diff --git a/README.md b/README.md index 06fcfd4..1bfb67a 100644 --- a/README.md +++ b/README.md @@ -2,372 +2,61 @@ CIS565: Project 5: WebGL ------------------------------------------------------------------------------- Fall 2013 -------------------------------------------------------------------------------- -Due Friday 11/08/2013 -------------------------------------------------------------------------------- - -------------------------------------------------------------------------------- -NOTE: -------------------------------------------------------------------------------- -This project requires any graphics card with support for a modern OpenGL -pipeline. Any AMD, NVIDIA, or Intel card from the past few years should work -fine, and every machine in the SIG Lab and Moore 100 is capable of running -this project. - -This project also requires a WebGL capable browser. The project is known to -have issues with Chrome on windows, but Firefox seems to run it fine. - -------------------------------------------------------------------------------- -INTRODUCTION: -------------------------------------------------------------------------------- -In this project, you will get introduced to the world of GLSL in two parts: -vertex shading and fragment shading. The first part of this project is the -Image Processor, and the second part of this project is a Wave Vertex Shader. - -In the first part of this project, you will implement a GLSL vertex shader as -part of a WebGL demo. You will create a dynamic wave animation using code that -runs entirely on the GPU. - -In the second part of this project, you will implement a GLSL fragment shader -to render an interactive globe in WebGL. This will include texture blending, -bump mapping, specular masking, and adding a cloud layer to give your globe a -uniquie feel. - -------------------------------------------------------------------------------- -CONTENTS: -------------------------------------------------------------------------------- -The Project4 root directory contains the following subdirectories: - -* part1/ contains the base code for the Wave Vertex Shader. -* part2/ contains the base code for the Globe Fragment Shader. -* resources/ contains the screenshots found in this readme file. - -------------------------------------------------------------------------------- -PART 1 REQUIREMENTS: -------------------------------------------------------------------------------- - -In Part 1, you are given code for: - -* Drawing a VBO through WebGL -* Javascript code for interfacing with WebGL -* Functions for generating simplex noise - -You are required to implement the following: - -* A sin-wave based vertex shader: - -![Example sin wave grid](resources/sinWaveGrid.png) - -* A simplex noise based vertex shader: - -![Example simplex noise wave grid](resources/oceanWave.png) - -* One interesting vertex shader of your choice - -------------------------------------------------------------------------------- -PART 1 WALKTHROUGH: -------------------------------------------------------------------------------- -**Sin Wave** - -* For this assignment, you will need the latest version of Firefox. -* Begin by opening index.html. You should see a flat grid of black and white - lines on the xy plane: - -![Example boring grid](resources/emptyGrid.png) - -* In this assignment, you will animate the grid in a wave-like pattern using a - vertex shader, and determine each vertex’s color based on its height, as seen - in the example in the requirements. -* The vertex and fragment shader are located in script tags in `index.html`. -* The JavaScript code that needs to be modified is located in `index.js`. -* Required shader code modifications: - * Add a float uniform named u_time. - * Modify the vertex’s height using the following code: - - ```glsl - float s_contrib = sin(position.x*2.0*3.14159 + u_time); - float t_contrib = cos(position.y*2.0*3.14159 + u_time); - float height = s_contrib*t_contrib; - ``` - - * Use the GLSL mix function to blend together two colors of your choice based - on the vertex’s height. The lowest possible height should be assigned one - color (for example, `vec3(1.0, 0.2, 0.0)`) and the maximum