Skip to content

Commit da9b528

Browse files
conferences, up to SYSID24
1 parent 7dd38c1 commit da9b528

File tree

1 file changed

+46
-1
lines changed

1 file changed

+46
-1
lines changed

index.md

Lines changed: 46 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,6 +14,16 @@ title: "Publications & Patents"
1414
<h2>Publications</h2>
1515

1616
<ul>
17+
<li>
18+
<strong>Bias correction and instrumental variables for direct data-driven model-reference control</strong><br>
19+
<em>2025 European Control Conference (ECC)</em><br>
20+
<em>M. Mejari, V. Breschi, S. Formentin, D. Piga</em>
21+
</li>
22+
<li>
23+
<strong>Physics-aware learning of vehicle speed from accelerometer data</strong><br>
24+
<em>2025 European Control Conference (ECC)</em><br>
25+
<em>F. Dettù, S.C. Strada S. Formentin, S.M. Savaresi</em>
26+
</li>
1727
<li>
1828
<strong>Univariate Hawkes-based cryptocurrency forecasting via LOB data</strong><br>
1929
<em>2025 European Control Conference (ECC)</em><br>
@@ -24,6 +34,11 @@ title: "Publications & Patents"
2434
<em>2025 European Control Conference (ECC)</em><br>
2535
<em>R. G. Cestari, S. Chiodini, S. Formentin</em>
2636
</li>
37+
<li>
38+
<strong>Automating the loop in traffic incident management on highway</strong><br>
39+
<em>7th Annual Learning for Dynamics & Control Conference, Ann Arbor, Michigan, USA, 2025</em><br>
40+
<em>M. Cercola, N. Gatti, P. Huertas Leyva, B. Carambia, S. Formentin</em>
41+
</li>
2742
<li>
2843
<strong>An Inverse Learning Paradigm for Controller Tuning Rules</strong><br>
2944
<em>Automatica, 2025</em><br>
@@ -54,11 +69,31 @@ title: "Publications & Patents"
5469
<em>Automatica, vol. 172, pages 1-13, February 2025</em><br>
5570
<em>R. Busetto, V. Breschi, S. Formentin</em>
5671
</li>
72+
<li>
73+
<strong><a href="https://doi.org/10.1109/CDC56724.2024.10886117">A jump start to stock trading research for the uninitiated control scientist: a tutorial</a></strong><br>
74+
<em>2024 IEEE 63rd Conference on Decision and Control (CDC)</em><br>
75+
<em>B. Ross Barmish, S. Formentin, C.H. Hsieh, A.V. Proskurnikov, S. Warnick</em>
76+
</li>
77+
<li>
78+
<strong><a href="https://doi.org/10.1109/CDC56724.2024.10885792">Automated Data-Driven MPC Design for a Class of Nonlinear Systems</a></strong><br>
79+
<em>2024 IEEE 63rd Conference on Decision and Control (CDC)</em><br>
80+
<em>G. Yang, M. Scandella, S. Formentin, T. Parisini</em>
81+
</li>
5782
<li>
5883
<strong><a href="https://doi.org/10.1109/CDC56724.2024.10886552">MPC with adaptive resilience for Denial-of-Service Attacks mitigation on a Regulated Dam</a></strong><br>
5984
<em>2024 IEEE 63rd Conference on Decision and Control (CDC)</em><br>
6085
<em>R. G. Cestari, S. Longari, S. Zanero, S. Formentin</em>
6186
</li>
87+
<li>
88+
<strong><a href="https://doi.org/10.1016/j.ifacol.2024.08.517">A comparison of indirect and direct filter designs from data for LTI systems: the effect of unknown noise covariance matrices</a></strong><br>
89+
<em>20th IFAC Symposium on System Identification SYSID 2024: Boston, United States, July 17–19, 2024</em><br>
90+
<em>M. Mazzoleni, L. Maurelli, S. Formentin, F. Previdi</em>
91+
</li>
92+
<li>
93+
<strong><a href="https://doi.org/10.1016/j.ifacol.2024.08.554">Efficient tuning for motion control in diverse systems: a Bayesian framework</a></strong><br>
94+
<em>20th IFAC Symposium on System Identification SYSID 2024: Boston, United States, July 17–19, 2024</em><br>
95+
<em>E. Catenaro, L. Aarnoudse, S. Formentin, T. Oomen</em>
96+
</li>
6297
<li>
6398
<strong><a href="https://doi.org/10.1016/j.ifacol.2024.08.535">Split-boost neural networks</a></strong><br>
6499
<em>20th IFAC Symposium on System Identification SYSID 2024: Boston, United States, July 17–19, 2024</em><br>
@@ -69,6 +104,16 @@ title: "Publications & Patents"
69104
<em>20th IFAC Symposium on System Identification SYSID 2024: Boston, United States, July 17–19, 2024</em><br>
70105
<em>R. G. Cestari, A. Lucchini, E. Leati, M. Norgia, S. Formentin, S. M. Savaresi</em>
71106
</li>
107+
<li>
108+
<strong><a href="https://doi.org/10.1016/j.ifacol.2024.08.553">Data-driven explicit predictive control with limited resources: an exploration-based strategy</a></strong><br>
109+
<em>20th IFAC Symposium on System Identification SYSID 2024: Boston, United States, July 17–19, 2024</em><br>
110+
<em>A. Sassella, V. Breschi, S. Formentin</em>
111+
</li>
112+
<li>
113+
<strong><a href="https://doi.org/10.1016/j.ifacol.2024.08.530">Iterative Feedback Tuning with automated reference model selection</a></strong><br>
114+
<em>20th IFAC Symposium on System Identification SYSID 2024: Boston, United States, July 17–19, 2024</em><br>
115+
<em>T. Ickenroth, V. Breschi, T. Oomen, S. Formentin</em>
116+
</li>
72117
<li>
73118
<strong><a href="https://doi.org/10.1080/00207179.2024.2366428">Model predictive control for multi-period portfolio optimization: a trading-oriented learning approach</a></strong><br>
74119
<em>International Journal of Control, vol. 1, pages 1-11, June 2024</em><br>
@@ -221,7 +266,7 @@ title: "Publications & Patents"
221266
</li>
222267
<li>
223268
<strong><a href="https://doi.org/10.1109/TAC.2020.2989769">A note on the numerical solutions of kernel-based learning problems</a></strong><br>
224-
<em>IEEE Transactions on Automatic Control, vol. 66, no. 2, pages 940{947, February 2021</em><br>
269+
<em>IEEE Transactions on Automatic Control, vol. 66, no. 2, pages 940-947, February 2021</em><br>
225270
<em>M. Scandella, M. Mazzoleni, S. Formentin, F. Previdi</em>
226271
</li>
227272
</ul>

0 commit comments

Comments
 (0)