OnTnVzlEREREQkR7KcpDdmzBhcuHABM2fOxIwZMwAAgwYNgiRJUCgUWLBgAe699173BklEREREsiTLBBkAZsyYgbFjx+Krr77CmTNnIIoiWrRogeHDh+PGG290d3hEREREJFOyTZABoGnTphxKQURERES1SpZjkI8cOYIPP/ywwv0ffvghjh49WncBEREREZHXkGWCPGPGDHz//fcV7v/hhx8wc+bMap9/yZIliI6Ohk6nQ/fu3e3LWFdk0aJFaNWqFXx8fNCkSRNMnToVRqOx2tcnIiIiIveRZYJ8+PBh9OnTp8L9ffr0wW+//Vatc2/YsAHx8fGYPXs2jhw5gg4dOiAuLg5Xrlwp9/h169Zh2rRpmD17Nk6dOoWVK1diw4YNePnll6t1fSIiIiJyL1kmyAUFBVCpKh4+rVAo7OXfnPXOO+9g0qRJmDBhAtq2bYtly5bB19cXq1atKvf4X375Bb169cLo0aMRHR2NgQMHYtSoUdftdSYiIiIizyTLSXo33XQTvvvuOzzzzDPl7k9MTKxWJQuz2YzDhw9j+vTp9m0KhQKxsbHYv39/ua/p2bMnPvvsMxw6dAjdunXDuXPnsH37dowdO7bC65hMJphMJvtzvV7vdKxUPkEQ7I/S2yr7e+njr3196efXPio6vrw/r/07AEgWC2x5uRANBkiizamf02q1OHU8ERERVZ0sE+RHH30UU6dORXx8PGbNmoXg4GAAQG5uLubOnYvExES8+eabTp83MzMTNpsNUVFRDtujoqJw+vTpcl8zevRoZGZmonfv3pAkCVarFU888USlQywSEhIwd+5cp+Oj65MkyV4PW6lUQqlUQq1W2x9KpdLdIQIAbAX5sGRlAZDcHUq55s2bB6vVCpVKVaPx/ERERHIkyyEWzz77LMaPH49FixYhPDwcTZs2RdOmTREeHo7FixdjzJgxdVb+bc+ePViwYAE+/PBDHDlyBF9//TW2bduG1157rcLXTJ8+HXl5efbHjz/+WCex1ieiKMJiscBoNKKgoADZ2dlIT0/HlStXkJ+fD7PZ7LbYrPl5sGRlwlOTYwCwWq32L3xERET1jSx7kAVBwOrVqzFu3Dh89dVXOHfuHADgnnvuwf33349+/fpV67zh4eFQKpVIT0932J6eno4GDRqU+5pXXnkFY8eOxWOPPQYAaNeuHQoLC/H4449jxowZUCjKfgfRarXQarX25/7+/tWKl5xntVqh1+uh1+uhVCrh4+MDX1/fSse01yZbYSGs2Vl1ci0iIiKqHlkmyCX69++P/v3719r5NBoNOnfujKSkJPtS1aIoIikpCVOmTCn3NUVFRWWS4JLb+JLkuT2EBNhsNnuyrNPp4Ofn5/DFpbZJFgusmRkuOz8RERHVDlkOsTh//jy+/fbbCvd/++23SElJqda54+PjsWLFCqxduxanTp3Ck08+icLCQkyYMAEAMG7cOIdJfMOGDcPSpUuxfv16nD9/Hrt27cIrr7yCYcOGecx4V7o+o9GIrKwsZGZmOkygrE2WrAxIkuiScxMREVHtkWUP8gsvvID8/HwMGzas3P1LlixBcHAw1q9f7/S5R44ciYyMDMyaNQtpaWno2LEjEhMT7RP3UlNTHXqMZ86cCUEQMHPmTPzzzz+IiIjAsGHDMH/+/Or9cORWZrMZWVlZ0Gq1CAoKqrWhFzZ9AUQuHkNERCQLskyQ9+/fj+eff77C/XfeeScWLVpU7fNPmTKlwiEVe/bscXiuUqkwe/ZszJ49u9rXI89jMpmQkZEBPz8/BAQElCnR5gxJFGHNya7F6IiIiMiVZJkg5+TkICAgoML9/v7+yMriRCiqGUmSoNfrYTAYEBwcXO3xybb8PEg25+oc1xfX1qy+HoVCUWbMf+mx/iV/Lyn3d+1+IiKiqpBlgty0aVP8/PPPePLJJ8vdv3fvXtxwww11HBV5K5vNhqysLPj6+iIwMLDcyiQVkUQRtmqu6lgflE5kq8Jms0GtViMgIABqtdrp61ybOEuSBFEUy+yv6HFtzOUl4fZtoliyofjhhOrfryAiotogywR51KhReO2119CtWzdMmTLFnrDYbDZ88MEH2LBhA2bMmOHmKMnbFBUVwWQyITAwED4+PlV6jS0/nxPzapnRaLS3g5+fX5Ve42xPdWUkUYRksUCyWiBZrJBsVsBmg2S1FSfFNluN29xkcV+dbiIikmmCPH36dOzbtw/PP/885s+fj1atWgEAkpOTkZGRgX79+jFBJpew2WzIyclBYWEhAgMDodFoKjxWkiTYCth77AqSJCEvLw+iKFY63KrG17HZIJpMkExGSBYzRJO5OCEmIiKvJssEWavV4rvvvsPatWvx9ddf4+zZswCAbt264f7778e4ceOcug1O5Cyz2YzMzEzodLoKb/eLhYV1MvbYFWNsVSqVfalpTx7DW1BQAIVCUeWe5OuRrFaIRiNEowGiyQjJYqmV8xIRkbzIMkEGiifrTJgwwV6fmMgdjEYjjEYjtFot/Pz8oNPp7Pts+ZX3HguCAIV/AJS+voDCuZrZProcCILgsuS1ru7AREZGIiwsrMrHW61WGAwGGEuVzMvPz4dara60N78ikiRBMpkgGoogGgwQza6pgU1ERPIi2wSZyJOYTCaYTCYolUr4+vpCq1RWmmwpNFqoI6MgVLPOckSDBnj66adhNst3rKpGo3EqOQYAtVoNHx8fmM1m5OTkwGazQZIk5ObmIiIi4rrjjCVJgmQ2Xe0lNkIyGjlGnIiIypBlgnzHHXdc9xhBEJCUlFQH0RD9y2azoaCgADl5uVCYjNCqNdCoVdCo1fbkTaHzgTqqQY0njTmbXHoTjUaDiIgIZGVlwWKxwGq1oqCgAIGBgfZjJJuteDKd2QzRYi7uKTabAXjukBEiIvIMskyQRVEsk1zYbDZcuHABFy9eRMuWLdG4cWM3RUf1nSRJkAwGWCURVpsBhVdHA6iUSmh0vtCFhMFmNNpr+lYnURYEAbaMK5BM8lydT5IkCEoV1FENqnkCERAlBOt0yNQXwGq2IC8vD2p9PpQQihNj9gwTEVE1yTJBvnY1u9K2bt2Kxx9/HO+8807dBURUSkW37W2iBIufH6yFhUBhYY2uoczLRcEbr9XoHG51dex0gynxUIWH1+hUAaINWfoCSJCQazEhpFQvMhERUXV4XamHoUOHYsyYMZUuRU3kSqKxqNztyqAgCErnJuNVRHLxZLJ2n25Eq7Xr0e7TjS69jlQL9X5VSiUCr1axMFksMLPyBBER1ZDXJcgA0KJFC/z666/uDoPqIUmSIBrLJq+CRguFj69rLioItf4wizaIEmAWbS45f23z0WmhvVpqT28w1Pr5iYiofvG6BNlqteKLL75AeA1v2xJVh2Q0oOwkMAGqwCB3hFOvBPr5QYAAM3uRiYiohmQ5BnnixInlbs/NzcWBAweQlpbGMcjkFqKxbO+lwscHQjkLiVDtUiqV8PXRodBgQJHRCA3/zYmIqJpkmSD/8MMPZWb+C4KAkJAQ9O7dG4899hgGDhzopuiovpIkCVKZ4RUClAGcNFZX/HQ6GIxGGM1m2Gw2KGtpzDcREdUvskyQU1JS3B0CURmS0QjpmuEVCh+fWpuYR9enUCjg6+MDfVERCo1G++Q9IiIiZ3jdGGQidxGNZWsSK/383RBJ/ean00EhCDCaTC5bipuIiLybbBLkoqIipKamlru07qpVq3DnnXeibdu2GD58OCtYUJ2TJKnMoh2CVsexx24gCAJ8dTqIkgSjjJfiJiIi95FNgvzqq6+iffv2ZRLkefPmYdKkSfjxxx+RkZGBb775Bv369cMff/zhpkipXipn5TYVb++7ja9OBwAwlFNyj4iI6HpkkyDv3r0bQ4cOhb//v7es8/PzMW/ePDRu3Bh//fUXMjIycODAAWg0Grz++utujJbqG/Ha3mOlCoJW56ZoSKFQwEerhdlqgc1mc3c4REQkM7JJkFNSUtC+fXuHbdu3b4fZbMZLL72E5s2bAwC6deuGCRMmYO/eve4Ik+qpa8cfu2xREKoyey8yh1kQEZGTZJMgFxQUICwszGHbTz/9BEEQEBcX57C9bdu2yMjIqMvwqB6TbDZI1tILUwhQ+Mo7QdYolFAIxX/KlVqlgkqp4jALIiJymmzKvDVr1gynT5922LZnzx5ERUWhZcuWDtvNZjMCA1l7luqGZHZMwASNRval3Y6Pe9DdIdQKX50W+YWFsFitUKtk83ZHRERuJpse5IEDB2LVqlU4ePAgAOCTTz7B6dOncd9995U59vDhw4iOjq7jCKm+Eq/poVTKvPfYm+g0GggQYDRxmAUREVWdbBLkV155Bf7+/ujZsyc0Gg0eeeQRREREYNasWQ7HFRUVYdOmTbjzzjvdFCnVN6XLuwkQIOh83BgNlaZQKKDVqGE0c5gFERFVnWzuOYaHh+Po0aP4+OOPce7cOTRr1gwTJ05EZGSkw3F//vknHn74YYwdO9ZNkVJ9Il1T3k3Q6cosg07u5aPVwmg2c5gFERFVmWx6kAEgJCQE//d//4elS5di2rRpZZJjoLiKxfvvv49bbrml2tdZsmQJoqOjodPp0L17dxw6dKjS43Nzc/H000+jYcOG0Gq1uPnmm7F9+/ZqX5/kQ7ymZ1LB3mOPo1Gri1fWYzULIiKqInanXGPDhg2Ij4/HsmXL0L17dyxatAhxcXFITk4uNyE3m80YMGAAIiMj8eWXX6Jx48a4cOECgoOD6z54qnOiqXSCLEDQsfaxpxEEAVqNBiazGQEcH05ERFXABPka77zzDiZNmoQJEyYAAJYtW4Zt27Zh1apVmDZtWpnjV61ahezsbPzyyy9QX11WmBME6wdJkoBSk78ErZbDKzyUTqOBwWSCzWaDUuYVRoiIyPVkNcTC1cxmMw4fPozY2Fj7NoVCgdjYWOzfv7/c12zZsgU9evTA008/jaioKMTExGDBggWVrt5lMpmQn59vf+j1+lr/WagOWK2Q8O/4YyV7jz0Wh1kQEZEzmCCXkpmZCZvNhqioKIftUVFRSEtLK/c1586dw5dffgmbzYbt27fjlVdewdtvv4158+ZVeJ2EhAQEBQXZH3379q3Vn4PqRpnlpbm0tMeyD7OwWK5/MBER1XuySJC3bNmCS5cuuTuMcomiiMjISCxfvhydO3fGyJEjMWPGDCxbtqzC10yfPh15eXn2x48//liHEVNtkSylhleo5L84iLfTajQwWyzFQ2OIiIgqIYsE+b777sOePXvsz2+88UZs2bKl1q8THh4OpVKJ9PR0h+3p6elo0KBBua9p2LAhbr75ZodxjW3atEFaWhrMFdzO1Wq1CAwMtD/8/f1r74egOiOVGn+s4PAKj6dVqyFAgJm9yEREdB2ySJADAgKQm5trf56SkuKScbsajQadO3dGUlKSfZsoikhKSkKPHj3KfU2vXr1w5swZiOK/Y1H/97//oWHDhtBoNLUeI3mGa+sfM0H2fIIgQKNWw2RmgkxERJWTRRWLbt26Yf78+UhPT0dQUBAAYPv27RWOCwaKPwynTp3q9LXi4+Mxfvx4dOnSBd26dcOiRYtQWFhor2oxbtw4NG7cGAkJCQCAJ598Eh988AGee+45PPPMM/jrr7+wYMECPPvss9X4SUkuHIZXCAoIVyuYkGfTatQoNBgA+Lk7FCIi8mCySJA//PBDjBs3Dq+99hqA4uR33bp1WLduXYWvqW6CPHLkSGRkZGDWrFlIS0tDx44dkZiYaJ+4l5qaCoXi3473Jk2aYOfOnZg6dSrat2+Pxo0b47nnnsNLL73k9LVJPkSH8m7sPZYLrUaD/MJCWG02qDhmnIiIKiCLBLlly5b45ZdfYDQaceXKFURHR2PRokW45557XHK9KVOmYMqUKeXuKz0WukSPHj1w4MABl8RCnql0D7JCp3VjJOQMpUIBlVIFs8XCBJmIiCokiwS5hE6nQ9OmTTF79mzccccdaNasmbtDonpIEkVINqv9uaBhgiwnWk3xOGRfjhsnIqIKyCpBLjF79mz73/V6PS5evAigeLgDK0KQq0mllpcWVCqWd5MZrVoNg9F4/QOJiKjekkUVi/L8+uuv6N+/P0JCQhATE4OYmBiEhITgjjvuwG+//ebu8MiLSdZ/qyCw91h+1CoVJAAWq/W6xxIRUf0kyx7kgwcPol+/ftBoNHjsscfQpk0bAMCpU6fw3//+F7fffjv27NmDbt26uTlS8kai+d8eZAUTZNkRBAEalRpmiwVqlSzfAomIyMVk+ekwY8YMNG7cGPv27SuzgMecOXPQq1cvzJgxA7t27XJThOTVzKXGH2uZIMuRRl08Uc/Px8fdoRARkQeS5RCLgwcPYvLkyeWubhcVFYXHH3+cVSXIJSSLBRKKFwgRVGoICln+CtV7Wo0GZquVy04TEVG5ZPnprlAoYK1k/KDNZnOoVUxUWxwWCOFKibKlUiohQIDVZnN3KERE5IFkmUX27NkTS5YswYULF8rsS01NxYcffohevXq5ITLydqK5VP1jjj+WtZJhFkRERNeS5RjkBQsW4Pbbb0fr1q1x33334eabbwYAJCcnY/PmzVCpVPaloIlqk2QpXf+YPchyplEX10P24zBkIiK6hiwT5E6dOuHgwYOYMWMGtmzZgqKiIgCAr68vBg0ahHnz5qFt27ZujpK8jSRJ9hJvrH8sf1q1Gvqr7x1E5HqCIEChUEAQhFo/rytIkgSIIiQnh2IpObfBK8gyQQaAtm3bYtOmTRBFERkZGQCAiIgIjj0m17FaABS/8Qkq9h7LnVKphCAUj0PmstNEridJEkRRhFKphFarhU6ng9bDKgFJVitshXqIRUWQzKZqTeQ1Wjl0yxvINkEuoVAoEBUV5e4wqB6QzP++6Sm0TJC9gVpVPA6ZCTJR3ZAkCVarFVarFYWFhVAqlfD394evr6/LeoKrFJfVCmtuDmx6PUo6Qqh+k32CTFRXSk/QE9RMkL2BRq3minpEbmSz2ZCXlwe9Xo+goCDodLo6vb4kSbDl58GWm8Oyj+SA4xGIqsg+/lhQQFCr3RwN1QaNWs1KFkQewGazITs7G7m5uXWWqEpWKyzpl2HNyWZyTGUwQSaqguIJeld7Glm9wmuolEr7uEgicr+ioiJkZGRUutZBbRDNZpgvX4JoNLr0OiRfTJCJqqLUBD0Fh1d4FbVKDTOHWRB5DKvViszMTJhLDWurTaLRCMvlS5Bs/L2nijFBJqoCqdRteIWGwyu8iUatgsXCD0oiTyKKIrKysmAymWr3vEYjLOmXIUm8a0SVk/UkvZMnT+LcuXPIySl/cP24cePcEBV5I7H0OFWuoOdV1CoV9EUGd4dBRNeQJAnZ2dkIDQ2tlXJwotkMS3oaxxtTlcgyQT579izGjBmDQ4cOVfgfXRAEJshUa0pKvAkqlVtLEVHtU6tUsNqskCSJbUvkYUqS5LCwMGhqMP+jZEIee46pqmSZIE+ePBnHjx/HokWL0KdPH4SEhLg7JPJikiRdHYPM8m7eSBAEKJVKWG02qFWyfEsk8molSXJERASU1ahZLokiLFfSnV4Rj+o3WX4a/Pzzz3j55ZfxzDPPuDsUqg+sVkicoOfV1CoVLFYrE2QiDyWKIrKzsxEeHu70nR5rViZEc+2OZSbvJ8tJeuHh4QgKCnJ3GFRPSJZSC4SwxJtX0lxNkInIc1ksFuTm5jr1Gpu+ALZCvWsCIq8mywT5iSeewGeffQYbb5dQHfh3BT0BYA+jVypZcpqIPJvBYEBhYWGVjpUsFlizMl0cEXkrWX7a33zzzbDZbOjQoQMmTpyIJk2alDsuafjw4W6IjryNdLUEmKBScxKXlyp5/xBFEQqFLPsNiOqN/Px8aDQaqK+zoqkl4worVlC1yTJBHjlypP3vL7zwQrnHCILAHmaqseIV9K5O0GP9Y6+mVqlgtlqh4zAaIo8mSRJycnIQERFRYaeFNS+X446pRmSZIO/evdul51+yZAnefPNNpKWloUOHDnj//ffRrVu3675u/fr1GDVqFO655x588803Lo2R6kjpFfSYOHm1kmEWTJCJPJ/VakVBQQECAwPL7JMsFthyc9wQFXkTWSbIffv2ddm5N2zYgPj4eCxbtgzdu3fHokWLEBcXh+TkZERGRlb4upSUFLzwwgvo06ePy2KjuieWWupUULEH2ZupVSoYi4rcHQYRVZFer4dOpytTH9mSlcmhFVRjsh9sd/LkSezYsQM7duzAyZMna3y+d955B5MmTcKECRPQtm1bLFu2DL6+vli1alWFr7HZbHj44Ycxd+5c3HjjjTWOgTxHyQIhnKDn/YoXDLHxg5VIRvLy8hx+Z22FeohGroxJNSfbBHnz5s1o0aIF2rVrh6FDh2Lo0KFo164dWrZsiS1btlTrnGazGYcPH0ZsbKx9m0KhQGxsLPbv31/h61599VVERkbi0UcfrdJ1TCYT8vPz7Q+9niVoPFVJiTdO0PN+giBApVSymgWRjFgsFntVC0kUYc3OdnNE5C1k2SW2fft23H///WjWrBkWLFiANm3aAABOnTqF5cuXY/jw4di6dSsGDRrk1HkzMzNhs9kQFRXlsD0qKgqnT58u9zX79u3DypUrcfTo0SpfJyEhAXPnznUqNqp7kihCsl2tYKGW5a8KOUmjUsNstULLcchEslFQUAAfHx9IBfn292yimpLlp/5rr72G9u3bY+/evfDz87Nvv/vuuzFlyhT07t0bc+fOdTpBdlZBQQHGjh2LFStWIDw8vMqvmz59OuLj4+3Pjx496tJx1VQ9Uqnxx1xBr37QqFUoNBjdHQYROUGSJORmZ8O/iHdjqfbIMkE+duwYFixY4JAcl/Dz88MjjzyCl19+2enzhoeHQ6lUIj093WF7eno6GjRoUOb4s2fPIiUlBcOGDbNvE0URAKBSqZCcnIwWLVqUeZ1Wq4VWq7U/9/f3dzpWcj3HFfQ4Qa8+KFlyWpIkDqkhkpHCjCtQqZS8+0O1RpZjkHU6HbIrGWeUnZ0NnU7n9Hk1Gg06d+6MpKQk+zZRFJGUlIQePXqUOb5169Y4fvw4jh49an/cfffd6N+/P44ePYomTZo4HQN5DtFUUkNTAFjBol5QKBRQKhUwc9lpItmQLBaIBgPyCwvtnVRENSXLHuQ77rgDixcvxqBBg8okrgcPHsR7772HgQMHVuvc8fHxGD9+PLp06YJu3bph0aJFKCwsxIQJEwAA48aNQ+PGjZGQkACdToeYmBiH1wcHBwNAme0kL5IkAVcna3GCXv2iUathtligvc4qXUTkGWz6fAASbKIEfZEBgf5l7y57k48++gh6vR7+/v6YPHmyu8PxWrJMkN944w306NEDvXv3Rrdu3dCqVSsAQHJyMg4dOoTIyEgsXLiwWuceOXIkMjIyMGvWLKSlpaFjx45ITEy0T9xLTU3lUrT1gdUC6eoCIZygV79oVCoUGjkOmUgOJJMJYqnf1yKTEVqN2quHWuj1euTn57s7DK8ny0/+5s2b49ixY0hISMCOHTuwYcMGAECzZs3w3HPPYdq0aZUu6nE9U6ZMwZQpU8rdt2fPnkpfu2bNmmpflzzHv8MruIJefaNRq5Gr13McMpEMWMtJFPP0hQgPVrEzi2pElgkyAERGRuLdd9/Fu+++6+5QyAs5TNBjBYt6RaFQ2Oshe3MvVH1Q3hecir70OPNlqORYSZIAmw1wcnEZJRejqRViYSEkq7nsdklEnr4QIYEBboiKvIVsE2QiV5JMVxcI4Qp69ZJGrYaJCbJbKBQK+0OlUkGlUkGtVkOtvv5cAFf3+EuSBNFggGgogmQ0QrRYADif7BqtXIympiSbDbZKhhmYLGYUGgzw8/Gpw6jIm8jik3/ixIkQBAHLly+HUqnExIkTr/saQRCwcuXKOoiOvI1ksUCSrs6ErsKHMnkfjVqNgsIiwLvn+ngkURTtlQjMpWuRKxT2Epk6na5Ob58XJ2N5sBUUQBJtdXbd6po3bx6sVitUKhVmzpzp7nBcwpafDwmVV6woKCqCSqXihFuqFlkkyD/88AMUCgVEUYRSqcQPP/zg9p4E8l4OC4SwB7Fe0qhUsIk22Gw2KJVKd4dDKE6cDQYDDAYDBEGAVquFj48PdDqdy97vJUmCLS8Ptrzcf780y4D1ai1vq5eWKxSNRojGoiodm1dQgNCgIKj4e0xOkkWCnJKSUulzotokmv+doMfxx/WTQqGAWqWCyWKBLz9YPY4kSTAajTAajVAqlfDz84Ovr2+t9iqLJiMsmRmQLBwO4UmKv7TkVPl4UZKQk1+AsKBATtojp8jyf0tqaioMBkOF+w0GA1JTU+swIvImUqkKFgJ7kOstjVoNk7nsBCDyLDabDfn5+bhy5QoKCgqKJ87VkDUvF+bLl5kceyBbbg4kJxcDsYk25NTS/w2qP2SZIDdv3hybNm2qcP+WLVvQvHnzOoyIvEXp8ceCQgGBvYf1llathtli5YeqTIiiiIKCAly5cgVFRVW7/X4tSZJgybgCa042qjP5jlxLLCqEaKy4c6wyFqsV2fn5/H2mKpNlgny9/+AWi4W3UqhaHIZXsPe4XlNfrV5iZi+irNhsNuTm5iIzMxMWJ9pOEkVY0i/DVqh3YXRUXZLFAlteXo3OUZIkczlqqgpZjEEGgPz8fOTm5tqfZ2VllTuMIjc3F+vXr0fDhg3rMDryFhLHH9NVgiBcHWbBcm9yZDabkZmZCX9/f/j7+1c6kU8SRVjSLjt8QSbPIYkirDnZ9tVNa8JitSIrLx8hgQGcuEeVkk2C/O677+LVV18FUPzB9fzzz+P5558v91hJkjBv3rw6jI68gSRJkIylK1ho3RgNeQKtRo1CgwGs9yZPkiShoKAARqMRISEhUJVT05zJsWeTJAnWnCxIttqryGETbcjKy0OQvz90lX75FSAolU4PtRNKlZVzxZAOPz8/SJJk/5NcQzYJ8sCBA+Hv7w9JkvDiiy9i1KhRuPXWWx2OEQQBfn5+6Ny5M7p06eKmSEm2LJZSdTUFgLUz6z2tWo38wkJYrFb7kAuSH4vFgoyMDAQGBsLP798vO5IkwXIljcmxB7Pl5jiU3qwtkiQht6AAPlotAkpVQBGUKij9/aHw8YWg1VarhKCftrj0oKuS18mTJ7vkvKUJggBNPb9zJpt3/B49eqBHjx4AgMLCQtx///2IiYlxc1TkTUST0f53gQuEEAClUgmVUgmj2cwEWeYkSUJeXh4MBgOCg4OhUqlgzcyAaDRe/8XkFtbcnGpPyqsqg8kEk9kM/4BABDZoCOV1huNURVhYGJ5++mmHhW7kRqPRICwszN1huJXs3vGLiorw3nvvwdfXlwky1SrR+G8vEhcIoRJatQZGkxkBvr7uDoVqgdlsRkZGBrRWC3QWMyd0eyBJkmDLza3yYiA1I0DwC4DB1w/mwkL4ShJ8fHygruEdxACLGZJZvl++2D8kwwTZ19cXKpXK4TYZUU1JogjJ+u+3fYHjj+kqrUaNQqOBwyy8iK2oCPm52dALAvx8fODrwtX4rscVt+FVKpV9qWm5jVEtHnOcDcnk+uRSUKqgCgm1jxkWRRF6vR56vb54sSC1Gkql0ukvUdYr6cieP8sVIdeppgnvQNOg/hY8kOW7/f33348vv/wSTz75JG+DU6249s1Y0DJBpmIatRoKQcFhFl5Cslphu1oRSZQkFBQVodBghK+PDr5abZWSIUGphEKrhaDWQFCqAIVzn0O+SpVLx6jOmDHDJee9VmhoKIKDg6t8vCRJEEURVqsVZrMZNpvNcb/FAmtuNqQ6WCJb0GigCgmDUEF7i6IIk6l6Y9PF3Kqv9OfJ6uJLiieT5bv9Qw89hKeeegr9+/fHpEmTEB0dDR8fnzLHXTuJj6gipce5CSoNv3iRA51GA6PJxGEWMlfcO5lTajJuMVESoS8qQmGRATqtBj5aLTTX3GIXBAWUAQFQ+PlDUcMv0BH+ARyjiuLhLkVFRSgqKoKtoAA2fQHqYoEWhU4HZXBo3bzPu+Aa923ZiQyDARE+Pth0d1ytnx8yu+vgKrJMkPv162f/+969e8vslyQJgiCU+XZKVJ7i8m6lFwhh9QpypNVqUGQywmyxlEmcSD7EgnyHoVTXkiDBYDLBYDJBqVBAq9FAp/OBT1gYVIFBFfY2Vkd9nwAFAGq1GgEqJTRWC/RWM4rqJDn2gTI4RNadIBkGA9KLXDt5kWSaIK9evdrdIZAXkUwmhwL0rH9M19KoVFAIAowmMxNkmZJMJqdWybOJIowKJSw6HxQajNDYRKjVaqhUKqhUKvvY1OomWua0y7K+hS1odU6PT5UkCbDZIJpMEI0GiIWFkEQbFAAC/fzgo9UiT18Iay3WPHaIWaOVfXJMdUeWCfL48ePdHQJ5kWvLCAk6nZsiIU8lCAJ0Gi2MZhMCJF9+wMqMJEmwOjEuVFAooAoOtc9FkCQJJpOpwjGpzv5/EDMzYHgnwanXeBxJQoNn4qEKi3DmRZXuVatUCAsKREFREYpqufyeoNJAFRrG312qMlkmyKXp9XpcvHgRANCkSRP4+/u7OSKSk+LhFaXqH3P8MVWgZJiF0WyGDydxyootLxeSWLUhd9ebvFUeZyfbubrnuN2nG2EWbdAolDg+9gGXXad4AY/aHRYhCAIC/fygVqmQry+sleWlBYUCqtA6GnNMXkO2BSB//fVX9O/fHyEhIYiJiUFMTAxCQkJwxx134LfffnN3eCQXZjMk6d8JOwot6x9T+bRqNZQKBQxGrromJ6LRCNFQtXq6Cp0vVKHhtTrW+LoEodYfZtEGUQLMos0l568LPlotQgIDaiGpFYq/8Di5XDSRLHuQDx48iH79+kGj0eCxxx5DmzZtAACnTp3Cf//7X9x+++3Ys2cPunXr5uZIydPZrvngrOnsdPJuOo0WhUYDrDYbVPzA9XiSzQZbFYdWKP0DoAwIdHFE5AyNWo3QwEBk5+dXuySe0j8AAhd+omqQZYI8Y8YMNG7cGPv27UODBg0c9s2ZMwe9evXCjBkzsGvXLjdFSHJQZngFBIAT9KgSPrriBLnIYESgv3wXK5o3b559IYmZM2e6OxyXKB53nO1wh6giTI49l1qlQkhAAHLyC5webiFotFAGBLgoMvJ2shxicfDgQUyePLlMcgwAUVFRePzxx3HgwAE3REZyIhmNjh+eGo4/psqplEqoVSoYTCaI4vUTL09ltVqLE8g6WJDBXUR9wdUxspVT+vkzOfZwGrUawQHOzS8SoIAqOMRFEVF9IMsEWaFQVPrGbrPZnF4akuqfa6tXcHgFVYWvVgcJEoqqucoWuZ5oMFxddKJyCp0vlIFBdRAR1ZRWo0GQX9WTZGVwEMcdU43IMovs2bMnlixZggsXLpTZl5qaig8//BC9evVyQ2QkF5IoQrymjJBCy/JudH06bfGdhiKDwWVLBVP1SRZLlcYdCxoNlE4sk0zu56PTwrcKZTgFrQ4KH656STUjywR5wYIFyMvLQ+vWrTF69GjMmTMHc+bMwahRo9C6dWvk5eUhIaH6NSaXLFmC6Oho6HQ6dO/eHYcOHarw2BUrVqBPnz4ICQlBSEgIYmNjKz2ePINYVIjS5YkEhRICF4CgKhAEAT5aLURJqvVarVQzktUKa3bmdceqCkpVcbUKDqmSnQBfX6hVFU+fEiBAFRRcdwG5QYSPD6J8fRDh4+PuULyaLCfpderUCQcPHsSMGTOwZcsWFBUVVyLw9fXFoEGDMG/ePLRt27Za596wYQPi4+OxbNkydO/eHYsWLUJcXBySk5MRGRlZ5vg9e/Zg1KhR6NmzJ3Q6HRYuXIiBAwfixIkTaNy4cY1+TnKda8s+cXEQcoafTocioxGFBgN8tFoO6fIAks0Ga3YWpOuMDRcgQBXCmrhyJQgCggMCkJWbC7GcOzgK/wCvH1qx6e44d4dQL8gyQQaAtm3bYtOmTRBFERkZGQCAiIiIGn9QvfPOO5g0aRImTJgAAFi2bBm2bduGVatWYdq0aWWO//zzzx2ef/zxx/jqq6+QlJSEcePG1SgWT/bRRx9Br9fD398fkydPdnc4TpFMRkjXjGFXMkEmJyiVSug0GhjNZugNBgT6ybeihTcoTo4zIVVhiWJlcDDvFsmcUqFAkL8/cgocx5kLShUUXCyMaonsuz0EQXB41ITZbMbhw4cRGxtr36ZQKBAbG4v9+/dX6RxFRUWwWCwIDQ2t8BiTyYT8/Hz7Q6/X1yhud9Dr9bKN3VpY6PCc5d2oOvyu3t4sMhphtVVtlTaqfZLNBmtWZpkvveVR6Hw5NtVLaDUa+F4zb0QZGMQ7A1RrZJsgnzx5EiNGjEBgYCAaNmyIhg0bIjAwECNGjMCff/5ZrXNmZmbCZrMhKirKYXtUVBTS0tKqdI6XXnoJjRo1ckiyr5WQkICgoCD7o2/fvtWKl5wnWSxllnkVdDq+qZLT1CoVtFd7IvNk+EXRG0gWC6yZV6rUcywoVfVmUp5GoYRCKP7TmwX4+UJ59a6xoNFCwTuBVItkOcRi7969uOuuuyCKIu655x7cfPPNAIDk5GRs2bIFO3bsQGJiIvr06VOncb3++utYv3499uzZA10lv6jTp09HfHy8/fnRo0eZJNeR8ko/KXSc6EDV4+/rC1NeHixWK/RFRfD3lUfvpEqlsi8UIleiwQBbbk6VF49QhYTUmy/Cx8c96O4Q6oQgCAj090dOfj5ULNdHtUyW745Tp05FZGQkfvzxRzRp0sRh38WLF3H77bcjPj4ev/76q1PnDQ8Ph1KpRHp6usP29PT0chclKe2tt97C66+/ju+//x7t27ev9FitVgttqZq7/hwzVScki6VM7WNA4AQ9qja1SgUfrRYGkwmFRhM0Op/iL8cKBQSFAEAAqpGUKYz/1lh2RSm5GTNmuPT8JXQ6HXyd+NIgSRIkSYIoirDZbBBFsUx8kiTBlpsL0VhUwVnKUvoHQFBzuWFvpFWr4R8SCjPHlVMtk2WCfOLECbz22mtlkmMAaNKkCZ588knMmTPH6fNqNBp07twZSUlJuPfeewEAoigiKSkJU6ZMqfB1b7zxBubPn4+dO3eiS5cuTl+X6oY1P6/MNkGrrTe9SlRTAhRqNYTSD5UaYYKAjOxsSJKEIoUCPmFhUNfww9pXoYQgCLKusywIAsLCwhBcg2ENJav9WSwWWCwWGHJyYMq5fqUKhzhUGij8udywtxIEASE33ICM7GxZr25JnkeWCXKzZs1gqmQVK7PZXG7yXBXx8fEYP348unTpgm7dumHRokUoLCy0V7UYN24cGjdubK+zvHDhQsyaNQvr1q1DdHS0fayyv78/e4Y9iGQyQjKX/T+j5IQdqoBCrYGg00Gh0UDQ6ooT4nK+TCkABAYGIi8vD6IoIisrCyEhIQ53iZwVFhaGp59+GuYqLJXsqTQaDcLCwmp0DkEQoFaroTCboSrUQwsRtsBAGM1mGM1mWK4zMU+AAFVwML8EezFlUDCUGg0CAwORm5vr7nDIi8gyQZ41axamTp2KIUOGoGPHjg77fv/9d7z//vtYtGhRtc49cuRIZGRkYNasWUhLS0PHjh2RmJhon7iXmprqUEpu6dKlMJvNGDFihMN5Zs+eXa1ebKp9kiTBWs4bp8DhFVSKoFZDofMpfvj4QHCiZKSfnx+MRiNMJpM9Sfbz84O/vz+U1azJGmAxQzLLdyGSmuSkkihCMpkgGopgKyx0mISnVCrh5+MDPx8fWG02GEwmGIzGcmviKoNDWNLNiwkqtX2pcF9fXxgMhko7z4icIcsE+cCBA4iKikLnzp3Rs2dPtGzZEgDw119/Yf/+/YiJicH+/fsdSrMJgoDFixdX6fxTpkypcEjFnj17HJ6npKRU62eoS664Tevn5wdJkux/ejJbfh4ksWwZLkHnw56lekxQKKHQ6aDw8YHCxxdCDSesBQcH2yvhAEBhYSGKioqgUqmcrs8uZWUiN2FOjeJxq6vvCQ1feBnq8AinXifZbFdLtl3/fUWlVCLA1xf+Pj7F48ANBtiu3mZX+PpBwZXGvJoqNMzhi2xQUBAyMjI8/jOJ5EGWCfIHH3xg//vPP/+Mn3/+2WH/8ePHcfz4cYdtziTI3kCj0bh0DGNdLQ4SGRnp1G3aayf5mPLzIJlNkCCUme2ulEnFAaoNwtWhElootNriklCa2p20pVQqERoaiszMTPvvnSRJsFgsTp9LKihbbaU2tft0I8yiDRqFEsfHPuCy64gF+RDrYKiZIAjw1ensEyaLbCIEVjXwako//zLv4SqVyj7ciaimZJkgcyD+9XEMI2ArLITKbIZfUFDxMAubDWaLBSaLBRZRglCDMaLkiQQISiUElar4YZ9Mp6lw/HBtU6vVCAsLQ3ZtThhyQdxm0QZRKv7TFeeHm3rwBEGAX0AAghs0QmFREfR6PXsTvZCgUEIVWv5nQ+nhTkQ1IcsEmaqmphNk5MyanwdrdjZKbtMKggC1SgW1SgU/Hx8oAoNg1flwzJqbOZW6lCRyggAIiuKEV6EoTooVin+HSAhXy6spBMAmQhKNkMxmQBCKS68JiqvnEIpvz5acp5YSRY1Gg4iICOTm5vL/Vh0TlEpoohpCUCoREBAAHx8f5OXlsR28jCosDEIlY/uDg4ORkZHBzjSqEVknyOfPn8eOHTtw4cIFAMXVLe666y40b97czZF5BnPa5TKrxsmFJIoQVGqooyqvP13mdWYTbPn5EMupWPEvAerAIGhUKvj6+sJqtaKoqAhFRUV8Q61jTqWkJT2BkgRAtCfXtdc/WDphFiA4JNJXE2sAKFm5q2TsY0lCjqt/XE20g9VqWAAYr07cc4YNIq6t2E2VExRKqKMaOowlV6lUCAsLQ1FREfLz8/n77QWUfv5Q+lU+bEepVCI4OBjZ2dl1FBV5I9kmyP/5z3+wePHiMm94CoUCzz//PN566y03ReYZzGmXkTo9/voHeqqryVCDKfFQhYfX6qmVfn5lPkQDAwPh7++Poqu3ZflBWh9J/07mtNVe4l2dOikWqxUcRVl1gkIJdYOGFY4r9/X1hVarRV5eHoxGeXYaUHHVClVY1T4PdDod/P39oecy8FRNzk2t9hBvv/023n33XQwfPhz79+9Hbm4ucnNzsX//fowYMQLvvvsu3n33XXeH6Vau7jm+79ud6P3FZtz37U6XXkey1P4YamVgYLnbFQoF/P39ERkZiYCAAFa4IJIBQamqNDkuUTKJMiQkpNql98h9BEGAOjLKqfKLgYGBxStbElWDLHuQV6xYgbvvvhtffPGFw/bu3btj/fr1MBqN+OijjzB16lQ3RehhXJDoZRiMSC8yuOz8rprko9DpoNBW/oapUCgQEBAAX19f5Ofnw2DgzW4iT6TQaIuTJidK9Pn4FC8HrtfrOYlPRlRhEdWqPBMcHIysrKxqVZOh+k2WPcgpKSmIi4urcH9cXJws6hNT3VMFhVT5WKVSiZCQEISFhUFVwxq5RFS7lH7+UDdoWK361YIgICAgAFFRUfD39+fdIg+nCgqGsprlAhUKBUJDQ3nXgJwmywQ5MjISf/zxR4X7//jjD0REOFGcnuqFkkUhnKXVahEREQE/Pz8XREVEzhAUSqjDI6GOiHTqdnt5FAoFAgMDERUVhYCAACZRHkjp5w9VSGjNzqFUIiwsjO1LTpFlgvzAAw/g448/xuuvv47CwkL79sLCQixcuBAff/wxRo4c6cYIyROpQqs/2U8QBAQFBSE8PByaWl5ggqiuaRRKKITiP+VDgNI/AJrGN1S7N7EiJcOqIiMjERoaCp1Ox15lD6D09YPKmZUYK1FS0YRJMlWVLO8bv/baazh69ChefvllzJo1C40aNQIAXLp0CVarFf3798err77q5ijJkygDAmtl5TSNRoPw8HAUFRWhoKDAvqwwkZwcH/egu0NwggClnx+UQcG1vvphmSsJAnQ6HXQ6HSRJsi84YTabYbVaXXptcqT084cqPKJWv6ioVCqEh4cjKyuL7UnXJcsE2dfXF0lJSdi8ebNDHeRBgwZh8ODBGDZsGL/9k52gVNb4Ft21fH194ePjYy8Lx0SZqPYISiUU2uIhUQo//xoPpSghOdTSxr9/v3ai3tXnOpUKWqUS8PWFKIqwWCywWq2w2myw2WyQRBEiJ/nVOlVgUIUr5dWUUqlEeHg4cnJyuIAMVUp2CXJRURHGjBmD+++/Hw8//DDuueced4dEHk2AOrzmYxXLPbMgwM/PD76+vjAYDCgsLORMaaIyqt5ZIQgCcHVlRMlqha2gALb8fIdjpNIVqiVck9xK/xawliSUPCk+pOaJrABAffVRE2aLGUU1jsb7CIIAVVg4lP4BLr2OQqFAWFgYCgoKWMmEKiS7BNnX1xfff/897rrrLneHUq9FXJ3sFlGNSW91SRUSUq2Jec4QBAG+vr7w9fWF2WyGwWCAwWDgYiNEAJxJTCVJAqxiLa6OSHKh0OqgDo+AoK7p14+qCwgIgE6nQ15eHszm2q+5T/ImuwQZAHr37o39+/dj0qRJ7g6l3tp0d8Vl9jyFKigYqqDgOr2mRqOBRqNBYGAgzGYzTCYTTCYTe5aJiMohqNVQBYdcd/loV1Gr1QgPD4fRaERBQQHfq8lOlgnyBx98gLi4OMycORNPPPEEbrjhBneHRB5EEBRXb9O55w23OAbBniwH+Ps7jl+0WGCz2WATRUg2GyRJcrrHjCPsiUiuBKUKCh8fKP38XX6Hr6pKJmdaLBYYDAaYTCZYrVYOv6jHZJkgd+jQAVarFQkJCUhISIBKpYJWq3U4RhAE5OXluSlCqi2SAKdW6lNotFD4+QGQYNMXXDMZp9T4RalkrGKpCTqS5DiJ5+pDsk/ikQCxZEyjWGr8o+Tw98rGO6pQO790VqsFBbVwHiKi6nI6dRQUEBQKCEolJLMZVnM2kOOKyEqpRoKru/qQJAliNSZiWqwWGJ2+KnkaWSbI999/P6tU1BNCmUk4lRNNRogmvjUREbma05/CkgjJJkKyyafEmgDA2crJNvY6ewVZJshr1qxxdwhERERE5KVklSAbjUZs3rwZ58+fR3h4OIYMGYKGDRu6OywiIiIi8iKySZCvXLmCnj174vz58/Zxor6+vvjmm28QGxvr5uiIiIiIyFvU/uoJLvLaa68hJSUFU6dOxdatW7Fo0SL4+Phg8uTJ7g6NiIiIiLyIbHqQv/vuO4wbNw5vvfWWfVtUVBRGjx6N5ORktGrVyo3REREREZG3kE0PcmpqKnr37u2wrXfv3pAkCenp6W6KioiIiIi8jWwSZJPJBJ1O57Ct5LnVKp+SMURERETk2WSTIANASkoKjhw5Yn8cO3YMAPDXX385bC95VNeSJUsQHR0NnU6H7t2749ChQ5Uev3HjRrRu3Ro6nQ7t2rXD9u3bq31tIiIiInIv2YxBBoBXXnkFr7zySpntTz31lMNzSZIgCAJsNpvT19iwYQPi4+OxbNkydO/eHYsWLUJcXBySk5MRGRlZ5vhffvkFo0aNQkJCAoYOHYp169bh3nvvxZEjRxATE+P09YmIiIjIvWSTIK9evbpOrvPOO+9g0qRJmDBhAgBg2bJl2LZtG1atWoVp06aVOX7x4sUYNGgQ/u///g9AcbWNXbt24YMPPsCyZcvqJGYiIiIiqj2ySZDHjx/v8muYzWYcPnwY06dPt29TKBSIjY3F/v37y33N/v37ER8f77AtLi4O33zzTYXXMZlMMJlM9ud6vb5mgV8Pl730bmxf78b29W5sX+/G9pUt2STIdSEzMxM2mw1RUVEO26OionD69OlyX5OWllbu8WlpaRVeJyEhAXPnzq15wJUQtLrrHyQDqogoqEPD3R2G5/GS91y2bwVE0d0R1IwgAJLE9q2I1fnhf56I7VsBL2lfb8kjqosJshtMnz7dodf56NGj6Nu3b61eQ9OgIZomvAPJZKzV89YlQauDpgGXEi+PMjCQ7evF2L7eje3r3di+3oEJcinh4eFQKpVl6iqnp6ejQYMG5b6mQYMGTh0PAFqtFlqt1v7c39+/BlFXrL7/5/Z2bF/vxvb1bmxf78b2lT9ZlXlzNY1Gg86dOyMpKcm+TRRFJCUloUePHuW+pkePHg7HA8CuXbsqPJ6IiIiIPBt7kK8RHx+P8ePHo0uXLujWrRsWLVqEwsJCe1WLcePGoXHjxkhISAAAPPfcc+jbty/efvttDBkyBOvXr8dvv/2G5cuXu/PHICIiIqJqYoJ8jZEjRyIjIwOzZs1CWloaOnbsiMTERPtEvNTUVCgU/3a89+zZE+vWrcPMmTPx8ssv46abbsI333zDGshEREREMiVIEmuQuNuRI0fQuXNnHD58GLfeequ7wyEiIiKq1zgGmYiIiIioFCbIRERERESlcAwyVdvly5dx+fJld4dBRERUrzRs2BANG7KUnCsxQfYADRs2xOzZs2X1n91kMmHUqFH48ccf3R0KERFRvdK3b1/s3LnTYU0Fql2cpEfVkp+fj6CgIPz4448uW+iE3Eev16Nv375sXy/F9vVubF/vVtK+eXl5CAwMdHc4XosJMlVLSYLMX1DvxPb1bmxf78b29W5s37rBSXpERERERKUwQSYiIiIiKoUJMlWLVqvF7NmzOUHAS7F9vRvb17uxfb0b27ducAwyEREREVEp7EEmIiIiIiqFCTIRERERUSlMkImIiIiISmGCTG6XkpICQRCwZs0ad4dCRERExARZbs6ePYvJkyfjxhtvhE6nQ2BgIHr16oXFixfDYDC47LonT57EnDlzkJKS4rJrVMX8+fNx9913IyoqCoIgYM6cOW6Nx10EQajSY8+ePTW+VlFREebMmePUudhONefJbXz69Gm8+OKL6NixIwICAtCwYUMMGTIEv/32W41jqS88uX0vXbqEMWPGoFWrVggICEBwcDC6deuGtWvXgvP6q8aT2/dan3/+OQRB4KqL11C5OwCqum3btuGBBx6AVqvFuHHjEBMTA7PZjH379uH//u//cOLECSxfvtwl1z558iTmzp2Lfv36ITo62iXXqIqZM2eiQYMG6NSpE3bu3Om2ONzt008/dXj+ySefYNeuXWW2t2nTpsbXKioqwty5cwEA/fr1q9Jr2E4158lt/PHHH2PlypW4//778dRTTyEvLw8fffQRbrvtNiQmJiI2NrbGMXk7T27fzMxM/P333xgxYgSaNm0Ki8WCXbt24ZFHHkFycjIWLFhQ45i8nSe3b2l6vR4vvvgi/Pz8ahyHt2GCLBPnz5/HQw89hGbNmuGHH35Aw4YN7fuefvppnDlzBtu2bXNjhP+SJAlGoxE+Pj61fu7z588jOjoamZmZiIiIqPXzy8WYMWMcnh84cAC7du0qs91d2E4158ltPGrUKMyZM8ehx2nixIlo06YN5syZwwS5Cjy5fdu3b1+mN3LKlCkYNmwY3nvvPbz22mtQKpXuCU4mPLl9S5s3bx4CAgLQv39/fPPNN+4Ox6NwiIVMvPHGG9Dr9Vi5cqVDclyiZcuWeO655+zPrVYrXnvtNbRo0QJarRbR0dF4+eWXYTKZHF4XHR2NoUOHYt++fejWrRt0Oh1uvPFGfPLJJ/Zj1qxZgwceeAAA0L9//zK3hkrOsXPnTnTp0gU+Pj746KOPAADnzp3DAw88gNDQUPj6+uK2226rUSLvzt5ruRFFEYsWLcItt9wCnU6HqKgoTJ48GTk5OQ7H/fbbb4iLi0N4eDh8fHzQvHlzTJw4EUDx+PCSBHfu3Ln2tr/ekAm2U91wVxt37ty5zO3YsLAw9OnTB6dOnardH7Iec+fvcHmio6NRVFQEs9lc45+N3N++f/31F95991288847UKnYX3ot/ovIxLfffosbb7wRPXv2rNLxjz32GNauXYsRI0bgP//5Dw4ePIiEhAScOnUKmzZtcjj2zJkzGDFiBB599FGMHz8eq1atwiOPPILOnTvjlltuwe23345nn30W7733Hl5++WX7LaHSt4aSk5MxatQoTJ48GZMmTUKrVq2Qnp6Onj17oqioCM8++yzCwsKwdu1a3H333fjyyy9x33331d4/EJUxefJkrFmzBhMmTMCzzz6L8+fP44MPPsDvv/+On3/+GWq1GleuXMHAgQMRERGBadOmITg4GCkpKfj6668BABEREVi6dCmefPJJ3HfffRg+fDiA4h4mcj9Pa+O0tDSEh4fX6s9Yn7m7fQ0GAwoLC6HX6/Hjjz9i9erV6NGjh0vuDtZH7m7f559/Hv3798fgwYPxxRdfuPRnlSWJPF5eXp4EQLrnnnuqdPzRo0clANJjjz3msP2FF16QAEg//PCDfVuzZs0kANJPP/1k33blyhVJq9VK//nPf+zbNm7cKAGQdu/eXeZ6JedITEx02P78889LAKS9e/fatxUUFEjNmzeXoqOjJZvNJkmSJJ0/f14CIK1evbpKP58kSVJGRoYEQJo9e3aVX+PNnn76aan0r/PevXslANLnn3/ucFxiYqLD9k2bNkkApF9//bXCc9fk35rtVHs8tY1L/PTTT5IgCNIrr7xS7XPUZ57YvgkJCRIA++POO++UUlNTnToHFfO09t26daukUqmkEydOSJIkSePHj5f8/Pyc+Im8H4dYyEB+fj4AICAgoErHb9++HQAQHx/vsP0///kPAJQZ4tC2bVv06dPH/jwiIgKtWrXCuXPnqhxj8+bNERcXVyaObt26oXfv3vZt/v7+ePzxx5GSkoKTJ09W+fzknI0bNyIoKAgDBgxAZmam/VFya3z37t0AgODgYADA1q1bYbFY3BgxOcuT2vjKlSsYPXo0mjdvjhdffNEl16hvPKF9R40ahV27dmHdunUYPXo0ALi0WlJ94s72NZvNmDp1Kp544gm0bdu2Vs7pjZggy0BgYCAAoKCgoErHX7hwAQqFAi1btnTY3qBBAwQHB+PChQsO25s2bVrmHCEhIWXGQVWmefPm5cbRqlWrMttLhmZcGwfVnr/++gt5eXmIjIxERESEw0Ov1+PKlSsAgL59++L+++/H3LlzER4ejnvuuQerV68uM1adPI+ntHFhYSGGDh2KgoICbN68maWiaokntG+zZs0QGxuLUaNG4fPPP8eNN96I2NhYJsm1wJ3t++677yIzM9Ne+YLKxzHIMhAYGIhGjRrhzz//dOp1giBU6biKZiNLTtS75Jg0zyKKIiIjI/H555+Xu79kUocgCPjyyy9x4MABfPvtt9i5cycmTpyIt99+GwcOHGCy48E8oY3NZjOGDx+OY8eOYefOnYiJian2uciRJ7TvtUaMGIEVK1bgp59+KnPHkJzjrvbNy8vDvHnz8NRTTyE/P99+h1qv10OSJKSkpMDX1xeRkZE1+wG9ABNkmRg6dCiWL1+O/fv3o0ePHpUe26xZM4iiiL/++sthIl16ejpyc3PRrFkzp69f1WT72jiSk5PLbD99+rR9P7lGixYt8P3336NXr15V+vJy22234bbbbsP8+fOxbt06PPzww1i/fj0ee+yxarU9uZ6721gURYwbNw5JSUn44osv0Ldv3+r8GFQBd7dveUp6jvPy8mrlfPWZu9o3JycHer0eb7zxBt54440y+5s3b4577rmHJd/AIRayUVLI+7HHHkN6enqZ/WfPnsXixYsBAIMHDwYALFq0yOGYd955BwAwZMgQp69fUkQ8Nze3yq8ZPHgwDh06hP3799u3FRYWYvny5YiOjubYJxd68MEHYbPZ8Nprr5XZZ7Va7e2Yk5NT5k5Bx44dAcB+C8/X1xeAc21PrufuNn7mmWewYcMGfPjhh/aZ81R73Nm+GRkZ5W5fuXIlBEHArbfeWqXzUMXc1b6RkZHYtGlTmUf//v2h0+mwadMmTJ8+vfo/mBdhD7JMtGjRAuvWrcPIkSPRpk0bh5X0fvnlF2zcuBGPPPIIAKBDhw4YP348li9fjtzcXPTt2xeHDh3C2rVrce+996J///5OX79jx45QKpVYuHAh8vLyoNVqcccdd1R6G2batGn473//i7vuugvPPvssQkNDsXbtWpw/fx5fffUVFArnv599+umnuHDhAoqKigAAP/30E+bNmwcAGDt2LHulr+rbty8mT56MhIQEHD16FAMHDoRarcZff/2FjRs3YvHixRgxYgTWrl2LDz/8EPfddx9atGiBgoICrFixAoGBgfYvWj4+Pmjbti02bNiAm2++GaGhoYiJian0djrbyfXc2caLFi3Chx9+iB49esDX1xefffaZw/777ruPK3PVkDvbd/78+fj5558xaNAgNG3aFNnZ2fjqq6/w66+/4plnnikzv4Wc56729fX1xb333ltm+zfffINDhw6Vu6/ecmcJDXLe//73P2nSpElSdHS0pNFopICAAKlXr17S+++/LxmNRvtxFotFmjt3rtS8eXNJrVZLTZo0kaZPn+5wjCQVl2gbMmRImev07dtX6tu3r8O2FStWSDfeeKOkVCodSr5VdA5JkqSzZ89KI0aMkIKDgyWdTid169ZN2rp1q8MxzpR569u3r0PZodKP8krQ1RfXlhAqsXz5cqlz586Sj4+PFBAQILVr10568cUXpUuXLkmSJElHjhyRRo0aJTVt2lTSarVSZGSkNHToUOm3335zOM8vv/wide7cWdJoNFUqJ8R2qn2e1Mbjx4+vsH0BSOfPn6/NH71e8KT2/e6776ShQ4dKjRo1ktRqtf1zZvXq1ZIoirX6c9cXntS+5WGZt7IESXJiJhYRERERkZfjGGQiIiIiolKYIBMRERERlcIEmYiIiIioFCbIRERERESlMEEmIiIiIiqFCbKXeeONN9C6dWuIoujuUGrsoYcewoMPPujuMDwK29e7sX29G9vX+7GNvYi768xR7cnLy5NCQ0OlVatW2bfhal3St956q8zxq1evlgBIv/76a63HEhsbKwGQnn766XL3f/zxx1Lr1q0lrVYrtWzZUnrvvffKHHPkyBFJoVBIR48erfX45Ijt693Yvt6N7ev92MbehT3IXmTVqlWwWq0YNWpUmX1vvvmmfVUzV/v6668dlpe+1kcffYTHHnsMt9xyC95//3306NEDzz77LBYuXOhwXKdOndClSxe8/fbbrg5ZFti+3o3t693Yvt6Pbexl3J2hU+1p3769NGbMGIdtAKSOHTtKAKS3337bYZ8rvr0aDAYpOjpaevXVV8v99lpUVCSFhYWVWXnv4Ycflvz8/KTs7GyH7W+99Zbk5+cnFRQU1FqMcsX29W5sX+/G9vV+bGPvwh5kL3H+/HkcO3YMsbGxZfb16tULd9xxB9544w0YDAaXxvHGG29AFEW88MIL5e7fvXs3srKy8NRTTzlsf/rpp1FYWIht27Y5bB8wYAAKCwuxa9cul8UsB2xf78b29W5sX+/HNvY+TJC9xC+//AIAuPXWW8vdP2fOHKSnp2Pp0qWVnsdkMiEzM7NKj2ulpqbi9ddfx8KFC+Hj41Pu+X///XcAQJcuXRy2d+7cGQqFwr6/RNu2beHj44Off/650ri9HdvXu7F9vRvb1/uxjb2Pyt0BUO04ffo0AKB58+bl7u/Tpw/69++PN998E08++WSFvzz//e9/MWHChCpdU5Ikh+f/+c9/0KlTJzz00EMVvuby5ctQKpWIjIx02K7RaBAWFoZLly45bFepVGjSpAlOnjxZpZi8FdvXu7F9vRvb1/uxjb0PE2QvkZWVBZVKBX9//wqPmTNnDvr27Ytly5Zh6tSp5R4TFxdXrVspu3fvxldffYWDBw9WepzBYIBGoyl3n06nK/f2U0hISLnflusTtq93Y/t6N7av92Mbex8myPXI7bffjv79++ONN97AE088Ue4xDRs2RMOGDZ06r9VqxbPPPouxY8eia9eulR7r4+MDs9lc7j6j0Vjut2pJkiAIglMx1UdsX+/G9vVubF/vxzaWFybIXiIsLAxWqxUFBQUICAio8LjZs2ejX79++OijjxAcHFxmv8FgQF5eXpWu2aBBAwDAJ598guTkZHz00UdISUlxOKagoAApKSmIjIyEr68vGjZsCJvNhitXrjjc4jGbzcjKykKjRo3KXCcnJwc33XRTlWLyVmxf78b29W5sX+/HNvY+nKTnJVq3bg2geCZtZfr27Yt+/fph4cKF5d5K2bBhg/0b7PUeJVJTU2GxWNCrVy80b97c/gCKf3GbN2+O7777DgDQsWNHAMBvv/3mcN3ffvsNoija95ewWq24ePEi2rRp49S/h7dh+3o3tq93Y/t6P7ax92EPspfo0aMHgOL/5O3bt6/02Dlz5qBfv35Yvnx5mX3VGf/00EMPlfmlAoD77rsPgwcPxqRJk9C9e3cAwB133IHQ0FAsXboUgwcPth+7dOlS+Pr6YsiQIQ7nOHnyJIxGI3r27OlUTN6G7evd2L7eje3r/djGXshdBZip9sXExEijRo1y2IYKlprs27evfQlMVyxzWdm1lyxZIgGQRowYIa1YsUIaN26cBECaP39+mWPfeustydfXV8rPz3dJjHLC9vVubF/vxvb1fmxj78IE2Yu88847kr+/v1RUVGTfVtEvyO7du932yylJkrR8+XKpVatWkkajkVq0aCG9++67kiiKZY7r3r17mZWJ6iu2r3dj+3o3tq/3Yxt7FybIXiQ3N1cKDQ2VPv74Y3eHUit+//13SRAE6ffff3d3KB6B7evd2L7eje3r/djG3kWQpGsqTZOsLVy4EKtXr8bJkyehUMh7DuZDDz0EURTxxRdfuDsUj8H29W5sX+/G9vV+bGPvwQSZiIiIiKgUeX+9ISIiIiKqZUyQiYiIiIhKYYJMRERERFQKE2QiIiIiolKYIBMRERERlcIEmYiIiIioFCbIRERERESlMEEmIiIiIiqFCTIRERERUSlMkImIiIiISmGCTERERERUChNkIiIiIqJSmCATEREREZXCBNkDXL58GXPmzMHly5fdHQoRERFRvccE2QNcvnwZc+fOZYJMRERE5AGYIBMRERERlcIEmYiIiIioFCbIRERERESlMEEmIiIiIiqFCTIRERERUSlMkImIiIiISmGCTERERERUChNkIiqX1Wp1dwhERERuwQSZiMrFBJmIiOorJshEVC6bzebuEIiIiNyCCTIRlYsJMhER1VcemSBfvnwZf/zxBwoLC90dClG9xSEWRERUX3lUgrx582a0bt0aN9xwA2699VYcPHgQAJCZmYlOnTrhm2++cW+ARPUIE2QiIqqvPCZB/vbbbzF8+HCEh4dj9uzZkCTJvi88PByNGzfG6tWr3RghUf1isVjcHQIREZFbeEyC/Oqrr+L222/Hvn378PTTT5fZ36NHD/z+++9uiIyofjKbze4OgYiIyC08JkH+888/8eCDD1a4PyoqCleuXKnDiIjqN6PR6O4QiIiI3MJjEmRfX99KJ+WdO3cOYWFhdRgRUf3GBJmIiOorj0mQ+/fvj7Vr15Y7MSgtLQ0rVqzAwIED3RAZUf3EKjJERFRfeUyCPH/+fPz999/o2rUrPvroIwiCgJ07d2LmzJlo164dJEnC7Nmz6ySWJUuWIDo6GjqdDt27d8ehQ4cqPX7RokVo1aoVfHx80KRJE0ydOpW9byR7er2etZCJiKhe8pgEuVWrVti3bx/CwsLwyiuvQJIkvPnmm1iwYAHatWuHvXv3Ijo62uVxbNiwAfHx8Zg9ezaOHDmCDh06IC4ursLxz+vWrcO0adMwe/ZsnDp1CitXrsSGDRvw8ssvuzxWIleSJAnZ2dnuDoOIiKjOqdwdQGm33HILvv/+e+Tk5ODMmTMQRRE33ngjIiIi6iyGd955B5MmTcKECRMAAMuWLcO2bduwatUqTJs2rczxv/zyC3r16oXRo0cDAKKjozFq1Ch7DWciOUtPT6/T3z8iIiJP4DE9yKWFhISga9eu6N69e51+OJvNZhw+fBixsbH2bQqFArGxsdi/f3+5r+nZsycOHz5sH4Zx7tw5bN++HYMHD67wOiaTCfn5+faHXq+v3R+EqJb8/fff7g6BiIioznlMgvzee+8hLi6uwv133XUXli5d6tIYMjMzYbPZEBUV5bA9KioKaWlp5b5m9OjRePXVV9G7d2+o1Wq0aNEC/fr1q3SIRUJCAoKCguyPvn371urPQVRb/vnnHy4YQkRE9Y7HJMgrV65E27ZtK9zftm1bLF++vA4jqpo9e/ZgwYIF+PDDD3HkyBF8/fXX2LZtG1577bUKXzN9+nTk5eXZHz/++GMdRkxUdTabDSkpKe4Og4iIqE55TIJ89uxZtGnTpsL9rVu3xtmzZ10aQ3h4OJRKJdLT0x22p6eno0GDBuW+5pVXXsHYsWPx2GOPoV27drjvvvuwYMECJCQkQBTFcl+j1WoRGBhof/j7+9f6z0JUW/73v/+5OwQiIqI65TEJskajqXAYAwBcvnwZCoVrw9VoNOjcuTOSkpLs20RRRFJSEnr06FHua4qKisrEpVQqARRXASCSu3/++Qc5OTnuDoOIiKjOeEyCfNttt2HNmjUoKCgosy8vLw+rV6/Gbbfd5vI44uPjsWLFCqxduxanTp3Ck08+icLCQntVi3HjxmH69On244cNG4alS5di/fr1OH/+PHbt2oVXXnkFw4YNsyfKRHJ37Ngxd4dARERUZzymzNvs2bPRt29fdOzYEc8//zxuueUWAMCff/6JRYsW4fLly1i3bp3L4xg5ciQyMjIwa9YspKWloWPHjkhMTLRP3EtNTXXoMZ45cyYEQcDMmTPxzz//ICIiAsOGDcP8+fNdHitRXfnf//6HDh06IDg42N2hEBERuZwgedA4gF27dmHy5MlISUmBIAgAiocpNG/eHEuXLvXapaaPHDmCzp074/Dhw7j11lvdHQ4RAGDHjh24ePGi/Xnjxo0xePBg++8mERGRt/KYHmQAGDBgAM6cOYPff//dPiGvRYsWuPXWW/mhTORm//zzD44fP4727du7OxQiIiKX8qgEGShemKNz587o3Lmzu0MhomscPHgQgYGBdbLsOxERkbt4XIJ88uRJnDt3Djk5OeVWgRg3bpwboiIioHjIU1JSEu68804myURE5LU8JkE+e/YsxowZg0OHDlVYHk0QBCbIRG5ms9mwa9cu9O7du9La5URERHLlMQny5MmTcfz4cSxatAh9+vRBSEiIu0Miqre6dOmClJQU+Pn5YcaMGWX2S5KEvXv3Ijc3F927d3d5jXIiIqK65DEJ8s8//4yXX34ZzzzzjLtDIar30tLSkJWVBZvNVulxx48fR1ZWFmJjY6HT6eooOiIiItfymG6f8PBwBAUFuTsMInLSpUuXsGnTJmRmZro7FCIiolrhMQnyE088gc8+++y6PVZE5HkKCgqwefNmnDlzxt2hEBER1ZjHDLG4+eabYbPZ0KFDB0ycOBFNmjQpd6nm4cOHuyE6Iroem82GH374AdnZ2ejatStrlxMRkWx5TII8cuRI+99feOGFco8RBIE9zEQe7ujRo8jPz0f//v3L/ZJLRETk6TwmQd69e7e7QyCiWnLu3DkYjUbExcVBrVa7OxwiIiKneEyC3LdvX3eHQES16NKlS9i+fTvuuusuaDQad4dDRERUZR4zSa+EyWTC/v37sXnzZs6KJ5K59PR07NixA2az2d2hEBERVZlHJcjvvfceGjZsiN69e2P48OE4duwYACAzMxPh4eFYtWqVmyMkImelp6dj586dnD9ARESy4TEJ8urVq/H8889j0KBBWLlypcNy0+Hh4bjjjjuwfv16N0ZIRNV1+fJlJCUlVbiMPBERkSfxmAT57bffxj333IN169Zh2LBhZfZ37twZJ06ccENkRFQbUlJSsH//fneHQUREdF0ekyCfOXMGd911V4X7Q0NDkZWVVYcREVFt+/PPP/Hnn3+6OwwiIqJKeUyCHBwcXOmkvJMnT6JBgwZ1GBERucL+/fuRmprq7jCIiIgq5DEJ8uDBg7F8+XLk5uaW2XfixAmsWLECd999d90HRkS1SpIkJCUlsUoNERF5LI9JkOfNmwebzYaYmBjMnDkTgiBg7dq1GDNmDLp06YLIyEjMmjWrTmJZsmQJoqOjodPp0L17dxw6dKjS43Nzc/H000+jYcOG0Gq1uPnmm7F9+/Y6iZVIjiwWC3bs2FHuF2IiIiJ385gEuVGjRjh8+DAGDRqEDRs2QJIkfPrpp/j2228xatQoHDhwAOHh4S6PY8OGDYiPj8fs2bNx5MgRdOjQAXFxcbhy5Uq5x5vNZgwYMAApKSn48ssvkZycjBUrVqBx48Yuj5XIFVJTU1FYWAiguC55dna2S65jMBiwbds25OXlueT8RERE1SVIHlB3yWQyYefOnYiOjkb79u0BABkZGRBFEREREVAo6i6P7969O7p27YoPPvgAACCKIpo0aYJnnnkG06ZNK3P8smXL8Oabb+L06dPVXlL3yJEj6Ny5Mw4fPoxbb721RvETVdehQ4fw2muvYdu2bQ7l2ARBQLt27TBkyBBER0fX+nX9/PwwdOhQBAUF1fq5iYiIqsMjepA1Gg0eeOAB/PLLL/ZtERERiIqKqtPk2Gw24/Dhw4iNjbVvUygUiI2NrbA81ZYtW9CjRw88/fTTiIqKQkxMDBYsWMBFEUhWvv76a/Tq1Qs7duwoU6tYkiT8+eefWLhwIY4cOVLr1y4sLMS2bdug1+tr/dzZ2dl4+OGHERgYiODgYDz66KPXvU6/fv0gCILD44knnrDvX7NmTZn9JY+K7jQREZG8eESCLAgCbrrpJrdP2snMzITNZkNUVJTD9qioKKSlpZX7mnPnzuHLL7+EzWbD9u3b8corr+Dtt9/GvHnzKryOyWRCfn6+/eGKxICoqg4dOoSRI0fCZrNV+MVOFEWIoogVK1YgJSWl1mPQ6/VITEyE1Wp1+rX9+vXDmjVryt338MMP48SJE9i1axe2bt2Kn376CY8//vh1zzlp0iRcvnzZ/njjjTfs+0aOHOmw7/Lly4iLi0Pfvn0RGRnpdPxEROR5PCJBBoCXX34ZH3zwAZKTk90dilNEUURkZCSWL1+Ozp07Y+TIkZgxYwaWLVtW4WsSEhIQFBRkf/Tt27cOIyZyNG/ePEiSVOVV7lw1ATU7OxuHDx+utfOdOnUKiYmJ+Pjjj9G9e3f07t0b77//PtavX49Lly5V+lpfX180aNDA/ggMDLTv8/HxcdinVCrxww8/4NFHH6212ImIyL1U7g6gxIEDBxAWFoaYmBj069cP0dHR8PHxcThGEAQsXrzYZTGEh4dDqVQiPT3dYXt6enqFNZgbNmwItVoNpVJp39amTRukpaXBbDZDo9GUec306dMRHx9vf3706FEmyeQWqamp2Lp1a5WTY1EUcezYMWRnZyM0NLTW4zl58iS6dOni8PtUXfv370dwcDC6dOli3xYbGwuFQoGDBw/ivvvuq/C1n3/+OT777DM0aNAAw4YNwyuvvAJfX99yj/3kk0/g6+uLESNG1DhmIiLyDB6TIJdMigOApKSkco9xdYKs0WjQuXNnJCUl4d577wVQnBAkJSVhypQp5b6mV69eWLduHURRtI+X/t///oeGDRuWmxwDgFarhVartT/39/ev3R+EvIrVanXZmPbExMQqJ8clJEnCqVOn0LNnz1qPx2w2Iy0trVaqwKSlpZUZ8qBSqRAaGlrhkCkAGD16NJo1a4ZGjRrh2LFjeOmll5CcnIyvv/663ONXrlyJ0aNHl/lCT0RE8uUxCbIoiu4OAQAQHx+P8ePHo0uXLujWrRsWLVqEwsJCTJgwAQAwbtw4NG7cGAkJCQCAJ598Eh988AGee+45PPPMM/jrr7+wYMECPPvss+78MchLWK1WnDx5EgaDwSXnP336NBQKhVO/f4IgID8/H0VFRS6JKTk5GVFRUVCpyn97WrBgARYsWGB/bjAYcODAAYcvsSdPnqz29UuPUW7Xrh0aNmyIO++8E2fPnkWLFi0cjt2/fz9OnTqFTz/9tNrXIyIiz+MxCbKnGDlyJDIyMjBr1iykpaWhY8eOSExMtE/cS01Ndais0aRJE+zcuRNTp05F+/bt0bhxYzz33HN46aWX3PUjkBex2WwwGAxQq9UV3pGoiZCQEKe/nEqSBB8fH5dUmJEkyT5ZsKIE+YknnsCDDz5of/7www/j/vvvx/Dhw+3bGjVqhAYNGpSpKmG1WpGdne3UsvXdu3cHAJw5c6ZMgvzxxx+jY8eO6Ny5c5XPR0REns/jEuQDBw5g9+7duHLlCp566incdNNNKCoqwunTp3HzzTfXyXCEKVOmVDikYs+ePWW29ejRAwcOHHBxVFSfaTQalyTIvXr1giAITg2zEAQBrVq1clkJRj8/v0r3h4aGOox/9vHxQWRkJFq2bOlwXI8ePZCbm4vDhw/bE9gffvgBoijak96qOHr0KIDi+Qal6fV6fPHFF/a7SURE5D08poqF2WzG8OHD0atXL8yYMQPvvfceLl68CKC4FvHAgQNdOv6YqL7R6/U4ePAgmjZtCkEQqvSakuQ4ODjYJTGVVIWoDW3atMGgQYMwadIkHDp0CD///DOmTJmChx56CI0aNQIA/PPPP2jdurV9OfmzZ8/itddew+HDh5GSkoItW7Zg3LhxuP322+2LGJXYsGEDrFYrxowZUyvxEhGR5/CYBPmVV17B1q1bsXTpUiQnJzv0aOl0OjzwwAPYvHmzGyMk8h7nz5/H559/josXLzpUebgeQRDQo0cPZGVlwWw212pMKpUKN954Y62e8/PPP0fr1q1x5513YvDgwejduzeWL19u32+xWJCcnGwfT63RaPD9999j4MCBaN26Nf7zn//g/vvvx7ffflvm3CtXrsTw4cNd9mWBiIjcx2OGWPz3v//Fk08+iccffxxZWVll9rdp0wYbN250Q2RE3sNqtWLfvn32YQMA0Lx5c8yaNQvz58+3jwG+VslwiuHDh6NRo0YQRRE5OTnw9fWFv79/lXugKyIIAjp27AitVuv0YiHlDXsqERoainXr1lW4Pzo62uHLeJMmTfDjjz9W6bqlV/4kIiLv4jEJ8pUrV9CuXbsK9yuVSpfNmieqD7Kzs7Fjxw5kZGTYt914440YMGAAfHx8EBMTgw8//BB79uxxSBoFQUDbtm0RFxeHxo0bIz8/HxaLBQBQVFQEs9mMwMBAqNXqasUlCAI6dOiAsLCwWu+VJiIiqg6PSZCbNGmC06dPV7j/559/LjMJh4iuT5IknDx5Env27LEntkqlEn369EGHDh3svb/t27fHsmXLcOnSJdxzzz3Iz8+Hj48PXnrpJYdJcSEhISgqKrIvkV5SGcLf3x++vr5O9SYrFAp07NgRERERtfgTExER1YzHjEEePXo0PvroI+zfv9++reSDdsWKFfjiiy8wbtw4d4VHJEsmkwmJiYnYtWuXPTkOCQnBQw89hI4dO5abzDZq1Mi+6IVGoymzYp4gCPDz80NoaKhDKTa9Xo/c3NwqL2qiUqnQtWtXJsdERORxPKYHecaMGThw4ABuv/12tGnTBoIgYOrUqcjOzsbff/+NwYMHY+rUqe4Ok0g20tLSsH37duTn59u3xcTEoG/fvtUeDlGaWq1GaGgo9Hq9ffiT2WxGVlYWAgICoNPpKuxN1ul06Ny5M1eRJCIij+QxCbJGo0FiYiI+//xzfPnll7DZbDCZTGjfvj3mzZuHsWPH1ngiEFF9IEkSDh8+jF9++cW+CIhGo0FsbCxuvvnmWr2WIAgICAiAVqtFXl4eRFGEJEnIz8+HyWRCYGBgmXrJfn5+6NKlC3Q6Xa3GQkREVFvcliDHx8dj7Nix6NSpE4DiFeoiIiIwZswY1hUlqqbCwkLs3LkTqamp9m0NGjTAXXfdhaCgIJddV6PRICwsDAUFBTAajQCKh3dkZWUhMDAQWq0WQPHwjk6dOtVKDzYREZGruG0M8qJFi3Dq1Cn78+bNm2PTpk3uCodI9s6fP4/PPvvMITnu2rUrHnjgAZcmxyUUCgWCgoIQFBRkv9sjiiJyc3ORn5+PyMhIdO7cmckxERF5PLf1IEdFReHcuXP2584sdUtE/7Jarfjll19w5MgR+zY/Pz8MGjQITZo0qfN4dDod1Go18vPz7WXbsrOzcezYMTRq1AhRUVF1HhMREZEz3JYgDxkyBK+++iq+++47+0pUb7/9NtavX1/hawRB4Gp6RKXk5ORgx44duHLlin1b8+bNMWDAAPj6+rotLqVSieDgYBgMBly5cgUGgwEGgwEbNmxA9+7d0bVr1zJjk4mIiDyF2xLkxYsXIzIyErt378aJEycgCAIuXryI7OzsCl/DSXpE/zp58iR2797tUNu4d+/eFZZvq2uCIKB79+7Q6XRITEzElStXIIoi9u/fj5SUFMTFxXGZZiIi8khuS5D9/PywYMEC+3OFQoFFixZh9OjR7gqJSBbMZjN++OEHh4V1QkJCcNdddyEyMtKNkTlq06YNGjVqBAAYOXIkDh48iF9//RWSJOHy5cv4/PPPcfvttyMmJsYjEnoiIrkoLCyEn5+fu8Pwam67xzl8+HDs3bvX/nz37t0YMGCAu8IhkoX09HR8/vnnDslx27ZtMWrUKI9Kjps0aYKmTZvanyuVSvTs2dNhwqDFYkFSUhK+/fZbFBYWuitUIiLZKblzSK7jtgR58+bNDrPt77jjDuzatctd4RB5tJLaxhs2bEBeXh6A4tJqgwYNwsCBA6HRaNwc4b+Cg4PRunXrcvc1atQIDz/8MGJiYuzbzp07h88++wxnz56tqxCJiGSNCbLruS1Bbty4MX7//Xf7c0mSeJuVqBwGgwFbt27F3r177Qt/REVF4eGHH64wEXUXHx8fdOzYsdIJeCWLlgwbNsy+pLXBYMC3337rMKaaiKqPlaG8m9Vqhc1mc3cYXs1tY5AfeughvPXWW/jiiy/sE3WmTZuGhISECl8jCAL++OOPOoqQyP1Onz6NLVu22BffAIAuXbqgR48eUCqVboysLK1Wiy5dutgXBbmeFi1aoGHDhvj+++/tJR9PnTqFixcvIjw83OOSfyI5MRgMbq1kQ65nNBo5DtmFnEqQmzdv7nQvryAI5d46TUhIQMuWLbF7925cuXIFgiDAz88PYWFhTp2fyBtZrVZs2bIF33//vX2br68v4uLi0KxZMzdGVj6dToeuXbs6/YHs6+uLYcOG4cSJE/jxxx9hsVig1+vx/vvvIy4uDoMHD4ZK5bbv8USyxR5k78eJeq7l1CdP3759yyTIv/32G06cOIG2bduiVatWAIDk5GScPHkSMTEx6Ny5c7nnUiqVePzxx/H4448DKK5iMXPmTFaxoHovIyMDq1atwoULF+zbmjZtikGDBnlkj5Cvry+6dOliHy7hLEEQEBMTgxtuuAE7duxAeno6JElCYmIiTpw4gUceeQQNGzas5aiJvFvJcCzyXnq93qMmZ3sbp8Ygr1mzBqtXr7Y/7rnnHvz999/YtWsX/vzzT3z11Vf46quv8Oeff2Lnzp24ePEi7r333iqd+/z581U+1tWWLFmC6Oho6HQ6dO/eHYcOHarS69avXw9BEDzm5yD5OXToEBISEuzJsVKpRJcuXTBkyBCPTI59fHzQtWvXaifHpQUHB+O+++5Dp06d7GOYL168iNdffx27d+/mBz6RE/j74v0KCgrcHYJXq9EkvVmzZuGZZ57BnXfeWWbfgAEDMGXKFMycObNK52rWrJlHJAAbNmxAfHw8Zs+ejSNHjqBDhw6Ii4tzWKmsPCkpKXjhhRfQp0+fOoqUvInRaMTatWuxZs0a+3jjiIgIPPfcc7jllls8cgKrWq1Gly5doNPpau2cCoUC7du3x/PPP29fktpisWDjxo344IMPkJubW2vXIvJmTJC9HxNk16pRgvzXX39VOmY4LCyswtJNCoUCKpUKZrPZ/lypVFb6qIuxiO+88w4mTZqECRMmoG3btli2bBl8fX2xatWqCl9js9nw8MMPY+7cubjxxhtdHiN5l9TUVLz++us4ePCgfdttt92G6dOno0mTJm6MrHLt2rVz2ZfaJk2aYPr06ejXr5992+nTpzFv3jwcPnzYJdck8iZWq9XdIZCL5efnuzsEr1ajjLNFixZYvXo1Hn30Ufj7+zvsKygowKpVqypMGGfNmgVBEOxJb8lzdzKbzTh8+DCmT59u36ZQKBAbG4v9+/dX+LpXX30VkZGRePTRRx0WP6mIyWSCyWSyP9fr9TULnGRJFEXs3r0b33zzjb1cj1arxahRo9CtWzcAcPh/4kkaN26MiIgIl15Do9HgwQcfRExMDD799FPk5eWhqKgIK1euxLFjxzBy5EiPuOtE5IlKOp/Ie/GOmmvVKEGeN28eRowYgdatW+ORRx5By5YtART3LK9duxbp6enYuHFjua+dM2dOpc/dITMzEzabzX5rt0RUVJTDymWl7du3DytXrsTRo0erfJ2EhATMnTu3JqGSzBUUFOCTTz7BiRMn7NuaNm2KiRMnevykC6VSiZtuuqnOrte2bVvMnDkT//3vf3HkyBEAwK+//oq//voL48ePt08OJqJ/lS4NSd5Jr9fDaDTW6jA3+leNEuR7770X27dvx0svvYQFCxY47OvYsSNWrlyJuLi4GgXoyQoKCjB27FisWLEC4eHhVX7d9OnTER8fb39+9OhR9O3b1xUhkgc6ffo01qxZ43B7LDY2FnfffbcsSpo1bdq0yrWOa4ufnx8effRRtG/fHhs2bIDBYEBubi4WL16MO++8E3fffTfUanWdxkTkycxmM2w2m8fVS6falZaWhujoaHeH4ZVq/Gk8cOBADBw4EGlpafaZ982aNUODBg2qfA6TyYTPPvsM3333Hc6ePYuCggIEBASgZcuWGDRoEEaPHl0nS+mGh4dDqVQiPT3dYXt6enq5P8/Zs2eRkpKCYcOG2beVTIxQqVRITk5GixYtyrxOq9U6JBjXDk8h72Sz2fDtt99i165d9hqlAQEBGD9+PNq2bevm6KpGqVS67c1YEAR069YNLVu2xCeffIL//e9/AICkpCScPHkSEyZMwA033OCW2Ig8kV6vR1BQkLvDIBe6ePEiE2QXqbXuqgYNGjiVFJc4fvw47rnnHly4cAGSJCEoKAj+/v64cuUKjhw5go0bN2L+/PnYsmUL2rRpU1vhlkuj0aBz585ISkqyl2oTRRFJSUmYMmVKmeNbt26N48ePO2ybOXMmCgoKsHjxYo+eYEV1KzMzE6tWrUJKSop9W5s2bTB+/HgEBga6LzAn3XDDDXXyZbUyoaGhePbZZ7F7925s3rwZVqsVly9fxsKFCzFs2DDExsZWutQ1UX1RUFDABNnLpaamQpIkt8/h8kY1/hRJTU3FE088gVatWiE0NBQ//fQTgOKE4Nlnn8Xvv/9e4Wv1ej3uvvtupKenY/78+bh48SJycnIc/pw3bx4uXbqEYcOGobCwsKbhXld8fDxWrFiBtWvX4tSpU3jyySdRWFiICRMmAADGjRtnn8Sn0+kQExPj8AgODkZAQABiYmLcnkiQZ/jtt9+wYMECe3KsUChw33334emnn5ZVcqxQKNC8eXN3hwGgOJY777wTL730Eho3bgyguIf+m2++waJFi5CVleXmCIncj5O4vF9hYSEyMzPdHYZXqlEP8smTJ9GnTx+Iooju3bvjzJkz9tIy4eHh2LdvHwoLC7Fy5cpyX7969WqkpqYiKSnJoZxTicaNG2P69Ono3r07BgwYgDVr1uDpp5+uScjXNXLkSGRkZGDWrFlIS0tDx44dkZiYaJ+4l5qayt4pqhKTyYQvvvjCoQJKREQEJkyYIMtbYu4Ye3w9jRs3xosvvoitW7fi+++/hyRJOHPmDObPn48HH3wQ3bt3Z88K1Vs5OTnuDoHqwPnz511eVag+qlGC/OKLLyI4OBgHDhyAIAhlZt8PGTIEGzZsqPD127Ztw8CBA8tNjku74447MGDAAHz77bcuT5ABYMqUKeUOqQCAPXv2VPraNWvW1H5AJDsXL17EqlWrHMazd+3aFQ899FCtrDpX15RKpcf0Hl9LrVbjvvvuQ0xMDNauXYvs7GwYjUZ88sknOHbsGEaPHs1x/lQvZWdnuzsEqgNnzpxB165d2RlQy2rUFfrTTz/hySefRERERLkN07RpU/zzzz8Vvv748ePXTY5L3HHHHWXG+xJ5GkmSsHv3brz55pv25Fir1WL8+PGYMGGCLJNjoPh32dOHDN10002YMWMGbrvtNvu2o0ePYt68eQ7l9Ijqi+zsbPuEYPJeer3eXiSBak+NEmRRFCst1J+RkVHpLdns7OwqT+yLiorit2HyaAUFBVi6dCk2btxoH2pUsiJc9+7d3Rxd9SkUCjRr1szdYVSJj48Pxo0bh0mTJsHPzw9A8WpTS5YswX//+1+PXXiFyBUsFguKiorcHQbVgd9//51fhmpZjRLkW2+9Fdu2bSt3n9Vqxfr16x16c65lMpmqXLu09LLURJ4mOTkZCxYswJ9//mnfduedd+KFF17w+IU/rqdhw4YeN/b4ejp16oSZM2filltusW/bu3cvEhISHCqJEHk7jkOuHzIyMvDXX3+5OwyvUqMxyNOnT8fQoUPx5JNP4qGHHgJQXDP4+++/x4IFC3Dq1Cl88MEHlZ4jJSXFvjpWZc6fP1+TUIlcwmazYevWrfjuu+/s3979/f0xfvx4h+RMzuRaWzgoKAhPPfUU9u7di6+++goWiwVXrlzBW2+9hbvuuguDBg3iIgrk9TIyMmT7O0zl69KlCy5dugS1Wo0ZM2bYtx84cABNmjSR7VA+T1OjBPmuu+7CmjVr8Nxzz2H58uUAgDFjxkCSJAQGBuKTTz7B7bffXuk5XnnlFbzyyivXvRbr/JGnycrKwqpVqxy+vLVu3Rrjx4/3mtqjgiDI+mcRBAG33347WrVqhTVr1uDChQsQRRHbtm3DiRMnMH78+DJLyxN5k7///hudOnVydxhUi9LS0nD58mUEBwc7bDcajdi3bx9iY2OZL9WCGi8UMnbsWAwfPhy7du3CX3/9BVEU0aJFC8TFxSEgIKDS165evbqmlydyi8OHD2PdunUwGAwAisfp3n333V6zSEV4eDgsFgtCQkK84o02KioKL7zwAnbs2IHExESIooiUlBQkJCRg+PDh6NOnj1f8nETXunz5MvLy8mT9RZeq7vz580hOTkbr1q3dHYrsVTtBLioqQpMmTTBt2jT83//9n33lOWeMHz++upcncguTyYQvv/wSP//8s31bWFgYJk6c6LFl0Krj66+/xuHDh9GwYUN3h1JrlEolhg4diltuuQVr167FlStXYDabsX79ehw/fhxjxoxhEkFe6ciRI+jfv7+7w6A68ssvvyAyMhKhoaHuDkXWqt3V5evrC5VKZZ8pTuTt/v77b7z++usOyXGXLl3w8ssve1VyXJqcVvqrqubNm2P69Ono06ePfduJEycwb948HD161H2BEbnImTNnkJGR4e4wqI5YrVbs3LnTfoeTqqdG94Lvv/9+fPnllywtQl5NkiTs2bMHb7zxhr22sUajwdixY2Vd2/h6BEGotIyjnGm1WowaNQpPPvmk/UtAYWEhli9fjk8//bRefLCw5F39IUkSfvnlF35W1yMFBQXYsWMHq3/VQI0S5IceeghXrlxB//798fnnn+Pnn3/GkSNHyjyI5Eqv1+Ojjz7CF198Ya9tfMMNN2D69Ono0aOHV49b1el0XjGeujLt2rXDjBkz0KFDB/u2/fv3Y8GCBThz5owbI3O90qs8kvdLT0/H2bNn3R0G1aHMzExs3bq1Xnzhd4UaTdIrvQre3r17y+wvqTxhs9lqchkit/jf//6HNWvWIDc3176tf//+uPfee6tcv1vOdDqdu0OoEwEBAXj88cdx4MABbNy4EUajEVlZWXj33XcxYMAADB06FCpVjeczexz2INc/JWXA5FbXnKovMzMTmzdvxqBBg8pUvaDK1ehdn1UoyBvZbDZs374diYmJDrWNx44di3bt2rk5urrj6UtL1yZBENCjRw/cdNNNWLt2Lc6ePQtJkvDdd9/h5MmTeOSRR9CoUSN3h1mrmCB7ry5duuDvv/+GVqt1qJNbVFSEvXv34s477/Tqu1/kKD8/H9988w3uvPNONGnSxN3hyEaNEmRWoSBvk5WVhTVr1jjcirz55pvxyCOP1Ltv397Ya3o94eHhmDp1Kr7//nt8++23sNls9smZ99xzD/r37+81w06MRiPry3uptLQ0pKenl/uede7cOQQGBqJr165s+3rEbDYjMTERt912G2JiYtj2VeBxn4AnT57EuXPnkJOTU+6EgnHjxrkhKqoPfv/9d3z22WcOtY2HDh2KgQMHek1S5Iz6+DMDxT/3wIED0aZNG6xZswaXL1+G1WrFV199hT///BNjx471ivJJFosFFoulXt0poGJHjx6F2WxGz5496+3veX0kSRL279+P7Oxs9OnTh21/HU4lyBMnToQgCFi+fDmUSiUmTpx43dcIgoCVK1de97izZ89izJgxOHToUIUzbQVBYIJMtc5sNuPLL7/Evn377NtCQ0MxceJE3HjjjW6MzL3q+5tnSZ33zZs344cffgAAJCcnY/78+XjooYfQtWtXN0dYcwUFBQgLC3N3GOQGJ0+eRE5ODu68806vrVZD5UtOToZer8eAAQP4BbkSTiXIP/zwAxQKBURRhFKpxA8//HDdbvqqduNPnjwZx48fx6JFi9CnTx+EhIQ4ExpRtfzzzz9YtWoVLl++bN926623YvTo0fX+Q4O34AC1Wo0RI0YgJiYGn3zyCXJzc2EwGLB69WocP34cDz30kKz/nzBBrt8uX76Mr7/+Gv3790fjxo3dHQ7VoX/++QdbtmzBXXfdxfUsKuBUgpySklLp85r4+eef8fLLL+OZZ56ptXMSVUSSJOzduxdfffUVLBYLgOJk6MEHH0TPnj2ZHJKD1q1bY+bMmdiwYQN+/fVXAMBvv/2GM2fOYNy4cbJd1jUvL8/dIZCbFRUVYfv27bj11ltx66238r2vHsnOzsbmzZsxZMgQriJaDo+5hxoeHs4GojpRsiDE+vXr7clx48aNMW3aNPTq1YsfEFfV9yEW1/L19cWECRMwceJE++Iwubm5eO+997Bx40ZZFuQvXcKQ6i9JknD48GEkJiayukk9o9frsWXLFmRmZro7FI/jMZ+ATzzxBD777DPWTCaX+uuvvzB//nz88ccf9m39+vXDiy++iIYNG7oxMs/DBLl8Xbp0wcyZM9GqVSv7tt27d+P1119HamqqGyNzXlZWlrtDIA9y8eJFfPPNN8jJyXF3KFSHDAYDvv32W1y6dMndoXiUGn8C7tixAwMGDEBYWBhUKhWUSmWZR1XcfPPNsNls6NChA9555x1s3LgRX3/9dZlHXViyZAmio6Oh0+nQvXt3HDp0qMJjV6xYYR8zHRISgtjY2EqPJ/ew2WzYunUrFi1aZO818/PzwxNPPIEHH3ywXiz84Sz2pFcsJCQEzzzzDB544AH7/520tDS88cYbSExMhCiKbo6warKysthjSA7y8vKwefNm/P333+4OheqQxWLBjh07cO7cOXeH4jFqVObtq6++woMPPohbbrkFDz30EJYuXYrRo0dDkiRs3rwZN910E+69994qnWvkyJH2v7/wwgvlHlMXq/Jt2LAB8fHxWLZsGbp3745FixYhLi4OycnJiIyMLHP8nj17MGrUKPTs2RM6nQ4LFy7EwIEDceLECU568BDZ2dlYs2aNw9LBN910EyZMmFDvahs7o6pfbusrhUKB/v37o3Xr1lizZg0uXrwIURSxZcsWnDhxAuPHj0d4eLi7w6yUJElISUlx6A0nKqmZ26dPH/7fqEdsNhuSkpJgMBhwyy23uDsct6tRgpyQkIBu3bph3759yMnJwdKlSzFx4kTccccdSElJwW233YbmzZtX6Vy7d++uSSi15p133sGkSZMwYcIEAMCyZcuwbds2rFq1CtOmTStz/Oeff+7w/OOPP8ZXX32FpKQklqTzAEePHsVnn32GoqIiAMVJzZAhQxAXF8chBNfBf5+qadiwIf7v//4P27Ztw3fffQdJknD27FnMnz8fDzzwAHr06OHRvfEnT57EzTff7NExUt0TRRE//vgjioqK0LFjR/7/qCckScLPP/8Mg8GAzp071+t2r1GCfPLkSSQkJECpVNpX3SqZ9BQdHY2nnnoKCxcurFKi2Ldv35qEUivMZjMOHz6M6dOn27cpFArExsZi//79VTpHUVERLBZLpQsJmEwmh9uaer2++kFTucxmM7766ivs3bvXvi00NBQTJkxAixYt3BiZfDBBrjqVSoV77rkHMTExWLNmjX3owmeffYZjx47h4YcfRkBAgLvDLFdGRgYuXryIpk2bujsU8kC//vorCgoK0Lt3b74n1CNHjhyBKIro1q2bu0NxmxolyL6+vvYi08HBwdBqtQ71ZKOionD+/Hmnz3vy5ElcuHABANCsWTO0bdu2JmFWWWZmJmw2G6Kiohy2R0VF4fTp01U6x0svvYRGjRohNja2wmMSEhIwd+7cGsVKFbt06RJWrVrlMOGgU6dOePjhh2Vds7au8cPQeS1atMCMGTPw5Zdf4pdffgEAHDt2DOfPn8eYMWPQrl07N0dYvoMHD+KGG25gm1O5Tp8+jYKCAsTGxkKr1bo7HKojR48ehZ+fX70dblGjd8NWrVrh5MmT9ucdO3bEp59+CqvVCqPRiHXr1jnVK7F582a0aNEC7dq1w9ChQzF06FC0a9cOLVu2xJYtW2oSap14/fXXsX79emzatAk6na7C46ZPn468vDz748cff6zDKL2XJEnYt28fFi5caE+O1Wo1Ro8ejccee4zJsZPq8621mtDpdBgzZgwef/xx+Pv7AyhekGPp0qVYt24djEajmyMsKycnx+G9nOha//zzDzZt2oTs7Gx3h1KvpaamorCwEEDx3WhXt8eBAwfqbZvXKEEePnw4tmzZYh8uMGPGDOzZswfBwcGIiIjA3r17yx23W57t27fj/vvvBwAsWLAAmzZtwqZNm7BgwQJIkoThw4cjMTGxJuFeV3h4OJRKJdLT0x22p6eno0GDBpW+9q233sLrr7+O7777Du3bt6/0WK1Wi8DAQPuj5EOUqq+oqAgff/wx1q1bZx/m06hRI7z00kvo3bs3k71q4L9ZzXTs2BEzZ85ETEyMfdu+ffuQkJBQrTtrrvbrr79yuBdVKj8/H5s3b8bZs2fdHUq9c+jQIQwbNgzR0dH2SkwGgwEvv/wylixZUqsLt5Vms9lw4MABl5w7OzsbDz/8MAIDAxEcHIxHH330uu9By5cvR79+/RAYGAhBEMqt5R4dHQ1BEBwer7/+utPxCZIkSc6+yGg0YvPmzTh//jzCwsIwdOhQew3ZvXv34uuvv4ZSqcSQIUPQv3//Kp2zR48eMJlM2Lt3b5llDwsLC9G7d2/odLoqjwWuru7du6Nbt254//33ARRPVGjatCmmTJlSYbL/xhtvYP78+di5cyduu+02p6955MgRdO7cGYcPH8att95ao/jro7Nnz2L16tUO33Jvv/12DB8+XPbrzJtMJvttrrr+WWw2W51XsjCbzSgsLETHjh295lZuyaSXL7/80r6YiCAIGDRoEAYPHuyWaiFdunRBamoqfHx8MGPGDPv2Ro0aYciQIfxyJHM33HAD/vnnHwQHB2PhwoUuuUZMTAy6d+/Oajd14Ouvv8bIkSMhSVK5lbxKhkZNmjTJZTnEvffeW24lr+vp168fHnnkETzyyCNl9t111124fPkyPvroI1gsFkyYMAFdu3bFunXrKjzfokWL7Hfhpk+fjpycnDLVqKKjo/Hoo49i0qRJ9m0BAQFOL6nt9BjkK1euoGfPnjh//jwkSYIgCPDx8cE333yD2NhY9OnTB3369HH2tDh27BgWLFhQ7g/g5+eHRx55BC+//LLT53VWfHw8xo8fjy5duqBbt25YtGgRCgsL7VUtxo0bh8aNGyMhIQEAsHDhQsyaNQvr1q1DdHQ00tLSAAD+/v7sGXYxURSRmJiIbdu2oeR7nq+vL8aMGYOOHTu6NziiqwRBQO/evXHzzTdj7dq19vfOHTt24MSJE5gwYUKZeQ+ulpaWhoyMjDIfLJcuXcLhw4fRpUuXOo2H5OfPP/9EZmYmBgwYYF9ZkmrfoUOHMHLkSNhsNlTUn1lSd33FihV46aWXEB0dXetx/P7774iLi6u18506dQqJiYn49ddf7e8377//PgYPHoy33noLjRo1Kvd1zz//PIDiEruVCQgIuO6d/+txeojFa6+9hpSUFEydOhVbt27Fu+++Cx8fH0yePLlGgeh0ukrHuWRnZ1c6rre2jBw5Em+99RZmzZqFjh074ujRo0hMTLR/gKWmpjpMRFy6dCnMZjNGjBiBhg0b2h9vvfWWy2Otz3JycrB48WJs3brV/qbRsmVLvPzyy0yOawl7hmpXZGQk4uPjMXToUHuPT2pqKhYsWIAff/yxwg+/unbkyBHeQpexuhyjmpaWhs2bN6OgoMBl16jv5s2bB0mSqvz+sH37dpfEceHChTLDT2ti//79CA4OdvgyHhsbC4VCgYMHD9b4/K+//jrCwsLQqVMnvPnmm7BarU6fw+kE+bvvvsO4cePw1ltvYfDgwXj22WfxwQcfICUlBcnJyU4HUOKOO+7A4sWLyx1CcfDgQbz33nuVVoaoTVOmTMGFCxdgMplw8OBBdO/e3b5vz549WLNmjf15SkqK/T9v6cecOXPqJNb66I8//sCCBQvw119/ASjuoRsyZAief/75SsvrEbmbUqnE4MGD8cILL9i/dFssFmzYsAFLliwpdzydO+zZswcXL150dxjkBHeNUc3Pz8e3337rkvHrrhijmpKSgkcffRTNmzeHj48PWrRogdmzZ9uHP7mbzWaD0WiEXq/H8ePHsXXr1iovkCaKIo4dO+ayL0UHDx6stS/yaWlpZYZsqFQqhIaG2u/EV9ezzz6L9evXY/fu3Zg8eTIWLFiAF1980enzOD3EIjU1FS+99JLDtt69e0OSJKSnp1d71Z033ngDPXr0QO/evdGtWzf7eZKTk3Ho0CFERka6bCwVyYPFYsHXX3/tUPUjJCQEEyZMQMuWLd0YGZFzoqOjMX36dGzatMn+//nkyZOYP38+Ro0a5fa5CDabDd999x3i4uJwww03uDUWur7SY1SvTWAkScKff/6JP//802VjVPV6Pb777jvce++9TpcKrGyM6sMPP4zLly9j165d9jGqjz/+eKVjVIuKijBo0CAMGjTIYU2DEqdPn4Yoivjoo4/QsmVL+79LYWEh3nrrLUiSBKvVCovF4vAova30341GI8xms31bRX9eu62i40ovU3/69GmnE1JJknDq1Cn07NnTqddVxeXLl69bM33BggVYsGCB/bnBYMCBAwcwZcoU+zZXV8yJj4+3/719+/bQaDSYPHkyEhISnJrb4nSCbDKZygx1KHlenS7sEs2bN8exY8eQkJCAHTt2YMOGDQCK6yA/99xzmDZtWrUGiJN3uHz5MlatWoV//vnHvq1Dhw4YM2aM0wPviTyBRqPByJEjERMTg88++wx5eXkoLCzExx9/jG7dumHkyJFuHdtps9mwc+dODBgwgIuIeDBPGaOamZmJ5ORktGnTpkbnkSQJoiji+PHjSExMxPfff4/mzZvDbDZj5syZ/9/encfHdLb/A/+cmSSTyZ6QZChZREUitqRFpCQIUUstsVNCUVXtY2m1WoqH0kWLUl+1VFBUlVhbS+1L7F0stVUiLY0tK4nIcv/+8Ms8GVlkm5zJyef9ep2XzJmzXJPLZK65z33uW18kOzk5FViwPv/888jMzMTvv/8OAFi3bh00Go1Bsevj44PTp08jOjoamZmZ8PX1xbJly/SFrql4/PgxJEkqUZEsSRJSUlL0s8eWt+joaNSsWVM/OdzTRo0ahT59+ugfDxw4EOHh4ejZs6d+Xc2aNaHT6XDnzh2DfbOyspCQkFDmvsNPa968ObKyshAbG1uiRtxSTRQSGxuLs2fP6h8nJycDAK5evZrvpg8Axf7G6uLigrlz52Lu3LmlCYsUSAiBY8eO4YcfftAP32Zubo7w8HC0atWKd9tTpdegQQN8+OGHWLduHX799VcAT4qea9euYfDgwahXr55sseW2JLdp04YzUJqo0vRRHT169DO3K6jr4LOWw4cPIzY2tkQtsLGxsdiwYQMuXLigX5fbCmphYYGNGzdi48aNAP5X6H/yySeoU6dOkfHnNqacPn36ma2GKSkpsLCwqNDi2MzMTD8Lcd5/8/58//79UrUga7Vao0z6I4RAamoqsrOzCy2QnZycDLo6arVauLi45LvKGxgYiKSkJJw5cwYBAQEAgH379iEnJ8egW2t5+O2336BSqUrcyFqqAnnKlCmYMmVKvvVPv+lyR7kobv8ZorzS0tKwdu1agy9jNWrUwGuvvVboHa5ElZGNjQ2GDx+OkydPYv369Xj06BESEhIwf/58tGvXDl27doW5ubksseXk5GDv3r1ITU1F48aN+aXUhMTFxRncqPwsOTk5+P3333H58mXY29sXWuiW1t27d/Hbb7+VaJ/MzEykp6frbyzMlZaWlu8KikqlgkajKZfWUTMzM5ibm+PBgwe4cOECOnTogFq1asHc3Fz/XO6S97GZmRksLCxgZmYGSZIQHx8PrVYLS0vLfAVvYUWwSqUq1vuoefPm2LBhQ4lbkL29vY1SIOfk5BRaGJeUj48POnbsiBEjRmDx4sXIzMzEmDFj0K9fP/3n+82bN9GuXTusWrVKP+V1fHw84uPjce3aNQDAuXPnYGtrCzc3Nzg5OSE6OhonTpxAmzZtYGtri+joaIwbNw6DBg2Co6NjiWIs8StdsWJFSXcp0LBhwyBJEpYsWQK1Wo1hw4Y9cx9JkrB8+fJyOT+ZtuvXr+Pbb781uNngpZdeQq9evSr92MZEBZEkCc2bN0fdunWxatUqXL16FUII/PLLL7h48SIiIiJk7Q988uRJ3L17F61bt1bMGNUVISsrq1waidLT05GQkICEhATcv38fCQkJ+Omnn0pV0F65cgWNGzcuc0xPK05RdubMGX2jhyRJyMrKwu3bt3HkyBF90Thx4kQ4OzsjNjYW/v7+BgXqmjVr0KBBA7zyyitFFrFnzpzB1q1b8e6778LZ2dng+dwi9ebNmwgODsagQYOwbNmyEr9eY49TX7NmTYSEhODQoUPF+j+kUqng6+tr1JvVq1WrVm7HWrNmDcaMGYN27dpBpVIhPDwcX331lf75zMxMXL582eAL0eLFizF9+nT949atWwN4UptGRERAo9Hg+++/x7Rp05CRkQFPT0+MGzfOoF9ycZVqopDy4OHhAZVKhcuXL8Pc3Fw/80lRJEnC9evXKyjCisOJQv4nJycHu3fvxvbt2/WX07RaLQYNGoSmTZvKHF3Fk3OiEDkocaKQ0shttd22bZv+sq+ZmRm6du2q/zApi7JMJGFtbY3WrVujdu3aZYqhKsjKysLFixeRnp7+zG0zMzPx4MGDQpeCRln4448/cOzYsRK3MLZv3x4vvvii/nHuZ2/efwv7+Vnr6tevj7p160Kj0RRYvKampiIlJUU/jGRBfVQ9PDywatUqTJgwAYmJiQa/T0tLS2zYsAE9evQo8nUeOHAAbdq0KXAiCeDJmN8hISFo0aIFIiMjS/Weqoi/z3/88Qf69+9fZB/zXCqVCuPGjYO7u7tRYtFqtWjQoAH8/f2rxN/n8mkrL4Wnh5wx1hA0VHkkJSUhMjISV65c0a/z8vJCREREuX5rJTJ1KpUK7du3h4+PDyIjI3Hr1i1kZWUhKioK58+fx+DBg2V7Tzx8+BA///wz6tatixYtWsDKykqWOCqD7OxspKenw9zcHJIkITU1Vb+kpKQY/Js7O1hJWFhYlKqParVq1eDs7Fzi8xXn2FqtVl8gF8TGxkY/8y4gTx/Vmzdvok2bNggICMCKFSuM0h2hvDRq1Ahz587FuHHjnjmT3tChQ41WHKtUKjRo0MCkf1flTbYC+WlxcXFwdnYu9K7t9PR03L17l3dTK9S5c+ewatUqfT80uafiJTIFtWrVwnvvvYdt27Zh7969EELg6tWr+Pjjj9G3b180a9ZMtj7B165dw40bNxAQEAA/P78q9cFZkMzMTH33h9zl7t27+Pvvv/Hw4cNitSIXRJIk2Nrawt7eHnZ2dgZLWloaDhw4YFJ9VMtr0hBj9VG9efMmQkJC4O7ujjlz5uDu3bv6c5b36AnlpUOHDli3bh0WLVqUL9+SJMHX1xdhYWFGK44BoGHDhrC1tc3XV1zJTKZA9vT0xOrVqzFgwIACn9+6dSsGDBjAG/4UJjMzE1FRUQbTRjo4OCAiIkLWu/eJTIW5uTl69uwJPz8/rFq1CgkJCXj06BFWrlypv/wq17T2mZmZOH78OC5fvoyQkBCjtEqaiuzsbCQmJuLevXsGRXDukjuaU0lJkgQbGxuDwjdvMWxjY1NkMWtqfVRL0xJeGGP0Ud2zZw+uXbuGa9eu5evTbyqzWRakUaNGWLx4MW7duoVu3bohJSUFWq0W7733ntEnyKpfvz50Op3JTKZSUUymQH7Wf8zMzMwq30KhNLdv38by5cvxzz//6Nc1atQIgwYNku0Dn8hU1atXDx9++CHWr1+PkydPAgB+/fVXXL9+Ha+++ip8fX1liy0xMRGbN29GUFCQrHGURXZ2NpKSkgosfu/fv4+kpKRSF1DW1tb5WoBzH9vY2JTpKtno0aNx+PDhYo+XGxYWVupzFUdJx+7O2zjyNCcnpyInBfHw8Mj3mqdNm1bkTLaFTUpSWdSsWRNarVY/NJ2xi2NPT0+jtkybMlkL5JSUFINpIO/fv4+4uLh82yUlJeH777836LdElZcQAsePH8f69ev130jNzMwQHh6O1q1bcxgpokJotVpERESgUaNGWLduHR4+fIjk5GQsXLgQwcHB6NGjh2w3cwohcOTIETx69MgkbzbOyclBcnJyoQVwYmKiwSxmJWFnZwcnJydUr17d4F87OzvExcXBzs7OaHkxlT6qwJM+0blTqFPlp9Pp8Pzzz8sdhmxkLZDnzp2L//73vwCeXGYaO3Ysxo4dW+C2QgjMnDmzAqMjY0hPT8e6detw+vRp/TqdTodhw4ZxSluiYvL390edOnXw3Xff6adtPXjwIC5duoSIiAhZW3xOnz4NtVptlGHEiiKEQEpKSpEFcGkngrCxsYGTkxOqVaumX3KL4GrVqhVa/GZkZBjM/mksptBHVaVSoWHDhuU2Ti7Jy8HBAX5+flW6wUrW/8kdOnSAjY0NhBCYOHEi+vfvn6/lQZIkWFtbIyAgAC+88IJMkVJ5iImJwbfffov79+/r1wUFBaFXr15VYsgYovLk4OCAN998E4cOHcKmTZuQmZmJ27dv4/PPP0enTp0QFhYm2w2uJ06cgFqthp+fX7kdUwiBBw8eFFoAJyQk6GfbLCmtVmtQ8D5dBFtaWpbb6zAWOfuoqtVqNG3atMrdxKVUVlZWaNq0aZW/QV7WAjkwMBCBgYEAngwdFB4eXq5/UMk05OTkYM+ePdi2bZvB2MYDBgzQD99DRCUnSRKCg4Ph7e2NyMhIxMXFIScnB9u3b8eFCxcwZMiQfNOrxsXF6YuYjIwMJCQkGKWAOnbsGNRqNXx8fIq1vRACaWlpRRbAGRkZpYpFo9Hka/XNuyhpqLqK7qOq1Wr1xXFVu4lLiSwsLODv718lxt1/FpO4FpKWloavvvoKVlZWLJAVJjk5GStXrsSlS5f06zw9PTFs2DCObUxUTnQ6Hd5991389NNP2LlzJ4QQiImJwaxZs9CrVy8EBQXh1KlTmDFjBnbs2KG/BJ+eno4PPvgADRs2ROfOneHh4VGucR0+fBgA9EVyenp6oQXw/fv3SzwCwqNHj3DkyBHExsbqWzFff/111KxZ06Agtra21l8qfvToESZMmIDvv/8eGRkZCAsLw6JFi/R9Z+/fv4+BAwfijz/+wP379+Hi4oJu3bph1qxZsLOzK8ffTuXn4uICPz8/2aZBp/JlZmaGgIAAWFtbyx2KSTCJAtnKygpmZmZMisJcuHABK1euxIMHDwA8ae0KCwtD586dq/ylG6Lyplar0bVrV/j5+SEyMhJ3797F48ePsXbtWqxatQorVqyAECLfXf9CCJw/fx7nz5/HiBEjynSDnRACWVlZBktUVBQ2bdqExMREg+G4imvLli3w9fVFUFBQvpvg3nnnHVhaWuLQoUPIysrC0KFDsWvXriJHPhg3bhx27NiBDRs2wN7eHmPGjEHPnj1x9OhRAE/60nbr1g0zZ86Es7Mzrl27hjfffBMJCQlFHreq8fb2hru7e5Xuo6okarUaAQEB/BKYh0kUyAAQHh6OH3/8EW+88QbfcJVcZmYmtmzZgn379unX2dvbIyIiAt7e3jJGRqR8np6emDRpEjZt2oQjR47g9u3biIqKKnIIsNyuT0uXLsV7771XaEtybgGcnZ2drxDOysoqchSIoi6/q9VqODk5FTgSRO5Yz8OGDTPY588//8TBgwdx6tQp/f0pCxYsQKdOnTBnzhz9ZBJ5JScnY/ny5Vi7di3atm0L4Mn4uD4+Pjh+/DhatGgBR0dHvPHGG/p93N3dMXr0aHz++eeFxl+VmJubo0mTJkbvukEVJ7c4LmhK7qrMZArkfv36YfTo0WjTpg1GjBgBDw+PAsdTNMXhg6qauLg47N27F6mpqbC1tUW7du30Mxzevn0b3377Lf7++2/99n5+fhg8eDDHNiaqIJaWlhgwYAAaNmyIHj16lGjf7du3Y/jw4QaFb25BXJaJmhwdHeHg4GDQ9SH3XwcHh0LHuTczMyvwuejoaDg4OBjcvB0aGgqVSoUTJ04U+LrPnDmDzMxMhIaG6tfVr18fbm5uiI6ORosWLfLtc+vWLWzatAnBwcGledmKYm1tDX9/f0X12a7q1Go1/P394ejoKHcoJsdkCuSQkBD9z7n91vISQkCSJM6kJ6OTJ08a9GFUqVTIycmBJEno0qULunfvjnPnzulvpDEzM0OPHj0QEhLCqwJEMrC3t8f169eLPcFFTk4Ozp07h6tXr8Le3r5E51Kr1TAzMzNY8q6TJAmDBw8utxFr4uPj892AaGZmBicnJ8THxxe6j4WFRb6WMldX13z79O/fH1u2bEF6ejq6du2KZcuWlUvclZWTkxOaNGnC/sYKktvnmC3HBTOZAnnFihVyh0BF2LRpE/r27WvQhzH3cqoQAjt27MD27dvRoUMH1KlTB66urhg2bBhq164tZ9hEJq+sLbNFyb1hr6RiY2PzjWOsVqsNCt6nfy7qS3Du342///4bHh4eRY6VO2vWLMyaNUv/OD09HcePH8eYMWP063LHfjamuXPnYurUqbhy5QomTZqE8ePHY9GiRUY/rylyc3ODt7c3Z7NVEEtLSwQEBPDKbhFMpkAeMmSI3CHoff311/j8888RHx+Pxo0bY8GCBWjWrFmh22/YsAFTpkxBbGwsnn/+eXz66afo1KlTBUZsXCdPnkTfvn2RnZ1d6IdtbrG8e/duTJ06Fe+//z7HNiZ6hqysLFy8eBHp6elGOf6lS5f0V3qKK3fKYmtra6jVaqhUKqhUqgIL4JycnBIN7XXy5EmkpaXB19e30CJ51KhR6NOnj/7xwIEDER4ejp49e+rX1axZEzqdDnfu3DHYNysrCwkJCdDpdAUeW6fT4fHjx0hKSjJoNbt9+3a+fXQ6HXQ6HerXrw8nJye0atUKU6ZMqVIzulpYWKBBgwb5WuqpcrOzs0PTpk0rxfjecjKZAjmvBw8e6Puw1q5du0K/4axfvx7jx4/H4sWL0bx5c8ybNw9hYWG4fPlygX8kjh07hv79+2P27Nno0qUL1q5di+7du+Ps2bOKGbJu5syZBd79XhCVSoWzZ8+yOCYqhuzsbKSnp8Pc3Nwo4446OjqWePpkIQTs7OyM0s80dySL7OzsQgvk3Jv1cmm1Wri4uKBu3boG2wUGBiIpKQlnzpzRj6e+b98+5OTkoHnz5gUeOyAgAObm5ti7dy/Cw8MBAJcvX0ZcXJx+TP6C5P4OSzsOc2VUu3ZtPP/88+xSoTDPPfccfHx8OJJUMZjU9ZJTp06hTZs2cHR0hJ+fH/z8/ODo6Ii2bdsaTE1sTF9++SVGjBiBoUOHwtfXF4sXL4aVlRW+/fbbArefP38+OnbsiHfffRc+Pj6YMWMG/P39sXDhwgqJ19ji4uKwffv2Yl8Czs7OxrZt2xAXF2fkyIiUw8LCwihLq1atStz/X5Ik/eX08l6ysrKQnJxcLr8zHx8fdOzYESNGjMDJkydx9OhRjBkzBv369dOPYHHz5k3Ur18fJ0+eBPCkT/Zrr72G8ePHY//+/Thz5gyGDh2KwMBA/Q16P/30E1asWIHz588jNjYWO3bswKhRoxAUFFTu40SbInt7ewQGBsLX15fFsYKoVCo0aNAAfn5+LI6LyWRakE+cOIGQkBBYWFhg+PDh+oHl//zzT6xbtw6tW7fGgQMHiuzqUFaPHz/GmTNnMGnSJP06lUqF0NBQREdHF7hPdHQ0xo8fb7AuLCwMmzdvLvQ8GRkZBi0RueMEZ2VllXqqVGPZtWtXifswCiGwe/duk+o2U1llZmYiKysLDx8+NLn/G8bw+PFj/fugKvR3NHZ+7e3t0apVKxw5cqRYLcmSJMHX1xe2trZGiUcIgeTk5BLlVwiB7OzsAuOJjIzEf/7zH7Rr1w4qlQo9evTA3Llz9dumpaXh8uXLSElJ0a/77LPPADwZWjQjIwPt27fHggUL9M+bm5tjyZIlGDduHDIyMlCrVi10794dEydOLPHvRK73b977Q4p7XjMzM3h5eaFGjRqQJKlUU0bz/VsxSppfrVYLPz8/2NjYlGkq8IrMr0l8ORMmol27dsLLy0v8+++/+Z6Lj48XXl5eIjQ01Kgx3Lx5UwAQx44dM1j/7rvvimbNmhW4j7m5uVi7dq3Buq+//lq4uLgUep6pU6cKAFy4cOHChQsXLlyeWkyBSbUgf/TRRwXeXOHq6oqRI0dixowZMkRW/nLviM7122+/ITg4GCdOnEDTpk1ljCy/yMhIjBw5ssT7LV26lC3I5cSYoxyYotzREaqKisjvli1bMGTIEAghCmxJzu2G8dprrxntb5AkSQgMDIS3tzfza2Te3t64desW7O3tDUYEKYi9vT3CwsLK7YYtvn+Nr7j59fT0RMuWLcu1S0VVyq/JvMrc/mmFyc7ONnqTfvXq1aFWq3H79m2D9QXd4ZxLp9OVaHsA0Gg0Bjex5d6EaGZmZhqXFfIICwvT39VeXJIkoUOHDib3Wior/h6VrSLyO3DgQNSrVw8zZszA9u3bDd7PkiShUaNG6NSpk9H62FpbWyM0NBSurq5GOb4pk+P9m/uFR5KkIosZCwsLdO3aldMLl4Gp5rdevXoIDg7mHARlYDKdhFq2bImvv/4aN27cyPdcXFwcFi1ahKCgIKPGYGFhgYCAAOzdu1e/LicnB3v37i30DufAwECD7QFgz549Rd4RXZm4ubmhS5cuxf4Gqlar0bVrV/3MekRkGl588UVs3boVsbGx+iHOtFotZs2ahdGjRxutOK5duzbCw8OrZHFs6gIDA1kcK5C7uzuL43JgMi3Is2bNQuvWrVG/fn306NED9erVA/BkCJ4tW7bAzMwMs2fPNnoc48ePx5AhQ/DCCy+gWbNmmDdvHh4+fIihQ4cCAAYPHoznnntOH8t//vMfBAcH44svvkDnzp3x/fff4/Tp01iyZInRY60oU6ZMwc8///zMlmRJkiBJEiZPnlyB0RFRSbi5ucHa2hpJSUnQaDQGQ6qVN39/fwQEBPCD2gTVqVNH/zlLypE78hffc2VnMgVy06ZNceLECXz44YfYunUr0tLSAABWVlbo2LEjZs6cCV9fX6PH0bdvX9y9excfffQR4uPj0aRJE+zcuVPf+hEXF2fQ1aNly5ZYu3YtJk+ejA8++ADPP/88Nm/erJgxkIEnLU/r16/Xz6RXUH+r3Jm0fvjhB7z44osyRElEpkKtViMkJAReXl5yh0IFcHR0ZAujAqnVaoSGhrJbXjkxmQIZAHx9fREVFYWcnBzcvXsXAODs7Fzhw8WMGTPGYFrTvA4cOJBvXe/evdG7d28jRyWvnj174tixYwZ9GHNn6JIkCZ07d8bkyZNZHBNVcRYWFggLC6tSM85VJlqtFh07dmQRpUD+/v5wdHSUOwzFMKkCOVfupfrcn8k05PZhjIuLw759+5CSkgI7Ozu0bduWfY6JCDY2NggLC0O1atXkDoUKoFar0aFDB9ja2sodCpUze3t7NGrUSO4wFMWkCuSLFy/io48+wq5duwy6WISFhWHatGmK6rZQmbm5uSEiIkLuMIjIhNSuXRshISHQarVyh0KFaNmyJW+WVKjmzZtzhrxyZjIF8uHDh/Hyyy8jJycH3bp1M7hJb+vWrfj555+xc+dOtGrVSuZIiYgol4WFBVq0aAFvb29e8TNhHh4eqF+/vtxhUDnQ6XTIycnRd5OpXr063N3dZY5KeUymQB43bhxcXFxw8OBB1K5d2+C5v//+G61bt8b48eNx6tQpmSIkIqK8PDw8EBQUBGtra7lDoSKYm5sjKCiIX2AU4vTp0/j333+xbds2AEDjxo2ZWyMwmXGQL1y4gNGjR+crjoEnl+7eeOMNXLhwQYbIiIgoL41Gg7Zt26J9+/YsjiuBBg0aME8KpdVq4enpKXcYimQyLcju7u7IyMgo9PnHjx8XWDwTEVHFqV27NoKDg2FlZSV3KFQInU6HrKwsaDQaSJKEBg0ayB0SGYmnp2eFj/RVVZhMgfzRRx9h3Lhx6Ny5M5o0aWLw3K+//ooFCxZg3rx5ssRGRFTVmZmZITAwEPXr1+flXBN3+vRp/Pnnnzh8+DB0Oh1bjxWMDYfGYzIF8vHjx+Hq6oqAgAC0bNkSdevWBQBcvXoV0dHR8PPzQ3R0NKKjo/X7SJKE+fPnyxUyEVGVYG9vj/bt2xt11j0yDg7BqWw6nU7uEBTLZArkhQsX6n8+evQojh49avD8uXPncO7cOYN1LJCJiIzrueeeQ2hoKDQajdyhUCnUrFlT7hDISKytrfm+NCKTKZBzcnLkDoGIiPKoV68eWrduzT6OlZSFhQWqV68udxhkJPb29nKHoGgmUyATEZHpaNiwIVq0aMH+xpWYTqdj/hTMxsZG7hAUzeQK5JiYGPz888+4ceMGgCejW7z88sscxoSIqIL4+PiwOFYAzpqnbLz50rhMqkCeMGEC5s+fn6+7hUqlwtixYzFnzhyZIiMiqhpq1arFSSUUgt0rlI1DLRqXyXQs++KLLzB37lz07NkT0dHRSEpKQlJSEqKjo9GrVy/MnTsXc+fOlTtMIiLFsrGxQdu2bdnnWCEcHR3lDoGMiAWycZlMC/LSpUvxyiuv4IcffjBY37x5c3z//fd49OgRvvnmG4wbN06mCImIlC0kJASWlpZyh0HlQKVS8RK8wrFANi6TaSaIjY1FWFhYoc+HhYUhNja24gIiIqpCvL29OSSYglhaWrKbjMKxQDYukymQXVxc8Pvvvxf6/O+//w5nZ+cKjIiIqGrQaDRo3ry53GFQOeL4uMrHAtm4TKZA7t27N5YtW4ZPPvkEDx8+1K9/+PAhPv30Uyxbtgx9+/aVMUIiImXQ6XRwdnaGnZ0dACAgIIBdKxTGzMxkelCSEZibm0OtVssdhqJJQgghdxAAkJaWhq5du2L//v0wMzPTX+q7desWsrKy0KZNG2zbtk2R35jOnj2LgIAAnDlzBv7+/nKHQ0RVQHR0NM6dOwdbW1v06dOHH7YKk5iYyJv0FCw1NRW2trZyh6FoJtOCbGVlhb179yIqKgrDhg2Dj48PfHx8MGzYMGzevBm//PKL0YvjhIQEDBw4EHZ2dnBwcMBrr72GBw8eFLn9W2+9BW9vb2i1Wri5ueHtt99GcnKyUeMkIiovfn5+LI4ViCORKJu5ubncISieSVyDSUtLw6BBgxAeHo6BAweiW7dussQxcOBA/Pvvv9izZw8yMzMxdOhQjBw5EmvXri1w+1u3buHWrVuYM2cOfH19cePGDYwaNQq3bt3Cjz/+WMHRExGVjCRJqFu3rtxhkBGwQFY2fqk1PpMokK2srPDLL7/g5Zdfli2GP//8Ezt37sSpU6fwwgsvAAAWLFiATp06Yc6cOQXe3e3n54eNGzfqH3t5eeHjjz/GoEGDkJWVxT5gRGTSnJycoNVq5Q6DjIAFlLIxv8ZnMl8xX3rpJURHR8t2/ujoaDg4OOiLYwAIDQ2FSqXCiRMnin2c5ORk2NnZFVkcZ2RkICUlRb8U1Y2DiMhYODKQcrGAUjYO4Wd8JlMgL1y4EIcPH8bkyZPxzz//VPj54+Pj4eLiYrDOzMwMTk5OiI+PL9Yx7t27hxkzZmDkyJFFbjd79mzY29vrl+Dg4FLHTURUWk5OTnKHQEbCLhZEZWMy76DGjRvjn3/+wezZs+Hu7g6NRgM7OzuDxd7evsTHff/99yFJUpHLpUuXyhx/SkoKOnfuDF9fX0ybNq3IbSdNmoTk5GT9cvDgwTKfn4iopFggKxdbGJWN+TU+k+kkGx4ebpSET5gwAREREUVuU6dOHeh0Oty5c8dgfVZWFhISEqDT6YrcPzU1FR07doStrS2ioqKeeXepRqMxGMTdxsam6BdBRGQE1apVkzsEMhIWUMomhGCOjcxkCuTIyEijHNfZ2blY/ewCAwORlJSEM2fOICAgAACwb98+5OTkFDnDVEpKCsLCwqDRaLB161YOtk9ElYK1tTVnW1MwE5nigKjSkr1AfvToEbZs2YKYmBhUr14dnTt3Ro0aNSo8Dh8fH3Ts2BEjRozA4sWLkZmZiTFjxqBfv376ESxu3ryJdu3aYdWqVWjWrBlSUlLQoUMHpKWl4bvvvtPfdAc8Kcx5kwQRmarcWfRImdi6SFQ2shbId+7cQcuWLRETE6P/tmtlZYXNmzcjNDS0wuNZs2YNxowZg3bt2kGlUiE8PBxfffWV/vnMzExcvnwZaWlpAJ7MgJc7wsXTY4nGxMTAw8OjwmInIioJJc5KSv/DBhplYxcL45N1qum33noL//d//4exY8eibdu2uHbtGmbMmAE7Ozv89ddfcoVV4TjVNBFVtKSkJDg4OMgdBhGVQnZ2Nr8EGZmsLci7d+/G4MGDMWfOHP06V1dXDBgwAJcvX4a3t7eM0RERKRc/XImICifrMG9xcXF46aWXDNa99NJLEELg9u3bMkVFRKR8vDxLVHnx/Wt8shbIGRkZ+UZ9yH2clZUlR0hERFUCP2CJKi9OBGN8so9iERsbi7Nnz+ofJycnAwCuXr1aYP849tElIio7FshERIWT9SY9lUpV4B/pgu7OzF2XnZ1dUeFVGN6kR0QVLS0tjSNZEBEVQtYW5BUrVsh5eiKiKostyEREhZO1QB4yZIicpyciqrJYIBMRFY69vImIqiAWyEREhWOBTERUBbFAJiIqHAtkIqIqyNzcXO4QiIhMFgtkIqIqiC3IRESFY4FMRERERJQHC2QiIiIiojxYIBMRERER5cECmYiIiIgoDxbIRERERER5sEAmIiIiIspD1qmmqXL7999/8e+//8odBhERUZVSo0YN1KhRQ+4wFI0FsgmoUaMGpk6dWqn+s2dkZKB///44ePCg3KEQERFVKcHBwdi1axc0Go3coSiWJIQQcgdBlU9KSgrs7e1x8OBB2NjYyB0OlbMHDx4gODiY+VUo5lfZmF9ly81vcnIy7Ozs5A5HsVggU6nkFsh8gyoT86tszK+yMb/KxvxWDN6kR0RERESUBwtkIiIiIqI8WCBTqWg0GkydOpU3CCgU86tszK+yMb/KxvxWDPZBJiIiIiLKgy3IRERERER5sEAmIiIiIsqDBTIRERERUR4skImIiIiI8mCBTFQJSZJUrOXAgQNlPldaWhqmTZtWomN9/PHHeOWVV+Dq6gpJkjBt2rQyx1HVmHKOL126hIkTJ6JJkyawtbVFjRo10LlzZ5w+fbrMsVQVppzfW7duYdCgQfD29oatrS0cHBzQrFkzrFy5Eryvv3hMOb9PW7NmDSRJ4qyLTzGTOwAiKrnVq1cbPF61ahX27NmTb72Pj0+Zz5WWlobp06cDAEJCQoq1z+TJk6HT6dC0aVPs2rWrzDFURaac42XLlmH58uUIDw/H6NGjkZycjG+++QYtWrTAzp07ERoaWuaYlM6U83vv3j38888/6NWrF9zc3JCZmYk9e/YgIiICly9fxqxZs8ock9KZcn7zevDgASZOnAhra+syx6E4gogqvTfffFMY6+189+5dAUBMnTq12PvExMSUel8qmCnl+PTp0yI1NdVg3b1794Szs7MICgoyQoTKZ0r5LUyXLl2EtbW1yMrKKp/AqhBTze97770nvL29xcCBA4W1tXX5B1eJsYsFkULl5ORg3rx5aNCgASwtLeHq6orXX38diYmJBtudPn0aYWFhqF69OrRaLTw9PTFs2DAAQGxsLJydnQEA06dP118WfFaXCQ8PD2O8JHqKXDkOCAjIdzm2WrVqaNWqFf7888/yfZFVmJzv4YJ4eHggLS0Njx8/LvNrI/nze/XqVcydOxdffvklzMzYoeBp/I0QKdTrr7+OyMhIDB06FG+//TZiYmKwcOFC/Prrrzh69CjMzc1x584ddOjQAc7Oznj//ffh4OCA2NhYbNq0CQDg7OyM//u//8Mbb7yBHj16oGfPngCARo0ayfnS6P8ztRzHx8ejevXq5foaqzK585ueno6HDx/iwYMHOHjwIFasWIHAwEBotVqjvu6qQu78jh07Fm3atEGnTp3www8/GPW1VkpyN2ETUdk9ffnu8OHDAoBYs2aNwXY7d+40WB8VFSUAiFOnThV67LJcvmMXi/JjqjnOdejQISFJkpgyZUqpj1GVmWJ+Z8+eLQDol3bt2om4uLgSHYOeMLX8bt++XZiZmYkLFy4IIYQYMmQIu1g8hV0siBRow4YNsLe3R/v27XHv3j39kntpfP/+/QAABwcHAMD27duRmZkpY8RUUqaU4zt37mDAgAHw9PTExIkTjXKOqsYU8tu/f3/s2bMHa9euxYABAwA8aVWmspMzv48fP8a4ceMwatQo+Pr6lssxlYgFMpECXb16FcnJyXBxcYGzs7PB8uDBA9y5cwcAEBwcjPDwcEyfPh3Vq1dHt27dsGLFCmRkZMj8CuhZTCXHDx8+RJcuXZCamootW7ZwqKhyYgr5dXd3R2hoKPr37481a9agTp06CA0NZZFcDuTM79y5c3Hv3j39yBdUMPZBJlKgnJwcuLi4YM2aNQU+n3tThyRJ+PHHH3H8+HFs27YNu3btwrBhw/DFF1/g+PHjLHZMmCnk+PHjx+jZsyf++OMP7Nq1C35+fqU+Fhkyhfw+rVevXli6dCkOHTqEsLCwcjtuVSRXfpOTkzFz5kyMHj0aKSkpSElJAfBkuDchBGJjY2FlZQUXF5eyvUAlkLuPBxGV3dP920aPHi3UarVIS0sr8bHWrFkjAIilS5cKIZ4M3wX2QZadqeU4Oztb9O3bV6jVarFx48YSx0CGTC2/Bdm8ebMAINavX1+m41RFppLfmJgYg37lBS3dunUrcUxKxC4WRArUp08fZGdnY8aMGfmey8rKQlJSEgAgMTEx38xYTZo0AQD9JTwrKysA0O9DpkHuHL/11ltYv349Fi1apL9znsqPnPm9e/dugeuXL18OSZLg7+9frONQ4eTKr4uLC6KiovItbdq0gaWlJaKiojBp0qTSvzAFYRcLIgUKDg7G66+/jtmzZ+O3335Dhw4dYG5ujqtXr2LDhg2YP38+evXqhZUrV2LRokXo0aMHvLy8kJqaiqVLl8LOzg6dOnUCAGi1Wvj6+mL9+vWoV68enJyc4OfnV+Tl9NWrV+PGjRtIS0sDABw6dAgzZ84EALz66qtwd3c3/i9B4eTM8bx587Bo0SIEBgbCysoK3333ncHzPXr04MxcZSRnfj/++GMcPXoUHTt2hJubGxISErBx40acOnUKb731FurWrVuRvwpFkiu/VlZW6N69e771mzdvxsmTJwt8rsqStwGbiMpDYbM0LVmyRAQEBAitVitsbW1Fw4YNxcSJE8WtW7eEEEKcPXtW9O/fX7i5uQmNRiNcXFxEly5dxOnTpw2Oc+zYMREQECAsLCyKdSkvODi40Mt3+/fvL6+XXaWYUo6HDBlS5CXa3JkUqfhMKb+7d+8WXbp0ETVr1hTm5ubC1tZWBAUFiRUrVoicnJxyfd1VhSnltyAc5i0/SYin2u6JiIiIiKow9kEmIiIiIsqDBTIRERERUR4skImIiIiI8mCBTERERESUBwtkIiIiIqI8WCATEREREeXBApmoCoqNjYUkSYiMjJQ7FDIC5lfZmF9lY35NAwtkIiIiIqI8OFEIURUkhEBGRgbMzc2hVqvlDofKGfOrbMyvsjG/poEFMhERERFRHuxiQVRJTZs2DZIk4cqVKxg0aBDs7e3h7OyMKVOmQAiBv//+G926dYOdnR10Oh2++OIL/b4F9XGLiIiAjY0Nbt68ie7du8PGxgbOzs545513kJ2drd/uwIEDkCQJBw4cMIinoGPGx8dj6NChqFWrFjQaDWrUqIFu3bohNjbWSL8V5WB+lY35VTbmt/JjgUxUyfXt2xc5OTn45JNP0Lx5c8ycORPz5s1D+/bt8dxzz+HTTz9F3bp18c477+DQoUNFHis7OxthYWGoVq0a5syZg+DgYHzxxRdYsmRJqWILDw9HVFQUhg4dikWLFuHtt99Gamoq4uLiSnW8qoj5VTbmV9mY30pMEFGlNHXqVAFAjBw5Ur8uKytL1KpVS0iSJD755BP9+sTERKHVasWQIUOEEELExMQIAGLFihX6bYYMGSIAiP/+978G52natKkICAjQP96/f78AIPbv32+w3dPHTExMFADE559/Xj4vuIphfpWN+VU25rfyYwsyUSU3fPhw/c9qtRovvPAChBB47bXX9OsdHBzg7e2N69evP/N4o0aNMnjcqlWrYu33NK1WCwsLCxw4cACJiYkl3p+eYH6VjflVNua38mKBTFTJubm5GTy2t7eHpaUlqlevnm/9s/4QWlpawtnZ2WCdo6Njqf6AajQafPrpp/j555/h6uqK1q1b47PPPkN8fHyJj1WVMb/KxvwqG/NbebFAJqrkChoGqLChgcQzBq0pzpBCkiQVuD7vjSK5xo4diytXrmD27NmwtLTElClT4OPjg19//fWZ56EnmF9lY36VjfmtvFggE1GJODo6AgCSkpIM1t+4caPA7b28vDBhwgTs3r0b58+fx+PHjw3u2CbTwvwqG/OrbMxv+WGBTEQl4u7uDrVane+O60WLFhk8TktLw6NHjwzWeXl5wdbWFhkZGUaPk0qH+VU25lfZmN/yYyZ3AERUudjb26N3795YsGABJEmCl5cXtm/fjjt37hhsd+XKFbRr1w59+vSBr68vzMzMEBUVhdu3b6Nfv34yRU/PwvwqG/OrbMxv+WGBTEQltmDBAmRmZmLx4sXQaDTo06cPPv/8c/j5+em3qV27Nvr374+9e/di9erVMDMzQ/369fHDDz8gPDxcxujpWZhfZWN+lY35LR+capqIiIiIKA/2QSYiIiIiyoMFMhERERFRHiyQiYiIiIjyYIFMRERERJQHC2QiIiIiojxYIBORUcXGxkKSJERGRsodChkB86tszK+yMb+FY4FMZEL++usvvP7666hTpw4sLS1hZ2eHoKAgzJ8/H+np6UY778WLFzFt2jTExsYa7RzF8fHHH+OVV16Bq6srJEnCtGnTZI2nvDG/zK8xML8Vg/lVdn6fxolCiEzEjh070Lt3b2g0GgwePBh+fn54/Pgxjhw5gnfffRcXLlzAkiVLjHLuixcvYvr06QgJCYGHh4dRzlEckydPhk6nQ9OmTbFr1y7Z4jAG5pf5ZX4rL+ZX2fktCAtkIhMQExODfv36wd3dHfv27UONGjX0z7355pu4du0aduzYIWOE/yOEwKNHj6DVasv92DExMfDw8MC9e/fg7Oxc7seXC/P7BPMrP+a35JjfJ5Sa38KwiwWRCfjss8/w4MEDLF++3OCPb666deviP//5j/5xVlYWZsyYAS8vL2g0Gnh4eOCDDz5ARkaGwX4eHh7o0qULjhw5gmbNmsHS0hJ16tTBqlWr9NtERkaid+/eAIA2bdpAkiRIkoQDBw4YHGPXrl144YUXoNVq8c033wAArl+/jt69e8PJyQlWVlZo0aJFmT4o5GwdMSbm93/xKhHz+794lYj5/V+8VYogItk999xzok6dOsXefsiQIQKA6NWrl/j666/F4MGDBQDRvXt3g+3c3d2Ft7e3cHV1FR988IFYuHCh8Pf3F5IkifPnzwshhPjrr7/E22+/LQCIDz74QKxevVqsXr1axMfH649Rt25d4ejoKN5//32xePFisX//fhEfHy9cXV2Fra2t+PDDD8WXX34pGjduLFQqldi0aZM+hpiYGAFArFixotiv7+7duwKAmDp1arH3MWXMryHml/mtTJhfQ0rLb2FYIBPJLDk5WQAQ3bp1K9b2v/32mwAghg8fbrD+nXfeEQDEvn379Ovc3d0FAHHo0CH9ujt37giNRiMmTJigX7dhwwYBQOzfvz/f+XKPsXPnToP1Y8eOFQDE4cOH9etSU1OFp6en8PDwENnZ2UII/gFmfvNjfpnfyoL5zU9J+S0Ku1gQySwlJQUAYGtrW6ztf/rpJwDA+PHjDdZPmDABAPJdQvP19UWrVq30j52dneHt7Y3r168XO0ZPT0+EhYXli6NZs2Z46aWX9OtsbGwwcuRIxMbG4uLFi8U+vpIxv8rG/Cob81t1sUAmkpmdnR0AIDU1tVjb37hxAyqVCnXr1jVYr9Pp4ODggBs3bhisd3Nzy3cMR0dHJCYmFjtGT0/PAuPw9vbOt97Hx0f/PDG/Ssf8KhvzW3WxQCaSmZ2dHWrWrInz58+XaD9Jkoq1nVqtLnC9EKLY5zLGHdFVBfOrbMyvsjG/VRcLZCIT0KVLF/z111+Ijo5+5rbu7u7IycnB1atXDdbfvn0bSUlJcHd3L/H5i/vH/Ok4Ll++nG/9pUuX9M/TE8yvsjG/ysb8Vk0skIlMwMSJE2FtbY3hw4fj9u3b+Z7/66+/MH/+fABAp06dAADz5s0z2ObLL78EAHTu3LnE57e2tgYAJCUlFXufTp064eTJkwYfGg8fPsSSJUvg4eEBX1/fEsehVMyvsjG/ysb8Vk2cKITIBHh5eWHt2rXo27cvfHx8DGZqOnbsGDZs2ICIiAgAQOPGjTFkyBAsWbIESUlJCA4OxsmTJ7Fy5Up0794dbdq0KfH5mzRpArVajU8//RTJycnQaDRo27YtXFxcCt3n/fffx7p16/Dyyy/j7bffhpOTE1auXImYmBhs3LgRKlXJv3+vXr0aN27cQFpaGgDg0KFDmDlzJgDg1VdfrbStHszvE8wv81sZMb9PKDW/hZJ3EA0iyuvKlStixIgRwsPDQ1hYWAhbW1sRFBQkFixYIB49eqTfLjMzU0yfPl14enoKc3NzUbt2bTFp0iSDbYR4MgRQ586d850nODhYBAcHG6xbunSpqFOnjlCr1QZDChV2DCGejNHZq1cv4eDgICwtLUWzZs3E9u3bDbYpyTBCwcHBAkCBS0FDHFU2zC/zKwTzW1kxv8rO79MkIUrQE5yIiIiISOHYB5mIiIiIKA8WyEREREREebBAJiIiIiLKgwUyEREREVEeLJCJiIiIiPJggUxERERElAcLZCIiIiKiPFggExERERHlwQKZiIiIiCgPFshERERERHmwQCYiIiIiyoMFMhERERFRHiyQiYiIiIjy+H8JZz2mNVO8ZwAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAInCAYAAACFua8hAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAwdlJREFUeJzs3Xd4FFXbBvB7tqf3hCIQBGmGJgjSBDQUKaKIIkgRFLFgIa+f0qQoELEgqAiCNAuCqBSpYgQFpQiIdKSFoCQhvW6f+f4IWbOkkE2y2Z3N/buuvWBnZmeecMjus2fOeY4gSZIEIiIiIiICAChcHQARERERkTthgkxEREREVAQTZCIiIiKiIpggExEREREVwQSZiIiIiKgIJshEREREREUwQSYiIiIiKoIJMhERERFREUyQiYiIiIiKYILsBhITEzFz5kwkJia6OhQiIiKiGo8JshtITEzErFmzmCATERERuQEmyERERERERTBBJiIiIiIqggkyEREREVERTJCL+PXXXzFw4EDUqVMHgiBg48aNt3zNnj17cNddd0Gr1aJx48ZYtWqV0+MkIiIiIudhglxEXl4eWrdujUWLFpXr+MuXL6N///7o2bMnjh07hldeeQVPP/00du7c6eRIiYiIiMhZVK4OwJ088MADeOCBB8p9/JIlS9CwYUO8//77AIDmzZtj3759+OCDD9CnTx9nhUlERERETsQEuRL279+P6Ohou219+vTBK6+8UubrjEYjjEaj7Xlubq4zwkNaWhpMJpNTzu1soihCqVQiJCTE1aG4JUEQkJWVJdv2lSQJCoWC7VuG7Oxs2bYvUPB/lO1buqysLJjNZleHUWEKhQLBwcGuDsNtyb19NRpNjf/9ZYJcCUlJSYiIiLDbFhERgezsbOj1enh5eZX4utjYWMyaNcupsaWlpWHRokWQJMmp13G2xx57DAEBAa4Ow+3k5+djzZo1bF8PlZOTg3Xr1rF9PVRWVhbWr1/P9vVQntC+giDghRdeqNFJMscgu8DkyZORlZVle/zyyy9Vfg2TySTrX85Ccv4G7kxms5nt68HYvp6N7evZPKF9JUmS9R2sqsAe5EqoVasWkpOT7bYlJyfD39+/1N5jANBqtdBqtbbnvr6+TosRKPgmKDdyf3OpTmxfz8b29WxsX8/G9pUvj+lBliQJP//8M7Zv346cnJxquWanTp0QFxdnt23Xrl3o1KlTtVyfiIiIiKqeLBPkqVOnomfPnrbnkiShd+/e6NWrF/r374+WLVvi4sWLDp83NzcXx44dw7FjxwAUlHE7duwYEhISABQMjRg1apTt+GeffRaXLl3Ca6+9hrNnz+KTTz7BN998g4kTJ1buByQiIiIil5Flgvzdd9+hQ4cOtufffvst4uLiMHv2bGzZsgVWqxUzZ850+LyHDx9G27Zt0bZtWwBATEwM2rZti+nTpwMAEhMTbckyADRs2BBbt27Frl270Lp1a7z//vv47LPPWOKNiIiISMZkOQb533//RePGjW3Pv//+e7Ro0QKTJ08GADz33HNYvHixw+ft0aNHmWNvSlolr0ePHvjzzz8dvhYRERERuSdZ9iCrVCpbHWFJkhAXF4e+ffva9kdERCA1NdVV4RERERGRjMkyQY6KisKXX36JjIwMrFy5Emlpaejfv79t/5UrVxAaGurCCImIiIhIrmQ5xGL69OkYOHCgLQnu0qWL3aS9rVu34u6773ZVeEREREQkY7JMkHv16oWjR49i165dCAwMxNChQ237MjIycO+992LQoEEujJCIiIiI5EqWCTIAtGjRAi1atCi2PSgoCB988IELIiIiIiIiTyDLBDknJweZmZmoV6+ebdu1a9ewZMkSGI1GDBkyhEMsiIiIiKhCZJkgP/PMM7h8+TIOHDgAAMjOzsY999yDf/75BwqFAgsXLsSOHTvQo0cP1wZKRERERLIjyyoW+/btw4ABA2zPv/zyS1y7dg2///47MjIy0KpVK8yePduFERIRERGRXMkyQU5NTUXdunVtzzdv3oyuXbvinnvugZ+fH0aNGoW//vrLhRESERERkVzJMkEODAxEUlISAECv12Pv3r3o3bu3bb9KpUJ+fr6rwiMiIiIiGZPlGOTOnTvjk08+QbNmzbBjxw4YDAa7sm5///23XQ8zEREREVF5yTJBnjdvHnr37o1HHnkEAPC///0Pd955JwDAarVi/fr1dktPExERERGVlywT5MaNG+PcuXM4ffo0AgICEBkZaduXn5+Pjz/+GK1bt3ZdgEREREQkW7JMkAFArVaXmAT7+flxFT0iIiIiqjBZTtIDCmofv/322+jTpw/atm2LQ4cOAQDS09Mxf/58XLhwwcUREhEREZEcybIH+Z9//kH37t1x9epV3HHHHTh79ixyc3MBAMHBwfj0009x5coVLFy40MWREhEREZHcyDJB/r//+z/k5OTg2LFjCA8PR3h4uN3+hx56CFu2bHFRdEREREQkZ7IcYvHjjz/ipZdeQosWLSAIQrH9t99+O65eveqCyIiIiIhI7mSZIOv1eoSFhZW6PycnpxqjISIiIiJPIssEuUWLFvj1119L3b9x40a0bdu2GiMiIiIiIk8hywT5lVdewdq1azFv3jxkZWUBAERRxIULFzBy5Ejs378fEydOdHGURERERCRHspykN2LECFy5cgXTpk3D1KlTAQB9+/aFJElQKBSYO3cuHnroIdcGSURERESyJMsEGQCmTp2KkSNH4rvvvsOFCxcgiiIaNWqEwYMH4/bbb3d1eEREREQkU7JNkAGgfv36HEpBRERERFVKlmOQjx49ik8++aTU/Z988gmOHTtWfQERERERkceQZYI8depU/PTTT6Xu//nnnzFt2rQKn3/RokWIjIyETqdDx44dbctYl2bBggVo2rQpvLy8UK9ePUycOBEGg6HC1yciIiIi15FlgnzkyBF069at1P3dunXD4cOHK3TudevWISYmBjNmzMDRo0fRunVr9OnTB9evXy/x+DVr1mDSpEmYMWMGzpw5g+XLl2PdunWYMmVKha5PRERERK4lywQ5JycHKlXpw6cVCoWt/Juj5s+fj3HjxmHMmDFo0aIFlixZAm9vb6xYsaLE43///Xd06dIFw4cPR2RkJHr37o1hw4bdsteZiIiIiNyTLCfp3XHHHfjxxx/x4osvlrh/x44dFapkYTKZcOTIEUyePNm2TaFQIDo6Gvv37y/xNZ07d8aXX36JQ4cOoUOHDrh06RK2bduGkSNHlnodo9EIo9Foe56bm+twrFQyQRBsj6Lbyvp70eNvfn3R5zc/Sju+pD9v/jsASGYzrFmZEPV6SKLVoZ/TYjE7dDwRERGVnywT5KeeegoTJ05ETEwMpk+fjsDAQABAZmYmZs2ahR07duDdd991+LypqamwWq2IiIiw2x4REYGzZ8+W+Jrhw4cjNTUVXbt2hSRJsFgsePbZZ8scYhEbG4tZs2Y5HB/dmiRJtnrYSqUSSqUSarXa9lAqla4OEQBgzcmGOS0NgOTqUEo0e/ZsWCwWqFSqSo3nJyIikiNZDrF46aWXMHr0aCxYsAChoaGoX78+6tevj9DQUCxcuBAjRoyotvJve/bswdy5c/HJJ5/g6NGj+P7777F161a89dZbpb5m8uTJyMrKsj1++eWXaom1JhFFEWazGQaDATk5OUhPT0dycjKuX7+O7OxsmEwml8Vmyc6COS0V7pocA4DFYrF94SMiIqppZNmDLAgCVq5ciVGjRuG7777DpUuXAACDBg3CI488gh49elTovKGhoVAqlUhOTrbbnpycjFq1apX4mjfeeAMjR47E008/DQBo2bIl8vLy8Mwzz2Dq1KlQKIp/B9FqtdBqtbbnvr6+FYqXHGexWJCbm4vc3FwolUp4eXnB29u7zDHtVcmalwdLelq1XIuIiIgqRpYJcqGePXuiZ8+eVXY+jUaDdu3aIS4uzrZUtSiKiIuLw4QJE0p8TX5+frEkuPA2viS5bw8hAVar1ZYs63Q6+Pj42H1xqWqS2QxLaorTzk9ERERVQ5ZDLC5fvowffvih1P0//PAD4uPjK3TumJgYLFu2DKtXr8aZM2fw3HPPIS8vD2PGjAEAjBo1ym4S38CBA7F48WKsXbsWly9fxq5du/DGG29g4MCBbjPelW7NYDAgLS0NqampdhMoq5I5LQWSJDrl3ERERFR1ZNmD/OqrryI7OxsDBw4scf+iRYsQGBiItWvXOnzuoUOHIiUlBdOnT0dSUhLatGmDHTt22CbuJSQk2PUYT5s2DYIgYNq0afj3338RFhaGgQMHYs6cORX74cilTCYT0tLSoNVqERAQUGVDL6y5ORC5eAwREZEsyDJB3r9/P1555ZVS999///1YsGBBhc8/YcKEUodU7Nmzx+65SqXCjBkzMGPGjApfj9yP0WhESkoKfHx84OfnV6xEmyMkUYQlI70KoyMiIiJnkmWCnJGRAT8/v1L3+/r6Ii2NE6GociRJQm5uLvR6PQIDAys8PtmanQXJ6lid45ri5prVt6JQKIqN+S861r/w74Xl/m7eT0REVB6yTJDr16+P3377Dc8991yJ+/fu3YvbbrutmqMiT2W1WpGWlgZvb2/4+/uXWJmkNJIowlrBVR1rgqKJbHlYrVao1Wr4+flBrVY7fJ2bE2dJkiCKYrH9pT1ujrmkJNy2TRQLNxQ8HFDx+xVERFQVZJkgDxs2DG+99RY6dOiACRMm2BIWq9WKjz/+GOvWrcPUqVNdHCV5mvz8fBiNRvj7+8PLy6tcr7FmZ3NiXhUzGAy2dvDx8SnXaxztqS6LJIqQzGZIFjMkswWS1QJYrZAs1oKk2GqtdJsbza6r001ERDJNkCdPnox9+/bhlVdewZw5c9C0aVMAwLlz55CSkoIePXowQSansFqtyMjIQF5eHvz9/aHRaEo9VpIkWHPYe+wMkiQhKysLoiiWOdyq0texWiEajZCMBkhmE0SjqSAhJiIijybLBFmr1eLHH3/E6tWr8f333+PixYsAgA4dOuCRRx7BqFGjHLoNTuQok8mE1NRU6HS6Um/3i3l51TL22BljbFUqlW2paXcew5uTkwOFQlHunuRbkSwWiAYDRIMeotEAyWyukvMSEZG8yDJBBgom64wZM8ZWn5jIFQwGAwwGA7RaLXx8fKDT6Wz7rNll9x4LggCFrx+U3t6AwrGa2V66DAiC4LTktbruwISHhyMkJKTcx1ssFuj1ehiKlMzLzs6GWq0usze/NJIkQTIaIerzIer1EE3OqYFNRETyItsEmcidGI1GGI1GKJVKeHt7Q6tUlplsKTRaqMMjIFSwznJYrVp44YUXYDLJd6yqRqNxKDkGALVaDS8vL5hMJmRkZMBqtUKSJGRmZiIsLOyW44wlSYJkMt7oJTZAMhg4RpyIiIqRZYJ833333fIYQRAQFxdXDdEQ/cdqtSInJwcZWZlQGA3QqjXQqFXQqNW25E2h84I6olalJ405mlx6Eo1Gg7CwMKSlpcFsNsNisSAnJwf+/v62YySrtWAynckE0Wwq6Ck2mQC475ARIiJyD7JMkEVRLJZcWK1WXLlyBVevXkXjxo1Rt25dF0VHNZ0kSZD0elgkERarHnk3RgOolEpodN7QBYXAajDYavpWJFEWBAHWlOuQjPJcnU+SJAhKFdQRtSp4AhEQJQTqdEjNzYHFZEZWVhbUudlQQihIjNkzTEREFSTLBPnm1eyK2rJlC5555hnMnz+/+gIiKqK02/ZWUYLZxweWvDwgL69S11BmZSLnnbcqdQ6XujF2utaEGKhCQyt1Kj/RirTcHEiQkGk2IqhILzIREVFFeFyphwEDBmDEiBFlLkVN5EyiIb/E7cqAAAhKxybjlUZy8mSyll+sR9PVa9Hyi/VOvY5UBfV+VUol/G9UsTCazTCx8gQREVWSxyXIANCoUSP88ccfrg6DaiBJkiAaiievgkYLhZe3cy4qCFX+MIlWiBJgEq1OOX9V89Jpob1Rai9Xr6/y8xMRUc3icQmyxWLBN998g9BK3rYlqgjJoEfxSWACVP4BrginRvH38YEAASb2IhMRUSXJcgzy2LFjS9yemZmJAwcOICkpiWOQySVEQ/HeS4WXF4QSFhKhqqVUKuHtpUOeXo98gwEa/psTEVEFyTJB/vnnn4vN/BcEAUFBQejatSuefvpp9O7d20XRUU0lSRKkYsMrBCj9OGmsuvjodNAbDDCYTLBarVBW0ZhvIiKqWWSZIMfHx7s6BKJiJIMB0k3DKxReXlU2MY9uTaFQwNvLC7n5+cgzGGyT94iIiBzhcWOQiVxFNBSvSaz08XVBJDWbj04HhSDAYDQ6bSluIiLybLJJkPPz85GQkFDi0rorVqzA/fffjxYtWmDw4MGsYEHVTpKkYot2CFodxx67gCAI8NbpIEoSDDJeipuIiFxHNgnym2++iVatWhVLkGfPno1x48bhl19+QUpKCjZu3IgePXrgr7/+clGkVCOVsHKbirf3XcZbpwMA6EsouUdERHQrskmQd+/ejQEDBsDX979b1tnZ2Zg9ezbq1q2L8+fPIyUlBQcOHIBGo8Hbb7/twmipphFv7j1WqiBodS6KhhQKBby0WpgsZlitVleHQ0REMiObBDk+Ph6tWrWy27Zt2zaYTCa8/vrraNiwIQCgQ4cOGDNmDPbu3euKMKmGunn8sdMWBaFys/Uic5gFERE5SDYJck5ODkJCQuy2/frrrxAEAX369LHb3qJFC6SkpFRneFSDSVYrJEvRhSkEKLzlnSBrFEoohII/5UqtUkGlVHGYBREROUw2Zd4aNGiAs2fP2m3bs2cPIiIi0LhxY7vtJpMJ/v6sPUvVQzLZJ2CCRiP70m4nRj3m6hCqhLdOi+y8PJgtFqhVsnm7IyIiF5NND3Lv3r2xYsUKHDx4EADw+eef4+zZs3j44YeLHXvkyBFERkZWc4RUU4k39VAqZd577El0Gg0ECDAYOcyCiIjKTzYJ8htvvAFfX1907twZGo0GTz75JMLCwjB9+nS74/Lz87Fhwwbcf//9LoqUapqi5d0ECBB0Xi6MhopSKBTQatQwmDjMgoiIyk829xxDQ0Nx7NgxfPbZZ7h06RIaNGiAsWPHIjw83O64kydP4oknnsDIkSNdFCnVJNJN5d0Ena7YMujkWl5aLQwmE4dZEBFRucmmBxkAgoKC8H//939YvHgxJk2aVCw5BgqqWHz00Ue48847K3ydRYsWITIyEjqdDh07dsShQ4fKPD4zMxMvvPACateuDa1WiyZNmmDbtm0Vvj7Jh3hTz6SCvcduR6NWF6ysx2oWRERUTuxOucm6desQExODJUuWoGPHjliwYAH69OmDc+fOlZiQm0wm9OrVC+Hh4fj2229Rt25dXLlyBYGBgdUfPFU70Vg0QRYg6Fj72N0IggCtRgOjyQQ/jg8nIqJyYIJ8k/nz52PcuHEYM2YMAGDJkiXYunUrVqxYgUmTJhU7fsWKFUhPT8fvv/8O9Y1lhTlBsGaQJAkoMvlL0Go5vMJN6TQa6I1GWK1WKGVeYYSIiJxPVkMsnM1kMuHIkSOIjo62bVMoFIiOjsb+/ftLfM3mzZvRqVMnvPDCC4iIiEBUVBTmzp1b5updRqMR2dnZtkdubm6V/yxUDSwWSPhv/LGSvcdui8MsiIjIEUyQi0hNTYXVakVERITd9oiICCQlJZX4mkuXLuHbb7+F1WrFtm3b8MYbb+D999/H7NmzS71ObGwsAgICbI/u3btX6c9B1aPY8tJcWtpt2YZZmM23PpiIiGo8WSTImzdvxrVr11wdRolEUUR4eDiWLl2Kdu3aYejQoZg6dSqWLFlS6msmT56MrKws2+OXX36pxoipqkjmIsMrVPJfHMTTaTUamMzmgqExREREZZBFgvzwww9jz549tue33347Nm/eXOXXCQ0NhVKpRHJyst325ORk1KpVq8TX1K5dG02aNLEb19i8eXMkJSXBVMrtXK1WC39/f9vD19e36n4IqjZSkfHHCg6vcHtatRoCBJjYi0xERLcgiwTZz88PmZmZtufx8fFOGber0WjQrl07xMXF2baJooi4uDh06tSpxNd06dIFFy5cgCj+Nxb177//Ru3ataHRaKo8RnIPN9c/ZoLs/gRBgEathtHEBJmIiMomiyoWHTp0wJw5c5CcnIyAgAAAwLZt20odFwwUfBhOnDjR4WvFxMRg9OjRaN++PTp06IAFCxYgLy/PVtVi1KhRqFu3LmJjYwEAzz33HD7++GO8/PLLePHFF3H+/HnMnTsXL730UgV+UpILu+EVggLCjQom5N60GjXy9HoAPq4OhYiI3JgsEuRPPvkEo0aNwltvvQWgIPlds2YN1qxZU+prKpogDx06FCkpKZg+fTqSkpLQpk0b7NixwzZxLyEhAQrFfx3v9erVw86dOzFx4kS0atUKdevWxcsvv4zXX3/d4WuTfIh25d3YeywXWo0G2Xl5sFitUHHMOBERlUIWCXLjxo3x+++/w2Aw4Pr164iMjMSCBQswaNAgp1xvwoQJmDBhQon7io6FLtSpUyccOHDAKbGQeyrag6zQaV0YCTlCqVBApVTBZDYzQSYiolLJIkEupNPpUL9+fcyYMQP33XcfGjRo4OqQqAaSRBGS1WJ7LmiYIMuJVlMwDtmb48aJiKgUskqQC82YMcP299zcXFy9ehVAwXAHVoQgZ5OKLC8tqFQs7yYzWrUaeoPh1gcSEVGNJYsqFiX5448/0LNnTwQFBSEqKgpRUVEICgrCfffdh8OHD7s6PPJgkuW/KgjsPZYftUoFCYDZYrnlsUREVDPJsgf54MGD6NGjBzQaDZ5++mk0b94cAHDmzBl8/fXXuPfee7Fnzx506NDBxZGSJxJN//UgK5ggy44gCNCo1DCZzVCrZPkWSERETibLT4epU6eibt262LdvX7EFPGbOnIkuXbpg6tSp2LVrl4siJI9mKjL+WMsEWY406oKJej5eXq4OhYiI3JAsh1gcPHgQ48ePL3F1u4iICDzzzDOsKkFOIZnNkFCwQIigUkNQyPJXqMbTajQwWSxcdpqIiEoky093hUIBSxnjB61Wq12tYqKqYrdACFdKlC2VUgkBAixWq6tDISIiNyTLLLJz585YtGgRrly5UmxfQkICPvnkE3Tp0sUFkZGnE01F6h9z/LGsFQ6zICIiupksxyDPnTsX9957L5o1a4aHH34YTZo0AQCcO3cOmzZtgkqlsi0FTVSVJHPR+sfsQZYzjbqgHrIPhyETEdFNZJkgt23bFgcPHsTUqVOxefNm5OfnAwC8vb3Rt29fzJ49Gy1atHBxlORpJEmylXhj/WP506rVyL3x3kFEzicIAhQKBQRBqPLzOoMkSYAoQnJwKJaScxs8giwTZABo0aIFNmzYAFEUkZKSAgAICwvj2GNyHosZQMEbn6Bi77HcKZVKCELBOGQuO03kfJIkQRRFKJVKaLVa6HQ6aN2sEpBkscCalwsxPx+SyVihibwGC4dueQLZJsiFFAoFIiIiXB0G1QCS6b83PYWWCbInUKsKxiEzQSaqHpIkwWKxwGKxIC8vD0qlEr6+vvD29nZaT3C54rJYYMnMgDU3F4UdIVSzyT5BJqouRSfoCWomyJ5Ao1ZzRT0iF7JarcjKykJubi4CAgKg0+mq9fqSJMGanQVrZgbLPpIdjkcgKifb+GNBAUGtdnE0VBU0ajUrWRC5AavVivT0dGRmZlZboipZLDAnJ8KSkc7kmIphgkxUDgUT9G70NLJ6hcdQKZW2cZFE5Hr5+flISUkpc62DqiCaTDAlXoNoMDj1OiRfTJCJyqPIBD0Fh1d4FLVKDROHWRC5DYvFgtTUVJiKDGurSqLBAHPiNUhW/t5T6ZggE5WDVOQ2vELD4RWeRKNWwWzmByWROxFFEWlpaTAajVV7XoMB5uRESBLvGlHZZD1J7/Tp07h06RIyMkoeXD9q1CgXREWeSCw6TpUr6HkUtUqF3Hy9q8MgoptIkoT09HQEBwdXSTk40WSCOTmJ442pXGSZIF+8eBEjRozAoUOHSv2PLggCE2SqMoUl3gSVyqWliKjqqVUqWKwWSJLEtiVyM4VJckhICDSVmP9ROCGPPcdUXrJMkMePH48TJ05gwYIF6NatG4KCglwdEnkwSZJujEFmeTdPJAgClEolLFYr1CpZviUSebTCJDksLAzKCtQsl0QR5uvJDq+IRzWbLD8NfvvtN0yZMgUvvviiq0OhmsBigcQJeh5NrVLBbLEwQSZyU6IoIj09HaGhoQ7f6bGkpUI0Ve1YZvJ8spykFxoaioCAAFeHQTWEZC6yQAhLvHkkzY0EmYjcl9lsRmZmpkOvsebmwJqX65yAyKPJMkF+9tln8eWXX8LK2yVUDf5bQU8A2MPokQqXnCYi96bX65GXl1euYyWzGZa0VCdHRJ5Klp/2TZo0gdVqRevWrTF27FjUq1evxHFJgwcPdkF05GmkGyXABJWak7g8VOH7hyiKUChk2W9AVGNkZ2dDo9FAfYsVTc0p11mxgipMlgny0KFDbX9/9dVXSzxGEAT2MFOlFaygd2OCHusfezS1SgWTxQIdh9EQuTVJkpCRkYGwsLBSOy0sWZkcd0yVIssEeffu3U49/6JFi/Duu+8iKSkJrVu3xkcffYQOHTrc8nVr167FsGHDMGjQIGzcuNGpMVI1KbqCHhMnj1Y4zIIJMpH7s1gsyMnJgb+/f7F9ktkMa2aGC6IiTyLLBLl79+5OO/e6desQExODJUuWoGPHjliwYAH69OmDc+fOITw8vNTXxcfH49VXX0W3bt2cFhtVP7HIUqeCij3InkytUsGQn+/qMIionHJzc6HT6YrVRzanpXJoBVWa7AfbnT59Gtu3b8f27dtx+vTpSp9v/vz5GDduHMaMGYMWLVpgyZIl8Pb2xooVK0p9jdVqxRNPPIFZs2bh9ttvr3QM5D4KFwjhBD3PV7BgiJUfrEQykpWVZfc7a83LhWjgyphUebJNkDdt2oRGjRqhZcuWGDBgAAYMGICWLVuicePG2Lx5c4XOaTKZcOTIEURHR9u2KRQKREdHY//+/aW+7s0330R4eDieeuqpcl3HaDQiOzvb9sjNZQkad1VY4o0T9DyfIAhQKZWsZkEkI2az2VbVQhJFWNLTXRwReQpZdolt27YNjzzyCBo0aIC5c+eiefPmAIAzZ85g6dKlGDx4MLZs2YK+ffs6dN7U1FRYrVZERETYbY+IiMDZs2dLfM2+ffuwfPlyHDt2rNzXiY2NxaxZsxyKjaqfJIqQrDcqWKhl+atCDtKo1DBZLNByHDKRbOTk5MDLywtSTrbtPZuosmT5qf/WW2+hVatW2Lt3L3x8fGzbH3zwQUyYMAFdu3bFrFmzHE6QHZWTk4ORI0di2bJlCA0NLffrJk+ejJiYGNvzY8eOOXVcNVWMVGT8MVfQqxk0ahXy9AZXh0FEDpAkCZnp6fDN591YqjqyTJCPHz+OuXPn2iXHhXx8fPDkk09iypQpDp83NDQUSqUSycnJdtuTk5NRq1atYsdfvHgR8fHxGDhwoG2bKIoAAJVKhXPnzqFRo0bFXqfVaqHVam3PfX19HY6VnM9+BT1O0KsJCpecliSJQ2qIZCQv5TpUKiXv/lCVkeUYZJ1Oh/Qyxhmlp6dDp9M5fF6NRoN27dohLi7Otk0URcTFxaFTp07Fjm/WrBlOnDiBY8eO2R4PPvggevbsiWPHjqFevXoOx0DuQzQW1tAUAFawqBEUCgWUSgVMXHaaSDYksxmiXo/svDxbJxVRZcmyB/m+++7DwoUL0bdv32KJ68GDB/Hhhx+id+/eFTp3TEwMRo8ejfbt26NDhw5YsGAB8vLyMGbMGADAqFGjULduXcTGxkKn0yEqKsru9YGBgQBQbDvJiyRJwI3JWpygV7No1GqYzGZob7FKFxG5B2tuNgAJVlFCbr4e/r7F7y57kk8//RS5ubnw9fXF+PHjXR2Ox5JlgvzOO++gU6dO6Nq1Kzp06ICmTZsCAM6dO4dDhw4hPDwc8+bNq9C5hw4dipSUFEyfPh1JSUlo06YNduzYYZu4l5CQwKVoawKLGdKNBUI4Qa9m0ahUyDNwHDKRHEhGI8Qiv6/5RgO0GrVHD7XIzc1Fdna2q8PweLL85G/YsCGOHz+O2NhYbN++HevWrQMANGjQAC+//DImTZpU5qIetzJhwgRMmDChxH179uwp87WrVq2q8HXJffw3vIIr6NU0GrUambm5HIdMJAOWEhLFrNw8hAaq2JlFlSLLBBkAwsPD8cEHH+CDDz5wdSjkgewm6LGCRY2iUChs9ZA9uReqJijpC05pX3oc+TJUeKwkSYDVCji4uIySi9FUCTEvD5LFVHy7JCIrNw9B/n4uiIo8hWwTZCJnkow3FgjhCno1kkathpEJsksoFArbQ6VSQaVSQa1WQ62+9VwAZ/f4S5IEUa+HqM+HZDBANJsBOJ7sGixcjKayJKsV1jKGGRjNJuTp9fDx8qrGqMiTyOKTf+zYsRAEAUuXLoVSqcTYsWNv+RpBELB8+fJqiI48jWQ2Q5JuzIQux4cyeR6NWo2cvHzAs+f6uCVRFG2VCExFa5ErFLYSmTqdrlpvnxckY1mw5uRAEq3Vdt2Kmj17NiwWC1QqFaZNm+bqcJzCmp0NCWVXrMjJz4dKpeKEW6oQWSTIP//8MxQKBURRhFKpxM8//+zyngTyXHYLhLAHsUbSqFSwilZYrVYolUpXh0MoSJz1ej30ej0EQYBWq4WXlxd0Op3T3u8lSYI1KwvWrMz/vjTLgOVGLW+Lh5YrFA0GiIb8ch2blZOD4IAAqPh7TA6SRYIcHx9f5nOiqiSa/pugx/HHNZNCoYBapYLRbIY3P1jdjiRJMBgMMBgMUCqV8PHxgbe3d5X2KotGA8ypKZDMHA7hTgq+tGSU+3hRkpCRnYOQAH9O2iOHyPJ/S0JCAvR6fan79Xo9EhISqjEi8iRSkQoWAnuQayyNWg2jqfgEIHIvVqsV2dnZuH79OnJycgomzlWSJSsTpsREJsduyJqZAcnBxUCsohUZVfR/g2oOWSbIDRs2xIYNG0rdv3nzZjRs2LAaIyJPUXT8saBQQGDvYY2lVathMlv4oSoToigiJycH169fR35++W6/30ySJJhTrsOSkY6KTL4j5xLz8yAaSu8cK4vZYkF6djZ/n6ncZJkg3+o/uNls5q0UqhC74RXsPa7R1Deql5jYiygrVqsVmZmZSE1NhdmBtpNEEebkRFjzcp0YHVWUZDbDmpVVqXMUJslcjprKQxZjkAEgOzsbmZmZtudpaWklDqPIzMzE2rVrUbt27WqMjjyFxPHHdIMgCDeGWbDcmxyZTCakpqbC19cXvr6+ZU7kk0QR5qREuy/I5D4kUYQlI922umllmC0WpGVlI8jfjxP3qEyySZA/+OADvPnmmwAKPrheeeUVvPLKKyUeK0kSZs+eXY3RkSeQJAmSoWgFC60LoyF3oNWokafXg/Xe5EmSJOTk5MBgMCAoKAiqEmqaMzl2b5IkwZKRBsladRU5rKIVaVlZCPD1ha7ML78CBKXS4aF2QpGycs4Y0uHj4wNJkmx/knPIJkHu3bs3fH19IUkSXnvtNQwbNgx33XWX3TGCIMDHxwft2rVD+/btXRQpyZbZXKSupgCwdmaNp1WrkZ2XB7PFYhtyQfJjNpuRkpICf39/+Pj892VHkiSYrycxOXZj1swMu9KbVUWSJGTm5MBLq4VfkQooglIFpa8vFF7eELTaCpUQ9NEWlB50VvI6fvx4p5y3KEEQoKnhd85k847fqVMndOrUCQCQl5eHRx55BFFRUS6OijyJaDTY/i5wgRACoFQqoVIqYTCZmCDLnCRJyMrKgl6vR2BgIFQqFSypKRANhlu/mFzCkplR4Ul55aU3GmE0meDr5w//WrWhvMVwnPIICQnBCy+8YLfQjdxoNBqEhIS4OgyXkt07fn5+Pj788EN4e3szQaYqJRr+60XiAiFUSKvWwGA0wc/b29WhUBUwmUxISUmB1mKGzmzihG43JEkSrJmZ5V4MpHIECD5+0Hv7wJSXB29JgpeXF9SVvIPoZzZBMsn3yxf7h2SYIHt7e0OlUtndJiOqLEkUIVn++7YvcPwx3aDVqJFn0HOYhQex5ucjOzMduYIAHy8veDtxNb5bccZteJVKZVtqWm5jVAvGHKdDMjo/uRSUKqiCgm1jhkVRRG5uLnJzcwsWC1KroVQqHf4SZbmejPQ5050RcrWqHzsfmlo1t+CBLN/tH3nkEXz77bd47rnneBucqsTNb8aClgkyFdCo1VAICg6z8BCSxQLrjYpIoiQhJz8feXoDvL108NZqy5UMCUolFFotBLUGglIFKBz7HPJWqpw6RnXq1KlOOe/NgoODERgYWO7jJUmCKIqwWCwwmUywWq32+81mWDLTIVXDEtmCRgNVUAiEUtpbFEUYjRUbmy5mln+lP3dWHV9S3Jks3+0ff/xxPP/88+jZsyfGjRuHyMhIeHl5FTvu5kl8RKUpOs5NUGn4xYvs6DQaGIxGDrOQuYLeyYwik3ELiJKI3Px85OXrodNq4KXVQnPTLXZBUEDp5weFjy8UlfwCHebrxzGqKBjukp+fj/z8fFhzcmDNzUF1LNCi0OmgDAyunvd5J1zj4c07kaLXI8zLCxse7FPl54fM7jo4iywT5B49etj+vnfv3mL7JUmCIAjFvp0SlaSgvFvRBUJYvYLsabUa5BsNMJnNxRInkg8xJ9tuKNXNJEjQG43QG41QKhTQajTQ6bzgFRIClX9Aqb2NFVHTJ0ABgFqthp9KCY3FjFyLCfnVkhx7QRkYJOtOkBS9Hsn5zp28SDJNkFeuXOnqEMiDSEajXQF61j+mm2lUKigEAQajiQmyTElGo0Or5FlFEQaFEmadF/L0BmisItRqNVQqFVQqlW1sakUTLVNSoqxvYQtancPjUyVJAqxWiEYjRIMeYl4eJNEKBQB/Hx94abXIys2DpQprHtvFrNHKPjmm6iPLBHn06NGuDoE8yM1lhASdzkWRkLsSBAE6jRYGkxF+kjc/YGVGkiRYHBgXKigUUAUG2+YiSJIEo9FY6phUR/8/iKkp0M+Pdeg1bkeSUOvFGKhCwhx5UZl71SoVQgL8kZOfj/wqLr8nqDRQBYfwd5fKTZYJclG5ubm4evUqAKBevXrw9fV1cUQkJwXDK4rUP+b4YypF4TALg8kEL07ilBVrViYksXxD7m41easkjk62c3bPccsv1sMkWqFRKHFi5KNOu07BAh5VOyxCEAT4+/hArVIhOzevSpaXFhQKqIKracwxeQzZFoD8448/0LNnTwQFBSEqKgpRUVEICgrCfffdh8OHD7s6PJILkwmS9N+EHYWW9Y+pZFq1GkqFAnoDV12TE9FggKgvXz1dhc4bquDQKh1rfEuCUOUPk2iFKAEm0eqU81cHL60WQf5+VZDUCgVfeBxcLppIlj3IBw8eRI8ePaDRaPD000+jefPmAIAzZ87g66+/xr333os9e/agQ4cOLo6U3J31pg/Oys5OJ8+m02iRZ9DDYrVCxQ9ctydZrbCWc2iF0tcPSj9/J0dEjtCo1Qj290d6dnaFS+Ipff0gcOEnqgBZJshTp05F3bp1sW/fPtSqVctu38yZM9GlSxdMnToVu3btclGEJAfFhldAADhBj8rgpStIkPP1Bvj7ynexotmzZ9sWkpg2bZqrw3GKgnHH6XZ3iErD5Nh9qVUqBPn5ISM7x+HhFoJGC6Wfn5MiI08nyyEWBw8exPjx44slxwAQERGBZ555BgcOHHBBZCQnksFg/+Gp4fhjKptKqYRapYLeaIQo3jrxclcWi6UggayGBRlcRczNuTFGtmxKH18mx25Oo1Yj0M+x+UUCFFAFBjkpIqoJZJkgKxSKMt/YrVarw0tDUs1zc/UKDq+g8vDW6iBBQn4FV9ki5xP1+huLTpRNofOG0j+gGiKiytJqNAjwKX+SrAwM4LhjqhRZZpGdO3fGokWLcOXKlWL7EhIS8Mknn6BLly4uiIzkQhJFiDeVEVJoWd6Nbk2nLbjTkK/XO22pYKo4yWwu17hjQaOB0oFlksn1vHRaeJejDKeg1UHhxVUvqXJkmSDPnTsXWVlZaNasGYYPH46ZM2di5syZGDZsGJo1a4asrCzExla8xuSiRYsQGRkJnU6Hjh074tChQ6Ueu2zZMnTr1g1BQUEICgpCdHR0mceTexDz81C0PJGgUELgAhBUDoIgwEurhShJVV6rlSpHslhgSU+95VhVQakqqFbBIVWy4+ftDbWq9OlTAgSoAgKrLyAXCPPyQoS3F8K8vFwdikeT5SS9tm3b4uDBg5g6dSo2b96M/PyCSgTe3t7o27cvZs+ejRYtWlTo3OvWrUNMTAyWLFmCjh07YsGCBejTpw/OnTuH8PDwYsfv2bMHw4YNQ+fOnaHT6TBv3jz07t0bp06dQt26dSv1c5Lz3Fz2iYuDkCN8dDrkGwzI0+vhpdVySJcbkKxWWNLTIN1ibLgAAaog1sSVK0EQEOjnh7TMTIgl3MFR+Pp5/NCKDQ/2cXUINYIsE2QAaNGiBTZs2ABRFJGSkgIACAsLq/QH1fz58zFu3DiMGTMGALBkyRJs3boVK1aswKRJk4od/9VXX9k9/+yzz/Ddd98hLi4Oo0aNqlQs7uzTTz9Fbm4ufH19MX78eFeH4xDJaIB00xh2JRNkcoBSqYROo4HBZEKuXg9/H/lWtPAEBclxKqRyLFGsDAzk3SKZUyoUCPD1RUaO/ThzQamCgouFURWRfbeHIAh2j8owmUw4cuQIoqOjbdsUCgWio6Oxf//+cp0jPz8fZrMZwcHBpR5jNBqRnZ1te+Tm5lYqblfIzc2VbeyWvDy75yzvRhXhc+P2Zr7BAIu1fKu0UdWTrFZY0lKLfektiULnzbGpHkKr0cD7pnkjSv8A3hmgKiPbBPn06dMYMmQI/P39Ubt2bdSuXRv+/v4YMmQITp48WaFzpqamwmq1IiIiwm57REQEkpKSynWO119/HXXq1LFLsm8WGxuLgIAA26N79+4VipccJ5nNxZZ5FXQ6vqmSw9QqFbQ3eiKzZPhF0RNIZjMsqdfL1XMsKFU1ZlKeRqGEQij405P5+XhDeeOusaDRQsE7gVSFZDnEYu/evXjggQcgiiIGDRqEJk2aAADOnTuHzZs3Y/v27dixYwe6detWrXG9/fbbWLt2Lfbs2QNdGb+okydPRkxMjO35sWPHmCRXk5JKPyl0nOhAFePr7Q1jVhbMFgty8/Ph6y2P3kmVSmVbKESuRL0e1syMci8eoQoKqjFfhE+MeszVIVQLQRDg7+uLjOxsqFiuj6qYLN8dJ06ciPDwcPzyyy+oV6+e3b6rV6/i3nvvRUxMDP744w+HzhsaGgqlUonk5GS77cnJySUuSlLUe++9h7fffhs//fQTWrVqVeaxWq0W2iI1d305ZqpaSGZzsdrHgMAJelRhapUKXlot9EYj8gxGaHReBV+OFQoICgGAAFQgKVMY/qux7IxSclOnTnXq+QvpdDp4O/ClQZIkSJIEURRhtVohimKx+CRJgjUzE6Ihv5SzFKf09YOg5nLDnkirVsM3KBgmjiunKibLBPnUqVN46623iiXHAFCvXj0899xzmDlzpsPn1Wg0aNeuHeLi4vDQQw8BAERRRFxcHCZMmFDq69555x3MmTMHO3fuRPv27R2+LlUPS3ZWsW2CVltjepWosgQo1GoIRR8qNUIEASnp6ZAkCfkKBbxCQqCu5Ie1t0IJQRBkXWdZEASEhIQgsBLDGgpX+zObzTCbzdBnZMCYcetKFXZxqDRQ+HK5YU8lCAKCbrsNKenpsl7dktyPLBPkBg0awFjGKlYmk6nE5Lk8YmJiMHr0aLRv3x4dOnTAggULkJeXZ6tqMWrUKNStW9dWZ3nevHmYPn061qxZg8jISNtYZV9fX/YMuxHJaIBkKv5/RskJO1QKhVoDQaeDQqOBoNUVJMQlfJlSAPD390dWVhZEUURaWhqCgoLs7hI5KiQkBC+88AJM5Vgq2V1pNBqEhIRU6hyCIECtVkNhMkGVlwstRFj9/WEwmWAwmWC+xcQ8AQJUgYH8EuzBlAGBUGo08Pf3R2ZmpqvDIQ8iywR5+vTpmDhxIvr37482bdrY7fvzzz/x0UcfYcGCBRU699ChQ5GSkoLp06cjKSkJbdq0wY4dO2wT9xISEuxKyS1evBgmkwlDhgyxO8+MGTMq1ItNVU+SJFhKeOMUOLyCihDUaih0XgUPLy8IDpSM9PHxgcFggNFotCXJPj4+8PX1hbKCNVn9zCZIJvkuRFKZnFQSRUhGI0R9Pqx5eXaT8JRKJXy8vODj5QWL1Qq90Qi9wVBiTVxlYBBLunkwQaW2LRXu7e0NvV5fZucZkSNkmSAfOHAAERERaNeuHTp37ozGjRsDAM6fP4/9+/cjKioK+/fvtyvNJggCFi5cWK7zT5gwodQhFXv27LF7Hh8fX6GfoTo54zatj48PJEmy/enOrNlZkMTiZbgEnRd7lmowQaGEQqeDwssLCi9vCJWcsBYYGGirhAMAeXl5yM/Ph0qlcrg+u5SWiszYmZWKx6VuvCfUfnUK1KFhDr1OslpvlGy79fuKSqmEn7c3fL28CsaB6/Ww3rjNrvD2gYIrjXk0VXCI3RfZgIAApKSkuP1nEsmDLBPkjz/+2Pb33377Db/99pvd/hMnTuDEiRN22xxJkD2BRqNx6hjG6locJDw83KHbtDdP8jFmZ0EyGSFBKDbbXSmTigNUFYQbQyW0UGi1BSWhNFU7aUupVCI4OBipqam23ztJkmA2mx0+l5RTvNpKVWr5xXqYRCs0CiVOjHzUadcRc7IhVsNQM0EQ4K3T2SZM5ltFCKxq4NGUPr7F3sNVKpVtuBNRZckyQeZA/FvjGEbAmpcHlckEn4CAgmEWVitMZjOMZjPMogShEmNEyR0JEJRKCCpVwcM2mU5T6vjhqqZWqxESEoL0qpww5IS4TaIVolTwpzPODxf14AmCAB8/PwTWqoO8/Hzk5uayN9EDCQolVMElfzYUHe5EVBmyTJCpfCo7QUbOLNlZsKSno/A2rSAIUKtUUKtU8PHygsI/ABadF8esuZhDqUthIicIgKAoSHgVioKkWKH4b4iEcKO8mkIArCIk0QDJZAIEoaD0mqC4cQ6h4PZs4XmqKFHUaDQICwtDZmYm/29VM0GphCaiNgSlEn5+fvDy8kJWVhbbwcOoQkIglDG2PzAwECkpKexMo0qRdYJ8+fJlbN++HVeuXAFQUN3igQceQMOGDV0cmXswJSUWWzVOLiRRhKBSQx1Rdv3pYq8zGWHNzoZYQsWK/whQ+wdAo1LB29sbFosF+fn5yM/P5xtqNXMoJS3sCZQkAKItua66/sGiCbMAwS6RvpFYA0Dhyl2FYx8LE3Lc+ONGoh2oVsMMwHBj4p4jrBBxc8VuKpugUEIdUdtuLLlKpUJISAjy8/ORnZ3N328PoPTxhdKn7GE7SqUSgYGBSE9Pr6aoyBPJNkH+3//+h4ULFxZ7w1MoFHjllVfw3nvvuSgy92BKSkTC5JhbH+iubiRDtSbEQBUaWqWnVvr4FPsQ9ff3h6+vL/Jv3JblB2lNJP03mdNadYl3ReqkmC0WcBRl+QkKJdS1apc6rtzb2xtarRZZWVkwGOTZaUAFVStUIeX7PNDpdPD19UUul4GnCnJsarWbeP/99/HBBx9g8ODB2L9/PzIzM5GZmYn9+/djyJAh+OCDD/DBBx+4OkyXcnbP8cM/7ETXbzbh4R92OvU6krnqx1Ar/f1L3K5QKODr64vw8HD4+fmxwgWRDAhKVZnJcaHCSZRBQUEVLr1HriMIAtThEQ6VX/T39y9Y2ZKoAmTZg7xs2TI8+OCD+Oabb+y2d+zYEWvXroXBYMCnn36KiRMnuihCN+OERC9Fb0Byvt5p53fWJB+FTgeFtuw3TIVCAT8/P3h7eyM7Oxt6PW92E7kjhUZbkDQ5UKLPy6tgOfDc3FxO4pMRVUhYhSrPBAYGIi0trULVZKhmk2UPcnx8PPr06VPq/j59+siiPjFVP1VAULmPVSqVCAoKQkhICFSVrJFLRFVL6eMLda3aFapfLQgC/Pz8EBERAV9fX94tcnOqgEAoK1guUKFQIDg4mHcNyGGyTJDDw8Px119/lbr/r7/+QliYA8XpqUYoXBTCUVqtFmFhYfDx8XFCVETkCEGhhDo0HOqwcIdut5dEoVDA398fERER8PPzYxLlhpQ+vlAFBVfuHEolQkJC2L7kEFkmyI8++ig+++wzvP3228jLy7Ntz8vLw7x58/DZZ59h6NChLoyQ3JEquOKT/QRBQEBAAEJDQ6Gp4gUmiKqbRqGEQij4Uz4EKH39oKl7W4V7E0tTOKwqPDwcwcHB0Ol07FV2A0pvH6gcWYmxDIUVTZgkU3nJ8r7xW2+9hWPHjmHKlCmYPn066tSpAwC4du0aLBYLevbsiTfffNPFUZI7Ufr5V8nKaRqNBqGhocjPz0dOTo5tWWEiOTkx6jFXh+AAAUofHygDAqt89cNiVxIE6HQ66HQ6SJJkW3DCZDLBYrE49dpkT+njC1VoWJV+UVGpVAgNDUVaWhrbk25Jlgmyt7c34uLisGnTJrs6yH379kW/fv0wcOBAfvsnG0GprPQtupt5e3vDy8vLVhaOiTJR1RGUSii0BUOiFD6+lR5KUUiyq6WN//5+80S9G891KhW0SiXg7Q1RFGE2m2GxWGCxWmG1WiGJIkRO8qtyKv+AUlfKqyylUonQ0FBkZGRwARkqk+wS5Pz8fIwYMQKPPPIInnjiCQwaNMjVIZFbE6AOrfxYxRLPLAjw8fGBt7c39Ho98vLyOFOaqJjyd1YIggDcWBlRslhgzcmBNTvb7hipaIVqCTclt9J/BawlCYVPCg6pfCIrAFDfeFSGyWxCfqWj8TyCIEAVEgqlr59Tr6NQKBASEoKcnBxWMqFSyS5B9vb2xk8//YQHHnjA1aHUaGE3JruFVWDSW3VSBQVVaGKeIwRBgLe3N7y9vWEymaDX66HX67nYCBEARxJTSZIAi1iFqyOSXCi0OqhDwyCoK/v1o/z8/Pyg0+mQlZUFk6nqa+6TvMkuQQaArl27Yv/+/Rg3bpyrQ6mxNjxYepk9d6EKCIQqILBar6nRaKDRaODv7w+TyQSj0Qij0cieZSKiEghqNVSBQbdcPtpZ1Go1QkNDYTAYkJOTw/dqspFlgvzxxx+jT58+mDZtGp599lncdtttrg6J3IggKG7cpnPNG25BDIItWfbz9bUfv2g2w2q1wiqKkKxWSJLkcI8ZR9gTkVwJShUUXl5Q+vg6/Q5feRVOzjSbzdDr9TAajbBYLBx+UYPJMkFu3bo1LBYLYmNjERsbC5VKBa1Wa3eMIAjIyspyUYRUVSQBDq3Up9BoofDxASDBmptz02ScIuMXpcKxikUm6EiS/SSeGw/JNolHAsTCMY1ikfGPkt3fyxrvqELV/NJZLGbkVMF5iIgqyuHUUVBAUCggKJWQTCZYTOlAhjMiK6ICCa7uxkOSJIgVmIhptphhcPiq5G5kmSA/8sgjrFJRQwjFJuGUTTQaIBr51kRE5GwOfwpLIiSrCMkqnxJrAgBHKydb2evsEWSZIK9atcrVIRARERGRh5JVgmwwGLBp0yZcvnwZoaGh6N+/P2rXru3qsIiIiIjIg8gmQb5+/To6d+6My5cv28aJent7Y+PGjYiOjnZxdERERETkKap+9QQneeuttxAfH4+JEydiy5YtWLBgAby8vDB+/HhXh0ZEREREHkQ2Pcg//vgjRo0ahffee8+2LSIiAsOHD8e5c+fQtGlTF0ZHRERERJ5CNj3ICQkJ6Nq1q922rl27QpIkJCcnuygqIiIiIvI0skmQjUYjdDqd3bbC5xaLfErGEBEREZF7k02CDADx8fE4evSo7XH8+HEAwPnz5+22Fz4qatGiRYiMjIROp0PHjh1x6NChMo9fv349mjVrBp1Oh5YtW2Lbtm0VvjYRERERuZZsxiADwBtvvIE33nij2Pbnn3/e7rkkSRAEAVar1eFrrFu3DjExMViyZAk6duyIBQsWoE+fPjh37hzCw8OLHf/7779j2LBhiI2NxYABA7BmzRo89NBDOHr0KKKiohy+PhERERG5lmwS5JUrV1bLdebPn49x48ZhzJgxAIAlS5Zg69atWLFiBSZNmlTs+IULF6Jv3774v//7PwAF1TZ27dqFjz/+GEuWLKmWmImIiIio6sgmQR49erTTr2EymXDkyBFMnjzZtk2hUCA6Ohr79+8v8TX79+9HTEyM3bY+ffpg48aNpV7HaDTCaDTanufm5lYu8Fvhspeeje3r2di+no3t69nYvrIlmwS5OqSmpsJqtSIiIsJue0REBM6ePVvia5KSkko8PikpqdTrxMbGYtasWZUPuAyCVnfrg2RAFRYBdXCoq8NwPx7ynsv2LYUoujqCyhEEQJLYvqWxOD78zx2xfUvhIe3rKXlERTFBdoHJkyfb9TofO3YM3bt3r9JraGrVRv3Y+ZCMhio9b3UStDpoanEp8ZIo/f3Zvh6M7evZ2L6eje3rGZggFxEaGgqlUlmsrnJycjJq1apV4mtq1arl0PEAoNVqodVqbc99fX0rEXXpavp/bk/H9vVsbF/Pxvb1bGxf+ZNVmTdn02g0aNeuHeLi4mzbRFFEXFwcOnXqVOJrOnXqZHc8AOzatavU44mIiIjIvbEH+SYxMTEYPXo02rdvjw4dOmDBggXIy8uzVbUYNWoU6tati9jYWADAyy+/jO7du+P9999H//79sXbtWhw+fBhLly515Y9BRERERBXEBPkmQ4cORUpKCqZPn46kpCS0adMGO3bssE3ES0hIgELxX8d7586dsWbNGkybNg1TpkzBHXfcgY0bN7IGMhEREZFMCZLEGiSudvToUbRr1w5HjhzBXXfd5epwiIiIiGo0jkEmIiIiIiqCCTIRERERUREcg0wVlpiYiMTERFeHQUREVKPUrl0btWuzlJwzMUF2A7Vr18aMGTNk9Z/daDRi2LBh+OWXX1wdChERUY3SvXt37Ny5025NBapanKRHFZKdnY2AgAD88ssvTlvohFwnNzcX3bt3Z/t6KLavZ2P7erbC9s3KyoK/v7+rw/FYTJCpQgoTZP6Ceia2r2dj+3o2tq9nY/tWD07SIyIiIiIqggkyEREREVERTJCpQrRaLWbMmMEJAh6K7evZ2L6eje3r2di+1YNjkImIiIiIimAPMhERERFREUyQiYiIiIiKYIJMRERERFQEE2Ryufj4eAiCgFWrVrk6FCIiIiImyHJz8eJFjB8/Hrfffjt0Oh38/f3RpUsXLFy4EHq93mnXPX36NGbOnIn4+HinXaM85syZgwcffBAREREQBAEzZ850aTyuIghCuR579uyp9LXy8/Mxc+ZMh87Fdqo8d27js2fP4rXXXkObNm3g5+eH2rVro3///jh8+HClY6kp3Ll9r127hhEjRqBp06bw8/NDYGAgOnTogNWrV4Pz+svHndv3Zl999RUEQeCqizdRuToAKr+tW7fi0UcfhVarxahRoxAVFQWTyYR9+/bh//7v/3Dq1CksXbrUKdc+ffo0Zs2ahR49eiAyMtIp1yiPadOmoVatWmjbti127tzpsjhc7YsvvrB7/vnnn2PXrl3Ftjdv3rzS18rPz8esWbMAAD169CjXa9hOlefObfzZZ59h+fLleOSRR/D8888jKysLn376Ke655x7s2LED0dHRlY7J07lz+6ampuKff/7BkCFDUL9+fZjNZuzatQtPPvkkzp07h7lz51Y6Jk/nzu1bVG5uLl577TX4+PhUOg5PwwRZJi5fvozHH38cDRo0wM8//4zatWvb9r3wwgu4cOECtm7d6sII/yNJEgwGA7y8vKr83JcvX0ZkZCRSU1MRFhZW5eeXixEjRtg9P3DgAHbt2lVsu6uwnSrPndt42LBhmDlzpl2P09ixY9G8eXPMnDmTCXI5uHP7tmrVqlhv5IQJEzBw4EB8+OGHeOutt6BUKl0TnEy4c/sWNXv2bPj5+aFnz57YuHGjq8NxKxxiIRPvvPMOcnNzsXz5crvkuFDjxo3x8ssv255bLBa89dZbaNSoEbRaLSIjIzFlyhQYjUa710VGRmLAgAHYt28fOnToAJ1Oh9tvvx2ff/657ZhVq1bh0UcfBQD07Nmz2K2hwnPs3LkT7du3h5eXFz799FMAwKVLl/Doo48iODgY3t7euOeeeyqVyLuy91puRFHEggULcOedd0Kn0yEiIgLjx49HRkaG3XGHDx9Gnz59EBoaCi8vLzRs2BBjx44FUDA+vDDBnTVrlq3tbzVkgu1UPVzVxu3atSt2OzYkJATdunXDmTNnqvaHrMFc+TtcksjISOTn58NkMlX6ZyPXt+/58+fxwQcfYP78+VCp2F96M/6LyMQPP/yA22+/HZ07dy7X8U8//TRWr16NIUOG4H//+x8OHjyI2NhYnDlzBhs2bLA79sKFCxgyZAieeuopjB49GitWrMCTTz6Jdu3a4c4778S9996Ll156CR9++CGmTJliuyVU9NbQuXPnMGzYMIwfPx7jxo1D06ZNkZycjM6dOyM/Px8vvfQSQkJCsHr1ajz44IP49ttv8fDDD1fdPxAVM378eKxatQpjxozBSy+9hMuXL+Pjjz/Gn3/+id9++w1qtRrXr19H7969ERYWhkmTJiEwMBDx8fH4/vvvAQBhYWFYvHgxnnvuOTz88MMYPHgwgIIeJnI9d2vjpKQkhIaGVunPWJO5un31ej3y8vKQm5uLX375BStXrkSnTp2ccnewJnJ1+77yyivo2bMn+vXrh2+++capP6ssSeT2srKyJADSoEGDynX8sWPHJADS008/bbf91VdflQBIP//8s21bgwYNJADSr7/+att2/fp1SavVSv/73/9s29avXy8BkHbv3l3seoXn2LFjh932V155RQIg7d2717YtJydHatiwoRQZGSlZrVZJkiTp8uXLEgBp5cqV5fr5JEmSUlJSJADSjBkzyv0aT/bCCy9IRX+d9+7dKwGQvvrqK7vjduzYYbd9w4YNEgDpjz/+KPXclfm3ZjtVHXdt40K//vqrJAiC9MYbb1T4HDWZO7ZvbGysBMD2uP/++6WEhASHzkEF3K19t2zZIqlUKunUqVOSJEnS6NGjJR8fHwd+Is/HIRYykJ2dDQDw8/Mr1/Hbtm0DAMTExNht/9///gcAxYY4tGjRAt26dbM9DwsLQ9OmTXHp0qVyx9iwYUP06dOnWBwdOnRA165dbdt8fX3xzDPPID4+HqdPny73+ckx69evR0BAAHr16oXU1FTbo/DW+O7duwEAgYGBAIAtW7bAbDa7MGJylDu18fXr1zF8+HA0bNgQr732mlOuUdO4Q/sOGzYMu3btwpo1azB8+HAAcGq1pJrEle1rMpkwceJEPPvss2jRokWVnNMTMUGWAX9/fwBATk5OuY6/cuUKFAoFGjdubLe9Vq1aCAwMxJUrV+y2169fv9g5goKCio2DKkvDhg1LjKNp06bFthcOzbg5Dqo658+fR1ZWFsLDwxEWFmb3yM3NxfXr1wEA3bt3xyOPPIJZs2YhNDQUgwYNwsqVK4uNVSf34y5tnJeXhwEDBiAnJwebNm1iqagq4g7t26BBA0RHR2PYsGH46quvcPvttyM6OppJchVwZft+8MEHSE1NtVW+oJJxDLIM+Pv7o06dOjh58qRDrxMEoVzHlTYbWXKg3iXHpLkXURQRHh6Or776qsT9hZM6BEHAt99+iwMHDuCHH37Azp07MXbsWLz//vs4cOAAkx035g5tbDKZMHjwYBw/fhw7d+5EVFRUhc9F9tyhfW82ZMgQLFu2DL/++muxO4bkGFe1b1ZWFmbPno3nn38e2dnZtjvUubm5kCQJ8fHx8Pb2Rnh4eOV+QA/ABFkmBgwYgKVLl2L//v3o1KlTmcc2aNAAoiji/PnzdhPpkpOTkZmZiQYNGjh8/fIm2zfHce7cuWLbz549a9tPztGoUSP89NNP6NKlS7m+vNxzzz245557MGfOHKxZswZPPPEE1q5di6effrpCbU/O5+o2FkURo0aNQlxcHL755ht07969Ij8GlcLV7VuSwp7jrKysKjlfTeaq9s3IyEBubi7eeecdvPPOO8X2N2zYEIMGDWLJN3CIhWwUFvJ++umnkZycXGz/xYsXsXDhQgBAv379AAALFiywO2b+/PkAgP79+zt8/cIi4pmZmeV+Tb9+/XDo0CHs37/fti0vLw9Lly5FZGQkxz450WOPPQar1Yq33nqr2D6LxWJrx4yMjGJ3Ctq0aQMAtlt43t7eABxre3I+V7fxiy++iHXr1uGTTz6xzZynquPK9k1JSSlx+/LlyyEIAu66665ynYdK56r2DQ8Px4YNG4o9evbsCZ1Ohw0bNmDy5MkV/8E8CHuQZaJRo0ZYs2YNhg4diubNm9utpPf7779j/fr1ePLJJwEArVu3xujRo7F06VJkZmaie/fuOHToEFavXo2HHnoIPXv2dPj6bdq0gVKpxLx585CVlQWtVov77ruvzNswkyZNwtdff40HHngAL730EoKDg7F69WpcvnwZ3333HRQKx7+fffHFF7hy5Qry8/MBAL/++itmz54NABg5ciR7pW/o3r07xo8fj9jYWBw7dgy9e/eGWq3G+fPnsX79eixcuBBDhgzB6tWr8cknn+Dhhx9Go0aNkJOTg2XLlsHf39/2RcvLywstWrTAunXr0KRJEwQHByMqKqrM2+lsJ+dzZRsvWLAAn3zyCTp16gRvb298+eWXdvsffvhhrsxVSa5s3zlz5uC3335D3759Ub9+faSnp+O7777DH3/8gRdffLHY/BZynKva19vbGw899FCx7Rs3bsShQ4dK3FdjubKEBjnu77//lsaNGydFRkZKGo1G8vPzk7p06SJ99NFHksFgsB1nNpulWbNmSQ0bNpTUarVUr149afLkyXbHSFJBibb+/fsXu0737t2l7t27221btmyZdPvtt0tKpdKu5Ftp55AkSbp48aI0ZMgQKTAwUNLpdFKHDh2kLVu22B3jSJm37t2725UdKvooqQRdTXFzCaFCS5culdq1ayd5eXlJfn5+UsuWLaXXXntNunbtmiRJknT06FFp2LBhUv369SWtViuFh4dLAwYMkA4fPmx3nt9//11q166dpNFoylVOiO1U9dypjUePHl1q+wKQLl++XJU/eo3gTu37448/SgMGDJDq1KkjqdVq2+fMypUrJVEUq/TnrincqX1LwjJvxQmS5MBMLCIiIiIiD8cxyERERERERTBBJiIiIiIqggkyEREREVERTJCJiIiIiIpggkxEREREVAQTZA/zzjvvoFmzZhBF0dWhVNrjjz+Oxx57zNVhuBW2r2dj+3o2tq/nYxt7EFfXmaOqk5WVJQUHB0srVqywbcONuqTvvfdeseNXrlwpAZD++OOPKo8lOjpaAiC98MILJe7/7LPPpGbNmklarVZq3Lix9OGHHxY75ujRo5JCoZCOHTtW5fHJEdvXs7F9PRvb1/OxjT0Le5A9yIoVK2CxWDBs2LBi+959913bqmbO9v3339stL32zTz/9FE8//TTuvPNOfPTRR+jUqRNeeuklzJs3z+64tm3bon379nj//fedHbIssH09G9vXs7F9PR/b2MO4OkOnqtOqVStpxIgRdtsASG3atJEASO+//77dPmd8e9Xr9VJkZKT05ptvlvjtNT8/XwoJCSm28t4TTzwh+fj4SOnp6Xbb33vvPcnHx0fKycmpshjliu3r2di+no3t6/nYxp6FPcge4vLlyzh+/Diio6OL7evSpQvuu+8+vPPOO9Dr9U6N45133oEoinj11VdL3L97926kpaXh+eeft9v+wgsvIC8vD1u3brXb3qtXL+Tl5WHXrl1Oi1kO2L6eje3r2di+no9t7HmYIHuI33//HQBw1113lbh/5syZSE5OxuLFi8s8j9FoRGpqarkeN0tISMDbb7+NefPmwcvLq8Tz//nnnwCA9u3b221v164dFAqFbX+hFi1awMvLC7/99luZcXs6tq9nY/t6Nrav52Mbex6VqwOgqnH27FkAQMOGDUvc361bN/Ts2RPvvvsunnvuuVJ/eb7++muMGTOmXNeUJMnu+f/+9z+0bdsWjz/+eKmvSUxMhFKpRHh4uN12jUaDkJAQXLt2zW67SqVCvXr1cPr06XLF5KnYvp6N7evZ2L6ej23seZgge4i0tDSoVCr4+vqWeszMmTPRvXt3LFmyBBMnTizxmD59+lToVsru3bvx3Xff4eDBg2Uep9frodFoStyn0+lKvP0UFBRU4rflmoTt69nYvp6N7ev52MaehwlyDXLvvfeiZ8+eeOedd/Dss8+WeEzt2rVRu3Zth85rsVjw0ksvYeTIkbj77rvLPNbLywsmk6nEfQaDocRv1ZIkQRAEh2Kqidi+no3t69nYvp6PbSwvTJA9REhICCwWC3JycuDn51fqcTNmzECPHj3w6aefIjAwsNh+vV6PrKyscl2zVq1aAIDPP/8c586dw6effor4+Hi7Y3JychAfH4/w8HB4e3ujdu3asFqtuH79ut0tHpPJhLS0NNSpU6fYdTIyMnDHHXeUKyZPxfb1bGxfz8b29XxsY8/DSXoeolmzZgAKZtKWpXv37ujRowfmzZtX4q2UdevW2b7B3upRKCEhAWazGV26dEHDhg1tD6DgF7dhw4b48ccfAQBt2rQBABw+fNjuuocPH4Yoirb9hSwWC65evYrmzZs79O/hadi+no3t69nYvp6Pbex52IPsITp16gSg4D95q1atyjx25syZ6NGjB5YuXVpsX0XGPz3++OPFfqkA4OGHH0a/fv0wbtw4dOzYEQBw3333ITg4GIsXL0a/fv1sxy5evBje3t7o37+/3TlOnz4Ng8GAzp07OxSTp2H7eja2r2dj+3o+trEHclUBZqp6UVFR0rBhw+y2oZSlJrt3725bAtMZy1yWde1FixZJAKQhQ4ZIy5Ytk0aNGiUBkObMmVPs2Pfee0/y9vaWsrOznRKjnLB9PRvb17OxfT0f29izMEH2IPPnz5d8fX2l/Px827bSfkF2797tsl9OSZKkpUuXSk2bNpU0Go3UqFEj6YMPPpBEUSx2XMeOHYutTFRTsX09G9vXs7F9PR/b2LMwQfYgmZmZUnBwsPTZZ5+5OpQq8eeff0qCIEh//vmnq0NxC2xfz8b29WxsX8/HNvYsgiTdVGmaZG3evHlYuXIlTp8+DYVC3nMwH3/8cYiiiG+++cbVobgNtq9nY/t6Nrav52Mbew4myERERERERcj76w0RERERURVjgkxEREREVAQTZCIiIiKiIpggExEREREVwQSZiIiIiKgIJshEREREREUwQSYiIiIiKoIJMhERERFREUyQiYiIiIiKYIJMRERERFQEE2QiIiIioiKYIBMRERERFcEEmYiIiIioCCbIbiAxMREzZ85EYmKiq0MhIiIiqvGYILuBxMREzJo1iwkyERERkRtggkxEREREVAQTZCIiIiKiIpggExEREREVwQSZiIiIiKgIJshEREREREUwQSYiIiIiKoIJMhERERFREUyQiahEFovF1SEQERG5BBNkIioRE2QiIqqpmCATUYmsVqurQyAiInIJJshEVCImyEREVFO5ZYKcmJiIv/76C3l5ea4OhajG4hALIiKqqdwqQd60aROaNWuG2267DXfddRcOHjwIAEhNTUXbtm2xceNG1wZIVIMwQSYioprKbRLkH374AYMHD0ZoaChmzJgBSZJs+0JDQ1G3bl2sXLnShRES1Sxms9nVIRAREbmE2yTIb775Ju69917s27cPL7zwQrH9nTp1wp9//umCyIhqJpPJ5OoQiIiIXMJtEuSTJ0/iscceK3V/REQErl+/Xo0REdVsBoPB1SEQERG5hNskyN7e3mVOyrt06RJCQkKqMSKimo0JMhER1VRukyD37NkTq1evLnFiUFJSEpYtW4bevXu7IDKimolVZIiIqKZymwR5zpw5+Oeff3D33Xfj008/hSAI2LlzJ6ZNm4aWLVtCkiTMmDGjWmJZtGgRIiMjodPp0LFjRxw6dKjM4xcsWICmTZvCy8sL9erVw8SJE9n7RrKXm5vLWshERFQjuU2C3LRpU+zbtw8hISF44403IEkS3n33XcydOxctW7bE3r17ERkZ6fQ41q1bh5iYGMyYMQNHjx5F69at0adPn1LHP69ZswaTJk3CjBkzcObMGSxfvhzr1q3DlClTnB4rkTNJkoT09HRXh0FERFTtVK4OoKg777wTP/30EzIyMnDhwgWIoojbb78dYWFh1RbD/PnzMW7cOIwZMwYAsGTJEmzduhUrVqzApEmTih3/+++/o0uXLhg+fDgAIDIyEsOGDbPVcCaSs+Tk5Gr9/SMiInIHbtODXFRQUBDuvvtudOzYsVo/nE0mE44cOYLo6GjbNoVCgejoaOzfv7/E13Tu3BlHjhyxDcO4dOkStm3bhn79+pV6HaPRiOzsbNsjNze3an8Qoiryzz//uDoEIiKiauc2CfKHH36IPn36lLr/gQcewOLFi50aQ2pqKqxWKyIiIuy2R0REICkpqcTXDB8+HG+++Sa6du0KtVqNRo0aoUePHmUOsYiNjUVAQIDt0b179yr9OYiqyr///ssFQ4iIqMZxmwR5+fLlaNGiRan7W7RogaVLl1ZjROWzZ88ezJ07F5988gmOHj2K77//Hlu3bsVbb71V6msmT56MrKws2+OXX36pxoiJys9qtSI+Pt7VYRAREVUrt0mQL168iObNm5e6v1mzZrh48aJTYwgNDYVSqURycrLd9uTkZNSqVavE17zxxhsYOXIknn76abRs2RIPP/ww5s6di9jYWIiiWOJrtFot/P39bQ9fX98q/1mIqsrff//t6hCIiIiqldskyBqNptRhDACQmJgIhcK54Wo0GrRr1w5xcXG2baIoIi4uDp06dSrxNfn5+cXiUiqVAAqqABDJ3b///ouMjAxXh0FERFRt3CZBvueee7Bq1Srk5OQU25eVlYWVK1finnvucXocMTExWLZsGVavXo0zZ87gueeeQ15enq2qxahRozB58mTb8QMHDsTixYuxdu1aXL58Gbt27cIbb7yBgQMH2hJlIrk7fvy4q0MgIiKqNm5T5m3GjBno3r072rRpg1deeQV33nknAODkyZNYsGABEhMTsWbNGqfHMXToUKSkpGD69OlISkpCmzZtsGPHDtvEvYSEBLse42nTpkEQBEybNg3//vsvwsLCMHDgQMyZM8fpsRJVl7///hutW7dGYGCgq0MhIiJyOkFyo3EAu3btwvjx4xEfHw9BEAAUDFNo2LAhFi9e7LFLTR89ehTt2rXDkSNHcNddd7k6HCIAwPbt23H16lXb87p166Jfv362300iIiJP5TY9yADQq1cvXLhwAX/++adtQl6jRo1w11138UOZyMX+/fdfnDhxAq1atXJ1KERERE7lVgkyULAwR7t27dCuXTtXh0JENzl48CD8/f2rZdl3IiIiV3G7BPn06dO4dOkSMjIySqwCMWrUKBdERURAwZCnuLg43H///UySiYjIY7lNgnzx4kWMGDEChw4dKrU8miAITJCJXMxqtWLXrl3o2rVrmbXLiYiI5MptEuTx48fjxIkTWLBgAbp164agoCBXh0RUY7Vv3x7x8fHw8fHB1KlTi+2XJAl79+5FZmYmOnbs6PQa5URERNXJbRLk3377DVOmTMGLL77o6lCIarykpCSkpaXBarWWedyJEyeQlpaG6Oho6HS6aoqOiIjIudym2yc0NBQBAQGuDoOIHHTt2jVs2LABqamprg6FiIioSrhNgvzss8/iyy+/vGWPFRG5n5ycHGzatAkXLlxwdShERESV5jZDLJo0aQKr1YrWrVtj7NixqFevXolLNQ8ePNgF0RHRrVitVvz8889IT0/H3XffzdrlREQkW26TIA8dOtT291dffbXEYwRBYA8zkZs7duwYsrOz0bNnzxK/5BIREbk7t0mQd+/e7eoQiKiKXLp0CQaDAX369IFarXZ1OERERA5xmwS5e/furg6BiKrQtWvXsG3bNjzwwAPQaDSuDoeIiKjc3GaSXiGj0Yj9+/dj06ZNnBVPJHPJycnYvn07TCaTq0MhIiIqN7dKkD/88EPUrl0bXbt2xeDBg3H8+HEAQGpqKkJDQ7FixQoXR0hEjkpOTsbOnTs5f4CIiGTDbRLklStX4pVXXkHfvn2xfPlyu+WmQ0NDcd9992Ht2rUujJCIKioxMRFxcXGlLiNPRETkTtwmQX7//fcxaNAgrFmzBgMHDiy2v127djh16pQLIiOiqhAfH4/9+/e7OgwiIqJbcpsE+cKFC3jggQdK3R8cHIy0tLRqjIiIqtrJkydx8uRJV4dBRERUJrdJkAMDA8uclHf69GnUqlWrGiMiImfYv38/EhISXB0GERFRqdwmQe7Xrx+WLl2KzMzMYvtOnTqFZcuW4cEHH6z+wIioSkmShLi4OFapISIit+U2CfLs2bNhtVoRFRWFadOmQRAErF69GiNGjED79u0RHh6O6dOnV0ssixYtQmRkJHQ6HTp27IhDhw6VeXxmZiZeeOEF1K5dG1qtFk2aNMG2bduqJVYiOTKbzdi+fXuJX4iJiIhczW0S5Dp16uDIkSPo27cv1q1bB0mS8MUXX+CHH37AsGHDcODAAYSGhjo9jnXr1iEmJgYzZszA0aNH0bp1a/Tp0wfXr18v8XiTyYRevXohPj4e3377Lc6dO4dly5ahbt26To+VyBkSEhKQl5cHoKAueXp6ulOuo9frsXXrVmRlZTnl/ERERBUlSG5Qd8loNGLnzp2IjIxEq1atAAApKSkQRRFhYWFQKKovj+/YsSPuvvtufPzxxwAAURRRr149vPjii5g0aVKx45csWYJ3330XZ8+erfCSukePHkW7du1w5MgR3HXXXZWKn6iiDh06hLfeegtbt261K8cmCAJatmyJ/v37IzIyssqv6+PjgwEDBiAgIKDKz01ERFQRbtGDrNFo8Oijj+L333+3bQsLC0NERES1JscmkwlHjhxBdHS0bZtCoUB0dHSp5ak2b96MTp064YUXXkBERASioqIwd+5cLopAsvL999+jS5cu2L59e7FaxZIk4eTJk5g3bx6OHj1a5dfOy8vD1q1bkZubW+XnTk9PxxNPPAF/f38EBgbiqaeeuuV1evToAUEQ7B7PPvusbf+qVauK7S98lHaniYiI5MUtEmRBEHDHHXe4fNJOamoqrFYrIiIi7LZHREQgKSmpxNdcunQJ3377LaxWK7Zt24Y33ngD77//PmbPnl3qdYxGI7Kzs20PZyQGROV16NAhDB06FFartdQvdqIoQhRFLFu2DPHx8VUeQ25uLnbs2AGLxeLwa3v06IFVq1aVuO+JJ57AqVOnsGvXLmzZsgW//vornnnmmVuec9y4cUhMTLQ93nnnHdu+oUOH2u1LTExEnz590L17d4SHhzscPxERuR+3SJABYMqUKfj4449x7tw5V4fiEFEUER4ejqVLl6Jdu3YYOnQopk6diiVLlpT6mtjYWAQEBNge3bt3r8aIiezNnj0bkiSVe5U7Z01ATU9Px5EjR6rsfGfOnMGOHTvw2WefoWPHjujatSs++ugjrF27FteuXSvztd7e3qhVq5bt4e/vb9vn5eVlt0+pVOLnn3/GU089VWWxExGRa6lcHUChAwcOICQkBFFRUejRowciIyPh5eVld4wgCFi4cKHTYggNDYVSqURycrLd9uTk5FJrMNeuXRtqtRpKpdK2rXnz5khKSoLJZIJGoyn2msmTJyMmJsb2/NixY0ySySUSEhKwZcuWcifHoiji+PHjSE9PR3BwcJXHc/r0abRv397u96mi9u/fj8DAQLRv3962LTo6GgqFAgcPHsTDDz9c6mu/+uorfPnll6hVqxYGDhyIN954A97e3iUe+/nnn8Pb2xtDhgypdMxEROQe3CZBLpwUBwBxcXElHuPsBFmj0aBdu3aIi4vDQw89BKAgIYiLi8OECRNKfE2XLl2wZs0aiKJoGy/9999/o3bt2iUmxwCg1Wqh1Wptz319fav2ByGPYjKZKjT0oDy2bdtW7uS4kCRJOHPmDDp16lTl8RiNRly7dg316tWr9LmSkpKKDXlQqVQIDg4udcgUAAwfPhwNGjRAnTp1cPz4cbz++us4d+4cvv/++xKPX758OYYPH17sCz0REcmX2yTIoii6OgQAQExMDEaPHo327dujQ4cOWLBgAfLy8jBmzBgAwKhRo1C3bl3ExsYCAJ577jl8/PHHePnll/Hiiy/i/PnzmDt3Ll566SVX/hjkIUwmEw4dOuS0cep//fUXBEFwKEkWBAFZWVlOi+nYsWOIiIgo9Qvm3LlzMXfuXNtzvV6PAwcO2H2JPX36dIWvX3SMcsuWLVG7dm3cf//9uHjxIho1amR37P79+3HmzBl88cUXFb4eERG5H7dJkN3F0KFDkZKSgunTpyMpKQlt2rTBjh07bBP3EhIS7Cpr1KtXDzt37sTEiRPRqlUr1K1bFy+//DJef/11V/0I5EEsFgtyc3Oh0Wjs7jpUlaCgoAr1IOt0OqdUmJEkydZjXlqC/Oyzz+Kxxx6zPX/iiSfwyCOPYPDgwbZtderUQa1atYpVlbBYLEhPT3do2fqOHTsCAC5cuFAsQf7ss8/Qpk0btGvXrtznIyIi9+d2CfKBAwewe/duXL9+Hc8//zzuuOMO5Ofn4+zZs2jSpEm1DEeYMGFCqUMq9uzZU2xbp06dcODAASdHRTWZVquFTqer8vN26tSpQj3ITZs2dVoJxlsNVQgODrYb/+zl5YXw8HA0btzY7rhOnTohMzMTR44csSWwP//8M0RRtCW95XHs2DEABfMNisrNzcU333xju5tERESew22qWJhMJgwePBhdunTB1KlT8eGHH+Lq1asACmoR9+7d26njj4lqmry8PBw7dgz169eHIAjleo0gCGjSpAkCAwOdElNISEiVJd7NmzdH3759MW7cOBw6dAi//fYbJkyYgMcffxx16tQBAPz7779o1qyZbTn5ixcv4q233sKRI0cQHx+PzZs3Y9SoUbj33nttixgVWrduHSwWC0aMGFEl8RIRkftwmwT5jTfewJYtW7B48WKcO3fOrkdLp9Ph0UcfxaZNm1wYIZHnSEhIwMaNG5GYmGhX5eFWBEFA586dkZGRAbPZXKUxqVQq3HbbbVV6zq+++grNmjXD/fffj379+qFr165YunSpbb/ZbMa5c+eQn58PoGCi7k8//YTevXujWbNm+N///odHHnkEP/zwQ7FzL1++HIMHD3balwUiInIdtxli8fXXX+O5557DM888g7S0tGL7mzdvjvXr17sgMiLPYbVa8ccff+DUqVO2bZGRkZg0aZJtMYySFgsp7NUdPHgw6tSpA1EUkZWVBS8vL3h7e5e7B7o0giCgWbNm0Gg0MBqNDr22pGFPhYKDg7FmzZpS90dGRtp9Ga9Xrx5++eWXcl236MqfRETkWdwmQb5+/TpatmxZ6n6lUmnr5SEix2VmZmL37t1IT0+3batfvz66desGnU6HZs2aYfny5di7d69d0igIApo3b47evXujbt26yM3NtfUe6/V6mEwm+Pn5QaWq2NtJYXIcFBQEg8FQuR+SiIioCrhNglyvXj2cPXu21P2//fZbsUk4RHRrkiTh/Pnz2L9/v62eslKpRIcOHdC8eXNb7++dd96J+fPnIykpCcOGDUNOTg68vLzwf//3fwgKCrKdz9/fHwaDAXl5eQAKepwzMzPh4+PjcC1ghUKB5s2bO2XRESIioopymzHIw4cPx6effor9+/fbthV+cC9btgzffPMNRo0a5arwiGTJZDJhz5492Lt3ry05DggIwMCBA9GiRYsSh0bUqlXLluhqNBq75Bgo+L308vJCYGCg3Yp3eXl5yMrKKnGIRklUKhVatmzJ5JiIiNyO2/QgT506FQcOHMC9995r69WaOHEi0tPT8c8//6Bfv36YOHGiq8Mkko2UlBTs3r0bOTk5tm1NmjTBPffcA7VaXenzq1QqBAYGIj8/H3q9HkDBpLfMzEz4+vqWWbdZq9UiKiqq1OWbiYiIXMltEmSNRoMdO3bgq6++wrfffgur1Qqj0YhWrVph9uzZGDlyZKUnAhHVBJIk4cSJEzh8+LBtLLFGo0GXLl1w++23V+m1BEGAj48PNBoNcnJyIIoiJElCTk4OTCYTfHx8ipVt8/b2RlRUlFMWPiEiIqoKLkuQY2JiMHLkSLRt2xZAQdmpsLAwjBgxgnVFiSooPz8fv/zyC65du2bbFhYWhp49e8LPz89p11Wr1QgMDEReXp6tCoXRaITZbIavr69tVbyAgAA0b968SnqwiYiInMVlY5AXLFiAM2fO2J43bNgQGzZscFU4RLJ39epVbNiwwS45bt26NQYMGODU5LiQQqGAn58f/Pz8bHd7RFFEdnY2cnNzERISgqioKCbHRETk9lzWgxwREYFLly7Znjuy1C0R/cdqteLw4cM4efKkbZu3tze6d+9uWzGuOmm1WqjVauTk5NjKwWVkZCAvLw/h4eEIDQ2t9piIiIgc4bIEuX///njzzTfx448/2laiev/997F27dpSXyMIAlfTIyoiKysLu3fvtltcp169eujWrZvDJdeqkkKhQEBAAPR6PVJTU6HX66HX67F582a0bdsWrVu3rrIlpYmIiKqayxLkhQsXIjw8HLt378apU6cgCAKuXr1qt4jBzThJj+g/58+fx++//24r36ZQKHD33XfjzjvvdJvfldatW0Or1WLPnj1IS0uDJEk4evQo/vnnH3Tv3h3+/v6uDpGIiKgYlyXIPj4+mDt3ru25QqHAggULMHz4cFeFRCQLJpMJv//+Oy5evGjbFhAQgB49erjV8IVGjRohIiICADBw4ED8+eefOH78OCRJwvXr17FhwwZ07NgRTZs2dZuEnohIDvLy8uDj4+PqMDyay+5xDh48GHv37rU93717N3r16uWqcIhkISUlBRs3brRLju+44w4MGjTIrZLj2rVr241/ViqVaN++Pfr372+bMGixWPDbb7/hp59+stVRJiKiWyuc30HO47IEedOmTUhISLA9v++++7Br1y5XhUPk1gprG//www+2hT/UajV69OiBe++9160qQ/j7+5dabzkiIgIPP/wwmjRpYtuWkJCA77//HleuXKmuEImIZI0JsvO5LEGuW7cu/vzzT9tzSZJ4m5WoBAaDAbt378ahQ4ds1V7CwsLw0EMPoVGjRi6Ozp5Op0Pz5s3LnICnVqvRrVs3REdHQ6fTASj4GX/66SccOHDANqaaiCqOlaE8m8VigdVqdXUYHs1lY5Aff/xxvPfee/jmm29sVSwmTZqE2NjYUl8jCAL++uuvaoqQyPXOnTuHPXv2wGQy2ba1atUK7dq1c7sqEBqNBlFRUbZFQW6lQYMGCA8Px759+2x3ky5evIjExETcfvvtaNGihTPDJfJoer2eS7l7OIPBwHHITuRQgtywYUOHe3kFQbAbL1koNjYWjRs3xu7du3H9+nXbkrUhISEOnZ/IE1ksFmzevBk//fSTbZuXlxe6d++OunXrujCykmm1WrRs2dLh0nJeXl6Ijo7G33//bes9zs/Px6JFi9CnTx/069cPKpXLvscTyRZ7kD0fJ+o5l0OfPN27dy+WIB8+fBinTp1CixYt0LRpUwAFvV6nT59GVFQU2rVrV+K5lEolnnnmGTzzzDMACqpYTJs2jVUsqMZLSUnBihUr7Mbk1qlTBz169HBpbePSeHl5oWXLltBqtRV6vSAIaNq0KWrXro3du3cjNTUVkiRhx44dOHXqFJ588knUrl27iqMm8myiKLo6BHKy3NxchIeHuzoMj+XQPdpVq1Zh5cqVtsegQYPwzz//YNeuXTh58iS+++47fPfddzh58iR27tyJq1ev4qGHHirXuS9fvlzuY51t0aJFiIyMhE6nQ8eOHXHo0KFyvW7t2rUQBMFtfg6Sn0OHDiE2NtaWHCuVStx5551umxzrdLpKJcdF+fv7o1evXmjWrJlt+MjVq1fx9ttvY/fu3fzAJ3IAf188X+GEbXKOSg1inD59Ol588UXcf//9xfb16tULEyZMwLRp08p1rgYNGrjFeKl169YhJiYGM2bMwNGjR9G6dWv06dMH169fL/N18fHxePXVV9GtW7dqipQ8icFgwOrVq7Fq1SoYDAYABRPxXnzxRTRq1MgtJ7CqVCpERUVVSXJcSKFQoEmTJnjppZdsNZTNZjPWr1+Pjz/+GJmZmVV2LSJPxgTZ8zFBdq5KJcjnz58vc8xwSEhIieOPgYIPQpVKZZt8pFAooFQqy3xUx1jE+fPnY9y4cRgzZgxatGiBJUuWwNvbGytWrCj1NVarFU888QRmzZpVankrotIkJCTg7bffxsGDB23b7rnnHkyePBm33XabCyMrW9OmTZ3Wq33bbbdh8uTJ6NGjh23b2bNnMXv2bBw5csQp1yTyJKwG4/mys7NdHYJHq1TG2ahRI6xcuRJPPfUUfH197fbl5ORgxYoVpSaM06dPhyAItqS38LkrmUwmHDlyBJMnT7ZtUygUiI6Oxv79+0t93Ztvvonw8HA89dRTdouflMZoNMJoNNqe5+bmVi5wkiVRFLF7925s3LjRVq5Hq9Vi2LBh6NChAwAgPz/flSGWKiIiAsHBwU69hkajwWOPPYaoqCh88cUXyMrKQn5+PpYvX47jx49j6NChbnHXicgdFa18Q56Jd9Scq1IJ8uzZszFkyBA0a9YMTz75JBo3bgygoGd59erVSE5Oxvr160t87cyZM8t87gqpqamwWq22W7uFIiIicPbs2RJfs2/fPixfvhzHjh0r93ViY2Mxa9asyoRKMpeTk4PPP/8cp06dsm2rX78+xo4d6/aTLpRKJSIjI6vtei1atMC0adPw9ddf4+jRowCAP/74A+fPn8fo0aNtk4OJ6D+FQ7XIc+Xm5sJgMNjqyVPVqlSC/NBDD2Hbtm14/fXXMXfuXLt9bdq0wfLly9GnT59KBejOcnJyMHLkSCxbtsyhZX4nT56MmJgY2/Njx46he/fuzgiR3NDZs2exatUqu9tj0dHRePDBB2VR0qxOnTrlrnVcVXx8fPDUU0+hVatWWLduHfR6PTIzM7Fw4ULcf//9ePDBB91qNUEiVzOZTLBarVAqla4OhZwoKSmpWjssapJKfxr37t0bvXv3RlJSkm3mfYMGDVCrVq1yn8NoNOLLL7/Ejz/+iIsXLyInJwd+fn5o3Lgx+vbti+HDh1fLB3JoaCiUSiWSk5PtticnJ5f481y8eBHx8fEYOHCgbVvhxAiVSoVz586VuNKZVqu1m9h08/AU8kxWqxU//PADdu3aZatR6ufnh9GjR8tmUQylUumyOsyCIKBDhw5o3LgxPv/8c/z9998AgLi4OJw+fRpjxoxx6zHbRNUtNzcXAQEBrg6DnOjq1atMkJ2kyrqratWq5VBSXOjEiRMYNGgQrly5AkmSEBAQAF9fX1y/fh1Hjx7F+vXrMWfOHGzevBnNmzevqnBLpNFo0K5dO8TFxdlKtYmiiLi4OEyYMKHY8c2aNcOJEyfstk2bNg05OTlYuHAh6tWr59R4ST5SU1OxYsUKxMfH27Y1b94co0ePhr+/v+sCc1CtWrVc3lMbHByMl156Cbt378amTZtgsViQmJiIefPmYeDAgYiOjna7VQaJXCEnJ4cJsodLSEiAJEkun8PliSr9KZKQkIBnn30WTZs2RXBwMH799VcABQnBSy+9hD///LPU1+bm5uLBBx9EcnIy5syZg6tXryIjI8Puz9mzZ+PatWsYOHAg8vLyKhvuLcXExGDZsmVYvXo1zpw5g+eeew55eXkYM2YMAGDUqFG2SXw6nQ5RUVF2j8DAQPj5+Tm05C55tsOHD2Pu3Lm25FihUODhhx/GCy+8IKvkWKFQuE0PrUKhwP3334/XX3/d1qNttVqxceNGLFiwAGlpaS6OkMj1OInL8+Xl5SE1NdXVYXikSvUgnz59Gt26dYMoiujYsSMuXLhgKy0TGhqKffv2IS8vD8uXLy/x9StXrkRCQgLi4uLsyjkVqlu3LiZPnoyOHTuiV69eWLVqFV544YXKhHxLQ4cORUpKCqZPn46kpCS0adMGO3bssE3cS0hIYO8UlYvRaMQ333xjVwElLCwMY8aMkeUtsdq1a7vdl766devitddew5YtW/DTTz9BkiRcuHABc+bMwWOPPYaOHTuyZ4VqrIyMDFeHQNXg8uXLCAsLc3UYHqdSCfJrr72GwMBAHDhwAIIgFJt9379/f6xbt67U12/duhW9e/cuMTku6r777kOvXr3www8/OD1BBoAJEyaUOKQCAPbs2VPma1etWlX1AZHsXL16FStWrLAbz3733Xfj8ccfd8sV8W5FqVS6Te/xzdRqNR5++GFERUVh9erVSE9Ph8FgwOeff47jx49j+PDhHOdPNVJ6erqrQ6BqcOHCBdx9993sDKhileoK/fXXX/Hcc88hLCysxIapX78+/v3331Jff+LEiVsmx4Xuu+++YuN9idyNJEnYvXs33n33XVtyrNVqMXr0aIwZM0aWyTHgmsoVjrrjjjswdepU3HPPPbZtx44dw+zZs+3K6RHVFOnp6bYJweS5cnNzbUUSqOpUKkEWRbHMQv0pKSllLkObnp5e7ol9ERER/DZMbi0nJweLFy/G+vXrbUON6tWrZxsmJFcKhQJ16tRxdRjl4uXlhVGjRmHcuHHw8fEBULDa1KJFi/D111/bLdBD5OnMZrPbLjZEVevPP//kl6EqVqkE+a677sLWrVtL3GexWLB27Vq73pybGY3Gcs+IL7osNZG7OXfuHObOnYuTJ0/att1///149dVX3X7hj1sJCwtz+97jm7Vt2xbTpk3DnXfeadu2d+9exMbG2lUSIfJ0HIdcM6SkpOD8+fOuDsOjVGoM8uTJkzFgwAA899xzePzxxwEU1Az+6aefMHfuXJw5cwYff/xxmeeIj4+3rY5VlsuXL1cmVCKnsFqt2LJlC3788Ufbt3dfX1+MHj3aLjmTs4qUb3QHAQEBeP7557F371589913MJvNuH79Ot577z088MAD6Nu3LxdRII+XkpLitvMHqGLat2+Pa9euQa1WY+rUqbbtBw4cQL169WQ7lM/dVCpBfuCBB7Bq1Sq8/PLLWLp0KQBgxIgRkCQJ/v7++Pzzz3HvvfeWeY433ngDb7zxxi2vxTp/5G7S0tKwYsUKuy9vzZo1w+jRoz2m9qggCPDz83N1GBUmCALuvfdeNG3aFKtWrcKVK1cgiiK2bt2KU6dOYfTo0cWWlifyJP/88w/atm3r6jCoCiUlJSExMRGBgYF22w0GA/bt24fo6GjmS1Wg0guFjBw5EoMHD8auXbtw/vx5iKKIRo0aoU+fPrf8YF25cmVlL0/kEkeOHMGaNWug1+sBFIzTffDBBz1mkYqQkBCYzWYEBQV5xBttREQEXn31VWzfvh07duyAKIqIj49HbGwsBg8ejG7dunnEz0l0s8TERGRlZXnMl3Yq2+XLl3Hu3Dk0a9bM1aHIXoUT5Pz8fNSrVw+TJk3C//3f/9lWnnPE6NGjK3p5IpcwGo349ttv8dtvv9m2hYSEYOzYsWjYsKELI6taX3zxBU6ePCn78dNFKZVKDBgwAHfeeSdWr16N69evw2QyYe3atThx4gRGjBjBJII80tGjR9GzZ09Xh0HV5Pfff0d4eDiCg4NdHYqsVbiry9vbGyqVyjZTnMjT/fPPP3j77bftkuP27dtjypQpHpUcF+WJ9YMbNmyIyZMno1u3brZtp06dwuzZs3Hs2DHXBUbkJBcuXEBKSoqrw6BqYrFYsHPnTtsdTqqYSt0LfuSRR/Dtt9+ytAh5NEmSsGfPHrzzzju22sYajQYjR46UdW3jW1EoFNDpdK4Owym0Wi2GDRuG5557zrbcd15eHpYuXYovvviiRnywsORdzSFJEn7//Xd+VtcgOTk52L59O6t/VUKlEuTHH38c169fR8+ePfHVV1/ht99+w9GjR4s9iOQqNzcXn376Kb755htbbePbbrsNkydPRqdOnTx63KpGo/GI8dRladmyJaZOnYrWrVvbtu3fvx9z587FhQsXXBiZ8xVd5ZE8X3JyMi5evOjqMKgapaamYsuWLTXiC78zVGqSXtFV8Pbu3Vtsf2HlCavVWpnLELnE33//jVWrViEzM9O2rWfPnnjooYfKXb9bzspa5MeT+Pn54ZlnnsGBAwewfv16GAwGpKWl4YMPPkCvXr0wYMAAqFSVns/sdtiDXPMUlgGrKb/bVJAkb9q0CX379i1W9YLKVql3fVahIE9ktVqxbds27Nixw6628ciRI9GyZUsXR1d9asKXgEKCIKBTp0644447sHr1aly8eBGSJOHHH3/E6dOn8eSTT8pmNcHyYoLsudq3b49//vkHWq3Wrk5ufn4+9u7di/vvv9+j736RvezsbGzcuBH3338/6tWr5+pwZKNSCTKrUJCnSUtLw6pVq+xuRTZp0gRPPvlkjfv2XRMX0QgNDcXEiRPx008/4YcffoDVarVNzhw0aBB69uzpMcNODAYD68t7qKSkJCQnJ5f4nnXp0iX4+/vj7rvvZtvXICaTCTt27MA999yDqKgotn05uN19w9OnT+PSpUvIyMgocULBqFGjXBAV1QR//vknvvzyS7vaxgMGDEDv3r09JilyRE38mYGCn7t3795o3rw5Vq1ahcTERFgsFnz33Xc4efIkRo4c6RHlk8xmM8xms+yWEafKO3bsGEwmEzp37lxjf89rIkmSsH//fqSnp6Nbt25s+1twKEEeO3YsBEHA0qVLoVQqMXbs2Fu+RhAELF++/JbHXbx4ESNGjMChQ4dKnWkrCAITZKpyJpMJ3377Lfbt22fbFhwcjLFjx+L22293YWSuVdPfPAvrvG/atAk///wzAODcuXOYM2cOHn/8cdx9990ujrDycnJyEBIS4uowyAVOnz6NjIwM3H///fD29nZ1OFSNzp07h9zcXPTq1YtfkMvgUIL8888/Q6FQQBRFKJVK/Pzzz7fspi9vN/748eNx4sQJLFiwAN26dUNQUJAjoRFVyL///osVK1YgMTHRtu2uu+7C8OHD+aFBUKvVGDJkCKKiovD5558jMzMTer0eK1euxIkTJ/D444/L+v8JE+SaLTExEd9//z169uyJunXrujocqkb//vsvNm/ejAceeIDrWZTCoQQ5Pj6+zOeV8dtvv2HKlCl48cUXq+ycRKWRJAl79+7Fd999B7PZDKAgGXrsscfQuXNnjs9C+b/c1gTNmjXDtGnTsG7dOvzxxx8AgMOHD+PChQsYNWqUbJd1zcrKcnUI5GL5+fnYtm0b7rrrLtx11138va9B0tPTsWnTJvTv35+riJbAbe6hhoaGsoGoWhQuCLF27Vpbcly3bl1MmjQJXbp04QfEDfx3sOft7Y0xY8Zg7NixtsVhMjMz8eGHH2L9+vWyLMhftIQh1VySJOHIkSPYsWMHq5vUMLm5udi8eTNSU1NdHYrbcZsE+dlnn8WXX37JmsnkVOfPn8ecOXPw119/2bb16NEDr732GmrXru3CyNxPTR+DXJr27dtj2rRpaNq0qW3b7t278fbbbyMhIcGFkTkuLS3N1SGQG7l69So2btyIjIwMV4dC1Uiv1+OHH37AtWvXXB2KW6n0J+D27dvRq1cvhISEQKVSQalUFnuUR5MmTWC1WtG6dWvMnz8f69evx/fff1/sUR0WLVqEyMhI6HQ6dOzYEYcOHSr12GXLltnGTAcFBSE6OrrM48k1rFYrtmzZggULFth6zXx8fPDss8/iscceq1E1f8uLPcilCwoKwosvvohHH33U9n8nKSkJ77zzDnbs2AFRFF0cYfmkpaWxx5DsZGVlYdOmTfjnn39cHQpVI7PZjO3bt+PSpUuuDsVtVKrM23fffYfHHnsMd955Jx5//HEsXrwYw4cPhyRJ2LRpE+644w489NBD5TrX0KFDbX9/9dVXSzymOlblW7duHWJiYrBkyRJ07NgRCxYsQJ8+fXDu3DmEh4cXO37Pnj0YNmwYOnfuDJ1Oh3nz5qF37944deoUJz24ifT0dKxatcpu6eA77rgDY8aMqXG1jR1RE+sgO0KhUKBnz55o1qwZVq1ahatXr0IURWzevBmnTp3C6NGjERoa6uowyyRJEuLj4+16w4kKa+Z269aN/zdqEKvViri4OOj1etx5552uDsflKpUgx8bGokOHDti3bx8yMjKwePFijB07Fvfddx/i4+Nxzz33oGHDhuU61+7duysTSpWZP38+xo0bhzFjxgAAlixZgq1bt2LFihWYNGlSseO/+uoru+efffYZvvvuO8TFxbEknRs4duwYvvzyS+Tn5wMoSGr69++PPn36cAjBLbAHuXxq166N//u//8PWrVvx448/QpIkXLx4EXPmzMGjjz6KTp06ufW/5enTp9GkSRO3jpGqnyiK+OWXX5Cfn482bdrw/0cNIUkSfvvtN+j1erRr165Gt3ulEuTTp08jNjYWSqUSKlXBqQonPUVGRuL555/HvHnzypUodu/evTKhVAmTyYQjR45g8uTJtm0KhQLR0dHYv39/uc6Rn58Ps9lc5kICRqPR7rZmbm5uxYOmEplMJnz33XfYu3evbVtwcDDGjBmDRo0auTAy+eAXiPJTqVQYNGgQoqKisGrVKtvQhS+//BLHjx/HE088AT8/P1eHWaKUlBRcvXoV9evXd3Uo5Ib++OMP5OTkoGvXrnxPqEGOHj0KURTRoUMHV4fiMpVKkL29vW1FpgMDA6HVau3qyUZERODy5csOn/f06dO4cuUKAKBBgwZo0aJFZcIst9TUVFitVkRERNhtj4iIwNmzZ8t1jtdffx116tRBdHR0qcfExsZi1qxZlYqVSnft2jWsWLHCbsJB27Zt8cQTT8i6Zm1144eh4xo1aoSpU6fi22+/xe+//w4AOH78OC5fvowRI0agZcuWLo6wZAcPHsRtt93GNqcSnT17Fjk5OYiOjoZWq3V1OFRNjh07Bh8fnxo73KJS74ZNmzbF6dOnbc/btGmDL774AhaLBQaDAWvWrHGoV2LTpk1o1KgRWrZsiQEDBmDAgAFo2bIlGjdujM2bN1cm1Grx9ttvY+3atdiwYQN0Ol2px02ePBlZWVm2xy+//FKNUXouSZKwb98+zJs3z5Ycq9VqDB8+HE8//TSTYwfV5FtrlaHT6TBixAg888wz8PX1BVCwIMfixYuxZs0aGAwGF0dYXEZGht17OdHN/v33X2zYsAHp6emuDqVGS0hIQF5eHoCCu9HObo8DBw7U2DavVII8ePBgbN682TZcYOrUqdizZw8CAwMRFhaGvXv3ljhutyTbtm3DI488AgCYO3cuNmzYgA0bNmDu3LmQJAmDBw/Gjh07KhPuLYWGhkKpVCI5Odlue3JyMmrVqlXma9977z28/fbb+PHHH9GqVasyj9VqtfD397c9Cj9EqeLy8/Px2WefYc2aNbZhPnXq1MHrr7+Orl27MtmjatemTRtMmzYNUVFRtm379u1DbGxshe6sOdsff/zB4V5UpuzsbGzatAkXL150dSg1zqFDhzBw4EBERkbaKjHp9XpMmTIFixYtqtKF24qyWq04cOCAU86dnp6OJ554Av7+/ggMDMRTTz11y/egpUuXokePHvD394cgCCXWco+MjIQgCHaPt99+2+H4BEmSJEdfZDAYsGnTJly+fBkhISEYMGCArYbs3r178f3330OpVKJ///7o2bNnuc7ZqVMnGI1G7N27t9iyh3l5eejatSt0Ol25xwJXVMeOHdGhQwd89NFHAAomKtSvXx8TJkwoNdl/5513MGfOHOzcuRP33HOPw9c8evQo2rVrhyNHjuCuu+6qVPw10cWLF7Fy5Uq7b7n33nsvBg8eLPt15vPz8/Hrr7/Cz8+vzLsSzmC1Wqu9koXBYEBOTg7uvfdej+nxL5z08u2339oWExEEAX379kW/fv1cUi2kffv2SEhIgJeXF6ZOnWrbXqdOHfTv359fKGXutttuw7///ovAwEDMmzfPKdeIiopCx44dWe2mGnz//fcYOnQoJEkqsZJX4dCocePGOS2HeOihh0qs5HUrPXr0wJNPPoknn3yy2L4HHngAiYmJ+PTTT2E2mzFmzBjcfffdWLNmTannW7Bgge0u3OTJk5GRkVGsGlVkZCSeeuopjBs3zrbNz8/P4SW1HR6DfP36dXTu3BmXL1+GJEkQBAFeXl7YuHEjoqOj0a1bN3Tr1s3R0+L48eOYO3duiT+Aj48PnnzySUyZMsXh8zoqJiYGo0ePRvv27dGhQwcsWLAAeXl5tqoWo0aNQt26dREbGwsAmDdvHqZPn441a9YgMjISSUlJAABfX1/2DDuZKIrYsWMHtm7disLved7e3hgxYgTatGnj2uA8AJOkqiEIArp27YomTZpg9erVtvfO7du349SpUxgzZkyxeQ/OlpSUhJSUlGIfLNeuXcORI0fQvn37ao2H5OfkyZNITU1Fr169bCtLUtU7dOgQhg4dCqvVitL6Mwvrri9btgyvv/46IiMjqzyOP//8E3369Kmy8505cwY7duzAH3/8YXu/+eijj9CvXz+89957qFOnTomve+WVVwAUlNgti5+f3y3v/N+Kw0Ms3nrrLcTHx2PixInYsmULPvjgA3h5eWH8+PGVCkSn05U5ziU9Pb1aetCGDh2K9957D9OnT0ebNm1w7Ngx7Nixw/YBlpCQYDcRcfHixTCZTBgyZAhq165te7z33ntOj7Umy8jIwMKFC7Flyxbbm0bjxo0xZcoUJsdVhBO2qlZ4eDhiYmIwYMAA279tQkIC5s6di19++aXUD7/qdvToUd5Cl7HqHKOalJSETZs2IScnx2nXqOlmz54NSZLK/f6wbds2p8Rx5cqVYsNPK2P//v0IDAy0+zIeHR0NhUKBgwcPVvr8b7/9NkJCQtC2bVu8++67sFgsDp/D4U/AH3/8EaNGjcJ7772Hfv364aWXXsLHH3+M+Ph4nDt3zuEACt13331YuHBhiUMoDh48iA8//LDMyhBVacKECbhy5QqMRiMOHjyIjh072vbt2bMHq1atsj2Pj4+3/ect+pg5c2a1xFoT/fXXX5g7dy7Onz8PoKCHrn///njllVfKLK9H5GpKpRL9+vXDq6++avvSbTabsW7dOixatKjE8XSusGfPHly9etXVYZADXDVGNTs7Gz/88INTxq87Y4xqfHw8nnrqKTRs2BBeXl5o1KgRZsyYYRv+5GpWqxUGgwG5ubk4ceIEtmzZUu4F0kRRxPHjx532pejgwYNV9kU+KSmp2JANlUqF4OBg2534inrppZewdu1a7N69G+PHj8fcuXPx2muvOXweh4dYJCQk4PXXX7fb1rVrV0iShOTk5AqvuvPOO++gU6dO6Nq1Kzp06GA7z7lz53Do0CGEh4c7bSwVyYPZbMb3339vV/UjKCgIY8aMQePGjV0YGZFjIiMjMXnyZGzYsMH2//n06dOYM2cOhg0b5vK5CFarFT/++CP69OmD2267zaWx0K0VHaN6cwIjSRJOnjyJkydPOm2Mam5uLn788Uc89NBDDt95KmuM6hNPPIHExETs2rXLNkb1mWeeKXOMan5+Pvr27Yu+ffvarWlQ6OzZsxBFEZ9++ikaN25s+3fJy8vDe++9B0mSYLFYYDab7R5FtxX9u16vh9FohMVisW2/+e9FX1faMYV/L7pM/dmzZx1OSCVJwpkzZ9CpUyeHXlce165dw5UrV8ocwjF37lzMnTvX9lyv1+PAgQOYMGGCbZuzK+bExMTY/t6qVStoNBqMHz8esbGxDpUpdDhBNhqNxYY6FD6vSBd2oYYNG+L48eOIjY3F9u3bsW7dOgAFdZBffvllTJo0qUIDxMkzJCYmYsWKFfj3339t21q3bo0RI0Y4PPCeyB1oNBoMHToUUVFR+PLLL5GVlYW8vDx89tln6NChA4YOHerSsZ1WqxU7d+5Er169uIiIG3OXMaqpqak4d+4cmjdvXqnzSJIEURRx4sQJ7NixAz/99BMaNmwIk8mEadOm2ZLk4ODgEhPWO+64A2azGX/99RcA4Ouvv4ZWq7VLdps3b47Dhw9j//79MJvNaNGiBT777DOYTKZK5TFVzWT6//buPC6qsv0f+GcWlmEHBUZTASERpFzoqyIpogjmkgvumuCamZVLWpamPm4tlprmY5q5pWWmuJZL7guKS4tauSRIqYiKbKLAMPfvD3/Mw8giIMMZDp/363VeOGfOnLmGy2Guuc+95EChUJSpSFYoFEhLSzPZjDSHDx9G7dq1ix0AP2rUKPTp08dwe+DAgYiMjETPnj0N+2rXrg2tVovk5GSjx+p0OqSkpDx13+HHtWjRAjqdDgkJCWVqxC3XQiEJCQk4e/as4XZaWhoA4PLly4UGfQAo9TdWNzc3zJ8/H/Pnzy9PWCRDQggcP34c33//vWH6NgsLC0RGRqJ169YcSEZVXqNGjfD+++/j22+/xS+//ALgUdFz5coVDB48GA0aNJAstvyW5NDQUK5AaabK00d19OjRTzyuqK6DT9qOHDmChISEMrXAJiQkYOPGjbhw4YJhX34rqKWlJTZt2oRNmzYB+F+h/+GHH6J+/folxp/fmHL69Oknthqmp6fD0tKyUotjlUpV4qZUKpGcnFyuFmRra2uTjCERQiAjIwM6na7YAtnFxcWoq6NGo4Gbm1uhq7xBQUFITU3FmTNnEBgYCADYv38/9Hq9UbfWivDrr79CqVSWuZG1XAXy1KlTMXXq1EL7H3/T5c9yUdr+M0QFZWVlYf369UZfxmrVqoVhw4YVO8KVqCqys7PD8OHDERcXhw0bNuDhw4dISUnBwoUL0b59e3Tt2hUWFhaSxKbX67Fv3z5kZGSgcePG/FJqRhITE40GKj+JXq/Hb7/9hosXL8LR0bHYQre8bt++jV9//bVMj8nvppA/sDBfVlZWoSsoSqUSVlZWyMrKKneM+dRqNSwsLJCZmYkLFy4gPDwcderUgYWFheG+/K3gbbVaDUtLS6jVagghEB8fD1tbW1hbWxsVuGq1usjCV61WG+bmfZKmTZti8+bNZW5B9vX1NUmBrNfroVY/1QLMBn5+fujYsSNGjBiBpUuXIjc3F2PGjEG/fv0Mn+/Xr19H+/btsWbNGsOS10lJSUhKSsKVK1cAAOfOnYO9vT3q1asHFxcXxMbG4uTJkwgNDYW9vT1iY2Mxbtw4DBo0CM7OzmWKscyvdOXKlWV9SJGGDh0KhUKBZcuWQaVSYejQoU98jEKhwIoVKyrk+cm8Xb16FV9//bXRYIMXX3wRvXr1qvJzGxMVRaFQoEWLFvDx8cGaNWtw+fJlCCHw888/448//kB0dLSk/YHj4uJw+/ZttGnThssNl0FFXbZ/8OABUlJScO/ePaSkpCAlJQU//vhjuQraS5cuoXHjxk8d0+NKU5SdOXPG0OihUCig0+lw69YtHD161FA0Tpo0Ca6urkhISECzZs2MCtR169ahUaNGePnll0ssYs+cOYNt27Zh4sSJcHV1Nbo/v4X2+vXrCAkJwaBBg/DVV1+V+fVmZWVBCGGyeeq1Wi1at26NY8eOlaqhUalUws/Pr8yFYFk4ODhU2LnWrVuHMWPGoH379lAqlYiMjMTnn39uuD83NxcXL140+kK0dOlSzJgxw3C7TZs2AB7VptHR0bCyssJ3332H6dOnIzs7G15eXhg3bpxRv+TSKnOBHBUVVeYnKcr+/fuhVCqh1+uhUqmwf//+J36jYsuF/On1euzZswc7duwwXE7TaDQYNGgQmjZtKnF0RKZXo0YNvPXWW9i3bx+2b98OnU6HGzdu4OOPP0bXrl0NHyZSiI+PR3JyMtq0aYO6detKEkNVkpOTg7i4uFL1B9XpdMjKyipye/DggaGLWUEJCQnl6qNacMaG/M/Vivr53HPPISAgABqNpsjiNSMjA+np6YYFRorqo+rp6Yk1a9bg2LFjGD58uNHvaMCAAQgPD0fHjh1LfJ3507Fqtdoiu37euHEDoaGhaNWqFZYtW1byL01Cw4YNw7Fjx0qd5/DwcJPFotFoivxdlqSk+YpdXFxKHHDp6elZ6DVPnz69xFnCmjVrVmEr/1VMW3k5PD7ljKmmoKGqIzU1FatWrcKlS5cM+7y9vREdHY0aNWpIGBlR5VIqlejQoQP8/PywatUq3LhxAzqdDjExMTh//jwGDx4s2Xvi/v37+Omnn+Dj44OWLVvKZsVDU9DpdMjMzISlpSVUKhXu37+PzMzMIn9mZ2eX+fyWlpbl6qPq7OxskikxhRCwtLSEt7d3sf8v7OzsDCvvAtL0Ub1+/TpCQ0MRGBiIlStXmvWc740aNcLcuXMNM3KUtJJeVFSUyQbUKpVK+Pj4VKsus5IVyI9LTEyEq6trsaO2Hzx4gNu3b3M0tUydO3cOa9asMfRDk3opXiJzUKdOHbzzzjvYvn079u3bByEELl++jNmzZ6Nv375o3ry5ZFfWrly5gmvXriEwMBABAQFmXWRUhtzcXKSkpODu3buGLTk5GdeuXcODBw8My+OWlUKhMKzMam9vb/QzNDQUBw8eNKs+qo/3JS4vU/VRvX79Otq2bQsPDw/MmzcPt2/fNjxnRc+eUFHatWuHr7/+GitWrMCRI0eM8q1QKODn54fw8HCT1ke+vr6wsbGpVovCmE2B7OXlhbVr12LAgAFF3r9t2zYMGDCgWn17qQ5yc3MRExNjdBnGyckJ0dHRko7eJzIXFhYW6NmzJwICArBmzRqkpKTg4cOHWL16NX7//Xf0799fsmXtc3NzceLECVy8eBFt27aFq6urJHFUhry8PNy7dw937twxKoLzt/zZnMpKoVDAxsYG9vb2hQpgOzs72NralljMmlsf1aK6gpSXKfqo7t27F1euXMGVK1cK9ek3l9Usi9KoUSN89tlnSEpKQv/+/ZGRkQGNRoOJEyeaNJ/Aoyu5NWvWLPeXvKrKbArkJ/3HzM3NrfYtFHJz69YtrFixAv/++69h3/PPP49BgwZJ9oFPZK4aNGiA999/Hxs2bEBcXBwA4JdffsHVq1fxyiuvwN/fX7LY7t27hy1btiA4OFjSOJ5GXl4eUlNTiyx+7969i9TU1HIXUBqNBg4ODkW2Atva2j7VVTJz6qMKoMyDqCu7j2pxi5JUFVqtFhqNBhkZGbC0tDR5cVynTp1qO2uUpAVyenq60TKQd+/eRWJiYqHjUlNT8d133xn1W6KqSwiBEydOYMOGDYbBImq1GpGRkWjTpg0HYxIVQ6PRIDo6Gs8//zy+/fZb3L9/H2lpaVi8eDFCQkLQo0cPyWZ5EULg6NGjePjwoeQrARZFr9cjLS2t2AL43r17RquYlYWDgwNcXFxQs2ZNo5+2trY4f/48nJycTDLLAWA+fVSBR1c7TF2wUeVxdXU1yaIyVYWkBfL8+fPxn//8B8Cjy0xjx47F2LFjizxWCIFZs2ZVYnRkCg8ePMC3336L06dPG/ZptVoMHTqUS9oSlVKzZs1Qv359fPPNN4ZlWw8dOoS//voL0dHR8PDwkCy206dPQ6VSmWQasZIIIZCenl5iAVze6dbs7Ozg4uKCGjVqGLb8IrhGjRrFfinJysqqlDEU5tBHValU4tlnnzXZ+alyOTg4oEGDBtW6wUrSAjk8PBx2dnYQQmDSpEno379/oZYHhUIBW1tbBAYG4oUXXpAoUqoI8fHx+Prrr3H37l3DvuDgYPTq1YvzqhKVkZOTE15//XUcPnwYmzdvRm5uLm7duoVPPvkEnTp1QkREhGQDXE+ePAmVSoWAgIAKO6cQApmZmcUWwCkpKeXu/6rRaIwK3seLYFO1/lYkKfuoqlQq+Pv7w9rauloN4pIra2tr+Pn5VfturZIWyEFBQQgKCgLwaOqgyMjICv2DSuZBr9dj79692L59u9HcxgMGDDBM30NEZadQKBASEgJfX1+sWrUKiYmJ0Ov12LFjBy5cuICoqKhCy6smJiYaZhrIzs5GSkqKSab8On78OFQqFfz8/Ep1vBACWVlZJRbA5ZkKDQCsrKwKtfoW3OQ0VV1l91G1traGv78/bG1tq90gLjmysLBAQEAAF+SCmQzSy8rKwueffw4bGxsWyDKTlpaG1atX46+//jLs8/LywtChQzm3MVEF0Wq1mDhxIn788Ufs2rXLsATunDlz0KtXLwQHB+PUqVOYOXMmdu7cabgE/+DBA7z33nt47rnn0Llz5wrvb3jkyBEAMBTJDx48KLYAvnv3bpkLrIcPH+Lo0aNISEiASqVC06ZN8eqrr6J27dpGBbGtra3hUvHDhw8xYcIEfPfdd8jOzkZERASWLFkCd3d3AI/GwgwcOBC///477t69Czc3N3Tr1g1z5syp0FXE5KBGjRp49tlnJVsGnSpW/lWf4qbbrW7MokC2sbGBWq2Gra2t1KFQBbpw4QJWr15tWEVKoVAgIiICnTt35tzGRBVMpVKha9euCAgIwKpVq3D79m3k5ORg/fr1WLNmDVauXAkhRKFR/0IInD9/HufPn8eIESOeaoCdEAI6nc5oi4mJwebNm3Hv3j2j6bhKa+vWrfD390dwcHChQXBvv/02rK2tcfjwYeh0OgwZMgS7d+8uceaDcePGYefOndi4cSMcHR0xZswY9OzZE8eOHQPwqC9tt27dMGvWLLi6uuLKlSt4/fXXkZKSUuJ5qxsvLy8888wz1bqPqpzkF8ecQep/zKJABoDIyEj88MMPeO211/iGq+Jyc3OxdetW7N+/37DP0dER0dHR8PX1lTAyIvnz8vLC5MmTsXnzZhw9ehS3bt1CTExMiVOA5Xd9Wr58Od55551iW5LzC+C8vLxChbBOpytxFoiCyxs/TqVSwcXFpciZIPLneh46dKjRY/78808cOnQIp06dMoxPWbRoETp16oR58+YVOTVVWloaVqxYgfXr16Ndu3YAHs2P6+fnhxMnTqBly5ZwdnbGa6+9ZniMh4cHRo8ejU8++aTY+KsTtVoNPz+/Mi85TOZLpVKhUaNGvELyGLMpkPv164fRo0cjNDQUI0aMgKenZ5HN/OY4fVB1k5iYiH379iEjIwP29vZo3769YXT0rVu38PXXX+Off/4xHB8QEIDBgwfzmylRJbG2tsaAAQPw3HPPoUePHmV67I4dOzB8+HCjwje/IH6ahZqcnZ3h5ORk1PUh/6eTk1OxA4LUanWR98XGxsLJyclo8HZYWBiUSiVOnjxZ5Os+c+YMcnNzERYWZtjXsGFD1KtXD7GxsWjZsmWhx9y4cQObN29GSEhIeV62rGg0GjRq1IiX4GUkvzh2dHSUOhSzYzYFctu2bQ3/zu+3VpAQAgqFgivpSSguLs6oD6NSqYRer4dCoUCXLl3QvXt3nDt3zjCQRq1Wo0ePHmjbti2vChBJwNHREVevXi31Ahd6vR7nzp3D5cuXy/yBqVKpoFarjbaC+xQKBQYPHlxhM9YkJSUVGoCoVqvh4uKCpKSkYh9jaWlZqPXT3d290GP69++PrVu34sGDB+jatSu++uqrCom7qnJyckLDhg3Z31hG1Go1W45LYDYF8sqVK6UOgUqwefNm9O3b16gPY/7lVCEEdu7ciR07diA8PBz169eHu7s7hg4dirp160oZNpHZy8nJKff8vE/y448/lmv1t4SEhELzGKtUKkPBW9TPkr4E5/+tuHbtGjw9PUscIT9nzhzMmTPHcPvBgwc4ceIExowZY9iXP/ezKc2fPx/Tpk3DpUuXMHnyZIwfPx5Lliwx+fOao9q1a8PLy6vaT/slJ1ZWVmjUqBHHfpXAbArkqKgoqUMw+OKLL/DJJ58gKSkJjRs3xqJFi9C8efNij9+4cSOmTp2KhIQEPPvss/joo4/QqVOnSozYtOLi4tC3b1/k5eUV+2Gb/wG4Z88eTJs2De+++y7nNiZ6gpycHMTFxRkGsla03377rdRLEOdTKBTQ6/XQaDRQKpWG7fECuOCAvNI6cuQIkpOT0bx582KL5FGjRqFPnz6G2wMHDkRkZCR69uxp2Fe7dm1otVokJycbPVan0yElJQVarbbIc2u1WuTk5CA1NdWoFfnWrVuFHqPVaqHVatGwYUO4uLigdevWmDp1arVa0dXS0hI+Pj6ccUhm7O3t4efnx8/oJzCbArmgzMxMQx/WunXrVmrf1Q0bNmD8+PFYunQpWrRogQULFiAiIgIXL14sdDkPeDTXZ//+/TF37lx06dIF69evR/fu3XH27FnZTFk3a9asIke/F0WpVOLs2bN84xGVgk6nQ2ZmJiwtLU3ynnF2di5zC7IQAvb29ibpZ5qZmYmMjAzodLpiC+T8wXr5NBoN3Nzc4OPjY3RcUFAQUlNTcebMGcN86vv374der0eLFi2KPHdgYCAsLCywb98+REZGAgAuXryIxMREw5z8RclvACjvPMxVUa1ateDh4cEuFTKj1Wrh7e3NqwGlYFa/oVOnTiE0NBTOzs4ICAhAQEAAnJ2d0a5dO6OliU3ps88+w4gRIzBkyBD4+/tj6dKlsLGxwddff13k8QsXLkTHjh0xceJE+Pn5YebMmWjWrBkWL15cKfGaWmJiInbs2FHqvt95eXnYvn07EhMTTRwZkXxYWVnB2tq6wrfg4OAy9/9XKBTw9fU1aj2uqC0vL8+wSMnT8vPzQ8eOHTFixAjExcXh2LFjGDNmDPr162eYweL69eto2LAh4uLiADzqkz1s2DCMHz8eBw4cwJkzZzBkyBAEBQUZBuj9+OOPWLlyJc6fP4+EhATs3LkTo0aNQnBwcIXPE22OHBwc0LRpU/j4+LA4lpH8pcCfffZZFselZDYtyCdPnkTbtm1haWmJ4cOHGyaW//PPP/Htt9+iTZs2OHjwYIldHZ5WTk4Ozpw5g8mTJxv2KZVKhIWFITY2tsjHxMbGYvz48Ub7IiIisGXLlmKfJzs726glIv/yqk6nK/dSqaaye/fucrVA7dmzx6y6zVRVubm50Ol0uH//vsn6qZqT7Oxsw/vA3N4LpmDq/NrZ2aFly5Y4ceJEqd7HCoUCfn5+sLOzM8nvXwiBjIyMMuVXCIG8vLwij1+1ahXeeusttG/fHkqlEj169MD8+fMNx2ZlZeHixYtIT0837Pv4448BPJpaNDs7Gx06dMCiRYsM91tYWGDZsmUYN24csrOzUadOHXTv3h2TJk0q8+9EqvdvwfEhpY1ZpVKhbt26cHV1BYBydfvh+7dylDW/VlZW8PHxga2t7VN156rM/JrFlzNhJtq3by+8vb3FzZs3C92XlJQkvL29RVhYmEljuH79ugAgjh8/brR/4sSJonnz5kU+xsLCQqxfv95o3xdffCHc3NyKfZ5p06YJANy4cePGjRs3btwe28yBWbUgf/DBB0UOrnB3d8fIkSMxc+ZMCSKrePkjovP9+uuvCAkJwcmTJ9G0aVMJIyts1apVGDlyZJkft3z5crYgVxBTznJgjtRqdYmzHMhNZeR327ZtGDJkCIQQRS7mkd8NY9iwYWjSpIlJYlAqlWjRogV8fX2ZXxPz8/PDzZs34ejoiNmzZ5d4rKOjI8LDwyusDzzfv6ZX2vx6enoiKCioQleurU75NZsCWalUlvifLC8vz+T9ZmrWrAmVSoVbt24Z7S9qhHM+rVZbpuOBR5c7Cv4xyh+EqFarzeOyQgERERHlGgUfHh5udq+lquLvUd4qI7+vvPIKGjZsiJkzZ2LHjh1G72eFQoHnn38enTp1MlkfW1tbW4SFhcHd3d0k5zdnUrx/8z8rFQpFic9vaWmJl19+mfPgPgVzzW+DBg0QEhLCNQiegtn01G7VqhW++OILXLt2rdB9iYmJWLJkCYKDg00ag6WlJQIDA7Fv3z7DPr1ej3379hU7wjkoKMjoeADYu3dviSOiq5J69eqhS5cupf4GqlKp0LVrV8PKekRkHv7v//4P27ZtQ0JCgmGKM41Ggzlz5mD06NEmK47r1q2LyMjIalkcm7ugoCAWxzLk4eHB4rgCmE0L8pw5c9CmTRs0bNgQPXr0QIMGDQA8moJn69atUKvVmDt3rsnjGD9+PKKiovDCCy+gefPmWLBgAe7fv48hQ4YAAAYPHoxnnnnGEMtbb72FkJAQfPrpp+jcuTO+++47nD59GsuWLTN5rJVl6tSp+Omnn57YkqxQKKBQKDBlypRKjI6IyqJevXqwtbVFamoqrKysjKZUq2jNmjVDYGAgP6jNUP369Q2fsyQf+TN/8T339MymQG7atClOnjyJ999/H9u2bUNWVhYAwMbGBh07dsSsWbPg7+9v8jj69u2L27dv44MPPkBSUhKaNGmCXbt2GVo/EhMTjbp6tGrVCuvXr8eUKVPw3nvv4dlnn8WWLVtkMwcy8KjlacOGDYaV9Iqa8i1/Ja3vv/8e//d//ydBlERkLlQqFdq2bQtvb2+pQ6EiODs7s4VRhlQqFcLCwtgtr4KYTYEMAP7+/oiJiYFer8ft27cBAK6urpU+Z9+YMWOMljUt6ODBg4X29e7dG7179zZxVNLq2bMnjh8/btSHUalUQq/XQ6FQoHPnzpgyZQqLY6JqztLSEhEREdVqxbmqRKPRoGPHjiyiZKhZs2ZwdnaWOgzZMKsCOV/+pfr8f5N5yO/DmJiYiP379yM9PR0ODg5o164d+xwTEezs7BAREcGlic2USqVCeHg47O3tpQ6FKpijoyOef/55qcOQFbMqkP/44w988MEH2L17t1EXi4iICEyfPl1W3Raqsnr16iE6OlrqMIjIjNStWxdt27Y1yRLVVDFatWrFwZIy1aJFiwqdzo3MqEA+cuQIXnrpJej1enTr1s1okN62bdvw008/YdeuXWjdurXEkRIRUT5LS0u0bNkSvr6+vOJnxjw9PdGwYUOpw6AKoNVqodfrDd1katasCQ8PD4mjkh+zKZDHjRsHNzc3HDp0CHXr1jW6759//kGbNm0wfvx4nDp1SqIIiYioIE9PTwQHB8PW1lbqUKgEFhYWCA4O5hcYmTh9+jRu3ryJ7du3AwAaN27M3JqA2cyDfOHCBYwePbpQcQw8unT32muv4cKFCxJERkREBVlZWaFdu3bo0KEDi+MqoFGjRsyTTGk0Gnh5eUkdhiyZTQuyh4cHsrOzi70/JyenyOKZiIgqT926dRESEgIbGxupQ6FiaLVa6HQ6WFlZQaFQoFGjRlKHRCbi5eVV6TN9VRdmUyB/8MEHGDduHDp37owmTZoY3ffLL79g0aJFWLBggSSxERFVd2q1GkFBQWjYsCEv55q506dP488//8SRI0eg1WrZeixjbDg0HbMpkE+cOAF3d3cEBgaiVatW8PHxAQBcvnwZsbGxCAgIQGxsLGJjYw2PUSgUWLhwoVQhExFVC46OjujQoYNJV90j0+AUnPKm1WqlDkG2zKZAXrx4seHfx44dw7Fjx4zuP3fuHM6dO2e0jwUyEZFpPfPMMwgLC4OVlZXUoVA51K5dW+oQyERsbW35vjQhsymQ9Xq91CEQEVEBDRo0QJs2bdjHsYqytLREzZo1pQ6DTMTR0VHqEGTNbApkIiIyH8899xxatmzJ/sZVmFarZf5kzM7OTuoQZM3sCuT4+Hj89NNPuHbtGoBHs1u89NJLnMaEiKiS+Pn5sTiWAa6aJ28cfGlaZlUgT5gwAQsXLizU3UKpVGLs2LGYN2+eRJEREVUPderU4aISMsHuFfLGqRZNy2w6ln366aeYP38+evbsidjYWKSmpiI1NRWxsbHo1asX5s+fj/nz50sdJhGRbNnZ2aFdu3bscywTzs7OUodAJsQC2bTMpgV5+fLlePnll/H9998b7W/RogW+++47PHz4EF9++SXGjRsnUYRERPLWtm1bWFtbSx0GVQClUslL8DLHAtm0zKaZICEhAREREcXeHxERgYSEhMoLiIioGvH19eWUYDJibW3NbjIyxwLZtMymQHZzc8Nvv/1W7P2//fYbXF1dKzEiIqLqwcrKCi1atJA6DKpAnB9X/lggm5bZFMi9e/fGV199hQ8//BD379837L9//z4++ugjfPXVV+jbt6+EERIRyYNWq4WrqyscHBwAAIGBgexaITNqtdn0oCQTsLCwgEqlkjoMWVMIIYTUQQBAVlYWunbtigMHDkCtVhsu9d24cQM6nQ6hoaHYvn27LL8xnT17FoGBgThz5gyaNWsmdThEVA3Exsbi3LlzsLe3R58+ffhhKzP37t3jID0Zy8jIgL29vdRhyJrZtCDb2Nhg3759iImJwdChQ+Hn5wc/Pz8MHToUW7Zswc8//2zy4jglJQUDBw6Eg4MDnJycMGzYMGRmZpZ4/BtvvAFfX19oNBrUq1cPb775JtLS0kwaJxFRRQkICGBxLEOciUTeLCwspA5B9sziGkxWVhYGDRqEyMhIDBw4EN26dZMkjoEDB+LmzZvYu3cvcnNzMWTIEIwcORLr168v8vgbN27gxo0bmDdvHvz9/XHt2jWMGjUKN27cwA8//FDJ0RMRlY1CoYCPj4/UYZAJsECWN36pNT2zKJBtbGzw888/46WXXpIshj///BO7du3CqVOn8MILLwAAFi1ahE6dOmHevHlFju4OCAjApk2bDLe9vb0xe/ZsDBo0CDqdjn3AiMisubi4QKPRSB0GmQALKHljfk3PbL5ivvjii4iNjZXs+WNjY+Hk5GQojgEgLCwMSqUSJ0+eLPV50tLS4ODgUGJxnJ2djfT0dMNWUjcOIiJT4cxA8sUCSt44hZ/pmU2BvHjxYhw5cgRTpkzBv//+W+nPn5SUBDc3N6N9arUaLi4uSEpKKtU57ty5g5kzZ2LkyJElHjd37lw4OjoatpCQkHLHTURUXi4uLlKHQCbCLhZET8ds3kGNGzfGv//+i7lz58LDwwNWVlZwcHAw2hwdHct83nfffRcKhaLE7a+//nrq+NPT09G5c2f4+/tj+vTpJR47efJkpKWlGbZDhw499fMTEZUVC2T5YgujvDG/pmc2nWQjIyNNkvAJEyYgOjq6xGPq168PrVaL5ORko/06nQ4pKSnQarUlPj4jIwMdO3aEvb09YmJinji61MrKymgSdzs7u5JfBBGRCdSoUUPqEMhEWEDJmxCCOTYxsymQV61aZZLzurq6lqqfXVBQEFJTU3HmzBkEBgYCAPbv3w+9Xl/iClPp6emIiIiAlZUVtm3bxsn2iahKsLW15WprMmYmSxwQVVmSF8gPHz7E1q1bER8fj5o1a6Jz586oVatWpcfh5+eHjh07YsSIEVi6dClyc3MxZswY9OvXzzCDxfXr19G+fXusWbMGzZs3R3p6OsLDw5GVlYVvvvnGMOgOeFSYc5AEEZmr/FX0SJ7Yukj0dCQtkJOTk9GqVSvEx8cbvu3a2Nhgy5YtCAsLq/R41q1bhzFjxqB9+/ZQKpWIjIzE559/brg/NzcXFy9eRFZWFoBHK+Dlz3Dx+Fyi8fHx8PT0rLTYiYjKQo6rktL/sIFG3tjFwvQkXWr6jTfewH//+1+MHTsW7dq1w5UrVzBz5kw4ODjg77//liqsSselpomosqWmpsLJyUnqMIioHPLy8vglyMQkbUHes2cPBg8ejHnz5hn2ubu7Y8CAAbh48SJ8fX0ljI6ISL744UpEVDxJp3lLTEzEiy++aLTvxRdfhBACt27dkigqIiL54+VZoqqL71/Tk7RAzs7OLjTrQ/5tnU4nRUhERNUCP2CJqi4uBGN6ks9ikZCQgLNnzxpup6WlAQAuX75cZP849tElInp6LJCJiIon6SA9pVJZ5B/pokZn5u/Ly8urrPAqDQfpEVFly8rK4kwWRETFkLQFeeXKlVI+PRFRtcUWZCKi4klaIEdFRUn59ERE1RYLZCKi4rGXNxFRNcQCmYioeCyQiYiqIRbIRETFY4FMRFQNWVhYSB0CEZHZYoFMRFQNsQWZiKh4LJCJiIiIiApggUxEREREVAALZCIiIiKiAlggExEREREVwAKZiIiIiKgAFshERERERAVIutQ0VW03b97EzZs3pQ6DiIioWqlVqxZq1aoldRiyxgLZDNSqVQvTpk2rUv/Zs7Oz0b9/fxw6dEjqUIiIiKqVkJAQ7N69G1ZWVlKHIlsKIYSQOgiqetLT0+Ho6IhDhw7Bzs5O6nCogmVmZiIkJIT5lSnmV96YX3nLz29aWhocHBykDke2WCBTueQXyHyDyhPzK2/Mr7wxv/LG/FYODtIjIiIiIiqABTIRERERUQEskKlcrKysMG3aNA4QkCnmV96YX3ljfuWN+a0c7INMRERERFQAW5CJiIiIiApggUxEREREVAALZCIiIiKiAlggExEREREVwAKZqApSKBSl2g4ePPjUz5WVlYXp06eX6VyzZ8/Gyy+/DHd3dygUCkyfPv2p46huzDnHf/31FyZNmoQmTZrA3t4etWrVQufOnXH69OmnjqW6MOf83rhxA4MGDYKvry/s7e3h5OSE5s2bY/Xq1eC4/tIx5/w+bt26dVAoFFx18TFqqQMgorJbu3at0e01a9Zg7969hfb7+fk99XNlZWVhxowZAIC2bduW6jFTpkyBVqtF06ZNsXv37qeOoToy5xx/9dVXWLFiBSIjIzF69GikpaXhyy+/RMuWLbFr1y6EhYU9dUxyZ875vXPnDv7991/06tUL9erVQ25uLvbu3Yvo6GhcvHgRc+bMeeqY5M6c81tQZmYmJk2aBFtb26eOQ3YEEVV5r7/+ujDV2/n27dsCgJg2bVqpHxMfH1/ux1LRzCnHp0+fFhkZGUb77ty5I1xdXUVwcLAJIpQ/c8pvcbp06SJsbW2FTqermMCqEXPN7zvvvCN8fX3FwIEDha2tbcUHV4WxiwWRTOn1eixYsACNGjWCtbU13N3d8eqrr+LevXtGx50+fRoRERGoWbMmNBoNvLy8MHToUABAQkICXF1dAQAzZswwXBZ8UpcJT09PU7wkeoxUOQ4MDCx0ObZGjRpo3bo1/vzzz4p9kdWYlO/honh6eiIrKws5OTlP/dpI+vxevnwZ8+fPx2effQa1mh0KHsffCJFMvfrqq1i1ahWGDBmCN998E/Hx8Vi8eDF++eUXHDt2DBYWFkhOTkZ4eDhcXV3x7rvvwsnJCQkJCdi8eTMAwNXVFf/973/x2muvoUePHujZsycA4Pnnn5fypdH/Z245TkpKQs2aNSv0NVZnUuf3wYMHuH//PjIzM3Ho0CGsXLkSQUFB0Gg0Jn3d1YXU+R07dixCQ0PRqVMnfP/99yZ9rVWS1E3YRPT0Hr98d+TIEQFArFu3zui4Xbt2Ge2PiYkRAMSpU6eKPffTXL5jF4uKY645znf48GGhUCjE1KlTy32O6swc8zt37lwBwLC1b99eJCYmlukc9Ii55XfHjh1CrVaLCxcuCCGEiIqKYheLx7CLBZEMbdy4EY6OjujQoQPu3Llj2PIvjR84cAAA4OTkBADYsWMHcnNzJYyYysqccpycnIwBAwbAy8sLkyZNMslzVDfmkN/+/ftj7969WL9+PQYMGADgUasyPT0p85uTk4Nx48Zh1KhR8Pf3r5BzyhELZCIZunz5MtLS0uDm5gZXV1ejLTMzE8nJyQCAkJAQREZGYsaMGahZsya6deuGlStXIjs7W+JXQE9iLjm+f/8+unTpgoyMDGzdupVTRVUQc8ivh4cHwsLC0L9/f6xbtw7169dHWFgYi+QKIGV+58+fjzt37hhmvqCisQ8ykQzp9Xq4ublh3bp1Rd6fP6hDoVDghx9+wIkTJ7B9+3bs3r0bQ4cOxaeffooTJ06w2DFj5pDjnJwc9OzZE7///jt2796NgICAcp+LjJlDfh/Xq1cvLF++HIcPH0ZERESFnbc6kiq/aWlpmDVrFkaPHo309HSkp6cDeDTdmxACCQkJsLGxgZub29O9QDmQuo8HET29x/u3jR49WqhUKpGVlVXmc61bt04AEMuXLxdCPJq+C+yDLDlzy3FeXp7o27evUKlUYtOmTWWOgYyZW36LsmXLFgFAbNiw4anOUx2ZS37j4+ON+pUXtXXr1q3MMckRu1gQyVCfPn2Ql5eHmTNnFrpPp9MhNTUVAHDv3r1CK2M1adIEAAyX8GxsbADA8BgyD1Ln+I033sCGDRuwZMkSw8h5qjhS5vf27dtF7l+xYgUUCgWaNWtWqvNQ8aTKr5ubG2JiYgptoaGhsLa2RkxMDCZPnlz+FyYj7GJBJEMhISF49dVXMXfuXPz6668IDw+HhYUFLl++jI0bN2LhwoXo1asXVq9ejSVLlqBHjx7w9vZGRkYGli9fDgcHB3Tq1AkAoNFo4O/vjw0bNqBBgwZwcXFBQEBAiZfT165di2vXriErKwsAcPjwYcyaNQsA8Morr8DDw8P0vwSZkzLHCxYswJIlSxAUFAQbGxt88803Rvf36NGDK3M9JSnzO3v2bBw7dgwdO3ZEvXr1kJKSgk2bNuHUqVN444034OPjU5m/ClmSKr82Njbo3r17of1btmxBXFxckfdVW9I2YBNRRShulaZly5aJwMBAodFohL29vXjuuefEpEmTxI0bN4QQQpw9e1b0799f1KtXT1hZWQk3NzfRpUsXcfr0aaPzHD9+XAQGBgpLS8tSXcoLCQkp9vLdgQMHKuplVyvmlOOoqKgSL9Hmr6RIpWdO+d2zZ4/o0qWLqF27trCwsBD29vYiODhYrFy5Uuj1+gp93dWFOeW3KJzmrTCFEI+13RMRERERVWPsg0xEREREVAALZCIiIiKiAlggExEREREVwAKZiIiIiKgAFshERERERAWwQCYiIiIiKoAFMlE1lJCQAIVCgVWrVkkdCpkA8ytvzK+8Mb/mgQUyEREREVEBXCiEqBoSQiA7OxsWFhZQqVRSh0MVjPmVN+ZX3phf88ACmYiIiIioAHaxIKqipk+fDoVCgUuXLmHQoEFwdHSEq6srpk6dCiEE/vnnH3Tr1g0ODg7QarX49NNPDY8tqo9bdHQ07OzscP36dXTv3h12dnZwdXXF22+/jby8PMNxBw8ehEKhwMGDB43iKeqcSUlJGDJkCOrUqQMrKyvUqlUL3bp1Q0JCgol+K/LB/Mob8ytvzG/VxwKZqIrr27cv9Ho9PvzwQ7Ro0QKzZs3CggUL0KFDBzzzzDP46KOP4OPjg7fffhuHDx8u8Vx5eXmIiIhAjRo1MG/ePISEhODTTz/FsmXLyhVbZGQkYmJiMGTIECxZsgRvvvkmMjIykJiYWK7zVUfMr7wxv/LG/FZhgoiqpGnTpgkAYuTIkYZ9Op1O1KlTRygUCvHhhx8a9t+7d09oNBoRFRUlhBAiPj5eABArV640HBMVFSUAiP/85z9Gz9O0aVMRGBhouH3gwAEBQBw4cMDouMfPee/ePQFAfPLJJxXzgqsZ5lfemF95Y36rPrYgE1Vxw4cPN/xbpVLhhRdegBACw4YNM+x3cnKCr68vrl69+sTzjRo1yuh269atS/W4x2k0GlhaWuLgwYO4d+9emR9PjzC/8sb8yhvzW3WxQCaq4urVq2d029HREdbW1qhZs2ah/U/6Q2htbQ1XV1ejfc7OzuX6A2plZYWPPvoIP/30E9zd3dGmTRt8/PHHSEpKKvO5qjPmV96YX3ljfqsuFshEVVxR0wAVNzWQeMKkNaWZUkihUBS5v+BAkXxjx47FpUuXMHfuXFhbW2Pq1Knw8/PDL7/88sTnoUeYX3ljfuWN+a26WCATUZk4OzsDAFJTU432X7t2rcjjvb29MWHCBOzZswfnz59HTk6O0YhtMi/Mr7wxv/LG/FYcFshEVCYeHh5QqVSFRlwvWbLE6HZWVhYePnxotM/b2xv29vbIzs42eZxUPsyvvDG/8sb8Vhy11AEQUdXi6OiI3r17Y9GiRVAoFPD29saOHTuQnJxsdNylS5fQvn179OnTB/7+/lCr1YiJicGtW7fQr18/iaKnJ2F+5Y35lTfmt+KwQCaiMlu0aBFyc3OxdOlSWFlZoU+fPvjkk08QEBBgOKZu3bro378/9u3bh7Vr10KtVqNhw4b4/vvvERkZKWH09CTMr7wxv/LG/FYMLjVNRERERFQA+yATERERERXAApmIiIiIqAAWyEREREREBbBAJiIiIiIqgAUyEREREVEBLJCJyKQSEhKgUCiwatUqqUMhE2B+5Y35lTfmt3gskInMyN9//41XX30V9evXh7W1NRwcHBAcHIyFCxfiwYMHJnveP/74A9OnT0dCQoLJnqM0Zs+ejZdffhnu7u5QKBSYPn26pPFUNOaX+TUF5rdyML/yzu/juFAIkZnYuXMnevfuDSsrKwwePBgBAQHIycnB0aNHMXHiRFy4cAHLli0zyXP/8ccfmDFjBtq2bQtPT0+TPEdpTJkyBVqtFk2bNsXu3bsli8MUmF/ml/mtuphfeee3KCyQicxAfHw8+vXrBw8PD+zfvx+1atUy3Pf666/jypUr2Llzp4QR/o8QAg8fPoRGo6nwc8fHx8PT0xN37tyBq6trhZ9fKszvI8yv9JjfsmN+H5FrfovDLhZEZuDjjz9GZmYmVqxYYfTHN5+Pjw/eeustw22dToeZM2fC29sbVlZW8PT0xHvvvYfs7Gyjx3l6eqJLly44evQomjdvDmtra9SvXx9r1qwxHLNq1Sr07t0bABAaGgqFQgGFQoGDBw8anWP37t144YUXoNFo8OWXXwIArl69it69e8PFxQU2NjZo2bLlU31QSNk6YkrM7//ilSPm93/xyhHz+794qxVBRJJ75plnRP369Ut9fFRUlAAgevXqJb744gsxePBgAUB0797d6DgPDw/h6+sr3N3dxXvvvScWL14smjVrJhQKhTh//rwQQoi///5bvPnmmwKAeO+998TatWvF2rVrRVJSkuEcPj4+wtnZWbz77rti6dKl4sCBAyIpKUm4u7sLe3t78f7774vPPvtMNG7cWCiVSrF582ZDDPHx8QKAWLlyZalf3+3btwUAMW3atFI/xpwxv8aYX+a3KmF+jcktv8VhgUwksbS0NAFAdOvWrVTH//rrrwKAGD58uNH+t99+WwAQ+/fvN+zz8PAQAMThw4cN+5KTk4WVlZWYMGGCYd/GjRsFAHHgwIFCz5d/jl27dhntHzt2rAAgjhw5YtiXkZEhvLy8hKenp8jLyxNC8A8w81sY88v8VhXMb2Fyym9J2MWCSGLp6ekAAHt7+1Id/+OPPwIAxo8fb7R/woQJAFDoEpq/vz9at25tuO3q6gpfX19cvXq11DF6eXkhIiKiUBzNmzfHiy++aNhnZ2eHkSNHIiEhAX/88Uepzy9nzK+8Mb/yxvxWXyyQiSTm4OAAAMjIyCjV8deuXYNSqYSPj4/Rfq1WCycnJ1y7ds1of7169Qqdw9nZGffu3St1jF5eXkXG4evrW2i/n5+f4X5ifuWO+ZU35rf6YoFMJDEHBwfUrl0b58+fL9PjFApFqY5TqVRF7hdClPq5TDEiurpgfuWN+ZU35rf6YoFMZAa6dOmCv//+G7GxsU881sPDA3q9HpcvXzbaf+vWLaSmpsLDw6PMz1/aP+aPx3Hx4sVC+//66y/D/fQI8ytvzK+8Mb/VEwtkIjMwadIk2NraYvjw4bh161ah+//++28sXLgQANCpUycAwIIFC4yO+eyzzwAAnTt3LvPz29raAgBSU1NL/ZhOnTohLi7O6EPj/v37WLZsGTw9PeHv71/mOOSK+ZU35lfemN/qiQuFEJkBb29vrF+/Hn379oWfn5/RSk3Hjx/Hxo0bER0dDQBo3LgxoqKisGzZMqSmpiIkJARxcXFYvXo1unfvjtDQ0DI/f5MmTaBSqfDRRx8hLS0NVlZWaNeuHdzc3Ip9zLvvvotvv/0WL730Et588024uLhg9erViI+Px6ZNm6BUlv3799q1a3Ht2jVkZWUBAA4fPoxZs2YBAF555ZUq2+rB/D7C/DK/VRHz+4hc81ssaSfRIKKCLl26JEaMGCE8PT2FpaWlsLe3F8HBwWLRokXi4cOHhuNyc3PFjBkzhJeXl7CwsBB169YVkydPNjpGiEdTAHXu3LnQ84SEhIiQkBCjfcuXLxf169cXKpXKaEqh4s4hxKM5Onv16iWcnJyEtbW1aN68udixY4fRMWWZRigkJEQAKHIraoqjqob5ZX6FYH6rKuZX3vl9nEKIMvQEJyIiIiKSOfZBJiIiIiIqgAUyEREREVEBLJCJiIiIiApggUxEREREVAALZCIiIiKiAlggExEREREVwAKZiIiIiKgAFshERERERAWwQCYiIiIiKoAFMhERERFRASyQiYiIiIgKYIFMRERERFQAC2QiIiIiogL+H4laKGSL6M4NAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -1738,7 +1738,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAInCAYAAACFua8hAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAxr5JREFUeJzs3Xd4FFXbBvB7d9N7rwQSOiFAIKGXgARCFUWUIkVQrFjg9VPpoEDECiqCIM1XeUGRJiWAoUjvkRIILSGU9N7L7nx/jFmzpJC2md3N/buuuZKd+oQh2WfPnPMcmSAIAoiIiIiICAAglzoAIiIiIiJdwgSZiIiIiKgUJshERERERKUwQSYiIiIiKoUJMhERERFRKUyQiYiIiIhKYYJMRERERFQKE2QiIiIiolKYIBMRERERlcIEWQfExcVhwYIFiIuLkzoUIiIiogaPCbIOiIuLw8KFC5kgExEREekAJshERERERKUwQSYiIiIiKoUJMhERERFRKUyQS/nrr78wfPhweHh4QCaTYceOHU885siRI+jUqRNMTU3RvHlzbNiwQetxEhEREZH2MEEuJScnBx06dMCKFSuqtH90dDSGDh2Kfv36ISIiAu+99x5eeeUV7N+/X8uREhEREZG2GEkdgC4ZPHgwBg8eXOX9V61aBR8fH3z55ZcAgDZt2uD48eP4+uuvERISoq0wiYiIiEiLmCDXwqlTpxAcHKyxLiQkBO+9916lxxUUFKCgoED9Ojs7WxvhVd+tW4C2YiksFL82a6ad81PljI2BxETt3d/iYkCl4v2VilwOpKRo7/4C4u8w7690UlKA3FztnV+pBLy9tXd+qlxSEpCfr73zW1kBLVpo7/wGiAlyLcTHx8PV1VVjnaurKzIzM5GXlwdzc/NyjwsNDcXChQvrI8Squ3ULaN1ae+cXBPHrwoXAY/9mVA+Ki4G339be+Xl/pZWWBsyapb3z8/5KKyEBWLBAu9cQBN5fqdTH/QWAGzeYJFcD+yBLYObMmcjIyFAvR48elTqkf1ueSt4I61rJeUu1nFM9KmmZ4P01TCX/7ry/hqmgQLwHvL+Gqb7ur648rdYTbEGuBTc3NyQkJGisS0hIgI2NTYWtxwBgamoKU1NT9WsrKyutxVhtMpm4aOO8JD3eX8PG+2vYtHV/Ae0lZ1R12ry/VG0G04IsCAIOHTqEffv2ISsrq16u2b17d4SHh2usO3jwILp3714v1yciIiKiuqeXCfLs2bPRr18/9WtBEDBw4EAMGDAAQ4cORbt27XDnzp1qnzc7OxsRERGIiIgAIJZxi4iIQGxsLACxa8TEiRPV+7/++uu4e/cuPvjgA9y4cQPff/89fv31V0yfPr12PyARERERSUYvE+Tff/8dXbp0Ub/eunUrwsPDsWjRIuzevRtKpRILatDh/fz58+jYsSM6duwIAJgxYwY6duyIefPmAQDi4uLUyTIA+Pj4YM+ePTh48CA6dOiAL7/8Ej/++CNLvBERERHpMb3sg/zw4UM0b95c/Xrbtm3w9fXFzJkzAQBvvPEGVq5cWe3z9u3bF0Il/bDKmyWvb9++uHTpUrWvRURERES6SS9bkI2MjNR1hAVBQHh4OAYNGqTe7urqiuTkZKnCIyIiIiI9ppcJsp+fH37++WekpaVh/fr1SElJwdChQ9Xb7927BycnJwkjJCIiIiJ9pZddLObNm4fhw4erk+CePXtqDNrbs2cPOnfuLFV4RERERKTH9DJBHjBgAC5evIiDBw/Czs4Oo0ePVm9LS0tDnz59MGLECAkjJCIiIiJ9pZcJMgD4+vrC19e3zHp7e3t8/fXXEkRERERERIZALxPkrKwspKenw8vLS73u0aNHWLVqFQoKCjBq1Ch2sSAiIiKiGtHLBPnVV19FdHQ0Tp8+DQDIzMxEt27d8ODBA8jlcixfvhxhYWHo27evtIESERERkd7RyyoWx48fx7Bhw9Svf/75Zzx69AgnT55EWloa2rdvj0WLFkkYIRERERHpK71MkJOTk+Hp6al+vWvXLvTq1QvdunWDtbU1Jk6ciL///lvCCImIiIhIX+llgmxnZ4f4+HgAQF5eHo4dO4aBAweqtxsZGSE3N1eq8IiIiIhIj+llH+QePXrg+++/R+vWrREWFob8/HyNsm43b97UaGEmIiIiIqoqvUyQly5dioEDB+K5554DAPznP/9B27ZtAQBKpRK//fabxtTTRERERERVpZcJcvPmzREVFYXIyEjY2trC29tbvS03NxffffcdOnToIF2ARERERKS39DJBBgBjY+Nyk2Bra2vOokdERERENaaXg/QAsfbxp59+ipCQEHTs2BFnz54FAKSmpuKrr77C7du3JY6QiIiIiPSRXrYgP3jwAEFBQbh//z5atGiBGzduIDs7GwDg4OCAH374Affu3cPy5csljpSIiIiI9I1eJsj/93//h6ysLERERMDFxQUuLi4a25955hns3r1bouiIiIiISJ/pZReLAwcO4J133oGvry9kMlmZ7U2bNsX9+/cliIyIiIiI9J1eJsh5eXlwdnaucHtWVlY9RkNEREREhkQvE2RfX1/89ddfFW7fsWMHOnbsWI8REREREZGh0MsE+b333sPmzZuxdOlSZGRkAABUKhVu376NCRMm4NSpU5g+fbrEURIRERGRPtLLQXrjx4/HvXv3MGfOHMyePRsAMGjQIAiCALlcjiVLluCZZ56RNkgiIiIi0kt6mSADwOzZszFhwgT8/vvvuH37NlQqFZo1a4aRI0eiadOmUodHRERERHpKbxNkAGjcuDG7UhARERFRndLLPsgXL17E999/X+H277//HhEREfUXEBEREREZDL1MkGfPno0///yzwu2HDh3CnDlzanz+FStWwNvbG2ZmZujatat6GuuKLFu2DK1atYK5uTm8vLwwffp05Ofn1/j6RERERCQdvUyQL1y4gN69e1e4vXfv3jh//nyNzr1lyxbMmDED8+fPx8WLF9GhQweEhIQgMTGx3P03bdqEjz76CPPnz8f169exdu1abNmyBbNmzarR9YmIiIhIWnqZIGdlZcHIqOLu03K5XF3+rbq++uorTJ06FZMnT4avry9WrVoFCwsLrFu3rtz9T548iZ49e2LcuHHw9vbGwIEDMXbs2Ce2OhMRERGRbtLLQXotWrTAgQMH8Pbbb5e7PSwsrEaVLAoLC3HhwgXMnDlTvU4ulyM4OBinTp0q95gePXrg559/xtmzZ9GlSxfcvXsXe/fuxYQJEyq8TkFBAQoKCtSvs7Ozqx2r3hEE8atCIS41JZMBcrl4DrlcfF16W3lLyX4l35e8Lvm+ZCk5Z+nXpZfH11V03ONL6Rjk/3wmLR3T47EDSEuXISoKePAASE8HVKqa/5MBQAtcQr/anYKIiKjB0MsE+eWXX8b06dMxY8YMzJs3D3Z2dgCA9PR0LFy4EGFhYfj888+rfd7k5GQolUq4urpqrHd1dcWNGzfKPWbcuHFITk5Gr169IAgCiouL8frrr1faxSI0NBQLFy6sdnx6rSQRVCrFpS4YGwNmZoC5OWBlJS42NoC9vbiYmdXNdepRXh5w5gxw86a0cVgqlcgHYAYgpzYfaIiIiPSQXibI77zzDiIiIrBs2TJ888038PDwAAA8evQIKpUKEyZMqLfyb0eOHMGSJUvw/fffo2vXrrh9+zbeffddfPLJJ5g7d265x8ycORMzZsxQv46IiEBQUFC9xGtQiorEJSsLKK+PuJUV4OQEuLoC7u7i93Ld7VUUFwf8+aeYJEstH4Dqn69EREQNjV4myDKZDOvXr8fEiRPx+++/4+7duwCAESNG4LnnnkPfvn1rdF4nJycoFAokJCRorE9ISICbm1u5x8ydOxcTJkzAK6+8AgBo164dcnJy8Oqrr2L27NmQl5OQmZqawtTUVP3aysqqRvHSE2Rni0tMjPja2Bjw8AC8vIAmTQBLS0nDK+32beDIkdp3pSAiIqLa08sEuUS/fv3Qr1/d9aw0MTFBQEAAwsPD1VNVq1QqhIeHY9q0aeUek5ubWyYJVvzzSFoo6XdLuqGoCLh3T1yOHwecnYGmTYFmzcTWZoncuiUmx/zvQkREpBv0MkGOjo7G1atXMXz48HK3//HHH2jXrh28vb2rfe4ZM2Zg0qRJCAwMRJcuXbBs2TLk5ORg8uTJAICJEyfC09MToaGhAIDhw4fjq6++QseOHdVdLObOnYvhw4erE2XSUUlJ4nLmjNiy3Lo14ONTu0GE1fTwIXD0KJNjIiIiXaKXCfL777+PzMzMChPkFStWwM7ODps3b672uUePHo2kpCTMmzcP8fHx8Pf3R1hYmHrgXmxsrEaL8Zw5cyCTyTBnzhw8fPgQzs7OGD58OBYvXlyzH46k8eiRuJiaAq1aAW3bAtbWWr1kZiZw8CC7VRAREekavUyQT506hffee6/C7f3798eyZctqfP5p06ZV2KXiyJEjGq+NjIwwf/58zJ8/v8bXIx1SUABcvgxcuSK2JnfoIHbFqGMqlTggr7Cwzk9NREREtaSXCXJaWhqsK2nds7KyQkpKSj1GRAZHEIC7d8WlUSOgUyeggoGaNXHmDJCcXGenk15JHxFjY8DEpObnMTISy/aVlAUUBM0FED9dlLwu+V6lKvs9ERFRDellgty4cWOcOHECb7zxRrnbjx07hkaNGtVzVGSwHjwQF09PMVF2d6/V6RISgKtX6yg2XVGS0BYV1a5ZvLBQPIeXl9gnvDa/xyqVWHP78a+ll+Jize8ff/34MaXPVdHyePL+2CIIgEr5z1cBgAAIqtp1QpfLTWFcqzMQEVFpepkgjx07Fp988gm6dOmCadOmqfsEK5VKfPfdd9iyZQtmz54tcZRkcB4+FBcXF7Hrhbe35kx+VaBScVDeExUV/dt67+YG9O4tTvxSXSUzGWpZbq5YTTAnR/w+NxfIzxfrWRcUiEtJ3l9UpJ3GbXfVJQxHxZMTERFR9ehlgjxz5kwcP34c7733HhYvXoxWrVoBAKKiopCUlIS+ffsyQSbtSUwUR9dZWwO+vuKgvirO2nf5sjh1NFVRfDywbRvQrZs4cFIiublAWpp47zIyxCUzU0yM62piSCIi0h16mSCbmpriwIED2LhxI7Zt24Y7d+4AALp06YLnnnsOEydOLHeCDqI6lZUldiY+d06ceKRVK7FLQAX/93JzgUuX6jnGx1Wx6doMUE81XaVjBKHarelVplQCJ06I2WmPHtq7DsQfIy1N7B+enAykpACpqWIrMBERNRx6mSADgFwux+TJk9X1iYkko1IB0dHiYmYmVr/w8RFrK5dKls+dEx+xV4WRkdiDw9NT7F1Q2897Jvf+mQilisllTnUvWHLe4cPFiVdqqrBQzErv3RPn3i6dnF+7Jv4D1nCmzPJkZ4ulsBMTxb7hycli12MiImrY9DZBJtJJ+fnA9eviYmIiZrheXki38MDNmzZPPFwuF3ttBASIJZnrjFML4MYNMSPUFisroEWL2p/HwwNo107sw3DhgjjVYImbN8VKGT17VuuUSqXYAJ2aKi4pKWIynJ9f+3CJiMjw6GWC/NRTTz1xH5lMhvDw8HqIhqgChYXqluW460CzTEvk2rgh39oZ+VZOyLd0hMr43yzYygoYMEArZZdFdZG81icbG6BfP6BlS3Eu7pwccf21a4CtLeDnp7F7YaGY/2dni7l1yZKeLvaG4cBIIiKqKr1MkFUqFWSPPSpWKpW4d+8e7t+/j+bNm8PT01Oi6Ig0lTzGN0IObJLuwCbpjnqb0sQchea2sHCzQZe2VjBNsgCyzMSuGsbG4rTXdTH1tUKBW3FWWmtAVirF1u/a9K4A/k1iSyqpFRcDxSpPKDuNhPGh/RASE1FcBBTdPoW4Tg7IsPRQV46oavcVIiKiJ9HLBPnx2exK2717N1599VV89dVX9RcQUSXu3694m6IwD65mefBzjIfRNe3FcKvYB63fHqC185cktgsXAv/Myl7HzCGTD0Oj1AOwTHsAQEBx8iEkBoyC0rhqFUSIiIiqyuBKPQwbNgzjx4+vdCpqovqSm1f5jHkWFmL1MiMtf1TNzhcvUNVuBiqVJVQqBVQqyyrtX3JebVZ7EBRGeOA7ELl2HgAAo8JcuN88qr0LEhFRg2VwCTIANGvWDOfOnZM6DCI8uF9xUmpkLCbHxvU4BZpMVrVFLPKmApBfjWO0ryRJLrSwAwBYpdyDTeLt+rk4ERE1GAaXIBcXF+PXX3+Fk5OT1KFQA1dYKJYPq0irloC5ef3FYyhURia433YQlP8McHS9cxKKIpajICKiuqOXfZCnTJlS7vr09HScPn0a8fHx7INMkouLr3haYU9PwNGxfuMxJEXmNohrEYRGkQegKMqHc/RZxLfsI3VYRERkIPQyQT506FCZKhYymQz29vbo1asXXnnlFQwcOFCi6IjExDjuUfnbzM3FSUCodrKdvJHm4Qv7R5GwS4hCmocvCqz45IiIiGpPLxPkmJgYqUMgqlRystjFojwtWtZN5TYCEn26wSrtAYzzMuF25yTudXha6pCIiMgAGFwfZCJdEBdX/npXV8DOtn5jMWSCwghxLcSuFeYZ8bBKjpE2ICIiMgh6kyDn5uYiNjYWheU0y61btw79+/eHr68vRo4cyQoWJKncXCAjo+x6hQLw9qn/eAxdrp0HMtxaAQCc753jlHlERFRrepMgf/zxx2jfvn2ZBHnRokWYOnUqjh49iqSkJOzYsQN9+/bF33//LVGk1NBV1HrcuDFgalK/sTQUid5doDIygWlOGsu+ERFRrelNgnz48GEMGzYMVlZW6nWZmZlYtGgRPD09cevWLSQlJeH06dMwMTHBp59+KmG01FCpVOWXdjM1FStXkHYoTcyR3LgTAMAp9iJbkYmIqFb0JkGOiYlB+/btNdbt3bsXhYWF+PDDD+HjIz677tKlCyZPnoxjx45JESY1cCkpQFFR2fVeXoBcb37b9FOqhx+KzKxhkpcB6+S7UodDRER6TG/esrOysuD4WOHYv/76CzKZDCEhIRrrfX19kZSUVJ/hEQEAEhLKrjMzA9zc6j+W2jGD+OfBTOpAqk4uR1KTQACAU+wliYMhIiJ9pjcJcpMmTXDjxg2NdUeOHIGrqyuaN2+usb6wsBA2Njb1GR4RCguBtPSy670a61/rsUKRA4VCCYUiR+pQqiXTpTkKLB1gmpMKy9RYqcMhIiI9pTdv2wMHDsS6detw5swZAMBPP/2EGzdu4Nlnny2z74ULF+DNmRioniUmAcJjM+eZmACuLtLE0yDJZEhuEgAAcHxwWeJgiIhIX+lNgjx37lxYWVmhR48eMDExwUsvvQRnZ2fMmzdPY7/c3Fxs374d/fv3lyhSaqgSy+le0aiR/rUe67ssJx8UWNrDIv0RTLNTpA6HiIj0kN7MpOfk5ISIiAj8+OOPuHv3Lpo0aYIpU6bAxUWzee7q1at48cUXMWHCBIkipYYoNw/IztZcZ2QEuLlLE09Dl+LVER43DsHh4RXEteordThERKRn9Kpty97eHv/3f/+HlStX4qOPPiqTHANiFYtvv/0Wbdu2rfF1VqxYAW9vb5iZmaFr1644e/Zspfunp6fjrbfegru7O0xNTdGyZUvs3bu3xtcn/VPemFBXV8CIU0pLItO5GYrMbWCTdAeKonypwyEiIj2jVwlyfdiyZQtmzJiB+fPn4+LFi+jQoQNCQkKQWF5xW4gDAgcMGICYmBhs3boVUVFRWLNmDTxZ9LZBeTxBlskADw9pYiEAMhlSPfwgUylhGx8ldTRERKRnmCA/5quvvsLUqVMxefJk+Pr6YtWqVbCwsMC6devK3X/dunVITU3Fjh070LNnT3h7eyMoKAgdOnSo58hJKjk5QO5jxR4cHABzc2niIVG6WyuojExgHxfJiUOIiKhamCCXUlhYiAsXLiA4OFi9Ti6XIzg4GKdOnSr3mF27dqF79+5466234OrqCj8/PyxZsgRKpbLC6xQUFCAzM1O9ZD/eeZX0SnJy2XXu7HssOUFhjDT3NjDOz4Jl2gOpwyEiIj3CBLmU5ORkKJVKuLq6aqx3dXVFfHx8ucfcvXsXW7duhVKpxN69ezF37lx8+eWXWLRoUYXXCQ0Nha2trXoJCgqq05+D6tfjCbKZGWBvL00spCnNvS0gk8Eu/saTdyYiIvqHXiTIu3btwqNHj6QOo1wqlQouLi5YvXo1AgICMHr0aMyePRurVq2q8JiZM2ciIyNDvRw9erQeI6a6lJsndrEozdVN7INM0is2s0K2Q2NYpd7jYD0iIqoyvUiQn332WRw5ckT9umnTpti1a1edX8fJyQkKhQIJj80XnJCQALcK5gp2d3dHy5YtoVD8W66gTZs2iI+PR2FhYbnHmJqawsbGRr1YWVnV3Q9B9SrlsdZjmVwfp5U2bGkebSFTqWCbcFPqUIiISE/oRYJsbW2N9PR09euYmBit9Ns1MTFBQEAAwsPD1etUKhXCw8PRvXv3co/p2bMnbt++DZXq3ynUbt68CXd3d5iYmNR5jKRbHu9eYW8HmPK265Qc+0YoMreBbQKrWRARUdXoxUQhXbp0weLFi5GQkABbW1sAwN69eyvsFwwAMpkM06dPr/a1ZsyYgUmTJiEwMBBdunTBsmXLkJOTg8mTJwMAJk6cCE9PT4SGhgIA3njjDXz33Xd499138fbbb+PWrVtYsmQJ3nnnnRr8pKRPCgqBrCzNdY91Xycdke7WGs7RZ2GanYwCKyepwyEiIh2nFwny999/j4kTJ+KTTz4BICa/mzZtwqZNmyo8pqYJ8ujRo5GUlIR58+YhPj4e/v7+CAsLUw/ci42NhbzU3MFeXl7Yv38/pk+fjvbt28PT0xPvvvsuPvzww2pfm/RL6mOzGBsZA46O0sRClUt3bQnnmHOwTbiFRCbIRET0BHqRIDdv3hwnT55Efn4+EhMT4e3tjWXLlmHEiBFaud60adMwbdq0creV7gtdonv37jh9+rRWYiHdlfJYguzsDMj1otNSw6M0sUC2Q2PYJN1BYtNuHEVJRESV0osEuYSZmRkaN26M+fPn46mnnkKTJk2kDokaKKUSKNUtHgDg4ixJKFRF6a6t0CjlHizTHiDHwUvqcIiISIfpVYJcYv78+ervs7Ozcf/+fQBidwdWhKD6kJYGlBqXCVMz4J/u8aSjsh0aQ2lsBpukO0yQiYioUnr7QPjcuXPo168f7O3t4efnBz8/P9jb2+Opp57C+fPnpQ6PDFxqquZrZ7Ye6z65HJnOzWCdEgOZquKZLomIiPSyBfnMmTPo27cvTExM8Morr6BNmzYAgOvXr+N///sf+vTpgyNHjqBLly4SR0qGKi1N8zUTZP2Q4dIC9o+uwTL1PrKdvKUOh4iIdJReJsizZ8+Gp6cnjh8/XmYCjwULFqBnz56YPXs2Dh48KFGEZMhycoCCgn9fm5sD1uzZoxfybVxQaG4Lm6Q7TJCJiKhCetnF4syZM3jttdfKnd3O1dUVr776KqtKkNawe4V+y3BtAevUe5Api6UOhYiIdJReJshyuRzFxRW/uSmVSo1axUR16fEE2ZFldfVKllNTyJTFsEx7IHUoRESko/Qyi+zRowdWrFiBe/fuldkWGxuL77//Hj179pQgMjJ0xUogs9TseWZm7F6hbwot7FBg5QjrlGipQyEiIh2ll32QlyxZgj59+qB169Z49tln0bJlSwBAVFQUdu7cCSMjI/VU0ER1KT0NEEqVd3Ni67FeynRuBsf7EYhTqTi7CxERlaGXCXLHjh1x5swZzJ49G7t27UJubi4AwMLCAoMGDcKiRYvg6+srcZRkiB6fHIQJsn7KdG4G5+izsEx/yJrIRAAgCICREWBsXLvzlJyjprNVVvW4ivarznVrOaNmQSFQXCROHFUbcqMMWALg/J66RS8TZADw9fXF9u3boVKpkJSUBABwdnZm32PSqtLl3UxMAGtr6WKhmisys0a+lROsU2KYIBMBYrJYXAwUFdXuPEVFYpkfKyvAwQFwcQE8PMTRzHo8xXtBAfDgAfDoEZCUJDaWVDIUqlociy9hJNNjnaO3CXIJuVwOV1dXqcOgBiA/H8jL+/e1g4Ne/71v8LKcfGD/6BrQorfUoRAZFpUKyMwUl5gYcZ25OeDjA7RsKSbNekAQgHv3gBs3xOS49OypZPj0PkEmqi9p6ZqvHRwkCYPqSJaTD5xjzsEsMxH5Nvrxhk2kt/LygMhIcXFyAtq3B5o108lWBpVKTIr//hvIynry/mSYmCATVVF6qe4VCgVgby9dLFR7hRZ2KLC0h3XqPSbIRPUpORk4dAi4cAHo3Blo2lTqiNSio4EzZ8TGb2rYmCATVVHpAXp2dmKSTPoty9EH1ikxSPLuLHUoRA1PRgbw55+AmxvQu7ekrQ7Z2cDx40BsrGQhkI7hiDaiKsjJ0Ry7wtZjw5Dt2ASmOakwzudzVCLJxMcDv/8utihL0NH31i1g61Ymx6SJCTJRFbD/sWHKt3ZGsaklrFL5zkgkKZVKTJB37qy3/g1KJXD0KHD4MFBYWC+XJD2i110sIiMjcffuXaSlpUEQhDLbJ06cKEFUZIgy0v/93sJSnEGPDEOWYxNYpt5HmkdbqUMhoqQkYNs2oG9fwNtba5fJzQX27xcvR1QevUyQ79y5g/Hjx+Ps2bPlJsYAIJPJmCBTnRAEsatcCbYeG5ZshyZodP0gZMpiCAq9/JNIZFgKC4EDB4DAQKBTpzo/fWoqsG+f2HWOqCJ6+W7w2muv4cqVK1i2bBl69+4Ne3YIJS3KytIsCO/A/24GJcfOEwJksMh4hByHxlKHQ0Qlzp8XWyeCgupsSvj4eCAsjF0q6Mn0MkE+ceIEZs2ahbffflvqUKgBKN3/WKEAbGwkC4W0QS5Hjr0nrFLvM0Em0jW3bok1lAcOFKexroWHD8VuFXU1Ax4ZNr0cpOfk5ARbW1upw6AGonT9Yzu7OmvIIB2S7dAYVqn3pA6DiMrz4AGwZ0+tmn0fPhRbjpkcU1Xp5Vv966+/jp9//hlKpVLqUMjAFSuBzFIVwNibxzBlOzSGcX42TLNTpA6FiMqTkADs3VujJDk+Xmw5ZspA1aGXXSxatmwJpVKJDh06YMqUKfDy8oKinFkbRo4cKUF0ZEgy0gGhVFlOOybIBklpYoECK0dYpd5DgZWj1OEQUXkSE8UkeehQwNi4SoekprLlmGpGLxPk0aNHq79///33y91HJpOxhZlqLa1U9wozM8DCXLpYSLuyHRrDOjkGKY3rftQ8EdWRxESxwsWgQU+czjQnR6xWwQF5VBN6mSAfPnxYq+dfsWIFPv/8c8THx6NDhw749ttv0aVLlycet3nzZowdOxYjRozAjh07tBoj1Y+0x/ofk+HKdmgMx9hLMCrIQbGppdThEFFFHj4UZ/cIDq5wl+JiseWYpdyopvQyQQ4KCtLaubds2YIZM2Zg1apV6Nq1K5YtW4aQkBBERUXBxcWlwuNiYmLw/vvvo3fv3lqLjepXbp44eLoE+x8btjxrFyhNzGGdEsNJQ4h03d27wKlTQPfu5W4+dAhI4ZACqgW9HKRXWmRkJPbt24d9+/YhMjKy1uf76quvMHXqVEyePBm+vr5YtWoVLCwssG7dugqPUSqVePHFF7Fw4UI0bdq01jGQbkhN1XzNFmQDJ5P9080iWupIiKgqrlwBynnfv3ABiImp/3DIsOhtgrxz5040a9YM7dq1w7BhwzBs2DC0a9cOzZs3x65du2p0zsLCQly4cAHBpR7byOVyBAcH49SpUxUe9/HHH8PFxQUvv/xyla5TUFCAzMxM9ZKdnV2jeEm70kolyJaWVR4TQnosy6EJLDLioCjKlzoUIqqKkyfFLhf/iI0VE2Si2tLLBHnv3r147rnnAABLlizB9u3bsX37dixZsgSCIGDkyJEICwur9nmTk5OhVCrh6uqqsd7V1RXx8fHlHnP8+HGsXbsWa9asqfJ1QkNDYWtrq1602WWEakap1Jxemq3HDUOOfSMIcgWsUmKkDoWIqkKlAsLDgawsZGeLXZOJ6oJeJsiffPIJ2rdvj8uXL+PDDz/E008/jaeffhoffvghLl++jHbt2mHhwoVajyMrKwsTJkzAmjVr4OTkVOXjZs6ciYyMDPVy9OhRLUZJNZGeLv7dLcEEuWEQFEbItm8EG3azINIf+flQhR1A+P5iFBRIHQwZCr0cpHf58mUsWbIElpZlR5pbWlripZdewqxZs6p9XicnJygUCiQkJGisT0hIgJubW5n979y5g5iYGAwfPly9TvVPVmVkZISoqCg0a9aszHGmpqYwNTVVv7aysqp2rKRdpQd3yGQAJ25sOLIdveF26y/IiwqgMjZ98gFEJLl7F1NglHcY8B0gdShkIPSyBdnMzAypj4+gKiU1NRVmZmbVPq+JiQkCAgIQHh6uXqdSqRAeHo7u5YyUbd26Na5cuYKIiAj18vTTT6Nfv36IiIiAl5dXtWMg3VD6v5e1NWCklx8lqSayHL0BANYpbEUm0gfpGeJs1NbJ0XCOOSd1OGQg9PJt/6mnnsLy5csxaNCgMonrmTNn8M0332DgwIE1OveMGTMwadIkBAYGokuXLli2bBlycnIwefJkAMDEiRPh6emJ0NBQmJmZwc/PT+N4u3+exT++nvRHZqZmYXmWd2tYVEYmyLX1gE3SHWS4tZY6HCKqRFEREHUDEATxtWPsJRSZWiHdvY20gWlRoFKJeABuAM4/YbIUqjm9TJA/++wzdO/eHb169UKXLl3QqlUrAEBUVBTOnj0LFxcXLF26tEbnHj16NJKSkjBv3jzEx8fD398fYWFh6oF7sbGxkMv1suGdqujx2pnsf9zwZDo3hfutY1AU5kFpwukTiXRVVBTK9Dt2u30cxcbmyHbyliQmbYsH8PCJe1Ft6WWC7OPjg8uXLyM0NBT79u3Dli1bAABNmjTBu+++i48++qjSST2eZNq0aZg2bVq5244cOVLpsRs2bKjxdUk3pJTqXmFkJHaxoIYl29EbuHUMNsl3OWkIkY66F1u2Xj0AQBDgeSMc99sOQq69Z73HRYZBLxNkAHBxccHXX3+Nr7/+WupQyIDk5gG5paYmtbUD+MCg4VEamyHHzhM2ibeYIOsjmazs14q+r+xrZd9Xtu4fxcXiohKqGf/jl1BYwgxAxVdqeFJTgdh7FW+XqZTwityPWL/ByLN1r7/AyGDobYJMpA0pyZqv7e0kCYN0QKZzM7jfPArjvAwUmbOMCQRBM7msCZlMfCxjZCTOvGNmBlhYiDPxWFmJ5WIcHMT1JfuXd47KvkpApQLi48UlOVksE5mVJdZTrwuOyksYiTl1czIDkJsL3CjV77giMmUxGl/dxySZakQvEuQpU6ZAJpNh9erVUCgUmDJlyhOPkclkWLt2bT1ER4YkKUnztYODNHGQ9LIcveEmPwbbhFtI9g6UOhzpyWRiRvKkrKQygiCOgC0ZBVt6Np7SLCwAJyfA2RlwcwNcXXWulIxSKU5nfPcucP++2FKsKyyVSuQDMAOQY2CDuIqKgGvXqv7vXZIkP2gzADkOrCxFVadbf3EqcOjQIcjlcqhUKigUChw6dAiyJ7QWPGk70ePy84HSs35bWPzbkEUNj8rYFDn2XrBNZIJc73JzxTmDY2PF13K5mCR7eQGNG0v6yTU7G7h6tfzBYboiH4Dqn6+GRKUCIiOBvLzqHSdTFqNR5H7EtQhCpmsL7QRHBkcvEuSYmJhKXxPVheTHulew9ZgyXJrD83o4LNIfIdfOQ+pwGi6VCoiLE5ezZ8WuGD4+QPPm9faLmpUFXLgA3L6tOcsm1Q9BELtVVPTQ4UlkKhU8og7DuCALKY071W1wZJD0IkF+XGxsLJydnWFuXn75pby8PCQlJaFx48b1HBnpM3avoMdlO3pDZWQC24QoJsi6JCMDiIgQF0dHoHVroEULwMSkzi9VWAhcvCi2GjMxls6tW2UbMWrCOeY8zHJS8ahlXwgKvUyBqJ7o5fh8Hx8fbN++vcLtu3btgo+PTz1GRPouL09sISqhUAA2NtLFQ7pBkCuQ5eQDm+RoyIsLn3wA1b+UFODECeDnn4G//qqg7lfN3L0L/PorcPkyk2Mp3b4tDoCsK9ZJd+FzaRtMctLq7qRkcPQyQRaeMEikqKiIk3lQtSQ+1npsb8/ybiTKcGkBmbIYNom3pQ6FKlNcLD6D37oV2LtX7I5RQ/n5wJ9/iktubh3GSNV26zbw6FHdn9ckNx0+l7bB/uHVuj85GQS9eb6QmZmJ9PR09euUlBTElgzgKCU9PR2bN2+GuztLulDVJT+WIDs6ShMH6Z5cOw8UmVnDPi4S6R6+UodDVfHggbi4uQGBgYBH1bvHPHoEHDrExFhqKhVw8xaQmKC9a8hUSrjeOQmb5LuIa9EHhRZ22rsY6R29SZC//vprfPzxxwDEChXvvfce3nvvvXL3FQQBixYtqsfoSJ9lZwM5pSYHkcnY/5g0pbu1gnPMeZhnxCPP1k3qcKiq4uOB3bsBT0+gSxexbFwlLl0Czp+vXSU7qr1iJXDjep32lqmUeUY8fC5uRZp7WyQ37gSVsWnVjjMHTE3FLnm1YVsy8LCK//HcSn+tyjElNcypWvQmQR44cCCsrKwgCAI++OADjB07Fp06aY5ElclksLS0REBAAAIDWZaJqibhsRYKGxtxDgOiEhmureB87wLs4yKZIOujhw+B7dsBb2+xRfmxT8DFxcCRI2KfY5JWfr5Y57h0o0V9kKlUcHh4BXYJUUj1bIc0j7ZQGv9b59PMDGjUSHwY4ewsFlKps9Lct6yAj4CqzpV4vrr9/0qSYyur6h3XwOlNgty9e3d0794dAJCTk4PnnnsOfn5+EkdF+k6lYvUKerJiU0vk2DeCdfJdKAq7Q2lSfgUd0nExMeLi7Q34+wMuLsjLA8LCyv4doPqXmgrciAKKi6SLQV5cCKd7F+D44G9kuTaHbZdW8OnmCk9PLTbCtmgh9p8vXYi/rllZidehKtObBLlEbm4uvvnmG1hYWDBBplpLS/93Uq8Sjk6ShEI6Ls2tDSxT78P+0TVOHKLv/kmUc23cEJ7ghyQzHz6ClpBKBURHiw39ukChANzdi+HZ6AZMU28Af1mJH6o8PcUJa7Qwg9QttIAW02NYAWB6XD16lyBbWFjAyMgIlpaWUodCBiDhsdJBlpaABRsHqRzZjk1QbGoJ+7hIpHj5s4aqnsvJAa6cjodtYTwsTS2R7toKGW6tUGRmLXVoFatiH1UzQD3VdJX7qEokI0OscawLgyJlMjH/beINmJYuqV0yfeLVfypeWFqKfSysrMTa27XshHwr1hStx3RAVbtY1NSNG2xErg69/Av/3HPPYevWrXjjjTc4pTTVWEEhkPLYIBAnth5TRWQypLm3gXPMedgm3kK6exupI6IaysoGrl4Biv55lG9UkAOn2Itwir2IXFt3ZLo0R5aTj0Yf1KqQy8USkXZ2gLW1OIjL2Lj2JSONY6yAUKCqCVROTfqoCgLQp4/YUlpTgiD+o+bmioXlU1OB9PRyE/D8fLEhPzGx5perS5aWYvJYpfr3OTl12kk6O9YREDpAgHYeZJSM0dNmDw5DpJcJ8pgxY/Dmm2+iX79+mDp1Kry9vcudVe/xQXxEpSUmAMJjxf+ZIFNl0t1awyn2IhweXEa6W2s+ltdD2dnAlSsV93O1yIiDRUYc3G4fR66NG7IdmyDb3guFlvbl7u/kBDRpIj59d3aufUWDcrXU4z6qRUViNZH794HoaOQl5+DBQ/HpnS5MviKTiYPvmjSRvva9TFa1PylKZSCAeABuUCjOazusBksvE+S+ffuqvz927FiZ7YIgQCaTQalU1mNUpG8en5nJwkJsRSCqiNLEApnOzWCbcAs2SXeQ6dJc6pCoGnJzK0+ONQiCOll2wWkUm1gg19YdebZukLm6wLuTA1q2UdTfjJv6+mzc2BjF7l64V+iFW5k9kPLoEeyKImGFGMggbYZsbCzOUm5f/mcfHRYPQEc6bBswvUyQ169fL3UIpOdSU8XppUtj6zFVRapne9gm3ILj/QgmyHokP19MjotqWCHBqDAX7rl34OV4B04yQH5FDsTaitmVjY24WFqK/SpK+lYYG9fZU4Zbt/SjAbmoSOx9kJkpVgZJSBAnNVS3V9l6IMfWA0b52XB8EAG7+BuQSdCUbGUF+PpqZbwdGQi9TJAnTZokdQik58qbuvQJcwgQAQAKrByRa+cBi/RHsE6ORpaTj9Qh0RMUFYnjqwoKana8ubnYNVfjb4RKBaSliUtl6uC5/a0EG7Se9zy0OYhLEIBPPhEHqdVGVXPdYjMrJDTvhVTP9nCJOQvrpPorQu3gALRpo6XuMGQw9DJBLi07Oxv3798HAHh5ecGKhbDpCXLzys7QZGnJ7hVUdSmNOsAi/RGcY84hy9GbfZF1mFIJREbWrEqCQgE0biz2L65xnlsHraPZeQpAQJUHcalUliipYyGXP3kwWckYury8+u8XXGRug4dtgmHp9gBut4/DOC9Tq9dzcxNbyvkrS08icZf0mjt37hz69esHe3t7+Pn5wc/PD/b29njqqadw/jw7rVPFHpXTdYutx1QdOQ5eyLdygkluOmwTb0kdDlVApQKuXxdLiVWXvT0QEAB4eUk/eKtEySCuJy1icqwCkF+NY6SVY98IdzuNQpqHr9au4ekJtGypGz8v6T69bEE+c+YM+vbtCxMTE7zyyito00Yst3T9+nX873//Q58+fXDkyBF06dJF4khJ1xQVlZ1aGmCCTNWX0rgjPCMPwuneeWQ6NWVdZB2jUomFHx5/WvQkCgXg4yNOKUz1S1AYIaF5L+TYe8H95hEoimrYJ6Ycnp5As2Z1djpqAPTyL/rs2bPh6emJ48ePw83NTWPbggUL0LNnT8yePRsHDx6UKELSVQ8flhos8g8bG7GPIVF1ZDn5oMDSHqY5aXB4eBkpjfWnrKSlUqmeSCLHADtiqlRAVBSQnFy94ywsxL6p7G4lrWzHJojpOBKNIg/ANDul1udz92ByTNWnIw+OqufMmTN47bXXyiTHAODq6opXX30Vp0+fliAy0mXFSuBRXNn1tR2UQg1XchNxymmn+xEwytefKvz/PoA3PCoVcP2GWEGhOpydAf+OTI51RZGZNWI6jKj1IFhnZ6AFi81QDehlgiyXy1FcXFzhdqVSCbmudBojnRH3qGz9U7mc3Suo5rKcfJBn4wKZshiud09KHU6DV6wErl4DUqrZctykidhybGR4jel6TVAY4WGbYKR6tqvR8Xb2QKtWdRwUNRh6mUX26NEDK1aswL1798psi42Nxffff4+ePXtKEBnpquJi4P6DsusdHQEjvexoRLoiyVsc62CdHAPr5GiJo2m4CguBy38D6U+oulaaTC4mUE2aaC8uqiWZDInNuiPJp3pjiiwsAd82ujPAkvSPXv7XWbJkCTIyMtC6dWuMGzcOCxYswIIFCzB27Fi0bt0aGRkZCA0NrfH5V6xYAW9vb5iZmaFr1644e/ZshfuuWbMGvXv3hr29Pezt7REcHFzp/iSNhw/Lnz2rnF46RNWSa+eBLCdvAIDr7RNQFBlixwXdlp0NXIqo3kQaCgXg15ZdrPRFipc/EppXreHL2Fi8t4bb+OEGwPOfr6Qtevnfp2PHjjhz5gxmz56NXbt2IfefApcWFhYYNGgQFi1aBF/fmpWK2bJlC2bMmIFVq1aha9euWLZsGUJCQhAVFQUXF5cy+x85cgRjx45Fjx49YGZmhqVLl2LgwIG4du0aPD09a/VzUt0oLAQelNN6bGamj1OMki5K9OkGq9T74mxrN4/iQdsQqUNqMBKTgFs3yw6+rYyREdC2LWBrq724qO6lebSFABncbh+vcB+ZXOwuY8gz5CkULGVbH/SyBRkAfH19sX37dmRmZiIuLg5xcXHIzMzEtm3bapwcA8BXX32FqVOnYvLkyfD19cWqVatgYWGBdevWlbv/L7/8gjfffBP+/v5o3bo1fvzxR6hUKoSHh9c4Bn0QqFSikVKJwOq8K0kkJqb8N09393oPhQxUkbkNUhu1BwBYpdyD/cOrEkdk+FQq4M4d4Mb16ifHfn5MjvVVuocvEpp1r3C7jw9gZ1d/8ZDh0tsEuYRMJtNYaqOwsBAXLlxAcHCwep1cLkdwcDBOnTpVpXPk5uaiqKgIDg4OFe5TUFCAzMxM9ZJdneeCOiIewMN/vuqyrOzy6x7L5IALH61SHUpu3AmFFnYAAJfo07BIL2c+c6oTOTlARITYdao6FAoxObax0UpYVE/SPNshuZyyik5OQCM+uKU6orcJcmRkJEaNGgUbGxu4u7vD3d0dNjY2GDVqFK5erVnrTXJyMpRKJVwf65Tm6uqK+PiqpYIffvghPDw8NJLsx4WGhsLW1la9BAUF1SheqpwgALdv/TuNamlOjoCpSf3HRIZLkCsQ16IPIJNBplLB8/pBGOfVYAo3qpBKBcTGAhcvVa+/MSAmx20bTHJsBvHt3XD7GSR7ByLdvY36tbm5OEseUV3Ryz7Ix44dw+DBg6FSqTBixAi0/Oe3IioqCrt27cK+ffsQFhaG3r1712tcn376KTZv3owjR47ArJIOUDNnzsSMGTPUryMiIpgka8HDh0BWVvnb2D2ctCHP1g0pjTrA8X4EFEUFaHJ5N+51eBpFZtZSh6bBDFBPFKIv0tLELhX/DDmpFpkcaN0GsGsg3SoUihypQ6gX8c17waggB9bpsWjd2pAH5ZEU9PK/0/Tp0+Hi4oKjR4/Cy8tLY9v9+/fRp08fzJgxA+fOnavWeZ2cnKBQKJDw2DP5hISEciclKe2LL77Ap59+ij///BPt27evdF9TU1OYmpqqX1tZWVUrTnqy3FygnCqAAABr64bSikRSSGoSCIuMRzDPTIRpcQ5a3PgDSYGDAXt7GBuLLZkKhVh+Si4HatkzDABgV/KXvLzHJeXIKV37qirHCIIYaOPGQIsW1Q+wNKVSrLtYWAjk5wN5eUBBxVMKZ2WJ4wjSqlG+7XEtWwCOFfd6I30lk+Fhm/4YkLMT1tbVnFOc6An0MkG+du0aPvnkkzLJMQB4eXnhjTfewIIFC6p9XhMTEwQEBCA8PBzPPPMMAKgH3E2bNq3C4z777DMsXrwY+/fvR2BgYLWvS3VLpQKuVzJwh63HVFsKhfhBy8rq38XSUpyq2NxcDrNngmEeth2KwjwA2YB8JxDwlJhgakOjfz5k10W2XZ6ShLpfv9onyOVRKsVMODMTSE8H0tKQfDMFj66mIj1FVatTN2vGUm6GrHFTY3j3CAG2bxc/cBHVEb1MkJs0aYKCSlocCgsLy02eq2LGjBmYNGkSAgMD0aVLFyxbtgw5OTmYPHkyAGDixInw9PRU11leunQp5s2bh02bNsHb21vdV9nKyootwxK5fVscxFMeMzNxIAdRVZiZAQ4OYjlAe3ux8oGtrZgMV56LWgFDQoA//hCTv8JCICxMrD/VpQtQ6glSnWjRArhxo/odc6vDyko7yTEgfuKws0M67HA3uTFuxgGZAiBro4RZdjLMM+JhmfEIFhlxkCkrnkX1cT4+/EBsyKytxc9sMLEGgoOBvXvFFhKiOqCXCfK8efMwffp0DB06FP7+/hrbLl26hG+//RbLli2r0blHjx6NpKQkzJs3D/Hx8fD390dYWJh64F5sbKzGNNYrV65EYWEhRo0apXGe+fPn16gVm2rn/n2gsvGUjRpxZiUqn5WVOO24s7P4IcrBQWwRrjEXF2DAAODAgX/ftK9fFzvS+vqKI4rqsB7VLbSANuvhWAGoy/RYpRIbjJOTxUoz9++Lr0sT5Ark2bgiz8YVqV4dIFMpYZ4RD+vUe7BKiYFxfsU/sY8PUMN2EtIDRkZASAhgUjLY2sMD6NUL+OsvSeMiw6GXCfLp06fh6uqKgIAA9OjRA82bNwcA3Lp1C6dOnYKfnx9OnTqlUZpNJpNh+fLlVTr/tGnTKuxSceTIEY3XMTExNfoZdFYV+zC6lf5anT6MWpSQAERXMtOviQkftZLI0lKcZtzJ6d+kuFbJcEUaNxZbtsLD/+3zU1go1iiLiBAvamcntqDWwq0EG7R+uWqzjNVEya/46tW1a5EVBPHHz8sTn/JUt7FPkCuQa++JXHtPJDTrAfPMBNgk3oZN0h2NGQybNWPLsaHr21f8EKuhdWvxU1ZEhAQRkaHRywT5u+++U39/4sQJnDhxQmP7lStXcOXKFY111UmQGySr6vVhPF/dZtiS8w4fLr571ZRKJS5FRRqDfGKu5eBGQhaMzTIrbFVq1KjWeQjpEZlMTITt7MRuESXdJBwc6r6HQ6W8vYGhQ8WW5Mf7SObm1qwsw2Oy48VZb6r6OVSlskRJHQu5/MkVD0rOGxOjW0+wS1qXE5p2h3XqPdgnXEdHpwf8IGzgOncGmjatYGOXLuKnr1u36jUmMjx6mSCrdOkvtKHQ0z6MKhVw8iQQWQDgn+IhMmUxTHPTYJqTAvOsJJhnJsC6OA0eHlVrHSfdJ5eL/YPNzcXF0vLfxdr63wF0OvOByM0NGDVKfPwbG6u1y8hkVf2Mmw9ABSC/Svtr+eFP7cnlKPDwQbtJPnC1zgSuXgWiosQP0mRQWrUCOnZ8wk5BQWJlFC3+rpHh08sEmbREWwNwtOTBAzE5Tk/XXC8ojJBv7Yx8a2dkuLUGAPTqUgi5Q7x40IMHZQ+iWil5BG9qKiasNVWSiMnl/5ZDUygAY+N/F1NT8WvpMmkl36tUYjGEnJx/S6mVLqtmZKR53pLXRkb10DfdwgIYNOifmS4uAomJWr5gw2FjI/7Til26bYAePYDAQODaNeDKFVY3MBCNGwNVmt5ALhf7/4eFVX+6RaJ/6HWCHB0djX379uHePwVvmzRpgsGDB8PHx0fiyPTTrVvaa0AuKhKTkNr0rgDExCcpSYw1tYplL+3sgNbtTQB543/LbGVkiIWS795lolIHShLbggKxf6k+KkmmSyfNpZPp0ktJQl7ZUtKaW7KUJOAyWWOgRWPI3TNhnPgQiqz0imsSVtEjk4Zb2NvLC3jqqXK6zZiYiE2N7dqJifLffzNR1mPu7mJ3/ip/kFUoxFF8YWHAI077TtWntwnyf/7zHyxfvrxMdwu5XI733nsPX3zxhUSR6adbt8TxDdpS0sK4cGH9D5Tr3r2cP6q2tkD79uKSmSnWhrt5s+wwemowSndvrx82/yy1F19YJ6fRK3I5EBBQhcftRkZAhw5i5ZBr14DLl5ko6xlXV/EJQbVnyjMyEg88cEB8ckhUDXpZ8OrLL7/E119/jZEjR+LUqVNIT09Heno6Tp06hVGjRuHrr7/G119/LXWYeqWk5biKRSygUgVCpWoElapqE6OUnLeS8tVa0bhxFUo92dgAnToBY8aIg6maNmUtOCIdZmcHPP10FZLj0oyNAX9/YNw4sRyYbQOZd1rPubkBQ4aIt69GSpLkCkf1EZVPL1uQ16xZg6effhq//vqrxvquXbti8+bNyM/Pxw8//IDp06dLFKH+qvogn3gAD9XHVOW89c3YWHwfrBZPT3HJyRFbmyIjxWoZRCQ5uVx86BMQUIsBmEZGYmuyr6/YH/zaNbF1saqtA1RvvLzErsTVbjl+nFwO9O8vjuJ9rMIVUUX0MkGOiYnBu+++W+H2kJAQhIWF1WNEpIs6d/63el21WVqK5YI6dhST5MuX9bdzLZEB8PISu0vV4dwq4iOmxo3FR2g3b7KblQ5p1UockFdnD/NkMvE/kK2tOLqb1bDoCfQyQXZxccHff/9d4fa///4bzs7O9RgR6RpPT6Bt2zo4kbGx2H+xbdt/E+U6qFtLRFXj5iYWpPDw0OJFrKzEbladOomDdu/eFYs+M1mudzKZ2DbRoYOWLuDrKxZD//NP/i2nSullgvz8889j+fLl8Pb2xttvvw1LS0sAQE5ODr777jv8+OOPeO+996QNkiRjbi6Oaq/Tbh1GRuKzXT8/cUTj5ctAWlodXoCoPpmhZKIQXSSXiw277duLCXK9cnERl27dxN/x+/fFLhjx8UBxcT0H07CYmYl/uxs10vKFSuqSHznCWslUIb1MkD/55BNERERg1qxZmDdvHjz+aVp49OgRiouL0a9fP3z88ccSR0lSKOlqVptavE+8QKtW4vLokdh/8d49Pq4jvaJQPHn2PCm4uIhjqZo319LU39VVMv1i+/bi73hystjCnJQEpKSI9dT5u18nPD3F6aP/ae/SPjMzcfDe9evA6dOcVIbK0MsE2cLCAuHh4di5c6dGHeRBgwZhyJAhGD58OGQ6P/UTaUOfPlp+FFuah4e45OWJrco3b1a9ODNRA2dmJvYndnISy3h5eorrtEkQqrYA/+a9/66TA2YuELxcIJS0cKpUYjeMrEwgKxuy3BzI8nKBwgLICgvFFmelEkDtBgDmGNtCAGCI72omJmKXCl9fiQJo00Z8XHHyJBAdLVEQpIv0LkHOzc3F+PHj8dxzz+HFF1/EiBEjpA6JdESPHkDLlhJc2Nz835rKqali/8XoaHbBIIMiCGKXfBOTmp9DJhN7K5mYiFUoiovFngtxcUBEhGYhiZLvy/taWSL7+KJSae5ft+QA7P5ZtCfWABs3ZTLx73XnzjrwtMDSUiyXERcHnDnDyaMIgB4myBYWFvjzzz8xePBgqUNp4Nwe+yoduVws56bNiU6qzMFBXAIDxZalkv6LcXEsF0d6TSYTn0LX9r9xQYFYRZEaJplM7EbTqZPYe0WnuLsDzzwj/s2+fJmTizRwepcgA0CvXr1w6tQpTJ06VepQGiyF4rzUIQAQB5/371//s/NViY2NWP2ibVux+SolBUhIEPsvJiez/yIRNRjW1kCLFmJDRo3Lb9aXRo3EJT1d7Dp35w6QlSV1VFTP9DJB/u677xASEoI5c+bg9ddfRyOtD3klXWNiIhaU8PevgyLy9UEmg+DoBMHBCULrfx75KlUQMjKBjAzxj292tlh2KC8PQn4BZMVFYv9FpbLWly+S1+K5OBFRNVlY/Nu/3MtL/F7v2NmJHaS7dBG7zD18KDZypKSIf7Pr4G8z6S59SC3K6NChA4qLixEaGorQ0FAYGRnB1NRUYx+ZTIaMjAyJIqTHlfT/MzWt+UAcmUzs7mtvL46NUyjE7r6P900s/X1lfRJLf338e6Xy3+9LL+WtL31c6XVP7v9YP/0XASCbDdVEVIm67GNuZib+fc7PF4v8/DOOvspx1MU+T9qv+n3S7f9Z/MQ/3baAvCAPiuKCWj8JvGukMNhBmPpMLxPk5557jlUq9EzJ7SooEP9o1lRenjgO7s6duomLiIjYx7xmzP9ZaieF5bV1kl4myBs2bJA6BCIiIiIyUHqVIOfn52Pnzp2Ijo6Gk5MThg4dCnd3d6nDIiIiIiIDojcJcmJiInr06IHo6GgI/3QesrCwwI4dOxAcHCxxdERERERkKORSB1BVn3zyCWJiYjB9+nTs3r0by5Ytg7m5OV577TWpQyMiIiIiA6I3LcgHDhzAxIkT8cUXX6jXubq6Yty4cYiKikKrVq0kjI6IiIiIDIXetCDHxsaiV69eGut69eoFQRCQkJAgUVREREREZGj0JkEuKCiA2WMFdEteFxezRgoRERER1Q29SZABICYmBhcvXlQvly9fBgDcunVLY33JUlMrVqyAt7c3zMzM0LVrV5w9e7bS/X/77Te0bt0aZmZmaNeuHfbu3VvjaxMRERGRtPSmDzIAzJ07F3Pnzi2z/s0339R4LQgCZDIZlDWYBnLLli2YMWMGVq1aha5du2LZsmUICQlBVFQUXFxcyux/8uRJjB07FqGhoRg2bBg2bdqEZ555BhcvXoSfn1+1r09ERERE0tKbBHn9+vX1cp2vvvoKU6dOxeTJkwEAq1atwp49e7Bu3Tp89NFHZfZfvnw5Bg0ahP/7v/8DIFbbOHjwIL777jusWrWqXmImIiIiorqjNwnypEmTtH6NwsJCXLhwATNnzlSvk8vlCA4OxqlTp8o95tSpU5gxY4bGupCQEOzYsaPC6xQUFKCgoED9Ojs7u3aB16Hqz09f9fNydnDp8f4aNt5fw6bN+0vS4++vbtGbBLk+JCcnQ6lUwtXVVWO9q6srbty4Ue4x8fHx5e4fHx9f4XVCQ0OxcOHC2gdch6ysxK/a+iUqOW+PHkCTJtq5BlWspNAL769hun9f/Mr7a5gaNdJugiOTiUkU76806uP+Av++z1PVMEGWwMyZMzVanSMiIhAUFCRhRECLFsCNG4A2G7OtrMTrUP1r25b315Dx/ho23l/Dxvurm5ggl+Lk5ASFQlGmrnJCQgLc3NzKPcbNza1a+wOAqakpTE1N1a+tdORjHX95DBvvr2Hj/TVsvL+GjfdX9+hVmTdtMzExQUBAAMLDw9XrVCoVwsPD0b1793KP6d69u8b+AHDw4MEK9yciIiIi3cYW5MfMmDEDkyZNQmBgILp06YJly5YhJydHXdVi4sSJ8PT0RGhoKADg3XffRVBQEL788ksMHToUmzdvxvnz57F69WopfwwiIiIiqiEmyI8ZPXo0kpKSMG/ePMTHx8Pf3x9hYWHqgXixsbGQy/9teO/Rowc2bdqEOXPmYNasWWjRogV27NjBGshEREREekomCCzwIrWLFy8iICAAFy5cQKdOnaQOh4iIiKhBYx9kIiIiIqJSmCATEREREZXCPshUY3FxcYiLi5M6DCIiogbF3d0d7u7uUodh0Jgg6wB3d3fMnz9fr/6zFxQUYOzYsTh69KjUoRARETUoQUFB2L9/v8acClS3OEiPaiQzMxO2trY4evSozkx0QnUnOzsbQUFBvL8GivfXsPH+GraS+5uRkQEbGxupwzFYTJCpRkoSZP6CGibeX8PG+2vYeH8NG+9v/eAgPSIiIiKiUpggExERERGVwgSZasTU1BTz58/nAAEDxftr2Hh/DRvvr2Hj/a0f7INMRERERFQKW5CJiIiIiEphgkxEREREVAoTZCIiIiKiUpggk+RiYmIgk8mwYcMGqUMhIiIiYoKsb+7cuYPXXnsNTZs2hZmZGWxsbNCzZ08sX74ceXl5WrtuZGQkFixYgJiYGK1doyoWL16Mp59+Gq6urpDJZFiwYIGk8UhFJpNVaTly5Eitr5Wbm4sFCxZU61y8T7Wny/f4xo0b+OCDD+Dv7w9ra2u4u7tj6NChOH/+fK1jaSh0+f4+evQI48ePR6tWrWBtbQ07Ozt06dIFGzduBMf1V40u39/H/fLLL5DJZJx18TFGUgdAVbdnzx48//zzMDU1xcSJE+Hn54fCwkIcP34c//d//4dr165h9erVWrl2ZGQkFi5ciL59+8Lb21sr16iKOXPmwM3NDR07dsT+/fsli0Nq//3vfzVe//TTTzh48GCZ9W3atKn1tXJzc7Fw4UIAQN++fat0DO9T7enyPf7xxx+xdu1aPPfcc3jzzTeRkZGBH374Ad26dUNYWBiCg4NrHZOh0+X7m5ycjAcPHmDUqFFo3LgxioqKcPDgQbz00kuIiorCkiVLah2TodPl+1tadnY2PvjgA1haWtY6DkPDBFlPREdHY8yYMWjSpAkOHToEd3d39ba33noLt2/fxp49eySM8F+CICA/Px/m5uZ1fu7o6Gh4e3sjOTkZzs7OdX5+fTF+/HiN16dPn8bBgwfLrJcK71Pt6fI9Hjt2LBYsWKDR4jRlyhS0adMGCxYsYIJcBbp8f9u3b1+mNXLatGkYPnw4vvnmG3zyySdQKBTSBKcndPn+lrZo0SJYW1ujX79+2LFjh9Th6BR2sdATn332GbKzs7F27VqN5LhE8+bN8e6776pfFxcX45NPPkGzZs1gamoKb29vzJo1CwUFBRrHeXt7Y9iwYTh+/Di6dOkCMzMzNG3aFD/99JN6nw0bNuD5558HAPTr16/Mo6GSc+zfvx+BgYEwNzfHDz/8AAC4e/cunn/+eTg4OMDCwgLdunWrVSIvZeu1vlGpVFi2bBnatm0LMzMzuLq64rXXXkNaWprGfufPn0dISAicnJxgbm4OHx8fTJkyBYDYP7wkwV24cKH63j+pywTvU/2Q6h4HBASUeRzr6OiI3r174/r163X7QzZgUv4Ol8fb2xu5ubkoLCys9c9G0t/fW7du4euvv8ZXX30FIyO2lz6O/yJ64o8//kDTpk3Ro0ePKu3/yiuvYOPGjRg1ahT+85//4MyZMwgNDcX169exfft2jX1v376NUaNG4eWXX8akSZOwbt06vPTSSwgICEDbtm3Rp08fvPPOO/jmm28wa9Ys9SOh0o+GoqKiMHbsWLz22muYOnUqWrVqhYSEBPTo0QO5ubl455134OjoiI0bN+Lpp5/G1q1b8eyzz9bdPxCV8dprr2HDhg2YPHky3nnnHURHR+O7777DpUuXcOLECRgbGyMxMREDBw6Es7MzPvroI9jZ2SEmJgbbtm0DADg7O2PlypV444038Oyzz2LkyJEAxBYmkp6u3eP4+Hg4OTnV6c/YkEl9f/Py8pCTk4Ps7GwcPXoU69evR/fu3bXydLAhkvr+vvfee+jXrx+GDBmCX3/9Vas/q14SSOdlZGQIAIQRI0ZUaf+IiAgBgPDKK69orH///fcFAMKhQ4fU65o0aSIAEP766y/1usTERMHU1FT4z3/+o17322+/CQCEw4cPl7leyTnCwsI01r/33nsCAOHYsWPqdVlZWYKPj4/g7e0tKJVKQRAEITo6WgAgrF+/vko/nyAIQlJSkgBAmD9/fpWPMWRvvfWWUPrX+dixYwIA4ZdfftHYLywsTGP99u3bBQDCuXPnKjx3bf6teZ/qjq7e4xJ//fWXIJPJhLlz59b4HA2ZLt7f0NBQAYB66d+/vxAbG1utc5BI1+7v7t27BSMjI+HatWuCIAjCpEmTBEtLy2r8RIaPXSz0QGZmJgDA2tq6Svvv3bsXADBjxgyN9f/5z38AoEwXB19fX/Tu3Vv92tnZGa1atcLdu3erHKOPjw9CQkLKxNGlSxf06tVLvc7KygqvvvoqYmJiEBkZWeXzU/X89ttvsLW1xYABA5CcnKxeSh6NHz58GABgZ2cHANi9ezeKiookjJiqS5fucWJiIsaNGwcfHx988MEHWrlGQ6ML93fs2LE4ePAgNm3ahHHjxgGAVqslNSRS3t/CwkJMnz4dr7/+Onx9fevknIaICbIesLGxAQBkZWVVaf979+5BLpejefPmGuvd3NxgZ2eHe/fuaaxv3LhxmXPY29uX6QdVGR8fn3LjaNWqVZn1JV0zHo+D6s6tW7eQkZEBFxcXODs7ayzZ2dlITEwEAAQFBeG5557DwoUL4eTkhBEjRmD9+vVl+qqT7tGVe5yTk4Nhw4YhKysLO3fuZKmoOqIL97dJkyYIDg7G2LFj8csvv6Bp06YIDg5mklwHpLy/X3/9NZKTk9WVL6h87IOsB2xsbODh4YGrV69W6ziZTFal/SoajSxUo94l+6TpFpVKBRcXF/zyyy/lbi8Z1CGTybB161acPn0af/zxB/bv348pU6bgyy+/xOnTp5ns6DBduMeFhYUYOXIkLl++jP3798PPz6/G5yJNunB/Hzdq1CisWbMGf/31V5knhlQ9Ut3fjIwMLFq0CG+++SYyMzPVT6izs7MhCAJiYmJgYWEBFxeX2v2ABoAJsp4YNmwYVq9ejVOnTqF79+6V7tukSROoVCrcunVLYyBdQkIC0tPT0aRJk2pfv6rJ9uNxREVFlVl/48YN9XbSjmbNmuHPP/9Ez549q/ThpVu3bujWrRsWL16MTZs24cUXX8TmzZvxyiuv1Ojek/ZJfY9VKhUmTpyI8PBw/PrrrwgKCqrJj0EVkPr+lqek5TgjI6NOzteQSXV/09LSkJ2djc8++wyfffZZme0+Pj4YMWIES76BXSz0Rkkh71deeQUJCQlltt+5cwfLly8HAAwZMgQAsGzZMo19vvrqKwDA0KFDq339kiLi6enpVT5myJAhOHv2LE6dOqVel5OTg9WrV8Pb25t9n7TohRdegFKpxCeffFJmW3Fxsfo+pqWllXlS4O/vDwDqR3gWFhYAqnfvSfukvsdvv/02tmzZgu+//149cp7qjpT3Nykpqdz1a9euhUwmQ6dOnap0HqqYVPfXxcUF27dvL7P069cPZmZm2L59O2bOnFnzH8yAsAVZTzRr1gybNm3C6NGj0aZNG42Z9E6ePInffvsNL730EgCgQ4cOmDRpElavXo309HQEBQXh7Nmz2LhxI5555hn069ev2tf39/eHQqHA0qVLkZGRAVNTUzz11FOVPob56KOP8L///Q+DBw/GO++8AwcHB2zcuBHR0dH4/fffIZdX//PZf//7X9y7dw+5ubkAgL/++guLFi0CAEyYMIGt0v8ICgrCa6+9htDQUERERGDgwIEwNjbGrVu38Ntvv2H58uUYNWoUNm7ciO+//x7PPvssmjVrhqysLKxZswY2NjbqD1rm5ubw9fXFli1b0LJlSzg4OMDPz6/Sx+m8T9on5T1etmwZvv/+e3Tv3h0WFhb4+eefNbY/++yznJmrlqS8v4sXL8aJEycwaNAgNG7cGKmpqfj9999x7tw5vP3222XGt1D1SXV/LSws8Mwzz5RZv2PHDpw9e7bcbQ2WlCU0qPpu3rwpTJ06VfD29hZMTEwEa2troWfPnsK3334r5Ofnq/crKioSFi5cKPj4+AjGxsaCl5eXMHPmTI19BEEs0TZ06NAy1wkKChKCgoI01q1Zs0Zo2rSpoFAoNEq+VXQOQRCEO3fuCKNGjRLs7OwEMzMzoUuXLsLu3bs19qlOmbegoCCNskOll/JK0DUUj5cQKrF69WohICBAMDc3F6ytrYV27doJH3zwgfDo0SNBEATh4sWLwtixY4XGjRsLpqamgouLizBs2DDh/PnzGuc5efKkEBAQIJiYmFSpnBDvU93TpXs8adKkCu8vACE6Orouf/QGQZfu74EDB4Rhw4YJHh4egrGxsfp9Zv369YJKparTn7uh0KX7Wx6WeStLJgjVGIlFRERERGTg2AeZiIiIiKgUJshERERERKUwQSYiIiIiKoUJMhERERFRKUyQiYiIiIhKYYJsYD777DO0bt0aKpVK6lBqbcyYMXjhhRekDkOn8P4aNt5fw8b7a/h4jw2I1HXmqO5kZGQIDg4Owrp169Tr8E9d0i+++KLM/uvXrxcACOfOnavzWIKDgwUAwltvvVXu9h9//FFo3bq1YGpqKjRv3lz45ptvyuxz8eJFQS6XCxEREXUenz7i/TVsvL+GjffX8PEeGxa2IBuQdevWobi4GGPHji2z7fPPP1fPaqZt27Zt05he+nE//PADXnnlFbRt2xbffvstunfvjnfeeQdLly7V2K9jx44IDAzEl19+qe2Q9QLvr2Hj/TVsvL+Gj/fYwEidoVPdad++vTB+/HiNdQAEf39/AYDw5ZdfamzTxqfXvLw8wdvbW/j444/L/fSam5srODo6lpl578UXXxQsLS2F1NRUjfVffPGFYGlpKWRlZdVZjPqK99ew8f4aNt5fw8d7bFjYgmwgoqOjcfnyZQQHB5fZ1rNnTzz11FP47LPPkJeXp9U4PvvsM6hUKrz//vvlbj98+DBSUlLw5ptvaqx/6623kJOTgz179misHzBgAHJycnDw4EGtxawPeH8NG++vYeP9NXy8x4aHCbKBOHnyJACgU6dO5W5fsGABEhISsHLlykrPU1BQgOTk5Cotj4uNjcWnn36KpUuXwtzcvNzzX7p0CQAQGBiosT4gIAByuVy9vYSvry/Mzc1x4sSJSuM2dLy/ho3317Dx/ho+3mPDYyR1AFQ3bty4AQDw8fEpd3vv3r3Rr18/fP7553jjjTcq/OX53//+h8mTJ1fpmoIgaLz+z3/+g44dO2LMmDEVHhMXFweFQgEXFxeN9SYmJnB0dMSjR4801hsZGcHLywuRkZFVislQ8f4aNt5fw8b7a/h4jw0PE2QDkZKSAiMjI1hZWVW4z4IFCxAUFIRVq1Zh+vTp5e4TEhJSo0cphw8fxu+//44zZ85Uul9eXh5MTEzK3WZmZlbu4yd7e/tyPy03JLy/ho3317Dx/ho+3mPDwwS5AenTpw/69euHzz77DK+//nq5+7i7u8Pd3b1a5y0uLsY777yDCRMmoHPnzpXua25ujsLCwnK35efnl/upWhAEyGSyasXUEPH+GjbeX8PG+2v4eI/1CxNkA+Ho6Iji4mJkZWXB2tq6wv3mz5+Pvn374ocffoCdnV2Z7Xl5ecjIyKjSNd3c3AAAP/30E6KiovDDDz8gJiZGY5+srCzExMTAxcUFFhYWcHd3h1KpRGJiosYjnsLCQqSkpMDDw6PMddLS0tCiRYsqxWSoeH8NG++vYeP9NXy8x4aHg/QMROvWrQGII2krExQUhL59+2Lp0qXlPkrZsmWL+hPsk5YSsbGxKCoqQs+ePeHj46NeAPEX18fHBwcOHAAA+Pv7AwDOnz+vcd3z589DpVKpt5coLi7G/fv30aZNm2r9exga3l/Dxvtr2Hh/DR/vseFhC7KB6N69OwDxP3n79u0r3XfBggXo27cvVq9eXWZbTfo/jRkzpswvFQA8++yzGDJkCKZOnYquXbsCAJ566ik4ODhg5cqVGDJkiHrflStXwsLCAkOHDtU4R2RkJPLz89GjR49qxWRoeH8NG++vYeP9NXy8xwZIqgLMVPf8/PyEsWPHaqxDBVNNBgUFqafA1MY0l5Vde8WKFQIAYdSoUcKaNWuEiRMnCgCExYsXl9n3iy++ECwsLITMzEytxKhPeH8NG++vYeP9NXy8x4aFCbIB+eqrrwQrKyshNzdXva6iX5DDhw9L9sspCIKwevVqoVWrVoKJiYnQrFkz4euvvxZUKlWZ/bp27VpmZqKGivfXsPH+GjbeX8PHe2xYmCAbkPT0dMHBwUH48ccfpQ6lTly6dEmQyWTCpUuXpA5FJ/D+GjbeX8PG+2v4eI8Ni0wQHqs0TXpt6dKlWL9+PSIjIyGX6/cYzDFjxkClUuHXX3+VOhSdwftr2Hh/DRvvr+HjPTYcTJCJiIiIiErR7483RERERER1jAkyEREREVEpTJCJiIiIiEphgkxEREREVAoTZCIiIiKiUpggExERERGVwgSZiIiIiKgUJshERERERKUwQSYiIiIiKoUJMhERERFRKUyQiYiIiIhKYYJMRERERFQKE2QiIiIiolKYIOuAuLg4LFiwAHFxcVKHQkRERNTgMUHWAXFxcVi4cCETZCIiIiIdwASZiIiIiKgUJshERERERKUwQSYiIiIiKoUJMhERERFRKUyQiYiIiIhKYYJMRERERFQKE2QiIiIiolKYIBNRuYqLi6UOgYiISBJMkImoXEyQiYiooWKCTETlUiqVUodAREQkCSbIRFQuJshERNRQ6WSCHBcXh7///hs5OTlSh0LUYLGLBRERNVQ6lSDv3LkTrVu3RqNGjdCpUyecOXMGAJCcnIyOHTtix44d0gZI1IAwQSYiooZKZxLkP/74AyNHjoSTkxPmz58PQRDU25ycnODp6Yn169dLGCFRw1JUVCR1CERERJLQmQT5448/Rp8+fXD8+HG89dZbZbZ3794dly5dkiAyooapsLBQ6hCIiIgkoTMJ8tWrV/HCCy9UuN3V1RWJiYn1GBFRw5afny91CERERJLQmQTZwsKi0kF5d+/ehaOjYz1GRNSwMUEmIqKGSmcS5H79+mHjxo3lDgyKj4/HmjVrMHDgQAkiI2qYWEWGiIgaKp1JkBcvXowHDx6gc+fO+OGHHyCTybB//37MmTMH7dq1gyAImD9/fr3EsmLFCnh7e8PMzAxdu3bF2bNnK91/2bJlaNWqFczNzeHl5YXp06ez9Y30XnZ2NmshExFRg6QzCXKrVq1w/PhxODo6Yu7cuRAEAZ9//jmWLFmCdu3a4dixY/D29tZ6HFu2bMGMGTMwf/58XLx4ER06dEBISEiF/Z83bdqEjz76CPPnz8f169exdu1abNmyBbNmzdJ6rETaJAgCUlNTpQ6DiIio3hlJHUBpbdu2xZ9//om0tDTcvn0bKpUKTZs2hbOzc73F8NVXX2Hq1KmYPHkyAGDVqlXYs2cP1q1bh48++qjM/idPnkTPnj0xbtw4AIC3tzfGjh2rruFMpM8SEhLq9fePiIhIF+hMC3Jp9vb26Ny5M7p27Vqvb86FhYW4cOECgoOD1evkcjmCg4Nx6tSpco/p0aMHLly4oO6GcffuXezduxdDhgyp8DoFBQXIzMxUL9nZ2XX7gxDVkQcPHkgdAhERUb3TmQT5m2++QUhISIXbBw8ejJUrV2o1huTkZCiVSri6umqsd3V1RXx8fLnHjBs3Dh9//DF69eoFY2NjNGvWDH379q20i0VoaChsbW3VS1BQUJ3+HER15eHDh5wwhIiIGhydSZDXrl0LX1/fCrf7+vpi9erV9RhR1Rw5cgRLlizB999/j4sXL2Lbtm3Ys2cPPvnkkwqPmTlzJjIyMtTL0aNH6zFioqpTKpWIiYmROgwiIqJ6pTMJ8p07d9CmTZsKt7du3Rp37tzRagxOTk5QKBRISEjQWJ+QkAA3N7dyj5k7dy4mTJiAV155Be3atcOzzz6LJUuWIDQ0FCqVqtxjTE1NYWNjo16srKzq/Gchqis3b96UOgQiIqJ6pTMJsomJSYXdGAAgLi4Ocrl2wzUxMUFAQADCw8PV61QqFcLDw9G9e/dyj8nNzS0Tl0KhACBWASDSdw8fPkRaWprUYRAREdUbnUmQu3Xrhg0bNiArK6vMtoyMDKxfvx7dunXTehwzZszAmjVrsHHjRly/fh1vvPEGcnJy1FUtJk6ciJkzZ6r3Hz58OFauXInNmzcjOjoaBw8exNy5czF8+HB1okyk7y5fvix1CERERPVGZ8q8zZ8/H0FBQfD398d7772Htm3bAgCuXr2KZcuWIS4uDps2bdJ6HKNHj0ZSUhLmzZuH+Ph4+Pv7IywsTD1wLzY2VqPFeM6cOZDJZJgzZw4ePnwIZ2dnDB8+HIsXL9Z6rET15ebNm+jQoQPs7OykDoWIiEjrZIIO9QM4ePAgXnvtNcTExEAmkwEQuyn4+Phg5cqVBjvV9MWLFxEQEIALFy6gU6dOUodDBADYt28f7t+/r37t6emJIUOGqH83iYiIDJXOtCADwIABA3D79m1cunRJPSCvWbNm6NSpE9+UiST28OFDXLlyBe3bt5c6FCIiIq3SqQQZECfmCAgIQEBAgNShENFjzpw5Axsbm3qZ9p2IiEgqOpcgR0ZG4u7du0hLSyu3CsTEiRMliIqIALHLU3h4OPr3788kmYiIDJbOJMh37tzB+PHjcfbs2QrLo8lkMibIRBJTKpU4ePAgevXqVWntciIiIn2lMwnya6+9hitXrmDZsmXo3bs37O3tpQ6JqMEKDAxETEwMLC0tMXv27DLbBUHAsWPHkJ6ejq5du2q9RjkREVF90pkE+cSJE5g1axbefvttqUMhavDi4+ORkpICpVJZ6X5XrlxBSkoKgoODYWZmVk/RERERaZfONPs4OTnB1tZW6jCIqJoePXqE7du3Izk5WepQiIiI6oTOJMivv/46fv755ye2WBGR7snKysLOnTtx+/ZtqUMhIiKqNZ3pYtGyZUsolUp06NABU6ZMgZeXV7lTNY8cOVKC6IjoSZRKJQ4dOoTU1FR07tyZtcuJiEhv6UyCPHr0aPX377//frn7yGQytjAT6biIiAhkZmaiX79+5X7IJSIi0nU6kyAfPnxY6hCIqI7cvXsX+fn5CAkJgbGxsdThEBERVYvOJMhBQUFSh0BEdejRo0fYu3cvBg8eDBMTE6nDISIiqjKdGaRXoqCgAKdOncLOnTs5Kp5IzyUkJGDfvn0oLCyUOhQiIqIq06kE+ZtvvoG7uzt69eqFkSNH4vLlywCA5ORkODk5Yd26dRJHSETVlZCQgP3793P8ABER6Q2dSZDXr1+P9957D4MGDcLatWs1ppt2cnLCU089hc2bN0sYIRHVVFxcHMLDwyucRp6IiEiX6EyC/OWXX2LEiBHYtGkThg8fXmZ7QEAArl27JkFkRFQXYmJicOrUKanDICIieiKdSZBv376NwYMHV7jdwcEBKSkp9RgREdW1q1ev4urVq1KHQUREVCmdSZDt7OwqHZQXGRkJNze3eoyIiLTh1KlTiI2NlToMIiKiCulMgjxkyBCsXr0a6enpZbZdu3YNa9aswdNPP13/gRFRnRIEAeHh4axSQ0REOktnEuRFixZBqVTCz88Pc+bMgUwmw8aNGzF+/HgEBgbCxcUF8+bNq5dYVqxYAW9vb5iZmaFr1644e/Zspfunp6fjrbfegru7O0xNTdGyZUvs3bu3XmIl0kdFRUXYt29fuR+IiYiIpKYzCbKHhwcuXLiAQYMGYcuWLRAEAf/973/xxx9/YOzYsTh9+jScnJy0HseWLVswY8YMzJ8/HxcvXkSHDh0QEhKCxMTEcvcvLCzEgAEDEBMTg61btyIqKgpr1qyBp6en1mMl0obY2Fjk5OQAEOuSp6amauU6eXl52LNnDzIyMrRyfiIiopqSCTpQd6mgoAD79++Ht7c32rdvDwBISkqCSqWCs7Mz5PL6y+O7du2Kzp0747vvvgMAqFQqeHl54e2338ZHH31UZv9Vq1bh888/x40bN2o8pe7FixcREBCACxcuoFOnTrWKn6imzp49i08++QR79uzRKMcmk8nQrl07DB06FN7e3nV+XUtLSwwbNgy2trZ1fm4iIqKa0IkWZBMTEzz//PM4efKkep2zszNcXV3rNTkuLCzEhQsXEBwcrF4nl8sRHBxcYXmqXbt2oXv37njrrbfg6uoKPz8/LFmyhJMikF7Ztm0bevbsiX379pWpVSwIAq5evYqlS5fi4sWLdX7tnJwc7NmzB9nZ2XV+7tTUVLz44ouwsbGBnZ0dXn755Sdep2/fvpDJZBrL66+/rt6+YcOGMttLloqeNBERkX7RiQRZJpOhRYsWkg/aSU5OhlKphKurq8Z6V1dXxMfHl3vM3bt3sXXrViiVSuzduxdz587Fl19+iUWLFlV4nYKCAmRmZqoXbSQGRFV19uxZjB49GkqlssIPdiqVCiqVCmvWrEFMTEydx5CdnY2wsDAUFxdX+9i+fftiw4YN5W578cUXce3aNRw8eBC7d+/GX3/9hVdfffWJ55w6dSri4uLUy2effabeNnr0aI1tcXFxCAkJQVBQEFxcXKodPxER6R6dSJABYNasWfjuu+8QFRUldSjVolKp4OLigtWrVyMgIACjR4/G7NmzsWrVqgqPCQ0Nha2trXoJCgqqx4iJNC1atAiCIFR5ljttDUBNTU3FhQsX6ux8169fR1hYGH788Ud07doVvXr1wrfffovNmzfj0aNHlR5rYWEBNzc39WJjY6PeZm5urrFNoVDg0KFDePnll+ssdiIikpaR1AGUOH36NBwdHeHn54e+ffvC29sb5ubmGvvIZDIsX75cazE4OTlBoVAgISFBY31CQkKFNZjd3d1hbGwMhUKhXtemTRvEx8ejsLAQJiYmZY6ZOXMmZsyYoX4dERHBJJkkERsbi927d1c5OVapVLh8+TJSU1Ph4OBQ5/FERkYiMDBQ4/eppk6dOgU7OzsEBgaq1wUHB0Mul+PMmTN49tlnKzz2l19+wc8//ww3NzcMHz4cc+fOhYWFRbn7/vTTT7CwsMCoUaNqHTMREekGnUmQSwbFAUB4eHi5+2g7QTYxMUFAQADCw8PxzDPPABATgvDwcEybNq3cY3r27IlNmzZBpVKp+0vfvHkT7u7u5SbHAGBqagpTU1P1aysrq7r9QcigFBcXa61Pe1hYWJWT4xKCIOD69evo0aNHncdTWFiI+Pj4OqkCEx8fX6bLg5GRERwcHCrsMgUA48aNQ5MmTeDh4YHLly/jww8/RFRUFLZt21bu/mvXrsW4cePKfKAnIiL9pTMJskqlkjoEAMCMGTMwadIkBAYGokuXLli2bBlycnIwefJkAMDEiRPh6emJ0NBQAMAbb7yB7777Du+++y7efvtt3Lp1C0uWLME777wj5Y9BBqK4uBiRkZHIy8vTyvlv3LgBuVxerd8/mUyGzMxM5ObmaiWmqKgouLq6wsio/D9PS5YswZIlS9Sv8/LycPr0aY0PsZGRkTW+fuk+yu3atYO7uzv69++PO3fuoFmzZhr7njp1CtevX8d///vfGl+PiIh0j84kyLpi9OjRSEpKwrx58xAfHw9/f3+EhYWpB+7FxsZqVNbw8vLC/v37MX36dLRv3x6enp5499138eGHH0r1I5ABUSqVyMvLg7GxcYVPJGrD3t6+2h9OBUGAubm5VirMCIKgHixYUYL8+uuv44UXXlC/fvHFF/Hcc89h5MiR6nUeHh5wc3MrU1WiuLgYqamp1Zq2vmvXrgCA27dvl0mQf/zxR/j7+yMgIKDK5yMiIt2ncwny6dOncfjwYSQmJuLNN99EixYtkJubixs3bqBly5b10h1h2rRpFXapOHLkSJl13bt3x+nTp7UcFTVkJiYmWkmQe/bsCZlMVq1uFjKZDK1atdJaCUZLS8tKtzs4OGj0fzY3N4eLiwuaN2+usV/37t2Rnp6OCxcuqBPYQ4cOQaVSqZPeqoiIiAAgjjcoLTs7G7/++qv6aRIRERkOnaliUVhYiJEjR6Jnz56YPXs2vvnmG9y/fx+AWIt44MCBWu1/TNTQZGdn48yZM2jcuDFkMlmVjilJju3s7LQSU0lViLrQpk0bDBo0CFOnTsXZs2dx4sQJTJs2DWPGjIGHhwcA4OHDh2jdurV6Ovk7d+7gk08+wYULFxATE4Ndu3Zh4sSJ6NOnj3oSoxJbtmxBcXExxo8fXyfxEhGR7tCZBHnu3LnYvXs3Vq5ciaioKI0WLTMzMzz//PPYuXOnhBESGY7o6Gj88ssvuH//vkaVhyeRyWTo3r07UlJSUFhYWKcxGRkZoWnTpnV6zl9++QWtW7dG//79MWTIEPTq1QurV69Wby8qKkJUVJS6P7WJiQn+/PNPDBw4EK1bt8Z//vMfPPfcc/jjjz/KnHvt2rUYOXKk1j4sEBGRdHSmi8X//vc/vPHGG3j11VeRkpJSZnubNm3w22+/SRAZkeEoLi7G8ePH1d0GAMDHxwfz5s3D4sWL1X2AH1fSnWLkyJHw8PCASqVCWloaLCwsYGVlVeUW6IrIZDL4+/vD1NS02pOFlNftqYSDgwM2bdpU4XZvb2+ND+NeXl44evRola5beuZPIiIyLDqTICcmJqJdu3YVblcoFFobNU/UEKSmpmLfvn1ISkpSr2vatCkGDBgAc3Nz+Pn54fvvv8eRI0c0kkaZTAZfX1+EhITA09MTmZmZKCoqAgDk5uaisLAQNjY2MDY2rlFcMpkMHTp0gKOjY523ShMREdWEziTIXl5euHHjRoXbT5w4UWYQDhE9mSAIiIyMxJEjR9SJrUKhQO/evdGhQwd162/79u2xatUqPHr0CCNGjEBmZibMzc3x4YcfagyKs7e3R25urnqK9JLKEFZWVrCwsKhWa7JcLoe/vz+cnZ3r8CcmIiKqHZ3pgzxu3Dj88MMPOHXqlHpdyRvtmjVr8Ouvv2LixIlShUeklwoKChAWFoaDBw+qk2N7e3uMGTMG/v7+5SazHh4e6kkvTExMysyYJ5PJYGlpCQcHB41SbNnZ2UhPT6/ypCZGRkbo3Lkzk2MiItI5OtOCPHv2bJw+fRp9+vRBmzZtIJPJMH36dKSmpuLBgwcYMmQIpk+fLnWYRHojPj4ee/fuRWZmpnqdn58fgoKCatwdojRjY2M4ODggOztb3f2psLAQKSkpsLa2hpmZWYWtyWZmZggICOAskkREpJN0JkE2MTFBWFgYfvnlF2zduhVKpRIFBQVo3749Fi1ahAkTJtR6IBBRQyAIAi5cuICTJ0+qJwExMTFBcHAwWrZsWafXkslksLa2hqmpKTIyMqBSqSAIAjIzM1FQUAAbG5sy9ZItLS0RGBgIMzOzOo2FiIiorkiWIM+YMQMTJkxAx44dAYgz1Dk7O2P8+PGsK0pUQzk5Odi/fz9iY2PV69zc3DB48GDY2tpq7bomJiZwdHREVlYW8vPzAYjdO1JSUmBjYwNTU1MAYveOjh071kkLNhERkbZI1gd52bJluH79uvq1j48Ptm/fLlU4RHovOjoaP//8s0Zy3LlzZzz//PNaTY5LyOVy2NrawtbWVv20R6VSIT09HZmZmXBxcUFAQACTYyIi0nmStSC7urri7t276tfVmeqWiP5VXFyMkydP4uLFi+p1lpaWGDRoELy8vOo9HjMzMxgbGyMzM1Ndti01NRWXL1+Gh4cHXF1d6z0mIiKi6pAsQR46dCg+/vhjHDhwQD0T1ZdffonNmzdXeIxMJuNsekSlpKWlYd++fUhMTFSv8/HxwYABA2BhYSFZXAqFAnZ2dsjLy0NiYiLy8vKQl5eHLVu2oGvXrujcuXOZvslERES6QrIEefny5XBxccHhw4dx7do1yGQy3L9/H6mpqRUew0F6RP+KjIzE4cOHNWob9+rVq8LybfVNJpOha9euMDMzQ1hYGBITE6FSqXDq1CnExMQgJCSE0zQTEZFOkixBtrS0xJIlS9Sv5XI5li1bhnHjxkkVEpFeKCwsxKFDhzQm1rG3t8fgwYPh4uIiYWSa2rRpAw8PDwDA6NGjcebMGZw7dw6CICAuLg6//PIL+vTpAz8/P51I6ImI9EVOTg4sLS2lDsOgSfaMc+TIkTh27Jj69eHDhzFgwACpwiHSCwkJCfjll180kmNfX1+MHTtWp5JjLy8vNG7cWP1aoVCgR48eGgMGi4qKEB4ejj/++AM5OTlShUpEpHdKnhyS9kiWIO/cuVNjtP1TTz2FgwcPShUOkU4rqW28ZcsWZGRkABBLqw0aNAgDBw6EiYmJxBH+y87ODq1bty53m4eHB1588UX4+fmp1929exc///wz7ty5U18hEhHpNSbI2idZguzp6YlLly6pXwuCwMesROXIy8vD7t27cezYMfXEH66urnjxxRcrTESlYm5uDn9//0oH4JVMWjJ8+HD1lNZ5eXn4448/NPpUE1HNsTKUYSsuLoZSqZQ6DIMmWR/kMWPG4IsvvsCvv/6qHqjz0UcfITQ0tMJjZDIZ/v7773qKkEh6N27cwK5du9STbwBAYGAgunfvDoVCIWFkZZmamiIwMFA9KciTNGvWDO7u7vjzzz/VJR+vX7+O+/fvw8nJSeeSfyJ9kpeXJ2klG9K+/Px89kPWomolyD4+PtVu5ZXJZOU+Og0NDUXz5s1x+PBhJCYmQiaTwdLSEo6OjtU6P5EhKi4uxq5du/Dnn3+q11lYWCAkJARNmjSRMLLymZmZoXPnztV+Q7awsMDw4cNx7do1HD16FEVFRcjOzsa3336LkJAQDBkyBEZGkn2OJ9JbbEE2fByop13VeucJCgoqkyCfP38e165dg6+vL1q1agUAiIqKQmRkJPz8/BAQEFDuuRQKBV599VW8+uqrAMQqFnPmzGEVC2rwkpKSsG7dOty7d0+9rnHjxhg0aJBOtghZWFggMDBQ3V2iumQyGfz8/NCoUSPs27cPCQkJEAQBYWFhuHbtGl566SW4u7vXcdREhq2kOxYZruzsbJ0anG1oqtUHecOGDVi/fr16GTFiBB48eICDBw/i6tWr+P333/H777/j6tWr2L9/P+7fv49nnnmmSueOjo6u8r7atmLFCnh7e8PMzAxdu3bF2bNnq3Tc5s2bIZPJdObnIP1z9uxZhIaGqpNjhUKBwMBADB06VCeTY3Nzc3Tu3LnGyXFpdnZ2ePbZZ9GxY0d1H+b79+/j008/xeHDh/mGT1QN/H0xfFlZWVKHYNBqNUhv3rx5ePvtt9G/f/8y2wYMGIBp06Zhzpw5VTpXkyZNdCIB2LJlC2bMmIH58+fj4sWL6NChA0JCQjRmKitPTEwM3n//ffTu3bueIiVDkp+fj40bN2LDhg3q/sbOzs5499130bZtW50cwGpsbIzAwECYmZnV2Tnlcjnat2+P9957Tz0ldVFREX777Td89913SE9Pr7NrERkyJsiGjwmydtUqQb5161alfYYdHR0rLN0kl8thZGSEwsJC9WuFQlHpUh99Eb/66itMnToVkydPhq+vL1atWgULCwusW7euwmOUSiVefPFFLFy4EE2bNtV6jGRYYmNj8emnn+LMmTPqdd26dcPMmTPh5eUlYWSVa9eundY+1Hp5eWHmzJno27evet2NGzewaNEiXLhwQSvXJDIkxcXFUodAWpaZmSl1CAatVhlns2bNsH79erz88suwsrLS2JaVlYV169ZVmDDOmzcPMplMnfSWvJZSYWEhLly4gJkzZ6rXyeVyBAcH49SpUxUe9/HHH8PFxQUvv/yyxuQnFSkoKEBBQYH6dXZ2du0CJ72kUqlw+PBh7NixQ12ux9TUFGPHjkWXLl0AQOP/iS7x9PSEs7OzVq9hYmKCF154AX5+fvjvf/+LjIwM5ObmYu3atbh8+TJGjx6tE0+diHRRSeMTGS4+UdOuWiXIixYtwqhRo9C6dWu89NJLaN68OQCxZXnjxo1ISEjAb7/9Vu6xCxYsqPS1FJKTk6FUKtWPdku4urpqzFxW2vHjx7F27VpERERU+TqhoaFYuHBhbUIlPZeVlYWffvoJ165dU69r3LgxpkyZovODLhQKBVq0aFFv1/P19cWcOXPwv//9DxcvXgQAnDt3Drdu3cKkSZPUg4OJ6F+lS0OSYcrOzkZ+fn6ddnOjf9UqQX7mmWewd+9efPjhh1iyZInGNn9/f6xduxYhISG1ClCXZWVlYcKECVizZg2cnJyqfNzMmTMxY8YM9euIiAgEBQVpI0TSQTdu3MCGDRs0Ho8FBwfj6aef1ouSZo0bN65yreO6YmlpiZdffhnt27fHli1bkJeXh/T0dCxfvhz9+/fH008/DWNj43qNiUiXFRYWQqlU6ly9dKpb8fHx8Pb2ljoMg1Trd+OBAwdi4MCBiI+PV4+8b9KkCdzc3Kp8joKCAvz88884cOAA7ty5g6ysLFhbW6N58+YYNGgQxo0bVy9T6To5OUGhUCAhIUFjfUJCQrk/z507dxATE4Phw4er15UMjDAyMkJUVBSaNWtW5jhTU1ONBOPx7ilkmJRKJf744w8cPHhQXaPU2toakyZNgq+vr8TRVY1CoZDsj7FMJkOXLl3QvHlz/PTTT7h58yYAIDw8HJGRkZg8eTIaNWokSWxEuig7Oxu2trZSh0FadP/+fSbIWlJnzVVubm7VSopLXLlyBSNGjMC9e/cgCAJsbW1hZWWFxMREXLx4Eb/99hsWL16MXbt2oU2bNnUVbrlMTEwQEBCA8PBwdak2lUqF8PBwTJs2rcz+rVu3xpUrVzTWzZkzB1lZWVi+fLlOD7Ci+pWcnIx169YhJiZGva5NmzaYNGkSbGxspAusmho1alQvH1Yr4+DggHfeeQeHDx/Gzp07UVxcjLi4OCxduhTDhw9HcHBwpVNdEzUUWVlZTJANXGxsLARBkHwMlyGq9btIbGwsXn/9dbRq1QoODg7466+/AIgJwTvvvINLly5VeGx2djaefvppJCQkYPHixbh//z7S0tI0vi5atAiPHj3C8OHDkZOTU9twn2jGjBlYs2YNNm7ciOvXr+ONN95ATk4OJk+eDACYOHGiehCfmZkZ/Pz8NBY7OztYW1vDz89P8kSCdMP58+exZMkSdXIsl8vx7LPP4q233tKr5Fgul8PHx0fqMACIsfTv3x8ffvghPD09AYgt9Dt27MCyZcuQkpIicYRE0uMgLsOXk5OD5ORkqcMwSLVqQY6MjETv3r2hUqnQtWtX3L59W11axsnJCcePH0dOTg7Wrl1b7vHr169HbGwswsPDNco5lfD09MTMmTPRtWtXDBgwABs2bMBbb71Vm5CfaPTo0UhKSsK8efMQHx8Pf39/hIWFqQfuxcbGsnWKqqSgoAC//vqrRgUUZ2dnTJ48WS8fiUnR9/hJPD098cEHH2D37t34888/IQgCbt++jcWLF+OFF15A165d2bJCDVZaWprUIVA9iI6O1npVoYaoVgnyBx98ADs7O5w+fRoymazM6PuhQ4diy5YtFR6/Z88eDBw4sNzkuLSnnnoKAwYMwB9//KH1BBkApk2bVm6XCgA4cuRIpcdu2LCh7gMivXP//n2sW7dOoz97586dMWbMmDqZda6+KRQKnWk9fpyxsTGeffZZ+Pn5YePGjUhNTUV+fj5++uknXL58GePGjWM/f2qQUlNTpQ6B6sHt27fRuXNnNgbUsVo1hf71119444034OzsXO6Nady4MR4+fFjh8VeuXHliclziqaeeKtPfl0jXCIKAw4cP4/PPP1cnx6amppg0aRImT56sl8kxIP4u63qXoRYtWmD27Nno1q2bel1ERAQWLVqkUU6PqKFITU1VDwgmw5Wdna0ukkB1p1YJskqlqrRQf1JSUqWPZFNTU6s8sM/V1ZWfhkmnZWVlYeXKlfjtt9/UXY1KZoTr2rWrxNHVnFwuR5MmTaQOo0rMzc0xceJETJ06FZaWlgDE2aZWrFiB//3vfzo78QqRNhQVFSE3N1fqMKgeXLp0iR+G6litEuROnTphz5495W4rLi7G5s2bNVpzHldQUFDl2qWlp6Um0jVRUVFYsmQJrl69ql7Xv39/vP/++zo/8ceTuLu761zf4yfp2LEj5syZg7Zt26rXHTt2DKGhoRqVRIgMHfshNwxJSUm4deuW1GEYlFr1QZ45cyaGDRuGN954A2PGjAEg1gz+888/sWTJEly/fh3fffddpeeIiYlRz45Vmejo6NqESqQVSqUSu3fvxoEDB9Sf3q2srDBp0iSN5Eyf6WttYVtbW7z55ps4duwYfv/9dxQVFSExMRFffPEFBg8ejEGDBnESBTJ4SUlJevs7TOULDAzEo0ePYGxsjNmzZ6vXnz59Gl5eXnrblU/X1CpBHjx4MDZs2IB3330Xq1evBgCMHz8egiDAxsYGP/30E/r06VPpOebOnYu5c+c+8Vqs80e6JiUlBevWrdP48Na6dWtMmjTJYGqPymQyvf5ZZDIZ+vTpg1atWmHDhg24d+8eVCoV9uzZg2vXrmHSpEllppYnMiQPHjxAx44dpQ6D6lB8fDzi4uJgZ2ensT4/Px/Hjx9HcHAw86U6UOuJQiZMmICRI0fi4MGDuHXrFlQqFZo1a4aQkBBYW1tXeuz69etre3kiSVy4cAGbNm1CXl4eALGf7tNPP20wk1Q4OTmhqKgI9vb2BvGH1tXVFe+//z727duHsLAwqFQqxMTEIDQ0FCNHjkTv3r0N4uckelxcXBwyMjL0+oMuVV10dDSioqLQunVrqUPRezVOkHNzc+Hl5YWPPvoI//d//6eeea46Jk2aVNPLE0mioKAAW7duxYkTJ9TrHB0dMWXKFJ0tg1YT27Ztw4ULF+Du7i51KHVGoVBg2LBhaNu2LTZu3IjExEQUFhZi8+bNuHLlCsaPH88kggzSxYsX0a9fP6nDoHpy8uRJuLi4wMHBQepQ9FqNm7osLCxgZGSkHilOZOgePHiATz/9VCM5DgwMxKxZswwqOS5Nn2b6qyofHx/MnDkTvXv3Vq+7du0aFi1ahIiICOkCI9KS27dvIykpSeowqJ4UFxdj//796iecVDO1ehb83HPPYevWrSwtQgZNEAQcOXIEn332mbq2sYmJCSZMmKDXtY2fRCaTVVrGUZ+Zmppi7NixeOONN9QfAnJycrB69Wr897//bRBvLCx513AIgoCTJ0/yvboBycrKwr59+1j9qxZqlSCPGTMGiYmJ6NevH3755RecOHECFy9eLLMQ6avs7Gz88MMP+PXXX9W1jRs1aoSZM2eie/fuBt1v1czMzCD6U1emXbt2mD17Njp06KBed+rUKSxZsgS3b9+WMDLtKz3LIxm+hIQE3LlzR+owqB4lJydj9+7dDeIDvzbUapBe6Vnwjh07VmZ7SeUJpVJZm8sQSeLmzZvYsGED0tPT1ev69euHZ555psr1u/WZmZmZ1CHUC2tra7z66qs4ffo0fvvtN+Tn5yMlJQVff/01BgwYgGHDhsHIqNbjmXUOW5AbnpIyYPpW15xqLjk5GTt37sSgQYPKVL2gytXqrz6rUJAhUiqV2Lt3L8LCwjRqG0+YMAHt2rWTOLr6o+tTS9clmUyG7t27o0WLFti4cSPu3LkDQRBw4MABREZG4qWXXoKHh4fUYdYpJsiGKzAwEA8ePICpqalGndzc3FwcO3YM/fv3N+inX6QpMzMTO3bsQP/+/eHl5SV1OHqjVgkyq1CQoUlJScGGDRs0HkW2bNkSL730UoP79G2IraZP4uTkhOnTp+PPP//EH3/8AaVSqR6cOWLECPTr189gup3k5+ezvryBio+PR0JCQrl/s+7evQsbGxt07tyZ974BKSwsRFhYGLp16wY/Pz/e+yrQuXfAyMhI3L17F2lpaeUOKJg4caIEUVFDcOnSJfz8888atY2HDRuGgQMHGkxSVB0N8WcGxJ974MCBaNOmDTZs2IC4uDgUFxfj999/x9WrVzFhwgSDKJ9UVFSEoqKiBvWkgEQREREoLCxEjx49GuzveUMkCAJOnTqF1NRU9O7dm/f+CaqVIE+ZMgUymQyrV6+GQqHAlClTnniMTCbD2rVrn7jfnTt3MH78eJw9e7bCkbYymYwJMtW5wsJCbN26FcePH1evc3BwwJQpU9C0aVMJI5NWQ//jWVLnfefOnTh06BAAICoqCosXL8aYMWPQuXNniSOsvaysLDg6OkodBkkgMjISaWlp6N+/v8FWq6HyRUVFITs7GwMGDOAH5EpUK0E+dOgQ5HI5VCoVFAoFDh069MRm+qo247/22mu4cuUKli1bht69e8Pe3r46oRHVyMOHD7Fu3TrExcWp13Xq1Anjxo1r8G8afAQHGBsbY9SoUfDz88NPP/2E9PR05OXlYf369bhy5QrGjBmj1/9PmCA3bHFxcdi2bRv69esHT09PqcOhevTw4UPs2rULgwcP5nwWFahWghwTE1Pp69o4ceIEZs2ahbfffrvOzklUEUEQcOzYMfz+++8oKioCICZDL7zwAnr06MHkkDS0bt0ac+bMwZYtW3Du3DkAwPnz53H79m1MnDhRb6d1zcjIkDoEklhubi727t2LTp06oVOnTvzb14CkpqZi586dGDp0KGcRLYfOPEN1cnLiDaJ6UTIhxObNm9XJsaenJz766CP07NmTbxD/aOhdLB5nYWGByZMnY8qUKerJYdLT0/HNN9/gt99+08uC/KVLGFLDJQgCLly4gLCwMFY3aWCys7Oxa9cuJCcnSx2KztGZd8DXX38dP//8M2smk1bdunULixcvxt9//61e17dvX3zwwQdwd3eXMDLdwwS5fIGBgZgzZw5atWqlXnf48GF8+umniI2NlTCy6ktJSZE6BNIh9+/fx44dO5CWliZ1KFSP8vLy8Mcff+DRo0dSh6JTav0OuG/fPgwYMACOjo4wMjKCQqEos1RFy5YtoVQq0aFDB3z11Vf47bffsG3btjJLfVixYgW8vb1hZmaGrl274uzZsxXuu2bNGnWfaXt7ewQHB1e6P0lDqVRi9+7dWLZsmbrVzNLSEq+//jpeeOGFBjHxR3WxJb1i9vb2ePvtt/H888+r/+/Ex8fjs88+Q1hYGFQqlcQRVk1KSgpbDElDRkYGdu7ciQcPHkgdCtWjoqIi7Nu3D3fv3pU6FJ1RqzJvv//+O1544QW0bdsWY8aMwcqVKzFu3DgIgoCdO3eiRYsWeOaZZ6p0rtGjR6u/f//998vdpz5m5duyZQtmzJiBVatWoWvXrli2bBlCQkIQFRUFFxeXMvsfOXIEY8eORY8ePWBmZoalS5di4MCBuHbtGgc96IjU1FRs2LBBY+rgFi1aYPLkyQ2utnF1VPXDbUMll8vRr18/tG7dGhs2bMD9+/ehUqmwa9cuXLt2DZMmTYKTk5PUYVZKEATExMRotIYTldTM7d27N/9vNCBKpRLh4eHIy8tD27ZtpQ5HcrVKkENDQ9GlSxccP34caWlpWLlyJaZMmYKnnnoKMTEx6NatG3x8fKp0rsOHD9cmlDrz1VdfYerUqZg8eTIAYNWqVdizZw/WrVuHjz76qMz+v/zyi8brH3/8Eb///jvCw8NZkk4HRERE4Oeff0Zubi4AMakZOnQoQkJC2IXgCfjvUzXu7u74v//7P+zZswcHDhyAIAi4c+cOFi9ejOeffx7du3fX6db4yMhItGzZUqdjpPqnUqlw9OhR5Obmwt/fn/8/GghBEHDixAnk5eUhICCgQd/3WiXIkZGRCA0NhUKhUM+6VTLoydvbG2+++SaWLl1apUQxKCioNqHUicLCQly4cAEzZ85Ur5PL5QgODsapU6eqdI7c3FwUFRVVOpFAQUGBxmPN7OzsmgdN5SosLMTvv/+OY8eOqdc5ODhg8uTJaNasmYSR6Q8myFVnZGSEESNGwM/PDxs2bFB3Xfj5559x+fJlvPjii7C2tpY6zHIlJSXh/v37aNy4sdShkA46d+4csrKy0KtXL/5NaEAuXrwIlUqFLl26SB2KZGqVIFtYWKiLTNvZ2cHU1FSjnqyrqyuio6Orfd7IyEjcu3cPANCkSRP4+vrWJswqS05OhlKphKurq8Z6V1dX3Lhxo0rn+PDDD+Hh4YHg4OAK9wkNDcXChQtrFStV7NGjR1i3bp3GgIOOHTvixRdf1OuatfWNb4bV16xZM8yePRtbt27FyZMnAQCXL19GdHQ0xo8fj3bt2kkcYfnOnDmDRo0a8Z5TuW7cuIGsrCwEBwfD1NRU6nConkRERMDS0rLBdreo1V/DVq1aITIyUv3a398f//3vf1FcXIz8/Hxs2rSpWq0SO3fuRLNmzdCuXTsMGzYMw4YNQ7t27dC8eXPs2rWrNqHWi08//RSbN2/G9u3bYWZmVuF+M2fOREZGhno5evRoPUZpuARBwPHjx7F06VJ1cmxsbIxx48bhlVdeYXJcTQ350VptmJmZYfz48Xj11VdhZWUFQJyQY+XKldi0aRPy8/MljrCstLQ0jb/lRI97+PAhtm/fjtTUVKlDadBiY2ORk5MDQHware37cfr06QZ7z2uVII8cORK7du1SdxeYPXs2jhw5Ajs7Ozg7O+PYsWPl9tstz969e/Hcc88BAJYsWYLt27dj+/btWLJkCQRBwMiRIxEWFlabcJ/IyckJCoUCCQkJGusTEhLg5uZW6bFffPEFPv30Uxw4cADt27evdF9TU1PY2Niol5I3Uaq53Nxc/Pjjj9i0aZO6m4+Hhwc+/PBD9OrVi8leDfDfrHb8/f0xZ84c+Pn5qdcdP34coaGhNXqypm3nzp1jdy+qVGZmJnbu3Ik7d+5IHUqDc/bsWQwfPhze3t7qSkx5eXmYNWsWVqxYUacTt5WmVCpx+vRprZw7NTUVL774ImxsbGBnZ4eXX375iX+DVq9ejb59+8LGxgYymazcWu7e3t6QyWQay6efflrt+GSCIAjVPSg/Px87d+5EdHQ0HB0dMWzYMHUN2WPHjmHbtm1QKBQYOnQo+vXrV6Vzdu/eHQUFBTh27FiZaQ9zcnLQq1cvmJmZVbkvcE117doVXbp0wbfffgtAHKjQuHFjTJs2rcJk/7PPPsPixYuxf/9+dOvWrdrXvHjxIgICAnDhwgV06tSpVvE3RHfu3MH69es1PuX26dMHI0eO1Pt55gsKCtSPuer7Z1EqlfVeyaKwsBA5OTnw9/c3mEe5JYNetm7dqp5MRCaTYdCgQRgyZIgk1UICAwMRGxsLc3NzzJ49W73ew8MDQ4cO5YcjPdeoUSM8fPgQdnZ2WLp0qVau4efnh65du7LaTT3Ytm0bRo8eDUEQyq3kVdI1aurUqVrLIZ555plyK3k9Sd++ffHSSy/hpZdeKrNt8ODBiIuLww8//ICioiJMnjwZnTt3xqZNmyo837Jly9RP4WbOnIm0tLQy1ai8vb3x8ssvY+rUqep11tbW1Z5Su9p9kBMTE9GjRw9ER0dDEATIZDKYm5tjx44dCA4ORu/evdG7d+/qnhaXL1/GkiVLyv0BLC0t8dJLL2HWrFnVPm91zZgxA5MmTUJgYCC6dOmCZcuWIScnR13VYuLEifD09ERoaCgAYOnSpZg3bx42bdoEb29vxMfHAwCsrKzYMqxlKpUKYWFh2LNnD0o+51lYWGD8+PHw9/eXNjiif8hkMvTq1QstW7bExo0b1X879+3bh2vXrmHy5Mllxj1oW3x8PJKSksq8sTx69AgXLlxAYGBgvcZD+ufq1atITk7GgAED1DNLUt07e/YsRo8eDaVSiYraM0vqrq9ZswYffvghvL296zyOS5cuISQkpM7Od/36dYSFheHcuXPqvzfffvsthgwZgi+++AIeHh7lHvfee+8BEEvsVsba2vqJT/6fpNpdLD755BPExMRg+vTp2L17N77++muYm5vjtddeq1UgZmZmlfZzSU1NrbRfb10ZPXo0vvjiC8ybNw/+/v6IiIhAWFiY+g0sNjZWYyDiypUrUVhYiFGjRsHd3V29fPHFF1qPtSFLS0vD8uXLsXv3bvUfjebNm2PWrFlMjusIW4bqlouLC2bMmIFhw4apW3xiY2OxZMkSHD16tMI3v/p28eJFPkLXY/XZRzU+Ph47d+5EVlaW1q7R0C1atAiCIFT578PevXu1Ese9e/fKdD+tjVOnTsHOzk7jw3hwcDDkcjnOnDlT6/N/+umncHR0RMeOHfH555+juLi42ueodoJ84MABTJw4EV988QWGDBmCd955B9999x1iYmIQFRVV7QBKPPXUU1i+fHm5XSjOnDmDb775ptLKEHVp2rRpuHfvHgoKCnDmzBl07dpVve3IkSPYsGGD+nVMTIz6P2/pZcGCBfUSa0P0999/Y8mSJbh16xYAsYVu6ND/b+++w6K42r+Bf2eXtnRQEI0KCBFBrORRsYEVY4kFu8beYoyxJEYTjfrYUkzUaPwZS2yxxSjW2GIv2JPYUSOIUbEhTZC25/3Dl31YKdKWWYbv57rmkj07O3svt8vee+bMOe0wZsyYXKfXI5KbWq1G27Zt8cknn+i+dKempmLTpk348ccfsx1PJ4cjR47g3r17codB+SDXGNW4uDjs3LnTIOPXDTFGNSIiAoMHD4a7uzs0Gg08PDwwdepU3fAnuaWnp+Ply5dISEjA5cuXsWvXrjwvkKbVanHp0iWDfSk6c+ZMkX2Rj4qKyjJkw8TEBI6Ojroz8QU1evRobNy4EYcPH8bw4cMxe/ZsTJgwId/HyfcQi8jISHz22Wd6bY0bN4YQAo8ePSrwqjvffPMN/P390bhxY9SrV093nLCwMJw9exbOzs4GG0tFJUNqaiq2bt2qN+uHg4MDBg4cCE9PTxkjI8ofNzc3TJo0CSEhIbr/z9euXcOsWbPQq1cv2a9FSE9Px/79+xEUFISKFSvKGgu9WeYxqq8XMEIIXLlyBVeuXDHYGNWEhATs378fnTp1yvdUgbmNUe3Tpw8ePnyIAwcO6MaoDhs2LNcxqomJiWjTpg3atGmjt6ZBhhs3bkCr1eKnn36Cp6en7vfy4sULzJ07F0IIpKWlITU1VW/L3Jb555cvXyIlJUXXltO/r7fltF/mZepv3LiR74JUCIHr16+jYcOG+XpcXjx8+PCNc6bPnj0bs2fP1t1OSkrC6dOnMWrUKF2boWfMGTdunO7nmjVrwszMDMOHD8ecOXPydW1Lvgvk5OTkLEMdMm4XpAs7g7u7Oy5duoQ5c+Zgz5492LRpE4BX8yB//PHHmDhxYoEGiJMyPHz4ED///DPu37+va6tVqxb69u2b74H3RMbAzMwMPXr0gK+vL3755RfExsbixYsXWL58OerVq4cePXrIOrYzPT0d+/btQ6tWrbiIiBEzljGqT58+RVhYGLy9vQt1HCEEtFotLl++jL179+KPP/6Au7s7UlJSMHnyZF2R7OjomG3B+vbbbyM1NRV///03AGDDhg0wNzfXK3a9vb1x/vx5hIaGIjU1FT4+Pli+fLmu0DUWKSkpkCQpX0WyJEmIi4vTrR5b1EJDQ1GhQgXd4nCvGzFiBLp376673adPHwQHB6NLly66tgoVKsDFxQWPHz/We2xaWhqio6MLPXb4dfXr10daWhoiIiLy1YlboIVCIiIicPHiRd3t2NhYAMCtW7eyXPQBIM/fWJ2dnTFv3jzMmzevIGGRAgkhcOrUKfz666+66dtMTU0RHByMJk2a8Gp7KvGqV6+OL774Ahs2bMCff/4J4FXRc/v2bfTr1w9Vq1aVLbaMnuRmzZpxBUojVZAxqiNHjnzjftkNHXzTdvz4cUREROSrBzYiIgKbN2/G1atXdW0ZvaBmZmbYsmULtmzZAuB/hf5XX32FKlWq5Bp/RmfK+fPn39hrGBcXBzMzs2Itjk1MTHSrEGf+N/PPz549K1APskajMciiP0IIxMfHIz09PccC2dHRUW+oo0ajgbOzc5azvP7+/oiJicGFCxfg5+cHADh06BC0Wq3esNai8Ndff0GlUuW7k7VABfKUKVMwZcqULO2vv+kyZrnI6/gZoswSExOxfv16vS9j5cuXx+DBg3O8wpWoJLK2tsaQIUNw9uxZbNq0CS9fvkR0dDQWLFiAFi1aoEOHDjA1NZUlNq1Wi4MHDyI+Ph61atXil1IjEhkZqXeh8ptotVr8/fffCAsLg52dXY6FbkE9efIEf/31V74ek5qaiqSkJN2FhRkSExOznEFRqVQwNzcvkt5RExMTmJqaIiEhAVevXkXr1q1RsWJFmJqa6u7L2DLfNjExgZmZGUxMTCBJEqKioqDRaGBhYZGl4M2pCFapVHl6H9WvXx+bN2/Odw+yl5eXQQpkrVabY2GcX97e3mjTpg2GDh2KJUuWIDU1FaNGjULPnj11n+/3799HixYtsGbNGt2S11FRUYiKisLt27cBAJcvX4aNjQ0qV64MR0dHhIaG4syZM2jWrBlsbGwQGhqKsWPHom/fvnBwcMhXjPl+pStXrszvQ7I1aNAgSJKEpUuXQq1WY9CgQW98jCRJWLFiRZE8Pxm3O3fu4Oeff9a72KBx48bo2rVriZ/bmCg7kiShfv368PT0xJo1a3Dr1i0IIfDHH3/g2rVrGDBggKzjgc+ePYsnT56gadOmipmjujikpaUVSSdRUlISoqOjER0djWfPniE6Ohq///57gQramzdvolatWoWO6XV5KcouXLig6/SQJAlpaWl49OgRTpw4oSsaJ0yYACcnJ0RERKBu3bp6Beq6detQvXp1vPfee7kWsRcuXMCOHTvw6aefwsnJSe/+jCL1/v37CAgIQN++fbF8+fJ8v15Dz1NfoUIFBAYG4tixY3n6P6RSqeDj42PQi9XLlClTZMdat24dRo0ahRYtWkClUiE4OBg//PCD7v7U1FSEhYXpfSFasmQJpk+frrvdtGlTAK9q0wEDBsDc3BwbN27EtGnTkJycDHd3d4wdO1ZvXHJeFWihkKLg5uYGlUqFsLAwmJqa6lY+yY0kSbhz504xRVh8uFDI/2i1Wuzfvx+7du3SnU7TaDTo27cv6tSpI3N0xU/OhULkoMSFQgoio9d2586dutO+JiYm6NChg+7DpDAKs5CElZUVmjZtikqVKhUqhtIgLS0N165dQ1JS0hv3TU1NRUJCQo5bdrMsXLp0CadOncp3D2OrVq3wn//8R3c747M38785/fymtmrVqsHT0xPm5ubZFq/x8fGIi4vTTSOZ3RhVNzc3rFmzBuPHj8fz58/1fp8WFhbYvHkzOnfunOvrPHLkCJo1a5btQhLAqzm/AwMD0aBBA6xatapA76ni+Pt86dIl9OrVK9cx5hlUKhXGjh0LV1dXg8Si0WhQvXp11K1bt1T8fS6avvICeH3KGUNNQUMlR0xMDFatWoWbN2/q2jw8PDBgwIAi/dZKZOxUKhVatWoFb29vrFq1Cg8ePEBaWhpCQkJw5coV9OvXT7b3xIsXL7Bnzx54enqiQYMGsLS0lCWOkiA9PR1JSUkwNTWFJEmIj4/XbXFxcXr/ZqwOlh9mZmYFGqNapkwZODk55fv58nJsjUajK5CzY21trVt5F5BnjOr9+/fRrFkz+Pn5YeXKlQYZjlBUatasiXnz5mHs2LFvXElv4MCBBiuOVSoVqlevbtS/q6ImW4H8usjISDg5OeV41XZSUhKePHnCq6kV6vLly1izZo1uHJrcS/ESGYOKFSvis88+w86dO3Hw4EEIIXDr1i3MmjULPXr0QL169WQbE3z79m3cvXsXfn5+8PX1LVUfnNlJTU3VDX/I2J48eYJ79+7hxYsXeepFzo4kSbCxsYGdnR1sbW31tsTERBw5csSoxqgW1aIhhhqjev/+fQQGBsLV1RVz587FkydPdM9Z1LMnFJXWrVtjw4YNWLx4cZZ8S5IEHx8fBAUFGaw4BoAaNWrAxsYmy1hxJTOaAtnd3R1r165F7969s71/x44d6N27Ny/4U5jU1FSEhIToLRtpb2+PAQMGyHr1PpGxMDU1RZcuXeDr64s1a9YgOjoaL1++xOrVq3WnX+Va1j41NRWnT59GWFgYAgMDDdIraSzS09Px/PlzPH36VK8IztgyZnPKL0mSYG1trVf4Zi6Gra2tcy1mjW2MakF6wnNiiDGqBw4cwO3bt3H79u0sY/qNZTXL7NSsWRNLlizBgwcP0LFjR8TFxUGj0eCzzz4z+AJZ1apVg4uLi9EsplJcjKZAftN/zNTU1FLfQ6E0jx49wooVK/Dvv//q2mrWrIm+ffvK9oFPZKyqVq2KL774Aps2bcLZs2cBAH/++Sfu3LmD999/Hz4+PrLF9vz5c2zbtg2NGjWSNY7CSE9PR0xMTLbF77NnzxATE1PgAsrKyipLD3DGbWtr60KdJRs5ciSOHz+e5/lyg4KCCvxceZHfubszd468ztHRMddFQdzc3LK85mnTpuW6km1Oi5KUFBUqVIBGo9FNTWfo4tjd3d2gPdPGTNYCOS4uTm8ZyGfPniEyMjLLfjExMdi4caPeuCUquYQQOH36NDZt2qT7RmpiYoLg4GA0bdqU00gR5UCj0WDAgAGoWbMmNmzYgBcvXiA2NhaLFi1CQEAAOnfuLNvFnEIInDhxAi9fvjTKi421Wi1iY2NzLICfP3+ut4pZftja2sLR0RFly5bV+9fW1haRkZGwtbU1WF6MZYwq8GpMdMYS6lTyubi44O2335Y7DNnIWiDPmzcP//3vfwG8Os00ZswYjBkzJtt9hRCYOXNmMUZHhpCUlIQNGzbg/PnzujYXFxcMGjSIS9oS5VHdunVRpUoV/PLLL7plW48ePYobN25gwIABsvb4nD9/Hmq12iDTiOVGCIG4uLhcC+CCLgRhbW0NR0dHlClTRrdlFMFlypTJsfhNTk7WW/3TUIxhjKpKpUKNGjWKbJ5ckpe9vT18fX1LdYeVrP+TW7duDWtrawghMGHCBPTq1StLz4MkSbCysoKfnx/eeecdmSKlohAeHo6ff/4Zz54907U1atQIXbt2LRVTxhAVJXt7e3z44Yc4duwYtm7ditTUVDx69Ajffvst2rZti6CgINkucD1z5gzUajV8fX2L7JhCCCQkJORYAEdHR+tW28wvjUajV/C+XgRbWFgU2eswFDnHqKrVatSpU6fUXcSlVJaWlqhTp06pv0Be1gLZ398f/v7+AF5NHRQcHFykf1DJOGi1Whw4cAA7d+7Um9u4d+/euul7iCj/JElCQEAAvLy8sGrVKkRGRkKr1WLXrl24evUq+vfvn2V51cjISF0Rk5ycjOjoaIMUUKdOnYJarYa3t3ee9hdCIDExMdcCODk5uUCxmJubZ+n1zbwpaaq64h6jqtFodMVxabuIS4nMzMxQt27dUjHv/psYxbmQxMRE/PDDD7C0tGSBrDCxsbFYvXo1bty4oWtzd3fHoEGDOLcxURFxcXHBp59+it9//x179+6FEALh4eGYPXs2unbtikaNGuHcuXOYMWMGdu/erTsFn5SUhM8//xw1atRAu3bt4ObmVqRxHT9+HAB0RXJSUlKOBfCzZ8/yPQPCy5cvceLECUREROh6MYcPH44KFSroFcRWVla6U8UvX77E+PHjsXHjRiQnJyMoKAiLFy/WjZ199uwZ+vTpg0uXLuHZs2dwdnZGx44dMXv2bNja2hbhb6fkc3Z2hq+vr2zLoFPRMjExgZ+fH6ysrOQOxSgYRYFsaWkJExMTJkVhrl69itWrVyMhIQHAq96uoKAgtGvXrtSfuiEqamq1Gh06dICvry9WrVqFJ0+eICUlBevXr8eaNWuwcuVKCCGyXPUvhMCVK1dw5coVDB06tFAX2AkhkJaWpreFhIRg69ateP78ud50XHm1fft2+Pj4oFGjRlkugvvkk09gYWGBY8eOIS0tDQMHDsS+fftynflg7Nix2L17NzZv3gw7OzuMGjUKXbp0wcmTJwG8GkvbsWNHzJw5E05OTrh9+zY+/PBDREdH53rc0sbLywuurq6leoyqkqjVavj5+fFLYCZGUSADQHBwMH777Td88MEHfMOVcKmpqdi+fTsOHTqka7Ozs8OAAQPg5eUlY2REyufu7o5JkyZh69atOHHiBB49eoSQkJBcpwDLGPq0bNkyfPbZZzn2JGcUwOnp6VkK4bS0tFxngcjt9LtarYajo2O2M0FkzPU8aNAgvcdcv34dR48exblz53TXpyxcuBBt27bF3LlzdYtJZBYbG4sVK1Zg/fr1aN68OYBX8+N6e3vj9OnTaNCgARwcHPDBBx/oHuPq6oqRI0fi22+/zTH+0sTU1BS1a9c2+NANKj4ZxXF2S3KXZkZTIPfs2RMjR45Es2bNMHToULi5uWU7n6IxTh9U2kRGRuLgwYOIj4+HjY0NWrRooVvh8NGjR/j5559x79493f6+vr7o168f5zYmKiYWFhbo3bs3atSogc6dO+frsbt27cKQIUP0Ct+MgrgwCzU5ODjA3t5eb+hDxr/29vY5znNvYmKS7X2hoaGwt7fXu3i7ZcuWUKlUOHPmTLav+8KFC0hNTUXLli11bdWqVUPlypURGhqKBg0aZHnMgwcPsHXrVgQEBBTkZSuKlZUV6tatq6gx26WdWq1G3bp14eDgIHcoRsdoCuTAwEDdzxnj1jITQkCSJK6kJ6OzZ8/qjWFUqVTQarWQJAnt27dHp06dcPnyZd2FNCYmJujcuTMCAwN5VoBIBnZ2drhz506eF7jQarW4fPkybt26BTs7u3w9l1qthomJid6WuU2SJPTr16/IZqyJiorKcgGiiYkJHB0dERUVleNjzMzMsvSUlStXLstjevXqhe3btyMpKQkdOnTA8uXLiyTuksrR0RG1a9fmeGMFyRhzzJ7j7BlNgbxy5Uq5Q6BcbN26FT169NAbw5hxOlUIgd27d2PXrl1o3bo1qlSpgnLlymHQoEGoVKmSnGETGb3C9szmJuOCvfyKiIjIMo+xWq3WK3hf/zm3L8EZfzfu3bsHNze3XOfKnT17NmbPnq27nZSUhNOnT2PUqFG6toy5nw1p3rx5mDp1Km7evIlJkyZh3LhxWLx4scGf1xhVrlwZXl5eXM1WQSwsLODn58czu7kwmgK5f//+coeg8+OPP+Lbb79FVFQUatWqhYULF6JevXo57r9582ZMmTIFERERePvtt/H111+jbdu2xRixYZ09exY9evRAenp6jh+2GcXy/v37MXXqVEycOJFzGxO9QVpaGq5du4akpCSDHP/GjRu6Mz15lbFksZWVFdRqNVQqFVQqVbYFsFarzdfUXmfPnkViYiJ8fHxyLJJHjBiB7t2762736dMHwcHB6NKli66tQoUKcHFxwePHj/Uem5aWhujoaLi4uGR7bBcXF6SkpCAmJkav1+zRo0dZHuPi4gIXFxdUq1YNjo6OaNKkCaZMmVKqVnQ1MzND9erVs/TUU8lma2uLOnXqlIj5veVkNAVyZgkJCboxrJUqVSrWbzibNm3CuHHjsGTJEtSvXx/z589HUFAQwsLCsv0jcerUKfTq1Qtz5sxB+/btsX79enTq1AkXL15UzJR1M2fOzPbq9+yoVCpcvHiRxTFRHqSnpyMpKQmmpqYGmXfUwcEh38snCyFga2trkHGmGTNZpKen51ggZ1ysl0Gj0cDZ2Rmenp56+/n7+yMmJgYXLlzQzad+6NAhaLVa1K9fP9tj+/n5wdTUFAcPHkRwcDAAICwsDJGRkbo5+bOT8Tss6DzMJVGlSpXw9ttvc0iFwrz11lvw9vbmTFJ5YFTnS86dO4dmzZrBwcEBvr6+8PX1hYODA5o3b663NLEhff/99xg6dCgGDhwIHx8fLFmyBJaWlvj555+z3X/BggVo06YNPv30U3h7e2PGjBmoW7cuFi1aVCzxGlpkZCR27dqV51PA6enp2LlzJyIjIw0cGZFymJmZGWRr0qRJvsf/S5KkO51e1FtaWhpiY2OL5Hfm7e2NNm3aYOjQoTh79ixOnjyJUaNGoWfPnroZLO7fv49q1arh7NmzAF6NyR48eDDGjRuHw4cP48KFCxg4cCD8/f11F+j9/vvvWLlyJa5cuYKIiAjs3r0bI0aMQKNGjYp8nmhjZGdnB39/f/j4+LA4VhCVSoXq1avD19eXxXEeGU0P8pkzZxAYGAgzMzMMGTJEN7H89evXsWHDBjRt2hRHjhzJdahDYaWkpODChQuYNGmSrk2lUqFly5YIDQ3N9jGhoaEYN26cXltQUBC2bduW4/MkJyfr9URkzBOclpZW4KVSDWXfvn35HsMohMD+/fuNathMSZWamoq0tDS8ePHC6P5vGEJKSorufVAaxjsaOr92dnZo0qQJTpw4kaeeZEmS4OPjAxsbG4PEI4RAbGxsvvIrhEB6enq28axatQoff/wxWrRoAZVKhc6dO2PevHm6fRMTExEWFoa4uDhd2zfffAPg1dSiycnJaNWqFRYuXKi739TUFEuXLsXYsWORnJyMihUrolOnTpgwYUK+fydyvX8zXx+S1+c1MTGBh4cHypcvD0mSCrRkNN+/xSO/+dVoNPD19YW1tXWhlgIvzvwaxZczYSRatGghPDw8xMOHD7PcFxUVJTw8PETLli0NGsP9+/cFAHHq1Cm99k8//VTUq1cv28eYmpqK9evX67X9+OOPwtnZOcfnmTp1qgDAjRs3bty4cePG7bXNGBhVD/KXX36Z7cUV5cqVw7BhwzBjxgwZIit6GVdEZ/jrr78QEBCAM2fOoE6dOjJGltWqVaswbNiwfD9u2bJl7EEuIoac5cAYZcyOUFoUR363b9+O/v37QwiRbU9yxjCMwYMHG+xvkCRJ8Pf3h5eXF/NrYF5eXnjw4AHs7Oz0ZgTJjp2dHYKCgorsgi2+fw0vr/l1d3dHw4YNi3RIRWnKr9G8yozxaTlJT083eJd+2bJloVar8ejRI7327K5wzuDi4pKv/QHA3Nxc7yK2jIsQTUxMjOO0QiZBQUG6q9rzSpIktG7d2uheS0nF36OyFUd++/Tpg6pVq2LGjBnYtWuX3vtZkiTUrFkTbdu2NdgYWysrK7Rs2RLlypUzyPGNmRzv34wvPJIk5VrMmJmZoUOHDlxeuBCMNb9Vq1ZFQEAA1yAoBKMZJNSwYUP8+OOPuHv3bpb7IiMjsXjxYjRq1MigMZiZmcHPzw8HDx7UtWm1Whw8eDDHK5z9/f319geAAwcO5HpFdElSuXJltG/fPs/fQNVqNTp06KBbWY+IjMN//vMf7NixAxEREbopzjQaDWbPno2RI0carDiuVKkSgoODS2VxbOz8/f1ZHCuQq6sri+MiYDQ9yLNnz0bTpk1RrVo1dO7cGVWrVgXwagqe7du3w8TEBHPmzDF4HOPGjUP//v3xzjvvoF69epg/fz5evHiBgQMHAgD69euHt956SxfLxx9/jICAAHz33Xdo164dNm7ciPPnz2Pp0qUGj7W4TJkyBXv27HljT7IkSZAkCZMnTy7G6IgoPypXrgwrKyvExMTA3Nxcb0q1ola3bl34+fnxg9oIValSRfc5S8qRMfMX33OFZzQFcp06dXDmzBl88cUX2LFjBxITEwEAlpaWaNOmDWbOnAkfHx+Dx9GjRw88efIEX375JaKiolC7dm3s3btX1/sRGRmpN9SjYcOGWL9+PSZPnozPP/8cb7/9NrZt26aYOZCBVz1PmzZt0q2kl914q4yVtH799Vf85z//kSFKIjIWarUagYGB8PDwkDsUyoaDgwN7GBVIrVajZcuWHJZXRIymQAYAHx8fhISEQKvV4smTJwAAJyenYp8uZtSoUXrLmmZ25MiRLG3dunVDt27dDByVvLp06YJTp07pjWHMWKFLkiS0a9cOkydPZnFMVMqZmZkhKCioVK04V5JoNBq0adOGRZQC1a1bFw4ODnKHoRhGVSBnyDhVn/EzGYeMMYyRkZE4dOgQ4uLiYGtri+bNm3PMMRHB2toaQUFBKFOmjNyhUDbUajVat24NGxsbuUOhImZnZ4eaNWvKHYaiGFWBfO3aNXz55ZfYt2+f3hCLoKAgTJs2TVHDFkqyypUrY8CAAXKHQURGpFKlSggMDIRGo5E7FMpBw4YNebGkQtWvX58r5BUxoymQjx8/jnfffRdarRYdO3bUu0hvx44d2LNnD/bu3YsmTZrIHCkREWUwMzNDgwYN4OXlxTN+RszNzQ3VqlWTOwwqAi4uLtBqtbphMmXLloWrq6vMUSmP0RTIY8eOhbOzM44ePYpKlSrp3Xfv3j00bdoU48aNw7lz52SKkIiIMnNzc0OjRo1gZWUldyiUC1NTUzRq1IhfYBTi/PnzePjwIXbu3AkAqFWrFnNrAEYzD/LVq1cxcuTILMUx8OrU3QcffICrV6/KEBkREWVmbm6O5s2bo1WrViyOS4Dq1aszTwql0Wjg7u4udxiKZDQ9yK6urkhOTs7x/pSUlGyLZyIiKj6VKlVCQEAALC0t5Q6FcuDi4oK0tDSYm5tDkiRUr15d7pDIQNzd3Yt9pq/SwmgK5C+//BJjx45Fu3btULt2bb37/vzzTyxcuBDz58+XJTYiotLOxMQE/v7+qFatGk/nGrnz58/j+vXrOH78OFxcXNh7rGDsODQcoymQT58+jXLlysHPzw8NGzaEp6cnAODWrVsIDQ2Fr68vQkNDERoaqnuMJElYsGCBXCETEZUKdnZ2aNWqlUFX3SPD4BScyubi4iJ3CIplNAXyokWLdD+fPHkSJ0+e1Lv/8uXLuHz5sl4bC2QiIsN666230LJlS5ibm8sdChVAhQoV5A6BDMTKyorvSwMymgJZq9XKHQIREWVStWpVNG3alGMcSygzMzOULVtW7jDIQOzs7OQOQdGMpkAmIiLjUaNGDTRo0IDjjUswFxcX5k/BrK2t5Q5B0YyuQA4PD8eePXtw9+5dAK9mt3j33Xc5jQkRUTHx9vZmcawAXDVP2XjxpWEZVYE8fvx4LFiwIMtwC5VKhTFjxmDu3LkyRUZEVDpUrFiRi0ooBIdXKBunWjQsoxlY9t1332HevHno0qULQkNDERMTg5iYGISGhqJr166YN28e5s2bJ3eYRESKZW1tjebNm3PMsUI4ODjIHQIZEAtkwzKaHuRly5bhvffew6+//qrXXr9+fWzcuBEvX77ETz/9hLFjx8oUIRGRsgUGBsLCwkLuMKgIqFQqnoJXOBbIhmU03QQREREICgrK8f6goCBEREQUX0BERKWIl5cXpwRTEAsLCw6TUTgWyIZlNAWys7Mz/v777xzv//vvv+Hk5FSMERERlQ7m5uaoX7++3GFQEeL8uMrHAtmwjKZA7tatG5YvX46vvvoKL1680LW/ePECX3/9NZYvX44ePXrIGCERkTK4uLjAyckJtra2AAA/Pz8OrVAYExOjGUFJBmBqagq1Wi13GIomCSGE3EEAQGJiIjp06IDDhw/DxMREd6rvwYMHSEtLQ7NmzbBz505FfmO6ePEi/Pz8cOHCBdStW1fucIioFAgNDcXly5dhY2OD7t2788NWYZ4/f86L9BQsPj4eNjY2coehaEbTg2xpaYmDBw8iJCQEgwYNgre3N7y9vTFo0CBs27YNf/zxh8GL4+joaPTp0we2trawt7fH4MGDkZCQkOv+H330Eby8vKDRaFC5cmWMHj0asbGxBo2TiKio+Pr6sjhWIM5EomympqZyh6B4RnEOJjExEX379kVwcDD69OmDjh07yhJHnz598PDhQxw4cACpqakYOHAghg0bhvXr12e7/4MHD/DgwQPMnTsXPj4+uHv3LkaMGIEHDx7gt99+K+boiYjyR5IkeHp6yh0GGQALZGXjl1rDM4oC2dLSEn/88Qfeffdd2WK4fv069u7di3PnzuGdd94BACxcuBBt27bF3Llzs72629fXF1u2bNHd9vDwwKxZs9C3b1+kpaVxDBgRGTVHR0doNBq5wyADYAGlbMyv4RnNV8zGjRsjNDRUtucPDQ2Fvb29rjgGgJYtW0KlUuHMmTN5Pk5sbCxsbW1zLY6Tk5MRFxen23IbxkFEZCicGUi5WEApG6fwMzyjKZAXLVqE48ePY/Lkyfj333+L/fmjoqLg7Oys12ZiYgJHR0dERUXl6RhPnz7FjBkzMGzYsFz3mzNnDuzs7HRbQEBAgeMmIiooR0dHuUMgA+EQC6LCMZp3UK1atfDvv/9izpw5cHV1hbm5OWxtbfU2Ozu7fB934sSJkCQp1+3GjRuFjj8uLg7t2rWDj48Ppk2bluu+kyZNQmxsrG47evRooZ+fiCi/WCArF3sYlY35NTyjGSQbHBxskISPHz8eAwYMyHWfKlWqwMXFBY8fP9ZrT0tLQ3R0NFxcXHJ9fHx8PNq0aQMbGxuEhIS88epSc3NzvUncra2tc38RREQGUKZMGblDIANhAaVsQgjm2MCMpkBetWqVQY7r5OSUp3F2/v7+iImJwYULF+Dn5wcAOHToELRaba4rTMXFxSEoKAjm5ubYsWMHJ9snohLBysqKq60pmJEscUBUYsleIL98+RLbt29HeHg4ypYti3bt2qF8+fLFHoe3tzfatGmDoUOHYsmSJUhNTcWoUaPQs2dP3QwW9+/fR4sWLbBmzRrUq1cPcXFxaN26NRITE/HLL7/oLroDXhXmvEiCiIxVxip6pEzsXSQqHFkL5MePH6Nhw4YIDw/Xfdu1tLTEtm3b0LJly2KPZ926dRg1ahRatGgBlUqF4OBg/PDDD7r7U1NTERYWhsTERACvVsDLmOHi9blEw8PD4ebmVmyxExHlhxJXJaX/YQeNsnGIheHJutT0Rx99hP/7v//DmDFj0Lx5c9y+fRszZsyAra0t/vnnH7nCKnZcapqIiltMTAzs7e3lDoOICiA9PZ1fggxM1h7k/fv3o1+/fpg7d66urVy5cujduzfCwsLg5eUlY3RERMrFD1ciopzJOs1bZGQkGjdurNfWuHFjCCHw6NEjmaIiIlI+np4lKrn4/jU8WQvk5OTkLLM+ZNxOS0uTIyQiolKBH7BEJRcXgjE82WexiIiIwMWLF3W3Y2NjAQC3bt3Kdnwcx+gSERUeC2QiopzJepGeSqXK9o90dldnZrSlp6cXV3jFhhfpEVFxS0xM5EwWREQ5kLUHeeXKlXI+PRFRqcUeZCKinMlaIPfv31/OpyciKrVYIBMR5YyjvImISiEWyEREOWOBTERUCrFAJiLKGQtkIqJSyNTUVO4QiIiMFgtkIqJSiD3IREQ5Y4FMRERERJQJC2QiIiIiokxYIBMRERERZcICmYiIiIgoExbIRERERESZsEAmIiIiIspE1qWmqWR7+PAhHj58KHcYREREpUr58uVRvnx5ucNQNBbIRqB8+fKYOnVqifrPnpycjF69euHo0aNyh0JERFSqBAQEYN++fTA3N5c7FMWShBBC7iCo5ImLi4OdnR2OHj0Ka2trucOhIpaQkICAgADmV6GYX2VjfpUtI7+xsbGwtbWVOxzFYoFMBZJRIPMNqkzMr7Ixv8rG/Cob81s8eJEeEREREVEmLJCJiIiIiDJhgUwFYm5ujqlTp/ICAYVifpWN+VU25lfZmN/iwTHIRERERESZsAeZiIiIiCgTFshERERERJmwQCYiIiIiyoQFMhERERFRJiyQiUogSZLytB05cqTQz5WYmIhp06bl61izZs3Ce++9h3LlykGSJEybNq3QcZQ2xpzjGzduYMKECahduzZsbGxQvnx5tGvXDufPny90LKWFMef3wYMH6Nu3L7y8vGBjYwN7e3vUq1cPq1evBq/rzxtjzu/r1q1bB0mSuOria0zkDoCI8m/t2rV6t9esWYMDBw5kaff29i70cyUmJmL69OkAgMDAwDw9ZvLkyXBxcUGdOnWwb9++QsdQGhlzjpcvX44VK1YgODgYI0eORGxsLH766Sc0aNAAe/fuRcuWLQsdk9IZc36fPn2Kf//9F127dkXlypWRmpqKAwcOYMCAAQgLC8Ps2bMLHZPSGXN+M0tISMCECRNgZWVV6DgURxBRiffhhx8KQ72dnzx5IgCIqVOn5vkx4eHhBX4sZc+Ycnz+/HkRHx+v1/b06VPh5OQkGjVqZIAIlc+Y8puT9u3bCysrK5GWllY0gZUixprfzz77THh5eYk+ffoIKyurog+uBOMQCyKF0mq1mD9/PqpXrw4LCwuUK1cOw4cPx/Pnz/X2O3/+PIKCglC2bFloNBq4u7tj0KBBAICIiAg4OTkBAKZPn647LfimIRNubm6GeEn0Grly7Ofnl+V0bJkyZdCkSRNcv369aF9kKSbnezg7bm5uSExMREpKSqFfG8mf31u3bmHevHn4/vvvYWLCAQWv42+ESKGGDx+OVatWYeDAgRg9ejTCw8OxaNEi/Pnnnzh58iRMTU3x+PFjtG7dGk5OTpg4cSLs7e0RERGBrVu3AgCcnJzwf//3f/jggw/QuXNndOnSBQBQs2ZNOV8a/X/GluOoqCiULVu2SF9jaSZ3fpOSkvDixQskJCTg6NGjWLlyJfz9/aHRaAz6uksLufM7ZswYNGvWDG3btsWvv/5q0NdaIsndhU1Ehff66bvjx48LAGLdunV6++3du1evPSQkRAAQ586dy/HYhTl9xyEWRcdYc5zh2LFjQpIkMWXKlAIfozQzxvzOmTNHANBtLVq0EJGRkfk6Br1ibPndtWuXMDExEVevXhVCCNG/f38OsXgNh1gQKdDmzZthZ2eHVq1a4enTp7ot49T44cOHAQD29vYAgF27diE1NVXGiCm/jCnHjx8/Ru/eveHu7o4JEyYY5DlKG2PIb69evXDgwAGsX78evXv3BvCqV5kKT878pqSkYOzYsRgxYgR8fHyK5JhKxAKZSIFu3bqF2NhYODs7w8nJSW9LSEjA48ePAQABAQEIDg7G9OnTUbZsWXTs2BErV65EcnKyzK+A3sRYcvzixQu0b98e8fHx2L59O6eKKiLGkF9XV1e0bNkSvXr1wrp161ClShW0bNmSRXIRkDO/8+bNw9OnT3UzX1D2OAaZSIG0Wi2cnZ2xbt26bO/PuKhDkiT89ttvOH36NHbu3Il9+/Zh0KBB+O6773D69GkWO0bMGHKckpKCLl264NKlS9i3bx98fX0LfCzSZwz5fV3Xrl2xbNkyHDt2DEFBQUV23NJIrvzGxsZi5syZGDlyJOLi4hAXFwfg1XRvQghERETA0tISzs7OhXuBSiD3GA8iKrzXx7eNHDlSqNVqkZiYmO9jrVu3TgAQy5YtE0K8mr4LHIMsO2PLcXp6uujRo4dQq9Viy5Yt+Y6B9BlbfrOzbds2AUBs2rSpUMcpjYwlv+Hh4XrjyrPbOnbsmO+YlIhDLIgUqHv37khPT8eMGTOy3JeWloaYmBgAwPPnz7OsjFW7dm0A0J3Cs7S0BADdY8g4yJ3jjz76CJs2bcLixYt1V85T0ZEzv0+ePMm2fcWKFZAkCXXr1s3TcShncuXX2dkZISEhWbZmzZrBwsICISEhmDRpUsFfmIJwiAWRAgUEBGD48OGYM2cO/vrrL7Ru3Rqmpqa4desWNm/ejAULFqBr165YvXo1Fi9ejM6dO8PDwwPx8fFYtmwZbG1t0bZtWwCARqOBj48PNm3ahKpVq8LR0RG+vr65nk5fu3Yt7t69i8TERADAsWPHMHPmTADA+++/D1dXV8P/EhROzhzPnz8fixcvhr+/PywtLfHLL7/o3d+5c2euzFVIcuZ31qxZOHnyJNq0aYPKlSsjOjoaW7Zswblz5/DRRx/B09OzOH8ViiRXfi0tLdGpU6cs7du2bcPZs2ezva/UkrcDm4iKQk6rNC1dulT4+fkJjUYjbGxsRI0aNcSECRPEgwcPhBBCXLx4UfTq1UtUrlxZmJubC2dnZ9G+fXtx/vx5veOcOnVK+Pn5CTMzszydygsICMjx9N3hw4eL6mWXKsaU4/79++d6ijZjJUXKO2PK7/79+0X79u1FhQoVhKmpqbCxsRGNGjUSK1euFFqttkhfd2lhTPnNDqd5y0oS4rW+eyIiIiKiUoxjkImIiIiIMmGBTERERESUCQtkIiIiIqJMWCATEREREWXCApmIiIiIKBMWyEREREREmbBAJiqFIiIiIEkSVq1aJXcoZADMr7Ixv8rG/BoHFshERERERJlwoRCiUkgIgeTkZJiamkKtVssdDhUx5lfZmF9lY36NAwtkIiIiIqJMOMSCqISaNm0aJEnCzZs30bdvX9jZ2cHJyQlTpkyBEAL37t1Dx44dYWtrCxcXF3z33Xe6x2Y3xm3AgAGwtrbG/fv30alTJ1hbW8PJyQmffPIJ0tPTdfsdOXIEkiThyJEjevFkd8yoqCgMHDgQFStWhLm5OcqXL4+OHTsiIiLCQL8V5WB+lY35VTbmt+RjgUxUwvXo0QNarRZfffUV6tevj5kzZ2L+/Plo1aoV3nrrLXz99dfw9PTEJ598gmPHjuV6rPT0dAQFBaFMmTKYO3cuAgIC8N1332Hp0qUFii04OBghISEYOHAgFi9ejNGjRyM+Ph6RkZEFOl5pxPwqG/OrbMxvCSaIqESaOnWqACCGDRuma0tLSxMVK1YUkiSJr776Stf+/PlzodFoRP/+/YUQQoSHhwsAYuXKlbp9+vfvLwCI//73v3rPU6dOHeHn56e7ffjwYQFAHD58WG+/14/5/PlzAUB8++23RfOCSxnmV9mYX2Vjfks+9iATlXBDhgzR/axWq/HOO+9ACIHBgwfr2u3t7eHl5YU7d+688XgjRozQu92kSZM8Pe51Go0GZmZmOHLkCJ4/f57vx9MrzK+yMb/KxvyWXCyQiUq4ypUr6922s7ODhYUFypYtm6X9TX8ILSws4OTkpNfm4OBQoD+g5ubm+Prrr7Fnzx6UK1cOTZs2xTfffIOoqKh8H6s0Y36VjflVNua35GKBTFTCZTcNUE5TA4k3TFqTlymFJEnKtj3zhSIZxowZg5s3b2LOnDmwsLDAlClT4O3tjT///PONz0OvML/KxvwqG/NbcrFAJqJ8cXBwAADExMTotd+9ezfb/T08PDB+/Hjs378fV65cQUpKit4V22RcmF9lY36VjfktOiyQiShfXF1doVars1xxvXjxYr3biYmJePnypV6bh4cHbGxskJycbPA4qWCYX2VjfpWN+S06JnIHQEQli52dHbp164aFCxdCkiR4eHhg165dePz4sd5+N2/eRIsWLdC9e3f4+PjAxMQEISEhePToEXr27ClT9PQmzK+yMb/KxvwWHRbIRJRvCxcuRGpqKpYsWQJzc3N0794d3377LXx9fXX7VKpUCb169cLBgwexdu1amJiYoFq1avj1118RHBwsY/T0JsyvsjG/ysb8Fg0uNU1ERERElAnHIBMRERERZcICmYiIiIgoExbIRERERESZsEAmIiIiIsqEBTIRERERUSYskInIoCIiIiBJElatWiV3KGQAzK+yMb/KxvzmjAUykRH5559/MHz4cFSpUgUWFhawtbVFo0aNsGDBAiQlJRnsea9du4Zp06YhIiLCYM+RF7NmzcJ7772HcuXKQZIkTJs2TdZ4ihrzy/waAvNbPJhfZef3dVwohMhI7N69G926dYO5uTn69esHX19fpKSk4MSJE/j0009x9epVLF261CDPfe3aNUyfPh2BgYFwc3MzyHPkxeTJk+Hi4oI6depg3759ssVhCMwv88v8llzMr7Lzmx0WyERGIDw8HD179oSrqysOHTqE8uXL6+778MMPcfv2bezevVvGCP9HCIGXL19Co9EU+bHDw8Ph5uaGp0+fwsnJqciPLxfm9xXmV37Mb/4xv68oNb854RALIiPwzTffICEhAStWrND745vB09MTH3/8se52WloaZsyYAQ8PD5ibm8PNzQ2ff/45kpOT9R7n5uaG9u3b48SJE6hXrx4sLCxQpUoVrFmzRrfPqlWr0K1bNwBAs2bNIEkSJEnCkSNH9I6xb98+vPPOO9BoNPjpp58AAHfu3EG3bt3g6OgIS0tLNGjQoFAfFHL2jhgS8/u/eJWI+f1fvErE/P4v3lJFEJHs3nrrLVGlSpU879+/f38BQHTt2lX8+OOPol+/fgKA6NSpk95+rq6uwsvLS5QrV058/vnnYtGiRaJu3bpCkiRx5coVIYQQ//zzjxg9erQAID7//HOxdu1asXbtWhEVFaU7hqenp3BwcBATJ04US5YsEYcPHxZRUVGiXLlywsbGRnzxxRfi+++/F7Vq1RIqlUps3bpVF0N4eLgAIFauXJnn1/fkyRMBQEydOjXPjzFmzK8+5pf5LUmYX31Ky29OWCATySw2NlYAEB07dszT/n/99ZcAIIYMGaLX/sknnwgA4tChQ7o2V1dXAUAcO3ZM1/b48WNhbm4uxo8fr2vbvHmzACAOHz6c5fkyjrF371699jFjxggA4vjx47q2+Ph44e7uLtzc3ER6eroQgn+Amd+smF/mt6RgfrNSUn5zwyEWRDKLi4sDANjY2ORp/99//x0AMG7cOL328ePHA0CWU2g+Pj5o0qSJ7raTkxO8vLxw586dPMfo7u6OoKCgLHHUq1cPjRs31rVZW1tj2LBhiIiIwLVr1/J8fCVjfpWN+VU25rf0YoFMJDNbW1sAQHx8fJ72v3v3LlQqFTw9PfXaXVxcYG9vj7t37+q1V65cOcsxHBwc8Pz58zzH6O7unm0cXl5eWdq9vb119xPzq3TMr7Ixv6UXC2Qimdna2qJChQq4cuVKvh4nSVKe9lOr1dm2CyHy/FyGuCK6tGB+lY35VTbmt/RigUxkBNq3b49//vkHoaGhb9zX1dUVWq0Wt27d0mt/9OgRYmJi4Orqmu/nz+sf89fjCAsLy9J+48YN3f30CvOrbMyvsjG/pRMLZCIjMGHCBFhZWWHIkCF49OhRlvv/+ecfLFiwAADQtm1bAMD8+fP19vn+++8BAO3atcv381tZWQEAYmJi8vyYtm3b4uzZs3ofGi9evMDSpUvh5uYGHx+ffMehVMyvsjG/ysb8lk5cKITICHh4eGD9+vXo0aMHvL299VZqOnXqFDZv3owBAwYAAGrVqoX+/ftj6dKliImJQUBAAM6ePYvVq1ejU6dOaNasWb6fv3bt2lCr1fj6668RGxsLc3NzNG/eHM7Ozjk+ZuLEidiwYQPeffddjB49Go6Ojli9ejXCw8OxZcsWqFT5//69du1a3L17F4mJiQCAY8eOYebMmQCA999/v8T2ejC/rzC/zG9JxPy+otT85kjeSTSIKLObN2+KoUOHCjc3N2FmZiZsbGxEo0aNxMKFC8XLly91+6Wmporp06cLd3d3YWpqKipVqiQmTZqkt48Qr6YAateuXZbnCQgIEAEBAXpty5YtE1WqVBFqtVpvSqGcjiHEqzk6u3btKuzt7YWFhYWoV6+e2LVrl94++ZlGKCAgQADIdstuiqOShvllfoVgfksq5lfZ+X2dJEQ+RoITERERESkcxyATEREREWXCApmIiIiIKBMWyEREREREmbBAJiIiIiLKhAUyEREREVEmLJCJiIiIiDJhgUxERERElAkLZCIiIiKiTFggExERERFlwgKZiIiIiCgTFshERERERJmwQCYiIiIiyoQFMhERERFRJv8P4zaOICsSeQAAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAInCAYAAACFua8hAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAxoRJREFUeJzs3Xd4FNUaBvB3d9N7rwQSagihBkInlFCkiCJKkSIoVixwvSodFIhYEFQEQZqFC4o0KQEMRXqPlEAIJYSS3nvZnfvHmDVLCmmb2d28v+eZJ9mpXxiS/fbMOd+RCYIggIiIiIiIAAByqQMgIiIiItIlTJCJiIiIiEpggkxEREREVAITZCIiIiKiEpggExERERGVwASZiIiIiKgEJshERERERCUwQSYiIiIiKoEJMhERERFRCUyQdUBsbCzmz5+P2NhYqUMhIiIiqveYIOuA2NhYLFiwgAkyERERkQ5ggkxEREREVAITZCIiIiKiEpggExERERGVwAS5hL/++gvDhg2Dh4cHZDIZduzY8cRjjhw5gg4dOsDU1BRNmzbFhg0btB4nEREREWkPE+QSsrOz0bZtW6xYsaJS+9+9exdDhgxBnz59EB4ejvfeew+vvPIK9u/fr+VIiYiIiEhbjKQOQJc89dRTeOqppyq9/6pVq+Dj44Mvv/wSANCyZUscP34cX331FQYOHKitMImIiIhIi5gg18CpU6cQHByssW7gwIF47733KjwuPz8f+fn56tdZWVnaCK/qoqIAbcVSUCB+bdJEO+enihkbAwkJ2ru/RUWASsX7KxW5HEhO1t79BcTfYd5f6SQnAzk52ju/Ugl4e2vv/FSxxEQgL09757eyApo10975DRAT5BqIi4uDq6urxjpXV1dkZGQgNzcX5ubmZR4XEhKCBQsW1EWIlRcVBfj6au/8giB+XbAAeOzfjOpAURHw9tvaOz/vr7RSU4GZM7V3ft5facXHA/Pna/cagsD7K5W6uL8AcOMGk+QqYB9kCcyYMQPp6enq5ejRo1KH9G/LU/EbYW0rPm+JlnOqQ8UtE7y/hqn435331zDl54v3gPfXMNXV/dWVp9V6gi3INeDm5ob4+HiNdfHx8bCxsSm39RgATE1NYWpqqn5tZWWltRirTCYTF22cl6TH+2vYeH8Nm7buL6C95IwqT5v3l6rMYFqQBUHAoUOHsG/fPmRmZtbJNbt27YqwsDCNdQcPHkTXrl3r5PpEREREVPv0MkGeNWsW+vTpo34tCAIGDBiA/v37Y8iQIWjdujVu375d5fNmZWUhPDwc4eHhAMQybuHh4YiJiQEgdo2YMGGCev/XX38dd+7cwQcffIAbN27gu+++w6+//opp06bV7AckIiIiIsnoZYL8+++/IzAwUP1669atCAsLw8KFC7F7924olUrMr0aH9/Pnz6N9+/Zo3749AGD69Olo37495s6dCwCIjY1VJ8sA4OPjgz179uDgwYNo27YtvvzyS/zwww8s8UZERESkx/SyD/LDhw/RtGlT9ett27bBz88PM2bMAAC88cYbWLlyZZXP27t3bwgV9MMqa5a83r1749KlS1W+FhERERHpJr1sQTYyMlLXERYEAWFhYRg0aJB6u6urK5KSkqQKj4iIiIj0mF4myP7+/vj555+RmpqK9evXIzk5GUOGDFFvv3fvHpycnCSMkIiIiIj0lV52sZg7dy6GDRumToK7d++uMWhvz5496NSpk1ThEREREZEe08sEuX///rh48SIOHjwIOzs7jBo1Sr0tNTUVvXr1wvDhwyWMkIiIiIj0lV4myADg5+cHPz+/Uuvt7e3x1VdfSRARERERERkCvUyQMzMzkZaWBi8vL/W6R48eYdWqVcjPz8fIkSPZxYKIiIiIqkUvE+RXX30Vd+/exenTpwEAGRkZ6NKlCx48eAC5XI7ly5cjNDQUvXv3ljZQIiIiItI7elnF4vjx4xg6dKj69c8//4xHjx7h5MmTSE1NRZs2bbBw4UIJIyQiIiIifaWXCXJSUhI8PT3Vr3ft2oUePXqgS5cusLa2xoQJE/D3339LGCERERER6Su9TJDt7OwQFxcHAMjNzcWxY8cwYMAA9XYjIyPk5ORIFR4RERER6TG97IPcrVs3fPfdd/D19UVoaCjy8vI0yrrdvHlTo4WZiIiIiKiy9DJBXrJkCQYMGIDnnnsOAPCf//wHrVq1AgAolUr89ttvGlNPExERERFVll4myE2bNkVkZCQiIiJga2sLb29v9bacnBx8++23aNu2rXQBEhEREZHe0ssEGQCMjY3LTIKtra05ix4RERERVZteDtIDxNrHn376KQYOHIj27dvj7NmzAICUlBQsXboUt27dkjhCIiIiItJHetmC/ODBAwQFBeH+/fto1qwZbty4gaysLACAg4MDvv/+e9y7dw/Lly+XOFIiIiIi0jd6mSD/97//RWZmJsLDw+Hi4gIXFxeN7c888wx2794tUXREREREpM/0sovFgQMH8M4778DPzw8ymazU9saNG+P+/fsSREZERERE+k4vE+Tc3Fw4OzuXuz0zM7MOoyEiIiIiQ6KXCbKfnx/++uuvcrfv2LED7du3r8OIiIiIiMhQ6GWC/N5772Hz5s1YsmQJ0tPTAQAqlQq3bt3C+PHjcerUKUybNk3iKImIiIhIH+nlIL1x48bh3r17mD17NmbNmgUAGDRoEARBgFwux+LFi/HMM89IGyQRERER6SW9TJABYNasWRg/fjx+//133Lp1CyqVCk2aNMGIESPQuHFjqcMjIiIiIj2ltwkyADRs2JBdKYiIiIioVullH+SLFy/iu+++K3f7d999h/Dw8LoLiIiIiIgMhl4myLNmzcKff/5Z7vZDhw5h9uzZ1T7/ihUr4O3tDTMzM3Tu3Fk9jXV5li1bhhYtWsDc3BxeXl6YNm0a8vLyqn19IiIiIpKOXibIFy5cQM+ePcvd3rNnT5w/f75a596yZQumT5+OefPm4eLFi2jbti0GDhyIhISEMvfftGkTPvroI8ybNw/Xr1/H2rVrsWXLFsycObNa1yciIiIiaellgpyZmQkjo/K7T8vlcnX5t6paunQppkyZgkmTJsHPzw+rVq2ChYUF1q1bV+b+J0+eRPfu3TF27Fh4e3tjwIABGDNmzBNbnYmIiIhIN+nlIL1mzZrhwIEDePvtt8vcHhoaWq1KFgUFBbhw4QJmzJihXieXyxEcHIxTp06VeUy3bt3w888/4+zZswgMDMSdO3ewd+9ejB8/vtzr5OfnIz8/X/06KyuryrHqHUEQvyoU4lJdMhkgl4vnkMvF1yW3lbUU71f8ffHr4u+Ll+Jzlnxdcnl8XXnHPb6UjEH+z2fSkjE9HjuA1DQZIiOBBw+AtDRApar+PxkANMMl9KnZKYiIiOoNvUyQX375ZUybNg3Tp0/H3LlzYWdnBwBIS0vDggULEBoais8//7zK501KSoJSqYSrq6vGeldXV9y4caPMY8aOHYukpCT06NEDgiCgqKgIr7/+eoVdLEJCQrBgwYIqx6fXihNBpVJcaoOxMWBmBpibA1ZW4mJjA9jbi4uZWe1cpw7l5gJnzgA3b0obh6VSiTwAZgCya/KBhoiISA/pZYL8zjvvIDw8HMuWLcPXX38NDw8PAMCjR4+gUqkwfvz4Oiv/duTIESxevBjfffcdOnfujFu3buHdd9/FJ598gjlz5pR5zIwZMzB9+nT16/DwcAQFBdVJvAalsFBcMjOBsvqIW1kBTk6Aqyvg7i5+L9fdXkWxscCff4pJstTyAKj++UpERFTf6GWCLJPJsH79ekyYMAG///477ty5AwAYPnw4nnvuOfTu3bta53VycoJCoUB8fLzG+vj4eLi5uZV5zJw5czB+/Hi88sorAIDWrVsjOzsbr776KmbNmgV5GQmZqakpTE1N1a+trKyqFS89QVaWuERHi6+NjQEPD8DLC2jUCLC0lDS8km7dAo4cqXlXCiIiIqo5vUyQi/Xp0wd9+tRez0oTExMEBAQgLCxMPVW1SqVCWFgYpk6dWuYxOTk5pZJgxT+PpIXifrekGwoLgXv3xOX4ccDZGWjcGGjSRGxtlkhUlJgc878LERGRbtDLBPnu3bu4evUqhg0bVub2P/74A61bt4a3t3eVzz19+nRMnDgRHTt2RGBgIJYtW4bs7GxMmjQJADBhwgR4enoiJCQEADBs2DAsXboU7du3V3exmDNnDoYNG6ZOlElHJSaKy5kzYsuyry/g41OzQYRV9PAhcPQok2MiIiJdopcJ8vvvv4+MjIxyE+QVK1bAzs4OmzdvrvK5R40ahcTERMydOxdxcXFo164dQkND1QP3YmJiNFqMZ8+eDZlMhtmzZ+Phw4dwdnbGsGHDsGjRour9cCSNR4/ExdQUaNECaNUKsLbW6iUzMoCDB9mtgoiISNfoZYJ86tQpvPfee+Vu79evH5YtW1bt80+dOrXcLhVHjhzReG1kZIR58+Zh3rx51b4e6ZD8fODyZeDKFbE1uW1bsStGLVOpxAF5BQW1fmoiIiKqIb1MkFNTU2FdQeuelZUVkpOT6zAiMjiCANy5Iy4NGgAdOgDlDNSsjjNngKSkWjud9Ir7iBgbAyYm1T+PkZFYtq+4LKAgaC6A+Omi+HXx9ypV6e+JiIiqSS8T5IYNG+LEiRN44403ytx+7NgxNGjQoI6jIoP14IG4eHqKibK7e41OFx8PXL1aS7HpiuKEtrCwZs3iBQXiOby8xD7hNfk9VqnEmtuPfy25FBVpfv/468ePKXmu8pbHk/fHFkEAVMp/vgoABEBQ1awTulxuCuManYGIiErSywR5zJgx+OSTTxAYGIipU6eq+wQrlUp8++232LJlC2bNmiVxlGRwHj4UFxcXseuFt7fmTH6VoFJxUN4TFRb+23rv5gb07ClO/FJVxTMZallOjlhNMDtb/D4nB8jLE+tZ5+eLS3HeX1ioncZtd9UlDEP5kxMREVHV6GWCPGPGDBw/fhzvvfceFi1ahBYtWgAAIiMjkZiYiN69ezNBJu1JSBBH11lbA35+4qC+Ss7ad/myOHU0VVJcHLBtG9ClizhwUiI5OUBqqnjv0tPFJSNDTIxra2JIIiLSHXqZIJuamuLAgQPYuHEjtm3bhtu3bwMAAgMD8dxzz2HChAllTtBBVKsyM8XOxOfOiROPtGghdgko5/9eTg5w6VIdx/i4SjZdmwHqqaYrdYwgVLk1vdKUSuDECTE77dZNe9eB+GOkpor9w5OSgORkICVFbAUmIqL6Qy8TZACQy+WYNGmSuj4xkWRUKuDuXXExMxOrX/j4iLWVSyTL586Jj9grw8hI7MHh6Sn2Lqjp5z2Te/9MhFLJ5DK7qhcsPu+wYeLEK9VVUCBmpffuiXNvl0zOr10T/wGrOVNmWbKyxFLYCQli3/CkJLHrMRER1W96myAT6aS8POD6dXExMREzXC8vpFl44OZNmyceLpeLvTYCAsSSzLXGqRlw44aYEWqLlRXQrFnNz+PhAbRuLfZhuHBBnGqw2M2bYqWM7t2rdEqlUmyATkkRl+RkMRnOy6t5uEREZHj0MkHu27fvE/eRyWQICwurg2iIylFQoG5Zjr0ONMmwRI6NG/KsnZFn5YQ8S0eojP/Ngq2sgP79tVJ2WVQbyWtdsrEB+vQBmjcX5+LOzhbXX7sG2NoC/v4auxcUiPl/VpaYWxcvaWlibxgOjCQiosrSywRZpVJB9tijYqVSiXv37uH+/fto2rQpPD09JYqOSFPxY3wjZMMm8TZsEm+rtylNzFFgbgsLNxsEtrKCaaIFkGkmdtUwNhanva6Nqa8VCkTFWmmtAVmpFFu/a9K7Avg3iS2upFZUBBSpPKHsMALGh/ZDSEhAUSFQeOsUYjs4IN3SQ105orLdV4iIiJ5ELxPkx2ezK2n37t149dVXsXTp0roLiKgC9++Xv01RkAtXs1z4O8bB6Jr2Yogq8oHv2/21dv7ixHbBAuCfWdlrmTlk8qFokHIAlqkPAAgoSjqEhICRUBpXroIIERFRZRlcqYehQ4di3LhxFU5FTVRXcnIrnjHPwkKsXmak5Y+qWXniBSrbzUClsoRKpYBKZVmp/YvPq81qD4LCCA/8BiDHzgMAYFSQA/ebR7V3QSIiqrcMLkEGgCZNmuDcuXNSh0GEB/fLT0qNjMXk2LgOp0CTySq3iEXeVADyqnCM9hUnyQUWdgAAq+R7sEm4VTcXJyKiesPgEuSioiL8+uuvcHJykjoUqucKCsTyYeVp0RwwN6+7eAyFysgE91sNgvKfAY6ut09CUchyFEREVHv0sg/y5MmTy1yflpaG06dPIy4ujn2QSXKxceVPK+zpCTg61m08hqTQ3AaxzYLQIOIAFIV5cL57FnHNe0kdFhERGQi9TJAPHTpUqoqFTCaDvb09evTogVdeeQUDBgyQKDoiMTGOfVT2NnNzcRIQqpksJ2+kevjB/lEE7OIjkerhh3wrPjkiIqKa08sEOTo6WuoQiCqUlCR2sShLs+a1U7mNgASfLrBKfQDj3Ay43T6Je22fljokIiIyAAbXB5lIF8TGlr3e1RWws63bWAyZoDBCbDOxa4V5ehyskqKlDYiIiAyC3iTIOTk5iImJQUEZzXLr1q1Dv3794OfnhxEjRrCCBUkqJwdITy+9XqEAvH3qPh5Dl2PngXS3FgAA53vnOGUeERHVmN4kyB9//DHatGlTKkFeuHAhpkyZgqNHjyIxMRE7duxA79698ffff0sUKdV35bUeN2wImJrUbSz1RYJ3IFRGJjDNTmXZNyIiqjG9SZAPHz6MoUOHwsrKSr0uIyMDCxcuhKenJ6KiopCYmIjTp0/DxMQEn376qYTRUn2lUpVd2s3UVKxcQdqhNDFHUsMOAACnmItsRSYiohrRmwQ5Ojoabdq00Vi3d+9eFBQU4MMPP4SPj/jsOjAwEJMmTcKxY8ekCJPqueRkoLCw9HovL0CuN79t+inFwx+FZtYwyU2HddIdqcMhIiI9pjdv2ZmZmXB8rHDsX3/9BZlMhoEDB2qs9/PzQ2JiYl2GRwQAiI8vvc7MDHBzq/tYasYM4p8HM6kDqTy5HImNOgIAnGIuSRwMERHpM71JkBs1aoQbN25orDty5AhcXV3RtGlTjfUFBQWwsbGpy/CIUFAApKaVXu/VUP9ajxWKbCgUSigU2VKHUiUZLk2Rb+kA0+wUWKbESB0OERHpKb152x4wYADWrVuHM2fOAAB+/PFH3LhxA88++2ypfS9cuABvzsRAdSwhERAemznPxARwdZEmnnpJJkNSowAAgOODyxIHQ0RE+kpvEuQ5c+bAysoK3bp1g4mJCV566SU4Oztj7ty5Gvvl5ORg+/bt6Nevn0SRUn2VUEb3igYN9K/1WN9lOvkg39IeFmmPYJqVLHU4RESkh/RmJj0nJyeEh4fjhx9+wJ07d9CoUSNMnjwZLi6azXNXr17Fiy++iPHjx0sUKdVHOblAVpbmOiMjwM1dmnjqu2Sv9vC4cQgOD68gtkVvqcMhIiI9o1dtW/b29vjvf/+LlStX4qOPPiqVHANiFYtvvvkGrVq1qvZ1VqxYAW9vb5iZmaFz5844e/ZshfunpaXhrbfegru7O0xNTdG8eXPs3bu32tcn/VPWmFBXV8CIU0pLIsO5CQrNbWCTeBuKwjypwyEiIj2jVwlyXdiyZQumT5+OefPm4eLFi2jbti0GDhyIhLKK20IcENi/f39ER0dj69atiIyMxJo1a+DJorf1yuMJskwGeHhIEwsBkMmQ4uEPmUoJ27hIqaMhIiI9wwT5MUuXLsWUKVMwadIk+Pn5YdWqVbCwsMC6devK3H/dunVISUnBjh070L17d3h7eyMoKAht27at48hJKtnZQM5jxR4cHABzc2niIVGaWwuojExgHxvBiUOIiKhKmCCXUFBQgAsXLiA4OFi9Ti6XIzg4GKdOnSrzmF27dqFr165466234OrqCn9/fyxevBhKpbLc6+Tn5yMjI0O9ZD3eeZX0SlJS6XXu7HssOUFhjFT3ljDOy4Rl6gOpwyEiIj3CBLmEpKQkKJVKuLq6aqx3dXVFXFxcmcfcuXMHW7duhVKpxN69ezFnzhx8+eWXWLhwYbnXCQkJga2trXoJCgqq1Z+D6tbjCbKZGWBvL00spCnVvRUgk8Eu7saTdyYiIvqHXiTIu3btwqNHj6QOo0wqlQouLi5YvXo1AgICMGrUKMyaNQurVq0q95gZM2YgPT1dvRw9erQOI6balJMrdrEoydVN7INM0isys0KWQ0NYpdzjYD0iIqo0vUiQn332WRw5ckT9unHjxti1a1etX8fJyQkKhQLxj80XHB8fD7dy5gp2d3dH8+bNoVD8W66gZcuWiIuLQ0FBQZnHmJqawsbGRr1YWVnV3g9BdSr5sdZjmVwfp5U2bKkerSBTqWAbf1PqUIiISE/oRYJsbW2NtLQ09evo6Git9Ns1MTFBQEAAwsLC1OtUKhXCwsLQtWvXMo/p3r07bt26BZXq3ynUbt68CXd3d5iYmNR6jKRbHu9eYW8HmPK265Rs+wYoNLeBbTyrWRARUeXoxUQhgYGBWLRoEeLj42FrawsA2Lt3b7n9ggFAJpNh2rRpVb7W9OnTMXHiRHTs2BGBgYFYtmwZsrOzMWnSJADAhAkT4OnpiZCQEADAG2+8gW+//Rbvvvsu3n77bURFRWHx4sV45513qvGTkj7JLwAyMzXXPdZ9nXREmpsvnO+ehWlWEvKtnKQOh4iIdJxeJMjfffcdJkyYgE8++QSAmPxu2rQJmzZtKveY6ibIo0aNQmJiIubOnYu4uDi0a9cOoaGh6oF7MTExkJeYO9jLywv79+/HtGnT0KZNG3h6euLdd9/Fhx9+WOVrk35JeWwWYyNjwNFRmlioYmmuzeEcfQ628VFIYIJMRERPoBcJctOmTXHy5Enk5eUhISEB3t7eWLZsGYYPH66V602dOhVTp04tc1vJvtDFunbtitOnT2slFtJdyY8lyM7OgFwvOi3VP0oTC2Q5NIRN4m0kNO7CUZRERFQhvUiQi5mZmaFhw4aYN28e+vbti0aNGkkdEtVTSiVQols8AMDFWZJQqJLSXFugQfI9WKY+QLaDl9ThEBGRDtOrBLnYvHnz1N9nZWXh/v37AMTuDqwIQXUhNRUoMS4TpmbAP93jSUdlOTSE0tgMNom3mSATEVGF9PaB8Llz59CnTx/Y29vD398f/v7+sLe3R9++fXH+/HmpwyMDl5Ki+dqZrce6Ty5HhnMTWCdHQ6Yqf6ZLIiIivWxBPnPmDHr37g0TExO88soraNmyJQDg+vXr+N///odevXrhyJEjCAwMlDhSMlSpqZqvmSDrh3SXZrB/dA2WKfeR5eQtdThERKSj9DJBnjVrFjw9PXH8+PFSE3jMnz8f3bt3x6xZs3Dw4EGJIiRDlp0N5Of/+9rcHLBmzx69kGfjggJzW9gk3maCTERE5dLLLhZnzpzBa6+9Vubsdq6urnj11VdZVYK0ht0r9Fu6azNYp9yDTFkkdShERKSj9DJBlsvlKCoq/81NqVRq1Comqk2PJ8iOLKurVzKdGkOmLIJl6gOpQyEiIh2ll1lkt27dsGLFCty7d6/UtpiYGHz33Xfo3r27BJGRoStSAhklZs8zM2P3Cn1TYGGHfCtHWCfflToUIiLSUXrZB3nx4sXo1asXfH198eyzz6J58+YAgMjISOzcuRNGRkbqqaCJalNaKiCUKO/mxNZjvZTh3ASO98MRq1JxdhciIipFLxPk9u3b48yZM5g1axZ27dqFnJwcAICFhQUGDRqEhQsXws/PT+IoyRA9PjkIE2T9lOHcBM53z8Iy7SFrIhMBgCAARkaAsXHNzlN8jurOVlnZ48rbryrXreGMmvkFQFGhOHFUTciN0mEJgPN76ha9TJABwM/PD9u3b4dKpUJiYiIAwNnZmX2PSatKlnczMQGsraWLhaqv0MwaeVZOsE6OZoJMBIjJYlERUFhYs/MUFoplfqysAAcHwMUF8PAQRzPr8RTv+fnAgwfAo0dAYqLYWFLBUKgqcSy6hBFMj3WO3ibIxeRyOVxdXaUOg+qBvDwgN/ff1w4Oev33vt7LdPKB/aNrQLOeUodCZFhUKiAjQ1yio8V15uaAjw/QvLmYNOsBQQDu3QNu3BCT45Kzp5Lh0/sEmaiupKZpvnZwkCQMqiWZTj5wjj4Hs4wE5Nnoxxs2kd7KzQUiIsTFyQlo0wZo0kQnWxlUKjEp/vtvIDPzyfuTYWKCTFRJaSW6VygUgL29dLFQzRVY2CHf0h7WKfeYIBPVpaQk4NAh4MIFoFMnoHFjqSNSu3sXOHNGbPym+o0JMlEllRygZ2cnJsmk3zIdfWCdHI1E705Sh0JU/6SnA3/+Cbi5AT17StrqkJUFHD8OxMRIFgLpGI5oI6qE7GzNsStsPTYMWY6NYJqdAuM8PkclkkxcHPD772KLsgQdfaOigK1bmRyTJibIRJXA/seGKc/aGUWmlrBK4TsjkaRUKjFB3rmzzvo3KJXA0aPA4cNAQUGdXJL0iF53sYiIiMCdO3eQmpoKQRBKbZ8wYYIEUZEhSk/793sLS3EGPTIMmY6NYJlyH6keraQOhYgSE4Ft24DevQFvb61dJicH2L9fvBxRWfQyQb59+zbGjRuHs2fPlpkYA4BMJmOCTLVCEMSucsXYemxYshwaocH1g5ApiyAo9PJPIpFhKSgADhwAOnYEOnSo9dOnpAD79old54jKo5fvBq+99hquXLmCZcuWoWfPnrBnh1DSosxMzYLwDvzvZlCy7TwhQAaL9EfIdmgodThEVOz8ebF1Iiio1qaEj4sDQkPZpYKeTC8T5BMnTmDmzJl4++23pQ6F6oGS/Y8VCsDGRrJQSBvkcmTbe8Iq5T4TZCJdExUl1lAeMECcxroGHj4Uu1XU1gx4ZNj0cpCek5MTbG1tpQ6D6omS9Y/t7GqtIYN0SJZDQ1il3JM6DCIqy4MHwJ49NWr2ffhQbDlmckyVpZdv9a+//jp+/vlnKJVKqUMhA1ekBDJKVABjbx7DlOXQEMZ5WTDNSpY6FCIqS3w8sHdvtZLkuDix5ZgpA1WFXnaxaN68OZRKJdq2bYvJkyfDy8sLijJmbRgxYoQE0ZEhSU8DhBJlOe2YIBskpYkF8q0cYZVyD/lWjlKHQ0RlSUgQk+QhQwBj40odkpLClmOqHr1MkEeNGqX+/v333y9zH5lMxhZmqrHUEt0rzMwAC3PpYiHtynJoCOukaCQ3rP1R80RUSxISxAoXgwY9cTrT7GyxWgUH5FF16GWCfPjwYa2ef8WKFfj8888RFxeHtm3b4ptvvkFgYOATj9u8eTPGjBmD4cOHY8eOHVqNkepG6mP9j8lwZTk0hGPMJRjlZ6PI1FLqcIioPA8firN7BAeXu0tRkdhyzFJuVF16mSAHBQVp7dxbtmzB9OnTsWrVKnTu3BnLli3DwIEDERkZCRcXl3KPi46Oxvvvv4+ePXtqLTaqWzm54uDpYux/bNhyrV2gNDGHdXI0Jw0h0nV37gCnTgFdu5a5+dAhIJlDCqgG9HKQXkkRERHYt28f9u3bh4iIiBqfb+nSpZgyZQomTZoEPz8/rFq1ChYWFli3bl25xyiVSrz44otYsGABGjduXOMYSDekpGi+ZguygZPJ/ulmcVfqSIioMq5cAcp4379wAYiOrvtwyLDobYK8c+dONGnSBK1bt8bQoUMxdOhQtG7dGk2bNsWuXbuqdc6CggJcuHABwSUe28jlcgQHB+PUqVPlHvfxxx/DxcUFL7/8cqWuk5+fj4yMDPWSlZVVrXhJu1JLJMiWlpUeE0J6LNOhESzSY6EozJM6FCKqjJMnxS4X/4iJERNkoprSywR57969eO655wAAixcvxvbt27F9+3YsXrwYgiBgxIgRCA0NrfJ5k5KSoFQq4erqqrHe1dUVcXFxZR5z/PhxrF27FmvWrKn0dUJCQmBra6tetNllhKpHqdScXpqtx/VDtn0DCHIFrJKjpQ6FiCpDpQLCwoDMTGRliV2TiWqDXibIn3zyCdq0aYPLly/jww8/xNNPP42nn34aH374IS5fvozWrVtjwYIFWo8jMzMT48ePx5o1a+Dk5FTp42bMmIH09HT1cvToUS1GSdWRlib+3S3GBLl+EBRGyLJvABt2syDSH3l5UIUeQNj+IuTnSx0MGQq9HKR3+fJlLF68GJaWpUeaW1pa4qWXXsLMmTOrfF4nJycoFArEx8drrI+Pj4ebm1up/W/fvo3o6GgMGzZMvU71T1ZlZGSEyMhINGnSpNRxpqamMDU1Vb+2srKqcqykXSUHd8hkACdurD+yHL3hFvUX5IX5UBmbPvkAIpLcvYvJMMo9DPj1lzoUMhB62YJsZmaGlMdHUJWQkpICMzOzKp/XxMQEAQEBCAsLU69TqVQICwtD1zJGyvr6+uLKlSsIDw9XL08//TT69OmD8PBweHl5VTkG0g0l/3tZWwNGevlRkqoj09EbAGCdzFZkIn2Qli7ORm2ddBfO0eekDocMhF6+7fft2xfLly/HoEGDSiWuZ86cwddff40BAwZU69zTp0/HxIkT0bFjRwQGBmLZsmXIzs7GpEmTAAATJkyAp6cnQkJCYGZmBn9/f43j7f55Fv/4etIfGRmaheVZ3q1+URmZIMfWAzaJt5Hu5it1OERUgcJCIPIGIAjia8eYSyg0tUKae0tpA9Oijkol4gC4ATj/hMlSqPr0MkH+7LPP0LVrV/To0QOBgYFo0aIFACAyMhJnz56Fi4sLlixZUq1zjxo1ComJiZg7dy7i4uLQrl07hIaGqgfuxcTEQC7Xy4Z3qqTHa2ey/3H9k+HcGO5Rx6AoyIXShNMnEumqyEiU6nfsdus4iozNkeXkLUlM2hYH4OET96Ka0ssE2cfHB5cvX0ZISAj27duHLVu2AAAaNWqEd999Fx999FGFk3o8ydSpUzF16tQytx05cqTCYzds2FDt65JuSC7RvcLISOxiQfVLlqM3EHUMNkl3OGkIkY66F1O6Xj0AQBDgeSMM91sNQo69Z53HRYZBLxNkAHBxccFXX32Fr776SupQyIDk5AI5JaYmtbUD+MCg/lEamyHbzhM2CVFMkPWRTFb6a3nfV/S1ou8rWvePoiJxUQlVjP/xSygsYQag/CvVPykpQMy98rfLVEp4RexHjP9TyLV1r7vAyGDobYJMpA3JSZqv7e0kCYN0QIZzE7jfPArj3HQUmrOMCQRBM7msDplMfCxjZCTOvGNmBlhYiDPxWFmJ5WIcHMT1xfuXdY6KvkpApQLi4sQlKUksE5mZKdZTrw2OyksYgdm1czIDkJMD3CjR77g8MmURGl7dxySZqkUvEuTJkydDJpNh9erVUCgUmDx58hOPkclkWLt2bR1ER4YkMVHztYODNHGQ9DIdveEmPwbb+CgkeXeUOhzpyWRiRvKkrKQigiCOgC0eBVtyNp6SLCwAJyfA2RlwcwNcXXWulIxSKU5nfOcOcP++2FKsKyyVSuQBMAOQbWCDuAoLgWvXKv/vXZwkP2jZH9kOrCxFladbf3HKcejQIcjlcqhUKigUChw6dAiyJ7QWPGk70ePy8oCSs35bWPzbkEX1j8rYFNn2XrBNYIJc53JyxDmDY2LE13K5mCR7eQENG0r6yTUrC7h6tezBYboiD4Dqn6+GRKUCIiKA3NyqHSdTFqFBxH7ENgtChmsz7QRHBkcvEuTo6OgKXxPVhqTHulew9ZjSXZrC83oYLNIeIcfOQ+pw6i+VCoiNFZezZ8WuGD4+QNOmdfaLmpkJXLgA3LqlOcsm1Q1BELtVlPfQ4UlkKhU8Ig/DOD8TyQ071G5wZJD0IkF+XExMDJydnWFuXnb5pdzcXCQmJqJhw4Z1HBnpM3avoMdlOXpDZWQC2/hIJsi6JD0dCA8XF0dHwNcXaNYMMDGp9UsVFAAXL4qtxkyMpRMVVboRozqco8/DLDsFj5r3hqDQyxSI6ohejs/38fHB9u3by92+a9cu+Pj41GFEpO9yc8UWomIKBWBjI108pBsEuQKZTj6wSboLeVHBkw+gupecDJw4Afz8M/DXX+XU/aqeO3eAX38FLl9mciylW7fEAZC1xTrxDnwubYNJdmrtnZQMjl4myMITBokUFhZyMg+qkoTHWo/t7VnejUTpLs0gUxbBJuGW1KFQRYqKxGfwW7cCe/eK3TGqKS8P+PNPccnJqcUYqcqibgGPHtX+eU1y0uBzaRvsH16t/ZOTQdCb5wsZGRlIS0tTv05OTkZM8QCOEtLS0rB582a4u7OkC1Ve0mMJsqOjNHGQ7smx80ChmTXsYyOQ5uEndThUGQ8eiIubG9CxI+BR+e4xjx4Bhw4xMZaaSgXcjAIS4rV3DZlKCdfbJ2GTdAexzXqhwMJOexcjvaM3CfJXX32Fjz/+GIBYoeK9997De++9V+a+giBg4cKFdRgd6bOsLCC7xOQgMhn7H5OmNLcWcI4+D/P0OOTaukkdDlVWXBywezfg6QkEBopl4ypw6RJw/nzNKtlRzRUpgRvXa7W3TIXM0+Pgc3ErUt1bIalhB6iMTSt3nDlgaip2yasJ2+KBh5X8j+dW8mtljimuYU5VojcJ8oABA2BlZQVBEPDBBx9gzJgx6NBBcySqTCaDpaUlAgIC0LEjyzJR5cQ/1kJhYyPOYUBULN21BZzvXYB9bAQTZH308CGwfTvg7S22KD/2CbioCDhyROxzTNLKyxPrHJdstKgLMpUKDg+vwC4+EimerZHq0QpK43/rfJqZAQ0aiA8jnJ3FQiq1Vpo7ygr4CKjsXInnq9r/rzg5trKq2nH1nN4kyF27dkXXrl0BANnZ2Xjuuefg7+8vcVSk71QqVq+gJysytUS2fQNYJ92BoqArlCZlV9AhHRcdLS7e3kC7doCLC3JzgdDQ0n8HqO6lpAA3IoGiQulikBcVwOneBTg++BuZrk1hG9gCPl1c4empxUbYZs3E/vMlC/HXNisr8TpUaXqTIBfLycnB119/DQsLCybIVGOpaf9O6lXM0UmSUEjHpbq1hGXKfdg/usaJQ/TdP4lyjo0bwuL9kWjmw0fQElKpgLt3xYZ+XaBQAO7uRfBscAOmKTeAv6zED1WenuKENVqYQSoKzaDF9BhWAJgeV43eJcgWFhYwMjKCpaWl1KGQAYh/rHSQpSVgwcZBKkOWYyMUmVrCPjYCyV7tWENVz2VnA1dOx8G2IA6WppZIc22BdLcWKDSzljq08lWyj6oZoJ5qutJ9VCWSni7WONaFQZEymZj/NvIGTEuW1C6ePvHqPxUvLC3FPhZWVmLt7Rp2Qo6KMYXv6LaobBeL6rpxg43IVaGXf+Gfe+45bN26FW+88QanlKZqyy8Akh8bBOLE1mMqj0yGVPeWcI4+D9uEKKS5t5Q6IqqmzCzg6hWg8J9H+Ub52XCKuQinmIvIsXVHhktTZDr5aPRBrQy5XCwRaWcHWFuLg7iMjWteMtI42goIASqbQGVXp4+qIAC9eoktpdUlCOI/ak6OWFg+JQVISyszAc/LExvyExKqf7naZGkpJo+Vqn+fnV2rnaSzYhwBoS0EaOdBRvEYPW324DBEepkgjx49Gm+++Sb69OmDKVOmwNvbu8xZ9R4fxEdUUkI8IDxW/J8JMlUkzc0XTjEX4fDgMtLcfPlYXg9lZQFXrpTfz9UiPRYW6bFwu3UcOTZuyHJshCx7LxRY2pe5v5MT0KiR+PTd2bnmFQ3K1FyP+6gWForVRO7fB+7eRW5SNh48FJ/e6cLkKzKZOPiuUSPpa9/LZJX7k6JUdgQQB8ANCsV5bYdVb+llgty7d2/198eOHSu1XRAEyGQyKJXKOoyK9M3jMzNZWIitCETlUZpYIMO5CWzjo2CTeBsZLk2lDomqICen4uRYgyCok2UXnEaRiQVybN2Ra+sGmasLvDs4oHlLRd3NuKmvz8aNjVHk7oV7BV6IyuiG5EePYFcYAStEQwZpM2RjY3GWcvuyP/vosDgAOtJh24DpZYK8fv16qUMgPZeSIk4vXRJbj6kyUjzbwDY+Co73w5kg65G8PDE5LqxmhQSjghy459yGl+NtOMkA+RU5EGMrZlc2NuJiaSn2qyjuW2FsXGtPGaKi9KMBubBQ7H2QkSFWBomPFyc1VLdX2Xog29YDRnlZcHwQDru4G5BJ0JRsZQX4+WllvB0ZCL1MkCdOnCh1CKTnypq69AlzCBABAPKtHJFj5wGLtEewTrqLTCcfqUOiJygsFMdX5edX73hzc7FrrsbfCJUKSE0Vl4rUwnP7qHgb+M59HtocxCUIwCefiIPUaqKyuW6RmRXim/ZAimcbuESfhXVi3RWhdnAAWrbUUncYMhh6mSCXlJWVhfv37wMAvLy8YMVC2PQEObmlZ2iytGT3Cqq85AZtYZH2CM7R55Dp6M2+yDpMqQQiIqpXJUGhABo2FPsXVzvPrYXW0axcBSCg0oO4VCpLFNexkMufPJiseAxdbm7d9wsuNLfBw5bBsHR7ALdbx2Gcm6HV67m5iS3l/JWlJ5G4S3r1nTt3Dn369IG9vT38/f3h7+8Pe3t79O3bF+fPs9M6le9RGV232HpMVZHt4IU8KyeY5KTBNiFK6nCoHCoVcP26WEqsquztgYAAwMtL+sFbxYoHcT1pEZNjFYC8KhwjrWz7BrjTYSRSPfy0dg1PT6B5c934eUn36WUL8pkzZ9C7d2+YmJjglVdeQcuWYrml69ev43//+x969eqFI0eOIDAwUOJISdcUFpaeWhpggkxVl9ywPTwjDsLp3nlkODVmXWQdo1KJhR8ef1r0JAoF4OMjTilMdUtQGCG+aQ9k23vB/eYRKAqr2SemDJ6eQJMmtXY6qgf08i/6rFmz4OnpiePHj8PNzU1j2/z589G9e3fMmjULBw8elChC0lUPH5YYLPIPGxuxjyFRVWQ6+SDf0h6m2alweHgZyQ31p6ykpVKpnkgi2wA7YqpUQGQkkJRUteMsLMS+qexuJa0sx0aIbj8CDSIOwDQrucbnc/dgckxVpyMPjqrmzJkzeO2110olxwDg6uqKV199FadPn5YgMtJlRUrgUWzp9TUdlEL1V1Ijccppp/vhMMrTnyr8/z6ANzwqFXD9hlhBoSqcnYF27Zkc64pCM2tEtx1e40Gwzs5AMxaboWrQywRZLpejqKio3O1KpRJyXek0Rjoj9lHp+qdyObtXUPVlOvkg18YFMmURXO+clDqceq9ICVy9BiRXseW4USOx5djI8BrT9ZqgMMLDlsFI8WxdrePt7IEWLWo5KKo39DKL7NatG1asWIF79+6V2hYTE4PvvvsO3bt3lyAy0lVFRcD9B6XXOzoCRnrZ0Yh0RaK3ONbBOika1kl3JY6m/iooAC7/DaQ9oepaSTK5mEA1aqS9uKiGZDIkNOmKRJ+qjSmysAT8WurOAEvSP3r5X2fx4sVIT0+Hr68vxo4di/nz52P+/PkYM2YMfH19kZ6ejpCQkGqff8WKFfD29oaZmRk6d+6Ms2fPlrvvmjVr0LNnT9jb28Pe3h7BwcEV7k/SePiw7NmzyuilQ1QlOXYeyHTyBgC43joBRaEhdlzQbVlZwKXwqk2koVAA/q3YxUpfJHu1Q3zTyjV8GRuL99ZwGz/cAHj+85W0RS//+7Rv3x5nzpzBrFmzsGvXLuT8U+DSwsICgwYNwsKFC+HnV71SMVu2bMH06dOxatUqdO7cGcuWLcPAgQMRGRkJFxeXUvsfOXIEY8aMQbdu3WBmZoYlS5ZgwIABuHbtGjw9PWv0c1LtKCgAHpTRemxmpo9TjJIuSvDpAquU++JsazeP4kGrgVKHVG8kJAJRN0sPvq2IkRHQqhVga6u9uKj2pXq0ggAZ3G4dL3cfmVzsLmPIM+QpFCxlWxf0sgUZAPz8/LB9+3ZkZGQgNjYWsbGxyMjIwLZt26qdHAPA0qVLMWXKFEyaNAl+fn5YtWoVLCwssG7dujL3/+WXX/Dmm2+iXbt28PX1xQ8//ACVSoWwsLBqx6APOiqVaKBUomNV3pUkEh1d9punu3udh0IGqtDcBikN2gAArJLvwf7hVYkjMnwqFXD7NnDjetWTY39/Jsf6Ks3DD/FNupa73ccHsLOru3jIcOltglxMJpNpLDVRUFCACxcuIDg4WL1OLpcjODgYp06dqtQ5cnJyUFhYCAcHh3L3yc/PR0ZGhnrJqspzQR0RB+DhP191WWZW2XWPZXLAhY9WqRYlNeyAAgs7AIDL3dOwSCtjPnOqFdnZQHi42HWqKhQKMTm2sdFKWFRHUj1bI6mMsopOTkADPrilWqK3CXJERARGjhwJGxsbuLu7w93dHTY2Nhg5ciSuXq1e601SUhKUSiVcH+uU5urqiri4yqWCH374ITw8PDSS7MeFhITA1tZWvQQFBVUrXqqYIAC3ov6dRrUkJ0fA1KTuYyLDJcgViG3WC5DJIFOp4Hn9IIxzqzGFG5VLpQJiYoCLl6rW3xgQk+NW9SY5NoP49m64/QySvDsizb2l+rW5uThLHlFt0cs+yMeOHcNTTz0FlUqF4cOHo/k/vxWRkZHYtWsX9u3bh9DQUPTs2bNO4/r000+xefNmHDlyBGYVdICaMWMGpk+frn4dHh7OJFkLHj4EMjPL3sbu4aQNubZuSG7QFo73w6EozEejy7txr+3TKDSzljo0DWaAeqIQfZGaKnap+GfISZXI5IBvS8CunnSrUCiypQ6hTsQ17QGj/GxYp8XA19eQB+WRFPTyv9O0adPg4uKCo0ePwsvLS2Pb/fv30atXL0yfPh3nzp2r0nmdnJygUCgQ/9gz+fj4+DInJSnpiy++wKeffoo///wTbdq0qXBfU1NTmJqaql9bWVlVKU56spwcoIwqgAAAa+v60opEUkhs1BEW6Y9gnpEA06JsNLvxBxI7PgXY28PYWGzJVCjE8lNyOVDDnmEAALviv+RlPS4pQ3bJ2leVOUYQxEAbNgSaNat6gCUplWLdxYICIC8PyM0F8sufUjgzUxxHkFqF8m2Pa94McCy/1xvpK5kMD1v2Q//snbC2ruKc4kRPoJcJ8rVr1/DJJ5+USo4BwMvLC2+88Qbmz59f5fOamJggICAAYWFheOaZZwBAPeBu6tSp5R732WefYdGiRdi/fz86duxY5etS7VKpgOsVDNxh6zHVlEIhftCysvp3sbQUpyo2N5fD7JlgmIduh6IgF0AWIN8JBPQVE0xtaPDPh+zayLbLUpxQ9+lT8wS5LEqlmAlnZABpaUBqKpJuJuPR1RSkJatqdOomTVjKzZA1bGwM724Dge3bxQ9cRLVELxPkRo0aIb+CFoeCgoIyk+fKmD59OiZOnIiOHTsiMDAQy5YtQ3Z2NiZNmgQAmDBhAjw9PdV1lpcsWYK5c+di06ZN8Pb2VvdVtrKyYsuwRG7dEgfxlMXMTBzIQVQZZmaAg4NYDtDeXqx8YGsrJsMV56JWwOCBwB9/iMlfQQEQGirWnwoMBEo8QaoVzZoBN25UvWNuVVhZaSc5BsRPHHZ2SIMd7iQ1xM1YIEMAZC2VMMtKgnl6HCzTH8EiPRYyZfmzqD7Ox4cfiA2ZtbX4mQ0m1kBwMLB3r9hCQlQL9DJBnjt3LqZNm4YhQ4agXbt2GtsuXbqEb775BsuWLavWuUeNGoXExETMnTsXcXFxaNeuHUJDQ9UD92JiYjSmsV65ciUKCgowcuRIjfPMmzevWq3YVDP37wMVjads0IAzK1HZrKzEacedncUPUQ4OYotwtbm4AP37AwcO/Pumff262JHWz08cUVSL9aii0AzarIdjBaA202OVSmwwTkoSK83cvy++LkmQK5Br44pcG1ekeLWFTKWEeXocrFPuwSo5GsZ55f/EPj5ANdtJSA8YGQEDBwImxYOtPTyAHj2Av/6SNC4yHHqZIJ8+fRqurq4ICAhAt27d0LRpUwBAVFQUTp06BX9/f5w6dUqjNJtMJsPy5csrdf6pU6eW26XiyJEjGq+jo6Or9TPorEr2YXQr+bUqfRi1KD4euFvBTL8mJnzUSiJLS3GacSenf5PiGiXD5WnYUGzZCgv7t89PQYFYoyw8XLyonZ3YgloDUfE28H25crOMVUfxr/jq1TVrkRUE8cfPzRWf8lS1sU+QK5Bj74kce0/EN+kG84x42CTcgk3ibY0ZDJs0YcuxoevdW/wQq8HXV/yUFR4uQURkaPQyQf7222/V3584cQInTpzQ2H7lyhVcuXJFY11VEuR6yapqfRjPV7UZtvi8w4aJ717VpVKJS2GhxiCf6GvZuBGfCWOzjHJblRo0qHEeQnpEJhMTYTs7sVtEcTcJB4fa7+FQIW9vYMgQsSX58T6SOTnVK8vwmKw4cdabyn4OVaksUVzHQi5/csWD4vNGR+vWE+zi1uX4xl1hnXIP9vHX0d7pAT8IG7hOnYDGjcvZGBgofvqKiqrTmMjw6GWCrNKlv9CGQk/7MKpUwMmTQEQ+gH+Kh8iURTDNSYVpdjLMMxNhnhEP66JUeHhUrnWcdJ9cLvYPNjcXF0vLfxdr638H0OnMByI3N2DkSPHxb0yM1i4jk1X2M24eABWAvErtr+WHPzUnlyPfwwetJ/rA1ToDuHoViIwUP0iTQWnRAmjf/gk7BQWJlVG0+LtGhk8vE2TSEm0NwNGSBw/E5DgtTXO9oDBCnrUz8qydke7mCwDoEVgAuUOceNCDB6UPohopfgRvaiomrNVVnIjJ5f+WQ1MoAGPjfxdTU/FryTJpxd+rVGIxhOzsf0uplSyrZmSked7i10ZGddA33cICGDTon5kuLgIJCVq+YP1hYyP+04pdum2Abt2Ajh2Ba9eAK1dY3cBANGwIVGp6A7lc7P8fGlr16RaJ/qHXCfLdu3exb98+3Pun4G2jRo3w1FNPwcfHR+LI9FNUlPYakAsLxSSkJr0rADHxSUwUY02pZNlLOzvAt40JIG/4b5mt9HSxUPKdO0xUakFxYpufL/Yv1UfFyXTJpLlkMl1yKU7IK1qKW3OLl+IEXCZrCDRrCLl7BowTHkKRmVZ+TcJKemRSfwt7e3kBffuW0W3GxERsamzdWkyU//6bibIec3cXu/NX+oOsQiGO4gsNBR5x2neqOr1NkP/zn/9g+fLlpbpbyOVyvPfee/jiiy8kikw/RUWJ4xu0pbiFccGCuh8o17VrGX9UbW2BNm3EJSNDrA1382bpYfRUb5Ts3l43bP5Zai6uoFZOo1fkciAgoBKP242MgLZtxcoh164Bly8zUdYzrq7iE4Iqz5RnZCQeeOCA+OSQqAr0suDVl19+ia+++gojRozAqVOnkJaWhrS0NJw6dQojR47EV199ha+++krqMPVKcctxJYtYQKXqCJWqAVSqyk2MUnzeCspXa0XDhpUo9WRjA3ToAIweLQ6matyYteCIdJidHfD005VIjksyNgbatQPGjhXLgdnWk3mn9ZybGzB4sHj7qqU4SS53VB9R2fSyBXnNmjV4+umn8euvv2qs79y5MzZv3oy8vDx8//33mDZtmkQR6q/KD/KJA/BQfUxlzlvXjI3F98Eq8fQUl+xssbUpIkKslkFEkpPLxYc+AQE1GIBpZCS2Jvv5if3Br10TWxcr2zpAdcbLS+xKXOWW48fJ5UC/fuIo3scqXBGVRy8T5OjoaLz77rvlbh84cCBCQ0PrMCLSRZ06/Vu9rsosLcVyQe3bi0ny5cv627mWyAB4eYndpWpxbhXxEVPDhuIjtJs32c1Kh7RoIQ7Iq7WHeTKZ+B/I1lYc3c1qWPQEepkgu7i44O+//y53+99//w1nZ+c6jIh0jacn0KpVLZzI2Fjsv9iq1b+Jci3UrSWiynFzEwtSeHho8SJWVmI3qw4dxEG7d+6IRZ+ZLNc5mUxsm2jbVksX8PMTi6H/+Sf/llOF9DJBfv7557F8+XJ4e3vj7bffhqWlJQAgOzsb3377LX744Qe899570gZJkjE3F0e112q3DiMj8dmuv784ovHyZSA1tRYvQFSXzFA8UYguksvFht02bcQEuU65uIhLly7i7/j9+2IXjLg4oKiojoOpX8zMxL/dDRpo+ULFdcmPHGGtZCqXXibIn3zyCcLDwzFz5kzMnTsXHv80LTx69AhFRUXo06cPPv74Y4mjJCkUdzWrSS3eJ16gRQtxefRI7L947x4f15FeUSiePHueFFxcxLFUTZtqaervqiqefrFNG/F3PClJbGFOTASSk8V66vzdrxWenuL00f+0d2mfmZk4eO/6deD0aU4qQ6XoZYJsYWGBsLAw7Ny5U6MO8qBBgzB48GAMGzYMMp2f+om0oVcvLT+KLcnDQ1xyc8VW5Zs3K1+cmaieMzMT+xM7OYllvDw9xXXaJAiVW4B/895/18kBMxcIXi4Qils4VSqxG0ZmBpCZBVlONmS5OUBBPmQFBWKLs1IJoGYDALONbSEAMMR3NRMTsUuFn59EAbRsKT6uOHkSuHtXoiBIF+ldgpyTk4Nx48bhueeew4svvojhw4dLHRLpiG7dgObNJbiwufm/NZVTUsT+i3fvsgsGGRRBELvkm5hU/xwymdhbycRErEJRVCT2XIiNBcLDNQtJFH9f1teKEtnHF5VKc//aJQdg98+iPTEG2Lgpk4l/rzt10oGnBZaWYrmM2FjgzBlOHkUA9DBBtrCwwJ9//omnnnpK6lDqObfHvkpHLhfLuWlzopNKc3AQl44dxZal4v6LsbEsF0d6TSYTn0LX9L9xfr5YRZHqJ5lM7EbToYPYe0WnuLsDzzwj/s2+fJmTi9RzepcgA0CPHj1w6tQpTJkyRepQ6i2F4rzUIQAQB5/361f3s/NVio2NWP2iVSux+So5GYiPF/svJiWx/yIR1RvW1kCzZmJDRrXLb9aVBg3EJS1N7Dp3+zaQmSl1VFTH9DJB/vbbbzFw4EDMnj0br7/+Ohpofcgr6RoTE7GgRLt2tVBEvi7IZBAcnSA4OEHw/eeRr1IFIT0DSE8X//hmZYllh3JzIeTlQ1ZUKPZfVCprfPlCeQ2eixMRVZGFxb/9y728xO/1jp2d2EE6MFDsMvfwodjIkZws/s2uhb/NpLv0IbUopW3btigqKkJISAhCQkJgZGQEU1NTjX1kMhnS09MlipAeV9z/z9S0+gNxZDKxu6+9vTg2TqEQu/s+3jex5PcV9Uks+fXx75XKf78vuZS1vuRxJdc9uf9j3fRfBIAsNlQTUQVqs4+5mZn49zkvTyzy8884+krHURv7PGm/qvdJt/9n8Rf/dNsC8vxcKIrya/wk8I6RwmAHYeozvUyQn3vuOVap0DPFtys/X/yjWV25ueI4uNu3aycuIiJiH/PqMf9nqZlkltfWSXqZIG/YsEHqEIiIiIjIQOlVgpyXl4edO3fi7t27cHJywpAhQ+Du7i51WERERERkQPQmQU5ISEC3bt1w9+5dCP90HrKwsMCOHTsQHBwscXREREREZCjkUgdQWZ988gmio6Mxbdo07N69G8uWLYO5uTlee+01qUMjIiIiIgOiNy3IBw4cwIQJE/DFF1+o17m6umLs2LGIjIxEixYtJIyOiIiIiAyF3rQgx8TEoEePHhrrevToAUEQEB8fL1FURERERGRo9CZBzs/Ph9ljBXSLXxcVsUYKEREREdUOvUmQASA6OhoXL15UL5cvXwYAREVFaawvXqprxYoV8Pb2hpmZGTp37oyzZ89WuP9vv/0GX19fmJmZoXXr1ti7d2+1r01ERERE0tKbPsgAMGfOHMyZM6fU+jfffFPjtSAIkMlkUFZjGsgtW7Zg+vTpWLVqFTp37oxly5Zh4MCBiIyMhIuLS6n9T548iTFjxiAkJARDhw7Fpk2b8Mwzz+DixYvw9/ev8vWJiIiISFp6kyCvX7++Tq6zdOlSTJkyBZMmTQIArFq1Cnv27MG6devw0Ucfldp/+fLlGDRoEP773/8CEKttHDx4EN9++y1WrVpVJzETERERUe3RmwR54sSJWr9GQUEBLly4gBkzZqjXyeVyBAcH49SpU2Uec+rUKUyfPl1j3cCBA7Fjx45yr5Ofn4/8/Hz166ysrJoFXouqPj995c/L2cGlx/tr2Hh/DZs27y9Jj7+/ukVvEuS6kJSUBKVSCVdXV431rq6uuHHjRpnHxMXFlbl/XFxcudcJCQnBggULah5wLbKyEr9q65eo+LzdugGNGmnnGlS+4kIvvL+G6f598Svvr2Fq0EC7CY5MJiZRvL/SqIv7C/z7Pk+VwwRZAjNmzNBodQ4PD0dQUJCEEQHNmgE3bgDabMy2shKvQ3WvVSveX0PG+2vYeH8NG++vbmKCXIKTkxMUCkWpusrx8fFwc3Mr8xg3N7cq7Q8ApqamMDU1Vb+20pGPdfzlMWy8v4aN99ew8f4aNt5f3aNXZd60zcTEBAEBAQgLC1OvU6lUCAsLQ9euXcs8pmvXrhr7A8DBgwfL3Z+IiIiIdBtbkB8zffp0TJw4ER07dkRgYCCWLVuG7OxsdVWLCRMmwNPTEyEhIQCAd999F0FBQfjyyy8xZMgQbN68GefPn8fq1aul/DGIiIiIqJqYID9m1KhRSExMxNy5cxEXF4d27dohNDRUPRAvJiYGcvm/De/dunXDpk2bMHv2bMycORPNmjXDjh07WAOZiIiISE/JBIEFXqR28eJFBAQE4MKFC+jQoYPU4RARERHVa+yDTERERERUAhNkIiIiIqIS2AeZqi02NhaxsbFSh0FERFSvuLu7w93dXeowDBoTZB3g7u6OefPm6dV/9vz8fIwZMwZHjx6VOhQiIqJ6JSgoCPv379eYU4FqFwfpUbVkZGTA1tYWR48e1ZmJTqj2ZGVlISgoiPfXQPH+GjbeX8NWfH/T09NhY2MjdTgGiwkyVUtxgsxfUMPE+2vYeH8NG++vYeP9rRscpEdEREREVAITZCIiIiKiEpggU7WYmppi3rx5HCBgoHh/DRvvr2Hj/TVsvL91g32QiYiIiIhKYAsyEREREVEJTJCJiIiIiEpggkxEREREVAITZJJcdHQ0ZDIZNmzYIHUoREREREyQ9c3t27fx2muvoXHjxjAzM4ONjQ26d++O5cuXIzc3V2vXjYiIwPz58xEdHa21a1TGokWL8PTTT8PV1RUymQzz58+XNB6pyGSySi1Hjhyp8bVycnIwf/78Kp2L96nmdPke37hxAx988AHatWsHa2truLu7Y8iQITh//nyNY6kvdPn+Pnr0COPGjUOLFi1gbW0NOzs7BAYGYuPGjeC4/srR5fv7uF9++QUymYyzLj7GSOoAqPL27NmD559/HqamppgwYQL8/f1RUFCA48eP47///S+uXbuG1atXa+XaERERWLBgAXr37g1vb2+tXKMyZs+eDTc3N7Rv3x779++XLA6p/fTTTxqvf/zxRxw8eLDU+pYtW9b4Wjk5OViwYAEAoHfv3pU6hvep5nT5Hv/www9Yu3YtnnvuObz55ptIT0/H999/jy5duiA0NBTBwcE1jsnQ6fL9TUpKwoMHDzBy5Eg0bNgQhYWFOHjwIF566SVERkZi8eLFNY7J0Ony/S0pKysLH3zwASwtLWsch6Fhgqwn7t69i9GjR6NRo0Y4dOgQ3N3d1dveeust3Lp1C3v27JEwwn8JgoC8vDyYm5vX+rnv3r0Lb29vJCUlwdnZudbPry/GjRun8fr06dM4ePBgqfVS4X2qOV2+x2PGjMH8+fM1WpwmT56Mli1bYv78+UyQK0GX72+bNm1KtUZOnToVw4YNw9dff41PPvkECoVCmuD0hC7f35IWLlwIa2tr9OnTBzt27JA6HJ3CLhZ64rPPPkNWVhbWrl2rkRwXa9q0Kd59913166KiInzyySdo0qQJTE1N4e3tjZkzZyI/P1/jOG9vbwwdOhTHjx9HYGAgzMzM0LhxY/z444/qfTZs2IDnn38eANCnT59Sj4aKz7F//3507NgR5ubm+P777wEAd+7cwfPPPw8HBwdYWFigS5cuNUrkpWy91jcqlQrLli1Dq1atYGZmBldXV7z22mtITU3V2O/8+fMYOHAgnJycYG5uDh8fH0yePBmA2D+8OMFdsGCB+t4/qcsE71PdkOoeBwQElHoc6+joiJ49e+L69eu1+0PWY1L+DpfF29sbOTk5KCgoqPHPRtLf36ioKHz11VdYunQpjIzYXvo4/ovoiT/++AONGzdGt27dKrX/K6+8go0bN2LkyJH4z3/+gzNnziAkJATXr1/H9u3bNfa9desWRo4ciZdffhkTJ07EunXr8NJLLyEgIACtWrVCr1698M477+Drr7/GzJkz1Y+ESj4aioyMxJgxY/Daa69hypQpaNGiBeLj49GtWzfk5OTgnXfegaOjIzZu3Iinn34aW7duxbPPPlt7/0BUymuvvYYNGzZg0qRJeOedd3D37l18++23uHTpEk6cOAFjY2MkJCRgwIABcHZ2xkcffQQ7OztER0dj27ZtAABnZ2esXLkSb7zxBp599lmMGDECgNjCRNLTtXscFxcHJyenWv0Z6zOp729ubi6ys7ORlZWFo0ePYv369ejatatWng7WR1Lf3/feew99+vTB4MGD8euvv2r1Z9VLAum89PR0AYAwfPjwSu0fHh4uABBeeeUVjfXvv/++AEA4dOiQel2jRo0EAMJff/2lXpeQkCCYmpoK//nPf9TrfvvtNwGAcPjw4VLXKz5HaGioxvr33ntPACAcO3ZMvS4zM1Pw8fERvL29BaVSKQiCINy9e1cAIKxfv75SP58gCEJiYqIAQJg3b16ljzFkb731llDy1/nYsWMCAOGXX37R2C80NFRj/fbt2wUAwrlz58o9d03+rXmfao+u3uNif/31lyCTyYQ5c+ZU+xz1mS7e35CQEAGAeunXr58QExNTpXOQSNfu7+7duwUjIyPh2rVrgiAIwsSJEwVLS8sq/ESGj10s9EBGRgYAwNraulL77927FwAwffp0jfX/+c9/AKBUFwc/Pz/07NlT/drZ2RktWrTAnTt3Kh2jj48PBg4cWCqOwMBA9OjRQ73OysoKr776KqKjoxEREVHp81PV/Pbbb7C1tUX//v2RlJSkXoofjR8+fBgAYGdnBwDYvXs3CgsLJYyYqkqX7nFCQgLGjh0LHx8ffPDBB1q5Rn2jC/d3zJgxOHjwIDZt2oSxY8cCgFarJdUnUt7fgoICTJs2Da+//jr8/Pxq5ZyGiAmyHrCxsQEAZGZmVmr/e/fuQS6Xo2nTphrr3dzcYGdnh3v37mmsb9iwYalz2Nvbl+oHVREfH58y42jRokWp9cVdMx6Pg2pPVFQU0tPT4eLiAmdnZ40lKysLCQkJAICgoCA899xzWLBgAZycnDB8+HCsX7++VF910j26co+zs7MxdOhQZGZmYufOnSwVVUt04f42atQIwcHBGDNmDH755Rc0btwYwcHBTJJrgZT396uvvkJSUpK68gWVjX2Q9YCNjQ08PDxw9erVKh0nk8kqtV95o5GFKtS7ZJ803aJSqeDi4oJffvmlzO3FgzpkMhm2bt2K06dP448//sD+/fsxefJkfPnllzh9+jSTHR2mC/e4oKAAI0aMwOXLl7F//374+/tX+1ykSRfu7+NGjhyJNWvW4K+//ir1xJCqRqr7m56ejoULF+LNN99ERkaG+gl1VlYWBEFAdHQ0LCws4OLiUrMf0AAwQdYTQ4cOxerVq3Hq1Cl07dq1wn0bNWoElUqFqKgojYF08fHxSEtLQ6NGjap8/com24/HERkZWWr9jRs31NtJO5o0aYI///wT3bt3r9SHly5duqBLly5YtGgRNm3ahBdffBGbN2/GK6+8Uq17T9on9T1WqVSYMGECwsLC8OuvvyIoKKg6PwaVQ+r7W5biluP09PRaOV99JtX9TU1NRVZWFj777DN89tlnpbb7+Phg+PDhLPkGdrHQG8WFvF955RXEx8eX2n779m0sX74cADB48GAAwLJlyzT2Wbp0KQBgyJAhVb5+cRHxtLS0Sh8zePBgnD17FqdOnVKvy87OxurVq+Ht7c2+T1r0wgsvQKlU4pNPPim1raioSH0fU1NTSz0paNeuHQCoH+FZWFgAqNq9J+2T+h6//fbb2LJlC7777jv1yHmqPVLe38TExDLXr127FjKZDB06dKjUeah8Ut1fFxcXbN++vdTSp08fmJmZYfv27ZgxY0b1fzADwhZkPdGkSRNs2rQJo0aNQsuWLTVm0jt58iR+++03vPTSSwCAtm3bYuLEiVi9ejXS0tIQFBSEs2fPYuPGjXjmmWfQp0+fKl+/Xbt2UCgUWLJkCdLT02Fqaoq+fftW+Bjmo48+wv/+9z889dRTeOedd+Dg4ICNGzfi7t27+P333yGXV/3z2U8//YR79+4hJycHAPDXX39h4cKFAIDx48ezVfofQUFBeO211xASEoLw8HAMGDAAxsbGiIqKwm+//Ybly5dj5MiR2LhxI7777js8++yzaNKkCTIzM7FmzRrY2NioP2iZm5vDz88PW7ZsQfPmzeHg4AB/f/8KH6fzPmmflPd42bJl+O6779C1a1dYWFjg559/1tj+7LPPcmauGpLy/i5atAgnTpzAoEGD0LBhQ6SkpOD333/HuXPn8Pbbb5ca30JVJ9X9tbCwwDPPPFNq/Y4dO3D27Nkyt9VbUpbQoKq7efOmMGXKFMHb21swMTERrK2the7duwvffPONkJeXp96vsLBQWLBggeDj4yMYGxsLXl5ewowZMzT2EQSxRNuQIUNKXScoKEgICgrSWLdmzRqhcePGgkKh0Cj5Vt45BEEQbt++LYwcOVKws7MTzMzMhMDAQGH37t0a+1SlzFtQUJBG2aGSS1kl6OqLx0sIFVu9erUQEBAgmJubC9bW1kLr1q2FDz74QHj06JEgCIJw8eJFYcyYMULDhg0FU1NTwcXFRRg6dKhw/vx5jfOcPHlSCAgIEExMTCpVToj3qfbp0j2eOHFiufcXgHD37t3a/NHrBV26vwcOHBCGDh0qeHh4CMbGxur3mfXr1wsqlapWf+76Qpfub1lY5q00mSBUYSQWEREREZGBYx9kIiIiIqISmCATEREREZXABJmIiIiIqAQmyEREREREJTBBJiIiIiIqgQmygfnss8/g6+sLlUoldSg1Nnr0aLzwwgtSh6FTeH8NG++vYeP9NXy8xwZE6jpzVHvS09MFBwcHYd26dep1+Kcu6RdffFFq//Xr1wsAhHPnztV6LMHBwQIA4a233ipz+w8//CD4+voKpqamQtOmTYWvv/661D4XL14U5HK5EB4eXuvx6SPeX8PG+2vYeH8NH++xYWELsgFZt24dioqKMGbMmFLbPv/8c/WsZtq2bds2jemlH/f999/jlVdeQatWrfDNN9+ga9eueOedd7BkyRKN/dq3b4+OHTviyy+/1HbIeoH317Dx/ho23l/Dx3tsYKTO0Kn2tGnTRhg3bpzGOgBCu3btBADCl19+qbFNG59ec3NzBW9vb+Hjjz8u89NrTk6O4OjoWGrmvRdffFGwtLQUUlJSNNZ/8cUXgqWlpZCZmVlrMeor3l/Dxvtr2Hh/DR/vsWFhC7KBuHv3Li5fvozg4OBS27p3746+ffvis88+Q25urlbj+Oyzz6BSqfD++++Xuf3w4cNITk7Gm2++qbH+rbfeQnZ2Nvbs2aOxvn///sjOzsbBgwe1FrM+4P01bLy/ho331/DxHhseJsgG4uTJkwCADh06lLl9/vz5iI+Px8qVKys8T35+PpKSkiq1PC4mJgaffvoplixZAnNz8zLPf+nSJQBAx44dNdYHBARALpertxfz8/ODubk5Tpw4UWHcho7317Dx/ho23l/Dx3tseIykDoBqx40bNwAAPj4+ZW7v2bMn+vTpg88//xxvvPFGub88//vf/zBp0qRKXVMQBI3X//nPf9C+fXuMHj263GNiY2OhUCjg4uKisd7ExASOjo549OiRxnojIyN4eXkhIiKiUjEZKt5fw8b7a9h4fw0f77HhYYJsIJKTk2FkZAQrK6ty95k/fz6CgoKwatUqTJs2rcx9Bg4cWK1HKYcPH8bvv/+OM2fOVLhfbm4uTExMytxmZmZW5uMne3v7Mj8t1ye8v4aN99ew8f4aPt5jw8MEuR7p1asX+vTpg88++wyvv/56mfu4u7vD3d29SuctKirCO++8g/Hjx6NTp04V7mtubo6CgoIyt+Xl5ZX5qVoQBMhksirFVB/x/ho23l/Dxvtr+HiP9QsTZAPh6OiIoqIiZGZmwtrautz95s2bh969e+P777+HnZ1dqe25ublIT0+v1DXd3NwAAD/++CMiIyPx/fffIzo6WmOfzMxMREdHw8XFBRYWFnB3d4dSqURCQoLGI56CggIkJyfDw8Oj1HVSU1PRrFmzSsVkqHh/DRvvr2Hj/TV8vMeGh4P0DISvry8AcSRtRYKCgtC7d28sWbKkzEcpW7ZsUX+CfdJSLCYmBoWFhejevTt8fHzUCyD+4vr4+ODAgQMAgHbt2gEAzp8/r3Hd8+fPQ6VSqbcXKyoqwv3799GyZcsq/XsYGt5fw8b7a9h4fw0f77HhYQuygejatSsA8T95mzZtKtx3/vz56N27N1avXl1qW3X6P40ePbrULxUAPPvssxg8eDCmTJmCzp07AwD69u0LBwcHrFy5EoMHD1bvu3LlSlhYWGDIkCEa54iIiEBeXh66detWpZgMDe+vYeP9NWy8v4aP99gASVWAmWqfv7+/MGbMGI11KGeqyaCgIPUUmNqY5rKia69YsUIAIIwcOVJYs2aNMGHCBAGAsGjRolL7fvHFF4KFhYWQkZGhlRj1Ce+vYeP9NWy8v4aP99iwMEE2IEuXLhWsrKyEnJwc9bryfkEOHz4s2S+nIAjC6tWrhRYtWggmJiZCkyZNhK+++kpQqVSl9uvcuXOpmYnqK95fw8b7a9h4fw0f77FhYYJsQNLS0gQHBwfhhx9+kDqUWnHp0iVBJpMJly5dkjoUncD7a9h4fw0b76/h4z02LDJBeKzSNOm1JUuWYP369YiIiIBcrt9jMEePHg2VSoVff/1V6lB0Bu+vYeP9NWy8v4aP99hwMEEmIiIiIipBvz/eEBERERHVMibIREREREQlMEEmIiIiIiqBCTIRERERUQlMkImIiIiISmCCTERERERUAhNkIiIiIqISmCATEREREZXABJmIiIiIqAQmyEREREREJTBBJiIiIiIqgQkyEREREVEJTJCJiIiIiEpggqwDYmNjMX/+fMTGxkodChEREVG9xwRZB8TGxmLBggVMkImIiIh0ABNkIiIiIqISmCATEREREZXABJmIiIiIqAQmyEREREREJTBBJiIiIiIqgQkyEREREVEJTJCJiIiIiEpggkxEZSoqKpI6BCIiIkkwQSaiMjFBJiKi+ooJMhGVSalUSh0CERGRJJggE1GZmCATEVF9pZMJcmxsLP7++29kZ2dLHQpRvcUuFkREVF/pVIK8c+dO+Pr6okGDBujQoQPOnDkDAEhKSkL79u2xY8cOaQMkqkeYIBMRUX2lMwnyH3/8gREjRsDJyQnz5s2DIAjqbU5OTvD09MT69esljJCofiksLJQ6BCIiIknoTIL88ccfo1evXjh+/DjeeuutUtu7du2KS5cuSRAZUf1UUFAgdQhERESS0JkE+erVq3jhhRfK3e7q6oqEhIQ6jIiofsvLy5M6BCIiIknoTIJsYWFR4aC8O3fuwNHRsQ4jIqrfmCATEVF9pTMJcp8+fbBx48YyBwbFxcVhzZo1GDBggASREdVPrCJDRET1lc4kyIsWLcKDBw/QqVMnfP/995DJZNi/fz9mz56N1q1bQxAEzJs3r05iWbFiBby9vWFmZobOnTvj7NmzFe6/bNkytGjRAubm5vDy8sK0adPY+kZ6Lysri7WQiYioXtKZBLlFixY4fvw4HB0dMWfOHAiCgM8//xyLFy9G69atcezYMXh7e2s9ji1btmD69OmYN28eLl68iLZt22LgwIHl9n/etGkTPvroI8ybNw/Xr1/H2rVrsWXLFsycOVPrsRJpkyAISElJkToMIiKiOmckdQAltWrVCn/++SdSU1Nx69YtqFQqNG7cGM7OznUWw9KlSzFlyhRMmjQJALBq1Srs2bMH69atw0cffVRq/5MnT6J79+4YO3YsAMDb2xtjxoxR13Am0mfx8fF1+vtHRESkC3SmBbkke3t7dOrUCZ07d67TN+eCggJcuHABwcHB6nVyuRzBwcE4depUmcd069YNFy5cUHfDuHPnDvbu3YvBgweXe538/HxkZGSol6ysrNr9QYhqyYMHD6QOgYiIqM7pTIL89ddfY+DAgeVuf+qpp7By5UqtxpCUlASlUglXV1eN9a6uroiLiyvzmLFjx+Ljjz9Gjx49YGxsjCZNmqB3794VdrEICQmBra2tegkKCqrVn4Ootjx8+JAThhARUb2jMwny2rVr4efnV+52Pz8/rF69ug4jqpwjR45g8eLF+O6773Dx4kVs27YNe/bswSeffFLuMTNmzEB6erp6OXr0aB1GTFR5SqUS0dHRUodBRERUp3QmQb59+zZatmxZ7nZfX1/cvn1bqzE4OTlBoVAgPj5eY318fDzc3NzKPGbOnDkYP348XnnlFbRu3RrPPvssFi9ejJCQEKhUqjKPMTU1hY2NjXqxsrKq9Z+FqLbcvHlT6hCIiIjqlM4kyCYmJuV2YwCA2NhYyOXaDdfExAQBAQEICwtTr1OpVAgLC0PXrl3LPCYnJ6dUXAqFAoBYBYBI3z18+BCpqalSh0FERFRndCZB7tKlCzZs2IDMzMxS29LT07F+/Xp06dJF63FMnz4da9aswcaNG3H9+nW88cYbyM7OVle1mDBhAmbMmKHef9iwYVi5ciU2b96Mu3fv4uDBg5gzZw6GDRumTpSJ9N3ly5elDoGIiKjO6EyZt3nz5iEoKAjt2rXDe++9h1atWgEArl69imXLliE2NhabNm3SehyjRo1CYmIi5s6di7i4OLRr1w6hoaHqgXsxMTEaLcazZ8+GTCbD7Nmz8fDhQzg7O2PYsGFYtGiR1mMlqis3b95E27ZtYWdnJ3UoREREWicTdKgfwMGDB/Haa68hOjoaMpkMgNhNwcfHBytXrjTYqaYvXryIgIAAXLhwAR06dJA6HCIAwL59+3D//n31a09PTwwePFj9u0lERGSodKYFGQD69++PW7du4dKlS+oBeU2aNEGHDh34pkwksYcPH+LKlSto06aN1KEQERFplU4lyIA4MUdAQAACAgKkDoWIHnPmzBnY2NjUybTvREREUtG5BDkiIgJ37txBampqmVUgJkyYIEFURASIXZ7CwsLQr18/JslERGSwdCZBvn37NsaNG4ezZ8+WWx5NJpMxQSaSmFKpxMGDB9GjR48Ka5cTERHpK51JkF977TVcuXIFy5YtQ8+ePWFvby91SET1VseOHREdHQ1LS0vMmjWr1HZBEHDs2DGkpaWhc+fOWq9RTkREVJd0JkE+ceIEZs6cibffflvqUIjqvbi4OCQnJ0OpVFa435UrV5CcnIzg4GCYmZnVUXRERETapTPNPk5OTrC1tZU6DCKqokePHmH79u1ISkqSOhQiIqJaoTMJ8uuvv46ff/75iS1WRKR7MjMzsXPnTty6dUvqUIiIiGpMZ7pYNG/eHEqlEm3btsXkyZPh5eVV5lTNI0aMkCA6InoSpVKJQ4cOISUlBZ06dWLtciIi0ls6kyCPGjVK/f37779f5j4ymYwtzEQ6Ljw8HBkZGejTp0+ZH3KJiIh0nc4kyIcPH5Y6BCKqJXfu3EFeXh4GDhwIY2NjqcMhIiKqEp1JkIOCgqQOgYhq0aNHj7B371489dRTMDExkTocIiKiStOZQXrF8vPzcerUKezcuZOj4on0XHx8PPbt24eCggKpQyEiIqo0nUqQv/76a7i7u6NHjx4YMWIELl++DABISkqCk5MT1q1bJ3GERFRV8fHx2L9/P8cPEBGR3tCZBHn9+vV47733MGjQIKxdu1ZjumknJyf07dsXmzdvljBCIqqu2NhYhIWFlTuNPBERkS7RmQT5yy+/xPDhw7Fp0yYMGzas1PaAgABcu3ZNgsiIqDZER0fj1KlTUodBRET0RDqTIN+6dQtPPfVUudsdHByQnJxchxERUW27evUqrl69KnUYREREFdKZBNnOzq7CQXkRERFwc3Orw4iISBtOnTqFmJgYqcMgIiIql84kyIMHD8bq1auRlpZWatu1a9ewZs0aPP3003UfGBHVKkEQEBYWxio1RESks3QmQV64cCGUSiX8/f0xe/ZsyGQybNy4EePGjUPHjh3h4uKCuXPn1kksK1asgLe3N8zMzNC5c2ecPXu2wv3T0tLw1ltvwd3dHaampmjevDn27t1bJ7ES6aPCwkLs27evzA/EREREUtOZBNnDwwMXLlzAoEGDsGXLFgiCgJ9++gl//PEHxowZg9OnT8PJyUnrcWzZsgXTp0/HvHnzcPHiRbRt2xYDBw5EQkJCmfsXFBSgf//+iI6OxtatWxEZGYk1a9bA09NT67ESaUNMTAyys7MBiHXJU1JStHKd3Nxc7NmzB+np6Vo5PxERUXXJBB2ou5Sfn4/9+/fD29sbbdq0AQAkJiZCpVLB2dkZcnnd5fGdO3dGp06d8O233wIAVCoVvLy88Pbbb+Ojjz4qtf+qVavw+eef48aNG9WeUvfixYsICAjAhQsX0KFDhxrFT1RdZ8+exSeffII9e/ZolGOTyWRo3bo1hgwZAm9v71q/rqWlJYYOHQpbW9taPzcREVF16EQLsomJCZ5//nmcPHlSvc7Z2Rmurq51mhwXFBTgwoULCA4OVq+Ty+UIDg4utzzVrl270LVrV7z11ltwdXWFv78/Fi9ezEkRSK9s27YN3bt3x759+0rVKhYEAVevXsWSJUtw8eLFWr92dnY29uzZg6ysrFo/d0pKCl588UXY2NjAzs4OL7/88hOv07t3b8hkMo3l9ddfV2/fsGFDqe3FS3lPmoiISL/oRIIsk8nQrFkzyQftJCUlQalUwtXVVWO9q6sr4uLiyjzmzp072Lp1K5RKJfbu3Ys5c+bgyy+/xMKFC8u9Tn5+PjIyMtSLNhIDoso6e/YsRo0aBaVSWe4HO5VKBZVKhTVr1iA6OrrWY8jKykJoaCiKioqqfGzv3r2xYcOGMre9+OKLuHbtGg4ePIjdu3fjr7/+wquvvvrEc06ZMgWxsbHq5bPPPlNvGzVqlMa22NhYDBw4EEFBQXBxcaly/EREpHt0IkEGgJkzZ+Lbb79FZGSk1KFUiUqlgouLC1avXo2AgACMGjUKs2bNwqpVq8o9JiQkBLa2tuolKCioDiMm0rRw4UIIglDpWe60NQA1JSUFFy5cqLXzXb9+HaGhofjhhx/QuXNn9OjRA9988w02b96MR48eVXishYUF3Nzc1IuNjY16m7m5ucY2hUKBQ4cO4eWXX6612ImISFpGUgdQ7PTp03B0dIS/vz969+4Nb29vmJuba+wjk8mwfPlyrcXg5OQEhUKB+Ph4jfXx8fHl1mB2d3eHsbExFAqFel3Lli0RFxeHgoICmJiYlDpmxowZmD59uvp1eHg4k2SSRExMDHbv3l3p5FilUuHy5ctISUmBg4NDrccTERGBjh07avw+VdepU6dgZ2eHjh07qtcFBwdDLpfjzJkzePbZZ8s99pdffsHPP/8MNzc3DBs2DHPmzIGFhUWZ+/7444+wsLDAyJEjaxwzERHpBp1JkIsHxQFAWFhYmftoO0E2MTFBQEAAwsLC8MwzzwAQE4KwsDBMnTq1zGO6d++OTZs2QaVSqftL37x5E+7u7mUmxwBgamoKU1NT9WsrK6va/UHIoBQUFFSr60Fl7N27t9LJcTFBEHD9+nV07dq11uPJz8/Ho0eP4OXlVeNzxcXFleryYGRkBAcHh3K7TAHA2LFj0ahRI3h4eODy5cv48MMPERkZiW3btpW5/9q1azF27NhSH+iJiEh/6UyCrFKppA4BADB9+nRMnDgRHTt2RGBgIJYtW4bs7GxMmjQJADBhwgR4enoiJCQEAPDGG2/g22+/xbvvvou3334bUVFRWLx4Md555x0pfwwyEAUFBTh79qzW+qn//fffkMlkVUqSZTIZ0tPTtRZTeHg4XF1dy/2AuXjxYixevFj9Ojc3F6dPn9b4EBsREVHt65fso9y6dWu4u7ujX79+uH37Npo0aaKx76lTp3D9+nX89NNP1b4eERHpHp1JkHXFqFGjkJiYiLlz5yIuLg7t2rVDaGioeuBeTEyMRmUNLy8v7N+/H9OmTUObNm3g6emJd999Fx9++KFUPwIZkKKiImRlZcHExETjqUNtsbe3r1YLspmZmVYqzAiCoG4xLy9Bfv311/HCCy+oX7/44ot47rnnMGLECPU6Dw8PuLm5laoqUVRUhJSUlCpNW9+5c2cAwK1bt0olyD/88APatWuHgICASp+PiIh0n84lyKdPn8bhw4eRkJCAN998E82aNUNOTg5u3LiB5s2b10l3hKlTp5bbpeLIkSOl1nXt2hWnT5/WclRUn5mamsLMzKzWz9u1a9dqtSC3aNFCayUYn9RVwcHBQaP/s7m5OVxcXNC0aVON/bp27Yq0tDRcuHBBncAeOnQIKpVKnfRWRnh4OABxvEFJWVlZ+PXXX9VPk4iIyHDoTBWLgoICjBgxAt27d8esWbPw9ddf4/79+wDEWsQDBgzQav9jovomOzsb4eHhaNiwIWQyWaWOkclkaN68Oezs7LQSk6OjY60l3i1btsSgQYMwZcoUnD17FidOnMDUqVMxevRoeHh4AAAePnwIX19f9XTyt2/fxieffIILFy4gOjoau3btwoQJE9CrVy/1JEbFtmzZgqKiIowbN65W4iUiIt2hMwnynDlzsHv3bqxcuRKRkZEaLVpmZmZ4/vnnsXPnTgkjJDIcMTEx2LFjB2JjYzWqPDyJTCZDt27dkJqaisLCwlqNycjICA0aNKjVc/7yyy/w9fVFv379MHjwYPTo0QOrV69Wby8sLERkZCRycnIAiAN1//zzTwwYMAC+vr74z3/+g+eeew5//PFHqXOvXbsWI0aM0NqHBSIiko7OdLH43//+hzfeeAOvvvoqkpOTS21v2bIlfvvtNwkiIzIcSqUS586dw7Vr19TrvL298dFHH6knwyhrspDiVt0RI0bAw8MDKpUK6enpMDc3h4WFRaVboMsjk8ng6+sLExMT5OfnV+nYsro9FXNwcMCmTZvK3e7t7a3xYdzLywtHjx6t1HVLzvxJRESGRWcS5ISEBLRu3brc7QqFQt3KQ0RVl5aWhsOHDyMlJUW9rmHDhujZsyfMzMzg6+uLtWvX4tixYxpJo0wmQ8uWLTFgwAB4enoiKytL3Xqcm5uLgoICWFtbw8ioen9OipNje3t75OXl1eyHJCIiqgU6kyB7eXnhxo0b5W4/ceJEqUE4RPRkgiAgKioKp06dUtdTVigUCAwMRMuWLdWtv61atcLSpUsRFxeHMWPGIDMzE+bm5vjvf/8Le3t79flsbGyQl5eH7OxsAGKLc1paGiwtLatcC1gul6Nly5ZamXSEiIiounSmD/LYsWPx/fff49SpU+p1xW/ca9aswa+//ooJEyZIFR6RXiooKMCRI0dw7NgxdXJsa2uLYcOGwc/Pr8yuEW5ubupE18TERCM5BsTfS3Nzc9jZ2WnMeJednY309PQyu2iUxcjICK1bt2ZyTEREOkdnWpBnzZqF06dPo1evXupWrWnTpiElJQUPHjzA4MGDMW3aNKnDJNIbiYmJOHz4MDIzM9Xrmjdvji5dusDY2LjG5zcyMoKdnR1ycnKQm5sLQBz0lpaWBisrqwrrNpuamsLf37/c6ZuJiIikpDMJsomJCUJDQ/HLL79g69atUCqVyM/PR5s2bbBw4UKMHz++xgOBiOoDQRBw5coVnD9/Xt2X2MTEBN27d0fjxo1r9VoymQyWlpYwMTFBZmYmVCoVBEFAZmYmCgoKYGlpWapsm4WFBfz9/bUy8QkREVFtkCxBnj59OsaPH4/27dsDEMtOOTs7Y9y4cawrSlRNOTk5OHr0KB49eqRe5+zsjD59+sDa2lpr1zU2NoadnR2ys7PVVSjy8/NRWFgIKysr9ax4tra2aNmyZa20YBMREWmLZH2Qly1bhuvXr6tf+/j4YPv27VKFQ6T37t+/j+3bt2skx23btsXQoUO1mhwXk8vlsLa2hrW1tfppj0qlQkZGBrKysuDo6Ah/f38mx0REpPMka0F2dXXFnTt31K+rMtUtEf1LqVTi/PnzuHr1qnqdhYUFgoKC1DPG1SVTU1MYGxsjMzNTXQ4uNTUV2dnZcHFxgZOTU53HREREVBWSJchDhgzBxx9/jAMHDqhnovryyy+xefPmco+RyWScTY+ohPT0dBw+fFhjch0vLy/07NmzyiXXapNcLoetrS1yc3ORlJSE3Nxc5ObmYteuXWjfvj3atm1ba1NKExER1TbJEuTly5fDxcUFhw8fxrVr1yCTyXD//n2NSQwex0F6RP+KiorCyZMn1eXb5HI5OnXqhFatWunM70rbtm1hamqKI0eOIDk5GYIg4OLFi3jw4AGCgoJgY2MjdYhERESlSJYgW1paYvHixerXcrkcy5Ytw9ixY6UKiUgvFBQU4OTJk7h9+7Z6na2tLXr37q1T3ReaNGkCV1dXAMCwYcNw6dIlXL58GYIgICEhAdu3b0fnzp3RokULnUnoiYj0QXZ2NiwtLaUOw6BJ9oxzxIgROHbsmPr14cOH0b9/f6nCIdILiYmJ2LFjh0Zy3KxZMwwfPlynkmN3d3eN/s8KhQIdO3bEkCFD1AMGi4qKcOLECfz555/qOspERPRkxeM7SHskS5B37tyJmJgY9eu+ffvi4MGDUoVDpNOKaxv/8ccf6ok/jI2N0bt3b/Tq1UunKkPY2NiUW2/Z1dUVzz77LJo3b65eFxMTg23btuHevXt1FSIRkV5jgqx9kiXInp6euHTpkvq1IAh8zEpUhry8PBw+fBhnz55VV3txdnbGM888gyZNmkgcnSYzMzO0bNmywgF4xsbG6NmzJ4KDg2FmZgZA/Bn//PNPnD59Wt2nmoiqj5WhDFtRURGUSqXUYRg0yfogjx49Gl988QV+/fVXdRWLjz76CCEhIeUeI5PJ8Pfff9dRhETSi4yMxJEjR1BQUKBe16ZNGwQEBOhcFQgTExP4+/urJwV5kkaNGsHFxQXHjx9XP026ffs2YmNj0bhxY/j5+WkzXCKDlpuby6ncDVxeXh77IWtRlRJkHx+fKrfyymQyjf6SxUJCQtC0aVMcPnwYCQkJ6ilrHR0dq3R+IkNUVFSEXbt24c8//1SvMzc3R1BQEDw9PSWMrGympqZo3bp1lUvLmZubIzg4GDdv3lS3Hufk5GDFihUYOHAgBg8eDCMjyT7HE+kttiAbPg7U064qvfMEBQWVSpDPnz+Pa9euwc/PDy1atAAgtnpFRETA398fAQEBZZ5LoVDg1VdfxauvvgpArGIxe/ZsVrGgei8xMRHr1q3T6JPr4eGB3r17S1rbuDzm5uZo3bo1TE1Nq3W8TCZDixYt4O7ujsOHDyMpKQmCICA0NBTXrl3DSy+9BHd391qOmsiwqVQqqUMgLcvKyoKLi4vUYRisKj2j3bBhA9avX69ehg8fjgcPHuDgwYO4evUqfv/9d/z++++4evUq9u/fj/v37+OZZ56p1Lnv3r1b6X21bcWKFfD29oaZmRk6d+6Ms2fPVuq4zZs3QyaT6czPQfrn7NmzCAkJUSfHCoUCrVq10tnk2MzMrEbJcUk2Njbo378/fH191d1H7t+/j08//RSHDx/mGz5RFfD3xfAVD9gm7ahRJ8a5c+fi7bffRr9+/Upt69+/P6ZOnYrZs2dX6lyNGjXSif5SW7ZswfTp0zFv3jxcvHgRbdu2xcCBA5GQkFDhcdHR0Xj//ffRs2fPOoqUDEleXh42btyIDRs2IC8vD4A4EO/tt99GkyZNdHIAq5GREfz9/WslOS4ml8vRvHlzvPPOO+oayoWFhfjtt9/w7bffIi0trdauRWTImCAbPibI2lWjBDkqKqrCPsOOjo5l9j8GxDdCIyMj9eAjuVwOhUJR4VIXfRGXLl2KKVOmYNKkSfDz88OqVatgYWGBdevWlXuMUqnEiy++iAULFpRb3oqoPDExMfj0009x5swZ9bouXbpgxowZaNCggYSRVaxFixZaa9Vu0KABZsyYgd69e6vX3bhxAwsXLsSFCxe0ck0iQ8JqMIYvIyND6hAMWo0yziZNmmD9+vV4+eWXYWVlpbEtMzMT69atKzdhnDt3LmQymTrpLX4tpYKCAly4cAEzZsxQr5PL5QgODsapU6fKPe7jjz+Gi4sLXn75ZY3JT8qTn5+P/Px89eusrKyaBU56SaVS4fDhw9ixY4e6XI+pqSnGjBmDwMBAAEBOTo6UIZbL1dUVDg4OWr2GiYkJXnjhBfj7++Onn35Ceno6cnJysHbtWly+fBmjRo3SiadORLqoZOUbMkx8oqZdNUqQFy5ciJEjR8LX1xcvvfQSmjZtCkBsWd64cSPi4+Px22+/lXns/PnzK3wthaSkJCiVSvWj3WKurq64ceNGmcccP34ca9euRXh4eKWvExISggULFtQkVNJzmZmZ+PHHH3Ht2jX1uoYNG2Ly5Mk6P+hCoVDA29u7zq7n5+eH2bNn43//+x8uXrwIADh37hyioqIwceJE9eBgIvpXcVctMlxZWVnIy8tT15On2lWjBPmZZ57B3r178eGHH2Lx4sUa29q1a4e1a9di4MCBNQpQl2VmZmL8+PFYs2ZNlab5nTFjBqZPn65+HR4ejqCgIG2ESDroxo0b2LBhg8bjseDgYDz99NN6UdLMw8Oj0rWOa4ulpSVefvlltGnTBlu2bEFubi7S0tKwfPly9OvXD08//bROzSZIJLWCggIolUooFAqpQyEtiouLq9MGi/qkxu/GAwYMwIABAxAXF6ceed+oUSO4ublV+hz5+fn4+eefceDAAdy+fRuZmZmwtrZG06ZNMWjQIIwdO7ZO3pCdnJygUCgQHx+vsT4+Pr7Mn+f27duIjo7GsGHD1OuKB0YYGRkhMjKyzJnOTE1NNQY2Pd49hQyTUqnEH3/8gYMHD6prlFpbW2PixIl6MymGQqGQrA6zTCZDYGAgmjZtih9//BE3b94EAISFhSEiIgKTJk3S6T7bRHUtKysLtra2UodBWnT//n0myFpSa81Vbm5uVUqKi125cgXDhw/HvXv3IAgCbG1tYWVlhYSEBFy8eBG//fYbFi1ahF27dqFly5a1FW6ZTExMEBAQgLCwMHWpNpVKhbCwMEydOrXU/r6+vrhy5YrGutmzZyMzMxPLly+Hl5eXVuMl/ZGUlIR169YhOjpava5ly5aYOHEibGxspAusitzc3CRvqXVwcMA777yDw4cPY+fOnSgqKkJsbCyWLFmCYcOGITg4WOdmGSSSQmZmJhNkAxcTEwNBECQfw2WIavwuEhMTg9dffx0tWrSAg4MD/vrrLwBiQvDOO+/g0qVL5R6blZWFp59+GvHx8Vi0aBHu37+P1NRUja8LFy7Eo0ePMGzYMGRnZ9c03CeaPn061qxZg40bN+L69et44403kJ2djUmTJgEAJkyYoB7EZ2ZmBn9/f43Fzs4O1tbWVZpylwzb+fPnsXjxYnVyLJfL8eyzz+Ktt97Sq+RYLpfrTAutXC5Hv3798OGHH6pbtJVKJXbs2IFly5YhOTlZ4giJpMdBXIYvOzsbSUlJUodhkGrUghwREYGePXtCpVKhc+fOuHXrlrq0jJOTE44fP47s7GysXbu2zOPXr1+PmJgYhIWFaZRzKubp6YkZM2agc+fO6N+/PzZs2IC33nqrJiE/0ahRo5CYmIi5c+ciLi4O7dq1Q2hoqHrgXkxMDFunqFLy8/Px66+/alRAcXZ2xqRJk/TykZi7u7vOfejz9PTEBx98gN27d+PPP/+EIAi4desWFi1ahBdeeAGdO3dmywrVW6mpqVKHQHXg7t27cHZ2ljoMg1OjBPmDDz6AnZ0dTp8+DZlMVmr0/ZAhQ7Bly5Zyj9+zZw8GDBhQZnJcUt++fdG/f3/88ccfWk+QAWDq1KlldqkAgCNHjlR47IYNG2o/INI79+/fx7p16zT6s3fq1AmjR4/WyRnxnkShUOhM6/HjjI2N8eyzz8Lf3x8bN25ESkoK8vLy8OOPP+Ly5csYO3Ys+/lTvZSSkiJ1CFQHbt26hU6dOrExoJbVqCn0r7/+whtvvAFnZ+cyb0zDhg3x8OHDco+/cuXKE5PjYn379i3V35dI1wiCgMOHD+Pzzz9XJ8empqaYOHEiJk2apJfJMSBN5YqqatasGWbNmoUuXbqo14WHh2PhwoUa5fSI6ouUlBT1gGAyXFlZWeoiCVR7apQgq1SqCgv1JyYmVjgNbUpKSqUH9rm6uvLTMOm0zMxMrFy5Er/99pu6q5GXl5e6m5C+ksvl8PDwkDqMSjE3N8eECRMwZcoUWFpaAhBnm1qxYgX+97//aUzQQ2ToCgsLdXayIapdly5d4oehWlajBLlDhw7Ys2dPmduKioqwefNmjdacx+Xn51d6RHzJaamJdE1kZCQWL16Mq1evqtf169cP77//vs5P/PEkzs7OOt96/Lj27dtj9uzZaNWqlXrdsWPHEBISolFJhMjQsR9y/ZCYmIioqCipwzAoNeqDPGPGDAwdOhRvvPEGRo8eDUCsGfznn39i8eLFuH79Or799tsKzxEdHa2eHasid+/erUmoRFqhVCqxe/duHDhwQP3p3crKChMnTtRIzvRZdco36gJbW1u8+eabOHbsGH7//XcUFhYiISEBX3zxBZ566ikMGjSIkyiQwUtMTNTZ8QNUPR07dsSjR49gbGyMWbNmqdefPn0aXl5eetuVT9fUKEF+6qmnsGHDBrz77rtYvXo1AGDcuHEQBAE2Njb48ccf0atXrwrPMWfOHMyZM+eJ12KdP9I1ycnJWLduncaHN19fX0ycONFgao/KZDJYW1tLHUa1yWQy9OrVCy1atMCGDRtw7949qFQq7NmzB9euXcPEiRNLTS1PZEgePHiA9u3bSx0G1aK4uDjExsbCzs5OY31eXh6OHz+O4OBg5ku1oMYThYwfPx4jRozAwYMHERUVBZVKhSZNmmDgwIFPfGNdv359TS9PJIkLFy5g06ZNyM3NBSD203366acNZpIKR0dHFBYWwt7e3iD+0Lq6uuL999/Hvn37EBoaCpVKhejoaISEhGDEiBHo2bOnQfycRI+LjY1Fenq6wXxop4rdvXsXkZGR8PX1lToUvVftBDknJwdeXl746KOP8N///lc981xVTJw4sbqXJ5JEfn4+tm7dihMnTqjXOTo6YvLkyfDx8ZEwstr1008/4erVq3rff7okhUKBoUOHolWrVti4cSMSEhJQUFCAzZs348qVKxg3bhyTCDJIFy9eRJ8+faQOg+rIyZMn4eLiAgcHB6lD0WvVbuqysLCAkZGReqQ4kaF78OABPv30U43kuGPHjpg5c6ZBJcclGWL9YB8fH8yYMQM9e/ZUr7t27RoWLlyI8PBw6QIj0pJbt24hMTFR6jCojhQVFWH//v3qJ5xUPTV6Fvzcc89h69atLC1CBk0QBBw5cgSfffaZuraxiYkJxo8fr9e1jZ9ELpfDzMxM6jC0wtTUFGPGjMEbb7yhnu47Ozsbq1evxk8//VQv3lhY8q7+EAQBJ0+e5Ht1PZKZmYl9+/ax+lcN1ChBHj16NBISEtCnTx/88ssvOHHiBC5evFhqIdJXWVlZ+P777/Hrr7+qaxs3aNAAM2bMQNeuXQ2636qJiYlB9KeuSOvWrTFr1iy0bdtWve7UqVNYvHgxbt26JWFk2ldylkcyfPHx8bh9+7bUYVAdSkpKwu7du+vFB35tqNEgvZKz4B07dqzU9uLKE0qlsiaXIZLEzZs3sWHDBqSlpanX9enTB88880yl63frs4om+TEk1tbWePXVV3H69Gn89ttvyMvLQ3JyMr766iv0798fQ4cOhZFRjccz6xy2INc/xWXA6svvNolJ8s6dOzFo0KBSVS+oYjX6q88qFGSIlEol9u7di9DQUI3axuPHj0fr1q0ljq7u1IcPAcVkMhm6du2KZs2aYePGjbh9+zYEQcCBAwcQERGBl156SW9mE6wsJsiGq2PHjnjw4AFMTU016uTm5OTg2LFj6Nevn0E//SJNGRkZ2LFjB/r16wcvLy+pw9EbNUqQWYWCDE1ycjI2bNig8SiyefPmeOmll+rdp+/6OImGk5MTpk2bhj///BN//PEHlEqlenDm8OHD0adPH4PpdpKXl8f68gYqLi4O8fHxZf7NunPnDmxsbNCpUyfe+3qkoKAAoaGh6NKlC/z9/XnvK0HnnhtGRETgzp07SE1NLXNAwYQJEySIiuqDS5cu4eeff9aobTx06FAMGDDAYJKiqqiPPzMg/twDBgxAy5YtsWHDBsTGxqKoqAi///47rl69ivHjxxtE+aTCwkIUFhbq3TTiVHPh4eEoKChAt27d6u3veX0kCAJOnTqFlJQU9OzZk/f+CaqUIE+ePBkymQyrV6+GQqHA5MmTn3iMTCbD2rVrn7jf7du3MW7cOJw9e7bckbYymYwJMtW6goICbN26FcePH1evc3BwwOTJk9G4cWMJI5NWff/jWVznfefOnTh06BAAIDIyEosWLcLo0aPRqVMniSOsuczMTDg6OkodBkkgIiICqamp6NevHywsLKQOh+pQZGQksrKy0L9/f35ArkCVEuRDhw5BLpdDpVJBoVDg0KFDT2ymr2wz/muvvYYrV65g2bJl6NmzJ+zt7asSGlG1PHz4EOvWrUNsbKx6XYcOHTB27Fi+aRCMjY0xcuRI+Pv748cff0RaWhpyc3Oxfv16XLlyBaNHj9br/ydMkOu32NhYbNu2DX369IGnp6fU4VAdevjwIXbt2oWnnnqK81mUo0oJcnR0dIWva+LEiROYOXMm3n777Vo7J1F5BEHAsWPH8Pvvv6OwsBCAmAy98MIL6NatG/tnofIfbusDX19fzJ49G1u2bMG5c+cAAOfPn8etW7cwYcIEvZ3WNT09XeoQSGI5OTnYu3cvOnTogA4dOvD3vh5JSUnBzp07MWTIEM4iWgadeYbq5OTEG0R1onhCiM2bN6uTY09PT3z00Ufo3r073yD+wX8HTRYWFpg0aRImT56snhwmLS0NX3/9NX777Te9LMhfsoQh1V+CIODChQsIDQ1ldZN6JisrC7t27UJSUpLUoegcnUmQX3/9dfz888+smUxaFRUVhUWLFuHvv/9Wr+vduzc++OADuLu7SxiZ7qnvfZDL07FjR8yePRstWrRQrzt8+DA+/fRTxMTESBhZ1SUnJ0sdAumQ+/fvY8eOHUhNTZU6FKpDubm5+OOPP/Do0SOpQ9EpNX4H3LdvH/r37w9HR0cYGRlBoVCUWiqjefPmUCqVaNu2LZYuXYrffvsN27ZtK7XUhRUrVsDb2xtmZmbo3Lkzzp49W+6+a9asUfeZtre3R3BwcIX7kzSUSiV2796NZcuWqVvNLC0t8frrr+OFF16oVzV/K4styOWzt7fH22+/jeeff179fycuLg6fffYZQkNDoVKpJI6wcpKTk9liSBrS09Oxc+dOPHjwQOpQqA4VFhZi3759uHPnjtSh6IwalXn7/fff8cILL6BVq1YYPXo0Vq5cibFjx0IQBOzcuRPNmjXDM888U6lzjRo1Sv39+++/X+Y+dTEr35YtWzB9+nSsWrUKnTt3xrJlyzBw4EBERkbCxcWl1P5HjhzBmDFj0K1bN5iZmWHJkiUYMGAArl27xkEPOiIlJQUbNmzQmDq4WbNmmDRpUr2rbVwV9bEOclXI5XL06dMHvr6+2LBhA+7fvw+VSoVdu3bh2rVrmDhxIpycnKQOs0KCICA6OlqjNZyouGZuz549+X+jHlEqlQgLC0Nubi5atWoldTiSq1GCHBISgsDAQBw/fhypqalYuXIlJk+ejL59+yI6OhpdunSBj49Ppc51+PDhmoRSa5YuXYopU6Zg0qRJAIBVq1Zhz549WLduHT766KNS+//yyy8ar3/44Qf8/vvvCAsLY0k6HRAeHo6ff/4ZOTk5AMSkZsiQIRg4cCC7EDwBW5Arx93dHf/973+xZ88eHDhwAIIg4Pbt21i0aBGef/55dO3aVaf/LSMiItC8eXOdjpHqnkqlwtGjR5GTk4N27drx/0c9IQgCTpw4gdzcXAQEBNTr+16jBDkiIgIhISFQKBQwMhJPVTzoydvbG2+++SaWLFlSqUQxKCioJqHUioKCAly4cAEzZsxQr5PL5QgODsapU6cqdY6cnBwUFhZWOJFAfn6+xmPNrKys6gdNZSooKMDvv/+OY8eOqdc5ODhg0qRJaNKkiYSR6Q9+gKg8IyMjDB8+HP7+/tiwYYO668LPP/+My5cv48UXX4S1tbXUYZYpMTER9+/fR8OGDaUOhXTQuXPnkJmZiR49evBvQj1y8eJFqFQqBAYGSh2KZGqUIFtYWKiLTNvZ2cHU1FSjnqyrqyvu3r1b5fNGRETg3r17AIBGjRrBz8+vJmFWWlJSEpRKJVxdXTXWu7q64saNG5U6x4cffggPDw8EBweXu09ISAgWLFhQo1ipfI8ePcK6des0Bhy0b98eL774ol7XrK1rfDOsuiZNmmDWrFnYunUrTp48CQC4fPky7t69i3HjxqF169YSR1i2M2fOoEGDBrznVKYbN24gMzMTwcHBMDU1lTocqiPh4eGwtLSst90tavTXsEWLFoiIiFC/bteuHX766ScUFRUhLy8PmzZtqlKrxM6dO9GkSRO0bt0aQ4cOxdChQ9G6dWs0bdoUu3btqkmodeLTTz/F5s2bsX37dpiZmZW734wZM5Cenq5ejh49WodRGi5BEHD8+HEsWbJEnRwbGxtj7NixeOWVV5gcV1F9frRWE2ZmZhg3bhxeffVVWFlZARAn5Fi5ciU2bdqEvLw8iSMsLTU1VeNvOdHjHj58iO3btyMlJUXqUOq1mJgYZGdnAxCfRmv7fpw+fbre3vMaJcgjRozArl271N0FZs2ahSNHjsDOzg7Ozs44duxYmf12y7J3714899xzAIDFixdj+/bt2L59OxYvXgxBEDBixAiEhobWJNwncnJygkKhQHx8vMb6+Ph4uLm5VXjsF198gU8//RQHDhxAmzZtKtzX1NQUNjY26qX4TZSqLycnBz/88AM2bdqk7ubj4eGBDz/8ED169GCyR3WuXbt2mD17Nvz9/dXrjh8/jpCQkGo9WdO2c+fOsbsXVSgjIwM7d+7E7du3pQ6l3jl79iyGDRsGb29vdSWm3NxczJw5EytWrKjVidtKUiqVOH36tFbOnZKSghdffBE2Njaws7PDyy+//MS/QatXr0bv3r1hY2MDmUxWZi13b29vyGQyjeXTTz+tcnwyQRCEqh6Ul5eHnTt34u7du3B0dMTQoUPVNWSPHTuGbdu2QaFQYMiQIejTp0+lztm1a1fk5+fj2LFjpaY9zM7ORo8ePWBmZlbpvsDV1blzZwQGBuKbb74BIA5UaNiwIaZOnVpusv/ZZ59h0aJF2L9/P7p06VLla168eBEBAQG4cOECOnToUKP466Pbt29j/fr1Gp9ye/XqhREjRuj9PPM5OTn466+/YG1tXeFTCW1QKpV1XskiLy8PmZmZ6NWrl8G0+BcPetm6dat6MhGZTIZBgwZh8ODBklQL6dixI2JiYmBubo5Zs2ap13t4eGDIkCH8QKnnGjRogIcPH8LOzg5LlizRyjX8/f3RuXNnVrupA9u2bcOoUaMgCEKZlbyKu0ZNmTJFaznEM888U2Ylryfp3bs3XnrpJbz00kultj311FOIjY3F999/j8LCQkyaNAmdOnXCpk2byj3fsmXL1E/hZsyYgdTU1FLVqLy9vfHyyy9jypQp6nXW1tZVnlK7yn2QExIS0K1bN9y9exeCIEAmk8Hc3Bw7duxAcHAwevbsiZ49e1b1tLh8+TIWL15c5g9gaWmJl156CTNnzqzyeatq+vTpmDhxIjp27IjAwEAsW7YM2dnZ6qoWEyZMgKenJ0JCQgAAS5Yswdy5c7Fp0yZ4e3sjLi4OAGBlZcWWYS1TqVQIDQ3Fnj17UPw5z8LCAuPGjUO7du2kDc4AMEmqHTKZDD169EDz5s2xceNG9d/Offv24dq1a5g0aVKpcQ/aFhcXh8TExFJvLI8ePcKFCxfQsWPHOo2H9M/Vq1eRlJSE/v37q2eWpNp39uxZjBo1CkqlEuW1ZxbXXV+zZg0+/PBDeHt713ocly5dwsCBA2vtfNevX0doaCjOnTun/nvzzTffYPDgwfjiiy/g4eFR5nHvvfceALHEbkWsra2f+OT/SarcxeKTTz5BdHQ0pk2bht27d+Orr76Cubk5XnvttRoFYmZmVmE/l5SUlDppQRs1ahS++OILzJ07F+3atUN4eDhCQ0PVb2AxMTEaAxFXrlyJgoICjBw5Eu7u7urliy++0Hqs9VlqaiqWL1+O3bt3q/9oNG3aFDNnzmRyXEs4YKt2ubi4YPr06Rg6dKj63zYmJgaLFy/G0aNHy33zq2sXL17kI3Q9Vpd9VOPi4rBz505kZmZq7Rr13cKFCyEIQqX/Puzdu1crcdy7d69U99OaOHXqFOzs7DQ+jAcHB0Mul+PMmTM1Pv+nn34KR0dHtG/fHp9//jmKioqqfI4qvwMeOHAAEyZMwBdffIHBgwfjnXfewbfffovo6GhERkZWOYBiffv2xfLly8vsQnHmzBl8/fXXFVaGqE1Tp07FvXv3kJ+fjzNnzqBz587qbUeOHMGGDRvUr6Ojo9X/eUsu8+fPr5NY66O///4bixcvRlRUFACxhW7IkCF47733KiyvRyQ1hUKBwYMH4/3331d/6C4sLMSWLVuwYsWKMvvTSeHIkSO4f/++1GFQFUjVRzUjIwN//PGHVvqva6OPanR0NF5++WX4+PjA3Nz8/+3deVxUZfs/8M8sMAw7KDCaCgiJIGlKX5VQccfUckFzzX3LzFzSsjT1cWux1Cwfc8ktLbPENbfcNRSXFvclQUpFVGQTBIa5f3/4Yx5GFtmGMxw+79frvGTuOXPmGi6Hueace4GPjw+mT59u7P4ktezsbDx+/Bipqak4d+4cduzYUeQF0gwGA/766y+zfSk6efJkmX2Rj4uLy9NlQ61Ww9XV1XglvqTGjh2LH374AQcPHsTIkSMxd+5cTJ48udjHKXYXi9jYWLz33nsmbc2aNYMQAnfv3i3xqjuffvopgoOD0axZMzRu3Nh4nCtXriAqKgru7u5m60tFFUNWVhY2b95sMuuHi4sLBg8eDF9fXwkjIyoeLy8vTJkyBREREcb/zxcvXsScOXPQp08fycciZGdnY+/evQgLC0ONGjUkjYWeLXcf1acLGCEEzp8/j/Pnz5utj2pqair27t2Lrl27FvvKU2F9VPv164c7d+5g3759xj6qI0aMKLSPalpaGjp06IAOHTqYrGmQ4/LlyzAYDPjmm2/g6+tr/L08evQI8+fPhxACer0eWVlZJlvuttw/p6enIyMjA3q93tj+9M+5H1fQPjk/516m/vLly8UuSIUQuHTpEoKDg4v1uKK4ffs2bt68WWgXjrlz52Lu3LnG2+np6Thx4gTGjBljbDP3jDkTJkww/ly/fn1YW1tj5MiRmDdvXrGmKSx2gZyRkZGnq0PO7ZKcws7h7e2Nv/76C/PmzcOuXbuwceNGAE/mQX7nnXfw/vvvl6iDOMnDnTt38O233+LWrVvGtgYNGqB///7F7nhPZAmsra3Rq1cvBAYG4rvvvkNSUhIePXqEFStWoHHjxujVq5ekfTuzs7OxZ88etGvXjouIWDBL6aN6//59XLlyBf7+/qU6jhACBoMB586dw+7du/Hrr7/C29sbmZmZmDp1qrFIdnV1zbdgff7555GVlYU///wTAPD9999Do9GYFLv+/v44ffo0IiMjkZWVhYCAAKxYsQKZmZmlqmPKWmZmJhQKRbGKZIVCgaSkJLPNSHPkyBFUr169wAHwo0aNwuuvv2683a9fP4SHh6N79+7GturVq0On0yE+Pt7ksXq9HgkJCaXuO/y0Jk2aQK/XIyYmplgncUu0UEhMTAzOnj1rvJ2UlAQAuHbtWp5BHwCK/I3V3d0dCxYswIIFC0oSFsmQEAK//fYbfvzxR+P0bVZWVggPD0fz5s05kIwqvHr16uHDDz/E999/j99//x3Ak6Ln+vXrGDBgAOrUqSNZbDlnklu1asUVKC1USfqojh49+pn75dd18Fnb0aNHERMTU6wzsDExMdi0aRMuXLhgbMs5C2ptbY2ff/4ZP//8M4D/Ffoff/wxateuXWj8OSdTTp8+/cyzhsnJybC2ti7X4lilUhW6KZVKxMfHl+gMso2NjVnGkAghkJKSAr1eX2CB7OrqatLVUavVwt3dPc9V3uDgYCQmJuLMmTMICgoCABw4cAAGg8GkW2tZ+OOPP6BUKot9krVEBfK0adMwbdq0PO1Pv+lyZrkoav8ZotzS0tKwYcMGky9j1apVw9ChQwsc4UpUEdnb22PYsGGIiorCxo0b8fjxYyQkJGDRokVo06YNXn31VVhZWUkSm8FgwP79+5GSkoIGDRrwS6kFiY2NNRmo/CwGgwF//vknrly5AicnpwIL3ZK6d+8e/vjjj2I9JqebQs7AwhxpaWl5rqAolUpoNBqkpaWVOMYcarUaVlZWSE1NxYULF9C+fXvUqFEDVlZWxvtytty31Wo1rK2toVarIYRAdHQ07OzsYGNjY1LgqtXqfAtftVptnJv3WRo2bIjNmzcX+wyyn5+fWQpkg8EAtbpUCzAb+fv7o0OHDhg+fDiWLl2KrKwsjBkzBr179zZ+vt+6dQtt2rTB2rVrjUtex8XFIS4uDtevXwcAnDt3Dg4ODqhVqxZcXV0RGRmJkydPolWrVnBwcEBkZCTGjx+P/v37w8XFpVgxFvuVrlq1qrgPydeQIUOgUCiwbNkyqFQqDBky5JmPUSgUWLlyZZk8P1m2Gzdu4NtvvzUZbNCsWTP06NGjws9tTJQfhUKBJk2awNfXF2vXrsW1a9cghMCvv/6KixcvYtCgQZL2B46KisK9e/fQokULLjdcDGV12T49PR0JCQl4+PAhEhISkJCQgF9++aVEBe3Vq1fRoEGDUsf0tKIUZWfOnDGe9FAoFNDr9bh79y6OHTtmLBonT54MNzc3xMTEoFGjRiYF6vr161GvXj289tprhRaxZ86cwbZt2zBp0iS4ubmZ3J9zhvbWrVsIDQ1F//79sWLFimK/3rS0NAghzDZPvU6nQ/PmzXH8+PEinWhUKpXw9/cvdiFYHI6OjmV2rPXr12PMmDFo06YNlEolwsPD8eWXXxrvz8rKwpUrV0y+EC1duhQzZ8403m7RogWAJ7XpoEGDoNFo8MMPP2DGjBnIyMiAt7c3xo8fb9IvuaiKXSAPHDiw2E+SnwMHDkCpVMJgMEClUuHAgQPP/EbFMxfyZzAYsHfvXuzYscN4OU2r1aJ///5o2LChxNERmV+VKlXwzjvvYP/+/di+fTv0ej1u376NTz/9FK+++qrxw0QK0dHRiI+PR4sWLVCzZk1JYqhIMjMzERUVVaT+oHq9Hmlpaflu6enpxi5mucXExJSoj2ruGRtyPlfL6t8XXngBgYGB0Gq1+RavKSkpSE5ONi4wkl8fVS8vL6xduxbHjx/HsGHDTH5Hffv2Rfv27dGhQ4dCX2fOdKw6nS7frp+3b99Gq1at8PLLL2PZsmWF/9IkNHToUBw/frzIeW7fvr3ZYtFqtfn+LgtT2HzFrq6uhQ649PLyyvOaZ8yYUegsYY0aNSqzlf/K5lx5CTw95Yy5pqChiiMxMRGrV6/G1atXjW0+Pj4YNGgQqlSpImFkROVLqVSiXbt28Pf3x+rVq3H79m3o9XpERETg/PnzGDBggGTviUePHmHXrl3w9fVF06ZNZbPioTno9XqkpqbC2toaKpUKjx49Qmpqar7/ZmRkFPv41tbWJeqj6uLiYpYpMYUQsLa2ho+PT4H/L+zt7Y0r7wLS9FG9desWWrVqhaCgIKxatcqi53yvV68e5s2bZ5yRo7CV9AYOHGi2AbVKpRK+vr6VqsusZAXy02JjY+Hm5lbgqO309HTcu3ePo6ll6ty5c1i7dq2xH5rUS/ESWYIaNWrgvffew/bt27F//34IIXDt2jXMmTMHvXr1QuPGjSW7snb9+nXcvHkTQUFBCAwMtOgiozxkZWUhISEBDx48MG7x8fG4efMm0tPTjcvjFpdCoTCuzOrg4GDyb6tWrXDo0CGL6qP6dF/ikjJXH9Vbt26hZcuW8PT0xPz583Hv3j3jc5b17AllpXXr1vj222+xcuVKHD161CTfCoUC/v7+aN++vVnrIz8/P9ja2laqRWEspkD29vbGunXr0Ldv33zv37ZtG/r27Vupvr1UBllZWYiIiDC5DOPs7IxBgwZJOnqfyFJYWVmhe/fuCAwMxNq1a5GQkIDHjx9jzZo1+Ouvv9CnTx/JlrXPysrCiRMncOXKFbRs2RJubm6SxFEesrOz8fDhQ9y/f9+kCM7ZcmZzKi6FQgFbW1s4ODjkKYDt7e1hZ2dXaDFraX1U8+sKUlLm6KO6b98+XL9+HdevX8/Tp99SVrPMT7169fDFF18gLi4Offr0QUpKCrRaLSZNmmTWfAJPruRWrVq1xF/yKiqLKZCf9R8zKyur0p+hkJu7d+9i5cqV+Pfff41t9evXR//+/SX7wCeyVHXq1MGHH36IjRs3IioqCgDw+++/48aNG3jjjTcQEBAgWWwPHz7Eli1bEBISImkcpZGdnY3ExMR8i98HDx4gMTGxxAWUVquFo6NjvmeB7ezsSnWVzJL6qAIo9iDq8u6jWtCiJBWFTqeDVqtFSkoKrK2tzV4c16hRo9LOGiVpgZycnGyyDOSDBw8QGxubZ7/ExET88MMPJv2WqOISQuDEiRPYuHGjcbCIWq1GeHg4WrRowcGYRAXQarUYNGgQ6tevj++//x6PHj1CUlISvvrqK4SGhqJbt26SzfIihMCxY8fw+PFjyVcCzI/BYEBSUlKBBfDDhw9NVjErDkdHR7i6uqJq1aom/9rZ2eH8+fNwdnY2yywHgOX0UQWeXO0wd8FG5cfNzc0si8pUFJIWyAsWLMB//vMfAE8uM40bNw7jxo3Ld18hBGbPnl2O0ZE5pKen4/vvv8fp06eNbTqdDkOGDOGStkRF1KhRI9SuXRvfffedcdnWw4cP4/Llyxg0aBA8PT0li+306dNQqVRmmUasMEIIJCcnF1oAl3S6NXt7e7i6uqJKlSrGLacIrlKlSoFfStLS0splDIUl9FFVKpV4/vnnzXZ8Kl+Ojo6oU6dOpT5hJWmB3L59e9jb20MIgcmTJ6NPnz55zjwoFArY2dkhKCgIL730kkSRUlmIjo7Gt99+iwcPHhjbQkJC0KNHD86rSlRMzs7OeOutt3DkyBFs3rwZWVlZuHv3Lj777DN07NgRYWFhkg1wPXnyJFQqFQIDA8vsmEIIpKamFlgAJyQklLj/q1arNSl4ny6CzXX2tyxJ2UdVpVIhICAANjY2lWoQl1zZ2NjA39+/0ndrlbRADg4ORnBwMIAnUweFh4eX6R9UsgwGgwH79u3D9u3bTeY27tu3r3H6HiIqPoVCgdDQUPj5+WH16tWIjY2FwWDAjh07cOHCBQwcODDP8qqxsbHGmQYyMjKQkJBglim/fvvtN6hUKvj7+xdpfyEE0tLSCi2ASzIVGgBoNJo8Z31zb3Kaqq68+6ja2NggICAAdnZ2lW4QlxxZWVkhMDCQC3LBQgbppaWl4csvv4StrS0LZJlJSkrCmjVrcPnyZWObt7c3hgwZwrmNicqITqfDpEmT8Msvv2D37t3GJXDnzp2LHj16ICQkBKdOncKsWbOwc+dO4yX49PR0fPDBB3jhhRfQqVOnMu9vePToUQAwFsnp6ekFFsAPHjwodoH1+PFjHDt2DDExMVCpVGjYsCFGjhyJ6tWrmxTEdnZ2xkvFjx8/xsSJE/HDDz8gIyMDYWFhWLJkCTw8PAA8GQvTr18//PXXX3jw4AHc3d3RpUsXzJ07t0xXEZODKlWq4Pnnn5dsGXQqWzlXfQqabreysYgC2dbWFmq1GnZ2dlKHQmXowoULWLNmjXEVKYVCgbCwMHTq1IlzGxOVMZVKhVdffRWBgYFYvXo17t27h8zMTGzYsAFr167FqlWrIITIM+pfCIHz58/j/PnzGD58eKkG2AkhoNfrTbaIiAhs3rwZDx8+NJmOq6i2bt2KgIAAhISE5BkE9+6778LGxgZHjhyBXq/H4MGDsWfPnkJnPhg/fjx27tyJTZs2wcnJCWPGjEH37t1x/PhxAE/60nbp0gWzZ8+Gm5sbrl+/jrfeegsJCQmFHrey8fb2xnPPPVep+6jKSU5xzBmk/sciCmQACA8Px08//YQ333yTb7gKLisrC1u3bsWBAweMbU5OThg0aBD8/PwkjIxI/ry9vTFlyhRs3rwZx44dw927dxEREVHoFGA5XZ+WL1+O9957r8AzyTkFcHZ2dp5CWK/XFzoLRO7ljZ+mUqng6uqa70wQOXM9DxkyxOQxly5dwuHDh3Hq1Cnj+JTFixejY8eOmD9/fr5TUyUlJWHlypXYsGEDWrduDeDJ/Lj+/v44ceIEmjZtChcXF7z55pvGx3h6emL06NH47LPPCoy/MlGr1fD39y/2ksNkuVQqFerVq8crJE+xmAK5d+/eGD16NFq1aoXhw4fDy8sr39P8ljh9UGUTGxuL/fv3IyUlBQ4ODmjTpo1xdPTdu3fx7bff4p9//jHuHxgYiAEDBvCbKVE5sbGxQd++ffHCCy+gW7duxXrsjh07MGzYMJPCN6cgLs1CTS4uLnB2djbp+pDzr7Ozc4EDgtRqdb73RUZGwtnZ2WTwdtu2baFUKnHy5Ml8X/eZM2eQlZWFtm3bGtvq1q2LWrVqITIyEk2bNs3zmNu3b2Pz5s0IDQ0tycuWFa1Wi3r16vESvIzkFMdOTk5Sh2JxLKZAbtmypfHnnH5ruQkhoFAouJKehKKiokz6MCqVShgMBigUCnTu3Bldu3bFuXPnjANp1Go1unXrhpYtW/KqAJEEnJyccOPGjSIvcGEwGHDu3Dlcu3at2B+YKpUKarXaZMvdplAoMGDAgDKbsSYuLi7PAES1Wg1XV1fExcUV+Bhra+s8Zz89PDzyPKZPnz7YunUr0tPT8eqrr2LFihVlEndF5ezsjLp167K/sYyo1WqeOS6ExRTIq1atkjoEKsTmzZvRq1cvkz6MOZdThRDYuXMnduzYgfbt26N27drw8PDAkCFDULNmTSnDJrJ4mZmZJZ6f91l++eWXEq3+FhMTk2ceY5VKZSx48/u3sC/BOX8rbt68CS8vr0JHyM+dOxdz58413k5PT8eJEycwZswYY1vO3M/mtGDBAkyfPh1Xr17FlClTMGHCBCxZssTsz2uJqlevDm9v70o/7ZecaDQa1KtXj2O/CmExBfLAgQOlDsHo66+/xmeffYa4uDg0aNAAixcvRuPGjQvcf9OmTZg2bRpiYmLw/PPP45NPPkHHjh3LMWLzioqKQq9evZCdnV3gh23OB+DevXsxffp0vP/++5zbmOgZMjMzERUVZRzIWtb+/PPPIi9BnEOhUMBgMECr1UKpVBq3pwvg3APyiuro0aOIj49H48aNCyySR40ahddff914u1+/fggPD0f37t2NbdWrV4dOp0N8fLzJY/V6PRISEqDT6fI9tk6nQ2ZmJhITE03OIt+9ezfPY3Q6HXQ6HerWrQtXV1c0b94c06ZNq1QrulpbW8PX15czDsmMg4MD/P39+Rn9DBZTIOeWmppq7MNas2bNcu27unHjRkyYMAFLly5FkyZNsHDhQoSFheHKlSt5LucBT+b67NOnD+bNm4fOnTtjw4YN6Nq1K86ePSubKetmz56d7+j3/CiVSpw9e5ZvPKIi0Ov1SE1NhbW1tVneMy4uLsU+gyyEgIODg1n6maampiIlJQV6vb7AAjlnsF4OrVYLd3d3+Pr6muwXHByMxMREnDlzxjif+oEDB2AwGNCkSZN8jx0UFAQrKyvs378f4eHhAIArV64gNjbWOCd/fnJOAJR0HuaKqFq1avD09GSXCpnR6XTw8fHh1YAisKjf0KlTp9CqVSu4uLggMDAQgYGBcHFxQevWrU2WJjanL774AsOHD8fgwYMREBCApUuXwtbWFt9++22++y9atAgdOnTApEmT4O/vj1mzZqFRo0b46quvyiVec4uNjcWOHTuK3Pc7Ozsb27dvR2xsrJkjI5IPjUYDGxubMt9CQkKK3f9foVDAz8/P5OxxWW3Z2dnGRUpKy9/fHx06dMDw4cMRFRWF48ePY8yYMejdu7dxBotbt26hbt26iIqKAvCkT/bQoUMxYcIEHDx4EGfOnMHgwYMRHBxsHKD3yy+/YNWqVTh//jxiYmKwc+dOjBo1CiEhIWU+T7QlcnR0RMOGDeHr68viWEZylgJ//vnnWRwXkcWcQT558iRatmwJa2trDBs2zDix/KVLl/D999+jRYsWOHToUKFdHUorMzMTZ86cwZQpU4xtSqUSbdu2RWRkZL6PiYyMxIQJE0zawsLCsGXLlgKfJyMjw+RMRM7lVb1eX+KlUs1lz549JToDtXfvXovqNlNRZWVlQa/X49GjR2brp2pJMjIyjO8DS3svmIO582tvb4+mTZvixIkTRXofKxQK+Pv7w97e3iy/fyEEUlJSipVfIQSys7Pz3X/16tV455130KZNGyiVSnTr1g0LFiww7puWloYrV64gOTnZ2Pbpp58CeDK1aEZGBtq1a4fFixcb77eyssKyZcswfvx4ZGRkoEaNGujatSsmT55c7N+JVO/f3ONDihqzSqVCzZo14ebmBgAl6vbD92/5KG5+NRoNfH19YWdnV6ruXOWZX4v4ciYsRJs2bYSPj4+4c+dOnvvi4uKEj4+PaNu2rVljuHXrlgAgfvvtN5P2SZMmicaNG+f7GCsrK7FhwwaTtq+//lq4u7sX+DzTp08XALhx48aNGzdu3Lg9tVkCizqD/NFHH+U7uMLDwwMjRozArFmzJIis7OWMiM7xxx9/IDQ0FCdPnkTDhg0ljCyv1atXY8SIEcV+3PLly3kGuYyYc5YDS6RWqwud5UBuyiO/27Ztw+DBgyGEyHcxj5xuGEOHDsWLL75olhiUSiWaNGkCPz8/5tfM/P39cefOHTg5OWHOnDmF7uvk5IT27duXWR94vn/Nr6j59fLyQnBwcJmuXFuZ8msxBbJSqSz0P1l2drbZ+81UrVoVKpUKd+/eNWnPb4RzDp1OV6z9gSeXO3L/McoZhKhWqy3jskIuYWFhJRoF3759e4t7LRUVf4/yVh75feONN1C3bl3MmjULO3bsMHk/KxQK1K9fHx07djRbH1s7Ozu0bdsWHh4eZjm+JZPi/ZvzWalQKAp9fmtra7z22mucB7cULDW/derUQWhoKNcgKAWL6an98ssv4+uvv8bNmzfz3BcbG4slS5YgJCTErDFYW1sjKCgI+/fvN7YZDAbs37+/wBHOwcHBJvsDwL59+wodEV2R1KpVC507dy7yN1CVSoVXX33VuLIeEVmG//u//8O2bdsQExNjnOJMq9Vi7ty5GD16tNmK45o1ayI8PLxSFseWLjg4mMWxDHl6erI4LgMWcwZ57ty5aNGiBerWrYtu3bqhTp06AJ5MwbN161ao1WrMmzfP7HFMmDABAwcOxEsvvYTGjRtj4cKFePToEQYPHgwAGDBgAJ577jljLO+88w5CQ0Px+eefo1OnTvjhhx9w+vRpLFu2zOyxlpdp06Zh165dzzyTrFAooFAoMHXq1HKMjoiKo1atWrCzs0NiYiI0Go3JlGplrVGjRggKCuIHtQWqXbu28XOW5CNn5i++50rPYgrkhg0b4uTJk/jwww+xbds2pKWlAQBsbW3RoUMHzJ49GwEBAWaPo1evXrh37x4++ugjxMXF4cUXX8Tu3buNZz9iY2NNunq8/PLL2LBhA6ZOnYoPPvgAzz//PLZs2SKbOZCBJ2eeNm7caFxJL78p33JW0vrxxx/xf//3fxJESUSWQqVSoWXLlvDx8ZE6FMqHi4sLzzDKkEqlQtu2bdktr4xYTIEMAAEBAYiIiIDBYMC9e/cAAG5ubuU+Z9+YMWNMljXN7dChQ3naevbsiZ49e5o5Kml1794dv/32m0kfRqVSCYPBAIVCgU6dOmHq1KksjokqOWtra4SFhVWqFecqEq1Wiw4dOrCIkqFGjRrBxcVF6jBkw6IK5Bw5l+pzfibLkNOHMTY2FgcOHEBycjIcHR3RunVr9jkmItjb2yMsLIxLE1solUqF9u3bw8HBQepQqIw5OTmhfv36UochKxZVIF+8eBEfffQR9uzZY9LFIiwsDDNmzJBVt4WKrFatWhg0aJDUYRCRBalZsyZatmxpliWqqWy8/PLLHCwpU02aNCnT6dzIggrko0eP4pVXXoHBYECXLl1MBult27YNu3btwu7du9G8eXOJIyUiohzW1tZo2rQp/Pz8eMXPgnl5eaFu3bpSh0FlQKfTwWAwGLvJVK1aFZ6enhJHJT8WUyCPHz8e7u7uOHz4MGrWrGly3z///IMWLVpgwoQJOHXqlEQREhFRbl5eXggJCYGdnZ3UoVAhrKysEBISwi8wMnH69GncuXMH27dvBwA0aNCAuTUDi5kH+cKFCxg9enSe4hh4cunuzTffxIULFySIjIiIctNoNGjdujXatWvH4rgCqFevHvMkU1qtFt7e3lKHIUsWcwbZ09MTGRkZBd6fmZmZb/FMRETlp2bNmggNDYWtra3UoVABdDod9Ho9NBoNFAoF6tWrJ3VIZCbe3t7lPtNXZWExBfJHH32E8ePHo1OnTnjxxRdN7vv999+xePFiLFy4UJLYiIgqO7VajeDgYNStW5eXcy3c6dOncenSJRw9ehQ6nY5nj2WMJw7Nx2IK5BMnTsDDwwNBQUF4+eWX4evrCwC4du0aIiMjERgYiMjISERGRhofo1AosGjRIqlCJiKqFJycnNCuXTuzrrpH5sEpOOVNp9NJHYJsWUyB/NVXXxl/Pn78OI4fP25y/7lz53Du3DmTNhbIRETm9dxzz6Ft27bQaDRSh0IlUL16dalDIDOxs7Pj+9KMLKZANhgMUodARES51KlTBy1atGAfxwrK2toaVatWlToMMhMnJyepQ5A1iymQiYjIcrzwwgto2rQp+xtXYDqdjvmTMXt7e6lDkDWLK5Cjo6Oxa9cu3Lx5E8CT2S1eeeUVTmNCRFRO/P39WRzLAFfNkzcOvjQviyqQJ06ciEWLFuXpbqFUKjFu3DjMnz9fosiIiCqHGjVqcFEJmWD3CnnjVIvmZTEdyz7//HMsWLAA3bt3R2RkJBITE5GYmIjIyEj06NEDCxYswIIFC6QOk4hItuzt7dG6dWv2OZYJFxcXqUMgM2KBbF4WcwZ5+fLleO211/Djjz+atDdp0gQ//PADHj9+jG+++Qbjx4+XKEIiInlr2bIlbGxspA6DyoBSqeQleJljgWxeFnOaICYmBmFhYQXeHxYWhpiYmPILiIioEvHz8+OUYDJiY2PDbjIyxwLZvCymQHZ3d8eff/5Z4P1//vkn3NzcyjEiIqLKQaPRoEmTJlKHQWWI8+PKHwtk87KYArlnz55YsWIFPv74Yzx69MjY/ujRI3zyySdYsWIFevXqJWGERETyoNPp4ObmBkdHRwBAUFAQu1bIjFptMT0oyQysrKygUqmkDkPWFEIIIXUQAJCWloZXX30VBw8ehFqtNl7qu337NvR6PVq1aoXt27fL8hvT2bNnERQUhDNnzqBRo0ZSh0NElUBkZCTOnTsHBwcHvP766/ywlZmHDx9ykJ6MpaSkwMHBQeowZM1iziDb2tpi//79iIiIwJAhQ+Dv7w9/f38MGTIEW7Zswa+//mr24jghIQH9+vWDo6MjnJ2dMXToUKSmpha6/9tvvw0/Pz9otVrUqlULY8eORVJSklnjJCIqK4GBgSyOZYgzkciblZWV1CHInkVcg0lLS0P//v0RHh6Ofv36oUuXLpLE0a9fP9y5cwf79u1DVlYWBg8ejBEjRmDDhg357n/79m3cvn0b8+fPR0BAAG7evIlRo0bh9u3b+Omnn8o5eiKi4lEoFPD19ZU6DDIDFsjyxi+15mcRBbKtrS1+/fVXvPLKK5LFcOnSJezevRunTp3CSy+9BABYvHgxOnbsiPnz5+c7ujswMBA///yz8baPjw/mzJmD/v37Q6/Xsw8YEVk0V1dXaLVaqcMgM2ABJW/Mr/lZzFfMZs2aITIyUrLnj4yMhLOzs7E4BoC2bdtCqVTi5MmTRT5OUlISHB0dCy2OMzIykJycbNwK68ZBRGQunBlIvlhAyRun8DM/iymQv/rqKxw9ehRTp07Fv//+W+7PHxcXB3d3d5M2tVoNV1dXxMXFFekY9+/fx6xZszBixIhC95s3bx6cnJyMW2hoaInjJiIqKVdXV6lDIDNhFwui0rGYd1CDBg3w77//Yt68efD09IRGo4Gjo6PJ5uTkVOzjvv/++1AoFIVuly9fLnX8ycnJ6NSpEwICAjBjxoxC950yZQqSkpKM2+HDh0v9/ERExcUCWb54hlHemF/zs5hOsuHh4WZJ+MSJEzFo0KBC96lduzZ0Oh3i4+NN2vV6PRISEqDT6Qp9fEpKCjp06AAHBwdEREQ8c3SpRqMxmcTd3t6+8BdBRGQGVapUkToEMhMWUPImhGCOzcxiCuTVq1eb5bhubm5F6mcXHByMxMREnDlzBkFBQQCAAwcOwGAwFLrCVHJyMsLCwqDRaLBt2zZOtk9EFYKdnR1XW5MxC1nigKjCkrxAfvz4MbZu3Yro6GhUrVoVnTp1QrVq1co9Dn9/f3To0AHDhw/H0qVLkZWVhTFjxqB3797GGSxu3bqFNm3aYO3atWjcuDGSk5PRvn17pKWl4bvvvjMOugOeFOYcJEFElipnFT2SJ55dJCodSQvk+Ph4vPzyy4iOjjZ+27W1tcWWLVvQtm3bco9n/fr1GDNmDNq0aQOlUonw8HB8+eWXxvuzsrJw5coVpKWlAXiyAl7ODBdPzyUaHR0NLy+vcoudiKg45LgqKf0PT9DIG7tYmJ+kS02//fbb+O9//4tx48ahdevWuH79OmbNmgVHR0f8/fffUoVV7rjUNBGVt8TERDg7O0sdBhGVQHZ2Nr8EmZmkZ5D37t2LAQMGYP78+cY2Dw8P9O3bF1euXIGfn5+E0RERyRc/XImICibpNG+xsbFo1qyZSVuzZs0ghMDdu3clioqISP54eZao4uL71/wkLZAzMjLyzPqQc1uv10sREhFRpcAPWKKKiwvBmJ/ks1jExMTg7NmzxttJSUkAgGvXruXbP459dImISo8FMhFRwSQdpKdUKvP9I53f6Myctuzs7PIKr9xwkB4Rlbe0tDTOZEFEVABJzyCvWrVKyqcnIqq0eAaZiKhgkhbIAwcOlPLpiYgqLRbIREQFYy9vIqJKiAUyEVHBWCATEVVCLJCJiArGApmIqBKysrKSOgQiIovFApmIqBLiGWQiooKxQCYiIiIiyoUFMhERERFRLiyQiYiIiIhyYYFMRERERJQLC2QiIiIiolxYIBMRERER5SLpUtNUsd25cwd37tyROgwiIqJKpVq1aqhWrZrUYcgaC2QLUK1aNUyfPr1C/WfPyMhAnz59cPjwYalDISIiqlRCQ0OxZ88eaDQaqUORLYUQQkgdBFU8ycnJcHJywuHDh2Fvby91OFTGUlNTERoayvzKFPMrb8yvvOXkNykpCY6OjlKHI1sskKlEcgpkvkHlifmVN+ZX3phfeWN+ywcH6RERERER5cICmYiIiIgoFxbIVCIajQbTp0/nAAGZYn7ljfmVN+ZX3pjf8sE+yEREREREufAMMhERERFRLiyQiYiIiIhyYYFMRERERJQLC2QiIiIiolxYIBNVQAqFokjboUOHSv1caWlpmDFjRrGONWfOHLz22mvw8PCAQqHAjBkzSh1HZWPJOb58+TImT56MF198EQ4ODqhWrRo6deqE06dPlzqWysKS83v79m30798ffn5+cHBwgLOzMxo3bow1a9aA4/qLxpLz+7T169dDoVBw1cWnqKUOgIiKb926dSa3165di3379uVp9/f3L/VzpaWlYebMmQCAli1bFukxU6dOhU6nQ8OGDbFnz55Sx1AZWXKOV6xYgZUrVyI8PByjR49GUlISvvnmGzRt2hS7d+9G27ZtSx2T3Flyfu/fv49///0XPXr0QK1atZCVlYV9+/Zh0KBBuHLlCubOnVvqmOTOkvObW2pqKiZPngw7O7tSxyE7gogqvLfeekuY6+187949AUBMnz69yI+Jjo4u8WMpf5aU49OnT4uUlBSTtvv37ws3NzcREhJihgjlz5LyW5DOnTsLOzs7odfryyawSsRS8/vee+8JPz8/0a9fP2FnZ1f2wVVg7GJBJFMGgwELFy5EvXr1YGNjAw8PD4wcORIPHz402e/06dMICwtD1apVodVq4e3tjSFDhgAAYmJi4ObmBgCYOXOm8bLgs7pMeHl5meMl0VOkynFQUFCey7FVqlRB8+bNcenSpbJ9kZWYlO/h/Hh5eSEtLQ2ZmZmlfm0kfX6vXbuGBQsW4IsvvoBazQ4FT+NvhEimRo4cidWrV2Pw4MEYO3YsoqOj8dVXX+H333/H8ePHYWVlhfj4eLRv3x5ubm54//334ezsjJiYGGzevBkA4Obmhv/+979488030a1bN3Tv3h0AUL9+fSlfGv1/lpbjuLg4VK1atUxfY2UmdX7T09Px6NEjpKam4vDhw1i1ahWCg4Oh1WrN+rorC6nzO27cOLRq1QodO3bEjz/+aNbXWiFJfQqbiErv6ct3R48eFQDE+vXrTfbbvXu3SXtERIQAIE6dOlXgsUtz+Y5dLMqOpeY4x5EjR4RCoRDTpk0r8TEqM0vM77x58wQA49amTRsRGxtbrGPQE5aW3x07dgi1Wi0uXLgghBBi4MCB7GLxFHaxIJKhTZs2wcnJCe3atcP9+/eNW86l8YMHDwIAnJ2dAQA7duxAVlaWhBFTcVlSjuPj49G3b194e3tj8uTJZnmOysYS8tunTx/s27cPGzZsQN++fQE8OatMpSdlfjMzMzF+/HiMGjUKAQEBZXJMOWKBTCRD165dQ1JSEtzd3eHm5maypaamIj4+HgAQGhqK8PBwzJw5E1WrVkWXLl2watUqZGRkSPwK6FksJcePHj1C586dkZKSgq1bt3KqqDJiCfn19PRE27Zt0adPH6xfvx61a9dG27ZtWSSXASnzu2DBAty/f9848wXlj32QiWTIYDDA3d0d69evz/f+nEEdCoUCP/30E06cOIHt27djz549GDJkCD7//HOcOHGCxY4Fs4QcZ2Zmonv37vjrr7+wZ88eBAYGlvhYZMoS8vu0Hj16YPny5Thy5AjCwsLK7LiVkVT5TUpKwuzZszF69GgkJycjOTkZwJPp3oQQiImJga2tLdzd3Uv3AuVA6j4eRFR6T/dvGz16tFCpVCItLa3Yx1q/fr0AIJYvXy6EeDJ9F9gHWXKWluPs7GzRq1cvoVKpxM8//1zsGMiUpeU3P1u2bBEAxMaNG0t1nMrIUvIbHR1t0q88v61Lly7FjkmO2MWCSIZef/11ZGdnY9asWXnu0+v1SExMBAA8fPgwz8pYL774IgAYL+HZ2toCgPExZBmkzvHbb7+NjRs3YsmSJcaR81R2pMzvvXv38m1fuXIlFAoFGjVqVKTjUMGkyq+7uzsiIiLybK1atYKNjQ0iIiIwZcqUkr8wGWEXCyIZCg0NxciRIzFv3jz88ccfaN++PaysrHDt2jVs2rQJixYtQo8ePbBmzRosWbIE3bp1g4+PD1JSUrB8+XI4OjqiY8eOAACtVouAgABs3LgRderUgaurKwIDAwu9nL5u3TrcvHkTaWlpAIAjR45g9uzZAIA33ngDnp6e5v8lyJyUOV64cCGWLFmC4OBg2Nra4rvvvjO5v1u3blyZq5SkzO+cOXNw/PhxdOjQAbVq1UJCQgJ+/vlnnDp1Cm+//TZ8fX3L81chS1Ll19bWFl27ds3TvmXLFkRFReV7X6Ul7QlsIioLBa3StGzZMhEUFCS0Wq1wcHAQL7zwgpg8ebK4ffu2EEKIs2fPij59+ohatWoJjUYj3N3dRefOncXp06dNjvPbb7+JoKAgYW1tXaRLeaGhoQVevjt48GBZvexKxZJyPHDgwEIv0easpEhFZ0n53bt3r+jcubOoXr26sLKyEg4ODiIkJESsWrVKGAyGMn3dlYUl5Tc/nOYtL4UQT527JyIiIiKqxNgHmYiIiIgoFxbIRERERES5sEAmIiIiIsqFBTIRERERUS4skImIiIiIcmGBTERERESUCwtkokooJiYGCoUCq1evljoUMgPmV96YX3ljfi0DC2QiIiIioly4UAhRJSSEQEZGBqysrKBSqaQOh8oY8ytvzK+8Mb+WgQUyEREREVEu7GJBVEHNmDEDCoUCV69eRf/+/eHk5AQ3NzdMmzYNQgj8888/6NKlCxwdHaHT6fD5558bH5tfH7dBgwbB3t4et27dQteuXWFvbw83Nze8++67yM7ONu536NAhKBQKHDp0yCSe/I4ZFxeHwYMHo0aNGtBoNKhWrRq6dOmCmJgYM/1W5IP5lTfmV96Y34qPBTJRBderVy8YDAZ8/PHHaNKkCWbPno2FCxeiXbt2eO655/DJJ5/A19cX7777Lo4cOVLosbKzsxEWFoYqVapg/vz5CA0Nxeeff45ly5aVKLbw8HBERERg8ODBWLJkCcaOHYuUlBTExsaW6HiVEfMrb8yvvDG/FZggogpp+vTpAoAYMWKEsU2v14saNWoIhUIhPv74Y2P7w4cPhVarFQMHDhRCCBEdHS0AiFWrVhn3GThwoAAg/vOf/5g8T8OGDUVQUJDx9sGDBwUAcfDgQZP9nj7mw4cPBQDx2Weflc0LrmSYX3ljfuWN+a34eAaZqIIbNmyY8WeVSoWXXnoJQggMHTrU2O7s7Aw/Pz/cuHHjmccbNWqUye3mzZsX6XFP02q1sLa2xqFDh/Dw4cNiP56eYH7ljfmVN+a34mKBTFTB1apVy+S2k5MTbGxsULVq1Tztz/pDaGNjAzc3N5M2FxeXEv0B1Wg0+OSTT7Br1y54eHigRYsW+PTTTxEXF1fsY1VmzK+8Mb/yxvxWXCyQiSq4/KYBKmhqIPGMSWuKMqWQQqHItz33QJEc48aNw9WrVzFv3jzY2Nhg2rRp8Pf3x++///7M56EnmF95Y37ljfmtuFggE1GxuLi4AAASExNN2m/evJnv/j4+Ppg4cSL27t2L8+fPIzMz02TENlkW5lfemF95Y37LDgtkIioWT09PqFSqPCOulyxZYnI7LS0Njx8/Nmnz8fGBg4MDMjIyzB4nlQzzK2/Mr7wxv2VHLXUARFSxODk5oWfPnli8eDEUCgV8fHywY8cOxMfHm+x39epVtGnTBq+//joCAgKgVqsRERGBu3fvonfv3hJFT8/C/Mob8ytvzG/ZYYFMRMW2ePFiZGVlYenSpdBoNHj99dfx2WefITAw0LhPzZo10adPH+zfvx/r1q2DWq1G3bp18eOPPyI8PFzC6OlZmF95Y37ljfktG1xqmoiIiIgoF/ZBJiIiIiLKhQUyEREREVEuLJCJiIiIiHJhgUxERERElAsLZCIiIiKiXFggE5FZxcTEQKFQYPXq1VKHQmbA/Mob8ytvzG/BWCATWZC///4bI0eORO3atWFjYwNHR0eEhIRg0aJFSE9PN9vzXrx4ETNmzEBMTIzZnqMo5syZg9deew0eHh5QKBSYMWOGpPGUNeaX+TUH5rd8ML/yzu/TuFAIkYXYuXMnevbsCY1GgwEDBiAwMBCZmZk4duwYJk2ahAsXLmDZsmVmee6LFy9i5syZaNmyJby8vMzyHEUxdepU6HQ6NGzYEHv27JEsDnNgfplf5rfiYn7lnd/8sEAmsgDR0dHo3bs3PD09ceDAAVSrVs1431tvvYXr169j586dEkb4P0IIPH78GFqttsyPHR0dDS8vL9y/fx9ubm5lfnypML9PML/SY36Lj/l9Qq75LQi7WBBZgE8//RSpqalYuXKlyR/fHL6+vnjnnXeMt/V6PWbNmgUfHx9oNBp4eXnhgw8+QEZGhsnjvLy80LlzZxw7dgyNGzeGjY0NateujbVr1xr3Wb16NXr27AkAaNWqFRQKBRQKBQ4dOmRyjD179uCll16CVqvFN998AwC4ceMGevbsCVdXV9ja2qJp06al+qCQ8uyIOTG//4tXjpjf/8UrR8zv/+KtVAQRSe65554TtWvXLvL+AwcOFABEjx49xNdffy0GDBggAIiuXbua7Ofp6Sn8/PyEh4eH+OCDD8RXX30lGjVqJBQKhTh//rwQQoi///5bjB07VgAQH3zwgVi3bp1Yt26diIuLMx7D19dXuLi4iPfff18sXbpUHDx4UMTFxQkPDw/h4OAgPvzwQ/HFF1+IBg0aCKVSKTZv3myMITo6WgAQq1atKvLru3fvngAgpk+fXuTHWDLm1xTzy/xWJMyvKbnltyAskIkklpSUJACILl26FGn/P/74QwAQw4YNM2l/9913BQBx4MABY5unp6cAII4cOWJsi4+PFxqNRkycONHYtmnTJgFAHDx4MM/z5Rxj9+7dJu3jxo0TAMTRo0eNbSkpKcLb21t4eXmJ7OxsIQT/ADO/eTG/zG9FwfzmJaf8FoZdLIgklpycDABwcHAo0v6//PILAGDChAkm7RMnTgSAPJfQAgIC0Lx5c+NtNzc3+Pn54caNG0WO0dvbG2FhYXniaNy4MZo1a2Zss7e3x4gRIxATE4OLFy8W+fhyxvzKG/Mrb8xv5cUCmUhijo6OAICUlJQi7X/z5k0olUr4+vqatOt0Ojg7O+PmzZsm7bVq1cpzDBcXFzx8+LDIMXp7e+cbh5+fX552f39/4/3E/Mod8ytvzG/lxQKZSGKOjo6oXr06zp8/X6zHKRSKIu2nUqnybRdCFPm5zDEiurJgfuWN+ZU35rfyYoFMZAE6d+6Mv//+G5GRkc/c19PTEwaDAdeuXTNpv3v3LhITE+Hp6Vns5y/qH/On47hy5Uqe9suXLxvvpyeYX3ljfuWN+a2cWCATWYDJkyfDzs4Ow4YNw927d/Pc//fff2PRokUAgI4dOwIAFi5caLLPF198AQDo1KlTsZ/fzs4OAJCYmFjkx3Ts2BFRUVEmHxqPHj3CsmXL4OXlhYCAgGLHIVfMr7wxv/LG/FZOXCiEyAL4+Phgw4YN6NWrF/z9/U1Wavrtt9+wadMmDBo0CADQoEEDDBw4EMuWLUNiYiJCQ0MRFRWFNWvWoGvXrmjVqlWxn//FF1+ESqXCJ598gqSkJGg0GrRu3Rru7u4FPub999/H999/j1deeQVjx46Fq6sr1qxZg+joaPz8889QKov//XvdunW4efMm0tLSAABHjhzB7NmzAQBvvPFGhT3rwfw+wfwyvxUR8/uEXPNbIGkn0SCi3K5evSqGDx8uvLy8hLW1tXBwcBAhISFi8eLF4vHjx8b9srKyxMyZM4W3t7ewsrISNWvWFFOmTDHZR4gnUwB16tQpz/OEhoaK0NBQk7bly5eL2rVrC5VKZTKlUEHHEOLJHJ09evQQzs7OwsbGRjRu3Fjs2LHDZJ/iTCMUGhoqAOS75TfFUUXD/DK/QjC/FRXzK+/8Pk0hRDF6ghMRERERyRz7IBMRERER5cICmYiIiIgoFxbIRERERES5sEAmIiIiIsqFBTIRERERUS4skImIiIiIcmGBTERERESUCwtkIiIiIqJcWCATEREREeXCApmIiIiIKBcWyEREREREubBAJiIiIiLKhQUyEREREVEu/w9jOHjelIkoqQAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -1748,7 +1748,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq4AAAInCAYAAABZQNsWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAktdJREFUeJzs3XdYU+ffBvA7YQ8RkSlVQa0Dt1gsLtSiWEedLXVUq3VUa63SobjQOqjWha2jbvtrrXY56kAtjlpFUdHWOqgLcbFENiQkOe8fvqZNGUJIcpJwf64rV82Zd/oIfvOc5zxHIgiCACIiIiIiIycVOwARERERUXmwcCUiIiIik8DClYiIiIhMAgtXIiIiIjIJLFyJiIiIyCSwcCUiIiIik8DClYiIiIhMAgtXIiIiIjIJLFyJiIiIyCSwcK2gR48eYe7cuXj06JHYUYiIiIiqFBauFfTo0SPMmzePhSsRERGRgbFwJSIiIiKTwMKViIiIiEwCC1ciIiIiMgkmXbj+9ttv6Nu3L2rVqgWJRILdu3c/d5/jx4+jTZs2sLGxQYMGDbB161a95yQiIiKiyjPpwjUvLw8tW7bE6tWry7X9nTt30Lt3b3Tt2hWXLl3ClClTMGbMGBw6dEjPSYmIiIiosizFDlAZr776Kl599dVyb79u3Tr4+vpi2bJlAIAmTZrg999/x4oVKxASEqKvmERERESkAyZduFZUbGwsgoODNZaFhIRgypQppe4jk8kgk8nU73Nzc/UVr1Tnx4+HPCPD4OcVi7WLC9p+9ZXYMfRm/PjzyMiQix3DYFxcrPHVV23FjqE3r817DWlZaWLHMBi36m7YG7FX7Bh6Ne+1echKyxI7hsFUd6uOiL0RYsfQm/M7x0OeV4X+DXVwQdtQ8/03tEoVrsnJyfDw8NBY5uHhgezsbBQUFMDOzq7YPpGRkZg3b56hIpZInpEBeXq6qBlIdzIy5EhPrzqFq7lLy0pD8pNksWOQDmWlZeFJ8hOxY5COyPMyIM/jv6HmokoVrtoIDw9HWFiY+v2lS5cQFBQkThipFNYuLuKc2wDkGRmASiV2DIORSp/2RpqrjAx5VWpOSCVSuDu7ix1Db1IzU6ESqlCDApBIJXB2dxY7ht5kpmZCUAlixzAciRTW9mb8b2h+BlAFfkarVOHq6emJlJQUjWUpKSlwcnIqsbcVAGxsbGBjY6N+7+joqNeMZbF2cUH7H34Q7fz6dvr116tUz7KLizV++KG92DH05vXXT1epnmV3Z3fELo8VO4beBIYFVrmeZWd3ZyyPXS52DL0JCwyrUj3L1vYuaD/ajP8N3fx6lehZFm1WAUEQcPToURw8eBA5OTkGOWdgYCBiYmI0lh05cgSBgYEGOT8RERERac8ghevMmTPRtWtX9XtBENCjRw90794dvXv3RvPmzXHr1q0KHzc3NxeXLl3CpUuXADyd7urSpUtISkoC8PQy/4gRI9Tbv/vuu7h9+zY++eQTXL9+HWvWrMH333+PqVOnVu4DEhEREZHeGaRw/emnnxAQEKB+/+OPPyImJgYLFizAvn37oFQqMXfu3Aof9/z582jdujVat24NAAgLC0Pr1q0xZ84cAMCjR4/URSwA+Pr6Yv/+/Thy5AhatmyJZcuWYePGjZwKi4iIiMgEGGSM64MHD9CgQQP1+59//hl+fn4IDw8HAEyYMAFr166t8HG7dOkCQSh9YHlJT8Xq0qULLl68WOFzEREREZG4DNLjamlpqZ4LVRAExMTEoGfPnur1Hh4eSK9CN+UQERERUcUZpHBt1qwZvvnmGzx58gRbtmzB48eP0bt3b/X6u3fvwtXV1RBRiIiIiMhEGWSowJw5c9C3b191cdqhQweNm7X279+Pl156yRBRiIiIiMhEGaRw7d69O+Lj43HkyBE4OzsjNDRUve7Jkyfo3Lkz+vXrZ4goRERERGSiDPYAAj8/P/j5+RVbXqNGDaxYscJQMYiIiIjIRBmkcM3JyUFmZiZq166tXvbw4UOsW7cOMpkMgwcP5lABIiIiIiqTQQrXcePG4c6dOzhz5gwAIDs7Gy+//DLu378PqVSKqKgoREdHo0uXLoaIQ0REREQmyCCzCvz+++/o06eP+v0333yDhw8f4vTp03jy5AlatGiBBQsWGCIKEREREZkogxSu6enp8Pb2Vr/fu3cvOnbsiJdffhnVqlXDiBEj8McffxgiChERERGZKIMUrs7OzkhOTgYAFBQU4OTJk+jRo4d6vaWlJfLz8w0RhYiIiIhMlEHGuLZv3x5r1qxB48aNER0djcLCQo3pr/7++2+NHlkiIiIiov8ySOG6ePFi9OjRA4MGDQIAfPjhh2jatCkAQKlU4ocfftB4BCwRERER0X8ZpHBt0KABEhIScPXqVVSvXh0+Pj7qdfn5+fjyyy/RsmVLQ0QhIiIiIhNlsAcQWFlZlVicVqtWjU/NIiIiIqLnMsjNWcDTuVs/++wzhISEoHXr1oiLiwMAZGRkYPny5bh586ahohARERGRCTJIj+v9+/cRFBSEe/fu4cUXX8T169eRm5sLAHBxccFXX32Fu3fvIioqyhBxiIiIiMgEGaRw/fjjj5GTk4NLly7B3d0d7u7uGuv79++Pffv2GSIKEREREZkogwwVOHz4MCZPngw/Pz9IJJJi6+vVq4d79+4ZIgoRERERmSiDFK4FBQVwc3MrdX1OTo4hYhARERGRCTNI4ern54fffvut1PW7d+9G69atDRGFiIiIiEyUQQrXKVOmYMeOHVi8eDGysrIAACqVCjdv3sRbb72F2NhYTJ061RBRiIiIiMhEGeTmrOHDh+Pu3buYNWsWZs6cCQDo2bMnBEGAVCrFokWL0L9/f0NEISIiIiITZbAHEMycORNvvfUWfvrpJ9y8eRMqlQr169fHwIEDUa9ePUPFICIiIiITZbDCFQDq1KnDIQFEREREpBWDjHGNj4/HmjVrSl2/Zs0aXLp0yRBRiIiIiMhEGaRwnTlzJn799ddS1x89ehSzZs0yRBQiIiIiMlEGKVwvXLiATp06lbq+U6dOOH/+vCGiEBEREZGJMkjhmpOTA0vL0ofTSqVS9TRZFbV69Wr4+PjA1tYW7dq1Q1xcXJnbr1y5Eo0aNYKdnR1q166NqVOnorCwUKtzExEREZHhGKRwffHFF3H48OFS10dHR2s1s8DOnTsRFhaGiIgIxMfHo2XLlggJCUFqamqJ22/fvh3Tp09HREQErl27hk2bNmHnzp2YMWNGhc9NRERERIZlkML1nXfewf79+xEWFobMzEz18szMTEydOhXR0dF45513Knzc5cuXY+zYsRg1ahT8/Pywbt062NvbY/PmzSVuf/r0aXTo0AFDhw6Fj48PevTogSFDhjy3l5aIiIiIxGeQwnXy5MkYOXIkVq5cCVdXV9SpUwd16tSBq6sroqKiMHz48ApPkyWXy3HhwgUEBwerl0mlUgQHByM2NrbEfdq3b48LFy6oC9Xbt2/jwIED6NWrl/YfjoiIiIgMwiDzuEokEmzZsgUjRozATz/9hNu3bwMA+vXrh0GDBqFLly4VPmZ6ejqUSiU8PDw0lnt4eOD69esl7jN06FCkp6ejY8eOEAQBCoUC7777bplDBWQyGWQymfp9bm5uhbMSia1t27ZITk6Gp6cnb4QkIiKTZdAHEHTt2hVdu3Y15Ck1HD9+HIsWLcKaNWvQrl073Lx5Ex988AHmz5+P2bNnl7hPZGQk5s2bZ+CkRLqVnJyMBw8eiB2DiIioUgwyVODOnTv45ZdfSl3/yy+/IDExsULHdHV1hYWFBVJSUjSWp6SkwNPTs8R9Zs+ejbfeegtjxoxB8+bNMWDAACxatAiRkZFQqVQl7hMeHo6srCz168SJExXKSURERES6YZDC9aOPPsKqVatKXb969WpMnz69Qse0traGv78/YmJi1MtUKhViYmIQGBhY4j75+fmQSjU/soWFBQBAEIQS97GxsYGTk5P65ejoWKGcRERERKQbBilcY2Nj0b1791LXv/LKKzh58mSFjxsWFoYNGzZg27ZtuHbtGiZMmIC8vDyMGjUKADBixAiEh4ert+/bty/Wrl2LHTt24M6dOzhy5Ahmz56Nvn37qgtYIiIiIjJOBhnj+uTJE1SrVq3U9Y6Ojnj8+HGFjxsaGoq0tDTMmTMHycnJaNWqFaKjo9U3bCUlJWn0sM6aNQsSiQSzZs3CgwcP4Obmhr59+2LhwoUV/1BEREREZFAGKVzr1KmDU6dOYcKECSWuP3nyJF544QWtjj1p0iRMmjSpxHXHjx/XeG9paYmIiAhERERodS4iIiIiEo9BhgoMGTIE3333HVatWqVxE5RSqURUVBR27tyJoUOHGiIKEREREZkog/S4hoeH4/fff8eUKVOwcOFCNGrUCACQkJCAtLQ0dOnSBTNnzjREFCIiIiIyUQbpcbWxscHhw4exadMmBAQEID09Henp6QgICMDmzZvx66+/wsbGxhBRiIiIiMhEGewBBFKpFKNGjVLf8U9EREREVBEG6XElIiIiIqosg/S4duvW7bnbSCQSjYcJEBERERH9m0EKV5VKBYlEorFMqVTi7t27uHfvHho0aABvb29DRCGqkp49Brm0xyETERGZAoMUrv+dT/Xf9u3bh3HjxmH58uWGiEJUJZ0/f17sCERERJVmsJuzStOnTx8MHz4cU6ZMwYkTJ8SOQ2QQzs6ZUCiAAQN2ix1Fz5zFDkBERGbEKG7Oql+/Ps6dOyd2DCIiIiIyYqL3uCoUCnz//fdwdXUVOwqR2Tp+/CMUFmbC1tYZXbosFTsOERGRVgxSuI4ePbrE5ZmZmThz5gySk5M5xpVIjwoLM1FY+FjsGERERJVikML16NGjxWYVkEgkqFGjBjp27IgxY8agR48ehohCRERERCbKIIVrYmKiIU5DRERERGbMKG7OIiIiIiJ6Hr0Vrvn5+UhKSoJcLi+2bvPmzXjllVfg5+eHgQMHckYBIiIiInouvRWun376KVq0aFGscF2wYAHGjh2LEydOIC0tDbt370aXLl3wxx9/6CsKEREREZkBvRWux44dQ58+feDo6Khelp2djQULFsDb2xs3btxAWloazpw5A2tra3z22Wf6ikJEREREZkBvhWtiYiJatGihsezAgQOQy+WYNm0afH19AQABAQEYNWoUTp48qa8oRERERGQG9Fa45uTkoGbNmhrLfvvtN0gkEoSEhGgs9/PzQ1pamr6iEBEREZEZ0FvhWrduXVy/fl1j2fHjx+Hh4YEGDRpoLJfL5XByctJXFCIiIiIyA3orXHv06IHNmzfj7NmzAICvv/4a169fx4ABA4pte+HCBfj4+OgrChERERGZAb09gGD27NnYvXs32rdvDwsLCygUCri5uWHOnDka2+Xn52PXrl0YN26cvqIQVXm2ts4a/yUiIjJFeitcXV1dcenSJWzcuBG3b99G3bp1MXr0aLi7u2ts99dff2HYsGF466239BWFqMrr0mWp2BGIiIgqTa+PfK1RowY+/vjjMrcJCAhAQECAPmMQERERkRngI1+JiIiIyCSwcCUiIiIik8DClYiIiIhMgskXrqtXr4aPjw9sbW3Rrl07xMXFlbl9ZmYm3nvvPXh5ecHGxgYNGzbEgQMHDJSWiIiIiLSll8J17969ePjwoT4OrWHnzp0ICwtDREQE4uPj0bJlS4SEhCA1NbXE7eVyObp3747ExET8+OOPSEhIwIYNG+Dt7a33rERERERUOXopXAcMGIDjx4+r39erVw979+7V+XmWL1+OsWPHYtSoUfDz88O6detgb2+PzZs3l7j95s2bkZGRgd27d6NDhw7w8fFBUFAQWrZsqfNsRERERKRbeilcq1WrhszMTPX7xMRE5Obm6vQccrkcFy5cQHBwsHqZVCpFcHAwYmNjS9xn7969CAwMxHvvvQcPDw80a9YMixYtglKpLPU8MpkM2dnZ6peuPwcRERERlY9e5nENCAjAwoULkZKSgurVqwMADhw4gOTk5FL3kUgkmDp1arnPkZ6eDqVSCQ8PD43lHh4euH79eon73L59G0ePHsWwYcNw4MAB3Lx5ExMnTkRRUREiIiJK3CcyMhLz5s0rdy4iIiIi0g+9FK5r1qzBiBEjMH/+fABPi9Lt27dj+/btpe5T0cJVGyqVCu7u7li/fj0sLCzg7++PBw8e4PPPPy+1cA0PD0dYWJj6/aVLlxAUFKTXnERERERUnF4K1wYNGuD06dMoLCxEamoqfHx8sHLlSvTr109n53B1dYWFhQVSUlI0lqekpMDT07PEfby8vGBlZQULCwv1siZNmiA5ORlyuRzW1tbF9rGxsYGNjY36vaOjo44+ARERERFVhF4f+Wpra4s6deogIiIC3bp1Q926dXV2bGtra/j7+yMmJgb9+/cH8LRHNSYmBpMmTSpxnw4dOmD79u1QqVSQSp8O7/3777/h5eVVYtFKRERERMbDIPO4RkREoFmzZgCA3NxcXLt2DdeuXav0jU5hYWHYsGEDtm3bhmvXrmHChAnIy8vDqFGjAAAjRoxAeHi4evsJEyYgIyMDH3zwAf7++2/s378fixYtwnvvvVepHERERESkf3rtcf23c+fO4ZNPPsHvv/8OlUoF4OksAJ06dcKSJUvQtm3bCh8zNDQUaWlpmDNnDpKTk9GqVStER0erb9hKSkpS96wCQO3atXHo0CFMnToVLVq0gLe3Nz744ANMmzZNNx+SiIiIiPTGIIXr2bNn0aVLF1hbW2PMmDFo0qQJAODatWv47rvv0LlzZxw/fhwBAQEVPvakSZNKHRrw77lknwkMDMSZM2cqfB4iIiIiEpdBCteZM2fC29sbv//+e7Ebp+bOnYsOHTpg5syZOHLkiCHiEBEREZEJMsgY17Nnz2L8+PEl3u3v4eGBcePGsReUiIiIiMpkkMJVKpVCoVCUul6pVGqMRSUiIiIi+i+DVIvt27fH6tWrcffu3WLrkpKSsGbNGnTo0MEQUYiIiIjIRBlkjOuiRYvQuXNnNG7cGAMGDEDDhg0BAAkJCdizZw8sLS0RGRlpiChEREREZKIMUri2bt0aZ8+excyZM7F3717k5+cDAOzt7dGzZ08sWLAAfn5+hohCRERERCbKYPO4+vn5YdeuXVCpVEhLSwMAuLm5cWwrEREREZWLwQrXZ6RSqfoBAURERERE5cXuTiIiIiIyCSxciYiIiMgksHAlIiIiIpPAwpWIiIiITAILVyIiIiIyCQadVeDq1au4ffs2njx5AkEQiq0fMWKEIeMQERERkQkxSOF669YtDB8+HHFxcSUWrAAgkUhYuBIRERFRqQxSuI4fPx6XL1/GypUr0alTJ9SoUcMQpyUiIiIiM2KQwvXUqVOYMWMG3n//fUOcjoiIiIjMkEFuznJ1dUX16tUNcSoiIiIiMlMGKVzfffddfPPNN1AqlYY4HRERERGZIYMMFWjYsCGUSiVatmyJ0aNHo3bt2rCwsCi23cCBAw0Rh4iIiIhMkEEK19DQUPWfP/rooxK3kUgk7JElIiIiolIZpHA9duyYIU5DRERERGbMIIVrUFCQIU5DRERERGbMoE/OAp4+Pevu3bsAgLp168LPz8/QEYiIiIjIBBmscN2zZw/CwsKQmJiosdzX1xfLly/Ha6+9ZqgoRERERGSCDDId1oEDBzBo0CAAwKJFi7Br1y7s2rULixYtgiAIGDhwIKKjow0RhYiIiIhMlEF6XOfPn48WLVrg5MmTcHBwUC9/7bXXMGnSJHTs2BHz5s1Dz549DRGHiIiIiEyQQXpc//zzT4wcOVKjaH3GwcEBb7/9Nv7880+tjr169Wr4+PjA1tYW7dq1Q1xcXLn227FjByQSCfr376/VeYmIiIjIsAxSuNra2iIjI6PU9RkZGbC1ta3wcXfu3ImwsDBEREQgPj4eLVu2REhICFJTU8vcLzExER999BE6depU4XMSERERkTgMUrh269YNUVFRiI2NLbbu7NmzWLVqFYKDgyt83OXLl2Ps2LEYNWoU/Pz8sG7dOtjb22Pz5s2l7qNUKjFs2DDMmzcP9erVq/A5iYiIiEgcBhnjumTJEgQGBqJjx44ICAhAo0aNAAAJCQmIi4uDu7s7Fi9eXKFjyuVyXLhwAeHh4eplUqkUwcHBJRbIz3z66adwd3fHO++8g5MnTz73PDKZDDKZTP0+Nze3QjmJiIiISDcM0uPq6+uLP//8E5MnT8aTJ0+wc+dO7Ny5E0+ePMEHH3yAP/74Az4+PhU6Znp6OpRKJTw8PDSWe3h4IDk5ucR9fv/9d2zatAkbNmwo93kiIyNRvXp19YsPUyAiIiISh8HmcXV3d8eKFSuwYsUKQ51SQ05ODt566y1s2LABrq6u5d4vPDwcYWFh6veXLl1i8UpEREQkAoM/OUtXXF1dYWFhgZSUFI3lKSkp8PT0LLb9rVu3kJiYiL59+6qXqVQqAIClpSUSEhJQv379YvvZ2NjAxsZG/d7R0VFXH4GIiIiIKkAvhevo0aMhkUiwfv16WFhYYPTo0c/dRyKRYNOmTeU+h7W1Nfz9/RETE6Oe0kqlUiEmJgaTJk0qtn3jxo1x+fJljWWzZs1CTk4OoqKiULt27XKfm4iIiIgMTy+F69GjRyGVSqFSqWBhYYGjR49CIpGUuc/z1pckLCwMI0eORNu2bREQEICVK1ciLy8Po0aNAgCMGDEC3t7eiIyMhK2tLZo1a6axv7OzMwAUW05ERESkrbZt2yI5ORmenp44f/682HHMil4K18TExDLf60poaCjS0tIwZ84cJCcno1WrVoiOjlbfsJWUlASp1CD3nxEREREBAJKTk/HgwQOxY5glg4xxTUpKgpubG+zs7EpcX1BQgLS0NNSpU6fCx540aVKJQwMA4Pjx42Xuu3Xr1gqfj4iIiIjEYbDpsHbt2lXq+r1798LX19cQUYiIiIjIRBmkcBUEocz1RUVFvKRPRERERGXS21CB7OxsZGZmqt8/fvwYSUlJxbbLzMzEjh074OXlpa8oRERERo038xCVj94K1xUrVuDTTz8F8HTGgClTpmDKlCklbisIAhYsWKCvKEREREaNN/MQlY/eCtcePXrA0dERgiDgk08+wZAhQ9CmTRuNbSQSCRwcHODv74+2bdvqKwoRERERmQG9Fa6BgYEIDAwEAOTl5WHQoEGcL5WIiIiItKb36bDy8/OxatUq2Nvbs3AlIiIiIq3p/VZ+e3t7WFpawsHBQd+nIiIiIiIzZpA5qAYNGoQff/zxudNiERERERGVxiBPznrzzTcxceJEdO3aFWPHjoWPj0+JT9H6781bRERERETPGKRw7dKli/rPJ0+eLLZeEARIJBIolUpDxCEiIiLSG09PT43/ku4YpHDdsmWLIU5DREREJDo+REJ/DFK4jhw50hCnISIiIiomU+EMZCmwe8UAsaPolbNBqjpxGfwj5ubm4t69ewCA2rVrw9HR0dARiIiIiMgEGWRWAQA4d+4cunbtiho1aqBZs2Zo1qwZatSogW7durFLnYiIiMzGR8uPY8y8aHy0/LjYUcyOQXpcz549iy5dusDa2hpjxoxBkyZNAADXrl3Dd999h86dO+P48eMICAgwRBwiIiKjwpt5zEtmTiEeZxWKHcMsGaRwnTlzJry9vfH7778X+6GcO3cuOnTogJkzZ+LIkSOGiENERGRUeOWRqHwM1uM6Z86cEr9Jenh4YNy4cZg/f74hohARET1XoW0hHmU+wpAmQ8SOole2sBU7AlGFGGSMq1QqhUKhKHW9UqmEVGqw4bZEREREZIIMUi22b98eq1evxt27d4utS0pKwpo1a9ChQwdDRCEiIjI6hxIPYc/NPTiUeEjsKERGzSBDBRYtWoTOnTujcePGGDBgABo2bAgASEhIwJ49e2BpaYnIyEhDRCEiIjI6hYpCFCgKxI5BZPQMUri2bt0aZ8+excyZM7F3717k5+cDAOzt7dGzZ08sWLAAfn5+hohCRERERCbKYA8g8PPzw65du6BSqZCWlgYAcHNz49hWIiIiIioXgz85SyKRQCKRqP9MRERERFQeBuvuvHr1KgYPHgwnJyd4eXnBy8sLTk5OGDx4MP766y9DxSAiMnlt27bFCy+8gLZt24odhYjIoAzS43ry5Em8+uqrUKlU6Nevn8bNWXv37sXBgwcRHR2NTp06GSIOEZFJS05OxoMHD8SOQURkcAYpXKdOnQp3d3ecOHECtWvX1lh37949dO7cGWFhYTh37pwh4hARERGRCTLIUIErV65g4sSJxYpWAKhduzYmTJiAK1euaHXs1atXw8fHB7a2tmjXrh3i4uJK3XbDhg3o1KkTatSogRo1aiA4OLjM7YmIiIgqyrmaLWpWt4VzNT6ZTNcM0uNat25dyGSyUtfL5fISi9rn2blzJ8LCwrBu3Tq0a9cOK1euREhICBISEuDu7l5s++PHj2PIkCFo3749bG1tsXjxYvTo0QNXrlyBt7d3hc9PRERE9F9Lw7qIHcFsGaTHdc6cOVi1ahUuXbpUbN3FixfxxRdfYO7cuRU+7vLlyzF27FiMGjUKfn5+WLduHezt7bF58+YSt//2228xceJEtGrVCo0bN8bGjRuhUqkQExNT4XObO978QURERMbGID2uZ86cgYeHB/z9/dG+fXs0aNAAAHDjxg3ExsaiWbNmiI2NRWxsrHofiUSCqKioUo8pl8tx4cIFhIeHq5dJpVIEBwdrHKcs+fn5KCoqgouLS6nbyGQyjd7i3Nzcch3b1PHmDyIiIjI2Bilcv/zyS/WfT506hVOnTmmsv3z5Mi5fvqyx7HmFa3p6OpRKJTw8PDSWe3h44Pr16+XKNW3aNNSqVQvBwcGlbhMZGYl58+aV63hERETasLW01fgvEZXMIIWrSqUyxGkq5LPPPsOOHTtw/Phx2NqW/osiPDwcYWFh6veXLl1CUFCQISISEVEVEeITInYEIpNg8Cdn6YqrqyssLCyQkpKisTwlJQWenp5l7rt06VJ89tln+PXXX9GiRYsyt7WxsYGNjY36vaOjo/ahiYiIiEhrBi1c79y5g4MHD+Lu3bsAns428Oqrr8LX17fCx7K2toa/vz9iYmLQv39/AFDfaDVp0qRS91uyZAkWLlyIQ4cO8cYjIjJJz76cP+9LOhGRuTFY4frhhx8iKiqq2LABqVSKKVOmYOnSpRU+ZlhYGEaOHIm2bdsiICAAK1euRF5eHkaNGgUAGDFiBLy9vREZGQkAWLx4MebMmYPt27fDx8cHycnJAJ72orInlYhMxfnz58WOQEQkCoMUrsuWLcOKFSswePBgfPjhh2jSpAkA4Nq1a1ixYgVWrFgBb29vTJ06tULHDQ0NRVpaGubMmYPk5GS0atUK0dHR6hu2kpKSIJX+M+PX2rVrIZfLMXjwYI3jREREaDUdFxERANgW2iLzUSaaDGkidhT94n1DRCQygxSuGzZswGuvvYbvv/9eY3m7du2wY8cOFBYW4quvvqpw4QoAkyZNKnVowPHjxzXeJyYmVvj4RERERGQcDPIAgsTERISElH7HZEhICItKIqJySjyUiJt7biLxUKLYUYiIDMogPa7u7u74448/Sl3/xx9/wM3NzRBRqJx48weR8VIUKqAoUIgdg4jI4AxSuL7++uuIioqCj48P3n//fTg4OAAA8vLy8OWXX2Ljxo2YMmWKIaJQOfHmDyIiIjI2Bilc58+fj0uXLmHGjBmYM2cOatWqBQB4+PAhFAoFunbtik8//dQQUUxWprMzoFBg94ABYkfRK2exAxAREZHRMkjham9vj5iYGOzZs0djHteePXuiV69e6Nu3LyQSiSGiEBEREZGJ0nvhmp+fj+HDh2PQoEEYNmwY+vXrp+9Tkg58dPw4MgsL4Wxri6Vduogdh4iIiEj/swrY29vj119/RX5+vr5PRTqUWViIx4WFyCwsFDsKEREREQADTYfVsWNHxMbGGuJURERERGSmDFK4fvnllzh58iRmzZqF+/fvG+KURERERGRmDFK4tmzZEvfv30dkZCTq1q0LGxsbODk5abyqV69uiChEREREZKIMMqvAoEGDOGsAEREREVWKQQrXrVu3GuI0RERVgqWtpcZ/iYiqCr3+1issLMSePXtw584duLq6onfv3vDy8tLnKYmIzJ5PiI/YEYiIRKG3wjU1NRXt27fHnTt3IAgCgKdTY+3evRvBwcH6Oi0RERERmSm93Zw1f/58JCYmYurUqdi3bx9WrlwJOzs7jB8/Xl+nJCIiIiIzprce18OHD2PEiBFYunSpepmHhweGDh2KhIQENGrUSF+nJh1wtrXV+C8RERGR2PRWuCYlJWHatGkayzp27AhBEJCSksLC1cjxMa9ERERkbPQ2VEAmk8H2P711z94rFAp9nZaIiIiIzJReZxVITExEfHy8+n1WVhYA4MaNG3B2di62fZs2bfQZh4iIiIhMmF4L19mzZ2P27NnFlk+cOFHjvSAIkEgkUCqV+oxDRERERCZMb4Xrli1b9HVoIiIiIqqC9Fa4jhw5Ul+HJiIiIqIqSG83ZxERERER6RILVyIiIiIyCSxciYiIiMgksHAlIiIiIpPAwpWIiIiITILJF66rV6+Gj48PbG1t0a5dO8TFxZW5/Q8//IDGjRvD1tYWzZs3x4EDBwyUlIiIiIgqw6QL1507dyIsLAwRERGIj49Hy5YtERISgtTU1BK3P336NIYMGYJ33nkHFy9eRP/+/dG/f3/89ddfBk5ORERERBVl0oXr8uXLMXbsWIwaNQp+fn5Yt24d7O3tsXnz5hK3j4qKQs+ePfHxxx+jSZMmmD9/Ptq0aYMvv/zSwMmJiIiIqKJMtnCVy+W4cOECgoOD1cukUimCg4MRGxtb4j6xsbEa2wNASEhIqdsTERERkfHQ25Oz9C09PR1KpRIeHh4ayz08PHD9+vUS90lOTi5x++Tk5FLPI5PJIJPJ1O9zc3Mrkdq0ZBQW4klhoUHPWS0nB1YWFrCNjzfoeQ3pyZMEKJUZYscwiJycarCwsEJ8vK3YUfQmLyUPhRmG/TkRi8xGhjx5HuLN+OcTAFLyUpBRWDV+Rm1kNpDnyc26TRPuPkFGrtLg563hZAsXJ/P93ScWky1cDSUyMhLz5s3TWBYUFAQvLy+DZWj/ww8GO9czMpkMISEhOHHihMHPDQDw9xfnvKQXbE7z8QiP4L+dDWpWHgHb/beLncLsBAUF4dCh3bCxsRE7ilkx2cLV1dUVFhYWSElJ0ViekpICT0/PEvfx9PSs0PYAEB4ejrCwMI1lNjY2Zv8XUSaT4cSJEzhx4gQcHR3FjkOVlJubi6CgILanmWB7mh+2qXl51p4ymczs6wVDM9nC1draGv7+/oiJiUH//v0BACqVCjExMZg0aVKJ+wQGBiImJgZTpkxRLzty5AgCAwNLPU9VKFLL0qpVKzg5OYkdgyopOzsbANvTXLA9zQ/b1Lw8a0/SPZMtXAEgLCwMI0eORNu2bREQEICVK1ciLy8Po0aNAgCMGDEC3t7eiIyMBAB88MEHCAoKwrJly9C7d2/s2LED58+fx/r168X8GERERERUDiZduIaGhiItLQ1z5sxBcnIyWrVqhejoaPUNWElJSZBK/5k4oX379ti+fTtmzZqFGTNm4MUXX8Tu3bvRrFkzsT4CEREREZWTSReuADBp0qRShwYcP3682LLXX38dr7/+up5TmT4bGxtERERU6WES5oTtaV7YnuaHbWpe2J76IxEEQRA7BBERERHR85jsAwiIiIiIqGph4UpEREREJoGFKxERERGZBBaupHeJiYmQSCTYunWr2FGIiIjIhLFwNTK3bt3C+PHjUa9ePdja2sLJyQkdOnRAVFQUCgoK9Hbeq1evYu7cuUhMTNTbOcpj4cKFeO211+Dh4QGJRIK5c+eKmseQJBJJuV4lzZZRUfn5+Zg7d26FjlWV20Ybxtye169fxyeffIJWrVqhWrVq8PLyQu/evXH+/PlKZzFXxtyeDx8+xPDhw9GoUSNUq1YNzs7OCAgIwLZt28D7r0tnzG36X99++y0kEgmfqgYzmA7LnOzfvx+vv/46bGxsMGLECDRr1gxyuRy///47Pv74Y1y5ckVvD0u4evUq5s2bhy5dusDHx0cv5yiPWbNmwdPTE61bt8ahQ4dEyyGG//3vfxrvv/76axw5cqTY8iZNmlT6XPn5+Zg3bx4AoEuXLuXapyq3jTaMuT03btyITZs2YdCgQZg4cSKysrLw1Vdf4eWXX0Z0dDSCg4MrncncGHN7pqen4/79+xg8eDDq1KmDoqIiHDlyBG+//TYSEhKwaNGiSmcyR8bcpv+Wm5uLTz75BA4ODpXOYQ5YuBqJO3fu4M0330TdunVx9OhReHl5qde99957uHnzJvbv3y9iwn8IgoDCwkLY2dnp/Nh37tyBj48P0tPT4ebmpvPjG7Phw4drvD9z5gyOHDlSbLlYqnLbaMOY23PIkCGYO3euRu/N6NGj0aRJE8ydO5eFawmMuT1btGhRrCdv0qRJ6Nu3L1atWoX58+fDwsJCnHBGzJjb9N8WLFiAatWqoWvXrti9e7fYcUTHoQJGYsmSJcjNzcWmTZs0itZnGjRogA8++ED9XqFQYP78+ahfvz5sbGzg4+ODGTNmQCaTaezn4+ODPn364Pfff0dAQABsbW1Rr149fP311+pttm7dqn4oQ9euXYtdHnl2jEOHDqFt27aws7PDV199BQC4ffs2Xn/9dbi4uMDe3h4vv/xypQpsMXt7TYFKpcLKlSvRtGlT2NrawsPDA+PHj8eTJ080tjt//jxCQkLg6uoKOzs7+Pr6YvTo0QCejjl+VnjOmzdP3d7Pu/TPttE9sdrT39+/2CXHmjVrolOnTrh27ZpuP2QVIubPZ0l8fHyQn58PuVxe6c9WVYndpjdu3MCKFSuwfPlyWFqyrxFgj6vR+OWXX1CvXj20b9++XNuPGTMG27Ztw+DBg/Hhhx/i7NmziIyMxLVr17Br1y6NbW/evInBgwfjnXfewciRI7F582a8/fbb8Pf3R9OmTdG5c2dMnjwZq1atwowZM9SXRf59eSQhIQFDhgzB+PHjMXbsWDRq1AgpKSlo37498vPzMXnyZNSsWRPbtm3Da6+9hh9//BEDBgzQ3f8gAgCMHz8eW7duxahRozB58mTcuXMHX375JS5evIhTp07BysoKqamp6NGjB9zc3DB9+nQ4OzsjMTERP//8MwDAzc0Na9euxYQJEzBgwAAMHDgQwNNeGzIsY2vP5ORkuLq66vQzViVit2dBQQHy8vKQm5uLEydOYMuWLQgMDNTL1bGqQuw2nTJlCrp27YpevXrh+++/1+tnNRkCiS4rK0sAIPTr169c21+6dEkAIIwZM0Zj+UcffSQAEI4ePapeVrduXQGA8Ntvv6mXpaamCjY2NsKHH36oXvbDDz8IAIRjx44VO9+zY0RHR2ssnzJligBAOHnypHpZTk6O4OvrK/j4+AhKpVIQBEG4c+eOAEDYsmVLuT6fIAhCWlqaAECIiIgo9z7m5r333hP+/SN68uRJAYDw7bffamwXHR2tsXzXrl0CAOHcuXOlHrsy/3/ZNtox1vZ85rfffhMkEokwe/ZsrY9RlRhje0ZGRgoA1K9XXnlFSEpKqtAxqjJja9N9+/YJlpaWwpUrVwRBEISRI0cKDg4OFfhE5olDBYxAdnY2AKBatWrl2v7AgQMAgLCwMI3lH374IQAUu1Tv5+eHTp06qd+7ubmhUaNGuH37drkz+vr6IiQkpFiOgIAAdOzYUb3M0dER48aNQ2JiIq5evVru49Pz/fDDD6hevTq6d++O9PR09evZZd9jx44BAJydnQEA+/btQ1FRkYiJqSzG1J6pqakYOnQofH198cknn+jlHObOGNpzyJAhOHLkCLZv346hQ4cCgF5nozF3YrapXC7H1KlT8e6778LPz08nxzQXLFyNgJOTEwAgJyenXNvfvXsXUqkUDRo00Fju6ekJZ2dn3L17V2N5nTp1ih2jRo0axcbolMXX17fEHI0aNSq2/NkQg//moMq5ceMGsrKy4O7uDjc3N41Xbm4uUlNTAQBBQUEYNGgQ5s2bB1dXV/Tr1w9btmwpNv6ZxGUs7ZmXl4c+ffogJycHe/bs4XQ7WjKG9qxbty6Cg4MxZMgQfPvtt6hXrx6Cg4NZvGpJzDZdsWIF0tPT1TMR0D84xtUIODk5oVatWvjrr78qtJ9EIinXdqXdTSpUYH4/jpESn0qlgru7O7799tsS1z8b/C+RSPDjjz/izJkz+OWXX3Do0CGMHj0ay5Ytw5kzZ1iYGAljaE+5XI6BAwfizz//xKFDh9CsWTOtj1XVGUN7/tfgwYOxYcMG/Pbbb8WumNHzidWmWVlZWLBgASZOnIjs7Gz1Vdnc3FwIgoDExETY29vD3d29ch/QRLFwNRJ9+vTB+vXrERsbi8DAwDK3rVu3LlQqFW7cuKFxA1VKSgoyMzNRt27dCp+/vEXwf3MkJCQUW379+nX1etKd+vXr49dff0WHDh3K9UXi5Zdfxssvv4yFCxdi+/btGDZsGHbs2IExY8Zo1d6kW2K3p0qlwogRIxATE4Pvv/8eQUFB2nwM+n9it2dJnvW0ZmVl6eR4VY1YbfrkyRPk5uZiyZIlWLJkSbH1vr6+6NevX5WdGotDBYzEs8mFx4wZg5SUlGLrb926haioKABAr169AAArV67U2Gb58uUAgN69e1f4/M8mNs7MzCz3Pr169UJcXBxiY2PVy/Ly8rB+/Xr4+PhwXI6OvfHGG1AqlZg/f36xdQqFQt12T548Kdab3qpVKwBQX7qyt7cHULH2Jt0Suz3ff/997Ny5E2vWrFHf5UzaE7M909LSSly+adMmSCQStGnTplzHIU1itam7uzt27dpV7NW1a1fY2tpi165dCA8P1/6DmTj2uBqJ+vXrY/v27QgNDUWTJk00npx1+vRp/PDDD3j77bcBAC1btsTIkSOxfv16ZGZmIigoCHFxcdi2bRv69++Prl27Vvj8rVq1goWFBRYvXoysrCzY2NigW7duZV6KmD59Or777ju8+uqrmDx5MlxcXLBt2zbcuXMHP/30E6TSin8v+t///oe7d+8iPz8fAPDbb79hwYIFAIC33nqrSvfiBgUFYfz48YiMjMSlS5fQo0cPWFlZ4caNG/jhhx8QFRWFwYMHY9u2bVizZg0GDBiA+vXrIycnBxs2bICTk5P6S4+dnR38/Pywc+dONGzYEC4uLmjWrFmZl4rZNrolZnuuXLkSa9asQWBgIOzt7fHNN99orB8wYACf0lNBYrbnwoULcerUKfTs2RN16tRBRkYGfvrpJ5w7dw7vv/9+sfshqHzEalN7e3v079+/2PLdu3cjLi6uxHVViphTGlBxf//9tzB27FjBx8dHsLa2FqpVqyZ06NBB+OKLL4TCwkL1dkVFRcK8efMEX19fwcrKSqhdu7YQHh6usY0gPJ3Kqnfv3sXOExQUJAQFBWks27Bhg1CvXj3BwsJCY2qs0o4hCIJw69YtYfDgwYKzs7Nga2srBAQECPv27dPYpiLTYQUFBWlM5/LvV0lTdZmz/07N8sz69esFf39/wc7OTqhWrZrQvHlz4ZNPPhEePnwoCIIgxMfHC0OGDBHq1Kkj2NjYCO7u7kKfPn2E8+fPaxzn9OnTgr+/v2BtbV2uaVrYNpVjTO05cuTIUtsSgHDnzh1dfnSzZEztefjwYaFPnz5CrVq1BCsrK/W/G1u2bBFUKpVOP7c5M6Y2LQmnw3pKIggVuEOHiIiIiEgkHONKRERERCaBhSsRERERmQQWrkRERERkEli4EhEREZFJYOFKRERERCaBhauJWbJkCRo3bgyVSiV2lEp788038cYbb4gdQ1RsT/PDNjUvbE/zwvY0A2LPx0Xll5WVJbi4uAibN29WL8P/z7u4dOnSYttv2bJFACCcO3dO51mCg4MFAMJ7771X4vqNGzcKjRs3FmxsbIQGDRoIq1atKrZNfHy8IJVKhUuXLuk8nylge5oftql5YXuaF7aneWCPqwnZvHkzFAoFhgwZUmzd559/rn6ikb79/PPPGo95/a+vvvoKY8aMQdOmTfHFF18gMDAQkydPxuLFizW2a926Ndq2bYtly5bpO7JRYnuaH7apeWF7mhe2p5kQu3Km8mvRooUwfPhwjWUAhFatWgkAhGXLlmms08e3xYKCAsHHx0f49NNPS/y2mJ+fL9SsWbPYk7aGDRsmODg4CBkZGRrLly5dKjg4OAg5OTk6y2gq2J7mh21qXtie5oXtaR7Y42oi7ty5gz///BPBwcHF1nXo0AHdunXDkiVLUFBQoNccS5YsgUqlwkcffVTi+mPHjuHx48eYOHGixvL33nsPeXl52L9/v8by7t27Iy8vD0eOHNFbZmPE9jQ/bFPzwvY0L2xP88HC1UScPn0aANCmTZsS18+dOxcpKSlYu3ZtmceRyWRIT08v1+u/kpKS8Nlnn2Hx4sWws7Mr8fgXL14EALRt21Zjub+/P6RSqXr9M35+frCzs8OpU6fKzG1u2J7mh21qXtie5oXtaT4sxQ5A5XP9+nUAgK+vb4nrO3XqhK5du+Lzzz/HhAkTSv2h+O677zBq1KhynVMQBI33H374IVq3bo0333yz1H0ePXoECwsLuLu7ayy3trZGzZo18fDhQ43llpaWqF27Nq5evVquTOaC7Wl+2Kbmhe1pXtie5oOFq4l4/PgxLC0t4ejoWOo2c+fORVBQENatW4epU6eWuE1ISIhWlxSOHTuGn376CWfPni1zu4KCAlhbW5e4ztbWtsTLMDVq1Cjx26k5Y3uaH7apeWF7mhe2p/lg4WpGOnfujK5du2LJkiV49913S9zGy8sLXl5eFTquQqHA5MmT8dZbb+Gll14qc1s7OzvI5fIS1xUWFpb4LVYQBEgkkgplqgrYnuaHbWpe2J7mhe1pGli4moiaNWtCoVAgJycH1apVK3W7iIgIdOnSBV999RWcnZ2LrS8oKEBWVla5zunp6QkA+Prrr5GQkICvvvoKiYmJGtvk5OQgMTER7u7usLe3h5eXF5RKJVJTUzUudcjlcjx+/Bi1atUqdp4nT57gxRdfLFcmc8H2ND9sU/PC9jQvbE/zwZuzTETjxo0BPL0zsixBQUHo0qULFi9eXOIlhZ07d6q/MT7v9UxSUhKKiorQoUMH+Pr6ql/A0x9IX19fHD58GADQqlUrAMD58+c1znv+/HmoVCr1+mcUCgXu3buHJk2aVOj/h6lje5oftql5YXuaF7an+WCPq4kIDAwE8PQvb4sWLcrcdu7cuejSpQvWr19fbJ0243PefPPNYj8sADBgwAD06tULY8eORbt27QAA3bp1g4uLC9auXYtevXqpt127di3s7e3Ru3dvjWNcvXoVhYWFaN++fYUymTq2p/lhm5oXtqd5YXuaEbEmkKWKa9asmTBkyBCNZSjlkXFBQUHqR9np43F1ZZ179erVAgBh8ODBwoYNG4QRI0YIAISFCxcW23bp0qWCvb29kJ2drZeMxoztaX7YpuaF7Wle2J7mgYWrCVm+fLng6Ogo5Ofnq5eV9hf/2LFjov3QCYIgrF+/XmjUqJFgbW0t1K9fX1ixYoWgUqmKbdeuXbtiTzKpKtie5odtal7YnuaF7WkeWLiakMzMTMHFxUXYuHGj2FF04uLFi4JEIhEuXrwodhRRsD3ND9vUvLA9zQvb0zxIBOE/M+SSUVu8eDG2bNmCq1evQio17Xvr3nzzTahUKnz//fdiRxEN29P8sE3NC9vTvLA9TR8LVyIiIiIyCab9dYOIiIiIqgwWrkRERERkEli4EhEREZFJYOFKRERERCaBhSsRERERmQQWrkRERERkEli4EhEREZFJYOFKRERERCaBhSsRERERmQQWrkRERERkEli4EhEREZFJYOFKRERERCaBhSsRERERmQQWrhX06NEjzJ07F48ePRI7ChEREVGVwsK1gh49eoR58+axcCUiIiIyMBauRERERGQSWLgSERERkUlg4UpEREREJoGFKxERERGZBBauRERERGQSWLgSERERkUlg4UpEREREJoGFK1EVkZEhdgIiIqLKYeFKVEWkpIidgIiIqHJYuBJVEdnZYicgIiKqHBauRFVEVhagUIidgoiISHuVLlwfPXqEP/74A3l5ebrIU2GrV6+Gj48PbG1t0a5dO8TFxZW5/cqVK9GoUSPY2dmhdu3amDp1KgoLCw2UlkhcaWliJyAiItKe1oXrnj170LhxY7zwwgto06YNzp49CwBIT09H69atsXv3bl1lLNXOnTsRFhaGiIgIxMfHo2XLlggJCUFqamqJ22/fvh3Tp09HREQErl27hk2bNmHnzp2YMWOG3rMSGYOHD8VOQEREpD2tCtdffvkFAwcOhKurKyIiIiAIgnqdq6srvL29sWXLFp2FLM3y5csxduxYjBo1Cn5+fli3bh3s7e2xefPmErc/ffo0OnTogKFDh8LHxwc9evTAkCFDnttLS2Qu7t4VOwEREZH2tCpcP/30U3Tu3Bm///473nvvvWLrAwMDcfHixUqHK4tcLseFCxcQHBysXiaVShEcHIzY2NgS92nfvj0uXLigLlRv376NAwcOoFevXqWeRyaTITs7W/3Kzc3V7QchMqDERLETEBERac9Sm53++usvLF++vNT1Hh4epV6u15X09HQolUp4eHgUO/f169dL3Gfo0KFIT09Hx44dIQgCFAoF3n333TKHCkRGRmLevHk6zU4klps3xU5ARESkPa16XO3t7cu8Gev27duoWbOm1qH05fjx41i0aBHWrFmD+Ph4/Pzzz9i/fz/mz59f6j7h4eHIyspSv06cOGHAxES6df068K+RPURERCZFq8K1a9eu2LZtGxQlzK2TnJyMDRs2oEePHpUOVxZXV1dYWFgg5T+zqqekpMDT07PEfWbPno233noLY8aMQfPmzTFgwAAsWrQIkZGRUKlUJe5jY2MDJycn9cvR0VHnn4XIULKzOVyAiIhMl1aF68KFC3H//n289NJL+OqrryCRSHDo0CHMmjULzZs3hyAIiIiI0HVWDdbW1vD390dMTIx6mUqlQkxMDAIDA0vcJz8/H1Kp5ke2sLAAAI0bzIjMGS8aEBGRqdKqcG3UqBF+//131KxZE7Nnz4YgCPj888+xaNEiNG/eHCdPnoSPj4+OoxYXFhaGDRs2YNu2bbh27RomTJiAvLw8jBo1CgAwYsQIhIeHq7fv27cv1q5dix07duDOnTs4cuQIZs+ejb59+6oLWCJzt2sXoFSKnYKIiKjitLo5CwCaNm2KX3/9FU+ePMHNmzehUqlQr149uLm56TJfmUJDQ5GWloY5c+YgOTkZrVq1QnR0tPqGraSkJI0e1lmzZkEikWDWrFl48OAB3Nzc0LdvXyxcuNBgmYnE9uAB8NNPwBtviJ2EiIioYiQCr5FXSHx8PPz9/XHhwgW0adNG7DhE5Xb4MPBsAg0HB2DHDsDLS9xMREREFaHVUIFVq1YhJCSk1PWvvvoq1q5dq3UoItKvvDwgIgIo5Z5EIiIio6RV4bpp0yb4+fmVut7Pzw/r16/XOhQR6V98PLBtm9gpiIiIyk+rwvXWrVto0qRJqesbN26MW7duaR2KiAzjq6+Av/8WOwUREVH5aFW4WltbIzk5udT1jx49KjbtFBEZH4UCmDULkMnETkJERPR8WlWXL7/8MrZu3YqcnJxi67KysrBlyxa8/PLLlQ5HRLrRtm1bDBv2Aq5da1ts3e3bwOefixCKiIiogrSaDisiIgJBQUFo1aoVpkyZgqZNmwIA/vrrL6xcuRKPHj3C9u3bdRqUiLSXnJyM9PQHsLIqef3u3UC9esDQoQaNRUREVCFaFa7t2rXDL7/8gvHjx+ODDz6ARCIB8PTpU76+vti7d2+pT68iIuO0fDlgawsMHCh2EiIiopJp/QCC7t274+bNm7h48aL6Rqz69eujTZs26kKWiEzLokVAVhbw9tsAf4yJiMjYaF24AoBUKoW/vz/8/f11lYeIRLZ69dOna02fDlhW6jcEERGRblXqn6WrV6/i9u3bePLkCUp6ANeIESMqc3giEsnu3cDDh8DixUC1amKnISIiekqrwvXWrVsYPnw44uLiSixYAUAikbBwJTJhcXHAO+8AX3wBeHiInYaIiEjLwnX8+PG4fPkyVq5ciU6dOqFGjRq6zkVERuD27afjXaOigIYNxU5DRERVnVaF66lTpzBjxgy8//77us5DREYmLQ0YMwZYuBDo1EnsNEREVJVp9QACV1dXVK9eXddZiMhI5ecDYWHA1q1AKaODiIiI9E6rwvXdd9/FN998A6VSqes8RGSkBAH48ktg2jQgL0/sNEREVBVpNVSgYcOGUCqVaNmyJUaPHo3atWvDwsKi2HYDOZM5kdk5ehS4eRP47DOOeyUiIsPSqnANDQ1V//mjjz4qcRuJRMIeWSIzlZT09KatmTOB3r3FTkNERFWFVoXrsWPHdJ2DiEyMXA5ERAB37wITJvBJW0REpH9aFa5BQUG6zkFEJmrzZkChACZPFjsJERGZO61uznpGJpMhNjYWe/bsQXp6uq4yEZGJ+frrp0/bIiIi0ietC9dVq1bBy8sLHTt2xMCBA/Hnn38CANLT0+Hq6orNmzfrLCQRGb8lS4C//xY7BRERmTOtCtctW7ZgypQp6NmzJzZt2qTx2FdXV1d069YNO3bs0FnIsqxevRo+Pj6wtbVFu3btEBcXV+b2mZmZeO+99+Dl5QUbGxs0bNgQBw4cMEhWInMmlwPh4U/nfCUiItIHrQrXZcuWoV+/fti+fTv69u1bbL2/vz+uXLlS6XDPs3PnToSFhSEiIgLx8fFo2bIlQkJCkJqaWuL2crkc3bt3R2JiIn788UckJCRgw4YN8Pb21ntWoqrg7l1g2TKxUxARkbnSqnC9efMmXn311VLXu7i44PHjx1qHKq/ly5dj7NixGDVqFPz8/LBu3TrY29uXOkxh8+bNyMjIwO7du9GhQwf4+PggKCgILVu21HtWIrEkJSUh7/+fGKBS5UEuT9Lr+fbseTrXKxERka5pNauAs7NzmTdjXb16FZ6enlqHKg+5XI4LFy4gPDxcvUwqlSI4OBixsbEl7rN3714EBgbivffew549e+Dm5oahQ4di2rRpJT5AgciUxcXFYf78+di/f796OI9SmYnLl31QvXofeHnNhoPDS3o594IFQIsWgKurbo6XnV2EVatuIDb2MSQSoHNnN7z/fgPY2ZX+K2zKlIv4448sjWV9+3ohLKwRACA6+hEWL04ocd+ff26PGjWsdROeiIh0RqvCtVevXli/fj0mTpxYbN2VK1ewYcMGjB49utLhypKeng6lUgkPDw+N5R4eHrh+/XqJ+9y+fRtHjx7FsGHDcODAAdy8eRMTJ05EUVERIiIiStxHJpNBJpOp3+fm5uruQxDpyc8//4zQ0FAIgqAxBv0pAVlZB5CVdRD16u1EjRq6f8JddjawahXw6afl32fKlIvo2dMTPXt6FVu3cOE1PH4sw+eft4RSqcLixQlYuvRvzJ7tV+Yxe/f2wujRPur3Njb/fEHt2tUdAQEuGtt/9tl1yOUqFq1EREZKq6ECCxYsgFKpRLNmzTBr1ixIJBJs27YNw4cPR9u2beHu7o45c+boOmulqVQquLu7Y/369fD390doaChmzpyJdevWlbpPZGQkqlevrn5xDlsydnFxcQgNDYVSqSzj6XVKAErcvh2KvLxzeskRHQ2UMty8Qu7ezUNcXAY+/rgR/Pyc0Ly5MyZPboBjx1KRni4rc19bWylcXGzULweHf76r29hYaKyTSiW4eDETvXoVL5yJiMg4aFW41qpVCxcuXEDPnj2xc+dOCIKA//3vf/jll18wZMgQnDlzBq66ukZYCldXV1hYWCAlJUVjeUpKSqnDFLy8vNCwYUONYQFNmjRBcnIy5HJ5ifuEh4cjKytL/Tpx4oTuPgSRHixYsKCUntb/EgAIePRogV5yqFTAmTOVP86VK9lwdLREo0ZO6mX+/jUgkQDXrmWXue+vv6aiX7/fMWpUHDZsuI3CwtIfQ334cApsbKQICnKrfGgiItKLCg8VkMlkOHToEHx8fLBx40Zs3LgRaWlpUKlUcHNzg1RaqWcalJu1tTX8/f0RExOD/v37A3jaoxoTE4NJkyaVuE+HDh2wfft2qFQqdc6///4bXl5esLYu+dKgjY0NbGxs1O8dHR11+0GIdCgpKQn79u0rR9H6jBJZWb9ALk+CtXUdnee5caPyx8jIkKNGDSuNZRYWUjg5WSEjo+QvnADwyise8PCwhaurNW7dysP69bdw714+Pv20WYnbHzjwCK+84qExnICIiIxLhQtXa2trvP7664iKikKLFi0AAG5u4vRQhIWFYeTIkWjbti0CAgKwcuVK5OXlYdSoUQCAESNGwNvbG5GRkQCACRMm4Msvv8QHH3yA999/Hzdu3MCiRYswmc+qJAOTy5VQKMpbXJbfgQOHK1C0PiMgKysGNWu+rfM8Dx8KKO3Czjff3MW3395Vv5fLVbh6NRtRUf9Uu1u3Bmh97r59a6n/XK+eI2rWtMaHH/6BBw8K4O1tp7HtlStZuHs3H+HhTbQ+HxER6V+FC1eJRIIXX3zRKB7xGhoairS0NMyZMwfJyclo1aoVoqOj1TdsJSUlafQA165dG4cOHcLUqVPRokULeHt744MPPsC0adPE+ghUBcnlSly8+AR5eaVfttbWX3+lQCKRQhBUFdhLioKCTOTlKXSe5949BeRya1hbF+/FfO21Wuja9Z8vvQsWXEPnzm7o3PmfYUaurtZwcbHGkydFGvsqlSpkZxfBxaX8N1E1afJ0qEFJhev+/Y/QoIEjGjWqVu7jERGR4Wk1q8CMGTMQFhaG119/HY0aNdJ1pgqZNGlSqUMDjh8/XmxZYGAgzuhi4B2RlhQKAXl5SlhZSWBlpduhNc7O1SpYtAKAChYWTtD1KB9BAKRSFRQKASWNxHFysoKT0z9DAGxspKhRwwre3vYa2zVt6oTcXAUSEnLUhWV8fCYE4Z9itDxu3nw6I0jNmpphCgoUOH48DWPH+pb7WEREJA6tCtczZ86gZs2aaNasGbp06QIfHx/Y2Wn2YEgkEkRFRekkJJE5srKSwtZWt+MpO3ToColEUsHhAhI4Oj7dT7cEODtXtIgurm5dBwQEuGDZsgRMndoQCoWAVatuoGtXd7i6Ph1/npYmw4cfXkJ4eBM0aeKEBw8KEBOTgnbtaqJ6dUvcupWHNWtuokWL6qhfX3Oc+tGjaVAqBXTv7lHS6YmIyIhoVbh++eWX6j/HxMSUuA0LVyLD8/J6AZ06heDUqSNlTIX1bxZwdOwFKyvd35gFAHXq6Gb4wcyZTRAVdQMffvgHpFKgUyc3TJ7cQL1eqVTh3r0CyGRPP7OVlQQXLjzBTz/dR0GBEu7utujUyQ1vvVW32LEPHnyETp1c4ehoVWwdEREZF4lQ8Ts5qrT4+Hj4+/vjwoULaNOmjdhxyATl5ytw5sxj2Ntb6LzHFQCuXInHyJE9oVIpn9PzKgFgAR+f32Bnp/snaNnYCFiw4Am6dnWBvb1W35GJiIg0GGbuKiIymKZN22Dx4k2QSi3KeJSxBQALeHt/p5eiFQD69y+EnR2/FxMRke5UqnA9c+YMIiMjMXXqVNz4/wkb8/PzER8fz0ejEonolVf6Ytu2aHTo0L2EsasSODr2go/Pb3By6q+X87dpo0D37mU/1YqIiKiitLp+J5fL8eabb2LPnj0QBAESiQR9+/bFiy++CKlUih49emDq1KmYOXOmrvMSUTk1bdoGUVHb8ejRfYSGdkJOThakUmfUq3dBb2NaAcDPT4n33y8AByEREZGuadXjOnv2bOzbtw9r165FQkKCxjg6W1tbvP7669izZ4/OQhKR9ry8XoCd3dMppqRSB70WrR07FmHatHz862FzREREOqNV4frdd99hwoQJGDduHFxcXIqtb9KkCW7fvl3pcERkGqytgXfeKcSECYWw4s35RESkJ1oNFUhNTUXz5s1LXW9hYYH8/HytQxGR6XjhBRUmTy7ACy9Ufs5WIiKismhVuNauXRvXr18vdf2pU6fQoEGDUtcTkXkIDCzC2LGFsLUVOwkREVUFWg0VGDp0KL766ivExsaqlz27c3nDhg34/vvvMWLECN0kJCKj1KePHJMmsWglIiLD0arHdebMmThz5gw6d+6MJk2aQCKRYOrUqcjIyMD9+/fRq1cvTJ06VddZichI9Okjx5AhMuj8KbFERERl0KrH1draGtHR0diyZQvq1auHxo0bQyaToUWLFti6dSt++eWXMiY+JyJT1rFjEYtWIiISRbl6XMPCwvDWW2+hdevWAICkpCS4ublh+PDhGD58uF4DEpHxaNZMgbFjC1m0EhGRKMrV47py5Upcu3ZN/d7X1xe7du3SWygiMj4tWijw4YcFnO6KSE8UMoXYEUiXFJxdSR/K1ePq4eGhMS+rwEfiEFUpr7xShJEjC2Gp1ah4IioPVZEK4MM7zIdKBsBe7BRmp1z/DPXu3RuffvopDh8+DGdnZwDAsmXLsGPHjlL3kUgkfHoWkYmzsgLefrsQXbsWiR2FyOwJKnYKmRUVf2/qQ7kK16ioKLi7u+PYsWO4cuUKJBIJ7t27h4yMjFL3kXAQHJFJc3VVYerUAvj68sECRIagUvJnzayo5GInMEvlKlwdHBywaNEi9XupVIqVK1di6NChegtGROJp1EiJqVML4OTEHiAiQ1EVsXA1K4oCsROYpXLdnDVw4ECcPHlS/f7YsWPo3r273kIRkXjatVNgxox8Fq1EBqaUK8WOQLqk5M1Z+lCuwnXPnj1ISkpSv+/WrRuOHDmit1BEJI7OnYvw/vucOYBIDIpCzipgVopyxE5glspVuHp7e+PixYvq94IgcAwrkZlp106BceMKIdXqsSREVFlFBbyZx6wocsVOYJbK9U/Um2++ieXLl6NOnTpo0aIFAGD69Olo0aJFqa+WLVvqNfgzq1evho+PD2xtbdGuXTvExcWVa78dO3ZAIpGgf//++g1IZAIaNlRi4sQCFq1EIlIUsMfVrLBw1Yty3ZwVGRmJBg0a4NixY0hNTYVEIoGDgwNq1qyp73xl2rlzJ8LCwrBu3Tq0a9cOK1euREhICBISEuDu7l7qfomJifjoo4/QqVMnA6YlMk7OzgKmTOHwACKxcaiAmeEDCPSiXIWrhYUFxo0bh3HjxgF4OqvArFmzRJ9VYPny5Rg7dixGjRoFAFi3bh3279+PzZs3Y/r06SXuo1QqMWzYMMybNw8nT55EZmamARMTGZ+JEwvg7MwbsYjExsLVzLDHVS+0ujB4584d0S+xy+VyXLhwAcHBweplUqkUwcHBiI2NLXW/Tz/9FO7u7njnnXfKdR6ZTIbs7Gz1KzeXfxHJfPToIUezZryTmcgYFOVzjKtZUeQAAqc40zWtHuBYt25dXeeosPT0dCiVSnh4eGgs9/DwwPXr10vc5/fff8emTZtw6dKlcp8nMjIS8+bNq0xUIqNUvbqA0FCZ2DGI6P/J8zhhvVkRlIAsA7B1FTuJWSlXj6tUKoWlpSXkcrn6vYWFRZkvSyN7qHlOTg7eeustbNiwAa6u5f9LFB4ejqysLPXrxIkTekxJZDiDBslgZyd2CiJ6RpbFL5JmJz/p+dtQhZSrupwzZw4kEom6GH32Xkyurq6wsLBASkqKxvKUlBR4enoW2/7WrVtITExE37591ctUqqdd+JaWlkhISED9+vWL7WdjYwMbGxv1e0dHR119BCLRuLgICAriZUkiY1LwhE9aMjs5NwGXNmKnMCvlKlznzp1b5nsxWFtbw9/fHzExMerxtiqVCjExMZg0aVKx7Rs3bozLly9rLJs1axZycnIQFRWF2rVrGyI2kVHo0UPOWQSIjEx+Ou9CNztZfwF4Q+wUZsW4rudXUFhYGEaOHIm2bdsiICAAK1euRF5ennqWgREjRsDb2xuRkZGwtbVFs2bNNPZ3dnYGgGLLicyZRAJ06sTeViJjk5+azwf8mJsnf4idwOxUuHCVyWT45ptvcPjwYdy6dQs5OTmoVq0aGjRogJ49e2Lo0KGwtrbWR9ZiQkNDkZaWhjlz5iA5ORmtWrVCdHS0+oatpKQkSDmjOpGGF19UokYNTn9FZGyKCoogy5bBtrqt2FFIVwoeAAUpgJ3H87elcqlQ4Xr58mX069cPd+/ehSAIqF69OhwdHZGamor4+Hj88MMPWLhwIfbu3YsmTZroK7OGSZMmlTg0AACOHz9e5r5bt27VfSAiI9eyJeeKJDJW2fezWbiam/RTQO2BYqcwG+XujszNzcVrr72GlJQULFy4EPfu3cOTJ080/rtgwQI8fPgQffv2RV5enj5zE5GWGjfmvK1ExiorKUvsCKRryb+KncCslLtw3bJlC5KSkrB//35Mnz4d3t7eGuu9vb0RHh6OX375BXfu3GFvJpGR8vVl4UpkrDLvZIodgXTt8Tkg/4HYKcxGuQvX/fv3o0ePHujSpUuZ23Xr1g3du3fHL7/8UtlsRKQjNWt6wNm5FuzsPGDLq5BERuvxjcdiRyCdE4A7X4sdwmyUu3C9fPnyc4vWZ7p161Zs6ikiEs/27UexaNF1DBp0SuwoRFSGtCtpEATePGl27u8GchPFTmEWyn1zVkZGRokT+5fEw8MDGRkZWociIv3w9uYwASJj1LZtW9y5cgeOUkf0vtUbLg1cxI5EuiQogSuLgIB1gISzHVVGuf/vyWQyWJVzxvJ/Px6WiIyHl5dK7AikI3Ilf8eak+TkZGQUZiC7KBt3jt4ROw7pw5N44O4OsVOYvApNh5WYmIj4+PjnbnfnDn/oiIyRhwcLV3ORK8+Fix175cxRwp4EtH6nNaQW7JkzOwmrAOcWgDMffKStChWus2fPxuzZs5+7HZ/8QWScXF05ds5cqAQVFCoFLKUm/QBEKkFuSi5uHLiBRn0biR2FdE1QABc/AgK/BmzdxU5jksr9G2/Lli36zEFEeiaRAE5OLFzNiUwhg6U1C1dzdH7Nefh284W1g2GeREm61bZtWyTfvwFPJwXOr/rPA5lk6cCFKUC7jYClvSj5TFm5f+ONHDlSnzmISM9sbQXwCcjmRa6UwwEOYscgPchLy8OZFWfQeVZnsaOQFpKTk/EgJRtQlHJvUM7fwMWPAf+VgLR89w/RU/xnjKiKsGTHnNnhDVrm7fru67gZfVPsGKQvj88Cf84BBN57UBEsXImqCBV/N5odmVImdgTSs9/m/4bUv1LFjkH6knwEuPwpi9cKYOFKVEUoOYWr2SlUFIodgfRMIVMgeko0MhMzxY5C+vJwH3B5LqDiL+nyYOFKVEWoVJzpw9zkynPFjkAGUJhZiP0T9yPnYY7YUUhfHh4A/pgO8CrKc7FwJaoipFLOKGBuMgszxY5ABpKXmod97+5Dbgq/rJitlGPAuYmAPFPsJEaNhStRFVHOB9+RCUnPTxc7AhlQzsMc7Bu3D7nJLF7NVuYfQOwIIPtvsZMYrUrdZ3z16lXcvn0bT548gSAU780ZMWJEZQ5PRDpka8seV3PzKOeR2BHIwLIfZGPvmL3ovbY3qteuLnYc0oeCh8CZtwG/aYD3a08n4SY1rQrXW7duYfjw4YiLiyuxYAUAiUTCwpXIiFSrxsLV3NzPvi92BBJBbnIu9r6zF71W90LNF2uKHYf0QSUH/poPpJ8FmoYDVtXETmQ0tCpcx48fj8uXL2PlypXo1KkTatSooetcRKRjHh4sXM1NYlai2BFIJAUZBdg3bh96RvWERwsPseOQviQffjp8oMWngIu/2GmMglaF66lTpzBjxgy8//77us5DRETldDfzLuRKOawt+FjQqkiWI8P+CfsRvCQYdTrUETsO6UthChD3LuAzFHjxPaCK/7xrdXOWq6srqlfn2BoiIjGpBBVuPL4hdgwSkUKmwKGph3DjAP8emDcBSPwWiB0OZFftttaqcH333XfxzTffQGkEM5qvXr0aPj4+sLW1Rbt27RAXF1fqths2bFAPbahRowaCg4PL3J6IyNhdTr0sdgQSmaAScGzOMVz54YrYUUjfcm8/nXXg/h6xk4hGq6ECDRs2hFKpRMuWLTF69GjUrl0bFhYWxbYbOHBgpQOWZefOnQgLC8O6devQrl07rFy5EiEhIUhISIC7u3ux7Y8fP44hQ4agffv2sLW1xeLFi9GjRw9cuXIF3t7ees1KRKQPl5Iv4c1mb4odg4zAqcWnICgFNHuzmdhRSJ+Eoqc3buXeARp9UOVmHdCqcA0NDVX/+aOPPipxG4lEovce2eXLl2Ps2LEYNWoUAGDdunXYv38/Nm/ejOnTpxfb/ttvv9V4v3HjRvz000+IiYnhDAhEZJLOPzwPlaCCVMJpuQk4vfQ0LGws0GRAE7GjkL4lfgMoCwC/6VWqeNWqcD127Jiuc1SYXC7HhQsXEB4erl4mlUoRHByM2NjYch0jPz8fRUVFcHFxKXUbmUwGmeyfR7Dl5nLiZyIyHpmFmfgj+Q+09motdhQyEr8v+h02Tjao90o9saOQvt37CbB2AV4cL3YSg9GqcA0KCtJ1jgpLT0+HUqmEh4fmNCAeHh64fv16uY4xbdo01KpVC8HBwaVuExkZiXnz5lUqKxGRPh28eZCFK6kJgoBjs4/B3tUeni09xY5D+nZrA1DdD3DvJHYSg6j0taWrV6/i4MGDOHjwIK5evaqLTAbx2WefYceOHdi1axdsbW1L3S48PBxZWVnq14kTJwyYkojo+Q7ePIiswiyxY5ARUcqVOPzhYeQ8zBE7ChnClUWAIl/sFAahdeG6Z88e1K9fH82bN0efPn3Qp08fNG/eHA0aNMDevXt1mbFErq6usLCwQEpKisbylJQUeHqW/Q1z6dKl+Oyzz3D48GG0aNGizG1tbGzg5OSkfjk6OlY6OxGRLhUUFWDbH9vEjkFGpjCzEIemHkJRfpHYUaqUpKQk5OXlAQDyClVISpXr/6SyNCDpB/2fxwhoVbgeOHAAgwYNAgAsWrQIu3btwq5du7Bo0SIIgoCBAwciOjpap0H/y9raGv7+/oiJiVEvU6lUiImJQWBgYKn7LVmyBPPnz0d0dDTatm2r14xERIay/fJ2/P34b7FjkJHJuJWBX6f/CpVCJXYUsxcXF4e+ffvCx8cHmZmZAIDMPCV83r6M1+bexLmEPP0GSPoeEHTTzkWF2bh6aAFOruuNk1/1wfWYJVDIC8rc5+Ffv+Diz1Nwcl1vHP+iK4pkxe8Jit36Jo5/0VXjdff89gpl02qM6/z589GiRQucPHkSDg4O6uWvvfYaJk2ahI4dO2LevHno2bOnNocvt7CwMIwcORJt27ZFQEAAVq5ciby8PPUsAyNGjIC3tzciIyMBAIsXL8acOXOwfft2+Pj4IDk5GQDg6OjInlQiMmkKlQLhMeHY2m8rqtnwueb0j3un7+H4vOPoOq8rJNKqc/e5If38888IDQ2FIAgQBM3HawsCcOBcFg6ez8LO8HoY2KGGfkIUpgDZCUD18s0ocfHnKfBs0hNeTYrXatcOLYQs/zFa9v8cKpUSCb8uxt/HlsIvZHapx1MqZHCpEwCXOgG4E7uh1O182o2CV9M+6veW1nblyvuMVj2uf/75J0aOHKlRtD7j4OCAt99+G3/++ac2h66Q0NBQLF26FHPmzEGrVq1w6dIlREdHq2/YSkpKwqNHj9Tbr127FnK5HIMHD4aXl5f6tXTpUr1nJSLSt7uZd/HJkU8gU8ievzFVKTcP3sRvC36DoBKevzFVSFxcHEJDQ6FUKkudBlSpApRKIDTytn57XnMqf9UlL+MuMpLi0Kjbx3Dy9INzreZoEDQZqX8fgyw3vdT9arcajLpth8LJ06/M41tY28PGwUX9srCqWOGqVY+rra0tMjIySl2fkZFR5g1PujRp0iRMmjSpxHXHjx/XeJ+YmKj/QEREIjr38BymHpqKpT2Wwt7KXuw4VA7/HhMpU8mQIc+Ai3Xp0zRqK2FvAgSVgKA5Qex51aEFCxaU2NP6XwKe9r4u2PEIeyIa6CeMvPI3aWYnX4GljSOcPBqpl9Wo7Q9IJMhOuQY3x8rNXpB0YTvunvsfbB3d4d7oFbzQ6nVIpcUfYlUarQrXbt26ISoqCj179iw2nvTs2bNYtWoVevTooc2hiYiokuIexGHcL+MQ1TMKNe1rih2HShEXF4f58+dj//796qKnQFmAGZdnoHn15ujt1Rs+Dj46Peff+572yOm6eM3NzMW3c7/FpZhLkEgkaPtqWwydMxS2DqV3Yh3ffhxn9p7B3St3UZhbiNV/rIa9k+aXragxUUi6loTs9Gw4VHeAXwc/vD79ddTw0NPl9gpKSkrCvn37nlu0PqNUAb+czUJSqhx13K31kKjyPeryvAxY2Wn+/5VKLWBl6wR5fumdluXxQsuBcHRrCCvbash6dAV3YjdAnvcYDTq9V+5jaFW4LlmyBIGBgejYsSMCAgLQqNHTqjwhIQFxcXFwd3fH4sWLtTk0ERE9R9u2bfHw0UNkWWahycySx7NdT7+OUXtGYW3vtfB24iOtjU2ZYyIh4K+sv/BX1l8YW28s2tRoo9Nz/73vb9i72iNgUkCF9vvszc/QcXBHdBzcsdi69VPWIzM1Ex99/RGUCiU2fbIJW2dsxbtR75Z6PHmhHM2DmqN5UHP8uOTHErdpHNgYfd7rg+pu1fEk5Ql2LtqJ1RNXY9ZPsyqUXamQQ1ApKrRPeRw+dKDcReszggDEXMrC2911/6VSUClLHQN699w3uHvhnyeIqhRyZCdfxY0TUeplAcO26jzTv9Vu/Yb6z46u9SG1sMTfx5ajXvuxkFqUr5DXqnD19fXFn3/+icjISBw8eBA7d+4EANStWxcffPABpk+fDnd3d20OTUREz5GcnIxHDx/BytmqzO0e5jzE2F/GYuNrG1GrWi0DpaPn+feYyNKKHhWe3h2+4fYGTGs8Tec9r5e2XkLt9rXh1car0sd6ePMhLp+4jDl75sC3hS8AYPjc4VgxagVCZ4SW2jvaY/TTK7PXz5T+0KCQd0LUf3Z9wRW93+2NL8Z/AUWRApZW5SthlAo5nty/CKVc92NLU+7+BalUAlUFxg5LJUBmdgEUMt3nKXySBHuFHBaWxYvAWs1fg9uLXdXvrx1eALf6neFav7N6mbWDK6wdXFBU8ERjX5VKiaLCbFjb63YIi5NHEwgqJQqzk2Ffo0659tGqcAUAd3d3rFixAitWrND2EEREpGepeamYsH8CNr22Ca72rmLHIZR/TOQzBx4dwMQGE3We4+LmizopXG/G34S9k726aAUAvw5+kEgluH3pNvxD/Ct9DuDpcITYPbFo4N+g3EUrAAgqBZTyPEikVpBalP1lr6KqOTlXqGgFAJUAONlbAJJKPwNKkyBAqVT8f89y8cLVytYJVrZO6vdSSxtY2deAvbPmFRknz6ZQyHKRk5qAau5Pr6hn3o8HBAFOHuWbsaC8ctNvAhJpsaEJZdG6cCUiItPwIPsBJuyfgHW913HMq8gqOiZSBRX+zPpTLzdsPYh7gKL8IljZV66Yy07LhlNNJ41lFpYWcHB2QFZa5W8W+v6z7xHzdQzkBXLUb10fUzZN0eo4UgsrWFjp9sbxrkEdIJFIKjRcQCIBurZ0hESi2xvkBACQVL6sc3CpC5c6AUg4ugwNu0yFoFLgxolVcG/YFTaOT7/8ynLTcGnXh2jSPRxOnk+LWVleBuT5GSjIegAAyEu/DQtre9hWc4eVrROyHl1Bdso11PBuBQtre2QnX8HNk2vg0SgYVrbln8KvXJ9w9OjRkEgkWL9+PSwsLDB69Ojn7iORSLBp06ZyByEiIv258+QOxv4yFqt7rYZXtcr3spm7IlkRFEW6HxN5cP/Bio+JhIBrWdcQWLP0h+toRQVk3MmAR1OPElfvW70P+9bsU7+XF8px6+ItfBPxjXrZwsMLdZupBK+OexWd3+iMxw8eY8+qPdjw4QZM2TRF54WfNl7w9kLIK51w5NipUqfC+jcLKdCrrSPquOm25/cZQaqbmUSahMzEjRNR+GP3h4BECrf6ndCg82T1epVKiYLMe1D+a+q9h3/txd24f57gd+nnDwAAjYKnwatJT0gtrJD691Eknt0KQVkEWycvvNBqMGq3fr1C2cpVuB49ehRSqRQqlQoWFhY4evToc//CGMNfKCIi+kdSVhJG7x2N5T2Wo4mbbi/5mZMiWRGuxV5DQU7ZTwrSRsLFBEglUqgq8IQjCSTIzs9GgbXu89y8cBMuDVxgZVO8kOoyrAte6v2S+v36Kevh39Mf/j3/ufTv7OEMJzcnZD/O1thXqVAiLzMP1d2qVzpjNZdqqOZSDZ71POHVwAsftv8Qty7eQoM2eppSqoI++mAcfj1+6rk9rxI87W0Nf0N/Q3aUtuUfy9564MpS11nZOpX5sAE7J090ef+YxjLfdm/Dt93bpe5Tzb0h/N9YU+58pSlX4frf+U85HyoRkWlKy0vDmF/GYFqHaejbsC87GUqgKFKgIKcAllaWsLTR7Yi66s7VK1S0Ak97XO0s7CCV6nZMpCAIUFmooChSlFi4Ojo7wtH5n6dKWtlawcnVCR4+mj20Ddo0QH52PhIvJ8KnuQ8A4NrpaxBUAuq1qqfbzP8/nlQh131vuLbatGqKTWsW452J0yAIKLHn1UL6tGj97mNvvPRixSbcLy+VtTuU1uZ/NUWrn4KkpCQUFJT+za+goABJSUlahyIiIv2RKWT49MSnmHV0FnJkOWLHMVqWNpawsbPR6atT+04V/rIggQQNHRtCIpXo9GVpawmrapW/ZF2rQS00D2qOLeFbcPvSbdw4fwPfRHyDgL4B6hkFniQ/Qfgr4bh96bZ6v6y0LCRdTUJKYgoA4P71+0i6moTczKfPuL918RZ+3fYrkq4mIf1+Oq6evop1H6yDe1131G9dv9K5danvq68getc2dO/aoVj7SiRPhwf8ttgH/QOdSjlC5clcuz89mZnTejqs//3vfxg6dGiJ6/fu3YuhQ4eWa7wHERGJ49CtQ/gz9U9EvhKJZu7NxI5TJdTyrIUuHbrgt9O/Qal6/r+RUkjh5+gHFyvdP0nL3tNeZz3u41aOwzcR3+Dz4Z9DIpXAv6c/hkUMU69XKpRIvp0MeaFcvezYt8ewJ2qP+n1kaCQA4J3P30HHwR1hbWeNC4cuYPfK3ZDly+Ds7ozmQc3Rd1LfEnuIxdamVVNs3xKF+w8eoVOPUGRl58DZQYoLUfX0Nqb1GZVdHchdugBK+XO3NXVaFa7PG1heVFSk80saRESke49yHmHM3jGY0WkGXmv0mthxqoQJoybgZOzJct+N3qOmfp5Eae9VsRt5pu+YXuo6R2fHMh824PqCK7bc2aKxrP+U/ug/pX+p+9RuXBvTtk+rUEZj8IK3F+zt7ZCVnQMHW6nei1bBwhEFPu8DUksWrv+WnZ2NzMxM9fvHjx+XOBwgMzMTO3bsgJeX+Y+zICIyBwqVAp+e+BTJuckY22Ysx73qWXO/5li2YBk+nPUhBEEosedV+v8j+d72fht17erqJYeTj/4uW5NhCBb2KKj/EVR23kBRodhxDKLcheuKFSvw6aefAng6Y8CUKVMwZcqUErcVBAELFizQSUAiIjKM9RfWIzk3GTM6zYCllNN861OPLj2wff12rN2yFsdPHdfoeZVAAj9HP/So2UNvRatEIoFLM90PPyDDESyrI7/BNKjsfcSOYlDl/s3Uo0cPODo6QhAEfPLJJxgyZAjatNF8frJEIoGDgwP8/f3Rtm1bnYclIiL92puwFw+yH2BJ9yWoblv5qYyodM39mmPN52vwMPkhBowYgOycbNhJ7fCJ7yd6GdP6b14dvGDnaofC3KrRS2duVLbeyK//MQQbd7GjGFy5C9fAwEAEBj6d/DgvLw+DBg1Cs2YczE9EZG4uPLqAt/e8jaieUahTvXzPDyft1fKsBTtbO2TnZMNaaq33otXJxwmNhzWGUuAN1KZI4dQSBb7vAxa6ediAqanwHVT5+flYtWoVDh48qI88RERUhqSkJOTl5QEAVDIV5Bn6uRnjXtY9vL37bVx4eEEvxydxuLZwRdtpbWFpy6Egpkju2R8F9T+uskUroEXham9vD0tLSzg4OOgjDxERlSAuLg59+/aFj4+P+kZZZYESl2dcxs3VN5GXmKfzc2bLsjHxwET8fO1nnR87MzcTU76aguYTmqPFxBaYtnka8grL/gyyIhlm/282Wk9qjabvNsWELycgLStNvf5q0lVMXjcZ7cPao/G4xgieEYwth7eUccSqQyKR4MXBL6L1B61ZtJogQWqLAt8pkNV6A5BU7VmbtPr0gwYNwo8//ljh5y0TEVHF/fzzz+jQoQMOHizhOfcCkPVXFq4vvo4n8U90fm6lSolFJxdhU/ymCu/75mdv4sfffyxx3ZT1U/D3g7/x9UdfY9OUTYhLiMOMrTPKPN787+bj6KWjWD1xNXZM34GUzBRM+HKCev1fiX+hZrWaWD5uOQ4vOIz3+ryHJT8twbZft5VxVPNnW8MWbcPbwre3LyRSzhhhalTWbshvFAFFjQCxoxgFrb52vfnmm5g4cSK6du2KsWPHwsfHB3Z2xR9h9t+bt4iIqGLi4uIQGhoKpVJZemfB/z9B9PaG22g8rTEcfHR/RWzt+bVo6t4UL7/wcqWPdfPhTZy4fAJ75uxBC98WAIC5w+di1IpRmBE6Ax41PIrtk52fje9/+x4rx69Ee7/2AIDP3/kcwTOCcfHWRbSu3xpvdH5DY5867nUQfysehy4cwsjgkZXObYpcmrigxbstYO1kLXYU0oLSoSEK6k2FYMUbJZ/RqnDt0qWL+s8nT54stl4QBEgkEj45y0QlJSUhJiYGOTk5qFatGl555RXUqcMbNIjEsGDBAgiCUO4rXI8OPEKDiQ30kuXHqz/qpHCNvxkPJ3snddEKAB38OkAqkeLS7UsI8Q8pts9fiX+hSFmEjk07qpfV96qPWjVrIf5mPFrXb13iuXLyc1DdsWr+o/9C0Ato/FZjSC2q9qVlU1Xk0hGFdcYCUuN7SpiYtCpct2zhmCFzFBcXh/nz52P//v0QBAFSqRQqlQoSiQR9+vTB7Nmz8dJLL4kdk6jKSEpKwr59+8o/LEsFZP2ZBXmGHNYuuu9hu5FxQyfHSctOQ02nmhrLLC0s4ezgrDFmVWOfrDRYW1rDyV5z0nxXJ9dS97lw4wL2n9uPTVMqPszB1NXvXx/1XqvHh0mYKFmtNyD36Aew/YrRqnAdObJqXnIxZz///DNCQ0M1enZUqqfXHwVBwIEDB3Dw4EHs3LkTAwcOFDMqkdGRFclQpCjS+XH3H9xf8XsJBCDrWhZqBtZ8/rYV9Dj/cZnrV+9bjTX71qjfF8oLcfHWRUR8E6FednjhYZ3nKknC/QSMWzUOk1+bjM7NOhvknMai8bDGqBPMq2QmSWqDgrrvQlGjndhJjFalby3Mzc3FvXv3AAC1a9eGo6NjpUNVxOrVq/H5558jOTkZLVu2xBdffIGAgNIHMP/www+YPXs2EhMT8eKLL2Lx4sXo1auXARMbn/KMoVMqlZBIJAgNDcXp06fZ80r0/2RFMsRei0VOQY7Oj30x4SIkUgkEVQWKVwmQn50P6wLd97hawQqyIhlsrGxKXD+syzD0fqm3+v2U9VPQ078nevr3VC/zcPaAm5MbHmdrFsEKpQKZeZlwq+5W4rHdqrtBrpAjOz9bo9c1PTu92D43HtzAsM+H4c0ub+L9196v8Oc0VRILCZq90wxegXzkuilS2bijwHcqVPb6eVqaudB64Mu5c+fQtWtX1KhRA82aNUOzZs1Qo0YNdOvWDefPn9dlxlLt3LkTYWFhiIiIQHx8PFq2bImQkBCkpqaWuP3p06cxZMgQvPPOO7h48SL69++P/v3746+//jJIXmNV3jF0z7bh43yJ/lGkKEJOQQ6sLK3gaOuo05dzdeeKFa0AIAAWdhaQSqU6fUkkEnjbe5fZs+zs6AwfDx/1y9bKFq5OrhrLLC0s0aZBG2TnZ+Ny4mX1vqevnYZKUKFVvVYlHruZTzNYWVjh1NVT6mW3Ht3Cw8cP0abBPzcC//3gbwxZMgSDOgzCx4M+rtj/OxNm5WAF/4/8WbSaKEX11shrtIBFazlo1eN69uxZdOnSBdbW1hgzZgyaNGkCALh27Rq+++47dO7cGcePHy+z51MXli9fjrFjx2LUqFEAgHXr1mH//v3YvHkzpk+fXmz7qKgo9OzZEx9//PSX2fz583HkyBF8+eWXWLdunV6zGquKjqFTKpX45ZdfkJSUxBu2iP7FxtIGdjbFZ1epjPad2kMikVRsuIAEcGzoCKmO53pUQYVmNXTztMQGtRogqHkQwreEY8HIBVAoFYj4JgJ9A/qqZxRIfpKMYUuGYdnYZWhVrxWc7J3wRuc3sGDHAjg7OMPRzhFzv5mLNvXbqG/MSrifgGFLhqFTs04YEzJGPfZVKpEWG1NrThy8HND6g9aw96i6k9KbMpnXYMg9+1f5+VnLS6vCdebMmfD29sbvv/8OT09PjXVz585Fhw4dMHPmTBw5ckQnIUsil8tx4cIFhIeHq5dJpVIEBwcjNja2xH1iY2MRFhamsSwkJAS7d+8u9TwymQwymUz9Pjc3FwCgUChQVKT7MW2GdujQoQqPoRMEAYcPH+ZYZy0VFSmgUBShoEABhcJ8f1EVFamgUAgoKipCUZH5zvlcVFQEhUKBvMI8KIoUOj22g5MDAjoGIO5UXPl6XiWAvZ89pE5SKBW6ndXF1sIWftX9nranZfl+9wmCAKVSWeLvys9Hf45Pv/sUw5cMh0QiQUibEMx6c5Z624LCAtxOvo3c/Fz1sumDp0MQBEz4cgLkCjk6Nu2IuUPnqtfvO7sPj3MeY3fsbuyO3a0+l3dNbxyLPFbuz/qsTQvzCvUydrkk/76nQKEs/98jl+YuaDKyCVR2KuTm5FbonEqZUv1vmWWR+T6UQFFU9PT3rrIAUh3/jJZGEP5pT3mRquSNJJbIrz0GRdXbAgX5lT6nSlkEQfW0PQWJ4eoTKysDz3ogaMHR0VFYsmRJqesXL14sODo6anPocnvw4IEAQDh9+rTG8o8//lgICAgocR8rKyth+/btGstWr14tuLu7l3qeiIgIAQBffPHFF1988cUXX/95GZpWX7GkUikUitK/tSiVSkil5tGTFB4ertFLe+nSJQQFBeHs2bNo3brkeQNNydatWzFu3LgK77dhwwb2uFaCXK6EQiGIHUPvLC0lsLa2EDuG3ulrVoFn9u7Zi3dGvQNBENQ9cxr+f8Ycn3d84NzKWefnH9N6DIY2GworS6tSb8wyN0WyIp33oJelcdPGePToEapbVsfCZgvL3FYqlaLdR+3QoGfl5+u1tLKElY35zxOqVMghqAzXng0aNsHDh49Qy8USd7YWH2KjajoHgkc3nZ9XIrWEhaV5P2xCq8K1ffv2WL16NYYOHYq6detqrEtKSsKaNWvQoUMHnQQsjaurKywsLJCSkqKxPCUlpdjwhWc8PT0rtD0A2NjYwMbmn1/Uz2ZNsLS0NHz3uB6EhIRUeAydRCJBjx49zOLzi4X/78yLvttz5Fsj4dfYD/Pnzy8+Jl0CVG9RHV69vPTyxKxpHabh9aav6/y4xs7QP6PPOnskEgmsLEo/t5WdFbov7Y4X2r1gqGhmwdDtKZH8057WVv/58l73TaDeAIPmMSdadYsuWrQIWVlZaNy4MYYOHYq5c+di7ty5GDJkCBo3boysrCxERkbqOqsGa2tr+Pv7IyYmRr1MpVIhJiYGgYGBJe4TGBiosT0AHDlypNTtq4I6deqgT58+sLAoX6+YhYUF+vbtyxuziAzspZdewt69e5GYmAhnZ2cAT2cPaL6oORpMbKCXonVW51lVsmg1Vpa2lnj1i1dZtJoyu1pAw0lipzBpWvW4tm7dGmfPnsXMmTOxd+9e5Oc/HVRsb2+Pnj17YsGCBfDz89Np0JKEhYVh5MiRaNu2LQICArBy5Urk5eWpZxkYMWIEvL291UX0Bx98gKCgICxbtgy9e/fGjh07cP78eaxfv17vWY3Z7NmzcfDgwef2vEokEkgkEsyaNcuA6Yjo3+rUqQMHBwdkZmZCaiPVyxOyAGDiSxPRv3F/vRybKk4ikeCVRa/As1XpVwjJBDSeCljYip3CpGl9G6Gfnx927doFlUqFtLSnU464ubkZdGxraGgo0tLSMGfOHCQnJ6NVq1aIjo6Gh8fT6VSSkpI08rRv3x7bt2/HrFmzMGPGDLz44ovYvXs3mjXTzRQvpuqll17Czp071U/OUiqL341sYWEBiUSC77//ng8fIDJzPRv0xKhWo8SOUaV4enqi4HEBHKUlP8Sn1ahWqNu5bonryETUaAO4dxE7hcmTCBUZ3FgCQRA0Cldzfy5yfHw8/P39ceHCBbRp0+b5O5iQc+fOaYyhk0qlUKlUkEgk6Nu3L2bNmsWilcgIvPDCC3jw4AGsnK3QYnELnR67Xo162NZ/G+ysdDsnLT3fzoE7kZWUVWx5zYY1MeDrAZBamsdNz1XBs59R75pWuP/N//+MvrwFcG4ubjAzoHWP69WrVzFnzhwcOnRIY6hASEgI5s6dW+V7MU3RszF0SUlJOHr0KLKzs+Hk5IRu3bpxTCtRFWBvZY/Pgj9j0WpEJBIJOs/qzKLV1Lm2Z9GqI1oVridPnsSrr74KlUqFfv36oWHDhgCAhIQE7N27FwcPHkR0dDQ6deqk07BkGHXq1MHbb78tdgwiMiBHa0esCFmBejXqiR2F/sXvDT+4+bmJHYMqqx6nj9QVrQrXqVOnwt3dHSdOnEDt2rU11t27dw+dO3dGWFgYzp07p5OQRESkP03cmiDylUi84MS71Y1JtVrVEPCefh+dTvrh6ekJKHLg6aQAHHyfjm8lndDq2sOVK1cwceLEYkUrANSuXRsTJkzAlStXKh2OiIj0x1JqiYkvTcSWfltYtBqhzrM7w8qecz6bovPnz+N+zDScX9UEqPUqYOb3/xiSVj2udevWhUwmK3W9XC4vsaglIiLj8GLNFzG/63w0cKn805dI9xr2bQjvl7zFjkG64NFF7ARmRase1zlz5mDVqlW4dOlSsXUXL17EF198gblz51YyGhER6cPAJgOxrf82Fq1GytLGkkMEzIWN69OhAqQzWvW4njlzBh4eHvD390f79u3RoMHTX343btxAbGwsmjVrhtjYWMTGxqr3kUgkiIqK0k1qIiKqMKlEiukdp2Ngk4FiR6EyvNjnRdi72osdg3TBuQWHCeiYVoXrl19+qf7zqVOncOrUKY31ly9fxuXLlzWWsXAlIhKPnZUdPu/+OV5+4WWxo9BzNOzTUOwIpCtOjcVOYHa0KlxVKpWucxARkZ442TghqmcUmntwHkljZ1fDDu5N3cWOQbriyOnldE3rBxAQEZHx83D0wKqeq1Dfpb7YUagcPFt7QiLlpWWz4cjxrbpWqcL1zp07OHjwIO7evQvg6WwDr776Knx92VBERGJr5dkKi4MXo6Z9TbGjUDm5N2Nvq9mQWAB2nBlC17QuXD/88ENERUUVGzYglUoxZcoULF26tNLhiIhIO8OaD8P77d6HpZQX1kxJzUb8kmE27GoB/PnTOa2mw1q2bBlWrFiBgQMHIjY2FpmZmcjMzERsbCwGDx6MFStWYMWKFbrOSkREz2EptcT8rvMxNXAqi1YTVMO3htgRSFfY26oXWv1W27BhA1577TV8//33GsvbtWuHHTt2oLCwEF999RWmTp2qk5BERPR8FlILLA9Zjva124sdhbRgYW3BabDMia2b2AnMklY9romJiQgJCSl1fUhICBITE7XNREREWvik/ScsWk2YvZs9b8wyJ1bVxU5glrQqXN3d3fHHH3+Uuv6PP/6Amxu/aRARGUqAdwAfLGDi7GrYiR2BdMmC7akPWhWur7/+OjZu3IjPPvsMeXl56uV5eXlYvHgxNm7ciNDQUJ2FJCKisk0KmAQJn9Bj0mydbcWOQLoktRY7gVnSaozr/PnzcenSJcyYMQNz5sxBrVq1AAAPHz6EQqFA165d8emnn+o0KBERlaype1P4ufmJHYMqycbJRuwIpEv8IqkXWhWu9vb2iImJwZ49ezTmce3Zsyd69eqFvn378ps/EZGeeHp6QiWokGWZBQDo1aCXyIlIF+xceGnZvGh1UZueo8KFa35+PoYPH45BgwZh2LBh6Nevnz5yERFRKc6fP4/0/HT0/KYnAKCbbzeRE5EusHAler4Kfx2wt7fHr7/+ivz8fH3kISKiCvBz84ObA2+GNQcsXImeT6t+7I4dOyI2NlbXWSokIyMDw4YNg5OTE5ydnfHOO+8gNze3zO3ff/99NGrUCHZ2dqhTpw4mT56MrKwsA6YmItKtl194WewIpCMc40r0fFoVrl9++SVOnjyJWbNm4f79+7rOVC7Dhg3DlStXcOTIEezbtw+//fYbxo0bV+r2Dx8+xMOHD7F06VL89ddf2Lp1K6Kjo/HOO+8YMDURkW69VOslsSOQjljZW4kdgcjoSQRBECq6U7Vq1aBQKCCXywEAlpaWsLHR/KYokUj01pt57do1+Pn54dy5c2jbti0AIDo6Gr169cL9+/fVsxw8zw8//IDhw4cjLy8PlpblG+4bHx8Pf39/XLhwAW3atNH6MxARVUZ6fjr6bO+DE2+fgI0le+rMQcGTAs7lak4UeYClg9gpzI5WswoMGjRI1FkDYmNj4ezsrC5aASA4OBhSqRRnz57FgAEDynWcrKwsODk5lVm0ymQyyGQy9fuyhiMQERnSizVfZNFqRvjULHPD9tQHrQrXrVu36jhGxSQnJ8Pd3V1jmaWlJVxcXJCcnFyuY6Snp2P+/PllDi8AgMjISMybN0/rrERE+uLr7Ct2BNIhFq7mhu2pDxUa41pYWIidO3fis88+w8aNG/Ho0SOdhpk+fTokEkmZr+vXr1f6PNnZ2ejduzf8/Pwwd+7cMrcNDw9HVlaW+nXixIlKn5+ISBc8HDzEjkA6ZFONvedmxZLDPvSh3D2uqampaN++Pe7cuYNnw2Lt7e2xe/duBAcH6yTMhx9+iLfffrvMberVqwdPT0+kpqZqLFcoFMjIyICnp2eZ++fk5KBnz56oVq0adu3aBSursgfD29jYaIzfdXR0LPtDEBEZiIM1x88RUdVS7sJ1/vz5SExMxNSpU9GtWzfcvHkT8+fPx/jx43Hr1i2dhHFzc4Ob2/PnIwwMDERmZiYuXLgAf39/AMDRo0ehUqnQrl27UvfLzs5GSEgIbGxssHfvXtja8rnQRGS6rC34LHQiqlrKXbgePnwYI0aMwNKlS9XLPDw8MHToUCQkJKBRo0Z6CViSJk2aoGfPnhg7dizWrVuHoqIiTJo0CW+++aZ6RoEHDx7glVdewddff42AgABkZ2ejR48eyM/PxzfffIPs7GxkZ2cDeFowW1hYGCw/EZEuWEq1uk2BiMhklXuMa1JSEjp27KixrGPHjhAEASkpKToP9jzffvstGjdujFdeeQW9evVCx44dsX79evX6oqIiJCQkqJ/wFR8fj7Nnz+Ly5cto0KABvLy81K979+4ZPD8RUWWxx5WIqppyf12XyWTFLq0/e69QKHSbqhxcXFywffv2Utf7+Pjg31PUdunSBVpMWUtEZLQcrDjGlYiqlgpdZ0pMTER8fLz6/bMHDNy4cQPOzs7FtucE/URE+lPNpprYEYiIDKrcT86SSqUlPnRAEIRiy58tUyqVuklpRPjkLCIyBun56UjNS4Wfm5/YUYiIDKbcPa5btmzRZw4iIqogDhUgoqqm3IXryJEj9ZmDiIgqyN7KXuwIREQGVaEnZxERkfGws+KTeYioamHhSkRkojgdFhFVNZy9mojIBLnYuUCC4jfMEhGZMxauREQmSCrhBTMiqnr4m4+IiIiITAILVyIiIiIyCSxciYiIiMgksHAlIiIiIpPAwpWIiIiITAILVyIiIiIyCZwOi0r16NEjPHr0SOwYREREJsfLywteXl5ixzA7LFwryMvLCxEREWb/l1Emk2HIkCE4ceKE2FGIiIhMTlBQEA4dOgQbGxuxo5gViSAIgtghyPhkZ2ejevXqOHHiBBwdHcWOQ5WUm5uLoKAgtqeZYHuaH7apeXnWnllZWXBychI7jllh4Uolela48ofOPLA9zQvb0/ywTc0L21N/eHMWEREREZkEFq5EREREZBJYuFKJbGxsEBERwUHlZoLtaV7YnuaHbWpe2J76wzGuRERERGQS2ONKRERERCaBhSsRERERmQQWrkRERERkEli4EhEREZFJYOFKZCQkEkm5XsePH6/0ufLz8zF37twKHWvhwoV47bXX4OHhAYlEgrlz51Y6hzkz5va8fv06PvnkE7Rq1QrVqlWDl5cXevfujfPnz1c6i7ky5vZ8+PAhhg8fjkaNGqFatWpwdnZGQEAAtm3bBt5/XTpjbtP/+vbbbyGRSPhUNQCWYgcgoqf+97//abz/+uuvceTIkWLLmzRpUulz5efnY968eQCALl26lGufWbNmwdPTE61bt8ahQ4cqncHcGXN7bty4EZs2bcKgQYMwceJEZGVl4auvvsLLL7+M6OhoBAcHVzqTuTHm9kxPT8f9+/cxePBg1KlTB0VFRThy5AjefvttJCQkYNGiRZXOZI6MuU3/LTc3F5988gkcHBwqncMsCERklN577z1BXz+iaWlpAgAhIiKi3PvcuXNH633JuNrz/PnzQk5Ojsay9PR0wc3NTejQoYMeEpofY2rP0vTp00dwcHAQFAqFboKZOWNt02nTpgmNGjUShg0bJjg4OOg+nInhUAEiE6JSqbBy5Uo0bdoUtra28PDwwPjx4/HkyRON7c6fP4+QkBC4urrCzs4Ovr6+GD16NAAgMTERbm5uAIB58+apL4c979K/j4+PPj5SlSZWe/r7+xe75FizZk106tQJ165d0+2HrELE/PksiY+PD/Lz8yGXyyv92aoqsdv0xo0bWLFiBZYvXw5LS14kBzhUgMikjB8/Hlu3bsWoUaMwefJk3LlzB19++SUuXryIU6dOwcrKCqmpqejRowfc3Nwwffp0ODs7IzExET///DMAwM3NDWvXrsWECRMwYMAADBw4EADQokULMT9alWRs7ZmcnAxXV1edfsaqROz2LCgoQF5eHnJzc3HixAls2bIFgYGBsLOz0+vnNmdit+mUKVPQtWtX9OrVC99//71eP6vJELvLl4hK9t/LVidPnhQACN9++63GdtHR0RrLd+3aJQAQzp07V+qxK3PZikMFtGOs7fnMb7/9JkgkEmH27NlaH6MqMcb2jIyMFACoX6+88oqQlJRUoWNUZcbWpvv27RMsLS2FK1euCIIgCCNHjuRQAYFDBYhMxg8//IDq1auje/fuSE9PV7+eXfY9duwYAMDZ2RkAsG/fPhQVFYmYmMpiTO2ZmpqKoUOHwtfXF5988olezmHujKE9hwwZgiNHjmD79u0YOnQogKe9sKQdMdtULpdj6tSpePfdd+Hn56eTY5oLFq5EJuLGjRvIysqCu7s73NzcNF65ublITU0FAAQFBWHQoEGYN28eXF1d0a9fP2zZsgUymUzkT0D/ZiztmZeXhz59+iAnJwd79uzhdDtaMob2rFu3LoKDgzFkyBB8++23qFevHoKDg1m8aknMNl2xYgXS09PVMxHQPzjGlchEqFQquLu749tvvy1x/bPB/xKJBD/++CPOnDmDX375BYcOHcLo0aOxbNkynDlzhoWJkTCG9pTL5Rg4cCD+/PNPHDp0CM2aNdP6WFWdMbTnfw0ePBgbNmzAb7/9hpCQEJ0dt6oQq02zsrKwYMECTJw4EdnZ2cjOzgbwdFosQRCQmJgIe3t7uLu7V+4DmiqxxyoQUcn+O95q4sSJgoWFhZCfn1/hY3377bcCAGHDhg2CIDyd+ggc42pQxtaeSqVSCA0NFSwsLISffvqpwhmqOmNrz5Ls3r1bACDs3LmzUsepKoylTe/cuaMxVrmkV79+/SqcyVxwqACRiXjjjTegVCoxf/78YusUCgUyMzMBAE+ePCn2tJxWrVoBgPrSlb29PQCo9yHDE7s933//fezcuRNr1qxR3+VM2hOzPdPS0kpcvmnTJkgkErRp06ZcxyFNYrWpu7s7du3aVezVtWtX2NraYteuXQgPD9f+g5k4DhUgMhFBQUEYP348IiMjcenSJfTo0QNWVla4ceMGfvjhB0RFRWHw4MHYtm0b1qxZgwEDBqB+/frIycnBhg0b4OTkhF69egEA7Ozs4Ofnh507d6Jhw4ZwcXFBs2bNyrxU/L///Q93795Ffn4+AOC3337DggULAABvvfUW6tatq///CWZEzPZcuXIl1qxZg8DAQNjb2+Obb77RWD9gwAA+paeCxGzPhQsX4tSpU+jZsyfq1KmDjIwM/PTTTzh37hzef/99NGjQwJD/K8yGWG1qb2+P/v37F1u+e/duxMXFlbiuShG3w5eISlPaU1zWr18v+Pv7C3Z2dkK1atWE5s2bC5988onw8OFDQRAEIT4+XhgyZIhQp04dwcbGRnB3dxf69OkjnD9/XuM4p0+fFvz9/QVra+tyXcIKCgoq9bLVsWPHdPWxzZYxtefI/2vv7mOqLP84jn9uEc8hebQIfDyHh41gbmY5aiMja82lLNgUta1EF1lbG7mwZpQTy5ZoOh3ljNbA2GrLlf9opVvCyNXmP/UHsaJ4qrWBtYFRBip8f3+4Tr8TlIeE4L55vzY37++57uu68LPd+3q4z31KSv7x15B/fEsa/t5UyvP06dNWUFBg8+bNs+joaIuLi7O8vDyrra214eHhcf25vWwqZToaHod1lWP2l/e3AQAAgCmIe1wBAADgCjSuAAAAcAUaVwAAALgCjSsAAABcgcYVAAAArkDjCgAAAFegcQU8oLOzU47jqK6ubrK3gnFCpt5Cnt5CnpOHxhUAAACuwBcQAB5gZhocHFR0dLSioqImezsYB2TqLeTpLeQ5eWhcAQAA4ArcKgBMEZWVlXIcR62trXr44YeVkJCg5ORk7dixQ2amH374QYWFhYqPj1dqaqr2798fOne0+602bdqk2NhY/fjjjyoqKlJsbKySk5O1bds2DQ0NhcY1NjbKcRw1NjaG7We0Obu7u7V582YtWLBAPp9Pc+fOVWFhoTo7OyfoX8XdyNRbyNNbyNOdaFyBKWb9+vUaHh7Wnj17dMcdd2j37t06ePCg7r//fs2fP19VVVXKzMzUtm3b1NTU9I9zDQ0NaeXKlbrxxhv16quvKj8/X/v371dNTc2/2tuaNWt0/Phxbd68WYcPH1ZZWZn6+/v1/fff/6v5pgsy9Rby9BbydBkDMCXs3LnTJNmWLVtCtStXrtiCBQvMcRzbs2dPqN7b22sxMTFWUlJiZmYdHR0myWpra0NjSkpKTJK9+OKLYessXbrUbr/99tBxQ0ODSbKGhoawcX+ds7e31yTZvn37xucHngbI1FvI01vI0514xxWYYkpLS0N/j4qK0rJly2RmevTRR0P1xMREZWVlqb29/ZrzPfHEE2HHy5cvj+i8v4qJidGsWbPU2Nio3t7eMZ8/nZGpt5Cnt5Cnu9C4AlPMokWLwo4TEhLk9/t10003jahf62Lm9/uVnJwcVktKSvpXF0Gfz6eqqip99NFHSklJ0d133629e/equ7t7zHNNN2TqLeTpLeTpLjSuwBQz2qNV/u5xK3aNh4JE8pgWx3FGrf//hwn+sHXrVrW2tuqVV16R3+/Xjh07lJ2drS+++OKa60xnZOot5Okt5OkuNK7ANJeUlCRJ6uvrC6t3dXWNOj4jI0Pl5eU6ffq0mpubdenSpbBP22Lykam3kKe3kOf1oXEFprlAIKCoqKgRn5Y9fPhw2PHFixc1MDAQVsvIyFBcXJwGBwcnfJ+IHJl6C3l6C3len5mTvQEAkyshIUHFxcWqrq6W4zjKyMjQiRMndP78+bBxra2tuu+++7Ru3Trl5ORo5syZOn78uHp6erRhw4ZJ2j1GQ6beQp7eQp7Xh8YVgKqrq3X58mUdOXJEPp9P69at0759+7R48eLQmIULF+qhhx7SJ598ovr6es2cOVO33HKL3nvvPa1Zs2YSd4/RkKm3kKe3kOe/x1e+AgAAwBW4xxUAAACuQOMKAAAAV6BxBQAAgCvQuAIAAMAVaFwBAADgCjSuAMaks7NTjuOorq5usreCcUKm3kKe3kKe4WhcgQnU1tamxx9/XOnp6fL7/YqPj1deXp4OHTqk33//fcLWbWlpUWVlpTo7OydsjUi8/PLLevDBB5WSkiLHcVRZWTmp+xkPZOqtTMmTPMcDef53+AICYIKcPHlSxcXF8vl82rhxoxYvXqxLly7p7NmzeuaZZ/TVV1+ppqZmQtZuaWnRrl27dM899ygYDE7IGpF44YUXlJqaqqVLl+rUqVOTto/xQqbeypQ8yXO8kOd/h8YVmAAdHR3asGGDAoGAzpw5o7lz54Zee/LJJ/Xdd9/p5MmTk7jDP5mZBgYGFBMTM+5zd3R0KBgM6ueff1ZycvK4z/9fItOrvJIpeV5Fnv898rw+3CoATIC9e/fq119/1VtvvRV2Af1DZmamnnrqqdDxlStX9NJLLykjI0M+n0/BYFAVFRUaHBwMOy8YDKqgoEBnz55Vbm6u/H6/0tPT9fbbb4fG1NXVqbi4WJK0YsUKOY4jx3HU2NgYNsepU6e0bNkyxcTE6I033pAktbe3q7i4WHPmzNENN9ygO++887ou9pP5zsN4I9M/9+sF5Pnnfr2APP/cr+cZgHE3f/58S09Pj3h8SUmJSbK1a9fa66+/bhs3bjRJVlRUFDYuEAhYVlaWpaSkWEVFhb322mt22223meM41tzcbGZmbW1tVlZWZpKsoqLC6uvrrb6+3rq7u0NzZGZmWlJSkm3fvt2OHDliDQ0N1t3dbSkpKRYXF2fPP/+8HThwwJYsWWIzZsywDz74ILSHjo4Ok2S1tbUR/3w//fSTSbKdO3dGfM5UQ6bh3J4peYYjT/J0CxpXYJxduHDBJFlhYWFE47/88kuTZKWlpWH1bdu2mSQ7c+ZMqBYIBEySNTU1hWrnz583n89n5eXlodqxY8dMkjU0NIxY7485Pv7447D61q1bTZJ9+umnoVp/f7+lpaVZMBi0oaEhM5ueF1EyHcnNmZLnSORJnm7BrQLAOPvll18kSXFxcRGN//DDDyVJTz/9dFi9vLxckkb82ignJ0fLly8PHScnJysrK0vt7e0R7zEtLU0rV64csY/c3FzdddddoVpsbKy2bNmizs5OtbS0RDy/15Cpt5Cnt5Dn9ELjCoyz+Ph4SVJ/f39E47u6ujRjxgxlZmaG1VNTU5WYmKiurq6w+qJFi0bMkZSUpN7e3oj3mJaWNuo+srKyRtSzs7NDr09XZOot5Okt5Dm90LgC4yw+Pl7z5s1Tc3PzmM5zHCeicVFRUaPWzSzitSbi06xeRqbeQp7eQp7TC40rMAEKCgrU1tamzz///JpjA4GAhoeH9e2334bVe3p61NfXp0AgMOb1I70g/3Uf33zzzYj6119/HXp9OiNTbyFPbyHP6YPGFZgAzz77rGbPnq3S0lL19PSMeL2trU2HDh2SJK1atUqSdPDgwbAxBw4ckCStXr16zOvPnj1bktTX1xfxOatWrdK5c+fCLvy//fabampqFAwGlZOTM+Z9eAmZegt5egt5Th98AQEwATIyMvTOO+9o/fr1ys7ODvsWl88++0zHjh3Tpk2bJElLlixRSUmJampq1NfXp/z8fJ07d05Hjx5VUVGRVqxYMeb1b731VkVFRamqqkoXLlyQz+fTvffeq5tvvvlvz9m+fbveffddPfDAAyorK9OcOXN09OhRdXR06P3339eMGWP/f259fb26urp08eJFSVJTU5N2794tSXrkkUdc9Y4CmV7llUzJ8yryJE/XmdyHGgDe1traao899pgFg0GbNWuWxcXFWV5enlVXV9vAwEBo3OXLl23Xrl2WlpZm0dHRtnDhQnvuuefCxphdfazK6tWrR6yTn59v+fn5YbU333zT0tPTLSoqKuwxLX83h9nV5xGuXbvWEhMTze/3W25urp04cSJszFgezZKfn2+SRv0z2mNj3IBMvZUpeZInebqLYzaGu4sBAACAScI9rgAAAHAFGlcAAAC4Ao0rAAAAXIHGFQAAAK5A4woAAABXoHEFAACAK9C4AgAAwBVoXAEAAOAKNK4AAABwBRpXAAAAuAKNKwAAAFyBxhUAAACuQOMKAAAAV/gfHzs9z3Ll6/EAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq4AAAInCAYAAABZQNsWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAktdJREFUeJzs3XdYU2f/BvA7CRtERKZUxVEH4sRicaEWhTrq7Esd1Wod1apV2lpxoXVQrXW1jrrt21rpctSBWhx1oKhoax3UhbhYIlsSSM7vD3/mbcoQQpKThPtzXbk0Z97xEfjynOc8RyIIggAiIiIiIiMnFTsAEREREVF5sHAlIiIiIpPAwpWIiIiITAILVyIiIiIyCSxciYiIiMgksHAlIiIiIpPAwpWIiIiITAILVyIiIiIyCSxciYiIiMgksHCtoEePHmHu3Ll49OiR2FGIiIiIqhQWrhX06NEjzJs3j4UrERERkYGxcCUiIiIik8DClYiIiIhMAgtXIiIiIjIJJl24/v777+jTpw9q1aoFiUSCXbt2vXCfY8eOoU2bNrC2tkbDhg2xdetWveckIiIiosoz6cI1Ly8PLVu2xOrVq8u1/Z07d9CrVy907doVly5dwpQpUzB69GgcPHhQz0mJiIiIqLIsxA5QGa+//jpef/31cm+/bt061KtXD1988QUAoGnTpjh58iSWL1+O4OBgfcUkIiIiIh0w6cK1omJjYxEUFKSxLDg4GFOmTCl1H7lcDrlcrn6fm5urr3ilOj9uHBQZGQY/r1isnJ3R9uuvxY6hN+PGnUdGhkLsGAbj7GyFr79uK3YMvXlj3htIy0oTO4bBuFZ3xZ6IPWLH0Kt5b8xDVlqW2DEMprprdUTsiRA7ht6cjxoHRV4V+hlq74y2oeb7M7RKFa7Jyclwd3fXWObu7o7s7Gw8ffoUtra2xfaJjIzEvHnzDBWxRIqMDCjS00XNQLqTkaFAenrVKVzNXVpWGpKfJIsdg3QoKy0LT5KfiB2DdESRlwFFHn+GmosqVbhqIzw8HGFhYer3ly5dQmBgoDhhpFJYOTuLc24DUGRkACqV2DEMRip91htprjIyFFWpOSGVSOHm5CZ2DL1JzUyFSqhCDQpAIpXAyc1J7Bh6k5maCUEliB3DcCRSWNmZ8c/Q/AygCnyNVqnC1cPDAykpKRrLUlJS4OjoWGJvKwBYW1vD2tpa/d7BwUGvGcti5eyM9j/+KNr59e30m29WqZ5lZ2cr/Phje7Fj6M2bb56uUj3Lbk5uiF0WK3YMvQkIC6hyPctObk5YFrtM7Bh6ExYQVqV6lq3snNF+lBn/DN38ZpXoWRZtVgFBEHDkyBEcOHAAOTk5BjlnQEAAYmJiNJYdPnwYAQEBBjk/EREREWnPIIXrzJkz0bVrV/V7QRDQo0cPdO/eHb169ULz5s1x69atCh83NzcXly5dwqVLlwA8m+7q0qVLSEpKAvDsMv/w4cPV27/33nu4ffs2pk2bhuvXr2PNmjX44YcfMHXq1Mp9QCIiIiLSO4MUrj///DP8/f3V73/66SfExMRgwYIF2Lt3L5RKJebOnVvh454/fx6tW7dG69atAQBhYWFo3bo15syZAwB49OiRuogFgHr16mHfvn04fPgwWrZsiS+++AIbN27kVFhEREREJsAgY1wfPHiAhg0bqt//8ssv8PHxQXh4OABg/PjxWLt2bYWP26VLFwhC6QPLS3oqVpcuXXDx4sUKn4uIiIiIxGWQHlcLCwv1XKiCICAmJgYhISHq9e7u7kivQjflEBEREVHFGaRw9fX1xbfffosnT55gy5YtePz4MXr16qVef/fuXbi4uBgiChERERGZKIMMFZgzZw769OmjLk47dOigcbPWvn378MorrxgiChERERGZKIMUrt27d0d8fDwOHz4MJycnhIaGqtc9efIEnTt3Rt++fQ0RhYiIiIhMlMEeQODj4wMfH59iy2vUqIHly5cbKgYRERERmSiDFK45OTnIzMxE7dq11csePnyIdevWQS6XY9CgQRwqQERERERlMkjhOnbsWNy5cwdnzpwBAGRnZ+PVV1/F/fv3IZVKsXLlSkRHR6NLly6GiENEREREJsggswqcPHkSvXv3Vr//9ttv8fDhQ5w+fRpPnjxBixYtsGDBAkNEISIiIiITZZDCNT09HV5eXur3e/bsQceOHfHqq6+iWrVqGD58OP744w9DRCEiIiIiE2WQwtXJyQnJyckAgKdPn+LEiRPo0aOHer2FhQXy8/MNEYWIiIiITJRBxri2b98ea9asQZMmTRAdHY2CggKN6a/+/vtvjR5ZIiIiIqJ/M0jhunjxYvTo0QMDBw4EAHz44Ydo1qwZAECpVOLHH3/UeAQsEREREdG/GaRwbdiwIRISEnD16lVUr14d3t7e6nX5+fn46quv0LJlS0NEISIiIiITZbAHEFhaWpZYnFarVo1PzSIiIiKiFzLIzVnAs7lbP/vsMwQHB6N169aIi4sDAGRkZGDZsmW4efOmoaIQERERkQkySI/r/fv3ERgYiHv37uHll1/G9evXkZubCwBwdnbG119/jbt372LlypWGiENEREREJsgghevHH3+MnJwcXLp0CW5ubnBzc9NY369fP+zdu9cQUYiIiIjIRBlkqMChQ4cwefJk+Pj4QCKRFFtfv3593Lt3zxBRiIiIiMhEGaRwffr0KVxdXUtdn5OTY4gYRERERGTCDFK4+vj44Pfffy91/a5du9C6dWtDRCEiIiIiE2WQwnXKlCnYsWMHFi9ejKysLACASqXCzZs38fbbbyM2NhZTp041RBQiIiIiMlEGuTlr2LBhuHv3LmbNmoWZM2cCAEJCQiAIAqRSKRYtWoR+/foZIgoRERERmSiDPYBg5syZePvtt/Hzzz/j5s2bUKlUaNCgAQYMGID69esbKgYRERERmSiDFa4AUKdOHQ4JICIiIiKtGGSMa3x8PNasWVPq+jVr1uDSpUuGiEJEREREJsoghevMmTPx22+/lbr+yJEjmDVrliGiEBEREZGJMkjheuHCBXTq1KnU9Z06dcL58+cNEYWIiIiITJRBCtecnBxYWJQ+nFYqlaqnyaqo1atXw9vbGzY2NmjXrh3i4uLK3H7FihVo3LgxbG1tUbt2bUydOhUFBQVanZuIiIiIDMcghevLL7+MQ4cOlbo+Ojpaq5kFoqKiEBYWhoiICMTHx6Nly5YIDg5Gampqidtv374d06dPR0REBK5du4ZNmzYhKioKM2bMqPC5iYiIiMiwDFK4vvvuu9i3bx/CwsKQmZmpXp6ZmYmpU6ciOjoa7777boWPu2zZMowZMwYjR46Ej48P1q1bBzs7O2zevLnE7U+fPo0OHTpgyJAh8Pb2Ro8ePTB48OAX9tISERERkfgMUrhOnjwZI0aMwIoVK+Di4oI6deqgTp06cHFxwcqVKzFs2LAKT5OlUChw4cIFBAUFqZdJpVIEBQUhNja2xH3at2+PCxcuqAvV27dvY//+/ejZs6f2H46IiIiIDMIg87hKJBJs2bIFw4cPx88//4zbt28DAPr27YuBAweiS5cuFT5meno6lEol3N3dNZa7u7vj+vXrJe4zZMgQpKeno2PHjhAEAUVFRXjvvffKHCogl8shl8vV73NzcyuclUhsbdu2RXJyMjw8PHgjJBERmSyDPoCga9eu6Nq1qyFPqeHYsWNYtGgR1qxZg3bt2uHmzZv44IMPMH/+fMyePbvEfSIjIzFv3jwDJyXSreTkZDx48EDsGERERJVikKECd+7cwa+//lrq+l9//RWJiYkVOqaLiwtkMhlSUlI0lqekpMDDw6PEfWbPno23334bo0ePRvPmzdG/f38sWrQIkZGRUKlUJe4THh6OrKws9ev48eMVyklEREREumGQwvWjjz7CqlWrSl2/evVqTJ8+vULHtLKygp+fH2JiYtTLVCoVYmJiEBAQUOI++fn5kEo1P7JMJgMACIJQ4j7W1tZwdHRUvxwcHCqUk4iIiIh0wyCFa2xsLLp3717q+tdeew0nTpyo8HHDwsKwYcMGbNu2DdeuXcP48eORl5eHkSNHAgCGDx+O8PBw9fZ9+vTB2rVrsWPHDty5cweHDx/G7Nmz0adPH3UBS0RERETGySBjXJ88eYJq1aqVut7BwQGPHz+u8HFDQ0ORlpaGOXPmIDk5Ga1atUJ0dLT6hq2kpCSNHtZZs2ZBIpFg1qxZePDgAVxdXdGnTx8sXLiw4h+KiIiIiAzKIIVrnTp1cOrUKYwfP77E9SdOnMBLL72k1bEnTpyIiRMnlrju2LFjGu8tLCwQERGBiIgIrc5FREREROIxyFCBwYMH4/vvv8eqVas0boJSKpVYuXIloqKiMGTIEENEISIiIiITZZAe1/DwcJw8eRJTpkzBwoUL0bhxYwBAQkIC0tLS0KVLF8ycOdMQUYiIiIjIRBmkx9Xa2hqHDh3Cpk2b4O/vj/T0dKSnp8Pf3x+bN2/Gb7/9Bmtra0NEISIiIiITZbAHEEilUowcOVJ9xz8RERERUUUYpMeViIiIiKiyDNLj2q1btxduI5FINB4mQERERET0TwYpXFUqFSQSicYypVKJu3fv4t69e2jYsCG8vLwMEYWoSnr+GOTSHodMRERkCgxSuP57PtV/2rt3L8aOHYtly5YZIgpRlXT+/HmxIxAREVWawW7OKk3v3r0xbNgwTJkyBcePHxc7DpFBODlloqgI6N9/l9hR9MxJ7ABERGRGjOLmrAYNGuDcuXNixyAiIiIiIyZ6j2tRURF++OEHuLi4iB2FyGwdO/YRCgoyYWPjhC5dloodh4iISCsGKVxHjRpV4vLMzEycOXMGycnJHONKpEcFBZkoKHgsdgwiIqJKMUjheuTIkWKzCkgkEtSoUQMdO3bE6NGj0aNHD0NEISIiIiITZZDCNTEx0RCnISIiIiIzZhQ3ZxERERERvYjeCtf8/HwkJSVBoVAUW7d582a89tpr8PHxwYABAzijABERERG9kN4K108//RQtWrQoVrguWLAAY8aMwfHjx5GWloZdu3ahS5cu+OOPP/QVhYiIiIjMgN4K16NHj6J3795wcHBQL8vOzsaCBQvg5eWFGzduIC0tDWfOnIGVlRU+++wzfUUhIiIiIjOgt8I1MTERLVq00Fi2f/9+KBQKfPLJJ6hXrx4AwN/fHyNHjsSJEyf0FYWIiIiIzIDeCtecnBzUrFlTY9nvv/8OiUSC4OBgjeU+Pj5IS0vTVxQiIiIiMgN6K1zr1q2L69evayw7duwY3N3d0bBhQ43lCoUCjo6O+opCRERERGZAb4Vrjx49sHnzZpw9exYA8M033+D69evo379/sW0vXLgAb29vfUUhIiIiIjOgtwcQzJ49G7t27UL79u0hk8lQVFQEV1dXzJkzR2O7/Px87Ny5E2PHjtVXFKIqz8bGSeNPIiIiU6S3wtXFxQWXLl3Cxo0bcfv2bdStWxejRo2Cm5ubxnZ//fUXhg4dirfffltfUYiqvC5dloodgYiIqNL0+sjXGjVq4OOPPy5zG39/f/j7++szBhERERGZAT7ylYiIiIhMAgtXIiIiIjIJLFyJiIiIyCSYfOG6evVqeHt7w8bGBu3atUNcXFyZ22dmZuL999+Hp6cnrK2t0ahRI+zfv99AaYmIiIhIW3opXPfs2YOHDx/q49AaoqKiEBYWhoiICMTHx6Nly5YIDg5GampqidsrFAp0794diYmJ+Omnn5CQkIANGzbAy8tL71mJiIiIqHL0Urj2798fx44dU7+vX78+9uzZo/PzLFu2DGPGjMHIkSPh4+ODdevWwc7ODps3by5x+82bNyMjIwO7du1Chw4d4O3tjcDAQLRs2VLn2YiIiIhIt/RSuFarVg2ZmZnq94mJicjNzdXpORQKBS5cuICgoCD1MqlUiqCgIMTGxpa4z549exAQEID3338f7u7u8PX1xaJFi6BUKks9j1wuR3Z2tvql689BREREROWjl3lc/f39sXDhQqSkpKB69eoAgP379yM5ObnUfSQSCaZOnVruc6Snp0OpVMLd3V1jubu7O65fv17iPrdv38aRI0cwdOhQ7N+/Hzdv3sSECRNQWFiIiIiIEveJjIzEvHnzyp2LiIiIiPRDL4XrmjVrMHz4cMyfPx/As6J0+/bt2L59e6n7VLRw1YZKpYKbmxvWr18PmUwGPz8/PHjwAJ9//nmphWt4eDjCwsLU7y9duoTAwEC95iQiIiKi4vRSuDZs2BCnT59GQUEBUlNT4e3tjRUrVqBv3746O4eLiwtkMhlSUlI0lqekpMDDw6PEfTw9PWFpaQmZTKZe1rRpUyQnJ0OhUMDKyqrYPtbW1rC2tla/d3Bw0NEnICIiIqKK0OsjX21sbFCnTh1ERESgW7duqFu3rs6ObWVlBT8/P8TExKBfv34AnvWoxsTEYOLEiSXu06FDB2zfvh0qlQpS6bPhvX///Tc8PT1LLFqJiIiIyHgYZB7XiIgI+Pr6AgByc3Nx7do1XLt2rdI3OoWFhWHDhg3Ytm0brl27hvHjxyMvLw8jR44EAAwfPhzh4eHq7cePH4+MjAx88MEH+Pvvv7Fv3z4sWrQI77//fqVyEBEREZH+6bXH9Z/OnTuHadOm4eTJk1CpVACezQLQqVMnLFmyBG3btq3wMUNDQ5GWloY5c+YgOTkZrVq1QnR0tPqGraSkJHXPKgDUrl0bBw8exNSpU9GiRQt4eXnhgw8+wCeffKKbD0lEREREemOQwvXs2bPo0qULrKysMHr0aDRt2hQAcO3aNXz//ffo3Lkzjh07Bn9//wofe+LEiaUODfjnXLLPBQQE4MyZMxU+DxERERGJyyCF68yZM+Hl5YWTJ08Wu3Fq7ty56NChA2bOnInDhw8bIg4RERERmSCDjHE9e/Ysxo0bV+Ld/u7u7hg7dix7QYmIiIioTAYpXKVSKYqKikpdr1QqNcaiEhERERH9m0Gqxfbt22P16tW4e/dusXVJSUlYs2YNOnToYIgoRERERGSiDDLGddGiRejcuTOaNGmC/v37o1GjRgCAhIQE7N69GxYWFoiMjDREFCIiIiIyUQYpXFu3bo2zZ89i5syZ2LNnD/Lz8wEAdnZ2CAkJwYIFC+Dj42OIKERERERkogw2j6uPjw927twJlUqFtLQ0AICrqyvHthIRERFRuRiscH1OKpWqHxBARERERFRe7O4kIiIiIpPAwpWIiIiITAILVyIiIiIyCSxciYiIiMgksHAlIiIiIpNg0FkFrl69itu3b+PJkycQBKHY+uHDhxsyDhERERGZEIMUrrdu3cKwYcMQFxdXYsEKABKJhIUrEREREZXKIIXruHHjcPnyZaxYsQKdOnVCjRo1DHFaIiIiIjIjBilcT506hRkzZmDSpEmGOB0RERERmSGD3Jzl4uKC6tWrG+JURERERGSmDFK4vvfee/j222+hVCoNcToiIiIiMkMGGSrQqFEjKJVKtGzZEqNGjULt2rUhk8mKbTdgwABDxCEiIiIiE2SQwjU0NFT9948++qjEbSQSCXtkiYiIiKhUBilcjx49aojTEBEREZEZM0jhGhgYaIjTEBEREZEZM+iTs4BnT8+6e/cuAKBu3brw8fExdAQiIiIiMkEGK1x3796NsLAwJCYmaiyvV68eli1bhjfeeMNQUYiIiIjIBBlkOqz9+/dj4MCBAIBFixZh586d2LlzJxYtWgRBEDBgwABER0cbIgoRERERmSiD9LjOnz8fLVq0wIkTJ2Bvb69e/sYbb2DixIno2LEj5s2bh5CQEEPEISIiIiITZJAe1z///BMjRozQKFqfs7e3xzvvvIM///xTq2OvXr0a3t7esLGxQbt27RAXF1eu/Xbs2AGJRIJ+/fppdV4iIiIiMiyDFK42NjbIyMgodX1GRgZsbGwqfNyoqCiEhYUhIiIC8fHxaNmyJYKDg5GamlrmfomJifjoo4/QqVOnCp+TiIiIiMRhkMK1W7duWLlyJWJjY4utO3v2LFatWoWgoKAKH3fZsmUYM2YMRo4cCR8fH6xbtw52dnbYvHlzqfsolUoMHToU8+bNQ/369St8TiIiIiISh0HGuC5ZsgQBAQHo2LEj/P390bhxYwBAQkIC4uLi4ObmhsWLF1fomAqFAhcuXEB4eLh6mVQqRVBQUIkF8nOffvop3Nzc8O677+LEiRMvPI9cLodcLle/z83NrVBOIiIiItINg/S41qtXD3/++ScmT56MJ0+eICoqClFRUXjy5Ak++OAD/PHHH/D29q7QMdPT06FUKuHu7q6x3N3dHcnJySXuc/LkSWzatAkbNmwo93kiIyNRvXp19YsPUyAiIiISh8HmcXVzc8Py5cuxfPlyQ51SQ05ODt5++21s2LABLi4u5d4vPDwcYWFh6veXLl1i8UpEREQkAoM/OUtXXFxcIJPJkJKSorE8JSUFHh4exba/desWEhMT0adPH/UylUoFALCwsEBCQgIaNGhQbD9ra2tYW1ur3zs4OOjqIxARERFRBeilcB01ahQkEgnWr18PmUyGUaNGvXAfiUSCTZs2lfscVlZW8PPzQ0xMjHpKK5VKhZiYGEycOLHY9k2aNMHly5c1ls2aNQs5OTlYuXIlateuXe5zExEREZHh6aVwPXLkCKRSKVQqFWQyGY4cOQKJRFLmPi9aX5KwsDCMGDECbdu2hb+/P1asWIG8vDyMHDkSADB8+HB4eXkhMjISNjY28PX11djfyckJAIotJyIiItJW27ZtkZycDA8PD5w/f17sOGZFL4VrYmJime91JTQ0FGlpaZgzZw6Sk5PRqlUrREdHq2/YSkpKglRqkPvPiIiIiAAAycnJePDggdgxzJJBxrgmJSXB1dUVtra2Ja5/+vQp0tLSUKdOnQofe+LEiSUODQCAY8eOlbnv1q1bK3w+IiIiIhKHwabD2rlzZ6nr9+zZg3r16hkiChERERGZKIMUroIglLm+sLCQl/SJiIiIqEx6GyqQnZ2NzMxM9fvHjx8jKSmp2HaZmZnYsWMHPD099RWFiIjIqPFmHqLy0Vvhunz5cnz66acAns0YMGXKFEyZMqXEbQVBwIIFC/QVhYiIyKjxZh6i8tFb4dqjRw84ODhAEARMmzYNgwcPRps2bTS2kUgksLe3h5+fH9q2bauvKERERERkBvRWuAYEBCAgIAAAkJeXh4EDB3K+VCIiIiLSmt6nw8rPz8eqVatgZ2fHwpWIiIiItKb3W/nt7OxgYWEBe3t7fZ+KiIiIiMyYQeagGjhwIH766acXTotFRERERFQagzw566233sKECRPQtWtXjBkzBt7e3iU+RevfN28RERERET1nkMK1S5cu6r+fOHGi2HpBECCRSKBUKg0Rh4iIiEhvPDw8NP4k3TFI4bplyxZDnIaIiIhIdHyIhP4YpHAdMWKEIU5DREREVExmkROQVYRdy/uLHUWvnAxS1YnL4B8xNzcX9+7dAwDUrl0bDg4Oho5ARERERCbIILMKAMC5c+fQtWtX1KhRA76+vvD19UWNGjXQrVs3dqkTERGR2fho2TGMnheNj5YdEzuK2TFIj+vZs2fRpUsXWFlZYfTo0WjatCkA4Nq1a/j+++/RuXNnHDt2DP7+/oaIQ0REZFR4M495ycwpwOOsArFjmCWDFK4zZ86El5cXTp48WeyLcu7cuejQoQNmzpyJw4cPGyIOERGRUeGVR6LyMViP65w5c0r8TdLd3R1jx47F/PnzDRGFiIjohQpsCvAo8xEGNx0sdhS9soGN2BGIKsQgY1ylUimKiopKXa9UKiGVGmy4LRERERGZIINUi+3bt8fq1atx9+7dYuuSkpKwZs0adOjQwRBRiIiIjM7BxIPYfXM3DiYeFDsKkVEzyFCBRYsWoXPnzmjSpAn69++PRo0aAQASEhKwe/duWFhYIDIy0hBRiIiIjE5BUQGeFj0VOwaR0TNI4dq6dWucPXsWM2fOxJ49e5Cfnw8AsLOzQ0hICBYsWAAfHx9DRCEiIiIiE2WwBxD4+Phg586dUKlUSEtLAwC4urpybCsRERERlYvBn5wlkUggkUjUfyciIiIiKg+DdXdevXoVgwYNgqOjIzw9PeHp6QlHR0cMGjQIf/31l6FiEBGZvLZt2+Kll15C27ZtxY5CRGRQBulxPXHiBF5//XWoVCr07dtX4+asPXv24MCBA4iOjkanTp0MEYeIyKQlJyfjwYMHYscgIjI4gxSuU6dOhZubG44fP47atWtrrLt37x46d+6MsLAwnDt3zhBxiIiIiMgEGWSowJUrVzBhwoRiRSsA1K5dG+PHj8eVK1e0Ovbq1avh7e0NGxsbtGvXDnFxcaVuu2HDBnTq1Ak1atRAjRo1EBQUVOb2RERERBXlVM0GNavbwKkan0ymawbpca1bty7kcnmp6xUKRYlF7YtERUUhLCwM69atQ7t27bBixQoEBwcjISEBbm5uxbY/duwYBg8ejPbt28PGxgaLFy9Gjx49cOXKFXh5eVX4/ERERET/tjSsi9gRzJZBelznzJmDVatW4dKlS8XWXbx4EV9++SXmzp1b4eMuW7YMY8aMwciRI+Hj44N169bBzs4OmzdvLnH77777DhMmTECrVq3QpEkTbNy4ESqVCjExMRU+t7njzR9ERERkbAzS43rmzBm4u7vDz88P7du3R8OGDQEAN27cQGxsLHx9fREbG4vY2Fj1PhKJBCtXriz1mAqFAhcuXEB4eLh6mVQqRVBQkMZxypKfn4/CwkI4OzuXuo1cLtfoLc7NzS3XsU0db/4gIiIiY2OQwvWrr75S//3UqVM4deqUxvrLly/j8uXLGsteVLimp6dDqVTC3d1dY7m7uzuuX79erlyffPIJatWqhaCgoFK3iYyMxLx588p1PCIiIm3YWNho/ElEJTNI4apSqQxxmgr57LPPsGPHDhw7dgw2NqV/owgPD0dYWJj6/aVLlxAYGGiIiEREVEUEeweLHYHIJBj8yVm64uLiAplMhpSUFI3lKSkp8PDwKHPfpUuX4rPPPsNvv/2GFi1alLmttbU1rK2t1e8dHBy0D01EREREWjNo4Xrnzh0cOHAAd+/eBfBstoHXX38d9erVq/CxrKys4Ofnh5iYGPTr1w8A1DdaTZw4sdT9lixZgoULF+LgwYO88YiITNLzX85f9Es6EZG5MVjh+uGHH2LlypXFhg1IpVJMmTIFS5curfAxw8LCMGLECLRt2xb+/v5YsWIF8vLyMHLkSADA8OHD4eXlhcjISADA4sWLMWfOHGzfvh3e3t5ITk4G8KwXlT2pRGQqzp8/L3YEIiJRGKRw/eKLL7B8+XIMGjQIH374IZo2bQoAuHbtGpYvX47ly5fDy8sLU6dOrdBxQ0NDkZaWhjlz5iA5ORmtWrVCdHS0+oatpKQkSKX/m/Fr7dq1UCgUGDRokMZxIiIitJqOi4gIAGwKbJD5KBNNBzcVO4p+8b4hIhKZQQrXDRs24I033sAPP/ygsbxdu3bYsWMHCgoK8PXXX1e4cAWAiRMnljo04NixYxrvExMTK3x8IiIiIjIOBnkAQWJiIoKDS79jMjg4mEUlEVE5JR5MxM3dN5F4MFHsKEREBmWQHlc3Nzf88ccfpa7/448/4OrqaogoVE68+YPIeBUVFKHoaZHYMYiIDM4gheubb76JlStXwtvbG5MmTYK9vT0AIC8vD1999RU2btyIKVOmGCIKlRNv/iAiIiJjY5DCdf78+bh06RJmzJiBOXPmoFatWgCAhw8foqioCF27dsWnn35qiCgmK9PJCSgqwq7+/cWOoldOYgcgIiIio2WQwtXOzg4xMTHYvXu3xjyuISEh6NmzJ/r06QOJRGKIKERERERkovReuObn52PYsGEYOHAghg4dir59++r7lKQDHx07hsyCAjjZ2GBply5ixyEiIiLS/6wCdnZ2+O2335Cfn6/vU5EOZRYU4HFBATILCsSOQkRERATAQNNhdezYEbGxsYY4FRERERGZKYMUrl999RVOnDiBWbNm4f79+4Y4JRERERGZGYMUri1btsT9+/cRGRmJunXrwtraGo6Ojhqv6tWrGyIKEREREZkog8wqMHDgQM4aQERERESVYpDCdevWrYY4DRFRlWBhY6HxJxFRVaHX73oFBQXYvXs37ty5AxcXF/Tq1Quenp76PCURkdnzDvYWOwIRkSj0Vrimpqaiffv2uHPnDgRBAPBsaqxdu3YhKChIX6clIiIiIjOlt5uz5s+fj8TEREydOhV79+7FihUrYGtri3HjxunrlERERERkxvTW43ro0CEMHz4cS5cuVS9zd3fHkCFDkJCQgMaNG+vr1KQDTjY2Gn8SERERiU1vhWtSUhI++eQTjWUdO3aEIAhISUlh4Wrk+JhXIiIiMjZ6Gyogl8th86/euufvi4qK9HVaIiIiIjJTep1VIDExEfHx8er3WVlZAIAbN27Aycmp2PZt2rTRZxwiIiIiMmF6LVxnz56N2bNnF1s+YcIEjfeCIEAikUCpVOozDhERERGZML0Vrlu2bNHXoYmIiIioCtJb4TpixAh9HZqIiIiIqiC93ZxFRERERKRLLFyJiIiIyCSwcCUiIiIik8DClYiIiIhMAgtXIiIiIjIJJl+4rl69Gt7e3rCxsUG7du0QFxdX5vY//vgjmjRpAhsbGzRv3hz79+83UFIiIiIiqgyTLlyjoqIQFhaGiIgIxMfHo2XLlggODkZqamqJ258+fRqDBw/Gu+++i4sXL6Jfv37o168f/vrrLwMnJyIiIqKKMunCddmyZRgzZgxGjhwJHx8frFu3DnZ2dti8eXOJ269cuRIhISH4+OOP0bRpU8yfPx9t2rTBV199ZeDkRERERFRRJlu4KhQKXLhwAUFBQeplUqkUQUFBiI2NLXGf2NhYje0BIDg4uNTtiYiIiMh46O3JWfqWnp4OpVIJd3d3jeXu7u64fv16ifskJyeXuH1ycnKp55HL5ZDL5er3ubm5lUhtWjIKCvCkoMCg56yWkwNLmQw28fEGPa8hPXmSAKUyQ+wYBpGTUw0ymSXi423EjqI3eSl5KMgw7NeJWOTWcuQp8hBvxl+fAJCSl4KMgqrxNWott4YiT2HWbZpw9wkycpUGP28NRxs4O5rv9z6xmGzhaiiRkZGYN2+exrLAwEB4enoaLEP7H3802Lmek8vlCA4OxvHjxw1+bgCAn5845yW9YHOaj0d4BL/tbFCz8gjY7rdd7BRmJzAwEAcP7oK1tbXYUcyKyRauLi4ukMlkSElJ0ViekpICDw+PEvfx8PCo0PYAEB4ejrCwMI1l1tbWZv8fUS6X4/jx4zh+/DgcHBzEjkOVlJubi8DAQLanmWB7mh+2qXl53p5yudzs6wVDM9nC1crKCn5+foiJiUG/fv0AACqVCjExMZg4cWKJ+wQEBCAmJgZTpkxRLzt8+DACAgJKPU9VKFLL0qpVKzg6OoodgyopOzsbANvTXLA9zQ/b1Lw8b0/SPZMtXAEgLCwMI0aMQNu2beHv748VK1YgLy8PI0eOBAAMHz4cXl5eiIyMBAB88MEHCAwMxBdffIFevXphx44dOH/+PNavXy/mxyAiIiKicjDpwjU0NBRpaWmYM2cOkpOT0apVK0RHR6tvwEpKSoJU+r+JE9q3b4/t27dj1qxZmDFjBl5++WXs2rULvr6+Yn0EIiIiIionky5cAWDixImlDg04duxYsWVvvvkm3nzzTT2nMn3W1taIiIio0sMkzAnb07ywPc0P29S8sD31RyIIgiB2CCIiIiKiFzHZBxAQERERUdXCwpWIiIiITAILVyIiIiIyCSxcSe8SExMhkUiwdetWsaMQERGRCWPhamRu3bqFcePGoX79+rCxsYGjoyM6dOiAlStX4unTp3o779WrVzF37lwkJibq7RzlsXDhQrzxxhtwd3eHRCLB3LlzRc1jSBKJpFyvkmbLqKj8/HzMnTu3Qseqym2jDWNuz+vXr2PatGlo1aoVqlWrBk9PT/Tq1Qvnz5+vdBZzZczt+fDhQwwbNgyNGzdGtWrV4OTkBH9/f2zbtg28/7p0xtym//bdd99BIpHwqWowg+mwzMm+ffvw5ptvwtraGsOHD4evry8UCgVOnjyJjz/+GFeuXNHbwxKuXr2KefPmoUuXLvD29tbLOcpj1qxZ8PDwQOvWrXHw4EHRcojhv//9r8b7b775BocPHy62vGnTppU+V35+PubNmwcA6NKlS7n2qcptow1jbs+NGzdi06ZNGDhwICZMmICsrCx8/fXXePXVVxEdHY2goKBKZzI3xtye6enpuH//PgYNGoQ6deqgsLAQhw8fxjvvvIOEhAQsWrSo0pnMkTG36T/l5uZi2rRpsLe3r3QOc8DC1UjcuXMHb731FurWrYsjR47A09NTve7999/HzZs3sW/fPhET/o8gCCgoKICtra3Oj33nzh14e3sjPT0drq6uOj++MRs2bJjG+zNnzuDw4cPFloulKreNNoy5PQcPHoy5c+dq9N6MGjUKTZs2xdy5c1m4lsCY27NFixbFevImTpyIPn36YNWqVZg/fz5kMpk44YyYMbfpPy1YsADVqlVD165dsWvXLrHjiI5DBYzEkiVLkJubi02bNmkUrc81bNgQH3zwgfp9UVER5s+fjwYNGsDa2hre3t6YMWMG5HK5xn7e3t7o3bs3Tp48CX9/f9jY2KB+/fr45ptv1Nts3bpV/VCGrl27Frs88vwYBw8eRNu2bWFra4uvv/4aAHD79m28+eabcHZ2hp2dHV599dVKFdhi9vaaApVKhRUrVqBZs2awsbGBu7s7xo0bhydPnmhsd/78eQQHB8PFxQW2traoV68eRo0aBeDZmOPnhee8efPU7f2iS/9sG90Tqz39/PyKXXKsWbMmOnXqhGvXrun2Q1YhYn59lsTb2xv5+flQKBSV/mxVldhteuPGDSxfvhzLli2DhQX7GgH2uBqNX3/9FfXr10f79u3Ltf3o0aOxbds2DBo0CB9++CHOnj2LyMhIXLt2DTt37tTY9ubNmxg0aBDeffddjBgxAps3b8Y777wDPz8/NGvWDJ07d8bkyZOxatUqzJgxQ31Z5J+XRxISEjB48GCMGzcOY8aMQePGjZGSkoL27dsjPz8fkydPRs2aNbFt2za88cYb+Omnn9C/f3/d/QMRAGDcuHHYunUrRo4cicmTJ+POnTv46quvcPHiRZw6dQqWlpZITU1Fjx494OrqiunTp8PJyQmJiYn45ZdfAACurq5Yu3Ytxo8fj/79+2PAgAEAnvXakGEZW3smJyfDxcVFp5+xKhG7PZ8+fYq8vDzk5ubi+PHj2LJlCwICAvRydayqELtNp0yZgq5du6Jnz5744Ycf9PpZTYZAosvKyhIACH379i3X9pcuXRIACKNHj9ZY/tFHHwkAhCNHjqiX1a1bVwAg/P777+plqampgrW1tfDhhx+ql/34448CAOHo0aPFzvf8GNHR0RrLp0yZIgAQTpw4oV6Wk5Mj1KtXT/D29haUSqUgCIJw584dAYCwZcuWcn0+QRCEtLQ0AYAQERFR7n3Mzfvvvy/880v0xIkTAgDhu+++09guOjpaY/nOnTsFAMK5c+dKPXZl/n3ZNtox1vZ87vfffxckEokwe/ZsrY9RlRhje0ZGRgoA1K/XXntNSEpKqtAxqjJja9O9e/cKFhYWwpUrVwRBEIQRI0YI9vb2FfhE5olDBYxAdnY2AKBatWrl2n7//v0AgLCwMI3lH374IQAUu1Tv4+ODTp06qd+7urqicePGuH37drkz1qtXD8HBwcVy+Pv7o2PHjuplDg4OGDt2LBITE3H16tVyH59e7Mcff0T16tXRvXt3pKenq1/PL/sePXoUAODk5AQA2Lt3LwoLC0VMTGUxpvZMTU3FkCFDUK9ePUybNk0v5zB3xtCegwcPxuHDh7F9+3YMGTIEAPQ6G425E7NNFQoFpk6divfeew8+Pj46Oaa5YOFqBBwdHQEAOTk55dr+7t27kEqlaNiwocZyDw8PODk54e7duxrL69SpU+wYNWrUKDZGpyz16tUrMUfjxo2LLX8+xODfOahybty4gaysLLi5ucHV1VXjlZubi9TUVABAYGAgBg4ciHnz5sHFxQV9+/bFli1bio1/JnEZS3vm5eWhd+/eyMnJwe7duzndjpaMoT3r1q2LoKAgDB48GN999x3q16+PoKAgFq9aErNNly9fjvT0dPVMBPQ/HONqBBwdHVGrVi389ddfFdpPIpGUa7vS7iYVKjC/H8dIiU+lUsHNzQ3fffddieufD/6XSCT46aefcObMGfz66684ePAgRo0ahS+++AJnzpxhYWIkjKE9FQoFBgwYgD///BMHDx6Er6+v1seq6oyhPf9t0KBB2LBhA37//fdiV8zoxcRq06ysLCxYsAATJkxAdna2+qpsbm4uBEFAYmIi7Ozs4ObmVrkPaKJYuBqJ3r17Y/369YiNjUVAQECZ29atWxcqlQo3btzQuIEqJSUFmZmZqFu3boXPX94i+N85EhISii2/fv26ej3pToMGDfDbb7+hQ4cO5fpF4tVXX8Wrr76KhQsXYvv27Rg6dCh27NiB0aNHa9XepFtit6dKpcLw4cMRExODH374AYGBgdp8DPp/YrdnSZ73tGZlZenkeFWNWG365MkT5ObmYsmSJViyZEmx9fXq1UPfvn2r7NRYHCpgJJ5PLjx69GikpKQUW3/r1i2sXLkSANCzZ08AwIoVKzS2WbZsGQCgV69eFT7/84mNMzMzy71Pz549ERcXh9jYWPWyvLw8rF+/Ht7e3hyXo2P/+c9/oFQqMX/+/GLrioqK1G335MmTYr3prVq1AgD1pSs7OzsAFWtv0i2x23PSpEmIiorCmjVr1Hc5k/bEbM+0tLQSl2/atAkSiQRt2rQp13FIk1ht6ubmhp07dxZ7de3aFTY2Nti5cyfCw8O1/2Amjj2uRqJBgwbYvn07QkND0bRpU40nZ50+fRo//vgj3nnnHQBAy5YtMWLECKxfvx6ZmZkIDAxEXFwctm3bhn79+qFr164VPn+rVq0gk8mwePFiZGVlwdraGt26dSvzUsT06dPx/fff4/XXX8fkyZPh7OyMbdu24c6dO/j5558hlVb896L//ve/uHv3LvLz8wEAv//+OxYsWAAAePvtt6t0L25gYCDGjRuHyMhIXLp0CT169IClpSVu3LiBH3/8EStXrsSgQYOwbds2rFmzBv3790eDBg2Qk5ODDRs2wNHRUf1Lj62tLXx8fBAVFYVGjRrB2dkZvr6+ZV4qZtvolpjtuWLFCqxZswYBAQGws7PDt99+q7G+f//+fEpPBYnZngsXLsSpU6cQEhKCOnXqICMjAz///DPOnTuHSZMmFbsfgspHrDa1s7NDv379ii3ftWsX4uLiSlxXpYg5pQEV9/fffwtjxowRvL29BSsrK6FatWpChw4dhC+//FIoKChQb1dYWCjMmzdPqFevnmBpaSnUrl1bCA8P19hGEJ5NZdWrV69i5wkMDBQCAwM1lm3YsEGoX7++IJPJNKbGKu0YgiAIt27dEgYNGiQ4OTkJNjY2gr+/v7B3716NbSoyHVZgYKDGdC7/fJU0VZc5+/fULM+tX79e8PPzE2xtbYVq1aoJzZs3F6ZNmyY8fPhQEARBiI+PFwYPHizUqVNHsLa2Ftzc3ITevXsL58+f1zjO6dOnBT8/P8HKyqpc07SwbSrHmNpzxIgRpbYlAOHOnTu6/OhmyZja89ChQ0Lv3r2FWrVqCZaWluqfG1u2bBFUKpVOP7c5M6Y2LQmnw3pGIggVuEOHiIiIiEgkHONKRERERCaBhSsRERERmQQWrkRERERkEli4EhEREZFJYOFKRERERCaBhauJWbJkCZo0aQKVSiV2lEp766238J///EfsGKJie5oftql5YXuaF7anGRB7Pi4qv6ysLMHZ2VnYvHmzehn+f97FpUuXFtt+y5YtAgDh3LlzOs8SFBQkABDef//9Etdv3LhRaNKkiWBtbS00bNhQWLVqVbFt4uPjBalUKly6dEnn+UwB29P8sE3NC9vTvLA9zQN7XE3I5s2bUVRUhMGDBxdb9/nnn6ufaKRvv/zyi8ZjXv/t66+/xujRo9GsWTN8+eWXCAgIwOTJk7F48WKN7Vq3bo22bdviiy++0Hdko8T2ND9sU/PC9jQvbE8zIXblTOXXokULYdiwYRrLAAitWrUSAAhffPGFxjp9/Lb49OlTwdvbW/j0009L/G0xPz9fqFmzZrEnbQ0dOlSwt7cXMjIyNJYvXbpUsLe3F3JycnSW0VSwPc0P29S8sD3NC9vTPLDH1UTcuXMHf/75J4KCgoqt69ChA7p164YlS5bg6dOnes2xZMkSqFQqfPTRRyWuP3r0KB4/fowJEyZoLH///feRl5eHffv2aSzv3r078vLycPjwYb1lNkZsT/PDNjUvbE/zwvY0HyxcTcTp06cBAG3atClx/dy5c5GSkoK1a9eWeRy5XI709PRyvf4tKSkJn332GRYvXgxbW9sSj3/x4kUAQNu2bTWW+/n5QSqVqtc/5+PjA1tbW5w6darM3OaG7Wl+2Kbmhe1pXtie5sNC7ABUPtevXwcA1KtXr8T1nTp1QteuXfH5559j/PjxpX5RfP/99xg5cmS5zikIgsb7Dz/8EK1bt8Zbb71V6j6PHj2CTCaDm5ubxnIrKyvUrFkTDx8+1FhuYWGB2rVr4+rVq+XKZC7YnuaHbWpe2J7mhe1pPli4mojHjx/DwsICDg4OpW4zd+5cBAYGYt26dZg6dWqJ2wQHB2t1SeHo0aP4+eefcfbs2TK3e/r0KaysrEpcZ2NjU+JlmBo1apT426k5Y3uaH7apeWF7mhe2p/lg4WpGOnfujK5du2LJkiV47733StzG09MTnp6eFTpuUVERJk+ejLfffhuvvPJKmdva2tpCoVCUuK6goKDE32IFQYBEIqlQpqqA7Wl+2Kbmhe1pXtiepoGFq4moWbMmioqKkJOTg2rVqpW6XUREBLp06YKvv/4aTk5OxdY/ffoUWVlZ5Tqnh4cHAOCbb75BQkICvv76ayQmJmpsk5OTg8TERLi5ucHOzg6enp5QKpVITU3VuNShUCjw+PFj1KpVq9h5njx5gpdffrlcmcwF29P8sE3NC9vTvLA9zQdvzjIRTZo0AfDszsiyBAYGokuXLli8eHGJlxSioqLUvzG+6PVcUlISCgsL0aFDB9SrV0/9Ap59QdarVw+HDh0CALRq1QoAcP78eY3znj9/HiqVSr3+uaKiIty7dw9Nmzat0L+HqWN7mh+2qXlhe5oXtqf5YI+riQgICADw7D9vixYtytx27ty56NKlC9avX19snTbjc956661iXywA0L9/f/Ts2RNjxoxBu3btAADdunWDs7Mz1q5di549e6q3Xbt2Lezs7NCrVy+NY1y9ehUFBQVo3759hTKZOran+WGbmhe2p3lhe5oRsSaQpYrz9fUVBg8erLEMpTwyLjAwUP0oO308rq6sc69evVoAIAwaNEjYsGGDMHz4cAGAsHDhwmLbLl26VLCzsxOys7P1ktGYsT3ND9vUvLA9zQvb0zywcDUhy5YtExwcHIT8/Hz1stL+4x89elS0LzpBEIT169cLjRs3FqysrIQGDRoIy5cvF1QqVbHt2rVrV+xJJlUF29P8sE3NC9vTvLA9zQMLVxOSmZkpODs7Cxs3bhQ7ik5cvHhRkEgkwsWLF8WOIgq2p/lhm5oXtqd5YXuaB4kg/GuGXDJqixcvxpYtW3D16lVIpaZ9b91bb70FlUqFH374QewoomF7mh+2qXlhe5oXtqfpY+FKRERERCbBtH/dICIiIqIqg4UrEREREZkEFq5EREREZBJYuBIRERGRSWDhSkREREQmgYUrEREREZkEFq5EREREZBJYuBIRERGRSWDhSkREREQmgYUrEREREZkEFq5EREREZBJYuBIRERGRSWDhSkREREQmgYVrBT169Ahz587Fo0ePxI5CREREVKWwcK2gR48eYd68eSxciYiIiAyMhSsRERERmQQWrkRERERkEli4EhEREZFJYOFKRERERCaBhSsRERERmQQWrkRERERkEli4EhEREZFJYOFKVEVkZIidgIiIqHJYuBJVESkpYicgIiKqHBauRFVEdrbYCYiIiCqHhStRFZGVBRQViZ2CiIhIe5UuXB89eoQ//vgDeXl5ushTYatXr4a3tzdsbGzQrl07xMXFlbn9ihUr0LhxY9ja2qJ27dqYOnUqCgoKDJSWSFxpaWInICIi0p7Whevu3bvRpEkTvPTSS2jTpg3Onj0LAEhPT0fr1q2xa9cuXWUsVVRUFMLCwhAREYH4+Hi0bNkSwcHBSE1NLXH77du3Y/r06YiIiMC1a9ewadMmREVFYcaMGXrPSmQMHj4UOwEREZH2tCpcf/31VwwYMAAuLi6IiIiAIAjqdS4uLvDy8sKWLVt0FrI0y5Ytw5gxYzBy5Ej4+Phg3bp1sLOzw+bNm0vc/vTp0+jQoQOGDBkCb29v9OjRA4MHD35hLy2Rubh7V+wERERE2tOqcP3000/RuXNnnDx5Eu+//36x9QEBAbh48WKlw5VFoVDgwoULCAoKUi+TSqUICgpCbGxsifu0b98eFy5cUBeqt2/fxv79+9GzZ89SzyOXy5Gdna1+5ebm6vaDEBlQYqLYCYiIiLRnoc1Of/31F5YtW1bqend391Iv1+tKeno6lEol3N3di537+vXrJe4zZMgQpKeno2PHjhAEAUVFRXjvvffKHCoQGRmJefPm6TQ7kVhu3hQ7ARERkfa06nG1s7Mr82as27dvo2bNmlqH0pdjx45h0aJFWLNmDeLj4/HLL79g3759mD9/fqn7hIeHIysrS/06fvy4ARMT6db168A/RvYQERGZFK0K165du2Lbtm0oKmFuneTkZGzYsAE9evSodLiyuLi4QCaTIeVfs6qnpKTAw8OjxH1mz56Nt99+G6NHj0bz5s3Rv39/LFq0CJGRkVCpVCXuY21tDUdHR/XLwcFB55+FyFCyszlcgIiITJdWhevChQtx//59vPLKK/j6668hkUhw8OBBzJo1C82bN4cgCIiIiNB1Vg1WVlbw8/NDTEyMeplKpUJMTAwCAgJK3Cc/Px9SqeZHlslkAKBxgxmROeNFAyIiMlVaFa6NGzfGyZMnUbNmTcyePRuCIODzzz/HokWL0Lx5c5w4cQLe3t46jlpcWFgYNmzYgG3btuHatWsYP3488vLyMHLkSADA8OHDER4ert6+T58+WLt2LXbs2IE7d+7g8OHDmD17Nvr06aMuYInM3c6dgFIpdgoiIqKK0+rmLABo1qwZfvvtNzx58gQ3b96ESqVC/fr14erqqst8ZQoNDUVaWhrmzJmD5ORktGrVCtHR0eobtpKSkjR6WGfNmgWJRIJZs2bhwYMHcHV1RZ8+fbBw4UKDZSYS24MHwM8/A//5j9hJiIiIKkYi8Bp5hcTHx8PPzw8XLlxAmzZtxI5DVG6HDgHPJ9Cwtwd27AA8PcXNREREVBFaDRVYtWoVgoODS13/+uuvY+3atVqHIiL9yssDIiKAUu5JJCIiMkpaFa6bNm2Cj49Pqet9fHywfv16rUMRkf7FxwPbtomdgoiIqPy0Klxv3bqFpk2blrq+SZMmuHXrltahiMgwvv4a+PtvsVMQERGVj1aFq5WVFZKTk0td/+jRo2LTThGR8SkqAmbNAuRysZMQERG9mFbV5auvvoqtW7ciJyen2LqsrCxs2bIFr776aqXDEZFutG3bFkOHvoRr19oWW3f7NvD55yKEIiIiqiCtpsOKiIhAYGAgWrVqhSlTpqBZs2YAgL/++gsrVqzAo0ePsH37dp0GJSLtJScnIz39ASwtS16/axdQvz4wZIhBYxEREVWIVoVru3bt8Ouvv2LcuHH44IMPIJFIADx7+lS9evWwZ8+eUp9eRUTGadkywMYGGDBA7CREREQl0/oBBN27d8fNmzdx8eJF9Y1YDRo0QJs2bdSFLBGZlkWLgKws4J13AH4ZExGRsdG6cAUAqVQKPz8/+Pn56SoPEYls9epnT9eaPh2wqNR3CCIiIt2q1I+lq1ev4vbt23jy5AlKegDX8OHDK3N4IhLJrl3Aw4fA4sVAtWpipyEiInpGq8L11q1bGDZsGOLi4kosWAFAIpGwcCUyYXFxwLvvAl9+Cbi7i52GiIhIy8J13LhxuHz5MlasWIFOnTqhRo0aus5FREbg9u1n411XrgQaNRI7DRERVXVaFa6nTp3CjBkzMGnSJF3nISIjk5YGjB4NLFwIdOokdhoiIqrKtHoAgYuLC6pXr67rLERkpPLzgbAwYOtWoJTRQURERHqnVeH63nvv4dtvv4VSqdR1HiIyUoIAfPUV8MknQF6e2GmIiKgq0mqoQKNGjaBUKtGyZUuMGjUKtWvXhkwmK7bdAM5kTmR2jhwBbt4EPvuM416JiMiwtCpcQ0ND1X//6KOPStxGIpGwR5bITCUlPbtpa+ZMoFcvsdMQEVFVoVXhevToUV3nICITo1AAERHA3bvA+PF80hYREemfVoVrYGCgrnMQkYnavBkoKgImTxY7CRERmTutbs56Ti6XIzY2Frt370Z6erquMhGRifnmm2dP2yIiItInrQvXVatWwdPTEx07dsSAAQPw559/AgDS09Ph4uKCzZs36ywkERm/JUuAv/8WOwUREZkzrQrXLVu2YMqUKQgJCcGmTZs0Hvvq4uKCbt26YceOHToLWZbVq1fD29sbNjY2aNeuHeLi4srcPjMzE++//z48PT1hbW2NRo0aYf/+/QbJSmTOFAogPPzZnK9ERET6oFXh+sUXX6Bv377Yvn07+vTpU2y9n58frly5UulwLxIVFYWwsDBEREQgPj4eLVu2RHBwMFJTU0vcXqFQoHv37khMTMRPP/2EhIQEbNiwAV5eXnrPSlQV3L0LfPGF2CmIiMhcaVW43rx5E6+//nqp652dnfH48WOtQ5XXsmXLMGbMGIwcORI+Pj5Yt24d7OzsSh2msHnzZmRkZGDXrl3o0KEDvL29ERgYiJYtW+o9K5FYkpKSkPf/TwxQqfKgUCTp9Xy7dz+b65WIiEjXtJpVwMnJqcybsa5evQoPDw+tQ5WHQqHAhQsXEB4erl4mlUoRFBSE2NjYEvfZs2cPAgIC8P7772P37t1wdXXFkCFD8Mknn5T4AAUiUxYXF4f58+dj37596uE8SmUmLl/2RvXqveHpORv29q/o5dwLFgAtWgAuLro5XnZ2IVatuoHY2MeQSIDOnV0xaVJD2NqW/i1sypSL+OOPLI1lffp4IiysMQAgOvoRFi9OKHHfX35pjxo1rHQTnoiIdEarwrVnz55Yv349JkyYUGzdlStXsGHDBowaNarS4cqSnp4OpVIJd3d3jeXu7u64fv16ifvcvn0bR44cwdChQ7F//37cvHkTEyZMQGFhISIiIkrcRy6XQy6Xq9/n5ubq7kMQ6ckvv/yC0NBQCIKgMQb9GQFZWfuRlXUA9etHoUYN3T/hLjsbWLUK+PTT8u8zZcpFhIR4ICTEs9i6hQuv4fFjOT7/vCWUShUWL07A0qV/Y/ZsnzKP2auXJ0aN8la/t7b+3y+oXbu6wd/fWWP7zz67DoVCxaKViMhIaTVUYMGCBVAqlfD19cWsWbMgkUiwbds2DBs2DG3btoWbmxvmzJmj66yVplKp4ObmhvXr18PPzw+hoaGYOXMm1q1bV+o+kZGRqF69uvrFOWzJ2MXFxSE0NBRKpbKMp9cpAShx+3Yo8vLO6SVHdDRQynDzCrl7Nw9xcRn4+OPG8PFxRPPmTpg8uSGOHk1Ferq8zH1tbKRwdrZWv+zt//e7urW1TGOdVCrBxYuZ6NmzeOFMRETGQavCtVatWrhw4QJCQkIQFRUFQRDw3//+F7/++isGDx6MM2fOwEVX1whL4eLiAplMhpSUFI3lKSkppQ5T8PT0RKNGjTSGBTRt2hTJyclQKBQl7hMeHo6srCz16/jx47r7EER6sGDBglJ6Wv9NACDg0aMFesmhUgFnzlT+OFeuZMPBwQKNGzuql/n51YBEAly7ll3mvr/9loq+fU9i5Mg4bNhwGwUFpT+G+tChFFhbSxEY6Fr50EREpBcVHiogl8tx8OBBeHt7Y+PGjdi4cSPS0tKgUqng6uoKqbRSzzQoNysrK/j5+SEmJgb9+vUD8KxHNSYmBhMnTixxnw4dOmD79u1QqVTqnH///Tc8PT1hZVXypUFra2tYW1ur3zs4OOj2gxDpUFJSEvbu3VuOovU5JbKyfoVCkQQrqzo6z3PjRuWPkZGhQI0alhrLZDIpHB0tkZFR8i+cAPDaa+5wd7eBi4sVbt3Kw/r1t3DvXj4+/dS3xO3373+E115z1xhOQERExqXChauVlRXefPNNrFy5Ei1atAAAuLqK00MRFhaGESNGoG3btvD398eKFSuQl5eHkSNHAgCGDx8OLy8vREZGAgDGjx+Pr776Ch988AEmTZqEGzduYNGiRZjMZ1WSgRUWqqBUlre4LL/o6MMVKFqfE5CdHYOaNd/ReZ6HDwFAUuK6b7+9i+++u6t+r1CocPVqNlau/F+1u3Wrv9bn7tOnlvrv9es7oGZNK3z44R948OApvLxsNba9ciULd+/mIzy8qdbnIyIi/atw4SqRSPDyyy8bxSNeQ0NDkZaWhjlz5iA5ORmtWrVCdHS0+oatpKQkjR7g2rVr4+DBg5g6dSpatGgBLy8vfPDBB/jkk0/E+ghUBRUWqnD9ejby80u/bK2t69dTIZVKoVKpKrCXFE+fZuolT3KyEoWFlrC0LH4l5o03aqFr1//90rtgwTV07uyKzp3/N8zIxcUKzs5WePKkUGNfpVKF7OxCODuX/yaqpk2fDTUoqXDdt+8RGjZ0QOPG1cp9PCIiMjytZhWYMWMGwsLC8Oabb6Jx48a6zlQhEydOLHVowLFjx4otCwgIwBldDLwj0pJSKSA/XwlLS2mJBV1l1KjhWMGiFQBUsLBwhK5H+QgCIJU+61m2tCy+3tHREo6O/1thbS1FjRqW8PKy09iuWTNH5OYWISEhR11YxsdnQhD+V4yWx82bz2YEqVlTs9h9+rQIx46lYcyYeuU+FhERiUOrwvXMmTOoWbMmfH190aVLF3h7e8PWVrMHQyKRYOXKlToJSWSOLC2lsLLSbbXYsWNXSCSSCg4XkMDevhskkpIv6WtPQI0aFS2ii6tb1x7+/s744osETJ3aCEVFAlatuoGuXd3g4vJs/HlamhwffngJ4eFN0bSpIx48eIqYmBS0a1cT1atb4NatPKxZcxMtWlRHgwaa49SPHEmDUimge3f3kk5PRERGRKvC9auvvlL/PSYmpsRtWLgSGV6tWrXRpUsIfv/9UBlTYf2TDA4OPfVyYxYAeHvrZvjBzJlNsXLlDXz44R+QSoFOnVwxeXJD9XqlUoV7955CLn92PktLCS5ceIKff76Pp0+VcHOzQadOrnj77brFjn3gwCN06uQCB4cSuoWJiMioSISK38lRpcXHx8PPzw8XLlxAmzZtxI5DJqigQIk//siEnZ2FzntcAeDy5QsYPLg7lErlC3peJQBkqF//BGxtdf8ELWtrAUuXZiEgwAk2NrxTn4iIKs8wc1cRkcE0b+6HZcu2QiaTlfEoYxkAGWrX3qGXohUA3nxTATu7F29HRERUXpUqXM+cOYPIyEhMnToVN/5/wsb8/HzEx8fz0ahEIurR4w18//1hdO7co4SxqxI4OPRE/fon4OjYTy/nb9tWiddfL3zxhkRERBWg1RhXhUKBt956C7t374YgCJBIJOjTpw9efvllSKVS9OjRA1OnTsXMmTN1nZeIyql5cz+sXRuFhw/voV+/DsjOzoRU6oQGDeL1NqYVAHx9lQgLk0Pn93oREVGVp1WP6+zZs7F3716sXbsWCQkJGuPobGxs8Oabb2L37t06C0lE2qtVqzZsbZ9ds5dK7fVatAYGFmHmTDn+8bA5IiIindGqcP3+++8xfvx4jB07Fs7OzsXWN23aFLdv3650OCIyDVZWwLhxCkyapEApT08mIiKqNK2GCqSmpqJ58+alrpfJZMjPz9c6FBGZjtq1VfjwQzlq1+YEJUREpF9aFa61a9fG9evXS11/6tQpNGzYsNT1RGQeOnQowoQJCtjYiJ2EiIiqAq2GCgwZMgRff/01YmNj1cue37m8YcMG/PDDDxg+fLhuEhKRUerbtxBTp7JoJSIiw9Gqx3XmzJk4c+YMOnfujKZNm0IikWDq1KnIyMjA/fv30bNnT0ydOlXXWYnISPTtW4i33y7kzAFERGRQWvW4WllZITo6Glu2bEH9+vXRpEkTyOVytGjRAlu3bsWvv/5axsTnRGTKAgOLWLQSEZEoytXjGhYWhrfffhutW7cGACQlJcHV1RXDhg3DsGHD9BqQiIxHixZKjB+vYNFKRESiKFeP64oVK3Dt2jX1+3r16mHnzp16C0VExqdlSyWmT5fD0lLsJETmqUheJHYE0qUizq6kD+XqcXV3d9eYl/WfDxwgIvPXvXsRRo9WwEKrUfFEVB6qQhXAh3eYD5UcgJ3YKcxOuX4M9erVC59++ikOHToEJycnAMAXX3yBHTt2lLqPRCLh07OITJylJTBmjAKvvcaeICJ9E1TsFDIrqkKxE5ilchWuK1euhJubG44ePYorV65AIpHg3r17yMjIKHUfCQfBEZk0FxcBn3wiR/36KrGjEFUJKiW/1syKSiF2ArNUrsLV3t4eixYtUr+XSqVYsWIFhgwZordgRCSepk2V+PhjOapXFzsJUdWhKmThalaKnoqdwCyV6+asAQMG4MSJE+r3R48eRffu3fUWiojEExBQhDlzWLQSGZpSoRQ7AumSkjdn6UO5Ctfdu3cjKSlJ/b5bt244fPiw3kIRkTi6dClCWJgCVlZiJyGqeooKOJbcrBTmiJ3ALJWrcPXy8sLFixfV7wVB4BhWIjPTvn0R3n9fAalWjyUhosoqfMqbecxKUa7YCcxSuX5EvfXWW1i2bBnq1KmDFi1aAACmT5+OFi1alPpq2bKlXoM/t3r1anh7e8PGxgbt2rVDXFxcufbbsWMHJBIJ+vXrp9+ARCagcWMVJk1i0UokpqKn7HE1Kyxc9aJcN2dFRkaiYcOGOHr0KFJTUyGRSGBvb4+aNWvqO1+ZoqKiEBYWhnXr1qFdu3ZYsWIFgoODkZCQADc3t1L3S0xMxEcffYROnToZMC2RcXJyEvDxxwUcHkAkMg4VMDN8AIFelKtwlclkGDt2LMaOHQvg2awCs2bNEn1WgWXLlmHMmDEYOXIkAGDdunXYt28fNm/ejOnTp5e4j1KpxNChQzFv3jycOHECmZmZBkxMZHw++ECOGjXETkFELFzNDHtc9UKrC4N37twR/RK7QqHAhQsXEBQUpF4mlUoRFBSE2NjYUvf79NNP4ebmhnfffbdc55HL5cjOzla/cnP5H5HMx+uvF6FFC07BQ2QMCvM5xtWsFOUAAr+/6ppWD3CsW7eurnNUWHp6OpRKJdzd3TWWu7u74/r16yXuc/LkSWzatAmXLl0q93kiIyMxb968ykQlMkrVqwsYMoQTZBMZC0Uevx7NiqAE5BmAjYvYScxKuXpcpVIpLCwsoFAo1O9lMlmZLwsje6h5Tk4O3n77bWzYsAEuLuX/TxQeHo6srCz16/jx43pMSWQ4oaGFsONjtImMhjxLLnYE0rX8pBdvQxVSrupyzpw5kEgk6mL0+Xsxubi4QCaTISUlRWN5SkoKPDw8im1/69YtJCYmok+fPuplKtWzLnwLCwskJCSgQYMGxfaztraGtbW1+r2Dg4OuPgKRaGrWFNCtG8fTERmTp0/4pCWzk3MTcG4jdgqzUq7Cde7cuWW+F4OVlRX8/PwQExOjHm+rUqkQExODiRMnFtu+SZMmuHz5ssayWbNmIScnBytXrkTt2rUNEZvIKISEFMLSUuwURPRP+em8C93sZP0F4D9ipzArxnU9v4LCwsIwYsQItG3bFv7+/lixYgXy8vLUswwMHz4cXl5eiIyMhI2NDXx9fTX2d3JyAoBiy4nMmUQCdO3KR0sSGZv81Hw+4MfcPPlD7ARmp8KFq1wux7fffotDhw7h1q1byMnJQbVq1dCwYUOEhIRgyJAhsDLQhJChoaFIS0vDnDlzkJycjFatWiE6Olp9w1ZSUhKknFGdSEPjxkrUqCGIHYOI/qXwaSHk2XLYVLcROwrpytMHwNMUwNb9xdtSuVSocL18+TL69u2Lu3fvQhAEVK9eHQ4ODkhNTUV8fDx+/PFHLFy4EHv27EHTpk31lVnDxIkTSxwaAADHjh0rc9+tW7fqPhCRkWvdmtOzEBmr7PvZLFzNTfopoPYAsVOYjXJ3R+bm5uKNN95ASkoKFi5ciHv37uHJkycafy5YsAAPHz5Enz59kJeXp8/cRKSlpk05TIDIWGUlZYkdgXQt+TexE5iVcheuW7ZsQVJSEvbt24fp06fDy8tLY72XlxfCw8Px66+/4s6dO+zNJDJSDRqwx5XIWGXeyRQ7Auna43NA/gOxU5iNcheu+/btQ48ePdClS5cyt+vWrRu6d++OX3/9tbLZiEhHXFzcUaNGLdjZucOGVyGJjNbjG4/FjkA6JwB3vhE7hNkod+F6+fLlFxatz3Xr1q3Y1FNEJJ6ffz6Ozz+/gdDQ02JHIaIypF1JgyDw5kmzc38XkJsodgqzUO6bszIyMkqc2L8k7u7uyMjI0DoUEemHlxd/IBIZo7Zt2+LOlTtwkDqg161ecG7oLHYk0iVBCVxZBPivAySc7agyyv2vJ5fLYVnOGcv/+XhYIjIeXl4c32ouFEp+jzUnycnJyCjIQHZhNu4cuSN2HNKHJ/HA3R1ipzB5FZoOKzExEfHx8S/c7s4dftERGSN3d/a4motcRS6cbdkrZ44Sdieg9butIZWxZ87sJKwCnFoATnzwkbYqVLjOnj0bs2fPfuF2fPIHkXFydWWPq7lQCSoUqYpgITXpByBSCXJTcnFj/w007tNY7Cika0IRcPEjIOAbwMZN7DQmqdzf8bZs2aLPHESkZxIJUL262ClIl+RFclhYsXA1R+fXnEe9bvVgZW+YJ1GSbrVt2xbJ92/Aw7EI51f964FM8nTgwhSg3UbAwk6UfKas3N/xRowYoc8cRKRntrYC+ARk86JQKmAPe7FjkB7kpeXhzPIz6Dyrs9hRSAvJycl4kJINFJVyb1DO38DFjwG/FYC0fPcP0TP8MUZURViwY87s8AYt83Z913XcjL4pdgzSl8dngT/nAAKHcFUEC1eiKkLF741mR66Uix2B9Oz3+b8j9a9UsWOQviQfBi5/yuK1Ali4ElURSiVvmDQ3BUUFYkcgPSuSFyF6SjQyEzPFjkL68nAvcHkuoFKKncQksHAlqiLY42p+chW5YkcgAyjILMC+CfuQ8zBH7CikLw/3A39MB3gV5YVYuBJVEbwxy/xkFmSKHYEMJC81D3vf24vcFP6yYrZSjgLnJgCKTLGTGDX+KCOqIiwt+fABc5Oeny52BDKgnIc52Dt2L3KTWbyarcw/gNjhQPbfYicxWpW6z/jq1au4ffs2njx5AkEo/kNx+PDhlTk8EemQjY3YCUjXHuU8EjsCGVj2g2zsGb0Hvdb2QvXanJjZLD19CJx5B/D5BPB649kk3KSmVeF669YtDBs2DHFxcSUWrAAgkUhYuBIZEUdH9riam/vZ98WOQCLITc7Fnnf3oOfqnqj5ck2x45A+qBTAX/OB9LNAs3DAsprYiYyGVoXruHHjcPnyZaxYsQKdOnVCjRo1dJ2LiHTMw4OFq7lJzEoUOwKJ5GnGU+wduxchK0Pg3sJd7DikL8mHng0faPEp4OwndhqjoFXheurUKcyYMQOTJk3SdR4iIiqnu5l3oVAqYCXjY0GrInmOHPvG70PQkiDU6VBH7DikLwUpQNx7gPcQ4OX3gSr+9a7VzVkuLi6ozoeeExGJSiWocOPxDbFjkIiK5EU4OPUgbuzn/wPzJgCJ3wGxw4Dsqt3WWhWu7733Hr799lsoleJPlrt69Wp4e3vDxsYG7dq1Q1xcXKnbbtiwQT20oUaNGggKCipzeyIiY3c59bLYEUhkgkrA0TlHceXHK2JHIX3Lvf1s1oH7u8VOIhqthgo0atQISqUSLVu2xKhRo1C7dm3IZLJi2w0YMKDSAcsSFRWFsLAwrFu3Du3atcOKFSsQHByMhIQEuLm5Fdv+2LFjGDx4MNq3bw8bGxssXrwYPXr0wJUrV+Dl5aXXrERE+nAp+RLe8n1L7BhkBE4tPgVBKcD3LV+xo5A+CYXPbtzKvQM0/qDKzTqgVeEaGhqq/vtHH31U4jYSiUTvPbLLli3DmDFjMHLkSADAunXrsG/fPmzevBnTp08vtv13332n8X7jxo34+eefERMTwxkQiMgknX94HipBBamE03ITcHrpacisZWjav6nYUUjfEr8FlE8Bn+lVqnjVqnA9evSornNUmEKhwIULFxAeHq5eJpVKERQUhNjY2HIdIz8/H4WFhXB2di51G7lcDrn8f49gy83lxM9EZDwyCzLxR/IfaO3ZWuwoZCROLjoJa0dr1H+tvthRSN/u/QxYOQMvjxM7icFoVbgGBgbqOkeFpaenQ6lUwt1dcxoQd3d3XL9+vVzH+OSTT1CrVi0EBQWVuk1kZCTmzZtXqaxERPp04OYBFq6kJggCjs4+CjsXO3i09BA7DunbrQ1AdR/ArZPYSQyi0teWrl69igMHDuDAgQO4evWqLjIZxGeffYYdO3Zg586dsCnjkULh4eHIyspSv44fP27AlEREL3bg5gFkFWSJHYOMiFKhxKEPDyHnYY7YUcgQriwCivLFTmEQWheuu3fvRoMGDdC8eXP07t0bvXv3RvPmzdGwYUPs2bNHlxlL5OLiAplMhpSUFI3lKSkp8PAo+zfMpUuX4rPPPsOhQ4fQokWLMre1traGo6Oj+uXg4FDp7EREuvS08Cm2/bFN7BhkZAoyC3Bw6kEU5heKHaVKSUpKQl5eHgAgr0CFpFSF/k8qTwOSftT/eYyAVoXr/v37MXDgQADAokWLsHPnTuzcuROLFi2CIAgYMGAAoqOjdRr036ysrODn54eYmBj1MpVKhZiYGAQEBJS635IlSzB//nxER0ejbdu2es1IRGQo2y9vx9+P/xY7BhmZjFsZ+G36b1AVqcSOYvbi4uLQp08feHt7IzMzEwCQmaeE9zuX8cbcmziXkKffAEk/AIJu2rmwIBtXDy7AiXW9cOLr3rgeswRFiqdl7vPwr19x8ZcpOLGuF4592RWF8uL3BMVufQvHvuyq8bp7fnuFsmk1xnX+/Plo0aIFTpw4AXt7e/XyN954AxMnTkTHjh0xb948hISEaHP4cgsLC8OIESPQtm1b+Pv7Y8WKFcjLy1PPMjB8+HB4eXkhMjISALB48WLMmTMH27dvh7e3N5KTkwEADg4O7EklIpNWpCpCeEw4tvbdimrWfK45/c+90/dwbN4xdJ3XFRJp1bn73JB++eUXhIaGQhAECILm47UFAdh/LgsHzmchKrw+BnSooZ8QBSlAdgJQvXwzSlz8ZQo8mobAs2nxWu3awYWQ5z9Gy36fQ6VSIuG3xfj76FL4BM8u9XjKIjmc6/jDuY4/7sRuKHU773Yj4dmst/q9hZVtufI+p1WP659//okRI0ZoFK3P2dvb45133sGff/6pzaErJDQ0FEuXLsWcOXPQqlUrXLp0CdHR0eobtpKSkvDo0SP19mvXroVCocCgQYPg6empfi1dulTvWYmI9O1u5l1MOzwN8iL5izemKuXmgZv4fcHvEFTCizemComLi0NoaCiUSmWp04AqVYBSCYRG3tZvz2tO5a+65GXcRUZSHBp3+xiOHj5wqtUcDQMnI/Xvo5Dnppe6X+1Wg1C37RA4eviUeXyZlR2s7Z3VL5llxQpXrXpcbWxskJGRUer6jIyMMm940qWJEydi4sSJJa47duyYxvvExET9ByIiEtG5h+cw9eBULO2xFHaWdmLHoXL455hIuUqODEUGnK1Kn6ZRWwl7EiCoBATOCWTPqw4tWLCgxJ7WfxPwrPd1wY5H2B3RUD9hFJW/STM7+QosrB3g6N5YvaxGbT9AIkF2yjW4OlRu9oKkC9tx99x/YePgBrfGr+GlVm9CKi3+EKvSaFW4duvWDStXrkRISEix8aRnz57FqlWr0KNHD20OTURElRT3IA5jfx2LlSErUdOupthxqBRxcXGYP38+9u3bpy56niqfYsblGWhevTl6efaCt723Ts/5995nPXK6Ll5zM3Px3dzvcCnmEiQSCdq+3hZD5gyBjX3pnVjHth/DmT1ncPfKXRTkFmD1H6th56j5y9bK0SuRdC0J2enZsK9uD58OPnhz+puo4a6ny+0VlJSUhL17976waH1OqQJ+PZuFpFQF6rhZ6SFR5XvUFXkZsLTV/PeVSmWwtHGEIr/0TsvyeKnlADi4NoKlTTVkPbqCO7EboMh7jIad3i/3MbQqXJcsWYKAgAB07NgR/v7+aNz4WVWekJCAuLg4uLm5YfHixdocmoiIXqBt27Z4+Oghsiyy0HRmyePZrqdfx8jdI7G211p4OfKR1samzDGREPBX1l/4K+svjKk/Bm1qtNHpuf/e+zfsXOzgP9G/Qvt99tZn6DioIzoO6lhs3fop65GZmomPvvkIyiIlNk3bhK0ztuK9le+VejxFgQLNA5ujeWBz/LTkpxK3aRLQBL3f743qrtXxJOUJohZFYfWE1Zj186wKZVcpCyGodP80z8OHostdtD4nCEDMpWy80133v1QKKmWpY0DvnvsWdy/87wmiqiIFspOv4sbxlepl/kO36jzTP9Vu/R/13x1cGkAqs8DfR5ehfvsxkMrKV8hrVbjWq1cPf/75JyIjI3HgwAFERUUBAOrWrYsPPvgA06dPh5ubmzaHJiKiF0hOTsajh49g6WRZ5nYPcx5izK9jsPGNjahVrZaB0tGL/HNMZGlFjwrP7g7fcHsDPmnyic57Xi9tvYTa7WvDs41npY/18OZDXD5+GXN2z0G9FvUAAMPmDsPykcsROiO01N7RHqOeXZm9fqb0hwYFvxus/rvLSy7o9V4vfDnuSxQVFsHCsnwljEpZiOyU61AqdD/Paeq965BKpVCpyn83v1QCZOY81UseeXYKbJWFkMqKf2+o1fwNuL7cVf3+2qEFcG3QGS4NOquXWdm7wMreGYVPn2jsq1IpUViQDSs73Q5hcXRvCkGlREF2Muxq1CnXPloVrgDg5uaG5cuXY/ny5doegoiI9Cw1LxXj943Hpjc2wcXORew4hPKPiXxu/6P9mNBwgs5zXNx8USeF6834m7BztFMXrQDg08EHEqkEty/dhl+wX6XPATwbjhC7OxYN/RqWu2gFnvVCKhX5kMosSyzoKsPRqUaFilYAUAmAo50FIKn0M6D+RYBKpXzWs1zC57S0cYSljaP6vdTCGpZ2NWDnpHlFxtGjGYrkuchJTUA1t2dX1DPvxwOCAEf38s1YUF656TcBibTY0ISyaF24EhGRaXiQ/QDj943Hul7rOOZVZBUdE6mCCn9m/amXG7YexD1AYX4hLO0qV8xlp2XDsaajxjKZhQz2TvbISqv8zUI/fPYDYr6JgeKpAg1aN8CUTVO0Oo5UZgmphW7HlXYN7AiJRFKh4QISCdCtpT0kEt3eICcIACTlv8mpNPbOdeFcxx8JR75Aoy5TIaiKcOP4Krg16gprh2e//Mpz03Bp54do2j0cjh7Pill5XgYU+Rl4mvUAAJCXfhsyKzvYVHODpY0jsh5dQXbKNdTwagWZlR2yk6/g5ok1cG8cBEub8k/hV67CddSoUZBIJFi/fj1kMhlGjRr1wn0kEgk2bdpU7iBERKQ/d57cwZhfx2B1z9XwrFb5XjZzV6QoKnVqo8qIPqDFmEgIuJZ1De1rttdpFkEl4MmdJ3BrVvLQvr2r92Lvmr3q94oCBW5dvIVvI75VL1t4aKFOM5Xk9bGvo/N/OuPxg8fYvWo3Nny4AVM2TdF54aeN2i/VQkj3LjgU83u5/r/IpEDPtg6o46qPG7MAQVZ8mlJtNA2eiRvHV+KPXR8CEilcG3RCw86T1etVKiWeZt6D8h9T7z38aw/uxv3vCX6XfvkAANA46BN4Ng2BVGaJ1L+PIPHsVgjKQtg4euKlVoNQu/WbFcpWrsL1yJEj6jEcMpkMR44ceeF/GGP4D0VERP+TlJWEUXtGYVmPZWjqqttLfuakSFGE23/cRkF+gc6PfevKLUglUqgq8IQjCSTIeZqDgjzd50m6lgTnl51hYVW8HOgytAte6fWK+v36KevhF+IHv5D/Xfp3cneCo6sjsh9na+yrLFIiLzMP1V2rVzpjNedqqOZcDR71PeDZ0BMftv8Qty7eQsM2eppSqoKmhU3A4SMnXtjzKsGz3tYZofq7B0hp81K5t209YEWp6yxtHMt82ICtowe6TDqqsaxeu3dQr907pe5Tza0R/P6zptz5SlOuwvXf859yPlQiItOUlpeG0b+OxicdPkGfRn3YyVACpVKJgvwCWFpalljQVUYNpxoVKlqBZz2udhZ2kMp0OyZSUAkQrAQolUpYlFAOODg5wMHpf0+VtLSxhKOLI9y93TW2a9imIfKz85F4ORHezb0BANdOX4OgElC/VX2dZwae/XJhLPxaN8fW9cvwztgwCIJQYs+rTPqsaN0xrTZeebliE+6Xl2DjAZW1+d+EqdVXQVJSEp4+Lf2ZtU+fPkVSUpLWoYiISH/kRXJ8evxTzDoyCznyHLHjGC0LKwtYWlvq9NWpY6cK/7IggQSNHBpBIpHo9GVhZwErx8pfsq7VsBaaBzbHlvAtuH3pNm6cv4FvI76Ffx9/9YwCT5KfIPy1cNy+dFu9X1ZaFpKuJiElMQUAcP/6fSRdTUJu5rNn3N+6eAu/bfsNSVeTkH4/HVdPX8W6D9bBra4bGrRuUOncuvRGrx44vPd79Hitc7H2lUieDQ84saQ++gU4lnKEyit0e/3Zycyc1tNh/fe//8WQIUNKXL9nzx4MGTJEL+ODiIhINw7eOog/U/9E5GuR8HXzFTtOleDl6YVunbvh2Mlj5foZKYUUzRyawdlS90/SsvfU3Q1CY1eMxbcR3+LzYZ9DIpXAL8QPQyOGqtcri5RIvp0MRYFCvezod0exe+Vu9fvI0EgAwLufv4uOgzrCytYKFw5ewK4VuyDPl8PJzQnNA5ujz8Q+sLTW7ewAuuDXujmi/rsW9+4/RIdu/ZCZlQ0neyniVzXQ25jW51R2dVHo0g0oKtTreYyBVoXriwaWFxYWQirV9TQPRESka49yHmH0ntGY0WkG3mj8hthxqoRJ4ybh+Knj5b4bPdg1+IXbaMOhlsOLN/qH6Tuml34sJ4cyHzbg8pILttzZorGs35R+6DelX6n71G5SG59s/6RCGY1B7Zdqwc7OFplZ2bC3keq9aBUsHCBvGAZILQGwcFXLzs5GZmam+v3jx49LHA6QmZmJHTt2wNOTd60SEZmCIlURPj3+KZJzkzGmzRiOe9Wzlr4t8eWSLzFp2qRSx0RK/38k36iXRqGubV295Khev/I3TpG4BJkd5I1mQLB9CShSvHgHM1DuwnX58uX49NNPATybMWDKlCmYMmVKidsKgoAFCxboJCARERnG+gvrkZybjBmdZsBCymm+9SkkKAQ/ffMTvvz6Sxz5/YhGz6sEEjRzaIZg12C9Fa2QAq6tXPVzbDIIwbI6ChrPgmCv2xvgjF25vzP16NEDDg4OEAQB06ZNw+DBg9GmjebzkyUSCezt7eHn54e2bdvqPCwREenXnoQ9eJD9AEu6L0F1G/bI6VNL35bY+OVGPHj0AD0H9UR2TjZspbaY3mC6Xsa0/tNLnV6CnasdnuaVfqM1GS+V7UuQN54Bwdr9xRubmXIXrgEBAQgICAAA5OXlYeDAgfD15WB+IiJzc+HRBbyz+x2sDFmJOtXL9/xw0p6XpxfsbO2QnZMNa6m13ovW6vWrw3ekLwRU7EEIZByUTq0hbzAVsNDNwwZMTYXvoMrPz8eqVatw4MABfeQhIqIyJCUlIS8vDwCgkqugyNDPuLZ7Wffwzq53cOHhBb0cn8Th1toNAbMDYGHDoSCmqLDWQMgbzaiyRSugReFqZ2cHCwsL2NtX3X80IiJDi4uLQ58+feDt7a2+UVb5VInLMy7j5uqbyEvM0/k5s+XZmLB/An659ovOj52Zm4kpX09B8/HN0WJCC3yy+RPkFZT9GeSFcsz+72y0ntgazd5rhvFfjUdaVpp6/dWkq5i8bjLah7VHk7FNEDQjCFsObSnjiFWIFGgyuAle+fgVWNiyaDU1gswG8pc/RmHtIYCkas/apNWnHzhwIH766acKP2+ZiIgq7pdffkGHDh1w4MCB4t93BSDrryxcX3wdT+Kf6PzcSpUSi04swqb4TRXe963P3sJPJ38qcd2U9VPw94O/8c1H32DTlE2IS4jDjK0zyjze/O/n48ilI1g9YTV2TN+BlMwUjP9qvHr9X4l/oWa1mlg2dhkOLTiE93u/jyU/L8G237aVcVTzZ+Nsg/YR7dGwb0NIpJwxwtQI1q4o8FkIpfOrYkcxClr92vXWW29hwoQJ6Nq1K8aMGQNvb2/Y2hZ/hNm/b94iIqKKiYuLQ2hoKJRKZemdBf//BNHbG26jySdNYO+t+ytia8+vRTO3Znj1pcr/8Lz58CaOXz6O3XN2o0W9FgCAucPmYuTykZgROgPuNYrfcJKdn40ffv8BK8atQHuf9gCAz9/9HEEzgnDx1kW0btAa/+n8H4196rjVQfyteBy8cBAjgkZUOrcpqtmsJtp80AbWjtZiRyEtKKs1gfzljwFLJ7GjGA2tCtcuXbqo/37ixIli6wVBgEQi4ZOzTFRSUhJiYmKQk5ODatWq4bXXXkOdOrxBg0gMCxYsgCAI5b7C9Wj/IzSc0FAvWX66+pNOCtf4m/FwtHNUF60A0MGnA6QSKS7dvoRgv+IT7v+V+BcKlYXo2KyjelkDzwaoVbMW4m/Go3WD1iWeKyc/B9UdqubsCHVeqwPfUb6Qyqr2pWVTVeQSCEW99wCpfh9gYGq0Kly3bOGYIXMUFxeH+fPnY9++fRAEAVKpFCqVChKJBL1798bs2bPxyiuviB2TqMpISkrC3r17yz8sSwVk/ZkFRYYCVs66/2F3I+OGTo6Tlp2Gmo41NZZZyCzgZO+kMWZVY5+sNFhZWMHRTvNZ7y6OLqXuc+HGBew7tw+bplR8mIOpazSoEV4e+DIfJmGiFC8NQVGtAQDbrxitCtcRI6rmJRdz9ssvvyA0NFSjZ0elenb9URAE7N+/HwcOHEBUVBQGDBggZlQio6MoUujlCtOB6BLGtL6IAGRdy0LN9jVfvG0FZeRnlLl+9d7VWLN3jfp9gaIAF29dRMS3EeplhxYe0nmukiTcT8DYVWMx+Y3J6Ozb2SDnNBbN3mmGeiH1xI5BWhCk1lA0mASlc4DYUYxWpW8tzM3Nxb179wAAtWvXhoNDxZ59XFmrV6/G559/juTkZLRs2RJffvkl/P39S93+xx9/xOzZs5GYmIiXX34ZixcvRs+ePQ2Y2PiUZwydUqmERCJBaGgoTp8+zZ5Xov+nKFLgj9t/IL8gX+fHvnLrCiRSCQRVBYpXCfA05+kL79DXho3EBooiBawsSu7NHdplKHq90kv9fsr6KQjxC0GIX4h6mbuTO1wdXfE4+7HGvkXKImTmZcK1eslPc3Kt7gpFkQLZ+dkava7p2enF9rnx4AaGfj4Ub3V5C5PemFThz2mqJDIJWr7XEi91eknsKKQFlbU75C9/DMGev3SUReuBL+fOnUPXrl1Ro0YN+Pr6wtfXFzVq1EC3bt1w/vx5XWYsVVRUFMLCwhAREYH4+Hi0bNkSwcHBSE1NLXH706dPY/DgwXj33Xdx8eJF9OvXD/369cNff/1lkLzGqrxj6J5vw8f5Ev2PUqlEfkE+LC0tYW9rr9OXUw2nihWtACAAFnYWkEllOn1JJBLUdahbZs+yk4MTvN291S8bSxu4OLpoLLOQWaBNwzbIzs/G5cTL6n1PXzsNlaBCq/qtSjy2r7cvLGWWOHX1lHrZrUe38PDxQ7Rp+L8bgf9+8DcGLxmMgR0G4uOBH1fs386EWdpb4tWZr7JoNVFKJz8U+C5h0VoOWvW4nj17Fl26dIGVlRVGjx6Npk2bAgCuXbuG77//Hp07d8axY8fK7PnUhWXLlmHMmDEYOXIkAGDdunXYt28fNm/ejOnTpxfbfuXKlQgJCcHHHz/7ZjZ//nwcPnwYX331FdatW6fXrMaqomPolEolfv31VyQlJfGGLaJ/sLKwgrWlbu/c7tipIyQSScWGC0gAh0YOOh/bKIUULV1a6uRYDWs1RGDzQIRvCceCEQtQpCxCxLcR6OPfRz2jQPKTZAxdMhRfjPkCreq3gqOdI/7T+T9YsGMBnOyd4GDrgLnfzkWbBm3UN2Yl3E/A0CVD0cm3E0YHj1aPfZVKpMXG1JoTBy8HvPLxK7D34PzqpqjwpVAU1hpU5ednLS+tCteZM2fCy8sLJ0+ehIeHh8a6uXPnokOHDpg5cyYOHz6sk5AlUSgUuHDhAsLDw9XLpFIpgoKCEBsbW+I+sbGxCAsL01gWHByMXbt2lXoeuVwOuVyufp+bmwsAKCoqQmFhYSU+gXE4ePBghcfQCYKAQ4cOcayzlgoLlSgqKkR+vhKFheb7jaqwUIWiIhUKCwshk6nEjqM3hYWFKCosQj7yUVRYpNNjO9ZwRPvA9oj9PVY95rxMEsDexx4yRxlURbr9N7eR2aCFUwsUFhbCQlq+Hx2CIECpVJb4vfLzUZ/j0+8/xbAlwyCRSBDcJhiz3pql3vZpwVPcTr6N3Pxc9bLpg6ZDEASM/2o8FEUKdGzWEXOHzFWv33t2Lx7nPMau2F3YFbtLfS6vml44Gnm03J+1sLAQhUWFQD6e/WkAKkGl/rNIVf7/Ry6tXNBibAtIbCXIz6vYcJUiRREKiwpRWFgIqYX5fi9SFhaisLAISlU+pDLDtKfwj3tEFIWlfC1KLVHg/R6UNdoBBU8rfU6VshAq5bPaRAVZpY9XXpaWlgY7FwBA0IKDg4OwZMmSUtcvXrxYcHBw0ObQ5fbgwQMBgHD69GmN5R9//LHg7+9f4j6WlpbC9u3bNZatXr1acHNzK/U8ERERAgC++OKLL7744osvvv71MjStelylUimKikr/jVCpVEIqNY/f3sLDwzV6aS9duoTAwECcPXsWrVuXPG+gKdm6dSvGjh1b4f02bNjAHtdKKCxUQakUxI6hdzKZBJaW5vG9oCz6mlXgud27d2PkiJEQBKHkntf/HxXg/a43nFo76fz8Y1uPxdDmQyGTyUq9McvcFCmKDDoXeeMmjfHw0UNUt6iORb6LytxWIpMg4OMANHy98vP1ymQyWFiZ/yNgVcpCCCrDtWeDlxvj4cNHqOVsgTtbmxfP4xsBuHfT+XklUhmkMgP3gBqYVv9b27dvj9WrV2PIkCGoW7euxrqkpCSsWbMGHTp00EnA0ri4uEAmkyElJUVjeUpKSrHhC895eHhUaHsAsLa2hrX1/8atPZ81wcLCwvDd43oQHBxc4TF0EokEPXr0MIvPLxb+05kXfX8tvD30bTRp1ATz588vPiZdAlRvUR2ePT318sSsTzp8gjebvanz4xo7Q39/e/4oVolEAgtZ6T+aLW0t0X1pd7zUjjdhVYih2/P/x6tKJBJY/fuX97pvAfX6GjSPOdGqK2TRokXIyspCkyZNMGTIEMydOxdz587F4MGD0aRJE2RlZSEyMlLXWTVYWVnBz88PMTEx6mUqlQoxMTEICCh5/rOAgACN7QHg8OHDpW5fFdSpUwe9e/eGTFa+8TAymQx9+vThjVlEBvbKK69gz549SExMhJOTEwBAZitD80XN0XBCQ70UrbM6z6qSRauxsrCxwOtfvs6i1ZTZ1gIaTRQ7hUnTqse1devWOHv2LGbOnIk9e/YgP//ZgHA7OzuEhIRgwYIF8PHx0WnQkoSFhWHEiBFo27Yt/P39sWLFCuTl5alnGRg+fDi8vLzURfQHH3yAwMBAfPHFF+jVqxd27NiB8+fPY/369XrPasxmz56NAwcOvLDnVSKRQCKRYNasWQZMR0T/VKdOHdjb2yMzMxNSa6lenpAFABNemYB+Tfrp5dhUcRKJBK8teg0erUq/QkgmoMlUQGYjdgqTpvXAFh8fH+zcuRMqlQppac+mHHF1dTXo2NbQ0FCkpaVhzpw5SE5ORqtWrRAdHQ1392fTqSQlJWnkad++PbZv345Zs2ZhxowZePnll7Fr1y74+voaLLMxeuWVVxAVFaV+clZJ47pksmfzOP7www98+ACRmQtpGIKRrUaKHaNK8fDwwNPHT+EgLfkhPq1GtkLdznVLXEcmokYbwK2L2ClMnkSoyODGEgiCoFG4mvtzkePj4+Hn54cLFy6gTZs2L97BhJw7d05jDJ1UKoVKpYJEIkGfPn0wa9YsFq1ERuCll17CgwcPYOlkiRaLW+j02PVr1Me2fttga2mr0+PSi0UNiEJWUlax5TUb1UT/b/qb9ZRV5ub516hXTUvc//b/v0Zf3QI4Fb9RiypG6x7Xq1evYs6cOTh48KDGUIHg4GDMnTu3yvdimqLnY+iSkpJw5MgRZGdnw9HREd26deOYVqIqwM7SDp8Ffcai1YhIJBJ0ntWZRaupc2nPolVHtCpcT5w4gddffx0qlQp9+/ZFo0aNAAAJCQnYs2cPDhw4gOjoaHTq1EmnYckw6tSpg3feeUfsGERkQA5WDlgevBz1a9QXOwr9g89/fODq4yp2DKqs+pw+Ule0KlynTp0KNzc3HD9+HLVr19ZYd+/ePXTu3BlhYWE4d+6cTkISEZH+NHVtisjXIvGSI+9WNybValWD//v6fXQ66YeHhwdQlAMPxyLAvt6z8a2kE1pde7hy5QomTJhQrGgFgNq1a2P8+PG4cuVKpcMREZH+WEgtMOGVCdjSdwuLViPUeXZnWNpx0mdTdP78edyP+QTnVzUFar0OmPn9P4akVY9r3bp1IZfLS12vUChKLGqJiMg4vFzzZczvOh8NnSv/9CXSvUZ9GsHrFS+xY5AuuHcRO4FZ0arHdc6cOVi1ahUuXbpUbN3Fixfx5ZdfYu7cuZWMRkRE+jCg6QBs67eNRauRsrC24BABc2Ht8myoAOmMVj2uZ86cgbu7O/z8/NC+fXs0bPjsm9+NGzcQGxsLX19fxMbGIjY2Vr2PRCLBypUrdZOaiIgqTCqRYnrH6RjQdIDYUagML/d+GXYudmLHIF1wasFhAjqmVeH61Vdfqf9+6tQpnDp1SmP95cuXcfnyZY1lLFyJiMRja2mLz7t/jldfelXsKPQCjXo3EjsC6YpjE7ETmB2tCleVSqXrHEREpCeO1o5YGbISzd05j6Sxs61hC7dmbmLHIF1x4PRyuqb1AwiIiMj4uTu4Y1XIKjRwbiB2FCoHj9YekEh5adlsOHB8q65VqnC9c+cODhw4gLt37wJ4NtvA66+/jnr12FBERGJr5dEKi4MWo6ZdTbGjUDm5+bK31WxIZIAtZ4bQNa0L1w8//BArV64sNmxAKpViypQpWLp0aaXDERGRdoY2H4pJ7SbBQsoLa6akZmP+kmE2bGsB/PrTOa2mw/riiy+wfPlyDBgwALGxscjMzERmZiZiY2MxaNAgLF++HMuXL9d1ViIiegELqQXmd52PqQFTWbSaoBr1aogdgXSFva16odV3tQ0bNuCNN97ADz/8oLG8Xbt22LFjBwoKCvD1119j6tSpOglJREQvJpPKsCx4GdrXbi92FNKCzErGabDMiY2r2AnMklY9romJiQgODi51fXBwMBITE7XNREREWpjWfhqLVhNm52rHG7PMiWV1sROYJa0KVzc3N/zxxx+lrv/jjz/g6srfNIiIDMXfy58PFjBxtjVsxY5AuiRje+qDVoXrm2++iY0bN+Kzzz5DXl6eenleXh4WL16MjRs3IjQ0VGchiYiobBP9J0LCJ/SYNBsnG7EjkC5JrcROYJa0GuM6f/58XLp0CTNmzMCcOXNQq1YtAMDDhw9RVFSErl274tNPP9VpUCIiKlkzt2bwcfUROwZVkrWjtdgRSJf4i6ReaFW42tnZISYmBrt379aYxzUkJAQ9e/ZEnz59+Js/EZGeeHh4QCWokGWRBQDo2bCnyIlIF2ydeWnZvGh1UZteoMKFa35+PoYNG4aBAwdi6NCh6Nu3rz5yERFRKc6fP4/0/HSEfBsCAOhWr5vIiUgXWLgSvViFfx2ws7PDb7/9hvz8fH3kISKiCvBx9YGrPW+GNQcsXIleTKt+7I4dOyI2NlbXWSokIyMDQ4cOhaOjI5ycnPDuu+8iNze3zO0nTZqExo0bw9bWFnXq1MHkyZORlZVlwNRERLr16kuvih2BdIRjXIleTKvC9auvvsKJEycwa9Ys3L9/X9eZymXo0KG4cuUKDh8+jL179+L333/H2LFjS93+4cOHePjwIZYuXYq//voLW7duRXR0NN59910DpiYi0q1Xar0idgTSEUs7S7EjEBk9iSAIQkV3qlatGoqKiqBQKAAAFhYWsLbW/E1RIpHorTfz2rVr8PHxwblz59C2bVsAQHR0NHr27In79++rZzl4kR9//BHDhg1DXl4eLCzKN9w3Pj4efn5+uHDhAtq0aaP1ZyAiqoz0/HT03t4bx985DmsL9tSZg6dPnnIuV3NSlAdY2IudwuxoNavAwIEDRZ01IDY2Fk5OTuqiFQCCgoIglUpx9uxZ9O/fv1zHycrKgqOjY5lFq1wuh1wuV78vazgCEZEhvVzzZRatZoRPzTI3bE990Kpw3bp1q45jVExycjLc3Nw0lllYWMDZ2RnJycnlOkZ6ejrmz59f5vACAIiMjMS8efO0zkpEpC/1nOqJHYF0iIWruWF76kOFxrgWFBQgKioKn332GTZu3IhHjx7pNMz06dMhkUjKfF2/fr3S58nOzkavXr3g4+ODuXPnlrlteHg4srKy1K/jx49X+vxERLrgbu8udgTSIetq7D03KxYc9qEP5e5xTU1NRfv27XHnzh08HxZrZ2eHXbt2ISgoSCdhPvzwQ7zzzjtlblO/fn14eHggNTVVY3lRUREyMjLg4eFR5v45OTkICQlBtWrVsHPnTlhalj0Y3traWmP8roODQ9kfgojIQOytOH6OiKqWcheu8+fPR2JiIqZOnYpu3brh5s2bmD9/PsaNG4dbt27pJIyrqytcXV88H2FAQAAyMzNx4cIF+Pn5AQCOHDkClUqFdu3albpfdnY2goODYW1tjT179sDGhs+FJiLTZSXjs9CJqGopd+F66NAhDB8+HEuXLlUvc3d3x5AhQ5CQkIDGjRvrJWBJmjZtipCQEIwZMwbr1q1DYWEhJk6ciLfeeks9o8CDBw/w2muv4ZtvvoG/vz+ys7PRo0cP5Ofn49tvv0V2djays7MBPCuYZTKZwfITEemChVSr2xSIiExWuce4JiUloWPHjhrLOnbsCEEQkJKSovNgL/Ldd9+hSZMmeO2119CzZ0907NgR69evV68vLCxEQkKC+glf8fHxOHv2LC5fvoyGDRvC09NT/bp3757B8xMRVRZ7XImoqin3r+tyubzYpfXn74uKinSbqhycnZ2xffv2Utd7e3vjn1PUdunSBVpMWUtEZLTsLTnGlYiqlgpdZ0pMTER8fLz6/fMHDNy4cQNOTk7FtucE/URE+lPNuprYEYiIDKrcT86SSqUlPnRAEIRiy58vUyqVuklpRPjkLCIyBun56UjNS4WPq4/YUYiIDKbcPa5btmzRZw4iIqogDhUgoqqm3IXriBEj9JmDiIgqyM7STuwIREQGVaEnZxERkfGwteSTeYioamHhSkRkojgdFhFVNZy9mojIBDnbOkOC4jfMEhGZMxauREQmSCrhBTMiqnr4nY+IiIiITAILVyIiIiIyCSxciYiIiMgksHAlIiIiIpPAwpWIiIiITAILVyIiIiIyCZwOi0r16NEjPHr0SOwYREREJsfT0xOenp5ixzA7LFwryNPTExEREWb/n1Eul2Pw4ME4fvy42FGIiIhMTmBgIA4ePAhra2uxo5gViSAIgtghyPhkZ2ejevXqOH78OBwcHMSOQ5WUm5uLwMBAtqeZYHuaH7apeXnenllZWXB0dBQ7jllh4Uolel648ovOPLA9zQvb0/ywTc0L21N/eHMWEREREZkEFq5EREREZBJYuFKJrK2tERERwUHlZoLtaV7YnuaHbWpe2J76wzGuRERERGQS2ONKRERERCaBhSsRERERmQQWrkRERERkEli4EhEREZFJYOFKZCQkEkm5XseOHav0ufLz8zF37twKHWvhwoV444034O7uDolEgrlz51Y6hzkz5va8fv06pk2bhlatWqFatWrw9PREr169cP78+UpnMVfG3J4PHz7EsGHD0LhxY1SrVg1OTk7w9/fHtm3bwPuvS2fMbfpv3333HSQSCZ+qBsBC7ABE9Mx///tfjffffPMNDh8+XGx506ZNK32u/Px8zJs3DwDQpUuXcu0za9YseHh4oHXr1jh48GClM5g7Y27PjRs3YtOmTRg4cCAmTJiArKwsfP3113j11VcRHR2NoKCgSmcyN8bcnunp6bh//z4GDRqEOnXqoLCwEIcPH8Y777yDhIQELFq0qNKZzJExt+k/5ebmYtq0abC3t690DrMgEJFRev/99wV9fYmmpaUJAISIiIhy73Pnzh2t9yXjas/z588LOTk5GsvS09MFV1dXoUOHDnpIaH6MqT1L07t3b8He3l4oKirSTTAzZ6xt+sknnwiNGzcWhg4dKtjb2+s+nInhUAEiE6JSqbBixQo0a9YMNjY2cHd3x7hx4/DkyRON7c6fP4/g4GC4uLjA1tYW9erVw6hRowAAiYmJcHV1BQDMmzdPfTnsRZf+vb299fGRqjSx2tPPz6/YJceaNWuiU6dOuHbtmm4/ZBUi5tdnSby9vZGfnw+FQlHpz1ZVid2mN27cwPLly7Fs2TJYWPAiOcChAkQmZdy4cdi6dStGjhyJyZMn486dO/jqq69w8eJFnDp1CpaWlkhNTUWPHj3g6uqK6dOnw8nJCYmJifjll18AAK6urli7di3Gjx+P/v37Y8CAAQCAFi1aiPnRqiRja8/k5GS4uLjo9DNWJWK359OnT5GXl4fc3FwcP34cW7ZsQUBAAGxtbfX6uc2Z2G06ZcoUdO3aFT179sQPP/yg189qMsTu8iWikv37stWJEycEAMJ3332nsV10dLTG8p07dwoAhHPnzpV67MpctuJQAe0Ya3s+9/vvvwsSiUSYPXu21seoSoyxPSMjIwUA6tdrr70mJCUlVegYVZmxtenevXsFCwsL4cqVK4IgCMKIESM4VEDgUAEik/Hjjz+ievXq6N69O9LT09Wv55d9jx49CgBwcnICAOzduxeFhYUiJqayGFN7pqamYsiQIahXrx6mTZuml3OYO2Noz8GDB+Pw4cPYvn07hgwZAuBZLyxpR8w2VSgUmDp1Kt577z34+Pjo5JjmgoUrkYm4ceMGsrKy4ObmBldXV41Xbm4uUlNTAQCBgYEYOHAg5s2bBxcXF/Tt2xdbtmyBXC4X+RPQPxlLe+bl5aF3797IycnB7t27Od2OloyhPevWrYugoCAMHjwY3333HerXr4+goCAWr1oSs02XL1+O9PR09UwE9D8c40pkIlQqFdzc3PDdd9+VuP754H+JRIKffvoJZ86cwa+//oqDBw9i1KhR+OKLL3DmzBkWJkbCGNpToVBgwIAB+PPPP3Hw4EH4+vpqfayqzhja898GDRqEDRs24Pfff0dwcLDOjltViNWmWVlZWLBgASZMmIDs7GxkZ2cDeDYtliAISExMhJ2dHdzc3Cr3AU2V2GMViKhk/x5vNWHCBEEmkwn5+fkVPtZ3330nABA2bNggCMKzqY/AMa4GZWztqVQqhdDQUEEmkwk///xzhTNUdcbWniXZtWuXAECIioqq1HGqCmNp0zt37miMVS7p1bdv3wpnMhccKkBkIv7zn/9AqVRi/vz5xdYVFRUhMzMTAPDkyZNiT8tp1aoVAKgvXdnZ2QGAeh8yPLHbc9KkSYiKisKaNWvUdzmT9sRsz7S0tBKXb9q0CRKJBG3atCnXcUiTWG3q5uaGnTt3Fnt17doVNjY22LlzJ8LDw7X/YCaOQwWITERgYCDGjRuHyMhIXLp0CT169IClpSVu3LiBH3/8EStXrsSgQYOwbds2rFmzBv3790eDBg2Qk5ODDRs2wNHRET179gQA2NrawsfHB1FRUWjUqBGcnZ3h6+tb5qXi//73v7h79y7y8/MBAL///jsWLFgAAHj77bdRt25d/f8jmBEx23PFihVYs2YNAgICYGdnh2+//VZjff/+/fmUngoSsz0XLlyIU6dOISQkBHXq1EFGRgZ+/vlnnDt3DpMmTULDhg0N+U9hNsRqUzs7O/Tr16/Y8l27diEuLq7EdVWKuB2+RFSa0p7isn79esHPz0+wtbUVqlWrJjRv3lyYNm2a8PDhQ0EQBCE+Pl4YPHiwUKdOHcHa2lpwc3MTevfuLZw/f17jOKdPnxb8/PwEKyurcl3CCvy/9u4/tMry/+P46/Y4z1nup7U2f+7sB6wNwSxZwbJlEZKONtCpQTmlZUGwpFnYSpxl5DRFWYktYrNBQVL+o5VCbiwp8J/6Y41a7VcRbBZstrJN3d7fP6TT97T58Sy3tvve8wGC93Wu+7qu4wtu3p5zn+vOz7/m11YNDQ3j9bY9ayrlWVJS8j+/hvzrKWm4tqmU5+nTp62goMDmzZtnUVFRFhsba3l5eVZbW2vDw8Pj+r69bCplOhq2w7rKMfvH59sAAADAFMQ9rgAAAHAFClcAAAC4AoUrAAAAXIHCFQAAAK5A4QoAAABXoHAFAACAK1C4Ah7Q2dkpx3FUV1c32UvBOCFTbyFPbyHPyUPhCgAAAFfgAQSAB5iZBgcHFRUVJZ/PN9nLwTggU28hT28hz8lD4QoAAABX4FYBYIqorKyU4zhqbW3Vo48+qvj4eCUlJWnHjh0yM/30008qLCxUXFycUlJStH///tC5o91vtWnTJsXExOjnn39WUVGRYmJilJSUpG3btmloaCjUr7GxUY7jqLGxMWw9o43Z3d2tzZs3a8GCBfL7/Zo7d64KCwvV2dk5Qf8q7kam3kKe3kKe7kThCkwx69ev1/DwsPbs2aO77rpLu3fv1sGDB/Xggw9q/vz5qqqqUmZmprZt26ampqb/OdbQ0JBWrlypm2++Wa+//rry8/O1f/9+1dTU/Ku1rVmzRsePH9fmzZt1+PBhlZWVqb+/Xz/++OO/Gm+6IFNvIU9vIU+XMQBTws6dO02SbdmyJdR25coVW7BggTmOY3v27Am19/b2WnR0tJWUlJiZWUdHh0my2traUJ+SkhKTZC+//HLYPEuXLrU777wzdNzQ0GCSrKGhIazfP8fs7e01SbZv377xecPTAJl6C3l6C3m6E5+4AlNMaWlp6O8+n0/Lli2Tmenxxx8PtSckJCgrK0vt7e3XHe+pp54KO16+fHlE5/1TdHS0Zs2apcbGRvX29o75/OmMTL2FPL2FPN2FwhWYYhYtWhR2HB8fr0AgoFtuuWVE+/UuZoFAQElJSWFtiYmJ/+oi6Pf7VVVVpU8++UTJycm69957tXfvXnV3d495rOmGTL2FPL2FPN2FwhWYYkbbWuVa263YdTYFiWSbFsdxRm3//z8m+MvWrVvV2tqq1157TYFAQDt27FB2dra++uqr684znZGpt5Cnt5Cnu1C4AtNcYmKiJKmvry+svaura9T+GRkZKi8v1+nTp9Xc3KxLly6F/doWk49MvYU8vYU8bwyFKzDNpaamyufzjfi17OHDh8OOL168qIGBgbC2jIwMxcbGanBwcMLXiciRqbeQp7eQ542ZOdkLADC54uPjVVxcrOrqajmOo4yMDJ04cULnz58P69fa2qoHHnhA69atU05OjmbOnKnjx4+rp6dHGzZsmKTVYzRk6i3k6S3keWMoXAGourpaly9f1pEjR+T3+7Vu3Trt27dPixcvDvVZuHChHnnkEX322Weqr6/XzJkzddttt+mDDz7QmjVrJnH1GA2Zegt5egt5/ns88hUAAACuwD2uAAAAcAUKVwAAALgChSsAAABcgcIVAAAArkDhCgAAAFegcAUwJp2dnXIcR3V1dZO9FIwTMvUW8vQW8gxH4QpMoLa2Nj355JNKT09XIBBQXFyc8vLydOjQIf35558TNm9LS4sqKyvV2dk5YXNE4tVXX9XDDz+s5ORkOY6jysrKSV3PeCBTb2VKnuQ5Hsjzv8MDCIAJcvLkSRUXF8vv92vjxo1avHixLl26pLNnz+q5557TN998o5qamgmZu6WlRbt27dJ9992nYDA4IXNE4qWXXlJKSoqWLl2qU6dOTdo6xguZeitT8iTP8UKe/x0KV2ACdHR0aMOGDUpNTdWZM2c0d+7c0GtPP/20fvjhB508eXISV/g3M9PAwICio6PHfeyOjg4Fg0H9+uuvSkpKGvfx/0tkepVXMiXPq8jzv0eeN4ZbBYAJsHfvXv3+++965513wi6gf8nMzNQzzzwTOr5y5YpeeeUVZWRkyO/3KxgMqqKiQoODg2HnBYNBFRQU6OzZs8rNzVUgEFB6errefffdUJ+6ujoVFxdLklasWCHHceQ4jhobG8PGOHXqlJYtW6bo6Gi99dZbkqT29nYVFxdrzpw5uummm3T33Xff0MV+Mj95GG9k+vd6vYA8/16vF5Dn3+v1PAMw7ubPn2/p6ekR9y8pKTFJtnbtWnvzzTdt48aNJsmKiorC+qWmplpWVpYlJydbRUWFvfHGG3bHHXeY4zjW3NxsZmZtbW1WVlZmkqyiosLq6+utvr7euru7Q2NkZmZaYmKibd++3Y4cOWINDQ3W3d1tycnJFhsbay+++KIdOHDAlixZYjNmzLCPPvootIaOjg6TZLW1tRG/v19++cUk2c6dOyM+Z6oh03Buz5Q8w5EneboFhSswzi5cuGCSrLCwMKL+X3/9tUmy0tLSsPZt27aZJDtz5kyoLTU11SRZU1NTqO38+fPm9/utvLw81Hbs2DGTZA0NDSPm+2uMTz/9NKx969atJsk+//zzUFt/f7+lpaVZMBi0oaEhM5ueF1EyHcnNmZLnSORJnm7BrQLAOPvtt98kSbGxsRH1//jjjyVJzz77bFh7eXm5JI342ignJ0fLly8PHSclJSkrK0vt7e0RrzEtLU0rV64csY7c3Fzdc889obaYmBht2bJFnZ2damlpiXh8ryFTbyFPbyHP6YXCFRhncXFxkqT+/v6I+nd1dWnGjBnKzMwMa09JSVFCQoK6urrC2hctWjRijMTERPX29ka8xrS0tFHXkZWVNaI9Ozs79Pp0RabeQp7eQp7TC4UrMM7i4uI0b948NTc3j+k8x3Ei6ufz+UZtN7OI55qIX7N6GZl6C3l6C3lOLxSuwAQoKChQW1ubvvzyy+v2TU1N1fDwsL7//vuw9p6eHvX19Sk1NXXM80d6Qf7nOr777rsR7d9++23o9emMTL2FPL2FPKcPCldgAjz//POaPXu2SktL1dPTM+L1trY2HTp0SJK0atUqSdLBgwfD+hw4cECStHr16jHPP3v2bElSX19fxOesWrVK586dC7vw//HHH6qpqVEwGFROTs6Y1+ElZOot5Okt5Dl98AACYAJkZGTovffe0/r165WdnR32FJcvvvhCx44d06ZNmyRJS5YsUUlJiWpqatTX16f8/HydO3dOR48eVVFRkVasWDHm+W+//Xb5fD5VVVXpwoUL8vv9uv/++3Xrrbde85zt27fr/fff10MPPaSysjLNmTNHR48eVUdHhz788EPNmDH2/+fW19erq6tLFy9elCQ1NTVp9+7dkqTHHnvMVZ8okOlVXsmUPK8iT/J0ncnd1ADwttbWVnviiScsGAzarFmzLDY21vLy8qy6utoGBgZC/S5fvmy7du2ytLQ0i4qKsoULF9oLL7wQ1sfs6rYqq1evHjFPfn6+5efnh7W9/fbblp6ebj6fL2yblmuNYXZ1P8K1a9daQkKCBQIBy83NtRMnToT1GcvWLPn5+SZp1D+jbRvjBmTqrUzJkzzJ010cszHcXQwAAABMEu5xBQAAgCtQuAIAAMAVKFwBAADgChSuAAAAcAUKVwAAALgChSsAAABcgcIVAAAArkDhCgAAAFegcAUAAIArULgCAADAFShcAQAA4AoUrgAAAHAFClcAAAC4wv8Bdjwv2LikrhMAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -1776,7 +1776,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAInCAYAAACFua8hAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAy25JREFUeJzs3Xd4VNXWBvD3nKnpvRNI6GBohiJNQGkqWBBFUEBQrFhAPxWpKkW9FuwI0rzqBTtICSKCgjQBkR4pCQmQ3uu0c74/QsYMSSBtcmYm7+9xHphTV9xMZs2evdcWZFmWQUREREREAABR6QCIiIiIiBwJE2QiIiIiogqYIBMRERERVcAEmYiIiIioAibIREREREQVMEEmIiIiIqqACTIRERERUQVMkImIiIiIKmCCTERERERUARNkB5CSkoJ58+YhJSVF6VCIiIiImjwmyA4gJSUFr7zyChNkIiIiIgfABJmIiIiIqAImyEREREREFTBBJiIiIiKqgAlyBb///jtGjhyJ8PBwCIKAH3/88Zrn7NixA9dffz10Oh1at26NVatW2T1OIiIiIrIfJsgVFBUVoUuXLvjoo49qdHxCQgJuu+02DBo0CIcPH8azzz6Lhx9+GFu2bLFzpERERERkL2qlA3Akt9xyC2655ZYaH79kyRJER0fj7bffBgB06NABu3btwrvvvothw4bZK0wiIiIisiMmyPWwZ88eDB482GbbsGHD8Oyzz171PIPBAIPBYH1eWFhoj/BqLSmrCCVGi12ubbJIAIBmfu52uT5dnVolILvIaLf2tUgyJFlm+ypEEIC8EpPd2hcoew2zfZWTV2xEqVmy2/UtkoxwXze7XZ+uLqfIAKNFttv13bQqNA/wsNv1XRET5HpITU1FSEiIzbaQkBDk5+ejpKQEbm5V/7JZtGgRXnnllcYIscaSsopw3we7YK+XpywDAoApN7WGv4fWTneh6lgkGW9vOsn2dVH5pSYs+eU029dFZRca8NmOs3ZrXwCAzPZVSmO0rwBgzVP9mCTXAscgK2DGjBnIy8uzPn777TelQ0KJ0WJ9cQp2eACADMBoxx4Qqp7BzPZ1ZUazxPZ1YUaLBPlyA7N9XU9jta89v2FyRexBrofQ0FCkpaXZbEtLS4O3t3e1vccAoNPpoNPprM89PT3tFmNtCQAEQbjmcbW+rizbt/eDaoTt69rYvq7NXu0Ltq9DYPs6FpfpQZZlGb/++is2b96MgoKCRrln7969sW3bNpttW7duRe/evRvl/kRERETU8JwyQZ45cyYGDRpkfS7LMoYOHYohQ4bgtttuQ6dOnXD27NlaX7ewsBCHDx/G4cOHAZSVcTt8+DCSkpIAlA2NmDBhgvX4xx57DOfOncMLL7yAU6dO4eOPP8bXX3+NadOm1e8HJCIiIiLFOGWC/N1336Fnz57W599++y22bduG+fPnY8OGDbBYLJg3b16tr3vgwAF069YN3bp1AwBMnz4d3bp1w5w5cwAAKSkp1mQZAKKjo7Fx40Zs3boVXbp0wdtvv43PPvuMJd6IiIiInJhTjkG+ePEiWrdubX3+/fffo2PHjpgxYwYA4PHHH8cnn3xS6+sOHDgQslz9SJ2qVskbOHAg/vrrr1rfi4iIiIgck1P2IKvVamsdYVmWsW3bNgwfPty6PyQkBJmZmUqFR0REREROzCkT5JiYGHzxxRfIycnBypUrkZWVhdtuu826//z58wgMDFQwQiIiIiJyVk45xGLOnDkYOXKkNQnu27evzaS9jRs3okePHkqFR0REREROzCkT5CFDhuDQoUPYunUrfH19MWbMGOu+nJwc3HjjjbjjjjsUjJCIiIiInJVTJsgA0LFjR3Ts2LHSdj8/P7z77rsKRERERERErsApE+SCggLk5uYiMjLSuu3SpUtYsmQJDAYDRo8ezSEWRERERFQnTpkgP/LII0hISMDevXsBAPn5+bjhhhtw4cIFiKKI9957D3FxcRg4cKCygRIRERGR03HKKha7du3CiBEjrM+/+OILXLp0Cbt370ZOTg46d+6M+fPnKxghERERETkrp0yQMzMzERERYX2+fv169OvXDzfccAO8vLwwYcIE/P333wpGSERERETOyikTZF9fX6SmpgIASkpKsHPnTgwdOtS6X61Wo7i4WKnwiIiIiMiJOeUY5D59+uDjjz9G+/btERcXh9LSUpuybv/8849NDzMRERERUU05ZYL8xhtvYOjQobj77rsBAM899xyuu+46AIDFYsE333xjs/Q0EREREVFNOWWC3Lp1a8THx+PEiRPw8fFBVFSUdV9xcTE+/PBDdOnSRbkAiYiIiMhpOWWCDAAajabKJNjLy4ur6BERERFRnTnlJD2grPbx66+/jmHDhqFbt27Yv38/ACA7OxvvvPMOzpw5o3CEREREROSMnLIH+cKFCxgwYACSk5PRpk0bnDp1CoWFhQAAf39/fPrppzh//jzee+89hSMlIiIiImfjlAny//3f/6GgoACHDx9GcHAwgoODbfbfeeed2LBhg0LREREREZEzc8ohFj///DOefvppdOzYEYIgVNrfsmVLJCcnKxAZERERETk7p0yQS0pKEBQUVO3+goKCRoyGiIiIiFyJUybIHTt2xO+//17t/h9//BHdunVrxIiIiIiIyFU4ZYL87LPPYs2aNXjjjTeQl5cHAJAkCWfOnMH48eOxZ88eTJs2TeEoiYiIiMgZOeUkvQceeADnz5/HrFmzMHPmTADA8OHDIcsyRFHEwoULceeddyobJBERERE5JadMkAFg5syZGD9+PL777jucOXMGkiShVatWGDVqFFq2bKl0eERERETkpJw2QQaA5s2bcygFERERETUopxyDfOjQIXz88cfV7v/4449x+PDhxguIiIiIiFyGUybIM2fOxC+//FLt/l9//RWzZs2q8/U/+ugjREVFQa/Xo1evXtZlrKuzePFitGvXDm5uboiMjMS0adNQWlpa5/sTERERkXKcMkE+ePAg+vfvX+3+/v3748CBA3W69tq1azF9+nTMnTsXhw4dQpcuXTBs2DCkp6dXefxXX32Fl156CXPnzsXJkyexfPlyrF27Fi+//HKd7k9EREREynLKBLmgoABqdfXDp0VRtJZ/q6133nkHU6ZMwaRJk9CxY0csWbIE7u7uWLFiRZXH7969G3379sW4ceMQFRWFoUOHYuzYsdfsdSYiIiIix+SUk/TatGmDn3/+GU899VSV++Pi4upUycJoNOLgwYOYMWOGdZsoihg8eDD27NlT5Tl9+vTBF198gf3796Nnz544d+4cNm3ahPHjx1d7H4PBAIPBYH1eWFhY61idjXz5T1EAxCqWB68xARAhQCUCgiig4pUE4fJzARAgQBAAoXx7hb+Lwr/bxAp/ihX2iQIgigJUggBR/Hef7bayY1VVXKviNSGU/dzlMZX9f/j37xVjL98m5+XBfPYcLCkpkPLzAUmq+/8zAGfdAsr+xxAREdE1OWWC/NBDD2HatGmYPn065syZA19fXwBAbm4uXnnlFcTFxeE///lPra+bmZkJi8WCkJAQm+0hISE4depUleeMGzcOmZmZ6NevH2RZhtlsxmOPPXbVIRaLFi3CK6+8Uuv4nJmAsiRZkgFJlq91ePVkQIIMswSoVSK0ahE6tQg3rRruWhU8dGp4uWngpVdDp1E1VPiNRi4pgfGvwzCfO6doHHsX3A7JbIKo1uCGmesVjYWIiKixOWWC/PTTT+Pw4cNYvHgx3n//fYSHhwMALl26BEmSMH78+EYr/7Zjxw4sXLgQH3/8MXr16oUzZ87gmWeewWuvvYbZs2dXec6MGTMwffp06/PDhw9jwIABjRKvKzFbJJgtEooNQE6RsdJ+N60Kvu5a+HtqEeCpg6+7FqLouL2olrQ0GHbuguwAEzwlswmQpbI/iYiImhinTJAFQcDKlSsxYcIEfPfddzh3ubftjjvuwN13342BAwfW6bqBgYFQqVRIS0uz2Z6WlobQ0NAqz5k9ezbGjx+Phx9+GADQqVMnFBUV4ZFHHsHMmTMhipWHeet0Ouh0OutzT0/POsVLV1ditKDEWIKU3BIAZT3OgV46hHjrEeqrh5vWcf75mxMSYNizt95DKYiIiKj+HCdDqINBgwZh0KBBDXY9rVaL2NhYbNu2zbpUtSRJ2LZtG6ZOnVrlOcXFxZWSYJWq7Kt9uT5DCajBmS0SUnNLkJpbgr+TAF8PLSL83BDh5w53nXIvBfO5BBj27AH474WIiMghOGUVi4SEBPz000/V7v/pp5+QmJhYp2tPnz4dy5Ytw+rVq3Hy5Ek8/vjjKCoqwqRJkwAAEyZMsJnEN3LkSHzyySdYs2YNEhISsHXrVsyePRsjR460JsrkmHKLjDh+IQ8/H03Brvh0JGcVwSI1bpJqSUmBYe9eJsdEREQOxCl7kJ9//nnk5+dj5MiRVe7/6KOP4OvrizVr1tT62mPGjEFGRgbmzJmD1NRUdO3aFXFxcdaJe0lJSTY9xrNmzYIgCJg1axYuXryIoKAgjBw5EgsWLKjbD0eKyCwwILPAgCPJuWgR4IHoYE942LlXWSooQOnvOzmsgoiIyME4ZYK8Z88ePPvss9Xuv/nmm7F48eI6X3/q1KnVDqnYsWOHzXO1Wo25c+di7ty5db4fOQ6TWcKZtAKcSStAuJ872oR6wc9D2+D3kSUJhp27ABMnwRERETkap0yQc3Jy4OXlVe1+T09PZGVlNWJE5Iou5RTjUk4xgr31aBfmjQAv3bVPqiHjob8gZWc32PWUVj5ARC0KUKvqPnJLLQrQqUVrQWgZMi7/Zx2FIsvy5ecyykfESLIMWf53G8f/ExFRfThlgty8eXP88ccfePzxx6vcv3PnTjRr1qyRoyJXlZ5fivT8UgRdTpQD65koWzIyYI6Pb6DoHEN5nWuzJMNsqfuQEbOl7BrB3npEBXog2Edf52tJkgzpcsL8799lWKR/t1kkGRZZ/vfvVzwvP7/877IswyKVJ+JlSblUISmX5H+T+op/L0/oZZT9j5ItFlzO6AFZRn0H2Wg4TIeIqEE5ZYI8duxYvPbaa+jZsyemTp1qHRNssVjw4YcfYu3atZg5c6bCUZKrycgvRUZ+Kfw8tGgT6oUwXzcItVwVUJaksnJu7OGsltkiWXvv/T116NrCD95umlpfRxQFiI2weqBUUgK5qAhycTHkkpKyh8EAubQUssEIGI2QTUbIJjNgNttlzPlpix4Ay0USETUUp0yQZ8yYgV27duHZZ5/FggUL0K5dOwBAfHw8MjIyMHDgQCbIZDc5RUbsP5sFd50a0UEeaB7gUeNV+0wnTkLOz7dzhK4ju9CAHSfSEBPpi5bByiWAUkkJ5NxcSPn5kPILIBcUQCoogFxcDFgsisVFRET24ZQJsk6nw88//4zVq1fj+++/x9mzZwEAPXv2xN13340JEyZUuUAHUUMqNphx/EIeTlzMR6ivHi0CPBDsra92tT6ppASm48caOUpbZV/xX7v3WlRrrEtN12Q8rz37wyVZxpGkHBSUmtA50rfWvfa1Icsy5NxcWLJzIGVnQ8rJgZSbCxgrr9RIRESuyykTZAAQRRGTJk2y1icmUoosy0jJKUFKTgm0ahHhfu4I93VDoJfOJlk2HT4MmMw1u6haBXWzSIihoRB9fYB6fuDzyTdCOPp32VjYGhzf8+V11r/XNPkVAPRrF4Rmfu51iLCMySIhr8SE1NwSZBYYbPYlpBfCbJERG+1f5+tfSSoqgpSVBSkzC5bMjLKJk2b2CBMRNXVOmyATOSKjWUJiRiESMwqhVokI8i5b2jpANkA8l3DtC4gi1G3aQNu5EwRdw1XNaOEPrHnKCyVG+yV/bloVmgd41Ps6Qd56tA7xQlGpGadS8pCcVWzdl5xVBLVKQJfmfrW6pmyxQMrLLxsmkZtb1jOcnQ3ZYLj2yURE1OQ4ZYJ80003XfMYQRCwbdu2RoiGqGpmi2TtWTadPgNtnhb+agk+Kgk+KhneogRthY5hwcMduhtvhCogwC7xNETy2pg89GrERgcgMsADhxKzUXo5uU9IL4SnTo1WIbalHmWjEXJREaTi4stjhAshFxZAys+HXFjEiZFERFRjTpkgS5JUaRyixWLB+fPnkZycjNatWyMiIkKh6IhsSUXFkLKzUArgkknEJdO/WbFOADxEGZ6+nvDp2h1uFh202cXQqkWoVSJEAVBVM6a5NkRBgPZiMqTionpfqyqyxQJBEKGOalHPC8mXrycBsgSYzfA3W9Df04i9iXnILTJCtpjxV2IidD4SAmRjWdWI0pKaD18hIiK6BqdMkK9cza6iDRs24JFHHsE777zTeAERXYXl0qVq9xlkwOjmjcKodkjLKgWySu0SQ3BOKlpMHm2/XlRZBgQBXs8/B1VgoF1u0UMGDhRrkGEu+4BxIB0Y4Gmw6YUnIiJqCC731jJixAg88MADV12KmqixSKWlV10xT9C7QdOuLQR1zcrE1ZVQUvxvciwI13y0uXQBzS8mo82lCzU6HgAgy5CN9hvTqxKA7u4mBKjK6ggbZODvktrXRyYiIroWl0uQAaBVq1b4888/lQ6DCJZLKai2DoRKDXW7thDUjfhFTk2SXUGA4fLqbobLPcM1TpLtTCUA3T1M8BTL/p+mmUVcNLrkrzEiIlKQy72zmM1mfP311wi009e8RDUlm0yQsjKr3a9u1RKivu5LKTdVGgHo4W6C5nJOfrxUAyNXWiYiogbklGOQJ0+eXOX23Nxc7N27F6mpqRyDTIqzpKdXu6ywGBoGlV/tSpXRvzxUMrq4mXCgWAOjDJwyqNHZjZP0iIioYThlgvzrr79WqmIhCAL8/PzQr18/PPzwwxg6dKhC0RGVLR4ipaVXuU/Q66GObNbIEbmeUI2EFloLzhtVSDaq0EJrgY+KpdyIiKj+nDJBTkxMVDoEoquSsrIgm6penlgdHQ2BS6E3iI56MzLMIoolAcdLNOjjySWhiYio/vguTWQHlvSqe4/FwCCI3t6NHI3rUgmwDq3ItghINfFXGhER1Z/TvJsUFxcjKSkJRmPlHqIVK1bg5ptvRseOHTFq1ChWsCBFSSUlkAsKKu9QqaBqHtn4Abm4QLWESE3ZKnvxpWoumEdERPXmNAnyq6++is6dO1dKkOfPn48pU6bgt99+Q0ZGBn788UcMHDgQf//9t0KRUlNnSc+ocrsqPByihnV77aG93gy1ABRIAi6yF5mIiOrJad5Jtm/fjhEjRsDT09O6LT8/H/Pnz0dERAROnz6NjIwM7N27F1qtFq+//rqC0VJTJUsS5MzKpd0ErRaq0FAFImoadCLQRlc21OK0gb3IRERUP06TICcmJqJz58422zZt2gSj0YgXX3wR0dHRAICePXti0qRJ2LlzpxJhUhMn5eRCNpsqbVeFh3Ninp1Fay1wF2UUSQJS2ItMRET14DTvIgUFBQgICLDZ9vvvv0MQBAwbNsxme8eOHZGRUfXX3ET2JGVW/ncn6HQQg4MViKbudIIA8fKfzkIUgLYVepGJiIjqymneRVq0aIFTp07ZbNuxYwdCQkLQunVrm+1GoxHerBRAjUw2mSDl5VfargqPqFS329GdbtZc6RDqJEIj4axBRoEkIM0kIkTDJfaIiKj2nKYHeejQoVixYgX27dsHAPj8889x6tQp3HXXXZWOPXjwIKKioho5QmrqpMwsQLZNyASNFmIQlz1vLIIAtNWX9SKfM6gUjoaIiJyV0yTIs2fPhqenJ/r06QOtVosHH3wQQUFBmDNnjs1xxcXF+OGHH3DzzTcrFCk1VZasypPzVGFhTtd77OzCNBK8RBlZFhF5Fv6/JyKi2nOaIRaBgYE4fPgwPvvsM5w7dw4tWrTA5MmTEXzF2M5jx47h/vvvx/jx4xWKlJoiqbQUclGR7UaVCmJwkDIBNXGtdWb8VaJBgkGNru6VJ00SERFdjdP0IAOAn58f/u///g+ffPIJXnrppUrJMVBWxeKDDz7AddddV+f7fPTRR4iKioJer0evXr2wf//+qx6fm5uLJ598EmFhYdDpdGjbti02bdpU5/uT85GysiptE4OCIaj4Nb8SwjUS3EUZl0wijByGTEREteRUCXJjWLt2LaZPn465c+fi0KFD6NKlC4YNG4b0apYONhqNGDJkCBITE/Htt98iPj4ey5YtQ0RERCNHTkqqnCALUIU4V+UKVyIIZWXfJADJJn5IISKi2nGaIRaN5Z133sGUKVMwadIkAMCSJUuwceNGrFixAi+99FKl41esWIHs7Gzs3r0bmsurpHGCYNMiFRdDLimx2Sb6+ULU6xWKiAAgUmtBvEGN80YVWmot4FBwIiKqKfYgV2A0GnHw4EEMHjzYuk0URQwePBh79uyp8pz169ejd+/eePLJJxESEoKYmBgsXLgQFoul2vsYDAbk5+dbH4WFhQ3+s1DjkbJzKm0Tg0MUiIQqUgtAC60FxZKADDN/1RERUc3xXaOCzMxMWCwWhITYJjchISFITU2t8pxz587h22+/hcViwaZNmzB79my8/fbbmD9/frX3WbRoEXx8fKyPAQMGNOjPQY1Lys62eS7odBB9fBSKhiqK0pohAEgycpgFERHVnFMkyOvXr8elS5eUDqNKkiQhODgYS5cuRWxsLMaMGYOZM2diyZIl1Z4zY8YM5OXlWR+//fZbI0ZMDUkqLYVcUmyzTQwK4tf5DsJNBILVEtLMnKxHREQ15xQJ8l133YUdO3ZYn7ds2RLr169v8PsEBgZCpVIhLS3NZntaWhpCQ0OrPCcsLAxt27aFqkK1gg4dOiA1NRVGo7HKc3Q6Hby9va0PT0/PhvshqFFd2XsMQXS6ZaVdXZTWAhmcrEdERDXnFAmyl5cXcnNzrc8TExPtMm5Xq9UiNjYW27Zts26TJAnbtm1D7969qzynb9++OHPmDCTp3+6pf/75B2FhYdBqtQ0eIzmWKxNk0ccb4uXJmuQYgi6XfLvAYRZERFRDTlHFomfPnliwYAHS0tLgc3ls56ZNm6odFwwAgiBg2rRptb7X9OnTMXHiRHTv3h09e/bE4sWLUVRUZK1qMWHCBERERGDRokUAgMcffxwffvghnnnmGTz11FM4ffo0Fi5ciKeffroOPyk5E8lkqrQ4iBjIhUEcUXOtBadK1cizCPBRyUqHQ0REDs4pEuSPP/4YEyZMwGuvvQagLPn96quv8NVXX1V7Tl0T5DFjxiAjIwNz5sxBamoqunbtiri4OOvEvaSkJIjivx3vkZGR2LJlC6ZNm4bOnTsjIiICzzzzDF588cVa35uci5xzRfUKlRqin68isdDVNdNYEF+qxgWjCj5uZqXDISIiB+cUCXLr1q2xe/dulJaWIj09HVFRUVi8eDHuuOMOu9xv6tSpmDp1apX7Ko6FLte7d2/s3bvXLrGQ45KuSJDFwAAIolOMWmpy9Jcn610yqdBRb+YkSiIiuiqnSJDL6fV6NG/eHHPnzsVNN92EFi1aKB0SNVGyJEHKz7fZpgoIUCgaqolIrQVpxSIyzCKCNSxpQURE1XOqBLnc3LlzrX8vLCxEcnIygLLhDqwIQY1ByssDKkzMFLRaiF5eCkZE1xKslqAVgEsmFRNkIiK6Kqf9PvjPP//EoEGD4Ofnh5iYGMTExMDPzw833XQTDhw4oHR45OKknFyb52JAoDKBUI2JAhCusSDVLMLCeXpERHQVTtmDvG/fPgwcOBBarRYPP/wwOnToAAA4efIk/ve//+HGG2/Ejh070LNnT4UjJVcl5+XaPBcD/JUJhGolQmNBolGFDLOIUPYiExFRNZwyQZ45cyYiIiKwa9euSgt4zJs3D3379sXMmTOxdetWhSIkVyYVF0OusAiMoNdD9PBQMCKqKT+1DA9RxiWTigkyERFVyymHWOzbtw+PPvpolavbhYSE4JFHHmFVCbIbqcKiNQAg+rP32JlEaCxIM3GYBRERVc8pE2RRFGE2V1/L1GKx2NQqJmpIUm6ezXMmyM4lXCPBAiDDzN8RRERUNad8h+jTpw8++ugjnD9/vtK+pKQkfPzxx+jbt68CkZGrky0WyBWWORd0Og6vcDKeKhneoowUE5eeJiKiqjnlGOSFCxfixhtvRPv27XHXXXehbdu2AID4+HisW7cOarXauhQ0UUOS8vMB+d+xq6Ife4+dUbjWgjMGNSS5rLoFERFRRU6ZIHfr1g379u3DzJkzsX79ehQXFwMA3N3dMXz4cMyfPx8dO3ZUOEpyRVIeh1e4gnCNhFOlQCYXDSGyUgmAqh6fGAUIUImAWiUCdbyMUMMTq1sNs1a3re+HY4MRstkMWarf7xB3i6megZA9OGWCDAAdO3bEDz/8AEmSkJGRAQAICgri2GOyK7lCgixoNBC4MI1Tchdl+KhkpDJBJrKyyIBFqs/sVRlmCTBaZLhrVfB208DPQ4tALx38PLQQnHiNd9lggCUlBZa0NEhZ2ZDy8wCzpUGufbpUBcCvQa5FDcdpE+RyoigiJCRE6TCoCZAMBsilpdbngq9vtb0Y5PhC1RYkGtWAW/UTfomo9mRZRpHBjCKDGSm5JQAAnUaFMF83NA9wh7+nTuEIa0aWZVguXID5zBlYUlJtVk8l1+f0CTJRY5Hz8m2ei378xO/MwjQS4g1AjlmAn5o134jsyWCyIDGjEIkZhfBx16J1iCea+bs7ZK+yLEkwnzkD04kTkAuLlA6HFMIEmaiGbMYfiyJEHx/lgqF681TJ8BJlpJlV8FOzF5moseQVG3EwIRunUvLRMdwHEf7uSodkZU5KgvGvvyAXFF77YHJpTJCJakjO/7cHWfTxgcDx7k4vVCMh1SSivV7pSIianqJSM/48l4Wz6YXo2sIP3m4axWKRiopg3L8flouXFIuBHAvf4YlqQCouhmz+d6Yxe49dQ4jaggJJQLHkeF/zEjUV2YUGbD+RhlOX8iDVa5Jg3ZjPJaBkw0Ymx2SDCTJRDVw5/ljw5fhjV+CrlqEXgHQTfxUSKUmWZZy6lI/f49NRVNo4Q55kiwWGPXtg2L0bMLHUGtly6iEWJ06cwLlz55CTkwNZrvypc8KECQpERa5IKvg3QRbc3CDqtApGQw0pRGNBullElK5hSjYRUd3lFhmx/WQaro/yR7ifm93uI5WUwLBjB6SsbLvdg5ybUybIZ8+exQMPPID9+/dXmRgDgCAITJCpQcjy5RX0LhPZe+xSQtQSDhZrYJHLFkogImWZLRL2n81E+3AftA/3bvDrSzk5KN2+A/LlRcaIquKUCfKjjz6Ko0ePYvHixejfvz/8WG6L7EguKgQs//Yuir4cf+xKAtUSBJStqhfCRUOIHMapS3koMpjQrYU/xAZaE96Sno7S7Ts4pIKuySkT5D/++AMvv/wynnrqKaVDoSbAprybSgXBy0u5YKjBiUJZkpzBBJnI4SRnFcNgktCzVUDZEtb1YElJQelvvzXYCnjk2pxyZkpgYCB8WEWAGknFBFn09nbIwvZUP8EaCWkmldJhEFEV0vNLsft0Jkzmun+AtaSkoHQHk2OqOadMkB977DF88cUXsFj4D53sS7ZYbFZSYnk31xSstqBEBvIs/PBD5IiyCw3YfTqjTkmyJT29rOeYOQPVglMOsWjbti0sFgu6dOmCyZMnIzIyEipV5d6fUaNGKRAduRIpPx+Q//2FLDBBdkl6EfAWZaSZRPio+CZK5IhyiozYfToDfdsG1Xi4RfmEPPYcU205ZYI8ZswY69+ff/75Ko8RBIE9zFRvFYdXCDodRD2XXHNVwRoJaWYV2oK/N4gcVU6REfvOZuGG1oFQXWPinlRczAl5VGdOmSBv377drtf/6KOP8J///Aepqano0qULPvjgA/Ts2fOa561ZswZjx47FHXfcgR9//NGuMVLjkCsmyN7sPXZlwWoLzhhUKJEAN6ccfEbUNGTkl+JgQjZ6tgqo9hjZbIaBpdyoHpwyQR4wYIDdrr127VpMnz4dS5YsQa9evbB48WIMGzYM8fHxCA4Orva8xMREPP/88+jfv7/dYqPGJZWWQi4ttT7n+GPX5qeSoROANJOKi4YQObhLOcU4mqxCp0jfKvcb/vgDUk5O4wZFLsXp+0lOnDiBzZs3Y/PmzThx4kS9r/fOO+9gypQpmDRpEjp27IglS5bA3d0dK1asqPYci8WC+++/H6+88gpatmxZ7xjIMcg5uTbPRW+Wd3NlglDWi5zCZaeJnMLZtAIkpBdW2m48cgSW5AsKRESuxGnfCdatW4dWrVqhU6dOGDFiBEaMGIFOnTqhdevWWL9+fZ2uaTQacfDgQQwePNi6TRRFDB48GHv27Kn2vFdffRXBwcF46KGHanQfg8GA/Px866OwsPILnJRnM/7YzR2CRqNgNNQYQjQSsi0ijCyHTOQUjiTnIj3/32/6zBcvwnTkqIIRkatwygR506ZNuPvuuwEACxcuxA8//IAffvgBCxcuhCzLGDVqFOLi4mp93czMTFgsFoSEhNhsDwkJQWpqapXn7Nq1C8uXL8eyZctqfJ9FixbBx8fH+rDnkBGqG1mSIBX8u7w0q1c0DUFqCSKAVDNrIhM5A1mWceBcFooMZkhFRTD8sVvpkMhFOOUY5Ndeew2dO3fGzp074eHhYd1+++23Y+rUqejXrx9eeeUVDB8+3K5xFBQUYPz48Vi2bBkCAwNrfN6MGTMwffp06/PDhw8zSXYwUl4eIP3bjcjhFU2DSihLklNMIpprOQ6ZyBkYzRL2nc5Az+S/IRiNSodDLsIpE+QjR45g4cKFNslxOQ8PDzz44IN4+eWXa33dwMBAqFQqpKWl2WxPS0tDaGhopePPnj2LxMREjBw50rpNupxUqdVqxMfHo1WrVpXO0+l00Ol01ueenp61jpXsS7IZfyxA9PJWKhRqZCEaC46UaGCUAK1TfsdG1PRkn07AwfR8dK+cFhDViVP++tfr9cjOzq52f3Z2NvR1qFer1WoRGxuLbdu2WbdJkoRt27ahd+/elY5v3749jh49isOHD1sft99+OwYNGoTDhw8jMjKy1jGQY5Bz/539LHh6QlDzK/emIlRT9iGXwyyInIOUnw/LpRSkmkWcKnXKfj9yQE75L+mmm27Ce++9h+HDh1dKXPft24f3338fQ4cOrdO1p0+fjokTJ6J79+7o2bMnFi9ejKKiIkyaNAkAMGHCBERERGDRokXQ6/WIiYmxOd/X1xcAKm0n5yEVFkKuUFie5d2aFo0ABKolXOIwCyKHJ5tMMJ89C0AGAJwxqOAmymjhwq/dvz+dClNhDjSefujy6IdKh+OynDJBfvPNN9G7d2/069cPPXv2RLt27QAA8fHx2L9/P4KDg/HGG2/U6dpjxoxBRkYG5syZg9TUVHTt2hVxcXHWiXtJSUkQRafseKcaurJ2pujD4RVNTZhGwtESNQwSoOPLnchhmc+eg3zFuONjJWroBNn6bZCrMRXmwFiQqXQYLs8pE+To6GgcOXIEixYtwubNm7F27VoAQIsWLfDMM8/gpZdeuuqiHtcydepUTJ06tcp9O3bsuOq5q1atqvN9yTHYJMgqFQSOEW9yQtUWHIUaKVw0hMhhmS9ehJSXW2m7DOBQsQY9PEwIUrtmkkz255QJMgAEBwfj3Xffxbvvvqt0KORCpNJSyCUl1ueitzcEQVAwIlKCViwbZnGBCbJTK3/tCihbCKbiNlTchsr7rjym4nFV3aMqstkM2WwB5PolaTrJXK/zXZElNw+WCxer3S8BOFCkQU8PIwLUcuMFRi7DaRNkInuQrpj8yfHHTVe4RsLfJWoUWgR4qvgGC1SdINbqfAFQiQJUogC1KEKnFqHTqOCmVcFdq4KHXgNvvRo6TfUTJCsmveXXrLhdCbIkQUpPhyUjA1J2NqS8fMhFRYClYT5cnS5VAfBrkGu5AqmkBOYzp1E+7rg6FgD7i7RMkqlOnCJBnjx5MgRBwNKlS6FSqTB58uRrniMIApYvX94I0ZEruTJBFi5PuqSmJ0RtgQA1LppUaKdiDx5wrXSkBufLgNkiw2yRYYCEIkPVx+k0Kvi6a+DnoYW/pw7+HlqoVY41GFy2WGBJToY5KQmWS5cAs+N807B3we2QzCaIag1umFm3lWUdlWw2w/zPPzX+8FGeJMe6mxDsomOSyT6cIkH+9ddfIYoiJEmCSqXCr7/+es3eAn4tTrUlGQxlvT6XCXo3iBXqVVPTohWBYLWEiyYR7WpfNZLqwWCyIC3PgrS8siWEBUGAv6cWId56hPjo4eOuVSw2qagI5lPxMJ09CzjoohSS2QTIUtmfLkSWJJj++Qdyaem1D67AAuDPYg26uJnQTMskmWrGKRLkxMTEqz4naghy9hXVK9h73ORFaCw4VKJBpllEICf7KEaWZWQVGJBVYMCJi3nw0KsR7uuGZv7ujZYsS4WFMB05CnNios0qm9Q4ZBkwnz0LuaCgbucDOFyiQbFkRlu94/T2k+NyigT5SklJSQgKCoKbm1uV+0tKSpCRkYHmzZs3cmTkzCxZtmVzRD9fZQIhhxGikaAuBZKNKibIDqSo1IzTqQU4nVoAb3cNogI9EenvDo264YdhyEYjTEePwRQfz8RYQeaEc5WGwNXFPwY1CiQRXd1MUPGLZroKxxrUVUPR0dH44Ycfqt2/fv16REdHN2JE5Oyk0lKb4RVQqSB4eSkXEDkElQCEqS1INYkwcY6PQ8ovNuFIUg7ijlzCX4nZyCtuuGEP5vPnUfLTBphOnmRyrCBTYiKkjIwGu16KScTOQi0KLMyQqXpO2YMsy1d/pzKZTFzMg2pFysqyeS76+HAcOwEAIrQSkk0qXDSy5Jsjs0gyzmcW4XxmEYK99Wgb5o1Ar7rNIZBLS2HY/ycsSUkNHCXVlikxEVJaWoNft1ASsLNQiw56M6L5uqYqOE2CnJ+fj9zcXOvzrKwsJFXxyys3Nxdr1qxBWFhYI0ZHzk7KuqK8my9LKlGZQLUEd1HGeSbITiM9vxTp+aXw99ShQ7g3grxrPsvSkpoKwx+7beqhU+OTZRnmc+cgZdpvxTgJwPHSsgWBOruZWM6RbDhNgvzuu+/i1VdfBVA2o/nZZ5/Fs88+W+Wxsixj/vz5jRgdOTOpqBhySXGFLQJEX9Y/pn8101jwj0GNbLMAf9ZTdRrZhQb88U8Ggrz16BjhAz+Pq0/oMx47BtPfR8pmhJFiZIsF5tNnqlwlzx6yLQJ+K9QiSmtBG50Z2hp+AS3o9YBWC0FVfd3umhAvj+6TgRr929N4+ln/vNY36tbrUq05TYI8dOhQeHp6QpZlvPDCCxg7diyuv/56m2MEQYCHhwdiY2PRvXt3hSIlZ2O5oodC8PKEoNEoFA05okitBacNapw3quGvdq3SWU1BRn4pfssvRZivG9qHe1eqfCGbzTDs3sMhFQ5AMhhgjv/nik4L+5MBJBhVSDap0FJrRpTWYpMoCzodVGFhEENDIPoHQPT2gqBumBTKN6sIwoldkFGzZLbTIx/YxF0TAgA3bf0S+abGaRLk3r17o3fv3gCAoqIi3H333YiJiVE4KnJ2sixDvqJ6hYrDK+gKbpeXnr5kEtFRAnSc4uCUUnJLkJJbgjBfN7QJ9YK/pw5ySQlKd+yoNMyKGp8lNw/mM2cAi3IL85jlskoXZw1qROhktIgKRUjH1hDDQu02L6V5gAfWPNUPJUb7DeFy06rQPMDDbtd3RU6TIJcrLi7G+++/D3d3dybIVG9SXh5kk22PoODPBJkqa6G1IMMsItGoRjs9V9ZzZuWJsp9KQsTpvxFqKADn5CpHliSYky9ASk1ROpQyoggEhyAlPAxpGg3cMmWEmXMR5K2Hv4f2qkuh11V4Xjqk4qJrH1hHorsHEMDqXrXhdAmyu7s71Go1PDz4SYjq78rSQYKbO0Q9l02jykLUEvQCcN6oQmudmTVUnZxUXIy0U6eQajJBL+gQqbUgUmuBu+i4IzZrOkZVVGusS007+hhVqaAA5nMJkEsdYVKkADEoCKrIZhArDLMrMVpwLr0Q59ILAQB6rQqeOjXctGpoVAJEsX6/DMSk8/AZc7t9x74LAkJ+2wF1SybJNeV0CTIA3H333fj222/x+OOPsxQX1ZlkMkHKybXZJvr7KxMMOTxBAJprzfjHoMYFkwottKxo4azKl4uWLy/FXCoDpw0qnDao4K+SEaG1IExtqfFkLStRLCsR6e0N0dOjbBKXRgMI9RuT451vhHDhfI3HqPZ8eZ3177UZo9q1hR/CfategKsmZABmi4RSkwXFRgvyS0woKKl6zL5kMMKSnAwpy35VKmpDcHOHumU0RE/Pax5barSg1GgBYGiQe7tfyIBPeXJsj5xGlgFZtmsPtStyygT5vvvuwxNPPIFBgwZhypQpiIqKqnJVvSsn8RFVJGVkALJt8X+RwyvoKppfnqx3zqBCc42FX8s7IamoGKaTp6od55ptEZBdosYxqOGnkhGisSBYLcGrmhJgor8/VM0ioAoNhRgQUO+KBlVpCWBN80inHKNqtkjIKjQgLa8Ul3JLUJxfBEtqatnvX4dYfEWAKjwMqmbNlO9wE4QaJci3pqYgXbIgWFRhU2gNS9qyMkutOWWCPHDgQOvfd+7cWWm/LMsQBAEWC3t4qHqVhlfo3SC6uysUDTkDvQiEayRcNIm4ZBIRoXWEN3iqKamkBOZT1SfHFcm4nCxb1DgJQCcAAWoJ/ioJfl46+LWNhq5VK4iNtOKms06wUqtEBHtoEJCThrZZCUhLSsV5gwqpkqh4+TFBrYG6VSunK+uZLlmQyvzG7pwyQV65cqXSIZCTs+TmQS4ttdnG3mOqiZY6My6atDhjUCNC23DLGpN9SQYjzKdOWYdV1JZBBlLUnkgPD4MYEADRIsIzqQheeiM8dCp46NRw06qgU6ug04hQiyLUKqHBeiXN5xLsPomrIcanyiYT5OJiSIWFkLKyIGVkwpKeDlxO6AJVQKC7hBIJOGNQI8moUiRRFtw9oG7bFqLu6rWxqelyygR54sSJSodATk5KTa20TQwIUCAScjY+KhkBKglZFhEpJhFhGvYiOzrZbC5Ljo11+0Aj6PVQNYuEKuDfOQqyLKPgKmNsrec2QIKsu5SMTk/cZ/evyb3+7/+gCgqs30VqOGzCTQQ6uZnRUmvBKYMaKabGq50o+vpC3aYNBJH1Gql6TpkgV1RYWIjk5GQAQGRkJDxrMMCemjaptLTSCk2CmzuHV1CNtdJZkFUsIr5UjVC1kWORHZgsSTD980/dqiSIItQRzepVA7cmVSSuGUZJ0b/JcQ3iaHMxGQZZhk4QcDoi8to3uDyJSzaUNPq4YA+VjFh3EzJMIo6WqlEs2ffFJAYFQR3dkq9Zuian/fj0559/YtCgQfDz80NMTAxiYmLg5+eHm266CQcOHFA6PHJglqp6jwPZe0w1F6yR4KOSUSgJuNCIPV9UO7Isw/zPacgFBbU+V/TxhaZzF6jCw5SfvFWufBLXNR4GWYYEwCDLNT5HaUEaCQM8jXatDiOGhELTkskx1YxT9iDv27cPAwcOhFarxcMPP4wOHToAAE6ePIn//e9/uPHGG7Fjxw707NlT4UjJ0cgmU6XJeQDLu1HttdaZcbBYg39KNQjXGFgX2cHIsgzzmTOVvi26JlGEunlzqEJC7BIXVU8llA27CFZLOFyigakBR5SIoWHQtGjecBckl+eUCfLMmTMRERGBXbt2ITQ01GbfvHnz0LdvX8ycORNbt25VKEJyVJa0tEpfIQqeXlwchGotTCPBS5RRIAk4a1Chrd55ZpXvXXC7dSGJG2auVzqcBleWHJ+FlF275aMFvRvUbdpAdK97LWCqvxCNhP4qIw4UaZDfAEMuxJAQJsdUa0753eC+ffvw6KOPVkqOASAkJASPPPII9u7dq0Bk5MhkiwWW1LRK2+s9KYWarLaXl5w+a1CjxInm6klmEyBLZX+6GFmSYD59GlJ2Vq3OE/0DoIm5jsmxg3AXZfT1NCJUXb8XlugfAE1UVMMERU2KUybIoijCbK6+jqXFYoHI2al0BUtaWuX6p6II0Z/jj6luwjQSfFUyLACOl2iueTzZl2yxwBz/D6ScnFqdp4poBk2b1nZZ5IPqTiUAse4mRNdxXLLo7QN161YNHBU1FU6ZRfbp0wcfffQRzp8/X2lfUlISPv74Y/Tt21eByMhRyWYLLJdSKm0Xff0gqPmmSHXX/nIvcqpZbNRSVWRLNplgOnkSUn5ezU8SRKhbtYK6WYT9AqN6EQTgOjez9XVW4/PcyobLOMwES3I6TvnbfOHChcjLy0P79u0xbtw4zJs3D/PmzcPYsWPRvn175OXlYdGiRXW+/kcffYSoqCjo9Xr06tUL+/fvr/bYZcuWoX///vDz84Ofnx8GDx581eNJGZbU1CpXz1IFBSkQDbmSQLVk/Rr4WIkGRicaauEqpKJimI4dg1xUi4U0RBGatm2hCuQQK2fQWmdBTA2TZEGtgbpdO5ft/AgWVQhVqRAsuubP5yiccpJet27dsG/fPsycORPr169HcXExAMDd3R3Dhw/H/Pnz0bFjxzpde+3atZg+fTqWLFmCXr16YfHixRg2bBji4+MRHBxc6fgdO3Zg7Nix6NOnD/R6Pd544w0MHToUx48fR0QEeyUcgWwywZJaufdY0OmcbolRckwd9GakF2phkIG/SzTo4eF6Y3sdlSUrC+Zz52pXv1elgqZdu0ZbJpoaRpSubKjFsdKrpC6CCHWb1hB1ukaKqvFtCg1TOoQmwSkTZADo2LEjfvjhB0iShIzLZbuCgoLqPfb4nXfewZQpUzBp0iQAwJIlS7Bx40asWLECL730UqXjv/zyS5vnn332Gb777jts27YNEyZMqFcsjuzvT6fCVJgDjacfujz6odLhXJU5Odm6zGlFYhUfeIjqwkMlo6XOgjMGFdLMIhIMKkTrnKeqhTOSJQnmpGRIaZXrml+VSgVN+/YQuaiUU4rSWSABOFFNkqyOjITo7d24QZFLcsohFhUJgmDzqA+j0YiDBw9i8ODB1m2iKGLw4MHYs2dPja5RXFwMk8kE/6vU1TUYDMjPz7c+CgsL6xW3EkyFOTAWZMJUWLvJMI1NKiqClJFZeYcgQuTwCmpAbXRmeIplhVtPlKqRaXb6X68OSyouhun4CSbHTVRLnQVtqvgAKvr7QxVWuboVUV047W/wEydOYPTo0fD29kZYWBjCwsLg7e2N0aNH49ixY3W6ZmZmJiwWC0KuKBAfEhKC1CpWX6vKiy++iPDwcJsk+0qLFi2Cj4+P9TFgwIA6xUtXJ8uAOSEBQOVq86KfH0QNqw5Qw1EJQGc3EwSU/Ys7WKxBoYUThBqSLMswX7oE07HjkItrMd4YsI45bgrJsU4QIF7+01W105vRvEJ1C0Gvhzq6pYIRkatxyiEWO3fuxC233AJJknDHHXegbdu2AID4+HisX78emzdvRlxcHPr379+ocb3++utYs2YNduzYAf1VFp6YMWMGpk+fbn1++PBhJsl2IKWmVjtpR1VFDW2i+vJXy2h1eaiFSQb2FmnRx9MId7EBlwRrAKJaY10oxFlIuXkwnz8PubSk9icLYtkCIE3kq/fTzZrGohid9GaUSgLSLWqoW7d22Ul5pAynTJCnTZuG4OBg/Pbbb4iMjLTZl5ycjBtvvBHTp0/Hn3/+WavrBgYGQqVSIS3NdjGJtLS0Khclqeitt97C66+/jl9++QWdO3e+6rE6nQ66ChMIPJtAj0Zjk0pKYL6QXOU+wcMDohf/n5N9tNWZkWkWkWsRUCqI2Gv0QE9/Ed5uakCtKau1qxIBQYQgimV1rOpJVQwgoaDsuxL52sl4r5fXWf8u1+D48iNCffSIDHCvU4zlLBJgkSSYLDKMZgkGswUmc/UT7KSiIliSL9R+yegK1NHRUPn61vl8ckyCAFzvbsK+oJYo9vBQOhxyMU6ZIB8/fhyvvfZapeQYACIjI/H4449j3rx5tb6uVqtFbGwstm3bhjvvvBMAIEkStm3bhqlTp1Z73ptvvokFCxZgy5Yt6N69e63vSw2rbCWtM9XOamfvMdWbSlX2QcvDA4KHOwQPDwhu7hDc3CC46dFXUOP3hDwYJcAC4E+ViO7R/gj1tc8qbT5ZRRD+2AUZVQ0oqj9BAAQA10f7o3lAwyciFklGscGMIoMZBaVmFJSakHMhHTmJF2CpR2IMAOoWLbhapgvTRUagb++u+O1kGoxX+aBFVFtOmSC3aNECBoOh2v1Go7HK5Lkmpk+fjokTJ6J79+7o2bMnFi9ejKKiImtViwkTJiAiIsJaZ/mNN97AnDlz8NVXXyEqKso6VtnT05M9wwoxJ56HXFJc5T5Bp4MYwJXzqGYEnQ6Cry9EXx+IPj4QvbwgeHtDcHe/6qRgTwA3aHTYFZ8BSZZhtkjYeyYTUUGe6BjhA626Yad/NA/wwJqn+qHEaL/KGW5alV2SYwBQiQK83DTwMBbDPyMJ5nPnIBcUwiIDeR4CciwiMs0iss0iavMTqiIj+YHYhQmeHtD16QNBq0aPlgHYfTqzRt+IENWEUybIc+bMwbRp03Dbbbeha9euNvv++usvfPDBB1i8eHGdrj1mzBhkZGRgzpw5SE1NRdeuXREXF2eduJeUlGRTSu6TTz6B0WjE6NGjba4zd+7cOvViU/1YLqVAykivdr8qLIwrK1GVBA93iAEBEP0DoPL3h+DnC9Gt7j2+/p469GwVgH1ns6xv2okZhbiQXYzoIA80D/CAl1vDjQEOz0uHVNuJa7UgunsAAdENdj1ZkiAXFEDKzoYlMxOWS5cgF9hW9FEJZeO6/dUWtNJZYJGBbIuIdJOIVJMKJVfJhVSRkVCHhzdYvORg1CroBwyAoNUCAIK89ejS3BeHzzt2ZSVyHk6ZIO/duxchISGIjY1Fnz590Lp1awDA6dOnsWfPHsTExGDPnj02pdkEQcB7771Xo+tPnTq12iEVO3bssHmemJhYp5/BUdV0DKPG08/6Z23GMNqTJSMT5uSkavcLGg1LuxEAQHB3h+jnC9HfvywpDgioVzJcnVBfN/RoGYAD57IgXX6dmC0STqcW4HRqAXQaFbz0aohi/T606S4mI3T8XTV67daJLAOCAN8336hfj6wsQzYZIZeWQi4uqd3iHihLmIPUEoLUEq5zMyPbLOCSSYVLJhWMFX50dYsW7Dl2cbrevSH6+dlsiwryRJHBjNOpBQpFRa7EKRPkDz/8d2GKP/74A3/88YfN/qNHj+Lo0aM222qTIDdFblqVtTxVTd5iOz3ygfXvNX1LFgD0axeEZn51n+QjyXJZ+baKk3xMFhScS0T++dMoFsRqe5VUYeFlk6KoaRAECO5uEL19IHh7lQ2R8PGB6OsLoRFX2Qr3c0PftkHYdzaz0hhJg8kCg6n+wyK8s3IRWp4c1+AbkjYXk2GQZegEAacjajAcTZYBWS6b+FrLpNaeynqXzeioNyPNLCLJpEFO81ZcPtrFabp2gbpFiyr3XdfMF6UmC5Kzqh5mR1RTTpkgSw70C9pVOOsYRlmSYDxwAObzp8sGfgKwyECBRUC+VFZJIMcsolClgxjClfNchiiWjQ/W68se7m5l44Ld3SF6eELw9CibOKdyjLJPAV463NQxFH+dz0ZaXqn9biQINUqQDbIM6fKfNaqiIQj2651uAKIAhLmrEH1jX5T6BeFsegGSsophtvC9wtWoW7WENibmqsd0a+EPo1my72uNXJ5TJshkH/aagGMvlkspMBw4ADk/32a7SgB81TJ8YUF5NVAhtjPyw4KRnl+K9HwDCktNjR+wKytPnrQ6wK36GuDXVpasCaIIiCJwuSSaoNYAanXZ4i5aLQSNumz/5TJpgiCWZUmSBKmoECguhqDKsl5DEFVl+9VqQFRBUF3erlKV3UOttvu3C3qtCr3bBCE1twTxKfnIKTLa9X5NieDlCf3AgRB9fOABoHNzP3QI98G5jEKcTStgdQMXoYoIh7ZXr2seJ4oCerYKxN4zmcjIZ5JMdePUCXJCQgI2b96M8+fPAyirbnHLLbcgOrrhJpI0JeZzCXab5CObzRBEFdRRVX8tVuPrFBdDysqGOSEBUm5ujc4RvL3h1q4N3EXRWmarsNSElNxSXMopZqLSEMp7GI0GoKT+b0hX9lWWP7drmiOKZcm4Sl1Wp1il/rdmsaiy/Xt5ci4Kl5P0yzWNy59b6xsLZZNCBaFsH4AAQUAfESjSS8gosaDQKEGqZ+esrrTpjrlUhYdD17dPpWEzGrWIdmHeaBXsiYSMQpxOZaLszMTgYOj696/xB1mVKKBXqwDsPZOJzILqq14RVcdpE+TnnnsO7733XqXhFqIo4tlnn8Vbb72lUGTOyXwuAWkDBtp9ko/X8881+vhAbWxspV+qnnoN2oRq0CbUC0WlZiRnFyM5qwhFBnOjxkYORJIASYJs+vffgD0HFWgANFSNBXN6OgqvfZhrEUVoOne65tftapWINqHeiA7yxLn0Qpxhj7LTEYMCoR80EIK6dimLWiXihtaB2H82C+nsSaZacsoZS2+//TbeffddjBo1Cnv27EFubi5yc3OxZ88ejB49Gu+++y7effddpcN0KlJx0b/JcXmP11Uet6anoXvqJdyanlaj4wGUzWA3Nu4neVVEONQRV09DPPRqtA/3xpBOYejTNgjhflevcUtEyhK8vaEfOuSayXFFapWItmHeGNopDF2a+8FD77T9Q02KGBwE/U03QdDUrSRieZIcXo/J4dQ0OeVviGXLluH222/H119/bbO9V69eWLNmDUpLS/Hpp59i2rRpCkXoxGo4ySddsiDVYvn3nJpct7En+WjU0PbsWatTgr31CPbWo8Roxrn0QiRkFHGiD5GjEEVoOrSHpnPnOk/AVKtERAd7IjrYE6m5JTiXUYh0TuZySKrwcOhu7F/rnuMriaKAHi39ceyCCmfTmu5wJKodp0yQExMT8cwzz1S7f9iwYYiLi2vEiMgRabt0gehRt4mHblo1rmvmi3Zh3kjIKMSZtMIGKcdFRHWjCg+HNvZ6iD4+DXbNUF83hPq6odhgRlIWh1k5EnWrltD26tVgk2cFQUCnSF946tQ4kpzLFffompwyQQ4ODsbff/9d7f6///4bQVwQoklThYZC3a5dva9TcfxiQkYRzqQVMFEmakRicBC0nTvbdeEPd13ZMKv24d7ILjTgUk4JUnJLmCwrQRCg7doVmus62uXy0cGe8HbTYP+5LP4up6tyygT5nnvuwXvvvYeoqCg89dRT8LjcS1hUVIQPP/wQn332GZ599lllgyTFCHp92az2BhxHXJYoe6FVsCeSs4txJq0ABSUsFUfOSScI1oVCHJIoQhURDk2HDlAFN279cn9PHfw9dYiJ9EV+iQlpeaXIyC9FVqEBlvqWG6GrEnQ66Pr2hSo8zK73KatLHoJDiXauS05OzSkT5Ndeew2HDx/Gyy+/jDlz5iA8vGwS1qVLl2A2mzFo0CC8+uqrCkdJihBF6Pr1hWCHZYPLLi+gRaAHWgR6ICO/FOcyCpGaW8qv68ipnG7W/NoHKUAMDIC6eQuooqPssvR3bXm7aeDtVlbtRpJk5BYbkVNkRG6xEXnFJhSUmvnabyCq0FBo+/SG6N44k+l0mrK65AkZhTh+IY9zTagSp0yQ3d3dsW3bNqxbt86mDvLw4cNx6623YuTIkaxC0ERpe/Wy61exFQV56xHkrbcua5qcVYR89ioT1Yig00Hw8Ybo5w9VUCBUoaEQ9PVZZOba5MtLZl/tYU13y0uIlu8D4AvA100G9GrAXw1JllFUakaR0YISowUlJgsMZglGiwyzRYJZAqSK16wjneTCQz00Gmi7dYWmbVtFbh8d5IlQHz2OJOciJadEkRjIMTldglxcXIwHHngAd999N+6//37ccccdSodEDkLbPRaaVi0b/b56jQptQr3QJtQLecVGXMopwaXcEg7BINej1gB1LLcFoGzVQ7Ua0GjKqlCYLZAyMiClp8N0/IRtpZvLf7f20Fr3yTZJq3WVlfIE17rv8p/SFcc3MDUAn8sPezFfvOh6da4FAeqW0dB07ar4twVuWjV6tQpEZoEBxy/kcvEoAuCECbK7uzt++eUX3HLLLUqH0qQFiyqbPxUlitD27AFN69ZKRwIfdy183LXoEOGDolIz0vJLkZ5fiswCA7/CI+dnNgGm+n3wk41lyQcHJjRRggBV8+bQdoqB6OurdDQ2Ar10GNAhBOl5pTiTVsDFRZo4p0uQAaBfv37Ys2cPpkyZonQoTdamUPtOoqgpwcMdun79oHLAqiUeejVa6j3RMtgTsiwjr9iE7KKyMYx5xUaOXySiJkPw9IA6Ohrq1q3rXH6zsQT76BHso0dBiQlJWUW4mFOCYlY0aXKcMkH+8MMPMWzYMMyaNQuPPfYYmjVrpnRI1Ng0Gmjat4PmuuvqXUS+MQiCAB93DXzc1IgOcANkGZIkoajUhEKDBcWlJpSYLCg1lo1hNJklmCUJlstjGOtLDfZeE1HjEdzcIPr7QQwKgio8HCp/f6VDqjUvNw2ua+aL65qVVTTJyC9FdlHZBM1ig7lBfjeT43L8zKIKXbp0gdlsxqJFi7Bo0SKo1WrodDqbYwRBQF5enkIRUiXlv0i0WuCKtqoxQYCg00P09YUYEgxBpYL5fFLlsYnl97N5oML4ROny2ETJOkZRlqSy8yWp7GGRyrbJl5+XHyNZrM8hSVecd8W2Gox/VMH+4xcBQCoqQr6d70FETk6jAbT1G2MOlapsAqZKBdlggOXCBVguXKj5NWqSdNY0L73atWqZ3GoAhF9+lDNIgElCvbsf5LQksCKz43HKBPnuu+9mlQpnU77UtNEIGAx1voxcWgpLXi4s5xMbLjYiIiobX26s/+RiubikSYwx11x+1Je5uMD1JmG6AKdMkFetWqV0CERERETkopwqQS4tLcW6deuQkJCAwMBA3HbbbQgLc4zJYkRERETkGpwmQU5PT0efPn2QkJBgnfnv7u6OH3/8EYMHD1Y4OiIiIiJyFaLSAdTUa6+9hsTEREybNg0bNmzA4sWL4ebmhkcffVTp0IiIiIjIhThND/LPP/+MCRMm4K233rJuCwkJwbhx4xAfH4927dopGB0RERERuQqn6UFOSkpCv379bLb169cPsiwjLS1NoaiIiIiIyNU4TYJsMBig1+tttpU/N5u5wg0RERERNQynSZABIDExEYcOHbI+jhw5AgA4ffq0zfbyR1199NFHiIqKgl6vR69evbB///6rHv/NN9+gffv20Ov16NSpEzZt2lTnexMRERGRspxmDDIAzJ49G7Nnz660/YknnrB5LssyBEGAxVL7tWnWrl2L6dOnY8mSJejVqxcWL16MYcOGIT4+HsHBwZWO3717N8aOHYtFixZhxIgR+Oqrr3DnnXfi0KFDiImJqfX9iYiIiEhZTpMgr1y5slHu884772DKlCmYNGkSAGDJkiXYuHEjVqxYgZdeeqnS8e+99x6GDx+O//u//wNQVm1j69at+PDDD7FkyZJGiZmIiIiIGo7TJMgTJ060+z2MRiMOHjyIGTNmWLeJoojBgwdjz549VZ6zZ88eTJ8+3WbbsGHD8OOPP1Z7H4PBAEOF5ZYLCx1okclark+v+HWpdti+ro3t69rYvq6N7etQnCZBbgyZmZmwWCwICQmx2R4SEoJTp05VeU5qamqVx6emplZ7n0WLFuGVV16pf8ANSHT3AASh7IVkrxeTIEAX2x2qZhH2uT5Vy5KZyfZ1YWJKCtvXhYlhoWxfF9ZY7Su6e9jn2i6KCbICZsyYYdPrfPjwYQwYMEDBiAB1y2iE/LYDUnGR3e4huntA3TLabten6mnatWP7ujC2r2tj+7o2tq9jYoJcQWBgIFQqVaW6ymlpaQgNDa3ynNDQ0FodDwA6nQ46nc763NPTsx5RNxy+eFwb29e1sX1dG9vXtbF9HY9TlXmzN61Wi9jYWGzbts26TZIkbNu2Db17967ynN69e9scDwBbt26t9ngiIiIicmzsQb7C9OnTMXHiRHTv3h09e/bE4sWLUVRUZK1qMWHCBERERGDRokUAgGeeeQYDBgzA22+/jdtuuw1r1qzBgQMHsHTpUiV/DCIiIiKqIybIVxgzZgwyMjIwZ84cpKamomvXroiLi7NOxEtKSoIo/tvx3qdPH3z11VeYNWsWXn75ZbRp0wY//vgjayATEREROSlBlln/Q2mHDh1CbGwsDh48iOuvv17pcIiIiIiaNI5BJiIiIiKqgAkyEREREVEFHINMdZaSkoKUlBSlwyAiImpSwsLCEBYWpnQYLo0JsgMICwvD3Llzneofu8FgwNixY/Hbb78pHQoREVGTMmDAAGzZssVmTQVqWJykR3WSn58PHx8f/Pbbbw6z0Ak1nMLCQgwYMIDt66LYvq6N7evayts3Ly8P3t7eSofjspggU52UJ8h8gbomtq9rY/u6Nrava2P7Ng5O0iMiIiIiqoAJMhERERFRBUyQqU50Oh3mzp3LCQIuiu3r2ti+ro3t69rYvo2DY5CJiIiIiCpgDzIRERERUQVMkImIiIiIKmCCTERERERUARNkUlxiYiIEQcCqVauUDoWIiIiICbKzOXv2LB599FG0bNkSer0e3t7e6Nu3L9577z2UlJTY7b4nTpzAvHnzkJiYaLd71MSCBQtw++23IyQkBIIgYN68eYrGoxRBEGr02LFjR73vVVxcjHnz5tXqWmyn+nPkNj516hReeOEFdO3aFV5eXggLC8Ntt92GAwcO1DuWpsKR2/fSpUt44IEH0K5dO3h5ecHX1xc9e/bE6tWrwXn9NePI7XulL7/8EoIgcNXFK6iVDoBqbuPGjbjnnnug0+kwYcIExMTEwGg0YteuXfi///s/HD9+HEuXLrXLvU+cOIFXXnkFAwcORFRUlF3uUROzZs1CaGgounXrhi1btigWh9L++9//2jz//PPPsXXr1krbO3ToUO97FRcX45VXXgEADBw4sEbnsJ3qz5Hb+LPPPsPy5ctx991344knnkBeXh4+/fRT3HDDDYiLi8PgwYPrHZOrc+T2zczMxIULFzB69Gg0b94cJpMJW7duxYMPPoj4+HgsXLiw3jG5Okdu34oKCwvxwgsvwMPDo95xuBomyE4iISEB9913H1q0aIFff/0VYWFh1n1PPvkkzpw5g40bNyoY4b9kWUZpaSnc3Nwa/NoJCQmIiopCZmYmgoKCGvz6zuKBBx6web53715s3bq10nalsJ3qz5HbeOzYsZg3b55Nj9PkyZPRoUMHzJs3jwlyDThy+3bu3LlSb+TUqVMxcuRIvP/++3jttdegUqmUCc5JOHL7VjR//nx4eXlh0KBB+PHHH5UOx6FwiIWTePPNN1FYWIjly5fbJMflWrdujWeeecb63Gw247XXXkOrVq2g0+kQFRWFl19+GQaDwea8qKgojBgxArt27ULPnj2h1+vRsmVLfP7559ZjVq1ahXvuuQcAMGjQoEpfDZVfY8uWLejevTvc3Nzw6aefAgDOnTuHe+65B/7+/nB3d8cNN9xQr0Reyd5rZyNJEhYvXozrrrsOer0eISEhePTRR5GTk2Nz3IEDBzBs2DAEBgbCzc0N0dHRmDx5MoCy8eHlCe4rr7xibftrDZlgOzUOpdo4Nja20texAQEB6N+/P06ePNmwP2QTpuRruCpRUVEoLi6G0Wis989Gyrfv6dOn8e677+Kdd96BWs3+0ivx/4iT+Omnn9CyZUv06dOnRsc//PDDWL16NUaPHo3nnnsO+/btw6JFi3Dy5En88MMPNseeOXMGo0ePxkMPPYSJEydixYoVePDBBxEbG4vrrrsON954I55++mm8//77ePnll61fCVX8aig+Ph5jx47Fo48+iilTpqBdu3ZIS0tDnz59UFxcjKeffhoBAQFYvXo1br/9dnz77be46667Gu5/EFXy6KOPYtWqVZg0aRKefvppJCQk4MMPP8Rff/2FP/74AxqNBunp6Rg6dCiCgoLw0ksvwdfXF4mJifj+++8BAEFBQfjkk0/w+OOP46677sKoUaMAlPUwkfIcrY1TU1MRGBjYoD9jU6Z0+5aUlKCoqAiFhYX47bffsHLlSvTu3dsu3w42RUq377PPPotBgwbh1ltvxddff23Xn9UpyeTw8vLyZADyHXfcUaPjDx8+LAOQH374YZvtzz//vAxA/vXXX63bWrRoIQOQf//9d+u29PR0WafTyc8995x12zfffCMDkLdv317pfuXXiIuLs9n+7LPPygDknTt3WrcVFBTI0dHRclRUlGyxWGRZluWEhAQZgLxy5coa/XyyLMsZGRkyAHnu3Lk1PseVPfnkk3LFl/POnTtlAPKXX35pc1xcXJzN9h9++EEGIP/555/VXrs+/6/ZTg3HUdu43O+//y4LgiDPnj27ztdoyhyxfRctWiQDsD5uvvlmOSkpqVbXoDKO1r4bNmyQ1Wq1fPz4cVmWZXnixImyh4dHLX4i18chFk4gPz8fAODl5VWj4zdt2gQAmD59us325557DgAqDXHo2LEj+vfvb30eFBSEdu3a4dy5czWOMTo6GsOGDasUR8+ePdGvXz/rNk9PTzzyyCNITEzEiRMnanx9qp1vvvkGPj4+GDJkCDIzM62P8q/Gt2/fDgDw9fUFAGzYsAEmk0nBiKm2HKmN09PTMW7cOERHR+OFF16wyz2aGkdo37Fjx2Lr1q346quvMG7cOACwa7WkpkTJ9jUajZg2bRoee+wxdOzYsUGu6YqYIDsBb29vAEBBQUGNjj9//jxEUUTr1q1ttoeGhsLX1xfnz5+32d68efNK1/Dz86s0DupqoqOjq4yjXbt2lbaXD824Mg5qOKdPn0ZeXh6Cg4MRFBRk8ygsLER6ejoAYMCAAbj77rvxyiuvIDAwEHfccQdWrlxZaaw6OR5HaeOioiKMGDECBQUFWLduHUtFNRBHaN8WLVpg8ODBGDt2LL788ku0bNkSgwcPZpLcAJRs33fffReZmZnWyhdUNY5BdgLe3t4IDw/HsWPHanWeIAg1Oq662chyLepdckyaY5EkCcHBwfjyyy+r3F8+qUMQBHz77bfYu3cvfvrpJ2zZsgWTJ0/G22+/jb179zLZcWCO0MZGoxGjRo3CkSNHsGXLFsTExNT5WmTLEdr3SqNHj8ayZcvw+++/V/rGkGpHqfbNy8vD/Pnz8cQTTyA/P9/6DXVhYSFkWUZiYiLc3d0RHBxcvx/QBTBBdhIjRozA0qVLsWfPHvTu3fuqx7Zo0QKSJOH06dM2E+nS0tKQm5uLFi1a1Pr+NU22r4wjPj6+0vZTp05Z95N9tGrVCr/88gv69u1bow8vN9xwA2644QYsWLAAX331Fe6//36sWbMGDz/8cJ3anuxP6TaWJAkTJkzAtm3b8PXXX2PAgAF1+TGoGkq3b1XKe47z8vIa5HpNmVLtm5OTg8LCQrz55pt48803K+2Pjo7GHXfcwZJv4BALp1FeyPvhhx9GWlpapf1nz57Fe++9BwC49dZbAQCLFy+2Oeadd94BANx22221vn95EfHc3Nwan3Prrbdi//792LNnj3VbUVERli5diqioKI59sqN7770XFosFr732WqV9ZrPZ2o45OTmVvino2rUrAFi/wnN3dwdQu7Yn+1O6jZ966imsXbsWH3/8sXXmPDUcJds3IyOjyu3Lly+HIAi4/vrra3Qdqp5S7RscHIwffvih0mPQoEHQ6/X44YcfMGPGjLr/YC6EPchOolWrVvjqq68wZswYdOjQwWYlvd27d+Obb77Bgw8+CADo0qULJk6ciKVLlyI3NxcDBgzA/v37sXr1atx5550YNGhQre/ftWtXqFQqvPHGG8jLy4NOp8NNN9101a9hXnrpJfzvf//DLbfcgqeffhr+/v5YvXo1EhIS8N1330EUa//57L///S/Onz+P4uJiAMDvv/+O+fPnAwDGjx/PXunLBgwYgEcffRSLFi3C4cOHMXToUGg0Gpw+fRrffPMN3nvvPYwePRqrV6/Gxx9/jLvuugutWrVCQUEBli1bBm9vb+sHLTc3N3Ts2BFr165F27Zt4e/vj5iYmKt+nc52sj8l23jx4sX4+OOP0bt3b7i7u+OLL76w2X/XXXdxZa56UrJ9FyxYgD/++APDhw9H8+bNkZ2dje+++w5//vknnnrqqUrzW6j2lGpfd3d33HnnnZW2//jjj9i/f3+V+5osJUtoUO39888/8pQpU+SoqChZq9XKXl5ect++feUPPvhALi0ttR5nMpnkV155RY6OjpY1Go0cGRkpz5gxw+YYWS4r0XbbbbdVus+AAQPkAQMG2GxbtmyZ3LJlS1mlUtmUfKvuGrIsy2fPnpVHjx4t+/r6ynq9Xu7Zs6e8YcMGm2NqU+ZtwIABNmWHKj6qKkHXVFxZQqjc0qVL5djYWNnNzU328vKSO3XqJL/wwgvypUuXZFmW5UOHDsljx46VmzdvLut0Ojk4OFgeMWKEfODAAZvr7N69W46NjZW1Wm2NygmxnRqeI7XxxIkTq21fAHJCQkJD/uhNgiO1788//yyPGDFCDg8PlzUajfV9ZuXKlbIkSQ36czcVjtS+VWGZt8oEWa7FTCwiIiIiIhfHMchERERERBUwQSYiIiIiqoAJMhERERFRBUyQiYiIiIgqYIJMRERERFQBE2QX8+abb6J9+/aQJEnpUOrtvvvuw7333qt0GA6F7eva2L6uje3r+tjGLkTpOnPUcPLy8mR/f395xYoV1m24XJf0rbfeqnT8ypUrZQDyn3/+2eCxDB48WAYgP/nkk1Xu/+yzz+T27dvLOp1Obt26tfz+++9XOubQoUOyKIry4cOHGzw+Z8T2dW1sX9fG9nV9bGPXwh5kF7JixQqYzWaMHTu20r7//Oc/1lXN7O3777+3WV76Sp9++ikefvhhXHfddfjggw/Qu3dvPP3003jjjTdsjuvWrRu6d++Ot99+294hOwW2r2tj+7o2tq/rYxu7GKUzdGo4nTt3lh944AGbbQDkrl27ygDkt99+22afPT69lpSUyFFRUfKrr75a5afX4uJiOSAgoNLKe/fff7/s4eEhZ2dn22x/6623ZA8PD7mgoKDBYnRWbF/XxvZ1bWxf18c2di3sQXYRCQkJOHLkCAYPHlxpX9++fXHTTTfhzTffRElJiV3jePPNNyFJEp5//vkq92/fvh1ZWVl44oknbLY/+eSTKCoqwsaNG222DxkyBEVFRdi6davdYnYGbF/XxvZ1bWxf18c2dj1MkF3E7t27AQDXX399lfvnzZuHtLQ0fPLJJ1e9jsFgQGZmZo0eV0pKSsLrr7+ON954A25ublVe/6+//gIAdO/e3WZ7bGwsRFG07i/XsWNHuLm54Y8//rhq3K6O7eva2L6uje3r+tjGrketdADUME6dOgUAiI6OrnJ///79MWjQIPznP//B448/Xu2L53//+x8mTZpUo3vKsmzz/LnnnkO3bt1w3333VXtOSkoKVCoVgoODbbZrtVoEBATg0qVLNtvVajUiIyNx4sSJGsXkqti+ro3t69rYvq6Pbex6mCC7iKysLKjVanh6elZ7zLx58zBgwAAsWbIE06ZNq/KYYcOG1emrlO3bt+O7777Dvn37rnpcSUkJtFptlfv0en2VXz/5+flV+Wm5KWH7uja2r2tj+7o+trHrYYLchNx4440YNGgQ3nzzTTz22GNVHhMWFoawsLBaXddsNuPpp5/G+PHj0aNHj6se6+bmBqPRWOW+0tLSKj9Vy7IMQRBqFVNTxPZ1bWxf18b2dX1sY+fCBNlFBAQEwGw2o6CgAF5eXtUeN3fuXAwcOBCffvopfH19K+0vKSlBXl5eje4ZGhoKAPj8888RHx+PTz/9FImJiTbHFBQUIDExEcHBwXB3d0dYWBgsFgvS09NtvuIxGo3IyspCeHh4pfvk5OSgTZs2NYrJVbF9XRvb17WxfV0f29j1cJKei2jfvj2Aspm0VzNgwAAMHDgQb7zxRpVfpaxdu9b6CfZaj3JJSUkwmUzo27cvoqOjrQ+g7IUbHR2Nn3/+GQDQtWtXAMCBAwds7nvgwAFIkmTdX85sNiM5ORkdOnSo1f8PV8P2dW1sX9fG9nV9bGPXwx5kF9G7d28AZf/IO3fufNVj582bh4EDB2Lp0qWV9tVl/NN9991X6UUFAHfddRduvfVWTJkyBb169QIA3HTTTfD398cnn3yCW2+91XrsJ598And3d9x222021zhx4gRKS0vRp0+fWsXkati+ro3t69rYvq6PbeyClCrATA0vJiZGHjt2rM02VLPU5IABA6xLYNpjmcur3fujjz6SAcijR4+Wly1bJk+YMEEGIC9YsKDSsW+99Zbs7u4u5+fn2yVGZ8L2dW1sX9fG9nV9bGPXwgTZhbzzzjuyp6enXFxcbN1W3Qtk+/btir04ZVmWly5dKrdr107WarVyq1at5HfffVeWJKnScb169aq0MlFTxfZ1bWxf18b2dX1sY9fCBNmF5Obmyv7+/vJnn32mdCgN4q+//pIFQZD/+usvpUNxCGxf18b2dW1sX9fHNnYtgixfUWmanNobb7yBlStX4sSJExBF556Ded9990GSJHz99ddKh+Iw2L6uje3r2ti+ro9t7DqYIBMRERERVeDcH2+IiIiIiBoYE2QiIiIiogqYIBMRERERVcAEmYiIiIioAibIREREREQVMEEmIiIiIqqACTIRERERUQVMkImIiIiIKmCCTERERERUARNkIiIiIqIKmCATEREREVXABJmIiIiIqAImyEREREREFTBBdgApKSmYN28eUlJSlA6FiIiIqMljguwAUlJS8MorrzBBJiIiInIATJCJiIiIiCpggkxEREREVAETZCIiIiKiCpggExERERFVwASZiIiIiKgCJshERERERBUwQSYiIiIiqoAJMhFVyWw2Kx0CERGRIpggE1GVmCATEVFTxQSZiKpksViUDoGIiEgRTJCJqEpMkImIqKlyyAQ5JSUFf//9N4qKipQOhajJ4hALIiJqqhwqQV63bh3at2+PZs2a4frrr8e+ffsAAJmZmejWrRt+/PFHZQMkakKYIBMRUVPlMAnyTz/9hFGjRiEwMBBz586FLMvWfYGBgYiIiMDKlSsVjJCoaTGZTEqHQEREpAiHSZBfffVV3Hjjjdi1axeefPLJSvt79+6Nv/76S4HIiJomo9GodAhERESKcJgE+dixY7j33nur3R8SEoL09PRGjIioaSstLVU6BCIiIkU4TILs7u5+1Ul5586dQ0BAQCNGRNS0MUEmIqKmymES5EGDBmH16tVVTgxKTU3FsmXLMHToUAUiI2qaWEWGiIiaKodJkBcsWIALFy6gR48e+PTTTyEIArZs2YJZs2ahU6dOkGUZc+fObZRYPvroI0RFRUGv16NXr17Yv3//VY9fvHgx2rVrBzc3N0RGRmLatGnsfSOnV1hYyFrIRETUJDlMgtyuXTvs2rULAQEBmD17NmRZxn/+8x8sXLgQnTp1ws6dOxEVFWX3ONauXYvp06dj7ty5OHToELp06YJhw4ZVO/75q6++wksvvYS5c+fi5MmTWL58OdauXYuXX37Z7rES2ZMsy8jOzlY6DCIiokanVjqAiq677jr88ssvyMnJwZkzZyBJElq2bImgoKBGi+Gdd97BlClTMGnSJADAkiVLsHHjRqxYsQIvvfRSpeN3796Nvn37Yty4cQCAqKgojB071lrDmciZpaWlNerrj4iIyBE4TA9yRX5+fujRowd69erVqG/ORqMRBw8exODBg63bRFHE4MGDsWfPnirP6dOnDw4ePGgdhnHu3Dls2rQJt956a7X3MRgMyM/Ptz4KCwsb9gchaiAXLlxQOgQiIqJG5zAJ8vvvv49hw4ZVu/+WW27BJ598YtcYMjMzYbFYEBISYrM9JCQEqampVZ4zbtw4vPrqq+jXrx80Gg1atWqFgQMHXnWIxaJFi+Dj42N9DBgwoEF/DqKGcvHiRS4YQkRETY7DJMjLly9Hx44dq93fsWNHLF26tBEjqpkdO3Zg4cKF+Pjjj3Ho0CF8//332LhxI1577bVqz5kxYwby8vKsj99++60RIyaqOYvFgsTERKXDICIialQOkyCfPXsWHTp0qHZ/+/btcfbsWbvGEBgYCJVKhbS0NJvtaWlpCA0NrfKc2bNnY/z48Xj44YfRqVMn3HXXXVi4cCEWLVoESZKqPEen08Hb29v68PT0bPCfhaih/PPPP0qHQERE1KgcJkHWarXVDmMAgJSUFIiifcPVarWIjY3Ftm3brNskScK2bdvQu3fvKs8pLi6uFJdKpQJQVgWAyNldvHgROTk5SodBRETUaBwmQb7hhhuwatUqFBQUVNqXl5eHlStX4oYbbrB7HNOnT8eyZcuwevVqnDx5Eo8//jiKioqsVS0mTJiAGTNmWI8fOXIkPvnkE6xZswYJCQnYunUrZs+ejZEjR1oTZSJnd+TIEaVDICIiajQOU+Zt7ty5GDBgALp27Ypnn30W1113HQDg2LFjWLx4MVJSUvDVV1/ZPY4xY8YgIyMDc+bMQWpqKrp27Yq4uDjrxL2kpCSbHuNZs2ZBEATMmjULFy9eRFBQEEaOHIkFCxbYPVaixvLPP/+gS5cu8PX1VToUIiIiuxNkBxoHsHXrVjz66KNITEyEIAgAyoYpREdH45NPPnHZpaYPHTqE2NhYHDx4ENdff73S4RABADZv3ozk5GTr84iICNx6663W1yYREZGrcpgeZAAYMmQIzpw5g7/++ss6Ia9Vq1a4/vrr+aZMpLCLFy/i6NGj6Ny5s9KhEBER2ZVDJchA2cIcsbGxiI2NVToUIrrCvn374O3t3SjLvhMRESnF4RLkEydO4Ny5c8jJyamyCsSECRMUiIqIgLIhT9u2bcPNN9/MJJmIiFyWwyTIZ8+exQMPPID9+/dXWx5NEAQmyEQKs1gs2Lp1K/r163fV2uVERETOymES5EcffRRHjx7F4sWL0b9/f/j5+SkdElGT1b17dyQmJsLDwwMzZ86stF+WZezcuRO5ubno1auX3WuUExERNSaHSZD/+OMPvPzyy3jqqaeUDoWoyUtNTUVWVhYsFstVjzt69CiysrIwePBg6PX6RoqOiIjIvhym2ycwMBA+Pj5Kh0FEtXTp0iX88MMPyMzMVDoUIiKiBuEwCfJjjz2GL7744po9VkTkeAoKCrBu3TqcOXNG6VCIiIjqzWGGWLRt2xYWiwVdunTB5MmTERkZWeVSzaNGjVIgOiK6FovFgl9//RXZ2dno0aMHa5cTEZHTcpgEecyYMda/P//881UeIwgCe5iJHNzhw4eRn5+PQYMGVfkhl4iIyNE5TIK8fft2pUMgogZy7tw5lJaWYtiwYdBoNEqHQ0REVCsOkyAPGDBA6RCIqAFdunQJmzZtwi233AKtVqt0OERERDXmMJP0yhkMBuzZswfr1q3jrHgiJ5eWlobNmzfDaDQqHQoREVGNOVSC/P777yMsLAz9+vXDqFGjcOTIEQBAZmYmAgMDsWLFCoUjJKLaSktLw5YtWzh/gIiInIbDJMgrV67Es88+i+HDh2P58uU2y00HBgbipptuwpo1axSMkIjqKiUlBdu2bat2GXkiIiJH4jAJ8ttvv4077rgDX331FUaOHFlpf2xsLI4fP65AZETUEBITE7Fnzx6lwyAiIromh0mQz5w5g1tuuaXa/f7+/sjKymrEiIiooR07dgzHjh1TOgwiIqKrcpgE2dfX96qT8k6cOIHQ0NBGjIiI7GHPnj1ISkpSOgwiIqJqOUyCfOutt2Lp0qXIzc2ttO/48eNYtmwZbr/99sYPjIgalCzL2LZtG6vUEBGRw3KYBHn+/PmwWCyIiYnBrFmzIAgCVq9ejQceeADdu3dHcHAw5syZ0yixfPTRR4iKioJer0evXr2wf//+qx6fm5uLJ598EmFhYdDpdGjbti02bdrUKLESOSOTyYTNmzdX+YGYiIhIaQ6TIIeHh+PgwYMYPnw41q5dC1mW8d///hc//fQTxo4di7179yIwMNDucaxduxbTp0/H3LlzcejQIXTp0gXDhg1Denp6lccbjUYMGTIEiYmJ+PbbbxEfH49ly5YhIiLC7rES2UNSUhKKiooAlNUlz87Otst9SkpKsHHjRuTl5dnl+kRERHUlyA5Qd8lgMGDLli2IiopC586dAQAZGRmQJAlBQUEQxcbL43v16oUePXrgww8/BABIkoTIyEg89dRTeOmllyodv2TJEvznP//BqVOn6ryk7qFDhxAbG4uDBw/i+uuvr1f8RHW1f/9+vPbaa9i4caNNOTZBENCpUyfcdtttiIqKavD7enh4YMSIEfDx8WnwaxMREdWFQ/Qga7Va3HPPPdi9e7d1W1BQEEJCQho1OTYajTh48CAGDx5s3SaKIgYPHlxtear169ejd+/eePLJJxESEoKYmBgsXLiQiyKQU/n+++/Rt29fbN68uVKtYlmWcezYMbzxxhs4dOhQg9+7qKgIGzduRGFhYYNfOzs7G/fffz+8vb3h6+uLhx566Jr3GThwIARBsHk89thj1v2rVq2qtL/8Ud03TURE5FwcIkEWBAFt2rRRfNJOZmYmLBYLQkJCbLaHhIQgNTW1ynPOnTuHb7/9FhaLBZs2bcLs2bPx9ttvY/78+dXex2AwID8/3/qwR2JAVFP79+/HmDFjYLFYqv1gJ0kSJEnCsmXLkJiY2OAxFBYWIi4uDmazudbnDhw4EKtWrapy3/3334/jx49j69at2LBhA37//Xc88sgj17zmlClTkJKSYn28+eab1n1jxoyx2ZeSkoJhw4ZhwIABCA4OrnX8RETkeBwiQQaAl19+GR9++CHi4+OVDqVWJElCcHAwli5ditjYWIwZMwYzZ87EkiVLqj1n0aJF8PHxsT4GDBjQiBET2Zo/fz5kWa7xKnf2moCanZ2NgwcPNtj1Tp48ibi4OHz22Wfo1asX+vXrhw8++ABr1qzBpUuXrnquu7s7QkNDrQ9vb2/rPjc3N5t9KpUKv/76Kx566KEGi52IiJSlVjqAcnv37kVAQABiYmIwcOBAREVFwc3NzeYYQRDw3nvv2S2GwMBAqFQqpKWl2WxPS0urtgZzWFgYNBoNVCqVdVuHDh2QmpoKo9EIrVZb6ZwZM2Zg+vTp1ueHDx9mkkyKSEpKwoYNG2qcHEuShCNHjiA7Oxv+/v4NHs+JEyfQvXt3m9dTXe3Zswe+vr7o3r27ddvgwYMhiiL27duHu+66q9pzv/zyS3zxxRcIDQ3FyJEjMXv2bLi7u1d57Oeffw53d3eMHj263jETEZFjcJgEuXxSHABs27atymPsnSBrtVrExsZi27ZtuPPOOwGUJQTbtm3D1KlTqzynb9+++OqrryBJknW89D///IOwsLAqk2MA0Ol00Ol01ueenp4N+4OQSzGbzXYb0x4XF1fj5LicLMs4efIk+vTp0+DxGI1GpKamNkgVmNTU1EpDHtRqNfz9/asdMgUA48aNQ4sWLRAeHo4jR47gxRdfRHx8PL7//vsqj1++fDnGjRtX6QM9ERE5L4dJkCVJUjoEAMD06dMxceJEdO/eHT179sTixYtRVFSESZMmAQAmTJiAiIgILFq0CADw+OOP48MPP8QzzzyDp556CqdPn8bChQvx9NNPK/ljkIswm804ceIESkpK7HL9U6dOQRTFWr3+BEFAfn4+iouL7RJTfHw8QkJCoFZX/etp4cKFWLhwofV5SUkJ9u7da/Mh9sSJE3W+f8Uxyp06dUJYWBhuvvlmnD17Fq1atbI5ds+ePTh58iT++9//1vl+RETkeBwmQXYUY8aMQUZGBubMmYPU1FR07doVcXFx1ol7SUlJNpU1IiMjsWXLFkybNg2dO3dGREQEnnnmGbz44otK/QjkQiwWC0pKSqDRaKr9RqI+/Pz8av3hVJZluLm52aXCjCzL1smC1SXIjz32GO69917r8/vvvx933303Ro0aZd0WHh6O0NDQSlUlzGYzsrOza7Vsfa9evQAAZ86cqZQgf/bZZ+jatStiY2NrfD0iInJ8Dpcg7927F9u3b0d6ejqeeOIJtGnTBsXFxTh16hTatm3bKMMRpk6dWu2Qih07dlTa1rt3b+zdu9fOUVFTptVq7ZIg9+3bF4Ig1GqYhSAIaNeund1KMHp4eFx1v7+/v834Zzc3NwQHB6N169Y2x/Xu3Ru5ubk4ePCgNYH99ddfIUmSNemticOHDwMom29QUWFhIb7++mvrt0lEROQ6HKaKhdFoxKhRo9C3b1/MnDkT77//PpKTkwGU1SIeOnSoXccfEzU1hYWF2LdvH5o3bw5BEGp0Tnly7Ovra5eYyqtCNIQOHTpg+PDhmDJlCvbv348//vgDU6dOxX333Yfw8HAAwMWLF9G+fXvrcvJnz57Fa6+9hoMHDyIxMRHr16/HhAkTcOONN1oXMSq3du1amM1mPPDAAw0SLxEROQ6HSZBnz56NDRs24JNPPkF8fLxNj5Zer8c999yDdevWKRghketISEjAl19+ieTkZJsqD9ciCAJ69+6NrKwsGI3GBo1JrVajZcuWDXrNL7/8Eu3bt8fNN9+MW2+9Ff369cPSpUut+00mE+Lj463jqbVaLX755RcMHToU7du3x3PPPYe7774bP/30U6VrL1++HKNGjbLbhwUiIlKOwwyx+N///ofHH38cjzzyCLKysirt79ChA7755hsFIiNyHWazGbt27bIOGwCA6OhozJkzBwsWLLCOAb5S+XCKUaNGITw8HJIkIScnB+7u7vD09KxxD3R1BEFA165dodPpar1YSFXDnsr5+/vjq6++qnZ/VFSUzYfxyMhI/PbbbzW6b8WVP4mIyLU4TIKcnp6OTp06VbtfpVLZbdY8UVOQnZ2NzZs3IyMjw7qtZcuWGDJkCNzc3BATE4OPP/4YO3bssEkaBUFAx44dMWzYMERERCA/Px8mkwkAUFxcDKPRCG9vb2g0mjrFJQgCunTpgoCAgAbvlSYiIqoLh0mQIyMjcerUqWr3//HHH5Um4RDRtcmyjBMnTmDHjh3WxFalUqF///7o0qWLtfe3c+fOWLJkCS5duoQ77rgD+fn5cHNzw4svvmgzKc7Pzw/FxcXWJdLLK0N4enrC3d29Vr3Joiiia9euCAoKasCfmIiIqH4cZgzyuHHj8Omnn2LPnj3WbeVvtMuWLcPXX3+NCRMmKBUekVMyGAyIi4vD1q1brcmxn58f7rvvPnTt2rXKZDY8PNy66IVWq620Yp4gCPDw8IC/v79NKbbCwkLk5ubWeFETtVqNHj16MDkmIiKH4zA9yDNnzsTevXtx4403okOHDhAEAdOmTUN2djYuXLiAW2+9FdOmTVM6TCKnkZqaik2bNiE/P9+6LSYmBgMGDKjzcIiKNBoN/P39UVhYaB3+ZDQakZWVBS8vL+j1+mp7k/V6PWJjY7mKJBEROSSHSZC1Wi3i4uLw5Zdf4ttvv4XFYoHBYEDnzp0xf/58jB8/vt4TgYiaAlmWcfDgQezevdu6CIhWq8XgwYPRtm3bBr2XIAjw8vKCTqdDXl4eJEmCLMvIz8+HwWCAt7d3pXrJHh4e6N69O/R6fYPGQkRE1FAUS5CnT5+O8ePHo1u3bgDKVqgLCgrCAw88wLqiRHVUVFSELVu2ICkpybotNDQUt9xyC3x8fOx2X61Wi4CAABQUFKC0tBRA2fCOrKwseHt7Q6fTASgb3tGtW7cG6cEmIiKyF8XGIC9evBgnT560Po+OjsYPP/ygVDhETi8hIQFffPGFTXLco0cP3HPPPXZNjsuJoggfHx/4+PhYv+2RJAm5ubnIz89HcHAwYmNjmRwTEZHDU6wHOSQkBOfOnbM+r81St0T0L7PZjN27d+PQoUPWbR4eHhg+fDgiIyMbPR69Xg+NRoP8/Hxr2bbs7GwcOXIE4eHhCAkJafSYiIiIakOxBPm2227Dq6++ip9//tm6EtXbb7+NNWvWVHuOIAhcTY+ogpycHGzevBnp6enWbdHR0RgyZAjc3d0Vi0ulUsHX1xclJSVIT09HSUkJSkpKsHbtWvTq1Qs9evSoNDaZiIjIUSiWIL/33nsIDg7G9u3bcfz4cQiCgOTkZGRnZ1d7DifpEf3rxIkT2L59u01t4379+lVbvq2xCYKAXr16Qa/XIy4uDunp6ZAkCXv27EFiYiKGDRvGZZqJiMghKZYge3h4YOHChdbnoihi8eLFGDdunFIhETkFo9GIX3/91WZhHT8/P9xyyy0IDg5WMDJbHTp0QHh4OABgzJgx2LdvH/7880/IsoyUlBR8+eWXuPHGGxETE+MQCT0RkbMoKiqCh4eH0mG4NMW+4xw1ahR27txpfb59+3YMGTJEqXCInEJaWhq+/PJLm+S4Y8eOGDt2rEMlx5GRkWjevLn1uUqlQp8+fWwmDJpMJmzbtg0//fQTioqKlAqViMjplH9zSPajWIK8bt06m9n2N910E7Zu3apUOEQOrby28dq1a5GXlwegrLTa8OHDMXToUGi1WoUj/Jevry/at29f5b7w8HDcf//9iImJsW47d+4cvvjiC5w9e7axQiQicmpMkO1PsQQ5IiICf/31l/W5LMv8mpWoCiUlJdiwYQN27txpXfgjJCQE999/f7WJqFLc3NzQtWvXq07AK1+0ZOTIkdYlrUtKSvDTTz/ZjKkmorpjZSjXZjabYbFYlA7DpSk2Bvm+++7DW2+9ha+//to6Ueell17CokWLqj1HEAT8/fffjRQhkfJOnTqF9evXWxffAIDu3bujd+/eUKlUCkZWmU6nQ/fu3a2LglxLq1atEBYWhl9++cVa8vHkyZNITk5GYGCgwyX/RM6kpKRE0Uo2ZH+lpaUch2xHtUqQo6Oja93LKwhClV+dLlq0CK1bt8b27duRnp4OQRDg4eGBgICAWl2fyBWZzWasX78ev/zyi3Wbu7s7hg0bhhYtWigYWdX0ej169OhR6zdkd3d3jBw5EsePH8dvv/0Gk8mEwsJCfPDBBxg2bBhuvfVWqNWKfY4nclrsQXZ9nKhnX7V65xkwYEClBPnAgQM4fvw4OnbsiHbt2gEA4uPjceLECcTExCA2NrbKa6lUKjzyyCN45JFHAJRVsZg1axarWFCTl5GRgRUrVuD8+fPWbc2bN8fw4cMdskfI3d0d3bt3tw6XqC1BEBATE4NmzZph8+bNSEtLgyzLiIuLw/Hjx/Hggw8iLCysgaMmcm3lw7HIdRUWFjrU5GxXU6sxyKtWrcLKlSutjzvuuAMXLlzA1q1bcezYMXz33Xf47rvvcOzYMWzZsgXJycm48847a3TthISEGh9rbx999BGioqKg1+vRq1cv7N+/v0bnrVmzBoIgOMzPQc5n//79WLRokTU5VqlU6N69O2677TaHTI7d3NzQo0ePOifHFfn6+uKuu+5Ct27drGOYk5OT8frrr2P79u18wyeqBb5eXF9BQYHSIbi0ek3SmzNnDp566incfPPNlfYNGTIEU6dOxaxZs2p0rRYtWjhEArB27VpMnz4dc+fOxaFDh9ClSxcMGzbMZqWyqiQmJuL5559H//79GylSciWlpaVYvXo1Vq1aZR1vHBQUhGeeeQbXXXedQ05g1Wg06N69O/R6fYNdUxRFdO7cGc8++6x1SWqTyYRvvvkGH374IXJzcxvsXkSujAmy62OCbF/1SpBPnz591THDAQEB1ZZuEkURarUaRqPR+lylUl310RhjEd955x1MmTIFkyZNQseOHbFkyRK4u7tjxYoV1Z5jsVhw//3345VXXkHLli3tHiO5lqSkJLz++uvYt2+fddsNN9yAGTNmIDIyUsHIrq5Tp052+1AbGRmJGTNmYODAgdZtp06dwvz583Hw4EG73JPIlZjNZqVDIDvLz89XOgSXVq+Ms1WrVli5ciUeeugheHp62uwrKCjAihUrqk0Y58yZA0EQrElv+XMlGY1GHDx4EDNmzLBuE0URgwcPxp49e6o979VXX0VwcDAeeughm8VPqmMwGGAwGKzPCwsL6xc4OSVJkrB9+3b8+OOP1nI9Op0OY8eORc+ePQHA5t+JI4mIiEBQUJBd76HVanHvvfciJiYG//3vf5GXl4fi4mIsX74cR44cwZgxYxziWyciR1Te+USui9+o2Ve9EuT58+dj9OjRaN++PR588EG0bt0aQFnP8urVq5GWloZvvvmmynPnzZt31edKyMzMhMVisX61Wy4kJMRm5bKKdu3aheXLl+Pw4cM1vs+iRYvwyiuv1CdUcnIFBQX4/PPPcfz4ceu25s2bY/LkyQ4/6UKlUqFNmzaNdr+OHTti1qxZ+N///odDhw4BAP7880+cPn0aEydOtE4OJqJ/VSwNSa6psLAQpaWlDTrMjf5VrwT5zjvvxKZNm/Diiy9i4cKFNvu6du2K5cuXY9iwYfUK0JEVFBRg/PjxWLZsGQIDA2t83owZMzB9+nTr88OHD2PAgAH2CJEc0KlTp7Bq1Sqbr8cGDx6M22+/3SlKmjVv3rzGtY4bioeHBx566CF07twZa9euRUlJCXJzc/Hee+/h5ptvxu233w6NRtOoMRE5MqPRCIvF4nD10qlhpaamIioqSukwXFK9342HDh2KoUOHIjU11TrzvkWLFggNDa3xNQwGA7744gv8/PPPOHv2LAoKCuDl5YXWrVtj+PDhGDduXKMspRsYGAiVSoW0tDSb7WlpaVX+PGfPnkViYiJGjhxp3VY+MUKtViM+Ph6tWrWqdJ5Op7NJMK4cnkKuyWKx4KeffsLWrVutNUq9vLwwceJEdOzYUeHoakalUin2y1gQBPTs2ROtW7fG559/jn/++QcAsG3bNpw4cQKTJk1Cs2bNFImNyBEVFhbCx8dH6TDIjpKTk5kg20mDdVeFhobWKikud/ToUdxxxx04f/48ZFmGj48PPD09kZ6ejkOHDuGbb77BggULsH79enTo0KGhwq2SVqtFbGwstm3bZi3VJkkStm3bhqlTp1Y6vn379jh69KjNtlmzZqGgoADvvfeeQ0+wosaVmZmJFStWIDEx0bqtQ4cOmDhxIry9vZULrJaaNWvWKB9Wr8bf3x9PP/00tm/fjnXr1sFsNiMlJQVvvPEGRo4cicGDB191qWuipqKgoIAJsotLSkqCLMuKz+FyRfV+F0lKSsJjjz2Gdu3awd/fH7///juAsoTg6aefxl9//VXtuYWFhbj99tuRlpaGBQsWIDk5GTk5OTZ/zp8/H5cuXcLIkSNRVFRU33Cvafr06Vi2bBlWr16NkydP4vHHH0dRUREmTZoEAJgwYYJ1Ep9er0dMTIzNw9fXF15eXoiJiVE8kSDHcODAASxcuNCaHIuiiLvuugtPPvmkUyXHoigiOjpa6TAAlMVy880348UXX0RERASAsh76H3/8EYsXL0ZWVpbCERIpj5O4XF9RUREyMzOVDsMl1asH+cSJE+jfvz8kSUKvXr1w5swZa2mZwMBA7Nq1C0VFRVi+fHmV569cuRJJSUnYtm2bTTmnchEREZgxYwZ69eqFIUOGYNWqVXjyySfrE/I1jRkzBhkZGZgzZw5SU1PRtWtXxMXFWSfuJSUlsXeKasRgMODrr7+2qYASFBSESZMmOeVXYkqMPb6WiIgIvPDCC9iwYQN++eUXyLKMM2fOYMGCBbj33nvRq1cv9qxQk5WTk6N0CNQIEhIS7F5VqCmqV4L8wgsvwNfXF3v37oUgCJVm3992221Yu3Zttedv3LgRQ4cOrTI5ruimm27CkCFD8NNPP9k9QQaAqVOnVjmkAgB27Nhx1XNXrVrV8AGR00lOTsaKFStsxrP36NED9913X4OsOtfYVCqVw/QeX0mj0eCuu+5CTEwMVq9ejezsbJSWluLzzz/HkSNHMG7cOI7zpyYpOztb6RCoEZw5cwY9evRgZ0ADq1dX6O+//47HH38cQUFBVTZM8+bNcfHixWrPP3r06DWT43I33XRTpfG+RI5GlmVs374d//nPf6zJsU6nw8SJEzFp0iSnTI6Bsteyow8ZatOmDWbOnIkbbrjBuu3w4cOYP3++TTk9oqYiOzvbOiGYXFdhYaG1SAI1nHolyJIkXbVQf0ZGxlW/ks3Ozq7xxL6QkBB+GiaHVlBQgE8++QTffPONdahR+YpwvXr1Uji6uhNFES1atFA6jBpxc3PDhAkTMGXKFHh4eAAoW23qo48+wv/+9z+HXXiFyB5MJhOKi4uVDoMawV9//cUPQw2sXgny9ddfj40bN1a5z2w2Y82aNTa9OVcyGAw1rl1acVlqIkcTHx+PhQsX4tixY9ZtN998M55//nmHX/jjWsLCwhxu7PG1dOvWDbNmzcJ1111n3bZz504sWrTIppIIkavjOOSmISMjA6dPn1Y6DJdSrzHIM2bMwIgRI/D444/jvvvuA1BWM/iXX37BwoULcfLkSXz44YdXvUZiYqJ1dayrSUhIqE+oRHZhsViwYcMG/Pzzz9ZP756enpg4caJNcubMnLW2sI+PD5544gns3LkT3333HUwmE9LT0/HWW2/hlltuwfDhw7mIArm8jIwMp30NU9W6d++OS5cuQaPRYObMmdbte/fuRWRkpNMO5XM09UqQb7nlFqxatQrPPPMMli5dCgB44IEHIMsyvL298fnnn+PGG2+86jVmz56N2bNnX/NerPNHjiYrKwsrVqyw+fDWvn17TJw40WVqjwqC4NQ/iyAIuPHGG9GuXTusWrUK58+fhyRJ2LhxI44fP46JEydWWlqeyJVcuHAB3bp1UzoMakCpqalISUmBr6+vzfbS0lLs2rULgwcPZr7UAOq9UMj48eMxatQobN26FadPn4YkSWjVqhWGDRsGLy+vq567cuXK+t6eSBEHDx7EV199hZKSEgBl43Rvv/12l1mkIjAwECaTCX5+fi7xizYkJATPP/88Nm/ejLi4OEiShMTERCxatAijRo1C//79XeLnJLpSSkoK8vLynPqDLtVcQkIC4uPj0b59e6VDcXp1TpCLi4sRGRmJl156Cf/3f/9nXXmuNiZOnFjX2xMpwmAw4Ntvv8Uff/xh3RYQEIDJkyc7bBm0uvj+++9x8OBBhIWFKR1Kg1GpVBgxYgSuu+46rF69Gunp6TAajVizZg2OHj2KBx54gEkEuaRDhw5h0KBBSodBjWT37t0IDg6Gv7+/0qE4tTp3dbm7u0OtVltnihO5ugsXLuD111+3SY67d++Ol19+2aWS44qcaaW/moqOjsaMGTPQv39/67bjx49j/vz5OHz4sHKBEdnJmTNnkJGRoXQY1EjMZjO2bNli/YaT6qZe3wXffffd+Pbbb1lahFyaLMvYsWMH3nzzTWttY61Wi/Hjxzt1beNrEQThqmUcnZlOp8PYsWPx+OOPWz8EFBUVYenSpfjvf//bJN5YWPKu6ZBlGbt37+Z7dRNSUFCAzZs3s/pXPdQrQb7vvvuQnp6OQYMG4csvv8Qff/yBQ4cOVXoQOavCwkJ8+umn+Prrr621jZs1a4YZM2agd+/eLj1uVa/Xu8R46qvp1KkTZs6ciS5duli37dmzBwsXLsSZM2cUjMz+Kq7ySK4vLS0NZ8+eVToMakSZmZnYsGFDk/jAbw/1mqRXcRW8nTt3VtpfXnnCYrHU5zZEivjnn3+watUq5ObmWrcNGjQId955Z43rdzszvV6vdAiNwsvLC4888gj27t2Lb775BqWlpcjKysK7776LIUOGYMSIEVCr6z2f2eGwB7npKS8D5mx1zanuMjMzsW7dOgwfPrxS1Qu6unr91mcVCnJFFosFmzZtQlxcnE1t4/Hjx6NTp04KR9d4HH1p6YYkCAJ69+6NNm3aYPXq1Th79ixkWcbPP/+MEydO4MEHH0R4eLjSYTYoJsiuq3v37rhw4QJ0Op1Nndzi4mLs3LkTN998s0t/+0W28vPz8eOPP+Lmm29GZGSk0uE4jXolyKxCQa4mKysLq1atsvkqsm3btnjwwQeb3KdvV+w1vZbAwEBMmzYNv/zyC3766SdYLBbr5Mw77rgDgwYNcplhJ6Wlpawv76JSU1ORlpZW5e+sc+fOwdvbGz169GDbNyFGoxFxcXG44YYbEBMTw7avAYd7Bzxx4gTOnTuHnJycKicUTJgwQYGoqCn466+/8MUXX9jUNh4xYgSGDh3qMklRbTTFnxko+7mHDh2KDh06YNWqVUhJSYHZbMZ3332HY8eOYfz48S5RPslkMsFkMjWpbwqozOHDh2E0GtGnT58m+zpvimRZxp49e5CdnY3+/fuz7a+hVgny5MmTIQgCli5dCpVKhcmTJ1/zHEEQsHz58msed/bsWTzwwAPYv39/tTNtBUFggkwNzmg04ttvv8WuXbus2/z9/TF58mS0bNlSwciU1dR/eZbXeV+3bh1+/fVXAEB8fDwWLFiA++67Dz169FA4wvorKChAQECA0mGQAk6cOIGcnBzcfPPNLluthqoWHx+PwsJCDBkyhB+Qr6JWCfKvv/4KURQhSRJUKhV+/fXXa3bT17Qb/9FHH8XRo0exePFi9O/fH35+frUJjahOLl68iBUrViAlJcW67frrr8e4ceOa/JsGv4IDNBoNRo8ejZiYGHz++efIzc1FSUkJVq5ciaNHj+K+++5z6n8nTJCbtpSUFHz//fcYNGgQIiIilA6HGtHFixexfv163HLLLVzPohq1SpATExOv+rw+/vjjD7z88st46qmnGuyaRNWRZRk7d+7Ed999B5PJBKAsGbr33nvRp08fJodko3379pg1axbWrl2LP//8EwBw4MABnDlzBhMmTHDaZV3z8vKUDoEUVlxcjE2bNuH666/H9ddfz999TUh2djbWrVuH2267jauIVsFhvkMNDAxkA1GjKF8QYs2aNdbkOCIiAi+99BL69u3LN4jLmvoQiyu5u7tj0qRJmDx5snVxmNzcXLz//vv45ptvnLIgf8UShtR0ybKMgwcPIi4ujtVNmpjCwkKsX78emZmZSoficBzmHfCxxx7DF198wZrJZFenT5/GggUL8Pfff1u3DRw4EC+88ALCwsIUjMzxMEGuWvfu3TFr1iy0a9fOum379u14/fXXkZSUpGBktZeVlaV0CORAkpOT8eOPPyInJ0fpUKgRlZSU4KeffsKlS5eUDsWh1PsdcPPmzRgyZAgCAgKgVquhUqkqPWqibdu2sFgs6NKlC9555x188803+P777ys9GsNHH32EqKgo6PV69OrVC/v376/22GXLllnHTPv5+WHw4MFXPZ6UYbFYsGHDBixevNjaa+bh4YHHHnsM9957b5NY+KO22JNePT8/Pzz11FO45557rP92UlNT8eabbyIuLg6SJCkcYc1kZWWxx5Bs5OXlYd26dbhw4YLSoVAjMplM2Lx5M86dO6d0KA6jXmXevvvuO9z7/+3dd1xT1/sH8M9NgBA2KEOrDEERxIlFcQGKYgXrQIvrq+BsrbWO1m3Vrwra2qrVWqtWUStqreLAuuoeKI5aNy4iVgUHe4+c3x/+uF8iQwKEG5Ln/Xrdl+Tk5uYJjwlPzj33nE8+QbNmzTBo0CD8/PPPGDJkCBhj2LdvHxo3boy+fftW6FhBQUH8z1999VWp+9TEqnw7d+7ElClTsHbtWrRr1w4rVqyAn58fYmNjYWVlVWL/U6dOYfDgwejQoQP09fWxdOlS9OjRA7dv36aLHtREUlISwsPDFZYObty4MUJCQrRubmNlVPTLrbYSiUTw8fFB06ZNER4ejqdPn0Iul2P//v24ffs2RowYgbp16wodZrkYY5DJZAq94YQUzZnbuXNn+r+hRQoLC3H8+HFkZ2ejWbNmQocjuCoVyGFhYfDw8MC5c+eQnJyMn3/+GSNHjkTXrl0hk8nQvn17ODg4VOhYJ0+erEoo1eaHH37AmDFjEBISAgBYu3YtDh48iI0bN2LGjBkl9t+2bZvC7Q0bNmD37t04fvw4TUmnBq5fv47ffvsNWVlZAN4WNf7+/vDz86MhBO9Bv5+KqVevHr7++mscPHgQR48eBWMMjx49wuLFizFw4EB4enqqdW/8nTt30KRJE7WOkdQ8uVyO06dPIysrC61ataL/H1qCMYbz588jOzsb7u7uWp33KhXId+7cQVhYGMRiMb/qVtFFT/b29hg/fjyWLl1aoULRy8urKqFUi7y8PFy9ehUzZ87k20QiEXx9fREdHV2hY2RlZSE/P7/chQRyc3MVTmtmZGRUPmhSqry8POzevRtnz57l2ywsLBASEgJHR0cBI6s9qECuOB0dHfTp0wdubm4IDw/nhy789ttvuHHjBoYOHQpjY2OhwyzVq1ev8PTpU9ja2godClFDly9fRnp6Ojp16kSfCVrk2rVrkMvl8PDwEDoUwVSpQDYwMOAnmTYzM4NEIlGYT9ba2hpxcXFKH/fOnTt48uQJAMDOzg6urq5VCbPCXr9+jcLCQlhbWyu0W1tb4969exU6xvTp01G/fn34+vqWuU9YWBgWLFhQpVhJ2Z4/f46NGzcqXHDQunVrDB06tFbPWVvT6I+h8hwdHTF79mz88ccfuHDhAgDgxo0biIuLw7Bhw9C8eXOBIyzdpUuX0KBBA8o5KdW9e/eQnp4OX19fSCQSocMhNeT69eswNDTU2uEWVfo0dHZ2xp07d/jbrVq1wtatW1FQUICcnBxEREQo1Suxb98+ODo6onnz5ggICEBAQACaN28OJycn7N+/vyqh1oglS5Zgx44diIyMhL6+fpn7zZw5E6mpqfx2+vTpGoxSczHGcO7cOSxdupQvjnV1dTFkyBCMHj2aimMlafOptarQ19fHsGHDMHbsWBgZGQF4uyDHzz//jIiICOTk5AgcYUnJyckKn+WEvOvZs2eIjIxEUlKS0KFotfj4eGRmZgJ4ezZa1fm4ePGi1ua8SgVy//79sX//fn64wOzZs3Hq1CmYmZnB0tISZ8+eLXXcbmn+/PNPBAYGAgBCQ0MRGRmJyMhIhIaGgjGG/v374/Dhw1UJ973q1q0LsViMxMREhfbExETY2NiU+9hly5ZhyZIlOHr0KFq0aFHuvhKJBCYmJvxW9EeUVF5WVhY2bNiAiIgIfphP/fr1MX36dHTq1ImKvUqg31nVtGrVCnPmzIGbmxvfdu7cOYSFhVXqzJqqXb58mYZ7kXKlpaVh3759ePTokdChaJ2YmBj07t0b9vb2/ExM2dnZmDVrFn766adqXbituMLCQly8eFElx05KSsLQoUNhYmICMzMzjBo16r2fQevWrYO3tzdMTEzAcVypc7nb29uD4ziFbcmSJUrHxzHGmLIPysnJwb59+xAXF4c6deogICCAn0P27Nmz2LNnD8RiMfz9/eHj41OhY3p6eiI3Nxdnz54tsexhZmYmOnXqBH19/QqPBa6sdu3awcPDA6tWrQLw9kIFW1tbTJgwocxi/9tvv8XixYtx5MgRtG/fXunnvHbtGtzd3XH16lW0adOmSvFro0ePHmHTpk0K33K7dOmC/v371/p15nNzc/nTXDX9WgoLC2t8Jou8vDxkZmaiVatWGnMqt+iilz/++INfTITjOPTs2RO9evUSZLaQtm3bIj4+HlKpFLNnz+bb69evD39/f/pyVMs1aNAAz549g5mZGZYuXaqS53Bzc0O7du1otpsasGfPHgQFBYExVupMXkVDo8aMGaOyGqJv376lzuT1Pt7e3ggODkZwcHCJ+z766CO8ePECv/zyC/Lz8xESEoIPP/wQERERZR5vxYoV/Fm4mTNnIjk5ucRsVPb29hg1ahTGjBnDtxkbGyu9pLbSY5BfvnyJDh06IC4uDowxcBwHqVSKvXv3wtfXF507d0bnzp2VPSxu3LiB0NDQUl+AoaEhgoODMWvWLKWPq6wpU6ZgxIgRaNu2LTw8PLBixQpkZmbys1oMHz4cH3zwAcLCwgAAS5cuxTfffIOIiAjY29sjISEBAGBkZEQ9wyoml8tx+PBhHDx4EEXf8wwMDDBs2DC0atVK2OAI+X8cx6FTp05o0qQJNm/ezH92Hjp0CLdv30ZISEiJ6x5ULSEhAa9evSrxh+X58+e4evUq2rZtW6PxkNrn1q1beP36Nbp3786vLEmqX0xMDIKCglBYWIiy+jOL5l1fv349pk+fDnt7+2qP4++//4afn1+1He/u3bs4fPgwLl++zH/erFq1Cr169cKyZctQv379Uh83adIkAG+n2C2PsbHxe8/8v4/SQywWLlwImUyGyZMnIyoqCsuXL4dUKsW4ceOqFIi+vn6541ySkpLKHddbXYKCgrBs2TJ88803aNWqFa5fv47Dhw/zf8Di4+MVLkT8+eefkZeXhwEDBqBevXr8tmzZMpXHqs2Sk5OxcuVKREVF8R8aTk5OmDVrFhXH1YR6hqqXlZUVpkyZgoCAAL7HJz4+HqGhoTh9+nSZf/xq2rVr1+gUei1Wk2NUExISsG/fPqSnp6vsObTdokWLwBir8OfDn3/+qZI4njx5UmL4aVVER0fDzMxM4cu4r68vRCIRLl26VOXjL1myBHXq1EHr1q3x3XffoaCgQOljKF0gHz16FMOHD8eyZcvQq1cvTJw4EatXr4ZMJkNsbKzSARTp2rUrVq5cWeoQikuXLuHHH38sd2aI6jRhwgQ8efIEubm5uHTpEtq1a8ffd+rUKYSHh/O3ZTIZ/5+3+DZ//vwaiVUb/fPPPwgNDcWDBw8AvO2h8/f3x6RJk8qdXo8QoYnFYvTq1QtfffUV/6U7Pz8fO3fuxE8//VTqeDohnDp1Ck+fPhU6DKIEocaopqWl4cCBAyoZv66KMaoymQyjRo2Cg4MDpFIpHB0dMW/ePH74k9AKCwuRk5ODjIwM3Lx5E1FRURVeIE0ul+PGjRsq+1J06dKlavsin5CQUGLIho6ODiwsLPgz8ZU1ceJE7NixAydPnsS4ceMQGhqKadOmKX0cpYdYxMfHY/r06QptnTp1AmMMiYmJlV5159tvv4Wnpyc6deoEDw8P/jixsbGIiYmBlZWVysZSkdohPz8fe/bsUZj1w9zcHCEhIXBychIwMkKUY29vj5kzZyIyMpL//3znzh0sXrwYgwcPFvxahMLCQhw9ehR+fn5o0KCBoLGQ9ys+RvXdAoYxhlu3buHWrVsqG6OakZGBo0ePom/fvkpPFVjeGNWhQ4fixYsXOHbsGD9GdezYseWOUc3KykLPnj3Rs2dPhTUNity7dw9yuRy//PILnJyc+N9LZmYmli1bBsYYCgoKkJ+fr7AVbyv+c05ODvLy8vi2sv59t62s/YovU3/v3j2lC1LGGO7evYsOHToo9biKePHixXvnTA8NDUVoaCh/Ozs7GxcvXsSECRP4NlXPmDNlyhT+5xYtWkBPTw/jxo1DWFiYUte2KF0g5+bmlhjqUHS7Ml3YRRwcHHDjxg2EhYXh0KFD2LlzJ4C38yB/+eWXmDFjRqUGiBPN8OLFC2zcuBHPnj3j21q2bIlhw4YpPfCeEHWgp6eHoKAguLm54bfffkNqaioyMzOxYcMGeHh4ICgoSNCxnYWFhThy5Ai6d+9Oi4ioMXUZo/r69WvExsbCxcWlSsdhjEEul+PmzZs4fPgw/vrrLzg4OCAvLw9z5szhi2QLC4tSC9bGjRsjPz8f//zzDwBg+/btkEgkCsWui4sLrly5gujoaOTn58PV1RUbNmzgC111kZeXB47jlCqSOY5DWloav3psdYuOjkb9+vX5xeHe9emnn+KTTz7hbw8dOhSBgYHo378/31a/fn3Y2Njg5cuXCo8tKChAUlJSlccOv6tdu3YoKCiATCZTqhO3UguFyGQyXLt2jb+dmpoKAHjw4EGJiz4AVPgbq5WVFZYvX47ly5dXJiyigRhjuHDhAn7//Xd++jZdXV0EBgaic+fOdLU9qfWaNWuG2bNnY/v27fj7778BvC16Hj58iOHDh6NJkyaCxVbUk+zj40MrUKqpyoxRHT9+/Hv3K23o4Pu2s2fPQiaTKdUDK5PJsGvXLty+fZtvK+oF1dPTw+7du7F7924A/yv0lyxZgkaNGpUbf1FnypUrV97ba5iWlgY9Pb0aLY51dHT4VYiL/1v85zdv3lSqB1kqlapk0R/GGNLT01FYWFhmgWxhYaEw1FEqlcLKyqrEWV5PT0+kpKTg6tWrcHd3BwCcOHECcrlcYVhrdbh+/TpEIpHSnayVKpDnzp2LuXPnlmh/901XNMtFRcfPEFJcVlYWIiIiFL6M1atXD6NGjSrzCldCaiMjIyOMHj0aMTEx2LlzJ3JycpCUlISVK1eiW7du6N27N3R1dQWJTS6X4/jx40hPT0fLli3pS6kaiY+PV7hQ+X3kcjn++ecfxMbGwtTUtMxCt7JevXqF69evK/WY/Px8ZGdn8xcWFsnKyipxBkUkEkEikVRL76iOjg50dXWRkZGB27dvo0ePHmjQoAF0dXX5+4q24rd1dHSgp6cHHR0dcByHhIQESKVS6Ovrlyh4yyqCRSJRhd5H7dq1w65du5TuQXZ2dlZJgSyXy8ssjJXl4uKCnj17YsyYMVi7di3y8/MxYcIEDBo0iP/7/uzZM3Tr1g1btmzhl7xOSEhAQkICHj58CAC4efMmjI2NYWtrCwsLC0RHR+PSpUvw8fGBsbExoqOjMXnyZAwbNgzm5uZKxaj0K920aZOyDynVyJEjwXEc1q1bB7FYjJEjR773MRzH4ddff62W5yfq7fHjx9i4caPCxQadOnXCgAEDav3cxoSUhuM4tGvXDk5OTtiyZQsePHgAxhj++usv3LlzB8HBwYKOB46JicGrV6/QpUsXjZmjuiYUFBRUSydRdnY2kpKSkJSUhDdv3iApKQl//vlnpQra+/fvo2XLllWO6V0VKcquXr3Kd3pwHIeCggIkJibi3LlzfNE4bdo0WFpaQiaToU2bNgoF6rZt29CsWTN8/PHH5RaxV69exf79+/H111/D0tJS4f6iIvXZs2fw8vLCsGHDsGHDBqVfr6rnqa9fvz68vb1x5syZCv0fEolEcHV1VenF6nXq1Km2Y23btg0TJkxAt27dIBKJEBgYiB9//JG/Pz8/H7GxsQpfiNauXYsFCxbwt7t06QLgbW0aHBwMiUSCHTt2YP78+cjNzYWDgwMmT56sMC65oiq1UEh1sLe3h0gkQmxsLHR1dfmVT8rDcRweP35cQxHWHFoo5H/kcjmOHj2KqKgo/nSaVCrFsGHD0Lp1a4Gjq3lCLhQiBE1cKKQyinptDxw4wJ/21dHRQe/evfk/JlVRlYUkDA0N0aVLFzRs2LBKMWiDgoIC3LlzB9nZ2e/dNz8/HxkZGWVupc2ycOPGDVy4cEHpHsbu3bvjww8/5G8X/e0t/m9ZP7+vrWnTpnBycoJEIim1eE1PT0daWho/jWRpY1Tt7e2xZcsWTJ06FcnJyQq/T319fezatQv9+vUr93WeOnUKPj4+pS4kAbyd89vb2xvt27dHeHh4pd5TNfH5fOPGDQwePLjcMeZFRCIRJk+eDDs7O5XEIpVK0axZM7Rp00YrPp+rp6+8Et6dckZVU9CQ2iMlJQXh4eG4f/8+3+bo6Ijg4OBq/dZKiLoTiUTo3r07XFxcEB4ejufPn6OgoACRkZG4desWhg8fLth7IjMzE4cOHYKTkxPat28PAwMDQeKoDQoLC5GdnQ1dXV1wHIf09HR+S0tLU/i3aHUwZejp6VVqjGqdOnVgaWmp9PNV5NhSqZQvkEtjZGTEr7wLCDNG9dmzZ/Dx8YG7uzs2bdqkkuEI1aVFixZYvnw5Jk+e/N6V9EJCQlRWHItEIjRr1kytf1fVTbAC+V3x8fGwtLQs86rt7OxsvHr1iq6m1lA3b97Eli1b+HFoQi/FS4g6aNCgAaZPn44DBw7g+PHjYIzhwYMHWLx4MYKCguDh4SHYmOCHDx/iyZMncHd3h5ubm1b94SxNfn4+P/yhaHv16hWePn2KzMzMCvUil4bjOBgbG8PU1BQmJiYKW1ZWFk6dOqVWY1Sra9EQVY1RffbsGby9vWFnZ4dly5bh1atX/HNW9+wJ1aVHjx7Yvn071qxZUyLfHMfB1dUVfn5+KiuOAaB58+YwNjYuMVZck6lNgezg4ICtW7diyJAhpd6/f/9+DBkyhC740zD5+fmIjIxUWDbSzMwMwcHBgl69T4i60NXVRf/+/eHm5oYtW7YgKSkJOTk52Lx5M3/6Vahl7fPz83Hx4kXExsbC29tbJb2S6qKwsBDJycl4/fq1QhFctBXN5qQsjuNgZGSkUPgWL4aNjIzKLWbVbYxqZXrCy6KKMarHjh3Dw4cP8fDhwxJj+tVlNcvStGjRAmvXrsXz58/Rp08fpKWlQSqVYvr06SpfIKtp06awsbFRm8VUaoraFMjv+4+Zn5+v9T0UmiYxMRG//vor/v33X76tRYsWGDZsmGB/8AlRV02aNMHs2bOxc+dOxMTEAAD+/vtvPH78GP/5z3/g6uoqWGzJycnYu3cvOnbsKGgcVVFYWIiUlJRSi983b94gJSWl0gWUoaFhiR7gottGRkZVOks2fvx4nD17tsLz5fr5+VX6uSpC2bm7i3eOvMvCwqLcRUHs7e1LvOb58+eXu5JtWYuS1Bb169eHVCrlp6ZTdXHs4OCg0p5pdSZogZyWlqawDOSbN28QHx9fYr+UlBTs2LFDYdwSqb0YY7h48SJ27tzJfyPV0dFBYGAgunTpQtNIEVIGqVSK4OBgtGjRAtu3b0dmZiZSU1OxevVqeHl5oV+/foJdzMkYw7lz55CTk6OWFxvL5XKkpqaWWQAnJycrrGKmDBMTE1hYWKBu3boK/5qYmCA+Ph4mJiYqy4u6jFEF3o6JLlpCndR+NjY2aNy4sdBhCEbQAnn58uX473//C+DtaaZJkyZh0qRJpe7LGMOiRYtqMDqiCtnZ2di+fTuuXLnCt9nY2GDkyJG0pC0hFdSmTRs0atQIv/32G79s6+nTp3Hv3j0EBwcL2uNz5coViMVilUwjVh7GGNLS0sotgCu7EISRkREsLCxQp04dfisqguvUqVNm8Zubm6uw+qeqqMMYVZFIhObNm1fbPLlEWGZmZnBzc9PqDitB/yf36NEDRkZGYIxh2rRpGDx4cImeB47jYGhoCHd3d7Rt21agSEl1iIuLw8aNG/HmzRu+rWPHjhgwYIBWTBlDSHUyMzPD559/jjNnzmDPnj3Iz89HYmIivvvuO/Tq1Qt+fn6CXeB66dIliMViuLm5VdsxGWPIyMgoswBOSkriV9tUllQqVSh43y2C9fX1q+11qIqQY1TFYjFat26tdRdxaSoDAwO0bt1a6y+QF7RA9vT0hKenJ4C3UwcFBgZW6wcqUQ9yuRzHjh3DgQMHFOY2HjJkCD99DyFEeRzHwcvLC87OzggPD0d8fDzkcjmioqJw+/ZtjBgxosTyqvHx8XwRk5ubi6SkJJUUUBcuXIBYLIaLi0uF9meMISsrq9wCODc3t1KxSCSSEr2+xTdNmqqupseoSqVSvjjWtou4NJGenh7atGmjFfPuv49anAvJysrCjz/+CAMDAyqQNUxqaio2b96Me/fu8W0ODg4YOXIkzW1MSDWxsbHB119/jT///BOHDx8GYwxxcXEIDQ3FgAED0LFjR1y+fBkLFy7EwYMH+VPw2dnZmDVrFpo3bw5/f3/Y29tXa1xnz54FAL5Izs7OLrMAfvPmjdIzIOTk5ODcuXOQyWR8L+a4ceNQv359hYLY0NCQP1Wck5ODqVOnYseOHcjNzYWfnx/WrFnDj5198+YNhg4dihs3buDNmzewsrJCnz59EBoaChMTk2r87dR+VlZWcHNzE2wZdFK9dHR04O7uDkNDQ6FDUQtqUSAbGBhAR0eHkqJhbt++jc2bNyMjIwPA294uPz8/+Pv7a/2pG0Kqm1gsRu/eveHm5obw8HC8evUKeXl5iIiIwJYtW7Bp0yYwxkpc9c8Yw61bt3Dr1i2MGTOmShfYMcZQUFCgsEVGRmLPnj1ITk5WmI6rovbt2wdXV1d07NixxEVwX331FfT19XHmzBkUFBQgJCQER44cKXfmg8mTJ+PgwYPYtWsXTE1NMWHCBPTv3x/nz58H8HYsbZ8+fbBo0SJYWlri4cOH+Pzzz5GUlFTucbWNs7Mz7OzstHqMqiYRi8Vwd3enL4HFqEWBDACBgYH4448/8Nlnn9EbrpbLz8/Hvn37cOLECb7N1NQUwcHBcHZ2FjAyQjSfg4MDZs6ciT179uDcuXNITExEZGRkuVOAFQ19Wr9+PaZPn15mT3JRAVxYWFiiEC4oKCh3FojyTr+LxWJYWFiUOhNE0VzPI0eOVHjM3bt3cfr0aVy+fJm/PmXVqlXo1asXli1bxi8mUVxqaip+/fVXREREoGvXrgDezo/r4uKCixcvon379jA3N8dnn33GP8bOzg7jx4/Hd999V2b82kRXVxetWrVS+dANUnOKiuPSluTWZmpTIA8aNAjjx4+Hj48PxowZA3t7+1LnU1TH6YO0TXx8PI4fP4709HQYGxujW7du/AqHiYmJ2LhxI54+fcrv7+bmhuHDh9PcxoTUEH19fQwZMgTNmzdHv379lHpsVFQURo8erVD4FhXEVVmoydzcHGZmZgpDH4r+NTMzK3Oeex0dnVLvi46OhpmZmcLF276+vhCJRLh06VKpr/vq1avIz8+Hr68v39a0aVPY2toiOjoa7du3L/GY58+fY8+ePfDy8qrMy9YohoaGaNOmjUaN2dZ2YrEYbdq0gbm5udChqB21KZC9vb35n4vGrRXHGAPHcbSSnoBiYmIUxjCKRCLI5XJwHIeAgAD07dsXN2/e5C+k0dHRQb9+/eDt7U1nBQgRgKmpKR4/flzhBS7kcjlu3ryJBw8ewNTUVKnnEovF0NHRUdiKt3Ech+HDh1fbjDUJCQklLkDU0dGBhYUFEhISynyMnp5eiZ4ya2vrEo8ZPHgw9u3bh+zsbPTu3RsbNmyolrhrKwsLC7Rq1YrGG2uQojHH1HNcOrUpkDdt2iR0CKQce/bsQVBQkMIYxqLTqYwxHDx4EFFRUejRowcaNWoEa2trjBw5Eg0bNhQybELUXlV7ZstTdMGesmQyWYl5jMVisULB++7P5X0JLvrcePr0Kezt7cudKzc0NBShoaH87ezsbFy8eBETJkzg24rmflal5cuXY968ebh//z5mzpyJKVOmYM2aNSp/XnVka2sLZ2dnWs1Wg+jr68Pd3Z3O7JZDbQrkESNGCB0C76effsJ3332HhIQEtGzZEqtWrYKHh0eZ++/atQtz586FTCZD48aNsXTpUvTq1asGI1atmJgYBAUFobCwsMw/tkXF8tGjRzFv3jzMmDGD5jYm5D0KCgpw584dZGdnq+T49+7d48/0VFTRksWGhoYQi8UQiUQQiUSlFsByuVypqb1iYmKQlZUFV1fXMovkTz/9FJ988gl/e+jQoQgMDET//v35tvr168PGxgYvX75UeGxBQQGSkpJgY2NT6rFtbGyQl5eHlJQUhV6zxMTEEo+xsbGBjY0NmjZtCgsLC3Tu3Blz587VqhVd9fT00KxZsxI99aR2MzExQevWrWvF/N5CUpsCubiMjAx+DGvDhg1r9BvOzp07MWXKFKxduxbt2rXDihUr4Ofnh9jY2FI/JC5cuIDBgwcjLCwMAQEBiIiIQN++fXHt2jWNmbJu0aJFpV79XhqRSIRr165RcUxIBRQWFiI7Oxu6uroqmXfU3Nxc6eWTGWMwMTFRyTjTopksCgsLyyyQiy7WKyKVSmFlZQUnJyeF/Tw9PZGSkoKrV6/y86mfOHECcrkc7dq1K/XY7u7u0NXVxfHjxxEYGAgAiI2NRXx8PD8nf2mKfoeVnYe5NmrYsCEaN25MQyo0zAcffAAXFxeaSaoC1Op8yeXLl+Hj4wNzc3O4ubnBzc0N5ubm6Nq1q8LSxKr0ww8/YMyYMQgJCYGrqyvWrl0LAwMDbNy4sdT9V65ciZ49e+Lrr7+Gi4sLFi5ciDZt2mD16tU1Eq+qxcfHIyoqqsKngAsLC3HgwAHEx8erODJCNIeenp5Kts6dOys9/p/jOP50enVvBQUFSE1NrZbfmYuLC3r27IkxY8YgJiYG58+fx4QJEzBo0CB+Botnz56hadOmiImJAfB2TPaoUaMwZcoUnDx5ElevXkVISAg8PT35C/T+/PNPbNq0Cbdu3YJMJsPBgwfx6aefomPHjtU+T7Q6MjU1haenJ1xdXak41iAikQjNmjWDm5sbFccVpDY9yJcuXYK3tzf09PQwevRofmL5u3fvYvv27ejSpQtOnTpV7lCHqsrLy8PVq1cxc+ZMvk0kEsHX1xfR0dGlPiY6OhpTpkxRaPPz88PevXvLfJ7c3FyFnoiieYILCgoqvVSqqhw5ckTpMYyMMRw9elSths3UVvn5+SgoKEBmZqba/d9Qhby8PP59oA3jHVWdX1NTU3Tu3Bnnzp2rUE8yx3FwdXWFsbGxSuJhjCE1NVWp/DLGUFhYWGo84eHh+PLLL9GtWzeIRCL069cPy5cv5/fNyspCbGws0tLS+LZvv/0WwNupRXNzc9G9e3esWrWKv19XVxfr1q3D5MmTkZubiwYNGqBv376YNm2a0r8Tod6/xa8Pqejz6ujowNHREfXq1QPHcZVaMprevzVD2fxKpVK4ubnByMioSkuB12R+1eLLGVMT3bp1Y46OjuzFixcl7ktISGCOjo7M19dXpTE8e/aMAWAXLlxQaP/666+Zh4dHqY/R1dVlERERCm0//fQTs7KyKvN55s2bxwDQRhtttNFGG2200fbOpg7Uqgf5m2++KfXiCmtra4wdOxYLFy4UILLqV3RFdJHr16/Dy8sLly5dQuvWrQWMrKTw8HCMHTtW6cetX7+eepCriSpnOVBHRbMjaIuayO++ffswYsQIMMZK7UkuGoYxatQolX0GcRwHT09PODs7U35VzNnZGc+fP4epqanCjCClMTU1hZ+fX7VdsEXvX9WraH4dHBzQoUOHah1SoU35VZtXWTQ+rSyFhYUq79KvW7cuxGIxEhMTFdpLu8K5iI2NjVL7A4BEIlG4iK3oIkQdHR31OK1QjJ+fH39Ve0VxHIcePXqo3Wuprej3qNlqIr9Dhw5FkyZNsHDhQkRFRSm8nzmOQ4sWLdCrVy+VjbE1NDSEr68vrK2tVXJ8dSbE+7foCw/HceUWM3p6eujduzctL1wF6prfJk2awMvLi9YgqAK1GSTUoUMH/PTTT3jy5EmJ++Lj47FmzRp07NhRpTHo6enB3d0dx48f59vkcjmOHz9e5hXOnp6eCvsDwLFjx8q9Iro2sbW1RUBAQIW/gYrFYvTu3ZtfWY8Qoh4+/PBD7N+/HzKZjJ/iTCqVIjQ0FOPHj1dZcdywYUMEBgZqZXGs7jw9Pak41kB2dnZUHFcDtelBDg0NRZcuXdC0aVP069cPTZo0AfB2Cp59+/ZBR0cHYWFhKo9jypQpGDFiBNq2bQsPDw+sWLECmZmZCAkJAQAMHz4cH3zwAR/Ll19+CS8vL3z//ffw9/fHjh07cOXKFaxbt07lsdaUuXPn4tChQ+/tSeY4DhzHYc6cOTUYHSFEGba2tjA0NERKSgokEonClGrVrU2bNnB3d6c/1GqoUaNG/N9ZojmKZv6i91zVqU2B3Lp1a1y6dAmzZ8/G/v37kZWVBQAwMDBAz549sWjRIri6uqo8jqCgILx69QrffPMNEhIS0KpVKxw+fJjv/YiPj1cY6tGhQwdERERgzpw5mDVrFho3boy9e/dqzBzIwNuep507d/Ir6ZU23qpoJa3ff/8dH374oQBREkLUhVgshre3NxwdHYUOhZTC3Nycehg1kFgshq+vLw3LqyZqUyADgKurKyIjIyGXy/Hq1SsAgKWlZY1PFzNhwgSFZU2LO3XqVIm2gQMHYuDAgSqOSlj9+/fHhQsXFMYwFq3QxXEc/P39MWfOHCqOCdFyenp68PPz06oV52oTqVSKnj17UhGlgdq0aQNzc3Ohw9AYalUgFyk6VV/0M1EPRWMY4+PjceLECaSlpcHExARdu3alMceEEBgZGcHPzw916tQROhRSCrFYjB49esDY2FjoUEg1MzU1RYsWLYQOQ6OoVYF8584dfPPNNzhy5IjCEAs/Pz/Mnz9fo4Yt1Ga2trYIDg4WOgxCiBpp2LAhvL29IZVKhQ6FlKFDhw50saSGateuHa2QV83UpkA+e/YsPvroI8jlcvTp00fhIr39+/fj0KFDOHz4MDp37ixwpIQQQoro6emhffv2cHZ2pjN+asze3h5NmzYVOgxSDWxsbCCXy/lhMnXr1oWdnZ3AUWketSmQJ0+eDCsrK5w+fRoNGzZUuO/p06fo0qULpkyZgsuXLwsUISGEkOLs7e3RsWNHGBoaCh0KKYeuri46duxIX2A0xJUrV/DixQscOHAAANCyZUvKrQqozTzIt2/fxvjx40sUx8DbU3efffYZbt++LUBkhBBCipNIJOjatSu6d+9OxXEt0KxZM8qThpJKpXBwcBA6DI2kNj3IdnZ2yM3NLfP+vLy8UotnQgghNadhw4bw8vKCgYGB0KGQMtjY2KCgoAASiQQcx6FZs2ZCh0RUxMHBocZn+tIWalMgf/PNN5g8eTL8/f3RqlUrhfv+/vtvrFq1CitWrBAkNkII0XY6Ojrw9PRE06ZN6XSumrty5Qru3r2Ls2fPwsbGhnqPNRh1HKqO2hTIFy9ehLW1Ndzd3dGhQwc4OTkBAB48eIDo6Gi4ubkhOjoa0dHR/GM4jsPKlSuFCpkQQrSCqakpunfvrtJV94hq0BScms3GxkboEDSW2hTIq1ev5n8+f/48zp8/r3D/zZs3cfPmTYU2KpAJIUS1PvjgA/j6+kIikQgdCqmE+vXrCx0CURFDQ0N6X6qQ2hTIcrlc6BAIIYQU06RJE3Tp0oXGONZSenp6qFu3rtBhEBUxNTUVOgSNpjYFMiGEEPXRvHlztG/fnsYb12I2NjaUPw1mZGQkdAgaTe0K5Li4OBw6dAhPnjwB8HZ2i48++oimMSGEkBri4uJCxbEGoFXzNBtdfKlaalUgT506FStXriwx3EIkEmHSpElYtmyZQJERQoh2aNCgAS0qoSFoeIVmo6kWVUttBpZ9//33WL58Ofr374/o6GikpKQgJSUF0dHRGDBgAJYvX47ly5cLHSYhhGgsIyMjdO3alcYcawhzc3OhQyAqRAWyaqlND/L69evx8ccf4/fff1dob9euHXbs2IGcnBz88ssvmDx5skAREkKIZvP29oa+vr7QYZBqIBKJ6BS8hqMCWbXUpptAJpPBz8+vzPv9/Pwgk8lqLiBCCNEizs7ONCWYBtHX16dhMhqOCmTVUpsC2crKCv/880+Z9//zzz+wtLSswYgIIUQ7SCQStGvXTugwSDWi+XE1HxXIqqU2BfLAgQOxYcMGLFmyBJmZmXx7ZmYmli5dig0bNiAoKEjACAkhRDPY2NjA0tISJiYmAAB3d3caWqFhdHTUZgQlUQFdXV2IxWKhw9BoHGOMCR0EAGRlZaF37944efIkdHR0+FN9z58/R0FBAXx8fHDgwAGN/MZ07do1uLu74+rVq2jTpo3Q4RBCtEB0dDRu3rwJY2NjfPLJJ/THVsMkJyfTRXoaLD09HcbGxkKHodHUpgfZwMAAx48fR2RkJEaOHAkXFxe4uLhg5MiR2Lt3L/766y+VF8dJSUkYOnQoTExMYGZmhlGjRiEjI6Pc/b/44gs4OztDKpXC1tYWEydORGpqqkrjJISQ6uLm5kbFsQaimUg0m66urtAhaDy1OAeTlZWFYcOGITAwEEOHDkWfPn0EiWPo0KF48eIFjh07hvz8fISEhGDs2LGIiIgodf/nz5/j+fPnWLZsGVxdXfHkyRN8+umneP78Of74448ajp4QQpTDcRycnJyEDoOoABXImo2+1KqeWhTIBgYG+Ouvv/DRRx8JFsPdu3dx+PBhXL58GW3btgUArFq1Cr169cKyZctKvbrbzc0Nu3fv5m87Ojpi8eLFGDZsGAoKCmgMGCFErVlYWEAqlQodBlEBKqA0G+VX9dTmK2anTp0QHR0t2PNHR0fDzMyML44BwNfXFyKRCJcuXarwcVJTU2FiYlJucZybm4u0tDR+K28YByGEqArNDKS5qIDSbDSFn+qpTYG8evVqnD17FnPmzMG///5b48+fkJAAKysrhTYdHR1YWFggISGhQsd4/fo1Fi5ciLFjx5a7X1hYGExNTfnNy8ur0nETQkhlWVhYCB0CUREaYkFI1ajNO6hly5b4999/ERYWBjs7O0gkEpiYmChspqamSh93xowZ4Diu3O3evXtVjj8tLQ3+/v5wdXXF/Pnzy9135syZSE1N5bfTp09X+fkJIURZVCBrLuph1GyUX9VTm0GygYGBKkn41KlTERwcXO4+jRo1go2NDV6+fKnQXlBQgKSkJNjY2JT7+PT0dPTs2RPGxsaIjIx879WlEolEYRJ3IyOj8l8EIYSoQJ06dYQOgagIFVCajTFGOVYxtSmQw8PDVXJcS0vLCo2z8/T0REpKCq5evQp3d3cAwIkTJyCXy8tdYSotLQ1+fn6QSCTYv38/TbZPCKkVDA0NabU1DaYmSxwQUmsJXiDn5ORg3759iIuLQ926deHv74969erVeBwuLi7o2bMnxowZg7Vr1yI/Px8TJkzAoEGD+Bksnj17hm7dumHLli3w8PBAWloaevTogaysLPz222/8RXfA28KcLpIghKirolX0iGai3kVCqkbQAvnly5fo0KED4uLi+G+7BgYG2Lt3L3x9fWs8nm3btmHChAno1q0bRCIRAgMD8eOPP/L35+fnIzY2FllZWQDeroBXNMPFu3OJxsXFwd7evsZiJ4QQZWjiqqTkf6iDRrPREAvVE3Sp6S+++AI///wzJk2ahK5du+Lhw4dYuHAhTExM8OjRI6HCqnG01DQhpKalpKTAzMxM6DAIIZVQWFhIX4JUTNAe5KNHj2L48OFYtmwZ32ZtbY0hQ4YgNjYWzs7OAkZHCCGai/64EkJI2QSd5i0+Ph6dOnVSaOvUqRMYY0hMTBQoKkII0Xx0epaQ2ovev6onaIGcm5tbYtaHotsFBQVChEQIIVqB/sASUnvRQjCqJ/gsFjKZDNeuXeNvp6amAgAePHhQ6vg4GqNLCCFVRwUyIYSUTdCL9EQiUakf0qVdnVnUVlhYWFPh1Ri6SI8QUtOysrJoJgtCCCmDoD3ImzZtEvLpCSFEa1EPMiGElE3QAnnEiBFCPj0hhGgtKpAJIaRsNMqbEEK0EBXIhBBSNiqQCSFEC1GBTAghZaMCmRBCtJCurq7QIRBCiNqiApkQQrQQ9SATQkjZqEAmhBBCCCGkGCqQCSGEEEIIKYYKZEIIIYQQQoqhApkQQgghhJBiqEAmhBBCCCGkGCqQCSGEEEIIKUbQpaZJ7fbixQu8ePFC6DAIIYQQrVKvXj3Uq1dP6DA0GhXIaqBevXqYN29erfrPnpubi8GDB+P06dNCh0IIIYRoFS8vLxw5cgQSiUToUDQWxxhjQgdBap+0tDSYmpri9OnTMDIyEjocUs0yMjLg5eVF+dVQlF/NRvnVbEX5TU1NhYmJidDhaCwqkEmlFBXI9AbVTJRfzUb51WyUX81G+a0ZdJEeIYQQQgghxVCBTAghhBBCSDFUIJNKkUgkmDdvHl0goKEov5qN8qvZKL+ajfJbM2gMMiGEEEIIIcVQDzIhhBBCCCHFUIFMCCGEEEJIMVQgE0IIIYQQUgwVyIQQQgghhBRDBTIhtRDHcRXaTp06VeXnysrKwvz585U61uLFi/Hxxx/D2toaHMdh/vz5VY5D26hzju/du4dp06ahVatWMDY2Rr169eDv748rV65UORZtoc75ff78OYYNGwZnZ2cYGxvDzMwMHh4e2Lx5M+i6/opR5/y+a9u2beA4jlZdfIeO0AEQQpS3detWhdtbtmzBsWPHSrS7uLhU+bmysrKwYMECAIC3t3eFHjNnzhzY2NigdevWOHLkSJVj0EbqnOMNGzbg119/RWBgIMaPH4/U1FT88ssvaN++PQ4fPgxfX98qx6Tp1Dm/r1+/xr///osBAwbA1tYW+fn5OHbsGIKDgxEbG4vQ0NAqx6Tp1Dm/xWVkZGDatGkwNDSschwahxFCar3PP/+cqert/OrVKwaAzZs3r8KPiYuLq/RjSenUKcdXrlxh6enpCm2vX79mlpaWrGPHjiqIUPOpU37LEhAQwAwNDVlBQUH1BKZF1DW/06dPZ87Ozmzo0KHM0NCw+oOrxWiIBSEaSi6XY8WKFWjWrBn09fVhbW2NcePGITk5WWG/K1euwM/PD3Xr1oVUKoWDgwNGjhwJAJDJZLC0tAQALFiwgD8t+L4hE/b29qp4SeQdQuXY3d29xOnYOnXqoHPnzrh79271vkgtJuR7uDT29vbIyspCXl5elV8bET6/Dx48wPLly/HDDz9AR4cGFLyLfiOEaKhx48YhPDwcISEhmDhxIuLi4rB69Wr8/fffOH/+PHR1dfHy5Uv06NEDlpaWmDFjBszMzCCTybBnzx4AgKWlJX7++Wd89tln6NevH/r37w8AaNGihZAvjfw/dctxQkIC6tatW62vUZsJnd/s7GxkZmYiIyMDp0+fxqZNm+Dp6QmpVKrS160thM7vpEmT4OPjg169euH3339X6WutlYTuwiaEVN27p+/Onj3LALBt27Yp7Hf48GGF9sjISAaAXb58ucxjV+X0HQ2xqD7qmuMiZ86cYRzHsblz51b6GNpMHfMbFhbGAPBbt27dWHx8vFLHIG+pW36joqKYjo4Ou337NmOMsREjRtAQi3fQEAtCNNCuXbtgamqK7t274/Xr1/xWdGr85MmTAAAzMzMAQFRUFPLz8wWMmChLnXL88uVLDBkyBA4ODpg2bZpKnkPbqEN+Bw8ejGPHjiEiIgJDhgwB8LZXmVSdkPnNy8vD5MmT8emnn8LV1bVajqmJqEAmRAM9ePAAqampsLKygqWlpcKWkZGBly9fAgC8vLwQGBiIBQsWoG7duujTpw82bdqE3NxcgV8BeR91yXFmZiYCAgKQnp6Offv20VRR1UQd8mtnZwdfX18MHjwY27ZtQ6NGjeDr60tFcjUQMr/Lly/H69ev+ZkvSOloDDIhGkgul8PKygrbtm0r9f6iizo4jsMff/yBixcv4sCBAzhy5AhGjhyJ77//HhcvXqRiR42pQ47z8vLQv39/3LhxA0eOHIGbm1ulj0UUqUN+3zVgwACsX78eZ86cgZ+fX7UdVxsJld/U1FQsWrQI48ePR1paGtLS0gC8ne6NMQaZTAYDAwNYWVlV7QVqAqHHeBBCqu7d8W3jx49nYrGYZWVlKX2sbdu2MQBs/fr1jLG303eBxiALTt1yXFhYyIKCgphYLGa7d+9WOgaiSN3yW5q9e/cyAGznzp1VOo42Upf8xsXFKYwrL23r06eP0jFpIhpiQYgG+uSTT1BYWIiFCxeWuK+goAApKSkAgOTk5BIrY7Vq1QoA+FN4BgYGAMA/hqgHoXP8xRdfYOfOnVizZg1/5TypPkLm99WrV6W2//rrr+A4Dm3atKnQcUjZhMqvlZUVIiMjS2w+Pj7Q19dHZGQkZs6cWfkXpkFoiAUhGsjLywvjxo1DWFgYrl+/jh49ekBXVxcPHjzArl27sHLlSgwYMACbN2/GmjVr0K9fPzg6OiI9PR3r16+HiYkJevXqBQCQSqVwdXXFzp070aRJE1hYWMDNza3c0+lbt27FkydPkJWVBQA4c+YMFi1aBAD4z3/+Azs7O9X/EjSckDlesWIF1qxZA09PTxgYGOC3335TuL9fv360MlcVCZnfxYsX4/z58+jZsydsbW2RlJSE3bt34/Lly/jiiy/g5ORUk78KjSRUfg0MDNC3b98S7Xv37kVMTEyp92ktYTuwCSHVoaxVmtatW8fc3d2ZVCplxsbGrHnz5mzatGns+fPnjDHGrl27xgYPHsxsbW2ZRCJhVlZWLCAggF25ckXhOBcuXGDu7u5MT0+vQqfyvLy8yjx9d/Lkyep62VpFnXI8YsSIck/RFq2kSCpOnfJ79OhRFhAQwOrXr890dXWZsbEx69ixI9u0aROTy+XV+rq1hTrltzQ0zVtJHGPv9N0TQgghhBCixWgMMiGEEEIIIcVQgUwIIYQQQkgxVCATQgghhBBSDBXIhBBCCCGEFEMFMiGEEEIIIcVQgUwIIYQQQkgxVCATooVkMhk4jkN4eLjQoRAVoPxqNsqvZqP8qgcqkAkhhBBCCCmGFgohRAsxxpCbmwtdXV2IxWKhwyHVjPKr2Si/mo3yqx6oQCaEEEIIIaQYGmJBSC01f/58cByH+/fvY9iwYTA1NYWlpSXmzp0LxhiePn2KPn36wMTEBDY2Nvj+++/5x5Y2xi04OBhGRkZ49uwZ+vbtCyMjI1haWuKrr75CYWEhv9+pU6fAcRxOnTqlEE9px0xISEBISAgaNGgAiUSCevXqoU+fPpDJZCr6rWgOyq9mo/xqNspv7UcFMiG1XFBQEORyOZYsWYJ27dph0aJFWLFiBbp3744PPvgAS5cuhZOTE7766iucOXOm3GMVFhbCz88PderUwbJly+Dl5YXvv/8e69atq1RsgYGBiIyMREhICNasWYOJEyciPT0d8fHxlTqeNqL8ajbKr2aj/NZijBBSK82bN48BYGPHjuXbCgoKWIMGDRjHcWzJkiV8e3JyMpNKpWzEiBGMMcbi4uIYALZp0yZ+nxEjRjAA7L///a/C87Ru3Zq5u7vzt0+ePMkAsJMnTyrs9+4xk5OTGQD23XffVc8L1jKUX81G+dVslN/aj3qQCanlRo8ezf8sFovRtm1bMMYwatQovt3MzAzOzs54/Pjxe4/36aefKtzu3LlzhR73LqlUCj09PZw6dQrJyclKP568RfnVbJRfzUb5rb2oQCaklrO1tVW4bWpqCn19fdStW7dE+/s+CPX19WFpaanQZm5uXqkPUIlEgqVLl+LQoUOwtrZGly5d8O233yIhIUHpY2kzyq9mo/xqNspv7UUFMiG1XGnTAJU1NRB7z6Q1FZlSiOO4UtuLXyhSZNKkSbh//z7CwsKgr6+PuXPnwsXFBX///fd7n4e8RfnVbJRfzUb5rb2oQCaEKMXc3BwAkJKSotD+5MmTUvd3dHTE1KlTcfToUdy6dQt5eXkKV2wT9UL51WyUX81G+a0+VCATQpRiZ2cHsVhc4orrNWvWKNzOyspCTk6OQpujoyOMjY2Rm5ur8jhJ5VB+NRvlV7NRfquPjtABEEJqF1NTUwwcOBCrVq0Cx3FwdHREVFQUXr58qbDf/fv30a1bN3zyySdwdXWFjo4OIiMjkZiYiEGDBgkUPXkfyq9mo/xqNspv9aECmRCitFWrViE/Px9r166FRCLBJ598gu+++w5ubm78Pg0bNsTgwYNx/PhxbN26FTo6OmjatCl+//13BAYGChg9eR/Kr2aj/Go2ym/1oKWmCSGEEEIIKYbGIBNCCCGEEFIMFciEEEIIIYQUQwUyIYQQQgghxVCBTAghhBBCSDFUIBNCCCGEEFIMFciEEJWSyWTgOA7h4eFCh0JUgPKr2Si/mo3yWzYqkAlRI48ePcK4cePQqFEj6Ovrw8TEBB07dsTKlSuRnZ2tsue9c+cO5s+fD5lMprLnqIjFixfj448/hrW1NTiOw/z58wWNp7pRfim/qkD5rRmUX83O77tooRBC1MTBgwcxcOBASCQSDB8+HG5ubsjLy8O5c+fw9ddf4/bt21i3bp1KnvvOnTtYsGABvL29YW9vr5LnqIg5c+bAxsYGrVu3xpEjRwSLQxUov5Rfym/tRfnV7PyWhgpkQtRAXFwcBg0aBDs7O5w4cQL16tXj7/v888/x8OFDHDx4UMAI/4cxhpycHEil0mo/dlxcHOzt7fH69WtYWlpW+/GFQvl9i/IrPMqv8ii/b2lqfstCQywIUQPffvstMjIy8Ouvvyp8+BZxcnLCl19+yd8uKCjAwoUL4ejoCIlEAnt7e8yaNQu5ubkKj7O3t0dAQADOnTsHDw8P6Ovro1GjRtiyZQu/T3h4OAYOHAgA8PHxAcdx4DgOp06dUjjGkSNH0LZtW0ilUvzyyy8AgMePH2PgwIGwsLCAgYEB2rdvX6U/FEL2jqgS5fd/8Woiyu//4tVElN//xatVGCFEcB988AFr1KhRhfcfMWIEA8AGDBjAfvrpJzZ8+HAGgPXt21dhPzs7O+bs7Mysra3ZrFmz2OrVq1mbNm0Yx3Hs1q1bjDHGHj16xCZOnMgAsFmzZrGtW7eyrVu3soSEBP4YTk5OzNzcnM2YMYOtXbuWnTx5kiUkJDBra2tmbGzMZs+ezX744QfWsmVLJhKJ2J49e/gY4uLiGAC2adOmCr++V69eMQBs3rx5FX6MOqP8KqL8Un5rE8qvIk3Lb1moQCZEYKmpqQwA69OnT4X2v379OgPARo8erdD+1VdfMQDsxIkTfJudnR0DwM6cOcO3vXz5kkkkEjZ16lS+bdeuXQwAO3nyZInnKzrG4cOHFdonTZrEALCzZ8/ybenp6czBwYHZ29uzwsJCxhh9AFN+S6L8Un5rC8pvSZqU3/LQEAtCBJaWlgYAMDY2rtD+f/75JwBgypQpCu1Tp04FgBKn0FxdXdG5c2f+tqWlJZydnfH48eMKx+jg4AA/P78ScXh4eKBTp058m5GREcaOHQuZTIY7d+5U+PiajPKr2Si/mo3yq72oQCZEYCYmJgCA9PT0Cu3/5MkTiEQiODk5KbTb2NjAzMwMT548UWi3tbUtcQxzc3MkJydXOEYHB4dS43B2di7R7uLiwt9PKL+ajvKr2Si/2osKZEIEZmJigvr16+PWrVtKPY7juArtJxaLS21njFX4uVRxRbS2oPxqNsqvZqP8ai8qkAlRAwEBAXj06BGio6Pfu6+dnR3kcjkePHig0J6YmIiUlBTY2dkp/fwV/TB/N47Y2NgS7ffu3ePvJ29RfjUb5VezUX61ExXIhKiBadOmwdDQEKNHj0ZiYmKJ+x89eoSVK1cCAHr16gUAWLFihcI+P/zwAwDA399f6ec3NDQEAKSkpFT4Mb169UJMTIzCH43MzEysW7cO9vb2cHV1VToOTUX51WyUX81G+dVOtFAIIWrA0dERERERCAoKgouLi8JKTRcuXMCuXbsQHBwMAGjZsiVGjBiBdevWISUlBV5eXoiJicHmzZvRt29f+Pj4KP38rVq1glgsxtKlS5GamgqJRIKuXbvCysqqzMfMmDED27dvx0cffYSJEyfCwsICmzdvRlxcHHbv3g2RSPnv31u3bsWTJ0+QlZUFADhz5gwWLVoEAPjPf/5Ta3s9KL9vUX4pv7UR5fctTc1vmYSdRIMQUtz9+/fZmDFjmL29PdPT02PGxsasY8eObNWqVSwnJ4ffLz8/ny1YsIA5ODgwXV1d1rBhQzZz5kyFfRh7OwWQv79/iefx8vJiXl5eCm3r169njRo1YmKxWGFKobKOwdjbOToHDBjAzMzMmL6+PvPw8GBRUVEK+ygzjZCXlxcDUOpW2hRHtQ3ll/LLGOW3tqL8anZ+38UxpsRIcEIIIYQQQjQcjUEmhBBCCCGkGCqQCSGEEEIIKYYKZEIIIYQQQoqhApkQQgghhJBiqEAmhBBCCCGkGCqQCSGEEEIIKYYKZEIIIYQQQoqhApkQQgghhJBiqEAmhBBCCCGkGCqQCSGEEEIIKYYKZEIIIYQQQoqhApkQQgghhJBiqEAmhBBCCCGkmP8DYbpa65ZZGTYAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAInCAYAAACFua8hAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAyzNJREFUeJzs3Xd4VNXWBvD3nKnpvRNI6CU0QZBmQCkWsCBXBAUExXLFAvp5RapKUa8FvaII0rzqBSugIIoISkea9EgLoaT3OuWc8/0RMmZIAmmTMzN5f4/zwJy64mYya/bsvbagKIoCIiIiIiICAIhqB0BERERE5EyYIBMRERERlcMEmYiIiIioHCbIRERERETlMEEmIiIiIiqHCTIRERERUTlMkImIiIiIymGCTERERERUDhNkIiIiIqJymCA7geTkZMyePRvJyclqh0JERETU6DFBdgLJycl45ZVXmCATEREROQEmyERERERE5TBBJiIiIiIqhwkyEREREVE5TJDL+f333zFs2DBERkZCEASsWbPmuuds3boVN9xwAwwGA1q2bIkVK1Y4PE4iIiIichwmyOUUFhaic+fOWLhwYbWOP3fuHO68804MGDAAhw4dwnPPPYdHH30UP/30k4MjJSIiIiJH0aodgDO5/fbbcfvtt1f7+EWLFiE2NhZvv/02AKBdu3bYvn073n33XQwZMsRRYRIRERGRAzFBroNdu3Zh4MCBdtuGDBmC55577prnmUwmmEwm2/OCggJHhFdjSZmFKDZLDrm2RZIBAE0CPB1yfbo2rUZAVqHZYe0ryQpkRWH7qkQQgNxii8PaFyh9DbN91ZNbZEaJVXbY9SVZQaS/h8OuT9eWXWiCWVIcdn0PvQZNg7wcdn13xAS5DlJSUhAWFma3LSwsDHl5eSguLoaHR+W/bObPn49XXnmlIUKstqTMQjzwn+1w1MtTUQABwMRbWiLQS++gu1BVJFnB2xtOsH3dVF6JBYt+OcX2dVNZBSZ8svWMw9oXAKCwfdXSEO0rAFj1dF8myTXAMcgqmDp1KnJzc22P3377Te2QUGyWbC9OwQEPAFAAmB3YA0JVM1nZvu7MbJXZvm7MLMlQrjQw29f9NFT7OvIbJnfEHuQ6CA8PR2pqqt221NRU+Pr6Vtl7DAAGgwEGg8H23Nvb22Ex1pQAQBCE6x5X4+sqimN7P6ha2L7uje3r3hzVvmD7OgW2r3Nxmx5kRVHw66+/4scff0R+fn6D3LNXr17YvHmz3bZNmzahV69eDXJ/IiIiIqp/LpkgT5s2DQMGDLA9VxQFgwcPxqBBg3DnnXeiY8eOOHPmTI2vW1BQgEOHDuHQoUMASsu4HTp0CElJSQBKh0aMHTvWdvwTTzyBs2fP4sUXX8TJkyfx4Ycf4ssvv8TkyZPr9gMSERERkWpcMkH+5ptv0KNHD9vzr7/+Gps3b8acOXPwww8/QJIkzJ49u8bX3bdvH7p27YquXbsCAKZMmYKuXbti5syZAIDk5GRbsgwAsbGxWL9+PTZt2oTOnTvj7bffxieffMISb0REREQuzCXHIF+6dAktW7a0Pf/222/Rvn17TJ06FQDw5JNP4qOPPqrxdfv37w9FqXqkTmWr5PXv3x8HDx6s8b2IiIiIyDm5ZA+yVqu11RFWFAWbN2/GbbfdZtsfFhaGjIwMtcIjIiIiIhfmkglyXFwcPvvsM2RnZ2P58uXIzMzEnXfeadt//vx5BAcHqxghEREREbkqlxxiMXPmTAwbNsyWBPfp08du0t769etx4403qhUeEREREbkwl0yQBw0ahAMHDmDTpk3w9/fHyJEjbfuys7Nx88034+6771YxQiIiIiJyVS6ZIANA+/bt0b59+wrbAwIC8O6776oQERERERG5A5dMkPPz85GTk4Po6GjbtsuXL2PRokUwmUwYMWIEh1gQERERUa24ZIL82GOP4dy5c9i9ezcAIC8vDzfddBMuXrwIURTx3nvvYePGjejfv7+6gRIRERGRy3HJKhbbt2/H0KFDbc8/++wzXL58GTt37kR2djY6deqEOXPmqBghEREREbkql0yQMzIyEBUVZXu+bt069O3bFzfddBN8fHwwduxY/PnnnypGSERERESuyiUTZH9/f6SkpAAAiouLsW3bNgwePNi2X6vVoqioSK3wiIiIiMiFueQY5N69e+PDDz9E27ZtsXHjRpSUlNiVdfvrr7/sepiJiIiIiKrLJRPkN954A4MHD8Z9990HAHj++efRoUMHAIAkSfjqq6/slp4mIiIiIqoul0yQW7ZsiYSEBBw/fhx+fn6IiYmx7SsqKsIHH3yAzp07qxcgEREREbksl0yQAUCn01WaBPv4+HAVPSIiIiKqNZecpAeU1j5+/fXXMWTIEHTt2hV79+4FAGRlZeGdd97B6dOnVY6QiIiIiFyRS/YgX7x4EfHx8bhw4QJatWqFkydPoqCgAAAQGBiIjz/+GOfPn8d7772ncqRERERE5GpcMkH+v//7P+Tn5+PQoUMIDQ1FaGio3f577rkHP/zwg0rREREREZErc8khFj///DOeeeYZtG/fHoIgVNjfvHlzXLhwQYXIiIiIiMjVuWSCXFxcjJCQkCr35+fnN2A0REREROROXDJBbt++PX7//fcq969ZswZdu3ZtwIiIiIiIyF24ZIL83HPPYdWqVXjjjTeQm5sLAJBlGadPn8aYMWOwa9cuTJ48WeUoiYiIiMgVueQkvYceegjnz5/H9OnTMW3aNADAbbfdBkVRIIoi5s2bh3vuuUfdIImIiIjIJblkggwA06ZNw5gxY/DNN9/g9OnTkGUZLVq0wPDhw9G8eXO1wyMiIiIiF+WyCTIANG3alEMpiIiIiKheueQY5AMHDuDDDz+scv+HH36IQ4cONVxAREREROQ2XDJBnjZtGn755Zcq9//666+YPn16ra+/cOFCxMTEwGg0omfPnrZlrKuyYMECtGnTBh4eHoiOjsbkyZNRUlJS6/sTERERkXpcMkHev38/+vXrV+X+fv36Yd++fbW69urVqzFlyhTMmjULBw4cQOfOnTFkyBCkpaVVevwXX3yBl156CbNmzcKJEyewdOlSrF69Gi+//HKt7k9ERERE6nLJBDk/Px9abdXDp0VRtJV/q6l33nkHEydOxPjx49G+fXssWrQInp6eWLZsWaXH79y5E3369MHo0aMRExODwYMHY9SoUdftdSYiIiIi5+SSk/RatWqFn3/+GU8//XSl+zdu3FirShZmsxn79+/H1KlTbdtEUcTAgQOxa9euSs/p3bs3PvvsM+zduxc9evTA2bNnsWHDBowZM6bK+5hMJphMJtvzgoKCGsfqapQrf4oCIFayPHi1CYAIARoREEQB5a8kCFeeC4AAAYIACGXby/1dFP7eJpb7Uyy3TxQAURSgEQSI4t/77LeVHqup5Frlrwmh9Ocui6n0/8Pffy8fe9k2JTcX1jNnISUnQ87LA2S59v/PAJzxCCr9H0NERETX5ZIJ8iOPPILJkydjypQpmDlzJvz9/QEAOTk5eOWVV7Bx40b8+9//rvF1MzIyIEkSwsLC7LaHhYXh5MmTlZ4zevRoZGRkoG/fvlAUBVarFU888cQ1h1jMnz8fr7zySo3jc2UCSpNkWQFkRbne4VVTABkKrDKg1YjQa0UYtCI89Fp46jXwMmjh46GDj1ELg05TX+E3GKW4GOaDh2A9e1bVOHbPvQuy1QJRq8NN09apGgsREVFDc8kE+ZlnnsGhQ4ewYMECvP/++4iMjAQAXL58GbIsY8yYMQ1W/m3r1q2YN28ePvzwQ/Ts2ROnT5/Gs88+i9deew0zZsyo9JypU6diypQptueHDh1CfHx8g8TrTqySDKsko8gEZBeaK+z30Gvg76lHoLceQd4G+HvqIYrO24sqpabCtG07FCeY4ClbLYAil/5JRETUyLhkgiwIApYvX46xY8fim2++wdkrvW1333037rvvPvTv379W1w0ODoZGo0Fqaqrd9tTUVISHh1d6zowZMzBmzBg8+uijAICOHTuisLAQjz32GKZNmwZRrDjM22AwwGAw2J57e3vXKl66tmKzhGJzMZJzigGU9jgH+xgQ5mtEuL8RHnrn+edvPXcOpl276zyUgoiIiOrOeTKEWhgwYAAGDBhQb9fT6/Xo1q0bNm/ebFuqWpZlbN68GZMmTar0nKKiogpJsEZT+tW+UpehBFTvrJKMlJxipOQU488kwN9Lj6gAD0QFeMLToN5LwXr2HEy7dgH890JEROQUXLKKxblz5/D9999Xuf/7779HYmJira49ZcoULFmyBCtXrsSJEyfw5JNPorCwEOPHjwcAjB071m4S37Bhw/DRRx9h1apVOHfuHDZt2oQZM2Zg2LBhtkSZnFNOoRnHLubi5yPJ2J6QhguZhZDkhk1SpeRkmHbvZnJMRETkRFyyB/mFF15AXl4ehg0bVun+hQsXwt/fH6tWrarxtUeOHIn09HTMnDkTKSkp6NKlCzZu3GibuJeUlGTXYzx9+nQIgoDp06fj0qVLCAkJwbBhwzB37tza/XCkiox8EzLyTTh8IQfNgrwQG+oNLwf3Ksv5+Sj5fRuHVRARETkZl0yQd+3aheeee67K/bfeeisWLFhQ6+tPmjSpyiEVW7dutXuu1Woxa9YszJo1q9b3I+dhsco4nZqP06n5iAzwRKtwHwR46ev9Poosw7RtO2DhJDgiIiJn45IJcnZ2Nnx8fKrc7+3tjczMzAaMiNzR5ewiXM4uQqivEW0ifBHkY7j+SdVkPnAQclZWvV1PbWUDRLSiAK2m9iO3tKIAg1a0FYRWoODKf7ZRKIqiXHmuoGxEjKwoUJS/t3H8PxER1YVLJshNmzbFjh078OSTT1a6f9u2bWjSpEkDR0XuKi2vBGl5JQi5kigH1zFRltLTYU1IqKfonENZnWurrMAq1X7IiFUqvUaorxExwV4I9TPW+lqyrEC+kjD//XcFkvz3NklWICnK33+/6nnZ+WV/VxQFklyWiJcm5XK5pFxW/k7qy/+9LKFXUPo/SpEkXMnoAUVBXQfZ6DhMh4ioXrlkgjxq1Ci89tpr6NGjByZNmmQbEyxJEj744AOsXr0a06ZNUzlKcjfpeSVIzytBgJcercJ9EOHvAaGGqwIqslxazo09nFWySrKt9z7Q24AuzQLg66Gr8XVEUYDYAKsHysXFUAoLoRQVQSkuLn2YTFBKSqCYzIDZDMVihmKxAlarQ8acn5KMAFgukoiovrhkgjx16lRs374dzz33HObOnYs2bdoAABISEpCeno7+/fszQSaHyS40Y++ZTHgatIgN8ULTIK9qr9pnOX4CSl6egyN0H1kFJmw9noq4aH80D1UvAZSLi6Hk5EDOy4Oclw8lPx9yfj6UoiJAklSLi4iIHMMlE2SDwYCff/4ZK1euxLfffoszZ84AAHr06IH77rsPY8eOrXSBDqL6VGSy4tjFXBy/lIdwfyOaBXkh1NdY5Wp9cnExLMeONnCU9kq/4r9+77Wo1dmWmq7OeF5H9ofLioLDSdnIL7GgU7R/jXvta0JRFCg5OZCysiFnZUHOzoackwOYK67USERE7sslE2QAEEUR48ePt9UnJlKLoihIzi5GcnYx9FoRkQGeiPT3QLCPwS5Zthw6BFis1buoVgNtk2iI4eEQ/f2AOn7g88szQzjyZ+lY2Goc3+Pltba/Vzf5FQD0bROCJgGetYiwlEWSkVtsQUpOMTLyTXb7zqUVwCop6BYbWOvrX00uLIScmQk5IxNSRnrpxEkre4SJiBo7l02QiZyR2SojMb0AiekF0GpEhPiWLm0dpJggnj13/QuIIrStWkHfqSMEQ/1VzWgWCKx62gfFZsclfx56DZoGedX5OiG+RrQM80FhiRUnk3NxIbPItu9CZiG0GgGdmwbU6JqKJEHOzSsdJpGTU9oznJUFxWS6/slERNTouGSCfMstt1z3GEEQsHnz5gaIhqhyVkm29SxbTp2GPlePQK0MP40MP40CX1GGvlzHsODlCcPNN0MTFOSQeOojeW1IXkYtusUGITrICwcSs1ByJbk/l1YAb4MWLcLsSz0qZjOUwkLIRUVXxggXQCnIh5yXB6WgkBMjiYio2lwyQZZlucI4REmScP78eVy4cAEtW7ZEVFSUStER2ZMLiyBnZaIEwGWLiMuWv7NigwB4iQq8/b3h16U7PCQD9FlF0GtFaDUiRAHQVDGmuSZEQYD+0gXIRYV1vlZlFEmCIIjQxjSr44WUK9eTAUUGrFYEWiX08zZjd2IucgrNUCQrDiYmwuAnI0gxl1aNKCmu/vAVIiKi63DJBPnq1ezK++GHH/DYY4/hnXfeabiAiK5Buny5yn0mBTB7+KIgpg1SM0uAzBKHxBCanYJmE0Y4rhdVUQBBgM8Lz0MTHOyQW9yoAPuKdEi3ln7A2JcGxHub7HrhiYiI6oPbvbUMHToUDz300DWXoiZqKHJJyTVXzBOMHtC1aQ1BW70ycbUlFBf9nRwLwnUfrS5fRNNLF9Dq8sVqHQ8AUBQoZseN6dUIQHdPC4I0pXWETQrwZ3HN6yMTERFdj9slyADQokUL/PHHH2qHQQTpcjKqrAOh0ULbpjUEbQN+kVOdZFcQYLqyupvpSs9wtZNkB9MIQHcvC7zF0v+nqVYRl8xu+WuMiIhU5HbvLFarFV9++SWCHfQ1L1F1KRYL5MyMKvdrWzSHaKz9UsqNlU4AbvS0QHclJz9WooOZKy0TEVE9cskxyBMmTKh0e05ODnbv3o2UlBSOQSbVSWlpVS4rLIZHQBNQs1Jl9DcvjYLOHhbsK9LBrAAnTVp08uAkPSIiqh8umSD/+uuvFapYCIKAgIAA9O3bF48++igGDx6sUnREpYuHyKlple4TjEZoo5s0cETuJ1wno5lewnmzBhfMGjTTS/DTsJQbERHVnUsmyImJiWqHQHRNcmYmFEvlyxNrY2MhcCn0etHeaEW6VUSRLOBYsQ69vbkkNBER1R3fpYkcQEqrvPdYDA6B6OvbwNG4L40A29CKLElAioW/0oiIqO5c5t2kqKgISUlJMJsr9hAtW7YMt956K9q3b4/hw4ezggWpSi4uhpKfX3GHRgNN0+iGD8jNBWtlROtKV9lLKNFywTwiIqozl0mQX331VXTq1KlCgjxnzhxMnDgRv/32G9LT07FmzRr0798ff/75p0qRUmMnpaVXul0TGQlRx7q9jtDWaIVWAPJlAZfYi0xERHXkMu8kW7ZswdChQ+Ht7W3blpeXhzlz5iAqKgqnTp1Ceno6du/eDb1ej9dff13FaKmxUmQZSkbF0m6CXg9NeLgKETUOBhFoZSgdanHKxF5kIiKqG5dJkBMTE9GpUye7bRs2bIDZbMa//vUvxMbGAgB69OiB8ePHY9u2bWqESY2cnJ0DxWqpsF0TGcmJeQ4Wq5fgKSoolAUksxeZiIjqwGXeRfLz8xEUFGS37ffff4cgCBgyZIjd9vbt2yM9vfKvuYkcSc6o+O9OMBgghoaqEE3tGQQB4pU/XYUoAK3L9SITERHVlsu8izRr1gwnT56027Z161aEhYWhZcuWdtvNZjN8WSmAGphisUDOzauwXRMZVaFut7M71aSp2iHUSpROxhmTgnxZQKpFRJiOS+wREVHNuUwP8uDBg7Fs2TLs2bMHAPDpp5/i5MmTuPfeeyscu3//fsTExDRwhNTYyRmZgGKfkAk6PcQQLnveUAQBaG0s7UU+a9KoHA0REbkql0mQZ8yYAW9vb/Tu3Rt6vR4PP/wwQkJCMHPmTLvjioqK8N133+HWW29VKVJqrKTMipPzNBERLtd77OoidDJ8RAWZkohcif/viYio5lxmiEVwcDAOHTqETz75BGfPnkWzZs0wYcIEhF41tvPo0aN48MEHMWbMGJUipcZILimBUlhov1GjgRgaok5AjVxLgxUHi3U4Z9Kii2fFSZNERETX4jI9yAAQEBCA//u//8NHH32El156qUJyDJRWsfjPf/6DDh061Po+CxcuRExMDIxGI3r27Im9e/de8/icnBw89dRTiIiIgMFgQOvWrbFhw4Za359cj5yZWWGbGBIKQcOv+dUQqZPhKSq4bBFh5jBkIiKqIZdKkBvC6tWrMWXKFMyaNQsHDhxA586dMWTIEKRVsXSw2WzGoEGDkJiYiK+//hoJCQlYsmQJoqKiGjhyUlPFBFmAJsy1Kle4E0EoLfsmA7hg4YcUIiKqGZcZYtFQ3nnnHUycOBHjx48HACxatAjr16/HsmXL8NJLL1U4ftmyZcjKysLOnTuhu7JKGicINi5yURGU4mK7bWKAP0SjUaWICACi9RISTFqcN2vQXC+BQ8GJiKi62INcjtlsxv79+zFw4EDbNlEUMXDgQOzatavSc9atW4devXrhqaeeQlhYGOLi4jBv3jxIklTlfUwmE/Ly8myPgoKCev9ZqOHIWdkVtomhYSpEQuVpBaCZXkKRLCDdyl91RERUfXzXKCcjIwOSJCEszD65CQsLQ0pKSqXnnD17Fl9//TUkScKGDRswY8YMvP3225gzZ06V95k/fz78/Pxsj/j4+Hr9OahhyVlZds8FgwGin59K0VB5MXorBABJZg6zICKi6nOJBHndunW4fPmy2mFUSpZlhIaGYvHixejWrRtGjhyJadOmYdGiRVWeM3XqVOTm5toev/32WwNGTPVJLimBUlxkt00MCeHX+U7CQwRCtTJSrZysR0RE1ecSCfK9996LrVu32p43b94c69atq/f7BAcHQ6PRIDU11W57amoqwsPDKz0nIiICrVu3hqZctYJ27dohJSUFZrO50nMMBgN8fX1tD29v7/r7IahBXd17DEF0uWWl3V2MXoICTtYjIqLqc4kE2cfHBzk5ObbniYmJDhm3q9fr0a1bN2zevNm2TZZlbN68Gb169ar0nD59+uD06dOQ5b+7p/766y9ERERAr9fXe4zkXK5OkEU/X4hXJmuScwi5UvLtIodZEBFRNblEFYsePXpg7ty5SE1Nhd+VsZ0bNmyoclwwAAiCgMmTJ9f4XlOmTMG4cePQvXt39OjRAwsWLEBhYaGtqsXYsWMRFRWF+fPnAwCefPJJfPDBB3j22Wfx9NNP49SpU5g3bx6eeeaZWvyk5Epki6XC4iBiMBcGcUZN9RJOlmiRKwnw0yhqh0NERE7OJRLkDz/8EGPHjsVrr70GoDT5/eKLL/DFF19UeU5tE+SRI0ciPT0dM2fOREpKCrp06YKNGzfaJu4lJSVBFP/ueI+OjsZPP/2EyZMno1OnToiKisKzzz6Lf/3rXzW+N7kWJfuq6hUaLcQAf1VioWtropOQUKLFRbMGfh5WtcMhIiIn5xIJcsuWLbFz506UlJQgLS0NMTExWLBgAe6++26H3G/SpEmYNGlSpfvKj4Uu06tXL+zevdshsZDzkq9KkMXgIAiiS4xaanSMVybrXbZo0N5o5SRKIiK6JpdIkMsYjUY0bdoUs2bNwi233IJmzZqpHRI1UoosQ87Ls9umCQpSKRqqjmi9hNQiEelWEaE6lrQgIqKquVSCXGbWrFm2vxcUFODChQsASoc7sCIENQQ5NxcoNzFT0Osh+vioGBFdT6hWhl4ALls0TJCJiOiaXPb74D/++AMDBgxAQEAA4uLiEBcXh4CAANxyyy3Yt2+f2uGRm5Ozc+yei0HB6gRC1SYKQKROQopVhMR5ekREdA0u2YO8Z88e9O/fH3q9Ho8++ijatWsHADhx4gT+97//4eabb8bWrVvRo0cPlSMld6Xk5tg9F4MC1QmEaiRKJyHRrEG6VUQ4e5GJiKgKLpkgT5s2DVFRUdi+fXuFBTxmz56NPn36YNq0adi0aZNKEZI7k4uKoJRbBEYwGiF6eakYEVVXgFaBl6jgskXDBJmIiKrkkkMs9uzZg8cff7zS1e3CwsLw2GOPsaoEOYxcbtEaABAD2XvsSqJ0ElItHGZBRERVc8kEWRRFWK1V1zKVJMmuVjFRfZJzcu2eM0F2LZE6GRKAdCt/RxARUeVc8h2id+/eWLhwIc6fP19hX1JSEj788EP06dNHhcjI3SmSBKXcMueCwcDhFS7GW6PAV1SQbOHS00REVDmXHIM8b9483HzzzWjbti3uvfdetG7dGgCQkJCAtWvXQqvV2paCJqpPcl4eoPw9dlUMYO+xK4rUSzht0kJWSqtbEBERleeSCXLXrl2xZ88eTJs2DevWrUNRUREAwNPTE7fddhvmzJmD9u3bqxwluSM5l8Mr3EGkTsbJEiCDi4YQ2WgEQFOHT4wCBGhEQKsRgVpeRqjmiVWthlmj29b1w7HJDMVqhSLX7XeIp2SpYyDkCC6ZIANA+/bt8d1330GWZaSnpwMAQkJCOPaYHEoplyALOh0ELkzjkjxFBX4aBSlMkIlsJAWQ5LrMXlVglQGzpMBTr4Gvhw4BXnoE+xgQ4KWH4MJrvCsmE6TkZEipqZAzsyDn5QJWqV6ufapEAyCgXq5F9cdlE+QyoigiLCxM7TCoEZBNJiglJbbngr9/lb0Y5PzCtRISzVrAo+oJv0RUc4qioNBkRaHJiuScYgCAQadBhL8HmgZ5ItDboHKE1aMoCqSLF2E9fRpScord6qnk/lw+QSZqKEpunt1zMYCf+F1ZhE5GggnItgoI0LLmG5EjmSwSEtMLkJheAD9PPVqGeaNJoKdT9iorsgzr6dOwHD8OpaBQ7XBIJUyQiarJbvyxKEL081MvGKozb40CH1FBqlWDAC17kYkaSm6RGfvPZeFkch7aR/ohKtBT7ZBsrElJMB88CCW/4PoHk1tjgkxUTUre3z3Iop8fBI53d3nhOhkpFhFtjWpHQtT4FJZY8cfZTJxJK0CXZgHw9dCpFotcWAjz3r2QLl1WLQZyLnyHJ6oGuagIivXvmcbsPXYPYVoJ+bKAItn5vuYlaiyyCkzYcjwVJy/nQq7TJMHasZ49h+If1jM5JjtMkImq4erxx4I/xx+7A3+tAqMApFn4q5BITYqi4OTlPPyekIbCkoYZ8qRIEky7dsG0cydgYak1sufSQyyOHz+Os2fPIjs7G4pS8VPn2LFjVYiK3JGc/3eCLHh4QDToVYyG6lOYTkKaVUSMoX5KNhFR7eUUmrHlRCpuiAlEZICHw+4jFxfDtHUr5Mwsh92DXJtLJshnzpzBQw89hL1791aaGAOAIAhMkKleKMqVFfSuENl77FbCtDL2F+kgKaULJRCRuqySjL1nMtA20g9tI33r/fpydjZKtmyFcmWRMaLKuGSC/Pjjj+PIkSNYsGAB+vXrhwCW2yIHUgoLAOnv3kXRn+OP3UmwVoaA0lX1wrhoCJHTOHk5F4UmC7o2C4RYT2vCS2lpKNmylUMq6LpcMkHesWMHXn75ZTz99NNqh0KNgF15N40Ggo+PesFQvROF0iQ5nQkykdO5kFkEk0VGjxZBpUtY14GUnIyS336rtxXwyL255MyU4OBg+LGKADWQ8gmy6OvrlIXtqW5CdTJSLRq1wyCiSqTllWDnqQxYrLX/ACslJ6NkK5Njqj6XTJCfeOIJfPbZZ5Ak/kMnx1IkyW4lJZZ3c0+hWgnFCpAr8cMPkTPKKjBh56n0WiXJUlpaac8xcwaqAZccYtG6dWtIkoTOnTtjwoQJiI6OhkZTsfdn+PDhKkRH7kTOywOUv38hC0yQ3ZJRBHxFBakWEX4avokSOaPsQjN2nkpHn9Yh1R5uUTYhjz3HVFMumSCPHDnS9vcXXnih0mMEQWAPM9VZ+eEVgsEA0cgl19xVqE5GqlWD1uDvDSJnlV1oxp4zmbipZTA015m4JxcVcUIe1ZpLJshbtmxx6PUXLlyIf//730hJSUHnzp3xn//8Bz169LjueatWrcKoUaNw9913Y82aNQ6NkRqGUj5B9mXvsTsL1Uo4bdKgWAY8XHLwGVHjkJ5Xgv3nstCjRVCVxyhWK0ws5UZ14JIJcnx8vMOuvXr1akyZMgWLFi1Cz549sWDBAgwZMgQJCQkIDQ2t8rzExES88MIL6Nevn8Nio4Yll5RAKSmxPef4Y/cWoFFgEIBUi4aLhhA5ucvZRThyQYOO0f6V7jft2AE5O7thgyK34vL9JMePH8ePP/6IH3/8EcePH6/z9d555x1MnDgR48ePR/v27bFo0SJ4enpi2bJlVZ4jSRIefPBBvPLKK2jevHmdYyDnoGTn2D0XfVnezZ0JQmkvcjKXnSZyCWdS83EuraDCdvPhw5AuXFQhInInLvtOsHbtWrRo0QIdO3bE0KFDMXToUHTs2BEtW7bEunXranVNs9mM/fv3Y+DAgbZtoihi4MCB2LVrV5XnvfrqqwgNDcUjjzxSrfuYTCbk5eXZHgUFFV/gpD678ccenhB0OhWjoYYQppORJYkwsxwykUs4fCEHaXl/f9NnvXQJlsNHVIyI3IVLJsgbNmzAfffdBwCYN28evvvuO3z33XeYN28eFEXB8OHDsXHjxhpfNyMjA5IkISwszG57WFgYUlJSKj1n+/btWLp0KZYsWVLt+8yfPx9+fn62hyOHjFDtKLIMOf/v5aVZvaJxCNHKEAGkWFkTmcgVKIqCfWczUWiyQi4shGnHTrVDIjfhkmOQX3vtNXTq1Anbtm2Dl5eXbftdd92FSZMmoW/fvnjllVdw2223OTSO/Px8jBkzBkuWLEFwcHC1z5s6dSqmTJlie37o0CEmyU5Gzs0F5L+7ETm8onHQCKVJcrJFRFM9xyETuQKzVcaeU+noceFPCGaz2uGQm3DJBPnw4cOYN2+eXXJcxsvLCw8//DBefvnlGl83ODgYGo0GqampdttTU1MRHh5e4fgzZ84gMTERw4YNs22TryRVWq0WCQkJaNGiRYXzDAYDDAaD7bm3t3eNYyXHku3GHwsQfXzVCoUaWJhOwuFiHcwyoHfJ79iIGp+sU+ewPy0P3SumBUS14pK//o1GI7Kysqrcn5WVBWMt6tXq9Xp069YNmzdvtm2TZRmbN29Gr169Khzftm1bHDlyBIcOHbI97rrrLgwYMACHDh1CdHR0jWMg56Dk/D37WfD2hqDlV+6NRbiu9EMuh1kQuQY5Lw/S5WSkWEWcLHHJfj9yQi75L+mWW27Be++9h9tuu61C4rpnzx68//77GDx4cK2uPWXKFIwbNw7du3dHjx49sGDBAhQWFmL8+PEAgLFjxyIqKgrz58+H0WhEXFyc3fn+/v4AUGE7uQ65oABKucLyLO/WuOgEIFgr4zKHWRA5PcVigfXMGQAKAOC0SQMPUUEzN37t/vnxJFgKsqHzDkDnxz9QOxy35ZIJ8ptvvolevXqhb9++6NGjB9q0aQMASEhIwN69exEaGoo33nijVtceOXIk0tPTMXPmTKSkpKBLly7YuHGjbeJeUlISRNElO96pmq6unSn6cXhFYxOhk3GkWAuTDBj4cidyWtYzZ6FcNe74aLEWBkGxfRvkbiwF2TDnZ6gdhttzyQQ5NjYWhw8fxvz58/Hjjz9i9erVAIBmzZrh2WefxUsvvXTNRT2uZ9KkSZg0aVKl+7Zu3XrNc1esWFHr+5JzsEuQNRoIHCPe6IRrJRyBFslcNITIaVkvXYKcm1NhuwLgQJEON3pZEKJ1zySZHM8lE2QACA0Nxbvvvot3331X7VDIjcglJVCKi23PRV9fCIKgYkSkBr1YOsziIhNkl1b22hVQuhBM+W0ovw0V9119TPnjKrtHZRSrFYpVApS6JWkG2Vqn892RlJML6eKlKvfLAPYV6tDDy4wgrdJwgZHbcNkEmcgR5Ksmf3L8ceMVqZPxZ7EWBZIAbw3fYIHKE8QanS8AGlGARhSgFUUYtCIMOg089Bp46jXwMurga9TCoKt6gmT5pLfsmuW3q0GRZchpaZDS0yFnZUHOzYNSWAhI9fPh6lSJBkBAvVzLHcjFxbCePoWyccdVkQDsLdQzSaZacYkEecKECRAEAYsXL4ZGo8GECROue44gCFi6dGkDREfu5OoEWbgy6ZIanzCtBAFaXLJo0EbDHjzgeulINc5XAKukwCopMEFGoany4ww6Dfw9dQjw0iPQ24BALz20GucaDK5IEqQLF2BNSoJ0+TJgdZ5vGnbPvQuy1QJRq8NN02q3sqyzUqxWWP/6q9ofPsqS5G6eFoS66ZhkcgyXSJB//fVXiKIIWZah0Wjw66+/Xre3gF+LU03JJlNpr88VgtEDYrl61dS46EUgVCvjkkVEm5pXjaQ6MFkkpOZKSM0tXUJYEAQEeusR5mtEmJ8Rfp561WKTCwthPZkAy5kzgJMuSiFbLYAil/7pRhRZhuWvv6CUlFz/4HIkAH8U6dDZw4ImeibJVD0ukSAnJiZe8zlRfVCyrqpewd7jRi9KJ+FAsQ4ZVhHBnOyjGkVRkJlvQma+Cccv5cLLqEWkvweaBHo2WLIsFxTAcvgIrImJdqtsUsNQFMB65gyU/PzanQ/gULEORbIVrY3O09tPzsslEuSrJSUlISQkBB4eHpXuLy4uRnp6Opo2bdrAkZErkzLty+aIAf7qBEJOI0wnQ1sCXDBrmCA7kcISK06l5ONUSj58PXWICfZGdKAndNr6H4ahmM2wHDkKS0ICE2MVWc+drTAErjb+MmmRL4vo4mGBhl800zU416CuaoqNjcV3331X5f5169YhNja2ASMiVyeXlNgNr4BGA8HHR72AyCloBCBCKyHFIsLCOT5OKa/IgsNJ2dh4+DIOJmYht6j+hj1Yz59H8fc/wHLiBJNjFVkSEyGnp9fb9ZItIrYV6JEvMUOmqrlkD7KiXPudymKxcDEPqhE5M9Puuejnx3HsBACI0su4YNHgkpkl35yZJCs4n1GI8xmFCPU1onWEL4J9ajeHQCkpgWnvH5CSkuo5SqopS2Ii5NTUer9ugSxgW4Ee7YxWxPJ1TZVwmQQ5Ly8POTk5tueZmZlIquSXV05ODlatWoWIiIgGjI5cnZx5VXk3f5ZUolLBWhmeooLzTJBdRlpeCdLyShDobUC7SF+E+FZ/lqWUkgLTjp129dCp4SmKAuvZs5AzHLdinAzgWEnpgkCdPCws50h2XCZBfvfdd/Hqq68CKJ3R/Nxzz+G5556r9FhFUTBnzpwGjI5cmVxYBKW4qNwWAaI/6x/T35roJPxl0iLLKiCQ9VRdRlaBCTv+SkeIrxHto/wQ4HXtCX3mo0dh+fNw6YwwUo0iSbCeOl3pKnmOkCUJ+K1Ajxi9hFYGK/TV/AJaMBoBvR6Cpuq63dUhXhndpwDV+ren8w6w/Xm9b9Rt16Uac5kEefDgwfD29oaiKHjxxRcxatQo3HDDDXbHCIIALy8vdOvWDd27d1cpUnI10lU9FIKPNwSdTqVoyBlF6yWcMmlx3qxFoNa9Smc1Bul5JfgtrwQR/h5oG+lbofKFYrXCtHMXh1Q4AdlkgjXhr6s6LRxPAXDOrMEFiwbN9VbE6CW7RFkwGKCJiIAYHgYxMAiirw8Ebf2kUP6ZhRCOb4eC6iWzHR/7j13c1SEA8NDXLZFvbFwmQe7Vqxd69eoFACgsLMR9992HuLg4laMiV6coCpSrqldoOLyCruJxZenpyxYR7WXAwCkOLik5pxjJOcWI8PdAq3AfBHoboBQXo2Tr1grDrKjhSTm5sJ4+DUjqLcxjVUorXZwxaRFlUNAsJhxh7VtCjAh32LyUpkFeWPV0XxSbHTeEy0OvQdMgL4dd3x25TIJcpqioCO+//z48PT2ZIFOdybm5UCz2PYJCIBNkqqiZXkK6VUSiWYs2Rq6s58rKEuUAjYyoU38i3JQPzslVjyLLsF64CDklWe1QSokiEBqG5MgIpOp08MhQEGHNQYivEYFe+msuhV5bkblpkIsKr39gLYmeXkAQq3vVhMslyJ6entBqtfDy4ichqrurSwcJHp4QjVw2jSoK08owCsB5swYtDVbWUHVxclERUk+eRIrFAqNgQLReQrRegqfovCM2qztGVdTqbEtNO/sYVTk/H9az56CUOMOkSAFiSAg00U0glhtmV2yWcDatAGfTCgAARr0G3gYtPPRa6DQCRLFuvwzEpPPwG3mXY8e+CwLCftsKbXMmydXlcgkyANx33334+uuv8eSTT7IUF9WabLFAzs6x2yYGBqoTDDk9QQCa6q34y6TFRYsGzfSsaOGqypaLVq4sxVyiAKdMGpwyaRCoURCllxChlao9WctGFEtLRPr6QvT2Kp3EpdMBQt3G5PjmmSFcPF/tMao9Xl5r+3tNxqh2aRaASP/KF+CqDgWAVZJRYpFQZJaQV2xBfnHlY/ZlkxnShQuQMx1XpaImBA9PaJvHQvT2vu6xJWYJJWYJgKle7u15MR1+ZcmxI3IaRQEUxaE91O7IJRPkBx54AP/85z8xYMAATJw4ETExMZWuqnf1JD6i8uT0dECxL/4vcngFXUPTK5P1zpo0aKqT+LW8C5ILi2A5cbLKca5ZkoCsYi2OQosAjYIwnYRQrQyfKkqAiYGB0DSJgiY8HGJQUJ0rGlSmOYBVTaNdcoyqVZKRWWBCam4JLucUoyivEFJKSunvX6dYfEWAJjICmiZN1O9wE4RqJch3pCQjTZYQKmqwIbyaJW1ZmaXGXDJB7t+/v+3v27Ztq7BfURQIggBJYg8PVa3C8AqjB0RPT5WiIVdgFIFInYxLFhGXLSKi9M7wBk/VJRcXw3qy6uS4PAVXkmVJixMADAIQpJURqJER4GNAQOtYGFq0gNhAK2666gQrrUZEqJcOQdmpaJ15DqlJKThv0iBFFlUvPyZoddC2aOFyZT3TZAkpzG8cziUT5OXLl6sdArk4KScXSkmJ3Tb2HlN1NDdYccmix2mTFlH6+lvWmBxLNplhPXnSNqyipkwKkKz1RlpkBMSgIIiSCO+kQvgYzfAyaOBl0MJDr4FBq4FBJ0IritBqhHrrlbSePefwSVz1MT5VsVigFBVBLiiAnJkJOT0DUloacCWhC9YAwZ4yimXgtEmLJLNGlURZ8PSCtnVriIZr18amxsslE+Rx48apHQK5ODklpcI2MShIhUjI1fhpFARpZGRKIpItIiJ07EV2dorVWpocm2v3gUYwGqFpEg1N0N9zFBRFQf41xtjazq2HBNlw+QI6/vMBh39N7vN//wdNSHDdLlLNYRMeItDRw4rmegknTVokWxqudqLo7w9tq1YQRNZrpKq5ZIJcXkFBAS5cuAAAiI6Ohnc1BthT4yaXlFRYoUnw8OTwCqq2FgYJmUUiEkq0CNeaORbZiSmyDMtff9WuSoIoQhvVpE41cKtTReK6YRQX/p0cVyOOVpcuwKQoMAgCTkVFX/8GVyZxKabiBh8X7KVR0M3TgnSLiCMlWhTJjn0xiSEh0MY252uWrstlPz798ccfGDBgAAICAhAXF4e4uDgEBATglltuwb59+9QOj5yYVFnvcTB7j6n6QnUy/DQKCmQBFxuw54tqRlEUWP86BSU/v8bnin7+0HXqDE1khPqTt8qUTeK6zsOkKJABmBSl2ueoLUQnI97b7NDqMGJYOHTNmRxT9bhkD/KePXvQv39/6PV6PProo2jXrh0A4MSJE/jf//6Hm2++GVu3bkWPHj1UjpScjWKxVJicB7C8G9VcS4MV+4t0+KtEh0idiXWRnYyiKLCePl3h26LrEkVomzaFJizMIXFR1TRC6bCLUK2MQ8U6WOpxRIkYHgFds6b1d0Fyey6ZIE+bNg1RUVHYvn07wsPD7fbNnj0bffr0wbRp07Bp0yaVIiRnJaWmVvgKUfD24eIgVGMROhk+ooJ8WcAZkwatja4zq3z33LtsC0ncNG2d2uHUu9Lk+AzkrJotHy0YPaBt1QqiZ+1rAVPdhelk9NOYsa9Qh7x6GHIhhoUxOaYac8nvBvfs2YPHH3+8QnIMAGFhYXjsscewe/duFSIjZ6ZIEqSU1Arb6zwphRqt1leWnD5j0qLYhebqyVYLoMilf7oZRZZhPXUKclZmjc4TA4Ogi+vA5NhJeIoK+nibEa6t2wtLDAyCLiamfoKiRsUlE2RRFGG1Vl3HUpIkiJydSleRUlMr1j8VRYiBHH9MtROhk+GvUSABOFasu+7x5FiKJMGa8Bfk7OwanaeJagJdq5YOWeSDak8jAN08LYit5bhk0dcP2pYt6jkqaixcMovs3bs3Fi5ciPPnz1fYl5SUhA8//BB9+vRRITJyVopVgnQ5ucJ20T8AgpZvilR7ba/0IqdYxQYtVUX2FIsFlhMnIOflVv8kQYS2RQtom0Q5LjCqE0EAOnhYba+zap/nUTpcxmkmWJLLccnf5vPmzUNubi7atm2L0aNHY/bs2Zg9ezZGjRqFtm3bIjc3F/Pnz6/19RcuXIiYmBgYjUb07NkTe/furfLYJUuWoF+/fggICEBAQAAGDhx4zeNJHVJKSqWrZ2lCQlSIhtxJsFa2fQ18tFgHswsNtXAXcmERLEePQimswUIaoghd69bQBHOIlStoaZAQV80kWdDqoG3Txm07P0JFDcI1GoSK7vnzOQuXnKTXtWtX7NmzB9OmTcO6detQVFQEAPD09MRtt92GOXPmoH379rW69urVqzFlyhQsWrQIPXv2xIIFCzBkyBAkJCQgNDS0wvFbt27FqFGj0Lt3bxiNRrzxxhsYPHgwjh07hqgo9ko4A8VigZRSsfdYMBhcbolRck7tjFakFehhUoA/i3W40cv9xvY6KykzE9azZ2tWv1ejga5NmwZbJprqR4yhdKjF0ZJrpC6CCG2rlhANhgaKquFtCI9QO4RGwSUTZABo3749vvvuO8iyjPQrZbtCQkLqPPb4nXfewcSJEzF+/HgAwKJFi7B+/XosW7YML730UoXjP//8c7vnn3zyCb755hts3rwZY8eOrVMszuzPjyfBUpANnXcAOj/+gdrhXJP1wgXbMqfliZV84CGqDS+NguYGCadNGqRaRZwzaRBrcJ2qFq5IkWVYky5ATq1Y1/yaNBro2raFyEWlXFKMQYIM4HgVSbI2Ohqir2/DBkVuySWHWJQnCILdoy7MZjP279+PgQMH2raJooiBAwdi165d1bpGUVERLBYLAq9RV9dkMiEvL8/2KCgoqFPcarAUZMOcnwFLQc0mwzQ0ubAQcnpGxR2CCJHDK6getTJY4S2WFm49XqJFhtXlf706LbmoCJZjx5kcN1LNDRJaVfIBVAwMhCaiYnUrotpw2d/gx48fx4gRI+Dr64uIiAhERETA19cXI0aMwNGjR2t1zYyMDEiShLCrCsSHhYUhpZLV1yrzr3/9C5GRkXZJ9tXmz58PPz8/2yM+Pr5W8dK1KQpgPXcOQMVq82JAAEQdqw5Q/dEIQCcPCwSU/ovbX6RDgcQJQvVJURRYL1+G5egxKEU1GG8M2MYcN4bk2CAIEK/86a7aGK1oWq66hWA0QhvbXMWIyN245BCLbdu24fbbb4csy7j77rvRunVrAEBCQgLWrVuHH3/8ERs3bkS/fv0aNK7XX38dq1atwtatW2G8xsITU6dOxZQpU2zPDx06xCTZAeSUlCon7WgqqaFNVFeBWgUtrgy1sCjA7kI9enub4SnW45Jg9UDU6mwLhbgKOScX1vPnoZQU1/xkQSxdAKSRfPV+qknjWBSjo9GKEllAmqSFtmVLt52UR+pwyQR58uTJCA0NxW+//Ybo6Gi7fRcuXMDNN9+MKVOm4I8//qjRdYODg6HRaJCaar+YRGpqaqWLkpT31ltv4fXXX8cvv/yCTp06XfNYg8EAQ7kJBN6NoEejocnFxbBevFDpPsHLC6IP/5+TY7Q2WJFhFZEjCSgRROw2e6FHoAhfDy2g1ZXW2tWIgCBCEMXSOlZ1pCkCcC6/9LsS5frJeM+X19r+rlTj+LIjwv2MiA7yrFWMZSQZkGQZFkmB2SrDZJVgsVY9wU4uLIR04WLNl4wuRxsbC42/f63PJ+ckCMANnhbsCWmOIi8vtcMhN+OSCfKxY8fw2muvVUiOASA6OhpPPvkkZs+eXePr6vV6dOvWDZs3b8Y999wDAJBlGZs3b8akSZOqPO/NN9/E3Llz8dNPP6F79+41vi/Vr9KVtE5XOaudvcdUZxpN6QctLy8IXp4QvLwgeHhC8PCA4GFEH0GL38/lwiwDEoA/NCK6xwYi3N8xq7T5ZRZC2LEdCiobUFR3ggAIAG6IDUTToPpPRCRZQZHJikKTFfklVuSXWJB9MQ3ZiRch1SExBgBts2ZcLdONGaKj0KdXF/x2IhXma3zQIqopl0yQmzVrBpPJVOV+s9lcafJcHVOmTMG4cePQvXt39OjRAwsWLEBhYaGtqsXYsWMRFRVlq7P8xhtvYObMmfjiiy8QExNjG6vs7e3NnmGVWBPPQykuqnSfYDBADOLKeVQ9gsEAwd8for8fRD8/iD4+EHx9IXh6XnNSsDeAm3QGbE9Ih6wosEoydp/OQEyIN9pH+UGvrd/pH02DvLDq6b4oNjuucoaHXuOQ5BgANKIAHw8dvMxFCExPgvXsWSj5BZAUINdLQLYkIsMqIssqoiY/oSY6mh+I3Zjg7QVD794Q9Frc2DwIO09lVOsbEaLqcMkEeebMmZg8eTLuvPNOdOnSxW7fwYMH8Z///AcLFiyo1bVHjhyJ9PR0zJw5EykpKejSpQs2btxom7iXlJRkV0ruo48+gtlsxogRI+yuM2vWrFr1YlPdSJeTIaenVblfExHBlZWoUoKXJ8SgIIiBQdAEBkII8IfoUfse30BvA3q0CMKeM5m2N+3E9AJczCpCbIgXmgZ5wcej/sYAR+amQa7pxLUaED29gKDYerueIstQ8vMhZ2VBysiAdPkylHz7ij4aoXRcd6BWQguDBEkBsiQRaRYRKRYNiq+RC2mio6GNjKy3eMnJaDUwxsdD0OsBACG+RnRu6o9D5527shK5DpdMkHfv3o2wsDB069YNvXv3RsuWLQEAp06dwq5duxAXF4ddu3bZlWYTBAHvvfdeta4/adKkKodUbN261e55YmJirX4GZ1XdMYw67wDbnzUZw+hIUnoGrBeSqtwv6HQs7UYAAMHTE2KAP8TAwNKkOCioTslwVcL9PXBj8yDsO5sJ+crrxCrJOJWSj1Mp+TDoNPAxaiGKdfvQZrh0AeFj7q3Wa7dWFAUQBPi/+UbdemQVBYrFDKWkBEpRcc0W90BpwhyilRGildHBw4osq4DLFg0uWzQwl/vRtc2asefYzRl69YIYEGC3LSbEG4UmK06l5KsUFbkTl0yQP/jg74UpduzYgR07dtjtP3LkCI4cOWK3rSYJcmPkodfYylNV5y2242P/sf29um/JAoC+bULQJKD2k3xkRSkt31Z+ko9FQv7ZROSdP4UiQayyV0kTEVk6KYoaB0GA4OkB0dcPgq9P6RAJPz+I/v4QGnCVrcgAD/RpHYI9ZzIqjJE0WSSYLHUfFuGbmYPwsuS4Gt+QtLp0ASZFgUEQcCqqGsPRFAVQlNKJrzVMah2ptHfZivZGK1KtIpIsOmQ3bcHlo92crktnaJs1q3Rfhyb+KLFIuJBZ+TA7oupyyQRZdqJf0O7CVccwKrIM8759sJ4/VTrwE4CkAPmSgDy5tJJAtlVEgcYAMYwr57kNUSwdH2w0lj48PUrHBXt6QvTyhuDtVTpxTuMcZZ+CfAy4pX04Dp7PQmpuieNuJAjVSpBNigL5yp/VqqIhCI7rna4HogBEeGoQe3MflASE4ExaPpIyi2CV+F7hbrQtmkMfF3fNY7o2C4TZKjv2tUZuzyUTZHIMR03AcRTpcjJM+/ZBycuz264RAH+tAn9IKKsGKnTrhLyIUKTllSAtz4SCEkvDB+zOypInvQHwqLoG+PWVJmuCKAKiCFwpiSZodYBWW7q4i14PQact3X+lTJogiKVZkixDLiwAioogaDJt1xBETel+rRYQNRA0V7ZrNKX30God/u2CUa9Br1YhSMkpRkJyHrILzQ69X2Mi+HjD2L8/RD8/eAHo1DQA7SL9cDa9AGdS81ndwE1ooiKh79nzuseJooAeLYKx+3QG0vOYJFPtuHSCfO7cOfz44484f/48gNLqFrfffjtiY+tvIkljYj17zmGTfBSrFYKogTam8q/Fqn2doiLImVmwnjsHOSenWucIvr7waNMKnqJoK7NVUGJBck4JLmcXMVGpD2U9jGYTUFz3N6Sr+yrLnjs0zRHF0mRcoy2tU6zR/l2zWNTY/70sOReFK0n6lZrGZc9t9Y2F0kmhglC6D0CQIKC3CBQaZaQXSygwy5Dr2DlrKGm8Yy41kZEw9OldYdiMTiuiTYQvWoR641x6AU6lMFF2ZWJoKAz9+lX7g6xGFNCzRRB2n85ARn7VVa+IquKyCfLzzz+P9957r8JwC1EU8dxzz+Gtt95SKTLXZD17Dqnx/R0+ycfnhecbfHygvlu3Cr9UvY06tArXoVW4DwpLrLiQVYQLmYUoNFkbNDZyIrIMyDIUy9//Bhw5qEAHoL5qLFjT0lBw/cPciyhC16njdb9u12pEtAr3RWyIN86mFeA0e5RdjhgSDOOA/hC0NUtZtBoRN7UMxt4zmUhjTzLVkEvOWHr77bfx7rvvYvjw4di1axdycnKQk5ODXbt2YcSIEXj33Xfx7rvvqh2mS5GLCv9Ojst6vK7xuCMtFd1TLuOOtNRqHQ+gdAa7uWE/yWuiIqGNunYa4mXUom2kLwZ1jEDv1iGIDLh2jVsiUpfg6wvj4EHXTY7L02pEtI7wxeCOEejcNABeRpftH2pUxNAQGG+5BYKudiURy5LkyDpMDqfGySV/QyxZsgR33XUXvvzyS7vtPXv2xKpVq1BSUoKPP/4YkydPVilCF1bNST5psoQUSfr7nOpct6En+ei00PfoUaNTQn2NCPU1othsxdm0ApxLL+REHyJnIYrQtWsLXadOtZ6AqdWIiA31RmyoN1JyinE2vQBpnMzllDSRkTDc3K/GPcdXE0UBNzYPxNGLGpxJbbzDkahmXDJBTkxMxLPPPlvl/iFDhmDjxo0NGBE5I33nzhC9ajfx0EOvRYcm/mgT4Ytz6QU4nVpQL+W4iKh2NJGR0He7AaKfX71dM9zfA+H+HigyWZGUyWFWzkTbojn0PXvW2+RZQRDQMdof3gYtDl/I4Yp7dF0umSCHhobizz//rHL/n3/+iRAuCNGoacLDoW3Tps7XKT9+8Vx6IU6n5jNRJmpAYmgI9J06OXThD09D6TCrtpG+yCow4XJ2MZJzipksq0EQoO/SBboO7R1y+dhQb/h66LD3bCZ/l9M1uWSC/I9//APvvfceYmJi8PTTT8PrSi9hYWEhPvjgA3zyySd47rnn1A2SVCMYjaWz2utxHHFpouyDFqHeuJBVhNOp+cgvZqk4ck0GQbAtFOKURBGaqEjo2rWDJrRh65cHehsQ6G1AXLQ/8ootSM0tQXpeCTILTJDqWm6ErkkwGGDo0weayAiH3qe0LnkYDiQ6uC45uTSXTJBfe+01HDp0CC+//DJmzpyJyMjSSViXL1+G1WrFgAED8Oqrr6ocJalCFGHo2weCA5YNLr28gGbBXmgW7IX0vBKcTS9ASk4Jv64jl3KqSdPrH6QCMTgI2qbNoImNccjS3zXl66GDr0dptRtZVpBTZEZ2oRk5RWbkFlmQX2Lla7+eaMLDoe/dC6Jnw0ymM+hK65KfSy/AsYu5nGtCFbhkguzp6YnNmzdj7dq1dnWQb7vtNtxxxx0YNmwYqxA0UvqePR36VWx5Ib5GhPgabcuaXsgsRB57lYmqRTAYIPj5QgwIhCYkGJrwcAjGuiwyc33KlSWzr/WwpbtlJUTL9gHwB+DvoQBGLRCohawoKCyxotAsodgsodgiwWSVYZYUWCUZVhmQy1+zlgyyGw/10Omg79oFutatVbl9bIg3wv2MOHwhB8nZxarEQM7J5RLkoqIiPPTQQ7jvvvvw4IMP4u6771Y7JHIS+u7doGvRvMHva9Rp0CrcB63CfZBbZMbl7GJczinmEAxyP1odUMtyWwBKVz3UagGdrrQKhVWCnJ4OOS0NlmPH7SvdXPm7rYfWtk+xS1ptq6yUJbi2fVf+lK86vp5pAfhdeTiK9dIl96tzLQjQNo+FrksX1b8t8NBr0bNFMDLyTTh2MYeLRxEAF0yQPT098csvv+D2229XO5RGLVTU2P2pKlGEvseN0LVsqXYk8PPUw89Tj3ZRfigssSI1rwRpeSXIyDfxKzxyfVYLYKnbBz/FXJp8cGBCIyUI0DRtCn3HOIj+/mpHYyfYx4D4dmFIyy3B6dR8Li7SyLlcggwAffv2xa5duzBx4kS1Q2m0NoQ7dhJFdQlenjD07QuNE1Yt8TJq0dzojeah3lAUBblFFmQVlo5hzC0yc/wiETUagrcXtLGx0LZsWevymw0l1M+IUD8j8ostSMosxKXsYhSxokmj45IJ8gcffIAhQ4Zg+vTpeOKJJ9CkSRO1Q6KGptNB17YNdB061LmIfEMQBAF+njr4eWgRG+QBKApkWUZhiQUFJglFJRYUWySUmEvHMFqsMqyyDOnKGMa60oK910TUcAQPD4iBARBDQqCJjIQmMFDtkGrMx0OHDk380aFJaUWT9LwSZBWWTtAsMlnr5XczOS/nzywq0blzZ1itVsyfPx/z58+HVquFwWCwO0YQBOTm5qoUIVVQ9otErweuaqtqEwQIBiNEf3+IYaEQNBpYzydVHJtYdj+7B8qNT5SvjE2UbWMUFVkuPV+WSx+SXLpNufK87BhZsj2HLF913lXbqjH+UQPHj18EALmwEHkOvgcRuTidDtDXbYw5NJrSCZgaDRSTCdLFi5AuXqz+NaqTdFY3L73WtWqY3OoARF55lDHJgEVGnbsflNQksCKz83HJBPm+++5jlQpXU7bUtNkMmEy1voxSUgIpNwfS+cT6i42IiErHl5vrPrlYKSpuFGPMdVcedWUtyne/SZhuwCUT5BUrVqgdAhERERG5KZdKkEtKSrB27VqcO3cOwcHBuPPOOxER4RyTxYiIiIjIPbhMgpyWlobevXvj3Llztpn/np6eWLNmDQYOHKhydERERETkLkS1A6iu1157DYmJiZg8eTJ++OEHLFiwAB4eHnj88cfVDo2IiIiI3IjL9CD//PPPGDt2LN566y3btrCwMIwePRoJCQlo06aNitERERERkbtwmR7kpKQk9O3b125b3759oSgKUlNTVYqKiIiIiNyNyyTIJpMJRqPRblvZc6uVK9wQERERUf1wmQQZABITE3HgwAHb4/DhwwCAU6dO2W0ve9TWwoULERMTA6PRiJ49e2Lv3r3XPP6rr75C27ZtYTQa0bFjR2zYsKHW9yYiIiIidbnMGGQAmDFjBmbMmFFh+z//+U+754qiQBAESFLN16ZZvXo1pkyZgkWLFqFnz55YsGABhgwZgoSEBISGhlY4fufOnRg1ahTmz5+PoUOH4osvvsA999yDAwcOIC4ursb3JyIiIiJ1uUyCvHz58ga5zzvvvIOJEydi/PjxAIBFixZh/fr1WLZsGV566aUKx7/33nu47bbb8H//938ASqttbNq0CR988AEWLVrUIDETERERUf1xmQR53LhxDr+H2WzG/v37MXXqVNs2URQxcOBA7Nq1q9Jzdu3ahSlTpthtGzJkCNasWVPlfUwmE0zlllsuKHCiRSZruD696telmmH7uje2r3tj+7o3tq9TcZkEuSFkZGRAkiSEhYXZbQ8LC8PJkycrPSclJaXS41NSUqq8z/z58/HKK6/UPeB6JHp6AYJQ+kJy1ItJEGDo1h2aJlGOuT5VScrIYPu6MTE5me3rxsSIcLavG2uo9hU9vRxzbTfFBFkFU6dOtet1PnToEOLj41WMCNA2j0XYb1shFxU67B6ipxe0zWMddn2qmq5NG7avG2P7uje2r3tj+zonJsjlBAcHQ6PRVKirnJqaivDw8ErPCQ8Pr9HxAGAwGGAwGGzPvb296xB1/eGLx72xfd0b29e9sX3dG9vX+bhUmTdH0+v16NatGzZv3mzbJssyNm/ejF69elV6Tq9eveyOB4BNmzZVeTwREREROTf2IF9lypQpGDduHLp3744ePXpgwYIFKCwstFW1GDt2LKKiojB//nwAwLPPPov4+Hi8/fbbuPPOO7Fq1Srs27cPixcvVvPHICIiIqJaYoJ8lZEjRyI9PR0zZ85ESkoKunTpgo0bN9om4iUlJUEU/+547927N7744gtMnz4dL7/8Mlq1aoU1a9awBjIRERGRixIUhfU/1HbgwAF069YN+/fvxw033KB2OERERESNGscgExERERGVwwSZiIiIiKgcjkGmWktOTkZycrLaYRARETUqERERiIiIUDsMt8YE2QlERERg1qxZLvWP3WQyYdSoUfjtt9/UDoWIiKhRiY+Px08//WS3pgLVL07So1rJy8uDn58ffvvtN6dZ6ITqT0FBAeLj49m+bort697Yvu6trH1zc3Ph6+urdjhuiwky1UpZgswXqHti+7o3tq97Y/u6N7Zvw+AkPSIiIiKicpggExERERGVwwSZasVgMGDWrFmcIOCm2L7uje3r3ti+7o3t2zA4BpmIiIiIqBz2IBMRERERlcMEmYiIiIioHCbIRERERETlMEEm1SUmJkIQBKxYsULtUIiIiIiYILuaM2fO4PHHH0fz5s1hNBrh6+uLPn364L333kNxcbHD7nv8+HHMnj0biYmJDrtHdcydOxd33XUXwsLCIAgCZs+erWo8ahEEoVqPrVu31vleRUVFmD17do2uxXaqO2du45MnT+LFF19Ely5d4OPjg4iICNx5553Yt29fnWNpLJy5fS9fvoyHHnoIbdq0gY+PD/z9/dGjRw+sXLkSnNdfPc7cvlf7/PPPIQgCV128ilbtAKj61q9fj3/84x8wGAwYO3Ys4uLiYDabsX37dvzf//0fjh07hsWLFzvk3sePH8crr7yC/v37IyYmxiH3qI7p06cjPDwcXbt2xU8//aRaHGr773//a/f8008/xaZNmypsb9euXZ3vVVRUhFdeeQUA0L9//2qdw3aqO2du408++QRLly7Ffffdh3/+85/Izc3Fxx9/jJtuugkbN27EwIED6xyTu3Pm9s3IyMDFixcxYsQING3aFBaLBZs2bcLDDz+MhIQEzJs3r84xuTtnbt/yCgoK8OKLL8LLy6vOcbgbJsgu4ty5c3jggQfQrFkz/Prrr4iIiLDte+qpp3D69GmsX79exQj/pigKSkpK4OHhUe/XPnfuHGJiYpCRkYGQkJB6v76reOihh+ye7969G5s2baqwXS1sp7pz5jYeNWoUZs+ebdfjNGHCBLRr1w6zZ89mglwNzty+nTp1qtAbOWnSJAwbNgzvv/8+XnvtNWg0GnWCcxHO3L7lzZkzBz4+PhgwYADWrFmjdjhOhUMsXMSbb76JgoICLF261C45LtOyZUs8++yztudWqxWvvfYaWrRoAYPBgJiYGLz88sswmUx258XExGDo0KHYvn07evToAaPRiObNm+PTTz+1HbNixQr84x//AAAMGDCgwldDZdf46aef0L17d3h4eODjjz8GAJw9exb/+Mc/EBgYCE9PT9x00011SuTV7L12NbIsY8GCBejQoQOMRiPCwsLw+OOPIzs72+64ffv2YciQIQgODoaHhwdiY2MxYcIEAKXjw8sS3FdeecXW9tcbMsF2ahhqtXG3bt0qfB0bFBSEfv364cSJE/X7QzZiar6GKxMTE4OioiKYzeY6/2ykfvueOnUK7777Lt555x1otewvvRr/j7iI77//Hs2bN0fv3r2rdfyjjz6KlStXYsSIEXj++eexZ88ezJ8/HydOnMB3331nd+zp06cxYsQIPPLIIxg3bhyWLVuGhx9+GN26dUOHDh1w880345lnnsH777+Pl19+2faVUPmvhhISEjBq1Cg8/vjjmDhxItq0aYPU1FT07t0bRUVFeOaZZxAUFISVK1firrvuwtdff4177723/v4HUQWPP/44VqxYgfHjx+OZZ57BuXPn8MEHH+DgwYPYsWMHdDod0tLSMHjwYISEhOCll16Cv78/EhMT8e233wIAQkJC8NFHH+HJJ5/Evffei+HDhwMo7WEi9TlbG6ekpCA4OLhef8bGTO32LS4uRmFhIQoKCvDbb79h+fLl6NWrl0O+HWyM1G7f5557DgMGDMAdd9yBL7/80qE/q0tSyOnl5uYqAJS77767WscfOnRIAaA8+uijdttfeOEFBYDy66+/2rY1a9ZMAaD8/vvvtm1paWmKwWBQnn/+edu2r776SgGgbNmypcL9yq6xceNGu+3PPfecAkDZtm2bbVt+fr4SGxurxMTEKJIkKYqiKOfOnVMAKMuXL6/Wz6coipKenq4AUGbNmlXtc9zZU089pZR/OW/btk0BoHz++ed2x23cuNFu+3fffacAUP74448qr12X/9dsp/rjrG1c5vfff1cEQVBmzJhR62s0Zs7YvvPnz1cA2B633nqrkpSUVKNrUClna98ffvhB0Wq1yrFjxxRFUZRx48YpXl5eNfiJ3B+HWLiAvLw8AICPj0+1jt+wYQMAYMqUKXbbn3/+eQCoMMShffv26Nevn+15SEgI2rRpg7Nnz1Y7xtjYWAwZMqRCHD169EDfvn1t27y9vfHYY48hMTERx48fr/b1qWa++uor+Pn5YdCgQcjIyLA9yr4a37JlCwDA398fAPDDDz/AYrGoGDHVlDO1cVpaGkaPHo3Y2Fi8+OKLDrlHY+MM7Ttq1Chs2rQJX3zxBUaPHg0ADq2W1Jio2b5msxmTJ0/GE088gfbt29fLNd0RE2QX4OvrCwDIz8+v1vHnz5+HKIpo2bKl3fbw8HD4+/vj/PnzdtubNm1a4RoBAQEVxkFdS2xsbKVxtGnTpsL2sqEZV8dB9efUqVPIzc1FaGgoQkJC7B4FBQVIS0sDAMTHx+O+++7DK6+8guDgYNx9991Yvnx5hbHq5HycpY0LCwsxdOhQ5OfnY+3atSwVVU+coX2bNWuGgQMHYtSoUfj888/RvHlzDBw4kElyPVCzfd99911kZGTYKl9Q5TgG2QX4+voiMjISR48erdF5giBU67iqZiMrNah3yTFpzkWWZYSGhuLzzz+vdH/ZpA5BEPD1119j9+7d+P777/HTTz9hwoQJePvtt7F7924mO07MGdrYbDZj+PDhOHz4MH766SfExcXV+lpkzxna92ojRozAkiVL8Pvvv1f4xpBqRq32zc3NxZw5c/DPf/4TeXl5tm+oCwoKoCgKEhMT4enpidDQ0Lr9gG6ACbKLGDp0KBYvXoxdu3ahV69e1zy2WbNmkGUZp06dsptIl5qaipycHDRr1qzG969usn11HAkJCRW2nzx50rafHKNFixb45Zdf0KdPn2p9eLnppptw0003Ye7cufjiiy/w4IMPYtWqVXj00Udr1fbkeGq3sSzLGDt2LDZv3owvv/wS8fHxtfkxqApqt29lynqOc3Nz6+V6jZla7ZudnY2CggK8+eabePPNNyvsj42Nxd13382Sb+AQC5dRVsj70UcfRWpqaoX9Z86cwXvvvQcAuOOOOwAACxYssDvmnXfeAQDceeedNb5/WRHxnJycap9zxx13YO/evdi1a5dtW2FhIRYvXoyYmBiOfXKg+++/H5Ik4bXXXquwz2q12toxOzu7wjcFXbp0AQDbV3ienp4Aatb25Hhqt/HTTz+N1atX48MPP7TNnKf6o2b7pqenV7p96dKlEAQBN9xwQ7WuQ1VTq31DQ0Px3XffVXgMGDAARqMR3333HaZOnVr7H8yNsAfZRbRo0QJffPEFRo4ciXbt2tmtpLdz50589dVXePjhhwEAnTt3xrhx47B48WLk5OQgPj4ee/fuxcqVK3HPPfdgwIABNb5/ly5doNFo8MYbbyA3NxcGgwG33HLLNb+Geemll/C///0Pt99+O5555hkEBgZi5cqVOHfuHL755huIYs0/n/33v//F+fPnUVRUBAD4/fffMWfOHADAmDFj2Ct9RXx8PB5//HHMnz8fhw4dwuDBg6HT6XDq1Cl89dVXeO+99zBixAisXLkSH374Ie699160aNEC+fn5WLJkCXx9fW0ftDw8PNC+fXusXr0arVu3RmBgIOLi4q75dTrbyfHUbOMFCxbgww8/RK9eveDp6YnPPvvMbv+9997LlbnqSM32nTt3Lnbs2IHbbrsNTZs2RVZWFr755hv88ccfePrppyvMb6GaU6t9PT09cc8991TYvmbNGuzdu7fSfY2WmiU0qOb++usvZeLEiUpMTIyi1+sVHx8fpU+fPsp//vMfpaSkxHacxWJRXnnlFSU2NlbR6XRKdHS0MnXqVLtjFKW0RNudd95Z4T7x8fFKfHy83bYlS5YozZs3VzQajV3Jt6quoSiKcubMGWXEiBGKv7+/YjQalR49eig//PCD3TE1KfMWHx9vV3ao/KOyEnSNxdUlhMosXrxY6datm+Lh4aH4+PgoHTt2VF588UXl8uXLiqIoyoEDB5RRo0YpTZs2VQwGgxIaGqoMHTpU2bdvn911du7cqXTr1k3R6/XVKifEdqp/ztTG48aNq7J9ASjnzp2rzx+9UXCm9v3555+VoUOHKpGRkYpOp7O9zyxfvlyRZblef+7GwpnatzIs81aRoCg1mIlFREREROTmOAaZiIiIiKgcJshEREREROUwQSYiIiIiKocJMhERERFROUyQiYiIiIjKYYLsZt588020bdsWsiyrHUqdPfDAA7j//vvVDsOpsH3dG9vXvbF93R/b2I2oXWeO6k9ubq4SGBioLFu2zLYNV+qSvvXWWxWOX758uQJA+eOPP+o9loEDByoAlKeeeqrS/Z988onStm1bxWAwKC1btlTef//9CsccOHBAEUVROXToUL3H54rYvu6N7eve2L7uj23sXtiD7EaWLVsGq9WKUaNGVdj373//27aqmaN9++23dstLX+3jjz/Go48+ig4dOuA///kPevXqhWeeeQZvvPGG3XFdu3ZF9+7d8fbbbzs6ZJfA9nVvbF/3xvZ1f2xjN6N2hk71p1OnTspDDz1ktw2A0qVLFwWA8vbbb9vtc8Sn1+LiYiUmJkZ59dVXK/30WlRUpAQFBVVYee/BBx9UvLy8lKysLLvtb731luLl5aXk5+fXW4yuiu3r3ti+7o3t6/7Yxu6FPchu4ty5czh8+DAGDhxYYV+fPn1wyy234M0330RxcbFD43jzzTchyzJeeOGFSvdv2bIFmZmZ+Oc//2m3/amnnkJhYSHWr19vt33QoEEoLCzEpk2bHBazK2D7uje2r3tj+7o/trH7YYLsJnbu3AkAuOGGGyrdP3v2bKSmpuKjjz665nVMJhMyMjKq9bhaUlISXn/9dbzxxhvw8PCo9PoHDx4EAHTv3t1ue7du3SCKom1/mfbt28PDwwM7duy4Ztzuju3r3ti+7o3t6/7Yxu5Hq3YAVD9OnjwJAIiNja10f79+/TBgwAD8+9//xpNPPlnli+d///sfxo8fX617Kopi9/z5559H165d8cADD1R5TnJyMjQaDUJDQ+226/V6BAUF4fLly3bbtVotoqOjcfz48WrF5K7Yvu6N7eve2L7uj23sfpggu4nMzExotVp4e3tXeczs2bMRHx+PRYsWYfLkyZUeM2TIkFp9lbJlyxZ888032LNnzzWPKy4uhl6vr3Sf0Wis9OungICASj8tNyZsX/fG9nVvbF/3xzZ2P0yQG5Gbb74ZAwYMwJtvvoknnnii0mMiIiIQERFRo+tarVY888wzGDNmDG688cZrHuvh4QGz2VzpvpKSkko/VSuKAkEQahRTY8T2dW9sX/fG9nV/bGPXwgTZTQQFBcFqtSI/Px8+Pj5VHjdr1iz0798fH3/8Mfz9/SvsLy4uRm5ubrXuGR4eDgD49NNPkZCQgI8//hiJiYl2x+Tn5yMxMRGhoaHw9PREREQEJElCWlqa3Vc8ZrMZmZmZiIyMrHCf7OxstGrVqloxuSu2r3tj+7o3tq/7Yxu7H07ScxNt27YFUDqT9lri4+PRv39/vPHGG5V+lbJ69WrbJ9jrPcokJSXBYrGgT58+iI2NtT2A0hdubGwsfv75ZwBAly5dAAD79u2zu+++ffsgy7Jtfxmr1YoLFy6gXbt2Nfr/4W7Yvu6N7eve2L7uj23sftiD7CZ69eoFoPQfeadOna557OzZs9G/f38sXry4wr7ajH964IEHKryoAODee+/FHXfcgYkTJ6Jnz54AgFtuuQWBgYH46KOPcMcdd9iO/eijj+Dp6Yk777zT7hrHjx9HSUkJevfuXaOY3A3b172xfd0b29f9sY3dkFoFmKn+xcXFKaNGjbLbhiqWmoyPj7ctgemIZS6vde+FCxcqAJQRI0YoS5YsUcaOHasAUObOnVvh2Lfeekvx9PRU8vLyHBKjK2H7uje2r3tj+7o/trF7YYLsRt555x3F29tbKSoqsm2r6gWyZcsW1V6ciqIoixcvVtq0aaPo9XqlRYsWyrvvvqvIslzhuJ49e1ZYmaixYvu6N7ave2P7uj+2sXthguxGcnJylMDAQOWTTz5RO5R6cfDgQUUQBOXgwYNqh+IU2L7uje3r3ti+7o9t7F4ERbmq0jS5tDfeeAPLly/H8ePHIYquPQfzgQcegCzL+PLLL9UOxWmwfd0b29e9sX3dH9vYfTBBJiIiIiIqx7U/3hARERER1TMmyERERERE5TBBJiIiIiIqhwkyEREREVE5TJCJiIiIiMphgkxEREREVA4TZCIiIiKicpggExERERGVwwSZiIiIiKgcJshEREREROUwQSYiIiIiKocJMhERERFROUyQiYiIiIjKYYLsBJKTkzF79mwkJyerHQoRERFRo8cE2QkkJyfjlVdeYYJMRERE5ASYIBMRERERlcMEmYiIiIioHCbIRERERETlMEEmIiIiIiqHCTIRERERUTlMkImIiIiIymGCTERERERUDhNkIqqU1WpVOwQiIiJVMEEmokoxQSYiosaKCTIRVUqSJLVDICIiUgUTZCKqFBNkIiJqrJwyQU5OTsaff/6JwsJCtUMharQ4xIKIiBorp0qQ165di7Zt26JJkya44YYbsGfPHgBARkYGunbtijVr1qgbIFEjwgSZiIgaK6dJkL///nsMHz4cwcHBmDVrFhRFse0LDg5GVFQUli9frmKERI2LxWJROwQiIiJVOE2C/Oqrr+Lmm2/G9u3b8dRTT1XY36tXLxw8eFCFyIgaJ7PZrHYIREREqnCaBPno0aO4//77q9wfFhaGtLS0BoyIqHErKSlROwQiIiJVOE2C7Onpec1JeWfPnkVQUFADRkTUuDFBJiKixsppEuQBAwZg5cqVlU4MSklJwZIlSzB48GAVIiNqnFhFhoiIGiunSZDnzp2Lixcv4sYbb8THH38MQRDw008/Yfr06ejYsSMURcGsWbMaJJaFCxciJiYGRqMRPXv2xN69e695/IIFC9CmTRt4eHggOjoakydPZu8bubyCggLWQiYiokbJaRLkNm3aYPv27QgKCsKMGTOgKAr+/e9/Y968eejYsSO2bduGmJgYh8exevVqTJkyBbNmzcKBAwfQuXNnDBkypMrxz1988QVeeuklzJo1CydOnMDSpUuxevVqvPzyyw6PlciRFEVBVlaW2mEQERE1OK3aAZTXoUMH/PLLL8jOzsbp06chyzKaN2+OkJCQBovhnXfewcSJEzF+/HgAwKJFi7B+/XosW7YML730UoXjd+7ciT59+mD06NEAgJiYGIwaNcpWw5nIlaWmpjbo64+IiMgZOE0PcnkBAQG48cYb0bNnzwZ9czabzdi/fz8GDhxo2yaKIgYOHIhdu3ZVek7v3r2xf/9+2zCMs2fPYsOGDbjjjjuqvI/JZEJeXp7tUVBQUL8/CFE9uXjxotohEBERNTinSZDff/99DBkypMr9t99+Oz766COHxpCRkQFJkhAWFma3PSwsDCkpKZWeM3r0aLz66qvo27cvdDodWrRogf79+19ziMX8+fPh5+dne8THx9frz0FUXy5dusQFQ4iIqNFxmgR56dKlaN++fZX727dvj8WLFzdgRNWzdetWzJs3Dx9++CEOHDiAb7/9FuvXr8drr71W5TlTp05Fbm6u7fHbb781YMRE1SdJEhITE9UOg4iIqEE5TYJ85swZtGvXrsr9bdu2xZkzZxwaQ3BwMDQaDVJTU+22p6amIjw8vNJzZsyYgTFjxuDRRx9Fx44dce+992LevHmYP38+ZFmu9ByDwQBfX1/bw9vbu95/FqL68tdff6kdAhERUYNymgRZr9dXOYwBAJKTkyGKjg1Xr9ejW7du2Lx5s22bLMvYvHkzevXqVek5RUVFFeLSaDQASqsAELm6S5cuITs7W+0wiIiIGozTJMg33XQTVqxYgfz8/Ar7cnNzsXz5ctx0000Oj2PKlClYsmQJVq5ciRMnTuDJJ59EYWGhrarF2LFjMXXqVNvxw4YNw0cffYRVq1bh3Llz2LRpE2bMmIFhw4bZEmUiV3f48GG1QyAiImowTlPmbdasWYiPj0eXLl3w3HPPoUOHDgCAo0ePYsGCBUhOTsYXX3zh8DhGjhyJ9PR0zJw5EykpKejSpQs2btxom7iXlJRk12M8ffp0CIKA6dOn49KlSwgJCcGwYcMwd+5ch8dK1FD++usvdO7cGf7+/mqHQkRE5HCC4kTjADZt2oTHH38ciYmJEAQBQOkwhdjYWHz00Uduu9T0gQMH0K1bN+zfvx833HCD2uEQAQB+/PFHXLhwwfY8KioKd9xxh+21SURE5K6cpgcZAAYNGoTTp0/j4MGDtgl5LVq0wA033MA3ZSKVXbp0CUeOHEGnTp3UDoWIiMihnCpBBkoX5ujWrRu6deumdihEdJU9e/bA19e3QZZ9JyIiUovTJcjHjx/H2bNnkZ2dXWkViLFjx6oQFREBpUOeNm/ejFtvvZVJMhERuS2nSZDPnDmDhx56CHv37q2yPJogCEyQiVQmSRI2bdqEvn37XrN2ORERkatymgT58ccfx5EjR7BgwQL069cPAQEBaodE1Gh1794diYmJ8PLywrRp0yrsVxQF27ZtQ05ODnr27OnwGuVEREQNyWkS5B07duDll1/G008/rXYoRI1eSkoKMjMzIUnSNY87cuQIMjMzMXDgQBiNxgaKjoiIyLGcptsnODgYfn5+aodBRDV0+fJlfPfdd8jIyFA7FCIionrhNAnyE088gc8+++y6PVZE5Hzy8/Oxdu1anD59Wu1QiIiI6sxphli0bt0akiShc+fOmDBhAqKjoytdqnn48OEqREdE1yNJEn799VdkZWXhxhtvZO1yIiJyWU6TII8cOdL29xdeeKHSYwRBYA8zkZM7dOgQ8vLyMGDAgEo/5BIRETk7p0mQt2zZonYIRFRPzp49i5KSEgwZMgQ6nU7tcIiIiGrEaRLk+Ph4tUMgonp0+fJlbNiwAbfffjv0er3a4RAREVWb00zSK2MymbBr1y6sXbuWs+KJXFxqaip+/PFHmM1mtUMhIiKqNqdKkN9//31ERESgb9++GD58OA4fPgwAyMjIQHBwMJYtW6ZyhERUU6mpqfjpp584f4CIiFyG0yTIy5cvx3PPPYfbbrsNS5cutVtuOjg4GLfccgtWrVqlYoREVFvJycnYvHlzlcvIExEROROnSZDffvtt3H333fjiiy8wbNiwCvu7deuGY8eOqRAZEdWHxMRE7Nq1S+0wiIiIrstpEuTTp0/j9ttvr3J/YGAgMjMzGzAiIqpvR48exdGjR9UOg4iI6JqcJkH29/e/5qS848ePIzw8vAEjIiJH2LVrF5KSktQOg4iIqEpOkyDfcccdWLx4MXJycirsO3bsGJYsWYK77rqr4QMjonqlKAo2b97MKjVEROS0nCZBnjNnDiRJQlxcHKZPnw5BELBy5Uo89NBD6N69O0JDQzFz5swGiWXhwoWIiYmB0WhEz549sXfv3msen5OTg6eeegoREREwGAxo3bo1NmzY0CCxErkii8WCH3/8sdIPxERERGpzmgQ5MjIS+/fvx2233YbVq1dDURT897//xffff49Ro0Zh9+7dCA4Odngcq1evxpQpUzBr1iwcOHAAnTt3xpAhQ5CWllbp8WazGYMGDUJiYiK+/vprJCQkYMmSJYiKinJ4rESOkJSUhMLCQgCldcmzsrIccp/i4mKsX78eubm5Drk+ERFRbQmKE9RdMplM+OmnnxATE4NOnToBANLT0yHLMkJCQiCKDZfH9+zZEzfeeCM++OADAIAsy4iOjsbTTz+Nl156qcLxixYtwr///W+cPHmy1kvqHjhwAN26dcP+/ftxww031Cl+otrau3cvXnvtNaxfv96uHJsgCOjYsSPuvPNOxMTE1Pt9vby8MHToUPj5+dX7tYmIiGrDKXqQ9Xo9/vGPf2Dnzp22bSEhIQgLC2vQ5NhsNmP//v0YOHCgbZsoihg4cGCV5anWrVuHXr164amnnkJYWBji4uIwb948LopALuXbb79Fnz598OOPP1aoVawoCo4ePYo33ngDBw4cqPd7FxYWYv369SgoKKj3a2dlZeHBBx+Er68v/P398cgjj1z3Pv3794cgCHaPJ554wrZ/xYoVFfaXPar6pomIiFyLUyTIgiCgVatWqk/aycjIgCRJCAsLs9seFhaGlJSUSs85e/Ysvv76a0iShA0bNmDGjBl4++23MWfOnCrvYzKZkJeXZ3s4IjEgqq69e/di5MiRkCSpyg92sixDlmUsWbIEiYmJ9R5DQUEBNm7cCKvVWuNz+/fvjxUrVlS678EHH8SxY8ewadMm/PDDD/j999/x2GOPXfeaEydORHJysu3x5ptv2vaNHDnSbl9ycjKGDBmC+Ph4hIaG1jh+IiJyPk6RIAPAyy+/jA8++AAJCQlqh1IjsiwjNDQUixcvRrdu3TBy5EhMmzYNixYtqvKc+fPnw8/Pz/aIj49vwIiJ7M2ZMweKolR7lTtHTUDNysrC/v376+16J06cwMaNG/HJJ5+gZ8+e6Nu3L/7zn/9g1apVuHz58jXP9fT0RHh4uO3h6+tr2+fh4WG3T6PR4Ndff8UjjzxSb7ETEZG6tGoHUGb37t0ICgpCXFwc+vfvj5iYGHh4eNgdIwgC3nvvPYfFEBwcDI1Gg9TUVLvtqampVdZgjoiIgE6ng0ajsW1r164dUlJSYDabodfrK5wzdepUTJkyxfb80KFDTJJJFUlJSfjhhx+qnRzLsozDhw8jKysLgYGB9R7P8ePH0b17d7vXU23t2rUL/v7+6N69u23bwIEDIYoi9uzZg3vvvbfKcz///HN89tlnCA8Px7BhwzBjxgx4enpWeuynn34KT09PjBgxos4xExGRc3CaBLlsUhwAbN68udJjHJ0g6/V6dOvWDZs3b8Y999wDoDQh2Lx5MyZNmlTpOX369MEXX3wBWZZt46X/+usvREREVJocA4DBYIDBYLA99/b2rt8fhNyK2Wyu1dCD6tiwYUO1k+MyiqLgxIkT6NWrV73HYzKZcPnyZURHR9f5WikpKRWGPGi1WgQGBlY5ZAoARo8ejWbNmiEyMhKHDx/Gv/71LyQkJODbb7+t9PilS5di9OjRFT7QExGR63KaBFmWZbVDAABMmTIF48aNQ/fu3dGjRw8sWLAAhYWFGD9+PABg7NixiIqKwvz58wEATz75JD744AM8++yzePrpp3Hq1CnMmzcPzzzzjJo/BrkJs9mMvXv3Omyc+p9//glBEGqUJAuCgNzcXIfFdOjQIYSFhVX5AXPevHmYN2+e7XlxcTF2795t9yH2+PHjtb5/+THKHTt2REREBG699VacOXMGLVq0sDt2165dOHHiBP773//W+n5EROR8nCZBdhYjR45Eeno6Zs6ciZSUFHTp0gUbN260TdxLSkqyq6wRHR2Nn376CZMnT0anTp0QFRWFZ599Fv/617/U+hHIjVitVhQUFECv19t961BfAgICatWDbDQaHVJhRlEUW495VQnyE088gfvvv9/2/MEHH8R9992H4cOH27ZFRkYiPDy8QlUJq9WKrKysGi1b37NnTwDA6dOnKyTIn3zyCbp06YJu3bpV+3pEROT8nC5B3r17N7Zs2YK0tDT885//RKtWrVBUVISTJ0+idevWDTIcYdKkSVUOqdi6dWuFbb169cLu3bsdHBU1ZgaDAUajsd6v26tXr1r1ILdp08ZhJRivN1QhMDDQbvyzh4cHQkND0bJlS7vjevXqhZycHOzfv9+WwP7666+QZdmW9FbHoUOHAJTONyivoKAAX375pe3bJCIich9OU8XCbDZj+PDh6NOnD6ZNm4b3338fFy5cAFBai3jw4MEOHX9M1NgUFhbi0KFDaNq0KQRBqNY5giCgdevW8Pf3d0hMQUFB9ZZ4t2vXDrfddhsmTpyIvXv3YseOHZg0aRIeeOABREZGAgAuXbqEtm3b2paTP3PmDF577TXs378fiYmJWLduHcaOHYubb77ZtohRmdWrV8NqteKhhx6ql3iJiMh5OE2CPGPGDPzwww/46KOPkJCQYNejZTQa8Y9//ANr165VMUIi95GUlIQ1a9YgOTnZrsrD9QiCgN69eyM7OxsWi6VeY9JqtWjSpEm9XvPzzz9H27Ztceutt+KOO+5A3759sXjxYtt+i8WChIQEFBUVASidqPvLL79g8ODBaNu2LZ5//nncd999+P777ytce+nSpRg+fLjDPiwQEZF6nGaIxf/+9z88+eSTeOyxx5CZmVlhf7t27fDVV1+pEBmR+5AkCX/88QeOHTtm2xYTE4OXXnrJthhGZYuFlPXqDh8+HJGRkZBlGbm5ufDw8ICnp2e1e6CrIggC2rZtC71eD5PJVKNzKxv2VCYwMBBffPFFlftjYmLsPoxHR0fjt99+q9Z9y6/8SURE7sVpEuS0tDR07Nixyv0ajcbWy0NENZeTk4MtW7YgKyvLtq1p06bo168fjEYj2rZti6VLl2Lbtm12SaMgCGjXrh0GDx6MqKgoFBQU2HqPi4uLYTab4ePjA622dr9OypLjgIAAlJSU1O2HJCIiqgdOkyBHR0fj5MmTVe7fsWNHhUk4RHR9iqLg1KlT2LVrl62eskajQY8ePdCuXTtb72+HDh3wzjvvICUlBaNGjUJ+fj48PDzwf//3fwgICLBdz9fXFyUlJSgsLARQ2uOck5MDLy+vGtcCFkUR7dq1c8iiI0RERLXlNGOQR48ejY8//hi7du2ybSt7416yZAm+/PJLjB07Vq3wiFyS2WzG1q1bsW3bNlty7Ofnh2HDhqF9+/aVDo0IDw+3Jbp6vd4uOQZKX5ceHh7w9/e3W/GusLAQubm5lQ7RqIxWq0XHjh2ZHBMRkdNxmh7kadOmYffu3bj55pttvVqTJ09GVlYWLl68iDvuuAOTJ09WO0wil5Geno4tW7YgPz/ftq1169a46aaboNPp6nx9rVYLf39/FBUVobi4GEDppLecnBx4e3tfs26zwWBAXFxclcs3ExERqclpEmS9Xo+NGzfi888/x9dffw1JkmAymdCpUyfMmTMHY8aMqfNEIKLGQFEUHDlyBPv27bONJdbr9ejTpw+aN29er/cSBAFeXl7Q6/XIz8+HLMtQFAX5+fkwm83w8vKqULbN09MTcXFxDln4hIiIqD6oliBPmTIFY8aMQdeuXQGUlp0KCQnBQw89xLqiRLVUVFSE3377DZcvX7ZtCwkJwYABA+Dj4+Ow++p0Ovj7+6OwsNBWhcJkMsFiscDb29u2Kp6fnx/atWtXLz3YREREjqLaGOQFCxbgxIkTtuexsbH47rvv1AqHyOVduHAB3333nV1y3LlzZwwdOtShyXEZURTh4+MDHx8f27c9siwjLy8PBQUFCAoKQlxcHJNjIiJyeqr1IIeFheHs2bO25zVZ6paI/iZJEvbt24ejR4/atnl6eiI+Pt62YlxDMhgM0Ol0yM/Pt5WDy87ORmFhIUJDQxEcHNzgMREREdWEagnynXfeiVdffRU///yzbSWqt99+G6tWraryHEEQuJoeUTm5ubnYsmWL3eI60dHR6NevX41LrtUnURTh5+eH4uJiZGRkoLi4GMXFxVi3bh26du2Kzp0719uS0kRERPVNtQT5vffeQ2hoKLZs2YJjx45BEARcuHDBbhGDq3GSHtHfTp06hZ07d9rKt4miiBtvvBEdOnRwmtdK586dYTAYsHXrVmRmZkJRFBw4cAAXL15EfHw8fH191Q6RiIioAtUSZC8vL8ybN8/2XBRFLFiwAKNHj1YrJCKXYDabsXPnTpw5c8a2zc/PD/3793eq4QstWrRAWFgYAGDYsGE4ePAgDh8+DEVRkJaWhu+++w49e/ZEmzZtnCahJyJyBYWFhfDy8lI7DLem2necw4cPx7Zt22zPt2zZgkGDBqkVDpFLSE9Px5o1a+yS41atWuHuu+92quQ4IiLCbvyzRqNB9+7dceedd9omDFqtVuzYsQO//PKLrY4yERFdX9n8DnIc1RLktWvXIikpyfb8lltuwaZNm9QKh8ipldU2/v77720Lf+h0OvTv3x8333yzU1WG8PX1rbLeclhYGO699160bt3ati0pKQnffvstzp8/31AhEhG5NCbIjqdaghwVFYWDBw/aniuKwq9ZiSpRUlKCLVu2YO/evbZqLyEhIbjnnnvQokULlaOzZzQa0a5du2tOwNPpdOjXrx8GDhwIo9EIoPRn/OWXX7B7927bmGoiqj1WhnJvVqsVkiSpHYZbU20M8gMPPIC33noLX375pa2KxUsvvYT58+dXeY4gCPjzzz8bKEIi9SUkJGDr1q0wm822bZ06dUK3bt2crgqEXq9HXFycbVGQ62nWrBlCQ0Oxfft227dJZ86cQXJyMpo3b4727ds7Mlwit1ZcXMyl3N1cSUkJxyE7UI0S5NjY2Br38gqCYDdessz8+fPRsmVLbNmyBWlpabYla4OCgmp0fSJ3ZLVasW7dOvzyyy+2bR4eHoiPj0dUVJSKkVXOYDCgY8eONS4t5+HhgYEDB+Kvv/6y9R4XFRVh4cKFGDJkCO644w5otap9jidyWexBdn+cqOdYNXrniY+Pr5Ag79u3D8eOHUP79u3Rpk0bAKW9XsePH0dcXBy6detW6bU0Gg0ee+wxPPbYYwBKq1hMnz6dVSyo0UtPT8eyZcvsxuRGRkaif//+qtY2roqHhwc6duwIg8FQq/MFQUCbNm0QERGBLVu2ICMjA4qiYOPGjTh27BgefvhhRERE1HPURO5NlmW1QyAHKygoQGhoqNphuK0afUe7YsUKLF++3Pa4++67cfHiRWzatAlHjx7FN998g2+++QZHjx7FTz/9hAsXLuCee+6p1rXPnTtX7WMdbeHChYiJiYHRaETPnj2xd+/eap23atUqCILgND8HuZ69e/di/vz5tuRYo9GgQ4cOTpscG43GOiXH5fn6+mLQoEFo27atbfjIhQsX8Prrr2PLli18wyeqAb5e3F/ZhG1yjDoNYpw5cyaefvpp3HrrrRX2DRo0CJMmTcL06dOrda1mzZo5xXip1atXY8qUKZg1axYOHDiAzp07Y8iQIUhLS7vmeYmJiXjhhRfQr1+/BoqU3ElJSQlWrlyJFStWoKSkBEDpRLynn34aLVq0cMoJrFqtFnFxcfWSHJcRRRGtW7fGM888Y6uhbLFY8NVXX+GDDz5ATk5Ovd2LyJ0xQXZ/TJAdq04J8qlTp645ZjgoKKjS8cdA6RuhVqu1TT4SRREajeaaj4YYi/jOO+9g4sSJGD9+PNq3b49FixbB09MTy5Ytq/IcSZLw4IMP4pVXXqmyvBVRVZKSkvD6669jz549tm033XQTpk6diiZNmqgY2bW1adPGYb3aTZo0wdSpU9G/f3/btpMnT2LOnDnYv3+/Q+5J5E5YDcb95eXlqR2CW6tTxtmiRQssX74cjzzyCLy9ve325efnY9myZVUmjDNnzoQgCLakt+y5msxmM/bv34+pU6fatomiiIEDB2LXrl1Vnvfqq68iNDQUjzzyiN3iJ1UxmUwwmUy25wUFBXULnFySLMvYsmUL1qxZYyvXYzAYMGrUKPTo0QMAUFRUpGaIVQoLC0NgYKBD76HX63H//fcjLi4O//3vf5Gbm4uioiIsXboUhw8fxsiRI53iWyciZ1S+8g25J36j5lh1SpDnzJmDESNGoG3btnj44YfRsmVLAKU9yytXrkRqaiq++uqrSs+dPXv2NZ+rISMjA5Ik2b7aLRMWFoaTJ09Wes727duxdOlSHDp0qNr3mT9/Pl555ZW6hEouLj8/H59++imOHTtm29a0aVNMmDDB6SddaDQaxMTENNj92rdvj+nTp+N///sfDhw4AAD4448/cOrUKYwbN842OZiI/lY2VIvcV0FBAUpKSmz15Kl+1SlBvueee7Bhwwb861//wrx58+z2denSBUuXLsWQIUPqFKAzy8/Px5gxY7BkyZIaLfM7depUTJkyxfb80KFDiI+Pd0SI5IROnjyJFStW2H09NnDgQNx1110uUdIsMjKy2rWO64uXlxceeeQRdOrUCatXr0ZxcTFycnLw3nvv4dZbb8Vdd93lVKsJEqnNbDZDkiRoNBq1QyEHSklJadAOi8akzu/GgwcPxuDBg5GSkmKbed+sWTOEh4dX+xomkwmfffYZfv75Z5w5cwb5+fnw8fFBy5Ytcdttt2H06NEN8oYcHBwMjUaD1NRUu+2pqamV/jxnzpxBYmIihg0bZttWNjFCq9UiISGh0pXODAaD3cSmq4enkHuSJAnff/89Nm3aZKtR6uPjg3HjxrnMohgajUa1OsyCIKBHjx5o2bIlPv30U/z1118AgM2bN+P48eMYP368U4/ZJmpoBQUF8PPzUzsMcqALFy4wQXaQeuuuCg8Pr1FSXObIkSO4++67cf78eSiKAj8/P3h7eyMtLQ0HDhzAV199hblz52LdunVo165dfYVbKb1ej27dumHz5s22Um2yLGPz5s2YNGlShePbtm2LI0eO2G2bPn068vPz8d577yE6Otqh8ZLryMjIwLJly5CYmGjb1q5dO4wbNw6+vr7qBVZD4eHhqvfUBgYG4plnnsGWLVuwdu1aWK1WJCcn44033sCwYcMwcOBAp1tlkEgN+fn5TJDdXFJSEhRFUX0Olzuq87tIUlISnnjiCbRp0waBgYH4/fffAZQmBM888wwOHjxY5bkFBQW46667kJqairlz5+LChQvIzs62+3POnDm4fPkyhg0bhsLCwrqGe11TpkzBkiVLsHLlSpw4cQJPPvkkCgsLMX78eADA2LFjbZP4jEYj4uLi7B7+/v7w8fGp0ZK75N727duHefPm2ZJjURRx77334qmnnnKp5FgURafpoRVFEbfeeiv+9a9/2Xq0JUnCmjVrsGDBAmRmZqocIZH6OInL/RUWFiIjI0PtMNxSnXqQjx8/jn79+kGWZfTs2ROnT5+2lZYJDg7G9u3bUVhYiKVLl1Z6/vLly5GUlITNmzfblXMqExUVhalTp6Jnz54YNGgQVqxYgaeeeqouIV/XyJEjkZ6ejpkzZyIlJQVdunTBxo0bbRP3kpKS2DtF1WIymfDll1/aVUAJCQnB+PHjXfIrsYiICKf70BcVFYUXX3wRP/zwA3755RcoioLTp09j7ty5uP/++9GzZ0/2rFCjlZ2drXYI1ADOnTuHkJAQtcNwO3VKkF988UX4+/tj9+7dEAShwuz7O++8E6tXr67y/PXr12Pw4MGVJsfl3XLLLRg0aBC+//57hyfIADBp0qRKh1QAwNatW6957ooVK+o/IHI5Fy5cwLJly+zGs99444144IEHnHJFvOvRaDRO03t8NZ1Oh3vvvRdxcXFYuXIlsrKyUFJSgk8//RSHDx/G6NGjOc6fGqWsrCy1Q6AGcPr0adx4443sDKhndeoK/f333/Hkk08iJCSk0oZp2rQpLl26VOX5R44cuW5yXOaWW26pMN6XyNkoioItW7bg3//+ty05NhgMGDduHMaPH++SyTGgTuWKmmrVqhWmTZuGm266ybbt0KFDmDNnjl05PaLGIisryzYhmNxXQUGBrUgC1Z86JciyLF+zUH96evo1l6HNysqq9sS+sLAwfhomp5afn4+PPvoIX331lW2oUXR0tG2YkKsSRRGRkZFqh1EtHh4eGDt2LCZOnAgvLy8ApatNLVy4EP/73//sFughcncWi8VpFxui+nXw4EF+GKpndUqQb7jhBqxfv77SfVarFatWrbLrzbmayWSq9oz48stSEzmbhIQEzJs3D0ePHrVtu/XWW/HCCy84/cIf1xMSEuL0vcdX69q1K6ZPn44OHTrYtm3btg3z58+3qyRC5O44DrlxSE9Px6lTp9QOw63UaQzy1KlTMXToUDz55JN44IEHAJTWDP7ll18wb948nDhxAh988ME1r5GYmGhbHetazp07V5dQiRxCkiT88MMP+Pnnn22f3r29vTFu3Di75MyV1aZ8ozPw8/PDP//5T2zbtg3ffPMNLBYL0tLS8NZbb+H222/HbbfdxkUUyO2lp6c77fwBqp3u3bvj8uXL0Ol0mDZtmm377t27ER0d7bJD+ZxNnRLk22+/HStWrMCzzz6LxYsXAwAeeughKIoCX19ffPrpp7j55puveY0ZM2ZgxowZ170X6/yRs8nMzMSyZcvsPry1bdsW48aNc5vao4IgwMfHR+0wak0QBNx8881o06YNVqxYgfPnz0OWZaxfvx7Hjh3DuHHjKiwtT+ROLl68iK5du6odBtWjlJQUJCcnw9/f3257SUkJtm/fjoEDBzJfqgd1XihkzJgxGD58ODZt2oRTp05BlmW0aNECQ4YMue4b6/Lly+t6eyJV7N+/H1988QWKi4sBlI7Tveuuu9xmkYqgoCBYLBYEBAS4xS/asLAwvPDCC/jxxx+xceNGyLKMxMREzJ8/H8OHD0e/fv3c4uckulpycjJyc3Pd5kM7Xdu5c+eQkJCAtm3bqh2Ky6t1glxUVITo6Gi89NJL+L//+z/bynM1MW7cuNrenkgVJpMJX3/9NXbs2GHbFhQUhAkTJiA2NlbFyOrXf//7Xxw9etTlx0+Xp9FoMHToUHTo0AErV65EWloazGYzVq1ahSNHjuChhx5iEkFu6cCBAxgwYIDaYVAD2blzJ0JDQxEYGKh2KC6t1l1dnp6e0Gq1tpniRO7u4sWLeP311+2S4+7du+Pll192q+S4PHesHxwbG4upU6eiX79+tm3Hjh3DnDlzcOjQIfUCI3KQ06dPIz09Xe0wqIFYrVb89NNPtm84qXbq9F3wfffdh6+//pqlRcitKYqCrVu34s0337TVNtbr9RgzZoxL1za+HlEUYTQa1Q7DIQwGA0aNGoUnn3zSttx3YWEhFi9ejP/+97+N4o2FJe8aD0VRsHPnTr5XNyL5+fn48ccfWf2rDuqUID/wwANIS0vDgAED8Pnnn2PHjh04cOBAhQeRqyooKMDHH3+ML7/80lbbuEmTJpg6dSp69erl1uNW9Xq9W4ynvpaOHTti2rRp6Ny5s23brl27MG/ePJw+fVrFyByv/CqP5P5SU1Nx5swZtcOgBpSRkYEffvihUXzgd4Q6TdIrvwretm3bKuwvqzwhSVJdbkOkir/++gsrVqxATk6ObduAAQNwzz33VLt+tyu71iI/7sTHxwePPfYYdu/eja+++golJSXIzMzEu+++i0GDBmHo0KHQaus8n9npsAe58SkrA9ZYXttUmiSvXbsWt912W4WqF3RtdfqtzyoU5I4kScKGDRuwceNGu9rGY8aMQceOHVWOruE0hg8BZQRBQK9evdCqVSusXLkSZ86cgaIo+Pnnn3H8+HE8/PDDLrOaYHUxQXZf3bt3x8WLF2EwGOzq5BYVFWHbtm249dZb3frbL7KXl5eHNWvW4NZbb0V0dLTa4biMOiXIrEJB7iYzMxMrVqyw+yqydevWePjhhxvdp+/GuIhGcHAwJk+ejF9++QXff/89JEmyTc68++67MWDAALcZdlJSUsL68m4qJSUFqamplf7OOnv2LHx9fXHjjTey7RsRs9mMjRs34qabbkJcXBzbvhqc7nvD48eP4+zZs8jOzq50QsHYsWNViIoag4MHD+Kzzz6zq208dOhQDB482G2SoppojD8zUPpzDx48GO3atcOKFSuQnJwMq9WKb775BkePHsWYMWPconySxWKBxWJxuWXEqe4OHToEs9mM3r17N9rXeWOkKAp27dqFrKws9OvXj21/HTVKkCdMmABBELB48WJoNBpMmDDhuucIgoClS5de97gzZ87goYcewt69e6ucaSsIAhNkqndmsxlff/01tm/fbtsWGBiICRMmoHnz5ipGpq7G/suzrM772rVr8euvvwIAEhISMHfuXDzwwAO48cYbVY6w7vLz8xEUFKR2GKSC48ePIzs7G7feeis8PT3VDocaUEJCAgoKCjBo0CB+QL6GGiXIv/76K0RRhCzL0Gg0+PXXX6/bTV/dbvzHH38cR44cwYIFC9CvXz8EBATUJDSiWrl06RKWLVuG5ORk27YbbrgBo0eP5psGQafTYcSIEYiLi8Onn36KnJwcFBcXY/ny5Thy5AgeeOABl/53wgS5cUtOTsa3336LAQMGICoqSu1wqAFdunQJ69atw+233871LKpQowQ5MTHxms/rYseOHXj55Zfx9NNP19s1iaqiKAq2bduGb775BhaLBUBpMnT//fejd+/eHJ+F6n+4bQzatm2L6dOnY/Xq1fjjjz8AAPv27cPp06cxduxYl13WNTc3V+0QSGVFRUXYsGEDbrjhBtxwww183TciWVlZWLt2Le68806uIloJp/kONTg4mA1EDaJsQYhVq1bZkuOoqCi89NJL6NOnD98gruD/B3uenp4YP348JkyYYFscJicnB++//z6++uorlyzIX76EITVeiqJg//792LhxI6ubNDIFBQVYt24dMjIy1A7F6ThNgvzEE0/gs88+Y81kcqhTp05h7ty5+PPPP23b+vfvjxdffBEREREqRuZ8GvsY5Kp0794d06dPR5s2bWzbtmzZgtdffx1JSUkqRlZzmZmZaodATuTChQtYs2YNsrOz1Q6FGlBxcTG+//57XL58We1QnEqd3wF//PFHDBo0CEFBQdBqtdBoNBUe1dG6dWtIkoTOnTvjnXfewVdffYVvv/22wqMhLFy4EDExMTAajejZsyf27t1b5bFLliyxjZkOCAjAwIEDr3k8qUOSJPzwww9YsGCBrdfMy8sLTzzxBO6///5GVfO3utiDXLWAgAA8/fTT+Mc//mH7t5OSkoI333wTGzduhCzLKkdYPZmZmewxJDu5ublYu3YtLl68qHYo1IAsFgt+/PFHnD17Vu1QnEadyrx98803uP/++9GhQwc88MAD+OijjzB69GgoioK1a9eiVatWuOeee6p1rZEjR9r+/sILL1R6TEOsyrd69WpMmTIFixYtQs+ePbFgwQIMGTIECQkJCA0NrXD81q3/3959hzV1vv8Df2dACBuUoVUBQRHEiUVxIYpiRetAax0VcLbWWrV1Vqt+VdDWVq3WWidqpVqruGfdA8VR654l0KqAlk1YIc/vD36cD5EhAcIJh/t1XefSPDk5ucNNyJ1znnEWw4YNQ8eOHWFkZIRly5ahV69euHfvHg160BNJSUkIDw/XWDq4SZMmCAkJqXVzG2ujNs6DrA2xWAxfX180a9YM4eHh+Oeff6BWq3HgwAHcu3cPQUFBqFu3Lt9hlokxBoVCoXE2nJDCOXO7dOlCvxu1SH5+Pk6dOoWsrCw0b96c73B4V6kCOSwsDF5eXrh48SKSk5Px008/YfTo0ejevTsUCgU6dOgAJyench3rzJkzlQmlynz//fcYN24cQkJCAADr1q3D4cOHsXnzZsyaNavY/jt27NC4vXHjRuzZswenTp2iKen0wK1bt/DLL79AqVQCKChqAgIC4O/vT10I3oLOIJdPvXr1MH36dBw+fBgnTpwAYwzPnj3DkiVLMGTIEHh7e+v1z/L+/fto2rSpXsdIqp9arca5c+egVCrRunVr+v2oJRhjuHTpErKysuDp6Vmr816pAvn+/fsICwuDRCKBVFpwqMJBT46Ojpg4cSKWLVtWrkLRx8enMqFUidzcXNy4cQOzZ8/m2sRiMfz8/BAVFVWuYyiVSuTl5ZW5kEBOTo7GZc2MjIyKB01KlJubiz179uDChQtcm7W1NUJCQuDs7MxjZDUHfYEoP6lUiv79+8PDwwPh4eFc14VffvkFt2/fxogRI2BmZsZ3mCV69eoV/vnnHzRq1IjvUIgeunbtGtLT09G5c2f6m1CL3Lx5E2q1Gl5eXnyHwptKFcjGxsbcJNOWlpaQyWQa88na2dkhJiZG6+Pev38fsbGxAAAHBwe4u7tXJsxye/36NfLz82FnZ6fRbmdnh4cPH5brGDNnzkT9+vXh5+dX6j5hYWFYuHBhpWIlpXvx4gU2b96sMeCgTZs2GDFiRI2es7a60Yeh9pydnfHVV1/h999/x+XLlwEAt2/fRkxMDEaOHIkWLVrwHGHJrl69igYNGlDOSYkePnyI9PR0+Pn5QSaT8R0OqSa3bt2CiYlJre1uUam/hq6urrh//z53u3Xr1ti+fTtUKhWys7MRERGh1VmJ/fv3w9nZGS1atEDfvn3Rt29ftGjRAi4uLjhw4EBlQq0WS5cuxc6dOxEZGQkjI6NS95s9ezZSU1O57dy5c9UYpXAxxnDx4kUsW7aMK44NDAwwfPhwjB07lopjLdXmS2uVYWRkhJEjR2L8+PEwNTUFULAgx08//YSIiAhkZ2fzHGFxycnJGn/LCXnT8+fPERkZiaSkJL5DqdXi4uKQmZkJoOBqtK7zceXKlVqb80oVyIMGDcKBAwe47gJfffUVzp49C0tLS9jY2ODChQsl9tstyZEjRxAYGAgACA0NRWRkJCIjIxEaGgrGGAYNGoRjx45VJty3qlu3LiQSCRISEjTaExISYG9vX+Zjly9fjqVLl+LEiRNo2bJlmfvKZDKYm5tzW+GHKKk4pVKJjRs3IiIiguvmU79+fcycOROdO3emYo9Uu9atW2Pu3Lnw8PDg2i5evIiwsLAKXVnTtWvXrlF3L1KmtLQ07N+/H8+ePeM7lFonOjoa/fr1g6OjIzcTU1ZWFubMmYMff/yxShduKyo/Px9XrlzRybGTkpIwYsQImJubw9LSEmPGjHnr36D169ejW7duMDc3h0gkKnEud0dHR4hEIo1t6dKlWscnYowxbR+UnZ2N/fv3IyYmBnXq1EHfvn25OWQvXLiAvXv3QiKRICAgAL6+vuU6pre3N3JycnDhwoViyx5mZmaic+fOMDIyKndf4Ipq3749vLy8sHr1agAFAxUaNWqESZMmlVrsf/PNN1iyZAmOHz+ODh06aP2cN2/ehKenJ27cuIG2bdtWKv7a6NmzZ9iyZYvGt9yuXbti0KBBNX6deaVSifPnz8PMzKzMqxK6kJ+fX+0zWWRnZyM9PR1du3YVzBn/wkEvv//+O7eYiEgkQu/evdGnTx9eZgtp164d4uLiIJfL8dVXX3Ht9evXR0BAAH2hrOEaNGiA58+fw9LSEsuWLdPJc3h4eKB9+/Y020012Lt3L4YOHQrGWIkzeRV2jRo3bpzOaogBAwaUOJPX23Tr1g3BwcEIDg4udt97772Hly9f4ueff0ZeXh5CQkLw7rvvIiIiotTjrVy5krsKN3v2bCQnJxebjcrR0RFjxozBuHHjuDYzMzOtl9TWug9yYmIiOnbsiJiYGDDGIBKJIJfLsW/fPvj5+aFLly7o0qWLtofF7du3ERoaWuILMDExQXBwMObMmaP1cbU1bdo0BAUFoV27dvDy8sLKlSuRmZnJzWoxatQovPPOOwgLCwMALFu2DF9//TUiIiLg6OiI+Ph4AICpqSmdGdYxtVqNY8eO4fDhwyj8nmdsbIyRI0eidevW/AYnAFQkVQ2RSITOnTujadOm2Lp1K/e38+jRo7h37x5CQkKKjXvQtfj4eLx69arYB8uLFy9w48YNtGvXrlrjITXP3bt38fr1a/Ts2ZNbWZJUvejoaAwdOhT5+fko7Xxm4bzrGzZswMyZM+Ho6Fjlcfz555/w9/evsuM9ePAAx44dw7Vr17i/N6tXr0afPn2wfPly1K9fv8THTZkyBUDBFLtlMTMze+uV/7fRuovFokWLoFAoMHXqVBw6dAgrVqyAXC7HhAkTKhWIkZFRmf1ckpKSquUM2tChQ7F8+XJ8/fXXaN26NW7duoVjx45xH2BxcXEaAxF/+ukn5ObmYvDgwahXrx63LV++XOex1mbJyclYtWoVDh06xP3RcHFxwZw5c6g4riI0YKtq2draYtq0aejbty/3s42Li0NoaCjOnTtX6odfdbt58yZdQq/BqrOPanx8PPbv34/09HSdPUdtt3jxYjDGyv334ciRIzqJIzY2tlj308qIioqCpaWlxpdxPz8/iMViXL16tdLHX7p0KerUqYM2bdrg22+/hUql0voYWn8CnjhxAqNGjcLy5cvRp08fTJ48GWvWrIFCocCjR4+0DqBQ9+7dsWrVqhK7UFy9ehU//PBDmTNDVKVJkyYhNjYWOTk5uHr1Ktq3b8/dd/bsWYSHh3O3FQoF98tbdFuwYEG1xFob/fXXXwgNDcWTJ08AFJyhCwgIwJQpU8qcXo8QvkkkEvTp0wdffvkl96U7Ly8Pu3btwo8//lhifzo+nD17Fv/88w/fYRAt8NVHNS0tDQcPHtRJ/3Vd9FFVKBQYM2YMnJycIJfL4ezsjPnz53Pdn/iWn5+P7OxsZGRk4M6dOzh06FC5F0hTq9W4ffu2zr4UXb16tcq+yMfHxxfrsiGVSmFtbc1dia+oyZMnY+fOnThz5gwmTJiA0NBQzJgxQ+vjaN3FIi4uDjNnztRo69y5MxhjSEhIqPCqO9988w28vb3RuXNneHl5ccd59OgRoqOjYWtrq7O+VKRmyMvLw969ezVm/bCyskJISAhcXFx4jIwQ7Tg6OmL27NmIjIzkfp/v37+PJUuWYNiwYbyPRcjPz8eJEyfg7++PBg0a8BoLebuifVTfLGAYY7h79y7u3r2rsz6qGRkZOHHiBAYMGKD1laey+qiOGDECL1++xMmTJ7k+quPHjy+zj6pSqUTv3r3Ru3dvjTUNCj18+BBqtRo///wzXFxcuJ9LZmYmli9fDsYYVCoV8vLyNLaibUX/n5WVhZycHKhUKq79zf8XfVxp+xT+v+gy9Q8fPtS6IGWM4cGDB/D29tbqceXx4sULxMbGltmFIzQ0FKGhodztrKwsXLlyBZMmTeLadD1jzrRp07j/t2zZEoaGhpgwYQLCwsK0mqZQ6wI5JyenWFeHwtsVOYVdyMnJCbdv30ZYWBiOHj2KXbt2ASiYB/nzzz/HrFmzKtRBnAjDy5cvsXnzZjx//pxra9WqFUaOHKl1x3tC9IGhoSGGDh0KDw8P/PLLL0hNTUVmZiY2btwILy8vDB06lNe+nfn5+Th+/Dh69uxJi4joMX3po/r69Ws8evQIbm5ulToOYwxqtRp37tzBsWPH8Mcff8DJyQm5ubmYO3cuVyRbW1uXWLA2adIEeXl5+OuvvwAAv/76K2QymUax6+bmhuvXryMqKgp5eXlwd3fHxo0bkZubW6k6pqrl5uZCJBJpVSSLRCKkpqbqbEaa8+fPo379+qUOgP/444/xwQcfcLdHjBiBwMBADBo0iGurX78+7O3tkZiYqPFYlUqFpKSkSvcdflP79u2hUqmgUCi0OolboYVCFAoFbt68yd1OTU0FADx58qTYoA8A5f7GamtrixUrVmDFihUVCYsIEGMMly9fxm+//cZN32ZgYIDAwEB06dKFBpKRGq958+b46quv8Ouvv+LPP/8EUFD0PH36FKNGjULTpk15i63wTLKvry+tQKmnKtJHdeLEiW/dr6Sug2/bLly4AIVCodUZWIVCgd27d+PevXtcW+FZUENDQ+zZswd79uwB8L9Cf+nSpWjcuHGZ8ReeTLl+/fpbzxqmpaXB0NCwWotjiURS5iYWi5GYmFihM8hGRkY6GUPCGEN6ejpUKlWpBbK1tbVGV0e5XA5bW9tiV3m9vb2RkpKCGzduwNPTEwBw+vRpqNVqjW6tVeHWrVsQi8Van2StUIE8b948zJs3r1j7m2+6wlkuytt/hpCilEolIiIiNL6M1atXD2PGjCl1hCshNZGpqSnGjh2L6Oho7Nq1C9nZ2UhKSsKqVavQo0cP9OvXDwYGBrzEplarcerUKaSnp6NVq1b0pVSPxMXFaQxUfhu1Wo2//voLjx49goWFRamFbkW9evUKt27d0uoxhd0UCgcWFlIqlcWuoIjFYshkMiiVygrHWEgqlcLAwAAZGRm4d+8eevXqhQYNGsDAwIC7r3ArelsqlcLQ0BBSqRSMMcTExMDExARGRkYaBa5UKi2x8JVKpdzcvG/Tpk0b7N27V+szyK6urjopkNVqNaTSSi3AzHFzc0Pv3r0xbtw4rFu3Dnl5eZg0aRI+/PBD7vP9+fPn6NGjB7Zt28YteR0fH4/4+Hg8ffoUAHDnzh2YmZmhUaNGsLa2RlRUFK5evQpfX1+YmZkhKioKU6dOxciRI2FlZaVVjFq/0i1btmj7kBKNHj0aIpEI69evh0QiwejRo9/6GJFIhE2bNlXJ8xP99vfff2Pz5s0agw06d+6MwYMH1/i5jQkpiUgkQvv27eHi4oJt27bhyZMnYIzhjz/+wP379xEcHMxrf+Do6Gi8evUKXbt2peWGtVBVl+2zsrKQlJSE5ORkJCUlISkpCUeOHKlQQfv48WO0atWq0jG9qTxF2Y0bN7iTHiKRCCqVCgkJCbh48SJXNM6YMQM2NjZQKBRo27atRoG6Y8cONG/eHO+//36ZReyNGzdw4MABTJ8+HTY2Nhr3F56hff78OXx8fDBy5Ehs3LhR69erVCrBGNPZPPX29vbo0qULLl26VK4TjWKxGG5ubloXgtowNzevsmPt2LEDkyZNQo8ePSAWixEYGIgffviBuz8vLw+PHj3S+EK0bt06LFy4kLvdtWtXAAW1aXBwMGQyGXbu3IkFCxYgJycHTk5OmDp1qka/5PLSukAOCgrS+klKcvr0aYjFYqjVakgkEpw+ffqt36jozIXwqdVqnDhxAocOHeIup8nlcowcORJt2rThOTpCdK9OnTr4/PPPcerUKRw8eBAqlQovXrzAN998g379+nEfJnyIiYlBYmIiunbtioYNG/ISQ02Sm5uL6OjocvUHValUUCqVJW5ZWVlcF7OiFApFhfqoFp2xofBztar+bdGiBTw8PCCXy0ssXtPT05GWlsYtMFJSH1VHR0ds27YNly5dwtixYzV+RsOHD0evXr3Qu3fvMl9n4XSs9vb2JXb9fPHiBXx9fdGxY0esX7++7B8aj8aMGYNLly6VO8+9evXSWSxyubzEn2VZypqv2NrauswBl46OjsVe84IFC8qcJaxt27ZVtvJf1Zwrr4A3p5zR1RQ0pOZISUlBeHg4Hj9+zLU5OzsjODgYderU4TEyQqqXWCxGz5494ebmhvDwcLx48QIqlQqRkZG4e/cuRo0axdt7IjMzE0ePHoWLiws6dOggmBUPdUGlUiEjIwOGhoaQSCTIzMxERkZGif/m5ORofXxDQ8MK9VG1srLSyZSYjDEYGhrC2dm51N8LU1NTbuVdgJ8+qs+fP4evry88PT2xZcsWvZ7zvXnz5ggLC+Nm5ChrJb2goCCdDagVi8VwcXGpVV1meSuQ3xQXFwcbG5tSR21nZWXh1atXNJpaoO7cuYNt27Zx/dD4XoqXEH3QoEEDzJw5EwcPHsSpU6fAGMOTJ0+wZMkSDB06FF5eXrxdWXv69CliY2Ph6ekJDw8PvS4yqkNeXh6SkpLw33//cVtiYiJiY2ORlZXFLY+rLZFIxK3MamZmpvGvr68vzp49q1d9VN/sS1xRuuqj+vz5c3Tr1g0ODg5Yvnw5Xr16xT1nVc+eUFW6d++OzZs3Y9OmTbhw4YJGvkUiEdzc3NCrVy+d1keurq4wNjauVYvC6E2B7OTkhO3bt2P48OEl3n/gwAEMHz68Vn17qQ3y8vIQGRmpcRnG0tISwcHBvI7eJ0RfGBgYYNCgQfDw8MC2bduQlJSE7OxsbN26Fbdv38awYcN4W9Y+Ly8PV65cwaNHj9CtWzfY2NjwEkd1yM/PR3JyMl6/fq1RBBduhbM5aUskEsHY2BhmZmbFCmBTU1OYmJiUWczqWx/VkrqCVJQu+qiePHkST58+xdOnT4v16deX1SxL0rx5c3z//feIj4/HsGHDkJ6eDrlcjunTp+s0n0DBldy6detW+EteTaU3BfLbfjHz8vJq/RkKoUlISMCmTZvw77//cm0tW7bEyJEjefvAJ0RfNW3aFF999RV27dqF6OhoAMCff/6Jv//+Gx999BHc3d15iy05ORn79u1Dp06deI2jMvLz85GSklJi8fvff/8hJSWlwgWUXC6Hubl5iWeBTUxMKnWVTJ/6qALQehB1dfdRLW1RkprC3t4ecrkc6enpMDQ01Hlx3KBBg1o7axSvBXJaWprGMpD//fcf4uLiiu2XkpKCnTt3avRbIjUXYwxXrlzBrl27uMEiUqkUgYGB6Nq1Kw3GJKQUcrkcwcHBaNmyJX799VdkZmYiNTUVa9asgY+PDwYOHMjbLC+MMVy8eBHZ2dm8rwRYErVajdTU1FIL4OTkZI1VzLRhbm4Oa2tr1K1bV+NfExMT3L17F5aWljqZ5QDQnz6qQMHVDl0XbKT62NjY6GRRmZqC1wJ5xYoV+L//+z8ABZeZpkyZgilTppS4L2MMixcvrsboiC5kZWXh119/xfXr17k2e3t7jB49mpa0JaSc2rZti8aNG+OXX37hlm09d+4cHj58iODgYDg4OPAW2/Xr1yGRSHQyjVhZGGNIS0srswCu6HRrpqamsLa2Rp06dbitsAiuU6dOqV9KlEpltYyh0Ic+qmKxGE2aNNHZ8Un1Mjc3R9OmTWv1CSteC+RevXrB1NQUjDHMmDEDw4YNK3bmQSQSwcTEBJ6enmjXrh1PkZKqEBMTg82bN+O///7j2jp16oTBgwfTvKqEaMnS0hKffvopzp8/j7179yIvLw8JCQn49ttv0adPH/j7+/M2wPXq1auQSCTw8PCosmMyxpCRkVFqAZyUlFTh/q9yuVyj4H2zCNbV2d+qxGcfVYlEAnd3dxgZGdWqQVxCZWRkBDc3t1rfrZXXAtnb2xve3t4ACqYOCgwMrNI/qEQ/qNVqnDx5EgcPHtSY23j48OHc9D2EEO2JRCL4+PjA1dUV4eHhiIuLg1qtxqFDh3Dv3j0EBQUVW141Li6Om2kgJycHSUlJOpny6/Lly5BIJHBzcyvX/owxKJXKMgvgikyFBgAymazYWd+im5CmqqvuPqpGRkZwd3eHiYlJrRvEJUQGBgbw8PCgBbmgJ4P0lEolfvjhBxgbG1OBLDCpqanYunUrHj58yLU5OTlh9OjRNLcxIVXE3t4e06dPx5EjR3Ds2DFuCdzQ0FAMHjwYnTp1wrVr17Bo0SIcPnyYuwSflZWFOXPmoEWLFggICKjy/oYXLlwAAK5IzsrKKrUA/u+//7QusLKzs3Hx4kUoFApIJBK0adMGEyZMQP369TUKYhMTE+5ScXZ2Nr744gvs3LkTOTk58Pf3x9q1a2FnZwegYCzMiBEjcPv2bfz333+wtbVF//79ERoaWqWriAlBnTp10KRJE96WQSdVq/CqT2nT7dY2elEgGxsbQyqVwsTEhO9QSBW6d+8etm7dyq0iJRKJ4O/vj4CAAJrbmJAqJpFI0K9fP3h4eCA8PByvXr1Cbm4uIiIisG3bNmzZsgWMsWKj/hljuHv3Lu7evYtx48ZVaoAdYwwqlUpji4yMxN69e5GcnKwxHVd57d+/H+7u7ujUqVOxQXBffvkljIyMcP78eahUKoSEhOD48eNlznwwdepUHD58GLt374aFhQUmTZqEQYMG4dKlSwAK+tL2798fixcvho2NDZ4+fYpPP/0USUlJZR63tnFycsI777xTq/uoCklhcUwzSP2PXhTIABAYGIjff/8dn3zyCb3hari8vDzs378fp0+f5tosLCwQHBwMV1dXHiMjRPicnJwwe/Zs7N27FxcvXkRCQgIiIyPLnAKssOvThg0bMHPmzFLPJBcWwPn5+cUKYZVKVeYsEEWXN36TRCKBtbV1iTNBFM71PHr0aI3HPHjwAOfOncO1a9e48SmrV69Gnz59sHz58hKnpkpNTcWmTZsQERGB7t27AyiYH9fNzQ1XrlxBhw4dYGVlhU8++YR7jIODAyZOnIhvv/221PhrE6lUCjc3N62XHCb6SyKRoHnz5nSF5A16UyB/+OGHmDhxInx9fTFu3Dg4OjqWeJpfH6cPqm3i4uJw6tQppKenw8zMDD169OBGRyckJGDz5s34559/uP09PDwwatQo+mZKSDUxMjLC8OHD0aJFCwwcOFCrxx46dAhjx47VKHwLC+LKLNRkZWUFS0tLja4Phf9aWlqWOiBIKpWWeF9UVBQsLS01Bm/7+flBLBbj6tWrJb7uGzduIC8vD35+flxbs2bN0KhRI0RFRaFDhw7FHvPixQvs3bsXPj4+FXnZgiKXy9G8eXO6BC8ghcWxhYUF36HoHb0pkLt168b9v7DfWlGMMYhEIlpJj0fR0dEafRjFYjHUajVEIhH69u2LAQMG4M6dO9xAGqlUioEDB6Jbt250VYAQHlhYWODvv/8u9wIXarUad+7cwZMnT7T+wJRIJJBKpRpb0TaRSIRRo0ZV2Yw18fHxxQYgSqVSWFtbIz4+vtTHGBoaFjv7aWdnV+wxw4YNw/79+5GVlYV+/fph48aNVRJ3TWVpaYlmzZpRf2MBkUqldOa4DHpTIG/ZsoXvEEgZ9u7di6FDh2r0YSy8nMoYw+HDh3Ho0CH06tULjRs3hp2dHUaPHo2GDRvyGTYhei83N7fC8/O+zZEjRyq0+ptCoSg2j7FEIuEK3pL+LetLcOHfitjYWDg6OpY5Qj40NBShoaHc7aysLFy5cgWTJk3i2grnftalFStWYP78+Xj8+DFmz56NadOmYe3atTp/Xn1Uv359ODk51fppv4REJpOhefPmNParDHpTIAcFBfEdAufHH3/Et99+i/j4eLRq1QqrV6+Gl5dXqfvv3r0b8+bNg0KhQJMmTbBs2TL06dOnGiPWrejoaAwdOhT5+fmlftgWfgCeOHEC8+fPx6xZs2huY0LeIjc3F9HR0dxA1qr2119/lXsJ4kIikQhqtRpyuRxisZjb3iyAiw7IK68LFy4gMTERXl5epRbJH3/8MT744APu9ogRIxAYGIhBgwZxbfXr14e9vT0SExM1HqtSqZCUlAR7e/sSj21vb4/c3FykpKRonEVOSEgo9hh7e3vY29ujWbNmsLa2RpcuXTBv3rxataKroaEhXFxcaMYhgTEzM4Obmxt9Rr+F3hTIRWVkZHB9WBs2bFitfVd37dqFadOmYd26dWjfvj1WrlwJf39/PHr0qNjlPKBgrs9hw4YhLCwMffv2RUREBAYMGICbN28KZsq6xYsXlzj6vSRisRg3b96kNx4h5aBSqZCRkQFDQ0OdvGesrKy0PoPMGIOZmZlO+plmZGQgPT0dKpWq1AK5cLBeIblcDltbW7i4uGjs5+3tjZSUFNy4cYObT/306dNQq9Vo3759icf29PSEgYEBTp06hcDAQADAo0ePEBcXx83JX5LCEwAVnYe5JqpXrx4cHByoS4XA2Nvbw9nZma4GlINe/YSuXbsGX19fWFlZwcPDAx4eHrCyskL37t01libWpe+//x7jxo1DSEgI3N3dsW7dOhgbG2Pz5s0l7r9q1Sr07t0b06dPh5ubGxYtWoS2bdtizZo11RKvrsXFxeHQoUPl7vudn5+PgwcPIi4uTseRESIcMpkMRkZGVb516tRJ6/7/IpEIrq6uGmePq2rLz8/nFimpLDc3N/Tu3Rvjxo1DdHQ0Ll26hEmTJuHDDz/kZrB4/vw5mjVrhujoaAAFfbLHjBmDadOm4cyZM7hx4wZCQkLg7e3NDdA7cuQItmzZgrt370KhUODw4cP4+OOP0alTpyqfJ1ofmZubo02bNnBxcaHiWEAKlwJv0qQJFcflpDdnkK9evYpu3brB0NAQY8eO5SaWf/DgAX799Vd07doVZ8+eLbOrQ2Xl5ubixo0bmD17NtcmFovh5+eHqKioEh8TFRWFadOmabT5+/tj3759pT5PTk6OxpmIwsurKpWqwkul6srx48crdAbqxIkTetVtpqbKy8uDSqVCZmamzvqp6pOcnBzufaBv7wVd0HV+TU1N0aFDB1y5cqVc72ORSAQ3NzeYmprq5OfPGEN6erpW+WWMIT8/v8T9w8PD8fnnn6NHjx4Qi8UYOHAgVqxYwe2rVCrx6NEjpKWlcW3ffPMNgIKpRXNyctCzZ0+sXr2au9/AwADr16/H1KlTkZOTgwYNGmDAgAGYMWOG1j8Tvt6/RceHlDdmiUSChg0bwsbGBgAq1O2H3r/VQ9v8ymQyuLi4wMTEpFLduaozv3rx5YzpiR49ejBnZ2f28uXLYvfFx8czZ2dn5ufnp9MYnj9/zgCwy5cva7RPnz6deXl5lfgYAwMDFhERodH2448/Mltb21KfZ/78+QwAbbTRRhtttNFGG21vbPpAr84gf/311yUOrrCzs8P48eOxaNEiHiKreoUjogvdunULPj4+uHr1Ktq0acNjZMWFh4dj/PjxWj9uw4YNdAa5iuhylgN9JJVKy5zlQGiqI78HDhxASEgIGGMlLuZR2A1jzJgxaN26tU5iEIvFaN++PVxdXSm/Oubm5oaXL1/CwsICS5YsKXNfCwsL9OrVq8r6wNP7V/fKm19HR0d4e3tX6cq1tSm/elMgi8XiMn/J8vPzdd5vpm7dupBIJEhISNBoL2mEcyF7e3ut9gcKLncU/WNUOAhRKpXqx2WFIvz9/Ss0Cr5Xr15691pqKvo5Clt15Pejjz5Cs2bNsGjRIhw6dEjj/SwSidCyZUv06dNHZ31sTUxM4OfnBzs7O50cX5/x8f4t/KwUiURlPr+hoSHef/99mge3EvQ1v02bNoWPjw+tQVAJetNTu2PHjvjxxx8RGxtb7L64uDisXbsWnTp10mkMhoaG8PT0xKlTp7g2tVqNU6dOlTrC2dvbW2N/ADh58mSZI6JrkkaNGqFv377l/gYqkUjQr18/bmU9Qoh+ePfdd3HgwAEoFApuijO5XI7Q0FBMnDhRZ8Vxw4YNERgYWCuLY33n7e1NxbEAOTg4UHFcBfTmDHJoaCi6du2KZs2aYeDAgWjatCmAgil49u/fD6lUirCwMJ3HMW3aNAQFBaFdu3bw8vLCypUrkZmZiZCQEADAqFGj8M4773CxfP755/Dx8cF3332HgIAA7Ny5E9evX8f69et1Hmt1mTdvHo4ePfrWM8kikQgikQhz586txugIIdpo1KgRTExMkJKSAplMpjGlWlVr27YtPD096YNaDzVu3Jj7nCXCUTjzF73nKk9vCuQ2bdrg6tWr+Oqrr3DgwAEolUoAgLGxMXr37o3FixfD3d1d53EMHToUr169wtdff434+Hi0bt0ax44d485+xMXFaXT16NixIyIiIjB37lzMmTMHTZo0wb59+wQzBzJQcOZp165d3Ep6JU35VriS1m+//YZ3332XhygJIfpCIpGgW7ducHZ25jsUUgIrKys6wyhAEokEfn5+1C2viuhNgQwA7u7uiIyMhFqtxqtXrwAANjY21T5n36RJkzSWNS3q7NmzxdqGDBmCIUOG6Dgqfg0aNAiXL1/W6MMoFouhVqshEokQEBCAuXPnUnFMSC1naGgIf3//WrXiXE0il8vRu3dvKqIEqG3btrCysuI7DMHQqwK5UOGl+sL/E/1Q2IcxLi4Op0+fRlpaGszNzdG9e3fqc0wIgampKfz9/WlpYj0lkUjQq1cvmJmZ8R0KqWIWFhZo2bIl32EIil4VyPfv38fXX3+N48ePa3Sx8Pf3x4IFCwTVbaEma9SoEYKDg/kOgxCiRxo2bIhu3brpZIlqUjU6duxIgyUFqn379lU6nRvRowL5woULeO+996BWq9G/f3+NQXoHDhzA0aNHcezYMXTp0oXnSAkhhBQyNDREhw4d4OrqSlf89JijoyOaNWvGdxikCtjb20OtVnPdZOrWrQsHBweeoxIevSmQp06dCltbW5w7dw4NGzbUuO+ff/5B165dMW3aNFy7do2nCAkhhBTl6OiITp06wcTEhO9QSBkMDAzQqVMn+gIjENevX8fLly9x8OBBAECrVq0otzqgN/Mg37t3DxMnTixWHAMFl+4++eQT3Lt3j4fICCGEFCWTydC9e3f07NmTiuMaoHnz5pQngZLL5XBycuI7DEHSmzPIDg4OyMnJKfX+3NzcEotnQggh1adhw4bw8fGBsbEx36GQUtjb20OlUkEmk0EkEqF58+Z8h0R0xMnJqdpn+qot9KZA/vrrrzF16lQEBASgdevWGvf9+eefWL16NVauXMlLbIQQUttJpVJ4e3ujWbNmdDlXz12/fh0PHjzAhQsXYG9vT2ePBYxOHOqO3hTIV65cgZ2dHTw9PdGxY0e4uLgAAJ48eYKoqCh4eHggKioKUVFR3GNEIhFWrVrFV8iEEFIrWFhYoGfPnjpddY/oBk3BKWz29vZ8hyBYelMgr1mzhvv/pUuXcOnSJY3779y5gzt37mi0UYFMCCG69c4778DPzw8ymYzvUEgF1K9fn+8QiI6YmJjQ+1KH9KZAVqvVfIdACCGkiKZNm6Jr167Ux7GGMjQ0RN26dfkOg+iIhYUF3yEImt4UyIQQQvRHixYt0KFDB+pvXIPZ29tT/gTM1NSU7xAETe8K5JiYGBw9ehSxsbEACma3eO+992gaE0IIqSZubm5UHAsArZonbDT4Urf0qkD+4osvsGrVqmLdLcRiMaZMmYLly5fzFBkhhNQODRo0oEUlBIK6VwgbTbWoW3rTsey7777DihUrMGjQIERFRSElJQUpKSmIiorC4MGDsWLFCqxYsYLvMAkhRLBMTU3RvXt36nMsEFZWVnyHQHSICmTd0pszyBs2bMD777+P3377TaO9ffv22LlzJ7Kzs/Hzzz9j6tSpPEVICCHC1q1bNxgZGfEdBqkCYrGYLsELHBXIuqU3pwkUCgX8/f1Lvd/f3x8KhaL6AiKEkFrE1dWVpgQTECMjI+omI3BUIOuW3hTItra2+Ouvv0q9/6+//oKNjU01RkQIIbWDTCZD+/bt+Q6DVCGaH1f4qEDWLb0pkIcMGYKNGzdi6dKlyMzM5NozMzOxbNkybNy4EUOHDuUxQkIIEQZ7e3vY2NjA3NwcAODp6UldKwRGKtWbHpREBwwMDCCRSPgOQ9BEjDHGdxAAoFQq0a9fP5w5cwZSqZS71PfixQuoVCr4+vri4MGDgvzGdPPmTXh6euLGjRto27Yt3+EQQmqBqKgo3LlzB2ZmZvjggw/ow1ZgkpOTaZCegKWnp8PMzIzvMARNb84gGxsb49SpU4iMjMTo0aPh5uYGNzc3jB49Gvv27cMff/yh8+I4KSkJI0aMgLm5OSwtLTFmzBhkZGSUuf9nn30GV1dXyOVyNGrUCJMnT0ZqaqpO4ySEkKri4eFBxbEA0UwkwmZgYMB3CIKnF9dglEolRo4cicDAQIwYMQL9+/fnJY4RI0bg5cuXOHnyJPLy8hASEoLx48cjIiKixP1fvHiBFy9eYPny5XB3d0dsbCw+/vhjvHjxAr///ns1R08IIdoRiURwcXHhOwyiA1QgCxt9qdU9vSiQjY2N8ccff+C9997jLYYHDx7g2LFjuHbtGtq1awcAWL16Nfr06YPly5eXOLrbw8MDe/bs4W47OztjyZIlGDlyJFQqFfUBI4ToNWtra8jlcr7DIDpABZSwUX51T2++Ynbu3BlRUVG8PX9UVBQsLS254hgA/Pz8IBaLcfXq1XIfJzU1Febm5mUWxzk5OUhLS+O2srpxEEKIrtDMQMJFBZSw0RR+uqc3BfKaNWtw4cIFzJ07F//++2+1P398fDxsbW012qRSKaytrREfH1+uY7x+/RqLFi3C+PHjy9wvLCwMFhYW3Obj41PhuAkhpKKsra35DoHoCHWxIKRy9OYd1KpVK/z7778ICwuDg4MDZDIZzM3NNTYLCwutjztr1iyIRKIyt4cPH1Y6/rS0NAQEBMDd3R0LFiwoc9/Zs2cjNTWV286dO1fp5yeEEG1RgSxcdIZR2Ci/uqc3nWQDAwN1kvAvvvgCwcHBZe7TuHFj2NvbIzExUaNdpVIhKSkJ9vb2ZT4+PT0dvXv3hpmZGSIjI986ulQmk2lM4m5qalr2iyCEEB2oU6cO3yEQHaECStgYY5RjHdObAjk8PFwnx7WxsSlXPztvb2+kpKTgxo0b8PT0BACcPn0aarW6zBWm0tLS4O/vD5lMhgMHDtBk+4SQGsHExIRWWxMwPVnigJAai/cCOTs7G/v370dMTAzq1q2LgIAA1KtXr9rjcHNzQ+/evTFu3DisW7cOeXl5mDRpEj788ENuBovnz5+jR48e2LZtG7y8vJCWloZevXpBqVTil19+4QbdAQWFOQ2SIIToq8JV9Igw0dlFQiqH1wI5MTERHTt2RExMDPdt19jYGPv27YOfn1+1x7Njxw5MmjQJPXr0gFgsRmBgIH744Qfu/ry8PDx69AhKpRJAwQp4hTNcvDmXaExMDBwdHastdkII0YYQVyUl/0MnaISNuljoHq9LTX/22Wf46aefMGXKFHTv3h1Pnz7FokWLYG5ujmfPnvEVVrWjpaYJIdUtJSUFlpaWfIdBCKmA/Px8+hKkY7yeQT5x4gRGjRqF5cuXc212dnYYPnw4Hj16BFdXVx6jI4QQ4aIPV0IIKR2v07zFxcWhc+fOGm2dO3cGYwwJCQk8RUUIIcJHl2cJqbno/at7vBbIOTk5xWZ9KLytUqn4CIkQQmoF+oAlpOaihWB0j/dZLBQKBW7evMndTk1NBQA8efKkxP5x1EeXEEIqjwpkQggpHa+D9MRicYl/pEsanVnYlp+fX13hVRsapEcIqW5KpZJmsiCEkFLwegZ5y5YtfD49IYTUWnQGmRBCSsdrgRwUFMTn0xNCSK1FBTIhhJSOenkTQkgtRAUyIYSUjgpkQgiphahAJoSQ0lGBTAghtZCBgQHfIRBCiN6iApkQQmohOoNMCCGlowKZEEIIIYSQIqhAJoQQQgghpAgqkAkhhBBCCCmCCmRCCCGEEEKKoAKZEEIIIYSQIqhAJoQQQgghpAhel5omNdvLly/x8uVLvsMghBBCapV69eqhXr16fIchaFQg64F69eph/vz5NeqXPScnB8OGDcO5c+f4DoUQQgipVXx8fHD8+HHIZDK+QxEsEWOM8R0EqXnS0tJgYWGBc+fOwdTUlO9wSBXLyMiAj48P5VegKL/CRvkVtsL8pqamwtzcnO9wBIsKZFIhhQUyvUGFifIrbJRfYaP8Chvlt3rQID1CCCGEEEKKoAKZEEIIIYSQIqhAJhUik8kwf/58GiAgUJRfYaP8ChvlV9gov9WD+iATQgghhBBSBJ1BJoQQQgghpAgqkAkhhBBCCCmCCmRCCCGEEEKKoAKZEEIIIYSQIqhAJqQGEolE5drOnj1b6edSKpVYsGCBVsdasmQJ3n//fdjZ2UEkEmHBggWVjqO20eccP3z4EDNmzEDr1q1hZmaGevXqISAgANevX690LLWFPuf3xYsXGDlyJFxdXWFmZgZLS0t4eXlh69atoHH95aPP+X3Tjh07IBKJaNXFN0j5DoAQor3t27dr3N62bRtOnjxZrN3Nza3Sz6VUKrFw4UIAQLdu3cr1mLlz58Le3h5t2rTB8ePHKx1DbaTPOd64cSM2bdqEwMBATJw4Eampqfj555/RoUMHHDt2DH5+fpWOSej0Ob+vX7/Gv//+i8GDB6NRo0bIy8vDyZMnERwcjEePHiE0NLTSMQmdPue3qIyMDMyYMQMmJiaVjkNwGCGkxvv000+Zrt7Or169YgDY/Pnzy/2YmJiYCj+WlEyfcnz9+nWWnp6u0fb69WtmY2PDOnXqpIMIhU+f8luavn37MhMTE6ZSqaomsFpEX/M7c+ZM5urqykaMGMFMTEyqPrgajLpYECJQarUaK1euRPPmzWFkZAQ7OztMmDABycnJGvtdv34d/v7+qFu3LuRyOZycnDB69GgAgEKhgI2NDQBg4cKF3GXBt3WZcHR01MVLIm/gK8eenp7FLsfWqVMHXbp0wYMHD6r2RdZifL6HS+Lo6AilUonc3NxKvzbCf36fPHmCFStW4Pvvv4dUSh0K3kQ/EUIEasKECQgPD0dISAgmT56MmJgYrFmzBn/++ScuXboEAwMDJCYmolevXrCxscGsWbNgaWkJhUKBvXv3AgBsbGzw008/4ZNPPsHAgQMxaNAgAEDLli35fGnk/9O3HMfHx6Nu3bpV+hprM77zm5WVhczMTGRkZODcuXPYsmULvL29IZfLdfq6awu+8ztlyhT4+vqiT58++O2333T6Wmskvk9hE0Iq783LdxcuXGAA2I4dOzT2O3bsmEZ7ZGQkA8CuXbtW6rErc/mOulhUHX3NcaHz588zkUjE5s2bV+Fj1Gb6mN+wsDAGgNt69OjB4uLitDoGKaBv+T106BCTSqXs3r17jDHGgoKCqIvFG6iLBSECtHv3blhYWKBnz554/fo1txVeGj9z5gwAwNLSEgBw6NAh5OXl8Rgx0ZY+5TgxMRHDhw+Hk5MTZsyYoZPnqG30Ib/Dhg3DyZMnERERgeHDhwMoOKtMKo/P/Obm5mLq1Kn4+OOP4e7uXiXHFCIqkAkRoCdPniA1NRW2trawsbHR2DIyMpCYmAgA8PHxQWBgIBYuXIi6deuif//+2LJlC3Jycnh+BeRt9CXHmZmZ6Nu3L9LT07F//36aKqqK6EN+HRwc4Ofnh2HDhmHHjh1o3Lgx/Pz8qEiuAnzmd8WKFXj9+jU38wUpGfVBJkSA1Go1bG1tsWPHjhLvLxzUIRKJ8Pvvv+PKlSs4ePAgjh8/jtGjR+O7777DlStXqNjRY/qQ49zcXAwaNAi3b9/G8ePH4eHhUeFjEU36kN83DR48GBs2bMD58+fh7+9fZcetjfjKb2pqKhYvXoyJEyciLS0NaWlpAAqme2OMQaFQwNjYGLa2tpV7gULAdx8PQkjlvdm/beLEiUwikTClUqn1sXbs2MEAsA0bNjDGCqbvAvVB5p2+5Tg/P58NHTqUSSQStmfPHq1jIJr0Lb8l2bdvHwPAdu3aVanj1Eb6kt+YmBiNfuUlbf3799c6JiGiLhaECNAHH3yA/Px8LFq0qNh9KpUKKSkpAIDk5ORiK2O1bt0aALhLeMbGxgDAPYboB75z/Nlnn2HXrl1Yu3YtN3KeVB0+8/vq1asS2zdt2gSRSIS2bduW6zikdHzl19bWFpGRkcU2X19fGBkZITIyErNnz674CxMQ6mJBiAD5+PhgwoQJCAsLw61bt9CrVy8YGBjgyZMn2L17N1atWoXBgwdj69atWLt2LQYOHAhnZ2ekp6djw4YNMDc3R58+fQAAcrkc7u7u2LVrF5o2bQpra2t4eHiUeTl9+/btiI2NhVKpBACcP38eixcvBgB89NFHcHBw0P0PQeD4zPHKlSuxdu1aeHt7w9jYGL/88ovG/QMHDqSVuSqJz/wuWbIEly5dQu/evdGoUSMkJSVhz549uHbtGj777DO4uLhU549CkPjKr7GxMQYMGFCsfd++fYiOji7xvlqL3xPYhJCqUNoqTevXr2eenp5MLpczMzMz1qJFCzZjxgz24sULxhhjN2/eZMOGDWONGjViMpmM2drasr59+7Lr169rHOfy5cvM09OTGRoalutSno+PT6mX786cOVNVL7tW0accBwUFlXmJtnAlRVJ++pTfEydOsL59+7L69eszAwMDZmZmxjp16sS2bNnC1Gp1lb7u2kKf8lsSmuatOBFjb5y7J4QQQgghpBajPsiEEEIIIYQUQQUyIYQQQgghRVCBTAghhBBCSBFUIBNCCCGEEFIEFciEEEIIIYQUQQUyIYQQQgghRVCBTEgtpFAoIBKJEB4ezncoRAcov8JG+RU2yq9+oAKZEEIIIYSQImihEEJqIcYYcnJyYGBgAIlEwnc4pIpRfoWN8itslF/9QAUyIYQQQgghRVAXC0JqqAULFkAkEuHx48cYOXIkLCwsYGNjg3nz5oExhn/++Qf9+/eHubk57O3t8d1333GPLamPW3BwMExNTfH8+XMMGDAApqamsLGxwZdffon8/Hxuv7Nnz0IkEuHs2bMa8ZR0zPj4eISEhKBBgwaQyWSoV68e+vfvD4VCoaOfinBQfoWN8itslN+ajwpkQmq4oUOHQq1WY+nSpWjfvj0WL16MlStXomfPnnjnnXewbNkyuLi44Msvv8T58+fLPFZ+fj78/f1Rp04dLF++HD4+Pvjuu++wfv36CsUWGBiIyMhIhISEYO3atZg8eTLS09MRFxdXoePVRpRfYaP8ChvltwZjhJAaaf78+QwAGz9+PNemUqlYgwYNmEgkYkuXLuXak5OTmVwuZ0FBQYwxxmJiYhgAtmXLFm6foKAgBoD93//9n8bztGnThnl6enK3z5w5wwCwM2fOaOz35jGTk5MZAPbtt99WzQuuZSi/wkb5FTbKb81HZ5AJqeHGjh3L/V8ikaBdu3ZgjGHMmDFcu6WlJVxdXfH333+/9Xgff/yxxu0uXbqU63FvksvlMDQ0xNmzZ5GcnKz140kByq+wUX6FjfJbc1GBTEgN16hRI43bFhYWMDIyQt26dYu1v+0PoZGREWxsbDTarKysKvQHVCaTYdmyZTh69Cjs7OzQtWtXfPPNN4iPj9f6WLUZ5VfYKL/CRvmtuahAJqSGK2kaoNKmBmJvmbSmPFMKiUSiEtuLDhQpNGXKFDx+/BhhYWEwMjLCvHnz4Obmhj///POtz0MKUH6FjfIrbJTfmosKZEKIVqysrAAAKSkpGu2xsbEl7u/s7IwvvvgCJ06cwN27d5Gbm6sxYpvoF8qvsFF+hY3yW3WoQCaEaMXBwQESiaTYiOu1a9dq3FYqlcjOztZoc3Z2hpmZGXJycnQeJ6kYyq+wUX6FjfJbdaR8B0AIqVksLCwwZMgQrF69GiKRCM7Ozjh06BASExM19nv8+DF69OiBDz74AO7u7pBKpYiMjERCQgI+/PBDnqInb0P5FTbKr7BRfqsOFciEEK2tXr0aeXl5WLduHWQyGT744AN8++238PDw4PZp2LAhhg0bhlOnTmH79u2QSqVo1qwZfvvtNwQGBvIYPXkbyq+wUX6FjfJbNWipaUIIIYQQQoqgPsiEEEIIIYQUQQUyIYQQQgghRVCBTAghhBBCSBFUIBNCCCGEEFIEFciEEEIIIYQUQQUyIUSnFAoFRCIRwsPD+Q6F6ADlV9gov8JG+S0dFciE6JFnz55hwoQJaNy4MYyMjGBubo5OnTph1apVyMrK0tnz3r9/HwsWLIBCodDZc5THkiVL8P7778POzg4ikQgLFizgNZ6qRvml/OoC5bd6UH6Fnd830UIhhOiJw4cPY8iQIZDJZBg1ahQ8PDyQm5uLixcvYvr06bh37x7Wr1+vk+e+f/8+Fi5ciG7dusHR0VEnz1Eec+fOhb29Pdq0aYPjx4/zFocuUH4pv5TfmovyK+z8loQKZEL0QExMDD788EM4ODjg9OnTqFevHnffp59+iqdPn+Lw4cM8Rvg/jDFkZ2dDLpdX+bFjYmLg6OiI169fw8bGpsqPzxfKbwHKL/8ov9qj/BYQan5LQ10sCNED33zzDTIyMrBp0yaNP76FXFxc8Pnnn3O3VSoVFi1aBGdnZ8hkMjg6OmLOnDnIycnReJyjoyP69u2LixcvwsvLC0ZGRmjcuDG2bdvG7RMeHo4hQ4YAAHx9fSESiSASiXD27FmNYxw/fhzt2rWDXC7Hzz//DAD4+++/MWTIEFhbW8PY2BgdOnSo1AcFn2dHdIny+794hYjy+794hYjy+794axVGCOHdO++8wxo3blzu/YOCghgANnjwYPbjjz+yUaNGMQBswIABGvs5ODgwV1dXZmdnx+bMmcPWrFnD2rZty0QiEbt79y5jjLFnz56xyZMnMwBszpw5bPv27Wz79u0sPj6eO4aLiwuzsrJis2bNYuvWrWNnzpxh8fHxzM7OjpmZmbGvvvqKff/996xVq1ZMLBazvXv3cjHExMQwAGzLli3lfn2vXr1iANj8+fPL/Rh9RvnVRPml/NYklF9NQstvaahAJoRnqampDADr379/ufa/desWA8DGjh2r0f7ll18yAOz06dNcm4ODAwPAzp8/z7UlJiYymUzGvvjiC65t9+7dDAA7c+ZMsecrPMaxY8c02qdMmcIAsAsXLnBt6enpzMnJiTk6OrL8/HzGGP0BpvwWR/ml/NYUlN/ihJTfslAXC0J4lpaWBgAwMzMr1/5HjhwBAEybNk2j/YsvvgCAYpfQ3N3d0aVLF+62jY0NXF1d8ffff5c7RicnJ/j7+xeLw8vLC507d+baTE1NMX78eCgUCty/f7/cxxcyyq+wUX6FjfJbe1GBTAjPzM3NAQDp6enl2j82NhZisRguLi4a7fb29rC0tERsbKxGe6NGjYodw8rKCsnJyeWO0cnJqcQ4XF1di7W7ublx9xPKr9BRfoWN8lt7UYFMCM/Mzc1Rv3593L17V6vHiUSicu0nkUhKbGeMlfu5dDEiurag/Aob5VfYKL+1FxXIhOiBvn374tmzZ4iKinrrvg4ODlCr1Xjy5IlGe0JCAlJSUuDg4KD185f3j/mbcTx69KhY+8OHD7n7SQHKr7BRfoWN8ls7UYFMiB6YMWMGTExMMHbsWCQkJBS7/9mzZ1i1ahUAoE+fPgCAlStXauzz/fffAwACAgK0fn4TExMAQEpKSrkf06dPH0RHR2t8aGRmZmL9+vVwdHSEu7u71nEIFeVX2Ci/wkb5rZ1ooRBC9ICzszMiIiIwdOhQuLm5aazUdPnyZezevRvBwcEAgFatWiEoKAjr169HSkoKfHx8EB0dja1bt2LAgAHw9fXV+vlbt24NiUSCZcuWITU1FTKZDN27d4etrW2pj5k1axZ+/fVXvPfee5g8eTKsra2xdetWxMTEYM+ePRCLtf/+vX37dsTGxkKpVAIAzp8/j8WLFwMAPvrooxp71oPyW4DyS/mtiSi/BYSa31LxO4kGIaSox48fs3HjxjFHR0dmaGjIzMzMWKdOndjq1atZdnY2t19eXh5buHAhc3JyYgYGBqxhw4Zs9uzZGvswVjAFUEBAQLHn8fHxYT4+PhptGzZsYI0bN2YSiURjSqHSjsFYwRydgwcPZpaWlszIyIh5eXmxQ4cOaeyjzTRCPj4+DECJW0lTHNU0lF/KL2OU35qK8ivs/L5JxJgWPcEJIYQQQggROOqDTAghhBBCSBFUIBNCCCGEEFIEFciEEEIIIYQUQQUyIYQQQgghRVCBTAghhBBCSBFUIBNCCCGEEFIEFciEEEIIIYQUQQUyIYQQQgghRVCBTAghhBBCSBFUIBNCCCGEEFIEFciEEEIIIYQUQQUyIYQQQgghRVCBTAghhBBCSBH/D+GtRamFqYg1AAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -1786,7 +1786,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq4AAAInCAYAAABZQNsWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAk0tJREFUeJzs3XdYU+ffBvD7JOwlKlOqglvcQrG4UEvFOuquo9ZVra1aq3Radx1Uf3XWVbcdVmtbt2ItbkWtotZdB4iLJTIDCSTn/cPXtCmgEJIcEu7PdeWqOfNOH5FvnvOc5wiiKIogIiIiIirjZFIHICIiIiIqDhauRERERGQWWLgSERERkVlg4UpEREREZoGFKxERERGZBRauRERERGQWWLgSERERkVlg4UpEREREZoGFKxERERGZBRauJfTo0SNMnz4djx49kjoKERERUbnCwrWEHj16hBkzZrBwJSIiIjIxFq5EREREZBZYuBIRERGRWWDhSkRERERmwawL16NHj6Jbt26oUqUKBEHA9u3bX7jP4cOH0bx5c9ja2qJWrVrYsGGD0XMSERERUemZdeGanZ2NJk2aYNmyZcXaPjY2Fl26dEH79u1x4cIFjB8/HiNGjMD+/fuNnJSIiIiISstK6gCl8frrr+P1118v9vYrV66En58f5s+fDwCoX78+jh8/joULFyIsLMxYMYmIiIjIAMy6cC2p6OhohIaG6iwLCwvD+PHji9xHqVRCqVRq32dlZRkrXpGOhodD+STN5OeVim1FV7RdsEDqGEbzxfJfkZaVI3UMk3F1ssec0b2ljmE0s3+ZiXRFhtQxTKaCgwsm9ZkidQyj2jjzR2RlKKSOYTJOLg4YMuUtqWMYzdlvR0GVlSp1DJOxcaqEwFHfSh3DaMpV4ZqQkABPT0+dZZ6ensjIyEBOTg7s7e0L7BMREYEZM2aYKmKhlE/SkPv4saQZyHDSsnKQmpEtdQwykHRFBtKyn0gdgwwoK0OBrCem76Qg41BlpUKVmSJ1DDKQclW46mPixIkIDw/Xvr9w4QJCQkKkCSOTwa5iRWnObQK5T54AGo3UMUxGEARUdHaQOobRPMlUQBRFqWOYjCAIqODgKnUMo0lXpJWr9gSetqmjq6PUMYwmOy27fLWpIIONUyWpUxiNKisVEC3/d2i5Kly9vLyQmJiosywxMREuLi6F9rYCgK2tLWxtbbXvnZycjJrxeewqVsRr69dJdn5jOzBseLnqWa7o7IDlnw6SOobRjJ73Q7nqWa7g4Ip5g/8ndQyj+fS7T8pdz7KjqyPG/G+k1DGMZtknq8tVz7KNUyW0/Gir1DGM5uT8vuWiZ1myWQVEUcTBgwexb98+ZGZmmuScwcHBiIqK0ll24MABBAcHm+T8RERERKQ/kxSukyZNQvv27bXvRVFEx44d8dprr6FLly5o1KgRbt++XeLjZmVl4cKFC7hw4QKAp9NdXbhwAfHx8QCeXuYfPHiwdvv33nsPd+7cwaefforr169j+fLl+PnnnzFhwoTSfUAiIiIiMjqTFK6//vorgoKCtO9/+eUXREVFYdasWdi9ezfUajWmT59e4uOePXsWzZo1Q7NmzQAA4eHhaNasGaZOnQoAePTokbaIBQA/Pz/s2bMHBw4cQJMmTTB//nysWbOGU2ERERERmQGTjHF98OABatWqpX3/22+/wd/fHxMnTgQAvP/++1ixYkWJj9uuXbvnDiwv7KlY7dq1w/nz50t8LiIiIiKSlkl6XK2srLRzoYqiiKioKHTq1Em73tPTEykplj+gmIiIiIj0Z5LCtWHDhvjhhx/w5MkTrF+/Ho8fP0aXLl206+/evQs3NzdTRCEiIiIiM2WSoQJTp05Ft27dtMVpq1atdG7W2rNnD15++WVTRCEiIiIiM2WSwvW1115DTEwMDhw4AFdXV/Tr10+77smTJ2jbti26d+9uiihEREREZKZM9gACf39/+Pv7F1hesWJFLFy40FQxiIiIiMhMmaRwzczMRFpaGqpWrapd9vDhQ6xcuRJKpRJ9+vThUAEiIiIiei6TFK7vvvsuYmNjcerUKQBARkYGXnnlFdy/fx8ymQyLFy9GZGQk2rVrZ4o4RERERGSGTDKrwPHjx9G1a1ft+x9++AEPHz7EyZMn8eTJEzRu3BizZs0yRRQiIiIiMlMmKVxTUlLg4+Ojfb9z5060bt0ar7zyCpydnTF48GBcvHjRFFGIiIiIyEyZpHB1dXVFQkICACAnJwfHjh1Dx44dteutrKygUChMEYWIiIiIzJRJxri2bNkSy5cvR7169RAZGYnc3Fyd6a/+/vtvnR5ZIiIiIqL/MknhOnfuXHTs2BG9e/cGAHz00Udo0KABAECtVmPr1q06j4AlIiIiIvovkxSutWrVwo0bN3D16lVUqFABvr6+2nUKhQJLly5FkyZNTBGFiIiIiMyUyR5AYG1tXWhx6uzszKdmEREREdELmeTmLODp3K1fffUVwsLC0KxZM5w5cwYAkJqaigULFuDWrVumikJEREREZsgkPa73799HSEgI7t27h9q1a+P69evIysoCAFSqVAnffvst7t69i8WLF5siDhERERGZIZMUrp988gkyMzNx4cIFeHh4wMPDQ2d9jx49sHv3blNEISIiIiIzZZKhAr///jvGjRsHf39/CIJQYH2NGjVw7949U0QhIiIiIjNlksI1JycH7u7uRa7PzMw0RQwiIiIiMmMmKVz9/f1x9OjRItdv374dzZo1M0UUIiIiIjJTJilcx48fj82bN2Pu3LlIT08HAGg0Gty6dQtvv/02oqOjMWHCBFNEISIiIiIzZZKbswYNGoS7d+9i8uTJmDRpEgCgU6dOEEURMpkMc+bMQY8ePUwRhYiIiIjMlMkeQDBp0iS8/fbb+PXXX3Hr1i1oNBrUrFkTvXr1Qo0aNUwVg4iIiIjMlMkKVwCoVq0ahwQQERERkV5MMsY1JiYGy5cvL3L98uXLceHCBVNEISIiIiIzZZLCddKkSfjjjz+KXH/w4EFMnjzZFFGIiIiIyEyZpHA9d+4c2rRpU+T6Nm3a4OzZs6aIQkRERERmyiSFa2ZmJqysih5OK5PJtNNkldSyZcvg6+sLOzs7tGjRAmfOnHnu9osWLULdunVhb2+PqlWrYsKECcjNzdXr3ERERERkOiYpXGvXro3ff/+9yPWRkZF6zSywZcsWhIeHY9q0aYiJiUGTJk0QFhaGpKSkQrfftGkTPv/8c0ybNg3Xrl3D2rVrsWXLFnzxxRclPjcRERERmZZJCtd33nkHe/bsQXh4ONLS0rTL09LSMGHCBERGRuKdd94p8XEXLFiAkSNHYtiwYfD398fKlSvh4OCAdevWFbr9yZMn0apVKwwcOBC+vr7o2LEjBgwY8MJeWiIiIiKSnkkK13HjxmHIkCFYtGgR3NzcUK1aNVSrVg1ubm5YvHgxBg0aVOJpslQqFc6dO4fQ0FDtMplMhtDQUERHRxe6T8uWLXHu3DltoXrnzh3s3bsXnTt31v/DEREREZFJmGQeV0EQsH79egwePBi//vor7ty5AwDo3r07evfujXbt2pX4mCkpKVCr1fD09NRZ7unpievXrxe6z8CBA5GSkoLWrVtDFEXk5+fjvffee+5QAaVSCaVSqX2flZVV4qxEUgsMDERCQgK8vLx4IyQREZktkz6AoH379mjfvr0pT6nj8OHDmDNnDpYvX44WLVrg1q1b+PDDDzFz5kxMmTKl0H0iIiIwY8YMEyclMqyEhAQ8ePBA6hhERESlYpKhArGxsdi1a1eR63ft2oW4uLgSHdPNzQ1yuRyJiYk6yxMTE+Hl5VXoPlOmTMHbb7+NESNGoFGjRujZsyfmzJmDiIgIaDSaQveZOHEi0tPTta8jR46UKCcRERERGYZJCtePP/4YS5YsKXL9smXL8Pnnn5fomDY2NggICEBUVJR2mUajQVRUFIKDgwvdR6FQQCbT/chyuRwAIIpiofvY2trCxcVF+3JycipRTiIiIiIyDJMUrtHR0XjttdeKXP/qq6/i2LFjJT5ueHg4Vq9ejY0bN+LatWt4//33kZ2djWHDhgEABg8ejIkTJ2q379atG1asWIHNmzcjNjYWBw4cwJQpU9CtWzdtAUtEREREZZNJxrg+efIEzs7ORa53cnLC48ePS3zcfv36ITk5GVOnTkVCQgKaNm2KyMhI7Q1b8fHxOj2skydPhiAImDx5Mh48eAB3d3d069YNs2fPLvmHIiIiIiKTMknhWq1aNZw4cQLvv/9+oeuPHTuGl156Sa9jjx07FmPHji103eHDh3XeW1lZYdq0aZg2bZpe5yIiIiIi6ZhkqMCAAQPw008/YcmSJTo3QanVaixevBhbtmzBwIEDTRGFiIiIiMyUSXpcJ06ciOPHj2P8+PGYPXs26tatCwC4ceMGkpOT0a5dO0yaNMkUUYiIiIjITJmkx9XW1ha///471q5di6CgIKSkpCAlJQVBQUFYt24d/vjjD9ja2poiChERERGZKZM9gEAmk2HYsGHaO/6JiIiIiErCJD2uRERERESlZZIe1w4dOrxwG0EQdB4mQERERET0byYpXDUaDQRB0FmmVqtx9+5d3Lt3D7Vq1YKPj48pohCVS88eg1zU45CJiIjMgUkK1//Op/pvu3fvxrvvvosFCxaYIgpRuXT27FmpIxAREZWayW7OKkrXrl0xaNAgjB8/HkeOHJE6DpFJ2Im5UKTnYuikxVJHMS7BTuoERERkQcrEzVk1a9bEn3/+KXUMIiIiIirDJO9xzc/Px88//ww3NzepoxBZrN3r5iMnOwP2ji7oOvwjqeMQERHpxSSF6/DhwwtdnpaWhlOnTiEhIYFjXImMKCc7A4rMdKljEBERlYpJCteDBw8WmFVAEARUrFgRrVu3xogRI9CxY0dTRCEiIiIiM2WSwjUuLs4UpyEiIiIiC1Ymbs4iIiIiInoRoxWuCoUC8fHxUKlUBdatW7cOr776Kvz9/dGrVy/OKEBEREREL2S0wvXLL79E48aNCxSus2bNwsiRI3HkyBEkJydj+/btaNeuHS5evGisKERERERkAYxWuB46dAhdu3aFk5OTdllGRgZmzZoFHx8f3Lx5E8nJyTh16hRsbGzw1VdfGSsKEREREVkAoxWucXFxaNy4sc6yvXv3QqVS4bPPPoOfnx8AICgoCMOGDcOxY8eMFYWIiIiILIDRCtfMzExUrlxZZ9nRo0chCALCwsJ0lvv7+yM5OdlYUYiIiIjIAhitcK1evTquX7+us+zw4cPw9PRErVq1dJarVCq4uLgYKwoRERERWQCjFa4dO3bEunXrcPr0aQDAd999h+vXr6Nnz54Ftj137hx8fX2NFYWIiIiILIDRHkAwZcoUbN++HS1btoRcLkd+fj7c3d0xdepUne0UCgW2bduGd99911hRiMo9e0cXnf8SERGZI6MVrm5ubrhw4QLWrFmDO3fuoHr16hg+fDg8PDx0trt8+TLeeustvP3228aKQlTudR3+kdQRiIiISs2oj3ytWLEiPvnkk+duExQUhKCgIGPGICIiIiILwEe+EhEREZFZYOFKRERERGaBhSsRERERmQWzL1yXLVsGX19f2NnZoUWLFjhz5sxzt09LS8OYMWPg7e0NW1tb1KlTB3v37jVRWiIiIiLSl1EK1507d+Lhw4fGOLSOLVu2IDw8HNOmTUNMTAyaNGmCsLAwJCUlFbq9SqXCa6+9hri4OPzyyy+4ceMGVq9eDR8fH6NnJSIiIqLSMUrh2rNnTxw+fFj7vkaNGti5c6fBz7NgwQKMHDkSw4YNg7+/P1auXAkHBwesW7eu0O3XrVuH1NRUbN++Ha1atYKvry9CQkLQpEkTg2cjIiIiIsMySuHq7OyMtLQ07fu4uDhkZWUZ9BwqlQrnzp1DaGiodplMJkNoaCiio6ML3Wfnzp0IDg7GmDFj4OnpiYYNG2LOnDlQq9VFnkepVCIjI0P7MvTnICIiIqLiMco8rkFBQZg9ezYSExNRoUIFAMDevXuRkJBQ5D6CIGDChAnFPkdKSgrUajU8PT11lnt6euL69euF7nPnzh0cPHgQb731Fvbu3Ytbt25h9OjRyMvLw7Rp0wrdJyIiAjNmzCh2LiIiIiIyDqMUrsuXL8fgwYMxc+ZMAE+L0k2bNmHTpk1F7lPSwlUfGo0GHh4eWLVqFeRyOQICAvDgwQP873//K7JwnThxIsLDw7XvL1y4gJCQEKPmJCIiIqKCjFK41qpVCydPnkRubi6SkpLg6+uLRYsWoXv37gY7h5ubG+RyORITE3WWJyYmwsvLq9B9vL29YW1tDblcrl1Wv359JCQkQKVSwcbGpsA+tra2sLW11b53cnIy0CcgIiIiopIw6iNf7ezsUK1aNUybNg0dOnRA9erVDXZsGxsbBAQEICoqCj169ADwtEc1KioKY8eOLXSfVq1aYdOmTdBoNJDJng7v/fvvv+Ht7V1o0UpEREREZYdJ5nGdNm0aGjZsCADIysrCtWvXcO3atVLf6BQeHo7Vq1dj48aNuHbtGt5//31kZ2dj2LBhAIDBgwdj4sSJ2u3ff/99pKam4sMPP8Tff/+NPXv2YM6cORgzZkypchARERGR8Rm1x/Xf/vzzT3z66ac4fvw4NBoNgKezALRp0wbz5s1DYGBgiY/Zr18/JCcnY+rUqUhISEDTpk0RGRmpvWErPj5e27MKAFWrVsX+/fsxYcIENG7cGD4+Pvjwww/x2WefGeZDEhEREZHRmKRwPX36NNq1awcbGxuMGDEC9evXBwBcu3YNP/30E9q2bYvDhw8jKCioxMceO3ZskUMD/j2X7DPBwcE4depUic9DRERERNIySeE6adIk+Pj44Pjx4wVunJo+fTpatWqFSZMm4cCBA6aIQ0RERERmyCRjXE+fPo1Ro0YVere/p6cn3n33XfaCEhEREdFzmaRwlclkyM/PL3K9Wq3WGYtKRERERPRfJqkWW7ZsiWXLluHu3bsF1sXHx2P58uVo1aqVKaIQERERkZkyyRjXOXPmoG3btqhXrx569uyJOnXqAABu3LiBHTt2wMrKChEREaaIQkRERERmyiSFa7NmzXD69GlMmjQJO3fuhEKhAAA4ODigU6dOmDVrFvz9/U0RhYiIiIjMlMnmcfX398e2bdug0WiQnJwMAHB3d+fYViIiIiIqFpMVrs/IZDLtAwKIiIiIiIqL3Z1EREREZBZYuBIRERGRWWDhSkRERERmgYUrEREREZkFFq5EREREZBZMOqvA1atXcefOHTx58gSiKBZYP3jwYFPGISIiIiIzYpLC9fbt2xg0aBDOnDlTaMEKAIIgsHAlIiIioiKZpHAdNWoULl26hEWLFqFNmzaoWLGiKU5LRERERBbEJIXriRMn8MUXX+CDDz4wxemIiIiIyAKZ5OYsNzc3VKhQwRSnIiIiIiILZZLC9b333sMPP/wAtVptitMRERERkQUyyVCBOnXqQK1Wo0mTJhg+fDiqVq0KuVxeYLtevXqZIg4RERERmSGTFK79+vXT/vnjjz8udBtBENgjS0RERERFMknheujQIVOchoiIiIgsmEkK15CQEFOchoiIiIgsmEmfnAU8fXrW3bt3AQDVq1eHv7+/qSMQERERkRkyWeG6Y8cOhIeHIy4uTme5n58fFixYgDfeeMNUUYiIiIjIDJlkOqy9e/eid+/eAIA5c+Zg27Zt2LZtG+bMmQNRFNGrVy9ERkaaIgoRERERmSmT9LjOnDkTjRs3xrFjx+Do6Khd/sYbb2Ds2LFo3bo1ZsyYgU6dOpkiDhERERGZIZP0uP71118YMmSITtH6jKOjI4YOHYq//vpLr2MvW7YMvr6+sLOzQ4sWLXDmzJli7bd582YIgoAePXrodV4iIiIiMi2TFK52dnZITU0tcn1qairs7OxKfNwtW7YgPDwc06ZNQ0xMDJo0aYKwsDAkJSU9d7+4uDh8/PHHaNOmTYnPSURERETSMEnh2qFDByxevBjR0dEF1p0+fRpLlixBaGhoiY+7YMECjBw5EsOGDYO/vz9WrlwJBwcHrFu3rsh91Go13nrrLcyYMQM1atQo8TmJiIiISBomGeM6b948BAcHo3Xr1ggKCkLdunUBADdu3MCZM2fg4eGBuXPnluiYKpUK586dw8SJE7XLZDIZQkNDCy2Qn/nyyy/h4eGBd955B8eOHXvheZRKJZRKpfZ9VlZWiXISERERkWGYpMfVz88Pf/31F8aNG4cnT55gy5Yt2LJlC548eYIPP/wQFy9ehK+vb4mOmZKSArVaDU9PT53lnp6eSEhIKHSf48ePY+3atVi9enWxzxMREYEKFSpoX3yYAhEREZE0TDaPq4eHBxYuXIiFCxea6pQ6MjMz8fbbb2P16tVwc3Mr9n4TJ05EeHi49v2FCxdYvBIRERFJwORPzjIUNzc3yOVyJCYm6ixPTEyEl5dXge1v376NuLg4dOvWTbtMo9EAAKysrHDjxg3UrFmzwH62trawtbXVvndycjLURyAiIiKiEjBK4Tp8+HAIgoBVq1ZBLpdj+PDhL9xHEASsXbu22OewsbFBQEAAoqKitFNaaTQaREVFYezYsQW2r1evHi5duqSzbPLkycjMzMTixYtRtWrVYp+biIiIiEzPKIXrwYMHIZPJoNFoIJfLcfDgQQiC8Nx9XrS+MOHh4RgyZAgCAwMRFBSERYsWITs7G8OGDQMADB48GD4+PoiIiICdnR0aNmyos7+rqysAFFhOREREpK/AwEAkJCTAy8sLZ8+elTqORTFK4RoXF/fc94bSr18/JCcnY+rUqUhISEDTpk0RGRmpvWErPj4eMplJ7j8jIiIiAgAkJCTgwYMHUsewSCYZ4xofHw93d3fY29sXuj4nJwfJycmoVq1aiY89duzYQocGAMDhw4efu++GDRtKfD4iIiIikobJpsPatm1bket37twJPz8/U0QhIiIiIjNlksJVFMXnrs/Ly+MlfSIiIiJ6LqMNFcjIyEBaWpr2/ePHjxEfH19gu7S0NGzevBne3t7GikJERFSm8WYeouIxWuG6cOFCfPnllwCezhgwfvx4jB8/vtBtRVHErFmzjBWFiIioTOPNPETFY7TCtWPHjnBycoIoivj0008xYMAANG/eXGcbQRDg6OiIgIAABAYGGisKEREREVkAoxWuwcHBCA4OBgBkZ2ejd+/enC+ViIiIiPRm9OmwFAoFlixZAgcHBxauRERERKQ3o9/K7+DgACsrKzg6Ohr7VERERERkwUwyB1Xv3r3xyy+/vHBaLCIiIiKiopjkyVn9+/fH6NGj0b59e4wcORK+vr6FPkXrvzdvERERERE9Y5LCtV27dto/Hzt2rMB6URQhCALUarUp4hAREREZjZeXl85/yXBMUriuX7/eFKchIiIikhwfImE8JilchwwZYorTEBERERWQBlcgMx/bp/eUOopRuUodwARMUrj+W1ZWFu7duwcAqFq1KpycnEwdgYiIiIjMkElmFQCAP//8E+3bt0fFihXRsGFDNGzYEBUrVkSHDh3YpU5EREQW4+NVhzFiQSQ+XnVY6igWxyQ9rqdPn0a7du1gY2ODESNGoH79+gCAa9eu4aeffkLbtm1x+PBhBAUFmSIOERFRmcKbeSxLWlYuHmfmSh3DIpmkcJ00aRJ8fHxw/PjxAj+U06dPR6tWrTBp0iQcOHDAFHGIiIjKFF55JCoek/W4Tp06tdBvkp6ennj33Xcxc+ZMU0QhIiJ6oXwbFdKyUzF79FypoxiVFWykjkBUIiYZ4yqTyZCfn1/kerVaDZnMZMNtiYiIiMgMmaRabNmyJZYtW4a7d+8WWBcfH4/ly5ejVatWpohCRERU5iz/5RvM+24Olv/yjdRRiMo0kwwVmDNnDtq2bYt69eqhZ8+eqFOnDgDgxo0b2LFjB6ysrBAREWGKKERERGVOliITGdkZUscgKvNMUrg2a9YMp0+fxqRJk7Bz504oFAoAgIODAzp16oRZs2bB39/fFFGIiIiIyEyZ7AEE/v7+2LZtGzQaDZKTkwEA7u7uHNtKRERERMVi8idnCYIAQRC0fyYiIiIiKg6TdXdevXoVffr0gYuLC7y9veHt7Q0XFxf06dMHly9fNlUMIiKzFxgYiJdeegmBgYFSRyEiMimT9LgeO3YMr7/+OjQaDbp3765zc9bOnTuxb98+REZGok2bNqaIQ0Rk1hISEvDgwQOpYxARmZxJCtcJEybAw8MDR44cQdWqVXXW3bt3D23btkV4eDj+/PNPU8QhIiIiIjNkkqECV65cwejRowsUrQBQtWpVvP/++7hy5Ypex162bBl8fX1hZ2eHFi1a4MyZM0Vuu3r1arRp0wYVK1ZExYoVERoa+tztiYiIiErK1ckOlZ3t4OpkJ3UUi2OSHtfq1atDqVQWuV6lUhVa1L7Ili1bEB4ejpUrV6JFixZYtGgRwsLCcOPGDXh4eBTY/vDhwxgwYABatmwJOzs7zJ07Fx07dsSVK1fg4+NT4vMTERER/dfX77aTOoLFMkmP69SpU7FkyRJcuHChwLrz58/jm2++wfTp00t83AULFmDkyJEYNmwY/P39sXLlSjg4OGDdunWFbv/jjz9i9OjRaNq0KerVq4c1a9ZAo9EgKiqqxOe2dLz5g4iIiMoak/S4njp1Cp6enggICEDLli1Rq1YtAMDNmzcRHR2Nhg0bIjo6GtHR0dp9BEHA4sWLizymSqXCuXPnMHHiRO0ymUyG0NBQneM8j0KhQF5eHipVqlTkNkqlUqe3OCsrq1jHNne8+YOIiIjKGpMUrkuXLtX++cSJEzhx4oTO+kuXLuHSpUs6y15UuKakpECtVsPT01NnuaenJ65fv16sXJ999hmqVKmC0NDQIreJiIjAjBkzinU8IiIifTg5OOv8l4gKZ5LCVaPRmOI0JfLVV19h8+bNOHz4MOzsih48PXHiRISHh2vfX7hwASEhIaaISERE5cToPh9IHYHILJj8yVmG4ubmBrlcjsTERJ3liYmJ8PLyeu6+X3/9Nb766iv88ccfaNy48XO3tbW1ha2trfa9k5OT/qGJiIiISG8mLVxjY2Oxb98+3L17F8DT2QZef/11+Pn5lfhYNjY2CAgIQFRUFHr06AEA2hutxo4dW+R+8+bNw+zZs7F//37eeEREZunZl/MXfUknIrI0JitcP/roIyxevLjAsAGZTIbx48fj66+/LvExw8PDMWTIEAQGBiIoKAiLFi1CdnY2hg0bBgAYPHgwfHx8EBERAQCYO3cupk6dik2bNsHX1xcJCQkAnvaisieViMzF2bNnpY5ARCQJkxSu8+fPx8KFC9GnTx989NFHqF+/PgDg2rVrWLhwIRYuXAgfHx9MmDChRMft168fkpOTMXXqVCQkJKBp06aIjIzU3rAVHx8PmeyfGb9WrFgBlUqFPn366Bxn2rRpek3HRUQEADZKWyiUCoxdNEbqKMZl++JNiIiMySSF6+rVq/HGG2/g559/1lneokULbN68Gbm5ufj2229LXLgCwNixY4scGnD48GGd93FxcSU+PhERERGVDSYpXOPi4vDhhx8WuT4sLAyRkZGmiEJEZPZ+nr8VikwFHJwd8OZHfaWOQ0RkMiYpXD08PHDx4sUi11+8eBHu7u6miELFxJs/iMouRaYC2enZUscgIjI5kxSuffv2xeLFi+Hr64sPPvgAjo6OAIDs7GwsXboUa9aswfjx400RhYqJN38QERFRWWOSwnXmzJm4cOECvvjiC0ydOhVVqlQBADx8+BD5+flo3749vvzyS1NEMVuZTk7IVCqxaeBbUkcxKj4zhoiIiIpiksLVwcEBUVFR2LFjh848rp06dULnzp3RrVs3CIJgiihEREREZKaMXrgqFAoMGjQIvXv3xltvvYXu3bsb+5RkAJP3RyItJweu9vaYFdZJ6jhEREREkL14k9JxcHDAH3/8AYVCYexTkQGl5eTgSU4O0nJypI5CREREBMAEhSsAtG7dGtHR0aY4FRERERFZKJMUrkuXLsWxY8cwefJk3L9/3xSnJCIiIiILY5LCtUmTJrh//z4iIiJQvXp12NrawsXFRedVoUIFU0QhIiIiIjNlklkFevfuzVkDiIiIiKhUTFK4btiwwRSnISIqFxycHXT+S0RUXhi1cM3NzcWOHTsQGxsLNzc3dOnSBd7e3sY8JRGRxXvzo75SRyAikoTRCtekpCS0bNkSsbGxEEURwNOpsbZv347Q0FBjnZaIiIiILJTRbs6aOXMm4uLiMGHCBOzevRuLFi2Cvb09Ro0aZaxTEhEREZEFM1qP6++//47Bgwfj66+/1i7z9PTEwIEDcePGDdStW9dYpyYDcLW31/kvERERkdSMVrjGx8fjs88+01nWunVriKKIxMREFq5lHB/zSkRERGWN0YYKKJVK2NnZ6Sx79j4/P99YpyUiIiIiC2XUWQXi4uIQExOjfZ+eng4AuHnzJlxdXQts37x5c2PGISIiIiIzZtTCdcqUKZgyZUqB5aNHj9Z5L4oiBEGAWq02ZhwiIiIiMmNGK1zXr19vrEMTERERUTlktMJ1yJAhxjo0EREREZVDRrs5i4iIiIjIkFi4EhEREZFZYOFKRERERGaBhSsRERERmQUWrkRERERkFsy+cF22bBl8fX1hZ2eHFi1a4MyZM8/dfuvWrahXrx7s7OzQqFEj7N2710RJiYiIiKg0zLpw3bJlC8LDwzFt2jTExMSgSZMmCAsLQ1JSUqHbnzx5EgMGDMA777yD8+fPo0ePHujRowcuX75s4uREREREVFJmXbguWLAAI0eOxLBhw+Dv74+VK1fCwcEB69atK3T7xYsXo1OnTvjkk09Qv359zJw5E82bN8fSpUtNnJyIiIiISspsC1eVSoVz584hNDRUu0wmkyE0NBTR0dGF7hMdHa2zPQCEhYUVuT0RERERlR1Ge3KWsaWkpECtVsPT01NnuaenJ65fv17oPgkJCYVun5CQUOR5lEollEql9n1WVlYpUpuXJzk5SMvJMek5HRUK2EBE5ZgYk57XlJIfxCE3K03qGCahhC3UmfaIseD2TIxLRG56rtQxTCLPRgWlvcqi2xMA7iXeRWZOhtQxTEKeZw0HlWX/jN64/wSpCrXJz1vRyQ6VnO1Mfl5LZ7aFq6lERERgxowZOstCQkLg7e1tsgyvrS986IMxKZVKhIWF4ciRIyY/NwBg1y5pzktG8cuSKVJHIAP6btr3UkcgA5v7/WypI1ickJAQ7N+/Hba2tlJHsShmW7i6ublBLpcjMTFRZ3liYiK8vLwK3cfLy6tE2wPAxIkTER4errPM1tbW4v8iKpVKHDlyBEeOHIGTk5PUcaiUsrKyEBISwva0EGxPy8M2tSzP2lOpVFp8vWBqZlu42tjYICAgAFFRUejRowcAQKPRICoqCmPHji10n+DgYERFRWH8+PHaZQcOHEBwcHCR5ykPRerzNG3aFC4uLlLHoFLKyHh62ZPtaRnYnpaHbWpZnrUnGZ7ZFq4AEB4ejiFDhiAwMBBBQUFYtGgRsrOzMWzYMADA4MGD4ePjg4iICADAhx9+iJCQEMyfPx9dunTB5s2bcfbsWaxatUrKj0FERERExWDWhWu/fv2QnJyMqVOnIiEhAU2bNkVkZKT2Bqz4+HjIZP9MnNCyZUts2rQJkydPxhdffIHatWtj+/btaNiwoVQfgYiIiIiKyawLVwAYO3ZskUMDDh8+XGBZ37590bdvXyOnMn+2traYNm1auR4mYUnYnpaF7Wl52KaWhe1pPIIoiqLUIYiIiIiIXsRsH0BAREREROULC1ciIiIiMgssXImIiIjILLBwJaOLi4uDIAjYsGGD1FGIiIjIjLFwLWNu376NUaNGoUaNGrCzs4OLiwtatWqFxYsXIycnx2jnvXr1KqZPn464uDijnaM4Zs+ejTfeeAOenp4QBAHTp0+XNI8pCYJQrFdhs2WUlEKhwPTp00t0rPLcNvooy+15/fp1fPrpp2jatCmcnZ3h7e2NLl264OzZs6XOYqnKcns+fPgQgwYNQt26deHs7AxXV1cEBQVh48aN4P3XRSvLbfpfP/74IwRB4FPVYAHTYVmSPXv2oG/fvrC1tcXgwYPRsGFDqFQqHD9+HJ988gmuXLlitIclXL16FTNmzEC7du3g6+trlHMUx+TJk+Hl5YVmzZph//79kuWQwvff6z7//bvvvsOBAwcKLK9fv36pz6VQKDBjxgwAQLt27Yq1T3luG32U5fZcs2YN1q5di969e2P06NFIT0/Ht99+i1deeQWRkZEIDQ0tdSZLU5bbMyUlBffv30efPn1QrVo15OXl4cCBAxg6dChu3LiBOXPmlDqTJSrLbfpvWVlZ+PTTT+Ho6FjqHJaAhWsZERsbi/79+6N69eo4ePAgvL29tevGjBmDW7duYc+ePRIm/IcoisjNzYW9vb3Bjx0bGwtfX1+kpKTA3d3d4McvywYNGqTz/tSpUzhw4ECB5VIpz22jj7LcngMGDMD06dN1em+GDx+O+vXrY/r06SxcC1GW27Nx48YFevLGjh2Lbt26YcmSJZg5cybkcrk04cqwstym/zZr1iw4Ozujffv22L59u9RxJMehAmXEvHnzkJWVhbVr1+oUrc/UqlULH374ofZ9fn4+Zs6ciZo1a8LW1ha+vr744osvoFQqdfbz9fVF165dcfz4cQQFBcHOzg41atTAd999p91mw4YN2ocytG/fvsDlkWfH2L9/PwIDA2Fvb49vv/0WAHDnzh307dsXlSpVgoODA1555ZVSFdhS9vaaA41Gg0WLFqFBgwaws7ODp6cnRo0ahSdPnuhsd/bsWYSFhcHNzQ329vbw8/PD8OHDATwdc/ys8JwxY4a2vV906Z9tY3hStWdAQECBS46VK1dGmzZtcO3aNcN+yHJEyp/Pwvj6+kKhUEClUpX6s5VXUrfpzZs3sXDhQixYsABWVuxrBNjjWmbs2rULNWrUQMuWLYu1/YgRI7Bx40b06dMHH330EU6fPo2IiAhcu3YN27Zt09n21q1b6NOnD9555x0MGTIE69atw9ChQxEQEIAGDRqgbdu2GDduHJYsWYIvvvhCe1nk35dHbty4gQEDBmDUqFEYOXIk6tati8TERLRs2RIKhQLjxo1D5cqVsXHjRrzxxhv45Zdf0LNnT8P9DyIAwKhRo7BhwwYMGzYM48aNQ2xsLJYuXYrz58/jxIkTsLa2RlJSEjp27Ah3d3d8/vnncHV1RVxcHH777TcAgLu7O1asWIH3338fPXv2RK9evQA87bUh0ypr7ZmQkAA3NzeDfsbyROr2zMnJQXZ2NrKysnDkyBGsX78ewcHBRrk6Vl5I3abjx49H+/bt0blzZ/z8889G/axmQyTJpaeniwDE7t27F2v7CxcuiADEESNG6Cz/+OOPRQDiwYMHtcuqV68uAhCPHj2qXZaUlCTa2tqKH330kXbZ1q1bRQDioUOHCpzv2TEiIyN1lo8fP14EIB47dky7LDMzU/Tz8xN9fX1FtVotiqIoxsbGigDE9evXF+vziaIoJicniwDEadOmFXsfSzNmzBjx3z+ix44dEwGIP/74o852kZGROsu3bdsmAhD//PPPIo9dmv+/bBv9lNX2fObo0aOiIAjilClT9D5GeVIW2zMiIkIEoH29+uqrYnx8fImOUZ6VtTbdvXu3aGVlJV65ckUURVEcMmSI6OjoWIJPZJk4VKAMyMjIAAA4OzsXa/u9e/cCAMLDw3WWf/TRRwBQ4FK9v78/2rRpo33v7u6OunXr4s6dO8XO6Ofnh7CwsAI5goKC0Lp1a+0yJycnvPvuu4iLi8PVq1eLfXx6sa1bt6JChQp47bXXkJKSon09u+x76NAhAICrqysAYPfu3cjLy5MwMT1PWWrPpKQkDBw4EH5+fvj000+Ncg5LVxbac8CAAThw4AA2bdqEgQMHAoBRZ6OxdFK2qUqlwoQJE/Dee+/B39/fIMe0FCxcywAXFxcAQGZmZrG2v3v3LmQyGWrVqqWz3MvLC66urrh7967O8mrVqhU4RsWKFQuM0XkePz+/QnPUrVu3wPJnQwz+m4NK5+bNm0hPT4eHhwfc3d11XllZWUhKSgIAhISEoHfv3pgxYwbc3NzQvXt3rF+/vsD4Z5JWWWnP7OxsdO3aFZmZmdixYwen29FTWWjP6tWrIzQ0FAMGDMCPP/6IGjVqIDQ0lMWrnqRs04ULFyIlJUU7EwH9g2NcywAXFxdUqVIFly9fLtF+giAUa7ui7iYVSzC/H8dISU+j0cDDwwM//vhjoeufDf4XBAG//PILTp06hV27dmH//v0YPnw45s+fj1OnTrEwKSPKQnuqVCr06tULf/31F/bv34+GDRvqfazyriy053/16dMHq1evxtGjRwtcMaMXk6pN09PTMWvWLIwePRoZGRnaq7JZWVkQRRFxcXFwcHCAh4dH6T6gmWLhWkZ07doVq1atQnR0NIKDg5+7bfXq1aHRaHDz5k2dG6gSExORlpaG6tWrl/j8xS2C/5vjxo0bBZZfv35du54Mp2bNmvjjjz/QqlWrYn2ReOWVV/DKK69g9uzZ2LRpE9566y1s3rwZI0aM0Ku9ybCkbk+NRoPBgwcjKioKP//8M0JCQvT5GPT/pG7PwjzraU1PTzfI8cobqdr0yZMnyMrKwrx58zBv3rwC6/38/NC9e/dyOzUWhwqUEc8mFx4xYgQSExMLrL99+zYWL14MAOjcuTMAYNGiRTrbLFiwAADQpUuXEp//2cTGaWlpxd6nc+fOOHPmDKKjo7XLsrOzsWrVKvj6+nJcjoG9+eabUKvVmDlzZoF1+fn52rZ78uRJgd70pk2bAoD20pWDgwOAkrU3GZbU7fnBBx9gy5YtWL58ufYuZ9KflO2ZnJxc6PK1a9dCEAQ0b968WMchXVK1qYeHB7Zt21bg1b59e9jZ2WHbtm2YOHGi/h/MzLHHtYyoWbMmNm3ahH79+qF+/fo6T846efIktm7diqFDhwIAmjRpgiFDhmDVqlVIS0tDSEgIzpw5g40bN6JHjx5o3759ic/ftGlTyOVyzJ07F+np6bC1tUWHDh2eeyni888/x08//YTXX38d48aNQ6VKlbBx40bExsbi119/hUxW8u9F33//Pe7evQuFQgEAOHr0KGbNmgUAePvtt8t1L25ISAhGjRqFiIgIXLhwAR07doS1tTVu3ryJrVu3YvHixejTpw82btyI5cuXo2fPnqhZsyYyMzOxevVquLi4aL/02Nvbw9/fH1u2bEGdOnVQqVIlNGzY8LmXitk2hiVley5atAjLly9HcHAwHBwc8MMPP+is79mzJ5/SU0JStufs2bNx4sQJdOrUCdWqVUNqaip+/fVX/Pnnn/jggw8K3A9BxSNVmzo4OKBHjx4Flm/fvh1nzpwpdF25IuWUBlTQ33//LY4cOVL09fUVbWxsRGdnZ7FVq1biN998I+bm5mq3y8vLE2fMmCH6+fmJ1tbWYtWqVcWJEyfqbCOKT6ey6tKlS4HzhISEiCEhITrLVq9eLdaoUUOUy+U6U2MVdQxRFMXbt2+Lffr0EV1dXUU7OzsxKChI3L17t842JZkOKyQkRGc6l3+/Cpuqy5L9d2qWZ1atWiUGBASI9vb2orOzs9ioUSPx008/FR8+fCiKoijGxMSIAwYMEKtVqyba2tqKHh4eYteuXcWzZ8/qHOfkyZNiQECAaGNjU6xpWtg2pVOW2nPIkCFFtiUAMTY21pAf3SKVpfb8/fffxa5du4pVqlQRra2ttb831q9fL2o0GoN+bktWltq0MJwO6ylBFEtwhw4RERERkUQ4xpWIiIiIzAILVyIiIiIyCyxciYiIiMgssHAlIiIiIrPAwpWIiIiIzAILVzMzb9481KtXDxqNRuoopda/f3+8+eabUseQFNvT8rBNLQvb07KwPS2A1PNxUfGlp6eLlSpVEtetW6ddhv+fd/Hrr78usP369etFAOKff/5p8CyhoaEiAHHMmDGFrl+zZo1Yr1490dbWVqxVq5a4ZMmSAtvExMSIMplMvHDhgsHzmQO2p+Vhm1oWtqdlYXtaBva4mpF169YhPz8fAwYMKLDuf//7n/aJRsb222+/6Tzm9b++/fZbjBgxAg0aNMA333yD4OBgjBs3DnPnztXZrlmzZggMDMT8+fONHblMYntaHrapZWF7Wha2p4WQunKm4mvcuLE4aNAgnWUAxKZNm4oAxPnz5+usM8a3xZycHNHX11f88ssvC/22qFAoxMqVKxd40tZbb70lOjo6iqmpqTrLv/76a9HR0VHMzMw0WEZzwfa0PGxTy8L2tCxsT8vAHlczERsbi7/++guhoaEF1rVq1QodOnTAvHnzkJOTY9Qc8+bNg0ajwccff1zo+kOHDuHx48cYPXq0zvIxY8YgOzsbe/bs0Vn+2muvITs7GwcOHDBa5rKI7Wl52KaWhe1pWdieloOFq5k4efIkAKB58+aFrp8+fToSExOxYsWK5x5HqVQiJSWlWK//io+Px1dffYW5c+fC3t6+0OOfP38eABAYGKizPCAgADKZTLv+GX9/f9jb2+PEiRPPzW1p2J6Wh21qWdieloXtaTmspA5AxXP9+nUAgJ+fX6Hr27Rpg/bt2+N///sf3n///SJ/KH766ScMGzasWOcURVHn/UcffYRmzZqhf//+Re7z6NEjyOVyeHh46Cy3sbFB5cqV8fDhQ53lVlZWqFq1Kq5evVqsTJaC7Wl52KaWhe1pWdieloOFq5l4/PgxrKys4OTkVOQ206dPR0hICFauXIkJEyYUuk1YWJhelxQOHTqEX3/9FadPn37udjk5ObCxsSl0nZ2dXaGXYSpWrFjot1NLxva0PGxTy8L2tCxsT8vBwtWCtG3bFu3bt8e8efPw3nvvFbqNt7c3vL29S3Tc/Px8jBs3Dm+//TZefvnl525rb28PlUpV6Lrc3NxCv8WKoghBEEqUqTxge1oetqllYXtaFraneWDhaiYqV66M/Px8ZGZmwtnZucjtpk2bhnbt2uHbb7+Fq6trgfU5OTlIT08v1jm9vLwAAN999x1u3LiBb7/9FnFxcTrbZGZmIi4uDh4eHnBwcIC3tzfUajWSkpJ0LnWoVCo8fvwYVapUKXCeJ0+eoHbt2sXKZCnYnpaHbWpZ2J6Whe1pOXhzlpmoV68egKd3Rj5PSEgI2rVrh7lz5xZ6SWHLli3ab4wvej0THx+PvLw8tGrVCn5+ftoX8PQH0s/PD7///jsAoGnTpgCAs2fP6pz37Nmz0Gg02vXP5Ofn4969e6hfv36J/n+YO7an5WGbWha2p2Vhe1oO9riaieDgYABP//I2btz4udtOnz4d7dq1w6pVqwqs02d8Tv/+/Qv8sABAz5490blzZ4wcORItWrQAAHTo0AGVKlXCihUr0LlzZ+22K1asgIODA7p06aJzjKtXryI3NxctW7YsUSZzx/a0PGxTy8L2tCxsTwsi1QSyVHINGzYUBwwYoLMMRTwyLiQkRPsoO2M8ru555162bJkIQOzTp4+4evVqcfDgwSIAcfbs2QW2/frrr0UHBwcxIyPDKBnLMran5WGbWha2p2Vhe1oGFq5mZMGCBaKTk5OoUCi0y4r6i3/o0CHJfuhEURRXrVol1q1bV7SxsRFr1qwpLly4UNRoNAW2a9GiRYEnmZQXbE/Lwza1LGxPy8L2tAwsXM1IWlqaWKlSJXHNmjVSRzGI8+fPi4IgiOfPn5c6iiTYnpaHbWpZ2J6Whe1pGQRR/M8MuVSmzZ07F+vXr8fVq1chk5n3vXX9+/eHRqPBzz//LHUUybA9LQ/b1LKwPS0L29P8sXAlIiIiIrNg3l83iIiIiKjcYOFKRERERGaBhSsRERERmQUWrkRERERkFli4EhEREZFZYOFKRERERGaBhSsRERERmQUWrkRERERkFli4EhEREZFZYOFKRERERGaBhSsRERERmQUWrkRERERkFli4EhEREZFZYOFaQo8ePcL06dPx6NEjqaMQERERlSssXEvo0aNHmDFjBgtXIiIiIhNj4UpEREREZoGFKxERERGZBRauRERERGQWWLgSERERkVlg4UpEREREZoGFKxERERGZBRauRERERGQWWLgSlRPpCpXUEYiIiEqFhStROZGazcKViIjMGwtXonIiW5kvdQQiIqJSYeFKVE5k5+YjX62ROgYREZHeSl24Pnr0CBcvXkR2drYh8pTYsmXL4OvrCzs7O7Ro0QJnzpx57vaLFi1C3bp1YW9vj6pVq2LChAnIzc01UVoiaaUp8qSOQEREpDe9C9cdO3agXr16eOmll9C8eXOcPn0aAJCSkoJmzZph+/bthspYpC1btiA8PBzTpk1DTEwMmjRpgrCwMCQlJRW6/aZNm/D5559j2rRpuHbtGtauXYstW7bgiy++MHpWorIgJZNf0oiIyHzpVbju2rULvXr1gpubG6ZNmwZRFLXr3Nzc4OPjg/Xr1xssZFEWLFiAkSNHYtiwYfD398fKlSvh4OCAdevWFbr9yZMn0apVKwwcOBC+vr7o2LEjBgwY8MJeWiJL8SiNhSsREZkvvQrXL7/8Em3btsXx48cxZsyYAuuDg4Nx/vz5Uod7HpVKhXPnziE0NFS7TCaTITQ0FNHR0YXu07JlS5w7d05bqN65cwd79+5F586dizyPUqlERkaG9pWVlWXYD0JkQo/ScqSOQEREpDcrfXa6fPkyFixYUOR6T0/PIi/XG0pKSgrUajU8PT0LnPv69euF7jNw4ECkpKSgdevWEEUR+fn5eO+99547VCAiIgIzZswwaHYiqdxPVUgdgYiISG969bg6ODg892asO3fuoHLlynqHMpbDhw9jzpw5WL58OWJiYvDbb79hz549mDlzZpH7TJw4Eenp6drXkSNHTJiYyLDupmTrDO0hIiIyJ3oVru3bt8fGjRuRn19wXsiEhASsXr0aHTt2LHW453Fzc4NcLkdiYqLO8sTERHh5eRW6z5QpU/D2229jxIgRaNSoEXr27Ik5c+YgIiICGk3h0wTZ2trCxcVF+3JycjL4ZyEylWxlPocLEBGR2dKrcJ09ezbu37+Pl19+Gd9++y0EQcD+/fsxefJkNGrUCKIoYtq0aYbOqsPGxgYBAQGIiorSLtNoNIiKikJwcHCh+ygUCshkuh9ZLpcDAHuhqNyIiXsidQQiIiK96FW41q1bF8ePH0flypUxZcoUiKKI//3vf5gzZw4aNWqEY8eOwdfX18BRCwoPD8fq1auxceNGXLt2De+//z6ys7MxbNgwAMDgwYMxceJE7fbdunXDihUrsHnzZsTGxuLAgQOYMmUKunXrpi1giSzdkWuJUGv4RY2IiMyPXjdnAUCDBg3wxx9/4MmTJ7h16xY0Gg1q1KgBd3d3Q+Z7rn79+iE5ORlTp05FQkICmjZtisjISO0NW/Hx8To9rJMnT4YgCJg8eTIePHgAd3d3dOvWDbNnzzZZZiKpJWcqcehqIkIbFj6khoiIqKwSRF4jL5GYmBgEBATg3LlzaN68udRxiIrt9K0UrIi6CQCwt5ZjZt8mcHO2lTgVERFR8ek1VGDJkiUICwsrcv3rr7+OFStW6B2KiIwrJ0+N1YduQcMhA0REZEb0KlzXrl0Lf3//Itf7+/tj1apVeociIuO78SgDey8+lDoGERFRselVuN6+fRv169cvcn29evVw+/ZtvUMRkWlsO3sP8SlFz8lMRERUluhVuNrY2CAhIaHI9Y8ePSow7RQRlT1qjYhvD96EKr/weYyJiIjKEr2qy1deeQUbNmxAZmZmgXXp6elYv349XnnllVKHIyLDCAwMRLfWjbF7zvAC6x48ycEPJ2IlSEVERFQyek2HNW3aNISEhKBp06YYP348GjRoAAC4fPkyFi1ahEePHmHTpk0GDUpE+ktISEBy4iM4uBZ82h0AHL2eBJ+K9ghrXMXEyYiIiIpPr8K1RYsW2LVrF0aNGoUPP/wQgiAAePr0KT8/P+zcubPIp1cRUdn0U/Rd2FjJ0d7fU+ooREREhdL7AQSvvfYabt26hfPnz2tvxKpZsyaaN2+uLWSJyLxsPHYH2cp8dGlahT/HRERU5uhduAKATCZDQEAAAgICDJWHiCT2y5l4JGXkYnBrP1jJeZMlERGVHaUqXK9evYo7d+7gyZMnKOwBXIMHDy7N4YlIIkevJyElU4kxr9WBo22p/pkgIiIyGL1+I92+fRuDBg3CmTNnCi1YAUAQBBauRGbs6oN0zNlxGeGd66OyEx8NS0RE0tOrcB01ahQuXbqERYsWoU2bNqhYsaKhcxFRGfDgSQ5mbruM8NfroZqbo9RxiIionNOrcD1x4gS++OILfPDBB4bOQ0RlTJpChTk7r+C9V2ujaXV+SSUiIunodeeFm5sbKlSoYOgsRFRG5eapsTjyOnaff1Dk8CAiIiJj06twfe+99/DDDz9ArVYbOg8RlVEins44sPTA38hRFf4gAyIiImPSa6hAnTp1oFar0aRJEwwfPhxVq1aFXC4vsF2vXr1KHZCIypZzsam4n6rAmNA6HPdKREQmpVfh2q9fP+2fP/7440K3EQSBPbJEFioxPRczt1/G0LY10KqOu9RxiIionNCrcD106JChcxCRmclTa7D60C08SstB75er8klbRERkdHoVriEhIYbOQURmavf5B1BrRPR7pbrUUYiIyMKV6nmOSqUS0dHR2LFjB1JSUgyViYjMzL6LD3HkWqLUMYiIyMLpXbguWbIE3t7eaN26NXr16oW//voLAJCSkgI3NzesW7fOYCGJqOz74UQc4lOypY5BREQWTK/Cdf369Rg/fjw6deqEtWvX6szr6Obmhg4dOmDz5s0GC/k8y5Ytg6+vL+zs7NCiRQucOXPmudunpaVhzJgx8Pb2hq2tLerUqYO9e/eaJCuRJctTa7D8j7+Rq+JNmUREZBx6Fa7z589H9+7dsWnTJnTr1q3A+oCAAFy5cqXU4V5ky5YtCA8Px7Rp0xATE4MmTZogLCwMSUlJhW6vUqnw2muvIS4uDr/88gtu3LiB1atXw8fHx+hZicqDhPRcbDoZJ3UMIiKyUHoVrrdu3cLrr79e5PpKlSrh8ePHeocqrgULFmDkyJEYNmwY/P39sXLlSjg4OBQ5TGHdunVITU3F9u3b0apVK/j6+iIkJARNmjQxelYiqcTHxyM7++kl/HxlLrJSE4x6vqM3knD2jvF//omIqPzRa1YBV1fX596MdfXqVXh5eekdqjhUKhXOnTuHiRMnapfJZDKEhoYiOjq60H127tyJ4OBgjBkzBjt27IC7uzsGDhyIzz77rNAHKBCZszNnzmDmzJnYs2ePdjiPKicTv07qjZcatUKTzkPh5utvlHOvP3oHtTyd4epoY5DjZSlysX73CcTcuAtBEBDk74ehXVrBzta6yH1mrNmJa3GPdJaFvlwfI7q3BQAcjrmBlb8dLnTfbz8fjApO9gbJTkREhqNX4dq5c2esWrUKo0ePLrDuypUrWL16NYYPH17qcM+TkpICtVoNT09PneWenp64fv16ofvcuXMHBw8exFtvvYW9e/fi1q1bGD16NPLy8jBt2rRC91EqlVAqldr3WVlZhvsQREby22+/oV+/fhBFUWcMOgBAFPHg8kk8uByNkJEzUb1ZO4OfP1uZj59P38W7HWoXe58Za3YipHldtGtet8C6b7YeRFqmAl8M7QK1WoOV2w5j1Y6jGPfmq889ZofAenjz1Ze1722s//knr2Wjmmhau6rO9it+OwRVnppFKxFRGaXXUIFZs2ZBrVajYcOGmDx5MgRBwMaNGzFo0CAEBgbCw8MDU6dONXTWUtNoNPDw8MCqVasQEBCAfv36YdKkSVi5cmWR+0RERKBChQraF+ewpbLuzJkz6NevH9RqdZFPrxM1GogaDY6snoKUuKtGyXHqVgpSs5Qv3vAFHiQ9wcWb9/BuzxDUruqJer7eGNqlFaIv3UJqxvNnMbC1toKrs4P25WD3Tw+wzX/WyWQCLt95iPYB9UqdmYiIjEOvwrVKlSo4d+4cOnXqhC1btkAURXz//ffYtWsXBgwYgFOnTsHNzc3QWXW4ublBLpcjMVF37sjExMQihyl4e3ujTp06OsMC6tevj4SEBKhUqkL3mThxItLT07WvI0eOGO5DEBnBrFmzCu9pLUAEIOKvvRuMkkMjApfvp5f6OH/fS4SjnQ1q+vzzaNlGNV+CIAi4db/wGzGfOX7xFkbO2YiPl/yMn34/DaUqr8htj57/G7bWVnilYY1SZyYiIuMo8VABpVKJ/fv3w9fXF2vWrMGaNWuQnJwMjUYDd3d3yGSleqZBsdnY2CAgIABRUVHo0aMHgKc9qlFRURg7dmyh+7Rq1QqbNm2CRqPR5vz777/h7e0NG5vCx+LZ2trC1tZW+97JycmwH4TIgOLj47F79+5iFK1PiRoN7l06gazUBDhVMvy49HuPFaU+RlqmAi7/uXQvl8vgZG+LtMyij9+qSS24uzqjorMD4hNSsen303iYkoaPBoYVuv2hc9fRqnEtneEERERUtpT4X2gbGxv07dsXixcvRuPGjQEA7u7uL9jLOMLDwzFkyBAEBgYiKCgIixYtQnZ2NoYNGwYAGDx4MHx8fBAREQEAeP/997F06VJ8+OGH+OCDD3Dz5k3MmTMH48aNkyQ/lV+qvHyoNRqDH3df5P5iF61aoohH186iZnAXg+dJycwpct22wzHYfvS89r0qT41b95Owfvdx7bL5497U+9yhL/9z41k1r8pwdXbArPW7kfA4HV6VK+hs+3d8Ah4kp2FMnw56n4+IiIyvxIWrIAioXbt2mXjEa79+/ZCcnIypU6ciISEBTZs2RWRkpPaGrfj4eJ0e4KpVq2L//v2YMGECGjduDB8fH3z44Yf47LPPpPoIVA6p8vJx5c5DKJSFD08pjWu34yHIZBBLUhQLArIzM6DINXyeR48zocrLL7QX87UgfwQ3qql9/83Wg2jRwA9B/n7aZRWdHeHq7ICMLN0CWK3WICtHCVdnh2JnqVXVAwCQmJpRoHA9ePY6fL0ro4aPNF/CiYioePS6JvbFF18gPDwcffv2Rd26Be8ANqWxY8cWOTTg8OHDBZYFBwfj1KlTRk5FVDS1RgOFUgUruRzWVoadhs21QoWSFa0AIIqwsXeETCYYNIsoihAgFtmz7ORgBycHO+17Gys5XBztCxSVdap6IjtXhTsPkrWF5eU7DyCKImq95FHsPHcfPZ1b9r/Fbq4yD6cu30H/jkHFPhYREUlDr8L11KlTqFy5Mho2bIh27drB19cX9va6Y9AEQcDixYsNEpLIEllbyWFr4PGUrduGQBCEkg0XEAR41AmAIBi2cAUAJ9vSF+Y+HhXRpHZVrNp+FCO6t4FarcH63ScQ3KgWKrk4AgBSM7Ixa91ujO7THrVe8kDC43Sc+OsWmtWpBicHO8QnPMZ3e6NR39cb1b0q6xz/5KXbUGs0aNOk+FN3ERGRNPT6rbl06VLtn6OiogrdhoUrkel5V/FBSIdQHDt8sMipsP5NkMng7R8Mx0qeL9xWHx7ORT8goCQ+6NsB63afwKx1uyEIAlo0ePoAgmfy1Ro8TEmDUpUPALCSy3H59gPsO3kJyrx8VK7giBYN/NCzXfMCxz507jqC/P3gaG9bYB0REZUtgljiOznKt5iYGAQEBODcuXNo3rzgL0GiF8lRqhBzIx72tjYG73EFgEt/XcDbfbtDrVa/oOdVgCCT4dXxy1Cpen2D57CWAcNbeiG4gS/sbQ3zBC0iIirfTDN3FRGZTKPGTfG/JSsgl8uLfJSxIJNBkMkQPHS6UYpWAGhTuyJsrfhPDBERGU6pfqucOnUKERERmDBhAm7evAkAUCgUiImJ4aNRiST0WlhnfL91B9q061Bw7KogwNs/GK+OX4aXmrQ1yvnreDogoLqLUY5NRETll17XKVUqFfr3748dO3Y8vXNYENCtWzfUrl0bMpkMHTt2xIQJEzBp0iRD5yWiYmrUuCmWrtqARw8foHeXUGRkZMDa3hkdP11rtDGtAOBb2R69m3tBY4R5aomIqHzTq8d1ypQp2L17N1asWIEbN27ojKOzs7ND3759sWPHDoOFJCL9eVfxgb3D0ymgrGzsjFq0NvZxxsAgb1jLOUSAiIgMT6/fLj/99BPef/99vPvuu6hUqVKB9fXr18edO3dKHY6IzIO1TECXRu7o3tQDVixaiYjISPQaKpCUlIRGjRoVuV4ul0OhKP0zyomo7HN3skGfAC+4O3PmACIiMi69CteqVavi+vXrRa4/ceIEatWqpXcoIjIPDao4oVtjD9hw9gAiIjIBvX7bDBw4EN9++y2io6O1y57dubx69Wr8/PPPGDx4sGESElGZ1LKmK3o182TRSkREJqNXj+ukSZNw6tQptG3bFvXr14cgCJgwYQJSU1Nx//59dO7cGRMmTDB0ViIqI1rWdMWr9Sob5TGxRERERdGrq8TGxgaRkZFYv349atSogXr16kGpVKJx48bYsGEDdu3aVeTE50Rk3hr7OLNoJSIiSRSrxzU8PBxvv/02mjVrBgCIj4+Hu7s7Bg0ahEGDBhk1IBGVHX5u9ujaxINFKxERSaJYPa6LFi3CtWvXtO/9/Pywbds2o4UiorKnpps9+r/sDSsZi1YiY1DnqaWOQIak4uxKxlCsHldPT0+deVn//cABIrJ8AdVc0KmhO+QsWomMRpOvgdyaw+wshloJwEHqFBanWIVrly5d8OWXX+L333+Hq6srAGD+/PnYvHlzkfsIgsCnZxGZOSuZgNcbuqNZNRepoxBZPHYKWRh1ntQJLFKxCtfFixfDw8MDhw4dwpUrVyAIAu7du4fU1NQi9+EYOCLzVsHeCm8GesG7gp3UUYjKBVHDwtWiqFVSJ7BIxSpcHR0dMWfOHO17mUyGRYsWYeDAgUYLRkTSqVbJDn0DvOFoy8uWRKaiyWfhalHyc6ROYJGKdXNWr169cOzYMe37Q4cO4bXXXjNaKCKSTn1vRwxqUYVFK5GJqfN5c5ZFyePNWcZQrMJ1x44diI+P177v0KEDDhw4YLRQRCSNJi85o3dzL1jJ+TQsIlNT52mkjkCGpMyUOoFFKtZvJx8fH5w/f177XhRFjmElsjD+3k7o1sQDMv5sE0kiX5kvdQQyJFWW1AksUrEK1/79+2PBggWoVq0aGjduDAD4/PPP0bhx4yJfTZo0MWrwZ5YtWwZfX1/Y2dmhRYsWOHPmTLH227x5MwRBQI8ePYwbkMgMvFTRDj2asmglkpJaxaECFoWFq1EU6+asiIgI1KpVC4cOHUJSUhIEQYCjoyMqV65s7HzPtWXLFoSHh2PlypVo0aIFFi1ahLCwMNy4cQMeHh5F7hcXF4ePP/4Ybdq0MWFaorLJyVaONwM4PIBIavl8AIFl4RhXoyhW4SqXy/Huu+/i3XffBfB0VoHJkydLPqvAggULMHLkSAwbNgwAsHLlSuzZswfr1q3D559/Xug+arUab731FmbMmIFjx44hLS3NhImJyp4eTT3hZFesfwqIyIjY42ph2ONqFHp1scTGxkp+iV2lUuHcuXMIDQ3VLpPJZAgNDUV0dHSR+3355Zfw8PDAO++8U6zzKJVKZGRkaF9ZWfyLSJbjZd8KqOHOJ7sQlQX5ShauFkWVCWh4w52h6dXNUr16dUPnKLGUlBSo1Wp4enrqLPf09MT169cL3ef48eNYu3YtLly4UOzzREREYMaMGaWJSlQmOdrI0aGutMN9iOgf+bm8OcuiaNRATirg6CZ1EotSrB5XmUwGKysrqFQq7Xu5XP7cl5VV2br0mJmZibfffhurV6+Gm1vx/xJNnDgR6enp2teRI0eMmJLIdELqVoKtNce1EpUVKgWftGRx0uNfvA2VSLGqy6lTp0IQBG0x+uy9lNzc3CCXy5GYmKizPDExEV5eXgW2v337NuLi4tCtWzftMs3/d+FbWVnhxo0bqFmzZoH9bG1tYWtrq33v5ORkqI9AJBkXOzmaVnWROgYR/Ysyi4WrxUm9BVRpLnUKi1KswnX69OnPfS8FGxsbBAQEICoqSjveVqPRICoqCmPHji2wfb169XDp0iWdZZMnT0ZmZiYWL16MqlWrmiI2UZkQ6OsKKxmnviIqS3IzlFJHIENLugzgTalTWJSydT2/hMLDwzFkyBAEBgYiKCgIixYtQnZ2tnaWgcGDB8PHxwcRERGws7NDw4YNdfZ3dXUFgALLiSyZgKdPyCKisiUnPZcP+LE0iRelTmBxSly4KpVK/PDDD/j9999x+/ZtZGZmwtnZGbVq1UKnTp0wcOBA2NjYGCNrAf369UNycjKmTp2KhIQENG3aFJGRkdobtuLj4yGTcQwf0b+9VNEOzpz+iqjMyVepoVLkwdbRNL9DyQQyHgBZiYCT54u3pWIp0W+vS5cuoXv37rh79y5EUUSFChXg5OSEpKQkxMTEYOvWrZg9ezZ27tyJ+vXrGyuzjrFjxxY6NAAADh8+/Nx9N2zYYPhARGVcLQ9Of0VUVmU/VrBwtTTxJwD/XlKnsBjF7o7MysrCG2+8gcTERMyePRv37t3DkydPdP47a9YsPHz4EN26dUN2drYxcxORnqpVspc6AhEVISuZvzstzp0/pE5gUYpduK5fvx7x8fHYs2cPPv/8c/j4+Ois9/HxwcSJE7Fr1y7ExsayN5OojPKuYPvijYhIEpmJfMiNxXn459MhA2QQxS5c9+zZg44dO6Jdu3bP3a5Dhw547bXXsGvXrtJmIyIDqezmgUrunnByrQwbK477Jiqr0h9mSh2BDE0UgYvfSZ3CYhT7N9ilS5deWLQ+06FDhwJTTxGRdH7esQ/Lfz2CMf/7UeooRPQcT+6lQxRFqWOQoV3fDjyJkzqFRSj2zVmpqamFTuxfGE9PT6SmpuodioiMw83JWuoIRFSIwMBA3L15Fy52rmj9XgwqeHPKOouiUQPH5gBdVwKc7ahUiv1/T6lUwtq6eL/0/v14WCIqOyo78W5lS5GnyZM6AhlQQkICUjJSkKZ4ggd/JUgdh4zhUQxwebPUKcxeiabDiouLQ0xMzAu3i42N1TsQERlPRQf2uFqK3PxcWNuwPS3R3dP3UC+0JmRy9sxZnNNLAM/GgCcffKSvEhWuU6ZMwZQpU164HZ/8QVQ2udrzwQOWQhQ1UGvUkMvkUkchA1Ok5SL+3EP4Br0kdRQyNE0+8PvHQM/vACcPqdOYpWL/Flu/fr0xcxCRkQkC4GDLIseS5GnyWLhaqKv7/oZPYy9Y8yl3ZikwMBAJ8TfhZZ+Ps1/854FMihQgcjzwxhrAhg+EKali/0QMGTLEmDmIyMhsrWSQ8UqIRcnX5AGwkzoGGUFOei4u7byG5m82kjoK6SEhIQEPkjMA1yKG8zz+GzjwCdBpESDnkJ+S4AAaonKCRavlydPkSx2BjCj21D3ExzyUOgYZy/3TwKGpgEYjdRKzwsKVqJzgzJCWJ58zC1i8mC2XkHo3TeoYZCy3DwBHvmTxWgIsXInKCY2GpaulUbFwtXjqPDVOrjnLR8Fasr93A4enP53rlV6IhStROcG61fLk5udIHYFMQJmtwrFvzyD7sULqKGQsN/cCf3wO5CulTlLmsXAlKidkHOJqcbLysqWOQCaSk5aLYytOQ5HGLysWK/YQsGc0kJMmdZIyjYUrUTkhZ+VqcTJVGVJHIBPKTs3B0WWnoXjC4tViJVwEtg0GUv6WOkmZVaoJ4q5evYo7d+7gyZMnEMWC1yEHDx5cmsMTkQHZWPF7qqVJzU2VOgKZWPZjBY4sPYU27wXByd1R6jhkDJkPge1DgdafAXXfeDoJN2npVbjevn0bgwYNwpkzZwotWAFAEAQWrkRliIMNJ6q3NI9zUqSOQBJQPMnBkaWn0HrUy6hQxUXqOGQMahVwZObTKbPaTARsnaVOVGboVbiOGjUKly5dwqJFi9CmTRtUrFjR0LmIyMAqOXKSa0uTqEiUOgJJJDdTiaPLTqPlyEBU9uXvYIt1+3cg8SLQ/kugSoDUacoEvQrXEydO4IsvvsAHH3xg6DxERFRMyYpk5GnyYC3jl5LySJWTh2MrzuCVoc3gVZ/PvbdYWYnA7veARgOBl8cAVjZSJ5KUXoPe3NzcUKFCBUNnISKiEhChwaMsPlmpPFPnqXFy7TnEn30gdRQyJlEE/voR+G0Q8Pim1GkkpVfh+t577+GHH36AWi39ZLnLli2Dr68v7Ozs0KJFC5w5c6bIbVevXq0d2lCxYkWEhoY+d3siorIuLiNO6ggkMVEj4s9NF3H7xF2po5CxPbnzdNaB6zukTiIZvYYK1KlTB2q1Gk2aNMHw4cNRtWpVyOUFb/zo1atXqQM+z5YtWxAeHo6VK1eiRYsWWLRoEcLCwnDjxg14eBS8bHL48GEMGDAALVu2hJ2dHebOnYuOHTviypUr8PHxMWpWIiJjiE2/g7YvhUgdg8qAC79egagWUautr9RRyJjUeU9v3HoSC7zyYbmbdUCvwrVfv37aP3/88ceFbiMIgtF7ZBcsWICRI0di2LBhAICVK1diz549WLduHT7//PMC2//4448679esWYNff/0VUVFRnAGBiMzSrbSb0IgayAROd0bAxe1XIbeWwS+4mtRRyNj++gHIzwFaf16uile9CtdDhw4ZOkeJqVQqnDt3DhMnTtQuk8lkCA0NRXR0dLGOoVAokJeXh0qVKhW5jVKphFL5zyPYsrL4vGgiKjuy87IRmx6Lmq41pY5CZcT5Xy7D2sEaLzXxljoKGdvVXwH7SkDgKKmTmIxehWtIiPSXpVJSUqBWq+Hp6amz3NPTE9evXy/WMT777DNUqVIFoaGhRW4TERGBGTNmlCorEZExnUs8y8KVtEQROPvjRdi72KGyH6fKsnjnVgPu/kD1NlInMYlSX1u6evUq9u3bh3379uHq1auGyGQSX331FTZv3oxt27bBzs6uyO0mTpyI9PR07evIkSMmTElE9GIxSeeQnZctdQwqQ9T5GkSvO4fsxwqpo5ApHJsDqMpHW+tduO7YsQM1a9ZEo0aN0LVrV3Tt2hWNGjVCrVq1sHPnTkNmLJSbmxvkcjkSE3Un4E5MTISXl9dz9/3666/x1Vdf4ffff0fjxo2fu62trS1cXFy0Lycnp1JnJyIyJJVaiYPxUVLHoDJGma3CybXnkKfMlzpKuRIfH4/s7KdfJLOVGsSnqox/0uxk4OpW45+nDNBrqMDevXvRu3dvVK9eHXPmzEH9+vUBANeuXcOqVavQq1cv7N69G506dTJo2H+zsbFBQEAAoqKi0KNHDwCARqNBVFQUxo4dW+R+8+bNw+zZs7F//34EBgYaLR8RkSkduX8YzT0D4OPEGVLoHxkJmTiz8TyC3wmATM4b+IzpzJkzmDlzJvbs2QNRFAEAaTlq+E66hK6NKmBKZ2+87OtovABXfgYavw3ISt/OeYoM3Ny3BI9vRAOCAHf/tqjV6QNY2doXuc/Ds7uQeCkKWY9uQq1SoNVnu2Btr9vZF72wP5Tpuh2Ofq+ORPU2A4udTa/CdebMmWjcuDGOHTsGR8d/GuGNN97A2LFj0bp1a8yYMcOohSsAhIeHY8iQIQgMDERQUBAWLVqE7Oxs7SwDgwcPho+PDyIiIgAAc+fOxdSpU7Fp0yb4+voiISEBAODk5MSeVCIyaxpRje+ubMCHzSfAwdpB6jhUhiRcT8a5zX8hcEATCLLyc/e5Kf3222/o168fRFHUFq3PiCKw93I69l1Ox5aRNdCrmZHGHWclAo9vAO71i7X5+fXj4dW0E7ybFazVrv02G8rMx2gy+H/QqNW4sWMu/t71Nfz7TCnyeOo8JSrVCkKlWkGIjVpd5Ha+7YfBu3lX7fvnFcOF0ass/+uvvzBkyBCdovUZR0dHDB06FH/99Zc+hy6Rfv364euvv8bUqVPRtGlTXLhwAZGRkdobtuLj4/Ho0SPt9itWrIBKpUKfPn3g7e2tfX399ddGz0pEZGzJOUnYcGU98tR5UkehMib+3EPE/HwJokZ88cZUImfOnEG/fv2gVquLnAZUrXn66rf6Dv6MM+J49Md/l/oQ2cl3kXrrDOq+8QlcXvKHa/VGqPX6OCRdPgRlRkqR+1UN7oPqbQbC5SX/5x5fbuMAW+dK2pfcpmSFq149rnZ2dkhNTS1yfWpq6nNveDKksWPHFjk04PDhwzrv4+LijB+IiEhCt9L+xprLqzC8wTuwtTLNv8NUOv8eE6nMy0VyRhLcXQo+RKe04s7chyiKCOjXmD2vBjRr1qxCe1r/S/z/16y9j7BjdC3jhMlNL/UhMu5dgZWdE1x86mqXVawRAAgCMh5cg7tL6WYviD++CXePfg+7Ch7waPQqXnqlL2SFPMSqKHoVrh06dMDixYvRqVMnBAcH66w7ffo0lixZgo4dO+pzaCIiKqWbT/7G0gvfYGTjUXCxcZE6DhWhsDGR2cpsjF47HAE1XkafFgNQy6uOQc95988HAGDw4jUnKxd//HQIty7egSAIqBNQC6H928HGzqbIfS4c+QtXT99AYnwSVLkqfLjkfdg56H7Z+vWbHUi8lwxFhgJ2jrbwrV8NIX3awNm1bAzvi4+Px+7du19YtD6j1gC7LqUjPlWFapWK/n+jv9L3qKuyUmHtqDucQSaXw9reBaqsojsti+OlFr3g5F0H1vbOSL93BbFRq6HKfIxancYU+xh6Fa7z5s1DcHAwWrdujaCgINSt+7Qqv3HjBs6cOQMPDw/MnTtXn0MTEdELBAYG4lHCI+Q75uOtb/sXus2DrPtYErMQ7zcZg8r2biZOSC/y3DGREBETexbn485hQufP8ErtVgY9990/H8DOxQ4Nu9R98cb/smneVjRq5Y9GrRoUWLdrzT5kp2ejX3gvaNQa7F3/OyK/+wNvvNu5yOPlqfJRo2F11GhYHUd+O1HoNtXqVsUrnYPg5OqIzCdZOLT1KLav2I23Jxb+974o6jwVRI3hZ1f4PXJvsYvWZ0QRiLqejqHBlQ2eR1SrixwDevfoD7h77J8niGryVci4fxU39y7WLgsas8Hgmf6tass3tX928qoJmdwKf+9egBqhIyGzKl4hr1fh6ufnh7/++gsRERHYt28ftmzZAgCoXr06PvzwQ3z++efw8DD8ZQ4iIgISEhLw8MFDOLk9/w7l1NxULL3wDcY2HYfK9ob/JUn6+feYyKKKHo2oAURg4d65mN3va4P3vN6Iug3Pem5wr1n6vxcpDx8j9nIcBk8eAG/fp9NRhg5sj62Lt6H9m22L7B19+bXmAID46/eKPPbLHZtr/1yhsgteef1l/LZsJ9T5asitind5WZ2nwpPY81ArDT+2NPHOZchkAjQlGDssE4C0zBzk5xo+T25KPBzyVJBbFywCqwS+AfcG7bXvr/02C+7128KtflvtMhtnN9g4VUJe9hOdfTVqNfJyMmDjVPSTRvXh8lJ9iBo1ctMS4OBWvMcU61W4AoCHhwcWLlyIhQsX6nsIIiIysnRlGlZcXIZxzT6Ei20FqeMQij8mEgBEUcQvpzfj8+5TDZ7jxh+3DVK4PrzzCLYOttqiFQB861eDIAh4dCcBzs0NM54zJysXV09dh0/NKsUuWgFA1ORDrcyGILeGzMraIFmeca7gWqKiFQA0IuBiLzfItFU6RBFqdf7/9ywXLFytHVxg7fDP0CGZlS2sHSvCobLuFHouVRsgPzcLmQ9vwLnK0175tNgYQBTh4lO8GQuKKyvhFiDICgxNeB69C1ciIjIPqbmPsfziMoxuOpZjXiVW0jGRGlGDc3fOGOWGraSbj5GnzIe1belKgex0BRyddadgk8llsHe0Q3Z66XsVD/9yDDEHLyBPlY8qNbzRZ1x3vY4js7KG3NqwNyy2b9MKgiCUaLiAIADt6zhBEAx7g5wIALLSl3WO7tVRqVYQbuycjzpdJ0DU5OPm3iXwaNgeti5Phx0pM5JxYeNHqN9zIlxeelrMKjNTocpKRU7q03HU2Ul3ILdxgF0FD1g7uCD93hVk3L+Gin5NIbdxQMb9K7gVuRyejUNhbe9c7HzF+oTDhw+HIAhYtWoV5HI5hg8f/sJ9BEHA2rVrix2EiIiMJ0mRiKXnl+C9JqNRyc6wl/ssUX5ePtRqjcGPGxm5v+RjIiHiUvxFtG8QatAsolpERmImKlcrvLcres8ZRO89o32fr8rHwzuPcGDTIe2yEV8ONmimwgSFBaJx64ZIf5yBE7tOYffa/egzrrvBCz99vOTjjbAObXDg8Ikip8L6N7kM6OzvhGqVDNvz+4xoZZg5nOv3moSbexfj4ncfAYIM7vXboNbr47TrNWo1ch7fgzpPqV328OxO3D2yUfv+wvoPAQB1u38G72adIJNbI+nyQcQd3gBRnQc7V2+8FNwHVYP7lihbsQrXgwcPQiaTQaPRQC6X4+DBgy/8C1MW/kIREdE/UnKSsSRmEd5pNAJVnYs3nqw8ys/Lx93r8VAqDP+ozrjrcdrfp8UlQEBmdgaUCuWLNy6hB7ceooK3M6ysC5YDTUMao17gP2Nrd63Zh7rNa6FO89raZU6uTnCs4IDsTIXOvhq1BjnZuXCsUPonRTk428PB2R6VvCqisnclrPh0DR7eeQSfmlVKfWxD+Hjsu/jjyIkX9rwK//+aGGa8myXVjsX/f9Js2KIi11k7uDz3YQP2Fb3QbvohnWV+7YfCr/3QIvdxrlIHASOXFztfUYpVuP53/lPOh0pEZJ4yVOn45vwS9K7dB0FeLdjJUAi1WgOlQgW5lRxW1sUfS1kcFVwrlKhoBZ72uNrbOBh87lVRBERBhFqtQWFDP+2d7GDv9M+ldStrKzi4OKCip6vOdlVqeEOpUCIhLhFevk8fAHT3+j2IogjvGl4wqP8vDNV5L+7dNJXmTRpg7ZK5eGfcZxBFFNrzKpc9LVp/GuaDl6uXbML94tI4eEDt6G2UY5cleo0Mjo+PR05OTpHrc3JyEB8fr3coIiIynnxNHrbc+Ak/XPsOijzFi3cop6ys5bC2sTboq23rtiX+siBAQMOXGkMQBIO+rGzksLIvfWHuVqUy/Br6IvK7P/DwTgLu33yAA5sOov7LdbUzCmQ+ycLqyRvw8E6Cdr+s9GwkxifhSVIaACD5fgoS45OQk5UL4OlNX+cOXkBifBLSH2fg7rV47Fy1F67uFVClZtkq0Lp1ehWRWzfitXatCrSvIDwdHnB0gi96NDHeGHNl9deenszC6T0d1vfff4+BAwcWun7nzp0YOHBgscZ7EBGRNM4nxSAuPQ6DGwxBdRdfqeOUCz5VfPBqu1dx6OihYv2OlAkyNKseADdnd4NnsXO1NViPe7cRr+PApoPYMv8XQCagbvPaCB3QTrteo1YjNeEJ8lX/PI74wuG/cGLXKe37TfO2AgA6D+uIRq0awNrGGn/H3MLxHdHIU+bBydURfg180b1ri0KHNkiteZMG2LR6Me4/eIQ2XfohPSMTrvYynPushtHGtD6jca4GVdV2QJ7hh7eUNXq1/IsGlufl5UFm6GkeiIjI4J4oU/HN+SXoW+dNtPB+Reo45cK49z/E4WOHi3U3ugABPQJKdvNKcdlXtC3R9gM/LTqHvZPdcx82UMGtAj5bM0FnWevuwWjdPbiIPQD3l9ww4OM+JcpYFrzk4w0HB3ukZ2TC0UZm9KJVtHZCTvMP/n9GARauWhkZGUhLS9O+f/z4caHDAdLS0rB582Z4e5etbnwiIiqcRlRjy42f8ET5BGHVO3Hcq5E1adQES+cvw9iPxkAUxUJ7XmWCDAIEjOv4MWp61C7kKKXn5GGYO9BJOqKVA3Je/hgaZx8gL1fqOCZR7MJ14cKF+PLLLwE8nTFg/PjxGD9+fKHbiqKIWbNmGSQgERGZxu9xkUjLfYK+dfpBLjPsTUmk6/WOr+O3TduwZMViRB2O0ul5FSCgWfUA9Ajoa7SiVRAEuFbnnL7mTLSpAEWLz6Cp4Ct1FJMqduHasWNHODk5QRRFfPrppxgwYACaN2+us40gCHB0dERAQAACAwMNHpaIiIzrTMJpPM59jKENhsPRuvRTGVHRmjRqgrXL1+HBwwfo1DMMGRkZcLRxRMSbC40ypvXf3OtVgq2LDZQ5ln9p2RJpnHygCPoEooNhH0phDopduAYHByM4+OlYlOzsbPTu3RsNGzY0WjAiIpLG7bRbWByzECMbvQv3cviL0dR8qvjAwd4BGRkZsLW2M3rR6uThgBrtqkIjGv4BC2R8+e5Nno5ptS6fQz1KfAeVQqHAkiVLsG/fPmPkISKi54iPj0d29tPHaObl5iEjMdMo50nJScaimIW4lXbTKMcnaVT0rYCGvepAbuD5ack0VLV6ICfok3JbtAJ6zCrg4OAAKysrODryEhIRkamcOXMGM2fOxJ49e7TjIZVZKqwdsB41XvFDi8FB8KrnadBz5uQrsPLicvSq3Qctq7Qy6LGzc7Pw0/Gf8FfcRQiCgOY1AtCvdX/YPedZ8nn5edh68mf8eesM8tX58K/aAG+1fQsuDhUAAPdS7iHy/D7cenQTWblZqOxcGSEN2uHVxoZ9VKo5EgQB1YKrwKe5p8EfZEDGJ8rtkNv0PeR7B0kdRXJ6zVnVu3dv/PLLLyV+3jIREZXcb7/9hlatWmHfvn0F/90VgdjTcdgydituHr1l8HNrRA1++ftn/B63v8T7fr1jHk5eP1HoujV/rMHD1IcY3y0cYzuPw81Hf+OHw98993g/n9iMi3cvYlTH9/Bxj0+QrkjDiv3/PELybvJdONs7Y3joCEzv/yU6B3TBb6d/w8FLB0uc3ZLYOtmgYe86eCnQi0WrGdLYu0PRahqL1v+nV+Hav39/JCUloX379vjxxx9x4sQJxMTEFHgREVHpnDlzBv369YNarS5ywnpRI0Kj1mDvl5FIuJ5olByRcXtxPfW6QY716MlDXLl3GYPbDUENzxqo7V0b/VsPxJ+3/kRadlqh+yiUChy/fhxvtnwT9V6qj+ruvhjSfhhuJ9zGnYTbAIDW9Vujf+sBqFulLtxd3PFKnWC0qtsK5++U399HFao6o0n/enCp4iR1FNKDumIdKFp/CY1LdamjlBl6PYCgXbt22j8fO3aswHpRFCEIAp+cZabi4+MRFRWFzMxMODs749VXX0W1atWkjkVULs2aNQuiKBbrCpcoijj9/Rl0n93NKFlOPjyOepXqlfo4txPuwMHGAb4evtpl9V+qD0EQEJt4B81qNC+wT3zyXag1atR/yV+7zLuiNyo5VcLtxNuo4VWz0HPlqBRwtCufQ9u8GrqhRrtq7GU1U3k+rZHbeCQgN+4DDMyNXoXr+vXrDZ2DyoD/jqGTyWTQaDQQBAFdu3bFlClT8PLLL0sdk6jciI+Px+7du4s9LEvUiLgTHYuMxEy4eDobPM/DrIcGOU6GIh3O9rr55DI5HG0dka5IL3SfdEUGrGRWcLDVvSnFxcEFGYqMQve5nXALf94+iw86jzNIbnNSrUUVvBTkxYdJmCll3TehqtUdYPsVoFfhOmTIEEPnIIn99ttv6Nevn07PjkbzdKoUURSxd+9e7Nu3D1u2bEGvXr2kjEpU5uTl50GtMfwVpsj9kSW/l0AE4s/dg3+n+gbPk6l6/gwGe8/twb6Yvdr3KrUKdxLv4Kdjm7TLpvf/0uC5CvPg8QMs27cU3QK7oUHVBiY5Z1lRI6QqvJtwGjOzJLdFTtP3kO/dQuokZZZeheu/ZWVl4d69ewCAqlWrwsnJtONoli1bhv/9739ISEhAkyZN8M033yAoqOgBzFu3bsWUKVMQFxeH2rVrY+7cuejcuejnK5cH/x5DV9QvSbVaDUEQ0K9fP5w8eZI9r0T/Ly8/D9cfXEeOSmHwY9+Iv6698lFsApCdmWWUPHJRjrz8PFhbFX7pMqRBCAJr/fPwmTV/rEHzGs3R/F+X/l0dXeHiUAGZObpFsFqjRrYyGxX+f4aA/6rg4IJ8TT4USoVOr2uGIgMuDrpPgHqY+hALdn2NNv5t0SWga4k/p7kSZAJqh1aHe73KUkchPWgcPJATMAGaChzP+jx63ZwFAH/++Sfat2+PihUromHDhmjYsCEqVqyIDh064OzZs4bMWKQtW7YgPDwc06ZNQ0xMDJo0aYKwsDAkJSUVuv3JkycxYMAAvPPOOzh//jx69OiBHj164PLlyybJW1YVdwzds234OF+if6g1auSoFLCSWcHext6gL1cX15IVrQAgAjYOthAEmUFfEAS42VR+bs+yo50TPCp4al82VtZwsXfRWSaXyVHTqwYUKgXuJsdp973+4DpEUYSfZ41Cj13NvTrkMjmu3b+mXZbwJAGpWamo6fnP+NaHqQ8wf+f/EFy3JXq2KD9Xh6zsrNCgR20WrWYq36MZslvPYtFaDHr1uJ4+fRrt2rWDjY0NRowYgfr1n16SunbtGn766Se0bdsWhw8ffm7PpyEsWLAAI0eOxLBhwwAAK1euxJ49e7Bu3Tp8/vnnBbZfvHgxOnXqhE8++QQAMHPmTBw4cABLly7FypUrjZq1rCrpGDq1Wo1du3YhPj6eN2wR/Yu1lTVsrGwMeszWIa0hCELJhgsIwEvNfCAz8Ng4jQhUczTML1XvilXQoGpDfHf4OwxqOwhqjRo/HduEl2u9DFdHVwDAk6wnWLBrPoZ3GA4/zxpwsHVA63qtsfXkFjjaOcLexg4/HfsJNTxram/MevD4ARbs/Br+1RrgtSYdteNlZYKswJhaS+JQyQ71utaEvWvRc+BS2aWs0weq2j0AQe++xHJFr8J10qRJ8PHxwfHjx+Hl5aWzbvr06WjVqhUmTZqEAwcOGCRkYVQqFc6dO4eJEydql8lkMoSGhiI6OrrQfaKjoxEeHq6zLCwsDNu3by/yPEqlEkqlUvs+KysLAJCfn4+8vLxSfIKyYf/+/SUeQyeKIn7//XeOddZTXl4e8vPykKPRIC/Pcp9ek5+vRr5ajby8PFhZ8F3NT9szHwp1DvKsDPtvQoVKFdC6XWucOHKieD2vAlDt5aqwq2iPvDzDjrm1kVnhJZuqyMvLg1wo3t9bUSNq/w7815CQofg5ejMW7JoPAQKa+jVD3+A3tdsqVUokpiVAkZujXdYzqDdEUcTK/cuRr85HfR9/9GvVX7v+z5tnkJmbidN/n8Lpv09pz1XJqRJm9p9d7M+al5eHvPw8aHI0Jvt3XqP5/3sLRA3y8ot/zoq+LqjRoSpEaw0U2SUbHpKfr4Y6/2n7yOSW+zOan5eHvLx85GtyIMvLN8k5xX/dI6LKL+JnV2YFRaMRyPMMBHJKP7RHk58HUf20NhFlpqtPrK1NPOuBqAcnJydx3rx5Ra6fO3eu6OTkpM+hi+3BgwciAPHkyZM6yz/55BMxKCio0H2sra3FTZs26SxbtmyZ6OHhUeR5pk2bJgLgiy+++OKLL7744us/L1PTq8dVJpMhP7/oby1qtRoymWV0eU+cOFGnl/bChQsICQnB6dOn0axZMwmTGcaGDRvw7rvvlni/1atXs8e1FFR5+VCXdOyiGZLLZLCxLvU9oGWesWYVeGbHjh0YOngoRFEsvOdVePpIz06Tw1CzVeFjREsjrHoYQl5qD7lMXuSNWZYmPy8farXpfkbr1q2Dh48eoqJjJSwfvu652woyAY171kfV5lVKfV65XAarcvAzqs5TQdSYprcVAGrVrY+HDx+hSgUrxM5uWGC9pu1UiH4dDH5eQWYFubVhhyyVNXr9bW3ZsiWWLVuGgQMHonr16jrr4uPjsXz5crRqZdjnWv+Xm5sb5HI5EhN1nxKTmJhYYPjCM15eXiXaHgBsbW1ha2urff9s1gQrKyvTd48bQVhYWInH0AmCgI4dO1rE55cK/99ZFmO356CBg1C3dl3MnDmz4Jh0AagR7IcWbwfBq56nwc/dq3YftPZpY/DjlnWm/hl99pAAQRCe++XAylaOV4YGwLOum6miWQSTt+f/j1cVBAE2Vv8ZWtOwP9Cop0nzWBK9ukXnzJmD9PR01KtXDwMHDsT06dMxffp0DBgwAPXq1UN6ejoiIiIMnVWHjY0NAgICEBUVpV2m0WgQFRWF4ODgQvcJDg7W2R4ADhw4UOT25UG1atXQtWtXyOXFG7Mml8vRrVs33phFZGIvv/wydu7cibi4OLi6ugJ4+gz6d34ahu6zuxmlaH2zTv9yWbSWVVY2crQa+TKLVnPmXAUIGit1CrOmV49rs2bNcPr0aUyaNAk7d+6EQvF0ULGDgwM6deqEWbNmwd/f/wVHKb3w8HAMGTIEgYGBCAoKwqJFi5Cdna2dZWDw4MHw8fHRFtEffvghQkJCMH/+fHTp0gWbN2/G2bNnsWrVKqNnLcumTJmCffv2vbDnVRAECIKAyZMnmzAdEf1btWrV4OjoiLS0NFjbWRvlCVkA8LpfF7xSpfx+qS9rBAF4+e2mcKtRSeooVBrBEwBrzv5QGnoPbPH398e2bdug0WiQnJwMAHB3dzfp2NZ+/fohOTkZU6dORUJCApo2bYrIyEh4ej7teYiPj9fJ07JlS2zatAmTJ0/GF198gdq1a2P79u1o2LDg+JPy5OWXX8aWLVu0T85SqwuO1ZPL5RAEAT///DMfPkBk4Zp7BCC02mtSxyhXvLy8oMxUwsXOtdD1dV+tiSoNDN+rTibk3RzwbSd1CrNX6hHZz3rhnv3Z1MaOHYuxYwvvdj98+HCBZX379kXfvn2NnMr89OrVCydPntQZQ/fsiT2CIKBLly6YPHkyi1YiC+fp4IW+dfvxGfcmdvbsWeyPOIKs5OwC61x9XFA/rLYEqcigWnzwtOucSkXvwvXq1auYOnUq9u/frzNUICwsDNOnTy/3vZjm6NkYuvj4eBw8eBAZGRlwcXFBhw4dOKaVqBywkdtiSIOhsJXbvnhjMglBAJr3bQiZ3DJm6im3qrYEPBtJncIi6FW4Hjt2DK+//jo0Gg26d++OOnXqAABu3LiBnTt3Yt++fYiMjESbNhzUb46qVauGoUOHSh2DiEzITm6PdxqNhJejt9RR6F9qtKqOitVcpY5BpdWU00cail6F64QJE+Dh4YEjR46gatWqOuvu3buHtm3bIjw8HH/++adBQhIRkfG85FQVgxsMhZs971YvSxwr2aNBl7pSxyA9eHl5AapMeNnnAxX9no5vJYPQ69rDlStXMHr06AJFKwBUrVoV77//Pq5cuVLqcEREZDwyQY7X/brgw+YTWLSWQc37NYK1reU/HMASnT17Fvd/+Qxnv6gP1HqdY1sNSK+fiOrVq0OpVBa5XqVSFVrUEhFR2eDtWAVv1X8bVZxK//QlMrzqQS/Boza/TFgEziRgUHr1uE6dOhVLlizBhQsXCqw7f/48vvnmG0yfPr2U0YiIyBhe8W6J8QHhLFrLKLm1HA0615E6BhmCg9vToQJkMHr1uJ46dQqenp4ICAhAy5YtUatWLQDAzZs3ER0djYYNGyI6OhrR0dHafQRBwOLFiw2TmoiISkyADL3r9EHLKsZ9JDeVTvWXfWDvwknqLYJnYw4TMDC9CtelS5dq/3zixAmcOHFCZ/2lS5dw6dIlnWUsXImIpGMjt8XQBsNRr1I9qaPQC1QL9JE6AhmKG3/eDE2vwlWj0Rg6BxERGYm9lQNGNhoF3wq+UkehF7B1skElTn9lOSrWkDqBxeHtikREFszV1hUjG78Hb87PahbcalSCIOOlZYvB8a0GV6rCNTY2Fvv27cPdu3cBPJ1t4PXXX4efHxuKiEhqfhVqYEiDYXCxcZE6ChUTe1stiEwOOHPYh6HpXbh+9NFHWLx4cYFhAzKZDOPHj8fXX39d6nBERKSfkJfaoWuNNyCXyaWOQiVQwYdfMiyGcxVAzgvbhqbXdFjz58/HwoUL0atXL0RHRyMtLQ1paWmIjo5Gnz59sHDhQixcuNDQWYmI6AVkghxv1X8b3Wv1ZNFqhlw8naSOQIbC3laj0OurwOrVq/HGG2/g559/1lneokULbN68Gbm5ufj2228xYcIEg4QkIqIXkwkyvNNwBOpX9pc6CulBbiWDnYut1DHIUBzdpU5gkfTqcY2Li0NYWFiR68PCwhAXF6dvJiIi0kOvWn1YtJoxuwp2vDHLkthWkDqBRdKrcPXw8MDFixeLXH/x4kW4u/ObBhGRqdSuWAfBVVpKHYNKwdbRRuoIZEjW9lInsEh6Fa59+/bFmjVr8NVXXyE7O1u7PDs7G3PnzsWaNWvQr18/g4UkIqLn6+LXDQKf0GPWbJ2spY5AhiTnFxFj0GuM68yZM3HhwgV88cUXmDp1KqpUefq864cPHyI/Px/t27fHl19+adCgRERUuKrO1VHNpZrUMaiUrO1ZuFoWfpE0Br0KVwcHB0RFRWHHjh0687h26tQJnTt3Rrdu/OZPRGQsXl5eECEi3zEfABDoGShxIjIEW2femGVRBL0uatMLlLhwVSgUGDRoEHr37o233noL3bt3N0YuIiIqwtmzZ5GhTMf06KkAgMbuTSRORIZg58RLy0QvUuKvAw4ODvjjjz+gUCiMkYeIiEqgqnM1VODdyxaBPa5EL6ZXP3br1q0RHR1t6CwlkpqairfeegsuLi5wdXXFO++8g6ysrOdu/8EHH6Bu3bqwt7dHtWrVMG7cOKSnp5swNRGRYdWtWFfqCGQgNhzjSvRCehWuS5cuxbFjxzB58mTcv3/f0JmK5a233sKVK1dw4MAB7N69G0ePHsW7775b5PYPHz7Ew4cP8fXXX+Py5cvYsGEDIiMj8c4775gwNRGRYdWuWEfqCGQgVrZ8PCjRiwiiKIol3cnZ2Rn5+flQqVQAACsrK9ja6l7iEATBaL2Z165dg7+/P/78808EBj69KSEyMhKdO3fG/fv3tbMcvMjWrVsxaNAgZGdnw8qqeP9gxMTEICAgAOfOnUPz5s31/gxERKWRoUzHl6dmIKL1XFjL2VNnCZRZStg6cbiAxVBlAzaOUqewOHp9vevdu7ekswZER0fD1dVVW7QCQGhoKGQyGU6fPo2ePXsW6zjp6elwcXF5btGqVCqhVCq17583HIGIyJSqOFZh0WpJOBuPhWF7GoNeheuGDRsMHKNkEhIS4OHhobPMysoKlSpVQkJCQrGOkZKSgpkzZz53eAEAREREYMaMGXpnJSIyFk9HT6kjkAFxGkkLw/Y0ihKNcc3NzcWWLVvw1VdfYc2aNXj06JFBw3z++ecQBOG5r+vXr5f6PBkZGejSpQv8/f0xffr05247ceJEpKena19Hjhwp9fmJiAzB1bai1BHIgGwc2HtuUfjIV6Modo9rUlISWrZsidjYWDwbFuvg4IDt27cjNDTUIGE++ugjDB069Lnb1KhRA15eXkhKStJZnp+fj9TUVHh5eT13/8zMTHTq1AnOzs7Ytm0brK2f/w+Fra2tzvhdJyen538IIiITsZNzPCQRlS/FLlxnzpyJuLg4TJgwAR06dMCtW7cwc+ZMjBo1Crdv3zZIGHd3d7i7u79wu+DgYKSlpeHcuXMICAgAABw8eBAajQYtWrQocr+MjAyEhYXB1tYWO3fuhJ2dnUFyExFJwUrGHjoiKl+KXbj+/vvvGDx4ML7++mvtMk9PTwwcOBA3btxA3bqmm0uwfv366NSpE0aOHImVK1ciLy8PY8eORf/+/bUzCjx48ACvvvoqvvvuOwQFBSEjIwMdO3aEQqHADz/8gIyMDGRkZAB4WjDL5XKT5SciMgS5jP9uEVH5UuwxrvHx8WjdurXOstatW0MURSQmJho82Iv8+OOPqFevHl599VV07twZrVu3xqpVq7Tr8/LycOPGDe0TvmJiYnD69GlcunQJtWrVgre3t/Z17949k+cnIiotK4HzfhJR+VLsf/WUSmWBS+vP3ufn5xs2VTFUqlQJmzZtKnK9r68v/j1Fbbt27aDHlLVERGWWrRWHOxFR+VKir+txcXGIiYnRvn/2gIGbN2/C1dW1wPacoJ+IyHjsrXjXMhGVL8V+cpZMJit0jjlRFAssf7ZMrVYbJmUZwidnEVFZkKFMR5oyHdVcqkkdhYjIZIrd47p+/Xpj5iAiohKy41ABIipnil24DhkyxJg5iIiohGw5jysRlTMlenIWERGVHTZyG6kjEBGZFAtXIiIzZSXjdFhEVL7wXz0iIjPkZOMMAQVvmCUismQsXImIzJBM4AUzIip/+C8fEREREZkFFq5EREREZBZYuBIRERGRWWDhSkRERERmgYUrEREREZkFFq5EREREZBY4HRYV6dGjR3j06JHUMYiIiMyOt7c3vL29pY5hcVi4lpC3tzemTZtm8X8ZlUolBgwYgCNHjkgdhYiIyOyEhIRg//79sLW1lTqKRRFEURSlDkFlT0ZGBipUqIAjR47AyclJ6jhUSllZWQgJCWF7Wgi2p+Vhm1qWZ+2Znp4OFxcXqeNYFBauVKhnhSt/6CwD29OysD0tD9vUsrA9jYc3ZxERERGRWWDhSkRERERmgYUrFcrW1hbTpk3joHILwfa0LGxPy8M2tSxsT+PhGFciIiIiMgvscSUiIiIis8DClYiIiIjMAgtXIiIiIjILLFyJiIiIyCywcCUqIwRBKNbr8OHDpT6XQqHA9OnTS3Ss2bNn44033oCnpycEQcD06dNLncOSleX2vH79Oj799FM0bdoUzs7O8Pb2RpcuXXD27NlSZ7FUZbk9Hz58iEGDBqFu3bpwdnaGq6srgoKCsHHjRvD+66KV5Tb9rx9//BGCIPCpagCspA5ARE99//33Ou+/++47HDhwoMDy+vXrl/pcCoUCM2bMAAC0a9euWPtMnjwZXl5eaNasGfbv31/qDJauLLfnmjVrsHbtWvTu3RujR49Geno6vv32W7zyyiuIjIxEaGhoqTNZmrLcnikpKbh//z769OmDatWqIS8vDwcOHMDQoUNx48YNzJkzp9SZLFFZbtN/y8rKwqeffgpHR8dS57AIIhGVSWPGjBGN9SOanJwsAhCnTZtW7H1iY2P13pfKVnuePXtWzMzM1FmWkpIiuru7i61atTJCQstTltqzKF27dhUdHR3F/Px8wwSzcGW1TT/77DOxbt264ltvvSU6OjoaPpyZ4VABIjOi0WiwaNEiNGjQAHZ2dvD09MSoUaPw5MkTne3Onj2LsLAwuLm5wd7eHn5+fhg+fDgAIC4uDu7u7gCAGTNmaC+HvejSv6+vrzE+UrkmVXsGBAQUuORYuXJltGnTBteuXTPshyxHpPz5LIyvry8UCgVUKlWpP1t5JXWb3rx5EwsXLsSCBQtgZcWL5ACHChCZlVGjRmHDhg0YNmwYxo0bh9jYWCxduhTnz5/HiRMnYG1tjaSkJHTs2BHu7u74/PPP4erqiri4OPz2228AAHd3d6xYsQLvv/8+evbsiV69egEAGjduLOVHK5fKWnsmJCTAzc3NoJ+xPJG6PXNycpCdnY2srCwcOXIE69evR3BwMOzt7Y36uS2Z1G06fvx4tG/fHp07d8bPP/9s1M9qNqTu8iWiwv33stWxY8dEAOKPP/6os11kZKTO8m3btokAxD///LPIY5fmshWHCuinrLbnM0ePHhUFQRCnTJmi9zHKk7LYnhERESIA7evVV18V4+PjS3SM8qystenu3btFKysr8cqVK6IoiuKQIUM4VEDkUAEis7F161ZUqFABr732GlJSUrSvZ5d9Dx06BABwdXUFAOzevRt5eXkSJqbnKUvtmZSUhIEDB8LPzw+ffvqpUc5h6cpCew4YMAAHDhzApk2bMHDgQABPe2FJP1K2qUqlwoQJE/Dee+/B39/fIMe0FCxciczEzZs3kZ6eDg8PD7i7u+u8srKykJSUBAAICQlB7969MWPGDLi5uaF79+5Yv349lEqlxJ+A/q2stGd2dja6du2KzMxM7Nixg9Pt6KkstGf16tURGhqKAQMG4Mcff0SNGjUQGhrK4lVPUrbpwoULkZKSop2JgP7BMa5EZkKj0cDDwwM//vhjoeufDf4XBAG//PILTp06hV27dmH//v0YPnw45s+fj1OnTrEwKSPKQnuqVCr06tULf/31F/bv34+GDRvqfazyriy053/16dMHq1evxtGjRxEWFmaw45YXUrVpeno6Zs2ahdGjRyMjIwMZGRkAnk6LJYoi4uLi4ODgAA8Pj9J9QHMl9VgFIircf8dbjR49WpTL5aJCoSjxsX788UcRgLh69WpRFJ9OfQSOcTWpstaearVa7NevnyiXy8Vff/21xBnKu7LWnoXZvn27CEDcsmVLqY5TXpSVNo2NjdUZq1zYq3v37iXOZCk4VIDITLz55ptQq9WYOXNmgXX5+flIS0sDADx58qTA03KaNm0KANpLVw4ODgCg3YdMT+r2/OCDD7BlyxYsX75ce5cz6U/K9kxOTi50+dq1ayEIApo3b16s45AuqdrUw8MD27ZtK/Bq37497OzssG3bNkycOFH/D2bmOFSAyEyEhIRg1KhRiIiIwIULF9CxY0dYW1vj5s2b2Lp1KxYvXow+ffpg48aNWL58OXr27ImaNWsiMzMTq1evhouLCzp37gwAsLe3h7+/P7Zs2YI6deqgUqVKaNiw4XMvFX///fe4e/cuFAoFAODo0aOYNWsWAODtt99G9erVjf8/wYJI2Z6LFi3C8uXLERwcDAcHB/zwww8663v27Mmn9JSQlO05e/ZsnDjxf+3dbWxTZRsH8P9Zt7WFdS9o2Xhbu7XJ3IJBHJkmEysag8LilsB4SZRCnGhinMRNglPCUIwMhECmBGvMhks0kSB+ABUS6TJ5MJlG/TAXnW7tNJoNjRtOcQO26/mwUJ7DtocOWrpz9/9LSDhX73Ofu/yTk4v29Jz/4KGHHkJ2djb+/PNPHDlyBF9++SWeeeYZuN3um/lPoYxYZTpt2jSUlZWNqX/00UdobW0d97W4EtsPfIloIhM9xcXn80lhYaFYrVax2Wxy++23y+bNm+W3334TEZGvv/5a1q5dK9nZ2WI2m2XmzJlSUlIiX331lW6eM2fOSGFhoSQnJ4f1FZbH45nwayu/3x+pt62sqZSn1+v9v19DXn5KGk1sKuV58uRJKSkpkdmzZ0tSUpLYbDYpLi6WhoYGGRkZiej7VtlUynQ8vB3WKE3kqs+3iYiIiIimIF7jSkRERESGwMaViIiIiAyBjSsRERERGQIbVyIiIiIyBDauRERERGQIbFyJiIiIyBDYuBIpIBgMQtM0NDY2xnopFCHMVC3MUy3MM3bYuBIRERGRIfABBEQKEBEMDQ0hKSkJJpMp1suhCGCmamGeamGescPGlYiIiIgMgZcKEE0RtbW10DQNHR0dePTRR5GWlga73Y6tW7dCRPDLL7+gtLQUqampyMrKwp49e0L7jne91fr165GSkoJff/0VZWVlSElJgd1uR3V1NYaHh0PjmpuboWkampubdesZb86enh5s2LABc+fOhdlsxqxZs1BaWopgMBilfxVjY6ZqYZ5qYZ7GxMaVaIpZvXo1RkZGsHPnTtx1113YsWMH9u3bhwcffBBz5sxBXV0d3G43qqur0dLS8n/nGh4extKlS3HLLbfg9ddfh8fjwZ49e+Dz+a5rbStWrMDRo0exYcMGHDhwAJWVlRgYGMDPP/98XfPFC2aqFuapFuZpMEJEU8K2bdsEgGzcuDFUu3TpksydO1c0TZOdO3eG6n19fWK1WsXr9YqISCAQEADS0NAQGuP1egWAvPzyy7rjLFy4UAoLC0Pbfr9fAIjf79eNu3rOvr4+ASC7d++OzBuOA8xULcxTLczTmPiJK9EUU1FREfq7yWTCokWLICJ4/PHHQ/X09HTk5eWhq6vrmvM99dRTuu3FixeHtd/VrFYrkpOT0dzcjL6+vknvH8+YqVqYp1qYp7GwcSWaYrKzs3XbaWlpsFgsuPXWW8fUr3Uys1gssNvtulpGRsZ1nQTNZjPq6urwySefIDMzE/feey927dqFnp6eSc8Vb5ipWpinWpinsbBxJZpixru1ykS3W5Fr3BQknNu0aJo2bv1/f0xw2aZNm9DR0YHXXnsNFosFW7duRX5+Pr755ptrHieeMVO1ME+1ME9jYeNKFOcyMjIAAP39/bp6d3f3uONdLheqqqpw8uRJtLW14cKFC7pf21LsMVO1ME+1MM8bw8aVKM45HA6YTKYxv5Y9cOCAbvv8+fMYHBzU1VwuF2w2G4aGhqK+TgofM1UL81QL87wxibFeABHFVlpaGsrLy1FfXw9N0+ByuXDs2DGcPXtWN66jowMPPPAAVq1ahYKCAiQmJuLo0aPo7e3FmjVrYrR6Gg8zVQvzVAvzvDFsXIkI9fX1uHjxIg4ePAiz2YxVq1Zh9+7dmD9/fmjMvHnzsHbtWnz22WdoampCYmIibrvtNnzwwQdYsWJFDFdP42GmamGeamGe14+PfCUiIiIiQ+A1rkRERERkCGxciYiIiMgQ2LgSERERkSGwcSUiIiIiQ2DjSkRERESGwMaViCYlGAxC0zQ0NjbGeikUIcxULcxTLcxTj40rURR1dnbiySefRG5uLiwWC1JTU1FcXIz9+/fj33//jdpx29vbUVtbi2AwGLVjhOPVV1/FI488gszMTGiahtra2piuJxKYqVqZMk/mGQnM8+bhAwiIouT48eMoLy+H2WzGunXrMH/+fFy4cAGnT5/G888/j++++w4+ny8qx25vb8f27dtx3333wel0RuUY4XjppZeQlZWFhQsX4sSJEzFbR6QwU7UyZZ7MM1KY583DxpUoCgKBANasWQOHw4FTp05h1qxZodeefvpp/PTTTzh+/HgMV3iFiGBwcBBWqzXicwcCATidTvzxxx+w2+0Rn/9mYqajVMmUeY5injcf87wxvFSAKAp27dqFv//+G++8847uBHqZ2+3Gs88+G9q+dOkSXnnlFbhcLpjNZjidTtTU1GBoaEi3n9PpRElJCU6fPo2ioiJYLBbk5ubi3XffDY1pbGxEeXk5AGDJkiXQNA2apqG5uVk3x4kTJ7Bo0SJYrVa89dZbAICuri6Ul5djxowZmDZtGu6+++4bOtnH8pOHSGOmV9arAuZ5Zb0qYJ5X1qs8IaKImzNnjuTm5oY93uv1CgBZuXKlvPnmm7Ju3ToBIGVlZbpxDodD8vLyJDMzU2pqauSNN96QO++8UzRNk7a2NhER6ezslMrKSgEgNTU10tTUJE1NTdLT0xOaw+12S0ZGhmzZskUOHjwofr9fenp6JDMzU2w2m7z44ouyd+9eWbBggSQkJMiHH34YWkMgEBAA0tDQEPb7+/333wWAbNu2Lex9phpmqmf0TJmnHvNknkbBxpUows6dOycApLS0NKzx3377rQCQiooKXb26uloAyKlTp0I1h8MhAKSlpSVUO3v2rJjNZqmqqgrVDh8+LADE7/ePOd7lOT799FNdfdOmTQJAPv/881BtYGBAcnJyxOl0yvDwsIjE50mUmY5l5EyZ51jMk3kaBS8VIIqwv/76CwBgs9nCGv/xxx8DAJ577jldvaqqCgDGfG1UUFCAxYsXh7btdjvy8vLQ1dUV9hpzcnKwdOnSMesoKirCPffcE6qlpKRg48aNCAaDaG9vD3t+1TBTtTBPtTDP+MLGlSjCUlNTAQADAwNhje/u7kZCQgLcbreunpWVhfT0dHR3d+vq2dnZY+bIyMhAX19f2GvMyckZdx15eXlj6vn5+aHX4xUzVQvzVAvzjC9sXIkiLDU1FbNnz0ZbW9uk9tM0LaxxJpNp3LqIhH2saPyaVWXMVC3MUy3MM76wcSWKgpKSEnR2duKLL7645liHw4GRkRH8+OOPunpvby/6+/vhcDgmffxwT8hXr+OHH34YU//+++9Dr8czZqoW5qkW5hk/2LgSRcHmzZsxffp0VFRUoLe3d8zrnZ2d2L9/PwBg2bJlAIB9+/bpxuzduxcAsHz58kkff/r06QCA/v7+sPdZtmwZWltbdSf+f/75Bz6fD06nEwUFBZNeh0qYqVqYp1qYZ/zgAwiIosDlcuG9997D6tWrkZ+fr3uKy5kzZ3D48GGsX78eALBgwQJ4vV74fD709/fD4/GgtbUVhw4dQllZGZYsWTLp499xxx0wmUyoq6vDuXPnYDabcf/992PmzJkT7rNlyxa8//77ePjhh1FZWYkZM2bg0KFDCAQCOHLkCBISJv//3KamJnR3d+P8+fMAgJaWFuzYsQMA8NhjjxnqEwVmOkqVTJnnKObJPA0ntjc1IFJbR0eHPPHEE+J0OiU5OVlsNpsUFxdLfX29DA4OhsZdvHhRtm/fLjk5OZKUlCTz5s2TF154QTdGZPS2KsuXLx9zHI/HIx6PR1d7++23JTc3V0wmk+42LRPNITJ6P8KVK1dKenq6WCwWKSoqkmPHjunGTObWLB6PRwCM+2e828YYATNVK1PmyTyZp7FoIpO4upiIiIiIKEZ4jSsRERERGQIbVyIiIiIyBDauRERERGQIbFyJiIiIyBDYuBIRERGRIbBxJSIiIiJDYONKRERERIbAxpWIiIiIDIGNKxEREREZAhtXIiIiIjIENq5EREREZAhsXImIiIjIENi4EhEREZEh/BdgvkceWbmjagAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq4AAAInCAYAAABZQNsWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAkxZJREFUeJzs3XdYU+ffBvD7JOwlKlMc4Ba3UBQXalGso+7iqlartbXWKl1adx1Uf3W2jrrtsFrbuhW1uBVFRa27DhAXS2RDgOS8f/iaNgUUQpJDwv25rlw1Z97pI/LNc57zHEEURRFERERERGWcTOoARERERETFwcKViIiIiIwCC1ciIiIiMgosXImIiIjIKLBwJSIiIiKjwMKViIiIiIwCC1ciIiIiMgosXImIiIjIKLBwJSIiIiKjwMK1hJ48eYKZM2fiyZMnUkchIiIiKldYuJbQkydPMGvWLBauRERERAbGwpWIiIiIjAILVyIiIiIyCixciYiIiMgoGHXhevz4cfTs2RNVqlSBIAjYsWPHK/c5evQoWrRoAUtLS9SuXRsbN27Ue04iIiIiKj2jLlwzMzPRtGlTLF++vFjbR0dHo3v37ujYsSMuXbqECRMmYNSoUThw4ICekxIRERFRaZlJHaA03njjDbzxxhvF3n7VqlXw8vLCwoULAQANGjTAyZMnsXjxYgQFBekrJhERERHpgFEXriUVERGBwMBAjWVBQUGYMGFCkfsoFAooFAr1+4yMDH3FK9LxkBAonqUY/LxSsazoiPaLFkkdQ2++XPE7UjKypY5hMI521pg3tp/UMfRm7m+zkZqVJnUMg6lg44Ap/adJHUOvNs3+GRlpWVLHMBg7BxsMnzZE6hh6c/77McjNSJY6hsFY2FWC75jvpY6hN+WqcI2Li4Orq6vGMldXV6SlpSE7OxvW1tYF9gkNDcWsWbMMFbFQimcpyHn6VNIMpDspGdlITsuUOgbpSGpWGlIyn0kdg3QoIy0LGc8M30lB+pGbkYzc9CSpY5COlKvCVRuTJ09GSEiI+v2lS5cQEBAgTRiZDFYVK0pzbgPIefYMUKmkjmEwgiCgor2N1DH05ll6FkRRlDqGwQiCgAo2jlLH0JvUrJRy1Z7A8za1dbSVOobeZKZklq82FWSwsKskdQq9yc1IBkTT/x1argpXNzc3xMfHayyLj4+Hg4NDob2tAGBpaQlLS0v1ezs7O71mfBmrihXRecN6yc6vb4dGjCxXPcsV7W2w4vOhUsfQm7ELfipXPcsVbByxYNj/pI6hN5//8Fm561m2dbTFh/8bLXUMvVn+2Zpy1bNsYVcJrT/ZJnUMvTm9cEC56FmWbFYBURRx+PBh7N+/H+np6QY5p7+/P8LDwzWWHTp0CP7+/gY5PxERERFpzyCF65QpU9CxY0f1e1EU0aVLF3Tu3Bndu3dH48aNcffu3RIfNyMjA5cuXcKlS5cAPJ/u6tKlS4iNjQXw/DL/sGHD1Nu///77uHfvHj7//HPcvHkTK1aswK+//oqJEyeW7gMSERERkd4ZpHD9/fff4efnp37/22+/ITw8HHPmzMGePXugVCoxc+bMEh/3/PnzaN68OZo3bw4ACAkJQfPmzTF9+nQAwJMnT9RFLAB4eXlh7969OHToEJo2bYqFCxdi7dq1nAqLiIiIyAgYZIzro0ePULt2bfX7P/74A97e3pg8eTIA4IMPPsDKlStLfNwOHTq8dGB5YU/F6tChAy5evFjicxERERGRtAzS42pmZqaeC1UURYSHh6Nr167q9a6urkhKMv0BxURERESkPYMUro0aNcJPP/2EZ8+eYcOGDXj69Cm6d++uXn///n04OTkZIgoRERERGSmDDBWYPn06evbsqS5O27Rpo3Gz1t69e/Haa68ZIgoRERERGSmDFK6dO3dGVFQUDh06BEdHRwQHB6vXPXv2DO3bt0evXr0MEYWIiIiIjJTBHkDg7e0Nb2/vAssrVqyIxYsXGyoGERERERkpgxSu6enpSElJQbVq1dTLHj9+jFWrVkGhUKB///4cKkBEREREL2WQwvW9995DdHQ0zpw5AwBIS0tDq1at8PDhQ8hkMixduhRhYWHo0KGDIeIQERERkREyyKwCJ0+eRI8ePdTvf/rpJzx+/BinT5/Gs2fP0KRJE8yZM8cQUYiIiIjISBmkcE1KSoKHh4f6/a5du9C2bVu0atUK9vb2GDZsGC5fvmyIKERERERkpAxSuDo6OiIuLg4AkJ2djRMnTqBLly7q9WZmZsjKyjJEFCIiIiIyUgYZ49q6dWusWLEC9evXR1hYGHJycjSmv/r77781emSJiIiIiP7LIIXr/Pnz0aVLF/Tr1w8A8Mknn6Bhw4YAAKVSiW3btmk8ApaIiIiI6L8MUrjWrl0bt27dwvXr11GhQgV4enqq12VlZeG7775D06ZNDRGFiIiIiIyUwR5AYG5uXmhxam9vz6dmEREREdErGeTmLOD53K1ff/01goKC0Lx5c0RGRgIAkpOTsWjRIty5c8dQUYiIiIjICBmkx/Xhw4cICAjAgwcPUKdOHdy8eRMZGRkAgEqVKuH777/H/fv3sXTpUkPEISIiIiIjZJDC9bPPPkN6ejouXboEFxcXuLi4aKzv3bs39uzZY4goRERERGSkDDJU4ODBgxg/fjy8vb0hCEKB9TVr1sSDBw8MEYWIiIiIjJRBCtfs7Gw4OzsXuT49Pd0QMYiIiIjIiBmkcPX29sbx48eLXL9jxw40b97cEFGIiIiIyEgZpHCdMGECtmzZgvnz5yM1NRUAoFKpcOfOHbz99tuIiIjAxIkTDRGFiIiIiIyUQW7OGjp0KO7fv4+pU6diypQpAICuXbtCFEXIZDLMmzcPvXv3NkQUIiIiIjJSBnsAwZQpU/D222/j999/x507d6BSqVCrVi307dsXNWvWNFQMIiIiIjJSBitcAaB69eocEkBEREREWjHIGNeoqCisWLGiyPUrVqzApUuXDBGFiIiIiIyUQQrXKVOm4M8//yxy/eHDhzF16lRDRCEiIiIiI2WQwvXChQto165dkevbtWuH8+fPGyIKERERERkpgxSu6enpMDMrejitTCZTT5NVUsuXL4enpyesrKzQsmVLREZGvnT7JUuWoF69erC2tka1atUwceJE5OTkaHVuIiIiIjIcgxSuderUwcGDB4tcHxYWptXMAlu3bkVISAhmzJiBqKgoNG3aFEFBQUhISCh0+82bN2PSpEmYMWMGbty4gXXr1mHr1q348ssvS3xuIiIiIjIsgxSu7777Lvbu3YuQkBCkpKSol6ekpGDixIkICwvDu+++W+LjLlq0CKNHj8aIESPg7e2NVatWwcbGBuvXry90+9OnT6NNmzYYPHgwPD090aVLFwwaNOiVvbREREREJD2DFK7jx4/H8OHDsWTJEjg5OaF69eqoXr06nJycsHTpUgwdOrTE02Tl5ubiwoULCAwMVC+TyWQIDAxEREREofu0bt0aFy5cUBeq9+7dw759+9CtWzftPxwRERERGYRB5nEVBAEbNmzAsGHD8Pvvv+PevXsAgF69eqFfv37o0KFDiY+ZlJQEpVIJV1dXjeWurq64efNmofsMHjwYSUlJaNu2LURRRH5+Pt5///2XDhVQKBRQKBTq9xkZGSXOSiQ1X19fxMXFwc3NjTdCEhGR0TLoAwg6duyIjh07GvKUGo4ePYp58+ZhxYoVaNmyJe7cuYOPP/4Ys2fPxrRp0wrdJzQ0FLNmzTJwUiLdiouLw6NHj6SOQUREVCoGGSoQHR2N3bt3F7l+9+7diImJKdExnZycIJfLER8fr7E8Pj4ebm5uhe4zbdo0vP322xg1ahQaN26MPn36YN68eQgNDYVKpSp0n8mTJyM1NVX9OnbsWIlyEhEREZFuGKRw/fTTT7Fs2bIi1y9fvhyTJk0q0TEtLCzg4+OD8PBw9TKVSoXw8HD4+/sXuk9WVhZkMs2PLJfLAQCiKBa6j6WlJRwcHNQvOzu7EuUkIiIiIt0wSOEaERGBzp07F7n+9ddfx4kTJ0p83JCQEKxZswabNm3CjRs38MEHHyAzMxMjRowAAAwbNgyTJ09Wb9+zZ0+sXLkSW7ZsQXR0NA4dOoRp06ahZ8+e6gKWiIiIiMomg4xxffbsGezt7Ytcb2dnh6dPn5b4uMHBwUhMTMT06dMRFxeHZs2aISwsTH3DVmxsrEYP69SpUyEIAqZOnYpHjx7B2dkZPXv2xNy5c0v+oYiIiIjIoAxSuFavXh2nTp3CBx98UOj6EydOoGrVqlode9y4cRg3blyh644eParx3szMDDNmzMCMGTO0OhcRERERSccgQwUGDRqEX375BcuWLdO4CUqpVGLp0qXYunUrBg8ebIgoRERERGSkDNLjOnnyZJw8eRITJkzA3LlzUa9ePQDArVu3kJiYiA4dOmDKlCmGiEJERERERsogPa6WlpY4ePAg1q1bBz8/PyQlJSEpKQl+fn5Yv349/vzzT1haWhoiChEREREZKYM9gEAmk2HEiBHqO/6JiIiIiErCID2uRERERESlZZAe106dOr1yG0EQNB4mQERERET0bwYpXFUqFQRB0FimVCpx//59PHjwALVr14aHh4chohCVSy8eg1zU45CJiIiMgUEK1//Op/pve/bswXvvvYdFixYZIgpRuXT+/HmpIxAREZWawW7OKkqPHj0wdOhQTJgwAceOHZM6DpFBWIk5yErNwTtTlkodRb8EK6kTEBGRCSkTN2fVqlUL586dkzoGEREREZVhkve45ufn49dff4WTk5PUUYhM1p71C5GdmQZrWwf0GPmJ1HGIiIi0YpDCdeTIkYUuT0lJwZkzZxAXF8cxrkR6lJ2Zhqz0VKljEBERlYpBCtfDhw8XmFVAEARUrFgRbdu2xahRo9ClSxdDRCEiIiIiI2WQwjUmJsYQpyEiIiIiE1Ymbs4iIiIiInoVvRWuWVlZiI2NRW5uboF169evx+uvvw5vb2/07duXMwoQERER0SvprXD96quv0KRJkwKF65w5czB69GgcO3YMiYmJ2LFjBzp06IDLly/rKwoRERERmQC9Fa5HjhxBjx49YGdnp16WlpaGOXPmwMPDA7dv30ZiYiLOnDkDCwsLfP311/qKQkREREQmQG+Fa0xMDJo0aaKxbN++fcjNzcUXX3wBLy8vAICfnx9GjBiBEydO6CsKEREREZkAvRWu6enpqFy5ssay48ePQxAEBAUFaSz39vZGYmKivqIQERERkQnQW+Fao0YN3Lx5U2PZ0aNH4erqitq1a2ssz83NhYODg76iEBEREZEJ0Fvh2qVLF6xfvx5nz54FAPzwww+4efMm+vTpU2DbCxcuwNPTU19RiIiIiMgE6O0BBNOmTcOOHTvQunVryOVy5Ofnw9nZGdOnT9fYLisrC9u3b8d7772nryhE5Z61rYPGf4mIiIyR3gpXJycnXLp0CWvXrsW9e/dQo0YNjBw5Ei4uLhrbXb16FUOGDMHbb7+tryhE5V6PkZ9IHYGIiKjU9PrI14oVK+Kzzz576TZ+fn7w8/PTZwwiIiIiMgF85CsRERERGQUWrkRERERkFFi4EhEREZFRMPrCdfny5fD09ISVlRVatmyJyMjIl26fkpKCDz/8EO7u7rC0tETdunWxb98+A6UlIiIiIm3ppXDdtWsXHj9+rI9Da9i6dStCQkIwY8YMREVFoWnTpggKCkJCQkKh2+fm5qJz586IiYnBb7/9hlu3bmHNmjXw8PDQe1YiIiIiKh29FK59+vTB0aNH1e9r1qyJXbt26fw8ixYtwujRozFixAh4e3tj1apVsLGxwfr16wvdfv369UhOTsaOHTvQpk0beHp6IiAgAE2bNtV5NiIiIiLSLb0Urvb29khJSVG/j4mJQUZGhk7PkZubiwsXLiAwMFC9TCaTITAwEBEREYXus2vXLvj7++PDDz+Eq6srGjVqhHnz5kGpVBZ5HoVCgbS0NPVL15+DiIiIiIpHL/O4+vn5Ye7cuYiPj0eFChUAAPv27UNcXFyR+wiCgIkTJxb7HElJSVAqlXB1ddVY7urqips3bxa6z71793D48GEMGTIE+/btw507dzB27Fjk5eVhxowZhe4TGhqKWbNmFTsXEREREemHXgrXFStWYNiwYZg9ezaA50Xp5s2bsXnz5iL3KWnhqg2VSgUXFxesXr0acrkcPj4+ePToEf73v/8VWbhOnjwZISEh6veXLl1CQECAXnMSERERUUF6KVxr166N06dPIycnBwkJCfD09MSSJUvQq1cvnZ3DyckJcrkc8fHxGsvj4+Ph5uZW6D7u7u4wNzeHXC5XL2vQoAHi4uKQm5sLCwuLAvtYWlrC0tJS/d7Ozk5Hn4CIiIiISkKvj3y1srJC9erVMWPGDHTq1Ak1atTQ2bEtLCzg4+OD8PBw9O7dG8DzHtXw8HCMGzeu0H3atGmDzZs3Q6VSQSZ7Prz377//hru7e6FFKxERERGVHQaZx3XGjBlo1KgRACAjIwM3btzAjRs3Sn2jU0hICNasWYNNmzbhxo0b+OCDD5CZmYkRI0YAAIYNG4bJkyert//ggw+QnJyMjz/+GH///Tf27t2LefPm4cMPPyxVDiIiIiLSP732uP7buXPn8Pnnn+PkyZNQqVQAns8C0K5dOyxYsAC+vr4lPmZwcDASExMxffp0xMXFoVmzZggLC1PfsBUbG6vuWQWAatWq4cCBA5g4cSKaNGkCDw8PfPzxx/jiiy908yGJiIiISG8MUriePXsWHTp0gIWFBUaNGoUGDRoAAG7cuIFffvkF7du3x9GjR+Hn51fiY48bN67IoQH/nkv2BX9/f5w5c6bE5yEiIiIiaRmkcJ0yZQo8PDxw8uTJAjdOzZw5E23atMGUKVNw6NAhQ8QhIiIiIiNkkDGuZ8+exZgxYwq929/V1RXvvfcee0GJiIiI6KUMUrjKZDLk5+cXuV6pVGqMRSUiIiIi+i+DVIutW7fG8uXLcf/+/QLrYmNjsWLFCrRp08YQUYiIiIjISBlkjOu8efPQvn171K9fH3369EHdunUBALdu3cLOnTthZmaG0NBQQ0QhIiIiIiNlkMK1efPmOHv2LKZMmYJdu3YhKysLAGBjY4OuXbtizpw58Pb2NkQUIiIiIjJSBpvH1dvbG9u3b4dKpUJiYiIAwNnZmWNbiYiIiKhYDFa4viCTydQPCCAiIiIiKi52dxIRERGRUWDhSkRERERGgYUrERERERkFFq5EREREZBRYuBIRERGRUTDorALXr1/HvXv38OzZM4iiWGD9sGHDDBmHiIiIiIyIQQrXu3fvYujQoYiMjCy0YAUAQRBYuBIRERFRkQxSuI4ZMwZXrlzBkiVL0K5dO1SsWNEQpyUiIiIiE2KQwvXUqVP48ssv8dFHHxnidERERERkggxyc5aTkxMqVKhgiFMRERERkYkySOH6/vvv46effoJSqTTE6YiIiIjIBBlkqEDdunWhVCrRtGlTjBw5EtWqVYNcLi+wXd++fQ0Rh4iIiIiMkEEK1+DgYPWfP/3000K3EQSBPbJEREREVCSDFK5HjhwxxGmIiIiIyIQZpHANCAgwxGmIiIiIyIQZ9MlZwPOnZ92/fx8AUKNGDXh7exs6AhEREREZIYMVrjt37kRISAhiYmI0lnt5eWHRokV48803DRWFiIiIiIyQQabD2rdvH/r16wcAmDdvHrZv347t27dj3rx5EEURffv2RVhYmCGiEBEREZGRMkiP6+zZs9GkSROcOHECtra26uVvvvkmxo0bh7Zt22LWrFno2rWrIeIQERERkREySI/rX3/9heHDh2sUrS/Y2trinXfewV9//aXVsZcvXw5PT09YWVmhZcuWiIyMLNZ+W7ZsgSAI6N27t1bnJSIiIiLDMkjhamVlheTk5CLXJycnw8rKqsTH3bp1K0JCQjBjxgxERUWhadOmCAoKQkJCwkv3i4mJwaeffop27dqV+JxEREREJA2DFK6dOnXC0qVLERERUWDd2bNnsWzZMgQGBpb4uIsWLcLo0aMxYsQIeHt7Y9WqVbCxscH69euL3EepVGLIkCGYNWsWatasWeJzEhEREZE0DDLGdcGCBfD390fbtm3h5+eHevXqAQBu3bqFyMhIuLi4YP78+SU6Zm5uLi5cuIDJkyerl8lkMgQGBhZaIL/w1VdfwcXFBe+++y5OnDjxyvMoFAooFAr1+4yMjBLlJCIiIiLdMEiPq5eXF/766y+MHz8ez549w9atW7F161Y8e/YMH3/8MS5fvgxPT88SHTMpKQlKpRKurq4ay11dXREXF1foPidPnsS6deuwZs2aYp8nNDQUFSpUUL/4MAUiIiIiaRhsHlcXFxcsXrwYixcvNtQpNaSnp+Ptt9/GmjVr4OTkVOz9Jk+ejJCQEPX7S5cusXglIiIikoDBn5ylK05OTpDL5YiPj9dYHh8fDzc3twLb3717FzExMejZs6d6mUqlAgCYmZnh1q1bqFWrVoH9LC0tYWlpqX5vZ2enq49ARERERCWgl8J15MiREAQBq1evhlwux8iRI1+5jyAIWLduXbHPYWFhAR8fH4SHh6untFKpVAgPD8e4ceMKbF+/fn1cuXJFY9nUqVORnp6OpUuXolq1asU+NxEREREZnl4K18OHD0Mmk0GlUkEul+Pw4cMQBOGl+7xqfWFCQkIwfPhw+Pr6ws/PD0uWLEFmZiZGjBgBABg2bBg8PDwQGhoKKysrNGrUSGN/R0dHACiwnIiIiEhbvr6+iIuLg5ubG86fPy91HJOil8I1Jibmpe91JTg4GImJiZg+fTri4uLQrFkzhIWFqW/Yio2NhUxmkPvPiIiIiAAAcXFxePTokdQxTJJBxrjGxsbC2dkZ1tbWha7Pzs5GYmIiqlevXuJjjxs3rtChAQBw9OjRl+67cePGEp+PiIiIiKRhsOmwtm/fXuT6Xbt2wcvLyxBRiIiIiMhIGaRwFUXxpevz8vJ4SZ+IiIiIXkpvQwXS0tKQkpKifv/06VPExsYW2C4lJQVbtmyBu7u7vqIQERGVabyZh6h49Fa4Ll68GF999RWA5zMGTJgwARMmTCh0W1EUMWfOHH1FISIiKtN4Mw9R8eitcO3SpQvs7OwgiiI+//xzDBo0CC1atNDYRhAE2NrawsfHB76+vvqKQkREREQmQG+Fq7+/P/z9/QEAmZmZ6NevH+dLJSIiIiKt6X06rKysLCxbtgw2NjYsXImIiIhIa3q/ld/GxgZmZmawtbXV96mIiIiIyIQZZA6qfv364bfffnvltFhEREREREUxyJOzBg4ciLFjx6Jjx44YPXo0PD09C32K1n9v3iIiIiIiesEghWuHDh3Ufz5x4kSB9aIoQhAEKJVKQ8QhIiIi0hs3NzeN/5LuGKRw3bBhgyFOQ0RERCQ5PkRCfwxSuA4fPtwQpyEiIiIqIAWOQHo+dszsI3UUvXKUOoABGKRw/beMjAw8ePAAAFCtWjXY2dkZOgIRERERGSGDzCoAAOfOnUPHjh1RsWJFNGrUCI0aNULFihXRqVMndqkTERGRyfh09VGMWhSGT1cflTqKyTFIj+vZs2fRoUMHWFhYYNSoUWjQoAEA4MaNG/jll1/Qvn17HD16FH5+foaIQ0REVKbwZh7TkpKRg6fpOVLHMEkGKVynTJkCDw8PnDx5ssAP5cyZM9GmTRtMmTIFhw4dMkQcIiKiMoVXHomKx2A9rtOnTy/0m6Srqyvee+89zJ492xBRiIiIXinfIhcpmcmYO3a+1FH0ygwWUkcgKhGDjHGVyWTIz88vcr1SqYRMZrDhtkRERERkhAxSLbZu3RrLly/H/fv3C6yLjY3FihUr0KZNG0NEISIiKnNW/PYtFvwwDyt++1bqKERlmkGGCsybNw/t27dH/fr10adPH9StWxcAcOvWLezcuRNmZmYIDQ01RBQiIqIyJyMrHWmZaVLHICrzDFK4Nm/eHGfPnsWUKVOwa9cuZGVlAQBsbGzQtWtXzJkzB97e3oaIQkRERERGymAPIPD29sb27duhUqmQmJgIAHB2dubYViIiIiIqFoM/OUsQBAiCoP4zEREREVFxGKy78/r16+jfvz8cHBzg7u4Od3d3ODg4oH///rh69aqhYhARGT1fX19UrVoVvr6+UkchIjIog/S4njhxAm+88QZUKhV69eqlcXPWrl27sH//foSFhaFdu3aGiENEZNTi4uLw6NEjqWMQERmcQQrXiRMnwsXFBceOHUO1atU01j148ADt27dHSEgIzp07Z4g4RERERGSEDDJU4Nq1axg7dmyBohUAqlWrhg8++ADXrl3T6tjLly+Hp6cnrKys0LJlS0RGRha57Zo1a9CuXTtUrFgRFStWRGBg4Eu3JyIiIiopRzsrVLa3gqOdldRRTI5Belxr1KgBhUJR5Prc3NxCi9pX2bp1K0JCQrBq1Sq0bNkSS5YsQVBQEG7dugUXF5cC2x89ehSDBg1C69atYWVlhfnz56NLly64du0aPDw8Snx+IiIiov/65r0OUkcwWQbpcZ0+fTqWLVuGS5cuFVh38eJFfPvtt5g5c2aJj7to0SKMHj0aI0aMgLe3N1atWgUbGxusX7++0O1//vlnjB07Fs2aNUP9+vWxdu1aqFQqhIeHl/jcpo43fxAREVFZY5Ae1zNnzsDV1RU+Pj5o3bo1ateuDQC4ffs2IiIi0KhRI0RERCAiIkK9jyAIWLp0aZHHzM3NxYULFzB58mT1MplMhsDAQI3jvExWVhby8vJQqVKlIrdRKBQavcUZGRnFOrax480fREREVNYYpHD97rvv1H8+deoUTp06pbH+ypUruHLlisayVxWuSUlJUCqVcHV11Vju6uqKmzdvFivXF198gSpVqiAwMLDIbUJDQzFr1qxiHY+IiEgbdjb2Gv8losIZpHBVqVSGOE2JfP3119iyZQuOHj0KK6uiB09PnjwZISEh6veXLl1CQECAISISEVE5Mbb/R1JHIDIKBn9ylq44OTlBLpcjPj5eY3l8fDzc3Nxeuu8333yDr7/+Gn/++SeaNGny0m0tLS1haWmpfm9nZ6d9aCIiIiLSmkEL1+joaOzfvx/3798H8Hy2gTfeeANeXl4lPpaFhQV8fHwQHh6O3r17A4D6Rqtx48YVud+CBQswd+5cHDhwgDceEZFRevHl/FVf0omITI3BCtdPPvkES5cuLTBsQCaTYcKECfjmm29KfMyQkBAMHz4cvr6+8PPzw5IlS5CZmYkRI0YAAIYNGwYPDw+EhoYCAObPn4/p06dj8+bN8PT0RFxcHIDnvajsSSUiY3H+/HmpIxARScIghevChQuxePFi9O/fH5988gkaNGgAALhx4wYWL16MxYsXw8PDAxMnTizRcYODg5GYmIjp06cjLi4OzZo1Q1hYmPqGrdjYWMhk/8z4tXLlSuTm5qJ///4ax5kxY4ZW03EREQGAhcISWYosjFvyodRR9Mvy1ZsQEemTQQrXNWvW4M0338Svv/6qsbxly5bYsmULcnJy8P3335e4cAWAcePGFTk04OjRoxrvY2JiSnx8IiIiIiobDFK4xsTE4OOPPy5yfVBQEMLCwgwRhYjI6P26cBuy0rNgY2+Dtz4ZIHUcIiKDMUjh6uLigsuXLxe5/vLly3B2djZEFCom3vxBVHZlpWchMzVT6hhERAZnkMJ1wIABWLp0KTw9PfHRRx/B1tYWAJCZmYnvvvsOa9euxYQJEwwRhYqJN38QERFRWWOQwnX27Nm4dOkSvvzyS0yfPh1VqlQBADx+/Bj5+fno2LEjvvrqK0NEMVrpdnZIVyiwefAQqaPoFZ8ZQ0REREUxSOFqY2OD8PBw7Ny5U2Me165du6Jbt27o2bMnBEEwRBQiIiIiMlJ6L1yzsrIwdOhQ9OvXD0OGDEGvXr30fUrSgakHwpCSnQ1Ha2vMCeoqdRwiIiIiyF69SenY2Njgzz//RFZWlr5PRTqUkp2NZ9nZSMnOljoKEREREQADFK4A0LZtW0RERBjiVERERERkogxSuH733Xc4ceIEpk6diocPHxrilERERERkYgxSuDZt2hQPHz5EaGgoatSoAUtLSzg4OGi8KlSoYIgoRERERGSkDDKrQL9+/ThrABERERGVikEK140bNxriNERE5YKNvY3Gf4mIygu9Fq45OTnYuXMnoqOj4eTkhO7du8Pd3V2fpyQiMnlvfTJA6ghERJLQW+GakJCA1q1bIzo6GqIoAng+NdaOHTsQGBior9MSERERkYnS281Zs2fPRkxMDCZOnIg9e/ZgyZIlsLa2xpgxY/R1SiIiIiIyYXrrcT148CCGDRuGb775Rr3M1dUVgwcPxq1bt1CvXj19nZp0wNHaWuO/RERERFLTW+EaGxuLL774QmNZ27ZtIYoi4uPjWbiWcXzMKxEREZU1ehsqoFAoYGVlpbHsxfv8/Hx9nZaIiIiITJReZxWIiYlBVFSU+n1qaioA4Pbt23B0dCywfYsWLfQZh4iIiIiMmF4L12nTpmHatGkFlo8dO1bjvSiKEAQBSqVSn3GIiIiIyIjprXDdsGGDvg5NREREROWQ3grX4cOH6+vQRERERFQO6e3mLCIiIiIiXWLhSkRERERGgYUrERERERkFFq5EREREZBRYuBIRERGRUTD6wnX58uXw9PSElZUVWrZsicjIyJduv23bNtSvXx9WVlZo3Lgx9u3bZ6CkRERERFQaRl24bt26FSEhIZgxYwaioqLQtGlTBAUFISEhodDtT58+jUGDBuHdd9/FxYsX0bt3b/Tu3RtXr141cHIiIiIiKimjLlwXLVqE0aNHY8SIEfD29saqVatgY2OD9evXF7r90qVL0bVrV3z22Wdo0KABZs+ejRYtWuC7774zcHIiIiIiKimjLVxzc3Nx4cIFBAYGqpfJZDIEBgYiIiKi0H0iIiI0tgeAoKCgIrcnIiIiorJDb0/O0rekpCQolUq4urpqLHd1dcXNmzcL3ScuLq7Q7ePi4oo8j0KhgEKhUL/PyMgoRWrj8iw7GynZ2QY9p21WFiwgonJUlEHPa0iJj2KQk5EidQyDUMASynRrRJlwe8bHxCMnNUfqGAaRZ5ELhXWuSbcnADyIv4/07DSpYxiEPM8cNrmm/TN66+EzJGcpDX7einZWqGRvZfDzmjqjLVwNJTQ0FLNmzdJYFhAQAHd3d4Nl6Lyh8KEP+qRQKBAUFIRjx44Z/NwAgN27pTkv6cVvy6ZJHYF06IcZP0odgXRs/o9zpY5gcgICAnDgwA5YWlpKHcWkGG3h6uTkBLlcjvj4eI3l8fHxcHNzK3QfNze3Em0PAJMnT0ZISIjGMktLS5P/i6hQKHDs2DEcO3YMdnZ2UsehUsrIyEBAQADb00SwPU0P29S0vGhPhUJh8vWCoRlt4WphYQEfHx+Eh4ejd+/eAACVSoXw8HCMGzeu0H38/f0RHh6OCRMmqJcdOnQI/v7+RZ6nPBSpL9OsWTM4ODhIHYNKKS3t+WVPtqdpYHuaHrapaXnRnqR7Rlu4AkBISAiGDx8OX19f+Pn5YcmSJcjMzMSIESMAAMOGDYOHhwdCQ0MBAB9//DECAgKwcOFCdO/eHVu2bMH58+exevVqKT8GERERERWDUReuwcHBSExMxPTp0xEXF4dmzZohLCxMfQNWbGwsZLJ/Jk5o3bo1Nm/ejKlTp+LLL79EnTp1sGPHDjRq1Eiqj0BERERExWTUhSsAjBs3rsihAUePHi2wbMCAARgwYICeUxk/S0tLzJgxo1wPkzAlbE/TwvY0PWxT08L21B9BFEVR6hBERERERK9itA8gICIiIqLyhYUrERERERkFFq5EREREZBRYuJLexcTEQBAEbNy4UeooREREZMRYuJYxd+/exZgxY1CzZk1YWVnBwcEBbdq0wdKlS5Gdna23816/fh0zZ85ETEyM3s5RHHPnzsWbb74JV1dXCIKAmTNnSprHkARBKNarsNkySiorKwszZ84s0bHKc9tooyy3582bN/H555+jWbNmsLe3h7u7O7p3747z58+XOoupKsvt+fjxYwwdOhT16tWDvb09HB0d4efnh02bNoH3XxetLLfpf/38888QBIFPVYMJTIdlSvbu3YsBAwbA0tISw4YNQ6NGjZCbm4uTJ0/is88+w7Vr1/T2sITr169j1qxZ6NChAzw9PfVyjuKYOnUq3Nzc0Lx5cxw4cECyHFL48UfN57//8MMPOHToUIHlDRo0KPW5srKyMGvWLABAhw4dirVPeW4bbZTl9ly7di3WrVuHfv36YezYsUhNTcX333+PVq1aISwsDIGBgaXOZGrKcnsmJSXh4cOH6N+/P6pXr468vDwcOnQI77zzDm7duoV58+aVOpMpKstt+m8ZGRn4/PPPYWtrW+ocpoCFaxkRHR2NgQMHokaNGjh8+DDc3d3V6z788EPcuXMHe/fulTDhP0RRRE5ODqytrXV+7OjoaHh6eiIpKQnOzs46P35ZNnToUI33Z86cwaFDhwosl0p5bhttlOX2HDRoEGbOnKnRezNy5Eg0aNAAM2fOZOFaiLLcnk2aNCnQkzdu3Dj07NkTy5Ytw+zZsyGXy6UJV4aV5Tb9tzlz5sDe3h4dO3bEjh07pI4jOQ4VKCMWLFiAjIwMrFu3TqNofaF27dr4+OOP1e/z8/Mxe/Zs1KpVC5aWlvD09MSXX34JhUKhsZ+npyd69OiBkydPws/PD1ZWVqhZsyZ++OEH9TYbN25UP5ShY8eOBS6PvDjGgQMH4OvrC2tra3z//fcAgHv37mHAgAGoVKkSbGxs0KpVq1IV2FL29hoDlUqFJUuWoGHDhrCysoKrqyvGjBmDZ8+eaWx3/vx5BAUFwcnJCdbW1vDy8sLIkSMBPB9z/KLwnDVrlrq9X3Xpn22je1K1p4+PT4FLjpUrV0a7du1w48YN3X7IckTKn8/CeHp6IisrC7m5uaX+bOWV1G16+/ZtLF68GIsWLYKZGfsaAfa4lhm7d+9GzZo10bp162JtP2rUKGzatAn9+/fHJ598grNnzyI0NBQ3btzA9u3bNba9c+cO+vfvj3fffRfDhw/H+vXr8c4778DHxwcNGzZE+/btMX78eCxbtgxffvml+rLIvy+P3Lp1C4MGDcKYMWMwevRo1KtXD/Hx8WjdujWysrIwfvx4VK5cGZs2bcKbb76J3377DX369NHd/yACAIwZMwYbN27EiBEjMH78eERHR+O7777DxYsXcerUKZibmyMhIQFdunSBs7MzJk2aBEdHR8TExOCPP/4AADg7O2PlypX44IMP0KdPH/Tt2xfA814bMqyy1p5xcXFwcnLS6WcsT6Ruz+zsbGRmZiIjIwPHjh3Dhg0b4O/vr5erY+WF1G06YcIEdOzYEd26dcOvv/6q189qNESSXGpqqghA7NWrV7G2v3TpkghAHDVqlMbyTz/9VAQgHj58WL2sRo0aIgDx+PHj6mUJCQmipaWl+Mknn6iXbdu2TQQgHjlypMD5XhwjLCxMY/mECRNEAOKJEyfUy9LT00UvLy/R09NTVCqVoiiKYnR0tAhA3LBhQ7E+nyiKYmJioghAnDFjRrH3MTUffvih+O8f0RMnTogAxJ9//llju7CwMI3l27dvFwGI586dK/LYpfn/y7bRTlltzxeOHz8uCoIgTps2TetjlCdlsT1DQ0NFAOrX66+/LsbGxpboGOVZWWvTPXv2iGZmZuK1a9dEURTF4cOHi7a2tiX4RKaJQwXKgLS0NACAvb19sbbft28fACAkJERj+SeffAIABS7Ve3t7o127dur3zs7OqFevHu7du1fsjF5eXggKCiqQw8/PD23btlUvs7Ozw3vvvYeYmBhcv3692MenV9u2bRsqVKiAzp07IykpSf16cdn3yJEjAABHR0cAwJ49e5CXlydhYnqZstSeCQkJGDx4MLy8vPD555/r5Rymriy056BBg3Do0CFs3rwZgwcPBgC9zkZj6qRs09zcXEycOBHvv/8+vL29dXJMU8HCtQxwcHAAAKSnpxdr+/v370Mmk6F27doay93c3ODo6Ij79+9rLK9evXqBY1SsWLHAGJ2X8fLyKjRHvXr1Cix/McTgvzmodG7fvo3U1FS4uLjA2dlZ45WRkYGEhAQAQEBAAPr164dZs2bByckJvXr1woYNGwqMfyZplZX2zMzMRI8ePZCeno6dO3dyuh0tlYX2rFGjBgIDAzFo0CD8/PPPqFmzJgIDA1m8aknKNl28eDGSkpLUMxHQPzjGtQxwcHBAlSpVcPXq1RLtJwhCsbYr6m5SsQTz+3GMlPRUKhVcXFzw888/F7r+xeB/QRDw22+/4cyZM9i9ezcOHDiAkSNHYuHChThz5gwLkzKiLLRnbm4u+vbti7/++gsHDhxAo0aNtD5WeVcW2vO/+vfvjzVr1uD48eMFrpjRq0nVpqmpqZgzZw7Gjh2LtLQ09VXZjIwMiKKImJgY2NjYwMXFpXQf0EixcC0jevTogdWrVyMiIgL+/v4v3bZGjRpQqVS4ffu2xg1U8fHxSElJQY0aNUp8/uIWwf/NcevWrQLLb968qV5PulOrVi38+eefaNOmTbG+SLRq1QqtWrXC3LlzsXnzZgwZMgRbtmzBqFGjtGpv0i2p21OlUmHYsGEIDw/Hr7/+ioCAAG0+Bv0/qduzMC96WlNTU3VyvPJGqjZ99uwZMjIysGDBAixYsKDAei8vL/Tq1avcTo3FoQJlxIvJhUeNGoX4+PgC6+/evYulS5cCALp16wYAWLJkicY2ixYtAgB07969xOd/MbFxSkpKsffp1q0bIiMjERERoV6WmZmJ1atXw9PTk+NydOytt96CUqnE7NmzC6zLz89Xt92zZ88K9KY3a9YMANSXrmxsbACUrL1Jt6Ruz48++ghbt27FihUr1Hc5k/akbM/ExMRCl69btw6CIKBFixbFOg5pkqpNXVxcsH379gKvjh07wsrKCtu3b8fkyZO1/2BGjj2uZUStWrWwefNmBAcHo0GDBhpPzjp9+jS2bduGd955BwDQtGlTDB8+HKtXr0ZKSgoCAgIQGRmJTZs2oXfv3ujYsWOJz9+sWTPI5XLMnz8fqampsLS0RKdOnV56KWLSpEn45Zdf8MYbb2D8+PGoVKkSNm3ahOjoaPz++++QyUr+vejHH3/E/fv3kZWVBQA4fvw45syZAwB4++23y3UvbkBAAMaMGYPQ0FBcunQJXbp0gbm5OW7fvo1t27Zh6dKl6N+/PzZt2oQVK1agT58+qFWrFtLT07FmzRo4ODiov/RYW1vD29sbW7duRd26dVGpUiU0atTopZeK2Ta6JWV7LlmyBCtWrIC/vz9sbGzw008/aazv06cPn9JTQlK259y5c3Hq1Cl07doV1atXR3JyMn7//XecO3cOH330UYH7Iah4pGpTGxsb9O7du8DyHTt2IDIystB15YqUUxpQQX///bc4evRo0dPTU7SwsBDt7e3FNm3aiN9++62Yk5Oj3i4vL0+cNWuW6OXlJZqbm4vVqlUTJ0+erLGNKD6fyqp79+4FzhMQECAGBARoLFuzZo1Ys2ZNUS6Xa0yNVdQxRFEU7969K/bv3190dHQUraysRD8/P3HPnj0a25RkOqyAgACN6Vz+/Spsqi5T9t+pWV5YvXq16OPjI1pbW4v29vZi48aNxc8//1x8/PixKIqiGBUVJQ4aNEisXr26aGlpKbq4uIg9evQQz58/r3Gc06dPiz4+PqKFhUWxpmlh25ROWWrP4cOHF9mWAMTo6GhdfnSTVJba8+DBg2KPHj3EKlWqiObm5urfGxs2bBBVKpVOP7cpK0ttWhhOh/WcIIoluEOHiIiIiEgiHONKREREREaBhSsRERERGQUWrkRERERkFFi4EhEREZFRYOFKREREREaBhauRWbBgAerXrw+VSiV1lFIbOHAg3nrrLaljSIrtaXrYpqaF7Wla2J4mQOr5uKj4UlNTxUqVKonr169XL8P/z7v4zTffFNh+w4YNIgDx3LlzOs8SGBgoAhA//PDDQtevXbtWrF+/vmhpaSnWrl1bXLZsWYFtoqKiRJlMJl66dEnn+YwB29P0sE1NC9vTtLA9TQN7XI3I+vXrkZ+fj0GDBhVY97///U/9RCN9++OPPzQe8/pf33//PUaNGoWGDRvi22+/hb+/P8aPH4/58+drbNe8eXP4+vpi4cKF+o5cJrE9TQ/b1LSwPU0L29NESF05U/E1adJEHDp0qMYyAGKzZs1EAOLChQs11unj22J2drbo6ekpfvXVV4V+W8zKyhIrV65c4ElbQ4YMEW1tbcXk5GSN5d98841oa2srpqen6yyjsWB7mh62qWlhe5oWtqdpYI+rkYiOjsZff/2FwMDAAuvatGmDTp06YcGCBcjOztZrjgULFkClUuHTTz8tdP2RI0fw9OlTjB07VmP5hx9+iMzMTOzdu1djeefOnZGZmYlDhw7pLXNZxPY0PWxT08L2NC1sT9PBwtVInD59GgDQokWLQtfPnDkT8fHxWLly5UuPo1AokJSUVKzXf8XGxuLrr7/G/PnzYW1tXejxL168CADw9fXVWO7j4wOZTKZe/4K3tzesra1x6tSpl+Y2NWxP08M2NS1sT9PC9jQdZlIHoOK5efMmAMDLy6vQ9e3atUPHjh3xv//9Dx988EGRPxS//PILRowYUaxziqKo8f6TTz5B8+bNMXDgwCL3efLkCeRyOVxcXDSWW1hYoHLlynj8+LHGcjMzM1SrVg3Xr18vViZTwfY0PWxT08L2NC1sT9PBwtVIPH36FGZmZrCzsytym5kzZyIgIACrVq3CxIkTC90mKChIq0sKR44cwe+//46zZ8++dLvs7GxYWFgUus7KyqrQyzAVK1Ys9NupKWN7mh62qWlhe5oWtqfpYOFqQtq3b4+OHTtiwYIFeP/99wvdxt3dHe7u7iU6bn5+PsaPH4+3334br7322ku3tba2Rm5ubqHrcnJyCv0WK4oiBEEoUabygO1petimpoXtaVrYnsaBhauRqFy5MvLz85Geng57e/sit5sxYwY6dOiA77//Ho6OjgXWZ2dnIzU1tVjndHNzAwD88MMPuHXrFr7//nvExMRobJOeno6YmBi4uLjAxsYG7u7uUCqVSEhI0LjUkZubi6dPn6JKlSoFzvPs2TPUqVOnWJlMBdvT9LBNTQvb07SwPU0Hb84yEvXr1wfw/M7IlwkICECHDh0wf/78Qi8pbN26Vf2N8VWvF2JjY5GXl4c2bdrAy8tL/QKe/0B6eXnh4MGDAIBmzZoBAM6fP69x3vPnz0OlUqnXv5Cfn48HDx6gQYMGJfr/YezYnqaHbWpa2J6mhe1pOtjjaiT8/f0BPP/L26RJk5duO3PmTHTo0AGrV68usE6b8TkDBw4s8MMCAH369EG3bt0wevRotGzZEgDQqVMnVKpUCStXrkS3bt3U265cuRI2Njbo3r27xjGuX7+OnJwctG7dukSZjB3b0/SwTU0L29O0sD1NiFQTyFLJNWrUSBw0aJDGMhTxyLiAgAD1o+z08bi6l517+fLlIgCxf//+4po1a8Rhw4aJAMS5c+cW2Pabb74RbWxsxLS0NL1kLMvYnqaHbWpa2J6mhe1pGli4GpFFixaJdnZ2YlZWlnpZUX/xjxw5ItkPnSiK4urVq8V69eqJFhYWYq1atcTFixeLKpWqwHYtW7Ys8CST8oLtaXrYpqaF7Wla2J6mgYWrEUlJSRErVaokrl27VuooOnHx4kVREATx4sWLUkeRBNvT9LBNTQvb07SwPU2DIIr/mSGXyrT58+djw4YNuH79OmQy4763buDAgVCpVPj111+ljiIZtqfpYZuaFranaWF7Gj8WrkRERERkFIz76wYRERERlRssXImIiIjIKLBwJSIiIiKjwMKViIiIiIwCC1ciIiIiMgosXImIiIjIKLBwJSIiIiKjwMKViIiIiIwCC1ciIiIiMgosXImIiIjIKLBwJSIiIiKjwMKViIiIiIwCC1ciIiIiMgosXEvoyZMnmDlzJp48eSJ1FCIiIqJyhYVrCT158gSzZs1i4UpERERkYCxciYiIiMgosHAlIiIiIqPAwpWIiIiIjAILVyIiIiIyCixciYiIiMgosHAlIiIiIqPAwpWIiIiIjAILV6JyIjUrV+oIREREpcLClaicSM5k4UpERMaNhStROZGpyJc6AhERUamwcCUqJzJz8pGvVEkdg4iISGulLlyfPHmCy5cvIzMzUxd5Smz58uXw9PSElZUVWrZsicjIyJduv2TJEtSrVw/W1taoVq0aJk6ciJycHAOlJZJWSlae1BGIiIi0pnXhunPnTtSvXx9Vq1ZFixYtcPbsWQBAUlISmjdvjh07dugqY5G2bt2KkJAQzJgxA1FRUWjatCmCgoKQkJBQ6PabN2/GpEmTMGPGDNy4cQPr1q3D1q1b8eWXX+o9K1FZkJTOL2lERGS8tCpcd+/ejb59+8LJyQkzZsyAKIrqdU5OTvDw8MCGDRt0FrIoixYtwujRozFixAh4e3tj1apVsLGxwfr16wvd/vTp02jTpg0GDx4MT09PdOnSBYMGDXplLy2RqXiSwsKViIiMl1aF61dffYX27dvj5MmT+PDDDwus9/f3x8WLF0sd7mVyc3Nx4cIFBAYGqpfJZDIEBgYiIiKi0H1at26NCxcuqAvVe/fuYd++fejWrVuR51EoFEhLS1O/MjIydPtBiAzoSUq21BGIiIi0ZqbNTlevXsWiRYuKXO/q6lrk5XpdSUpKglKphKura4Fz37x5s9B9Bg8ejKSkJLRt2xaiKCI/Px/vv//+S4cKhIaGYtasWTrNTiSVh8lZUkcgIiLSmlY9rjY2Ni+9GevevXuoXLmy1qH05ejRo5g3bx5WrFiBqKgo/PHHH9i7dy9mz55d5D6TJ09Gamqq+nXs2DEDJibSrftJmRpDe4iIiIyJVoVrx44dsWnTJuTnF5wXMi4uDmvWrEGXLl1KHe5lnJycIJfLER8fr7E8Pj4ebm5uhe4zbdo0vP322xg1ahQaN26MPn36YN68eQgNDYVKVfg0QZaWlnBwcFC/7OzsdP5ZiAwlU5HP4QJERGS0tCpc586di4cPH+K1117D999/D0EQcODAAUydOhWNGzeGKIqYMWOGrrNqsLCwgI+PD8LDw9XLVCoVwsPD4e/vX+g+WVlZkMk0P7JcLgcA9kJRuREV80zqCERERFrRqnCtV68eTp48icqVK2PatGkQRRH/+9//MG/ePDRu3BgnTpyAp6enjqMWFBISgjVr1mDTpk24ceMGPvjgA2RmZmLEiBEAgGHDhmHy5Mnq7Xv27ImVK1diy5YtiI6OxqFDhzBt2jT07NlTXcASmbpjN+KhVPGLGhERGR+tbs4CgIYNG+LPP//Es2fPcOfOHahUKtSsWRPOzs66zPdSwcHBSExMxPTp0xEXF4dmzZohLCxMfcNWbGysRg/r1KlTIQgCpk6dikePHsHZ2Rk9e/bE3LlzDZaZSGqJ6QocuR6PwEaFD6khIiIqqwSR18hLJCoqCj4+Prhw4QJatGghdRyiYjt7Jwkrw28DAKzN5Zg9oCmc7C0lTkVERFR8Wg0VWLZsGYKCgopc/8Ybb2DlypVahyIi/crOU2LNkTtQccgAEREZEa0K13Xr1sHb27vI9d7e3li9erXWoYhI/249ScO+y4+ljkFERFRsWhWud+/eRYMGDYpcX79+fdy9e1frUERkGNvPP0BsUtFzMhMREZUlWhWuFhYWiIuLK3L9kydPCkw7RURlj1Il4vvDt5GbX/g8xkRERGWJVtVlq1atsHHjRqSnpxdYl5qaig0bNqBVq1alDkdEuuHr64uebZtgz7yRBdY9epaNn05FS5CKiIioZLSaDmvGjBkICAhAs2bNMGHCBDRs2BAAcPXqVSxZsgRPnjzB5s2bdRqUiLQXFxeHxPgnsHEs+LQ7ADh+MwEeFa0R1KSKgZMREREVn1aFa8uWLbF7926MGTMGH3/8MQRBAPD86VNeXl7YtWtXkU+vIqKy6ZeI+7Awk6Ojt6vUUYiIiAql9QMIOnfujDt37uDixYvqG7Fq1aqFFi1aqAtZIjIum07cQ6YiH92bVeHPMRERlTlaF64AIJPJ4OPjAx8fH13lISKJ/RYZi4S0HAxr6wUzOW+yJCKisqNUhev169dx7949PHv2DIU9gGvYsGGlOTwRSeT4zQQkpSvwYee6sLUs1T8TREREOqPVb6S7d+9i6NChiIyMLLRgBQBBEFi4Ehmx649SMW/nVYR0a4DKdnw0LBERSU+rwnXMmDG4cuUKlixZgnbt2qFixYq6zkVEZcCjZ9mYvf0qQt6oj+pOtlLHISKick6rwvXUqVP48ssv8dFHH+k6DxGVMSlZuZi36xref70OmtXgl1QiIpKOVndeODk5oUKFCrrOQkRlVE6eEkvDbmLPxUdFDg8iIiLSN60K1/fffx8//fQTlEqlrvMQURkl4vmMA98d+hvZuYU/yICIiEiftBoqULduXSiVSjRt2hQjR45EtWrVIJfLC2zXt2/fUgckorLlQnQyHiZn4cPAuhz3SkREBqVV4RocHKz+86efflroNoIgsEeWyETFp+Zg9o6reKd9TbSp6yx1HCIiKie0KlyPHDmi6xxEZGTylCqsOXIHT1Ky0e+1anzSFhER6Z1WhWtAQICucxCRkdpz8RGUKhHBrWpIHYWIiExcqZ7nqFAoEBERgZ07dyIpKUlXmYjIyOy//BjHbsRLHYOIiEyc1oXrsmXL4O7ujrZt26Jv377466+/AABJSUlwcnLC+vXrdRaSiMq+n07FIDYpU+oYRERkwrQqXDds2IAJEyaga9euWLdunca8jk5OTujUqRO2bNmis5Avs3z5cnh6esLKygotW7ZEZGTkS7dPSUnBhx9+CHd3d1haWqJu3brYt2+fQbISmbI8pQor/vwbObm8KZOIiPRDq8J14cKF6NWrFzZv3oyePXsWWO/j44Nr166VOtyrbN26FSEhIZgxYwaioqLQtGlTBAUFISEhodDtc3Nz0blzZ8TExOC3337DrVu3sGbNGnh4eOg9K1F5EJeag82nY6SOQUREJkqrwvXOnTt44403ilxfqVIlPH36VOtQxbVo0SKMHj0aI0aMgLe3N1atWgUbG5sihymsX78eycnJ2LFjB9q0aQNPT08EBASgadOmes9KJJXY2FhkZj6/hJ+vyEFGcpxez3f8VgLO39P/zz8REZU/Ws0q4Ojo+NKbsa5fvw43NzetQxVHbm4uLly4gMmTJ6uXyWQyBAYGIiIiotB9du3aBX9/f3z44YfYuXMnnJ2dMXjwYHzxxReFPkCByJhFRkZi9uzZ2Lt3r3o4T252On6f0g9VG7dB027vwMnTWy/n3nD8Hmq72sPR1kInx8vIysGGPacQdes+BEGAn7cX3uneBlaW5kXuM2vtLtyIeaKxLPC1BhjVqz0A4GjULaz642ih+34/aRgq2FnrJDsREemOVoVrt27dsHr1aowdO7bAumvXrmHNmjUYOXJkqcO9TFJSEpRKJVxdXTWWu7q64ubNm4Xuc+/ePRw+fBhDhgzBvn37cOfOHYwdOxZ5eXmYMWNGofsoFAooFAr1+4yMDN19CCI9+eOPPxAcHAxRFDXGoAMARBGPrp7Go6sRCBg9GzWad9D5+TMV+fj17H2816lOsfeZtXYXAlrUQ4cW9Qqs+3bbYaSkZ+HLd7pDqVRh1fajWL3zOMa/9fpLj9nJtz7eev019XsL83/+yWvduBaa1ammsf3KP44gN0/JopWIqIzSaqjAnDlzoFQq0ahRI0ydOhWCIGDTpk0YOnQofH194eLigunTp+s6a6mpVCq4uLhg9erV8PHxQXBwMKZMmYJVq1YVuU9oaCgqVKigfnEOWyrrIiMjERwcDKVSWeTT60SVCqJKhWNrpiEp5rpecpy5k4TkDMWrN3yFRwnPcPn2A7zXJwB1qrmivqc73uneBhFX7iA57eWzGFiam8HR3kb9srH6pwfY4j/rZDIBV+89Rkef+qXOTERE+qFV4VqlShVcuHABXbt2xdatWyGKIn788Ufs3r0bgwYNwpkzZ+Dk5KTrrBqcnJwgl8sRH685d2R8fHyRwxTc3d1Rt25djWEBDRo0QFxcHHJzcwvdZ/LkyUhNTVW/jh07prsPQaQHc+bMKbyntQARgIi/9m3USw6VCFx9mFrq4/z9IB62Vhao5fHPo2Ub16oKQRBw52HhN2K+cPLyHYyetwmfLvsVvxw8C0VuXpHbHr/4NyzNzdCqUc1SZyYiIv0o8VABhUKBAwcOwNPTE2vXrsXatWuRmJgIlUoFZ2dnyGSleqZBsVlYWMDHxwfh4eHo3bs3gOc9quHh4Rg3blyh+7Rp0wabN2+GSqVS5/z777/h7u4OC4vCx+JZWlrC0tJS/d7Ozk63H4RIh2JjY7Fnz55iFK3PiSoVHlw5hYzkONhV0v249AdPs0p9jJT0LDj859K9XC6DnbUlUtKLPn6bprXh7GiPivY2iI1LxuaDZ/E4KQWfDA4qdPsjF26iTZPaGsMJiIiobCnxv9AWFhYYMGAAli5diiZNmgAAnJ2dX7GXfoSEhGD48OHw9fWFn58flixZgszMTIwYMQIAMGzYMHh4eCA0NBQA8MEHH+C7777Dxx9/jI8++gi3b9/GvHnzMH78eEnyU/mVn6+EUqXS+XHDDhwsdtGqJop4cuM8avt313mep+k5Ra7bfjQKO45fVL/PzVPizsMEbNhzUr1s4fi3tD534Gv/3HhW3a0yHO1tMGfDHsQ9TYVb5Qoa2/4dG4dHiSn4sH8nrc9HRET6V+LCVRAE1KlTp0w84jU4OBiJiYmYPn064uLi0KxZM4SFhalv2IqNjdXoAa5WrRoOHDiAiRMnokmTJvDw8MDHH3+ML774QqqPQOVQfv7zAi3nJZettXXn/iPIZDKoSlIUCwKyMtKRrYc8CSkZyM9Xwsys4Kwdnf284d+4lvr9t9sOo2VDL/h5e6mXVbS3haO9DdIysjX2VSpVyMhWwNHepthZaldzAQDEJ6cVKFwPn78JT/fKqOkhzZdwIiIqHq2uiX355ZcICQnBgAEDUK9ewTuADWncuHFFDg04evRogWX+/v44c+aMnlMRFU2pUiEnNw9mcjnM5LodWuNYwaFkRSsAiCIsrG0hEwSdZhEhQiY8/7xmKFi42tlYwc7GSv3ewkwOB1vrAkVl3WquyMzJxb1HierC8uq9RxBFEbWruhQ7z/0nz+eW/W+xm6PIw5mr9zCwi1+xj0VERNLQqnA9c+YMKleujEaNGqFDhw7w9PSEtbXmGDRBELB06VKdhCQyRWZymc7HU7YP6ABBEEo2XEAQ4FrXB4KOC1eIgL1V6edH9nCpiKZ1qmH1juMY1asdlEoVNuw5Bf/GtVHJwRYAkJyWiTnr92Bs/46oXdUFcU9TceqvO2hetzrsbKwQG/cUP+yLQANPd9Rwq6xx/NNX7kKpUqFd0+JP3UVERNLQ6rfmd999p/5zeHh4oduwcCUyvCoeVdEpsAuOHv6zyKmw/k2QyeDu7Q/bSq6v3FYbbg66eQDBRwM6Yf2eU5izfg8EQUDLhs8fQPBCvlKFx0kpUOTmAwDM5HJcvfsI+09fgSIvH5Ur2KJlQy/06dCiwLGPXLgJP28v2FpbFlhHRERliyCW+E6O8i0qKgo+Pj64cOECWrQo+EuQ6FUUuXm4EfMEVhbmermD/a9LFzGgd3colcpX9LwKEGQyBE5cgco1Gug8h7lcwNiAqmhexwOWFkU/4YqIiKi4DDN3FREZTJNmzbFsxWrI5fIiH2UsyGQQZDK0GTFLL0UrAHSsVwlW5vwnhoiIdKdUv1XOnDmD0NBQTJw4Ebdv3wYAZGVlISoqio9GJZJQULce2LZjLzp0Ciw4dlUQ4O7tj8CJK1C1aXu9nL++ux1a1nTUy7GJiKj80uo6ZW5uLgYOHIidO3dCFEUIgoCePXuiTp06kMlk6NKlCyZOnIgpU6boOi8RFVOTZs2xesOPePzoIbp37oi0tFSYW9uj6xfr9TamFQBqOtsg+LUqgKj7eWqJiKh806rHddq0adizZw9WrlyJW7duaYyjs7KywoABA7Bz506dhSQi7VXxqAobm+dTQJlZWOm1aG1W3QHDW1eFhRmHCBARke5p9dvll19+wQcffID33nsPlSpVKrC+QYMGuHfvXqnDEZFxMJcL6NXcFf193HU+Ny0REdELWg0VSEhIQOPGjYtcL5fLkZVV+meUE1HZ5+JggYF+HnB14HRSRESkX1oVrtWqVcPNmzeLXH/q1CnUrl1b61BEZBwaV7VH3xbuHBpAREQGodVvm8GDB+P7779HRESEetmLO5fXrFmDX3/9FcOGDdNNQiIqk9rVrYTg16qwaCUiIoPRqsd1ypQpOHPmDNq3b48GDRpAEARMnDgRycnJePjwIbp164aJEyfqOisRlRHt6lZCUENn3T8mloiI6CW06iqxsLBAWFgYNmzYgJo1a6J+/fpQKBRo0qQJNm7ciN27dxc58TkRGbdm1R1YtBIRkSSK1eMaEhKCt99+G82bNwcAxMbGwtnZGUOHDsXQoUP1GpCIyo5aLjbo08KdRSsREUmiWD2uS5YswY0bN9Tvvby8sH37dr2FIqKyp7aLLYa2qgozGYtWIn1Q5imljkC6lMvZlfShWD2urq6uGvOy/vuBA0Rk+l7zckTPpq6Qs2gl0htVvgpycw6zMxlKBQAbqVOYnGIVrt27d8dXX32FgwcPwtHREQCwcOFCbNmypch9BEHg07OIjJyZXEDPpq7w9XSUOgqRyWOnkIlR5kmdwCQVq3BdunQpXFxccOTIEVy7dg2CIODBgwdITk4uch+OgSMybo42Zhjcqio8HK2kjkJULogqFq4mRZkrdQKTVKzC1dbWFvPmzVO/l8lkWLJkCQYPHqy3YEQknRqVrTG4lQfsLLWaMY+ItKDKZ+FqUvKzpU5gkop1c1bfvn1x4sQJ9fsjR46gc+fOegtFRNJp5GGPkW2rsWglMjBlPm/OMil5vDlLH4pVuO7cuROxsbHq9506dcKhQ4f0FoqIpNG8ugOC/arATM6nYREZmjJPJXUE0iVFutQJTFKxfjt5eHjg4sWL6veiKHIMK5GJaeRhj74+7pDxZ5tIEvmKfKkjkC7lZkidwCQVq3AdOHAgFi1ahOrVq6NJkyYAgEmTJqFJkyZFvpo2barX4C8sX74cnp6esLKyQsuWLREZGVms/bZs2QJBENC7d2/9BiQyAtUrWWOAL4tWIikpczlUwKSwcNWLYg1iCw0NRe3atXHkyBEkJCRAEATY2tqicuXK+s73Ulu3bkVISAhWrVqFli1bYsmSJQgKCsKtW7fg4uJS5H4xMTH49NNP0a5dOwOmJSqb7KzkGNzKg8MDiCSWzwcQmBaOcdWLYhWucrkc7733Ht577z0Az2cVmDp1quSzCixatAijR4/GiBEjAACrVq3C3r17sX79ekyaNKnQfZRKJYYMGYJZs2bhxIkTSElJMWBiorJngG8V2FvxRiwiqbHH1cSwx1UvtOpiiY6OlvwSe25uLi5cuIDAwED1MplMhsDAQERERBS531dffQUXFxe8++67xTqPQqFAWlqa+pWRwb+IZDpa1XREbRdbqWMQEYB8BQtXk5KbDqh4w52uadXNUqNGDV3nKLGkpCQolUq4urpqLHd1dcXNmzcL3efkyZNYt24dLl26VOzzhIaGYtasWaWJSlQm2VnK0bmhs9QxiOj/5efw5iyTolIC2cmArZPUSUxKsXpcZTIZzMzMkJubq34vl8tf+jIzK1uXHtPT0/H2229jzZo1cHIq/l+iyZMnIzU1Vf06duyYHlMSGc7rDZxgxeeiE5UZuVl80pLJSY199TZUIsWqLqdPnw5BENTF6Iv3UnJycoJcLkd8fLzG8vj4eLi5uRXY/u7du4iJiUHPnj3Vy1T/34VvZmaGW7duoVatWgX2s7S0hKWlpfq9nZ2drj4CkWQcrM3QwtNR6hhE9C+KDBauJif5DlClhdQpTEqxCteZM2e+9L0ULCws4OPjg/DwcPV4W5VKhfDwcIwbN67A9vXr18eVK1c0lk2dOhXp6elYunQpqlWrZojYRGVCq5oVYSbj1FdEZUlOmkLqCKRrCVcBvCV1CpNStq7nl1BISAiGDx8OX19f+Pn5YcmSJcjMzFTPMjBs2DB4eHggNDQUVlZWaNSokcb+jo6OAFBgOZEpEwSgeY0KUscgov/ITs3hA35MTfxlqROYnBIXrgqFAj/99BMOHjyIu3fvIj09Hfb29qhduza6du2KwYMHw8LCQh9ZCwgODkZiYiKmT5+OuLg4NGvWDGFhYeobtmJjYyGTcW5Kon+rXskaDpz+iqjMyc9VIjcrD5a2hvkdSgaQ9gjIiAfsXF+9LRVLiX57XblyBb169cL9+/chiiIqVKgAOzs7JCQkICoqCtu2bcPcuXOxa9cuNGjQQF+ZNYwbN67QoQEAcPTo0Zfuu3HjRt0HIirj6rhy+iuisirzaRYLV1MTewrw7it1CpNR7O7IjIwMvPnmm4iPj8fcuXPx4MEDPHv2TOO/c+bMwePHj9GzZ09kZmbqMzcRacnTyUbqCERUhIxE/u40Off+lDqBSSl24bphwwbExsZi7969mDRpEjw8PDTWe3h4YPLkydi9ezeio6PZm0lUFgmAh6OV1CmIqAjp8XzIjcl5fO75kAHSiWIXrnv37kWXLl3QoUOHl27XqVMndO7cGbt37y5tNiLSEScXF1R2doW9Y2VYmHHcN1FZlfo4XeoIpGuiCFz+QeoUJqPYv8GuXLnyyqL1hU6dOhWYeoqIpLNz3yGs3X0K4xf+InUUInqJZw9SIYqi1DFI127uAJ7FSJ3CJBT75qzk5ORCJ/YvjKurK5KTk7UORUT64WLPmz6IyiJfX1/cv30fDlaOaPt+FCq420sdiXRJpQROzAN6rAI421GpFPv/nkKhgLm5ebG2/ffjYYmo7HBi4Woy8lR5UkcgHYqLi0NSWhJSsp7h0V9xUschfXgSBVzdInUKo1ei6bBiYmIQFRX1yu2io6O1DkRE+lOJ0+yYjJz8HJhbFK8zgYzL/bMPUD+wFmRy9syZnLPLANcmgCsffKStEhWu06ZNw7Rp0165HZ/8QVQ2Odqw0DEVoqiCUqWEXCaXOgrpWFZKDmIvPIanX1Wpo5CuqfKBg58CfX4A7FykTmOUil24btiwQZ85iEjPBAC2lixyTEmeKo+Fq4m6vv9veDRxgzmfcmeUfH19ERd7G27W+Tj/5X8eyJSVBIRNAN5cC1hwXu2SKvZPxPDhw/WZg4j0zNJMBhmvhJiUfFUeAM7La4qyU3NwZdcNtHirsdRRSAtxcXF4lJgGOBZxlevp38Chz4CuSwA5r4SVBAfQEJUTMhmLVlOTp8qXOgLpUfSZB4iNeix1DNKXh2eBI9MBlUrqJEaFhStROcGpIU1PPmcWMHlRW68g+X6K1DFIX+4eAo59xeK1BFi4EpUTSlauJieXhavJU+YpcXrteT4K1pT9vQc4OvP5XK/0SixcicoJPo3H9OTkZ0sdgQxAkZmLE99HIvNpltRRSF9u7wP+nATkK6ROUuaxcCUqJzhFnenJyMuUOgIZSHZKDk6sPIusFH5ZMVnRR4C9Y4HsFKmTlGksXInKCTPenGVy0nPTpI5ABpSZnI3jy88i6xmLV5MVdxnYPgxI+lvqJGVWqSaIu379Ou7du4dnz54Vehly2LBhpTk8EemQpRm/p5qa5JxkqSOQgWU+zcKx786g3ft+sHO2lToO6UP6Y2DHO0DbL4B6bwK8WqZBq8L17t27GDp0KCIjI4scNycIAgtXojLExoIT1Zuap9lJUkcgCWQ9y8ax786g7ZjXUKGKg9RxSB+UucCx2c+nzGo3GbC0lzpRmaFV4TpmzBhcuXIFS5YsQbt27VCxYkVd5yIiHatsZyF1BNKx+Kx4qSOQRHLSFTi+/Cxaj/ZFZU/+DjZZdw8C8ZeBjl8BVXykTlMmaFW4njp1Cl9++SU++ugjXechIqJiSsxKRJ4qD+YyPnmnPMrNzsOJlZFo9U5zuDXgc+9NVkY8sOd9oPFg4LUPAbPy3Qmh1aA3JycnVKhQQddZiIioBESo8CSDT1Yqz5R5SpxedwGx5x9JHYX0SRSBv34G/hgKPL0tdRpJaVW4vv/++/jpp5+gVEo/We7y5cvh6ekJKysrtGzZEpGRkUVuu2bNGvXQhooVKyIwMPCl2xMRlXUxaTFSRyCJiSoR5zZfxt1T96WOQvr27N7zWQdu7pQ6iWS0GipQt25dKJVKNG3aFCNHjkS1atUglxe88aNv376lDvgyW7duRUhICFatWoWWLVtiyZIlCAoKwq1bt+DiUvCyydGjRzFo0CC0bt0aVlZWmD9/Prp06YJr167Bw8NDr1mJiPQhOvUe2lcNkDoGlQGXfr8GUSmidntPqaOQPinznt+49SwaaPVxuZt1QKvCNTg4WP3nTz/9tNBtBEHQe4/sokWLMHr0aIwYMQIAsGrVKuzduxfr16/HpEmTCmz/888/a7xfu3Ytfv/9d4SHh3MGBCIySndSbkMlqiATON0ZAZd3XIfcXAYv/+pSRyF9++snID8baDupXBWvWhWuR44c0XWOEsvNzcWFCxcwefJk9TKZTIbAwEBEREQU6xhZWVnIy8tDpUqVitxGoVBAofjnEWwZGXxeNBGVHZl5mYhOjUYtx1pSR6Ey4uJvV2FuY46qTd2ljkL6dv13wLoS4DtG6iQGo1XhGhAg/WWppKQkKJVKuLq6aix3dXXFzZs3i3WML774AlWqVEFgYGCR24SGhmLWrFmlykpEpE8X4s+zcCU1UQTO/3wZ1g5WqOzFqbJM3oU1gLM3UKOd1EkMotTXlq5fv479+/dj//79uH79ui4yGcTXX3+NLVu2YPv27bCysipyu8mTJyM1NVX9OnbsmAFTEhG9WlTCBWTmZUodg8oQZb4KEesvIPNpltRRyBBOzANyy0dba1247ty5E7Vq1ULjxo3Ro0cP9OjRA40bN0bt2rWxa9cuXWYslJOTE+RyOeLjNSfgjo+Ph5ub20v3/eabb/D111/j4MGDaNKkyUu3tbS0hIODg/plZ2dX6uxERLqUq1TgcGy41DGojFFk5uL0ugvIU+RLHaVciY2NRWbm8y+SmQoVYpNz9X/SzETg+jb9n6cM0GqowL59+9CvXz/UqFED8+bNQ4MGDQAAN27cwOrVq9G3b1/s2bMHXbt21WnYf7OwsICPjw/Cw8PRu3dvAIBKpUJ4eDjGjRtX5H4LFizA3LlzceDAAfj6+uotHxGRIR17eBQtXH3gYccZUugfaXHpiNx0Ef7v+kAm5w18+hQZGYnZs2dj7969EEURAJCSrYTnlCvo0bgCpnVzx2uetvoLcO1XoMnbgKz07ZyXlYbb+5fh6a0IQBDg7N0etbt+BDNL6yL3eXx+N+KvhCPjyW0oc7PQ5ovdMLfW7OyLWDwQilTNDkev10ejRrvBxc6mVeE6e/ZsNGnSBCdOnICt7T+N8Oabb2LcuHFo27YtZs2apdfCFQBCQkIwfPhw+Pr6ws/PD0uWLEFmZqZ6loFhw4bBw8MDoaGhAID58+dj+vTp2Lx5Mzw9PREXFwcAsLOzY08qERk1lajED9c24uMWE2FjbiN1HCpD4m4m4sKWv+A7qCkEWfm5+9yQ/vjjDwQHB0MURXXR+oIoAvuupmL/1VRsHV0TfZvradxxRjzw9Bbg3KBYm1/cMAFuzbrCvXnBWu3GH3OhSH+KpsP+B5VSiVs75+Pv3d/Au/+0Io+nzFOgUm0/VKrth+jwNUVu59lxBNxb9FC/f1kxXBityvK//voLw4cP1yhaX7C1tcU777yDv/76S5tDl0hwcDC++eYbTJ8+Hc2aNcOlS5cQFhamvmErNjYWT548UW+/cuVK5Obmon///nB3d1e/vvnmG71nJSLSt8TsBGy8tgF5yjypo1AZE3vhMaJ+vQJRJb56YyqRyMhIBAcHQ6lUFjkNqFL1/BW85h7OxehxPPrTv0t9iMzE+0i+E4l6b34Gh6recKzRGLXfGI+Eq0egSEsqcr9q/v1Ro91gOFT1funx5RY2sLSvpH7JLUpWuGrV42plZYXk5OQi1ycnJ7/0hiddGjduXJFDA44eParxPiYmRv+BiIgkdCflb6y9uhojG74LSzPD/DtMpfPvMZGKvBwkpiXA2aHgQ3RKKybyIURRhE9wE/a86tCcOXMK7Wn9L/H/X3P2PcHOsbX1EyYntdSHSHtwDWZWdnDwqKdeVrGmDyAISHt0A84OpZu9IPbkZtw//iOsKrjApfHrqNpqAGSFPMSqKFoVrp06dcLSpUvRtWtX+Pv7a6w7e/Ysli1bhi5dumhzaCIiKqXbz/7Gd5e+xegmY+Bg4SB1HCpCYWMiMxWZGLtuJHxqvob+LQehtltdnZ7z/rlHAKDz4jU7Iwd//nIEdy7fgyAIqOtTG4EDO8DCyqLIfS4d+wvXz95CfGwCcnNy8fGyD2Blo/ll6/dvdyL+QSKy0rJgZWsJzwbVEdC/Hewdy8bwvtjYWOzZs+eVResLShWw+0oqYpNzUb1S0f9vtFf6HvXcjGSY22oOZ5DJ5TC3dkBuRtGdlsVRtWVf2LnXhbm1PVIfXEN0+Brkpj9F7a4fFvsYWhWuCxYsgL+/P9q2bQs/Pz/Uq/e8Kr916xYiIyPh4uKC+fPna3NoIiJ6BV9fXzyJe4J823wM+X5gods8yniIZVGL8UHTD1HZ2snACelVXjomEiKios/jYswFTOz2BVrVaaPTc98/9whWDlZo1L3eqzf+l80LtqFxG280btOwwLrda/cjMzUTwSF9oVKqsG/DQYT98CfefK9bkcfLy81HzUY1ULNRDRz741Sh21SvVw2tuvnBztEW6c8ycGTbcexYuQdvTy78731RVPl5EFW6f5rnoQNhxS5aXxBFIPxmGt7xr6zzPKJKWeQY0PvHf8L9E/88QVSVn4u0h9dxe99S9TK/DzfqPNO/VWv9lvrPdm61IJOb4e89i1AzcDRkZsUr5LUqXL28vPDXX38hNDQU+/fvx9atWwEANWrUwMcff4xJkybBxUX3lzmIiAiIi4vD40ePYef08juUk3OS8d2lbzGu2XhUttb9L0nSzr/HRBZV9KhEFSACi/fNx9zgb3Te83or/C5c6zvBuVbp/14kPX6K6KsxGDZ1ENw9n09HGTi4I7Yt3Y6Ob7Uvsnf0tc4tAACxNx8UeezXurRQ/7lCZQe0euM1/LF8F5T5SsjNind5WZWfh7RHN6HUwzynCbE3IZPJoFKpir2PTABSMrL1kkeREg/r/DzIzMwLrKvi+yacG3ZUv7/xxxw4N2gPpwbt1css7J1gYVcJeZnPNPZVKZXIy06DhV3RTxrVhkPVBhBVSuSkxMHGqXiPKdaqcAUAFxcXLF68GIsXL9b2EEREpGepihSsvLwc45t/DAfLClLHIRR/TCQAiKKI385uwaRe03We49afd3VSuD6+9wSWNpbqohUAPBtUhyAIeHIvDvYtdDOeMzsjB9fP3IRHrSrFLlqB572QytwsyOTmhRZ0peFQoWKJilYAUImAg7UZIOh6ejIRKqXy/3uWC35OcxsHmNv8M3RIZmYJc9uKsKmsOYWeQ7WGyM/JQPrjW7Cv8rxXPiU6ChBFOHgUb8aC4sqIuwMIsgJDE15G68KViIiMQ3LOU6y4vBxjm43jmFeJlXRMpEpU4cK9SL3csJVw+ynyFPkwtyxdKZCZmgVbe80p2GRyGaxtrZCZWvo76I/+dgJRhy8hLzcfVWq6o//4XlodR2ZmXuzL0cXVMaAtBEEo0XABQQA61bWFIOj2BjlRBCArfkFfFFvnGqhU2w+3di1E3R4TIarycXvfMrg06ghLh+fDjhRpibi06RM06DMZDlWfF7OK9GTkZiQjO/n5OOrMhHuQW9jAqoILzG0ckPrgGtIe3kBFr2aQW9gg7eE13AlbAdcmgTC3ti92vmL9bR05ciQEQcDq1ashl8sxcuTIV+4jCALWrVtX7CBERKQ/CVnx+O7iMrzfdCwqWen2cp8pUuYroVKWrCetOA6GHSz5mEiIuBJ7GR0bBuo0i6gUkR6fgUrVHQtdH7E3EhH7ItXv83Pz8fjeExzafES9bNRXw3SaqTB+Qb5o0rYRUp+m4dTuM9iz7gD6j++l88JPG9U8qqBrYAccPHy8yKmw/k0uA7o1tNPTjVmAaK6bBxw06DsFt/ctxeUfPgEEGZwbtEPtN8ar16uUSmQ/fQBlnkK97PH5Xbh/bJP6/aUNHwMA6vX6Au7Nu0ImN0fC1cOIOboRojIPVo7uqOrfH9X8B5QoW7EK18OHD6vHcMjlchw+fPiVf2HKwl8oIiL6R1J2IpZFLcG7jUehmn3xxpOVR8p8JR5HxyFXoftHdcZGPyjxmEgBAtKz0pGbo/s88Q8SUaGKfaGX3psFNEF933/G1u5eux/1WtRG3RZ11MvsHO1gW8EGmema4zVVShWyM3NgW6H0hZSNvTVs7K1Rya0iKrtXwsrP1+LxvSfwqFWl1MfWhc8njMWhIyde2fMq/P/ryyD93QOktKta7G2bj1hS5DpzG4eXPmzAuqIbOsw8orHMq+M78Or4TpH72FepC5/RK4qdryjFKlz/O/8p50MlIjJOabmp+PbiMvSr0x9+bi3ZyVAIlVKFXEUuzOTyEo2lLI4KFSqUeEykCBG2ljaQ6eBRnhrHFUXAXIRKqSr0c1rbWcHa7p/pqczMzWDjYIOKro4a21Wp6Q5FlgJxMfFw83z+AKD7Nx9AFEW413SDTv1/YajM0/0MAdryadYYG1cuwjsfhEAUxUJ7XuWy50XrlpHV8FqNkk24X1yirRtUdmWjmNcnrX4KYmNjkZ2dXeT67OxsxMbGah2KiIj0J1+Vh623fsFPN35AVp7u72w2FXIzOczMzXT6CmgXUOIvCwIENKza5J8uOx29zCzkMLcu/a0uTlUqw6uRJ8J++BOP78Xh4e1HOLT5MBq8Vk89o0D6swysmboRj+/FqffLSM1EfGwCniWkAAASHyYhPjYB2Rk5AJ7f9HXh8CXExyYg9Wka7t+Ixa7V++DoXAFVarmXOrcuvdmtCw7t/AVdOrUv0L6C8Hx4wImQmujdVH9jzPNqvvH8ZCZO6+mwfvzxRwwePLjQ9bt27cLgwYOLNd6DiIikcTEhCjGpMRjWcDhqOHhKHadcqOpRFZ07dUb40fBi/Y6UCTI0r+EDJ3tnnWexrmSlsx73nqPewKHNh7F14W+ATEC9FnUQOKiDer1KqURy3DPk5/7zOOJLR//Cqd1n1O83L9gGAOg2ogsat2kIcwtz/B11Byd3RiBPkQc7R1t4NfRErx4tYWZe9u4t92nWGFs3rsSDR4/RJrA3UtLS4GgtQ9SkWnob0/qCqkIN5Hl2AvJM/3HPWrX8qwaW5+Xl6fySBhER6d4zRTK+vbgMA+q+hZburaSOUy5M/GgiDh87XKy70QVBQB/ft166jbZsKpXskvXgz4u+icbazuqlDxuo4FQBX6ydqLGsbS9/tO3lX8QegHNVJwz6tH+JMpYF1TyqwMbGGilpabC1lOm9aBUt7KB4LQSQmQNg4aqWlpaGlJQU9funT58WOhwgJSUFW7Zsgbt72erGJyKiwqlEJbbe+gXPFM8QVKMrx73qWbOmzbHq2+/x/kdjihwTKRNkEAQBHwd9hlqudQo5SunZuermDnSSjmhuA4X/lxAdqgL5ur95rywqduG6ePFifPXVVwCefwOcMGECJkyYUOi2oihizpw5OglIRESGcTAmDCk5zzCgbjDkOpgPkorWvWt37P5tNxZ/uxiHDh/S6HkVIKB5DR/08X1Lb0WrIAio5MUHUhgz0bICctpMhehYU+ooBlXswrVLly6ws7ODKIr4/PPPMWjQILRo0UJjG0EQYGtrCx8fH/j6+uo8LBER6Vdk3Fk8zXmKdxqOhK2O5oSkwjVr2hyb1v6Ah48eIrDb60hNS4WthS2+HrhEL2Na/83V2wlWFSyh0MOUX6R/KvuqULT+EqKtq9RRDK7Yhau/vz/8/Z+PRcnMzES/fv3QqFEjvQUjIiJp3E25g6VRizG68XtwttHfnJP0XFWPqrCxsUFqWiosza30XrTau9qhzuueEFGyByFQ2aB0bQ6F30SgnH6xLPEdVFlZWVi2bBn279+vjzxERPQSsbGxyMx8/hjNvJw8pMWn6+U8SdmJWBK1GHdSbuvl+CSNyjUromlwA8gtOBTEGOXV6wdF6y/LbdEKaDGrgI2NDczMzGBrW37/pxERGVpkZCRmz56NvXv3qsdDKjJysW7QBtRs5YWWw/zgVl+3lw2z87Ow6vIK9K3TH62rtNHpsTNzMvDLyV/wV8xlCIKAFjV9ENx2IKzMrYrcJy8/D9tO/4pzdyKRr8yHd7WGGNJ+CBxsno/VfJD0AGEX9+POk9vIyMlAZfvKCGjYAa830e2jUo2RIAjwalsN1V5zhyDjzXfGRjSzQq7PR1B6cOYPreas6tevH3777bcSP2+ZiIhK7o8//kCbNm2wf//+gv/uikD02RhsHbcNt4/f0fm5VaIKv/39Kw7GHCjxvt/sXIDTN08Vum7tn2vxOPkxJvQMwbhu43H7yd/46egPLz3er6e24PL9yxjT5X182vszpGalYOWBfx4heT/xPuyt7TEycBRmDvwK3Xy644+zf+DwlcMlzm5KLO0s0GygN6q3rMKi1QiJNs7ICZjLovX/aVW4Dhw4EAkJCejYsSN+/vlnnDp1ClFRUQVeRERUOpGRkQgODoZSqSxywnpR9fyxnfu+CkPczXi95AiL2YebyTd1cqwnzx7j2oOrGNZhOGq61kQd9zoY2HYwzt05h5TMlEL3yVJk4eTNk3ir9VuoX7UBajh7YnjHEbgbdxf34u4CANo2aIuBbQehXpV6cHZwRqu6/mhTrw0u3iu/v48qVq8An2GNUcHDXuoopAVl5frI7vA1xAqeUkcpM7R6AEGHDh3Ufz5x4kSB9aIoQhAEPjnLSMXGxiI8PBzp6emwt7fH66+/jurVq0sdi6hcmjNnDkRRLNYVLlEUcfbHSPSa21MvWU4/Pon6leqX+jh34+7BxsIGni6e6mUNqjaAIAiIjr+H5jVbFNgnNvE+lColGlT1Vi9zr+iOSnaVcDf+Lmq61Sr0XNm5WbC1Kp9D26o0cUWdQE/2shqp/OoByG3+PiDX7wMMjI1WheuGDRt0nYPKgP+OoZPJZFCpVBAEAT169MC0adPw2muvSR2TqNyIjY3Fnj17ij0sS1SJuBcRjbT4dDi46r6H7XHGY50cJy0rFfbWmvnkMjlsLW2RmpVa6D6pWWkwk5nBxtJGY7mDjQPSstIK3edu3B2cu3seH3Ubr5PcxsSzdVXU8PfgwySMVK73YOTX6wuw/QrQqnAdPny4rnOQxP744w8EBwdr9OyoVCoAz3tx9u3bh/3792Pr1q3o27evlFGJypx8ZT6UKt1fYQo7GFbyewlEIDbqAby7NtB5nozcl89gsO/CXuyP2qd+n6vMxb34e/jlxGb1spkDv9J5rsI8evoIy/d/h56+PdGwWkODnLOsqNPJEx4t3KSOQVoQ5ZbI9f0ISo+iH4Vb3mlVuP5bRkYGHjx4AACoVq0a7OzsSh2qJJYvX47//e9/iIuLQ9OmTfHtt9/Cz8+vyO23bduGadOmISYmBnXq1MH8+fPRrVvRz1cuD/49hq6oX5JKpRKCICA4OBinT59mzyvR/8tX5iM6PhqKfIXOjx39KFp95aPYBCArPROKvByd57GAOfKV+TCTF/6rI6BhAHxr//PwmbV/rkWLmi3Q4l+X/h1tHeFgUwHp2ZpFsFKlRKYiExVsCn+aUwUbB+Sr8pGlyNLodU3LSoODjYPGto+TH2PR7m/Qzrs9uvv0KPHnNFYymQz1utaEq7eT1FFICypbVyhafgbR0UvqKGWaVjdnAcC5c+fQsWNHVKxYEY0aNUKjRo1QsWJFdOrUCefPn9dlxiJt3boVISEhmDFjBqKiotC0aVMEBQUhISGh0O1Pnz6NQYMG4d1338XFixfRu3dv9O7dG1evXjVI3rKquGPoXmzDx/kS/UOpUkKRr4CZXA4rc0udvio4VChZ0QoAImBhawlBkOn0BQhwtnR9ac+yrZUdXCq4ql8WZuZwsHbQWCaXyVHLrSaycrNwPzFGve/NRzchiiK8XAt/fGV15xqQy+S48fCGelncszgkZySjlus/41sfJz/Cwl3/g3+91ujTsvxcHTK3MkOTAfVZtBoppZsPcjouYNFaDFr1uJ49exYdOnSAhYUFRo0ahQYNnl+SunHjBn755Re0b98eR48efWnPpy4sWrQIo0ePxogRIwAAq1atwt69e7F+/XpMmjSpwPZLly5F165d8dlnnwEAZs+ejUOHDuG7777DqlWr9Jq1rCrpGDqlUondu3cjNjaWN2wR/YuZzAzmZuY6PWb7Du0gCELJhgsIQNVmHhCg47FxAuBlr5tfqu4Vq6BhtUb44egPGNp+KJQqJX45sRmv1X4NjraOAIBnGc+waPdCjOw0El6uNWFjaYO29dti2+mtsLWyhbWFFX458QtqutZS35j16OkjLNr1DbyrN0Tnpl3U42VlgqzAmFpTYlvZGo1614N1xaLnwKWyK69BMPLq9wcErfsSyxWtCtcpU6bAw8MDJ0+ehJub5jiamTNnok2bNpgyZQoOHTqkk5CFyc3NxYULFzB58mT1MplMhsDAQERERBS6T0REBEJCQjSWBQUFYceOHUWeR6FQQKH45xJgRkYGACA/Px95eXml+ARlw4EDB0o8hk4URRw8eJBjnbWUl5eHvLw8iCqVSfwdKkq+UoV8pRJ5eXkw5Zua9dmeFStXRECnABw/crx4Pa8CUMOvOqwrWSM/P1+nWSxkFqhuVeN5exbzYp2oEtV/B/5reMA7+DViCxbtXggBApp5NccA/7fU2ypyFYhPiUNWTrZ6WR+/fhBFEasOrEC+Mh8NPLwR3Gagev2525FIz0nH2b/P4OzfZ9TnqmRXCbMHzi32Z/13m8rzDPOEqX/fU1CStqtUswLqdPYCLEVkZ2WX6JzKfOU/7WPCNZMyLw95eflQqrIgMzPMv7mi+P/tqRKRm1/Ez67cHDnN34fSvSWQU7K2K4wqPw8q5fPaRCUY7slo5ua6/cL+SqIW7OzsxAULFhS5fv78+aKdnZ02hy62R48eiQDE06dPayz/7LPPRD8/v0L3MTc3Fzdv3qyxbPny5aKLi0uR55kxY4YIgC+++OKLL7744ouv/7wMTaseV5lM9tJvhEqlEjKZaXx9mzx5skYv7aVLlxAQEICzZ8+iefPmEibTjY0bN+K9994r8X5r1qxhj2sp5OcroSzp2EUjJJfJYGZm+s9E19esAi/s3LETw4cNhyiKhfe8Cs8f6dl1ahBqtS18jGhpBFXvig7VOkIukxd5Y5apUeYroVIa7me0Tr06ePz4MSraVsKKketfuq1MLqBJH29Ub1Gl1OeVyWWQl4OfUVV+HkQ9/oz+V6269fD48RNUqWCG6LmNC+YJmAF4ddL5eQWZHDIdD1kqa7T6F6h169ZYvnw5Bg8ejBo1amisi42NxYoVK9CmjW6fa/1fTk5OkMvliI/XfEpMfHx8geELL7i5uZVoewCwtLSEpaWl+v2LWRPMzMwM3z2uB0FBQSUeQycIArp06WISn18q/H9nWvTdnkMGD0HdOnUxe/bsgmPSBaCmvxdavu0Ht/quOj933zr90dajnc6PW9YZ+mf0xXyrgiC8dKy0maUcrd7xgWs93oRVIgZvT9n//1eAhdl/OvIaDQQa9TJoHlOiVbfovHnzkJqaivr162Pw4MGYOXMmZs6ciUGDBqF+/fpITU1FaGiorrNqsLCwgI+PD8LDw9XLVCoVwsPD4e9f+Pxn/v7+GtsDwKFDh4rcvjyoXr06evToAbm8eN+45XI5evbsyRuziAzstddew65duxATEwNHR0cAz59B/+4vI9Brbk+9FK1v1R1YLovWssrMQo42o19j0WrM7KsAfuOkTmHUtOpxbd68Oc6ePYspU6Zg165dyMrKAgDY2Niga9eumDNnDry9vV9xlNILCQnB8OHD4evrCz8/PyxZsgSZmZnqWQaGDRsGDw8PdRH98ccfIyAgAAsXLkT37t2xZcsWnD9/HqtXr9Z71rJs2rRp2L9//yt7XgVBgCAImDp1qgHTEdG/Va9eHba2tkhJSYG5lblenpAFAG94dUerKuX3S31ZIwjAa283g1PNSlJHodLwnwiYc/aH0tB6sJK3tze2b98OlUqFxMREAICzs7NBx7YGBwcjMTER06dPR1xcHJo1a4awsDC4uj7veYiNjdXI07p1a2zevBlTp07Fl19+iTp16mDHjh1o1KiRwTKXRa+99hq2bt2qfnKWUllwHJBcLocgCPj111/58AEiE9fCxQeB1TtLHaNccXNzgyJdAQcrx0LX13u9Fqo01H2vOhmQewvAs4PUKYxeqUfZv+iFe/FnQxs3bhzGjSu82/3o0aMFlg0YMAADBgzQcyrj07dvX5w+fVpjDN2LJ/YIgoDu3btj6tSpLFqJTJyrjRsG1AvmM+4N7Pz58zgQegwZiZkF1jl6OKBBUB0JUpFOtfzoedc5lYrWhev169cxffp0HDhwQGOoQFBQEGbOnFnuezGN0YsxdLGxsTh8+DDS0tLg4OCATp06cUwrUTlgIbfE8IbvwFJu+eqNySAEAWgxoBFkctOYqafcqtYacC04uwCVnFaF64kTJ/DGG29ApVKhV69eqFu3LgDg1q1b2LVrF/bv34+wsDC0a8dB/caoevXqeOedd6SOQUQGZCW3xruNR8PN1l3qKPQvNdvUQMXqjlLHoNJqxukjdUWrwnXixIlwcXHBsWPHUK1aNY11Dx48QPv27RESEoJz587pJCQREelPVbtqGNbwHThZ8271ssS2kjUadq8ndQzSgpubG5CbDjfrfKCi1/PxraQTWl17uHbtGsaOHVugaAWAatWq4YMPPsC1a9dKHY6IiPRHJsjxhld3fNxiIovWMqhFcGOYW5aPBz6YmvPnz+Phb1/g/JcNgNpvcGyrDmn1E1GjRg0oFIoi1+fm5hZa1BIRUdngblsFQxq8jSp2pX/6EuleDb+qcKnDLxMmgTMJ6JRWPa7Tp0/HsmXLcOnSpQLrLl68iG+//RYzZ84sZTQiItKHVu6tMcEnhEVrGSU3l6Nht7pSxyBdsHF6PlSAdEarHtczZ87A1dUVPj4+aN26NWrXrg0AuH37NiIiItCoUSNEREQgIiJCvY8gCFi6dKluUhMRUYkJkKFf3f5oXUW/j+Sm0qnxmgesHThJvUlwbcJhAjqmVeH63Xffqf986tQpnDp1SmP9lStXcOXKFY1lLFyJiKRjIbfEOw1Hon6l+lJHoVeo7ushdQTSFSf+vOmaVoWrSqXSdQ4iItITazMbjG48Bp4VPKWOQq9gaWeBSpz+ynRUrCl1ApPD2xWJiEyYo6UjRjd5H+6cn9UoONWsBEHGS8smg+Nbda5UhWt0dDT279+P+/fvA3g+28Abb7wBLy82FBGR1Lwq1MTwhiPgYOEgdRQqJva2mhCZHLDnsA9d07pw/eSTT7B06dICwwZkMhkmTJiAb775ptThiIhIOwFVO6BHzTchl8mljkIlUMGDXzJMhn0VQM4L27qm1XRYCxcuxOLFi9G3b19EREQgJSUFKSkpiIiIQP/+/bF48WIsXrxY11mJiOgVZIIcQxq8jV61+7BoNUIOrnZSRyBdYW+rXmj1VWDNmjV488038euvv2osb9myJbZs2YKcnBx8//33mDhxok5CEhHRq8kEGd5tNAoNKntLHYW0IDeTwcrBUuoYpCu2zlInMEla9bjGxMQgKCioyPVBQUGIiYnRNhMREWmhb+3+LFqNmFUFK96YZUosK0idwCRpVbi6uLjg8uXLRa6/fPkynJ35TYOIyFDqVKwL/yqtpY5BpWBpayF1BNIlc2upE5gkrQrXAQMGYO3atfj666+RmZmpXp6ZmYn58+dj7dq1CA4O1llIIiJ6ue5ePSHwCT1GzdLOXOoIpEtyfhHRB63GuM6ePRuXLl3Cl19+ienTp6NKlefPu378+DHy8/PRsWNHfPXVVzoNSkREhatmXwPVHapLHYNKydyahatp4RdJfdCqcLWxsUF4eDh27typMY9r165d0a1bN/TsyW/+RET64ubmBhEi8m3zAQC+rr4SJyJdsLTnjVkmRdDqoja9QokL16ysLAwdOhT9+vXDkCFD0KtXL33kIiKiIpw/fx5pilTMjJgOAGji3FTiRKQLVna8tEz0KiX+OmBjY4M///wTWVlZ+shDREQlUM2+Oirw7mWTwB5XolfTqh+7bdu2iIiI0HWWEklOTsaQIUPg4OAAR0dHvPvuu8jIyHjp9h999BHq1asHa2trVK9eHePHj0dqaqoBUxMR6Va9ivWkjkA6YsExrkSvpFXh+t133+HEiROYOnUqHj58qOtMxTJkyBBcu3YNhw4dwp49e3D8+HG89957RW7/+PFjPH78GN988w2uXr2KjRs3IiwsDO+++64BUxMR6VadinWljkA6YmbJx4MSvYogiqJY0p3s7e2Rn5+P3NxcAICZmRksLTUvcQiCoLfezBs3bsDb2xvnzp2Dr+/zmxLCwsLQrVs3PHz4UD3Lwats27YNQ4cORWZmJszMivcPRlRUFHx8fHDhwgW0aNFC689ARFQaaYpUfHVmFkLbzoe5nD11pkCRoYClHYcLmIzcTMDCVuoUJkerr3f9+vWTdNaAiIgIODo6qotWAAgMDIRMJsPZs2fRp0+fYh0nNTUVDg4OLy1aFQoFFAqF+v3LhiMQERlSFdsqLFpNCWfjMTFsT33QqnDduHGjjmOUTFxcHFxcXDSWmZmZoVKlSoiLiyvWMZKSkjB79uyXDi8AgNDQUMyaNUvrrERE+uJq6yp1BNIhTiNpYtieelGiMa45OTnYunUrvv76a6xduxZPnjzRaZhJkyZBEISXvm7evFnq86SlpaF79+7w9vbGzJkzX7rt5MmTkZqaqn4dO3as1OcnItIFR8uKUkcgHbKwYe+5SeEjX/Wi2D2uCQkJaN26NaKjo/FiWKyNjQ127NiBwMBAnYT55JNP8M4777x0m5o1a8LNzQ0JCQkay/Pz85GcnAw3N7eX7p+eno6uXbvC3t4e27dvh7n5y/+hsLS01Bi/a2dn9/IPQURkIFZyjockovKl2IXr7NmzERMTg4kTJ6JTp064c+cOZs+ejTFjxuDu3bs6CePs7AxnZ+dXbufv74+UlBRcuHABPj4+AIDDhw9DpVKhZcuWRe6XlpaGoKAgWFpaYteuXbCystJJbiIiKZjJ2ENHROVLsQvXgwcPYtiwYfjmm2/Uy1xdXTF48GDcunUL9eoZbi7BBg0aoGvXrhg9ejRWrVqFvLw8jBs3DgMHDlTPKPDo0SO8/vrr+OGHH+Dn54e0tDR06dIFWVlZ+Omnn5CWloa0tDQAzwtmuVxusPxERLogl/HfLSIqX4o9xjU2NhZt27bVWNa2bVuIooj4+HidB3uVn3/+GfXr18frr7+Obt26oW3btli9erV6fV5eHm7duqV+wldUVBTOnj2LK1euoHbt2nB3d1e/Hjx4YPD8RESlZSZw3k8iKl+K/a+eQqEocGn9xfv8/HzdpiqGSpUqYfPmzUWu9/T0xL+nqO3QoQO0mLKWiKjMsjTjcCciKl9K9HU9JiYGUVFR6vcvHjBw+/ZtODo6FtieE/QTEemPtRnvWiai8qXYT86SyWSFzjEnimKB5S+WKZVK3aQsQ/jkLCIqC9IUqUhRpKK6Q3WpoxARGUyxe1w3bNigzxxERFRCVhwqQETlTLEL1+HDh+szBxERlZAl53ElonKmRE/OIiKissNCbiF1BCIig2LhSkRkpMxknA6LiMoX/qtHRGSE7CzsIaDgDbNERKaMhSsRkRGSCbxgRkTlD//lIyIiIiKjwMKViIiIiIwCC1ciIiIiMgosXImIiIjIKLBwJSIiIiKjwMKViIiIiIwCp8OiIj158gRPnjyROgYREZHRcXd3h7u7u9QxTA4L1xJyd3fHjBkzTP4vo0KhwKBBg3Ds2DGpoxARERmdgIAAHDhwAJaWllJHMSmCKIqi1CGo7ElLS0OFChVw7Ngx2NnZSR2HSikjIwMBAQFsTxPB9jQ9bFPT8qI9U1NT4eDgIHUck8LClQr1onDlD51pYHuaFran6WGbmha2p/7w5iwiIiIiMgosXImIiIjIKLBwpUJZWlpixowZHFRuItiepoXtaXrYpqaF7ak/HONKREREREaBPa5EREREZBRYuBIRERGRUWDhSkRERERGgYUrERERERkFFq5EZYQgCMV6HT16tNTnysrKwsyZM0t0rLlz5+LNN9+Eq6srBEHAzJkzS53DlJXl9rx58yY+//xzNGvWDPb29nB3d0f37t1x/vz5UmcxVWW5PR8/foyhQ4eiXr16sLe3h6OjI/z8/LBp0ybw/uuileU2/a+ff/4ZgiDwqWoAzKQOQETP/fjjjxrvf/jhBxw6dKjA8gYNGpT6XFlZWZg1axYAoEOHDsXaZ+rUqXBzc0Pz5s1x4MCBUmcwdWW5PdeuXYt169ahX79+GDt2LFJTU/H999+jVatWCAsLQ2BgYKkzmZqy3J5JSUl4+PAh+vfvj+rVqyMvLw+HDh3CO++8g1u3bmHevHmlzmSKynKb/ltGRgY+//xz2NraljqHSRCJqEz68MMPRX39iCYmJooAxBkzZhR7n+joaK33pbLVnufPnxfT09M1liUlJYnOzs5imzZt9JDQ9JSl9ixKjx49RFtbWzE/P183wUxcWW3TL774QqxXr544ZMgQ0dbWVvfhjAyHChAZEZVKhSVLlqBhw4awsrKCq6srxowZg2fPnmlsd/78eQQFBcHJyQnW1tbw8vLCyJEjAQAxMTFwdnYGAMyaNUt9OexVl/49PT318ZHKNana08fHp8Alx8qVK6Ndu3a4ceOGbj9kOSLlz2dhPD09kZWVhdzc3FJ/tvJK6ja9ffs2Fi9ejEWLFsHMjBfJAQ4VIDIqY8aMwcaNGzFixAiMHz8e0dHR+O6773Dx4kWcOnUK5ubmSEhIQJcuXeDs7IxJkybB0dERMTEx+OOPPwAAzs7OWLlyJT744AP06dMHffv2BQA0adJEyo9WLpW19oyLi4OTk5NOP2N5InV7ZmdnIzMzExkZGTh27Bg2bNgAf39/WFtb6/VzmzKp23TChAno2LEjunXrhl9//VWvn9VoSN3lS0SF++9lqxMnTogAxJ9//llju7CwMI3l27dvFwGI586dK/LYpblsxaEC2imr7fnC8ePHRUEQxGnTpml9jPKkLLZnaGioCED9ev3118XY2NgSHaM8K2ttumfPHtHMzEy8du2aKIqiOHz4cA4VEDlUgMhobNu2DRUqVEDnzp2RlJSkfr247HvkyBEAgKOjIwBgz549yMvLkzAxvUxZas+EhAQMHjwYXl5e+Pzzz/VyDlNXFtpz0KBBOHToEDZv3ozBgwcDeN4LS9qRsk1zc3MxceJEvP/++/D29tbJMU0FC1ciI3H79m2kpqbCxcUFzs7OGq+MjAwkJCQAAAICAtCvXz/MmjULTk5O6NWrFzZs2ACFQiHxJ6B/KyvtmZmZiR49eiA9PR07d+7kdDtaKgvtWaNGDQQGBmLQoEH4+eefUbNmTQQGBrJ41ZKUbbp48WIkJSWpZyKgf3CMK5GRUKlUcHFxwc8//1zo+heD/wVBwG+//YYzZ85g9+7dOHDgAEaOHImFCxfizJkzLEzKiLLQnrm5uejbty/++usvHDhwAI0aNdL6WOVdWWjP/+rfvz/WrFmD48ePIygoSGfHLS+katPU1FTMmTMHY8eORVpaGtLS0gA8nxZLFEXExMTAxsYGLi4upfuAxkrqsQpEVLj/jrcaO3asKJfLxaysrBIf6+effxYBiGvWrBFF8fnUR+AYV4Mqa+2pVCrF4OBgUS6Xi7///nuJM5R3Za09C7Njxw4RgLh169ZSHae8KCttGh0drTFWubBXr169SpzJVHCoAJGReOutt6BUKjF79uwC6/Lz85GSkgIAePbsWYGn5TRr1gwA1JeubGxsAEC9Dxme1O350UcfYevWrVixYoX6LmfSnpTtmZiYWOjydevWQRAEtGjRoljHIU1StamLiwu2b99e4NWxY0dYWVlh+/btmDx5svYfzMhxqACRkQgICMCYMWMQGhqKS5cuoUuXLjA3N8ft27exbds2LF26FP3798emTZuwYsUK9OnTB7Vq1UJ6ejrWrFkDBwcHdOvWDQBgbW0Nb29vbN26FXXr1kWlSpXQqFGjl14q/vHHH3H//n1kZWUBAI4fP445c+YAAN5++23UqFFD//8TTIiU7blkyRKsWLEC/v7+sLGxwU8//aSxvk+fPnxKTwlJ2Z5z587FqVOn0LVrV1SvXh3Jycn4/fffce7cOXz00UeoXbu2If9XmAyp2tTGxga9e/cusHzHjh2IjIwsdF25Im2HLxEVpainuKxevVr08fER/6+9+4+Juv7jAP78cMDdKccP6wR/cQfHRjCb+WPURnpacyxkwqb4YytPF1lbG7lAp5QTy6b4azrKIa6BseWmM//RSrc8Rs4216o/iBUFd9RqYG1glIEKr+8fzPP7EcxD7zw+73s+Njc/73t/3u/3+dw+e3n3uffHarWKzWaTJ598UrZs2SK///67iIh88803snbtWklPTxez2SxTp06VoqIi+frrr3XjXL58WebPny/x8fFBfYXldrvv+bWV1+sN1dtW1kTK0+Px/OfXkLefkkb3NpHyvHDhghQVFcn06dMlLi5ObDab5OfnS0NDgwwPD4f0fatsImU6Fm6HNUITuevzbSIiIiKiCYj3uBIRERGRIbBwJSIiIiJDYOFKRERERIbAwpWIiIiIDIGFKxEREREZAgtXIiIiIjIEFq5ECvD7/dA0DY2NjZFeCoUIM1UL81QL84wcFq5EREREZAh8AAGRAkQEg4ODiIuLg8lkivRyKASYqVqYp1qYZ+SwcCUiIiIiQ+CtAkQTRHV1NTRNQ3t7O1588UUkJSXBbrdj+/btEBH8+uuvKC4uRmJiItLS0nDgwIHAuWPdb7V+/XokJCTgt99+Q0lJCRISEmC321FZWYmhoaFAv+bmZmiahubmZt16xhqzu7sbGzZswMyZM2E2mzFt2jQUFxfD7/eH6V/F2JipWpinWpinMbFwJZpgVq9ejeHhYezZswdPP/00du3ahUOHDmHp0qWYMWMGampqkJWVhcrKSrS0tPznWENDQygoKMBjjz2G/fv3w+1248CBA6ivr3+gta1YsQJnzpzBhg0bcOTIEZSXl6O/vx+//PLLA40XLZipWpinWpinwQgRTQg7duwQALJx48ZA261bt2TmzJmiaZrs2bMn0N7b2ytWq1U8Ho+IiPh8PgEgDQ0NgT4ej0cAyDvvvKObZ+7cuTJ//vzAsdfrFQDi9Xp1/e4es7e3VwDIvn37QvOGowAzVQvzVAvzNCZ+4ko0wZSVlQX+bjKZsGDBAogIXn755UB7cnIysrOz0dnZed/xXnvtNd3xwoULgzrvblarFfHx8WhubkZvb++4z49mzFQtzFMtzNNYWLgSTTDp6em646SkJFgsFjz++OOj2u93MbNYLLDb7bq2lJSUB7oIms1m1NTU4LPPPkNqaioWLVqEvXv3oru7e9xjRRtmqhbmqRbmaSwsXIkmmLG2VrnXdityn01BgtmmRdO0Mdv//8cEt23atAnt7e3YvXs3LBYLtm/fjpycHHz77bf3nSeaMVO1ME+1ME9jYeFKFOVSUlIAAH19fbr2rq6uMfu7XC5UVFTgwoULaG1txY0bN3S/tqXIY6ZqYZ5qYZ4Ph4UrUZRzOBwwmUyjfi175MgR3fH169cxMDCga3O5XLDZbBgcHAz7Oil4zFQtzFMtzPPhxEZ6AUQUWUlJSSgtLUVtbS00TYPL5cLZs2dx9epVXb/29nY8//zzWLVqFXJzcxEbG4szZ86gp6cHa9asidDqaSzMVC3MUy3M8+GwcCUi1NbW4ubNm6irq4PZbMaqVauwb98+zJ49O9Bn1qxZWLt2Lb744gs0NTUhNjYWTzzxBE6ePIkVK1ZEcPU0FmaqFuapFub54PjIVyIiIiIyBN7jSkRERESGwMKViIiIiAyBhSsRERERGQILVyIiIiIyBBauRERERGQILFyJaFz8fj80TUNjY2Okl0IhwkzVwjzVwjz1WLgShVFHRwdeffVVZGZmwmKxIDExEfn5+Th8+DD+/fffsM3b1taG6upq+P3+sM0RjPfeew/Lly9HamoqNE1DdXV1RNcTCsxUrUyZJ/MMBeb56PABBERhcu7cOZSWlsJsNmPdunWYPXs2bty4gUuXLmHz5s34/vvvUV9fH5a529rasHPnTixevBhOpzMscwTj7bffRlpaGubOnYvz589HbB2hwkzVypR5Ms9QYZ6PDgtXojDw+XxYs2YNHA4HLl68iGnTpgVee/311/Hzzz/j3LlzEVzhHSKCgYEBWK3WkI/t8/ngdDrx559/wm63h3z8R4mZjlAlU+Y5gnk+eszz4fBWAaIw2Lt3L/7++298+OGHugvobVlZWXjjjTcCx7du3cK7774Ll8sFs9kMp9OJqqoqDA4O6s5zOp0oKirCpUuXkJeXB4vFgszMTHz00UeBPo2NjSgtLQUALFmyBJqmQdM0NDc368Y4f/48FixYAKvViqNHjwIAOjs7UVpaiilTpmDSpEl45plnHupiH8lPHkKNmd5ZrwqY5531qoB53lmv8oSIQm7GjBmSmZkZdH+PxyMAZOXKlfLBBx/IunXrBICUlJTo+jkcDsnOzpbU1FSpqqqS999/X+bNmyeapklra6uIiHR0dEh5ebkAkKqqKmlqapKmpibp7u4OjJGVlSUpKSmydetWqaurE6/XK93d3ZKamio2m03eeustOXjwoMyZM0diYmLkk08+CazB5/MJAGloaAj6/f3xxx8CQHbs2BH0ORMNM9UzeqbMU495Mk+jYOFKFGLXrl0TAFJcXBxU/++++04ASFlZma69srJSAMjFixcDbQ6HQwBIS0tLoO3q1atiNpuloqIi0Hbq1CkBIF6vd9R8t8f4/PPPde2bNm0SAPLll18G2vr7+yUjI0OcTqcMDQ2JSHReRJnpaEbOlHmOxjyZp1HwVgGiEPvrr78AADabLaj+n376KQDgzTff1LVXVFQAwKivjXJzc7Fw4cLAsd1uR3Z2Njo7O4NeY0ZGBgoKCkatIy8vD88++2ygLSEhARs3boTf70dbW1vQ46uGmaqFeaqFeUYXFq5EIZaYmAgA6O/vD6p/V1cXYmJikJWVpWtPS0tDcnIyurq6dO3p6emjxkhJSUFvb2/Qa8zIyBhzHdnZ2aPac3JyAq9HK2aqFuapFuYZXVi4EoVYYmIipk+fjtbW1nGdp2laUP1MJtOY7SIS9Fzh+DWrypipWpinWphndGHhShQGRUVF6OjowFdffXXfvg6HA8PDw/jpp5907T09Pejr64PD4Rj3/MFekO9ex48//jiq/Ycffgi8Hs2YqVqYp1qYZ/Rg4UoUBlu2bMHkyZNRVlaGnp6eUa93dHTg8OHDAIDCwkIAwKFDh3R9Dh48CABYtmzZuOefPHkyAKCvry/ocwoLC3HlyhXdhf+ff/5BfX09nE4ncnNzx70OlTBTtTBPtTDP6MEHEBCFgcvlwscff4zVq1cjJydH9xSXy5cv49SpU1i/fj0AYM6cOfB4PKivr0dfXx/cbjeuXLmC48ePo6SkBEuWLBn3/E899RRMJhNqampw7do1mM1mPPfcc5g6deo9z9m6dStOnDiBF154AeXl5ZgyZQqOHz8On8+H06dPIyZm/P/PbWpqQldXF65fvw4AaGlpwa5duwAAL730kqE+UWCmI1TJlHmOYJ7M03Aiu6kBkdra29vllVdeEafTKfHx8WKz2SQ/P19qa2tlYGAg0O/mzZuyc+dOycjIkLi4OJk1a5Zs27ZN10dkZFuVZcuWjZrH7XaL2+3WtR07dkwyMzPFZDLptmm51xgiI/sRrly5UpKTk8VisUheXp6cPXtW12c8W7O43W4BMOafsbaNMQJmqlamzJN5Mk9j0UTGcXcxEREREVGE8B5XIiIiIjIEFq5EREREZAgsXImIiIjIEFi4EhEREZEhsHAlIiIiIkNg4UpEREREhsDClYiIiIgMgYUrERERERkCC1ciIiIiMgQWrkRERERkCCxciYiIiMgQWLgSERERkSGwcCUiIiIiQ/gfCGZGah7tiUAAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -1804,7 +1804,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "Passing a custom palette list functions differently for bar plots and sankey plots. \n",