height should be - another (`vec3(0.0, 0.8, 1.0)`). Use a varying variable to pass the color to - the fragment shader, where you will assign it `gl_FragColor`. - -* Required JavaScript code modifications: - * A floating-point time value should be increased every animation step. - Hint: the delta should be less than one. - * To pass the time to the vertex shader as a uniform, first query the location - of `u_time` using `context.getUniformLocation` in `initializeShader()`. - Then, the uniform’s value can be set by calling `context.uniform1f` in - `animate()`. - -**Simplex Wave** - -* Now that you have the sin wave working, create a new copy of `index.html`. - Call it `index_simplex.html`, or something similar. -* Open up `simplex.vert`, which contains a compact GLSL simplex noise - implementation, in a text editor. Copy and paste the functions included - inside into your `index_simplex.html`'s vertex shader. -* Try changing s_contrib and t_contrib to use simplex noise instead of sin/cos - functions with the following code: - -```glsl -vec2 simplexVec = vec2(u_time, position); -float s_contrib = snoise(simplexVec); -float t_contrib = snoise(vec2(s_contrib,u_time)); -``` - -**Wave Of Your Choice** - -* Create another copy of `index.html`. Call it `index_custom.html`, or - something similar. -* Implement your own interesting vertex shader! In your README.md with your - submission, describe your custom vertex shader, what it does, and how it - works. - -------------------------------------------------------------------------------- -PART 2 REQUIREMENTS: -------------------------------------------------------------------------------- -In Part 2, you are given code for: - -* Reading and loading textures -* Rendering a sphere with textures mapped on -* Basic passthrough fragment and vertex shaders -* A basic globe with Earth terrain color mapping -* Gamma correcting textures -* javascript to interact with the mouse - * left-click and drag moves the camera around - * right-click and drag moves the camera in and out - -You are required to implement: - -* Bump mapped terrain -* Rim lighting to simulate atmosphere -* Night-time lights on the dark side of the globe -* Specular mapping -* Moving clouds - -You are also required to pick one open-ended effect to implement: - -* Procedural water rendering and animation using noise -* Shade based on altitude using the height map -* Cloud shadows via ray-tracing through the cloud map in the fragment shader -* Orbiting Moon with texture mapping and shadow casting onto Earth -* Draw a skybox around the entire scene for the stars. -* Your choice! Email Liam and Patrick to get approval first - -Finally in addition to your readme, you must also set up a gh-pages branch -(explained below) to expose your beautiful WebGL globe to the world. - -Some examples of what your completed globe renderer will look like: - -![Completed globe, day side](resources/globe_day.png) - -Figure 0. Completed globe renderer, daylight side. - -![Completed globe, twilight](resources/globe_twilight.png) - -Figure 1. Completed globe renderer, twilight border. -![Completed globe, night side](resources/globe_night.png) -Figure 2. Completed globe renderer, night side. - -------------------------------------------------------------------------------- -PART 2 WALKTHROUGH: -------------------------------------------------------------------------------- - -Open part2/frag_globe.html in Firefox to run it. You’ll see a globe -with Phong lighting like the one in Figure 3. All changes you need to make -will be in the fragment shader portion of this file. - -![Initial globe](resources/globe_initial.png) - -Figure 3. Initial globe with diffuse and specular lighting. - -**Night Lights** - -The backside of the globe not facing the sun is completely black in the -initial globe. Use the `diffuse` lighting component to detect if a fragment -is on this side of the globe, and, if so, shade it with the color from the -night light texture, `u_Night`. Do not abruptly switch from day to night; -instead use the `GLSL mix` function to smoothly transition from day to night -over a reasonable period. The resulting globe will look like Figure 4. -Consider brightening