-
Notifications
You must be signed in to change notification settings - Fork 106
Description
Hello, I'm following the SD fine tuning tutorial. I ran with the Pokemon dataset and all was well, so I formatted my own dataset, edited the .yaml, forked the repo and am having this issue with my code when starting the first training epoch:
'ValueError: Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers.'
Full traceback:
`Traceback (most recent call last):
File "/content/stable-diffusion/main.py", line 905, in
trainer.fit(model, data)
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/trainer/trainer.py", line 553, in fit
self._run(model)
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/trainer/trainer.py", line 918, in _run
self._dispatch()
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/trainer/trainer.py", line 986, in _dispatch
self.accelerator.start_training(self)
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/accelerators/accelerator.py", line 92, in start_training
self.training_type_plugin.start_training(trainer)
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/plugins/training_type/training_type_plugin.py", line 161, in start_training
self._results = trainer.run_stage()
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/trainer/trainer.py", line 996, in run_stage
return self._run_train()
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/trainer/trainer.py", line 1045, in _run_train
self.fit_loop.run()
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/loops/base.py", line 111, in run
self.advance(*args, **kwargs)
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/loops/fit_loop.py", line 200, in advance
epoch_output = self.epoch_loop.run(train_dataloader)
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/loops/base.py", line 111, in run
self.advance(*args, **kwargs)
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/loops/epoch/training_epoch_loop.py", line 130, in advance
batch_output = self.batch_loop.run(batch, self.iteration_count, self._dataloader_idx)
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 101, in run
super().run(batch, batch_idx, dataloader_idx)
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/loops/base.py", line 111, in run
self.advance(*args, **kwargs)
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 148, in advance
result = self._run_optimization(batch_idx, split_batch, opt_idx, optimizer)
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 202, in _run_optimization
self._optimizer_step(optimizer, opt_idx, batch_idx, closure)
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 396, in _optimizer_step
model_ref.optimizer_step(
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/core/lightning.py", line 1618, in optimizer_step
optimizer.step(closure=optimizer_closure)
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/core/optimizer.py", line 209, in step
self.__optimizer_step(*args, closure=closure, profiler_name=profiler_name, **kwargs)
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/core/optimizer.py", line 129, in __optimizer_step
trainer.accelerator.optimizer_step(optimizer, self._optimizer_idx, lambda_closure=closure, **kwargs)
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/accelerators/accelerator.py", line 296, in optimizer_step
self.run_optimizer_step(optimizer, opt_idx, lambda_closure, **kwargs)
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/accelerators/accelerator.py", line 303, in run_optimizer_step
self.training_type_plugin.optimizer_step(optimizer, lambda_closure=lambda_closure, **kwargs)
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/plugins/training_type/training_type_plugin.py", line 226, in optimizer_step
optimizer.step(closure=lambda_closure, **kwargs)
File "/usr/local/lib/python3.9/dist-packages/torch/optim/lr_scheduler.py", line 65, in wrapper
return wrapped(*args, **kwargs)
File "/usr/local/lib/python3.9/dist-packages/torch/optim/optimizer.py", line 113, in wrapper
return func(*args, **kwargs)
File "/usr/local/lib/python3.9/dist-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/usr/local/lib/python3.9/dist-packages/torch/optim/adamw.py", line 119, in step
loss = closure()
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 236, in _training_step_and_backward_closure
result = self.training_step_and_backward(split_batch, batch_idx, opt_idx, optimizer, hiddens)
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 537, in training_step_and_backward
result = self._training_step(split_batch, batch_idx, opt_idx, hiddens)
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 307, in _training_step
training_step_output = self.trainer.accelerator.training_step(step_kwargs)
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/accelerators/accelerator.py", line 193, in training_step
return self.training_type_plugin.training_step(*step_kwargs.values())
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/plugins/training_type/ddp.py", line 383, in training_step
return self.model(*args, **kwargs)
File "/usr/local/lib/python3.9/dist-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/usr/local/lib/python3.9/dist-packages/torch/nn/parallel/distributed.py", line 1008, in forward
output = self._run_ddp_forward(*inputs, **kwargs)
File "/usr/local/lib/python3.9/dist-packages/torch/nn/parallel/distributed.py", line 969, in _run_ddp_forward
return module_to_run(*inputs[0], **kwargs[0])
File "/usr/local/lib/python3.9/dist-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/usr/local/lib/python3.9/dist-packages/pytorch_lightning/overrides/base.py", line 82, in forward
output = self.module.training_step(*inputs, **kwargs)
File "/content/stable-diffusion/ldm/models/diffusion/ddpm.py", line 406, in training_step
loss, loss_dict = self.shared_step(batch)
File "/content/stable-diffusion/ldm/models/diffusion/ddpm.py", line 872, in shared_step
x, c = self.get_input(batch, self.first_stage_key)
File "/usr/local/lib/python3.9/dist-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/content/stable-diffusion/ldm/models/diffusion/ddpm.py", line 742, in get_input
c = self.get_learned_conditioning(xc)
File "/content/stable-diffusion/ldm/models/diffusion/ddpm.py", line 619, in get_learned_conditioning
c = self.cond_stage_model.encode(c)
File "/content/stable-diffusion/ldm/modules/encoders/modules.py", line 280, in encode
return self(text)
File "/usr/local/lib/python3.9/dist-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/content/stable-diffusion/ldm/modules/encoders/modules.py", line 271, in forward
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
File "/usr/local/lib/python3.9/dist-packages/transformers/tokenization_utils_base.py", line 2484, in call
encodings = self._call_one(text=text, text_pair=text_pair, **all_kwargs)
File "/usr/local/lib/python3.9/dist-packages/transformers/tokenization_utils_base.py", line 2570, in _call_one
return self.batch_encode_plus(
File "/usr/local/lib/python3.9/dist-packages/transformers/tokenization_utils_base.py", line 2761, in batch_encode_plus
return self._batch_encode_plus(
File "/usr/local/lib/python3.9/dist-packages/transformers/tokenization_utils.py", line 733, in _batch_encode_plus
first_ids = get_input_ids(ids)
File "/usr/local/lib/python3.9/dist-packages/transformers/tokenization_utils.py", line 713, in get_input_ids
raise ValueError(
ValueError: Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers.`
For full context, this is my dataset, formatted to be structured the same as the Pokemon dataset - https://huggingface.co/datasets/pimentooliver/fungi_futures
And here is my modified script -
!(python main.py \ -t \ --base /content/stable-diffusion/configs/stable-diffusion/rewrite_yaml.yaml \ --gpus "$gpu_list" \ --scale_lr False \ --num_nodes 1 \ --check_val_every_n_epoch 10 \ --finetune_from "$ckpt_path" \ data.params.batch_size="$BATCH_SIZE" \ lightning.trainer.accumulate_grad_batches="$ACCUMULATE_BATCHES" \ data.params.validation.params.n_gpus="$N_GPUS" \ )
Any advice much appreciated, thank you.