+ "Passing a custom palette list functions differently for bar plots and sankey plots:\n",
"\n",
"- For bar plots, the list should contain the colors associated with each group. \n",
"- For sankey plots, the list should contain two colors, the first color will be used to color the binary '1's, and the second color will be used to color the '0's.\n"
@@ -1817,7 +1817,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAInCAYAAACFua8hAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAxr5JREFUeJzs3Xd4FFXbBvB7d9N7rwQSOiFAIKGXgARCFUWUIkVQrFjg9VPpoEDECiqCIM1XeUGRJiWAoUjvkRIILSGU9N7L7nx/jFmzpJC2md3N/buuuZKd+oQh2WfPnPMcmSAIAoiIiIiICAAglzoAIiIiIiJdwgSZiIiIiKgUJshERERERKUwQSYiIiIiKoUJMhERERFRKUyQiYiIiIhKYYJMRERERFQKE2QiIiIiolKYIBMRERERlcIEWQfExcVhwYIFiIuLkzoUIiIiogaPCbIOiIuLw8KFC5kgExEREekAJshERERERKUwQSYiIiIiKoUJMhERERFRKUyQS/nrr78wfPhweHh4QCaTYceOHU885siRI+jUqRNMTU3RvHlzbNiwQetxEhEREZH2MEEuJScnBx06dMCKFSuqtH90dDSGDh2Kfv36ISIiAu+99x5eeeUV7N+/X8uREhEREZG2GEkdgC4ZPHgwBg8eXOX9V61aBR8fH3z55ZcAgDZt2uD48eP4+uuvERISoq0wiYiIiEiLmCDXwqlTpxAcHKyxLiQkBO+9916lxxUUFKCgoED9Ojs7WxvhVd+tW4C2YiksFL82a6ad81PljI2BxETt3d/iYkCl4v2VilwOpKRo7/4C4u8w7690UlKA3FztnV+pBLy9tXd+qlxSEpCfr73zW1kBLVpo7/wGiAlyLcTHx8PV1VVjnaurKzIzM5GXlwdzc/NyjwsNDcXChQvrI8Squ3ULaN1ae+cXBPHrwoXAY/9mVA+Ki4G339be+Xl/pZWWBsyapb3z8/5KKyEBWLBAu9cQBN5fqdTH/QWAGzeYJFcD+yBLYObMmcjIyFAvR48elTqkf1ueSt4I61rJeUu1nFM9KmmZ4P01TCX/7ry/hqmgQLwHvL+Gqb7ur648rdYTbEGuBTc3NyQkJGisS0hIgI2NTYWtxwBgamoKU1NT9WsrKyutxVhtMpm4aOO8JD3eX8PG+2vYtHV/Ae0lZ1R12ry/VG0G04IsCAIOHTqEffv2ISsrq16u2b17d4SHh2usO3jwILp3714v1yciIiKiuqeXCfLs2bPRr18/9WtBEDBw4EAMGDAAQ4cORbt27XDnzp1qnzc7OxsRERGIiIgAIJZxi4iIQGxsLACxa8TEiRPV+7/++uu4e/cuPvjgA9y4cQPff/89fv31V0yfPr12PyARERERSUYvE+Tff/8dXbp0Ub/eunUrwsPDsWjRIuzevRtKpRILatDh/fz58+jYsSM6duwIAJgxYwY6duyIefPmAQDi4uLUyTIA+Pj4YM+ePTh48CA6dOiAL7/8Ej/++CNLvBERERHpMb3sg/zw4UM0b95c/Xrbtm3w9fXFzJkzAQBvvPEGVq5cWe3z9u3bF0Il/bDKmyWvb9++uHTpUrWvRURERES6SS9bkI2MjNR1hAVBQHh4OAYNGqTe7urqiuTkZKnCIyIiIiI9ppcJsp+fH37++WekpaVh/fr1SElJwdChQ9Xb7927BycnJwkjJCIiIiJ9pZddLObNm4fhw4erk+CePXtqDNrbs2cPOnfuLFV4RERERKTH9DJBHjBgAC5evIiDBw/Czs4Oo0ePVm9LS0tDnz59MGLECAkjJCIiIiJ9pZcJMgD4+vrC19e3zHp7e3t8/fXXEkRERERERIZALxPkrKwspKenw8vLS73u0aNHWLVqFQoKCjBq1Ch2sSAiIiKiGtHLBPnVV19FdHQ0Tp8+DQDIzMxEt27d8ODBA8jlcixfvhxhYWHo27evtIESERERkd7RyyoWx48fx7Bhw9Svf/75Zzx69AgnT55EWloa2rdvj0WLFkkYIRERERHpK71MkJOTk+Hp6al+vWvXLvTq1QvdunWDtbU1Jk6ciL///lvCCImIiIhIX+llgmxnZ4f4+HgAQF5eHo4dO4aBAweqtxsZGSE3N1eq8IiIiIhIj+llH+QePXrg+++/R+vWrREWFob8/HyNsm43b97UaGEmIiIiIqoqvUyQly5dioEDB+K5554DAPznP/9B27ZtAQBKpRK//fabxtTTRERERERVpZcJcvPmzREVFYXIyEjY2trC29tbvS03NxffffcdOnToIF2ARERERKS39DJBBgBjY+Nyk2Bra2vOokdERERENaaXg/QAsfbxp59+ipCQEHTs2BFnz54FAKSmpuKrr77C7du3JY6QiIiIiPSRXrYgP3jwAEFBQbh//z5atGiBGzduIDs7GwDg4OCAH374Affu3cPy5csljpSIiIiI9I1eJsj/93//h6ysLERERMDFxQUuLi4a25955hns3r1bouiIiIiISJ/pZReLAwcO4J133oGvry9kMlmZ7U2bNsX9+/cliIyIiIiI9J1eJsh5eXlwdnaucHtWVlY9RkNEREREhkQvE2RfX1/89ddfFW7fsWMHOnbsWI8REREREZGh0MsE+b333sPmzZuxdOlSZGRkAABUKhVu376NCRMm4NSpU5g+fbrEURIRERGRPtLLQXrjx4/HvXv3MGfOHMyePRsAMGjQIAiCALlcjiVLluCZZ56RNkgiIiIi0kt6mSADwOzZszFhwgT8/vvvuH37NlQqFZo1a4aRI0eiadOmUodHRERERHpKbxNkAGjcuDG7UhARERFRndLLPsgXL17E999/X+H277//HhEREfUXEBEREREZDL1MkGfPno0///yzwu2HDh3CnDlzanz+FStWwNvbG2ZmZujatat6GuuKLFu2DK1atYK5uTm8vLwwffp05Ofn1/j6RERERCQdvUyQL1y4gN69e1e4vXfv3jh//nyNzr1lyxbMmDED8+fPx8WLF9GhQweEhIQgMTGx3P03bdqEjz76CPPnz8f169exdu1abNmyBbNmzarR9YmIiIhIWnqZIGdlZcHIqOLu03K5XF3+rbq++uorTJ06FZMnT4avry9WrVoFCwsLrFu3rtz9T548iZ49e2LcuHHw9vbGwIEDMXbs2Ce2OhMRERGRbtLLQXotWrTAgQMH8Pbbb5e7PSwsrEaVLAoLC3HhwgXMnDlTvU4ulyM4OBinTp0q95gePXrg559/xtmzZ9GlSxfcvXsXe/fuxYQJEyq8TkFBAQoKCtSvs7Ozqx2r3hEE8atCIS41JZMBcrl4DrlcfF16W3lLyX4l35e8Lvm+ZCk5Z+nXpZfH11V03ONL6Rjk/3wmLR3T47EDSEuXISoKePAASE8HVKqa/5MBQAtcQr/anYKIiKjB0MsE+eWXX8b06dMxY8YMzJs3D3Z2dgCA9PR0LFy4EGFhYfj888+rfd7k5GQolUq4urpqrHd1dcWNGzfKPWbcuHFITk5Gr169IAgCiouL8frrr1faxSI0NBQLFy6sdnx6rSQRVCrFpS4YGwNmZoC5OWBlJS42NoC9vbiYmdXNdepRXh5w5gxw86a0cVgqlcgHYAYgpzYfaIiIiPSQXibI77zzDiIiIrBs2TJ888038PDwAAA8evQIKpUKEyZMqLfyb0eOHMGSJUvw/fffo2vXrrh9+zbeffddfPLJJ5g7d265x8ycORMzZsxQv46IiEBQUFC9xGtQiorEJSsLKK+PuJUV4OQEuLoC7u7i93Ld7VUUFwf8+aeYJEstH4Dqn69EREQNjV4myDKZDOvXr8fEiRPx+++/4+7duwCAESNG4LnnnkPfvn1rdF4nJycoFAokJCRorE9ISICbm1u5x8ydOxcTJkzAK6+8AgBo164dcnJy8Oqrr2L27NmQl5OQmZqawtTUVP3aysqqRvHSE2Rni0tMjPja2Bjw8AC8vIAmTQBLS0nDK+32beDIkdp3pSAiIqLa08sEuUS/fv3Qr1/d9aw0MTFBQEAAwsPD1VNVq1QqhIeHY9q0aeUek5ubWyYJVvzzSFoo6XdLuqGoCLh3T1yOHwecnYGmTYFmzcTWZoncuiUmx/zvQkREpBv0MkGOjo7G1atXMXz48HK3//HHH2jXrh28vb2rfe4ZM2Zg0qRJCAwMRJcuXbBs2TLk5ORg8uTJAICJEyfC09MToaGhAIDhw4fjq6++QseOHdVdLObOnYvhw4erE2XSUUlJ4nLmjNiy3Lo14ONTu0GE1fTwIXD0KJNjIiIiXaKXCfL777+PzMzMChPkFStWwM7ODps3b672uUePHo2kpCTMmzcP8fHx8Pf3R1hYmHrgXmxsrEaL8Zw5cyCTyTBnzhw8fPgQzs7OGD58OBYvXlyzH46k8eiRuJiaAq1aAW3bAtbWWr1kZiZw8CC7VRAREekavUyQT506hffee6/C7f3798eyZctqfP5p06ZV2KXiyJEjGq+NjIwwf/58zJ8/v8bXIx1SUABcvgxcuSK2JnfoIHbFqGMqlTggr7Cwzk9NREREtaSXCXJaWhqsK2nds7KyQkpKSj1GRAZHEIC7d8WlUSOgUyeggoGaNXHmDJCcXGenk15JHxFjY8DEpObnMTISy/aVlAUUBM0FED9dlLwu+V6lKvs9ERFRDellgty4cWOcOHECb7zxRrnbjx07hkaNGtVzVGSwHjwQF09PMVF2d6/V6RISgKtX6yg2XVGS0BYV1a5ZvLBQPIeXl9gnvDa/xyqVWHP78a+ll+Jize8ff/34MaXPVdHyePL+2CIIgEr5z1cBgAAIqtp1QpfLTWFcqzMQEVFpepkgjx07Fp988gm6dOmCadOmqfsEK5VKfPfdd9iyZQtmz54tcZRkcB4+FBcXF7Hrhbe35kx+VaBScVDeExUV/dt67+YG9O4tTvxSXSUzGWpZbq5YTTAnR/w+NxfIzxfrWRcUiEtJ3l9UpJ3GbXfVJQxHxZMTERFR9ehlgjxz5kwcP34c7733HhYvXoxWrVoBAKKiopCUlIS+ffsyQSbtSUwUR9dZWwO+vuKgvirO2nf5sjh1NFVRfDywbRvQrZs4cFIiublAWpp47zIyxCUzU0yM62piSCIi0h16mSCbmpriwIED2LhxI7Zt24Y7d+4AALp06YLnnnsOEydOLHeCDqI6lZUldiY+d06ceKRVK7FLQAX/93JzgUuX6jnGx1Wx6doMUE81XaVjBKHarelVplQCJ06I2WmPHtq7DsQfIy1N7B+enAykpACpqWIrMBERNRx6mSADgFwux+TJk9X1iYkko1IB0dHiYmYmVr/w8RFrK5dKls+dEx+xV4WRkdiDw9NT7F1Q2897Jvf+mQilisllTnUvWHLe4cPFiVdqqrBQzErv3RPn3i6dnF+7Jv4D1nCmzPJkZ4ulsBMTxb7hycli12MiImrY9DZBJtJJ+fnA9eviYmIiZrheXki38MDNmzZPPFwuF3ttBASIJZnrjFML4MYNMSPUFisroEWL2p/HwwNo107sw3DhgjjVYImbN8VKGT17VuuUSqXYAJ2aKi4pKWIynJ9f+3CJiMjw6GWC/NRTTz1xH5lMhvDw8HqIhqgChYXqluW460CzTEvk2rgh39oZ+VZOyLd0hMr43yzYygoYMEArZZdFdZG81icbG6BfP6BlS3Eu7pwccf21a4CtLeDnp7F7YaGY/2dni7l1yZKeLvaG4cBIIiKqKr1MkFUqFWSPPSpWKpW4d+8e7t+/j+bNm8PT01Oi6Ig0lTzGN0IObJLuwCbpjnqb0sQchea2sHCzQZe2VjBNsgCyzMSuGsbG4rTXdTH1tUKBW3FWWmtAVirF1u/a9K4A/k1iSyqpFRcDxSpPKDuNhPGh/RASE1FcBBTdPoW4Tg7IsPRQV46oavcVIiKiJ9HLBPnx2exK2717N1599VV89dVX9RcQUSXu3694m6IwD65mefBzjIfRNe3FcKvYB63fHqC185cktgsXAv/Myl7HzCGTD0Oj1AOwTHsAQEBx8iEkBoyC0rhqFUSIiIiqyuBKPQwbNgzjx4+vdCpqovqSm1f5jHkWFmL1MiMtf1TNzhcvUNVuBiqVJVQqBVQqyyrtX3JebVZ7EBRGeOA7ELl2HgAAo8JcuN88qr0LEhFRg2VwCTIANGvWDOfOnZM6DCI8uF9xUmpkLCbHxvU4BZpMVrVFLPKmApBfjWO0ryRJLrSwAwBYpdyDTeLt+rk4ERE1GAaXIBcXF+PXX3+Fk5OT1KFQA1dYKJYPq0irloC5ef3FYyhURia433YQlP8McHS9cxKKIpajICKiuqOXfZCnTJlS7vr09HScPn0a8fHx7INMkouLr3haYU9PwNGxfuMxJEXmNohrEYRGkQegKMqHc/RZxLfsI3VYRERkIPQyQT506FCZKhYymQz29vbo1asXXnnlFQwcOFCi6IjExDjuUfnbzM3FSUCodrKdvJHm4Qv7R5GwS4hCmocvCqz45IiIiGpPLxPkmJgYqUMgqlRystjFojwtWtZN5TYCEn26wSrtAYzzMuF25yTudXha6pCIiMgAGFwfZCJdEBdX/npXV8DOtn5jMWSCwghxLcSuFeYZ8bBKjpE2ICIiMgh6kyDn5uYiNjYWheU0y61btw79+/eHr68vRo4cyQoWJKncXCAjo+x6hQLw9qn/eAxdrp0HMtxaAQCc753jlHlERFRrepMgf/zxx2jfvn2ZBHnRokWYOnUqjh49iqSkJOzYsQN9+/bF33//LVGk1NBV1HrcuDFgalK/sTQUid5doDIygWlOGsu+ERFRrelNgnz48GEMGzYMVlZW6nWZmZlYtGgRPD09cevWLSQlJeH06dMwMTHBp59+KmG01FCpVOWXdjM1FStXkHYoTcyR3LgTAMAp9iJbkYmIqFb0JkGOiYlB+/btNdbt3bsXhYWF+PDDD+HjIz677tKlCyZPnoxjx45JESY1cCkpQFFR2fVeXoBcb37b9FOqhx+KzKxhkpcB6+S7UodDRER6TG/esrOysuD4WOHYv/76CzKZDCEhIRrrfX19kZSUVJ/hEQEAEhLKrjMzA9zc6j+W2jGD+OfBTOpAqk4uR1KTQACAU+wliYMhIiJ9pjcJcpMmTXDjxg2NdUeOHIGrqyuaN2+usb6wsBA2Njb1GR4RCguBtPSy670a61/rsUKRA4VCCYUiR+pQqiXTpTkKLB1gmpMKy9RYqcMhIiI9pTdv2wMHDsS6detw5swZAMBPP/2EGzdu4Nlnny2z74ULF+DNmRioniUmAcJjM+eZmACuLtLE0yDJZEhuEgAAcHxwWeJgiIhIX+lNgjx37lxYWVmhR48eMDExwUsvvQRnZ2fMmzdPY7/c3Fxs374d/fv3lyhSaqgSy+le0aiR/rUe67ssJx8UWNrDIv0RTLNTpA6HiIj0kN7MpOfk5ISIiAj8+OOPuHv3Lpo0aYIpU6bAxUWzee7q1at48cUXMWHCBIkipYYoNw/IztZcZ2QEuLlLE09Dl+LVER43DsHh4RXEteordThERKRn9Kpty97eHv/3f/+HlStX4qOPPiqTHANiFYtvv/0Wbdu2rfF1VqxYAW9vb5iZmaFr1644e/Zspfunp6fjrbfegru7O0xNTdGyZUvs3bu3xtcn/VPemFBXV8CIU0pLItO5GYrMbWCTdAeKonypwyEiIj2jVwlyfdiyZQtmzJiB+fPn4+LFi+jQoQNCQkKQWF5xW4gDAgcMGICYmBhs3boVUVFRWLNmDTxZ9LZBeTxBlskADw9pYiEAMhlSPfwgUylhGx8ldTRERKRnmCA/5quvvsLUqVMxefJk+Pr6YtWqVbCwsMC6devK3X/dunVITU3Fjh070LNnT3h7eyMoKAgdOnSo58hJKjk5QO5jxR4cHABzc2niIVG6WyuojExgHxfJiUOIiKhamCCXUlhYiAsXLiA4OFi9Ti6XIzg4GKdOnSr3mF27dqF79+5466234OrqCj8/PyxZsgRKpbLC6xQUFCAzM1O9ZD/eeZX0SnJy2XXu7HssOUFhjDT3NjDOz4Jl2gOpwyEiIj3CBLmU5ORkKJVKuLq6aqx3dXVFfHx8ucfcvXsXW7duhVKpxN69ezF37lx8+eWXWLRoUYXXCQ0Nha2trXoJCgqq05+D6tfjCbKZGWBvL00spCnNvS0gk8Eu/saTdyYiIvqHXiTIu3btwqNHj6QOo1wqlQouLi5YvXo1AgICMHr0aMyePRurVq2q8JiZM2ciIyNDvRw9erQeI6a6lJsndrEozdVN7INM0is2s0K2Q2NYpd7jYD0iIqoyvUiQn332WRw5ckT9umnTpti1a1edX8fJyQkKhQIJj80XnJCQALcK5gp2d3dHy5YtoVD8W66gTZs2iI+PR2FhYbnHmJqawsbGRr1YWVnV3Q9B9SrlsdZjmVwfp5U2bGkebSFTqWCbcFPqUIiISE/oRYJsbW2N9PR09euYmBit9Ns1MTFBQEAAwsPD1etUKhXCw8PRvXv3co/p2bMnbt++DZXq3ynUbt68CXd3d5iYmNR5jKRbHu9eYW8HmPK265Qc+0YoMreBbQKrWRARUdXoxUQhXbp0weLFi5GQkABbW1sAwN69eyvsFwwAMpkM06dPr/a1ZsyYgUmTJiEwMBBdunTBsmXLkJOTg8mTJwMAJk6cCE9PT4SGhgIA3njjDXz33Xd499138fbbb+PWrVtYsmQJ3nnnnRr8pKRPCgqBrCzNdY91Xycdke7WGs7RZ2GanYwCKyepwyEiIh2nFwny999/j4kTJ+KTTz4BICa/mzZtwqZNmyo8pqYJ8ujRo5GUlIR58+YhPj4e/v7+CAsLUw/ci42NhbzU3MFeXl7Yv38/pk+fjvbt28PT0xPvvvsuPvzww2pfm/RL6mOzGBsZA46O0sRClUt3bQnnmHOwTbiFRCbIRET0BHqRIDdv3hwnT55Efn4+EhMT4e3tjWXLlmHEiBFaud60adMwbdq0creV7gtdonv37jh9+rRWYiHdlfJYguzsDMj1otNSw6M0sUC2Q2PYJN1BYtNuHEVJRESV0osEuYSZmRkaN26M+fPn46mnnkKTJk2kDokaKKUSKNUtHgDg4ixJKFRF6a6t0CjlHizTHiDHwUvqcIiISIfpVYJcYv78+ervs7Ozcf/+fQBidwdWhKD6kJYGlBqXCVMz4J/u8aSjsh0aQ2lsBpukO0yQiYioUnr7QPjcuXPo168f7O3t4efnBz8/P9jb2+Opp57C+fPnpQ6PDFxqquZrZ7Ye6z65HJnOzWCdEgOZquKZLomIiPSyBfnMmTPo27cvTExM8Morr6BNmzYAgOvXr+N///sf+vTpgyNHjqBLly4SR0qGKi1N8zUTZP2Q4dIC9o+uwTL1PrKdvKUOh4iIdJReJsizZ8+Gp6cnjh8/XmYCjwULFqBnz56YPXs2Dh48KFGEZMhycoCCgn9fm5sD1uzZoxfybVxQaG4Lm6Q7TJCJiKhCetnF4syZM3jttdfKnd3O1dUVr776KqtKkNawe4V+y3BtAevUe5Api6UOhYiIdJReJshyuRzFxRW/uSmVSo1axUR16fEE2ZFldfVKllNTyJTFsEx7IHUoRESko/Qyi+zRowdWrFiBe/fuldkWGxuL77//Hj179pQgMjJ0xUogs9TseWZm7F6hbwot7FBg5QjrlGipQyEiIh2ll32QlyxZgj59+qB169Z49tln0bJlSwBAVFQUdu7cCSMjI/VU0ER1KT0NEEqVd3Ni67FeynRuBsf7EYhTqTi7CxERlaGXCXLHjh1x5swZzJ49G7t27UJubi4AwMLCAoMGDcKiRYvg6+srcZRkiB6fHIQJsn7KdG4G5+izsEx/yJrIRAAgCICREWBsXLvzlJyjprNVVvW4ivarznVrOaNmQSFQXCROHFUbcqMMWALg/J66RS8TZADw9fXF9u3boVKpkJSUBABwdnZm32PSqtLl3UxMAGtr6WKhmisys0a+lROsU2KYIBMBYrJYXAwUFdXuPEVFYpkfKyvAwQFwcQE8PMTRzHo8xXtBAfDgAfDoEZCUJDaWVDIUqlociy9hJNNjnaO3CXIJuVwOV1dXqcOgBiA/H8jL+/e1g4Ne/71v8LKcfGD/6BrQorfUoRAZFpUKyMwUl5gYcZ25OeDjA7RsKSbNekAQgHv3gBs3xOS49OypZPj0PkEmqi9p6ZqvHRwkCYPqSJaTD5xjzsEsMxH5Nvrxhk2kt/LygMhIcXFyAtq3B5o108lWBpVKTIr//hvIynry/mSYmCATVVF6qe4VCgVgby9dLFR7hRZ2KLC0h3XqPSbIRPUpORk4dAi4cAHo3Blo2lTqiNSio4EzZ8TGb2rYmCATVVHpAXp2dmKSTPoty9EH1ikxSPLuLHUoRA1PRgbw55+AmxvQu7ekrQ7Z2cDx40BsrGQhkI7hiDaiKsjJ0Ry7wtZjw5Dt2ASmOakwzudzVCLJxMcDv/8utihL0NH31i1g61Ymx6SJCTJRFbD/sWHKt3ZGsaklrFL5zkgkKZVKTJB37qy3/g1KJXD0KHD4MFBYWC+XJD2i110sIiMjcffuXaSlpUEQhDLbJ06cKEFUZIgy0v/93sJSnEGPDEOWYxNYpt5HmkdbqUMhoqQkYNs2oG9fwNtba5fJzQX27xcvR1QevUyQ79y5g/Hjx+Ps2bPlJsYAIJPJmCBTnRAEsatcCbYeG5ZshyZodP0gZMpiCAq9/JNIZFgKC4EDB4DAQKBTpzo/fWoqsG+f2HWOqCJ6+W7w2muv4cqVK1i2bBl69+4Ne3YIJS3KytIsCO/A/24GJcfOEwJksMh4hByHxlKHQ0Qlzp8XWyeCgupsSvj4eCAsjF0q6Mn0MkE+ceIEZs2ahbffflvqUKgBKN3/WKEAbGwkC4W0QS5Hjr0nrFLvM0Em0jW3bok1lAcOFKexroWHD8VuFXU1Ax4ZNr0cpOfk5ARbW1upw6AGonT9Yzu7OmvIIB2S7dAYVqn3pA6DiMrz4AGwZ0+tmn0fPhRbjpkcU1Xp5Vv966+/jp9//hlKpVLqUMjAFSuBzFIVwNibxzBlOzSGcX42TLNTpA6FiMqTkADs3VujJDk+Xmw5ZspA1aGXXSxatmwJpVKJDh06YMqUKfDy8oKinFkbRo4cKUF0ZEgy0gGhVFlOOybIBklpYoECK0dYpd5DgZWj1OEQUXkSE8UkeehQwNi4SoekprLlmGpGLxPk0aNHq79///33y91HJpOxhZlqLa1U9wozM8DCXLpYSLuyHRrDOjkGKY3rftQ8EdWRxESxwsWgQU+czjQnR6xWwQF5VBN6mSAfPnxYq+dfsWIFPv/8c8THx6NDhw749ttv0aVLlycet3nzZowdOxYjRozAjh07tBoj1Y+0x/ofk+HKdmgMx9hLMCrIQbGppdThEFFFHj4UZ/cIDq5wl+JiseWYpdyopvQyQQ4KCtLaubds2YIZM2Zg1apV6Nq1K5YtW4aQkBBERUXBxcWlwuNiYmLw/vvvo3fv3lqLjepXbp44eLoE+x8btjxrFyhNzGGdEsNJQ4h03d27wKlTQPfu5W4+dAhI4ZACqgW9HKRXWmRkJPbt24d9+/YhMjKy1uf76quvMHXqVEyePBm+vr5YtWoVLCwssG7dugqPUSqVePHFF7Fw4UI0bdq01jGQbkhN1XzNFmQDJ5P9080iWupIiKgqrlwBynnfv3ABiImp/3DIsOhtgrxz5040a9YM7dq1w7BhwzBs2DC0a9cOzZs3x65du2p0zsLCQly4cAHBpR7byOVyBAcH49SpUxUe9/HHH8PFxQUvv/xyla5TUFCAzMxM9ZKdnV2jeEm70kolyJaWVR4TQnosy6EJLDLioCjKlzoUIqqKkyfFLhf/iI0VE2Si2tLLBHnv3r147rnnAABLlizB9u3bsX37dixZsgSCIGDkyJEICwur9nmTk5OhVCrh6uqqsd7V1RXx8fHlHnP8+HGsXbsWa9asqfJ1QkNDYWtrq1602WWEakap1Jxemq3HDUOOfSMIcgWsUmKkDoWIqkKlAsLDgawsZGeLXZOJ6oJeJsiffPIJ2rdvj8uXL+PDDz/E008/jaeffhoffvghLl++jHbt2mHhwoVajyMrKwsTJkzAmjVr4OTkVOXjZs6ciYyMDPVy9OhRLUZJNZGeLv7dLcEEuWEQFEbItm8EG3azINIf+flQhR1A+P5iFBRIHQwZCr0cpHf58mUsWbIElpZlR5pbWlripZdewqxZs6p9XicnJygUCiQkJGisT0hIgJubW5n979y5g5iYGAwfPly9TvVPVmVkZISoqCg0a9aszHGmpqYwNTVVv7aysqp2rKRdpQd3yGQAJ25sOLIdveF26y/IiwqgMjZ98gFEJLl7F1NglHcY8B0gdShkIPSyBdnMzAypj4+gKiU1NRVmZmbVPq+JiQkCAgIQHh6uXqdSqRAeHo7u5YyUbd26Na5cuYKIiAj18vTTT6Nfv36IiIiAl5dXtWMg3VD6v5e1NWCklx8lqSayHL0BANYpbEUm0gfpGeJs1NbJ0XCOOSd1OGQg9PJt/6mnnsLy5csxaNCgMonrmTNn8M0332DgwIE1OveMGTMwadIkBAYGokuXLli2bBlycnIwefJkAMDEiRPh6emJ0NBQmJmZwc/PT+N4u3+exT++nvRHZqZmYXmWd2tYVEYmyLX1gE3SHWS4tZY6HCKqRFEREHUDEATxtWPsJRSZWiHdvY20gWlRoFKJeABuAM4/YbIUqjm9TJA/++wzdO/eHb169UKXLl3QqlUrAEBUVBTOnj0LFxcXLF26tEbnHj16NJKSkjBv3jzEx8fD398fYWFh6oF7sbGxkMv1suGdqujx2pnsf9zwZDo3hfutY1AU5kFpwukTiXRVVBTK9Dt2u30cxcbmyHbyliQmbYsH8PCJe1Ft6WWC7OPjg8uXLyM0NBT79u3Dli1bAABNmjTBu+++i48++qjSST2eZNq0aZg2bVq5244cOVLpsRs2bKjxdUk3pJTqXmFkJHaxoIYl29EbuHUMNsl3OWkIkY66F1u2Xj0AQBDgeSMc99sOQq69Z73HRYZBLxNkAHBxccHXX3+Nr7/+WupQyIDk5gG5paYmtbUD+MCg4VEamyHHzhM2ibeYIOsjmazs14q+r+xrZd9Xtu4fxcXiohKqGf/jl1BYwgxAxVdqeFJTgdh7FW+XqZTwityPWL/ByLN1r7/AyGDobYJMpA0pyZqv7e0kCYN0QKZzM7jfPArjvAwUmbOMCQRBM7msCZlMfCxjZCTOvGNmBlhYiDPxWFmJ5WIcHMT1JfuXd47KvkpApQLi48UlOVksE5mVJdZTrwuOyksYiTl1czIDkJsL3CjV77giMmUxGl/dxySZakQvEuQpU6ZAJpNh9erVUCgUmDJlyhOPkclkWLt2bT1ER4YkKUnztYODNHGQ9LIcveEmPwbbhFtI9g6UOhzpyWRiRvKkrKQygiCOgC0ZBVt6Np7SLCwAJyfA2RlwcwNcXXWulIxSKU5nfPcucP++2FKsKyyVSuQDMAOQY2CDuIqKgGvXqv7vXZIkP2gzADkOrCxFVadbf3EqcOjQIcjlcqhUKigUChw6dAiyJ7QWPGk70ePy84HSs35bWPzbkEUNj8rYFDn2XrBNZIJc73JzxTmDY2PF13K5mCR7eQGNG0v6yTU7G7h6tfzBYboiH4Dqn6+GRKUCIiOBvLzqHSdTFqNR5H7EtQhCpmsL7QRHBkcvEuSYmJhKXxPVheTHulew9ZgyXJrD83o4LNIfIdfOQ+pwGi6VCoiLE5ezZ8WuGD4+QPPm9faLmpUFXLgA3L6tOcsm1Q9BELtVVPTQ4UlkKhU8og7DuCALKY071W1wZJD0IkF+XGxsLJydnWFuXn75pby8PCQlJaFx48b1HBnpM3avoMdlO3pDZWQC24QoJsi6JCMDiIgQF0dHoHVroEULwMSkzi9VWAhcvCi2GjMxls6tW2UbMWrCOeY8zHJS8ahlXwgKvUyBqJ7o5fh8Hx8fbN++vcLtu3btgo+PTz1GRPouL09sISqhUAA2NtLFQ7pBkCuQ5eQDm+RoyIsLn3wA1b+UFODECeDnn4G//qqg7lfN3L0L/PorcPkyk2Mp3b4tDoCsK9ZJd+FzaRtMctLq7qRkcPQyQRaeMEikqKiIk3lQtSQ+1npsb8/ybiTKcGkBmbIYNom3pQ6FKlNcLD6D37oV2LtX7I5RQ/n5wJ9/iktubh3GSNV26zbw6FHdn9ckNx0+l7bB/uHVuj85GQS9eb6QmZmJ9PR09euUlBTElgzgKCU9PR2bN2+GuztLulDVJT+WIDs6ShMH6Z5cOw8UmVnDPi4S6R6+UodDVfHggbi4uQGBgYBH1bvHPHoEHDrExFhqKhVw8xaQmKC9a8hUSrjeOQmb5LuIa9EHhRZ22rsY6R29SZC//vprfPzxxwDEChXvvfce3nvvvXL3FQQBixYtqsfoSJ9lZwM5pSYHkcnY/5g0pbu1gnPMeZhnxCPP1k3qcKiq4uOB3bsBT0+gSxexbFwlLl0Czp+vXSU7qr1iJXDjep32lqmUeUY8fC5uRZp7WyQ37gSVsWnVjjMHTE3FLnm1YVsy8LCK//HcSn+tyjElNcypWvQmQR44cCCsrKwgCAI++OADjB07Fp06aY5ElclksLS0REBAAAIDWZaJqibhsRYKGxtxDgOiEhmureB87wLs4yKZIOujhw+B7dsBb2+xRfmxT8DFxcCRI2KfY5JWfr5Y57h0o0V9kKlUcHh4BXYJUUj1bIc0j7ZQGv9b59PMDGjUSHwY4ewsFlKps9Lct6yAj4CqzpV4vrr9/0qSYyur6h3XwOlNgty9e3d0794dAJCTk4PnnnsOfn5+EkdF+k6lYvUKerJiU0vk2DeCdfJdKAq7Q2lSfgUd0nExMeLi7Q34+wMuLsjLA8LCyv4doPqXmgrciAKKi6SLQV5cCKd7F+D44G9kuTaHbZdW8OnmCk9PLTbCtmgh9p8vXYi/rllZidehKtObBLlEbm4uvvnmG1hYWDBBplpLS/93Uq8Sjk6ShEI6Ls2tDSxT78P+0TVOHKLv/kmUc23cEJ7ghyQzHz6ClpBKBURHiw39ukChANzdi+HZ6AZMU28Af1mJH6o8PcUJa7Qwg9QttIAW02NYAWB6XD16lyBbWFjAyMgIlpaWUodCBiDhsdJBlpaABRsHqRzZjk1QbGoJ+7hIpHj5s4aqnsvJAa6cjodtYTwsTS2R7toKGW6tUGRmLXVoFatiH1UzQD3VdJX7qEokI0OscawLgyJlMjH/beINmJYuqV0yfeLVfypeWFqKfSysrMTa27XshHwr1hStx3RAVbtY1NSNG2xErg69/Av/3HPPYevWrXjjjTc4pTTVWEEhkPLYIBAnth5TRWQypLm3gXPMedgm3kK6exupI6IaysoGrl4Biv55lG9UkAOn2Itwir2IXFt3ZLo0R5aTj0Yf1KqQy8USkXZ2gLW1OIjL2Lj2JSONY6yAUKCqCVROTfqoCgLQp4/YUlpTgiD+o+bmioXlU1OB9PRyE/D8fLEhPzGx5perS5aWYvJYpfr3OTl12kk6O9YREDpAgHYeZJSM0dNmDw5DpJcJ8pgxY/Dmm2+iX79+mDp1Kry9vcudVe/xQXxEpSUmAMJjxf+ZIFNl0t1awyn2IhweXEa6W2s+ltdD2dnAlSsV93O1yIiDRUYc3G4fR66NG7IdmyDb3guFlvbl7u/kBDRpIj59d3aufUWDcrXU4z6qRUViNZH794HoaOQl5+DBQ/HpnS5MviKTiYPvmjSRvva9TFa1PylKZSCAeABuUCjOazusBksvE+S+ffuqvz927FiZ7YIgQCaTQalU1mNUpG8en5nJwkJsRSCqiNLEApnOzWCbcAs2SXeQ6dJc6pCoGnJzK0+ONQiCOll2wWkUm1gg19YdebZukLm6wLuTA1q2UdTfjJv6+mzc2BjF7l64V+iFW5k9kPLoEeyKImGFGMggbYZsbCzOUm5f/mcfHRYPQEc6bBswvUyQ169fL3UIpOdSU8XppUtj6zFVRapne9gm3ILj/QgmyHokP19MjotqWCHBqDAX7rl34OV4B04yQH5FDsTaitmVjY24WFqK/SpK+lYYG9fZU4Zbt/SjAbmoSOx9kJkpVgZJSBAnNVS3V9l6IMfWA0b52XB8EAG7+BuQSdCUbGUF+PpqZbwdGQi9TJAnTZokdQik58qbuvQJcwgQAQAKrByRa+cBi/RHsE6ORpaTj9Qh0RMUFYnjqwoKana8ubnYNVfjb4RKBaSliUtl6uC5/a0EG7Se9zy0OYhLEIBPPhEHqdVGVXPdYjMrJDTvhVTP9nCJOQvrpPorQu3gALRpo6XuMGQw9DJBLi07Oxv3798HAHh5ecGKhbDpCXLzys7QZGnJ7hVUdSmNOsAi/RGcY84hy9GbfZF1mFIJREbWrEqCQgE0biz2L65xnlsHraPZeQpAQJUHcalUliipYyGXP3kwWckYury8+u8XXGRug4dtgmHp9gBut4/DOC9Tq9dzcxNbyvkrS08icZf0mjt37hz69esHe3t7+Pn5wc/PD/b29njqqadw/jw7rVPFHpXTdYutx1QdOQ5eyLdygkluOmwTb0kdDlVApQKuXxdLiVWXvT0QEAB4eUk/eKtEySCuJy1icqwCkF+NY6SVY98IdzuNQpqHr9au4ekJtGypGz8v6T69bEE+c+YM+vbtCxMTE7zyyito00Yst3T9+nX873//Q58+fXDkyBF06dJF4khJ1xQVlZ1aGmCCTNWX0rgjPCMPwuneeWQ6NWVdZB2jUomFHx5/WvQkCgXg4yNOKUz1S1AYIaF5L+TYe8H95hEoimrYJ6Ycnp5As2Z1djpqAPTyL/rs2bPh6emJ48ePw83NTWPbggUL0LNnT8yePRsHDx6UKELSVQ8flhos8g8bG7GPIVF1ZDn5oMDSHqY5aXB4eBkpjfWnrKSlUqmeSCLHADtiqlRAVBSQnFy94ywsxL6p7G4lrWzHJojpOBKNIg/ANDul1udz92ByTNWnIw+OqufMmTN47bXXyiTHAODq6opXX30Vp0+fliAy0mXFSuBRXNn1tR2UQg1XchNxymmn+xEwytefKvz/PoA3PCoVcP2GWEGhOpydAf+OTI51RZGZNWI6jKj1IFhnZ6AFi81QDehlgiyXy1FcXFzhdqVSCbmudBojnRH3qGz9U7mc3Suo5rKcfJBn4wKZshiud09KHU6DV6wErl4DUqrZctykidhybGR4jel6TVAY4WGbYKR6tqvR8Xb2QKtWdRwUNRh6mUX26NEDK1aswL1798psi42Nxffff4+ePXtKEBnpquJi4P6DsusdHQEjvexoRLoiyVsc62CdHAPr5GiJo2m4CguBy38D6U+oulaaTC4mUE2aaC8uqiWZDInNuiPJp3pjiiwsAd82ujPAkvSPXv7XWbJkCTIyMtC6dWuMGzcOCxYswIIFCzB27Fi0bt0aGRkZCA0NrfH5V6xYAW9vb5iZmaFr1644e/ZshfuuWbMGvXv3hr29Pezt7REcHFzp/iSNhw/Lnz2rnF46RNWSa+eBLCdvAIDr7RNQFBlixwXdlp0NXIqo3kQaCgXg15ZdrPRFipc/EppXreHL2Fi8t4bb+OEGwPOfr6Qtevnfp2PHjjhz5gxmz56NXbt2IfefApcWFhYYNGgQFi1aBF/fmpWK2bJlC2bMmIFVq1aha9euWLZsGUJCQhAVFQUXF5cy+x85cgRjx45Fjx49YGZmhqVLl2LgwIG4du0aPD09a/VzUt0oLAQelNN6bGamj1OMki5K9OkGq9T74mxrN4/iQdsQqUNqMBKTgFs3yw6+rYyREdC2LWBrq724qO6lebSFABncbh+vcB+ZXOwuY8gz5CkULGVbH/SyBRkAfH19sX37dmRmZiIuLg5xcXHIzMzEtm3bapwcA8BXX32FqVOnYvLkyfD19cWqVatgYWGBdevWlbv/L7/8gjfffBP+/v5o3bo1fvzxR6hUKoSHh9c4Bn0QqFSikVKJwOq8K0kkJqb8N09393oPhQxUkbkNUhu1BwBYpdyD/cOrEkdk+FQq4M4d4Mb16ifHfn5MjvVVuocvEpp1r3C7jw9gZ1d/8ZDh0tsEuYRMJtNYaqOwsBAXLlxAcHCwep1cLkdwcDBOnTpVpXPk5uaiqKgIDg4OFe5TUFCAzMxM9ZJdneeCOiIewMN/vuqyrOzy6x7L5IALH61SHUpu3AmFFnYAAJfo07BIL2c+c6oTOTlARITYdao6FAoxObax0UpYVE/SPNshuZyyik5OQCM+uKU6orcJcmRkJEaNGgUbGxu4u7vD3d0dNjY2GDVqFK5erVnrTXJyMpRKJVwf65Tm6uqK+PiqpYIffvghPDw8NJLsx4WGhsLW1la9BAUF1SheqpwgALdv/TuNamlOjoCpSf3HRIZLkCsQ16IPIJNBplLB8/pBGOfVYAo3qpBKBcTGAhcvVa+/MSAmx20bTHJsBvHt3XD7GSR7ByLdvY36tbm5OEseUV3Ryz7Ix44dw+DBg6FSqTBixAi0/Oe3IioqCrt27cK+ffsQFhaG3r1712tcn376KTZv3owjR47ArJIOUDNnzsSMGTPUryMiIpgka8HDh0BWVvnb2D2ctCHP1g0pjTrA8X4EFEUFaHJ5N+51eBpFZtZSh6bBDFBPFKIv0tLELhX/DDmpFpkcaN0GsGsg3SoUihypQ6gX8c17waggB9bpsWjd2pAH5ZEU9PK/0/Tp0+Hi4oKjR4/Cy8tLY9v9+/fRp08fzJgxA+fOnavWeZ2cnKBQKJDw2DP5hISEciclKe2LL77Ap59+ij///BPt27evdF9TU1OYmpqqX1tZWVUrTnqy3FygnCqAAABr64bSikRSSGoSCIuMRzDPTIRpcQ5a3PgDSYGDAXt7GBuLLZkKhVh+Si4HatkzDABgV/KXvLzHJeXIKV37qirHCIIYaOPGQIsW1Q+wNKVSrLtYWAjk5wN5eUBBxVMKZ2WJ4wjSqlG+7XEtWwCOFfd6I30lk+Fhm/4YkLMT1tbVnFOc6An0MkG+du0aPvnkkzLJMQB4eXnhjTfewIIFC6p9XhMTEwQEBCA8PBzPPPMMAKgH3E2bNq3C4z777DMsXrwY+/fvR2BgYLWvS3VLpQKuVzJwh63HVFsKhfhBy8rq38XSUpyq2NxcDrNngmEeth2KwjwA2YB8JxDwlJhgakOjfz5k10W2XZ6ShLpfv9onyOVRKsVMODMTSE8H0tKQfDMFj66mIj1FVatTN2vGUm6GrHFTY3j3CAG2bxc/cBHVEb1MkJs0aYKCSlocCgsLy02eq2LGjBmYNGkSAgMD0aVLFyxbtgw5OTmYPHkyAGDixInw9PRU11leunQp5s2bh02bNsHb21vdV9nKyootwxK5fVscxFMeMzNxIAdRVZiZAQ4OYjlAe3ux8oGtrZgMV56LWgFDQoA//hCTv8JCICxMrD/VpQtQ6glSnWjRArhxo/odc6vDyko7yTEgfuKws0M67HA3uTFuxgGZAiBro4RZdjLMM+JhmfEIFhlxkCkrnkX1cT4+/EBsyKytxc9sMLEGgoOBvXvFFhKiOqCXCfK8efMwffp0DB06FP7+/hrbLl26hG+//RbLli2r0blHjx6NpKQkzJs3D/Hx8fD390dYWJh64F5sbKzGNNYrV65EYWEhRo0apXGe+fPn16gVm2rn/n2gsvGUjRpxZiUqn5WVOO24s7P4IcrBQWwRrjEXF2DAAODAgX/ftK9fFzvS+vqKI4rqsB7VLbSANuvhWAGoy/RYpRIbjJOTxUoz9++Lr0sT5Ark2bgiz8YVqV4dIFMpYZ4RD+vUe7BKiYFxfsU/sY8PUMN2EtIDRkZASAhgUjLY2sMD6NUL+OsvSeMiw6GXCfLp06fh6uqKgIAA9OjRA82bNwcA3Lp1C6dOnYKfnx9OnTqlUZpNJpNh+fLlVTr/tGnTKuxSceTIEY3XMTExNfoZdFYV+zC6lf5anT6MWpSQAERXMtOviQkftZLI0lKcZtzJ6d+kuFbJcEUaNxZbtsLD/+3zU1go1iiLiBAvamcntqDWwq0EG7R+uWqzjNVEya/46tW1a5EVBPHHz8sTn/JUt7FPkCuQa++JXHtPJDTrAfPMBNgk3oZN0h2NGQybNWPLsaHr21f8EKuhdWvxU1ZEhAQRkaHRywT5u+++U39/4sQJnDhxQmP7lStXcOXKFY111UmQGySr6vVhPF/dZtiS8w4fLr571ZRKJS5FRRqDfGKu5eBGQhaMzTIrbFVq1KjWeQjpEZlMTITt7MRuESXdJBwc6r6HQ6W8vYGhQ8WW5Mf7SObm1qwsw2Oy48VZb6r6OVSlskRJHQu5/MkVD0rOGxOjW0+wS1qXE5p2h3XqPdgnXEdHpwf8IGzgOncGmjatYGOXLuKnr1u36jUmMjx6mSCrdOkvtKHQ0z6MKhVw8iQQWQDgn+IhMmUxTHPTYJqTAvOsJJhnJsC6OA0eHlVrHSfdJ5eL/YPNzcXF0vLfxdr63wF0OvOByM0NGDVKfPwbG6u1y8hkVf2Mmw9ABSC/Svtr+eFP7cnlKPDwQbtJPnC1zgSuXgWiosQP0mRQWrUCOnZ8wk5BQWJlFC3+rpHh08sEmbREWwNwtOTBAzE5Tk/XXC8ojJBv7Yx8a2dkuLUGAPTqUgi5Q7x40IMHZQ+iWil5BG9qKiasNVWSiMnl/5ZDUygAY+N/F1NT8WvpMmkl36tUYjGEnJx/S6mVLqtmZKR53pLXRkb10DfdwgIYNOifmS4uAomJWr5gw2FjI/7Til26bYAePYDAQODaNeDKFVY3MBCNGwNVmt5ALhf7/4eFVX+6RaJ/6HWCHB0djX379uHePwVvmzRpgsGDB8PHx0fiyPTTrVvaa0AuKhKTkNr0rgDExCcpSYw1tYplL+3sgNbtTQB543/LbGVkiIWS795lolIHShLbggKxf6k+KkmmSyfNpZPp0ktJQl7ZUtKaW7KUJOAyWWOgRWPI3TNhnPgQiqz0imsSVtEjk4Zb2NvLC3jqqXK6zZiYiE2N7dqJifLffzNR1mPu7mJ3/ip/kFUoxFF8YWHAI077TtWntwnyf/7zHyxfvrxMdwu5XI733nsPX3zxhUSR6adbt8TxDdpS0sK4cGH9D5Tr3r2cP6q2tkD79uKSmSnWhrt5s+wwemowSndvrx82/yy1F19YJ6fRK3I5EBBQhcftRkZAhw5i5ZBr14DLl5ko6xlXV/EJQbVnyjMyEg88cEB8ckhUDXpZ8OrLL7/E119/jZEjR+LUqVNIT09Heno6Tp06hVGjRuHrr7/G119/LXWYeqWk5biKRSygUgVCpWoElapqE6OUnLeS8tVa0bhxFUo92dgAnToBY8aIg6maNmUtOCIdZmcHPP10FZLj0oyNAX9/YNw4sRyYbQOZd1rPubkBQ4aIt69GSpLkCkf1EZVPL1uQ16xZg6effhq//vqrxvquXbti8+bNyM/Pxw8//IDp06dLFKH+qvogn3gAD9XHVOW89c3YWHwfrBZPT3HJyRFbmyIjxWoZRCQ5uVx86BMQUIsBmEZGYmuyr6/YH/zaNbF1saqtA1RvvLzErsTVbjl+nFwO9O8vjuJ9rMIVUUX0MkGOiYnBu+++W+H2kJAQhIWF1WNEpIs6d/63el21WVqK5YI6dhST5MuX9bdzLZEB8PISu0vV4dwq4iOmxo3FR2g3b7KblQ5p1UockFdnD/NkMvE/kK2tOLqb1bDoCfQyQXZxccHff/9d4fa///4bzs7O9RgR6RpPT6Bt2zo4kbGx2H+xbdt/E+U6qFtLRFXj5iYWpPDw0OJFrKzEbladOomDdu/eFYs+M1mudzKZ2DbRoYOWLuDrKxZD//NP/i2nSullgvz8889j+fLl8Pb2xttvvw1LS0sAQE5ODr777jv8+OOPeO+996QNkiRjbi6Oaq/Tbh1GRuKzXT8/cUTj5ctAWlodXoCoPpmhZKIQXSSXiw277duLCXK9cnERl27dxN/x+/fFLhjx8UBxcT0H07CYmYl/uxs10vKFSuqSHznCWslUIb1MkD/55BNERERg1qxZmDdvHjz+aVp49OgRiouL0a9fP3z88ccSR0lSKOlqVptavE+8QKtW4vLokdh/8d49Pq4jvaJQPHn2PCm4uIhjqZo319LU39VVMv1i+/bi73hystjCnJQEpKSI9dT5u18nPD3F6aP/ae/SPjMzcfDe9evA6dOcVIbK0MsE2cLCAuHh4di5c6dGHeRBgwZhyJAhGD58OGQ6P/UTaUOfPlp+FFuah4e45OWJrco3b1a9ODNRA2dmJvYndnISy3h5eorrtEkQqrYA/+a9/66TA2YuELxcIJS0cKpUYjeMrEwgKxuy3BzI8nKBwgLICgvFFmelEkDtBgDmGNtCAGCI72omJmKXCl9fiQJo00Z8XHHyJBAdLVEQpIv0LkHOzc3F+PHj8dxzz+HFF1/EiBEjpA6JdESPHkDLlhJc2Nz835rKqali/8XoaHbBIIMiCGKXfBOTmp9DJhN7K5mYiFUoiovFngtxcUBEhGYhiZLvy/taWSL7+KJSae5ft+QA7P5ZtCfWABs3ZTLx73XnzjrwtMDSUiyXERcHnDnDyaMIgB4myBYWFvjzzz8xePBgqUNp4Nwe+yoduVws56bNiU6qzMFBXAIDxZalkv6LcXEsF0d6TSYTn0LX9r9xQYFYRZEaJplM7EbTqZPYe0WnuLsDzzwj/s2+fJmTizRwepcgA0CvXr1w6tQpTJ06VepQGiyF4rzUIQAQB5/371//s/NViY2NWP2ibVux+SolBUhIEPsvJiez/yIRNRjW1kCLFmJDRo3Lb9aXRo3EJT1d7Dp35w6QlSV1VFTP9DJB/u677xASEoI5c+bg9ddfRyOtD3klXWNiIhaU8PevgyLy9UEmg+DoBMHBCULrfx75KlUQMjKBjAzxj292tlh2KC8PQn4BZMVFYv9FpbLWly+S1+K5OBFRNVlY/Nu/3MtL/F7v2NmJHaS7dBG7zD18KDZypKSIf7Pr4G8z6S59SC3K6NChA4qLixEaGorQ0FAYGRnB1NRUYx+ZTIaMjAyJIqTHlfT/MzWt+UAcmUzs7mtvL46NUyjE7r6P900s/X1lfRJLf338e6Xy3+9LL+WtL31c6XVP7v9YP/0XASCbDdVEVIm67GNuZib+fc7PF4v8/DOOvspx1MU+T9qv+n3S7f9Z/MQ/3baAvCAPiuKCWj8JvGukMNhBmPpMLxPk5557jlUq9EzJ7SooEP9o1lRenjgO7s6duomLiIjYx7xmzP9ZaieF5bV1kl4myBs2bJA6BCIiIiIyUHqVIOfn52Pnzp2Ijo6Gk5MThg4dCnd3d6nDIiIiIiIDojcJcmJiInr06IHo6GgI/3QesrCwwI4dOxAcHCxxdERERERkKORSB1BVn3zyCWJiYjB9+nTs3r0by5Ytg7m5OV577TWpQyMiIiIiA6I3LcgHDhzAxIkT8cUXX6jXubq6Yty4cYiKikKrVq0kjI6IiIiIDIXetCDHxsaiV69eGut69eoFQRCQkJAgUVREREREZGj0JkEuKCiA2WMFdEteFxezRgoRERER1Q29SZABICYmBhcvXlQvly9fBgDcunVLY33JUlMrVqyAt7c3zMzM0LVrV5w9e7bS/X/77Te0bt0aZmZmaNeuHfbu3VvjaxMRERGRtPSmDzIAzJ07F3Pnzi2z/s0339R4LQgCZDIZlDWYBnLLli2YMWMGVq1aha5du2LZsmUICQlBVFQUXFxcyux/8uRJjB07FqGhoRg2bBg2bdqEZ555BhcvXoSfn1+1r09ERERE0tKbBHn9+vX1cp2vvvoKU6dOxeTJkwEAq1atwp49e7Bu3Tp89NFHZfZfvnw5Bg0ahP/7v/8DIFbbOHjwIL777jusWrWqXmImIiIiorqjNwnypEmTtH6NwsJCXLhwATNnzlSvk8vlCA4OxqlTp8o95tSpU5gxY4bGupCQEOzYsaPC6xQUFKCgoED9Ojs7u3aB16Hqz09f9fNydnDp8f4aNt5fw6bN+0vS4++vbtGbBLk+JCcnQ6lUwtXVVWO9q6srbty4Ue4x8fHx5e4fHx9f4XVCQ0OxcOHC2gdch6ysxK/a+iUqOW+PHkCTJtq5BlWspNAL769hun9f/Mr7a5gaNdJugiOTiUkU76806uP+Av++z1PVMEGWwMyZMzVanSMiIhAUFCRhRECLFsCNG4A2G7OtrMTrUP1r25b315Dx/ho23l/Dxvurm5ggl+Lk5ASFQlGmrnJCQgLc3NzKPcbNza1a+wOAqakpTE1N1a+tdORjHX95DBvvr2Hj/TVsvL+GjfdX9+hVmTdtMzExQUBAAMLDw9XrVCoVwsPD0b1793KP6d69u8b+AHDw4MEK9yciIiIi3cYW5MfMmDEDkyZNQmBgILp06YJly5YhJydHXdVi4sSJ8PT0RGhoKADg3XffRVBQEL788ksMHToUmzdvxvnz57F69WopfwwiIiIiqiEmyI8ZPXo0kpKSMG/ePMTHx8Pf3x9hYWHqgXixsbGQy/9teO/Rowc2bdqEOXPmYNasWWjRogV27NjBGshEREREekomCCzwIrWLFy8iICAAFy5cQKdOnaQOh4iIiKhBYx9kIiIiIqJSmCATEREREZXCPshUY3FxcYiLi5M6DCIiogbF3d0d7u7uUodh0Jgg6wB3d3fMnz9fr/6zFxQUYOzYsTh69KjUoRARETUoQUFB2L9/v8acClS3OEiPaiQzMxO2trY4evSozkx0QnUnOzsbQUFBvL8GivfXsPH+GraS+5uRkQEbGxupwzFYTJCpRkoSZP6CGibeX8PG+2vYeH8NG+9v/eAgPSIiIiKiUpggExERERGVwgSZasTU1BTz58/nAAEDxftr2Hh/DRvvr2Hj/a0f7INMRERERFQKW5CJiIiIiEphgkxEREREVAoTZCIiIiKiUpggk+RiYmIgk8mwYcMGqUMhIiIiYoKsb+7cuYPXXnsNTZs2hZmZGWxsbNCzZ08sX74ceXl5WrtuZGQkFixYgJiYGK1doyoWL16Mp59+Gq6urpDJZFiwYIGk8UhFJpNVaTly5Eitr5Wbm4sFCxZU61y8T7Wny/f4xo0b+OCDD+Dv7w9ra2u4u7tj6NChOH/+fK1jaSh0+f4+evQI48ePR6tWrWBtbQ07Ozt06dIFGzduBMf1V40u39/H/fLLL5DJZJx18TFGUgdAVbdnzx48//zzMDU1xcSJE+Hn54fCwkIcP34c//d//4dr165h9erVWrl2ZGQkFi5ciL59+8Lb21sr16iKOXPmwM3NDR07dsT+/fsli0Nq//3vfzVe//TTTzh48GCZ9W3atKn1tXJzc7Fw4UIAQN++fat0DO9T7enyPf7xxx+xdu1aPPfcc3jzzTeRkZGBH374Ad26dUNYWBiCg4NrHZOh0+X7m5ycjAcPHmDUqFFo3LgxioqKcPDgQbz00kuIiorCkiVLah2TodPl+1tadnY2PvjgA1haWtY6DkPDBFlPREdHY8yYMWjSpAkOHToEd3d39ba33noLt2/fxp49eySM8F+CICA/Px/m5uZ1fu7o6Gh4e3sjOTkZzs7OdX5+fTF+/HiN16dPn8bBgwfLrJcK71Pt6fI9Hjt2LBYsWKDR4jRlyhS0adMGCxYsYIJcBbp8f9u3b1+mNXLatGkYPnw4vvnmG3zyySdQKBTSBKcndPn+lrZo0SJYW1ujX79+2LFjh9Th6BR2sdATn332GbKzs7F27VqN5LhE8+bN8e6776pfFxcX45NPPkGzZs1gamoKb29vzJo1CwUFBRrHeXt7Y9iwYTh+/Di6dOkCMzMzNG3aFD/99JN6nw0bNuD5558HAPTr16/Mo6GSc+zfvx+BgYEwNzfHDz/8AAC4e/cunn/+eTg4OMDCwgLdunWrVSIvZeu1vlGpVFi2bBnatm0LMzMzuLq64rXXXkNaWprGfufPn0dISAicnJxgbm4OHx8fTJkyBYDYP7wkwV24cKH63j+pywTvU/2Q6h4HBASUeRzr6OiI3r174/r163X7QzZgUv4Ol8fb2xu5ubkoLCys9c9G0t/fW7du4euvv8ZXX30FIyO2lz6O/yJ64o8//kDTpk3Ro0ePKu3/yiuvYOPGjRg1ahT+85//4MyZMwgNDcX169exfft2jX1v376NUaNG4eWXX8akSZOwbt06vPTSSwgICEDbtm3Rp08fvPPOO/jmm28wa9Ys9SOh0o+GoqKiMHbsWLz22muYOnUqWrVqhYSEBPTo0QO5ubl455134OjoiI0bN+Lpp5/G1q1b8eyzz9bdPxCV8dprr2HDhg2YPHky3nnnHURHR+O7777DpUuXcOLECRgbGyMxMREDBw6Es7MzPvroI9jZ2SEmJgbbtm0DADg7O2PlypV444038Oyzz2LkyJEAxBYmkp6u3eP4+Hg4OTnV6c/YkEl9f/Py8pCTk4Ps7GwcPXoU69evR/fu3bXydLAhkvr+vvfee+jXrx+GDBmCX3/9Vas/q14SSOdlZGQIAIQRI0ZUaf+IiAgBgPDKK69orH///fcFAMKhQ4fU65o0aSIAEP766y/1usTERMHU1FT4z3/+o17322+/CQCEw4cPl7leyTnCwsI01r/33nsCAOHYsWPqdVlZWYKPj4/g7e0tKJVKQRAEITo6WgAgrF+/vko/nyAIQlJSkgBAmD9/fpWPMWRvvfWWUPrX+dixYwIA4ZdfftHYLywsTGP99u3bBQDCuXPnKjx3bf6teZ/qjq7e4xJ//fWXIJPJhLlz59b4HA2ZLt7f0NBQAYB66d+/vxAbG1utc5BI1+7v7t27BSMjI+HatWuCIAjCpEmTBEtLy2r8RIaPXSz0QGZmJgDA2tq6Svvv3bsXADBjxgyN9f/5z38AoEwXB19fX/Tu3Vv92tnZGa1atcLdu3erHKOPjw9CQkLKxNGlSxf06tVLvc7KygqvvvoqYmJiEBkZWeXzU/X89ttvsLW1xYABA5CcnKxeSh6NHz58GABgZ2cHANi9ezeKiookjJiqS5fucWJiIsaNGwcfHx988MEHWrlGQ6ML93fs2LE4ePAgNm3ahHHjxgGAVqslNSRS3t/CwkJMnz4dr7/+Onx9fevknIaICbIesLGxAQBkZWVVaf979+5BLpejefPmGuvd3NxgZ2eHe/fuaaxv3LhxmXPY29uX6QdVGR8fn3LjaNWqVZn1JV0zHo+D6s6tW7eQkZEBFxcXODs7ayzZ2dlITEwEAAQFBeG5557DwoUL4eTkhBEjRmD9+vVl+qqT7tGVe5yTk4Nhw4YhKysLO3fuZKmoOqIL97dJkyYIDg7G2LFj8csvv6Bp06YIDg5mklwHpLy/X3/9NZKTk9WVL6h87IOsB2xsbODh4YGrV69W6ziZTFal/SoajSxUo94l+6TpFpVKBRcXF/zyyy/lbi8Z1CGTybB161acPn0af/zxB/bv348pU6bgyy+/xOnTp5ns6DBduMeFhYUYOXIkLl++jP3798PPz6/G5yJNunB/Hzdq1CisWbMGf/31V5knhlQ9Ut3fjIwMLFq0CG+++SYyMzPVT6izs7MhCAJiYmJgYWEBFxeX2v2ABoAJsp4YNmwYVq9ejVOnTqF79+6V7tukSROoVCrcunVLYyBdQkIC0tPT0aRJk2pfv6rJ9uNxREVFlVl/48YN9XbSjmbNmuHPP/9Ez549q/ThpVu3bujWrRsWL16MTZs24cUXX8TmzZvxyiuv1Ojek/ZJfY9VKhUmTpyI8PBw/PrrrwgKCqrJj0EVkPr+lqek5TgjI6NOzteQSXV/09LSkJ2djc8++wyfffZZme0+Pj4YMWIES76BXSz0Rkkh71deeQUJCQlltt+5cwfLly8HAAwZMgQAsGzZMo19vvrqKwDA0KFDq339kiLi6enpVT5myJAhOHv2LE6dOqVel5OTg9WrV8Pb25t9n7TohRdegFKpxCeffFJmW3Fxsfo+pqWllXlS4O/vDwDqR3gWFhYAqnfvSfukvsdvv/02tmzZgu+//149cp7qjpT3Nykpqdz1a9euhUwmQ6dOnap0HqqYVPfXxcUF27dvL7P069cPZmZm2L59O2bOnFnzH8yAsAVZTzRr1gybNm3C6NGj0aZNG42Z9E6ePInffvsNL730EgCgQ4cOmDRpElavXo309HQEBQXh7Nmz2LhxI5555hn069ev2tf39/eHQqHA0qVLkZGRAVNTUzz11FOVPob56KOP8L///Q+DBw/GO++8AwcHB2zcuBHR0dH4/fffIZdX//PZf//7X9y7dw+5ubkAgL/++guLFi0CAEyYMIGt0v8ICgrCa6+9htDQUERERGDgwIEwNjbGrVu38Ntvv2H58uUYNWoUNm7ciO+//x7PPvssmjVrhqysLKxZswY2NjbqD1rm5ubw9fXFli1b0LJlSzg4OMDPz6/Sx+m8T9on5T1etmwZvv/+e3Tv3h0WFhb4+eefNbY/++yznJmrlqS8v4sXL8aJEycwaNAgNG7cGKmpqfj9999x7tw5vP3222XGt1D1SXV/LSws8Mwzz5RZv2PHDpw9e7bcbQ2WlCU0qPpu3rwpTJ06VfD29hZMTEwEa2troWfPnsK3334r5Ofnq/crKioSFi5cKPj4+AjGxsaCl5eXMHPmTI19BEEs0TZ06NAy1wkKChKCgoI01q1Zs0Zo2rSpoFAoNEq+VXQOQRCEO3fuCKNGjRLs7OwEMzMzoUuXLsLu3bs19qlOmbegoCCNskOll/JK0DUUj5cQKrF69WohICBAMDc3F6ytrYV27doJH3zwgfDo0SNBEATh4sWLwtixY4XGjRsLpqamgouLizBs2DDh/PnzGuc5efKkEBAQIJiYmFSpnBDvU93TpXs8adKkCu8vACE6Orouf/QGQZfu74EDB4Rhw4YJHh4egrGxsfp9Zv369YJKparTn7uh0KX7Wx6WeStLJgjVGIlFRERERGTg2AeZiIiIiKgUJshERERERKUwQSYiIiIiKoUJMhERERFRKUyQiYiIiIhKYYJsYD777DO0bt0aKpVK6lBqbcyYMXjhhRekDkOn8P4aNt5fw8b7a/h4jw2I1HXmqO5kZGQIDg4Owrp169Tr8E9d0i+++KLM/uvXrxcACOfOnavzWIKDgwUAwltvvVXu9h9//FFo3bq1YGpqKjRv3lz45ptvyuxz8eJFQS6XCxEREXUenz7i/TVsvL+GjffX8PEeGxa2IBuQdevWobi4GGPHji2z7fPPP1fPaqZt27Zt05he+nE//PADXnnlFbRt2xbffvstunfvjnfeeQdLly7V2K9jx44IDAzEl19+qe2Q9QLvr2Hj/TVsvL+Gj/fYwEidoVPdad++vTB+/HiNdQAEf39/AYDw5ZdfamzTxqfXvLw8wdvbW/j444/L/fSam5srODo6lpl578UXXxQsLS2F1NRUjfVffPGFYGlpKWRlZdVZjPqK99ew8f4aNt5fw8d7bFjYgmwgoqOjcfnyZQQHB5fZ1rNnTzz11FP47LPPkJeXp9U4PvvsM6hUKrz//vvlbj98+DBSUlLw5ptvaqx/6623kJOTgz179misHzBgAHJycnDw4EGtxawPeH8NG++vYeP9NXy8x4aHCbKBOHnyJACgU6dO5W5fsGABEhISsHLlykrPU1BQgOTk5Cotj4uNjcWnn36KpUuXwtzcvNzzX7p0CQAQGBiosT4gIAByuVy9vYSvry/Mzc1x4sSJSuM2dLy/ho3317Dx/ho+3mPDYyR1AFQ3bty4AQDw8fEpd3vv3r3Rr18/fP7553jjjTcq/OX53//+h8mTJ1fpmoIgaLz+z3/+g44dO2LMmDEVHhMXFweFQgEXFxeN9SYmJnB0dMSjR4801hsZGcHLywuRkZFVislQ8f4aNt5fw8b7a/h4jw0PE2QDkZKSAiMjI1hZWVW4z4IFCxAUFIRVq1Zh+vTp5e4TEhJSo0cphw8fxu+//44zZ85Uul9eXh5MTEzK3WZmZlbu4yd7e/tyPy03JLy/ho3317Dx/ho+3mPDwwS5AenTpw/69euHzz77DK+//nq5+7i7u8Pd3b1a5y0uLsY777yDCRMmoHPnzpXua25ujsLCwnK35efnl/upWhAEyGSyasXUEPH+GjbeX8PG+2v4eI/1CxNkA+Ho6Iji4mJkZWXB2tq6wv3mz5+Pvn374ocffoCdnV2Z7Xl5ecjIyKjSNd3c3AAAP/30E6KiovDDDz8gJiZGY5+srCzExMTAxcUFFhYWcHd3h1KpRGJiosYjnsLCQqSkpMDDw6PMddLS0tCiRYsqxWSoeH8NG++vYeP9NXy8x4aHg/QMROvWrQGII2krExQUhL59+2Lp0qXlPkrZsmWL+hPsk5YSsbGxKCoqQs+ePeHj46NeAPEX18fHBwcOHAAA+Pv7AwDOnz+vcd3z589DpVKpt5coLi7G/fv30aZNm2r9exga3l/Dxvtr2Hh/DR/vseFhC7KB6N69OwDxP3n79u0r3XfBggXo27cvVq9eXWZbTfo/jRkzpswvFQA8++yzGDJkCKZOnYquXbsCAJ566ik4ODhg5cqVGDJkiHrflStXwsLCAkOHDtU4R2RkJPLz89GjR49qxWRoeH8NG++vYeP9NXy8xwZIqgLMVPf8/PyEsWPHaqxDBVNNBgUFqafA1MY0l5Vde8WKFQIAYdSoUcKaNWuEiRMnCgCExYsXl9n3iy++ECwsLITMzEytxKhPeH8NG++vYeP9NXy8x4aFCbIB+eqrrwQrKyshNzdXva6iX5DDhw9L9sspCIKwevVqoVWrVoKJiYnQrFkz4euvvxZUKlWZ/bp27VpmZqKGivfXsPH+GjbeX8PHe2xYmCAbkPT0dMHBwUH48ccfpQ6lTly6dEmQyWTCpUuXpA5FJ/D+GjbeX8PG+2v4eI8Ni0wQHqs0TXpt6dKlWL9+PSIjIyGX6/cYzDFjxkClUuHXX3+VOhSdwftr2Hh/DRvvr+HjPTYcTJCJiIiIiErR7483RERERER1jAkyEREREVEpTJCJiIiIiEphgkxEREREVAoTZCIiIiKiUpggExERERGVwgSZiIiIiKgUJshERERERKUwQSYiIiIiKoUJMhERERFRKUyQiYiIiIhKYYJMRERERFQKE2QiIiIiolKYIOuAuLg4LFiwAHFxcVKHQkRERNTgMUHWAXFxcVi4cCETZCIiIiIdwASZiIiIiKgUJshERERERKUwQSYiIiIiKoUJMhERERFRKUyQiYiIiIhKYYJMRERERFQKE2QiIiIiolKYIBNRuYqLi6UOgYiISBJMkImoXEyQiYiooWKCTETlUiqVUodAREQkCSbIRFQuJshERNRQ6WSCHBcXh7///hs5OTlSh0LUYLGLBRERNVQ6lSDv3LkTrVu3RqNGjdCpUyecOXMGAJCcnIyOHTtix44d0gZI1IAwQSYiooZKZxLkP/74AyNHjoSTkxPmz58PQRDU25ycnODp6Yn169dLGCFRw1JUVCR1CERERJLQmQT5448/Rp8+fXD8+HG89dZbZbZ3794dly5dkiAyooapsLBQ6hCIiIgkoTMJ8tWrV/HCCy9UuN3V1RWJiYn1GBFRw5afny91CERERJLQmQTZwsKi0kF5d+/ehaOjYz1GRNSwMUEmIqKGSmcS5H79+mHjxo3lDgyKj4/HmjVrMHDgQAkiI2qYWEWGiIgaKp1JkBcvXowHDx6gc+fO+OGHHyCTybB//37MmTMH7dq1gyAImD9/fr3EsmLFCnh7e8PMzAxdu3bF2bNnK91/2bJlaNWqFczNzeHl5YXp06ez9Y30XnZ2NmshExFRg6QzCXKrVq1w/PhxODo6Yu7cuRAEAZ9//jmWLFmCdu3a4dixY/D29tZ6HFu2bMGMGTMwf/58XLx4ER06dEBISEiF/Z83bdqEjz76CPPnz8f169exdu1abNmyBbNmzdJ6rETaJAgCUlNTpQ6DiIio3hlJHUBpbdu2xZ9//om0tDTcvn0bKpUKTZs2hbOzc73F8NVXX2Hq1KmYPHkyAGDVqlXYs2cP1q1bh48++qjM/idPnkTPnj0xbtw4AIC3tzfGjh2rruFMpM8SEhLq9fePiIhIF+hMC3Jp9vb26Ny5M7p27Vqvb86FhYW4cOECgoOD1evkcjmCg4Nx6tSpco/p0aMHLly4oO6GcffuXezduxdDhgyp8DoFBQXIzMxUL9nZ2XX7gxDVkQcPHkgdAhERUb3TmQT5m2++QUhISIXbBw8ejJUrV2o1huTkZCiVSri6umqsd3V1RXx8fLnHjBs3Dh9//DF69eoFY2NjNGvWDH379q20i0VoaChsbW3VS1BQUJ3+HER15eHDh5wwhIiIGhydSZDXrl0LX1/fCrf7+vpi9erV9RhR1Rw5cgRLlizB999/j4sXL2Lbtm3Ys2cPPvnkkwqPmTlzJjIyMtTL0aNH6zFioqpTKpWIiYmROgwiIqJ6pTMJ8p07d9CmTZsKt7du3Rp37tzRagxOTk5QKBRISEjQWJ+QkAA3N7dyj5k7dy4mTJiAV155Be3atcOzzz6LJUuWIDQ0FCqVqtxjTE1NYWNjo16srKzq/Gchqis3b96UOgQiIqJ6pTMJsomJSYXdGAAgLi4Ocrl2wzUxMUFAQADCw8PV61QqFcLDw9G9e/dyj8nNzS0Tl0KhACBWASDSdw8fPkRaWprUYRAREdUbnUmQu3Xrhg0bNiArK6vMtoyMDKxfvx7dunXTehwzZszAmjVrsHHjRly/fh1vvPEGcnJy1FUtJk6ciJkzZ6r3Hz58OFauXInNmzcjOjoaBw8exNy5czF8+HB1okyk7y5fvix1CERERPVGZ8q8zZ8/H0FBQfD398d7772Htm3bAgCuXr2KZcuWIS4uDps2bdJ6HKNHj0ZSUhLmzZuH+Ph4+Pv7IywsTD1wLzY2VqPFeM6cOZDJZJgzZw4ePnwIZ2dnDB8+HIsXL9Z6rET15ebNm+jQoQPs7OykDoWIiEjrZIIO9QM4ePAgXnvtNcTExEAmkwEQuyn4+Phg5cqVBjvV9MWLFxEQEIALFy6gU6dOUodDBADYt28f7t+/r37t6emJIUOGqH83iYiIDJXOtCADwIABA3D79m1cunRJPSCvWbNm6NSpE9+UiST28OFDXLlyBe3bt5c6FCIiIq3SqQQZECfmCAgIQEBAgNShENFjzpw5Axsbm3qZ9p2IiEgqOpcgR0ZG4u7du0hLSyu3CsTEiRMliIqIALHLU3h4OPr3788kmYiIDJbOJMh37tzB+PHjcfbs2QrLo8lkMibIRBJTKpU4ePAgevXqVWntciIiIn2lMwnya6+9hitXrmDZsmXo3bs37O3tpQ6JqMEKDAxETEwMLC0tMXv27DLbBUHAsWPHkJ6ejq5du2q9RjkREVF90pkE+cSJE5g1axbefvttqUMhavDi4+ORkpICpVJZ6X5XrlxBSkoKgoODYWZmVk/RERERaZfONPs4OTnB1tZW6jCIqJoePXqE7du3Izk5WepQiIiI6oTOJMivv/46fv755ye2WBGR7snKysLOnTtx+/ZtqUMhIiKqNZ3pYtGyZUsolUp06NABU6ZMgZeXV7lTNY8cOVKC6IjoSZRKJQ4dOoTU1FR07tyZtcuJiEhv6UyCPHr0aPX377//frn7yGQytjAT6biIiAhkZmaiX79+5X7IJSIi0nU6kyAfPnxY6hCIqI7cvXsX+fn5CAkJgbGxsdThEBERVYvOJMhBQUFSh0BEdejRo0fYu3cvBg8eDBMTE6nDISIiqjKdGaRXoqCgAKdOncLOnTs5Kp5IzyUkJGDfvn0oLCyUOhQiIqIq06kE+ZtvvoG7uzt69eqFkSNH4vLlywCA5ORkODk5Yd26dRJHSETVlZCQgP3793P8ABER6Q2dSZDXr1+P9957D4MGDcLatWs1ppt2cnLCU089hc2bN0sYIRHVVFxcHMLDwyucRp6IiEiX6EyC/OWXX2LEiBHYtGkThg8fXmZ7QEAArl27JkFkRFQXYmJicOrUKanDICIieiKdSZBv376NwYMHV7jdwcEBKSkp9RgREdW1q1ev4urVq1KHQUREVCmdSZDt7OwqHZQXGRkJNze3eoyIiLTh1KlTiI2NlToMIiKiCulMgjxkyBCsXr0a6enpZbZdu3YNa9aswdNPP13/gRFRnRIEAeHh4axSQ0REOktnEuRFixZBqVTCz88Pc+bMgUwmw8aNGzF+/HgEBgbCxcUF8+bNq5dYVqxYAW9vb5iZmaFr1644e/Zspfunp6fjrbfegru7O0xNTdGyZUvs3bu3XmIl0kdFRUXYt29fuR+IiYiIpKYzCbKHhwcuXLiAQYMGYcuWLRAEAf/973/xxx9/YOzYsTh9+jScnJy0HseWLVswY8YMzJ8/HxcvXkSHDh0QEhKCxMTEcvcvLCzEgAEDEBMTg61btyIqKgpr1qyBp6en1mMl0obY2Fjk5OQAEOuSp6amauU6eXl52LNnDzIyMrRyfiIiopqSCTpQd6mgoAD79++Ht7c32rdvDwBISkqCSqWCs7Mz5PL6y+O7du2Kzp0747vvvgMAqFQqeHl54e2338ZHH31UZv9Vq1bh888/x40bN2o8pe7FixcREBCACxcuoFOnTrWKn6imzp49i08++QR79uzRKMcmk8nQrl07DB06FN7e3nV+XUtLSwwbNgy2trZ1fm4iIqKa0IkWZBMTEzz//PM4efKkep2zszNcXV3rNTkuLCzEhQsXEBwcrF4nl8sRHBxcYXmqXbt2oXv37njrrbfg6uoKPz8/LFmyhJMikF7Ztm0bevbsiX379pWpVSwIAq5evYqlS5fi4sWLdX7tnJwc7NmzB9nZ2XV+7tTUVLz44ouwsbGBnZ0dXn755Sdep2/fvpDJZBrL66+/rt6+YcOGMttLloqeNBERkX7RiQRZJpOhRYsWkg/aSU5OhlKphKurq8Z6V1dXxMfHl3vM3bt3sXXrViiVSuzduxdz587Fl19+iUWLFlV4nYKCAmRmZqoXbSQGRFV19uxZjB49GkqlssIPdiqVCiqVCmvWrEFMTEydx5CdnY2wsDAUFxdX+9i+fftiw4YN5W578cUXce3aNRw8eBC7d+/GX3/9hVdfffWJ55w6dSri4uLUy2effabeNnr0aI1tcXFxCAkJQVBQEFxcXKodPxER6R6dSJABYNasWfjuu+8QFRUldSjVolKp4OLigtWrVyMgIACjR4/G7NmzsWrVqgqPCQ0Nha2trXoJCgqqx4iJNC1atAiCIFR5ljttDUBNTU3FhQsX6ux8169fR1hYGH788Ud07doVvXr1wrfffovNmzfj0aNHlR5rYWEBNzc39WJjY6PeZm5urrFNoVDg0KFDePnll+ssdiIikpaR1AGUOH36NBwdHeHn54e+ffvC29sb5ubmGvvIZDIsX75cazE4OTlBoVAgISFBY31CQkKFNZjd3d1hbGwMhUKhXtemTRvEx8ejsLAQJiYmZY6ZOXMmZsyYoX4dERHBJJkkERsbi927d1c5OVapVLh8+TJSU1Ph4OBQ5/FERkYiMDBQ4/eppk6dOgU7OzsEBgaq1wUHB0Mul+PMmTN49tlnKzz2l19+wc8//ww3NzcMHz4cc+fOhYWFRbn7/vTTT7CwsMCoUaNqHTMREekGnUmQSwbFAUB4eHi5+2g7QTYxMUFAQADCw8PxzDPPABATgvDwcEybNq3cY3r27IlNmzZBpVKp+0vfvHkT7u7u5SbHAGBqagpTU1P1aysrq7r9QcigFBcXa61Pe1hYWJWT4xKCIOD69evo0aNHncdTWFiI+Pj4OqkCEx8fX6bLg5GRERwcHCrsMgUA48aNQ5MmTeDh4YHLly/jww8/RFRUFLZt21bu/mvXrsW4cePKfKAnIiL9pTMJskqlkjoEAMCMGTMwadIkBAYGokuXLli2bBlycnIwefJkAMDEiRPh6emJ0NBQAMAbb7yB7777Du+++y7efvtt3Lp1C0uWLME777wj5Y9BBqK4uBiRkZHIy8vTyvlv3LgBuVxerd8/mUyGzMxM5ObmaiWmqKgouLq6wsio/D9PS5YswZIlS9Sv8/LycPr0aY0PsZGRkTW+fuk+yu3atYO7uzv69++PO3fuoFmzZhr7njp1CtevX8d///vfGl+PiIh0j84kyLpi9OjRSEpKwrx58xAfHw9/f3+EhYWpB+7FxsZqVNbw8vLC/v37MX36dLRv3x6enp5499138eGHH0r1I5ABUSqVyMvLg7GxcYVPJGrD3t6+2h9OBUGAubm5VirMCIKgHixYUYL8+uuv44UXXlC/fvHFF/Hcc89h5MiR6nUeHh5wc3MrU1WiuLgYqamp1Zq2vmvXrgCA27dvl0mQf/zxR/j7+yMgIKDK5yMiIt2ncwny6dOncfjwYSQmJuLNN99EixYtkJubixs3bqBly5b10h1h2rRpFXapOHLkSJl13bt3x+nTp7UcFTVkJiYmWkmQe/bsCZlMVq1uFjKZDK1atdJaCUZLS8tKtzs4OGj0fzY3N4eLiwuaN2+usV/37t2Rnp6OCxcuqBPYQ4cOQaVSqZPeqoiIiAAgjjcoLTs7G7/++qv6aRIRERkOnaliUVhYiJEjR6Jnz56YPXs2vvnmG9y/fx+AWIt44MCBWu1/TNTQZGdn48yZM2jcuDFkMlmVjilJju3s7LQSU0lViLrQpk0bDBo0CFOnTsXZs2dx4sQJTJs2DWPGjIGHhwcA4OHDh2jdurV6Ovk7d+7gk08+wYULFxATE4Ndu3Zh4sSJ6NOnj3oSoxJbtmxBcXExxo8fXyfxEhGR7tCZBHnu3LnYvXs3Vq5ciaioKI0WLTMzMzz//PPYuXOnhBESGY7o6Gj88ssvuH//vkaVhyeRyWTo3r07UlJSUFhYWKcxGRkZoWnTpnV6zl9++QWtW7dG//79MWTIEPTq1QurV69Wby8qKkJUVJS6P7WJiQn+/PNPDBw4EK1bt8Z//vMfPPfcc/jjjz/KnHvt2rUYOXKk1j4sEBGRdHSmi8X//vc/vPHGG3j11VeRkpJSZnubNm3w22+/SRAZkeEoLi7G8ePH1d0GAMDHxwfz5s3D4sWL1X2AH1fSnWLkyJHw8PCASqVCWloaLCwsYGVlVeUW6IrIZDL4+/vD1NS02pOFlNftqYSDgwM2bdpU4XZvb2+ND+NeXl44evRola5beuZPIiIyLDqTICcmJqJdu3YVblcoFFobNU/UEKSmpmLfvn1ISkpSr2vatCkGDBgAc3Nz+Pn54fvvv8eRI0c0kkaZTAZfX1+EhITA09MTmZmZKCoqAgDk5uaisLAQNjY2MDY2rlFcMpkMHTp0gKOjY523ShMREdWEziTIXl5euHHjRoXbT5w4UWYQDhE9mSAIiIyMxJEjR9SJrUKhQO/evdGhQwd162/79u2xatUqPHr0CCNGjEBmZibMzc3x4YcfagyKs7e3R25urnqK9JLKEFZWVrCwsKhWa7JcLoe/vz+cnZ3r8CcmIiKqHZ3pgzxu3Dj88MMPOHXqlHpdyRvtmjVr8Ouvv2LixIlShUeklwoKChAWFoaDBw+qk2N7e3uMGTMG/v7+5SazHh4e6kkvTExMysyYJ5PJYGlpCQcHB41SbNnZ2UhPT6/ypCZGRkbo3Lkzk2MiItI5OtOCPHv2bJw+fRp9+vRBmzZtIJPJMH36dKSmpuLBgwcYMmQIpk+fLnWYRHojPj4ee/fuRWZmpnqdn58fgoKCatwdojRjY2M4ODggOztb3f2psLAQKSkpsLa2hpmZWYWtyWZmZggICOAskkREpJN0JkE2MTFBWFgYfvnlF2zduhVKpRIFBQVo3749Fi1ahAkTJtR6IBBRQyAIAi5cuICTJ0+qJwExMTFBcHAwWrZsWafXkslksLa2hqmpKTIyMqBSqSAIAjIzM1FQUAAbG5sy9ZItLS0RGBgIMzOzOo2FiIiorkiWIM+YMQMTJkxAx44dAYgz1Dk7O2P8+PGsK0pUQzk5Odi/fz9iY2PV69zc3DB48GDY2tpq7bomJiZwdHREVlYW8vPzAYjdO1JSUmBjYwNTU1MAYveOjh071kkLNhERkbZI1gd52bJluH79uvq1j48Ptm/fLlU4RHovOjoaP//8s0Zy3LlzZzz//PNaTY5LyOVy2NrawtbWVv20R6VSIT09HZmZmXBxcUFAQACTYyIi0nmStSC7urri7t276tfVmeqWiP5VXFyMkydP4uLFi+p1lpaWGDRoELy8vOo9HjMzMxgbGyMzM1Ndti01NRWXL1+Gh4cHXF1d6z0mIiKi6pAsQR46dCg+/vhjHDhwQD0T1ZdffonNmzdXeIxMJuNsekSlpKWlYd++fUhMTFSv8/HxwYABA2BhYSFZXAqFAnZ2dsjLy0NiYiLy8vKQl5eHLVu2oGvXrujcuXOZvslERES6QrIEefny5XBxccHhw4dx7do1yGQy3L9/H6mpqRUew0F6RP+KjIzE4cOHNWob9+rVq8LybfVNJpOha9euMDMzQ1hYGBITE6FSqXDq1CnExMQgJCSE0zQTEZFOkixBtrS0xJIlS9Sv5XI5li1bhnHjxkkVEpFeKCwsxKFDhzQm1rG3t8fgwYPh4uIiYWSa2rRpAw8PDwDA6NGjcebMGZw7dw6CICAuLg6//PIL+vTpAz8/P51I6ImI9EVOTg4sLS2lDsOgSfaMc+TIkTh27Jj69eHDhzFgwACpwiHSCwkJCfjll180kmNfX1+MHTtWp5JjLy8vNG7cWP1aoVCgR48eGgMGi4qKEB4ejj/++AM5OTlShUpEpHdKnhyS9kiWIO/cuVNjtP1TTz2FgwcPShUOkU4rqW28ZcsWZGRkABBLqw0aNAgDBw6EiYmJxBH+y87ODq1bty53m4eHB1588UX4+fmp1929exc///wz7ty5U18hEhHpNSbI2idZguzp6YlLly6pXwuCwMesROXIy8vD7t27cezYMfXEH66urnjxxRcrTESlYm5uDn9//0oH4JVMWjJ8+HD1lNZ5eXn4448/NPpUE1HNsTKUYSsuLoZSqZQ6DIMmWR/kMWPG4IsvvsCvv/6qHqjz0UcfITQ0tMJjZDIZ/v7773qKkEh6N27cwK5du9STbwBAYGAgunfvDoVCIWFkZZmamiIwMFA9KciTNGvWDO7u7vjzzz/VJR+vX7+O+/fvw8nJSeeSfyJ9kpeXJ2klG9K+/Px89kPWomolyD4+PtVu5ZXJZOU+Og0NDUXz5s1x+PBhJCYmQiaTwdLSEo6OjtU6P5EhKi4uxq5du/Dnn3+q11lYWCAkJARNmjSRMLLymZmZoXPnztV+Q7awsMDw4cNx7do1HD16FEVFRcjOzsa3336LkJAQDBkyBEZGkn2OJ9JbbEE2fByop13VeucJCgoqkyCfP38e165dg6+vL1q1agUAiIqKQmRkJPz8/BAQEFDuuRQKBV599VW8+uqrAMQqFnPmzGEVC2rwkpKSsG7dOty7d0+9rnHjxhg0aJBOtghZWFggMDBQ3V2iumQyGfz8/NCoUSPs27cPCQkJEAQBYWFhuHbtGl566SW4u7vXcdREhq2kOxYZruzsbJ0anG1oqtUHecOGDVi/fr16GTFiBB48eICDBw/i6tWr+P333/H777/j6tWr2L9/P+7fv49nnnmmSueOjo6u8r7atmLFCnh7e8PMzAxdu3bF2bNnq3Tc5s2bIZPJdObnIP1z9uxZhIaGqpNjhUKBwMBADB06VCeTY3Nzc3Tu3LnGyXFpdnZ2ePbZZ9GxY0d1H+b79+/j008/xeHDh/mGT1QN/H0xfFlZWVKHYNBqNUhv3rx5ePvtt9G/f/8y2wYMGIBp06Zhzpw5VTpXkyZNdCIB2LJlC2bMmIH58+fj4sWL6NChA0JCQjRmKitPTEwM3n//ffTu3bueIiVDkp+fj40bN2LDhg3q/sbOzs5499130bZtW50cwGpsbIzAwECYmZnV2Tnlcjnat2+P9957Tz0ldVFREX777Td89913SE9Pr7NrERkyJsiGjwmydtUqQb5161alfYYdHR0rLN0kl8thZGSEwsJC9WuFQlHpUh99Eb/66itMnToVkydPhq+vL1atWgULCwusW7euwmOUSiVefPFFLFy4EE2bNtV6jGRYYmNj8emnn+LMmTPqdd26dcPMmTPh5eUlYWSVa9eundY+1Hp5eWHmzJno27evet2NGzewaNEiXLhwQSvXJDIkxcXFUodAWpaZmSl1CAatVhlns2bNsH79erz88suwsrLS2JaVlYV169ZVmDDOmzcPMplMnfSWvJZSYWEhLly4gJkzZ6rXyeVyBAcH49SpUxUe9/HHH8PFxQUvv/yyxuQnFSkoKEBBQYH6dXZ2du0CJ72kUqlw+PBh7NixQ12ux9TUFGPHjkWXLl0AQOP/iS7x9PSEs7OzVq9hYmKCF154AX5+fvjvf/+LjIwM5ObmYu3atbh8+TJGjx6tE0+diHRRSeMTGS4+UdOuWiXIixYtwqhRo9C6dWu89NJLaN68OQCxZXnjxo1ISEjAb7/9Vu6xCxYsqPS1FJKTk6FUKtWPdku4urpqzFxW2vHjx7F27VpERERU+TqhoaFYuHBhbUIlPZeVlYWffvoJ165dU69r3LgxpkyZovODLhQKBVq0aFFv1/P19cWcOXPwv//9DxcvXgQAnDt3Drdu3cKkSZPUg4OJ6F+lS0OSYcrOzkZ+fn6ddnOjf9UqQX7mmWewd+9efPjhh1iyZInGNn9/f6xduxYhISG1ClCXZWVlYcKECVizZg2cnJyqfNzMmTMxY8YM9euIiAgEBQVpI0TSQTdu3MCGDRs0Ho8FBwfj6aef1ouSZo0bN65yreO6YmlpiZdffhnt27fHli1bkJeXh/T0dCxfvhz9+/fH008/DWNj43qNiUiXFRYWQqlU6ly9dKpb8fHx8Pb2ljoMg1Trd+OBAwdi4MCBiI+PV4+8b9KkCdzc3Kp8joKCAvz88884cOAA7ty5g6ysLFhbW6N58+YYNGgQxo0bVy9T6To5OUGhUCAhIUFjfUJCQrk/z507dxATE4Phw4er15UMjDAyMkJUVBSaNWtW5jhTU1ONBOPx7ilkmJRKJf744w8cPHhQXaPU2toakyZNgq+vr8TRVY1CoZDsj7FMJkOXLl3QvHlz/PTTT7h58yYAIDw8HJGRkZg8eTIaNWokSWxEuig7Oxu2trZSh0FadP/+fSbIWlJnzVVubm7VSopLXLlyBSNGjMC9e/cgCAJsbW1hZWWFxMREXLx4Eb/99hsWL16MXbt2oU2bNnUVbrlMTEwQEBCA8PBwdak2lUqF8PBwTJs2rcz+rVu3xpUrVzTWzZkzB1lZWVi+fLlOD7Ci+pWcnIx169YhJiZGva5NmzaYNGkSbGxspAusmho1alQvH1Yr4+DggHfeeQeHDx/Gzp07UVxcjLi4OCxduhTDhw9HcHBwpVNdEzUUWVlZTJANXGxsLARBkHwMlyGq9btIbGwsXn/9dbRq1QoODg7466+/AIgJwTvvvINLly5VeGx2djaefvppJCQkYPHixbh//z7S0tI0vi5atAiPHj3C8OHDkZOTU9twn2jGjBlYs2YNNm7ciOvXr+ONN95ATk4OJk+eDACYOHGiehCfmZkZ/Pz8NBY7OztYW1vDz89P8kSCdMP58+exZMkSdXIsl8vx7LPP4q233tKr5Fgul8PHx0fqMACIsfTv3x8ffvghPD09AYgt9Dt27MCyZcuQkpIicYRE0uMgLsOXk5OD5ORkqcMwSLVqQY6MjETv3r2hUqnQtWtX3L59W11axsnJCcePH0dOTg7Wrl1b7vHr169HbGwswsPDNco5lfD09MTMmTPRtWtXDBgwABs2bMBbb71Vm5CfaPTo0UhKSsK8efMQHx8Pf39/hIWFqQfuxcbGsnWKqqSgoAC//vqrRgUUZ2dnTJ48WS8fiUnR9/hJPD098cEHH2D37t34888/IQgCbt++jcWLF+OFF15A165d2bJCDVZaWprUIVA9iI6O1npVoYaoVgnyBx98ADs7O5w+fRoymazM6PuhQ4diy5YtFR6/Z88eDBw4sNzkuLSnnnoKAwYMwB9//KH1BBkApk2bVm6XCgA4cuRIpcdu2LCh7gMivXP//n2sW7dOoz97586dMWbMmDqZda6+KRQKnWk9fpyxsTGeffZZ+Pn5YePGjUhNTUV+fj5++uknXL58GePGjWM/f2qQUlNTpQ6B6sHt27fRuXNnNgbUsVo1hf71119444034OzsXO6Nady4MR4+fFjh8VeuXHliclziqaeeKtPfl0jXCIKAw4cP4/PPP1cnx6amppg0aRImT56sl8kxIP4u63qXoRYtWmD27Nno1q2bel1ERAQWLVqkUU6PqKFITU1VDwgmw5Wdna0ukkB1p1YJskqlqrRQf1JSUqWPZFNTU6s8sM/V1ZWfhkmnZWVlYeXKlfjtt9/UXY1KZoTr2rWrxNHVnFwuR5MmTaQOo0rMzc0xceJETJ06FZaWlgDE2aZWrFiB//3vfzo78QqRNhQVFSE3N1fqMKgeXLp0iR+G6litEuROnTphz5495W4rLi7G5s2bNVpzHldQUFDl2qWlp6Um0jVRUVFYsmQJrl69ql7Xv39/vP/++zo/8ceTuLu761zf4yfp2LEj5syZg7Zt26rXHTt2DKGhoRqVRIgMHfshNwxJSUm4deuW1GEYlFr1QZ45cyaGDRuGN954A2PGjAEg1gz+888/sWTJEly/fh3fffddpeeIiYlRz45Vmejo6NqESqQVSqUSu3fvxoEDB9Sf3q2srDBp0iSN5Eyf6WttYVtbW7z55ps4duwYfv/9dxQVFSExMRFffPEFBg8ejEGDBnESBTJ4SUlJevs7TOULDAzEo0ePYGxsjNmzZ6vXnz59Gl5eXnrblU/X1CpBHjx4MDZs2IB3330Xq1evBgCMHz8egiDAxsYGP/30E/r06VPpOebOnYu5c+c+8Vqs80e6JiUlBevWrdP48Na6dWtMmjTJYGqPymQyvf5ZZDIZ+vTpg1atWmHDhg24d+8eVCoV9uzZg2vXrmHSpEllppYnMiQPHjxAx44dpQ6D6lB8fDzi4uJgZ2ensT4/Px/Hjx9HcHAw86U6UOuJQiZMmICRI0fi4MGDuHXrFlQqFZo1a4aQkBBYW1tXeuz69etre3kiSVy4cAGbNm1CXl4eALGf7tNPP20wk1Q4OTmhqKgI9vb2BvGH1tXVFe+//z727duHsLAwqFQqxMTEIDQ0FCNHjkTv3r0N4uckelxcXBwyMjL0+oMuVV10dDSioqLQunVrqUPRezVOkHNzc+Hl5YWPPvoI//d//6eeea46Jk2aVNPLE0mioKAAW7duxYkTJ9TrHB0dMWXKFJ0tg1YT27Ztw4ULF+Du7i51KHVGoVBg2LBhaNu2LTZu3IjExEQUFhZi8+bNuHLlCsaPH88kggzSxYsX0a9fP6nDoHpy8uRJuLi4wMHBQepQ9FqNm7osLCxgZGSkHilOZOgePHiATz/9VCM5DgwMxKxZswwqOS5Nn2b6qyofHx/MnDkTvXv3Vq+7du0aFi1ahIiICOkCI9KS27dvIykpSeowqJ4UFxdj//796iecVDO1ehb83HPPYevWrSwtQgZNEAQcOXIEn332mbq2sYmJCSZMmKDXtY2fRCaTVVrGUZ+Zmppi7NixeOONN9QfAnJycrB69Wr897//bRBvLCx513AIgoCTJ0/yvboBycrKwr59+1j9qxZqlSCPGTMGiYmJ6NevH3755RecOHECFy9eLLMQ6avs7Gz88MMP+PXXX9W1jRs1aoSZM2eie/fuBt1v1czMzCD6U1emXbt2mD17Njp06KBed+rUKSxZsgS3b9+WMDLtKz3LIxm+hIQE3LlzR+owqB4lJydj9+7dDeIDvzbUapBe6Vnwjh07VmZ7SeUJpVJZm8sQSeLmzZvYsGED0tPT1ev69euHZ555psr1u/WZmZmZ1CHUC2tra7z66qs4ffo0fvvtN+Tn5yMlJQVff/01BgwYgGHDhsHIqNbjmXUOW5AbnpIyYPpW15xqLjk5GTt37sSgQYPKVL2gytXqrz6rUJAhUiqV2Lt3L8LCwjRqG0+YMAHt2rWTOLr6o+tTS9clmUyG7t27o0WLFti4cSPu3LkDQRBw4MABREZG4qWXXoKHh4fUYdYpJsiGKzAwEA8ePICpqalGndzc3FwcO3YM/fv3N+inX6QpMzMTO3bsQP/+/eHl5SV1OHqjVgkyq1CQoUlJScGGDRs0HkW2bNkSL730UoP79G2IraZP4uTkhOnTp+PPP//EH3/8AaVSqR6cOWLECPTr189gup3k5+ezvryBio+PR0JCQrl/s+7evQsbGxt07tyZ974BKSwsRFhYGLp16wY/Pz/e+yrQuXfAyMhI3L17F2lpaeUOKJg4caIEUVFDcOnSJfz8888atY2HDRuGgQMHGkxSVB0N8WcGxJ974MCBaNOmDTZs2IC4uDgUFxfj999/x9WrVzFhwgSDKJ9UVFSEoqKiBvWkgEQREREoLCxEjx49GuzveUMkCAJOnTqF1NRU9O7dm/f+CaqVIE+ZMgUymQyrV6+GQqHAlClTnniMTCbD2rVrn7jfnTt3MH78eJw9e7bCkbYymYwJMtW5wsJCbN26FcePH1evc3BwwJQpU9C0aVMJI5NWQ//jWVLnfefOnTh06BAAICoqCosXL8aYMWPQuXNniSOsvaysLDg6OkodBkkgMjISaWlp6N+/v8FWq6HyRUVFITs7GwMGDOAH5EpUK0E+dOgQ5HI5VCoVFAoFDh069MRm+qo247/22mu4cuUKli1bht69e8Pe3r46oRHVyMOHD7Fu3TrExcWp13Xq1Anjxo1r8G8afAQHGBsbY9SoUfDz88NPP/2E9PR05OXlYf369bhy5QrGjBmj1/9PmCA3bHFxcdi2bRv69esHT09PqcOhevTw4UPs2rULgwcP5nwWFahWghwTE1Pp69o4ceIEZs2ahbfffrvOzklUEUEQcOzYMfz+++8oKioCICZDL7zwAnr06MHkkDS0bt0ac+bMwZYtW3Du3DkAwPnz53H79m1MnDhRb6d1zcjIkDoEklhubi727t2LTp06oVOnTvzb14CkpqZi586dGDp0KGcRLYfOPEN1cnLiDaJ6UTIhxObNm9XJsaenJz766CP07NmTbxD/aOhdLB5nYWGByZMnY8qUKerJYdLT0/HNN9/gt99+08uC/KVLGFLDJQgCLly4gLCwMFY3aWCys7Oxa9cuJCcnSx2KztGZd8DXX38dP//8M2smk1bdunULixcvxt9//61e17dvX3zwwQdwd3eXMDLdwwS5fIGBgZgzZw5atWqlXnf48GF8+umniI2NlTCy6ktJSZE6BNIh9+/fx44dO5CWliZ1KFSP8vLy8Mcff+DRo0dSh6JTav0OuG/fPgwYMACOjo4wMjKCQqEos1RFy5YtoVQq0aFDB3z11Vf47bffsG3btjJLfVixYgW8vb1hZmaGrl274uzZsxXuu2bNGnWfaXt7ewQHB1e6P0lDqVRi9+7dWLZsmbrVzNLSEq+//jpeeOGFBjHxR3WxJb1i9vb2ePvtt/H888+r/+/Ex8fjs88+Q1hYGFQqlcQRVk1KSgpbDElDRkYGdu7ciQcPHkgdCtWjoqIi7Nu3D3fv3pU6FJ1RqzJvv//+O1544QW0bdsWY8aMwcqVKzFu3DgIgoCdO3eiRYsWeOaZZ6p0rtGjR6u/f//998vdpz5m5duyZQtmzJiBVatWoWvXrli2bBlCQkIQFRUFFxeXMvsfOXIEY8eORY8ePWBmZoalS5di4MCBuHbtGgc96IjU1FRs2LBBY+rgFi1aYPLkyQ2utnF1VPXDbUMll8vRr18/tG7dGhs2bMD9+/ehUqmwa9cuXLt2DZMmTYKTk5PUYVZKEATExMRotIYTldTM7d27N/9vNCBKpRLh4eHIy8tD27ZtpQ5HcrVKkENDQ9GlSxccP34caWlpWLlyJaZMmYKnnnoKMTEx6NatG3x8fKp0rsOHD9cmlDrz1VdfYerUqZg8eTIAYNWqVdizZw/WrVuHjz76qMz+v/zyi8brH3/8Eb///jvCw8NZkk4HRERE4Oeff0Zubi4AMakZOnQoQkJC2IXgCfjvUzXu7u74v//7P+zZswcHDhyAIAi4c+cOFi9ejOeffx7du3fX6db4yMhItGzZUqdjpPqnUqlw9OhR5Obmwt/fn/8/GghBEHDixAnk5eUhICCgQd/3WiXIkZGRCA0NhUKhUM+6VTLoydvbG2+++SaWLl1apUQxKCioNqHUicLCQly4cAEzZ85Ur5PL5QgODsapU6eqdI7c3FwUFRVVOpFAQUGBxmPN7OzsmgdN5SosLMTvv/+OY8eOqdc5ODhg8uTJaNasmYSR6Q8myFVnZGSEESNGwM/PDxs2bFB3Xfj5559x+fJlvPjii7C2tpY6zHIlJSXh/v37aNy4sdShkA46d+4csrKy0KtXL/5NaEAuXrwIlUqFLl26SB2KZGqVIFtYWKiLTNvZ2cHU1FSjnqyrqyuio6Orfd7IyEjcu3cPANCkSRP4+vrWJswqS05OhlKphKurq8Z6V1dX3Lhxo0rn+PDDD+Hh4YHg4OAK9wkNDcXChQtrFStV7NGjR1i3bp3GgIOOHTvixRdf1OuatfWNb4bV16xZM8yePRtbt27FyZMnAQCXL19GdHQ0xo8fj3bt2kkcYfnOnDmDRo0a8Z5TuW7cuIGsrCwEBwfD1NRU6nConkRERMDS0rLBdreo1V/DVq1aITIyUv3a398f//3vf1FcXIz8/Hxs2rSpWq0SO3fuRLNmzdCuXTsMGzYMw4YNQ7t27dC8eXPs2rWrNqHWi08//RSbN2/G9u3bYWZmVuF+M2fOREZGhno5evRoPUZpuARBwPHjx7F06VJ1cmxsbIxx48bhlVdeYXJcTQ350VptmJmZYfz48Xj11VdhZWUFQJyQY+XKldi0aRPy8/MljrCstLQ0jb/lRI97+PAhtm/fjtTUVKlDadBiY2ORk5MDQHware37cfr06QZ7z2uVII8cORK7du1SdxeYPXs2jhw5Ajs7Ozg7O+PYsWPl9tstz969e/Hcc88BAJYsWYLt27dj+/btWLJkCQRBwMiRIxEWFlabcJ/IyckJCoUCCQkJGusTEhLg5uZW6bFffPEFPv30Uxw4cADt27evdF9TU1PY2Niol5I3Uaq53Nxc/Pjjj9i0aZO6m4+Hhwc+/PBD9OrVi8leDfDfrHb8/f0xZ84c+Pn5qdcdP34coaGhNXqypm3nzp1jdy+qVGZmJnbu3Ik7d+5IHUqDc/bsWQwfPhze3t7qSkx5eXmYNWsWVqxYUacTt5WmVCpx+vRprZw7NTUVL774ImxsbGBnZ4eXX375iX+DVq9ejb59+8LGxgYymazcWu7e3t6QyWQay6efflrt+GSCIAjVPSg/Px87d+5EdHQ0HB0dMWzYMHUN2WPHjmHbtm1QKBQYOnQo+vXrV6Vzdu/eHQUFBTh27FiZaQ9zcnLQq1cvmJmZVbkvcE117doVXbp0wbfffgtAHKjQuHFjTJs2rcJk/7PPPsPixYuxf/9+dOvWrdrXvHjxIgICAnDhwgV06tSpVvE3RHfu3MH69es1PuX26dMHI0eO1Pt55gsKCtSPuer7Z1EqlfVeyaKwsBA5OTnw9/c3mEe5JYNetm7dqp5MRCaTYdCgQRgyZIgk1UICAwMRGxsLc3NzzJ49W73ew8MDQ4cO5YcjPdeoUSM8fPgQdnZ2WLp0qVau4efnh65du7LaTT3Ytm0bRo8eDUEQyq3kVdI1aurUqVrLIZ555plyK3k9Sd++ffHSSy/hpZdeKrNt8ODBiIuLww8//ICioiJMnjwZnTt3xqZNmyo837Jly9RP4WbOnIm0tLQy1ai8vb3x8ssvY+rUqep11tbW1Z5Su9p9kBMTE9GjRw9ER0dDEATIZDKYm5tjx44dCA4ORu/evdG7d+/qnhaXL1/GkiVLyv0BLC0t8dJLL2HWrFnVPm91zZgxA5MmTUJgYCC6dOmCZcuWIScnR13VYuLEifD09ERoaCgAYOnSpZg3bx42bdoEb29vxMfHAwCsrKzYMqxlKpUKYWFh2LNnD0o+51lYWGD8+PHw9/eXNjiif8hkMvTq1QstW7bExo0b1X879+3bh2vXrmHy5Mllxj1oW3x8PJKSksq8sTx69AgXLlxAYGBgvcZD+ufq1atITk7GgAED1DNLUt07e/YsRo8eDaVSiYraM0vqrq9ZswYffvghvL296zyOS5cuISQkpM7Od/36dYSFheHcuXPqvzfffvsthgwZgi+++AIeHh7lHvfee+8BEEvsVsba2vqJT/6fpNpdLD755BPExMRg+vTp2L17N77++muYm5vjtddeq1UgZmZmlfZzSU1NrbRfb10ZPXo0vvjiC8ybNw/+/v6IiIhAWFiY+g0sNjZWYyDiypUrUVhYiFGjRsHd3V29fPHFF1qPtSFLS0vD8uXLsXv3bvUfjebNm2PWrFlMjusIW4bqlouLC2bMmIFhw4apW3xiY2OxZMkSHD16tMI3v/p28eJFPkLXY/XZRzU+Ph47d+5EVlaW1q7R0C1atAiCIFT578PevXu1Ese9e/fKdD+tjVOnTsHOzk7jw3hwcDDkcjnOnDlT6/N/+umncHR0RMeOHfH555+juLi42ueodoJ84MABTJw4EV988QWGDBmCd955B9999x1iYmIQFRVV7QBKPPXUU1i+fHm5XSjOnDmDb775ptLKEHVp2rRpuHfvHgoKCnDmzBl07dpVve3IkSPYsGGD+nVMTIz6P2/pZcGCBfUSa0P0999/Y8mSJbh16xYAsYVu6ND/b+++w6K42r+Bf2eXtnRQEI0KCBFBrORRsYEVY4kFu8beYoyxJEYTjfrYUkzUaPwZS2yxxSjW2GIv2JPYUSOIUbEhTZC25/3Dl31YKdKWWYbv57rmkj07O3svt8vee+bMOe0wZsyYXKfXI5KbWq1G27Zt8cknn+i+dKempmLTpk348ccfsx1PJ4cjR47g3r17codB+SDXGNW4uDjs3LnTIOPXDTFGNSIiAoMHD4a7uzs0Gg08PDwwdepU3fAnuaWnp+Ply5dISEjA5cuXsWvXrjwvkKbVanHp0iWDfSk6c+ZMkX2Rj4qKyjJkw8TEBI6Ojroz8QU1evRobNy4EYcPH8bw4cMxe/ZsTJgwId/HyfcQi8jISHz22Wd6bY0bN4YQAo8ePSrwqjvffPMN/P390bhxY9SrV093nLCwMJw9exbOzs4GG0tFJUNqaiq2bt2qN+uHg4MDBg4cCE9PTxkjI8ofNzc3TJo0CSEhIbr/z9euXcOsWbPQq1cv2a9FSE9Px/79+xEUFISKFSvKGgu9WeYxqq8XMEIIXLlyBVeuXDHYGNWEhATs378fnTp1yvdUgbmNUe3Tpw8ePnyIAwcO6MaoDhs2LNcxqomJiWjTpg3atGmjt6ZBhhs3bkCr1eKnn36Cp6en7vfy4sULzJ07F0IIpKWlITU1VW/L3Jb555cvXyIlJUXXltO/r7fltF/mZepv3LiR74JUCIHr16+jYcOG+XpcXjx8+PCNc6bPnj0bs2fP1t1OSkrC6dOnMWrUKF2boWfMGTdunO7nmjVrwszMDMOHD8ecOXPydW1Lvgvk5OTkLEMdMm4XpAs7g7u7Oy5duoQ5c+Zgz5492LRpE4BX8yB//PHHmDhxYoEGiJMyPHz4ED///DPu37+va6tVqxb69u2b74H3RMbAzMwMPXr0gK+vL3755RfExsbixYsXWL58OerVq4cePXrIOrYzPT0d+/btQ6tWrbiIiBEzljGqT58+RVhYGLy9vQt1HCEEtFotLl++jL179+KPP/6Au7s7UlJSMHnyZF2R7OjomG3B+vbbbyM1NRV///03AGDDhg0wNzfXK3a9vb1x/vx5hIaGIjU1FT4+Pli+fLmu0DUWKSkpkCQpX0WyJEmIi4vTrR5b1EJDQ1GhQgXd4nCvGzFiBLp376673adPHwQHB6NLly66tgoVKsDFxQWPHz/We2xaWhqio6MLPXb4dfXr10daWhoiIiLy1YlboIVCIiIicPHiRd3t2NhYAMCtW7eyXPQBIM/fWJ2dnTFv3jzMmzevIGGRAgkhcOrUKfz666+66dtMTU0RHByMJk2a8Gp7KvGqV6+OL774Ahs2bMCff/4J4FXRc/v2bfTr1w9Vq1aVLbaMnuRmzZpxBUojVZAxqiNHjnzjftkNHXzTdvz4cUREROSrBzYiIgKbN2/G1atXdW0ZvaBmZmbYsmULtmzZAuB/hf5XX32FKlWq5Bp/RmfK+fPn39hrGBcXBzMzs2Itjk1MTHSrEGf+N/PPz549K1APskajMciiP0IIxMfHIz09PccC2dHRUW+oo0ajgbOzc5azvP7+/oiJicGFCxfg5+cHADh06BC0Wq3esNai8Ndff0GlUuW7k7VABfKUKVMwZcqULO2vv+kyZrnI6/gZoswSExOxfv16vS9j5cuXx+DBg3O8wpWoJLK2tsaQIUNw9uxZbNq0CS9fvkR0dDQWLFiAFi1aoEOHDjA1NZUlNq1Wi4MHDyI+Ph61atXil1IjEhkZqXeh8ptotVr8/fffCAsLg52dXY6FbkE9efIEf/31V74ek5qaiqSkJN2FhRkSExOznEFRqVQwNzcvkt5RExMTmJqaIiEhAVevXkXr1q1RsWJFmJqa6u7L2DLfNjExgZmZGUxMTCBJEqKioqDRaGBhYZGl4M2pCFapVHl6H9WvXx+bN2/Odw+yl5eXQQpkrVabY2GcX97e3mjTpg2GDh2KJUuWIDU1FaNGjULPnj11n+/3799HixYtsGbNGt2S11FRUYiKisLt27cBAJcvX4aNjQ0qV64MR0dHhIaG4syZM2jWrBlsbGwQGhqKsWPHom/fvnBwcMhXjPl+pStXrszvQ7I1aNAgSJKEpUuXQq1WY9CgQW98jCRJWLFiRZE8Pxm3O3fu4Oeff9a72KBx48bo2rVriZ/bmCg7kiShfv368PT0xJo1a3Dr1i0IIfDHH3/g2rVrGDBggKzjgc+ePYsnT56gadOmipmjujikpaUVSSdRUlISoqOjER0djWfPniE6Ohq///57gQramzdvolatWoWO6XV5KcouXLig6/SQJAlpaWl49OgRTpw4oSsaJ0yYACcnJ0RERKBu3bp6Beq6detQvXp1vPfee7kWsRcuXMCOHTvw6aefwsnJSe/+jCL1/v37CAgIQN++fbF8+fJ8v15Dz1NfoUIFBAYG4tixY3n6P6RSqeDj42PQi9XLlClTZMdat24dRo0ahRYtWkClUiE4OBg//PCD7v7U1FSEhYXpfSFasmQJpk+frrvdtGlTAK9q0wEDBsDc3BwbN27EtGnTkJycDHd3d4wdO1ZvXHJeFWihkKLg5uYGlUqFsLAwmJqa6lY+yY0kSbhz504xRVh8uFDI/2i1Wuzfvx+7du3SnU7TaDTo27cv6tSpI3N0xU/OhULkoMSFQgoio9d2586dutO+JiYm6NChg+7DpDAKs5CElZUVmjZtikqVKhUqhtIgLS0N165dQ1JS0hv3TU1NRUJCQo5bdrMsXLp0CadOncp3D2OrVq3wn//8R3c747M38785/fymtmrVqsHT0xPm5ubZFq/x8fGIi4vTTSOZ3RhVNzc3rFmzBuPHj8fz58/1fp8WFhbYvHkzOnfunOvrPHLkCJo1a5btQhLAqzm/AwMD0aBBA6xatapA76ni+Pt86dIl9OrVK9cx5hlUKhXGjh0LV1dXg8Si0WhQvXp11K1bt1T8fS6avvICeH3KGUNNQUMlR0xMDFatWoWbN2/q2jw8PDBgwIAi/dZKZOxUKhVatWoFb29vrFq1Cg8ePEBaWhpCQkJw5coV9OvXT7b3xIsXL7Bnzx54enqiQYMGsLS0lCWOkiA9PR1JSUkwNTWFJEmIj4/XbXFxcXr/ZqwOlh9mZmYFGqNapkwZODk55fv58nJsjUajK5CzY21trVt5F5BnjOr9+/fRrFkz+Pn5YeXKlQYZjlBUatasiXnz5mHs2LFvXElv4MCBBiuOVSoVqlevbtS/q6ImW4H8usjISDg5OeV41XZSUhKePHnCq6kV6vLly1izZo1uHJrcS/ESGYOKFSvis88+w86dO3Hw4EEIIXDr1i3MmjULPXr0QL169WQbE3z79m3cvXsXfn5+8PX1LVUfnNlJTU3VDX/I2J48eYJ79+7hxYsXeepFzo4kSbCxsYGdnR1sbW31tsTERBw5csSoxqgW1aIhhhqjev/+fQQGBsLV1RVz587FkydPdM9Z1LMnFJXWrVtjw4YNWLx4cZZ8S5IEHx8fBAUFGaw4BoAaNWrAxsYmy1hxJTOaAtnd3R1r165F7969s71/x44d6N27Ny/4U5jU1FSEhIToLRtpb2+PAQMGyHr1PpGxMDU1RZcuXeDr64s1a9YgOjoaL1++xOrVq3WnX+Va1j41NRWnT59GWFgYAgMDDdIraSzS09Px/PlzPH36VK8IztgyZnPKL0mSYG1trVf4Zi6Gra2tcy1mjW2MakF6wnNiiDGqBw4cwO3bt3H79u0sY/qNZTXL7NSsWRNLlizBgwcP0LFjR8TFxUGj0eCzzz4z+AJZ1apVg4uLi9EsplJcjKZAftN/zNTU1FLfQ6E0jx49wooVK/Dvv//q2mrWrIm+ffvK9oFPZKyqVq2KL774Aps2bcLZs2cBAH/++Sfu3LmD999/Hz4+PrLF9vz5c2zbtg2NGjWSNY7CSE9PR0xMTLbF77NnzxATE1PgAsrKyipLD3DGbWtr60KdJRs5ciSOHz+e5/lyg4KCCvxceZHfubszd468ztHRMddFQdzc3LK85mnTpuW6km1Oi5KUFBUqVIBGo9FNTWfo4tjd3d2gPdPGTNYCOS4uTm8ZyGfPniEyMjLLfjExMdi4caPeuCUquYQQOH36NDZt2qT7RmpiYoLg4GA0bdqU00gR5UCj0WDAgAGoWbMmNmzYgBcvXiA2NhaLFi1CQEAAOnfuLNvFnEIInDhxAi9fvjTKi421Wi1iY2NzLICfP3+ut4pZftja2sLR0RFly5bV+9fW1haRkZGwtbU1WF6MZYwq8GpMdMYS6lTyubi44O2335Y7DNnIWiDPmzcP//3vfwG8Os00ZswYjBkzJtt9hRCYOXNmMUZHhpCUlIQNGzbg/PnzujYXFxcMGjSIS9oS5VHdunVRpUoV/PLLL7plW48ePYobN25gwIABsvb4nD9/Hmq12iDTiOVGCIG4uLhcC+CCLgRhbW0NR0dHlClTRrdlFMFlypTJsfhNTk7WW/3TUIxhjKpKpUKNGjWKbJ5ckpe9vT18fX1LdYeVrP+TW7duDWtrawghMGHCBPTq1StLz4MkSbCysoKfnx/eeecdmSKlohAeHo6ff/4Zz54907U1atQIXbt2LRVTxhAVJXt7e3z44Yc4duwYtm7ditTUVDx69Ajffvst2rZti6CgINkucD1z5gzUajV8fX2L7JhCCCQkJORYAEdHR+tW28wvjUajV/C+XgRbWFgU2eswFDnHqKrVatSpU6fUXcSlVJaWlqhTp06pv0Be1gLZ398f/v7+AF5NHRQcHFykf1DJOGi1Whw4cAA7d+7Um9u4d+/euul7iCj/JElCQEAAvLy8sGrVKkRGRkKr1WLXrl24evUq+vfvn2V51cjISF0Rk5ycjOjoaIMUUKdOnYJarYa3t3ee9hdCIDExMdcCODk5uUCxmJubZ+n1zbwpaaq64h6jqtFodMVxabuIS4nMzMxQt27dUjHv/psYxbmQxMRE/PDDD7C0tGSBrDCxsbFYvXo1bty4oWtzd3fHoEGDOLcxURFxcXHBp59+it9//x179+6FEALh4eGYPXs2unbtikaNGuHcuXOYMWMGdu/erTsFn5SUhM8//xw1atRAu3bt4ObmVqRxHT9+HAB0RXJSUlKOBfCzZ8/yPQPCy5cvceLECUREROh6MYcPH44KFSroFcRWVla6U8UvX77E+PHjsXHjRiQnJyMoKAiLFy/WjZ199uwZ+vTpg0uXLuHZs2dwdnZGx44dMXv2bNja2hbhb6fkc3Z2hq+vr2zLoFPRMjExgZ+fH6ysrOQOxSgYRYFsaWkJExMTJkVhrl69itWrVyMhIQHAq96uoKAgtGvXrtSfuiEqamq1Gh06dICvry9WrVqFJ0+eICUlBevXr8eaNWuwcuVKCCGyXPUvhMCVK1dw5coVDB06tFAX2AkhkJaWpreFhIRg69ateP78ud50XHm1fft2+Pj4oFGjRlkugvvkk09gYWGBY8eOIS0tDQMHDsS+fftynflg7Nix2L17NzZv3gw7OzuMGjUKXbp0wcmTJwG8GkvbsWNHzJw5E05OTrh9+zY+/PBDREdH53rc0sbLywuurq6leoyqkqjVavj5+fFLYCZGUSADQHBwMH777Td88MEHfMOVcKmpqdi+fTsOHTqka7Ozs8OAAQPg5eUlY2REyufu7o5JkyZh69atOHHiBB49eoSQkJBcpwDLGPq0bNkyfPbZZzn2JGcUwOnp6VkK4bS0tFxngcjt9LtarYajo2O2M0FkzPU8aNAgvcdcv34dR48exblz53TXpyxcuBBt27bF3LlzdYtJZBYbG4sVK1Zg/fr1aN68OYBX8+N6e3vj9OnTaNCgARwcHPDBBx/oHuPq6oqRI0fi22+/zTH+0sTU1BS1a9c2+NANKj4ZxXF2S3KXZkZTIPfs2RMjR45Es2bNMHToULi5uWU7n6IxTh9U2kRGRuLgwYOIj4+HjY0NWrRooVvh8NGjR/j5559x79493f6+vr7o168f5zYmKiYWFhbo3bs3atSogc6dO+frsbt27cKQIUP0Ct+MgrgwCzU5ODjA3t5eb+hDxr/29vY5znNvYmKS7X2hoaGwt7fXu3i7ZcuWUKlUOHPmTLav+8KFC0hNTUXLli11bdWqVUPlypURGhqKBg0aZHnMgwcPsHXrVgQEBBTkZSuKlZUV6tatq6gx26WdWq1G3bp14eDgIHcoRsdoCuTAwEDdzxnj1jITQkCSJK6kJ6OzZ8/qjWFUqVTQarWQJAnt27dHp06dcPnyZd2FNCYmJujcuTMCAwN5VoBIBnZ2drhz506eF7jQarW4fPkybt26BTs7u3w9l1qthomJid6WuU2SJPTr16/IZqyJiorKcgGiiYkJHB0dERUVleNjzMzMsvSUlStXLstjevXqhe3btyMpKQkdOnTA8uXLiyTuksrR0RG1a9fmeGMFyRhzzJ7j7BlNgbxy5Uq5Q6BcbN26FT169NAbw5hxOlUIgd27d2PXrl1o3bo1qlSpgnLlymHQoEGoVKmSnGETGb3C9szmJuOCvfyKiIjIMo+xWq3WK3hf/zm3L8EZfzfu3bsHNze3XOfKnT17NmbPnq27nZSUhNOnT2PUqFG6toy5nw1p3rx5mDp1Km7evIlJkyZh3LhxWLx4scGf1xhVrlwZXl5eXM1WQSwsLODn58czu7kwmgK5f//+coeg8+OPP+Lbb79FVFQUatWqhYULF6JevXo57r9582ZMmTIFERERePvtt/H111+jbdu2xRixYZ09exY9evRAenp6jh+2GcXy/v37MXXqVEycOJFzGxO9QVpaGq5du4akpCSDHP/GjRu6Mz15lbFksZWVFdRqNVQqFVQqVbYFsFarzdfUXmfPnkViYiJ8fHxyLJJHjBiB7t2762736dMHwcHB6NKli66tQoUKcHFxwePHj/Uem5aWhujoaLi4uGR7bBcXF6SkpCAmJkav1+zRo0dZHuPi4gIXFxdUq1YNjo6OaNKkCaZMmVKqVnQ1MzND9erVs/TUU8lma2uLOnXqlIj5veVkNAVyZgkJCboxrJUqVSrWbzibNm3CuHHjsGTJEtSvXx/z589HUFAQwsLCsv0jcerUKfTq1Qtz5sxB+/btsX79enTq1AkXL15UzJR1M2fOzPbq9+yoVCpcvHiRxTFRHqSnpyMpKQmmpqYGmXfUwcEh38snCyFga2trkHGmGTNZpKen51ggZ1ysl0Gj0cDZ2Rmenp56+/n7+yMmJgYXLlzQzad+6NAhaLVa1K9fP9tj+/n5wdTUFAcPHkRwcDAAICwsDJGRkbo5+bOT8Tss6DzMJVGlSpXw9ttvc0iFwrz11lvw9vbmTFJ5YFTnS86dO4dmzZrBwcEBvr6+8PX1hYODA5o3b663NLEhff/99xg6dCgGDhwIHx8fLFmyBJaWlvj555+z3X/BggVo06YNPv30U3h7e2PGjBmoW7cuFi1aVCzxGlpkZCR27dqV51PA6enp2LlzJyIjIw0cGZFymJmZGWRr0qRJvsf/S5KkO51e1FtaWhpiY2OL5Hfm7e2NNm3aYOjQoTh79ixOnjyJUaNGoWfPnroZLO7fv49q1arh7NmzAF6NyR48eDDGjRuHw4cP48KFCxg4cCD8/f11F+j9/vvvWLlyJa5cuYKIiAjs3r0bI0aMQKNGjYp8nmhjZGdnB39/f/j4+LA4VhCVSoXq1avD19eXxXEeGU0P8pkzZxAYGAgzMzMMGTJEN7H89evXsWHDBjRt2hRHjhzJdahDYaWkpODChQuYNGmSrk2lUqFly5YIDQ3N9jGhoaEYN26cXltQUBC2bduW4/MkJyfr9URkzBOclpZW4KVSDWXfvn35HsMohMD+/fuNathMSZWamoq0tDS8ePHC6P5vGEJKSorufVAaxjsaOr92dnZo0qQJTpw4kaeeZEmS4OPjAxsbG4PEI4RAbGxsvvIrhEB6enq28axatQoff/wxWrRoAZVKhc6dO2PevHm6fRMTExEWFoa4uDhd2zfffAPg1dSiycnJaNWqFRYuXKi739TUFEuXLsXYsWORnJyMihUrolOnTpgwYUK+fydyvX8zXx+S1+c1MTGBh4cHypcvD0mSCrRkNN+/xSO/+dVoNPD19YW1tXWhlgIvzvwaxZczYSRatGghPDw8xMOHD7PcFxUVJTw8PETLli0NGsP9+/cFAHHq1Cm99k8//VTUq1cv28eYmpqK9evX67X9+OOPwtnZOcfnmTp1qgDAjRs3bty4cePG7bXNGBhVD/KXX36Z7cUV5cqVw7BhwzBjxgwZIit6GVdEZ/jrr78QEBCAM2fOoE6dOjJGltWqVaswbNiwfD9u2bJl7EEuIoac5cAYZcyOUFoUR363b9+O/v37QwiRbU9yxjCMwYMHG+xvkCRJ8Pf3h5eXF/NrYF5eXnjw4AHs7Oz0ZgTJjp2dHYKCgorsgi2+fw0vr/l1d3dHw4YNi3RIRWnKr9G8yozxaTlJT083eJd+2bJloVar8ejRI7327K5wzuDi4pKv/QHA3Nxc7yK2jIsQTUxMjOO0QiZBQUG6q9rzSpIktG7d2uheS0nF36OyFUd++/Tpg6pVq2LGjBnYtWuX3vtZkiTUrFkTbdu2NdgYWysrK7Rs2RLlypUzyPGNmRzv34wvPJIk5VrMmJmZoUOHDlxeuBCMNb9Vq1ZFQEAA1yAoBKMZJNSwYUP8+OOPuHv3bpb7IiMjsXjxYjRq1MigMZiZmcHPzw8HDx7UtWm1Whw8eDDHK5z9/f319geAAwcO5HpFdElSuXJltG/fPs/fQNVqNTp06KBbWY+IjMN//vMf7NixAxEREbopzjQaDWbPno2RI0carDiuVKkSgoODS2VxbOz8/f1ZHCuQq6sri+MiYDQ9yLNnz0bTpk1RrVo1dO7cGVWrVgXwagqe7du3w8TEBHPmzDF4HOPGjUP//v3xzjvvoF69epg/fz5evHiBgQMHAgD69euHt956SxfLxx9/jICAAHz33Xdo164dNm7ciPPnz2Pp0qUGj7W4TJkyBXv27HljT7IkSZAkCZMnTy7G6IgoPypXrgwrKyvExMTA3Nxcb0q1ola3bl34+fnxg9oIValSRfc5S8qRMfMX33OFZzQFcp06dXDmzBl88cUX2LFjBxITEwEAlpaWaNOmDWbOnAkfHx+Dx9GjRw88efIEX375JaKiolC7dm3s3btX1/sRGRmpN9SjYcOGWL9+PSZPnozPP/8cb7/9NrZt26aYOZCBVz1PmzZt0q2kl914q4yVtH799Vf85z//kSFKIjIWarUagYGB8PDwkDsUyoaDgwN7GBVIrVajZcuWHJZXRIymQAYAHx8fhISEQKvV4smTJwAAJyenYp8uZtSoUXrLmmZ25MiRLG3dunVDt27dDByVvLp06YJTp07pjWHMWKFLkiS0a9cOkydPZnFMVMqZmZkhKCioVK04V5JoNBq0adOGRZQC1a1bFw4ODnKHoRhGVSBnyDhVn/EzGYeMMYyRkZE4dOgQ4uLiYGtri+bNm3PMMRHB2toaQUFBKFOmjNyhUDbUajVat24NGxsbuUOhImZnZ4eaNWvKHYaiGFWBfO3aNXz55ZfYt2+f3hCLoKAgTJs2TVHDFkqyypUrY8CAAXKHQURGpFKlSggMDIRGo5E7FMpBw4YNebGkQtWvX58r5BUxoymQjx8/jnfffRdarRYdO3bUu0hvx44d2LNnD/bu3YsmTZrIHCkREWUwMzNDgwYN4OXlxTN+RszNzQ3VqlWTOwwqAi4uLtBqtbphMmXLloWrq6vMUSmP0RTIY8eOhbOzM44ePYpKlSrp3Xfv3j00bdoU48aNw7lz52SKkIiIMnNzc0OjRo1gZWUldyiUC1NTUzRq1IhfYBTi/PnzePjwIXbu3AkAqFWrFnNrAEYzD/LVq1cxcuTILMUx8OrU3QcffICrV6/KEBkREWVmbm6O5s2bo1WrViyOS4Dq1aszTwql0Wjg7u4udxiKZDQ9yK6urkhOTs7x/pSUlGyLZyIiKj6VKlVCQEAALC0t5Q6FcuDi4oK0tDSYm5tDkiRUr15d7pDIQNzd3Yt9pq/SwmgK5C+//BJjx45Fu3btULt2bb37/vzzTyxcuBDz58+XJTYiotLOxMQE/v7+qFatGk/nGrnz58/j+vXrOH78OFxcXNh7rGDsODQcoymQT58+jXLlysHPzw8NGzaEp6cnAODWrVsIDQ2Fr68vQkNDERoaqnuMJElYsGCBXCETEZUKdnZ2aNWqlUFX3SPD4BScyubi4iJ3CIplNAXyokWLdD+fPHkSJ0+e1Lv/8uXLuHz5sl4bC2QiIsN666230LJlS5ibm8sdChVAhQoV5A6BDMTKyorvSwMymgJZq9XKHQIREWVStWpVNG3alGMcSygzMzOULVtW7jDIQOzs7OQOQdGMpkAmIiLjUaNGDTRo0IDjjUswFxcX5k/BrK2t5Q5B0YyuQA4PD8eePXtw9+5dAK9mt3j33Xc5jQkRUTHx9vZmcawAXDVP2XjxpWEZVYE8fvx4LFiwIMtwC5VKhTFjxmDu3LkyRUZEVDpUrFiRi0ooBIdXKBunWjQsoxlY9t1332HevHno0qULQkNDERMTg5iYGISGhqJr166YN28e5s2bJ3eYRESKZW1tjebNm3PMsUI4ODjIHQIZEAtkwzKaHuRly5bhvffew6+//qrXXr9+fWzcuBEvX77ETz/9hLFjx8oUIRGRsgUGBsLCwkLuMKgIqFQqnoJXOBbIhmU03QQREREICgrK8f6goCBEREQUX0BERKWIl5cXpwRTEAsLCw6TUTgWyIZlNAWys7Mz/v777xzv//vvv+Hk5FSMERERlQ7m5uaoX7++3GFQEeL8uMrHAtmwjKZA7tatG5YvX46vvvoKL1680LW/ePECX3/9NZYvX44ePXrIGCERkTK4uLjAyckJtra2AAA/Pz8OrVAYExOjGUFJBmBqagq1Wi13GIomCSGE3EEAQGJiIjp06IDDhw/DxMREd6rvwYMHSEtLQ7NmzbBz505FfmO6ePEi/Pz8cOHCBdStW1fucIioFAgNDcXly5dhY2OD7t2788NWYZ4/f86L9BQsPj4eNjY2coehaEbTg2xpaYmDBw8iJCQEgwYNgre3N7y9vTFo0CBs27YNf/zxh8GL4+joaPTp0we2trawt7fH4MGDkZCQkOv+H330Eby8vKDRaFC5cmWMHj0asbGxBo2TiKio+Pr6sjhWIM5EomympqZyh6B4RnEOJjExEX379kVwcDD69OmDjh07yhJHnz598PDhQxw4cACpqakYOHAghg0bhvXr12e7/4MHD/DgwQPMnTsXPj4+uHv3LkaMGIEHDx7gt99+K+boiYjyR5IkeHp6yh0GGQALZGXjl1rDM4oC2dLSEn/88Qfeffdd2WK4fv069u7di3PnzuGdd94BACxcuBBt27bF3Llzs72629fXF1u2bNHd9vDwwKxZs9C3b1+kpaVxDBgRGTVHR0doNBq5wyADYAGlbMyv4RnNV8zGjRsjNDRUtucPDQ2Fvb29rjgGgJYtW0KlUuHMmTN5Pk5sbCxsbW1zLY6Tk5MRFxen23IbxkFEZCicGUi5WEApG6fwMzyjKZAXLVqE48ePY/Lkyfj333+L/fmjoqLg7Oys12ZiYgJHR0dERUXl6RhPnz7FjBkzMGzYsFz3mzNnDuzs7HRbQEBAgeMmIiooR0dHuUMgA+EQC6LCMZp3UK1atfDvv/9izpw5cHV1hbm5OWxtbfU2Ozu7fB934sSJkCQp1+3GjRuFjj8uLg7t2rWDj48Ppk2bluu+kyZNQmxsrG47evRooZ+fiCi/WCArF3sYlY35NTyjGSQbHBxskISPHz8eAwYMyHWfKlWqwMXFBY8fP9ZrT0tLQ3R0NFxcXHJ9fHx8PNq0aQMbGxuEhIS88epSc3NzvUncra2tc38RREQGUKZMGblDIANhAaVsQgjm2MCMpkBetWqVQY7r5OSUp3F2/v7+iImJwYULF+Dn5wcAOHToELRaba4rTMXFxSEoKAjm5ubYsWMHJ9snohLBysqKq60pmJEscUBUYsleIL98+RLbt29HeHg4ypYti3bt2qF8+fLFHoe3tzfatGmDoUOHYsmSJUhNTcWoUaPQs2dP3QwW9+/fR4sWLbBmzRrUq1cPcXFxaN26NRITE/HLL7/oLroDXhXmvEiCiIxVxip6pEzsXSQqHFkL5MePH6Nhw4YIDw/Xfdu1tLTEtm3b0LJly2KPZ926dRg1ahRatGgBlUqF4OBg/PDDD7r7U1NTERYWhsTERACvVsDLmOHi9blEw8PD4ebmVmyxExHlhxJXJaX/YQeNsnGIheHJutT0Rx99hP/7v//DmDFj0Lx5c9y+fRszZsyAra0t/vnnH7nCKnZcapqIiltMTAzs7e3lDoOICiA9PZ1fggxM1h7k/fv3o1+/fpg7d66urVy5cujduzfCwsLg5eUlY3RERMrFD1ciopzJOs1bZGQkGjdurNfWuHFjCCHw6NEjmaIiIlI+np4lKrn4/jU8WQvk5OTkLLM+ZNxOS0uTIyQiolKBH7BEJRcXgjE82WexiIiIwMWLF3W3Y2NjAQC3bt3Kdnwcx+gSERUeC2QiopzJepGeSqXK9o90dldnZrSlp6cXV3jFhhfpEVFxS0xM5EwWREQ5kLUHeeXKlXI+PRFRqcUeZCKinMlaIPfv31/OpyciKrVYIBMR5YyjvImISiEWyEREOWOBTERUCrFAJiLKGQtkIqJSyNTUVO4QiIiMFgtkIqJSiD3IREQ5Y4FMRERERJQJC2QiIiIiokxYIBMRERERZcICmYiIiIgoExbIRERERESZsEAmIiIiIspE1qWmqWR7+PAhHj58KHcYREREpUr58uVRvnx5ucNQNBbIRqB8+fKYOnVqifrPnpycjF69euHo0aNyh0JERFSqBAQEYN++fTA3N5c7FMWShBBC7iCo5ImLi4OdnR2OHj0Ka2trucOhIpaQkICAgADmV6GYX2VjfpUtI7+xsbGwtbWVOxzFYoFMBZJRIPMNqkzMr7Ixv8rG/Cob81s8eJEeEREREVEmLJCJiIiIiDJhgUwFYm5ujqlTp/ICAYVifpWN+VU25lfZmN/iwTHIRERERESZsAeZiIiIiCgTFshERERERJmwQCYiIiIiyoQFMhERERFRJiyQiUogSZLytB05cqTQz5WYmIhp06bl61izZs3Ce++9h3LlykGSJEybNq3QcZQ2xpzjGzduYMKECahduzZsbGxQvnx5tGvXDufPny90LKWFMef3wYMH6Nu3L7y8vGBjYwN7e3vUq1cPq1evBq/rzxtjzu/r1q1bB0mSuOria0zkDoCI8m/t2rV6t9esWYMDBw5kaff29i70cyUmJmL69OkAgMDAwDw9ZvLkyXBxcUGdOnWwb9++QsdQGhlzjpcvX44VK1YgODgYI0eORGxsLH766Sc0aNAAe/fuRcuWLQsdk9IZc36fPn2Kf//9F127dkXlypWRmpqKAwcOYMCAAQgLC8Ps2bMLHZPSGXN+M0tISMCECRNgZWVV6DgURxBRiffhhx8KQ72dnzx5IgCIqVOn5vkx4eHhBX4sZc+Ycnz+/HkRHx+v1/b06VPh5OQkGjVqZIAIlc+Y8puT9u3bCysrK5GWllY0gZUixprfzz77THh5eYk+ffoIKyurog+uBOMQCyKF0mq1mD9/PqpXrw4LCwuUK1cOw4cPx/Pnz/X2O3/+PIKCglC2bFloNBq4u7tj0KBBAICIiAg4OTkBAKZPn647LfimIRNubm6GeEn0Grly7Ofnl+V0bJkyZdCkSRNcv369aF9kKSbnezg7bm5uSExMREpKSqFfG8mf31u3bmHevHn4/vvvYWLCAQWv42+ESKGGDx+OVatWYeDAgRg9ejTCw8OxaNEi/Pnnnzh58iRMTU3x+PFjtG7dGk5OTpg4cSLs7e0RERGBrVu3AgCcnJzwf//3f/jggw/QuXNndOnSBQBQs2ZNOV8a/X/GluOoqCiULVu2SF9jaSZ3fpOSkvDixQskJCTg6NGjWLlyJfz9/aHRaAz6uksLufM7ZswYNGvWDG3btsWvv/5q0NdaIsndhU1Ehff66bvjx48LAGLdunV6++3du1evPSQkRAAQ586dy/HYhTl9xyEWRcdYc5zh2LFjQpIkMWXKlAIfozQzxvzOmTNHANBtLVq0EJGRkfk6Br1ibPndtWuXMDExEVevXhVCCNG/f38OsXgNh1gQKdDmzZthZ2eHVq1a4enTp7ot49T44cOHAQD29vYAgF27diE1NVXGiCm/jCnHjx8/Ru/eveHu7o4JEyYY5DlKG2PIb69evXDgwAGsX78evXv3BvCqV5kKT878pqSkYOzYsRgxYgR8fHyK5JhKxAKZSIFu3bqF2NhYODs7w8nJSW9LSEjA48ePAQABAQEIDg7G9OnTUbZsWXTs2BErV65EcnKyzK+A3sRYcvzixQu0b98e8fHx2L59O6eKKiLGkF9XV1e0bNkSvXr1wrp161ClShW0bNmSRXIRkDO/8+bNw9OnT3UzX1D2OAaZSIG0Wi2cnZ2xbt26bO/PuKhDkiT89ttvOH36NHbu3Il9+/Zh0KBB+O6773D69GkWO0bMGHKckpKCLl264NKlS9i3bx98fX0LfCzSZwz5fV3Xrl2xbNkyHDt2DEFBQUV23NJIrvzGxsZi5syZGDlyJOLi4hAXFwfg1XRvQghERETA0tISzs7OhXuBSiD3GA8iKrzXx7eNHDlSqNVqkZiYmO9jrVu3TgAQy5YtE0K8mr4LHIMsO2PLcXp6uujRo4dQq9Viy5Yt+Y6B9BlbfrOzbds2AUBs2rSpUMcpjYwlv+Hh4XrjyrPbOnbsmO+YlIhDLIgUqHv37khPT8eMGTOy3JeWloaYmBgAwPPnz7OsjFW7dm0A0J3Cs7S0BADdY8g4yJ3jjz76CJs2bcLixYt1V85T0ZEzv0+ePMm2fcWKFZAkCXXr1s3TcShncuXX2dkZISEhWbZmzZrBwsICISEhmDRpUsFfmIJwiAWRAgUEBGD48OGYM2cO/vrrL7Ru3Rqmpqa4desWNm/ejAULFqBr165YvXo1Fi9ejM6dO8PDwwPx8fFYtmwZbG1t0bZtWwCARqOBj48PNm3ahKpVq8LR0RG+vr65nk5fu3Yt7t69i8TERADAsWPHMHPmTADA+++/D1dXV8P/EhROzhzPnz8fixcvhr+/PywtLfHLL7/o3d+5c2euzFVIcuZ31qxZOHnyJNq0aYPKlSsjOjoaW7Zswblz5/DRRx/B09OzOH8ViiRXfi0tLdGpU6cs7du2bcPZs2ezva/UkrcDm4iKQk6rNC1dulT4+fkJjUYjbGxsRI0aNcSECRPEgwcPhBBCXLx4UfTq1UtUrlxZmJubC2dnZ9G+fXtx/vx5veOcOnVK+Pn5CTMzszydygsICMjx9N3hw4eL6mWXKsaU4/79++d6ijZjJUXKO2PK7/79+0X79u1FhQoVhKmpqbCxsRGNGjUSK1euFFqttkhfd2lhTPnNDqd5y0oS4rW+eyIiIiKiUoxjkImIiIiIMmGBTERERESUCQtkIiIiIqJMWCATEREREWXCApmIiIiIKBMWyEREREREmbBAJiqFIiIiIEkSVq1aJXcoZADMr7Ixv8rG/BoHFshERERERJlwoRCiUkgIgeTkZJiamkKtVssdDhUx5lfZmF9lY36NAwtkIiIiIqJMOMSCqISaNm0aJEnCzZs30bdvX9jZ2cHJyQlTpkyBEAL37t1Dx44dYWtrCxcXF3z33Xe6x2Y3xm3AgAGwtrbG/fv30alTJ1hbW8PJyQmffPIJ0tPTdfsdOXIEkiThyJEjevFkd8yoqCgMHDgQFStWhLm5OcqXL4+OHTsiIiLCQL8V5WB+lY35VTbmt+RjgUxUwvXo0QNarRZfffUV6tevj5kzZ2L+/Plo1aoV3nrrLXz99dfw9PTEJ598gmPHjuV6rPT0dAQFBaFMmTKYO3cuAgIC8N1332Hp0qUFii04OBghISEYOHAgFi9ejNGjRyM+Ph6RkZEFOl5pxPwqG/OrbMxvCSaIqESaOnWqACCGDRuma0tLSxMVK1YUkiSJr776Stf+/PlzodFoRP/+/YUQQoSHhwsAYuXKlbp9+vfvLwCI//73v3rPU6dOHeHn56e7ffjwYQFAHD58WG+/14/5/PlzAUB8++23RfOCSxnmV9mYX2Vjfks+9iATlXBDhgzR/axWq/HOO+9ACIHBgwfr2u3t7eHl5YU7d+688XgjRozQu92kSZM8Pe51Go0GZmZmOHLkCJ4/f57vx9MrzK+yMb/KxvyWXCyQiUq4ypUr6922s7ODhYUFypYtm6X9TX8ILSws4OTkpNfm4OBQoD+g5ubm+Prrr7Fnzx6UK1cOTZs2xTfffIOoqKh8H6s0Y36VjflVNua35GKBTFTCZTcNUE5TA4k3TFqTlymFJEnKtj3zhSIZxowZg5s3b2LOnDmwsLDAlClT4O3tjT///PONz0OvML/KxvwqG/NbcrFAJqJ8cXBwAADExMTotd+9ezfb/T08PDB+/Hjs378fV65cQUpKit4V22RcmF9lY36VjfktOiyQiShfXF1doVars1xxvXjxYr3biYmJePnypV6bh4cHbGxskJycbPA4qWCYX2VjfpWN+S06JnIHQEQli52dHbp164aFCxdCkiR4eHhg165dePz4sd5+N2/eRIsWLdC9e3f4+PjAxMQEISEhePToEXr27ClT9PQmzK+yMb/KxvwWHRbIRJRvCxcuRGpqKpYsWQJzc3N0794d3377LXx9fXX7VKpUCb169cLBgwexdu1amJiYoFq1avj1118RHBwsY/T0JsyvsjG/ysb8Fg0uNU1ERERElAnHIBMRERERZcICmYiIiIgoExbIRERERESZsEAmIiIiIsqEBTIRERERUSYskInIoCIiIiBJElatWiV3KGQAzK+yMb/KxvzmjAUykRH5559/MHz4cFSpUgUWFhawtbVFo0aNsGDBAiQlJRnsea9du4Zp06YhIiLCYM+RF7NmzcJ7772HcuXKQZIkTJs2TdZ4ihrzy/waAvNbPJhfZef3dVwohMhI7N69G926dYO5uTn69esHX19fpKSk4MSJE/j0009x9epVLF261CDPfe3aNUyfPh2BgYFwc3MzyHPkxeTJk+Hi4oI6depg3759ssVhCMwv88v8llzMr7Lzmx0WyERGIDw8HD179oSrqysOHTqE8uXL6+778MMPcfv2bezevVvGCP9HCIGXL19Co9EU+bHDw8Ph5uaGp0+fwsnJqciPLxfm9xXmV37Mb/4xv68oNb854RALIiPwzTffICEhAStWrND745vB09MTH3/8se52WloaZsyYAQ8PD5ibm8PNzQ2ff/45kpOT9R7n5uaG9u3b48SJE6hXrx4sLCxQpUoVrFmzRrfPqlWr0K1bNwBAs2bNIEkSJEnCkSNH9I6xb98+vPPOO9BoNPjpp58AAHfu3EG3bt3g6OgIS0tLNGjQoFAfFHL2jhgS8/u/eJWI+f1fvErE/P4v3lJFEJHs3nrrLVGlSpU879+/f38BQHTt2lX8+OOPol+/fgKA6NSpk95+rq6uwsvLS5QrV058/vnnYtGiRaJu3bpCkiRx5coVIYQQ//zzjxg9erQAID7//HOxdu1asXbtWhEVFaU7hqenp3BwcBATJ04US5YsEYcPHxZRUVGiXLlywsbGRnzxxRfi+++/F7Vq1RIqlUps3bpVF0N4eLgAIFauXJnn1/fkyRMBQEydOjXPjzFmzK8+5pf5LUmYX31Ky29OWCATySw2NlYAEB07dszT/n/99ZcAIIYMGaLX/sknnwgA4tChQ7o2V1dXAUAcO3ZM1/b48WNhbm4uxo8fr2vbvHmzACAOHz6c5fkyjrF371699jFjxggA4vjx47q2+Ph44e7uLtzc3ER6eroQgn+Amd+smF/mt6RgfrNSUn5zwyEWRDKLi4sDANjY2ORp/99//x0AMG7cOL328ePHA0CWU2g+Pj5o0qSJ7raTkxO8vLxw586dPMfo7u6OoKCgLHHUq1cPjRs31rVZW1tj2LBhiIiIwLVr1/J8fCVjfpWN+VU25rf0YoFMJDNbW1sAQHx8fJ72v3v3LlQqFTw9PfXaXVxcYG9vj7t37+q1V65cOcsxHBwc8Pz58zzH6O7unm0cXl5eWdq9vb119xPzq3TMr7Ixv6UXC2Qimdna2qJChQq4cuVKvh4nSVKe9lOr1dm2CyHy/FyGuCK6tGB+lY35VTbmt/RigUxkBNq3b49//vkHoaGhb9zX1dUVWq0Wt27d0mt/9OgRYmJi4Orqmu/nz+sf89fjCAsLy9J+48YN3f30CvOrbMyvsjG/pRMLZCIjMGHCBFhZWWHIkCF49OhRlvv/+ecfLFiwAADQtm1bAMD8+fP19vn+++8BAO3atcv381tZWQEAYmJi8vyYtm3b4uzZs3ofGi9evMDSpUvh5uYGHx+ffMehVMyvsjG/ysb8lk5cKITICHh4eGD9+vXo0aMHvL299VZqOnXqFDZv3owBAwYAAGrVqoX+/ftj6dKliImJQUBAAM6ePYvVq1ejU6dOaNasWb6fv3bt2lCr1fj6668RGxsLc3NzNG/eHM7Ozjk+ZuLEidiwYQPeffddjB49Go6Ojli9ejXCw8OxZcsWqFT5//69du1a3L17F4mJiQCAY8eOYebMmQCA999/v8T2ejC/rzC/zG9JxPy+otT85kjeSTSIKLObN2+KoUOHCjc3N2FmZiZsbGxEo0aNxMKFC8XLly91+6Wmporp06cLd3d3YWpqKipVqiQmTZqkt48Qr6YAateuXZbnCQgIEAEBAXpty5YtE1WqVBFqtVpvSqGcjiHEqzk6u3btKuzt7YWFhYWoV6+e2LVrl94++ZlGKCAgQADIdstuiqOShvllfoVgfksq5lfZ+X2dJEQ+RoITERERESkcxyATEREREWXCApmIiIiIKBMWyEREREREmbBAJiIiIiLKhAUyEREREVEmLJCJiIiIiDJhgUxERERElAkLZCIiIiKiTFggExERERFlwgKZiIiIiCgTFshERERERJmwQCYiIiIiyoQFMhERERFRJv8P4zaOICsSeQAAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAInCAYAAACFua8hAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAxoRJREFUeJzs3Xd4FNUaBvB3d9N7rwQSagihBkInlFCkiCJKkSIoVixwvSodFIhYEFQEQZqFC4o0KQEMRXqPlEAIJYSS3nvZnfvHmDVLCmmb2d28v+eZJ9mpXxiS/fbMOd+RCYIggIiIiIiIAAByqQMgIiIiItIlTJCJiIiIiEpggkxEREREVAITZCIiIiKiEpggExERERGVwASZiIiIiKgEJshERERERCUwQSYiIiIiKoEJMhERERFRCUyQdUBsbCzmz5+P2NhYqUMhIiIiqveYIOuA2NhYLFiwgAkyERERkQ5ggkxEREREVAITZCIiIiKiEpggExERERGVwAS5hL/++gvDhg2Dh4cHZDIZduzY8cRjjhw5gg4dOsDU1BRNmzbFhg0btB4nEREREWkPE+QSsrOz0bZtW6xYsaJS+9+9exdDhgxBnz59EB4ejvfeew+vvPIK9u/fr+VIiYiIiEhbjKQOQJc89dRTeOqppyq9/6pVq+Dj44Mvv/wSANCyZUscP34cX331FQYOHKitMImIiIhIi5gg18CpU6cQHByssW7gwIF47733KjwuPz8f+fn56tdZWVnaCK/qoqIAbcVSUCB+bdJEO+enihkbAwkJ2ru/RUWASsX7KxW5HEhO1t79BcTfYd5f6SQnAzk52ju/Ugl4e2vv/FSxxEQgL09757eyApo10975DRAT5BqIi4uDq6urxjpXV1dkZGQgNzcX5ubmZR4XEhKCBQsW1EWIlRcVBfj6au/8giB+XbAAeOzfjOpAURHw9tvaOz/vr7RSU4GZM7V3ft5facXHA/Pna/cagsD7K5W6uL8AcOMGk+QqYB9kCcyYMQPp6enq5ejRo1KH9G/LU/EbYW0rPm+JlnOqQ8UtE7y/hqn435331zDl54v3gPfXMNXV/dWVp9V6gi3INeDm5ob4+HiNdfHx8bCxsSm39RgATE1NYWpqqn5tZWWltRirTCYTF22cl6TH+2vYeH8Nm7buL6C95IwqT5v3l6rMYFqQBUHAoUOHsG/fPmRmZtbJNbt27YqwsDCNdQcPHkTXrl3r5PpEREREVPv0MkGeNWsW+vTpo34tCAIGDBiA/v37Y8iQIWjdujVu375d5fNmZWUhPDwc4eHhAMQybuHh4YiJiQEgdo2YMGGCev/XX38dd+7cwQcffIAbN27gu+++w6+//opp06bV7AckIiIiIsnoZYL8+++/IzAwUP1669atCAsLw8KFC7F7924olUrMr0aH9/Pnz6N9+/Zo3749AGD69Olo37495s6dCwCIjY1VJ8sA4OPjgz179uDgwYNo27YtvvzyS/zwww8s8UZERESkx/SyD/LDhw/RtGlT9ett27bBz88PM2bMAAC88cYbWLlyZZXP27t3bwgV9MMqa5a83r1749KlS1W+FhERERHpJr1sQTYyMlLXERYEAWFhYRg0aJB6u6urK5KSkqQKj4iIiIj0mF4myP7+/vj555+RmpqK9evXIzk5GUOGDFFvv3fvHpycnCSMkIiIiIj0lV52sZg7dy6GDRumToK7d++uMWhvz5496NSpk1ThEREREZEe08sEuX///rh48SIOHjwIOzs7jBo1Sr0tNTUVvXr1wvDhwyWMkIiIiIj0lV4myADg5+cHPz+/Uuvt7e3x1VdfSRARERERERkCvUyQMzMzkZaWBi8vL/W6R48eYdWqVcjPz8fIkSPZxYKIiIiIqkUvE+RXX30Vd+/exenTpwEAGRkZ6NKlCx48eAC5XI7ly5cjNDQUvXv3ljZQIiIiItI7elnF4vjx4xg6dKj69c8//4xHjx7h5MmTSE1NRZs2bbBw4UIJIyQiIiIifaWXCXJSUhI8PT3Vr3ft2oUePXqgS5cusLa2xoQJE/D3339LGCERERER6Su9TJDt7OwQFxcHAMjNzcWxY8cwYMAA9XYjIyPk5ORIFR4RERER6TG97IPcrVs3fPfdd/D19UVoaCjy8vI0yrrdvHlTo4WZiIiIiKiy9DJBXrJkCQYMGIDnnnsOAPCf//wHrVq1AgAolUr89ttvGlNPExERERFVll4myE2bNkVkZCQiIiJga2sLb29v9bacnBx8++23aNu2rXQBEhEREZHe0ssEGQCMjY3LTIKtra05ix4RERERVZteDtIDxNrHn376KQYOHIj27dvj7NmzAICUlBQsXboUt27dkjhCIiIiItJHetmC/ODBAwQFBeH+/fto1qwZbty4gaysLACAg4MDvv/+e9y7dw/Lly+XOFIiIiIi0jd6mSD/97//RWZmJsLDw+Hi4gIXFxeN7c888wx2794tUXREREREpM/0sovFgQMH8M4778DPzw8ymazU9saNG+P+/fsSREZERERE+k4vE+Tc3Fw4OzuXuz0zM7MOoyEiIiIiQ6KXCbKfnx/++uuvcrfv2LED7du3r8OIiIiIiMhQ6GWC/N5772Hz5s1YsmQJ0tPTAQAqlQq3bt3C+PHjcerUKUybNk3iKImIiIhIH+nlIL1x48bh3r17mD17NmbNmgUAGDRoEARBgFwux+LFi/HMM89IGyQRERER6SW9TJABYNasWRg/fjx+//133Lp1CyqVCk2aNMGIESPQuHFjqcMjIiIiIj2ltwkyADRs2JBdKYiIiIioVullH+SLFy/iu+++K3f7d999h/Dw8LoLiIiIiIgMhl4myLNmzcKff/5Z7vZDhw5h9uzZ1T7/ihUr4O3tDTMzM3Tu3Fk9jXV5li1bhhYtWsDc3BxeXl6YNm0a8vLyqn19IiIiIpKOXibIFy5cQM+ePcvd3rNnT5w/f75a596yZQumT5+OefPm4eLFi2jbti0GDhyIhISEMvfftGkTPvroI8ybNw/Xr1/H2rVrsWXLFsycObNa1yciIiIiaellgpyZmQkjo/K7T8vlcnX5t6paunQppkyZgkmTJsHPzw+rVq2ChYUF1q1bV+b+J0+eRPfu3TF27Fh4e3tjwIABGDNmzBNbnYmIiIhIN+nlIL1mzZrhwIEDePvtt8vcHhoaWq1KFgUFBbhw4QJmzJihXieXyxEcHIxTp06VeUy3bt3w888/4+zZswgMDMSdO3ewd+9ejB8/vtzr5OfnIz8/X/06KyuryrHqHUEQvyoU4lJdMhkgl4vnkMvF1yW3lbUU71f8ffHr4u+Ll+Jzlnxdcnl8XXnHPb6UjEH+z2fSkjE9HjuA1DQZIiOBBw+AtDRApar+PxkANMMl9KnZKYiIiOoNvUyQX375ZUybNg3Tp0/H3LlzYWdnBwBIS0vDggULEBoais8//7zK501KSoJSqYSrq6vGeldXV9y4caPMY8aOHYukpCT06NEDgiCgqKgIr7/+eoVdLEJCQrBgwYIqx6fXihNBpVJcaoOxMWBmBpibA1ZW4mJjA9jbi4uZWe1cpw7l5gJnzgA3b0obh6VSiTwAZgCya/KBhoiISA/pZYL8zjvvIDw8HMuWLcPXX38NDw8PAMCjR4+gUqkwfvz4Oiv/duTIESxevBjfffcdOnfujFu3buHdd9/FJ598gjlz5pR5zIwZMzB9+nT16/DwcAQFBdVJvAalsFBcMjOBsvqIW1kBTk6Aqyvg7i5+L9fdXkWxscCff4pJstTyAKj++UpERFTf6GWCLJPJsH79ekyYMAG///477ty5AwAYPnw4nnvuOfTu3bta53VycoJCoUB8fLzG+vj4eLi5uZV5zJw5czB+/Hi88sorAIDWrVsjOzsbr776KmbNmgV5GQmZqakpTE1N1a+trKyqFS89QVaWuERHi6+NjQEPD8DLC2jUCLC0lDS8km7dAo4cqXlXCiIiIqo5vUyQi/Xp0wd9+tRez0oTExMEBAQgLCxMPVW1SqVCWFgYpk6dWuYxOTk5pZJgxT+PpIXifrekGwoLgXv3xOX4ccDZGWjcGGjSRGxtlkhUlJgc878LERGRbtDLBPnu3bu4evUqhg0bVub2P/74A61bt4a3t3eVzz19+nRMnDgRHTt2RGBgIJYtW4bs7GxMmjQJADBhwgR4enoiJCQEADBs2DAsXboU7du3V3exmDNnDoYNG6ZOlElHJSaKy5kzYsuyry/g41OzQYRV9PAhcPQok2MiIiJdopcJ8vvvv4+MjIxyE+QVK1bAzs4OmzdvrvK5R40ahcTERMydOxdxcXFo164dQkND1QP3YmJiNFqMZ8+eDZlMhtmzZ+Phw4dwdnbGsGHDsGjRour9cCSNR4/ExdQUaNECaNUKsLbW6iUzMoCDB9mtgoiISNfoZYJ86tQpvPfee+Vu79evH5YtW1bt80+dOrXcLhVHjhzReG1kZIR58+Zh3rx51b4e6ZD8fODyZeDKFbE1uW1bsStGLVOpxAF5BQW1fmoiIiKqIb1MkFNTU2FdQeuelZUVkpOT6zAiMjiCANy5Iy4NGgAdOgDlDNSsjjNngKSkWjud9Ir7iBgbAyYm1T+PkZFYtq+4LKAgaC6A+Omi+HXx9ypV6e+JiIiqSS8T5IYNG+LEiRN44403ytx+7NgxNGjQoI6jIoP14IG4eHqKibK7e41OFx8PXL1aS7HpiuKEtrCwZs3iBQXiOby8xD7hNfk9VqnEmtuPfy25FBVpfv/468ePKXmu8pbHk/fHFkEAVMp/vgoABEBQ1awTulxuCuManYGIiErSywR5zJgx+OSTTxAYGIipU6eq+wQrlUp8++232LJlC2bNmiVxlGRwHj4UFxcXseuFt7fmTH6VoFJxUN4TFRb+23rv5gb07ClO/FJVxTMZallOjlhNMDtb/D4nB8jLE+tZ5+eLS3HeX1ioncZtd9UlDEP5kxMREVHV6GWCPGPGDBw/fhzvvfceFi1ahBYtWgAAIiMjkZiYiN69ezNBJu1JSBBH11lbA35+4qC+Ss7ad/myOHU0VVJcHLBtG9ClizhwUiI5OUBqqnjv0tPFJSNDTIxra2JIIiLSHXqZIJuamuLAgQPYuHEjtm3bhtu3bwMAAgMD8dxzz2HChAllTtBBVKsyM8XOxOfOiROPtGghdgko5/9eTg5w6VIdx/i4SjZdmwHqqaYrdYwgVLk1vdKUSuDECTE77dZNe9eB+GOkpor9w5OSgORkICVFbAUmIqL6Qy8TZACQy+WYNGmSuj4xkWRUKuDuXXExMxOrX/j4iLWVSyTL586Jj9grw8hI7MHh6Sn2Lqjp5z2Te/9MhFLJ5DK7qhcsPu+wYeLEK9VVUCBmpffuiXNvl0zOr10T/wGrOVNmWbKyxFLYCQli3/CkJLHrMRER1W96myAT6aS8POD6dXExMREzXC8vpFl44OZNmyceLpeLvTYCAsSSzLXGqRlw44aYEWqLlRXQrFnNz+PhAbRuLfZhuHBBnGqw2M2bYqWM7t2rdEqlUmyATkkRl+RkMRnOy6t5uEREZHj0MkHu27fvE/eRyWQICwurg2iIylFQoG5Zjr0ONMmwRI6NG/KsnZFn5YQ8S0eojP/Ngq2sgP79tVJ2WVQbyWtdsrEB+vQBmjcX5+LOzhbXX7sG2NoC/v4auxcUiPl/VpaYWxcvaWlibxgOjCQiosrSywRZpVJB9tijYqVSiXv37uH+/fto2rQpPD09JYqOSFPxY3wjZMMm8TZsEm+rtylNzFFgbgsLNxsEtrKCaaIFkGkmdtUwNhanva6Nqa8VCkTFWmmtAVmpFFu/a9K7Avg3iS2upFZUBBSpPKHsMALGh/ZDSEhAUSFQeOsUYjs4IN3SQ105orLdV4iIiJ5ELxPkx2ezK2n37t149dVXsXTp0roLiKgC9++Xv01RkAtXs1z4O8bB6Jr2Yogq8oHv2/21dv7ixHbBAuCfWdlrmTlk8qFokHIAlqkPAAgoSjqEhICRUBpXroIIERFRZRlcqYehQ4di3LhxFU5FTVRXcnIrnjHPwkKsXmak5Y+qWXniBSrbzUClsoRKpYBKZVmp/YvPq81qD4LCCA/8BiDHzgMAYFSQA/ebR7V3QSIiqrcMLkEGgCZNmuDcuXNSh0GEB/fLT0qNjMXk2LgOp0CTySq3iEXeVADyqnCM9hUnyQUWdgAAq+R7sEm4VTcXJyKiesPgEuSioiL8+uuvcHJykjoUqucKCsTyYeVp0RwwN6+7eAyFysgE91sNgvKfAY6ut09CUchyFEREVHv0sg/y5MmTy1yflpaG06dPIy4ujn2QSXKxceVPK+zpCTg61m08hqTQ3AaxzYLQIOIAFIV5cL57FnHNe0kdFhERGQi9TJAPHTpUqoqFTCaDvb09evTogVdeeQUDBgyQKDoiMTGOfVT2NnNzcRIQqpksJ2+kevjB/lEE7OIjkerhh3wrPjkiIqKa08sEOTo6WuoQiCqUlCR2sShLs+a1U7mNgASfLrBKfQDj3Ay43T6Je22fljokIiIyAAbXB5lIF8TGlr3e1RWws63bWAyZoDBCbDOxa4V5ehyskqKlDYiIiAyC3iTIOTk5iImJQUEZzXLr1q1Dv3794OfnhxEjRrCCBUkqJwdITy+9XqEAvH3qPh5Dl2PngXS3FgAA53vnOGUeERHVmN4kyB9//DHatGlTKkFeuHAhpkyZgqNHjyIxMRE7duxA79698ffff0sUKdV35bUeN2wImJrUbSz1RYJ3IFRGJjDNTmXZNyIiqjG9SZAPHz6MoUOHwsrKSr0uIyMDCxcuhKenJ6KiopCYmIjTp0/DxMQEn376qYTRUn2lUpVd2s3UVKxcQdqhNDFHUsMOAACnmItsRSYiohrRmwQ5Ojoabdq00Vi3d+9eFBQU4MMPP4SPj/jsOjAwEJMmTcKxY8ekCJPqueRkoLCw9HovL0CuN79t+inFwx+FZtYwyU2HddIdqcMhIiI9pjdv2ZmZmXB8rHDsX3/9BZlMhoEDB2qs9/PzQ2JiYl2GRwQAiI8vvc7MDHBzq/tYasYM4p8HM6kDqTy5HImNOgIAnGIuSRwMERHpM71JkBs1aoQbN25orDty5AhcXV3RtGlTjfUFBQWwsbGpy/CIUFAApKaVXu/VUP9ajxWKbCgUSigU2VKHUiUZLk2Rb+kA0+wUWKbESB0OERHpKb152x4wYADWrVuHM2fOAAB+/PFH3LhxA88++2ypfS9cuABvzsRAdSwhERAemznPxARwdZEmnnpJJkNSowAAgOODyxIHQ0RE+kpvEuQ5c+bAysoK3bp1g4mJCV566SU4Oztj7ty5Gvvl5ORg+/bt6Nevn0SRUn2VUEb3igYN9K/1WN9lOvkg39IeFmmPYJqVLHU4RESkh/RmJj0nJyeEh4fjhx9+wJ07d9CoUSNMnjwZLi6azXNXr17Fiy++iPHjx0sUKdVHOblAVpbmOiMjwM1dmnjqu2Sv9vC4cQgOD68gtkVvqcMhIiI9o1dtW/b29vjvf/+LlStX4qOPPiqVHANiFYtvvvkGrVq1qvZ1VqxYAW9vb5iZmaFz5844e/ZshfunpaXhrbfegru7O0xNTdG8eXPs3bu32tcn/VPWmFBXV8CIU0pLIsO5CQrNbWCTeBuKwjypwyEiIj2jVwlyXdiyZQumT5+OefPm4eLFi2jbti0GDhyIhLKK20IcENi/f39ER0dj69atiIyMxJo1a+DJorf1yuMJskwGeHhIEwsBkMmQ4uEPmUoJ27hIqaMhIiI9wwT5MUuXLsWUKVMwadIk+Pn5YdWqVbCwsMC6devK3H/dunVISUnBjh070L17d3h7eyMoKAht27at48hJKtnZQM5jxR4cHABzc2niIVGaWwuojExgHxvBiUOIiKhKmCCXUFBQgAsXLiA4OFi9Ti6XIzg4GKdOnSrzmF27dqFr165466234OrqCn9/fyxevBhKpbLc6+Tn5yMjI0O9ZD3eeZX0SlJS6XXu7HssOUFhjFT3ljDOy4Rl6gOpwyEiIj3CBLmEpKQkKJVKuLq6aqx3dXVFXFxcmcfcuXMHW7duhVKpxN69ezFnzhx8+eWXWLhwYbnXCQkJga2trXoJCgqq1Z+D6tbjCbKZGWBvL00spCnVvRUgk8Eu7saTdyYiIvqHXiTIu3btwqNHj6QOo0wqlQouLi5YvXo1AgICMGrUKMyaNQurVq0q95gZM2YgPT1dvRw9erQOI6balJMrdrEoydVN7INM0isys0KWQ0NYpdzjYD0iIqo0vUiQn332WRw5ckT9unHjxti1a1etX8fJyQkKhQLxj80XHB8fD7dy5gp2d3dH8+bNoVD8W66gZcuWiIuLQ0FBQZnHmJqawsbGRr1YWVnV3g9BdSr5sdZjmVwfp5U2bKkerSBTqWAbf1PqUIiISE/oRYJsbW2NtLQ09evo6Git9Ns1MTFBQEAAwsLC1OtUKhXCwsLQtWvXMo/p3r07bt26BZXq3ynUbt68CXd3d5iYmNR6jKRbHu9eYW8HmPK265Rs+wYoNLeBbTyrWRARUeXoxUQhgYGBWLRoEeLj42FrawsA2Lt3b7n9ggFAJpNh2rRpVb7W9OnTMXHiRHTs2BGBgYFYtmwZsrOzMWnSJADAhAkT4OnpiZCQEADAG2+8gW+//Rbvvvsu3n77bURFRWHx4sV45513qvGTkj7JLwAyMzXXPdZ9nXREmpsvnO+ehWlWEvKtnKQOh4iIdJxeJMjfffcdJkyYgE8++QSAmPxu2rQJmzZtKveY6ibIo0aNQmJiIubOnYu4uDi0a9cOoaGh6oF7MTExkJeYO9jLywv79+/HtGnT0KZNG3h6euLdd9/Fhx9+WOVrk35JeWwWYyNjwNFRmlioYmmuzeEcfQ628VFIYIJMRERPoBcJctOmTXHy5Enk5eUhISEB3t7eWLZsGYYPH66V602dOhVTp04tc1vJvtDFunbtitOnT2slFtJdyY8lyM7OgFwvOi3VP0oTC2Q5NIRN4m0kNO7CUZRERFQhvUiQi5mZmaFhw4aYN28e+vbti0aNGkkdEtVTSiVQols8AMDFWZJQqJLSXFugQfI9WKY+QLaDl9ThEBGRDtOrBLnYvHnz1N9nZWXh/v37AMTuDqwIQXUhNRUoMS4TpmbAP93jSUdlOTSE0tgMNom3mSATEVGF9PaB8Llz59CnTx/Y29vD398f/v7+sLe3R9++fXH+/HmpwyMDl5Ki+dqZrce6Ty5HhnMTWCdHQ6Yqf6ZLIiIivWxBPnPmDHr37g0TExO88soraNmyJQDg+vXr+N///odevXrhyJEjCAwMlDhSMlSpqZqvmSDrh3SXZrB/dA2WKfeR5eQtdThERKSj9DJBnjVrFjw9PXH8+PFSE3jMnz8f3bt3x6xZs3Dw4EGJIiRDlp0N5Of/+9rcHLBmzx69kGfjggJzW9gk3maCTERE5dLLLhZnzpzBa6+9Vubsdq6urnj11VdZVYK0ht0r9Fu6azNYp9yDTFkkdShERKSj9DJBlsvlKCoq/81NqVRq1Comqk2PJ8iOLKurVzKdGkOmLIJl6gOpQyEiIh2ll1lkt27dsGLFCty7d6/UtpiYGHz33Xfo3r27BJGRoStSAhklZs8zM2P3Cn1TYGGHfCtHWCfflToUIiLSUXrZB3nx4sXo1asXfH198eyzz6J58+YAgMjISOzcuRNGRkbqqaCJalNaKiCUKO/mxNZjvZTh3ASO98MRq1JxdhciIipFLxPk9u3b48yZM5g1axZ27dqFnJwcAICFhQUGDRqEhQsXws/PT+IoyRA9PjkIE2T9lOHcBM53z8Iy7SFrIhMBgCAARkaAsXHNzlN8jurOVlnZ48rbryrXreGMmvkFQFGhOHFUTciN0mEJgPN76ha9TJABwM/PD9u3b4dKpUJiYiIAwNnZmX2PSatKlnczMQGsraWLhaqv0MwaeVZOsE6OZoJMBIjJYlERUFhYs/MUFoplfqysAAcHwMUF8PAQRzPr8RTv+fnAgwfAo0dAYqLYWFLBUKgqcSy6hBFMj3WO3ibIxeRyOVxdXaUOg+qBvDwgN/ff1w4Oev33vt7LdPKB/aNrQLOeUodCZFhUKiAjQ1yio8V15uaAjw/QvLmYNOsBQQDu3QNu3BCT45Kzp5Lh0/sEmaiupKZpvnZwkCQMqiWZTj5wjj4Hs4wE5Nnoxxs2kd7KzQUiIsTFyQlo0wZo0kQnWxlUKjEp/vtvIDPzyfuTYWKCTFRJaSW6VygUgL29dLFQzRVY2CHf0h7WKfeYIBPVpaQk4NAh4MIFoFMnoHFjqSNSu3sXOHNGbPym+o0JMlEllRygZ2cnJsmk3zIdfWCdHI1E705Sh0JU/6SnA3/+Cbi5AT17StrqkJUFHD8OxMRIFgLpGI5oI6qE7GzNsStsPTYMWY6NYJqdAuM8PkclkkxcHPD772KLsgQdfaOigK1bmRyTJibIRJXA/seGKc/aGUWmlrBK4TsjkaRUKjFB3rmzzvo3KJXA0aPA4cNAQUGdXJL0iF53sYiIiMCdO3eQmpoKQRBKbZ8wYYIEUZEhSk/793sLS3EGPTIMmY6NYJlyH6keraQOhYgSE4Ft24DevQFvb61dJicH2L9fvBxRWfQyQb59+zbGjRuHs2fPlpkYA4BMJmOCTLVCEMSucsXYemxYshwaocH1g5ApiyAo9PJPIpFhKSgADhwAOnYEOnSo9dOnpAD79old54jKo5fvBq+99hquXLmCZcuWoWfPnrBnh1DSosxMzYLwDvzvZlCy7TwhQAaL9EfIdmgodThEVOz8ebF1Iiio1qaEj4sDQkPZpYKeTC8T5BMnTmDmzJl4++23pQ6F6oGS/Y8VCsDGRrJQSBvkcmTbe8Iq5T4TZCJdExUl1lAeMECcxroGHj4Uu1XU1gx4ZNj0cpCek5MTbG1tpQ6D6omS9Y/t7GqtIYN0SJZDQ1il3JM6DCIqy4MHwJ49NWr2ffhQbDlmckyVpZdv9a+//jp+/vlnKJVKqUMhA1ekBDJKVABjbx7DlOXQEMZ5WTDNSpY6FCIqS3w8sHdvtZLkuDix5ZgpA1WFXnaxaN68OZRKJdq2bYvJkyfDy8sLijJmbRgxYoQE0ZEhSU8DhBJlOe2YIBskpYkF8q0cYZVyD/lWjlKHQ0RlSUgQk+QhQwBj40odkpLClmOqHr1MkEeNGqX+/v333y9zH5lMxhZmqrHUEt0rzMwAC3PpYiHtynJoCOukaCQ3rP1R80RUSxISxAoXgwY9cTrT7GyxWgUH5FF16GWCfPjwYa2ef8WKFfj8888RFxeHtm3b4ptvvkFgYOATj9u8eTPGjBmD4cOHY8eOHVqNkepG6mP9j8lwZTk0hGPMJRjlZ6PI1FLqcIioPA8firN7BAeXu0tRkdhyzFJuVF16mSAHBQVp7dxbtmzB9OnTsWrVKnTu3BnLli3DwIEDERkZCRcXl3KPi46Oxvvvv4+ePXtqLTaqWzm54uDpYux/bNhyrV2gNDGHdXI0Jw0h0nV37gCnTgFdu5a5+dAhIJlDCqgG9HKQXkkRERHYt28f9u3bh4iIiBqfb+nSpZgyZQomTZoEPz8/rFq1ChYWFli3bl25xyiVSrz44otYsGABGjduXOMYSDekpGi+ZguygZPJ/ulmcVfqSIioMq5cAcp4379wAYiOrvtwyLDobYK8c+dONGnSBK1bt8bQoUMxdOhQtG7dGk2bNsWuXbuqdc6CggJcuHABwSUe28jlcgQHB+PUqVPlHvfxxx/DxcUFL7/8cqWuk5+fj4yMDPWSlZVVrXhJu1JLJMiWlpUeE0J6LNOhESzSY6EozJM6FCKqjJMnxS4X/4iJERNkoprSywR57969eO655wAAixcvxvbt27F9+3YsXrwYgiBgxIgRCA0NrfJ5k5KSoFQq4erqqrHe1dUVcXFxZR5z/PhxrF27FmvWrKn0dUJCQmBra6tetNllhKpHqdScXpqtx/VDtn0DCHIFrJKjpQ6FiCpDpQLCwoDMTGRliV2TiWqDXibIn3zyCdq0aYPLly/jww8/xNNPP42nn34aH374IS5fvozWrVtjwYIFWo8jMzMT48ePx5o1a+Dk5FTp42bMmIH09HT1cvToUS1GSdWRlib+3S3GBLl+EBRGyLJvABt2syDSH3l5UIUeQNj+IuTnSx0MGQq9HKR3+fJlLF68GJaWpUeaW1pa4qWXXsLMmTOrfF4nJycoFArEx8drrI+Pj4ebm1up/W/fvo3o6GgMGzZMvU71T1ZlZGSEyMhINGnSpNRxpqamMDU1Vb+2srKqcqykXSUHd8hkACdurD+yHL3hFvUX5IX5UBmbPvkAIpLcvYvJMMo9DPj1lzoUMhB62YJsZmaGlMdHUJWQkpICMzOzKp/XxMQEAQEBCAsLU69TqVQICwtD1zJGyvr6+uLKlSsIDw9XL08//TT69OmD8PBweHl5VTkG0g0l/3tZWwNGevlRkqoj09EbAGCdzFZkIn2Qli7ORm2ddBfO0eekDocMhF6+7fft2xfLly/HoEGDSiWuZ86cwddff40BAwZU69zTp0/HxIkT0bFjRwQGBmLZsmXIzs7GpEmTAAATJkyAp6cnQkJCYGZmBn9/f43j7f55Fv/4etIfGRmaheVZ3q1+URmZIMfWAzaJt5Hu5it1OERUgcJCIPIGIAjia8eYSyg0tUKae0tpA9Oijkol4gC4ATj/hMlSqPr0MkH+7LPP0LVrV/To0QOBgYFo0aIFACAyMhJnz56Fi4sLlixZUq1zjxo1ComJiZg7dy7i4uLQrl07hIaGqgfuxcTEQC7Xy4Z3qqTHa2ey/3H9k+HcGO5Rx6AoyIXShNMnEumqyEiU6nfsdus4iozNkeXkLUlM2hYH4OET96Ka0ssE2cfHB5cvX0ZISAj27duHLVu2AAAaNWqEd999Fx999FGFk3o8ydSpUzF16tQytx05cqTCYzds2FDt65JuSC7RvcLISOxiQfVLlqM3EHUMNkl3OGkIkY66F1O6Xj0AQBDgeSMM91sNQo69Z53HRYZBLxNkAHBxccFXX32Fr776SupQyIDk5AI5JaYmtbUD+MCg/lEamyHbzhM2CVFMkPWRTFb6a3nfV/S1ou8rWvePoiJxUQlVjP/xSygsYQag/CvVPykpQMy98rfLVEp4RexHjP9TyLV1r7vAyGDobYJMpA3JSZqv7e0kCYN0QIZzE7jfPArj3HQUmrOMCQRBM7msDplMfCxjZCTOvGNmBlhYiDPxWFmJ5WIcHMT1xfuXdY6KvkpApQLi4sQlKUksE5mZKdZTrw2OyksYgdm1czIDkJMD3CjR77g8MmURGl7dxySZqkUvEuTJkydDJpNh9erVUCgUmDx58hOPkclkWLt2bR1ER4YkMVHztYODNHGQ9DIdveEmPwbb+CgkeXeUOhzpyWRiRvKkrKQigiCOgC0eBVtyNp6SLCwAJyfA2RlwcwNcXXWulIxSKU5nfOcOcP++2FKsKyyVSuQBMAOQbWCDuAoLgWvXKv/vXZwkP2jZH9kOrCxFladbf3HKcejQIcjlcqhUKigUChw6dAiyJ7QWPGk70ePy8oCSs35bWPzbkEX1j8rYFNn2XrBNYIJc53JyxDmDY2LE13K5mCR7eQENG0r6yTUrC7h6tezBYboiD4Dqn6+GRKUCIiKA3NyqHSdTFqFBxH7ENgtChmsz7QRHBkcvEuTo6OgKXxPVhqTHulew9ZjSXZrC83oYLNIeIcfOQ+pw6i+VCoiNFZezZ8WuGD4+QNOmdfaLmpkJXLgA3LqlOcsm1Q1BELtVlPfQ4UlkKhU8Ig/DOD8TyQ071G5wZJD0IkF+XExMDJydnWFuXnb5pdzcXCQmJqJhw4Z1HBnpM3avoMdlOXpDZWQC2/hIJsi6JD0dCA8XF0dHwNcXaNYMMDGp9UsVFAAXL4qtxkyMpRMVVboRozqco8/DLDsFj5r3hqDQyxSI6ohejs/38fHB9u3by92+a9cu+Pj41GFEpO9yc8UWomIKBWBjI108pBsEuQKZTj6wSboLeVHBkw+gupecDJw4Afz8M/DXX+XU/aqeO3eAX38FLl9mciylW7fEAZC1xTrxDnwubYNJdmrtnZQMjl4myMITBokUFhZyMg+qkoTHWo/t7VnejUTpLs0gUxbBJuGW1KFQRYqKxGfwW7cCe/eK3TGqKS8P+PNPccnJqcUYqcqibgGPHtX+eU1y0uBzaRvsH16t/ZOTQdCb5wsZGRlIS0tTv05OTkZM8QCOEtLS0rB582a4u7OkC1Ve0mMJsqOjNHGQ7smx80ChmTXsYyOQ5uEndThUGQ8eiIubG9CxI+BR+e4xjx4Bhw4xMZaaSgXcjAIS4rV3DZlKCdfbJ2GTdAexzXqhwMJOexcjvaM3CfJXX32Fjz/+GIBYoeK9997De++9V+a+giBg4cKFdRgd6bOsLCC7xOQgMhn7H5OmNLcWcI4+D/P0OOTaukkdDlVWXBywezfg6QkEBopl4ypw6RJw/nzNKtlRzRUpgRvXa7W3TIXM0+Pgc3ErUt1bIalhB6iMTSt3nDlgaip2yasJ2+KBh5X8j+dW8mtljimuYU5VojcJ8oABA2BlZQVBEPDBBx9gzJgx6NBBcySqTCaDpaUlAgIC0LEjyzJR5cQ/1kJhYyPOYUBULN21BZzvXYB9bAQTZH308CGwfTvg7S22KD/2CbioCDhyROxzTNLKyxPrHJdstKgLMpUKDg+vwC4+EimerZHq0QpK43/rfJqZAQ0aiA8jnJ3FQiq1Vpo7ygr4CKjsXInnq9r/rzg5trKq2nH1nN4kyF27dkXXrl0BANnZ2Xjuuefg7+8vcVSk71QqVq+gJysytUS2fQNYJ92BoqArlCZlV9AhHRcdLS7e3kC7doCLC3JzgdDQ0n8HqO6lpAA3IoGiQulikBcVwOneBTg++BuZrk1hG9gCPl1c4empxUbYZs3E/vMlC/HXNisr8TpUaXqTIBfLycnB119/DQsLCybIVGOpaf9O6lXM0UmSUEjHpbq1hGXKfdg/usaJQ/TdP4lyjo0bwuL9kWjmw0fQElKpgLt3xYZ+XaBQAO7uRfBscAOmKTeAv6zED1WenuKENVqYQSoKzaDF9BhWAJgeV43eJcgWFhYwMjKCpaWl1KGQAYh/rHSQpSVgwcZBKkOWYyMUmVrCPjYCyV7tWENVz2VnA1dOx8G2IA6WppZIc22BdLcWKDSzljq08lWyj6oZoJ5qutJ9VCWSni7WONaFQZEymZj/NvIGTEuW1C6ePvHqPxUvLC3FPhZWVmLt7Rp2Qo6KMYXv6LaobBeL6rpxg43IVaGXf+Gfe+45bN26FW+88QanlKZqyy8Akh8bBOLE1mMqj0yGVPeWcI4+D9uEKKS5t5Q6IqqmzCzg6hWg8J9H+Ub52XCKuQinmIvIsXVHhktTZDr5aPRBrQy5XCwRaWcHWFuLg7iMjWteMtI42goIASqbQGVXp4+qIAC9eoktpdUlCOI/ak6OWFg+JQVISyszAc/LExvyExKqf7naZGkpJo+Vqn+fnV2rnaSzYhwBoS0EaOdBRvEYPW324DBEepkgjx49Gm+++Sb69OmDKVOmwNvbu8xZ9R4fxEdUUkI8IDxW/J8JMlUkzc0XTjEX4fDgMtLcfPlYXg9lZQFXrpTfz9UiPRYW6bFwu3UcOTZuyHJshCx7LxRY2pe5v5MT0KiR+PTd2bnmFQ3K1FyP+6gWForVRO7fB+7eRW5SNh48FJ/e6cLkKzKZOPiuUSPpa9/LZJX7k6JUdgQQB8ANCsV5bYdVb+llgty7d2/198eOHSu1XRAEyGQyKJXKOoyK9M3jMzNZWIitCETlUZpYIMO5CWzjo2CTeBsZLk2lDomqICen4uRYgyCok2UXnEaRiQVybN2Ra+sGmasLvDs4oHlLRd3NuKmvz8aNjVHk7oV7BV6IyuiG5EePYFcYAStEQwZpM2RjY3GWcvuyP/vosDgAOtJh24DpZYK8fv16qUMgPZeSIk4vXRJbj6kyUjzbwDY+Co73w5kg65G8PDE5LqxmhQSjghy459yGl+NtOMkA+RU5EGMrZlc2NuJiaSn2qyjuW2FsXGtPGaKi9KMBubBQ7H2QkSFWBomPFyc1VLdX2Xog29YDRnlZcHwQDru4G5BJ0JRsZQX4+WllvB0ZCL1MkCdOnCh1CKTnypq69AlzCBABAPKtHJFj5wGLtEewTrqLTCcfqUOiJygsFMdX5edX73hzc7FrrsbfCJUKSE0Vl4rUwnP7qHgb+M59HtocxCUIwCefiIPUaqKyuW6RmRXim/ZAimcbuESfhXVi3RWhdnAAWrbUUncYMhh6mSCXlJWVhfv37wMAvLy8YMVC2PQEObmlZ2iytGT3Cqq85AZtYZH2CM7R55Dp6M2+yDpMqQQiIqpXJUGhABo2FPsXVzvPrYXW0axcBSCg0oO4VCpLFNexkMufPJiseAxdbm7d9wsuNLfBw5bBsHR7ALdbx2Gcm6HV67m5iS3l/JWlJ5G4S3r1nTt3Dn369IG9vT38/f3h7+8Pe3t79O3bF+fPs9M6le9RGV232HpMVZHt4IU8KyeY5KTBNiFK6nCoHCoVcP26WEqsquztgYAAwMtL+sFbxYoHcT1pEZNjFYC8KhwjrWz7BrjTYSRSPfy0dg1PT6B5c934eUn36WUL8pkzZ9C7d2+YmJjglVdeQcuWYrml69ev43//+x969eqFI0eOIDAwUOJISdcUFpaeWhpggkxVl9ywPTwjDsLp3nlkODVmXWQdo1KJhR8ef1r0JAoF4OMjTilMdUtQGCG+aQ9k23vB/eYRKAqr2SemDJ6eQJMmtXY6qgf08i/6rFmz4OnpiePHj8PNzU1j2/z589G9e3fMmjULBw8elChC0lUPH5YYLPIPGxuxjyFRVWQ6+SDf0h6m2alweHgZyQ31p6ykpVKpnkgi2wA7YqpUQGQkkJRUteMsLMS+qexuJa0sx0aIbj8CDSIOwDQrucbnc/dgckxVpyMPjqrmzJkzeO2110olxwDg6uqKV199FadPn5YgMtJlRUrgUWzp9TUdlEL1V1Ijccppp/vhMMrTnyr8/z6ANzwqFXD9hlhBoSqcnYF27Zkc64pCM2tEtx1e40Gwzs5AMxaboWrQywRZLpejqKio3O1KpRJyXek0Rjoj9lHp+qdyObtXUPVlOvkg18YFMmURXO+clDqceq9ICVy9BiRXseW4USOx5djI8BrT9ZqgMMLDlsFI8WxdrePt7IEWLWo5KKo39DKL7NatG1asWIF79+6V2hYTE4PvvvsO3bt3lyAy0lVFRcD9B6XXOzoCRnrZ0Yh0RaK3ONbBOika1kl3JY6m/iooAC7/DaQ9oepaSTK5mEA1aqS9uKiGZDIkNOmKRJ+qjSmysAT8WurOAEvSP3r5X2fx4sVIT0+Hr68vxo4di/nz52P+/PkYM2YMfH19kZ6ejpCQkGqff8WKFfD29oaZmRk6d+6Ms2fPlrvvmjVr0LNnT9jb28Pe3h7BwcEV7k/SePiw7NmzyuilQ1QlOXYeyHTyBgC43joBRaEhdlzQbVlZwKXwqk2koVAA/q3YxUpfJHu1Q3zTyjV8GRuL99ZwGz/cAHj+85W0RS//+7Rv3x5nzpzBrFmzsGvXLuT8U+DSwsICgwYNwsKFC+HnV71SMVu2bMH06dOxatUqdO7cGcuWLcPAgQMRGRkJFxeXUvsfOXIEY8aMQbdu3WBmZoYlS5ZgwIABuHbtGjw9PWv0c1LtKCgAHpTRemxmpo9TjJIuSvDpAquU++JsazeP4kGrgVKHVG8kJAJRN0sPvq2IkRHQqhVga6u9uKj2pXq0ggAZ3G4dL3cfmVzsLmPIM+QpFCxlWxf0sgUZAPz8/LB9+3ZkZGQgNjYWsbGxyMjIwLZt26qdHAPA0qVLMWXKFEyaNAl+fn5YtWoVLCwssG7dujL3/+WXX/Dmm2+iXbt28PX1xQ8//ACVSoWwsLBqx6APOiqVaKBUomNV3pUkEh1d9punu3udh0IGqtDcBikN2gAArJLvwf7hVYkjMnwqFXD7NnDjetWTY39/Jsf6Ks3DD/FNupa73ccHsLOru3jIcOltglxMJpNpLDVRUFCACxcuIDg4WL1OLpcjODgYp06dqtQ5cnJyUFhYCAcHh3L3yc/PR0ZGhnrJqspzQR0RB+DhP191WWZW2XWPZXLAhY9WqRYlNeyAAgs7AIDL3dOwSCtjPnOqFdnZQHi42HWqKhQKMTm2sdFKWFRHUj1bI6mMsopOTkADPrilWqK3CXJERARGjhwJGxsbuLu7w93dHTY2Nhg5ciSuXq1e601SUhKUSiVcH+uU5urqiri4yqWCH374ITw8PDSS7MeFhITA1tZWvQQFBVUrXqqYIAC3ov6dRrUkJ0fA1KTuYyLDJcgViG3WC5DJIFOp4Hn9IIxzqzGFG5VLpQJiYoCLl6rW3xgQk+NW9SY5NoP49m64/QySvDsizb2l+rW5uThLHlFt0cs+yMeOHcNTTz0FlUqF4cOHo/k/vxWRkZHYtWsX9u3bh9DQUPTs2bNO4/r000+xefNmHDlyBGYVdICaMWMGpk+frn4dHh7OJFkLHj4EMjPL3sbu4aQNubZuSG7QFo73w6EozEejy7txr+3TKDSzljo0DWaAeqIQfZGaKnap+GfISZXI5IBvS8CunnSrUCiypQ6hTsQ17QGj/GxYp8XA19eQB+WRFPTyv9O0adPg4uKCo0ePwsvLS2Pb/fv30atXL0yfPh3nzp2r0nmdnJygUCgQ/9gz+fj4+DInJSnpiy++wKeffoo///wTbdq0qXBfU1NTmJqaql9bWVlVKU56spwcoIwqgAAAa+v60opEUkhs1BEW6Y9gnpEA06JsNLvxBxI7PgXY28PYWGzJVCjE8lNyOVDDnmEAALviv+RlPS4pQ3bJ2leVOUYQxEAbNgSaNat6gCUplWLdxYICIC8PyM0F8sufUjgzUxxHkFqF8m2Pa94McCy/1xvpK5kMD1v2Q//snbC2ruKc4kRPoJcJ8rVr1/DJJ5+USo4BwMvLC2+88Qbmz59f5fOamJggICAAYWFheOaZZwBAPeBu6tSp5R732WefYdGiRdi/fz86duxY5etS7VKpgOsVDNxh6zHVlEIhftCysvp3sbQUpyo2N5fD7JlgmIduh6IgF0AWIN8JBPQVE0xtaPDPh+zayLbLUpxQ9+lT8wS5LEqlmAlnZABpaUBqKpJuJuPR1RSkJatqdOomTVjKzZA1bGwM724Dge3bxQ9cRLVELxPkRo0aIb+CFoeCgoIyk+fKmD59OiZOnIiOHTsiMDAQy5YtQ3Z2NiZNmgQAmDBhAjw9PdV1lpcsWYK5c+di06ZN8Pb2VvdVtrKyYsuwRG7dEgfxlMXMTBzIQVQZZmaAg4NYDtDeXqx8YGsrJsMV56JWwOCBwB9/iMlfQQEQGirWnwoMBEo8QaoVzZoBN25UvWNuVVhZaSc5BsRPHHZ2SIMd7iQ1xM1YIEMAZC2VMMtKgnl6HCzTH8EiPRYyZfmzqD7Ox4cfiA2ZtbX4mQ0m1kBwMLB3r9hCQlQL9DJBnjt3LqZNm4YhQ4agXbt2GtsuXbqEb775BsuWLavWuUeNGoXExETMnTsXcXFxaNeuHUJDQ9UD92JiYjSmsV65ciUKCgowcuRIjfPMmzevWq3YVDP37wMVjads0IAzK1HZrKzEacedncUPUQ4OYotwtbm4AP37AwcO/Pumff262JHWz08cUVSL9aii0AzarIdjBaA202OVSmwwTkoSK83cvy++LkmQK5Br44pcG1ekeLWFTKWEeXocrFPuwSo5GsZ55f/EPj5ANdtJSA8YGQEDBwImxYOtPTyAHj2Av/6SNC4yHHqZIJ8+fRqurq4ICAhAt27d0LRpUwBAVFQUTp06BX9/f5w6dUqjNJtMJsPy5csrdf6pU6eW26XiyJEjGq+jo6Or9TPorEr2YXQr+bUqfRi1KD4euFvBTL8mJnzUSiJLS3GacSenf5PiGiXD5WnYUGzZCgv7t89PQYFYoyw8XLyonZ3YgloDUfE28H25crOMVUfxr/jq1TVrkRUE8cfPzRWf8lS1sU+QK5Bj74kce0/EN+kG84x42CTcgk3ibY0ZDJs0YcuxoevdW/wQq8HXV/yUFR4uQURkaPQyQf7222/V3584cQInTpzQ2H7lyhVcuXJFY11VEuR6yapqfRjPV7UZtvi8w4aJ717VpVKJS2GhxiCf6GvZuBGfCWOzjHJblRo0qHEeQnpEJhMTYTs7sVtEcTcJB4fa7+FQIW9vYMgQsSX58T6SOTnVK8vwmKw4cdabyn4OVaksUVzHQi5/csWD4vNGR+vWE+zi1uX4xl1hnXIP9vHX0d7pAT8IG7hOnYDGjcvZGBgofvqKiqrTmMjw6GWCrNKlv9CGQk/7MKpUwMmTQEQ+gH+Kh8iURTDNSYVpdjLMMxNhnhEP66JUeHhUrnWcdJ9cLvYPNjcXF0vLfxdr638H0OnMByI3N2DkSPHxb0yM1i4jk1X2M24eABWAvErtr+WHPzUnlyPfwwetJ/rA1ToDuHoViIwUP0iTQWnRAmjf/gk7BQWJlVG0+LtGhk8vE2TSEm0NwNGSBw/E5DgtTXO9oDBCnrUz8qydke7mCwDoEVgAuUOceNCDB6UPohopfgRvaiomrNVVnIjJ5f+WQ1MoAGPjfxdTU/FryTJpxd+rVGIxhOzsf0uplSyrZmSked7i10ZGddA33cICGDTon5kuLgIJCVq+YP1hYyP+04pdum2Abt2Ajh2Ba9eAK1dY3cBANGwIVGp6A7lc7P8fGlr16RaJ/qHXCfLdu3exb98+3Pun4G2jRo3w1FNPwcfHR+LI9FNUlPYakAsLxSSkJr0rADHxSUwUY02pZNlLOzvAt40JIG/4b5mt9HSxUPKdO0xUakFxYpufL/Yv1UfFyXTJpLlkMl1yKU7IK1qKW3OLl+IEXCZrCDRrCLl7BowTHkKRmVZ+TcJKemRSfwt7e3kBffuW0W3GxERsamzdWkyU//6bibIec3cXu/NX+oOsQiGO4gsNBR5x2neqOr1NkP/zn/9g+fLlpbpbyOVyvPfee/jiiy8kikw/RUWJ4xu0pbiFccGCuh8o17VrGX9UbW2BNm3EJSNDrA1382bpYfRUb5Ts3l43bP5Zai6uoFZOo1fkciAgoBKP242MgLZtxcoh164Bly8zUdYzrq7iE4Iqz5RnZCQeeOCA+OSQqAr0suDVl19+ia+++gojRozAqVOnkJaWhrS0NJw6dQojR47EV199ha+++krqMPVKcctxJYtYQKXqCJWqAVSqyk2MUnzeCspXa0XDhpUo9WRjA3ToAIweLQ6matyYteCIdJidHfD005VIjksyNgbatQPGjhXLgdnWk3mn9ZybGzB4sHj7qqU4SS53VB9R2fSyBXnNmjV4+umn8euvv2qs79y5MzZv3oy8vDx8//33mDZtmkQR6q/KD/KJA/BQfUxlzlvXjI3F98Eq8fQUl+xssbUpIkKslkFEkpPLxYc+AQE1GIBpZCS2Jvv5if3Br10TWxcr2zpAdcbLS+xKXOWW48fJ5UC/fuIo3scqXBGVRy8T5OjoaLz77rvlbh84cCBCQ0PrMCLSRZ06/Vu9rsosLcVyQe3bi0ny5cv627mWyAB4eYndpWpxbhXxEVPDhuIjtJs32c1Kh7RoIQ7Iq7WHeTKZ+B/I1lYc3c1qWPQEepkgu7i44O+//y53+99//w1nZ+c6jIh0jacn0KpVLZzI2Fjsv9iq1b+Jci3UrSWiynFzEwtSeHho8SJWVmI3qw4dxEG7d+6IRZ+ZLNc5mUxsm2jbVksX8PMTi6H/+Sf/llOF9DJBfv7557F8+XJ4e3vj7bffhqWlJQAgOzsb3377LX744Qe899570gZJkjE3F0e112q3DiMj8dmuv784ovHyZSA1tRYvQFSXzFA8UYguksvFht02bcQEuU65uIhLly7i7/j9+2IXjLg4oKiojoOpX8zMxL/dDRpo+ULFdcmPHGGtZCqXXibIn3zyCcLDwzFz5kzMnTsXHv80LTx69AhFRUXo06cPPv74Y4mjJCkUdzWrSS3eJ16gRQtxefRI7L947x4f15FeUSiePHueFFxcxLFUTZtqaervqiqefrFNG/F3PClJbGFOTASSk8V66vzdrxWenuL00f+0d2mfmZk4eO/6deD0aU4qQ6XoZYJsYWGBsLAw7Ny5U6MO8qBBgzB48GAMGzYMMp2f+om0oVcvLT+KLcnDQ1xyc8VW5Zs3K1+cmaieMzMT+xM7OYllvDw9xXXaJAiVW4B/895/18kBMxcIXi4Qils4VSqxG0ZmBpCZBVlONmS5OUBBPmQFBWKLs1IJoGYDALONbSEAMMR3NRMTsUuFn59EAbRsKT6uOHkSuHtXoiBIF+ldgpyTk4Nx48bhueeew4svvojhw4dLHRLpiG7dgObNJbiwufm/NZVTUsT+i3fvsgsGGRRBELvkm5hU/xwymdhbycRErEJRVCT2XIiNBcLDNQtJFH9f1teKEtnHF5VKc//aJQdg98+iPTEG2Lgpk4l/rzt10oGnBZaWYrmM2FjgzBlOHkUA9DBBtrCwwJ9//omnnnpK6lDqObfHvkpHLhfLuWlzopNKc3AQl44dxZal4v6LsbEsF0d6TSYTn0LX9L9xfr5YRZHqJ5lM7EbToYPYe0WnuLsDzzwj/s2+fJmTi9RzepcgA0CPHj1w6tQpTJkyRepQ6i2F4rzUIQAQB5/361f3s/NVio2NWP2iVSux+So5GYiPF/svJiWx/yIR1RvW1kCzZmJDRrXLb9aVBg3EJS1N7Dp3+zaQmSl1VFTH9DJB/vbbbzFw4EDMnj0br7/+Ohpofcgr6RoTE7GgRLt2tVBEvi7IZBAcnSA4OEHw/eeRr1IFIT0DSE8X//hmZYllh3JzIeTlQ1ZUKPZfVCprfPlCeQ2eixMRVZGFxb/9y728xO/1jp2d2EE6MFDsMvfwodjIkZws/s2uhb/NpLv0IbUopW3btigqKkJISAhCQkJgZGQEU1NTjX1kMhnS09MlipAeV9z/z9S0+gNxZDKxu6+9vTg2TqEQu/s+3jex5PcV9Uks+fXx75XKf78vuZS1vuRxJdc9uf9j3fRfBIAsNlQTUQVqs4+5mZn49zkvTyzy8884+krHURv7PGm/qvdJt/9n8Rf/dNsC8vxcKIrya/wk8I6RwmAHYeozvUyQn3vuOVap0DPFtys/X/yjWV25ueI4uNu3aycuIiJiH/PqMf9nqZlkltfWSXqZIG/YsEHqEIiIiIjIQOlVgpyXl4edO3fi7t27cHJywpAhQ+Du7i51WERERERkQPQmQU5ISEC3bt1w9+5dCP90HrKwsMCOHTsQHBwscXREREREZCjkUgdQWZ988gmio6Mxbdo07N69G8uWLYO5uTlee+01qUMjIiIiIgOiNy3IBw4cwIQJE/DFF1+o17m6umLs2LGIjIxEixYtJIyOiIiIiAyF3rQgx8TEoEePHhrrevToAUEQEB8fL1FURERERGRo9CZBzs/Ph9ljBXSLXxcVsUYKEREREdUOvUmQASA6OhoXL15UL5cvXwYAREVFaawvXqprxYoV8Pb2hpmZGTp37oyzZ89WuP9vv/0GX19fmJmZoXXr1ti7d2+1r01ERERE0tKbPsgAMGfOHMyZM6fU+jfffFPjtSAIkMlkUFZjGsgtW7Zg+vTpWLVqFTp37oxly5Zh4MCBiIyMhIuLS6n9T548iTFjxiAkJARDhw7Fpk2b8Mwzz+DixYvw9/ev8vWJiIiISFp6kyCvX7++Tq6zdOlSTJkyBZMmTQIArFq1Cnv27MG6devw0Ucfldp/+fLlGDRoEP773/8CEKttHDx4EN9++y1WrVpVJzETERERUe3RmwR54sSJWr9GQUEBLly4gBkzZqjXyeVyBAcH49SpU2Uec+rUKUyfPl1j3cCBA7Fjx45yr5Ofn4/8/Hz166ysrJoFXouqPj995c/L2cGlx/tr2Hh/DZs27y9Jj7+/ukVvEuS6kJSUBKVSCVdXV431rq6uuHHjRpnHxMXFlbl/XFxcudcJCQnBggULah5wLbKyEr9q65eo+LzdugGNGmnnGlS+4kIvvL+G6f598Svvr2Fq0EC7CY5MJiZRvL/SqIv7C/z7Pk+VwwRZAjNmzNBodQ4PD0dQUJCEEQHNmgE3bgDabMy2shKvQ3WvVSveX0PG+2vYeH8NG++vbmKCXIKTkxMUCkWpusrx8fFwc3Mr8xg3N7cq7Q8ApqamMDU1Vb+20pGPdfzlMWy8v4aN99ew8f4aNt5f3aNXZd60zcTEBAEBAQgLC1OvU6lUCAsLQ9euXcs8pmvXrhr7A8DBgwfL3Z+IiIiIdBtbkB8zffp0TJw4ER07dkRgYCCWLVuG7OxsdVWLCRMmwNPTEyEhIQCAd999F0FBQfjyyy8xZMgQbN68GefPn8fq1aul/DGIiIiIqJqYID9m1KhRSExMxNy5cxEXF4d27dohNDRUPRAvJiYGcvm/De/dunXDpk2bMHv2bMycORPNmjXDjh07WAOZiIiISE/JBIEFXqR28eJFBAQE4MKFC+jQoYPU4RARERHVa+yDTERERERUAhNkIiIiIqIS2AeZqi02NhaxsbFSh0FERFSvuLu7w93dXeowDBoTZB3g7u6OefPm6dV/9vz8fIwZMwZHjx6VOhQiIqJ6JSgoCPv379eYU4FqFwfpUbVkZGTA1tYWR48e1ZmJTqj2ZGVlISgoiPfXQPH+GjbeX8NWfH/T09NhY2MjdTgGiwkyVUtxgsxfUMPE+2vYeH8NG++vYeP9rRscpEdEREREVAITZCIiIiKiEpggU7WYmppi3rx5HCBgoHh/DRvvr2Hj/TVsvL91g32QiYiIiIhKYAsyEREREVEJTJCJiIiIiEpggkxEREREVAITZJJcdHQ0ZDIZNmzYIHUoREREREyQ9c3t27fx2muvoXHjxjAzM4ONjQ26d++O5cuXIzc3V2vXjYiIwPz58xEdHa21a1TGokWL8PTTT8PV1RUymQzz58+XNB6pyGSySi1Hjhyp8bVycnIwf/78Kp2L96nmdPke37hxAx988AHatWsHa2truLu7Y8iQITh//nyNY6kvdPn+Pnr0COPGjUOLFi1gbW0NOzs7BAYGYuPGjeC4/srR5fv7uF9++QUymYyzLj7GSOoAqPL27NmD559/HqamppgwYQL8/f1RUFCA48eP47///S+uXbuG1atXa+XaERERWLBgAXr37g1vb2+tXKMyZs+eDTc3N7Rv3x779++XLA6p/fTTTxqvf/zxRxw8eLDU+pYtW9b4Wjk5OViwYAEAoHfv3pU6hvep5nT5Hv/www9Yu3YtnnvuObz55ptIT0/H999/jy5duiA0NBTBwcE1jsnQ6fL9TUpKwoMHDzBy5Eg0bNgQhYWFOHjwIF566SVERkZi8eLFNY7J0Ony/S0pKysLH3zwASwtLWsch6Fhgqwn7t69i9GjR6NRo0Y4dOgQ3N3d1dveeust3Lp1C3v27JEwwn8JgoC8vDyYm5vX+rnv3r0Lb29vJCUlwdnZudbPry/GjRun8fr06dM4ePBgqfVS4X2qOV2+x2PGjMH8+fM1WpwmT56Mli1bYv78+UyQK0GX72+bNm1KtUZOnToVw4YNw9dff41PPvkECoVCmuD0hC7f35IWLlwIa2tr9OnTBzt27JA6HJ3CLhZ64rPPPkNWVhbWrl2rkRwXa9q0Kd59913166KiInzyySdo0qQJTE1N4e3tjZkzZyI/P1/jOG9vbwwdOhTHjx9HYGAgzMzM0LhxY/z444/qfTZs2IDnn38eANCnT59Sj4aKz7F//3507NgR5ubm+P777wEAd+7cwfPPPw8HBwdYWFigS5cuNUrkpWy91jcqlQrLli1Dq1atYGZmBldXV7z22mtITU3V2O/8+fMYOHAgnJycYG5uDh8fH0yePBmA2D+8OMFdsGCB+t4/qcsE71PdkOoeBwQElHoc6+joiJ49e+L69eu1+0PWY1L+DpfF29sbOTk5KCgoqPHPRtLf36ioKHz11VdYunQpjIzYXvo4/ovoiT/++AONGzdGt27dKrX/K6+8go0bN2LkyJH4z3/+gzNnziAkJATXr1/H9u3bNfa9desWRo4ciZdffhkTJ07EunXr8NJLLyEgIACtWrVCr1698M477+Drr7/GzJkz1Y+ESj4aioyMxJgxY/Daa69hypQpaNGiBeLj49GtWzfk5OTgnXfegaOjIzZu3Iinn34aW7duxbPPPlt7/0BUymuvvYYNGzZg0qRJeOedd3D37l18++23uHTpEk6cOAFjY2MkJCRgwIABcHZ2xkcffQQ7OztER0dj27ZtAABnZ2esXLkSb7zxBp599lmMGDECgNjCRNLTtXscFxcHJyenWv0Z6zOp729ubi6ys7ORlZWFo0ePYv369ejatatWng7WR1Lf3/feew99+vTB4MGD8euvv2r1Z9VLAum89PR0AYAwfPjwSu0fHh4uABBeeeUVjfXvv/++AEA4dOiQel2jRo0EAMJff/2lXpeQkCCYmpoK//nPf9TrfvvtNwGAcPjw4VLXKz5HaGioxvr33ntPACAcO3ZMvS4zM1Pw8fERvL29BaVSKQiCINy9e1cAIKxfv75SP58gCEJiYqIAQJg3b16ljzFkb731llDy1/nYsWMCAOGXX37R2C80NFRj/fbt2wUAwrlz58o9d03+rXmfao+u3uNif/31lyCTyYQ5c+ZU+xz1mS7e35CQEAGAeunXr58QExNTpXOQSNfu7+7duwUjIyPh2rVrgiAIwsSJEwVLS8sq/ESGj10s9EBGRgYAwNraulL77927FwAwffp0jfX/+c9/AKBUFwc/Pz/07NlT/drZ2RktWrTAnTt3Kh2jj48PBg4cWCqOwMBA9OjRQ73OysoKr776KqKjoxEREVHp81PV/Pbbb7C1tUX//v2RlJSkXoofjR8+fBgAYGdnBwDYvXs3CgsLJYyYqkqX7nFCQgLGjh0LHx8ffPDBB1q5Rn2jC/d3zJgxOHjwIDZt2oSxY8cCgFarJdUnUt7fgoICTJs2Da+//jr8/Pxq5ZyGiAmyHrCxsQEAZGZmVmr/e/fuQS6Xo2nTphrr3dzcYGdnh3v37mmsb9iwYalz2Nvbl+oHVREfH58y42jRokWp9cVdMx6Pg2pPVFQU0tPT4eLiAmdnZ40lKysLCQkJAICgoCA899xzWLBgAZycnDB8+HCsX7++VF910j26co+zs7MxdOhQZGZmYufOnSwVVUt04f42atQIwcHBGDNmDH755Rc0btwYwcHBTJJrgZT396uvvkJSUpK68gWVjX2Q9YCNjQ08PDxw9erVKh0nk8kqtV95o5GFKtS7ZJ803aJSqeDi4oJffvmlzO3FgzpkMhm2bt2K06dP448//sD+/fsxefJkfPnllzh9+jSTHR2mC/e4oKAAI0aMwOXLl7F//374+/tX+1ykSRfu7+NGjhyJNWvW4K+//ir1xJCqRqr7m56ejoULF+LNN99ERkaG+gl1VlYWBEFAdHQ0LCws4OLiUrMf0AAwQdYTQ4cOxerVq3Hq1Cl07dq1wn0bNWoElUqFqKgojYF08fHxSEtLQ6NGjap8/com24/HERkZWWr9jRs31NtJO5o0aYI///wT3bt3r9SHly5duqBLly5YtGgRNm3ahBdffBGbN2/GK6+8Uq17T9on9T1WqVSYMGECwsLC8OuvvyIoKKg6PwaVQ+r7W5biluP09PRaOV99JtX9TU1NRVZWFj777DN89tlnpbb7+Phg+PDhLPkGdrHQG8WFvF955RXEx8eX2n779m0sX74cADB48GAAwLJlyzT2Wbp0KQBgyJAhVb5+cRHxtLS0Sh8zePBgnD17FqdOnVKvy87OxurVq+Ht7c2+T1r0wgsvQKlU4pNPPim1raioSH0fU1NTSz0paNeuHQCoH+FZWFgAqNq9J+2T+h6//fbb2LJlC7777jv1yHmqPVLe38TExDLXr127FjKZDB06dKjUeah8Ut1fFxcXbN++vdTSp08fmJmZYfv27ZgxY0b1fzADwhZkPdGkSRNs2rQJo0aNQsuWLTVm0jt58iR+++03vPTSSwCAtm3bYuLEiVi9ejXS0tIQFBSEs2fPYuPGjXjmmWfQp0+fKl+/Xbt2UCgUWLJkCdLT02Fqaoq+fftW+Bjmo48+wv/+9z889dRTeOedd+Dg4ICNGzfi7t27+P333yGXV/3z2U8//YR79+4hJycHAPDXX39h4cKFAIDx48ezVfofQUFBeO211xASEoLw8HAMGDAAxsbGiIqKwm+//Ybly5dj5MiR2LhxI7777js8++yzaNKkCTIzM7FmzRrY2NioP2iZm5vDz88PW7ZsQfPmzeHg4AB/f/8KH6fzPmmflPd42bJl+O6779C1a1dYWFjg559/1tj+7LPPcmauGpLy/i5atAgnTpzAoEGD0LBhQ6SkpOD333/HuXPn8Pbbb5ca30JVJ9X9tbCwwDPPPFNq/Y4dO3D27Nkyt9VbUpbQoKq7efOmMGXKFMHb21swMTERrK2the7duwvffPONkJeXp96vsLBQWLBggeDj4yMYGxsLXl5ewowZMzT2EQSxRNuQIUNKXScoKEgICgrSWLdmzRqhcePGgkKh0Cj5Vt45BEEQbt++LYwcOVKws7MTzMzMhMDAQGH37t0a+1SlzFtQUJBG2aGSS1kl6OqLx0sIFVu9erUQEBAgmJubC9bW1kLr1q2FDz74QHj06JEgCIJw8eJFYcyYMULDhg0FU1NTwcXFRRg6dKhw/vx5jfOcPHlSCAgIEExMTCpVToj3qfbp0j2eOHFiufcXgHD37t3a/NHrBV26vwcOHBCGDh0qeHh4CMbGxur3mfXr1wsqlapWf+76Qpfub1lY5q00mSBUYSQWEREREZGBYx9kIiIiIqISmCATEREREZXABJmIiIiIqAQmyEREREREJTBBJiIiIiIqgQmygfnss8/g6+sLlUoldSg1Nnr0aLzwwgtSh6FTeH8NG++vYeP9NXy8xwZE6jpzVHvS09MFBwcHYd26dep1+Kcu6RdffFFq//Xr1wsAhHPnztV6LMHBwQIA4a233ipz+w8//CD4+voKpqamQtOmTYWvv/661D4XL14U5HK5EB4eXuvx6SPeX8PG+2vYeH8NH++xYWELsgFZt24dioqKMGbMmFLbPv/8c/WsZtq2bds2jemlH/f999/jlVdeQatWrfDNN9+ga9eueOedd7BkyRKN/dq3b4+OHTviyy+/1HbIeoH317Dx/ho23l/Dx3tsYKTO0Kn2tGnTRhg3bpzGOgBCu3btBADCl19+qbFNG59ec3NzBW9vb+Hjjz8u89NrTk6O4OjoWGrmvRdffFGwtLQUUlJSNNZ/8cUXgqWlpZCZmVlrMeor3l/Dxvtr2Hh/DR/vsWFhC7KBuHv3Li5fvozg4OBS27p3746+ffvis88+Q25urlbj+Oyzz6BSqfD++++Xuf3w4cNITk7Gm2++qbH+rbfeQnZ2Nvbs2aOxvn///sjOzsbBgwe1FrM+4P01bLy/ho331/DxHhseJsgG4uTJkwCADh06lLl9/vz5iI+Px8qVKys8T35+PpKSkiq1PC4mJgaffvoplixZAnNz8zLPf+nSJQBAx44dNdYHBARALpertxfz8/ODubk5Tpw4UWHcho7317Dx/ho23l/Dx3tseIykDoBqx40bNwAAPj4+ZW7v2bMn+vTpg88//xxvvPFGub88//vf/zBp0qRKXVMQBI3X//nPf9C+fXuMHj263GNiY2OhUCjg4uKisd7ExASOjo549OiRxnojIyN4eXkhIiKiUjEZKt5fw8b7a9h4fw0f77HhYYJsIJKTk2FkZAQrK6ty95k/fz6CgoKwatUqTJs2rcx9Bg4cWK1HKYcPH8bvv/+OM2fOVLhfbm4uTExMytxmZmZW5uMne3v7Mj8t1ye8v4aN99ew8f4aPt5jw8MEuR7p1asX+vTpg88++wyvv/56mfu4u7vD3d29SuctKirCO++8g/Hjx6NTp04V7mtubo6CgoIyt+Xl5ZX5qVoQBMhksirFVB/x/ho23l/Dxvtr+HiP9QsTZAPh6OiIoqIiZGZmwtrautz95s2bh969e+P777+HnZ1dqe25ublIT0+v1DXd3NwAAD/++CMiIyPx/fffIzo6WmOfzMxMREdHw8XFBRYWFnB3d4dSqURCQoLGI56CggIkJyfDw8Oj1HVSU1PRrFmzSsVkqHh/DRvvr2Hj/TV8vMeGh4P0DISvry8AcSRtRYKCgtC7d28sWbKkzEcpW7ZsUX+CfdJSLCYmBoWFhejevTt8fHzUCyD+4vr4+ODAgQMAgHbt2gEAzp8/r3Hd8+fPQ6VSqbcXKyoqwv3799GyZcsq/XsYGt5fw8b7a9h4fw0f77HhYQuygejatSsA8T95mzZtKtx3/vz56N27N1avXl1qW3X6P40ePbrULxUAPPvssxg8eDCmTJmCzp07AwD69u0LBwcHrFy5EoMHD1bvu3LlSlhYWGDIkCEa54iIiEBeXh66detWpZgMDe+vYeP9NWy8v4aP99gASVWAmWqfv7+/MGbMGI11KGeqyaCgIPUUmNqY5rKia69YsUIAIIwcOVJYs2aNMGHCBAGAsGjRolL7fvHFF4KFhYWQkZGhlRj1Ce+vYeP9NWy8v4aP99iwMEE2IEuXLhWsrKyEnJwc9bryfkEOHz4s2S+nIAjC6tWrhRYtWggmJiZCkyZNhK+++kpQqVSl9uvcuXOpmYnqK95fw8b7a9h4fw0f77FhYYJsQNLS0gQHBwfhhx9+kDqUWnHp0iVBJpMJly5dkjoUncD7a9h4fw0b76/h4z02LDJBeKzSNOm1JUuWYP369YiIiIBcrt9jMEePHg2VSoVff/1V6lB0Bu+vYeP9NWy8v4aP99hwMEEmIiIiIipBvz/eEBERERHVMibIREREREQlMEEmIiIiIiqBCTIRERERUQlMkImIiIiISmCCTERERERUAhNkIiIiIqISmCATEREREZXABJmIiIiIqAQmyEREREREJTBBJiIiIiIqgQkyEREREVEJTJCJiIiIiEpggqwDYmNjMX/+fMTGxkodChEREVG9xwRZB8TGxmLBggVMkImIiIh0ABNkIiIiIqISmCATEREREZXABJmIiIiIqAQmyEREREREJTBBJiIiIiIqgQkyEREREVEJTJCJiIiIiEpggkxEZSoqKpI6BCIiIkkwQSaiMjFBJiKi+ooJMhGVSalUSh0CERGRJJggE1GZmCATEVF9pZMJcmxsLP7++29kZ2dLHQpRvcUuFkREVF/pVIK8c+dO+Pr6okGDBujQoQPOnDkDAEhKSkL79u2xY8cOaQMkqkeYIBMRUX2lMwnyH3/8gREjRsDJyQnz5s2DIAjqbU5OTvD09MT69esljJCofiksLJQ6BCIiIknoTIL88ccfo1evXjh+/DjeeuutUtu7du2KS5cuSRAZUf1UUFAgdQhERESS0JkE+erVq3jhhRfK3e7q6oqEhIQ6jIiofsvLy5M6BCIiIknoTIJsYWFR4aC8O3fuwNHRsQ4jIqrfmCATEVF9pTMJcp8+fbBx48YyBwbFxcVhzZo1GDBggASREdVPrCJDRET1lc4kyIsWLcKDBw/QqVMnfP/995DJZNi/fz9mz56N1q1bQxAEzJs3r05iWbFiBby9vWFmZobOnTvj7NmzFe6/bNkytGjRAubm5vDy8sK0adPY+kZ6Lysri7WQiYioXtKZBLlFixY4fvw4HB0dMWfOHAiCgM8//xyLFy9G69atcezYMXh7e2s9ji1btmD69OmYN28eLl68iLZt22LgwIHl9n/etGkTPvroI8ybNw/Xr1/H2rVrsWXLFsycOVPrsRJpkyAISElJkToMIiKiOmckdQAltWrVCn/++SdSU1Nx69YtqFQqNG7cGM7OznUWw9KlSzFlyhRMmjQJALBq1Srs2bMH69atw0cffVRq/5MnT6J79+4YO3YsAMDb2xtjxoxR13Am0mfx8fF1+vtHRESkC3SmBbkke3t7dOrUCZ07d67TN+eCggJcuHABwcHB6nVyuRzBwcE4depUmcd069YNFy5cUHfDuHPnDvbu3YvBgweXe538/HxkZGSol6ysrNr9QYhqyYMHD6QOgYiIqM7pTIL89ddfY+DAgeVuf+qpp7By5UqtxpCUlASlUglXV1eN9a6uroiLiyvzmLFjx+Ljjz9Gjx49YGxsjCZNmqB3794VdrEICQmBra2tegkKCqrVn4Ootjx8+JAThhARUb2jMwny2rVr4efnV+52Pz8/rF69ug4jqpwjR45g8eLF+O6773Dx4kVs27YNe/bswSeffFLuMTNmzEB6erp6OXr0aB1GTFR5SqUS0dHRUodBRERUp3QmQb59+zZatmxZ7nZfX1/cvn1bqzE4OTlBoVAgPj5eY318fDzc3NzKPGbOnDkYP348XnnlFbRu3RrPPvssFi9ejJCQEKhUqjKPMTU1hY2NjXqxsrKq9Z+FqLbcvHlT6hCIiIjqlM4kyCYmJuV2YwCA2NhYyOXaDdfExAQBAQEICwtTr1OpVAgLC0PXrl3LPCYnJ6dUXAqFAoBYBYBI3z18+BCpqalSh0FERFRndCZB7tKlCzZs2IDMzMxS29LT07F+/Xp06dJF63FMnz4da9aswcaNG3H9+nW88cYbyM7OVle1mDBhAmbMmKHef9iwYVi5ciU2b96Mu3fv4uDBg5gzZw6GDRumTpSJ9N3ly5elDoGIiKjO6EyZt3nz5iEoKAjt2rXDe++9h1atWgEArl69imXLliE2NhabNm3SehyjRo1CYmIi5s6di7i4OLRr1w6hoaHqgXsxMTEaLcazZ8+GTCbD7Nmz8fDhQzg7O2PYsGFYtGiR1mMlqis3b95E27ZtYWdnJ3UoREREWicTdKgfwMGDB/Haa68hOjoaMpkMgNhNwcfHBytXrjTYqaYvXryIgIAAXLhwAR06dJA6HCIAwL59+3D//n31a09PTwwePFj9u0lERGSodKYFGQD69++PW7du4dKlS+oBeU2aNEGHDh34pkwksYcPH+LKlSto06aN1KEQERFplU4lyIA4MUdAQAACAgKkDoWIHnPmzBnY2NjUybTvREREUtG5BDkiIgJ37txBampqmVUgJkyYIEFURASIXZ7CwsLQr18/JslERGSwdCZBvn37NsaNG4ezZ8+WWx5NJpMxQSaSmFKpxMGDB9GjR48Ka5cTERHpK51JkF977TVcuXIFy5YtQ8+ePWFvby91SET1VseOHREdHQ1LS0vMmjWr1HZBEHDs2DGkpaWhc+fOWq9RTkREVJd0JkE+ceIEZs6cibffflvqUIjqvbi4OCQnJ0OpVFa435UrV5CcnIzg4GCYmZnVUXRERETapTPNPk5OTrC1tZU6DCKqokePHmH79u1ISkqSOhQiIqJaoTMJ8uuvv46ff/75iS1WRKR7MjMzsXPnTty6dUvqUIiIiGpMZ7pYNG/eHEqlEm3btsXkyZPh5eVV5lTNI0aMkCA6InoSpVKJQ4cOISUlBZ06dWLtciIi0ls6kyCPGjVK/f37779f5j4ymYwtzEQ6Ljw8HBkZGejTp0+ZH3KJiIh0nc4kyIcPH5Y6BCKqJXfu3EFeXh4GDhwIY2NjqcMhIiKqEp1JkIOCgqQOgYhq0aNHj7B371489dRTMDExkTocIiKiStOZQXrF8vPzcerUKezcuZOj4on0XHx8PPbt24eCggKpQyEiIqo0nUqQv/76a7i7u6NHjx4YMWIELl++DABISkqCk5MT1q1bJ3GERFRV8fHx2L9/P8cPEBGR3tCZBHn9+vV47733MGjQIKxdu1ZjumknJyf07dsXmzdvljBCIqqu2NhYhIWFlTuNPBERkS7RmQT5yy+/xPDhw7Fp0yYMGzas1PaAgABcu3ZNgsiIqDZER0fj1KlTUodBRET0RDqTIN+6dQtPPfVUudsdHByQnJxchxERUW27evUqrl69KnUYREREFdKZBNnOzq7CQXkRERFwc3Orw4iISBtOnTqFmJgYqcMgIiIql84kyIMHD8bq1auRlpZWatu1a9ewZs0aPP3003UfGBHVKkEQEBYWxio1RESks3QmQV64cCGUSiX8/f0xe/ZsyGQybNy4EePGjUPHjh3h4uKCuXPn1kksK1asgLe3N8zMzNC5c2ecPXu2wv3T0tLw1ltvwd3dHaampmjevDn27t1bJ7ES6aPCwkLs27evzA/EREREUtOZBNnDwwMXLlzAoEGDsGXLFgiCgJ9++gl//PEHxowZg9OnT8PJyUnrcWzZsgXTp0/HvHnzcPHiRbRt2xYDBw5EQkJCmfsXFBSgf//+iI6OxtatWxEZGYk1a9bA09NT67ESaUNMTAyys7MBiHXJU1JStHKd3Nxc7NmzB+np6Vo5PxERUXXJBB2ou5Sfn4/9+/fD29sbbdq0AQAkJiZCpVLB2dkZcnnd5fGdO3dGp06d8O233wIAVCoVvLy88Pbbb+Ojjz4qtf+qVavw+eef48aNG9WeUvfixYsICAjAhQsX0KFDhxrFT1RdZ8+exSeffII9e/ZolGOTyWRo3bo1hgwZAm9v71q/rqWlJYYOHQpbW9taPzcREVF16EQLsomJCZ5//nmcPHlSvc7Z2Rmurq51mhwXFBTgwoULCA4OVq+Ty+UIDg4utzzVrl270LVrV7z11ltwdXWFv78/Fi9ezEkRSK9s27YN3bt3x759+0rVKhYEAVevXsWSJUtw8eLFWr92dnY29uzZg6ysrFo/d0pKCl588UXY2NjAzs4OL7/88hOv07t3b8hkMo3l9ddfV2/fsGFDqe3FS3lPmoiISL/oRIIsk8nQrFkzyQftJCUlQalUwtXVVWO9q6sr4uLiyjzmzp072Lp1K5RKJfbu3Ys5c+bgyy+/xMKFC8u9Tn5+PjIyMtSLNhIDoso6e/YsRo0aBaVSWe4HO5VKBZVKhTVr1iA6OrrWY8jKykJoaCiKioqqfGzv3r2xYcOGMre9+OKLuHbtGg4ePIjdu3fjr7/+wquvvvrEc06ZMgWxsbHq5bPPPlNvGzVqlMa22NhYDBw4EEFBQXBxcaly/EREpHt0IkEGgJkzZ+Lbb79FZGSk1KFUiUqlgouLC1avXo2AgACMGjUKs2bNwqpVq8o9JiQkBLa2tuolKCioDiMm0rRw4UIIglDpWe60NQA1JSUFFy5cqLXzXb9+HaGhofjhhx/QuXNn9OjRA9988w02b96MR48eVXishYUF3Nzc1IuNjY16m7m5ucY2hUKBQ4cO4eWXX6612ImISFpGUgdQ7PTp03B0dIS/vz969+4Nb29vmJuba+wjk8mwfPlyrcXg5OQEhUKB+Ph4jfXx8fHl1mB2d3eHsbExFAqFel3Lli0RFxeHgoICmJiYlDpmxowZmD59uvp1eHg4k2SSRExMDHbv3l3p5FilUuHy5ctISUmBg4NDrccTERGBjh07avw+VdepU6dgZ2eHjh07qtcFBwdDLpfjzJkzePbZZ8s99pdffsHPP/8MNzc3DBs2DHPmzIGFhUWZ+/7444+wsLDAyJEjaxwzERHpBp1JkIsHxQFAWFhYmftoO0E2MTFBQEAAwsLC8MwzzwAQE4KwsDBMnTq1zGO6d++OTZs2QaVSqftL37x5E+7u7mUmxwBgamoKU1NT9WsrK6va/UHIoBQUFFSr60Fl7N27t9LJcTFBEHD9+nV07dq11uPJz8/Ho0eP4OXlVeNzxcXFleryYGRkBAcHh3K7TAHA2LFj0ahRI3h4eODy5cv48MMPERkZiW3btpW5/9q1azF27NhSH+iJiEh/6UyCrFKppA4BADB9+nRMnDgRHTt2RGBgIJYtW4bs7GxMmjQJADBhwgR4enoiJCQEAPDGG2/g22+/xbvvvou3334bUVFRWLx4Md555x0pfwwyEAUFBTh79qzW+qn//fffkMlkVUqSZTIZ0tPTtRZTeHg4XF1dy/2AuXjxYixevFj9Ojc3F6dPn9b4EBsREVHt65fso9y6dWu4u7ujX79+uH37Npo0aaKx76lTp3D9+nX89NNP1b4eERHpHp1JkHXFqFGjkJiYiLlz5yIuLg7t2rVDaGioeuBeTEyMRmUNLy8v7N+/H9OmTUObNm3g6emJd999Fx9++KFUPwIZkKKiImRlZcHExETjqUNtsbe3r1YLspmZmVYqzAiCoG4xLy9Bfv311/HCCy+oX7/44ot47rnnMGLECPU6Dw8PuLm5laoqUVRUhJSUlCpNW9+5c2cAwK1bt0olyD/88APatWuHgICASp+PiIh0n84lyKdPn8bhw4eRkJCAN998E82aNUNOTg5u3LiB5s2b10l3hKlTp5bbpeLIkSOl1nXt2hWnT5/WclRUn5mamsLMzKzWz9u1a9dqtSC3aNFCayUYn9RVwcHBQaP/s7m5OVxcXNC0aVON/bp27Yq0tDRcuHBBncAeOnQIKpVKnfRWRnh4OABxvEFJWVlZ+PXXX9VPk4iIyHDoTBWLgoICjBgxAt27d8esWbPw9ddf4/79+wDEWsQDBgzQav9jovomOzsb4eHhaNiwIWQyWaWOkclkaN68Oezs7LQSk6OjY60l3i1btsSgQYMwZcoUnD17FidOnMDUqVMxevRoeHh4AAAePnwIX19f9XTyt2/fxieffIILFy4gOjoau3btwoQJE9CrVy/1JEbFtmzZgqKiIowbN65W4iUiIt2hMwnynDlzsHv3bqxcuRKRkZEaLVpmZmZ4/vnnsXPnTgkjJDIcMTEx2LFjB2JjYzWqPDyJTCZDt27dkJqaisLCwlqNycjICA0aNKjVc/7yyy/w9fVFv379MHjwYPTo0QOrV69Wby8sLERkZCRycnIAiAN1//zzTwwYMAC+vr74z3/+g+eeew5//PFHqXOvXbsWI0aM0NqHBSIiko7OdLH43//+hzfeeAOvvvoqkpOTS21v2bIlfvvtNwkiIzIcSqUS586dw7Vr19TrvL298dFHH6knwyhrspDiVt0RI0bAw8MDKpUK6enpMDc3h4WFRaVboMsjk8ng6+sLExMT5OfnV+nYsro9FXNwcMCmTZvK3e7t7a3xYdzLywtHjx6t1HVLzvxJRESGRWcS5ISEBLRu3brc7QqFQt3KQ0RVl5aWhsOHDyMlJUW9rmHDhujZsyfMzMzg6+uLtWvX4tixYxpJo0wmQ8uWLTFgwAB4enoiKytL3Xqcm5uLgoICWFtbw8ioen9OipNje3t75OXl1eyHJCIiqgU6kyB7eXnhxo0b5W4/ceJEqUE4RPRkgiAgKioKp06dUtdTVigUCAwMRMuWLdWtv61atcLSpUsRFxeHMWPGIDMzE+bm5vjvf/8Le3t79flsbGyQl5eH7OxsAGKLc1paGiwtLatcC1gul6Nly5ZamXSEiIiounSmD/LYsWPx/fff49SpU+p1xW/ca9aswa+//ooJEyZIFR6RXiooKMCRI0dw7NgxdXJsa2uLYcOGwc/Pr8yuEW5ubupE18TERCM5BsTfS3Nzc9jZ2WnMeJednY309PQyu2iUxcjICK1bt2ZyTEREOkdnWpBnzZqF06dPo1evXupWrWnTpiElJQUPHjzA4MGDMW3aNKnDJNIbiYmJOHz4MDIzM9Xrmjdvji5dusDY2LjG5zcyMoKdnR1ycnKQm5sLQBz0lpaWBisrqwrrNpuamsLf37/c6ZuJiIikpDMJsomJCUJDQ/HLL79g69atUCqVyM/PR5s2bbBw4UKMHz++xgOBiOoDQRBw5coVnD9/Xt2X2MTEBN27d0fjxo1r9VoymQyWlpYwMTFBZmYmVCoVBEFAZmYmCgoKYGlpWapsm4WFBfz9/bUy8QkREVFtkCxBnj59OsaPH4/27dsDEMtOOTs7Y9y4cawrSlRNOTk5OHr0KB49eqRe5+zsjD59+sDa2lpr1zU2NoadnR2ys7PVVSjy8/NRWFgIKysr9ax4tra2aNmyZa20YBMREWmLZH2Qly1bhuvXr6tf+/j4YPv27VKFQ6T37t+/j+3bt2skx23btsXQoUO1mhwXk8vlsLa2hrW1tfppj0qlQkZGBrKysuDo6Ah/f38mx0REpPMka0F2dXXFnTt31K+rMtUtEf1LqVTi/PnzuHr1qnqdhYUFgoKC1DPG1SVTU1MYGxsjMzNTXQ4uNTUV2dnZcHFxgZOTU53HREREVBWSJchDhgzBxx9/jAMHDqhnovryyy+xefPmco+RyWScTY+ohPT0dBw+fFhjch0vLy/07NmzyiXXapNcLoetrS1yc3ORlJSE3Nxc5ObmYteuXWjfvj3atm1ba1NKExER1TbJEuTly5fDxcUFhw8fxrVr1yCTyXD//n2NSQwex0F6RP+KiorCyZMn1eXb5HI5OnXqhFatWunM70rbtm1hamqKI0eOIDk5GYIg4OLFi3jw4AGCgoJgY2MjdYhERESlSJYgW1paYvHixerXcrkcy5Ytw9ixY6UKiUgvFBQU4OTJk7h9+7Z6na2tLXr37q1T3ReaNGkCV1dXAMCwYcNw6dIlXL58GYIgICEhAdu3b0fnzp3RokULnUnoiYj0QXZ2NiwtLaUOw6BJ9oxzxIgROHbsmPr14cOH0b9/f6nCIdILiYmJ2LFjh0Zy3KxZMwwfPlynkmN3d3eN/s8KhQIdO3bEkCFD1AMGi4qKcOLECfz555/qOspERPRkxeM7SHskS5B37tyJmJgY9eu+ffvi4MGDUoVDpNOKaxv/8ccf6ok/jI2N0bt3b/Tq1UunKkPY2NiUW2/Z1dUVzz77LJo3b65eFxMTg23btuHevXt1FSIRkV5jgqx9kiXInp6euHTpkvq1IAh8zEpUhry8PBw+fBhnz55VV3txdnbGM888gyZNmkgcnSYzMzO0bNmywgF4xsbG6NmzJ4KDg2FmZgZA/Bn//PNPnD59Wt2nmoiqj5WhDFtRURGUSqXUYRg0yfogjx49Gl988QV+/fVXdRWLjz76CCEhIeUeI5PJ8Pfff9dRhETSi4yMxJEjR1BQUKBe16ZNGwQEBOhcFQgTExP4+/urJwV5kkaNGsHFxQXHjx9XP026ffs2YmNj0bhxY/j5+WkzXCKDlpuby6ncDVxeXh77IWtRlRJkHx+fKrfyymQyjf6SxUJCQtC0aVMcPnwYCQkJ6ilrHR0dq3R+IkNUVFSEXbt24c8//1SvMzc3R1BQEDw9PSWMrGympqZo3bp1lUvLmZubIzg4GDdv3lS3Hufk5GDFihUYOHAgBg8eDCMjyT7HE+kttiAbPg7U064qvfMEBQWVSpDPnz+Pa9euwc/PDy1atAAgtnpFRETA398fAQEBZZ5LoVDg1VdfxauvvgpArGIxe/ZsVrGgei8xMRHr1q3T6JPr4eGB3r17S1rbuDzm5uZo3bo1TE1Nq3W8TCZDixYt4O7ujsOHDyMpKQmCICA0NBTXrl3DSy+9BHd391qOmsiwqVQqqUMgLcvKyoKLi4vUYRisKj2j3bBhA9avX69ehg8fjgcPHuDgwYO4evUqfv/9d/z++++4evUq9u/fj/v37+OZZ56p1Lnv3r1b6X21bcWKFfD29oaZmRk6d+6Ms2fPVuq4zZs3QyaT6czPQfrn7NmzCAkJUSfHCoUCrVq10tnk2MzMrEbJcUk2Njbo378/fH191d1H7t+/j08//RSHDx/mGz5RFfD3xfAVD9gm7ahRJ8a5c+fi7bffRr9+/Upt69+/P6ZOnYrZs2dX6lyNGjXSif5SW7ZswfTp0zFv3jxcvHgRbdu2xcCBA5GQkFDhcdHR0Xj//ffRs2fPOoqUDEleXh42btyIDRs2IC8vD4A4EO/tt99GkyZNdHIAq5GREfz9/WslOS4ml8vRvHlzvPPOO+oayoWFhfjtt9/w7bffIi0trdauRWTImCAbPibI2lWjBDkqKqrCPsOOjo5l9j8GxDdCIyMj9eAjuVwOhUJR4VIXfRGXLl2KKVOmYNKkSfDz88OqVatgYWGBdevWlXuMUqnEiy++iAULFpRb3oqoPDExMfj0009x5swZ9bouXbpgxowZaNCggYSRVaxFixZaa9Vu0KABZsyYgd69e6vX3bhxAwsXLsSFCxe0ck0iQ8JqMIYvIyND6hAMWo0yziZNmmD9+vV4+eWXYWVlpbEtMzMT69atKzdhnDt3LmQymTrpLX4tpYKCAly4cAEzZsxQr5PL5QgODsapU6fKPe7jjz+Gi4sLXn75ZY3JT8qTn5+P/Px89eusrKyaBU56SaVS4fDhw9ixY4e6XI+pqSnGjBmDwMBAAEBOTo6UIZbL1dUVDg4OWr2GiYkJXnjhBfj7++Onn35Ceno6cnJysHbtWly+fBmjRo3SiadORLqoZOUbMkx8oqZdNUqQFy5ciJEjR8LX1xcvvfQSmjZtCkBsWd64cSPi4+Px22+/lXns/PnzK3wthaSkJCiVSvWj3WKurq64ceNGmcccP34ca9euRXh4eKWvExISggULFtQkVNJzmZmZ+PHHH3Ht2jX1uoYNG2Ly5Mk6P+hCoVDA29u7zq7n5+eH2bNn43//+x8uXrwIADh37hyioqIwceJE9eBgIvpXcVctMlxZWVnIy8tT15On2lWjBPmZZ57B3r178eGHH2Lx4sUa29q1a4e1a9di4MCBNQpQl2VmZmL8+PFYs2ZNlab5nTFjBqZPn65+HR4ejqCgIG2ESDroxo0b2LBhg8bjseDgYDz99NN6UdLMw8Oj0rWOa4ulpSVefvlltGnTBlu2bEFubi7S0tKwfPly9OvXD08//bROzSZIJLWCggIolUooFAqpQyEtiouLq9MGi/qkxu/GAwYMwIABAxAXF6ceed+oUSO4ublV+hz5+fn4+eefceDAAdy+fRuZmZmwtrZG06ZNMWjQIIwdO7ZO3pCdnJygUCgQHx+vsT4+Pr7Mn+f27duIjo7GsGHD1OuKB0YYGRkhMjKyzJnOTE1NNQY2Pd49hQyTUqnEH3/8gYMHD6prlFpbW2PixIl6MymGQqGQrA6zTCZDYGAgmjZtih9//BE3b94EAISFhSEiIgKTJk3S6T7bRHUtKysLtra2UodBWnT//n0myFpSa81Vbm5uVUqKi125cgXDhw/HvXv3IAgCbG1tYWVlhYSEBFy8eBG//fYbFi1ahF27dqFly5a1FW6ZTExMEBAQgLCwMHWpNpVKhbCwMEydOrXU/r6+vrhy5YrGutmzZyMzMxPLly+Hl5eXVuMl/ZGUlIR169YhOjpava5ly5aYOHEibGxspAusitzc3CRvqXVwcMA777yDw4cPY+fOnSgqKkJsbCyWLFmCYcOGITg4WOdmGSSSQmZmJhNkAxcTEwNBECQfw2WIavwuEhMTg9dffx0tWrSAg4MD/vrrLwBiQvDOO+/g0qVL5R6blZWFp59+GvHx8Vi0aBHu37+P1NRUja8LFy7Eo0ePMGzYMGRnZ9c03CeaPn061qxZg40bN+L69et44403kJ2djUmTJgEAJkyYoB7EZ2ZmBn9/f43Fzs4O1tbWVZpylwzb+fPnsXjxYnVyLJfL8eyzz+Ktt97Sq+RYLpfrTAutXC5Hv3798OGHH6pbtJVKJXbs2IFly5YhOTlZ4giJpMdBXIYvOzsbSUlJUodhkGrUghwREYGePXtCpVKhc+fOuHXrlrq0jJOTE44fP47s7GysXbu2zOPXr1+PmJgYhIWFaZRzKubp6YkZM2agc+fO6N+/PzZs2IC33nqrJiE/0ahRo5CYmIi5c+ciLi4O7dq1Q2hoqHrgXkxMDFunqFLy8/Px66+/alRAcXZ2xqRJk/TykZi7u7vOfejz9PTEBx98gN27d+PPP/+EIAi4desWFi1ahBdeeAGdO3dmywrVW6mpqVKHQHXg7t27cHZ2ljoMg1OjBPmDDz6AnZ0dTp8+DZlMVmr0/ZAhQ7Bly5Zyj9+zZw8GDBhQZnJcUt++fdG/f3/88ccfWk+QAWDq1KlldqkAgCNHjlR47IYNG2o/INI79+/fx7p16zT6s3fq1AmjR4/WyRnxnkShUOhM6/HjjI2N8eyzz8Lf3x8bN25ESkoK8vLy8OOPP+Ly5csYO3Ys+/lTvZSSkiJ1CFQHbt26hU6dOrExoJbVqCn0r7/+whtvvAFnZ+cyb0zDhg3x8OHDco+/cuXKE5PjYn379i3V35dI1wiCgMOHD+Pzzz9XJ8empqaYOHEiJk2apJfJMSBN5YqqatasGWbNmoUuXbqo14WHh2PhwoUa5fSI6ouUlBT1gGAyXFlZWeoiCVR7apQgq1SqCgv1JyYmVjgNbUpKSqUH9rm6uvLTMOm0zMxMrFy5Er/99pu6q5GXl5e6m5C+ksvl8PDwkDqMSjE3N8eECRMwZcoUWFpaAhBnm1qxYgX+97//aUzQQ2ToCgsLdXayIapdly5d4oehWlajBLlDhw7Ys2dPmduKioqwefNmjdacx+Xn51d6RHzJaamJdE1kZCQWL16Mq1evqtf169cP77//vs5P/PEkzs7OOt96/Lj27dtj9uzZaNWqlXrdsWPHEBISolFJhMjQsR9y/ZCYmIioqCipwzAoNeqDPGPGDAwdOhRvvPEGRo8eDUCsGfznn39i8eLFuH79Or799tsKzxEdHa2eHasid+/erUmoRFqhVCqxe/duHDhwQP3p3crKChMnTtRIzvRZdco36gJbW1u8+eabOHbsGH7//XcUFhYiISEBX3zxBZ566ikMGjSIkyiQwUtMTNTZ8QNUPR07dsSjR49gbGyMWbNmqdefPn0aXl5eetuVT9fUKEF+6qmnsGHDBrz77rtYvXo1AGDcuHEQBAE2Njb48ccf0atXrwrPMWfOHMyZM+eJ12KdP9I1ycnJWLduncaHN19fX0ycONFgao/KZDJYW1tLHUa1yWQy9OrVCy1atMCGDRtw7949qFQq7NmzB9euXcPEiRNLTS1PZEgePHiA9u3bSx0G1aK4uDjExsbCzs5OY31eXh6OHz+O4OBg5ku1oMYThYwfPx4jRozAwYMHERUVBZVKhSZNmmDgwIFPfGNdv359TS9PJIkLFy5g06ZNyM3NBSD203366acNZpIKR0dHFBYWwt7e3iD+0Lq6uuL999/Hvn37EBoaCpVKhejoaISEhGDEiBHo2bOnQfycRI+LjY1Fenq6wXxop4rdvXsXkZGR8PX1lToUvVftBDknJwdeXl746KOP8N///lc981xVTJw4sbqXJ5JEfn4+tm7dihMnTqjXOTo6YvLkyfDx8ZEwstr1008/4erVq3rff7okhUKBoUOHolWrVti4cSMSEhJQUFCAzZs348qVKxg3bhyTCDJIFy9eRJ8+faQOg+rIyZMn4eLiAgcHB6lD0WvVbuqysLCAkZGReqQ4kaF78OABPv30U43kuGPHjpg5c6ZBJcclGWL9YB8fH8yYMQM9e/ZUr7t27RoWLlyI8PBw6QIj0pJbt24hMTFR6jCojhQVFWH//v3qJ5xUPTV6Fvzcc89h69atLC1CBk0QBBw5cgSfffaZuraxiYkJxo8fr9e1jZ9ELpfDzMxM6jC0wtTUFGPGjMEbb7yhnu47Ozsbq1evxk8//VQv3lhY8q7+EAQBJ0+e5Ht1PZKZmYl9+/ax+lcN1ChBHj16NBISEtCnTx/88ssvOHHiBC5evFhqIdJXWVlZ+P777/Hrr7+qaxs3aNAAM2bMQNeuXQ2636qJiYlB9KeuSOvWrTFr1iy0bdtWve7UqVNYvHgxbt26JWFk2ldylkcyfPHx8bh9+7bUYVAdSkpKwu7du+vFB35tqNEgvZKz4B07dqzU9uLKE0qlsiaXIZLEzZs3sWHDBqSlpanX9enTB88880yl63frs4om+TEk1tbWePXVV3H69Gn89ttvyMvLQ3JyMr766iv0798fQ4cOhZFRjccz6xy2INc/xWXA6svvNolJ8s6dOzFo0KBSVS+oYjX6q88qFGSIlEol9u7di9DQUI3axuPHj0fr1q0ljq7u1IcPAcVkMhm6du2KZs2aYePGjbh9+zYEQcCBAwcQERGBl156SW9mE6wsJsiGq2PHjnjw4AFMTU016uTm5OTg2LFj6Nevn0E//SJNGRkZ2LFjB/r16wcvLy+pw9EbNUqQWYWCDE1ycjI2bNig8SiyefPmeOmll+rdp+/6OImGk5MTpk2bhj///BN//PEHlEqlenDm8OHD0adPH4PpdpKXl8f68gYqLi4O8fHxZf7NunPnDmxsbNCpUyfe+3qkoKAAoaGh6NKlC/z9/XnvK0HnnhtGRETgzp07SE1NLXNAwYQJEySIiuqDS5cu4eeff9aobTx06FAMGDDAYJKiqqiPPzMg/twDBgxAy5YtsWHDBsTGxqKoqAi///47rl69ivHjxxtE+aTCwkIUFhbq3TTiVHPh4eEoKChAt27d6u3veX0kCAJOnTqFlJQU9OzZk/f+CaqUIE+ePBkymQyrV6+GQqHA5MmTn3iMTCbD2rVrn7jf7du3MW7cOJw9e7bckbYymYwJMtW6goICbN26FcePH1evc3BwwOTJk9G4cWMJI5NWff/jWVznfefOnTh06BAAIDIyEosWLcLo0aPRqVMniSOsuczMTDg6OkodBkkgIiICqamp6NevHywsLKQOh+pQZGQksrKy0L9/f35ArkCVEuRDhw5BLpdDpVJBoVDg0KFDT2ymr2wz/muvvYYrV65g2bJl6NmzJ+zt7asSGlG1PHz4EOvWrUNsbKx6XYcOHTB27Fi+aRCMjY0xcuRI+Pv748cff0RaWhpyc3Oxfv16XLlyBaNHj9br/ydMkOu32NhYbNu2DX369IGnp6fU4VAdevjwIXbt2oWnnnqK81mUo0oJcnR0dIWva+LEiROYOXMm3n777Vo7J1F5BEHAsWPH8Pvvv6OwsBCAmAy98MIL6NatG/tnofIfbusDX19fzJ49G1u2bMG5c+cAAOfPn8etW7cwYcIEvZ3WNT09XeoQSGI5OTnYu3cvOnTogA4dOvD3vh5JSUnBzp07MWTIEM4iWgadeYbq5OTEG0R1onhCiM2bN6uTY09PT3z00Ufo3r073yD+wX8HTRYWFpg0aRImT56snhwmLS0NX3/9NX777Te9LMhfsoQh1V+CIODChQsIDQ1ldZN6JisrC7t27UJSUpLUoegcnUmQX3/9dfz888+smUxaFRUVhUWLFuHvv/9Wr+vduzc++OADuLu7SxiZ7qnvfZDL07FjR8yePRstWrRQrzt8+DA+/fRTxMTESBhZ1SUnJ0sdAumQ+/fvY8eOHUhNTZU6FKpDubm5+OOPP/Do0SOpQ9EpNX4H3LdvH/r37w9HR0cYGRlBoVCUWiqjefPmUCqVaNu2LZYuXYrffvsN27ZtK7XUhRUrVsDb2xtmZmbo3Lkzzp49W+6+a9asUfeZtre3R3BwcIX7kzSUSiV2796NZcuWqVvNLC0t8frrr+OFF16oVzV/K4styOWzt7fH22+/jeeff179fycuLg6fffYZQkNDoVKpJI6wcpKTk9liSBrS09Oxc+dOPHjwQOpQqA4VFhZi3759uHPnjtSh6IwalXn7/fff8cILL6BVq1YYPXo0Vq5cibFjx0IQBOzcuRPNmjXDM888U6lzjRo1Sv39+++/X+Y+dTEr35YtWzB9+nSsWrUKnTt3xrJlyzBw4EBERkbCxcWl1P5HjhzBmDFj0K1bN5iZmWHJkiUYMGAArl27xkEPOiIlJQUbNmzQmDq4WbNmmDRpUr2rbVwV9bEOclXI5XL06dMHvr6+2LBhA+7fvw+VSoVdu3bh2rVrmDhxIpycnKQOs0KCICA6OlqjNZyouGZuz549+X+jHlEqlQgLC0Nubi5atWoldTiSq1GCHBISgsDAQBw/fhypqalYuXIlJk+ejL59+yI6OhpdunSBj49Ppc51+PDhmoRSa5YuXYopU6Zg0qRJAIBVq1Zhz549WLduHT766KNS+//yyy8ar3/44Qf8/vvvCAsLY0k6HRAeHo6ff/4ZOTk5AMSkZsiQIRg4cCC7EDwBW5Arx93dHf/973+xZ88eHDhwAIIg4Pbt21i0aBGef/55dO3aVaf/LSMiItC8eXOdjpHqnkqlwtGjR5GTk4N27drx/0c9IQgCTpw4gdzcXAQEBNTr+16jBDkiIgIhISFQKBQwMhJPVTzoydvbG2+++SaWLFlSqUQxKCioJqHUioKCAly4cAEzZsxQr5PL5QgODsapU6cqdY6cnBwUFhZWOJFAfn6+xmPNrKys6gdNZSooKMDvv/+OY8eOqdc5ODhg0qRJaNKkiYSR6Q9+gKg8IyMjDB8+HP7+/tiwYYO668LPP/+My5cv48UXX4S1tbXUYZYpMTER9+/fR8OGDaUOhXTQuXPnkJmZiR49evBvQj1y8eJFqFQqBAYGSh2KZGqUIFtYWKiLTNvZ2cHU1FSjnqyrqyvu3r1b5fNGRETg3r17AIBGjRrBz8+vJmFWWlJSEpRKJVxdXTXWu7q64saNG5U6x4cffggPDw8EBweXu09ISAgWLFhQo1ipfI8ePcK6des0Bhy0b98eL774ol7XrK1rfDOsuiZNmmDWrFnYunUrTp48CQC4fPky7t69i3HjxqF169YSR1i2M2fOoEGDBrznVKYbN24gMzMTwcHBMDU1lTocqiPh4eGwtLSst90tavTXsEWLFoiIiFC/bteuHX766ScUFRUhLy8PmzZtqlKrxM6dO9GkSRO0bt0aQ4cOxdChQ9G6dWs0bdoUu3btqkmodeLTTz/F5s2bsX37dpiZmZW734wZM5Cenq5ejh49WodRGi5BEHD8+HEsWbJEnRwbGxtj7NixeOWVV5gcV1F9frRWE2ZmZhg3bhxeffVVWFlZARAn5Fi5ciU2bdqEvLw8iSMsLTU1VeNvOdHjHj58iO3btyMlJUXqUOq1mJgYZGdnAxCfRmv7fpw+fbre3vMaJcgjRozArl271N0FZs2ahSNHjsDOzg7Ozs44duxYmf12y7J3714899xzAIDFixdj+/bt2L59OxYvXgxBEDBixAiEhobWJNwncnJygkKhQHx8vMb6+Ph4uLm5VXjsF198gU8//RQHDhxAmzZtKtzX1NQUNjY26qX4TZSqLycnBz/88AM2bdqk7ubj4eGBDz/8ED169GCyR3WuXbt2mD17Nvz9/dXrjh8/jpCQkGo9WdO2c+fOsbsXVSgjIwM7d+7E7du3pQ6l3jl79iyGDRsGb29vdSWm3NxczJw5EytWrKjVidtKUiqVOH36tFbOnZKSghdffBE2Njaws7PDyy+//MS/QatXr0bv3r1hY2MDmUxWZi13b29vyGQyjeXTTz+tcnwyQRCEqh6Ul5eHnTt34u7du3B0dMTQoUPVNWSPHTuGbdu2QaFQYMiQIejTp0+lztm1a1fk5+fj2LFjpaY9zM7ORo8ePWBmZlbpvsDV1blzZwQGBuKbb74BIA5UaNiwIaZOnVpusv/ZZ59h0aJF2L9/P7p06VLla168eBEBAQG4cOECOnToUKP466Pbt29j/fr1Gp9ye/XqhREjRuj9PPM5OTn466+/YG1tXeFTCW1QKpV1XskiLy8PmZmZ6NWrl8G0+BcPetm6dat6MhGZTIZBgwZh8ODBklQL6dixI2JiYmBubo5Zs2ap13t4eGDIkCH8QKnnGjRogIcPH8LOzg5LlizRyjX8/f3RuXNnVrupA9u2bcOoUaMgCEKZlbyKu0ZNmTJFaznEM888U2Ylryfp3bs3XnrpJbz00kultj311FOIjY3F999/j8LCQkyaNAmdOnXCpk2byj3fsmXL1E/hZsyYgdTU1FLVqLy9vfHyyy9jypQp6nXW1tZVnlK7yn2QExIS0K1bN9y9exeCIEAmk8Hc3Bw7duxAcHAwevbsiZ49e1b1tLh8+TIWL15c5g9gaWmJl156CTNnzqzyeatq+vTpmDhxIjp27IjAwEAsW7YM2dnZ6qoWEyZMgKenJ0JCQgAAS5Yswdy5c7Fp0yZ4e3sjLi4OAGBlZcWWYS1TqVQIDQ3Fnj17UPw5z8LCAuPGjUO7du2kDc4AMEmqHTKZDD169EDz5s2xceNG9d/Offv24dq1a5g0aVKpcQ/aFhcXh8TExFJvLI8ePcKFCxfQsWPHOo2H9M/Vq1eRlJSE/v37q2eWpNp39uxZjBo1CkqlEuW1ZxbXXV+zZg0+/PBDeHt713ocly5dwsCBA2vtfNevX0doaCjOnTun/nvzzTffYPDgwfjiiy/g4eFR5nHvvfceALHEbkWsra2f+OT/SarcxeKTTz5BdHQ0pk2bht27d+Orr76Cubk5XnvttRoFYmZmVmE/l5SUlDppQRs1ahS++OILzJ07F+3atUN4eDhCQ0PVb2AxMTEaAxFXrlyJgoICjBw5Eu7u7urliy++0Hqs9VlqaiqWL1+O3bt3q/9oNG3aFDNnzmRyXEs4YKt2ubi4YPr06Rg6dKj63zYmJgaLFy/G0aNHy33zq2sXL17kI3Q9Vpd9VOPi4rBz505kZmZq7Rr13cKFCyEIQqX/Puzdu1crcdy7d69U99OaOHXqFOzs7DQ+jAcHB0Mul+PMmTM1Pv+nn34KR0dHtG/fHp9//jmKioqqfI4qvwMeOHAAEyZMwBdffIHBgwfjnXfewbfffovo6GhERkZWOYBiffv2xfLly8vsQnHmzBl8/fXXFVaGqE1Tp07FvXv3kJ+fjzNnzqBz587qbUeOHMGGDRvUr6Ojo9X/eUsu8+fPr5NY66O///4bixcvRlRUFACxhW7IkCF47733KiyvRyQ1hUKBwYMH4/3331d/6C4sLMSWLVuwYsWKMvvTSeHIkSO4f/++1GFQFUjVRzUjIwN//PGHVvqva6OPanR0NF5++WX4+PjA3Nz8/+3deVxUZfs/8M8sMAw7KDCaCgiJIGlKX5VQccfUckFzzX3LzFzSsjT1cWux1Cwfc8ktLbPENbfcNRSXFvclQUpFVGQTBIa5f3/4Yx5GFtmGMxw+79frvGTuOXPmGi6Hueace4GPjw+mT59u7P4ktezsbDx+/Bipqak4d+4cduzYUeQF0gwGA/766y+zfSk6efJkmX2Rj4uLy9NlQ61Ww9XV1XglvqTGjh2LH374AQcPHsTIkSMxd+5cTJ48udjHKXYXi9jYWLz33nsmbc2aNYMQAnfv3i3xqjuffvopgoOD0axZMzRu3Nh4nCtXriAqKgru7u5m60tFFUNWVhY2b95sMuuHi4sLBg8eDF9fXwkjIyoeLy8vTJkyBREREcb/zxcvXsScOXPQp08fycciZGdnY+/evQgLC0ONGjUkjYWeLXcf1acLGCEEzp8/j/Pnz5utj2pqair27t2Lrl27FvvKU2F9VPv164c7d+5g3759xj6qI0aMKLSPalpaGjp06IAOHTqYrGmQ4/LlyzAYDPjmm2/g6+tr/L08evQI8+fPhxACer0eWVlZJlvuttw/p6enIyMjA3q93tj+9M+5H1fQPjk/516m/vLly8UuSIUQuHTpEoKDg4v1uKK4ffs2bt68WWgXjrlz52Lu3LnG2+np6Thx4gTGjBljbDP3jDkTJkww/ly/fn1YW1tj5MiRmDdvXrGmKSx2gZyRkZGnq0PO7ZKcws7h7e2Nv/76C/PmzcOuXbuwceNGAE/mQX7nnXfw/vvvl6iDOMnDnTt38O233+LWrVvGtgYNGqB///7F7nhPZAmsra3Rq1cvBAYG4rvvvkNSUhIePXqEFStWoHHjxujVq5ekfTuzs7OxZ88etGvXjouIWDBL6aN6//59XLlyBf7+/qU6jhACBoMB586dw+7du/Hrr7/C29sbmZmZmDp1qrFIdnV1zbdgff7555GVlYU///wTAPD9999Do9GYFLv+/v44ffo0IiMjkZWVhYCAAKxYsQKZmZmlqmPKWmZmJhQKRbGKZIVCgaSkJLPNSHPkyBFUr169wAHwo0aNwuuvv2683a9fP4SHh6N79+7GturVq0On0yE+Pt7ksXq9HgkJCaXuO/y0Jk2aQK/XIyYmplgncUu0UEhMTAzOnj1rvJ2UlAQAuHbtWp5BHwCK/I3V3d0dCxYswIIFC0oSFsmQEAK//fYbfvzxR+P0bVZWVggPD0fz5s05kIwqvHr16uHDDz/E999/j99//x3Ak6Ln+vXrGDBgAOrUqSNZbDlnklu1asUVKC1USfqojh49+pn75dd18Fnb0aNHERMTU6wzsDExMdi0aRMuXLhgbMs5C2ptbY2ff/4ZP//8M4D/Ffoff/wxateuXWj8OSdTTp8+/cyzhsnJybC2ti7X4lilUhW6KZVKxMfHl+gMso2NjVnGkAghkJKSAr1eX2CB7OrqatLVUavVwt3dPc9V3uDgYCQmJuLMmTMICgoCABw4cAAGg8GkW2tZ+OOPP6BUKot9krVEBfK0adMwbdq0PO1Pv+lyZrkoav8ZotzS0tKwYcMGky9j1apVw9ChQwsc4UpUEdnb22PYsGGIiorCxo0b8fjxYyQkJGDRokVo06YNXn31VVhZWUkSm8FgwP79+5GSkoIGDRrwS6kFiY2NNRmo/CwGgwF//vknrly5AicnpwIL3ZK6d+8e/vjjj2I9JqebQs7AwhxpaWl5rqAolUpoNBqkpaWVOMYcarUaVlZWSE1NxYULF9C+fXvUqFEDVlZWxvtytty31Wo1rK2toVarIYRAdHQ07OzsYGNjY1LgqtXqfAtftVptnJv3WRo2bIjNmzcX+wyyn5+fWQpkg8EAtbpUCzAb+fv7o0OHDhg+fDiWLl2KrKwsjBkzBr179zZ+vt+6dQtt2rTB2rVrjUtex8XFIS4uDtevXwcAnDt3Dg4ODqhVqxZcXV0RGRmJkydPolWrVnBwcEBkZCTGjx+P/v37w8XFpVgxFvuVrlq1qrgPydeQIUOgUCiwbNkyqFQqDBky5JmPUSgUWLlyZZk8P1m2Gzdu4NtvvzUZbNCsWTP06NGjws9tTJQfhUKBJk2awNfXF2vXrsW1a9cghMCvv/6KixcvYtCgQZL2B46KisK9e/fQokULLjdcDGV12T49PR0JCQl4+PAhEhISkJCQgF9++aVEBe3Vq1fRoEGDUsf0tKIUZWfOnDGe9FAoFNDr9bh79y6OHTtmLBonT54MNzc3xMTEoFGjRiYF6vr161GvXj289tprhRaxZ86cwbZt2zBp0iS4ubmZ3J9zhvbWrVsIDQ1F//79sWLFimK/3rS0NAghzDZPvU6nQ/PmzXH8+PEinWhUKpXw9/cvdiFYHI6OjmV2rPXr12PMmDFo06YNlEolwsPD8eWXXxrvz8rKwpUrV0y+EC1duhQzZ8403m7RogWAJ7XpoEGDoNFo8MMPP2DGjBnIyMiAt7c3xo8fb9IvuaiKXSAPHDiw2E+SnwMHDkCpVMJgMEClUuHAgQPP/EbFMxfyZzAYsHfvXuzYscN4OU2r1aJ///5o2LChxNERmV+VKlXwzjvvYP/+/di+fTv0ej1u376NTz/9FK+++qrxw0QK0dHRiI+PR4sWLVCzZk1JYqhIMjMzERUVVaT+oHq9Hmlpaflu6enpxi5mucXExJSoj2ruGRtyPlfL6t8XXngBgYGB0Gq1+RavKSkpSE5ONi4wkl8fVS8vL6xduxbHjx/HsGHDTH5Hffv2Rfv27dGhQ4dCX2fOdKw6nS7frp+3b99Gq1at8PLLL2PZsmWF/9IkNHToUBw/frzIeW7fvr3ZYtFqtfn+LgtT2HzFrq6uhQ649PLyyvOaZ8yYUegsYY0aNSqzlf/K5lx5CTw95Yy5pqChiiMxMRGrV6/G1atXjW0+Pj4YNGgQqlSpImFkROVLqVSiXbt28Pf3x+rVq3H79m3o9XpERETg/PnzGDBggGTviUePHmHXrl3w9fVF06ZNZbPioTno9XqkpqbC2toaKpUKjx49Qmpqar7/ZmRkFPv41tbWJeqj6uLiYpYpMYUQsLa2ho+PT4H/L+zt7Y0r7wLS9FG9desWWrVqhaCgIKxatcqi53yvV68e5s2bZ5yRo7CV9AYOHGi2AbVKpRK+vr6VqsusZAXy02JjY+Hm5lbgqO309HTcu3ePo6ll6ty5c1i7dq2xH5rUS/ESWYIaNWrgvffew/bt27F//34IIXDt2jXMmTMHvXr1QuPGjSW7snb9+nXcvHkTQUFBCAwMtOgiozxkZWUhISEBDx48MG7x8fG4efMm0tPTjcvjFpdCoTCuzOrg4GDyb6tWrXDo0CGL6qP6dF/ikjJXH9Vbt26hZcuW8PT0xPz583Hv3j3jc5b17AllpXXr1vj222+xcuVKHD161CTfCoUC/v7+aN++vVnrIz8/P9ja2laqRWEspkD29vbGunXr0Ldv33zv37ZtG/r27Vupvr1UBllZWYiIiDC5DOPs7IxBgwZJOnqfyFJYWVmhe/fuCAwMxNq1a5GQkIDHjx9jzZo1+Ouvv9CnTx/JlrXPysrCiRMncOXKFbRs2RJubm6SxFEesrOz8fDhQ9y/f9+kCM7ZcmZzKi6FQgFbW1s4ODjkKYDt7e1hZ2dXaDFraX1U8+sKUlLm6KO6b98+XL9+HdevX8/Tp99SVrPMT7169fDFF18gLi4Offr0QUpKCrRaLSZNmmTWfAJPruRWrVq1xF/yKiqLKZCf9R8zKyur0p+hkJu7d+9i5cqV+Pfff41t9evXR//+/SX7wCeyVHXq1MGHH36IjRs3IioqCgDw+++/48aNG3jjjTcQEBAgWWwPHz7Eli1bEBISImkcpZGdnY3ExMR8i98HDx4gMTGxxAWUVquFo6NjvmeB7ezsSnWVzJL6qAIo9iDq8u6jWtCiJBWFTqeDVqtFSkoKrK2tzV4c16hRo9LOGiVpgZycnGyyDOSDBw8QGxubZ7/ExET88MMPJv2WqOISQuDEiRPYuHGjcbCIWq1GeHg4WrRowcGYRAXQarUYNGgQ6tevj++//x6PHj1CUlISvvrqK4SGhqJbt26SzfIihMCxY8fw+PFjyVcCzI/BYEBSUlKBBfDDhw9NVjErDkdHR7i6uqJq1aom/9rZ2eH8+fNwdnY2yywHgOX0UQWeXO0wd8FG5cfNzc0si8pUFJIWyAsWLMB//vMfAE8uM40bNw7jxo3Ld18hBGbPnl2O0ZE5pKen4/vvv8fp06eNbTqdDkOGDOGStkRF1KhRI9SuXRvfffedcdnWw4cP4/Llyxg0aBA8PT0li+306dNQqVRmmUasMEIIJCcnF1oAl3S6NXt7e7i6uqJKlSrGLacIrlKlSoFfStLS0splDIUl9FFVKpV4/vnnzXZ8Kl+Ojo6oU6dOpT5hJWmB3L59e9jb20MIgcmTJ6NPnz55zjwoFArY2dkhKCgIL730kkSRUlmIjo7Gt99+iwcPHhjbQkJC0KNHD86rSlRMzs7OeOutt3DkyBFs3rwZWVlZuHv3Lj777DN07NgRYWFhkg1wPXnyJFQqFQIDA8vsmEIIpKamFlgAJyQklLj/q1arNSl4ny6CzXX2tyxJ2UdVpVIhICAANjY2lWoQl1zZ2NjA39+/0ndrlbRADg4ORnBwMIAnUweFh4eX6R9UsgwGgwH79u3D9u3bTeY27tu3r3H6HiIqPoVCgdDQUPj5+WH16tWIjY2FwWDAjh07cOHCBQwcODDP8qqxsbHGmQYyMjKQkJBglim/fvvtN6hUKvj7+xdpfyEE0tLSCi2ASzIVGgBoNJo8Z31zb3Kaqq68+6ja2NggICAAdnZ2lW4QlxxZWVkhMDCQC3LBQgbppaWl4csvv4StrS0LZJlJSkrCmjVrcPnyZWObt7c3hgwZwrmNicqITqfDpEmT8Msvv2D37t3GJXDnzp2LHj16ICQkBKdOncKsWbOwc+dO4yX49PR0fPDBB3jhhRfQqVOnMu9vePToUQAwFsnp6ekFFsAPHjwodoH1+PFjHDt2DDExMVCpVGjYsCFGjhyJ6tWrmxTEdnZ2xkvFjx8/xsSJE/HDDz8gIyMDYWFhWLJkCTw8PAA8GQvTr18//PXXX3jw4AHc3d3RpUsXzJ07t0xXEZODKlWq4Pnnn5dsGXQqWzlXfQqabreysYgC2dbWFmq1GnZ2dlKHQmXowoULWLNmjXEVKYVCgbCwMHTq1IlzGxOVMZVKhVdffRWBgYFYvXo17t27h8zMTGzYsAFr167FqlWrIITIM+pfCIHz58/j/PnzGD58eKkG2AkhoNfrTbaIiAhs3rwZDx8+NJmOq6i2bt2KgIAAhISE5BkE9+6778LGxgZHjhyBXq/H4MGDsWfPnkJnPhg/fjx27tyJTZs2wcnJCWPGjEH37t1x/PhxAE/60nbp0gWzZ8+Gm5sbrl+/jrfeegsJCQmFHrey8fb2xnPPPVep+6jKSU5xzBmk/sciCmQACA8Px08//YQ333yTb7gKLisrC1u3bsWBAweMbU5OThg0aBD8/PwkjIxI/ry9vTFlyhRs3rwZx44dw927dxEREVHoFGA5XZ+WL1+O9957r8AzyTkFcHZ2dp5CWK/XFzoLRO7ljZ+mUqng6uqa70wQOXM9DxkyxOQxly5dwuHDh3Hq1Cnj+JTFixejY8eOmD9/fr5TUyUlJWHlypXYsGEDWrduDeDJ/Lj+/v44ceIEmjZtChcXF7z55pvGx3h6emL06NH47LPPCoy/MlGr1fD39y/2ksNkuVQqFerVq8crJE+xmAK5d+/eGD16NFq1aoXhw4fDy8sr39P8ljh9UGUTGxuL/fv3IyUlBQ4ODmjTpo1xdPTdu3fx7bff4p9//jHuHxgYiAEDBvCbKVE5sbGxQd++ffHCCy+gW7duxXrsjh07MGzYMJPCN6cgLs1CTS4uLnB2djbp+pDzr7Ozc4EDgtRqdb73RUZGwtnZ2WTwdtu2baFUKnHy5Ml8X/eZM2eQlZWFtm3bGtvq1q2LWrVqITIyEk2bNs3zmNu3b2Pz5s0IDQ0tycuWFa1Wi3r16vESvIzkFMdOTk5Sh2JxLKZAbtmypfHnnH5ruQkhoFAouJKehKKiokz6MCqVShgMBigUCnTu3Bldu3bFuXPnjANp1Go1unXrhpYtW/KqAJEEnJyccOPGjSIvcGEwGHDu3Dlcu3at2B+YKpUKarXaZMvdplAoMGDAgDKbsSYuLi7PAES1Wg1XV1fExcUV+Bhra+s8Zz89PDzyPKZPnz7YunUr0tPT8eqrr2LFihVlEndF5ezsjLp167K/sYyo1WqeOS6ExRTIq1atkjoEKsTmzZvRq1cvkz6MOZdThRDYuXMnduzYgfbt26N27drw8PDAkCFDULNmTSnDJrJ4mZmZJZ6f91l++eWXEq3+FhMTk2ceY5VKZSx48/u3sC/BOX8rbt68CS8vr0JHyM+dOxdz58413k5PT8eJEycwZswYY1vO3M/mtGDBAkyfPh1Xr17FlClTMGHCBCxZssTsz2uJqlevDm9v70o/7ZecaDQa1KtXj2O/CmExBfLAgQOlDsHo66+/xmeffYa4uDg0aNAAixcvRuPGjQvcf9OmTZg2bRpiYmLw/PPP45NPPkHHjh3LMWLzioqKQq9evZCdnV3gh23OB+DevXsxffp0vP/++5zbmOgZMjMzERUVZRzIWtb+/PPPIi9BnEOhUMBgMECr1UKpVBq3pwvg3APyiuro0aOIj49H48aNCyySR40ahddff914u1+/fggPD0f37t2NbdWrV4dOp0N8fLzJY/V6PRISEqDT6fI9tk6nQ2ZmJhITE03OIt+9ezfPY3Q6HXQ6HerWrQtXV1c0b94c06ZNq1QrulpbW8PX15czDsmMg4MD/P39+Rn9DBZTIOeWmppq7MNas2bNcu27unHjRkyYMAFLly5FkyZNsHDhQoSFheHKlSt5LucBT+b67NOnD+bNm4fOnTtjw4YN6Nq1K86ePSubKetmz56d7+j3/CiVSpw9e5ZvPKIi0Ov1SE1NhbW1tVneMy4uLsU+gyyEgIODg1n6maampiIlJQV6vb7AAjlnsF4OrVYLd3d3+Pr6muwXHByMxMREnDlzxjif+oEDB2AwGNCkSZN8jx0UFAQrKyvs378f4eHhAIArV64gNjbWOCd/fnJOAJR0HuaKqFq1avD09GSXCpnR6XTw8fHh1YAisKjf0KlTp9CqVSu4uLggMDAQgYGBcHFxQevWrU2WJjanL774AsOHD8fgwYMREBCApUuXwtbWFt9++22++y9atAgdOnTApEmT4O/vj1mzZqFRo0b46quvyiVec4uNjcWOHTuK3Pc7Ozsb27dvR2xsrJkjI5IPjUYDGxubMt9CQkKK3f9foVDAz8/P5OxxWW3Z2dnGRUpKy9/fHx06dMDw4cMRFRWF48ePY8yYMejdu7dxBotbt26hbt26iIqKAvCkT/bQoUMxYcIEHDx4EGfOnMHgwYMRHBxsHKD3yy+/YNWqVTh//jxiYmKwc+dOjBo1CiEhIWU+T7QlcnR0RMOGDeHr68viWEZylgJ//vnnWRwXkcWcQT558iRatmwJa2trDBs2zDix/KVLl/D999+jRYsWOHToUKFdHUorMzMTZ86cwZQpU4xtSqUSbdu2RWRkZL6PiYyMxIQJE0zawsLCsGXLlgKfJyMjw+RMRM7lVb1eX+KlUs1lz549JToDtXfvXovqNlNRZWVlQa/X49GjR2brp2pJMjIyjO8DS3svmIO582tvb4+mTZvixIkTRXofKxQK+Pv7w97e3iy/fyEEUlJSipVfIQSys7Pz3X/16tV455130KZNGyiVSnTr1g0LFiww7puWloYrV64gOTnZ2Pbpp58CeDK1aEZGBtq1a4fFixcb77eyssKyZcswfvx4ZGRkoEaNGujatSsmT55c7N+JVO/f3ONDihqzSqVCzZo14ebmBgAl6vbD92/5KG5+NRoNfH19YWdnV6ruXOWZX4v4ciYsRJs2bYSPj4+4c+dOnvvi4uKEj4+PaNu2rVljuHXrlgAgfvvtN5P2SZMmicaNG+f7GCsrK7FhwwaTtq+//lq4u7sX+DzTp08XALhx48aNGzdu3Lg9tVkCizqD/NFHH+U7uMLDwwMjRozArFmzJIis7OWMiM7xxx9/IDQ0FCdPnkTDhg0ljCyv1atXY8SIEcV+3PLly3kGuYyYc5YDS6RWqwud5UBuyiO/27Ztw+DBgyGEyHcxj5xuGEOHDsWLL75olhiUSiWaNGkCPz8/5tfM/P39cefOHTg5OWHOnDmF7uvk5IT27duXWR94vn/Nr6j59fLyQnBwcJmuXFuZ8msxBbJSqSz0P1l2drbZ+81UrVoVKpUKd+/eNWnPb4RzDp1OV6z9gSeXO3L/McoZhKhWqy3jskIuYWFhJRoF3759e4t7LRUVf4/yVh75feONN1C3bl3MmjULO3bsMHk/KxQK1K9fHx07djRbH1s7Ozu0bdsWHh4eZjm+JZPi/ZvzWalQKAp9fmtra7z22mucB7cULDW/derUQWhoKNcgKAWL6an98ssv4+uvv8bNmzfz3BcbG4slS5YgJCTErDFYW1sjKCgI+/fvN7YZDAbs37+/wBHOwcHBJvsDwL59+wodEV2R1KpVC507dy7yN1CVSoVXX33VuLIeEVmG//u//8O2bdsQExNjnOJMq9Vi7ty5GD16tNmK45o1ayI8PLxSFseWLjg4mMWxDHl6erI4LgMWcwZ57ty5aNGiBerWrYtu3bqhTp06AJ5MwbN161ao1WrMmzfP7HFMmDABAwcOxEsvvYTGjRtj4cKFePToEQYPHgwAGDBgAJ577jljLO+88w5CQ0Px+eefo1OnTvjhhx9w+vRpLFu2zOyxlpdp06Zh165dzzyTrFAooFAoMHXq1HKMjoiKo1atWrCzs0NiYiI0Go3JlGplrVGjRggKCuIHtQWqXbu28XOW5CNn5i++50rPYgrkhg0b4uTJk/jwww+xbds2pKWlAQBsbW3RoUMHzJ49GwEBAWaPo1evXrh37x4++ugjxMXF4cUXX8Tu3buNZz9iY2NNunq8/PLL2LBhA6ZOnYoPPvgAzz//PLZs2SKbOZCBJ2eeNm7caFxJL78p33JW0vrxxx/xf//3fxJESUSWQqVSoWXLlvDx8ZE6FMqHi4sLzzDKkEqlQtu2bdktr4xYTIEMAAEBAYiIiIDBYMC9e/cAAG5ubuU+Z9+YMWNMljXN7dChQ3naevbsiZ49e5o5Kml1794dv/32m0kfRqVSCYPBAIVCgU6dOmHq1KksjokqOWtra4SFhVWqFecqEq1Wiw4dOrCIkqFGjRrBxcVF6jBkw6IK5Bw5l+pzfibLkNOHMTY2FgcOHEBycjIcHR3RunVr9jkmItjb2yMsLIxLE1solUqF9u3bw8HBQepQqIw5OTmhfv36UochKxZVIF+8eBEfffQR9uzZY9LFIiwsDDNmzJBVt4WKrFatWhg0aJDUYRCRBalZsyZatmxpliWqqWy8/PLLHCwpU02aNCnT6dzIggrko0eP4pVXXoHBYECXLl1MBult27YNu3btwu7du9G8eXOJIyUiohzW1tZo2rQp/Pz8eMXPgnl5eaFu3bpSh0FlQKfTwWAwGLvJVK1aFZ6enhJHJT8WUyCPHz8e7u7uOHz4MGrWrGly3z///IMWLVpgwoQJOHXqlEQREhFRbl5eXggJCYGdnZ3UoVAhrKysEBISwi8wMnH69GncuXMH27dvBwA0aNCAuTUDi5kH+cKFCxg9enSe4hh4cunuzTffxIULFySIjIiIctNoNGjdujXatWvH4rgCqFevHvMkU1qtFt7e3lKHIUsWcwbZ09MTGRkZBd6fmZmZb/FMRETlp2bNmggNDYWtra3UoVABdDod9Ho9NBoNFAoF6tWrJ3VIZCbe3t7lPtNXZWExBfJHH32E8ePHo1OnTnjxxRdN7vv999+xePFiLFy4UJLYiIgqO7VajeDgYNStW5eXcy3c6dOncenSJRw9ehQ6nY5nj2WMJw7Nx2IK5BMnTsDDwwNBQUF4+eWX4evrCwC4du0aIiMjERgYiMjISERGRhofo1AosGjRIqlCJiKqFJycnNCuXTuzrrpH5sEpOOVNp9NJHYJsWUyB/NVXXxl/Pn78OI4fP25y/7lz53Du3DmTNhbIRETm9dxzz6Ft27bQaDRSh0IlUL16dalDIDOxs7Pj+9KMLKZANhgMUodARES51KlTBy1atGAfxwrK2toaVatWlToMMhMnJyepQ5A1iymQiYjIcrzwwgto2rQp+xtXYDqdjvmTMXt7e6lDkDWLK5Cjo6Oxa9cu3Lx5E8CT2S1eeeUVTmNCRFRO/P39WRzLAFfNkzcOvjQviyqQJ06ciEWLFuXpbqFUKjFu3DjMnz9fosiIiCqHGjVqcFEJmWD3CnnjVIvmZTEdyz7//HMsWLAA3bt3R2RkJBITE5GYmIjIyEj06NEDCxYswIIFC6QOk4hItuzt7dG6dWv2OZYJFxcXqUMgM2KBbF4WcwZ5+fLleO211/Djjz+atDdp0gQ//PADHj9+jG+++Qbjx4+XKEIiInlr2bIlbGxspA6DyoBSqeQleJljgWxeFnOaICYmBmFhYQXeHxYWhpiYmPILiIioEvHz8+OUYDJiY2PDbjIyxwLZvCymQHZ3d8eff/5Z4P1//vkn3NzcyjEiIqLKQaPRoEmTJlKHQWWI8+PKHwtk87KYArlnz55YsWIFPv74Yzx69MjY/ujRI3zyySdYsWIFevXqJWGERETyoNPp4ObmBkdHRwBAUFAQu1bIjFptMT0oyQysrKygUqmkDkPWFEIIIXUQAJCWloZXX30VBw8ehFqtNl7qu337NvR6PVq1aoXt27fL8hvT2bNnERQUhDNnzqBRo0ZSh0NElUBkZCTOnTsHBwcHvP766/ywlZmHDx9ykJ6MpaSkwMHBQeowZM1iziDb2tpi//79iIiIwJAhQ+Dv7w9/f38MGTIEW7Zswa+//mr24jghIQH9+vWDo6MjnJ2dMXToUKSmpha6/9tvvw0/Pz9otVrUqlULY8eORVJSklnjJCIqK4GBgSyOZYgzkciblZWV1CHInkVcg0lLS0P//v0RHh6Ofv36oUuXLpLE0a9fP9y5cwf79u1DVlYWBg8ejBEjRmDDhg357n/79m3cvn0b8+fPR0BAAG7evIlRo0bh9u3b+Omnn8o5eiKi4lEoFPD19ZU6DDIDFsjyxi+15mcRBbKtrS1+/fVXvPLKK5LFcOnSJezevRunTp3CSy+9BABYvHgxOnbsiPnz5+c7ujswMBA///yz8baPjw/mzJmD/v37Q6/Xsw8YEVk0V1dXaLVaqcMgM2ABJW/Mr/lZzFfMZs2aITIyUrLnj4yMhLOzs7E4BoC2bdtCqVTi5MmTRT5OUlISHB0dCy2OMzIykJycbNwK68ZBRGQunBlIvlhAyRun8DM/iymQv/rqKxw9ehRTp07Fv//+W+7PHxcXB3d3d5M2tVoNV1dXxMXFFekY9+/fx6xZszBixIhC95s3bx6cnJyMW2hoaInjJiIqKVdXV6lDIDNhFwui0rGYd1CDBg3w77//Yt68efD09IRGo4Gjo6PJ5uTkVOzjvv/++1AoFIVuly9fLnX8ycnJ6NSpEwICAjBjxoxC950yZQqSkpKM2+HDh0v9/ERExcUCWb54hlHemF/zs5hOsuHh4WZJ+MSJEzFo0KBC96lduzZ0Oh3i4+NN2vV6PRISEqDT6Qp9fEpKCjp06AAHBwdEREQ8c3SpRqMxmcTd3t6+8BdBRGQGVapUkToEMhMWUPImhGCOzcxiCuTVq1eb5bhubm5F6mcXHByMxMREnDlzBkFBQQCAAwcOwGAwFLrCVHJyMsLCwqDRaLBt2zZOtk9EFYKdnR1XW5MxC1nigKjCkrxAfvz4MbZu3Yro6GhUrVoVnTp1QrVq1co9Dn9/f3To0AHDhw/H0qVLkZWVhTFjxqB3797GGSxu3bqFNm3aYO3atWjcuDGSk5PRvn17pKWl4bvvvjMOugOeFOYcJEFElipnFT2SJ55dJCodSQvk+Ph4vPzyy4iOjjZ+27W1tcWWLVvQtm3bco9n/fr1GDNmDNq0aQOlUonw8HB8+eWXxvuzsrJw5coVpKWlAXiyAl7ODBdPzyUaHR0NLy+vcoudiKg45LgqKf0PT9DIG7tYmJ+kS02//fbb+O9//4tx48ahdevWuH79OmbNmgVHR0f8/fffUoVV7rjUNBGVt8TERDg7O0sdBhGVQHZ2Nr8EmZmkZ5D37t2LAQMGYP78+cY2Dw8P9O3bF1euXIGfn5+E0RERyRc/XImICibpNG+xsbFo1qyZSVuzZs0ghMDdu3clioqISP54eZao4uL71/wkLZAzMjLyzPqQc1uv10sREhFRpcAPWKKKiwvBmJ/ks1jExMTg7NmzxttJSUkAgGvXruXbP459dImISo8FMhFRwSQdpKdUKvP9I53f6Myctuzs7PIKr9xwkB4Rlbe0tDTOZEFEVABJzyCvWrVKyqcnIqq0eAaZiKhgkhbIAwcOlPLpiYgqLRbIREQFYy9vIqJKiAUyEVHBWCATEVVCLJCJiArGApmIqBKysrKSOgQiIovFApmIqBLiGWQiooKxQCYiIiIiyoUFMhERERFRLiyQiYiIiIhyYYFMRERERJQLC2QiIiIiolxYIBMRERER5SLpUtNUsd25cwd37tyROgwiIqJKpVq1aqhWrZrUYcgaC2QLUK1aNUyfPr1C/WfPyMhAnz59cPjwYalDISIiqlRCQ0OxZ88eaDQaqUORLYUQQkgdBFU8ycnJcHJywuHDh2Fvby91OFTGUlNTERoayvzKFPMrb8yvvOXkNykpCY6OjlKHI1sskKlEcgpkvkHlifmVN+ZX3phfeWN+ywcH6RERERER5cICmYiIiIgoFxbIVCIajQbTp0/nAAGZYn7ljfmVN+ZX3pjf8sE+yEREREREufAMMhERERFRLiyQiYiIiIhyYYFMRERERJQLC2QiIiIiolxYIBNVQAqFokjboUOHSv1caWlpmDFjRrGONWfOHLz22mvw8PCAQqHAjBkzSh1HZWPJOb58+TImT56MF198EQ4ODqhWrRo6deqE06dPlzqWysKS83v79m30798ffn5+cHBwgLOzMxo3bow1a9aA4/qLxpLz+7T169dDoVBw1cWnqKUOgIiKb926dSa3165di3379uVp9/f3L/VzpaWlYebMmQCAli1bFukxU6dOhU6nQ8OGDbFnz55Sx1AZWXKOV6xYgZUrVyI8PByjR49GUlISvvnmGzRt2hS7d+9G27ZtSx2T3Flyfu/fv49///0XPXr0QK1atZCVlYV9+/Zh0KBBuHLlCubOnVvqmOTOkvObW2pqKiZPngw7O7tSxyE7gogqvLfeekuY6+187949AUBMnz69yI+Jjo4u8WMpf5aU49OnT4uUlBSTtvv37ws3NzcREhJihgjlz5LyW5DOnTsLOzs7odfryyawSsRS8/vee+8JPz8/0a9fP2FnZ1f2wVVg7GJBJFMGgwELFy5EvXr1YGNjAw8PD4wcORIPHz402e/06dMICwtD1apVodVq4e3tjSFDhgAAYmJi4ObmBgCYOXOm8bLgs7pMeHl5meMl0VOkynFQUFCey7FVqlRB8+bNcenSpbJ9kZWYlO/h/Hh5eSEtLQ2ZmZmlfm0kfX6vXbuGBQsW4IsvvoBazQ4FT+NvhEimRo4cidWrV2Pw4MEYO3YsoqOj8dVXX+H333/H8ePHYWVlhfj4eLRv3x5ubm54//334ezsjJiYGGzevBkA4Obmhv/+979488030a1bN3Tv3h0AUL9+fSlfGv1/lpbjuLg4VK1atUxfY2UmdX7T09Px6NEjpKam4vDhw1i1ahWCg4Oh1WrN+rorC6nzO27cOLRq1QodO3bEjz/+aNbXWiFJfQqbiErv6ct3R48eFQDE+vXrTfbbvXu3SXtERIQAIE6dOlXgsUtz+Y5dLMqOpeY4x5EjR4RCoRDTpk0r8TEqM0vM77x58wQA49amTRsRGxtbrGPQE5aW3x07dgi1Wi0uXLgghBBi4MCB7GLxFHaxIJKhTZs2wcnJCe3atcP9+/eNW86l8YMHDwIAnJ2dAQA7duxAVlaWhBFTcVlSjuPj49G3b194e3tj8uTJZnmOysYS8tunTx/s27cPGzZsQN++fQE8OatMpSdlfjMzMzF+/HiMGjUKAQEBZXJMOWKBTCRD165dQ1JSEtzd3eHm5maypaamIj4+HgAQGhqK8PBwzJw5E1WrVkWXLl2watUqZGRkSPwK6FksJcePHj1C586dkZKSgq1bt3KqqDJiCfn19PRE27Zt0adPH6xfvx61a9dG27ZtWSSXASnzu2DBAty/f9848wXlj32QiWTIYDDA3d0d69evz/f+nEEdCoUCP/30E06cOIHt27djz549GDJkCD7//HOcOHGCxY4Fs4QcZ2Zmonv37vjrr7+wZ88eBAYGlvhYZMoS8vu0Hj16YPny5Thy5AjCwsLK7LiVkVT5TUpKwuzZszF69GgkJycjOTkZwJPp3oQQiImJga2tLdzd3Uv3AuVA6j4eRFR6T/dvGz16tFCpVCItLa3Yx1q/fr0AIJYvXy6EeDJ9F9gHWXKWluPs7GzRq1cvoVKpxM8//1zsGMiUpeU3P1u2bBEAxMaNG0t1nMrIUvIbHR1t0q88v61Lly7FjkmO2MWCSIZef/11ZGdnY9asWXnu0+v1SExMBAA8fPgwz8pYL774IgAYL+HZ2toCgPExZBmkzvHbb7+NjRs3YsmSJcaR81R2pMzvvXv38m1fuXIlFAoFGjVqVKTjUMGkyq+7uzsiIiLybK1atYKNjQ0iIiIwZcqUkr8wGWEXCyIZCg0NxciRIzFv3jz88ccfaN++PaysrHDt2jVs2rQJixYtQo8ePbBmzRosWbIE3bp1g4+PD1JSUrB8+XI4OjqiY8eOAACtVouAgABs3LgRderUgaurKwIDAwu9nL5u3TrcvHkTaWlpAIAjR45g9uzZAIA33ngDnp6e5v8lyJyUOV64cCGWLFmC4OBg2Nra4rvvvjO5v1u3blyZq5SkzO+cOXNw/PhxdOjQAbVq1UJCQgJ+/vlnnDp1Cm+//TZ8fX3L81chS1Ll19bWFl27ds3TvmXLFkRFReV7X6Ul7QlsIioLBa3StGzZMhEUFCS0Wq1wcHAQL7zwgpg8ebK4ffu2EEKIs2fPij59+ohatWoJjUYj3N3dRefOncXp06dNjvPbb7+JoKAgYW1tXaRLeaGhoQVevjt48GBZvexKxZJyPHDgwEIv0easpEhFZ0n53bt3r+jcubOoXr26sLKyEg4ODiIkJESsWrVKGAyGMn3dlYUl5Tc/nOYtL4UQT527JyIiIiKqxNgHmYiIiIgoFxbIRERERES5sEAmIiIiIsqFBTIRERERUS4skImIiIiIcmGBTERERESUCwtkokooJiYGCoUCq1evljoUMgPmV96YX3ljfi0DC2QiIiIioly4UAhRJSSEQEZGBqysrKBSqaQOh8oY8ytvzK+8Mb+WgQUyEREREVEu7GJBVEHNmDEDCoUCV69eRf/+/eHk5AQ3NzdMmzYNQgj8888/6NKlCxwdHaHT6fD5558bH5tfH7dBgwbB3t4et27dQteuXWFvbw83Nze8++67yM7ONu536NAhKBQKHDp0yCSe/I4ZFxeHwYMHo0aNGtBoNKhWrRq6dOmCmJgYM/1W5IP5lTfmV96Y34qPBTJRBderVy8YDAZ8/PHHaNKkCWbPno2FCxeiXbt2eO655/DJJ5/A19cX7777Lo4cOVLosbKzsxEWFoYqVapg/vz5CA0Nxeeff45ly5aVKLbw8HBERERg8ODBWLJkCcaOHYuUlBTExsaW6HiVEfMrb8yvvDG/FZggogpp+vTpAoAYMWKEsU2v14saNWoIhUIhPv74Y2P7w4cPhVarFQMHDhRCCBEdHS0AiFWrVhn3GThwoAAg/vOf/5g8T8OGDUVQUJDx9sGDBwUAcfDgQZP9nj7mw4cPBQDx2Weflc0LrmSYX3ljfuWN+a34eAaZqIIbNmyY8WeVSoWXXnoJQggMHTrU2O7s7Aw/Pz/cuHHjmccbNWqUye3mzZsX6XFP02q1sLa2xqFDh/Dw4cNiP56eYH7ljfmVN+a34mKBTFTB1apVy+S2k5MTbGxsULVq1Tztz/pDaGNjAzc3N5M2FxeXEv0B1Wg0+OSTT7Br1y54eHigRYsW+PTTTxEXF1fsY1VmzK+8Mb/yxvxWXCyQiSq4/KYBKmhqIPGMSWuKMqWQQqHItz33QJEc48aNw9WrVzFv3jzY2Nhg2rRp8Pf3x++///7M56EnmF95Y37ljfmtuFggE1GxuLi4AAASExNN2m/evJnv/j4+Ppg4cSL27t2L8+fPIzMz02TENlkW5lfemF95Y37LDgtkIioWT09PqFSqPCOulyxZYnI7LS0Njx8/Nmnz8fGBg4MDMjIyzB4nlQzzK2/Mr7wxv2VHLXUARFSxODk5oWfPnli8eDEUCgV8fHywY8cOxMfHm+x39epVtGnTBq+//joCAgKgVqsRERGBu3fvonfv3hJFT8/C/Mob8ytvzG/ZYYFMRMW2ePFiZGVlYenSpdBoNHj99dfx2WefITAw0LhPzZo10adPH+zfvx/r1q2DWq1G3bp18eOPPyI8PFzC6OlZmF95Y37ljfktG1xqmoiIiIgoF/ZBJiIiIiLKhQUyEREREVEuLJCJiIiIiHJhgUxERERElAsLZCIiIiKiXFggE5FZxcTEQKFQYPXq1VKHQmbA/Mob8ytvzG/BWCATWZC///4bI0eORO3atWFjYwNHR0eEhIRg0aJFSE9PN9vzXrx4ETNmzEBMTIzZnqMo5syZg9deew0eHh5QKBSYMWOGpPGUNeaX+TUH5rd8ML/yzu/TuFAIkYXYuXMnevbsCY1GgwEDBiAwMBCZmZk4duwYJk2ahAsXLmDZsmVmee6LFy9i5syZaNmyJby8vMzyHEUxdepU6HQ6NGzYEHv27JEsDnNgfplf5rfiYn7lnd/8sEAmsgDR0dHo3bs3PD09ceDAAVSrVs1431tvvYXr169j586dEkb4P0IIPH78GFqttsyPHR0dDS8vL9y/fx9ubm5lfnypML9PML/SY36Lj/l9Qq75LQi7WBBZgE8//RSpqalYuXKlyR/fHL6+vnjnnXeMt/V6PWbNmgUfHx9oNBp4eXnhgw8+QEZGhsnjvLy80LlzZxw7dgyNGzeGjY0NateujbVr1xr3Wb16NXr27AkAaNWqFRQKBRQKBQ4dOmRyjD179uCll16CVqvFN998AwC4ceMGevbsCVdXV9ja2qJp06al+qCQ8uyIOTG//4tXjpjf/8UrR8zv/+KtVAQRSe65554TtWvXLvL+AwcOFABEjx49xNdffy0GDBggAIiuXbua7Ofp6Sn8/PyEh4eH+OCDD8RXX30lGjVqJBQKhTh//rwQQoi///5bjB07VgAQH3zwgVi3bp1Yt26diIuLMx7D19dXuLi4iPfff18sXbpUHDx4UMTFxQkPDw/h4OAgPvzwQ/HFF1+IBg0aCKVSKTZv3myMITo6WgAQq1atKvLru3fvngAgpk+fXuTHWDLm1xTzy/xWJMyvKbnltyAskIkklpSUJACILl26FGn/P/74QwAQw4YNM2l/9913BQBx4MABY5unp6cAII4cOWJsi4+PFxqNRkycONHYtmnTJgFAHDx4MM/z5Rxj9+7dJu3jxo0TAMTRo0eNbSkpKcLb21t4eXmJ7OxsIQT/ADO/eTG/zG9FwfzmJaf8FoZdLIgklpycDABwcHAo0v6//PILAGDChAkm7RMnTgSAPJfQAgIC0Lx5c+NtNzc3+Pn54caNG0WO0dvbG2FhYXniaNy4MZo1a2Zss7e3x4gRIxATE4OLFy8W+fhyxvzKG/Mrb8xv5cUCmUhijo6OAICUlJQi7X/z5k0olUr4+vqatOt0Ojg7O+PmzZsm7bVq1cpzDBcXFzx8+LDIMXp7e+cbh5+fX552f39/4/3E/Mod8ytvzG/lxQKZSGKOjo6oXr06zp8/X6zHKRSKIu2nUqnybRdCFPm5zDEiurJgfuWN+ZU35rfyYoFMZAE6d+6Mv//+G5GRkc/c19PTEwaDAdeuXTNpv3v3LhITE+Hp6Vns5y/qH/On47hy5Uqe9suXLxvvpyeYX3ljfuWN+a2cWCATWYDJkyfDzs4Ow4YNw927d/Pc//fff2PRokUAgI4dOwIAFi5caLLPF198AQDo1KlTsZ/fzs4OAJCYmFjkx3Ts2BFRUVEmHxqPHj3CsmXL4OXlhYCAgGLHIVfMr7wxv/LG/FZOXCiEyAL4+Phgw4YN6NWrF/z9/U1Wavrtt9+wadMmDBo0CADQoEEDDBw4EMuWLUNiYiJCQ0MRFRWFNWvWoGvXrmjVqlWxn//FF1+ESqXCJ598gqSkJGg0GrRu3Rru7u4FPub999/H999/j1deeQVjx46Fq6sr1qxZg+joaPz8889QKov//XvdunW4efMm0tLSAABHjhzB7NmzAQBvvPFGhT3rwfw+wfwyvxUR8/uEXPNbIGkn0SCi3K5evSqGDx8uvLy8hLW1tXBwcBAhISFi8eLF4vHjx8b9srKyxMyZM4W3t7ewsrISNWvWFFOmTDHZR4gnUwB16tQpz/OEhoaK0NBQk7bly5eL2rVrC5VKZTKlUEHHEOLJHJ09evQQzs7OwsbGRjRu3Fjs2LHDZJ/iTCMUGhoqAOS75TfFUUXD/DK/QjC/FRXzK+/8Pk0hRDF6ghMRERERyRz7IBMRERER5cICmYiIiIgoFxbIRERERES5sEAmIiIiIsqFBTIRERERUS4skImIiIiIcmGBTERERESUCwtkIiIiIqJcWCATEREREeXCApmIiIiIKBcWyEREREREubBAJiIiIiLKhQUyEREREVEu/w9jOHjelIkoqQAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -1827,7 +1827,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq4AAAInCAYAAABZQNsWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAktdJREFUeJzs3XdYU+ffBvA7YQ8RkSlVQa0Dt1gsLtSiWEedLXVUq3VUa63SobjQOqjWha2jbvtrrXY56kAtjlpFUdHWOqgLcbFENiQkOe8fvqZNGUJIcpJwf64rV82Zd/oIfvOc5zxHIgiCACIiIiIiIycVOwARERERUXmwcCUiIiIik8DClYiIiIhMAgtXIiIiIjIJLFyJiIiIyCSwcCUiIiIik8DClYiIiIhMAgtXIiIiIjIJLFyJiIiIyCSwcK2gR48eYe7cuXj06JHYUYiIiIiqFBauFfTo0SPMmzePhSsRERGRgbFwJSIiIiKTwMKViIiIiEwCC1ciIiIiMgkmXbj+9ttv6Nu3L2rVqgWJRILdu3c/d5/jx4+jTZs2sLGxQYMGDbB161a95yQiIiKiyjPpwjUvLw8tW7bE6tWry7X9nTt30Lt3b3Tt2hWXLl3ClClTMGbMGBw6dEjPSYmIiIiosizFDlAZr776Kl599dVyb79u3Tr4+vpi2bJlAIAmTZrg999/x4oVKxASEqKvmERERESkAyZduFZUbGwsgoODNZaFhIRgypQppe4jk8kgk8nU73Nzc/UVr1Tnx4+HPCPD4OcVi7WLC9p+9ZXYMfRm/PjzyMiQix3DYFxcrPHVV23FjqE3r817DWlZaWLHMBi36m7YG7FX7Bh6Ne+1echKyxI7hsFUd6uOiL0RYsfQm/M7x0OeV4X+DXVwQdtQ8/03tEoVrsnJyfDw8NBY5uHhgezsbBQUFMDOzq7YPpGRkZg3b56hIpZInpEBeXq6qBlIdzIy5EhPrzqFq7lLy0pD8pNksWOQDmWlZeFJ8hOxY5COyPMyIM/jv6HmokoVrtoIDw9HWFiY+v2lS5cQFBQkThipFNYuLuKc2wDkGRmASiV2DIORSp/2RpqrjAx5VWpOSCVSuDu7ix1Db1IzU6ESqlCDApBIJXB2dxY7ht5kpmZCUAlixzAciRTW9mb8b2h+BlAFfkarVOHq6emJlJQUjWUpKSlwcnIqsbcVAGxsbGBjY6N+7+joqNeMZbF2cUH7H34Q7fz6dvr116tUz7KLizV++KG92DH05vXXT1epnmV3Z3fELo8VO4beBIYFVrmeZWd3ZyyPXS52DL0JCwyrUj3L1vYuaD/ajP8N3fx6lehZFm1WAUEQcPToURw8eBA5OTkGOWdgYCBiYmI0lh05cgSBgYEGOT8RERERac8ghevMmTPRtWtX9XtBENCjRw90794dvXv3RvPmzXHr1q0KHzc3NxeXLl3CpUuXADyd7urSpUtISkoC8PQy/4gRI9Tbv/vuu7h9+zY++eQTXL9+HWvWrMH333+PqVOnVu4DEhEREZHeGaRw/emnnxAQEKB+/+OPPyImJgYLFizAvn37oFQqMXfu3Aof9/z582jdujVat24NAAgLC0Pr1q0xZ84cAMCjR4/URSwA+Pr6Yv/+/Thy5AhatmyJZcuWYePGjZwKi4iIiMgEGGSM64MHD9CgQQP1+59//hl+fn4IDw8HAEyYMAFr166t8HG7dOkCQSh9YHlJT8Xq0qULLl68WOFzEREREZG4DNLjamlpqZ4LVRAExMTEoGfPnur1Hh4eSK9CN+UQERERUcUZpHBt1qwZvvnmGzx58gRbtmzB48eP0bt3b/X6u3fvwtXV1RBRiIiIiMhEGWSowJw5c9C3b191cdqhQweNm7X279+Pl156yRBRiIiIiMhEGaRw7d69O+Lj43HkyBE4OzsjNDRUve7Jkyfo3Lkz+vXrZ4goRERERGSiDPYAAj8/P/j5+RVbXqNGDaxYscJQMYiIiIjIRBmkcM3JyUFmZiZq166tXvbw4UOsW7cOMpkMgwcP5lABIiIiIiqTQQrXcePG4c6dOzhz5gwAIDs7Gy+//DLu378PqVSKqKgoREdHo0uXLoaIQ0REREQmyCCzCvz+++/o06eP+v0333yDhw8f4vTp03jy5AlatGiBBQsWGCIKEREREZkogxSu6enp8Pb2Vr/fu3cvOnbsiJdffhnVqlXDiBEj8McffxgiChERERGZKIMUrs7OzkhOTgYAFBQU4OTJk+jRo4d6vaWlJfLz8w0RhYiIiIhMlEHGuLZv3x5r1qxB48aNER0djcLCQo3pr/7++2+NHlkiIiIiov8ySOG6ePFi9OjRA4MGDQIAfPjhh2jatCkAQKlU4ocfftB4BCwRERER0X8ZpHBt0KABEhIScPXqVVSvXh0+Pj7qdfn5+fjyyy/RsmVLQ0QhIiIiIhNlsAcQWFlZlVicVqtWjU/NIiIiIqLnMsjNWcDTuVs/++wzhISEoHXr1oiLiwMAZGRkYPny5bh586ahohARERGRCTJIj+v9+/cRFBSEe/fu4cUXX8T169eRm5sLAHBxccFXX32Fu3fvIioqyhBxiIiIiMgEGaRw/fjjj5GTk4NLly7B3d0d7u7uGuv79++Pffv2GSIKEREREZkogwwVOHz4MCZPngw/Pz9IJJJi6+vVq4d79+4ZIgoRERERmSiDFK4FBQVwc3MrdX1OTo4hYhARERGRCTNI4ern54fffvut1PW7d+9G69atDRGFiIiIiEyUQQrXKVOmYMeOHVi8eDGysrIAACqVCjdv3sRbb72F2NhYTJ061RBRiIiIiMhEGeTmrOHDh+Pu3buYNWsWZs6cCQDo2bMnBEGAVCrFokWL0L9/f0NEISIiIiITZbAHEMycORNvvfUWfvrpJ9y8eRMqlQr169fHwIEDUa9ePUPFICIiIiITZbDCFQDq1KnDIQFEREREpBWDjHGNj4/HmjVrSl2/Zs0aXLp0yRBRiIiIiMhEGaRwnTlzJn799ddS1x89ehSzZs0yRBQiIiIiMlEGKVwvXLiATp06lbq+U6dOOH/+vCGiEBEREZGJMkjhmpOTA0vL0ofTSqVS9TRZFbV69Wr4+PjA1tYW7dq1Q1xcXJnbr1y5Eo0aNYKdnR1q166NqVOnorCwUKtzExEREZHhGKRwffHFF3H48OFS10dHR2s1s8DOnTsRFhaGiIgIxMfHo2XLlggJCUFqamqJ22/fvh3Tp09HREQErl27hk2bNmHnzp2YMWNGhc9NRERERIZlkML1nXfewf79+xEWFobMzEz18szMTEydOhXR0dF45513Knzc5cuXY+zYsRg1ahT8/Pywbt062NvbY/PmzSVuf/r0aXTo0AFDhw6Fj48PevTogSFDhjy3l5aIiIiIxGeQwnXy5MkYOXIkVq5cCVdXV9SpUwd16tSBq6sroqKiMHz48ApPkyWXy3HhwgUEBwerl0mlUgQHByM2NrbEfdq3b48LFy6oC9Xbt2/jwIED6NWrl/YfjoiIiIgMwiDzuEokEmzZsgUjRozATz/9hNu3bwMA+vXrh0GDBqFLly4VPmZ6ejqUSiU8PDw0lnt4eOD69esl7jN06FCkp6ejY8eOEAQBCoUC7777bplDBWQyGWQymfp9bm5uhbMSia1t27ZITk6Gp6cnb4QkIiKTZdAHEHTt2hVdu3Y15Ck1HD9+HIsWLcKaNWvQrl073Lx5Ex988AHmz5+P2bNnl7hPZGQk5s2bZ+CkRLqVnJyMBw8eiB2DiIioUgwyVODOnTv45ZdfSl3/yy+/IDExsULHdHV1hYWFBVJSUjSWp6SkwNPTs8R9Zs+ejbfeegtjxoxB8+bNMWDAACxatAiRkZFQqVQl7hMeHo6srCz168SJExXKSURERES6YZDC9aOPPsKqVatKXb969WpMnz69Qse0traGv78/YmJi1MtUKhViYmIQGBhY4j75+fmQSjU/soWFBQBAEIQS97GxsYGTk5P65ejoWKGcRERERKQbBilcY2Nj0b1791LXv/LKKzh58mSFjxsWFoYNGzZg27ZtuHbtGiZMmIC8vDyMGjUKADBixAiEh4ert+/bty/Wrl2LHTt24M6dOzhy5Ahmz56Nvn37qgtYIiIiIjJOBhnj+uTJE1SrVq3U9Y6Ojnj8+HGFjxsaGoq0tDTMmTMHycnJaNWqFaKjo9U3bCUlJWn0sM6aNQsSiQSzZs3CgwcP4Obmhr59+2LhwoUV/1BEREREZFAGKVzr1KmDU6dOYcKECSWuP3nyJF544QWtjj1p0iRMmjSpxHXHjx/XeG9paYmIiAhERERodS4iIiIiEo9BhgoMGTIE3333HVatWqVxE5RSqURUVBR27tyJoUOHGiIKEREREZkog/S4hoeH4/fff8eUKVOwcOFCNGrUCACQkJCAtLQ0dOnSBTNnzjREFCIiIiIyUQbpcbWxscHhw4exadMmBAQEID09Henp6QgICMDmzZvx66+/wsbGxhBRiIiIiMhEGewBBFKpFKNGjVLf8U9EREREVBEG6XElIiIiIqosg/S4duvW7bnbSCQSjYcJEBERERH9m0EKV5VKBYlEorFMqVTi7t27uHfvHho0aABvb29DRCGqkp49Brm0xyETERGZAoMUrv+dT/Xf9u3bh3HjxmH58uWGiEJUJZ0/f17sCERERJVmsJuzStOnTx8MHz4cU6ZMwYkTJ8SOQ2QQzs6ZUCiAAQN2ix1Fz5zFDkBERGbEKG7Oql+/Ps6dOyd2DCIiIiIyYqL3uCoUCnz//fdwdXUVOwqR2Tp+/CMUFmbC1tYZXbosFTsOERGRVgxSuI4ePbrE5ZmZmThz5gySk5M5xpVIjwoLM1FY+FjsGERERJVikML16NGjxWYVkEgkqFGjBjp27IgxY8agR48ehohCRERERCbKIIVrYmKiIU5DRERERGbMKG7OIiIiIiJ6Hr0Vrvn5+UhKSoJcLi+2bvPmzXjllVfg5+eHgQMHckYBIiIiInouvRWun376KVq0aFGscF2wYAHGjh2LEydOIC0tDbt370aXLl3wxx9/6CsKEREREZkBvRWux44dQ58+feDo6Khelp2djQULFsDb2xs3btxAWloazpw5A2tra3z22Wf6ikJEREREZkBvhWtiYiJatGihsezAgQOQy+WYNm0afH19AQABAQEYNWoUTp48qa8oRERERGQG9Fa45uTkoGbNmhrLfvvtN0gkEoSEhGgs9/PzQ1pamr6iEBEREZEZ0FvhWrduXVy/fl1j2fHjx+Hh4YEGDRpoLJfL5XByctJXFCIiIiIyA3orXHv06IHNmzfj7NmzAICvv/4a169fx4ABA4pte+HCBfj4+OgrChERERGZAb09gGD27NnYvXs32rdvDwsLCygUCri5uWHOnDka2+Xn52PXrl0YN26cvqIQVXm2ts4a/yUiIjJFeitcXV1dcenSJWzcuBG3b99G3bp1MXr0aLi7u2ts99dff2HYsGF466239BWFqMrr0mWp2BGIiIgqTa+PfK1RowY+/vjjMrcJCAhAQECAPmMQERERkRngI1+JiIiIyCSwcCUiIiIik8DClYiIiIhMgskXrqtXr4aPjw9sbW3Rrl07xMXFlbl9ZmYm3nvvPXh5ecHGxgYNGzbEgQMHDJSWiIiIiLSll8J17969ePjwoT4OrWHnzp0ICwtDREQE4uPj0bJlS4SEhCA1NbXE7eVyObp3747ExET8+OOPSEhIwIYNG+Dt7a33rERERERUOXopXAcMGIDjx4+r39erVw979+7V+XmWL1+OsWPHYtSoUfDz88O6detgb2+PzZs3l7j95s2bkZGRgd27d6NDhw7w8fFBUFAQWrZsqfNsRERERKRbeilcq1WrhszMTPX7xMRE5Obm6vQccrkcFy5cQHBwsHqZVCpFcHAwYmNjS9xn7969CAwMxHvvvQcPDw80a9YMixYtglKpLPU8MpkM2dnZ6peuPwcRERERlY9e5nENCAjAwoULkZKSgurVqwMADhw4gOTk5FL3kUgkmDp1arnPkZ6eDqVSCQ8PD43lHh4euH79eon73L59G0ePHsWwYcNw4MAB3Lx5ExMnTkRRUREiIiJK3CcyMhLz5s0rdy4iIiIi0g+9FK5r1qzBiBEjMH/+fABPi9Lt27dj+/btpe5T0cJVGyqVCu7u7li/fj0sLCzg7++PBw8e4PPPPy+1cA0PD0dYWJj6/aVLlxAUFKTXnERERERUnF4K1wYNGuD06dMoLCxEamoqfHx8sHLlSvTr109n53B1dYWFhQVSUlI0lqekpMDT07PEfby8vGBlZQULCwv1siZNmiA5ORlyuRzW1tbF9rGxsYGNjY36vaOjo44+ARERERFVhF4f+Wpra4s6deogIiIC3bp1Q926dXV2bGtra/j7+yMmJgb9+/cH8LRHNSYmBpMmTSpxnw4dOmD79u1QqVSQSp8O7/3777/h5eVVYtFKRERERMbDIPO4RkREoFmzZgCA3NxcXLt2DdeuXav0jU5hYWHYsGEDtm3bhmvXrmHChAnIy8vDqFGjAAAjRoxAeHi4evsJEyYgIyMDH3zwAf7++2/s378fixYtwnvvvVepHERERESkf3rtcf23c+fO4ZNPPsHvv/8OlUoF4OksAJ06dcKSJUvQtm3bCh8zNDQUaWlpmDNnDpKTk9GqVStER0erb9hKSkpS96wCQO3atXHo0CFMnToVLVq0gLe3Nz744ANMmzZNNx+SiIiIiPTGIIXr2bNn0aVLF1hbW2PMmDFo0qQJAODatWv47rvv0LlzZxw/fhwBAQEVPvakSZNKHRrw77lknwkMDMSZM2cqfB4iIiIiEpdBCteZM2fC29sbv//+e7Ebp+bOnYsOHTpg5syZOHLkiCHiEBEREZEJMsgY17Nnz2L8+PEl3u3v4eGBcePGsReUiIiIiMpkkMJVKpVCoVCUul6pVGqMRSUiIiIi+i+DVIvt27fH6tWrcffu3WLrkpKSsGbNGnTo0MEQUYiIiIjIRBlkjOuiRYvQuXNnNG7cGAMGDEDDhg0BAAkJCdizZw8sLS0RGRlpiChEREREZKIMUri2bt0aZ8+excyZM7F3717k5+cDAOzt7dGzZ08sWLAAfn5+hohCRERERCbKYPO4+vn5YdeuXVCpVEhLSwMAuLm5cWwrEREREZWLwQrXZ6RSqfoBAURERERE5cXuTiIiIiIyCSxciYiIiMgksHAlIiIiIpPAwpWIiIiITAILVyIiIiIyCQadVeDq1au4ffs2njx5AkEQiq0fMWKEIeMQERERkQkxSOF669YtDB8+HHFxcSUWrAAgkUhYuBIRERFRqQxSuI4fPx6XL1/GypUr0alTJ9SoUcMQpyUiIiIiM2KQwvXUqVOYMWMG3n//fUOcjoiIiIjMkEFuznJ1dUX16tUNcSoiIiIiMlMGKVzfffddfPPNN1AqlYY4HRERERGZIYMMFWjYsCGUSiVatmyJ0aNHo3bt2rCwsCi23cCBAw0Rh4iIiIhMkEEK19DQUPWfP/rooxK3kUgk7JElIiIiolIZpHA9duyYIU5DRERERGbMIIVrUFCQIU5DRERERGbMoE/OAp4+Pevu3bsAgLp168LPz8/QEYiIiIjIBBmscN2zZw/CwsKQmJiosdzX1xfLly/Ha6+9ZqgoRERERGSCDDId1oEDBzBo0CAAwKJFi7Br1y7s2rULixYtgiAIGDhwIKKjow0RhYiIiIhMlEF6XOfPn48WLVrg5MmTcHBwUC9/7bXXMGnSJHTs2BHz5s1Dz549DRGHiIiIiEyQQXpc//zzT4wcOVKjaH3GwcEBb7/9Nv7880+tjr169Wr4+PjA1tYW7dq1Q1xcXLn227FjByQSCfr376/VeYmIiIjIsAxSuNra2iIjI6PU9RkZGbC1ta3wcXfu3ImwsDBEREQgPj4eLVu2REhICFJTU8vcLzExER999BE6depU4XMSERERkTgMUrh269YNUVFRiI2NLbbu7NmzWLVqFYKDgyt83OXLl2Ps2LEYNWoU/Pz8sG7dOtjb22Pz5s2l7qNUKjFs2DDMmzcP9erVq/A5iYiIiEgcBhnjumTJEgQGBqJjx44ICAhAo0aNAAAJCQmIi4uDu7s7Fi9eXKFjyuVyXLhwAeHh4eplUqkUwcHBJRbIz3z66adwd3fHO++8g5MnTz73PDKZDDKZTP0+Nze3QjmJiIiISDcM0uPq6+uLP//8E5MnT8aTJ0+wc+dO7Ny5E0+ePMEHH3yAP/74Az4+PhU6Znp6OpRKJTw8PDSWe3h4IDk5ucR9fv/9d2zatAkbNmwo93kiIyNRvXp19YsPUyAiIiISh8HmcXV3d8eKFSuwYsUKQ51SQ05ODt566y1s2LABrq6u5d4vPDwcYWFh6veXLl1i8UpEREQkAoM/OUtXXF1dYWFhgZSUFI3lKSkp8PT0LLb9rVu3kJiYiL59+6qXqVQqAIClpSUSEhJQv379YvvZ2NjAxsZG/d7R0VFXH4GIiIiIKkAvhevo0aMhkUiwfv16WFhYYPTo0c/dRyKRYNOmTeU+h7W1Nfz9/RETE6Oe0kqlUiEmJgaTJk0qtn3jxo1x+fJljWWzZs1CTk4OoqKiULt27XKfm4iIiIgMTy+F69GjRyGVSqFSqWBhYYGjR49CIpGUuc/z1pckLCwMI0eORNu2bREQEICVK1ciLy8Po0aNAgCMGDEC3t7eiIyMhK2tLZo1a6axv7OzMwAUW05ERESkrbZt2yI5ORmenp44f/682HHMil4K18TExDLf60poaCjS0tIwZ84cJCcno1WrVoiOjlbfsJWUlASp1CD3nxEREREBAJKTk/HgwQOxY5glg4xxTUpKgpubG+zs7EpcX1BQgLS0NNSpU6fCx540aVKJQwMA4Pjx42Xuu3Xr1gqfj4iIiIjEYbDpsHbt2lXq+r1798LX19cQUYiIiIjIRBmkcBUEocz1RUVFvKRPRERERGXS21CB7OxsZGZmqt8/fvwYSUlJxbbLzMzEjh074OXlpa8oRERERo038xCVj94K1xUrVuDTTz8F8HTGgClTpmDKlCklbisIAhYsWKCvKEREREaNN/MQlY/eCtcePXrA0dERgiDgk08+wZAhQ9CmTRuNbSQSCRwcHODv74+2bdvqKwoRERERmQG9Fa6BgYEIDAwEAOTl5WHQoEGcL5WIiIiItKb36bDy8/OxatUq2Nvbs3AlIiIiIq3p/VZ+e3t7WFpawsHBQd+nIiIiIiIzZpA5qAYNGoQff/zxudNiERERERGVxiBPznrzzTcxceJEdO3aFWPHjoWPj0+JT9H6781bRERERETPGKRw7dKli/rPJ0+eLLZeEARIJBIolUpDxCEiIiLSG09PT43/ku4YpHDdsmWLIU5DREREJDo+REJ/DFK4jhw50hCnISIiIiomU+EMZCmwe8UAsaPolbNBqjpxGfwj5ubm4t69ewCA2rVrw9HR0dARiIiIiMgEGWRWAQA4d+4cunbtiho1aqBZs2Zo1qwZatSogW7durFLnYiIiMzGR8uPY8y8aHy0/LjYUcyOQXpcz549iy5dusDa2hpjxoxBkyZNAADXrl3Dd999h86dO+P48eMICAgwRBwiIiKjwpt5zEtmTiEeZxWKHcMsGaRwnTlzJry9vfH7778X+6GcO3cuOnTogJkzZ+LIkSOGiENERGRUeOWRqHwM1uM6Z86cEr9Jenh4YNy4cZg/f74hohARET1XoW0hHmU+wpAmQ8SOole2sBU7AlGFGGSMq1QqhUKhKHW9UqmEVGqw4bZEREREZIIMUi22b98eq1evxt27d4utS0pKwpo1a9ChQwdDRCEiIjI6hxIPYc/NPTiUeEjsKERGzSBDBRYtWoTOnTujcePGGDBgABo2bAgASEhIwJ49e2BpaYnIyEhDRCEiIjI6hYpCFCgKxI5BZPQMUri2bt0aZ8+excyZM7F3717k5+cDAOzt7dGzZ08sWLAAfn5+hohCRERERCbKYA8g8PPzw65du6BSqZCWlgYAcHNz49hWIiIiIioXgz85SyKRQCKRqP9MRERERFQeBuvuvHr1KgYPHgwnJyd4eXnBy8sLTk5OGDx4MP766y9DxSAiMnlt27bFCy+8gLZt24odhYjIoAzS43ry5Em8+uqrUKlU6Nevn8bNWXv37sXBgwcRHR2NTp06GSIOEZFJS05OxoMHD8SOQURkcAYpXKdOnQp3d3ecOHECtWvX1lh37949dO7cGWFhYTh37pwh4hARERGRCTLIUIErV65g4sSJxYpWAKhduzYmTJiAK1euaHXs1atXw8fHB7a2tmjXrh3i4uJK3XbDhg3o1KkTatSogRo1aiA4OLjM7YmIiIgqyrmaLWpWt4VzNT6ZTNcM0uNat25dyGSyUtfL5fISi9rn2blzJ8LCwrBu3Tq0a9cOK1euREhICBISEuDu7l5s++PHj2PIkCFo3749bG1tsXjxYvTo0QNXrlyBt7d3hc9PRERE9F9Lw7qIHcFsGaTHdc6cOVi1ahUuXbpUbN3FixfxxRdfYO7cuRU+7vLlyzF27FiMGjUKfn5+WLduHezt7bF58+YSt//2228xceJEtGrVCo0bN8bGjRuhUqkQExNT4XObO978QURERMbGID2uZ86cgYeHB/z9/dG+fXs0aNAAAHDjxg3ExsaiWbNmiI2NRWxsrHofiUSCqKioUo8pl8tx4cIFhIeHq5dJpVIEBwdrHKcs+fn5KCoqgouLS6nbyGQyjd7i3Nzcch3b1PHmDyIiIjI2Bilcv/zyS/WfT506hVOnTmmsv3z5Mi5fvqyx7HmFa3p6OpRKJTw8PDSWe3h44Pr16+XKNW3aNNSqVQvBwcGlbhMZGYl58+aV63hERETasLW01fgvEZXMIIWrSqUyxGkq5LPPPsOOHTtw/Phx2NqW/osiPDwcYWFh6veXLl1CUFCQISISEVEVEeITInYEIpNg8Cdn6YqrqyssLCyQkpKisTwlJQWenp5l7rt06VJ89tln+PXXX9GiRYsyt7WxsYGNjY36vaOjo/ahiYiIiEhrBi1c79y5g4MHD+Lu3bsAns428Oqrr8LX17fCx7K2toa/vz9iYmLQv39/AFDfaDVp0qRS91uyZAkWLlyIQ4cO8cYjIjJJz76cP+9LOhGRuTFY4frhhx8iKiqq2LABqVSKKVOmYOnSpRU+ZlhYGEaOHIm2bdsiICAAK1euRF5eHkaNGgUAGDFiBLy9vREZGQkAWLx4MebMmYPt27fDx8cHycnJAJ72orInlYhMxfnz58WOQEQkCoMUrsuWLcOKFSswePBgfPjhh2jSpAkA4Nq1a1ixYgVWrFgBb29vTJ06tULHDQ0NRVpaGubMmYPk5GS0atUK0dHR6hu2kpKSIJX+M+PX2rVrIZfLMXjwYI3jREREaDUdFxERANgW2iLzUSaaDGkidhT94n1DRCQygxSuGzZswGuvvYbvv/9eY3m7du2wY8cOFBYW4quvvqpw4QoAkyZNKnVowPHjxzXeJyYmVvj4RERERGQcDPIAgsTERISElH7HZEhICItKIqJySjyUiJt7biLxUKLYUYiIDMogPa7u7u74448/Sl3/xx9/wM3NzRBRqJx48weR8VIUKqAoUIgdg4jI4AxSuL7++uuIioqCj48P3n//fTg4OAAA8vLy8OWXX2Ljxo2YMmWKIaJQOfHmDyIiIjI2Bilc58+fj0uXLmHGjBmYM2cOatWqBQB4+PAhFAoFunbtik8//dQQUUxWprMzoFBg94ABYkfRK2exAxAREZHRMkjham9vj5iYGOzZs0djHteePXuiV69e6Nu3LyQSiSGiEBEREZGJ0nvhmp+fj+HDh2PQoEEYNmwY+vXrp+9Tkg58dPw4MgsL4Wxri6Vduogdh4iIiEj/swrY29vj119/RX5+vr5PRTqUWViIx4WFyCwsFDsKEREREQADTYfVsWNHxMbGGuJURERERGSmDFK4fvnllzh58iRmzZqF+/fvG+KURERERGRmDFK4tmzZEvfv30dkZCTq1q0LGxsbODk5abyqV69uiChEREREZKIMMqvAoEGDOGsAEREREVWKQQrXrVu3GuI0RERVgqWtpcZ/iYiqCr3+1issLMSePXtw584duLq6onfv3vDy8tLnKYmIzJ5PiI/YEYiIRKG3wjU1NRXt27fHnTt3IAgCgKdTY+3evRvBwcH6Oi0RERERmSm93Zw1f/58JCYmYurUqdi3bx9WrlwJOzs7jB8/Xl+nJCIiIiIzprce18OHD2PEiBFYunSpepmHhweGDh2KhIQENGrUSF+nJh1wtrXV+C8RERGR2PRWuCYlJWHatGkayzp27AhBEJCSksLC1cjxMa9ERERkbPQ2VEAmk8H2P711z94rFAp9nZaIiIiIzJReZxVITExEfHy8+n1WVhYA4MaNG3B2di62fZs2bfQZh4iIiIhMmF4L19mzZ2P27NnFlk+cOFHjvSAIkEgkUCqV+oxDRERERCZMb4Xrli1b9HVoIiIiIqqC9Fa4jhw5Ul+HJiIiIqIqSG83ZxERERER6RILVyIiIiIyCSxciYiIiMgksHAlIiIiIpPAwpWIiIiITILJF66rV6+Gj48PbG1t0a5dO8TFxZW5/Q8//IDGjRvD1tYWzZs3x4EDBwyUlIiIiIgqw6QL1507dyIsLAwRERGIj49Hy5YtERISgtTU1BK3P336NIYMGYJ33nkHFy9eRP/+/dG/f3/89ddfBk5ORERERBVl0oXr8uXLMXbsWIwaNQp+fn5Yt24d7O3tsXnz5hK3j4qKQs+ePfHxxx+jSZMmmD9/Ptq0aYMvv/zSwMmJiIiIqKJMtnCVy+W4cOECgoOD1cukUimCg4MRGxtb4j6xsbEa2wNASEhIqdsTERERkfHQ25Oz9C09PR1KpRIeHh4ayz08PHD9+vUS90lOTi5x++Tk5FLPI5PJIJPJ1O9zc3Mrkdq0ZBQW4klhoUHPWS0nB1YWFrCNjzfoeQ3pyZMEKJUZYscwiJycarCwsEJ8vK3YUfQmLyUPhRmG/TkRi8xGhjx5HuLN+OcTAFLyUpBRWDV+Rm1kNpDnyc26TRPuPkFGrtLg563hZAsXJ/P93ScWky1cDSUyMhLz5s3TWBYUFAQvLy+DZWj/ww8GO9czMpkMISEhOHHihMHPDQDw9xfnvKQXbE7z8QiP4L+dDWpWHgHb/beLncLsBAUF4dCh3bCxsRE7ilkx2cLV1dUVFhYWSElJ0ViekpICT0/PEvfx9PSs0PYAEB4ejrCwMI1lNjY2Zv8XUSaT4cSJEzhx4gQcHR3FjkOVlJubi6CgILanmWB7mh+2qXl51p4ymczs6wVDM9nC1draGv7+/oiJiUH//v0BACqVCjExMZg0aVKJ+wQGBiImJgZTpkxRLzty5AgCAwNLPU9VKFLL0qpVKzg5OYkdgyopOzsbANvTXLA9zQ/b1Lw8a0/SPZMtXAEgLCwMI0eORNu2bREQEICVK1ciLy8Po0aNAgCMGDEC3t7eiIyMBAB88MEHCAoKwrJly9C7d2/s2LED58+fx/r168X8GERERERUDiZduIaGhiItLQ1z5sxBcnIyWrVqhejoaPUNWElJSZBK/5k4oX379ti+fTtmzZqFGTNm4MUXX8Tu3bvRrFkzsT4CEREREZWTSReuADBp0qRShwYcP3682LLXX38dr7/+up5TmT4bGxtERERU6WES5oTtaV7YnuaHbWpe2J76IxEEQRA7BBERERHR85jsAwiIiIiIqGph4UpEREREJoGFKxERERGZBBaupHeJiYmQSCTYunWr2FGIiIjIhLFwNTK3bt3C+PHjUa9ePdja2sLJyQkdOnRAVFQUCgoK9Hbeq1evYu7cuUhMTNTbOcpj4cKFeO211+Dh4QGJRIK5c+eKmseQJBJJuV4lzZZRUfn5+Zg7d26FjlWV20Ybxtye169fxyeffIJWrVqhWrVq8PLyQu/evXH+/PlKZzFXxtyeDx8+xPDhw9GoUSNUq1YNzs7OCAgIwLZt28D7r0tnzG36X99++y0kEgmfqgYzmA7LnOzfvx+vv/46bGxsMGLECDRr1gxyuRy///47Pv74Y1y5ckVvD0u4evUq5s2bhy5dusDHx0cv5yiPWbNmwdPTE61bt8ahQ4dEyyGG//3vfxrvv/76axw5cqTY8iZNmlT6XPn5+Zg3bx4AoEuXLuXapyq3jTaMuT03btyITZs2YdCgQZg4cSKysrLw1Vdf4eWXX0Z0dDSCg4MrncncGHN7pqen4/79+xg8eDDq1KmDoqIiHDlyBG+//TYSEhKwaNGiSmcyR8bcpv+Wm5uLTz75BA4ODpXOYQ5YuBqJO3fu4M0330TdunVx9OhReHl5qde99957uHnzJvbv3y9iwn8IgoDCwkLY2dnp/Nh37tyBj48P0tPT4ebmpvPjG7Phw4drvD9z5gyOHDlSbLlYqnLbaMOY23PIkCGYO3euRu/N6NGj0aRJE8ydO5eFawmMuT1btGhRrCdv0qRJ6Nu3L1atWoX58+fDwsJCnHBGzJjb9N8WLFiAatWqoWvXrti9e7fYcUTHoQJGYsmSJcjNzcWmTZs0itZnGjRogA8++ED9XqFQYP78+ahfvz5sbGzg4+ODGTNmQCaTaezn4+ODPn364Pfff0dAQABsbW1Rr149fP311+pttm7dqn4oQ9euXYtdHnl2jEOHDqFt27aws7PDV199BQC4ffs2Xn/9dbi4uMDe3h4vv/xypQpsMXt7TYFKpcLKlSvRtGlT2NrawsPDA+PHj8eTJ080tjt//jxCQkLg6uoKOzs7+Pr6YvTo0QCejjl+VnjOmzdP3d7Pu/TPttE9sdrT39+/2CXHmjVrolOnTrh27ZpuP2QVIubPZ0l8fHyQn58PuVxe6c9WVYndpjdu3MCKFSuwfPlyWFqyrxFgj6vR+OWXX1CvXj20b9++XNuPGTMG27Ztw+DBg/Hhhx/i7NmziIyMxLVr17Br1y6NbW/evInBgwfjnXfewciRI7F582a8/fbb8Pf3R9OmTdG5c2dMnjwZq1atwowZM9SXRf59eSQhIQFDhgzB+PHjMXbsWDRq1AgpKSlo37498vPzMXnyZNSsWRPbtm3Da6+9hh9//BEDBgzQ3f8gAgCMHz8eW7duxahRozB58mTcuXMHX375JS5evIhTp07BysoKqamp6NGjB9zc3DB9+nQ4OzsjMTERP//8MwDAzc0Na9euxYQJEzBgwAAMHDgQwNNeGzIsY2vP5ORkuLq66vQzViVit2dBQQHy8vKQm5uLEydOYMuWLQgMDNTL1bGqQuw2nTJlCrp27YpevXrh+++/1+tnNRkCiS4rK0sAIPTr169c21+6dEkAIIwZM0Zj+UcffSQAEI4ePapeVrduXQGA8Ntvv6mXpaamCjY2NsKHH36oXvbDDz8IAIRjx44VO9+zY0RHR2ssnzJligBAOHnypHpZTk6O4OvrK/j4+AhKpVIQBEG4c+eOAEDYsmVLuT6fIAhCWlqaAECIiIgo9z7m5r333hP+/SN68uRJAYDw7bffamwXHR2tsXzXrl0CAOHcuXOlHrsy/3/ZNtox1vZ85rfffhMkEokwe/ZsrY9RlRhje0ZGRgoA1K9XXnlFSEpKqtAxqjJja9N9+/YJlpaWwpUrVwRBEISRI0cKDg4OFfhE5olDBYxAdnY2AKBatWrl2v7AgQMAgLCwMI3lH374IQAUu1Tv5+eHTp06qd+7ubmhUaNGuH37drkz+vr6IiQkpFiOgIAAdOzYUb3M0dER48aNQ2JiIq5evVru49Pz/fDDD6hevTq6d++O9PR09evZZd9jx44BAJydnQEA+/btQ1FRkYiJqSzG1J6pqakYOnQofH198cknn+jlHObOGNpzyJAhOHLkCLZv346hQ4cCgF5nozF3YrapXC7H1KlT8e6778LPz08nxzQXLFyNgJOTEwAgJyenXNvfvXsXUqkUDRo00Fju6ekJZ2dn3L17V2N5nTp1ih2jRo0axcbolMXX17fEHI0aNSq2/NkQg//moMq5ceMGsrKy4O7uDjc3N41Xbm4uUlNTAQBBQUEYNGgQ5s2bB1dXV/Tr1w9btmwpNv6ZxGUs7ZmXl4c+ffogJycHe/bs4XQ7WjKG9qxbty6Cg4MxZMgQfPvtt6hXrx6Cg4NZvGpJzDZdsWIF0tPT1TMR0D84xtUIODk5oVatWvjrr78qtJ9EIinXdqXdTSpUYH4/jpESn0qlgru7O7799tsS1z8b/C+RSPDjjz/izJkz+OWXX3Do0CGMHj0ay5Ytw5kzZ1iYGAljaE+5XI6BAwfizz//xKFDh9CsWTOtj1XVGUN7/tfgwYOxYcMG/Pbbb8WumNHzidWmWVlZWLBgASZOnIjs7Gz1Vdnc3FwIgoDExETY29vD3d29ch/QRLFwNRJ9+vTB+vXrERsbi8DAwDK3rVu3LlQqFW7cuKFxA1VKSgoyMzNRt27dCp+/vEXwf3MkJCQUW379+nX1etKd+vXr49dff0WHDh3K9UXi5Zdfxssvv4yFCxdi+/btGDZsGHbs2IExY8Zo1d6kW2K3p0qlwogRIxATE4Pvv/8eQUFB2nwM+n9it2dJnvW0ZmVl6eR4VY1YbfrkyRPk5uZiyZIlWLJkSbH1vr6+6NevX5WdGotDBYzEs8mFx4wZg5SUlGLrb926haioKABAr169AAArV67U2Gb58uUAgN69e1f4/M8mNs7MzCz3Pr169UJcXBxiY2PVy/Ly8rB+/Xr4+PhwXI6OvfHGG1AqlZg/f36xdQqFQt12T548Kdab3qpVKwBQX7qyt7cHULH2Jt0Suz3ff/997Ny5E2vWrFHf5UzaE7M909LSSly+adMmSCQStGnTplzHIU1itam7uzt27dpV7NW1a1fY2tpi165dCA8P1/6DmTj2uBqJ+vXrY/v27QgNDUWTJk00npx1+vRp/PDDD3j77bcBAC1btsTIkSOxfv16ZGZmIigoCHFxcdi2bRv69++Prl27Vvj8rVq1goWFBRYvXoysrCzY2NigW7duZV6KmD59Or777ju8+uqrmDx5MlxcXLBt2zbcuXMHP/30E6TSin8v+t///oe7d+8iPz8fAPDbb79hwYIFAIC33nqrSvfiBgUFYfz48YiMjMSlS5fQo0cPWFlZ4caNG/jhhx8QFRWFwYMHY9u2bVizZg0GDBiA+vXrIycnBxs2bICTk5P6S4+dnR38/Pywc+dONGzYEC4uLmjWrFmZl4rZNrolZnuuXLkSa9asQWBgIOzt7fHNN99orB8wYACf0lNBYrbnwoULcerUKfTs2RN16tRBRkYGfvrpJ5w7dw7vv/9+sfshqHzEalN7e3v079+/2PLdu3cjLi6uxHVViphTGlBxf//9tzB27FjBx8dHsLa2FqpVqyZ06NBB+OKLL4TCwkL1dkVFRcK8efMEX19fwcrKSqhdu7YQHh6usY0gPJ3Kqnfv3sXOExQUJAQFBWks27Bhg1CvXj3BwsJCY2qs0o4hCIJw69YtYfDgwYKzs7Nga2srBAQECPv27dPYpiLTYQUFBWlM5/LvV0lTdZmz/07N8sz69esFf39/wc7OTqhWrZrQvHlz4ZNPPhEePnwoCIIgxMfHC0OGDBHq1Kkj2NjYCO7u7kKfPn2E8+fPaxzn9OnTgr+/v2BtbV2uaVrYNpVjTO05cuTIUtsSgHDnzh1dfnSzZEztefjwYaFPnz5CrVq1BCsrK/W/G1u2bBFUKpVOP7c5M6Y2LQmnw3pKIggVuEOHiIiIiEgkHONKRERERCaBhSsRERERmQQWrkRERERkEli4EhEREZFJYOFKRERERCaBhauJWbJkCRo3bgyVSiV2lEp788038cYbb4gdQ1RsT/PDNjUvbE/zwvY0A2LPx0Xll5WVJbi4uAibN29WL8P/z7u4dOnSYttv2bJFACCcO3dO51mCg4MFAMJ7771X4vqNGzcKjRs3FmxsbIQGDRoIq1atKrZNfHy8IJVKhUuXLuk8nylge5oftql5YXuaF7aneWCPqwnZvHkzFAoFhgwZUmzd559/rn6ikb79/PPPGo95/a+vvvoKY8aMQdOmTfHFF18gMDAQkydPxuLFizW2a926Ndq2bYtly5bpO7JRYnuaH7apeWF7mhe2p5kQu3Km8mvRooUwfPhwjWUAhFatWgkAhGXLlmms08e3xYKCAsHHx0f49NNPS/y2mJ+fL9SsWbPYk7aGDRsmODg4CBkZGRrLly5dKjg4OAg5OTk6y2gq2J7mh21qXtie5oXtaR7Y42oi7ty5gz///BPBwcHF1nXo0AHdunXDkiVLUFBQoNccS5YsgUqlwkcffVTi+mPHjuHx48eYOHGixvL33nsPeXl52L9/v8by7t27Iy8vD0eOHNFbZmPE9jQ/bFPzwvY0L2xP88HC1UScPn0aANCmTZsS18+dOxcpKSlYu3ZtmceRyWRIT08v1+u/kpKS8Nlnn2Hx4sWws7Mr8fgXL14EALRt21Zjub+/P6RSqXr9M35+frCzs8OpU6fKzG1u2J7mh21qXtie5oXtaT4sxQ5A5XP9+nUAgK+vb4nrO3XqhK5du+Lzzz/HhAkTSv2h+O677zBq1KhynVMQBI33H374IVq3bo0333yz1H0ePXoECwsLuLu7ayy3trZGzZo18fDhQ43llpaWqF27Nq5evVquTOaC7Wl+2Kbmhe1pXtie5oOFq4l4/PgxLC0t4ejoWOo2c+fORVBQENatW4epU6eWuE1ISIhWlxSOHTuGn376CWfPni1zu4KCAlhbW5e4ztbWtsTLMDVq1Cjx26k5Y3uaH7apeWF7mhe2p/lg4WpGOnfujK5du2LJkiV49913S9zGy8sLXl5eFTquQqHA5MmT8dZbb+Gll14qc1s7OzvI5fIS1xUWFpb4LVYQBEgkkgplqgrYnuaHbWpe2J7mhe1pGli4moiaNWtCoVAgJycH1apVK3W7iIgIdOnSBV999RWcnZ2LrS8oKEBWVla5zunp6QkA+Prrr5GQkICvvvoKiYmJGtvk5OQgMTER7u7usLe3h5eXF5RKJVJTUzUudcjlcjx+/Bi1atUqdp4nT57gxRdfLFcmc8H2ND9sU/PC9jQvbE/zwZuzTETjxo0BPL0zsixBQUHo0qULFi9eXOIlhZ07d6q/MT7v9UxSUhKKiorQoUMH+Pr6ql/A0x9IX19fHD58GADQqlUrAMD58+c1znv+/HmoVCr1+mcUCgXu3buHJk2aVOj/h6lje5oftql5YXuaF7an+WCPq4kIDAwE8PQvb4sWLcrcdu7cuejSpQvWr19fbJ0243PefPPNYj8sADBgwAD06tULY8eORbt27QAA3bp1g4uLC9auXYtevXqpt127di3s7e3Ru3dvjWNcvXoVhYWFaN++fYUymTq2p/lhm5oXtqd5YXuaEbEmkKWKa9asmTBkyBCNZSjlkXFBQUHqR9np43F1ZZ179erVAgBh8ODBwoYNG4QRI0YIAISFCxcW23bp0qWCvb29kJ2drZeMxoztaX7YpuaF7Wle2J7mgYWrCVm+fLng6Ogo5Ofnq5eV9hf/2LFjov3QCYIgrF+/XmjUqJFgbW0t1K9fX1ixYoWgUqmKbdeuXbtiTzKpKtie5odtal7YnuaF7WkeWLiakMzMTMHFxUXYuHGj2FF04uLFi4JEIhEuXrwodhRRsD3ND9vUvLA9zQvb0zxIBOE/M+SSUVu8eDG2bNmCq1evQio17Xvr3nzzTahUKnz//fdiRxEN29P8sE3NC9vTvLA9TR8LVyIiIiIyCab9dYOIiIiIqgwWrkRERERkEli4EhEREZFJYOFKRERERCaBhSsRERERmQQWrkRERERkEli4EhEREZFJYOFKRERERCaBhSsRERERmQQWrkRERERkEli4EhEREZFJYOFKRERERCaBhSsRERERmQQWrhX06NEjzJ07F48ePRI7ChEREVGVwsK1gh49eoR58+axcCUiIiIyMBauRERERGQSWLgSERERkUlg4UpEREREJoGFKxERERGZBBauRERERGQSWLgSERERkUlg4UpEREREJoGFK1EVkZEhdgIiIqLKYeFKVEWkpIidgIiIqHJYuBJVEdnZYicgIiKqHBauRFVEVhagUIidgoiISHuVLlwfPXqEP/74A3l5ebrIU2GrV6+Gj48PbG1t0a5dO8TFxZW5/cqVK9GoUSPY2dmhdu3amDp1KgoLCw2UlkhcaWliJyAiItKe1oXrnj170LhxY7zwwgto06YNzp49CwBIT09H69atsXv3bl1lLNXOnTsRFhaGiIgIxMfHo2XLlggJCUFqamqJ22/fvh3Tp09HREQErl27hk2bNmHnzp2YMWOG3rMSGYOHD8VOQEREpD2tCtdffvkFAwcOhKurKyIiIiAIgnqdq6srvL29sWXLFp2FLM3y5csxduxYjBo1Cn5+fli3bh3s7e2xefPmErc/ffo0OnTogKFDh8LHxwc9evTAkCFDnttLS2Qu7t4VOwEREZH2tCpcP/30U3Tu3Bm///473nvvvWLrAwMDcfHixUqHK4tcLseFCxcQHBysXiaVShEcHIzY2NgS92nfvj0uXLigLlRv376NAwcOoFevXqWeRyaTITs7W/3Kzc3V7QchMqDERLETEBERac9Sm53++usvLF++vNT1Hh4epV6u15X09HQolUp4eHgUO/f169dL3Gfo0KFIT09Hx44dIQgCFAoF3n333TKHCkRGRmLevHk6zU4klps3xU5ARESkPa16XO3t7cu8Gev27duoWbOm1qH05fjx41i0aBHWrFmD+Ph4/Pzzz9i/fz/mz59f6j7h4eHIyspSv06cOGHAxES6df068K+RPURERCZFq8K1a9eu2LZtGxQlzK2TnJyMDRs2oEePHpUOVxZXV1dYWFgg5T+zqqekpMDT07PEfWbPno233noLY8aMQfPmzTFgwAAsWrQIkZGRUKlUJe5jY2MDJycn9cvR0VHnn4XIULKzOVyAiIhMl1aF68KFC3H//n289NJL+OqrryCRSHDo0CHMmjULzZs3hyAIiIiI0HVWDdbW1vD390dMTIx6mUqlQkxMDAIDA0vcJz8/H1Kp5ke2sLAAAI0bzIjMGS8aEBGRqdKqcG3UqBF+//131KxZE7Nnz4YgCPj888+xaNEiNG/eHCdPnoSPj4+OoxYXFhaGDRs2YNu2bbh27RomTJiAvLw8jBo1CgAwYsQIhIeHq7fv27cv1q5dix07duDOnTs4cuQIZs+ejb59+6oLWCJzt2sXoFSKnYKIiKjitLo5CwCaNm2KX3/9FU+ePMHNmzehUqlQr149uLm56TJfmUJDQ5GWloY5c+YgOTkZrVq1QnR0tPqGraSkJI0e1lmzZkEikWDWrFl48OAB3Nzc0LdvXyxcuNBgmYnE9uAB8NNPwBtviJ2EiIioYiQCr5FXSHx8PPz9/XHhwgW0adNG7DhE5Xb4MPBsAg0HB2DHDsDLS9xMREREFaHVUIFVq1YhJCSk1PWvvvoq1q5dq3UoItKvvDwgIgIo5Z5EIiIio6RV4bpp0yb4+fmVut7Pzw/r16/XOhQR6V98PLBtm9gpiIiIyk+rwvXWrVto0qRJqesbN26MW7duaR2KiAzjq6+Av/8WOwUREVH5aFW4WltbIzk5udT1jx49KjbtFBEZH4UCmDULkMnETkJERPR8WlWXL7/8MrZu3YqcnJxi67KysrBlyxa8/PLLlQ5HRLrRtm1bDBv2Aq5da1ts3e3bwOefixCKiIiogrSaDisiIgJBQUFo1aoVpkyZgqZNmwIA/vrrL6xcuRKPHj3C9u3bdRqUiLSXnJyM9PQHsLIqef3u3UC9esDQoQaNRUREVCFaFa7t2rXDL7/8gvHjx+ODDz6ARCIB8PTpU76+vti7d2+pT68iIuO0fDlgawsMHCh2EiIiopJp/QCC7t274+bNm7h48aL6Rqz69eujTZs26kKWiEzLokVAVhbw9tsAf4yJiMjYaF24AoBUKoW/vz/8/f11lYeIRLZ69dOna02fDlhW6jcEERGRblXqn6WrV6/i9u3bePLkCUp6ANeIESMqc3giEsnu3cDDh8DixUC1amKnISIiekqrwvXWrVsYPnw44uLiSixYAUAikbBwJTJhcXHAO+8AX3wBeHiInYaIiEjLwnX8+PG4fPkyVq5ciU6dOqFGjRq6zkVERuD27afjXaOigIYNxU5DRERVnVaF66lTpzBjxgy8//77us5DREYmLQ0YMwZYuBDo1EnsNEREVJVp9QACV1dXVK9eXddZiMhI5ecDYWHA1q1AKaODiIiI9E6rwvXdd9/FN998A6VSqes8RGSkBAH48ktg2jQgL0/sNEREVBVpNVSgYcOGUCqVaNmyJUaPHo3atWvDwsKi2HYDOZM5kdk5ehS4eRP47DOOeyUiIsPSqnANDQ1V//mjjz4qcRuJRMIeWSIzlZT09KatmTOB3r3FTkNERFWFVoXrsWPHdJ2DiEyMXA5ERAB37wITJvBJW0REpH9aFa5BQUG6zkFEJmrzZkChACZPFjsJERGZO61uznpGJpMhNjYWe/bsQXp6uq4yEZGJ+frrp0/bIiIi0ietC9dVq1bBy8sLHTt2xMCBA/Hnn38CANLT0+Hq6orNmzfrLCQRGb8lS4C//xY7BRERmTOtCtctW7ZgypQp6NmzJzZt2qTx2FdXV1d069YNO3bs0FnIsqxevRo+Pj6wtbVFu3btEBcXV+b2mZmZeO+99+Dl5QUbGxs0bNgQBw4cMEhWInMmlwPh4U/nfCUiItIHrQrXZcuWoV+/fti+fTv69u1bbL2/vz+uXLlS6XDPs3PnToSFhSEiIgLx8fFo2bIlQkJCkJqaWuL2crkc3bt3R2JiIn788UckJCRgw4YN8Pb21ntWoqrg7l1g2TKxUxARkbnSqnC9efMmXn311VLXu7i44PHjx1qHKq/ly5dj7NixGDVqFPz8/LBu3TrY29uXOkxh8+bNyMjIwO7du9GhQwf4+PggKCgILVu21HtWIrEkJSUh7/+fGKBS5UEuT9Lr+fbseTrXKxERka5pNauAs7NzmTdjXb16FZ6enlqHKg+5XI4LFy4gPDxcvUwqlSI4OBixsbEl7rN3714EBgbivffew549e+Dm5oahQ4di2rRpJT5AgciUxcXFYf78+di/f796OI9SmYnLl31QvXofeHnNhoPDS3o594IFQIsWgKurbo6XnV2EVatuIDb2MSQSoHNnN7z/fgPY2ZX+K2zKlIv4448sjWV9+3ohLKwRACA6+hEWL04ocd+ff26PGjWsdROeiIh0RqvCtVevXli/fj0mTpxYbN2VK1ewYcMGjB49utLhypKeng6lUgkPDw+N5R4eHrh+/XqJ+9y+fRtHjx7FsGHDcODAAdy8eRMTJ05EUVERIiIiStxHJpNBJpOp3+fm5uruQxDpyc8//4zQ0FAIgqAxBv0pAVlZB5CVdRD16u1EjRq6f8JddjawahXw6afl32fKlIvo2dMTPXt6FVu3cOE1PH4sw+eft4RSqcLixQlYuvRvzJ7tV+Yxe/f2wujRPur3Njb/fEHt2tUdAQEuGtt/9tl1yOUqFq1EREZKq6ECCxYsgFKpRLNmzTBr1ixIJBJs27YNw4cPR9u2beHu7o45c+boOmulqVQquLu7Y/369fD390doaChmzpyJdevWlbpPZGQkqlevrn5xDlsydnFxcQgNDYVSqSzj6XVKAErcvh2KvLxzeskRHQ2UMty8Qu7ezUNcXAY+/rgR/Pyc0Ly5MyZPboBjx1KRni4rc19bWylcXGzULweHf76r29hYaKyTSiW4eDETvXoVL5yJiMg4aFW41qpVCxcuXEDPnj2xc+dOCIKA//3vf/jll18wZMgQnDlzBq66ukZYCldXV1hYWCAlJUVjeUpKSqnDFLy8vNCwYUONYQFNmjRBcnIy5HJ5ifuEh4cjKytL/Tpx4oTuPgSRHixYsKCUntb/EgAIePRogV5yqFTAmTOVP86VK9lwdLREo0ZO6mX+/jUgkQDXrmWXue+vv6aiX7/fMWpUHDZsuI3CwtIfQ334cApsbKQICnKrfGgiItKLCg8VkMlkOHToEHx8fLBx40Zs3LgRaWlpUKlUcHNzg1RaqWcalJu1tTX8/f0RExOD/v37A3jaoxoTE4NJkyaVuE+HDh2wfft2qFQqdc6///4bXl5esLYu+dKgjY0NbGxs1O8dHR11+0GIdCgpKQn79u0rR9H6jBJZWb9ALk+CtXUdnee5caPyx8jIkKNGDSuNZRYWUjg5WSEjo+QvnADwyise8PCwhaurNW7dysP69bdw714+Pv20WYnbHzjwCK+84qExnICIiIxLhQtXa2trvP7664iKikKLFi0AAG5u4vRQhIWFYeTIkWjbti0CAgKwcuVK5OXlYdSoUQCAESNGwNvbG5GRkQCACRMm4Msvv8QHH3yA999/Hzdu3MCiRYswmc+qJAOTy5VQKMpbXJbfgQOHK1C0PiMgKysGNWu+rfM8Dx8KKO3Czjff3MW3395Vv5fLVbh6NRtRUf9Uu1u3Bmh97r59a6n/XK+eI2rWtMaHH/6BBw8K4O1tp7HtlStZuHs3H+HhTbQ+HxER6V+FC1eJRIIXX3zRKB7xGhoairS0NMyZMwfJyclo1aoVoqOj1TdsJSUlafQA165dG4cOHcLUqVPRokULeHt744MPPsC0adPE+ghUBcnlSly8+AR5eaVfttbWX3+lQCKRQhBUFdhLioKCTOTlKXSe5949BeRya1hbF+/FfO21Wuja9Z8vvQsWXEPnzm7o3PmfYUaurtZwcbHGkydFGvsqlSpkZxfBxaX8N1E1afJ0qEFJhev+/Y/QoIEjGjWqVu7jERGR4Wk1q8CMGTMQFhaG119/HY0aNdJ1pgqZNGlSqUMDjh8/XmxZYGAgzuhi4B2RlhQKAXl5SlhZSWBlpduhNc7O1SpYtAKAChYWTtD1KB9BAKRSFRQKASWNxHFysoKT0z9DAGxspKhRwwre3vYa2zVt6oTcXAUSEnLUhWV8fCYE4Z9itDxu3nw6I0jNmpphCgoUOH48DWPH+pb7WEREJA6tCtczZ86gZs2aaNasGbp06QIfHx/Y2Wn2YEgkEkRFRekkJJE5srKSwtZWt+MpO3ToColEUsHhAhI4Oj7dT7cEODtXtIgurm5dBwQEuGDZsgRMndoQCoWAVatuoGtXd7i6Ph1/npYmw4cfXkJ4eBM0aeKEBw8KEBOTgnbtaqJ6dUvcupWHNWtuokWL6qhfX3Oc+tGjaVAqBXTv7lHS6YmIyIhoVbh++eWX6j/HxMSUuA0LVyLD8/J6AZ06heDUqSNlTIX1bxZwdOwFKyvd35gFAHXq6Gb4wcyZTRAVdQMffvgHpFKgUyc3TJ7cQL1eqVTh3r0CyGRPP7OVlQQXLjzBTz/dR0GBEu7utujUyQ1vvVW32LEPHnyETp1c4ehoVWwdEREZF4lQ8Ts5qrT4+Hj4+/vjwoULaNOmjdhxyATl5ytw5sxj2Ntb6LzHFQCuXInHyJE9oVIpn9PzKgFgAR+f32Bnp/snaNnYCFiw4Am6dnWBvb1W35GJiIg0GGbuKiIymKZN22Dx4k2QSi3KeJSxBQALeHt/p5eiFQD69y+EnR2/FxMRke5UqnA9c+YMIiMjMXXqVNz4/wkb8/PzER8fz0ejEonolVf6Ytu2aHTo0L2EsasSODr2go/Pb3By6q+X87dpo0D37mU/1YqIiKiitLp+J5fL8eabb2LPnj0QBAESiQR9+/bFiy++CKlUih49emDq1KmYOXOmrvMSUTk1bdoGUVHb8ejRfYSGdkJOThakUmfUq3dBb2NaAcDPT4n33y8AByEREZGuadXjOnv2bOzbtw9r165FQkKCxjg6W1tbvP7669izZ4/OQhKR9ry8XoCd3dMppqRSB70WrR07FmHatHz862FzREREOqNV4frdd99hwoQJGDduHFxcXIqtb9KkCW7fvl3pcERkGqytgXfeKcSECYWw4s35RESkJ1oNFUhNTUXz5s1LXW9hYYH8/HytQxGR6XjhBRUmTy7ACy9Ufs5WIiKismhVuNauXRvXr18vdf2pU6fQoEGDUtcTkXkIDCzC2LGFsLUVOwkREVUFWg0VGDp0KL766ivExsaqlz27c3nDhg34/vvvMWLECN0kJCKj1KePHJMmsWglIiLD0arHdebMmThz5gw6d+6MJk2aQCKRYOrUqcjIyMD9+/fRq1cvTJ06VddZichI9Okjx5AhMuj8KbFERERl0KrH1draGtHR0diyZQvq1auHxo0bQyaToUWLFti6dSt++eWXMiY+JyJT1rFjEYtWIiISRbl6XMPCwvDWW2+hdevWAICkpCS4ublh+PDhGD58uF4DEpHxaNZMgbFjC1m0EhGRKMrV47py5Upcu3ZN/d7X1xe7du3SWygiMj4tWijw4YcFnO6KSE8UMoXYEUiXFJxdSR/K1ePq4eGhMS+rwEfiEFUpr7xShJEjC2Gp1ah4IioPVZEK4MM7zIdKBsBe7BRmp1z/DPXu3RuffvopDh8+DGdnZwDAsmXLsGPHjlL3kUgkfHoWkYmzsgLefrsQXbsWiR2FyOwJKnYKmRUVf2/qQ7kK16ioKLi7u+PYsWO4cuUKJBIJ7t27h4yMjFL3kXAQHJFJc3VVYerUAvj68sECRIagUvJnzayo5GInMEvlKlwdHBywaNEi9XupVIqVK1di6NChegtGROJp1EiJqVML4OTEHiAiQ1EVsXA1K4oCsROYpXLdnDVw4ECcPHlS/f7YsWPo3r273kIRkXjatVNgxox8Fq1EBqaUK8WOQLqk5M1Z+lCuwnXPnj1ISkpSv+/WrRuOHDmit1BEJI7OnYvw/vucOYBIDIpCzipgVopyxE5glspVuHp7e+PixYvq94IgcAwrkZlp106BceMKIdXqsSREVFlFBbyZx6wocsVOYJbK9U/Um2++ieXLl6NOnTpo0aIFAGD69Olo0aJFqa+WLVvqNfgzq1evho+PD2xtbdGuXTvExcWVa78dO3ZAIpGgf//++g1IZAIaNlRi4sQCFq1EIlIUsMfVrLBw1Yty3ZwVGRmJBg0a4NixY0hNTYVEIoGDgwNq1qyp73xl2rlzJ8LCwrBu3Tq0a9cOK1euREhICBISEuDu7l7qfomJifjoo4/QqVMnA6YlMk7OzgKmTOHwACKxcaiAmeEDCPSiXIWrhYUFxo0bh3HjxgF4OqvArFmzRJ9VYPny5Rg7dixGjRoFAFi3bh3279+PzZs3Y/r06SXuo1QqMWzYMMybNw8nT55EZmamARMTGZ+JEwvg7MwbsYjExsLVzLDHVS+0ujB4584d0S+xy+VyXLhwAcHBweplUqkUwcHBiI2NLXW/Tz/9FO7u7njnnXfKdR6ZTIbs7Gz1KzeXfxHJfPToIUezZryTmcgYFOVzjKtZUeQAAqc40zWtHuBYt25dXeeosPT0dCiVSnh4eGgs9/DwwPXr10vc5/fff8emTZtw6dKlcp8nMjIS8+bNq0xUIqNUvbqA0FCZ2DGI6P/J8zhhvVkRlIAsA7B1FTuJWSlXj6tUKoWlpSXkcrn6vYWFRZkvSyN7qHlOTg7eeustbNiwAa6u5f9LFB4ejqysLPXrxIkTekxJZDiDBslgZyd2CiJ6RpbFL5JmJz/p+dtQhZSrupwzZw4kEom6GH32Xkyurq6wsLBASkqKxvKUlBR4enoW2/7WrVtITExE37591ctUqqdd+JaWlkhISED9+vWL7WdjYwMbGxv1e0dHR119BCLRuLgICAriZUkiY1LwhE9aMjs5NwGXNmKnMCvlKlznzp1b5nsxWFtbw9/fHzExMerxtiqVCjExMZg0aVKx7Rs3bozLly9rLJs1axZycnIQFRWF2rVrGyI2kVHo0UPOWQSIjEx+Ou9CNztZfwF4Q+wUZsW4rudXUFhYGEaOHIm2bdsiICAAK1euRF5ennqWgREjRsDb2xuRkZGwtbVFs2bNNPZ3dnYGgGLLicyZRAJ06sTeViJjk5+azwf8mJsnf4idwOxUuHCVyWT45ptvcPjwYdy6dQs5OTmoVq0aGjRogJ49e2Lo0KGwtrbWR9ZiQkNDkZaWhjlz5iA5ORmtWrVCdHS0+oatpKQkSDmjOpGGF19UokYNTn9FZGyKCoogy5bBtrqt2FFIVwoeAAUpgJ3H87elcqlQ4Xr58mX069cPd+/ehSAIqF69OhwdHZGamor4+Hj88MMPWLhwIfbu3YsmTZroK7OGSZMmlTg0AACOHz9e5r5bt27VfSAiI9eyJeeKJDJW2fezWbiam/RTQO2BYqcwG+XujszNzcVrr72GlJQULFy4EPfu3cOTJ080/rtgwQI8fPgQffv2RV5enj5zE5GWGjfmvK1ExiorKUvsCKRryb+KncCslLtw3bJlC5KSkrB//35Mnz4d3t7eGuu9vb0RHh6OX375BXfu3GFvJpGR8vVl4UpkrDLvZIodgXTt8Tkg/4HYKcxGuQvX/fv3o0ePHujSpUuZ23Xr1g3du3fHL7/8UtlsRKQjNWt6wNm5FuzsPGDLq5BERuvxjcdiRyCdE4A7X4sdwmyUu3C9fPnyc4vWZ7p161Zs6ikiEs/27UexaNF1DBp0SuwoRFSGtCtpEATePGl27u8GchPFTmEWyn1zVkZGRokT+5fEw8MDGRkZWociIv3w9uYwASJj1LZtW9y5cgeOUkf0vtUbLg1cxI5EuiQogSuLgIB1gISzHVVGuf/vyWQyWJVzxvJ/Px6WiIyHl5dK7AikI3Ilf8eak+TkZGQUZiC7KBt3jt4ROw7pw5N44O4OsVOYvApNh5WYmIj4+PjnbnfnDn/oiIyRhwcLV3ORK8+Fix175cxRwp4EtH6nNaQW7JkzOwmrAOcWgDMffKStChWus2fPxuzZs5+7HZ/8QWScXF05ds5cqAQVFCoFLKUm/QBEKkFuSi5uHLiBRn0biR2FdE1QABc/AgK/BmzdxU5jksr9G2/Lli36zEFEeiaRAE5OLFzNiUwhg6U1C1dzdH7Nefh284W1g2GeREm61bZtWyTfvwFPJwXOr/rPA5lk6cCFKUC7jYClvSj5TFm5f+ONHDlSnzmISM9sbQXwCcjmRa6UwwEOYscgPchLy8OZFWfQeVZnsaOQFpKTk/EgJRtQlHJvUM7fwMWPAf+VgLR89w/RU/xnjKiKsGTHnNnhDVrm7fru67gZfVPsGKQvj88Cf84BBN57UBEsXImqCBV/N5odmVImdgTSs9/m/4bUv1LFjkH6knwEuPwpi9cKYOFKVEUoOYWr2SlUFIodgfRMIVMgeko0MhMzxY5C+vJwH3B5LqDiL+nyYOFKVEWoVJzpw9zkynPFjkAGUJhZiP0T9yPnYY7YUUhfHh4A/pgO8CrKc7FwJaoipFLOKGBuMgszxY5ABpKXmod97+5Dbgq/rJitlGPAuYmAPFPsJEaNhStRFVHOB9+RCUnPTxc7AhlQzsMc7Bu3D7nJLF7NVuYfQOwIIPtvsZMYrUrdZ3z16lXcvn0bT548gSAU780ZMWJEZQ5PRDpka8seV3PzKOeR2BHIwLIfZGPvmL3ovbY3qteuLnYc0oeCh8CZtwG/aYD3a08n4SY1rQrXW7duYfjw4YiLiyuxYAUAiUTCwpXIiFSrxsLV3NzPvi92BBJBbnIu9r6zF71W90LNF2uKHYf0QSUH/poPpJ8FmoYDVtXETmQ0tCpcx48fj8uXL2PlypXo1KkTatSooetcRKRjHh4sXM1NYlai2BFIJAUZBdg3bh96RvWERwsPseOQviQffjp8oMWngIu/2GmMglaF66lTpzBjxgy8//77us5DRETldDfzLuRKOawt+FjQqkiWI8P+CfsRvCQYdTrUETsO6UthChD3LuAzFHjxPaCK/7xrdXOWq6srqlfn2BoiIjGpBBVuPL4hdgwSkUKmwKGph3DjAP8emDcBSPwWiB0OZFftttaqcH333XfxzTffQGkEM5qvXr0aPj4+sLW1Rbt27RAXF1fqths2bFAPbahRowaCg4PL3J6IyNhdTr0sdgQSmaAScGzOMVz54YrYUUjfcm8/nXXg/h6xk4hGq6ECDRs2hFKpRMuWLTF69GjUrl0bFhYWxbYbOHBgpQOWZefOnQgLC8O6devQrl07rFy5EiEhIUhISIC7u3ux7Y8fP44hQ4agffv2sLW1xeLFi9GjRw9cuXIF3t7ees1KRKQPl5Iv4c1mb4odg4zAqcWnICgFNHuzmdhRSJ+Eoqc3buXeARp9UOVmHdCqcA0NDVX/+aOPPipxG4lEovce2eXLl2Ps2LEYNWoUAGDdunXYv38/Nm/ejOnTpxfb/ttvv9V4v3HjRvz000+IiYnhDAhEZJLOPzwPlaCCVMJpuQk4vfQ0LGws0GRAE7GjkL4lfgMoCwC/6VWqeNWqcD127Jiuc1SYXC7HhQsXEB4erl4mlUoRHByM2NjYch0jPz8fRUVFcHFxKXUbmUwGmeyfR7Dl5nLiZyIyHpmFmfgj+Q+09motdhQyEr8v+h02Tjao90o9saOQvt37CbB2AV4cL3YSg9GqcA0KCtJ1jgpLT0+HUqmEh4fmNCAeHh64fv16uY4xbdo01KpVC8HBwaVuExkZiXnz5lUqKxGRPh28eZCFK6kJgoBjs4/B3tUeni09xY5D+nZrA1DdD3DvJHYSg6j0taWrV6/i4MGDOHjwIK5evaqLTAbx2WefYceOHdi1axdsbW1L3S48PBxZWVnq14kTJwyYkojo+Q7ePIiswiyxY5ARUcqVOPzhYeQ8zBE7ChnClUWAIl/sFAahdeG6Z88e1K9fH82bN0efPn3Qp08fNG/eHA0aNMDevXt1mbFErq6usLCwQEpKisbylJQUeHqW/Q1z6dKl+Oyzz3D48GG0aNGizG1tbGzg5OSkfjk6OlY6OxGRLhUUFWDbH9vEjkFGpjCzEIemHkJRfpHYUaqUpKQk5OXlAQDyClVISpXr/6SyNCDpB/2fxwhoVbgeOHAAgwYNAgAsWrQIu3btwq5du7Bo0SIIgoCBAwciOjpap0H/y9raGv7+/oiJiVEvU6lUiImJQWBgYKn7LVmyBPPnz0d0dDTatm2r14xERIay/fJ2/P34b7FjkJHJuJWBX6f/CpVCJXYUsxcXF4e+ffvCx8cHmZmZAIDMPCV83r6M1+bexLmEPP0GSPoeEHTTzkWF2bh6aAFOruuNk1/1wfWYJVDIC8rc5+Ffv+Diz1Nwcl1vHP+iK4pkxe8Jit36Jo5/0VXjdff89gpl02qM6/z589GiRQucPHkSDg4O6uWvvfYaJk2ahI4dO2LevHno2bOnNocvt7CwMIwcORJt27ZFQEAAVq5ciby8PPUsAyNGjIC3tzciIyMBAIsXL8acOXOwfft2+Pj4IDk5GQDg6OjInlQiMmkKlQLhMeHY2m8rqtnwueb0j3un7+H4vOPoOq8rJNKqc/e5If38888IDQ2FIAgQBM3HawsCcOBcFg6ez8LO8HoY2KGGfkIUpgDZCUD18s0ocfHnKfBs0hNeTYrXatcOLYQs/zFa9v8cKpUSCb8uxt/HlsIvZHapx1MqZHCpEwCXOgG4E7uh1O182o2CV9M+6veW1nblyvuMVj2uf/75J0aOHKlRtD7j4OCAt99+G3/++ac2h66Q0NBQLF26FHPmzEGrVq1w6dIlREdHq2/YSkpKwqNHj9Tbr127FnK5HIMHD4aXl5f6tXTpUr1nJSLSt7uZd/HJkU8gU8ievzFVKTcP3sRvC36DoBKevzFVSFxcHEJDQ6FUKkudBlSpApRKIDTytn57XnMqf9UlL+MuMpLi0Kjbx3Dy9INzreZoEDQZqX8fgyw3vdT9arcajLpth8LJ06/M41tY28PGwUX9srCqWOGqVY+rra0tMjIySl2fkZFR5g1PujRp0iRMmjSpxHXHjx/XeJ+YmKj/QEREIjr38BymHpqKpT2Wwt7KXuw4VA7/HhMpU8mQIc+Ai3Xp0zRqK2FvAgSVgKA5Qex51aEFCxaU2NP6XwKe9r4u2PEIeyIa6CeMvPI3aWYnX4GljSOcPBqpl9Wo7Q9IJMhOuQY3x8rNXpB0YTvunvsfbB3d4d7oFbzQ6nVIpcUfYlUarQrXbt26ISoqCj179iw2nvTs2bNYtWoVevTooc2hiYiokuIexGHcL+MQ1TMKNe1rih2HShEXF4f58+dj//796qKnQFmAGZdnoHn15ujt1Rs+Dj46Peff+572yOm6eM3NzMW3c7/FpZhLkEgkaPtqWwydMxS2DqV3Yh3ffhxn9p7B3St3UZhbiNV/rIa9k+aXragxUUi6loTs9Gw4VHeAXwc/vD79ddTw0NPl9gpKSkrCvn37nlu0PqNUAb+czUJSqhx13K31kKjyPeryvAxY2Wn+/5VKLWBl6wR5fumdluXxQsuBcHRrCCvbash6dAV3YjdAnvcYDTq9V+5jaFW4LlmyBIGBgejYsSMCAgLQqNHTqjwhIQFxcXFwd3fH4sWLtTk0ERE9R9u2bfHw0UNkWWahycySx7NdT7+OUXtGYW3vtfB24iOtjU2ZYyIh4K+sv/BX1l8YW28s2tRoo9Nz/73vb9i72iNgUkCF9vvszc/QcXBHdBzcsdi69VPWIzM1Ex99/RGUCiU2fbIJW2dsxbtR75Z6PHmhHM2DmqN5UHP8uOTHErdpHNgYfd7rg+pu1fEk5Ql2LtqJ1RNXY9ZPsyqUXamQQ1ApKrRPeRw+dKDcReszggDEXMrC2911/6VSUClLHQN699w3uHvhnyeIqhRyZCdfxY0TUeplAcO26jzTv9Vu/Yb6z46u9SG1sMTfx5ajXvuxkFqUr5DXqnD19fXFn3/+icjISBw8eBA7d+4EANStWxcffPABpk+fDnd3d20OTUREz5GcnIxHDx/BytmqzO0e5jzE2F/GYuNrG1GrWi0DpaPn+feYyNKKHhWe3h2+4fYGTGs8Tec9r5e2XkLt9rXh1car0sd6ePMhLp+4jDl75sC3hS8AYPjc4VgxagVCZ4SW2jvaY/TTK7PXz5T+0KCQd0LUf3Z9wRW93+2NL8Z/AUWRApZW5SthlAo5nty/CKVc92NLU+7+BalUAlUFxg5LJUBmdgEUMt3nKXySBHuFHBaWxYvAWs1fg9uLXdXvrx1eALf6neFav7N6mbWDK6wdXFBU8ERjX5VKiaLCbFjb63YIi5NHEwgqJQqzk2Ffo0659tGqcAUAd3d3rFixAitWrND2EEREpGepeamYsH8CNr22Ca72rmLHIZR/TOQzBx4dwMQGE3We4+LmizopXG/G34S9k726aAUAvw5+kEgluH3pNvxD/Ct9DuDpcITYPbFo4N+g3EUrAAgqBZTyPEikVpBalP1lr6KqOTlXqGgFAJUAONlbAJJKPwNKkyBAqVT8f89y8cLVytYJVrZO6vdSSxtY2deAvbPmFRknz6ZQyHKRk5qAau5Pr6hn3o8HBAFOHuWbsaC8ctNvAhJpsaEJZdG6cCUiItPwIPsBJuyfgHW913HMq8gqOiZSBRX+zPpTLzdsPYh7gKL8IljZV66Yy07LhlNNJ41lFpYWcHB2QFZa5W8W+v6z7xHzdQzkBXLUb10fUzZN0eo4UgsrWFjp9sbxrkEdIJFIKjRcQCIBurZ0hESi2xvkBACQVL6sc3CpC5c6AUg4ugwNu0yFoFLgxolVcG/YFTaOT7/8ynLTcGnXh2jSPRxOnk+LWVleBuT5GSjIegAAyEu/DQtre9hWc4eVrROyHl1Bdso11PBuBQtre2QnX8HNk2vg0SgYVrbln8KvXJ9w9OjRkEgkWL9+PSwsLDB69Ojn7iORSLBp06ZyByEiIv258+QOxv4yFqt7rYZXtcr3spm7IlkRFEW6HxN5cP/Bio+JhIBrWdcQWLP0h+toRQVk3MmAR1OPElfvW70P+9bsU7+XF8px6+ItfBPxjXrZwsMLdZupBK+OexWd3+iMxw8eY8+qPdjw4QZM2TRF54WfNl7w9kLIK51w5NipUqfC+jcLKdCrrSPquOm25/cZQaqbmUSahMzEjRNR+GP3h4BECrf6ndCg82T1epVKiYLMe1D+a+q9h3/txd24f57gd+nnDwAAjYKnwatJT0gtrJD691Eknt0KQVkEWycvvNBqMGq3fr1C2cpVuB49ehRSqRQqlQoWFhY4evToc//CGMNfKCIi+kdSVhJG7x2N5T2Wo4mbbi/5mZMiWRGuxV5DQU7ZTwrSRsLFBEglUqgq8IQjCSTIzs9GgbXu89y8cBMuDVxgZVO8kOoyrAte6v2S+v36Kevh39Mf/j3/ufTv7OEMJzcnZD/O1thXqVAiLzMP1d2qVzpjNZdqqOZSDZ71POHVwAsftv8Qty7eQoM2eppSqoI++mAcfj1+6rk9rxI87W0Nf0N/Q3aUtuUfy9564MpS11nZOpX5sAE7J090ef+YxjLfdm/Dt93bpe5Tzb0h/N9YU+58pSlX4frf+U85HyoRkWlKy0vDmF/GYFqHaejbsC87GUqgKFKgIKcAllaWsLTR7Yi66s7VK1S0Ak97XO0s7CCV6nZMpCAIUFmooChSlFi4Ojo7wtH5n6dKWtlawcnVCR4+mj20Ddo0QH52PhIvJ8KnuQ8A4NrpaxBUAuq1qqfbzP8/nlQh131vuLbatGqKTWsW452J0yAIKLHn1UL6tGj97mNvvPRixSbcLy+VtTuU1uZ/NUWrn4KkpCQUFJT+za+goABJSUlahyIiIv2RKWT49MSnmHV0FnJkOWLHMVqWNpawsbPR6atT+04V/rIggQQNHRtCIpXo9GVpawmrapW/ZF2rQS00D2qOLeFbcPvSbdw4fwPfRHyDgL4B6hkFniQ/Qfgr4bh96bZ6v6y0LCRdTUJKYgoA4P71+0i6moTczKfPuL918RZ+3fYrkq4mIf1+Oq6evop1H6yDe1131G9dv9K5danvq68getc2dO/aoVj7SiRPhwf8ttgH/QOdSjlC5clcuz89mZnTejqs//3vfxg6dGiJ6/fu3YuhQ4eWa7wHERGJ49CtQ/gz9U9EvhKJZu7NxI5TJdTyrIUuHbrgt9O/Qal6/r+RUkjh5+gHFyvdP0nL3tNeZz3u41aOwzcR3+Dz4Z9DIpXAv6c/hkUMU69XKpRIvp0MeaFcvezYt8ewJ2qP+n1kaCQA4J3P30HHwR1hbWeNC4cuYPfK3ZDly+Ds7ozmQc3Rd1LfEnuIxdamVVNs3xKF+w8eoVOPUGRl58DZQYoLUfX0Nqb1GZVdHchdugBK+XO3NXVaFa7PG1heVFSk80saRESke49yHmHM3jGY0WkGXmv0mthxqoQJoybgZOzJct+N3qOmfp5Eae9VsRt5pu+YXuo6R2fHMh824PqCK7bc2aKxrP+U/ug/pX+p+9RuXBvTtk+rUEZj8IK3F+zt7ZCVnQMHW6nei1bBwhEFPu8DUksWrv+WnZ2NzMxM9fvHjx+XOBwgMzMTO3bsgJeX+Y+zICIyBwqVAp+e+BTJuckY22Ysx73qWXO/5li2YBk+nPUhBEEosedV+v8j+d72fht17erqJYeTj/4uW5NhCBb2KKj/EVR23kBRodhxDKLcheuKFSvw6aefAng6Y8CUKVMwZcqUErcVBAELFizQSUAiIjKM9RfWIzk3GTM6zYCllNN861OPLj2wff12rN2yFsdPHdfoeZVAAj9HP/So2UNvRatEIoFLM90PPyDDESyrI7/BNKjsfcSOYlDl/s3Uo0cPODo6QhAEfPLJJxgyZAjatNF8frJEIoGDgwP8/f3Rtm1bnYclIiL92puwFw+yH2BJ9yWoblv5qYyodM39mmPN52vwMPkhBowYgOycbNhJ7fCJ7yd6GdP6b14dvGDnaofC3KrRS2duVLbeyK//MQQbd7GjGFy5C9fAwEAEBj6d/DgvLw+DBg1Cs2YczE9EZG4uPLqAt/e8jaieUahTvXzPDyft1fKsBTtbO2TnZMNaaq33otXJxwmNhzWGUuAN1KZI4dQSBb7vAxa6ediAqanwHVT5+flYtWoVDh48qI88RERUhqSkJOTl5QEAVDIV5Bn6uRnjXtY9vL37bVx4eEEvxydxuLZwRdtpbWFpy6Egpkju2R8F9T+uskUroEXham9vD0tLSzg4OOgjDxERlSAuLg59+/aFj4+P+kZZZYESl2dcxs3VN5GXmKfzc2bLsjHxwET8fO1nnR87MzcTU76aguYTmqPFxBaYtnka8grL/gyyIhlm/282Wk9qjabvNsWELycgLStNvf5q0lVMXjcZ7cPao/G4xgieEYwth7eUccSqQyKR4MXBL6L1B61ZtJogQWqLAt8pkNV6A5BU7VmbtPr0gwYNwo8//ljh5y0TEVHF/fzzz+jQoQMOHizhOfcCkPVXFq4vvo4n8U90fm6lSolFJxdhU/ymCu/75mdv4sfffyxx3ZT1U/D3g7/x9UdfY9OUTYhLiMOMrTPKPN787+bj6KWjWD1xNXZM34GUzBRM+HKCev1fiX+hZrWaWD5uOQ4vOIz3+ryHJT8twbZft5VxVPNnW8MWbcPbwre3LyRSzhhhalTWbshvFAFFjQCxoxgFrb52vfnmm5g4cSK6du2KsWPHwsfHB3Z2xR9h9t+bt4iIqGLi4uIQGhoKpVJZemfB/z9B9PaG22g8rTEcfHR/RWzt+bVo6t4UL7/wcqWPdfPhTZy4fAJ75uxBC98WAIC5w+di1IpRmBE6Ax41PIrtk52fje9/+x4rx69Ee7/2AIDP3/kcwTOCcfHWRbSu3xpvdH5DY5867nUQfysehy4cwsjgkZXObYpcmrigxbstYO1kLXYU0oLSoSEK6k2FYMUbJZ/RqnDt0qWL+s8nT54stl4QBEgkEj45y0QlJSUhJiYGOTk5qFatGl555RXUqcMbNIjEsGDBAgiCUO4rXI8OPEKDiQ30kuXHqz/qpHCNvxkPJ3snddEKAB38OkAqkeLS7UsI8Q8pts9fiX+hSFmEjk07qpfV96qPWjVrIf5mPFrXb13iuXLyc1DdsWr+o/9C0Ato/FZjSC2q9qVlU1Xk0hGFdcYCUuN7SpiYtCpct2zhmCFzFBcXh/nz52P//v0QBAFSqRQqlQoSiQR9+vTB7Nmz8dJLL4kdk6jKSEpKwr59+8o/LEsFZP2ZBXmGHNYuuu9hu5FxQyfHSctOQ02nmhrLLC0s4ezgrDFmVWOfrDRYW1rDyV5z0nxXJ9dS97lw4wL2n9uPTVMqPszB1NXvXx/1XqvHh0mYKFmtNyD36Aew/YrRqnAdObJqXnIxZz///DNCQ0M1enZUqqfXHwVBwIEDB3Dw4EHs3LkTAwcOFDMqkdGRFclQpCjS+XH3H9xf8XsJBCDrWhZqBtZ8/rYV9Dj/cZnrV+9bjTX71qjfF8oLcfHWRUR8E6FednjhYZ3nKknC/QSMWzUOk1+bjM7NOhvknMai8bDGqBPMq2QmSWqDgrrvQlGjndhJjFalby3Mzc3FvXv3AAC1a9eGo6NjpUNVxOrVq/H5558jOTkZLVu2xBdffIGAgNIHMP/www+YPXs2EhMT8eKLL2Lx4sXo1auXARMbn/KMoVMqlZBIJAgNDcXp06fZ80r0/2RFMsRei0VOQY7Oj30x4SIkUgkEVQWKVwmQn50P6wLd97hawQqyIhlsrGxKXD+syzD0fqm3+v2U9VPQ078nevr3VC/zcPaAm5MbHmdrFsEKpQKZeZlwq+5W4rHdqrtBrpAjOz9bo9c1PTu92D43HtzAsM+H4c0ub+L9196v8Oc0VRILCZq90wxegXzkuilS2bijwHcqVPb6eVqaudB64Mu5c+fQtWtX1KhRA82aNUOzZs1Qo0YNdOvWDefPn9dlxlLt3LkTYWFhiIiIQHx8PFq2bImQkBCkpqaWuP3p06cxZMgQvPPOO7h48SL69++P/v3746+//jJIXmNV3jF0z7bh43yJ/lGkKEJOQQ6sLK3gaOuo05dzdeeKFa0AIAAWdhaQSqU6fUkkEnjbe5fZs+zs6AwfDx/1y9bKFq5OrhrLLC0s0aZBG2TnZ+Ny4mX1vqevnYZKUKFVvVYlHruZTzNYWVjh1NVT6mW3Ht3Cw8cP0abBPzcC//3gbwxZMgSDOgzCx4M+rtj/OxNm5WAF/4/8WbSaKEX11shrtIBFazlo1eN69uxZdOnSBdbW1hgzZgyaNGkCALh27Rq+++47dO7cGcePHy+z51MXli9fjrFjx2LUqFEAgHXr1mH//v3YvHkzpk+fXmz7qKgo9OzZEx9//PSX2fz583HkyBF8+eWXWLdunV6zGquKjqFTKpX45ZdfkJSUxBu2iP7FxtIGdjbFZ1epjPad2kMikVRsuIAEcGzoCKmO53pUQYVmNXTztMQGtRogqHkQwreEY8HIBVAoFYj4JgJ9A/qqZxRIfpKMYUuGYdnYZWhVrxWc7J3wRuc3sGDHAjg7OMPRzhFzv5mLNvXbqG/MSrifgGFLhqFTs04YEzJGPfZVKpEWG1NrThy8HND6g9aw96i6k9KbMpnXYMg9+1f5+VnLS6vCdebMmfD29sbvv/8OT09PjXVz585Fhw4dMHPmTBw5ckQnIUsil8tx4cIFhIeHq5dJpVIEBwcjNja2xH1iY2MRFhamsSwkJAS7d+8u9TwymQwymUz9Pjc3FwCgUChQVKT7MW2GdujQoQqPoRMEAYcPH+ZYZy0VFSmgUBShoEABhcJ8f1EVFamgUAgoKipCUZH5zvlcVFQEhUKBvMI8KIoUOj22g5MDAjoGIO5UXPl6XiWAvZ89pE5SKBW6ndXF1sIWftX9nranZfl+9wmCAKVSWeLvys9Hf45Pv/sUw5cMh0QiQUibEMx6c5Z624LCAtxOvo3c/Fz1sumDp0MQBEz4cgLkCjk6Nu2IuUPnqtfvO7sPj3MeY3fsbuyO3a0+l3dNbxyLPFbuz/qsTQvzCvUydrkk/76nQKEs/98jl+YuaDKyCVR2KuTm5FbonEqZUv1vmWWR+T6UQFFU9PT3rrIAUh3/jJZGEP5pT3mRquSNJJbIrz0GRdXbAgX5lT6nSlkEQfW0PQWJ4eoTKysDz3ogaMHR0VFYsmRJqesXL14sODo6anPocnvw4IEAQDh9+rTG8o8//lgICAgocR8rKyth+/btGstWr14tuLu7l3qeiIgIAQBffPHFF1988cUXX/95GZpWX7GkUikUitK/tSiVSkil5tGTFB4ertFLe+nSJQQFBeHs2bNo3brkeQNNydatWzFu3LgK77dhwwb2uFaCXK6EQiGIHUPvLC0lsLa2EDuG3ulrVoFn9u7Zi3dGvQNBENQ9cxr+f8Ycn3d84NzKWefnH9N6DIY2GworS6tSb8wyN0WyIp33oJelcdPGePToEapbVsfCZgvL3FYqlaLdR+3QoGfl5+u1tLKElY35zxOqVMghqAzXng0aNsHDh49Qy8USd7YWH2KjajoHgkc3nZ9XIrWEhaV5P2xCq8K1ffv2WL16NYYOHYq6detqrEtKSsKaNWvQoUMHnQQsjaurKywsLJCSkqKxPCUlpdjwhWc8PT0rtD0A2NjYwMbmn1/Uz2ZNsLS0NHz3uB6EhIRUeAydRCJBjx49zOLzi4X/78yLvttz5Fsj4dfYD/Pnzy8+Jl0CVG9RHV69vPTyxKxpHabh9aav6/y4xs7QP6PPOnskEgmsLEo/t5WdFbov7Y4X2r1gqGhmwdDtKZH8057WVv/58l73TaDeAIPmMSdadYsuWrQIWVlZaNy4MYYOHYq5c+di7ty5GDJkCBo3boysrCxERkbqOqsGa2tr+Pv7IyYmRr1MpVIhJiYGgYGBJe4TGBiosT0AHDlypNTtq4I6deqgT58+sLAoX6+YhYUF+vbtyxuziAzspZdewt69e5GYmAhnZ2cAT2cPaL6oORpMbKCXonVW51lVsmg1Vpa2lnj1i1dZtJoyu1pAw0lipzBpWvW4tm7dGmfPnsXMmTOxd+9e5Oc/HVRsb2+Pnj17YsGCBfDz89Np0JKEhYVh5MiRaNu2LQICArBy5Urk5eWpZxkYMWIEvL291UX0Bx98gKCgICxbtgy9e/fGjh07cP78eaxfv17vWY3Z7NmzcfDgwef2vEokEkgkEsyaNcuA6Yjo3+rUqQMHBwdkZmZCaiPVyxOyAGDiSxPRv3F/vRybKk4ikeCVRa/As1XpVwjJBDSeCljYip3CpGl9G6Gfnx927doFlUqFtLSnU464ubkZdGxraGgo0tLSMGfOHCQnJ6NVq1aIjo6Gh8fT6VSSkpI08rRv3x7bt2/HrFmzMGPGDLz44ovYvXs3mjXTzRQvpuqll17Czp071U/OUiqL341sYWEBiUSC77//ng8fIDJzPRv0xKhWo8SOUaV4enqi4HEBHKUlP8Sn1ahWqNu5bonryETUaAO4dxE7hcmTCBUZ3FgCQRA0Cldzfy5yfHw8/P39ceHCBbRp0+b5O5iQc+fOaYyhk0qlUKlUkEgk6Nu3L2bNmsWilcgIvPDCC3jw4AGsnK3QYnELnR67Xo162NZ/G+ysdDsnLT3fzoE7kZWUVWx5zYY1MeDrAZBamsdNz1XBs59R75pWuP/N//+MvrwFcG4ubjAzoHWP69WrVzFnzhwcOnRIY6hASEgI5s6dW+V7MU3RszF0SUlJOHr0KLKzs+Hk5IRu3bpxTCtRFWBvZY/Pgj9j0WpEJBIJOs/qzKLV1Lm2Z9GqI1oVridPnsSrr74KlUqFfv36oWHDhgCAhIQE7N27FwcPHkR0dDQ6deqk07BkGHXq1MHbb78tdgwiMiBHa0esCFmBejXqiR2F/sXvDT+4+bmJHYMqqx6nj9QVrQrXqVOnwt3dHSdOnEDt2rU11t27dw+dO3dGWFgYzp07p5OQRESkP03cmiDylUi84MS71Y1JtVrVEPCefh+dTvrh6ekJKHLg6aQAHHyfjm8lndDq2sOVK1cwceLEYkUrANSuXRsTJkzAlStXKh2OiIj0x1JqiYkvTcSWfltYtBqhzrM7w8qecz6bovPnz+N+zDScX9UEqPUqYOb3/xiSVj2udevWhUwmK3W9XC4vsaglIiLj8GLNFzG/63w0cKn805dI9xr2bQjvl7zFjkG64NFF7ARmRase1zlz5mDVqlW4dOlSsXUXL17EF198gblz51YyGhER6cPAJgOxrf82Fq1GytLGkkMEzIWN69OhAqQzWvW4njlzBh4eHvD390f79u3RoMHTX343btxAbGwsmjVrhtjYWMTGxqr3kUgkiIqK0k1qIiKqMKlEiukdp2Ngk4FiR6EyvNjnRdi72osdg3TBuQWHCeiYVoXrl19+qf7zqVOncOrUKY31ly9fxuXLlzWWsXAlIhKPnZUdPu/+OV5+4WWxo9BzNOzTUOwIpCtOjcVOYHa0KlxVKpWucxARkZ442TghqmcUmntwHkljZ1fDDu5N3cWOQbriyOnldE3rBxAQEZHx83D0wKqeq1Dfpb7YUagcPFt7QiLlpWWz4cjxrbpWqcL1zp07OHjwIO7evQvg6WwDr776Knx92VBERGJr5dkKi4MXo6Z9TbGjUDm5N2Nvq9mQWAB2nBlC17QuXD/88ENERUUVGzYglUoxZcoULF26tNLhiIhIO8OaD8P77d6HpZQX1kxJzUb8kmE27GoB/PnTOa2mw1q2bBlWrFiBgQMHIjY2FpmZmcjMzERsbCwGDx6MFStWYMWKFbrOSkREz2EptcT8rvMxNXAqi1YTVMO3htgRSFfY26oXWv1W27BhA1577TV8//33GsvbtWuHHTt2oLCwEF999RWmTp2qk5BERPR8FlILLA9Zjva124sdhbRgYW3BabDMia2b2AnMklY9romJiQgJCSl1fUhICBITE7XNREREWvik/ScsWk2YvZs9b8wyJ1bVxU5glrQqXN3d3fHHH3+Uuv6PP/6Amxu/aRARGUqAdwAfLGDi7GrYiR2BdMmC7akPWhWur7/+OjZu3IjPPvsMeXl56uV5eXlYvHgxNm7ciNDQUJ2FJCKisk0KmAQJn9Bj0mydbcWOQLoktRY7gVnSaozr/PnzcenSJcyYMQNz5sxBrVq1AAAPHz6EQqFA165d8emnn+o0KBERlaype1P4ufmJHYMqycbJRuwIpEv8IqkXWhWu9vb2iImJwZ49ezTmce3Zsyd69eqFvn378ps/EZGeeHp6QiWokGWZBQDo1aCXyIlIF+xceGnZvGh1UZueo8KFa35+PoYPH45BgwZh2LBh6Nevnz5yERFRKc6fP4/0/HT0/KYnAKCbbzeRE5EusHAler4Kfx2wt7fHr7/+ivz8fH3kISKiCvBz84ObA2+GNQcsXImeT6t+7I4dOyI2NlbXWSokIyMDw4YNg5OTE5ydnfHOO+8gNze3zO3ff/99NGrUCHZ2dqhTpw4mT56MrKwsA6YmItKtl194WewIpCMc40r0fFoVrl9++SVOnjyJWbNm4f79+7rOVC7Dhg3DlStXcOTIEezbtw+//fYbxo0bV+r2Dx8+xMOHD7F06VL89ddf2Lp1K6Kjo/HOO+8YMDURkW69VOslsSOQjljZW4kdgcjoSQRBECq6U7Vq1aBQKCCXywEAlpaWsLHR/KYokUj01pt57do1+Pn54dy5c2jbti0AIDo6Gr169cL9+/fVsxw8zw8//IDhw4cjLy8PlpblG+4bHx8Pf39/XLhwAW3atNH6MxARVUZ6fjr6bO+DE2+fgI0le+rMQcGTAs7lak4UeYClg9gpzI5WswoMGjRI1FkDYmNj4ezsrC5aASA4OBhSqRRnz57FgAEDynWcrKwsODk5lVm0ymQyyGQy9fuyhiMQERnSizVfZNFqRvjULHPD9tQHrQrXrVu36jhGxSQnJ8Pd3V1jmaWlJVxcXJCcnFyuY6Snp2P+/PllDi8AgMjISMybN0/rrERE+uLr7Ct2BNIhFq7mhu2pDxUa41pYWIidO3fis88+w8aNG/Ho0SOdhpk+fTokEkmZr+vXr1f6PNnZ2ejduzf8/Pwwd+7cMrcNDw9HVlaW+nXixIlKn5+ISBc8HDzEjkA6ZFONvedmxZLDPvSh3D2uqampaN++Pe7cuYNnw2Lt7e2xe/duBAcH6yTMhx9+iLfffrvMberVqwdPT0+kpqZqLFcoFMjIyICnp2eZ++fk5KBnz56oVq0adu3aBSursgfD29jYaIzfdXR0LPtDEBEZiIM1x88RUdVS7sJ1/vz5SExMxNSpU9GtWzfcvHkT8+fPx/jx43Hr1i2dhHFzc4Ob2/PnIwwMDERmZiYuXLgAf39/AMDRo0ehUqnQrl27UvfLzs5GSEgIbGxssHfvXtja8rnQRGS6rC34LHQiqlrKXbgePnwYI0aMwNKlS9XLPDw8MHToUCQkJKBRo0Z6CViSJk2aoGfPnhg7dizWrVuHoqIiTJo0CW+++aZ6RoEHDx7glVdewddff42AgABkZ2ejR48eyM/PxzfffIPs7GxkZ2cDeFowW1hYGCw/EZEuWEq1uk2BiMhklXuMa1JSEjp27KixrGPHjhAEASkpKToP9jzffvstGjdujFdeeQW9evVCx44dsX79evX6oqIiJCQkqJ/wFR8fj7Nnz+Ly5cto0KABvLy81K979+4ZPD8RUWWxx5WIqppyf12XyWTFLq0/e69QKHSbqhxcXFywffv2Utf7+Pjg31PUdunSBVpMWUtEZLQcrDjGlYiqlgpdZ0pMTER8fLz6/bMHDNy4cQPOzs7FtucE/URE+lPNpprYEYiIDKrcT86SSqUlPnRAEIRiy58tUyqVuklpRPjkLCIyBun56UjNS4Wfm5/YUYiIDKbcPa5btmzRZw4iIqogDhUgoqqm3IXryJEj9ZmDiIgqyN7KXuwIREQGVaEnZxERkfGws+KTeYioamHhSkRkojgdFhFVNZy9mojIBLnYuUCC4jfMEhGZMxauREQmSCrhBTMiqnr4m4+IiIiITAILVyIiIiIyCSxciYiIiMgksHAlIiIiIpPAwpWIiIiITAILVyIiIiIyCZwOi0r16NEjPHr0SOwYREREJsfLywteXl5ixzA7LFwryMvLCxEREWb/l1Emk2HIkCE4ceKE2FGIiIhMTlBQEA4dOgQbGxuxo5gViSAIgtghyPhkZ2ejevXqOHHiBBwdHcWOQ5WUm5uLoKAgtqeZYHuaH7apeXnWnllZWXBychI7jllh4Uolela48ofOPLA9zQvb0/ywTc0L21N/eHMWEREREZkEFq5EREREZBJYuFKJbGxsEBERwUHlZoLtaV7YnuaHbWpe2J76wzGuRERERGQS2ONKRERERCaBhSsRERERmQQWrkRERERkEli4EhEREZFJYOFKZCQkEkm5XsePH6/0ufLz8zF37twKHWvhwoV47bXX4OHhAYlEgrlz51Y6hzkz5va8fv06PvnkE7Rq1QrVqlWDl5cXevfujfPnz1c6i7ky5vZ8+PAhhg8fjkaNGqFatWpwdnZGQEAAtm3bBt5/XTpjbtP/+vbbbyGRSPhUNQCWYgcgoqf+97//abz/+uuvceTIkWLLmzRpUulz5efnY968eQCALl26lGufWbNmwdPTE61bt8ahQ4cqncHcGXN7bty4EZs2bcKgQYMwceJEZGVl4auvvsLLL7+M6OhoBAcHVzqTuTHm9kxPT8f9+/cxePBg1KlTB0VFRThy5AjefvttJCQkYNGiRZXOZI6MuU3/LTc3F5988gkcHBwqncMsCERklN577z1BXz+iaWlpAgAhIiKi3PvcuXNH633JuNrz/PnzQk5Ojsay9PR0wc3NTejQoYMeEpofY2rP0vTp00dwcHAQFAqFboKZOWNt02nTpgmNGjUShg0bJjg4OOg+nInhUAEiE6JSqbBy5Uo0bdoUtra28PDwwPjx4/HkyRON7c6fP4+QkBC4urrCzs4Ovr6+GD16NAAgMTERbm5uAIB58+apL4c979K/j4+PPj5SlSZWe/r7+xe75FizZk106tQJ165d0+2HrELE/PksiY+PD/Lz8yGXyyv92aoqsdv0xo0bWLFiBZYvXw5LS14kBzhUgMikjB8/Hlu3bsWoUaMwefJk3LlzB19++SUuXryIU6dOwcrKCqmpqejRowfc3Nwwffp0ODs7IzExET///DMAwM3NDWvXrsWECRMwYMAADBw4EADQokULMT9alWRs7ZmcnAxXV1edfsaqROz2LCgoQF5eHnJzc3HixAls2bIFgYGBsLOz0+vnNmdit+mUKVPQtWtX9OrVC99//71eP6vJELvLl4hK9t/LVidPnhQACN9++63GdtHR0RrLd+3aJQAQzp07V+qxK3PZikMFtGOs7fnMb7/9JkgkEmH27NlaH6MqMcb2jIyMFACoX6+88oqQlJRUoWNUZcbWpvv27RMsLS2FK1euCIIgCCNHjuRQAYFDBYhMxg8//IDq1auje/fuSE9PV7+eXfY9duwYAMDZ2RkAsG/fPhQVFYmYmMpiTO2ZmpqKoUOHwtfXF5988olezmHujKE9hwwZgiNHjmD79u0YOnQogKe9sKQdMdtULpdj6tSpePfdd+Hn56eTY5oLFq5EJuLGjRvIysqCu7s73NzcNF65ublITU0FAAQFBWHQoEGYN28eXF1d0a9fP2zZsgUymUzkT0D/ZiztmZeXhz59+iAnJwd79uzhdDtaMob2rFu3LoKDgzFkyBB8++23qFevHoKDg1m8aknMNl2xYgXS09PVMxHQPzjGlchEqFQquLu749tvvy1x/bPB/xKJBD/++CPOnDmDX375BYcOHcLo0aOxbNkynDlzhoWJkTCG9pTL5Rg4cCD+/PNPHDp0CM2aNdP6WFWdMbTnfw0ePBgbNmzAb7/9hpCQEJ0dt6oQq02zsrKwYMECTJw4EdnZ2cjOzgbwdFosQRCQmJgIe3t7uLu7V+4DmiqxxyoQUcn+O95q4sSJgoWFhZCfn1/hY3377bcCAGHDhg2CIDyd+ggc42pQxtaeSqVSCA0NFSwsLISffvqpwhmqOmNrz5Ls3r1bACDs3LmzUsepKoylTe/cuaMxVrmkV79+/SqcyVxwqACRiXjjjTegVCoxf/78YusUCgUyMzMBAE+ePCn2tJxWrVoBgPrSlb29PQCo9yHDE7s933//fezcuRNr1qxR3+VM2hOzPdPS0kpcvmnTJkgkErRp06ZcxyFNYrWpu7s7du3aVezVtWtX2NraYteuXQgPD9f+g5k4DhUgMhFBQUEYP348IiMjcenSJfTo0QNWVla4ceMGfvjhB0RFRWHw4MHYtm0b1qxZgwEDBqB+/frIycnBhg0b4OTkhF69egEA7Ozs4Ofnh507d6Jhw4ZwcXFBs2bNyrxU/L///Q93795Ffn4+AOC3337DggULAABvvfUW6tatq///CWZEzPZcuXIl1qxZg8DAQNjb2+Obb77RWD9gwAA+paeCxGzPhQsX4tSpU+jZsyfq1KmDjIwM/PTTTzh37hzef/99NGjQwJD/K8yGWG1qb2+P/v37F1u+e/duxMXFlbiuShG3w5eISlPaU1zWr18v+Pv7C3Z2dkK1atWE5s2bC5988onw8OFDQRAEIT4+XhgyZIhQp04dwcbGRnB3dxf69OkjnD9/XuM4p0+fFvz9/QVra+tyXcIKCgoq9bLVsWPHdPWxzZYxtefI/2vv7mOqLP84jn9uEc8hebQIfDyHh41gbmY5aiMja82lLNgUta1EF1lbG7mwZpQTy5ZoOh3ljNbA2GrLlf9opVvCyNXmP/UHsaJ4qrWBtYFRBip8f3+4Tr8TlIeE4L55vzY37++57uu68LPd+3q4z31KSv7x15B/fEsa/t5UyvP06dNWUFBg8+bNs+joaIuLi7O8vDyrra214eHhcf25vWwqZToaHod1lWP2l/e3AQAAgCmIe1wBAADgCjSuAAAAcAUaVwAAALgCjSsAAABcgcYVAAAArkDjCgAAAFegcQU8oLOzU47jqK6ubrK3gnFCpt5Cnt5CnpOHxhUAAACuwBcQAB5gZhocHFR0dLSioqImezsYB2TqLeTpLeQ5eWhcAQAA4ArcKgBMEZWVlXIcR62trXr44YeVkJCg5ORk7dixQ2amH374QYWFhYqPj1dqaqr2798fOne0+602bdqk2NhY/fjjjyoqKlJsbKySk5O1bds2DQ0NhcY1NjbKcRw1NjaG7We0Obu7u7V582YtWLBAPp9Pc+fOVWFhoTo7OyfoX8XdyNRbyNNbyNOdaFyBKWb9+vUaHh7Wnj17dMcdd2j37t06ePCg7r//fs2fP19VVVXKzMzUtm3b1NTU9I9zDQ0NaeXKlbrxxhv16quvKj8/X/v371dNTc2/2tuaNWt0/Phxbd68WYcPH1ZZWZn6+/v1/fff/6v5pgsy9Rby9BbydBkDMCXs3LnTJNmWLVtCtStXrtiCBQvMcRzbs2dPqN7b22sxMTFWUlJiZmYdHR0myWpra0NjSkpKTJK9+OKLYessXbrUbr/99tBxQ0ODSbKGhoawcX+ds7e31yTZvn37xucHngbI1FvI01vI0514xxWYYkpLS0N/j4qK0rJly2RmevTRR0P1xMREZWVlqb29/ZrzPfHEE2HHy5cvj+i8v4qJidGsWbPU2Nio3t7eMZ8/nZGpt5Cnt5Cnu9C4AlPMokWLwo4TEhLk9/t10003jahf62Lm9/uVnJwcVktKSvpXF0Gfz6eqqip99NFHSklJ0d133629e/equ7t7zHNNN2TqLeTpLeTpLjSuwBQz2qNV/u5xK3aNh4JE8pgWx3FGrf//hwn+sHXrVrW2tuqVV16R3+/Xjh07lJ2drS+++OKa60xnZOot5Okt5OkuNK7ANJeUlCRJ6uvrC6t3dXWNOj4jI0Pl5eU6ffq0mpubdenSpbBP22Lykam3kKe3kOf1oXEFprlAIKCoqKgRn5Y9fPhw2PHFixc1MDAQVsvIyFBcXJwGBwcnfJ+IHJl6C3l6C3len5mTvQEAkyshIUHFxcWqrq6W4zjKyMjQiRMndP78+bBxra2tuu+++7Ru3Trl5ORo5syZOn78uHp6erRhw4ZJ2j1GQ6beQp7eQp7Xh8YVgKqrq3X58mUdOXJEPp9P69at0759+7R48eLQmIULF+qhhx7SJ598ovr6es2cOVO33HKL3nvvPa1Zs2YSd4/RkKm3kKe3kOe/x1e+AgAAwBW4xxUAAACuQOMKAAAAV6BxBQAAgCvQuAIAAMAVaFwBAADgCjSuAMaks7NTjuOorq5usreCcUKm3kKe3kKe4WhcgQnU1tamxx9/XOnp6fL7/YqPj1deXp4OHTqk33//fcLWbWlpUWVlpTo7OydsjUi8/PLLevDBB5WSkiLHcVRZWTmp+xkPZOqtTMmTPMcDef53+AICYIKcPHlSxcXF8vl82rhxoxYvXqxLly7p7NmzeuaZZ/TVV1+ppqZmQtZuaWnRrl27dM899ygYDE7IGpF44YUXlJqaqqVLl+rUqVOTto/xQqbeypQ8yXO8kOd/h8YVmAAdHR3asGGDAoGAzpw5o7lz54Zee/LJJ/Xdd9/p5MmTk7jDP5mZBgYGFBMTM+5zd3R0KBgM6ueff1ZycvK4z/9fItOrvJIpeV5Fnv898rw+3CoATIC9e/fq119/1VtvvRV2Af1DZmamnnrqqdDxlStX9NJLLykjI0M+n0/BYFAVFRUaHBwMOy8YDKqgoEBnz55Vbm6u/H6/0tPT9fbbb4fG1NXVqbi4WJK0YsUKOY4jx3HU2NgYNsepU6e0bNkyxcTE6I033pAktbe3q7i4WHPmzNENN9ygO++887ou9pP5zsN4I9M/9+sF5Pnnfr2APP/cr+cZgHE3f/58S09Pj3h8SUmJSbK1a9fa66+/bhs3bjRJVlRUFDYuEAhYVlaWpaSkWEVFhb322mt22223meM41tzcbGZmbW1tVlZWZpKsoqLC6uvrrb6+3rq7u0NzZGZmWlJSkm3fvt2OHDliDQ0N1t3dbSkpKRYXF2fPP/+8HThwwJYsWWIzZsywDz74ILSHjo4Ok2S1tbUR/3w//fSTSbKdO3dGfM5UQ6bh3J4peYYjT/J0CxpXYJxduHDBJFlhYWFE47/88kuTZKWlpWH1bdu2mSQ7c+ZMqBYIBEySNTU1hWrnz583n89n5eXlodqxY8dMkjU0NIxY7485Pv7447D61q1bTZJ9+umnoVp/f7+lpaVZMBi0oaEhM5ueF1EyHcnNmZLnSORJnm7BrQLAOPvll18kSXFxcRGN//DDDyVJTz/9dFi9vLxckkb82ignJ0fLly8PHScnJysrK0vt7e0R7zEtLU0rV64csY/c3FzdddddoVpsbKy2bNmizs5OtbS0RDy/15Cpt5Cnt5Dn9ELjCoyz+Ph4SVJ/f39E47u6ujRjxgxlZmaG1VNTU5WYmKiurq6w+qJFi0bMkZSUpN7e3oj3mJaWNuo+srKyRtSzs7NDr09XZOot5Okt5Dm90LgC4yw+Pl7z5s1Tc3PzmM5zHCeicVFRUaPWzSzitSbi06xeRqbeQp7eQp7TC40rMAEKCgrU1tamzz///JpjA4GAhoeH9e2334bVe3p61NfXp0AgMOb1I70g/3Uf33zzzYj6119/HXp9OiNTbyFPbyHP6YPGFZgAzz77rGbPnq3S0lL19PSMeL2trU2HDh2SJK1atUqSdPDgwbAxBw4ckCStXr16zOvPnj1bktTX1xfxOatWrdK5c+fCLvy//fabampqFAwGlZOTM+Z9eAmZegt5egt5Th98AQEwATIyMvTOO+9o/fr1ys7ODvsWl88++0zHjh3Tpk2bJElLlixRSUmJampq1NfXp/z8fJ07d05Hjx5VUVGRVqxYMeb1b731VkVFRamqqkoXLlyQz+fTvffeq5tvvvlvz9m+fbveffddPfDAAyorK9OcOXN09OhRdXR06P3339eMGWP/f259fb26urp08eJFSVJTU5N2794tSXrkkUdc9Y4CmV7llUzJ8yryJE/XmdyHGgDe1traao899pgFg0GbNWuWxcXFWV5enlVXV9vAwEBo3OXLl23Xrl2WlpZm0dHRtnDhQnvuuefCxphdfazK6tWrR6yTn59v+fn5YbU333zT0tPTLSoqKuwxLX83h9nV5xGuXbvWEhMTze/3W25urp04cSJszFgezZKfn2+SRv0z2mNj3IBMvZUpeZInebqLYzaGu4sBAACAScI9rgAAAHAFGlcAAAC4Ao0rAAAAXIHGFQAAAK5A4woAAABXoHEFAACAK9C4AgAAwBVoXAEAAOAKNK4AAABwBRpXAAAAuAKNKwAAAFyBxhUAAACuQOMKAAAAV/gfHzs9z3Ll6/EAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq4AAAInCAYAAABZQNsWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAktdJREFUeJzs3XdYU2f/BvA7CRtERKZUxVEH4sRicaEWhTrq7Esd1Wod1apV2lpxoXVQrXW1jrrt21rpctSBWhx1oKhoax3UhbhYIlsSSM7vD3/mbcoQQpKThPtzXbk0Z97xEfjynOc8RyIIggAiIiIiIiMnFTsAEREREVF5sHAlIiIiIpPAwpWIiIiITAILVyIiIiIyCSxciYiIiMgksHAlIiIiIpPAwpWIiIiITAILVyIiIiIyCSxciYiIiMgksHCtoEePHmHu3Ll49OiR2FGIiIiIqhQWrhX06NEjzJs3j4UrERERkYGxcCUiIiIik8DClYiIiIhMAgtXIiIiIjIJJl24/v777+jTpw9q1aoFiUSCXbt2vXCfY8eOoU2bNrC2tkbDhg2xdetWveckIiIiosoz6cI1Ly8PLVu2xOrVq8u1/Z07d9CrVy907doVly5dwpQpUzB69GgcPHhQz0mJiIiIqLIsxA5QGa+//jpef/31cm+/bt061KtXD1988QUAoGnTpjh58iSWL1+O4OBgfcUkIiIiIh0w6cK1omJjYxEUFKSxLDg4GFOmTCl1H7lcDrlcrn6fm5urr3ilOj9uHBQZGQY/r1isnJ3R9uuvxY6hN+PGnUdGhkLsGAbj7GyFr79uK3YMvXlj3htIy0oTO4bBuFZ3xZ6IPWLH0Kt5b8xDVlqW2DEMprprdUTsiRA7ht6cjxoHRV4V+hlq74y2oeb7M7RKFa7Jyclwd3fXWObu7o7s7Gw8ffoUtra2xfaJjIzEvHnzDBWxRIqMDCjS00XNQLqTkaFAenrVKVzNXVpWGpKfJIsdg3QoKy0LT5KfiB2DdESRlwFFHn+GmosqVbhqIzw8HGFhYer3ly5dQmBgoDhhpFJYOTuLc24DUGRkACqV2DEMRip91htprjIyFFWpOSGVSOHm5CZ2DL1JzUyFSqhCDQpAIpXAyc1J7Bh6k5maCUEliB3DcCRSWNmZ8c/Q/AygCnyNVqnC1cPDAykpKRrLUlJS4OjoWGJvKwBYW1vD2tpa/d7BwUGvGcti5eyM9j/+KNr59e30m29WqZ5lZ2cr/Phje7Fj6M2bb56uUj3Lbk5uiF0WK3YMvQkIC6hyPctObk5YFrtM7Bh6ExYQVqV6lq3snNF+lBn/DN38ZpXoWRZtVgFBEHDkyBEcOHAAOTk5BjlnQEAAYmJiNJYdPnwYAQEBBjk/EREREWnPIIXrzJkz0bVrV/V7QRDQo0cPdO/eHb169ULz5s1x69atCh83NzcXly5dwqVLlwA8m+7q0qVLSEpKAvDsMv/w4cPV27/33nu4ffs2pk2bhuvXr2PNmjX44YcfMHXq1Mp9QCIiIiLSO4MUrj///DP8/f3V73/66SfExMRgwYIF2Lt3L5RKJebOnVvh454/fx6tW7dG69atAQBhYWFo3bo15syZAwB49OiRuogFgHr16mHfvn04fPgwWrZsiS+++AIbN27kVFhEREREJsAgY1wfPHiAhg0bqt//8ssv8PHxQXh4OABg/PjxWLt2bYWP26VLFwhC6QPLS3oqVpcuXXDx4sUKn4uIiIiIxGWQHlcLCwv1XKiCICAmJgYhISHq9e7u7kivQjflEBEREVHFGaRw9fX1xbfffosnT55gy5YtePz4MXr16qVef/fuXbi4uBgiChERERGZKIMMFZgzZw769OmjLk47dOigcbPWvn378MorrxgiChERERGZKIMUrt27d0d8fDwOHz4MJycnhIaGqtc9efIEnTt3Rt++fQ0RhYiIiIhMlMEeQODj4wMfH59iy2vUqIHly5cbKgYRERERmSiDFK45OTnIzMxE7dq11csePnyIdevWQS6XY9CgQRwqQERERERlMkjhOnbsWNy5cwdnzpwBAGRnZ+PVV1/F/fv3IZVKsXLlSkRHR6NLly6GiENEREREJsggswqcPHkSvXv3Vr//9ttv8fDhQ5w+fRpPnjxBixYtsGDBAkNEISIiIiITZZDCNT09HV5eXur3e/bsQceOHfHqq6+iWrVqGD58OP744w9DRCEiIiIiE2WQwtXJyQnJyckAgKdPn+LEiRPo0aOHer2FhQXy8/MNEYWIiIiITJRBxri2b98ea9asQZMmTRAdHY2CggKN6a/+/vtvjR5ZIiIiIqJ/M0jhunjxYvTo0QMDBw4EAHz44Ydo1qwZAECpVOLHH3/UeAQsEREREdG/GaRwbdiwIRISEnD16lVUr14d3t7e6nX5+fn46quv0LJlS0NEISIiIiITZbAHEFhaWpZYnFarVo1PzSIiIiKiFzLIzVnAs7lbP/vsMwQHB6N169aIi4sDAGRkZGDZsmW4efOmoaIQERERkQkySI/r/fv3ERgYiHv37uHll1/G9evXkZubCwBwdnbG119/jbt372LlypWGiENEREREJsgghevHH3+MnJwcXLp0CW5ubnBzc9NY369fP+zdu9cQUYiIiIjIRBlkqMChQ4cwefJk+Pj4QCKRFFtfv3593Lt3zxBRiIiIiMhEGaRwffr0KVxdXUtdn5OTY4gYRERERGTCDFK4+vj44Pfffy91/a5du9C6dWtDRCEiIiIiE2WQwnXKlCnYsWMHFi9ejKysLACASqXCzZs38fbbbyM2NhZTp041RBQiIiIiMlEGuTlr2LBhuHv3LmbNmoWZM2cCAEJCQiAIAqRSKRYtWoR+/foZIgoRERERmSiDPYBg5syZePvtt/Hzzz/j5s2bUKlUaNCgAQYMGID69esbKgYRERERmSiDFa4AUKdOHQ4JICIiIiKtGGSMa3x8PNasWVPq+jVr1uDSpUuGiEJEREREJsoghevMmTPx22+/lbr+yJEjmDVrliGiEBEREZGJMkjheuHCBXTq1KnU9Z06dcL58+cNEYWIiIiITJRBCtecnBxYWJQ+nFYqlaqnyaqo1atXw9vbGzY2NmjXrh3i4uLK3H7FihVo3LgxbG1tUbt2bUydOhUFBQVanZuIiIiIDMcghevLL7+MQ4cOlbo+Ojpaq5kFoqKiEBYWhoiICMTHx6Nly5YIDg5Gampqidtv374d06dPR0REBK5du4ZNmzYhKioKM2bMqPC5iYiIiMiwDFK4vvvuu9i3bx/CwsKQmZmpXp6ZmYmpU6ciOjoa7777boWPu2zZMowZMwYjR46Ej48P1q1bBzs7O2zevLnE7U+fPo0OHTpgyJAh8Pb2Ro8ePTB48OAX9tISERERkfgMUrhOnjwZI0aMwIoVK+Di4oI6deqgTp06cHFxwcqVKzFs2LAKT5OlUChw4cIFBAUFqZdJpVIEBQUhNja2xH3at2+PCxcuqAvV27dvY//+/ejZs6f2H46IiIiIDMIg87hKJBJs2bIFw4cPx88//4zbt28DAPr27YuBAweiS5cuFT5meno6lEol3N3dNZa7u7vj+vXrJe4zZMgQpKeno2PHjhAEAUVFRXjvvffKHCogl8shl8vV73NzcyuclUhsbdu2RXJyMjw8PHgjJBERmSyDPoCga9eu6Nq1qyFPqeHYsWNYtGgR1qxZg3bt2uHmzZv44IMPMH/+fMyePbvEfSIjIzFv3jwDJyXSreTkZDx48EDsGERERJVikKECd+7cwa+//lrq+l9//RWJiYkVOqaLiwtkMhlSUlI0lqekpMDDw6PEfWbPno23334bo0ePRvPmzdG/f38sWrQIkZGRUKlUJe4THh6OrKws9ev48eMVyklEREREumGQwvWjjz7CqlWrSl2/evVqTJ8+vULHtLKygp+fH2JiYtTLVCoVYmJiEBAQUOI++fn5kEo1P7JMJgMACIJQ4j7W1tZwdHRUvxwcHCqUk4iIiIh0wyCFa2xsLLp3717q+tdeew0nTpyo8HHDwsKwYcMGbNu2DdeuXcP48eORl5eHkSNHAgCGDx+O8PBw9fZ9+vTB2rVrsWPHDty5cweHDx/G7Nmz0adPH3UBS0RERETGySBjXJ88eYJq1aqVut7BwQGPHz+u8HFDQ0ORlpaGOXPmIDk5Ga1atUJ0dLT6hq2kpCSNHtZZs2ZBIpFg1qxZePDgAVxdXdGnTx8sXLiw4h+KiIiIiAzKIIVrnTp1cOrUKYwfP77E9SdOnMBLL72k1bEnTpyIiRMnlrju2LFjGu8tLCwQERGBiIgIrc5FREREROIxyFCBwYMH4/vvv8eqVas0boJSKpVYuXIloqKiMGTIEENEISIiIiITZZAe1/DwcJw8eRJTpkzBwoUL0bhxYwBAQkIC0tLS0KVLF8ycOdMQUYiIiIjIRBmkx9Xa2hqHDh3Cpk2b4O/vj/T0dKSnp8Pf3x+bN2/Gb7/9Bmtra0NEISIiIiITZbAHEEilUowcOVJ9xz8RERERUUUYpMeViIiIiKiyDNLj2q1btxduI5FINB4mQERERET0TwYpXFUqFSQSicYypVKJu3fv4t69e2jYsCG8vLwMEYWoSnr+GOTSHodMRERkCgxSuP57PtV/2rt3L8aOHYtly5YZIgpRlXT+/HmxIxAREVWawW7OKk3v3r0xbNgwTJkyBcePHxc7DpFBODlloqgI6N9/l9hR9MxJ7ABERGRGjOLmrAYNGuDcuXNixyAiIiIiIyZ6j2tRURF++OEHuLi4iB2FyGwdO/YRCgoyYWPjhC5dloodh4iISCsGKVxHjRpV4vLMzEycOXMGycnJHONKpEcFBZkoKHgsdgwiIqJKMUjheuTIkWKzCkgkEtSoUQMdO3bE6NGj0aNHD0NEISIiIiITZZDCNTEx0RCnISIiIiIzZhQ3ZxERERERvYjeCtf8/HwkJSVBoVAUW7d582a89tpr8PHxwYABAzijABERERG9kN4K108//RQtWrQoVrguWLAAY8aMwfHjx5GWloZdu3ahS5cu+OOPP/QVhYiIiIjMgN4K16NHj6J3795wcHBQL8vOzsaCBQvg5eWFGzduIC0tDWfOnIGVlRU+++wzfUUhIiIiIjOgt8I1MTERLVq00Fi2f/9+KBQKfPLJJ6hXrx4AwN/fHyNHjsSJEyf0FYWIiIiIzIDeCtecnBzUrFlTY9nvv/8OiUSC4OBgjeU+Pj5IS0vTVxQiIiIiMgN6K1zr1q2L69evayw7duwY3N3d0bBhQ43lCoUCjo6O+opCRERERGZAb4Vrjx49sHnzZpw9exYA8M033+D69evo379/sW0vXLgAb29vfUUhIiIiIjOgtwcQzJ49G7t27UL79u0hk8lQVFQEV1dXzJkzR2O7/Px87Ny5E2PHjtVXFKIqz8bGSeNPIiIiU6S3wtXFxQWXLl3Cxo0bcfv2bdStWxejRo2Cm5ubxnZ//fUXhg4dirfffltfUYiqvC5dloodgYiIqNL0+sjXGjVq4OOPPy5zG39/f/j7++szBhERERGZAT7ylYiIiIhMAgtXIiIiIjIJLFyJiIiIyCSYfOG6evVqeHt7w8bGBu3atUNcXFyZ22dmZuL999+Hp6cnrK2t0ahRI+zfv99AaYmIiIhIW3opXPfs2YOHDx/q49AaoqKiEBYWhoiICMTHx6Nly5YIDg5GampqidsrFAp0794diYmJ+Omnn5CQkIANGzbAy8tL71mJiIiIqHL0Urj2798fx44dU7+vX78+9uzZo/PzLFu2DGPGjMHIkSPh4+ODdevWwc7ODps3by5x+82bNyMjIwO7du1Chw4d4O3tjcDAQLRs2VLn2YiIiIhIt/RSuFarVg2ZmZnq94mJicjNzdXpORQKBS5cuICgoCD1MqlUiqCgIMTGxpa4z549exAQEID3338f7u7u8PX1xaJFi6BUKks9j1wuR3Z2tvql689BREREROWjl3lc/f39sXDhQqSkpKB69eoAgP379yM5ObnUfSQSCaZOnVruc6Snp0OpVMLd3V1jubu7O65fv17iPrdv38aRI0cwdOhQ7N+/Hzdv3sSECRNQWFiIiIiIEveJjIzEvHnzyp2LiIiIiPRDL4XrmjVrMHz4cMyfPx/As6J0+/bt2L59e6n7VLRw1YZKpYKbmxvWr18PmUwGPz8/PHjwAJ9//nmphWt4eDjCwsLU7y9duoTAwEC95iQiIiKi4vRSuDZs2BCnT59GQUEBUlNT4e3tjRUrVqBv3746O4eLiwtkMhlSUlI0lqekpMDDw6PEfTw9PWFpaQmZTKZe1rRpUyQnJ0OhUMDKyqrYPtbW1rC2tla/d3Bw0NEnICIiIqKK0OsjX21sbFCnTh1ERESgW7duqFu3rs6ObWVlBT8/P8TExKBfv34AnvWoxsTEYOLEiSXu06FDB2zfvh0qlQpS6bPhvX///Tc8PT1LLFqJiIiIyHgYZB7XiIgI+Pr6AgByc3Nx7do1XLt2rdI3OoWFhWHDhg3Ytm0brl27hvHjxyMvLw8jR44EAAwfPhzh4eHq7cePH4+MjAx88MEH+Pvvv7Fv3z4sWrQI77//fqVyEBEREZH+6bXH9Z/OnTuHadOm4eTJk1CpVACezQLQqVMnLFmyBG3btq3wMUNDQ5GWloY5c+YgOTkZrVq1QnR0tPqGraSkJHXPKgDUrl0bBw8exNSpU9GiRQt4eXnhgw8+wCeffKKbD0lEREREemOQwvXs2bPo0qULrKysMHr0aDRt2hQAcO3aNXz//ffo3Lkzjh07Bn9//wofe+LEiaUODfjnXLLPBQQE4MyZMxU+DxERERGJyyCF68yZM+Hl5YWTJ08Wu3Fq7ty56NChA2bOnInDhw8bIg4RERERmSCDjHE9e/Ysxo0bV+Ld/u7u7hg7dix7QYmIiIioTAYpXKVSKYqKikpdr1QqNcaiEhERERH9m0Gqxfbt22P16tW4e/dusXVJSUlYs2YNOnToYIgoRERERGSiDDLGddGiRejcuTOaNGmC/v37o1GjRgCAhIQE7N69GxYWFoiMjDREFCIiIiIyUQYpXFu3bo2zZ89i5syZ2LNnD/Lz8wEAdnZ2CAkJwYIFC+Dj42OIKERERERkogw2j6uPjw927twJlUqFtLQ0AICrqyvHthIRERFRuRiscH1OKpWqHxBARERERFRe7O4kIiIiIpPAwpWIiIiITAILVyIiIiIyCSxciYiIiMgksHAlIiIiIpNg0FkFrl69itu3b+PJkycQBKHY+uHDhxsyDhERERGZEIMUrrdu3cKwYcMQFxdXYsEKABKJhIUrEREREZXKIIXruHHjcPnyZaxYsQKdOnVCjRo1DHFaIiIiIjIjBilcT506hRkzZmDSpEmGOB0RERERmSGD3Jzl4uKC6tWrG+JURERERGSmDFK4vvfee/j222+hVCoNcToiIiIiMkMGGSrQqFEjKJVKtGzZEqNGjULt2rUhk8mKbTdgwABDxCEiIiIiE2SQwjU0NFT9948++qjEbSQSCXtkiYiIiKhUBilcjx49aojTEBEREZEZM0jhGhgYaIjTEBEREZEZM+iTs4BnT8+6e/cuAKBu3brw8fExdAQiIiIiMkEGK1x3796NsLAwJCYmaiyvV68eli1bhjfeeMNQUYiIiIjIBBlkOqz9+/dj4MCBAIBFixZh586d2LlzJxYtWgRBEDBgwABER0cbIgoRERERmSiD9LjOnz8fLVq0wIkTJ2Bvb69e/sYbb2DixIno2LEj5s2bh5CQEEPEISIiIiITZJAe1z///BMjRozQKFqfs7e3xzvvvIM///xTq2OvXr0a3t7esLGxQbt27RAXF1eu/Xbs2AGJRIJ+/fppdV4iIiIiMiyDFK42NjbIyMgodX1GRgZsbGwqfNyoqCiEhYUhIiIC8fHxaNmyJYKDg5GamlrmfomJifjoo4/QqVOnCp+TiIiIiMRhkMK1W7duWLlyJWJjY4utO3v2LFatWoWgoKAKH3fZsmUYM2YMRo4cCR8fH6xbtw52dnbYvHlzqfsolUoMHToU8+bNQ/369St8TiIiIiISh0HGuC5ZsgQBAQHo2LEj/P390bhxYwBAQkIC4uLi4ObmhsWLF1fomAqFAhcuXEB4eLh6mVQqRVBQUIkF8nOffvop3Nzc8O677+LEiRMvPI9cLodcLle/z83NrVBOIiIiItINg/S41qtXD3/++ScmT56MJ0+eICoqClFRUXjy5Ak++OAD/PHHH/D29q7QMdPT06FUKuHu7q6x3N3dHcnJySXuc/LkSWzatAkbNmwo93kiIyNRvXp19YsPUyAiIiISh8HmcXVzc8Py5cuxfPlyQ51SQ05ODt5++21s2LABLi4u5d4vPDwcYWFh6veXLl1i8UpEREQkAoM/OUtXXFxcIJPJkJKSorE8JSUFHh4exba/desWEhMT0adPH/UylUoFALCwsEBCQgIaNGhQbD9ra2tYW1ur3zs4OOjqIxARERFRBeilcB01ahQkEgnWr18PmUyGUaNGvXAfiUSCTZs2lfscVlZW8PPzQ0xMjHpKK5VKhZiYGEycOLHY9k2aNMHly5c1ls2aNQs5OTlYuXIlateuXe5zExEREZHh6aVwPXLkCKRSKVQqFWQyGY4cOQKJRFLmPi9aX5KwsDCMGDECbdu2hb+/P1asWIG8vDyMHDkSADB8+HB4eXkhMjISNjY28PX11djfyckJAIotJyIiItJW27ZtkZycDA8PD5w/f17sOGZFL4VrYmJime91JTQ0FGlpaZgzZw6Sk5PRqlUrREdHq2/YSkpKglRqkPvPiIiIiAAAycnJePDggdgxzJJBxrgmJSXB1dUVtra2Ja5/+vQp0tLSUKdOnQofe+LEiSUODQCAY8eOlbnv1q1bK3w+IiIiIhKHwabD2rlzZ6nr9+zZg3r16hkiChERERGZKIMUroIglLm+sLCQl/SJiIiIqEx6GyqQnZ2NzMxM9fvHjx8jKSmp2HaZmZnYsWMHPD099RWFiIjIqPFmHqLy0Vvhunz5cnz66acAns0YMGXKFEyZMqXEbQVBwIIFC/QVhYiIyKjxZh6i8tFb4dqjRw84ODhAEARMmzYNgwcPRps2bTS2kUgksLe3h5+fH9q2bauvKERERERkBvRWuAYEBCAgIAAAkJeXh4EDB3K+VCIiIiLSmt6nw8rPz8eqVatgZ2fHwpWIiIiItKb3W/nt7OxgYWEBe3t7fZ+KiIiIiMyYQeagGjhwIH766acXTotFRERERFQagzw566233sKECRPQtWtXjBkzBt7e3iU+RevfN28RERERET1nkMK1S5cu6r+fOHGi2HpBECCRSKBUKg0Rh4iIiEhvPDw8NP4k3TFI4bplyxZDnIaIiIhIdHyIhP4YpHAdMWKEIU5DREREVExmkROQVYRdy/uLHUWvnAxS1YnL4B8xNzcX9+7dAwDUrl0bDg4Oho5ARERERCbIILMKAMC5c+fQtWtX1KhRA76+vvD19UWNGjXQrVs3dqkTERGR2fho2TGMnheNj5YdEzuK2TFIj+vZs2fRpUsXWFlZYfTo0WjatCkA4Nq1a/j+++/RuXNnHDt2DP7+/oaIQ0REZFR4M495ycwpwOOsArFjmCWDFK4zZ86El5cXTp48WeyLcu7cuejQoQNmzpyJw4cPGyIOERGRUeGVR6LyMViP65w5c0r8TdLd3R1jx47F/PnzDRGFiIjohQpsCvAo8xEGNx0sdhS9soGN2BGIKsQgY1ylUimKiopKXa9UKiGVGmy4LRERERGZIINUi+3bt8fq1atx9+7dYuuSkpKwZs0adOjQwRBRiIiIjM7BxIPYfXM3DiYeFDsKkVEzyFCBRYsWoXPnzmjSpAn69++PRo0aAQASEhKwe/duWFhYIDIy0hBRiIiIjE5BUQGeFj0VOwaR0TNI4dq6dWucPXsWM2fOxJ49e5Cfnw8AsLOzQ0hICBYsWAAfHx9DRCEiIiIiE2WwBxD4+Phg586dUKlUSEtLAwC4urpybCsRERERlYvBn5wlkUggkUjUfyciIiIiKg+DdXdevXoVgwYNgqOjIzw9PeHp6QlHR0cMGjQIf/31l6FiEBGZvLZt2+Kll15C27ZtxY5CRGRQBulxPXHiBF5//XWoVCr07dtX4+asPXv24MCBA4iOjkanTp0MEYeIyKQlJyfjwYMHYscgIjI4gxSuU6dOhZubG44fP47atWtrrLt37x46d+6MsLAwnDt3zhBxiIiIiMgEGWSowJUrVzBhwoRiRSsA1K5dG+PHj8eVK1e0Ovbq1avh7e0NGxsbtGvXDnFxcaVuu2HDBnTq1Ak1atRAjRo1EBQUVOb2RERERBXlVM0GNavbwKkan0ymawbpca1bty7kcnmp6xUKRYlF7YtERUUhLCwM69atQ7t27bBixQoEBwcjISEBbm5uxbY/duwYBg8ejPbt28PGxgaLFy9Gjx49cOXKFXh5eVX4/ERERET/tjSsi9gRzJZBelznzJmDVatW4dKlS8XWXbx4EV9++SXmzp1b4eMuW7YMY8aMwciRI+Hj44N169bBzs4OmzdvLnH77777DhMmTECrVq3QpEkTbNy4ESqVCjExMRU+t7njzR9ERERkbAzS43rmzBm4u7vDz88P7du3R8OGDQEAN27cQGxsLHx9fREbG4vY2Fj1PhKJBCtXriz1mAqFAhcuXEB4eLh6mVQqRVBQkMZxypKfn4/CwkI4OzuXuo1cLtfoLc7NzS3XsU0db/4gIiIiY2OQwvWrr75S//3UqVM4deqUxvrLly/j8uXLGsteVLimp6dDqVTC3d1dY7m7uzuuX79erlyffPIJatWqhaCgoFK3iYyMxLx588p1PCIiIm3YWNho/ElEJTNI4apSqQxxmgr57LPPsGPHDhw7dgw2NqV/owgPD0dYWJj6/aVLlxAYGGiIiEREVEUEeweLHYHIJBj8yVm64uLiAplMhpSUFI3lKSkp8PDwKHPfpUuX4rPPPsNvv/2GFi1alLmttbU1rK2t1e8dHBy0D01EREREWjNo4Xrnzh0cOHAAd+/eBfBstoHXX38d9erVq/CxrKys4Ofnh5iYGPTr1w8A1DdaTZw4sdT9lixZgoULF+LgwYO88YiITNLzX85f9Es6EZG5MVjh+uGHH2LlypXFhg1IpVJMmTIFS5curfAxw8LCMGLECLRt2xb+/v5YsWIF8vLyMHLkSADA8OHD4eXlhcjISADA4sWLMWfOHGzfvh3e3t5ITk4G8KwXlT2pRGQqzp8/L3YEIiJRGKRw/eKLL7B8+XIMGjQIH374IZo2bQoAuHbtGpYvX47ly5fDy8sLU6dOrdBxQ0NDkZaWhjlz5iA5ORmtWrVCdHS0+oatpKQkSKX/m/Fr7dq1UCgUGDRokMZxIiIitJqOi4gIAGwKbJD5KBNNBzcVO4p+8b4hIhKZQQrXDRs24I033sAPP/ygsbxdu3bYsWMHCgoK8PXXX1e4cAWAiRMnljo04NixYxrvExMTK3x8IiIiIjIOBnkAQWJiIoKDS79jMjg4mEUlEVE5JR5MxM3dN5F4MFHsKEREBmWQHlc3Nzf88ccfpa7/448/4OrqaogoVE68+YPIeBUVFKHoaZHYMYiIDM4gheubb76JlStXwtvbG5MmTYK9vT0AIC8vD1999RU2btyIKVOmGCIKlRNv/iAiIiJjY5DCdf78+bh06RJmzJiBOXPmoFatWgCAhw8foqioCF27dsWnn35qiCgmK9PJCSgqwq7+/cWOoldOYgcgIiIio2WQwtXOzg4xMTHYvXu3xjyuISEh6NmzJ/r06QOJRGKIKERERERkovReuObn52PYsGEYOHAghg4dir59++r7lKQDHx07hsyCAjjZ2GBply5ixyEiIiLS/6wCdnZ2+O2335Cfn6/vU5EOZRYU4HFBATILCsSOQkRERATAQNNhdezYEbGxsYY4FRERERGZKYMUrl999RVOnDiBWbNm4f79+4Y4JRERERGZGYMUri1btsT9+/cRGRmJunXrwtraGo6Ojhqv6tWrGyIKEREREZkog8wqMHDgQM4aQERERESVYpDCdevWrYY4DRFRlWBhY6HxJxFRVaHX73oFBQXYvXs37ty5AxcXF/Tq1Quenp76PCURkdnzDvYWOwIRkSj0Vrimpqaiffv2uHPnDgRBAPBsaqxdu3YhKChIX6clIiIiIjOlt5uz5s+fj8TEREydOhV79+7FihUrYGtri3HjxunrlERERERkxvTW43ro0CEMHz4cS5cuVS9zd3fHkCFDkJCQgMaNG+vr1KQDTjY2Gn8SERERiU1vhWtSUhI++eQTjWUdO3aEIAhISUlh4Wrk+JhXIiIiMjZ6Gyogl8th86/euufvi4qK9HVaIiIiIjJTep1VIDExEfHx8er3WVlZAIAbN27Aycmp2PZt2rTRZxwiIiIiMmF6LVxnz56N2bNnF1s+YcIEjfeCIEAikUCpVOozDhERERGZML0Vrlu2bNHXoYmIiIioCtJb4TpixAh9HZqIiIiIqiC93ZxFRERERKRLLFyJiIiIyCSwcCUiIiIik8DClYiIiIhMAgtXIiIiIjIJJl+4rl69Gt7e3rCxsUG7du0QFxdX5vY//vgjmjRpAhsbGzRv3hz79+83UFIiIiIiqgyTLlyjoqIQFhaGiIgIxMfHo2XLlggODkZqamqJ258+fRqDBw/Gu+++i4sXL6Jfv37o168f/vrrLwMnJyIiIqKKMunCddmyZRgzZgxGjhwJHx8frFu3DnZ2dti8eXOJ269cuRIhISH4+OOP0bRpU8yfPx9t2rTBV199ZeDkRERERFRRJlu4KhQKXLhwAUFBQeplUqkUQUFBiI2NLXGf2NhYje0BIDg4uNTtiYiIiMh46O3JWfqWnp4OpVIJd3d3jeXu7u64fv16ifskJyeXuH1ycnKp55HL5ZDL5er3ubm5lUhtWjIKCvCkoMCg56yWkwNLmQw28fEGPa8hPXmSAKUyQ+wYBpGTUw0ymSXi423EjqI3eSl5KMgw7NeJWOTWcuQp8hBvxl+fAJCSl4KMgqrxNWott4YiT2HWbZpw9wkycpUGP28NRxs4O5rv9z6xmGzhaiiRkZGYN2+exrLAwEB4enoaLEP7H3802Lmek8vlCA4OxvHjxw1+bgCAn5845yW9YHOaj0d4BL/tbFCz8gjY7rdd7BRmJzAwEAcP7oK1tbXYUcyKyRauLi4ukMlkSElJ0ViekpICDw+PEvfx8PCo0PYAEB4ejrCwMI1l1tbWZv8fUS6X4/jx4zh+/DgcHBzEjkOVlJubi8DAQLanmWB7mh+2qXl53p5yudzs6wVDM9nC1crKCn5+foiJiUG/fv0AACqVCjExMZg4cWKJ+wQEBCAmJgZTpkxRLzt8+DACAgJKPU9VKFLL0qpVKzg6OoodgyopOzsbANvTXLA9zQ/b1Lw8b0/SPZMtXAEgLCwMI0aMQNu2beHv748VK1YgLy8PI0eOBAAMHz4cXl5eiIyMBAB88MEHCAwMxBdffIFevXphx44dOH/+PNavXy/mxyAiIiKicjDpwjU0NBRpaWmYM2cOkpOT0apVK0RHR6tvwEpKSoJU+r+JE9q3b4/t27dj1qxZmDFjBl5++WXs2rULvr6+Yn0EIiIiIionky5cAWDixImlDg04duxYsWVvvvkm3nzzTT2nMn3W1taIiIio0sMkzAnb07ywPc0P29S8sD31RyIIgiB2CCIiIiKiFzHZBxAQERERUdXCwpWIiIiITAILVyIiIiIyCSxcSe8SExMhkUiwdetWsaMQERGRCWPhamRu3bqFcePGoX79+rCxsYGjoyM6dOiAlStX4unTp3o779WrVzF37lwkJibq7RzlsXDhQrzxxhtwd3eHRCLB3LlzRc1jSBKJpFyvkmbLqKj8/HzMnTu3Qseqym2jDWNuz+vXr2PatGlo1aoVqlWrBk9PT/Tq1Qvnz5+vdBZzZczt+fDhQwwbNgyNGzdGtWrV4OTkBH9/f2zbtg28/7p0xtym//bdd99BIpHwqWowg+mwzMm+ffvw5ptvwtraGsOHD4evry8UCgVOnjyJjz/+GFeuXNHbwxKuXr2KefPmoUuXLvD29tbLOcpj1qxZ8PDwQOvWrXHw4EHRcojhv//9r8b7b775BocPHy62vGnTppU+V35+PubNmwcA6NKlS7n2qcptow1jbs+NGzdi06ZNGDhwICZMmICsrCx8/fXXePXVVxEdHY2goKBKZzI3xtye6enpuH//PgYNGoQ6deqgsLAQhw8fxjvvvIOEhAQsWrSo0pnMkTG36T/l5uZi2rRpsLe3r3QOc8DC1UjcuXMHb731FurWrYsjR47A09NTve7999/HzZs3sW/fPhET/o8gCCgoKICtra3Oj33nzh14e3sjPT0drq6uOj++MRs2bJjG+zNnzuDw4cPFloulKreNNoy5PQcPHoy5c+dq9N6MGjUKTZs2xdy5c1m4lsCY27NFixbFevImTpyIPn36YNWqVZg/fz5kMpk44YyYMbfpPy1YsADVqlVD165dsWvXLrHjiI5DBYzEkiVLkJubi02bNmkUrc81bNgQH3zwgfp9UVER5s+fjwYNGsDa2hre3t6YMWMG5HK5xn7e3t7o3bs3Tp48CX9/f9jY2KB+/fr45ptv1Nts3bpV/VCGrl27Frs88vwYBw8eRNu2bWFra4uvv/4aAHD79m28+eabcHZ2hp2dHV599dVKFdhi9vaaApVKhRUrVqBZs2awsbGBu7s7xo0bhydPnmhsd/78eQQHB8PFxQW2traoV68eRo0aBeDZmOPnhee8efPU7f2iS/9sG90Tqz39/PyKXXKsWbMmOnXqhGvXrun2Q1YhYn59lsTb2xv5+flQKBSV/mxVldhteuPGDSxfvhzLli2DhQX7GgH2uBqNX3/9FfXr10f79u3Ltf3o0aOxbds2DBo0CB9++CHOnj2LyMhIXLt2DTt37tTY9ubNmxg0aBDeffddjBgxAps3b8Y777wDPz8/NGvWDJ07d8bkyZOxatUqzJgxQ31Z5J+XRxISEjB48GCMGzcOY8aMQePGjZGSkoL27dsjPz8fkydPRs2aNbFt2za88cYb+Omnn9C/f3/d/QMRAGDcuHHYunUrRo4cicmTJ+POnTv46quvcPHiRZw6dQqWlpZITU1Fjx494OrqiunTp8PJyQmJiYn45ZdfAACurq5Yu3Ytxo8fj/79+2PAgAEAnvXakGEZW3smJyfDxcVFp5+xKhG7PZ8+fYq8vDzk5ubi+PHj2LJlCwICAvRydayqELtNp0yZgq5du6Jnz5744Ycf9PpZTYZAosvKyhIACH379i3X9pcuXRIACKNHj9ZY/tFHHwkAhCNHjqiX1a1bVwAg/P777+plqampgrW1tfDhhx+ql/34448CAOHo0aPFzvf8GNHR0RrLp0yZIgAQTpw4oV6Wk5Mj1KtXT/D29haUSqUgCIJw584dAYCwZcuWcn0+QRCEtLQ0AYAQERFR7n3Mzfvvvy/880v0xIkTAgDhu+++09guOjpaY/nOnTsFAMK5c+dKPXZl/n3ZNtox1vZ87vfffxckEokwe/ZsrY9RlRhje0ZGRgoA1K/XXntNSEpKqtAxqjJja9O9e/cKFhYWwpUrVwRBEIQRI0YI9vb2FfhE5olDBYxAdnY2AKBatWrl2n7//v0AgLCwMI3lH374IQAUu1Tv4+ODTp06qd+7urqicePGuH37drkz1qtXD8HBwcVy+Pv7o2PHjuplDg4OGDt2LBITE3H16tVyH59e7Mcff0T16tXRvXt3pKenq1/PL/sePXoUAODk5AQA2Lt3LwoLC0VMTGUxpvZMTU3FkCFDUK9ePUybNk0v5zB3xtCegwcPxuHDh7F9+3YMGTIEAPQ6G425E7NNFQoFpk6divfeew8+Pj46Oaa5YOFqBBwdHQEAOTk55dr+7t27kEqlaNiwocZyDw8PODk54e7duxrL69SpU+wYNWrUKDZGpyz16tUrMUfjxo2LLX8+xODfOahybty4gaysLLi5ucHV1VXjlZubi9TUVABAYGAgBg4ciHnz5sHFxQV9+/bFli1bio1/JnEZS3vm5eWhd+/eyMnJwe7duzndjpaMoT3r1q2LoKAgDB48GN999x3q16+PoKAgFq9aErNNly9fjvT0dPVMBPQ/HONqBBwdHVGrVi389ddfFdpPIpGUa7vS7iYVKjC/H8dIiU+lUsHNzQ3fffddieufD/6XSCT46aefcObMGfz66684ePAgRo0ahS+++AJnzpxhYWIkjKE9FQoFBgwYgD///BMHDx6Er6+v1seq6oyhPf9t0KBB2LBhA37//fdiV8zoxcRq06ysLCxYsAATJkxAdna2+qpsbm4uBEFAYmIi7Ozs4ObmVrkPaKJYuBqJ3r17Y/369YiNjUVAQECZ29atWxcqlQo3btzQuIEqJSUFmZmZqFu3boXPX94i+N85EhISii2/fv26ej3pToMGDfDbb7+hQ4cO5fpF4tVXX8Wrr76KhQsXYvv27Rg6dCh27NiB0aNHa9XepFtit6dKpcLw4cMRExODH374AYGBgdp8DPp/YrdnSZ73tGZlZenkeFWNWG365MkT5ObmYsmSJViyZEmx9fXq1UPfvn2r7NRYHCpgJJ5PLjx69GikpKQUW3/r1i2sXLkSANCzZ08AwIoVKzS2WbZsGQCgV69eFT7/84mNMzMzy71Pz549ERcXh9jYWPWyvLw8rF+/Ht7e3hyXo2P/+c9/oFQqMX/+/GLrioqK1G335MmTYr3prVq1AgD1pSs7OzsAFWtv0i2x23PSpEmIiorCmjVr1Hc5k/bEbM+0tLQSl2/atAkSiQRt2rQp13FIk1ht6ubmhp07dxZ7de3aFTY2Nti5cyfCw8O1/2Amjj2uRqJBgwbYvn07QkND0bRpU40nZ50+fRo//vgj3nnnHQBAy5YtMWLECKxfvx6ZmZkIDAxEXFwctm3bhn79+qFr164VPn+rVq0gk8mwePFiZGVlwdraGt26dSvzUsT06dPx/fff4/XXX8fkyZPh7OyMbdu24c6dO/j5558hlVb896L//ve/uHv3LvLz8wEAv//+OxYsWAAAePvtt6t0L25gYCDGjRuHyMhIXLp0CT169IClpSVu3LiBH3/8EStXrsSgQYOwbds2rFmzBv3790eDBg2Qk5ODDRs2wNHRUf1Lj62tLXx8fBAVFYVGjRrB2dkZvr6+ZV4qZtvolpjtuWLFCqxZswYBAQGws7PDt99+q7G+f//+fEpPBYnZngsXLsSpU6cQEhKCOnXqICMjAz///DPOnTuHSZMmFbsfgspHrDa1s7NDv379ii3ftWsX4uLiSlxXpYg5pQEV9/fffwtjxowRvL29BSsrK6FatWpChw4dhC+//FIoKChQb1dYWCjMmzdPqFevnmBpaSnUrl1bCA8P19hGEJ5NZdWrV69i5wkMDBQCAwM1lm3YsEGoX7++IJPJNKbGKu0YgiAIt27dEgYNGiQ4OTkJNjY2gr+/v7B3716NbSoyHVZgYKDGdC7/fJU0VZc5+/fULM+tX79e8PPzE2xtbYVq1aoJzZs3F6ZNmyY8fPhQEARBiI+PFwYPHizUqVNHsLa2Ftzc3ITevXsL58+f1zjO6dOnBT8/P8HKyqpc07SwbSrHmNpzxIgRpbYlAOHOnTu6/OhmyZja89ChQ0Lv3r2FWrVqCZaWluqfG1u2bBFUKpVOP7c5M6Y2LQmnw3pGIggVuEOHiIiIiEgkHONKRERERCaBhSsRERERmQQWrkRERERkEli4EhEREZFJYOFKRERERCaBhauJWbJkCZo0aQKVSiV2lEp766238J///EfsGKJie5oftql5YXuaF7anGRB7Pi4qv6ysLMHZ2VnYvHmzehn+f97FpUuXFtt+y5YtAgDh3LlzOs8SFBQkABDef//9Etdv3LhRaNKkiWBtbS00bNhQWLVqVbFt4uPjBalUKly6dEnn+UwB29P8sE3NC9vTvLA9zQN7XE3I5s2bUVRUhMGDBxdb9/nnn6ufaKRvv/zyi8ZjXv/t66+/xujRo9GsWTN8+eWXCAgIwOTJk7F48WKN7Vq3bo22bdviiy++0Hdko8T2ND9sU/PC9jQvbE8zIXblTOXXokULYdiwYRrLAAitWrUSAAhffPGFxjp9/Lb49OlTwdvbW/j0009L/G0xPz9fqFmzZrEnbQ0dOlSwt7cXMjIyNJYvXbpUsLe3F3JycnSW0VSwPc0P29S8sD3NC9vTPLDH1UTcuXMHf/75J4KCgoqt69ChA7p164YlS5bg6dOnes2xZMkSqFQqfPTRRyWuP3r0KB4/fowJEyZoLH///feRl5eHffv2aSzv3r078vLycPjwYb1lNkZsT/PDNjUvbE/zwvY0HyxcTcTp06cBAG3atClx/dy5c5GSkoK1a9eWeRy5XI709PRyvf4tKSkJn332GRYvXgxbW9sSj3/x4kUAQNu2bTWW+/n5QSqVqtc/5+PjA1tbW5w6darM3OaG7Wl+2Kbmhe1pXtie5sNC7ABUPtevXwcA1KtXr8T1nTp1QteuXfH5559j/PjxpX5RfP/99xg5cmS5zikIgsb7Dz/8EK1bt8Zbb71V6j6PHj2CTCaDm5ubxnIrKyvUrFkTDx8+1FhuYWGB2rVr4+rVq+XKZC7YnuaHbWpe2J7mhe1pPli4mojHjx/DwsICDg4OpW4zd+5cBAYGYt26dZg6dWqJ2wQHB2t1SeHo0aP4+eefcfbs2TK3e/r0KaysrEpcZ2NjU+JlmBo1apT426k5Y3uaH7apeWF7mhe2p/lg4WpGOnfujK5du2LJkiV47733StzG09MTnp6eFTpuUVERJk+ejLfffhuvvPJKmdva2tpCoVCUuK6goKDE32IFQYBEIqlQpqqA7Wl+2Kbmhe1pXtiepoGFq4moWbMmioqKkJOTg2rVqpW6XUREBLp06YKvv/4aTk5OxdY/ffoUWVlZ5Tqnh4cHAOCbb75BQkICvv76ayQmJmpsk5OTg8TERLi5ucHOzg6enp5QKpVITU3VuNShUCjw+PFj1KpVq9h5njx5gpdffrlcmcwF29P8sE3NC9vTvLA9zQdvzjIRTZo0AfDszsiyBAYGokuXLli8eHGJlxSioqLUvzG+6PVcUlISCgsL0aFDB9SrV0/9Ap59QdarVw+HDh0CALRq1QoAcP78eY3znj9/HiqVSr3+uaKiIty7dw9Nmzat0L+HqWN7mh+2qXlhe5oXtqf5YI+riQgICADw7D9vixYtytx27ty56NKlC9avX19snTbjc956661iXywA0L9/f/Ts2RNjxoxBu3btAADdunWDs7Mz1q5di549e6q3Xbt2Lezs7NCrVy+NY1y9ehUFBQVo3759hTKZOran+WGbmhe2p3lhe5oRsSaQpYrz9fUVBg8erLEMpTwyLjAwUP0oO308rq6sc69evVoAIAwaNEjYsGGDMHz4cAGAsHDhwmLbLl26VLCzsxOys7P1ktGYsT3ND9vUvLA9zQvb0zywcDUhy5YtExwcHIT8/Hz1stL+4x89elS0LzpBEIT169cLjRs3FqysrIQGDRoIy5cvF1QqVbHt2rVrV+xJJlUF29P8sE3NC9vTvLA9zQMLVxOSmZkpODs7Cxs3bhQ7ik5cvHhRkEgkwsWLF8WOIgq2p/lhm5oXtqd5YXuaB4kg/GuGXDJqixcvxpYtW3D16lVIpaZ9b91bb70FlUqFH374QewoomF7mh+2qXlhe5oXtqfpY+FKRERERCbBtH/dICIiIqIqg4UrEREREZkEFq5EREREZBJYuBIRERGRSWDhSkREREQmgYUrEREREZkEFq5EREREZBJYuBIRERGRSWDhSkREREQmgYUrEREREZkEFq5EREREZBJYuBIRERGRSWDhSkREREQmgYVrBT169Ahz587Fo0ePxI5CREREVKWwcK2gR48eYd68eSxciYiIiAyMhSsRERERmQQWrkRERERkEli4EhEREZFJYOFKRERERCaBhSsRERERmQQWrkRERERkEli4EhEREZFJYOFKVEVkZIidgIiIqHJYuBJVESkpYicgIiKqHBauRFVEdrbYCYiIiCqHhStRFZGVBRQViZ2CiIhIe5UuXB89eoQ//vgDeXl5ushTYatXr4a3tzdsbGzQrl07xMXFlbn9ihUr0LhxY9ja2qJ27dqYOnUqCgoKDJSWSFxpaWInICIi0p7Whevu3bvRpEkTvPTSS2jTpg3Onj0LAEhPT0fr1q2xa9cuXWUsVVRUFMLCwhAREYH4+Hi0bNkSwcHBSE1NLXH77du3Y/r06YiIiMC1a9ewadMmREVFYcaMGXrPSmQMHj4UOwEREZH2tCpcf/31VwwYMAAuLi6IiIiAIAjqdS4uLvDy8sKWLVt0FrI0y5Ytw5gxYzBy5Ej4+Phg3bp1sLOzw+bNm0vc/vTp0+jQoQOGDBkCb29v9OjRA4MHD35hLy2Rubh7V+wERERE2tOqcP3000/RuXNnnDx5Eu+//36x9QEBAbh48WKlw5VFoVDgwoULCAoKUi+TSqUICgpCbGxsifu0b98eFy5cUBeqt2/fxv79+9GzZ89SzyOXy5Gdna1+5ebm6vaDEBlQYqLYCYiIiLRnoc1Of/31F5YtW1bqend391Iv1+tKeno6lEol3N3di537+vXrJe4zZMgQpKeno2PHjhAEAUVFRXjvvffKHCoQGRmJefPm6TQ7kVhu3hQ7ARERkfa06nG1s7Mr82as27dvo2bNmlqH0pdjx45h0aJFWLNmDeLj4/HLL79g3759mD9/fqn7hIeHIysrS/06fvy4ARMT6db168A/RvYQERGZFK0K165du2Lbtm0oKmFuneTkZGzYsAE9evSodLiyuLi4QCaTIeVfs6qnpKTAw8OjxH1mz56Nt99+G6NHj0bz5s3Rv39/LFq0CJGRkVCpVCXuY21tDUdHR/XLwcFB55+FyFCyszlcgIiITJdWhevChQtx//59vPLKK/j6668hkUhw8OBBzJo1C82bN4cgCIiIiNB1Vg1WVlbw8/NDTEyMeplKpUJMTAwCAgJK3Cc/Px9SqeZHlslkAKBxgxmROeNFAyIiMlVaFa6NGzfGyZMnUbNmTcyePRuCIODzzz/HokWL0Lx5c5w4cQLe3t46jlpcWFgYNmzYgG3btuHatWsYP3488vLyMHLkSADA8OHDER4ert6+T58+WLt2LXbs2IE7d+7g8OHDmD17Nvr06aMuYInM3c6dgFIpdgoiIqKK0+rmLABo1qwZfvvtNzx58gQ3b96ESqVC/fr14erqqst8ZQoNDUVaWhrmzJmD5ORktGrVCtHR0eobtpKSkjR6WGfNmgWJRIJZs2bhwYMHcHV1RZ8+fbBw4UKDZSYS24MHwM8/A//5j9hJiIiIKkYi8Bp5hcTHx8PPzw8XLlxAmzZtxI5DVG6HDgHPJ9Cwtwd27AA8PcXNREREVBFaDRVYtWoVgoODS13/+uuvY+3atVqHIiL9yssDIiKAUu5JJCIiMkpaFa6bNm2Cj49Pqet9fHywfv16rUMRkf7FxwPbtomdgoiIqPy0Klxv3bqFpk2blrq+SZMmuHXrltahiMgwvv4a+PtvsVMQERGVj1aFq5WVFZKTk0td/+jRo2LTThGR8SkqAmbNAuRysZMQERG9mFbV5auvvoqtW7ciJyen2LqsrCxs2bIFr776aqXDEZFutG3bFkOHvoRr19oWW3f7NvD55yKEIiIiqiCtpsOKiIhAYGAgWrVqhSlTpqBZs2YAgL/++gsrVqzAo0ePsH37dp0GJSLtJScnIz39ASwtS16/axdQvz4wZIhBYxEREVWIVoVru3bt8Ouvv2LcuHH44IMPIJFIADx7+lS9evWwZ8+eUp9eRUTGadkywMYGGDBA7CREREQl0/oBBN27d8fNmzdx8eJF9Y1YDRo0QJs2bdSFLBGZlkWLgKws4J13AH4ZExGRsdG6cAUAqVQKPz8/+Pn56SoPEYls9epnT9eaPh2wqNR3CCIiIt2q1I+lq1ev4vbt23jy5AlKegDX8OHDK3N4IhLJrl3Aw4fA4sVAtWpipyEiInpGq8L11q1bGDZsGOLi4kosWAFAIpGwcCUyYXFxwLvvAl9+Cbi7i52GiIhIy8J13LhxuHz5MlasWIFOnTqhRo0aus5FREbg9u1n411XrgQaNRI7DRERVXVaFa6nTp3CjBkzMGnSJF3nISIjk5YGjB4NLFwIdOokdhoiIqrKtHoAgYuLC6pXr67rLERkpPLzgbAwYOtWoJTRQURERHqnVeH63nvv4dtvv4VSqdR1HiIyUoIAfPUV8MknQF6e2GmIiKgq0mqoQKNGjaBUKtGyZUuMGjUKtWvXhkwmK7bdAM5kTmR2jhwBbt4EPvuM416JiMiwtCpcQ0ND1X//6KOPStxGIpGwR5bITCUlPbtpa+ZMoFcvsdMQEVFVoVXhevToUV3nICITo1AAERHA3bvA+PF80hYREemfVoVrYGCgrnMQkYnavBkoKgImTxY7CRERmTutbs56Ti6XIzY2Frt370Z6erquMhGRifnmm2dP2yIiItInrQvXVatWwdPTEx07dsSAAQPw559/AgDS09Ph4uKCzZs36ywkERm/JUuAv/8WOwUREZkzrQrXLVu2YMqUKQgJCcGmTZs0Hvvq4uKCbt26YceOHToLWZbVq1fD29sbNjY2aNeuHeLi4srcPjMzE++//z48PT1hbW2NRo0aYf/+/QbJSmTOFAogPPzZnK9ERET6oFXh+sUXX6Bv377Yvn07+vTpU2y9n58frly5UulwLxIVFYWwsDBEREQgPj4eLVu2RHBwMFJTU0vcXqFQoHv37khMTMRPP/2EhIQEbNiwAV5eXnrPSlQV3L0LfPGF2CmIiMhcaVW43rx5E6+//nqp652dnfH48WOtQ5XXsmXLMGbMGIwcORI+Pj5Yt24d7OzsSh2msHnzZmRkZGDXrl3o0KEDvL29ERgYiJYtW+o9K5FYkpKSkPf/TwxQqfKgUCTp9Xy7dz+b65WIiEjXtJpVwMnJqcybsa5evQoPDw+tQ5WHQqHAhQsXEB4erl4mlUoRFBSE2NjYEvfZs2cPAgIC8P7772P37t1wdXXFkCFD8Mknn5T4AAUiUxYXF4f58+dj37596uE8SmUmLl/2RvXqveHpORv29q/o5dwLFgAtWgAuLro5XnZ2IVatuoHY2MeQSIDOnV0xaVJD2NqW/i1sypSL+OOPLI1lffp4IiysMQAgOvoRFi9OKHHfX35pjxo1rHQTnoiIdEarwrVnz55Yv349JkyYUGzdlStXsGHDBowaNarS4cqSnp4OpVIJd3d3jeXu7u64fv16ifvcvn0bR44cwdChQ7F//37cvHkTEyZMQGFhISIiIkrcRy6XQy6Xq9/n5ubq7kMQ6ckvv/yC0NBQCIKgMQb9GQFZWfuRlXUA9etHoUYN3T/hLjsbWLUK+PTT8u8zZcpFhIR4ICTEs9i6hQuv4fFjOT7/vCWUShUWL07A0qV/Y/ZsnzKP2auXJ0aN8la/t7b+3y+oXbu6wd/fWWP7zz67DoVCxaKViMhIaTVUYMGCBVAqlfD19cWsWbMgkUiwbds2DBs2DG3btoWbmxvmzJmj66yVplKp4ObmhvXr18PPzw+hoaGYOXMm1q1bV+o+kZGRqF69uvrFOWzJ2MXFxSE0NBRKpbKMp9cpAShx+3Yo8vLO6SVHdDRQynDzCrl7Nw9xcRn4+OPG8PFxRPPmTpg8uSGOHk1Ferq8zH1tbKRwdrZWv+zt//e7urW1TGOdVCrBxYuZ6NmzeOFMRETGQavCtVatWrhw4QJCQkIQFRUFQRDw3//+F7/++isGDx6MM2fOwEVX1whL4eLiAplMhpSUFI3lKSkppQ5T8PT0RKNGjTSGBTRt2hTJyclQKBQl7hMeHo6srCz16/jx47r7EER6sGDBglJ6Wv9NACDg0aMFesmhUgFnzlT+OFeuZMPBwQKNGzuql/n51YBEAly7ll3mvr/9loq+fU9i5Mg4bNhwGwUFpT+G+tChFFhbSxEY6Fr50EREpBcVHiogl8tx8OBBeHt7Y+PGjdi4cSPS0tKgUqng6uoKqbRSzzQoNysrK/j5+SEmJgb9+vUD8KxHNSYmBhMnTixxnw4dOmD79u1QqVTqnH///Tc8PT1hZVXypUFra2tYW1ur3zs4OOj2gxDpUFJSEvbu3VuOovU5JbKyfoVCkQQrqzo6z3PjRuWPkZGhQI0alhrLZDIpHB0tkZFR8i+cAPDaa+5wd7eBi4sVbt3Kw/r1t3DvXj4+/dS3xO3373+E115z1xhOQERExqXChauVlRXefPNNrFy5Ei1atAAAuLqK00MRFhaGESNGoG3btvD398eKFSuQl5eHkSNHAgCGDx8OLy8vREZGAgDGjx+Pr776Ch988AEmTZqEGzduYNGiRZjMZ1WSgRUWqqBUlre4LL/o6MMVKFqfE5CdHYOaNd/ReZ6HDwFAUuK6b7+9i+++u6t+r1CocPVqNlau/F+1u3Wrv9bn7tOnlvrv9es7oGZNK3z44R948OApvLxsNba9ciULd+/mIzy8qdbnIyIi/atw4SqRSPDyyy8bxSNeQ0NDkZaWhjlz5iA5ORmtWrVCdHS0+oatpKQkjR7g2rVr4+DBg5g6dSpatGgBLy8vfPDBB/jkk0/E+ghUBRUWqnD9ejby80u/bK2t69dTIZVKoVKpKrCXFE+fZuolT3KyEoWFlrC0LH4l5o03aqFr1//90rtgwTV07uyKzp3/N8zIxcUKzs5WePKkUGNfpVKF7OxCODuX/yaqpk2fDTUoqXDdt+8RGjZ0QOPG1cp9PCIiMjytZhWYMWMGwsLC8Oabb6Jx48a6zlQhEydOLHVowLFjx4otCwgIwBldDLwj0pJSKSA/XwlLS2mJBV1l1KjhWMGiFQBUsLBwhK5H+QgCIJU+61m2tCy+3tHREo6O/1thbS1FjRqW8PKy09iuWTNH5OYWISEhR11YxsdnQhD+V4yWx82bz2YEqVlTs9h9+rQIx46lYcyYeuU+FhERiUOrwvXMmTOoWbMmfH190aVLF3h7e8PWVrMHQyKRYOXKlToJSWSOLC2lsLLSbbXYsWNXSCSSCg4XkMDevhskkpIv6WtPQI0aFS2ii6tb1x7+/s744osETJ3aCEVFAlatuoGuXd3g4vJs/HlamhwffngJ4eFN0bSpIx48eIqYmBS0a1cT1atb4NatPKxZcxMtWlRHgwaa49SPHEmDUimge3f3kk5PRERGRKvC9auvvlL/PSYmpsRtWLgSGV6tWrXRpUsIfv/9UBlTYf2TDA4OPfVyYxYAeHvrZvjBzJlNsXLlDXz44R+QSoFOnVwxeXJD9XqlUoV7955CLn92PktLCS5ceIKff76Pp0+VcHOzQadOrnj77brFjn3gwCN06uQCB4cSuoWJiMioSISK38lRpcXHx8PPzw8XLlxAmzZtxI5DJqigQIk//siEnZ2FzntcAeDy5QsYPLg7lErlC3peJQBkqF//BGxtdf8ELWtrAUuXZiEgwAk2NrxTn4iIKs8wc1cRkcE0b+6HZcu2QiaTlfEoYxkAGWrX3qGXohUA3nxTATu7F29HRERUXpUqXM+cOYPIyEhMnToVN/5/wsb8/HzEx8fz0ahEIurR4w18//1hdO7co4SxqxI4OPRE/fon4OjYTy/nb9tWiddfL3zxhkRERBWg1RhXhUKBt956C7t374YgCJBIJOjTpw9efvllSKVS9OjRA1OnTsXMmTN1nZeIyql5cz+sXRuFhw/voV+/DsjOzoRU6oQGDeL1NqYVAHx9lQgLk0Pn93oREVGVp1WP6+zZs7F3716sXbsWCQkJGuPobGxs8Oabb2L37t06C0lE2qtVqzZsbZ9ds5dK7fVatAYGFmHmTDn+8bA5IiIindGqcP3+++8xfvx4jB07Fs7OzsXWN23aFLdv3650OCIyDVZWwLhxCkyapEApT08mIiKqNK2GCqSmpqJ58+alrpfJZMjPz9c6FBGZjtq1VfjwQzlq1+YEJUREpF9aFa61a9fG9evXS11/6tQpNGzYsNT1RGQeOnQowoQJCtjYiJ2EiIiqAq2GCgwZMgRff/01YmNj1cue37m8YcMG/PDDDxg+fLhuEhKRUerbtxBTp7JoJSIiw9Gqx3XmzJk4c+YMOnfujKZNm0IikWDq1KnIyMjA/fv30bNnT0ydOlXXWYnISPTtW4i33y7kzAFERGRQWvW4WllZITo6Glu2bEH9+vXRpEkTyOVytGjRAlu3bsWvv/5axsTnRGTKAgOLWLQSEZEoytXjGhYWhrfffhutW7cGACQlJcHV1RXDhg3DsGHD9BqQiIxHixZKjB+vYNFKRESiKFeP64oVK3Dt2jX1+3r16mHnzp16C0VExqdlSyWmT5fD0lLsJETmqUheJHYE0qUizq6kD+XqcXV3d9eYl/WfDxwgIvPXvXsRRo9WwEKrUfFEVB6qQhXAh3eYD5UcgJ3YKcxOuX4M9erVC59++ikOHToEJycnAMAXX3yBHTt2lLqPRCLh07OITJylJTBmjAKvvcaeICJ9E1TsFDIrqkKxE5ilchWuK1euhJubG44ePYorV65AIpHg3r17yMjIKHUfCQfBEZk0FxcBn3wiR/36KrGjEFUJKiW/1syKSiF2ArNUrsLV3t4eixYtUr+XSqVYsWIFhgwZordgRCSepk2V+PhjOapXFzsJUdWhKmThalaKnoqdwCyV6+asAQMG4MSJE+r3R48eRffu3fUWiojEExBQhDlzWLQSGZpSoRQ7AumSkjdn6UO5Ctfdu3cjKSlJ/b5bt244fPiw3kIRkTi6dClCWJgCVlZiJyGqeooKOJbcrBTmiJ3ALJWrcPXy8sLFixfV7wVB4BhWIjPTvn0R3n9fAalWjyUhosoqfMqbecxKUa7YCcxSuX5EvfXWW1i2bBnq1KmDFi1aAACmT5+OFi1alPpq2bKlXoM/t3r1anh7e8PGxgbt2rVDXFxcufbbsWMHJBIJ+vXrp9+ARCagcWMVJk1i0UokpqKn7HE1Kyxc9aJcN2dFRkaiYcOGOHr0KFJTUyGRSGBvb4+aNWvqO1+ZoqKiEBYWhnXr1qFdu3ZYsWIFgoODkZCQADc3t1L3S0xMxEcffYROnToZMC2RcXJyEvDxxwUcHkAkMg4VMDN8AIFelKtwlclkGDt2LMaOHQvg2awCs2bNEn1WgWXLlmHMmDEYOXIkAGDdunXYt28fNm/ejOnTp5e4j1KpxNChQzFv3jycOHECmZmZBkxMZHw++ECOGjXETkFELFzNDHtc9UKrC4N37twR/RK7QqHAhQsXEBQUpF4mlUoRFBSE2NjYUvf79NNP4ebmhnfffbdc55HL5cjOzla/cnP5H5HMx+uvF6FFC07BQ2QMCvM5xtWsFOUAAr+/6ppWD3CsW7eurnNUWHp6OpRKJdzd3TWWu7u74/r16yXuc/LkSWzatAmXLl0q93kiIyMxb968ykQlMkrVqwsYMoQTZBMZC0Uevx7NiqAE5BmAjYvYScxKuXpcpVIpLCwsoFAo1O9lMlmZLwsje6h5Tk4O3n77bWzYsAEuLuX/TxQeHo6srCz16/jx43pMSWQ4oaGFsONjtImMhjxLLnYE0rX8pBdvQxVSrupyzpw5kEgk6mL0+Xsxubi4QCaTISUlRWN5SkoKPDw8im1/69YtJCYmok+fPuplKtWzLnwLCwskJCSgQYMGxfaztraGtbW1+r2Dg4OuPgKRaGrWFNCtG8fTERmTp0/4pCWzk3MTcG4jdgqzUq7Cde7cuWW+F4OVlRX8/PwQExOjHm+rUqkQExODiRMnFtu+SZMmuHz5ssayWbNmIScnBytXrkTt2rUNEZvIKISEFMLSUuwURPRP+em8C93sZP0F4D9ipzArxnU9v4LCwsIwYsQItG3bFv7+/lixYgXy8vLUswwMHz4cXl5eiIyMhI2NDXx9fTX2d3JyAoBiy4nMmUQCdO3KR0sSGZv81Hw+4MfcPPlD7ARmp8KFq1wux7fffotDhw7h1q1byMnJQbVq1dCwYUOEhIRgyJAhsDLQhJChoaFIS0vDnDlzkJycjFatWiE6Olp9w1ZSUhKknFGdSEPjxkrUqCGIHYOI/qXwaSHk2XLYVLcROwrpytMHwNMUwNb9xdtSuVSocL18+TL69u2Lu3fvQhAEVK9eHQ4ODkhNTUV8fDx+/PFHLFy4EHv27EHTpk31lVnDxIkTSxwaAADHjh0rc9+tW7fqPhCRkWvdmtOzEBmr7PvZLFzNTfopoPYAsVOYjXJ3R+bm5uKNN95ASkoKFi5ciHv37uHJkycafy5YsAAPHz5Enz59kJeXp8/cRKSlpk05TIDIWGUlZYkdgXQt+TexE5iVcheuW7ZsQVJSEvbt24fp06fDy8tLY72XlxfCw8Px66+/4s6dO+zNJDJSDRqwx5XIWGXeyRQ7Auna43NA/gOxU5iNcheu+/btQ48ePdClS5cyt+vWrRu6d++OX3/9tbLZiEhHXFzcUaNGLdjZucOGVyGJjNbjG4/FjkA6JwB3vhE7hNkod+F6+fLlFxatz3Xr1q3Y1FNEJJ6ffz6Ozz+/gdDQ02JHIaIypF1JgyDw5kmzc38XkJsodgqzUO6bszIyMkqc2L8k7u7uyMjI0DoUEemHlxd/IBIZo7Zt2+LOlTtwkDqg161ecG7oLHYk0iVBCVxZBPivAySc7agyyv2vJ5fLYVnOGcv/+XhYIjIeXl4c32ouFEp+jzUnycnJyCjIQHZhNu4cuSN2HNKHJ/HA3R1ipzB5FZoOKzExEfHx8S/c7s4dftERGSN3d/a4motcRS6cbdkrZ44Sdieg9butIZWxZ87sJKwCnFoATnzwkbYqVLjOnj0bs2fPfuF2fPIHkXFydWWPq7lQCSoUqYpgITXpByBSCXJTcnFj/w007tNY7Cika0IRcPEjIOAbwMZN7DQmqdzf8bZs2aLPHESkZxIJUL262ClIl+RFclhYsXA1R+fXnEe9bvVgZW+YJ1GSbrVt2xbJ92/Aw7EI51f964FM8nTgwhSg3UbAwk6UfKas3N/xRowYoc8cRKRntrYC+ARk86JQKmAPe7FjkB7kpeXhzPIz6Dyrs9hRSAvJycl4kJINFJVyb1DO38DFjwG/FYC0fPcP0TP8MUZURViwY87s8AYt83Z913XcjL4pdgzSl8dngT/nAAKHcFUEC1eiKkLF741mR66Uix2B9Oz3+b8j9a9UsWOQviQfBi5/yuK1Ali4ElURSiVvmDQ3BUUFYkcgPSuSFyF6SjQyEzPFjkL68nAvcHkuoFKKncQksHAlqiLY42p+chW5YkcgAyjILMC+CfuQ8zBH7CikLw/3A39MB3gV5YVYuBJVEbwxy/xkFmSKHYEMJC81D3vf24vcFP6yYrZSjgLnJgCKTLGTGDX+KCOqIiwt+fABc5Oeny52BDKgnIc52Dt2L3KTWbyarcw/gNjhQPbfYicxWpW6z/jq1au4ffs2njx5AkEo/kNx+PDhlTk8EemQjY3YCUjXHuU8EjsCGVj2g2zsGb0Hvdb2QvXanJjZLD19CJx5B/D5BPB649kk3KSmVeF669YtDBs2DHFxcSUWrAAgkUhYuBIZEUdH9riam/vZ98WOQCLITc7Fnnf3oOfqnqj5ck2x45A+qBTAX/OB9LNAs3DAsprYiYyGVoXruHHjcPnyZaxYsQKdOnVCjRo1dJ2LiHTMw4OFq7lJzEoUOwKJ5GnGU+wduxchK0Pg3sJd7DikL8mHng0faPEp4OwndhqjoFXheurUKcyYMQOTJk3SdR4iIiqnu5l3oVAqYCXjY0GrInmOHPvG70PQkiDU6VBH7DikLwUpQNx7gPcQ4OX3gSr+9a7VzVkuLi6ozoeeExGJSiWocOPxDbFjkIiK5EU4OPUgbuzn/wPzJgCJ3wGxw4Dsqt3WWhWu7733Hr799lsoleJPlrt69Wp4e3vDxsYG7dq1Q1xcXKnbbtiwQT20oUaNGggKCipzeyIiY3c59bLYEUhkgkrA0TlHceXHK2JHIX3Lvf1s1oH7u8VOIhqthgo0atQISqUSLVu2xKhRo1C7dm3IZLJi2w0YMKDSAcsSFRWFsLAwrFu3Du3atcOKFSsQHByMhIQEuLm5Fdv+2LFjGDx4MNq3bw8bGxssXrwYPXr0wJUrV+Dl5aXXrERE+nAp+RLe8n1L7BhkBE4tPgVBKcD3LV+xo5A+CYXPbtzKvQM0/qDKzTqgVeEaGhqq/vtHH31U4jYSiUTvPbLLli3DmDFjMHLkSADAunXrsG/fPmzevBnTp08vtv13332n8X7jxo34+eefERMTwxkQiMgknX94HipBBamE03ITcHrpacisZWjav6nYUUjfEr8FlE8Bn+lVqnjVqnA9evSornNUmEKhwIULFxAeHq5eJpVKERQUhNjY2HIdIz8/H4WFhXB2di51G7lcDrn8f49gy83lxM9EZDwyCzLxR/IfaO3ZWuwoZCROLjoJa0dr1H+tvthRSN/u/QxYOQMvjxM7icFoVbgGBgbqOkeFpaenQ6lUwt1dcxoQd3d3XL9+vVzH+OSTT1CrVi0EBQWVuk1kZCTmzZtXqaxERPp04OYBFq6kJggCjs4+CjsXO3i09BA7DunbrQ1AdR/ArZPYSQyi0teWrl69igMHDuDAgQO4evWqLjIZxGeffYYdO3Zg586dsCnjkULh4eHIyspSv44fP27AlEREL3bg5gFkFWSJHYOMiFKhxKEPDyHnYY7YUcgQriwCivLFTmEQWheuu3fvRoMGDdC8eXP07t0bvXv3RvPmzdGwYUPs2bNHlxlL5OLiAplMhpSUFI3lKSkp8PAo+zfMpUuX4rPPPsOhQ4fQokWLMre1traGo6Oj+uXg4FDp7EREuvS08Cm2/bFN7BhkZAoyC3Bw6kEU5heKHaVKSUpKQl5eHgAgr0CFpFSF/k8qTwOSftT/eYyAVoXr/v37MXDgQADAokWLsHPnTuzcuROLFi2CIAgYMGAAoqOjdRr036ysrODn54eYmBj1MpVKhZiYGAQEBJS635IlSzB//nxER0ejbdu2es1IRGQo2y9vx9+P/xY7BhmZjFsZ+G36b1AVqcSOYvbi4uLQp08feHt7IzMzEwCQmaeE9zuX8cbcmziXkKffAEk/AIJu2rmwIBtXDy7AiXW9cOLr3rgeswRFiqdl7vPwr19x8ZcpOLGuF4592RWF8uL3BMVufQvHvuyq8bp7fnuFsmk1xnX+/Plo0aIFTpw4AXt7e/XyN954AxMnTkTHjh0xb948hISEaHP4cgsLC8OIESPQtm1b+Pv7Y8WKFcjLy1PPMjB8+HB4eXkhMjISALB48WLMmTMH27dvh7e3N5KTkwEADg4O7EklIpNWpCpCeEw4tvbdimrWfK45/c+90/dwbN4xdJ3XFRJp1bn73JB++eUXhIaGQhAECILm47UFAdh/LgsHzmchKrw+BnSooZ8QBSlAdgJQvXwzSlz8ZQo8mobAs2nxWu3awYWQ5z9Gy36fQ6VSIuG3xfj76FL4BM8u9XjKIjmc6/jDuY4/7sRuKHU773Yj4dmst/q9hZVtufI+p1WP659//okRI0ZoFK3P2dvb45133sGff/6pzaErJDQ0FEuXLsWcOXPQqlUrXLp0CdHR0eobtpKSkvDo0SP19mvXroVCocCgQYPg6empfi1dulTvWYmI9O1u5l1MOzwN8iL5izemKuXmgZv4fcHvEFTCizemComLi0NoaCiUSmWp04AqVYBSCYRG3tZvz2tO5a+65GXcRUZSHBp3+xiOHj5wqtUcDQMnI/Xvo5Dnppe6X+1Wg1C37RA4eviUeXyZlR2s7Z3VL5llxQpXrXpcbWxskJGRUer6jIyMMm940qWJEydi4sSJJa47duyYxvvExET9ByIiEtG5h+cw9eBULO2xFHaWdmLHoXL455hIuUqODEUGnK1Kn6ZRWwl7EiCoBATOCWTPqw4tWLCgxJ7WfxPwrPd1wY5H2B3RUD9hFJW/STM7+QosrB3g6N5YvaxGbT9AIkF2yjW4OlRu9oKkC9tx99x/YePgBrfGr+GlVm9CKi3+EKvSaFW4duvWDStXrkRISEix8aRnz57FqlWr0KNHD20OTURElRT3IA5jfx2LlSErUdOupthxqBRxcXGYP38+9u3bpy56niqfYsblGWhevTl6efaCt723Ts/5995nPXK6Ll5zM3Px3dzvcCnmEiQSCdq+3hZD5gyBjX3pnVjHth/DmT1ncPfKXRTkFmD1H6th56j5y9bK0SuRdC0J2enZsK9uD58OPnhz+puo4a6ny+0VlJSUhL17976waH1OqQJ+PZuFpFQF6rhZ6SFR5XvUFXkZsLTV/PeVSmWwtHGEIr/0TsvyeKnlADi4NoKlTTVkPbqCO7EboMh7jIad3i/3MbQqXJcsWYKAgAB07NgR/v7+aNz4WVWekJCAuLg4uLm5YfHixdocmoiIXqBt27Z4+Oghsiyy0HRmyePZrqdfx8jdI7G211p4OfKR1samzDGREPBX1l/4K+svjKk/Bm1qtNHpuf/e+zfsXOzgP9G/Qvt99tZn6DioIzoO6lhs3fop65GZmomPvvkIyiIlNk3bhK0ztuK9le+VejxFgQLNA5ujeWBz/LTkpxK3aRLQBL3f743qrtXxJOUJohZFYfWE1Zj186wKZVcpCyGodP80z8OHostdtD4nCEDMpWy80133v1QKKmWpY0DvnvsWdy/87wmiqiIFspOv4sbxlepl/kO36jzTP9Vu/R/13x1cGkAqs8DfR5ehfvsxkMrKV8hrVbjWq1cPf/75JyIjI3HgwAFERUUBAOrWrYsPPvgA06dPh5ubmzaHJiKiF0hOTsajh49g6WRZ5nYPcx5izK9jsPGNjahVrZaB0tGL/HNMZGlFjwrP7g7fcHsDPmnyic57Xi9tvYTa7WvDs41npY/18OZDXD5+GXN2z0G9FvUAAMPmDsPykcsROiO01N7RHqOeXZm9fqb0hwYFvxus/rvLSy7o9V4vfDnuSxQVFsHCsnwljEpZiOyU61AqdD/Paeq965BKpVCpyn83v1QCZOY81UseeXYKbJWFkMqKf2+o1fwNuL7cVf3+2qEFcG3QGS4NOquXWdm7wMreGYVPn2jsq1IpUViQDSs73Q5hcXRvCkGlREF2Muxq1CnXPloVrgDg5uaG5cuXY/ny5doegoiI9Cw1LxXj943Hpjc2wcXORew4hPKPiXxu/6P9mNBwgs5zXNx8USeF6834m7BztFMXrQDg08EHEqkEty/dhl+wX6XPATwbjhC7OxYN/RqWu2gFnvVCKhX5kMosSyzoKsPRqUaFilYAUAmAo50FIKn0M6D+RYBKpXzWs1zC57S0cYSljaP6vdTCGpZ2NWDnpHlFxtGjGYrkuchJTUA1t2dX1DPvxwOCAEf38s1YUF656TcBibTY0ISyaF24EhGRaXiQ/QDj943Hul7rOOZVZBUdE6mCCn9m/amXG7YexD1AYX4hLO0qV8xlp2XDsaajxjKZhQz2TvbISqv8zUI/fPYDYr6JgeKpAg1aN8CUTVO0Oo5UZgmphW7HlXYN7AiJRFKh4QISCdCtpT0kEt3eICcIACTlv8mpNPbOdeFcxx8JR75Aoy5TIaiKcOP4Krg16gprh2e//Mpz03Bp54do2j0cjh7Pill5XgYU+Rl4mvUAAJCXfhsyKzvYVHODpY0jsh5dQXbKNdTwagWZlR2yk6/g5ok1cG8cBEub8k/hV67CddSoUZBIJFi/fj1kMhlGjRr1wn0kEgk2bdpU7iBERKQ/d57cwZhfx2B1z9XwrFb5XjZzV6QoKnVqo8qIPqDFmEgIuJZ1De1rttdpFkEl4MmdJ3BrVvLQvr2r92Lvmr3q94oCBW5dvIVvI75VL1t4aKFOM5Xk9bGvo/N/OuPxg8fYvWo3Nny4AVM2TdF54aeN2i/VQkj3LjgU83u5/r/IpEDPtg6o46qPG7MAQVZ8mlJtNA2eiRvHV+KPXR8CEilcG3RCw86T1etVKiWeZt6D8h9T7z38aw/uxv3vCX6XfvkAANA46BN4Ng2BVGaJ1L+PIPHsVgjKQtg4euKlVoNQu/WbFcpWrsL1yJEj6jEcMpkMR44ceeF/GGP4D0VERP+TlJWEUXtGYVmPZWjqqttLfuakSFGE23/cRkF+gc6PfevKLUglUqgq8IQjCSTIeZqDgjzd50m6lgTnl51hYVW8HOgytAte6fWK+v36KevhF+IHv5D/Xfp3cneCo6sjsh9na+yrLFIiLzMP1V2rVzpjNedqqOZcDR71PeDZ0BMftv8Qty7eQsM2eppSqoKmhU3A4SMnXtjzKsGz3tYZofq7B0hp81K5t209YEWp6yxtHMt82ICtowe6TDqqsaxeu3dQr907pe5Tza0R/P6zptz5SlOuwvXf859yPlQiItOUlpeG0b+OxicdPkGfRn3YyVACpVKJgvwCWFpalljQVUYNpxoVKlqBZz2udhZ2kMp0OyZSUAkQrAQolUpYlFAOODg5wMHpf0+VtLSxhKOLI9y93TW2a9imIfKz85F4ORHezb0BANdOX4OgElC/VX2dZwae/XJhLPxaN8fW9cvwztgwCIJQYs+rTPqsaN0xrTZeebliE+6Xl2DjAZW1+d+EqdVXQVJSEp4+Lf2ZtU+fPkVSUpLWoYiISH/kRXJ8evxTzDoyCznyHLHjGC0LKwtYWlvq9NWpY6cK/7IggQSNHBpBIpHo9GVhZwErx8pfsq7VsBaaBzbHlvAtuH3pNm6cv4FvI76Ffx9/9YwCT5KfIPy1cNy+dFu9X1ZaFpKuJiElMQUAcP/6fSRdTUJu5rNn3N+6eAu/bfsNSVeTkH4/HVdPX8W6D9bBra4bGrRuUOncuvRGrx44vPd79Hitc7H2lUieDQ84saQ++gU4lnKEyit0e/3Zycyc1tNh/fe//8WQIUNKXL9nzx4MGTJEL+ODiIhINw7eOog/U/9E5GuR8HXzFTtOleDl6YVunbvh2Mlj5foZKYUUzRyawdlS90/SsvfU3Q1CY1eMxbcR3+LzYZ9DIpXAL8QPQyOGqtcri5RIvp0MRYFCvezod0exe+Vu9fvI0EgAwLufv4uOgzrCytYKFw5ewK4VuyDPl8PJzQnNA5ujz8Q+sLTW7ewAuuDXujmi/rsW9+4/RIdu/ZCZlQ0neyniVzXQ25jW51R2dVHo0g0oKtTreYyBVoXriwaWFxYWQirV9TQPRESka49yHmH0ntGY0WkG3mj8hthxqoRJ4ybh+Knj5b4bPdg1+IXbaMOhlsOLN/qH6Tuml34sJ4cyHzbg8pILttzZorGs35R+6DelX6n71G5SG59s/6RCGY1B7Zdqwc7OFplZ2bC3keq9aBUsHCBvGAZILQGwcFXLzs5GZmam+v3jx49LHA6QmZmJHTt2wNOTd60SEZmCIlURPj3+KZJzkzGmzRiOe9Wzlr4t8eWSLzFp2qRSx0RK/38k36iXRqGubV295Khev/I3TpG4BJkd5I1mQLB9CShSvHgHM1DuwnX58uX49NNPATybMWDKlCmYMmVKidsKgoAFCxboJCARERnG+gvrkZybjBmdZsBCymm+9SkkKAQ/ffMTvvz6Sxz5/YhGz6sEEjRzaIZg12C9Fa2QAq6tXPVzbDIIwbI6ChrPgmCv2xvgjF25vzP16NEDDg4OEAQB06ZNw+DBg9GmjebzkyUSCezt7eHn54e2bdvqPCwREenXnoQ9eJD9AEu6L0F1G/bI6VNL35bY+OVGPHj0AD0H9UR2TjZspbaY3mC6Xsa0/tNLnV6CnasdnuaVfqM1GS+V7UuQN54Bwdr9xRubmXIXrgEBAQgICAAA5OXlYeDAgfD15WB+IiJzc+HRBbyz+x2sDFmJOtXL9/xw0p6XpxfsbO2QnZMNa6m13ovW6vWrw3ekLwRU7EEIZByUTq0hbzAVsNDNwwZMTYXvoMrPz8eqVatw4MABfeQhIqIyJCUlIS8vDwCgkqugyNDPuLZ7Wffwzq53cOHhBb0cn8Th1toNAbMDYGHDoSCmqLDWQMgbzaiyRSugReFqZ2cHCwsL2NtX3X80IiJDi4uLQ58+feDt7a2+UVb5VInLMy7j5uqbyEvM0/k5s+XZmLB/An659ovOj52Zm4kpX09B8/HN0WJCC3yy+RPkFZT9GeSFcsz+72y0ntgazd5rhvFfjUdaVpp6/dWkq5i8bjLah7VHk7FNEDQjCFsObSnjiFWIFGgyuAle+fgVWNiyaDU1gswG8pc/RmHtIYCkas/apNWnHzhwIH766acKP2+ZiIgq7pdffkGHDh1w4MCB4t93BSDrryxcX3wdT+Kf6PzcSpUSi04swqb4TRXe963P3sJPJ38qcd2U9VPw94O/8c1H32DTlE2IS4jDjK0zyjze/O/n48ilI1g9YTV2TN+BlMwUjP9qvHr9X4l/oWa1mlg2dhkOLTiE93u/jyU/L8G237aVcVTzZ+Nsg/YR7dGwb0NIpJwxwtQI1q4o8FkIpfOrYkcxClr92vXWW29hwoQJ6Nq1K8aMGQNvb2/Y2hZ/hNm/b94iIqKKiYuLQ2hoKJRKZemdBf//BNHbG26jySdNYO+t+ytia8+vRTO3Znj1pcr/8Lz58CaOXz6O3XN2o0W9FgCAucPmYuTykZgROgPuNYrfcJKdn40ffv8BK8atQHuf9gCAz9/9HEEzgnDx1kW0btAa/+n8H4196rjVQfyteBy8cBAjgkZUOrcpqtmsJtp80AbWjtZiRyEtKKs1gfzljwFLJ7GjGA2tCtcuXbqo/37ixIli6wVBgEQi4ZOzTFRSUhJiYmKQk5ODatWq4bXXXkOdOrxBg0gMCxYsgCAI5b7C9Wj/IzSc0FAvWX66+pNOCtf4m/FwtHNUF60A0MGnA6QSKS7dvoRgv+IT7v+V+BcKlYXo2KyjelkDzwaoVbMW4m/Go3WD1iWeKyc/B9UdqubsCHVeqwPfUb6Qyqr2pWVTVeQSCEW99wCpfh9gYGq0Kly3bOGYIXMUFxeH+fPnY9++fRAEAVKpFCqVChKJBL1798bs2bPxyiuviB2TqMpISkrC3r17yz8sSwVk/ZkFRYYCVs66/2F3I+OGTo6Tlp2Gmo41NZZZyCzgZO+kMWZVY5+sNFhZWMHRTvNZ7y6OLqXuc+HGBew7tw+bplR8mIOpazSoEV4e+DIfJmGiFC8NQVGtAQDbrxitCtcRI6rmJRdz9ssvvyA0NFSjZ0elenb9URAE7N+/HwcOHEBUVBQGDBggZlQio6MoUujlCtOB6BLGtL6IAGRdy0LN9jVfvG0FZeRnlLl+9d7VWLN3jfp9gaIAF29dRMS3EeplhxYe0nmukiTcT8DYVWMx+Y3J6Ozb2SDnNBbN3mmGeiH1xI5BWhCk1lA0mASlc4DYUYxWpW8tzM3Nxb179wAAtWvXhoNDxZ59XFmrV6/G559/juTkZLRs2RJffvkl/P39S93+xx9/xOzZs5GYmIiXX34ZixcvRs+ePQ2Y2PiUZwydUqmERCJBaGgoTp8+zZ5Xov+nKFLgj9t/IL8gX+fHvnLrCiRSCQRVBYpXCfA05+kL79DXho3EBooiBawsSu7NHdplKHq90kv9fsr6KQjxC0GIX4h6mbuTO1wdXfE4+7HGvkXKImTmZcK1eslPc3Kt7gpFkQLZ+dkava7p2enF9rnx4AaGfj4Ub3V5C5PemFThz2mqJDIJWr7XEi91eknsKKQFlbU75C9/DMGev3SUReuBL+fOnUPXrl1Ro0YN+Pr6wtfXFzVq1EC3bt1w/vx5XWYsVVRUFMLCwhAREYH4+Hi0bNkSwcHBSE1NLXH706dPY/DgwXj33Xdx8eJF9OvXD/369cNff/1lkLzGqrxj6J5vw8f5Ev2PUqlEfkE+LC0tYW9rr9OXUw2nihWtACAAFnYWkEllOn1JJBLUdahbZs+yk4MTvN291S8bSxu4OLpoLLOQWaBNwzbIzs/G5cTL6n1PXzsNlaBCq/qtSjy2r7cvLGWWOHX1lHrZrUe38PDxQ7Rp+L8bgf9+8DcGLxmMgR0G4uOBH1fs386EWdpb4tWZr7JoNVFKJz8U+C5h0VoOWvW4nj17Fl26dIGVlRVGjx6Npk2bAgCuXbuG77//Hp07d8axY8fK7PnUhWXLlmHMmDEYOXIkAGDdunXYt28fNm/ejOnTpxfbfuXKlQgJCcHHHz/7ZjZ//nwcPnwYX331FdatW6fXrMaqomPolEolfv31VyQlJfGGLaJ/sLKwgrWlbu/c7tipIyQSScWGC0gAh0YOOh/bKIUULV1a6uRYDWs1RGDzQIRvCceCEQtQpCxCxLcR6OPfRz2jQPKTZAxdMhRfjPkCreq3gqOdI/7T+T9YsGMBnOyd4GDrgLnfzkWbBm3UN2Yl3E/A0CVD0cm3E0YHj1aPfZVKpMXG1JoTBy8HvPLxK7D34PzqpqjwpVAU1hpU5ednLS+tCteZM2fCy8sLJ0+ehIeHh8a6uXPnokOHDpg5cyYOHz6sk5AlUSgUuHDhAsLDw9XLpFIpgoKCEBsbW+I+sbGxCAsL01gWHByMXbt2lXoeuVwOuVyufp+bmwsAKCoqQmFhYSU+gXE4ePBghcfQCYKAQ4cOcayzlgoLlSgqKkR+vhKFheb7jaqwUIWiIhUKCwshk6nEjqM3hYWFKCosQj7yUVRYpNNjO9ZwRPvA9oj9PVY95rxMEsDexx4yRxlURbr9N7eR2aCFUwsUFhbCQlq+Hx2CIECpVJb4vfLzUZ/j0+8/xbAlwyCRSBDcJhiz3pql3vZpwVPcTr6N3Pxc9bLpg6ZDEASM/2o8FEUKdGzWEXOHzFWv33t2Lx7nPMau2F3YFbtLfS6vml44Gnm03J+1sLAQhUWFQD6e/WkAKkGl/rNIVf7/Ry6tXNBibAtIbCXIz6vYcJUiRREKiwpRWFgIqYX5fi9SFhaisLAISlU+pDLDtKfwj3tEFIWlfC1KLVHg/R6UNdoBBU8rfU6VshAq5bPaRAVZpY9XXpaWlgY7FwBA0IKDg4OwZMmSUtcvXrxYcHBw0ObQ5fbgwQMBgHD69GmN5R9//LHg7+9f4j6WlpbC9u3bNZatXr1acHNzK/U8ERERAgC++OKLL7744osvvv71MjStelylUimKikr/jVCpVEIqNY/f3sLDwzV6aS9duoTAwECcPXsWrVuXPG+gKdm6dSvGjh1b4f02bNjAHtdKKCxUQakUxI6hdzKZBJaW5vG9oCz6mlXgud27d2PkiJEQBKHkntf/HxXg/a43nFo76fz8Y1uPxdDmQyGTyUq9McvcFCmKDDoXeeMmjfHw0UNUt6iORb6LytxWIpMg4OMANHy98vP1ymQyWFiZ/yNgVcpCCCrDtWeDlxvj4cNHqOVsgTtbmxfP4xsBuHfT+XklUhmkMgP3gBqYVv9b27dvj9WrV2PIkCGoW7euxrqkpCSsWbMGHTp00EnA0ri4uEAmkyElJUVjeUpKSrHhC895eHhUaHsAsLa2hrX1/8atPZ81wcLCwvDd43oQHBxc4TF0EokEPXr0MIvPLxb+05kXfX8tvD30bTRp1ATz588vPiZdAlRvUR2ePT318sSsTzp8gjebvanz4xo7Q39/e/4oVolEAgtZ6T+aLW0t0X1pd7zUjjdhVYih2/P/x6tKJBJY/fuX97pvAfX6GjSPOdGqK2TRokXIyspCkyZNMGTIEMydOxdz587F4MGD0aRJE2RlZSEyMlLXWTVYWVnBz88PMTEx6mUqlQoxMTEICCh5/rOAgACN7QHg8OHDpW5fFdSpUwe9e/eGTFa+8TAymQx9+vThjVlEBvbKK69gz549SExMhJOTEwBAZitD80XN0XBCQ70UrbM6z6qSRauxsrCxwOtfvs6i1ZTZ1gIaTRQ7hUnTqse1devWOHv2LGbOnIk9e/YgP//ZgHA7OzuEhIRgwYIF8PHx0WnQkoSFhWHEiBFo27Yt/P39sWLFCuTl5alnGRg+fDi8vLzURfQHH3yAwMBAfPHFF+jVqxd27NiB8+fPY/369XrPasxmz56NAwcOvLDnVSKRQCKRYNasWQZMR0T/VKdOHdjb2yMzMxNSa6lenpAFABNemYB+Tfrp5dhUcRKJBK8teg0erUq/QkgmoMlUQGYjdgqTpvXAFh8fH+zcuRMqlQppac+mHHF1dTXo2NbQ0FCkpaVhzpw5SE5ORqtWrRAdHQ1392fTqSQlJWnkad++PbZv345Zs2ZhxowZePnll7Fr1y74+voaLLMxeuWVVxAVFaV+clZJ47pksmfzOP7www98+ACRmQtpGIKRrUaKHaNK8fDwwNPHT+EgLfkhPq1GtkLdznVLXEcmokYbwK2L2ClMnkSoyODGEgiCoFG4mvtzkePj4+Hn54cLFy6gTZs2L97BhJw7d05jDJ1UKoVKpYJEIkGfPn0wa9YsFq1ERuCll17CgwcPYOlkiRaLW+j02PVr1Me2fttga2mr0+PSi0UNiEJWUlax5TUb1UT/b/qb9ZRV5ub516hXTUvc//b/v0Zf3QI4Fb9RiypG6x7Xq1evYs6cOTh48KDGUIHg4GDMnTu3yvdimqLnY+iSkpJw5MgRZGdnw9HREd26deOYVqIqwM7SDp8Ffcai1YhIJBJ0ntWZRaupc2nPolVHtCpcT5w4gddffx0qlQp9+/ZFo0aNAAAJCQnYs2cPDhw4gOjoaHTq1EmnYckw6tSpg3feeUfsGERkQA5WDlgevBz1a9QXOwr9g89/fODq4yp2DKqs+pw+Ule0KlynTp0KNzc3HD9+HLVr19ZYd+/ePXTu3BlhYWE4d+6cTkISEZH+NHVtisjXIvGSI+9WNybValWD//v6fXQ66YeHhwdQlAMPxyLAvt6z8a2kE1pde7hy5QomTJhQrGgFgNq1a2P8+PG4cuVKpcMREZH+WEgtMOGVCdjSdwuLViPUeXZnWNpx0mdTdP78edyP+QTnVzUFar0OmPn9P4akVY9r3bp1IZfLS12vUChKLGqJiMg4vFzzZczvOh8NnSv/9CXSvUZ9GsHrFS+xY5AuuHcRO4FZ0arHdc6cOVi1ahUuXbpUbN3Fixfx5ZdfYu7cuZWMRkRE+jCg6QBs67eNRauRsrC24BABc2Ht8myoAOmMVj2uZ86cgbu7O/z8/NC+fXs0bPjsm9+NGzcQGxsLX19fxMbGIjY2Vr2PRCLBypUrdZOaiIgqTCqRYnrH6RjQdIDYUagML/d+GXYudmLHIF1wasFhAjqmVeH61Vdfqf9+6tQpnDp1SmP95cuXcfnyZY1lLFyJiMRja2mLz7t/jldfelXsKPQCjXo3EjsC6YpjE7ETmB2tCleVSqXrHEREpCeO1o5YGbISzd05j6Sxs61hC7dmbmLHIF1x4PRyuqb1AwiIiMj4uTu4Y1XIKjRwbiB2FCoHj9YekEh5adlsOHB8q65VqnC9c+cODhw4gLt37wJ4NtvA66+/jnr12FBERGJr5dEKi4MWo6ZdTbGjUDm5+bK31WxIZIAtZ4bQNa0L1w8//BArV64sNmxAKpViypQpWLp0aaXDERGRdoY2H4pJ7SbBQsoLa6akZmP+kmE2bGsB/PrTOa2mw/riiy+wfPlyDBgwALGxscjMzERmZiZiY2MxaNAgLF++HMuXL9d1ViIiegELqQXmd52PqQFTWbSaoBr1aogdgXSFva16odV3tQ0bNuCNN97ADz/8oLG8Xbt22LFjBwoKCvD1119j6tSpOglJREQvJpPKsCx4GdrXbi92FNKCzErGabDMiY2r2AnMklY9romJiQgODi51fXBwMBITE7XNREREWpjWfhqLVhNm52rHG7PMiWV1sROYJa0KVzc3N/zxxx+lrv/jjz/g6srfNIiIDMXfy58PFjBxtjVsxY5AuiRje+qDVoXrm2++iY0bN+Kzzz5DXl6eenleXh4WL16MjRs3IjQ0VGchiYiobBP9J0LCJ/SYNBsnG7EjkC5JrcROYJa0GuM6f/58XLp0CTNmzMCcOXNQq1YtAMDDhw9RVFSErl274tNPP9VpUCIiKlkzt2bwcfUROwZVkrWjtdgRSJf4i6ReaFW42tnZISYmBrt379aYxzUkJAQ9e/ZEnz59+Js/EZGeeHh4QCWokGWRBQDo2bCnyIlIF2ydeWnZvGh1UZteoMKFa35+PoYNG4aBAwdi6NCh6Nu3rz5yERFRKc6fP4/0/HSEfBsCAOhWr5vIiUgXWLgSvViFfx2ws7PDb7/9hvz8fH3kISKiCvBx9YGrPW+GNQcsXIleTKt+7I4dOyI2NlbXWSokIyMDQ4cOhaOjI5ycnPDuu+8iNze3zO0nTZqExo0bw9bWFnXq1MHkyZORlZVlwNRERLr16kuvih2BdIRjXIleTKvC9auvvsKJEycwa9Ys3L9/X9eZymXo0KG4cuUKDh8+jL179+L333/H2LFjS93+4cOHePjwIZYuXYq//voLW7duRXR0NN59910DpiYi0q1Xar0idgTSEUs7S7EjEBk9iSAIQkV3qlatGoqKiqBQKAAAFhYWsLbW/E1RIpHorTfz2rVr8PHxwblz59C2bVsAQHR0NHr27In79++rZzl4kR9//BHDhg1DXl4eLCzKN9w3Pj4efn5+uHDhAtq0aaP1ZyAiqoz0/HT03t4bx985DmsL9tSZg6dPnnIuV3NSlAdY2IudwuxoNavAwIEDRZ01IDY2Fk5OTuqiFQCCgoIglUpx9uxZ9O/fv1zHycrKgqOjY5lFq1wuh1wuV78vazgCEZEhvVzzZRatZoRPzTI3bE990Kpw3bp1q45jVExycjLc3Nw0lllYWMDZ2RnJycnlOkZ6ejrmz59f5vACAIiMjMS8efO0zkpEpC/1nOqJHYF0iIWruWF76kOFxrgWFBQgKioKn332GTZu3IhHjx7pNMz06dMhkUjKfF2/fr3S58nOzkavXr3g4+ODuXPnlrlteHg4srKy1K/jx49X+vxERLrgbu8udgTSIetq7D03KxYc9qEP5e5xTU1NRfv27XHnzh08HxZrZ2eHXbt2ISgoSCdhPvzwQ7zzzjtlblO/fn14eHggNTVVY3lRUREyMjLg4eFR5v45OTkICQlBtWrVsHPnTlhalj0Y3traWmP8roODQ9kfgojIQOytOH6OiKqWcheu8+fPR2JiIqZOnYpu3brh5s2bmD9/PsaNG4dbt27pJIyrqytcXV88H2FAQAAyMzNx4cIF+Pn5AQCOHDkClUqFdu3albpfdnY2goODYW1tjT179sDGhs+FJiLTZSXjs9CJqGopd+F66NAhDB8+HEuXLlUvc3d3x5AhQ5CQkIDGjRvrJWBJmjZtipCQEIwZMwbr1q1DYWEhJk6ciLfeeks9o8CDBw/w2muv4ZtvvoG/vz+ys7PRo0cP5Ofn49tvv0V2djays7MBPCuYZTKZwfITEemChVSr2xSIiExWuce4JiUloWPHjhrLOnbsCEEQkJKSovNgL/Ldd9+hSZMmeO2119CzZ0907NgR69evV68vLCxEQkKC+glf8fHxOHv2LC5fvoyGDRvC09NT/bp3757B8xMRVRZ7XImoqin3r+tyubzYpfXn74uKinSbqhycnZ2xffv2Utd7e3vjn1PUdunSBVpMWUtEZLTsLTnGlYiqlgpdZ0pMTER8fLz6/fMHDNy4cQNOTk7FtucE/URE+lPNuprYEYiIDKrcT86SSqUlPnRAEIRiy58vUyqVuklpRPjkLCIyBun56UjNS4WPq4/YUYiIDKbcPa5btmzRZw4iIqogDhUgoqqm3IXriBEj9JmDiIgqyM7STuwIREQGVaEnZxERkfGwteSTeYioamHhSkRkojgdFhFVNZy9mojIBDnbOkOC4jfMEhGZMxauREQmSCrhBTMiqnr4nY+IiIiITAILVyIiIiIyCSxciYiIiMgksHAlIiIiIpPAwpWIiIiITAILVyIiIiIyCZwOi0r16NEjPHr0SOwYREREJsfT0xOenp5ixzA7LFwryNPTExEREWb/n1Eul2Pw4ME4fvy42FGIiIhMTmBgIA4ePAhra2uxo5gViSAIgtghyPhkZ2ejevXqOH78OBwcHMSOQ5WUm5uLwMBAtqeZYHuaH7apeXnenllZWXB0dBQ7jllh4Uolel648ovOPLA9zQvb0/ywTc0L21N/eHMWEREREZkEFq5EREREZBJYuFKJrK2tERERwUHlZoLtaV7YnuaHbWpe2J76wzGuRERERGQS2ONKRERERCaBhSsRERERmQQWrkRERERkEli4EhEREZFJYOFKZCQkEkm5XseOHav0ufLz8zF37twKHWvhwoV444034O7uDolEgrlz51Y6hzkz5va8fv06pk2bhlatWqFatWrw9PREr169cP78+UpnMVfG3J4PHz7EsGHD0LhxY1SrVg1OTk7w9/fHtm3bwPuvS2fMbfpv3333HSQSCZ+qBsBC7ABE9Mx///tfjffffPMNDh8+XGx506ZNK32u/Px8zJs3DwDQpUuXcu0za9YseHh4oHXr1jh48GClM5g7Y27PjRs3YtOmTRg4cCAmTJiArKwsfP3113j11VcRHR2NoKCgSmcyN8bcnunp6bh//z4GDRqEOnXqoLCwEIcPH8Y777yDhIQELFq0qNKZzJExt+k/5ebmYtq0abC3t690DrMgEJFRev/99wV9fYmmpaUJAISIiIhy73Pnzh2t9yXjas/z588LOTk5GsvS09MFV1dXoUOHDnpIaH6MqT1L07t3b8He3l4oKirSTTAzZ6xt+sknnwiNGzcWhg4dKtjb2+s+nInhUAEiE6JSqbBixQo0a9YMNjY2cHd3x7hx4/DkyRON7c6fP4/g4GC4uLjA1tYW9erVw6hRowAAiYmJcHV1BQDMmzdPfTnsRZf+vb299fGRqjSx2tPPz6/YJceaNWuiU6dOuHbtmm4/ZBUi5tdnSby9vZGfnw+FQlHpz1ZVid2mN27cwPLly7Fs2TJYWPAiOcChAkQmZdy4cdi6dStGjhyJyZMn486dO/jqq69w8eJFnDp1CpaWlkhNTUWPHj3g6uqK6dOnw8nJCYmJifjll18AAK6urli7di3Gjx+P/v37Y8CAAQCAFi1aiPnRqiRja8/k5GS4uLjo9DNWJWK359OnT5GXl4fc3FwcP34cW7ZsQUBAAGxtbfX6uc2Z2G06ZcoUdO3aFT179sQPP/yg189qMsTu8iWikv37stWJEycEAMJ3332nsV10dLTG8p07dwoAhHPnzpV67MpctuJQAe0Ya3s+9/vvvwsSiUSYPXu21seoSoyxPSMjIwUA6tdrr70mJCUlVegYVZmxtenevXsFCwsL4cqVK4IgCMKIESM4VEDgUAEik/Hjjz+ievXq6N69O9LT09Wv55d9jx49CgBwcnICAOzduxeFhYUiJqayGFN7pqamYsiQIahXrx6mTZuml3OYO2Noz8GDB+Pw4cPYvn07hgwZAuBZLyxpR8w2VSgUmDp1Kt577z34+Pjo5JjmgoUrkYm4ceMGsrKy4ObmBldXV41Xbm4uUlNTAQCBgYEYOHAg5s2bBxcXF/Tt2xdbtmyBXC4X+RPQPxlLe+bl5aF3797IycnB7t27Od2OloyhPevWrYugoCAMHjwY3333HerXr4+goCAWr1oSs02XL1+O9PR09UwE9D8c40pkIlQqFdzc3PDdd9+VuP754H+JRIKffvoJZ86cwa+//oqDBw9i1KhR+OKLL3DmzBkWJkbCGNpToVBgwIAB+PPPP3Hw4EH4+vpqfayqzhja898GDRqEDRs24Pfff0dwcLDOjltViNWmWVlZWLBgASZMmIDs7GxkZ2cDeDYtliAISExMhJ2dHdzc3Cr3AU2V2GMViKhk/x5vNWHCBEEmkwn5+fkVPtZ3330nABA2bNggCMKzqY/AMa4GZWztqVQqhdDQUEEmkwk///xzhTNUdcbWniXZtWuXAECIioqq1HGqCmNp0zt37miMVS7p1bdv3wpnMhccKkBkIv7zn/9AqVRi/vz5xdYVFRUhMzMTAPDkyZNiT8tp1aoVAKgvXdnZ2QGAeh8yPLHbc9KkSYiKisKaNWvUdzmT9sRsz7S0tBKXb9q0CRKJBG3atCnXcUiTWG3q5uaGnTt3Fnt17doVNjY22LlzJ8LDw7X/YCaOQwWITERgYCDGjRuHyMhIXLp0CT169IClpSVu3LiBH3/8EStXrsSgQYOwbds2rFmzBv3790eDBg2Qk5ODDRs2wNHRET179gQA2NrawsfHB1FRUWjUqBGcnZ3h6+tb5qXi//73v7h79y7y8/MBAL///jsWLFgAAHj77bdRt25d/f8jmBEx23PFihVYs2YNAgICYGdnh2+//VZjff/+/fmUngoSsz0XLlyIU6dOISQkBHXq1EFGRgZ+/vlnnDt3DpMmTULDhg0N+U9hNsRqUzs7O/Tr16/Y8l27diEuLq7EdVWKuB2+RFSa0p7isn79esHPz0+wtbUVqlWrJjRv3lyYNm2a8PDhQ0EQBCE+Pl4YPHiwUKdOHcHa2lpwc3MTevfuLZw/f17jOKdPnxb8/PwEKyurcl3CCvy/9u4/tMry/+P46/Y4z1nup7U2f+7sB6wNwSxZwbJlEZKONtCpQTmlZUGwpFnYSpxl5DRFWYktYrNBQVL+o5VCbiwp8J/6Y41a7VcRbBZstrJN3d7fP6TT97T58Sy3tvve8wGC93Wu+7qu4wtu3p5zn+vOz7/m11YNDQ3j9bY9ayrlWVJS8j+/hvzrKWm4tqmU5+nTp62goMDmzZtnUVFRFhsba3l5eVZbW2vDw8Pj+r69bCplOhq2w7rKMfvH59sAAADAFMQ9rgAAAHAFClcAAAC4AoUrAAAAXIHCFQAAAK5A4QoAAABXoHAFAACAK1C4Ah7Q2dkpx3FUV1c32UvBOCFTbyFPbyHPyUPhCgAAAFfgAQSAB5iZBgcHFRUVJZ/PN9nLwTggU28hT28hz8lD4QoAAABX4FYBYIqorKyU4zhqbW3Vo48+qvj4eCUlJWnHjh0yM/30008qLCxUXFycUlJStH///tC5o91vtWnTJsXExOjnn39WUVGRYmJilJSUpG3btmloaCjUr7GxUY7jqLGxMWw9o43Z3d2tzZs3a8GCBfL7/Zo7d64KCwvV2dk5Qf8q7kam3kKe3kKe7kThCkwx69ev1/DwsPbs2aO77rpLu3fv1sGDB/Xggw9q/vz5qqqqUmZmprZt26ampqb/OdbQ0JBWrlypm2++Wa+//rry8/O1f/9+1dTU/Ku1rVmzRsePH9fmzZt1+PBhlZWVqb+/Xz/++OO/Gm+6IFNvIU9vIU+XMQBTws6dO02SbdmyJdR25coVW7BggTmOY3v27Am19/b2WnR0tJWUlJiZWUdHh0my2traUJ+SkhKTZC+//HLYPEuXLrU777wzdNzQ0GCSrKGhIazfP8fs7e01SbZv377xecPTAJl6C3l6C3m6E5+4AlNMaWlp6O8+n0/Lli2Tmenxxx8PtSckJCgrK0vt7e3XHe+pp54KO16+fHlE5/1TdHS0Zs2apcbGRvX29o75/OmMTL2FPL2FPN2FwhWYYhYtWhR2HB8fr0AgoFtuuWVE+/UuZoFAQElJSWFtiYmJ/+oi6Pf7VVVVpU8++UTJycm69957tXfvXnV3d495rOmGTL2FPL2FPN2FwhWYYkbbWuVa263YdTYFiWSbFsdxRm3//z8m+MvWrVvV2tqq1157TYFAQDt27FB2dra++uqr684znZGpt5Cnt5Cnu1C4AtNcYmKiJKmvry+svaura9T+GRkZKi8v1+nTp9Xc3KxLly6F/doWk49MvYU8vYU8bwyFKzDNpaamyufzjfi17OHDh8OOL168qIGBgbC2jIwMxcbGanBwcMLXiciRqbeQp7eQ542ZOdkLADC54uPjVVxcrOrqajmOo4yMDJ04cULnz58P69fa2qoHHnhA69atU05OjmbOnKnjx4+rp6dHGzZsmKTVYzRk6i3k6S3keWMoXAGourpaly9f1pEjR+T3+7Vu3Trt27dPixcvDvVZuHChHnnkEX322Weqr6/XzJkzddttt+mDDz7QmjVrJnH1GA2Zegt5egt5/ns88hUAAACuwD2uAAAAcAUKVwAAALgChSsAAABcgcIVAAAArkDhCgAAAFegcAUwJp2dnXIcR3V1dZO9FIwTMvUW8vQW8gxH4QpMoLa2Nj355JNKT09XIBBQXFyc8vLydOjQIf35558TNm9LS4sqKyvV2dk5YXNE4tVXX9XDDz+s5ORkOY6jysrKSV3PeCBTb2VKnuQ5Hsjzv8MDCIAJcvLkSRUXF8vv92vjxo1avHixLl26pLNnz+q5557TN998o5qamgmZu6WlRbt27dJ9992nYDA4IXNE4qWXXlJKSoqWLl2qU6dOTdo6xguZeitT8iTP8UKe/x0KV2ACdHR0aMOGDUpNTdWZM2c0d+7c0GtPP/20fvjhB508eXISV/g3M9PAwICio6PHfeyOjg4Fg0H9+uuvSkpKGvfx/0tkepVXMiXPq8jzv0eeN4ZbBYAJsHfvXv3+++965513wi6gf8nMzNQzzzwTOr5y5YpeeeUVZWRkyO/3KxgMqqKiQoODg2HnBYNBFRQU6OzZs8rNzVUgEFB6errefffdUJ+6ujoVFxdLklasWCHHceQ4jhobG8PGOHXqlJYtW6bo6Gi99dZbkqT29nYVFxdrzpw5uummm3T33Xff0MV+Mj95GG9k+vd6vYA8/16vF5Dn3+v1PAMw7ubPn2/p6ekR9y8pKTFJtnbtWnvzzTdt48aNJsmKiorC+qWmplpWVpYlJydbRUWFvfHGG3bHHXeY4zjW3NxsZmZtbW1WVlZmkqyiosLq6+utvr7euru7Q2NkZmZaYmKibd++3Y4cOWINDQ3W3d1tycnJFhsbay+++KIdOHDAlixZYjNmzLCPPvootIaOjg6TZLW1tRG/v19++cUk2c6dOyM+Z6oh03Buz5Q8w5EneboFhSswzi5cuGCSrLCwMKL+X3/9tUmy0tLSsPZt27aZJDtz5kyoLTU11SRZU1NTqO38+fPm9/utvLw81Hbs2DGTZA0NDSPm+2uMTz/9NKx969atJsk+//zzUFt/f7+lpaVZMBi0oaEhM5ueF1EyHcnNmZLnSORJnm7BrQLAOPvtt98kSbGxsRH1//jjjyVJzz77bFh7eXm5JI342ignJ0fLly8PHSclJSkrK0vt7e0RrzEtLU0rV64csY7c3Fzdc889obaYmBht2bJFnZ2damlpiXh8ryFTbyFPbyHP6YXCFRhncXFxkqT+/v6I+nd1dWnGjBnKzMwMa09JSVFCQoK6urrC2hctWjRijMTERPX29ka8xrS0tFHXkZWVNaI9Ozs79Pp0RabeQp7eQp7TC4UrMM7i4uI0b948NTc3j+k8x3Ei6ufz+UZtN7OI55qIX7N6GZl6C3l6C3lOLxSuwAQoKChQW1ubvvzyy+v2TU1N1fDwsL7//vuw9p6eHvX19Sk1NXXM80d6Qf7nOr777rsR7d9++23o9emMTL2FPL2FPKcPCldgAjz//POaPXu2SktL1dPTM+L1trY2HTp0SJK0atUqSdLBgwfD+hw4cECStHr16jHPP3v2bElSX19fxOesWrVK586dC7vw//HHH6qpqVEwGFROTs6Y1+ElZOot5Okt5Dl98AACYAJkZGTovffe0/r165WdnR32FJcvvvhCx44d06ZNmyRJS5YsUUlJiWpqatTX16f8/HydO3dOR48eVVFRkVasWDHm+W+//Xb5fD5VVVXpwoUL8vv9uv/++3Xrrbde85zt27fr/fff10MPPaSysjLNmTNHR48eVUdHhz788EPNmDH2/+fW19erq6tLFy9elCQ1NTVp9+7dkqTHHnvMVZ8okOlVXsmUPK8iT/J0ncnd1ADwttbWVnviiScsGAzarFmzLDY21vLy8qy6utoGBgZC/S5fvmy7du2ytLQ0i4qKsoULF9oLL7wQ1sfs6rYqq1evHjFPfn6+5efnh7W9/fbblp6ebj6fL2yblmuNYXZ1P8K1a9daQkKCBQIBy83NtRMnToT1GcvWLPn5+SZp1D+jbRvjBmTqrUzJkzzJ010cszHcXQwAAABMEu5xBQAAgCtQuAIAAMAVKFwBAADgChSuAAAAcAUKVwAAALgChSsAAABcgcIVAAAArkDhCgAAAFegcAUAAIArULgCAADAFShcAQAA4AoUrgAAAHAFClcAAAC4wv8Bdjwv2LikrhMAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -1849,7 +1849,7 @@
"\n",
"By default, the sample counts for each bar in proportion plots are not shown.\n",
"\n",
- "This feature can be turned on by setting `prop_sample_counts=True` in the `plot()` function.\n",
+ "This feature can be turned on by setting `prop_sample_counts=True` in the `.plot()` function.\n",
"\n",
"**Note**: This feature is not compatible with `flow=False` in `sankey_kwargs`."