the night lights by multiplying the value by two. - -The base code shows an example of how to gamma correct the nighttime texture: - -```glsl -float gammaCorrect = 1/1.2; -vec4 nightColor = pow(texture2D(u_Night, v_Texcoord), vec4(gammaCorrect)); -``` - -Feel free to play with gamma correcting the night and day textures if you -wish. Find values that you think look nice! - -![Day/Night without specular mapping](resources/globe_nospecmap.png) - -Figure 4. Globe with night lights and day/night blending at dusk/dawn. - -**Specular Map** - -Our day/night color still shows specular highlights on landmasses, which -should only be diffuse lit. Only the ocean should receive specular highlights. -Use `u_EarthSpec` to determine if a fragment is on ocean or land, and only -include the specular component if it is in ocean. - -![Day/Night with specular mapping](resources/globe_specmap.png) - -Figure 5. Globe with specular map. Compare to Figure 4. Here, the specular -component is not used when shading the land. - -**Clouds** - -In day time, clouds should be diffuse lit. Use `u_Cloud` to determine the -cloud color, and `u_CloudTrans` and `mix` to determine how much a daytime -fragment is affected by the day diffuse map or cloud color. See Figure 6. - -In night time, clouds should obscure city lights. Use `u_CloudTrans` and `mix` -to blend between the city lights and solid black. See Figure 7. - -Animate the clouds by offseting the `s` component of `v_Texcoord` by `u_time` -when reading `u_Cloud` and `u_CloudTrans`. - -![Day with clouds](resources/globe_daycloud.png) - -Figure 6. Clouds with day time shading. - -![Night with clouds](resources/globe_nightcloud.png) - -Figure 7. Clouds observing city nights on the dark side of the globe. - -**Bump Mapping** - -Add the appearance of mountains by perturbing the normal used for diffuse -lighting the ground (not the clouds) by using the bump map texture, `u_Bump`. -This texture is 1024x512, and is zero when the fragment is at sea-level, and -one when the fragment is on the highest mountain. Read three texels from this -texture: once using `v_Texcoord`; once one texel to the right; and once one -texel above. Create a perturbed normal in tangent space: - -`normalize(vec3(center - right, center - top, 0.2))` - -Use `eastNorthUpToEyeCoordinates` to transform this normal to eye coordinates, -normalize it, then use it for diffuse lighting the ground instead of the -original normal. - -![Globe with bump mapping](resources/globe_bumpmap.png) - -Figure 8. Bump mapping brings attention to mountains. - -**Rim Lighting** - -Rim lighting is a simple post-processed lighting effect we can apply to make -the globe look as if it has an atmospheric layer catching light from the sun. -Implementing rim lighting is simple; we being by finding the dot product of -`v_Normal` and `v_Position`, and add 1 to the dot product. We call this value -our rim factor. If the rim factor is greater than 0, then we add a blue color -based on the rim factor to the current fragment color. You might use a color -something like `vec4(rim/4, rim/2, rim/2, 1)`. If our rim factor is not greater -than 0, then we leave the fragment color as is. Figures 0,1 and 2 show our -finished globe with rim lighting. - -For more information on rim lighting, -read http://www.fundza.com/rman_shaders/surface/fake_rim/fake_rim1.html. - -------------------------------------------------------------------------------- -GH-PAGES -------------------------------------------------------------------------------- -Since this assignment is in WebGL you will make your project easily viewable by -taking advantage of GitHub's project pages feature. - -Once you are done you will need to create a new branch named gh-pages: - -`git branch gh-pages` +--- +Part 1: Vertex Shader Shenanigans +--- -Switch to your new branch: +Some screenshots to begin! -`git checkout gh-pages` +Click the image to open a demo -Create an index.html file that is either your renamed frag_globe.html or -contains a link to it, commit, and then push as usual. Now you can go to +[![screen](images/wave.png)](http://ishaan13.github.io/Project5-WebGL/part1/vert_wave.html) -`.github.io/` +[![screen](images/simplex_2d.png)](http://ishaan13.github.io/Project5-WebGL/part1/vert_wave_simplex.html) -to