-
Notifications
You must be signed in to change notification settings - Fork 6
Description
With both the .py example and the note book example, I get the below error.
I'm using python 3.8, scipy version '1.5.2'
Process Process-4:
Traceback (most recent call last):
File "/usr/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap
self.run()
File "/usr/lib/python3.8/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/home/brendan/Documents/temp/Bayesian-optimization-using-Gaussian-Process/modules/parallelstuff.py", line 35, in mworker
res = minimize(f, x0, args = fargs, **margs)
Process Process-5:
File "/home/brendan/python/PhaserVenv/lib/python3.8/site-packages/scipy/optimize/_minimize.py", line 617, in minimize
return _minimize_lbfgsb(fun, x0, args, jac, bounds,
File "/home/brendan/python/PhaserVenv/lib/python3.8/site-packages/scipy/optimize/lbfgsb.py", line 306, in _minimize_lbfgsb
sf = _prepare_scalar_function(fun, x0, jac=jac, args=args, epsilon=eps,
File "/home/brendan/python/PhaserVenv/lib/python3.8/site-packages/scipy/optimize/optimize.py", line 261, in _prepare_scalar_function
sf = ScalarFunction(fun, x0, args, grad, hess,
Traceback (most recent call last):
File "/home/brendan/python/PhaserVenv/lib/python3.8/site-packages/scipy/optimize/_differentiable_functions.py", line 95, in init
self._update_grad()
File "/home/brendan/python/PhaserVenv/lib/python3.8/site-packages/scipy/optimize/_differentiable_functions.py", line 171, in _update_grad
self._update_grad_impl()
File "/usr/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap
self.run()
File "/home/brendan/python/PhaserVenv/lib/python3.8/site-packages/scipy/optimize/_differentiable_functions.py", line 91, in update_grad
self.g = approx_derivative(fun_wrapped, self.x, f0=self.f,
File "/usr/lib/python3.8/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/home/brendan/python/PhaserVenv/lib/python3.8/site-packages/scipy/optimize/_numdiff.py", line 388, in approx_derivative
raise ValueError("f0 passed has more than 1 dimension.")
File "/home/brendan/Documents/temp/Bayesian-optimization-using-Gaussian-Process/modules/parallelstuff.py", line 35, in mworker
res = minimize(f, x0, args = fargs, **margs)
ValueError: f0 passed has more than 1 dimension.
File "/home/brendan/python/PhaserVenv/lib/python3.8/site-packages/scipy/optimize/_minimize.py", line 617, in minimize
return _minimize_lbfgsb(fun, x0, args, jac, bounds,
File "/home/brendan/python/PhaserVenv/lib/python3.8/site-packages/scipy/optimize/lbfgsb.py", line 306, in _minimize_lbfgsb
sf = _prepare_scalar_function(fun, x0, jac=jac, args=args, epsilon=eps,
File "/home/brendan/python/PhaserVenv/lib/python3.8/site-packages/scipy/optimize/optimize.py", line 261, in _prepare_scalar_function
sf = ScalarFunction(fun, x0, args, grad, hess,
File "/home/brendan/python/PhaserVenv/lib/python3.8/site-packages/scipy/optimize/_differentiable_functions.py", line 95, in init
self._update_grad()
File "/home/brendan/python/PhaserVenv/lib/python3.8/site-packages/scipy/optimize/_differentiable_functions.py", line 171, in _update_grad
self._update_grad_impl()
File "/home/brendan/python/PhaserVenv/lib/python3.8/site-packages/scipy/optimize/_differentiable_functions.py", line 91, in update_grad
self.g = approx_derivative(fun_wrapped, self.x, f0=self.f,
File "/home/brendan/python/PhaserVenv/lib/python3.8/site-packages/scipy/optimize/_numdiff.py", line 388, in approx_derivative
raise ValueError("f0 passed has more than 1 dimension.")
ValueError: f0 passed has more than 1 dimension.