]
@@ -1861,7 +1861,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXmFJREFUeJzt3XdUFNffBvBnl15EUKpEAUtEgoJiQEFF/KnYNVFjib3GEhVMsYOxYImKMfaImmI0JjHWWKJiL7GQWFEQxAaISlfK7rx/+LJxBXQLW4Dnc86euDN35j7rGL7M7My9IkEQBBAREZFeEus6ABEREZWOhZqIiEiPsVATERHpMRZqIiIiPcZCTUREpMdYqImIiPQYCzUREZEeY6EmIiLSYyzUREREeqzSF+pHjx4hPDwcjx490nUUIiJ6BX8+v8RC/egRZs+eXen/IRAR6Rv+fH6p0hdqIiIifcZCTUREpMdYqImIiPQYCzUREZEeY6EmIiLSYyzUREREeoyFmoiISI+xUBMREekxvSrUx48fR9euXVGjRg2IRCL88ccfb90mOjoaTZo0gYmJCerWrYtNmzZpPCcREZG26FWhzsnJgZeXF1auXKlQ+4SEBHTu3BlBQUGIiYnBpEmTMGLECBw4cEDDSYmIiLTDUNcBXtWxY0d07NhR4fZr1qyBm5sblixZAgBo0KABTp48iWXLliE4OFhTMYmIiLRGrwq1ss6cOYO2bdvKLQsODsakSZNK3SYvLw95eXmy99nZ2ZqKp5CxS7bgWVauTjPoC5sq5lg1ub+uY2hdzIaJyM9+pusYOmdsaQPv4ct1HYNI75TrQp2cnAwHBwe5ZQ4ODsjMzMTz589hZmZWbJuIiAjMnj1bWxHf6llWLtIydPvLAulWfvYz5Gc90XUMqigkBYDYEBCJdJ2Eyki5LtSqmDp1KkJDQ2XvY2JiEBgYqMNEL4lFIlSzstB1DJ14mpkDqSDoOobuicQwtrTRdQqty89+BghSXceoOHLSAAs7wKDS/XivsMr1kXR0dERKSorcspSUFFhZWZV4Ng0AJiYmMDExkb23tLTUaEZFVbOywM/hI3QdQyf6hX/Hqwp4eenXd+L3uo6hdeeXD+IVhbImyWehrkD06q5vZTVv3hyHDx+WW3bo0CE0b95cR4mIiPSAJF/XCagM6VWhzs7ORkxMDGJiYgC8fPwqJiYGSUlJAF5eth40aJCs/SeffII7d+7giy++wM2bN7Fq1Sr88ssvCAkJ0UV8IiL9UJj39jZUbuhVob5w4QIaN26Mxo0bAwBCQ0PRuHFjzJo1CwDw6NEjWdEGADc3N+zduxeHDh2Cl5cXlixZgu+++46PZhFR5Vb4QtcJqAzp1ZcYrVu3hvCGm4pKGnWsdevWuHz5sgZTERGVMwXPdZ2AypBenVETEVEZKMjRdQIqQyzUREQVTT4HUapIWKgridWrV6NRo0awsrKClZUVmjdvjj///LNYO0EQ0LFjR4UnRaHy422T3vz+++9o3749qlevDpFIJLupk8qhvCxdJ6AyxEJdSbzzzjtYsGABLl68iAsXLqBNmzbo3r07rl27JtcuMjISIo5oVCG9bdKbnJwctGjRAgsXLtRyMipzeZm6TqAzK1euhKurK0xNTeHn54fz58+/sX1kZCTq168PMzMz1KxZEyEhIXjxQr9uxtOrm8lIc7p27Sr3ft68eVi9ejXOnj2L9957D8DLUdqWLFmCCxcuwMnJSRcxSYPeNunNwIEDAQCJiYlaSkQa8yJD1wl0Ytu2bQgNDcWaNWvg5+eHyMhIBAcHIzY2Fvb29sXab9myBVOmTEFUVBT8/f1x69YtDBkyBCKRCEuXLtXBJygZz6grIYlEgq1btyInJ0c2OExubi769++PlStXwtHRUccJiUgtlbRQL126FCNHjsTQoUPh4eGBNWvWwNzcHFFRUSW2P336NAICAtC/f3+4urqiffv26Nev31vPwrWNhboSuXLlCiwtLWFiYoJPPvkEO3bsgIeHBwAgJCQE/v7+6N69u45TEpHanqfrOoHW5efn4+LFi3IzKorFYrRt2xZnzpwpcRt/f39cvHhRVpjv3LmDffv2oVOnTlrJrChe+q5E6tevj5iYGGRkZODXX3/F4MGDcezYMcTFxeHIkSN8Hp2ooniRrusEZSo7OxuZmf997/76nA0AkJaWBolEUuKMijdv3ixxv/3790daWhpatGgBQRBQWFiITz75BNOmTSv7D6EGnlFXIsbGxqhbty58fHwQEREBLy8vLF++HEeOHEF8fDysra1haGgIQ8OXv7/17NkTrVu31m1oIlJe7lNdJyhTgYGBqFq1quwVERFRJvuNjo7G/PnzsWrVKly6dAm///479u7dizlz5pTJ/ssKz6grMalUiry8PMyePRsjRsjP3NWwYUMsW7as2E1oRFQO5D4BBKHCzEl97NgxeHt7y96/fjYNALa2tjAwMChxRsXS7ruZOXMmBg4cKPv517BhQ+Tk5GDUqFGYPn06xGL9OJdloa4kpk6dio4dO6JWrVrIysrCli1bEB0djQMHDsDR0bHEf8i1atWCm5ubDtKSJmRnZyMuLk72vmjSm2rVqqFWrVp4+vQpkpKS8PDhQwBAbGwsAJT674P0mCT/5bPUpla6TlImLC0tYWX15s9ibGwMHx8fHD58GD169ADw8mTk8OHDGD9+fInb5ObmFivGBgYGAPDG4ay1jYW6kkhNTcWgQYPw6NEjVK1aFY0aNcKBAwfQrl07XUcjLblw4QKCgoJk70NDQwEAgwcPxqZNm7Br1y4MHTpUtr5v374AgLCwMISHh2s1K5WB7JQKU6gVFRoaisGDB6Np06bw9fVFZGQkcnJyZP+uBw0aBGdnZ9ml865du2Lp0qVo3Lgx/Pz8EBcXh5kzZ6Jr166ygq0PWKgriQ0bNijVXp9+m6Sy8bZJb4YMGYIhQ4ZoLxBpVsY9wLaerlNoVZ8+ffD48WPMmjULycnJ8Pb2xv79+2U3mCUlJcmdQc+YMQMikQgzZszAgwcPYGdnh65du2LevHm6+gglYqEmIqqIniXqOoFOjB8/vtRL3dHR0XLvDQ0NERYWhrCwMC0kU51+fFNORERlK+22rhNQGWGhJiKqiJKvAFKprlNQGWChJiKqiPKygLRbuk5BZYCFmoioorp7StcJqAywUBMRVVR3ol8OfELlGgs1EVFFlZ4EPIl7ezvSayzUREQVWdxfuk5AamKhJiKqyOL+4t3f5RwLNRFRRZaTBjyK0XUKUgMLNRFRRRd/WNcJSA0s1EREFd2dY4CkUNcpSEUs1EREFV1eFnD/b12nIBWxUBMRVQa3D+o6AamIhZqIqDJIPAm8yNR1ClIBCzURUQXRtGlTvNPAB03nXyq+UpIP3Dqg/VCkNhZqIqIKIjk5GQ8ePkJyZn7JDa7+Bkgl2g1FamOhJiKqLLIeAfFHdJ2ClMRCTURUmVzcxLPqcoaFmoioMsm4D9zYresUpAQWaiKiyuZC1Mtnq6lcYKEmIqpsXmS8vARO5QILNRFRZXT1d+Bpgq5TkAJYqImIKiNBCpxeAQiCrpPQW7BQExFVVg8uAndP6ToFvQULNRFRZXZ2NSAp0HUKegMWaiKiyizjPnBth65T0BuwUBMRVXYXNwO5T3WdgkpRZoVaEAQcOXIEf/75J7Ky+HweEVG5kZ8N/P2drlNQKVQq1NOnT0dQUJDsvSAIaN++Pdq1a4fOnTujYcOGiI+PL7OQRESkYTf3AinXdJ2iXHv06BH++ecf5OTklOl+VSrUv/32G3x9fWXvf/31Vxw+fBhz587Fnj17IJFIEB4eXlYZiYhIG04sASSFuk5R7uzcuRPu7u5455130KRJE5w7dw4AkJaWhsaNG+OPP/5Qa/8qFeoHDx6gbt26sve///47PDw8MHXqVHTq1AljxoxBdHS0WsGIiEjLnsQDV7brOkW5snv3bnz44YewtbVFWFgYhFeeS7e1tYWzszM2btyoVh8qFWpDQ0Pk5eUBeHnZ+/Dhw+jQoYNsvYODA9LS0tQKRkREOnAhCki/p+sU5cZXX32FVq1a4eTJkxg3blyx9c2bN8fly5fV6kOlQu3p6Ykff/wRz549w8aNG/HkyRN07txZtv7u3buwtbVVKdDKlSvh6uoKU1NT+Pn54fz5829sHxkZifr168PMzAw1a9ZESEgIXrx4oVLfRESVniQfOL4YkEp1naRcuHr1Kj766KNS1zs4OCA1NVWtPgxV2WjWrFno2rWrrBgHBATI3Vy2d+9evP/++0rvd9u2bQgNDcWaNWvg5+eHyMhIBAcHIzY2Fvb29sXab9myBVOmTEFUVBT8/f1x69YtDBkyBCKRCEuXLlXloxER0aN/gOt/AJ4f6jqJ3jM3N3/jzWN37txB9erV1epDpTPqdu3a4dKlS1i6dCmioqJw8OBB2bpnz56hVatWmDBhgtL7Xbp0KUaOHImhQ4fCw8MDa9asgbm5OaKiokpsf/r0aQQEBKB///5wdXVF+/bt0a9fv7eehRMR0VucXw9kq3cmWBkEBQVh8+bNKCwsfhNecnIy1q9fj/bt26vVh8rPUXt4eGDixIkYPHgwTE1NZcttbGywbNkytG7dWqn95efn4+LFi2jbtu1/4cRitG3bFmfOnClxG39/f1y8eFFWmO/cuYN9+/ahU6dOyn8gIiL6T0EucGq5rlPovXnz5uH+/ft4//33sXbtWohEIhw4cAAzZsxAw4YNIQgCwsLC1OpDpUvfWVlZSE9PR82aNWXLHj58iDVr1iAvLw+9evVS+tJ3WloaJBIJHBwc5JY7ODjg5s2bJW7Tv39/pKWloUWLFhAEAYWFhfjkk08wbdq0UvvJy8uT3QgHANnZ2UrlJCKqNBJPvpy4w9lH10n0Vv369XHy5ElMnDgRM2fOhCAIWLx4MQCgdevWsvuu1KFSoR41ahQSEhJw9uxZAEBmZiaaNWuG+/fvQywWY/ny5di/f7/SZ9XKio6Oxvz587Fq1Sr4+fkhLi4OEydOxJw5czBz5swSt4mIiMDs2bM1mouoPGnatCmSk5Ph6OiICxcu6DoO6Zvz64EeTQCRSNdJ9NZ7772Hv/76C8+ePUNcXBykUilq164NOzu7Mtm/Spe+T548iS5dusje//jjj3j48CFOnz6NZ8+eoVGjRpg7d65S+7S1tYWBgQFSUlLklqekpMDR0bHEbWbOnImBAwdixIgRaNiwIT744APMnz8fERERkJZyx+LUqVORkZEhex07dkypnEQVTXJyMh48eIDk5GRdRyF9lHoDeHhJ1ynKBRsbG7z//vvw8/MrsyINqFio09LS4OzsLHu/a9cutGjRAs2aNUOVKlUwaNAg/PPPP0rt09jYGD4+Pjh8+LBsmVQqxeHDh9G8efMSt8nNzYVYLP8RDAwMAEDuofNXmZiYwMrKSvaytLRUKicRUaXD2bVK9c033yA4OLjU9R07dsTq1avV6kOlQm1tbS377fv58+c4ceKE3F1thoaGyM3NVXq/oaGhWL9+PTZv3owbN25gzJgxyMnJwdChQwEAgwYNwtSpU2Xtu3btitWrV2Pr1q1ISEjAoUOHMHPmTHTt2lVWsImISE2Jp4CcJ7pOoZc2bNgADw+PUtd7eHhg3bp1avWh0nfU/v7+WLVqFdzd3bF//368ePEC3bt3l62/deuW3Bm3ovr06YPHjx9j1qxZSE5Ohre3N/bv3y+7wSwpKUnuDHrGjBkQiUSYMWMGHjx4ADs7O3Tt2hXz5s1T5WMREVFJBCkQdwjw6qvrJHonPj6+xBHJiri7u2P9+vVq9aFSoV64cCHat2+Pnj17AgAmT56M9957DwAgkUiwfft2uSFFlTF+/HiMHz++xHWvjx9uaGiIsLAwtW99JyKit4j9E2jUhzeVvcbY2PiN93c8evSo2Fe0ylKpUNetWxexsbG4fv06qlatKnfreW5uLr799lt4eXmpFYyIiPTIs0TgSRxgW0/XSfRKs2bNsGnTJoSEhKBKlSpy6zIyMrBx40Y0a9ZMrT5UKtQAYGRkVGIxrlKlitxlcCIiqiBuH2Shfk1YWBgCAwPh7e2NSZMmya4uX716FZGRkXj06BG2bNmiVh8qF+rMzEysWrUKR48eRWpqKtauXQtfX188ffoUmzZtQrdu3eSmwiQiKi8Knmfhzv41eHr7HCASw9bdH7WDR8PA2KzUbf79fgoyk67ILXNs0hF1O738Ki/ln0O4vTuyxG19Q36CsYV1WcXXnLjDgN8YQM1LuRWJn58fdu/ejdGjR2PixIkQ/f9XA4IgwM3NDbt27Sr1ySVFqVSo79+/j8DAQNy7dw/16tXDzZs3ZSN8VatWDWvXrsXdu3exfDmHnyMi/fTv91Pg4PU/OHi1K7bu1h+LkZ/9FJ4fz4VUIsHt3ZGI27sC9T/44o37dGgcDJfAAbL3YqP/hle29WgFmzryI3zd2rUM0sKC8lGkASD3CfDwMvCO/o5UtnLlSixevBjJycnw8vLCihUr4OvrW2r79PR0TJ8+Hb///juePn0KFxcXREZGKjUUdbt27RAXF4fLly8jPj4eAFCnTh00adJEVrjVoVKh/vzzz5GVlYWYmBjY29sXm9mqR48e2LNnj9rhiIi0LTctCc/iL8JrWCSq1Hh5mbdOh9G49nM4XNsOh0mV0mdCMjAyhbFltVLWmcDAyET2viAnAxmJ/6Jel4ll+wE07fZBvS3Uys7AmJ+fj3bt2sHe3h6//vornJ2dcffuXVhbWyvdt1gsho+PD3x8yv7vRqVCffDgQYSEhMDDwwNPnhR/tq527dq4d48TjxNR+ZN5/yYMTC1kRRoArN0aAyIRsh7EwsTdv9RtU68eReqVozC2tEG1er6o2bIvDF45q35VypXDEBuZoHqDgDL/DBqVeAIonAwYGus6STGvzsAIAGvWrMHevXsRFRWFKVOmFGsfFRWFp0+f4vTp0zAyMgIAlcflvn79Ou7cuYNnz56VOODWoEGDVNovoGKhfv78+RuHR8vKylI5EBGRLhVkP4OxubXcMpHYAEZmVVCQ86zU7ew9A2FS1R7GVaojJyUBiUc24vmT+2jQe0aJ7VNiDsLOM1DuLLtcyM8B7p8HXFvoOomcohkYXx0U620zMBZ9fzxu3Djs3LkTdnZ26N+/P7788kuFB82Kj4/HgAEDcP78+VJHxBSJRNov1B4eHjh+/DhGjx5d4vo//vgDjRs3VjkUEVFZu3dyG+6d+kX2XlqYj6wHNxG/f41sWZNPVB/q0bFJR9mfLexdYWxZDVd/mobnTx/BrJqTXNvM+zfwPO0e6nefrHJ/OnX3jFYLdXZ2NjIzM2XvTUxMYGIi/wuOKjMw3rlzB0eOHMHHH3+Mffv2IS4uDmPHjkVBQYHC43OMHj0aV65cQWRkJFq2bAkbGxslP93bqVSoJ02ahMGDB6NRo0bo3bs3gJfjcsfFxWH27Nk4c+YMfvvttzINSkSkDkefTrD1aCl7H/vHYti6B6D6K5eyTapUh5GlDfJz0+W2FaQSFDzPgpGF4j+EqzjXBwC8ePawWKFOuXwAFg61YelUdo86JSUlIScnBwCQkydB0tMXqFWt5MvuansUo5n9liIwMFDufVhYGMLDw9Xer1Qqhb29PdatWwcDAwP4+PjgwYMHWLx4scKF+tSpU5g2bRo+/fRTtfOURqVCPWDAANy9exczZszA9OnTAQAdOnSAIAgQi8WYP38+evToUZY5iYjUYmRWBUZm/w1IITY0gZFFVZhVqyHXzuodd0he5CD70W1ZIU1P+AcQBFnxVUROyh0AKHZzmST/OdJunIRL0GBVP4qc8+fPY86cOdi7d6/s0mv6cwlcp59Hl4bVMLOTC953rfKWvSgp4/7LS+DGFmW731IcO3YM3t7esvevn00Dqs3A6OTkBCMjI7nL3A0aNEBycjLy8/NhbPz27+FtbW1RtWpVBT+JalR+GG769OmIj4/H4sWLMWbMGIwcORILFy5EbGwsvvzyy7LMSESkNea2tWBTxwe3965A1oNYZN67jvgDq2H3XivZHd95mWm4uHo0sh7EAgCeP32EpBM/I/vRbbxIT8GTW2dxa+cSWNXyhIWDm9z+H187DkEqgX3DILWz/v777wgICMCff/5Z7PtRQQD2XX0K/0Ux+P1ymtp9FZP5sOz3WQpLS0u5WQ9LKtSqzMAYEBAgmz+6yK1bt+Dk5KRQkQaATz75BD/++CMkEomSn0pxKg94AgC1atVCSEhIWWUhItIL7/b4HHf2r8bVn6YDIhGquwegTvB/9+QIUgmeP7kPSUEeAEBsYIj0hBg8PL8TkvwXMLGyQ/UGAajZovgkFin/HET1+v4wNFVvit3z58+jT58+kEgkpd7EJJECIgjos/4GTn/hXbZn1tkpejdKWWhoKAYPHoymTZvC19cXkZGRxWZgdHZ2RkREBABgzJgx+PbbbzFx4kR8+umnuH37NubPn48JEyYo3Oe7774LiUQCLy8vDBs2DDVr1izxRrQPP/xQ5c+lUqG+dOkSzp49i7Fjx5a4ftWqVfD395e7VEFE+qnosmBplwcrqkaDFpS6zsisyhsHNzG1dkCLGXtl702q2qHRoIUK9es1ZIniId9g7ty5EASh1CJdRAAgQMDcfXexc6xnmfQNAHieXnb7KiPKzsBYs2ZNHDhwACEhIWjUqBGcnZ0xceJEpa4K9+nTR/bnzz77rMQ2IpFIrTNulQr19OnTYWZmVmqhPnLkCPbt28dBT4jKgQsXLug6AikpKSkJe/bseWuRLiKRAruvPC3bG8zy9PMxXGVmYASA5s2b4+zZsyr3d/ToUZW3VZRKhfr1Z9Ve17JlS9mlBSLSfxKJRO57Om0qlEhRKJFCLJGioKBAJxm0RVqYD6mkUO397Nu7W+EiXUQQgAPXn2Jws+IjdKlCyHkGsYaPV2Gh+n9Xmvb6HemaoFKhzsrKgqFh6ZuKxWJkZGSoHIqosskQVQWyC7F3Xn+d9P/T4Sv4+ehVnfQtZ/JPuk5QoY36MQ6jfowro72dBjCujPZV/uXl5eHSpUtITU1FQEAAbG1ty2zfKhXqevXq4eDBg6U+N7Z//37Url1brWBEpD19g95Dn9bv6az/qkIGjKtUx/ufbtRZBk0rzMvF09sXIDYwhEjN4Te37tiDkBnzld5uTV8XDPItfaxyRQmCgBc1W8Gs42wYmpirvb/SXL58GX5+fhrbf1n55ptvEB4eLjtBPXToENq0aYO0tDS4u7tj0aJFGDZsmMr7V6lQDx8+HCEhIQgNDcWsWbNkA5inp6dj9uzZ2L9/PxYvXqxyKCLSLgMdT1toKIhhaCCWjbdcEYmkRjAyMoSBibnaw4b+r3UriEQRSl3+FomAdu5VYWSo2NCYbyQIkBgZw8jICIYaPGZvunKrLzZu3IhJkyahb9++aN++vVxBtrW1RZs2bbB161btF+oJEyYgJiYGkZGR+Oabb1CjxssBAx4+fAipVIqBAwfysS0iIg2p6eyE4DatcCj6pEJ3ExuIgU4e1qhVrezGFRfE+l9EtWHJkiXo3r07tmzZUuIkVT4+Pvjmm2/U6kOlv2mRSISNGzdi0KBB+O2333DnzssReLp3746ePXuidevWaoUiIu2ZtOoAnmU/h42lGSLHBus6Dino809H4a9jJyESid54Zi0CIIIIU4OdSm2jCsFQQ8OTljNxcXFvfO66WrVqJRZwZaj1K1FQUBCCgtQfXYeIdOdZ9nM8yXyu6xikpCZenohasQjDPv0CgoASz6wNxC+L9M9D6+B9F/UGWHmdYKSd4UP1nbW1NdLSSh/57fr162qPUaDSF1MJCQnYvXt3qet3796NxMREVTMREZECunZoiwO/fo92rVtAJBLJrROJXl7uPh7ijh5eZT+jk9REs+NblxedOnXCunXrkJ6eXmzdtWvXsH79enTr1k2tPlQ6o/7ss8+QmZmJrl27lrh+5cqVsLa2xtatW9UKR0REb9bEyxM/f/cN7j14hFadeiM9MwvWZga4+OV7Zfqd9OskFg5vb1QJzJ07F35+fvD09ETXrl0hEomwefNmREVF4bfffoOTkxNmzZqlVh8qnVGfOXMG7dq1K3X9//73P5w4cULlUEREpJyazk4wNzcDAFgYizVapKUmVhBMrDS2//KkRo0auHjxIjp06IBt27ZBEAT88MMP2L17N/r164ezZ8+q/Uy1SmfUz549Q5UqpQ/ubmlpqfaX50REpJ8K7XT3zL0+ycvLw4EDB+Dq6orvvvsO3333HR4/fgypVAo7Ozu5ccXVodJeatWqhVOnTpW6/sSJE3jnnXdUDkVERPqrwN5L1xH0grGxMXr37o3Tp0/LltnZ2cHBwaHMijSgYqHu168ffv75Z3zzzTdy4wNLJBIsX74c27ZtQ//+uhkKkYiINEcwseIZ9f8TiUSoV6/eG+/6LgsqFeqpU6ciKCgIkyZNgpOTE1q1aoVWrVqhRo0aCAkJQWBgIKZPn17WWYmISMcKarUCxGUwulkFMW3aNHz77beIjY3VWB8qfUdtYmKCgwcPYvPmzfj9998RHx8PAPD19UXPnj0xaNCgMj3tJyIiPWBghAK3/+k6hV45e/YsqlevDk9PT7Ru3Rqurq4wMzOTayMSibB8+XKV+1B5wBOxWIyhQ4di6NChKndORETlR36dDhBMqgAFebqOoje+/fZb2Z8PHz5cYhudFWoiIqo8BFMb5NfpoOsYekcb87irVKjbtGnz1jYikajU3y6IiKh8eeE1CDDU3LPZVDqVCrVUKi02XJ1EIsHdu3dx79491K1bF87OzmUSkIiIdKugVgtI7BvqOoZeO3v2LI4ePYrU1FSMHTsW9erVQ25uLm7evIl3330Xlpaqj7WuUqGOjo4udd2ePXswatQoLF26VNVMRESkJwRzW+S911fXMfRWfn4++vbti507d0IQBIhEInTt2hX16tWDWCxG+/btERISotaTUGV+a3aXLl0wYMAATJo0qax3TUREWvbCeyjAKS1LNXPmTOzZswerV69GbGys3JSjpqam6N27N3bu3KlWHxp5hqpOnTr4+++/NbFrIiLSkgKX1pBUr6/rGHrt559/xpgxYzBq1ChUq1at2PoGDRrgzp07avVR5nd9FxYW4pdfflF7EHIi0g4bSzO5/xIBgGBsgTz3D3QdQ++lpqaiYcPSv783MDBAbm6uWn2oVKiHDRtW4vL09HScPXsWycnJ/I6aqJyIHBus6wikh/Lf7QYYW+g6ht6rWbMmbt68Wer6U6dOoW7dumr1oVKhPnLkSAmTlItgY2ODFi1aYMSIEWjfvr1awYiISDcEU5uXQ4XSW/Xv3x9Lly5Fz5498e677wKArD6uX78ev/zyCxYsWKBWHyoV6sTERLU6JSIi/ZVfpz1gYKTrGOXC9OnTcfbsWbRq1QoNGjSASCRCSEgInj59ivv376NTp04ICQlRqw8OyE1ERP8xNEVBrZa6TlFuGBsbY//+/di4cSNq164Nd3d35OXloVGjRti0aRN2794NAwP1JjFR+Iw6NzcXaWlpcHR0hLGxsdy6qKgo/PTTT3j06BHc3d0xdepUvP/++2oFIyIi7Suo1YqPY71BaGgoBg4ciMaNGwMAkpKSYGdnhwEDBmDAgAEa6VPhM+qvvvoKjRo1Qn5+vtzyuXPnYuTIkTh27BgeP36MP/74A61bt8Y///xT5mGJiEiDRGLku719iOjKLDIyEjdu3JC9d3Nzw44dOzTap8KF+ujRo+jSpYvcMGiZmZmYO3cunJ2dcfv2bTx+/Bhnz56FsbGx2l+eExGRdhU6+0Iw56O1b+Lg4CD3XPSrA5xoisKXvhMTE9GzZ0+5Zfv27UN+fj6+/PJLuLm5AXg5J/XQoUPxyy+/lG1SIiLSHJEYefW66DqF3uvcuTO++uorHDx4ENbW1gCAJUuWYOvWraVuIxKJ1BqdTOFCnZWVherVq8stO378OEQiEYKD5Z/D9PDwwOPHj1UORURE2lXgGgTB0lHXMfTe8uXLYW9vj6NHj+LatWsQiUS4d+8enj59Wuo2rz/OrCyFL327uLgUe6g7OjoaDg4OxR7mzs/Ph5WVlUqBVq5cCVdXV5iamsLPzw/nz59/Y/v09HSMGzcOTk5OMDExwbvvvot9+/ap1DcRUWUkmFgh791uuo5RLlhYWGD+/Pk4c+YM4uPjIQgCIiMjkZCQUOpL3SFEFS7U7du3R1RUFM6dOwcA+P7773Hz5k188EHxIeYuXrwIV1dXpcNs27YNoaGhCAsLw6VLl+Dl5YXg4GCkpqaW2D4/Px/t2rVDYmIifv31V8TGxmL9+vWcYpOISAl57/XlKGQK+vDDD3HixAnZ+6NHj6Jdu3Ya7VPhQj1z5kxYWlrC398fxsbGGDJkCOzs7DBr1iy5drm5udixYwf+97//KR1m6dKlGDlyJIYOHQoPDw+sWbMG5ubmiIqKKrF9VFQUnj59ij/++AMBAQFwdXVFYGAgvLy8lO6biKgyKnTwQmENPk6rqJ07dyIpKUn2vk2bNjh06JBG+1S4UNva2iImJgYLFizA8OHDMX/+fFy5cgUODg5y7a5evYqPP/4YAwcOVCpIfn4+Ll68iLZt2/4XTixG27ZtcebMmRK32bVrF5o3b45x48bBwcEBnp6emD9/PiQSiVJ9ExFVSoamyGs4AFDzO9TKxNnZGZcvX5a9L5qDWpOUGkLUxsYGn3/++Rvb+Pr6wtfXV+kgaWlpkEgkxQq/g4NDqQOe37lzB0eOHMHHH3+Mffv2IS4uDmPHjkVBQQHCwsJK3CYvLw95eXmy99nZ2UpnJSKqCPLcP4BgZqPrGOVK37598fXXX+OXX36R3fU9ZcoURERElLqNSCRSa2yRMp/mUpukUins7e2xbt06GBgYwMfHBw8ePMDixYtLLdQRERGYPXu2lpMSEekXadVaKHAN0nWMciciIgJ169bF0aNHkZqaCpFIBAsLi2JPRZUlvSnUtra2MDAwQEpKitzylJQUODqW/MiAk5MTjIyM5MZRbdCgAZKTk5Gfn19sqFMAmDp1KkJDQ2XvY2JiEBgYWEafgoiofHjh2R8QcboHZRkYGGDUqFEYNWoUgJdf0c6YMQP9+/fXWJ96c5SMjY3h4+ODw4cPy5ZJpVIcPnwYzZs3L3GbgIAAxMXFQSqVypbdunULTk5OJRZpADAxMYGVlZXs9epIa0RElUGhU1NIq6k3RzK9lJCQgB49emi0D70p1MDLwc7Xr1+PzZs348aNGxgzZgxycnIwdOhQAMCgQYMwdepUWfsxY8bg6dOnmDhxIm7duoW9e/di/vz5GDdunK4+AhGRfhOJkede/LFaUo2LiwvMzc012odCl7537dqFpk2bokaNGhoN06dPHzx+/BizZs1CcnIyvL29sX//ftkNZklJSRCL//vdombNmjhw4ABCQkLQqFEjODs7Y+LEifjyyy81mpOIqLwqeKc5BEuHtzekEonFYojFYuTm5sLY2Bhisfitd32LRCIUFhaq3KdChfqDDz7ADz/8ILsGX7t2bURGRqJbt7IfyWb8+PEYP358ieuio6OLLWvevDnOnj1b5jmIiCoeEfLrdtJ1iHJt1qxZEIlEMDQ0lHuvSQoV6ipVqiA9PV32PjExkY81ERGVM4WO3jybVlN4ePgb32uCQoXa19cX8+bNQ0pKCqpWrQrg5cxZycnJpW4jEokQEhJSNimJiEhtBW5t396I9I5ChXrVqlUYNGgQ5syZA+BlEd6yZQu2bNlS6jYs1ERE+kNq6QRJ9Xd1HaNCycvLw48//oiDBw8iPj4eWVlZqFKlCurWrYsOHTqgf//+pT6BpAyFCnXdunVx+vRpvHjxAqmpqXB1dUVkZCS6d++udgAiItK8ApdWHCq0DF25cgXdu3fH3bt3IQgCqlatCktLS6SmpuLSpUvYvn075s2bh127dqFBgwZq9aXU41mmpqaoVasWwsLC0KZNG7i4uLzxRUREekAkRqFzM12n0Aplp0ousnXrVohEIoWeic7Ozka3bt2QkpKCefPm4d69e3j27Jncf+fOnYuHDx+ia9euyMnJUeszqfQcdVhYGDw9PWWBb9y4gRs3bvAGMyIiPSSx84RgUkXXMTRO2amSiyQmJuKzzz5Dy5YtFepn48aNSEpKwt69ezFlypRiUys7Oztj6tSp2L17NxISErBp0yZVPxIANQY8+fvvvxEUFAQbGxt4enrC09MTNjY2aNOmDS5cuKBWKCIiKjsFzpVjGktlp0oGAIlEgo8//hizZ89G7dq1Fepn7969aN++PVq3bv3Gdm3atEG7du2we/duZT5GMSoV6nPnzqFVq1a4dOkSRowYgWXLlmHZsmUYMWIELl26hFatWil8uYGIiDRIJEahfSNdp1BLdnY2MjMzZa9XZ0AsospUyQDw1Vdfwd7eHsOHD1c4z5UrV95apIu0adMGV65cUXjfJVFpUo7p06fD2dkZJ0+eLDZhRnh4OAICAjB9+nSNT6ZNRERvJqn+LmBsoesYanl94qSwsLBizy+rMlXyyZMnsWHDBsTExCiV5+nTp6VOFvU6BwcHPH36VKn9v06lQn3u3DnMmjWrxKAODg4YNWqU7FEuIiLSnUJ7T11HUNuxY8fg7e0te29iYqL2PrOysjBw4ECsX78etra2Sm2bl5cHIyMjhdoaGhoiPz9flYj/7UOVjcRi8RvHLZVIJHJjchMRkW5I7N7TdQS1WVpawsrK6o1tlJ0qOT4+HomJiejatatsWdFMjIaGhoiNjUWdOnVK7S8xMRGXLl16a/aEhIS3tnkblQq1v78/Vq5cif79+xd7DCspKQmrVq1CQECA2uGIiEh1grEFpFWc396wAnh1quSiR6yKpkouaf4Id3f3Yt8dz5gxA1lZWVi+fDlq1qz5xv5mzpyJmTNnvjWXIAhqjwWuUqGeP38+WrVqBXd3d3zwwQd4992Xo93ExsZi586dMDQ0REREhFrBiIhIPZJq9QBR5bm6GRoaisGDB6Np06bw9fVFZGRksamSnZ2dERERAVNTU9ljxkWsra0BoNjy123cuFEj+UujUqFu3Lgxzp07h+nTp2PXrl3Izc0FAJibm6NDhw6YO3cuPDw8yjQoEREpR2JTV9cRtErZqZJVNXjwYLX3oQyVCjUAeHh4YMeOHZBKpXj8+DEAwM7Ojt9NExHpCal15RshUtmpkl+l7sAkmqJyoS4iFouL3Q5PRES6J7GqpesIVAZ4+ktEVAEJJlXL/fPT9BILNRFRBSSt4qTrCFRGWKiJiCogqYW9riNQGWGhJiKqgKTmdrqOQGVE7ZvJiIhI/whm1XUdoVK5fv067ty5g2fPnkEQhGLrBw0apPK+1SrUmgxGRESqk5pV03WESiE+Ph4DBgzA+fPnS6yDACASibRfqLURjIiIVCeYWus6QqUwevRoXLlyBZGRkWjZsiVsbGzKvA+VCrU2ghERkXLs7WwBQQoH49yXj2eRxp06dQrTpk3Dp59+qrE+VCrU2ghGRETKObrrZ4hy02B+fA5yDBSbhpHUY2tri6pVNftLkUp3fWsjGBERqUYwqaLrCJXGJ598gh9//BESiURjfah0Rl0UbNy4cTAwMCjrTEREpAbB5M1zN1PZeffddyGRSODl5YVhw4ahZs2aJdbFDz/8UOU+VCrU2ghGRESqEYwtdR2h0ujTp4/sz5999lmJbUQikVpn3CoVam0EIyIi1bBQa8/Ro0c13odKhVobwYiISDWCMb+j1pbAwECN96FSodZGMCIiUo1gZK7rCJXS9evXcffuXQCAi4sLPDw8ymS/ag8hqqlgRESkGsGI01tq086dOxEaGorExES55W5ubli6dCm6deum1v5VLtSaDkZERCriGbXW7Nu3Dz179oSLiwvmz5+PBg0aAABu3LiBdevW4cMPP8SePXvQoUMHlftQqVBrIxgREalGMDLTdYRKY86cOWjUqBFOnDgBC4v/rmR069YN48ePR4sWLTB79mztF2ptBCMiItUIhqa6jlBp/Pvvv5g/f75cLSxiYWGBIUOGYNq0aWr1odLIZP/++y8GDx78xmD//vuvWsGIiEhFBia6TlBpmJqa4unTp6Wuf/r0KUxN1fvFSaVCrY1gRESkGkGs9n3CpKA2bdpg+fLlOHPmTLF1586dwzfffIO2bduq1YdKR7MoWIcOHdC8efMSg7Vv316tYEREpCIWaq1ZtGgRmjdvjhYtWsDX1xf169cHAMTGxuL8+fOwt7fHwoUL1epDpaOpjWBERKQqka4DVBpubm74999/ERERgT///BPbtm0D8PJx5YkTJ2LKlCmwt7dXqw+VCrU2ghEREZUH9vb2WLZsGZYtW6aR/at8fUTTwYiISEWCVNcJqAzxiwwiogpH0HWACmvYsGEQiURYt24dDAwMMGzYsLduIxKJsGHDBpX7VKhQ6yIYERGpiGfUGnPkyBGIxWJIpVIYGBjgyJEjEInefE/A29a/jUKFWhfBiIhIRQLPqDXl9WGzX3+vCQoVal0EIyIi0ndJSUmws7ODmVnJw7Y+f/4cjx8/Rq1atVTuQ6UBT5KSkvD8+fNS1z9//hxJSUkqhyIiIjXwgqbWuLm5YceOHaWu37VrF9zc3NTqQ6VCrY1gRESkIpGBrhNUGsJbvmYoKCiAWKxSqZVRaWtNB1u5ciVcXV1hamoKPz8/nD9/XqHttm7dCpFIhB49eqjcNxFRucdCrVGZmZlISkqSXTl+8uSJ7P2rr3///Rdbt26Fk5OTWv0p/HhWZmYm0tPTZe+Lgr0uPT1drWDbtm1DaGgo1qxZAz8/P0RGRiI4OBixsbFvHEQlMTERn332GVq2bKlSv0REFYaYhVqTli1bhq+++grAyxunJ02ahEmTJpXYVhAEzJ07V63+FC7U2gq2dOlSjBw5EkOHDgUArFmzBnv37kVUVBSmTJlS4jYSiQQff/wxZs+ejRMnTsj9QkFEVNlwUg7Nat++PSwtLSEIAr744gv069cPTZo0kWsjEolgYWEBHx8fNG3aVK3+FD6a2giWn5+PixcvYurUqbJlYrEYbdu2LXFmkiJfffUV7O3tMXz4cJw4ceKNfeTl5SEvL0/2Pjs7W+mcRER6TWyk6wQVWvPmzWUTUuXk5KBnz57w9PTUWH8KF2ptBEtLS4NEIoGDg4PccgcHB9y8ebPEbU6ePIkNGzYgJiZGoT4iIiIwe/ZsdaMSEeknAxNe+taS3NxcfPPNNzA3N9dooVb6jq+iYH/++acm8iglKysLAwcOxPr162Fra6vQNlOnTkVGRobsdezYMQ2nJCLSHsGkCiBS7y5jUoy5uTkMDQ1hYWGh0X6U/iJDk8FsbW1hYGCAlJQUueUpKSlwdHQs1j4+Ph6JiYno2rWrbJlU+nLoPENDQ8TGxqJOnTpy25iYmMDExET23tLSsiw/AhERVSI9e/bEr7/+ijFjxmhsRE6Vfu0qCva2x7SUZWxsDB8fHxw+fFi2TCqV4vDhw7LL7q9yd3fHlStXEBMTI3t169YNQUFBiImJQc2aNcs0HxER0av69u2L1NRUBAUF4aeffsKpU6dw6dKlYi91qHRrYN++fTF27FgEBQVh5MiRcHV1LXH4tNdvNlNEaGgoBg8ejKZNm8LX1xeRkZHIycmR3QU+aNAgODs7IyIiAqampsW+F7C2tgYAjX5fQEREBACtW7eW/bmkm5kFQYBIJIJEIlG5D5UKtSaD9enTB48fP8asWbOQnJwMb29v7N+/X3aDWVJSktqjvBAREZWFjRs3arwPlQq1poONHz8e48ePL3FddHT0G7fdtGlT2QciIiIqweDBgzXeh0qFWhvBiIiIypPs7Gzcu3cPAFCzZs0yu1lZ7WvI2dnZuHHjBm7cuMHBQ4iIqNL5+++/ERQUBBsbG3h6esLT0xM2NjZo06YNLly4oPb+VR5n7u+//8YXX3yBkydPyh6JEovFaNmyJRYtWqT2kGlERET67ty5c2jdujWMjY0xYsQINGjQAABw48YN/Pzzz2jVqhWio6Ph6+urch8qFWptBCMiIlLWypUrsXjxYiQnJ8PLywsrVqwotRatX78e33//Pa5evQoA8PHxwfz585WqXdOnT4ezszNOnjxZbLyP8PBwBAQEYPr06Th06JDKn0mlS99FwWJjY7F69WpMmDABEyZMwOrVqxEbG4saNWpg+vTpKociIiJSVtHsi2FhYbh06RK8vLwQHByM1NTUEttHR0ejX79+OHr0KM6cOYOaNWuiffv2ePDggcJ9njt3DqNHjy5xUC4HBweMGjUKZ8+eVfkzASoWam0EIyIiUsarsy96eHhgzZo1MDc3R1RUVIntf/rpJ4wdOxbe3t5wd3fHd999JxtkS1FisRiFhYWlrpdIJGo/UqzS1toIRkREBLy8aTkzM1P2enUGxCJFsy+2bdtWtkyR2RdflZubi4KCAlSrVk3hbP7+/li5ciXu3r1bbF1SUhJWrVqFgIAAhfdXEpW+oy4K1r9/f7i4uGgkGBEREQAEBgbKvQ8LC0N4eLjcMlVmX3zdl19+iRo1asgV+7eZP38+WrVqBXd3d3zwwQd49913AQCxsbHYuXMnDA0NERERofD+SqJSodZGMCIiIgA4duwYvL29Ze9fnViprCxYsABbt25FdHQ0TE1NFd6ucePGOHfuHKZPn45du3YhNzcXwMsJrDp06IC5c+fCw8NDrWwqFWptBCMiIgJeznJoZWX1xjbKzr74qq+//hoLFizAX3/9hUaNGimdz8PDAzt27IBUKsXjx48BAHZ2dmX2FbDKz1FrOhgREZGiXp19sUePHgD+m32xtCGpAWDRokWYN28eDhw4oPb4HyKRSDbVZVlOeal2VS0K9mpAIiIibQsNDcX69euxefNm3LhxA2PGjCk2++LUqVNl7RcuXIiZM2ciKioKrq6uSE5ORnJystKjbF6/fh29evWClZUVnJyc4OTkBCsrK/Tq1Uv2jLY6VD6jvn79OmbNmoUDBw7IXfoODg5GeHg4p5kkIiKtUnb2xdWrVyM/Px+9evWS209JN6uV5sSJE+jYsSOkUim6d+8ud8/Wrl278Oeff2L//v1o2bKlyp9LpUKtjWBERETKUmb2xcTERLX7CwkJgb29PY4dO4aaNWvKrbt37x5atWqF0NBQ/P333yr3oVKh1kYwIiIifXft2jXMmTOnWC0EXs6gNWbMGIXPzkuj0nfU165dw9ixY98Y7Nq1a2oFIyIi0ncuLi4lDsBSJD8/v8RaqQyVCrU2ghEREem7WbNm4ZtvvkFMTEyxdZcvX8aKFSvUPqNW6dL3rFmzEBISgs6dO8s9hP5qsMjISLWCERER6buzZ8/CwcEBPj4+8Pf3R926dQEAt2/fxpkzZ+Dp6YkzZ87IDWMqEomwfPlyhftQqVBrIxgREZG++/bbb2V/PnXqFE6dOiW3/sqVK7hy5YrcMq0Uam0EIyIi0ndSqVTjfahUqLURjIiIiNQY8ISIiIheSkhIwJ9//imb7tLFxQUdO3aEm5ub2vtWq1BrMhgREVF5MHnyZCxfvrzY1WaxWIxJkybh66+/Vmv/KhdqTQcjIiLSd0uWLMGyZcvQq1cvTJ48GQ0aNAAA3LhxA8uWLcOyZcvg7OyMkJAQlftQ6TnqomAffvghzpw5g/T0dKSnp+PMmTPo1auXLBwREVFFtn79enTr1g2//PIL/Pz8YGVlBSsrK/j5+WHr1q3o2rUr1q5dq1YfKhVqbQQjIiLSd4mJiQgODi51fXBwsNpjiqtUqLURjIiISN/Z29vjn3/+KXX9P//8Azs7O7X6UKlQayMYERGRvuvduze+++47LFiwADk5ObLlOTk5WLhwIb777jv06dNHrT5Uupmsd+/eWL58OVxdXfHpp5/CwsJCFuzbb7/Fd999h0mTJqkVjIiISN/NmTMHMTExmDZtGmbNmoUaNWoAAB4+fIjCwkIEBQXhq6++UqsPlQq1NoIRERHpO3Nzcxw+fBg7d+6Ue1y5Q4cO6NSpE7p27QqRSKRWHyoVam0EIyIi0me5ubkYMGAAevbsiY8//hjdu3fXSD9KF2ptBSMiItJn5ubm+Ouvv9CxY0eN9qP0zWRFwXJzczWRh4iIqNxo0aKF3EyRmqDSXd/aCEZERKTvvv32W5w4cQIzZszA/fv3NdKHSoVaG8GIiIj0nZeXF+7fv4+IiAi4uLjAxMRENghY0atq1apq9aHSzWReXl4oLCxEREQEIiIiYGhoCBMTE7k2IpEIGRkZaoUjIiLSZz179tT4zdMqFWptBCMiItJ3mzZt0ngfKhVqbQQjIiLSVy9evMDOnTuRkJAAW1tbdO7cGU5OThrpS6lCrc1gRERE+ig1NRX+/v5ISEiAIAgAXj4R9ccff6Bt27Zl3p/ChVrbwYiIiPTRnDlzkJiYiJCQELRp0wZxcXGYM2cORo8ejfj4+DLvT+FCre1gRERE+ujgwYMYNGgQvv76a9kyBwcH9O/fH7Gxsahfv36Z9qdwodZ2MCIiIn2UlJSEL7/8Um5ZixYtIAgCUlJSyrweKvwcdVJSElq0aFFqMCIiosogLy8PpqamcsuK3hcWFpZ5fwqfUWs7GBERkb5KTEzEpUuXZO+Lxg25ffs2rK2ti7Vv0qSJyn0pdde3NoMRERHpq5kzZ2LmzJnFlo8dO1buvSAIEIlEkEgkKvelVKHWZjAiIiJ9tHHjRq32p3Ch1mawlStXYvHixUhOToaXlxdWrFgBX1/fEtuuX78e33//Pa5evQoA8PHxwfz580ttT0REpI7BgwdrtT+FC7W2gm3btg2hoaFYs2YN/Pz8EBkZieDgYMTGxsLe3r5Y++joaPTr1w/+/v4wNTXFwoUL0b59e1y7dg3Ozs5ayUxERKQpKs2epUlLly7FyJEjMXToUHh4eGDNmjUwNzdHVFRUie1/+uknjB07Ft7e3nB3d8d3330HqVSKw4cPazl5+dS0aVO88847aNq0qa6jEBFRCVQa61tT8vPzcfHiRUydOlW2TCwWo23btgrPf52bm4uCggJUq1atxPV5eXnIy8uTvc/OzlYvdDmXnJyMBw8e6DoGERGVQq/OqNPS0iCRSODg4CC33MHBAcnJyQrt48svv0SNGjVKHdY0IiICVatWlb0CAwPVzk1ERKQpelWo1bVgwQJs3boVO3bsKPbMd5GpU6ciIyND9jp27JiWUxIRESlOry5929rawsDAoNhIZykpKXB0dHzjtl9//TUWLFiAv/76C40aNSq1nYmJCUxMTGTvLS0t1QtNRESkQXp1Rm1sbAwfHx+5G8GKbgxr3rx5qdstWrQIc+bMwf79+3lTFBERVSh6dUYNAKGhoRg8eDCaNm0KX19fREZGIicnB0OHDgUADBo0CM7OzoiIiAAALFy4ELNmzcKWLVvg6uoq+y7b0tKSZ8tERFTu6V2h7tOnDx4/foxZs2YhOTkZ3t7e2L9/v+wGs6SkJIjF/10IWL16NfLz89GrVy+5/YSFhSE8PFyb0YmIiMqc3hVqABg/fjzGjx9f4rro6Gi594mJiZoPREREpCN69R01ERERyWOhJiIi0mMs1ERERHqMhZqIiCqMlStXwtXVFaampvDz88P58+ff2H779u1wd3eHqakpGjZsiH379mkpqeJYqCs5R0dHODs7v3VAGSIifVc0+2JYWBguXboELy8vBAcHIzU1tcT2p0+fRr9+/TB8+HBcvnwZPXr0QI8ePWTTJusLFupK7sKFC7h//z4uXLig6yhERGpRdvbF5cuXo0OHDvj888/RoEEDzJkzB02aNMG3336r5eRvxkJNRETlXtHsi69OyPS22RfPnDlTbAKn4OBghWdr1Ba9fI6atEsikUAqleqsf6mkEFKJBFJJIQoKCnSWQ1cKJVIUSnT3968PCgUpxBJphT7+hQUFKCgohESaC1FBoa7jqEUozJf9/yqINXfMCgtf/j1lZ2cjMzNTtvz1ORuAN8++ePPmzRL3n5ycrNZsjdrCQq0HzIVc5Kbnovuk+Trp/+bZw7h17ohO+n7dL3PH6DoC6dLkn3SdgPTQ69MRV7aRJ1moCfV9g/Du+611miFXZA7bqhb4cdZwnebQhb9XDMXj7PJ9hqWuqkIGjKtUx/ufbtR1FI2S/v+ZaEUgNjCE2NBYo31cvnwZfn5+OHbsGLy9vWXLXz+bBlSbfdHR0VGl2Rq1jYWaIBKLIdJxBrHIAGIDQxgZGek4ifYZGohhaFC5bxcxFF7+HVT441/RP18ZMzR8WaIsLS1hZWX1xravzr7Yo0cPAP/NvljakNTNmzfH4cOHMWnSJNmyQ4cOvXG2Rl1goa7kjv28Enm52TAxt0Rgv3G6jkNEpDJlZ1+cOHEiAgMDsWTJEnTu3Blbt27FhQsXsG7dOl1+jGJYqCu5vNxsvMjOfHtDIiI9p+zsi/7+/tiyZQtmzJiBadOmoV69evjjjz/g6empq49QIhZqIiKqMJSZfREAevfujd69e2s4lXoq9xdjREREeo6FmoiISI+xUBMREekxFmoiIiI9xkJNRESkx1ioiYiI9BgLNRERkR5joSYiItJjLNRERER6jIWaiIhIj7FQExER6TGO9V3JmZhbyv2XiIj0Cwt1JcepLYmI9BsvfRMREekxFmoiIiI9xkJNRESkx/gddSX2PDsD108eQOrdW5AUFMDCujoat/sQ1g7v6DoalbFfjl3Dmev3cf9xJoyNDNCgli2GtPfGO3ZWsjaPnmRhw/4YXL/7GAUSCXzqOWF0Fx/YWJrpMDkRsVBXUvkvnuPkL+tg+05tNOs+GMZmFshJfwIjE/5QroiuJqais1891HOuDolUiu8P/YuZm45i9cTOMDU2xIv8QszcFA03J2vMH9YGAPDj4X/x1Q/HsWR0e4jFIh1/AqLKi5e+K6m4C8dhVqUqGrfvCRvHmrCoWg32LvVgYV1d19FIA74aHIS2TWrDxaEqajvZIKSnHx5n5CLuwVMAwPW7j5GanoOQD5vB1dEaro7WCOnZDHEPn+LfOyk6Tk9UufGMupJKTrgB+1r18Pfen/HkQQJMLa3g1sgPLp7v6zoaaUHOiwIAgKW5MQCgQCIFRICR4X+/uxsbGkAkEuHa3cfwruuok5xExDPqSis34xkSr5yHpXV1NO8xBK4NfXEleg+Srl/SdTTSMKlUwPp9l+BRyxauDtYAAPea1WFqZIiNB2LwIr8QL/ILsWH/ZUilAp5lPddtYKJKjmfUlZQgCLB2cEaDgPYAgKr2NZD1JBV3r5xHLY8mOk5HmrR6zwXcTcnAopFtZcuqWphiSt8ArNp1AbvP3oJIJEJgQxfUqWEDEb+fJtIpFupKytSiCqpUs5NbZlnNDo/iruooEWnD6t0X8PfNh1gw4n+wrWout65JPSd8N7krMnLyYCAWwdLMGAMW7ICjDYeXJdIlFupKqppTLWQ/S5NblvMsDWZWNjpKRJokCALW7LmIM9fvI2L4/+BYrfTiW9XCBADwT3wyMnJewM/dWVsxiagE/I66kqrdOADPku/h1vloZKc/wf2b/+Du1b/h1shP19FIA1bvvoDofxLx+Uf+MDcxxLOs53iW9Rx5BYWyNocu3sHNe2l49CQLR2MSsGDrKXT3ry/3rDURaR/PqCspG8d38H7nj3Hj9EHcOn8U5lY28AzsjHfcvXUdjTRg3/k4AMDUDYfllk/60A9tm9QGADxIy8TmQ/8g+3k+7K0t8FHr99DDv77WsxKRPBbqSsyxtjsca7vrOgZpwZ65/d7aZkiwN4YEe2s+DBEphZe+iYiI9BgLNRERkR5joSYiItJjLNRERER6jIWaiIhIj+lloV65ciVcXV1hamoKPz8/nD9//o3tt2/fDnd3d5iamqJhw4bYt2+flpISERFplt4V6m3btiE0NBRhYWG4dOkSvLy8EBwcjNTU1BLbnz59Gv369cPw4cNx+fJl9OjRAz169MDVqxwKk4iIyj+9K9RLly7FyJEjMXToUHh4eGDNmjUwNzdHVFRUie2XL1+ODh064PPPP0eDBg0wZ84cNGnSBN9++62WkxMREZU9vSrU+fn5uHjxItq2/W9WH7FYjLZt2+LMmTMlbnPmzBm59gAQHBxcansiIqLyRK9GJktLS4NEIoGDg4PccgcHB9y8ebPEbZKTk0tsn5ycXGL7vLw85OXlyd5nZ2cDAG7cuKFOdJU9fXQXL7Ke6qRvffJCZApxrjkuXap882HfvPcEz55LdB1DpyyFbBiZA4avHX8nJyc4OTnpKJV6Hj16hEePHuk6Rrmmq5/L+kavCrU2REREYPbs2XLLXFxcMGDAAB0lolcdXDdX1xFIl5bI3wgaFhaG8PBw3WRR09q1a4v9rCHlBQYGlttf1sqKXhVqW1tbGBgYICUlRW55SkoKHB0dS9zG0dFRqfZTp05FaGio3LKnT5/i6dPKeVabnZ2NwMBAHDt2DJaWnHe4MtLnfwPl+Qf06NGj0a1bN632qc/HUlXl+apKWREJgiDoOsSr/Pz84OvrixUrVgAApFIpatWqhfHjx2PKlCnF2vfp0we5ubnYvXu3bJm/vz8aNWqENWvWaC13eZWZmYmqVasiIyMDVlaczrAy4r+BioPHsmLSqzNqAAgNDcXgwYPRtGlT+Pr6IjIyEjk5ORg6dCgAYNCgQXB2dkZERAQAYOLEiQgMDMSSJUvQuXNnbN26FRcuXMC6det0+TGIiIjKhN4V6j59+uDx48eYNWsWkpOT4e3tjf3798tuGEtKSoJY/N/N6v7+/tiyZQtmzJiBadOmoV69evjjjz/g6empq49ARERUZvTu0jdpV15eHiIiIjB16lSYmJjoOg7pAP8NVBw8lhUTCzUREZEe06sBT4iIiEgeCzUREZEeY6GmMpWYmAiRSIRNmzbpOgoRUYXAQq1D8fHxGD16NGrXrg1TU1NYWVkhICAAy5cvx/PnzzXW7/Xr1xEeHo7ExESN9aGIefPmoVu3bnBwcIBIJCq3I1BpmkgkUugVHR2tdl+5ubkIDw9Xal88jsrh8SRl6d3jWZXF3r170bt3b5iYmGDQoEHw9PREfn4+Tp48ic8//xzXrl3T2LPg169fx+zZs9G6dWu4urpqpA9FzJgxA46OjmjcuDEOHDigsxz67ocffpB7//333+PQoUPFljdo0EDtvnJzc2XDXrZu3VqhbXgclcPjScpiodaBhIQE9O3bFy4uLjhy5Ijc8Hjjxo1DXFwc9u7dq8OE/xEEAS9evICZmVmZ7zshIQGurq5IS0uDnZ1dme+/onh9HPqzZ8/i0KFDejM+PY+jcng8SVm89K0DixYtQnZ2NjZs2FDiGLZ169bFxIkTZe8LCwsxZ84c1KlTByYmJnB1dcW0adPkZgEDAFdXV3Tp0gUnT56Er68vTE1NUbt2bXz//feyNps2bULv3r0BAEFBQcUusxXt48CBA2jatCnMzMywdu1aAMCdO3fQu3dvVKtWDebm5mjWrJlav1Do8my+opFKpYiMjMR7770HU1NTODg4YPTo0Xj27JlcuwsXLiA4OBi2trYwMzODm5sbhg0bBuDl/QVFP5hnz54t+7fxtkufPI5lj8eTXsUzah3YvXs3ateuDX9/f4XajxgxAps3b0avXr0wefJknDt3DhEREbhx4wZ27Ngh1zYuLg69evXC8OHDMXjwYERFRWHIkCHw8fHBe++9h1atWmHChAn45ptvMG3aNNnltVcvs8XGxqJfv34YPXo0Ro4cifr16yMlJQX+/v7Izc3FhAkTUL16dWzevBndunXDr7/+ig8++KDs/oJIaaNHj8amTZswdOhQTJgwAQkJCfj2229x+fJlnDp1CkZGRkhNTUX79u1hZ2eHKVOmwNraGomJifj9998BAHZ2dli9ejXGjBmDDz74AB9++CEAoFGjRrr8aJUSjyfJEUirMjIyBABC9+7dFWofExMjABBGjBght/yzzz4TAAhHjhyRLXNxcREACMePH5ctS01NFUxMTITJkyfLlm3fvl0AIBw9erRYf0X72L9/v9zySZMmCQCEEydOyJZlZWUJbm5ugqurqyCRSARBEISEhAQBgLBx40aFPp8gCMLjx48FAEJYWJjC21Rm48aNE179X/fEiRMCAOGnn36Sa7d//3655Tt27BAACH///Xep+1bnWPA4qobHk96Gl761LDMzEwBQpUoVhdrv2/dyft7Xp+acPHkyABS79Ozh4YGWLVvK3tvZ2aF+/fq4c+eOwhnd3NwQHBxcLIevry9atGghW2ZpaYlRo0YhMTER169fV3j/VLa2b9+OqlWrol27dkhLS5O9fHx8YGlpiaNHjwIArK2tAQB79uxBQUGBDhPTm/B40utYqLWsaOq5rKwshdrfvXsXYrEYdevWlVvu6OgIa2tr3L17V255rVq1iu3Dxsam2Hdbb+Lm5lZijvr16xdbXnTJ/PUcpD23b99GRkYG7O3tYWdnJ/fKzs5GamoqACAwMBA9e/bE7NmzYWtri+7du2Pjxo3F7nUg3eLxpNfxO2ots7KyQo0aNXD16lWlthOJRAq1MzAwKHG5oMSQ7pq4w5s0RyqVwt7eHj/99FOJ64tuKBKJRPj1119x9uxZ7N69GwcOHMCwYcOwZMkSnD17FpaWltqMTaXg8aTXsVDrQJcuXbBu3TqcOXMGzZs3f2NbFxcXSKVS3L59W+6Gr5SUFKSnp8PFxUXp/hUt+q/niI2NLbb85s2bsvWkG3Xq1MFff/2FgIAAhX7JatasGZo1a4Z58+Zhy5Yt+Pjjj7F161aMGDFCpX8bVLZ4POl1vPStA1988QUsLCwwYsQIpKSkFFsfHx+P5cuXAwA6deoEAIiMjJRrs3TpUgBA586dle7fwsICAJCenq7wNp06dcL58+dx5swZ2bKcnBysW7cOrq6u8PDwUDoHlY2PPvoIEokEc+bMKbausLBQdpyfPXtW7MqKt7c3AMgul5qbmwNQ7t8GlS0eT3odz6h1oE6dOtiyZQv69OmDBg0ayI1Mdvr0aWzfvh1DhgwBAHh5eWHw4MFYt24d0tPTERgYiPPnz2Pz5s3o0aMHgoKClO7f29sbBgYGWLhwITIyMmBiYoI2bdrA3t6+1G2mTJmCn3/+GR07dsSECRNQrVo1bN68GQkJCfjtt98gFiv/O98PP/yAu3fvIjc3FwBw/PhxzJ07FwAwcOBAnqUrKDAwEKNHj0ZERARiYmLQvn17GBkZ4fbt29i+fTuWL1+OXr16YfPmzVi1ahU++OAD1KlTB1lZWVi/fj2srKxkvxCamZnBw8MD27Ztw7vvvotq1arB09MTnp6epfbP41i2eDypGB3fdV6p3bp1Sxg5cqTg6uoqGBsbC1WqVBECAgKEFStWCC9evJC1KygoEGbPni24ubkJRkZGQs2aNYWpU6fKtRGEl49Wde7cuVg/gYGBQmBgoNyy9evXC7Vr1xYMDAzkHtUqbR+CIAjx8fFCr169BGtra8HU1FTw9fUV9uzZI9dGmcezAgMDBQAlvkp6dIxeev1xniLr1q0TfHx8BDMzM6FKlSpCw4YNhS+++EJ4+PChIAiCcOnSJaFfv35CrVq1BBMTE8He3l7o0qWLcOHCBbn9nD59WvDx8RGMjY0VejyHx1E9PJ70NiJBUOIuIyIiItIqfkdNRESkx1ioiYiI9BgLNRERkR5joSYiItJjLNRERER6jIWaiIhIj7FQ67FFixbB3d0dUqlU11HU1rdvX3z00Ue6jlGu8PhTSRITEyESibBp0yZdRyEtYaHWU5mZmVi4cCG+/PJL2ahfIpEIIpEIS5YsKdZ+06ZNEIlEuHDhQplnadeuHUQiEcaPH1/i+g0bNqBBgwYwNTVFvXr1sGLFimJtvvzyS/z222/4559/yjxfRcTjT0RFWKj1VFRUFAoLC9GvX79i6xYvXiwb3k/Tfv/9d7nxvV+3du1ajBgxAu+99x5WrFiB5s2bY8KECVi4cKFcu8aNG6Np06YlFhkqjsefSuPi4oLnz59j4MCBuo5C2qLrodGoZI0aNRIGDBggtwyA4O3tLQAQlixZIrdu48aNAgDh77//LrMMz58/F1xdXYWvvvpKACCMGzdObn1ubq5QvXr1YkOOfvzxx4KFhYXw9OlTueVff/21YGFhIWRlZZVZxoqKx5+IivCMWg8lJCTg33//Rdu2bYutCwgIQJs2bbBo0SI8f/5cozkWLVoEqVSKzz77rMT1R48exZMnTzB27Fi55ePGjUNOTg727t0rt7xdu3bIycnBoUOHNJa5IuDxr/jCw8MhEolw69YtDBgwAFWrVoWdnR1mzpwJQRBw7949dO/eHVZWVnB0dJS7ElHSd9RDhgyBpaUlHjx4gB49esDS0hJ2dnb47LPPIJFIZO2io6MhEokQHR0tl6ekfSYnJ2Po0KF45513YGJiAicnJ3Tv3h2JiYka+luh0rBQ66HTp08DAJo0aVLi+vDwcKSkpGD16tVv3E9eXh7S0tIUer0uKSkJCxYswMKFC0udE/fy5csAgKZNm8ot9/HxgVgslq0v4uHhATMzM5w6deqNuSs7Hv/Ko0+fPpBKpViwYAH8/Pwwd+5cREZGol27dnB2dsbChQtRt25dfPbZZzh+/Pgb9yWRSBAcHIzq1avj66+/RmBgIJYsWYJ169aplK1nz57YsWMHhg4dilWrVmHChAnIyspCUlKSSvsj1XGaSz108+ZNAICbm1uJ61u2bImgoCAsXrwYY8aMKfUH6c8//4yhQ4cq1Kfw2twskydPRuPGjdG3b99St3n06BEMDAyKTY9pbGyM6tWr4+HDh3LLDQ0NUbNmTVy/fl2hTJUVj3/l4evri7Vr1wIARo0aBVdXV0yePBkRERH48ssvAQD9+vVDjRo1EBUVhVatWpW6rxcvXqBPnz6YOXMmAOCTTz5BkyZNsGHDBowZM0apXOnp6Th9+jQWL14sd0Vl6tSpyn5EKgMs1HroyZMnMDQ0hKWlZaltwsPDERgYiDVr1iAkJKTENsHBwSpdZjx69Ch+++03nDt37o3tnj9/DmNj4xLXmZqalnhp1sbGpsQzOPoPj3/lMWLECNmfDQwM0LRpU9y/fx/Dhw+XLbe2tkb9+vVx586dt+7vk08+kXvfsmVL/PDDD0rnMjMzg7GxMaKjozF8+HDY2NgovQ8qOyzU5VSrVq0QFBSERYsWFfufs4iTkxOcnJyU2m9hYSEmTJiAgQMH4v33339jWzMzM+Tn55e47sWLFyWe6QmCAJFIpFQmKo7Hv2KoVauW3PuqVavC1NQUtra2xZY/efLkjfsyNTWFnZ2d3DIbGxs8e/ZM6VwmJiZYuHAhJk+eDAcHBzRr1gxdunTBoEGD4OjoqPT+SD0s1HqoevXqKCwsRFZWFqpUqVJqu7CwMLRu3Rpr166FtbV1sfXPnz9HRkaGQn0W/c/3/fffIzY2FmvXri1200hWVhYSExNhb28Pc3NzODk5QSKRIDU1Ve7yZ35+Pp48eYIaNWoU6+fZs2eoV6+eQpkqKx7/ysPAwEChZUDxrycU3e5Vpf2S9OoNZ0UmTZqErl274o8//sCBAwcwc+ZMRERE4MiRI2jcuPFb+6Kyw5vJ9JC7uzuAl3f/vklgYCBat26NhQsXlniZcdu2bbKzqre9iiQlJaGgoAABAQFwc3OTvYCXP8Td3Nxw8OBBAIC3tzcAFBtk48KFC5BKpbL1RQoLC3Hv3j00aNBAqb+PyobHnzSl6BJ2enq63PK7d++W2L5OnTqYPHkyDh48iKtXryI/P5/PwusAz6j1UPPmzQG8/IHXqFGjN7YNDw9H69atS7yzU5XvKPv27VvsBywAfPDBB+jUqRNGjhwJPz8/AECbNm1QrVo1rF69Gp06dZK1Xb16NczNzdG5c2e5fVy/fh0vXryAv7+/UpkqGx5/0hQXFxcYGBjg+PHj6NGjh2z5qlWr5Nrl5uZCLBbD1NRUtqxOnTqoUqUK8vLytBWX/h8LtR6qXbs2PD098ddff2HYsGFvbBsYGIjAwEAcO3as2DpVvqN0d3eXndG9zs3NTe5/bjMzM8yZMwfjxo1D7969ERwcjBMnTuDHH3/EvHnzUK1aNbntDx06BHNzc7Rr106pTJUNjz9pStWqVdG7d2+sWLECIpEIderUwZ49e5CamirX7tatW/jf//6Hjz76CB4eHjA0NMSOHTuQkpLyxicBSDNYqPXUsGHDMGvWLDx//rzUx2+KhIeHIygoSEvJ5I0dOxZGRkZYsmQJdu3ahZo1a2LZsmWYOHFisbbbt2/Hhx9++MbvXeklHn/SlBUrVqCgoABr1qyBiYkJPvroIyxevBienp6yNjVr1kS/fv1w+PBh/PDDDzA0NIS7uzt++eUX9OzZU4fpKyeR8LY7FEgnMjIyULt2bSxatEjuUY3yKiYmBk2aNMGlS5dKvLRK8nj8iagIC7UeW7hwITZu3Ijr16/LZlAqr/r27QupVIpffvlF11HKDR5/IgJYqImIiPRa+f41nYiIqIJjoSYiItJjLNRERER6jIWaiIhIj7FQExFRMYmJiRCJRNi0aZOuo1R6LNRERGqKj4/H6NGjUbt2bZiamsLKygoBAQFYvnx5ieOwl5Xr168jPDy82AQq2jZv3jx069YNDg4OEIlECA8P12meioYjkxERqWHv3r3o3bs3TExMMGjQIHh6eiI/Px8nT57E559/jmvXrpU4FntZuH79OmbPno3WrVvD1dVVI30oYsaMGXB0dETjxo1x4MABneWoqFioiYhUlJCQgL59+8LFxQVHjhyRG1t93LhxiIuLw969e3WY8D+CIJQ6T7i6EhIS4OrqirS0tGJzYpP6eOmbiEhFixYtQnZ2NjZs2FDiBCh169aVG/e8sLAQc+bMQZ06dWBiYgJXV1dMmzat2IxUrq6u6NKlC06ePAlfX1+Ympqidu3a+P7772VtNm3ahN69ewMAgoKCIBKJIBKJEB0dLbePAwcOoGnTpjAzM8PatWsBAHfu3EHv3r1RrVo1mJubo1mzZmr9QqHLs/nKgIWaiEhFu3fvRu3atRWeunPEiBGYNWsWmjRpgmXLliEwMBARERElzkgVFxeHXr16oV27dliyZAlsbGwwZMgQXLt2DQDQqlUrTJgwAQAwbdo0/PDDD/jhhx/k5vuOjY1Fv3790K5dOyxfvhze3t5ISUmBv78/Dhw4gLFjx2LevHl48eIFunXrhh07dpTB3wqVOYGIiJSWkZEhABC6d++uUPuYmBgBgDBixAi55Z999pkAQDhy5IhsmYuLiwBAOH78uGxZamqqYGJiIkyePFm2bPv27QIA4ejRo8X6K9rH/v375ZZPmjRJACCcOHFCtiwrK0twc3MTXF1dBYlEIgiCICQkJAgAhI0bNyr0+QRBEB4/fiwAEMLCwhTeht6OZ9RERCrIzMwEAIWn7dy3bx8AIDQ0VG755MmTAaDYpWcPDw+0bNlS9t7Ozg7169fHnTt3FM7o5uaG4ODgYjl8fX3RokUL2TJLS0uMGjUKiYmJuH79usL7J+1goSYiUoGVlRUAICsrS6H2d+/ehVgsRt26deWWOzo6wtraGnfv3pVbXqtWrWL7sLGxwbNnzxTO6ObmVmKO+vXrF1tedMn89RykeyzUREQqsLKyQo0aNXD16lWlthOJRAq1MzAwKHG5oMSEh5q4w5u0j4WaiEhFXbp0QXx8PM6cOfPWti4uLpBKpbh9+7bc8pSUFKSnp8PFxUXp/hUt+q/niI2NLbb85s2bsvWkX1ioiYhU9MUXX8DCwgIjRoxASkpKsfXx8fFYvnw5AKBTp04AgMjISLk2S5cuBQB07txZ6f4tLCwAAOnp6Qpv06lTJ5w/f17ul4ucnBysW7cOrq6u8PDwUDoHaRYHPCEiUlGdOnWwZcsW9OnTBw0aNJAbmez06dPYvn07hgwZAgDw8vLC4MGDsW7dOqSnpyMwMBDnz5/H5s2b0aNHDwQFBSndv7e3NwwMDLBw4UJkZGTAxMQEbdq0gb29fanbTJkyBT///DM6duyICRMmoFq1ati8eTMSEhLw22+/QSxW/vzthx9+wN27d5GbmwsAOH78OObOnQsAGDhwIM/S1aXr286JiMq7W7duCSNHjhRcXV0FY2NjoUqVKkJAQICwYsUK4cWLF7J2BQUFwuzZswU3NzfByMhIqFmzpjB16lS5NoLw8tGqzp07F+snMDBQCAwMlFu2fv16oXbt2oKBgYHco1ql7UMQBCE+Pl7o1auXYG1tLZiamgq+vr7Cnj175Noo83hWYGCgAKDEV0mPjpFyRIKgxJ0JREREpFX8jpqIiEiPsVATERHpMRZqIiIiPcZCTUREpMdYqImIiPQYCzUREZEeY6EmIiLSYyzUREREeoyFmoiISI+xUBMREekxFmoiIiI9xkJNRESkx1ioiYiI9Nj/AWAaS2GBVuiSAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXktJREFUeJzt3XdYFNf7NvB7F6SLoFQJApaIBBXFQAQV8adiiSVRY4m9xvJVwSR2wViwRMUYe0RNMRqTGGssUbGXWEisqAhiA0TpKGV33j982bgCun0XuD/XtVecmTNz7nUNDzM7c45IEAQBREREZJDE+g5AREREZWOhJiIiMmAs1ERERAaMhZqIiMiAsVATEREZMBZqIiIiA8ZCTUREZMBYqImIiAwYCzUREZEBq/SF+vHjx4iIiMDjx4/1HYWIiF7Bn88vsVA/fozZs2dX+n8IRESGhj+fX6r0hZqIiMiQsVATEREZMBZqIiIiA8ZCTUREZMBYqImIiAwYCzUREZEBY6EmIiIyYCzUREREBsygCvXx48fRpUsX1KxZEyKRCH/88cdb94mJiUHTpk1hamqKunXrYtOmTVrPSUREpCsGVahzc3PRuHFjrFy5UqH2CQkJ6Ny5M4KDgxEbG4uJEydi+PDhOHDggJaTEhER6YaxvgO8qmPHjujYsaPC7desWQMPDw8sWbIEANCgQQOcPHkSy5YtQ0hIiLZiEhER6YxBFWplnTlzBm3btpVbFxISgokTJ5a5T35+PvLz82XLOTk52oqnkDFLtiA9O0+vGQyFbVULrJrUT98xdC52wwQU5KTrO4bemVjZwmfYcn3HIDI45bpQJycnw9HRUW6do6MjsrKy8Pz5c5ibm5fYJzIyErNnz9ZVxLdKz85DWqZ+f1kg/SrISUdB9lN9x6CKQlIIiI0BkUjfSUhDynWhVsXUqVMRFhYmW46NjUVQUJAeE70kFolQ3dpS3zH04llWLqSCoO8Y+icSw8TKVt8pdK4gJx0QpPqOUXHkpgGW9oBRpfvxXmGV60/SyckJKSkpcutSUlJgbW1d6tk0AJiamsLU1FS2bGVlpdWMiqpubYmfI4brO4Ze9I34jlcV8PLSr9+E7/UdQ+fOLx/IKwqaJilgoa5ADOqub2U1b94chw8fllt36NAhNG/eXE+JiIgMgKRA3wlIgwyqUOfk5CA2NhaxsbEAXj5+FRsbi6SkJAAvL1sPHDhQ1v6zzz7D3bt38eWXX+LmzZtYtWoVfvnlF4SGhuojPhGRYSjKf3sbKjcMqlBfuHABTZo0QZMmTQAAYWFhaNKkCWbNmgUAePz4saxoA4CHhwf27t2LQ4cOoXHjxliyZAm+++47PppFRJVb0Qt9JyANMqgvMVq3bg3hDTcVlTbqWOvWrXH58mUtpiIiKmcKn+s7AWmQQZ1RExGRBhTm6jsBaRALNRFRRVPAQZQqEhbqSmL16tVo1KgRrK2tYW1tjebNm+PPP/8s0U4QBHTs2FHhSVGo/HjbpDe///472rdvjxo1akAkEslu6qRyKD9b3wlIg1ioK4l33nkHCxYswMWLF3HhwgW0adMG3bp1w7Vr1+TaRUVFQcQRjSqkt016k5ubixYtWmDhwoU6TkYal5+l7wR6s3LlSri7u8PMzAz+/v44f/78G9tHRUWhfv36MDc3h6urK0JDQ/HihWHdjGdQN5OR9nTp0kVued68eVi9ejXOnj2L9957D8DLUdqWLFmCCxcuwNnZWR8xSYveNunNgAEDAACJiYk6SkRa8yJT3wn0Ytu2bQgLC8OaNWvg7++PqKgohISEIC4uDg4ODiXab9myBVOmTEF0dDQCAgJw69YtDB48GCKRCEuXLtXDOygdz6grIYlEgq1btyI3N1c2OExeXh769euHlStXwsnJSc8JiUgtlbRQL126FCNGjMCQIUPg5eWFNWvWwMLCAtHR0aW2P336NAIDA9GvXz+4u7ujffv26Nu371vPwnWNhboSuXLlCqysrGBqaorPPvsMO3bsgJeXFwAgNDQUAQEB6Natm55TEpHanmfoO4HOFRQU4OLFi3IzKorFYrRt2xZnzpwpdZ+AgABcvHhRVpjv3r2Lffv2oVOnTjrJrChe+q5E6tevj9jYWGRmZuLXX3/FoEGDcOzYMdy5cwdHjhzh8+hEFcWLDH0n0KicnBxkZf33vfvrczYAQFpaGiQSSakzKt68ebPU4/br1w9paWlo0aIFBEFAUVERPvvsM0ybNk3zb0INPKOuRExMTFC3bl34+voiMjISjRs3xvLly3HkyBHEx8fDxsYGxsbGMDZ++ftbjx490Lp1a/2GJiLl5T3TdwKNCgoKQrVq1WSvyMhIjRw3JiYG8+fPx6pVq3Dp0iX8/vvv2Lt3L+bMmaOR42sKz6grMalUivz8fMyePRvDh8vP3NWwYUMsW7asxE1oRFQO5D0FBKHCzEl97Ngx+Pj4yJZfP5sGADs7OxgZGZU6o2JZ993MnDkTAwYMkP38a9iwIXJzczFy5EhMnz4dYrFhnMuyUFcSU6dORceOHVGrVi1kZ2djy5YtiImJwYEDB+Dk5FTqP+RatWrBw8NDD2lJG3JycnDnzh3ZcvGkN9WrV0etWrXw7NkzJCUl4dGjRwCAuLg4ACjz3wcZMEnBy2epzaz1nUQjrKysYG395vdiYmICX19fHD58GN27dwfw8mTk8OHDGDduXKn75OXllSjGRkZGAPDG4ax1jYW6kkhNTcXAgQPx+PFjVKtWDY0aNcKBAwfQrl07fUcjHblw4QKCg4Nly2FhYQCAQYMGYdOmTdi1axeGDBki296nTx8AQHh4OCIiInSalTQgJ6XCFGpFhYWFYdCgQWjWrBn8/PwQFRWF3Nxc2b/rgQMHwsXFRXbpvEuXLli6dCmaNGkCf39/3LlzBzNnzkSXLl1kBdsQsFBXEhs2bFCqvSH9Nkma8bZJbwYPHozBgwfrLhBpV+Z9wK6evlPoVO/evfHkyRPMmjULycnJ8PHxwf79+2U3mCUlJcmdQc+YMQMikQgzZszAw4cPYW9vjy5dumDevHn6egulYqEmIqqI0hP1nUAvxo0bV+al7piYGLllY2NjhIeHIzw8XAfJVGcY35QTEZFmpd3WdwLSEBZqIqKKKPkKIJXqOwVpAAs1EVFFlJ8NpN3SdwrSABZqIqKK6t4pfScgDWChJiKqqO7GvBz4hMo1FmoioooqIwl4euft7cigsVATEVVkd/7SdwJSEws1EVFFducv3v1dzrFQExFVZLlpwONYfacgNbBQExFVdPGH9Z2A1MBCTURU0d09BkiK9J2CVMRCTURU0eVnAw/+1ncKUhELNRFRZXD7oL4TkIpYqImIKoPEk8CLLH2nIBWwUBMRVRDNmjXDOw180Wz+pZIbJQXArQO6D0VqY6EmIqogkpOT8fDRYyRnFZTe4OpvgFSi21CkNhZqIqLKIvsxEH9E3ylISSzURESVycVNPKsuZ1ioiYgqk8wHwI3d+k5BSmChJiKqbC5Ev3y2msoFFmoiosrmRebLS+BULrBQExFVRld/B54l6DsFKYCFmoioMhKkwOkVgCDoOwm9BQs1EVFl9fAicO+UvlPQW7BQExFVZmdXA5JCfaegN2ChJiKqzDIfANd26DsFvQELNRFRZXdxM5D3TN8pqAwaK9SCIODIkSP4888/kZ3N5/OIiMqNghzg7+/0nYLKoFKhnj59OoKDg2XLgiCgffv2aNeuHTp37oyGDRsiPj5eYyGJiEjLbu4FUq7pO0W59vjxY/zzzz/Izc3V6HFVKtS//fYb/Pz8ZMu//vorDh8+jLlz52LPnj2QSCSIiIjQVEYiItKFE0sASZG+U5Q7O3fuhKenJ9555x00bdoU586dAwCkpaWhSZMm+OOPP9Q6vkqF+uHDh6hbt65s+ffff4eXlxemTp2KTp06YfTo0YiJiVErGBER6djTeODKdn2nKFd2796Njz/+GHZ2dggPD4fwynPpdnZ2cHFxwcaNG9XqQ6VCbWxsjPz8fAAvL3sfPnwYHTp0kG13dHREWlqaWsGIiEgPLkQDGff1naLc+Oqrr9CqVSucPHkSY8eOLbG9efPmuHz5slp9qFSovb298eOPPyI9PR0bN27E06dP0blzZ9n2e/fuwc7OTqVAK1euhLu7O8zMzODv74/z58+/sX1UVBTq168Pc3NzuLq6IjQ0FC9evFCpbyKiSk9SABxfDEil+k5SLly9ehWffPJJmdsdHR2RmpqqVh/Gquw0a9YsdOnSRVaMAwMD5W4u27t3L95//32lj7tt2zaEhYVhzZo18Pf3R1RUFEJCQhAXFwcHB4cS7bds2YIpU6YgOjoaAQEBuHXrFgYPHgyRSISlS5eq8taIiOjxP8D1PwDvj/WdxOBZWFi88eaxu3fvokaNGmr1odIZdbt27XDp0iUsXboU0dHROHjwoGxbeno6WrVqhfHjxyt93KVLl2LEiBEYMmQIvLy8sGbNGlhYWCA6OrrU9qdPn0ZgYCD69esHd3d3tG/fHn379n3rWTgREb3F+fVAjnpngpVBcHAwNm/ejKKikjfhJScnY/369Wjfvr1afaj8HLWXlxcmTJiAQYMGwczMTLbe1tYWy5YtQ+vWrZU6XkFBAS5evIi2bdv+F04sRtu2bXHmzJlS9wkICMDFixdlhfnu3bvYt28fOnXqpPwbIiKi/xTmAaeW6zuFwZs3bx4ePHiA999/H2vXroVIJMKBAwcwY8YMNGzYEIIgIDw8XK0+VLr0nZ2djYyMDLi6usrWPXr0CGvWrEF+fj569uyp9KXvtLQ0SCQSODo6yq13dHTEzZs3S92nX79+SEtLQ4sWLSAIAoqKivDZZ59h2rRpZfaTn58vuxEOAHJycpTKSURUaSSefDlxh4uvvpMYrPr16+PkyZOYMGECZs6cCUEQsHjxYgBA69atZfddqUOlQj1y5EgkJCTg7NmzAICsrCx88MEHePDgAcRiMZYvX479+/crfVatrJiYGMyfPx+rVq2Cv78/7ty5gwkTJmDOnDmYOXNmqftERkZi9uzZWs1FVJ40a9YMycnJcHJywoULF/QdhwzN+fVA96aASKTvJAbrvffew19//YX09HTcuXMHUqkUtWvXhr29vUaOr9Kl75MnT+LDDz+ULf/444949OgRTp8+jfT0dDRq1Ahz585V6ph2dnYwMjJCSkqK3PqUlBQ4OTmVus/MmTMxYMAADB8+HA0bNsRHH32E+fPnIzIyEtIy7licOnUqMjMzZa9jx44plZOooklOTsbDhw+RnJys7yhkiFJvAI8u6TtFuWBra4v3338f/v7+GivSgIqFOi0tDS4uLrLlXbt2oUWLFvjggw9QtWpVDBw4EP/8849SxzQxMYGvry8OHz4sWyeVSnH48GE0b9681H3y8vIgFsu/BSMjIwCQe+j8VaamprC2tpa9rKyslMpJRFTpcHatMn3zzTcICQkpc3vHjh2xevVqtfpQqVDb2NjIfvt+/vw5Tpw4IXdXm7GxMfLy8pQ+blhYGNavX4/Nmzfjxo0bGD16NHJzczFkyBAAwMCBAzF16lRZ+y5dumD16tXYunUrEhIScOjQIcycORNdunSRFWwiIlJT4ikg96m+UxikDRs2wMvLq8ztXl5eWLdunVp9qPQddUBAAFatWgVPT0/s378fL168QLdu3WTbb926JXfGrajevXvjyZMnmDVrFpKTk+Hj44P9+/fLbjBLSkqSO4OeMWMGRCIRZsyYgYcPH8Le3h5dunTBvHnzVHlbRERUGkEK3DkENO6j7yQGJz4+vtQRyYp5enpi/fr1avWhUqFeuHAh2rdvjx49egAAJk2ahPfeew8AIJFIsH37drkhRZUxbtw4jBs3rtRtr48fbmxsjPDwcLVvfScioreI+xNo1Js3lb3GxMTkjfd3PH78uMRXtMpSqVDXrVsXcXFxuH79OqpVqyZ363leXh6+/fZbNG7cWK1gRERkQNITgad3ALt6+k5iUD744ANs2rQJoaGhqFq1qty2zMxMbNy4ER988IFafahUqAGgSpUqpRbjqlWryl0GJyKiCuL2QRbq14SHhyMoKAg+Pj6YOHGi7Ory1atXERUVhcePH2PLli1q9aFyoc7KysKqVatw9OhRpKamYu3atfDz88OzZ8+wadMmdO3aVW4qTCIiQ1f4PBt396/Bs9vnAJEYdp4BqB0yCkYm5mXu8+/3U5CVdEVunVPTjqjb6eVXeCn/HMLt3VGl7usX+hNMLG00FV/77hwG/EcDal7KrUj8/f2xe/dujBo1ChMmTIDo/381IAgCPDw8sGvXrjKfXFKUSoX6wYMHCAoKwv3791GvXj3cvHlTNsJX9erVsXbtWty7dw/Ll3P4OSIyLP9+PwWOjf8Pjo3bldh264/FKMh5Bu9P50IqkeD27ijc2bsC9T/68o3HdGwSAreg/rJlcZX/hlW282oF2zryI3vd2rUM0qLC8lWkASDvKfDoMvCO4Y5UtnLlSixevBjJyclo3LgxVqxYAT8/vzLbZ2RkYPr06fj999/x7NkzuLm5ISoqSqmhqNu1a4c7d+7g8uXLiI+PBwDUqVMHTZs2lRVudahUqL/44gtkZ2cjNjYWDg4OJWa26t69O/bs2aN2OCIiXclLS0J6/EU0HhqFqjVfXt6t02EUrv0cAfe2w2BatewZkIyqmMHEqnoZ20xhVMVUtlyYm4nMxH9R78MJmn0DunL7oMEWamVnYCwoKEC7du3g4OCAX3/9FS4uLrh37x5sbGyU7lssFsPX1xe+vpr/u1GpUB88eBChoaHw8vLC06cln62rXbs27t/nxONEVH5kPbgJIzNLWZEGABuPJoBIhOyHcTD1DChz39SrR5F65ShMrGxRvZ4fXFv2gdErZ9WvSrlyGOIqpqjRIFDj70EnEk8ARZMAYxN9Jynh1RkYAWDNmjXYu3cvoqOjMWXKlBLto6Oj8ezZM5w+fRpVqlQBAJXH5b5+/Tru3r2L9PT0UgfcGjhwoErHBVQs1M+fP3/j8GjZ2dkqByIi0ofCnHSYWNjIrROJjVDFvCoKc9PL3M/BOwim1RxgUrUGclMSkHhkI54/fYAGvWaU2j4l9iDsvYPkzrLLlYJc4MF5wL2FvpPIKZ6B8dVBsd42A2Px98djx47Fzp07YW9vj379+mHy5MkKD5oVHx+P/v374/z582WOiCkSiXRfqL28vHD8+HGMGjWq1O1//PEHmjRponIoIiJNuX9yG+6f+kW2LC0qQPbDm4jfv0a2rulnqg/x6NS0o+zPlg7uMLGqjqs/TcPzZ49hXt1Zrm3Wgxt4nnYf9btNUrk/g3DvjE4LdU5ODrKysmTLpqamMDWV/0VHlRkY7969iyNHjuDTTz/Fvn37cOfOHYwZMwaFhYUKj88xatQoXLlyBVFRUWjZsiVsbW2VfHdvp1KhnjhxIgYNGoRGjRqhV69eAF6Oy33nzh3Mnj0bZ86cwW+//abRoEREqnDy7QQ7r5ay5bg/FsPOMxA1XrmUbVq1BqpY2aIgL0NuX0EqQeHzbFSxVPyHb1WX+gCAF+mPShTqlMsHYOlYG1bOmn/EKSkpCbm5uQCA3HwJkp69QK3qpV9+V9vjWO0ctwxBQUFyy+Hh4YiIiFD7uFKpFA4ODli3bh2MjIzg6+uLhw8fYvHixQoX6lOnTmHatGn43//+p3aesqhUqPv374979+5hxowZmD59OgCgQ4cOEAQBYrEY8+fPR/fu3TWZk4hIJVXMq6KK+X8DUYiNTVHFshrMq9eUa2f9jickL3KR8/i2rJBmJPwDCIKs+CoiN+UuAJS4uUxS8BxpN07CLXiQqm+lVOfPn8ecOXOwd+9e2aXXjOcSuE8/jw8bVsfMTm54373qW46ipMwHLy+Bm1hq9rhlOHbsGHx8fGTLr59NA6rNwOjs7IwqVarIXeZu0KABkpOTUVBQABOTt38Pb2dnh2rVqin4TlSj8sNw06dPR3x8PBYvXozRo0djxIgRWLhwIeLi4jB58mRNZiQi0joLu1qwreOL23tXIPthHLLuX0f8gdWwf6+V7I7v/Kw0XFw9CtkP4wAAz589RtKJn5Hz+DZeZKTg6a2zuLVzCaxrecPS0UPu+E+uHYcglcChYbDGMv/+++8IDAzEn3/+WeL7UUEA9l19hoBFsfj9cprG+pTJeqT5Y5bByspKbtbD0gq1KjMwBgYGyuaPLnbr1i04OzsrVKQB4LPPPsOPP/4IiUSi5LtSnMoDngBArVq1EBoaqqksRER69W73L3B3/2pc/Wk6IBKhhmcg6oT8dy+OIJXg+dMHkBTmAwDERsbISIjFo/M7ISl4AVNre9RoEAjXFiUnr0j55yBq1A+AsZlmptY9f/48evfuDYlEUuZNTBIpIIKA3utv4PSXPpo9s85JMbhRysLCwjBo0CA0a9YMfn5+iIqKKjEDo4uLCyIjIwEAo0ePxrfffosJEybgf//7H27fvo358+dj/PjxCvf57rvvQiKRoHHjxhg6dChcXV1LvRHt448/Vvl9qVSoL126hLNnz2LMmDGlbl+1ahUCAgLkLlUQkWEqvixY1uXBiqbRwAVlbqtiXvWNg5uY2TiixYy9smXTavZoNHChQv02HrxE8ZAKmDt3LgRBKLNIFxMACBAwd9897BzjrbkAzzM0dywNUXYGRldXVxw4cAChoaFo1KgRXFxcMGHCBKWuCvfu3Vv2588//7zUNiKRSK0zbpUK9fTp02Fubl5moT5y5Aj27dvHQU+IyoELFy7oOwIpKSkpCXv27HlrkS4mkQK7rzzT7A1m+Yb5GK4yMzACQPPmzXH27FmV+zt69KjK+ypKpUL9+rNqr2vZsqXs0gIRGT6JRCL3PZ0uFUmkKJJIIZZIUVhYqJcMuiKVFEKQqv9d5p/79ipcpIsJAnDgejoGfVByhC5VCLnpEGv58yoqKtLq8TXh9TvStUGlQp2dnQ1j47J3FYvFyMzMVDkUUWWTKaoG5BRh77x+eun/p8NX8PPRq3rpW86kn/SdoEIb+eNtjPzxtoaOdgrAWA0dq/zLz8/HpUuXkJqaisDAQNjZ2Wns2CoV6nr16uHgwYNlPje2f/9+1K5dW61gRKQ7fYLfQ+/W7+mt/2pCJkyq1sD7/9uotwzaJil8gcx71yA2NoLYqIpax9ry606Mnxyh9H5r+7pjoL/6BUQQBOS7t4FZ+5llDpWqCZcvX4a/v7/Wjq8p33zzDSIiImQnqIcOHUKbNm2QlpYGT09PLFq0CEOHDlX5+CoV6mHDhiE0NBRhYWGYNWuWbADzjIwMzJ49G/v378fixYtVDkVEumWk52kLjQUxjI3EsvGWKyIxJKhSxRjGpuYQqzlOdtvg1hCJREpd/haJgHaeNqii4NCYbyZAWsXk5TPIWvzM3nTl1lBs3LgREydORJ8+fdC+fXu5gmxnZ4c2bdpg69atui/U48ePR2xsLKKiovDNN9+gZs2XAwc8evQIUqkUAwYM4GNbRERa4vpOTXRoG4yDR44pdDexkRjo9J4NalXX4Pji4or7S5UylixZgm7dumHLli2lTlLl6+uLb775Rq0+VCrUIpEIGzduxMCBA/Hbb7/h7t2XI/F069YNPXr0QOvWrdUKRUS6M3HVAaTnPIetlTmixoToOw4paHLoGBw6evytZ9YiACKIMC3ERaP9C8bau+Rdnty5c+eNz11Xr1691AKuDLWuKwQHByM4WHOj7BCR7qXnPMfTrOf6jkFK8vVphE1rlmHwZ6EQBKHUM2sj8csivXVoXbzvppmBVooJJpo9XnllY2ODtLSyR367fv262mMUqPTFVEJCAnbv3l3m9t27dyMxMVHVTEREpIBunULw166taN8mCCKRSG6bSPTycveJMC90b1y9jCOoTmqq3fGty4tOnTph3bp1yMjIKLHt2rVrWL9+Pbp27apWHyqdUX/++efIyspCly5dSt2+cuVK2NjYYOvWrWqFIyKiN/P1aYRfNq/B/QePENCuKzIys2BjboRLUxpq9jvp10itnN/eqBKYO3cu/P394e3tjS5dukAkEmHz5s2Ijo7Gb7/9BmdnZ8yaNUutPlQ6oz5z5gzatWtX5vb/+7//w4kTJ1QORUREynF9pyYsLMwBAJamYq0WacG0GgQznlEDQM2aNXHx4kV06NAB27ZtgyAI+OGHH7B792707dsXZ8+eVfuZapXOqNPT01G1atmDu1tZWan95TkRERmmIseG+o5gEPLz83HgwAG4u7vju+++w3fffYcnT55AKpXC3t5eblxxdah0lFq1auHUqVNlbj9x4gTeeecdlUMREZHhkjg10XcEg2BiYoJevXrh9OnTsnX29vZwdHTUWJEGVCzUffv2xc8//4xvvvlGbnxgiUSC5cuXY9u2bejXTz9DIRIRkfYIZtaQ8IwawMtHlevVq/fGu741QaVCPXXqVAQHB2PixIlwdnZGq1at0KpVK9SsWROhoaEICgrC9OnTNZ2ViIj0rMgjGBAb/ohhujJt2jR8++23iIuL01ofKv1tm5qa4uDBg9i8eTN+//13xMfHAwD8/PzQo0cPDBw4UKOn/UREZACMqqCoTnt9pzAoZ8+eRY0aNeDt7Y3WrVvD3d0d5ubmcm1EIhGWL1+uch8q/1okFosxZMgQDBkyROXOiYio/Ch8tzNgag0UFeg7isH49ttvZX8+fPhwqW30VqiJiKjyEMxtUfRuZ33HMDi6mMddpULdpk2bt7YRiURl/nZBRETlS0HTYQDH99YLlQq1VCotMVydRCLBvXv3cP/+fdStWxcuLpodAJ6IiPSjyD0IUqfG+o5h0M6ePYujR48iNTUVY8aMQb169ZCXl4ebN2/i3XffhZWV6mOjq1SoY2Jiyty2Z88ejBw5EkuXLlU1ExERGQjB0g6FjfrrO4bBKigoQJ8+fbBz504IggCRSIQuXbqgXr16EIvFaN++PUJDQ9V6Ekrjt2Z/+OGH6N+/PyZOnKjpQxMRkY4V+I4CqvCSd1lmzpyJPXv2YPXq1YiLi5ObctTMzAy9evXCzp071epDK89Q1alTB3///bc2Dk1ERDpSVPv/ILX31HcMg/bzzz9j9OjRGDlyJKpXLzlLWYMGDXD37l21+tD4Xd9FRUX45Zdf1B6EnIh0w9bKXO6/RMDL+aYL3+up7xgGLzU1FQ0blj1Sm5GREfLy8tTqQ6VCPXTo0FLXZ2Rk4OzZs0hOTuZ31ETlRNSYEH1HIANU1OAjwET1G6AqC1dXV9y8ebPM7adOnULdunXV6kOlQn3kyJFSJikXwdbWFi1atMDw4cPRvj1HryEiKo8Ec9uXQ4XSW/Xr1w9Lly5Fjx498O677wKArD6uX78ev/zyCxYsWKBWHyoV6sTERLU6JSIiw1VUrxNgVEXfMcqF6dOn4+zZs2jVqhUaNGgAkUiE0NBQPHv2DA8ePECnTp0QGhqqVh8ckJuIiP5TxRxF7q31naLcMDExwf79+7Fx40bUrl0bnp6eyM/PR6NGjbBp0ybs3r0bRkZGavWh8Bl1Xl4e0tLS4OTkBBMTE7lt0dHR+Omnn/D48WN4enpi6tSpeP/999UKRkREulfk3pqPY71BWFgYBgwYgCZNXs7JnZSUBHt7e/Tv3x/9+2vneXOFz6i/+uorNGrUCAUF8oOxz507FyNGjMCxY8fw5MkT/PHHH2jdujX++ecfjYclIiItEolQVKedvlMYtKioKNy4cUO27OHhgR07dmi1T4UL9dGjR/Hhhx/KDYOWlZWFuXPnwsXFBbdv38aTJ09w9uxZmJiYqP3lORER6ZbENQCCpb2+Yxg0R0dHueeiXx3gRFsUvvSdmJiIHj16yK3bt28fCgoKMHnyZHh4eAB4OSf1kCFD8Msvv2g2KRERaY9IhELPbvpOYfA6d+6Mr776CgcPHoSNjQ0AYMmSJdi6dWuZ+4hEIrVGJ1O4UGdnZ6NGjRpy644fPw6RSISQEPnnML28vPDkyROVQxERkW4V1WkHoaqzvmMYvOXLl8PBwQFHjx7FtWvXIBKJcP/+fTx79qzMfV5/nFlZCl/6dnNzK/FQd0xMDBwdHUs8zF1QUABra2uVAq1cuRLu7u4wMzODv78/zp8//8b2GRkZGDt2LJydnWFqaop3330X+/btU6lvIqLKSDCzRmGDj/Qdo1ywtLTE/PnzcebMGcTHx0MQBERFRSEhIaHMl7pDiCpcqNu3b4/o6GicO3cOAPD999/j5s2b+Oijkh/uxYsX4e7urnSYbdu2ISwsDOHh4bh06RIaN26MkJAQpKamltq+oKAA7dq1Q2JiIn799VfExcVh/fr1nGKTiEgJhY0GcBQyBX388cc4ceKEbPno0aNo1067N+ApXKhnzpwJKysrBAQEwMTEBIMHD4a9vT1mzZol1y4vLw87duzA//3f/ykdZunSpRgxYgSGDBkCLy8vrFmzBhYWFoiOji61fXR0NJ49e4Y//vgDgYGBcHd3R1BQEBo35rypRESKkDg3geQdf33HKDd27tyJpKQk2XKbNm1w6NAhrfapcKG2s7NDbGwsFixYgGHDhmH+/Pm4cuUKHB0d5dpdvXoVn376KQYMGKBUkIKCAly8eBFt27b9L5xYjLZt2+LMmTOl7rNr1y40b94cY8eOhaOjI7y9vTF//nxIJBKl+iYiqpSMzVDYZDCg5neolYmLiwsuX74sWy6eg1qblBpC1NbWFl988cUb2/j5+cHPz0/pIGlpaZBIJCUKv6OjY5kDnt+9exdHjhzBp59+in379uHOnTsYM2YMCgsLER4eXuo++fn5yM/Ply3n5OQonZWIqCIofK8XBPOSUzNS2fr06YOvv/4av/zyi+yu7ylTpiAyMrLMfUQikVpji2h8mktdkkqlcHBwwLp162BkZARfX188fPgQixcvLrNQR0ZGYvbs2TpOSkRkWKQ2biiq0/btDUlOZGQk6tati6NHjyI1NRUikQiWlpYlnorSJIMp1HZ2djAyMkJKSorc+pSUFDg5OZW6j7OzM6pUqSI3jmqDBg2QnJyMgoKCEkOdAsDUqVMRFhYmW46NjUVQUJCG3gURUflQ6DMQEHG6B2UZGRlh5MiRGDlyJICXX9HOmDED/fr101qfBvMpmZiYwNfXF4cPH5atk0qlOHz4MJo3b17qPoGBgbhz5w6kUqls3a1bt+Ds7FxqkQYAU1NTWFtby16vjrRGRFQZSN7xg7TGu/qOUSEkJCSge/fuWu3DYAo18HKw8/Xr12Pz5s24ceMGRo8ejdzcXAwZMgQAMHDgQEydOlXWfvTo0Xj27BkmTJiAW7duYe/evZg/fz7Gjh2rr7dARGTYRCIUevXSd4oKw83NDRYWFlrtQ6FL37t27UKzZs1Qs2ZNrYbp3bs3njx5glmzZiE5ORk+Pj7Yv3+/7AazpKQkiMX//W7h6uqKAwcOIDQ0FI0aNYKLiwsmTJiAyZMnazUnEVF5VVSrBYSqpX+dSG8nFoshFouRl5cHExMTiMXit971LRKJUFRUpHKfChXqjz76CD/88IPsGnzt2rURFRWFrl27qtxxWcaNG4dx48aVui0mJqbEuubNm+Ps2bMaz0FEVOGIRCiqr/mf25XJrFmzIBKJYGxsLLesTQoV6qpVqyIjI0O2nJiYyMeaiIjKGYlzU55NqykiIuKNy9qgUKH28/PDvHnzkJKSgmrVqgF4OXNWcnJymfuIRCKEhoZqJiUREamtqG7I2xuRwVGoUK9atQoDBw7EnDlzALwswlu2bMGWLVvK3IeFmojIcAjWNSG189R3jAolPz8fP/74Iw4ePIj4+HhkZ2ejatWqqFu3Ljp06IB+/fqV+QSSMhQq1HXr1sXp06fx4sULpKamwt3dHVFRUejWjXOXEhGVB0XuwRwqVIOuXLmCbt264d69exAEAdWqVYOVlRVSU1Nx6dIlbN++HfPmzcOuXbvQoEEDtfpS6vEsMzMz1KpVC+Hh4WjTpg3c3Nze+CIiIgMgFqOoVoC+U+iEslMlF9u6dStEIpFCz0Tn5OSga9euSElJwbx583D//n2kp6fL/Xfu3Ll49OgRunTpgtzcXLXek0rPUYeHh8Pb21sW+MaNG7hx4wZvMCMiMkASh0aAqbW+Y2idslMlF0tMTMTnn3+Oli1bKtTPxo0bkZSUhL1792LKlCklplZ2cXHB1KlTsXv3biQkJGDTpk2qviUAagx48vfffyM4OBi2trbw9vaGt7c3bG1t0aZNG1y4cEGtUEREpDkS18oxjaWyUyUDgEQiwaefforZs2ejdu3aCvWzd+9etG/fHq1bt35juzZt2qBdu3bYvXu3Mm+jBJUK9blz59CqVStcunQJw4cPx7Jly7Bs2TIMHz4cly5dQqtWrRS+3EBERFokFkPi5KPvFGrJyclBVlaW7PXqDIjFVJkqGQC++uorODg4YNiwYQrnuXLlyluLdLE2bdrgypUrCh+7NCpNyjF9+nS4uLjg5MmTJSbMiIiIQGBgIKZPn671ybSJiOjNpHaegEn5ntPg9YmTwsPDSzy/rMpUySdPnsSGDRsQGxurVJ5nz56VOVnU6xwdHfHs2TOljv86lQr1uXPnMGvWrFKDOjo6YuTIkbJHuYiISH8kjo30HUFtx44dg4+Pj2zZ1NRU7WNmZ2djwIABWL9+Pezs7JTaNz8/H1WqVFGorbGxMQoKClSJ+N8xVNlJLBa/cdxSiUQiNyY3ERHph8Sxob4jqM3KygrW1m++GU7ZqZLj4+ORmJiILl26yNYVz8RobGyMuLg41KlTp8z+EhMTcenSpbdmT0hIeGubt1GpUAcEBGDlypXo169ficewkpKSsGrVKgQGBqodjoiIVCeYWEGwfkffMXTi1amSix+xKp4qubT5Izw9PUt8dzxjxgxkZ2dj+fLlcHV1fWN/M2fOxMyZM9+aSxAEtccCV6lQz58/H61atYKnpyc++ugjvPvuy3lN4+LisHPnThgbGyMyMlKtYEREpB6p3buAqPJc3QwLC8OgQYPQrFkz+Pn5ISoqqsRUyS4uLoiMjISZmZnsMeNiNjY2AFBi/es2btyolfxlUalQN2nSBOfOncP06dOxa9cu5OXlAQAsLCzQoUMHzJ07F15eXhoNSkREypHWqKfvCDql7FTJqho0aJDax1CGSoUaALy8vLBjxw5IpVI8efIEAGBvb8/vpomIDITUxkPfEXRO2amSX6XuwCTaonKhLiYWi0vcDk9ERPonteFQzhUBT3+JiCogwcym3D8/TS+xUBMRVUCCdU19RyANYaEmIqqApJb8SrKiYKEmIqqABEsHfUcgDVH7ZjIiIjI8goVyw2KSeq5fv467d+8iPT0dgiCU2D5w4ECVj61WodZmMCIiUp1gUUPfESqF+Ph49O/fH+fPny+1DgKASCTSfaHWRTAiIlKdYGaj7wiVwqhRo3DlyhVERUWhZcuWsLW11XgfKhVqXQQjIiLlONrbA1IpnEzyWKh15NSpU5g2bRr+97//aa0PlQq1LoIREZFyju//HaLcJzA9MhMvjBSbhpHUY2dnh2rVqmm1D5Xu+tZFMCIiUpHpm6eEJM357LPP8OOPP0IikWitD5XOqIuDjR07FkZGRprOREREahBMeSKlK++++y4kEgkaN26MoUOHwtXVtdS6+PHHH6vch0qFWhfBiIhINYIphw7Vld69e8v+/Pnnn5faRiQSqXXGrVKh1kUwIiJSjWBSVd8RKo2jR49qvQ+VCrUughERkWoEUxZqXQkKCtJ6HyoVal0EIyIiFVWx1HeCSun69eu4d+8eAMDNzQ1eXl4aOa7aQ4hqKxgREalGMGGh1qWdO3ciLCwMiYmJcus9PDywdOlSdO3aVa3jq1yotR2MiIhUxDNqndm3bx969OgBNzc3zJ8/Hw0aNAAA3LhxA+vWrcPHH3+MPXv2oEOHDir3oVKh1kUwIiJSjVDFXN8RKo05c+agUaNGOHHiBCwt//sFqWvXrhg3bhxatGiB2bNn675Q6yIYERGphoVad/7991/Mnz9frhYWs7S0xODBgzFt2jS1+lBpZLJ///0XgwYNemOwf//9V61gRESkIiMTfSeoNMzMzPDs2bMytz979gxmZmZq9aFSodZFMCIiUpGY43zrSps2bbB8+XKcOXOmxLZz587hm2++Qdu2bdXqQ6VL38XBOnTogObNm5carH379moFIyIiFYnVfqCHFLRo0SI0b94cLVq0gJ+fH+rXrw8AiIuLw/nz5+Hg4ICFCxeq1YdKn6YughERkYpEIn0nqDQ8PDzw77//IjIyEn/++Se2bdsG4OXjyhMmTMCUKVPg4OCgVh8qFWpdBCMiIioPHBwcsGzZMixbtkwrx1f5+oi2gxERkYoEqb4TkAbxiwwioopGEPSdoMIaOnQoRCIR1q1bByMjIwwdOvSt+4hEImzYsEHlPhUq1PoIRkREKuIZtdYcOXIEYrEYUqkURkZGOHLkCERvuSfgbdvfRqFCrY9gRESkIp5Ra83rw2a/vqwNChVqfQQjIiIydElJSbC3t4e5eemjwT1//hxPnjxBrVq1VO5DpQFPkpKS8Pz58zK3P3/+HElJSSqHIiIiNfCCps54eHhgx44dZW7ftWsXPDw81OpDpUKti2BERKQikZG+E1Qawlu+ZigsLIRYrFKplVFpb20HW7lyJdzd3WFmZgZ/f3+cP39eof22bt0KkUiE7t27q9w3EVG5J2ah1qasrCwkJSXJrhw/ffpUtvzq699//8XWrVvh7OysVn8KP56VlZWFjIwM2XJxsNdlZGSoFWzbtm0ICwvDmjVr4O/vj6ioKISEhCAuLu6Ng6gkJibi888/R8uWLVXql4ioohB4Rq1Vy5Ytw1dffQXg5Y3TEydOxMSJE0ttKwgC5s6dq1Z/ChdqXQVbunQpRowYgSFDhgAA1qxZg7179yI6OhpTpkwpdR+JRIJPP/0Us2fPxokTJ+R+oSAiqnSMOCmHNrVv3x5WVlYQBAFffvkl+vbti6ZNm8q1EYlEsLS0hK+vL5o1a6ZWfwoXal0EKygowMWLFzF16lTZOrFYjLZt25Y6M0mxr776Cg4ODhg2bBhOnDjxxj7y8/ORn58vW87JyVE6JxGRQePsWVrVvHlz2YRUubm56NGjB7y9vbXWn8KFWhfB0tLSIJFI4OjoKLfe0dERN2/eLHWfkydPYsOGDYiNjVWoj8jISMyePVvdqEREBkkwNuV31DqSl5eHb775BhYWFlot1Erf8VUc7M8//9RGHqVkZ2djwIABWL9+Pezs7BTaZ+rUqcjMzJS9jh07puWUREQ6ZGoNiNS7y5gUY2FhAWNjY1haWmq1H6XH+tZmMDs7OxgZGSElJUVufUpKCpycnEq0j4+PR2JiIrp06SJbJ5W+HDrP2NgYcXFxqFOnjtw+pqamMDU1lS1bWVlp8i0QEVEl0qNHD/z6668YPXq01kbkVOnXruJgb3tMS1kmJibw9fXF4cOHZeukUikOHz4su+z+Kk9PT1y5cgWxsbGyV9euXREcHIzY2Fi4urpqNB8REdGr+vTpg9TUVAQHB+Onn37CqVOncOnSpRIvdag0e1afPn0wZswYBAcHY8SIEXB3dy91+LTXbzZTRFhYGAYNGoRmzZrBz88PUVFRyM3Nld0FPnDgQLi4uCAyMhJmZmYlvhewsbEBAK1+X0BERAQArVu3lv25tJuZBUGASCSCRCJRuQ+VCrU2g/Xu3RtPnjzBrFmzkJycDB8fH+zfv192g1lSUpLao7wQERFpwsaNG7Xeh0qFWtvBxo0bh3HjxpW6LSYm5o37btq0SfOBiIiISjFo0CCt96FSodZFMCIiovIkJycH9+/fBwC4urpq7GZlta8h5+Tk4MaNG7hx4wYHDyEiokrn77//RnBwMGxtbeHt7Q1vb2/Y2tqiTZs2uHDhgtrHV+mMujjYl19+iZMnT8oeiRKLxWjZsiUWLVqk9pBpREREhu7cuXNo3bo1TExMMHz4cDRo0AAAcOPGDfz8889o1aoVYmJi4Ofnp3IfKhVqXQQjIiJS1sqVK7F48WIkJyejcePGWLFiRZm1aP369fj+++9x9epVAICvry/mz5+vVO2aPn06XFxccPLkyRLjfURERCAwMBDTp0/HoUOHVH5PKl36Lg4WFxeH1atXY/z48Rg/fjxWr16NuLg41KxZE9OnT1c5FBERkbKKZ18MDw/HpUuX0LhxY4SEhCA1NbXU9jExMejbty+OHj2KM2fOwNXVFe3bt8fDhw8V7vPcuXMYNWpUqYNyOTo6YuTIkTh79qzK7wlQsVDrIhgREZEyXp190cvLC2vWrIGFhQWio6NLbf/TTz9hzJgx8PHxgaenJ7777jvZIFuKEovFKCoqKnO7RCJR+5FilfbWRTAiIiLg5U3LWVlZsterMyAWK559sW3btrJ1isy++Kq8vDwUFhaievXqCmcLCAjAypUrce/evRLbkpKSsGrVKgQGBip8vNKo9B11cbB+/frBzc1NK8GIiIgAICgoSG45PDwcERERcutUmX3xdZMnT0bNmjXliv3bzJ8/H61atYKnpyc++ugjvPvuuwCAuLg47Ny5E8bGxoiMjFT4eKVRqVDrIhgREREAHDt2DD4+PrLlVydW0pQFCxZg69atiImJgZmZmcL7NWnSBOfOncP06dOxa9cu5OXlAXg5gVWHDh0wd+5ceHl5qZVNpUKti2BERETAy1kOra2t39hG2dkXX/X1119jwYIF+Ouvv9CoUSOl83l5eWHHjh2QSqV48uQJAMDe3l5jXwGr/By1toMREREp6tXZF7t37w7gv9kXyxqSGgAWLVqEefPm4cCBA2qP/yESiWRTXWpyyku1q2pxsFcDEhER6VpYWBjWr1+PzZs348aNGxg9enSJ2RenTp0qa79w4ULMnDkT0dHRcHd3R3JyMpKTk5UeZfP69evo2bMnrK2t4ezsDGdnZ1hbW6Nnz56yZ7TVofIZ9fXr1zFr1iwcOHBA7tJ3SEgIIiIiOM0kERHplLKzL65evRoFBQXo2bOn3HFKu1mtLCdOnEDHjh0hlUrRrVs3uXu2du3ahT///BP79+9Hy5YtVX5fKhVqXQQjIiJSljKzLyYmJqrdX2hoKBwcHHDs2DG4urrKbbt//z5atWqFsLAw/P333yr3oVKh1kUwIiIiQ3ft2jXMmTOnRC0EXs6gNXr0aIXPzsui0nfU165dw5gxY94Y7Nq1a2oFIyIiMnRubm6lDsBSrKCgoNRaqQyVCrUughERERm6WbNm4ZtvvkFsbGyJbZcvX8aKFSvUPqNW6dL3rFmzEBoais6dO8s9hP5qsKioKLWCERERGbqzZ8/C0dERvr6+CAgIQN26dQEAt2/fxpkzZ+Dt7Y0zZ87IDWMqEomwfPlyhftQqVDrIhgREZGh+/bbb2V/PnXqFE6dOiW3/cqVK7hy5YrcOp0Ual0EIyIiMnRSqVTrfahUqHURjIiIiNQY8ISIiIheSkhIwJ9//imb7tLNzQ0dO3aEh4eH2sdWq1BrMxgREVF5MGnSJCxfvrzE1WaxWIyJEyfi66+/Vuv4KhdqbQcjIiIydEuWLMGyZcvQs2dPTJo0CQ0aNAAA3LhxA8uWLcOyZcvg4uKC0NBQlftQ6Tnq4mAff/wxzpw5g4yMDGRkZODMmTPo2bOnLBwREVFFtn79enTt2hW//PIL/P39YW1tDWtra/j7+2Pr1q3o0qUL1q5dq1YfKhVqXQQjIiIydImJiQgJCSlze0hIiNpjiqtUqHURjIiIyNA5ODjgn3/+KXP7P//8A3t7e7X6UKlQ6yIYERGRoevVqxe+++47LFiwALm5ubL1ubm5WLhwIb777jv07t1brT5UupmsV69eWL58Odzd3fG///0PlpaWsmDffvstvvvuO0ycOFGtYERERIZuzpw5iI2NxbRp0zBr1izUrFkTAPDo0SMUFRUhODgYX331lVp9qFSodRGMiIjI0FlYWODw4cPYuXOn3OPKHTp0QKdOndClSxeIRCK1+lCpUOsiGBERkSHLy8tD//790aNHD3z66afo1q2bVvpRulDrKhgREZEhs7CwwF9//YWOHTtqtR+lbyYrDpaXl6eNPEREROVGixYt5GaK1AaV7vrWRTAiIiJD9+233+LEiROYMWMGHjx4oJU+VCrUughGRERk6Bo3bowHDx4gMjISbm5uMDU1lQ0CVvyqVq2aWn2odDNZ48aNUVRUhMjISERGRsLY2BimpqZybUQiETIzM9UKR0REZMh69Oih9ZunVSrUughGRERk6DZt2qT1PlQq1LoIRkREZKhevHiBnTt3IiEhAXZ2dujcuTOcnZ210pdShVqXwYiIiAxRamoqAgICkJCQAEEQALx8IuqPP/5A27ZtNd6fwoVa18GIiIgM0Zw5c5CYmIjQ0FC0adMGd+7cwZw5czBq1CjEx8drvD+FC7WugxERERmigwcPYuDAgfj6669l6xwdHdGvXz/ExcWhfv36Gu1P4UKt62BERESGKCkpCZMnT5Zb16JFCwiCgJSUFI3XQ4Wfo05KSkKLFi3KDEZERFQZ5Ofnw8zMTG5d8XJRUZHG+1P4jFrXwYiIiAxVYmIiLl26JFsuHjfk9u3bsLGxKdG+adOmKvel1F3fugxGRERkqGbOnImZM2eWWD9mzBi5ZUEQIBKJIJFIVO5LqUKty2BERESGaOPGjTrtT+FCrctgK1euxOLFi5GcnIzGjRtjxYoV8PPzK7Xt+vXr8f333+Pq1asAAF9fX8yfP7/M9kREROoYNGiQTvtTuFDrKti2bdsQFhaGNWvWwN/fH1FRUQgJCUFcXBwcHBxKtI+JiUHfvn0REBAAMzMzLFy4EO3bt8e1a9fg4uKik8xERETaotLsWdq0dOlSjBgxAkOGDIGXlxfWrFkDCwsLREdHl9r+p59+wpgxY+Dj4wNPT0989913kEqlOHz4sI6Tl0/NmjXDO++8g2bNmuk7ChERlUKlsb61paCgABcvXsTUqVNl68RiMdq2bavw/Nd5eXkoLCxE9erVS92en5+P/Px82XJOTo56ocu55ORkPHz4UN8xiIioDAZ1Rp2WlgaJRAJHR0e59Y6OjkhOTlboGJMnT0bNmjXLHNY0MjIS1apVk72CgoLUzk1ERKQtBlWo1bVgwQJs3boVO3bsKPHMd7GpU6ciMzNT9jp27JiOUxIRESnOoC5929nZwcjIqMRIZykpKXBycnrjvl9//TUWLFiAv/76C40aNSqznampKUxNTWXLVlZW6oUmIiLSIoM6ozYxMYGvr6/cjWDFN4Y1b968zP0WLVqEOXPmYP/+/bwpioiIKhSDOqMGgLCwMAwaNAjNmjWDn58foqKikJubiyFDhgAABg4cCBcXF0RGRgIAFi5ciFmzZmHLli1wd3eXfZdtZWXFs2UiIir3DK5Q9+7dG0+ePMGsWbOQnJwMHx8f7N+/X3aDWVJSEsTi/y4ErF69GgUFBejZs6fcccLDwxEREaHL6ERERBpncIUaAMaNG4dx48aVui0mJkZuOTExUfuBiIiI9MSgvqMmIiIieSzUREREBoyFmoiIyICxUBMRUYWxcuVKuLu7w8zMDP7+/jh//vwb22/fvh2enp4wMzNDw4YNsW/fPh0lVRwLdSXn5OQEFxeXtw4oQ0Rk6IpnXwwPD8elS5fQuHFjhISEIDU1tdT2p0+fRt++fTFs2DBcvnwZ3bt3R/fu3WXTJhsKFupK7sKFC3jw4AEuXLig7yhERGpRdvbF5cuXo0OHDvjiiy/QoEEDzJkzB02bNsW3336r4+RvxkJNRETlXvHsi69OyPS22RfPnDlTYgKnkJAQhWdr1BWDfI6adEsikUAqleqtf6mkCFKJBFJJEQoLC/WWQ1+KJFIUSfT3928IigQpxBJphf78JYWFKCwsgkTIg9iofL9PqaQQ0iIJCgsLIYWR1vopKioC8HI64qysLNn61+dsAN48++LNmzdLPX5ycrJaszXqCgu1AbAQ8pCXkYduE+frpf+bZw/j1rkjeun7db/MHa3vCKRPk37SdwIyQK9PR1zZRp5koSbU9wvGu++31muGPJEF7KpZ4sdZw/SaQx/+XjEET3KK9B1Dr6oJmTCpWgPv/2+jvqNolVRSCEEq0XcMjRCJjSA2qqLVPi5fvgx/f38cO3YMPj4+svWvn00Dqs2+6OTkpNJsjbrGQk0QicUQ6TmDWGQEsZExqlTR7v/4hsjYSAxjo8p9u4ix8PLvoMJ//hX9/WmYsfHLEmVlZQVra+s3tn119sXu3bsD+G/2xbKGpG7evDkOHz6MiRMnytYdOnTojbM16gMLdSV37OeVyM/LgamFFYL6jtV3HCIilSk7++KECRMQFBSEJUuWoHPnzti6dSsuXLiAdevW6fNtlMBCXcnl5+XgRU7W2xsSERk4ZWdfDAgIwJYtWzBjxgxMmzYN9erVwx9//AFvb299vYVSsVATEVGFoczsiwDQq1cv9OrVS8up1FO5vxgjIiIycCzUREREBoyFmoiIyICxUBMRERkwFmoiIiIDxkJNRERkwFioiYiIDBgLNRERkQFjoSYiIjJgLNREREQGjIWaiIjIgHGs70rO1MJK7r9ERGRYWKgrOU5tSURk2Hjpm4iIyICxUBMRERkwFmoiIiIDxu+oK7HnOZm4fvIAUu/dgqSwEJY2NdCk3cewcXxH39FIw345dg1nrj/AgydZMKlihAa17DC4vQ/esbeWtXn8NBsb9sfi+r0nKJRI4FvPGaM+9IWtlbkekxMRC3UlVfDiOU7+sg5279TGB90GwcTcErkZT1HFlD+UK6Kriano7F8P9VxqQCKV4vtD/2LmpqNYPaEzzEyM8aKgCDM3xcDD2Qbzh7YBAPx4+F989cNxLBnVHmKxSM/vgKjy4qXvSurOheMwr1oNTdr3gK2TKyyrVYeDWz1Y2tTQdzTSgq8GBaNt09pwc6yG2s62CO3hjyeZebjz8BkA4Pq9J0jNyEXoxx/A3ckG7k42CO3xAe48eoZ/76boOT1R5cYz6koqOeEGHGrVw997f8bThwkws7KGRyN/uHm/r+9opAO5LwoBAFYWJgCAQokUEAFVjP/73d3E2AgikQjX7j2BT10nveQkIp5RV1p5melIvHIeVjY10Lz7YLg39MOVmD1Iun5J39FIy6RSAev3XYJXLTu4O9oAADxda8CsijE2HojFi4IivCgowob9lyGVCkjPfq7fwESVHM+oKylBEGDj6IIGge0BANUcaiL7aSruXTmPWl5N9ZyOtGn1ngu4l5KJRSPaytZVszTDlD6BWLXrAnafvQWRSISghm6oU9MWIn4/TaRXLNSVlJllVVStbi+3zqq6PR7fuaqnRKQLq3dfwN83H2HB8P+DXTULuW1N6znju0ldkJmbDyOxCFbmJui/YAecbDm8LJE+sVBXUtWdayEnPU1uXW56GsytbfWUiLRJEASs2XMRZ64/QOSw/4NT9bKLbzVLUwDAP/HJyMx9AX9PF13FJKJS8DvqSqp2k0CkJ9/HrfMxyMl4igc3/8G9q3/Do5G/vqORFqzefQEx/yTii08CYGFqjPTs50jPfo78wiJZm0MX7+Lm/TQ8fpqNo7EJWLD1FLoF1Jd71pqIdI9n1JWUrdM7eL/zp7hx+iBunT8KC2tbeAd1xjuePvqORlqw7/wdAMDUDYfl1k/82B9tm9YGADxMy8LmQ/8g53kBHGws8Unr99A9oL7OsxKRPBbqSsyptiecanvqOwbpwJ65fd/aZnCIDwaH+Gg/DBEphZe+iYiIDBgLNRERkQFjoSYiIjJgLNREREQGjIWaiIjIgBlkoV65ciXc3d1hZmYGf39/nD9//o3tt2/fDk9PT5iZmaFhw4bYt2+fjpISERFpl8EV6m3btiEsLAzh4eG4dOkSGjdujJCQEKSmppba/vTp0+jbty+GDRuGy5cvo3v37ujevTuuXuVQmEREVP4ZXKFeunQpRowYgSFDhsDLywtr1qyBhYUFoqOjS22/fPlydOjQAV988QUaNGiAOXPmoGnTpvj22291nJyIiEjzDKpQFxQU4OLFi2jb9r9ZfcRiMdq2bYszZ86Uus+ZM2fk2gNASEhIme2JiIjKE4MamSwtLQ0SiQSOjo5y6x0dHXHz5s1S90lOTi61fXJycqnt8/PzkZ+fL1vOyckBANy4cUOd6Cp79vgeXmQ/00vfhuSFyAziPAtculT55sO+ef8p0p9L9B1Dr6yEHFSxAIxf+/ydnZ3h7Oysp1Tqefz4MR4/fqzvGOWavn4uGxqDKtS6EBkZidmzZ8utc3NzQ//+/fWUiF51cN1cfUcgfVoifyNoeHg4IiIi9JNFTWvXri3xs4aUFxQUVG5/WdMUgyrUdnZ2MDIyQkpKitz6lJQUODk5lbqPk5OTUu2nTp2KsLAwuXXPnj3Ds2eV86w2JycHQUFBOHbsGKysOO9wZWTI/wbK8w/oUaNGoWvXrjrt05A/S1WV56sqmiISBEHQd4hX+fv7w8/PDytWrAAASKVS1KpVC+PGjcOUKVNKtO/duzfy8vKwe/du2bqAgAA0atQIa9as0Vnu8iorKwvVqlVDZmYmrK05nWFlxH8DFQc/y4rJoM6oASAsLAyDBg1Cs2bN4Ofnh6ioKOTm5mLIkCEAgIEDB8LFxQWRkZEAgAkTJiAoKAhLlixB586dsXXrVly4cAHr1q3T59sgIiLSCIMr1L1798aTJ08wa9YsJCcnw8fHB/v375fdMJaUlASx+L+b1QMCArBlyxbMmDED06ZNQ7169fDHH3/A29tbX2+BiIhIYwzu0jfpVn5+PiIjIzF16lSYmprqOw7pAf8NVBz8LCsmFmoiIiIDZlADnhAREZE8FmoiIiIDxkJNGpWYmAiRSIRNmzbpOwoRUYXAQq1H8fHxGDVqFGrXrg0zMzNYW1sjMDAQy5cvx/Pnz7XW7/Xr1xEREYHExESt9aGIefPmoWvXrnB0dIRIJCq3I1Bpm0gkUugVExOjdl95eXmIiIhQ6lj8HJXDz5OUZXCPZ1UWe/fuRa9evWBqaoqBAwfC29sbBQUFOHnyJL744gtcu3ZNa8+CX79+HbNnz0br1q3h7u6ulT4UMWPGDDg5OaFJkyY4cOCA3nIYuh9++EFu+fvvv8ehQ4dKrG/QoIHafeXl5cmGvWzdurVC+/BzVA4/T1IWC7UeJCQkoE+fPnBzc8ORI0fkhscbO3Ys7ty5g7179+ox4X8EQcCLFy9gbm6u8WMnJCTA3d0daWlpsLe31/jxK4rXx6E/e/YsDh06ZDDj0/NzVA4/T1IWL33rwaJFi5CTk4MNGzaUOoZt3bp1MWHCBNlyUVER5syZgzp16sDU1BTu7u6YNm2a3CxgAODu7o4PP/wQJ0+ehJ+fH8zMzFC7dm18//33sjabNm1Cr169AADBwcElLrMVH+PAgQNo1qwZzM3NsXbtWgDA3bt30atXL1SvXh0WFhb44IMP1PqFQp9n8xWNVCpFVFQU3nvvPZiZmcHR0RGjRo1Cenq6XLsLFy4gJCQEdnZ2MDc3h4eHB4YOHQrg5f0FxT+YZ8+eLfu38bZLn/wcNY+fJ72KZ9R6sHv3btSuXRsBAQEKtR8+fDg2b96Mnj17YtKkSTh37hwiIyNx48YN7NixQ67tnTt30LNnTwwbNgyDBg1CdHQ0Bg8eDF9fX7z33nto1aoVxo8fj2+++QbTpk2TXV579TJbXFwc+vbti1GjRmHEiBGoX78+UlJSEBAQgLy8PIwfPx41atTA5s2b0bVrV/z666/46KOPNPcXREobNWoUNm3ahCFDhmD8+PFISEjAt99+i8uXL+PUqVOoUqUKUlNT0b59e9jb22PKlCmwsbFBYmIifv/9dwCAvb09Vq9ejdGjR+Ojjz7Cxx9/DABo1KiRPt9apcTPk+QIpFOZmZkCAKFbt24KtY+NjRUACMOHD5db//nnnwsAhCNHjsjWubm5CQCE48ePy9alpqYKpqamwqRJk2Trtm/fLgAQjh49WqK/4mPs379fbv3EiRMFAMKJEydk67KzswUPDw/B3d1dkEgkgiAIQkJCggBA2Lhxo0LvTxAE4cmTJwIAITw8XOF9KrOxY8cKr/6ve+LECQGA8NNPP8m1279/v9z6HTt2CACEv//+u8xjq/NZ8HNUDT9Pehte+taxrKwsAEDVqlUVar9v38v5eV+fmnPSpEkAUOLSs5eXF1q2bClbtre3R/369XH37l2FM3p4eCAkJKREDj8/P7Ro0UK2zsrKCiNHjkRiYiKuX7+u8PFJs7Zv345q1aqhXbt2SEtLk718fX1hZWWFo0ePAgBsbGwAAHv27EFhYaEeE9Ob8POk17FQ61jx1HPZ2dkKtb937x7EYjHq1q0rt97JyQk2Nja4d++e3PpatWqVOIatrW2J77bexMPDo9Qc9evXL7G++JL56zlId27fvo3MzEw4ODjA3t5e7pWTk4PU1FQAQFBQEHr06IHZs2fDzs4O3bp1w8aNG0vc60D6xc+TXsfvqHXM2toaNWvWxNWrV5XaTyQSKdTOyMio1PWCEkO6a+MOb9IeqVQKBwcH/PTTT6VuL76hSCQS4ddff8XZs2exe/duHDhwAEOHDsWSJUtw9uxZWFlZ6TI2lYGfJ72OhVoPPvzwQ6xbtw5nzpxB8+bN39jWzc0NUqkUt2/flrvhKyUlBRkZGXBzc1O6f0WL/us54uLiSqy/efOmbDvpR506dfDXX38hMDBQoV+yPvjgA3zwwQeYN28etmzZgk8//RRbt27F8OHDVfq3QZrFz5Nex0vfevDll1/C0tISw4cPR0pKSont8fHxWL58OQCgU6dOAICoqCi5NkuXLgUAdO7cWen+LS0tAQAZGRkK79OpUyecP38eZ86cka3Lzc3FunXr4O7uDi8vL6VzkGZ88sknkEgkmDNnToltRUVFss85PT29xJUVHx8fAJBdLrWwsACg3L8N0ix+nvQ6nlHrQZ06dbBlyxb07t0bDRo0kBuZ7PTp09i+fTsGDx4MAGjcuDEGDRqEdevWISMjA0FBQTh//jw2b96M7t27Izg4WOn+fXx8YGRkhIULFyIzMxOmpqZo06YNHBwcytxnypQp+Pnnn9GxY0eMHz8e1atXx+bNm5GQkIDffvsNYrHyv/P98MMPuHfvHvLy8gAAx48fx9y5cwEAAwYM4Fm6goKCgjBq1ChERkYiNjYW7du3R5UqVXD79m1s374dy5cvR8+ePbF582asWrUKH330EerUqYPs7GysX78e1tbWsl8Izc3N4eXlhW3btuHdd99F9erV4e3tDW9v7zL75+eoWfw8qQQ933Veqd26dUsYMWKE4O7uLpiYmAhVq1YVAgMDhRUrVggvXryQtSssLBRmz54teHh4CFWqVBFcXV2FqVOnyrURhJePVnXu3LlEP0FBQUJQUJDcuvXr1wu1a9cWjIyM5B7VKusYgiAI8fHxQs+ePQUbGxvBzMxM8PPzE/bs2SPXRpnHs4KCggQApb5Ke3SMXnr9cZ5i69atE3x9fQVzc3OhatWqQsOGDYUvv/xSePTokSAIgnDp0iWhb9++Qq1atQRTU1PBwcFB+PDDD4ULFy7IHef06dOCr6+vYGJiotDjOfwc1cPPk95GJAhK3GVEREREOsXvqImIiAwYCzUREZEBY6EmIiIyYCzUREREBoyFmoiIyICxUBMRERkwFmoDtmjRInh6ekIqleo7itr69OmDTz75RN8xyhV+/lSaxMREiEQibNq0Sd9RSEdYqA1UVlYWFi5ciMmTJ8tG/RKJRBCJRFiyZEmJ9ps2bYJIJMKFCxc0nqVdu3YQiUQYN25cqds3bNiABg0awMzMDPXq1cOKFStKtJk8eTJ+++03/PPPPxrPVxHx8yeiYizUBio6OhpFRUXo27dviW2LFy+WDe+nbb///rvc+N6vW7t2LYYPH4733nsPK1asQPPmzTF+/HgsXLhQrl2TJk3QrFmzUosMlcTPn8ri5uaG58+fY8CAAfqOQrqi76HRqHSNGjUS+vfvL7cOgODj4yMAEJYsWSK3bePGjQIA4e+//9ZYhufPnwvu7u7CV199JQAQxo4dK7c9Ly9PqFGjRokhRz/99FPB0tJSePbsmdz6r7/+WrC0tBSys7M1lrGi4udPRMV4Rm2AEhIS8O+//6Jt27YltgUGBqJNmzZYtGgRnj9/rtUcixYtglQqxeeff17q9qNHj+Lp06cYM2aM3PqxY8ciNzcXe/fulVvfrl075Obm4tChQ1rLXBHw86/4IiIiIBKJcOvWLfTv3x/VqlWDvb09Zs6cCUEQcP/+fXTr1g3W1tZwcnKSuxJR2nfUgwcPhpWVFR4+fIju3bvDysoK9vb2+PzzzyGRSGTtYmJiIBKJEBMTI5entGMmJydjyJAheOedd2BqagpnZ2d069YNiYmJWvpbobKwUBug06dPAwCaNm1a6vaIiAikpKRg9erVbzxOfn4+0tLSFHq9LikpCQsWLMDChQvLnBP38uXLAIBmzZrJrff19YVYLJZtL+bl5QVzc3OcOnXqjbkrO37+lUfv3r0hlUqxYMEC+Pv7Y+7cuYiKikK7du3g4uKChQsXom7duvj8889x/PjxNx5LIpEgJCQENWrUwNdff42goCAsWbIE69atUylbjx49sGPHDgwZMgSrVq3C+PHjkZ2djaSkJJWOR6rjNJcG6ObNmwAADw+PUre3bNkSwcHBWLx4MUaPHl3mD9Kff/4ZQ4YMUahP4bW5WSZNmoQmTZqgT58+Ze7z+PFjGBkZlZge08TEBDVq1MCjR4/k1hsbG8PV1RXXr19XKFNlxc+/8vDz88PatWsBACNHjoS7uzsmTZqEyMhITJ48GQDQt29f1KxZE9HR0WjVqlWZx3rx4gV69+6NmTNnAgA+++wzNG3aFBs2bMDo0aOVypWRkYHTp09j8eLFcldUpk6dquxbJA1goTZAT58+hbGxMaysrMpsExERgaCgIKxZswahoaGltgkJCVHpMuPRo0fx22+/4dy5c29s9/z5c5iYmJS6zczMrNRLs7a2tqWewdF/+PlXHsOHD5f92cjICM2aNcODBw8wbNgw2XobGxvUr18fd+/efevxPvvsM7nlli1b4ocfflA6l7m5OUxMTBATE4Nhw4bB1tZW6WOQ5rBQl1OtWrVCcHAwFi1aVOJ/zmLOzs5wdnZW6rhFRUUYP348BgwYgPfff/+Nbc3NzVFQUFDqthcvXpR6picIAkQikVKZqCR+/hVDrVq15JarVasGMzMz2NnZlVj/9OnTNx7LzMwM9vb2cutsbW2Rnp6udC5TU1MsXLgQkyZNgqOjIz744AN8+OGHGDhwIJycnJQ+HqmHhdoA1ahRA0VFRcjOzkbVqlXLbBceHo7WrVtj7dq1sLGxKbH9+fPnyMzMVKjP4v/5vv/+e8TFxWHt2rUlbhrJzs5GYmIiHBwcYGFhAWdnZ0gkEqSmpspd/iwoKMDTp09Rs2bNEv2kp6ejXr16CmWqrPj5Vx5GRkYKrQNKfj2h6H6vKuuXpFdvOCs2ceJEdOnSBX/88QcOHDiAmTNnIjIyEkeOHEGTJk3e2hdpDm8mM0Cenp4AXt79+yZBQUFo3bo1Fi5cWOplxm3btsnOqt72KpaUlITCwkIEBgbCw8ND9gJe/hD38PDAwYMHAQA+Pj4AUGKQjQsXLkAqlcq2FysqKsL9+/fRoEEDpf4+Kht+/qQtxZewMzIy5Nbfu3ev1PZ16tTBpEmTcPDgQVy9ehUFBQV8Fl4PeEZtgJo3bw7g5Q+8Ro0avbFtREQEWrduXeqdnap8R9mnT58SP2AB4KOPPkKnTp0wYsQI+Pv7AwDatGmD6tWrY/Xq1ejUqZOs7erVq2FhYYHOnTvLHeP69et48eIFAgIClMpU2fDzJ21xc3ODkZERjh8/ju7du8vWr1q1Sq5dXl4exGIxzMzMZOvq1KmDqlWrIj8/X1dx6f9joTZAtWvXhre3N/766y8MHTr0jW2DgoIQFBSEY8eOldimyneUnp6esjO613l4eMj9z21ubo45c+Zg7Nix6NWrF0JCQnDixAn8+OOPmDdvHqpXry63/6FDh2BhYYF27doplamy4edP2lKtWjX06tULK1asgEgkQp06dbBnzx6kpqbKtbt16xb+7//+D5988gm8vLxgbGyMHTt2ICUl5Y1PApB2sFAbqKFDh2LWrFl4/vx5mY/fFIuIiEBwcLCOkskbM2YMqlSpgiVLlmDXrl1wdXXFsmXLMGHChBJtt2/fjo8//viN37vSS/z8SVtWrFiBwsJCrFmzBqampvjkk0+wePFieHt7y9q4urqib9++OHz4MH744QcYGxvD09MTv/zyC3r06KHH9JWTSHjbHQqkF5mZmahduzYWLVok96hGeRUbG4umTZvi0qVLpV5aJXn8/ImoGAu1AVu4cCE2btyI69evy2ZQKq/69OkDqVSKX375Rd9Ryg1+/kQEsFATEREZtPL9azoREVEFx0JNRERkwFioiYiIDBgLNRERkQFjoSYiohISExMhEomwadMmfUep9FioiYjUFB8fj1GjRqF27dowMzODtbU1AgMDsXz58lLHYdeU69evIyIiosQEKro2b948dO3aFY6OjhCJRIiIiNBrnoqGI5MREalh79696NWrF0xNTTFw4EB4e3ujoKAAJ0+exBdffIFr166VOha7Jly/fh2zZ89G69at4e7urpU+FDFjxgw4OTmhSZMmOHDggN5yVFQs1EREKkpISECfPn3g5uaGI0eOyI2tPnbsWNy5cwd79+7VY8L/CIJQ5jzh6kpISIC7uzvS0tJKzIlN6uOlbyIiFS1atAg5OTnYsGFDqROg1K1bV27c86KiIsyZMwd16tSBqakp3N3dMW3atBIzUrm7u+PDDz/EyZMn4efnBzMzM9SuXRvff/+9rM2mTZvQq1cvAEBwcDBEIhFEIhFiYmLkjnHgwAE0a9YM5ubmWLt2LQDg7t276NWrF6pXrw4LCwt88MEHav1Coc+z+cqAhZqISEW7d+9G7dq1FZ66c/jw4Zg1axaaNm2KZcuWISgoCJGRkaXOSHXnzh307NkT7dq1w5IlS2Bra4vBgwfj2rVrAIBWrVph/PjxAIBp06bhhx9+wA8//CA333dcXBz69u2Ldu3aYfny5fDx8UFKSgoCAgJw4MABjBkzBvPmzcOLFy/QtWtX7NixQwN/K6RxAhERKS0zM1MAIHTr1k2h9rGxsQIAYfjw4XLrP//8cwGAcOTIEdk6Nzc3AYBw/Phx2brU1FTB1NRUmDRpkmzd9u3bBQDC0aNHS/RXfIz9+/fLrZ84caIAQDhx4oRsXXZ2tuDh4SG4u7sLEolEEARBSEhIEAAIGzduVOj9CYIgPHnyRAAghIeHK7wPvR3PqImIVJCVlQUACk/buW/fPgBAWFiY3PpJkyYBQIlLz15eXmjZsqVs2d7eHvXr18fdu3cVzujh4YGQkJASOfz8/NCiRQvZOisrK4wcORKJiYm4fv26wscn3WChJiJSgbW1NQAgOztbofb37t2DWCxG3bp15dY7OTnBxsYG9+7dk1tfq1atEsewtbVFenq6whk9PDxKzVG/fv0S64svmb+eg/SPhZqISAXW1taoWbMmrl69qtR+IpFIoXZGRkalrheUmPBQG3d4k+6xUBMRqejDDz9EfHw8zpw589a2bm5ukEqluH37ttz6lJQUZGRkwM3NTen+FS36r+eIi4srsf7mzZuy7WRYWKiJiFT05ZdfwtLSEsOHD0dKSkqJ7fHx8Vi+fDkAoFOnTgCAqKgouTZLly4FAHTu3Fnp/i0tLQEAGRkZCu/TqVMnnD9/Xu6Xi9zcXKxbtw7u7u7w8vJSOgdpFwc8ISJSUZ06dbBlyxb07t0bDRo0kBuZ7PTp09i+fTsGDx4MAGjcuDEGDRqEdevWISMjA0FBQTh//jw2b96M7t27Izg4WOn+fXx8YGRkhIULFyIzMxOmpqZo06YNHBwcytxnypQp+Pnnn9GxY0eMHz8e1atXx+bNm5GQkIDffvsNYrHy528//PAD7t27h7y8PADA8ePHMXfuXADAgAEDeJauLn3fdk5EVN7dunVLGDFihODu7i6YmJgIVatWFQIDA4UVK1YIL168kLUrLCwUZs+eLXh4eAhVqlQRXF1dhalTp8q1EYSXj1Z17ty5RD9BQUFCUFCQ3Lr169cLtWvXFoyMjOQe1SrrGIIgCPHx8ULPnj0FGxsbwczMTPDz8xP27Nkj10aZx7OCgoIEAKW+Snt0jJQjEgQl7kwgIiIineJ31ERERAaMhZqIiMiAsVATEREZMBZqIiIiA8ZCTUREZMBYqImIiAwYCzUREZEBY6EmIiIyYCzUREREBoyFmoiIyICxUBMRERkwFmoiIiIDxkJNRERkwP4fBehFzONx9+kAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -1879,14 +1879,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "The sample counts kwargs can be utilised via `prop_sample_counts_kwargs` in the `plot()` function.\n",
- "\n",
- "By default, the following keywords are passed:\n",
- "\n",
- "- 'color': 'k'\n",
- "- 'zorder': 5 \n",
- "- 'ha': 'center'\n",
- "- 'va': 'center"
+ "The sample counts kwargs can be utilised via `prop_sample_counts_kwargs` in the `.plot()` function."
]
},
{
@@ -1896,7 +1889,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXg9JREFUeJzt3XdUFNffBvBnl15EUKpEAUtEgoJiQEFF/KnYNVFjib3GEhVMYheMBUtUjLEnqClGYxJjjSUq9hILiRUVQWyAiCBFKbvz/sHLxhXQLWwBns85e+LO3Jn7rGP4MrMz94oEQRBAREREekms6wBERERUOhZqIiIiPcZCTUREpMdYqImIiPQYCzUREZEeY6EmIiLSYyzUREREeoyFmoiISI+xUBMREemxSl+oHz9+jPDwcDx+/FjXUYiI6BX8+VyIhfrxY8yZM6fS/0MgItI3/PlcqNIXaiIiIn3GQk1ERKTHWKiJiIj0GAs1ERGRHmOhJiIi0mMs1ERERHqMhZqIiEiPsVATERHpMb0q1MePH0fXrl1Ro0YNiEQi/PHHH2/dJjo6Gk2aNIGJiQnq1q2LTZs2aTwnERGRtuhVoc7OzoaXlxdWrVqlUPv4+Hh07twZQUFBiImJwaRJkzBixAgcOHBAw0mJiIi0w1DXAV7VsWNHdOzYUeH2a9euhZubG5YuXQoAaNCgAU6ePInly5cjODhYUzGJiIi0Rq8KtbLOnDmDtm3byi0LDg7GpEmTSt0mNzcXubm5svdZWVmaiqeQsUu34Flmjk4z6AubKuZYPbm/rmNoXcx3E5GX9UzXMXTO2NIG3sNX6DoGkd4p14U6KSkJDg4OcsscHBzw/PlzvHjxAmZmZsW2iYiIwJw5c7QV8a2eZeYgNUO3vyyQbuVlPUNe5lNdx6CKQpIPiA0BkUjXSaiMlOtCrYpp06YhNDRU9j4mJgaBgYE6TFRILBKhmpWFrmPoRNrzbEgFQdcxdE8khrGlja5TaF1e1jNAkOo6RsWRnQpY2AEGle7He4VVro+ko6MjkpOT5ZYlJyfDysqqxLNpADAxMYGJiYnsvaWlpUYzKqqalQV+Dh+h6xg60S/8W15VQOGlX9+J3+s6htadXzGIVxTKmiSPhboC0au7vpXVvHlzHD58WG7ZoUOH0Lx5cx0lIiLSA5I8XSegMqRXhTorKwsxMTGIiYkBUPj4VUxMDBITEwEUXrYeNGiQrP0nn3yCu3fv4osvvsDNmzexevVq/PLLLwgJCdFFfCIi/VCQ+/Y2VG7oVaG+cOECGjdujMaNGwMAQkND0bhxY8yePRsA8PjxY1nRBgA3Nzfs3bsXhw4dgpeXF5YuXYpvv/2Wj2YRUeVW8FLXCagM6dWXGK1bt4bwhpuKShp1rHXr1rh8+bIGUxERlTP5L3SdgMqQXp1RExFRGcjP1nUCKkMs1EREFU0eB1GqSFioK4s1a4BGjQArq8JX8+bAn38WbycIQMeOhYMlKDApCpUjx48DXbsCNWqUfHx//x1o3x6oXr1w/f/f1EnlUG6mrhNQGWKhrizeeQdYuBC4eBG4cAFo0wbo3h24dk2+XWQkRzSqqLKzAS8voLRJb7KzgRYtgEWLtJuLyl7uc10n0JlVq1bB1dUVpqam8PPzw/nz59/YPjIyEvXr14eZmRlq1qyJkJAQvHypXzfj6dXNZKRBXbvKv58/v/As++xZ4L33CpfFxABLlxYWcicnrUckDevYsfBVmoEDC/+bkKCVOKRBLzN0nUAntm3bhtDQUKxduxZ+fn6IjIxEcHAwYmNjYW9vX6z9li1bMHXqVERFRcHf3x+3bt3CkCFDIBKJsGzZMh18gpLxjLoykkiArVsLz6CKBofJyQH69y8823J01G0+IlJPJS3Uy5Ytw8iRIzF06FB4eHhg7dq1MDc3R1RUVIntT58+jYCAAPTv3x+urq5o3749+vXr99azcG1joa5MrlwBLC0BExPgk0+AHTsAD4/CdSEhgL9/4eVwIirfXqTrOoHW5eXl4eLFi3IzKorFYrRt2xZnzpwpcRt/f39cvHhRVpjv3r2Lffv2oVOnTlrJrChe+q5M6tcvvLydkQH8+isweDBw7Bhw5w5w5AjA59GJKoaX6bpOUKaysrLw/Pl/37u/PmcDAKSmpkIikZQ4o+LNmzdL3G///v2RmpqKFi1aQBAEFBQU4JNPPsH06dPL/kOogWfUlYmxMVC3LuDjA0REFN5YtGJFYZGOiwOsrQFDw8IXAPTsCbRurcvERKSKnDRdJyhTgYGBqFq1quwVERFRJvuNjo7GggULsHr1aly6dAm///479u7di7lz55bJ/ssKz6grM6kUyM0F5swBRrw2c1fDhsDy5cVvQiMi/ZfztPBRywryBMexY8fg7e0te//62TQA2NrawsDAoMQZFR1Lue9m1qxZGDhwIEb8/8+/hg0bIjs7G6NGjcKMGTMgFuvHuSwLdWUxbVrhHb+1agGZmcCWLUB0NHDgQOHNYyX9Q65VC3Bz03pU0pCsrMKvOYrExxd+FVKtWuGxTksDEhOBR48K18fGFv63tH8fpL8keYXPUpta6TpJmbC0tISV1Zs/i7GxMXx8fHD48GH06NEDACCVSnH48GGMHz++xG1ycnKKFWMDAwMAeONw1trGQl1ZpKQAgwYBjx8DVasWDn5y4ADQrp2uk5G2XLgABAX99z40tPC/gwcDmzYBu3YBQ4f+t75v38L/hoUB4eHaSkllJSu5whRqRYWGhmLw4MFo2rQpfH19ERkZiezsbAz9/3/XgwYNgrOzs+zSedeuXbFs2TI0btwYfn5+uHPnDmbNmoWuXbvKCrY+YKGuLL77Trn2evTbJJWR1q3ffFyHDCl8UcWQcR+wrafrFFrVp08fPHnyBLNnz0ZSUhK8vb2xf/9+2Q1miYmJcmfQM2fOhEgkwsyZM/Hw4UPY2dmha9eumD9/vq4+QolYqImIKqJnCbpOoBPjx48v9VJ3dHS03HtDQ0OEhYUhLCxMC8lUpx/flBMRUdlKva3rBFRGWKiJiCqipCuFT3ZQucdCTURUEeVmAqm3dJ2CygALNRFRRXXvlK4TUBlgoSYiqqjuRvMJjgqAhZqIqKJKTwSe3nl7O9JrLNRERBXZnb90nYDUxEJNRFSR3fmLd3+XcyzUREQVWXYq8DhG1ylIDSzUREQVXdxhXScgNbBQExFVdHePAZICXacgFbFQExFVdLmZwIO/dZ2CVMRCTURUGdw+qOsEpCIWaiKiyiDhJPDyua5TkApYqImIKoimTZvinQY+aLrgUvGVkjzg1gHthyK1sVATEVUQSUlJePjoMZKe55Xc4OpvgFSi3VCkNhZqIqLKIvMxEHdE1ylISSzURESVycVNPKsuZ1ioiYgqk4wHwI3duk5BSmChJiKqbC5EFT5bTeUCCzURUWXzMqPwEjiVCyzURESV0dXfgbR4XacgBbBQExFVRoIUOL0SEARdJ6G3YKEmIqqsHl4E7p3SdQp6CxZqIqLK7OwaQJKv6xT0BizURESVWcYD4NoOXaegN2ChJiKq7C5uBnLSdJ2CSlFmhVoQBBw5cgR//vknMjP5fB4RUbmRlwX8/a2uU1ApVCrUM2bMQFBQkOy9IAho37492rVrh86dO6Nhw4aIi4srs5BERKRhN/cCydd0naJce/z4Mf755x9kZ2eX6X5VKtS//fYbfH19Ze9//fVXHD58GPPmzcOePXsgkUgQHh5eVhmJiEgbTiwFJAW6TlHu7Ny5E+7u7njnnXfQpEkTnDt3DgCQmpqKxo0b448//lBr/yoV6ocPH6Ju3bqy97///js8PDwwbdo0dOrUCWPGjEF0dLRawYiISMuexgFXtus6Rbmye/dufPjhh7C1tUVYWBiEV55Lt7W1hbOzMzZu3KhWHyoVakNDQ+Tm5gIovOx9+PBhdOjQQbbewcEBqampagUjIiIduBAFpN/XdYpy48svv0SrVq1w8uRJjBs3rtj65s2b4/Lly2r1oVKh9vT0xI8//ohnz55h48aNePr0KTp37ixbf+/ePdja2qoUaNWqVXB1dYWpqSn8/Pxw/vz5N7aPjIxE/fr1YWZmhpo1ayIkJAQvX75UqW8iokpPkgccXwJIpbpOUi5cvXoVH330UanrHRwckJKSolYfhqpsNHv2bHTt2lVWjAMCAuRuLtu7dy/ef/99pfe7bds2hIaGYu3atfDz80NkZCSCg4MRGxsLe3v7Yu23bNmCqVOnIioqCv7+/rh16xaGDBkCkUiEZcuWqfLRiIjo8T/A9T8Azw91nUTvmZubv/Hmsbt376J69epq9aHSGXW7du1w6dIlLFu2DFFRUTh48KBs3bNnz9CqVStMmDBB6f0uW7YMI0eOxNChQ+Hh4YG1a9fC3NwcUVFRJbY/ffo0AgIC0L9/f7i6uqJ9+/bo16/fW8/CiYjoLc5vALLUOxOsDIKCgrB582YUFBS/CS8pKQkbNmxA+/bt1epD5eeoPTw8MHHiRAwePBimpqay5TY2Nli+fDlat26t1P7y8vJw8eJFtG3b9r9wYjHatm2LM2fOlLiNv78/Ll68KCvMd+/exb59+9CpUyflPxAREf0nPwc4tULXKfTe/Pnz8eDBA7z//vtYt24dRCIRDhw4gJkzZ6Jhw4YQBAFhYWFq9aHSpe/MzEykp6ejZs2asmWPHj3C2rVrkZubi169eil96Ts1NRUSiQQODg5yyx0cHHDz5s0St+nfvz9SU1PRokULCIKAgoICfPLJJ5g+fXqp/eTm5spuhAOArKwspXISEVUaCScLJ+5w9tF1Er1Vv359nDx5EhMnTsSsWbMgCAKWLFkCAGjdurXsvit1qFSoR40ahfj4eJw9exYA8Pz5czRr1gwPHjyAWCzGihUrsH//fqXPqpUVHR2NBQsWYPXq1fDz88OdO3cwceJEzJ07F7NmzSpxm4iICMyZM0ejuYjKk6ZNmyIpKQmOjo64cOGCruOQvjm/AejRBBCJdJ1Eb7333nv466+/8OzZM9y5cwdSqRS1a9eGnZ1dmexfpUvfJ0+eRJcuXWTvf/zxRzx69AinT5/Gs2fP0KhRI8ybN0+pfdra2sLAwADJyclyy5OTk+Ho6FjiNrNmzcLAgQMxYsQINGzYEB988AEWLFiAiIgISEu5Y3HatGnIyMiQvY4dO6ZUTqKKJikpCQ8fPkRSUpKuo5A+SrkBPLqk6xTlgo2NDd5//334+fmVWZEGVCzUqampcHZ2lr3ftWsXWrRogWbNmqFKlSoYNGgQ/vnnH6X2aWxsDB8fHxw+fFi2TCqV4vDhw2jevHmJ2+Tk5EAslv8IBgYGACD30PmrTExMYGVlJXtZWloqlZOIqNLh7Fql+vrrrxEcHFzq+o4dO2LNmjVq9aFSoba2tpb99v3ixQucOHFC7q42Q0ND5OTkKL3f0NBQbNiwAZs3b8aNGzcwZswYZGdnY+jQoQCAQYMGYdq0abL2Xbt2xZo1a7B161bEx8fj0KFDmDVrFrp27Sor2EREpKaEU0D2U12n0EvfffcdPDw8Sl3v4eGB9evXq9WHSt9R+/v7Y/Xq1XB3d8f+/fvx8uVLdO/eXbb+1q1bcmfciurTpw+ePHmC2bNnIykpCd7e3ti/f7/sBrPExES5M+iZM2dCJBJh5syZePjwIezs7NC1a1fMnz9flY9FREQlEaTAnUOAV19dJ9E7cXFxJY5IVsTd3R0bNmxQqw+VCvWiRYvQvn179OzZEwAwefJkvPfeewAAiUSC7du3yw0pqozx48dj/PjxJa57ffxwQ0NDhIWFqX3rOxERvUXsn0CjPryp7DXGxsZvvL/j8ePHxb6iVZZKhbpu3bqIjY3F9evXUbVqVblbz3NycvDNN9/Ay8tLrWBERKRHniUAT+8AtvV0nUSvNGvWDJs2bUJISAiqVKkity4jIwMbN25Es2bN1OpDpUINAEZGRiUW4ypVqshdBiciogri9kEW6teEhYUhMDAQ3t7emDRpkuzq8tWrVxEZGYnHjx9jy5YtavWhcqF+/vw5Vq9ejaNHjyIlJQXr1q2Dr68v0tLSsGnTJnTr1k1uKkwiovIi/0Um7u5fi7Tb5wCRGLbu/qgdPBoGxmalbvPv91PxPPGK3DLHJh1Rt1PhV3nJ/xzC7d2RJW7rG/ITjC2syyq+5tw5DPiNAdS8lFuR+Pn5Yffu3Rg9ejQmTpwI0f9/NSAIAtzc3LBr165Sn1xSlEqF+sGDBwgMDMT9+/dRr1493Lx5UzbCV7Vq1bBu3Trcu3cPK1Zw+Dki0k//fj8VDl7/g4NXu2Lrbv2xBHlZafD8eB6kEglu747Enb0rUf+DL964T4fGwXAJHCB7Lzb6b3hlW49WsKkjP8LXrV3LIS3ILx9FGgByngKPLgPv6O9IZatWrcKSJUuQlJQELy8vrFy5Er6+vqW2T09Px4wZM/D7778jLS0NLi4uiIyMVGoo6nbt2uHOnTu4fPky4uLiAAB16tRBkyZNZIVbHSoV6s8//xyZmZmIiYmBvb19sZmtevTogT179qgdjohI23JSE/Es7iK8hkWiSo3Cy7x1OozGtZ/D4dp2OEyqlD4TkoGRKYwtq5WyzgQGRiay9/nZGchI+Bf1ukws2w+gabcP6m2hVnYGxry8PLRr1w729vb49ddf4ezsjHv37sHa2lrpvsViMXx8fODjU/Z/NyoV6oMHDyIkJAQeHh54+rT4s3W1a9fG/fuceJyIyp/nD27CwNRCVqQBwNqtMSASIfNhLEzc/UvdNuXqUaRcOQpjSxtUq+eLmi37wuCVs+pXJV85DLGRCao3CCjzz6BRCSeAgsmAobGukxTz6gyMALB27Vrs3bsXUVFRmDp1arH2UVFRSEtLw+nTp2FkZAQAKo/Lff36ddy9exfPnj0rccCtQYMGqbRfQMVC/eLFizcOj5aZmalyICIiXcrPegZjc2u5ZSKxAYzMqiA/+1mp29l7BsKkqj2Mq1RHdnI8Eo5sxIunD9Cg98wS2yfHHISdZ6DcWXa5kJcNPDgPuLbQdRI5RTMwvjoo1ttmYCz6/njcuHHYuXMn7Ozs0L9/f0yZMkXhQbPi4uIwYMAAnD9/vtQRMUUikfYLtYeHB44fP47Ro0eXuP6PP/5A48aNVQ5FRFTW7p/chvunfpG9lxbkIfPhTcTtXytb1uQT1Yd6dGzSUfZnC3tXGFtWw9WfpuNF2mOYVXOSa/v8wQ28SL2P+t0nq9yfTt07o9VCnZWVhefPn8vem5iYwMRE/hccVWZgvHv3Lo4cOYKPP/4Y+/btw507dzB27Fjk5+crPD7H6NGjceXKFURGRqJly5awsbFR8tO9nUqFetKkSRg8eDAaNWqE3r17Aygcl/vOnTuYM2cOzpw5g99++61MgxIRqcPRpxNsPVrK3sf+sQS27gGo/sqlbJMq1WFkaYO8nHS5bQWpBPkvMmFkofgP4SrO9QEAL589Klaoky8fgIVDbVg6ld2jTomJicjOzgYAZOdKkJj2ErWqlXzZXW2PYzSz31IEBgbKvQ8LC0N4eLja+5VKpbC3t8f69ethYGAAHx8fPHz4EEuWLFG4UJ86dQrTp0/Hp59+qnae0qhUqAcMGIB79+5h5syZmDFjBgCgQ4cOEAQBYrEYCxYsQI8ePcoyJxGRWozMqsDI7L8BKcSGJjCyqAqzajXk2lm94w7Jy2xkPb4tK6Tp8f8AgiArvorITr4LAMVuLpPkvUDqjZNwCRqs6keRc/78ecydOxd79+6VXXpNfyGB64zz6NKwGmZ1csH7rlXeshclZTwovARubFG2+y3FsWPH4O3tLXv/+tk0oNoMjE5OTjAyMpK7zN2gQQMkJSUhLy8PxsZv/x7e1tYWVatWVfCTqEblh+FmzJiBuLg4LFmyBGPGjMHIkSOxaNEixMbGYsqUKWWZkYhIa8xta8Gmjg9u712JzIexeH7/OuIOrIHde61kd3znPk/FxTWjkfkwFgDwIu0xEk/8jKzHt/EyPRlPb53FrZ1LYVXLExYObnL7f3LtOASpBPYNg9TO+vvvvyMgIAB//vlnse9HBQHYdzUN/otj8PvlVLX7Kub5o7LfZyksLS3lZj0sqVCrMgNjQECAbP7oIrdu3YKTk5NCRRoAPvnkE/z444+QSCRKfirFqTzgCQDUqlULISEhZZWFiEgvvNvjc9zdvwZXf5oBiESo7h6AOsH/3ZMjSCV48fQBJPm5AACxgSHS42Pw6PxOSPJewsTKDtUbBKBmi+KTWCT/cxDV6/vD0FS9KXbPnz+PPn36QCKRlHoTk0QKiCCgz4YbOP2Fd9meWWcl690oZaGhoRg8eDCaNm0KX19fREZGFpuB0dnZGREREQCAMWPG4JtvvsHEiRPx6aef4vbt21iwYAEmTJigcJ/vvvsuJBIJvLy8MGzYMNSsWbPEG9E+/PBDlT+XSoX60qVLOHv2LMaOHVvi+tWrV8Pf31/uUgUR6aeiy4KlXR6sqBoNWljqOiOzKm8c3MTU2gEtZu6VvTepaodGgxYp1K/XkKWKh3yDefPmQRCEUot0EQGAAAHz9t3DzrGeZdI3AOBFetntq4woOwNjzZo1ceDAAYSEhKBRo0ZwdnbGxIkTlboq3KdPH9mfP/vssxLbiEQitc64VSrUM2bMgJmZWamF+siRI9i3bx8HPSEqBy5cuKDrCKSkxMRE7Nmz561FuohECuy+kla2N5jl6udjuMrMwAgAzZs3x9mzZ1Xu7+jRoypvqyiVCvXrz6q9rmXLlrJLC0Sk/yQSidz3dNpUIJGiQCKFWCJFfn6+TjJoi7QgD1JJgdr72bd3t8JFuoggAAeup2Fws+IjdKlCyH4GsYaPV0GB+n9Xmvb6HemaoFKhzszMhKFh6ZuKxWJkZGSoHIqosskQVQWyCrB3fn+d9P/T4Sv4+ehVnfQtZ/JPuk5QoY368Q5G/XinjPZ2GsC4MtpX+Zebm4tLly4hJSUFAQEBsLW1LbN9q1So69Wrh4MHD5b63Nj+/ftRu3ZttYIRkfb0DXoPfVq/p7P+qwoZMK5SHe9/ulFnGTStIDcHabcvQGxgCJGaw29u3bEHITMXKL3d2r4uGORb+ljlihIEAS9rtoJZxzkwNDFXe3+luXz5Mvz8/DS2/7Ly9ddfIzw8XHaCeujQIbRp0wapqalwd3fH4sWLMWzYMJX3r1KhHj58OEJCQhAaGorZs2fLBjBPT0/HnDlzsH//fixZskTlUESkXQY6nrbQUBDD0EAsG2+5IhJJjWBkZAgDE3O1hw39X+tWEIkilLr8LRIB7dyrwshQsaEx30gQIDEyhpGREQw1eMzedOVWX2zcuBGTJk1C37590b59e7mCbGtrizZt2mDr1q3aL9QTJkxATEwMIiMj8fXXX6NGjcIBAx49egSpVIqBAwfysS0iIg2p6eyE4DatcCj6pEJ3ExuIgU4e1qhVrezGFRfE+l9EtWHp0qXo3r07tmzZUuIkVT4+Pvj666/V6kOlv2mRSISNGzdi0KBB+O2333D3buEIPN27d0fPnj3RunVrtUIRkfZMWn0Az7JewMbSDJFjg3UdhxT0+aej8NexkxCJRG88sxYBEEGEacFOpbZRhWCooeFJy5k7d+688bnratWqlVjAlaHWr0RBQUEIClJ/dB0i0p1nWS/w9PkLXccgJTXx8kTUysUY9ukXEASUeGZtIC4s0j8PrYP3XdQbYOV1gpF2hg/Vd9bW1khNLX3kt+vXr6s9RoFKX0zFx8dj9+7dpa7fvXs3EhISVM1EREQK6NqhLQ78+j3atW4BkUgkt04kKrzcfTzEHT28yn5GJ6mJZse3Li86deqE9evXIz09vdi6a9euYcOGDejWrZtafah0Rv3ZZ5/h+fPn6Nq1a4nrV61aBWtra2zdulWtcERE9GZNvDzx87df4/7Dx2jVqTfSn2fC2swAF6e8V6bfSb9OYuHw9kaVwLx58+Dn5wdPT0907doVIpEImzdvRlRUFH777Tc4OTlh9uzZavWh0hn1mTNn0K5du1LX/+9//8OJEydUDkVERMqp6ewEc3MzAICFsVijRVpqYgXBxEpj+y9PatSogYsXL6JDhw7Ytm0bBEHADz/8gN27d6Nfv344e/as2s9Uq3RG/ezZM1SpUvrg7paWlmp/eU5ERPqpwE53z9zrk9zcXBw4cACurq749ttv8e233+LJkyeQSqWws7OTG1dcHSrtpVatWjh16lSp60+cOIF33nlH5VBERKS/8u29dB1BLxgbG6N37944ffq0bJmdnR0cHBzKrEgDKhbqfv364eeff8bXX38tNz6wRCLBihUrsG3bNvTvr5uhEImISHMEEyueUf8/kUiEevXqvfGu77KgUqGeNm0agoKCMGnSJDg5OaFVq1Zo1aoVatSogZCQEAQGBmLGjBllnZWIiHQsv1YrQFwGo5tVENOnT8c333yD2NhYjfWh0nfUJiYmOHjwIDZv3ozff/8dcXFxAABfX1/07NkTgwYNKtPTfiIi0gMGRsh3+5+uU+iVs2fPonr16vD09ETr1q3h6uoKMzMzuTYikQgrVqxQuQ+VBzwRi8UYOnQohg4dqnLnRERUfuTV6QDBpAqQn6vrKHrjm2++kf358OHDJbbRWaEmIqLKQzC1QV6dDrqOoXe0MY+7SoW6TZs2b20jEolK/e2CiIjKl5degwBDzT2bTaVTqVBLpdJiw9VJJBLcu3cP9+/fR926deHs7FwmAYmISLfya7WAxL6hrmPotbNnz+Lo0aNISUnB2LFjUa9ePeTk5ODmzZt49913YWmp+ljrKhXq6OjoUtft2bMHo0aNwrJly1TNREREekIwt0Xue311HUNv5eXloW/fvti5cycEQYBIJELXrl1Rr149iMVitG/fHiEhIWo9CVXmt2Z36dIFAwYMwKRJk8p610REpGUvvYcCnNKyVLNmzcKePXuwZs0axMbGyk05ampqit69e2Pnzp1q9aGRZ6jq1KmDv//+WxO7JiIiLcl3aQ1J9fq6jqHXfv75Z4wZMwajRo1CtWrViq1v0KAB7t69q1YfZX7Xd0FBAX755Re1ByEnIu2wsTST+y8RAAjGFsh1/0DXMfReSkoKGjYs/ft7AwMD5OTkqNWHSoV62LBhJS5PT0/H2bNnkZSUxO+oicqJyLHBuo5Aeijv3W6AsYWuY+i9mjVr4ubNm6WuP3XqFOrWratWHyoV6iNHjpQwSbkINjY2aNGiBUaMGIH27durFYyIiHRDMLUpHCqU3qp///5YtmwZevbsiXfffRcAZPVxw4YN+OWXX7Bw4UK1+lCpUCckJKjVKRER6a+8Ou0BAyNdxygXZsyYgbNnz6JVq1Zo0KABRCIRQkJCkJaWhgcPHqBTp04ICQlRqw8OyE1ERP8xNEV+rZa6TlFuGBsbY//+/di4cSNq164Nd3d35ObmolGjRti0aRN2794NAwP1JjFR+Iw6JycHqampcHR0hLGxsdy6qKgo/PTTT3j8+DHc3d0xbdo0vP/++2oFIyIi7cuv1YqPY71BaGgoBg4ciMaNGwMAEhMTYWdnhwEDBmDAgAEa6VPhM+ovv/wSjRo1Ql5entzyefPmYeTIkTh27BiePHmCP/74A61bt8Y///xT5mGJiEiDRGLkub19iOjKLDIyEjdu3JC9d3Nzw44dOzTap8KF+ujRo+jSpYvcMGjPnz/HvHnz4OzsjNu3b+PJkyc4e/YsjI2N1f7ynIiItKvA2ReCOR+tfRMHBwe556JfHeBEUxS+9J2QkICePXvKLdu3bx/y8vIwZcoUuLm5ASick3ro0KH45ZdfyjYpERFpjkiM3HpddJ1C73Xu3BlffvklDh48CGtrawDA0qVLsXXr1lK3EYlEao1OpnChzszMRPXq1eWWHT9+HCKRCMHB8s9henh44MmTJyqHIiIi7cp3DYJg6ajrGHpvxYoVsLe3x9GjR3Ht2jWIRCLcv38faWlppW7z+uPMylL40reLi0uxh7qjo6Ph4OBQ7GHuvLw8WFlZqRRo1apVcHV1hampKfz8/HD+/Pk3tk9PT8e4cePg5OQEExMTvPvuu9i3b59KfRMRVUaCiRVy3+2m6xjlgoWFBRYsWIAzZ84gLi4OgiAgMjIS8fHxpb7UHUJU4ULdvn17REVF4dy5cwCA77//Hjdv3sQHHxQfYu7ixYtwdXVVOsy2bdsQGhqKsLAwXLp0CV5eXggODkZKSkqJ7fPy8tCuXTskJCTg119/RWxsLDZs2MApNomIlJD7Xl+OQqagDz/8ECdOnJC9P3r0KNq1a6fRPhUu1LNmzYKlpSX8/f1hbGyMIUOGwM7ODrNnz5Zrl5OTgx07duB///uf0mGWLVuGkSNHYujQofDw8MDatWthbm6OqKioEttHRUUhLS0Nf/zxBwICAuDq6orAwEB4eXkp3TcRUWVU4OCFghp8nFZRO3fuRGJioux9mzZtcOjQIY32qXChtrW1RUxMDBYuXIjhw4djwYIFuHLlChwcHOTaXb16FR9//DEGDhyoVJC8vDxcvHgRbdu2/S+cWIy2bdvizJkzJW6za9cuNG/eHOPGjYODgwM8PT2xYMECSCQSpfomIqqUDE2R23AAoOZ3qJWJs7MzLl++LHtfNAe1Jik1hKiNjQ0+//zzN7bx9fWFr6+v0kFSU1MhkUiKFX4HB4dSBzy/e/cujhw5go8//hj79u3DnTt3MHbsWOTn5yMsLKzEbXJzc5Gbmyt7n5WVpXRWIqKKINf9AwhmNrqOUa707dsXX331FX755RfZXd9Tp05FREREqduIRCK1xhYp82kutUkqlcLe3h7r16+HgYEBfHx88PDhQyxZsqTUQh0REYE5c+ZoOSkRkX6RVq2FfNcgXccodyIiIlC3bl0cPXoUKSkpEIlEsLCwKPZUVFnSm0Jta2sLAwMDJCcnyy1PTk6Go2PJjww4OTnByMhIbhzVBg0aICkpCXl5ecWGOgWAadOmITQ0VPY+JiYGgYGBZfQpiIjKh5ee/QERp3tQloGBAUaNGoVRo0YBKPyKdubMmejfv7/G+tSbo2RsbAwfHx8cPnxYtkwqleLw4cNo3rx5idsEBATgzp07kEqlsmW3bt2Ck5NTiUUaAExMTGBlZSV7vTrSGhFRZVDg1BTSaurNkUyF4uPj0aNHD432oTeFGigc7HzDhg3YvHkzbty4gTFjxiA7OxtDhw4FAAwaNAjTpk2TtR8zZgzS0tIwceJE3Lp1C3v37sWCBQswbtw4XX0EIiL9JhIj1734Y7WkGhcXF5ibm2u0D4Uufe/atQtNmzZFjRo1NBqmT58+ePLkCWbPno2kpCR4e3tj//79shvMEhMTIRb/97tFzZo1ceDAAYSEhKBRo0ZwdnbGxIkTMWXKFI3mJCIqr/LfaQ7B0uHtDalEYrEYYrEYOTk5MDY2hlgsfutd3yKRCAUFBSr3qVCh/uCDD/DDDz/IrsHXrl0bkZGR6Nat7EeyGT9+PMaPH1/iuujo6GLLmjdvjrNnz5Z5DiKiikeEvLqddB2iXJs9ezZEIhEMDQ3l3muSQoW6SpUqSE9Pl71PSEjgY01EROVMgaM3z6bVFB4e/sb3mqBQofb19cX8+fORnJyMqlWrAiicOSspKanUbUQiEUJCQsomJRERqS3fre3bG5HeUahQr169GoMGDcLcuXMBFBbhLVu2YMuWLaVuw0JNRKQ/pJZOkFR/V9cxKpTc3Fz8+OOPOHjwIOLi4pCZmYkqVaqgbt266NChA/r371/qE0jKUKhQ161bF6dPn8bLly+RkpICV1dXREZGonv37moHICIizct3acWhQsvQlStX0L17d9y7dw+CIKBq1aqwtLRESkoKLl26hO3bt2P+/PnYtWsXGjRooFZfSj2eZWpqilq1aiEsLAxt2rSBi4vLG19ERKQHRGIUODfTdQqtUHaq5CJbt26FSCRS6JnorKwsdOvWDcnJyZg/fz7u37+PZ8+eyf133rx5ePToEbp27Yrs7Gy1PpNKz1GHhYXB09NTFvjGjRu4ceMGbzAjItJDEjtPCCZVdB1D45SdKrlIQkICPvvsM7Rs2VKhfjZu3IjExETs3bsXU6dOLTa1srOzM6ZNm4bdu3cjPj4emzZtUvUjAVBjwJO///4bQUFBsLGxgaenJzw9PWFjY4M2bdrgwoULaoUiIqKyk+9cOaaxVHaqZACQSCT4+OOPMWfOHNSuXVuhfvbu3Yv27dujdevWb2zXpk0btGvXDrt371bmYxSjUqE+d+4cWrVqhUuXLmHEiBFYvnw5li9fjhEjRuDSpUto1aqVwpcbiIhIg0RiFNg30nUKtWRlZeH58+ey16szIBZRZapkAPjyyy9hb2+P4cOHK5znypUrby3SRdq0aYMrV64ovO+SqDQpx4wZM+Ds7IyTJ08WmzAjPDwcAQEBmDFjhsYn0yYiojeTVH8XMLbQdQy1vD5xUlhYWLHnl1WZKvnkyZP47rvvEBMTo1SetLS0UieLep2DgwPS0tKU2v/rVCrU586dw+zZs0sM6uDggFGjRske5SIiIt0psPfUdQS1HTt2DN7e3rL3JiYmau8zMzMTAwcOxIYNG2Bra6vUtrm5uTAyMlKoraGhIfLy8lSJ+N8+VNlILBa/cdxSiUQiNyY3ERHphsTuPV1HUJulpSWsrKze2EbZqZLj4uKQkJCArl27ypYVzcRoaGiI2NhY1KlTp9T+EhIScOnSpbdmj4+Pf2ubt1GpUPv7+2PVqlXo379/scewEhMTsXr1agQEBKgdjoiIVCcYW0BaxfntDSuAV6dKLnrEqmiq5JLmj3B3dy/23fHMmTORmZmJFStWoGbNmm/sb9asWZg1a9ZbcwmCoPZY4CoV6gULFqBVq1Zwd3fHBx98gHffLRztJjY2Fjt37oShoSEiIiLUCkZEROqRVKsHiCrP1c3Q0FAMHjwYTZs2ha+vLyIjI4tNlezs7IyIiAiYmprKHjMuYm1tDQDFlr9u48aNGslfGpUKdePGjXHu3DnMmDEDu3btQk5ODgDA3NwcHTp0wLx58+Dh4VGmQYmISDkSm7q6jqBVyk6VrKrBgwervQ9lqFSoAcDDwwM7duyAVCrFkydPAAB2dnb8bpqISE9IrSvfCJHKTpX8KnUHJtEUlQt1EbFYXOx2eCIi0j2JVS1dR6AywNNfIqIKSDCpWu6fn6ZCLNRERBWQtIqTriNQGWGhJiKqgKQW9rqOQGWEhZqIqAKSmtvpOgKVEbVvJiMiIv0jmFXXdYRK5fr167h79y6ePXsGQRCKrR80aJDK+1arUGsyGBERqU5qVk3XESqFuLg4DBgwAOfPny+xDgKASCTSfqHWRjAiIlKdYGqt6wiVwujRo3HlyhVERkaiZcuWsLGxKfM+VCrU2ghGRETKsbezBQQpHIxzCh/PIo07deoUpk+fjk8//VRjfahUqLURjIiIlHN0188Q5aTC/PhcZBsoNg0jqcfW1hZVq2r2lyKV7vrWRjAiIlKNYFJF1xEqjU8++QQ//vgjJBKJxvpQ6Yy6KNi4ceNgYGBQ1pmIiEgNgsmb526msvPuu+9CIpHAy8sLw4YNQ82aNUusix9++KHKfahUqLURjIiIVCMYW+o6QqXRp08f2Z8/++yzEtuIRCK1zrhVKtTaCEZERKphodaeo0eParwPlQq1NoIREZFqBGN+R60tgYGBGu9DpUKtjWBERKQawchc1xEqpevXr+PevXsAABcXF3h4eJTJftUeQlRTwYiISDWCEae31KadO3ciNDQUCQkJcsvd3NywbNkydOvWTa39q1yoNR2MiIhUxDNqrdm3bx969uwJFxcXLFiwAA0aNAAA3LhxA+vXr8eHH36IPXv2oEOHDir3oVKh1kYwIiJSjWBkpusIlcbcuXPRqFEjnDhxAhYW/13J6NatG8aPH48WLVpgzpw52i/U2ghGRESqEQxNdR2h0vj333+xYMECuVpYxMLCAkOGDMH06dPV6kOlkcn+/fdfDB48+I3B/v33X7WCERGRigxMdJ2g0jA1NUVaWlqp69PS0mBqqt4vTioVam0EIyIi1Qhite8TJgW1adMGK1aswJkzZ4qtO3fuHL7++mu0bdtWrT5UOppFwTp06IDmzZuXGKx9+/ZqBSMiIhWxUGvN4sWL0bx5c7Ro0QK+vr6oX78+ACA2Nhbnz5+Hvb09Fi1apFYfKh1NbQQjIiJViXQdoNJwc3PDv//+i4iICPz555/Ytm0bgMLHlSdOnIipU6fC3t5erT5UKtTaCEZERFQe2NvbY/ny5Vi+fLlG9q/y9RFNByMiIhUJUl0noDLELzKIiCocQdcBKqxhw4ZBJBJh/fr1MDAwwLBhw966jUgkwnfffadynwoVal0EIyIiFfGMWmOOHDkCsVgMqVQKAwMDHDlyBCLRm+8JeNv6t1GoUOsiGBERqUjgGbWmvD5s9uvvNUGhQq2LYERERPouMTERdnZ2MDMredjWFy9e4MmTJ6hVq5bKfag04EliYiJevHhR6voXL14gMTFR5VBERKQGXtDUGjc3N+zYsaPU9bt27YKbm5tafahUqLURjIiIVCQy0HWCSkN4y9cM+fn5EItVKrUyKm2t6WCrVq2Cq6srTE1N4efnh/Pnzyu03datWyESidCjRw+V+yYiKvdYqDXq+fPnSExMlF05fvr0qez9q69///0XW7duhZOTk1r9Kfx41vPnz5Geni57XxTsdenp6WoF27ZtG0JDQ7F27Vr4+fkhMjISwcHBiI2NfeMgKgkJCfjss8/QsmVLlfolIqowxCzUmrR8+XJ8+eWXAApvnJ40aRImTZpUYltBEDBv3jy1+lO4UGsr2LJlyzBy5EgMHToUALB27Vrs3bsXUVFRmDp1aonbSCQSfPzxx5gzZw5OnDgh9wsFEVFlw0k5NKt9+/awtLSEIAj44osv0K9fPzRp0kSujUgkgoWFBXx8fNC0aVO1+lP4aGojWF5eHi5evIhp06bJlonFYrRt27bEmUmKfPnll7C3t8fw4cNx4sSJN/aRm5uL3Nxc2fusrCylcxIR6TWxka4TVGjNmzeXTUiVnZ2Nnj17wtPTU2P9KVyotREsNTUVEokEDg4OcssdHBxw8+bNErc5efIkvvvuO8TExCjUR0REBObMmaNuVCIi/WRgwkvfWpKTk4Ovv/4a5ubmGi3USt/xVRTszz//1EQepWRmZmLgwIHYsGEDbG1tFdpm2rRpyMjIkL2OHTum4ZRERNojmFQBROrdZUyKMTc3h6GhISwsLDTaj9JfZGgymK2tLQwMDJCcnCy3PDk5GY6OjsXax8XFISEhAV27dpUtk0oLh84zNDREbGws6tSpI7eNiYkJTExMZO8tLS3L8iMQEVEl0rNnT/z6668YM2aMxkbkVOnXrqJgb3tMS1nGxsbw8fHB4cOHZcukUikOHz4su+z+Knd3d1y5cgUxMTGyV7du3RAUFISYmBjUrFmzTPMRERG9qm/fvkhJSUFQUBB++uknnDp1CpcuXSr2UodKtwb27dsXY8eORVBQEEaOHAlXV9cSh097/WYzRYSGhmLw4MFo2rQpfH19ERkZiezsbNld4IMGDYKzszMiIiJgampa7HsBa2trANDo9wVEREQA0Lp1a9mfS7qZWRAEiEQiSCQSlftQqVBrMlifPn3w5MkTzJ49G0lJSfD29sb+/ftlN5glJiaqPcoLERFRWdi4caPG+1CpUGs62Pjx4zF+/PgS10VHR79x202bNpV9ICIiohIMHjxY432oVKi1EYyIiKg8ycrKwv379wEANWvWLLObldW+hpyVlYUbN27gxo0bHDyEiIgqnb///htBQUGwsbGBp6cnPD09YWNjgzZt2uDChQtq71/lceb+/vtvfPHFFzh58qTskSixWIyWLVti8eLFag+ZRkREpO/OnTuH1q1bw9jYGCNGjECDBg0AADdu3MDPP/+MVq1aITo6Gr6+vir3oVKh1kYwIiIiZa1atQpLlixBUlISvLy8sHLlylJr0YYNG/D999/j6tWrAAAfHx8sWLBAqdo1Y8YMODs74+TJk8XG+wgPD0dAQABmzJiBQ4cOqfyZVLr0XRQsNjYWa9aswYQJEzBhwgSsWbMGsbGxqFGjBmbMmKFyKCIiImUVzb4YFhaGS5cuwcvLC8HBwUhJSSmxfXR0NPr164ejR4/izJkzqFmzJtq3b4+HDx8q3Oe5c+cwevToEgflcnBwwKhRo3D27FmVPxOgYqHWRjAiIiJlvDr7ooeHB9auXQtzc3NERUWV2P6nn37C2LFj4e3tDXd3d3z77beyQbYUJRaLUVBQUOp6iUSi9iPFKm2tjWBERERA4U3Lz58/l71enQGxSNHsi23btpUtU2T2xVfl5OQgPz8f1apVUzibv78/Vq1ahXv37hVbl5iYiNWrVyMgIEDh/ZVEpe+oi4L1798fLi4uGglGREQEAIGBgXLvw8LCEB4eLrdMldkXXzdlyhTUqFFDrti/zYIFC9CqVSu4u7vjgw8+wLvvvgsAiI2Nxc6dO2FoaIiIiAiF91cSlQq1NoIREREBwLFjx+Dt7S17/+rESmVl4cKF2Lp1K6Kjo2Fqaqrwdo0bN8a5c+cwY8YM7Nq1Czk5OQAKJ7Dq0KED5s2bBw8PD7WyqVSotRGMiIgIKJzl0MrK6o1tlJ198VVfffUVFi5ciL/++guNGjVSOp+Hhwd27NgBqVSKJ0+eAADs7OzK7CtglZ+j1nQwIiIiRb06+2KPHj0A/Df7YmlDUgPA4sWLMX/+fBw4cEDt8T9EIpFsqsuynPJS7apaFOzVgERERNoWGhqKDRs2YPPmzbhx4wbGjBlTbPbFadOmydovWrQIs2bNQlRUFFxdXZGUlISkpCSlR9m8fv06evXqBSsrKzg5OcHJyQlWVlbo1auX7Bltdah8Rn39+nXMnj0bBw4ckLv0HRwcjPDwcE4zSUREWqXs7Itr1qxBXl4eevXqJbefkm5WK82JEyfQsWNHSKVSdO/eXe6erV27duHPP//E/v370bJlS5U/l0qFWhvBiIiIlKXM7IsJCQlq9xcSEgJ7e3scO3YMNWvWlFt3//59tGrVCqGhofj7779V7kOlQq2NYERERPru2rVrmDt3brFaCBTOoDVmzBiFz85Lo9J31NeuXcPYsWPfGOzatWtqBSMiItJ3Li4uJQ7AUiQvL6/EWqkMlQq1NoIRERHpu9mzZ+Prr79GTExMsXWXL1/GypUr1T6jVunS9+zZsxESEoLOnTvLPYT+arDIyEi1ghEREem7s2fPwsHBAT4+PvD390fdunUBALdv38aZM2fg6emJM2fOyA1jKhKJsGLFCoX7UKlQayMYERGRvvvmm29kfz516hROnTolt/7KlSu4cuWK3DKtFGptBCMiItJ3UqlU432oVKi1EYyIiIjUGPCEiIiICsXHx+PPP/+UTXfp4uKCjh07ws3NTe19q1WoNRmMiIioPJg8eTJWrFhR7GqzWCzGpEmT8NVXX6m1f5ULtaaDERER6bulS5di+fLl6NWrFyZPnowGDRoAAG7cuIHly5dj+fLlcHZ2RkhIiMp9qPQcdVGwDz/8EGfOnEF6ejrS09Nx5swZ9OrVSxaOiIioItuwYQO6deuGX375BX5+frCysoKVlRX8/PywdetWdO3aFevWrVOrD5UKtTaCERER6buEhAQEBweXuj44OFjtMcVVKtTaCEZERKTv7O3t8c8//5S6/p9//oGdnZ1afahUqLURjIiISN/17t0b3377LRYuXIjs7GzZ8uzsbCxatAjffvst+vTpo1YfKt1M1rt3b6xYsQKurq749NNPYWFhIQv2zTff4Ntvv8WkSZPUCkZERKTv5s6di5iYGEyfPh2zZ89GjRo1AACPHj1CQUEBgoKC8OWXX6rVh0qFWhvBiIiI9J25uTkOHz6MnTt3yj2u3KFDB3Tq1Aldu3aFSCRSqw+VCrU2ghEREemznJwcDBgwAD179sTHH3+M7t27a6QfpQu1toIRERHpM3Nzc/z111/o2LGjRvtR+mayomA5OTmayENERFRutGjRQm6mSE1Q6a5vbQQjIiLSd9988w1OnDiBmTNn4sGDBxrpQ6VCrY1gRERE+s7LywsPHjxAREQEXFxcYGJiIhsErOhVtWpVtfpQ6WYyLy8vFBQUICIiAhERETA0NISJiYlcG5FIhIyMDLXCERER6bOePXtq/OZplQq1NoIRERHpu02bNmm8D5UKtTaCERER6auXL19i586diI+Ph62tLTp37gwnJyeN9KVUodZmMCIiIn2UkpICf39/xMfHQxAEAIVPRP3xxx9o27ZtmfencKHWdjAiIiJ9NHfuXCQkJCAkJARt2rTBnTt3MHfuXIwePRpxcXFl3p/ChVrbwYiIiPTRwYMHMWjQIHz11VeyZQ4ODujfvz9iY2NRv379Mu1P4UKt7WBERET6KDExEVOmTJFb1qJFCwiCgOTk5DKvhwo/R52YmIgWLVqUGoyIiKgyyM3NhampqdyyovcFBQVl3p/CZ9TaDkZERKSvEhIScOnSJdn7onFDbt++DWtr62LtmzRponJfSt31rc1gRERE+mrWrFmYNWtWseVjx46Vey8IAkQiESQSicp9KVWotRmMiIhIH23cuFGr/SlcqLUZbNWqVViyZAmSkpLg5eWFlStXwtfXt8S2GzZswPfff4+rV68CAHx8fLBgwYJS2xMREalj8ODBWu1P4UKtrWDbtm1DaGgo1q5dCz8/P0RGRiI4OBixsbGwt7cv1j46Ohr9+vWDv78/TE1NsWjRIrRv3x7Xrl2Ds7OzVjITERFpikqzZ2nSsmXLMHLkSAwdOhQeHh5Yu3YtzM3NERUVVWL7n376CWPHjoW3tzfc3d3x7bffQiqV4vDhw1pOXj41bdoU77zzDpo2barrKEREVAKVxvrWlLy8PFy8eBHTpk2TLROLxWjbtq3C81/n5OQgPz8f1apVK3F9bm4ucnNzZe+zsrLUC13OJSUl4eHDh7qOQUREpdCrM+rU1FRIJBI4ODjILXdwcEBSUpJC+5gyZQpq1KhR6rCmERERqFq1quwVGBiodm4iIiJN0atCra6FCxdi69at2LFjR7FnvotMmzYNGRkZstexY8e0nJKIiEhxenXp29bWFgYGBsVGOktOToajo+Mbt/3qq6+wcOFC/PXXX2jUqFGp7UxMTGBiYiJ7b2lpqV5oIiIiDdKrM2pjY2P4+PjI3QhWdGNY8+bNS91u8eLFmDt3Lvbv38+booiIqELRqzNqAAgNDcXgwYPRtGlT+Pr6IjIyEtnZ2Rg6dCgAYNCgQXB2dkZERAQAYNGiRZg9eza2bNkCV1dX2XfZlpaWPFsmIqJyT+8KdZ8+ffDkyRPMnj0bSUlJ8Pb2xv79+2U3mCUmJkIs/u9CwJo1a5CXl4devXrJ7ScsLAzh4eHajE5ERFTm9K5QA8D48eMxfvz4EtdFR0fLvU9ISNB8ICIiIh3Rq++oiYiISB4LNRERkR5joSYiItJjLNRERFRhrFq1Cq6urjA1NYWfnx/Onz//xvbbt2+Hu7s7TE1N0bBhQ+zbt09LSRXHQl3JOTo6wtnZ+a0DyhAR6bui2RfDwsJw6dIleHl5ITg4GCkpKSW2P336NPr164fhw4fj8uXL6NGjB3r06CGbNllfsFBXchcuXMCDBw9w4cIFXUchIlKLsrMvrlixAh06dMDnn3+OBg0aYO7cuWjSpAm++eYbLSd/MxZqIiIq94pmX3x1Qqa3zb545syZYhM4BQcHKzxbo7bo5XPUpF0SiQRSqVRn/UslBZBKJJBKCpCfn6+zHLpSIJGiQKK7v399UCBIIZZIK/TxL8jPR35+ASTSHIjyC3QdRy1CQZ7s/1dBrLljVlBQ+PeUlZWF58+fy5a/PmcD8ObZF2/evFni/pOSktSarVFbWKj1gLmQg5z0HHSftEAn/d88exi3zh3RSd+v+2XeGF1HIF2a/JOuE5Aeen064so28iQLNaG+bxDefb+1TjPkiMxhW9UCP84ertMcuvD3yqF4klW+z7DUVVXIgHGV6nj/0426jqJR0v8/E60IxAaGEBsaa7SPy5cvw8/PD8eOHYO3t7ds+etn04Bqsy86OjqqNFujtrFQE0RiMUQ6ziAWGUBsYAgjIyMdJ9E+QwMxDA0q9+0ihkLh30GFP/4V/fOVMUPDwhJlaWkJKyurN7Z9dfbFHj16APhv9sXShqRu3rw5Dh8+jEmTJsmWHTp06I2zNeoCC3Uld+znVcjNyYKJuSUC+43TdRwiIpUpO/vixIkTERgYiKVLl6Jz587YunUrLly4gPXr1+vyYxTDQl3J5eZk4WXW87c3JCLSc8rOvujv748tW7Zg5syZmD59OurVq4c//vgDnp6euvoIJWKhJiKiCkOZ2RcBoHfv3ujdu7eGU6mncn8xRkREpOdYqImIiPQYCzUREZEeY6EmIiLSYyzUREREeoyFmoiISI+xUBMREekxFmoiIiI9xkJNRESkx1ioiYiI9BgLNRERkR7jWN+VnIm5pdx/iYhIv7BQV3Kc2pKISL/x0jcREZEeY6EmIiLSYyzUREREeozfUVdi1bIyMPjkATS5dwsm+fl4bF0dK9t9iDsO7+g6GpWxOseuwfH6A1g+eQ6JkQGe1bLFzfbeyLazkrUxf5qJBvtjYHPvCcQSCZ7Uc8K1Lj7IszTTYXIiYqGupCxevsDCX9bj6ju18WX3wcgws0CN9KfIMuEP5YqoWkIK7vnVQ7pzdYikUrgf+he+m47i+MTOkBgbwiCvAL6bopHpZI1zw9oAAN49/C/e/+E4To1uD4hFOv4ERJUXL31XUj0vHEdqlar4un1P3HasiZSq1RDjUg9J1tV1HY004O/BQXjQpDayHKoi08kG//T0g3lGDqo+TAMA2Nx7AvP0bPzzYTNkOloj09Ea//RshqqP0lD9brKO0xNVbjyjrqR842/gcq16+GLvz3jvYTzSLK2wr5EfDnm+r+topAWGL/MBAHnmxgAAsUQKQQRIDf/73V1qaABBJEK1e0/wtK6jTnISEc+oKy2HjGfocOU8HllXR3iPIfizoS9GRu9B0PVLuo5GmiYV4LHvEtJq2SLLwRoAkF6zOiRGhnA/EANxXgEM8grQYP9liKUCTDJf6DYvUSXHM+pKSiQIiHNwxo8B7QEA8fY14PI0BR2unMdRjyY6Tkea5LnnAqokZ+DMyLayZXkWprjUNwCeuy7A9ewtCCIRHjV0QUYNG34/TaRjLNSV1DOLKrhfzU5u2f1qdmh+56qOEpE2vLf7AuxvPsKZEf/Dy6rmcutS6zkhenJXGGXnQhCLUGBmjP8t3IEcGw4vS6RLLNSV1A2nWqjxLFVumfOzVDyxstFRItIoQcB7ey7C8foDnBn+P7yoVnrxzbcwAQBUj0uCSfZLJLs7ayslEZWA31FXUrsaB6B+0n30Oh8Nx/SnaHXzH7S/+jf2NfLTdTTSAM/dF+D8TwIuf+QPiYkhTDJfwCTzBcT5BbI271y8C+v7qTB/mgnnmHg02XoK8f715Z61JiLt4xl1JXXH8R1EdP4YA08fRJ/zR5FsZYNvAzvjmLu3rqORBricvwMAaP7dYbnl/3zohwdNagMALFKfo/6hf2D8Ig851ha40/o9xPvX13pWIpLHQl2JXajtjgu13XUdg7Rg77x+b20TG+yN2GBvzYchIqXw0jcREZEeY6EmIiLSYyzUREREeoyFmoiISI+xUBMREekxvSzUq1atgqurK0xNTeHn54fz58+/sf327dvh7u4OU1NTNGzYEPv27dNSUiIiIs3Su0K9bds2hIaGIiwsDJcuXYKXlxeCg4ORkpJSYvvTp0+jX79+GD58OC5fvowePXqgR48euHqVQ2ESEVH5p3eFetmyZRg5ciSGDh0KDw8PrF27Fubm5oiKiiqx/YoVK9ChQwd8/vnnaNCgAebOnYsmTZrgm2++0XJyIiKisqdXhTovLw8XL15E27b/zeojFovRtm1bnDlzpsRtzpw5I9ceAIKDg0ttT0REVJ7o1chkqampkEgkcHBwkFvu4OCAmzdvlrhNUlJSie2TkpJKbJ+bm4vc3FzZ+6ysLADAjRs31ImusrTH9/AyM00nfeuTlyJTiHPMcelS5ZsP++b9p3j2QqLrGDplKWTByBwwfO34Ozk5wcnJSUep1PP48WM8fvxY1zHKNV39XNY3elWotSEiIgJz5syRW+bi4oIBAwboKBG96uD6ebqOQLq0VP5G0LCwMISHh+smi5rWrVtX7GcNKS8wMLDc/rJWVvSqUNva2sLAwADJyclyy5OTk+Ho6FjiNo6Ojkq1nzZtGkJDQ+WWpaWlIS2tcp7VZmVlITAwEMeOHYOlJecdroz0+d9Aef4BPXr0aHTr1k2rferzsVRVeb6qUlZEgiAIug7xKj8/P/j6+mLlypUAAKlUilq1amH8+PGYOnVqsfZ9+vRBTk4Odu/eLVvm7++PRo0aYe3atVrLXV49f/4cVatWRUZGBqysOJ1hZcR/AxUHj2XFpFdn1AAQGhqKwYMHo2nTpvD19UVkZCSys7MxdOhQAMCgQYPg7OyMiIgIAMDEiRMRGBiIpUuXonPnzti6dSsuXLiA9evX6/JjEBERlQm9K9R9+vTBkydPMHv2bCQlJcHb2xv79++X3TCWmJgIsfi/m9X9/f2xZcsWzJw5E9OnT0e9evXwxx9/wNPTU1cfgYiIqMzo3aVv0q7c3FxERERg2rRpMDEx0XUc0gH+G6g4eCwrJhZqIiIiPaZXA54QERGRPBZqIiIiPcZCTWUqISEBIpEImzZt0nUUIqIKgYVah+Li4jB69GjUrl0bpqamsLKyQkBAAFasWIEXL15orN/r168jPDwcCQkJGutDEfPnz0e3bt3g4OAAkUhUbkeg0jSRSKTQKzo6Wu2+cnJyEB4ertS+eByVw+NJytK7x7Mqi71796J3794wMTHBoEGD4Onpiby8PJw8eRKff/45rl27prFnwa9fv445c+agdevWcHV11Ugfipg5cyYcHR3RuHFjHDhwQGc59N0PP/wg9/7777/HoUOHii1v0KCB2n3l5OTIhr1s3bq1QtvwOCqHx5OUxUKtA/Hx8ejbty9cXFxw5MgRueHxxo0bhzt37mDv3r06TPgfQRDw8uVLmJmZlfm+4+Pj4erqitTUVNjZ2ZX5/iuK18ehP3v2LA4dOqQ349PzOCqHx5OUxUvfOrB48WJkZWXhu+++K3EM27p162LixImy9wUFBZg7dy7q1KkDExMTuLq6Yvr06XKzgAGAq6srunTpgpMnT8LX1xempqaoXbs2vv/+e1mbTZs2oXfv3gCAoKCgYpfZivZx4MABNG3aFGZmZli3bh0A4O7du+jduzeqVasGc3NzNGvWTK1fKHR5Nl/RSKVSREZG4r333oOpqSkcHBwwevRoPHv2TK7dhQsXEBwcDFtbW5iZmcHNzQ3Dhg0DUHh/QdEP5jlz5sj+bbzt0iePY9nj8aRX8YxaB3bv3o3atWvD399fofYjRozA5s2b0atXL0yePBnnzp1DREQEbty4gR07dsi1vXPnDnr16oXhw4dj8ODBiIqKwpAhQ+Dj44P33nsPrVq1woQJE/D1119j+vTpsstrr15mi42NRb9+/TB69GiMHDkS9evXR3JyMvz9/ZGTk4MJEyagevXq2Lx5M7p164Zff/0VH3zwQdn9BZHSRo8ejU2bNmHo0KGYMGEC4uPj8c033+Dy5cs4deoUjIyMkJKSgvbt28POzg5Tp06FtbU1EhIS8PvvvwMA7OzssGbNGowZMwYffPABPvzwQwBAo0aNdPnRKiUeT5IjkFZlZGQIAITu3bsr1D4mJkYAIIwYMUJu+WeffSYAEI4cOSJb5uLiIgAQjh8/LluWkpIimJiYCJMnT5Yt2759uwBAOHr0aLH+ivaxf/9+ueWTJk0SAAgnTpyQLcvMzBTc3NwEV1dXQSKRCIIgCPHx8QIAYePGjQp9PkEQhCdPnggAhLCwMIW3qczGjRsnvPq/7okTJwQAwk8//STXbv/+/XLLd+zYIQAQ/v7771L3rc6x4HFUDY8nvQ0vfWvZ8+fPAQBVqlRRqP2+fYXz874+NefkyZMBoNilZw8PD7Rs2VL23s7ODvXr18fdu3cVzujm5obg4OBiOXx9fdGiRQvZMktLS4waNQoJCQm4fv26wvunsrV9+3ZUrVoV7dq1Q2pqquzl4+MDS0tLHD16FABgbW0NANizZw/y8/N1mJjehMeTXsdCrWVFU89lZmYq1P7evXsQi8WoW7eu3HJHR0dYW1vj3r17cstr1apVbB82NjbFvtt6Ezc3txJz1K9fv9jyokvmr+cg7bl9+zYyMjJgb28POzs7uVdWVhZSUlIAAIGBgejZsyfmzJkDW1tbdO/eHRs3bix2rwPpFo8nvY7fUWuZlZUVatSogatXryq1nUgkUqidgYFBicsFJYZ018Qd3qQ5UqkU9vb2+Omnn0pcX3RDkUgkwq+//oqzZ89i9+7dOHDgAIYNG4alS5fi7NmzsLS01GZsKgWPJ72OhVoHunTpgvXr1+PMmTNo3rz5G9u6uLhAKpXi9u3bcjd8JScnIz09HS4uLkr3r2jRfz1HbGxsseU3b96UrSfdqFOnDv766y8EBAQo9EtWs2bN0KxZM8yfPx9btmzBxx9/jK1bt2LEiBEq/dugssXjSa/jpW8d+OKLL2BhYYERI0YgOTm52Pq4uDisWLECANCpUycAQGRkpFybZcuWAQA6d+6sdP8WFhYAgPT0dIW36dSpE86fP48zZ87IlmVnZ2P9+vVwdXWFh4eH0jmobHz00UeQSCSYO3dusXUFBQWy4/zs2bNiV1a8vb0BQHa51NzcHIBy/zaobPF40ut4Rq0DderUwZYtW9CnTx80aNBAbmSy06dPY/v27RgyZAgAwMvLC4MHD8b69euRnp6OwMBAnD9/Hps3b0aPHj0QFBSkdP/e3t4wMDDAokWLkJGRARMTE7Rp0wb29valbjN16lT8/PPP6NixIyZMmIBq1aph8+bNiI+Px2+//QaxWPnf+X744Qfcu3cPOTk5AIDjx49j3rx5AICBAwfyLF1BgYGBGD16NCIiIhATE4P27dvDyMgIt2/fxvbt27FixQr06tULmzdvxurVq/HBBx+gTp06yMzMxIYNG2BlZSX7hdDMzAweHh7Ytm0b3n33XVSrVg2enp7w9PQstX8ex7LF40nF6Piu80rt1q1bwsiRIwVXV1fB2NhYqFKlihAQECCsXLlSePnypaxdfn6+MGfOHMHNzU0wMjISatasKUybNk2ujSAUPlrVuXPnYv0EBgYKgYGBcss2bNgg1K5dWzAwMJB7VKu0fQiCIMTFxQm9evUSrK2tBVNTU8HX11fYs2ePXBtlHs8KDAwUAJT4KunRMSr0+uM8RdavXy/4+PgIZmZmQpUqVYSGDRsKX3zxhfDo0SNBEATh0qVLQr9+/YRatWoJJiYmgr29vdClSxfhwoULcvs5ffq04OPjIxgbGyv0eA6Po3p4POltRIKgxF1GREREpFX8jpqIiEiPsVATERHpMRZqIiIiPcZCTUREpMdYqImIiPQYCzUREZEeY6HWY4sXL4a7uzukUqmuo6itb9+++Oijj3Qdo1zh8aeSJCQkQCQSYdOmTbqOQlrCQq2nnj9/jkWLFmHKlCmyUb9EIhFEIhGWLl1arP2mTZsgEolw4cKFMs/Srl07iEQijB8/vsT13333HRo0aABTU1PUq1cPK1euLNZmypQp+O233/DPP/+Ueb6KiMefiIqwUOupqKgoFBQUoF+/fsXWLVmyRDa8n6b9/vvvcuN7v27dunUYMWIE3nvvPaxcuRLNmzfHhAkTsGjRIrl2jRs3RtOmTUssMlQcjz+VxsXFBS9evMDAgQN1HYW0RddDo1HJGjVqJAwYMEBuGQDB29tbACAsXbpUbt3GjRsFAMLff/9dZhlevHghuLq6Cl9++aUAQBg3bpzc+pycHKF69erFhhz9+OOPBQsLCyEtLU1u+VdffSVYWFgImZmZZZaxouLxJ6IiPKPWQ/Hx8fj333/Rtm3bYusCAgLQpk0bLF68GC9evNBojsWLF0MqleKzzz4rcf3Ro0fx9OlTjB07Vm75uHHjkJ2djb1798otb9euHbKzs3Ho0CGNZa4IePwrvvDwcIhEIty6dQsDBgxA1apVYWdnh1mzZkEQBNy/fx/du3eHlZUVHB0d5a5ElPQd9ZAhQ2BpaYmHDx+iR48esLS0hJ2dHT777DNIJBJZu+joaIhEIkRHR8vlKWmfSUlJGDp0KN555x2YmJjAyckJ3bt3R0JCgob+Vqg0LNR66PTp0wCAJk2alLg+PDwcycnJWLNmzRv3k5ubi9TUVIVer0tMTMTChQuxaNGiUufEvXz5MgCgadOmcst9fHwgFotl64t4eHjAzMwMp06demPuyo7Hv/Lo06cPpFIpFi5cCD8/P8ybNw+RkZFo164dnJ2dsWjRItStWxefffYZjh8//sZ9SSQSBAcHo3r16vjqq68QGBiIpUuXYv369Spl69mzJ3bs2IGhQ4di9erVmDBhAjIzM5GYmKjS/kh1nOZSD928eRMA4ObmVuL6li1bIigoCEuWLMGYMWNK/UH6888/Y+jQoQr1Kbw2N8vkyZPRuHFj9O3bt9RtHj9+DAMDg2LTYxobG6N69ep49OiR3HJDQ0PUrFkT169fVyhTZcXjX3n4+vpi3bp1AIBRo0bB1dUVkydPRkREBKZMmQIA6NevH2rUqIGoqCi0atWq1H29fPkSffr0waxZswAAn3zyCZo0aYLvvvsOY8aMUSpXeno6Tp8+jSVLlshdUZk2bZqyH5HKAAu1Hnr69CkMDQ1haWlZapvw8HAEBgZi7dq1CAkJKbFNcHCwSpcZjx49it9++w3nzp17Y7sXL17A2Ni4xHWmpqYlXpq1sbEp8QyO/sPjX3mMGDFC9mcDAwM0bdoUDx48wPDhw2XLra2tUb9+fdy9e/et+/vkk0/k3rds2RI//PCD0rnMzMxgbGyM6OhoDB8+HDY2Nkrvg8oOC3U51apVKwQFBWHx4sXF/ucs4uTkBCcnJ6X2W1BQgAkTJmDgwIF4//3339jWzMwMeXl5Ja57+fJliWd6giBAJBIplYmK4/GvGGrVqiX3vmrVqjA1NYWtrW2x5U+fPn3jvkxNTWFnZye3zMbGBs+ePVM6l4mJCRYtWoTJkyfDwcEBzZo1Q5cuXTBo0CA4OjoqvT9SDwu1HqpevToKCgqQmZmJKlWqlNouLCwMrVu3xrp162BtbV1s/YsXL5CRkaFQn0X/833//feIjY3FunXrit00kpmZiYSEBNjb28Pc3BxOTk6QSCRISUmRu/yZl5eHp0+fokaNGsX6efbsGerVq6dQpsqKx7/yMDAwUGgZUPzrCUW3e1VpvyS9esNZkUmTJqFr1674448/cODAAcyaNQsRERE4cuQIGjdu/Na+qOzwZjI95O7uDqDw7t83CQwMROvWrbFo0aISLzNu27ZNdlb1tleRxMRE5OfnIyAgAG5ubrIXUPhD3M3NDQcPHgQAeHt7A0CxQTYuXLgAqVQqW1+koKAA9+/fR4MGDZT6+6hsePxJU4ouYaenp8stv3fvXont69Spg8mTJ+PgwYO4evUq8vLy+Cy8DvCMWg81b94cQOEPvEaNGr2xbXh4OFq3bl3inZ2qfEfZt2/fYj9gAeCDDz5Ap06dMHLkSPj5+QEA2rRpg2rVqmHNmjXo1KmTrO2aNWtgbm6Ozp07y+3j+vXrePnyJfz9/ZXKVNnw+JOmuLi4wMDAAMePH0ePHj1ky1evXi3XLicnB2KxGKamprJlderUQZUqVZCbm6utuPT/WKj1UO3ateHp6Ym//voLw4YNe2PbwMBABAYG4tixY8XWqfIdpbu7u+yM7nVubm5y/3ObmZlh7ty5GDduHHr37o3g4GCcOHECP/74I+bPn49q1arJbX/o0CGYm5ujXbt2SmWqbHj8SVOqVq2K3r17Y+XKlRCJRKhTpw727NmDlJQUuXa3bt3C//73P3z00Ufw8PCAoaEhduzYgeTk5Dc+CUCawUKtp4YNG4bZs2fjxYsXpT5+UyQ8PBxBQUFaSiZv7NixMDIywtKlS7Fr1y7UrFkTy5cvx8SJE4u13b59Oz788MM3fu9KhXj8SVNWrlyJ/Px8rF27FiYmJvjoo4+wZMkSeHp6ytrUrFkT/fr1w+HDh/HDDz/A0NAQ7u7u+OWXX9CzZ08dpq+cRMLb7lAgncjIyEDt2rWxePFiuUc1yquYmBg0adIEly5dKvHSKsnj8SeiIizUemzRokXYuHEjrl+/LptBqbzq27cvpFIpfvnlF11HKTd4/IkIYKEmIiLSa+X713QiIqIKjoWaiIhIj7FQExER6TEWaiIiIj3GQk1ERMUkJCRAJBJh06ZNuo5S6bFQExGpKS4uDqNHj0bt2rVhamoKKysrBAQEYMWKFSWOw15Wrl+/jvDw8GITqGjb/Pnz0a1bNzg4OEAkEiE8PFyneSoajkxGRKSGvXv3onfv3jAxMcGgQYPg6emJvLw8nDx5Ep9//jmuXbtW4ljsZeH69euYM2cOWrduDVdXV430oYiZM2fC0dERjRs3xoEDB3SWo6JioSYiUlF8fDz69u0LFxcXHDlyRG5s9XHjxuHOnTvYu3evDhP+RxCEUucJV1d8fDxcXV2RmppabE5sUh8vfRMRqWjx4sXIysrCd999V+IEKHXr1pUb97ygoABz585FnTp1YGJiAldXV0yfPr3YjFSurq7o0qULTp48CV9fX5iamqJ27dr4/vvvZW02bdqE3r17AwCCgoIgEokgEokQHR0tt48DBw6gadOmMDMzw7p16wAAd+/eRe/evVGtWjWYm5ujWbNmav1Cocuz+cqAhZqISEW7d+9G7dq1FZ66c8SIEZg9ezaaNGmC5cuXIzAwEBERESXOSHXnzh306tUL7dq1w9KlS2FjY4MhQ4bg2rVrAIBWrVphwoQJAIDp06fjhx9+wA8//CA333dsbCz69euHdu3aYcWKFfD29kZycjL8/f1x4MABjB07FvPnz8fLly/RrVs37Nixowz+VqjMCUREpLSMjAwBgNC9e3eF2sfExAgAhBEjRsgt/+yzzwQAwpEjR2TLXFxcBADC8ePHZctSUlIEExMTYfLkybJl27dvFwAIR48eLdZf0T72798vt3zSpEkCAOHEiROyZZmZmYKbm5vg6uoqSCQSQRAEIT4+XgAgbNy4UaHPJwiC8OTJEwGAEBYWpvA29HY8oyYiUsHz588BQOFpO/ft2wcACA0NlVs+efJkACh26dnDwwMtW7aUvbezs0P9+vVx9+5dhTO6ubkhODi4WA5fX1+0aNFCtszS0hKjRo1CQkICrl+/rvD+STtYqImIVGBlZQUAyMzMVKj9vXv3IBaLUbduXbnljo6OsLa2xr179+SW16pVq9g+bGxs8OzZM4Uzurm5lZijfv36xZYXXTJ/PQfpHgs1EZEKrKysUKNGDVy9elWp7UQikULtDAwMSlwuKDHhoSbu8CbtY6EmIlJRly5dEBcXhzNnzry1rYuLC6RSKW7fvi23PDk5Genp6XBxcVG6f0WL/us5YmNjiy2/efOmbD3pFxZqIiIVffHFF7CwsMCIESOQnJxcbH1cXBxWrFgBAOjUqRMAIDIyUq7NsmXLAACdO3dWun8LCwsAQHp6usLbdOrUCefPn5f75SI7Oxvr16+Hq6srPDw8lM5BmsUBT4iIVFSnTh1s2bIFffr0QYMGDeRGJjt9+jS2b9+OIUOGAAC8vLwwePBgrF+/Hunp6QgMDMT58+exefNm9OjRA0FBQUr37+3tDQMDAyxatAgZGRkwMTFBmzZtYG9vX+o2U6dOxc8//4yOHTtiwoQJqFatGjZv3oz4+Hj89ttvEIuVP3/74YcfcO/ePeTk5AAAjh8/jnnz5gEABg4cyLN0den6tnMiovLu1q1bwsiRIwVXV1fB2NhYqFKlihAQECCsXLlSePnypaxdfn6+MGfOHMHNzU0wMjISatasKUybNk2ujSAUPlrVuXPnYv0EBgYKgYGBcss2bNgg1K5dWzAwMJB7VKu0fQiCIMTFxQm9evUSrK2tBVNTU8HX11fYs2ePXBtlHs8KDAwUAJT4KunRMVKOSBCUuDOBiIiItIrfURMREekxFmoiIiI9xkJNRESkx1ioiYiI9BgLNRERkR5joSYiItJjLNRERER6jIWaiIhIj7FQExER6TEWaiIiIj3GQk1ERKTHWKiJiIj0GAs1ERGRHvs/+JcPP9tLl7kAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGGCAYAAAC0W8IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXflJREFUeJzt3XdYFFfbBvB7F6SLoFQJApaIBBXFQAQV8VUxGkuivpbYayyvCiaxC8aCJSrG2BPUFKMxibHGEhV7iYXEioogNkBUOlJ25/uDj40roNt3gft3XXvFnTkz517H8DCzM+eIBEEQQERERAZJrO8AREREVD4WaiIiIgPGQk1ERGTAWKiJiIgMGAs1ERGRAWOhJiIiMmAs1ERERAaMhZqIiMiAsVATEREZsCpfqB8/foyIiAg8fvxY31GIiOgl/PlcjIX68WPMmTOnyv9DICIyNPz5XKzKF2oiIiJDxkJNRERkwFioiYiIDBgLNRERkQFjoSYiIjJgLNREREQGjIWaiIjIgLFQExERGTCDKtTHjx9H165dUbt2bYhEIvz+++9v3CYmJgbNmzeHqakp6tevj02bNmk9JxERka4YVKHOyclB06ZNsWrVKoXaJyQkoEuXLggODkZsbCwmTZqEESNG4MCBA1pOSkREpBvG+g7wsvfffx/vv/++wu3Xrl0LDw8PLF26FADQqFEjnDx5EsuXL0dISIi2YhIREemMQRVqZZ05cwbt27eXWxYSEoJJkyaVu01+fj7y8/Nl77Ozs7UVTyFjl27B86xcvWYwFLbVLbB6cn99x9C52G8noiD7ub5j6J2JlS18hq/Qdwwig1OhC3VycjIcHR3lljk6OiIzMxN5eXkwNzcvtU1kZCTmzJmjq4hv9DwrF2kZ+v1lgfSrIPs5CrKe6jsGVRaSQkBsDIhE+k5CGlKhC7Uqpk2bhrCwMNn72NhYBAUF6TFRMbFIhJrWlvqOoRfPMnMgFQR9x9A/kRgmVrb6TqFzBdnPAUGq7xiVR04aYGkPGFW5H++VVoU+kk5OTkhJSZFblpKSAmtr6zLPpgHA1NQUpqamsvdWVlZazaiomtaW+ClihL5j6EW/iG94VQHFl379Jn6n7xg6d37FIF5R0DRJAQt1JWJQd30rq2XLljh8+LDcskOHDqFly5Z6SkREZAAkBfpOQBpkUIU6OzsbsbGxiI2NBVD8+FVsbCySkpIAFF+2HjRokKz9J598grt37+Lzzz/HzZs3sXr1avz8888IDQ3VR3wiIsNQlP/mNlRhGFShvnDhApo1a4ZmzZoBAMLCwtCsWTPMnj0bAPD48WNZ0QYADw8P7N27F4cOHULTpk2xdOlSfPPNN3w0i4iqtqIX+k5AGmRQX2K0bdsWwmtuKipr1LG2bdvi8uXLWkxFRFTBFObpOwFpkEGdURMRkQYU5ug7AWkQCzURUWVTwEGUKhMW6qpizRqgSRPA2rr41bIl8McfpdsJAvD++8WDJSgwKQpVIMePA127ArVrl318f/sN6NgRqFWreP3/39RJFVB+lr4TkAaxUFcVb70FLFwIXLwIXLgAtGsHdO8OXLsm3y4qiiMaVVY5OUDTpkB5k97k5ACtWgGLFuk2F2lefqa+E+jNqlWr4O7uDjMzM/j7++P8+fOvbR8VFYWGDRvC3Nwcrq6uCA0NxYsXhnUznkHdTEZa1LWr/Pv584vPss+eBd55p3hZbCywdGlxIXd21nlE0rL33y9+lWfgwOL/JibqJA5p0YsMfSfQi23btiEsLAxr166Fv78/oqKiEBISgri4ODg4OJRqv2XLFkydOhXR0dEICAjArVu3MGTIEIhEIixbtkwPn6BsPKOuiiQSYOvW4jOoksFhcnOB/v2Lz7acnPSbj4jUU0UL9bJlyzBy5EgMHToUXl5eWLt2LSwsLBAdHV1m+9OnTyMwMBD9+/eHu7s7OnbsiH79+r3xLFzXWKirkitXACsrwNQU+OQTYMcOwMureF1oKBAQUHw5nIgqtrx0fSfQuYKCAly8eFFuRkWxWIz27dvjzJkzZW4TEBCAixcvygrz3bt3sW/fPnTu3FknmRXFS99VScOGxZe3MzKAX34BBg8Gjh0D7twBjhwB+Dw6UeXwIl3fCTQqOzsbmZn/fu/+6pwNAJCWlgaJRFLmjIo3b94sc7/9+/dHWloaWrVqBUEQUFRUhE8++QTTp0/X/IdQA8+oqxITE6B+fcDXF4iMLL6xaMWK4iIdHw/Y2ADGxsUvAOjZE2jbVp+JiUgVuc/0nUCjgoKCUKNGDdkrMjJSI/uNiYnBggULsHr1aly6dAm//fYb9u7di7lz52pk/5rCM+qqTCoF8vOBOXOAEa/M3NW4MbB8eemb0IjI8OU+LX7UspI8wXHs2DH4+PjI3r96Ng0AdnZ2MDIyKnNGRady7ruZNWsWBg4ciBH///OvcePGyMnJwahRozBjxgyIxYZxLstCXVVMm1Z8x2+dOkBWFrBlCxATAxw4UHzzWFn/kOvUATw8dB6VtCQ7u/hrjhIJCcVfhdSsWXysnz0DkpKAR4+K18fFFf+3vH8fZLgkBcXPUptZ6zuJRlhZWcHa+vWfxcTEBL6+vjh8+DB69OgBAJBKpTh8+DDGjx9f5ja5ubmlirGRkREAvHY4a11joa4qUlOBQYOAx4+BGjWKBz85cADo0EHfyUhXLlwAgoP/fR8WVvzfwYOBTZuAXbuAoUP/Xd+3b/F/w8OBiAhdpSRNyU6pNIVaUWFhYRg8eDBatGgBPz8/REVFIScnB0P//9/1oEGD4OLiIrt03rVrVyxbtgzNmjWDv78/7ty5g1mzZqFr166ygm0IWKirim+/Va69Af02SRrStu3rj+uQIcUvqhwy7gN2DfSdQqf69OmDJ0+eYPbs2UhOToaPjw/2798vu8EsKSlJ7gx65syZEIlEmDlzJh4+fAh7e3t07doV8+fP19dHKBMLNRFRZfQ8Ud8J9GL8+PHlXuqOiYmRe29sbIzw8HCEh4frIJnqDOObciIi0qy02/pOQBrCQk1EVBklXyl+soMqPBZqIqLKKD8LSLul7xSkASzURESV1b1T+k5AGsBCTURUWd2N4RMclQALNRFRZZWeBDy98+Z2ZNBYqImIKrM7f+o7AamJhZqIqDK78yfv/q7gWKiJiCqznDTgcay+U5AaWKiJiCq7+MP6TkBqYKEmIqrs7h4DJEX6TkEqYqEmIqrs8rOAB3/pOwWpiIWaiKgquH1Q3wlIRSzURERVQeJJ4EWmvlOQClioiYgqiRYtWuCtRr5oseBS6ZWSAuDWAd2HIrWxUBMRVRLJycl4+OgxkjMLym5w9VdAKtFtKFIbCzURUVWR9RiIP6LvFKQkFmoioqrk4iaeVVcwLNRERFVJxgPgxm59pyAlsFATEVU1F6KLn62mCoGFmoioqnmRUXwJnCoEFmoioqro6m/AswR9pyAFsFATEVVFghQ4vRIQBH0noTdgoSYiqqoeXgTundJ3CnoDFmoioqrs7BpAUqjvFPQaLNRERFVZxgPg2g59p6DXYKEmIqrqLm4Gcp/pOwWVQ2OFWhAEHDlyBH/88Qeysvh8HhFRhVGQDfz1jb5TUDlUKtQzZsxAcHCw7L0gCOjYsSM6dOiALl26oHHjxoiPj9dYSCIi0rKbe4GUa/pOUaE9fvwYf//9N3JycjS6X5UK9a+//go/Pz/Z+19++QWHDx/GvHnzsGfPHkgkEkRERGgqIxER6cKJpYCkSN8pKpydO3fC09MTb731Fpo3b45z584BANLS0tCsWTP8/vvvau1fpUL98OFD1K9fX/b+t99+g5eXF6ZNm4bOnTtjzJgxiImJUSsYERHp2NN44Mp2faeoUHbv3o2PPvoIdnZ2CA8Ph/DSc+l2dnZwcXHBxo0b1epDpUJtbGyM/Px8AMWXvQ8fPoxOnTrJ1js6OiItLU2tYEREpAcXooH0+/pOUWF88cUXaNOmDU6ePIlx48aVWt+yZUtcvnxZrT5UKtTe3t744Ycf8Pz5c2zcuBFPnz5Fly5dZOvv3bsHOzs7lQKtWrUK7u7uMDMzg7+/P86fP//a9lFRUWjYsCHMzc3h6uqK0NBQvHjxQqW+iYiqPEkBcHwJIJXqO0mFcPXqVfz3v/8td72joyNSU1PV6sNYlY1mz56Nrl27yopxYGCg3M1le/fuxbvvvqv0frdt24awsDCsXbsW/v7+iIqKQkhICOLi4uDg4FCq/ZYtWzB16lRER0cjICAAt27dwpAhQyASibBs2TJVPhoRET3+G7j+O+D9kb6TGDwLC4vX3jx29+5d1KpVS60+VDqj7tChAy5duoRly5YhOjoaBw8elK17/vw52rRpgwkTJii932XLlmHkyJEYOnQovLy8sHbtWlhYWCA6OrrM9qdPn0ZgYCD69+8Pd3d3dOzYEf369XvjWTgREb3B+Q1AtnpnglVBcHAwNm/ejKKi0jfhJScnY8OGDejYsaNafaj8HLWXlxcmTpyIwYMHw8zMTLbc1tYWy5cvR9u2bZXaX0FBAS5evIj27dv/G04sRvv27XHmzJkytwkICMDFixdlhfnu3bvYt28fOnfurPwHIiKifxXmAqdW6DuFwZs/fz4ePHiAd999F+vWrYNIJMKBAwcwc+ZMNG7cGIIgIDw8XK0+VLr0nZWVhfT0dLi6usqWPXr0CGvXrkV+fj569eql9KXvtLQ0SCQSODo6yi13dHTEzZs3y9ymf//+SEtLQ6tWrSAIAoqKivDJJ59g+vTp5faTn58vuxEOALKzs5XKSURUZSSeLJ64w8VX30kMVsOGDXHy5ElMnDgRs2bNgiAIWLJkCQCgbdu2svuu1KFSoR41ahQSEhJw9uxZAEBmZibee+89PHjwAGKxGCtWrMD+/fuVPqtWVkxMDBYsWIDVq1fD398fd+7cwcSJEzF37lzMmjWrzG0iIyMxZ84creYiqkhatGiB5ORkODk54cKFC/qOQ4bm/AagR3NAJNJ3EoP1zjvv4M8//8Tz589x584dSKVS1K1bF/b29hrZv0qXvk+ePIkPPvhA9v6HH37Ao0ePcPr0aTx//hxNmjTBvHnzlNqnnZ0djIyMkJKSIrc8JSUFTk5OZW4za9YsDBw4ECNGjEDjxo3x4YcfYsGCBYiMjIS0nDsWp02bhoyMDNnr2LFjSuUkqmySk5Px8OFDJCcn6zsKGaLUG8CjS/pOUSHY2tri3Xffhb+/v8aKNKBioU5LS4OLi4vs/a5du9CqVSu89957qF69OgYNGoS///5bqX2amJjA19cXhw8fli2TSqU4fPgwWrZsWeY2ubm5EIvlP4KRkREAyD10/jJTU1NYW1vLXlZWVkrlJCKqcji7Vrm++uorhISElLv+/fffx5o1a9TqQ6VCbWNjI/vtOy8vDydOnJC7q83Y2Bi5ublK7zcsLAwbNmzA5s2bcePGDYwZMwY5OTkYOnQoAGDQoEGYNm2arH3Xrl2xZs0abN26FQkJCTh06BBmzZqFrl27ygo2ERGpKfEUkPNU3ykM0rfffgsvL69y13t5eWH9+vVq9aHSd9QBAQFYvXo1PD09sX//frx48QLdu3eXrb9165bcGbei+vTpgydPnmD27NlITk6Gj48P9u/fL7vBLCkpSe4MeubMmRCJRJg5cyYePnwIe3t7dO3aFfPnz1flYxERUVkEKXDnENC0r76TGJz4+PgyRyQr4enpiQ0bNqjVh0qFetGiRejYsSN69uwJAJg8eTLeeecdAIBEIsH27dvlhhRVxvjx4zF+/Pgy1706frixsTHCw8PVvvWdiIjeIO4PoEkf3lT2ChMTk9fe3/H48eNSX9EqS6VCXb9+fcTFxeH69euoUaOG3K3nubm5+Prrr9G0aVO1ghERkQF5ngg8vQPYNdB3EoPy3nvvYdOmTQgNDUX16tXl1mVkZGDjxo1477331OpDpUINANWqVSuzGFevXl3uMjgREVUStw+yUL8iPDwcQUFB8PHxwaRJk2RXl69evYqoqCg8fvwYW7ZsUasPlQt1ZmYmVq9ejaNHjyI1NRXr1q2Dn58fnj17hk2bNqFbt25yU2ESERm6wrws3N2/Fs9unwNEYth5BqBuyGgYmZiXu80/301FZtIVuWVOzd9H/c7FX+Gl/H0It3dHlbmtX+iPMLG00VR87btzGPAfA6h5Kbcy8ff3x+7duzF69GhMnDgRov//akAQBHh4eGDXrl3lPrmkKJUK9YMHDxAUFIT79++jQYMGuHnzpmyEr5o1a2LdunW4d+8eVqzg8HNEZFj++W4qHJv+B45NO5Rad+v3JSjIfgbvj+dBKpHg9u4o3Nm7Eg0//Py1+3RsFgK3oAGy9+Jq/w6rbOfVBrb15Ef2urVrOaRFhRWrSANA7lPg0WXgLcMdqWzVqlVYsmQJkpOT0bRpU6xcuRJ+fn7ltk9PT8eMGTPw22+/4dmzZ3Bzc0NUVJRSQ1F36NABd+7cweXLlxEfHw8AqFevHpo3by4r3OpQqVB/9tlnyMrKQmxsLBwcHErNbNWjRw/s2bNH7XBERLqSm5aE5/EX0XRYFKrXLr68W6/TaFz7KQLu7YfDtHr5MyAZVTODiVXNctaZwqiaqex9YU4GMhL/QYMPJmr2A+jK7YMGW6iVnYGxoKAAHTp0gIODA3755Re4uLjg3r17sLGxUbpvsVgMX19f+Ppq/u9GpUJ98OBBhIaGwsvLC0+fln62rm7durh/nxOPE1HFkfngJozMLGVFGgBsPJoBIhGyHsbB1DOg3G1Trx5F6pWjMLGyRc0GfnBt3RdGL51VvyzlymGIq5miVqNAjX8GnUg8ARRNBoxN9J2klJdnYASAtWvXYu/evYiOjsbUqVNLtY+OjsazZ89w+vRpVKtWDQBUHpf7+vXruHv3Lp4/f17mgFuDBg1Sab+AioU6Ly/vtcOjZWVlqRyIiEgfCrOfw8TCRm6ZSGyEaubVUZjzvNztHLyDYFrDASbVayEnJQGJRzYi7+kDNOo9s8z2KbEHYe8dJHeWXaEU5AAPzgPurfSdRE7JDIwvD4r1phkYS74/HjduHHbu3Al7e3v0798fU6ZMUXjQrPj4eAwYMADnz58vd0RMkUik+0Lt5eWF48ePY/To0WWu//3339GsWTOVQxERacr9k9tw/9TPsvfSogJkPbyJ+P1rZcuaf6L6EI9Ozd+X/dnSwR0mVjVx9cfpyHv2GOY1neXaZj64gby0+2jYfbLK/RmEe2d0Wqizs7ORmZkpe29qagpTU/lfdFSZgfHu3bs4cuQIPv74Y+zbtw937tzB2LFjUVhYqPD4HKNHj8aVK1cQFRWF1q1bw9bWVslP92YqFepJkyZh8ODBaNKkCXr37g2geFzuO3fuYM6cOThz5gx+/fVXjQYlIlKFk29n2Hm1lr2P+30J7DwDUeulS9mm1WuhmpUtCnLT5bYVpBIU5mWhmqXiP3yruzQEALx4/qhUoU65fACWjnVh5az5R5ySkpKQk5MDAMjJlyDp2QvUqVn25Xe1PY7Vzn7LERQUJPc+PDwcERERau9XKpXCwcEB69evh5GREXx9ffHw4UMsWbJE4UJ96tQpTJ8+Hf/73//UzlMelQr1gAEDcO/ePcycORMzZswAAHTq1AmCIEAsFmPBggXo0aOHJnMSEamkmnl1VDP/dyAKsbEpqlnWgHnN2nLtrN/yhORFDrIf35YV0vSEvwFBkBVfReSk3AWAUjeXSQrykHbjJNyCB6v6Ucp0/vx5zJ07F3v37pVdek3Pk8B9xnl80LgmZnV2w7vu1d+wFyVlPCi+BG5iqdn9luPYsWPw8fGRvX/1bBpQbQZGZ2dnVKtWTe4yd6NGjZCcnIyCggKYmLz5e3g7OzvUqFFDwU+iGpUfhpsxYwbi4+OxZMkSjBkzBiNHjsSiRYsQFxeHKVOmaDIjEZHWWdjVgW09X9zeuxJZD+OQef864g+sgf07bWR3fOdnpuHimtHIehgHAMh79hhJJ35C9uPbeJGegqe3zuLWzqWwruMNS0cPuf0/uXYcglQCh8bBGsv822+/ITAwEH/88Uep70cFAdh39RkCFsfit8tpGutTJvOR5vdZDisrK7lZD8sq1KrMwBgYGCibP7rErVu34OzsrFCRBoBPPvkEP/zwAyQSiZKfSnEqD3gCAHXq1EFoaKimshAR6dXbPT7D3f1rcPXHGYBIhFqegagX8u+9OIJUgrynDyApzAcAiI2MkZ4Qi0fnd0JS8AKm1vao1SgQrq1KT16R8vdB1GoYAGMzzUyte/78efTp0wcSiaTcm5gkUkAEAX023MDpz300e2adnWJwo5SFhYVh8ODBaNGiBfz8/BAVFVVqBkYXFxdERkYCAMaMGYOvv/4aEydOxP/+9z/cvn0bCxYswIQJExTu8+2334ZEIkHTpk0xbNgwuLq6lnkj2kcffaTy51KpUF+6dAlnz57F2LFjy1y/evVqBAQEyF2qICLDVHJZsLzLg5VNk0ELy11Xzbz6awc3MbNxRKuZe2XvTWvYo8mgRQr123TIUsVDKmDevHkQBKHcIl1CACBAwLx997BzrLfmAuSla25fGqLsDIyurq44cOAAQkND0aRJE7i4uGDixIlKXRXu06eP7M+ffvppmW1EIpFaZ9wqFeoZM2bA3Ny83EJ95MgR7Nu3j4OeEFUAFy5c0HcEUlJSUhL27NnzxiJdQiIFdl95ptkbzPIN8zFcZWZgBICWLVvi7NmzKvd39OhRlbdVlEqF+tVn1V7VunVr2aUFIjJ8EolE7ns6XSqSSFEkkUIskaKwsFAvGXRFKimEIFX/u8w/9u1VuEiXEATgwPXnGPxe6RG6VCHkPIdYy8erqKhIq/vXhFfvSNcGlQp1VlYWjI3L31QsFiMjI0PlUERVTYaoBpBdhL3z++ul/x8PX8FPR6/qpW85k3/Ud4JKbdQPtzHqh9sa2tspAOM0tK+KLz8/H5cuXUJqaioCAwNhZ2ensX2rVKgbNGiAgwcPlvvc2P79+1G3bl21ghGR7vQNfgd92r6jt/5rCBkwqV4L7/5vo94yaJuk8AUy7l2D2NgIYqNqau1ryy87MWFKhNLbrevnjkH+6hcQQRCQ794OZh1nlTtUqiZcvnwZ/v7+Wtu/pnz11VeIiIiQnaAeOnQI7dq1Q1paGjw9PbF48WIMGzZM5f2rVKiHDx+O0NBQhIWFYfbs2bIBzNPT0zFnzhzs378fS5YsUTkUEemWkZ6nLTQWxDA2EsvGW66MxJCgWjVjGJuaQ6zmONntg9tCJBIpdflbJAI6eNqgmoJDY76eAGk1k+JnkLV4zF535dZQbNy4EZMmTULfvn3RsWNHuYJsZ2eHdu3aYevWrbov1BMmTEBsbCyioqLw1VdfoXbt4oEDHj16BKlUioEDB/KxLSIiLXF9qzY6tQ/GwSPHFLqb2EgMdH7HBnVqanB8cXHl/aVKGUuXLkX37t2xZcuWMiep8vX1xVdffaVWHyoVapFIhI0bN2LQoEH49ddfcfdu8Ug83bt3R8+ePdG2bVu1QhGR7kxafQDPs/Nga2WOqLEh+o5DCpoSOhaHjh5/45m1CIAIIkwPcdFo/4Kx9i55VyR37tx57XPXNWvWLLOAK0Ot6wrBwcEIDtbcKDtEpHvPs/PwNDNP3zFISb4+TbBp7XIM+SQUgiCUeWZtJC4u0luH1ce7bpoZaKWEYKLZ/VVUNjY2SEsrf+S369evqz1GgUpfTCUkJGD37t3lrt+9ezcSExNVzURERAro3jkEf+7aio7tgiASieTWiUTFl7tPhHmhR9Oa5exBdVJT7Y5vXVF07twZ69evR3p6eql1165dw4YNG9CtWze1+lDpjPrTTz9FZmYmunbtWub6VatWwcbGBlu3blUrHBERvZ6vTxP8vHkt7j94hIAO3ZCekQkbcyNcmtpYs99Jv0Jq5fzmRlXAvHnz4O/vD29vb3Tt2hUikQibN29GdHQ0fv31Vzg7O2P27Nlq9aHSGfWZM2fQoUOHctf/5z//wYkTJ1QORUREynF9qzYsLMwBAJamYq0WacG0BgQznlEDQO3atXHx4kV06tQJ27ZtgyAI+P7777F7927069cPZ8+eVfuZapXOqJ8/f47q1csf3N3KykrtL8+JiMgwFTk21ncEg5Cfn48DBw7A3d0d33zzDb755hs8efIEUqkU9vb2cuOKq0OlvdSpUwenTp0qd/2JEyfw1ltvqRyKiIgMl8Spmb4jGAQTExP07t0bp0+fli2zt7eHo6Ojxoo0oGKh7tevH3766Sd89dVXcuMDSyQSrFixAtu2bUP//voZCpGIiLRHMLOGhGfUAIofVW7QoMFr7/rWBJUK9bRp0xAcHIxJkybB2dkZbdq0QZs2bVC7dm2EhoYiKCgIM2bM0HRWIiLSsyKPYEBs+COG6cr06dPx9ddfIy4uTmt9qPS3bWpqioMHD2Lz5s347bffEB8fDwDw8/NDz549MWjQII2e9hMRkQEwqoaieh31ncKgnD17FrVq1YK3tzfatm0Ld3d3mJuby7URiURYsWKFyn2o/GuRWCzG0KFDMXToUJU7JyKiiqPw7S6AqTVQVKDvKAbj66+/lv358OHDZbbRW6EmIqKqQzC3RdHbXfQdw+DoYh53lQp1u3bt3thGJBKV+9sFERFVLAXNhwMc31svVCrUUqm01HB1EokE9+7dw/3791G/fn24uGh2AHgiItKPIvcgSJ2a6juGQTt79iyOHj2K1NRUjB07Fg0aNEBubi5u3ryJt99+G1ZWqo+NrlKhjomJKXfdnj17MGrUKCxbtkzVTEREZCAESzsUNhmg7xgGq6CgAH379sXOnTshCAJEIhG6du2KBg0aQCwWo2PHjggNDVXrSSiN35r9wQcfYMCAAZg0aZKmd01ERDpW4DsaqMZL3uWZNWsW9uzZgzVr1iAuLk5uylEzMzP07t0bO3fuVKsPrTxDVa9ePfz111/a2DUREelIUd3/QGrvqe8YBu2nn37CmDFjMGrUKNSsWXqWskaNGuHu3btq9aHxu76Liorw888/qz0IORHphq2Vudx/iYDi+aYL3+ml7xgGLzU1FY0blz9Sm5GREXJzc9XqQ6VCPWzYsDKXp6en4+zZs0hOTuZ31EQVRNTYEH1HIANU1OhDwET1G6CqCldXV9y8ebPc9adOnUL9+vXV6kOlQn3kyJEyJikXwdbWFq1atcKIESPQsSNHryEiqogEc9vioULpjfr3749ly5ahZ8+eePvttwFAVh83bNiAn3/+GQsXLlSrD5UKdWJiolqdEhGR4Spq0BkwqqbvGBXCjBkzcPbsWbRp0waNGjWCSCRCaGgonj17hgcPHqBz584IDQ1Vqw8OyE1ERP+qZo4i97b6TlFhmJiYYP/+/di4cSPq1q0LT09P5Ofno0mTJti0aRN2794NIyMjtfpQ+Iw6NzcXaWlpcHJygomJidy66Oho/Pjjj3j8+DE8PT0xbdo0vPvuu2oFIyIi3Styb8vHsV4jLCwMAwcORLNmxXNyJyUlwd7eHgMGDMCAAdp53lzhM+ovvvgCTZo0QUGB/GDs8+bNw8iRI3Hs2DE8efIEv//+O9q2bYu///5b42GJiEiLRCIU1eug7xQGLSoqCjdu3JC99/DwwI4dO7Tap8KF+ujRo/jggw/khkHLzMzEvHnz4OLigtu3b+PJkyc4e/YsTExM1P7ynIiIdEviGgDB0l7fMQyao6Oj3HPRLw9woi0KX/pOTExEz5495Zbt27cPBQUFmDJlCjw8PAAUz0k9dOhQ/Pzzz5pNSkRE2iMSodCzu75TGLwuXbrgiy++wMGDB2FjYwMAWLp0KbZu3VruNiKRSK3RyRQu1FlZWahVq5bcsuPHj0MkEiEkRP45TC8vLzx58kTlUEREpFtF9TpAqO6s7xgGb8WKFXBwcMDRo0dx7do1iEQi3L9/H8+ePSt3m1cfZ1aWwpe+3dzcSj3UHRMTA0dHx1IPcxcUFMDa2lqlQKtWrYK7uzvMzMzg7++P8+fPv7Z9eno6xo0bB2dnZ5iamuLtt9/Gvn37VOqbiKgqEsysUdjoQ33HqBAsLS2xYMECnDlzBvHx8RAEAVFRUUhISCj3pe4QogoX6o4dOyI6Ohrnzp0DAHz33Xe4efMmPvyw9MG9ePEi3N3dlQ6zbds2hIWFITw8HJcuXULTpk0REhKC1NTUMtsXFBSgQ4cOSExMxC+//IK4uDhs2LCBU2wSESmhsMlAjkKmoI8++ggnTpyQvT969Cg6dNDuDXgKF+pZs2bBysoKAQEBMDExwZAhQ2Bvb4/Zs2fLtcvNzcWOHTvwn//8R+kwy5Ytw8iRIzF06FB4eXlh7dq1sLCwQHR0dJnto6Oj8ezZM/z+++8IDAyEu7s7goKC0LQp500lIlKExLkZJG/56ztGhbFz504kJSXJ3rdr1w6HDh3Sap8KF2o7OzvExsZi4cKFGD58OBYsWIArV67A0dFRrt3Vq1fx8ccfY+DAgUoFKSgowMWLF9G+fft/w4nFaN++Pc6cOVPmNrt27ULLli0xbtw4ODo6wtvbGwsWLIBEIlGqbyKiKsnYDIXNhgBqfodalbi4uODy5cuy9yVzUGuTUkOI2tra4rPPPnttGz8/P/j5+SkdJC0tDRKJpFThd3R0LHfA87t37+LIkSP4+OOPsW/fPty5cwdjx45FYWEhwsPDy9wmPz8f+fn5svfZ2dlKZyUiqgwK3+kNwbz01IxUvr59++LLL7/Ezz//LLvre+rUqYiMjCx3G5FIpNbYIhqf5lKXpFIpHBwcsH79ehgZGcHX1xcPHz7EkiVLyi3UkZGRmDNnjo6TEhEZFqmNG4rqtX9zQ5ITGRmJ+vXr4+jRo0hNTYVIJIKlpWWpp6I0yWAKtZ2dHYyMjJCSkiK3PCUlBU5OTmVu4+zsjGrVqsmNo9qoUSMkJyejoKCg1FCnADBt2jSEhYXJ3sfGxiIoKEhDn4KIqGIo9BkEiDjdg7KMjIwwatQojBo1CkDxV7QzZ85E//79tdanwRwlExMT+Pr64vDhw7JlUqkUhw8fRsuWLcvcJjAwEHfu3IFUKpUtu3XrFpydncss0gBgamoKa2tr2evlkdaIiKoCyVt+kNZ6W98xKoWEhAT06NFDq30YTKEGigc737BhAzZv3owbN25gzJgxyMnJwdChQwEAgwYNwrRp02Ttx4wZg2fPnmHixIm4desW9u7diwULFmDcuHH6+ghERIZNJEKhV299p6g03NzcYGFhodU+FLr0vWvXLrRo0QK1a9fWapg+ffrgyZMnmD17NpKTk+Hj44P9+/fLbjBLSkqCWPzv7xaurq44cOAAQkND0aRJE7i4uGDixImYMmWKVnMSEVVURXVaQahe9teJ9GZisRhisRi5ubkwMTGBWCx+413fIpEIRUVFKvepUKH+8MMP8f3338uuwdetWxdRUVHo1q2byh2XZ/z48Rg/fnyZ62JiYkota9myJc6ePavxHERElY5IhKKGmv+5XZXMnj0bIpEIxsbGcu+1SaFCXb16daSnp8veJyYm8rEmIqIKRuLcnGfTaoqIiHjte21QqFD7+flh/vz5SElJQY0aNQAUz5yVnJxc7jYikQihoaGaSUlERGorqh/y5kZkcBQq1KtXr8agQYMwd+5cAMVFeMuWLdiyZUu527BQExEZDsG6NqR2nvqOUank5+fjhx9+wMGDBxEfH4+srCxUr14d9evXR6dOndC/f/9yn0BShkKFun79+jh9+jRevHiB1NRUuLu7IyoqCt27c+5SIqKKoMg9mEOFatCVK1fQvXt33Lt3D4IgoEaNGrCyskJqaiouXbqE7du3Y/78+di1axcaNWqkVl9KPZ5lZmaGOnXqIDw8HO3atYObm9trX0REZADEYhTVCdB3Cp1QdqrkElu3boVIJFLomejs7Gx069YNKSkpmD9/Pu7fv4/nz5/L/XfevHl49OgRunbtipycHLU+k0rPUYeHh8Pb21sW+MaNG7hx4wZvMCMiMkAShyaAqbW+Y2idslMll0hMTMSnn36K1q1bK9TPxo0bkZSUhL1792Lq1KmlplZ2cXHBtGnTsHv3biQkJGDTpk2qfiQAagx48tdffyE4OBi2trbw9vaGt7c3bG1t0a5dO1y4cEGtUEREpDkS16oxjaWyUyUDgEQiwccff4w5c+agbt26CvWzd+9edOzYEW3btn1tu3bt2qFDhw7YvXu3Mh+jFJUK9blz59CmTRtcunQJI0aMwPLly7F8+XKMGDECly5dQps2bRS+3EBERFokFkPi5KPvFGrJzs5GZmam7PXyDIglVJkqGQC++OILODg4YPjw4QrnuXLlyhuLdIl27drhypUrCu+7LCpNyjFjxgy4uLjg5MmTpSbMiIiIQGBgIGbMmKH1ybSJiOj1pHaegEnFntPg1YmTwsPDSz2/rMpUySdPnsS3336L2NhYpfI8e/as3MmiXuXo6Ihnz54ptf9XqVSoz507h9mzZ5cZ1NHREaNGjZI9ykVERPojcWyi7whqO3bsGHx8fGTvTU1N1d5nVlYWBg4ciA0bNsDOzk6pbfPz81GtWjWF2hobG6OgoECViP/uQ5WNxGLxa8ctlUgkcmNyExGRfkgcG+s7gtqsrKxgbf36m+GUnSo5Pj4eiYmJ6Nq1q2xZyUyMxsbGiIuLQ7169crtLzExEZcuXXpj9oSEhDe2eROVCnVAQABWrVqF/v37l3oMKykpCatXr0ZgYKDa4YiISHWCiRUE67f0HUMnXp4queQRq5KpksuaP8LT07PUd8czZ85EVlYWVqxYAVdX19f2N2vWLMyaNeuNuQRBUHsscJUK9YIFC9CmTRt4enriww8/xNtvF89rGhcXh507d8LY2BiRkZFqBSMiIvVI7d4GRFXn6mZYWBgGDx6MFi1awM/PD1FRUaWmSnZxcUFkZCTMzMxkjxmXsLGxAYBSy1+1ceNGreQvj0qFulmzZjh37hxmzJiBXbt2ITc3FwBgYWGBTp06Yd68efDy8tJoUCIiUo60VgN9R9ApZadKVtXgwYPV3ocyVCrUAODl5YUdO3ZAKpXiyZMnAAB7e3t+N01EZCCkNh76jqBzyk6V/DJ1BybRFpULdQmxWFzqdngiItI/qQ2Hcq4MePpLRFQJCWY2Ff75aSrGQk1EVAkJ1rX1HYE0hIWaiKgSklryK8nKgoWaiKgSEiwd9B2BNETtm8mIiMjwCBbKDYtJ6rl+/Tru3r2L58+fQxCEUusHDRqk8r7VKtTaDEZERKoTLGrpO0KVEB8fjwEDBuD8+fNl1kEAEIlEui/UughGRESqE8xs9B2hShg9ejSuXLmCqKgotG7dGra2thrvQ6VCrYtgRESkHEd7e0AqhZNJLgu1jpw6dQrTp0/H//73P631oVKh1kUwIiJSzvH9v0GU8wSmR2bhhZFi0zCSeuzs7FCjRg2t9qHSXd+6CEZERCoyff2UkKQ5n3zyCX744QdIJBKt9aHSGXVJsHHjxsHIyEjTmYiISA2CKU+kdOXtt9+GRCJB06ZNMWzYMLi6upZZFz/66COV+1CpUOsiGBERqUYw5dChutKnTx/Znz/99NMy24hEIrXOuFUq1LoIRkREqhFMqus7QpVx9OhRrfehUqHWRTAiIlKNYMpCrStBQUFa70OlQq2LYEREpKJqlvpOUCVdv34d9+7dAwC4ubnBy8tLI/tVewhRbQUjIiLVCCYs1Lq0c+dOhIWFITExUW65h4cHli1bhm7duqm1f5ULtbaDERGRinhGrTP79u1Dz5494ebmhgULFqBRo0YAgBs3bmD9+vX46KOPsGfPHnTq1EnlPlQq1LoIRkREqhGqmes7QpUxd+5cNGnSBCdOnICl5b+/IHXr1g3jx49Hq1atMGfOHN0Xal0EIyIi1bBQ684///yDBQsWyNXCEpaWlhgyZAimT5+uVh8qjUz2zz//YPDgwa8N9s8//6gVjIiIVGRkou8EVYaZmRmePXtW7vpnz57BzMxMrT5UKtS6CEZERCoSc5xvXWnXrh1WrFiBM2fOlFp37tw5fPXVV2jfvr1afah06bskWKdOndCyZcsyg3Xs2FGtYEREpCKx2g/0kIIWL16Mli1bolWrVvDz80PDhg0BAHFxcTh//jwcHBywaNEitfpQ6WjqIhgREalIJNJ3girDw8MD//zzDyIjI/HHH39g27ZtAIofV544cSKmTp0KBwcHtfpQqVDrIhgREVFF4ODggOXLl2P58uVa2b/K10e0HYyIiFQkSPWdgDSIX2QQEVU2gqDvBJXWsGHDIBKJsH79ehgZGWHYsGFv3EYkEuHbb79VuU+FCrU+ghERkYp4Rq01R44cgVgshlQqhZGREY4cOQLRG+4JeNP6N1GoUOsjGBERqYhn1Frz6rDZr77XBoUKtT6CERERGbqkpCTY29vD3Lzs0eDy8vLw5MkT1KlTR+U+VBrwJCkpCXl5eeWuz8vLQ1JSksqhiIhIDbygqTMeHh7YsWNHuet37doFDw8PtfpQqVDrIhgREalIZKTvBFWG8IavGQoLCyEWq1RqZVTaWtvBVq1aBXd3d5iZmcHf3x/nz59XaLutW7dCJBKhR48eKvdNRFThiVmotSkzMxNJSUmyK8dPnz6VvX/59c8//2Dr1q1wdnZWqz+FH8/KzMxEenq67H1JsFelp6erFWzbtm0ICwvD2rVr4e/vj6ioKISEhCAuLu61g6gkJibi008/RevWrVXql4ioshB4Rq1Vy5cvxxdffAGg+MbpSZMmYdKkSWW2FQQB8+bNU6s/hQu1roItW7YMI0eOxNChQwEAa9euxd69exEdHY2pU6eWuY1EIsHHH3+MOXPm4MSJE3K/UBARVTlGnJRDmzp27AgrKysIgoDPP/8c/fr1Q/PmzeXaiEQiWFpawtfXFy1atFCrP4ULtS6CFRQU4OLFi5g2bZpsmVgsRvv27cucmaTEF198AQcHBwwfPhwnTpx4bR/5+fnIz8+Xvc/OzlY6JxGRQePsWVrVsmVL2YRUOTk56NmzJ7y9vbXWn8KFWhfB0tLSIJFI4OjoKLfc0dERN2/eLHObkydP4ttvv0VsbKxCfURGRmLOnDnqRiUiMkiCsSm/o9aR3NxcfPXVV7CwsNBqoVb6jq+SYH/88Yc28iglKysLAwcOxIYNG2BnZ6fQNtOmTUNGRobsdezYMS2nJCLSIVNrQKTeXcakGAsLCxgbG8PS0lKr/Sg91rc2g9nZ2cHIyAgpKSlyy1NSUuDk5FSqfXx8PBITE9G1a1fZMqm0eOg8Y2NjxMXFoV69enLbmJqawtTUVPbeyspKkx+BiIiqkJ49e+KXX37BmDFjtDYip0q/dpUEe9NjWsoyMTGBr68vDh8+LFsmlUpx+PBh2WX3l3l6euLKlSuIjY2Vvbp164bg4GDExsbC1dVVo/mIiIhe1rdvX6SmpiI4OBg//vgjTp06hUuXLpV6qUOl2bP69u2LsWPHIjg4GCNHjoS7u3uZw6e9erOZIsLCwjB48GC0aNECfn5+iIqKQk5Ojuwu8EGDBsHFxQWRkZEwMzMr9b2AjY0NAGj1+wIiIiIAaNu2rezPZd3MLAgCRCIRJBKJyn2oVKi1GaxPnz548uQJZs+ejeTkZPj4+GD//v2yG8ySkpLUHuWFiIhIEzZu3Kj1PlQq1NoONn78eIwfP77MdTExMa/ddtOmTZoPREREVIbBgwdrvQ+VCrUughEREVUk2dnZuH//PgDA1dVVYzcrq30NOTs7Gzdu3MCNGzc4eAgREVU5f/31F4KDg2Frawtvb294e3vD1tYW7dq1w4ULF9Tev0pn1CXBPv/8c5w8eVL2SJRYLEbr1q2xePFitYdMIyIiMnTnzp1D27ZtYWJighEjRqBRo0YAgBs3buCnn35CmzZtEBMTAz8/P5X7UKlQ6yIYERGRslatWoUlS5YgOTkZTZs2xcqVK8utRRs2bMB3332Hq1evAgB8fX2xYMECpWrXjBkz4OLigpMnT5Ya7yMiIgKBgYGYMWMGDh06pPJnUunSd0mwuLg4rFmzBhMmTMCECROwZs0axMXFoXbt2pgxY4bKoYiIiJRVMvtieHg4Ll26hKZNmyIkJASpqallto+JiUG/fv1w9OhRnDlzBq6urujYsSMePnyocJ/nzp3D6NGjyxyUy9HREaNGjcLZs2dV/kyAioVaF8GIiIiU8fLsi15eXli7di0sLCwQHR1dZvsff/wRY8eOhY+PDzw9PfHNN9/IBtlSlFgsRlFRUbnrJRKJ2o8Uq7S1LoIREREBxTctZ2Zmyl4vz4BYomT2xfbt28uWKTL74styc3NRWFiImjVrKpwtICAAq1atwr1790qtS0pKwurVqxEYGKjw/sqi0nfUJcH69+8PNzc3rQQjIiICgKCgILn34eHhiIiIkFumyuyLr5oyZQpq164tV+zfZMGCBWjTpg08PT3x4Ycf4u233wYAxMXFYefOnTA2NkZkZKTC+yuLSoVaF8GIiIgA4NixY/Dx8ZG9f3liJU1ZuHAhtm7dipiYGJiZmSm8XbNmzXDu3DnMmDEDu3btQm5uLoDiCaw6deqEefPmwcvLS61sKhVqXQQjIiICimc5tLa2fm0bZWdffNmXX36JhQsX4s8//0STJk2Uzufl5YUdO3ZAKpXiyZMnAAB7e3uNfQWs8nPU2g5GRESkqJdnX+zRoweAf2dfLG9IagBYvHgx5s+fjwMHDqg9/odIJJJNdanJKS/VrqolwV4OSEREpGthYWHYsGEDNm/ejBs3bmDMmDGlZl+cNm2arP2iRYswa9YsREdHw93dHcnJyUhOTlZ6lM3r16+jV69esLa2hrOzM5ydnWFtbY1evXrJntFWh8pn1NevX8fs2bNx4MABuUvfISEhiIiI4DSTRESkU8rOvrhmzRoUFBSgV69ecvsp62a18pw4cQLvv/8+pFIpunfvLnfP1q5du/DHH39g//79aN26tcqfS6VCrYtgREREylJm9sXExES1+wsNDYWDgwOOHTsGV1dXuXX3799HmzZtEBYWhr/++kvlPlQq1LoIRkREZOiuXbuGuXPnlqqFQPEMWmPGjFH47Lw8Kn1Hfe3aNYwdO/a1wa5du6ZWMCIiIkPn5uZW5gAsJQoKCsqslcpQqVDrIhgREZGhmz17Nr766ivExsaWWnf58mWsXLlS7TNqlS59z549G6GhoejSpYvcQ+gvB4uKilIrGBERkaE7e/YsHB0d4evri4CAANSvXx8AcPv2bZw5cwbe3t44c+aM3DCmIpEIK1asULgPlQq1LoIREREZuq+//lr251OnTuHUqVNy669cuYIrV67ILdNJodZFMCIiIkMnlUq13odKhVoXwYiIiEiNAU+IiIioWEJCAv744w/ZdJdubm54//334eHhofa+1SrU2gxGRERUEUyePBkrVqwodbVZLBZj0qRJ+PLLL9Xav8qFWtvBiIiIDN3SpUuxfPly9OrVC5MnT0ajRo0AADdu3MDy5cuxfPlyuLi4IDQ0VOU+VHqOuiTYRx99hDNnziA9PR3p6ek4c+YMevXqJQtHRERUmW3YsAHdunXDzz//DH9/f1hbW8Pa2hr+/v7YunUrunbtinXr1qnVh0qFWhfBiIiIDF1iYiJCQkLKXR8SEqL2mOIqFWpdBCMiIjJ0Dg4O+Pvvv8td//fff8Pe3l6tPlQq1LoIRkREZOh69+6Nb775BgsXLkROTo5seU5ODhYtWoRvvvkGffr0UasPlW4m6927N1asWAF3d3f873//g6WlpSzY119/jW+++QaTJk1SKxgREZGhmzt3LmJjYzF9+nTMnj0btWvXBgA8evQIRUVFCA4OxhdffKFWHyoVal0EIyIiMnQWFhY4fPgwdu7cKfe4cqdOndC5c2d07doVIpFIrT5UKtS6CEZERGTIcnNzMWDAAPTs2RMff/wxunfvrpV+lC7UugpGRERkyCwsLPDnn3/i/fff12o/St9MVhIsNzdXG3mIiIgqjFatWsnNFKkNKt31rYtgREREhu7rr7/GiRMnMHPmTDx48EArfahUqHURjIiIyNA1bdoUDx48QGRkJNzc3GBqaiobBKzkVaNGDbX6UOlmsqZNm6KoqAiRkZGIjIyEsbExTE1N5dqIRCJkZGSoFY6IiMiQ9ezZU+s3T6tUqHURjIiIyNBt2rRJ632oVKh1EYyIiMhQvXjxAjt37kRCQgLs7OzQpUsXODs7a6UvpQq1LoMREREZotTUVAQEBCAhIQGCIAAofiLq999/R/v27TXen8KFWtfBiIiIDNHcuXORmJiI0NBQtGvXDnfu3MHcuXMxevRoxMfHa7w/hQu1roMREREZooMHD2LQoEH48ssvZcscHR3Rv39/xMXFoWHDhhrtT+FCretgREREhigpKQlTpkyRW9aqVSsIgoCUlBSN10OFn6NOSkpCq1atyg1GRERUFeTn58PMzExuWcn7oqIijfen8Bm1roMREREZqsTERFy6dEn2vmTckNu3b8PGxqZU++bNm6vcl1J3fesyGBERkaGaNWsWZs2aVWr52LFj5d4LggCRSASJRKJyX0oVal0GIyIiMkQbN27UaX8KF2pdBlu1ahWWLFmC5ORkNG3aFCtXroSfn1+ZbTds2IDvvvsOV69eBQD4+vpiwYIF5bYnIiJSx+DBg3Xan8KFWlfBtm3bhrCwMKxduxb+/v6IiopCSEgI4uLi4ODgUKp9TEwM+vXrh4CAAJiZmWHRokXo2LEjrl27BhcXF51kJiIi0haVZs/SpmXLlmHkyJEYOnQovLy8sHbtWlhYWCA6OrrM9j/++CPGjh0LHx8feHp64ptvvoFUKsXhw4d1nLxiatGiBd566y20aNFC31GIiKgMKo31rS0FBQW4ePEipk2bJlsmFovRvn17hee/zs3NRWFhIWrWrFnm+vz8fOTn58veZ2dnqxe6gktOTsbDhw/1HYOIiMphUGfUaWlpkEgkcHR0lFvu6OiI5ORkhfYxZcoU1K5du9xhTSMjI1GjRg3ZKygoSO3cRERE2mJQhVpdCxcuxNatW7Fjx45Sz3yXmDZtGjIyMmSvY8eO6TglERGR4gzq0rednR2MjIxKjXSWkpICJyen12775ZdfYuHChfjzzz/RpEmTctuZmprC1NRU9t7Kykq90ERERFpkUGfUJiYm8PX1lbsRrOTGsJYtW5a73eLFizF37lzs37+fN0UREVGlYlBn1AAQFhaGwYMHo0WLFvDz80NUVBRycnIwdOhQAMCgQYPg4uKCyMhIAMCiRYswe/ZsbNmyBe7u7rLvsq2srHi2TEREFZ7BFeo+ffrgyZMnmD17NpKTk+Hj44P9+/fLbjBLSkqCWPzvhYA1a9agoKAAvXr1kttPeHg4IiIidBmdiIhI4wyuUAPA+PHjMX78+DLXxcTEyL1PTEzUfiAiIiI9MajvqImIiEgeCzUREZEBY6EmIiIyYCzURERUaaxatQru7u4wMzODv78/zp8//9r227dvh6enJ8zMzNC4cWPs27dPR0kVx0JdxTk5OcHFxeWNA8oQERm6ktkXw8PDcenSJTRt2hQhISFITU0ts/3p06fRr18/DB8+HJcvX0aPHj3Qo0cP2bTJhoKFuoq7cOECHjx4gAsXLug7ChGRWpSdfXHFihXo1KkTPvvsMzRq1Ahz585F8+bN8fXXX+s4+euxUBMRUYVXMvviyxMyvWn2xTNnzpSawCkkJETh2Rp1xSCfoybdkkgkkEqleutfKimCVCKBVFKEwsJCveXQlyKJFEUS/f39G4IiQQqxRFqpj7+ksBCFhUWQCLkQG1XszymVFEJaJEFhYSGkMNJaP0VFRQCKpyPOzMyULX91zgbg9bMv3rx5s8z9JycnqzVbo66wUBsACyEXuem56D5pgV76v3n2MG6dO6KXvl/187wx+o5A+jT5R30nIAP06nTEVW3kSRZqQkO/YLz9blu9ZsgVWcCuhiV+mD1crzn04a+VQ/Eku0jfMfSqhpABk+q18O7/Nuo7ilZJJYUQpBJ9x9AIkdgIYqNqWu3j8uXL8Pf3x7Fjx+Dj4yNb/urZNKDa7ItOTk4qzdaoayzUBJFYDJGeM4hFRhAbGaNaNe3+j2+IjI3EMDaq2reLGAvFfweV/vhX9s+nYcbGxSXKysoK1tbWr2378uyLPXr0APDv7IvlDUndsmVLHD58GJMmTZItO3To0Gtna9QHFuoq7thPq5Cfmw1TCysE9Run7zhERCpTdvbFiRMnIigoCEuXLkWXLl2wdetWXLhwAevXr9fnxyiFhbqKy8/NxovszDc3JCIycMrOvhgQEIAtW7Zg5syZmD59Oho0aIDff/8d3t7e+voIZWKhJiKiSkOZ2RcBoHfv3ujdu7eWU6mnan8xRkREZOBYqImIiAwYCzUREZEBY6EmIiIyYCzUREREBoyFmoiIyICxUBMRERkwFmoiIiIDxkJNRERkwFioiYiIDBgLNRERkQHjWN9VnKmFldx/iYjIsLBQV3Gc2pKIyLDx0jcREZEBY6EmIiIyYCzUREREBozfUVdhNbMzMPjkATS/dwumhYV4bFMLKzt8hDuOb+k7GmlYvWPX4HT9AayeZEJSzQjP69jhZkcf5Nhby9pYPM1Co/2xsL33BGKJBE8aOOPaB74osDLXY3IiYqGuoixf5GHhz+tx9a26+KL7YGSYW6J2+lNkm/KHcmVUMzEV9/wbIN2lFkRSKTwP/QO/TUdxfGIXSEyMYVRQBL9NMchytsG5Ye0AAG8f/gfvfn8cp0Z3BMQiPX8CoqqLl76rqJ4XjiOteg181bEnbju5IrVGTcS6NUCyTS19RyMt+GtwMB40r4tsxxrIcrbF3z39YZGRixoPnwEAbO89gUV6Dv7+6D1kOdkgy8kGf/d8DzUePUOtuyl6Tk9UtfGMuoryS7iBy3Ua4PO9P+Gdhwl4ZmWNfU38ccj7XX1HIx0wflEIACiwMAEAiCVSCCJAavzv7+5SYyMIIhFq3nuCp/Wd9JKTiHhGXWU5ZjxHpyvn8cimFiJ6DMEfjf0wMmYPgq9f0nc00japAK99l/Csjh2yHW0AAOmutSCpZgzPA7EQFxTBqKAIjfZfhlgqwDQrT795iao4nlFXUSJBQLyjC34I7AgASHCoDbenqeh05TyOejXXczrSJu89F1A9JQNnRraXLSuwNMOlvoHw3nUB7mdvQRCJ8KixGzJq2/L7aSI9Y6Guop5bVsf9mvZyy+7XtEfLO1f1lIh04Z3dF+Bw8xHOjPgPXtSwkFuX1sAZMZO7olpOPgSxCEXmJvjPwh3IteXwskT6xEJdRd1wroPaz9Pklrk8T8MTa1s9JSKtEgS8s+cinK4/wJnh/0FezfKLb6GlKQCgVnwyTHNeIMXTRVcpiagM/I66itrVLBANk++j1/kYOKU/RZubf6Pj1b+wr4m/vqORFnjvvgCXvxNx+b8BkJgawzQrD6ZZeRAXFsnavHXxLmzup8HiaRZcYhPQfOspJAQ0lHvWmoh0j2fUVdQdp7cQ2eVjDDx9EH3OH0WKtS2+CeqCY54++o5GWuB2/g4AoOW3h+WW//2RPx40rwsAsEzLRMNDf8MkrwC5Npa40/YdJAQ01HlWIpLHQl2FXajriQt1PfUdg3Rg77x+b2wTF+KDuBAf7YchIqXw0jcREZEBY6EmIiIyYCzUREREBoyFmoiIyICxUBMRERkwgyzUq1atgru7O8zMzODv74/z58+/tv327dvh6ekJMzMzNG7cGPv27dNRUiIiIu0yuEK9bds2hIWFITw8HJcuXULTpk0REhKC1NTUMtufPn0a/fr1w/Dhw3H58mX06NEDPXr0wNWrHAqTiIgqPoMr1MuWLcPIkSMxdOhQeHl5Ye3atbCwsEB0dHSZ7VesWIFOnTrhs88+Q6NGjTB37lw0b94cX3/9tY6TExERaZ5BFeqCggJcvHgR7dv/O6uPWCxG+/btcebMmTK3OXPmjFx7AAgJCSm3PRERUUViUCOTpaWlQSKRwNHRUW65o6Mjbt68WeY2ycnJZbZPTk4us31+fj7y8/Nl77OzswEAN27cUCe6yp49vocXWc/00rcheSEygzjXApcuVb35sG/ef4rneRJ9x9ArKyEb1SwA41eOv7OzM5ydnfWUSj2PHz/G48eP9R2jQtPXz2VDY1CFWhciIyMxZ84cuWVubm4YMGCAnhLRyw6un6fvCKRPS+VvBA0PD0dERIR+sqhp3bp1pX7WkPKCgoIq7C9rmmJQhdrOzg5GRkZISUmRW56SkgInJ6cyt3FyclKq/bRp0xAWFia37NmzZ3j2rGqe1WZnZyMoKAjHjh2DlRXnHa6KDPnfQEX+AT169Gh069ZNp30a8rFUVUW+qqIpIkEQBH2HeJm/vz/8/PywcuVKAIBUKkWdOnUwfvx4TJ06tVT7Pn36IDc3F7t375YtCwgIQJMmTbB27Vqd5a6oMjMzUaNGDWRkZMDamtMZVkX8N1B58FhWTgZ1Rg0AYWFhGDx4MFq0aAE/Pz9ERUUhJycHQ4cOBQAMGjQILi4uiIyMBABMnDgRQUFBWLp0Kbp06YKtW7fiwoULWL9+vT4/BhERkUYYXKHu06cPnjx5gtmzZyM5ORk+Pj7Yv3+/7IaxpKQkiMX/3qweEBCALVu2YObMmZg+fToaNGiA33//Hd7e3vr6CERERBpjcJe+Sbfy8/MRGRmJadOmwdTUVN9xSA/4b6Dy4LGsnFioiYiIDJhBDXhCRERE8lioiYiIDBgLNWlUYmIiRCIRNm3apO8oRESVAgu1HsXHx2P06NGoW7cuzMzMYG1tjcDAQKxYsQJ5eXla6/f69euIiIhAYmKi1vpQxPz589GtWzc4OjpCJBJV2BGotE0kEin0iomJUbuv3NxcREREKLUvHkfl8HiSsgzu8ayqYu/evejduzdMTU0xaNAgeHt7o6CgACdPnsRnn32Ga9euae1Z8OvXr2POnDlo27Yt3N3dtdKHImbOnAknJyc0a9YMBw4c0FsOQ/f999/Lvf/uu+9w6NChUssbNWqkdl+5ubmyYS/btm2r0DY8jsrh8SRlsVDrQUJCAvr27Qs3NzccOXJEbni8cePG4c6dO9i7d68eE/5LEAS8ePEC5ubmGt93QkIC3N3dkZaWBnt7e43vv7J4dRz6s2fP4tChQwYzPj2Po3J4PElZvPStB4sXL0Z2dja+/fbbMsewrV+/PiZOnCh7X1RUhLlz56JevXowNTWFu7s7pk+fLjcLGAC4u7vjgw8+wMmTJ+Hn5wczMzPUrVsX3333nazNpk2b0Lt3bwBAcHBwqctsJfs4cOAAWrRoAXNzc6xbtw4AcPfuXfTu3Rs1a9aEhYUF3nvvPbV+odDn2XxlI5VKERUVhXfeeQdmZmZwdHTE6NGj8fz5c7l2Fy5cQEhICOzs7GBubg4PDw8MGzYMQPH9BSU/mOfMmSP7t/GmS588jprH40kv4xm1HuzevRt169ZFQECAQu1HjBiBzZs3o1evXpg8eTLOnTuHyMhI3LhxAzt27JBre+fOHfTq1QvDhw/H4MGDER0djSFDhsDX1xfvvPMO2rRpgwkTJuCrr77C9OnTZZfXXr7MFhcXh379+mH06NEYOXIkGjZsiJSUFAQEBCA3NxcTJkxArVq1sHnzZnTr1g2//PILPvzwQ839BZHSRo8ejU2bNmHo0KGYMGECEhIS8PXXX+Py5cs4deoUqlWrhtTUVHTs2BH29vaYOnUqbGxskJiYiN9++w0AYG9vjzVr1mDMmDH48MMP8dFHHwEAmjRpos+PViXxeJIcgXQqIyNDACB0795dofaxsbECAGHEiBFyyz/99FMBgHDkyBHZMjc3NwGAcPz4cdmy1NRUwdTUVJg8ebJs2fbt2wUAwtGjR0v1V7KP/fv3yy2fNGmSAEA4ceKEbFlWVpbg4eEhuLu7CxKJRBAEQUhISBAACBs3blTo8wmCIDx58kQAIISHhyu8TVU2btw44eX/dU+cOCEAEH788Ue5dvv375dbvmPHDgGA8Ndff5W7b3WOBY+jang86U146VvHMjMzAQDVq1dXqP2+fcXz8746NefkyZMBoNSlZy8vL7Ru3Vr23t7eHg0bNsTdu3cVzujh4YGQkJBSOfz8/NCqVSvZMisrK4waNQqJiYm4fv26wvsnzdq+fTtq1KiBDh06IC0tTfby9fWFlZUVjh49CgCwsbEBAOzZsweFhYV6TEyvw+NJr2Kh1rGSqeeysrIUan/v3j2IxWLUr19fbrmTkxNsbGxw7949ueV16tQptQ9bW9tS3229joeHR5k5GjZsWGp5ySXzV3OQ7ty+fRsZGRlwcHCAvb293Cs7OxupqakAgKCgIPTs2RNz5syBnZ0dunfvjo0bN5a614H0i8eTXsXvqHXM2toatWvXxtWrV5XaTiQSKdTOyMiozOWCEkO6a+MOb9IeqVQKBwcH/Pjjj2WuL7mhSCQS4ZdffsHZs2exe/duHDhwAMOGDcPSpUtx9uxZWFlZ6TI2lYPHk17FQq0HH3zwAdavX48zZ86gZcuWr23r5uYGqVSK27dvy93wlZKSgvT0dLi5uSndv6JF/9UccXFxpZbfvHlTtp70o169evjzzz8RGBio0C9Z7733Ht577z3Mnz8fW7Zswccff4ytW7dixIgRKv3bIM3i8aRX8dK3Hnz++eewtLTEiBEjkJKSUmp9fHw8VqxYAQDo3LkzACAqKkquzbJlywAAXbp0Ubp/S0tLAEB6errC23Tu3Bnnz5/HmTNnZMtycnKwfv16uLu7w8vLS+kcpBn//e9/IZFIMHfu3FLrioqKZMf5+fPnpa6s+Pj4AIDscqmFhQUA5f5tkGbxeNKreEatB/Xq1cOWLVvQp08fNGrUSG5kstOnT2P79u0YMmQIAKBp06YYPHgw1q9fj/T0dAQFBeH8+fPYvHkzevTogeDgYKX79/HxgZGRERYtWoSMjAyYmpqiXbt2cHBwKHebqVOn4qeffsL777+PCRMmoGbNmti8eTMSEhLw66+/QixW/ne+77//Hvfu3UNubi4A4Pjx45g3bx4AYODAgTxLV1BQUBBGjx6NyMhIxMbGomPHjqhWrRpu376N7du3Y8WKFejVqxc2b96M1atX48MPP0S9evWQlZWFDRs2wNraWvYLobm5Oby8vLBt2za8/fbbqFmzJry9veHt7V1u/zyOmsXjSaXo+a7zKu3WrVvCyJEjBXd3d8HExESoXr26EBgYKKxcuVJ48eKFrF1hYaEwZ84cwcPDQ6hWrZrg6uoqTJs2Ta6NIBQ/WtWlS5dS/QQFBQlBQUFyyzZs2CDUrVtXMDIykntUq7x9CIIgxMfHC7169RJsbGwEMzMzwc/PT9izZ49cG2UezwoKChIAlPkq69ExKvbq4zwl1q9fL/j6+grm5uZC9erVhcaNGwuff/658OjRI0EQBOHSpUtCv379hDp16gimpqaCg4OD8MEHHwgXLlyQ28/p06cFX19fwcTERKHHc3gc1cPjSW8iEgQl7jIiIiIineJ31ERERAaMhZqIiMiAsVATEREZMBZqIiIiA8ZCTUREZMBYqImIiAwYC7UBW7x4MTw9PSGVSvUdRW19+/bFf//7X33HqFB4/KksiYmJEIlE2LRpk76jkI6wUBuozMxMLFq0CFOmTJGN+iUSiSASibB06dJS7Tdt2gSRSIQLFy5oPEuHDh0gEokwfvz4Mtd/++23aNSoEczMzNCgQQOsXLmyVJspU6bg119/xd9//63xfJURjz8RlWChNlDR0dEoKipCv379Sq1bsmSJbHg/bfvtt9/kxvd+1bp16zBixAi88847WLlyJVq2bIkJEyZg0aJFcu2aNWuGFi1alFlkqDQefyqPm5sb8vLyMHDgQH1HIV3R99BoVLYmTZoIAwYMkFsGQPDx8REACEuXLpVbt3HjRgGA8Ndff2ksQ15enuDu7i588cUXAgBh3Lhxcutzc3OFWrVqlRpy9OOPPxYsLS2FZ8+eyS3/8ssvBUtLSyErK0tjGSsrHn8iKsEzagOUkJCAf/75B+3bty+1LjAwEO3atcPixYuRl5en1RyLFy+GVCrFp59+Wub6o0eP4unTpxg7dqzc8nHjxiEnJwd79+6VW96hQwfk5OTg0KFDWstcGfD4V34REREQiUS4desWBgwYgBo1asDe3h6zZs2CIAi4f/8+unfvDmtrazg5OcldiSjrO+ohQ4bAysoKDx8+RI8ePWBlZQV7e3t8+umnkEgksnYxMTEQiUSIiYmRy1PWPpOTkzF06FC89dZbMDU1hbOzM7p3747ExEQt/a1QeVioDdDp06cBAM2bNy9zfUREBFJSUrBmzZrX7ic/Px9paWkKvV6VlJSEhQsXYtGiReXOiXv58mUAQIsWLeSW+/r6QiwWy9aX8PLygrm5OU6dOvXa3FUdj3/V0adPH0ilUixcuBD+/v6YN28eoqKi0KFDB7i4uGDRokWoX78+Pv30Uxw/fvy1+5JIJAgJCUGtWrXw5ZdfIigoCEuXLsX69etVytazZ0/s2LEDQ4cOxerVqzFhwgRkZWUhKSlJpf2R6jjNpQG6efMmAMDDw6PM9a1bt0ZwcDCWLFmCMWPGlPuD9KeffsLQoUMV6lN4ZW6WyZMno1mzZujbt2+52zx+/BhGRkalpsc0MTFBrVq18OjRI7nlxsbGcHV1xfXr1xXKVFXx+Fcdfn5+WLduHQBg1KhRcHd3x+TJkxEZGYkpU6YAAPr164fatWsjOjoabdq0KXdfL168QJ8+fTBr1iwAwCeffILmzZvj22+/xZgxY5TKlZ6ejtOnT2PJkiVyV1SmTZum7EckDWChNkBPnz6FsbExrKysym0TERGBoKAgrF27FqGhoWW2CQkJUeky49GjR/Hrr7/i3Llzr22Xl5cHExOTMteZmZmVeWnW1ta2zDM4+hePf9UxYsQI2Z+NjIzQokULPHjwAMOHD5ctt7GxQcOGDXH37t037u+TTz6Re9+6dWt8//33SucyNzeHiYkJYmJiMHz4cNja2iq9D9IcFuoKqk2bNggODsbixYtL/c9ZwtnZGc7Ozkrtt6ioCBMmTMDAgQPx7rvvvratubk5CgoKylz34sWLMs/0BEGASCRSKhOVxuNfOdSpU0fufY0aNWBmZgY7O7tSy58+ffrafZmZmcHe3l5uma2tLZ4/f650LlNTUyxatAiTJ0+Go6Mj3nvvPXzwwQcYNGgQnJyclN4fqYeF2gDVqlULRUVFyMrKQvXq1cttFx4ejrZt22LdunWwsbEptT4vLw8ZGRkK9VnyP993332HuLg4rFu3rtRNI1lZWUhMTISDgwMsLCzg7OwMiUSC1NRUucufBQUFePr0KWrXrl2qn+fPn6NBgwYKZaqqePyrDiMjI4WWAaW/nlB0u5eV90vSyzeclZg0aRK6du2K33//HQcOHMCsWbMQGRmJI0eOoFmzZm/sizSHN5MZIE9PTwDFd/++TlBQENq2bYtFixaVeZlx27ZtsrOqN71KJCUlobCwEIGBgfDw8JC9gOIf4h4eHjh48CAAwMfHBwBKDbJx4cIFSKVS2foSRUVFuH//Pho1aqTU30dVw+NP2lJyCTs9PV1u+b1798psX69ePUyePBkHDx7E1atXUVBQwGfh9YBn1AaoZcuWAIp/4DVp0uS1bSMiItC2bdsy7+xU5TvKvn37lvoBCwAffvghOnfujJEjR8Lf3x8A0K5dO9SsWRNr1qxB586dZW3XrFkDCwsLdOnSRW4f169fx4sXLxAQEKBUpqqGx5+0xc3NDUZGRjh+/Dh69OghW7569Wq5drm5uRCLxTAzM5Mtq1evHqpXr478/HxdxaX/x0JtgOrWrQtvb2/8+eefGDZs2GvbBgUFISgoCMeOHSu1TpXvKD09PWVndK/y8PCQ+5/b3Nwcc+fOxbhx49C7d2+EhITgxIkT+OGHHzB//nzUrFlTbvtDhw7BwsICHTp0UCpTVcPjT9pSo0YN9O7dGytXroRIJEK9evWwZ88epKamyrW7desW/vOf/+C///0vvLy8YGxsjB07diAlJeW1TwKQdrBQG6hhw4Zh9uzZyMvLK/fxmxIREREIDg7WUTJ5Y8eORbVq1bB06VLs2rULrq6uWL58OSZOnFiq7fbt2/HRRx+99ntXKsbjT9qycuVKFBYWYu3atTA1NcV///tfLFmyBN7e3rI2rq6u6NevHw4fPozvv/8exsbG8PT0xM8//4yePXvqMX3VJBLedIcC6UVGRgbq1q2LxYsXyz2qUVHFxsaiefPmuHTpUpmXVkkejz8RlWChNmCLFi3Cxo0bcf36ddkMShVV3759IZVK8fPPP+s7SoXB409EAAs1ERGRQavYv6YTERFVcizUREREBoyFmoiIyICxUBMRERkwFmoiIiolMTERIpEImzZt0neUKo+FmohITfHx8Rg9ejTq1q0LMzMzWFtbIzAwECtWrChzHHZNuX79OiIiIkpNoKJr8+fPR7du3eDo6AiRSISIiAi95qlsODIZEZEa9u7di969e8PU1BSDBg2Ct7c3CgoKcPLkSXz22We4du1amWOxa8L169cxZ84ctG3bFu7u7lrpQxEzZ86Ek5MTmjVrhgMHDugtR2XFQk1EpKKEhAT07dsXbm5uOHLkiNzY6uPGjcOdO3ewd+9ePSb8lyAI5c4Trq6EhAS4u7sjLS2t1JzYpD5e+iYiUtHixYuRnZ2Nb7/9tswJUOrXry837nlRURHmzp2LevXqwdTUFO7u7pg+fXqpGanc3d3xwQcf4OTJk/Dz84OZmRnq1q2L7777TtZm06ZN6N27NwAgODgYIpEIIpEIMTExcvs4cOAAWrRoAXNzc6xbtw4AcPfuXfTu3Rs1a9aEhYUF3nvvPbV+odDn2XxVwEJNRKSi3bt3o27dugpP3TlixAjMnj0bzZs3x/LlyxEUFITIyMgyZ6S6c+cOevXqhQ4dOmDp0qWwtbXFkCFDcO3aNQBAmzZtMGHCBADA9OnT8f333+P777+Xm+87Li4O/fr1Q4cOHbBixQr4+PggJSUFAQEBOHDgAMaOHYv58+fjxYsX6NatG3bs2KGBvxXSOIGIiJSWkZEhABC6d++uUPvY2FgBgDBixAi55Z9++qkAQDhy5IhsmZubmwBAOH78uGxZamqqYGpqKkyePFm2bPv27QIA4ejRo6X6K9nH/v375ZZPmjRJACCcOHFCtiwrK0vw8PAQ3N3dBYlEIgiCICQkJAgAhI0bNyr0+QRBEJ48eSIAEMLDwxXeht6MZ9RERCrIzMwEAIWn7dy3bx8AICwsTG755MmTAaDUpWcvLy+0bt1a9t7e3h4NGzbE3bt3Fc7o4eGBkJCQUjn8/PzQqlUr2TIrKyuMGjUKiYmJuH79usL7J91goSYiUoG1tTUAICsrS6H29+7dg1gsRv369eWWOzk5wcbGBvfu3ZNbXqdOnVL7sLW1xfPnzxXO6OHhUWaOhg0bllpecsn81RykfyzUREQqsLa2Ru3atXH16lWlthOJRAq1MzIyKnO5oMSEh9q4w5t0j4WaiEhFH3zwAeLj43HmzJk3tnVzc4NUKsXt27fllqekpCA9PR1ubm5K969o0X81R1xcXKnlN2/elK0nw8JCTUSkos8//xyWlpYYMWIEUlJSSq2Pj4/HihUrAACdO3cGAERFRcm1WbZsGQCgS5cuSvdvaWkJAEhPT1d4m86dO+P8+fNyv1zk5ORg/fr1cHd3h5eXl9I5SLs44AkRkYrq1auHLVu2oE+fPmjUqJHcyGSnT5/G9u3bMWTIEABA06ZNMXjwYKxfvx7p6ekICgrC+fPnsXnzZvTo0QPBwcFK9+/j4wMjIyMsWrQIGRkZMDU1Rbt27eDg4FDuNlOnTsVPP/2E999/HxMmTEDNmjWxefNmJCQk4Ndff4VYrPz52/fff4979+4hNzcXAHD8+HHMmzcPADBw4ECepatL37edExFVdLdu3RJGjhwpuLu7CyYmJkL16tWFwMBAYeXKlcKLFy9k7QoLC4U5c+YIHh4eQrVq1QRXV1dh2rRpcm0EofjRqi5dupTqJygoSAgKCpJbtmHDBqFu3bqCkZGR3KNa5e1DEAQhPj5e6NWrl2BjYyOYmZkJfn5+wp49e+TaKPN4VlBQkACgzFdZj46RckSCoMSdCURERKRT/I6aiIjIgLFQExERGTAWaiIiIgPGQk1ERGTAWKiJiIgMGAs1ERGRAWOhJiIiMmAs1ERERAaMhZqIiMiAsVATEREZMBZqIiIiA8ZCTUREZMBYqImIiAzY/wGeZQmqTC/a+AAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -1913,7 +1906,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "For further aesthetic changes, the '[Plot Aesthetics Tutorial](09-plot_aesthetics.html)' provides detailed examples of how to customize the plot.\n"
+ "For further aesthetic changes, the [Plot Aesthetics Tutorial](09-plot_aesthetics.html) provides detailed examples of how to customize the plot.\n"
]
}
],
diff --git a/nbs/tutorials/05-mini_meta.ipynb b/nbs/tutorials/05-mini_meta.ipynb
index a6b98ad5..153d26b9 100644
--- a/nbs/tutorials/05-mini_meta.ipynb
+++ b/nbs/tutorials/05-mini_meta.ipynb
@@ -15,7 +15,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "When scientists conduct replicates of the same experiment, the effect size of each replicate often varies, complicating the interpretation of the results. Starting from v2023.02.14, DABEST can now compute the meta-analyzed weighted effect size given multiple replicates of the same experiment. This can help resolve differences between replicates and simplify interpretation.\n",
+ "When scientists conduct replicates of the same experiment, the effect size of each replicate often varies, complicating the interpretation of the results. Starting from **v2023.02.14**, DABEST can now compute the meta-analyzed weighted effect size given multiple replicates of the same experiment. This can help resolve differences between replicates and simplify interpretation.\n",
"\n",
"This function employs the generic *inverse-variance* method to calculate the effect size, as follows:\n",
"\n",
@@ -42,9 +42,9 @@
"source": [
"Note that this utilizes the fixed-effects model of meta-analysis, in contrast to the random-effects model. In the fixed-effects model, all variation between the results of each replicate is assumed to be solely due to sampling error. Therefore, we recommend using this function exclusively for replications of the same experiment, where it can be safely assumed that each replicate estimates the same population mean $\\mu$.\n",
"\n",
- "Additionally, be aware that as of v2023.02.14, DABEST can only compute weighted effect size *for mean difference only*, and not for standardized measures such as Cohen's *d*.\n",
+ "Additionally, be aware that as of **v2023.02.14**, DABEST can only compute weighted effect size *for mean difference only*, and not for standardized measures such as Cohen's *d*.\n",
"\n",
- "For more information on meta-analysis, please refer to [Chapter 10 of the Cochrane handbook](https://training.cochrane.org/handbook/current/chapter-10)"
+ "For more information on meta-analysis, please refer to [Chapter 10 of the Cochrane handbook](https://training.cochrane.org/handbook/current/chapter-10)."
]
},
{
@@ -70,7 +70,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "Compiling numba functions: 100%|██████████| 11/11 [00:00<00:00, 46.65it/s]"
+ "Compiling numba functions: 100%|██████████| 11/11 [00:00<00:00, 69.63it/s]"
]
},
{
@@ -78,7 +78,7 @@
"output_type": "stream",
"text": [
"Numba compilation complete!\n",
- "We're using DABEST v2025.03.14\n"
+ "We're using DABEST v2025.03.27\n"
]
},
{
@@ -289,7 +289,7 @@
"source": [
"Next, we load data as usual using ``dabest.load()``. However, this time, we also specify the argument ``mini_meta=True``. Since we are loading data from three experiments, ``idx`` is passed as a tuple of tuples, as shown below.\n",
"\n",
- "When this `dabest` object is invoked, it should indicate that effect sizes will be calculated for each group, along with the weighted delta. It is important to note once again that the weighted delta will only be calculated for mean differences"
+ "When this `dabest` object is invoked, it should indicate that effect sizes will be calculated for each group, along with the weighted delta. It is important to note once again that the weighted delta will only be calculated for mean differences."
]
},
{
@@ -300,11 +300,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:59:23 2025.\n",
+ "The current time is Tue Mar 25 16:03:08 2025.\n",
"\n",
"Effect size(s) with 95% confidence intervals will be computed for:\n",
"1. Test 1 minus Control 1\n",
@@ -340,11 +340,11 @@
{
"data": {
"text/plain": [
- "DABEST v2025.03.14\n",
+ "DABEST v2025.03.27\n",
"==================\n",
" \n",
"Good afternoon!\n",
- "The current time is Fri Feb 21 13:59:23 2025.\n",
+ "The current time is Tue Mar 25 16:03:09 2025.\n",
"\n",
"The unpaired mean difference between Control 1 and Test 1 is 0.48 [95%CI 0.205, 0.774].\n",
"The p-value of the two-sided permutation t-test is 0.001, calculated for legacy purposes only. \n",
@@ -468,7 +468,7 @@
"