see your beautiful globe from anywhere. +[![screen](images/height_1.PNG)](http://ishaan13.github.io/Project5-WebGL/part1/vert_wave_height.html) -------------------------------------------------------------------------------- -README -------------------------------------------------------------------------------- -All students must replace or augment the contents of this Readme.md in a clear -manner with the following: +[![screen](images/height_2.PNG)](http://ishaan13.github.io/Project5-WebGL/part1/vert_wave_height.html) -* A brief description of the project and the specific features you implemented. -* At least one screenshot of your project running. -* A 30 second or longer video of your project running. To create the video you - can use http://www.microsoft.com/expression/products/Encoder4_Overview.aspx -* A performance evaluation (described in detail below). -------------------------------------------------------------------------------- -PERFORMANCE EVALUATION -------------------------------------------------------------------------------- -The performance evaluation is where you will investigate how to make your -program more efficient using the skills you've learned in class. You must have -performed at least one experiment on your code to investigate the positive or -negative effects on performance. +Details: +* The simple wave is just a sin wave that goes up and down based on the x and z coordinage +* The simplex noise function is used in 2D to generate a moving height field sort of effect. +* The last one is an infinitely tiled, pseudo random terrain generation -We encourage you to get creative with your tweaks. Consider places in your code -that could be considered bottlenecks and try to improve them. +For the pseudo-random infinitely tiled terrain generation, I used a combination of a tiled noise texture along with the simplex noise function to create a time-dependent but yet infinitely tiled terrain which is false colored for visualization. -Each student should provide no more than a one page summary of their -optimizations along with tables and or graphs to visually explain any -performance differences. +--- +Part 2: Globe Rendering +--- -------------------------------------------------------------------------------- -THIRD PARTY CODE POLICY -------------------------------------------------------------------------------- -* Use of any third-party code must be approved by asking on the Google groups. - If it is approved, all students are welcome to use it. Generally, we approve - use of third-party code that is not a core part of the project. For example, - for the ray tracer, we would approve using a third-party library for loading - models, but would not approve copying and pasting a CUDA function for doing - refraction. -* Third-party code must be credited in README.md. -* Using third-party code without its approval, including using another - student's code, is an academic integrity violation, and will result in you - receiving an F for the semester. +Click the image to open a demo -------------------------------------------------------------------------------- -SELF-GRADING -------------------------------------------------------------------------------- -* On the submission date, email your grade, on a scale of 0 to 100, to Liam, - liamboone@gmail.com, with a one paragraph explanation. Be concise and - realistic. Recall that we reserve 30 points as a sanity check to adjust your - grade. Your actual grade will be (0.7 * your grade) + (0.3 * our grade). We - hope to only use this in extreme cases when your grade does not realistically - reflect your work - it is either too high or too low. In most cases, we plan - to give you the exact grade you suggest. -* Projects are not weighted evenly, e.g., Project 0 doesn't count as much as - the path tracer. We will determine the weighting at the end of the semester - based on the size of each project. +[![screen](images/explain.png)](http://ishaan13.github.io/Project5-WebGL/part2/frag_globe.html) +Extra Features: +* Perlin Noise function based dynamic random clouds (clouds go in and out) +* Ray Traced cloud shadows (including the procedural clouds) + +Required Features: +* Day Textures +* Specular Maps +* Night Textures +* Cloud Textures +* Cloud Transparencies +* Bump Mapping --- -SUBMISSION +Performance Evaluation --- -As with the previous project, you should fork this project and work inside of -your fork. Upon completion, commit your finished project back to your fork, and -make a pull request to the master repository. You should include a README.md -file in the root directory detailing the following - -* A brief description of the project and specific features you implemented -* At least one screenshot of your project running. -* A link to a video of your project running. -* Instructions for building and running your project if they differ from the - base code. -* A performance writeup as detailed above. -* A list of all third-party code used. -* This Readme file edited as described above in the README section. +Measuring performance for shaders is a really difficult thing to do, especially in webGL, so the closest I could get was average FPS. +* Vertex Shader Sine Wave: ~33fps +* Vertex Shader Simplex Wave: ~28fps +* Vertex Shader Infinitely Tiled Pseudo Random Terain: ~48fps +* Globe Shader : 61fps + +The globe takes a long time to load since the fragment shader is quite long with its noise function. +None the less, the execution time is much more for the vertex shader programs since they are bound by the number of vertices (512x512) and have complex sin-cos functions involved. +But the shader should have fast hardware sin-cos. So I'm not entirely sure why it's so much faster for the globe when I'm doing some quite complex things. \ No newline at end of file diff --git a/images/explain.png b/images/explain.png new file mode 100644 index 0000000..c26727a Binary files /dev/null and b/images/explain.png differ diff --git a/images/globe_1.PNG b/images/globe_1.PNG new file mode 100644 index 0000000..98adfdd Binary files /dev/null and b/images/globe_1.PNG differ diff --git a/images/globe_2.PNG b/images/globe_2.PNG new file mode 100644 index 0000000..a766515 Binary files /dev/null and b/images/globe_2.PNG differ diff --git a/images/globe_2_features.PNG b/images/globe_2_features.PNG new file mode 100644 index 0000000..a766515 Binary files /dev/null and b/images/globe_2_features.PNG differ diff --git a/images/height_1.PNG b/images/height_1.PNG new file mode 100644 index 0000000..d94ad13 Binary files /dev/null and b/images/height_1.PNG differ diff --git a/images/height_2.PNG b/images/height_2.PNG new file mode 100644 index 0000000..8ed0c9e Binary files /dev/null and b/images/height_2.PNG differ diff --git a/images/simplex_2d.png b/images/simplex_2d.png new file mode 100644 index 0000000..e22a236 Binary files /dev/null and b/images/simplex_2d.png differ diff --git a/images/wave.png b/images/wave.png new file mode 100644 index 0000000..1a267ab Binary files /dev/null and b/images/wave.png differ diff --git a/part1/blah.jpg b/part1/blah.jpg new file mode 100644 index 0000000..7402b4a Binary files /dev/null and b/part1/blah.jpg differ diff --git a/part1/perlin.jpg b/part1/perlin.jpg new file mode 100644 index 0000000..db05d8a Binary files /dev/null and b/part1/perlin.jpg differ diff --git a/part1/tile_noise.jpg b/part1/tile_noise.jpg new file mode 100644 index 0000000..4256cb1 Binary files /dev/null and b/part1/tile_noise.jpg differ diff --git a/part1/vert_wave.html b/part1/vert_wave.html index 57107ca..d2ba493 100644 --- a/part1/vert_wave.html +++ b/part1/vert_wave.html @@ -12,22 +12,33 @@ diff --git a/part1/vert_wave.js b/part1/vert_wave.js index b90b9cf..dfd09b9 100644 --- a/part1/vert_wave.js +++ b/part1/vert_wave.js @@ -3,8 +3,8 @@ /*global window,document,Float32Array,Uint16Array,mat4,vec3,snoise*/ /*global getShaderSource,createWebGLContext,createProgram*/ - var NUM_WIDTH_PTS = 32; - var NUM_HEIGHT_PTS = 32; + var NUM_WIDTH_PTS = 256; + var NUM_HEIGHT_PTS = 256; var message = document.getElementById("message"); var canvas = document.getElementById("canvas"); @@ -18,12 +18,16 @@ context.viewport(0, 0, canvas.width, canvas.height); context.clearColor(1.0, 1.0, 1.0, 1.0); context.enable(context.DEPTH_TEST); - + var persp = mat4.create(); mat4.perspective(45.0, 0.5, 0.1, 100.0, persp); - var eye = [2.0, 1.0, 3.0]; + //var eye = [2.0, 1.0, 3.0]; + var theta = 45; // 0 - 180 + var phi = 45; // 0 - 360 + var radius = 3.741657; var center = [0.0, 0.0, 0.0]; + var eye = [ radius * Math.sin(theta) * Math.cos(phi), radius * Math.sin(theta) * Math.sin(phi), radius * Math.cos(theta) ]; var up = [0.0, 0.0, 1.0]; var view = mat4.create(); mat4.lookAt(eye, center, up, view); @@ -31,7 +35,81 @@ var positionLocation = 0; var heightLocation = 1; var u_modelViewPerspectiveLocation; - + var u_timeLocation; + + var leftMouseDown = false; + var rightMouseDown = false; + var lastMouseX = null; + var lastMouseY = null; + + var moonRotationMatrix = mat4.create(); + mat4.identity(moonRotationMatrix); + + function handleMouseDown(event) { + + if(event.button == 2) + { + leftMouseDown = false; + rightMouseDown = true; + } + else + { + leftMouseDown = true; + rightMouseDown = false; + } + lastMouseX = event.clientX; + lastMouseY = event.clientY; + } + + function handleMouseUp(event) { + leftMouseDown = false; + rightMouseDown = false; + } + + function handleMouseMove(event) { + if (!leftMouseDown && !rightMouseDown) { + return; + } + var newX = event.clientX; + var newY = event.clientY; + + var deltaX = newX - lastMouseX; + var deltaY = newY - lastMouseY; + + if(leftMouseDown) + { + phi = phi - deltaX * 0.003; + + theta = theta - deltaY * 0.005; + + if(theta < 0) + theta = 0.0001; + else if(theta > 180) + theta = 179.9999; + } + else + { + mouseCam.rad -= (0.001*diffy); + if(mouseCam.rad < 0.3) + mouseCam.rad = 0.3; + } + + eye = [ radius * Math.sin(theta) * Math.cos(phi), radius * Math.sin(theta) * Math.sin(phi), radius * Math.cos(theta) ]; + mat4.lookAt(eye, center, up, view); + + lastMouseX = newX + lastMouseY = newY; + } + + canvas.onmousedown = handleMouseDown; + canvas.oncontextmenu = function(ev) {return false;}; + document.onmouseup = handleMouseUp; + document.onmousemove = handleMouseMove; + + var u_HeightLocation; + var u_ColorLocation; + + (function initializeShader() { var program; var vs = getShaderSource(document.getElementById("vs")); @@ -41,6 +119,11 @@ context.bindAttribLocation(program, positionLocation, "position"); u_modelViewPerspectiveLocation = context.getUniformLocation(program,"u_modelViewPerspective"); + u_timeLocation = context.getUniformLocation(program, "u_time"); + + u_HeightLocation = context.getUniformLocation(program, "u_htTex"); + u_ColorLocation = context.getUniformLocation(program, "u_clTex"); + context.useProgram(program); })(); @@ -125,11 +208,49 @@ uploadMesh(positions, heights, indices); numberOfIndices = indices.length; })(); + + var htTex = context.createTexture(); + var clTex = context.createTexture(); + + + (function initTextures() { + function initLoadedTexture(texture){ + context.bindTexture(context.TEXTURE_2D, texture); + context.pixelStorei(context.UNPACK_FLIP_Y_WEBGL, false); + context.texImage2D(context.TEXTURE_2D, 0, context.RGBA, context.RGBA, + context.UNSIGNED_BYTE, texture.image); + context.texParameteri(context.TEXTURE_2D, context.TEXTURE_MAG_FILTER, + context.LINEAR); + context.texParameteri(context.TEXTURE_2D, context.TEXTURE_MIN_FILTER, + context.LINEAR); + context.texParameteri(context.TEXTURE_2D, context.TEXTURE_WRAP_S, + context.REPEAT); + context.texParameteri(context.TEXTURE_2D, context.TEXTURE_WRAP_T, + context.REPEAT); + context.bindTexture(context.TEXTURE_2D, null); + } + + function initializeTexture(texture, src) { + texture.image = new Image(); + texture.image.onload = function() { + initLoadedTexture(texture); + } + texture.image.src = src; + } + initializeTexture(htTex, "tile_noise.jpg"); + //initializeTexture(clTex, "PUT_COLORTEX_NAME.png"); + })(); + + (function animate(){ /////////////////////////////////////////////////////////////////////////// // Update - + + var d = new Date(); + var millisec = 1000* (60 * d.getMinutes() + d.getSeconds()) + d.getMilliseconds(); + var time = 1.0/1000 * millisec; + var model = mat4.create(); mat4.identity(model); mat4.translate(model, [-0.5, -0.5, 0.0]); @@ -142,7 +263,14 @@ // Render context.clear(context.COLOR_BUFFER_BIT | context.DEPTH_BUFFER_BIT); + context.uniform1f(u_timeLocation, time); + //time = 0.1f; + context.uniformMatrix4fv(u_modelViewPerspectiveLocation, false, mvp); + + context.activeTexture(context.TEXTURE0); + context.bindTexture(context.TEXTURE_2D, htTex); + context.drawElements(context.LINES, numberOfIndices, context.UNSIGNED_SHORT,0); window.requestAnimFrame(animate); diff --git a/part1/vert_wave_height.html b/part1/vert_wave_height.html new file mode 100644 index 0000000..5c56648 --- /dev/null +++ b/part1/vert_wave_height.html @@ -0,0 +1,166 @@ + + + +Infinitely tiled, pseudo random terrain + + + + + +
+ + + + + + + + + + + + diff --git a/part1/vert_wave_simplex.html b/part1/vert_wave_simplex.html new file mode 100644 index 0000000..d6777c1 --- /dev/null +++ b/part1/vert_wave_simplex.html @@ -0,0 +1,96 @@ + + + +Vertex Wave + + + + + +
+ + + + + + + + + + + + diff --git a/part2/frag_globe.html b/part2/frag_globe.html index 6aa5609..94c0740 100644 --- a/part2/frag_globe.html +++ b/part2/frag_globe.html @@ -8,7 +8,7 @@
- + diff --git a/part2/frag_globe.js b/part2/frag_globe.js index 1d8a877..389d443 100644 --- a/part2/frag_globe.js +++ b/part2/frag_globe.js @@ -56,6 +56,9 @@ var u_BumpLocation; var u_timeLocation; + var u_lightdirMCLocation; + var u_eyeMCLocation; + (function initializeShader() { var vs = getShaderSource(document.getElementById("vs")); var fs = getShaderSource(document.getElementById("fs")); @@ -77,6 +80,9 @@ u_timeLocation = gl.getUniformLocation(program,"u_time"); u_CameraSpaceDirLightLocation = gl.getUniformLocation(program,"u_CameraSpaceDirLight"); + u_lightdirMCLocation = gl.getUniformLocation(program,"u_DirLightMC"); + u_eyeMCLocation = gl.getUniformLocation(program,"u_eyeMC"); + gl.useProgram(program); })(); @@ -89,7 +95,7 @@ function initLoadedTexture(texture){ gl.bindTexture(gl.TEXTURE_2D, texture); - gl.pixelStorei(gl.UNPACK_FLIP_Y_WEBGL, true); + gl.pixelStorei(gl.UNPACK_FLIP_Y_WEBGL, false); gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, texture.image); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR); @@ -152,7 +158,7 @@ positions[positionsIndex++] = Math.sin(inclination)*Math.cos(azimuth); positions[positionsIndex++] = Math.cos(inclination); positions[positionsIndex++] = Math.sin(inclination)*Math.sin(azimuth); - texCoords[texCoordsIndex++] = i / WIDTH_DIVISIONS; + texCoords[texCoordsIndex++] = 1.0 - i / WIDTH_DIVISIONS; texCoords[texCoordsIndex++] = j / HEIGHT_DIVISIONS; } } @@ -241,22 +247,35 @@ var model = mat4.create(); mat4.identity(model); mat4.rotate(model, 23.4/180*Math.PI, [0.0, 0.0, 1.0]); - mat4.rotate(model, Math.PI, [1.0, 0.0, 0.0]); - mat4.rotate(model, -time, [0.0, 1.0, 0.0]); + //mat4.rotate(model, Math.PI, [1.0, 0.0, 0.0]); + mat4.rotate(model, time, [0.0, 1.0, 0.0]); var mv = mat4.create(); mat4.multiply(view, model, mv); + var modelInv = mat4.create(); + mat4.inverse(model,modelInv); + var invTrans = mat4.create(); mat4.inverse(mv, invTrans); mat4.transpose(invTrans); var lightdir = vec3.create([1.0, 0.0, 1.0]); var lightdest = vec4.create(); + var lightdirMC = vec3.create(); vec3.normalize(lightdir); + + mat4.multiplyVec4(modelInv, [lightdir[0], lightdir[1], lightdir[2], 0.0], lightdest); + lightdirMC = vec3.createFrom(lightdest[0],lightdest[1],lightdest[2]); + vec3.normalize(lightdirMC); + mat4.multiplyVec4(view, [lightdir[0], lightdir[1], lightdir[2], 0.0], lightdest); lightdir = vec3.createFrom(lightdest[0],lightdest[1],lightdest[2]); vec3.normalize(lightdir); + var eyeModelSpace = vec4.create(); + mat4.multiplyVec4(modelInv, [eye[0], eye[1], eye[2], 1.0], eyeModelSpace); + var eyeMC = vec3.create([eyeModelSpace[0],eyeModelSpace[1],eyeModelSpace[2]]); + /////////////////////////////////////////////////////////////////////////// // Render gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT); @@ -266,8 +285,12 @@ gl.uniformMatrix4fv(u_PerspLocation, false, persp); gl.uniformMatrix4fv(u_InvTransLocation, false, invTrans); + gl.uniform1f(u_timeLocation, time); + gl.uniform3fv(u_CameraSpaceDirLightLocation, lightdir); - + gl.uniform3fv(u_lightdirMCLocation, lightdirMC); + gl.uniform3fv(u_eyeMCLocation, eyeMC); + gl.activeTexture(gl.TEXTURE0); gl.bindTexture(gl.TEXTURE_2D, dayTex); gl.uniform1i(u_DayDiffuseLocation, 0);